Magnetic Vortex Lattices

I.M.Sigal based on the joint work with N. Ercolani, S. Ryan and Jingxuan Zhang

Discussions with Jürg Fröhlich, and Yuri Ovchinnikov Athens,

June 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the U(1) Higgs model of particle physics are described by the Ginzburg-Landau equations (GLE):

$$-\Delta_A \Psi = \kappa^2 (1 - |\Psi|^2) \Psi$$

 $\operatorname{curl}^2 A = \operatorname{Im}(\bar{\Psi} \nabla_A \Psi)$

where $(\Psi, A) : \mathbb{R}^d \to \mathbb{C} \times \mathbb{R}^d$, d = 2, 3, $\nabla_A = \nabla - iA$, $\Delta_A = \nabla_A^2$, the covariant derivative and covariant Laplacian, respectively, and κ is the Ginzburg-Landau material constant.

The GLE are the Euler-Lagrange equations for the Ginzburg-Landau energy functional

$$E_Q(\Psi, A) = rac{1}{2} \int_{\Sigma} \left\{ |
abla_A \Psi|^2 + |\operatorname{curl} A|^2 + rac{\kappa^2}{2} (|\Psi|^2 - 1)^2
ight\}, \quad (1)$$

with apprpriate b.c. . Here Σ is any domain in \mathbb{R}^2 .

Origin of Ginzburg-Landau Equations

Superconductivity. Ψ is called the *order parameter*; $|\Psi|^2$ is the density of (Cooper pairs of) superconducting electrons; A is the magnetic potential; $\operatorname{Im}(\bar{\Psi}\nabla_A\Psi)$ is the superconducting current.

Particle physics. Ψ and A are the Higgs and U(1) gauge (electro-magnetic) fields, respectively. (Part of Weinberg - Salam model of electro-weak interactions/ a standard model.)

Similar equations appear in other areas of physics and material sciences.

Extensions: Yang-Mills-Higgs and Seiberg-Witten equations

Ginzburg-Landau equations on surfaces

To model superconducting thin membranes, or quantum engines (nano-devises), one considers the GLE on 2D surfaces, Σ ,

Figure: Compact and non-compact Riemann surfaces.

If the magnetic field $\neq 0$, then, instead of functions, Ψ , and vector-fields, A, we have to consider sections Ψ and connection one-forms, A, on a U(1) line bundle L over Σ .

Ginzburg-Landau Equations

The Ginzburg-Landau equations on a U(1) line bundle $L \rightarrow \Sigma$ over a manifold Σ are written as

$$\Delta_A \Psi = \kappa^2 (|\Psi|^2 - 1) \Psi, \qquad (2a)$$

$$d^* dA = \operatorname{Im}(\bar{\Psi} \nabla_A \Psi). \tag{2b}$$

Here Ψ is a section and A, a connection one-form on $L \to \Sigma$, $\Delta_A = \nabla_A^* \nabla_A$, ∇_A and ∇_A^* are the covariant derivative and its adjoint, and d and d^* are the exterior derivative and its adjoint.

The GLE are the Euler-Lagrange equations for the Ginzburg-Landau energy functional

$$E_Q(\Psi, A) = \frac{1}{2} \int_{\Sigma} \left\{ |\nabla_A \Psi|^2 + |dA|^2 + \frac{\kappa^2}{2} (|\Psi|^2 - 1)^2 \right\}.$$
 (3)

Let Σ be a Riemann surface (i.e. 2D complex Riem manif.) of finite vol.

Equivariant functions and vector fields

By the key uniformization theorem for Riemann surfaces, a Riem. surface Σ of genus 1 is torus and can be given as $\mathbb{T} = \mathbb{C}/\Lambda$, where Λ is a standard lattice, and of genus ≥ 2 can be given by

$$\Sigma=\mathbb{H}/\Gamma,$$

where $\mathbb H$ is the Poincaré half-plane

$$\mathbb{H} := \{ z \in \mathbb{C} : \operatorname{Im} z > 0 \}.$$

and Γ , a Fuchsian group. (i.e. a discrete subgroup of the group of isometries $PSL(2,\mathbb{R})$ acting on $\mathbb H$ by Möbius transforms

$$\gamma \ z = \frac{az+b}{cz+d}, \ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$$

Sections and connections of the line bundle over the Riem. surf. $\Sigma \iff \Gamma$ -equivariant functions and vector fields,

$$(\Psi, A)(s^{-1}x) = T_{\chi_s}^{\text{gauge}}(\Psi, A), \ \forall s \in \Gamma,$$
(4)

where $T_{\chi}^{\text{gauge}}: (\Psi, A) \rightarrow (e^{i\chi}\Psi, A + d\chi)$, the *gauge transform*.

