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Foreword
Ken Binmore

When von Neumann and Morgenstern's Theory of Games and
Economic Behavior appeared in 1944, it was greeted with great
enthusiasm. It was thought that a complete theory of strategic
behavior had sprung into existence from nowhere, as Athena
burst fully armed from the forehead of Zeus. However, it soon
became apparent that von Neumann and Morgenstern had
provided only the beginnings of a theory, and those seeking
quick applications became disillusioned. Game theory then spent
a long period in the doldrums. The mathematics of the theory of
two-person, zero-sum games continued to be studied. Much
effort was also devoted to developing cooperative game theory.
But the problems of noncooperative game theory in general were
left largely untouched.

Von Neumann and Morgenstern being no more, the Nobel Prize
for Economics was recently awarded to three game theorists,
John Nash, John Harsanyi, and Reinhard Selten. Nash's work
was published in the early 1950s, but it was not until the early
1970s that it was fully realized what a powerful tool Nash had
provided in formulating the equilibrium concept that bears his
name. Game theory then enjoyed a renaissance as economists
applied the idea to a wide range of problems. However, a fly in
the ointment was awaiting discovery. Games typically have many
Nash equilibria. In two-person, zero-sum games, this creates no
problem because all equilibria are then interchangeable and



payoff-equivalent. But the equilibrium selection problem for
more general games has no such easy solution.

At first it was thought that the problem could be tackled by
refining the Nash equilibrium concept. Despite Nash's remarks in
his thesis about a possible evolutionary interpretation of the idea
of a Nash equilibrium, attention at that time was focused almost
entirely on its interpretation as the only viable outcome of careful
reasoning by ideally rational players. Various bells and whistles
were therefore appended to the definition of rationality. These
allowed some Nash equilibria to be discarded as inadequately
rational according to whatever new definition of rationality was
being proposed. However, different game theorists proposed so
many different rationality definitions that the available set of
refinements of Nash equilibrium became embarrassingly large.
Eventually, almost any Nash equilibrium could be justified in
terms of someone or other's refinement. As a consequence a new
period of disillusionment with game theory seemed inevitable by
the late 1980s.
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Fortunately the 1980s saw a new development. Maynard Smith's
book Evolution and the Theory of Games directed game
theorists' attention away from their increasingly elaborate
definitions of rationality. After all, insects can hardly be said to
think at all, and so rationality cannot be so crucial if game theory
somehow manages to predict their behavior under appropriate
conditions. Simultaneously the advent of experimental economics
brought home the fact that human subjects are no great shakes at
thinking either. When they find their way to an equilibrium of a
game, they typically do so using trial-and-error methods.

As the appearance of this book indicates, the 1990s have
therefore seen a turning away from attempts to model people as
hyperrational players. The new approach to the equilibrium
selection problem emphasizes the almost tautological assertion
that the equilibrium selected will be a function of the
equilibriating process by means of which it is achieved. The
process may be slow, as in biological evolution. It may be fast, as
in social evolution, when the mechanism for the transmission of
superior strategies from one head to another is imitation. It may
be almost instantaneous, as when the price adjusts to equate
supply and demand in the Chicago wheat market. However, we
have learned that all these different processes have features in
common that make it worthwhile considering evolutionary
processes in the abstract.

Such studies teach us some painful lessons. We learn that there is
nearly always evolutionary pressure against the various types of
behavior labeled as "irrational" in the refinements' literature, but
these pressures can vary enormously in their relative strengths. If



the pressure against one type of irrationality is weak, the
pressures against other types of irrationality may rush the system
to an equilibrium before the pressure against the first type of
irrationality has a chance to have much effect. For example,
weakly dominated strategies need not be eliminated. Even
strongly dominated strategies can survive in certain special cases.

We also learn that historical and institutional factors cannot be
ignored. This is not a hard lesson for biologists, for whom the
realities of genetic inheritance and the accidents of geography are
brute facts that cannot be overlooked. But economists remain
resistant to the idea that the same game might receive a different
analysis if the players have a different history of experience, or
live in different societies, or operate in different industries. One
sometimes even reads that theories that ignore such
considerations are "superior" to those that do because they are
able to generate predictions with less data! However, if there is
one fact that work on evolutionary games has established beyond
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doubt, it is that some details of the equilibriating process can
have a major impact on the equilibrium selected. One of the
major tasks awaiting us is to identify such significant details so
that applied workers know what to look for in the environments
within Which the games they care about are played.

However, such a program is for the future. Jörgen Weibull's book
is a compendium of progress so far in the area in which biology
and economics overlap. Much of the material is his own work
and that of his collaborators. It is distinguished by the clarity of
the exposition and the elegance of the mathematics. He does not
pretend to cover the whole field. One must look elsewhere for
the nitty-gritty of population genetics or the properties of
evolutionary processes with a strong stochastic component. But
within his chosen area, his coverage is satisfyingly
comprehensive.

Evolutionary game theory is here to stay, and I suspect this book
will be a staple of its literature for many years to come. Its author
is to be congratulated on having done such a fine job.

 



Page xiii

Introduction
The standard interpretation of noncooperative game theory is that
the analyzed game is played exactly once by fully rational players
who know all the details of the game, including each other's
preferences over outcomes. Evolutionary game theory, instead,
imagines that the game is played over and over again by
biologically or socially conditioned players who are randomly
drawn from large populations.1 More specifically, each player is
"pre-programmed" to some behaviorformally a strategy in the
gameand one assumes that some evolutionary selection process
operates over time on the population distribution of behaviors.
What, if any, are the connections between the long-run aggregate
behavior in such an evolutionary process and solution concepts
in noncooperative game theory? More specifically: Are
dominated strategies wiped out in the long run? Will aggregate
behavior tend toward a Hash equilibrium of the game? Are some
Hash equilibria more likely to emerge in this fashion than others?
What is the nature of long-run aggregate behavior if it does not
settle down on some equilibrium? These are the kinds of
questions addressed in this book.

Similar questions have, of course, been raised in the domains of
economics and biology. Market competition is usually thought to
weed out firms that are not profit maximizers and to bring about
the equilibrium outcomes predicted by economic theory. This is
the basis for the so-called "as if" defense of economic theory,
which claims that it is not important that managers think the way
microeconomic theory says they do; what counts is whether they



behave as if they did (Friedman 1953). Likewise natural selection
is usually thought to result in animal behavior that is well adapted
to the environment. In the simplest cases this environment is
exogenously fixed, while in other cases the environment of an
individual is itself composed of other individuals who are subject
to the same forces of natural selection (this is also true for market
selection). What is optimal for an individual or firm in such an
interactive setting is endogenous in the sense of depending on the
distribution of behaviors in the population with which the
individual or firm interacts. Evolutionary game theory is designed
to enable analysis of evolutionary selection in precisely such
interactive environments.

1. In his unpublished Ph.D. dissertation (Nash 1950a) John Nash
suggests a population-statistical interpretation of his equilibrium
concept in which he imagines that players are randomly drawn from
large populations, one for each player position in the game. These
players were not assumed to "have full knowledge of the total structure
of the game, or the ability and inclination to go through any complex
reasoning process" (op. cit., p. 21 ); see Leonard (1994), Weibull
(1994), and Björnerstedtt and Weibull (1993).
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Plan of the Book

Evolutionary game theory provides a tool kit of wide
applicability. Its potential domain ranges from evolutionary
biology to the social sciences in general and economics in
particular. This book does not try to cover all the developments
in the field, not even all the most important ones: Instead, it
strives to give a serf-contained treatment of a selected set of core
elements, focused on conceptual and technical connections
between evolutionary and noncooperative game theory.

Chapter 1 gives a concise introduction to noncooperative game
theory. Notation, definitions, and results of relevance to the
subsequent discussion are introduced, along with a number of
examples that are used throughout the book. Chapters 2 through
4 deal with single-population evolutionary models of pairwise
interactions represented as a symmetric two-player game. Chapter
2 considers a few static models, centered around the key concept
of an evolutionarily stable stragegy. Chapter 3 focuses on a
particular dynamic model of evolutionary selection in continuous
time, the so-called replicator dynamics. Chapter 4 develops a few
variations on the theme in chapter 3, including dynamic models
of social evolution. Chapter 5 develops both static and dynamic
models of multipopulation interactions represented as an n-player
game. The dynamic models developed in chapters 3 through 5
use systems of ordinary differential equations to describe the
evolution of aggregate behavior over time. Chapter 6 provides a
concise introduction to the theory of Ordinary differential
equations. All chapters contain examples that illustrate the
workings of the discussed methods.



The presentation of the material in many instances proceeds from
the special to the general. Several themes first appear in simple
examples, thereafter in specific but broader contexts, and finally
in more general and abstract settings. It may annoy some
mathematically well-versed readers to first see a claim proved in
a special case and later in a more general case. However, it is
hoped that this procedure will facilitate an operational ''hands
on.'' and not only abstract, understanding of the methods used.

The reader is assumed to have some familiarity with standard
notions in mathematics (basic set theory, topology, and calculus)
at about the level achieved after the first year of graduate studies
in economics. Although chapter 1 provides the tools needed from
noncooperative game theory, this treatment will most likely
appear terse for a reader who is not acquainted with the basic
ideas in noncooperative game theory. Also here the reader is
presumed to
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have a knowledge at about the level achieved after first-year
graduate studies in economics.

How to read the book, and how to use it in class? One obvious
way is to read chapter 1, selected parts of chapter 2, make a short
excursion into selected parts of chapter 6, and finally read
selected parts of chapters 3 through 5. A shorter course could
focus on parts of chapters 1, 2, 3, and 5 (e.g., sections 1.1-1.3,
1.5, 2.1-2.3, 3.1-3.3, 3.5, and 5.2).

To enable a self-contained and yet concise treatment, only
deterministic models of games in normal form are discussed in
this book, despite the fact that there now are a few promising
evolutionary stochastic models and evolutionary models of
extensive-form games. Each of these two extensions of the scope
would require additional technical machinery. The reader who is
interested in these and other developments in evolutionary game
theory not covered here may consult the bibliography at the end
of the book. For example, stochastic models are discussed in
Foster and Young (1990), Kandori,. Mailath, and Rob (1993), and
Young (1993). Models of games in extensive form may be found
in Selten (1983), van Damme (1987), and Nöldeke and
Samuelson (1993). A number of other important contributions
can be found in recent issues of economics and biology journals.
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Mathematical Notation
Lowercase letters are mostly used for real numbers, vectors of
real numbers, and for functions, while capital letters usually
signify matrices and sets. Euclidean spaces are typically denoted
Rn, where n is a positive integerthe dimension of the space. The
subset of vectors x in Rn that have all coordinates xi nonnegative
is denoted , and the subset of vectors that have all coordinates
positive is written . The inner (or scalar) product of two
vectors x and y in Rn is a real number (scalar) written. 
The euclidean norm (or length) of a vector  is denoted 

, and the distance between two points (vectors) x and y
in Rn is written d(x, y) = ||x - y||. The transpose of an n × n matrix
A is denoted AT.

In this book  denotes weak set inclusion. Hence  signifies
that all elements of X are also elements of Y. The complement of
a set  is written ~ X. By a neighborhood of a point (vector) x
in Rn is meant an open set  containing x. The interior of a set

 is written int(X); this is the subset of points x in X such that
X also contains some neighborhood of x. Theboundary of a set 

 is written bd(X); this is the set of points  such that every
neighborhood of y contains some point from X and some point
from ~ X. The closure of a set  is denoted ; this is the union
of X and its boundary. A function f from a set X to a set Y is
viewed as a rule that to each element x of X assigns precisely one
element, f(x), of Y. Likewise a correspondence j from a set X to
a set Y is a rule that to each element x of X assigns precisely one
nonempty subset, j(x), of Y.
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1
Elements of Noncooperative Game Theory
This chapter provides an introduction to the concepts and results
in noncooperative game theory that will be used in the
subsequent evolutionary analysis. The material in this chapter is
organized as follows: In section 1.1 the structure of finite normal-
form games is outlined. In particular, the geometry of strategy
spaces and multilinearity of payoff functions is emphasized.
Section 1.2 discusses dominance orderings of a player's strategy
space and formalizes the notion of "best replies." Section 1.3
considers Nash equilibria as fixed points of the best-reply
correspondence, and studies some properties of the set of Nash
equilibria. Section 1.4 gives a brief account of some point- and
setwise refinements of the Nash equilibrium concept. Section 1.5
introduces some special notation for, and properties of,
symmetric two-player games; the basic setting in chapters 2
through 4. Many of the examples introduced in the chapter will
be used later to illustrate evolutionary concepts.

The reader who wishes to have a fuller treatment of
noncooperative game theory is advised to consult Fudenberg and
Tirole (1991) or, for a more concise and technical treatment, van
Damme (1987).

1.1 Strategies and Payoff Functions

The analysis in this book is restricted to finite games in normal
form. More precisely, let I = {1, 2,..., n} be the set of players,



where n is a positive integer. For each player , let Si be her
finite set of pure strategies. For notational convenience, we will
label every player's pure strategies by positive integers. Hence the
pure-strategy set of any player  is written Si = {1,2,..., mi}, for
some integer  A vector s of pure strategies, s = (sl, s2,..., sn),
where si is a pure strategy for player i, is called a pure-strategy
profile. The set of pure strategy profiles in the game is thus the
cartesian product S = ×iSi of the players' pure strategy sets,
sometimes to be called the pure-strategy space of the game.

For any strategy profile  and player , let  be the
associated payoff to player i. In economics the payoffs are
usually firms' profits or consumers' (von Neumann-Morgenstern)
utility, while in biology payoffs usually represent individual
fitness (expected number of surviving offspring). The finite
collection of real numbers pi(s) defines the ith player's (pure-
strategy) payoff function , for each player . The
combined pure-strategy payoff function of the game, ,
assigns to each pure-strategy profile s the full vector p(s) =
(p1(s),..., pn(s)) of payoffs.
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In terms of pure strategies, a game in normal form may be
summarized as a triplet G = (I, S, p), where I is its player set, S its
pure-strategy space, and p its combined payoff function. In the
special case when there are only two players, one may
conveniently write each of the two payoff functions p1 and p2 in
tabular form as an m1 × m2 matrix. We will usually denote the
first player's payoff matrix A = (ahk), where ahk = pl (h, k) for
each  and , and will likewise denote the second player's
payoff matrix B = (bhk), where bhk = p2(h, k). Each row in both
matrices thus corresponds to a pure strategy for player 1, and
each column to a pure strategy for player 2. Any two-player game
can be fully represented by the associated payoff matrix pair (A,
B), where player 1 is understood to be the "row player" and
player 2 the "column player."

Example 1.1

The most widely known game is probably the Prisoner's
Dilemma Game, a two-player game in which each player has only
two pure strategies. A typical configuration of payoffs is given in
the matrix pair

Evidently player 1's second pure strategy ("defect") gives a higher
payoff than her first pure strategy ("cooperate"), irrespective of
which strategy is used by player 2; each entry in the second row
of matrix A exceeds the corresponding entry in the first row.
Likewise player 2's second pure strategy always gives her a
higher payoff than her first pure strategy; each entry in B's second



column exceeds the corresponding entry of its first column.
Hence individual rationality leads each player to select her second
pure strategy (defect). The dilemma consists in the fact that both
players would earn higher payoffs if they were to select their first
pure strategy (cooperate).

1.1.1 The Geometry of Mixed-Strategy Spaces

A mixed strategy for player i is a probability distribution over her
set Si of pure strategies. Since for each player  the set Si is
finite, we can represent any mixed strategy xi for player i as a
vector xi in mi-dimensional euclidean space Rmi, its hth
coordinate  being the probability assigned by xi to the
player's hth pure strategy.
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The set of pure strategies that is assigned positive probabilities by
some mixed strategy xi is called the support (or carrier) of xi,
and it will be denoted

Since all probabilities xih (for h = 1, 2,..., mi) are nonnegative
and sum up to one, the vector  belongs to the unit simplex Di
in mi-space, defined as

see figures 1.1 (a) and (b) for illustrations of the cases mi = 2 and
mi = 3, respectively.

The mixed-strategy simplex Di of player i has dimension mi - 1
(one may write any one of the probabilities xih as 1 minus the
other probabilities). With-out loss of information we may thus
instead study some projection of the simplex  to a euclidean
space with dimension mi - 1. Figures 1.2 (a) and (b) show
projections in the cases mi = 2 (to the xi1-axis) and mi = 3(to the
(xi1, xi2)-plane), respectively.

The vertices (or comers) of the simplex Di are the unit vectors in
mi-space, denoted 
Each such vertex  represents the mixed strategy for player i
which assigns probability one to her hth pure strategy. From this
viewpoint pure strategies are just special, "extreme," mixed
strategies.

The mixed-strategy simplex Di is the convex hull of its vertices;
every mixed strategy  is some convex combination of the unit



vectors, or pure strategies, :

If a subset  is the convex hull of some nonempty subset of
pure strategies (vertices of Di), then Xi is called a face of Di. In
particular, Xi = Di is a face, and so is each pure-strategy singleton 

 for .

The subset
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Figure 1.1
(a) The unit simplex Di when mi = 2. (b) The unit simplex Di when mi = 3.
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Figure 1.2
(a) Projection of the unit simplex Di when mi = 2. (b) Projection of Di when

mi = 3.

is called the (relative) interior of Di.1 Accordingly the mixed
strategies in this subset are called interior or completely mixed;
they assign positive probabilities to all the player's pure strategies
and so have full support, C(xi) = Si for all . The set of
noninterior strategies in Di is Called the boundary of Di, denoted

1. The attribute "relative" is used here since Di has an empty interior
when viewed as a subset of Rmi but a nonempty interior int(Di) when



viewed as a subset of the hyperplane 
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Note that the boundary of Di is the set of strategies xi for which
the support C(xi) is a proper subset of the strategy set Si.
Alternatively one may view bd(Di) as the union of boundary
faces of Di, where a boundary face is a face spanned by some
proper subset of Si. (Hence Di is the only face that is not a
boundary face.)

A mixed-strategy profile is a vector x = (x1, x2,..., xn), where
each component  is a mixed strategy for player . A mixed
strategy profile x is hence a point in the mixed-strategy space

of the game. Being the cartesian product of the n unit simplexes
Di, one (mi - l)-dimensional set for each player , the set Q is a
(m - n)-dimensional polyhedron in Rm, where m = ml + m2 + ...
+mn is the total number of pure strategies in the game.2 See
figure 1.3 (a) for a two-dimensional projection of the two-
dimensional polyhedron  in the case n = 2 and m1 = m2 = 2.
Likewise figure 1.3 (b) shows a three-dimensional projection
(projected to two dimensions on the page) of the three-
dimensional polyhedron  in the case n = 2, m1 = 3 and m2 =
2.

A strategy profile x is called interior (or completely mixed) if
each of its component strategies xi is interior. The subset of such
profiles is denoted

Writing  for the support of any profile  if
and only if C(x) = S. The boundary of Q, bd(Q), is the set of



non-interior profiles . A subset  is called a face of Q if X
is the cartesian product of faces of the players' simplexes. In
particular, X = Q is a face of Q, its maximal face. All other faces
of Q are called boundary faces. In particular, each pure strategy
profile, viewed as a singleton subset of Q, is a boundary face.
The union of boundary faces of Q is identical with the set bd(Q).

We will write (xi, y-i) for the strategy profile in which player 
plays strategy , while all other players j play according to the
profile . More precisely, the strategy profile  is
defined by zi = xi, and zj = yj for all . This notation is
particularly convenient when a single player i considers
"deviations"  from a given profile .

2.m - n > 0, since, by hypothesis, each player has at least two pure
strategies.
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Figure 1.3
(a) Projection of the polyhedron Q when n = 2 and m1 = m2 = 2. (b)

Projection of Q when n = 2, m1 = 3, and m2 = 2.
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1.1.2 Mixed-Strategy Payoff Functions

In the standard approach of noncooperative game theory, to
which we adhere in this book, all players' randomizations are
statistically independent.3 Hence the probability that a particular
pure strategy profile  will be used, when a mixed-
strategy profile  is played, is simply the associated product

of the probabilities assigned by each player's mixed strategy 
to her pure strategy . Consequently the (statistically) expected
value of the payoff to player i associated with a mixed-strategy
profile  is

The real number ui(x) will simply be called the ith player's payoff
from strategy profile x. Note that this payoff is a linear function
of each player's mixed strategy (taken individually). To see this,
first note that since playing a pure strategy  is
probabilistically equivalent to playing the (extreme) mixed
strategy , we can write  for the payoff that player i
obtains when player j uses her kth pure strategy. Hence for any 

 and i, 

In other words, the payoff ui(x) can be computed as the weighted
sum of the payoffs that player i obtains for each of j's pure
strategies (all other players' mixed strategies being fixed), where



the weights are the probabilities assigned by player j in his mixed
strategy to each of his pure strategies. Equation (1.11) shows that
ui(x) is linear in .

Furthermore equation (1.10) defines ui(x) as a real number for
all vectors x in Rm, not only for those in the subset . Hence
this equation defines ui as a multilinear mapping, that is, linear in
each vector component ,

3. Otherwise, the resulting collective randomization is correlated; see,
for example, Fudenberg and Tirole (1991) for definitions and examples
along this line.

 



Page 9

of Rm to R. This extended function  will be called the
(mixed-strategy) payoff function of player i. The combined
function , defined by u(x) = (ul(x), u2(x),..., un(x)), will
accordingly be called the combined mixed-strategy payoff
function of the game.

As an alternative to its pure-strategy representation G = (I, S, p),
one could sometimes more conveniently refer to its mixed-
strategy extension (I, Q, u), where Q is the mixed-strategy space
and u the combined mixed-strategy payoff function. In the
special case of two-player games, one could, as noted above in
the context of pure strategies, represent the game by the
associated payoff matrix pair (A, B), where A (B) is the payoff
matrix of player 1 (2). Hence for any pair of mixed strategies 

 and , we have

and

where the multiplication dot signifies the usual inner (scalar)
product between vectors and the superscript T stands for matrix
transposition. (This matrix representation brings out quite clearly
the bilinearity of the players' payoff functions.) Representing a
two-player game in this matrix format, player 1 chooses a row (a
pure strategy) or a probability distribution over the rows (a mixed
strategy), and player 2 likewise chooses a column (a pure



strategy) or a probability distribution over the columns (a mixed
strategy).

Example 1.2

The combined mixed-strategy payoff function  in the
Prisoner's Dilemma Game of example 1.1 is defined by equations
(1.14) and (1.15) below. It is easily verified that the first player's
payoff, u1(x), for any fixed strategy  of player 2, is
maximized in D1 at . Using the identity xi1 + xi2 = 1, one
obtains u1(x) = (1 + 2x22) x12 + 4x21, which is an increasing
function of x12.
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1.2 Dominance Relations and Best Replies

Noncooperative game theory uses two partial orderings of a
player's (pure or mixed) strategy set, defined in terms of the
payoff consequences for the player. Pure strategies being special
cases of mixed strategies, we define these partial orderings on the
mixed-strategy simplex Di of each player i.

1.2.1 Weak, Strict, and Iterative Strict Dominance

A strategy is said to weakly dominate another strategy if the first
strategy (1) never earns a lower payoff than the second and (2)
sometimes earns a higher payoff. A strategy is called
undominated if no strategy weakly dominates it. Formally

Definition 1.1

 weakly dominates if for all , with strict
inequality for some . A strategy xi is undominated if no such
strategy yi exists.

Likewise a strategy is said to strictly dominate another strategy if
it always earns a higher payoff:

Definition 1.2

 strictly dominates if for all .

For instance, the second pure strategy (defect) in the Prisoner's
Dilemma Game of example 1.1 strictly dominates the first pure
strategy (cooperate) for each player position i = 1, 2. Since these
are the only pure strategies available,  strictly dominates all
strategies . The following example illustrates the possibility



that a pure strategy is strictly dominated by a mixed strategy
without being dominated by any pure strategy.

Example 1.3

Consider a two-player game with payoff matrix for player I as in
(1.16) below. Player 1 thus has three pure strategies. Her third
pure strategy, , is not weakly dominated by any of her other
two pure strategies. However, she always obtains a higher payoff
by randomizing uniformly over the other pure strategies.
Formally, let . Then  for all ,
so y1 strictly dominates xl.
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A basic rationality postulate in noncooperative game theory is
that ''rational'' players never use strictly dominated strategies.4 In
this case all strictly dominated pure strategies may be deleted
from the game without affecting the outcome. But once this is
done, some remaining pure strategies may be strictly dominated
in the new, reduced game. Iteratively repeated removal of strictly
dominated pure strategies in a game G leads to the following
definition: A pure strategy  is not iteratively strictly
dominated if it is not strictly dominated in the original game G,
nor in the reduced game G1 obtained from G by deletion of
(some or all) strictly dominated strategies, nor in the further
reduced game G2 obtained from G1 by deletion of strictly
dominated strategies in G1, and so on, until no more strategies
can be so eliminated (i.e., until Gt+1 = Gt for some positive
integer t). Since there are finitely many players and pure
strategies, this procedure of iterated elimination always stops
after a finite number of rounds, and it can be shown that the
remaining set of strategies (one nonempty such set for each
player) is independent of the details of the elimination
procedure.5

For any (finite normal-form) game G = (I, S, p), let  be its
(non-empty) subset of not iteratively strictly dominated pure-
strategy profiles. If this set is a singleton (has precisely one
element), then the game is called strictly dominance solvable.
For instance, the Prisoner's Dilemma Game in example 1.1 is
strictly dominance solvable in this sense.

Example 1.4

The payoff matrix pair in equation (1.17) below represents



another strictly dominance solvable game. Pure strategy 2 is
strictly dominated by pure strategy 1 (as well as by strategy 3) for
each of the two players. Once strategy 2 has been removed from
each player's strategy set, strategy 1 strictly dominates strategy 3
for both players. Hence only the pure strategy profile s = (1, 1)
remains: SD = {(1, 1)},

4. Some authors even argue that "rational" players never use a weakly
dominated strategy (e.g., see Kohlberg and Mertens 1986).
5. More precisely, the end result is independent of whether only some or
all dominated strategies are eliminated in each round; see, for example,
Fudenberg and Tirole (1991 ) for details.
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The postulate that no player ever uses a strictly dominated
strategy is a relatively weak rationality assumption. For it only
requires that each player's (pure-strategy) payoff function indeed
represents her preferences. In particular, no knowledge on behalf
of the player about other players' preferences or behavior is
required. In contrast, an application of the criterion of iterative
elimination of strictly dominated strategies requires, in addition,
that the players know each others' payoff functionsso that they
can eliminate each others' strictly dominated strategies. Moreover
this knowledge of preferences has to be known to all playersso
that they can eliminate others' strategies which are strictly
dominated in the reduced game after one round of deletion of
strictly dominated strategies, and so on, up to the level t of
mutual knowledge where further iteration does not eliminate any
more strategies.6

1.2.2 Best Replies

A pure best reply for player i to a strategy profile  is a pure
strategy  such that no other pure strategy available to the
player gives her a higher payoff against y. This defines the ith
player's pure-strategy best-reply correspondence  which
maps each mixed-strategy profile  to the nonempty (finite) set

of pure best replies for player i to y. For instance, the third pure
strategy in example 1.3 above is not a best reply to any strategy
profile.

Since every mixed strategy  is a convex combination of pure
strategies, and ui(xi, y-i) is linear in xi, no mixed strategy  can



give a higher payoff to player i against  than any one of her
pure best replies to y. Formally, for any ,  and ,

Hence

6. It is here implicitly assumed that knowledge of another player's
payoff function implies that this function indeed represents the other
player's preferences.
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A mixed best reply for player i to a strategy profile  is a
strategy  such that no other mixed strategy gives a higher
payoff to i against y. As noted above, every pure best reply
viewed as a mixed strategy is also a mixed best reply. Moreover,
by linearity of ui(xi, y-i) in xi, any convex combination of pure
best replies is a mixed best reply. Accordingly the ith player's
mixed-strategy best-reply correspondence  maps each
mixed-strategy profile  to the face of Di which is spanned by
the pure best replies to y:

Being a face of Di, the best-reply set , to a single-strategy
profile  is always nonempty, closed, and convex (ranging
from a singleton in case there is only one pure best reply, for
player i, to the whole simplex in ease all pure strategies in Si are
best replies).

The combined pure-strategy, best-reply correspondence 
of the game is defined as the cartesian product of all players'
pure-strategy best-reply correspondences,

and the combined correspondence  is likewise defined by

1.2.3 Dominance versus Best Replies

A pure strategy that is a best reply to some mixed-strategy profile
cannot, of course, be strictly dominated. Pearce (1984) showed



that the converse holds in any two-player game: A pure strategy
that is not strictly dominated in such a game is necessarily a best
reply to some mixed-strategy profile. Likewise a pure strategy
that is a best reply to some completely mixed-strategy profile is
undominated. Pearce (1984) showed that in any two-player game,
the converse also to this holds: An undominated pure strategy is
then a best reply to some completely mixed strategy profile.
Neither of these two converses are generally valid in games with
more than two players.
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Proposition 1.1

Consider any two-player game. is not strictly dominated if
and only if for some . is undominated if and only if 

for some .

(For a proof, see Pearce 1984 or Fudenberg and Tirole 1991.)

1.3 Nash Equilibrium

One of the cornerstones of economic theory, underlying most of
modem economics, is the notion of Nash equilibrium (Nash
1950a, b, 1951). In essence Nash equilibrium requires of a
strategy profile  that not only should each component strategy
xi be optimal under some belief on behalf of the ith player about
the others' strategies, it should be optimal under the belief that x
itself will be played.

1.3.1 Definition

Phrased in terms of best replies, a strategy profile  is a Nash
equilibrium if it is a best reply to itself, namely if it is a fixed
point of the mixed-strategy best-reply correspondence :

Definition 1.3

is a Nash equilibrium if .

It follows from (1.21) that if  is a Nash equilibrium, then
every pure strategy in the support of each component xi is a best
reply to 

Example 1.5

A (children's) game that has no Nash equilibrium in pure



strategies but one in mixed strategies is the Matching Pennies
Game.7 This is a zero-sum two-player game in which each player
has only two pure strategies, as. given in the payoff matrices in
(1.24) below. Inspection of these matrices shows that the game
has no Nash equilibrium in pure strategies: At each pure-strategy
profile exactly one of the players wants to change her strategy.
However, for any player to be willing to randomize, the other
player must play both his pure strategies with equal probability.
Hence the unique Nash equilibrium is x, where . Indeed
this profile x is a fixed point under  for i = 1, 2 (D is
the unit simplex in R2).

7. Two children, holding a penny apiece, independently choose which
side of their coin to show. Child 1 wins if both coins show the same
side; otherwise, child 2 wins.

 



Page 15

A Nash equilibrium  is called strict if each component
strategy xi is the unique best reply to x, that is, if . In other
words, while the Nash equilibrium criterion requires that no
unilateral deviation should be profitable, strict Nash equilibrium
requires that all such deviations be costly. A strict equilibrium
can thus not involve any randomization at all; since then there
would exist some player for whom at least two pure strategies
give the same maximal payoff to her. Thus every strict
equilibrium is a pure-strategy profile (a vertex of the polyhedron
Q). For instance, in the Prisoner's Dilemma Game of example
1.1, the pure-strategy profile s = (2, 2) is a strict Nash
equilibrium.

A Nash equilibrium strategy cannot be strictly dominated.
However, there is nothing in the definition that prevents a Nash
equilibrium strategy from being weakly dominatedthere may be
another best reply (to the equilibrium profile) that is never (i.e.,
against no other strategy profile) worse than the equilibrium
strategy in question and that does better against some other
strategy profile. A Nash equilibrium x is called undominated if
every component strategy xi is undominated.

1.3.2 Structure of the Set of Nash Equilibria

The existence of Nash equilibrium was first established by Nash
(1950b). For any given game, let  denote its set of Nash
equilibria:

Theorem 1.1



For any finite game .

Proof

The polyhedron Q is nonempty, convex, and compact. It is well
known that the best-reply correspondence  is upper hemi-
continuous, and we have seen that the image  of every
profile  is a nonempty, convex, and closed set.8 Hence  and
Q meet the hypotheses in Kakutani's fixed-point theorem, and 

 for at least one .

For certain analyses it is useful to note that the set of Nash
equilibria can be rewritten as those mixed-strategy profiles which
meet certain inequalities:

8.Upper hemi-continuity ,of a correspondence  at a point 
means that for every open set V containing the. image , there
exists an open set U containing x such that  for all .  has this
property by virtue of the continuity of the payoff function u. Indeed this
is an immediate implication of Berge's maximum theorem.
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Each function in the defining inequality is a polynomial, and the
number of such polynomial inequalities is finite (there are m
inequalities). Consider any polynomial of one variable. It is
intuitively clear that the set on which it is non-negative is the
union of finitely many intervals (draw a picture!). The set on the
right-hand side in (1.25) is the intersection of finitely many such
nonnegativity sets for polynomials in the vector variable x. It
follows from a classical result in algebraic geometry that such a
set consists of finitely many disjoint, closed, and connected sets.
These are usually called the Nash equilibrium components of the
game (Kohlberg and Mertens 1986):

Proposition 1.2

The set QNE is the finite union of disjoint, closed, and connected
sets.

Viewed as a singleton set, a strict Nash equilibrium is such a
component. However, many games lack strict Nash equilibria
and, indeed, singleton components. In particular, any Nash
equilibrium that does not reach all the information sets in an
extensive-form representation of the game is nonstrict. For a
player at an unreached information set may change her local
strategy there without affecting her own payoff. Hence she has
multiple best replies to the profile in question. Moreover, if all
payoffs at the end nodes of the extensive form differ, then
sufficiently small such local unilateral deviations off the
equilibrium path do not affect the best replies of the other
players. Hence the equilibrium then belongs to a whole



continuum of Nash equilibria, namely a nonsingleton component
of QNE. Kreps and Wilson (1982) have shown that for such
generic payoffs in an extensive-form game, all players' payoff
functions are constant on each component QNE.9

Example 1.6

Consider the two-player Entry Deterrence Game given in
extensive form in figure 1.4 (a). (This is equivalent to the stage
game in the Chain-Store Game in Selten 1978.) Player 1 can be
thought of as a potential competitor in 2's market (or territory).
Player 2 (the monopolist) wants player 1 (the competitor) to stay
out; then 2 earns his highest possible payoff (4). If, however,
player 1 enters, then 2 has two choices: either to yield (share the
market or territory) or to fight. The normal form of this game is
given by the

9. The extensive form of a game was developed in Kuhn (1953). See,
for example, Kreps and Wilson (1982), Fudenberg and Tirole (1991),
or van Damme (1987) for formal treatments.
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payoff matrix pair

Letting x11 denote the probability that the first player enters (E)
and x21 the probability that the second player yields (Y), the set
QNE of Nash equilibria consists of two components, the singleton
component , where player 1 enters and player 2 yields,
and the continuum component

where player 1 stays out, and player 2 is more likely to fight than
yield in case of entry; see figure 1.4 (b). The unique subgame
perfect equilibrium of this game is that the competitor does enter,
and the monopolist yields. The Nash equilibrium threat of the
latter to fight is not credible; it is suboptimal for the monopolist
to execute this threat in case of entry. Note also that the pure
strategy "fight" is weakly dominated by the pure strategy "yield."

1.3.3 Invariance of the Set of Nash Equilibria

For the subsequent analysis it will be convenient to use certain
invariance properties of the set QNE of Nash equilibria with
respect to changes in payoffs. By force of these invariance
properties, computations may be considerably simplified, and
apparently different games will be seen to have the same best-
reply correspondences and dominance relations.

First, any two games G = (I, S, p) and G' = (I, S, p') that differ
only by some positive affine transformation of each player's



payoff function are clearly equivalent from this viewpoint. If, for
each player , there exists some positive real number li and
real number mi such that  for all profiles , then the
two games have the same best-reply correspondences and
dominance relations between strategies. In particular, the set QNE
of Nash equilibria is invariant under such transformations of
payoffs.

Second, best-reply sets and dominance orderings are also
unaffected by addition of one and the same constant to all those
payoffs to some player i that are associated with any fixed pure
combination s-i for the other players. To be more precise, let , 

 and ; define  by  and 
 otherwise; and let  be the mixed-strategy payoff

function associated with . Then
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(a)

(b)

Figure 1.4
(a) The extensive form of the Entry Deterrence Game in example 1.6.

(b) The two components of QNE in this game.
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for all profiles  and strategies  for player i. Hence,
whenever player i compares any two of her pure or mixed
strategies, she will arrive at the same payoff difference,
irrespective of the constant vi and of the other players' strategies.
Her pure and mixed best-reply Correspondences, as well as her
weak and strict dominance orderings, are unaffected by any such
local shift vi of her pure-strategy payoff function pi. In
particular, the set QNE of Nash equilibria is invariant.10

The two types of transformation of payoff functions are
particularly useful in two-player games. Let the payoff matrices
of such a game be (A, B). A positive affine transformation of
player 1's payoff function then simply is a substitution of matrix
A by some matrix A' such that  for some  and 

. Player 1 being the "row player," a local shift of her payoff
function corresponds to a substitution of matrix A by some
matrix A' such that all entries in one column of A' differ by one
and the same constant  from the corresponding entries in the
same column of A. Formally  for all h, and  for all
h and all . Since player 2 chooses column, a local shift of his
payoff function corresponds to the same kind of additive
operation performed on a row in payoff matrix B.

Example 1.7

Reconsider the Entry Deterrence Game of example 1.6.
Subtraction of 1 payoff unit from each entry in column 1 of
payoff matrix A keeps 1's best-reply correspondence unchanged.
Likewise subtraction of 4 payoff units in each entry in row 2 of



payoff matrix B keeps 2's best-reply correspondence unchanged.
These local shifts in payoffs result in payoff matrices A' and B'
below. Moreover we can divide all entries in B' by 2 without
affecting 2's best replies (this being a positive affine
transformation) and so obtain a matrix pair (A', B") with only
zeros and ones. The set of Nash equilibria is unaffected, but
calculations are simplified.11

10. The decision theoretic irrelevance of what we here call local shifts
of utilities was observed already by Savage (1954) in the context of
single-person decision theory.
11. Note, however, that these transformations break the connection with
the original extensive form in figure 1.4 (a).
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1.4 Refinements of Nash Equilibrium

Since the late 1970s there has been a flurry of refinements of the
Nash equilibrium concept, each refinement being motivated by
the desire to get rid of certain implausible or fragile Nash
equilibria (see van Damme 1987 for an excellent account of this
research field). Here only a few normal-form refinements will be
defined and briefly discussed, refinements that turn out to be
related to certain evolutionary criteria.

1.4.1 Perfection

The probably most well-known noncooperative refinement is
that of "trembling hand" perfection, due to Selten (1975). As the
name suggests, this refinement discards Nash equilibria that are
not robust to trembles in the players' strategies.

Let the game in question be G = (I, Q, u), and m be an error
function that to each player i and pure strategy  assigns a
number , the probability that the strategy will be played
"by mistake," where Shmih <1. Such an error function m defines
for each player  the subset  of mixed
strategies that the player can implement, given the error
probabilities. The associated perturbed game is G(m) = (I, Q (m),
u), where . By standard arguments every such
perturbed game G(m) has a nonempty set QNE(m) of Nash
equilibria. The smaller all error probabilities are, the larger is Q
(m), and as all error probabilities go to zero, written , the
associated perturbed game G(m) approaches the original game.

Definition 1.4



is perfect if, for some sequence of perturbed games
there exist profiles such that .

In particular, every interior Nash equilibrium is perfect. If ,
then for sufficiently small error probabilities . If
moreover , then .

Since it is sufficient that the Nash equilibrium in question be
robust with respect to some low-probability trembles, existence is
not difficult to establish even if there are no interior Nash
equilibria (Selten 1975). Write QPE for the set of perfect Nash
equilibria:

Proposition 1.3

For any (finite) game: .
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Proof

For any sequence let  for each t. Since  is a
sequence from the compact set Q, it has a convergent
subsequence  with limit  For each s, G(µs) is the
accompanying perturbed game. By standard continuity
arguments, , and x* is perfect since  and  for all
s.

Selten (1975) shows that a Nash equilibrium profile x is perfect if
and only if there in every neighborhood of x exists some interior
strategy profile y to which x is a best reply. In other words, the
players should be willing to play their equilibrium strategies xi
even if they are a bit uncertain about each other's strategies and
hence ascribe (small) positive probabilities to all pure strategies
in the game. It can also be shown that a perfect Nash equilibrium
cannot be dominated, and that the converse holds if there are
only two players in the game (van Damme 1987):

Proposition 1.4

Every is undominated. If is undominated, in a two-
player game, then .

(For a proof, see van Damme 1987.)

1.4.2 Properness

The above perfection criterion requires robustness only with
respect to some trembles, without imposing any condition that
these trembles be reasonable in any sense. Myerson (1978)
suggested an alternative robustness criterion that is more stringent
in this respect. The idea is to require robustness with respect to



some trembles that are such that more costly mistakes are less
probable than less costly ones. Hence there is an element of
rationality in the ''mistake technology''; it is as if the players
alerted themselves more against more damaging mistakes than
against less damaging mistakes.

Given some , a strategy profile  is  if

Any interior Nash equilibrium  is clearly  for any ,
since then all pure strategies, for each player i, earn the same
(maximal) payoff against y.

Definition 1.5

is proper if, for some sequence , there exist 
profiles such that .
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Evidently every interior Nash equilibrium x is proper; just let 
 for all t. Myerson (1978) showed that proper equilibria

always exist and that every proper Nash equilibrium is perfect.

In many applications of noncooperative game theory, one may
draw an extensive-form representation in which the sequence of
moves and the dynamic information structure is explicit. Widely
used solution concepts for extensive form games are Selten's
(1975) extensive-form (trembling hand) perfection criterion, and,
in particular, the closely related concept of sequential
equilibrium due to Kreps and Wilson (1982). Both solution
concepts are refinements of Selten's (1965) subgame perfection
criterion, which, in its ram, is an extensive-form refinement of
the Nash equilibrium concept. As shown in van Damme (1984)
and Kohlberg and Mertens (1986), any proper equilibrium in a
normal-form game induces a sequential equilibrium in any
extensive form with that normal form.

1.4.3 Strict Perfection

It may not always be clear which trembles should be deemed
reasonable. What happens if one goes all the way, and asks for
robustness with respect to all (low probability) trembles? This
stringent robustness criterion was suggested by Okada (1981). In
the notation of perfect equilibrium:

Definition 1.6

is strictly perfect if, for every sequence of perturbed
games there exist profiles such that .

Just as in the case of perfection and properness, every interior



Nash equilibrium x is strictly perfect; just let xt = x for all t
sufficiently large (such that ). One can also show that
every strict Nash equilibrium is strictly perfect, that a unique
Nash equilibrium is strictly perfect, and that every strictly perfect
equilibrium is proper (Okada 1981). The following example
shows that some games have no strictly perfect equilibrium.

Example 1.8

Consider the game given by the payoff bi-matrix (A, B) below,
where a, b > 0. (A similar example is given in van Damme
1987.) The unique best reply for player 2, to any strategy used by
player 1, is 2's first pure strategy. When player 2 uses this strategy
(i.e., x21 = 1), player 1 is indifferent between her two pure
strategies. Hence the set QNE of Nash equilibria consists of the
single component , see figure 1.5 below. All of these
Nash equilibria are perfect. However, none is strictly perfect; any 

 is vulnerable to some sequence of trembles.
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Figure 1.5
The set QNE in the game of example 1.8.

1.4.4 Essentiality

Apart from the weak dominance criterion, the earliest refinement
of the Nash equilibrium concept seems to be the notion of an
essential Nash equilibrium, due to Wu and Jiang (1962).12 The
idea is to discard Nash equilibria that are not robust with respect
to perturbations of the players' payoffs. More precisely, this is
done by defining "distance" between games that have the same
player set I and pure-strategy space S but differing pure-strategy
payoffs, and then requiring that all nearby games have some
nearby Nash equilibrium.

Formally, let the game under scrutiny be G = (I, S, p), and
consider some game G' = (I, S, p'). Define the payoff distance
between games G and G', as the maximal payoff difference
between them: .13

12. This is an application of a robustness criterion for fixed points of



continuous functions, due to Fort (1950).
13. It is immaterial which metric is used here, since there are finitely
many pure strategies.
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Definition 1.7

is essential if for every e > 0 there exists a d > 0 such that
every game G' within payoff distance d from G has a Nash
equilibrium within distance e from x.

Unlike the other refinements, this is not met by all interior Nash
equilibria. For instance, in a trivial game with all payoffs equal,
all strategy profiles are Nash equilibria, but none is essential,
since for every profile  there exists some slight change in
payoffs that makes no nearby profile a best reply to itself. One
can show that every essential equilibrium is strictly perfect (e.g.,
see van Damme 1987).

1.4.5 Setwise Refinements

While some games have no equilibrium that is strictly perfect, as
in example 1.8, and thus no essential equilibrium, there always
exist sets of Nash equilibria that are robust, as sets, with respect
to all small trembles in strategies and all small changes in payoffs,
respectively.

The following setwise version of strict perfection is due to
Kohlberg and Mertens (1986):

Definition 1.8

is strategically stable if it is minimal with respect to the
following property: X is nonempty and closed, and for every 
there is some d > 0 such that every strategy-perturbed game G

(m) = (I, Q(m), u) with errors mih <d has some Nash equilibrium
within distance from the set X.



Minimality here means that the set should not contain any proper
subset with the stated robustness property. It can be shown that
this minimality requirement implies that Nash equilibria that are
not robust to any sequence of small trembles have to be
excluded. In other words, a strategically stable set consists of
perfect Nash equilibria (van Damme 1987).

Similarly one can turn the definition of essentiality set valued as
follows:

Definition 1.9

A nonempty closed set is essential if for every e > 0 there
exists a d > 0 such that every game G' within payoff distance d
from G has a Nash equilibrium within distance e from X.

Kohlberg and Mertens (1986) show that in every (finite) game, at
least one of the components of the set QNE of Nash equilibria is
essential (see also Jiang 1963). Moreover such a component
always contains a strategically stable subset.
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Example 1.9

The set of Nash equilibria in example 1.8 was seen to be a single
component. Thus the set X = QNE is essential and contains a
strategically stable subset Y. For such a subset Y to be robust
against all trembles in strategies, Y has to contain both end points
of QNE Indeed the union of these two points is robust in this
sense, so  is strategically stable, the only
strategically stable set in the game. Also the subset Y is essential;
it is indeed a minimal set with this property (such sets are called
hyperstable in Kohlberg and Mertens 1986).

1.5 Symmetric Two-Player Games

The subclass of symmetric two-player games provides the basic
setting for much of evolutionary game theory, and indeed, many
of the most important insights can be gained already in this
special case.

1.5.1 Definition and Notation

More precisely, when speaking of a symmetric two-player game
G = (I, S, p), one assumes that there are precisely two player
positions, that each position has the same number of pure
strategies, and that the payoff to any strategy is independent of
which player position it is applied to. Formally:

Definition 1.10

A game G = (I, S, p) is a symmetric two-player game if I = {1,
2}, S1 = S2 and p2(s1, s2) = p1(s2, s1) for all .

This symmetry requirement on the pure-strategy payoff functions



is equivalent with the requirement that the second player's payoff
matrix be the transpose of the first player's: B = AT.14, In other
words, the payoff bij to player 2 when player 1 uses pure strategy
i and player 2 uses pure strategy j is equal to the payoff aji to
player 1 when instead player 1 uses pure strategy j and player 2
uses pure strategy i.

For instance, the Prisoner's Dilemma Game in example 1.1 is
symmetric and so is the dominance solvable game in example
1.4, while neither the Matching-Pennies Game in example 1.5 nor
the Entry Deterrence Game in example 1.6 is symmetric.

We will write K = {1, 2,..., k} for the common set of pure
strategies, where k now is the number of pure strategies available
to each of the two

14. In this class of games each payoff matrix is square.
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player positions. The first player's mixed strategies will usually be
denoted  and those of the second player , where D denotes
the common mixed-strategy set,  (Hence Q =
D2.) The pay-off to any pure strategy , when played against
some mixed strategy , will be denoted u(ei, y) = ei · Ay. The
set of best replies to any opponent strategy  will be denoted
b*(y):

Hence, unlike the usual best-reply correspondence  which maps
strategy profiles to sets of strategy profiles, b* maps strategies to
sets of strategies. In any symmetric two-player game, and for any
profile  and .

