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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations (GLE):

−∆AΨ = κ2(1− |Ψ|2)Ψ
curl2 A = Im(Ψ̄∇AΨ)

where (Ψ,A) : Rd → C× Rd , d = 2, 3, ∇A = ∇− iA, ∆A = ∇2
A,

the covariant derivative and covariant Laplacian, respectively, and
κ is the Ginzburg-Landau material constant.

The GLE are the Euler-Lagrange equations for the
Ginzburg-Landau energy functional

EQ(Ψ,A) =
1

2

∫
Σ

{
|∇AΨ|2 + | curlA|2 +

κ2

2
(|Ψ|2 − 1)2

}
, (1)

with apprpriate b.c. . Here Σ is any domain in R2.



Origin of Ginzburg-Landau Equations

Superconductivity. Ψ is called the order parameter;
|Ψ|2 is the density of (Cooper pairs of) superconducting electrons;
A is the magnetic potential;
Im(Ψ̄∇AΨ) is the superconducting current.

Particle physics. Ψ and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively. (Part of Weinberg - Salam
model of electro-weak interactions/ a standard model.)

Similar equations appear in other areas of physics and material
sciences.

Extensions: Yang-Mills-Higgs and Seiberg-Witten equations



Ginzburg-Landau equations on surfaces

To model superconducting thin membranes, or quantum engines
(nano-devises), one considers the GLE on 2D surfaces, Σ,

Figure: Compact and non-compact Riemann surfaces.

If the magnetic field 6= 0, then, instead of functions, Ψ, and
vector-fields, A, we have to consider sections Ψ and connection
one-forms, A, on a U(1) line bundle L over Σ.



Ginzburg-Landau Equations

The Ginzburg-Landau equations on a U(1) line bundle L→ Σ over
a manifold Σ are written as

∆AΨ = κ2(|Ψ|2 − 1)Ψ, (2a)

d∗dA = Im(Ψ̄∇AΨ). (2b)

Here Ψ is a section and A, a connection one-form on L→ Σ,
∆A = ∇∗A∇A, ∇A and ∇∗A are the covariant derivative and its
adjoint, and d and d∗ are the exterior derivative and its adjoint.

The GLE are the Euler-Lagrange equations for the
Ginzburg-Landau energy functional

EQ(Ψ,A) =
1

2

∫
Σ

{
|∇AΨ|2 + |dA|2 +

κ2

2
(|Ψ|2 − 1)2

}
. (3)

Let Σ be a Riemann surface (i.e. 2D complex Riem manif.) of finite vol.



Equivariant functions and vector fields
By the key uniformization theorem for Riemann surfaces, a Riem. surface
Σ of genus 1 is torus and can be given as T = C/Λ, where Λ is a
standard lattice, and of genus ≥ 2 can be given by

Σ = H/Γ,

where H is the Poincaré half-plane

H := {z ∈ C : Im z > 0}.

and Γ, a Fuchsian group. (i.e. a discrete subgroup of the group of
isometries PSL(2,R) acting on H by Möbius transforms

γ z = az+b
cz+d , γ =

(
a b
c d

)
∈ Γ.

Sections and connections of the line bundle over the Riem. surf. Σ
⇐⇒ Γ−equivariant functions and vector fields,

(Ψ,A)(s−1x) = T gauge
χs

(Ψ,A), ∀s ∈ Γ, (4)

where T gauge
χ : (Ψ,A)→ (e iχΨ,A + dχ), the gauge transform.

The GLE on line bundles on Σ⇐⇒ the GLE for complex functions
and real vector-fields on H satisfying (4).



Examples

An important class of examples are the Riemann surfaces

Σ := H/Γ(N), N = 1, 2, . . . , (5)

where Γ(N) is the principal congruence subgroup of level N,

Γ(N) :=

{
γ =

(
a b
c d

)
∈ SL(2,Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
.

An explicit bundle E → Σ satisfying condition
dimC Null(−∆Abr − br ) = 1,

is

Σ = H/Γ(6), deg E = 12. (6)



Fundamental domains

Recall a fundamental domain, F , of a group Γ acting on a topological
space X is a closed subset of X s.t.

X = ∪g∈ΓgF and gF ∩ g ′F = ∂(gF ) ∩ ∂(g ′F ) ∀g 6= g ′

Tiling of the Poincaré (hyperbolic) plane by fundamental domains



Fundamental domains 2
The GLE on line bundles on Σ⇐⇒ the GLE for complex functions
and real vector-fields on a fundamental domain F of Γ satisfying
appropriate (equivariant) boundary conditions.

