FINITE ELEMENT METHODS FOR THE NUMERICAL
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS

Vassilios A. Dougalis

Department of Mathematics, University of Athens, Greece
and

Institute of Applied and Computational Mathematics, FORTH, Greece

Revised edition 2019



PREFACE

This is the current version of notes that I have used for the past thirty-five years
in graduate courses at the University of Tennessee, Knoxville, the University of Crete,
the National Technical University of Athens, and the University of Athens. They have
evolved, and aged, over the years but I hope they may still prove useful to students
interested in learning the basic theory of Galerkin - finite element methods and some
facts about Sobolev spaces.

I first heard about approximation with cubic Hermite functions and splines from
George Fix in the Numerical Analysis graduate course at Harvard in the fall of 1971, and
also, subsequently, from Garrett Birkhoff of course. But most of the basic techniques of
the analysis of Galerkin methods I learnt from courses and seminars that Garth Baker
taught at Harvard during the period 1973-75.

Over the years I was fortunate to be associated with and learn more about Galerkin
methods from Max Gunzburger, Ohannes Karakashian, Larry Bales, Bill McKinney,
George Akrivis, Vidar Thomée and my students; for my debt to the latter it is apt to
say that dtddokrw ael dtdaokouevos.

I would like to thank very much Dimitri Mitsoudis and Gregory Kounadis for trans-

forming the manuscript into TEX.

V. A. Dougalis
Athens, March 2012

In the revised 2013 edition, two new chapters 6 and 7 on Galerkin finite element
methods for parabolic and second-order hyperbolic equations were added. These had
previously existed in hand-written form, and I would like to thank Gregory Kounadis

and Leetha Saridakis for writing them in TEX.

V. A. Dougalis
Athens, February 2013



In the 2019 edition I revised Chapter [2] and added Appendix [A] with proofs of some
facts about function spaces (mainly density and approximation results stated in Sec-
tion . In this way, Chapter [2] is now fairly self-contained. I also revised Chapter
and added sections 3.4-3.7 to it; these contain well-known results on Galerkin methods
for two-point boundary-value-problems that I have been mentioning over the years in
reading courses and seminars. My thanks go again to Gregory Kounadis for writing

the hand-written notes in TEX.

V. A. Dougalis
Athens, November 2019.

i



Contents

(1 Some Elements of Hilbert Space Theory| 1
(1.1 Vector spaces| . . . . . . . . . .. ... 1
(1.2 Inner product, Norm| . . . . . ... ... ... ... ... ..., 2
(1.3  Some topological concepts| . . . . . . ... ... 000 3
(1.4 Hilbert space| . . . . . .. ... ... 4
(1.5  Examples of Hilbert spaces|. . . . . . .. ... ... ... .. ... ... )
(1.6 The Projection Theorem| . . . . . . ... ... ... ... ... ..... 10
(1.7  Bounded linear tunctionals on a Hilbert space| . . . . . . .. ... ... 14
(1.8  Bounded linear operators on a Hilbert space] . . . . . .. .. ... ... 17
(1.9 The Lax-Milgram and the Galerkin theorems| . . . . . . ... .. ... 19

2 Elements of the Theory of Sobolev Spaces and Variational Formula- |

[ tion of Boundary—Value Problems in One Dimension| 25
2.1 Motivation|. . . . . . ..o 25
[2.2  Notation and preliminaries| . . . . . . . . . ... .. ... ... ... .. 27
2.3 The Sobolev space H*(I)[. . . . . . . ... ... .. .. ... ... 30
2.4 The Sobolev spaces H™(I), m =2,3,4,...| . . . . ... ... ... ... 47
2.5 The space foll(l) .............................. 48
[2.6 Two—point boundary—value problems| . . . . . . . ... ... ... ... 55

[2.6.1 Zero Dirichlet boundary conditions.| . . . . . . . ... ... ... 55
[2.6.2  Neumann boundary conditions.| . . . . . .. .. ... ... ... 60
[2.6.3  Sturm-Liouville eigenvalue problems| . . . . .. ... ... ... 63
[3 Galerkin Finite Element Methods for Two—Point Boundary—Value |
L__Problems| 66

il



[3.2  The Galerkin finite element method with piecewise linear, continuous |

[ tunctionsl . . . . . . .. 68
[3.3 Approximation by Hermite cubic functions and cubic splines| . . . . . . 81
[3.3.1  Hermite, piecewise cubic functions|. . . . . . . . . ... ... .. 82

[3.3.2  Cubicsplines| . . . ... ... ... 88

[3.4  More general finite element spaces and their approximation properties| . 96
[3.5 Superconvergence and eftect of quadraturel . . . . . ... ... 108
[3.5.1 Superconvergence at the meshpoints| . . . ... ... ... ... 109

[3.5.2  T'he effect of numerical integration| . . . . . ... ... ... .. 111

[3.6 A posterior: error estimates and mesh adaptivity|. . . . . . .. .. ... 120
[3.7 Non-selt-adjoint and indefinite problems| . . . . . . . . ... ... ... 126

[4  Results from the Theory of Sobolev Spaces and the Variational For- |

[  mulation of Elliptic Boundary—Value Problems in R"| 134
4.1 The Sobolev space H*(2).| . . . . . . ... ... ... 134
4.2 The Sobolev space POII(Q) ......................... 138
4.3 The Sobolev spaces H™()), m =2,3,4,..[ . . .. ... ... ... ... 139
(4.4 Sobolev’s inequalities.|. . . . . .. . ... oo 141
4.5 Variational formulation of some elliptic boundary—value problems.| . . . 142

1.5.1 (a) Homogeneous Dirichlet boundary conditions,. . . . . . . .. 142
1.5.2  (b) Homogeneous Neumann boundary conditions.| . . . . . . . . 145

[ The Galerkin Finite Element Method for Elliptic Boundary—Value |

L__Problems| 147
bl Introductionl . . . . . . ... 147
[5.2  Piecewise linear, continuous functions on a triangulation of a plane |

[ polygonal domain| . . . . . . . ... ... 149
(5.3 Implementation of the finite element method with P; triangles . . . . . 163

[6 The Galerkin Finite Element Method for the Heat Equation| 174
[6.1 Introduction. Elliptic projection| . . . . . . . .. .. ... ... ... .. 174
6.2 Standard Galerkin semidiscretizationl . . . . . . . .. ... .. ... .. 176

v



[6.3 Full discretization with the implicit Euler and the Crank-Nicolson method|182

[6.4 The explicit Euler method. Inverse inequalities and stiffness| . . . . . .

[7 The Galerkin Finite Element Method for the Wave Equation|

[A Proofs of results about function spaces|

[References]

189

196
196
197
202

214

214

224



Chapter 1

Some Elements of Hilbert Space Theory

1.1 Vector spaces

A set V of elements u, v, w, ...is called a vector space (over the complex numbers) if

1. For every pair of elements u € V', v € V we define a new element w € V, their

sum, denoted by w = u + v.

2. For every complex number A and every u € V we define an element w = Au €V,

the product of A and w.
3. Sum and product obey the following laws:

L YuoeV:ut+v=0v+u.
i. Yu,o,w € V: (u+v)+w=u+ (v+w).
iii. 40 € V such that u + 0 =u, Yu € V.
iv. Yu € V 3 (—u) € V such that v+ (—u) = 0.
v. l-u=u, Vu e V.
vi. AMpu) = (Ap)u, Yu € V' and complex A, f.
vil. (A + p)u = Au+ pu, for uw € V., A, p complex.
vill. A(u+v) = A+ v, for u, v € V, A complex.
The elements u, v, w, ...of V are called vectors. It is clear that we may also consider

vector spaces over the real numbers. In fact we will later consider only such real vector

spaces.



An expression of the form
)\1“1 -+ )\2'&2 + ...+ )\nun,

where \; complex numbers and u; € V, is called a linear combination of the vectors u;,
1 <1 < n. The vectors uq,...,u, are called linearly dependent if there exist complex

numbers \;, not all zero, for which:
)\1U1 -+ )\Q'LLQ + ...+ )\nun =0.

They are called linearly independent if they are not linearly dependent, i.e. if \ju; +
Aous + ...+ A, = 0 holds only in the case Ay =X = ... =)\, =0.

A vector space V' is called finite-dimensional (of dimension n) if V' contains n
linearly independent vectors and if any n + 1 vectors in V' are linearly dependent. As
a consequence, a set of n linearly independent vectors forms a basis of V', i.e. it is a set
of linearly independent vectors that spans V', i.e. such that any v in V' can be written

uniquely as a linear combination of the basis vectors.

1.2 Inner product, Norm

A vector space V is called an inner product space if for every pair of elements u € V,
v € V we can define a complex number, denoted by (u,v) and called the inner product

of u and v, with the following properties:
L. YueV: (u,u) > 0. If (u,u) =0 then u = 0.
2. (u,v) = m, Yu,v € V, where Z is the complex conjugate of z.
3. (Au+ pv,w) = AMu,w) + p(v,w) for u,v,w € V, A\, u complex.

As a consequence of (2) and (3) (u, \v) = X (u,v) for u,v € V and A complex. The
vectors u, v are called orthogonal if (u,v) = 0.

For every u € V' we define the nonnegative number ||u|| by
1
[ull = (u, u)?,

which is called the norm of u. As a consequence of the properties of the inner product

we see that:



i. ||u]| > 0 and if ||ul| = 0, then u =0
ii. V complex A\, u € V: |[Aul| = |A| ||u]
iii. Yu,v € V: |Ju+ vl < ||lul]| + ||v|| (Triangle inequality).
To prove (iii) we first prove the Cauchy—Schwarz Inequality:
iv. |(u,0)| < ||| |||, Yu,v € V.

To prove (iv) we may assume that (u,v) # 0. We let now 6 = % We find then for

any real A\ that
0 < (u+ Av, Ou + M) = A\ (v,v) + 2X | (u, v)| + (u, ).

Hence for any real A the quadratic on the right hand side of this inequality is nonneg-
ative. Hence, necessarily,

[(w,0)]* < (u,u) (v,0),

which gives (iv). To prove now the triangle inequality (iii) we see that

lu+v]? = (u+v,u+v)=(u,u)+ (v,v)+ (u,v) + (v,u)
2 2 2 2
< lll® + Mloll” + 2 [(w, 0)| < flufl” + [[ol™ + 2 f|ull o]

= (llull +1lvI)?,

from which (iii) follows.
Supplied only with a norm that just satisfies properties (i)—(iii), V' becomes a normed
vector space. In an inner product space the norm is induced by the inner product

according to the formula |jul| = (u,u)"2.

1.3 Some topological concepts

In a normed vector space V' we define the distance p of two vectors u and v as p(u,v) =
|lu — v||. It is straightforward to see that p defines a metric on V. If g is a fixed
vector in V' and ¢ a given positive number, the set of vectors v in V' which satisfy
|l — ug|| < ¢ is called the open ball with center ug and radius §. The set ||[v — ug|| <6

is the closed ball with center vy and radius . We say that a sequence of vectors (u;)

3



in V is convergent if there exists a vector u € V such that, given € > 0 there exists a

positive integer N = N(¢) for which:
|lu, — ul| <€, forallm > N.

We call u the limit of the sequence (u;) and write lim u,, = w or u,, — win V as n — oc.
It is easy to see that a convergent sequence has only one limit. Obviously w,, — u in
V< |lu, —ul|| — 0 as n — oo.

A sequence of vectors (u;) in V is said to be a Cauchy sequence if given any € > 0,

there exists an integer N = N(€) such that
|un, — um|| <€, for all m,n > N.

It is easy to see that every convergent sequence is Cauchy. The converse is not always
true. We will say that V is complete whenever every Cauchy sequence in V' is conver-
gent. A subset A of V is called a dense subset of V' if for every u € V' there exists a
sequence (u;) of vectors in A such that u, — u as n — oo.

Exercise: If u, — u, v,, = v in V then:
(a) lim (Auy, + pv,) = Au+ po for all complex A, p.

(b) lim (u,,v,) = (u,v) (and as a consequence we say that the inner product is a

continuous function of its arguments).
(c) Tim [[un} = [|ul]

(d) lim A,u, = Au for every convergent sequence A\, — A of complex numbers. O

1.4 Hilbert space

A complete inner product space V is called a Hilbert space. In other words, a Hilbert
space is an inner product space in which any Cauchy sequence (with respect to the
norm induced by the inner product) is convergent. We will usually denote Hilbert
spaces by H.

A subset S of a Hilbert space H is called a subspace of H if u € S, v € S imply
that A\u+ pv € S, for any complex numbers A, p. S is said to be a dense subspace of H

4



if it is a dense subset of H and a subspace of H. S is said to be a closed subspace of H
if S is a subspace of H with the following property: let (u,) be a convergent sequence
in H such that u, € S. Then v = lim u,, belongs to S too.
Exercise: A dense, closed subspace of H coincides with H. O
Any inner product space V (or generally, any normed vector space) may be com-
pleted in the sense that it can be identified with a dense subspace M of a Hilbert space
H (a dense subspace of a complete normed space). H is the set of all equivalence
classes of Cauchy sequences (u,) of vectors of V. (Two Cauchy sequences (u,), (v,)

will be equivalent if lim (u,, — v,,) = 0). See for example [2.7], [2.§].

1.5 Examples of Hilbert spaces

A. H = C" with the Euclidean inner product (u,v) = Y ., u;7; and norm |jul] =
>, ]uiP)l/ ?. (Show that the coefficients with respect to the canonical basis of C of

a Cauchy sequence in C" form Cauchy sequences of complex numbers.)

B. [,

We denote by I the set of all complex sequences u = (u;) which satisfy the inequality
Z |u | < oo.
j=1

In Iy we define u + v, Au and (u,v) in the following way:

w = u+v with w = (w;), w; = u; +v;.

z = Au (A complex number) z = (z;), z; = Au;.
[e.e]
(U, U) = Z U;v;.
j=1
Then clearly it follows that >2°7, |2 < 0o, and 3777, |w;|* < oo since
il = Juj + v * < 2Ju ] + 2]y,
The convergence of the series defining the inner product follows from he inequalities

o 1
u; V5| = Jug]lv| < 5{|uj|2 + [v;]*}.



By verifying the axioms one by one we easily conclude that ¢, is an inner product
space. (The zero vector is the sequence 0 = {0,0,...}).

We remark that the Cauchy—Schwarz inequality |(u,v)| < ||u]|||v|| becomes

Zw < (Zuﬂf (fjw)

J=1 J=1

NI

The triangle inequality ||u + v|| < ||u|| + ||v|| becomes

1 1 1

o0 2 o0 2 o0 2

(z\uﬁw) s(z\ujw) +(zw) |
j=1 7j=1 7=1

The space [y is a complete inner product space and hence a Hilbert space. To show

that let {u™,u®,...} be a Cauchy sequence in I, with

= {u{”, i, .}

Then given € > 0

1
2
™ — w0 = (™ — Gy o™ é:<2|u(" m>|2> <e  (11)

for all n,m > N(e). In particular it follows that

\ugn) — ugm)\ < eforall n,m > N(¢) and every j =1,2,3,....

() u?

u;”, ... is convergent, since it is a Cauchy sequence of

Fix j. Then the sequence u;

complex numbers. We denote the limit of this sequence by u;, i.e.

lim u( ")

n—oo

—u; for j=1,2,3,.... (1.2)

Now it follows from (1.1]) that for every positive integer k
Z|u —] ? < €? for all n,m > Ne).
Letting m — oo in the above, since it is a finite sum, we obtain by (|1.2]) that

k
Z |U§'n) —u;|* < € for all n,m > N(e).

j=1



The sequence of the sums in the left-hand side of this inequality is increasing. Hence

its limit as k£ — oo exists and we have
> 7 ul" —wl? < €2 for all n > Ne). (1.3)
j=1

We set now u = (u;). By (.3), u—u™ € l,. Hence u = (u—u™)+u™ € I,. By (1.3)

it also follows that

1
|u™ — || = (Z |u§") — uj|2> < e for all n > N(e).
j=1

Hence there exists u € Iy such that u™ — w in 5 as n — o0o. We conclude that the
(arbitrary) Cauchy sequence {u® u® ...} converges. Therefore I, is complete and

hence a Hilbert space.

C. Ly()
Let © be an open set of R?. (An open interval in R.) We denote the points in R? by
d-tuples x = (z1, s, ...,xq) and denote the (Euclidean) length of the vector z by:

1
d 2
] = (Zx?) |
=1

We consider the set of complex-valued continuous functions u(z) = wu(zy,...,z4) de-
fined on 2. Addition u 4+ v and multiplication A\u by a complex number \ are defined,

as usual, by:

w=u+v, w(r)=ulx)+v(x),

z=Au, z(zr)=Au(x)

We define now an inner product for such functions by:

(u,v) = /Qu(x)v(x) dz | (1.4)

where dx is the volume element in 2, i.e. dr = dxidxy...dxs and fQ ... dx is the

multiple integral (in the Riemann sense)

/Q...d:v//{.../...dxldxz...dxd.

7



Since 2 is an arbitrary open set of R? | the integral in (1.4)) defining the inner prod-
uct may not exist. We restrict therefore our attention to complex-valued continuous

functions u(x), defined on 2, with the property that

/Q|u(3:)]2dx < 0.

Let now V' be the above-described vector space, i.e. let
V' = {u | u continuous on €2, / lu(z)|? do < oc}.
Q

V is an inner product space with the inner product defined by (1.4). To see this, note
that

u(z) +v(@)* < 2(ju(z)|* + [v(2)]?).
It follows that wu € V, v € V = u+v € V and, easily, A\u € V for A complex. Finally
the existence of the integral in ([1.4)) for u,v € V is proved by noting that Vz € Q:

2u(z)||v(z)] < Ju(x)]® + [o(@)]*.

Hence, integrating:

o)l = | [ wapl@del < [ ju@lofa)]do
< §/Q|u(m)| dx—|—§/§2|v(x)| dz.

By verifying the axioms we may confirm that V' is an inner product space. The norm

full = et = ([ Jute rdx)

The zero element in V' is the function u(x) = 0, z € Q. For u,v € V, the Cauchy—

on V is given by

Schwarz and the triangle inequalities take the form:

< (/ u(z)|? dx)é(/ﬂv(lx)zdx>% |
(/ fu(z) + v(@)|? dx)2 < </Q]u(x)\2dx>2+</Q]v(x)]2dx)2

The functions uq, us, ... € V form a Cauchy sequence in V if Ve > 0

fim =l = ([ Jun) —un<x>|2dx)% <.

8
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for all m,n > N = N(e). The sequence is convergent if there exists a function u € V

such that for every e > 0 there exists an integer N = N(€) such that

[ (/ in() — u(m)|2dx) <e
0
holds for all n > N (e).
The space V is not complete. To see that let for example Q2 = (—1,1) and V be
the set of continuous functions u defined on (—1, 1) such that f_ll |u(z)|?dz < co. Let
(u,v) be defined as f_ll w(z)v(z) dz and let ||ul = (u,u)2. Consider the sequence (u;),

where
—1 for —1<x<—%

IA
S

uj(z) = § jr for —1<u
1 for % <z<l.
Exercise: Prove that (u;) is a Cauchy sequence in V. O
However, there is no continuous function u on (—1,1) for which ||u, — u|| — 0 as
n — oo. It is easy to see that ||u, — f|| — 0 as n — oo where e.g. f is the discontinuous

function
—1 for —-1<z<0

fz) = 0 for x=0
1 for 0<zx<1.

Thus, V is a non—complete inner product space. By our remark at the end of §1.4 we
see that we may complete the space V. This extended complete space we call Ly(€2).

It is well known that L,(2) is isometrically isomorphic to the set of (equivalence
classes of) complex—valued Lebesgue measurable functions u on 2 for which the (Lebe-
sgue) integral [, |u(z)[*dx is finite. The inner product (understood in the Lebesgue
sense) is given again by (1.4).

As a consequence of the process of completion of V:
(i) Lo(©2) is a complete inner product space (a Hilbert space).

(ii) V is dense in Ly(2), i.e. for every u € Lo(Q2) there exists a sequence (u,) of

functions in V such that |ju, — ul| = ([, [un(z) — u(z)|*dz)* — 0 as n — occ.

(iii) Strictly speaking the elements of Ly(2) are equivalence classes of measurable

functions; two functions f,g are equivalent (and hence identified in Ly(€2)) if

9



f(z) = g(x) almost everywhere (a.e.) in 2. However the term ‘function’ is fre-

quently used to denote elements of Lo(2) with the identification noted above.

1.6 The Projection Theorem

The following result provides important information about geometric properties of a

Hilbert space.

Theorem 1.1 (Projection Theorem). Let G be a closed subspace of a Hilbert space H,
properly included in H. Then, given h € H there exists a unique element g € G such
that:
) ||h — g|| = inf ||h — ¢||.
(@) Ik —glf = inf [|h — 4]
Moreover

(17) (h—g,¢) =0 for each ¢ € G.

h

h-g

Figure 1.1

Proof. Let h € H such that h ¢ G (if h € G pick g = h and the theorem is proved).
Since for all ¢ € G, ||h — ¢|| > 0, there exists a sequence ¢, € G such that

Jim || — ¢nll = inf [l — o] = 6 > 0. (1.5)

We first show that (¢,) is a Cauchy sequence. Let f1, fo € H. Then the parallelogram
law holds:
20 A2+ 20 £ = 1 + foll 2+ N1 fr = fall®.

(Proof: Exercise). Set fi = h — ¢, fo = h — ¢,. Then

1$m — ull* = 2[Ih = Gmll* + 2| h = ull* — 4]|2 —

—qb’”;‘b”u? (1.6)

10



Now

P+ Py _ 1 1
h———— < < |lh— ol + =|lh — ¢n
R =
and by (T5),
1imsup||h—¢m+¢n||< 5+ 5—5
™m,n—00
But by definition of 9,
lim inf | — 22 > 5
m,n—00 2

Hence it ;o0 |h — 22522 || = §. Then by (L.6) and (L.5) we conclude that
Hm || ¢ — ¢nl|? = 26% + 207 — 46 = 0.
m,n—o00

Hence (¢,) is a Cauchy sequence in G. Since G is closed, the sequence is convergent in
G, i.e. there exists g € G such that ¢, — g as n — oo. We show that this g satisfies
I gll = infucc |Ih — 6]l = 6. Obviously | — gl < IIh— @u] + Ilg — 6|, and taking
limits as n — oo we get that ||h — g|| < 0. By definition of ¢, ||h — g|| > 6. Hence
Ilh — g|| = ¢ as required. We also show that g is unique. Indeed, let g1, g2 € G, g1 # go
have the property that

§—=inf b =gl = h— gl = |h— gl
Inf [l —gll = Ik — g1l = I — gel
Then, since (g1 + g2) € G = 6 < ||h — 3(g91 + g2)|. But by the triangle inequality
1 1 1 1 1
—_— < —_— —_— —_— _— = — -_ pr— .
= 2o+ 92l < 2Ih—grll + 20—l = 25+ 25 =0

i.e. the triangle inequality holds as equality. Now for any y,v¢ € H such that x # 0,
v #0, Ix + ¢l = lIxll + |2l & x = A, for some A > 0. (Proof: Exercise.) Hence
there exists A such that h — gy = A(h — ¢2), i.e. A(1=X)=¢g1 — Aga. f A =1, g1 = g0
(contradiction). If A # 1, h = gl—/\gZ) i.e. h € G (contradiction). Hence ¢ is unique (i)
is proved.

To prove (ii), with g constructed as above, suppose that there exists ¢, # 0 in G
for which (ii) fails, i.e (h — g, ¢«) # 0. Define the element g, € G by:

(h -9 ¢*)
(¢, B4)

11



Then

h—gl? = (h—g——2 ¢, h—g— —2 0,
= h— h— - T *7h_
(h—g,h—g) (@@Q<¢ 9)
G OO T 9
[(h = g,¢.)|
= ||h—g|*- —2
Hence
|h—g.ll < ||h— gl = ;ggnh— ¢||  (contradiction).
Hence (h —g,¢) =0, V¢ € G and we have (ii). O

Exercise: Prove that if for some g € G, (h—g,¢) = 0 V¢ € G, then (i) in Theorem [L.1]
holds. O

Given h € H we call g, the existence and uniqueness of which is guaranteed by
Theorem [I.1] the orthogonal projection of h on the closed subspace G or the best

approzimation of h in G. If we let f = h — g, we can write
h=f+g wherege G and (f,¢) =0, Vo €G.

Hence f is orthogonal to all vectors of the closed subspace G. Let G* be the set of all

such vectors, i.e. let
Gr={uecH: (u,¢)=0 Yo c G}.

G* is called the orthogonal complement of G and it is a closed subspace of H. It is
clearly a subspace. To see that it is closed let u, € G* such that u, — u. Then
(u, @) = (u, @) — (un, @), for all ¢ € G since (u,, @) = 0. Hence for all ¢ € G |(u, )| =
(U = Upn, )| < |lu—u,||||¢]] = o0 as n — oo, i.e. (u,¢) =0 = u € G+. Hence G+ is
closed. It is easy to see that G N G+ = {0}. Hence we can write H as the direct sum
of G and G+

H=G&G,

meaning that there exist two disjoint closed subspaces G and G+ such that every

element A € H can be written uniquely as the sum of a ¢ € G and a f € G, i.e.

12



h =g+ f, as above.
Exercise: With g, f defined as above, prove the Pythagorean theorem:

R[* = llgl* + 1 F11%

¢
A particular case of importance occurs when G is finite—dimensional. Then G is
closed (Proof: Exercise). Let {®1,p2,...,ps} be a basis of G. Given h € H we can

explicitly construct the best approximation g of h in G as follows: By (ii), ¢ satisfies:
(h—g,0)=0 Vpeaq.
Hence
(h—g,0) =0, i=12,...,s. (1.7)

Let g = > i, cipi. We seek the coefficients {¢;};_,. By (L.7), the ¢;’s satisfy the

following linear system of equations:
> Mije;=(h,gi) 1<i<s, (1.8)
j=1

where M = (M;;) is the s x s Gram matriz (or mass matriz) associated with the basis
{@i};_, of G defined by

Mi; = (pj i), 1<i,j<s.
To see that M is invertible, suppose that for some complex s—vector d = [dy, ... d]"

we have that M d = 0. Then for each
ZMijdj =0= (Z djpj, pi) = 0.
j=1 j=1

Therefore the vector u = ijl djp; € G is orthogonal to all p € G, i.e.u € GF NG =
u = Z;Zl d;p; = 0 and by the linear independence of the ;s = d; =0, Vj = d = 0.
Hence Md = 0 = d = 0, i.e. M is invertible. Actually, M is positive-definite

(Exercise).

Example 1.2. Let Q = (0,1) and H = L*(0,1) (real-valued). Suppose f is a given
element of L2(0,1) and let G be the subspace of H consisting of all real-valued poly-

nomials of degree < n — 1, n > 1. Find the best approximation to f in G.

13



Solution. A basis for G obviously consists of the functions p;(z) = 2771, 1 < j < n.
Let g be the best approximation (orthogonal projection) of f in G. Suppose that
g =>_;_1a;jp;. Then g satisfies:

from which

> Mya;=(f,¢:), 1<i<n, (1.9)
j=1
where M is the n X n symmetric Gram matrix,
1 (N 1
M;; = (i, ¥5) :/0 Pipj :/0 22y = Z—l—j——l
M is positive-definite but very ill conditioned. U

1.7 Bounded linear functionals on a Hilbert space

Let H be a Hilbert space. By a functional F on H we mean a function from H into
the complex numbers C, i.e. a map which assigns to every ¢ € H a unique complex
number F'(¢),

F:H—C, ¢— F(¢p).

A functional F' on H is called a linear functional if for every ¢,¢ € H and A\, u € C :

FAQ + ) = AF(9) + pF (1),

A functional F on H is called bounded if there exists a M > 0 such that |F(¢)| < M||¢||
for all ¢ in H.
If a functional F' on H is bounded we define its norm, denoted by || F|| (do not confuse

with the norm of ¢ € H, ||¢]|) by

|F|| = sup F@)l (1.10)

oroct |9l
Let F' be a bounded linear functional on H. Then it is easy to see that F is a continuous

function of its argument. Indeed, let ¢,, — ¢ in H. Then

[F(¢n) = F(9)| = |F(¢n — )| < [ Flll¢n — 0l — 0.

14



Hence F(¢n) — F(¢) in C, i.e. F is continuous. (Note that the inequality

[F(o) < [IF]l4l]

follows from the definition of the norm |F|| of F.)

Conversely, let F' be a linear functional on H and suppose that F' is a continuous
function at some point of H. (It follows that F' will be everywhere continuous on H).
We shall show that F' is bounded. Indeed, if F' is continuous at ¢y € H, then for each
e > 0 there exists a § > 0 such that |F'(¢g) — F'(h)| < € for ||h — ¢o|| < 6. Let ¢ # 0 be
an arbitrary element of H. By the linearity of F' we obtain that

P =190 () =15 (g ) - P}

Since the vector %—i—(ﬁo = h, satisfies the relation [|h—¢|| < & we have |F(¢)| < 5[/¢],

ie. % < 5. Fix e = ¢ > 0. Then 0 = d(ey) = o, and since €, dy are independent
of ¢ we see that
F
1Pl = sup BN <0 o
o#ecr ||Ol T do

i.e. F'is bounded.
Hence we proved that for a linear functional F' on H, boundedness < continuity.

We speak thus of a bounded or continuous linear functional (b.1.f.).

Exercise: Let F' be a b.lLf. on H. With the norm || F||defined by (1.10|) show that

[Fl= sup [|F(¢)|= sup [F(e)
pEH: ||¢]|<1 pEH: ||¢]|=1

%

Now let F', G be b.l.f.’s on a Hilbert space H. We can define their sum F + G = L

by L(¢) = F(¢) + G(¢) for each ¢ € H and the scalar product \F' as \F' = G,
G(6) = \F(6).

Exercise: We denote by H’ the space of bounded linear functionals on a Hilbert space

H. (H'is called the dual of H). With addition and scalar multiplication defined as

above show that H’ forms a vector space. Then ||F|, defined by (L.10), is a norm

on H', ie. H' is a normed linear space. Finally show that H’ is complete, i.e. every

Cauchy sequence in H' converges to an element in H’. O

An example of a bounded linear functional on H is furnished by the inner product

of the elements of H with a fixed element f € H. Given f € H, define for every ¢ € H

15



F(¢) by
F(¢) = (9, f).

Clearly F' is a linear functional on H. To see that it is bounded observe that

(o) = (&, N < Nl [I£11

So for all ¢ # 0:
[F(¢)]

o S < oo

]l
Hence ||F|| < ||f||. In fact, since F(f) = ||f||* we see that the sup in the definition of

| F|| is attained for ¢ = f € H. Hence || F|| = || f]|.
It turns out that the converse of the above statement is also true, namely that
every bounded linear functional on H has the form (¢, f) for some f € H. This is the

content of:

Theorem 1.3 (Riesz Representation Theorem). Every bounded linear functional F' on
a Hilbert space H can be expressed in the form F(¢) = (¢, f) for each ¢ € H, where f
is an element of H which is uniquely determined by F. Moreover, ||F| = | f||-

Proof. We denote by G the set of all elements ¢ € H such that F(g) = 0, i.e.
G = KerF. Obviously G is a subspace of H. Moreover GG is a closed subspace of
H. To see that let g, — g with g, € G. Then F(g) = F(g — gn) + F(9,) = F(g — gn).
Hence

[F(@I < [Flllg = gnll =0 asn— o0, ie. Fg)=0&geG.

There are two possibilities now: either G = H or G C H (properly included in H). In
the first case F'is the zero functionalon H and the theorem is proved with f = 0. Hence,
assume that G C H. In this case G* contains non-zero elements by the Projection
Theorem. Let fo € G+, fy # 0. For ¢ € H, consider the vector F(¢)fo — F(fo)o.
This vector belongs to G because F(F(¢)fo — F(fo)®) = F(¢)F(fo) — F(fo)F(¢) = 0.

Hence, since fy € G+, we see that for all ¢ € H:
(F(9)fo — F(fo)o, fo) =0,

ie. F(¢)|lfoll* = F(fo) (¢, fo) from which

E(fo)
/ol

F(¢) = <q§, f0> , forall p € H.
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We set now

F(fo)
/ol

and the equality above provides the required representation, i.e. we have ezistence of

I3

f= Jo

To prove that f is unique, suppose that there exist two vectors f; # fo such that
for all o € H: f(¢) = (¢, f1) = (¢, f2). Hence (¢, f1 — fo) = 0 for all ¢ € H. In

particular, set ¢ = f; — fo from which it follows that f; — fo = 0. It remains to prove

that || F|| = || f]|. We immediately obtain from F(¢) = (¢, f) that

F
F@)| = 16, 9)] < lolllf] & Hfjﬁ)’ < I
Hence
17 = s EOL g
o£eer |9

On the other hand taking ¢ = f we see that F(f) = (f, f) = || f||?, from which

LA < IENIAL e 1A < I1F]-

Hence [[F]| = [|f]] =

1.8 Bounded linear operators on a Hilbert space

Let H be a Hilbert space as usual. Let M be a subspace of H. By a linear operator
T : M — H we mean a function defined on M with values in H which assigns to the

vector u € M the (unique) vector Tu € H and which satisfies:
T(Au+ pv) = NT(u) + pT'(v) for u,v € M, \,ue C.

The subspace M of H on which T is defined is called the domain of T" and is denoted
by D(T). The range of T is the set of vectors v € H to each one of which there

corresponds at least one u € D(T') such that Tu = v, i.e.
Range(T) = Ran(T) = {v € H: Ju € D(T) such that Tu = v}.

We also define
Ker(T) ={ue D(T): Tu=0}.
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The operator T is called one—to—one (1-1) if uy # us = Tuy # Tus. Equivalently, T is

one-to—one if Tu; = Tug = uy = uy. T is called onto if Ran(T") = H, i.e. if for every

v € H we can find a w € D(T) such that Tu = v.

Exercise: Ran(7') is a subspace of H. So is Ker(T'). O
A linear operator 7' defined on the whole of H, (i.e. D(T) = H) will be called

a linear operator on H. Unless otherwise indicated we will assume henceforth that

D(T) = H. A linear operator T on H is said to be bounded if

174l

p —— < o0.
ozeer |9l

Let T be a bounded linear operator (b.l.op.) on H. We define the norm of T by

To
IT) = sup LE0L
ozeer ||l

(1.11)
(It follows that ||T'¢| < [|T||||¢|| Vo € H).

A linear operator T" on H is continuous at f € H if whenever f, — f in H then
T f,—Tf| — 0. As in the case of bounded linear functionals we can prove (Exercise)
that a linear operator 7" on H is continuous at all f € H if it is continuous at some
fo € H and it is bounded if and only if it is continuous. As in the case of bounded
linear functionals we can show (Exercise) that

IT|| = sup |T¢l = sup [T
O£bH: <1 e H: || ¢ =1

Now, let 7',S be b.l.op’s on H. We define their sum T+ S as that (linear) operator

W on H, such that W¢ = T'¢p + S¢, Vo € H. Similarly XT' = S, if S¢p = A\T'¢. 1t is

easy to see that with these definitions of addition and scalar multiplication, the set of

b.l.op’s on H forms a vector space.

Exercise: With the norm defined by the vector space of b.l.op’s on H becomes

a normed linear space. O
We denote this normed linear space by B(H).

Exercise: B(H) is a complete normed linear space. O
Now, let T, S € B(H). Their product T'S is defined as the function on H which

maps the element u € H on the element T'(Su). It is easily seen that 7S is a linear

operator on H. Moreover T'(S; + S3) = T'Sy + T'Sy etc, while in general T'S # ST.
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Since ||T'Sul| = [ T(Sw)[| < [[T[||Sull < [|T[[[[SH|ull, we see that | TS| < [T[1S]], i.e.
TS e B(H).

Referring to the Projection Theorem [I.1] set ¢ = Ph, where ¢ is the orthogonal
projection (best approximation) of h on a closed subspace G of H. P is called the
(orthogonal) projection operator onto G.

Exercise: Show that
(i) P is a linear operator on H.
(ii) P is a bounded linear operator on H.

(iii) RanP = G, KerP = G+, Ran(I — P) = G+, Ker(I — P) = G, where I is the
identity operator [u = u, Yu € H (obviously I € B(H) with ||I]| = 1).

(iv) P2=P,||P| = 1.

(v) I — P is the projection operator onto G*. O

1.9 The Lax—Milgram and the Galerkin theorems

Henceforth, to simplify the analysis, we will usually consider real Hilbert spaces, i.e.

complete inner product spaces over the real numbers with (Af, ug) = A\u(f,g9), VA u
real, f,g € H, and (f,g9) = (9. f). V f,g € H.

A (real) bilinear form on a real Hilbert space H is a map from H x H into R denoted

by B(f,g) for f,g € H, which satisfies:

B(Afi + Aafe,9) = MB(f1,9) + A B(f2, 9)

B(f, 1191 + p292) = i B(f, 1) + p2B(f, g2)

for fi, f,gi,9 € H, u;, \i € R. In general, B(f,g) # B(g, f), i.e. B is not symmetric.

The following theorem will be central in the sequel:

Theorem 1.4 (Lax—Milgram Theorem). Let H be a (real) Hilbert space and let B(.,.) :

H x H — R be a bilinear form on H for which there exist constants ¢; > 0, co > 0
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such that

(1) |B(o,¥)| < cllollllvll, Vo,¢eH,
(i)  B(o,0) > co|l0ll*, Vo€ H.

Let F : H — R be a given (real-valued) bounded linear functional on H. Then there

erists a unique u € H satisfying
B(u,v) = F(v) forallv € H.
Moreover,
1
el < ZIIE

Proof. Let ¢ € H be fixed. Then ® : H — R | defined for every v € H by ®(v) =
B(¢,v), defines a continuous linear functional on H. (Linearity follows from the fact

that B is a bilinear form. For boundedness observe that for each v € H

[@(0)| = [B(¢, )| < allollf|v]l

Hence || @] < ¢1[[¢]] < o0).
By the Riesz Representation Theorem therefore, there exists a unique element
gE € H such that
®(v) = B(p,v) = (v,6) for every v € H. (1.12)
Hence for every ¢ € H, we define a ¢ € H by and denote the correspondence
O — b by 6= Ag, i.e. put

B(,v) = (v, Ad), Vo € H, Vv € H. (1.13)

Now A is a linear operator defined on H. To show linearity, observe that, given

¢, € H, for every v € H and A, u real we have
(v, A(AG + py)) = BAG + pyp, v) = AB(,v) + uB(1,v) =
= (0, A9) + (v, Ap) = (v, A + pAY).

Hence A(Ap + pp) = ANA¢ + pAp <= A is linear.
We claim now that the range of A, Ran(A), is a closed subspace of H. It is (easily)

a subspace. To show that it is closed, let (;gn = A¢, be a convergent sequence, such
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that ¢, — ¢. Now, since B(¢p,v) = (v, Ady) Vv € H = B¢y — ¢, v) = (v, Ad,, —
A¢p) Vv € H. Choose ¢y — ¢y, = v and using (i) get [[¢n — ¢l < 2| Adn — Adpll.
Hence (¢,,) is a Cauchy sequence in H, i.e. there exists ¢ € H such that ¢, — ¢. We
now show that ¢ = A¢, thus showing that ¢ € Ran(A), i.e. that Ran(A) is closed.

Indeed, | B(¢n,0) — B(6,v)] < el — lllo]] gives that

lim B(¢n,v) = B(g,v), Vv € H.

n—oo

Also (A, v) = (6, 0) = ($,) since (6, 0) = (6,0)| < [|dn— [ 0]|. Since B(¢n,v) =
(A, v) Yv € H = B(p,v) = (p,v) Vv € V, ie. ¢ = Ag, by definition of A. Hence
Ran(A) is closed. We now claim that Ran(A) = H. Suppose that Ran(A) is properly
included in H, so that 3z # 0 € (Ran(A4))*. Hence (z,v) = 0 Vv € Ran(A4). In
particular V¢ € H, B(¢,2) = (A¢,z) = 0. Hence for ¢ = 2, 0 = B(z,2) > 2|2
= z = 0 (contradiction). So Ran(A) = H.

Now, given F, a b.l.f. on H, by Riesz representation, 3!y € H such that F(v) =
(x,v) Vv € H. Since Ran(A) = H, Ju € H such that Au = x. Hence Ju such that

F(v) = (Au,v) = B(u,v), Yve H

and we have existence of u as claimed in the statement of the theorem.
For uniqueness, suppose that Ju; # wus such that B(uj,v) = F(v) = B(us,v)
Vv € H. Hence

B(uy — ug,v) =0Vv € H= 0= B(u; — ug,uy — us) > collug — us||* = u1 = uo.

Finally since B(u,u) = F(u), (i), (ii) give that (u # 0) ca|jul|? < |F(u)], from which

ul| < LEWL Hence
ez |[lull

1|F
lul < sup ~F
w0 C2 ||

1
=—|Fl.
C2
]

We finally present a basic theorem for the Galerkin approzimation (see below for
definition) u; to the solution u of B(u,v) = F(v) guaranteed by the Lax—Milgram

theorem.
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Theorem 1.5 (Galerkin). Let H be a real Hilbert space and let B(.,.): H x H - R

be a bilinear form on H which satisfies:

(1) |B(¢,¥)| < cillollllell, Vo, e H,
(i)  B(o,0) > co|l0ll*, Vo€ H,

for some constants ¢; > 0, co > 0 independent of ¢, v € H. Let F' be a given real—
valued b.1.f. on H and let u be the unique element of H, guaranteed by the Laz—Milgram
theorem, satisfying B(u,v) = F(v), Vv € H.

Let {Sp}, for 0 < h <1, be a family of finite-dimensional subspaces of H. For every

h there exists a unique uy such that
B(uh,vh) = F(Uh), Yo, € 5. (114)

We call uy, the Galerkin approximation of u n Sj.

Moreover we have the error estimate
Ju—unll < inf Jlu— x| (1.15)
U — U — inf [lu— vl )
hil = Co XESh X

Proof. The existence—uniqueness of u, € S is guaranteed by the Lax—Milgram the-
orem applied to the Hilbert space (S, || - ||). Alternatively, let {¢;}7., be a basis for
Sh, where m = m(h) = dimSj, and try to find u, € Sj, in the form u;, = Z;”:l cjd;.

By (1.14) uy, satisfies

B(ch(bja(bi) = F(¢) 1§i§m:>ZCjB(¢j,¢i)=F(¢i), 1<e<m.
j=1

j=1
Hence if A is the m x m matrix given by A;; = B(¢;, ¢:), 1 <14,j < m, the ¢;’s are the

solution of the linear system
j=1

The associated homogeneous system Z;n:l Aijc; =0, 1 < i < m, has only the zero
solution. (Since Y 7", Ayj¢; = 0= B(3_7L, G¢j,¢i) =0, 1 <i <m, = B(vy,vs) =0,

where v, = 377 ¢;¢;. Hence, by (ii) vy = 0 = ¢ = 0.) Therefore A is invertible and
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(1.16)) has a unique solution, i.e. (1.14) has a unique solution w; € S,. (Exercise:
Show that A is positive definite.)