As a further specialized case, we will sometimes consider
symmetric two-player games in which both players always fare
equally well or badly. Such games are sometimes called
partnership games (Hofbauer and Sigmund 1988).
Mathematically the defining property is that the payoff matrix A is
symmetric. Therefore this subclass of symmetric two-player
games will be called doubly symmetric:

Definition 1.11

A symmetric two-player game is doubly symmetric if AT = A.

Since symmetry requires BT = A, a symmetric game is doubly
symmetric if and only if B = A, or, equivalently, if u(x, y) = u(y,
x) for all . None of the earlier examples of symmetric games
are doubly symmetric.



Example 1.10

The 2 × 2 game given by the payoff matrices

is doubly symmetric. It is called a Coordination Game. Here both
players (strictly) prefer the strategy profile s = (1, 1), which gives
payoff 2 to each player. Indeed s is a strict Nash equilibrium.
However, the pure strategy profile s' = (2, 2) also is a strict Nash
equilibrium, resulting in payoff 1 to each player. If one player
expects the other to play strategy 2 with sufficiently high
probability, then her unique optimal action is to play strategy 2 as
well. The game has a third Nash equilibrium, which is mixed; it is
the symmetric pair  where  The payoff to each
player in this equilibrium is

 



Page 27

 which is lower than in each of the two strict equilibria. All
Nash equilibria are clearly perfect: Two are strict, and one is

interior.

1.5.2 Symmetric Nash Equilibrium

In the present context of symmetric games a strategy pair 
 constitutes a Nash equilibrium,  if and only if 

 and  A Nash equilibrium (x, y) is called symmetric if
x = y, that is, if both players use the same (mixed or pure)
strategy. The subset of strategies  that are in Nash equilibrium
with themselves will subsequently be denoted

Geometrically this is the intersection of the set QNE with the
diagonal  of Q Equivalently  is the set of
fixed points of the best-reply correspondence 

Not all Nash equilibria of a symmetric game need to be
symmetric (e.g., see example 1.11 below). However, every
symmetric game has at least one symmetric Nash equilibrium.
This follows from an application of Kakutani's fixed-point
theorem to the correspondence b*:

Proposition 1.5

For any finite and symmetric two-player game: .

Proof

The set D is nonempty, convex, and compact and so is the subset 
 for each . By standard arguments it can be verified that



b* is upper hemi-continuous. By Kakutani's theorem there exists
some .

Example 1.11

A classical example in evolutionary game theory is the Hawk-
Dove Game in which each player has two pure strategies: fight or
yield. Strategy I (fight) obtains payoff v > 0 when played against
strategy 2 (yield), in which case strategy 2 obtains payoff 0. Each
player has an equal chance of winning a fight, and the cost of
losing a fight is c > 0. When played against itself, strategy 1 thus
gives payoff v with probability  and payoff -c with probability .
Hence the expected (average) payoff of strategy 1 against itself is
(v - c)/2. When both players yield, each gets payoff v/2. The
resulting payoff matrix for player 1 is thus
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and B = AT. We presume that the cost of a fight exceeds the value
of a victory: v <c.

For such payoffs, pure strategy 2 is the unique best reply to
strategy l, and vice versa. Each of the asymmetric pure-strategy
pairs (1, 2) and (2, 1), respectively, constitutes a strict Nash
equilibrium. There is also a symmetric Nash equilibrium in mixed
strategies. If player 2 plays strategy I with probability l = v/c,
then player l's two pure strategies yield the same expected payoff.
Therefore the mixed-strategy pair (x, x), where x assigns
probability l to strategy 1 and 1 - l to strategy 2, constitutes a
Nash equilibrium.

Example 1.12

The payoff matrix A of a symmetric 3 × 3 two-player game is
given in (1.31) below. Note that the game is constant-sum; the
sum aij + bij = aij + aji of the two players' payoffs is always 2.

This is a children's game known as the .Rock-Scissors-Paper
Game: rock (strategy 1) "beats" scissors (strategy 2), scissors
"beats" paper (strategy 3), and paper "beats" rock. It is easily
verified that this game has no Nash equilibrium in pure strategies,
and that it' has precisely one Nash equilibrium in mixed
strategies, namely the strategy pair (x, x) in which both players
ran-domize uniformly, that is, :

1.5.3 A Classification of Symmetric 2 × 2 Games



We here consider symmetric two-player games in which each
player has only two pure strategies. Certain similarities and
differences between rationalistic and evolutionary approaches
come out starkly even in this very simple setting. We will here
show that for dominance relations and best replies, there exist
only three generic categories of such games. By "generic" we
mean games in which no payoffs are identical.

To see this, consider any symmetric 2 × 2 game with payoff
matrix

Subtracting a21 from column 1 and a12 from column 2, we
obtain the equivalent matrix

 



Page 29

Figure 1.6
The four categories of symmetric 2 × 2 games.

This new matrix is symmetric. Hence we have obtained a doubly
symmetric game, with payoff matrix

where al = a11 - a21 and a2 = a22 - a12.

It follows that any symmetric 2 × 2 game can, after this
normalization, be identified with a point  in the plane.
In this book we will say that symmetric 2 × 2 games with
normalized payoff vector  in the NW orthant of 2-space
belong to category I, those in the NE orthant to category II, those
in the SW orthant to category III, and those in the SE orthant to
category IV; see figure 1.6.
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It turns out that all games in each category have the same
qualitative best-reply properties and that those in category IV are
just mirror images of the games in category I. Hence, from this
viewpoint, there are only three categories of generic symmetric 2
× 2 games, with all four payoffs aij distinct. In such a game both
al and a2 are nonzero.

Category I

It is evident that strategy 2 strictly dominates strategy 1 in any
game in this category (al <0 and a2 > 0). Hence all such games
are strictly dominance solvable: Accordingly QNE=
{(e2, e2)} and DNE={e2}. A prototype example in this game
category is the Prisoner's Dilemma Game of example 1.1.
Normalization of the payoffs in matrices A and B in (1.1) gives al
= -1 and a2 = 3.

Category II

All games in this category (al, a2 > 0) evidently have two
symmetric strict Nash equilibria, and it is easily verified that the
mixed strategy  is in Nash equilibrium with
itself. Hence we here have SD = S = {1, 2}, 
and  This category contains the Coordination Game of
example 1.10.

Category III

Also in this category (al, a2 <0), no strategy is dominated, SD=S,
but here the best reply to a pure strategy is the other pure
strategy. Thus these games have two asymmetric strict Nash
equilibria and one symmetric mixed-strategy Nash equilibrium: 



 and  where  is as in category II (now
both the numerator and denominator are negative). This example
contains the Hawk-Dove Game of example 1.11, where al = (v -
c)/2 <0 and a2 = -v/2 <0.

Category IV

All games in this category (al > 0 and a2 <0) are dominance
solvable: SD={(1, l)}, QNE={(el el)}, and DNE = {el} This
category is hence identical, modulo relabeling of the two pure
strategies, with category I and can be neglected without loss of
generality.

Games in category II have caused game theorists and users of
noncooperative game theory a fair amount of frustration. More
specifically, it has been argued that in such Coordination Games
as the one of example 1.10, rational players should be expected to
play the Pareto-dominant strict Nash equilibrium (ele1). In
contrast, standard tools in noncooperative game theory do not
reject the two other equilibria; both (e2e2) and  are perfect
Nash equilibria, and (e2e2) is even strict.
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However, from a strictly noncooperative viewpoint there may be
a tradeoff between efficiency and strategic risk, a point made by
Aumann (1987; see also Harsanyi and Selten 1988). Consider, for
example, the symmetric (''Stag Hunt'') 2 × 2 game with payoff
matrix

Here the strict Nash equilibrium y = (e2 e2 Pareto dominates the
strict Nash equilibrium x = (el el). Should "rational" players be
expected to play y? This strategy profile is more risky than x in
the sense that a deviation by one's opponent results in a payoff
loss of 4 payoff units versus a gain of 1, respectively. In the
terminology of Harsanyi and Selten (1988), the equilibrium x risk
dominates y.

Expressed in terms of normalized payoffs, the criterion for risk
dominance is simple. Consider any symmetric 2 × 2 game with
normalized payoffs al, a2 > 0:

Definition 1.12

 risk dominates if al > a2.

In other words, one strict Nash equilibrium risk dominates the
other if, after normalization of payoffs, it strictly Pareto
dominates the second. For instance, normalization of payoffs in
(1.35) results in al = 2 and a2 = 1. This is the payoff matrix of the
Coordination Game in example 1.10, in which x = (e1, el is
Pareto ranked before y = (e2 e2), and many argue that rational
players should play x rather than y!
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2
Evolutionary Stability Criteria
A key concept in evolutionary game theory is that of an
evolutionarily stable strategy (Maynard Smith and Price 1973;
Maynard Smith 1974, 1982). Such a strategy is robust to
evolutionary selection pressures in an exact sense. Suppose that
individuals are repeatedly drawn at random from a large
population to play a symmetric two-person game, and suppose
that initially all individuals are genetically or otherwise
"programmed" to play a certain pure or mixed strategy in this
game. Now inject a small population share of individuals who are
likewise programmed to play some other pure or mixed strategy.
The incumbent strategy is said to be evolutionarily stable if, for
each such mutant strategy, there exists a positive invasion barrier
such that if the population share of individuals playing the
mutant strategy falls below this barrier, then the incumbent
strategy earns a higher payoff than the mutant strategy.

This approach is thus focused on symmetric pairwise interactions
within a single large population. In particular, it does not deal
with interactions that take place between more than two
individuals at a time. Moreover the criterion of evolutionary
stability refers implicitly to a close connection between the
payoffs in the game and the spreading of a strategy in a
population. The payoffs in the game are supposed to represent
the gain in biological fitness or reproductive value from the
interaction in question.l In this biological interpretation the
evolutionary stability criterion can be said to generalize Darwin's



notion of survival of the fittest from an exogenous environment
to a strategic environment where the fitness of a given behavior
(strategy) depends on the behaviors (strategies) of others.
However, as with Nash equilibrium, the evolutionary stability
property does not explain how a population arrives at such a
strategy. Instead, it asks whether, once reached, a strategy is
robust to evolutionary pressures.

When describing the evolutionary stability condition above, it
was said that the population of individuals playing the game is
large. What is the role of this largeness presumption? The size of
the population is relevant in two distinct ways, one rather
mechanical and one strategic. First, in order for the posited
invasion barriers (expressed as population shares) to be effective
against mutations, it is important that the smallest such barrier
exceed l/n, where n is the size of the population. Second, the
population needs to be large so that the

1. Fitness is a subtle evolutionary concept which may here be taken to
simply mean the number of offspring (that survive for reproduction).
See Maynard Smith (1982) for a discussion of the fitness concept in the
context of evolutionary stability. A simple but exact population model
in this spirit is provided in chapter 3.
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effects that current individual actions may have on others' future
actions can be neglected. Such repeated-game considerations are
disregarded in the evolutionary stability analysis.2 Note that
evolutionary stability is a robustness test against a single mutation
at a time. In other words, it is as if mutations are rare in the sense
that the population has time to adjust back to status quo before
the next mutation occurs.

Despite its biological stance, evolutionary stability also provides a
relevant robustness criterion for human behaviors in a wide
range of situations, including many interactions in the realm of
economics. In such a social or economic environment,
evolutionary stability requires that any small group of individuals
who try some alternative strategy do less well than those
individuals who stick to the status quo strategy. Consequently
individuals who use the prevailing strategy have no incentive to
change their strategy, since they do better than the experimenters,
and the latter have an incentive to return to the incumbent
strategy. An evolutionarily stable strategy in such a social or
economic setting may be thought of as a convention.

The material in this chapter is organized as follows: Section 2.1
gives the formal definition of an evolutionarily stable strategy,
applies this definition to a few examples, and relates it to
noncooperative solution concepts. In particular, it is seen that
evolutionary stability, while not based on any rationality
consideration at all, requires that the strategy in question be in
Nash equilibrium with itself. While we saw in section 1.4 that any
interior Nash equilibrium passes all the refinements based on
trembles, not all such Nash equilibrium strategies. are



evolutionarily stable. In this respect the criterion of evolutionary
stability is more stringent than the usual refinements.

Section 2.2 provides characterizations of evolutionary stability in
terms of uniform invasion barriers and local superiority,
respectively. These characterizations turn out to be useful for
subsequent dynamic analyses. Section 2.3 considers two weaker
evolutionary stability criteria, neutral stability and robustness
against equilibrium entrants. The first is closely related to
evolutionary stability and is likewise characterized. The second
has a rationalistic flavor, requiring robustness only against such
mutations that are optimal in

2. In contrast, if one wants to study evolutionary stability properties of
strategies in a repeated game, one may let this repeated game be the
game that the randomly matched pairs from the population play when
they interact. The present machinery applies without modification to
any finitely repeated game, while infinitely repeated games require
special considerations; for example, see Fudenberg and Maskin
(1990).
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the resulting postentry population; it is as if mutations are
intentional and forward-looking.

Some games possess sets of strategies that, as sets, have some
evolutionary stability property. Hence it is natural to investigate
generalizations of evolutionary stability from being a property of
individual strategies to a property of sets of strategies. Section 2.4
discusses two such setwise stability concepts, one setwise
extension of evolutionary stability (Thomas 1985a), and one set-
wise extension of robustness against equilibrium entrants
(Swinkels 1992a).

Section 2.5 focuses on doubly symmetric games, whereby both
players fare equally well or badly under every strategy profile. It
turns out that the discussed evolutionary stability criteria have
implications for local social efficiency, defined in terms of
average payoffs, in such games. Section 2.6 discusses
evolutionary stability properties in cheap-talk games, which
provide for a restricted form of costless preplay communication.
Implications for global social efficiency in doubly symmetric
cheap-talk games are briefly analyzed. Finally, section 2.7
sketches an extension of the present approach to pairwise
interactions in which individuals can condition their strategy on
their player position in the game. This extension also applies to
asymmetric games.

For discussions of biological aspects of the criterion of
evolutionary stability, see, for example, the pioneering work in
Maynard Smith (1982) or the fine survey in Hammerstein and
Selten (1993). Selten (1991) discusses important aspects of
rationalistic and evolutionary paradigms in economics. For more



re-suits on connections with refinements of Nash equilibrium,
see Bomze (1986) or van Damme (1987). Applications of the
criterion of evolutionary stability to extensive form games are
developed in Selten (1983); see also van Damme (1987). Bomze
and Pötscher (1989) and Cressman (1992a) provide mathematical
extensions.

2.1 Evolutionarily Stable strategies

The analysis in this and the following two chapters is focused
almost exclusively on symmetric two-player games. As in section
1.5 the set of pure strategies is denoted K = {1, 2,..., k} and the
associated mixed-strategy set, . The polyhedron
of mixed-strategy profiles is Q = D2 and the payoff to strategy 

, when played against , is writ-ten u(x, y) = x. Ay, where A
is the payoff matrix of player 1. The set of best replies  to any
strategy  is denoted .
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2.1.1 Definition

Suppose that a small group of mutants appears in a large
population of individuals, all of whom are programmed to play
the same (mixed or pure) incumbent strategy  Suppose also
that the mutants all are programmed to play some other (pure or
mixed) mutant strategy . Let the share of mutants in the
(postentry) population be , where . Pairs of individuals in
this bimorphic (two distinct strategies present) population are
repeatedly drawn at random to play the game, each individual
being drawn with equal probability. Hence, if an individual is
drawn to play the game, then the probability that the opponent
will play the mutant strategy y is , and the probability that the
opponent will play the incumbent strategy x is  The payoff in a
match in this bimorphic population is the same as in a match with
an individual who plays the mixed strategy . The
postentry payoff to the incumbent strategy is thus u(x, w) and that
of the mutant strategy u(y, w).

Biological intuition suggests that evolutionary forces select
against the mutant strategy if and only if its postentry payoff
(fitness) is lower than that of the incumbent strategy,

A strategy  is said to be evolutionarily stable if this inequality
holds for any "mutant" strategy , granted the population share
of mutants is sufficiently small (Maynard Smith and Price 1973;
Maynard Smith 1974):

Definition 2.1



is an evolutionarily stable strategy (ESS) if for every strategy 
there exists some such that inequality (2.1) holds for

all .

Let  denote the (possibly empty) set of evolutionarily stable
strategies in the game under study. It is easily verified that every
ESS is necessarily optimal against itself. If a strategy x is not
optimal against itself, then there exists some other strategy y that
obtains a higher payoff (fitness) against x than x does. Hence, if
the population share  of such a mutant strategy y is small
enough, then, by continuity of u it will earn more against the
population mixture  than the incumbent strategy x
will, and thus x is not evolutionarily stable. Formally,
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But the criterion of evolutionary stability requires more. If x is
evolutionarily stable, and y is an alternative best reply to x, then x
has to be a better reply to y than y is to itself. To see that an ESS
x has to have this second-order property, suppose, on the
contrary, that an alternative best reply y to x earns at least as
much against itself as x does. Then yearns at least as much as x
also against the mixture  (irrespective of ), so x is not
evolutionarily stable. The converse of this also holds: If 
and every alternative best reply y earns less against itself than x
earns against it, then such mutants do worse than x in the
postentry population. Since also strategies  that are not best
replies to x do worse than x in the postentry population, granted
the population share  of the mutant strategy is sufficiently small,
we have established the following:

Proposition 2.1

An equivalent way of stating this result is to say that a strategy 
 is evolutionarily stable if and only if it meets these first-order

and second-order best-reply conditions:

Together, the two conditions thus characterize evolutionary
stability. In fact this is how evolutionary stability was originally
defined (Maynard Smith and Price 1973; Maynard Smith 1974).3

It will turn out useful for later purposes to illustrate the
equivalence between these alternative criteria for evolutionary



stability as follows: For any given strategy , the defining
inequality (2.1) can be written  where the score function 

 is defined by  Evolutionary
stability of x requires that its score  be positive against any 

, for sufficiently small . In view of the bilinearity of u,

Hence, for  fixed, the score  is an affine function of 
with (vertical) intercept u(x - y, x) and slope u(x - y, y - x); see
figure 2.1.4

3. The present definition was first suggested in Taylor and Jonker
(1978).
4. A function is affine if it is the sum of a linear function and a constant.
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Figure 2.1
The score function f for strategy x evaluated against strategy y.

Condition (2.3) is equivalent with the requirement that this
intercept be non-negative, for any , and condition (2.4) is
equivalent with the requirement that, for any , the slope be
positive if the intercept is zero. Hence, if these two conditions are
met, there exists some  such that  for all ; that
is, .

It follows immediately from proposition 2.1 that if  is a
strict Nash equilibrium, then x is evolutionarily stable by
defaultthen there are no alternative best replies. This observation
has immediate implications concerning the connection between
evolutionary stability and social efficiency: Evolutionary stability



does not in general imply that average population fitness u(x, x)
is maximized.
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Example 2.1

In the Prisoner's Dilemma Game of example 1.1, x = e2 is the
unique best reply to any strategy  and hence the ,unique ESS
of the game. However, both players would obtain a higher payoff
by instead playing the first pure strategy ("cooperate"). Thus
evolutionary selection, as modeled by the ESS criterion, does not
support any degree of "cooperation" in the (one-shot) Prisoner's
Dilemma Game.

In the Prisoner's Dilemma Game, the social optimum is inherently
unstable; it requires both players to use a strictly dominated
strategy. The following example illustrates that evolutionary
stability allows for social inefficiency even when the social
optimum is a strict Nash equilibrium.

Example 2.2

Each of the two pure strategies in the Coordination Game of
example 1.10 is an ESS, since each of these is the unique best
reply to itself. In particular, evolutionary stability does not reject
the socially inefficient profile (e2, e2). In this sense a socially
inefficient convention (e.g., always use strategy 2 when meeting)
may be evolutionarily stable.

So far all evolutionarily stable strategies were pure. The
following example illustrates the possibility that an evolutionarily
stable strategy is mixed.

Example 2.3

Consider the Hawk-Dove Game of example 1.11, with payoffs v
= 4 and c = 6. The payoff matrix then is



.

The unique symmetric Nash equilibrium strategy is . By
proposition 2.1, this is the only candidate for an ESS. Since x is
interior, every strategy  is a best reply to x. Therefore
condition (2.4) requires that u(x - y, y) > 0 for all . For any 

 For , one obtains 
, a nonnegative quantity which is zero only when

y = x, proving that . Hence evolutionary stability rejects
pure hawkishness and pure doveness. For instance, a population
consisting of only pure hawks is vulnerable to a small invasion
by, say, pure doves,. since in the postentry population every
individual meets virtually only pure hawks. As a result the latter
earn a payoff just above - 1, while pure doves earn a payoff just
above 0.

There are games that have no evolutionarily stable strategy. This
is the case with the Rock-Scissors-Paper Game of example 1.12.
The unique symmetric
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Nash equilibrium strategy in that game is . Being interior,
all strategies  are best replies to x. However, the mutant y = e1
earns payoff 1 against itself, which is precisely what x earns
against y. Thus x fails the second-order best-reply condition
(2.4).

2.1.2 Symmetric 2 × 2 Games

In subsection 1.3.3 it was demonstrated that all payoff differences
between any two strategies for a player, given other players'
strategies, are invariant under local shifts of payoff functions.
Since Hash equilibrium is defined in terms of such payoff
differences, the set DNE is invariant under these transformations.
Also evolutionary stability is defined in terms of such individual
payoff differences, and hence also the set DESS is invariant under
local payoff shifts.

Consequently, for the purpose of evolutionary stability studies,
the payoff matrix A of any 2 × 2 game may without loss of
generality be normalized to the form

where al = a11 - a21 and a2 = a22 - a12 We focus on the generic
case  and use the classification scheme of subsection 1.5.3.

Categories I and IV

If al and a2 are of opposite signs, then we have a game of the
Prisoner's Dilemma variety, and the game has exactly one Hash
equilibrium. This equilibrium is strict and symmetric. Hence such



games possess exactly one ESS: DESS = DNE = {e2} if al<<0
(category I) and DESS = DNE = {e1} if a2<<0 (category IV).

Category II

If both al and a2 are positive, then we have a Coordination
Game, as in example 1.10, and there are three Hash equilibria, all
of which are symmetric: DNE = {el, e2 x}, where x = le1 + (1 -
l)e2 for l = a2/(al + a2). Each of the two pure equilibria is strict,
so e1 and e2 are evolutionarily stable. However, x is not, since all 

 are best replies to x, and, for example, y = e1 earns more
against itself than x earns against it: u(e1 el) = al > la1 = u(x, e1).
In sum, DESS = {el, e2}.

Category III

If both al and a2 are negative, then we have a Hawk-Dove Game
(as in examples 1.11 and 2.3). Such a game has two strict
asymmetric Nash equilibria and one symmetric Hash equilibrium:
DNE = {x}, where x is defined in the preceding paragraph.
However, this time x is evolutionarily
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stable, since for any ,

and for all ,

,

where the last inequality follows after a few manipulations. In
sum, DESS = {x} for all games in this category.

2.1.3 Structure of the Set DESS

An implication of the characterization in proposition 2.1, noted
by Haigh (1975), is that the support of one ESS cannot contain
the support of another ESS, in fact, of any symmetric Nash
equilibrium strategy. Suppose that  and  for some
strategy . Then u(y, x) = u(x, x), since , and the second-
order condition (2.4) implies that u(x, y) > u(y, y). Hence .

Proposition 2.2

If and for some strategy , then .

In particular, if an ESS is interior, then it is the unique ESS of the
game. Moreover, since there are only finitely many support sets
(in a finite game), the number of ESS's is always finite (possibly
zero). We have established (Haigh 1975):

Corollary 2.2.1

The set is finite. DESS = {x} if .

More results on the number of ESS's, and on the structure of



their supports, can be found in Bomze and Pötscher (1989),
Cannings and Vickers (1988), and Vickers and Cannings (1988).

2.1.4 Connections with Noncooperative Criteria

No weakly dominated strategy is evolutionarily stable. Suppose
that  is weakly dominated by . Then y is an alternative
best reply to x, and by weak dominance, ; x fails the
second-order condition (2.4). Hence:
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Proposition 2.3

If is weakly dominated, then .

Thus, if a strategy x is evolutionarily stable, then the profile 
 constitutes an undominated Nash equilibrium, and since

every undominated Nash equilibrium in a two-player game is
perfect (proposition 1.4), we have:

Corollary 2.3.1

If then .

In fact evolutionary stability implies even more robustness than
perfection requires (van Damme 1987):

Proposition 2.4

If , then is a proper equilibrium.

(For a proof, see van Damme 1987.)

Recall that while perfection requires robustness with respect to
some low-probability mistakes, properness requires that the
equilibrium be robust with respect to low-probability mistakes
such that more costly mistakes are less probable than less costly
mistakes (see section 1.4). Accordingly proposition 2.4
establishes that evolutionary stability requires behavior that is not
only ''rational'' and "coordinated" in the sense of Nash
equilibrium but also "cautious:"

The converse of this implication is not valid, however. For
instance, the unique Nash equilibrium in the Rock-Scissors-Paper



Game of example 1.12 was seen above to fail the ESS criterion,
and yet this is a proper equilibrium.

2.2 Characterizations of ESS

Proposition 2.1 above provides one characterization of
evolutionary stability. Here two more characterizations will be
given. These characterizations will turn out to be important for
the subsequent setwise and dynamic analyses.

2.2.1 Invasion Barriers

First, recall that the definition of evolutionary stability of a
strategy x requires that for every mutant strategy  there exist
an  such that x resists an "infection" by y if it comes in a
smaller dose (population share) than . In this sense there is an
invasion barrier against each mutation. In general, this invasion
barrier may depend on the mutant y (or, to continue the medical
analogue, on the type of infection). In the present setting of finite
games,
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however, evolutionary stability implies that  can be taken to be
the same for all mutants; that is, an evolutionarily stable strategy x
has a uniform invasion barrier.

This result, due to Hofbauer et al. (1979; see also Vickers and
Cannings 1987), justifies the large population interpretation of
evolutionary stability. For an ESS x to be robust against a
mutation  in a (large but) finite population, consisting of, say,
n individuals, it is necessary that the invasion barrier  against y
exceed at least 1/n, where n is the population size, since any
invasion consists of at least one individual. Thus, if there is no
positive lower bound on invasion barriers against x, then for any
finite population size n there will always exist some mutant y
against which x has an invasion barrier below 1/n.5 In contrast,
the existence of a uniform invasion barrier, established below,
guarantees that an ESS x is robust against any single mutation y
appearing simultaneously in m individuals, for all finite
population of size n such that m/n is less than the uniform
invasion barrier of x.6 Formally:

Definition 2.2

has a uniform invasion barrier if there is some such
that inequality (2.1) holds for all strategies and every .7

Before establishing the claimed result, let us make the
terminology more precise by defining, for any given , its
invasion barrier b(y) against any other strategy y as the highest
possible value for  in the defining inequality (2.1). Formally,



Since  by hypothesis, b(y) > 0 for all . Moreover x has a
uniform invasion barrier if and only if there exists some b > 0
such that  for all .

Proposition 2.5

if and only if x has a uniform invasion barrier.

5. See Maynard Smith (1988), Riley (1979), and Shaffer (1988) for
discussions of the ESS criterion in the case of a finite population.
6. Note, however, that the condition for immunity against a mutation in a
single individual, m = 1, is technically different since a single mutant
individual never meets itself. In this case the counterpart to inequality
(2.1) is u(x, x(n - 1)/n + y/n) > u(y, x).
7. Bomze and Pötscher (1989) call such a strategy x uninvadable.
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Proof

The "if" part follows immediately from the definition of an ESS
by choosing  for every strategy . For the "only if" part,
suppose that , and let  be the union of all boundary
faces of D that do not contain x; that is, .
Suppose that , and let the barrier function  be
defined by (2.6) above.

Fix , and consider the score function f(·, y) defined in
equation (2.5). Since ,  for at most one , which we
here denote . If , then  and 

; otherwise, b(y) = 1 (see figure 2.1). It is
not difficult to verify from these observations that b is a
continuous function. Since b is positive and the set Zx compact,
min .

Having established the claim for all , now suppose that 
and that . Then there exists some  and  such that y =
lz + (1 - l)x. But this implies that . For

Hence .

Contrary to what one might first believe, the above
characterization does not imply that an ESS is necessarily
resistant against simultaneous multiple mutations. Suppose, for
the sake of illustration, that  is evolutionarily stable with
uniform invasion barrier , and suppose that two distinct
strategies y and z appear in positive population shares a and b
such that . The resulting population mixture



is formally equivalent with the population mixture ,
where y' = ay/(a + b) + bz/(a + b) and . Hence, x earns,
by definition of the uniform invasion barrier , a higher postentry
payoff than the equivalent but fictitious single mutant strategy y'.
By linearity of the payoff function, at least one of the two
constituent mutant strategies y and z does worse than x. However,
it is not necessarily the case that both do.

Example 2.4

Reconsider the Hawk-Dove Game of example 2.3. Let x be its
unique ESS, , and let y = e1 and z = e2. Suppose that the
two mutants y and z enter the population simultaneously, in
(postentry) shares 
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and , respectively, for some small . The equivalent fictitious
mutant is thus , and the postentry population mix is 

. Since , y = e1 is its unique best reply, and
u(x, w) <u(y, w). In other words, the mutant y earns a higher
postentry payoff than the incumbent ESS x.

2.2.2 Local Superiority

The second characterization of evolutionary stability is related to
the earlier observation that an interior ESS necessarily earns a
higher payoff against all mutants than these earn against
themselves (subsection 2.1.3). More precisely, it turns out that
one can generalize this global superiority of an interior ESS to the
claim that any ESS is locally superior in the sense of earning a
higher payoff against all nearby mutants than these earn against
themselves. This characterization of evolutionary stability is due
to Hofbauer, Schuster, and Sigmund (1979).

Definition 2.3

is locally superior if it has a neighborhood U such that u (x,
y) > u (y, y) for all in U.

Proposition 2.6

if and only if x is locally superior.

Proof

To first prove the "if" part, suppose that  is a neighborhood
of x such that u (x, y) > u (y, y) for all , . For any , 

, there then exists some  such that for all , 



. By hypothesis, we thus have u(x, w) > u(w, w).
Bilinearity of u gives

so . Hence .

Second, to prove the "only if" part, suppose , let  be
its uniform invasion barrier, and let  be as in the proof of
proposition 2.5. Let

Since Zx is a closed set not containing x, there exists a
neighborhood  of x such that . Suppose that , 

. Then , and
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u(z, y) <u(x, y), where z is as in the definition of V, by
proposition 2.5. By bilinearity of u this inequality is equivalent
with u(y, y) <u (x, y).

2.3 Weaker Evolutionary Stability Criteria

We here consider two weakenings of the criterion of evolutionary
stability. Instead of requiring, as does evolutionary stability, that
all mutants earn less than the incumbent strategy, neutral stability
(Maynard Smith 1982) requires that no mutant earn more than the
incumbent, and robustness against equilibrium entrants
(Swinkels 1992a) requires that no mutant earn the maximal
payoff possible (in the postentry population mix).

2.3.1 Neutral Stability

Definition 2.4

is neutrally stable (an NSS) if for every strategy  there
exists some  such that the inequality

holds for all .

In other words, while evolutionary stability requires that no
mutant strategy persist in the sense of earning an equal or higher
payoff (fitness), neutral stability requires that no mutant thrive in
the sense of earning a higher payoff (fitness) than the incumbent
strategy.

Let  denote the (possibly empty) set of neutrally stable
strategies in the game under study. It is easily verified that a



strategy x is neutrally stable if and only if it meets the first-order
best-reply condition (2.3) and the following weak second-order
best-reply condition:

In fact this is how neutral stability was originally defined
(Maynard Smith 1982). While being less stringent than
evolutionary stability, neutral stability is thus still a refinement of
symmetric Nash equilibrium:

.
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Example 2.5

The unique symmetric Nash equilibrium strategy x of the Rock-
Scissors-Paper Game of example 1.12 was seen to fail the strict
second-order condition (2.4) for evolutionary stability against the
mutant y = e1. However, this mutant does not violate the weak
second-order condition (2.9). In fact no mutant y violates this
condition, so . To see this, note that u(x, y) = 1 = u(y, y)
holds for all . The first equality is easily verified, and the
second follows from the following computation:

Similar characterizations as for evolutionary stability can be
established for neutral stability. Since the only difference between
the two definitions is the weak instead of strict inequality, it may
not appear surprising that the characterizations of neutral stability
differ only in this respect. However, with neutral stability there is
a slight mathematical difficulty that is absent in the case of
evolutionary stability, namely that the corresponding weak
invasion barrier is not necessarily continuous. Such a
discontinuity arises if a strategy x is neutrally but not
evolutionarily stable strategy and y is some alternative best reply
such that the associated score , defined in (2.5), is zero for
all  (see figure 2.1). In such a case the weak invasion barrier
may jump down when y is slightly perturbed. However, it can be
shown that it cannot jump down to zero (Bomze and Weibull
1994).

Example 2.6

Consider the symmetric two-player game (Bomze and Weibull



1994) with payoff matrix

Here . For , and for any 
. Define the weak invasion barrier b* (y) of x

against any strategy  by

.

We have  for all , so b* (e2) = 1.
However, for yl = (l, 1 - 2l, l), where , we obtain 

,
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so  for all . Since  as , b* is discontinuous
at y = e2.

To state the characterizations of neutral stability formally, we say
that a strategy  has a uniform weak invasion barrier if there
exists some  such that the defining weak inequality (2.8)
holds for all  and . Likewise a strategy  will be called
locally weakly superior if  for all nearby strategies .
The following result is partly due to Thomas (1985a) and partly
to Bomze and Weibull (1994):

Proposition 2.7

For any , the following three statements are equivalent:

a. .

b. x has a uniform weak invasion barrier.

c. x is locally weakly superior.

There are games that have no NSS. This is, for instance, the case
in the following modification of the Rock-Scissors-Paper Game
of example 1.12.

Example 2.7

Consider the symmetric two-player game given by the payoff
matrix A in (2.11) below. The Nash equilibria of this game are all
symmetric: Each of the three pure strategies is in Nash
equilibrium with itself and so is the uniformly randomized
strategy . Hence DNE = {e1, e2, e3, p}. However, none
of these strategies is neutrally stable. For instance, x = e1 is
vulnerable to invasions by the alternative best reply y = e3: x



earns payoff 0 when meeting this mutant y, while y earns payoff
1 when meeting itself. Hence p is the only remaining candidate
for an NSS. However, all strategies  are best replies to p, and
any pure-strategy mutant y = ei earns payoff I against itself, while

. Therefore p is not neutrally stable.

2.3.2 Robustness against Equilibrium Entrants

Evolutionary stability makes no restrictions on the mutant
strategies. In an economic environment where mutations may be
due to experimentation by small groups of individuals (or firms),
Swinkels (1992a) argues that it may
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be reasonable to require robustness only against such mutant
strategies that are optimal in the postentry population, so-called
equilibrium entrants. Hence, while evolutionary stability requires
no rationality from individuals who adopt a differing strategy
(entrants), Swinkels endows them with the capacity and foresight
to choose a strategy which is optimal in the postentry
environment, and requires robustness only against such mutants.

More precisely, if the incumbent strategy is , the mutant
strategy is , and the population share of mutants is , then the
postentry mixed strategy is , and y is called an
equilibrium entrant if it is a best reply to w (Swinkels 1992a).

Definition 2.5

A strategy is robust against equilibrium entrants (REE) if
there exists some such that condition (2.12) below holds
for all and :

By proposition 2.5, the invasion barrier against an ESS may be
taken to be uniform (it is required to be uniform in the definition
of an REE), so it follows that every ESS is robust against
equilibrium entrants. A neutrally stable strategy, however, does
not need to be robust against equilibrium entrants. In a game in
which all payoffs are the same, every strategy is an NSS while no
strategy is an REE.

We will write DREE for the (possibly empty) set of REE strategies
in the game under consideration. Then . As shown in



Swinkels (1992a), if a strategy is robust against equilibrium
entrants, then it has to be a best reply to itself. Thus we have:

Proposition 2.8

.

Proof

The first inclusion was already shown above. Suppose that 
. Let , where  is as in the definition of an REE. Define the
correspondence  by . Then  is
nonempty, closed, and convex for every . Since b* is upper
hemi-continuous, so is a. Hence, by Kakutani's fixed-point
theorem, there exists some y such that . Since x is robust
against equilibrium entrants, y = x. But then , so .

Swinkels establishes the remarkably stronger result that just as
evolutionary stability, the present weak form of evolutionary
stability implies properness
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Figure 2.2
Best-reply regions in the Rock-Scissors-Paper

Game of examples 2.5 and 2.8.

(see proposition 2.4). In a sense evolutionary stability with
respect to "rational" mutations is sufficient for robustness with
respect to "rational" trembles:

Proposition 2.9

If is robust against equilibrium entrants, then is
proper.

The following example illustrates the possibility that a non-ESS
strategy may be an REE.

Example 2.8

Reconsider the Rock-Scissors-Paper Game of example 2.5. We
saw that the unique Nash equilibrium strategy,  is not an
ESS. Figure 2.2 shows the three best-reply regions to any strategy

. For instance, if z is in the region near the vertex e1 for pure



strategy 1, then its best reply is pure strategy 3, and so on. It
follows that x is robust against any mutant y in this region, since
the postentry population w belongs to the same region. The same
is true for each of the three regions, including their boundaries,
so x is robust against equilibrium entrants.
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2.4 Setwise Evolutionary Stability Criteria

We here consider setwise generalizations of the criteria of
evolutionary stability and robustness against equilibrium entrants,
respectively.

2.4.1 Evolutionarily Stable Sets

Thomas (1985a) suggests that a closed set of symmetric Nash
equilibrium strategies be called evolutionarily stable if each
strategy in the set earns at least the same payoff against any
nearby alternative best reply as these earn against themselves,
with equal payoffs only in case also the mutant belongs to the set.
Formally,

Definition 2.6

is an evolutionarily stable (ES) set if it is nonempty and
closed, and each has some neighborhood U such that 

 for all , with strict inequality if .

Thomas shows that the definition is unchanged if the intersection
with the best-reply set b*(x) is left out. If this is done, it follows
that evolutionarily stable sets consist of neutrally stable strategies.
Suppose that . Then x has a neighborhood U such that 

 for all strategies y in U, and hence  by
proposition 2.7. In sum, if  is an ES set, then .
Consequently, since there are games that lack neutrally stable
states (as in example 2.7), there are games which have no ES set.
Moreover we derived the inclusion  without invoking the
Nash equilibrium requirement in the definition of an ES set. That
requirement is redundant (since ). Hence:



Proposition 2.10

is an ES set if and only if it is nonempty and closed and
each has some neighborhood U such that for all 

, with strict inequality if .

In a game where all payoffs are the same, no strategy is
evolutionarily stable, but all strategies are neutrally stable and X =
D is an ES set. The following example provides a nontrivial game
that has no evolutionarily stable strategy but possesses a whole
continuum of neutrally stable strategies that together constitute an
evolutionarily stable set.

Example 2.9

Consider the symmetric two-player game given by the payoff
matrix A in equation (2.13) below (equivalent to an example in
Cressman
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Figure 2.3
The set DNE in the game of example 2.9.

1992a). It is easily verified that DNE contains two points on the
boundary of D, namely  and q = e3. Also every 

 has to assign equal probability to the first two pure
strategies in the game. Hence ; see figure 2.3. For
any  and , we have u (x, y) - u (y, y) = (yl - y2)2. Thus 

 for all , with equality if and only if . Hence 
, but X= DNE = DNSS is an ES set.

The second part of the characterization of an ES set in
proposition 2.10 guarantees that each strategy in the set ''behaves''
like. an evolutionarily stable strategy against nearby mutants
outside the set: Every  earns a higher payoff against all nearby
mutants  than these earn against themselves. Consequently a
singleton set X = {x} is an ES set if and only if its unique strategy
x is an ESS. Moreover (Thomas 1985a):



Proposition 2.11

(a) If , then X is an ES set. (b) The union of ES sets is an
ES set. (c) If an ES set is the finite union of disjoint closed sets,
then each such set is an ES set.
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Proof

(a) By proposition 2.2, the set DESS is finite, and so is .
Thus each  has a neighborhood Ux such that . For
each , let U be the intersection of Ux with the neighborhood
in the definition of local superiority, establishing that X is an ES
set. (b) If  is the union of ES sets , then every 
belongs to at least one ES set X, and hence there exists a
neighborhood U of x such that  for all strategies ,
and u(x, y) > u(y, y) for all strategies . (c) If an ES
set  is the union of disjoint closed sets X1, ..., Xt, then there
are disjoint neighborhoods Vs of each component Xs. For each 

, let , where U is as in the definition of the ES
property for X. This proves that each set Xs is an ES set.

Cressman (1992b) shows that every ES set is the finite union of
disjoint closed and connected sets, each such subset being itself
an ES set.8 While existence of ES sets is not guaranteed in
general, every doubly symmetric two-player game possesses at
least one ES set (see section 2.5). A weaker form of setwise
evolutionary stability is considered in subsection 3.5.4, a criterion
that is met by at least one set in every symmetric two-player
game.

2.4.2 Equilibrium Evolutionarily Stable Sets

The following set-valued version of robustness against
equilibrium entrants (subsection 2.3.2) is suggested in Swinkels
(1992a):9

Definition 2.7



is an equilibrium evolutionarily stable (EES) set if it is
minimal with respect to the following property: X is a nonempty
and closed subset of DNE for which there is some such that

if , , and , then .

In other words, an EES set X is a minimal closed set of
symmetric Nash equilibrium strategies such that no small-scale
invasion of equilibrium entrants can lead the population out of X.
In the special case of a singleton set X = {x}, this set-valued
stability criterion coincides with the point-valued criterion of
robustness against equilibrium entrants. For instance, in the
Rock-Scissors-Paper Game of example 2.8,  is an
EES set.

8. In fact, it is not difficult to show that each component ES set
coincides with a component of the set DNE, a fact which also follows
from the results in subsection 2.4.2.
9. Swinkels (1992a) develops this concept also for multipopulation
interactions in arbitrary (finite) normal-form games; see chapter 5.
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We noted in chapter 1 that the set  of Nash equilibria of a
(finite n-player) game is the finite union of disjoint, connected,
and closed sets, the components of QNE. Likewise, in any
symmetric two-player game, the set  is the finite union of
disjoint, connected, and closed sets, the components of DNE.10
Swinkels (1992a) shows that these components are the only
candidates for EES sets:

Proposition 2.12

Every EES set is a component of DNE.

Proof

First, we show that every EES set  is contained in some
open set U such that . Suppose that this is not the case
for some EES set X. Then there exist some , sequence ,
and accompanying sequence  such that 
for all t sufficiently large, say . Since each support C(yt) is
contained in the associated support C(wt), and  for , yt
is a best reply to wt, for all . Hence  for all  such that 

, where  is the entry barrier in the definition of X as an EES
set, a contradiction.

Hence X is either one of the components of DNE, or the union of
two or more such components. The latter possibility is excluded
by minimality: If X has the property requested in the definition of
an EES, then so does each of its components.

There are games that have no EES set. However, every ES set
contains some EES set. For the EES criterion requires robustness
with respect to a smaller set of mutants than the ES criterionit is



sufficient to consider mutants which are (postentry) optimal.
Hence any ES set meets this criterion, and contains a minimal set
meeting this weaker entry criterionan EES set. One difficulty
remains with this line of argument, however: It neglects that ES
sets are defined in terms of neighborhoods adapted to individual
points in the set while EES sets are defined in terms of a uniform
bound  on postentry mutation shares. Nevertheless, Balkenborg
and Schlag (1994) show that for every ES set X there exists some 

 such that  for all , , and , where 
. In force of proposition 2.12, we also have that every

connected ES set is an EES set:11

10. This follows from the observation that , the
set of points x where a finite number of polynomials in x are
nonnegative (see subsection 1.3.2).
11. I am grateful to Karl Schlag for providing this latter observation.
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Proposition 2.13

Every ES set contains some EES set. Any connected ES set is an
EES set.

Proof

Suppose that  is an ES set, and let . Suppose that ,
and let  for some . If y is a best reply to w, then 

. By bilinearity of . This implies that 
for all  sufficiently small, since X is an ES set. Hence X has the
property stated in the definition of an EES set. But X is closed
and nonempty, and it contains some minimal set Y with the stated
property, by Zorn's lemma. If X is connected, then the only EES
set Y contained in  is X itself, by proposition 2.12.

Example 2.10

Consider a Coordination Game with payoffs al, a2 > 0. Each of
the two singleton sets X = {e1} and Y = {e2} is an ES and EES
set, and  is an ES set but not an EES set (rejected by the
minimality requirement). What about the singleton Z = {z},
where  is the Unique mixed-strategy Nash equilibrium?
Since z is not an ESS (see subsection 2.1.2), Z is not an ES set. Z
is also not an EES set. For each of the two pure strategies is an
equilibrium entrant against z, since the postentry population is
closer to the entrant (pure) strategy than z is, and hence the
entrant is a best reply to the postentry mix.

Combining the above-mentioned observation in Cressman
(1992b), concerning the structure of ES sets, with propositions
2.12 and 2.13, we have established that every ES set is the finite



union of components of the set DNE, each such component
subset being a minimal ES set and also an EES set.

2.5 Social Efficiency in Doubly Symmetric Games

In section 1.5 we defined a symmetric two-player game as doubly
symmetric if the payoff matrix A to player 1 is symmetric: AT = A.
Since the payoff matrix to player 2 in any symmetric game is B =
AT, we have B = A in a doubly symmetric game. In other words,
each player then always earns the same payoff as the other player.

2.5.1 Definitions

The setup for the evolutionary stability criteria developed above
was that of a large population in which all individuals play the
same pure or mixed strategy
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. Evolutionary stability properties were defined in terms of
how the payoff to strategy x is affected when a few individuals in
the population switch to some other strategy . Here we instead
consider the payoff to any strategy x when played by all
individuals in the population, and compare it with the payoff to
some other strategy y if all individuals were to switch to y. Social
efficiency of a strategy x is defined in terms of such payoff
comparisons. Accordingly a strategy x is called locally socially
efficient if there is no nearby strategy y that will give a higher
payoff if all individuals shift to it, and x is called globally
socially efficient if there is no Such strategy  at all. More
exactly:

Definition 2.8

A strategy is

a. locally strictly efficient if it has a neighborhood U such that
u(x, x) > u(y, y)for all strategies in U.

b. locally weakly efficient if it has a neighborhood U such that 
for all strategies y in U.

c. globally efficient if for all strategies y in D.

Since the payoff function u is continuous and the strategy set D
compact, there always exists at least one globally efficient strategy
(in any finite and symmetric, not necessarily doubly symmetric,
game). Let the set of globally efficient strategies be denoted

By continuity of u, this set is closed, and each strategy x in D* is



locally weakly efficient.

2.5.2 Local Strict Efficiency and DESS

It turns out that evolutionary stability in doubly symmetric games
is equivalent with local strict efficiency (Hofbauer and Sigmund
1988; see also Schlag 1993a; Wärneryd 1994). This equivalence
follows from the characterization of evolutionary stability in
terms of local superiority, in proposition 2.6, combined with the
symmetry of the payoff function.

Proposition 2.14

if and only if x is locally strictly efficient.

Proof

Suppose that AT = A, and let . For any  and , we
have, by bilinearity of u,
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Hence, by symmetry of u,

The equivalence between local strict efficiency and local
superiority of x follows from the observation that  is within
distance  from x if and only if  is within distance  from x.
By proposition 2.6, local superiority is equivalent with
evolutionary stability.

2.5.3 Local Weak Efficiency and DNSS

Replacing strict inequalities with weak, and using the
characterization of neutral stability in proposition 2.7, one obtains
that neutral stability in doubly symmetric games is equivalent
with local weak efficiency:

Proposition 2.15

if and only if x is locally weakly efficient.

