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Abstract

This paper deals with the fractional Sobolev spaces Ws,p . We analyze the relations among some of
their possible definitions and their role in the trace theory. We prove continuous and compact embeddings,
investigating the problem of the extension domains and other regularity results.

Most of the results we present here are probably well known to the experts, but we believe that our proofs
are original and we do not make use of any interpolation techniques nor pass through the theory of Besov
spaces. We also present some counterexamples in non-Lipschitz domains.
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1. Introduction

These pages are for students and young researchers of all ages who may like to hitchhike their
way from 1 to s ∈ (0,1). To wit, for anybody who, only endowed with some basic undergraduate
analysis course (and knowing where his towel is), would like to pick up some quick,
crash and essentially self-contained information on the fractional Sobolev spaces Ws,p .

The reasons for such a hitchhiker to start this adventurous trip might be of different kind:
(s)he could be driven by mathematical curiosity, or could be tempted by the many applications
that fractional calculus seems to have recently experienced. In a sense, fractional Sobolev spaces
have been a classical topic in functional and harmonic analysis all along, and some important
books, such as [58,88] treat the topic in detail. On the other hand, fractional spaces, and the
corresponding nonlocal equations, are now experiencing impressive applications in different sub-
jects, such as, among others, the thin obstacle problem [85,68], optimization [37], finance [26],
phase transitions [2,14,86,40,45], stratified materials [81,23,24], anomalous diffusion [67,96,64],
crystal dislocation [90,47,8], soft thin films [56], semipermeable membranes and flame propa-
gation [15], conservation laws [9], ultra-relativistic limits of quantum mechanics [41], quasi-
geostrophic flows [63,27,21], multiple scattering [36,25,49], minimal surfaces [16,20], materials
science [4], water waves [79,98,97,32,29,72,33,34,31,30,42,50,73,35], elliptic problems with
measure data [70,53], non-uniformly elliptic problems [39], gradient potential theory [71] and
singular set of minima of variational functionals [69,55]. Don’t panic, instead, see also
[84,85] for further motivation.

For these reasons, we thought that it could be of some interest to write down these notes –
or, more frankly, we wrote them just because if you really want to understand
something, the best way is to try and explain it to someone else.

Some words may be needed to clarify the style of these pages have been gathered. We
made the effort of making a rigorous exposition, starting from scratch, trying to use the least
amount of technology and with the simplest, low-profile language we could use – since cap-
ital letters were always the best way of dealing with things you
didn’t have a good answer to.

Differently from many other references, we make no use of Besov spaces3 or interpolation
techniques, in order to make the arguments as elementary as possible and the exposition suitable
for everybody, since when you are a student or whatever, and you can’t
afford a car, or a plane fare, or even a train fare, all you can

3 About this, we would like to quote [52], according to which “The paradox of Besov spaces is that the very thing that
makes them so successful also makes them very difficult to present and to learn”.
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do is hope that someone will stop and pick you up, and it’s nice to
think that one could, even here and now, be whisked away just by
hitchhiking.

Of course, by dropping fine technologies and powerful tools, we will miss several very
important features, and we apologize for this. So, we highly recommend all the excellent, clas-
sical books on the topic, such as [58,88,1,91,92,99,78,89,66,59], and the many references given
therein. Without them, our reader would remain just a hitchhiker, losing the opportunity of per-
forming the next crucial step towards a full mastering of the subject and becoming the captain of
a spaceship.

In fact, compared to other Guides, this one is not definitive, and it is a very
evenly edited book and contains many passages that simply seemed
to its editors a good idea at the time. In any case, of course, we know that
we cannot solve any major problems just with potatoes – it’s fun to try and
see how far one can get though.

In this sense, while most of the results we present here are probably well known to the experts,
we believe that the exposition is somewhat original.

These are the topics we cover. In Section 2, we define the fractional Sobolev spaces Ws,p via
the Gagliardo approach and we investigate some of their basic properties. In Section 3 we focus
on the Hilbert case p = 2, dealing with its relation with the fractional Laplacian, and letting
the principal value integral definition interplay with the definition in the Fourier space. Then, in
Section 4 we analyze the asymptotic behavior of the constant factor that appears in the definition
of the fractional Laplacian.

Section 5 is devoted to the extension problem of a function in Ws,p(Ω) to Ws,p(Rn): tech-
nically, this is slightly more complicated than the classical analogue for integer Sobolev spaces,
since the extension interacts with the values taken by the function in Ω via the Gagliardo norm
and the computations have to take care of it.

Sobolev inequalities and continuous embeddings are dealt with in Section 6, while Section 7
is devoted to compact embeddings. Then, in Section 8, we point out that functions in Ws,p are
continuous when sp is large enough.

In Section 9, we present some counterexamples in non-Lipschitz domains.
After that, we hope that our hitchhiker reader has enjoyed his trip from the integer Sobolev

spaces to the fractional ones, with the advantages of being able to get more quickly
from one place to another - particularly when the place you arrived at
had probably become, as a result of this, very similar to the place
you had left.

The above sentences written in old-fashioned fonts are Douglas Adams’s of course,
and we took the latitude of adapting their meanings to our purposes. The rest of these pages are
written in a more conventional, may be boring, but hopefully rigorous, style.

2. The fractional Sobolev space Ws,p

This section is devoted to the definition of the fractional Sobolev spaces.
No prerequisite is needed. We just recall the definition of the Fourier transform of a distribu-

tion. First, consider the Schwartz space S of rapidly decaying C∞ functions in Rn. The topology
of this space is generated by the seminorms

pN(ϕ) = sup
x∈Rn

(
1 + |x|)N

∑ ∣∣Dαϕ(x)
∣∣, N = 0,1,2, . . . ,
|α|�N
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where ϕ ∈ S (Rn). Let S ′(Rn) be the set of all tempered distributions, that is the topological
dual of S (Rn). As usual, for any ϕ ∈ S (Rn), we denote by

Fϕ(ξ) = 1

(2π)n/2

∫
Rn

e−iξ ·xϕ(x) dx

the Fourier transform of ϕ and we recall that one can extend F from S (Rn) to S ′(Rn).
Let Ω be a general, possibly nonsmooth, open set in Rn. For any real s > 0 and for any

p ∈ [1,∞), we want to define the fractional Sobolev spaces Ws,p(Ω). In the literature, fractional
Sobolev-type spaces are also called Aronszajn, Gagliardo or Slobodeckij spaces, by the name of
the ones who introduced them, almost simultaneously (see [3,44,87]).

We start by fixing the fractional exponent s in (0,1). For any p ∈ [1,+∞), we define
Ws,p(Ω) as follows

Ws,p(Ω) :=
{
u ∈ Lp(Ω):

|u(x) − u(y)|
|x − y| n

p
+s

∈ Lp(Ω × Ω)

}
; (2.1)

i.e., an intermediary Banach space between Lp(Ω) and W 1,p(Ω), endowed with the natural
norm

‖u‖Ws,p(Ω) :=
( ∫

Ω

|u|p dx +
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy

) 1
p

, (2.2)

where the term

[u]Ws,p(Ω) :=
( ∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy

) 1
p

is the so-called Gagliardo (semi)norm of u.
It is worth noticing that, as in the classical case with s being an integer, the space Ws′,p is

continuously embedded in Ws,p when s � s′, as next result points out.

Proposition 2.1. Let p ∈ [1,+∞) and 0 < s � s′ < 1. Let Ω be an open set in Rn and u : Ω → R

be a measurable function. Then

‖u‖Ws,p(Ω) � C‖u‖
Ws′,p(Ω)

for some suitable positive constant C = C(n, s,p) � 1. In particular,

Ws′,p(Ω) ⊆ Ws,p(Ω).

Proof. First,∫
Ω

∫
Ω∩{|x−y|�1}

|u(x)|p
|x − y|n+sp

dx dy �
∫
Ω

( ∫
|z|�1

1

|z|n+sp
dz

)∣∣u(x)
∣∣p dx

� C(n, s,p)‖u‖p

Lp(Ω)
,

where we used the fact that the kernel 1/|z|n+sp is integrable since n + sp > n.
Taking into account the above estimate, it follows
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∫
Ω

∫
Ω∩{|x−y|�1}

|u(x) − u(y)|p
|x − y|n+sp

dx dy � 2p−1
∫
Ω

∫
Ω∩{|x−y|�1}

|u(x)|p + |u(y)|p
|x − y|n+sp

dx dy

� 2pC(n, s,p)‖u‖p

Lp(Ω). (2.3)

On the other hand,∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+sp

dx dy �
∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+s′p dx dy. (2.4)

Thus, combining (2.3) with (2.4), we get∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy � 2pC(n, s,p)‖u‖p

Lp(Ω) +
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+s′p dx dy

and so

‖u‖p

Ws,p(Ω) �
(
2pC(n, s,p) + 1

)‖u‖p

Lp(Ω) +
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+s′p dx dy

� C(n, s,p)‖u‖p

Ws′,p(Ω)
,

which gives the desired estimate, up to relabeling the constant C(n,p, s). �
We will show in the forthcoming Proposition 2.2 that the result in Proposition 2.1 holds also

in the limit case, namely when s′ = 1, but for this we have to take into account the regularity
of ∂Ω (see Example 9.1).

As usual, for any k ∈ N and α ∈ (0,1], we say that Ω is of class Ck,α if there exists M > 0
such that for any x ∈ ∂Ω there exist a ball B = Br(x), r > 0, and an isomorphism T : Q → B

such that

T ∈ Ck,α(Q), T −1 ∈ Ck,α(B), T (Q+) = B ∩ Ω, T (Q0) = B ∩ ∂Ω and

‖T ‖Ck,α(Q) + ∥∥T −1
∥∥

Ck,α(B)
� M,

where

Q := {
x = (

x′, xn

) ∈ Rn−1 × R:
∣∣x′∣∣ < 1 and |xn| < 1

}
,

Q+ := {
x = (

x′, xn

) ∈ Rn−1 × R:
∣∣x′∣∣ < 1 and 0 < xn < 1

}
and

Q0 := {x ∈ Q: xn = 0}.
We have the following result.

Proposition 2.2. Let p ∈ [1,+∞) and s ∈ (0,1). Let Ω be an open set in Rn of class C0,1 with
bounded boundary and u : Ω → R be a measurable function. Then

‖u‖Ws,p(Ω) � C‖u‖W 1,p(Ω) (2.5)

for some suitable positive constant C = C(n, s,p) � 1. In particular,

W 1,p(Ω) ⊆ Ws,p(Ω).
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Proof. Let u ∈ W 1,p(Ω). Thanks to the regularity assumptions on the domain Ω , we can ex-
tend u to a function ũ : Rn → R such that ũ ∈ W 1,p(Rn) and ‖ũ‖W 1,p(Rn) � C‖u‖W 1,p(Ω) for a
suitable constant C (see, e.g., [48, Theorem 7.25]).

Now, using the change of variable z = y − x and the Hölder inequality, we have∫
Ω

∫
Ω∩{|x−y|<1}

|u(x) − u(y)|p
|x − y|n+sp

dx dy �
∫
Ω

∫
B1

|u(x) − u(z + x)|p
|z|n+sp

dz dx

=
∫
Ω

∫
B1

|u(x) − u(z + x)|p
|z|p

1

|z|n+(s−1)p
dz dx

�
∫
Ω

∫
B1

( 1∫
0

|∇u(x + tz)|
|z| n

p
+s−1

dt

)p

dz dx

�
∫
Rn

∫
B1

1∫
0

|∇ũ(x + tz)|p
|z|n+p(s−1)

dt dz dx

�
∫
B1

1∫
0

‖∇ũ‖p

Lp(Rn)

|z|n+p(s−1)
dt dz

� C1(n, s,p)‖∇ũ‖p

Lp(Rn)

� C2(n, s,p)‖u‖p

W 1,p(Ω)
. (2.6)

Also, by (2.3),∫
Ω

∫
Ω∩{|x−y|�1}

|u(x) − u(y)|p
|x − y|n+sp

dx dy � C(n, s,p)‖u‖p

Lp(Ω). (2.7)

Therefore, from (2.6) and (2.7) we get estimate (2.5). �
We remark that the Lipschitz assumption in Proposition 2.2 cannot be completely dropped

(see Example 9.1 in Section 9); we also refer to the forthcoming Section 5, in which we discuss
the extension problem in Ws,p .

Let us come back to the definition of the space Ws,p(Ω). Before going ahead, it is worth
explaining why the definition in (2.1) cannot be plainly extended to the case s � 1. Suppose that
Ω is a connected open set in Rn, then any measurable function u : Ω → R such that∫

Ω

∫
Ω

|u(x) − u(u)|p
|x − y|n+sp

dx dy < +∞

is actually constant (see [10, Proposition 2]). This fact is a matter of scaling and it is strictly
related to the following result that holds for any u in W 1,p(Ω):

lim
s→1−(1 − s)

∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy = C1

∫
Ω

|∇u|p dx (2.8)

for a suitable positive constant C1 depending only on n and p (see [11]).
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In the same spirit, in [65], Maz’ya and Shaposhnikova proved that, for a function u ∈⋃
0<s<1 Ws,p(Rn), it yields

lim
s→0+ s

∫
Rn

∫
Rn

|u(x) − u(y)|p
|x − y|n+sp

dx dy = C2

∫
Rn

|u|p dx, (2.9)

for a suitable positive constant C2 depending4 only on n and p.
When s > 1 and it is not an integer we write s = m + σ , where m is an integer and σ ∈ (0,1).

In this case the space Ws,p(Ω) consists of those equivalence classes of functions u ∈ Wm,p(Ω)

whose distributional derivatives Dαu, with |α| = m, belong to Wσ,p(Ω), namely

Ws,p(Ω) := {
u ∈ Wm,p(Ω): Dαu ∈ Wσ,p(Ω) for any α s.t. |α| = m

}
(2.10)

and this is a Banach space with respect to the norm

‖u‖Ws,p(Ω) :=
(

‖u‖p

Wm,p(Ω) +
∑

|α|=m

∥∥Dαu
∥∥p

Wσ,p(Ω)

) 1
p

. (2.11)

Clearly, if s = m is an integer, the space Ws,p(Ω) coincides with the Sobolev space Wm,p(Ω).

Corollary 2.3. Let p ∈ [1,+∞) and s, s′ > 1. Let Ω be an open set in Rn of class C0,1. Then, if
s′ � s, we have

Ws′,p(Ω) ⊆ Ws,p(Ω).