For the error estimate observe that by (ii)
collu — up|* < B(u — up,u — up) = B(u — up, u) (1.17)

(since B(up, ) = F(¢) = B(u,¢) Yy € S, = B(u—up,) =0 V¢ € Sy). For the

same reason, for any y € S,
B(u—up,u) = B(u —up,u—x) < aflu—up| [|u— x|,

using (i).

By (1.17) we conclude therefore that cy|lu — upl|? < ¢p||lu — upll ||u — x||, i-e.

& .
lu—wunll < “lx—ull Vx €8 e
2

c1 . c
lu —unll < = inf [x = ul = =] Pau—ul,
Co XESh Co
where P, is the projection operator on S,. Hence (1.15)) is proved. O

Here is an immediate corollary to Galerkin’s Theorem [1.5]

Corollary 1.6. With notation introduced in Theorem suppose that the family Sy,
of subspaces satisfies

lim inf ||u— x| = 0.
fing inf lu—x|| =0
Then limy, o ||u — us|| = 0. O

Finally we mention that in the case of a symmetric, bilinear form B, i.e. when (in

addition to (i), (ii) of Theorem [1.4))
(i)  B(u,v) = B(v,u), Yu,v€ H,
we can obtain an alternative of the problem of finding v € H such that
B(u,v) = F(v), Yvé€H,

where I is a bounded linear functional on H.

For v € H consider the (nonlinear) functional J : H — R defined by

J(v) = %B@, v) = F(v), (1.18)



and the associated optimization problem of finding z € H such that

J(z) = min J(v). (1.19)

veH

Then, the following holds:

Theorem 1.7 (Rayleigh—Ritz). Suppose B is a symmetric, bilinear form which satisfies

the hypotheses (i), (ii) of Theorem[1.4. Then, the problem (1.19) of minimizing over
H the functional J defined by (1.18]) has a unique solution which coincides with u, the
existence—uniqueness of which was guaranteed by the Laz—Milgram Theorem [I.4).

Proof. Let u be the solution of the problem B(u,v) = F(v), Vv € H. Then Vw € H:
J(u+w) = %B(u+w,u+w) — F(u+w) = (due to the symmetry of B) =
= (00 - F)) + (5 Blww)) + (Bluw) - Fw)
= J(u)+ %B(w, w), since B(u,w) = F(w) by Theorem [1.4]
Hence

2
Therefore Vw € H,w # 0: J(u+w) > J(u) ie.

T+ w) = J(u) + = B(w, w) > J(u) + 2> by (i)

J(u) =minJ(v) and J(v) > J(u) if v # .

veH

]

Immediately, we have the following corollary, which is the analog of Theorem [L.5]

Corollary 1.8 (Rayleigh-Ritz, Galerkin). With notation introduced in Theorem
and the additional hypothesis of symmetry of B, the problem of minimizing the func-
tional J defined by (1.18), over Sy, i.e. finding uy € Sy such that

J(up) = min J(x)

XESh

has a unique solution uy, which coincides with the Galerkin approzimation in Sy, of u,

constructed in Theorem [1.3.
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Chapter 2

Elements of the Theory of Sobolev Spaces
and Variational Formulation of Boundary—

Value Problems in One Dimension

This chapter is based on the analogous material in the books [2.2] by H. Brezis and [2.7]
by H. Triebel. We assume the reader is acquainted with the basic theory of Lebesgue

measure and integration, as e.g. in Royden, [2.6].

2.1 Motivation

We consider the following “two-point” boundary—value problem in one dimension. Find

a real-valued function u(z), defined for = € [a,b] and satisfying

u(a) = u(b) = 0.

Here p(x), q(x), f(z) are real-valued functions defined on [a, b] such that p € C*([a, ]),
p(z) > a >0 for z € [a,b], ¢ € C([a,b]), g(x) > 0Vz € [a,b], f € C([a,b]). A classical
solution of the boundary-value problem (b.v.p.) () is a function u of class C?([a, )
which satisfies (%) in the usual sense.

If we multiply the equation in (x) by a function ¢ € C*([a,b]), such that ¢(a) =

¢(b) = 0 and integrate by parts we obtain

b b b
() [ wtordn s [quods = [ fodn, Yo e CY(ab) ola) = o) = 0.
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Note that (**) makes sense for u € C'([a,b]), as opposed to (*) which requires u €
C?*([a,b]). In fact (xx) just requires that u,u’ be integrable functions. One may say
(vaguely) that a solution u € C'([a,b]) (such that u(a) = u(b) = 0) of (sx*) is (one kind
of) a weak or generalized solution of (x).

The wvariational method for solving, (i.e. proving existence and uniqueness of solu-
tions of) problems such as (%) — and also boundary—value problems for partial differ-

ential equations proceeds roughly as follows:

(i) We define precisely what we mean by a weak solution of (x). Typically it will be
the solution of a weak (or variational) form of the problem (x), such as (xx), or,
equivalently the solution of an appropriate minimization problem. It turns out
that spaces of continuous functions such as C*([a, b]) etc. are not suitable spaces
of weak solutions because they are not complete in L?. Hence we must work in
Hilbert spaces in which generalized (weak) derivatives may be defined. In this,

the Sobolev spaces will play a central role.

(ii)) We show existence and uniqueness of the weak solution, for example by the Laz—
Milgram theorem; note that (xx) suggests the variational problem
B(u,v) = ff(pu’v’ + quv) = F(v) = f; fv, for u,v in an appropriate Hilbert
space. Note that the Lax-Milgram theorem holds in a Hilbert space, i.e. it needs

completeness of the inner product space to be valid.

(iii) We then prove that the weak solution is sufficiently regular. For example, under
our hypotheses on p,q and f it turns out that the weak solution is in C?(a, b])

and satisfies the zero boundary conditions.
(iv) We finally prove that a weak solution is a classical solution of (x).

Note that a weak formulation of the problem provides us also with a Galerkin
method for approximating its weak solution in a suitably chosen finite—dimensional
subspace of the Hilbert space in which the problem is posed. This space must be
chosen so that it has good approximation properties, i.e. that in inf,cg, ||u — x| in
(1.15)) is small, and so that the linear system (|1.16) may be solved in an efficient

manner.
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2.2 Notation and preliminaries

We now introduce some notation on function spaces that will be used in the sequel and
list some useful density and approximation results in the spaces LP.
We let 2 denote an open subset of R%, not necessarily bounded. For simplicity we

shall consider only real-valued functions defined on Q or RY. We let
C(2) = space of continuous functions on Q.

Ck(Q) = space of k-times differentiable functions on €, i.e the space of those functions

f(x), x € Q such that % are continuous functions on 2 for all integers
1 d

0<a; <k, 1<i<dsuchthat a; +ay+---+aq <k Let C°Q)=C(Q).
C(Q) = space of continuous functions on Q. Analogously define C*(Q2), C*°(Q).

C.(Q) = space of functions in C(£2) whose support is a compact set included in €. (If
f € C(Q), support of f = suppf = {zx € Q: f(x)# 0}). Hence these functions

vanish outside a compact set included in 2.
CEQ) = C*Q)NC(N).
C2(Q) = C>*(Q)NC(N). Often the notation C§°(£2) is used instead of C'°(€).

We recall a few facts about the spaces LP(Q2), cf. e.g. [2.6]. Let dz denote the
Lebesgue measure in RY. By L'(2) we denote the space of (Lebesgue) integrable

functions f on €2, i.e. the functions for which

I fllee = I fllzr @) = /Q |f(z)|dr < oc.

(We denote usually [, f = [, f(z)dx).
Let 1 < p < oo. Then

L) ={f: Q= R;|f|” € L'(D)}.

We put

1

1 lr = 1f oy = ( / | f(:z:)\”da:) g
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For p = oo we define L*(Q2) = {f : @ — R, f measurable such that there exists a
constant C' < oo such that |f(z)] < C a.e. (almost everywhere) in 2, i.e. such that
|f(z)|] < C for all z € Q except possibly for some x belonging to a subset of 2 of

Lebesgue measure zero}. We put

| fllzee = || fllzoe(@) = inf{C : |f(z)] < C a.e. in 2}

and note that |f(z)| < ||f||z~ for every x € Q — O, where O has measure 0. The
quantities || f||», 1 < p < 0o are norms on the respective spaces L, which are complete
under these norms. We have already introduced the Hilbert space L? = L?(Q)) in §1.5
C.

We note once more that what are usually referred to as “functions” f(x) € LP(Q)
are really equivalence classes of functions, where the equivalence f ~ ¢ holds if and
only if f(z) = g(x) a.e. in Q. For example, when we say that f = 0 as an element of
LP(Q)), we mean that f(z) = 0 for all « outside a set of measure zero in €2, i.e. that
f(z) =0 a.e. in ; contrast with the situation f € C(Q), f=0= f(x) =0Vz € Q.

We list below some density and approximation results in LP, 1 < p < oo, wherein
elements of LP are approximated by continuous (or smoother) functions, and that will
be frequently used in the sequel, mainly for p = 2. Their proofs may be found in the

Appendix.
Proposition 2.1. The step functions are dense in LP(Q2), 1 < p < oco.
Theorem 2.2. The space C.(f2) is dense in LP(Q2), 1 < p < oc.

In the sequel L{, (£2) will denote the functions f on  for which [ |f(z)|dz < oo

loc
for every compact set K C Q. For example, f(x) = % belongs to L ((0,1)) but not

to L'((0,1)).

Proposition 2.3. If f € L} (Q) is such that

loc

/ fu=0, Yue C.(Q),
0

then f =0 a.e. in €.
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Definition 2.4. A regularizing sequence (or a sequence of mollifiers) is a sequence of

functions (p,), such that:

pn € C(RY),

anOOan,

d 2
1 1
n C B(0,—) = R? - = 2 < -
supp p, € B(0, ~) ={z € || (E x) <—}

i=1
/ pndr =1.
Rd

Such functions clearly exist. E.g. in R | let

e if lz| <1
pr) =
0 if |z] > 1.

Clearly p(x) is continuous on R and

H](l‘) _

. 1
PV () = ot Tkt

where II;(z) are polynomials of degree 3j — 2. Since y/e ¥ — 0 as y — +oo we see

that p(x) € C°(R). Of course suppp = [—1, 1]. Let

C’z(/_ip(x)dx)_l.

Define
pn(x) = C'n p(nz).
Then
pn € CZ(R), pu(z) >0 0on R, suppp, = [—%7 %L /_an dz = 1.
In R? define

1
el=’-1 if |z] < 1

0 if |z| > 1.

p(r) =

(where |z] = (320, 22)V/2) and

=11

d

pn(x) = Cnlp(nz), C = ( /R p(z) dx) -

Then it is straightforward to see that the sequence (p,) satisfies the requirements of

Definition [2.4]
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Denote the convolution of two functions f(x), g(x) defined on R? as the function

(fxg)(x) = g flz—y)g(y)dy

(provided the integral exists). The following results show that we may approximate

«

continuous and LP functions by the “regularized means” or “ mollifications” p, * f

introduced by Sobolev. Their proofs may be found in the Appendix.
Lemma 2.5. (i) Let f € C(RY). Then p, x f € C®(R?) and p, * f — f uniformly
on every compact set K C R?, i.e.
suE]f(x) —(pnx f)(x)] =0, n— o0
[AS

V K compact C RY.

(ii) Let f € C.(Q). Extend f by zero on the whole of RY. Then, for sufficiently large
n, pp* f € CX(Q) and

sug |f(x) = (pn*x f)(z)] = 0, n— oc.

HAS

(iii) Let f € LP(Q), 1 < p < oo. Eaxtend f by zero to the whole of RY. Then
pn * [ € C(R?Y). Moreover p, x f € LP(Q), |lpn * fller@) < Ifllir@), and
|f = pn* fllo@) — 0, n — 0.

Finally we mention the following basic result whose proof follows from the above

lemmas and may be found in the Appendix.

Proposition 2.6. The space C°(Q2) is dense in LP(Q2), if 1 < p < o0.

2.3 The Sobolev space H'(I)

Let I = (a,b) be an open interval in R. (We will mainly have a bounded interval (a, b)
in the applications but here we will suppose that I could be unbounded in general, i.e.

that possibly a = —oo and/or b = oo, unless otherwise stated).

Definition 2.7. The Sobolev space H'(I) is defined by

HY(I) ={u e L*(I): 3g € L*(I) such that /ugb/ = — /g¢, Vo e CHI)L.
I I

For uw € H'(I) we denote g = ' and call g the weak (generalized) derivative of u (in

the L? sense).

30



Remarks 2.8.

(i)

(i)

(iii)

When there is no reason for confusion we shall denote H' = H'(I), L? = L*(I),

ete.

It is clear that the generalized derivative g in the above definition is unique.
For suppose 31,92 € L*(I) such that [, (g1 — g2)¢ = 0, Vo € CL(I). Since
C=(I) C CX(I) C L*(I) and since (by Proposition [2.6) C>°([) is dense in L*(I),
it follows that C!(I) is dense in L*(I). It follows that g; — go = 0 in L*(I).
(N.B. In general in a Hilbert space H, where D C H dense in H, we prove that
(9,0) =0Vp € D = g =0, since I¢; € D such that ¢; — ¢, i — oo in H.
Therefore 0 = (g, ¢;) — (g9,9) = g = 0). We emphasize again that g, = g, in L?

means that g,(z) = go(z) a.e. in I.

The functions ¢ € C}(I) in the definition of H' are called test functions. One
could take C°(I) to be the set of test functions instead of C}(I). (The only
thing to show is that if [,u¢’ = — [, go, for u,g € L*(I), holds for every ¢ €
C(I), then it will hold for every ¢ € CL(I). This follows from the facts that
¢ € CHI) = p, x ¢ € C>(I) for sufficient large n and p,, x ¢ — ¢ in L*(I), and
also that (p,* @) = p,x¢’ € C°(I) and p,*¢’ — ¢’ in L*(I), see e.g. the proofs
of Lemma [2.5] (i), (iii).

It is clear that if w € C*(I)NL*(I) and if the (classical) derivative v’ of u belongs
to L*(I), then integration by parts gives that [,u¢’ = — [,u'¢ Vo € CL(I), i.e.
that v’ is the weak derivative of u, i.e. that u € H'(I). Of course, if I is bounded,
then u € CY(I) = u,u’ € L*(I) and we have C*(I) C HY(I).

There are other ways of defining the Sobolev space H!. Using e.g. the theory of
distributions we may conclude that every u € L?(I) has a distributional derivative
u'. We say that uw € H'(I) if v/ is represented, as a distribution, by a function

u' € L*(I). If I = R we may also define H' using Fourier transforms. O

Examples 2.9.

(i)

Consider u(z) = |x| on I = (—1,1). Clearly u € C(I), u € L*(I), but u fails to
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have a classical derivative at x = 0. Consider the function

1 if —1<z<0
g(x) =
1 if 0O<z<l.

Clearly, g € L*(I). In addition for each ¢ € C}([I),

-/ llg<x>¢<x> i = - 01<—1>¢<m> i [ () de

=~ [~ [ ow)de =~ (-0,
- o+ [ (oot [ )
_ /_11 2|6 (2) d — /_11 w(z)' (x) da.
It follows that u(z) = |z| € H'((—1,1)) and v’ = g is the weak derivative of u.

(i) More generally, if I is a bounded interval and u € C(I) with u’ (classical deriva-
tive) piecewise continuous on I (as would be the case e.g. if u is a piecewise
polynomial, continuous function on I), then v € H'(I) and its weak derivative

coincides with the classical derivative a.e. in I.
(iii) Asin (i) the function

r ifx>0

1
uw) = (ol )=
0 ifxz<0

on [ = (—1,1) belongs to H' and its weak derivative «’ is the function

0 if —1<2<0
h(x) =

1 if O0<z<l,
which is called Heaviside’s function. Clearly h € L*(I). Does h belong to H*(I)?
The answer is no: Suppose that h € H'(I). Then there must exist v € L*(I)
such that [ h¢' = — [;ve, V¢ € C.(I), i.e. a v € L*(I) such that f_llvgb =
—[Lhe! = — [J ¢ = —6(1) + ¢(0) = ¢(0), Y6 € CH(I). Take then such a
¢ with support in the interval (—1,0). It follows that ffl v = f;wﬁ =0
V¢ € C((—1,0)). Since C!((—1,0)) is dense in L*((—1,0)), as in Remark
(ii), we see that v(z) = 0 a.e. in (—1,0). Analogously, taking ¢ € C}(0,1) we
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prove that v(z) = 0 a.e. in (0,1). We conclude therefore that v = 0 a.e. in
(—1,1). But that would contradict fjl vp = ¢(0), Vo € CHI). (Of course,
as a distribution, h(z) has a distributional derivative which coincides with the

§—“function”, h/ = 8. We just proved that 6y & L*(I)). O

It is clear that H'(I) is a linear subspace of L*(I), since if u, v € H'(I) and o/,
v" are their weak derivatives, then A\’ + pv’ is the weak derivative of Au + pv. Hence
Au+ pv € HY(I), and (Au+ pv) = M/ + pv’ for A, p € R. We denote by (-,-), || - ||
respectively, the inner product, resp. norm of L? = L*(I), i.e. we let, for u, v € L*(I),

(u,v) = [;u(x)v(x)dz, |u]| = (u,u)2. Then, for u, v € H'(I) we define

(U,U)l = (uav)_l_(u/vvl):

1 1
(lall® + /1) * = (w, )z -

lull, =
It is clear that (-, -); is an inner product on H' = H'(I) and || - ||; the induced norm on
H'(I). (To be precise, sometimes we shall denote || - [y = || - || g2(s) etc.). Hence H'([)

becomes an inner product space.
Theorem 2.10. The space (H', || - ||1) is a Hilbert space.

Proof. We only need to show that H!(I) is complete with respect to the norm || - ||;.

Let (u,) € H*(I) be a Cauchy sequence in the norm || - ||, i.e. let

lim  ||[tup — un|l = 0.
m,n—00

By the definition of || - ||; it follows that (u,) and (u/,) are Cauchy sequences in L.
Since L? is complete, there exist u,g € L*(I) such that u, — v in L? u/, — g in L%
Now, by definition, (u,,¢’) = —(u,, ¢), Vo € CH(I), forn =1,2,3,....

Since V¢ € CH(I)

[(tn, @) = (u, ¢")] < lup —ull[|¢'[] = 0, n— oo

and
|(uy,, @) — (9, 9)] < llwy, = glllloll =0, n— oo,

it follows that (u,¢’) = —(g,9), Vo € C(I), i.e. that u € H*(I) and v’ = g.
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It remains to show that u, — v as n — oo in H'. But this follows from
[ — ullf = Jlun —wll* + [Jug, — '] = JJun — wf|* + [|uj, = glI* = 0, as n — oco.
Hence Ju € H'(I) such that u,, — u in H', i.e. H'(I) is complete. O

Remark 2.11. Consider the map T : H' — L? x L? given by Tu = [u,u/], v € H'.
Equipping L? x L? with the norm ((u,u) + (v,v))/? we see that T is an isometry of

H' onto a closed subspace of L? x L2. It follows that H' is separable, since L? is. [
The following result will be very important in the sequel:

Theorem 2.12. If u € HY(I), then 34 € C(I) such that u =4 a.e. in I and

() — aly) = / “Wt)dt, VoyeT

Before proving the theorem we make some comments on its content. Note first
that if w € H'(I) and u = v a.e. on I, then v € H'(I). Then Theorem tells us
that in the equivalence class of an element u € H'(I) there is one (and only one since
u,v € C(I), u =v a.e. on I = u(xr) = v(z), Vo € I) continuous “representative” of u,
denoted in the theorem by @. Hence, when there is need to do so, we shall use instead
of w its continuous representative @. For example as the value u(x) for some z € T (not
well-defined if u € L?) we mean the value of @ at that z. Sometimes we shall replace u
by @ with no special mention or by just noting that u is continuous, “upon modification
on a set of measure zero in I”. We emphasize that the statement “I% € C(I) such
that w = @ a.e. in I” is different from the statement that “u is continuous a.e. in I”.

For the proof of Theorem we shall need two lemmata.

Lemma 2.13. Let f € L}, .(I) such that

loc
[ 7o' =0 woeciu,
I
Then, there exists a constant C such that f = C a.e. in I.

Proof. Let 1 be a fixed function in C,(I) such that [, 1 = 1. We shall show that, given
w € C,(I), there exists ¢ € C}(I), such that ¢' = w—( [, w)i). Indeed, given w € C.(I),
consider h(z) = w(z) — ([, w)y(x). Clearly h € C.(I). Put ¢(z) = [ h(z)dz. Let
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supph C [e,d] C (a,b) = I. Clearly, for a <y < ¢, ¢(y fy 0,

and ford < z<b

o) = [nwar=[n@a=[n Scen
e fofo-fo- e

It follows that ¢ € C.(I). Also ¢'(z) = h(z) € C.(I), i.e. p € CH(I), and ¢' = h =
w — ([, w)h. Now, by hypothesis, [, f¢’ = 0. In particular, for each w € C.(I),

(o) =0 = fom fim fomom [ ofom-
[l )

By Proposition [2.3| we conclude that f(x fYae onl. ie f(x)=C=/[, fo
I I

a.c. on [. O

Lemma 2.14. Let g € L}, (I). For yy € I fized, put

o(z) = /xg(t) dt, vel.

/Iw' - —/ngs, Ve € CN(I).

Then v e C(I) and

Proof. That v € C(I) when g € L},.(I), is a well-known fact from measure theory.
We now have for ¢ € C!(I) that

/Iw' _ /I</y:g(t)dt) 6'(x) da
_ —/ayo da (/xyog(t) dt) o'(z) + /yb da (/y:g(t) dt) 6'(x).
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Now

[ ([Tawar) e = - [ M/‘ﬁ

= (since g(t)¢'(x) is integrable on A, see figure)

= —/g() x) dedt = / dt/ dxg(t)

- _/ dt/ ¢! / g(t)p(t) dt.
Similarly we may prove that
b - .
¢ dt ) ¢'(z) = - dt.
/yo x(/yo g(t) t)¢($) /yog(t)¢(t) ’
We conclude that

lmw:—[fg¢—4?¢=—[ﬁ¢\weCﬂn-

Proof of Theorem [2.12] Fix y, € I. Note that since v € H'(I) = v’ € L*(I) =
u' € L} (I). Put

]

i(z) = / W (t) dt.
Yo
By Lemmau € C(I) and [,u¢p’ = — [,u'¢, Yo € CL(I). But by definition of v/,
— [;u'o = [up’, Yo € C’g( ). Therefore
/(u —u)¢' =0, Yo e CHI).

I
By Lemma [2.13] we conclude that there exists a constant C' such that u —u = C' a.e.
on I. Define now @(z) = @(z) — C. It follows that @ € C(I) and @ = u a.e. on I.

Moreover for z,y € 1,

i(x) —aly) = alz) - aly /u_//

]

Remark 2.15. Lemma gives in particular that the primitive (antiderivative) v of
a function g € L*(I) is in H'(I) provided v € L*(I). (The latter fact is always true if
I is bounded). O
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The following theorem gives a technical tool that will be often used in sequel.
Theorem 2.16 (Extension theorem). There exists an extension operator
E:HY(I) — H'(R),
linear and continuous, such that
(i) Eul; =u Yu € H'(I), (f|; denotes the restriction of f to I).
(ii) | Bullre@) < Cllullray Yu € HY(I).
(iii) | Eull gy < Cllullmay Yu € HY(T).

(In (i) we can take C' = 2v/2 and in (iii) C = Co(1+1/u(1)), where Cy some constant,
independent of u and I, and p(I) the length of I — possibly u(I) = 0o).

Proof. We begin with the case I = (0,00). We will show that the extension operator
defined by even reflection about x = 0, i.e. by

u(x) fz>0
(Bu)(z) = u*(x) = .
u(—z) ifx <0,

u € H'(I), solves the problem. Indeed

0 (e’
22y = / (u(~2))?da + / (u())? dz = 2full 2.

So (ii) is satisfied. (Obviously E is linear and satisfies (i)). Now put

o(z) = u(x) ifz>0

—u/(—z) if x <0.

Clearly v € L*(R) since ||U||iQ(R) = 2||u/||iQ(I). By Theorem [2.2| we also have that

u*(z) —u(0) = /OI u'(t)dt = /va(t) dt, for z > 0.

Also, for x < 0,
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Hence, u*(z) — u(0) = [ v(t)dt, 2 € R. Since u* € L*(R) and v € L*(R), it follows
by Lemma (see Remark [2.15)) that u* € H'(R) and (u*)’ = v. Hence

* * 2 2 2 2
Ju ||?{1(R) = [Ju H%?(R) + ||U||L2(R) =2 <||U||L2(1) + ||U/||L2(1)> = 2||U||H1(1r)-

Hence in the case I = (0,00), with Eu = u*, (ii) and (iii) are satisfied (as equalities)
with C' = v/2. (The proof holds for any unbounded interval of the form (a,c0) or
(—o0,a), a € R. For example, for u € H'((a,00)), define Eu by reflection evenly

about x = a, i.e. as
u(z) ifx>a
(Bu)(z) = _
u(2a —z) if x <a,
and the proof follows — with the same constants C — mutatis mutandis).
We now turn to the case of a bounded interval. It suffices to consider I = (0,1).
Consider a fixed function n € C*(R), 0 < n(x) < 1, Vz € R, such that
1 ifz <
n(w) =
0 ifx> %,
and for every f defined on (0,1) denote by f its extension by zero to (0,00), i.e. put

f(z) ifx e (0,1)
0 ifz>1.

fla) =

Now if u € HY(I) it follows that ni € H*((0,00)) and that (n@) = '@ + nu’, where
by u' we mean the extension by zero to (0,00) of v’ € L?((0,1)). To see this, note first

that nu € L*((0,00)) since

3
oo 4
~ 2
/0 n* i S/o u? < Jullzz 0.y

Moreover, for any ¢ € C!((0,00)) we have that

/0"0 nug' = /Olun¢' = /Olu((U@, —1n'¢) = /Olu(nﬁb), - /Olun’qb

= (since ¢ € C;((0,00)) = n¢ € C2((0,1)), and u € H'((0,1)))
= —/0 U’(n¢)—/0 un’cb——/o (U’n+un/)¢—/o 99,

un+uny if z€(0,1)
0 ifx>1.

where

g(r) =
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Now g € L*((0,00)) since

1 1 1
o0 = [ (U’n+w7’)2§2( [ [ (n’)2u2)
0 0 0
1 1 )
< N2 / 2 2 <
< 2( [ w2+ WP [ ) < Clllig,

(Note that we can easily arrange that maxo<,<1 |'(z)| be equal to e.g. 2.5). Moreover
g = n'i+ nu'. It follows that ni € H'((0,00)) and (nu) = g = n'u + mi. Returning
to the proof of the theorem, for u € H'(I), I = (0, 1), write u as

u=nu+ (1 —mn)u, n asabove.

The function nu can be extended to (0,00) by ni as before. Clearly nu € H*((0,0))

~ 2
and ||Tlu||%2((0,oo)) S HUHL2((0,1))' AISO, as above

. > 2 2
H(W)’H%%(o,oo)) = /0 g° <2 (Hu,HLQ(I) + max |77/(x)|2HU“L2((0,1)))

0<x<1

2
< CIHU”Hl(I)-
It follows that

198571 0,00y < Collwll gy

Now, extend na € H'((0,00)) as in the first part of the proof to a function v;(z) €
H'(R) by even reflection about z = 0. It follows that

o1l 22y = V217l 20,00 < V2llull 2

and that
1]l i1y = V2008l 110,001 < V2C2lull 1 p)-

(It is clear that v;|; = nu and that the operation nu +— vy is linear in u).
Analogously the function (1 —n)u (for which (1 —n)u =0 for 0 < 2 < 1/4), can be

extended to (—o0,1) by (1 — 1)t where

u(z) if0<ax<l1

0 if —co<z<0.

We obtain again (1 —n)u € H'((—o0,1)) with

1= m)all 2 ooy < Nltll 2y
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and
1L = m)ll 1 ((—s01y) < Colleell sy

Extend now (1 — n)u to a function v, € H'(R) by (even) reflection about z = 1. Tt
follows that
[val 2z = V2I(1 = D)l L2((=o01)) < V200l 121y

and that
lvall 1y = V2I(T = )il 11 ((—o0,1y) < V2C0|ull g1y,

that v3|; = (1 — n)u and that (1 — n)u — vs is linear.

We define now the operator E as Eu = v; +vq. Clearly E satisfies (i) and is linear;
(ii) and (iii) follow by the above and the triangle inequality. (Note that when I = (a, b),
1 must be redefined as

Tr —a

na,b(:E) = 77(1_ B b)?

so that

Tool) = — 1/ (E=3))
[

The following result is a basic density theorem for H*(I) and will be used very often

in sequel.

Theorem 2.17. Let u € H'(I). There exists a sequence (u,) of functions in C>°(R)
such that

Up|r — w in H'(I), n — oo.

Comment: The theorem asserts that if I = R, then C>°(R) is dense in H*(R).
Otherwise, C>°(I) is not dense in H'(I) — in fact we shall see later that the closure of
C*(I) in H'(I) is the space ]fllconsisting of those functions of H'(I) which are zero
at the boundary of I. If I is bounded, Theorem asserts that there is a sequence

of functions u, € C*°(I) such that u, — u in H(I).

Proof of Theorem 2.17. First note that it suffices to consider the case I = R. For
suppose that the result holds for R. If I C R extend u to Eu in H'(R) as in Theo-
rem [2.16, Then there exists a sequence u,, € C°(R) such that |lu, — Eullgi®) — 0,
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n — o0o. But then
tnlr — wllgr oy = Jun — Eullg oy < |Jun — Bullgr@y — 0, n — oo,

i.e. the result holds for I.

Hence consider the case I = R. The approximating sequence is constructed by reg-
ularization and truncation as u, = (,(pn*u). Here (p,), n = 1,2, ... is the regularizing
sequence defined in Def. 2.4 and (, = (,(z) € C°(R) is a truncation function, defined
forn=1,2,... by

x

Gl =¢(5).,

n

where ((x) is a fixed function in C2°(R) such that
1 if 2] <1
0 if 2| > 2.

Hence (,(x) =1 for |z| <n and (,(z) = 0 for |z| > 2n. Moreover,

1 C
Gu(@) = ~1¢ (5) | < = where €' = max|¢'(2)]

Note, by Lebesgue’s dominated convergence theorem, that we have (,,f — f asn — oo
in L? for every f € L*(R). Let now u, = (,(pn * u). Clearly u, € C>®(R) since
¢ € C(R) and p, x u € C*°(R), cf. Lemma [2.5] (iii) We have

Un = U = Gulpn x 1) = u = Gu[(pn * 1) — u] + (Guu — w).

It follows that

|tn —ullr2my < |[Gal(pn * w) — vl L2y + [[Grtr — | 2(r)

< lpn *u = ul| 2@y + [[Gou — ul[2@) = 0, n = o0

by the above and Lemma (iii). Now ), = Cu(pn * u) 4+ (pn * u). (Note that for
u € HYR), p, *xu € HY(R) and (p, * u)’ = p, * u': The interested reader may verify
that for ¢ € C1(R) the following equalities hold

/_OO (pnxu)p’ = /_OO u(pn(—2) *x @) = /°° u(pp(—2) * ¢) = — /_Oo W (pn(—2) * &)

o0 [e.9] —00

= — [ nruie)

[e.9]
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Hence, since u), — u' = (,(pn * u') + ,(pn * u) — u/, we have

uy, = 'l 2m) < (G (on * W) L2y + [[Cal(on * v') — || 2wy
+ Gt — || 2y < 1;13]1§<|CZ(1?)| | o * u| 2w)

+ oo *u — || 2wy + || Gutt’ — || 2wy — 0 as n — oo,
by Lemma (iii), since ||pn * u||L2r), n = 1,2, 3,... is bounded. O
We are able now to prove Sobolev’s imbedding theorem for H'(I).

Theorem 2.18 (Sobolev). There ezists a constant C' (depending only on u(l) < oo)
such that
ull poe ) < C'llull gy, Yu € HY(ID). (2.1)

(We say that HY(I) C L>(I), i.e. that H*(I) C C(I) - in view of Theorem —if

I bounded, with continuous imbedding).

Proof. Again it suffices to prove the result for I = R. (For suppose it holds for R and
let w € H'(I). Extend u to Eu in H'(R) as in Theorem [2.16| Then

||“||Loo([) < || Bullr=m) < CllEu|mE) < C' ||U||H1(1)7

using (iii) in Theorem and ([2.1)) for I = R). Suppose first that v € C°(R). Then
for every x € R:

Ax) = / (02 =2 / 00’ < 200 e 1l 2

—00 —00

2 2 2
< Nolle@y + 1V 2@ = 10l @)-

Hence [[v]l o) < V)1 m), Yo € CE(R), ie. holds on C2°(R). Now given
u € HY(R), since C=°(R) is dense in H'(R) (Theorem [2.17), we can find a sequence
(u,) in C°(R) such that u,, — u in H'(R). It follows that u, — u in L*(R). Therefore
there is a subsequence of u,, (denote it again by w,, i.e. consider that subsequence to
be the original sequence) such that u,(z) — u(z) a.e. on R as n — oo. By (2.1)), which
was established on C'2°(R), we have that u, is Cauchy in L*(R) (since it is Cauchy
in H'(R)). Therefore it converges in L™ to some element @ € L>(R). Tt follows that
u = @ a.e. on R, ie. that v € L>®(R). Taking limits in |[u,| @) < |[tnllm@ we

obtain ([2.1]). O
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Remarks 2.19.

(i)

(iii)

In the case of a finite interval I = (a, b) an alternative proof for Sobolev’s theorem
and (2.1)) is the following: Let uw € H'(I). Then, by Theorem [2.12] there exists
@ € C(I) with u = @ a.e. in I such that

a(w) — ify) = / “W)dt, Voyel
Yy
Therefore, Va,y € T
ja(x)] < la(y)| + /abIU'! <lay)| + Vb —a ||l 2)-

Fix now y € I. Then

max [i(o)] < [a(y)| + Vb a o120,
This holds for all y € I. Integrating with respect to y we find
=)y max il < [ ful+ (b=0) P 1ac) < VE=a o+ (0=l 2

Hence

1
max [i] = [|uflz(n) < m\lﬂllmm + (b= a) 2]l 2

| 1/2
< V2 (Gl + 6=l )

ie. |Jul|geery < CWU)||w| a1 (ry, where C(I) = V2 max (b—a, ﬁ)

If I is bounded, the imbedding H'(I) C C(I) is compact. This follows from
Theorem [2.12; If w € N (=the unit ball in H'(I) with center zero), we have

v 1
() — uly)] = | / W () dt] < ooz — I}, o,y e T
Y

Hence Yu € N, |u(x) — u(y)| < |z — y|*/? and the conclusion follows from the

Arzela—Ascoli theorem.
The inequality (2.1)) for I = R implies that if u € H*(R), then

lim u(x) = 0.
|z|—o00

For if C*(R) 2 w, — w in H'(R), then [ju, — ul|p~®) — 0, n — oo. Hence
Ve > 0 3N such that |[uy — u|lpem) < € = |u(x)| < € for |z| sufficiently large,

since uy € CF(R), ie. limpyoo u(z) = 0. O
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The following two propositions follow from Theorem [2.18| and are useful in the

applications.

Proposition 2.20. Let u,v € H'(I). Then wv € H'(I) and (w) = u'v + wv'.

Moreover we can integrate by parts:

/ym u'v = u(z)v(z) —uly)v(y) - /y:v w' Yaz,yel.

Proof. Since u € H'(I) 22 4 € L*°(I). Hence v € L*(I) = uv € L2(I). Now let

Un, U, 1= 1,2, ... be sequences in C°(R) such that u,|; — w in H'(I) and v,|; — v
in H'(I) as n — oo (Theorem [2.17)). It follows by Theorem that u,|; — v in
L>(I) and v,|; — v in L>®(I). Now

lunvy —wv|| 2y < |Juntn — unv|| 201y + [Junv — uv|| L2y

n—oo

< ||un||L°°(1)||Un - U||L2(I) + ||U||L°°(I)||un - U||L2(I) — 0.

Hence u,v,|; — uv in L*(I).
In addition (u,v,) = u,v, +u,v,, = w'v+wv' (€ L*(I)) in L*(I). (To see this note

e.g. that

|urvn — vz < |unvn — Woul 2y + W0 — W) 20

n—oo

— 0.

IA

||Un||L°°(I)HU§L - UlHL?(I) + ||U/\|L2(1)an - U||L°°(I)

Similarly u,v!, = uv" in L*(I)).

We now have a sequence ¢, = u,v,|; in H*(I) such that ¢, L—2> ¢ = uv, and such
that ¢/, U Y =wv' +u'v, ¢ € L*(I). Hence ¢, is Cauchy in L? and ¢/, is Cauchy in L?
= ¢, is Cauchy in H' = ¢, — w in H'. Hence ¢, — w in L? = w = ¢ and ¢/, — '
in L? = w' = ; thus ¢’ = (uww) = ¢ = v'v + wv’. The integration by parts formula
follows by integrating both members of (uv)’ = u'v + uv’ and using, since uv € H'(I),

Theorem .12 O

Remark 2.21. It is well known that u, v € L?(I) % uv € L*(I). (Take e.g. T = (0,1),
u = v = z71). Hence {L*(I),]| - |z2(r)} is not a Banach algebra with respect to

multiplication of functions, whereas {H'(I), || - [|2(1)} is. O

Proposition 2.22. Let G € CY(R) such that G(0) = 0 and let w € H'(I). Then
G(u) € HY(I) and (G(u(z))) = G'(u(x))u/(x).
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Proof. Since u € H'(I) = u € L>(I). Let M = |ullpoey. Since G € C*(R) and
G(0) = 0, by the mean-value theorem, given s there exists 6 : G(s) = G'()s. Hence,
given ¢ > 0, there exists a constant C' = C(M, G, ) such that

|G(s)| <Cls| for s € [-M —§, M + ¢]. (2.2)

Since |u(z)| < ||ul| () a-e. on I, it follows that —M < u(z) < M a.e. on I, ie. that
|G(u(z))] < Clu(z)] a.e. on I. Since u € L*(I) it follows that G(u) € L*(I). Also by
(2.2) we have that |G'(u(z))] < C a.e. on I. It follows that |G'(u)||u'| < C|u/| a.e.

= G'(u)u’ € L*(I) since v/ € L*(I). Tt remains to show that

/IG(u)¢’ = —/IG’(u)u'qb, Vo € CHI).

Since u € H'(I), it follows by Theorem[2.17 that there exists a sequence {u,} € C°(R)
such that u, — u in H'(I). Moreover, by Theorem we have that w, — u in
L>(I). By continuity, G(un) = G(u) in L>(I). Since |up||ree(r) = [[ull foo py it follows
that for n large enough, ||u,|| < M + §. Hence gives that for n large enough
|G (uy)| < Clug| = G(uy,) € L*(1) and ||G(un)| 22y < C'l|ullp2(7)- By the dominated
convergence theorem it follows that G(u,) — G(u) in L*(I). Hence V¢ € C(I)

[, G(uy)o" = [, G(u)¢’, as n — oo. Now

1G (un )ty — G (W) || 2y < |G (un)uly — G (wn )| 2y +
"‘HG/(un)Ul — G/(U)UIHLQ(I) < HG’(un)HLw(UHu’n — UIHLZ([) -+

+ Wl |G (un) = G (w)l| ooy

Now, |lul, — || r2(ry — 0 since u,, — w in H'(I). Also, for n large enough ||uy, || re(r) <
M + 2 and therefore ||G'(uy)||r=( < C. Since u, — u in L=(I), by continuity we
have that G'(u,) — G'(u) in LOO(I). It follows that G'(u,)u), — G'(u)u' in L*(I);
hence — [, G'(up)u, ¢ — — [, G'(u)u'¢, Yo € CL(I). Since ¢ € CI(I), u, € CZ(R),
we have that

zGWWﬁ:—lGﬁM%Qn:LZ&“”

Letting n — oo we obtain the desired equality

[qmw:—ﬁemmw
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We close this section by providing an important result, Rellich’s compact imbedding
theorem for H', which we will have occasion to use in the sequel. The proof presupposes

some familiarity with operator theory in Hilbert space.

Theorem 2.23 (Rellich). Let I = (a,b) be a finite interval. Then the imbedding
HY(I) c L*(I) is compact, i.e. if E : HY(I) — L*(I) is the imbedding operator of
HY(I) into L*(I) (defined for v € HY(I) as Ev = v), then E is a compact linear
operator from H*(I) to L*(I).

Proof. Let v € H'(I). By Theorem we have
v(z) = v(a) —i—/ v'(t)dt a.e. in I. (2.3)
We define the following linear operators: for z € T

- s

(Av)(z

(Co)(z) =

These are well defined for v € H'(I). (In the sequel we write as usual H' and L2,
instead of H'(I), L*(I), respectively, and denote || - || = || - |z, |- i = || - |a2-)

Since A : H' — R, we may consider A as an operator A : H' — L? by identifying
v(a) by the constant function v(a)-1. Since, by Sobolev’s theorem, for v € H*

ol = o] ([ b 12>é — VB a (@) < e,

for some constant ¢ = ¢(I), we conclude that A € B(H", L?), where, if X, Y are Hilbert
spaces, B(X,Y’) denotes the space of bounded linear operators 7' : X — Y. Similarly,
since for v € H, ||Cv|| = ||v'|| < ||v||1, we conclude that C' € B(H!, L?) as well.

Now since dim(Ran A) = 1, A : H' — L? is a compact operator (see e.g. [2.5]).
Also, since (Bv)(z) = [Tv(t)dt = f:K(x, t)v(t) dt, where
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and ff fab K?*(z,t)dedt = (b_;)Q, we conclude by the Cauchy-Schwarz inequality that
B € B(L?, L?) and that B is a Hilbert-Schmidt (Volterra) operator; therefore B : L? —
L? is compact (cf. e.g. [2.5]).