A consequence of this result is that all globally efficient strategies
in a doubly symmetric game are neutrally stable: . In
particular, since the set D* is nonempty, existence of neutrally
stable strategies is guaranteed in doubly symmetric games.

2.5.4 Locally Efficient Sets and Evolutionarily Stable Sets

As shown in Schlag (1993a), a set of locally socially efficient
strategies in a doubly symmetric game constitutes an ES set.

Definition 2.9



A nonempty closed set is locally efficient if it is contained in
some open set U such that

.

There are locally efficient sets that are not connected, such as the
set  in example 2.10 with al = a2. However, a locally efficient
set is always the finite union of disjoint closed and connected
sets, the components of X. To see this, suppose that  is locally
efficient with neighborhood U. Then there exists some  such
that u(x, x) = a for all  and u(y, y) <a for all . In
other words, X is the set of points  where average payoff u(x,
x) achieves its maximum value a in U. Since u is a polynomial
function, X is the finite union of disjoint, closed, and connected
subsets of U,
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the components of X. Within a suitable neighborhood each
component of X is, by itself, a connected locally efficient set.
Recall that an ES set is the finite union of connected ES sets.

Proposition 2.16

Any locally efficient set is an ES set. Any connected ES set 
is locally efficient.

Proof

To establish the first claim, assume that  is locally efficient
with neighborhood U. By proposition 2.15, . By the
characterization of neutral stability in proposition 2.7, each 
has some neighborhood Vx such that  for all .
Hence  for all , and by definition of an ES
set, it remains to show that this inequality is strict if . But then
u(y, y) <u(x, x), so u(x, y) = u(y, x) = u(x, x) > u(y, y). For a proof
of the second claim, see Schlag (1993a).

2.6 Preplay Communication

Consider a symmetric 2 × 2 coordination game with payoff
matrix

for some a1 > a2 > 0. The game has three Nash equilibria, two of
which are strict. While intuition might suggest that evolution will
lead players to play the Pareto-efficient strict equilibrium (e1, el),
the Pareto-dominated Nash equilibrium (e2, e2) is strict and
hence evolutionarily stable. Indeed this equilibrium also meets
the usual refinements of the Nash equilibrium concept.12



This conflict between intuition and formal analysis has spurred
some recent research efforts among game theorists. One research
approach argues that if the players can communicate with each
other before play of the game, they will agree to play the efficient
Nash equilibrium (el, el).13 Costless such pre-play
communication is called cheap talk. We will here briefly outline a
formal

12. The third, mixed. Nash equilibrium, which gives even lower
payoffs, meets the refinement criteria in chapter 1 but is not
evolutionarily stable, as was seen in example 2.2.
13. An assumption underlying the notion of renegotiation proofness (e.g.,
see Fudenberg and Tirole 1991).
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model of cheap talk and examine some connections between
evolutionary stability criteria and Pareto efficiency.

For this purpose let us first informally reconsider the
coordination game with payoff matrix (2.15). Suppose that a
.monomorphic population is currently playing the inefficient
strategy , but suddenly a new kind of mutation arises in the
population. Namely clever mutants appear who (1) have the
capacity to recognize their own kind when matched and (2)
always play the first (good) pure strategy when meeting each
other and the second (bad) strategy when meeting an individual
in the original population, a "native:' The natives, on the other
hand, continue playing the second (bad) strategy 2 at every
matching. Using a term coined by Robson (1990), it is as if the
mutants use a "secret handshake" when meeting each other.

In such a bimorphic population each native still earns the low
payoff a2 in every interaction, while each mutant earns a2 when
meeting a native and a1 when meeting another mutant. Hence
mutants do better than the natives in the postentry population,
suggesting that the inefficient payoff outcome may be
evolutionarily unstable in the presence of such communicating
mutants.

2.6.1 Definitions

More generally, consider any symmetric two-person game G with
pure-strategy set K = {1, ..., k} and pure-strategy payoff function
p. As usual, let the associated mixed-strategy simplex be  and
the mixed-strategy payoff function be denoted u. When
proceeding to define a cheap-talk game GM based on such a



game G, we will call the latter the base game and refer to its
(pure and mixed) strategies as actions.

Suppose that every individual can send some preplay signal or
message to her opponent when matched to play the base game G
and that every individual may condition her choice of action G
on these two preplay messages. Formally, let M be a finite set of
preplay messages, available to each of the two players. We here
focus on the case when each individual sends exactly one
message, and the two messages are sent simultaneously (without
knowledge of the other message). Hence the communication or
"talking" in these models takes quite a rudimentary formno
involved discussions here!14 (The option

14. Interesting alternative settings are when the two players have
different message sets (e.g., one being empty or a singleton) and/or
when messages are sent sequentially (e.g., see Blume, Kim, and Sobel
1993).
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not to send any message can be formally included by letting one
element of M represent "no message.")

When both players' messages have been sent, each player can
costlessly and without error observe both messages.15 Hence at
the end of the preplay communication stage both players face a
message-pair , upon which they may condition their
choice of action in the base game G. Formally, let F be the set of
functions  from message-pairs to pure actions in G. Each
function  thus represents a deterministic decision rule, which
for each possible message-pair (m, v) assigns a pure strategy 

.

A pure strategy in the associated cheap-talk game GM is a pair 
. Since the sets K and M are finite, so is the set KM of

pure strategies in GM. The payoff to a player using pure strategy
(m, f) against an opponent who uses pure strategy (v, g) is

A.mixed strategy in the cheap-talk game GM is simply a
probability distribution p over the (finite) pure-strategy set KM =
M × F, and we will write DM for the unit simplex of mixed
strategies in GM.

A message  is said to be unused in  if p assigns zero
probability to all pure strategies (m, f) that have m = m'.

The associated mixed-strategy payoff function  specifies
the expected payoff uM(p, q) of the mixed cheap-talk strategy 

 when used against the mixed cheap-talk strategy :



It is evident that if G is a finite and symmetric two-player game,
then so is any cheap-talk game GM defined above (for any finite
set M). Consequently all concepts and results discussed in this
chapter apply also to GM.

The notation for such a two-player cheap-talk game can be
somewhat simplified. Without loss of generality, one may assume
that each player conditions her base-game action only on' the
other player's message. Formally, a pure strategy may be taken to
be a pair , where F now is the set of functions .
This can be done because, for any pure strategy

15. Bhaskar (1991) develops an evolutionary model of noisy cheap
talk.
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 as originally defined,  needs only to be applied
to message-pairs where the player's own message is m. Thus there
is a function  such that f'(n) = f(m, n) for all messages 
that the opponent player may send. This simplified notation will
be used henceforth.

Note that no meaning has been exogenously attached to the
elements of the set M; their meaning may be endogenously
defined by the associated equilibrium actions. This is the case if a
particular message-pair is always followed by the same base-
game action pair. It is as if the message-pair means the
accompanying action pair. In this sense language can be
endogenously created in equilibrium16 Moreover, since in the
evolutionary setting cheap-talk strategies are programmed, one
may alternatively interpret messages as inherited (distinct and
easily observable) physical traits. A pure strategy in the cheap-
talk game is then such a physical trait combined with a rule that
assigns a behavior (base-game action) to one's opponent's
physical trait.

Note finally that in terms of the Nash equilibrium criterion,
communication does not help players to coordinate on socially
efficient outcomes: For each Nash equilibrium strategy  in
the base game there exist Nash equilibrium strategies  in the
associated cheap-talk game such that play of p results in the
randomization x over the base-game actions. Such a Nash
equilibrium strategy p is obtained if all messages are sent with
equal probability, and for each base-game action  the constant
decision rule , which assigns action  to all messages m,
is used with probability xi.17 It turns out, however, that if one



uses the discussed criteria for evolutionary stability, then a certain
selection in favor of efficiency takes place.

2.6.2 Evolution, Communication, and Efficiency in Doubly
Symmetric Games

Does such preplay communication allow evolutionary forces to
lead play away from such Pareto-inefficient equilibria as (e2,e2)
in the above coordination game? Indeed there is now a technical
possibility for this; since a strict equilibrium s in the base game G
need not correspond to a strict equilibrium in the associated
cheap-talk game GM. In particular, if there is another symmetric
Nash equilibrium in G which Pareto dominates s, then mutants
may use the

16. This appears to be in accordance with the view of Ludwig
Wittgenstein as expressed in his Philosophical Investigations.
17. Technically for each message  and constant decision rule fi, let p
select the cheap-talk pure strategy h = (m, fi) with probability xi/m, where
m is the number of elements in M.
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communication stage to coordinate on this better equilibrium
when matched with each other. Hence in the presence of cheap-
talk there is some scope for evolutionary drift away from
inefficient strict equilibrium outcomes. A critical element for
such destabilization is that some message is unused in the cheap-
talk equilibrium, a message that can be used as a secret
handshake between mutants.

Some fairly strong efficiency implications from neutral stability
and setwise evolutionary stability have been established for
doubly symmetric two-player games, although the efficiency
implications from these criteria generally do not appear to be
strong. We here state only one result, without proof, and provide
a few simple examples to illustrate the techniques.

The following proposition is due to Schlag (1993a). Closely
related results can be found in Wärneryd (1991), Kim and Sobel
(1991), and Blume, Kim, and Sobel (1993). In accordance with
our earlier terminology for doubly symmetric games, we will call
a cheap-talk strategy globally efficient if  for all 

.

Proposition 2.17

Let G be a doubly symmetric two-player game, M a finite
message set, GM the associated cheap-talk game, and a
strategy that does not use all messages in M. Then p belongs to
an ES set if and only if p is globally efficient.

Our first example formalizes the above heuristic secret handshake
story.



Example 2.11

Consider any 2 × 2 game with payoff matrix A as in (2.15) above,
and let M be any preplay message set with at least two elements.
One formalization of the intuitive story given above is to suppose
that all natives use some pure cheap-talk strategy (a, f*), where 

 and f* is the decision rule which assigns the ''bad'' action
(base-game strategy 2) to all messages: f* (n) = 2 for all .
Clearly (a, f*) is in Nash equilibrium with itself, . The
clever mutants, on the other hand, use the pure cheap-talk
strategy (b, g), where  and g is the decision rule which
assigns the "good" action (base-game strategy 1) when faced with
message b, and otherwise the "bad" action: g (n) = 1 if n = b,
otherwise g (n) = 2. Clearly (b, g) is a best reply to (a, f*) in GM:

Moreover (b, g) is a better reply to itself than (a, f*):
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Hence (a, f*) is not even neutrally stable in the cheap-talk game
GM (see subsection 2.3.1).

Note, however, that had the natives instead used all messages in
M (i.e., had their strategy been some , which places positive
probability on every pure strategy  for which f = f*), then
every best reply to p has to play base-game strategy 2, and hence 

. More generally, neutral stability rules out the inefficient
outcome a2 if and only if there is some unused message in the
associated cheap-talk equilibrium (an observation due to
Wärneryd 1991).

The next example illustrates the possibility that an inefficient
outcome that is not even compatible with Nash equilibrium in the
base game may be compatible with evolutionary stability in a
cheap-talk extension of the game.

Example 2.12

Consider again any 2 × 2 game with payoff matrix A as in (2.15)
above, and let M be any preplay message set with exactly two
elements, M = {m, n}. The inefficient non-Nash payoff outcome
b = (a1 + a2)/2 is then compatible with evolutionary stability in
the cheap-talk game GM (an observation due to Kim and Sobel
1991). Let the cheap-talk strategy  mix uniformly over the
two pure strategies (m, f) and (n, g), where f(m) = 2 and f (n) = 1,
and g(m) = 1 and g(n) = 2. Hence, in any matching, the "bad"
base-game strategy 2 is played if the messages are the same and
otherwise the "good" base-game strategy 1 is played. When



meeting itself, p clearly earns payoff b, and p is a best reply to
itself. Indeed any best reply to p has to use the above decision
rule f. Suppose that p' is another best reply to p, where p'
randomizes between the two messages with a nonuniform
probability distribution s'. Then p' earns less than b when
meeting itself, since the two messages are identical more than half
of the time (and a1 <b). However, p earns b when meeting p', so 

, and accordingly  is a socially inefficient ES set
(using all messages in M).

If there are more than two strict Nash equilibria in a doubly
symmetric two-player game, then an inefficient outcome may be
neutrally stable even when there is an unused message (an
observation due to Wärneryd 1991):

Example 2.13

Consider a symmetric 3 × 3 coordination game with zeros off the
diagonal, and payoffs a1 > a2 > a3 > 0 on the diagonal. Suppose
that M contains two messages. Then the cheap-talk strategy
which sends
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one of the messages, say, , plays the "mediocre" base-game
strategy 2 when faced with this message m, and otherwise plays
the "bad" base-game strategy 3is neutrally stable. However,
mutants can arise who do not punish the other message, and,
once these mutants have a strong enough foothold, new mutants
with a secret handshake, leading to the good payoff, can arise.
And indeed, according to proposition 2.17, p does not belong to
any ES set.

2.7 Role-Conditioned Behaviors

A key assumption behind the analytical framework presented in
this chapter is that individuals who are engaged in some pairwise
strategic interaction represented as a symmetric two-player game
in normal form, do not condition their strategy on their player
position or role in the game.

It is true that the payoff to an individual's strategy , when
used against any strategy , is the same, u (x, y), irrespective of
whether the individual is assigned player position 1 (the row
player) or player position 2 (the column player). However, if
other individuals in the population condition their strategy on
their player position, then the same strategy  may obtain
different payoffs when used in the two player positions. That is,
if others use  when they find themselves in player position 1
(and hence their opponent in player position 2) and  when
they are in player position 2 (and their opponent in player
position 1), then strategy  earns payoff u(x y2) when used in
player position 1 and u(x, y1) in player position 2, where one may
well have .



Whether it is reasonable to assume, in a given application, that
individuals can identify their player position in a game is a matter
of modeling judgment; it will not be discussed here.18

The subsequent model is a special case of a general framework
developed in Selten (1980), in which individuals may condition
their strategy on a wide range of information available to them
(see also Maynard Smith 1982; Selten 1983; van Damme 1987;
Hammerstein and Selten 1993). As will be seen, even the present
special case of this general approach can be applied to
asymmetric games, and it has stalking implications.

18. There are interesting modeling subtleties here; see Selten (1980),
van Damme (1987), and Hammerstein and Selten (1994) for
discussions.
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2.7.1 Definitions

Formally, suppose that the interaction takes the form of a finite
(but not necessarily symmetric) two-player base game G = (I, S,
p) with a mixed-strategy extension (I, Q, u). Pairs of individuals
are still drawn at random from a large population to play the
game, but now each individual can observe her player position (i
= 1 or 2) in G, and condition her strategy on this observation. In
every random matching, exactly one individual is allocated to
each player position, and all individuals are equally likely to be
allocated to any of the two positions in the game.

By a behavior strategy in this setting is meant a strategy pair 
, where  is used in player position 1 and 

 in position 2; see figure 2.4.19 In this extensive-form
representation, nature (player 0) has a first move, allocating the
two individuals to one player position each. The underlying game
in the diagram is a 2 × 2 simultaneous-move game with payoff
bi-matrix (A, B).

For any underlying game G, let G denote the associated
extensive-form game in which the interacting individuals are
allocated player positions as described above. In G the expected
payoff to behavior strategy , when played against
behavior strategy , is

In bi-matrix representation (A, B), this becomes



We may now imagine a large monomorphic population in which
all individuals are programmed to a certain behavior strategy 

 in G. Such a behavior strategy  is called evolutionarily
stable in G if it is a best reply to itself,  for all ,
and any alternative best reply  earns less against itself than 
earns, namely if  for some , then . The
intuition is the same as in the standard formulation; an
evolutionarily stable behavior strategy  is "immune" against

19. In view of the preceding analysis of evolutionary stability, it might
appear natural to also here consider mixed strategies. However, as
noted in Selten (1983), behavior strategies constitute a more
satisfactory representation when it comes to evolutionary stability
considerations; see also van Damme (1987) and Hammerstein and
Selten (1994).
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Figure 2.4
The extensive form of the population game in which individuals are

randomly assigned player roles by nature (player 0).

a small invasion of any mutant behavior strategy  in the sense
that the latter earns a lower postentry payoff than the former if
the mutant population share is small enough.

2.7.2 Characterization

Selten (1980) establishes a general result with the striking
implication for the present special case that every evolutionarily
stable behavior strategy  in G constitutes a strict Nash
equilibrium of the underlying game G. The intuition behind this
result is that if  is not a strict Nash equilibrium, then at
least one of its two component strategies, x1 and x2, has an
alternative best reply. A mutation of  in one such component to
an alternative best reply to the other component Will do just as
well as  in the postentry population, since the mutant component
will never meet itself. Formally:20



20. A similar result is established for a multipopulation version of
evolutionary stability in subsection 5.1.1.
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Proposition 2.18

A behavior strategy  in G is evolutionarily stable if and only if 
is a strict Nash equilibrium of G.

Proof

First, suppose that  is a strict Nash equilibrium of G.
Then

for all , so  is an evolutionarily stable strategy in G

Second, suppose that  is not a strict Nash equilibrium
of G. Suppose that u1(y1, x2) = u1(x1, x2) for some , and let 

. Then , and

Hence  is not an evolutionarily stable behavior strategy in G The
same conclusion is reached if u2(x1, y2) = u2(x1, x2) for some 

.

The following example illustrates how a base-game ESS can be
destabilized in an environment where individuals can condition
on their player position in the game, and how an asymmetric base
game strategy profile can emerge as an evolutionarily stable
behavior strategy in the associated role-conditioned game G

Example 2.14



Reconsider the (symmetric) Hawk-Dove Game in example 2.3,
but now with payoffs v = 2 and c = 4. Normalizing these payoffs
as in subsection 1.5.3, we obtain A = B and a1 = a2 = -1. This
game has three Nash equilibria: two asymmetric strict equilibria,
in which one player "fights" and the other "yields," and one
symmetric mixed equilibrium in which both players randomize
uniformly. We found that the latter was an ESS in the standard
setup of unconditioned behaviors. However, if individuals can
condition their strategy on their player position, as modeled in the
present section, then this equilibrium, viewed as a behavior
strategy in the associated expanded game G, is not evolutionarily
stable. The reason is that a monomorphic population in which all
individuals randomize uniformly over both strategies,
irrespective of their player position, is vulnerable to mutants who
fight in one
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position, say position 1, and yield in the other. These individuals
earn the same payoff, , as the incumbents when meeting an
incumbent (since the incumbent strategy profile is an interior
Nash equilibrium), and they earn more, 0, when meeting each
other. This can be formally seen as follows: First, for any pair of
behavior strategies , we have

Hence, if  denotes the unique symmetric Nash equilibrium of
the base game, , then  for all
behavior strategies . Moreover, for , we have 

, so  is not an evolutionarily stable strategy in G

The only evolutionarily stable behavior strategies in G
correspond to the two strict (and asymmetric) equilibria of the
underlying game G. Intuitively this is evident. If the incumbent
behavior strategy is to fight in position 1 and yield in position 2,
namely , then the unique best reply, in terms of behavior
strategies, is  itself.

The next example illustrates how the present machinery can be
applied to asymmetric games. See Wärneryd (1993) for an
application to asymmetric cheap-talk games.

Example 2.15

Reconsider the (asymmetric) Entry Deterrence Game in example
1.6, and now imagine that an individual can condition her
strategy choice on her role. We saw that the game has a unique



strict Nash equilibrium strategy profile, where the intruder
(player 1) enters and the incumbent (player 2) yields. The
associated behavior strategy is indeed evolutionarily stable: All
mutants fare poorly in a population where all individuals enter
when they are playing the role of intruder and yield when playing
the role of incumbent.

 



Page 69

3
The Replicator Dynamics
In general, an evolutionary process combines two basic elements:
a mutation mechanism that provides variety and a selection
mechanism that favors some varieties over others. While the
criterion of evolutionary stability highlights the role of mutations,
the replicator dynamics highlights the role of selection. In its
standard formulation to which this chapter is devoted, the
replicator dynamics is formalized as a system of ordinary
differential equations that do not include any mutation
mechanism at all. Instead robustness against mutations is
indirectly taken care of by the way of dynamic stability criteria.

In the setup for the evolutionary stability criteria discussed in
chapter 2, individuals were imagined to be programmed to pure
or mixed strategies. In contrast, the usual replicator dynamics
presumes that individuals can only be programmed to pure
strategies.l Hence, instead of interpreting a mixed strategy as a
particular randomization, performed by each and every
individual in the population, one here interprets a mixed strategy
x as a population state, each component xi representing the
population share of individuals who are programmed to the
corresponding pure strategy i. However, one still imagines
random pairwise matchings in a large population where payoffs
represent fitness, measured as the number of offspring, and each
offspring inherits its single parent's strategy (strategies breed
true).



If reproduction takes place continuously over time, then this
results in a certain population dynamics in continuous timethe
replicator dynamics (Taylor and Jonker 1978). The replicators
are here the pure strategies; these can be copied without error
from parent to child, the individuals in the population being their
hosts.2 As the population state changes, so do the payoffs to the
pure strategies and also their fitness.

As mentioned above, this dynamics and subsequent other
selection dynamics (in chapters 4 and 5) are modeled as a system
of ordinary differential equations. For the reader's convenience
many concepts and techniques for such representations of
dynamics are introduced in chapter 6. The discussion of the
replicator dynamics in the present chapter is, however, intended

1. Mixed-strategist replicator dynamics are discused, for example, by
Zeeman (1981), Akin (1982), Thomas (1985b), and Bomze (1991); see
also the discussion in subsection 3.5.2.
2. The term replicator appears to have been coined by the British
biologist Richard Dawkins (1976). These are entities that can get copied.
The probability of being copied may depend on the performance and
environment of the replicator, and a copy of a replicator is an identical
replicator that may be copied ad infinitum. The term replicator dynamics
seems to have been introduced by Schuster and Sigmund (1983).
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to be largely self-explanatory, so an occasional glance in chapter
6 may be sufficient.3

The rest of this chapter is organized as follows: Section 3.1
provides a derivation of the replicator dynamics and discusses
some of its basic properties. The qualitative dynamic behavior in
generic 2 × 2 games is analyzed, and an application to a certain
class of generalized Rock-Scissors-Paper games is given. Section
3.2 studies the long-run survival of weakly, strictly, and
iteratively strictly dominated strategies. In section 3.3 implications
for Nash equilibrium behavior are studied. It is. found that
among the stationary population states in the replicator dynamics
are those that correspond to aggregate Nash equilibrium
behavior. Moreover those stationary states that are dynamically
unstable in this dynamics do not correspond to aggregate Nash
equilibrium behavior. Hence dynamic stability in the replicator
dynamics, while derived without any rationality assumption,
implies aggregate behavior that is "rational" and "coordinated" in
the sense of Nash equilibrium. While any interior Nash
equilibrium passes all the refinement criteria based on trembles in
strategies, some of these Nash equilibria are dynamically unstable
in the replicator dynamics. In this sense dynamic evolutionary
selection may be more demanding than the usual refinements.
Section 3.4 establishes that the stringent dynamic stability
criterion of asymptotic stability implies perfect Nash equilibrium.

Having established these and other connections with
noncooperative solution criteria, we turn in section 3.5 to
connections with the static criteria of evolutionary and neutral
stability. It is shown how a certain entropy function from



information theory provides a key link between static and
dynamic evolutionary approaches. In particular, this function can
be used to show that evolutionary stability of a strategy 
implies that the corresponding population state x is asymptotically
stable in the replicator dynamics. By the same token, it is shown
that the weaker criterion of neutral stability implies the likewise
weaker dynamic stability property of Lyapunov stability. The
section is concluded with some results for setwise asymptotic
stability.

Section 3.6 focuses on the special case of doubly symmetric
gamesgames in which the two players' payoffs always
coincideand establishes the so-called fundamental theorem of
natural selection for this class. This result states

3. For an excellent textbook introduction to ordinary differential
equations, see Hirsch and Smale (1974).
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that the population's average fitness increases monotonically
over time in the replicator dynamics. Evolutionary stability of
strategies and sets, respectively, are shown to be equivalent with
asymptotic stability in the replicator dynamics in this class of
games.

In some applications it is of interest to know which pure
strategies survive in the long run. We know from the results in
section 3.2 that if initially all pure strategies are present, then the
set of surviving pure strategies is a subset of those that are
iteratively strictly undominated. However, the subset of survivors
may be smaller, depending on initial conditions. Building on the
multipopulation model in Ritzberger and Weibull (1993) (to be
discussed in chapter 5), section 3.7 provides a sufficient
condition for a subset of pure strategies to be a long-run survivor
set in the sense that the subset is minimal with the property that if
initially virtually no other strategies are present in the population,
then all pure strategies outside this subset will vanish over time.
The condition in question is simple and based solely on the
payoff matrix A of the game.

For more results on the replicator dynamics, the interested reader
is advised to consult the excellent book by Hofbauer and
Sigmund (1988). Chapter 4 discusses several related topics,
including generalizations of the above results to fairly wide
classes of selection dynamics, to discrete-time replicator models,
and to cheap-talk games.

3.1 Preliminaries

Consider a large but finite population of individuals who are



programmed to pure strategies  in a symmetric two-player
game with mixed-strategy simplex D and payoff function u.4 At
any point t in time, let  be the number of individuals who
are currently programmed to pure strategy , and let 

 be the total population, The associated population
state is defined as the vector x (t) = (x1(t), ..., xk (t)), where each
component xi (t) is the population share programmed to pure
strategy i at time

4. The same machinery as is developed below can be used also for
mixed-strategist replicator dynamics, granted there are only finitely
many mixed strategies to which an individual can be programmed.
Formally, let this finite subset of mixed strategies be , and
consider the associated finite and symmetric two-player game G'
which has pure strategy set K' = {1, ..., m} and pure-strategy payoffs 

. See also subsection 3.5.2 for a brief discussion.
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t: xi(t) = pi(t)/p(t). Thus ; in other words, a population state
is formally identical with a mixed strategy.

The expected payoff to any pure strategy i at a random match,
when the population is in state , is accordingly u(ei, x).
Indeed it is immaterial for an individual whether she interacts
with an individual drawn at random from such a polymorphic
population or, as in the setup for evolutionary stability, an
individual playing the mixed strategy x. The associated
population average payoff, in other words, the payoff to an
individual drawn at random from the population, is

the same payoff as the mixed strategy x earns when played
against itself.

3.1.1 Derivation

Suppose that payoffs represent the incremental effect from
playing the game in question, on an individual's fitness, measured
as the number of offspring per time unit. Suppose also that each
offspring inherits its single parent's strategystrategies breed true.
If reproduction takes place continuously over time, then the
birthrate at any time t, of individuals programmed to pure
strategy i, is b + u [ei, x(t)], where  is the background fitness
of individuals in the population (independent of the outcomes in
the game under study). Let the death rate  be the same for all
individuals. With dots for time derivatives and suppressing time
arguments, this results in the following population dynamics:5



The corresponding dynamics for the population shares xi
becomes

To see this, take the time derivative of both sides of the identity
p(t)xi(t) = pi(t):

5. By the law of large numbers, the average number of offspring to
individuals playing strategy i is close to the expected payoff value
u(ei, x) when ni is large. For a critical analysis of deterministic
approximations of random matching models, see Boylan (1992).
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Division of both sides by p gives (3.3).

In other words, the growth rate  of the population share using
strategy i equals the difference between the strategy's current
payoff (fitness) and the current average payoff (fitness) in the
population. This growth rate is independent of the background
birthrates and deathrates b and d, since these are the same for all
subpopulations (pure strategies). Equation (3.3) gives the
replicator dynamics (Taylor and Jonker 1978). Exploiting the
linearity of the payoff u(x, y) in x, one may write this dynamics
more concisely as

Hence those subpopulations that are associated with better-than-
average strategies grow, while those associated with worse-than-
average strategies decline. The subpopulations associated with
pure best replies to the current population state  have the
highest growth rate.

Note also that the ratio between any two population shares xi > 0
and xj > 0 increases (decreases) over time if strategy i earns a
higher (lower) payoff than strategy j:

3.1.2 Invariance under Payoff Transformations

The replicator dynamics (3.5) is invariant under positive affine
transformations of payoffs, modulo a change of time scale. For if



the payoff function u is replaced by a function  for some
positive real number l and real number m, then the replicator
dynamics becomes

The effect of such a payoff transformation is thus equivalent to a
change of time scale by the factor l > 0 in the replicator
dynamics (3.5). In particular, all solution orbits are the same for
both dynamics; only the velocity at which the population state
moves along these orbits differs, by the factor l.

Similarly local shifts of payoff functions (subsection 1.3.3) do
not affect the replicator dynamics at all. If some constant  is
added to all entries in some column j of the payoff matrix A, then
the payoff u(ei, x) to any
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pure strategy i is replaced by  resulting in 
 with no change at all in the replicator dynamics

(3.5).

3.1.3 The Induced Solution Mapping

The right-hand side of (3.5) defines the associated vector field 
 where

Since this vector field is a polynomial in the population shares,
the system of differential equations (3.5) has a unique solution
through any initial state , by the Picard-Lindelöf theorem
(theorem 6.1). Furthermore the simplex  can be shown to be
invariant in this dynamics. That is the solution orbit to (3.5)
through any initial state in D is contained in D. Intuitively this is
clear, since, by (3.5), the sum of all population shares necessarily
remains equal to one  and no population share can ever
turn negative .

More precisely, the system of differential equations (3.5) defines
a continuous solution mapping  which to each initial
state  and time  assigns the population state  at time
t. Since the unit simplex D is invariant, so is its interior and
boundary. In other words, if all pure strategies are present in the
population at any time, then they have always been and always
will be present, and likewise, if a pure strategy is absent from the
population at any time, then it has always been and always will
be absent. Of course it is not precluded that an interior solution
trajectory converges to the boundary of the simplex as time goes
to infinity; at any time the population state will then be interior,



but its distance to the boundary goes to zero, and so in the limit
some pure strategies may become extinct. (For formal statements
and proofs of these claims, see propositions 6.1 and 6.2 and the
appendix at the end of this chapter.)

3.1.4 Symmetric 2 × 2 Games

In this section we apply the replicator dynamics (3.5) to the
special case of generic symmetric two-player games with only
two pure strategies. It turns out that in such games a population
state is asymptotically stable in the replicator
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dynamics if and only if the corresponding mixed strategy is
evolutionarily stable (see subsection 2.1.2).6

Since the replicator dynamics (3.5) is invariant under a local shift
of payoffs, we may, without loss of generality, presume that the
payoff matrix has the following form:

We focus on the generic case when . The replicator
dynamics in these normalized payoffs becomes

where  (the two shares always sum to one). In the
classification of subsection 1.5.3:

Categories I and IV

If a1a2 <0, then the population share x1 either always declines
(when a1 <0 and a2 > 0) or always grows (when a1 > 0 and a2
<0). Hence, starting from any interior initial position, the
population state converges over time to the unique ESS of such a
game; see figures 3.1 (a) and (d) for categories I and IV,
respectively.

Categories II and III

If ala2 > 0, then the growth rate of x1 changes sign when a1x1 =
a2x2, which occurs precisely at the mixed-strategy Nash
equilibrium value xl = l = a2/(al + a2). Suppose, first, that both
payoffs are positive (category II). Then x1 decreases toward 0
from any initial value , and, conversely, increases toward I



from any initial value ; see figure 3.1 (b). In other words,
starting from any interior initial position, the population state
converges to one of the two ESS's of such a game. The ''basins.
of attraction'' of these meet precisely at the mixed-strategy Nash
equilibrium point x1 = l Second, suppose that both payoffs are
negative (category III). Then the population share x1 increases
toward l from any lower (interior) initial value and decreases
toward l from any higher (interior) initial value; see figure 3.1
(c). Hence the population state converges over time to the unique
ESS of any such game, from any interior initial state.

6. See section 6.4 for formal definitions of Lyapunov and asymptotic
stability. Intuitively, a state  is Lyapunov stable if no small change
in the population composition can lead it away, and x is asymptotically
stable if moreover any sufficiently small such change results in a
movement back toward x.

 



Page 76

Figure 3.1
The replicator dynamics in symmetric 2 × 2 games: (a) 

Category I, (b) category II, (c) category III, (d) category IV.

Example 3.1

To obtain the replicator dynamics for the Prisoner's Dilemma
Game of example 1.1, first note that a1 = -1 and a2 = 3. Using the
identity x1 + x2 = 1 in equation (3.9), we get

(and ). Likewise, for the Coordination Game of example
1.10, we obtain

and, for the Hawk-Dove Game of example 2.3, we have al = -1
and a2 = -2, and hence
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3.1.5 Generalized Rock-Scissors-Paper Games

Consider the following generalization of the Rock-Scissors-Paper
Game of example 1.12:

where  The original RSP Game now is the special case a = 0,
and the game of example 2.7 corresponds to the case a = -1. For
any a the game has a unique interior Nash equilibrium strategy, 

.7

While section 3.5 provides the general principle, it will be shown
below that the product xlx2x3 increases (decreases, is constant)
along any interior solution path of the replicator dynamics if a is
positive (negative, zero). To see this, first note that the replicator
dynamics (3.5) becomes

Hence the time derivative of h(x) = log(x1x2x3) is

By the identity



where , the average payoff x · Ax can be written

and hence

7. See Weissing (1991) for a comprehensive analysis of continuous-
time and discrete-time replicator dynamics in a class of 3 × 3 games
including these games.
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Note that the squared norm ||x||2 is maximal at each of the three
vertices of the unit simplex D, where it achieves the value 1, and
is minimal at its center point x*, where it achieves the value 
Hence the factor (3||x||2 - 1) in the right-hand side of (3.17) is
zero at x = x* and positive elsewhere on D.

It follows that, in the original Rock-Scissors-Paper Game (a = 0),
all solution paths are cycles on D. More exactly, for any initial
state , the solution f(t, x0) moves perpetually along the
closed curve on which x1x2x3 is constantly equal to 
(Recall that x* is the only interior stationary state.) Geometrically
such a curve is the intersection of the hyperbola in R3 given by
the equation xlx2x3 = g with the unit simplex D; see figure 3.2 (a).
If x0 = x*, then this intersection reduces to the single point x*
itself, while for any other , the intersection is a smooth
closed curve in int(D). Hence all interior solution trajectories to
the replicator dynamics are periodic when a = 0.

In contrast, if a <0, then the dynamic paths induced on D move
outward, toward hyperbolas with lower g from all interior initial
states except x0 = x*; see figure 3.2 (b) for an orbit when -1 <a
<0. Conversely, if a > 0, then all trajectories move inward,
toward hyperbolas with higher g; see figure 3.2 (c).

Hence, for any a > 0, the unique Nash equilibrium strategy x* in
this game is asymptotically stable and attracts the whole interior
of the state space. When a = 0, x* is Lyapunov stable but not



asymptotically stable, and when a <0, x* is unstable (not
Lyapunov stable).

Phrased in terms of sets of population states, we have found that,
when a is positive (negative), all upper (lower) contour sets of
the function h(x) = x1x2x3 are asymptotically stable. In the second
case (a <0), also the boundary of Dis asymptotically stable. In the
knife-edge case when a is zero, the full space D is the only
asymptotically stable set.8

The dynamic stability properties of x* fit well with how x* meets
the criteria of evolutionary and neutral stability. It is easily
verified, from the above computations, that for any 

. Hence x* is evolutionarily stable when
a > 0, neutrally but not evolutionarily stable when a = 0, and not
even neutrally stable when a <0.

8. The definition of asymptotic stability of a set is a straightforward
extension of asymptotic stability of a point; see section 6.4 for details.
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3.2 Dominated Strategies

The population share of individuals programmed to a certain
pure strategy grows in the replicator dynamics (3.5) if and only if
the strategy earns a payoff above the current population average.
Since even a strictly dominated strategy may earn more than
average, it is not clear a priori whether such strategies necessarily
get wiped out in the replicator dynamics. Indeed Dekel and
Scotchmer (1992) provide a game in which a strategy for this
reason does not become extinct in a discrete-time version of the
replicator dynamics (see section 4.1). It turns out, however, that
in the continuous-time replicator dynamics (3.5), strictly
dominated strategies do vanish in the long run. The same is true
for all iteratively strictly dominated strategies, but not for all
weakly dominated strategies.

Recall that x denotes the solution mapping for the replicator
dynamics (3.5). Hence  is the population state at time 
if the initial state is 

3.2.1 Strict and Iterated Strict Dominance

The following result, due to Akin (1980; see also Samuelson and
Zhang 1992), establishes that the replicator dynamics wipes out
all strictly dominated pure strategies from the population, granted
all pure strategies in the game are initially present:

Proposition 3.1

If a pure strategy i is strictly dominated, then , for any
.

Proof



Suppose that  is strictly dominated by , and let

By continuity of u and compactness of D, . Define the
function  by

Clearly vi is differentiable, and its time derivative along any
interior solution path to (3.5) is, at any point x = x(t, x0),
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(a)

(b)
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Figure 3.2
The replicator dynamics in generalized

Rock-Scissors-Paper games: (a) a = 0, (b) a <0, (c) a >0.

Hence vi(§(t, x0)) decreases toward minus infinity as . By
definition of vi, this implies that .

By proposition 1.1, a strategy is strictly undominated in a two-
player game if and only if it is a best reply to some (pure or
mixed) strategy. Hence one may rephrase the above result as
saying that evolution selects against behavior which is irrational
in the sense of being suboptimal under any probabilistic belief
about the opponent's strategy. This selection takes place



irrespective of whether the evolutionary solution path converges
or not, so in the long run
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(virtually) no individual will behave irrationally in this sense
even if aggregate behavior fluctuates forever.

Note the importance of the hypothesis that all pure strategies in
the game are initially present. For instance, if some strategy i is
strictly dominated but no other pure strategy is initially present,
then clearly xi(t, x0) = 1 at all times t. Or, more generally, if some
strategy i is not strictly dominated when some other pure strategy
j is removed from the game, then we need not have  if
strategy j is initially absent.

By a somewhat more involved argument, Samuelson and Zhang
(1992) have shown that the replicator dynamics wipes out all
iteratively strictly dominated pure strategies from the population.
Intuitively this extension is not surprising. Proposition 3.1 tells
that after a sufficiently long time the population state will be and
forever remain arbitrarily near the face of the mixed-strategy
simplex D which is spanned by the subset  of pure strategies
that are not strictly dominated. By continuity, those pure
strategies that are strictly dominated in the reduced game G1
(with pure strategy set K1) vanish, according to proposition 3.1 as
applied to the reduced game G1, and so on, until no more pure
strategies can be so eliminated. Samuelson and Zhang give a
formal proof of this result, for a class of evolutionary selection
dynamics including (3.5):9

Theorem 3.1

If a pure strategy i is iteratively strictly dominated, then 
, for any 

In two-player games it is as if evolution not only selects against



behaviors that are irrational in the sense of being suboptimal
under every probabilistic belief concerning one's opponent's
strategy, it also selects against all behaviors that are optimal under
probabilistic beliefs that presume that one's opponent is irrational
in this sense, ad infinitum, along a hierarchy of mutual beliefs.

Example 3.2

Reconsider the strictly dominance solvable game of example 1.4.
If all pure strategies are initially present, then all pure strategies
but strategy 1 get wiped out in the replicator dynamics (3.5), by
theorem 3.1. In other words, every interior solution path
converges to the vertex e1 of D. This is also the unique ESS of
the game, so both evolutionary approaches agree with
noncooperative game theory in this example.

9. Their result concerns the interaction between two distinct
populations; it is stated in chapter 5, where the connection between
multipopulation and single-population dynamics is discussed.
Hofbauer and Weibull (1995) extend this result to a class of
evolutionary selection dynamics that they call convex monotone.
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3.2.2 Weak Dominance

While the replicator dynamics has been seen to wipe out all
strictly dominated strategies, this is not generally the case with
weakly dominated strategies. This issue is addressed in
Samuelson (1993), where it is found that, in a number of
alternative evolutionary selection dynamics, including the
replicator dynamics, such strategies are not necessarily
eliminated.

However, one can show that if a pure strategy i is weakly
dominated by some strategy , and the subpopulation
programmed to strategy i does not vanish over time, then all
those pure strategies j against which y is better than i vanish from
the population. This result follows from a modification of the
above proof of proposition 3.1:10

Proposition 3.2

Suppose that a pure strategy i is weakly dominated by some
strategy . If u(y - ei, ej) > 0 then or (or
both) for any .

Proof

Let  be as in the proof of proposition 3.1, where now 
weakly dominates ei. Then

at all times . Suppose that  is such that u(y - ei, ej)
= e > 0 Since y weakly dominates ei,



for any . Hence at all times ,

Integration with respect to t gives . The
integral is increasing in t and thus either tends to  or to some 

, as . In the first case , and hence  by
definition of vi. In the second case  by uniform
continuity of x(t, x0) in t: By (3.5),  for all t, where 

 did not converge to 0, then there
would exist some

10.I am grateful to Josef Hofbauer and Larry Samuelson for helpful
comments.
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d > 0 and an increasing and unbounded sequence of times tk > 0
such that xj(tk, x0) > d for all k. Without loss of generality we
may assume that tk+ 1 - tk > 2d/g for all k, and then the integral 

 would represent an area containing infinitely many
nonoverlapping triangles, each with height d and base 2d/g, a
contradiction.)

By proposition 1.1, a pure strategy is undominated if and only if
it is a best reply to some completely mixed strategy. Hence one
may rephrase the above result as saying that evolution selects
weakly against behavior that is suboptimal under any
probabilistic belief about one's opponent's strategy that assigns
positive probability to all his pure strategies. The selection is
weak in the sense that such behavior need not vanish if, in the
long ran, those pure strategies j against which i is suboptimal
vanish.

The following simple example illustrates how this result can be
used to show that, in certain games, a weakly dominated strategy
does vanish along any interior solution path.

Example 3.3

Consider de 2 × 2 game with payoff matrix

The second pure strategy, i = 2, is weakly dominated by the first
pure strategy, y = e1, and y outperforms i against j = 2. Hence 

, for any . Indeed in this game equation (3.9)
becomes  and , showing that x1 increases
monotonically toward 1 from any initial state with .



In the following example a weakly dominated strategy survives in
the long ran, in fact in any positive population share that one may
wish.

Example 3.4

Consider the 3 × 3 game with payoff matrix

The second pure strategy, i = 2, is weakly dominated by the first
pure strategy, y = el, and y outperforms i against j = 3 Hence 

 or  for any . Strategy 3 is strictly
dominated by strategy 1, so we do have , allowing for the
possibility that strategy 2 does not
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Figure 3.3
Replicator solution orbits in the game of example 3.4.

vanish. Indeed in this game equation (3.6) becomes d(x1/x2)/dt =
x1x3/x2 > 0. Hence in the interior of the simplex subpopulation 1
does grow faster than subpopulation 2, but as subpopulation 3
converges to zero, the difference in growth rates goes to zero. All
interior solution paths are convergent; they all end up on the
boundary face where strategy 3 is extinct, and in the limit, x2 may
take any value between zero and one, depending on the initial
population state. See figure 3.3 for a few solution orbits.

3.3 Nash Equilibrium Strategies

For any finite and symmetric two-player game under study, let 
 as before denote its (nonempty) subset of strategies which

are in Nash equilibrium with themselves. It turns out to be
convenient for the subsequent dynamic analysis to use the fact
that a strategy x belongs to DNE if and only if all those pure
strategies to which x assigns positive probability earn the
maximal payoff that can be obtained against x. Formally,
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We proceed to study relationships between this set and the sets of
stationary, Lyapunov stable, and limit states, respectively, under
the replicator dynamics (3.5). We also briefly examine two
connections with time averages over solution trajectories.

3.3.1 Stationary States and DNE

By definition, a population state  is stationary in (3.5) if and
only if the product u(ei - x, x)xi is zero for all pure strategies ,
or equivalently, if and only if all pure strategies i which are
present in population state x earn precisely the same payoff. Let 

 denote the set of stationary states in (3.5):

The condition for stationarity is trivially met by each vertex x = ei
of the simplex, since in such a population state x all individuals
use the same pure strategy i and earn the same payoff. Hence the
finite set {e1, ..., ek} of vertices is a subset of D0. In a sense the
stationarity of these points is an artifact of the replicator
dynamics; since the replicator dynamics does not involve any
mutations (strategies breed true), there is nothing in the model
that can get evolution started from such an extreme population
state.

A comparison between (3.18) and (3.19) immediately reveals that
also the (nonempty and closed) set DNE is a subset of D0: If all
pure strategies in the support of a strategy x earn the same
maximal payoff against x, then they all earn the population
average payoff,



For interior population states x, also the converse is true: If 
 is stationary in (3.5), then u(ei, x) = u(x, x) for all pure

strategies i in the game, by (3.19), and so all pure strategies are
best replies to the mixed strategy x, and consequently .
Letting D00 denote the. (possibly empty) set of interior stationary
states, , we have just shown that D00 is a subset of
DNE. Since all Nash equilibria are stationary, we actually have 

. Moreover, as noted by Zeeman (1981), the set D00
is necessarily convex. In fact any linear combination 
of states
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x, y in D00 is again a stationary state, indeed belongs to the subset
DNE of stationary states. In sum:

Proposition 3.3

, and D00. is a convex set
such that any linear combination of states in D00 belongs
toDNE

Proof

It only remains to prove the last claim. For this purpose suppose
that , and let  be such that . For any pure
strategy  we have

by bilinearity of u, stationarity of x and y, and the hypothesis that
these two states are interior. Hence, since all pure strategies i earn
the same payoff against . If , then . Otherwise, z is
a boundary point of , and hence , since DNE is a
closed set. Moreover, since D is convex and  for all 
with a + b = 1, D00is convex.

This proposition has strong implications for the geometric nature
of the set  of stationary states in the replicator dynamics. For
instance, in 2 × 2 games the set D00 is empty, a singleton, or the
whole interior of the (one-dimensional) simplex; see figure 1.1
(a). Likewise in 3 × 3 games the set D00 contains no state at all,
exactly one state x, or all states on some straight line through
int(D), or else all of int(D); see figure 1.1 (b). In the first case DNE
contains no interior point but, by proposition 1.5, at least one



point x on the boundary of D. In the second case the unique
interior stationary point x belongs to DNE, while no other interior
point does. In the third case all points on the line segment
through D, including its two intersections with the boundary of
the simplex, are stationary states and belong to DNE. In the fourth
(degenerate) case every state is stationary and in Nash
equilibrium with itself. Note also the implications for the
geometry of the set of stationary states on the edges (boundary
faces) of the simplex in these games: Such stationary states are
either isolated points, in which case there is at most one on the
relative interior of each edge, or they constitute a whole edge.
This follows from an application of the above proposition to
each edge in isolation: Each such edge is invariant in the
replicator dynamics (3.5) and may .thus be treated as the mixed-
strategy space of the associated 2 × 2 game, and so on.
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Example 3.5

Reconsider the game in example 2.9. By proposition 3.3, the set
D0 of stationary points in the replicator dynamics contains the
three vertices and the whole continuum  but no
other point in the interior of the simplex. It is easily verified that
no other boundary point is stationary.

3.3.2 Lyapunov Stable States and DNE<

It was earlier noted that the replicator dynamics does not account
for the evolutionarily relevant possibility of mutations. In the
present setup the replicators are the pure strategies of the game,
so a mutation can only take the form of a shift from one pure
strategy to another. Suppose that the population initially is in
some stationary state , and suddenly such mutations take
place in a small fraction  of the population (perhaps mutations to
different pure strategies in different individuals). For instance, if
all pure strategies are equally prone to mutate, and yi is the
probability that a mutation results in any pure strategy , then
this amounts to a shift from the initial population state x to the
population state . Stationary states that are not
robust to this type of perturbation of the population state thus
appear less interesting from an evolutionary viewpoint. It turns
out that all stationary states that are not in DNE can be rejected on
these grounds: Dynamic stability in (3.5) requires (symmetric)
Nash equilibrium, just as evolutionary and neutral stability was
seen to do in chapter 2.

More precisely, stationary states that are not Nash equilibria fail
even the weak dynamic stability criterion of Lyapunov stability.