Proof. We write s = k + σ and s′ = k′ + σ ′, with k, k′ integers and σ,σ ′ ∈ (0,1). In the case
k′ = k, we can use Proposition 2.1 in order to conclude that Ws′,p(Ω) is continuously embedded
in Ws,p(Ω). On the other hand, if k′ � k + 1, using Proposition 2.1 and Proposition 2.2 we have
the following chain

Wk′+σ ′,p(Ω) ⊆ Wk′,p(Ω) ⊆ Wk+1,p(Ω) ⊆ Wk+σ,p(Ω).

The proof is complete. �
As in the classic case with s being an integer, any function in the fractional Sobolev space

Ws,p(Rn) can be approximated by a sequence of smooth functions with compact support.

Theorem 2.4. For any s > 0, the space C∞
0 (Rn) of smooth functions with compact support is

dense in Ws,p(Rn).

A proof can be found in [1, Theorem 7.38].
Let W

s,p

0 (Ω) denote the closure of C∞
0 (Ω) in the norm ‖ · ‖Ws,p(Ω) defined in (2.11). Note

that, in view of Theorem 2.4, we have

W
s,p

0

(
Rn

) = Ws,p
(
Rn

)
, (2.12)

4 For the sake of simplicity, in the definition of the fractional Sobolev spaces and those of the corresponding norms
in (2.1) and (2.2) we avoided any normalization constant. In view of (2.8) and (2.9), it is worth noticing that, in order to
recover the classical W1,p and Lp spaces, one may consider to add a factor C(n,p, s) ≈ s(1 − s) in front of the double
integral in (2.2).
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but in general, for Ω ⊂ Rn, Ws,p(Ω) = W
s,p

0 (Ω), i.e. C∞
0 (Ω) is not dense in Ws,p(Ω). Fur-

thermore, it is clear that the same inclusions stated in Proposition 2.1, Proposition 2.2 and
Corollary 2.3 hold for the spaces W

s,p

0 (Ω).

Remark 2.5. For s < 0 and p ∈ (1,∞), we can define Ws,p(Ω) as the dual space of W
−s,q

0 (Ω)

where 1/p + 1/q = 1. Notice that, in this case, the space Ws,p(Ω) is actually a space of distri-
butions on Ω , since it is the dual of a space having C∞

0 (Ω) as density subset.

Finally, it is worth noticing that the fractional Sobolev spaces play an important role in
the trace theory. Precisely, for any p ∈ (1,+∞), assume that the open set Ω ⊆ Rn is suf-
ficiently smooth, then the space of traces T u on ∂Ω of u in W 1,p(Ω) is characterized by
‖T u‖

W
1− 1

p ,p
(∂Ω)

< +∞ (see [43]). Moreover, the trace operator T is surjective from W 1,p(Ω)

onto W
1− 1

p
,p

(∂Ω). In the quadratic case p = 2, the situation simplifies considerably, as we will
see in the next section and a proof of the above trace embedding can be find in the forthcoming
Proposition 3.8.

3. The space Hs and the fractional Laplacian operator

In this section, we focus on the case p = 2. This is quite an important case since the fractional
Sobolev spaces Ws,2(Rn) and W

s,2
0 (Rn) turn out to be Hilbert spaces. They are usually denoted

by Hs(Rn) and Hs
0 (Rn), respectively. Moreover, they are strictly related to the fractional Lapla-

cian operator (−
)s (see Proposition 3.6), where, for any u ∈ S and s ∈ (0,1), (−
)s it is
defined as

(−
)su(x) = C(n, s)P.V.

∫
Rn

u(x) − u(y)

|x − y|n+2s
dy

= C(n, s) lim
ε→0+

∫
CBε(x)

u(x) − u(y)

|x − y|n+2s
dy. (3.1)

Here P.V. is a commonly used abbreviation for “in the principal value sense” (as defined by the
latter equation) and C(n, s) is a dimensional constant that depends on n and s, precisely given
by

C(n, s) =
( ∫

Rn

1 − cos(ζ1)

|ζ |n+2s
dζ

)−1

. (3.2)

The choice of this constant is motivated by Proposition 3.3.

Remark 3.1. Due to the singularity of the kernel, the right-hand side of (3.1) is not well defined
in general. In the case s ∈ (0,1/2) the integral in (3.1) is not really singular near x. Indeed, for
any u ∈ S , we have∫

Rn

|u(x) − u(y)|
|x − y|n+2s

dy � C

∫
BR

|x − y|
|x − y|n+2s

dy + ‖u‖L∞(Rn)

∫
CBR

1

|x − y|n+2s
dy

= C

(∫
1

|x − y|n+2s−1
dy +

∫
1

|x − y|n+2s
dy

)

BR CBR
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= C

( R∫
0

1

|ρ|2s
dρ +

+∞∫
R

1

|ρ|2s+1
dρ

)
< +∞

where C is a positive constant depending only on the dimension and on the L∞ norm of u.

Now, we show that one may write the singular integral in (3.1) as a weighted second order
differential quotient.

Lemma 3.2. Let s ∈ (0,1) and let (−
)s be the fractional Laplacian operator defined by (3.1).
Then, for any u ∈ S ,

(−
)su(x) = −1

2
C(n, s)

∫
Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy, ∀x ∈ Rn. (3.3)

Proof. The equivalence of the definitions in (3.1) and (3.3) immediately follows by the standard
changing variable formula.

Indeed, by choosing z = y − x, we have

u(x) = −C(n, s)P.V.

∫
Rn

u(y) − u(x)

|x − y|n+2s
dy

= −C(n, s)P.V.

∫
Rn

u(x + z) − u(x)

|z|n+2s
dz. (3.4)

Moreover, by substituting z̃ = −z in last term of the above equality, we have

P.V.

∫
Rn

u(x + z) − u(x)

|z|n+2s
dz = P.V.

∫
Rn

u(x − z̃) − u(x)

|z̃|n+2s
dz̃ (3.5)

and so after relabeling z̃ as z

2P.V.

∫
Rn

u(x + z) − u(x)

|z|n+2s
dz

= P.V.

∫
Rn

u(x + z) − u(x)

|z|n+2s
dz + P.V.

∫
Rn

u(x − z) − u(x)

|z|n+2s
dz

= P.V.

∫
Rn

u(x + z) + u(x − z) − 2u(x)

|z|n+2s
dz. (3.6)

Therefore, if we rename z as y in (3.4) and (3.6), we can write the fractional Laplacian operator
in (3.1) as

(−
)su(x) = −1

2
C(n, s)P.V.

∫
Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy.

The above representation is useful to remove the singularity of the integral at the origin. Indeed,
for any smooth function u, a second order Taylor expansion yields

u(x + y) + u(x − y) − 2u(x)

n+2s
� ‖D2u‖L∞

n+2s−2
,
|y| |y|
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which is integrable near 0 (for any fixed s ∈ (0,1)). Therefore, since u ∈ S , one can get rid of
the P.V. and write (3.3). �
3.1. An approach via the Fourier transform

Now, we take into account an alternative definition of the space Hs(Rn) = Ws,2(Rn) via the
Fourier transform. Precisely, we may define

Ĥ s
(
Rn

) =
{
u ∈ L2(Rn

)
:

∫
Rn

(
1 + |ξ |2s

)∣∣Fu(ξ)
∣∣2

dξ < +∞
}

(3.7)

and we observe that the above definition, unlike the ones via the Gagliardo norm in (2.2), is valid
also for any real s � 1.

We may also use an analogous definition for the case s < 0 by setting

Ĥ s
(
Rn

) =
{
u ∈ S ′(Rn

)
:

∫
Rn

(
1 + |ξ |2)s∣∣Fu(ξ)

∣∣2
dξ < +∞

}
,

although in this case the space Ĥ s(Rn) is not a subset of L2(Rn) and, in order to use the Fourier
transform, one has to start from an element of S ′(Rn) (see also Remark 2.5).

The equivalence of the space Ĥ s(Rn) defined in (3.7) with the one defined in the previous
section via the Gagliardo norm (see (2.1)) is stated and proven in the forthcoming Proposition 3.4.

First, we will prove that the fractional Laplacian (−
)s can be viewed as a pseudo-differential
operator of symbol |ξ |2s . The proof is standard and it can be found in many papers (see, for
instance, [89, Chapter 16]). We will follow the one in [95] (see Section 3), in which it is
shown how singular integrals naturally arise as a continuous limit of discrete long jump random
walks.

Proposition 3.3. Let s ∈ (0,1) and let (−
)s : S → L2(Rn) be the fractional Laplacian oper-
ator defined by (3.1). Then, for any u ∈ S ,

(−
)su = F−1(|ξ |2s(Fu)
) ∀ξ ∈ Rn. (3.8)

Proof. In view of Lemma 3.2, we may use the definition via the weighted second order differ-
ential quotient in (3.3). We denote by L u the integral in (3.3), that is

L u(x) = −1

2
C(n, s)

∫
Rn

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy,

with C(n, s) as in (3.2).
L is a linear operator and we are looking for its “symbol” (or “multiplier”), that is a function

S : Rn → R such that

L u = F−1(S(Fu)
)
. (3.9)

We want to prove that

S(ξ) = |ξ |2s , (3.10)
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where we denoted by ξ the frequency variable. To this scope, we point out that

|u(x + y) + u(x − y) − 2u(x)|
|y|n+2s

� 4
(
χB1(y)|y|2−n−2s sup

B1(x)

∣∣D2u
∣∣

+ χRn\B1(y)|y|−n−2s
∣∣u(x + y) + u(x − y) − 2u(x)

∣∣) ∈ L1(R2n
)
.

Consequently, by the Fubini–Tonelli theorem, we can exchange the integral in y with the Fourier
transform in x. Thus, we apply the Fourier transform in the variable x in (3.9) and we obtain

S(ξ)(Fu)(ξ) = F (L u)

= −1

2
C(n, s)

∫
Rn

F (u(x + y) + u(x − y) − 2u(x))

|y|n+2s
dy

= −1

2
C(n, s)

∫
Rn

eiξ ·y + e−iξ ·y − 2

|y|n+2s
dy(Fu)(ξ)

= C(n, s)

∫
Rn

1 − cos(ξ · y)

|y|n+2s
dy(Fu)(ξ). (3.11)

Hence, in order to obtain (3.10), it suffices to show that∫
Rn

1 − cos(ξ · y)

|y|n+2s
dy = C(n, s)−1|ξ |2s . (3.12)

To check this, first we observe that, if ζ = (ζ1, . . . , ζn) ∈ Rn, we have

1 − cos ζ1

|ζ |n+2s
� |ζ1|2

|ζ |n+2s
� 1

|ζ |n−2+2s

near ζ = 0. Thus,∫
Rn

1 − cos ζ1

|ζ |n+2s
dζ is finite and positive. (3.13)

Now, we consider the function I : Rn → R defined as follows

I(ξ) =
∫
Rn

1 − cos (ξ · y)

|y|n+2s
dy.

We have that I is rotationally invariant, that is

I(ξ) = I
(|ξ |e1

)
, (3.14)

where e1 denotes the first direction vector in Rn. Indeed, when n = 1, then we can deduce (3.14)
by the fact that I(−ξ) = I(ξ). When n � 2, we consider a rotation R for which R(|ξ |e1) = ξ

and we denote by RT its transpose. Then, by substituting ỹ = RT y, we obtain
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I(ξ) =
∫
Rn

1 − cos ((R(|ξ |e1)) · y)

|y|n+2s
dy

=
∫
Rn

1 − cos ((|ξ |e1) · (RT y))

|y|n+2s
dy

=
∫
Rn

1 − cos ((|ξ |e1) · ỹ)

|ỹ|n+2s
dỹ = I

(|ξ |e1
)
,

which proves (3.14).
As a consequence of (3.13) and (3.14), the substitution ζ = |ξ |y gives that

I(ξ) = I
(|ξ |e1

)
=

∫
Rn

1 − cos (|ξ |y1)

|y|n+2s
dy

= 1

|ξ |n
∫
Rn

1 − cos ζ1

|ζ/|ξ ||n+2s
dζ = C(n, s)−1|ξ |2s ,

where we recall that C(n, s)−1 is equal to
∫

Rn
1−cos(ζ1)

|ζ |n+2s dζ by (3.2). Hence, we deduce (3.12) and
then the proof is complete. �
Proposition 3.4. Let s ∈ (0,1). Then the fractional Sobolev space Hs(Rn) defined in Section 2
coincides with Ĥ s(Rn) defined in (3.7). In particular, for any u ∈ Hs(Rn)

[u]2
Hs(Rn) = 2C(n, s)−1

∫
Rn

|ξ |2s
∣∣Fu(ξ)

∣∣2
dξ,

where C(n, s) is defined by (3.2).

Proof. For every fixed y ∈ Rn, by changing of variable choosing z = x − y, we get∫
Rn

( ∫
Rn

|u(x) − u(y)|2
|x − y|n+2s

dx

)
dy =

∫
Rn

∫
Rn

|u(z + y) − u(y)|2
|z|n+2s

dz dy

=
∫
Rn

( ∫
Rn

∣∣∣∣u(z + y) − u(y)

|z|n/2+s

∣∣∣∣2

dy

)
dz

=
∫
Rn

∥∥∥∥u(z + ·) − u(·)
|z|n/2+s

∥∥∥∥2

L2(Rn)

dz

=
∫
Rn

∥∥∥∥F

(
u(z + ·) − u(·)

|z|n/2+s

)∥∥∥∥2

L2(Rn)

dz,

where Plancherel’s formula has been used.
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Now, using (3.12) we obtain

∫
Rn

∥∥∥∥F

(
u(z + ·) − u(·)

|z|n/2+s

)∥∥∥∥2

L2(Rn)

dz =
∫
Rn

∫
Rn

|eiξ ·z − 1|2
|z|n+2s

∣∣Fu(ξ)
∣∣2

dξ dz

= 2
∫
Rn

∫
Rn

(1 − cos ξ · z)
|z|n+2s

∣∣Fu(ξ)
∣∣2

dzdξ

= 2C(n, s)−1
∫
Rn

|ξ |2s
∣∣Fu(ξ)

∣∣2
dξ.