The GLE on line bundles on $\Sigma \iff$ the GLE for complex functions and real vector-fields on \mathbb{H} satisfying (4).

Examples

An important class of examples are the Riemann surfaces

$$\Sigma := \mathbb{H}/\Gamma(N), \quad N = 1, 2, \dots,$$
 (5)

where $\Gamma(N)$ is the principal congruence subgroup of level N,

$$\Gamma(N) := \left\{ \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}) : a \equiv d \equiv 1, b \equiv c \equiv 0 \mod N \right\}$$

An explicit bundle $E \to \Sigma$ satisfying condition dim_C Null $(-\Delta_{A^{b_r}} - b_r) = 1$,

is

$$\Sigma = \mathbb{H}/\Gamma(6), \quad \deg E = 12.$$
 (6)

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Fundamental domains

Recall a fundamental domain, F, of a group Γ acting on a topological space X is a closed subset of X s.t.

$$X = \cup_{g \in \Gamma} gF \quad \text{ and } \quad gF \cap g'F = \partial(gF) \cap \partial(g'F) \,\, \forall g \neq g'$$

Tiling of the Poincaré (hyperbolic) plane by fundamental domains

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Fundamental domains 2

The GLE on line bundles on $\Sigma \iff$ the GLE for complex functions and real vector-fields on a fundamental domain F of Γ satisfying appropriate (equivariant) boundary conditions.

Figure: A fundamental domain of the principal congruence subgroup $\Gamma(2)$ of level 2.

$$\Gamma(N) := ig\{ \gamma = egin{pmatrix} a & b \ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) : a \equiv d \equiv 1, b \equiv c \equiv 0 model{N} \}.$$

Examples of tiling of the Poincaré disk by fundamental domains:

= 900

General properties

Gauge symmetry: If (Ψ, A) is a solution of GLE, then for any $h \in C^{\infty}(\Sigma, U(1))$ the pair $(h\Psi, A - ih^{-1}dh)$ is also a soln of GLE

Quantization of flux: Let $F_A = dA$ be the curvature of a connection A on a line bundle L. Then

Theorem.(Chern-Weil correspondence) The flux of the curvature F_A is quantized: $\frac{1}{2\pi} \int_{\Sigma} F_A$ (= $c_1(L)$) = deg(L) $\in \mathbb{Z}$.

Constant curvature connections on *L*: *A* with F_A of the form $F_A = b\omega$, where *b* is a constant and ω is the symplectic *volume* form on Σ . Then Chern-Weil corresp. thm implies

$$b = \frac{1}{\operatorname{vol}(X)} \int_{\Sigma} F_A = \frac{2\pi n}{\operatorname{vol}(\Sigma)}.$$
(7)

Proposition. (0, A) solves GLEs $\iff A$ is a c. c. connect. on L.

Result 1: Existence and expansion

Let (Σ, h_r) , r > 0, be a compact or non-compact Riemann surface equipped with the finite area hyperbolic metric

$$h_r = \frac{r}{(\operatorname{Im} z)^2} dz \otimes d\overline{z} \quad (r > 0).$$
(8)

Let L be a unitary line bundle over Σ and deg L, the topol. degree of L.

Theorem 1 (Existence and expansion). Suppose
$$r > 0$$
 satisfies $0 < |\kappa^2 r - b| \ll 1$, with $b := 2\pi \deg L/|\Sigma| > 0$.

Then $\exists \epsilon > 0$ s.th. GLE with metric (8) has a C^2 branch of solns (Ψ_s, A_s, r_s) , $s \in \mathbb{C}$, $|s| \le \epsilon$, satisfying $r_s = b/\kappa^2 + O(|s|^2)$ and

$$\Psi_{s} = s\xi + O_{\mathcal{H}^{k}}(|s|^{3}), \qquad (9)$$

$$A_{s} = A^{b_{r_{s}}} + |s|^{2} \alpha + O_{\vec{H}^{k}}(|s|^{4}),$$
(10)

where $\xi = O_{\mathcal{H}^k}(1)$ is gauge-equivalent to a holom. section of L, $b_r := b/r$ and $\alpha = O_{\vec{\mathcal{H}}^k}(1)$ is a co-closed 1-form satisfying

$$d\alpha = \frac{1}{2} * (1 - |\xi|^2) \qquad * = \text{Hodge operator.} \tag{11}$$

Result 2: Uniqueness

Recall, $b_r := b/r$, with $b := 2\pi \deg L/|\Sigma| > 0$.