The reason why a stationary state x not in DNE is dynamically
unstable is simply that then there exists some pure strategy i that
is unused in the population state (xi = 0) but that earns a higher
payoff against x than those pure strategies used in state x; all of
the latter have to earn the same payoff by stationarity. Hence, if
some arbitrarily small but positive fraction of the population
starts using such a profitable but in x absent strategy i, then these
mutating individuals earn a higher payoff, and thus their
population share grows, leading the population state to leave x.
This result is due to Bomze (1986).

Proposition 3.4

If is Lyapunov stable in (3.5), then

Proof

Suppose that  and . Then all pure strategies in the
support C(x) earn the same suboptimal payoff against x. Hence
there exists some  such that u(ei - x, x) > 0 By continuity of
u, there is a d > 0
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and a neighborhood U of x such that  for all  But
then  for any  and all times t > 0 such that 

. Thus §i (t, x0) initially increases exponentially from
any , and yet xi = 0, so x is not Lyapunov stable.

Like the evolutionary stability criteria in chapter 2, Lyapunov
stability in the replicator dynamics goes beyond Nash
equilibrium. For instance, the unique interior Nash equilibrium in
the generalized Rock-Scissors-Paper games in subsection 3.1.5 is
symmetric and completely mixed, and the corresponding strategy 

 is seen to be Lyapunov stable if and only if . In contrast,
this Nash equilibrium passes all the trembles-based
noncooperative refinements in section 1.4 for any value of a.
Likewise in subsection 3.1.4 we found that the mixed-strategy
Nash equilibrium in Coordination games (category II) is
dynamically unstable, while, again, this equilibrium satisfies all
the refinement criteria. In contrast, the mixed-strategy Nash
equilibrium in Hawk-Dove games (category III), which also
passes the refinement tests, was seen to be asymptotically stable
in the replicator dynamics, so for this particular equilibrium the
rationalistic and evolutionary paradigms agree.

3.3.3 Limit States and DNE

It was shown in section 3.2 that even if an interior solution
trajectory to the replicator dynamics does not converge over time,
long-run aggregate behavior is nevertheless rational in the sense
that iteratively strictly dominated strategies are abandoned. It is
not difficult to show that if such a solution trajectory does
converge over time, then long-run aggregate behavior is not only
rational in this sense but even coordinated in the sense of Nash



equilibrium. It is as if (virtually) all individuals in the population
knew the long-run population distribution of pure strategies and
maximized their own payoff against this distribution.

When proving this result, one may first make the general
observation that if a state is the limit of a solution trajectory (to a
system of autonomous ordinary differential equations), then the
state is necessarily stationary (see proposition 6.3). In particular,
if a solution trajectory to the replicator dynamics happens to
converge to some interior population state, then this limit state
belongs to D00 and hence also to DNE, by proposition 3.3. The
following result extends this result to limit states that are on the
boundary of the simplex (Nachbar 1990):
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Proposition 3.5

If and , then 

Proof

Suppose that ,  but . Then there exists
some strategy  such that  for some . Since 

 and u is continuous, there exists some  such that u(ei
- x(t, x0), . By (3.5), , and hence 

, implying that , a
contradiction. Hence .

This result may be rephrased as follows. One may call a state 
reachable if there exists some interior state from which the
solution trajectory converges to x. By proposition 3.1, any
interior Nash equilibrium strategy  is reachable in this sense:
Just let the initial state be x itself (much in the same spirit as with
refinements based on perturbations of the strategy space). The
result then says that every reachable population state  belongs
to the subset DNE.

The following example illustrates the possibility that a state 
is the limit point to all interior solution trajectories to (3.5), and
yet x is not even Lyapunov stable. The reason for its special
dynamic properties is that this state x (pure strategy 1) is
vulnerable to a pure-strategy mutant (strategy 3) which initially
does well in the postentry population, but as its population share
grows, it opens the door for a second mutant (pure strategy 2)
that exploits. the first mutant. Once the second mutant is
prevalent in the population and the first has somewhat
diminished, the second mutant starts to fare badly against the



incumbent strategy. Hence in the long run only the incumbent
strategy prevails.

Example 3.6

Consider the symmetric two-player game given by the payoff
matrix

(Ritzberger and Weibull 1993; see Nachbar 1990 for a similar
example). Let x = e1. Clearly . However, x is not Lyapunov
stable, since solution trajectories along the edge to vertex e3 lead
away from x. Strategy 3, however, is weakly dominated by
strategy 2. Moreover strategy 3 does worse than strategy 2 against
strategy 3, so by proposition 3.2, strategy 3 is wiped out in the
long run, along any interior solution orbit. By continuity of §(t,
x0) with re-
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Figure 3.4
Replicator solution orbits in the game of example 3.6.

spect to the initial state x0, there are interior solution orbits that
start near x =e1 and pass arbitrarily near the vertex e3. By (3.6),
the ratio §2(t, x0)/§3(t, x0) increases monotonically with time t,
and when §(t, x0) is near the edge between x = e1 and e2, §1(t,
x0) increases monotonically toward 1, since on that edge, x = e1
earns a higher payoff than e2. See figure 3.4.

3.3.4 Time Averages and DNE

We have established two positive results for the evolutionary
foundations of Nash equilibrium: Dynamic stability and interior
convergence, respectively, imply aggregate Nash equilibrium
behavior. There is a third such positive result. It is less general,
since it applies only to games that have a unique interior
stationary state x, or equivalently, a unique interior symmetric
Nash equilibrium (proposition 3.3). However, the result requires
neither stability nor convergent solution trajectories. Instead the



hypothesis is that the solution trajectory §(·, x0) be bounded
away from the boundary of the simplex. A
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precise mathematical statement of the latter requirement is that
the closure of the forward orbit g+(x0) be contained in the interior
of the simplex.11

Under these hypotheses the time average , defined by

converges toward the interior Nash equilibrium strategy as T goes
to infinity. Hence, even if a solution trajectory to the replicator
dynamics fluctuates forever, the population's long-run aggregate
behavior, observed as a time average rather than as a population
average, may constitute a Nash equilibrium. This is, for instance,
the case for any periodic solution trajectory in int(D).

This result is due to Schuster, Sigmund, Hofbauer, and Wolff
(1981a):

Proposition 3.6

Suppose that , and that . Then

(For a proof, see Schuster, Sigmund, Hofbauer, and Wolff 1981a
or Hofbauer and Sigmund 1988.)

Example 3.7

We showed in subsection 3.1.3 that all interior solution orbits to
the replicator dynamics in a generalized Rock-Scissors-Paper
Game are bounded away from the boundary of the simplex if and
only if . Hence for these parameter values the time average



along any solution trajectory converges to the unique Nash
equilibrium (also when a = 0 and the trajectories are periodic).

As a partial complement to this result, it can be shown that if DNE
contains no interior state, then every solution path to the
replicator dynamics converges to the boundary (Hofbauer 1981):

Proposition 3.7

Suppose that . Then , for all .

(For a proof, see Hofbauer 1981 or Hofbauer and Sigmund
1988.)

The replicator dynamics (3.5) is said to be permanent if no pure
strategy gets extinct in the long run or, more precisely, if there
exists some interior

11. The forward orbit  through a state  is the set of all those
population states reached at some time in the future, along the solution
through x0.See chapter 6 for details.
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compact set to which all interior solution paths converge. It has
been shown that if the replicator dynamics is permanent in this
sense, then the game has precisely one interior symmetric Nash
equilibrium (Hofbauer and Sigmund 1988). By proposition 3.6,
the time average of every interior solution trajectory then
converges to this unique interior strategy. In general, it may not
be so easy to verify whether the replicator dynamics indeed is
permanent in a given game. However, there is a fairly transparent
sufficient condition for permanence, due to Jansen (1986),
namely that there exists some interior strategy z which is superior
to all stationary states y on the boundary in the sense u(z, y) > u
(y, y). In sum:

Proposition 3.8

If there is some such that u(z, y) > u(y, y) for all ,
then (3.5) is permanent. If (3.5) is permanent, then is a
singleton, and the time average converges to this singleton
as , from any .

3.4 Perfect Equilibrium Strategies

For the purpose of making dynamic predictions, asymptotic
stability is a more reliable property than Lyapunov stability. For
Lyapunov stability does not protect against unmodeled
evolutionary drift; occasional small perturbations of the
population state may pass unchecked by the dynamics at such a
population state (e.g., for a discussion of such drift, see Gale,
Binmore, and Samuelson 1993; Binmore and Samuelson 1994).
Hence a sequence of such shocks may carry the population to a
state from where the replicator dynamics leads it far away.



Asymptotic stability, in contrast, guarantees a pull back to status
quo after any small perturbation of the population state. Hence
robust evolutionary predictions call for asymptotic stability.

We know from proposition 3.4 that already the weaker criterion
of Lyapunov stability implies Nash equilibrium behavior. Thus, if
we look for population states that are asymptotically stable in the
replicator dynamics (3.5), only states x in the subset DNE are
candidates. As shown in Bomze (1986), Nash equilibria that are
not perfect (see subsection 1.4.1) are not asymptotically stable in
this dynamics. In other words, it is necessary that the associated
strategy profile  be robust against some sequence of small
trembles. This is not sufficient for asymptotic stability, however.
For instance, the unique interior Nash equilibrium of the
generalized Rock-Scissors-Paper
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Game in subsection 3.1.5 is perfect (being interior) but was seen
to be dynamically unstable for all payoff parameter values a <0.
Also asymptotic stability of a strategy  clearly requires that it
be isolated in the sense that {x} has to be a component of the set
DNE (see subsection 2.4.2). Otherwise, there are arbitrarily nearby
strategies , all of which are stationary (and thus we do not
have, as required by asymptotic stability, .

Proposition 3.9

If is asymptotically stable in (3.5), then is perfect,
and x is isolated.

Proof

Suppose that  is asymptotically stable in (3.5). Then x is
Lyapunov stable, and so , by proposition 3.4. Suppose that
(x, x) is not perfect. Then x is weakly dominated by some strategy

, by proposition 1.4. Consequently  for all .

For  fixed, define the function  by

By the same calculations as in the proof of proposition 3.1, we
obtain that v is nondecreasing along all interior solution
trajectories to (3.5). Formally, at any state ,

By hypothesis, x is asymptotically stable, so x has a neighborhood
U such that  for all . Combined with the above
observation that v is nondecreasing along all interior solution



trajectories, this implies that  for all . However,
there exist  for which v(z) > v(x). Such a strategy z is
obtained by taking any , , and e > 0 sufficiently
small, as follows:

For e > 0 sufficiently small,  implies that . Moreover
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It can be shown that the second term is zero. Hence v(z) > v(x),
contradicting the above implication that , so .

To prove that the second term is zero, it is sufficient to establish 
. For this purpose, suppose that  but that . By

asymptotic stability of  for all . In particular, v
(§(t, x0)) is nondecreasing over time t. However, 
while yj > 0, so for some constant g we have 

, a contradiction.

3.5 Evolutionarily and Neutrally Stable Strategies and Sets

We here address the question how stability in the replicator
dynamics is related to the criteria of evolutionary and neutral
stability of the associated mixed strategy. It turns out that every
population .state in the subset DESS is .asymptotically stable in the
replicator dynamics, and every population state in DNSS is
Lyapunov stable. In this sense evolutionary stability implies
asymptotic stability, and neutral stability implies Lyapunov
stability. Moreover every ES set is asymptotically stable.
However, the converse of these implications does not generally
hold.

These results can be established formally by means of a suitable
chosen so-called Lyapunov function (see chapter 6). The
particular function to be used for this purpose is a well-known
relative entropy function in information theory and statistical
mechanics. Its connection with the mentioned evolutionary
stability criteria goes via propositions 2.6 and 2.7, which establish
that an evolutionarily stable strategy is locally superior and that a
neutrally stable. strategy is locally weakly superior, respectively.



The first characterization can be used to extend the asymptotic
stability of ESS's to that of ES sets.

3.5.1 The Relative-Entropy Function

For any mixed strategy , let  be the set of those mixed
strategies  that assign positive probabilities to all pure
strategies with positive probabilities assigned by x:

Clearly x itself belongs to Qx, as do all points y in the interior of
the simplex D. In fact Qx is the union of int(D) and the minimal
boundary face containing x, namely the subsimplex spanned by
the carrier  of x. Hence Qx constitutes a neighborhood of x
relative to D (formally,  for some
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(a)

open set  containing x); see figure 3.5 for illustrations in the
case of three pure strategies (k = 3).

The mentioned key function for stability analysis is defined with
respect to a given mixed strategy , the candidate
asymptotically stable state, and has the (relative) neighborhood
Qx as its domain. It is usually called the (Kullback-Leibler)
relative-entropy measure , and it is defined by

This is an information-theoretic measure of distance in
probability space between the distributions x and y.12 Clearly
Hx(x) = 0, and it has been shown in information theory that the
number Hx(y) always exceeds ||x - y||2, the square of the
euclidean distance between x and y (see Reiss 1989; Bomze
1991).13 Hence, if for any fixed  the value Hx(y) decreases
toward zero as  changes, then y must approach x. Indeed,. for



any fixed strategy , the associated entropy function Hx is
convex; see figure 3.6 for illustrations in the case k = 3.

12. In information theory one usually thinks of Hx(y) as a measure of
the entropy of the distribution x relative to the distribution y; see
Kullback (1959).
13. However, Hx does not define a metric because it is not symmetric.
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(b)

(c)

Figure 3.5
The domain Qx of the relative-entropy function Hx: (a) x is interior, (b) 

x belongs to an edge of the simplex, (c) x is a vertex of the simplex.
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A direct proof that the function Hx achieves its global minimum
at y = x can be established by means of Jensen's inequality.
Moreover this function has the remarkable dynamic property that
its time derivative in the replicator dynamics, evaluated at any
point y in its domain Qx, equals the payoff difference between
strategies y and x when played against y. Formally, for any fixed 

, the time derivative of the function value Hx(y) at some point
, is defined as the rate of change in Hx(y) as the state y

changes according to equation (3.5):

Lemma 3.1

Suppose that and . Then , with equality if and only
if y = x. Moreover 

Proof

First note that Hx(x) = 0 and that, for any ,

(a)
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(b)

(c)

Figure 3.6
The graph of the relative-entropy function
Hx in the three cases (a-c) of figure 3.5.
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Suppose that , and recall that . If C(x) = C(y), then the
first, weak inequality is strict. If , then the second
inequality is strict. Hence in both cases Hx(y) > 0.

Next at any point ,

Suppose that the population state y is in the domain Qx of some
strategy  such that x earns a higher payoff against strategy 

 than y earns against itself. Then the replicator dynamics (3.5)
induces a movement into lower and lower contour sets of Hx,
and unless the population state §(t, y) in the meantime leaves the
domain Qx, it will converge to x as time . This application of
what is called Lyapunov's direct method (see chapter 6),
combined with the characterizations of evolutionary and neutral
stability in section 2.2, is the key whereby some of the static
evolutionary stability criteria in chapter 2 can be connected with
asymptotic and Lyapunov stability in the replicator dynamics.

3.5.2 Asymptotically Stable States and DESS

Lemma 3.1, together with the characterization of evolutionary
stability in proposition 2.6 and Lyapunov's direct method can be
used to establish the claim that every ESS is an asymptotically
stable state in the replicator dynamics. This route was suggested
by Taylor and Jonker (1978); see also Hofbauer, Schuster, and
Sigmund (1979):14

Proposition 3.10



Every is asymptotically stable in the replicator dynamics
(3.5).

Proof

Suppose that . By proposition 2.6, there is a neighborhood
U of x such that u(x - y, y) > 0 for all  in . As noted above,
the domain Qx of the function Hx is a relative neighborhood of x,
so Hx is a so-called strict local Lyapunov function for the
replicator dynamics on the (relative) neighborhood , by
lemma 3.1. More precisely, 

14. The result in Taylor and Jonker (1978) is slightly weaker. They
also show by counterexample that their result does not carry over to the
discrete-time version of the replicator dynamics in which every time
period represents a generation; see section 4.1.
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is continuously differentiable, Hx(y) = 0 if and only if y = x, and 
. By theorem 6.4, this implies that x is asymptotically

stable.15

Recall that an interior ESS is necessarily unique (proposition
2.2). Hence one may conjecture that such a strategy is globally
stable in the sense of attracting all interior initial states. This
conjecture is easily proved (Hofbauer and Sigmund 1988):

Proposition 3.11

If , then ), for any .

Proof

If , then Qx = int(D). If moreover , then all strategies 
 are best replies to x, and thus u(x - y, y) > 0 for all 

(proposition 2.1). By lemma 3.1, we then have  for all .
The subset int(D) is positively invariant in (3.5), and 
means that the replicator vector field j(y) points (strictly) into
every contour set of Hx, so , for any .

Example 3.8

Reconsider the generalized Rock-Scissors-Paper games in
subsection 3.1.5 in the light of propositions 3.10 and 3.11. The
unique Nash equilibrium strategy of such a game is , for any a
> -1. In subsection 3.1.5 we showed that x is not asymptotically
stable in the replicator dynamics when . Hence  by
proposition 3.10. In fact x gives payoff  when played against
any of the three pure strategies of the game, while each pure
strategy obtains payoff 1 when played against itself. Hence, for 

, x is not evolutionarily stable. What if a > 0? Since x is



interior, it is an ESS if and only if u(x, y) > u(y, y) for all  by
proposition 2.6. As shown in subsection 3.1.5, , for any .
As noted above, u(x, y) = 1 + a/3, again for any . When a >
0, u (y, y) is maximal for ||y|| minimal, which on D occurs at y =
x. We get u(x, x) = 1 + a/3, so , by proposition 2.6. It follows
from proposition 3.11 that x then attracts the whole interior,
something we showed directly in subsection 3.1.5. Indeed in this
class of games Hx(y) = c - h(y)/3.

Taylor and Jonker (1978) and Zeeman (1981) give examples of
games in which a non-ESS strategy constitutes an asymptotically
stable population state

15. The partial converse also holds: If Hx is a strict local Lyapunov
function, then lemma 3.1 implies that u(x - y, y) > 0 for all  in
some neighborhood of x, and so  by proposition 2.6.
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Figure 3.7
The replicator dynamics in a game with an asymptotically

but not neutrally stable strategy; see example 3.9.

in the replicator dynamics (3.5). The following example
illustrates this possibility. In fact the strategy in question, ,
is not even neutrally stable, and yet x, viewed as a population
state in the replicator dynamics, attracts all interior solution
trajectories to (3.5). Here x is vulnerable to mutations to a
particular pure strategy, y = e3, in the sense that y is an alternative
best reply to x and y does better against itself than x does against
y. However, there is another pure strategy, z = e2, that does even
better against y, and so forth, resulting in a spiraling movement in
the replicator dynamics around the point x, a spiral which
occasionally drifts away from x, when intersecting the straight-
line segment between x and y, and yet approaches x in the long
run (see figure 3.7).

Example 3.9

Consider the symmetric two-player game with payoff matrix



Apart from the payoff that the third pure strategy earns against
itself, this matrix is the same as in the generalized Rock-Scissors-
Paper Game with a =3 (subsection 3.1.5). In this new game, x=
(3/18, 8/18, 7/18) is the unique
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interior stationary population state in the replicator dynamics, and
hence the unique interior point in the set DNE In fact DNE = {x}.
Since x is interior, all strategies  are best replies to x.
Moreover the alternative best reply y = e3 earns payoff 4 against
itself, while x only earns payoff 68/18 <4 when meeting this pure-
strategy mutant y. Hence . However, x does very well
against the two other pure-strategy mutants, e1 and e2: Each of
these earns only payoff 1 against itself, while u(x, e1) = 38/18 and
u(x, e2) = 23/18.

As in the generalized Rock-Scissors-Paper Game with a > 0
(figure 3.2c), the solution orbits to the replicator dynamics spiral
inward; see figure 3.7.

The replicators in the dynamics (3.5) are the pure strategies of the
game in question. However, the same dynamic machinery can be
applied also when mixed strategies are replicators, as long as the
total number of replicators is finite. Suppose that the (pure and/or
mixed) strategies in some finite subset  are the
replicators. The pure-strategy replicator dynamics (3.5) then
corresponds to the special case when m = k and zr =er for all
replicators r. Given such an arbitrary finite set  of replicators,
let Pr be the population share programmed to strategy . Just
as in the derivation of the pure-strategy replicator dynamics in
section 3.1, the growth rate of pr is u(zr - z, z),where .

Consider now any strategy , and let an arbitrary finite
collection Z of mixed strategies be given as replicators, such that
x is a convex combination of the strategies in Z, namely such that
x = Srprzr for some population shares  adding up to one. For
instance, this is always the case if Zconsis of all the n pure



strategies ei of the game, as in the usual replicator dynamics.
Thomas (1985b), as well as Cressman (1990) and Weissing
(1991), show that a strategy  is evolutionarily stable if and
only if the corresponding population state x is asymptotically
stable (modulo certain behavioral equivalencies) in all such
replicator dynamics (see also Bomze and van Damme 1992;
Hammerstein and Selten 1994).

In particular, there exists some such replicator dynamics in which
the non-NSS strategy (hence non-ESS) x in example 3.9 is not
asymptotically stable. Such a collection of replicators is easy to
find. Just let z1= x and z2 = e3; that is, z2 is the mutant strategy
against which x was seen to be vulnerable. In the associated one-
dimensional replicator dynamics, the growth rate of z1 is seen to
be negative whenever p1 <1, showing that the population state x
= z1 is unstable in this particular replicator dynamics.
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3.5.3 Lyapunov Stable States and DNE

We used lemma 3.1 together with the characterization of
evolutionary stability in proposition 2.6 to show that evolutionary
stability implies asymptotic stability in the pure-strategy replicator
dynamics (3.5). Likewise the characterization of neutral stability
in proposition 2.7 can be used to establish that this weaker form
of evolutionary stability implies the weaker form of dynamic
stability known as Lyapunov stability (Thomas 1985a; Bomze and
Weibull 1995):

Proposition.3.12

Every is Lyapunov stable in the replicator dynamics (3.5).

Proof

Suppose that . By proposition 2.7, there is a neighborhood
U of x such that  for all . The domain Qx of Hx
being a relative neighborhood of x, Hx is a so-called weak local
Lyapunov function for the replicator dynamics on the (relative)
neighborhood , by lemma 3.1. More precisely,  is
continuously differentiable, Hx(y) = 0 if and only if y = x, and 

 for all . By theorem 6.4, this implies that x is Lyapunov
stable.16

This result, combined with proposition 3.6 concerning time
averages, has the further implication that if a (symmetric two-
player) game has a unique interior strategy , and this
strategy is neutrally stable, then there is a neighborhood of x such
that the time average over any solution trajectory starting in this
neighborhood converges to x, even if the state x(t, x0) itself does



not converge. The game in example 3.9 shows that the converse
of proposition 3.12 is not generally valid.

3.5.4 Asymptotically Stable Sets and ES*Sets

Since evolutionarily stable states are asymptotically stable in the
replicator dynamics, it seems fair to guess that also evolutionarily
stable sets of strategies, so-called ES sets (subsection 2.4.2) are,
as sets, asymptotically stable. In essence a closed set  is
evolutionarily stable (an ES set) if every strategy x in the set
does weakly better than all nearby strategies y do against

16. The partial converse also holds that if Hx is a weak local
Lyapunov function, then lemma 3.1 implies that  for all y in
some neighborhood of x, and so  by proposition 2.7.
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themselves, and strictly better than all nearby strategies y that are
not in the set X.

In fact dynamic stability properties of a set of strategies do not
depend on how strategies in the set perform against each other.
These properties depend only on how strategies in the set
perform against strategies outside the set. One weakening of the
ES criterion in this spirit is to only require that every strategy in
the set be locally superior to strategies y outside the set in
question:

Definition 3.1

A set is evolutionarily stable* (an ES* set) if it is nonempty
and closed, and each has a neighborhood. U such that u(x,
y) > u (y, y) for all strategies .

Clearly every ES set is an ES* set, and by proposition 2.6, a
singleton X = {x} is an evolutionarily stable* set if and only if 

. Hence the ES* criterion is another, weaker, setwise
generalization of the ESS concept. The full strategy space X = D
is an ES* set by default; by definition there are no outside
strategies. Hence existence of ES* sets is trivially guaranteed.
Moreover one can show, by Zorn's lemma, that every finite and
symmetric game possesses at least one minimal ES* set, that is,
an ES* set that does not properly contain another ES* set.17

Since an evolutionarily stable strategy, viewed as a singleton set,
is a special case of an ES* set, the following result has
proposition 3.10 as a corollary:

Proposition 3.13



Every ES* set is asymptotically stable in (3.5).

Proof

Suppose that  is an ES* set. For each , let Ux be a
neighborhood of x such that u(x, y) > u (y, y) for all strategies 

. Let  be as in equation (3.23). Then  is a
(relative) neighborhood of x on which the entropy function Hx is
defined. Next, we identify a neighborhood P of X which is a
basin of attraction for X. For this purpose note that for each 
there exists some ax > 0 such that the lower contour set 

 is contained in the above neighborhood Vx. Let
P be the union of all Px. Then  is a neighborhood of X
(relative to D). Moreover, if , then  for some , and 

 for each such x, by lemma 3.1.

17. Note that in the definition of an ES* set X it is sufficient to check
superiority at boundary points of X: A closed set  is an ES* set if
and only if each  has a neighorhood U such that u(x, y) > u(y, y)
for all .
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For each , let , and define the function 

By Berge's maximum theorem, H is continuous. Moreover 
for all , with equality if and only if . If , then 

 and H[x(t, x0)] <H (x0) for all t > 0. Consequently X is
asymptotically stable by theorem 6.3.18

The following example provides a whole family of nested ES*
sets, only one of which (their intersection) is an ES set:

Example 3.10

Reconsider the Coordination Game of example 1.10. The unique
mixed-strategy Nash equilibrium value for x1 is . Moreover,
for any , the set  is an ES* set, since for any 

 and  with , u(x - y, x) = (x1 - y1)(3x1 - 1) > 0. We saw
in example 3.1 that the population share xl converges
monotonically to 1 from any initial value above l, so Xa is
indeed asymptotically stable. However, only for a = 1 is Xa an ES
set.

Example 3.11

Reconsider the set X =DNE in the game of example 2.9. It was
shown that X=DNSS is an ES set. Hence X is an ES* set. Each 
is Lyapunov stable, but not asymptotically stable, and the full set
X is asymptotically stable in the replicator dynamics; see figure
3.8 for some solution orbits.

Example 3.9 shows that the converse of proposition 3.13 is not



generally valid.

Example 3.12

Consider the symmetric two-player game given by the payoff
matrix

It is easily verified that DNE contains two points on the boundary
of D, namely  and . It is clear from the third row
of A

18. I thank Klaus Ritzberger for helpful suggestions.
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Figure 3.8
Replicator solution orbits in the game of example 3.11.

that every interior strategy  has to earn payoff 1, which, in
view of row 1, implies that . From row 3 it is clear that every
interior strategy x meeting this condition belongs to DNE, Hence 

; see figure 3.9 (a). For any  and , we
have

For each , this quantity is negative for some nearby ;
see figure 3.9 (b). Hence the game has no neutrally stable
strategy, and DNE is not an ES* set.19

However, DNE is asymptotically stable in the replicator dynamics.
For (3.5) gives . Hence the population share x2
converges to its Nash equilibrium value from any initial state that



is neither on the boundary where x2 = 0 nor at the vertex where
x2 = 1.

19. Thomas (1985a) incorrectly suggests that this set, in an equivalent
game, is an ES set.
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(a)

(b)

Figure 3.9
(a) The set DNE in the game of example 3.12.

(b) Projection of the same set to the (yl, y2)-plane.
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Note also that while the asymptotically stable set X =DNE in this
example is not an ES* set, it nevertheless has the following weak
evolutionary stability property: For every  there is some 
such that u (x - y, y) > 0.

3.6 Doubly Symmetric Games

According to a famous biological result (Fisher 1930), usually
referred to as the fundamental theorem of natural selection, in
some contexts evolutionary selection induces a monotonic
increase over time in the average population fitness. In a sense,
since more fit behaviors (strategies) are selected for, it may a
priori be more surprising that this should not always be the case.
In particular, the replicator dynamics increases the population
shares of pure strategies with higher than average payoff and
reduces the population shares of pure strategies with lower than
average payoffs. Hence one might expect that average payoff u(x,
x) should increase as the population state  moves according to
the replicator dynamics (3.5). However, this is not generally the
case. For instance, in the Prisoner's Dilemma Game (example
1.1), if initially virtually all individuals in the population play
''cooperate,'' then average fitness is high (near 4). The population
share of those who play "defect' increases monotonically over
time until, in the long run, virtually all play "defect," and then
average fitness is lower (near 3). Hence average fitness cannot be
monotonically increasing over time. As will be seen, these
efficiency considerations are not invariant under local shifts of
payoff functions.

3.6.1 The Fundamental Theorem of Natural Selection



It has been well-known for some time in population genetics that
the fundamental theorem applies to all doubly symmetric games.
More precisely, in such a game, average payoff increases along
every nonstationary solution path to the replicator dynamics.
Consequently, in doubly symmetric games, evolution, as modeled
in the replicator dynamics (3.5), induces a steady increase in
social efficiency over time (see section 2.5).

To state and prove this result, suppose that the game under study
is doubly symmetric, and let the time derivative of average payoff
(fitness) u(x, x) along the solution path to the replicator dynamics
(3.5) through any given state , be written
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Using the symmetry of the payoff matrix A, we can show

Hence , with equality if and only if . Moreover the rate
 at which average payoff increases is twice the variance of

the payoff distribution in the population: The more uneven this
distribution is across pure strategies, the higher is the rate at
which average payoff increases.

It remains to derive (3.27) from (3.26). First note that symmetry
gives

Substitution of xi [u(ei, x) - u(x, x,)] for  gives (3.27).20

We have established the following version of the fundamental
theorem of natural selection (Losert and Akin 1983):

Proposition 3.14

For any doubly symmetric game, with equality if and only
if .

Note that although the average payoff (fitness) always increases
in doubly symmetric games, this does not mean that average
payoff in the long run necessarily approaches its global
maximum value in the game. For instance, we saw in section 3.1



that both strict equilibria in a 2 × 2 Coordination Game are
asymptotically stable. In particular, if the initial state is
sufficiently near one of these equilibria, then the population state
converges to that equilibrium, whether or not its payoff is higher
or lower than that of the other strict equilibrium.

Example 3.13

Consider any 2 × 2 game with payoff matrix

20. To see this, expand the square in equation (3.27) and use the
bilinearity of u.
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For any ,

Hence, in the case of a Coordination Game, al, a2 > 0, and thus
average payoff u(x, x), viewed as a function of the population
share x1, is a parabola with minimum at the mixed-strategy Nash
equilibrium value x1 = l= a2/(a1 + a2); see figure 3.10 (a).
Likewise, in the case of a Hawk-Dove Game, al, a2 <0, average
payoff u(x, x) is a parabola in x1 with maximum at the mixed-
strategy Nash equilibrium value x1 = l; see figure 3.10 (b). From
our studies of the replicator dynamics, it follows that average
payoff increases monotonically along every nonstationary
solution trajectory in both cases.

3.6.2 Characterization of Asymptotically Stable States

A consequence of the preceding result is that in doubly
symmetric games evolutionary stability is equivalent with
asymptotic stability in the replicator dynamics (Hofbauer and
Sigmund 1988). Putting this result together with the
characterization of evolutionary stability in section 2.5, we obtain:

Proposition 3.15

For any doubly symmetric game the following statements are
equivalent:

a. .

b. is locally strictly efficient.

c. is asymptotically stable in the replicator dynamics.



Proof

The equivalence of (a) and (b) was established in proposition
2.14. The implication  was established in proposition 3.10,
so it is sufficient to prove the implication . But this follows
immediately from the fundamental theorem, for if  is
asymptotically stable, it has some neighborhood U such that 

 for all initial states y in U. By proposition 3.14, we then
have u(y, y) <u(x, x) for all  in U.

Moreover, since by proposition 2.16 every locally efficient set 
 in a doubly symmetric game is an ES set, and every ES set is

asymptotically stable (proposition 3.13), every locally efficient set
 in a doubly symmetric game is asymptotically stable in the

replicator dynamics.
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(a)

(b)

Figure 3.10
(a) Average payoff in a Coordination Game. 
(b) Average payoff in a Hawk-Dove Game.

3.6.3 Convergence of Solution Trajectories

The fundamental theorem implies that every nonstationary
solution trajectory to the replicator dynamics (3.5) in any doubly
symmetric game converges over time to the subset D0 of
stationary states. Losert and Akin (1983) show that each solution
trajectory in such a game in fact converges to some point in D0.
Combining this result with those in propositions 3.5 and 3.14, we



obtain the following efficiency cum equilibrium conclusion for
doubly sym-

 



Page 113

metric games: Evolutionary selection, as modeled by the
replicator dynamics, induces a monotonic increase in social
efficiency over time and, granted that the initial state is interior,
convergence of aggregate behavior to some symmetric Nash
equilibrium.

In subsection 3.1.2 we saw that the solution trajectories to the
replicator dynamics are unaffected by local shifts in the payoff
function, and that positive affine transformations of the payoff
function do not change the induced solution orbits. Hence
convergence of solution trajectories is unaffected also by such
payoff transformations. Consequently Losert's and Akin's (1983)
convergence result can be extended to any symmetric two-player
game that can be made doubly symmetric by means of these two
types of payoff transformation. Call the payoff matrix of such a
game symmetrizable. Formally,

Definition 3.2

A payoff matrix A is symmetrizable if A can be transformed to a
symmetric matrix A' by a finite number of local shifts and affine
transformations of payoffs.

For instance, all symmetric 2 × 2 games are symmetrizable in this
sense.

Proposition 3.16

Every solution trajectory to the replicator dynamics (3.5) in a
two-player game with symmetrizable payoff matrix converges to
some point .

Note, however, that average payoff is a quadratic function and



hence in general affected by affine transformations and local
shifts in the payoff function. While average transformed payoff
will increase monotonically over time, average payoff, as defined
in the original game, need not increase monotonically. This is, for
instance, the case in the Prisoner's Dilemma Game.

Example 3.14

Reconsider the Prisoner's Dilemma Game of example 1.1. Let u
denote the payoff function in the original payoffs, and  those in
the normalized payoffs:

Hence, as x1 decreases monotonically in the replicator dynamics
toward 0, average payoff increases monotonically in the
normalized payoffs; in the original payoffs, average payoff first
falls (when ) and thereafter increases.
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3.7 Pure-Strategy Subsets Closed under Better Replies

In some applications it is of interest to know which pure
strategies survive in the long run. We know from theorem 3.1
that if initially all pure strategies are present, then the set of
surviving pure strategies is a subset of strategies that are not
iteratively strictly dominated. However, the subset of survivors
may be smaller, depending on the initial population state. For
instance, in a 2 × 2 Coordination Game, precisely one of the pure
strategies will survive unless the initial population state happens
to coincide with the unique and dynamically unstable interior
Nash equilibrium strategy. By contrast, in the Hawk-Dove Game,
or the Rock-Scissors-Paper Game, all pure strategies survive in
the long run. Also strictly dominated pure strategies may survive
if the initial population state is not interior.

Building on the multipopulation model in Ritzberger and Weibull
(1995), to be discussed in chapter 5, we here provide a sufficient
condition for a subset  of pure strategies to be a long-run
survivor set in the sense of being minimal with respect to the
property that if initially virtually no other pure strategies are
present (i.e., their population shares are sufficiently small), then
all pure strategies not in H will vanish over time. The condition
in question is simple and based solely on the payoff matrix A of
the game. In particular, no computation of dynamics is necessary.
Indeed, as will be shown in subsection 4.3.3, these results easily
generalize to a fairly large class of dynamics containing the
replicator dynamics (3.5) as a special case.

To make these claims precise, consider a finite and symmetric
(not necessarily doubly symmetric) two-player game with pure-



strategy set K, mixed-strategy simplex D, and payoff matrix A.
For any subset  of pure strategies, let D(H) denote the face
(or subsimplex) of D spanned by the pure strategies in H:

Such a subset  is a boundary face if H is a proper
subset of K. The extreme case is when H is a singleton and thus
D(H) is a vertex of D. (See subsection 1.1.1 for a discussion of
the geometry of D.)

We here call a pure strategy  a weakly better reply to a mixed
strategy  if i does not give a lower payoff against x than x
does itself. Accordingly,
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Definition 3.3

A subset is closed under weakly better replies if

In terms of mixed strategies, a subset H is closed under weakly
better replies if and only if, for any mixed strategy x with support
in H, all pure strategies outside H do worse against x than x does
against itself. In terms of population states, a subset H is closed
under weakly better replies if and only if, for any population state
x in which all present pure strategies belong to H, all pure
strategies outside H earn below the population average. The
maximal subset, H = K, clearly meets this condition, since, by
definition, there is no pure strategy outside K. Also a singleton
subset H = {h} meets this condition if and only if pure strategy h
is its own unique best reply, that is, if and only if the strategy
profile  constitutes a strict Nash equilibrium. In this sense
closure under weakly better replies is a setwise generalization of
symmetric strict Nash equilibrium. Hence the following result,
which generalizes the earlier noted asymptotic stability of such
strategies, is not very surprising:

Proposition 3.17

If H is closed under weakly better replies, then D(H) is
asymptotically stable in (3.5).

To prove this proposition, we first establish that if a subset of
pure strategies is closed under weakly better replies, then it also
contains the weakly better replies to all population states near the
face it spans:



Lemma 3.2

If is closed under weakly better replies, then for some
open set U such that

Proof

Suppose that  is closed under weakly better replies. Thus, if 
, then u(ej, x) <u(x, x) for all . By continuity of u and

compactness of D(H), there is an open set Uj containing D(H)
such that u(ej, y) <u(y, y) for all . Let . Since the
set K of pure strategies is finite, U is the finite intersection of
open sets containing D(H), and thus U is as claimed in the
statement of the lemma. (The ease H = K is trivial.)

Proof of Proposition 3.17

Suppose that  is closed under weakly better replies, and let U
be as in the lemma. There then is some  such that
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for any , the e-slice

contains the face D(H), and the closure  is contained in U such
that for any  and , u(ej - x, x) <-d. By continuity of u
and compactness of , there exists some d > 0. Hence for any
such x and , which implies that xj(t, x0) for
each  decreases monotonically to zero from any initial state x0
in . Thus  is asymptotically stable.

The converse of the statement in proposition 3.17 is not valid.
For instance, the following game has a pure-strategy subset that is
not closed under weakly better replies, and yet it spans an
asymptotically stable boundary face of the mixed-strategy
simplex.

Example 3.15

Consider the doubly symmetric 3 × 3 game given by the payoff
matrix

Here pure strategies 1 and 2 together constitute a coordination
game, whose unique mixed-strategy Nash equilibrium gives
payoff 1, exactly what pure strategy 3 earns against each of these
two pure strategies. Let H = {1, 2}. Then , and u(x,
x) = 1 = u(e3, x). Consequently H is not closed under weakly
better replies. However, D(H) is asymptotically stable in the



replicator dynamics (3.5) because , and thus 
 for any ; see figure 3.11.

Hence, for asymptotic stability in the replicator dynamics, it is not
necessary that the subset  contain all weakly better replies to
all mixed strategies in the face D(H). However, it is necessary that
H contain the strictly better replies to all vertices in D(H), that is,
to all pure strategies . Otherwise, there would be some vertex
of the face D(H) that has an outgoing edge along which there is a
local evolutionary pull away from D(H). Since edges are
invariant under the replicator dynamics, this contradicts that D(H)
is even Lyapunov stable.

More precisely, let
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Figure 3.11
Replicator solution orbits in the game of example 3.15.

and

Then  if and only if H is closed under weakly better
replies, and  means that H contains the strictly better
replies to strategies in H.

Proposition 3.18

If D(H) is Lyapunov stable in (3.5), then .

Proof

Suppose that a0(H) is not contained in H. Then there is some 
and  such that u(ei, ej) > u(ej, ej). The subset  spans
the face D (L), which is the edge of D connecting the Vertex ei
with the vertex ej. Each face of D is invariant in (3.5), so a
solution trajectory starting in D(L) remains forever in D(L).



Moreover, for any , , so for any xi > 0
sufficiently small,  by continuity of u. Thus  for all 

 and any  sufficiently small, so D(H) is not Lyapunov
stable.
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The above-mentioned "long-run survivor sets" can be formally
defined as follows:

Definition 3.4

is a long-run survivor set if D(H) is asymptotically stable
and H does not properly contain a nonempty subset L for which
D(L) is asymptotically stable.

Since there are finitely many pure strategies, every (finite) game
possesses at least one long-run survivor set. In particular, if no
nonempty proper subset of K spans an asymptotically stable
boundary face of D, then the full set K itself is a long-run
survivor set. The following sufficient condition for a set  to
be a long-run survivor set follows immediately from propositions
3.17 and 3.18:

Proposition 3.19

is a long-run survivor set in the replicator dynamics (3.5) if
H is closed under weakly better replies and does not properly
contain any nonempty subset L for which .

Example 3.16

Expand a generalized Rock-Scissors-Paper Game, as defined in
subsection 3.1.5, by addition of a fourth pure strategy that earns a
low payoff against the other strategies but is in strict Nash
equilibrium with itself. For example, let the payoff matrix be



for some a > -1, b <c, and d <0. Then H = {1, 2, 3} is closed
under weakly better replies and contains no proper subset such
that . By proposition 3.19, H is a long-run survivor set. As
was seen in subsection 3.1.5, the solution trajectories in the
relative interior of this face oscillate forever if , swirling
out toward its relative boundary. If initially strategy 4 is present
in a sufficiently small population share, then the solution
trajectory will approach the face D(H) and swirl around forever
in this fashion. The average payoff u(x, x) will then, in the long
run, fluctuate between 0 and 2 + a. The second long-run survivor
set of this game is the singleton H' = {4} containing the unique
strict Nash equilibrium strategy of the game. If pure strategy 4 is
initially present in a sufficiently large population share, then the
population state will converge to the vertex e4.
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3.8 Appendix

Proposition 3.20

The replicator dynamics (3.5) has a unique solution 
through any initial state . The solution mapping is
continuous, and it is continuously differentiable with respect to
time. Each of the two subsets and are invariant
under the solution mapping x.

Proof

By force of propositions 6.1 and 6.2, it is sufficient to show that
if , then  at all times . For this purpose, first note
that (3.5) leaves the sum of all coordinates xi constantly equal to
one:

Hence the hyperplane  is invariant in this
dynamics. The relevant state space C = D is the intersection of
this hyperplane with the closed positive orthant  of X = Rk,
so it remains to show that no solution in  leaves P. If, on the
contrary, there is an initial state,  and a time  such
that , then, by continuity of x, there is some strategy 
and time  such that xi(s, x0) = 0 and xi (t', x0) <0 for some t'.
But this contradicts the uniqueness of the solution of (3.5)
through the point x1 = x(s, x0). Suppose that we set xi =hi(t, x1)
= 0 for all t and solve (3.5) for all . Then we obtain another
solution h(·, x1) through x1, in contradiction to the Picard-
Lindelöf theorem. Thus  for all . (Incidentally the same



argument can be used to show that the interior of D, as well as
each of its boundary faces, is invariant.)
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4 Other Selection Dynamics
In the preceding chapter we found that Lyapunov stability in the
single-population replicator dynamics in continuous time implies
Nash equilibrium. We also found that convergence in the same
dynamics implies Nash equilibrium, provided that all pure
strategies of the game are present in the initial population. Finally,
strictly dominated pure strategies were seen to vanish in the long
run, even if the dynamic solution path does not converge, again
provided that all pure strategies are initially present. The present
chapter investigates the validity of these implications, from
evolutionary selection to game-theoretic rationality, in alternative
model environments to the standard setting studied in chapter 3.

In section 4.1 we consider biological replication in discrete time.
In such models each time period usually represents a generation.
Since the whole population shifts strategy simultaneously, a
certain volatility or overshooting may arise in the dynamic
adjustment. In fact, by way of an example, it is demonstrated that
strictly dominated strategies need not get wiped out in this
version of the replicator dynamics. We study the effect of time
discretization within an overlapping generations (OLG) version
of the usual replicator dynamics, a discrete-time model which
spans the range from the mentioned extreme case when all
individuals reproduce simultaneously to the limiting case of the
continuous-time replicator dynamics (3.5). Incidentally this OLG
dynamics is also useful for computer calculations.

In sections 4.2 through 4.4 we return to continuous-time



modeling. Section 4.2 studies the replicator dynamics when
applied to symmetric two-player cheap-talk games. In such a
game each player sends a costless message before the base game
is played. As was seen in section 2.6, this gives some scope for
coordination of actions. The replicators are here the pure
strategies of the cheap-talk extension of the base game. Hence we
imagine that each individual is programmed to a message and a
decision rule, a rule that prescribes some base-game action to be
taken for each message received from one's opponent. Since the
message sent by any individual is fixed in the biological
interpretation of the replicator dynamics, one may alternatively
think of the messages as distinct physical traits. In this
interpretation individuals are allowed to be discriminating in their
behavior; their actions may be conditioned on their opponent's
message or physical trait. As a special case we consider the
constant or undiscriminating decision rules that prescribe one and
the same action for all messages or physical traits. This is
precisely the standard setting studied in chapter 3. By way of an
example it is shown that when evolutionary selection
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operates at this level of messages and decision rules, long-run
aggregate behavior need not conform with Nash equilibrium and
may even involve the use of strictly dominated strategies.
However, it is also shown that if all possible decision rules are
allowed for, then the earlier implications from evolutionary
selection to game-theoretic rationality are restored, albeit in a
more complex form involving nonsymmetric Nash equilibrium
play.

Sections 4.3 and 4.4 study some classes of nonbiological
replication of strategies in a large population of interacting
individuals. Here payoffs need not represent fitness. Instead, they
may be decision makers' utility or profit, just as in
noncooperative game theory, and the transmission mechanism is
here based on imitation and reinforcement of successful
behaviors (pure strategies in the game in question). The two
sections attack this as of today not much studied issue from two
angles. Section 4.3 examines a few broad classes of pure-strategy
selection dynamics in continuous time, all containing the
replicator dynamics. Some of the replicator dynamics' positive
implications for game-theoretic rationality are established for
these classes. These results require some positive connection
between growth rates and payoffs to pure strategies. Section 4.4
instead examines a few examples of imitation processes that
generate selection dynamics of the sort studied in section 4.3.
Also shown is how the replicate dynamics itself may arise in
certain imitation processes. For more results on the topics
covered in this chapter, see Nachbar (1990), Dekel and
Scotchmer (1992), Robson (1990), Samuelson and Zhang (1992),
and Cables and Sober (1992).



4.1 Discrete-Time Versions of the Replicator Dynamics

In some biological models evolutionary selection is modeled in
discrete time with each time period t = 0, l, 2, ... representing a
generation. Just as in the standard continuous-time replicator
dynamics of chapter 3, suppose that payoffs represent the fitness
gain from the interaction in question, where fitness is simply
taken to be the number of offspring. Suppose also that each
offspring inherits its single parent's strategy, and let  be the
background (lifetime) birthrate for an individual. If pi(t) is the
number of individuals in generation t who are programmed to
pure strategy , then the associated population share is xi(t) =
pi(t)/p(t), where p(t) = Si pi(t) > 0 is the total population in
generation t. Each individual who is programmed to pure strategy
i in generation t thus gets a + u[ei, x(t)] offspring, where  is
the
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tth generation's distribution over pure strategies in the game.1 We
obtain the following population dynamics:

Summing over all pure strategies , we have

where u[x(t),x(t)] is the average payoff to an individual in
generation t. Dividing both sides in (4.1) by the associated total
population numbers in (4.2), we obtain the discrete-time
replicator dynamics

In chapter 3 it was shown that any Lyapunov stable population
state  in the continuous-time replicator dynamics (3.5),
viewed as a strategy, is in Nash equilibrium with itself, that is, 

. Likewise any population state which is the limit of some
interior solution path to the same dynamics is again a point in the
set DNE. As shown by Nachbar (1990), these two implications are
valid also in the above discrete-time replicator dynamics (4.3).
However, the set of dynamically stable population states, and
convergent interior solution trajectories, respectively, may differ
from the corresponding sets in the continuous-time replicator
dynamics. In particular, due to the possibility of overshooting in
the discrete-time model (4.3), these two implications for Nash
equilibrium behavior may be weaker in discrete time (see below).

