
Joakim Sundnes∗

Solving Ordinary Differential
Equations in Python

Nov 8, 2020

∗Simula Research Laboratory and Department of Informatics, University of Oslo.

Preface

These lecture notes are based on the book A Primer on Scientific Program-
ming with Python by Hans Petter Langtangen1, and primarily cover topics
from Appendix A, C, and E. The notes are intended as a brief and gen-
tle introduction to solving differential equations in Python, for use in the
course Introduction to programming for scientific applications (IN1900) at
the University of Oslo. To read these notes one should have basic knowl-
edge of Python and NumPy2, and it is also useful to have a fundamental
understanding of ordinary differential equations (ODEs).

The purpose of these notes is to provide a foundation for writing your
own ODE solvers in Python. One may ask why this is useful, since there
are already multiple such solvers available, for instance in the SciPy library.
However, no single ODE solver is the best and most efficient tool for all
possible ODE problems, and the choice of solver should always based on the
characteristics of the problem. To make such choices it is extremely useful to
know the strengths and weaknesses of the different solvers, and the best way
to learn this is to program your own collection of ODE solvers. Different ODE
solvers are also conveniently grouped into families and hierarchies of solvers,
and provide an excellent example of how object oriented programming (OOP)
can be used to maximize code reuse and minimize duplication.

Although the main purpose of these notes is to solve differential equations,
the topic of the first chapter is difference equations. The motivation for this
somewhat unusual approach is that, from a programming perspective, dif-
ference equations are easier to solve, and a natural step on the way towards
solving ODEs. The standard formulation of difference equations in mathe-
matical textbooks is already in a "computer-friendly" form, and is very easy
to translate into a Python program using for-loops and arrays. Furthermore,
as we shall see in Chapter 2, applying a numerical method such as the For-

1Hans Petter Langtangen, A Primer on Scientific Programming with Python, 5th
edition, Springer-Verlag, 2016.

2See for instance Joakim Sundnes, Introduction to Scientific Programming with
Python, Springer-Verlag, 2020.

v

vi

ward Euler scheme to an ODE effectively turns the differential equation into
a difference equation. If we already know how to program difference equa-
tions it is therefore very easy to solve an ODE, by simply adding one extra
step at the start of the process. However, although this structure provides a
natural step-by-step introduction to ODE programming, it is entirely possi-
ble to skip Chapter 1 completely and jump straight into the programming of
ODE solvers in Chapter 2.

August 2020 Joakim Sundnes

Contents

Preface . v

1 Programming of difference equations . 1
1.1 Sequences and Difference Equations . 1
1.2 Systems of Difference Equations . 6
1.3 More Examples of Difference Equations 7
1.4 Taylor Series and Approximations . 11

2 Solving ordinary differential equations . 15
2.1 Creating a general-purpose ODE solver . 15
2.2 The ODE solver implemented as a class 20
2.3 Alternative ODE solvers . 23
2.4 A class hierarchy of ODE solvers . 26

3 Solving systems of ODEs . 31
3.1 An ODESolver class for systems of ODEs 32

4 Modeling infectious diseases . 37
4.1 Derivation of the SIR model . 37
4.2 Extending the SIR model . 42
4.3 A model of the Covid19 pandemic . 44

vii

Chapter 1
Programming of difference equations

Although the main focus of these notes is on solvers for differential equations,
this first chapter is devoted to the closely related class of problems known
as difference equations. The main motivation for introducing this topic first
is that the mathematical formulation of difference equations is very easy to
translate into a computer program. When we move on to ODEs in the next
chapter, we shall see that such equations are typically solved by applying
some numerical scheme to turn the differential equation into a difference
equation, which is then solved using the techniques presented in this chapter.

1.1 Sequences and Difference Equations

Sequences is a central topic in mathematics, which has important applications
in numerical analysis and scientific computing. In the most general sense, a
sequence is simply a collection of numbers:

x0, x1, x2, . . . , xn,

For some sequences we can derive a formula that gives the the n-th number
xn as a function of n. For instance, all the odd numbers form a sequence

1,3,5,7, . . . ,

and for this sequence we can write a simple formula for the n-th term;

xn = 2n+1.

With this formula at hand, the complete sequence can be written on a com-
pact form;

(xn)∞n=0, xn = 2n+1.

1

2 1 Programming of difference equations

Other examples of sequences include

1, 4, 9, 16, 25, . . . (xn)∞n=0, xn = n2,

1, 1
2 ,

1
3 ,

1
4 , . . . (xn)∞n=0, xn = 1

n+1 ,

1, 1, 2, 6, 24, . . . (xn)∞n=0, xn = n!,

1, 1+x, 1+x+ 1
2x

2, 1+x+ 1
2x

2 + 1
6x

3, . . . (xn)∞n=0, xn =
n∑
j=0

xj

j! .

These are all formulated as inifite sequences, which is common in mathemat-
ics, but in real-life applications sequences are usually finite: (xn)Nn=0. Some
familiar examples include the annual value of a loan or an investment.

In many cases it is impossible to derive an explicit formula for the entire
sequence, and xn is instead given by a relation involving xn−1 and possibly
xn−2. Such equations are called difference equations, and they can be chal-
lenging to solve with analytical methods, since in order to compute the n-th
term of a sequence we need to compute the entire sequence x0,x1, . . . ,xn−1.
This can be very tedious to do by hand or using a calculator, but on a com-
puter the equation is easy to solve with a for-loop. Combining sequences and
difference equations with programming therefore enables us to consider far
more interesting and useful cases.

A difference equation for computing interest. To start with a simple
example, consider the problem of computing how an invested sum of money
grows over time. In its simplest form, this problem can be written as putting
x0 money in a bank at year 0, with interest rate p percent per year. What
is then the value after n years? You may recall from earlier in IN1900 (and
from high school mathematics) that the solution to this problem is given by
the simple formula

xn = x0(1+p/100)n,

so there is really no need to formulate and solve the problem as a difference
equation. However, very simple generalizations, such as a non-constant in-
terest rate, makes this formula difficult to apply, while a formulation based
on a difference equation will still be applicable. To formulate the problem
as a difference equation, we use the fact that the amount xn at year n is
simply the amount at year n− 1 plus the interest for year n− 1. This gives
the following relation between xn and xn−1:

xn = xn−1 + p

100xn−1.

In order to compute xn, we can now simply start with the known x0, and
compute x1,x2, . . . ,xn. The procedure involves repeating a simple calculation
many times, which is tedious to do by hand, but very well suited for a com-

1.1 Sequences and Difference Equations 3

puter. The complete program for solving this difference equation may look
like:

import numpy as np
import matplotlib.pyplot as plt
x0 = 100 # initial amount
p = 5 # interest rate
N = 4 # number of years
x = np.zeros(N+1)

x[0] = x0
for n in range(1,N+1):

x[n] = x[n-1] + (p/100.0)*x[n-1]

plt.plot(x, ’ro’)
plt.xlabel(’years’)
plt.ylabel(’amount’)
plt.show()

This code only involves tools that we have introduced earlier in the course.1
The three lines starting with x[0] = x0 make up the core of the program.
We here initialize the first element in our solution array with the known x0,
and then step into the for-loop to compute the rest. The loop variable n runs
from 1 to N(= 4), and the formula inside the loop computes x[n] from the
known x[n-1].

An alternative formulation of the for-loop would be

for n in range(N):
x[n+1] = x[n] + (p/100.0)*x[n]

Here n runs from 0 to 3, and all the indices inside the loop have been in-
creased by one so that the end result is the same. In this case it is easy to
verify that the two loops give the same result, but mixing up the two formu-
lations will easily lead to a loop that runs out of bounds (an IndexError)
or a loop where some of the sequence elements are never computed. Such
mistakes are probably the most common type of programming error when
solving difference equations, and it is a good habit to always examine the
loop formulation carefully. If an IndexError (or another suspected loop er-
ror) occurs, a good debugging strategy is to look at the loop definition to
find the lower and upper value of the loop variable (here n), and insert both
by hand into the formulas inside the loop to check that they make sense. As
an example, consider the deliberately wrong code

for n in range(1,N+1):
x[n+1] = x[n] + (p/100.0)*x[n]

1Notice that we pass a single array as argument to plt.plot, while in earlier exam-
ples we sent two; representing the x- and y-coordinates of the points we wanted to plot.
When only one array of numbers is sent to ’plot’, these are automatically interpreted as
the y-coordinates. The x-coordinates will simply be the indices of the array, in this case
the numbers from 0 to N .

4 1 Programming of difference equations

Assuming that the rest of the code is unchanged from the example above,
the loop variable n will run from 1 to 4. If we first insert the lower bound n=1
into the formula, we find that the first pass of the loop will try to compute
x[2] from x[1]. However, we have only initialized x[0], so x[1] is zero, and
therefore x[2] and all subsequent values will be set to zero. Furthermore,
if we insert the upper bound n=4 we see that the formula will try to access
x[5], but this does not exist and we get an IndexError. Performing such
simple analysis of a for-loop is often a good way to reveal the source of the
error and give an idea of how it can be fixed.

Solving a difference equation without using arrays. The program
above stored the sequence as an array, which is a convenient way to program
the solver and enables us to plot the entire sequence. However, if we are only
interested in the solution at a single point, i.e., xn, there is no need to store
the entire sequence. Since each xn only depends on the previous value xn−1,
we only need to store the last two values in memory. A complete loop can
look like this:

x_old = x0
for n in index_set[1:]:

x_new = x_old + (p/100.)*x_old
x_old = x_new # x_new becomes x_old at next step

print(’Final amount: ’, x_new)

For this simple case we can actually make the code even shorter, since x_old
is only used in a single line and we can just as well overwrite it once it has
been used:

x = x0 #x is here a single number, not array
for n in index_set[1:]:

x = x + (p/100.)*x
print(’Final amount: ’, x)

We see that these codes store just one or two numbers, and for each pass
through the loop we simply update these and overwrite the values we no
longer need. Although this approach is quite simple, and we obviously save
some memory since we do not store the complete array, programming with an
array x[n] is usually safer, and we are often interested in plotting the entire
sequence. We will therefore mostly use arrays in the subsequent examples.