This completes the proof. �
Remark 3.5. The equivalence of the spaces Hs and Ĥ s stated in Proposition 3.4 relies on
Plancherel’s formula. As is well known, unless p = q = 2, one cannot go forward and backward
between an Lp and an Lq via the Fourier transform (see, for instance, the sharp inequality in [5]
for the case 1 < p < 2 and q equal to the conjugate exponent p/(p−1)). That is why the general
fractional space defined via the Fourier transform for 1 < p < ∞ and s > 0, say Hs,p(Rn), does
not coincide with the fractional Sobolev spaces Ws,p(Rn) and will be not discussed here (see,
e.g., [99]).

Finally, we are able to prove the relation between the fractional Laplacian operator (−
)s

and the fractional Sobolev space Hs .

Proposition 3.6. Let s ∈ (0,1) and let u ∈ Hs(Rn). Then,

[u]2
Hs(Rn) = 2C(n, s)−1

∥∥(−
)
s
2 u

∥∥2
L2(Rn)

, (3.15)

where C(n, s) is defined by (3.2).

Proof. The equality in (3.15) plainly follows from Proposition 3.3 and Proposition 3.4. Indeed,∥∥(−
)
s
2 u

∥∥2
L2(Rn)

= ∥∥F (−
)
s
2 u

∥∥2
L2(Rn)

= ∥∥|ξ |sFu
∥∥2

L2(Rn)

= 1

2
C(n, s)[u]2

Hs(Rn). �

Remark 3.7. In the same way as the fractional Laplacian (−
)s is related to the space Ws,2

(as its Euler–Lagrange equation or from the formula ‖u‖2
Ws,2 = ∫

u(−
)sudx), a more gen-
eral integral operator can be defined that is related to the space Ws,p for any p (see the recent
paper [51]).

Armed with the definition of Hs(Rn) via the Fourier transform, we can easily analyze the
traces of the Sobolev functions (see the forthcoming Proposition 3.8). We will follow Sections 13,
15 and 16 in [89].
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Let Ω ⊆ Rn be an open set with continuous boundary ∂Ω . Denote by T the trace operator,
namely the linear operator defined by the uniformly continuous extension of the operator of
restriction to ∂Ω for functions in D(Ω), that is the space of functions C∞

0 (Rn) restricted5 to Ω .
Now, for any x = (x′, xn) ∈ Rn and for any u ∈ S (Rn), we denote by v ∈ S (Rn−1) the

restriction of u on the hyperplane xn = 0, that is

v
(
x′) = u

(
x′,0

) ∀x′ ∈ Rn−1. (3.16)

Then, we have

Fv
(
ξ ′) =

∫
R

Fu
(
ξ ′, ξn

)
dξn ∀ξ ′ ∈ Rn−1, (3.17)

where, for the sake of simplicity, we keep the same symbol F for both the Fourier transform in
n − 1 and in n variables.

To check (3.17), we write

Fv
(
ξ ′) = 1

(2π)
n−1

2

∫
Rn−1

e−iξ ′·x′
v
(
x′)dx′

= 1

(2π)
n−1

2

∫
Rn−1

e−iξ ′·x′
u
(
x′,0

)
dx′. (3.18)

On the other hand, we have∫
R

Fu
(
ξ ′, ξn

)
dξn =

∫
R

1

(2π)
n
2

∫
Rn

e−i(ξ ′,ξn)·(x′,xn)u
(
x′, xn

)
dx′ dxn dξn

= 1

(2π)
n−1

2

∫
Rn−1

e−iξ ′·x′
[

1

(2π)
1
2

∫
R

∫
R

e−iξn·xnu
(
x′, xn

)
dxn dξn

]
dx′

= 1

(2π)
n−1

2

∫
Rn−1

e−iξ ′·x′[
u
(
x′,0

)]
dx′,

where the last equality follows by transforming and anti-transforming u in the last variable, and
this coincides with (3.18).

Now, we are in position to characterize the traces of the function in Hs(Rn), as stated in the
following proposition.

Proposition 3.8. (See [89, Lemma 16.1].) Let s > 1/2, then any function u ∈ Hs(Rn) has a

trace v on the hyperplane {xn = 0}, such that v ∈ Hs− 1
2 (Rn−1). Also, the trace operator T is

surjective from Hs(Rn) onto Hs− 1
2 (Rn−1).

Proof. In order to prove the first claim, it suffices to show that there exists a universal constant C

such that, for any u ∈ S (Rn) and any v defined as in (3.16),

‖v‖
H

s− 1
2 (Rn−1)

� C‖u‖Hs(Rn). (3.19)

5 Notice that we cannot simply take T as the restriction operator to the boundary, since the restriction to a set of
measure 0 (like the set ∂Ω) is not defined for functions which are not smooth enough.
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By taking into account (3.17), the Cauchy–Schwarz inequality yields∣∣Fv
(
ξ ′)∣∣2 �

(∫
R

(
1 + |ξ |2)s∣∣Fu

(
ξ ′, ξn

)∣∣2
dξn

)(∫
R

dξn

(1 + |ξ |2)s
)

. (3.20)

Using the changing of variable formula by setting ξn = t
√

1 + |ξ ′|2, we have∫
R

dξn

(1 + |ξ |2)s =
∫
R

(1 + |ξ ′|2)1/2

((1 + |ξ ′|2)(1 + t2))s
dt =

∫
R

(1 + |ξ ′|) 1
2 −s

(1 + t2)s
dt

= C(s)
(
1 + ∣∣ξ ′∣∣2) 1

2 −s
, (3.21)

where C(s) := ∫
R

dt

(1+t2)s
< +∞ since s > 1/2.

Combining (3.20) with (3.21) and integrating in ξ ′ ∈ Rn−1, we obtain∫
Rn−1

(
1 + ∣∣ξ ′∣∣2)s− 1

2
∣∣Fv

(
ξ ′)∣∣2

dξ ′ � C(s)

∫
Rn−1

∫
R

(
1 + |ξ |2)s∣∣Fu

(
ξ ′, ξn

)∣∣2
dξn dξ ′,

that is (3.19).
Now, we will prove the surjectivity of the trace operator T . For this, we show that for any

v ∈ Hs− 1
2 (Rn−1) the function u defined by

Fu
(
ξ ′, ξn

) = Fv
(
ξ ′)ϕ(

ξn√
1 + |ξ ′|2

)
1√

1 + |ξ ′|2 , (3.22)

with ϕ ∈ C∞
0 (R) and

∫
R

ϕ(t) dt = 1, is such that u ∈ Hs(Rn) and T u = v. Indeed, we inte-

grate (3.22) with respect to ξn ∈ R, we substitute ξn = t
√

1 + |ξ ′|2 and we obtain∫
R

Fu
(
ξ ′, ξn

)
dξn =

∫
R

Fv
(
ξ ′)ϕ(

ξn√
1 + |ξ ′|2

)
1√

1 + |ξ ′|2 dξn

=
∫
R

Fv
(
ξ ′)ϕ(t) dt = Fv

(
ξ ′) (3.23)

and this implies v = T u because of (3.17).
The proof of the Hs -boundedness of u is straightforward. In fact, from (3.22), for any ξ ′ ∈

Rn−1, we have∫
R

(
1 + |ξ |2)s∣∣Fu

(
ξ ′, ξn

)∣∣2
dξn

=
∫
R

(
1 + |ξ |2)s∣∣Fv

(
ξ ′)∣∣2

∣∣∣∣ϕ(
ξn√

1 + |ξ ′|2
)∣∣∣∣2 1

1 + |ξ ′|2 dξn

= C
(
1 + ∣∣ξ ′∣∣2)s− 1

2
∣∣Fv

(
ξ ′)∣∣2

, (3.24)

where we used again the changing of variable formula with ξn = t
√

1 + |ξ ′|2 and the constant C

is given by
∫

R
(1 + t2)s |ϕ(t)|2 dt . Finally, we obtain that u ∈ Hs(Rn) by integrating (3.24) in

ξ ′ ∈ Rn−1. �
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Remark 3.9. We conclude this section by recalling that the fractional Laplacian (−
)s , which
is a nonlocal operator on functions defined in Rn, may be reduced to a local, possibly singular
or degenerate, operator on functions sitting in the higher dimensional half-space Rn+1+ = Rn ×
(0,+∞). We have

(−
)su(x) = −C lim
t→0

(
t1−2s ∂U

∂t
(x, t)

)
,

where the function U : Rn+1+ → R solves div(t1−2s∇U) = 0 in Rn+1+ and U(x,0) = u(x) in Rn.
This approach was pointed out by Caffarelli and Silvestre in [19]; see, in particular, Section 3.2

there, where it was also given an equivalent definition of the Hs(Rn)-norm:∫
Rn

|ξ |2s |Fu|2 dξ = C

∫
R

n+1+

|∇U |2t1−2s dx dt.

The cited results turn out to be very fruitful in order to recover an elliptic PDE approach in
a nonlocal framework, and they have recently been used very often (see, e.g., [18,86,13,17,76],
etc.).

4. Asymptotics of the constant C(n, s)

In this section, we go into detail on the constant factor C(n, s) that appears in the definition of
the fractional Laplacian (see (3.1)), by analyzing its asymptotic behavior as s → 1− and s → 0+.
This is relevant if one wants to recover the Sobolev norms of the spaces H 1(Rn) and L2(Rn) by
starting from the one of Hs(Rn).

We recall that in Section 3, the constant C(n, s) has been defined by

C(n, s) =
( ∫

Rn

1 − cos(ζ1)

|ζ |n+2s
dζ

)−1

.

Precisely, we are interested in analyzing the asymptotic behavior as s → 0+ and s → 1− of a
scaling of the quantity in the right-hand side of the above formula.

By changing variable η′ = ζ ′/|ζ1|, we have∫
Rn

1 − cos(ζ1)

|ζ |n+2s
dζ =

∫
R

∫
Rn−1

1 − cos(ζ1)

|ζ1|n+2s

1

(1 + |ζ ′|2/|ζ1|2) n+2s
2

dζ ′ dζ1

=
∫
R

∫
Rn−1

1 − cos(ζ1)

|ζ1|1+2s

1

(1 + |η′|2) n+2s
2

dη′ dζ1

= A(n, s)B(s)

s(1 − s)

where

A(n, s) =
∫
n−1

1

(1 + |η′|2) n+2s
2

dη′ (4.1)
R
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and6

B(s) = s(1 − s)

∫
R

1 − cos t

|t |1+2s
dt. (4.2)

Proposition 4.1. For any n > 1, let A and B be defined by (4.1) and (4.2) respectively. The
following statements hold:

(i) lims→1− A(n, s) = ωn−2
∫ +∞

0
ρn−2

(1+ρ2)
n
2 +1 dρ < +∞;

(ii) lims→0+ A(n, s) = ωn−2
∫ +∞

0
ρn−2

(1+ρ2)
n
2

dρ < +∞;

(iii) lims→1− B(s) = 1
2 ;

(iv) lims→0+ B(s) = 1,

where ωn−2 denotes (n − 2)-dimensional measure of the unit sphere Sn−2.
As a consequence,

lim
s→1−

C(n, s)

s(1 − s)
=

(
ωn−2

2

+∞∫
0

ρn−2

(1 + ρ2)
n
2 +1

dρ

)−1

(4.3)

and

lim
s→0+

C(n, s)

s(1 − s)
=

(
ωn−2

+∞∫
0

ρn−2

(1 + ρ2)
n
2

dρ

)−1

. (4.4)

Proof. First, by polar coordinates, for any s ∈ (0,1), we get

∫
Rn−1

1

(1 + |η′|2) n+2s
2

dη′ = ωn−2

+∞∫
0

ρn−2

(1 + ρ2)
n+2s

2

dρ.

Now, observe that for any s ∈ (0,1) and any ρ � 0, we have

ρn−2

(1 + ρ2)
n+2s

2

� ρn−2

(1 + ρ2)
n
2

and the function in the right-hand side of the above inequality belongs to L1((0,+∞)) for
any n > 1.

Then, the Dominated Convergence Theorem yields

lim
s→1− A(n, s) = ωn−2

+∞∫
0

ρn−2

(1 + ρ2)
n
2 +1

dρ

6 Of course, when n = 1 (4.1) reduces to A(n, s) = 1, so we will just consider the case n > 1.



538 E. Di Nezza et al. / Bull. Sci. math. 136 (2012) 521–573
and

lim
s→0+ A(n, s) = ωn−2

+∞∫
0

ρn−2

(1 + ρ2)
n
2

dρ.

This proves (i) and (ii).
Now, we want to prove (iii). First, we split the integral in (4.2) as follows∫

R

1 − cos t

|t |1+2s
dt =

∫
|t |<1

1 − cos t

|t |1+2s
dt +

∫
|t |�1

1 − cos t

|t |1+2s
dt.

Also, we have that

0 �
∫

|t |�1

1 − cos t

|t |1+2s
dt � 4

+∞∫
1

1

t1+2s
dt = 2

s

and ∫
|t |<1

1 − cos t

|t |1+2s
dt −

∫
|t |<1

t2

2|t |1+2s
dt � C

∫
|t |<1

|t |3
|t |1+2s

dt = 2C

3 − 2s
,

for some suitable positive constant C.
From the above estimates it follows that

lim
s→1− s(1 − s)

∫
|t |�1

1 − cos t

|t |1+2s
dt = 0

and

lim
s→1− s(1 − s)

∫
|t |<1

1 − cos t

|t |1+2s
dt = lim

s→1− s(1 − s)

∫
|t |<1

t2

2|t |1+2s
dt.

Hence, we get

lim
s→1− B(s) = lim

s→1− s(1 − s)

( 1∫
0

t1−2s dt

)
= lim

s→1−
s(1 − s)

2(1 − s)
= 1

2
.

Similarly, we can prove (iv). For this we notice that

0 �
∫

|t |<1

1 − cos t

|t |1+2s
dt � C

1∫
0

t1−2s dt

which yields

lim
s→0+ s(1 − s)

∫
|t |<1

1 − cos t

|t |1+2s
dt = 0.