In the continuous-time replicator dynamics of chapter 3, all pure
strategies that are iteratively strictly dominated vanish over time.



Nachbar established the following weaker result for the discrete-
time dynamics (4.3): If only one pure strategy remains after those
pure strategies that are strictly dominated by other pure strategies
have been iteratively eliminated, then the dynamics (4.3)
converges from any interior initial population state 
toward the population state in which all individuals use that pure
strategy. That the

1. In this discrete-time model we assume that u(ei, x) + a is positive
for each  and . The random element in payoffs earned in
matchings in a finite population is ignored. However, the law of large
numbers applies if all subpopulations are large, in which case the
present deterministic dynamics is an approximation of the expected
numbers of individuals in each subpopulation, within any given finite
time span.
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stronger result for the continuous-time replicator dynamics,
theorem 3.1, does not carry over to the discrete-time dynamics
(4.3) was shown, by way of a counterexample, by Dekel and
Scotchmer (1992). This example is analyzed in subsection 4.1.2
below. However, we first embed the dynamics (4.3) in a more
general discrete-time framework.

4.1.1 Overlapping Generations

In the dynamics (4.3) all interactions take place within one
generation at a time. It is as if all individuals in one generation
are born and die simultaneously at times t = 0, 1, 2, 3.... Suppose
instead that generations overlap in time so that births and deaths
take place  times per time units, each time involving only the
share t = 1/r of the total population, where  is the length of
the time interval between two successive population changes.2
Moreover suppose that the reproducing and dying individuals are
drawn at random, with equal probability for all individuals in the
population. When an individual is so drawn, she dies and is
replaced by her offspring.

In this setting the life-span of an individual is a random multiple
of the interval length t. More exactly, it is a geometrically
distributed random variable with mean value m = 1 and variance
s2 = (1 - t)/t = r - 1. Note that this variance is zero when t = r =
1, corresponding to the dynamics (4.3), and is linearly increasing
in r.

Suppose that each individual who is programmed to pure strategy
i and reproduces at time t is replaced by  offspring,



where  is the background (lifetime) birthrate.3 This induces
the following population dynamics:

where pi (t) is the number of individuals who at time t are
programmed to strategy i, p(t) > 0 is the total number of
individuals at that time, and xi(t) = pi(t)/p(t). Adding all
population shares and using the bilinearity of the payoff function,
we obtain that the total population changes according to

2. It is not important that the length of these time intervals equal the
size t of the simultaneously switching population fraction; the
associated solution orbits in the state space D are independent of the
length of the time steps. We let the time step equal the size of the
concerned population fraction in order to normalize the expected life-
span of an individual to 1.
3. Again, the random element in payoffs earned in matchings in a finite
population is ignored, and we rely on the law of large numbers.
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The associated replication dynamics in terms of population
shares is obtained by division of each side in equation (4.4) by
the corresponding side in equation (4.5):

Note that the numerator can be interpreted as the expected
number of copies of an individual programmed to strategy i at
time t. The individual reproduces and dies with probability t, in
which case her number of copies is b + u [ei, x(t)], and she does
not reproduce and die with probability 1 - t, in which case she
continues as one copy of herself. Granted the common
denominator in these equations is positive, the system (4.6) of
difference equations maps each state  to a new state .
We will refer to (4.6) as the overlapping-generations replicator
dynamics (of order r).

When r = 1, this is just (4.3) with a = b. Conversely, in the limit
as , (4.6) becomes the continuous-time replicatot dynamics
(3.5). To see this, first rewrite (4.6) as

Letting the population fraction t of simultaneously reproducing
individuals approach zero, we obtain

The overlapping-generations dynamics (4.6) thus spans the



whole range from the generationwise discrete-time replicator
dynamics (4.3), when r = 1, to the continuous-time replieator
dynamics (3.5), when .

Note also that the solution orbits to the overlapping-generations
dynamics (4.6) are identical to those of the generationwise
replieator dynamics (4.3) with a = b + r - 1. The only difference
is that the OLG dynamics moves along each solution orbit 
times per time unit, and the generationwise dynamics only once
per time unit. By (4.8), the solution orbits to the generationwise
dynamics (4.3) thus approach those of the continuous-time
replicator dynamics as  (an observation due to Hofbauer and
Sigmund 1988). If
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the background birthrate a is high, then it is as if few individuals
replicate according to the endogenous payoffs of the game while
all the others replicate at the same exogenous and constant rate.

The geometry of temporal discreteness is illustrated in the
following example, due to Björnerstedt et al. (1993), illustrating
that convergence and stability in continuous-time dynamics does
not imply convergence and stability in corresponding discrete-
time dynamics.

Example 4.1

Starting from the same initial state x0, three solution orbits for the
OLG dynamics (4.6) in a generalized Rock-Scissors-Paper Game
in subsection 3.1.5 are shown in figure 4.1 (the successive states
x(0), x(t), x(2t), etc., have been connected with straight-line
segments). The payoff parameters value is a = 0.35, and the
orbits correspond to OLG discretizations with b = 0 and t = 0.05,
t = 0.6, and t = 1, respectively. From our study of the
continuous-time replicator dynamics in subsection 3.1.5, we
know that all its interior solution orbits converge to the Nash
equilibrium strategy  when a > 0. Indeed the discrete-
time orbit for t = 0.05 does converge to x*. In contrast, the two
other orbits do not. The reason is that discrete-time orbits
essentially make straight-line jumps in the direction of the
tangent of the continuous-time orbit (i.e., in the direction of its
vector field). For sufficiently large t these jumps are long enough
to carry the successive states further and further away from x*,
approaching instead the boundary of the simplex.

4.1.2 The Dekel-Scotchmer Example



In this example there is a strictly dominated pure strategy which,
however, is not dominated by any pure strategy. Hence no
subpopulation of individuals is always doing better than those
programmed to the strictly dominated strategy. In fact the latter
strategy earns more than the population average in certain
population states. Nevertheless, we know from proposition 3.1
that such a strategy is wiped out in the continuous-time replicator
dynamics. Dekel and Scotchmer (1992) show that this is not the
case in the discrete-time dynamics (4.3), unless all of the other
pure strategies in the game happen to initially be present in
exactly equal shares.

As pointed out by Cabrales and Sobel (1992), the reason why this
counterexample works is not temporal discreteness per se, but its
special form (4.3). Indeed they show that if the time discretization
is made sufficiently fine, then
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Figure 4.1
The overlapping-generations replicator dynamics in a generalized

Rock-Scissors-Paper Game with parameter a > 0; see example 4.1.

the third positive result is restored: All strictly dominated
strategies are wiped out along all interior solution paths.4

More precisely, the Dekel-Scotchmer example is the special case
a = 0.35 and c = 0.1 of the following extension of the generalized
Rock-Scissors-Paper games in subsection 3.1.5:

where 0 <3c <a. The fourth pure strategy is strictly dominated by
the unique Nash equilibrium strategy . To see this,



observe that for any strategy  that player 2 may use, the
payoff to strategy i = 4

4. Cabrales and Sobel (1992) use a different discretization than the
above OLG dynamics, however.
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Figure 4.2
The region in the polyhedron Q of the Dekel-Scotchmer Game 
where the strictly dominated strategy 4 earns below average.

is (1 + c)(1 - y4) while the payoff to x* is (1 + a/3)(1 - y4) + cy4.
Since 3c <a, the latter payoff exceeds the former, for all 
However, strategy 4 is not dominated by any pure strategy.
Moreover, since c is positive, strategy 4 does better than the
population average x when x is near any one of the vertices
associated with the three first pure strategies. In fact, when a
<4c, as in Dekel and Scotchmer's example, the region 

 where strategy 4 does notearm more than
average is an egg-shaped set containing the Nash equilibrium
strategy x*; see figure 4.2 (Björnerstedt et al. 1993).

Hence, if along a dynamic solution path the population state now
and then spends sufficiently long time intervals outside this egg-
shaped region, then the population share x4 need not converge to



zero. To see how this is possible, recall that on the face of the
mixed-strategy simplex D where x4 is zero, the OLG-dynamics
spirals outward, toward the relative boundary of this face (or
subsimplex) when the share t of simultaneously reproducing
individuals is large (e.g., t = r = 1); see figure 4.1. If t is large,
then the dynamics leads the population state out of the egg-
shaped region in figure 4.2. This makes strategy 4's gain above
average, and x4 does not converge to zero. In fact, this popula-
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Figure 4.3
A nonconvergent solution orbit to the overlapping-generations
replicator dynamics in the Dekel-Scotchmer Game (t large).

tion share recurrently approaches the value ; see figure 4.3. In
contrast, all interior solution trajectories sooner or later enter the
egg-shaped region and converge to the Nash equilibrium strategy
x* when t is small, just as in the continuous-time replicator
dynamics (3.5). (For details, see Björnerstedt et al. 1993.)

4.2 The Replicator Dynamics in Cheap-Talk Games

Robson (1990), Dekel and Scotchmer (1992), Banerjee and
Weibull (1992, 1995), and Stahl (1993) have pointed out that the
evolutionary support for aggregate Nash equilibrium behavior,
and even for the elimination of strictly dominated strategies, may
be in trouble if the population of interacting individuals is
heterogeneous with respect to sophistication.5

4.2.1 Cheap Talk in the Biologist's Lab

To illustrate this point, consider the following thought experiment
(Banerjee and Weibull 1992, 1995). A biologist studies



evolutionary selection in a

5. This section follows to a large extent Banerjee and Weibull (1993).

 



Page 130

large population of programmed individuals who are randomly
matched to play some finite and symmetric two-player game.
However, without the biologist's knowledge, an economist comes
by and injects a few individuals of the species homo
oeconomicus in the sample population. These new agents are
endowed with the capacity to recognize the type of agent they
meet. In particular, they correctly predict at each encounter the
strategy to be used by each of their biologically programmed
opponents. They also recognize each other, and then play the
unique pure strategy that is not iteratively strictly dominated. In
contrast, the original, biologically programmed agents go on
using their inherited pure strategies as before. What will happen?

Suppose that the payoff matrix of the game is as in example 1.4:

This game is strictly dominance solvable: Strategy 2 is strictly
dominated, both by strategy 1 and 3, and once strategy 2 has been
eliminated, strategy 3 is strictly dominated by strategy 1. Hence,
by theorem 3.1, the biologist expects the population to converge
from any interior initial population state to the monomorphic
population state in which all agents use strategy I in every
encounter.

What if the initial population is mixed and, for instance, contains
many biological agents programmed to the strictly dominated
strategy 2, few biological agents programmed to strategies 1 and
3, and some homo oeconomicus? The latter would earn payoff 3
when meeting each other and payoff 2 when meeting biological



agents of type 2, namely programmed to strategy 2. In contrast,
type 2 agents would earn zero when meeting each other but
payoff 4 when meeting homo oeconomicus. Thus, in the
presence of homo oeconomicus, type 2 agents benefit from their
commitment to the strictly dominated but aggressive strategy 2.
For a sufficiently large population share of homo oeconomicus,
and low shares of biological agents programmed to strategies 1
and 3, biological agents programmed to strategy 2 may earn even
more than homo oeconomicus.

In fact, one can show that starting from any initial population
mixture containing positive shares of all three types of biological
agents and of homo oeconomicus, the population share of
biological agents of type 3 vanishes asymptotically in the
continuous-time replicator dynamics as applied to this setting (see
below). Once this population share is small, two things can hap-
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pen, depending on the initial population state. Either the
population state moves toward a continuum of states in which all
agents use strategy 1, as predicted by evolutionary and
noncooperative game theory alike. In this case the survivors are
some homo oeconomicus mixed with some biological agents who
happen to be programmed to strategy 1. As put by Stahl (1993):
''being right is just as good as being smart.'' Alternatively, the
population state moves toward the state at which  of the
population belong to homo oeconomicus and  are programmed
to the strictly dominated strategy 2. In the latter case the three
pure strategies of the game are used in proportions , , and ,
respectively; definitely at variance with the biologist's
expectation! Moreover, even if the distressed biologist perturbs
this population state by injecting, say, a few "good" biological
agents (i.e., programmed to strategy 1), the replicator dynamics
leads the population back toward its "bad" habit of, in aggregate,
playing the strictly dominated mixed strategy .

To see how this can be established, note that the situation in the
biologist's laboratory is equivalent to letting a population of
programmed agents play the following 4 × 4 game:

To be a homo oeconomicus in the original base game is
equivalent to being programmed to strategy 4 in this meta game;
this strategy earns the best-reply payoff against all strategies, and
all other strategies earn that payoff against strategy 4 which they
get when meeting their best replies. The replicator dynamics (3.5)



can be applied to the meta game, and the claimed results follow
by standard arguments, as developed in chapter 3. In particular,
the population share x3(t, x0) decreases to zero along any interior
solution path in the mixed-strategy simplex of the meta game, and
the replieator dynamics on the boundary face where strategy 3 is
extinct looks as in figure 4.4.

4.2.2 Cheap-Talk Strategies as Replicators

The preceding example can be embedded in a richer model
framework. Then the positive implications of evolutionary
dynamic selection for "game-theoretic rationality," established in
chapter 3, can be restored, albeit in a somewhat weaker and more
complex form. In particular, the dynamic stability, shown in
figure 4.4, of the strictly dominated mixed base-game strategy
will be destroyed.
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Figure 4.4
Replicator solution orbits when a few homo oeconomicus are injected 

into the biologist's sample population, and pure strategy 3 becomes extinct.

First, suppose that we have, as usual, a population of individuals
who are randomly matched to play a symmetric two-player game.
However, now each individual has one of finitely many
observable and distinct physical traits or, equivalently, at each
matching is programmed to send one and the same of finitely
many, distinct signals or messages before play of the game.
Suppose that these individuals are genetically or otherwise
programmed to decision rules prescribing which strategy in the
game to play depending on the message received before play of
the game. Formally, the situation is identical with that of a cheap-
talk game, so all of that machinery applies directly to the present
setting.

In the notation of subsection 2.6.1, let G be the base game with
pure strategy set K = {1, ..., Bk} and pure-strategy payoff
function p, and let M be the finite set of messages (or physical



traits). A decision rule is a function  which says that if the
opponent's message is , then use pure strategy i = f(m), and so
on. Let F be the set of all such functions. A pure strategy in the
associated cheap-talk game GM is a pair , and the
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payoff to a pure-strategy profile ((m, f), (n, g)) is p [f(n), g(m)].6
To avoid confusion between strategies in the base game G and in
the cheap-talk game GM, we will call the base-game strategies
actions.

Example 4.2

Applied to the thought experiment in subsection 4.2.1, the set M
could consist of four messages, one for each type of biologically
programmed agent and one for homo oeconomicus, M = {1, 2, 3,
4}. Moreover each agent of type  is programmed to the
constant (or nondiscriminating) decision rule that prescribes
action i for all encounters, and each agent of type m = 4 (homo
oeconomicus) is programmed to the best-reply rule f defined by
f(2) = 3, and otherwise f(m) = 1.

The results derived for the replicator dynamics all apply to the
cheap-talk game so defined. Evolutionary selection thus has the
usual implications concerning dominated and Nash equilibrium
strategies in the cheap-talk game GM. The implications for the
resulting decisions or base-game actions are not immediately
transparent, however.

To investigate these implications, some more notation is needed.
For each pure strategy h = (m, f) in the cheap-talk game, let ph be
the population share of individuals programmed to play h. The
vector p = (ph) is then the population state, a point on the unit
simplex DM of mixed strategies in the cheap-talk game, and one
may study the workings of the replicator dynamics on this
simplex, just as in chapter 3. When the population state is ,
the payoff of any pure strategy h = (m, f) in the cheap-talk game



is uM(eh, p), and the average payoff in the population is uM(p,
p). The replicator dynamics (3.5), as applied to the space DM of
mixed strategies in the cheap-talk game, thus is

For any message , we will say that an individual who sends
this message is of sender-type m, and the associated
subpopulation will be called subpopulation m. Individuals in the
same subpopulation  differ only with respect to their decision
rule , and when matched with any particular individual from
the population, they all face the same action (base-game strategy):
if the opponent's decision rule is , then any individual from

6. Without loss of generality one may assume that players condition
their base-game strategy choice only on their opponent's message; see
subsection 2.6.1.
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subpopulation m faces action j = g(m). Let pm denote the
population share of individuals of sender type m (i.e., pm is the
sum of all ph such that h = (m, f) for some ).

It turns out to be analytically convenient to decompose the
matchings between individuals in the population into batches,
one batch for each message-pair. For each action , message-
pair  and population state  with pm > 0, let  be
the share of individuals in subpopulation m who take action i
when meeting an individual of type n. Clearly the associated
vector  is a point on the unit simplex V of the base game
G, so pmn may be viewed as the randomized action (mixed base-
game strategy) facing any individual of type n when matched
with an individual of type m. Put differently,  is the
equivalent randomized action used by subpopulation  against
subpopulation .

4.2.3 Strictly Dominated Base-Game Strategies

We know from proposition 3.1 that all strictly dominated cheap-
talk strategies vanish in the long run, along any interior solution
path to the replicator dynamics as applied to DM. However, as
was shown in example 3.4, the same is not true for weakly
dominated strategies. This observation is relevant to the present
setting, since, if the set M contains at least two messages, then
any action  that is strictly dominated in G is part of cheap-talk
strategies  which are only weakly dominated in GM.
For such a cheap-talk strategy h may prescribe the strictly
dominated action i only against some opponent messages .
Therefore one cannot invoke proposition 3.1 to establish that



pure base-game strategies i that are strictly dominated in G will
be wiped out in the cheap-talk replicator dynamics (4.12).
However, in force of proposition 3.2, one may show that in the
long run strictly dominated base-game actions are virtually never
used in the matchings (Banerjee and Weibull 1993). The
following result is the first step toward this claim:

Proposition 4.1

Suppose that a base-game strategy is strictly dominated in
G, and let . Then the product converges to zero along
any interior solution path to the replicator dynamics (4.12) in
DM.

Proof

Suppose, first, that action  is strictly dominated by . For
any messages , let  and 

. Then  is the sum of all ph with 
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and pv is the sum of all pk with . From now on, fix any pure
cheap-talk strategy , and let  be such that, for each
action , the sum of the cheap-talk probabilities qm,g, over
all  such that g(n) = j and g(w) = f(w) for all , is yj. In
other words, the mixed cheap-talk strategy  assigns zero
probability to all pure cheap-talk strategies  that have
messages  and/or decision rules g that differ from f when
facing other messages than n and/or have decision rules g that
use actions  outside the support of  Moreover q
randomizes the action against message n in such a way that the
induced distribution over the set K coincides with that of . It
follows that the cheap-talk pure strategy  is weakly
dominated by the cheap-talk mixed strategy , since h does
worse than q against pure cheap-talk strategies  and equally
well against all other pure cheap-talk strategies k. Formally, uM(q
- eh, ek) > 0 for all  and uM(q - eh, ek) = 0 for all . By
proposition 3.2,  for any  and initial state 

. Summing over all , we get . This is
true for any , so we may sum over all these, yielding 

.

From a descriptive viewpoint the population shares of
individuals programmed to different cheap-talk strategies may be
less interesting than the frequency by which different base-game
strategies are actually used in the interactions. Formally, let zi(p)
be the share of matchings at which action  is used in an
interior population state :



Then  represents the induced aggregate base-game behavior,
and the following result is an immediate implication of
proposition 4.1:

Corollary 4.1.1

If a pure base-game strategy is strictly dominated, then its
relative frequency zi(p) goes to zero along any interior solution
path to (4.12).

In other words, even if some surviving decision rule involves
some strictly dominated base-game action, such actions will
virtually never be used in the long run. In particular, in the
laboratory experiment in subsection 4.2.1, the strictly dominated
action 2 vanishes along all interior solution paths
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in the associated cheap-talk game GM defined in example 4.2.
How can this be reconciled with the vector field shown in figure
4.4? The answer is that the associated solution trajectories are not
interior to the full cheap-talk simplex D. For there are four
messages in GM. With three base-game actions this results in 34 =
81 decision rules , out of which only three are represented
in the face of DM shown in figure 4.4. If instead all 81 decision
rules had been initially present (in combination with each of the
four messages), then the frequency z2(p) of base-game action 2
would tend to zero, by corollary 4.1.1. For instance, the cheap-
talk strategy to send message 2just to look like a biological agent
who is programmed to the strictly dominated but aggressive
strategy 2and to use instead the best-reply decision rule would
outrival the biological agents of type 2 and thereby reduce the
usage of the strictly dominated strategy 2.

4.2.4 Base-Game Nash Equilibrium

By proposition 3.4, any population state  that is Lyapunov
stable in the replicator dynamics (3.5) on the cheap-talk strategy
space DM is a best reply to itself, that is, . Moreover, as
shown in Banerjee and Weibull (1993), if subpopulations m and
n, where possibly m = n, are nonextinct in such a Lyapunov
stable population state p, then these subpopulations necessarily
play some, possibly nonsymmetric, Nash equilibrium of the base
game against each other:

Proposition 4.2

Suppose that is Lyapunov stable in (4.12). If pm, pn > 0,
then .



Proof

Suppose that  is stationary in (4.12), pm, pn > 0, and that 
 is not a best reply in G to . Then some action 

earns a suboptimal payoff against pnm. Let  satisfy f(n)
= i and ph > 0; such a cheap-talk strategy h exists since pm > 0
and . Let  be another cheap-talk pure strategy such
that  is a best reply against  and g(w) = f(w) for all
other messages . In other words, the cheap-talk pure strategy
k = (m, g) plays a best reply against the population mixture in the
subpopulation of sender-type n, hence earning a higher payoff
than the cheap-talk pure strategy h = (m, f) in such encounters,
and otherwise k plays exactly like h. Since pn > 0, we have
uM(ek, p) > uM(eh, p). By stationarity of ph > 0, uM(eh - p, p) =
0, so uM(ek - p, p) >
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0, implying that pk = 0 by stationarity. However, by continuity of 
 for all population states  near p. Hence

p is not Lyapunov stable.

In other words, when allowing for all possible decision rules,
and not just constant (nondiscriminatory) decision rules as in the
standard setup of evolutionary game theory, evolution selects,
insofar as Lyapunov stability in the replicator dynamics is
concerned, symmetric base-game Nash equilibrium play within
each subpopulation and symmetric or nonsymmetric base-game
Nash equilibrium play between any two subpopulations.7
Consequently the total population's aggregate base-game play is
some convex combination of symmetric and/or asymmetric Nash
equilibria. Formally, let  be the subset of mixed strategies 

 such that  for some mixed strategy , and let 
 be the convex hull of this set.8 In this notation,

proposition 4.2 implies that

Corollary 4.2.1

For Lyapunov stable in (4.12): .

That the converse of this result is not generally truethat certain
convex combinations of base-game Nash equilibria may
constitute a dynamically unstable cheap-talk population stateis
seen in the Coordination Game of example 1.10. We saw in
subsection 3.1.4 that no interior mixed strategy, , viewed as
a population state in the replicator dynamics (3.5), is Lyapunov
stable. However, here any mixed strategy is a convex
combination of (the two strict) Nash equilibria: . Moreover,
since the cheap-talk replicator dynamics (4.12) coincides with the



base-game replicator dynamics (3.5) in the special case when
there is only one message (M a singleton), we do have a whole
continuum of base-game strategies in  each of which
correspond to a dynamically unstable cheap-talk population state.

As shown in chapter 3, a sufficient condition for Lyapunov
stability is neutral stability, so any neutrally stable cheap-talk
game strategy  corresponds to some convex combination of
base-game Nash equilibria. The following example shows how
such a neutrally stable cheap-talk strategy may

7. In particular, it follows from proposition 4.2 that the non-Nash
equilibrium outcome in the laboratory experiment in subsection 4.2.1 is
not Lyapunov stable in the full cheap-talk game as defined in example
4.2. The stability observed in this laboratory experiment is due to the
above-mentioned fact that only a few of all possible decision rules
were present.
8. Formally, the set  is the projection of the set QNE to the mixed-
strategy space of player position i. In a symmetric two-player game, 

. The convex hull of a set X is the set of all convex combinations
from X or, equivalently, the smallest convex set containing X.
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involve the play of asymmetric base-game Nash equilibria and, in
this example, may result in a higher payoff than without
communication.

Example 4.3

Reconsider the Hawk-Dove Game of example 2.3. This game has
three Nash equilibria, one symmetric and interior, and two
asymmetric and strict. The symmetric Nash equilibrium results in
payoff  to each player, and each of the asymmetric equilibria
results in payoff 2 to one player and payoff 0 to the other. As
shown in subsection 3.1.4, the symmetric Nash equilibrium
strategy  is asymptotically, and hence also Lyapunov, stable
in the replicator dynamics (3.5). Now suppose that costless
messages can be sent before the game is played, and suppose that
the number of messages is odd, say, M = {m, n, w}. One may
construct a neutrally stable cheap-talk strategy, and hence a
dynamically stable population state, resulting in payoff 8/9 > 2/3
to all individuals in the population, as follows. The idea is to let
each sender type play the above randomized action x with itself
and play the two asymmetric Nash equilibria with the two other
sender types.

To make this precise, one may use two decision rules for each
sender type, resulting in a symmetric constellation of actions as
indicated in figure 4.5, where H signifies base-game action 1,
hawk, and D signifies base-game action 2, dove. Formally, let
subpopulation m use the decision rules f and g in subpopulation
shares  and , respectively, where f(m) = f(n) = H and f(w) = D,
and g(m) = g(w) = D and g(n) = H. Then subpopulation m plays



the symmetric Nash equilibrium with itself, and letting the two
other subpopulations behave likewise (see figure 4.5), distinct
subpopulations play the two asymmetric Nash equilibria with
each other. If moreover all subpopulations are equally large, 

, then all pure cheap-talk strategies used in p earn the
same payoff, and so  is stationary in (4.12). In fact ,
since p is a best reply to itself. Any alternative best reply  has
to use the same decision rules as p between distinct sender types
and can make no postentry payoff gain by using other decision
rules within sender types. Since all sender types are equally
common and behave symmetrically in p, no change in message
frequencies can increase the postentry payoff to q above that of
p. Since p thus is neutrally stable in GM, it is Lyapunov stable in
the replicator dynamics on DM, by proposition 3.12.

4.2.5 Social Efficiency in Doubly Symmetric Games

In doubly symmetric games, every locally efficient set is .an ES
set (proposition 2.16), and hence it is asymptotically stable in the
replicator dynamics
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Figure 4.5
The construction of a Lyapunov stable population 

state in the cheap-talk game of example 4.3.

(by proposition 3.13). If the base game G is doubly symmetric,
so is any cheap-talk game GM based on it, and hence these
implications apply also to cheap-talk games based on doubly
symmetric games. Moreover, by proposition 2.17, a cheap-talk
population state  that does not use all messages belongs to an
ES set if and only if it is globally efficient. Hence, under the
proviso of not using all messages, there is a close connection
between global social efficiency and (setwise) asymptotic stability
in cheap-talk extensions of doubly symmetric games (see Schlag
1993a for more results).

4.3 General Selection Dynamics

For many applications replication by way of biological
reproduction is not a compelling parable for how behaviors
spread in a population. In the social sciences in general and
economics in particular, replication by way of imitation and



enforcement of successful behaviors seems more appropriate.
Before studying, in the next section, some explicit models of such
mechanisms of social evolution, we will consider a few classes of
continuous-time selection dynamics that include the replicator
dynamics (3.5) as a special case. In these dynamics the replicators
are the pure strategies of a symmetric two-player
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game with mixed-strategy simplex D and payoff function u.
Examples are collected in section 4.4.

More specifically, we focus on dynamics defined on the mixed-
strategy simplex D in terms of growth-rates for the population
shares associated with each pure strategy  of the game, as
follows:

where g is a function with open domain X containing V. The
function g specifies every population share's growth rate per time
unit,  (Dxi/xi · 1/Dt) = gi(x). Thus  is the rate at
which pure strategy i replicates when the population is in state x.
In the special case of the replicator dynamics (3.5), gi(x) = u(ei -
x, x).

Dynamics of the form (4.14) represent selection, as opposed to
mutation, in the sense that (4.14) favorizes some present
behaviors (pure strategies) over other present behaviors, while
absent behaviors remain absent. As mentioned in the context of
the replicator dynamics (subsection 3.3.2), mutations can
indirectly be taken care of by the way of dynamic stability
considerations.

Note that the growth rates gi(x) in (4.14) are functions of the
current population state. In particular, we do not here allow
growth rates to depend on past population states and thereby on
pure strategies' past performances.9 Before considering the
connection between payoffs and growth rates, we need to ensure
that the considered growth rate function g is well-behaved in
terms of dynamic implications.



4.3.1 Regularity

More precisely, being well-behaved here means to induce a
unique solution to the associated system of differential equations
(4.14) through any initial population state in D, a solution which
remains in the simplex at all times. By force of the Picard-
Lindelöf theorem (theorem 6.1), existence and uniqueness of a
solution is guaranteed if the vector field in (4.14) is Lipschitz
continuous, a sufficient condition for which is that g be Lipschitz
continuous. It is easily verified that the population state remains
in the simplex at all times if the weighted sum of growth rates
Sigi(x)xi is constantly equal to zero. This

9. Part of the present analysis can be extended to selection dynamics
with memory by expanding the state space; see Swinkels (1993) for
suggestions in this direction.
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keeps the sum of population shares constant (equal to one):

Geometrically the condition g(x) · x = 0 means that the growth-
rate vector  always has to be orthogonal to the associated
population vector .

Definition 4.1

A regular growth-rate function is a Lipschitz continuous function
with open domain X containing D, such that g(x) · x = 0

for all .

The growth-rate function in the replicator dynamics (3.5) is
clearly regular in this sense. The equation.gi(x) = u(ei - x, x)
defines a Lipschitz continuous function g on X = Rk, and for any 

:

When we showed in subsection 3.1.3 (and the appendix at the
end of chapter 3) that the replicator dynamics induces a
continuous solution mapping  that leaves the simplex D,
as well as its interior and boundary, invariant, we actually only
used the regularity of the associated growth-rate function g.
Hence, as an immediate corollary to proposition 3.20, we have
that if g is regular, then (4.14) has a unique solution 
through any initial state , the solution mapping 
being continuous, and each of the subsets  and 
being invariant under this mapping x We will refer to a system of



differential equations (4.14) as a regular selection dynamics if
the associated growth-rate function g is regular.

It is easily verified that in any regular selection dynamics (4.14),
the growth rate of the ratio between any two population shares xi
> 0 and xj > 0 equals the difference between the two growth
rates:10

Moreover it is evident from equation (4.14) that a population
state  is stationary if and only if all pure strategies that are in
use in x have zero growth

10. See equation (3.6) in subsection 3.1.1 for the standard replicator
dynamics.
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rate, that is, if and only if gi(x) = 0 for all . What about
stability? The following result provides a sufficient condition for
asymptotic stability, and instability, respectively.11

Proposition 4.3

Suppose that g is a regular growth-rate function. If x has some
neighborhood U such that g(y) · x > 0 for all population states 

in U, then x is asymptotically stable in (4.14). If x has some
neighborhood U such that g(y) · x <<0 for all in U, then x is
unstable in (4.14 ).

Proof

Suppose, first, that  is a neighborhood of x such that 
. It is sufficient to show that the relative-

entropy function Hx in subsection 3.5.1 is decreasing along every
solution path to (4.14) in , where  is the domain of
Hx. The same technique as in the proof of lemma 3.1 yields

If instead U is a neighborhood of x such that g(y) · x <0 for all 
, then  for all .

By the so-called cosine law for the inner product, the condition in
this result is geometric in nature, requiring for asymptotic
stability that the growth-rate vector g(y), at any state  near x,
should make an acute angle with the population-state vector x
(while g(x) always is orthogonal to x, by regularity).12 This
guarantees a local drift toward x. See figure 4.6 for illustrations
of stability (a) and instability (b) in the case k = 2.



In the special case of the replicator dynamics (3.5), the condition
that g(y) · x > 0 for all nearby states  is equivalent with
evolutionary stability of x. By proposition 2.6,  if and only
if u(x, y) > u(y, y) for all nearby states , and in the replicator
dynamics

Hence the above proposition is a generalization of proposition
3.10 to any regular selection dynamics. Moreover, just as
proposition 3.10 could be gener-

11. A state x is unstable if it is not Lyapunov stable.

12. The cosine law states that if w is the angle between two vectors x and
y in some euclidean space, then x · y = ||x|| ||y|| cos (w).
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(a)

(b)

Figure 4.6
The geometry of the stability conditions in proposition 

4.3: (a) Asymptotic stability at x, (b) instability at x.
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alized from evolutionarily stable states to evolutionarily stable*
sets in proposition 3.13, proposition 4.3 can be turned setwise as
follows:

Proposition 4.4

Suppose that g is a regular growth-rate function. If is a
closed set and every has some neighborhood U such that
g(y) · x > 0 for all , then X is asymptotically stable in
(4.14).

The proof is parallel to that of proposition 3.13, and in the special
case of the replicator dynamics, the stability condition in the
above proposition is equivalent to the requirement that  be an
ES* set.

4.3.2 Payoff Monotonicity

So far no relation between growth rates and payoffs has been
imposed, and therefore no connection between dynamic
properties and criteria in noncooperative game theory can be
expected. If, however, high growth rates are associated with high
payoffs, then such connections can be established. The intuition
is simply that if more successful pure strategies replicate at a
higher rate than less successful, then poorly performing strategies
are weeded out, and in the long run only best replies are present
(i.e., the population state is in Nash equilibrium with itself). It
turns out, however, that the weeding out of strictly dominated
strategies along nonconvergent solution paths may be weaker
than in the replicator dynamics.

The formal requirement is here that a pure strategy with a higher



payoff grows at a higher rate. Formally:

Definition 4.2

A regular growth-rate function g is payoff monotonic if, for all 
,

The associated population dynamics (4.14) will be called payoff
monotonic.13 Clearly the replicator dynamics is payoff
monotonic. The relation u(ei, x) > u(ej, x) is equivalent with u(ei
- x, x) > u(ej - x, x) which, in (3.5), is precisely gi(x) > gj(x).

Geometrically payoff monotonicity requires the vector field of
(4.14) to point into a certain cone, determined by pure-strategy
payoffs, in the simplex

13. This property is called relative monotonicity in Nachbar (1990),
order compatibility of predynamics in Friedman (1991), and simply
monotonicity in Samuelson and Zhang (1992).
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Figure 4.7
The geometry of payoff monotonicity in the case of three pure strategies.

For each pure strategy i, Hi is the straight line where the ratio between the 
other two pure-strategy shares is constant.

D of mixed strategies. This is illustrated for the case k = 3 in
figure 4.7. If the payoffs to strategies 1, 2, and 3 in a state  are
ordered u(e2, x) > u(e1, x) > u(e3, x), then it follows from (4.17)
and (4.19) that the vector field of any payoff-monotonic
population dynamics at x points into the (relative) interior of the
shaded sector.

2 × 2 Games

In symmetric two-player games where each player position has
only two pure strategies, all results for the replicator dynamics
(3.5) carry over to any payoff monotonic population dynamics
(4.14). The reason is that then being better than average, and
hence having a positive growth rate in the replicator dynamics, is
the same as being better than the other strategy, and hence having



a positive growth rate in any payoff-monotonic selection
dynamics. Formally,

so the replicator dynamics (3.5) can be written
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Hence the replicator growth-rate of the subpopulation playing
strategy 1 is positive (negative) if and only if its payoff exceeds
that of strategy 2. But this is exactly the condition for any payoff
monotonic dynamics to induce a positive (negative) growth-rate
for the same subpopulation. Hence the qualitative results in
subsection 3.1.4 for the replicator dynamics apply to any payoff-
monotonic selection dynamics.

k × k Games

It turns out that some fundamental results for the replicator
dynamics are valid for all payoff-monotonic selection dynamics
also in games with an arbitrary (finite) number of pure strategies.
In section 3.2 it was shown that the replicator dynamics wipes
out all strictly dominated strategies along all interior solution
paths, convergent and divergent. It turns out that this result is not
valid for all payoff-monotonic selection dynamics. More
precisely, for payoff-monotonic selection dynamics we only have
the result that pure strategies that are strictly dominated by other
pure strategies vanish in the long run. The validity of this weaker
claim is intuitively fairly obvious. If a subpopulation uses a pure
strategy that is strictly dominated by another pure strategy, then
there exists another subpopulation (in interior population states)
that always does strictly better. Since the latter subpopulation
share is bounded from above by one, the former population
share has to decrease toward zero over time (Nachbar 1990):

Proposition 4.5

If strategy is strictly dominated by a pure strategy, then the



population share xi(t, x0) converges to zero in any payoff-
monotonic dynamics (4.14), from any interior initial state 
.

Proof

Suppose that . Then , by (4.19).
By continuity of g and compactness of D, there exists some 
such that . Suppose that . By (4.17),

and hence

Since .
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Björnerstedt (1993) provides an example of a payoff-monotonic
selection dynamics in which a strictly dominated pure strategy
(not dominated by any pure strategy) survives along interior
solution paths. These solution paths oscillate forever, and every
now and then the strictly dominated pure strategy appears in a
significant population share (see example 4.4 below).

In analogy with theorem 3.1, the above proposition can be
strengthened to yield the conclusion that if a pure strategy does
not survive the iterated elimination of strategies that are strictly
dominated by another pure strategy, then the strategy does not
survive under a payoff-monotonic selection dynamics. This
follows from a result due to Samuelson and Zhang (1992):14

Proposition 4.6

If a pure strategy i does not survive the iterated elimination of
pure strategies dominated by pure strategies, then its population
share xi(t, x0)converges to zero in any payoff-monotonic
dynamics (4.14), from any initial state .

Turning to connections with aggregate Nash equilibrium
behavior, first note that all payoff-monotonic selection dynamics
have the same set of stationary states. The replicator dynamics
being one such dynamics, this common set is

Proposition 4.7

D0is the set of stationary states under any payoff-monotonic
selection dynamics (4.14).



Proof

First, suppose that . Then u(ei, x) = u(x, x) for all . By
monotonicity (4.19) there exists some  such that gi(x) = m for
all . But then g(x) · x = m, and so m = 0 by orthogonality.
Hence  is stationary in (4.14). Second, suppose that  is
stationary in some payoff-monotonic dynamics (4.14). Then gi(y)
= 0 for all . By (4.19), this implies that there exists some 
such that u(ei, y) = l for all . But then u(y, y) = Si yiu(ei, y)
= l, and thus .

Consequently, by proposition 3.3, all population states in the
subset DNE are stationary in any payoff-monotonic selection
dynamics, and the set of interior stationary states coincides with
the set , and so on. In section 3.3 it was shown that
dynamic stability in the replicator dynamics, as well as interior
convergence, implies Nash equilibrium behavior. Generalizations

14. A related (weaker) result is given in Nachbar (1990).
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of these results to payoff-monotonic selection dynamics are
straightforward (Nachbar 1990):15

Proposition 4.8

If is Lyapunov stable in some payoff-monotonic selection
dynamics (4.14), then .

Proof

Following the proof of proposition 3.4, suppose that  and
that . Then all pure strategies in the support C(x) earn the
same suboptimal payoff against x. Hence there exists some 
such that u(ei, x) > u(ej, x) for all . By stationarity and
payoff monotonicity, gi(x) > gj(x) = 0 for all . Hence by
continuity of g there is a d > 0 and a neighborhood U of x such
that  for all . But then  for any 
and all times t > 0 such that . Thus xi(t, x0) initially
increases exponentially from any , and yet xi = 0, so x is
not Lyapunov stable.

Proposition 4.9

If there is some and payoff-monotonic selection dynamics
(4.14) such that , then .

Proof

Following the proof of proposition 3.5, assume that  and 
, in some payoff-monotonic selection dynamics (4.14).

Then x is stationary in that dynamics, by proposition 6.3. Hence
gj(x) = 0 for all , and by proposition 4.7, u(ej, x) = u(x) for
all . If , then there exists some strategy  such that



u(ei, x) > u(x, x), and thus gi(x) > gj(x) = 0 for all . By
continuity of g there exists some neighborhood U of x such that
gi(y) > 0 for all population states y in . However, this
contradicts the hypothesis that x(t, x0) converges to x. The latter
implies that there exists a time T > 0 such that  for all

. Since xi = 0, there must be some  such that dxi(t, x0)/dt
<0, a contradiction to gi being positive on . Hence .

In other words, if a population state  is the limit state to any
interior solution trajectory, under any payoff-monotonic selection
dynamics, then this is sufficient to guarantee that x is in Nash
equilibrium with itself. (Note that any interior stationary state is
trivially reachable in this sense.)

15. Friedman (1991) establishes proposition 4.8 in a more general
setting under the slightly stronger hypothesis that x is asymptotically
stable.
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4.3.3 Payoff Positivity

Instead of payoff monotonicity, which requires that the growth
rates  always have the same internal ordering (in the
usual ordering of R) as the payoffs , some
applications call for other connections between growth rates and
payoffs. One alternative broad class of growth rate functions are
those that respect the signs of the excess payoffs . The
requirement here is that pure strategies that earn above (below)
average have positive (negative) growth rates:16

Definition 4.3

A regular growth-rate function g is payoff positive if, for all 
and ,

Besides payoff monotonicity, payoff positivity is another
property of the replicator growth-rate function: In (3.5) we have
gi(x) = u(ei, x) - u(x, x) for all . Moreover in 2 × 2 games the
classes of payoff-monotonic and payoff-positive growth-rate
functions coincide, since being better than average is the same as
being better than the other pure strategy. In particular, the
qualitative observations in subsection 4.3.2 about such games
carry over to payoff-positive selection dynamics. However, for
other games these two classes may be distinct: Pure strategies that
are better than average but not optimal may have negative growth
rates under payoff monotonicity, and so forth.

In section 3.7 we established a sufficient condition for a subset 
 of pure strategies to be a long-run survivor set under the



replicator dynamics (3.5). It is not difficult to show that this
condition is in fact valid for any payoff-positive selection
dynamics (4.14). To see this, recall that a subset  was defined
to be closed under weakly better replies if all pure strategies that
are weakly better replies to any state x in the face  belong
to H. Recall also the definition of a0(H). As a generalization of
the definition given in section 3.7, we call a set  a long-run
survivor set in a regular selection dynamics (4.14) if D(H) is
asymptotically stable in this dynamics and H does not properly
contain a nonempty subset L with this property.

Proposition 4.10

Consider a payoff-positive growth-rate function g and the
associated selection dynamics (4.14):

16. Nachbar (1990) calls the associated dynamics (4.14) sign-
preserving.
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a. If D(H) is Lyapunov stable, then .

b. If H is closed under weakly better replies, then D(H) is
asymptotically stable.

c. If is closed under weakly better replies and does not
properly contain any nonempty subset L for which , then
H is a long-run survivor set.

Proof

These claims can be proved along the same lines as in the special
case of the replicator dynamics (3.5). (a) If a0(H) is not
contained in H, there is some  and  such that u(ej - x,
x) > 0. By payoff positivity, gj(x) > 0, and by continuity of gj,
there is a d > 0 and neighborhood U of x such that gj (y) > d for
all . Since the edge D({i, j}) is invariant, (4.14) has solution
trajectories in  that start arbitrarily near x and forever move
away from D(H), and  is not Lyapunov stable. (b) Suppose
that  is closed under weakly better replies, and let U be as in
lemma 3.2. There then is some  such that for any , the e-
slice  contains the face D(H) and the closure 

 is contained in U. On , a compact set u(ej - x, x) is negative
and hence, by payoff positivity, so is the continuous function gj.
By Weierstrass's maximum theorem, the maximum of gj over this
set is negative. Hence there is some d > 0 such that, for any such
x and j, , which implies that xj(t, x0) for each 
decreases monotonically to zero from any initial state x0 in .
Thus  is asymptotically stable. (c) follows directly from (a)
and (b).



4.3.4 Weak Payoff Posifivity

It turns out that the implications from payoff-monotonic selection
dynamics to aggregate Nash equilibrium behavior, established in
subsection 4.3.2, are in fact valid for a wider class of selection
dynamics that also includes all payoff-positive selection
dynamics. As can be seen in the proofs of these results, it is
sufficient that whenever there exists a pure strategy  that gives
a payoff above average, some such pure strategy has a positive
growth rate. This is the case, for instance, if all pure strategies
that earn above average have positive growth rates or if some
pure best reply has a positive growth rate whenever such a
strategy gives an above-average payoff.
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More exactly, suppose that g is a regular growth-rate function.
The required connection between growth rates and payoffs is that
if not all pure strategies in the game earn the same payoff, then at
least one of the pure strategies that earns above average has a
positive growth rate. Formally, for any state , let B(x) denote
the (possibly empty) subset of pure strategies that earn above
average,

Definition 4.4

A regular growth-rate function g is weakly payoff positive if, for
all for some .

Clearly payoff positivity implies weak payoff positivity: Every
pure strategy  has a positive growth rate under payoff
positivity. To see that this also is a weakening of payoff
monotonicity, let g be a payoff-monotonic growth-rate function,
and assume that . If all pure strategies in the support of x
earn the same payoff, then all their growth rates must be the
same, by monotonicity, and this common growth rate must be
zero, by orthogonality, g(x) · x = 0. Hence in this case every pure
strategy in B(x) has a positive growth rate, by monotonicity.
Suppose, instead, that not all pure strategies in the support of x
earn the same payoff. By monotonicity the best earning among
these have a higher growth rate than the least earning, and again
by orthogonality, the best earning must have a positive growth
rate. These clearly earn above average and hence belong to B(x).
Thus all payoff-monotonic growth-rate functions are weakly
payoff positive.



We are now in a position to establish the claimed generalized
implications for Nash equilibrium behavior:

Proposition 4.11

Suppose that g is weakly payoff positive:

a. If is stationary in (4.14), then .

b. If is Lyapunov stable in (4.14), then .

c. If is the limit to some interior solution to (4.14), then 
.

Proof

(a) Suppose that  is stationary in (4.14). Then  by
weak payoff positivity, and . (b) Suppose that  is
stationary in (4.14). Then gi(x) = 0 for all . If , then 

, and by weak payoff positivity, there is some  such
that gj(x) > 0. Consequently , that is, xj = 0. By continuity of
gj there is a d > 0 and a
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neighborhood U of x such that gj(y) > d for all , and by the
argument given in the proof of proposition 4.8, x is not
Lyapunov stable. (c) Suppose that  and  in some
weakly payoff-positive dynamics (4.14). Then x is stationary, by
proposition 6.3, and gj(x) = 0 for all . If , then ,
and there is some  such that gj(x) > 0 and xj = 0. By the
same argument as in the proof of proposition 4.9, this leads to a
contradiction, so .

4.4 Replication by Imitation

We now enter yet another not much researched arena, formal
modeling of social evolution of behaviors in a population of
strategically interacting agents. These may be individuals, firms,
or other social or economic units. We will here sketch a few
continuous-time pure-strategy selection dynamics arising from
adaptation by myopic imitation. In these models we imagine that
all agents in the population are infinitely lived and interact
forever. Each agent sticks to some pure strategy for some time
interval, and now and then reviews her strategy, sometimes
resulting in a change of strategy.17

There are two basic elements common to these models. The first
is a specification of the time rate at which agents in the
population review their strategy choice. This rate may depend on
the current performance of the agent's pure strategy and of other
aspects of the current population state. We will write ri(x) for the
average review rate of an agent who uses pure strategy an i-
strategist. The second element is a specification of the choice
probabilities of a reviewing agent. The probability that a
reviewing i-strategist will switch to some pure strategy j may here



depend on the current performance of these strategies and other
aspects of the current population state. This probability is written 

, where  is the resulting probability
distribution over the set K of pure strategies, .18 In
particular,  is the probability that a reviewing i-strategist does
not change strategy.