Extending the solver for the growth of money. Say we are interested in
changing our model for interest rate, to a model where the interest is added
every day instead of every year. The interest rate per day is r= p/D if p is the
annual interest rate and D is the number of days in a year. A common model
in business applies D = 360, but n counts exact (all) days. The difference
equation relating one day’s amount to the previous is the same as above

xn = xn−1 + r

100xn−1,

1.1 Sequences and Difference Equations 5

except that the yearly interest rate has been replaced by the daily (r). If we
are interested in how much the money grows from a given date to another we
also need to find the number of days between those dates. This calculation
could of course be done by hand, but Python has a convenient module named
datetime for this purpose. The following session illustrates how it can be
used:

>>> import datetime
>>> date1 = datetime.date(2017, 9, 29) # Sep 29, 2017
>>> date2 = datetime.date(2018, 8, 4) # Aug 4, 2018
>>> diff = date2 - date1
>>> print(diff.days)
309

Putting these tools together, a complete program for daily interest rates may
look like

import numpy as np
import matplotlib.pyplot as plt
import datetime

x0 = 100 # initial amount
p = 5 # annual interest rate
r = p/360.0 # daily interest rate

date1 = datetime.date(2017, 9, 29)
date2 = datetime.date(2018, 8, 4)
diff = date2 - date1
N = diff.days
index_set = range(N+1)
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r/100.0)*x[n-1]

plt.plot(index_set, x)
plt.xlabel(’days’)
plt.ylabel(’amount’)
plt.show()

This program is slightly more sophisticated than the first one, but one may
still argue that solving this problem with a difference equation is unnecessarily
complex, since we could just apply the well-known formula xn = x0(1+ r

100)n
to compute any xn we want. However, we know that interest rates change
quite often, and the formula is only valid for a constant r. For the pro-
gram based on solving the difference equation, on the other hand, only minor
changes are needed in the program to handle a varying interest rate. The
simplest approach is to let p be an array of the same length as the number of
days, and fill it with the correct interest rates for each day. The modifications
to the program above may look like this:

6 1 Programming of difference equations

p = np.zeros(len(index_set))
fill p[n] with correct values

r = p/360.0 # daily interest rate
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (r[n-1]/100.0)*x[n-1]

The only real difference from the previous example is that we initialize p as
an array, and then r = p/360.0 becomes an array of the same length. In the
formula inside the for-loop we then look up the correct value r[n-1] for each
iteration of the loop. Filling p with the correct values can be non-trivial, but
many cases can be handled quite easily. For instance, say the interest rate is
piecewise constant and increases from 4.0% to 5.0% on a given date. Code
for filling the array with values may then look like this

date0 = datetime.date(2017, 9, 29)
date1 = datetime.date(2018, 2, 6)
date2 = datetime.date(2018, 8, 4)
Np = (date1-date0).days
N = (date2-date0).days

p = np.zeros(len(index_set))
p[:Np] = 4.0
p[Np:] = 5.0

1.2 Systems of Difference Equations

To consider a related example to the one above, assume that we have a fortune
F invested with an annual interest rate of p percent. Every year we plan to
consume an amount cn, where n counts years, and we want to compute our
fortune xn at year n. The problem can be formulated as a small extension
of the difference equation considered earlier. by reasoning that the fortune
at year n is equal to the fortune at year n− 1 plus the interest minus the
amount we spent in year n−1. We have

xn = xn−1 + p

100xn−1− cn−1

In the simplest case cn is constant, but inflation demands cn to increase. To
solve this problem, we assume that cn should grow with a rate of I percent
per year, and in the first year we want to consume q percent of first year’s
interest. The extension of the difference equation above becomes

1.3 More Examples of Difference Equations 7

xn = xn−1 + p

100xn−1− cn−1,

cn = cn−1 + I

100cn−1.

with initial conditions x0 = F and c0 = (pF/100)(q/100) = pFq
10000 . This is

a coupled system of two difference equations, but the programming is not
much more difficult than for the single equation above. We simply create two
arrays x and c, initialize x[0] and c[0] to the given initial conditions, and
then update x[n] and c[n] inside the loop. A complete code may look like

import numpy as np
import matplotlib.pyplot as plt
F = 1e7 # initial amount
p = 5 # interest rate
I = 3
q = 75
N = 40 # number of years
index_set = range(N+1)
x = np.zeros(len(index_set))
c = np.zeros_like(x)

x[0] = F
c[0] = q*p*F*1e-4

for n in index_set[1:]:
x[n] = x[n-1] + (p/100.0)*x[n-1] - c[n-1]
c[n] = c[n-1] + (I/100.0)*c[n-1]

plt.plot(index_set, x, ’ro’,label = ’Fortune’)
plt.plot(index_set, c, ’go’, label = ’Yearly consume’)
plt.xlabel(’years’)
plt.ylabel(’amounts’)
plt.legend()
plt.show()

1.3 More Examples of Difference Equations

As noted above, sequences, series, and difference equations have countless
applications in mathematics, science, and engineering. Here we present a
selection of well known examples.

Fibonacci numbers as a difference equation. The sequence defined by
the difference equation

xn = xn−1 +xn−2, x0 = 1, x1 = 1.

8 1 Programming of difference equations

is called the Fibonacci numbers. It was originally derived for modeling rat
populations, but it has a range of interesting mathematical properties and
has therefore attracted much attention from mathematicians. The equation
for the Fibonacci numbers differs from the previous ones, since xn depends
on the two previous values (n− 1, n− 2), which makes this a second order
difference equation. This classification is important for mathematical solution
techniques, but in a program the difference between first and second order
equations is small. A complete code to solve the difference equation and
generate the Fibonacci numbers can be written as

import sys
from numpy import zeros

N = int(sys.argv[1])
x = zeros(N+1, int)
x[0] = 1
x[1] = 1
for n in range(2, N+1):

x[n] = x[n-1] + x[n-2]
print(n, x[n])

Notice that in this case we need to initialize both x[0] and x[1] before start-
ing the loop, since the update formula involves both x[n-1] and x[n-2].
This is the main difference between this second order equation and the pro-
grams for first order equations considered above. The Fibonacci numbers
grow quickly and running this program for large N will lead to problems
with overflow (try for instance N = 100). The NumPy int type supports up
to 9223372036854775807, which is almost 1019, so this is very rarely a prob-
lem in practical applications. We can fix the problem by avoiding NumPy
arrays and instead use the standard Python int type, but we will not go into
these details here.

Logistic growth. If we return to the initial problem of calculating growth of
money in a bank, we can write the classical solution formula more compactly
as

xn = x0(1+p/100)n = x0C
n (= x0e

n lnC),

with C = (1+p/100). Since n counts years, this is an example of exponential
growth in time, with the general formula x= x0e

λt. Populations of humans,
animals, and other organisms also exhibit the same type of growth when
there are unlimited resources (space and food), and the model for expo-
nential growth therefore has many applications in biology.2 However, most
environments can only support a finite number R of individuals, while in the
exponential growth model the population will continue to grow indefinitely.

2The formula x = x0e
λt is the solution of the differential equation dx/dt = λx, and

this formulation may be more familiar to some readers. As mentioned at the start of
the chapter, differential equations and difference equations are closely related, and these
relations are discussed in more detail in Chapter 2.

1.3 More Examples of Difference Equations 9

How can we alter the equation to be a more realistic model for growing pop-
ulations?

Initially, when resources are abundant, we want the growth to be expo-
nential, i.e., to grow with a given rate r% per year according to the difference
equation introduced above:

xn = xn−1 +(r/100)xn−1.

To enforce the growth limit as xn→R, r must decay to zero as xn approaches
R. The simplest variation of r(n) is linear:

r(n) = %
(

1− xn
R

)
We observe that r(n)≈ % for small n, when xn�R, and r(n)→ 0 as n grows
and xn→R. This formulation of the growth rate leads to the logistic growth
model:

xn = xn−1 + %

100xn−1
(

1− xn−1
R

)
.

This is a nonlinear difference equation, while all the examples considered
above were linear. The distinction between linear and non-linear equations is
very important for mathematical analysis of the equations, but it does not
make much difference when solving the equation in a program. To modify
the interest rate program above to describe logistic growth, we can simply
replace the line

x[n] = x[n-1] + (p/100.0)*x[n-1]

by

x[n] = x[n-1] + (rho/100)*x[n-1]*(1 - x[n-1]/R)

A complete program may look like

import numpy as np
import matplotlib.pyplot as plt
x0 = 100 # initial population
rho = 5 # growth rate in %
R = 500 # max population (carrying capacity)
N = 200 # number of years

index_set = range(N+1)
x = np.zeros(len(index_set))

x[0] = x0
for n in index_set[1:]:

x[n] = x[n-1] + (rho/100) *x[n-1]*(1 - x[n-1]/R)

plt.plot(index_set, x)
plt.xlabel(’years’)
plt.ylabel(’amount’)
plt.show()

10 1 Programming of difference equations

Note that the logistic growth model is more commonly formulated as an
ordinary differential equation (ODE), and we will consider this formulation in
the next chapter. For certain choices of numerical method and discretization
parameters, the program for solving the ODE is identical to the program for
the difference equation considered here.

0 25 50 75 100 125 150 175 200
Time units

100

150

200

250

300

350

400

450

500
Po

pu
la

tio
n

Fig. 1.1 Solution of the logistic growth model for x0 = 100,ρ= 5.0,R= 500.

The factorial as a difference equation. The factorial n! is defined as

n! = n(n−1)(n−2) · · ·1, 0! = 1 (1.1)

The following difference equation has xn = n! as solution and can be used to
compute the factorial:

xn = nxn−1, x0 = 1

As above, a natural question to ask is whether such a difference equation
is very useful, when we can simply use the formula (1.1) to compute the
factorial for any value of n. One answer to this question is that in many
applications, some of which will be considered below, we need to compute the
entire sequence of factorials xn = n! for n= 0, . . .N . We could still apply (1.1)
to compute each one, but it involves a lot of redundant computations, since
we perform n multiplications for each new xn. When solving the difference
equation, each new xn requires only a single multiplication, and for large
values of n this may speed up the program considerably.