From and the definitions of the operators A, B, C' we have that for v € H!,
v = (A+ BC)v. Hence, if E : H' — L? is the imbedding operator of H' into L?
defined for v € H' by Ev = v, we have E = A+ BC. Since B : L? — L? is compact
and C': H' — L? is bounded, BC : H' — L? is compact. Therefore F is compact as

sum of the compact operators A and BC'. [

2.4 The Sobolev spaces H™(I), m = 2,3,4, ...

In analogy to H'(I) we define for m > 2 integer the space

Here

. d\’
@0 — [ —
It follows easily that H™(I) C H'(I) and that g, = «/, that «/ € H'(I), and that

(u') = g9 etc. .., and that finally

u™ Y = (((w'))..!) e H'(I) and that u™ = (u™" VY = g,,..
~——

m—1 times

We call g; the (uniqueness easy) weak (generalized) derivative of order i (in the L2

sense) of u € H™(I) and define

It follows that for m > 1
H™(I)={ue H"YI): ' € H™ (1)}

Here H°(I) = L?*(I). We can easily construct examples of functions in H™(I). For
example, on a bounded interval if u € C'(I) with u” (classical derivative) piecewise

continuous on I, then v € H?(I) and its weak second derivative coincides a.e. with u”.
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We equip H™(I) with the inner product (-, ),,, where
D =), Yu,v e H™(I).

m

(U, )y = Z(Dju, D'v), (u(o) =

J=0
This inner product induces the norm

m 2
lull,,, = (w, w)m = (Z IID’UI|2> :
1=0

An obvious modification of Theorem shows that { H™(I), (-, ).} is a Hilbert space.
By definition and Theorem [2.12] it follows that if u € H™(I), then there exists @ €

C™=1(I) such that u = @ a.e. on I and

Diu(x) — D'u(y) = / D u(t)dt, Ye,yel, i=0,1,2,...,m—1
v
Also, given u € H™(I), there exists a sequence {u,} € C°(R) such that u,|; — u in

H™(I) (density) and that H™(I) C C™1(I) with
m—1
S D%l ) < Cllulogyy: Y € B (D).

J=0

If w,v € H™(I), then uv € H™(I) and
" [ m . :
D’u D™ v, m > 1 (Leibniz’s rule).

D™ (uv) = Z

=0 \ J
These results follow easily with techniques similar to the ones used in their H' coun-

terparts.
We finally mention without proof the following interpolation result. If 1 < 7 < m—1,

then Ve > 0 3C. = C(e, u(I) < o0) such that

[D7ull < el D™ul| + Cellull,  Yu € H™(I).

It follows that the quantity ||u||+||D™u|| for w € H™(I) is a norm on H™(I), equivalent
to ||ulm.

0
2.5 The space H'(I)
Definition 2.24. We define ]i)ll(l) to be the closure of C}(I) in H'(I), i.e. the (closed)
I

subspace of H'(I) whose elements are limits in H'(I) of sequences of functions in C}(I).
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It follows that {foll(]), (+,)1} is a Hilbert space (separable).

Remarks 2.25.

(i)

(iii)

If I =R, since C*(R) € CHR) € H'(R) and C>*(R) is dense in H*(R) (cf.
Theorem [2.17)), it follows that C}(R) is dense in H*(R) = POII(R) = H'(R).
However if I # R, then I-Oll(l) C HY(I). For example, on a bounded interval [

consider u(z) = cie® + ce~® € C*(I) for which v’ = u. Hence

O:(u”—u,¢)z/l(u”—U)¢=—/Iu/¢'—/lu¢:—(u’¢)1, Vo € C(I).

Hence u is orthogonal in H'(I) to C!(I), which therefore cannot be dense in

H\(I).

In fact C°(I) is dense in Isﬂ(l). To see this, let, for u € }0[1(1), e>0,¢eCHI
be such that ||u—¢||; < §. Now extending ¢ € C}(I) by zero outside its support
to the whole of R, we have ¢ € C}(R) and p, * ¢ € C°(I) for sufficiently large
n (cf. Lemma (ii)). Moreover, (cf. Remark (iii)) |l¢ — pn * @[/ a1y = 0 as
n — oo. Therefore choose n so that ||¢ — p, * ¢[|; < §, from which it follows that

= po # 8l < €. L. that C2(1) is dense in ().

Let us also remark that v € HY(I) N C.(I) = u € ]?Il(l). In fact, if u €
H'(I) N C.(I), extending u by zero outside I to the whole of R, we have, by
Lemma (i), that, for n sufficiently large, p, * u € C°(I) and (cf. Proof of

Theorem 2.17)), ||u — pn * ul|y — 0 as n — oo. Hence by (ii) above, u € 1{)[1(]).

]

These remarks prepare the ground for the following result which characterizes the

0
functions in H'(I) in a very useful way.

Theorem 2.26. Let uw € H'(I). Then u € ﬁl(l) if and only if u =0 on OI (= the
boundary of I).

Comments: Again for u € H'(I) the statement “u = 0 on 9I” is well understood,

in the sense of Theorem

2.12

—see the remarks there. Theorem

2.26

makes then foll(I) a

very useful space, in which homogeneous (zero) boundary conditions are automatically

satisfied for u|sy, i.e. a space in which “weak” solutions of boundary—value problems
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such as () in Section may be naturally sought. In the sequel assume I # R, since
H'(R) = H'(R).

Proof. If u € }0[1(1), there exists a sequence (u,,) € C!(I) such that u,, — u in H*(I).
By Sobolev’s Theorem u, — u in L®(I), i.e., if 4(z) € C(I), & = u a.e. on [
= Sup,c; |un(x) — a(z)] = 0, n = oo. Since uy,|or = 0 = a|gr = 0, i.e. the values of u
on JI are zero.

Suppose now that u € H'(I) and u|5; = 0. We shall show that u € [-Oll(l).

First, let us examine the case of a bounded interval and take, with no loss of

generality, [ = (0,1). Consider the intervals

11 2 4
Ki=(-22),1=(01), K= (2,2).
1 ( 373)7 (07 )a 2 (373)

Then, we may find functions ¢; € CX(Ky), ¢g € CX(I), ¢ € C°(K,) such that
0 < ¢; <1 and (extending them by zero outside their intervals of definition) ¢ (z) +
¢o(z) + ¢2(x) = 1, Y € I. (The functions ¢; form a partition of unity corresponding
to the open cover { K7y, I, K5} of I, and can be constructed e.g. as follows:

It is clear that given any interval (a,b) we can find ¢ € C2°(a, b) such that (for § > 0

small enough) (z) =1 for a +20 < 2 < b—2§ and ¥(z) = 0 for 2 € (a,a + 0] and
z € [b—4,b). With the same 6 (take any 0 < § < ) construct such functions ¢, (z) for
(—3,3), Yo(x) for (0,1), tha(x) for (3, 5). It is clear then that o (x)+ 1y (z) +1a(z) > 1,
T € [—3+26,3 —20].

Let w(x) be such a function (with the same e.g. ) for the interval [—2§, 14 26]. Then

Y R E YR

-1/3 0 \ 1/3
U Y llJz Yo

let
Vi)
Sy <)
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It is easily seen that the ¢;’s satisfy the desired properties.
Let now w;(z) = u(x)p;(x), i = 0,1,2, so that

2

u(z) = Zul(a:), x el

1=0

Consider ug(z) = u(z)do(x). Since u € H(I), ¢pg € C=(I) = uo € H'(I) N C.(I)

0
(identify ug with its continuous representative). By Remark [2.25| (iii), ug € H'(I).

We consider now wu;(z) = u(x)p;(x). Extending ¢; by zero to the whole of I, we
see that u € H'(I), ¢ € C°(—3,1) = uy € H'(I). By hypothesis we also have that

ujq

) W

I T 1

0 1/3 1

u1(0) = u(0)$1(0) = 0- ¢1(0) = 0. Also suppuy C [0, 5). Extend now u; by zero to R,
i.e. consider the function
ui(x) ifxel

0 ifxégl.

Uy (z) =

This function belongs to H*(R), since, for any ¢ € C>°(R),

[ = /01“1¢’:&%1)¢<1>—3i%')¢<0>—/01u3

m ~
_— / &6,
— 00

where }, the extension by zero outside I of u, is in L2(R) since u; € H'(I).
Now, for any function f on R let for h > 0 7, f denote the right h-translate of f,
i.e. let (rnf)(x) = f (z — h). Since u; € H'(R) it follows that 7,1; € H'(R) and

flzli% HTh’lZl - 711HH1(R) =0.

(To see this, given € > 0 let ¢ € C°(R) be such that ||u; — @||gi(w) < 5. It follows, for
any h > 0, that

I = Tl = i = Sl < 5.
But it is obvious, since ¢, 7,0 € C°(R), that there exists hg such that

0<h<hy = | — OlmE) <

Wl ™
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Hence, given € > 0 4 hy such that
0<h< ho = HThu~1 — 'LleHl(R) <€

by the triangle inequality). Now, the restriction 7|7, for h sufficiently small, belongs

to H'(I) N C.(I) (possibly upon its modification on a set of measure zero). Hence, by

Remark [2.25| (iii), 1|7 € ]%1(]). Therefore, given € > 0 we have that 3¢ € C°(])

such that ||, — @[|g1 (1) < §. Since limy,_ || Thtiy — 1 || g1 r) = 0 = 3 h such that

€

|Tntin — r || gy = |70t — ud|| gy < 5

It follows that ||u; — @[y <€, i.e. that u; € }0]1(1).
Entirely analogous considerations show that us € [gf 1([ ). Since u = ug + uy + ug it
follows that u € ]-(jll(]). O
For a semi-infinite interval the proof follows in the analogous manner. Let I =
(0,00), with no loss of generality. Construct ¢, € C*(—3,3), ¢o € C°(0,00) with
suppeo C [, 00), o > 0 sufficiently small, so that 0 < ¢; < 1 and so that (extending ¢;
by zero to [3,00)) ¢1(x)+¢o(x) = 1 for x € [0,00). (This can be achieved as previously,
by taking v as before and extending v¢(z) and w(x) by setting them equal to 1 for
x> 1). Again with u; = u¢; we have as before that, since up = 0, uy € 1‘011(0,00).
Consider ug = ugy. Extend it by zero to the whole of R, i.e. put
up(z) if 0<z<o0

Up(z) =
0 if —oco<z<0.

It is clear that 1y € H'(R) (since ug € H'(I)). Since ug it has support in [a, 00),
a > 0, it is not hard to see that for n sufficiently large, p, * iy has support in [/, 00),

o’ > 0, belongs to C*°(R) N H'(R) and, of course it holds that
||U~0 — Pn * U~0||H1(]R) = ||U0 — (pn * U~0)|]||H1([) — 0 as n — oo.

Consider now the functions

Uo,n = Cn'[(pn * dO)‘I7

where (,(z)|; is the restriction to I = [0, 00) of the smooth truncation function ¢, (z)

introduced in the proof of Theorem [2.17, It follows that, for n sufficiently large,
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Uy, € C°(I). A similar calculation to the one used in the proof of Theorem [2.17]
shows finally that

w0, — ol g1y — 0 as n — oo.

Hence UOEﬁl(I). O

Remark 2.27. Essentially the proof above shows the following characterization of
0
H(I) which is of interest by itself. For u € L?(I) let u(x) be its extension by zero to

the whole real line, i.e. let

u(z) ifxel
0 ifzxeR-1I

Then, u € H'(I) if and only if @ € H'(R). O

We finally mention a result, the inequality of Pointcaré—Friedrichs, which will be

very useful in the sequel.

Proposition 2.28 (Poincaré-Friedrichs). Suppose that I is a bounded interval. Then,
there exists a constant C, (depending on u(I)) such that

lull, < Culll, Vue HY(I). (2.4)

0
In other words, the quantity ||u'|| is a norm on H(I), equivalent to ||ul|,.

Proof. If u € ]?[1([) = ﬁl(a, b) we have, by Theorems [2.12 and [2.26 that for z € T

)l = | [l < [l < 0=,

Hence
b
lull* = / dt)dt < (b—a)?|lu|,
and (2.3) holds with C, = (1 + (b — a)?)"/2. (This is not the best constant.) O

Remarks 2.29.

(i) Tt follows that on H 1(I), I bounded, the expression (u’,v’) defines an inner prod-

uct.
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(if)

(iii)

0
Entirely analogously one may define, for m > 2 integer, the spaces H™(I) as
completions of C°(I) in H™(I). One may show that

0
H"(I)={ue H™(I): u=Du=---=D""'u=0on dl},

where D = %. We should keep in mind the distinction between e.g.

P?Q(I) ={ue€ H*(I): u=Du=0ondl}

and

HX(I)n H'(I) = {u € HX(I): u =0 on dI}.

Finding the best constant in the Poincaré-Friedrichs inequality is of some impor-
tance and allows us to obtain more precise bounds of quantities useful in practice.
The best constant may be found as follows. On the interval (a,b) consider the

Sturm-Liouville eigenvalue problem —u” = Au, u(a) = u(b) = 0, whose eigen-

n2n?

values are given by A\, = oaz N = 1,2,3,..., with associated eigenfunctions

u, = A,sin %, were A, # 0 are constants. We will first show that the

minimization problem

P
m = min 5
orwern 11
is solved when w = wy, with the minimum value given by m = A\ = ﬁ
(Note that the last inequality in the proof of Proposition [2.28 implies that %
0 /
is bounded below when w € H'.) Let us minimize first the quotient ||‘|1:|‘|‘; for

[[a]2

0 0
we H*NH'. Let 4 € H> N H' be a minimizer and 7 = TER Then, given any

0 - /
v € H> N H' the function f, : R — R given by f,(¢) = lateor P st satisty

l[a+ev]|
£1(0) = 0. Since g [[atev]|* = 2|l +2(, v), & || (a+ev)'||? = 2e]|v'|[P+2(, "),
we see that f/(0) = 0 is equivalent to the equation ||a|*(¢/,v") = ||@/[|*(4,v).

Therefore, & € H*> N H' satisfies (W, v'") = m(a,v), Yo € H*N POII, which implies
that (—a” — ma,v) = 0, Yo € H*N H'. Since H> N H' is dense in L2 (as it
contains C2°(a,b)), we see that @ is an eigenfunction of the eigenvalue problem
—u" = M, a < x < b, u(a) = u(b) = 0, and m is the associated eigenvalue.
Therefore & = w; and m = A, the smallest eigenvalue, since if (u,, A,) is any

— w2 lupll® _ (—umun

2l = fluall® —  fluall?

L = )\, Finally, it is straightforward

eigenpair then m

o4



to see that 4 is actually the minimizer of || |z over H ! so that m = m. Indeed,

given w € H 1 there exists a sequence w,, € H?N H ! such that w,, — w in

0 0
H', n — oo, since H*> N H' (since contains C°(a,b)) is dense in H'. Therefore

712 . ~ ! 2 .
w), = w', w, = w in L? so that Hz"HQ — HHZ""Q . Since m < Hw”HZ, it follows that

. Yw € H1 so that m = m and the minimum of ‘h |7 over HY oceurs

Since W = 1+ \HUHIQ’ we see that the best constant C, in (2.4]) is given by

1/2 1/2
, = (1 Fmax o "";‘,'hi) — (1+A1)% = (1 + & “)) . O
ue

2.6 Two—point boundary—value problems

We return now to the two-point boundary-value problem (x) of Section 2.1 We shall
mainly discuss homogeneous (zero) Dirichlet and Neumann boundary conditions and

follow the “variational method” outlined in Section 2.11

2.6.1 Zero Dirichlet boundary conditions.

We let I = (a,b) be a bounded interval. We consider the problem of finding u(x),
x € [a,b] such that

—(pu) +qu = f in (a,b), (2.5)

u(a) =u(b) = 0, (2.6)

where p, g, f are given functions on I such that p € C'(I), p(x) > a > 0, Vz € 1,
q € C(I) such that g(x) > 0, Vo € I, and where we shall assume f € C(I) (sometimes
just f € L?(I)). Based on the discussion on in Section [2.1| we make the following

Definition 2.30. Let f € C(I). Then a classical solution of (2.5)), (2.6)), is a function
u(z) € C*(I) which satisfies the D.E. in the usual sense for each = € I and which
also satisfies the boundary conditions (b.c.) (2.6) in the usual sense. (We say that “u
satisfies and (2.6) classically or in the usual sense”). If f € L?(I), then a weak
solution of (2.5 . is a function u € Hl(I) which satisfies

/Ipu'v'—k/lquv:/lfv Vo e H'(I). (2.7)



Following the plan outlined in Section we prove a series of results:
(i) A classical solution of (2.5), is a weak solution of (2.5)), as well.
Let u satisfy (2.5)), classically. Since u € C?(I) and u(a) = u(b) = 0 = u €
H*(I)N }OII(]). We multiply the D.E. by any v € ]31(]) and integrate on I. By
Proposition since pu’ € H! we can integrate by parts and obtain

/fv = /(pu)v+/quv——puv|b /pu’v’+/quv
I I
= /puv —i—/quv,
I

since v € H' = H 1(I). (We will usually suppress I from the symbols of the function
spaces). Hence u is a weak solution.

(ii) Existence and uniqueness of the weak solution.

Let f € L*(I) and let B(v,w) = [, pv'w’ + [, quw. Clearly, by our hypotheses B(-, )

0 0
is a bilinear, symmetric form on H' x H' (i.e. on H' x H'). Moreover, for v,w € H*

we have
wwwnstﬂmmwujhmm
< max p(e)] /| '] +masxlg(@)] ] o]
< aloll, ol (2.8)

where ¢; = max, 7 |p(z)| + max, 7 |¢(z)|. Hence B is continuous on H* x H'.

0
Now, for v € H' we have, by our hypotheses on p and ¢ that

Blow) = [0+ [0 2 o [@) 2l (2.9)

where ¢; = o/C?, with C, being the constant in the Poincaré-Friedrichs inequality
(2-4), which was used (since v € H ') in the last step.

Hence the bilinear form B satisfies, on the Hilbert space {POI LI+ |li}, the hypotheses
(i) and (ii) of the Lax-Milgram Theorem [1.4] In addition, it is straightforward to see
that in the r.h.s. of , F(v) = [, fv is a continuous, linear functional on o since
F@)| < [flllol < [Fllvl, Yo € H'. (Note that [|| || < |If]| where by ||| F ||
we denote the norm of the b.l.f. F' on I—?ﬂ, i.e. the sup 0 ‘F(U)‘). Hence the Lax—

0£veH! o],
Milgram theorem applies and shows that the problem

/pu'v'+quv:/fv, ie. B(u,v) = F(v), Vve]—?ﬂ,
I I
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0
has a unique solution u € H'. Moreover
1
Jull, < — 111 (2.10)
Ca

Since a classical solution is a weak solution and we have shown now uniqueness of the
weak solution, it follows that there is at most one classical solution.
(iii) Regularity of the weak solution.

Let f € L*(I). Then (2.7) gives that if u is the weak solution, then

/pu'v':/(f—qu)v, Vo € H.
I I

Hence

/I pio' = [(F =, Vo e C)

I
which shows that pu’ € H', since pu’ € L? and since there exists g (= qu — f), g € L?,

such that [, pu'¢’ = — [, g, Yo € C(I). It follows that pu’ € H' and (pu')’ = qu— f.
i.e. —(pu')’ + qu = f holds in L? (which means that it holds pointwise a.e. on I).

Now, since p(z) > a > 0, z € I, p € C(I), it follows that ﬁ € CY(I). Hence
u = %(pu’) € H!', since pu’ € H' and p~! € H'. It follows that the weak solution
u (shown to be in H by the Lax-Milgram theorem) actually belongs to H?* N H.
Moreover, since —(pu') + qu = f in L? we have now pu” = —p'u/ + qu — f in L2
Hence

ol < max p' ()|l + max [q ()l [Jull + [If]]

This estimate coupled with (2.10)), shows that there exists a constant c¢3 = c3(p, ¢, ),
0
such that for the weak solution u € H> N H! of (2.5)), (2.6) we also have

lully < esll£1]- (2.11)

(Estimates such as are called “elliptic regularity” estimates (H? — L?) for the
problem (2.5)-(2.6)).)

Now, let f € C(I). We shall show now that the weak solution u is in C?(I)
(u € H 1(I) guarantees that u(a) = w(b) = 0 if we identify u with its continuous
representative ). Since u € H%(I) = u' € C(I) (take the continuous representative of
u'). Hence u € C*(I). But pu” = —p'u/ + qu — f (in L?). Since f € C(I), the Lh.s. is
continuous = u” € C(I) by our hypotheses on p(z). Hence u € C%(I).

o7



(iv) If f € C(I), the weak solution is a classical solution.

Since f € C(I) the above shows that u € C%(I). Now (2.7) gives

Jwre+ [auo= [ ro. voeczm.

Integrating by parts, since u € C?(I), we have

/I(—(pu’)’ +qu—f)p=0, Yo ().

Since C°(I) is dense in L*(I) = —(pu') +qu — f = 0 a.e. on I. (This also follows

from the fact that —(pu')’ +qu — f = 0 in L?). But —(pu')’ +qu— f € C(I). Therefore

—(pu') + qu = f, Vz € I. Since u(a) = u(b) = 0 as well, it follows that for f € C(I)

the weak solution is also classical.

Remarks 2.31.

(i)

Since B(u,v) is symmetric, the weak solution of (2.5, (2.6), i.e. the solution of

the variational problem
0
B(u,v) = (f,v,), YveH!,
may be characterized as the (unique) solution of the minimization problem

J(u) = migl J(v),

veEH?!

where J is the energy functional

J(v) = %B(v,v) _ ) = %/Ip(U')Q Fqu?— /va.

This follows from the Rayleigh—Ritz Theorem and is known in the present

context as Dirichlet’s principle.

It is evident that the weak solution of , , i.e. the solution of , exists
under much weaker conditions on p and ¢ than those assumed. For example,
the two integrals appearing in the definition of B(-,-) exist if e.g. p, ¢ € L>=(I).
Similarly and hold only under the additional assumptions p > a > 0,
q > 0 a.e. on I. Moreover the right-hand side F'(v) makes sense (interpreting

0
(f,v) properly) as a bounded linear functional on H' with much more general
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(iii)

f than f € L?. More precisely, f may belong to the dual of fOI 1 the so called
“negative” Sobolev space H1(I); e.g. the delta function is an H~! “function” in
1 dimension. It is evident that such weak conditions guarantee only existence—
uniqueness of u in ]?I 1. To obtain more smoothness for u, i.e. to show that u € H?
or that u € C2(I), it is clear that one has to assume more smoothness for the
coefficients p, ¢ and f. In the same vein of thought one may allow ¢(x) to take on
negative values, for example, as long as q(x) > 3, Vo € I, where 3 is such that
in (2.9), B(v,v) > col[v]|7 for some ¢y > 0. (A lower bound on 3 may be easily
found in terms of 0 < av = min,¢; p(z) and the constant p of Poincaré’s inequality

[;v* < p f,(v')% By Remark (iii) we see that the best such constant p is

1

equal to 3 where \; is the smallest eigenvalue of the problem —u” = Au with

72

zero Dirichlet b.c. at a and b, i.e. A\ = m)

Using and Sobolev’s inequality we conclude that under our hypotheses the
weak solution u belongs to L>°(I) and that ||ul|;. < c|/f]|. Using the elliptic
regularity estimate and Sobolev’s inequality we can conclude that u' € L
and ||v/||;« < ¢||f|. Finally, using the equation (which holds a.e.) we see that
|u"]|z < c||f|l, i.e. that the weak solution u € H? N H actually belongs to
a space of functions with bounded generalized derivatives. For u € C?(I), the
classical solution, we then have the maximum norm estimate

max (Ju| + [/ + [u"]) < cmax|f].
zel zel

The case of the b.v.p. with non homogeneous Dirichlet boundary conditions

u(a) = a1, u(b) = ay easily reverts to the problem (2.5)), (2.6). Let ¥(x) be
a linear function (or any other function in C2(1)) such that ¥(a) = ay, ¥(b) = as.

Then if u is the solution of the nonhomogeneous b.v.p., the function v = u — ¥

satisfies the homogeneous b.c. v(a) = v(b) = 0 and the D.E.

—() +qu=yg:=f—Lb=f+ ) - q,

i.e. a D.E. of the same form with new r.h.s. g = f — Ly € C(I). O
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2.6.2 Neumann boundary conditions.

We now consider the problem

—(pu') +qu = f in (a,b), (2.12)

u'(a) =d'(b) = 0, (2.13)

i.e. the (homogeneous) Neumann b.c. problem. Again we let p € C*(I), p(z) > a >0
Ve eI, f € C(I) (or f € L*(I)), but now we assume that ¢ € C(I) with g(z) > 3 >0
vV € I. (Note possible nonuniqueness if ¢ = 0: e.g. consider p =1, f =0, ¢ =0, i.e.
—u" =0, v'(a) =0, u/(b) = 0, which has any constant as its solution). It is not hard

to motivate the following

Definition 2.32. Let f € C(I). Then a classical solution of the Neumann b.v.p.
.12), (2.13)), is a function u(x) € C?(I) which satisfies ([2.12)), (2.13) in the usual
sense. If f € L*(I), then a weak solution of (2.12)), (2.13)), is a function u € H'(I) such
that

/Ipu’v’—i-/lquv = /va, Yo e HY(I). (2.14)

Following the steps of the proof in the Dirichlet b.c. case we have:
(i) A classical solution of (2.12), is a weak solution as well.
Proof obvious as before (now multiply by v € H' and use the “natural” b.c. u/(a) =
u'(b) =0 on u; follows).
(ii) Existence and uniqueness of the weak solution.
Let f € L*(I) and B(v,w) = [, p'w’ + [, quw. By our hypotheses B(-,-) is a bilinear,
symmetric form on H' x H!. The inequality holds with the same constant c;.

For v € H' we have

Bow) = [p0P+ [ za [@p+s [ zabll @)

where ¢, = min{e, 8} > 0. Since F(v) = [, fvisab.l.f. on H' there follows, from the

Lax-Milgram theorem, that there exists a unique weak solution u € H', i.e. a solution
1 . 1 . .

of (2.14), and that [lul[, < Z|[f]|. (Note that since u € H' we cannot give meaning to

the point values u/(a), «'(b) unless we prove that the weak solution is in H?, something
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that we do in the next step).
(iii) Regularity of the weak solution.

For f € L?(I) the weak solution u satisfies

/pu’v’ = /(f —qu)v, Yv € H'. (2.16)
I I
Hence, a fortiori,

[ = [(s o, voecEm,
I I

It follows, as in the Dirichlet b.c. case, that pu’ € H' and that —(pu/) + qu = f in L.
Since v’ = %(pu’ ), it follows, as before, that v € H?. Returning now to (2.16)), since
pu’ € H' and v € H', integration by parts gives (note that we can assign now meaning

to the values v/(a), u/(b) = the values of the continuous representative of v’ € H' at

a, b) that

/I(—(pU’)’v +quv — fv) dz + p(b)u' (b)v(b) — p(a)u'(a)v(a) = 0

holds, for each v € H'. Since we already saw that —(pu') + qu = f in L?, it follows
that p(b)u'(b)v(b) — p(a)u/(a)v(a) =0, Vo € H' = 4/(b) = 0, v/(a) = 0. (Choose e.g.
v(z) =2 — a or v(x) = x — b). Hence the weak solution of (2.12)), (2.13), which exists
uniquely by the Lax—Milgram in H', actually belongs to H?, satisfies —(pu') +qu = f
in L? and v/(a) = «/(b) = 0. Moreover, exactly as before, we obtain |ul, < c||f|
(“elliptic regularity” estimate).
Assume now f € C(I). Then exactly as in the Dirichlet b.c. case, it follows that

u € C*(I) for the weak solution.
(iv) If f € C(I), the weak solution is classical.
The proof that —(pu') + qu = f a.e. = —(pu’)' + qu = f everywhere in I, i.e. that
the weak solution (which is C2 if f € C(I)) is classical, is identical to the one in the
Dirichlet b.c. case. Of course u/(a) = u'(b) = 0 holds already for the weak solution (in
H?).
Remarks 2.33.

(i) The weak solution is characterized now (by the Rayleigh-Ritz theorem) as the

solution of the minimization problem

J(u) = min J(v), J(v)zl/lp(v’)2+qv2—/lfv, veH"

veH! 2
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(i)

(iii)

This follows from the symmetry of B.

Analogous remarks to the Dirichlet b.c. remarks [2.31] (ii)—(iv) follow, mutatis

mutandis.

We can consider of course other homogeneous b.v. problems as well for the equa-
tion —(pu') 4+ qu = f on (a,b). For example the problem with b.c. (assume

Dirichlet b.c. assumptions on p, q)

has the following weak formulation: Let
H,={ve H'(I): v(a)=0}.

Clearly {Ha, | -1} is a Hllbert space (a closed subspace of H'(I) that includes
H ). We then seek u € H such that

0
B(u,v)z/jpu'v'—i—/lquv—/lfv, Yv e H,.

The Lax—Milgram theorem shows existence—uniqueness of the above weak so-
0 0
lution since B(-,-) is bilinear, bounded and coercive on H, x H,. The rest

(f € C(I) = u classical etc.) follows easily.
The problem with an “elastic” b.c. at x = a, i.e. with
u'(a) — ku(a) =0 (k const.), u(b) =0,
has the following weak formulation on ]gb ={ve H(I): v(b) =0}

0
Seek v € Hy such that

Bk(u,v)z/pu’v’+/quv+p a)ku(a) /fv VveHb
I

It is straightforward to see that By(-,-) is bilinear, symmetric, continuous on

0 0

Hy, x Hp, and coercive, provided & > 0 (or k£ < 0 with |k| sufficiently small).
0

Hence a weak solution u € H, exists uniquely and the existence-uniqueness of its

classical analog follows.

The periodic boundary condition problem, i.e. the problem with b.c.’s



may be similarly treated with the following weak formulation: Seek u € H}
(assume p(a) = p(b)) such that

/(pu'v'+quv):/fv, Vv e HY,
I

1

where H! = {v € H'(I) : v(a) = v(b)}, the so called “periodic” H'. m
s ) p

2.6.3 Sturm-Liouville eigenvalue problems

In this section we consider eigenvalue problems for the second-order differential operator
Lu = —(pu) +qu on a finite interval (we take I = (0,1)). Such eigenvalue problems are
known as Sturm-Liouville problems. For simplicity we consider only the case of zero
Dirichlet boundary conditions. We presuppose some familiarity with operator theory

in Hilbert space.

Theorem 2.34. Let p € CY(I) with p(z) > a > 0 on I for some positive constant «
and suppose that ¢ > 0 on I. Then, there exists a sequence (An)n>1 in R of eigenvalues

of L and an orthonormal basis {¢, }n>1 on L*(I) of eigenvectors, such that ¢, € C*(I)

and
L¢n = )\n(ﬁnv T e 77
(2.17)
$n(0) = dn(1) = 0.
Moreover 0 < Ay < Xy < ..., with \,, = 00, n — 00.

Proof. (i) We begin the proof by making some remarks on the operator L and its
inverse T'.
The domain of definition of L may be taken e.g. as C?(I) with zero boundary

conditions when classical solutions of Lu = f are considered, but also, as we saw in

0
Section [2.6.1}, the space H? N H! with the derivatives understood in the weak sense.

0
We proved in Section [2.6.1] that given f € L?) there exists a unique u € H?> N H* (the

weak solution of the two-point bvp), that satisfies

Lu = f in I (in the L? sense), (2.18)
2.18

Consider the map f — u, that we write as u = T'f, where T, the “solution operator”

of the problem (2.18)), is a linear operator T': L? — H*N H'. Note that if B(v,w) =
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0
[, pv'w' 4+ quw, v,w € H' is the bilinear form defined in Section [2.6.1} then B(T' f,v) =
0
(f,v), Vv € H', and T satisfies || T f]|; < éHfH, cf. (2.10)), and the “elliptic regularity”
estimate ||T'f|l2 < C|f|l, cf. (2.11). Hence T', considered as a linear operator 7" :
L2 = H>N H'is bounded, and of course T € B(L?, L?) since |Tf|| < [|Tf|l;. Since

TLu = u for u € H? ﬂﬁl, and LTf = f for f € L? T is the inverse of L. (T is an

integral operator with the Green’s function for the problem ([2.18)) as its kernel, and
the properties of T' may also be studied in this way.)

(i) We now prove that T' € B(L?, L?) is a selfadjoint, compact operator with Ker T’ =
{0}. Let f,g € L? and u,v € H* N H! be weak solutions of Lu — f, Lv = g,
respectively. Then uw = T'f, v = Tg and B(u,w) = (f,w), B(v,2) = (f, z), Vw,z € .
Take w = v, z = u. Then by symmetry of B(-,-), it follows that (f,v) = (g,u), i.e.
(f,Tg) = (Tf,g) proving that T is selfadjoint.

To prove that T is compact, recall from Theorem that the imbedding of H'!

into L? is compact, i.e. that if the sequence (v,) € H' is bounded in H', then there

/
n

0
sequence in L2 || f,]| < M, Vn. Then, since T € B(L? H') it follows that ||Tf,|; <
é” foll < % Hence (T'f,) is a bounded sequence in H' and by Theorem there

exists a subsequence (v)) of (v,) that converges in L?. Let now (f,) be a bounded

exists a subsequence of (T'f,,), that we call (T'f!), which converges in L?. Hence T,
viewed as an operator on L2, is compact. To prove the last assertion note that if
u=Tffor fe > thenTf=0=u=0= f=Lu=0,ie KerT = {0}.

(iii) Proof of Theorem [2.34 By the spectral theorem for the selfadjoint, compact
operator T on L?, it is well known that since Ker T' = {0}, there exists an orthonormal
basis {¢, }n>1 of L? and a corresponding sequence of real numbers p,, # 0, such that
\p1| > |pe] > ..., with g, — 0, n — oo, so that T'¢,, = pi,d,. In our case u,, > 0. To see
this, note that ¢, € RanT implies that ¢, € H* N H'. Hence ca|lonll? < B(dn, ) =
M%B (T'on, on) = ;%nw”’ ¢n). Therefore u,, > 0, and we have the useful identity that l%n
is equal to the Rayleigh quotient %. Putting now u,, = T'¢,, = pno, we see that
u, € H>N H' and Lu, = LT, = ¢, in the L? sense. Therefore L¢, = uinqﬁn, n>1,
and if A\, = #Ln it follows that L¢,, = A\,¢,, n > 1, and that the A\, have the desired
properties. Since ¢, is the weak solution of the bvp Lo, = N\ ¢y, ¢,(0) = ¢,(1) =0,

and ¢,, € ﬁl = ¢,, € O(I), it follows that ¢, is a classical solution, i.e. that ¢,, € C?(I).
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(If p, ¢ have higher regularity, e.g. if p,q € C>(I), then ¢ € C=(I).)
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Chapter 3

Galerkin Finite Element Methods for Two—

Point Boundary—Value Problems

3.1 Introduction

We consider again the two—point boundary—value problem on a bounded interval (a, b)

with homogeneous Dirichlet b.c.’s:

—(pu) +qu = f in(a,b) =1, (3.1)
u(a) =u(b) = 0, (3.2)

for which we assume, as in §2.6, that p € C*(I), p(x) > a > 0in I, ¢ € C(I), g(z) > 0
on I. We recall that if f € L?(I), there exists a unique weak solution of (3.1), (3.2)
satisfying

we HY(I), B(u,v)=(f,v) Yoe H'(I), (3.3)

where

b b
B(Uyw):/(pvlw/-i-qvw), v,w e H(I), (U,w):/ vw.

0 0
In fact, u € H*NH" (suppressing I in the notation H'(I) etc.) and we have the elliptic

regularity estimate

[ull, < C | f1I, (3.4)

where C' is a nonnegative constant independent of u and f. If f € C(I), then the

(unique) weak solution is in fact in C?(I) and solves (3.1), (3.2) in the classical sense.
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The Galerkin method for the approximation of the weak solution, i.e. of the solution

of (3.3), follows the abstract framework of §1.9. We note that B satisfies (see §2.6)

[Blo,w)| < Cilplly lwll:  Yo,we HY(I), (3.5)

B(v,v) > Cyllu|®> Voe HY, (3.6)

where in fact e.g. C1 =| p |lo + || ¢ l|oo, Co = a/C?, where C, is the constant

in the Poincaré—Friedrichs inequality. Hence, if S;, 0 < h < 1, is a family of finite—
0

dimensional subspaces of H', Galerkin’s Theorem 1.5 gives that for each h, there exists

a unique element u, € Sy, the Galerkin approximation of u in Sy, satisfying
B(Uh,’l}h) = (f, Uh), Yy, € Sp,. (37)
Moreover, u;, satisfies the H'-error estimate
Cy
u—1u < — inf ||u— . 3.8
| wll < c, ot [u—¢h (3.8)

The discrete problem (3.7) (discrete version of (3.3)) is equivalent to a linear system of
equations. Let N = N, = dimS), and {(bz}i\;l be a basis of S},. Then, as we saw in Ch.
1, the coefficients {¢;} of u; with respect to the basis ¢;, i.e. the numbers ¢;:

N

up(x) = Zci¢z‘($), (3.9)

i=1
satisfy the linear system

Ac=f, (3.10)

where A is the N x N matrix with elements A;; = B(¢;, ¢;) = fab(p%@ + qo;9:),
1<i,j<N,c=lcr,....enlt, fu=[(f,01),--.,(f,on)]F. The matrix A is symmetric
and positive definite on R¥due to our assumptions on B (i.e. on p and gq).

The question is, of course, how to choose the finite-dimensional subspace S}, of

H 1(I). The choice should be such that

o infycg, || u—¢ |1 is small (cf. (3.8)), i.e. that we can approzimate well elements

uwof H>N I—0[1 by elements of Sj.

e The system (3.10) is easy to solve.
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A classical choice (Ritz, Galerkin, “spectral methods”) is to let S, = Sy be the span
of the first N orthonormal eigenfunctions ¢; of the operator Lu = —(pu')’ + qu with
zero b.c.’s at x = a and x = b. If \,, ¢, are the eigenvalues, resp. eigenfunctions, of

this problem (cf. §2.6.3), then the system (3.10) may be solved explicitly by

CZ:@;1SZSN7

and the Galerkin approximation u, = uy = Zfil ¢;¢i(x) has good approximation
properties; in particular

0
inf ||u—¢|i—0, as N — oo forue H*NH".
#€SN

The difficulty in this approach is of course that it requires the explicit knowledge of
the eigenpairs (\;, ¢;), 1 < i < N, which are, in general, not easy to find analytically.
Another obvious choice that will also guarantee good approximation properties is
to choose S}, as the vector space of the polynomials of a fixed degree that vanish at
the endpoints. The problem with this approach is that, in general, the condition of the
linear system (3.10) will be bad. Moreover, the matrix A will be, in general, full, since
the polynomial basis functions ¢; will not be of small support in 1. Since we expect N
to be large for approximability, we conclude that, in general, the system (3.10) will be
very hard to solve accurately. Moreover, since N ~ degree of polynomials in .S, we
will run into problems trying to compute u;, as a polynomial function of large degree.
A good choice turns out to be piecewise polynomial functions (consisting of polyno-
mials — of small degree — on each subinterval of a partition of I), continuous on [, and
endowed with basis functions of small support. In this way, we obtain various finite

element subspaces S}, of ]?[1(1).

3.2 The Galerkin finite element method with piece-
wise linear, continuous functions

Leta =xp <21 <y <...<xy < xys1 = bdefine an arbitrary partition of |a, b] with
N interior points z;, 1 < ¢ < N. Let h; = x;31 — x;, 0 <4 < N and put h = max; h;.

(For uniform partitions h = h; = (b—a)/N+1). Let Sj, be the vector space of functions
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defined by
Sp={0 : ¢€Cla,b], #(a) =¢(b) =0, ¢ is a linear

polynomial on each (z;, x;11), 0 <i < N}. (3.11)

(We write the last condition as ¢ |(z;2,,,)€ P1)-
0
It is not hard to see that S}, is a finite dimensional subspace of H! and that dimS;, =

N. The latter follows e.g. from the fact that the set of functions {¢;}Y, defined by
{i € Sh, dilx;) = 655},

or, explicitly, for 1 <7 < N, as

o i e <a <y
¢i(z) = %7 it <z <wg (3.12)

0, if ze€ 7\ (SL’i,l, ZEZ'+1)

forms a basis of Sy,: Obviously ¢; € Sy.

91 /i o/,

axp X3 Xz Xi-t Xi Xis XN-1 XN XN#1 b

Moreover, if Zf\il ci¢i(xr) =0, Vo € I, putting © = z;, 1 < j < N, we see that

¢; =0, i.e. that {¢;} are linearly independent. In addition, since for each ¢ € Sy,

N
o(z) = Z cipi(x), where ¢; = ¢(x;),
i=1
i.e. since each ¢ in Sy, is uniquely determined by its nodal values ¢(z;), 1 <i < N, we

conclude that {¢;} spans Sj,.

axp X3 X Xi-t Xi Xis XN Xns1=hb

Evaluating the elements A;; = fab (pg#; + q¢j¢i) of the matrix A of the system
[ic1,ia]) A # 0,1 <@ < N, A1 # 0,

(3.10) yields that (since suppeo;
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Ait1, #0,1 <4 < N —1, while all other A;; = 0. Hence, due to the small support
of the basis functions, the matrix A is sparse; in this case tridiagonal. Since it is also
symmetric and positive definite, the system (3.10) may be efficiently solved e.g. by a
banded (tridiagonal) Cholesky algorithm. In the special case p = ¢ = 1 and a uniform
partition of I = (0,1) with h = 1/(IN + 1), A is the sum of the stiffness matrix S,
where S;; = fol ¢¢;, and the mass matrix M, where M;; = fol ¢;6;. Indeed, S and M

are then the tridiagonal, symmetric, and positive definite matrices

2 -1 0 4 1 0
-1 2 -1 1 4 1
1 h
S == M==
h : 6
0 -1 2 -1 0 1 41
1 2 1 4

We now return to the error estimate (3.8). As h — 0, i.e. as dimS, — oo, we would
like to prove that infyes, ||u — ¢[1 — 0, where u € H* N H' is the weak solution of
(3.1), (3.2). In fact, we shall prove that there is a constant C', independent of h and v,
such that infyeg, ||[v— ¢lli < Ch|v"| for any v € H* N H.

A simple and convenient way to do this is to study the properties of the interpolant
of v in the space Sh,.

The interpolant (I,v)(z) of a continuous function v(x) (such that v(a) = v(b) = 0)

in the space Sy, is defined as the (unique) element of S), satisfying

(L) (z;) = v(z;), 1 <i<N, (3.13)

axg X X Xic1 Xj o Xjy XN Xns1=h

0
i.e. as the element (I,v)(z) = 2N, v(z;)¢s(x) of Sy, Hence I, - H' — Sy, is a linear
0
operator on H! (the interpolation operator onto Sy,).
Lemma 3.1. Let v € H'. Then I,v satisfies
(i) (Iyw—v),¢)=0, Vp €S, (3.14)

(i1) ||v—Iyw| < Chll(v— Iw)|, (3.15)
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for some constant C' independent of h and v.