Theorem 2 (Uniqueness). Under the conditions of Theorem 1, Null $(-\Delta_{A^{b_r}} - b_r)$ is finite dimensional and, if

$$\dim_{\mathbb{C}} \operatorname{Null}(-\Delta_{A^{b_r}} - b_r) = 1, \qquad (12)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

then we can take $s \in \mathbb{R}_{\geq 0}$, and the solution (Ψ_s, A_s, r_s) , $s \in \mathbb{R}_{\geq 0}$, $|s| \leq \epsilon$, is unique in $U \subset X^k$, up to a gauge symmetry, and equation $r = r_s$ can be solved for s giving s = s(r) leading to the solution

$$(\Psi(r), A(r)) = (\Psi_{s(r)}, A_{s(r)}), \quad \forall r > 0.$$

Result 3: Energy

Theorem 3 (Energy asymptotics). For the solution $(\Psi_{s(r)}, A_{s(r)})$ constructed above and the constant curvature solution $(0, A^{b_r})$,

$$\mathcal{E}(\Psi_{s(r)}, A_{s(r)}) = \mathcal{E}(0, a^{b_r}) - \frac{|\Sigma|_r}{4} \frac{|\kappa^2 - b_r|^2}{(\kappa^2 - \frac{1}{2})\beta(r) + \frac{1}{2}} + O(|\kappa^2 - b_r|^3).$$
(13)

where, recall, $b_r = b/r$, with $b := 2\pi \deg E/(|\Sigma| r)$ and

$$\beta(r) := \min\{\frac{\langle |\xi|^4 \rangle}{\langle |\xi|^2 \rangle^2} : \xi \in \mathsf{Null}(-\Delta_{\mathcal{A}^{b_r}} - b_r)\}, \ \langle f \rangle := \frac{1}{|\Sigma|_r} \int f.$$

 $\implies \mathcal{E}(\Psi_{s(r)}, A_{s(r)}) < \mathcal{E}(0, A^{b_r}), \text{ provided } \kappa > \kappa_c(r), \text{ where }$

$$\kappa_c(r) := \sqrt{\frac{1}{2} \left(1 - \frac{1}{\beta(r)}\right)}.$$
(14)

Hence, if $\kappa > \kappa_c(r)$, then the solutions constructed in Thm 1 are energetically favourable compared to the constant curvature one.

Key step: Linearized GLE

Linearize GLE around the constant curvature solution $(0, A^b) \Longrightarrow$

$$(-\Delta_{\mathcal{A}^b}-\kappa^2 r)\xi=0, \ d^*d\alpha=0.$$

Let $S(\Sigma) \equiv S_k(\Sigma)$ denote the space of cusp forms on Σ with weight $k = 2b = 4\pi n/|\Sigma|$. We have the following.

Theorem. Let $\Sigma = \mathbb{H}/\Gamma$ be a non-compact Riemann surface with elliptic points. Then $-\Delta_{A^b}$ is self-adjoint and satisfies

- (a) $-\Delta_{A^b} \ge b$ and b is an eigenvalue of $-\Delta_{A^b}$ if and only if $S(\Sigma) \ne \emptyset$, and the multiplicity of b equals to dim $S(\Sigma)$;
- (b) The essential spectrum of $-\Delta_{A^b}$ consists of *m* branches each of which filling in the semi-axis $[1/4 + b^2, \infty)$, where m = # cusps (defined later). Hence,

$$\sigma_{\rm ess}(-\Delta_{A^b}) = [1/4 + b^2, \infty).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Cusps

Definition (Cusp) Let Γ be a Fuchsian group. A point $c \in \mathbb{R} \cup \{\infty\}$ is called a *cusp* of $\Gamma \iff \exists \gamma \in \Gamma$ that is conjugate-equivalent to some horizontal translation $z \mapsto z + h$, $h \in \mathbb{R}$, s.th. $\gamma c = c$.

For example, $\Gamma = SL(2, \mathbb{Z})$ has the only cusp $c = \infty$, as every integral translation $z \mapsto z + n$, $n \in \mathbb{Z}$ fixes c.

Figure: A fundamental domain of $\Gamma(2)$ in \mathbb{H} with three cusps $c_1 = 1, c_2 = 0, c_3 = \infty$. (-1 is equivalent to c_2 thru transl. $z \mapsto z + 2$.)