Newton’s method as a difference equation. Earlier in the course we
introduced Newton’s method for solving non-linear equations on the form

f(x) = 0

1.4 Taylor Series and Approximations 11

Starting from some initial guess x0, Newton’s method gradually improves the
approximation by iterations

xn = xn−1−
f(xn−1)
f ′(xn−1) .

We may now recognize this as nonlinear first-order difference equation. As
n→∞, we hope that xn → xs, where xs is the solution to f(xs) = 0. In
practice we solve the equation for n ≤ N , for some finite N , just as for the
difference equations considered earlier. But how do we choose N so that xN
is sufficiently close to the true solution xs? Since we want to solve f(x) =
0, the best approach is to solve the equation until f(x) ≤ ε, where ε is a
small tolerance. In practice, Newton’s method will usually converge rather
quickly, or not converge at all, so setting some upper bound on the number
of iterations is a good idea. A simple implementation of Newton’s method as
a Python function may look like

def Newton(f, dfdx, x, epsilon=1.0E-7, max_n=100):
n = 0
while abs(f(x)) > epsilon and n <= max_n:

x = x - f(x)/dfdx(x)
n += 1

return x, n, f(x)

The arguments to the function are Python functions f and dfdx implementing
f(x) and its derivative. Both of these arguments are called inside the function
and must therefore be callable. The x argument is the initial guess for the
solution x, and the two optional arguments at the end are the tolerance and
the maximum number of iteration. Although the method is implemented as
a while-loop rather than a for-loop, the main structure of the algorithm is
exactly the same as for the other difference equations considered earlier.

1.4 Taylor Series and Approximations

One extremely important use of sequences and series is for approximating
other functions. For instance, commonly used functions such as sinx, lnx,
and ex have been defined to have some desired mathematical properties, but
we need some kind of algorithm to evaluate the function values. A convenient
approach is to approximate sinx, etc. by polynomials, since they are easy to
calculate. It turns out that such approximations exist, for example this result
by Gregory from 1667:

sinx=
∞∑
k=0

(−1)k x2k+1

(2k+1)!

12 1 Programming of difference equations

and an even more amazing result discovered by Taylor in 1715:

f(x) =
∞∑
k=0

1
k! (

dkf(0)
dxk

)xk.

Here, the notation dkf(0)/dxk means the k-th derivative of f evaluated at
x= 0. Taylor’s result means that for any function f(x), if we can compute the
function value and its derivatives for x= 0, we can approximate the function
value at any x by evaluating a polynomial. For practical applications, we
always work with a truncated version of the Taylor series:

f(x)≈
N∑
k=0

1
k! (

dkf(0)
dxk

)xk. (1.2)

The approximation improves as N is increased, but the most popular choice
is actually N = 1, which gives a reasonable approximation close to x= 0 and
has been essential in developing physics and technology.

As an example, consider the Taylor approximation to the exponential func-
tion. For this function we have that dkex/dxk = ex for all k, and e0 = 1, and
inserting this into (1.2) yields

ex =
∞∑
k=0

xk

k!

≈
N∑
k=0

xk

k! .

Choosing, for instance, N = 1 and N = 4, we get

ex ≈ 1+x,

ex ≈ 1+x+ 1
2x

2 + 1
6x

3,

respectively. These approximations are obviously not very accurate for large
x, but close to x= 0 they are sufficiently accurate for many applications. By
a shift of variables we can also make the Taylor polynomials accurate around
any point x= a:

f(x)≈
N∑
k=0

1
k! (

dk

dxk
f(a))(x−a)k.

Taylor series formulated as a difference equation. We consider again
the Taylor series for ex around x= 0, given by

ex =
∞∑
k=0

xk

k! .

1.4 Taylor Series and Approximations 13

If we now define en as the approximation with n terms, i.e. for k= 0, . . . ,n−1,
we have

en =
n−1∑
k=0

xk

k! =
n−2∑
k=0

xk

k! + xn−1

(n−1)! ,

and we can formulate the sum in en as the difference equation

en = en−1 + xn−1

(n−1)! , e0 = 0. (1.3)

We see that this difference equation involves (n− 1)!, and computing the
complete factorial for every iteration involves a large number of redundant
multiplications. Above we introduced a difference equation for the factorial,
and this idea can be utilized to formulate a more efficient computation of the
Taylor polynomial. We have that

xn

n! = xn−1

(n−1)! ·
x

n
,

and if we let an = xn/n! it can be computed efficiently by solving

an = an−1
x

n
, a0 = 1.

Now we can formulate a system of two difference equations for the Taylor
polynomial, where we update each term via the an equation and sum the
terms via the en equation:

en = en−1 +an−1, e0 = 0,

an = x

n
an−1, a0 = 1.

Although we are here solving a system of two difference equations, the com-
putation is far more efficient than solving the single equation in (1.3) directly,
since we avoid the repeated multiplications involved in the factorial compu-
tation.

A complete Python code for solving the difference equation and compute
the Taylor approximation to the exponential function may look like

import numpy as np

x = 0.5 #approximate exp(x) for x = 0.5

N = 5
index_set = range(N+1)
a = np.zeros(len(index_set))
e = np.zeros(len(index_set))
a[0] = 1

14 1 Programming of difference equations

print(f’Exact: exp({x}) = {np.exp(x)}’)
for n in index_set[1:]:

e[n] = e[n-1] + a[n-1]
a[n] = x/n*a[n-1]
print(f’n = {n}, approx. {e[n]}, error = {np.abs(e[n]-np.exp(x)):4.5f}’)

Exact: exp(0.5) = 1.64872
n = 1, approx. 1.00000, error = 0.64872
n = 2, approx. 1.50000, error = 0.14872
n = 3, approx. 1.62500, error = 0.02372
n = 4, approx. 1.64583, error = 0.00289
n = 5, approx. 1.64844, error = 0.00028

This small program first prints the exact value ex for x = 0.5, and then the
Taylor approximation and associated error for n = 1 to n = 5. The Taylor
series approximation is most accurate close to x = 0, so choosing a larger
value of x leads to larger errors, and we need to also increase n for the
appoximation to be accurate.

Chapter 2
Solving ordinary differential
equations

Ordinary differential equations (ODEs) are widely used in science and engi-
neering, in particular for modeling dynamic processes. While simple ODEs
can be solved with analytical methods, non-linear ODEs are generally not
possible to solve in this way, and we need to apply numerical methods. In
this chapter we will see how we can program general numerical solvers that
can be applied to any ODE. We will first consider scalar ODEs, i.e., ODEs
with a single equation and a single unknown, and in Chapter 3 we will extend
the ideas to systems of coupled ODEs. Understanding the concepts of this
chapter is useful not only for programming your own ODE solvers, but also
for using a wide variety of general-purpose ODE solvers available both in
Python and other programming languages.

2.1 Creating a general-purpose ODE solver

When solving ODEs analytically one will typically consider a specific ODE or
a class of ODEs, and try to derive a formula for the solution. In this chapter
we want to implement numerical solvers that can be applied to any ODE,
not restricted to a single example or a particular class of equations. For this
purpose, we need a general abstract notation for an arbitrary ODE. We will
write the ODEs on the following form:

u′(t) = f(u(t), t), (2.1)

which means that the ODE is fully specified by the definition of the right
hand side function f(u,t). Examples of this function may be:

15

16 2 Solving ordinary differential equations

f(u,t) = αu, exponential growth

f(u,t) = αu
(

1− u

R

)
, logistic growth

f(u,t) =−b|u|u+g, falling body in a fluid

Notice that for generality we write all these right hand sides as functions of
both u and t, although the mathematical formulations only involve u. It will
become clear later why such a general formulation is useful. Our aim is now to
write functions and classes that take f as input, and solve the corresponding
ODE to produce u as output.

The Euler method turns an ODE into a difference equation. All the
numerical methods we will considered in this chapter are based on approxi-
mating the derivatives in the equation u′ = f(u,t) by finite differences. This
step transforms the ODE into a difference equation, which can be solved with
the techniques presented in Chapter 1. To introduce the idea, assume that
we have computed u at discrete time points t0, t1, . . . , tn. At time tn we have
the ODE

u′(tn) = f(u(tn), tn),

and we can now approximate u′(tn) by a forward finite difference;

u′(tn)≈ u(tn+1)−u(tn)
∆t

.

Inserting this approximation into the ODE at t = tn yields the following
equation

u(tn+1)−u(tn)
∆t

= f(u(tn), tn),

which we may recognize as a difference equation for computing u(tn+1) from
the known value u(tn). We can rearrange the terms to obtain an explicit
formula for u(tn+1):

u(tn+1) = u(tn)+∆tf(u(tn), tn).

This is known as the Forward Euler (FE) method, and is the simplest nu-
merical method for solving and ODE. We can simplify the formula by using
the notation for difference equations introduced in Chapter 1. If we let un
denote the numerical approximation to the exact solution u(t) at t= tn, the
difference equation can be written as

un+1 = un+∆tf(un, tn). (2.2)

This is a regular difference equation which can be solved using arrays and a
for-loop, just as we did for the other difference equations in Chapter 1. We
start from the known initial condition u0, and apply the formula repeatedly
to compute u1, u2, u3 and so forth.

2.1 Creating a general-purpose ODE solver 17

An ODE needs an initial condition. In mathematics, an initial condition
for u must be specified to have a unique solution of equation (2.1). When
solving the equation numerically, we need to set u0 in order to start our
method and compute a solution at all. As an example, consider the very
simple ODE

u′ = u.