Now, we observe that for any k ∈ N, k � 1, we have
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∣∣∣∣∣
2(k+1)π∫
2kπ

cos t

t1+2s
dt

∣∣∣∣∣ =
∣∣∣∣∣

2kπ+π∫
2kπ

cos t

t1+2s
dt +

2kπ+π∫
2kπ

cos(τ + π)

(τ + π)1+2s
dτ

∣∣∣∣∣
=

∣∣∣∣∣
2kπ+π∫
2kπ

cos t

(
1

t1+2s
− 1

(t + π)1+2s

)
dt

∣∣∣∣∣
�

2kπ+π∫
2kπ

∣∣∣∣ 1

t1+2s
− 1

(t + π)1+2s

∣∣∣∣dt

=
2kπ+π∫
2kπ

(t + π)1+2s − t1+2s

t1+2s(t + π)1+2s
dt

=
2kπ+π∫
2kπ

1

t1+2s(t + π)1+2s

( π∫
0

(1 + 2s)(t + ϑ)2s dϑ

)
dt

�
2kπ+π∫
2kπ

3π(t + π)2s

t1+2s(t + π)1+2s
dt

�
2kπ+π∫
2kπ

3π

t(t + π)
dt

�
2kπ+π∫
2kπ

3π

t2
dt � C

k2
.

As a consequence,∣∣∣∣∣
+∞∫
1

cos t

t1+2s
dt

∣∣∣∣∣ �
2π∫

1

1

t
dt +

∣∣∣∣∣
+∞∑
k=1

2(k+1)π∫
2kπ

cos t

t1+2s
dt

∣∣∣∣∣
� log(2π) +

+∞∑
k=1

C

k2
� C,

up to relabeling the constant C > 0.
It follows that∣∣∣∣ ∫

|t |�1

1 − cos t

|t |1+2s
dt −

∫
|t |�1

1

|t |1+2s
dt

∣∣∣∣ =
∣∣∣∣ ∫
|t |�1

cos t

|t |1+2s
dt

∣∣∣∣
= 2

∣∣∣∣∣
+∞∫

cos t

t1+2s
dt

∣∣∣∣∣ � C
1
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and then

lim
s→0+ s(1 − s)

∫
|t |�1

1 − cos t

|t |1+2s
dt = lim

s→0+ s(1 − s)

∫
|t |�1

1

|t |1+2s
dt.

Hence, we can conclude that

lim
s→0+ B(s) = lim

s→0+ s(1 − s)

∫
|t |�1

1

|t |1+2s
dt

= lim
s→0+ 2s(1 − s)

+∞∫
1

t−1−2s dt

= lim
s→0+

2s(1 − s)

2s
= 1.

Finally, (4.3) and (4.4) easily follow combining the previous estimates and recalling that

C(n, s) = s(1 − s)

A(n, s)B(s)
.

The proof is complete. �
Corollary 4.2. For any n > 1, let C(n, s) be defined by (3.2). The following statements hold:

(i) lims→1− C(n,s)
s(1−s)

= 4n
ωn−1

;

(ii) lims→0+ C(n,s)
s(1−s)

= 2
ωn−1

,

where ωn−1 denotes the (n − 1)-dimensional measure of the unit sphere Sn−1.

Proof. For any θ ∈ R such that θ > n − 1, let us define

En(θ) :=
+∞∫
0

ρn−2

(1 + ρ2)
θ
2

dρ.

Observe that the assumption on the parameter θ ensures the convergence of the integral. Further-
more, integrating by parts we get

En(θ) = 1

n − 1

+∞∫
0

(ρn−1)′

(1 + ρ2)
θ
2

dρ

= θ

n − 1

+∞∫
0

ρn

(1 + ρ2)
θ+2

2

dρ

= θ
En+2(θ + 2). (4.5)
n − 1
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Then, we set

I (1)
n := En(n + 2) =

+∞∫
0

ρn−2

(1 + ρ2)
n
2 +1

dρ

and

I (0)
n := En(n) =

+∞∫
0

ρn−2

(1 + ρ2)
n
2

dρ.

In view of (4.5), it follows that I
(1)
n and I

(0)
n can be obtained in a recursive way, since

I
(1)
n+2 = En+2(n + 4) = n − 1

n + 2
En(n + 2) = n − 1

n + 2
I (1)
n (4.6)

and

I
(0)
n+2 = En+2(n + 2) = n − 1

n
En(n) = n − 1

n
I (0)
n . (4.7)

Now we claim that

I (1)
n = ωn−1

2nωn−2
(4.8)

and

I (0)
n = ωn−1

2ωn−2
. (4.9)

We will prove the previous identities by induction. We start by noticing that the inductive bases
are satisfied, since

I
(1)
2 =

+∞∫
0

1

(1 + ρ2)2
dρ = π

4
, I

(1)
3 =

+∞∫
0

ρ

(1 + ρ2)
5
2

dρ = 1

3

and

I
(0)
2 =

+∞∫
0

1

(1 + ρ2)
dρ = π

2
, I

(0)
3 =

+∞∫
0

ρ

(1 + ρ2)
3
2

dρ = 1.

Now, using (4.6) and (4.7), respectively, it is clear that in order to check the inductive steps, it
suffices to verify that

ωn+1

ωn

= n − 1

n

ωn−1

ωn−2
. (4.10)

We claim that the above formula plainly follows from a classical recursive formula on ωn, that is

ωn = 2π

n − 1
ωn−2. (4.11)

To prove this, let us denote by �n the Lebesgue measure of the n-dimensional unit ball and
let us fix the notation x = (x̃, x′) ∈ Rn−2 × R2. By integrating on Rn−2 and then using polar
coordinates in R2, we see that
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�n =
∫

|x|2�1

dx =
∫

|x′|�1

( ∫
|x̃|2�1−|x′|2

dx̃

)
dx′

= �n−2

∫
|x′|�1

(
1 − ∣∣x′∣∣2) (n−2)

2 dx′

= 2π�n−2

1∫
0

ρ
(
1 − ρ2) (n−2)

2 dρ = 2π�n−2

n
. (4.12)

Moreover, by polar coordinates in Rn,

�n =
∫

|x|�1

dx = ωn−1

1∫
0

ρn−1 dρ = ωn−1

n
. (4.13)

Thus, we use (4.13) and (4.12) and we obtain

ωn−1 = n�n = 2π�n−2 = 2πωn−3

n − 2
,

which is (4.11), up to replacing n with n− 1. In turn, (4.11) implies (4.10) and so (4.8) and (4.9).
Finally, using (4.8), (4.9) and Proposition 4.1 we can conclude that

lim
s→1−

C(n, s)

s(1 − s)
= 2

ωn−2I
(1)
n

= 4n

ωn−1

and

lim
s→0+

C(n, s)

s(1 − s)
= 1

ωn−2I
(0)
n

= 2

ωn−1
,

as desired.7 �
Remark 4.3. It is worth noticing that when p = 2 we recover the constants C1 and C2 in (2.8)
and (2.9), respectively. In fact, in this case it is known that

C1 = 1

2

∫
Sn−1

|ξ1|2 dσ(ξ) = 1

2n

n∑
i=1

∫
Sn−1

|ξi |2 dσ(ξ) = ωn−1

2n

and C2 = ωn−1 (see [11] and [65]). Then, by Proposition 3.15 and Corollary 4.2 it follows that

lim
s→1−(1 − s)

∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s

dx dy = lim
s→1− 2(1 − s)C(n, s)−1

∥∥|ξ |sFu
∥∥2

L2(Rn)

= ωn−1

2n
‖∇u‖2

L2(Rn)

= C1‖u‖2
H 1(Rn)

7 Another (less elementary) way to obtain this result is to notice that En(θ) = 2B((n − 1)/2, (θ − n − 1)/2), where B
is the Beta function.
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and

lim
s→0+ s

∫
Rn

∫
Rn

|u(x) − u(y)|2
|x − y|n+2s

dx dy = lim
s→0+ 2sC(n, s)−1

∥∥|ξ |sFu
∥∥2

L2(Rn)

= ωn−1‖u‖2
L2(Rn)

= C2‖u‖2
L2(Rn)

.

We will conclude this section with the following proposition that one could plainly deduce
from Proposition 3.3. We prefer to provide a direct proof, based on Lemma 3.2, in order to show
the consistency in the definition of the constant C(n, s).

Proposition 4.4. Let n > 1. For any u ∈ C∞
0 (Rn) the following statements hold:

(i) lims→0+(−
)su = u;
(ii) lims→1−(−
)su = −
u.

Proof. Fix x ∈ Rn, R0 > 0 such that suppu ⊆ BR0 and set R = R0 + |x| + 1. First,∣∣∣∣ ∫
BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy

∣∣∣∣ � ‖u‖C2(Rn)

∫
BR

|y|2
|y|n+2s

dy

� ωn−1‖u‖C2(Rn)

R∫
0

1

ρ2s−1
dρ

= ωn−1‖u‖C2(Rn)R
2−2s

2(1 − s)
. (4.14)

Furthermore, observe that |y| � R yields |x ±y| � |y|− |x| � R−|x| > R0 and consequently
u(x ± y) = 0. Therefore,

−1

2

∫
Rn\BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy = u(x)

∫
Rn\BR

1

|y|n+2s
dy

= ωn−1u(x)

+∞∫
R

1

ρ2s+1
dρ

= ωn−1R
−2s

2s
u(x). (4.15)

Now, by (4.14) and Corollary 4.2, we have

lim
s→0+ −C(n, s)

2

∫
BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy = 0

and so we get, recalling Lemma 3.2,
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lim
s→0+(−
)su = lim

s→0+ −C(n, s)

2

∫
Rn\BR

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy

= lim
s→0+

C(n, s)ωn−1R
−2s

2s
u(x) = u(x),

where the last identities follow from (4.15) and again Corollary 4.2. This proves (i).
Similarly, we can prove (ii). In this case, when s goes to 1, we have no contribution outside

the unit ball, as the following estimate shows∣∣∣∣ ∫
Rn\B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy

∣∣∣∣ � 4‖u‖L∞(Rn)

∫
Rn\B1

1

|y|n+2s
dy

� 4ωn−1‖u‖L∞(Rn)

+∞∫
1

1

ρ2s+1
dρ

= 2ωn−1

s
‖u‖L∞(Rn).

As a consequence (recalling Corollary 4.2), we get

lim
s→1− −C(n, s)

2

∫
Rn\B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy = 0. (4.16)

On the other hand, we have∣∣∣∣ ∫
B1

u(x + y) + u(x − y) − 2u(x) − D2u(x)y · y
|y|n+2s

dy

∣∣∣∣
� ‖u‖C3(Rn)

∫
B1

|y|3
|y|n+2s

dy

� ωn−1‖u‖C3(Rn)

1∫
0

1

ρ2s−2
dρ

= ωn−1‖u‖C3(Rn)

3 − 2s

and this implies that

lim
s→1− −C(n, s)

2

∫
B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy

= lim
s→1− −C(n, s)

2

∫
B1

D2u(x)y · y
|y|n+2s

dy. (4.17)

Now, notice that if i = j then∫
∂2
ij u(x)yi · yj dy = −

∫
∂2
ij u(x)ỹi · ỹj dỹ,
B1 B1
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where ỹk = yk for any k = j and ỹj = −yj , and thus∫
B1

∂2
ij u(x)yi · yj dy = 0. (4.18)

Also, up to permutations, for any fixed i, we get∫
B1

∂2
iiu(x)y2

i

|y|n+2s
dy = ∂2

iiu(x)

∫
B1

y2
i

|y|n+2s
dy = ∂2

iiu(x)

∫
B1

y2
1

|y|n+2s
dy

= ∂2
iiu(x)

n

n∑
j=1

∫
B1

y2
j

|y|n+2s
dy = ∂2

iiu(x)

n

∫
B1

|y|2
|y|n+2s

dy

= ∂2
iiu(x)ωn−1

2n(1 − s)
. (4.19)

Finally, combining (4.16), (4.17), (4.18), (4.19), Lemma 3.2 and Corollary 4.2, we can con-
clude

lim
s→1−(−
)su = lim

s→1− −C(n, s)

2

∫
B1

u(x + y) + u(x − y) − 2u(x)

|y|n+2s
dy

= lim
s→1− −C(n, s)

2

∫
B1

D2u(x)y · y
|y|n+2s

dy

= lim
s→1− −C(n, s)

2

n∑
i=1

∫
B1

∂2
iiu(x)y2

i

|y|n+2s
dy

= lim
s→1− −C(n, s)ωn−1

4n(1 − s)

n∑
i=1

∂2
iiu(x) = −
u(x). �

5. Extending a Ws,p(Ω) function to the whole of RRRn

As is well known when s is an integer, under certain regularity assumptions on the domain Ω ,
any function in Ws,p(Ω) may be extended to a function in Ws,p(Rn). Extension results are quite
important in applications and are necessary in order to improve some embeddings theorems, in
the classic case as well as in the fractional case (see Section 6 and Section 7 in the following).

For any s ∈ (0,1) and any p ∈ [1,∞), we say that an open set Ω ⊆ Rn is an exten-
sion domain for Ws,p if there exists a positive constant C = C(n,p, s,Ω) such that: for ev-
ery function u ∈ Ws,p(Ω) there exists ũ ∈ Ws,p(Rn) with ũ(x) = u(x) for all x ∈ Ω and
‖ũ‖Ws,p(Rn) � C‖u‖Ws,p(Ω).

In general, an arbitrary open set is not an extension domain for Ws,p . To the authors’ knowl-
edge, the problem of characterizing the class of sets that are extension domains for Ws,p is open.8

When s is an integer, we cite [57] for a complete characterization in the special case s = 1, p = 2

8 While revising this paper, we were informed that an answer to this question has been given by Zhou, by analyzing
the link between extension domains in Ws,p and the measure density condition (see [100]).
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and n = 2, and we refer the interested reader to the recent book by Leoni [59], in which this
problem is very well discussed (see, in particular, Chapter 11 and Chapter 12 there).

In this section, we will show that any open set Ω of class C0,1 with bounded boundary is an
extension domain for Ws,p .

We start with some preliminary lemmas, in which we will construct the extension to the whole
of Rn of a function u defined on Ω in two separated cases: when the function u is identically
zero in a neighborhood of the boundary ∂Ω and when Ω coincides with the half-space Rn+.

Lemma 5.1. Let Ω be an open set in Rn and u a function in Ws,p(Ω) with s ∈ (0,1) and
p ∈ [1,+∞). If there exists a compact subset K ⊂ Ω such that u ≡ 0 in Ω \K , then the extension
function ũ defined as

ũ(x) =
{

u(x), x ∈ Ω,

0, x ∈ Rn \ Ω
(5.1)

belongs to Ws,p(Rn) and

‖ũ‖Ws,p(Rn) � C‖u‖Ws,p(Ω),

where C is a suitable positive constant depending on n, p, s, K and Ω .