In a finite population one may imagine that the review times of
an agent are the arrival times of a Poisson process with arrival
rate ri(x) and that, at each such time, the agent selects a pure
strategy according to the probability

17.The discussion in this section follows Björnerstedt and Weibull
(1993).
18.Alternatively, what is here called reviewing could be reinterpreted as
the exit of one agent who is instantly replaced by a new agent.
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distribution pi(x) over the set K. Assuming that all agents'
Poisson processes are statistically independent, the aggregate of
reviewing times in the subpopulation of i-strategists is itself a
Poisson process with (population size normalized) arrival rate
xiri(x). If strategy switches are statistically independent random
variables across agents, then the arrival rate of the aggregate
Poisson process of switches from strategy i to strategy j in the
whole population is .19

We now imagine a continuum of agents and, by the law of large
numbers, model these aggregate stochastic processes as
deterministic flows. The outflow from subpopulation i thus is 

, and the inflow is . Rearranging terms, we
obtain

To guarantee that this system of differential equations induces a
well-defined dynamics on the state space D, we henceforth
assume that  and  are Lipschitz continuous
functions with open domain X containing D. By the Picard-
Lindelöf theorem, (4.25) then has a unique solution through any
initial state , and such a solution trajectory is continuous and
never leaves D.20

4.4.1 Pure Imitation Driven by Dissatisfaction

For a model of pure imitation, assume that all reviewing agents
adopt the strategy of ''the first man they meet in the street.''
Independently of which strategy the reviewing agent has used so
far, she draws an agent at random from the population, according



to a uniform probability distribution across agents and adopts the
pure strategy of the so sampled agent. Formally, for all
population states  and pure strategies :

19. A Poisson process is a stochastic point process in continuous time,
the points usually being called arrival times. The probability
distribution of these is given by a function , the arrival rate (or
intensity) of the process such that l(t)dt is the probability for an
arrival in the infinitesimal time interval (t, t + dt). Superposition of
statistically independent Poisson processes is again a Poisson process,
and its arrival rate is the sum of the constituent arrival rates. Likewise
statistically independent decomposition of a Poisson process, such as
at the above strategy switchings, again results in a Poisson process.
20. The state space D is forward invariant in this dynamics; see section
6.3.

 



Page 154

If the review rates were independent of the current strategy i,
then such an imitation process would lead to no change at all in
the population state; all population states  are then stationary
in (4.25). However, if agents with less successful strategies on
average review their strategy at a higher rate than agents with
more successful strategies, then a payoff-monotonic selection
dynamics arises. More precisely, suppose that

for some (Lipschitz continuous) function r that is strictly
decreasing in its first (payoff) argument. Note that this
monotonicity assumption does not presume that an agent
necessarily knows the expected payoff to her current pure strategy
and the population state. It is sufficient that some or all agents in
the population have some noisy empirical data on their current
(expected) payoff.

Under assumptions (4.26) and (4.27), the population dynamics
(4.25) becomes

Here the growth rate of the population share of i-strategists, by
monotonicity of r, is higher than that of the population share of
j-strategists if and only if the current payoff to the former, u(ei,
x), exceeds that of the second, u(ej, x). Hence (4.28) constitutes a
payoff-monotonic selection dynamics (4.14), and all results in
subsection 4.3.2 apply to this form of social evolution by way of
imitation.



As a special case, let the review rate of an agent be linearly
decreasing in her current payoff. Then the average review rate is
linearly decreasing in the average payoff:

for some  such that b > 0 and  for all x and i. Under
these assumptions all review rates are nonnegative and (4.28)
boils down to

a mere (constant) rescaling of time in the replicator dynamics
(3.3)!21 Hence

21.This observation is due to Björnerstedt (1993).

 



Page 155

all results for the replicator dynamics are valid for this special
case of replication by way of pure imitation.

The following example (Björnerstedt 1993) suggests that if
instead review rates are highly nonlinear in payoffs, then a
strictly dominated pure strategy (which is not strictly dominated
by any pure strategy) may survive in the long run.

Example 4.4

Suppose that virtually only those agents who use the worst
performing pure strategies review their strategy and that all
imitation is pure, (4.26). (Alternatively, imagine a bank that now
and then weeds out the worst performing firms in a market,
subject to a small observational error as to performance, and
imagine that now and then naive entrant firms appear who mimic
the existing firms' behaviors.) Formally, suppose that r [u(ei, x),
x] = y  [u(ei, x) - w(x)], where w(x) = minju(ej, x), and y  is
(Lipschitz continuous and) positive and strictly decreasing with
y (0) = 1. Under pure imitation (4.26) this results in the payoff-
monotonic selection dynamics

In the Dekel-Scotchmer example (subsection 4.1.2), the fourth
pure strategy is strictly dominated by the mixed Nash equilibrium
strategy but by no pure strategy. However, the fourth pure
strategy is the worst performing only when the other three
strategies are mixed approximately as in the Nash equilibrium; see
the cylinder-shaped region in figure 4.8 (a). Moreover, on the



boundary face where the fourth pure strategy is extinct, all
solution trajectories to the above dynamics, except the one
starting at the Nash equilibrium point, lead out toward the
(relative) boundary of this face. This is illustrated in figure
4.8(b), which has been drawn for the limiting case when y  is the
(not Lipschitz continuous) unit step function that takes the value
y (z) = 0 for all z > 0 (corresponding to no observational error).

4.4.2 Imitation of Successful Agents: Model 1

To model a process of directed imitation in a finite but large
population, we could proceed as follows: Suppose that each
reviewing agent samples another agent at random from the
population, with equal probability for all agents, and observes
with some noise the average payoff to her own and to the
sampled agent's strategy, respectively. If an i-strategist samples a
j-strategist,
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Figure 4.8
(a) The region in the polyhedron Q, in the Dekel-Scotchmer Game, where the

strictly
dominated strategy 4 earns the lowest payoff among pure strategies. (b) The

limiting 
vector field (in the absence of observational errors) of the selection

dynamics 
in example 4.4, on the boundary face of the simplex where strategy 4 is

extinct.
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then she observes payoff u(ei, x) + e to strategy i and payoff u(ej,
x) + e' to strategy j, where e and e' are random variables such that
their difference, the random variable e - e', has a continuously
differentiable (and hence Lipschitz continuous) probability
distribution function .22 Having made such a pairwise
payoff comparison, the reviewing agent switches to the sampled
agent's strategy if and only if the observed payoff difference is
positive, u(ej, x) + e' > u(ei, x) + e. The conditional probability
that the agent will switch to strategy j, given that she sampled
strategy j, is thus f [u(ej, x) - u(ei, x)]. Since the probability that
the agent will sample strategy j is xj, the resulting conditional
choice probability distribution, , is given by

The random variables e and e' may alternatively be interpreted as
idiosyncratic preference differences between agents in the
population: Then u(ei, x) + e and u(ej, x) + e' are the true average
payoffs to pure strategies i and j, respectively, according to the
preferences of a randomly drawn agent. from the population. In
this interpretation the choice probabilities (4.31) result from
individual differences in preferences across agents and not from
observation errors made by agents with identical preferences.

To isolate the effect of choice probabilities as in (4.31), assume
that all review rates are constantly equal to one:

Inserted into (4.25), this results in the following selection



dynamics:

If f is strictly increasing over the (bounded) range of possible
payoff differences in the game, then (4.33) is payoff monotonic,
and all results for that class of replication dynamics apply (see
subsection 4.3.2).

22.Note that this probability distribution is assumed to be functionally
independent of i, j, and x; in fact it is a heroic simplification from the
viewpoint of statistical sampling.
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Consider population states x near some interior state x* that is
stationary in (4.33). Since this dynamics is payoff monotonic, 

 (proposition 4.7). In particular, all pure strategies earn the
same payoff against x*. Consequently at states x near x* all pure-
strategy payoff differences in (4.33) are small. Linearization in
(4.33) of the (continuously differentiable) probability distribution
function f, at states x near x*, results in

Hence, in a neighborhood of an interior stationary state, the
vector field of the imitation dynamics (4.33) is approximately just
a positive constant times that of the replicator dynamics (3.5)!

As a special case of (4.33), suppose that all error terms (or
idiosyncratic preference differences) are uniformly distributed
with a support containing the range of all possible payoff
differences in the game. Then f is an affine function over the
relevant interval, namely f(z) = a + bz for some  where b >
0, and (4.33) becomes a mere rescaling of time in the replicator
dynamics:

4.4.3 Imitation of Successful Agents: Model 2

As a generalization of pure imitation we might assume that the
choice probabilities  are proportional to j's popularity xj,
where the proportionality factor (or weight) may be positively
related to the current payoff to strategy j. It is thus as if a



reviewing agent would imitate another agent from the population,
drawn at random but possibly with a higher probability for
relatively more successful agents (perhaps due to their
conspicuous consumption or visible well-being). Let the weight
factor that a reviewing i-strategist attaches to pure strategy j be wi
[u(ej, x), x] >0, where wi is a (Lipschitz continuous) function
which is nondecreasing in its first (payoff) argument. Then

As in the earlier case of differentiated review rates (subsection
4.4.1), the informational assumption behind choice probabilities
such as these is not that
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a reviewing agent necessarily knows the current average payoffs
to all pure strategies in the game, nor does she have to know the
current population state. It is sufficient that some agents have
some, perhaps noisy, empirical information about payoffs to
some pure strategies in current use, and, on average, are more
likely to imitate an agent with higher current average payoff than
one with lower average payoff.

As a special case of (4.36) we have pure. imitation: If the weight
function wi is completely payoff insensitive, then  for all
pure strategies j and population states x. Conversely, by making
the weight functions in (4.36) sufficiently payoff sensitive, we
may have virtually all reviewing agents adopt one of the best
pure strategies currently in use.

Combining choice probabilities of the form (4.36) with the
assumption (4.32) of unit review rates results in the following
selection dynamics (see (4.25)):

If the weight functions are strictly increasing in payoffs, pure
strategies i with higher payoffs u(ei, x) have higher growth rates
in (4.37) than pure strategies with lower payoffs, so this imitation
dynamics is again payoff monotonic.

As a special case suppose that the weight factors are linear in the
target payoff, namely wi(z, x) = l + mz for some  such that
m > 0 and l + mu(ei, x) > 0 for all population states x and pure
strategies i. Then (4.37) becomes



a (payoff-dependent) rescaling of time in the replicator dynamics
(3.5)! Hence the solution orbits to (4.38) coincide with those of
(3.5), and except for results on time averages (subsection 3.3.4),
all results in chapter 3 apply to this model of replication by
payoff-weighted imitation. In the special case where the weights
are proportional to payoffs (l = 0), we obtain growth rates gi(x)
= [u(ei, x) - u(x, x)]/u(x, x) in (4.38) (here assume that all payoffs
are positive). In this special case it is as if reviewing individuals
draw a payoff unit, from the current stream of payoffs, at
random; the probability
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(a)

(b)

Figure 4.9
Solution orbits to the imitation dynamics in example 4.6,

applied to a generalized Rock-Scissors-Paper Game
with payoff parameter a = 1: (a) For sensitivity parameter 

s = 1, (b) for sensitivity parameter s = 10.
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that the so drawn payoff unit has been earned by pure strategy i
is precisely xiu(ei, x)/u(x, x).

Example 4.5

Consider choice probabilities (4.36) with weight factors wi (z, x)
= exp (sz) for some s > 0. With unit reviewing rates (4.32) the
induced payoff-monotonic selection dynamics (4.37) becomes

The boundary case s = 0 corresponds to pure imitation, and the
limit case  corresponds to pure best-reply adaptation at all
interior population states x in the sense that all reviewing agents
then switch to currently best replies. Figures 4.9 (a) and (b) show
computer simulations for the generalized Rock-Scissors-Paper
Game in subsection 3.1.5 with payoff parameter a = 1 and payoff
sensitivity s = 1 and s = 10, respectively.
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5
Multipopulation Models
So far the studied interactions have all been modeled as
symmetric and pair-wise random matchings between individuals
in a single population. However, many relevant strategic
interactionsin biology, economics, and other social sciencesare
not symmetric; they may take place between two or more
individuals from distinct populations. For instance, individuals
from different biological species may interact, or buyers and
sellers may interact in markets. Moreover, even if the game
representing the interaction is itself symmetric, the players of the
game may nevertheless be drawn from distinct populations. We
are led to studies of evolutionary selection in multiple
populations who interact in an arbitrary n-player gamethe topic
of the present chapter.

In the same spirit as in the single-population setting, we can
imagine large (technically infinite) populations of individuals,
one such population for each player position of the game. Over
and over again, individuals are randomly drawn from these
populations to play the gameone individual from each player
population. The game can be symmetric or asymmetric; the only
restriction imposed is that it be a finite game in normal form.

For the purpose of extending the static single-population criterion
of evolutionary stability (chapter 2) to such a multipopulation
setting, we imagine that all individuals in a player population are
initially programmed to the same pure or mixed strategy available



to that player position in the game. We then imagine that some
mutant strategy arises in a small population share in some or all
of these player populations. However, unlike in the single-
population setting, here a mutant strategy never meets itself, for
the simple reason that each individual in any of the n player
populations is always matched with individuals from the other n
- 1 player populations. Consequently a nonstrict Nash
equilibrium is vulnerable to "invasions" by alternative best
replies. Indeed, it turns out that suggested criteria for
multipopulation evolutionary stability are met only by strict Nash
equilibria (see also section 2.7). Multipopulation criteria for
evolutionary stability, along with robustness against equilibrium
entrants and equilibrium evolutionary stability of sets of strategy
profiles, are analyzed in section 5.1.

The rest of the chapter is devoted to explicitly dynamic models of
evolutionary selection. In the spirit of chapters 3 and 4 it is here
imagined that each individual is, at each instant, programmed to
one of the pure strategies available to the player position of her
population. Hence each player population can, at every moment
in time, be divided into as many subpopulations as there are pure
strategies for the player position in question. The evolutionary
selection dynamics to be studied are concerned with the growth
rates of these
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subpopulation shares. Formally, a player-population state is
identical with a (pure or mixed) strategy for the player position.
Taken together, these player-population states constitute a (pure
or mixed) strategy profile of the game. However, in this dynamic
setting there arise some new issues not present in the single-
population setting.

To begin with, there are two multipopulation extensions of the
continuous-time replicator dynamics studied in chapter 3. These
two versions are studied in section 5.2. The emphasis is on
examples and on comparisons in symmetric two-player games
with the single-population dynamics. Section 5.3 derives a variety
of evolutionary selection dynamics, including the two replicator
dynamics, from simple models of individual adaptation by way
of imitation. In section 5.4 the perspective is shifted from the
interacting individuals to the replicators, the pure strategies of the
game in question. In a simple statistical-mechanical model of
competition among such replicatots for hosts, within each player
population a class of evolutionary selection dynamics is derived.

Section 5.5 defines a few broad classes of evolutionary selection
dynamics. Each contains both versions of the multipopulation
replicator dynamics along with many of the other selection
dynamics derived in sections 5.3 and 5.4. Implications from
selection dynamics in these classes for noncooperative solution
criteria are examined in section 5.6. It turns out that the results
from the single-population setting in chapters 3 and 4 carry over.
In particular, the results concerning survival of dominated
strategies are straight-forward extensions of those for single-



population selection dynamics, and dynamic stability and interior
convergence again imply aggregate Nash equilibrium behavior.

It may thus seem that models of evolutionary dynamic selection
lend strong support to the Nash equilibrium paradigm. However,
to obtain robust dynamic predictions, stronger dynamic stability
is needed. More precisely, in view of the possibility of
unmodeled evolutionary drift caused by occasional mutations or
mistakes in individual behavior or by small-scale experimentation
with alternative behaviors, it is desirable that dynamic stability
properties are not destroyed by small perturbations of (the vector
field that defines) the dynamics in question. One such classical
structurally robust dynamic stability property is asymptotic
stability.1 Unfortunately, few Nash equilibria are asymptotically
stable in multipopulation dynamics. In particular, in one of the
two multi-

1. In contrast, mere Lyapunov stability can be destroyed by arbitrarily
small perturbations of the dynamics.
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population versions of the replicator dynamics, only strict Nash
equilibria are asymptotically stable. Hence in this benchmark
dynamics we are essentially back to square one, just as in the
above-mentioned multipopulation extension of the evolutionary
stability criterion. Moreover all Nash equilibria are stationary in
the studied selection dynamics (with the exception of some
weakly positive selection dynamics), so no Nash equilibrium that
belongs to a non-singleton component of the set of Nash
equilibria is asymptotically stable. And nonsingleton components
of Nash equilibria are endemic in normal form games derived
from extensive forms. These issues are discussed in the first part
of section 5.7.

Since the existence problem for asymptotic stability concerns
individual strategy profiles, it is natural to turn to sets of strategy
profiles instead. Section 5.7 provides a characterization of
asymptotic stability for a certain class of sets, the faces of the
polyhedron of strategy profiles. A wide class of evolutionary
selection dynamics agree concerning asymptotic stability of such
sets. Asymptotic stability of such sets can be used for robust
dynamic predictions in terms of subsets of pure strategies, one
subset for each player position in the game. The necessary and
sufficient condition in question is operational, and its cutting
power is illustrated in a few examples.

Readers interested in more results on multipopulation models
may consult Hofbauer and Sigmund (1988), Cressman (1992a),
Samuelson and Zhang (1992), and Swinkels (1992a, 1993).

5.1 Evolutionary Stability Criteria



Using the notation of chapter 1 for n-player games, let I = {1, ...,
n} be the set of players, Si the pure-strategy set of player , Di
her mixed-strategy set, Q the polyhedron of mixed-strategy
profiles, and ui(x) the payoff to player i when  is played.

5.1.1 Evolutionarily Stable Strategy Profiles

There appears to be no consensus as to how the criterion of
evolutionary stability should be extended to multipopulation
interactions. Suppose that each player role in an n-player game is
represented by a large population of individuals and that each
interaction takes place among a randomly drawn n-tuple of
individuals, one from each player population. Suppose moreover
that every individual in each population  is programmed to
one and the same (pure
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or mixed) strategy xi. It appears that a minimal requirement for a
strategy profile  to be evolutionarily stable is that each
strategy xi be a best reply to x, since otherwise some player
population i would be vulnerable to invasions by some mutant
strategy yi that would earn a higher payoff than xi in these same
matchings. By definition, no alternative best reply exists for any
player population if the profile x in question happens to be a
strict Nash equilibrium, so such profiles should qualify. The
question then arises whether there are nonstrict Nash equilibria
that should be considered evolutionarily stable. Suppose, for
instance, that  is a Nash equilibrium and that yi is an
alternative best reply for player position i to x. What protects the
strategy xi against invasion of a few mutants playing yi ?
Irrespective of their share  of the ith player population, these
mutants earn precisely the same payoff as the incumbents, who
play xi. For this reason even weak evolutionary stability criteria
in multipopulation settings tend to reject all nonstrict Nash
equilibria.

The following relatively weak criterion for evolutionary stability
is equivalent to a definition in Cressman (1992a; see also
Swinkels 1992a):

Definition 5.1

is evolutionarily stable if for every strategy profile there
exists some such that for all , .and with ,

In other words, a strategy profile x is evolutionarily stable if there
for every mutant profile  exists an invasion barrier  such that



if y comes in a smaller dose (population share), then at least one
of the incumbent strategies xi does better in the postentry
population mix than its mutant strategy yi. Alternatively, one
might want to require this ''immunity'' from all constituent
strategies xi rather than from some. An intermediate criterion,
between "all" and "some," was suggested in Taylor (1979), where
the incumbent strategies xi are required to do better than their
respective mutant strategies, yi, in the aggregate (see also
Schuster et al. 1981b). Taylor's definition is obtained if one
replaces condition (5.1) by

Clearly (5.2) implies (5.1).

However, as suggested earlier, even weak criteria of evolutionary
stability in multipopulation settings reject all but strict Nash
equilibria. Formally (see Selten 1980; van Damme 1987; Swinkels
1992a):
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Proposition 5.1

is evolutionarily stable if and only if x is a strict Nash
equilibrium.

Proof2

First, assume that  is evolutionarily stable, and fix any player
position . Let , and for all ,yj = xj. Let ,
where . Then ui (xi, w-i) and uj (xj, w-j) = uj (yj, w-j) for all

, so y = x by evolutionary stability. Thus , and since 
was arbitrary, . Second, assume that  is a strict Nash
equilibrium, and let . Then  for some player position ,
and ui (xi, x-i) = ui (x) > ui (yi, x-i). By continuity of ui there
exists some  such that for all , and with to 

,ui (xi, w-i) > ui (yi, w-i), showing that x is
evolutionarily stable.

Since any strict Nash equilibrium meets Taylor's stability
criterion, it is immaterial if one defines evolutionary stability as
above or as suggested in Taylor (1979): Both are equivalent with
strict Nash equilibrium. However, many games of interest lack
strict Nash equilibria, in which case the above evolutionary
stability criteria are of no help.

In section 2.7 a definition was given of evolutionary stability of
role-conditioned behaviors in two-player games where
individuals can identify their player position. A behavior strategy
in that setting was seen to be formally identical with a strategy
profile in the underlying game. According to a result due to
Selten (proposition. 2.18 above), such a behavior strategy is
evolutionarily stable if and only if the associated (base game)



strategy profile is a strict Nash equilibrium. In two-player games
the present two-population definition of evolutionary stability
thus coincides, in terms of strategy profiles in the game, with the
role-conditioned single-population definition in section 2.7. Let 

 denote the (possibly empty) set of evolutionarily stable
strategy profiles (or, equivalently, the set of strict Nash
equilibria).

5.1.2 Strategy Profiles That Are Robust against Equilibrium
Entrants

Evolutionary stability places no restrictions on the mutant strategy
profiles. In particular, these may themselves be unstable or for
other reasons implausible in the given context. In some
applications to economics, for instance, Swinkels (1992a) argues
that it may be reasonable to require stability only against mutant
strategies which are optimal in the postentry population. Such a

2. This proof follows Swinkels (1992a).
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weaker stability criterion for the single-population symmetric
two-player setting was studied in subsections 2.3.2 (pointwise)
and 2.4.2 (setwise). These criteria readily extend to the present n-
population setting for arbitrary (finite) n-player games (see the
mentioned sections for interpretations).

If the incumbent strategy profile is , the mutant profile ,
and the population share of mutants is , then the postentry
strategy profile is , and y is called an equilibrium
entrant profile if it is a best reply to w (Swinkels 1992a).

Definition 5.2

is robust against equilibrium entrants (REE) if there exists
some such that condition (5.3) below holds for all profiles 

and :

It follows that every ESS profile is robust against equilibrium
entrants in this sense and it can be shown that every REE profile,
by continuity of the payoff function, is a Nash equilibrium.
Writing QREE for the (possibly empty) set of REE profiles: 

 (see proposition 2.8).

5.1.3 Equilibrium Evolutionarily Stable Sets of Strategy Profiles

Turning the REE criterion setwise (Swinkels 1992a):

Definition 5.3

A set is equilibrium evolutionarily stable (EES) if it is
minimal with respect to the following property: X is a nonempty



and closed subset of QNE for which there is some such that
if , and , then .

In other words, an EES set X is a minimal closed set of Nash
equilibria such that no small-scale invasion of equilibrium
entrants can lead the population out of X. In the special case of a
singleton set X = {x}, X is an EES set if and only if x is an REE
profile.

We noted in chapter 1 that the set  of Nash equilibria of a
(finite n-player) game is the finite union of disjoint, connected,
and closed sets, the components of QNE. Swinkels (1992a) shows
that these components are the only candidates for EES sets:

Proposition 5.2

Every EES set is a component of QNE.
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(This proposition can be proved along the same lines as
proposition 2.12.)

Since payoffs are constant on each Nash equilibrium component
in generic extensive form games (see subsection 1.3.2), all
strategy profiles in an EES set generically result in the same
payoff outcome. In this respect not much precision is lost when
going from predictions in terms of individual strategy profiles to
predictions in terms of such sets of strategy profiles.

The following result,: due to Swinkels (1992a), establishes a link
from evolutionary stability with respect to "rational" mutants, as
formalized in REE profiles and EES sets, to the noncooperative
solution concept of proper equilibriumthe refinement that
requires robustness against "rational" trembles (see subsection
1.4.2):

Proposition 5.3

Suppose that is an EES set. If X is a singleton, or G = (I, Q,
u) is the normal form of a generic two-player extensive-form
game, then X contains a proper Nash equilibrium.

The next example (Swinkels 1992a) shows how the EES criterion
selects the "intuitive" Nash equilibrium component in a classical
testing game for noncooperative refinements, the so-called Beer-
Quiche Game due to David Kreps (Kohlberg and Mertens 1986;
Cho and Kreps 1987; see also van Damme 1987). Although
developed for economic analysis, the game has a certain
biological flavor.

Example 5.1



The Beer-Quiche Game builds on a game related to the Entry
Deterrence Game of example 1.6. Here player 1 (the monopolist
or owner) observes a random move by nature assigning one of
two types to her; either S (strong), with probability 0.9, or W
(weak), with probability 0.1. Having learned her own type, player
1 sends one of two signals to player 2: either s ("I am strong") or
w ("I am weak"). A true signal is costless, whereas a false signal
costs 10 payoff units. Upon receiving this signal, player 2 (the
entrant, or intruder) decides whether to "fight" or "retreat:' If he
fights, he will win or lose 10 payoff units depending on whether
player 1 is weak or strong. Player 1, on the other hand, loses 20
payoff units whenever there is a fight (irrespective of her type).

Each player position thus has four pure strategies. For player 1:
"always s," "s when S, w when W," "s when W, w when S," and
"always w.'' For player 2: ''retreat when s, fight when w," "always
retreat," "always fight," and "fight when s, retreat when w." The
payoff matrices are
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The set QNE of Nash equilibria consists of two components. In
the first, player 1 always says she is strong, and player 2 retreats
when hearing this; otherwise, he fights with a probability of at
least . Denoting mixed strategies for player position 1, , and
those for player position 2, , this component is

In the second component, player 1 always says she is weak, and
player 2 retreats when hearing this; otherwise, he fights with a
probability of at least . Formally, this component is

The equilibria in this component do not appear sensible in that
player 2's prior probability that player 1 is strong is 0.9, while his
posterior probability that she is strong falls below 0.5 if player I
deviates and says that she is strong.3 Nevertheless, all Nash
equilibria in the game are perfect, even proper.

According to proposition 5.3 above, C and C' are the only
candidates for being an EES set. However, the second component
C' fails for the reason that the strong signal is not sent in
equilibrium, and hence any response to that signal is optimal. The
second player's strategy y can thus "costlessly drift" toward his
second pure strategy "always retreat." But once , it is optimal
for player 1 to deviate toward her less cosfly truth-telling strategy



2. This can be shown to invalidate C' as an EES set. In contrast,
the Nash equilibrium component C does constitute an EES set.
Here the weak signal is not sent in equilibrium, so any response
to that signal is optimal. However, if costless drift occurs toward
the second player's second pure strategy, and finally , then
player 1 should deviate to her second pure strategy and player 2
should move back to his equilibrium strategy. For this reason no
equilibrium entrant can take the population state out of the Nash
equilibrium component C.

3.This issue is actually quite subtle; see Cho and Kreps (1987) or van
Damme (1987) for a discussion.
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For an interesting application of the EES criterion to symmetric
and asymmetric two-player communication games in which one
or both players can send a preplay message before playing the
underlying game, see Blume, Kim, and Sobel (1993). Sending a
message is there either costless (cheap talk) or costs little. They
find that many such communication games lack EES sets and
therefore suggest that the criterion of equilibrium evolutionary
stability be weakened by way of dropping the condition that the
set be a subset of QNE. With this condition removed, existence is
guaranteed for all games (by Zorn's lemma). Swinkels (1992b)
discusses a modified EES criterion for a wide class of sets
(including all convex subsets ), which implies that the set
contains a subset of Nash equilibria that is strategically stable in
the sense of Kohlberg and Mertens (1986).

5.2 The Standard and Adjusted n-Population Replicator
Dynamics

5.2.1 Definitions and Preliminaries

Just as in the single-population replicator dynamics, in its
multipopulation counterpart we imagine that individuals during
their lifetimes always use some fixed pure strategy. Hence the
population of individuals in each player role i can at each instant
be subdivided into mi subpopulations, one for each pure strategy 

 available to player position i. A population state now is a
point x = (xl,...,xn) in the polyhedron Q of mixed-strategy
profiles, where each component xi is a point in the corresponding
mixed-strategy simplex Di, representing the distribution of
individuals in player population i across the pure strategies



available to that player position. The vector xi may thus be
thought of as the state of player population  at time t, where 

 is the proportion of individuals in population i who are
currently programmed to pure strategy .

Each player population is imagined to be infinite, and individuals
are randomly matched to play the game. However, unlike in the
single-population setting, one individual is drawn from each
player population. At every matching exactly n individuals play
the game, each individual being assigned the player position of
her population.

Unlike in the single-population setting, there are two versions of
the continuous-time replicator dynamics. Its most commonly
used form was suggested by one of the pioneers for the single-
population replicator dynamics
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(3.5), Peter Taylor (see Taylor 1979), and it is of the same form as
(3.5):

In other words, for each population state , player position 
and pure strategy  available to that player position, the growth
rate  of the associated population share equals its excess
payoff, , over the average payoff in its player
population.

The vector field on the right-hand side in (5.4) is in general
quadratic.4 Hence the vector field in (5.4) is a Lipschitz
continuous function on the whole euclidean space Rm containing
the state space Q. By the Picard-Lindelöf theorem, the associated
system of differential equations (5.4) has a unique solution 

 through every initial state . It is easily verified that
the polyhedron Q, as well as its interior and boundary, are
invariant in this dynamics. The dynamics defined by (5.4) will
henceforth be called the standard n-population replicator
dynamics.

In some studies the right-hand side in (5.4) is divided by ui(x),
the player-population's average payoff. This version of the
multipopulation replicator dynamics was introduced by Maynard
Smith 1982 (see also Hofbauer and Sigmund 1988):

In other words, for each population state , player position 
and pure strategy , the growth rate  of the associated



population share equals its relative excess payoff, ,
over the average payoff in its player population. In this dynamics
a given absolute payoff difference has a stronger dynamic effect
if average payoff is low than if it is high.

Unlike in (5.4), it is here presumed that all payoffs are positive,
ui(x) > 0 for all  and . Under this assumption, and for
essentially the same reasons as for (5.4), (5.5) uniquely defines a
well-behaved dynamics on Q, to be called the (payoff-)adjusted
n-population replicator dynamics.

Which of these two versions of the replicator dynamics, if any, is
appropriate to a given modeling task? Does the choice really
matter for the con-

4. More exactly, there is a term , unless . In contrast.
the single-population replicator dynamics is generally cubic because
there individuals programmed to a certain pure strategy also interact
with each other.
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clusions? Indeed, in the biology literature "there is ... room for
doubt as to Which form is more appropriate... "(Maynard Smith
1982, p. 201).5 Rather than advocating one or the other, we will
in this chapter explore general properties of fairly wide classes of
selection dynamics that contain both the standard and the
adjusted replicator dynamics. Moreover, in the context of a few
simple models of social evolution by way of imitation, each of
the two dynamics (5.4) and (5.5) will be derived as a special case.
However, we first examine some similarities and differences
between the two versions.

It follows immediately from equations (5.4) and (5.5) that if all
players have the same payoff function, if ui(x) = uj(x) for all 
and  then these two dynamics induce the same solution orbits
in Q, and hence the same stability properties. In such special
games the only difference between the two dynamics is the
velocity at which the population state moves along these same
orbits.

For other games, however, the standard and adjusted replicator
dynamics induce distinct solution orbits in Q, so given states and
sets of states may have different stability properties in the two
dynamics. Nevertheless, the set of stationary states is the same in
both dynamics. A population state  is stationary in any one of
these dynamics if and only if, for each player-population i, every
pure strategy in use earns the same payoff. Hence the
common set of stationary states is

Consequently all interior stationary states are Nash equilibria, and



all Nash equilibria are stationary in both dynamics:

5. Starting from alternative discrete-time models, such as
multipopulation versions of those in section 4.1, each of the two
continuous-time dynamics can be obtained in the limit. However,
unlike in the single-population setting, there is an issue here of the
relative sizes of the player populations, causing differences in
individual matching rates and hence payoff streams, between the
different player populations. Consider, for instance, a two-player game
played by one large but finite population in player position 1 and
another finite population in player position 2, where the latter
population is half the size of the former. If individuals are randomly
paired at any given time, then the time rate at which any given
individual in the second population is drawn to play the game is twice
the rate at which any individual in the first population is drawn to play
the game. Hence individuals in player population 1 earn their payoffs
from the game at only half the rate by which individuals in player
population 2 earn theirs.
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Unlike in the single-population setting, these multipopulation
replicator dynamics are not invariant under arbitrary positive
affine transformation of payoffs. If a constant ai is added to all
payoffs to some player position i, then the standard replicator
dynamics (5.4) is unaffected, while the solution orbits to the
adjusted replicator dynamics (5.5) in general change under such a
payoff transformation. If, instead, all payoffs to some player
position i are multiplied by a positive constant bi, then the
adjusted dynamics (5.5) is unaffected while the solution orbits to
the standard version (5.4) change. However, if in the latter
dynamics, the payoffs to all player positions are multiplied by
one and the same positive constant, then the effect is equivalent
to a change of time scale by the same factor b for all players i and
pure strategies h. Hence all orbits to the standard replicator
dynamics remain unchanged.

Just as in its single-population counterpart (3.5), local shifts of
payoff functions, as defined in subsection 1.3.3, have no effect at
all on the standard n-player replicator dynamics (5.5). In contrast,
such shifts do in general affect the solutions to the adjusted n-
player replicator dynamics (5.5). While the numerator in the
expression on the right-hand side in (5.5) is unchanged, the
denominatorthe average payoffdoes change by such a payoff
transformation (see subsection 1.3.3).

5.2.2 Two-Player Games

In the notation of subsection 1.1.2, let A be the payoff matrix of
player 1 and B that of player 2. Thus  is the payoff to player
1 and  the payoff to player 2 when player 1 uses pure
strategy  and player 2 uses pure strategy . Here ul(x, y) =



x. Ay, and u2(x, y) = y · BTx signify the expected payoffs to the
two players when player 1 uses mixed strategy  and 2
mixed strategy .

In this notation the standard two-population replicator equations
(5.4) can be written
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Since this version of the replicator dynamics is invariant under
local shifts in payoff functions, we may, without loss of
generality, suppose that both matrices have zeros off their
diagonals in the special case when each player position has only
two pure strategies:6

In this special case the standard replicator equations (5.8) and
(5.9) boil down to

where x2 = 1 - xl and y2 = 1 - yl.

We proceed to show that in this special case no interior
population state  is asymptotically stable in (5.4),
irrespective of the payoffs in the game. We do this by means of a
general and powerful technique that will later be used on
arbitrary (finite) n-player games. The technique, developed by
Amann and Hofbauer (1985) and Hofbauer and Sigmund (1988),
is based on Liouville's formula (see section 6.6).

Since division of a vector field by a positive function (the same
for all components of the vector field) does not alter the solution
orbits, only the velocity along these, we may divide the right-
hand sides in (5.11) and (5.12) by the product xlx2y1y2 without
affecting the solution orbits in the interior of Q. The resulting
system of differential equations,



clearly has a continuously differentiable vector field at all 
, and hence Liouville's formula applies to the interior of

the state space Q. Since the fight-hand side of each of the four
variables' differential equation does not contain the variable
itself, the vector field in (5.13)-(5.14) is divergence free.7

6. Here a1 = a11 - a21, a2 = a22 - a12, b1 = b11 - b12, and b2 = b22 -
b21; see subsection 1.5.3.
7. The divergence of a vector field is the trace of its Jacobian; see section
6.6.
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Hence the system (5.13)-(5.14) represents a volume-preserving
flow, implying that no interior population state (x, y) is
asymptotically stable. Formally, this follows from proposition
6.6. Since the solution orbits are the same as in the standard
replicator dynamics, we have established the claim that no
interior population state is asymptotically stable in that dynamics.
The following example illustrates the possibility that an interior
stationary population statehence a Nash equilibriummay
nevertheless be Lyapunov stable in the standard replicator
dynamics.

Example 5.2

A prototype asymmetric 2 × 2 game is the Matching Pennies
Game of example 1.5. The game was seen to have a unique Nash
equilibrium, and in this equilibrium both players use each of their
two strategies with probability . Rewriting the standard replicator
equations (5.11)-(5.12) in terms of xl and yl only, we get

The state space of this reduced dynamics is the unit square [0,
1]2, and the latter can be usefully subdivided into four equally
large subsquares. Figure 5.1 shows some typical solution orbits.
As suggested by this diagram, all solution orbits to the standard
replicator dynamics are closed curves, and the game's unique
Nash equilibrium, represented by the midpoint in the unit square,
is Lyapunov, but not asymptotically, stable.

The next example compares the solution orbits in the preceding
example to those of the adjusted replicator dynamics (5.5).



However, not all payoffs in the game studied therethe Matching
Pennies Gameare positive, and so (5.5) is not well defined.
Adding a positive constant to each payoff in the game has no
effect on the solution orbits to the standard replicator dynamics
and, if the constant exceeds 1, renders the adjusted replicator
dynamics well defined.

Example 5.3

Addition of 1 + c to each payoff in the Matching Pennies Game
of example 1.5 results in payoff matrices

For any c > 0 all payoffs are positive, and so the
(payoff-)adjusted replicator dynamics (5.5) is well defined. The
solution orbits to the standard replicator dynamics are precisely
the same as in example 5.1, and division of the
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Figure 5.1
Solution orbits to the standard two-population replicator 

dynamics in the Matching Pennies Game of examples 1.5 and 5.2.

right-hand sides in equations (5.11)-(5.12) by the corresponding
average payoff, x · Ay and yBTx, respectively, result in the
following payoff-adjusted replicator equations:

The effect of this payoff adjustment of the standard replicator
vector field is to bend the vector field somewhat inward, toward
the Nash equilibrium point less so the larger c > 0 is.
Hence all interior solution curves now swirl inward, and the Nash
equilibrium is asymptotically stable. As c increases, the pull
toward this equilibrium point is weakened. (In the limit as 
the solution orbits coincide with those of the standard replicator



dynamics.) Figure 5.2 shows some solution orbits for c = 0.1 and
c = 3, respectively.
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(a)

(b)

Figure 5.2
Solution orbits to the (payoff) adjusted two-population replicator 

dynamics in the re-scaled Matching Pennies Game of example 5.3: (a) 
For payoff parameter c = 0.1, (b) for payoff parameter c = 3.
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The next example is again an asymmetric 2 × 2 game. This game
has two Nash equilibrium components. One is a continuum, and
the other a singleton, both situated on the boundary of the mixed-
strategy space Q. In the standard replicator dynamics (5.4), all but
one point in the continuum component is Lyapunov stable, and
yet that component is not a Lyapunov stable set. Moreover some
interior solution trajectories converge to the Lyapunov stable
points in this component, while others converge to the singleton
component, which consists of a strict Nash equilibrium.

Example 5.4

Reconsider the Entry Deterrence Game of example 1.6. The set
QNE of Nash equilibria was seen to consist of two components;
one (subgame perfect) singleton, in which the entrant (intruder)
enters and the monopolist (owner) yields, and a continuum of
(subgame imperfect) Nash equilibria in which the first stays out
and the second threatens to fight entry. Applying the standard
replicator dynamics (5.11)-(5.12) to this game, we implicitly
imagine a large population of potential entrants (intruders) and a
distinct, large population of monopolists (owners). Pairs of
individuals, one from each population, are randomly matched to
play this game. No rationality is presumed on behalf of the
individuals. Instead, these are all programmed to one of the two
pure strategies available to their player position. The payoff of
the game represents the expected number of offspring, and the
standard replicator dynamics describes how the population shares
of each of the four pure strategies evolve over time. With xl
denoting the population share (in chapter 1 denoted x11) of
potential entrants who are programmed to strategy E (enter), and



y1 the population share (earlier denoted x21) of potential
monopolists who are programmed to strategy Y (yield), the
standard replicator dynamics (5.4) becomes

It is immediate from these equations that yl increases
monotonically along any interior solution orbit and that x1
decreases (increases) when yl is below (above) . In particular, it
follows that the unique subgame perfect strategy pair (x1, yl) =
(1, 1), a strict Nash equilibrium, is asymptotically stable; see
figure 5.3. Note also that the vector field points outward along
the Nash equilibrium component on the edge where x1 =0: There 

 Hence interior solution trajectories starting
near this component
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Figure 5.3
Solution orbits to the standard two-population replicator 

dynamics in the Entry Deterrence Game of examples 1.6 and 5.4.

and/or near the edge where yl = 0, converge to Nash equilibria in
that component; see figure 5.3. The evolutionary selection
pressure against the weakly dominated pure strategy (fight) is
thus weak for such initial states.

To enable a direct comparison with the single-population
replicator dynamics, we now focus on the special case of the
two-population standard replicator dynamics (5.8)-(5.9) when
applied to symmetric games. In the notation of chapter 3, let the
common pure-strategy set be K = {1, 2,...,k} and the associated
mixed-strategy simplex be D. Hence the polyhedron of mixed-
strategy profiles (x, y) here is Q = D2. By symmetry of payoff
functions (u2(x, y) = ul(y, x) for all  and ), it suffices to
use the payoff function u1, denoted u in chapter 3.

In the present two-population setting, a population state is a



point , where  is the pure-strategy distribution in player
population 1 and  the pure-strategy distribution in player
population 2. The associated average payoff in population 1 is
u(x, y) and that of population 2 u(y, x). The
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standard replicator dynamics (5.4) can therefore be written

For any initial state , let the solution to these differential
equations be denoted x for population 1 and h for population 2;
namely  is the state of population 1 at any time  and
likewise for . Note, in particular, that if the two
population distributions initially are the same, then, by symmetry,
they remain identical forever:

To see this formally, just note that x = y in (5.15)-(5.16) implies
that . In other words, the diagonal 
of the state space Q is invariant in the standard replicator
dynamics. Moreover on D the standard replicator dynamics (5.4)
is identical with the single-population dynamics studied in
chapter 3. It follows immediately that the same is true for the
orbits to the adjusted replicator dynamics (5.5), which in a
symmetric two-player game can be written8

In sum:

Proposition 5.4

For any symmetric two-player game, is invariant both in the



standard and adjusted replicator dynamics. Moreover the
solution orbits in D to these two dynamics are identical with
those of the single-population replicator dynamics (3.5).

Consequently, if, for some symmetric two-player game, a mixed
strategy , viewed as a population state in the single-population
replicator dynamics, has been found to be unstable, then the
associated symmetric two-population state (x, x) is necessarily
unstable in the two-population standard

8. Here, as elsewhere, we presume positive payoffs when speaking
about the (payoff-)adjusted replicator dynamics (5.5).
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and adjusted replicator dynamics alike. By contrast, (Lyapunov or
asymptotic) stability in the single-population replicator dynamics
does not imply the corresponding property in the two-population
standard or modified replicator dynamics. For instance, a mixed
strategy  may be asymptotically stable in the single-population
replicator dynamics, while the corresponding strategy profile 

 is a saddle point in the standard or adjusted replicator
dynamics. Hence stability of symmetric Nash equilibria may be
lost, but not gained, when moving from the single-population
setting to the two-population setting. On the other hand, as was
seen in example 5.4, asymmetric Nash equilibria, namely
population states , appear as new candidates for stable
states when one moves from the single-population setting to the
two-population setting. This will also be seen below.

Let us consider the classification of symmetric 2 × 2 games in
subsection 1.5.3, and make a comparison between the single-
population and two-population standard replicator dynamics
(3.5) and (5.4), respectively. The single-populations version was
analyzed in subsection 3.1.4, where payoffs were normalized so
that the off-diagonal elements were zero. Since also the standard
two-population replicator dynamics is invariant under local
payoff shifts, we may without loss of generality also here take the
payoff matrix of player 1 to be of the form

Equations (5.15) and (5.16) then become



Recall that  and ; see equations (5.11) and (5.12).

Categories I and IV (Prisoner's Dilemma Games)

If a1a2 <0, then the growth rates do not change sign in the
interior of the state space. Hence both populations converge from
any interior initial position to the dominant strategy (strategy 2 in
category I and strategy 1 in category IV). In these two game
categories there is no qualitative difference between the single-
population and two-population dynamics. See figure 5.4 (a) for
an illustration of the vector field as applied to the Prisoner's
Dilemma Game of example 3.1 (the two-population differential
equations are given in example 6.12). Granted all
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payoffs in the original payoff matrix A are positive, the same
qualitative conclusions are valid also for the modified replicator
dynamics (5.5) when applied directly to those payoffs.

Category II (Coordination Games)

If a1 and a2 are both positive, then the game has two strict Nash
equilibria, both symmetric, and one symmetric mixed Nash
equilibrium. In the single-population replicator dynamics, the
latter is unstable; in fact it is the separation point between the two
basins (intervals) of attraction of the two strict equilibria. The
situation in the present dynamics is qualitatively the same. To see
this, let l = a2/(a1 + a2). For states (x, y) with y1 <l, x1
decreases, while for y1 > l, x1 increases, and vice versa for the
movement in yl. The mixed-strategy Nash equilibrium is a saddle
point, and with the exception of a single curve through this point,
all solution trajectories converge to one of the strict equilibria; see
figure 5.4 (b) for an illustration of the two-population standard
replicator dynamics in the Coordination Game of example 1.10.
Granted all payoffs in the original payoff matrix A are positive,
the orientation of the vector field in each of the four quarters of
the unit square is unaffected by division of the average payoff for
each population. Hence the same qualitative conclusions are valid
also for the modified replicator dynamics (5.5), as applied
directly to those payoffs.

Category III (Hawk-Dove Games)

If a1 and a2 are both negative, then the game has two strict Nash
equilibria, both asymmetric, and one symmetric mixed Nash
equilibrium. In this game category a qualitative difference with



the earlier studied single-population replicator dynamics arises.
While the mixed Nash equilibrium strategy then was seen to
constitute an asymptotically stable population state, even
attracting the whole (relative) interior of that state space (which
here corresponds to the diagonal D), the associated mixed-
stratègy Nash equilibrium constitutes an unstable population state
in the two-population standard replicator dynamics, as well as in
the modified replicator dynamics. The reason for this stark
qualitative contrast between the single- and two-population
settings is that when the interaction takes place between two
distinct populations, there arises a possibility of polarization in
behaviors. Here the slightest deviation from identical population
distributions may lead the player populations toward
specialization in different pure strategies. In the Hawk-Dove
Game of example 2.3, for instance, this means that one
population will become more and more aggressive (playing the
''hawk'' strategy) over time, while the other population will
become more and more
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(a)

(b)
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(c)

Figure 5.4
Solution orbits to the standard two-population

replicator dynamics in generic symmetric 2 × 2 games:
(a) In category I, (b) in category II, (c) in category III.

yielding (play the "dove" strategy). Which of the two possible
long-run states will emerge depends on the initial population
state; see figure 5.4 (c) for typical solution orbits in that example.

More formally, the symmetric mixed-strategy Nash equilibrium
(x*, x*) again splits the state space Q = [0, 1]2 into four quarters.
Here . It is easily verified that any initial state
in any one of the two quarters on the diagonal D, except at this
symmetric Nash equilibrium point, leaves its quarter in finite
time. In contrast, again excluding the symmetric mixed Nash
equilibrium point, each quarter off the diagonal is positively
invariant, and all solution orbits therein converge to the
corresponding corner, as seen in the computer simulations in
figure 5.4 (c). Granted all payoffs in the original payoff matrix A



are positive, the orientation of the vector field in each of the four
quarters of the unit square is also here unaffected by division by
population averages, and so the same qualitative conclusions are
valid also for the modified replicator dynamics (5.5).
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Certain general features are seen in these diagrams. First, in
accordance with our earlier general observation, every Nash
equilibrium indeed constitutes a stationary population state in
both versions of the two-population replicator dynamics, and
every interior stationary state in these dynamics constitutes a
Nash equilibrium. Moreover in these diagrams every dynamically
stable state is a Nash equilibrium, and so is the limit state to any
convergent interior solution path. We will later show that these
observations concerning implications of evolutionary dynamics
for aggregate Nash equilibrium play are valid in all (finite) games
and for a wide range of selection dynamics.

As a new feature, when moving from single- to multipopulation
dynamics, we may note that mixed Nash equilibria did not fare
well. Despite the fact that these equilibria are perfect Nash
equilibriaindeed strictly perfect and hence strategically
stableviewed as singletons, they were seen to be unstable in the
standard and modified replicator dynamics. This stark difference
between the rationalistic and evolutionary paradigms concerning
mixed Nash equilibria turns out to be valid for all games in the
standard n-population replicator dynamics but not in the
modified n-population replicator dynamics (recall examples 5.2
and 5.3).