This equation has the general solution u= Cet for any constant C, so it has
an infinite number of solutions. Specifying an initial condition u(0) = u0 gives
C = u0, and we get the unique solution u= u0e

t. When solving the equation
numerically, we start from our known u0, and apply formula (2.2) repeatedly:

u1 = u0 +∆tu0,

u2 = u1 +∆tu1,

u3 = u2 +

Just as for the difference equations solved in the previous chapter, this re-
peated application of the same formula is conveniently implemented in a for-
loop. For a given time step ∆t (dt) and number of time steps n, we perform
the following steps:

1. Create arrays t and u of length N +1
2. Set initial condition: u[0] = U0, t[0]=0
3. For n= 0,1,2, . . . ,N −1:

• t[n+1] = t[n] + dt
• u[n+1] = (1 + dt)*u[n]

A complete Python implementation of this algorithm may look like

import numpy as np
import matplotlib.pyplot as plt

dt = 0.2
U0 = 1
T = 4
N = int(T/dt)

t = np.zeros(N+1)
u = np.zeros(N+1)

t[0] = 0
u[0] = U0
for n in range(N):

t[n+1] = t[n] + dt
u[n+1] = (1 + dt)*u[n]

plt.plot(t,u)
plt.show()

18 2 Solving ordinary differential equations

The solution is shown in Figure 2.1, for two different choices of the time
step ∆t. We see that the approximate solution improves as ∆t is reduced,
although both the solutions are quite inaccurate. However, reducing the time
step further will easily create a solution that cannot be distinguished from
the exact solution.

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

u

t

Solution of the ODE u’=u, u(0)=1

numerical
exact

Fig. 2.1 Solution of u′ = u,u(0) = 1 with ∆t= 0.4 and ∆t= 0.2.

Extending the solver to a general ODE. As stated above, the purpose
of this chapter is to create general-purpose ODE solvers, that can solve any
ODE written on the form u′ = f(u,t). This requires a very small modification
of the algorithm above;

1. Create arrays t and u of length N +1
2. Set initial condition: u[0] = u0, t[0]=0
3. For n= 0,1,2, . . . ,N −1:

• u[n+1] = u[n] + dt*f(u[n], t[n])
• t[n+1] = t[n] + dt

The only change of the algorithm is in the formula for computing u[n+1] from
u[n]. In the previous case we had f(u,t) = u, and to create a general-purpose
ODE solver we simply replace u[n] with the more general f(u[n],t[n]). The
following Python function implements this generic version of the FE method:

def ForwardEuler(f, U0, T, N):
"""Solve u’=f(u,t), u(0)=U0, with n steps until t=T."""
import numpy as np
t = np.zeros(N+1)
u = np.zeros(N+1) # u[n] is the solution at time t[n]

u[0] = U0
t[0] = 0
dt = T/N

for n in range(N):
t[n+1] = t[n] + dt

2.1 Creating a general-purpose ODE solver 19

u[n+1] = u[n] + dt*f(u[n], t[n])

return u, t

This simple function can solve any ODE written on the form (2.1). The right
hand side function f(u,t) needs to be implemented as a Python function,
and then passed as an argument to ForwardEuler together with the initial
condition, the stop time T and the number of time steps. The two latter
arguments are then used to calculate the time step dt inside the function.

To illustrate how the function is used, let us apply it to solve the same
problem as above; u′ = u, u(0) = 1, for t ∈ [0,4]. The following code uses the
ForwardEuler function to solve this problem:

def f(u, t):
return u

U0 = 1
T = 3
N = 30
u, t = ForwardEuler(f, U0, T, N)
plt.plt(t,u)
plt.show()

The ForwardEuler function returns the two arrays u and t, which we can
plot or process further as we want. One thing worth noticing in this code is
the definition of the right hand side function f. As we mentioned above, this
function should always be written with two arguments u and t, although in
this case only u is used inside the function. The two arguments are needed
because we want our solver to work for all ODEs on the form u′ = f(u,t), and
the function is therefore called as f(u[n], t[n]) inside the ForwardEuler
function. If our right hand side function was defined as def f(u): we would
get an error message when the function was called inside ForwardEuler.
This problem is solved by simply writing def f(u,t): even if t is never
used inside the function.1

For being only 15 lines of Python code, the capabilities of the ForwardEuler
function above are quite remarkable. Using this function, we can solve any
kind of linear or non-linear ODE, most of which would be impossible to solve
using analytical techniques. The general recipe goes as follows:

1. Identify f(u,t) in your ODE
2. Make sure you have an initial condition u0
3. Implement the f(u,t) formula in a Python function f(u, t)
4. Choose the number of time steps N
5. Call u, t = ForwardEuler(f, U0, T, N)

1This way of defining the right hand side is a standard used by most available ODE
solver libraries, both in Python and other languages. The right hand side function always
takes two arguments u and t, but, annoyingly, the order of the two arguments varies
between different solver libraries. Some expect the t argument first, while others expect
u first.

20 2 Solving ordinary differential equations

6. Plot the solution

It is worth mentioning that the FE method is the simplest of all ODE solvers,
and many will argue that it is not very good. This is partly true, since there
are many other methods that are more accurate and more stable when applied
to challenging ODEs. We shall look at a few examples of such methods later
in this chapter. However, the FE method is quite suitable for solving most
ODEs. If we are not happy with the accuracy we can simply reduce the time
step, and in most cases this will give the accuracy we need with a negligible
increase in computing time.

2.2 The ODE solver implemented as a class

We can increase the flexibility of the ForwardEuler solver function by imple-
menting it as a class. The usage of the class may for instance be as follows:

method = ForwardEuler_v1(f, U0=0.0, T=40, N=400)
u, t = method.solve()
plot(t, u)

The benefits of using a class instead of a function may not be obvious at this
point, but it will become clear later. For now, let us just look at how such a
solver class can be implemented:

• We need a constructor (__init__) which takes f, T, N, and U0 as arguments
and stores them as attributes.

• The time step ∆t and the sequences un, tn must be initalized and stored
as attributes. These tasks are also natural to handle in the constructor.

• The class needs a solve-method, which implements the for-loop and re-
turns the solution, similar to the ForwardEuler function considered earlier.

In addition to these methods, it may be convenient to implement the formula
for advancing the solution one step as a separate method advance. In this
way it becomes very easy to implement new numerical methods, since we
typically only need to change the advance method. A first version of the
solver class may look as follows:

import numpy as np

class ForwardEuler_v1:
def __init__(self, f, U0, T, N):

self.f, self.U0, self.T, self.N = f, U0, T, N
self.dt = T/N
self.u = np.zeros(self.N+1)
self.t = np.zeros(self.N+1)

def solve(self):
"""Compute solution for 0 <= t <= T."""

2.2 The ODE solver implemented as a class 21

self.u[0] = float(self.U0)

for n in range(self.N):
self.n = n
self.t[n+1] = self.t[n] + self.dt
self.u[n+1] = self.advance()

return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
Create local variables to get rid of "self." in
the numerical formula
u, dt, f, n, t = self.u, self.dt, self.f, self.n, self.t

unew = u[n] + dt*f(u[n], t[n])
return unew

This class does essentially the same tasks as the ForwardEuler function
above. The main advantage of the class implementation is the increased flex-
ibility that comes with the advance method. As we shall see later, imple-
menting a different numerical method typically only requires implementing a
new version of this method, while all the other code can be left unchanged.

We can also use a class to hold the right-hand side f(u,t), which is par-
ticularly convenient for functions with parameters. Consider for instance the
model for logistic growth;

u′(t) = αu(t)
(

1− u(t)
R

)
, u(0) = U0, t ∈ [0,40],

which is the ODE version of the difference equation considered in Chapter 1.
The right hand side function has two parameters α and R, but if we want to
solve it using our ForwardEuler function or class, it must be implemented
as a function of u and t only. As we have discussed earlier in the course, a
class with a call method provides a very flexible implementation of such a
function, since we can set the parameters as attributes in the constructor and
use them inside the __call__ method:

class Logistic:
def __init__(self, alpha, R, U0):

self.alpha, self.R, self.U0 = alpha, float(R), U0

def __call__(self, u, t): # f(u,t)
return self.alpha*u*(1 - u/self.R)

The main program for solving the logistic growth problem may now look like:

problem = Logistic(0.2, 1, 0.1)
method = ForwardEuler_v1(problem,problem.U0,40,401)
u, t = method.solve()
plt.plot(t,u)
plt.show()

22 2 Solving ordinary differential equations

0 5 10 15 20 25 30 35 40 45
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

u

Logistic growth: alpha=0.2, R=1, dt=0.1

Fig. 2.2 Solution of the logistic growth model.

An alternative class implementation of the FE method. As always
in programming, there are multiple ways to perform the same task. The
ForwardEuler_v1 class presented above is by no means the only possible class
implementation of the FE method. A possible alternative implementation is

import numpy as np

class ForwardEuler_v2:
def __init__(self, f):

self.f = f

def set_initial_condition(self,U0):
self.U0 = float(U0)

def solve(self, time_points):
"""Compute solution for array of time points"""
self.t = np.asarray(time_points)
N = len(self.t)
self.u = np.zeros(N)
self.u[0] = self.U0

Time loop
for n in range(N-1):

self.n = n

2.3 Alternative ODE solvers 23

self.u[n+1] = self.advance()
return self.u, self.t

def advance(self):
"""Advance the solution one time step."""
Create local variables to get rid of "self." in
the numerical formula
u, f, n, t = self.u, self.f, self.n, self.t
#dt is not necessarily constant:
dt = t[n+1]-t[n]
unew = u[n] + dt*f(u[n], t[n])
return unew

This class is quite similar to the one above, but we have simplified the con-
structor considerably, introduced a separate method for setting the initial
condition, and changed the solve method to take an array of time points
as argument. The latter gives a bit more flexibility than the version in
ForwardEuler_v1, where the stop time and number of time points were
passed as arguments to the constructor and used to compute a (constant)
time step dt. The ForwardEuler_v2 version does not require the time step
to be constant, and the method will work fine if we pass it a time_points
array with varying distance between the time points. This can be useful if we
know that the solution varies rapidly in some time intervals and more slowly
in others. However, in most cases we will use an evenly spaced array for the
time_points argument, for instance created using NumPy’s linspace, and
in such cases there is not much difference between the two classes. To con-
sider a concrete example, the solution of the same logistic growth problem as
above, using the new class, may look as follows:

problem = Logistic(0.2, 1, 0.1)
time = np.linspace(0,40,401)

method = ForwardEuler_v2(problem)
method.set_initial_condition(problem.U0)
u, t = method.solve(time)

2.3 Alternative ODE solvers

As mentioned above, the FE method is not the most sophisticated ODE
solver, although it is sufficiently accurate for most of the applications we
will consider here. Many alternative methods exist, with better accuracy and
stability than FE. One very popular class of ODE solvers is known as Runge-
Kutta methods. The simplest example of a Runge-Kutta method is in fact
the FE method;

un+1 = un+∆tf(un, tn),

24 2 Solving ordinary differential equations

which is an example of a one-stage, first-order, explicit Runge-Kutta method.
The classification as a first-order methods means that the error in the ap-
proximate solution produced by FE is proportional to ∆t. An alternative
formulation of the FE method is

k1 = f(un, tn),
un+1 = un+∆t 1̨.