Proof. (i) Let ¢ € S,. Then

b N Titl
(o =)op) = [(o-vy@do=3 [ (oo ¢ =
a i=0 7 i

N

i o "
- E:%@m_w¢ﬁﬁgi/ (hv—@wcﬂ}:&

1=0

since (Ipv)(z;) = v(x;), 0 <i < N+ 1, and ¢”

[zs,2541] = 0.
0
(ii) Since (Iyv —v)(z;) = 0, 0 < i < N +1, [u —v € H' (x4, 7;41) for each
1 =0,1,...,N. By the proof of Proposition (the Poincaré-Friedrichs inequality),

we conclude that there is a constant ', independent of the x; or v such that

||Ihv - U||L2($i,96i+1) < C (l'i—f—l - ‘TZ) ||(Ihv - U),||L2(Ii7$i+1)

for all 7 (in fact the best value of C'is 1/7). We conclude that

N N
=0 =0

= C*R*||(Lhyv —v)|>
]

Using Lemma 3.1 we may now prove the following approximation properties of the

interpolant Iv:

Proposition 3.2. There is a constant C' independent of h such that

(i) o= Inv|| + Rll(v — Iw)'|| < Ch|V|, Yve }0[1, (3.16)

(i) |lv— Ll + Bl (v — LwY|| < CR ||, Yoe H2NH.  (3.17)

Proof. (i) For v € }0[1, (v = Lyw)|| < ||V + ||(Iyo)||. But, by (3.14), ((Inv),¢') =
(v, ¢") YV € Sp. Put p = I,v and obtain

I(Zno)' 1 = (', (o)) < (Il i [Tn0)]] < 107
We conclude that [|(v — Iv)'|| < 2|[v'||. Hence, by (3.15)
lv = Iwoll < Ch|l(v—Inw)| < 2C R[],
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proving (3.16).
(ii) Let now v € H?N H, Then,

(v = Tw)'|| < Chlv"| (3.18)
for some constant C' independent of h and v. To see this, note that

I(v = L)' [I* = ((v = Inv)', (v = Iw)') = (¢, (v = Lw)')  (why?)
b , b

= / v (v —I) =V (v—Iw)], — / " (v — Iw)

(since v’ € H', v — v € H')

b by(3.15)
=—/ v (v —Iyw) < Pllv =Ll < Ch[P[(v = Ixo)].

We conclude therefore that ||(v — Iv)'|| < Ch|[v”||. This gives, in view of (3.15),
lv — Iw|| < CRh?||v"||. Hence (3.17) holds. O

In view of Proposition 3.1, since

dnf (o=@l + (v =¢)l) < llv— Tl + (= L),

it follows that

inf (o= oll +hllw=0)l) < Cib* D] (3.19)

0
for k=1,2ifve H*N H.
Hence,

inf ||v — < " 2
jnf [lo— ol < Ch"] (3.20)

0
forve H*N H.
We are now ready to prove error estimates in the H! and the L? norms for the error

u — uy, of the Galerkin approximation u, € Sy, of u, the weak solution of (3.1), (3.2).

Theorem 3.3. Let u be the weak solution of (3.1), (3.2) and wu;, € S}, its Galerkin

approximation in S,. Then,

lu —unlly < Chju"], (3.21)

lu—unll < CR* ", (3.22)

for some constant C' independent of A and w.
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Proof. (3.21) follows from (3.8) and (3.20). The proof of (3.22) follows from the
following duality argument (Nitsche trick). Set e = u—uy, € Igf L. Let 1 be the solution
of the problem

B(,v) = (e,v), Yv € Poll, (3.23)
i.e. the weak solution of the problem —(py’) 4+ q¥» = e in (a,b), ¥(a) = (b) = 0.
We know that ¢ exists uniquely in H' and in fact v e H*N H' and that it satisfies

(elliptic regularity)
¥l < Clel|. (3.24)

Put v = e in (3.23); then

lel|* = (e, e) = B(y,e) = Ble,¥)) = B(u —up,v) = Ble, ¢ — X)
for any x € S), (why?). Take x = I3. Then

9 by(3.17)
el = Ble,yp —Iny) < Cillel|y || — Lol <
Cilleli CR|[Y"|| < C"hllellylell, (by (3.24)).

Hence, |le]| < C"h|le||; and (3.22) follows from (3.21). O

Remarks 3.4.
(1) Property (3.14) characterizes uniquely the interpolant as an element of Sy. Le. the
equation

(o =), ¢') =0, Yo € S5, (3.25)

(given v € H ), has a unique solution v, € Sy, which, by Lemma 3.1 (i), coincides
with the interpolant Iv of v. To prove uniqueness, note that (3.25) may be written
as (v, ¢') = (v',¢), Vo € Sj,. Hence, if there existed two such elements v}, we would
have

—pl 92
(0 —02),¢) =0, Yo e Sy =" [(vf — )| = 0= v} =2,

by the Poincaré—Friedrichs inequality.
Equation (3.25) also states that in our case, Iyv is the projection of v on S), with

0
respect to the inner product (u’,v") on H!. We conclude that
I _ / — i f I .
(T — )| = inf " — ¢
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Hence, by Poincaré-Friedrichs
o — v < C||(Inw—ov)| < C inf |Jv—pl.
PES)

Since, obviously, infgeg, ||[v — ¢|li < [[Inv — v]1, we finally obtain that

inf [|v — < v — < C inf |jv—
@lgsth elli < T —vlli < ;gsh||v o1,

i.e. that Iv is a quasi—optimal approximation of v in S, (just as the Galerkin solution
up, is a quasi-optimal approximation of u in S;). Hence, nothing essentially was lost
by using the upper bound ||/,u — ul|; of inf cg, ||u—¢||1 in (3.8) — which led to (3.21).
(71) It may be proved that the exponents of h in the estimates (right-hand sides)

[Hhw —uly < Crhfu”],

Hhw =l < Cob* ],

IA

Crh [,

lun = ullx

lun =l < CyR* "],

i.e. the powers 1 (for H' norms) and 2 (for L? norms) in the errors of Iu and uy,
(viewed as approximations of u € H* N I—?f 1), are optimal, i.e. they cannot be increased
in general.

We may also derive error estimates in other norms. For example, if the solution u
of (3.1), (3.2) belongs to C?[a,b] (if it is a classical solution, that is), we may prove

that there exists a constant C', independent of h and u such that
lun = ulloo + hllu, — u'lloc < C B [Ju"[loc-

(Again, the interpolant satisfies a similar estimate. E.g. it is obvious (Lagrange inter-
polation) that ||Ihu — ullee < (h?/8) ||t"]|s0)-

(iii) Other boundary conditions. Let us consider for example (3.1) with the Neumann
b.c.’s

u'(a) = u'(b) =0, (3.26)

where we assume now ¢(z) > 5 > 0, = € [a, b, for uniqueness. As the space in which
the weak solution lies now is H', we consider subspaces of H' in which we seek the

Galerkin approximation uy of u.
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Let @ = 29 < 1 < ... < xny41 = b be an arbitrary partition of [a,b] and let

h = max;(z;41 — x;) as before. The finite-dimensional space

SNh:{¢: ¢ € Cla,b], ¢

(ziwip1) € Pl}

is a subspace of H' and has the basis {¢;}V ! consisting of the “hat” functions ¢,
=0 g

1 <4 < N, that were defined by (3.12), plus the endpoint “half-hat” functions ¢y,

¢N+1

@i/

Xi-1 Xj Xj+1

defined as follows:

G0 € Sy do(0) =1, ¢o(z;) =0, j #0, ¢nr1(zni1) =1, dnpa(z;) =0, j# N+ 1.

Hence, dimS, = N + 2.
Defining again the interpolant I,v of a continuous function v on [a, b] by the formula

N+1

(o) (@) = Y o) i),

1=0

i.e. as the unique element of S, that satisfies
(Iw)(x;) = v(x;), 0<i < N+1,
we may prove again that:
(i) (L), ¢) = (v, ¢) Yo H', ¢ € 5. (3.27)
(The proof is identical to that of Lemma 3.1 (i))
(i) [1(Zn0)|* + (v = Lyo)'* = |[V'|I%, Vv e H. (3.28)

(This follows from (i) by putting ¢ = I,v).

With these in mind we may now see that
(v — Lw)| < ||V, Yve H . (3.29)
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(A simple consequence of (3.28)). Since for each i, v — Iv € ﬁl((Ii,xi+1)), we have

again, as in Lemma 3.1, that
v — Ll < h|(v—1Iw)|, YoeH. (3.30)
As a consequence of (3.29) and (3.30),
v — Iyo|| < AV, Yve H. (3.31)
Now we have that for v € H?,
(v = Io)||? = — (v — L, v"). (3.32)

The proof of (3.32) is identical to that given for [, after the estimate (3.18).

As a consequence of (3.32), we have
[V = (Two)|* < o = Tnol [[0"],
which, when combined with (3.30), yields
" = ()] < h|V"|, Yoe H? (3.33)

Using (3.33) in (3.30) we see that for v € H?

lv = Iyol| < B* 0" (3.34)
We conclude therefore that
v — Iyol| + k(v — Lw)| < CLh||V|, Yve HY, (3.35)
and
v — Iyo|| + R ||(v — Lw)|| < Cyh?||0"||, Yve H>. (3.36)

These inequalities are the analogs of (3.16) and (3.17) and lead e.g. to the estimate
inf |[v—¢|l; < ||v—Iw| < Ch|p"|, ve H (3.37)
PESH

The Galerkin approximation u;, of u in Sy, is defined again as the (unique) element of

Sh that satisfies
B(up, ¢) = (f.¢) V¢ € Sh,
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. N1 :
and may be found again in the form u;, = Zizg cid;, where ¢ = [cg,...,cn] s

the solution of the linear system Ac = f;, where the (N 4 2) x (N + 2) (symmetric,
positive definite) tridiagonal matrix A is given by A;; = B(¢;, ¢;), and fj, is the vector
[(f,d0), -, (f,édns1)]T. As before, if u is the weak solution of (3.1), (3.26), then

Ju =l < € jnf a9
which yields, in view of (3.37), the H'-error estimate
lu = upll < Chlu”, (3.38)

since u € H?. The error bound (O(h)) is of optimal rate.

The L*-error estimate (of optimal rate as well)
lu—un] < Ch* [l (3-39)

follows again by a duality argument, exactly as in the proof of (3.22) in Theorem 3.3.
(Use is made of the elliptic regularity inequality for the Neumann problem).
Analogously, we may approximate the solution of other two—point boundary—value
problems with (3.1) as the underlying differential equation. For example, with the
boundary conditions u(a) = 0, u/(b) = 0, we use the finite element space (defined on

our usual partition):

{¢ € Cla,b], ¢(a) =0, ¢

(zi,241) € Pl}?

which is a finite-dimensional subspace of the Hilbert space {v : v € H'(a,b), v(a) = 0}
ete.
(iv) A note on implementation. (From Brenner—Scott, [3.2], Section 0.6)

A basic computational problem in the finite element method is the evaluation, or
assembly, of the matrix and the right—hand side of the system A ¢ = fj of the Galerkin

equations, and in general, of the inner product (f,v) and the bilinear form

b
B(v, w) :/ (p(x)v"(x)w'(z) + g(z)v(x)w(z)) do

given v,w € Sp,. We will discuss this problem in its present simple one—dimensional

context; the strategy extends in a natural way to the multidimensional case.
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Given the partition a = zg < 1 < 23 < ... <y < Tyy41 = b of [a,b], we will
simply refer to a subinterval I}, = [z}_1,zx] as an element. Hence in our problem we

have N + 1 elements,

Iy I le IN+1

axg X3 X Xe-1  Xe XN XN+1 =D

the subintervals I, = [z._1, %], e =1,2,..., N + 1. Each element [,

|e
L

j=0 =1

has two nodes, its endpoints, corresponding to the values of the local node index 7 =0
(for the left endpoint z._1) and j = 1 (for the right endpoint z.). The element number
e and the local index j determine the global index i for the node z;. In our case we
have

i=ile,j)=e4+j—1, e=1,2,...,N+1,j=0,1.

Thus the left endpoint of the element I;5 has global index i =154+ 0—1 = 14, i.e. it
is the node x14, which of course coincides with the right endpoint of the element I14
(given by e=14, j=1).

Let us consider the basis {¢;}N 4! of “hat” functions, introduced as basis of the
subspace Sy, used for the Neumann problem, i.e. the basis for the finite element space
of piecewise linear, continuous functions with no boundary conditions imposed. Each

function v(z) in this subspace may be written as

v(x) = Z v(x)ei(x) = Z vipi(x), v = v(x;).

There is a particularly effective way of describing v(x) (for the purposes of efficient
assembly of (f,v) and B(v,w)) in terms of its nodal values v(x;) and the “local” basis
Junctions ¢f, j = 0,1. The latter are simply the restrictions on [e_1,x.] of the basis

functions ¢e_1(z), we(z), respectively, and may be described in terms of two fixed
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Te_1 I, Te x

functions @y, ®; on the “reference” element [0,1], as follows: First define @y, ®; as

l—y if0<y<1 y if0<y<1
Do(y) = , Puy) =
0 otherwise 0 otherwise.
Associated with I, = [z._1, .| (defined by the affine transformation x = hey + x._1,
0 <y <1, where h, = . — x._1, that maps the reference element [0,1] onto I..), define

the local basis functions ¢f, ¢f as
o) = Po(y), ¢i(x) = P1(y), whenever x = hey + Te_1,

le. as
. T — Lo ,
@i (r) = @; (h—l) , j=0,1.
(Consequently, p$(x) =0 for = & I.).

A function v(z) in the finite element subspace may be described now as

N+1 1

v(x) = Z Z Vi(e,j) ©5(T)- (3.40)

e=1 j=0

If © € (xe_1,ze), (3.40) reduces to

v(2) = vemrp5(2) + vepi (),

Zo Il T ]2 i)

which is the correct description of v(z) restricted to I.. However, (3.40) is not a correct

expression at the nodes. For example, at x = x1, the right-hand side of (3.40) is equal
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to
Ui(l,l)@i(%) + Uz‘(2,0)908($€1) = + v = 20y,

instead of correct value v; = v(x1). This inconsistency will not affect the assembly of
B(v,w) or (f,v), which involve integrals over the I.’s.
The assembly e.g. of B(v,w) (for v, w in the finite element subspace) is now done

as follows. We write

=> Be(v,w), (3.41)

where B.(v,w) is a locally defined bilinear expression given by
Buo,w) = [ pouf +quo = [ (/@' (e) + ale)o(a)ulo)) da
Ie Te—1

where ' = di

Using (3.40) we write

Be(v,w) = / (vago] )(wa% )/dx
! / (Z”“’“"J )(szeg% >dx.

Using the map z — y = (r—x._1)/he we may transform the integrals above to integrals

over the reference element [0,1]:

B.(v,w) = hi /0 phey + 1) (Zvi(ea)@j(y)> (sz'(e,j)q’j(y)> dy

+ he/o q(hey + Te—y (Z%(eg )) (Zwi(e,j)q)j(y)> dy,

where now the prime ' denotes differentiation with respect to y. Letting p.(y) =
p(hey+2e1), Ge(y) = q(hey+xe_1) (Pe and G, depend on €), we may rewrite the above

in matrix—vector form

Wi(e,0) Wi(e,0)

1
Be(U, w) = h_ (Uz (e,0)» Uz(e,l)) Se + he ('Ui(e,O)7 Ui(e,l)) Me > (342)
Wie,1) Wie,1)
where S, is the 2 x 2 local stiffness matriz given by
b (Pf)? pe P D) 1 1 -1
Jo Pe®1®G [y Pe(®1)? 0 -1 1
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and M, is the 2 x 2 local mass matriz defined as

fO (jeq)g fO Qe(I)O(I)l
Jo @21%0 [y GePi

M, =

The formula (3.42) is quite effective for computing the local bilinear form B.(v,w).
It reduces to a few matrix — vector operations and the evaluation of the integrals in
the entries of S, and M,. These integrals are evaluated on the reference finite element
0, 1], in practice by some numerical integration (quadrature) rule. For example, use of
the trapezoidal rule

[ sty = L0

yields an approximate local stiffness matrix S. given by

p(xe—l) +p(xe) ) I -1

S, =
2 1 1

and a diagonal (“lumped”) local mass matrix M, (why?)

1 ) Q("Ee—1> 0
2 0 q(z.)

M, =

(It may be proved that using e.g. the trapezoidal rule in computing the elements of
the matrix and the right-hand side of the Galerkin system Ac = f;, yields a new
Galerkin approximation iy, that satisfies again [[uy, — ull; = O(h), ||u — u|| = O(h?),
i.e. the same type optimal-rate error estimates. See § 3.5.2 for an analysis of the error

of numerical integration.)

3.3 Approximation by Hermite cubic functions and
cubic splines

In this section we will construct two examples of finite dimensional subspaces of H'(I)
(or H YI)), I = (a,b), consisting of piecewise cubic polynomials. The Galerkin approx-
imation uy, of u, the solution of (3.1),(3.2) or of (3.1),(3.24), will have higher order of
accuracy. For example, its L? error ||u — uy|| will have an O(h?) bound, provided u is

in H*(I).
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3.3.1 Hermite, piecewise cubic functions

On I = (a, b) we consider, for simplicity, the uniform partition of meshlength h = zl\)f;ﬁp

defined by x; =a+1h,i=0,..., N + 1, and the associated vector space of functions
H=1{¢:¢ € C'a,b], ¢is a cubic polynomial on each (z;,z;11), 0 <i < N}.

The space H is called the vector space of Hermite, piecewise cubic functions on I,
relative to the partition {z;}.
It is not hard to see that H is a (2N + 4)-dimensional subspace of H?(I). To

construct a suitable basis for H we define two functions, V' and S on [—1, 1] as follows:

Ve Cl-1,1], S e CY-1,1],
V}[fl,op V‘[O,l] € Py, S‘[fl,o}’ S‘[O,l] € P,
V'(0) =0, V(1) =0, V'(1) =0, $'(0) =1, S(1) =0, S'(1) =0.

Since a cubic polynomial is uniquely defined by its values and the values of its deriva-
tive at two points, it follows that the functions V' and S exist uniquely. In fact, they

are given by the following formulas:

N V()
r+1)2%(—22x+1) —-1<z2<0,
vy | 2
(x—1)202z+1) 0<x<1,
1 0 1 bl
! S(x)
r(r+1)? —1<z<0,
r(z—1)? 0<x<1, 1/6
1 0 1 X

Using V and S we define the functions {V},S;}, 0 < j < N + 1, on I as follows:
For j =1,..., N we let:

V(a}) B 1% (I;lx]) rjo1 <x < Tjt1 S(aj) B hS (9”*}1%) Tjq <z < Tjt1
’ 0 otherwise ’ ’ 0 otherwise
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We also define Vi, Vi1, So, Syi1 as

V() = V(%) agxgxl’ So(r) = hS(zh;“) GSJISJJ’

0 otherwise 0 otherwise

V(=) sxy<z<b hS (28) zy <z <b
Vivii(z) = () , Snaa(z) = (5 :
0 otherwise 0 otherwise
We may easily verify that V;, Sj € H, 0 < j < N+1, and that Vj(zy) = dj, V] (2x) = 0,

Vo Vi Vj VN VN+1

\
\
\
\
\
\
|
To=a T T2 Tj—1 Tj Tjt1 TN-1 ZIN zyp1=Db

xoza\jxl To :cj,l\/xj Tjt1 TN_— 1'N+1:b

Sn+1

>

The 2N + 4 functions {V}, S;}, 0 < j < N + 1, form a basis of H. Indeed, any

function ¢ € ‘H may be written in the form

N+1

¢(r) = Z ¢(x;)Vi(x) + ¢'(2;)95(x), wel, (3.43)

since, on the interval [z, xx41] the cubic polynomial gb‘[zk - is uniquely determined

1]
by the values ¢(zx), ¢ (zx), ¢(2x41) and ¢ (zx41). On the other hand, the right-hand
side of (3.43)) is a cubic polynomial on [z, xk41], whose values at zg, x,41 are (),
&(xx41), respectively, and whose derivative values are ¢'(zx) and ¢'(x41) as well. In

addition, since the relation

N+1

Z c;Vi(x) + d;S;(x) = 0,
=0

implies (set x = 21, 0 < k < N + 1) that ¢, = 0 all k, and that

N+1

Z ¢;Vi(x) + d;Si(x) = 0.

Jj=0
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(from which, similarly, d; = 0 all j), we conclude that the set {Vj, S;} is linearly
independent.

Note that supp(V;) = supp(S;) = [z_1,%j11] for 1 < j < N. Hence, the functions
Vj, S; have the minimal support possible in H: A function in H with support in one
interval [xy, 41| is identically zero.

If we are given now a function f € Cl[a,b], there is a uniquely determined element

f € H such that

flay) = flz;), flz;)=Ff(z;), 0<j<N+1L (3.44)

f is called the cubic Hermite interpolant of f (relative to the partition {z;} of I) and

is given by the formula
N+1

fle) =" fla)Vi(@) + f(z))S(x), zel. (3.45)

5=0
We shall study the approximation properties of the Hermite interpolant. Denote as

usual by ||-||x the norm on the Sobolev space H* = H*(I). Then, the following theorem
holds:

Theorem 3.5. There exists C' > 0 (independent of h), such that for each f € H™,

m = 2,3 or 4, we have
If = flle < C AR £k =0,1,2. (3.46)
Before proving it, let us remark that m = 2 since, otherwise, f’(x;) may not have
a meaning. In addition, since f € H? but f ¢ H? in general, we take k < 2. If f is
taken in H*, then we have the best order of accuracy, O(h*~*) in H*, k = 0,1,2. This

rate cannot be improved even if f is smoother.

Theorem 3.5 follows from two lemmas:

Lemma 3.6. Let f € H? and k = 0 or 1. Then we have for 1 < j < N +1

||Dk(f - fN)“LQ(aﬂj—hx]‘) < h ||Dk+1(f - f)||L2(l'j—17-1’j) (347)
Proof. Since for k = 0 or 1, D*(f — f)(z;) = 0, all j, we have D*(f — f)(z) =
2 (D = D) e, wy <o <

Hence, for x € [z;_1,%j11], from the Cauchy-Schwartz inequality:

DH(f — F)()| < / DM — Pl dt < VEIDYS — Pllises e

j—1
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Therefore

- Tj ~\ 2 ~
1D = Dy oy < [ (D7 =) dt S I ID = Dl

j—

Lemma 3.7. Let f € H™, m = 2,3, or 4. Then
ID*(f = DIl < W2 | D™ ). (3.48)

Proof. For 1 < j < N+1 we have the ‘orthogonality’ relation fzm_j_l D?(f—f)Df = 0.
(This follows from the observation that f;ﬂl D%(f — f)D?f = (integrating by parts

and using D(f~f)(x,) =0all j ) = = [ D(f=D] == [(/ = D@)Df@)]  +
f;il(f o f>D4f = 0, since (f — ]E)(xj) = 0, all j, and D4f~‘[1j71@j] = 0 since
f S ]P)g[xj,l,&?j].)

This ‘orthogonality’ relation implies, for f € H™, m =2, 3, or 4

ID*(f = Dlliz; 1y < ID(F = Dllzzrap 1D ez, oy, 1<F<NA+1
(3.49)
To see (3.49)), consider
1D = P oy = [ DA = DDA = ) = Corthogonality’) —
Tj—1

— [ - prrr= o [T ot - oy,

where the last equality is trivial for m = 2, requires one integration by parts and use
of the fact that D(f — f) (z;) = 0, for all j, if m = 3, and one more integration by
parts and the fact that (f — f)(z;) = 0 all j, if m = 4. The Cauchy-Schwarz inequality
yields now (3.49)).

It m =2, (3.49) gives || D*(f — Fllz2@, 1.0 < D*fllr2(e; 1.;)- Hence, squaring
and summing over j we get

N+1 N+1

ID*(f = DIP = DD = P, ey < D ID*FllZoge, -,y = 1D £
j=1 j=1

which is (3.48) for m = 2. If m = 3, (3.49) and (3.47)) for £ = 1, give

ID*(f = PlZegeyreyy < IDU = Dz 1w 1D Fllrze, 1)
= h||D2(f - f)||L2($j—17l’j)||D3f||L2(l'j—1,.Z’j)‘

A
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Hence, | D?(f — )l r2(; 1.0;) < PID?fllL2(e, y.e,)» which gives (3.48) after squaring and
summing over j. Finally, if m = 4, (3.49)), and (3.47)) for £ = 0 yield

ID*(f = Dz, wy < I = Fllzze,awp 1D fllz2, o)

< BID( = Dzt e 1D Fll2s 1y)-
Again, by (3.47)) for k£ = 1, we obtain
ID*(f = D20 < PID*(F = Dzt e 1D Fllr2e; ),

ie. |ID2(f = Pllrew, 10y < P2ID fll12(, 1z, Squaring and summing we get (3.48).
[

Proof of Theorem 3.5. It follows from Lemma 3.6 and 3.7 easily. For example, if

m = 4, we have:

k=0: [If=f < (Lemma3.6) <h|D(f-f)|< (Lemma 3.6)
<P|D*(f = f)ll < (Lemma 3.7) < h*(|D*f|.
k=1: |(f=F) < (Lemma3.6) <hl|D*(f—f)| < (Lemma 3.7)
< RIDf.
Hence ||f = flI7 < ((B")* + (h*)) ID*f|I* < C || D* £,
k=2: |D*(f-f)ll < (Lemma3.7) <h*|D'f| =

If = flla < CR*|ID*f.
The cases m =2, 0 < k <2, m=3,0 <k <2, also follow analogously. O

We conclude that given f € H™ (m = 2,3, or 4), there exists an element x € H (we
verified it for y = f) such that

2
S TREf = Xl < ChmD™f. (3.50)
k=0

We turn now to the Galerkin solution of the 2-pt. b.v.p. for the d.e. (3.1). Considering
first Neumann boundary conditions, i.e. the b.c. (3.24), we see that uy is the unique

element of H that satisfies

B(un,¢) = (f,9), VoeH,
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for which, as usual (taking as our Hilbert space H*(I) ), there follows that
|u —upl < C;gf{ |u — @l
Hence, by (3.67) we conclude that if u € H™, m = 2,3, or 4, then
|u — uply < C K™ Y| D™ul. (3.51)

By a duality argument (‘Nitsche trick’) it follows, just as in the proof of Thm 3.1 (with
0
H' instead of H'), that in L? we have

lu — up|| < CR™|| D™ (3.52)

Hence, the (optimal) rate of accuracy one may achieve for wy, is 4 in L? (3 in H'),
provided u, the solution of (3.1), (3.24), is in H*. (If for example p € C™ !, ¢ €
C™=2, f € H™ 2 for some m < 2, it may be shown that the elliptic regularity estimate

(3.4) generalizes and gives that u € H™ and

el < Conll 2 )

In the case of homogeneous Dirichlet boundary conditions, i.e. the problem (3.1)-(3.2),
we may take as our subspace of 13'1([) the vector space 7(-)[: {¢: o €M, ¢(a) = ¢(b) =0}.
It is easily seen that 7(3[ is a (2N +2)-dimensional subspace of H? ﬁ]i)[ 1. Its basis consists
of the elements V;, 1 < j < N, and S;, 0 < j < N + 1. We may define the interpolant

~ 0
f of a function f € H?>N H' in the natural way, and show as before that

0
provided f € H™ N H', and m is 2,3, or 4. The analogous estimates to (3.51]) and
(3.52) still hold, i.e. we have

Ju —ws; < CH™ D™, j=0,1,

provided u, the solution of (3.1),(3.2), belongs to H™ N H.

The system that defines the Galerkin equations is now of size (say, for the Neu-
mann problem) (2N + 4) x (2N + 4). Ordering the basis vectors {¢1, ..., Panyia} as
{Vo, S0, V1,51, -, VNi1,Sns1}, we see that e.g. the Gram matrix (with elements
fab ¢i¢;) is block-tridiagonal with 2x2 blocks. Its general ‘line’ of blocks is:

87



JViViee [V;S5a SV JV;S; JViViee  [ViSin
TSiVicw [SiSia | | [SiVi [(S)P| | [SiVien [ S;Sin

Hence, the cubic Hermite elements will give an accuracy of O(h*) in L? (if u € H*)
at the expense of solving a (2N + 4) x (2N + 4) 7-diagonal linear system.
We close this section with two comments:
(i) We may define Hermite piecewise cubic functions on a general partition a = xy <
1 < ...<xn41 = bof [a,b]. The associated basis {V;, 5;}, 0 < j < N+1, may be de-
fined in a straightforward way; its members have support in [z;_1,z;41] for 1 < j < N,
etc. An interpolant may be defined in the natural way. The estimate still holds
with h := max(z;41 — ;).
(ii) The cub]ic Hermite functions are a special case of the space
Hp = {0 € C" o8], 9|, .,

imation is of O(h*™) in L.

€ Pgm_l}, on which the error of the Galerkin approx-

3.3.2 Cubic splines

The dimension of H, the space of Hermite cubics is, as we saw, 2N+4. This, in particu-
lar, leads to larger linear systems that have to be solved for the Galerkin approximation
up. A natural idea is to lower the dimension of the space by requiring more continuity

at the nodes x;. In the cubic polynomial case this leads to the space

S:={¢: ¢ €C%a,b €P3;, 0<i<N},

]’ ¢|[:r¢,x¢+1]

of the so-called cubic splines. (We suppose that the {x;} define a uniform partition of
la,b] with xg = a, zx+1 = b, of meshlength h = (b —a)/(N +1). )

A count of the free parameters and the constraints of functions in S leads to the
conjecture that S is a (N +4)-dimensional subspace of H?((a,b)). To prove this fact,
we shall construct a basis of §, in fact a basis with elements of minimal support.

It is not hard to see that there are no nontrivial elements of S vanishing outside
less than four adjacent mesh intervals. (For example, prove that the only element of
S which vanishes identically outside [z;_1, x| is the zero element.) In addition, it is

easy to see that there is a unique function S € C?[—2,2], such that supp(S) = [—2, 2],
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Spssr € Ps for k= =2,-1,0,1, S(+2) = §'(£2) = S"(+2) = 0, S(0) = 1. This

function is given by the formula

~

i@ +2)° —2<z <,
114341 +3x+1)*=3@x+1)% -1<z<0,
S)=q I1+31—-2)+31-2)>-31-2)%] 0<az<l, (3.53)
i2—x) 1<z <2
| 0 zeR—[-2,2]
T

Using S(z), we define the functions {¢;}, j = —1,0,1,..., N + 2, on [a, ] as follows:

We introduce the extra nodes x_1 :=a — h, zy12 := b+ h and put

o =5 (*57)

(the restriction of S (%

[a,b]

) to [a,b]). It may be seen immediately that each ¢;, —1 <
j < N + 2, is a cubic polynomial on each interval [xy,z;y1], 0 < k& < N, belongs to
C?[a,b], and hence ¢; € S, 1 < j < N + 2.

Moreover, supp(¢;) = [xj_2, Zj42], for, 2 < j < N — 1, and

¢_1  vanishes for z € [a,b] — [z, 71],

¢o  vanishes for x € [a, b] — [x0, 22,

) vanishes for x € [a, b] — [z, 23],

¢n  vanishes for x € [a,b] — [zn_2, TN11],
¢n11  vanishes for z € [a,b] — [xn_1,TN11],
¢dn1o vanishes for z € [a,b] — [xn, TN11],

In addition, ¢;(z;) =1for 0 <j < N+ 1.
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To=a I T3 T3 Ty Tj—2 Tj—1 Ty  Tjrl Tjre Ty 5 Ty 5 Ty, Ty LTy, =D

The N + 4 functions ¢;, —1 < j < N + 2, are known as B-splines, since they form a

basis of S. We shall show this in a series of lemmata:
Lemma 3.8. The {¢; ;ijl are linearly independent.

Proof. Suppose that for real constants ¢;, —1 < 7 < N + 2, we have

N+2
Z cjpj(x) =0, x € [a,bl.
j=—1
Then, in particular we have
N+2
D cibi(e) =0, k=0,..., N+1, (3.54a)
j=—1
N+2
and Z cj@i(xr) =0, k=0,...,N+1. (3.54b)
j=—1
Using the facts that
1 it j=k,
¢j(zr) =4 % if [j—kl=1,
we may write the relation (3.54al) as
%ck,l—i—ck—i—%‘ckﬂzo, /{ZIO,,N—l—l (355)

Now, using the fact that S is even (about zero) and therefore that S’ is an odd function,

we conclude from the definition of ¢; that
Pi(x;) =0, #(zj-1) = —¢j(2j41), &(zx) =0, |j— k| > 2.
Therefore, for k = 0 gives
c1¢" (o) + 19 (20) =0 = c1=¢. (3.56a)
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In addition, (3.54b|) for k = N + 1 gives
cnOy (TN 1) + enpadyia(Tni) =0 = oy = cnya. (3.56b)

The relations (3.56al) and (3.56b|) are used to eliminate the unknowns c¢_; and cy,2
from the linear system (3.55)), which takes the form

Ac =0, (3.57)

where ¢ = [cg, ..., cnq1]t and A is the (N + 2) x (N + 2) tridiagonal matrix

4 2 0
1 4 1
A
1 4 1
0 2 4

The matrix A is strictly diagonally dominant and therefore is invertible by Gerschgorin’s
lemma. Therefore, ¢; = 0, 0 < 7 < N + 1, since ¢ solves the homogeneous problem

(3.57). By (3.56al) and (3.56b) cyt2 = 0, c-; = 0. We conclude that the {¢,},

—1 <7 < N + 2, are linearly independent. [

We let now M := (¢_1,. .., ¢n12) be the subspace of S which is spanned by the elements
of the set {¢, jVj_Zl We shall show that in fact M = S , thus completing the proof
that {¢; j\f_Ql is a basis for §. This will be accomplished by two intermediate results

of interpolation:

Lemma 3.9. Let f € C'[a,b]. Then, there exists a unique element f € M satisfying

the interpolation conditions

flzj)=f(z;), 0<j<N+1,

f'(a) = f'(a), (3.58)
F'(6) = f'(v)
Proof.
The functions {¢, ;\7:_21 form a basis for M. We seek therefore a function f = Zjvjfl cjo; € M
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which satisfies (3.58]), i.e. the linear system (for its coefficients c;):

N+2 \
> eibi(ae) = flar), 0<k<NA+1,

= (3.59)
cad(a) + i (a) = f'(a),

cn @y (D) + enadlyyo(D) = /(D) - )

The linear system (3.59) has a unique solution, since the associated homogeneous
system (obtained by putting f(zx) =0,0 < k < N +1, f'(a) = f'(b) = 0 in (3.59)),
has only the trivial solution as we argued in the proof of Lemma 3.8. We conclude that

there is a unique element f € M satisfying the interpolation conditions 1) O]

Lemma 3.10. Let f € C*[a,b]. Then, there is a unique element 5§ € S which satisfies

the analogous to (3.58)) interpolation conditions

S(xj) = flz;), 0<j<N+1,
$(a) = f'(a), (3.60)
§'(b) = f'(b).

Proof. See [6.1, Thm. 4.7]. The function 5(z) is explicitly constructed by the values

of its second derivative at the points z;, 0 <7 < N + 1. O
We may now conclude that the {¢;} span S i.e. that M = S:

Theorem 3.11. The {¢;}-" are a basis of S.

Proof. In view of Lemma 3.8 we need only to show that S C M. Let f € §. Then, by
Lemma 3.9, there is a unique element f € M that satisfies the interpolation conditions
|D But M C &, hence f € §. However, by Lemma 3.10 there is a unique element
of § that satisfies the interpolation conditions which are the same as .
This element coincides with f since f € S. We conclude that f = f. Hence f € M,
ie. S C M. O

Given f € C'a,b], we call f(= 3) its cubic spline interpolant (with “first derivative”
end-point conditions f'(a) = f'(a), f'(b) = f'(b).) It is not hard to see that if we are
given f”(a), f”(b), we may construct a cubic spline interpolant f satisfying, in addition

to the conditions f(z;) = f(z;), 0 < j < N + 1, the endpoint “second derivative”
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boundary conditions f”(a) = f"(a), f”(b) = f"(b). Similarly, for periodic f € C'[a, ]
we may construct the “periodic spline” interpolant etc. All these interpolant functions
satisfy error estimates of O(h?') accuracy in L? provided f € H*(I). For example,
we shall prove the following result for the interpolant with first-derivative boundary

conditions:

Theorem 3.12. There exists a constant C' > 0 (independent of h), such that for each

feH™ m=2 3, or4, we have
If = flle < CHPHIF), k=0,1, 2. O (3.61)
We shall prove the theorem using two intermediate results. First, we prove the
analog of Lemma 3.6; but now the norms are global, i.e. they are the L?(a,b) norms.

Lemma 3.13. Let f € H? and k = 0 or 1. Then, there exists a constant C' independent
of h and f, such that

ID*(f = DI < ChID**HF = DI (3.62)

Proof. For k = 0 we may prove the local result as well. Since f coincides with f at

the nodes x;, 0 < j < N + 1, we have, for z € [z;_1,z,], for some 1 < j < N +1, that

flo) = Fw) = [ D7 - Hiw dy.

Hence, for z;_; < x < x;, using the Cauchy-Schwarz inequality,

N

7= D@ < 2,100 = ol dy < Vi =5 (122, (D= D) )

< \/ﬁ ||D(f - .f)HLQ(acjfhxj) .

Therefore,

1f = Fllz; v S R AIDU = Pz 1m0 (3.63)
from which, by squaring and summing, we get (3.62)) for £ = 0 with C' = 1.

To prove (3.62) for k = 1, we note that since
b(z) =0, 0<j<N+I,
where ¢ := f — f, there follows, by Rolle’s theorem, that there exist &; € (z;_1,;),
1 <j <N +1, where ¢/(§) = 0.
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o & &j i+t Env+1 &Nz

To=a X1 Tj—1 Zj Tj+1 TN IN+1 =b

(Note that ¢ € H?[a,b]; hence, ¢ € C'a,b]). Note also that, by definition of f,
¢ (x9) = ¢'(xn41) = 0. Introduce then &, := xy and £N+2 ‘= Tn41, so that ¢'(&;) =0,
0 < j < N + 2. Therefore, for x € [§;_1,&], f£ , ¢"(y) dy. Hence [¢/(z)] <

V(@ =& )" 122506 = V(5 — §-0)l|9” ||L2(§]-_1,£]-) < V2h|¢"|| 12,1 ¢;) - We con-

clude that

||¢/”L2(£j717§j) S (6] - Sj_l)(2h>H¢HH%2(5J_1,£J) é 4h2”¢//”%2(£j_1,§j) :

Hence,
N+2 N+2
1612 =D 116 5o, ) < 407 D 19" 12,y = 41% 10117
j=1 j=1
We conclude that (3.62)) is valid for k = 1 as well, with C' = 2. O

We proceed now to the analog of Lemma 3.7:

Lemma 3.14. Let f € H™, m = 2, 3 or 4. Then, for some C' independent of h and

f:
ID*(f = DIl £ C R 2D [ - (3.64)

Proof. First we prove the orthogonality relation
/ D*(f - [)D*f = (3.65)

We have, using the endpoint condition f'(a) = f’(a), f'(b) = f'(b),
b _ _ b b S
[ u-hoii = [g-pr) - [e-pi

a

= —/b(f— £)'f™. (Note that f € H*(a,b)) .

Now (/-1 | - i / {[(f T f)D‘*f} -

0, since (f — f)(z;) = 0 0<j<N+1,and f € Py in each [z;,x;41]. Thus, (3.65) is
proved. We have now by Cauchy-Schwarz

Tj+1

M=

x;

ul
o

~ b R B b - ~
ID*(f = HII” =/ D*(f = f)D*(f - f) =/ D*(f = HD*f < |D*(f = HIIID*fII-
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Hence, (3.64) holds, if m = 2, with C' = 1. If now m = 3, we have, integrating by parts
once and using the endpoint derivative conditions:

b

b
a a

~ b ~ ~ ~
L O O L [ (e N R 0
b ~ ~
= - [Ww-iypr < - Hp.

from which, by (3.62) k = 1,|D*(f — f)|I*> £ Ch|D*(f — f)||||D*f|| that shows
for m = 3. Finally, if m = 4, we may integrate by parts once more; using the
interpolation conditions f(a) = f(a), f(b) = f(b), we have:

N b - N b b -

1D === [ - Prois == -prf] + [P
b ~ ~ ~

= [ =P <15 = AIDA I < O D% = PIID
(In the last step, we used Lemma 3.13 twice). We conclude that holds as well
for m = 4. O

Proof of Theorem 3.12. It is straightforward to see that (3.61) follows from the
results of Lemmata 3.13 and 3.14 . O]

We conclude that given f € H™, (m = 2, 3, or 4), there exists an element y € S (take
x = f), such that

2
STREIf = Xl < Chm DM (3.66)
k=0

As before, it follows for the Galerkin approximation u; to u, the solution e.g. of the
b.v.p. (3.1),(3.2), that
lu —unlle < C R D™l (3.67)

for k=0, 1, provided u € H™, m = 2, 3 or 4. In the case of the problem (3.1),(3.2),
we take as subspace of POII(I) the vector space §: {p: o €S8, ¢(a) =0¢(b) =0} . It
is easily seen that § is a (N +2)-dimensional subspace of H' N H®. A basis of this
subspace consists of the previously defined B-splines ¢;, 2 < j < N — 1, plus four
functions ¢~0, gzgl, (ZSN, ¢~5N+1 E‘% , taken as (independent) linear combinations of the
O_1, ¢o, 01 and @y, Oni1, Onio B-splines, which are such that ggo(a) =0, ¢~1(a) =0,
dn(b) =0, ¢pn41(b) = 0. For example, we may take

o = ¢o— 4P_, ¢~1 = ¢1—¢p_1 etc.
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Given f € H N H?, we construct again an interpolant f Gg‘ satisfying f () = flx4),
0<i<N+1,and f'(z0) = f'(z0), f'(xn41) = f'(xn41), for example. The error
estimates are entirely analogous. (The linear system that defines the Galerkin equations
has now a seven-diagonal, banded matrix B(¢;, ¢;). )

One may now prove the error estimates , for cubic splines defined on a
general partition {z;} of [a,b]. In addition one may define higher-order smooth spline

spaces: For m = 2 define

S PQm—l} )

xiyxi+1]

Sm) = {cbr ¢ € C™a,b], ¢|,

in which one may prove L? error estimates for the Galerkin approximations of O(h*™)

accuracy.

3.4 More general finite element spaces and their
approximation properties

In this section we will study more general finite element spaces in comparison to the
concrete ones we saw in the previous two sections. For simplicity of notation we
assume that our functions are defined on the interval I = (0,1). Let r, x be integers
and suppose that » > 2 and 0 < p < r — 2. Consider a partition of I defined by
0=x0 <23 <22 <...<zyy =1 with b = max;(z;41 — z;), and the associated
vector spaces

S,’;“:{gbecﬂ(i), é eP, ., ng’SN}

[z3,2441]
consisting of C* functions on I that are piecewise polynomials of degree » — 1. We

have already seen examples of such spaces corresponding to

i =0, r=2: Piecewise linear, continuous functions,
p=1,7=4: Hermite (C') piecewise cubic functions,
p =2, r=4: Cubic splines (C?).
It is not hard to see (cf. Example [2.9| (ii)) that these vector spaces are finite-
dimensional subspaces of H*™!(I) with dim S;* = (r — u — 1) N + r. The subspace of

0
Spt, denoted by Sp* and consisting of the functions in S;* that vanish at z = 0 and
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0
x = 1is a subspace of H'(I) N H**! of dimension (r —pu—1)N +r —2. The spaces S;*
are called finite element spaces since they can all be equipped with basis functions of
small, i.e. O(h), support. Moreover, they have the following approximation property

that we will call property 1I:

Given v € H*(I), where s an integer such that 1 < s < r,
there exists a x € Sp** such that m
lo = xll + hllv" = X'I| < Ch?[Jo]ls,

for some constant C' indepented of v and the partition {x;}.