The principal congruence subgroup $\Gamma = \Gamma(N)$ has 3 cusps for N = 2 and $\frac{1}{2}N^2 \prod_{p|N} \left(1 - \frac{1}{p^2}\right)$ cusps for N > 2. Ideas of the proof 1: Decomposition of Σ (a) Let $\bar{\partial}_{A^b} = \text{proj of } \nabla_{A^b}$ on (0, 1)-forms. By the Weitzenböck -type formula, $-\Delta_a = \partial_a^{\prime\prime*} \partial_a^{\prime\prime} + *F_a$, we have

$$-\Delta_{\mathcal{A}^b} \geq b$$
 and $\operatorname{Null}(-\Delta_{\mathcal{A}^b} - b) = \operatorname{Null} ar\partial_{\mathcal{A}^b}$

 $\implies b$ is an eigenvalue of $-\Delta_{A^b}$ iff Null $\bar{\partial}_{A^b}$ is non-empty.

(b) We identify Σ with a fundamental domain $F_{\Sigma} \subset \mathbb{H}$ of Γ and decompose F_{Σ} into a compact connected set, U_0 , and neighbourhoods U_i of the cusps c_i , in such a way that

 $U_i \cap U_j = \emptyset$ for $1 \le i \ne j \le m$, and $U_0 := F_{\Sigma} \setminus \bigcup_{i=1}^m U_i$ is compact.

Figure: Schematic diagram for the decomposition of a fundamental domain of $\Gamma(2)$ in \mathbb{H} with three cusps $c_1 = 1, c_2 = 0, c_3 = \infty$.

Ideas of the proof 2: Maps of cusps

We maps the domains U_i , i = 1, ..., m, isometrically onto the half-cylinders (for some $s_i \gg 1$)

$$Z_i := \{z \in \mathbb{C} : \operatorname{Im} z > s_i\}/\mathbb{Z}.$$
(15)

The corresponding maps φ_i are given by

$$\varphi_i: egin{cases} z\mapsto -rac{1}{z-c_i} \quad (c_i
eq\infty), \ z\mapsto z \quad (c_i=\infty) \end{cases}$$

Figure: Schematic diagram illustrating map φ_2 associated to cusp $c_2 = 0$.

On Z_i 's we solve the spectral problem explicitly and then patch different spectra using a partition of unity.

Idea pf the proof 3: Spectrum of a cusp

By the map φ_i , which maps U_i isometrically onto the half-cylinder Z_i

Figure: The half-cylinder $Z_i := \{z \in \mathbb{C} : \text{Im } z > s_i\}/\mathbb{Z}$

the operator $-\Delta_{A^b}\big|_{U_i}$ is mapped unitarily to then operator $-\Delta_{A^b_0}$, with $A^b_0:=by^{-1}dx$,

acting on $L^2(Z_i)$ with the Dirichlet b. c. \Longrightarrow (easy estimate)

$$-\Delta_{\mathcal{A}^b_0} \geq rac{1}{4} + b^2.$$

Patching different spectra using a partition of unity, we conclude

$$\sigma_{\mathrm{ess}}(-\Delta_{\mathcal{A}^b}) \subset [1/4 + b^2, \infty),$$

which concludes the essential part of (b). \Box

Bifurcation from Constant Curvature Connection

Recall the linearized the GLE on the constant curvature solution $u^b = (0, A^b)$, where A^b is a c.c. connection on *L*:

$$(-\Delta_{A^b}-\kappa^2)\xi=0, \ d^*d\alpha=0$$

where ξ is a section on L and α one-form on Σ .

The first equation was investigated above to obtain that, if Null $\bar{\partial}_{A^b}$ (= the space of holomorphic sections of $L \to \Sigma$) is non-empty, then *b* is the smallest eigenvalue of $-\Delta_{A^b}$ and is isolated.

For the second equation we have Proposition $d^*d \ge 0$ and the solution space to $d^*d\alpha = 0$ in $\vec{\mathcal{H}}^2$ is

Null
$$d^*d|_{\vec{\mathcal{H}}^2} = \{$$
harmonic 1-forms on $\Sigma\} = H^1_{\mathrm{DR}}(\Sigma,\mathbb{R}).$ (16)

 \implies bifurcation of non-trivial energy minim. solns of the GLEs at $b=\kappa^2$

Summary

- We described the Ginzburg-Landau equations on general Riemann surfaces and its general properies.
- We presented our recent results on existence of energy minimizing solutions and gave some ideas of the proof.

Thank-you for your attention

・ロト・日本・ヨト・ヨー うへの