It can easily be verified that this is the same formula as above, and there is
no real benefit from writing the formula in two lines rather than one. How-
ever, the second formulation is more in line with how Runge-Kutta methods
are usually written, and it makes it easy to see the relation between the
FE method and more advanced solvers. The intermediate value k1 is often
referred to as a stage derivative in the ODE literature.

We can easily improve the accuracy of the FE method to second order,
i.e., error proportional to ∆t2, by taking one additional step:

k1 = f(un, tn),

k2 = f(un+ ∆t

2 k1, tn+ ∆t

2),

un+1 = un+∆tk2.

This method is known as the explicit midpoint method or the modified Euler
method. The first step is identical to that of the FE method, but instead of
using the stage derivate k1 to advance the solution to the next step, we use
it to compute a new stage derivative k2, which is an approximation of the
derivative of u at time tn+∆t/2. Finally, we use this midpoint derivative to
advance the the solution to tn+1.

An alternative second order method is Heun’s method, which is also re-
ferred to as the explicit trapezoidal method:

k1 = f(un, tn), (2.3)
k2 = f(un+∆tk1, tn+∆t), (2.4)

un+1 = un+∆t(k1/2+k2/2) (2.5)

This method also computes two stage derivatives k1 and k2, but from the
formula for k2 we see that it approximates the derivative at tn+1 rather than
the midpoint. The solution is advanced from tn to tn+1 using the mean value
of k1 and k2.

All Runge-Kutta methods follow the same recipe as the two second or-
der methods considered above; we compute one or more intermediate values
(stage derivatives), and then advance the solution using a combination of
these stage derivatives. The accuracy of the method can be improved by
adding more stages. A general RK method with s stages can be written as

2.3 Alternative ODE solvers 25

ki = f(tn+ ci∆t,yn+∆t

s∑
j=1

aijkj), for i= 1, . . . ,s (2.6)

un+1 = u0 +∆t

s∑
i=1

biki. (2.7)

Here ci, bi,aij , for i, j,= 1, . . . ,s are method-specific, given coefficients. All RK
methods can be written in this form, and a method is uniquely determined
by the number of stages s and the values of the coefficients. In the ODE
literature one often sees these coefficients specified in the form of a Butcher
tableau, which offers a compact definition of any RK method. The Butcher
tableau is simply a specification of all the method coefficients, and for a
general RK method it is written as

ci a11 · · · a1s
...

...
...

cs as1 · · · ass
b1 · · · bs

.

The Butcher tableaus of the three methods considered above; FE, explicit
midpoint, and Heun’s method, are

0 0
1

0 0 0
1/2 1/2 0

0 1

0 0 0
1 1 0

1/2 1/2
,

respectively. To grasp the concept of Butcher tableaus, it is a good exercise
to insert the coefficients from these three tableaus into (2.6)-(2.7) and verify
that the you arrive at the correct formulae for the three methods. As an
example of a higher order method, we may consider the the fourth order,
four-stage method defined by the Butcher tableau

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

,

which gives the formulas

26 2 Solving ordinary differential equations

k1 = f(un, tn),

k2 = f(un+ 1
2k1, tn+ 1

2∆t),

k3 = f(un+ 1
2k2, tn+ 1

2∆t),

k4 = f(un+k3, tn+∆t),un+1 = un+ ∆t

6 (k1 +2k2 +2k3 +k4) .

All the RK methods we will consider in this course are explicit methods,
which means that aij = 0 for j ≥ i. If we look closely at the formula in (2.6),
we see that the expression for computing each stage derivative ki then only
includes previously computed stage derivatives, and all ki can be computed
sequentially using explicit formulas. For implicit RK methods, on the other
hand, we we have aij 6= 0 for some j ≥ i, and we see in (2.6) that the formula
for computing ki will then include ki on the right hand side. We therefore need
to solve equations to compute the stage derivatives, and for non-linear ODEs
these will be non-linear equations that are typically solved using Newton’s
method. This makes implicit RK methods more complex to implement and
more computationally expensive per time step, but they are also more stable
than explicit methods and perform much better for certain classes of ODEs.
We will not consider implicit RK methods in this course.

2.4 A class hierarchy of ODE solvers

We now want to implement some of the Runge-Kutta methods as classes, sim-
ilar to the FE classes introduced above. When inspecting the ForwardEuler_v2
class, we quickly observe that most of the code is common to all ODE solvers,
and not specific to the FE method. For instance, we always need to create
an array for holding the solution, and the general solution method using a
for-loop is always the same. In fact, the only difference between the different
methods is how the solution is advanced from one step to the next. Recall-
ing the ideas of Object-Oriented Programming, it becomes obvious that a
class hierarchy is very convenient for implementing such a collection of ODE
solvers. In this way we can collect all common code in a superclass, and rely
on inheritance to avoid code duplication. The superclass can handle most of
the more "administrative" steps of the ODE solver, such as

• Storing the solution un and the corresponding time levels tn, k= 0,1,2, . . . ,n
• Storing the right-hand side function f(u,t)
• Storing and applying initial condition
• Running the loop over all time steps

We can introduce a superclass ODESolver to handle these parts, and imple-
ment the method-specific details in sub-classes. It should now become quite

2.4 A class hierarchy of ODE solvers 27

obvious why we chose to isolate the code to perform a single step in the
advance method, since this will then be the only method we need to imple-
ment in the subclasses. The implementation of the superclass can be quite
similar to the ForwardEuler_v2 class introduced earlier:

import numpy as np

class ODESolver:
def __init__(self, f):

self.f = f

def advance(self):
"""Advance solution one time step."""
raise NotImplementedError # implement in subclass

def set_initial_condition(self, U0):
self.U0 = float(U0)

def solve(self, time_points):
self.t = np.asarray(time_points)
N = len(self.t)
self.u = np.zeros(N)
Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for n in range(N-1):

self.n = n
self.u[n+1] = self.advance()

return self.u, self.t

Notice that the ODESolver is meant to be a pure superclass, and we have
therefore implemented the advance-method to raise an exception if the class
is used on its own. We could also have omitted the advance-method from
the superclass altogether, but the chosen implementation makes it clearer to
users of the class that ODESolver is a pure superclass.

With the superclass at hand, the implementation of a ForwardEuler sub-
class becomes very simple:

class ForwardEuler(ODESolver):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t

dt = t[n+1] - t[n]
unew = u[n] + dt*f(u[n], t[n])
return unew

Similarly, the explicit midpoint method and the fourth-order RK method can
be subclasses, each implementing a single method:

class ExplicitMidpoint(ODESolver):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t

28 2 Solving ordinary differential equations

dt = t[n+1] - t[n]
dt2 = dt/2.0
k1 = f(u[n], t)
k2 = f(u[n] + dt2*k1, t[n] + dt2)
unew = u[n] + dt*k2
return unew

class RungeKutta4(ODESolver):
def advance(self):

u, f, n, t = self.u, self.f, self.n, self.t
dt = t[n+1] - t[n]
dt2 = dt/2.0
k1 = f(u[n], t)
k2 = f(u[n] + dt2*k1, t[n] + dt2)
k3 = f(u[n] + dt2*k2, t[n] + dt2)
k4 = f(u[n] + dt*k3, t[n] + dt)
unew = u[n] + (dt/6.0)*(k1 + 2*k2 + 2*k3 + k4)
return unew

The use of these classes is nearly identical to the second version of the
FE class introduced earlier. Considering the same simple ODE used above;
u′ = u, u(0) = 1, t ∈ [0,3], ∆t= 0.1, the code looks like:

import numpy as np
import matplotlib.pyplot as plt
from ODESolver import ForwardEuler, ExplicitMidpoint, RungeKutta4

def f(u, t):
return u

time_points = np.linspace(0, 3, 11)

fe = ForwardEuler(f)
fe.set_initial_condition(U0=1)
u1, t1 = fe.solve(time_points)
plt.plot(t1, u1, label=’Forward Euler’)

em = ExplicitMidpoint(f)
em.set_initial_condition(U0=1)
u2, t2 = em.solve(time_points)
plt.plot(t2, u2, label=’Explicit Midpoint’)

rk4 = RungeKutta4(f)
rk4.set_initial_condition(U0=1)
u3, t3 = rk4.solve(time_points)
plt.plot(t3, u3, label=’RungeKutta 4’)

#plot the exact solution in the same plot
time_exact = np.linspace(0,3,301) #more points to improve the plot
plt.plot(time_exact,np.exp(time_exact),label=’Exact’)

plt.legend()
plt.show()

2.4 A class hierarchy of ODE solvers 29

This code will solve the same equation using three different methods, and
plot the solutions in the same window. Experimenting with different step
sizes should reveal the difference in accuracy between the two methods.

Chapter 3
Solving systems of ODEs

So far we have only considered ODEs with a single solution component, often
called scalar ODEs. Many interesting processes can be described by systems of
ODEs, i.e., multiple ODEs where the right hand side of one equation depends
on the solution of the others. Such equation systems are also referred to as
vector ODEs. One simple example is

u′ = v, u(0) = 1
v′ =−u, v(0) = 0.

The solution of this system is u= cos t,v = sin t, which can easily be verified
by insterting the solution into the equations and initial conditions. For more
general cases, it is usually even more difficult to find analytical solutions
of ODE systems than of scalar ODEs, and numerical methods are usually
required. In this chapter we will extend the solvers introduced in Chapter 2
to be able to solve systems of ODEs. We shall see that such an extension
requires relatively small modifications of the code.