We have already seen in Section that holds for piecewise linear, continuous
functions (r = 2, p = 0), wherein y is e.g. the interpolant Iv of v defined by the
conditions (I,v)(z;) = v(z;), 0 <4 < N + 1. In Section , in the case of Hermite
cubic functions (r =4, u = 1), we proved in Theorem that holds if e.g. x = 7,
where © is the interpolant of v € H*(I), s > 2, satisfying 0(z;) = v(z;), ¥'(x;) = V' (x;),
0 <i < N + 1; we also established the additional H?-estimate |Jv — 0|]s < Ch*~2||v]s,
for s = 2,3, 4.

We also saw in Section [3.3.2] (Theorem [3.12)), in the case of cubic splines (r = 4,
@ = 2), that holds for s = 2,3,4 if e.g. x is the cubic spline interpolant v of
v € H*(I), defined by the conditions v(z;) = v(x;), 0 < i < N + 1, ¥'(xg) = v'(x),

' (rny1) = V' (zn41). In addition we proved that [[v — ||y < Ch¥72||v]|, for s = 2,3,

or 4. (These estimates were established in Sections |3.3.1| and [3.3.2| for uniform meshes.

They also hold for nonuniform meshes x; as well.)

In the sequel we will prove for general spaces S;" when p = 0 and r > 2,
and when =1 and r > 4, for 2 < s < r. For the general case of we refer the
interested reader to the paper of C. de Boor and G.J. Fix., “Spline approximation by
quasiinterpolants”, J. Approx. Theory, 8(1973), 19-45.

We should also point out that the conclusion of also holds e.g. for functions
ve H(I)N }011(]) approximated by elements of §2”

We may use to derive error estimates for the approximation of the solutions
of the two-point boundary-value problems of Section by elements of S;" or its
subspaces. For example, consider the two-point bvp 7, whose weak solution
u € ﬁ 1is defined by . Let wuy be its Galerkin approximation in §;“ defined by
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the equations
0
B<uh7 90) = (f7 90)7 VSO S Sh#? (368)

0 0
that reduce as usual to solving a dim S;* x dim S;* linear system of equations for the

0
coefficients of w;, with respect to a basis {¢;} of S;*, with a positive-definite matrix
B(¢;, ¢;) and right-hand side (f, ¢;). Arguing as in Theorem and using gives

the error estimate, for 1 < s <r
lu—up| + hllu —uplly < CR%[uls, (3.69)

provided that w € H*(I) N Igfl(l).

A basic tool for proving approximation properties like is the Bramble-Hilbert
Lemma (also called the Deny-Lions Lemma), whose general form in R? we will see
in Section 5.2. Here we will prove it in the case of a finite interval just using Taylor’s

theorem. (For the rest of this section we follow the exposition of analogous results in

the notes by G. Akrivis, [6.4].)

Proposition 3.15. Let £ > 1 be an integer and F' be a nonnegative functional defined

on H* = H*(I) and satisfying
(i) Flv+w) < F(v)+ F(w), Yv,w € H,
(ii) 3 constant C' > 0 such that F(v) < C||vlx, Vv € H*,
(iii) F(p) =0, Vp € Pg_;.

Then, there exists a positive constant ¢ such that F(v) < clv|p, Vo € H* where |,

denotes the seminorm |v[, = [[v®]).

Proof. Suppose that k& > 2. Let v € H* and let p,_;(z) be it’s Taylor polynomial of
degree at most k — 1 about z = 0, i.e. px_1(z) = Zf;é ?—fv(j)(O). (pr—1 is well defined
since the values of all derivatives v (0), 0 < j < k — 1, exist: Take the corresponding
values of the derivatives of the C*~! representative of v.) Then by the properties of F

it follows that

F() < F(v—pg-1) + F(pr—1) = F(v — pr—1) < Cllv — pr—1]|&-
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Therefore, it suffices to prove that ||v — pr_1 ||z < C'|v|x for some constant C’ indepen-
dent of v. Using the integral form of the remainder of the Taylor polynomial we have

Nnow

v(x) = pr_1(x) + ! I /Om(z — )W) dt, Vrel.

(k—1
(The usual hypothesis for this formula to hold is that v € C*(I). More generally,

k=1) ig absolutely continuous on I, which is the case if v € H*, as we

it is valid if v
may see by applying Theorem with u = v*=D)) It follows, for z € I by the

Cauchy-Schwartz inequality, that

1 X xr
o(z) = pra(@)* < W/ (x —)**+=) dt/ (v® (1) at
— : 0 0
1 </1 2(k—1) > k)||2 1 1 k)||2
S s 0ds ) [lo®]? = [v®]
2 2 )
((k—1)1) 0 (k—1))*2k -1
so that
2 1 1 (k) (12
[0 = pr—a|” < [[v*][%. (3.70)

((k— 1)!)2 2k — 1
Since pf_,(z) = Y371 e (0) = Y500 Golt(0), it follows that p_,(x) is the
Taylor polynomial of degree at most & — 2 of v'(x) about = 0. In general, for
1=0,1,...,k—1, p,@l(az) is the Taylor polynomial of degree at most k — 1 —i of v (x)
about x = 0, and in analogy to (3.70) we have

1 ‘ 1
((k—i—1)1)* 2(k—19)

0@ —pi,|1* < —I®IE i=0. k-1

Since p;k_)l = 0, it follows that

1 1
||U _pk—l”z < 1+ Z : . — Hv(k)Hz’

i.e. that

lv — pr-1lle < Cklvlk,

for a constant ('} depending only on k, which is the desired conclusion. If £k = 1, pg
is a constant, equal to v(0). Using v(x) = v(0) + [; v/(t)dt, x € I, gives the result
trivially. [

We remark that the Bramble-Hilbert is valid in other function spaces as well. For

example it is straightforward to check that it holds if we substitute H* = H*(I)
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by the Banach space C*(I) equipped with the norm |[v||cx = Zf:o 99|50, Where
|v]|oe = max,c;|v(z)| for v € C(I). The analogous seminorm |v|cx is [|v™®||o.

The following result, whose proof follows from the Bramble-Hilbert Lemma, gives
a useful bound of the L? error of the Lagrange interpolating polynomial of degree r — 1
of a function v € H*(a,b), where r > s > 2, and a corresponding bound of the L? error

of its derivative.

Lemma 3.16. Let » > 2 be an integer, x;, 1 < i < r be r points in an interval [a, b]
such that z; # z;, if © # j, and s be an integer satisfying r > s > 2. Given any
v € H%(a,b), let p € P._; be its Lagrange interpolating polynomials at the points {x;}.

Then there is a constant ¢, independent of a, b, and v such that

lo = pllzaaey < (b= a)*[[v 20, (3.71)

”UI — p,”L?(a,b) S C (b — CL)S_IHU(S)HLz(a’b). (372)

Proof. Consider the affine, 1-1 map of [a, b] onto [0, 1], defined by z € [a,b] — & =
=2 [0,1], let 2; € [0,1] be the images of 2; under this map, and define 4(z) = v(z),
p(z) = p(x). Then 0 € H*(0,1) and p(z) is its Lagrange interpolating polynomial of
degree < r — 1 at the points z;, 1 < ¢ < r. Let F': H*(0,1) — [0,00) be defined
by F(0) := [|0 — p||r20,1) for © € H*(0,1). Then F satisfies the hypotheses of the
Bramble-Hilbert Lemma for £ = s. To see this, note that if ¢ € P,_; is the Lagrange
interpolating polynomial at {z;} of a function w € H?®(0,1), by the uniqueness of

the Lagrange interpolating polynomial we conclude that 7 = p + ¢ is the Lagrange

interpolating polynomial of degree < r — 1 of v + w. Hence

F(o+w) = [0+ @ = 7|20 = [0+ @ = (0+ @20

<o = pllzz) + 1@ = dllz20) = F(0) + F(w),

i.e. (i) in Proposition is satisfied. Let now 6 be any polynomial in P,_; and
let @ € P,y be its Lagrange interpolating polynomial at {Z;}. Since s < r, by the
uniqueness of 7 it follows that # = 6. Hence F(f) = ||0 — 7| 2201y = 0, and (iii) holds.
To verify (ii) recall that p may be represented as

p&) =Y 0(d) Li(#),

i=1
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where the Lagrange cardinal polynomials L; € P,_; satisfy ZAll(:%]) =0;, 1 <i,j5 <.
It follows that

|pHL2 0,1) Z H|L 22 ©0.1) < Csob (Z HL 22 01)) 0| 1 (0,1);

=1

where Csop is the constant in Sobolev’s inequality on [0,1]. (By Remark (i)
Csop < \/§) Hence

F(0) = 10 = pll20,1) < 19l 20,1y + 1Bl 22(0,1)

< [1 + Csop Z ||IA/i||L2(O,1)} ||77||H1(071)

i=1

< CJlo]

H5(0,1))

where the constant C' = 1+ Csop Y i, ||[:l|| £2(0,1) depends only on the #;. We conclude
that (ii) in Proposition holds, and so there exists a constant ¢ independent of v
such that

lo = Bllz20a) < o200, (3.73)

where ()(2) = (L) 9(2). Now, by the change of variables x — & and (3.73) (i.e. by

a “scaling” argument), we have

b_a d\s 2 s s
“h—a 2/a (b—a)* ((£> U(v”) dz = (b — @) ||V F2(q ),

which gives (3.71)). The inequality (3.72) follows in a similar way by considering the

functional 0 — ||0" — p'|| £2(0,1)- O

The estimates (3.71)), (3.72) also hold for a Hermite-type interpolating polynomial.

Here is a result along this direction.

Lemma 3.17. Let » > 4 be an integer and let a =21 < 22 < ... < x,_o=0. If sisan
integer such that r > s > 2 and v € H*(a,b), consider the Hermite-type interpolating

polynomial p € P,_; that satisfies
pla) =v(x;), 1<i<r—2, pl(a;)=0"(zy), i=1,r—2, (3.74)
Then, the estimates (3.71]), (3.72) hold in this case as well.
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Proof. The polynomial p in the statement of the lemma exist and is unique: The
conditions form a r x r system of linear equations for the coefficients of p. The
associated homogeneous system has only the trivial solution, since, otherwise, p € P,
would have the simple roots z;, 2 < ¢ < r—3, and the double roots x1, x,_», i.e. a total
of r roots counting multiplicities, which is impossible. Hence the nonhomogeneous
system defined by has a unique solution.

Define now the polynomials L; € P,_;, 0 < i < r—1, by the conditions L;(z;) = d;j,
0<i<r—1,0<j<r—2 Lix1) = o, Li(zr,—2) = ;p—1, 0 < i <r—1. It is easily

seen that p(z) may be represented as

p(x) = Z_:v(xl)Lz(:U) + v (x1) Lo(x) + V' (xp—2) Lr—1 (),

i=1
since the right-hand side is a polynomial of degree < r — 1 satisfying the condition
(3.74). Consider again the map & +— = = a + (b — a)Z of [0,1] onto [a,b], and let
Z; € [0,1] be the inverse images of the z;. Consider the change of dependent variable

A

w(z) = w(zx) for a function w defined on [a,b]. Then, if p is the transformed p, it is

given by
r—2
P(&) =Y 0(&:) Li(&) + ' (21) Lo(&) + 0 (&r—2) Lr_1 (&),
i=1
where now ' denotes %. Consider, as in the proof of Lemma m, the functional

F: H*(0,1) = [0,00) given by F(0) = ||0 — pl[12(0,1). It is easily seen, as in the proof
of Lemma [3.16, that F' satisfies the conditions (i), (iii) of the Bramble-Hilbert Lemma
(Proposition 3.15)) for k = s. Moreover,

r—2
19l 220y < D 10@D Lill 201y + 1 (E1) ]| Lol 22(0.1)
1=1

r—2
+ 0" (Zr—2) 1 L1l 22(0,1) < Cson (Z ||Li||L2(O,1)> 191l zr2(0,1)

i=0
where we denoted again by Cs,), the constant in Sobolev’s inequality on [0, 1]. It follows,

since r > 2, that

F(0) = 10 = pllz20,1) < 19]lz20,1) + 1Dl 2(0,1)

< Cllo][ a5 0,1y
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where C' depends only on the {Z;}. Thus (iii) is satisfied as well. Using the conclusion

of Proposition [3.15] and continuing as in the proof of Lemma [3.16] we obtain again

(3.71) and (3.72)) mutatis mutandis. O

We now have the ingredients to prove the approximation property under some

restrictions on p and r mentioned in the beginning of the section.

Theorem 3.18. Let r > 2 be an integer and suppose that ;4 = 0 or that ¢ = 1 and

r>4. Let 0=z <21 <...<xzny1=1,1=(0,1), and suppose that

st ={secHD), ¢

elP._q, 0<i< N} ,  h=max(x;1 1 — ;).

[zi,2it1]

If s is an integer such that 2 < s <r and v € H*(I), there exists a function y € Sp*
such that
lo = xll + hllv" = x| < CR?J[™], (3.75)

for some constant C' independent of v and h.

Proof. (i) Let pu=0,7r>2 Let 0 =7 <7 <...<7 =1and h; = 2,41 — 2y,
0<i<N. Puta; =2, +h7;, 0<i <N, 1<j5<r andfori=0,1,..., N, let
pi [, xi41] — R be the Lagrange interpolating polynomial of degree < r — 1 of the
function v at the points x;;, j = 1, ..., r, thus satisfying p;(x;;) = v(z;5), 1 < j <r. Let
X be the piecewise polynomial function on [0, 1] defined by x(z) = p;(z) if x € [x;, Ti11].
=p; € P._; and x € C°(I). (To check the continuity of

Then x € S} since .
X at the interior nodes z;, 1 < i < N, note that x(z;) = pi—1(z;) = v(x;) = pi(x;) =
x(z;"). Note that in particular y is an interpolant of v in S} at # = 2;, 0 <i < N+1).

By Lemma [3.16| and (3.71]) we have for 0 <i < N

||U - X||%2(xi,:pi+1) = ||U - p7/||%2(a§“.’bl+1) S Czh’?s||v(8)||%2(:ﬂ“xl+1) S CQhQS“v(S)||%2(mi’mi+1)7

for some constant ¢ independent of h and v. Summing over i we conclude that ||v —
W2 = [0 = Xl2a) < R= 002, e o=l < ch|ol]. Using @73) we may
similarly conclude that ||v/ — x'|| < ch*~!{|v®)]| and follows.

(ii)) Let 4 = 1 and r > 4. Suppose now that 0 < 74 < 7o < ... < T._2 = 1 and let
iy =2+ hi7;, 0<i <N, 1<j<r—2 Fori=0,1,...,N let p; : [z1,2:41] = R

be the Hermite-type interpolating polynomial of degree < r — 1 of v satisfying the
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conditions p;(z;;) = v(zy;), 1 < j <r—2, and pl(z;;) = v'(z45), j = 1,r — 2. Let x
be the piecewise polynomial function on [0, 1] defined by x(z) = p;(x), if x € [x;, Tit1].

Then y € S since x =p; € P,_y, and x € CY(I). (Note that x(z;) = v(z;)

[i,2iq1]

and \'(z;) = v'(z;), 0 <17 < N + 1, i.e. that x is a Hermite-type interpolant of v in
Sy, From Lemma we conclude now as in the case (i) that (3.75) holds in this

case as well. O]

Remark 3.19. As noted in the proof of Theorem the functions x that were
constructed in both cases (i) and (ii) are interpolants of v at z; in the respective finite
element spaces S;*. Moreover these interpolants are defined locally in each [z;, x;11],
ie. x s sn] is independent of the values of v outside the interval [x;, z;11]. Contrast

with the cubic spline interpolant (an element of S,*) defined in section [3.3.2) which

is nonlocal, since at each point x it depends on the values of v at all x; as e.g. the

relations (3.59)) imply. O

Remark 3.20 (Higher-order local approximation). With notation as in the proof of
Lemma consider more generally the functionals 9 +— [0 — pU)| 2y for 0 <
j < s, where p is the Lagrange interpolating polynomial of 0, of degree < r — 1, at the
points z;, 1 <7 <r. It is straightforward to see that they satisfy the hypotheses of the
Bramble-Hilbert Lemma (Proposition [3.15)) for k = s. Therefore, || — pU)|| 121y <

C||o@|| r2(0,1) for 0 < j <'s, and the change of variables x +— & allows us to generalize

the estimates (3.71) and (3.72) and prove

o) — p(j)HLz(mm < c(b— Cl)s_j“U(s)HL?(a,b)a 0<7<s. (3.76)

Arguing in a similar fashion we may extend the proof of Lemma [3.17 and prove
that also holds if v € H*(a,b) and p € P._; is the Hermite-type interpolating
polynomial of v satisfying the condition (|3.74]).

From these observations it follows that one may derive higher-order local error
estimates (i.e. in every interval [z;, x;,1]) for the approximations y constructed in the
course of the proof of Theorem [3.18] Specifically, in the case u = 0, we have for 2 < s <
r, using the notation established in Theorem and , the local approximation
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estimate

. . : ] 2(s—j S
HU(J) - X(J)|’%2(xi,:ci+1) = HU(]) _pgj)||%2(afi,$i+1) S Chl( ])HU( )H%Q(xi,le)

< ORI |3, 0<j<s. (3.77)

$i+1)’

It follows that

N 1/2
<Z o) — X(j)||%2(xi,xi+1)> <CR D), 0<j<s, (3.78)
1=0

which generalizes (3.75)) in the higher-order cases j = 2,...,s, if we use the mesh-
. . 1/2
dependent norm (Z;.V:O |0 — X(])H%Q(mi xi+1)> . In the case p = 1 it follows from

(3.76]) mutatis mutandis that (3.77) and (3.78]) hold for the Hermite polynomial spaces

1/2
as well. Note that in this case for j = 2, (Zﬁio v — X(2)H%Q(%IM)> = [|v® —
XD 2(a), since x € Sp' € H?(a,b), so that, in addition to (3.75), we have in the

Hermite case p=1,r > 4

2
S Wlo—xl; < ek, 2<s < (3.79)

=0
It may be shown that (3.79) holds for the general case of S, u > 2 as well; the ap-
proximation y is now a quasiinterpolant of v, cf. the work of de Boor and Fix previously

cited. O

We conclude this section by deriving inverse inequalities in the finite element spaces
Spt. Consider first a finite interval (A, ), with 4 — A < 1, and let Py(A, u) denote
the polynomials of degree < k on (A, u). Then, there exists a positive constant C
depending only on k£ such that

C
ol < p _k/\||90HL2(A,u)a Vo € Pr(A, p). (3.80)

The inequality is an example of an inverse inequality since it bounds above
| ol a1 (x,p in terms of a weaker norm ||¢|| 25 ); of course this holds for a special class of
functions (here P, (A, 1)), and at the expense of a multiplicative constant % that grows
as jt — A diminishes. (Recall that the reverse, trivial inequality ||¢[[z2x . < |l@ll a1
holds for all ¢ € H'(A, ) on any (X, u).) To prove (3.80)), consider the polynomial
space P(0,1). Then there exists a constant C}, such that

@l e, < Crll@llz20,1), Vo € Pr(0, 1), (3.81)
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since P(0, 1) is a finite-dimensional space and consequently all norms on it are equiv-
alent. Then follows by the following scaling argument: Consider the change of
variables & +— = = (u — A\)Z + A, that maps [0, 1] 1-1 onto the interval [\, u], and let
o(z) = ¢(z) for & € [0,1] and x = (u — A\)z + A. Then ¢ € Pr(A, p) if and only if
¢ € P,(0,1). Changing variables in i.e. in

/01 [(@(93))2 + (di“m))z} dz < C2 /01(95(93))2%

for ¢ € P(0,1), since dz = Hd”" and d*" =(u— /\)ii, we have

[ [0+ w-2 (o) Jar <t [" P

Since p — A < 1 this gives

(= NN ellin o < Cillelizng: Ve € Pr(A, ),

from which ([3.80]) follows.

The inverse inequality ((3.80) may be generalized in various ways. For example, if

m > 1 is an integer we have

Ok m

lpllzm o < WHS@HLQ(A w Ve € Pr(X, ), (3.82)

where Cj,,, is a positive constant depending only on & and m. The proof of (3.82))
follows along the lines of the proof of (3.80) if we note that the change of variables
r=(u—ANz+ A\ ¢(&) = ¢(x) implies that d CL = (u-— /\)]d 2. We also have e.g. that

!

C
el o, Y0 € P i), (3.83)

ol z2am <
(Ap) 1

where €} a positive constant depending only on k. To see this, note that if ¢ €

]P’k()\ u) with & > 1, then ¢’ € Pr_1 (A, 1) and it follows from (3.80]) that ||¢'||g1(x <

i.e. that ||¢ ||L2 o 19 200 < (f 52 1€ | 2200y from which we get

C? c?
el 2, < ﬁ”@ 12200 + 0l 2200, < max <(’uf—)\1>27 1) el

Since we may always suppose that C,_; > 1, we have i’“_‘/\l > 1 and (3.83)) follows.

Similar considerations lead to the general inverse inequality

Cmfk:

el zrm o < WHSOHHE ey Vo € Pe(A ), (3.84)
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where m > £ > 0, and C,, ¢, is a positive constant depending only on m, ¢, and k.
A different type of inverse inequality is

Ck
lpllzoonm < m“@“mxm Vi € Pre(A, ). (3.85)

This follows again from the change of variables z = (1 — A\)Z + A\, p(z) = ¢(&), and
the inequality
H@”LO"(OJ) < Ck”@HLQ(O,l)a v¢ € Pk(oa 1)’

i.e. the equivalence of the L? and L*> norms on P (0, 1), since

~ R Cy
Jmax |o(z) @ﬁgW@N_wammn_(M_Mm

The inequality (3.85) may be easily generalized to

ol L2

Ck.
lelleiou < m’w”m(m), Vip € Pr(A, ), (3.86)

where, for j > 0 integer, [lglles = S ll¢® 1o, with [ pllco = [lgllzee.

We may now convert these inequalities to inverse inequalities in finite element
spaces. Consider the partition 0 = 2y < 21 < ... < x4 = 1 of e.g. [0,1] and
let h;y = z;41 — x; with h = max; h;. Let » > 1 and let .S), be a finite element space
consisting of piecewise polynomials of degree < r — 1 on each subinterval [z;, x; 1]
Then, e.g. the inequality gives, for 0 < ¢ < m and a constant C = C,, 4, the

local inverse inequality
C .
[l ) < W”WHHZ(L-)? 0<i<N, Vo€ S, (3.87)

from which it follows that

N 1/2 N . 1/2
(Z HSOH?JW(Q)) <C (Z W”QOH%{@(IZ-)) , Vg € Sh, (3.88)
i=0 i=0 't

which is an H™ — H* type inverse inequality on S}, for the mesh-dependent norms that
appear in both sides of (3.88). If the mesh z; is quasiuniform, i.e. if there exists a

constant o > 0 such that

h
<o, 0<i<N, (3.89)

then from ((3.88)) it follows that

N 1/2 o N 1/2
(Stetins) <5 (ol 390
=0 =0
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where C’ = Co™*. From (3.90) we see that if S, ¢ H™(0,1) (if S, = S,rL’j this holds
for m = 7+ 1), then we may convert this inequality into one with global norms, i.e.
into

!

C
lellamo1) < hm,g||90||m(o,1)a Vi € S, (3.91)

where 0 < ¢ < m. In a similar manner we get from (3.86) that if S, C C7(0,1), u >0
and ((3.89) holds, then

Crj
lelleio < MTf/QHSOHL?(O,l)a Vo € S (3.92)

We will use the inverse inequalities in the next section and also in stability conditions

for explicit fully discrete schemes for time-dependent problems in Chapters 6 and 7.

3.5 Superconvergence and effect of quadrature

In this section we will make an introductory study of two important issues associ-
ated with the Galerkin finite element method for two-point boundary-value problems,
namely of the phenomenon of superconvergence, i.e. the convergence of the error of
the Galerkin approximation wuy at a higher than optimal rate at specific points, and of
the effect of numerical integration with a quadrature rule; this is used in practice to
approximate the integrals in the elements of the stiffness and mass matrix in the case
of variable coefficients, and also in the right-hand side of the linear system defining
the finite element method, cf. e.g. the end of Remark . To fix ideas we con-
sider again the problem , on the interval I = (0, 1), that we rewrite here for
convenience

— (p@)W) +qlx)u = f(z), xel,

u(0) = u(1) =0,

(3.93)

assuming as usual that p € C?(I) with p(z) > a >0, 2 € I, and ¢ € C(I) with ¢ > 0
onI. Let 0 < x9<x...<axyp =1 be a partition of [0, 1] with A = max; (2,1 — 2;)
and for r > 2 consider the finite element space Sj, = g;,o (in the notation of section ,

i.e. the space

Si={pe (D), ¢l €1 0<i <N, 9(0) = (1) =0}

[24,24 1]
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Recall that S), satisfies the approximation property of section in (LI) we sup-
0

pose that v € H* N H! because of the b.c. in (3.93). Let u, € S, be the Galerkin

approximation of the solution of (3.93), defined as usual by

(pup, ) + (qun, ©) = (f,¢), Vo € Sh. (3.94)
As a consequence of , uy, satisfies the error estimate
lu = unl| + hllu —unly < CR"[[ull,, (3.95)

0
provided uw € H" N H*.

3.5.1 Superconvergence at the meshpoints

In addition to the error estimate (3.95)) of w; one may also derive error estimates in
the maximum norm. For example, as shown in the papers by Wheelerﬂ and Douglas

et aﬂ, if u e C7[0,1] and e = u — uy, then

max |e(z)] < Ch" max |[u'(z)]. (3.96)

0<z<1 0<z<1

In addition, one may prove that this error estimate is of optimal order, i.e. that the
power r of h" cannot be taken larger in general.

However, it has been observed that there exist points ¢ € I where the error e(£) is
of higher order of accuracy than O(h"). As an example, we will prove in this section
that, under our hypotheses of S, at the meshpoints z; of the partition it holds that
le(x;)| < Ch*~2||ul|,, where C' is a constant independent of h and u. Hence, if r > 3,
i.e. if we use piecewise quadratic or higher degree polynomials, we will obtain increased
accuracy at the mesh points. This is an instance of superconvergence of the method,
in this case at the meshpoints. For the proof of this result we will follow Douglas and
Dupontﬂ. The reader who is interested in superconvergence for general finite element

spaces in one and higher dimensions is referred to the monograph [3.8] by L. Wahlbin.

M. F. Wheeler, An optimal L. error estimate for Galerkin approximations to solutions of two

point boundary value problems, STAM J. Num. Anal., 10(1973), 914-917.
2]J. Douglas, Jr., T. Dupont, and L.Wahlbin, Optimal L., error estimates for Galerkin approxima-

tions to solutions of two-point boundary value problems, Math. Comp., 29(1975), 475-483.
3J. Douglas, Jr., and T. Dupont, Galerkin approximations for the two point boundary value problem

using continuous, piecewise polynomial spaces, Numer. Math., 22(1974), 99-109.
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Proposition 3.21. With the notation introduced above, if p and ¢ are sufficiently
smooth, then

. < 2r—2 . .
s Je(a)| < Ch¥ 2, (3.97)

Proof. We first recall a few well-known facts from o.d.e. theory. Let uy, us be two
linearly independent solutions of the homogeneous equation —(pu’)’ + qu = 0 satisfying
u1(0) = 0, uz(1) = 0, and let W(x) = uy(z)uy(z) — u)(x)us(x) be their Wronskian.
Then, W(z) # 0, z € I. In addition let

w1 (z)uz(§) 0 S T S 5 S 1’

G(ﬂf,g) — _P(E)W(g)’

uz(@)ua(§)
—p(OW(€)’ 0< f <z< 17

be the associated Green’s function. Note that G is continuous for 0 < z,£ < 1 and that
for each = € [0,1] G(z,-) € H' since G (x,-) is continuously differentiable in [0, 2] and
[z,1] and satisfies G(x,0) = G(z,1) = 0. Moreover, if f € C(I), the classical solution
of is given by the integral representation

u(z) = /01 G(z,6)f(&)d¢, xel. (3.98)

It is also straightforward to prove that for each x the integral in the right-hand side of

(3.98)) exists if f € L?(I) and, in that case, the function u given by (3.98) is the weak
0

solution, belonging to H? N H*, of the bvp (3.93). Moreover for f € L? we have

u(z) = /01 G(z,€)f(€)d¢ = (since the ode — p(u') + qu = f holds in L?)
= /1 G(z, &) (—(pu') + qu) (&) d§ = (by integraion by parts)
0

- [ esmau©ac+ [ oo gue

Therefore for z € T

u(z) = B(u,G(x,-)), (3.99)
where B(v,w) = fol (pv'w" + quw) dz for v,w € H'. The representation holds
for any v € H? N H: Let u € H2N H' be given and define g by the equation
—(pu')’ +qu = g. Then g € L? and u is the weak solution of the bvp —(pu’) + qu = g,
u(0) = u(1) = 0, which leads to its representation by (3.99). In fact golds for
any u € ﬁ 1. (The right-hand side of exists for such u.) To see this, suppose
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we H' and let (¢n) be a sequence of elements of C2°(I) such that ¢, — w in H!, cf.
Remark (ii). By Sobolev’s theorem we have max,cj |pn(z) — u(z)| = 0, n — 0.
Since now, by ([3.99), ¢.(z) = B(p,, G(z,-)) and since for © € I |B(p,, G(x,-)) —
B(u,G(x,-))| = |Blpn —u,G(z,"))] < Ci(p,@)l[en — ul|G(z,-)[i = 0, n = oo, it
follows that u(z) = B(u, G(x,-)).

Let now e = u — uy,, where u is the solution of . By our remark above, since
e € foll, we have e(z) = B(e,G(z,-)). Recall that B(e,p) = 0, Vo € Si. Therefore
e(r) = B(e,G(x, ) — ), Vo € Sy, from which, for 0 < i < N + 1, it follows that

le(zi)] < Cullell |G, -) = ¢l Vi € S (3.100)

Since it was assumed that p, ¢ are sufficiently smooth, it follows by the definition of
the Green’s function that Vi > 1, G(x;,&) € H"(0,2;) N H (x;,1) and that G(z;,€)
is continuous at & = z;. Take now ¢ = Y, the approximant (e.g. an interpolant) of

G(z;,-) in S, guaranteed by (II). Then

1/2
1G @, ) = Xl = (16@ ) = X + 1G@ ) = X
< [|G(zi,-) — XHHl(O,xi) + |G (@i, ) — XHHl(azi,l)
< Ch (G (@, ) ar©,en) + 1G (@i, ) @)

where C, is independent of h and 7. It follows that
|G (i) = x|y < OB, (3.101)

where C' is independent of h, since both terms |G (z;,-)|| a7 0,2,), |G (@i, )| fr(2:,1) can

be bounded above by constants independent of i. By (3.100) and (3.101]) we get
le(zi)| < O lull, "= = CR* )y,

as claimed. O

3.5.2 The effect of numerical integration

Finding the solution u;, of the Galerkin equations (3.94]) requires computing the inte-
grals fol po'Y, fol q1), fol fo, for p, € Sy. (Actually ¢, are elements of a basis of

Sp.) This is done in practice by a numerical integration (or quadrature) rule. Such rules
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should be accurate enough to ensure that the linear system defining wuy, is still invertible
and that the convergence rate of the method in L?, i.e. the exponent of the right-hand
side of , is not diminished. We will analyze the effects of quadrature following
the work by Dougals and Dupont that we cited in the previous subsection |3.5.1} For
the effect of numerical integration in the case of more general finite element methods
in higher dimensions cf. [3.3], [3.5]. We will use the notation and the assumptions on
Sp, specified in the beginning of the section, making the additional assumption that the
mesh {z;} is quasiuniform, cf. (3.89).
We first specify the properties of the quadrature rule to be used. Let 0 < & < & <
. < & <1 be s distinct points (the quadrature nodes) in [0,1] and g € C([0,1]). We

consider a quadrature rule of the form

/0 g(z)dr ~ Zwig(&), (3.102)

where, for simplicity, we assume that the quadrature weights w; are all positive. (For a
review of the theory of numerical integration see e.g. Ch. 6 of [6.1].) We also suppose
that (3.102)) is exact when ¢ is a polynomial of degree at most ¢ > 0. Examples of

well-known such quadrature rules include:

e The trapezoidal rule, for which

8:2, §1:O, §2:1, w1:w2:%7t:1.

e The midpoint rule, for which
821, 51:%, wlzl, t=1.

e The two-point Gauss rule, for which

_ _1 1 4
5_2751_5_2\/3752 2\/§7w1 w2_§7t_3'

e The two-point Gauss is a special case of the family of s-point Gauss (or Gauss-
Legendre) rules, for which the fi are the roots of the Legendre polynomial of
degree s on [0, 1], and w; = fo )2 dx, where L; is the ith Lagrange cardinal
polynomial corresponding to the points &;, i.e. the unique L; € P,_; such that
L;(&) = 6;;. For these rules t = 2s — 1.

We will use the quadrature rule (3.102) changing variables in order to approximate

the integrals occurring in the finite element method on every subinterval I; = [z;_1, z;],
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1 <j < N +1, of the partition. Denote by h; = x; — x;_; the length of I;, and put as
usual h = max; hj. On each I; denote the local quadrature nodes by &;; = z;—1 + &,
i=1,...,N+1, 7 =1,...,s. Given v,w € C[0,1] let (v,w); := flivwdx, so that
(v,w) = fol vwdr = Z‘]H(v w);. Changing the dependent variable in (3.102) we
see that on I; the rule becomes [, g(x)dz =~ h; Y75 w;g(&i;). Letting (v, w); =
hi 25— wi(vw)(&;), we see that (v, w) is approximated by the bilinear symmetric form
(v,w) = S (v, w);. Note that our assumption about the accuracy of the quadrature
rule implies that (v, w); = (v, w); if vw € Py(L;).

Using the quadrature rule to approximate the integrals in we see that wuy, is

approximated by zj, € S}, where z;, satisfies

(P21, @) +(qzn, ) = ([, ), Yo € S (3.103)

It is not obvious that the linear system represented by the equations (3.103) has a
unique solution. The following Lemma shows that, since w; > 0, this happens provided

the quadrature rule is accurate enough.

Lemma 3.22. Let t > 2r — 4. Then, there exists a positive constant C' such that

(pe', @) + (qp,0) > Cllell?, Vo € Sh. (3.104)

Proof. Let ¢ € Sp,. Since p(z) > o > 0 and ¢(x) > 0 on [0, 1] we have

N+1
(pe', &) + (g, 0) = Y (e, @i + (ap, @)

i=1
N+1

= Z hi {Z wip(&i) (@' (&;5))* + ij(&j)%Oz(fij)]}

>aZthj &J —angcp

= (since ¢ € P,_1(I;) implies that (¢')* € Po,_4(I;))
N+1

= Z(Qplv 90/)@' = OéHQO/HQ’
=1

and the conclusion follows from the Poincaré-Friedrichs inequality. n

The inequality (3.104]) implies that z, may be found by solving a linear system,
represented by (3.103]), with a symmetric, positive definite matrix.
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In the sequel we will use the Peano Kernel theorem, see e.g. [6.1], to estimate the
error of the quadrature rule (3.102) on I;. By the change of variable z — y = (b—a)x+a

we first apply the rule on a general interval [a,b]. Given g € Cla,b] it takes the form

[ sway= -3 o6, (3105

where & = a + (b — a)&; € [a,b]. If (3.102), and consequently (3.105), is exact for

polynomials of degree <t and g € C**1[a, b] the Peano Kernel theorem asserts that

b S . 1 8
/ g(y)dy — (b —a) Zwig(fi) = 5/ kt(T)g(tH)(T) dr, (3.106)

where the Peano Kernel ki(7) is given for a < 7 < b by

b S
k() = / (=7 de—(b—a)) wi(&—7) (3.107)

i=1
where
(x—7)t, ifx>rT,
(z—1), = x, T € [a,bl.
0, if 7 <,
In the following Lemma we estimate the remainder term, i.e. the analog of the right-

hand side of (3.106]), when the quadrature rule is applied to the subinterval I; =

[%’—1 ) 171] .

Lemma 3.23. Under our hypotheses on the quadrature rule (3.102)) and if g € C**1(I;)
for some 1 <7 < N + 1, then it holds that

/ g(@)dz —h; Y w;g(&y)

I; et

< ChEM|g Y|y, (3.108)

where h; = z; — x;_1 and C' is a positive constant that depends only on .

Proof. Using (3.105)—(3.107) on [a,b] = I; we obtain
/ g(z)dz — h ijg(&j)

1
S ymax|kt7i(7‘)|||g(t+1)||L1([i), (3109)
I ) ! rel;

where for 7 € I;
ka(T) = / (= 7) do—h; Y wj(&; — 7)) (3.110)
I o
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First, for 7 € I;, we have

/I.(.Z'—T)Z_dl’

K3

v 1 Rt
g/ (x —7)'dzx = t+1($i—7')t+l < tju' (3.111)

Also, by the definition of (§;; — 7)", for 7 € I;, we see that the maximum of (§; — 7)’,

occurs at 7 = x;—; and is equal to hi&}. Since w; > 0 and 37, w; = 1 we obtain

< hiy wihi€h < BFY wy =it (3.112)

J=1 Jj=1

hi Y w6y —7)}
j=1

The desired error estimate ([3.108)) follows now from ((3.109))—(3.112)). m

The following result shows that the integrals in B(up, ¢), ¢ € Sy, are approximated

well by the quadrature rule if ¢ is large enough.

Lemma 3.24. Let t > r — 2, suppose that p, ¢ are smooth enough (p,q € C**1 will
0

suffice), and that the solution of (3.93]) belongs to H™™' N H'. Then, there exists a

constant C' independent of v and A, such that for ¢ € S},

|(pu, ) = {pu, @)1 < CRTT 2l ],

(3.113)
[(qun, @) — (qua, ©)| < Ch" 2l ]le]l.
Proof. We have
N+1
(P, @) = (P, @) + Y [0, 0)i = (P, )] (3.114)
=1
By Lemma for each 7, 1 <17 < J+ 1, it holds that
|(puy, ') = (o, @il < CREH () |- (3.115)

Since, by Leibniz’s rule, for v € C**(I;) we have (pv)¢D) = Z;ZB (t’;l)p(t“_j)v(j)

on I, it follows that [|(pupe) |1y < C X5 (@) llagy. But w0

are zero on I if j > r. Therefore ||(puj’) gy < C XLy [ lulle®] <
r—1 k

ob ity [l [F2%

inverse inequality on I; we have ||¢]

(p(Z)HLQ(Ii) < C||uh\|Hr_1(Ii) <p|]Hr_1(Il,). Finally, since by a local

aray < Chy UV ol we get from (B115)

and the above that

[(puyy, )i — (pugy, )il < CRT 2 up|| e 1| 22r)
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and therefore, by (3.114) and the Cauchy-Schwarz inequality on R’*!, that

=1

N+1 1/2
\(puly, @) — (puy, @'V < ChIH2 (Z [ [ ) loll- (3.116)

Let x be the approximant of u (i.e. an interpolant) guaranteed by property . For

each ¢ we have by the triangle inequality

a1y < lun — xllgr-1) + IIx = wllzr-2a) + llullgr-12)- (3.117)
By a local inverse inequality on I; we see that
lwn = Xl < OB Pllun = xllzaay < Ch7 ™ (Jlun — wll 2y + lu = X2

Therefore, by the quasiuniformity of the mesh, and and (3.70) for j = r — 1, it
follows that

N+1 1/2
(Z e, — x||%p—1m>) < Ch™ " (Jlup = ull + [lu = x])
=1
< ChR~ " V(Ch Hur—1) < C|Jul|p1. (3.118)

Moreover, by (3.78)) for s = j = r — 1 we obtain

N4+1 1/2
(Z Ix — ul %p-w) < Cllull,—1, (3.119)

(which holds for r = 2 as well). Hence, m give the H™™! “stability”

estimate

N+1 1/2
(Z HuhH?qmgiJ < Cllullr-1, (3.120)
=1

that yields the first inequality of (3.113)) in view of (3.116)).
In order to prove the second inequality in (3.113]) note that for ¢ € S,

N+1
(quha (10) quh7 _'_ Z qup, ¥ qufu 90> ] .

By the Peano Kernel theorem we see again that for each ¢

|(qun, )i — {quan, ©)i| < CR|(quae) ™ ||y

Since ¢ is smooth enough and u(j) — oU) =0 on I; for j > r we obtain

(k
I(qune) Vi < € Z / [up? o1 < Cllunlle o Il e

k=0

and we may continue as in the proof of the first inequality of (3.113)). O
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We examine now the error of numerical integration in the right-hand side (f, ¢) of
(13.94). This exercise is harder; it entails introducing a suitable local projection of f,

and assuming that the accuracy of the quadrature rule be somewhat higher.