5.3 Replication by Imitation

In this section we extend the imitation models in section 4.4 from
a single population playing a symmetric two-player game to n
populations playing a (symmetric or asymmetric) n-player game.9
Just as in the setting for the standard and adjusted n-population
replicator dynamics, discussed in section 5.2, a population state is



here formally identical with a mixed-strategy profile , and
each component  represents the distribution of pure
strategies in player population i; namely xih is the probability that
a randomly drawn agent (individual, firm, organization) in
population i will use pure strategy . Moreover the replicators
are also here the pure strategies available to each player position.
However, instead of replication by way of biological
reproduction, we now follow the approach of section 4.4 and
imagine player populations of constant size in which each agent
lives forever but now and then reviews her pure strategy. The
following elaborations are straightforward

9. The discussion in this section follows closely Björnerstedt and
Weibull (1993).
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extensions of the imitation models sketched in section 4.4 (a
quick look back may be helpful).

5.3.1 'The Transmission Process

Let rih(x) denote the average time rate at which an h-strategist in
player population  reviews her strategy choice, when the
population is in state . Let  denote the probability that
such a reviewing agent will select pure strategy , and write 

 for the induced probability distribution
over the set Si.

Imagine that in a finite population setting the review times of an
h-strategist in player population i constitute the arrival times of a
Poisson process with arrival rate rih(x) and that, at each such
arrival time, the agent selects a pure strategy according to the
probability distribution pih(x). If all agents' Poisson processes are
statistically independent, the aggregate reviewing times among h-
strategists in player population i is a Poisson process with arrival
rate xihrih(x) when the population is in state x10 If strategy
choices are statistically independent random variables, the
aggregate arrival rate of the Poisson process of agents switching
from pure strategy  to pure strategy  is .

By the law of large numbers these aggregate stochastic processes
may be approximated as deterministic flows, each such flow
being equal to the arrival rate of the corresponding Poisson
process.11 This deterministic approximation results in the
following system of ordinary differential equations (cf. equation
(4.25) in section 4.4):



To guarantee the existence and uniqueness of a solution through
every initial population state x0 in Q, we henceforth assume that
the review functions  and choice-probability functions 

 are Lipschitz continuous on an open domain 
containing Q. By the Picard-Lindelöf

10. For notational simplicity it is here assumed that all player
populations are equally large, and all aggregate arrival rates are
computed on a per capita basis.
11. See Boylan (1992) for a critical analysis of flow approximations in
random matching models.
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theorem there then exists a unique and continuous solution
through every initial population state , a solution that never
leaves the state space Q (i.e., Q is positively invariant; see chapter
6).

5.3.2 Pure Imitation Driven by Dissatisfaction

As a model of pure imitation, assume that all reviewing agents
adopt the strategy of "the first man they meet in the street" in their
own player population. Formally for all population states ,
player positions  and pure strate gies :

Suppose that agents with less successful strategies on average
review their strategy at a higher rate than agents with more
successful strategies. More precisely, let

for some (Lipschitz continuous) function ri which is strictly
decreasing in its first (payoff) argument. As in the single-
population case this monotonicity assumption does not presume
that agents necessarily know the expected payoff to their current
pure strategy nor that they know the current population state x. In
the present multipopulation setting it should also be noted that
agents in one player population need not know anything about
the payoffs to other player positions.

Under assumptions (5.22) and (5.23) the population dynamics
(5.21) becomes



The growth rate  of the subpopulation of h-strategists is thus
composed of two terms, one sum representing the average review
rate in the player populationhence the same for all pure strategies
h available to the player positionand one negative term,
representing the review rate of h-strategists. By monotonicity of r
the growth-rate of a pure strategy h in player population i is
higher than that of pure strategy k if and only if strategy h earns a
higher payoff than strategy k.
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As a special case of (5.24), let the review rates be linearly'
decreasing in payoffs. Taking averages, we have

for some (Lipschitz continuous) functions, ai, bi such that bi(x)
> 0 and  for all states  and pure strategies .
Then all review rates are nonnegative, and (5.24) boils down to

In particular, if all functions bi are constant and equal, ,
then (5.26) is a mere (constant) rescaling of time in the standard
n-population replicator dynamics (5.4). Alternatively, presuming
that all payoffs are positive and letting  for some c > 0,
we obtain the adjusted n-population replicator dynamics (5.5). In
the first special case review rates are linearly decreasing in
absolute payoffs, , while in the second they are linearly
decreasing in relative payoffs,  .

5.3.3 Imitation of Successful Agents: Modal 1

Suppose that each reviewing agent samples another agent at
random from her player population, with equal probability for all
agents in that population, and that she observes with some noise
the average payoff difference between her own and the sampled
agent's strategies. More exactly, if, in player population i, an h-
strategist samples a k-strategist, then she observes payoff 

 to her own strategy h and payoff  to the other
agent's strategy k, where e and e' are random variables such that
their difference, the random variable e - e', has a continuously



differentiable probability distribution function .12
Having made such a pairwise payoff comparison, the reviewing
agent switches to the sampled agent's strategy if and only if the
observed payoff difference is positive, . The
conditional probability that the agent will switch to strategy k,
given that she sampled strategy k, is thus . Since
the probability that the agent will sample strategy k is xik, the
resulting conditional choice probability distribution  is
given by

12. see footnote 22 in chapter 4.
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Just as in the single-population setting the random variables e
and e' may alternatively be interpreted as idiosyncratic
preferences differences between agents in the population: Then 

 and  are the true average payoffs to pure
strategies h and k, respectively, according to the preferences of a
randomly drawn agent from player population i.

If all review rates are constantly equal to one,

this results in the following dynamics:

If the distribution function fi is strictly increasing, then the
growth rate  of the subpopulation of pure strategy h is higher
than that of another pure strategy k, available to the same player
position, if and only if strategy h earns a higher payoff than
strategy k. As in the single-population case (section 4.4), Taylor
expansion at an interior stationary state results in a time rescaling,
which here may be player specific, of the standard replicator
dynamics.

As a special case of (5.29), suppose that all error terms (or
idiosyncratic preference differences) are uniformly distributed
with a suport containing the range of all possible payoff
differences in the game. Then fi is an affine function over the



relevant interval, namely fi (z) = ai + biz for some  where
bi > 0, and (5.29) becomes

In particular, if all player populations have the same error
distribution, bi = bj for all , then (5.30) is the standard n-
population replicator dynamics (5.4), modulo a constant change
of time scale.

5.3.4 Imitation of Successful Agent: Model 2

As an alternative to pure imitation we might assume that the
choice probabilities  are proportional to strategy k's popularity
in the player population,
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xik, where the proportionality factor is larger the higher is the
current payoff to strategy k. Let the weight factor that a reviewing
h-strategist in player population i attaches to pure strategy k be 

, where wih is a (Lipschitz continuous) function
that is strictly increasing in its first (payoff) argument. Then

As in the single-population case the informational assumption
behind such choice probabilities is not that a reviewing agent
necessarily knows the current expected payoffs to all pure
strategies available to the player position, nor does she have to
know the current population state. Moreover, in the present
multipopulation setting, no knowledge of the payoffs to other
player positions is presumed.

Combining choice probabilities (5.31) with unit review rates, one
obtains the following dynamics:

Again growth rates are ordered according to payoffs: One pure
strategy has a higher growth rate than another (in the same player
position) if the first earns a higher payoff than the second.

In the special case of affine weight functions whereby wih(z, x) =
li + miz for some  such that mi > 0 and  for
all population states x, player positions i, and pure strategies h,



In particular, if all payoffs are positive, then the adjusted n-
population replicator dynamics (5.5) arises when weights are
proportional to payoffs (li = 0), that is, when reviewing agents
switch strategies according to the pure strategies' shares of the
total payoff "pie."

5.4 Replication by Contamination

Instead of adopting the perspective of the individuals or agents in
the population, let us briefly adopt a viewpoint that brings the
replicators to the
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foreground. Here the individuals or agents in the player
population in question are merely the "hosts" for which the
replicators compete.13 Suppose that individuals in the same
player population now and then randomly bounce into each
other, according to, say, a Poisson process with arrival rate bi(x).
All bounces being equally likely, the rate at which h- and k-
strategists bounce into each other is bi(x)xihxik, for any .
Strategies are contagious, so there is a probability  that the h-
strategist will become a k-strategist, and vice versa for the k-
strategist. Assuming statistical independence, we observe that
when a pair (h, k) bounces together, they will part as an (h, h)
pair with probability , as a (k, k) pair with probability 

, and otherwise as an (h, k) or (k, h) pair. In the first
case the number of h-strategists increases by one and the number
of k-strategists decreases by one, and conversely in the second
case. In the last two cases no change in population shares takes
place.

In terms of expected numbers, this bouncing and strategy
switching results in the following dynamics in player population
i:

Assuming, as usual, that the involved functions are Lipschitz
continuous, this system of differential equations has a unique
solution through every initial population state in Q. Moreover Q,
its interior and boundary, are all invariant sets.



If payoffs represent the reproductive strength of a pure strategy,
viewed as a contagious replicator in this epidemiological (or
statistical mechanical) model, then one might assume that each
contamination probability  is increasing in the average payoff 

 to the "attacking" (foreign) strategy k and decreasing in the
average payoff  to the "defending" (incumbent) strategy.14
Let

13. The same perspective can of course be adopted also in the single-
population setting. The related idea of "memes" competing for human
hosts. as a paradigm for social evolution. is due to Dawkins (1976).
14. Such an approach neglects stochastic elements. which may
nevertheless be important.
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for some (Lipschitz continuous) function qi which is increasing
in its first argument and decreasing in its second. Then (5.34) can
be written

Like many of the imitation dynamics, this epidemiological
dynamics ranks growth rates of pure strategies according to their
payoffs. Moreover there is a formal similarity with the earlier
studied imitation dynamics (5.29). Indeed that dynamics is the
special case of (5.36) which arises when the bouncing rate is
constantly equal to one and contamination probabilities are
functions of payoff differences.15

5.5 Classes of Selection Dynamics

We here consider certain classes of n-population selection
dynamics for n-player games, each such class containing both the
standard (5.4) and adjusted (5.5) replicator dynamics. Once these
classes have been defined, in the present section, results for
dynamics in these classes, concerning connections with solution
concepts in noncooperative game theory, are established in the
next section. The classification to be given is a straight-forward
extension from the single-population classification given in
section 4.3.

The widest class to be considered are the regular selection



dynamics. Within this general class four subclasses will be
studied. One is the class of payoff-monotonic selection dynamics,
in which a pure strategy with a higher payoff always has a higher
growth-rate than a pure strategy with a lower payoff. As was seen
in the preceding sections, many models of replication by
imitation (section 5.3) and contamination (section 5.4) fall in this
category. Another subclass of regular selection dynamics are
those that are payoff positive. Here the requirement is that a pure
strategy has a positive growth rate if

15. Set bi(x) = 1 and .
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and only if its payoff is above average in its player population.
Each of these two classes of regular population dynamics
contains the payoff linear selection dynamics, to which both the
standard (5.4) and adjusted (5.5) replicator dynamics belong. The
largest subclass of regular selection dynamics are those that are
weakly payoff positive. Here the only requirement is that if some
pure strategy earns above average in its player population, then
some such strategy has a positive growth rate. This class contains
all the other classes of regular selection dynamics mentioned
above.

5.5.1 Regularity

The notion of multipopulation regularity is a straightforward
generalization of the corresponding single-population notion.
Recall that the ith player mixed-strategy simplex Di is a compact
subset of Rmi and that the polyhedron Q = × Di of mixed-strategy
profiles accordingly is a compact subset of Rm, where m = m1 +
... + mn. Just as in the single-population setting, we specify the
system of differential equations for the population state in terms
of growth rates. Also here this turns out to be a convenient way
to describe how selection among present behaviors (pure
strategies) operates. Like in the single-population models studied
in chapters 3 and 4, mutations are treated indirectly by way of
dynamic stability considerations.

In the present setting a growth-rate function g assigns to each
population state x, player population i, and pure strategy h
available to player i the growth rate gih(x) of the associated
population share xih. Write g(x) = (g1(x), ... ,gk(x)), each



component gi(x) being a vector-valued growth-rate function for
player population i, and

Definition 5.4

A regular growth-rate function is a Lipschitz continuous function
with open domain containing Q, such that gi(x) · xi

= 0 for all population states and player populations .

Geometrically the condition gi(x) · xi = 0 requires the growth-rate
vector gi(x), for player population i, always to be orthogonal to
the associated player population vector xi. This guarantees that
for each player population i, the sum of its population shares xih
remains constantly equal to 1, as is apparent if the condition is
written coordinatewise:
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The standard n-population replicator dynamics (5.4) is the special
case , and when all payoffs are positive, the
adjusted n-population replicator dynamics (5.5) is the special case

. In both cases the orthogonality condition
is clearly met.

Let G denote the set of regular growth-rate functions. The
dynamics induced by a regular growth-rate function via the
associated system (5.37) of differential equations will be called a
regular selection dynamics on Q.16 All imitation dynamics
studied in the preceding section are regular in this sense.

Just as in the single-population setting (subsection 4.3.1), any
regular n-population growth-rate function induces a well-defined
dynamics on the relevant state-space, which in the present setting
is the polyhedron Q of mixed-strategy profiles. More precisely, if 

, then (1) the system (5.37) has a unique solution 
through any initial state , (2) each of the sets Q, int(Q) and
bd(Q) are invariant, and (3) the induced solution mapping 

 is continuous.

Not so surprisingly, the chain rule of differentiation implies that
the growth rate of the ratio between two (positive) population
shares, in any player population, equals the difference between
the two growth rates. Formally, for any player position , pure
strategies , and population state ,



For robust long-run predictions the criterion of asymptotic
stability plays a key role. If a population initially is near an
asymptotically stable state, then it will converge to it over time.
Even if the population state in the meantime is exposed to
occasional small shocks, such as mutations in small population
doses, the population will remain near to this asymptotically
stable state. The following result extends the general sufficient
condition for asymptotic stability in regular single-population
selection dynamics (proposition 4.3):

Proposition 5.5

Suppose that . A profile is asymptotically stable in the
associated dynamics (5.37) if (5.40) below holds for all profiles 

in some neighborhood of x:

16. This deflation is equivalent with the definition in Samuelson Zhang
(1992).
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Proof

Suppose that . For each player , let the subset  and
associated relative-entropy function  be defined as in
subsection 3.5.1. Let

and define the function  as the sum of the associated
relative-entropy functions

By lemma 3.1, , with equality if and only if y = x. Moreover
the argument in the second half of the proof of that lemma, as
applied to any regular selection dynamics (5.37), gives

Thus Kx is a strict local Lyapunov function if (5.40) holds,
implying that x is asymptotically stable, by theorem 6.4.

In view of orthogonality (5.38), (5.40) is equivalent to the more
geometric condition Si(xi - yi) · gi(y) > 0; namely at any nearby
population state y, each growth-rate vector gi(y) should, on
average across populations, make an acute angle with the straight
line from yi to xi (see the discussion in subsection 4.3.1).

5.5.2 Payoff Monotonicity

In analogy with the single-population case (subsection 4.3.3), any



growth-rate function g that always ranks each player position's
pure strategies, in order of payoffs will be called payoff
monotonic.17

Definition 5.5

is payoff monotonic if, for all population states , player
positions , and pure strategies :

17.This property is called relative monotonicity in Nachbar (1990),
order compatibility (of what he calls pre-dynamics) in Friedman
(1991), and simply monotonicity in Samuelson and Zhang (1992).
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In other words, if a pure strategy  is a better (equal, worse)
reply to the current population state  than another pure
strategy , then the first population share, xih, should have a
higher (equal, lower) growth rate than the second population
share, xik.

We will denote the class of payoff-monotonic growth-rate
functions . The dynamics induced Via (5.37) by such
growth-rate functions will be called payoff monotonic. The
imitation dynamics (5.24), (5.29), and (5.32) are examples of
payoff-monotonic selection dynamics as is the contamination
dynamics (5.36).

5.5.3 Payoff Positivity

An alternative compatibility property of population dynamics
with respect to the payoff of the game in question is that
strategies that earn above (below) average in their player
population grow (decline). Letting sgn(z) denote the sign of :

Definition 5.6

is payoff positive if, for all population states , player
positions , and pure strategies :

The subclass of payoff-positive growth-rate functions will be
denoted , and also the dynamics induced by such a growth-
rate function g will be payoff positive.18 Both the standard (5.4)



and adjusted (5.5) replicator dynamics are clearly payoff positive
in this sense.

Note that payoff positivity admits that one pure strategy yields a
higher payoff than another and yet has a lower growth rate,
provided that both strategies earn either above or below average.
Hence the two classes Gp and Gm are generally distinct.
Exceptions are games in which each player position has only two
pure strategies. Then a pure strategy earns above (below) average
in its player population if and only if it earns more (less) than the
other pure strategy available to that player position. Hence Gp =
Gm in any such game.

18.Nachbar (1990) calls this class sign-preserving.
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5.5.4 Payoff Linearity

A class of selection dynamics that has both the payoff monotonic
and payoff positive properties is that in which growth rates are
linearly related to the associated payoffs. More exactly:

Definition 5.7

is payoff linear if for each player position there exist
Lipschitz continuous functions  and such that, for

all population states and pure strategies ,

By orthogonality, each growth rate gih(x) is requested to be
proportional to the associated excess payoff: ci(x) = -ai(x)ui(x),
and so . The positivity of the proportionality
factor ai(x) implies that both monotonicity (5.41) and positivity
(5.42) are met. Hence the class of payoff linear growth-rate
functions, to be denoted , is indeed a subclass of each of the
two other classes:19

The standard replicator dynamics (5.4) is here the special case
when all proportionality factors ai(x) are constantly equal to 1.
Generally, if the proportionality functions are identical across
player populations but not necessarily constantly equal to one,
that is, if ai = aj for all , then the induced solution orbits in
Q are still identical to those of the standard replicator dynamics
(5.4). The only difference is that the population state moves
along these solution orbits at a different velocity (all time
derivatives are multiplied by the same positive number). If



different player populations have different proportionality
functions ai, then the induced solution orbits need not at all
coincide with those of the standard replicator dynamics (5.4).
Indeed such a player-specific rescaling of time arises in the
adjusted replicator dynamics (5.5); then , provided that
all payoffs are positive. The imitation dynamics (5.26), (5.30),
and (5.33) are examples of payoff-linear selection dynamics.

Example 5.5

Consider again the Matching Pennies Game of examples 5.2 and
5.3. In the notation of those examples, any payoff-linear
dynamics can be

19. A closely related monotonicity property, called aggregate
monotonicity, was introduced by Samuelson and Zhang (1992); see
subsection 5.8.1.

 



Page 199

written

where a and b are positive functions on an open domain
containing the unit square. In the standard replicator dynamics, 

, while in the adjusted replicator dynamics, 
 and , where c is the payoff

parameter given in example 5.3.

Consider, for any payoff-linear dynamics, any state (x, y) in the
interior of the northwest subsquare of the unit square. The
tangent of the replicator orbit through the point is the direction of
the standard replicator vector field. By varying the values a(x, y)
> 0 and b(x, y) > 0 of the multiplier functions a and b at the
point, we obtain a vector field with any direction pointing
northeast; see the indicated 90° cone in figure 5.5 (a). Hence a
payoff-linear dynamics may bend the replicator orbits inward
(a(x, y) > b(x, y)) or outward (a(x, y) <b(x, y)). The same
operation can be performed in the interior of each of the four
subsquares, and hence it is intuitively clear that the unique Nash
equilibrium of this game (the midpoint of the square) is
asymptotically stable in some payoff-linear dynamics and
unstable in others; see figure 5.5(b) and (c) for illustrations.
Payoff linearity thus allows for directional deviations from the
replicator vector field within a 90° cone, at all points (x, y) in the
interior of any of the four subsquares. At a boundary point
between two such subsquares, however, the replicator vector
field is either horizontal or vertical, and hence all payoff-linear
vector fields point in the same direction as the replicator vector



field. The replicator vector field vanishes at the Nash equilibrium
point, and so do all payoff-linear vector fields. Along the
boundaries of the full square, all payoff-linear vector fields point
in the same direction as the replicator field.

5.5.5 Weak Payoff Positivity

All the preceding classes of regular growth-rate functions are
subclasses of the class of weakly payoff-positive growth-rate
functions, defined, by way of a straightforward extension, as in
the single-population case (subsection 4.3.4). The defining
criterion is that whenever there exists a pure strategy that gives a
payoff above average in its player population, then such a pure
strategy should have a positive growth rate. This is the case, for
instance, if all pure strategies
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(a)

(b)
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(c)

Figure 5.5
Payoff-linear two-population replicator dynamics in the
Matching Pennies Game of examples 1.5, 5.3, and 5.5:
(a) The 90° cone for the vector field, (b) solution curve

when a(x, y) = [u1 (x, y) + c]-1 and b(x, y) = [u2(x, y) +c]-1,
(c) solution curves when a(x, y) = u1(x, y) + c

and b(x, y) = u2(x, y) + c.

that earn above average have positive growth rates, as under
payoff positivity, or if, say, some pure best reply has a positive
growth rate whenever such a strategy gives a payoff above
average in its player population. By the same argument as was
used in the single-population setting, it can be verified that every
payoff-monotonic growth-rate function is weakly payoff positive
also in the present multipopulation setting.

More exactly, suppose that  is some regular growth-rate



function with open domain X containing Q. For any population
state x and player position i, let Bi(x) denote the (possibly empty)
subset of pure strategies, available to that player position, which
earn above average
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Definition 5.8

A regular growth-rate function g is weakly payoff-positive if for
all and for some 

Denoting the set of weakly payoff monotonic growth-rate
functions Gw we have

It turns out that this property of weak positivity is sufficient
when it concerns implications for aggregate Nash equilibrium
behavior. This property does not suffice, however, to weed out
strictly dominated strategies along nonconvergent solution paths.

5.6 Implications of Evolutionary Dynamics for Noncooperative
Solution Concepts

5.6.1 Dominated Strategies

Just as in the single-population setting, it is not difficult to show
that a pure strategy that is strictly dominated by another pure
strategy vanishes in the long run, along any interior solution path
to a payoff-monotonic selection dynamics (see proposition 4.5).
The present multipopulation version of the result is due to
Samuelson and Zhang (1992):

Proposition 5.6

Suppose that . A pure strategy that is strictly dominated by
some pure strategy vanishes along all interior solution paths to
the associated dynamics (5.37).

Proof



Suppose that  for all . Then gik(x) - gih(x) <0
for all , by (5.41). By continuity of g and compactness of Q,
there exists some  such that  for all . Suppose
that . By (5.39),

and hence , for the same reason as in the proof of
proposition 4.5.

Example 4.4

suggests how, in a certain payoff-monotonic single-population-
selection dynamics, a strictly dominated strategy not dominated
by any pure
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strategy may survive in the long run, along nonconvergent
interior solution paths. This example also suggests that survival
of such strategies is possible in payoff-monotonic
multipopulation dynamics. For we may apply the same dynamics
as there to each of two populations separately, where each
population takes one of the player positions in the symmetric
two-player game in question. In such a symmetric setup the
diagonal D of Q is invariant, and the two-population dynamics
induces the same solution trajectories on D as the single-
population dynamics.

In payoff-linear selection dynamics, however, all strictly
dominated strategies vanish, not only those that are strictly
dominated by pure strategies. This result, also due to Samuelson
and Zhang (1992), can be proved along the same lines as
proposition 3.1 was established for the single-population case:

Proposition 5.7

Suppose that . A strictly dominated strategy vanishes along
any interior solution path to the associated dynamics (5.37).

Proof

Suppose that  is strictly dominated by , and let

By continuity of ui and compactness of . As in the proof of
proposition 3.1, define  by



Suppose that  and let ai be the associated rescaling function
of time for player . Since  is compact and ai continuous, 

 for some ai > 0. Clearly vik is differentiable, and its time
derivative along any interior solution path  is, at
any point ,
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Hence vik [x(t. x0)] is strictly decreasing toward minus infinity as 
. By definition of vik, this implies that .

In fact Samuelson and Zhang (1992) go one step further and
show that the conclusion above can be extended to all pure
strategies that are iteratively strictly dominated (see Hofbauer and
Weibull 1995 for a generalization):

Theorem 5.1

Suppose that . If a pure strategy is iteratively strictly
dominated, then its population share converges to zero along
any interior initial solution path to (5.37).

(For a formal proof, see Samuelson and Zhang 1992; for an
intuitive argument, see the discussion preceding theorem 3.1.)

For the single-population replicator dynamics in symmetric two-
player games, it was shown that if a pure strategy i is weakly
dominated, and this strategy does not vanish in the long run, then
all pure strategies vanish against which strategy i performs worse
than the dominating strategy. Suitably reformulated, this result
can be extended to the present setting, provided that the selection
dynamics is payoff linear. However, now the result involves one
pure strategy for each player position. For the sake of notational
clarity, the result will be established only for two-player games
(the extension to games with more players should be clear from
the proof). The result then is as follows: If a pure strategy k in
one of the two-player positions i is weakly dominated by some
strategy  and strategy k does not vanish from its player
population over time, then all those pure strategies h in the other
player position, j, against which yi is better than k, vanish from



that player population j (see subsection 3.2.2). With some abuse
of notation:

Proposition 5.8

Suppose that n = 2 and . If is weakly dominated by ,
and , where and , then

 or .

Proof

Let  be as in the proof of proposition 5.7. Then

for all . Since yi weakly dominates  and x is interior, vik
(x(t, x0)) decreases monotonically over time along any solution
x(t, x0) through an interior initial state x0.
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Now suppose that  and that  is such that .
Since yi wetly dominates ,

for any . Since  is compact and ai continuous,  for
some ai > 0. Hence at all times ,

The rest of the argument is identical with that in the proof of
proposition 3.2.

The following example illustrates the possibility that a weakly
dominated pure strategy survives along interior solution
trajectories to a payoff-linear selection dynamics, the standard
replicator dynamics (5.4).

Example 5.6

Reconsider the Entry Deterrence Game of examples 1.6 and 5.4.
The second pure strategy to player position 2 (fight) is weakly
dominated (by any mixed strategy), and performs worse against
the first player's first pure strategy (enter). Hence, along the
solution trajectory to any payoff-linear selection dynamics,

 by proposition 5.8. Solution orbits to the
standard replicator dynamics (5.4) were analyzed in example 5.4;
see figure 5.3. Indeed we see that in the notation of the present
section and along any interior solution trajectory, either 

 and  (when the solution converges to the
subgame perfect equilibrium) or  and h2 [t, (x0, y0)]
converges to a value above  (when the solution converges to a



point in the other Nash equilibrium component). In the latter case
the weakly dominated second strategy (fight) does thus not
vanish in the long run.

5.6.2 Nash Equilibrium

It turns out that payoff-monotone and payoff-positive selection
dynamics have similar imputations for aggregate Nash
equilibrium behavior. Indeed the most important of these are
valid for any weakly payoff-positive selection dynamics.

We begin by noting that all payoff-monotonic and payoff-
positive dynamics have the same set of stationary states. Since
the standard replicator dynamics (5.4) is payoff monotonic, this
set must be the set Q0 defined in equation (5.6):
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Proposition 5.9

If , then the associated set of stationary states in (5.37)
is

Proof

First, suppose that . Then x is clearly stationary if  since
(5.42) then requires that gih(x) = 0 for all , . Likewise,
for any , (5.41) implies that for each player population i,
there exists some  such that gih(x) = mi for all . But then
gi(x) · xi = mi, and so mi = 0 by (5.38). Hencex again is stationary
in (5.37).

Second, suppose that  is stationary in some regular selection
dynamics (5.37). Then gih(y) = 0 for all  and . For 
this implies that  for all , , so . Likewise
for  this implies that for each player population i there exists
some  such that  for all . But then 

, and thus .

An immediate implication of this result is that all interior
stationary states are Nash equilibria and all Nash equilibria are
stationary, in any payoff-monotonic or payoff-positive selection
dynamics (5.37). The first implication, that interior stationarity
implies Nash equilibrium, is valid also for any weakly payoff-
positive selection dynamics (see below). Not all Nash equilibria
need to be stationary in such a dynamics, though. The reason is
that, in contrast to the two other criteria, weak payoff positivity
does not impose any condition on growth rates in a player



population where everyone earns the same payoff. Individuals in
such a population may switch from one pure strategy to another,
and such drift may take the population away from a Nash
equilibrium. The following simple example illustrates that it is
sufficient with one such player population.

Example 5.7

Consider the symmetric 2 × 2 game with payoff matrices

It is as if player 1 wants to do whatever player 2 does, but player
2 is completely indifferent. The set of Nash equilibria in this
(nongeneric) game consists of a single connected (but
nonconvex) component; see figure 5.6 (a). Due to 2's
indifference, weak payoff positivity imposes no restriction,
beyond regularity, on the growth-rate function g2 for that player
population. Let, for
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instance, g2 represent a general drift toward pure strategy 1, and
suppose that the growth-rate function for player population 1 is
as in the standard replicator dynamics. In the notation in
subsection 5.2.2,

The only stationary states in this dynamics are the four vertices,
but the only dynamically stable state is when both populations
play their first pure strategy, namely when both players always do
what the indifferent player 2 tends to do; see figure 5.6 (b).

What about stationary states that are not Nash equilibria? In the
context of the single-population replicator dynamics in symmetric
two-player games, studied in detail in chapters 3 and 4, it was
shown that such symmetric stationary states are not Lyapunov
stable. In its most general form this was shown for weakly
payoff-positive single-population selection dynamics (subsection
4.3.4). It turns out that this implication holds also in the present
multipopulation setting, again under weak payoff positivity. Note,
however, that while the single-population approach only dealt
with symmetric Nash equilibria in symmetric two-player games,
we here consider arbitrary Nash equilibria in arbitrary (finite) n-
player games. Moreover a symmetric Nash equilibrium in a
symmetric two-player game may be dynamically stable in the
single-population standard replicator dynamics (3.5) without
being stable in the corresponding two-population dynamics (5.4).
Indeed we saw in section 5.2 that the symmetric Nash
equilibrium of the Hawk-Dove Game, which is asymptotically
stable in the single-population standard replicator dynamics,



constitutes an unstable (saddle-point) state in the two-population
standard replicator dynamics. Instead, the game's two asymmetric
and strict Nash equilibria were seen to be asymptotically stable in
the latter dynamics, as shown in figure 5.4 (c). That Lyapunov
stability does imply Nash equilibrium also in multipopulation
payoff-monotonic selection dynamics was suggested in Nachbar
(1990).

In chapters 3 and 4 we also showed that even if a stationary state
is not Lyapunov stable in certain single-population dynamics in a
symmetric two-player game, it may still be a symmetric Nash
equilibrium, namely if there is some interior solution path that
converges to the state. This result was established for the single-
population standard replicator dynamics (3.5) in subsection 3.3.3,
and in its most general form for weakly payoff-monotonic single-
population selection dynamics in subsection 4.3.4. Nachbar
(1990) suggested that this
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(a)

result holds also for payoff-monotonic multipopulation selection
dynamics. Here it is established for all weakly payoff-positive
selection dynamics. Again, moving from single-population
dynamics to multipopulation dynamics allows also for
nonsymmetric population states and Nash equilibria.

We summarize these implications in one theorem. Although the
proofs are straightforward extensions of the corresponding
proofs for single-population dynamics in symmetric games, we
here give them in full. In view of proposition 5.4 this result
generalizes these earlier discussed implications from dynamic
evolutionary selection to aggregate Nash equilibrium behavior.

Theorem 5.2

Suppose that , and consider the associated dynamics (5.37):



a. If is stationary, then .

b. If is Lyapunov stable, then .

c. If is the limit to some interior solution, then .
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(b)

Figure 5.6
(a) The set QNE in the game of example 5.7.

(b) Solution curves to the dynamics in example 5.7.

Proof

(a) Suppose that  is stationary in (5.37). Then gih(x) = 0 for
all  and , so  for all , by weak payoff positivity.
Thus . (b) Suppose that  is stationary in (5.37). Then
gih(x) = 0 for all  and . If , then  for some 
, and hence, by weak payoff positivity, gih (x) > 0 for some 

. By stationarity, , that is, xih = 0. By continuity of gih,
there is a d > 0 and a neighborhood U of x such that  for all

. But then  exp (dt) for any  and all times t
> 0 such that . Thus xih(t, x0) initially increases
exponentially from any . Yet xih = 0, so x is not



Lyapunov stable. (c) Suppose that  and , in
some weakly payoff-positive dynamics (5.37). Then x is
stationary, by proposition 6.3, and gih(x) = 0 for all  and 
. If , then  for some , and hence, by weak payoff
positivity, gih(x) > 0 for some  with xih = 0. By continuity of
gih, there is a d > 0 and a neighborhood U of x such that
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 for all . However, this contradicts the hypothesis
that x(t, x0) converges to x. The latter implies that there exists a
time T > 0 such that  for all . Since xih = 0, there
must be some  such that dxih(t, x0)/dt <0, a contradiction to
gih being positive on . Hence .

The extensive-form game in the following example has two Nash
equilibrium components. One is a continuum of Nash equilibria,
and all but one of these are Lyapunov stable in the standard
replicator dynamics. Hence as a set this component is not even
Lyapunov stable. However, it does attract a fairly large set of
interior solution trajectories. The other Nash equilibrium
component is a singleton, consisting of a strict Nash equilibrium.
This Nash equilibrium is asymptotically stable. In the extensive
form this game has three subgame perfect equilibria, two in the
continuum component, and the mentioned strict equilibrium.
Only the latter is compatible with ''forward induction.''

Example 5.8

Consider the extensive-form game in figure 5.7 (a). In this game
player 1 may take an outside option that gives both players
payoff 2, or else play a simultaneous-move 2 × 2 game of the
Baffle of the Sexes type. The Battle of the Sexes subgame has
three Nash equilibria: each of the two symmetric and strict
equilibria, and one mixed-strategy equilibrium. Since precisely
one of these subgame Nash equilibria results in a higher payoff to
player 1 than the outside option gives her, the game has three
subgame perfect Nash equilibria. In two of these, player 1 takes
the outside option, and in the third she enters the Battle of the
Sexes subgame and earns payoff 3. However, as has been argued



by van Damme (1989), the first two subgame perfect equilibria
can be rejected by forward induction. The intuitive argument is
that these equilibria break down if player 2, upon seeing 1's
deviation from the equilibrium action of taking the outside
option, maintains the hypothesis that player 1 is "rational:' Then
player 1 should be expected not to use her strictly dominated
strategy db, so player 2 should deviate as well.

The pure-strategy sets of this game are Sl = {dt, db, at, ab} and
S2 = {l, r}, and the associated payoff matrices are
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(a)

(b)

Figure 5.7
(a) The extensive form of the Outside Option Game
of example 5.8. (b) The (reduced form) polyhedron

Q in this game, with Nash equilibrium
components C and D.
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The set QNE has two components,  and 
and . The singleton component D consists of the game's
unique strict equilibrium; this corresponds to the only forward
inductive sub-game perfect equilibrium in the extensive form.
Since the last two pure strategies of player 1 are behaviorally
undistinguishable, we will plot the sum x3 + x4 of their
population shares (probabilities) on one axis. The resulting
polyhedron of (reduced form) mixed-strategy profiles, with Nash
equilibrium components, is given in figure 5.7 (b). The second
pure strategy of player 1, , is strictly dominated by her
third (and also fourth) pure strategy, . Hence, by
proposition 5.6, the second strategy vanishes along all interior
solution trajectories, to any payoff monotonic dynamics.
Geometrically this means that interior solution trajectories
converge to the boundary face B of the polyhedron Q where x2 =
0. (In figure 5.7 (b), this is the square and sloping boundary face
farthest from the viewer.) The arrows along the edges of the
polyhedron in that diagram give the associated directions of the
vector field of any payoff-monotonic dynamics. Note in
particular the movement out from the boundary face B at the
vertex where x1 = 1 and yl = 0, along the edge to the origin. Near
this edge, the strictly dominated strategy  temporarily grows
along interior solution trajectories, finally to fall down to zero at
the Nash equilibrium component C. The reason is that initially
individuals in population 2 rarely use their first pure strategy, and
since virtually all individuals in population 1 initially enter the
Battle of the Sexes Subgame, the selection against their strictly
dominated second pure strategy is very weak in the beginning.
All interior solution trajectories starting near this edge converge



to some point on the Nash equilibrium component C. The
standard replicator dynamics on the boundary face B (where x2 =
0) is given by

This is qualitatively the same as that in the Entry Deterrence
Game of example 5.4. In particular, all but one point in the
component C are Lyapunov stable, C is not Lyapunov stable, and
the strict Nash equilibrium component D is, as expected,
asymptotically stable. In this weak sense evolution selects the
forward inductive equilibrium (see Nöldeke and Samuelson
1993).

5.6.3 Strategically Stable Sets of Nash Equilibria

A closed set  of Nash equilibria is strategically stable in the
sense of Kohlberg and Mertens (1986) if it is robust with respect
to any sequence
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of small trembles in strategies and contains no. proper subset
with this property (see subsection 1.4.5). Since such sets consist
of perfect Nash equilibria, and asymptotic stability in the single-
population replicator dynamics implies' (symmetric) perfect
equilibrium (section 3.4), one may ask if there is a similar
connection between setwise asymptotic stability in n-population
selection dynamics and strategic stability.

While some games possess no asymptotically stable population
state, there is always at least one (closed) set of states that is
asymptotically stable in any given, regular dynamics, namely the
whole polyhedron Q itself. Moreover sometimes an
asymptotically stable proper subset of Q can be identified, in
which case the evolutionary dynamic paradigm does have some
predictive power. If the initial population state belongs to such a
subset, or is near to it, then the population state will remain in the
set, or near to it, at all future timeseven in the presence of
(unmodeled) occasional small shocks to the population state such
as those due to mutations, experimentation, or 'mistakes in
individual behavior.

Suppose that a (nonempty and closed) proper subset X of the
polyhedron Q of strategy profiles has been found to be
asymptotically stable in some payoff-monotonic or payoff-
positive selection dynamics. In the special case where X is a
singleton, we have earlier seen that the unique strategy profile (at
least) has to be a Nash equilibrium (theorem 5.2). Swinkels
(1993) has established a result with the implication that if X is
convex, then it must contain some strategically stable subset. In



the special case of a singleton X = {x}, it follows that  has to
be strictly perfect; see subsection 1.4.3.

Proposition 5.10

Suppose that and is nonempty, closed, and convex.
If X is asymptotically stable in (5.37), then X contains a
strategically stable subset .

Proof

We here only restate Swinkels's (1993) result and verify that it
applies to the present setting. The result in question (his theorem
2) concerns the class of regular selection dynamics (5.37) such
that

It is not difficult to show that all payoff-positive selection
dynamics meet this condition. For by orthogonality (5.38) we
may rewrite the left-hand side in the desired inequality as 

, a quantity that is
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nonnegative by definition of payoff positivity (5.42). Likewise,
for any  and , a payoff-monotonic growth-rate function gi
ranks the growth rates  in the same order as the
corresponding payoffs  are ranked. For any  and 

, let  be the subset of pure strategies with nonnegative
growth rates, and let ai be the lowest payoff among these. With 

 denoting the set of remaining pure strategies in Si, we have

Swinkels establishes that if a nonempty closed set 
asymptotically stable in a selection dynamics meeting the above
condition, and X has a basin of attraction that contains a (relative)
neighborhood U of X such that the closure of U is
homeomorphic to Q, then X contains a set  that is
strategically stable in the sense of Kohlberg and Mertens (1986).
(By his theorem 1, the set Y can in the present context be taken to
be hyperstable in the sense of Kohlberg and Mertens 1986.) The
topological condition on the basin of attraction is clearly met if X
is convex.

It may seem surprising that asymptotic stability in evolutionary
selection dynamics, which presumes no rationality whatsoever,
has any connection with such a stringent noncooperative
refinement as strategic stability. Intuitively this connection is
possible because both criteria rely on the data of the game in a
similar way; they are both robust to small strategy perturbations
and depend positively on payoffs (in the sense that players strive
for high payoffs). Note, however, the convexity requirement on
the set X in the statement of the above result. The significance of



this restriction is apparent from the earlier analysis of the
Matching Pennies Game of example 5.2; for certain payoff-linear
dynamics the boundary of the polyhedron Q is asymptotically
stable and yet does not contain any Nash equilibrium.

5.7 Robust Criteria for Evolutionary Dynamic Stability

In many applications only broad qualitative features concerning
the selection dynamics are known or assumed. Then it is
desirable that predictions, in terms of strategy profiles or sets of
strategy profiles, be dynamically stable in a
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fairly wide class of selection dynamics. At the present stage of
research in this field this robustness desideratum concerning the
details of the dynamics appears mandatory. Just think of how
slight modifications of imitation processes can change the
dynamics from, say, the standard replicator dynamics to the
adjusted replicator dynamics, as well as to other payoff-linear or
payoff-monotonic selection dynamics. Such robustness clearly
imposes restrictions on the stability criterion to be used. In
particular, as pointed out in chapter 3, Lyapunov stability is not
satisfactory. This property is structurally nonrobust in that it can
be destroyed by arbitrarily small perturbations of the vector field
generating the dynamics.20 In contrast, asymptotic stability is
preserved under such small perturbations, such as those due to
occasional mutations, exper-imentations, or mistakes in small
population fractions.21 As will be shown later, robustness of
predictions also imposes restrictions on the class of strategy
profiles or sets of strategy profiles. In particular, it will be shown
that such stringent robustness disqualifies all mixed-strategy
profiles (i.e., where at least one player randomizes) and all sets of
strategy profiles in the (relative) interior of any face of the
polyhedron of mixed strategies.22

5.7.1 Evolutionary Stability

In chapter 3 it was shown that evolutionary stability of a strategy
in a symmetric two-player game implies asymptotic stability in
the associated single-population replicator dynamics (3.5)
(proposition 3.10). The corresponding implication for the present
context, namely from evolutionary stability of a strategy profile in
an arbitrary (finite) n-player game to its asymptotic stability in the



associated standard (5.4) and adjusted (5.5) n-population
replicator dynamics, is also valid. In fact the implication holds
for a very wide class of

20. For instance, the unique Nash equilibrium in the Matching Pennies
Game was seen in example 5.2 to be Lyapunov, but not asymptotically;
stable in the standard replicator dynamics (5.4). However, as can be
seen from the analysis in example 5.5 of the same game in terms of
payoff-linear selection dynamics, an arbitrarily small perturbation of
the standard replicator vector field can turn the Nash equilibrium
unstable (and an opposite perturbation can turn it asymptotically
stable).
21. More precisely, for sufficiently small perturbations of the vector field
in question, there will be some arbitrarily nearby asymptotically stable
point or set. However, in some examples, asymptotic stability seems
unnecessarily stringent for robust predictions; see, for instance, set C in
example 5.10.
22. Recall (from subsection 1.1.1) that a set  is a face of Q if it is the
cartesian product of faces of the players' mixed-strategy simplexes, where
a face of a simplex Di is the set of all randomizations over some
nonempty subset of pure strategies available to the player position.
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selection dynamics. In view of the fact that evolutionary stability
of a strategy profile is equivalent to it being a strict Nash
equilibrium (proposition 5.1), this is not so surprising. What may
be surprising, though, is that unlike in the single-population
context, here the converse holds for a class of selection dynamics
containing the standard replicator dynamics: Asymptotic stability
is equivalent with strict Nash equilibrium. We begin by
establishing:

Proposition 5.11

Every strict Nash equilibrium is asymptotically stable in all
weakly payoff-positive selection dynamics (5.37).

Proof

Suppose that  is a strict Nash equilibrium. Then x is a vertex
of Q, say,  for each , and  for all  and .
By continuity of u (and finiteness of the pure strategy sets) these
strict inequalities hold also for all nearby profiles. Formally x is
contained in an open set U such that

.

Without loss of generality, U can be taken to contain no other
vertex of Q. Thus  for all  and , and so

Thus, for any weakly payoff-positive growth-rate function g,
gihi(y) > 0 for all , . Here proposition 5.5 comes in
handy. Its sufficient condition (5.40) for asymptotic stability (in
any regular selection dynamics) is clearly met in the present case:



It is not difficult to establish the following partial converse to this
result: If a pure-strategy profile  is not a strict Nash
equilibrium, then x is not asymptotically stable in any payoff-
monotonic or payoff-positive selection dynamics (5.37) (see
Samuelson and Zhang 1992). We know from theorem 5.2 that an
asymptotically stable profile x is a Nash equilibrium. Suppose
that  is pure but not a strict Blush equilibrium. Then there is
some player i who has an alternative pure best reply . The
edge of the polyhedron Q that connects the vertex x with the
vertex  is invariant under any regular selection dynamics.
Along this edge the payoff to player i is constant, and hence no
movement takes place in a payoff-monotonic or payoff-positive
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selection dynamics. (However, some movement may well take
place in a selection dynamics that is only weakly payoff positive;
see example 5.7.)

Another negative result for pointwise asymptotic stability is that
no Nash equilibrium that belongs to a nonsingleton component
of the set QNE of Nash equilibria is asymptotically stable in any
payoff-monotonic or payoff-positive selection dynamics. The
obvious reason for this is that all Nash equilibria are stationary in
such dynamics, and hence such nearby points, which exist in a
nonsingleton component of QNE, are not attracted toward the
Nash equilibrium in question. This failure of (pointwise)
asymptotic stability arises easily in extensive-form games. If a
Nash equilibrium in such a game does not reach all information
sets of the game, then some player can alter her (local) strategy at
an unreached information set without affecting her own payoff,
and if the game is generic in the sense that there are no payoff
ties at its end nodes, such a local strategy deviation, if sufficiently
small, can be made without affecting the best replies of the other
players. Thus in such a game the Nash equilibrium in question
belongs to a nonsingleton component of QNE and is not
asymptotically stable.

We have established:

Proposition 5.12

Suppose that . If is pure but not a strict
equilibrium, or x belongs to a nonsingleton component of QNE,
then x is not asymptotically stable in (5.37).

Recall that asymptotic stability in the single-population replicator



dynamics (3.5) in symmetric two-player games implies perfection
(proposition 3.9). In one of its two multipopulation counterparts,
the standard n-population replica-tot dynamics (5.4), the
implication of asymptotic stability is even stronger: If a profile 

 is asymptotically stable in that dynamics, then  is strict
(Hofbauer and Sigmund 1988; Ritzberger and Vogelsberger
1990). In view of proposition 5.11, we have the following
striking equivalence:

Proposition 5.13

A profile is asymptotically stable in the standard replicator
dynamics (5.4) if and only if x is a strict Nash equilibrium.

Proof

The "if" part follows immediately from proposition 5.11, and the
"only if" part follows from proposition 5.12 in conjunction with
proposition 5.14 below.

In view of the fact that the standard replicator dynamics appears
as a first-order approximation to a range of other selection
dynamics (e.g., see the

 



Page 218

discussion in subsection 4.4.2), this result, together with
proposition 5.12, suggests that few population states  are
asymptotically stable in n-population selection dynamics.

5.7.2 Relatively Interior Sets

Example 5.3 shows that interior Nash equilibria do exist that are
asymptotically stable in some payoff-linear selection dynamics.
However, as shown by Hofbauer and Sigmund (1988), no such
equilibrium is asymptotically stable in the benchmark case of the
standard replicator dynamics (5.4). The proof of this claim uses a
deep and general property of the standard replicator dynamics,
namely that it induces the same solution orbits in the interior of
the polyhedron Q as a certain divergence-free vector field.
Hence, since a divergence-free dynamics on an open set is
volume preserving, by Liouville's formula, it has no compact
asymptotically stable set (proposition 6.6). In particular, no
interior population state is asymptotically stable in the standard
replicator dynamics. Since this argument also applies to the
relative interior of every face of Q (each face being invariant in
the dynamics), only pure-strategy profiles can be asymptotically
stable. Consequently, if  is asymptotically stable in the
standard replicator dynamics, then x must be a strict Nash
equilibrium, by proposition 5.12.