We want to develop general software that can be applied to any vector
ODE or scalar ODE, and for this purpose it is useful to introduce general
mathematical notation. We have n unknowns

u(0)(t),u(1)(t), . . . ,u(n−1)(t)

in a system of n ODEs:

d

dt
u(0) = f (0)(u(0),u(1), . . . ,u(n−1), t),

d

dt
u(1) = f (1)(u(0),u(1), . . . ,u(n−1), t),

... =
...

d

dt
u(n−1) = f (n−1)(u(0),u(1), . . . ,u(n−1), t).

31

32 3 Solving systems of ODEs

To simplify the notation (and later the implementation), we collect both the
solutions u(i)(t) and right-hand side functions f (i) in vectors;

u= (u(0),u(1), . . . ,u(n−1)),

and
f = (f (0),f (1), . . . ,f (n−1)).

Note that f is now a vector-valued function. It takes n+ 1 input arguments
(t and the n components of u) and returns a vector of n values. The ODE
system can now be written

u′ = f(u,t), u(0) = u0

where u and f are vectors and u0 is a vector of initial conditions. We see that
we use exactly the same notation as for scalar ODEs, and whether we solve
a scalar or system of ODEs is determined by how we define f and the initial
condition u0. This general notation is completely standard in text books on
ODEs, and we can easily make the Python implementation just as general.

3.1 An ODESolver class for systems of ODEs

The ODESolver class above was written for a scalar ODE. We now want to
make it work for a system u′ = f , u(0) = U0, where u, f and U0 are vectors
(arrays). To identify how the code needs to be changed, let us start with the
simplest method. Applying the forward Euler method to a system of ODEs
yields an update formula that looks exactly as for the scalar case, but where
all the terms are vectors:

uk+1︸ ︷︷ ︸
vector

= uk︸︷︷︸
vector

+∆t f(uk, tk)︸ ︷︷ ︸
vector

.

We could also write this formula in terms of the individual components, as
in

u
(i)
k+1 = u

(i)
k +∆tf (i)(uk, tk), for i= 0, . . . ,n−1,

but the compact vector notation is much easier to read. Fortunately, the way
we write the vector version of the formula is also how NumPy arrays are used
in calculations. The Python code for the formula above may therefore look
idential to the version for scalar ODEs;

u[k+1] = u[k] + dt*f(u[k], t)

3.1 An ODESolver class for systems of ODEs 33

with the important difference that both u[k] and u[k+1] are now arrays.1
Since these are arrays, the solution u must be a two-dimensional array, and
u[k],u[k+1], etc. are the rows of this array. The function f expects an array
as its first argument, and must return a one-dimensional array, containing all
the right-hand sides f (0), . . . ,f (n−1). To get a better feel for how these arrays
look and how they are used, we may compare the array holding the solution
of a scalar ODE to that of a system of two ODEs. For the scalar equation,
both t and u are one-dimensional NumPy arrays, and indexing into u gives
us numbers, representing the solution at each time step:

t = [0. 0.4 0.8 1.2 (...)]

u = [1.0 1.4 1.96 2.744 (...)]

u[0] = 1.0
u[1] = 1.4

(...)

In the case of a system of two ODEs, t is still a one-dimensional array,
but the solution array u is now two-dimensional, with one column for each
solution component. Indexing into it yields one-dimensional arrays of length
two, which are the two solution components at each time step:

u = [[1.0 0.8][1.4 1.1] [1.9 2.7] (...)]

u[0] = [1.0 0.8]
u[1] = [1.4 1.1]

(...)

The similarity of the generic notation for vector and scalar ODEs, and the
convenient algebra of NumPy arrays, indicate that the solver implementation
for scalar and system ODEs can also be very similar. This is indeed true, and
the ODESolver class from the previous chapter can be made to work for ODE
systems by a few minor modifactions:

• Ensure that f(u,t) always returns an array.
• Inspect U0 to see if it is a single number or a list/array/tuple and make

the u either a one-dimensional or two-dimensional array

If these two items are handled and initialized correctly, the rest of the code
from Chapter 2 will in fact work with no modifications. The extended super-
class implementation may look like:

class ODESolver:
def __init__(self, f):

1This compact notation requires that the solution vector u is represented by a NumPy
array. We could also, in principle, use lists to hold the solution components, but the
resulting code would need to loop over the components and be far less elegant and
readable.

34 3 Solving systems of ODEs

Wrap user’s f in a new function that always
converts list/tuple to array (or let array be array)
self.f = lambda u, t: np.asarray(f(u, t), float)

def set_initial_condition(self, U0):
if isinstance(U0, (float,int)): # scalar ODE

self.neq = 1 # no of equations
U0 = float(U0)

else: # system of ODEs
U0 = np.asarray(U0)
self.neq = U0.size # no of equations

self.U0 = U0

def solve(self, time_points):
self.t = np.asarray(time_points)
N = len(self.t)
if self.neq == 1: # scalar ODEs

self.u = np.zeros(N)
else: # systems of ODEs

self.u = np.zeros((N,self.neq))

Assume that self.t[0] corresponds to self.U0
self.u[0] = self.U0

Time loop
for n in range(N-1):

self.n = n
self.u[n+1] = self.advance()

return self.u, self.t

It is worth commenting on some parts of this code. First, the constructor
looks almost identical to the scalar case, but we use a lambda function and
np.asarray to convert any f that returns a list or tuple to a function re-
turning a NumPy array. This modification is not strictly needed, since we
could just assume that the user implements f to return an array, but it
makes the class more robust and flexible. We have also included tests in the
set_initial_condition method, to check if U0 is a single number (float)
or a NumPy array, and define the attribute self.neq to hold the number
of equations. The final modification is found in the method solve, where
the self.neq attribute is inspected and u is initialized to a one- or two-
dimensional array of the correct size. The actual for-loop, as well as the
implementation of the advance method in the subclasses, can be left un-
changed.

Example: ODE model for throwing a ball. To demonstrate the use of
the extended ODESolver hierarchy, let us derive and solve a system of ODEs
describing the trajectory of a ball. We first define x(t),y(t) to be the position
of the ball, vx and vy the velocity components, and ax,ay the acceleration
components. From the definition of velocity and acceleration, we have vx =
dx/dt,vy = dy/dt,ax = dvx/dt, and ay = dvy/dt. If we neglect air resistance
there are no forces acting on the ball in the x-direction, so from Newton’s

3.1 An ODESolver class for systems of ODEs 35

second law we have ax = 0. In the y-direction the acceleration must be equal
to the acceleration of gravity, which yields ay =−g. In terms of the velocities,
we have

ax = 0 ⇒ dvx
dt

= 0,

ay =−g ⇒
dvy
dt

=−g ,

and the complete ODE system can be written as

dx

dt
= vx, (3.1)

dvx
dt

= 0, (3.2)

dy

dt
= vy, (3.3)

dvy
dt

=−g. (3.4)

To solve the system we need to define initial conditions for all four unknowns,
i.e., we need to know the initial position and velocity of the ball.

A closer inspection of the system (3.1)-(3.4) will reveal that although this
is a coupled system of ODEs, the coupling is in fact quite weak and the
system is easy to solve analytically. There is essentially a one-way coupling
between equations (3.2) and (3.1), the same between (3.4) and (3.3), and no
other coupling between the equations. We can easily solve (3.2) to conclude
that vx is a constant, and inserting a constant on the right hand side of (3.1)
yields that x must be a linear function of t. Similarly, we can solve (3.4) to
find that vy is a linear function, and then insert this into (3.3) to find that
y is a quadratic function of t. The functions x(t) and y(t) will contain four
unknown coefficients that must be determined from the initial conditions.

Although the analytical solution is available, we want to use the ODESolver
class hierarchy presented above to solve this system. The first step is then to
implement the right hand side as a Python function:

def f(u, t):
x, vx, y, vy = u
g = 9.81
return [vx, 0, vy, -g]

We see that the function here returns a list, but this will automatically be
converted to an array by the solver class’ constructor, as mentioned above.
The main program is not very different from the examples of the previous
chapter, except that we need to define an initial condition with four compo-
nents:

from ODESolver import ForwardEuler
import numpy as np

36 3 Solving systems of ODEs

import matplotlib.pyplot as plt

Initial condition, start at the origin:
x = 0; y = 0
velocity magnitude and angle:
v0 = 5; theta = 80*np.pi/180
vx = v0*np.cos(theta); vy = v0*np.sin(theta)

U0 = [x, vx, y, vy]

solver= ForwardEuler(f)
solver.set_initial_condition(U0)
time_points = np.linspace(0, 1.0, 101)
u, t = solver.solve(time_points)
u is an array of [x,vx,y,vy] arrays, plot y vs x:
x = u[:,0]; y = u[:,2]

plt.plot(x, y)
plt.show()

Notice that since u is a two-dimensional array, we use array slicing to extract
and plot the individual components. A call like plt.plot(t,u) will also work,
but it will plot all the solution components in the same window, which for
this particular model is not very useful. A very useful exercise is to extend
this code to plot the analytical solution of the system in the same window
as the numerical solution. The system can be solved as outlined above, and
the unknown coefficients in the solution formulas can be determined from the
given initial conditions. With the chosen number of time steps there will be a
visible difference between the numerical solution and the analytical solution,
but this can easily be removed by reducing the time step or choosing a more
accurate solver.

Chapter 4
Modeling infectious diseases

In this chapter we will look at a particular family of ODE systems that
describe the spread of infectious diseases. Athough the spread of infections
is a very complex physical and biological process, we shall see that it can be
modeled with fairly simple systems of ODEs, which we can solve using the
tools from the previous chapters.

4.1 Derivation of the SIR model

In order to derive a model we need to make a number of simplifying assump-
tions. The most important one is that we do not consider individuals, just
populations. The population is assumed to be perfectly mixed in a confined
area, which means that we do not consider spatial transport of the disease,
just temporal evolution. The first model we will derive is very simple, but we
shall see that it can easily be extended to models that are used world-wide
by health authorities to predict the spread of diseases such as Covid19, flu,
ebola, HIV, etc.

In the first version of the model we will keep track of three categories of
people:

• S: susceptibles - who can get the disease
• I: infected - who have developed the disease and can infect susceptibles
• R: recovered - who have recovered and become immune

We represent these as mathematical quantities S(t), I(t), R(t), which repre-
sent the number of people in each category. The goal is now to derive a set of
equations for S(t), I(t), R(t), and then solve these equations to predict the
spread of the disease.