Lemma 3.25. Let t > 2r — 3 and f € H"~!. Then there exists a constant C' indepen-
dent of f and h such that for ¢ € S},

[(fs0) = (fr o)l SCRH fllr-allell- (3.121)

Proof. Let f be a piecewise polynomial function relatively to the partition {z;} of
0, 1] such that f’[ is the L? projection of f|1i onto P,_o(I;), i.e. so that f!l e P, o))
and

(f,w); = (f,w), YweP, o), 1<i<N+1. (3.122)
For ¢ € S;, we write (f,¢) = (f.o)+ (f = f ©). Since fgo|1i € Py,_3 and t > 2r — 3,
it follows that (f,¢) = 3.0 (F )i = iy (f, )i = (f, ). Therefore

Let p € P,_5(I;) be the Lagrange interpolant of f at r — 1 distinct points in /;. Then,

by (3.122)

1f = Fllzay = inf = wlley < I = plleeay < CRH ey,
wEPr,Q(L;)

where in the last step we used the inequality (3.71)) (which holds for r = 2 as well).
Therefore in ((3.123|)

) ) N+1 ) 1/2
I(f = Fol <If = flllell = (Z If = f||%2(1i)> o]l

< O fllaligll, Ve € Sh. (3.124)
and hence
(f.0) = (f, o)l < CH | flle—allell, Ve € Sh. (3.125)
In addition, it holds that
[(f = L)l < CR I flleallell, Voo € S (3.126)

117



To see this we write
N+1

(=)= (f=F.0) @€8, (3.127)

i=1

and use for each term in the right-hand side the Peano Kernel theorem on each I; as
in Lemma [3.23] not going up to the full order of accuracy t 4+ 1 as in (3.108]), but only

up to r — 1. In this way we have for 1 <i < J+1, p € .5,

(f = Foo)i— (fF = Foo)il <CRTINF = Do)
r—1
(Leibniz’s rule) < Ch;~' Z I(f = 90D
=0
r—1

(Cauchy-Schwarz) < Ch;™* Z I(f — ]F)(”_l_j)||L2(Ii)||g0(j)||Lz(Ii)

J=0

r—1
(inverse inequality in each ;) < C Z R f = Sl
=0

Hr—=1=3(1;) QOHLQ([i)-

Recall now that f|1 is the L? projection 0ff|l, in P._5(1;). Therefore, for 0 < j <r—1,

17 = Py < ORI fllgrrosgry = W fllarroscay by @A) (which
holds for s =1 as well when r = 2). We conclude that for 1 <: < J+4+1, ¢ € S

((f = Foodi = (f = Foodil < CRHI el zzay-

Therefore, for ¢ € S,

_ J+1 ~ N+1 ~ ~ J+1 ~
(=Tl = DoAF = Foohi| < DU = Fopdi= (F = Fool| + | 2_(f = .00
=1 i=1 ot =1 )
< O Y I lsan el + 10F = )l
=1

Now, using in the above the Cauchy-Schwarz inequality in the R7*! and (3.124) we
conclude that (3.126)) holds. Finally, from (3.126]) and (3.125)) we get for ¢ € Sy,

(f.0) = (f. o) < |(f0) — (Foo)| + [(F = f. o)
< CR M| fllr-1llell,

which is the desired inequality (3.121)). O

We now have all the ingredients to prove the main result of this section, namely an
O(h™1') H'-error bound for the solution zj, of the finite element method (3.103)) with

quadrature.
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Proposition 3.26. Let t > 2r — 3, p, g be sufficiently smooth and f € H"~!. Then
lu = zulli < CH" 7 fll—1- (3.128)

Proof. We know that ||[u — ua|l1 < Ch™ Y ul,—1. Since [Jull,—1 < C|f|lr—1,
will follow if we prove that ||uy — 2|1 < CR™7Y| f|l,—1. (Note that an elliptic regularity
estimate would give ||u|,—1 < C|| f]|,—3, which for r = 2 needs the introduction of the
“H=' norm” ||f||-1. However, in order to prove we may restrict ourselves, in
view of (3.121)), to the ‘suboptimal’ estimate |ull,—1 < C|| f|l,—1.)

Let e = up — z,. Then, by and , for ¢ € Sy, it follows that we have

(pe’, ') + {qe, ) = (pup, ©') — (P24, ) + (qun, ©) — (qzn, ©)

= (puj, ¢') — Py, @) + (qua, ) — (qua, ) + (f,0) = {f. ).
Therefore, by (3.113)) and (3.121]), since t > 2r — 3, we obtain

(pe’, @) + (ge, ) < CHHlull,—alle] + CR | fllr—1 [l 2l

< CH | fllr=alleell-

Hence, taking ¢ = e and using (3.104)), we get |le||3 < Ch" Y| f,—1]le]|, from which
(13.128) follows. m

In the paper of Douglas and Dupont that we followed, it is also proved that for
t > 2r — 3 z, satisfies in addition the optimal-order L? error estimate ||u — zp| <
Ch"||f|| and the superconvergence estimate |(u — z3)(x;)| < Ch?" 72| f],. (We leave
the checking of the proofs to the reader, as nontrivial exercises in Green’s functions
—see § and the Peano Kernel theorem!) Note that the orders of convergence in
these estimates are optimal, like those of the “exact” Galerkin approximation wu;. They
require though, higher regularity of f and of the coefficients p and ¢, compared to the
estimates for uy, since the latter satisfies ||u—up|; < CR™ Y u|l,, ||u—usl < CR7|ull,,
(= ) ()] < CR*2|ull, (as we saw in § B51), where [[ul, < C|lf[lr—s.

From the practical point of view, we conclude that in order to preserve the order
of accuracy of the Galerkin method one should use a quadrature rule which is exact
for polynomials of degree up to t = 2r — 3. Hence for continuous, piecewise linear

approximations it suffices that ¢ = 1, for piecewise quadratics that ¢t = 3, for piecewise
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cubics that t = 5, etc. In particular, if one uses the s-point Gauss rules (for which ¢t =
2s—1), taking s = 1, 2, and 3, for piecewise linear, quadratic, and cubic approximations,
respectively, will suffice. The results also hold for smoother finite element approxi-

mations, e.g. with C* or C? elements.

3.6 A posterior: error estimates and mesh
adaptivity

The error estimates for the Galerkin finite element methods that we have derived

thusfar, for example the L? and H'! error estimates
lu = unll + hllu = unlly < CR"[[ul], (3.129)

for the two-point boundary-value problem (bvp) f, when v € H" N POI L and
the finite element subspace S}, satisfies property of section , are called a priori
error estimates, in the sense that the error bounds are not expressed in terms of the
computable numerical solution u;, but only in terms of the unknown, exact solution
u of the bvp. This type of error estimate gives us information about the asymptotic
behavior of the errors as h — 0 and some idea of the order of magnitude of the errors.
If however we are interested in estimating precisely the error itself, which is of course
important in practice, bounds like the one in the right-hand side of are not
useful in general. If the constant C' is known, one could argue that estimating ||ul|,
in terms of the data p,q, f of the bvp would give a computable bound. However
such estimates are usually pessimistic. Moreover since the a priori error bounds are
expressed in terms of the maximum mesh length h = max(x;; — z;), in order to make
the error smaller than a preassigned tolerance one would have to compute with smaller
h, i.e. to refine the mesh globally by taking all h; = z;11 — x; smaller, which is costly,
especially in bvp’s in higher dimensions.

Another type of error estimates are called a posteriori since they may be used after

computing the numerical solution. They are of the general form

llw = wnlll < nun),
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where 7(uyp,) is a computable quantity, a functional of the numerical solution wuy, called
the error estimator of the ||| - ||| norm of the error. Such bounds are useful if 7(uy,) is an
accurate estimate of the error, is straightforward to compute, and gives some guidance
on how to refine efficiently the mesh in order to achieve smaller errors.

In this section we will derive such a posteriori error estimates for the two-point bvp
(3-1)~(3.2)), for which we will assume that 0 < o = ming<,<1 p(z) and g(z) > 0 on
0,1]. Let 0 = 29 < 1 < ... < xny41 = 1 be a partition of [0,1] and h; = z;41 — x5,
h = max; h;, I; = [z;,x;11], 0 < i < N. For integer r > 2 consider the finite element
space S, = {¢ € C|0, 1], 90|Ii € Py, ¢(0) = (1) = 0} and assume that S}, satisfies
the approximation of section Let uj, € Sy, be the Galerkin approximation of

u, computed as usual as solution of the problem

B(un, ) = (f,¢), Vo € S, (3.130)

0
where B(v,w) = fol pv'w’ + quw, for v,w € H'. The a posteriori error estimates that
we will construct for the errors ||u’ — uj ||, ||u — us||, are based on the (local) residual

of the finite element method, defined on each I; as the computable function
rn=—(pw,) +qu, — f, z €L (3.131)

Specifically, we will derive bounds of |[u' — u} ||, ||u — up|| in terms of quantities of the
form Af||ry| r2¢1,), s > 0, so that it would be possible to refine the mesh by taking h;
smaller for those J; where the L? norm of the local residual ||ry||2(r, is large, i.e. in
regions where wuy, is not close enough to the solution u (whose residual is of course zero.)
We will start with such a posteriori estimates of |’ — u}||. (The results are standard,;

we follow the exposition in [6.2].)

Proposition 3.27. Let v € H?>N I—?fl be the solution of (3.1)—(3.2)). Then

yiye;

1/2
/ / 1 Y 2 2
[ —u |l < > Bllrallzey | - (3.132)
=0

Proof. Let ¢ = u — uy,. Then, since B(v,v) = [, p(v/)? +qu® > a|[/||? for v € H', we

have af|¢/||> < B(e, e). Recalling that B(e,x) = 0, Vx € Sy, we obtain therefore

alle|* < Ble,e — x), Vx € Sh. (3.133)
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Let now v € POP(O, 1) satisty v(z;) =0, 0 <i < N + 1. Then

1
B(e,v):/ pe’v’+qev—2/pev + (ge, v) Z/ pe’)'v+ (ge,v)

= Z/ p(u' —up)) v+ q(u — up)v] = (since the ode (3.1)) holds in L?)
= (=(pu) + qu, v)

N
= Z / [—(puj) v + qupv] = (using the definition of 73,)

o3 e

Therefore for v € H'(0,1) with v(z;) =0, 0 < i < N + 1, it holds that

N
—Z/ R (3.134)
i=0 /i

Let x € S, )Z‘I‘ € P; be the piecewise linear interpolant of e at the nodes z; i.e.

satisfy x(z;) = e(x;), 0 <i < N + 1. Since, for each i f] (€ =X )X =[le = )Xo+ —

T

fI e — )Y = 0, we have f[ f[ (¢ — %) = fli(e’ —xX)e <
He — X HLQ(Ii) L)s le
||€/ — )A(/”LQ(LL) S H€/||L2(Ii)7 O S 7 S N (3135)

Using now the Poincaré-Friedrichs inequality with the best constant (see Remark
0
(ili)) on I; we have, since e — x € H'(I;), that e — X|lr2) < 2|le’ — ¥||z2(r,), and

therefore (3.135]) implies that
N hz / .
H@-XHL2([Z.) S ?HGHLQ(IZ.), OSZ S N (3136)

Hence, from (3.133]) with x = x, (3.134]) with v = e — x, and (3.136|) we see that
alle'||* < Ble,e - x 2/ (e—x ZHMHB hille'llcacr)
e 1/2 1/2 . 1/2
< (Z h?\lrhl\%z(m) (Z He’lliz(m) = (Z h?HT’hH%Q(m) €],
i=0 i=0 i=0

from which the conclusion (3.132]) of the proposition follows. O]
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We proceed now with an analogous a posteriori estimate for the L? norm ||u — uy||

of the error.

0
Proposition 3.28. Let u € H?> N H! be the solution of (3.1)—(3.2)). Then

1/2

N
gl
] (Z h?Hth%mi)) : (3.137)
=0

1

where v = 55 Il + 2z ldlloe + 5, @ = minoca<1 p().

Proof. We will use Nitsche’s trick as we did in the a prior: estimate. Let e = u — uy,

and let w be the solution of the problem

~ ) tw=e (3.138)
w(0) = w(1) = 0. ‘

Then w € H2 N H' and
B(w,2) = (e,2), V=€ H". (3.139)

Hence al|w'|]? < B(w,w) = (e,w) < L|e||||w||, where in the last inequality we used

—_—

the Poincaré-Friedrichs inequality for w with the best constant on (0,1). Therefore
1
[l < —Tlell;
Ta

which implies that

1 1
< e <€ — .
o < el < el
In addition, since o = miny ;) p, using the ode in (3.138|) we have
" 1 / /
lw™ll < = (Ul lloollw'll + Nlallocllwl] + llell)
which, together with the estimates of ||w]|| and ||w’|| above, gives
[l < yllell, (3.140)

where v is the computable constant defined in the statement of the proposition.

From (3.139)) and (3.130) we have, as usual, for each ¢ € Sy, |e||*> = B(w,e) =

B(e,w—¢). Taking ¢ = x, where Y is the piecewise linear interpolant of w at the nodes
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z;, we see from (3.134)) for v = w — x that ||e||* = B(e,w — x) = — Zfio f[i rn(w — ).

Therefore by the Poincaré-Friedrichs inequality for w — x in I; with the best constant,

le]* < Z\IthLz hillw" = X'l 2, (3.141)

Now, since

/ 1112 xi“/ / / / f " i xi“//
[w' = X2y = [ =X =x)=—[ W =X)Nw-x)=-[ w'(w-x)

< w2y llw = XNz < IIw”II ' = Xz

(where in the last inequality we used the Poincaré-Friedrichs inequality again) we get

//H

hi
" = XMy < —fw

L2(Ii)‘

Using this estimate in the right-hand side of (3.141]) we finally obtain, in view of (3.140))

that
1/2

1
el < Zh2 rall ez 10”2y < — (Z hillrallZ: 1>> [’
1/2

g
< llell (Z th“HThH%?(Ii)) :
=0

from which the conclusion (3.137]) of the propositions follows. n

How good are the estimates (3.132) and (3.137)7 One way to answer this question

is to check the rates of convergence to zero of the right-hand sides of these inequalities
as h — 0. We know from the a prior: estimates that under our hypotheses on Sy,
|lu —upl| = O(R") and ||u' — u},|| = O(R"1), provided v € H" N H'. We will now
prove that if the partition {x;} is quasiuniform, cf. , then the right-hand sides of
(3.132)), (3.137) are also of O(h™~1) and O(h"), respectively, if u € H" N ﬁl, i.e. that
asymptotically they behave like the a priori estimates. By the definition of of

the residual r;, we have on each I;
rn = —(puy) + qup — f = —(puy) + qup, + (pu') — qu =
= —p(up —u") = p'(up — u') + q(up —w).

Therefore,

Irallezy < Cllun — ull a2, (3.142)
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for some constant C' independent of h;. Let y be the approximation of u in .S}, satisfying

property (). (As in Section —see the proof of Theorem [3.18 X‘I' € P._1(I;) may

be taken as the Lagrange interpolant of u at r distinct points in I; two of which are

the endpoints of I;.) Using a local H*> — L? inverse inequality on I; we have

lun = w2y < lun = Xllaza) + Ix = ullazay < Ch*llun = Xllzaa) + Ix = ullmza,

< Chi? (llun = wllpaqy + lu = xllz2y) + llw = xllaze,)- (3.143)
We recall now the local estimates for u — x given in (3.77)) and obtain
hi ?llw = Xl 2 + llu = 2y < OB 0™ 2q1,)-

Therefore, by (3.142), (3.143]) we have
1nllZe ) < Chy *||lun — |72, + Ch?r_A‘HU(T)H%mi)-

This gives, in view of the quasiuniformity of the mesh and (3.129)), that

N 1/2 N 1/2 N 1/2
(Z h?||7“h||%2(1i)> <C (Z hi 2 {lun — UHQLQ(Q)) +C (Z h?T_QHU(T)H%Q(Q))
i=0

i=0 =0

< Ch™Mlun = ull + CH [u | < CR .,

i.e. that the right-hand side of isof O(h™ 1) ifue H™ N H' as claimed. Since
(Zij\io h;‘||rh||%2(li)> < h (Zij\io h%||rh||%2(1i)>l/2, we see that the right-hand side of
is of O(h").

The form of the a posteriori error bounds in and allows one to refine
the mesh locally in order to achieve errors ||u—uy|| or ||u’'—uj,|| smaller than preassigned

tolerances. For example if we want the error ||u’ — u} || not to exceed a given tolerance

g, the inequality (3.132)) implies that it is sufficient to require for all ¢ that
hillrnll7zq,) < 7°a’e®. (3.144)

1/2
(Indeed, if this holds, then lu’ — uj | < & (Lo h2lraliZa,) < 2/ Eohi = <)
To achieve (3.144)) it is sufficient to compute ||r4|z2(s,) for all 7, refine the mesh locally,
i.e. take intervals of smaller width h; for those ¢ that (3.144]) happens to be violated,

and recompute the solution u; using the new mesh. This is much less expensive than
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reducing h = max(x;11—x;) as an a priori bound would suggest. (Note that we may also
take larger h; if the left-hand side of is much smaller than the right-hand side.)
This adaptive variation of the mesh in order to achieve errors of desired magnitude at
low cost is absolutely essential for solving problems with the finite element method in

higher dimensions.

3.7 Non-self-adjoint and indefinite problems

In this section we will generalize the error estimates obtained for the standard Galerkin
finite element method for the two-point bvp f in order to derive analogous
estimates in the case of a more general second-order linear differential operator L which
is not self-adjoint, i.e. does not satisfy (Lu,v) = (u, Lv) for u,v € H?>N Ii)Il, and is not
necessarily positive definite (i.e. is indefinite), i.e. does not satisfy B(v,v) > c||v||? for
some positive constant ¢ > 0, for all v € POI ! Here, and in the rest of this section, B
will denote the bilinear form on }OI b I—?f ! that is obtained by integrating by parts in
the integral fol Luvdz, for v € ]?I 1. Consider the two-point bvp on I = (0, 1) given by

Lu=—(au) +bu'+cu=f, 0<z<l,
(3.145)

and assume that a € C1(I) is such that a(z) > ag > 0, € I, for some constant ay,
that b € C(I), and ¢ € C(I). In addition let f € C(I) when classical solutions of
are considered and f € L*(I) when generalized solutions are in view. (Note
that the ode pou” + piu’ + pou = f (with py < 0, € I), apparently more general, may
nevertheless be written in the form given in if a =—py, b=p1 —pp, ¢ = pa.)
Note that if f € C(I), L may be considered as a linear operator in C(I) with domain
D(L) = {u € C*(I), u(0) = u(1) = 0}, while if f € L? = L*(I), it may be considered
as a linear operator in L? with domain D(L) = H? ﬂhof ! in the latter case the solutions
of are generalized (weak) solutions in H?N ]—?f !'and the ode Lu = f holds in L?
and pointwise a.e. in .

In Chapter [2| we saw a variational theory of existence, uniqueness, and regularity
of solutions of two-point bvp’s in the case of self-adjoint positive-definite operators

corresponding to the case b = 0, ¢ > 0 in I. Here, in order to study analogous issues
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for the bvp we will adopt a more classical, ode approach and construct the
solution of by means of the Green’s function for the operator L under the b.c.’s
u(0) = u(1) = 0, following e.g. Kato [2.5, Section III.2.3].

It is well known that the homogeneous ode Lu = 0 has two linearly independent
solutions vy, vy € CQ(I: ). Consider u;, uy two nontrivial solutions of Lu = 0 such
that u;(0) = 0, ua(1l) = 0. (That such solutions exist is evident from the fact that
if u; = cyv1 + e with u1(0) = 0 and e.g. w}(0) = 1, then the numbers ¢;, ¢y exist
uniquely since the Wronskian v, v, — v} vy is non-zero; we argue similarly for us for which
uz(1) = 0, and e.g. u5(0) = 1.) Now note that the Wronskian W (x) = (ujub — ugu})(x)
is non-zero in I if and only if u;(1) # 0, since W(z) # 0 <= 0 # W(l) =
wn(1g(1) — up (L)l (1) = ur(1).

A simple sufficient condition that ensures that u;(1) # 0 is that c¢(z) > 0, x € I.
To see this, suppose that ¢(x) > 0 and ui(1) = 0. Then u; has either a positive
maximum or a negative minimum in (0,1). (Indeed, if u; > 0 in (0, 1) it has a positive
maximum, if u; < 0 it has a negative minimum, and if it changes signs the conclusion
also holds; note that there does not exist a point in (0, 1) where u; = u} = 0 since, by
the uniqueness of solutions of the initial-value problem, this would imply that u; =0
in I). If u; has a positive maximum at x = xo € I, then v/ (x) < 0, u}(x¢) = 0,
uy(zo) > 0, and 0 = Lu(zg) = —a(zo)u”(xo) + (b — a’)u'(xo) + c(zo)u(zg) > 0, a
contradiction. Similarly one may also rule out that u; has a negative minimum. We
conclude that the condition c¢(z) > 0, x € I, implies that u;(1) # 0.

We will assume then that W # 0 for € I for the continuation of this proof.

Consider the Green’s function of the operator L with zero b.c., given by

vooog<zr<y<l1

— Ay, 0 <y<I1,
glz,y) = ﬁ ﬁ
ug () ui (y

“a(y) W(y)’ Ogygxgl

Suppose that f € C(I). Then the classical solution of the problem ([3.145) is given by

the formula
1
UW%i/g@wﬁwM% 0<z<l. (3.146)
0

To show this we should check that u € C%(I), Lu = f, u(0) = u(1) = 0; uniqueness

of solution follows. (This is equivalent to showing that if W # 0, L is invertible in
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C(I) and its inverse, the “solution” operator T : C(I) — D(L) = {u € C*(I), u(0) =
u(1) = 0}, is the integral operator given by T'f = u, where u satisfies (3.146]).)
We write ((3.146|) as

u(z) = ug(2) I(x) + uy(z) [ (z), Vo€l (3.147)

where I, I, are the integrals given for € I by

_ [T m@)f) o [ @)
na) = [ St 10 = [

Under our hypotheses, Iy and I; are continuous in I. Therefore, u given by (3.147) is
continuous and satisfies u(0) = u(1) = 0. It is easy to check that wu is differentiable

and its derivative is given by v’ = ubly + w} ;. It follows that «’ is differentiable and

f

u' =wuyly +uil — =.
a
We conclude that u € C?(I) and by the above

Lu=—au"+ (b—d)u + cu = —auyly — aul; + f
+ (b — auyls + (b — " )ui Iy + cusly + cuy Iy

= _[2<Lu2) + [1(LU1) + f = fa

i.e. u is a classical solution of . If u, u are two such solutions, then, if w = u—1u,
Lw =0, w(0) = w(1) = 0, and w vanishes since it satisfies with f = 0.

If f € L*(I) the formula yields a weak solution u of that belongs to
H2NH. (Hence if L is now considered as an operator in L? with D(L) = H? N }0[1,
then, if W # 0, L is invertible and its inverse, the “solution” operator defined on L?
by Tf(z) = folg(x,y)f(y) dy, maps L? into H? N I%l) We will prove this, i.e. that
uw="Tf for f € L? belongs to H> ﬂ]—oll and satisfies Lu = f in L?. Moreover the elliptic

reqularity estimate

[ull2 < ClI 11, (3.148)

holds, i.e. the linear operator T : L? — H? N H' is bounded. Note that the kernel g
is continuous on [0, 1] x [0,1] and hence bounded. Therefore if u is given by (3.146]),
then for = € T [u(z)] < [; |g(z, 9)||f(y)|dy < C [ |f] < C||f|. Therefore u € L.
Writing u = usls + uily, where I, I; are the integrals defined as before, and taking
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into account that I, I; are continuous on I since f is integrable on I, we conclude
that v € C(I), that u(0) = u(1) = 0, and, by the above, max,.|u(z)| < C| f]|, so
that ||ul| < C||f||. Since f in integrable, the functions I, and I; are differentiable a.e.

in [ and Ii(z) = %, I(z) = Z?gwgg with the equalities understood a.e. in 1.

We conclude that v' = w4y + v}l a.e. and therefore ' is continuous. We also have
|t/ < C| f]| and therefore ||| < C||f||. Finally u" = ujIr +u{I; —g a.e. in I, which
shows that «” € L? and |[u”|| < C||f||. We conclude that now Lu = f in L? (i.e. a.e.
pointwise), that u € H* N H ! and that the estimate holds.

As a final remark, to be used later, note that the adjoint L* of L is given by

L'v = —(av") — () + cv. (3.149)
One may indeed easily show by integrating by parts that
(Lv,w) = (v, L*w), Yv,w € H*N H'.

As done in the case of L, one may show that if e.g. c¢—0' > 0 L*, viewed as an operator
in L?, is invertible, D(L*) = H*N H! and its inverse (solution operator of the problem
L*u = f) is bounded from L? into H? N H, (Hence, a sufficient condition for the
invertibility of both L and L* is that ¢ > max(0,b') in I.)

Even if this condition is not satisfied one may still have existence of a classical or
a weak solution of if one is able to show that W # 0. An example is given by
the two-point bvp for the 1d Helmholtz equation

(3.150)
u(0) = u(1) =0,
where k is a positive constant. The operator L = —% — k? is self-adjoint under the

b.c. of but indefinite. In order to construct the Green’s function as we did
previously, we have to find nontrivial solutions u;, us of the homogeneous ode such
that u1(0) = 0, ua(1) = 0. We take for example u; = sinkx, uy = sink(1 — x), and
compute their Wronskian W' = wyuy — wjus = —ksink. Hence W # 0 if and only if
sink # 0, ie. k # nm, n = 1,2,3,..., i.e. as expected if k? # \,, where \, = n?r?,
n > 1, are the eigenvalues of the Sturn-Liouville problem given by with f =0,
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which is equivalent to assuming that the bvp (3.150]) has only the trivial solution u = 0

when f = 0. Therefore the Green’s function is given, for k # nm, by

sin kz sin k(1—y)
—ammr > 0<z<y<I,

g(w,y) =

sin k(1—x) sin kx
—%enr 0 OSy<ax<l

and u(z) = folg(x,y)f(y) dy is the solution of (3.150)), valid for k # n; it satisfies
[ullz < CR)IFI, B # n.

We proceed now to the numerical solution of with Galerkin finite element
methods. We assume again that a € CY(I) with a(x) > a9 > 0, z € I, and that
be CYI),and c € O(I). We let f € L? and assume that has a unique solution
we H? N H' satisfying [Julla < C|f]|. We also assume that the associated two-point
bvp for the adjoint operator L* on I with boundary conditions u(0) = u(1) = 0 and
right-hand side f € L*(I) has a unique solution u in H? N H satisfying [|ulls < C||f]|
as well. The weak form of is given as usual by

B(u,v) = (f,v), Ve H, (3.151)
where, for v,w € H', the nonsymmetric bilinear form B is given by
1
B(v,w) = / (av'w’ 4+ bv'w + cvw) dz. (3.152)
0
Obviously, for some constant C; B satisfies
B, w)| < Cillellllwl,  Vo,we HY, (3.153)

0
but it is not in general positive definite, as for v € H*

Therefore B(v,v) satisfies a Garding’s inequality, i.e. an inequality of the form

B(v,v) > all|? - Bllv|%, Vv e HY, (3.154)
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where in our case o = ag > 0, f = —ming<y<; (c — %) € R. We conclude that B is
positive definite in Iif Lif 3 <0, or if B is positive and small enough as we may easily
see by applying the Poincaré-Friedrichs inequality ||v'|| > C1||v|| in the right-hand side
of . Otherwise, B is indefinite and we cannot apply the Lax-Milgram theorem
to it.

In order to approximate the solution of by the standard Galekrin finite

0
element method we let as usual S), be a finite-dimensional subspace of H' with the

0
approximation property that if » > 2, then, given v € H?> N H', where 2 < s <r,
inf ([l — x| + ~llv = x[l1) < CP7[[v]s. (3.155)
XESh
We try to define the Galerkin approximation u, € S, as usual by

B(un, ¢) = (f,8), Vo € Sh. (3.156)

However we do not know if u, exists as a solution of the linear system represented by
(3.156|) since B is in general indefinite. However, following Schatzﬁ we may prove that
if h is sufficiently small, then u;, exists uniquely and satisfies our usual L? and H! error

estimates.

0
Theorem 3.29. Suppose that u, the solution (3.145) belongs to H" N H' and let h
be sufficiently small. Then the solution u; of the Galerkin equations (3.156|) exists

uniquely and satisfies
lu = unll; < CHull,, j=0,1. (3.157)

Proof. Assume for the time being that the equation (3.156]) has a solution u, € S,.

Then, by (3.151)
B(u—up,¢) =0, VYo € S, (3.158)

Let C, be the constant in the Poincaré-Friedrichs inequality written in the form

olly < CLl']l, Vv € H. (3.159)

4Math. Comp. 28(1974), 959-962.
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(Recall from Remark [2.29 (iii) that the best such C. is equal to (1 + #)1/ 2.) From

(13.159), (3.154]) and (3.158]) we have

(07
callu =l < all(w —w)'I* < Blu—un,w = up) + Bllu = un|?
*

= B(u — up,u— x) + Bllu —upl|?, Yx € Sh.

Therefore, by (3.153)) and the approximation property (3.155)) that give |B(u — up, u —
X)| < Ch™ Y u — up||1||ull,, we conclude that

o
calle = unlll < CP 7l — wnllfJully + Bllu — . (3.160)
Let now L* be the adjoint of L, introduced previously. Consider the problem
L'w = —(aw') — (bw) +c=u—uy, x€]0,1],
(3.161)

0
whose solution has been assumed to exist uniquely in H? N H' and satisfy the elliptic

regularity estimate. Hence

w2 < Cllu — ual. (3.162)
Now, form (3.161)), for v € ]-(.)Tl,
(u—up,v) = (L*'w,v) = (w, Lv) = (Lv,w) = B(v,w).
Taking v = u — uy, we have by (3.158), (3.153), for any x € S,
lu = unl* = Bu — up, w) = Blu — up,w = x) < Cillu = unlh[lw — x]h-

Apply now the approximation property (3.155) for s = 2 and obtain from the above
and (3.162)), for some positive constant C

lu = unll® < Cshllu — uplll|lu — w1,

1.e.

lu —un|| < Cshl|u — up|;. (3.163)
Let us examine (3.160). If 5 <O orife.g. 0 < g < % we have that
|w — up|i < CR" 7 ul,. (3.164)
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For general positive 3, (3.163]) and (3.160|) give

O%Hu —unllf < Ch™Hlu — |y [lullr + BCEH*|lu — uy|]7.
So, if & — BC2h% > 0, i.e. if h is small enough, this gives again, for a different
constant C.

Let now f = 0. Then u = 0, since we assumed that has a unique solution.
Butifu=20 gives up = 0, i.e. that the homogeneous linear system represented
by has only the trivial solution. We conclude that the matrix of this system is
invertible and therefore that the solution u; of exists uniquely. The estimate
holds therefore, and gives then that ||u — uy|| < Ch7||ul|,; the theorem

has been proved. []
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Chapter 4

Results from the Theory of Sobolev Spaces
and the Variational Formulation of Elliptic

Boundary—Value Problems in R

In this chapter we let 2 be a bounded domain in RY (i.e. an open, connected, bounded
point set in RY). Many of the results that we shall quote hold for arbitrary open sets
in €2 but we do not strive for generality here, having in mind applications in the case of
boundary—value problems on bounded domains. Let x = (z1,...,zy) denote a generic

point of Q or RY. All functions are real-valued.

4.1 The Sobolev space H'(().
Definition. The Sobolev space H' = H'(Q) is defined by
HY Q) = {ueL*(Q): 3g,g0,...,9xv € L*(Q),such that

8¢:—/ng¢, Vo e C®(Q), Vi 1<i< N},

U
o Oz

For u € H" we denote g; = % and call g; the weak (generalized) partial derivative of

u with respect to x;.
(Note e.g. that this definition does not need that € be bounded).

Remarks.

(i) Using Lemma 2.4 we conclude that each generalized partial derivative g; in the

above definition is unique, as in the case of one dimension.
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(i) Again, C}(Q2) may be used in place of C°(Q) for the test functions ¢.

(iii) Tt is clear that if w € C'(Q) N L*(Q) and if the classical partial derivatives g—;
belong to L*(Q) for i = 1,2,..., N, then the weak derivatives exist and coincide
with the classical; in particular v € H*(Q). Of course C*(Q) € H'(2). It can be
shown with some care that, inversely, if u € H'(Q) N C(2) and if the generalized

derivatives 2% belong to C(€2) for 1 <i < N, then u € CH(Q).

(iv) Since u € L*(Q) = u € L{ (), we can define the distributional derivatives of

loc

ou

u, .-, in the sense of the theory of distributions. We can say that H' is the
set of elements of L?()) whose distributional derivatives g—;, 1 <i < N, are
represented by functions in L?.
It is clear that H' is a subspace of L. Denoting by (-,-), || - || the inner product,
respectively the norm, on L?(f2), we introduce the quantities:
N
ou Ov
u,v); = (u,v)+ — — |, u,ve H,
ok = i+ 3 (5557

D=

N
ou
2
lull, = (HuH +> 05 H2> el
i=1 v

which clearly define an inner product, resp. (the induced) norm, on H'. Hence H' is

a normed linear space.
Theorem 4.1. The space (H'(Q), || - ||1) is a Hilbert space.

Proof. Adapt the 1-dim. proof. [J
Remark. (H'(Q), | - ||1) is separable.

In the case of one dimension we had shown (Theorem 2.4) that the restrictions on
Q = I of functions in C°(R) form a dense set in H'. In more than one dimensions

this is not true for an arbitrary 2. We list below several “density” results:

1. (Friedrichs) Let v € H'(Q). Then, there exists a sequence {u,} € C*(RY)
such that:

(@) up|lq — uin L*(Q)
 Qtny ., Ou

(B) Vi: Bz, | — 8_331’ in L*(w) for every precompact w C Q.
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2. (Meyers — Serrin) If u € H'(Q), then 3 sequence {u,,} € C*(Q2) N H'(Q) such
that u, — u in H'(Q).

3. If Q is an arbitrary open (or even open and bounded) set and if u € H'(Q), in
general there does not exist a sequence u,, € C}(RY) such that u,|q — v in
H'(Q). (The problem is at the boundary; however, compare with Theorem 4.2
below).

With the aid e.g. of Friedrichs’ result (1), above, we can show the following analog
of Proposition 2.1:

Proposition 4.1. If u,v € H'(Q) N L>(Q), then uv € H' N L™ and

0 ou v
(uv) = v+u

= 1 <7 <N.
8:[1- 3:151 8:1:1-’ =t

As in the case of one dimension, many properties of H' are established easier if
0 = RY. Then an extension result is needed to establish the same property for an
Q) C RY. Such extensions (of functions i.e. of H'(2) to functions of H*(R"))are not
always possible to construct, unless the set €2 has a “regular” boundary 0f in a certain
sense.
Definition. Let Q be a bounded domain in RY. We say that Q is of class O if there
exist finitely many open balls B; C RN, i=1,2,..., M such that

(i) 00 C UM, B;, B;NoQ # (.

(i) There is for each i, 1 <i < M, a function y = f@(z) in C*(B;) which maps the
ball B; in an one—to—one and onto way onto a domain in RN so that 00N B; gets
mapped onto a subset of the hyperplane yny = 0 and QXN B; into a simply connected
domain in the half-space {y : yn > 0}. Moreover the Jacobian determinant

Py , —
det ( éf;;l > does not vanish for x € B;.

The C* property of Q permits for example the advertized “extension” result:

Proposition 4.2. Suppose that  is of class C! (or that Q = RY, = {z e RV : 2y >
0}). Then there exists a linear extension operator P : H'(2) — H'(RY) such that,

(i) Pulg=uYue HY(Q).
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(i) 3C such that || Pu [|2qzey< C || u |22y, Yu € H ().
(iti) 3C" such that || Pu || gamyy< C' || u |11y Yu € HY(Q).
Using e.g. this extension one may show the following important density result:

Theorem 4.2. If Q is of class C' and u € H(R), then, there exists a sequence
u, € C*(RY) such that u,|q — w in H'. That is to say, the restriction to Q of

functions in C°(RY) are dense in H'(12).

For the purposes of studying boundary—value problems, it is important to study the
behavior of functions in H'(£2) at the boundary 92 of Q. We suppose to this effect that
Q is of class C'. Then we can “measure” (in the sense of the above definition of the C"*
domain) the content of pieces on the “hypersurface” 92 (through measuring “plane”
surface pieces on the hyperplane yy = 0, i.e. measuring the “area” of the images of the
pieces of OS2 that are mapped on yy = 0 by the functions y = f@(z)). One may define
open sets on 0F2 as intersections of 9€) and open sets in R"Y. These open sets on 952 one
can then complete into a o—algebra and then extend the elementary “content measure”
into the Lebesque measure on 0€2. With respect to this measure we may define the
surface integral [, g(y)dy. Consequently, one may consider the Hilbert space L*(92)

of functions defined on 0f2 with norm

3
19 [lz200)= (/m 9*(y) dy) for g € L*(0Q).
One may show first that the following result holds for smooth functions:

Lemma 4.1. Let Q be of class C'. Then there exists a constant C' such that for all

functions f € C=(Q) we have

H f ||L2(8§2)§ C || f ||H1(Q).

This lemma, along with Theorem 4.2, permits us to define boundary values for
functions in H'(Q) for C' domains Q. Let f € H'(2). Then 3 f,, € C*°(Q) such that
fn— fin H(Q) (Theorem 4.2). By Lemma 4.1 {f,,} is Cauchy in L*(992). So f, — g
in L2(09Q). (It is easily seen that this g is independent of the chosen sequence f,).
This limiting function g we denote by f|sq and call it “boundary value” on 0% of f,
or trace of f on 0N (sometimes we say that g = f]|aq is the boundary value of f in the

sense of trace). We summarize in the following theorem.
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Theorem 4.3 (Trace theorem). Let Q be of class C'. Then, every f € H' () possesses

boundary values in the above sense (also denoted by f), which belong to the Hilbert

space L?(99)). Moreover there exists a constant C' such that

I f 200y < C | f lmy ¥V f € HY(Q).

Remarks.

(i)

(i)

It can be shown that under our hypotheses on €2, the boundary value f|sq of
a function f € H'(Q) actually belongs to the so—called “fractional-order” space

HY 2(092), an intermediate space defined by interpolation between the spaces

HO(09) = L*(9Q) and H'(0Q).

Let 2 be a C' domain. Then we may show that Green’s formula (Gauss’s theo-

rem) holds: Vi: 1 <i< N

(9uv__/u(9v +/ uvv;dy
Qal’l Q 8131 90 ‘

for u,v € H'(Q). Here dy is the surface Lebesgue measure constructed on 9

as above and v; = 7 - €] is the i*" component of the unit outward normal 1i(y)

defined on the boundary of the C' domain Q. (Note that since u,v € H(Q)

= Qv B¢ J2(Q), u,v € L*(09) and all terms in the above equality make
sense).

4.2 The Sobolev space I-Oll(Q)

Definition. We define the space ]—i;l(Q) as the completion of C2°(Q2) with respect to
the H*(Q)) norm.

Hence <[§T1(Q), | - Hl) is a Hilbert space (a closed subspace of H'). (We may show

that the completion of CZ°(RY) under the || - || g1~y norm is H'(RY) itself, i.e. that
I-Oll(]RN) = H'(RY). But for Q C RY we have in general that [3’1(9) C H'(Q)). More

0
precisely, we may show that for sufficiently smooth 9 (e.g. C') then H'(2) consists

precisely of those functions in H'(£2) which vanish (in the sense of trace) on 9.

Theorem 4.4. Let Q be of class C'. Then

H'(Q) = {ve H'(Q) : v]s0 =0},
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(where by v| g = 0 we mean that the trace of v on 99 (a function in L?(91)), is equal

to the zero function in L?*(92)).
On H 1(Q) we also have the analog of Proposition 2.3:

Proposition 4.3 (Inequality of Poincaré-Friedrichs). Let © be a bounded domain.
Then, there exists a constant C, = C,(2) such that

B : 0
a; |y2> Yu € H'(Q).

N
[ull < C (Z I
=1

Ou
8:@-

1/2 0
In particular the expression (Zfil I 2) is a norm on H'(f2), equivalent to the

0 0
norm || - ||y on H'(Q). The quantity |, (Zf\il g; 88—32’1_) dz is an inner product on H' ().

Remark. As in the 1-dim case, if Q is of class C*!, then u € I—?fl(Q) if and only if

the extension
u(z) ifx e

0 ifzeRV\Q

belongs to H'(RY). (In such a case also % =)

4.3 The Sobolev spaces H™()), m = 2,3,4,...

For m > 2 an integer we can define the spaces H™({2) recursively by

ou
8@

H™ = H™(Q) = {uc H" Q) : — € H™1(Q), Vi=1,2,...,N}.

We introduce some notation. A multiinder o = (ay,...,an) is an N—vector of non-
negative integers a; >0, 1 <4 < N. If o is a multiindex we let | o |= 3.V, a;. Then,

the partial derivatives of a function of N variables may be denoted by

ol

Drp=—2 %
L, T

It follows that H™ is the set:
H™=H™Q) = {ueL*Q): Ya with | a|<m, Jg, € L*(Q) such that

/Qumgp:(—wl/ggw, Vo € C(Q)}.
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We call g, the generalized partial derivative of order @ of v and denote g, = D%u.

The space H™ with the norm

lall,, =1 > D] .

0<|a|<m

induced by the inner product

(U, ) = Z (D%, D%v)
0<|al<m
is a Hilbert space. One may show that if dQ is sufficiently regular (C' will certainly

suffice), then the norm || - ||, on H™(2) is equivalent to the norm

2

lal®+ > I Du|?

la)|=m

In effect one may show that Va, 0 <| a |< m and ¢ > 0, there exists a constant

C = C(a, €, ) such that the interpolation inequality

I D*ull<e Y | DPul| +C flull, Yue H™(Q)
|B1=m

holds.

Now, since u € H™ = D € H'(Q) for each a: 0 <| a |< m — 1, we can define by
the trace theorem, boundary values on 9% (for Q, say, of class C'') for all derivatives
D%u, 0 <| a |[< m — 1 of u. In this sense we can define e.g. the normal derivative on

0Q of a function v € H?(2) as the linear combination

ou N ou

=1

|8Q 2D

where 7i(y) is the unit outer normal on 9. For u € H*(Q), % € L*(92). One has

another formula of Green’s too:

N ou dv ou
— | Auv = — —uvud H?(Q).
/Q uv /lelafz o1 mﬁnv y, Yu,ve€ H(Q)

0
One may define again H™(f2) as the completion of C°(€2) in the || - ||, norm. For 02

sufficiently smooth (e.g. for 2 a domain of class C™ — replace C* by C™ in the definition
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0

of C* domain) one may show that H™(Q) is equal to the subspace of H™(f2) for which
0

ue H™(Q) < u e H™(Q) and D%u|gq = 0 (in the sense of trace), 0 <| a |< m — 1.

Again we note the difference between the spaces
2~ 7 2
HﬂHIZ{UEH Iu‘agIO}

and

0 ou
H? = H?: =
{U S u| 90 6@

loo = 0}.

4.4 Sobolev’s inequalities.

In one dimension we had proved that H'(I) C C(I) for a bounded interval I and that
[ull poo(ry < C llullgr(py- In more than one dimensions this is no longer true. There is

a wealth of imbedding theorems of which we quote two results:
Theorem 4.5 (Sobolev). Let € be of class C'. Then

(a) f N=2 H'CLPVp, 1< p<oo.

IfN>27H1CLpWherelgp§]\2,—f2.
(b) If m > & we have H™(2) C C*(Q) where 0 < k <m — £ and

sup | D%(x) | < Clul],, Yue H™(Q).
z€Q, 0<|a|<k
This theorem tells us that if N > 1 the functions in H*({2) are no longer continuous
(in the sense of a.e. equality as usual). For example if N = 2 we need to go to H%(1)
to obtain continuous functions in €. As a counterexample in this direction we may

verify that the function

1\ 1 1
u:<logm> With0<a<§, Q:{xER2:|x|<§}

belongs to H'(€2) but it is not bounded because of the singularity at z = 0.
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4.5 Variational formulation of some elliptic boundary—

value problems.

4.5.1 (a) Homogeneous Dirichlet boundary conditions.

We consider the following problem. Let Q C RY be a C! domain. We seek a function

u: Q — R satisfying

—Au+u = f in Q, A:Z (4.1)
i=1

— Oz
u = 0 on 09, (4.2)

where f is a given function on 2. The boundary condition u = 0 on 0f2 is called
homogeneous (zero) Dirichlet b.c.