Figure: A fundamental domain of the principal congruence subgroup Γ(2)
of level 2.

Γ(N) :=
{
γ =

(
a b
c d

)
∈ SL(2,Z) : a ≡ d ≡ 1, b ≡ c ≡ 0 mod N

}
.

Examples of tiling of the Poincaré disk by fundamental domains:



General properties

Gauge symmetry: If (Ψ,A) is a solution of GLE, then for any
h ∈ C∞(Σ,U(1)) the pair (hΨ,A− ih−1dh) is also a soln of GLE

Quantization of flux: Let FA = dA be the curvature of a
connection A on a line bundle L. Then

Theorem.(Chern-Weil correspondence) The flux of the curvature
FA is quantized: 1

2π

∫
Σ FA (= c1(L)) = deg(L) ∈ Z.

Constant curvature connections on L: A with FA of the form
FA = bω, where b is a constant and ω is the symplectic volume
form on Σ. Then Chern-Weil corresp. thm implies

b =
1

vol(X )

∫
Σ
FA =

2πn

vol(Σ)
. (7)

Proposition. (0,A) solves GLEs ⇐⇒ A is a c. c. connect. on L.



Result 1: Existence and expansion
Let (Σ, hr ), r > 0, be a compact or non-compact Riemann surface
equipped with the finite area hyperbolic metric

hr =
r

(Im z)2
dz ⊗ dz̄ (r > 0). (8)

Let L be a unitary line bundle over Σ and deg L, the topol. degree of L.

Theorem 1 (Existence and expansion). Suppose r > 0 satisfies
0 <

∣∣κ2r − b
∣∣� 1, with b := 2π deg L/ |Σ| > 0.

Then ∃ ε > 0 s.th. GLE with metric (8) has a C 2 branch of solns
(Ψs ,As , rs), s ∈ C, |s| ≤ ε, satisfying rs = b/κ2 + O(|s|2) and

Ψs = sξ + OHk (|s|3), (9)

As = Abrs + |s|2 α + O ~Hk (|s|4), (10)

where ξ = OHk (1) is gauge-equivalent to a holom. section of L,
br := b/r and α = O ~Hk (1) is a co-closed 1-form satisfying

dα =
1

2
∗ (1− |ξ|2) ∗= Hodge operator. (11)



Result 2: Uniqueness

Recall, br := b/r , with b := 2π deg L/ |Σ| > 0.

Theorem 2 (Uniqueness). Under the conditions of Theorem 1,
Null(−∆Abr − br ) is finite dimensional and, if

dimC Null(−∆Abr − br ) = 1, (12)

then we can take s ∈ R≥0, and the solution (Ψs ,As , rs), s ∈ R≥0,
|s| ≤ ε, is unique in U ⊂ X k , up to a gauge symmetry, and
equation r = rs can be solved for s giving s = s(r) leading to the
solution

(Ψ(r),A(r)) = (Ψs(r),As(r)), ∀r > 0.



Result 3: Energy
Theorem 3 (Energy asymptotics). For the solution (Ψs(r),As(r))

constructed above and the constant curvature solution (0,Abr ) ,

E(Ψs(r),As(r)) = E(0, abr )−
|Σ|r

4

∣∣κ2 − br
∣∣2

(κ2 − 1
2 )β(r) + 1

2

+ O(
∣∣κ2 − br

∣∣3). (13)

where, recall, br = b/r , with b := 2π deg E/(|Σ| r) and

β(r) := min{ 〈|ξ|
4〉

〈|ξ|2〉2
: ξ ∈ Null(−∆Abr − br )}, 〈f 〉 :=

1

|Σ|r

∫
f .

=⇒ E(Ψs(r),As(r)) < E(0,Abr ), provided κ > κc(r), where

κc(r) :=

√
1

2

(
1− 1

β(r)

)
. (14)

Hence, if κ > κc(r), then the solutions constructed in Thm 1 are
energetically favourable compared to the constant curvature one.



Key step: Linearized GLE
Linearize GLE around the constant curvature solution (0,Ab) =⇒

(−∆Ab − κ2r)ξ = 0, d∗dα = 0.

Let S(Σ) ≡ Sk(Σ) denote the space of cusp forms on Σ with
weight k = 2b = 4πn/ |Σ|. We have the following.