Proof. Clearly ũ ∈ Lp(Rn). Hence, it remains to verify that the Gagliardo norm of ũ in Rn is
bounded by the one of u in Ω . Using the symmetry of the integral in the Gagliardo norm with
respect to x and y and the fact that ũ ≡ 0 in Rn \ Ω , we can split as follows∫

Rn

∫
Rn

|ũ(x) − ũ(y)|p
|x − y|n+sp

dx dy =
∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy

+ 2
∫
Ω

( ∫
Rn\Ω

|u(x)|p
|x − y|n+sp

dy

)
dx, (5.2)

where the first term in the right-hand side of (5.2) is finite since u ∈ Ws,p(Ω). Furthermore, for
any y ∈ Rn \ K ,

|u(x)|p
|x − y|n+sp

= χK(x)|u(x)|p
|x − y|n+sp

� χK(x)
∣∣u(x)

∣∣p sup
x∈K

1

|x − y|n+sp

and so∫
Ω

( ∫
Rn\Ω

|u(x)|p
|x − y|n+sp

dy

)
dx �

∫
Rn\Ω

1

dist(y, ∂K)n+sp
dy‖u‖p

Lp(Ω). (5.3)

Note that the integral in (5.3) is finite since dist(∂Ω,∂K) � α > 0 and n + sp > n. Combining
(5.2) with (5.3), we get

‖ũ‖Ws,p(Rn) � C‖u‖Ws,p(Ω)

where C = C(n, s,p,K). �
Lemma 5.2. Let Ω be an open set in Rn, symmetric with respect to the coordinate xn, and
consider the sets Ω+ = {x ∈ Ω: xn > 0} and Ω− = {x ∈ Ω: xn � 0}. Let u be a function in
Ws,p(Ω+), with s ∈ (0,1) and p ∈ [1,+∞). Define

ū(x) =
{

u(x′, xn), xn � 0,
′ (5.4)
u(x ,−xn), xn < 0.
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Then ū belongs to Ws,p(Ω) and

‖ū‖Ws,p(Ω) � 4‖u‖Ws,p(Ω+).

Proof. By splitting the integrals and changing variable x̂ = (x′,−xn), we get

‖ū‖p

Lp(Ω) =
∫

Ω+

∣∣u(x)
∣∣p dx +

∫
Ω+

∣∣u(
x̂′, x̂n

)∣∣p dx̃ = 2‖u‖p

Lp(Ω+). (5.5)

Also, if x ∈ Rn+ and y ∈ C Rn+ then (xn − yn)
2 � (xn + yn)

2 and therefore∫
Ω

∫
Ω

|ū(x) − ū(y)|p
|x − y|n+sp

dx dy =
∫

Ω+

∫
Ω+

|u(x) − u(y)|p
|x − y|n+sp

dx dy

+ 2
∫

Ω+

∫
CΩ+

|u(x) − u(y′,−yn)|p
|x − y|n+sp

dx dy

+
∫

CΩ+

∫
CΩ+

|u(x′,−xn) − u(y′,−yn)|p
|x − y|n+sp

dx dy

� 4‖u‖p

Ws,p(Ω+).

This concludes the proof. �
Now, a truncation lemma near ∂Ω .

Lemma 5.3. Let Ω be an open set in Rn, s ∈ (0,1) and p ∈ [1,+∞). Let us consider u ∈
Ws,p(Ω) and ψ ∈ C0,1(Ω), 0 � ψ � 1. Then ψu ∈ Ws,p(Ω) and

‖ψu‖Ws,p(Ω) � C‖u‖Ws,p(Ω), (5.6)

where C = C(n,p, s,Ω).

Proof. It is clear that ‖ψu‖Lp(Ω) � ‖u‖Lp(Ω) since |ψ | � 1. Furthermore, adding and subtract-
ing the factor ψ(x)u(y), we get∫

Ω

∫
Ω

|ψ(x)u(x) − ψ(y)u(y)|p
|x − y|n+sp

dx dy � 2p−1
( ∫

Ω

∫
Ω

|ψ(x)u(x) − ψ(x)u(y)|p
|x − y|n+sp

dx dy

+
∫
Ω

∫
Ω

|ψ(x)u(y) − ψ(y)u(y)|p
|x − y|n+sp

dx dy

)

� 2p−1
( ∫

Ω

∫
Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy

+
∫
Ω

∫
Ω

|u(x)|p|ψ(x) − ψ(y)|p
|x − y|n+sp

dx dy

)
. (5.7)

Since ψ belongs to C0,1(Ω), we have
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∫
Ω

∫
Ω

|u(x)|p|ψ(x) − ψ(y)|p
|x − y|n+sp

dx dy � Λp

∫
Ω

∫
Ω∩|x−y|�1

|u(x)|p|x − y|p
|x − y|n+sp

dx dy

+
∫
Ω

∫
Ω∩|x−y|�1

|u(x)|p
|x − y|n+sp

dx dy

� C̃‖u‖p

Lp(Ω), (5.8)

where Λ denotes the Lipschitz constant of ψ and C̃ is a positive constant depending on n, p

and s. Note that the last inequality follows from the fact that the kernel |x − y|−n+(1−s)p is
summable with respect to y if |x − y| � 1 since n + (s − 1)p < n and, on the other hand, the
kernel |x − y|−n−sp is summable when |x − y| � 1 since n + sp > n. Finally, combining (5.7)
with (5.8), we obtain estimate (5.6). �

Now, we are ready to prove the main theorem of this section, that states that every open
Lipschitz set Ω with bounded boundary is an extension domain for Ws,p .

Theorem 5.4. Let p ∈ [1,+∞), s ∈ (0,1) and Ω ⊆ Rn be an open set of class C0,1 with bounded
boundary.9 Then Ws,p(Ω) is continuously embedded in Ws,p(Rn), namely for any u ∈ Ws,p(Ω)

there exists ũ ∈ Ws,p(Rn) such that ũ|Ω = u and

‖ũ‖Ws,p(Rn) � C‖u‖Ws,p(Ω)

where C = C(n,p, s,Ω).

Proof. Since ∂Ω is compact, we can find a finite number of balls Bj such that ∂Ω ⊂ ⋃k
j=1 Bj

and so we can write Rn = ⋃k
j=1 Bj ∪ (Rn \ ∂Ω).

If we consider this covering, there exists a partition of unity related to it, i.e. there exist k + 1
smooth functions ψ0,ψ1, . . . ,ψk such that sptψ0 ⊂ Rn \∂Ω , sptψj ⊂ Bj for any j ∈ {1, . . . , k},
0 � ψj � 1 for any j ∈ {0, . . . , k} and

∑k
j=0 ψj = 1. Clearly,

u =
k∑

j=0

ψju.

By Lemma 5.3, we know that ψ0u belongs to Ws,p(Ω). Furthermore, since ψ0u ≡ 0 in a neigh-
borhood of ∂Ω , we can extend it to the whole of Rn, by setting

ψ̃0u(x) =
{

ψ0u(x), x ∈ Ω,

0, x ∈ Rn \ Ω

and ψ̃0u ∈ Ws,p(Rn). Precisely

‖ψ̃0u‖Ws,p(Rn) � C‖ψ0u‖Ws,p(Ω) � C‖u‖Ws,p(Ω), (5.9)

where C = C(n, s,p,Ω) (possibly different step by step, see Lemma 5.1 and Lemma 5.3).

9 Motivated by an interesting remark of the anonymous referee, we point out that it should be expected that the Lipschitz
assumption on the boundary of Ω may be weakened when s ∈ (0,1), since in the case s = 0 clearly no regularity at all is
needed for the extension problem.
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For any j ∈ {1, . . . , k}, let us consider u|Bj ∩Ω and set

vj (y) := u
(
Tj (y)

)
for any y ∈ Q+,

where Tj : Q → Bj is the isomorphism of class C0,1 defined in Section 2. Note that such a Tj

exists by the regularity assumption on the domain Ω .
Now, we state that vj ∈ Ws,p(Q+). Indeed, using the standard changing variable formula by

setting x = Tj (x̂) we have∫
Q+

∫
Q+

|v(x̂) − v(ŷ)|p
|x̂ − ŷ|n+sp

dx̂ dŷ =
∫

Q+

∫
Q+

|u(Tj (x̂)) − u(Tj (ŷ))|p
|x̂ − ŷ|n+sp

dx̂ dŷ

=
∫

Bj ∩Ω

∫
Bj ∩Ω

|u(x) − u(y)|p
|T −1

j (x) − T −1
j (y)|n+sp

det
(
T −1

j

)
dx dy

� C

∫
Bj ∩Ω

∫
Bj ∩Ω

|u(x) − u(y)|p
|x − y|n+sp

dx dy, (5.10)

where (5.10) follows from the fact that Tj is bi-Lipschitz. Moreover, using Lemma 5.2 we can
extend vj to all Q so that the extension v̄j belongs to Ws,p(Q) and

‖v̄j‖Ws,p(Q) � 4‖vj‖Ws,p(Q+).

We set

wj(x) := v̄j

(
T −1

j (x)
)

for any x ∈ Bj .

Since Tj is bi-Lipschitz, by arguing as above it follows that wj ∈ Ws,p(Bj ). Note that wj ≡ u

(and consequently ψjwj ≡ ψju) on Bj ∩Ω . By definition ψjwj has compact support in Bj and

therefore, as done for ψ0u, we can consider the extension ψ̃jwj to all Rn in such a way that

ψ̃jwj ∈ Ws,p(Rn). Also, using Lemma 5.1, Lemma 5.2, Lemma 5.3 and estimate (5.10) we get

‖ψ̃jwj‖Ws,p(Rn) � C‖ψjwj‖Ws,p(Bj ) � C‖wj‖Ws,p(Bj )

� C‖v̄j‖Ws,p(Q) � C‖vj‖Ws,p(Q+)

� C‖u‖Ws,p(Ω∩Bj ), (5.11)

where C = C(n,p, s,Ω) and it is possibly different step by step.
Finally, let

ũ = ψ̃0u +
k∑

j=1

ψ̃jwj

be the extension of u defined on all Rn. By construction, it is clear that ũ|Ω = u and, combining
(5.9) with (5.11), we get

‖ũ‖Ws,p(Rn) � C‖u‖Ws,p(Ω)

with C = C(n,p, s,Ω). �
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Corollary 5.5. Let p ∈ [1,+∞), s ∈ (0,1) and Ω be an open set in Rn of class C0,1 with
bounded boundary. Then for any u ∈ Ws,p(Ω), there exists a sequence {un} ∈ C∞

0 (Rn) such
that un → u as n → +∞ in Ws,p(Ω), i.e.,

lim
n→+∞‖un − u‖Ws,p(Ω) = 0.

Proof. The proof follows directly by Theorem 2.4 and Theorem 5.4. �
6. Fractional Sobolev inequalities

In this section, we provide an elementary proof of a Sobolev-type inequality involving the
fractional norm ‖ · ‖Ws,p (see Theorem 6.5 below).

The original proof is contained in Appendix of [82] and it deals with the case p = 2 (see,
in particular, Theorem 7 there). We note that when p = 2 and s ∈ [1/2,1) some of the state-
ments may be strengthened (see [10]). We also note that more general embeddings for the spaces
Ws,p can be obtained by interpolation techniques and by passing through Besov spaces; see,
for instance, [6,7,93,94,62]. For a more comprehensive treatment of fractional Sobolev-type in-
equalities we refer to [60,61,12,1,89] and the references therein.

We remark that the proof here is self-contained. Moreover, we will not make use of Besov or
fancy interpolation spaces.

In order to prove the Sobolev-type inequality in forthcoming Theorem 6.5, we need some
preliminary results. The first of them is an elementary estimate involving the measure of fi-
nite measurable sets E in Rn as stated in the following lemma (see [83, Lemma A.1] and also
[20, Corollaries 24 and 25]).

Lemma 6.1. Fix x ∈ Rn. Let p ∈ [1,+∞), s ∈ (0,1) and E ⊂ Rn be a measurable set with finite
measure. Then,∫

CE

dy

|x − y|n+sp
� C|E|−sp/n,

for a suitable constant C = C(n,p, s) > 0.

Proof. We set

ρ :=
( |E|

ωn

) 1
n

and then it follows∣∣(C E) ∩ Bρ(x)
∣∣ = ∣∣Bρ(x)

∣∣ − ∣∣E ∩ Bρ(x)
∣∣ = |E| − ∣∣E ∩ Bρ(x)

∣∣
= ∣∣E ∩ C Bρ(x)

∣∣.
Therefore,∫

CE

dy

|x − y|n+sp
=

∫
(CE)∩Bρ(x)

dy

|x − y|n+sp
+

∫
(CE)∩CBρ(x)

dy

|x − y|n+sp

�
∫

(CE)∩B (x)

dy

ρn+sp
+

∫
(CE)∩CB (x)

dy

|x − y|n+sp
ρ ρ
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= |(C E) ∩ Bρ(x)|
ρn+sp

+
∫

(CE)∩CBρ(x)

dy

|x − y|n+sp

= |E ∩ C Bρ(x)|
ρn+sp

+
∫

(CE)∩CBρ(x)

dy

|x − y|n+sp

�
∫

E∩CBρ(x)

dy

|x − y|n+sp
+

∫
(CE)∩CBρ(x)

dy

|x − y|n+sp

=
∫

CBρ(x)

dy

|x − y|n+sp
.

The desired result easily follows by using polar coordinates centered at x. �
Now, we recall a general statement about a useful summability property (see [82, Lemma 5],

for related results, see also [38, Lemma 4]).

Lemma 6.2. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp < n. Fix T > 1; let N ∈ Z and

ak be a bounded, nonnegative, decreasing sequence with ak = 0 for any k � N. (6.1)

Then, ∑
k∈Z

a
(n−sp)/n
k T k � C

∑
k∈Z

ak =0

ak+1a
−sp/n
k T k,

for a suitable constant C = C(n,p, s, T ) > 0, independent of N .

Proof. By (6.1),

both
∑
k∈Z

a
(n−sp)/n
k T k and

∑
k∈Z

ak =0

ak+1a
−sp/n
k T k are convergent series. (6.2)

Moreover, since ak is nonnegative and decreasing, we have that if ak = 0, then ak+1 = 0. Ac-
cordingly,∑

k∈Z

a
(n−sp)/n

k+1 T k =
∑
k∈Z
ak =0

a
(n−sp)/n

k+1 T k.