To derive the model equations, we first consider the dynamics in a time
interval ∆t, and our goal is to derive mathematical expressions for how many
people that move between the three categories in this time interval. The key

37

38 4 Modeling infectious diseases

part of the model is the description of how people move from S to I, i.e., how
susceptible individuals get the infection from those already infected. Infec-
tious diseases are (mainly) transferred by direct interactions between people,
so we need mathematical descriptions of the number of interactions between
susceptible and infected individuals. We make the following assumptions:
• An individual in the S category interacts with an approximately constant

number of people each day, so the number of interactions in a time interval
∆t is proportional to ∆t.

• The probability of one of these interactions being with an infected person
is proportional to the ratio of infected individuals to the total population,
i.e., to I/N , with N = S+ I+R.

Based on these assumptions, the probability that a single susceptible person
gets infected is proportional to ∆tI/N . The total number of infections can
be written as βSI/N , for some constant β. The infection of new individuals
represents a reduction in S and a corresponding gain in I: , so we have

S(t+∆t) = S(t)−∆tβS(t)I(t)
N

,

I(t+∆t) = I(t)+∆tβ
S(t)I(t)
N

.

These two equations represent the key component of all the models considered
in this chapter. More advanced models are typically derived by adding more
categories and more transitions between them, but the individual transitions
are very similar to the ones presented here.

S RI
Fig. 4.1 Graphical representation of the simplest SIR-model, where people move from
being susceptible (S) to being infected (I) and then reach the recovered (R) category
with immunity against the disease.

We also need to model the transition of people from the I to theR catogory.
Again considering a small time interval ∆t, it is natural to assume that a
fraction ∆tν of the infected recover and move to the R category. Here ν is
a constant describing the time dynamics of the disease. The increase in R is
given by

R(t+∆t) =R(t)+∆tνI(t),

and we also need to subtract the same term in the balance equation for I,
since the people move from I to R. We get

I(t+∆t) = I(t)+∆tβS(t)I(t)−∆tνI(t).

4.1 Derivation of the SIR model 39

We now have three equations for S, I, and R:

S(t+∆t) = S(t)−∆tβS(t)I(t)
N

(4.1)

I(t+∆t) = I(t)+∆tβ
S(t)I(t)
N

−∆tνI(t) (4.2)

R(t+∆t) =R(t)+∆tνI(t). (4.3)

Although the notation is slightly different, we may recognize these equa-
tions as a system of difference equations of the same kind that we solved in
Chapter 1. We could easily solve the equations as such, using techniques from
Chapter 1, but models of this kind are more commonly formulated as systems
of ODEs, which can be solved with the tools we developed in Chapter 3.

To turn the difference equations into ODEs, we first divide all equations
by ∆t and rearrange, to get

S(t+∆t)−S(t)
∆t

=−βS(t)I(t)
N

, (4.4)

I(t+∆t)− I(t)
∆t

= βt
S(t)I(t)
N

−νI(t), (4.5)

R(t+∆t)−R(t)
∆t

= νI(t). (4.6)

We see that by letting ∆t→ 0, we get derivatives on the left-hand side:

S′(t) =−βSI
N
, (4.7)

I ′(t) = β
SI

N
−νI (4.8)

R′(t) = νI, (4.9)

where as above N = S+ I +R. Adding the equations together we see that
N ′(t) = S′(t) + I ′(t) +R′(t) = 0, so the total population N is constant. The
equations (4.7)-(4.9) is a system of three ODEs, which we will solve for the
unknown functions S(t), I(t), R(t). To solve the equations we need to specify
initial conditions S(0) (many), I(0) (few), and R(0) (=0?), as well as the
parameters β and ν. For practical applications of the model, estimating the
parameters is usually a major challenge. We can estimate ν from the fact that
1/ν is the average recovery time for the disease, which is usually possible to
determine from early cases. The infection rate β, on the other hand, lumps a
lot of biological and sociological factors into a single number, and it is usually
very difficult to estimate for a new disease. It depends both the biology of
the disease itself, essentially how infectious it is, and on the interactions of
the population. In a global pandemic the behavior of the population varies
between different countries, and it will typically change with time, so β must

40 4 Modeling infectious diseases

usually be adapted to different regions and different phases of the disease
outbreak.1

Although the system (4.7)-(4.9) looks quite simple, analytical solutions
cannot easily be derived. For particular applications it is common to make
simplifications that allow simple analytical solutions. For instance, when
studying the early phase of an epidemic one is mostly interested in the I
category, and since the number of infected cases in this phase is low com-
pared with the entire population we may assume that S is approximately
constant and equal to N . Inserting S ≈N turns (4.8) into a simple equation
describing exponential growth, with solution

I(t) = I0e
(β−ν). (4.10)

Such an approximate formula may be very useful, in particular for estimating
the parameters of the model. In the early phase of an epidemic the number
of infected people typically follows an exponential curve, and we can fit the
parameters of the model so that (4.10) fits the observed dynamics. However,
if we want to describe the full dynamics of the epidemic we need to solve the
complete system of ODEs, and in this case numerical solvers are needed.

Solving the SIR model with the ODESystem class hierarchy. We could
of course implement a numerical solution of the SIR equations directly, for
instance by applying the forward Euler method to (4.7)-(4.9), which will
simply give us back the original difference equations in (4.4)-(4.6). However,
since the ODE solver tools we developed in Chapter 3 are completely gen-
eral, they can easily be used to solve the SIR model. To solve the system
using the fourth-order RK method of the ODESolver hierarchy, the Python
implementation may look as follows:

from ODESolver import RungeKutta4
import numpy as np
import matplotlib.pyplot as plt

def SIR_model(u,t):
beta = 1.0
nu = 1/7.0
S, I, R = u[0], u[1], u[2]
N = S+I+R
dS = -beta*S*I/N
dI = beta*S*I/N - nu*I
dR = nu*I
return [dS,dI,dR]

S0 = 1000

1A simpler version of the SIR model is also quite common, where the disease trans-
mission term is not scaled with N . Eq. (4.8) then reads S′ = −βSI, and (4.8) is modified
similarly. Since N is constant the two models are equivalent, but the version in (4.7)-
(4.9) is more common in real-world applications and gives a closer relation between β
and key epidemic parameters.

4.1 Derivation of the SIR model 41

I0 = 1
R0 = 0

solver= RungeKutta4(SIR_model)
solver.set_initial_condition([S0,I0,R0])
time_points = np.linspace(0, 100, 101)
u, t = solver.solve(time_points)
S = u[:,0]; I = u[:,1]; R = u[:,2]

plt.plot(t,S,t,I,t,R)
plt.show()

A class implementation of the SIR model. As noted above, estimating
the parameters in the model is often challenging. In fact, the most important
application of models of this kind is to predict the dynamics of new diseases,
for instance the global Covid19 pandemic. Accurate predictions of the number
of disease cases can be extremely important in planning the response to
the epidemic, but the challenge is that for a new disease all the parameters
are largely unknown. Although there are ways to estimate the parameters
from the early disease dynamics, the estimates will contain a large degree of
uncertainty, and a common strategy is then to run the model for multiple
parameters to get an idea of what disease outbreak scenarios to expect. We
can easily run the code above for multiple values of beta and nu, but it is
inconvenient that both parameters are hardcoded as local variables in the
SIR_model function, so we need to edit the code for each new parameter
value we want. As we have seen earlier, it is much better to represent such
a parameterized function as a class, where the parameters can be set in the
constructor and the function itself is implemented in a __call__ method. A
class for the SIR model could look like:

class SIR:
def __init__(self, beta, nu):

self.beta = beta
self.nu = nu

def __call__(self,u,t):
S, I, R = u[0], u[1], u[2]
N = S+I+R
dS = -self.beta*S*I/N
dI = self.beta*S*I/N - self.nu*I
dR = self.nu*I
return [dS,dI,dR]

The use of the class is very similar to the use of the SIR_model function
above. We need to create an instance of the class with given values of beta
and nu, and then this instance can be passed to the ODE solver just as any
regular Python function.

42 4 Modeling infectious diseases

4.2 Extending the SIR model

The SIR model itself is rarely used for predictive simulations of real-world
diseases, but various extensions of the model are used to a large extent.
Many such extensions have been derived, in order to best fit the dynamics
of different infectious diseases. We will here consider a few such extensions,
which are all based on the building blocks of the simple SIR model.

A SIR model without life-long immunity. One very simple modifica-
tion of the model above is to remove the assumption of life-long immunity.
The model (4.7)-(4.9) describes a one-directional flux towards the R cate-
gory, and if we solve the model for a sufficiently long time interval the entire
population will end up in R. This situation is not realistic for many diseases,
since immunity is often lost or reduced with time. In the model this loss can
be described by a leakage of people from the R category back to S. If we
introduce the parameter γ to describe this flux (1/γ being the mean time for
immunity), the modified equation system looks like

S′(t) =−βSI/N +γR,

I ′(t) = βSI/N −νI,
R′(t) = νI−γR.

As above, we see that the reduction in R is matched by an increase in S of
exactly the same magnitude. The total population S+I+R remains constant.
The model can be implemented by a trivial extension of the SIR class shown
above, by simply adding one additional parameter to the constructor and
the extra terms in the dS and dR equations. Depending on the choice of the
parameters, the model may show far more interesting dynamics than the
simplest SIR model.

S RI

Fig. 4.2 Illustration of a SIR model without lifelong immunity, where people move
from the R category back to S after a given time.

A SEIR model to capture the incubation period. For many important
infections, there is a significant incubation period during which individuals

4.2 Extending the SIR model 43

have been infected, but they are not yet infectious themselves. To capture
these dynamics in the model, we may add an additional category E (for
exposed). When people are infected they will then move into the E category
rather than directly to I, and then gradually move over to the infected state
where they can also infect others. The model for how susceptible people get
infected is kept exactly as in the ordinary SIR model. Such a SEIR model is
illustrated in Figure 4.3, and the ODEs may look like

S′(t) =−βSI/N +γR,

E′(t) = βSI/N −µE,
I ′(t) = µE−νI,
R′(t) = νI−γR.