Definition Let f € C(Q). Then, a classical solution of (4.1), (4.2) is a function
u € C%(Q) satisfying the P.D.E. (4.1) and the b.c. (4.2) in the usual (pointwise)
sense. Let now f € L*(Q). Then, a weak solution of (4.1), (4.2) is a function u € H
which satisfies the weak form of (4.1), (4.2), i.e. the relation

ol ou Ov 0
_ 1
/Q<ZE:1 9z, o, +uv> dx—/va Yve H'. (4.3)

(i) A classical solution of (4.1), (4.2) is a weak solution.
Let f € C(Q) and let u € C%(Q) be a classical solution of (4.1), (4.2). Then, since
u € HY(Q) and u = 0 on 99, it follows that u € H. Multiplying —Au 4+ u = f by a

function ¢ € C°(Q2) we have, using Green’s theorem (cf. p. 88) that

N
ou Oy B
é(;axiaxi—i—uw) da:—/Qfgo

holds. Since now C2°(€2) is dense in (]-Dll, | - [|1) (4.3) follows by the above by approxi-

0
mating in H', v € H'(Q) by a sequence ¢; € C°(Q). Hence u is a weak solution.
(ii) Existence and uniqueness of the weak solution.

Let f € L*(Q2) and consider the bilinear form a(v,w) defined on H' x H' by

a(vw)—/ i@v aw—l—vw dx (4.4)
’ - Q —1 8;1:1 8:61 . ’
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0 0
By our hypotheses, a(,) is a bilinear, symmetric form on H' x H'. Moreover, for

i/|8”a“’\+/\vwr
- Ox; Ox; Q
Z‘(%

() (s ol
- —1 aiL’Z —1 8332 ! !

< 2ol w il (4.5)

0
v,w € H' we have

IN

a(v,w)

IN

0 0
i.e. that a(v,w) is continuous on H' x H'. Also

o) = 3 [Ger [ 5 [ G

> cfol? ¢>0 (4.6)

using the Poincaré—Friedrichs inequality. Hence a(-,-) satisfies the hypotheses of the
0
Lax-Milgram theorem on the Hilbert space H'. Since f — [, fv is a bounded linear

0 0
functional on H*, it follows that (4.3) has a unique solution u € H' that satisfies
Jull, < C I fI-

(Note that by the symmetry of a(-,-), the weak solution can be also characterized as

0
the (unique) element of H' that solves the minimization problem

J(u) = iglf J(v),
veEH1(Q)

o= [ (Sigpr ) - Lo

This is “Dirichlet’s principle”).

where

(Note also that simply a(v, w) = (v, w); on H' x H'. Hence an appeal to the Riesz
theorem would solve the problem. Of course, a(v,w) < |[v||, || w ||; and a(v,v) = [Jv]|;
too. But the proof of (4.5), (4.6) above indicates the general way of proving (4.5) and
(4.6) in the case e.g. of a positive definite form with variable coefficients).

(iii) Regularity of the weak solution.
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If fe L*Q) and Q is a domain of class C? and if u € H' is a weak solution of (4.1),
(4.2), i.e. a solution of (4.3), then one may show that in fact u € H*(Q) and that
llull, < C || f (“elliptic regularity” estimate). Here C' is a constant depending only
on Q. More generally, if Q is of class C"™2 and if f € H™(Q), then u € H™?(Q2) and
1l e < Cm || f |lm- (In particular, using Sobolev’s Theorem 4.5 we may conclude
that if m > £, then u € C*(Q)).

(iv) If the weak solution is in C?(Q), then it is classical.

Let u, the weak solution of (4,1), (4.2) be in C%(Q) and let f € C(Q2). Since u €
H'N C%(Q) we conclude that u|sg = 0 (in the classical sense). Applying Green’s

formula we have now from (4.3)

/(—Au+u)vdx:/fv VYo € C(Q)
Q Q

from which —Au +u — f = 0 a.e. in Q since C>() is dense in L*(2). We conclude,
by our hypotheses that —Au + u = f Vx € Q. Hence u is a classical solution.

Remarks

(i) The above discussion extends with no extra difficulties to the case of a linear,
self-adjoint elliptic operator with variable coefficients. Consider the problem of

finding v : Q — R such that

9, Ou
i,j=1 v J
u =0 on 0, (4.8)

where we suppose that a;;(z) = a;;(z) are functions in C*(2) such that the matrix
a;; is symmetric and uniformly positive definite, i.e. that the ellipticity condition
N N
Z a;j ()& > aZ&?
ij=1 i=1
holds for some a > 0 Vo € , £ € RY. We also suppose that ag € C(Q) and that
ag(z) > 0 on . We define a classical solution of (4.7), (4.8) to be a function
u € C%(Q) satisfying (4.7), (4.8) in the usual sense, while a weak solution is an
element of H' satisfying
A(u,v) = /Q (; aijg—;g—; + aouv> = (f,v) Yve H. (4.9)
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For f € L*(Q) we may show that (4.9) has a unique solution u € H: Tt is easy
to see that A(u,v) < C; Jull, |[v]l, Yu,v € H' and A(u,v) > Cs |Jo||> Yo € H' for
Cy,Cy > 0. The regularity in H? also holds under our hypotheses on a;;, ap. In
general, form > 1if f € H™(Q), a;; € C™(Q), ag € C™(Q) yieldsu € H™2(Q)

(elliptic regularity).

(i) The fact that the weak solution of (4.1), (4.2) is in C*(Q) if f € H™ withm > &
follows from Sobolev’s theorem. There is a sharper theory based on Schauder’s
estimates which states that if 2 is of class C** (Holder spaces) with 0 < a < 1 and
f € C%(Q), then 3 u € C*%(Q), unique solution of (4.1), (4.2) in the classical
sense. Moreover of 2 is of class C™*2(Q) (m > 1 integer) and f € C™(Q), then

u € C™+24(Q)) and an analogous elliptic regularity result holds. Here

cQ) = {ueC(Q), sup [ u(@) — uly) | < oo}

cma(@Q) = {ueC™(Q), DPuc C™Q) VB :| B |=m).

4.5.2 (b) Homogeneous Neumann boundary conditions.

We now consider the problem of finding u : Q — R such that

—Aut+u = f in Q (4.10)
ou
5= = 0 on 90 (4.11)

with f given on €. As usual % = Vu- 7 is the normal derivative at the boundary 0f2
(again € is of class C1). A classical solution of (4.10), (4.11) (for f € C(Q))is a C?(Q)
function u satisfying (4.10), (4.11) in the classical sense. A weak solution is an element

u € HY(Q) satisfying (for f € L*() say)

N
a(u,v)z/ﬂ<; g; aa;]i%—uv) dx:/ﬂfv Yu € HY(Q). (4.12)

(i) Every classical solution is weak.

Let u € C?(2) be a classical solution of (4.10), (4.11). Then Green’s formula gives

N ou Ov ou —
/QAUU:_/Q;(?% axi—i-/ma—nvdy Yo € C(Q).
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Hence (4.10), (4.11) yields that

N ou ov _
l)(;axz axi—l—uv):/ﬂfv Yo € C*(Q)

and density of C*°(Q) in H*(Q) yields then that (4.12) is satisfied.

(ii) An immediate application of the Lax—Milgram theorem yields that there ezists a
unique weak solution.

(iii) More refined theory yields again the reqularity of the weak solution. Exactly the
same results as in the Dirichlet b.c. case hold.

(iv) If the weak solution is in C?(Q2), then it is classical.

For if this case we have by (4.12) that (f € C(Q) here)

/( Au+ u) v—l—/ —vdy—/fv Vv € C®(Q).
Q o On Q

Choosing v € C2°(Q2) we obtain as in the Dirichlet b.c. case that —Au+u = f in Q.
It follows that [,, %% vdy =0 Vv € C*(Q) = 2* =0 on 9.
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Chapter 5

The Galerkin Finite Element Method for
Elliptic Boundary—Value Problems

5.1 Introduction

Let © be a bounded domain in RY. Consider the boundary-value problem of finding

u = u(z), x € Q, such that

Lu=f xe€(Q

(5.1)
u=0, x€df

where L is the elliptic operator given by

L N0 du
U= — E a—xl Q5 (37)87 + GQ(CC) u.
ij=1

As in the previous chapter, we assume that for 1 < i,j7 < N a;(z) = aj(x), z € Q,

that 3¢ > 0 such that
N N
> ay(@)E > ¢ & VEERY,
ij=1 i=1

that a;j, ap are sufficiently smooth functions of x, and that ¢y > 0 in Q. Under
these hypotheses, and if f € L?(Q), we have shown that there exists a weak solution

u € ]f)[l(Q) of (5.1) satisfying
B(u,v) = (f,v) Yove [—?Tl, (5.2)

where



We shall assume that the data are such that the unique solution u of (5.2) belongs to
0

H?N H! and satisfies the elliptic regularity estimate that for some C' > 0, independent

of f and u, we have

lull, < CIfI- (5.3)

As we have seen in Chapters 1 and 3, the (standard) Galerkin method for approximating
the solution u of (5.2) amounts to constructing a family of finite-dimensional subspaces
Sy of ]-(.)71, say for 0 < h < 1, and seeking u, € Sy satisfying the linear system of
equations

B(uh,vh) = (f, Uh) Y, € S),. (54)

Under our hypotheses, we have seen that a unique solution w; of (5.4) exists and
satisfies

| u—wunli< Cinf [[u—x | (5.5)
XESh

for some constant C' independent of h. Assuming e.g. that

0
(lo=xI+hllv=xlh) < CRvll, YveH*nH, (5.6)

inf
XESh
we obtain from (5.5) the optimal rate H'-error estimate

| = un [y < Chljull,, (5.7)

The L?-error estimate is obtained again by the “Nitsche trick”, by letting e = u — uy,

and considering w € H? N i 1 the solution of the problem
B(w,v) = (e,v) Vve H. (5.8)

Then, || e |*= (e,e) = B(w,e) = B(e,w) = B(e,w — x) for any x € S, — we used (5.2)
and (5.4) — By the continuity of B in H' x H' we have then

5 by(5.6)
el < Cllelillw=—xlh < Clelihllwl< Chilellel.

Hence [ e [[< Chelri< CR?|lull, by (5.7)

In general, assuming that for some r > 2 (integer) we have

0
(To=xl+hllv=xlh) < Chvll, YveH NH, (5.9)

inf
XESh
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0
and that the weak solution u of (5.2) is in H" N H', we see that (5.5) and the Nitsche
argument give

u—un || +h ]| w—up s < Ch"ull,. (5.10)

0
Hence, our task is to construct subspaces of H' (endowed with bases of small support
so that the linear system (5.4) is sparse) so that (5.6) or, in general, (5.9) holds. In
what follows we shall consider the subspace of piecewise linear, continuous functions

on a polygonal domain in R? (subdivided into triangular elements).

5.2 Piecewise linear, continuous functions on a tri-
angulation of a plane polygonal domain

(This section is largely based on Ciarlet (1978), chapter 3).
We consider a convex polygonal domain €2 in R? and the elliptic b.v.p. (5.1) associated
with it. Although € is not C*, it is known that (5.3) still holds.

We subdivide © into triangles 7;, 1 < i < M, M = M (h), forming a triangulation
Tn = {7} of Q. We assume that the 7; are open and disjoint, that max;(diam ;) < h,
0 < h < 1, and that Q = Int(UX,7;). The vertices of the triangles are called nodes
of the triangulation. We shall assume that 7j, is such that there are no nodes in the

interior of the interior sides of triangles:

S

NO YES

We let now S, be the vector space of continuous functions on € that are linear on

each 7; and vanish on 012, i.e. let

Sh = {925 € C(§>7 925

= Oy + BZZL’ + vy (1e QZ5 S Pl(Ti)), ¢ |aQ: 0}

Let N = N(h) be the number of interior nodes P; of the triangulation (i.e. those
nodes are not on 012). Since these points which are not collinear define a single plane,

it follows that an element ¢ € S, is uniquely defined by its values ¢(P;), 1 < j < N.

149



(This means that dimS, = N). A suitable basis of S, (for our purposes) consists of

the functions ¢; € Sy, 1 < i < N, such that

i

It is clear that the support of ¢; consists exactly of those triangles of 7, that share
P; as a vertex. The ¢; are linearly independent, since if ZZ]\LI c;pi(x) = 0, then putting

x = x; yields ¢; =0, 1 < j < N. Moreover, given ¢ € Sj,, we can write

=D w(P) o), =€, (5.11)

since both sides of (5.11) are elements of S that coincide at the interior nodes P,
1 <j < N. Hence, {¢;}, form a basis for Sj,.

Sy, is a subspace of H 1(Q): Obviously, S, C L*(€) and the elements of S vanish
(pointwise) on 9. Hence, to show that v € S, belongs to H'(£2), it suffices to prove
that there exist g; € L*(Q), i = 1,2, such that

3425
8%

Let v(™) be the restriction of v to 7 € Tp,. For i = 1,2 let g; € L*(Q) be defined as the

/gm Vo e CX(Q), i=1,2. (5.12)
Q

piecewise constant function given by

9i = ai»(”(f)) i=1,2, ifzer (5.13)

There follows that for ¢ € C'2°(Q

)
- gl

Z / (,7_) (9¢ (Gnu« theorem on T)

T€TH T€T
= —Z/gqud:z:—FZ/ T)dy,
€T TETH
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where (™ = ({7, {7 is the unit outward normal on the boundary 97 of .

U]

The first term of the right—hand side of the above equality is equal to — fQ giodx, where
gi € L*(Q) was defined (piecewise) by (5.13). The second term vanishes. To see this,

note that the second term is eventually the sum of terms

/’U(T) ) I/i(T) dy

where s any side of any triangle 7. If s C 02, then the corresponding term is zero
since ¢ = 0 on 0N2. If s = AB is an interior side, suppose it is the common side of two

adjacent triangles 7 and 7.

In that case, there are precisely two terms in the sum ) .. fs ... involving AB,

namely

/ U(”)qbyi(n)dy and/ U(TQ)qﬁyi(m)dy,
AB AB

which cancel each other since v(™) |ap= v(™) |ap (v is continuous in Q as an element
of S), ¢ € C(Q), and 1/@-(71) = — 1/1-(72), i = 1,2. We conclude then that (5.12) holds,
i.e. that v € HY(Q), q.e.d.

Given v € C(Q), v |so= 0, we define the interpolant Iv of v in S),, as the unique
element I,v of S; that coincides with v at the interior nodes P;, 1 < i < N, of the

triangulation 7y, i.e. as

(Iw)(z) = Zv(a) oi(z), =z €

=1
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It will be the objective of this section to show that for v € H*(2) N Igﬂ(ﬂ) (note that

v e C(), v |sga= 0), we have, for some constant C' independent of h and v:
lv—"Tw| +h|v—Tv|[i< Ch* |v|q . (5.14)
(Given v € H™(w), where w is a subdomain of €2, we define

[ vlow = [0l

1
ov ov 2
ol = (1 B + 1 B )

NG

aa1 +a2

_ a 2 o
|V e = Z | D UHL?(w) , D —W‘

|la|=m

Then | v |, 18 in general a semi-norm on H™((2)).

If (5.14) is established, then (5.6) holds and, as a consequence, we have our optimal-
order L? and H! error estimates for u — wuy,.

The estimate (5.14) will be proved as a consequence of two facts:

(i) A local L? and H' estimate for the interpolant:

Given a function v € C(7T), where 7 is the triangle with vertices Pj, P, P; define
the (local) interpolant I,v € Py(7) as the unique linear polynomial in xy, 5 on 7 such
that

(Lo)(P) =v(F;), i=1,23.

Note that if v € C(Q2), then v |,= L v.
Following Ciarlet, we shall prove that there exists a constant C, independent of 7
and Ty, such that for each v € H?(7), T € Tj,

h2
v =L |n, < C—=|vl|o;,, m=0,1, (5.15)
pm

T

where h, = diam7 = the length of the largest side of the triangle 7, and p, is the

diameter of the inscribed circle in the triangle 7.

(ii) The regularity of the triangulation:
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We shall assume that the triangulation 7}, is regular, in the sense that there exists

a constant ¢ > 0, independent of 7 and 7}, such that

h,

— <o VTeT,.

Pr

(5.16)

(The regularity condition (5.16) essentially states that h = max,h, — 0, i.e. the

triangulation is refined, if and only if max p, — 0 i.e. all triangles tend to become

‘points’ and not ‘needles’, (for which Z—: would become unbounded). It may be shown

that (5.16) is equivalent to requiring that there exists a 6 > 0 independent of 7y,

such that 6. > 0y V7 € T, where 6, is the minimum (interior) angle of 7. It is also

equivalent to requiring that Jcy, independent of Ty, such that u(7) > coh? V7 € T,

where p(7) = area(r)).
Indeed, if (5.15) and (5.16) hold, we have

m

Q

1<a:>1 <
pr — h. T opr T R

so that (5.15) gives

|0 =L s < Crn B27™ |0 |or, m=0,1, Vo€ H*(7),

for constants Cy, C; independent of 7.

m =0,1,

(5.17)

We conclude then for v € H*(2) N ﬁl(Q) (= v € C(Q) by Sobolev’s theorem)

lo=Lwl? = llv="Iwlie= ) lv-Lvl, < Gy hylvl,

TETH

TETH

< CER'Y vli, = Cih' vl .

TETH

Hence

|v—"Tw|< C’h2|v\27Q

for some constant C' independent of 7.
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In addition, analogously

o—Twly = S lo—Lof, < 2302 v,

TETH TETH
< PR v, = CiRfvlig.
TETH
Therefore
| v — Ihv |17Q S Ch | v |27Q, (519)

for some C' independent of 7j,.

The estimates (5.18) and (5.19) yield then (5.14) as advertized. We turn then to
proving (5.15). To accomplish this we shall need a series of results and definitions:
Definition: Let Q, Q be two bounded domains in RN. We say that Q and Q) are affinely
equivalent if there exists an invertible affine map F : & € RN — F (%) = B +b e RY
such that F(Q) = Q.

In the definition of the invertible affine map B is an N x N invertible matrix of
constants and b € RY. Hence, if v € RN, 2 = F~'(z) = B~ 'z — B™'0.

Hence i € Q& x = F () € Qandif v : Q — R is a real valued function defined on
Q, then defining v = 60 F~! : Q — R, we have if z € Q, = F(2), ie. if & = F(z),
that

v(@) = (00 FY)() = 0(F\(2)) = o(2).

(Note that if v =00 F~': Q = R, then 6 =vo F : ) = R).

Using this notation we may prove:

Lemma 5.1. Let (), Q) be two affinely equivalent bounded domains in RY and let F'

be the associated affine map such that F(Q) = Q. Then v € H™(Q), m > 0 integer, if
and only if o =vo F e H m(Q) Moreover, there exist constants C' and C depending

only on m and N such that

~

|0 |ma

and | vlne < C|BH " detB 2| 0], - (5.21)

IN

C| B|™ detB |72| v |ma (5.20)

Here | B | denotes the matrix norm induced by the Euclidean vector norm in RY i.e.

| Bz | N >
| B|= sup | ‘,Where ]x]z(E x?) .
T
i=1

RN>z#£0
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Proof: We shall prove (5.20) for m = 0 and m = 1. Recall that whenever x =
F(#) = B% + b, i.e. whenever & = B~'z + ¢, c = —B™'b, then 9(%) = v(z). Hence

| e@rde= [ w17

where .J is the determinant of the Jacobian matrix of the transformation & = B~ 'z +c.

Hence J = det(B™') = (det(B))~! and we conclude that

|6 ||(2)7@:/Q172(£)d£: | detB | /sz(x)dx: [ detB | o],

which implies (5.20) with m =0, C' = 1.
Let now m = 1 and © € H'(Q). Then, if z = F(&) and 1 <i < N,

N

D) = o (@) =Y @) 5 = 30 0 () 2D,

7j=1 7=1
where z; = F;(2) = SN | Bjdy, + b;. Hence 8%(1@ = Bj; and we conclude that
D, o=
which we may write as
(V0)(@) = B (Vo)(x), (5.22)

where

. ~NT T
662(81} .. 81}) and Vv:<av (%) .

(99?:1’ "(%N a.l‘l’”.’al’N

From (5.22), taking Euclidean norms we see that
| Vo |<|B"||Vo|=| B Vo | (5.23)
since | BT |=| B |. (To see this, recall that
| B |=max \/Ai(B"B) = max \/X\(BB") = B |,

since BB and BT B have the same eigenvalues).

Hence, using (5.23) we have

N N 2
oD —~
512 = /(Af)df:/ V@Qdi§B2/ Vo |2 J | dx
|9 11 g ;1@ ami() Q| | | B | Q| 1| J |

= | B[ detB [ v]ig,
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which is (5.20) for m = 1.
The rest of the proof is analogous. O

Given two bounded, affinely equivalent domains €2 and Q we let

h = diam() = SUP; 4eq | £—7 |, p = diameter of the inscribed ball in O = sup{diamg, S

is a ball contained in Q}, and h, p be the corresponding quantities for (2.

Lemma 5.2. Let Q, Q be two affinely equivalent bounded domains in RY such that

A

Q= F(Q), F(i) = Bi +b. Then

h
|B|§77 |BillS

; (5.24)

ESRSak

Proof: An easy scaling argument yields that

| B |= sup [ BE|.

¢eRN J¢|=p

| =

Now given ¢ € RY such that | £ |= p, we may find two points §, 2 € Q such that
y— 2 =& (see Fig. 5.6). For these points we have that F'(y) — F'(2) = By — Bz = B¢,
with F(7), F(2) € Q. Hence supeegy j¢=p | BE | < h. We conclude that | B | < %. O
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Let us consider now our triangulation 7, = {7} of the polygonal domain ) in R

Q, i
T
Q2
3 g,

It is clear that any triangle 7 of the triangulation is affinely equivalent to a fixed
reference triangle 7. (E.g. we can take 7 to be the triangle with vertices (0,0), (0,1),

(1,0). Indeed we have for each 7 € 7T,
F.(7)=r71

for some invertible affine map F,(z) = B, +b,, & € 7, depending on 7. (We construct
the map F, by requiring that Q; = F,(Q;), 1 < i < 3, where Q;, Q;, i = 1,2,3, are
the vertices of 7, 7, respectively. These three 2—vector equations determine uniquely
the six constants which are the entries of the matrix B, and the vector b,. Then we
may easily check that QQ1Qs = FT(Qlch) etc., and that each point z in 7 is mapped
onto a uniquely defined point x in 7, and that each point & € 07 is mapped onto
a corresponding point x on d7. The idea is to work on 7 and obtain corresponding
estimates on 7 (such as the required (5.15)) by using the properties of the interpolant in
spaces of piecewise linear continuous functions as well as the scaling and transformation
inequalities of Lemmata 5.1 and 5.2.

To this effect, define the interpolant I on the reference triangle 7 as the map

I : C(7) — Py(7) such that

(L0)(Qi) = 0(Q:), 1<i<3. (5.25)

for any continuous real-valued function v defined on 7. Our basic step towards proving

(5.15) is the following

Lemma 5.3. Let ¢ € H*(7). Then, there exists a constant C(7) such that for m =
0,1,2

|?§—I{-U mfg C(’f')|@|27ﬁ; (526)

)
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Proof: The estimates (5.26) will be proved as a consequence of three important
facts:
(i) The linear map I. preserves linear polynomials, i.e. Vp € Py(7), I;p = p.

This is obvious and implies that for any © € H?(7) and any p € P;(7)
b Lo=0—p— Lo+ Lp=(0—p) — I:(6—p). (5.27)

(i) I; is “stable” on H?(#). By this we mean that there exists a constant C' = C(7)
such that
| Lo e < C) [l s Vb € H3(R). (5.28)

(To see this, let ¢; € P;(#) be the “hat” basis functions associated with the vertices

Qi of 7, i.e. let ng € Py(7) be defined for i = 1,2, 3 by the relations
¢i(Qy) =0y, 1<d,5<3.

Then, for w € H*(7)

3
| Lotb (2 = || 0(Q1)é1 + (Q2)2 + (@3)05 [l2p < D | 0(Qi) | || 61 25
i=1
< CO'(7) max | w(z) | < C(7) || @ ||lo.s , by Sobolev’s theorem in R?).

TeT

As a consequence of (5.27) and (5.28) note that for m = 0,1,2 and © € H*(7)

|0 = L0 s < | 0=D|ms+ | L:(0=D) lms < || 0—=D |27 + || 1:(0 = D) [|24
< [Jo—=plr +é(%) | 0 =D 2z
< CE) o5 l2s VpEPi(?) (5.29)

We invoke now the

(iii) Bramble—Hilbert Lemma, which in our case asserts that there exists a constant

C*(7) such that:

min || 9 —p |los < C*(F) | 0 |or VO € H?(7). (5.30)

PEP1(7)
(We postpone for the moment the proof of this important result; we shall prove it later
in more generality).

Putting together (5.29) and (5.30) yields now

|0 = L;0 s < C(7) min |0 =5 [l25 < C(7) | 025,
pEPl(T)
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which is the advertized result (5.26). O
Before turning to the proof of (5.30) we first complete the argument and show how
(5.26) implies (5.15). To do this, recall that if w is defined on 7, then for x = F, (&) we
have (%) = w(zx), where w is the image function, i.e. where w = o F-!, defined on
7. Note that the " operation is linear, in the sense that uu/—l—\)\v = pt+ A0, pu, A € R.
(Indeed (,uu/—k\)\v)(i) = (pu + W) (z) = pu(z) + Iv(x) = pa(z) + Ao(2)).
Hence, if I,v is the (local) linear interpolant on P;(7) of v € H?(7), we have

—~

(v — L) =0 — Lw. (5.31)
Now, I/T\v = I:0. To see this, note that for : = 1,2, 3

(L0)(Qi) = (I0)(Q:) = v(Q:) = 9(Q:) = (1:6)(Qs)

i.e. [/T\’U and ;0 (which are real-valued functions defined on ;) coincide at the vertices
Q; of #. However I+:d € Py(#) and (Iv)(2) = (I,v)(z) = (I,v)(F.(2)) € P1(#). Hence
(I/T\v)(i) = (I;:0)(z) Y& € 7. Therefore, (5.31) gives that

(v — L) =0 — L:0. (5.32)
Now, using (5.21) for m = 0, 1,2, we have (h; = diam(7))

C'| BZ' ™| detB, 2| (v — Lv)" |ms

IN

‘ v = ITU ’m,T
~ R
(by (5.24), (5.26), (5.32)) < C | detB; |2 C(7) | © |2z

T

IN

1
C'(#) — | detB; |2] © |25
pr ’

1
(using again (5.20)) < C"(#)— | detB, |2| B, || detB; | 2| v |z,
pm

T

1"( A~ h?r 1
(by (5.24) < C"(F) "2~ | vy,
pT pf'
h2
< C"(7) = | v l2r,
P

which is (5.15), since C"(7) = C is a constant depending only on the fixed reference
triangle 7 and is, hence, independent of 7.
We finally turn to proving (5.30). This will be done in some generality in the

following Proposition in which  is assumed to be a bounded, Lipschitz domain in RY.
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Prpoposition 5.1 (Bramble-Hilbert/Deny—Lions). For k > 1 there exists a constant
Ci = C1(Q) such that for every u € H*(Q)

min |[u+p|[p< Cp | ulk. (5.33)
PEPL_1

Remark: (5.33) may be viewed as a type of “Taylor’s theorem”. Also, note that
obviously | u | < mingep, , || w+ p ||x. Hence (5.33) implies that | - |; is a norm,
equivalent to the quotient norm minyep, , || -+p ||x on the space H*/P;_;. (From now
on H* = H*(Q)).

Proof. The estimate (5.33) is a direct consequence of two facts:

(i) For each u € H* there exists a unique ¢ € P,_; such that

Va:|al|< k-1, /Daqu:/Do‘udx. (5.34)
Q Q

(ii) There exists Cj, = Cy(Q2) such that Vu € H":

N|=

2
full, < Cx < |ulf+ Z </ Daudx) : (5.35)
Q

la|<k

Indeed, if (i) and (ii) hold, then for u € H* with ¢ as in (i),

1
2

(i) ?
i < - < C —q D% — D%)d
min Jlutplly < Ju—gli< G {lu q\ﬁZ(/ﬂ( u— D) ﬂf)

k—1
lo] <k

:) Ck|u_Q|k: Ck’u|k

since ¢ € Py = D¢ =0 for | o |= k.

Therefore, (5.33) is a consequence of (i) and (ii).

We now prove (i) and (ii).
(i). Let u € H* be given. We shall construct a polynomial ¢ € P;_; such that the
relations (5.34) hold. Let ¢ be of the form

_ — an
q(z) = Car™ = Cay.any Tl a9? . 3.

We shall determine the unknown coefficients c,, | a |< k — 1, from the relations (5.34)

which represent a linear system of equations for the ¢, of size M}, x My where M}, is the
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number of multiindices a = (ay, ag, ..., ay) with | a |< k — 1. We first determine the
coefficients ¢, multiplying the terms z® of highest degree, i.e. the ¢, with |« |= k — 1.

For a multiindex o with | o |= k — 1 we have

D% = D" Z cgr? | + D” Z cgr’ | = caal,
B:181=k—1 B: 18| <k—1

~—
€Pr_o
where al = aqlas! ... ay! for a = (ay,as, ..., ay).

O see € last equality, consider any one terml T (6) € sum
(T the last equality, ider any one term D®(Cgz?) of th

D~ Z cﬁxﬁ

B:1Bl=k—1
Hence, for such a term, | a |[=| 8 |= k — 1. If a # 3 then D*(Cgz?) = 0. For if
a # [ there must exist an index j, 1 < 57 < N, such that 8; # «;. Then for the

a; ]
corresponding factor in D*z? we will have (%) ’ xf” = 0. Now, if a« = 8 we have
J
[e%1 aN
D% (2P) = D*(2®) = (%) o <%) 0 = aylay! . ay! = al).

Hence, the relation (5.34) for « such that | o |= k — 1 yield

/Do‘udx:/Do‘qu:/caa!dx:caa!p(Q):>
Q Q Q

fQ D%udx
y = S =k—1, 5.36
¢ ) || (5.36)

i.e. the coefficients of ¢ with | o |= k — 1 have been determined.

Write now gx_1(x) = Z|a|:k_1 ¢ (qr—1 is now known). Hence

q(z) = Z ca® + qr-1 + s(1),
|a|l=k—2

where s € Py_3, from which, for | o |= k — 2, as before
D% =c,al + D%._1.
Therefore, (5.34) for | a |= k — 2 yield
/QDau dr = coal p(Q) + /QDO‘qk_l dx

from which the ¢,, | @ |= k — 2 are determined. We continue in the same fashion to

determine all ¢,.
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Note that the polynomial ¢ satisfying (5.34) is necessarily unique: if two such
01, q2 € Pr—y exist, then ¢ = q1 — ¢ will satisfy [, D*qdx =0, | & |< k—1, which is a
homogeneous linear system for the associated ¢,. The formulas (5.36) would yield now
co =0, | a|=k — 1. Therefore g1 =0, i.e. ¢, =0, | a |=k — 2, and so on, implying
finally that ¢ = 0.

(ii). We argue by contradiction: Suppose (5.36) does not hold. This means that for
any constant C' > 0 there exists a u € H* such that

2

2
lull, > C luli+ > (/QDo‘udx) ,

lo| <k

i.e. such that

ay 132 2
o {]uﬁ N D lal<k (Jo Dudz) } <1

2 2
[l [l

This implies that for any constant C' > 0 there exists a v € H* with ||v||, = 1 (take
v = u/||ul|,) such that

2
C \v|z+2(/ﬂDavdx) < 1.

|| <k

Take C =n, n =1,2,.... Hence, there exists a sequence {u,} of functions in H* with
| wn ||x= 1, such that

N> </ Daundx)Q <L (5.37)

| un |7 2\ —

We now use the fact (“Rellich’s theorem” cf. Adams) that for a domain such as
(in fact for any bounded, Lipschitz domain) and for & > 1, H* may be compactly
imbedded in H*~!, in the sense that every bounded subset of H* is relatively compact
when viewed as a subset of H*~!. This means that every bounded sequence in H* has
a subsequence which converges in the H*~' norm. Therefore the bounded sequence
u, € H* (|| u, ||x= 1) has a subsequence, which we denote again by wu,, without loss of
generality, and which converges in H*~!. But (5.37) yields that | u, [z— 0, n — oo,
i.e. that D, — 0in L? for | a |= k. Since u,, converges in H*~! already, we conclude
that u,, converges in H*. Let the limit of {u,} in H* be denoted by w. Since || u, ||z= 1
=|| w ||z= 1. But since D%u,, — 0 in L? | o |= k, we conclude that D*w = 0, |  |= k,

ie. we Py
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Now, (5.37) also yields >, (J, D*uy dx)2 — 0, n — o0, i.e. that
/Daundm‘ — 0, for |a|<k—1
Q

We conclude, since u, — w in H*, that [, D*w = 0 for | @ |< k — 1. Since the
polynomial w € P,_; satisfies [, D*w = 0 for | a [< k — 1, the construction in (i)

yields that w = 0, a contradiction, since || w ||z= 1; q.e.d. O

5.3 Implementation of the finite element method
with P, triangles

In this section we shall study the details of the implementation of the standard Galerkin
/ finite element method for a simple elliptic boundary—value problem on a polygonal
plane domain, based on the ideas of MODULEF, cf. Bernadou et al., 1985. We seek
u(z) = u(x1,r5) defined on Q, where Q is a convex, polygonal domain in R?, and

satisfying
—Au+ a(z)u = f(x), x€Q,
u=0, x € 0f).

(5.38)

Here f, a are given, say continuous, functions on  with a > 0. The weak formulation

of the problem is, as usual, to seek u € ]—011 = fofl(Q), such that
/(VU-VU+ a(:p)uv)dx:/fvdx, Vo € HY. (5.39)
Q Q

Let S} be a finite—dimensional subspace of }OI L. The standard Galerkin method for the

approximation of the solution of (5.39) consists in seeking u; € Sy such that

/(Vuh -Vun + a(x) upvp) de = / fondx, Yu, €85). (5.40)
Q Q

We take S}, to be the space of continuous functions on Q that vanish on 0 and are
polynomials of degree at most 1 on each triangle 7 of a triangulation 7, of Q. (For
notation cf. Section 5.2). Accordingly, we refer to (5.40) as the “standard Galerkin /

finite element method with P; triangles”.
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(i) Local degrees of freedom.

On each triangle 7 € Ty, uy, is represented in terms of the local basis functions ¢} (z),

j =1,2,3, (which are P; polynomials on 7 such that ©7(F]) =6

159

up(x) = Z ¢T(@)un(P]), z €T

1<i,7<3)as

(5.41)

The values {u,(P])}, 1 < j < 3, coefficients of ¢} (z) in the linear combination of the

{©j(z)} in the r.hs. of (5.41), are, in our case, the “local degrees of freedom” that

determine uy(x) uniquely on 7. (In general, there are N, degrees of freedom — not

all function values of u;, necessarily — on each triangle 7. In our case N, = 3 V7).

Introducing the 1 x 3 matriz of local basis functions ®7

D7 = [p](7), P53 (), p3()]

and the 3 x 1 vector

U™ = [un(P7), un(Py), un(P;)]"

of the local degrees of freedom, we may rewrite (5.41) as

up(x) =07 () U.

o7 (x) by

Let Vuy, = [24 2u]T denote the gradient of u,. Then, (5.41) gives

811 8272

Oup = 007

J=1

i.e. that

Vup(x) = DO (z) - U™, €T,

where D®™ = D®7(x), x € 7, denotes the 2 x 3 matrix

9]
DO = ox1
dp]
Oxo
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= Z uh(PJT)7

903
oz
903
Oxo

i=1,2,

0pl
o1
0pl
Oxo

(5.42)

(5.43)

(5.44)

(5.45)

(5.46)



The Galerkin equations (5.40) become, since Q = U, 7, 7,

Z (Vup, - Vo, + a(x) up vp) de = Z f(x)v,dz, Vo, € Sp. (5.47)

TETLYT T€TL YT

We shall write (5.47) in matrix—vector form in terms of the local basis functions and

the local degrees of freedom {U7} and {V"} of u;, and vy, respectively. Writing
u, =007, v,=0"V", z €T,
we have
upv, = (TUN@VT) = (V@ TOTU™, zerT.
Vu, -V, = (D®UT)-(DOVT) = (D®V")T(DP™UT)
= (VHH(D®)'DOU™, x €.
fon = fOVT = (V)T = (V)(®)f, zeT.

Using these expressions in (5.47) we have

> [V (D) DU + a(z)(VT)T (@)U} dx =

€T, VT

=D [ (V@) f(a)dz, Vv, € S (5.48)

€T, YT
Let K7, M™ denote, respectively, the 3 x 3 local stiffness and mass matrix. These are

given by the formulas
K™ = / (DO DO dx, (5.49)
M" = /a(x) ()T @7 dx. (5.50)
Let also A™ := K™+ M7, and b™ be the 3 x 1 vector
b= /f(a:) ()T da. (5.51)

Using these local quantities in (5.48) yields the desired matrix—vector form of (5.47):

SWHTAUT =D (V)TY, VYo, € S (5.52)

TETH TETH
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(ii) The global - to - local degrees of freedom map.

Suppose that the triangulation 7, consists of N nodes (vertices) (including the nodes
on the boundary 0f2), that are denoted by P;, i = 1,2,..., N, in some global indezxing
scheme. Then the vertices P/, P, Pj of of a given triangle 7 € 7}, correspond to the
points P, P, P;,, respectively, in the global enumeration. We would like to find an

17 39

efficient way of expressing the correspondence P, — P/. Specifically, we are realy

interested in expressing the local degrees of freedom, i.e. in our case the values uy,(FPY),

k = 1,2,3, in terms of the global degrees of freedom, i.e. the values u,(F;), i =
1,2,....N.

Let us consider an example: let © be the rectangle (0, ) x (0, 5). Subdivide it in 20

g and then in 40 equal triangles

rectangles of size Azxy X Axy, where Axy = £ Axy =

as shown, by bisecting the rectangles.

(0,B)s 17 16 5 4 3
32 34 36 38 40 P;
31 33 35 37 39 { b
19 9 10 1 2 10
22 24 26 28 30
21 23 25 27 29
20 5 6 7 9
12 14 16 18 20 T T
11 13 15 17 19 P P,
21 1 4 8 { { p
2 4 6 8 10 R 7
1 3 5 7 9
2

23 24 25 26

27
(0,0 (a,0)

We number the triangles 7 from 1 to 40 as shown and introduce the following global
indexing scheme for the nodes: The interior nodes are the points P; shown, with

1=1,2,...,12, and the boundary nodes are the points P;, = = 13, ...,30. Here N = 30,
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therefore. For example, the triangle with 7 = 25 is defined by the nodes Py, P; and P
in the global numbering. These coincide with the local nodes PJ, Pj, P], (1 = 25),
respectively. For 7 = 25, let the local degrees of freedom be represented by the 3 x 1
vector U™ = U7, U3, U3|" (U] = un(P]), j = 1,2,3). The global degrees of freedom
up(P;), i = 1,2,...,N = 30, are arranged in the 30 x 1 vector U = [Uy,..., Us|”.
Clearly, we have U™ = G" U, where G7 is a 3 x 30 matrix whose elements are 0 or 1

(Boolean matrix). In our case, i.e. for 7 = 25, we have

Uy

6th  7th 10th
Ur 000001 000 0 O0...0 Uy
U7 l=loo0oo0000 100 0 0..0 Us
Ug 000000 000 1 0...0 :
U30

In general, let 7, be the triangulation consisting of triangles {7} that we label, abusing

notation a bit, as 7 =1,2,...,J. For each 7, let
i=9g(7.j)

be the map that associates the local index j, 1 < j < 3, of the local vertices P to the
global index i, 1 <7 < 30, of the corresponding points P;. Then ¢ is a function defined
on the set {1,2,...,J} x {1,2,3} with values onto the set {1,2,..., N} that can be

easily stored. In our example, the values of ¢ for 7 =25 and j = 1,2, 3 are

g(25,1) = 6,
g(25,2) = 7,
9(25,3) = 10.

Let G7, for each 7, denote the 3 x N matrix whose elements are given by
g;l == 5g(7‘,k‘),l 1 S k S 37 1 S l S N7 (553)

where 9, ; is the Kronecker delta, ie. 6;; = 1if ¢ = 7, §,; = 0if ¢ # j. Then, the
relation between the global degrees of freedom vector U, U; = up(F;), 1 <i < N, and

the local degrees of freedom vector UT on 7, U] = uh(PjT), 7 =1,2,3, is expressed as
Ur=¢g"U. (5.54)
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Substituting (5.54), and the corresponding expression V7 = G7 V| into (5.52), we have

Z VT(gT)TATgTU — Z ‘/T(g‘r)TbT7 VU}L c Sh

T€TH TETH

or, since V', U do not depend on 7,

VT{Z(QT)TATQT} U = VT Z(gT)TbT7 Vvh € Sh-

T€TH T€Th

Hence, (5.52) in terms of global degrees of freedom may be written as
VIAU =V"b, VYV € RY such that v, € Sy,
where A is the N x N matrix defined by

A= Z(gT)TATgT’
TET
and b the N x 1 vector given by
b= (7).
TETH

(iii) Assembly of A and b.

(5.55)

(5.56)

(5.57)

The matrix A and the vector b defined by (5.56) and (5.57) should be assembled from

their local contributions A”™ and b". In doing this we should not form G and perform

the indicated matrix-matrix and matrix—vector operations, since this would be very

costly in terms of storage and number of operations. Instead, recalling the definition

(5.53) of G7, we have, for the vector b = {b;}, 1 <i < N:

= 3 (079, X (2658) - X (Soweas ).

TETH TETH = TET

We conclude that the following algorithm computes the b;:

_Fori:1,2,...,Ndo:
b =0
=Forizl,Z,...,Ndo:
For 7 € T}, do:
For 7 =1,2,3 do:
by = b; + Og(r.5),i b}

j .
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Since dg(rjy; = 0 unless ¢ = g(7,7), the last term contributes only to the b; with

i = g(7,j). Hence, the above algorithm can be written, more compactly, in the form:

| Fori=1,2,..., N do:
b =0
| For 7 € 7T, do: (5.58)
For j =1,2,3 do:

by(rj) = bg(r.g) + b7,

i.e. the 07 is added to the previous value of that b; that has i = g(7,7). Similarly by
(5.56) we have

3 3
Aij = Z (Z Gri Ak gl;) = Z (Z Og(r).i Ak 59(7,1),j> ’

re€Th \kl=1 €T \ki=1
i.e. the term AJ, contributes to the element A;; if i = g(7,k) and j = g(7,). Conse-

quently, the following algorithm may be used to assemble the matrix A:

-Fori:1,2,...,Ndo:
[ For j=1,2,..., N do:
Aij =0
[ F-or T €T, do: (5.59)
i For k =1,2,3 do:
For [ =1,2,3 do:

Ag(rkygrt) = Agiri) g + Agg-

The algorithms (5.58) and (5.59) implement the assembly of the (global) matrix A and
vector b in the equations (5.55) from their local parts A™ and 7.
(iv) Reduction of (5.55) to a linear system of equations.
The components of the global vector of degrees of freedom U € RY, may be ordered

(although this is not necessary always) so that U be of the form
U - [Ul, UQ, ey UN-NO’ UN_NO_H, ey UN]T,

so that the degrees of freedom U;,Us,...,Uy_n, are the values of u; at the interior
nodes P, P, ..., Py_n, and Un_ny+1, - . ., Un are the values of u;, at the Ny boundary

nodes Py_nyt1, - - -, Pn. (In the example on p. 114, Ny = 18, N = 30).
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Then, writing

U= . with Uy € RN N0, 7, ¢ RN,
UII

and partitioning conformably V', A and b in (5.55), we can write it in the form

A Arr Ur br

= V" Vil , Yo, € Sh. (5.60)
Arrr Arrar Urr brr

Vi Vil

Since S}, is such that v, € S, & V; € RN"No Vi = 0 in RN, and since u, € Sy, as

well, we rewrite the above as
VI A U = Vi Ve RN
which is of course equivalent to the (N — Ny) x (N — Np) system
Arg U = by (5.61)

The reduction of the N x N system (5.60) to the system (5.61) is usually referred to
as “taking into account the boundary conditions of the problem”.