Therefore, we may use the Hölder inequality with exponents α := n/sp and β := n/(n − sp) by
arguing as follows

1

T

∑
k∈Z

a
(n−sp)/n
k T k =

∑
k∈Z

a
(n−sp)/n

k+1 T k

=
∑
k∈Z
ak =0

a
(n−sp)/n

k+1 T k

=
∑
k∈Z

(
a

sp/(nβ)
k T k/α

)(
a

1/β

k+1a
−sp/(nβ)
k T k/β

)

ak =0
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�
(∑

k∈Z

(
a

sp/(nβ)
k T k/α

)α
)1/α( ∑

k∈Z
ak =0

(
a

1/β

k+1a
−sp/(nβ)
k T k/β

)β
)1/β

�
(∑

k∈Z

a
(n−sp)/n
k T k

)sp/n( ∑
k∈Z
ak =0

ak+1a
−sp/n
k T k

)(n−sp)/n

.

So, recalling (6.2), we obtain the desired result. �
We use the above tools to deal with the measure theoretic properties of the level sets of the

functions (see [82, Lemma 6]).

Lemma 6.3. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp < n. Let

f ∈ L∞(
Rn

)
be compactly supported. (6.3)

For any k ∈ Z let

ak := ∣∣{|f | > 2k
}∣∣. (6.4)

Then, ∫
Rn

∫
Rn

|f (x) − f (y)|p
|x − y|n+sp

dx dy � C
∑
k∈Z
ak =0

ak+1a
−sp/n
k 2pk,

for a suitable constant C = C(n,p, s) > 0.

Proof. Notice that∣∣∣∣f (x)
∣∣ − ∣∣f (y)

∣∣∣∣ �
∣∣f (x) − f (y)

∣∣,
and so, by possibly replacing f with |f |, we may consider the case in which f � 0.

We define

Ak := {|f | > 2k
}
. (6.5)

We remark that Ak+1 ⊆ Ak , hence

ak+1 � ak. (6.6)

We define

Dk := Ak \ Ak+1 = {
2k < f � 2k+1} and dk := |Dk|.

Notice that

dk and ak are bounded and they become zero when k is large enough, (6.7)

thanks to (6.3). Also, we observe that the Dk’s are disjoint, that⋃
�∈Z

��k

D� = C Ak+1 (6.8)

and that⋃
�∈Z

D� = Ak. (6.9)
��k
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As a consequence of (6.9), we have that

ak =
∑
�∈Z
��k

d� (6.10)

and so

dk = ak −
∑
�∈Z

��k+1

d�. (6.11)

We stress that the series in (6.10) is convergent, due to (6.7), thus so is the series in (6.11).
Similarly, we can define the convergent series

S :=
∑
�∈Z

a�−1 =0

2p�a
−sp/n

�−1 d�. (6.12)

We notice that Dk ⊆ Ak ⊆ Ak−1, hence a
−sp/n

i−1 d� � a
−sp/n

i−1 a�−1. Therefore{
(i, �) ∈ Z s.t. ai−1 = 0 and a

−sp/n

i−1 d� = 0
} ⊆ {

(i, �) ∈ Z s.t. a�−1 = 0
}
. (6.13)

We use (6.13) and (6.6) in the following computation:∑
i∈Z

ai−1 =0

∑
�∈Z

��i+1

2pia
−sp/n

i−1 d� =
∑
i∈Z

ai−1 =0

∑
�∈Z

��i+1
a

sp/n
i−1 d� =0

2pia
−sp/n

i−1 d�

�
∑
i∈Z

∑
�∈Z

��i+1
a�−1 =0

2pia
−sp/n

i−1 d�

=
∑
�∈Z

a�−1 =0

∑
i∈Z

i��−1

2pia
−sp/n

i−1 d�

�
∑
�∈Z

a�−1 =0

∑
i∈Z

i��−1

2pia
−sp/n

�−1 d�

=
∑
�∈Z

a�−1 =0

+∞∑
k=0

2p(�−1)2−pka
−sp/n

�−1 d� � S. (6.14)

Now, we fix i ∈ Z and x ∈ Di : then, for any j ∈ Z with j � i − 2 and any y ∈ Dj we have that∣∣f (x) − f (y)
∣∣ � 2i − 2j+1 � 2i − 2i−1 = 2i−1

and therefore, recalling (6.8),∑
j∈Z

j�i−2

∫
Dj

|f (x) − f (y)|p
|x − y|n+sp

dy � 2p(i−1)
∑
j∈Z

j�i−2

∫
Dj

dy

|x − y|n+sp

= 2p(i−1)

∫
dy

|x − y|n+sp
.

CAi−1
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This and Lemma 6.1 imply that, for any i ∈ Z and any x ∈ Di , we have that∑
j∈Z

j�i−2

∫
Dj

|f (x) − f (y)|p
|x − y|n+sp

dy � co2pia
−sp/n

i−1 ,

for a suitable co > 0.
As a consequence, for any i ∈ Z,∑

j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy � co2pia
−sp/n

i−1 di. (6.15)

Therefore, by (6.11), we conclude that, for any i ∈ Z,∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy � co

[
2pia

−sp/n

i−1 ai −
∑
�∈Z

��i+1

2pia
−sp/n

i−1 d�

]
. (6.16)

By (6.12) and (6.15), we have that∑
i∈Z

ai−1 =0

∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy � coS. (6.17)

Then, using (6.16), (6.14) and (6.17),∑
i∈Z

ai−1 =0

∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy

� co

[ ∑
i∈Z

ai−1 =0

2pia
−sp/n

i−1 ai −
∑
i∈Z

ai−1 =0

∑
�∈Z

��i+1

2pia
−sp/n

i−1 d�

]

� co

[ ∑
i∈Z

ai−1 =0

2pia
−sp/n

i−1 ai − S

]

� co

∑
i∈Z

ai−1 =0

2pia
−sp/n

i−1 ai −
∑
i∈Z

ai−1 =0

∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy.

That is, by taking the last term to the left-hand side,∑
i∈Z

ai−1 =0

∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy � co

∑
i∈Z

ai−1 =0

2pia
−sp/n

i−1 ai, (6.18)

up to relabeling the constant c0.
On the other hand, by symmetry,∫

Rn×Rn

|f (x) − f (y)|p
|x − y|n+sp

dx dy =
∑
i,j∈Z

∫
D ×D

|f (x) − f (y)|p
|x − y|n+sp

dx dy
i j
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� 2
∑
i,j∈Z

j<i

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy

� 2
∑
i∈Z

ai−1 =0

∑
j∈Z

j�i−2

∫
Di×Dj

|f (x) − f (y)|p
|x − y|n+sp

dx dy. (6.19)

Then, the desired result plainly follows from (6.18) and (6.19). �
Lemma 6.4. Let q ∈ [1,∞). Let f : Rn → R be a measurable function. For any N ∈ N, let

fN(x) := max
{
min

{
f (x),N

}
,−N

} ∀x ∈ Rn. (6.20)

Then

lim
N→+∞‖fN‖Lq(Rn) = ‖f ‖Lq(Rn).

Proof. We denote by |f |N the function obtained by cutting |f | at level N . We have that |f |N =
|fN | and so, by Fatou lemma, we obtain that

lim inf
N→+∞‖fN‖Lq(Rn) = lim inf

N→+∞

( ∫
Rn

|f |qN
) 1

q

�
( ∫

Rn

|f |q
) 1

q = ‖f ‖Lq(Rn).

The reverse inequality easily follows by the fact that |f |N(x) � |f (x)| for any x ∈ Rn. �
Taking into account the previous lemmas, we are able to give an elementary proof of the

Sobolev-type inequality stated in the following theorem.

Theorem 6.5. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp < n. Then there exists a positive
constant C = C(n,p, s) such that, for any measurable and compactly supported function f :
Rn → R, we have

‖f ‖p

Lp�
(Rn)

� C

∫
Rn

∫
Rn

|f (x) − f (y)|p
|x − y|n+sp

dx dy, (6.21)

where p� = p�(n, s) is the so-called “fractional critical exponent” and it is equal to np/(n−sp).
Consequently, the space Ws,p(Rn) is continuously embedded in Lq(Rn) for any q ∈ [p,p�].

Proof. First, we note that if the right-hand side of (6.21) is unbounded then the claim in the
theorem plainly follows. Thus, we may suppose that f is such that∫

Rn

∫
Rn

|f (x) − f (y)|p
|x − y|n+sp

dx dy < +∞. (6.22)

Moreover, we can suppose, without loss of generality, that

f ∈ L∞(
Rn

)
. (6.23)
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Indeed, if (6.22) holds for bounded functions, then it holds also for the function fN , obtained
by any (possibly unbounded) f by cutting at levels −N and +N (see (6.20)). Therefore, by
Lemma 6.4 and the fact that (6.22) together with the Dominated Convergence Theorem imply

lim
N→+∞

∫
Rn

∫
Rn

|fN(x) − fN(y)|p
|x − y|n+sp

dx dy =
∫
Rn

∫
Rn

|f (x) − f (y)|p
|x − y|n+sp

dx dy,

we obtain estimate (6.21) for the function f .
Now, take ak and Ak defined by (6.4) and (6.5), respectively. We have

‖f ‖p�

Lp�
(Rn)

=
∑
k∈Z

∫
Ak\Ak+1

∣∣f (x)
∣∣p�

dx �
∑
k∈Z

∫
Ak\Ak+1

(
2k+1)p�

dx

�
∑
k∈Z

2(k+1)p�

ak.

That is,

‖f ‖p

Lp�
(Rn)

� 2p

(∑
k∈Z

2kp�

ak

)p/p�

.

Thus, since p/p� = (n − sp)/n = 1 − sp/n < 1,

‖f ‖p

Lp�
(Rn)

� 2p
∑
k∈Z

2kpa
(n−sp)/n
k (6.24)

and, then, by choosing T = 2p , Lemma 6.2 yields

‖f ‖p

Lp�
(Rn)

� C
∑
k∈Z
ak =0

2kpak+1a
− sp

n

k , (6.25)

for a suitable constant C depending on n,p and s.
Finally, it suffices to apply Lemma 6.3 and we obtain the desired result, up to relabeling the

constant C in (6.25).
Furthermore, the embedding for q ∈ (p,p�) follows from standard application of the Hölder

inequality. �
Remark 6.6. From Lemma 6.1, it follows that∫

E

∫
CE

dx dy

|x − y|n+sp
� c(n, s)|E|(n−sp)/n (6.26)

for all measurable sets E with finite measure.
On the other hand, we see that (6.21) reduces to (6.26) when f = χE , so (6.26) (and thus

Lemma 6.1) may be seen as a Sobolev-type inequality for sets.

The above embedding does not generally hold for the space Ws,p(Ω) since it not always
possible to extend a function f ∈ Ws,p(Ω) to a function f̃ ∈ Ws,p(Rn). In order to be allowed
to do that, we should require further regularity assumptions on Ω (see Section 5).
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Theorem 6.7. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp < n. Let Ω ⊆ Rn be an extension
domain for Ws,p . Then there exists a positive constant C = C(n,p, s,Ω) such that, for any
f ∈ Ws,p(Ω), we have

‖f ‖Lq(Ω) � C‖f ‖Ws,p(Ω), (6.27)

for any q ∈ [p,p�]; i.e., the space Ws,p(Ω) is continuously embedded in Lq(Ω) for any q ∈
[p,p�].

If, in addition, Ω is bounded, then the space Ws,p(Ω) is continuously embedded in Lq(Ω)

for any q ∈ [1,p�].
Proof. Let f ∈ Ws,p(Ω). Since Ω ⊆ Rn is an extension domain for Ws,p , then there exists a
constant C1 = C1(n,p, s,Ω) > 0 such that

‖f̃ ‖Ws,p(Rn) � C1‖f ‖Ws,p(Ω), (6.28)

with f̃ such that f̃ (x) = f (x) for x a.e. in Ω .
On the other hand, by Theorem 6.5, the space Ws,p(Rn) is continuously embedded in Lq(Rn)

for any q ∈ [p,p�]; i.e., there exists a constant C2 = C2(n,p, s) > 0 such that

‖f̃ ‖Lq(Rn) � C2‖f̃ ‖Ws,p(Rn). (6.29)

Combining (6.28) with (6.29), we get

‖f ‖Lq(Ω) = ‖f̃ ‖Lq(Ω) � ‖f̃ ‖Lq(Rn) � C2‖f̃ ‖Ws,p(Rn)

� C2C1‖f ‖Ws,p(Ω),

that gives the inequality in (6.27), by choosing C = C2C1.
In the case of Ω being bounded, the embedding for q ∈ [1,p) plainly follows from (6.27), by

using the Hölder inequality. �
Remark 6.8. In the critical case q = p� the constant C in Theorem 6.7 does not depend on Ω :
this is a consequence of (6.21) and of the extension property of Ω .

6.1. The case sp = n

We note that when sp → n the critical exponent p� goes to ∞ and so it is not surprising
that, in this case, if f is in Ws,p then f belongs to Lq for any q , as stated in the following two
theorems.

Theorem 6.9. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp = n. Then there exists a positive
constant C = C(n,p, s) such that, for any measurable and compactly supported function f :
Rn → R, we have

‖f ‖Lq(Rn) � C‖f ‖Ws,p(Rn), (6.30)

for any q ∈ [p,∞); i.e., the space Ws,p(Rn) is continuously embedded in Lq(Rn) for any q ∈
[p,∞).

Theorem 6.10. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp = n. Let Ω ⊆ Rn be an extension
domain for Ws,p . Then there exists a positive constant C = C(n,p, s,Ω) such that, for any
f ∈ Ws,p(Ω), we have

‖f ‖Lq(Ω) � C‖f ‖Ws,p(Ω), (6.31)
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for any q ∈ [p,∞); i.e., the space Ws,p(Ω) is continuously embedded in Lq(Ω) for any q ∈
[p,∞).

If, in addition, Ω is bounded, then the space Ws,p(Ω) is continuously embedded in Lq(Ω)

for any q ∈ [1,∞).

The proofs can be obtained by simply combining Proposition 2.1 with Theorem 6.5 and The-
orem 6.7, respectively.

7. Compact embeddings

In this section, we state and prove some compactness results involving the fractional
spaces Ws,p(Ω) in bounded domains. The main proof is a modification of the one of the classi-
cal Riesz–Frechet–Kolmogorov theorem (see [54,77]) and, again, it is self-contained and it does
not require to use Besov or other interpolation spaces, nor the Fourier transform and semigroup
flows (see [28, Theorem 1.5]). We refer to [75, Lemma 6.11] for the case p = q = 2.