It is easily shown that the result extends to any constant player-
specific rescaling of time in the standard replicator dynamics, and
thus for first-order approximations of a wide class of
evolutionary dynamics:23

Proposition 5.14



If a closed set belongs to the relative interior of some face of
Q, then X is not asymptotically stable in (5.48), for any
scalarsai > 0:

This result can be proved by an extension of the technique used
in subsection 5.2.2 for 2 × 2 games; see the appendix (subsection
5.8.2) at the end of this chapter for details. Hence, if one requires
predictions to be robust across a class of selection dynamics that
contains any constant rescaling of time in

23. Ritzberger and Weibull (1995) show that the result is valid for all
payoff-linear selection dynamics in which each player-specific
proportionality factor ai(x) is a nondecreasing function of the
associated average payoff ui(x). (Note that the adjusted replicator
dynamics (5.5) does not belong to this subclass.)
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the standard replicator dynamics, then one can disregard all
relatively interior (closed) sets.

5.7.3 Pure-Strategy Subsets Closed under Better Replies

One class of (closed and convex) sets which are not relatively
interior are the faces of Q (see subsection 1.1.1). For any
nonempty subset  of player i's pure strategies, let  be
the face of the simplex Di spanned by Hi:

Note that Di(Hi) = Di if Hi = Si, and  if Hi is the
singleton {h}.

Likewise, for any collection of such subsets  of pure
strategies, one for each player position , let , and let
Q(H) be the face of the polyhedron Q spanned by H:

In particular, if H = S, then Q(H) = Q. This is the maximal face
of Q. At the opposite extreme end of the spectrum of faces of Q
are the pure strategy profiles, each of which, viewed as a
singleton set, is a minimal face of Q.

It turns out that all payoff-positive selection dynamics agree
concerning asymptotic stability of sets  that are faces; a face 

 is either asymptotically stable in all such dynamics or in
none. Hence the details of the dynamics are irrelevant as long as
it is payoff positive. Evolutionary dynamic predictions in terms
of faces are thus highly robust. More exactly, such predictions are
robust to arbitrarily large perturbations of the vector field of the



dynamics as long as the perturbed vector field also results in a
payoff-positive selection dynamics. In contrast, perturbations that
result in a (regular) selection dynamics that is not payoff positive
have to be small; if the face in question is asymptotically stable in
the original dynamics, then it will remain so for all sufficiently
small perturbations. In contrast to the case in the single-
population setting, asymptotic stability of a face can be
characterized in terms of weakly better replies (Ritzberger and
Weibull 1995).

In the spirit of sections 3.7 and 4.3.3 we call a pure strategy  a
weakly better reply to a strategy profile  if h does not give a
lower payoff to
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its player position, against x, than xi does. In terms of player
populations, the weakly better replies are those pure strategies
that do not earn below average.

Formally:

Definition 5.9

A subset of pure-strategy profiles  is closed under
weakly better replies if for all player positions where

The maximal subset H = S clearly meets this condition, since, by
definition, there is no pure strategy profile outside S. Also a
singleton set H = {s} is closed under weakly better replies if and
only if each pure strategy si is the unique best reply to , that is,
if and only if the profile s constitutes a strict Nash equilibrium. In
this sense closure under weakly better replies is a setwise
generalization of strict Nash equilibrium.

Moreover a necessary condition for a set H = × Hi to be closed
under weakly better replies is that it be closed under best replies.
The latter property is that  for all strategy profiles 
and player positions  (see Basu and Weibull 1991 for an
analysis of such sets).

The following result (Ritzberger and Weibull 1995) generalizes
the earlier observation that in any payoff-positive selection
dynamics, asymptotic stability of a pure-strategy profile is
equivalent with it being a strict Nash equilibrium (propositions
5.11 and 5.12):24



Theorem 5.3

Suppose that . A face is asymptotically stable in the
associated selection dynamics (5.37) if and only if is
closed under weakly better replies.

To prove this, we proceed just as in the single-population setting
(sections 3.7 and 4.3.3) by first establishing that if a subset 

 of pure strategy profiles is closed under weakly better
replies, then H also contains the weakly better replies to all
population states near the face it spans:

Lemma 5.1

If is closed under weakly better replies, then for
some open set U such that

24. Ritzberger and Weibull establish this for a somewhat larger class
of regular growth-rate functions g, namely those that assign negative
growth rates to pure strategies that earn below average.
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Proof

Suppose that  is closed under weakly better replies.
Thus, if, for some , , then  for all . By
continuity of ui and compactness of D(H), there is an open set
Uih such that  and  for all . Let 
. Doing likewise for all player positions , and taking the finite
intersection  of open sets containing D(H), one obtains an
open set U that contains D(H) and meets condition (5.52). (The
case H = S is trivial.)

The first part of the following proof is essentially the same as in
the single-population setting (proposition 4.10b). The second
part, establishing that closure under weakly better replies is
necessary for asymptotic stability, is unique to the present setting.
Indeed in example 3.15 it was shown that this claim is false in the
single-population replicator dynamics.

Proof of Theorem 5.3

Suppose that . First, assume that  is closed under
weakly better replies. Let U be as in the lemma. There then is
some  such that for any  and each player position , the
e-slice,

contain s the corresponding face Di(Hi) and  is
contained in U. By payoff positivity, gih(X) <0 for all profiles 

, player positions , and pure strategies . By
continuity of the growth rate functions gi, we may assume that
for any ,  and , gih(x) <-d for some d > 0. Hence 



 for any such x, i, and h, and this implies that xih(t,
x0) decreases monotonically to zero from any initial state 

. Thus Q(H) is asymptotically stable.

Second, assume that  is not closed under weakly better
replies. There then exists some pure-strategy profile , player
position  and pure strategy  such that . If this
were not the case, then we would have  for all , 

, and . Consequently we would have  for all 
, , and , implying that H would be closed .under

weakly better replies. Now consider the one-dimensional face E
of Q spanned by the two pure-strategy profiles  and 

. Being a face, E is invariant in any regular selection
dynamics (5.37). Moreover, since  and ui is linear in xi,
we have  for all , and thus  for all such
x, by payoff positivity. Hence for no 
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do we have . Since the two faces E and Q(H) intersect
at the vertex s of Q, this implies that Q(H) is not asymptotically
stable.

Lemma 5.1 also has an important implication for the connection
between evolutionary and noncooperative criteria: If a subset H =
× Hi of pure-strategy profiles is closed under weakly better
replies, then the associated face Q(H) of the polyhedron of
mixed-strategy profiles contains an essential component of Nash
equilibria (see subsection 1.4.5). In view of theorem 5.3 this
means that robust evolutionary dynamic stability of a face Q(H)
implies that the face contains a closed and connnected set of
Nash equilibria that is robust to payoff perturbations of the game.
This follows from a more general result in Ritzberger and
Weibull (1995):

Proposition 5.15

If a (nonempty) set of pure strategy profiles is closed
under weakly better replies, then Q(H) contains an essential
component of the set QNE.

The concept of a long-run survivor set, in the context of single-
population dynamics in a symmetric two-player game (sections
3.7 and 4.3.3) can be readily extended to the present n-population
setting for n-player games. Let a regular selection dynamics
(5.37) be given:

Definition 5.10

A (nonempty) set of pure-strategy profiles  is a long-
run survivor set if Q(H) is asymptotically stable and does not



properly contain a (nonempty) subset for which Q(K) is
asymptotically stable.

Since the number of pure strategy profiles is finite in the class of
games considered, existence .of at least one long-run survivor set
is guaranteed. By theorem 5.3 all payoff-positive selection
dynamics have the same collection of long-run survivor sets, in
any given game, and each such set is minimal with respect to the
property of being closed under weak better replies. Moreover, if
a set is minimal in this sense, then it is fixed under weak best
replies (Ritzberger and Weibull 1995). Formally:

Definition 5.11

A (nonempty) set of pure-strategy profiles is fixed
under weakly better replies if ai(H) = Hi for all player positions 

.

 



Page 223

A (nonempty) set  is a minimal fixed set under weakly
better replies if it contains no proper (nonempty) subset 
that is fixed under weakly better replies. In this terminology
theorem 5.3 has the following implication:

Corollary 5.3.1

If a set is a minimal fixed set under weakly better
replies, then H is a long-run survivor set in all payoff-positive
selection dynamics. Conversely, if is a long-run
survivor set in some payoff-positive selection dynamics, then H
is a minimal fixed set under weakly better replies.

Proof

It only remains to prove that if a set  is minimal with
respect to the property of being closed under weakly better
replies, then it is fixed under weakly better replies. Suppose that 

 is closed but not fixed under weakly better replies.
Then there is some player position  and pure strategy  such
that  for all . But then also , where 

 and Kj = Hj for all , is closed under weakly
better replies, so H is not minimal with respect to this property.

The following two examples show how these criteria can be used
to identify long-run survivor sets in the Outside Option Game of
example 5.8 and the Beer-Quiche Game of example 5.1.

Example 5.9

Reconsider the Outside Option Game of example 5.8. Inspection
of the payoff matrices show that the game has (only) two sets that
are closed under weakly better replies, H = S and K = {1} × {1}.



Only K is fixed under weakly better replies, so this is the only
long-run survivor set. This finding, based only on the data of the
game, conforms with the findings in example 5.8 based on the
standard replicator dynamics. (Note that the set K corresponds to
the Nash equilibrium component D, in the notation of example
5.8, which consists of the game's unique strict Nash equilibrium.)

Example 5.10

Reconsider the Beer-Quiche Game of example 5.1. Inspection of
the payoff matrices shows that the game has (only) two sets
which are closed under weakly better replies, H = S and K = {1,
2} × {1, 2}. Of these only K is fixed under weakly better replies,
so this is the unique long-run survivor set, in any payoff-positive
selection dynamics. This is the set where player 1 either always
sends the strong signal or always sends the true signal,
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and player 2 either retreats only when seeing the strong signal or
always retreats. The corresponding face Q(K) contains the
intuitive Nash equilibrium component C.

Note that Q(K) is two-dimensional and contains the one-
dimensional face Q(L), where L = {1} × {1, 2} and .
However, L is not closed under weakly better replies. In fact,
there is nothing to stop drift in population 2 toward always
retreat, and once this pure strategy is used by more than half of
population 2, player 1's pure strategy 2 is a better reply for her
than her equilibrium pure strategy 1. But once population 1 starts
to drift toward its pure strategy 2, the second player's pure
strategy 1 becomes a better reply than his pure strategy 1, and so
on. There thus seems to be a possibility for evolutionary drift
inside the whole face Q(K).25 See figure 5.8 for computer
simulations of solution curves in the face.

In example 3.15 it was shown that, in the single-population
replicator dynamics (3.5) a subset Of pure strategies in a (doubly)
symmetric two-player game may be asymptotically stable without
being closed under weakly better replies, as defined in the single-
population context. How can this be reconciled with theorem 5.3?
The following example reconsiders the game in example 3.15 in
terms of the present multipopulation approach.

Example 5.11

The payoff matrix of the game in example 3.15 is



Hence B = A, and the first two pure strategies for each player
together constitute a coordination game. In the present two-
population setup, let  denote the first population's state and 

 that of the second population, where V is the unit simplex in
R3. The subset of pure-strategy profiles  is not
closed under weakly better replies. For instance (as noted already
in example 3.15), when , we have , and yet 

 for i = 1, 2. More strikingly perhaps, for  and 
, we have . Accordingly Q(H) is not

asymptotically stable in any payoff-positive two-population
selection dynamics, a fact that also can be deduced from precisely
the last observation:

25. For discussions of ''evolutionary drip'' see Gale, Binmore, and
Samuelson (1993) or Binmore and Samuelson (1994).
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Figure 5.8
Solution orbits to the standard two-population replicator

dynamics on the face Q(K) of the polyhedron Q in the
Beer-Quiche Game of examples 5.1 and 5.10.

Along the edge of Q which connects the vertex (x', y') with the
vertex , any payoff-positive dynamics moves the population
state away from the face Q(H). Suppose that y3 = 0. The
associated boundary face of Q looks as in figure 5.9, where Q(H)
is the sloping square (sub-)face. The arrows along the edges
indicate the direction of movement in any payoff-positive
dynamics. In contrast, the asymptotically stable face of Q, in the
single-population setting of example 3.15, corresponds to the
dotted diagonal line D in figure 5.9.

5.8 Appendix

5.8.1 Aggregate Monotonicity



The following payoff-monotonicity criterion was introduced by
Samuelson and Zhang (1992):
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Figure 5.9
The boundary face y3 = 0 of the polyhedron 
Q in the game of examples 3.15 and 5.11.

Definition 5.12

is aggregate monotonic if, for all population states ,
player populations , and mixed strategies :

This criterion is more stringent than payoff monotonicity, since
an application of (5.53) to pure strategies  and  is
identical with condition (5.41).

Note that if the payoff to a mixed strategy yi is above the current
average payoff in player population i, then the growth vector gi
(x) is required to make an acute angle with yi. To see this, let zi =
xi, and apply (5.53):

where the equality follows by orthogonality (5.38). In particular,
this equality holds for all vertices , that is, pure strategies 

, showing that every aggregate monotonic dynamics is also



payoff positive.26 Conversely, every payoff-linear growth rate is
clearly aggregate monotonic, since then 

 and likewise for gi
(x) · zi.

26. The validity of equation (5.42) in the other two cases (= and <)
follows by similar arguments.
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The following representation result is due to Samuelson and
Zhang (1992):

Proposition 5.16

If is aggregate monotonic, then there exists a positive
function for each player population such that, for all 

and ,

Thus aggregate monotonicity implies a property just slightly
weaker than payoff linear; the result does not state that the
player-specific time-rescaling functions ai can be taken to be
Lipschitz continuous.

This result can be proved along the following lines: Suppose that 
 is aggregate monotonic, and consider a point  at which

 (the claim is trivial if gi(x) = 0). For e > 0 sufficiently
small, Di contains a circle C with center xi and radius e > 0. On
this circle the inner product gi(x) · yi is maximized at precisely
one point . On the same circle ui(yi, x-i) also is maximized at
precisely one point; we denote it . (Uniqueness follows again
from , now via (5.53).) However, aggregate monotonicity
implies that gi(x) · yi and ui(yi, x-i) are maximized at the same
point on C, that is, . Using standard Lagrangian techniques to
characterize  and , respectively, this results in the multiplier
representation (5.55).

5.8.2 Proof of Proposition 5.14

First, we reformulate the dynamics (5.48) so that its orbits move



in a full-dimensional subset of a euclidean space. In such a space
any neighborhood of the set in question has positive volume, and
hence Liouville's formula can be used (an approach developed in
Ritzberger and Vogelsberger 1990).

This reformulation can be done in several ways. Here we write
xi1 = 1 - Sh>1 xih for each player population , and represent
each population state  by vectors , one for
each player position . The vector field j in (5.48) can then be
written, for each  and pure strategy  with h > 1,

We now divide every component jih(x) by the product
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of all population shares. On int(Q), these shares are all positive,
so the new vector field y ih(x) = jih(x)/p(x) is well-defined for all

. Since all components of j have been multiplied by the
same positive factor, no solution orbit of (5.48) in int(Q) is
affected by this transformation. What remains is to compute div 

 at any point . For this purpose, we
rewrite each fih(x), for any  and  with h > 1, as

where . We obtain

Hence

The expression in square brackets is equal zero, so the rescaled
vector field y  is indeed divergence free at all interior states x.
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6
Elements of the Theory of Ordinary Differential
Equations
To write down a system of ordinary differential equations
(ODEs) is a classical way to represent mathematically a
deterministic dynamic process in continuous time. This approach
is also used in evolutionary game theory, where the dynamic
process in question concerns the change over time in the
distribution of behaviors (strategies) in a large population of
interacting individuals. In the standard setting the interaction
takes the form of random matchings of pairs of individuals from
a single large population, where the interaction is modeled as a
symmetric two-player game in normal form. This approach is
taken in chapters 3 and 4. An alternative setting for explicit
dynamic analysis along these lines considers random matchings
of n-tuples of individuals from n large populations, each
population representing a player role in an n-player game in
normal form (the topic of chapter 5).

The first question in such dynamic models is whether the system
of ordinary differential equations uniquely determines how the
state (i.e., in the present case the population distribution of
strategies) evolves over time. Given that this question has been
answered in the affirmative, one may ask whether the state
(strategy distribution) converges over time toward some limit
state, and if so, what properties such a limit state has. One may
also ask whether a given state is stable in the given dynamics,



where a few distinct criteria for stability may be relevant that ask
for some robustness property with respect to perturbations of the
state in question. The present chapter introduces some of the
mathematical machinery for such dynamic analyses, focusing on
the concepts and techniques used in chapters 3 through 5.

Section 6.1 examines whether a system of ODEs uniquely
determines .the dynamic evolution of the state vector in question,
the central result being the classical so-called Picard-Lindelöf
theorem. Section 6.2 moves the focus from the system of ODEs
to the solution mapping that it induces. Much of the relevant
qualitative analysis of solutions to ODEs actually depends only
on three general properties that such solutions have. In fact some
of the modern and abstract dynamic systems literature takes these
three conditions as axioms (e.g., see Bhatia and Szegö 1970), and
we follow this route. Section 6.3 explains and studies the
concepts of invariance and stationarity in this light, section 6.4
provides definitions and basic results for different notions of
stability, and section 6.5 gives a short account of the so-called
direct Lyapunov method. Section 6.6 concludes with a brief
presentation of the so-called Liouville formula, a result used in
physics that turns out to be useful also in certain multipopulation
evolutionary selection dynamics (analyzed in chapter 5).
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An excellent introduction to the basic theory of ordinary
differential equations is given in Hirsch and Smale (1974). For a
more technical and far-reaching treatment, Hale (1969) is
recommended, and for a more abstract and general approach, the
beautiful book by Bhatia and Szegö (1970). Many of the
examples in this chapter have been borrowed from the latter
source.

6.1 Differential Equations and Vector Fields

In general, the differential equations may themselves change with
(calendar) time, examples being the dependency of biological and
economic growth processes on such external but time-varying
factors as weather. A system of differential equations that does
not depend on time is called autonomous (or time
homogeneous). In this book we will focus exclusively on such
dynamics. Hence the external environment in which the studied
evolutionary selection processes take place is presumed to be
fixed and constant over time.1 Moreover we will only consider
first-order differential equations, namely differential equations
that contain first-order derivatives but no derivatives of higher
order.2 All derivatives will be derivatives with respect to time
(and not with respect to some state variable) so the differential
equations are ordinary (as opposed to partial).

In sum, we focus on systems of autonomous, first-order,
ordinary differential equations. Using dots for time derivatives,
such a system of k equations will be written in vector form as

where



and j is a mapping from an open set  to Rk Here 
is the state vector, X is the state space, and the right-hand side of
(6.1)

1. By introducing such time-varying external factors as state variables,
with associated differential equations for their time dependence, we
can transform a time-dependent system of ODEs into an autonomous
system.
2. Again this is no real restriction, since, by introducing first-order
derivatives as state variables, any second-order differential equation can
be turned into a first-order equation, and so on (e.g., see Hirsch and
Smale 1974).
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Figure 6.1
Geometric connection between a vector field and solution orbits.

specifies the direction and velocity of change of the state, at each
point x in the state space X. The function j is called a vector
field, defining at each point x the direction and velocity of the
flow at x. For each component xi of the state  is its time
derivative; see figure 6.1 for an illustration of a vector field in R2.

The first issue that arises, once a system of differential equations
(6.1) has been written down, is whether it has, in some precise
sense, a solution (see the dotted curve in figure 6.1), and if so,
whether the solution is unique. Moreover there is the question of
whether the solution is global in the sense of defining the state at
all (past and future) times. Formally:

Definition 6.1

A (local) solution through a point to a system (6.1) is a



function , where T is an open interval containing t = 0,
such thatx (0, x0) = x0, and such that (6.3) below holds for all 

. The solution is global if T = R.
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It turns out that the existence and uniqueness of a (local) solution
is guaranteed for all vector fields j that are sufficiently smooth in
a precise sense. The condition, called Lipschitz continuity, is
somewhat more stringent than continuity. Recall that both the
states  and the associated values j(x) of the vector field are
points in the same euclidean space Rk. Hence the difference in
strength and direction of the vector field j may be meaningfully
measured at any two points  by the same euclidean metric as
used when measuring distance in . Lipschitz continuity
essentially requires that there exist some constant  such that
the difference in strength and direction of j at any two states 

 be less than the l-fold distance between the states x and y.
More precisely, and in a slightly weaker, local, version:

Definition 6.2

A function , where , is (locally) Lipschitz continuous if
for every compact subset there exists some real number l
such that (6.4) holds for all :

.

In this book the studied vector fields will always meet this
continuity condition.

It is not difficult to show that if the vector field j has continuous
first partial derivatives, then it is Lipschitz continuous. Clearly, if
j is Lipschitz continuous, then it is indeed continuous.

Example 6.1

The continuously differentiable function  defined by j(x)



= x2 is Lipschitz continuous, and so is the continuous but not
(everywhere) differentiable function j(x) = |x|. In contrast, the
continuous but not (everywhere) differentiable function ,
defined by j(x) = 0 for x <0 and  for , is not Lipschitz
continuous. Its right-hand slope at x = 0 is , and hence no 
can be found that meets (6.4) for all y near x = 0.

The claimed implication for the uniqueness and existence of a
(local) solution to a system (6.1) is a classical result, called the
Picard-Lindelöf theorem:3

3. We have here included the continuity of the solution mapping. This is
usually stated and proved as a separate result.
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Theorem 6.1

If is open and the vector field Lipschitz continuous,
then the system (6.1) has a unique solution through
every state . Moreover x (t, x0) is continuous in and .

(For a proof, see Hirsch and Smale 1974 or Hale 1969.)

It is well-known that if j meets the slightly more stringent
condition of having continuous first partial derivatives, then x(t,
x0) is continuously differentiable in t and x0 (e.g., see theorem
6.3 in chapter 1 of Hale 1969). The following example shows that
an ordinary differential equation may have multiple solutions if
the vector field is not Lipschitz continuous.

Example 6.2

Consider the (not Lipschitz continuous) function  defined
by j(x) = 0 for x <0 and  for . One (global) solution
through the initial state x0 = 0 is the function , defined
by x(t, x0) = 0 for all . Another (global) solution through the
same initial state is the function , defined by h(t, x0) = 0
for all t <0 and h(t, x0) = t2/4 for all . See figure 6.2.

The next example shows that even if the vector field is Lipschitz
continuous, equation (6.1) may have a (local) solution (i.e., with 

) that explodes in finite time.

Example 6.3

Consider the Lipschitz continuous function  defined by
j(x) = x2, and let the initial state (at time t = 0) be x0 = 1. The
function , defined by x(t, x0) = 1/(1 - t) for all t <1 is a



solution to the associated differential equation (6.1) through x0 =
1. Note that the solution is not global; it is defined only on the
interval , and  as . See figure 6.3.

Example 6.4

Consider the system of linear differential equations

where . Since any linear function is Lipschitz continuous, this
system has a unique solution through every point .
Using techniques from linear algebra (based on eigenvalues and
eigenvectors, e.g., see Hirsch and Smale 1974), one can show that
the solution x(·, x0) is given by the pair of equations
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(a)

(b)

Figure 6.2
(a) The vector field in example 6.2. (b) Two solution

trajectories to the differential equation in the same example.
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Figure 6.3
A solution trajectory that ''explodes'' in finite time in example 6.3.

The vector field  is indicated in figure 6.4. Two associated
solutions, one for a > 0 and one for a <0 are indicated in figure
6.5 (a) and (b). Expressed in polar coordinates (r, q), the
dynamics is simply  and , where r is the distance from the
origin, and q the angle with the xl-axis, measured
counterclockwise in radians. From these polar-coordinate
differential equations, we see that all solutions swirl
counterclockwise around the origin, , moving outward 
when a is positive, staying on circles when a is zero , and
moving inward  when a is negative. (Note that r = ||x||, q =
arctan(y/x), or conversely, that x = r cos q and y = r sin q.)

Example 6.5

Consider the pair of nonlinear differential equations
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Figure 6.4
The vector field in example 6.4.

This vector field j is clearly Lipschitz continuous, so this system
also has a unique solution through every point . The
vector field is indicated in figure 6.6 (a), and two solution curves
are indicated in figure 6.6 (b). Expressed in polar coordinates (r,
q), the dynamics is  and . From these equations we see
that solutions indeed swirl counterclockwise around the origin
toward the unit circle where r = ||x|| = 1.

6.2 The Induced Solution Mapping

In all applications in the preceding chapters, all relevant states
belong to some compact subset C of the domain X of the vector
field j. More exactly, we always have  and  for all 



, where  is the open time interval on which the
solution through x0 is defined. Usually
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(a)

(b)

Figure 6.5
Solution orbits to the dynamics in example 

6.4: (a) When a > 0. (b) When a <0.
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(a)

X = Rk, and C is either a simplex D of mixed strategies for a
player or C is the polyhedron Q of mixed-strategy profiles in the
game in question. In such a setting one could show that the
solution through any point  is global (e.g., see theorem 2.1 in
chapter 1 of Hale 1969). In fact we have the following important
result:

Proposition 6.1

Suppose that is open, that is Lipschitz continuous,
and that C is a compact subset of X such that for all 
and . Then T (x0) can be taken to be R, and the induced
solution mapping will meet the three conditions
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(b)

Figure 6.6
(a) The vector field in example 6.5. (b) Two solution 

orbits to the associated differential equations.

The first condition says that the state after t = 0 time units is
identical with the initial state. The second condition says that the
state after t + s time units is identical with the state obtained by
first following the solution through the initial state for s time
units, arriving at the state y = x(s, x), and then following the
solution through the initial state y for another t units. The third
condition says that solutions are continuous functions over time,
as well as with respect to the initial state. The latter property
simply means that when observed at any fixed time , the
solution trajectory through any initial state y0 near x0 is near to
the solution trajectory through x0. Since in practice it may be
difficult (or perhaps even impossible) to obtain precise



information about the exact initial state, this property is clearly a
desirable robustness property.

Just as a triplet G = (I, S, p) formally defines a normal-form
game, a triplet D = (R, C, x) defines a dynamic system on the
(compact) state-space  over continuous time , with
solution mapping x meeting the three
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conditions (6.5), (6.6), and (6.7).4 From now on we will require
the studied systems of ordinary differential equations to induce
such a dynamic system D.

When studying such dynamic systems, the concepts of trajectory,
orbit, invariance, stationarity, and stability are of central
importance. The (solution) trajectory (or path) through a state 

 is the graph of the solution x(·, x0). Formally, it is the
following subset of time-state pairs:

In other words, the trajectory t(x0) contains all the data of how
the state evolves over time. In contrast, the orbit through a point
tells which states are reached but not when. Formally, the orbit g
(x0) through an initial state x0 is the image of the whole time axis
under the solution mapping x(·, x0):

Equivalently one may think of g(x0) as the projection of the
trajectory t(x0) to the state-space C. For any subset , one
writes  for the union of all orbits g (x0) with .

In many applications we are interested in the set of states reached
after the system has been in some state x0. For this purpose we
define the forward (semi-)orbit through a state x0 as the image of
the nonnegative time axis under the solution mapping x(·, x0):

The set g+(A) is defined as the union of all semi-orbits g+(x0)
with .



Example 6.6

The curves shown in figures 6.5 (a) and (b) are parts of the
forward (semi-)orbits of solutions to the differential equations in
example 6.4. Each of the two curves in figure 6.6 is part of the
forward orbit of a solution to the differential equations in
example 6.5.

6.3 Invariance and Stationarity

A subset  of states is invariant under some given solution
mapping x if the entire orbit through any point in A lies in A. In
other words, if the state is

4. More generally, the set R may be replaced by a time set , where,
for instance, T may be the set of integers, resulting in a dynamical
system over discrete time.
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known to be in A at some point in time, then it must have always
been in A, and will always remain in A. The set is forward (or
positively) invariant if the solution through any point in A
remains forever in A. Formally:

Definition 6.3

A subset is invariant if for all . The set is forward
invariant if for all .

A simple example of an invariant set is the orbit A = g (x0)
through any state x0. Indeed this is the minimal invariant set
containing x0 (and likewise for forward semi-orbits). It follows
immediately from the definitions that a set  is (forward)
invariant if and only if g(A) = A (g+(A) = A).

The following properties of invariant sets are more or less
immediate consequences of the three "axioms"(6.5), (6.6), and
(6.7):

Proposition 6.2

Unions and intersection of invariant sets are invariant. If is
invariant, then so is its closure , complement ,
interior and boundary .

Proof

First, let {Al} be a collection of invariant subsets of C. Suppose
that  and that . Then there exists some l such that 

.Since Al is invariant, , and therefore , that is, 
, is invariant. Similarly one verifies that  is invariant.

Second, let  be invariant. First, suppose that  and that .



Then there is a sequence  from A converging to x. By
invariance of A,  for each i. By (6.7), 
and thus , proving that  is invariant. To see that also 

 is invariant, suppose that it is not. Then there is some 
 and  such that . But then A would not be

invariant, since x(-t, y) = x(-t, x(t, x)) = x(t - t, x) = x(0, x) by
(6.6) and x(0, x) = x by (6.5). (The established equation 

 shows that the orbit l(y) is not a subset of A, and thus
A is not invariant if B is not.) The invariance of F = nit(A) and G
= bd(A) follows from the already demonstrated results combined
with the observations that F is the complement of the closure of
B and G is the intersection of the closure of A and the closure of
B.

Note that the above statements are not generally valid for sets that
are only forward invariant. For instance, the unit interval 

 is forward invariant in the one-dimensional dynamics 
, so is its interior (0, 1) but
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not its boundary {0, 1}: The solution through x = 1 moves into
the interior of A.

An important class of invariant sets are the stationary states (i.e.,
states of no motion):

Definition 6.4

A stationary state under a solution mapping x is a state such
that x (t, x) = x for all .

Alternatively, stationary states are sometimes referred to as rest
points, critical points, or (dynamic) equilibria.

Hence a state  is stationary if and only if the orbit g (x)
through x is the singleton set {x} or, equivalently, if and only if
the set A = {x} is invariant. Expressed in terms of a system of
ordinary differential equations (6.1), a state  is stationary if
and only if the vector field j vanishes at x, namely j(x) = 0. To
see this, just note that if the vector field vanishes at , then one
solution to (6.1) through x is x (t, x) = x for all t. By the Picard-
Lindelöf theorem this is the only solution through x, so x is
stationary. Conversely, suppose that x (t, x) = x for all t is the
solution through x. Then clearly dx(t, x)/dt = 0 for all t, and j(x)
= 0 by (6.3).

A useful consequence of axioms (6.5), (6.6), and (6.7) is that if a
solution converges over time, then the limit state is necessarily
stationary. Intuitively this is not surprising for solutions to
differential equations. If a solution through some initial state x
settles down over time toward some state y, then the vector field
should be weak near y and thus vanish at y (by continuity of j):



Proposition 6.3

If , and , then y is stationary.

Proof

Suppose that  and that . Then for every
neighborhood B of y there exists some time  such that 
for all . Let xB = x(tB, x) and suppose that y is not stationary.
Then there exists some moment  when . By (6.7)
there then exists a neighborhood A of y such that z is not in A,
nor are any  with . But for B = A we have  and 

 for all , which, by (6.6), is equivalent to 
 for all . This causes a contradiction

when .

Note, however, that convergence of a solution toward a point
does not imply that the point is ever reached (in finite time). In
fact, unless the system initially is in a stationary state, it will never
be in a stationary state: If  and y is
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stationary, then  for all t. If y is stationary, then a solution
through y is the constant solution x (t, y) = y for all t, and by the
Picard-Lindelöf theorem, this is the only solution through y.

Example 6.7

As figures 6.5 (a) and (b) suggest, the origin x = (0, 0) is the only
stationary state of the dynamics induced by the differential
equations in example 6.4. Equivalently, the set A = {(0, 0)} is the
only invariant singleton set. For all values of a the full space X =
R2 is, of course, invariant. Every disc , for any 

, is forward invariant when  (since then ; see example
6.4), and the complement to Dl is forward invariant when a > 0.
Note also that the fact that at least one solution (in fact, any
solution) converges to the origin when a is negative implies, by
proposition 6.3, that the origin is a stationary state.

Example 6.8

The origin is the only stationary state in the dynamics of example
6.5, but also the unit circle A = {x : ||x|| = 1} is invariant. In fact
every closed ring-shaped set  such that  is
forward invariant in this dynamics.

6.4 Stability Concepts

Let D = (R, C, x) be a dynamic system. We will use two distinct
(classical) notions of stability: Lyapunov and asymptotic stability,
respectively, as applied to individual states  or to sets of states

. The most basic notion is that of Lyapunov stability,
frequently referred to as "stability" for short. Intuitively, a state 

 is Lyapunov stable if no small perturbation of the state



induces a movement away from x. While Lyapunov stability thus
requires there to be no push away from the state, asymptotic
stability requires there to be a (local) pull toward the state: a state 

 is asymptotically stable if it is Lyapunov stable and all
sufficiently small perturbations of the state induce a movement
back toward x. By definition, then, asymptotic stability implies
Lyapunov stability. Formally:

Definition 6.5

A state is Lyapunov stable if every neighborhood B of x
contains a neighborhood B0 of x such that for all 
and . A state is asymptotically stable if it is Lyapunov
stable and there exists a neighborhood B* such that (6.11) holds
for all .
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Note that the criterion for Lyapunov stability is equivalent to the
requirement that all forward orbits from B0 are contained in 

.

Clearly a state x has to be stationary in order to be (Lyapunov or
asymptotically) stable, since otherwise the solution x would lead
away from x even in the absence of a perturbation:

Proposition 6.4

If a state is Lyapunov stable, then it is stationary.

Proof

Suppose that  is not stationary. Then there exists some 
and  such that x (t, x) = y. The point y is at some finite
distance from x, and so there exists some neighborhood B of x
that the system leaves in finite time if started at x.

The preceding definitions of diverse stability properties of
individual states  are readily generalized to properties of sets 

 of states. For technical reasons the studied subsets A will be
taken to be closed (and hence compact, since they are subsets of
the compact set C). The reader should verify that the pointwise
and setwise stability definitions coincide in the special case of a
singleton set A = {x}. Since we need to consider convergence to a
closed set, rather than to a point, three more pieces of
mathematics are needed. First, we measure the distance between
a point  and a closed set  as the minimal distance between
y and any point a in . Second, we say that a
solution x (·, x0) converges to a closed set , written 

, if the distance d(x(t, x0), A) converges to zero as .



Note that this does not require the solution to be convergent.
Third, by a neighborhood of a closed set A we mean an open set
B containing A.

Definition 6.6

A closed set is Lyapunov stable if every neighborhood B of A
contains a neighborhood B0 of A such that . A closed
set is asymptotically stable if it is Lyapunov stable and if
there exists a neighborhood B* of A such that for all 

.

Examples 6.9 through 6.11 illustrate these properties.

Proposition 6.5

If a closed set is Lyapunov stable, then it is forward
invariant.

Proof

Suppose that  is not forward invariant. Then there exists
some , and  such that x (t, x) = y. The point y is at
some positive distance from A, and so there exists some
neighborhood B of A that the
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system leaves in finite time if started at x. In particular, if  is a
neighborhood of A, then  and l+(B0) is not a subset of B.
Thus A is not Lyapunov stable.

A useful concept closely related to those of asymptotic stability is
that of basin of attraction of a state  or a closed set  of
states. As the name suggests, this basin is the set of initial states
that the dynamics pulls toward the point x or set A in question.
More precisely, the basin of attraction of a state x is the set of
states x0 such that the solution through x0 converges over time to
x, and likewise for the basin of attraction of a set A. Note,
however, that in the latter case the solution need not be
convergent; it suffices that its distance to the set A in question
converges to zero. Formally, one may treat individual states and
sets of states with the same mathematical machinery:

Definition 6.7

The basin of attraction of a closed set is the set 
. A set is called an attractor if its basin of

attraction is a neighborhood of A.

It follows that a Lyapunov stable state or set is asymptotically
stable if and only if it is an attractor.

6.5 Lyapunov's Direct Method

A general method to establish stability properties of individual
states or closed sets of states is the direct Lyapunov method. The
idea is intuitively simple, and, we will apply it to three distinct
contexts.

First, let  be a closed set which we want to show is Lyapunov



stable in some given dynamics x on (a compact set) C. Suppose
that we have found some real-valued continuous function n,
defined on a neighborhood D of the set A, such that n(x) is zero
on A and positive outside A. Suppose furthermore that n,
evaluated along any solution path in its domain D, is not
increasing over time. Then we would be tempted to guess that, at
least for initial states sufficiently near A, the system does not
move away from A. There are some subtleties, of course,
involving the possibility that the system instead moves toward
some local minimum  of n and/or toward the boundary of the
domain D of n. However, Lyapunov stability of A can actually be
proved. We will refer to this first of three related results as
Lyapunov's first theorem.
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In results like this one usually calls the involved value function n
a local Lyapunov function:5

Theorem 6.2

Suppose that is closed. If there exists a neighborhood D of A
and a continuous function meeting conditions (6.12) and
(6.13) below, then the set A is Lyapunov stable:

Proof

Let  be any neighborhood of A such that its boundary  is
contained in D. Clearly E is compact (since it is a closed subset
of the compact set C), and n is positive on E. Since n is
continuous, its minimum value on E is positive: . Let

. Then B' is a forward invariant neighborhood of A.
First, B' contains A and B' is open by continuity of n. Second, if 

, and at some , then, by (6.7), there exists some 
 such that  and  for at least one

such time s. But this implies that , contradicting (6.13).

Strengthening the weak inequality in (6.13), one usually calls the
associated function a strict local Lyapunov function, and we
obtain that the studied set A is asymptotically stable. In fact, it
can be shown that this characterizes asymptotic stability. We will
refer to this result as Lyapunov's second theorem:

Theorem 6.3

Suppose that is closed. There exists a neighborhood D of A



and a continuous function meeting conditions (6.12) and
(6.14) if and only if A is asymptotically stable:

(For a proof, see theorem 2.2 in chapter 5 of Bhatia and Szegö
1970.)

There are two drawbacks with these results, however. The most
apparent is that no method is given for how to find a Lyapunov
function! Indeed this is a matter of intuition and luck, though
there is a class of entropy functions that

5. In physics one usually takes some form of energy or entropy as a
candidate Lyapunov function. In some dynamic economic models of so-
called nontatonnement adjustement processes, certain utilitarian
welfare functions may serve this purpose. In evolutionary game theory
the best-known Lyapunov functions are relative-entropy functions; see
subsection 3.5.1.
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has turned out to work well in many contexts of evolutionary
game dynamics (see chapters 3 and 5).

The second drawback is that monotonicity conditions such as
(6.13) and (6.14) are in general hard to verify. However, if the
dynamics x is the solution of a system of ordinary differential
equations (6.1), and the associated vector field j is continuously
differentiable, then each of the two monotonicity conditions can
be replaced by an intuitive and operational sufficient condition.
In this alternative approach we use the contour maps of the value
function n and the vector field j, respectively, and no knowledge
of the explicit solutions to the system of differential equations is
needed.

Again, the basic idea is simple: At any state x in the domain 
of the value function n, the direction of steepest ascent of n is
given by its gradient , a vector orthogonal
to the level curve (or isoquant) of n through the point x. Likewise
the vector j(x) points in the (tangent) direction of the solution
curve x(·, x) through x. Consequently n is decreasing along the
solution x if the negative gradient  makes an acute angle with
the tangent of motion j(x) or, equivalently, if the inner product 

 is negative.

By the chain rule of differentiation, this inner product equals the
time derivative of the value function at x = x (t, x0):



Granted the solution remains in the domain D during some time
interval [0, t], integration of (6.15) gives

Hence, if the inner product  is negative for all  in the
domain D, then clearly (6.14) holds. Likewise one can show that
if  is nonpositive for all  in the domain D, and A is a
connected set, then (6.13) holds.6 In sum:

6. This second claim is essentially Lyapunov's original statement of his
now classic result.
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Theorem 6.4

Suppose that is closed. If there exists a neighborhood D of A
and a continuously differentiable function meeting
conditions (6.12) and (6.17) below, then A is asymptotically
stable. Suppose that is closed and connected. If there exists
a neighborhood D of A and a continuously differentiable
function meeting conditions (6.12) and (6.18) below, then
A is Lyapunov stable.

Note that the topological requirements on the set A of states in
question are trivially met in the important special case of a single
state; if A = {x} for some , then A is certainly both closed and
connected.7

Example 6.9

The origin xl = x2 = 0 is a stationary state in the two-dimensional
dynamics in example 6.4. This state is clearly unstable when a >
0. Moreover it is Lyapunov stable but not asymptotically stable
when a = 0. Finally, the origin is asymptotically stable when a
<0. The continuously differentiable function  defined by n
(x) = ||x||2, the square of the distance to the origin, changes along
any solution according to the equation

Clearly n vanishes at the origin and nowhere else, so it is a
Lyapunov function when a is negative. The inner product



between its gradient  and the vector field  is 2a
||x||2, indeed a negative (nonpositive) number whenever a is
negative (nonpositive); see the three Lyapunov theorems above.

Example 6.10

A Lyapunov function for the dynamics of example 6.5 is n (x) =
(||x|| - 1)2, the square distance from the unit circle. To see this,
just observe that this function is continuously differentiable,
vanishes on the unit circle, and only there, and that its time
derivative along solutions, , is negative
except at the origin and on the unit circle. Any open ring D = {x :
a <||x|| <b}, for  and b >1,

7. For a rigorous proof of theorem 6.4 in this special case, see theorem
1.1 in section X.1 of Hale (1969). For a full proof of the second claim
of the theorem, in the general case, see corollary 33 in chapter III of
Bhatia and Szegö (1970).

 



Page 249

thus meets the requirements for the domain for n as a Lyapunov
function for this dynamics (see theorem 6.4).

Example 6.11

To provide an example of a stationary state that is an attractor but
not Lyapunov stable, we modify the equations in example 6.5 as
follows:

In polar coordinates (r, q) this is simply  and . Typical
orbits are shown in figure 6.7. The origin (r = 0) and the unit
circle (r = 1) are still invariant, but now the origin is no longer
the unique stationary state. Also the point x* = (1, 0) (or,
equivalently, (r, q) = (1, 0)) is stationary. The diagram suggests
that x* has the whole plane, except the origin, as its basin of
attraction. Yet x* is not Lyapunov stable, since any neighborhood
of x* contains some segment of the unit circle, along which the
state moves counterclockwise.

To prove that the singleton x* is not asymptotically stable, we
invoke theorem 6.3. Suppose that there is a neighborhood D of
x* and a function n meeting conditions (6.12) and (6.14). Then n
would be discontinuous at x*. A movement counterclockwise
around the unit circle, starting just above x*, would lead n
toward lower positive values, and yet n(x*) = 0. Hence there
exists no continuous function meeting the conditions in theorem
6.3 and x* is not asymptotically stable. However, the diagram



suggests that the unit circle is an asymptotically stable set. Indeed
it is, since there is a Lyapunov function for this set, the same as in
example 6.10.

6.6 Liouville's Formula

For certain questions in stability analysis there is available a
handy mathematical formula that is used in physics in studies of
flows of liquids and gases. It has to do with the possibility that
such flows may locally or globally contract, preserve, or expand
the volume of the liquid or gas as it moves along the flow. This
formula relates a certain characteristic of a vector field, its so-
called divergence, to the rate of change of volume in the
dynamics. The formula is hence of general interest for studies of
dynamic systems, and it has important
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(a)

(b)

Figure 6.7
(a) The vector field of the dynamics in example 
6.11. (b) Solution orbits to the same dynamics.
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implications for our stability analysis of multipopulation
evolutionary dynamics in chapter 5.

The Liouville formula applies to any system of autonomous
ordinary differential equations (6.1) in which the vector field j is
continuously differentiable on an open domain . The
divergence of j at any point  is defined as the trace of its
Jacobian at the point

In particular, a vector field for which the divergence is
everywhere zero is called divergence free, a property that turns
out to imply that the associated flow is volume preserving.

Equation (6.19) defines the divergence as a continuous function
on the domain of the vector field j, and hence we can compute
its integral over measurable sets . Given any such set A and
time  such that the solution x (·, x0 )through any point  is
defined at time , let A(t) be the image of A under the
solution mapping x:

Then A(t) is measurable, and its volume is .

The Liouville formula states that the time derivative of the
volume of A(t) exists and equals the integral of the divergence
over A(t):



In particular, as indicated above, any divergence-free vector field
keeps all volumes constant over time. In physics this corresponds
to the flow of an incompressible liquid (e.g., water at constant
temperature and pressure).

Intuitively we expect a divergence-free vector field to have no
asymptotically stable state. If  is asymptotically stable, then
there is some neighborhood  of x that is contracted toward
the point x over time, implying that the volume of the
neighborhood shrinks to zero as time increases toward infinity.
By Liouville's formula, this is not possible in a divergence-free
vector field. (The most we can hope for in such dynamics is
Lyapunov stability.)

The following result is the slightly stronger claim that a vector
field that has nonnegative divergence has no compact
asymptotically stable set:
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Proposition 6.6

If is open and is continuously differentiable with 
for all , then the dynamics (6.1) has no compact

asymptotically stable set .

Proof

Suppose that  is compact and asymptotically stable. Then 
 and there exists a neighborhood  of A with compact

closure  in X, such that  for all . Let 
. It is shown below that for every e > 0, there

exists a time Te such that each point x in B(t) is within
(Hausdorff) distance d(x, A) e from the set A at all times .
Thus . Since vol[A] <vol [B(0)], d/dt vol [B(t)] <0
for some t, and hence we do not have  for all , by
(6.20).

To complete the proof, suppose that there is no finite time after
which each point  is within arbitrarily small distance from
the set A and remains there. Then there exists some, e > 0 and an
increasing sequence of times , with accompanying initial
states , such that  for all k. Since  is compact, the
sequence  contains a convergent sub-sequence (by the
Bolzano-Weierstrass theorem), so without loss of generality we
may assume that  for some . By hypothesis, A is
Lyapunov stable, and hence there exists a neighborhood C of A
such that  Let D be another neighborhood
of A such that its closure  is contained in C, and let 

. By continuity of x, there exists a
neighborhood E of x* such that . But for k



sufficiently large tk > t* and , so , a
contradiction.

Example 6.12

The pair of ordinary differential equations

arises in the standard two-population replicator dynamics as
applied to the Prisoner's Dilemma Game (with normalized
payoffs al = -1 and a2 = 1). The relevant state space is the unit
square C = [0, 1]2. The vector field is a continuously
differentiable function on R2 that has negative divergence on the
interior of C: div[e(x, y)] = 2x + 2y - 2 <0 for all .
Hence, according to Liouville's formula, the volume of any
measurable set A of initial states in int(C) shrinks over time in
this dynamics. In fact both
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variables decrease monotonically over time in int(C), and all
solution orbits in int(C) converge to the origin. The set C is
invariant, so is int(C), and the origin is asymptotically stable
relative to the state space C.

Division by both fight-hand sides in the above differential
equations by the same positive and Lipschitz continuous function

 does not alter the solution orbits in int(C). For
instance, let y (x, y)= (1 - x)(1 - y)xy. Then the new dynamics on
int(C) is given by

The new vector field is still continuously differentiable on int(C),
but it is clearly divergence free, since the diagonal of its Jacobian
consists of zeros. Hence, in this new dynamics, volumes do not
shrink over time, although the solution orbits are the same as in
the first pair of differential equations!

The explanation is that although orbits. are unchanged, velocities
along these orbits are changed. In particular, velocities along
orbits near the boundary of C are increased a lot (to  at the
boundary). Hence forward images of sets look very different in
the two dynamics. Moreover, while the origin is not reached in
finite time from any interior initial state in the original dynamics,
this point is reached in finite time by all interior initial states in
the modified dynamics. Consequently, for any given set ,
there is a finite time t at which the solution through some initial
state in A leaves the domain int(C) of the vector field in the new



dynamics. Accordingly Liouville's formula no longer applies.
However, as long as the image A(t) belongs to int(C), its volume
is indeed constant by Liouville's formula.
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