S RIE

Fig. 4.3 Illustration of the SEIR model, without life-long immunity.

Again, this small extension of the model does not make it much more
difficult to solve. The following code shows an example of how the SEIR model
can be implemented as a class and solved with the ODESolver hierarchy:

from ODESolver import RungeKutta4
import numpy as np
import matplotlib.pyplot as plt

class SEIR:
def __init__(self, beta, mu, nu, gamma):

self.beta = beta
self.mu = mu
self.nu = nu
self.gamma = gamma

def __call__(self,u,t):
S, E, I, R = u
N = S+I+R+E
dS = -self.beta*S*I/N + self.gamma*R
dE = self.beta*S*I/N - self.mu*E
dI = self.mu*E - self.nu*I
dR = self.nu*I - self.gamma*R
return [dS,dE,dI,dR]

44 4 Modeling infectious diseases

S0 = 1000
E0 = 0
I0 = 1
R0 = 0
model = SEIR(beta=1.0, mu=1.0/5,nu=1.0/7,gamma=1.0/50)

solver= RungeKutta4(model)
solver.set_initial_condition([S0,E0,I0,R0])
time_points = np.linspace(0, 100, 101)
u, t = solver.solve(time_points)
S = u[:,0]; E = u[:,1]; I = u[:,2]; R = u[:,3]

plt.plot(t,S,t,E,t,I,t,R)
plt.show()

4.3 A model of the Covid19 pandemic

The models considered above can typically be adapted to describe more com-
plex disease behavior by adding more categories of people and possibly more
interactions between the different categories. We will now consider an exten-
sion of the SEIR model above into a model that has been used by Norwegian
health authorities to predict the spread of the 2020 Covid19 pandemic. We
will here derive the model as a system of ODEs, just like the models consid-
ered above, while the real model that is used to provide Covid19 predictions
for health authorities is a stochastic model.2 A stochastic model is some-
what more flexible than the deterministic ODE version, and can more easily
incorporate dynamics such as model parameters that vary with time after
infection. For instance, the infectiousness (β) should typically follow a bell-
shaped curve that increases gradually after infection, reaches a peak after
a few days, and is then reduced. Such behavior is easier to incorporate in
a stochastic model than in the deterministic ODE model considered here,
which essentially assumes a constant β for everyone in the I category. How-
ever, the overall structure and dynamics of the two model types are exactly
the same, and for certain choices of the model parameters the stochastic and
deterministic models become equivalent.

To describe Covid19, the SEIR model introduced above is modified to
incorporate two important disease characteristics:

• A certain number of people infected with Covid19 have no symptoms.
These asymptomatic people can still infect other, but with a lower infec-
tiousness than the symptomatic group, and they need to be treated as a
separate category.

2See https://github.com/folkehelseinstituttet/spread

https://github.com/folkehelseinstituttet/spread

4.3 A model of the Covid19 pandemic 45

• A large number of infections occur before the infector experiences symp-
toms, which suggests an additional exposed category where people are
infectious but do not yet experience symptoms.

These characteristics can be modeled by adding more categories to the SEIR
model introduced earlier. We include two exposed categories E1 and E2, with
the first being non-infectious and the second being able to infect others. The
I category is also divided in two; a symptomatic I and an asymptomatic Ia.
The flux from S to E1 will be similar to the SEIR model, but from E1 people
will follow one of two possible trajectories. Some will move on to E2 and then
into I and finally R, while others move directly into Ia and then to R. The
model is illustrated in Figure 4.4.

S R

I

E1

E2

Ia

Fig. 4.4 Illustration of the Covid19 epidemic model, with two alternative disease
trajectories.

The derivation of the model equations is similar to the simpler models
considered above, but there will be more equations as well as more terms in
each equation. The most important extension from the models above is that
the SEEIIR model has three categories of infectious people; E2, I, and Ia. All
of these interact with the S category to create new infections, and we model
each of these interactions exactly as we did above. In a time interval ∆t, we
have the following three contributions to the flux from S to E1:

• Infected by people in I: ∆tβSI/N .
• Infected by people in Ia: ∆triaβSIa/N
• Infected by people in E2: ∆tre2βSE2/N

We allow the infectiousness to be different between the three categories, in-
corporated through a main infectiousness parameter β and two parameters
ria, re2 that scale the infectiousness for the two respective groups. Consider-
ing all three contributions, and following the same steps as above to construct
a difference equation and then a ODE, we get the following equation for the
S category:

dS

dt
=−βSI

N
− riaβ

SIa
N
− re2β

SE2
N

. (4.11)

When people get infected they move from S to E1, so the same three terms
must appear in the equation for E1, with opposite signs. Furthermore, people
in E1 will move either to E2 or Ia. We have

46 4 Modeling infectious diseases

dE1
dt

= β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1(1−pa)E1−λ1paE1

= β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1E1.

Here, pa is a parameter describing the proportion of infected people that never
develop symptoms, while 1/λ1 is the mean duration of the non-infectious
incubation period. The term λ1(1− pa)E1 represents people moving to E2,
and λ1paE1 are people moving to Ia. In the equation for E1 we can combine
these two fluxes into a single term, but they must be considered separately
in the equations for E2 and Ia.

The E2 category will get an influx of people from E1, and an outflux of
people moving on to the infected I category, while I gets an influx from E2
and an outflux to R. The ODEs for these two categories become

dE2
dt

= λ1(1−pa)E1−λ2E2,

dI

t
= λ2E2−µI,

where 1/λ2 and 1/µ are the mean durations of the E2 and I phases, respec-
tively.

The model for the asymptomatic disease trajectory is somewhat simpler,
with Ia receiving an influx from E1 and losing people directly to R. We have

dIa
dt

= λ1paE1−µIa,

where we have assumed that the duration of the Ia period is the same as for
I, i.e. 1/µ. Finally, the dynamics of the recovered category are governed by

dR

dt
= µI+µIa.

Notice that we do not consider flow from the R category back to S, so we
have effectively assumed life-long immunity. This assumption is probably
not correct for Covid19, but since the duration of immunity is still largely
unknown, and we are mostly interested in the early epidemic spread, we
neglect the loss of immunity.

To summarize, the complete ODE system of the SEEIIR model can be
written as

4.3 A model of the Covid19 pandemic 47

dS

dt
=−βSI

N
− riaβ

SIa
N
− re2β

SE2
N

,

dE1
dt

= β
SI

N
+ riaβ

SIa
N

+ re2β
SE2
N
−λ1E1,

dE2
dt

= λ1(1−pa)E1−λ2E2,

dI

dt
= λ2E2−µI,

dIa
dt

= λ1paE1−µIa,

dR

dt
= µ(I+ Ia).

A suitable choice of default parameters for the model can be as follows:

Parameter Value

β 0.5
ria 0.1
re2 1.25
λ1 0.33
λ2 0.5
pa 0.4
µ 0.2

These parameters are based on the early phase of the Covid19 outbreak and
can tell us quite a bit about the disease dynamics. The parameters µ,λ1, and
λ2 are given in units of days−1, so the mean duration of the symptomatic
disease period is five days (1/µ), the non-infectious incubation period lasts
three days on average, while the mean duration of the infectious incubation
period (E2) is two days. Furthermore, we see that the mean infectiousness of
asymptomatic people is 10% of the infectiousness of the symptomatic cases.
However, the infectiousness of the E2 category is 25% higher than the in-
fectiousness of the I category. This increased infectiousness is most likely
the result of the E2 category being asymptomatic, so these people will move
around a lot more than the symptomatic I category. The Ia group is also,
of course, asymptomatic and therefore likely to move around more, but it is
assumed that these people have a very low virus count and are therefore less
infectious than the people that develop symptoms.

A function implementation of the SEEIIR model can look as follows

def SEEIIR_model(u,t):
beta = 0.5; r_ia = 0.1; r_e2=1.25;
lmbda_1=0.33; lmbda_2=0.5; p_a=0.4; mu=0.2;

S, E1, E2, I, Ia, R = u
N = sum(u)
dS = -beta*S*I/N - r_ia*beta*S*Ia/N - r_e2*beta*S*E2/N

48 4 Modeling infectious diseases

dE1 = beta*S*I/N + r_ia*beta*S*Ia/N + r_e2*beta*S*E2/N - lmbda_1*E1
dE2 = lmbda_1*(1-p_a)*E1 - lmbda_2*E2
dI = lmbda_2*E2 - mu*I
dIa = lmbda_1*p_a*E1 - mu*Ia
dR = mu*(I + Ia)
return [dS, dE1, dE2, dI, dIa, dR]

Just as the simpler models, the SEEIIR model can be solved with methods
in the ODEsolver class hierarchy:

import numpy as np
import matplotlib.pyplot as plt
from ODESolver import *

S_0 = 5e6
E1_0 = 0
E2_0 = 100
I_0 = 0
Ia_0 = 0
R_0 = 0
U0 = [S_0, E1_0, E2_0, I_0, Ia_0, R_0]

solver = RungeKutta4(SEEIIR_model)
solver.set_initial_condition(U0)
time_points = np.linspace(0, 100, 101)
u, t = solver.solve(time_points)
S = u[:,0]; E1 = u[:,1]; E2 = u[:,2];
I = u[:,3]; Ia = u[:,4]; R = u[:,5]

plt.plot(t,S,label=’S’)
plt.plot(t,E1,label=’E1’)
plt.plot(t,E2,label=’E2’)
plt.plot(t,I,label=’I’)
plt.plot(t,Ia,label=’Ia’)
plt.plot(t,R,label=’R’)
plt.legend()
plt.show()

	Preface
	Programming of difference equations
	Sequences and Difference Equations
	Systems of Difference Equations
	More Examples of Difference Equations
	Taylor Series and Approximations

	Solving ordinary differential equations
	Creating a general-purpose ODE solver
	The ODE solver implemented as a class
	Alternative ODE solvers
	A class hierarchy of ODE solvers

	Solving systems of ODEs
	An ODESolver class for systems of ODEs

	Modeling infectious diseases
	Derivation of the SIR model
	Extending the SIR model
	A model of the Covid19 pandemic