Theorem 7.1. Let s ∈ (0,1), p ∈ [1,+∞), q ∈ [1,p], Ω ⊂ Rn be a bounded extension domain
for Ws,p and T be a bounded subset of Lp(Ω). Suppose that

sup
f ∈T

∫
Ω

∫
Ω

|f (x) − f (y)|p
|x − y|n+sp

dx dy < +∞.

Then T is pre-compact in Lq(Ω).

Proof. We want to show that T is totally bounded in Lq(Ω), i.e., for any ε ∈ (0,1) there exist
β1, . . . , βM ∈ Lq(Ω) such that for any f ∈ T there exists j ∈ {1, . . . ,M} such that

‖f − βj‖Lq(Ω) � ε. (7.1)

Since Ω is an extension domain, there exists a function f̃ in Ws,p(Rn) such that ‖f̃ ‖Ws,p(Rn) �
C‖f ‖Ws,p(Ω). Thus, for any cube Q containing Ω , we have

‖f̃ ‖Ws,p(Q) � ‖f̃ ‖Ws,p(Rn) � C‖f ‖Ws,p(Ω).

Observe that, since Q is a bounded open set, f̃ belongs also to Lq(Q) for any q ∈ [1,p].
Now, for any ε ∈ (0,1), we let

Co := 1 + sup
f ∈T

‖f̃ ‖Lq(Q) + sup
f ∈T

∫
Q

∫
Q

|f̃ (x) − f̃ (y)|p
|x − y|n+sp

dx dy,

ρ = ρε :=
(

ε

2C
1
q
o n

n+sp
2p

) 1
s

and η = ηε := ερ
n
q

2
,

and we take a collection of disjoints cubes Q1, . . . ,QN of side ρ such that10

Ω ⊆ Q =
N⋃

j=1

Qj .

10 To be precise, for this one needs to take ε ∈ (0,1) arbitrarily small and such that the ration between the side of Q

and ρε is integer.
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For any x ∈ Ω , we define

j (x) as the unique integer in {1, . . . ,N} for which x ∈ Qj(x). (7.2)

Also, for any f ∈ T , let

P(f )(x) := 1

|Qj(x)|
∫

Qj(x)

f̃ (y) dy.

Notice that

P(f + g) = P(f ) + P(g) for any f,g ∈ T

and that P(f ) is constant, say equal to qj (f ), in any Qj , for j ∈ {1, . . . ,N}. Therefore, we can
define

R(f ) := ρn/q
(
q1(f ), . . . , qN(f )

) ∈ RN

and consider the spatial q-norm in RN as

‖v‖q :=
(

N∑
j=1

|vj |q
) 1

q

, for any v ∈ RN.

We observe that R(f + g) = R(f ) + R(g). Moreover,

∥∥P(f )
∥∥q

Lq(Ω)
=

N∑
j=1

∫
Qj ∩Ω

∣∣P(f )(x)
∣∣q dx

� ρn
N∑

j=1

∣∣qj (f )
∣∣q = ∥∥R(f )

∥∥q

q
� ‖R(f )‖q

q

ρn
. (7.3)

Also, by the Hölder inequality,

∥∥R(f )
∥∥q

q
=

N∑
j=1

ρn
∣∣qj (f )

∣∣q = 1

ρn(q−1)

N∑
j=1

∣∣∣∣ ∫
Qj

f̃ (y) dy

∣∣∣∣q

�
N∑

j=1

∫
Qj

∣∣f̃ (y)
∣∣q dy =

∫
Q

∣∣f̃ (y)
∣∣q dy = ‖f̃ ‖q

Lq(Q).

In particular,

sup
f ∈T

∥∥R(f )
∥∥q

q
� Co,

that is, the set R(T ) is bounded in RN (with respect to the q-norm of RN as well as to any
equivalent norm of RN ) and so, since it is finite dimensional, it is totally bounded. Therefore,
there exist b1, . . . , bM ∈ RN such that

R(T ) ⊆
M⋃
i=1

Bη(bi), (7.4)

where the balls Bη are taken in the q-norm of RN .
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For any i ∈ {1, . . . ,M}, we write the coordinates of bi as

bi = (bi,1, . . . , bi,N ) ∈ RN.

For any x ∈ Ω , we set

βi(x) := ρ−n/qbi,j (x),

where j (x) is as in (7.2).
Notice that βi is constant on Qj , i.e. if x ∈ Qj then

P(βi)(x) = ρ
− n

q bi,j = βi(x) (7.5)

and so qj (βi) = ρ
− n

q bi,j ; thus

R(βi) = bi. (7.6)

Furthermore, for any f ∈ T

∥∥f − P(f )
∥∥q

Lq(Ω)
=

N∑
j=1

∫
Qj ∩Ω

∣∣f (x) − P(f )(x)
∣∣q dx

=
N∑

j=1

∫
Qj ∩Ω

∣∣∣∣f (x) − 1

|Qj |
∫
Qj

f̃ (y) dy

∣∣∣∣q dx

=
N∑

j=1

∫
Qj ∩Ω

1

|Qj |q
∣∣∣∣ ∫
Qj

f (x) − f̃ (y) dy

∣∣∣∣q dx

� 1

ρnq

N∑
j=1

∫
Qj ∩Ω

[ ∫
Qj

∣∣f (x) − f̃ (y)
∣∣dy

]q

dx. (7.7)

Now for any fixed j ∈ 1, . . . ,N , by the Hölder inequality with p and p/(p − 1) we get

1

ρnq

[ ∫
Qj

∣∣f (x) − f̃ (y)
∣∣dy

]q

� 1

ρnq
|Qj |

q(p−1)
p

[ ∫
Qj

∣∣f (x) − f̃ (y)
∣∣p dy

] q
p

= 1

ρnq/p

[ ∫
Qj

∣∣f (x) − f̃ (y)
∣∣p dy

] q
p

� 1

ρnq/p
n

(
n+sp

2 )
q
p ρ

q
p

(n+sp)

[ ∫
Qj

|f (x) − f̃ (y)|p
|x − y|n+sp

dy

] q
p

� n
(

n+sp
2 )

q
p ρsq

[ ∫
Q

|f (x) − f̃ (y)|p
|x − y|n+sp

dy

] q
p

. (7.8)

Hence, combining (7.7) with (7.8), we obtain that
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∥∥f − P(f )
∥∥q

Lq(Ω)
� n

(
n+sp

2 )
q
p ρsq

∫
Q

[ ∫
Q

|f̃ (x) − f̃ (y)|p
|x − y|n+sp

dy

] q
p

dx

� n
(

n+sp
2 )

q
p ρsq

[ ∫
Q

∫
Q

|f̃ (x) − f̃ (y)|p
|x − y|n+sp

dy dx

] q
p

� Con
(

n+sp
2 )

q
p ρsq = εq

2q
, (7.9)

where (7.9) follows from Jensen inequality since t �→ |t |q/p is a concave function for any fixed p

and q such that q/p � 1.
Consequently, for any j ∈ {1, . . . ,M}, recalling (7.3) and (7.5)

‖f − βj‖Lq(Ω) �
∥∥f − P(f )

∥∥
Lq(Ω)

+ ∥∥P(βj ) − βj

∥∥
Lq(Ω)

+ ∥∥P(f − βj )
∥∥

Lq(Ω)

� ε

2
+ ‖R(f ) − R(βj )‖q

ρn/q
. (7.10)

Now, given any f ∈ T , we recall (7.4) and (7.6) and we take j ∈ {1, . . . ,M} such that R(f ) ∈
Bη(bj ). Then, (7.5) and (7.10) give that

‖f − βj‖Lq(Ω) � ε

2
+ ‖R(f ) − bj‖q

ρn/q
� ε

2
+ η

ρn/q
= ε. (7.11)

This proves (7.1), as desired. �
Corollary 7.2. Let s ∈ (0,1) and p ∈ [1,+∞) be such that sp < n. Let q ∈ [1,p�), Ω ⊆ Rn be
a bounded extension domain for Ws,p and T be a bounded subset of Lp(Ω). Suppose that

sup
f ∈T

∫
Ω

∫
Ω

|f (x) − f (y)|p
|x − y|n+sp

dx dy < +∞.

Then T is pre-compact in Lq(Ω).

Proof. First, note that for 1 � q � p the compactness follows from Theorem 7.1.
For any q ∈ (p,p�), we may take θ = θ(p,p�, q) ∈ (0,1) such that 1/q = θ/p + 1 − θ/p�,

thus for any f ∈ T and βj with j ∈ {1, . . . ,N} as in the theorem above, using the Hölder
inequality with p/(θq) and p�/((1 − θ)q), we get

‖f − βj‖Lq(Ω) =
( ∫

Ω

|f − βj |qθ |f − βj |q(1−θ) dx

)1/q

�
( ∫

Ω

|f − βj |p dx

)θ/p( ∫
Ω

|f − βj |p�

dx

)(1−θ)/p�

= ‖f − βj‖1−θ
Lp�(Ω)‖f − βj‖θ

Lp(Ω)

� C‖f − βj‖1−θ
Ws,p(Ω)‖f − βj‖θ

Lp(Ω) � C̃εθ ,

where the last inequalities come directly from (7.11) and the continuous embedding (see Theo-
rem 6.7). �
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Remark 7.3. As is well known in the classical case s = 1 (and, more generally, when s is an
integer), also in the fractional case the lack of compactness for the critical embedding (q = p�)
is not surprising, because of translation and dilation invariance (see [74] for various results in
this direction, for any 0 < s < n/2).

Notice that the regularity assumption on Ω in Theorem 7.1 and Corollary 7.2 cannot be
dropped (see Example 9.2 in Section 9).

8. Hölder regularity

In this section we will show certain regularity properties for functions in Ws,p(Ω) when
sp > n and Ω is an extension domain for Ws,p with no external cusps. For instance, one may
take Ω any Lipschitz domain (recall Theorem 5.4).

The main result is stated in the forthcoming Theorem 8.2. First, we need a simple technical
lemma, whose proof can be found in [46] (for instance).

Lemma 8.1. (See [46, Lemma 2.2].) Let p ∈ [1,+∞) and sp ∈ (n,n + p]. Let Ω ⊂ Rn be a
domain with no external cusps and f be a function in Ws,p(Ω). Then, for any x0 ∈ Ω and
R,R′, with 0 < R′ < R < diam(Ω), we have∣∣〈f 〉BR(x0)∩Ω − 〈f 〉BR′ (x0)∩Ω

∣∣ � c[f ]p,sp

∣∣BR(x0) ∩ Ω
∣∣(sp−n)/np (8.1)

where

[f ]p,sp :=
(

sup
x0∈Ωρ>0

ρ−sp

∫
Bρ(x0)∩Ω

∣∣f (x) − 〈f 〉Bρ(x0)∩Ω

∣∣p dx

) 1
p

and

〈f 〉Bρ(x0)∩Ω := 1

|Bρ(x0) ∩ Ω|
∫

Bρ(x0)∩Ω

f (x)dx.

Theorem 8.2. Let Ω ⊆ Rn be an extension domain for Ws,p with no external cusps and let
p ∈ [1,+∞), s ∈ (0,1) be such that sp > n. Then, there exists C > 0, depending on n, s, p

and Ω , such that

‖f ‖C0,α(Ω) � C

(
‖f ‖p

Lp(Ω)
+

∫
Ω

∫
Ω

|f (x) − f (y)|p
|x − y|n+sp

dx dy

) 1
p

, (8.2)

for any f ∈ Lp(Ω), with α := (sp − n)/p.

Proof. In the following, we will denote by C suitable positive quantities, possibly different from
line to line, and possibly depending on p and s.

First, we notice that if the right-hand side of (8.2) is not finite, then we are done. Thus, we
may suppose that∫

Ω

∫
Ω

|f (x) − f (y)|p
|x − y|n+sp

dx dy � C,

for some C > 0.
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Second, since Ω is an extension domain for Ws,p , we can extend any f to a function f̃ such
that ‖f̃ ‖Ws,p(Rn) � C‖f ‖Ws,p(Ω).

Now, for any bounded measurable set U ⊂ Rn, we consider the average value of the func-
tion f̃ in U , given by

〈f̃ 〉U := 1

|U |
∫
U

f̃ (x) dx.

For any ξ ∈ Rn, the Hölder inequality yields∣∣ξ − 〈f̃ 〉U
∣∣p = 1

|U |p
∣∣∣∣ ∫
U

ξ − f̃ (y) dy

∣∣∣∣p � 1

|U |
∫
U

∣∣ξ − f̃ (y)
∣∣p dy.

Accordingly, by taking xo ∈ Ω and U := Br(xo), ξ := f̃ (x) and integrating over Br(xo), we
obtain that∫

Br(xo)

∣∣f̃ (x) − 〈f̃ 〉Br (xo)

∣∣p dx � 1

|Br(xo)|
∫

Br(xo)

∫
Br (xo)

∣∣f̃ (x) − f̃ (y)
∣∣p dx dy.

Hence, since |x − y| � 2r for any x, y ∈ Br(xo), we deduce that∫
Br (xo)

∣∣f̃ (x) − 〈f̃ 〉Br (xo)

∣∣p dx � (2r)n+sp

|Br(xo)|
∫

Br (xo)

∫
Br(xo)

|f̃ (x) − f̃ (y)|p
|x − y|n+sp

dx dy

�
2n+sprspC‖f ‖p

Ws,p(Ω)

|B1| , (8.3)

that implies

[f ]pp,sp � C‖f ‖p

Ws,p(Ω), (8.4)

for a suitable constant C.
Now, we will show that f is a continuous function. Taking into account (8.1), it follows

that the sequence of functions x → 〈f 〉BR(x)∩Ω converges uniformly in x ∈ Ω when R → 0. In
particular the limit function g will be continuous and the same holds for f , since by Lebesgue
theorem we have that

lim
R→0

1

|BR(x) ∩ Ω|
∫

BR(x)∩Ω

f (y)dy = f (x) for almost every x ∈ Ω.

Now, take any x, y ∈ Ω and set R = |x − y|. We have∣∣f (x) − f (y)
∣∣ �

∣∣f (x) − 〈f̃ 〉B2R(x)

∣∣ + ∣∣〈f̃ 〉B2R(x) − 〈f̃ 〉B2R(y)

∣∣ + ∣∣〈f̃ 〉B2R(y) − f (y)
∣∣.