Theorem. Let Σ = H/Γ be a non-compact Riemann surface with
elliptic points. Then −∆Ab is self-adjoint and satisfies

(a) −∆Ab ≥ b and b is an eigenvalue of −∆Ab if and only if
S(Σ) 6= ∅, and the multiplicity of b equals to dimS(Σ);

(b) The essential spectrum of −∆Ab consists of m branches each
of which filling in the semi-axis [1/4 + b2,∞), where m = #
cusps (defined later). Hence,

σess(−∆Ab) = [1/4 + b2,∞).



Cusps
Definition (Cusp) Let Γ be a Fuchsian group. A point c ∈ R ∪ {∞} is
called a cusp of Γ ⇐⇒ ∃ γ ∈ Γ that is conjugate-equivalent to some
horizontal translation z 7→ z + h, h ∈ R, s.th. γc = c .

For example, Γ = SL(2,Z) has the only cusp c =∞, as every integral

translation z 7→ z + n, n ∈ Z fixes c .

Im z = 0
z = 0z = −1 z = 1

Figure: A fundamental domain of Γ(2) in H with three cusps
c1 = 1, c2 = 0, c3 =∞. (−1 is equivalent to c2 thru transl. z 7→ z + 2.)

The principal congruence subgroup Γ = Γ(N) has 3 cusps for N = 2 and
1
2
N2∏

p|N
(
1− 1

p2

)
cusps for N > 2.



Ideas of the proof 1: Decomposition of Σ
(a) Let ∂̄Ab = proj of ∇Ab on (0, 1)-forms. By the Weitzenböck -type
formula, −∆a = ∂′′a

∗
∂′′a + ∗Fa, we have

−∆Ab ≥ b and Null(−∆Ab − b) = Null ∂̄Ab

=⇒ b is an eigenvalue of −∆Ab iff Null ∂̄Ab is non-empty.

(b) We identify Σ with a fundamental domain FΣ ⊂ H of Γ and
decompose FΣ into a compact connected set, U0, and neighbourhoods Ui

of the cusps ci , in such a way that

Ui ∩ Uj = ∅ for 1 ≤ i 6= j ≤ m, and U0 := FΣ \
⋃m

i=1 Ui is compact.

Im z = 0
z = 0z = −1 z = 1

U1

U3

U2

U0

Figure: Schematic diagram for the decomposition of a fundamental domain of
Γ(2) in H with three cusps c1 = 1, c2 = 0, c3 =∞.



Ideas of the proof 2: Maps of cusps
We maps the domains Ui , i = 1, . . . ,m, isometrically onto the
half-cylinders (for some si � 1)

Zi := {z ∈ C : Im z > si}/Z. (15)

The corresponding maps ϕi are given by

ϕi :

z 7→ − 1

z − ci
(ci 6=∞),

z 7→ z (ci =∞)

Im z

Z2
s2

ϕ2

U2

Figure: Schematic diagram illustrating map ϕ2 associated to cusp c2 = 0.

On Zi ’s we solve the spectral problem explicitly and then patch different

spectra using a partition of unity.



Idea pf the proof 3: Spectrum of a cusp
By the map ϕi , which maps Ui isometrically onto the half-cylinder Zi

Im z = 0
z = −1 z = 1

Zi

Figure: The half-cylinder Zi := {z ∈ C : Im z > si}/Z

the operator −∆Ab

∣∣
Ui

is mapped unitarily to then operator

−∆Ab
0
, with Ab

0 := by−1dx ,

acting on L2(Zi ) with the Dirichlet b. c. =⇒ (easy estimate)

−∆Ab
0
≥ 1

4
+ b2.

Patching different spectra using a partition of unity, we conclude

σess(−∆Ab) ⊂ [1/4 + b2,∞),

which concludes the essential part of (b). 2



Bifurcation from Constant Curvature Connection

Recall the linearized the GLE on the constant curvature solution
ub = (0,Ab), where Ab is a c.c. connection on L:

(−∆Ab − κ2)ξ = 0, d∗dα = 0

where ξ is a section on L and α one-form on Σ.

The first equation was investigated above to obtain that, if Null ∂̄Ab

(= the space of holomorphic sections of L→ Σ) is non-empty,
then b is the smallest eigenvalue of −∆Ab and is isolated.

For the second equation we have
Proposition d∗d ≥ 0 and the solution space to d∗dα = 0 in ~H2 is

Null d∗d | ~H2 = {harmonic 1-forms on Σ} = H1
DR(Σ,R). (16)

=⇒ bifurcation of non-trivial energy minim. solns of the GLEs at
b = κ2



Summary

I We described the Ginzburg-Landau equations on general
Riemann surfaces and its general properies.

I We presented our recent results on existence of energy
minimizing solutions and gave some ideas of the proof.



Thank-you for your attention