We can estimate the first and the third term of right-hand side of the above inequality using
Lemma 8.1. Indeed, getting the limit in (8.1) as R′ → 0 and writing 2R instead of R, for any
x ∈ Ω we get∣∣〈f̃ 〉B2R(x) − f (x)

∣∣ � c[f ]p,sp

∣∣B2R(x)
∣∣(sp−n)/np � C[f ]p,spR(sp−n)/p (8.5)

where the constant C is given by c2(sp−n)/p/|B1|.
On the other hand,∣∣〈f̃ 〉B (x) − 〈f̃ 〉B (y)

∣∣ �
∣∣f (z) − 〈f̃ 〉B (x)

∣∣ + ∣∣f̃ (z) − 〈f̃ 〉B (y)

∣∣

2R 2R 2R 2R
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and so, integrating on z ∈ B2R(x) ∩ B2R(y), we have∣∣B2R(x) ∩ B2R(y)
∣∣∣∣〈f̃ 〉B2R(x) − 〈f̃ 〉B2R(y)

∣∣
�

∫
B2R(x)∩B2R(y)

∣∣f̃ (z) − 〈f̃ 〉B2R(x)

∣∣dz

+
∫

B2R(x)∩B2R(y)

∣∣f̃ (z) − 〈f̃ 〉B2R(y)

∣∣dz

�
∫

B2R(x)

∣∣f̃ (z) − 〈f̃ 〉B2R(x)

∣∣dz +
∫

B2R(y)

∣∣f̃ (z) − 〈f̃ 〉B2R(y)

∣∣dz.

Furthermore, since BR(x) ∪ BR(y) ⊂ (B2R(x) ∩ B2R(y)), we have∣∣BR(x)
∣∣ �

∣∣B2R(x) ∩ B2R(y)
∣∣ and

∣∣BR(y)
∣∣ �

∣∣B2R(x) ∩ B2R(y)
∣∣

and so∣∣〈f̃ 〉B2R(x) − 〈f̃ 〉B2R(y)

∣∣ � 1

|BR(x)|
∫

B2R(x)

∣∣f̃ (z) − 〈f̃ 〉B2R(x)

∣∣dz

+ 1

|BR(y)|
∫

B2R(y)

∣∣f̃ (z) − 〈f̃ 〉B2R(y)

∣∣dz.

An application of the Hölder inequality gives

1

|BR(x)|
∫

B2R(x)

∣∣f̃ (z) − 〈f̃ 〉B2R(x)

∣∣dz

� |B2R(x)|(p−1)/p

|BR(x)|
( ∫

B2R(x)

∣∣f̃ (z) − 〈f̃ 〉B2R(x)

∣∣p dz

)1/p

� |B2R(x)|(p−1)/p

|BR(x)| (2R)s[f ]p,sp

� C[f ]p,spR(sp−n)/p. (8.6)

Analogously, we obtain

1

|BR(y)|
∫

B2R(y)

∣∣f̃ (z) − 〈f̃ 〉B2R(y)

∣∣dz � C[f ]p,spR(sp−n)/p. (8.7)

Combining (8.5), (8.6) with (8.7) it follows∣∣f (x) − f (y)
∣∣ � C[f ]p,sp|x − y|(sp−n)/p, (8.8)

up to relabeling the constant C.
Therefore, by taking into account (8.4), we can conclude that f ∈ C0,α(Ω), with α = (sp −

n)/p.
Finally, taking R0 < diam(Ω) (note that the latter can be possibly infinity), using estimate

in (8.5) and the Hölder inequality we have, for any x ∈ Ω ,
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∣∣f (x)
∣∣ �

∣∣〈f̃ 〉BR0 (x)

∣∣ + ∣∣f (x) − 〈f̃ 〉BR0 (x)

∣∣
� C

|BR0(x)|1/p
‖f ‖Lp(Ω) + c[f ]p,sp

∣∣BR0(x)
∣∣α. (8.9)

Hence, by (8.4), (8.8) and (8.9), we get

‖f ‖C0,α(Ω) = ‖f ‖L∞(Ω) + sup
x,y∈Ω
x =y

|f (x) − f (y)|
|x − y|α

� C
(‖f ‖Lp(Ω) + [f ]p,sp

)
� C‖f ‖Ws,p(Ω)

for a suitable positive constant C. �
Remark 8.3. The estimate in (8.3) says that f belongs to the Campanato space L p,λ, with
λ := sp (see [22] and, e.g., [46, Definition 2.4]). Then, the conclusion in the proof of Theorem 8.2
is actually an application of the Campanato isomorphism (see, for instance, [46, Theorem 2.9]).

Just for a matter of curiosity, we observe that, according to the definition (2.1), the fractional
Sobolev space Ws,∞(Ω) could be view as the space of functions{

u ∈ L∞(Ω):
|u(x) − u(y)|

|x − y|s ∈ L∞(Ω × Ω)

}
,

but this space just boils down to C0,s (Ω), that is consistent with the Hölder embedding proved
in this section; i.e., taking formally p = ∞ in Theorem 8.2, the function u belongs to C0,s(Ω).

9. Some counterexamples in non-Lipschitz domains

When the domain Ω is not Lipschitz, some interesting things happen, as next examples show.

Example 9.1. Let s ∈ (0,1). We will construct a function u in W 1,p(Ω) that does not belong to
Ws,p(Ω), providing a counterexample to Proposition 2.2 when the domain is not Lipschitz.

Take any

p ∈ (1/s,+∞). (9.1)

Due to (9.1), we can fix

κ >
p + 1

sp − 1
. (9.2)

We remark that κ > 1.
Let us consider the cusp in the plane

C := {
(x1, x2) with x1 � 0 and |x2| � |x1|κ

}
and take polar coordinates on R2 \ C , say ρ = ρ(x) ∈ (0,+∞) and θ = θ(x) ∈ (−π,π), with
x = (x1, x2) ∈ R2 \ C .

We define the function u(x) := ρ(x)θ(x) and the heart-shaped domain Ω := (R2 \ C) ∩ B1,
with B1 being the unit ball centered in the origin. Then, u ∈ W 1,p(Ω) \ Ws,p(Ω).
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To check this, we observe that

∂x1ρ = (2ρ)−1∂x1ρ
2 = (2ρ)−1∂x1

(
x2

1 + x2
2

) = x1

ρ

and, in the same way,

∂x2ρ = x2

ρ
.

Accordingly,

1 = ∂x1x1 = ∂x1(ρ cos θ) = ∂x1ρ cos θ − ρ sin θ∂x1θ = x2
1

ρ2
− x2∂x1θ

= 1 − x2
2

ρ2
− x2∂x1θ.

That is

∂x1θ = − x2

ρ2
.

By exchanging the roles of x1 and x2 (with some care on the sign of the derivatives of the
trigonometric functions), one also obtains

∂x2θ = x1

ρ2
.

Therefore,

∂x1u = ρ−1(x1θ − x2) and ∂x2u = ρ−1(x2θ + x1)

and so

|∇u|2 = θ2 + 1 � π2 + 1.

This shows that u ∈ W 1,p(Ω).
On the other hand, let us fix r ∈ (0,1), to be taken arbitrarily small at the end, and let us define

r0 := r and, for any j ∈ N, rj+1 := rj − rκ
j . By induction, one sees that rj is strictly decreasing,

that rj > 0 and so rj ∈ (0, r) ⊂ (0,1). Accordingly, we can define

� := lim
j→+∞ rj ∈ [0,1].

By construction

� = lim
j→+∞ rj+1 = lim

j→+∞ rj − rκ
j = � − �κ,

hence � = 0. As a consequence,

+∞∑
j=0

rκ
j = lim

N→+∞

N∑
j=0

rκ
j = lim

N→+∞

N∑
j=0

rj − rj+1

= lim
N→+∞ r0 − rN+1 = r. (9.3)

We define

Dj := {
(x, y) ∈ R2 × R2 s.t. x1, y1 ∈ (−rj ,−rj+1),

x2 ∈ (|x1|κ ,2|x1|κ
)

and −y2 ∈ (|y1|κ ,2|y1|κ
)}

.
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We observe that

Ω × Ω ⊇ {
(x, y) ∈ R2 × R2 s.t. x1, y1 ∈ (−r,0),

x2 ∈ (|x1|κ ,2|x1|κ
)

and −y2 ∈ (|y1|κ ,2|y1|κ
)}

⊇
+∞⋃
j=0

Dj ,

and the union is disjoint. Also,

rj+1 = rj
(
1 − rκ−1

j

)
� rj

(
1 − rκ−1) � rj

2
,

for small r . Hence, if (x, y) ∈ Dj ,

|x1| � rj � 2rj+1 � 2|y1|
and, analogously,

|y1| � 2|x1|.
Moreover, if (x, y) ∈ Dj ,

|x1 − y1| � rj − rj+1 = rκ
j � 2κrκ

j+1 � 2κ |x1|κ
and

|x2 − y2| � |x2| + |y2| � 2|x1|κ + 2|y1|κ � 2κ+2|x1|κ .

As a consequence, if (x, y) ∈ Dj ,

|x − y| � 2κ+3|x1|κ .

Notice also that, when (x, y) ∈ Dj , we have θ(x) � π/2 and θ(y) � −π/2, so

u(x) − u(y) � u(x) � πρ(x)

2
� π |x1|

2
.

As a consequence, for any (x, y) ∈ Dj ,

|u(x) − u(y)|p
|x − y|2+sp

� c|x1|p−κ(2+sp),

for some c > 0. Therefore,∫ ∫
Dj

|u(x) − u(y)|p
|x − y|2+sp

dx dy �
∫ ∫

Dj

c|x1|p−κ(2+sp) dx dy

= c

−rj+1∫
−rj

dx1

−rj+1∫
−rj

dy1

2|x1|κ∫
|x1|κ

dx2

−|y1|κ∫
−2|y1|κ

dy2|x1|p−κ(2+sp)

= c

−rj+1∫
−r

dx1

−rj+1∫
−r

dy1|x1|p−κ(2+sp)|x1|κ |y1|κ

j j
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� c2−κ

−rj+1∫
−rj

dx1

−rj+1∫
−rj

dy1|x1|p−κsp

� c2−κ

−rj+1∫
−rj

dx1

−rj+1∫
−rj

dy1r
p−κsp
j

= c2−κr
p−κsp+2κ
j = c2−κrκ−α

j ,

with

α := κ(sp − 1) − p > 1, (9.4)

thanks to (9.2).
In particular,∫ ∫

Dj

|u(x) − u(y)|p
|x − y|2+sp

dx dy � c2−κr−αrκ
j

and so, by summing up and exploiting (9.3),∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|2+sp

dx dy �
+∞∑
j=0

∫ ∫
Dj

|u(x) − u(y)|p
|x − y|2+sp

dx dy � c2−κr1−α.

By taking r as small as we wish and recalling (9.4), we obtain that∫
Ω

∫
Ω

|u(x) − u(y)|p
|x − y|2+sp

dx dy = +∞,

so u /∈ Ws,p(Ω).

Example 9.2. Let s ∈ (0,1). We will construct a sequence of functions {fn} bounded in Ws,p(Ω)

that does not admit any convergent subsequence in Lq(Ω), providing a counterexample to The-
orem 7.1 when the domain is not Lipschitz.

We follow an observation by [80]. For the sake of simplicity, fix n = p = q = 2. We take
ak := 1/Ck for a constant C > 10 and we consider the set Ω = ⋃∞

k=1 Bk where, for any k ∈ N,
Bk denotes the ball of radius a2

k centered in ak . Notice that

ak → 0 as k → ∞ and ak − a2
k > ak+1 + a2

k+1.

Thus, Ω is the union of disjoint balls, it is bounded and it is not a Lipschitz domain.
For any n ∈ N, we define the function fn : Ω → R as follows

fn(x) =
{

π− 1
2 a−2

n , x ∈ Bn,

0, x ∈ Ω \ Bn.

We observe that we cannot extract any subsequence convergent in L2(Ω) from the sequence of
functions {fn}, because fn(x) → 0 as n → +∞, for any fixed x ∈ Ω but

‖fn‖2
L2(Ω)

=
∫ ∣∣fn(x)

∣∣2
dx =

∫
π−1a−4

n dx = 1.
Ω Bn
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Now, we compute the Hs norm of fn in Ω . We have∫
Ω

∫
Ω

|fn(x) − fn(y)|2
|x − y|2+2s

dx dy = 2
∫

Ω\Bn

∫
Bn

π−1a−4
n

|x − y|2+2s
dx dy

= 2π−1
∑
k =n

∫
Bk

∫
Bn

a−4
n

|x − y|2+2s
dx dy. (9.5)

Thanks to the choice of {ak} we have that∣∣a2
n + a2

k

∣∣ = a2
n + a2

k � |an − ak|
2

.

Thus, since x ∈ Bn, y ∈ Bk , it follows

|x − y| � ∣∣an − a2
n − (

ak + a2
k

)∣∣ = ∣∣an − ak − (
a2
n + a2

k

)∣∣
� |an − ak| −

∣∣a2
n + a2

k

∣∣ � |an − ak| − |an − ak|
2

= |an − ak|
2

.

Therefore,∫
Bk

∫
Bn

a−4
n

|x − y|2+2s
dx dy � 22+2s

∫
Bk

∫
Bn

a−4
n

|an − ak|2+2s
dx dy

= 22+2sπ2 a4
k

|an − ak|2+2s
. (9.6)

Also, if m � j + 1 we have

aj − am � aj − aj+1 = 1

Cj
− 1

Cj+1
= 1

Cj

(
1 − 1

C

)
� aj

2
. (9.7)

Therefore, combining (9.7) with (9.5) and (9.6), we get∫
Ω

∫
Ω

|fn(x) − fn(y)|2
|x − y|2+2s

dx dy � 23+2sπ
∑
k =n

a4
k

|an − ak|2+2s

= 23+2sπ

(∑
k<n

a4
k

(ak − an)2+2s
+

∑
k>n

a4
k

(an − ak)2+2s

)

� 25+4sπ

(∑
k<n

a4
k

a2+2s
k

+
∑
k>n

a4
k

a2+2s
n

)

� 26+4sπ
∑
k =n

a2−2s
k = 26+4sπ

∑
k =n

(
1

C2−2s

)k

< +∞.

This shows that {fn} is bounded in Hs(Ω).
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