(v) Computing K7, M™ and b".

There remains one important issue of implementation, namely the computation of the
local stiffness and mass matrices K7 and M7, as well as the computation of the (local)
b7, cf. (5.49)—(5.51). This can be accomplished efficiently by letting 7 be the affine map
of a fixed reference triangle 7 and transforming the integrals in the formulas (5.49)—

(5.51) to 7. To this end we will use the notation introduced in Section 5.2.

P,(0,1) .
P Py (1)

/\

X2 PZT (ix3)
A p T,.1.1
P,(0,0) PO 1 (axz)

X1

Let P,P,P; be the unit right triangle with vertices (0,0), (1,0), (0,1). Let 7 € 7j,

be an arbitrary triangle in the triangulation with vertices P/, 1 < j < 3, where
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Pl = (le,ilf%), j = 1,2,3. Consider the affine map F, that maps 7 onto 7 and is

A

defined by the requirements that P] = F.(F;), j = 1,2,3. Then F; is of the form
r=F(2)=B;% + ¢, (5.62)

where B, is the 2 x 2 invertible matrix

ai —ap 2} —
Br = 2 1 .3 1
Ty — Ty Tg — Xy

and ¢, = (z},23)". Notice that | detB, |=2 | 7 |:= 2area(7).

Recall that functions on 7 are transformed to the corresponding functions on 7 by
0(2) = v(z), whenever z = F,(%). Le. 9(%) = v(F.(%)) and v(z) = 9(F!(z)). (Under
our assumption on B;, the map F; is invertible, with # = F-(z) = B 'x — B '¢,).

(In our example (p. 114) the triangle 7 = 25 has

Ary 0 2 Axy o
B, = Cr = . where Az, = 5 Axy =

, ).
0 ASL’Q 2Ax2

>

Let ¢;(2), 1 <7 < 3 be the local basis functions on the triangle 7, i.e. let ¢; € P, be

defined by the relations @Z(]AD]) = 0;;. Then, we easily see that

951(1'17:%2) =1~ '@1 - ‘%27
802(1‘171;2) :i’la

@3(‘%17 i‘Q) - i‘Q'

It is easy to see that the corresponding local basis functions on 7, i.e. the elements of

Py that satisfy ¢f (P7) = d;5, 1 <4,j < 3, are given by the relations
i () = ¢;i(2), whenever x = F.(Z).
Defining the 1 x 3 matriz of reference basis functions o by
b = &) = [p1(), Pa2(#), 23(2))" (5.63)

we see that ®7(z) = ®(#), whenever x = F,(2), where ®7(x) is the matrix of the local

basis functions on 7 defined by (5.42).

171



We now compute the quantities b, M™ and K7 in terms of integrals of functions
defined on 7. We already seen that the area element transforms so that dz =| detB, | dz
i.e. dv =2 | 7| dZ. Then we have

/f V@ (@) dz =2 | 7| [ &) (@) di. (5.64)
Hence, to compute b” we must evaluate the integral on 7 of the vector—valued function
F(F(2))(®(%))T, where @ is defined in (5.63). Unless f(Z) is a very simple function,
such integrals are evaluated numerically by an integration rule on 7. A simple but

effective rule is the barycenter rule, which is exact for P, polynomials and states that

I

[ot@)de =| 7| o)
where | 7 |= area(7) = 1/2 and M = (1/3,1/3) is the barycenter of 7. Hence using

/ﬁ(:ﬁ) di =~

(1/3,1/3)

DO | —

n (5.64) we see that

1/3
b || f(1/3,1/3) | 1/3 |, ie. b] = %'f(FT(l/&l/?))), 1<i<3.
1/3

Similarly, we may easily compute the elements of M™. Since

M7 = [ ale) @ () 07 @) de =2 | 7| [ (@) (B(0))" b(2) di
we have, for 1 <1i,5 <3
M =217 | [ alF () ¢i(0) 23(0)
(If numerical integration with the barycenter rule is used, we have that

o 1T .
M TG(FT(1/3,1/3)), 1<4,5<3).

1

The computation of

K = / (DO™(2)]” (DD (2)] da

T
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requires transforming the matrix D®". We have, for 1 <1i,7 <3

ol (x 2 Z
Do)y = 5 = D o,@) = Y 2 i) 2

In analogy to (5.46) let D®(2) be the 2 x 3 matrix with elements

(Dd(@))y; = 224, (5.65)

In addition, note that from # = B!z — B-'c,, we infer that

Ot .,
8% (BT )kl
Hence,
3 A A
(DD7(x))ij = Y (By as (DO(@))ry,  1<4,j <3,
k=1
i.e.
DO (x) = (B-HYT Do (). (5.66)

We conclude that

The quantities inside the integral are independent of z. Indeed,

. 11 0
' ~1 0 1

and therefore

K =|7|J"(BIB,)™'J.
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Chapter 6

The Galerkin Finite Element Method for
the Heat Equation

6.1 Introduction. Elliptic projection

In this chapter we shall construct and analyze Galerkin finite element methods for the
following model parabolic initial-boundary-value problem. Let €2 be a bounded domain

in R% d =1, 2, or 3. We seek a real function u = u(z,t), v € Q, t >0, such that

w—Au=f xe€Q, t>0,
u=0, z€dQ, t>0, (6.1)

u(z,0) = ul(z), =€

Here f = f(x,t) and u° are given real functions on € x [0,00) and €, respectively.
We shall assume that the initial-boundary-value problem (ibvp) has a unique
solution which is sufficiently smooth for the purposes of the analysis of its numerical
approximation. For the theory of existence-uniqueness and regularity of problems
like see [2.2] - [2.5]. In this chapter we will just introduce some basic issues of
approximating ibvp’s like (6.1)) with Galerkin methods. The reader is referred to [3.6]
and [3.7] for many other related topics.

The spatial approximation of functions defined in Q will be effected by a Galerkin
finite element method. For this purpose we suppose that for h > 0 we have a finite-

dimensional subspace S}, of H'=H 1(Q) such that, for integer r = 2 and h sufficiently
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small, there holds
inbf {Jlv = xll + h[V(v =)} < Ch||v||s for ve H*N }0[17 2<s<r (6.2
XESh

where C' is a positive constant independent of A and v. (In (6.2) we have used the
1/2
notation |Vo| = |v|; = <Zf:1 || 2o 2) = ([, Vv- Vvdaz:)l/2 = (Vo, Vu)/?). For

oz;
example, holds in R? when S), = {gb €eC(Q), ¢| €P VreT, ¢|Q_Qh: O},
where ), is a polygonal domain included in € and 7, a regular triangulation of €2
with triangles 7 with h = max(diam 7) whose vertices on 02, lie on 0%, cf. [3.5].
Given v € H', we define R,v, the elliptic projection of v in Sy, by the linear mapping
Ry, : H' — S}, such that

(VRv,Vx) = (Vu, V), Vx € S . (6.3)

Given v € H! it is easy to see that R,v exists uniquely in S;, and satisfies |V Ryv|| <
IVv||. The following error estimates follow from (6.2)) and (6.3]). (We have essentially

seen their proof in Section 5.1 but we repeat it here for the convenience of the reader).

0
Proposition 6.1. Suppose that v € H* N H', where 2 < s < r. Then, there exists a

constant C' independent if v and A such that
|Rpv — v|| + h||V(Rrv —v)|| < Ch%||vlls, 2<s<T. (6.4)
Proof. We have, by (6.3)

IV(Ryv —v)||* = (V(Rpv — v), VRyv — V)
= — (V(Rpv —v),Vv) = (V(Rpv — v), Vx — V)

for any x € Sj,. Hence, by (/6.2))
IV (Byv —0)[|* S [[V(Byv = 0)[ IV (0 = )| < CIIV(Byo = )| B ol

from which the H' estimate in ([6.4)) follows. For the L? estimate we use Nitsche’s trick.
Given g € L? = L?(Q), consider the bvp

—Ap =g in )

=0 on 0f) .
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This problem has a unique solution 1 € H2 N H' such that V]2 < C||AY] = C g

(Elliptic regularity). For v € H* N }01 12 < s < r, we have by Gauss’s theorem and
(6-3)
(Brv — v, 9) = —(Rpv — v, A¢) = (V(Rpv —0), Vi) = (V(Byv —v), V(¢ — X))

for any x € Sj,. Hence, the H' estimate in (6.4), (6.2]), and elliptic regularity imply
that
(Riv —v,9) = ChHu|lsh[[¢lls < CR*[Jusllgll -

Taking g = R,v — v gives that the L? estimate in (6.4)). O

6.2 Standard Galerkin semidiscretization

(In this and in the sections 6.2 and 6.3 we generally follow Thomée, [3.6, Ch.1])

0
Multiplying the pde in (6.1]) by a function v € H', and integrating over  using

Gauss’s theorem, we see that
(ug,v) + (Vu, Vo) = (f,v), t>0. (6.5)

Motivated by (6.5]), for each ¢ > 0 we approximate u(t) = u(-,t) by a function wu,(t) =
up(+,t) in Sy, called the (standard Galerkin) semidiscrete approximation (or spatial

discretization) of u in Sy, and defined by the equations
(unt, @) + (Vun, Vo) = (f,0), Vo€ Sy, 20,
uh(o) = u?z )

where u) is an approximation of u” in S}, to be specified later.

The equations , that will be called the (standard Galerkin) semidiscretization of
in Sy, are equivalent to a linear system of ordinary differential equations (ode’s).
To see this, let {gf)j}jy:hl be a basis of Sj,, where N}, = dimS}, , and let

up(z,t) = Z@j(t)%(ﬂ?)
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be the unknown semidiscrete approximation of u. Substituting this expression for wy

n (6.6) and taking ¢ = ¢p, k = 1,..., Ny, we see that

Eja ) (05, 0) + 0y (1) (V6;, Vor) = (f,dn), 1<k< Ny >0,

a;(0) =0, 1<j <N,
where uf) = Z;V"l a2¢;. Hence the vector of unknowns a = a(t) = [ay,...,an,]"
satisfies the initial-value problem
Ga+ Sa=F(t), t=>0,
(6.7)

a(0) = a°,
where G' = (G};) is the N}, x N}, mass (Gram) matrix defined by G;; = (¢, ¢:), S = (5i5)
the Nj, x N}, stiffness matrix given by S;; = (V¢,, V¢;), and F; = (f, ¢;). As we know,
G and S are real, symmetric, positive definite matrices. In particular G is invertible
and the ivp has a unique solution a(t) for all t =2 0. We conclude that the Galerkin
semidiscrete approximation wuy, exists uniquely for all £ > 0.
For each t > 0 choose ¢ = wy, in (6.6). Then
(wnes un) + [ Vun||* = (f un) -

Since (upe, up) = 5 [, 0 (Wi (-, 1)) dz = L& ||uy(t)]]%, we have

ol + 19 ? = () < [l 220

Recall the Pointcare-Friedrichs inequality, i.e. that
0
loll < Gy [[Voll, v e HY(Q), (6.8)
valid for some C), = C,(€2). Using in the above gives
02
1
2 2 < < oz, 1 2
= Sl + [V < Gy 71 I9unll < 27 + 2 [Vl

from which

d
Fllenl® + IVunll* < RN, t=0.
We conclude that for any ¢t > 0 there holds that
t t
lun ()] +/ [Vun(s)|[*ds < JJup [ + Cﬁ/ 1f(s)[*ds . (6.9)
0 0
In particular, for f =0, we get |Jup(t)|] < [[u?|| for ¢t = 0, i.e. that uy is stable in L2

We now prove the main error estimate of this section.
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Theorem 6.1. Let uy, u be the solutions of , , respectively. Then, there

exists a constant C' > 0, independent of A such that
fun®) = o) < =)+ 0 (1l + [ fuats) . 220 (610
Proof. Following Wheeler (SIAM J. Numer. Anal., 10 (1973), 723-759), we write
up,—u=0+p, (6.11)

with 0 = u, — Ryu, where R}, is the elliptic projection operator onto .S;, defined by
(6.3), and p = Rpu — u. Note that § € Sy, for ¢t > 0, and in order to estimate ||up — ul|

we should estimate ||f|| and ||p||. For the latter, we have
@ = l[Bru(@) —w@)| < A" u(®)]l,, =0,

0
by (6-4). Since u(z,t) = u®(z) + [ ui(w,s)ds, assuming v’ € H" N H' and u, €
0 0
H™ N H' for t > 0 with [ |u]l,ds < oo, we see that w € H" N H' for t > 0 and
t
[u@)llr < Ul + fo [l ds.

Therefore
t
Hmw§CMQWm+/meQ for t >0 (6.12)
0

In order to get an equation for # note that for ¢ > 0 and any y € S, we have
<9t7 X) + <V(97 VX) = (uht7 X) + (Vuhv VX) - ((Rhll/)t, X) - (VRhua VX) .

Hence, using (6.6), (6.3)), and the fact that ((Rnu)i,x) = (Raus, x) for x € Sy (this
follows from (6.3)) by differentiating both sides with respect to t), we have

(6, x) + (VO, V) = (f,x) — (Rpue, x) — (Vu, V) .
Therefore, by (6.5 and the definition of p, we see that
(01, %) + (VO,Vx) = —(pr. ), VX € Sh, t=0. (6.13)

Given t > 0, take x = 6 in the above to obtain

1d

S 61 + V0] = —(p0,6) (6.14)

We would like to argue now that 2462 = [|0]|%]/6] and conclude from (6.14) that

2dt
10(t)] < ||9(0)||+f0t || p¢||ds, but we don’t know whether & ||6(t)]| exists if 6 = 0 for some
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t. Therefore we argue as follows: For all e > 0 we have from (6.14) 1 4(|0]]> = L 4(|0]]>+

e?) = [lpell 11611 Hence \/[10] + 25 /1101% + 2 < llpell 1011 < llpellv/110]] + 2. There-
fore, L./110]> + 2 < ||pe|| for all ¢t > 0, from which \/[[0(¢)[]> + &> < fot | pellds +
|10(0)]|2 + €2. Letting ¢ — 0 we obtain the desired inequality

||<9(t)!|§/O lp:llds + J[6CO)l, ¢ =0 (6.15)

Since p, = Ryu; — w, we have [ [|ps]lds < Ch” [ ||ug|,ds form (6.4). On the other
hand,

10O = lluy — w4+ |1 Bpe” — u®] < fJuy — u®[| + CR"[[u]],

Therefore, (6.15)), (6.11)) and (6.12]) yield the desired estimate ([6.10]). d

Remarks

a. Theorem 6.1, and subsequent error estimates, depend on assumptions of sufficient
reqularity of the solution u of the continuous problem. Such assumptions will not
normally be explicitly made in the statements of theorems but will appear in the con-
clusions or in the course of proofs of the error estimates. For example, in the case of
the estimate at hand the proof requires that v € H™ N }0[1 and u(-,s) € H' N [%1 for
0 < s < t. These assumptions guarantee in particular that the bound of ||u(t) — u(t)]|
in is of the form ||u) — u’|| + O(h") where the O(h") term is of optimal order of
convergence in L? for Sy, as evidenced by the approximation property .

b. The initial value u9 may be chosen in various ways so that ||u} — u°|| = O(h"). For
example, we could choose it as u) = Ruu® or u) = Pu® (the L? projection of u° onto
Sy) or equal to an interpolant of u° in S,. For example, if one of the first two choices
is made, and yield that ||u) —u®|| < Ch"||u°]|,, provided v’ € H" ﬂfoll, and
the overall optimal-order accuracy O(h") is preserved in the right-hand side of (6.10).

Exercise 1. In the proof of Theorem 6.1 take in up, —u = 0 + p, where, for
example, 0 = u;, — Pu, where P is the L?-projection operator onto S, or § = ), — Iu,
where I,u is an interpolant of w in Sy, satisfying ||v — Iyv|| + h||V (v — I)|| £ Ch"||v]],
forv e H" N ﬁ 1. For these choices show that the best L2-error estimate that one

could obtain is of O(h™™1), i.e. of suboptimal order. Try to understand from these
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considerations why Wheeler’s choice 6 = u, — Rpu is crucial.

We now prove an optimal-order H' estimate for uy.

Proposition 6.2. Under the hypotheses of Theorem 6.1, there holds

. 1/2
IV (un(t)—u(t)[| = IIV(UQ—UO)!HCW1[||u0||r + [Ju@)l- + </0 Hut\ﬁldS) ]ﬂf > 0.
(6.16)

Proof: As before, we write V(u, —u) = VO + Vp, where 0 = uj, — Ryu, p = Ryu—u.
Note that |Vp|| < Ch"™||ul|,. From (6.13)) with x = 6, it follows that

1d

1
2 2
pel|” + =110:]7 -

N | —

16117 + 5= IVO* = — (o1, 60:) =

Therefore
d
— ||V < 2 t>0
dtll 15 = Mol t>

form which L2
t
uveu)usuve(mm(/o uptuzds) ——

We conclude that
t 1/2
1V(un — )] < [VOO)] + ( / ||pt||2ds) LVl
’ t 1/2
< V() — )| + [V (B — )] + [ Vo] + Ch ( / ||ut||3_1> |

from which (6.16)) follows. d

Exercise 2. Consider instead of (6.1 the initial-boundary value problem with Neu-

mann boundary conditions:

u—Au=f x€Q t>0,
ou
5 =
u(z,0) =u’(z), z€Q.

0, ze€0dQ, >0,

Construct the standard Galerkin semidiscretization for this problem in a finite-dimensional
subspace Sy, of H' and prove an analog of Theorem 6.1. (Define now an elliptic projec-

tion Ry, : H' — S), by the equations a(Ryv,x) = a(v,x), Vx € S), for v € H', where
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a(v,w) = (Vuv, Vw) + (v,w) for v,w € H. )

Exercise 3. Generalize the results of this section to the case of the initial-boundary

value problem with variable coefficients

9 9
Uy — Z 8_331 (aij(iv)%) +ao(9c)u = f(m,t), ref, t>0,

ij=1 J

4
u=0on§, t>0,

(u(z,0) = ug(x), =€,

where the functions a;; satisfy a;;(z) = a;(z), € Q and Zijzl a &y > co 30 &2,
Vo € Q, V& = (&,...,&) € RY, for some positive constant ¢y independent of x and &,
i.e. when the matrix-valued function a;; is symmetric and uniformly positive definite
for z € Q, and where ag(z) > 0, € Q. Assume that the coefficients a;j, ap are smooth

enough on Q. The weak formulation of this ibvp is to find u € fOI L for t > 0 such that

(ug, ) + alu,v) = (F(£),0), Yo H', t>0,

u(0) = o,

where a(u,v) := 223:1 Jq aijuvdz + [, aguv dz. (Establish first that there exist pos-
itive constants C, Cy such that |a(v,w)| < Cy||jv|i||w|;y Yv,w € POIl, and a(v,v) >
Collv||3 Vo € I-Oll, and introduce now the elliptic projection of v € H' onto Sy by
a(Rpv,x) = a(v,x) ¥x € Sp. Use the Lax-Milgram theorem and Nitche’s trick to
prove analogous properties of R, to those of Section 6.1, assuming elliptic regularity,
i.e. that ||ull2 < C||f]| holds for the associated elliptic bvp

d

0 ou ~
- Z; oz, (az’j(x)a—xj) +ag(z)u= f(z), =€,
u =0 on 0f) .
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6.3 Full discretization with the implicit Euler and
the Crank-Nicolson method

To solve the o.d.e. system (6.6 (or ) we need to discretize it in ¢ and obtain
a fully discrete method. This may be done by various time-stepping techniques. In
this section we shall examine two of them, the implicit Euler and the Crank-Nicolson
methods, that are 'unconditionally stable’ in a sense that we shall make precise.

Let At = k be the length of the (uniform) timestep and t" = nk, n=20,1,2,....
The implicit Fuler full discretization of is defined as follows. We seek for n =
0,1,2,... approximations U™ € S, of u,(t") that satisfy

Ur — Un—l
k

0_,0
U” = uy,

,x) (VU YY) = (f' ), VX ESh 1.
(6.17)

where " = f(-,t").
Finding U™ for n > 1, given U™}, requires solving a linear system for the coefficients
of U™ with respect to the basis {gbj};-v:hl of Sp. Let U™ = SN ¢y, where o =
(af,...,a}, ) € RN Then, putting x = ¢;, 1<j < N, in gives

(G+kS)a" =Ga™ '+ kF", n>1, (6.18)
where F* = (f", ¢;), 1 < i < Nj,. Thus, computing " requires forming the right-
hand side of and solving a Nj, X N, linear system with the matrix G+ kS, which
is symmetric positive definite, and has the sparsity structure of G and S. If a direct
method, like Cholesky’s method, is used to solve this linear system, the LLT analysis
of G + kS may be done only once and o™ computed for each n using two backsolves

with L and LT. In more than one spatial dimensions such linear systems are usually

solved by a preconditioned conjugate-gradient type method.
Putting x = U™ in (6.17)) gives

U™+ B VU ||* = (@1 0") + k(U7 < (10 + RO

Hence, ||U"|| < |U™ Y| + k|| f™||, for n = 1,2,.... This implies that

U™ < U +E> P, n=12,...
j=1
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If f =0 we see that |U"]| < ||U||, i.e. that the implicit Euler scheme is L*-stable. In
fact for each n we have [|[U"|| < |[U™!||, i.e. the L? norm of U™ is non-increasing. In
particular, if f* =0, U""! = 0, we see that U™ = 0, i.e. that the homogenous linear
system of equations of the form has only the trivial solution, implying that
has a unique solution; this is an alternative to the matrix argument used previously
to show the same result. Note that the L? stability of the scheme was proved without
any assumption on the timestep k, i.e. that the scheme is unconditionally stable
in L2,

As expected, the implicit Euler method is first-order accurate in the time variable

as the following estimate suggests.

Theorem 6.2. Let U", u(t) = u(-,t), be the solutions of (6.17)), (6.1]), respectively.
Then, there exists a positive constant C', independent of h, k, and n, such that for

n>0

tn tn
|W“—wﬂmguﬁ—uW+OM[m%f+/ mmaﬂ+k/'mmwa (6.19)
0 0

Proof: As in the proof of Theorem 6.1 we write U™ — u(t") = 0" + p", where " =
U™ — Rpu(t™), p* = Rpu(t™) — u(t™).
Using (6.4]) we see that

tn
WWSOMwmwnSOMme+A mmw} (6.20)

and it remains to estimate [|6"|. Let U™ := (U™ — U"'). By (6.17), and for
X € S, we have
(00", x) + (V0",Vx) =(0U™, x) + (VU",Vx) — (ORnu(t"), x) — (VRyu(t"), Vx)
=(u, (t") — Rpou(t™), x),
ie.
(00", x) + (VO", V) = —(w", X), VX € S, n>1, (6.21)
where
W™ =Rpou(t™) — uy(t")

=(Rp, — Dou(t™) + (Ou(t™) — u,(t")) =: wl 4+ wi. (6.22)
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Putting x = 6" in (6.21]) gives
(907, 0") + VO[> < [l [ 167] , ie.
1671 = (677, 0") < hllw™[[ 16", from which
10" < 10" + k™), n>1.
Therefore, in view of (6.22]), summation with respect to n gives
loml < 160+ kD llwfll + 5D lledl, n>1.
j=1 j=1
Now
) _ ) 1 ) )
] =(Ro,~ 1Tu(E') = (By — 1) (u(#) — u(#™)
1 1Y
=(Ry, — I)E/ u(s)ds = 5/ (Rp, — HNuy(x)ds.
tJ tJ

j—1 j—1

Therefore by (6.4) .
hro (v .
ijlH < C?/ |lug||-ds, giving
ti—1

n n
eSSl <o [ s,
=1 0
For the last term in (6.23)) we note

wh = du(t?) — w(t?) =

(u(t) —u™)) —w(t).

T =

For a real function v = v(t) recall Taylor’s theorem with integral remainder:

(t — a)p ( 1
p!

v(t) =v(a) + (t —a)v'(a) +...+ ) v® (a) +

ti—1

u(t ) = u(t?) — ku () + / (71 — s)uy(s)ds.

ti
We conclude _
. 1 [
wl = ~ / (771 — s)uy(s)ds,
ti

from which ,
i

S a
ldl< g [ =0 uas)ds < [
t

j—1 ti—

M)l
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/t(t — 5)Po®P(5)ds .



yielding

n tn
el S [ o) s (6.25
j=1 0

Since [|0°]] = ||U® — Ryu®|| < ||ul) — u®|| + C h"||u®||,, we conclude from (6.23)), (6.24]),
(6.25) that

tn tn
WW§H@—MW+OMme+/'wwA%+k/ lua(s)llds, n >0,
0 0

which, in view of the inequality ||U™ — u(t™)|| < [|6™|| + ||o"| and (6.20) gives (6.19).

Remark. The inequality is essentially a stability inequality for the ‘error’ equa-
tion , whereas the estimates and are bounds on the spatial and
temporal ‘truncation’ errors in the right-hand side of and express the consis-
tency of the fully discrete scheme in that the tend to zero as h — 0, k — 0 under
the implied regularity assumptions on u. In fact, they imply that the spatial accuracy
of the scheme in L? is of O(h") and the temporal accuracy of O(k). Thus the proof
of Theorem 6.2 is an illustration of the general principle that ‘stability + consistency
= convergence’. Such a statement has to be verified in any given particular case and
depends on the choice of norms and the regularity of solutions.

We turn now to the Crank - Nicolson scheme for discretizing in t with second-
order accuracy and retaining unconditional stability. We seek for n > 0 approximations
U™ € Sy, of uy(t™) satisfying

(U O
k

0_,0
U =y,

1
aX) + §(V(U” + U”—l)’vx) _ (fn_1/2>X), Yy € Sy n <1,
(6.26)

where f*~1/2 = f (-, ¢" — £). Using our previous notation, we see that for n > 1 the
2

matrix-vector representation of ([6.26) is
k n k n—1 n—1/2
G+§S a" = G_ES a" "+ kF , n>1, (6.27)

where again o™ is the vector of coefficients of U™ with respect to the basis of S;,. The
matrix G +§S is again sparse, symmetric and positive definite, and similar remarks hold

for computing o™ as in the case of the implicit Euler scheme. Putting y = U™ + U™}
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in (6.26) gives for n > 1
k
(T2 = TP + SIV ™ + U HP = k(2,0 4 U
S kIO o -
Hence |U™|| < U™ Y| + K| f*/2||, for n = 1, implying that
WO < U+ KD N2 n=1,2,.
j=1

From these relations, if f = 0, we see that the Crank-Nicolson method is L2-stable and
that ||U™|| is non-increasing, unconditionally. In particular, if f"~'/2 = 0, U""! = 0,
it follows that U™ = 0, which means that the homogenous linear system of the form

(6.27) has only the trivial solution, implying that (6.27)) has a unique solution given

a™ ' and F"1/2. We proceed with an error estimate for the scheme.

Theorem 6.3. Let U", u(t) = u(-,t), be the solutions of (6.26)), (6.1)), respectively.

Then, there exists a positive constant C', independent of h, k£ and n, such that forn > 0

n

tm t

10" —u(t™)|| < [lup—u’|[+C " ll!u0||r+/ HutHrdS}Jer?/ (lueeel| + [[Aueel]) ds -
0 0

(6.28)

Proof: We write again U™ — u(t") = 0" + p", where 6" = U™ — Ruu(t"), p" =
Rpu(t™) — u(t") and note that

tn
Il < Cw [nu%u - Hutn,«ds} . (6.29)
From ([6.26)), (6.5)) and for y € S, we have

@) + 5 (V" +6"), V)
= (F(7),%) ~ (Ridult™), ) — 5 (V(u(t™) + u(™™)), V)
= (F2),0) = (7)) + (Bu(2), )
F (12 = RBu(t™), x) — (Bu(t) — SAQ(E) + (i), ),

where we used Gauss’s theorem (integration by parts) in the last term. Hence

1
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where

w" =wi +wy + ng = (Rh — ])5u(t”) + (5U(tn) _ Ut(tn_1/2>)

1
+ Au(t™?) — 5 (u(t") + u(t™™))). (6.31)
If we put xy = 6" + 6" in (6.30]), we obtain, as in the stability proof of the scheme,
107 < 16°0 + kY llwfll + kD) llenll + kD> llwill, n>1. (6.32)
j=1 j=1 j=1

As in the case of the implicit Euler scheme (cf. (6.24])), we have

n

k}]@ﬂg(%ﬂ/ el ds (6.33)
j=1 0
To estimate w) we note that for j > 1

w% = gu(tj) - ut(tjfl/z) =

(u(#) — u(t ™)) — u, (t2).

| =

Using Taylor’s theorem gives

k k? 1 :
u(t?) = u(t?) + Sl St 1/2)+ﬂutt (712 +5 N 1/2 $) g (s)ds
- - k k2 1
u(tj 1) = u(tj 1/2) 2 (tj 1/2) + MUt t] 1/2 + 5 . 1/2 uttt(s)dsa

so that

1i—1/2

1 tJ . ,
w% = % [/ (t] — S) uttt( )ds + / (5 — t]_l)zuttt<$)dS] .
ti—1/2 ti—1

Therefore, for 1 < j

. 1 ]{32 ti—1/2 L 1
el < o (& / s+ 5 [ uas ) = £ [ e

tn

n ' L2
k Wil < —/ Uy ||ds 6.34
;H ol < s /. (|2 | (6.34)

1.e.

For wg, J <1, we have

Wi = A(u(tjfl/z) - %(u(t]) + u(tjfl))> :
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By Taylor’s theorem

) = ult ) 4 S 4 [ (= (s,

ti—1/2

ti—1

u(tjfl) _ u(tj71/2) . gut(tj1/2> +/ (tj—l — S)u(s)ds,

ti—1/2

so that

ti—1/2

A 1 [ . 1 4
wj = _—/ () — s)Augds — —/ (s =71 Auyds .
2 ti—1/2 2 ti—1

Therefore

n ) k‘Z tm
k W < —/ Auyllds .
]Zlﬂ sl = 1), | Ay |

(6.35)

The desired estimate (6.28)) follows now from the inequalities (6.29)), (6.32)-(6.35]), and

the fact that [|6°|| = ||U°— Ruuo|| £ ||u) —u®||+[|u®— Rpu®|| < [Jul —u®||+C A" ||u°]], . O

Exercise 1. Let %

( U" — Un—l
(=

X) + (V(aU” + (1 - a)U”’l),Vx)

0_,0
\U = Uy, .

Show that the schemes are L?-stable and prove error estimates of the form

< a £ 1 and consider the following family of fully discrete schemes

= (af(t™) + (1 =a)f(t" ), x) VX ESh n>1,

U™ —u(t)|| < ||Ju) — u®|| + O(kP + k"), where p = 1if 1/2 < o < 1 and p = 2 if

a=1/2.

Exercise 2.Consider the implicit Euler method with wvariable step k,, where k, =

tn—ttn > 1:
Ur — Un—l
K,

0_ 0
U’ =uy.

,x) (VU V) = (F(E),x), VX € Spy n > 1,

Show that the scheme is L?-stable and prove an error estimate of the form (6.19)) with

k = max, k,.
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6.4 The explicit Euler method. Inverse inequalities
and stiffness

The explicit Euler full discretization of is the following scheme: We seek for
n=0,1,2,... approximations U" € S of u,(t") that satisfy

Uur — Unfl
(TW) + (VUL V) = (" x), VX E Sk, n> 1,
(6.36)
U = .
Finding U™ for n > 1, given U"™!, requires solving the linear system
Ga"=(G—-kS)a" '+ kF" ! n>1, (6.37)

where G, S, F™ have been previously defined and o™ is as usual the vector of coefficients
of U™ with respect to the basis of Sj,. (Note that although the time-stepping method
is explicit as a scheme for solving initial-value problems for ode’s, we still have to solve
linear systems with the mass matrix G at each time step.) Obviously the linear system
has a unique solution o” given a”~! and F"~!.

In order to study the stability of the scheme put x = U™ in . Then, forn > 1
we have

U™ = (U™t U™) + (VUL VU™ =k (f"1,U").

Use now the identities

(UL U =S (0" = E = IUTE = o)

S =N

— n n n— 1 n n—
(VU VU™ = IV + U P = ZIIV U = o )P

to obtain
n n—1(2 n||2 n—1|2 k n n—1\1|2 k n n—1\1|2
" = U+ U = U7+ IV + U = S IV = U )|° =
2k ("1 U™, n>1. (6.38)

In the left-hand side of this identity the troublesome term is —£||V (U —U"~1)||> which
is non-positive. To resolve this problem we write (6.38]) in the form

n n— n n— k n n—
o™ = U P+ Ut P = U+ S IV O+ )P

k
= IV =)+ 2k (70
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and use the inverse inequality (valid for quasiuniform partitions of Q)
C.
VXl = ==Xl x € Sk, (6.39)

where C, is a constant independent of h and Y, in the first term of the right-hand side
to get

n n— n n— ]{303 n n— n— n
o™ = o2+ U~ U 1H2S§ﬁHU — U2k IO
1.e.

1_£C_3 Un_Un—l 2 Un 2 Un—l 2<2k’ n—1 Un
L 2+ jom | = o < 2k O
Therefore, if
2

k
S (6.40)

the above inequality gives
U™ = (U™ < 2k o < 2k o+ 1o

from which

o <o+ 2k n>1,
and finally

n—1
[ < 10+ 2k Y11
7=0

which is the required L?-stability inequality, analogous to those that were derived for
the implicit Euler and the Crank-Nicolson schemes. However, whereas such inequalities
in the case of the previous schemes were valid unconditionally, the explicit Euler scheme
needs a stability condition of the form . This condition is very restrictive in that
it requires taking k = O(h?), i.e. very small time steps. It can be shown that such a
condition is also necessary for stability. (A simple numerical experiment with piecewise
linear functions in 1D gives a clear indication !).

We postpone for the time being the proof of the inverse inequality in order
to prove an L? error estimate for the fully discrete scheme :

Theorem 6.4. Suppose that (6.39) and (6.40) hold and let U", u be the solutions of
(6.36)), (6.1) respectively. Then, there exists a positive constant C, independent of h,

k and u, such that for n > 0
t”L

t’n/
nwuwwwusw&—wu+CM[m%«5/ wmm4+2@/ el ds. (6.41)
0 0
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Proof: Writing again U™ —u(t") = 6" + p", 0" = U™ — Ryu(t™), p" = Ruu(t™) —u(t"),
and noting that (6.29) holds for p™, we obtain for n > 1 and any y € S,

(00™, x) + (VO 1, V) = —(w", X)),

where

w" = wl +wy = (R — 1)ou(t") + (Ju(t™) — w(t")) .

Putting xy = 6" we see, as in the derivation of ([6.38)), that

n n— n n— k n n— k n n— n An
167 1F = 110" P+ 116" = 6" P + IV (0" +0" ) = SV (6" =6 )|° =2k (", 67)
k02

S S0 =0 — 2k (W™, 07).
e 27
Therefore, using (6.40)), as in the stability proof
1071 < 16°1 + 2k D 1|l < 169 + 28 > Nl [l + 25D llwsl (6.42)
— — —

For the w{ term we have as in ((6.24))

tn

el <00 [ s,
j=1 0

Since by Taylor’s theorem

tJ
kol = u(t?) — u(t ™) — ku,(871) = / (t/ = s)un(s)ds, j>1,
tJ

j—1

we see that
n tn
RSl Sk [ s,
j=1 0
and (6.41]) follows from (|6.42)). O

We proceed now with verifying the inverse inequality (6.39)). This is straightforward
to do in 1D. Consider an interval (A, u) with 4 — A < 1 and let P, be the polynomials
of degree < k. Then for some constant C' = C'(k) independent of A and p it holds that

( )

D1l e (a) S ||925||L2 )y VO EDP. (6.43)

To see this, observe that there exists a constant C' = C(k) such that

|Pllar 0 < Cllollcze,), Vo € Py, (6.44)
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as a consequence of the fact that P, is a finite-dimensional vector space and the norms

|- 11 0,1y and || || L2(0,1) are equivalent on P (0, 1). To derive (6.43)) from (6.44) requires
just a change of scale. Write the inequality (6.44) for ¢ € Py as

[ @+ @< [ dwa,

and make in the integrals the change of variable x — y, y = (u — Az + A, that maps
[0,1] onto [A, u]. Then the above inequality becomes

Lo, 2 (do, 1\ "
A [d) () + (u—A) (d—y(y))]dyéu_AA ¢"(y)dy ,

=3 [ [&(y) ¥ (j—j(y)ﬂ d=c [ iy,

since we assumed 1 — A < 1. Hence ([6.43]) follows.

giving

Let now (a,b) be any fixed finite interval and let @ = zp < ;3 < ... < xy11 = b
be an arbitrary partition of [a,b]. Letting h; = z;,41 — 23, 0 < i < J, we obtain from

(6.43) that

Il < o blirms V6 € Balans ). (6.45)
Let now Sj = {gb € Cla,b] : ¢ o] € Pk}. Since S, C H!, using we get for
any ¢ € Sy
J J
19300y = SN0l ey € CRV S 0oy (6.46)
=0 =0 !

We now assume that the partition {z;} of [a,b] is quasiuniform, i.e. that there is a
constant v independent of the partition (in the sense that as the partition is refined v

does not change) such that

A

h
S v (6.47)
where h = max; h;. In view of (6.47)), (6.46) gives
< C.
19l @y = 7= 19llr2@py, Vo € S, (6.48)

with C, = C(k) v, from which (6.39)) follows in 1D.
In order to prove (6.39) in 2D, we assume that 2 is a polygonal domain and let
Tn = {7} be a regular (cf. (5.16)) triangulation of {2. We recall from section 5.2 that
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any triangle 7 of the triangulation is affinely equivalent to a fixed reference triangle 7.

As in the case of 1D, there exists a constant C; = C}(7, k) such that

I6llis < Cilldllos, Vo€ Py(7), (6.49)

as a consequence again of the fact that Py(7) is a finite-dimensional space and that
|1z =1 HH1 7 and || - |los = || - [[z2() are norms on IP,(7). Suppose now that
Sp = {gb c O gf)! € Py( )} and let F. be the affine map that maps 7 one-one onto
7. Following the notation of section 5.2 we write F,.(Z) = B,Z+0b,, for ¥ = (71, 72) € 7,
where B, is a 2 x 2 invertible matrix and b, a 2-vector. If ¢ € Py(7) we define ¢ € Py(7)
by ¢(z) = (}5\@), where x = (x1,25) and x = F,(Z) as usual. Then for ¢ € Px(7), using
the transformation norm inequalities (5.20), (5.21) and ([6.49) we get

611, < C(k)| B | det B, V2 |¢)1 2
< ¢y C(k)| B || det B2 ||6]|o
< C(k,7)|B; || det B,|'/? - | det B, |7V [|6]lo.-

Therefore, using the regularity of the triangulation and (5.24) we see that there exists

a constant C' independent if 7 such that

9] chlloﬂ Vo € Pr(7),

17‘ = h
where h, = diam(7). Since S, C H'() we see that

w%=2wméﬁ§}www,w6&

TETH TET

If the triangulation is quasiuniform in the sense that for some constant v independent
of the partition
h
M <y wreT. (6.50)
h,

where h = max, h,, we see that
Cv
[Pl < THﬁbHo,Q, Vo € 5, (6.51)

from which ([6.39) (and also [|¢||; < Ch~1||¢| ) follows.
We mention that similar scaling arguments yield, for quasiuniforms partitions, the

more general inverse inequalities
Ixlla = CRP%|Ixlls,  Vx € Sh,
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provided «, 5 are nonnegative integers so that § < « and S, C H*(2), and
Ixlloo < CR=2|Ix|Il, ¥x € Sh
for Q € R?. Of interest is also the nonstandard inverse “almost Sobolev” inequality
Il < ClIA[Y2[Ix]l,  Yx € S,

valid for Q C R?, cf. [3.6, p.68|.

We close this section with a few remarks about stiff systems of ode’s and the in-
terpretation of the stability condition as a restriction on the time step related
to the size of the eigenvalues of the matrix G=1S. Let A be a symmetric and positive
definite real m x m matrix and consider the ode ivp for y = y(t) € R™

y+Ay=0, t=>0,
(6.52)

y(0) =yo.

Let 0 < Ay < Ay < ... < A\, be the eigenvalues of A. Then from the theory of
numerical solution of ode’s, we know that if a method for the numerical solution of
ivp’s has interval of absolute stability [—«, 0], where @ > 0 (a = 400 if the method
is Ag-stable), it will give stable approximations, when applied to (6.52)), provided the
time step At is chosen so that (=\;)At € [~a,0] for all i, i.e. so that At = .
We recall that for the explicit Euler method o = 2, while @ = 400 for the implicit
Euler and the trapezoidal method. Hence, the latter two methods are suitable for stiff
systems, i.e. systems for which A; = O(1) and A, >> 1.

Consider now the ode system (6.7)) corresponding to the Galerkin semidiscretization

of the ibvp (6.1)). For f = 0 we write the system as

Gy+Sy=0, t>0,
(6.53)

y(0) = o,

where y € R™ with m = N;, = dimS),. This system is of the form (6.52)) with A = G~1S
but G715 is not symmetric. To transform the system into the form (6.52) with a
symmetric positive definite matrix, consider the matrix G'/2. Since G is symmetric

and positive definite, G'/? is defined e.g. using the spectral representation of G and is
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symmetric and positive definite. Multiplying by G—'/2 both sides of the ode system in
(6.53) we have
Gl/Qy + G_1/2S G—1/2 G1/2y —0 :

or

i+ Az=0, t>0, (6.53")

where z(t) = GY%y(t), and A = G~Y2S G2 is easily seen to be symmetric and
positive definite. Let 0 < Ay < Ay < ... < A, be the eigenvalues of A. Then they

satisfy
G12SG 1y = \a, (6.54)

where € R™ is a corresponding to ); eigenvector. It follows that S G~/2x = \,G'/?x.
Therefore, with G='/22 = w, i.e. Gw = G2z, we see that the eigenvalue problem

(6.54)) is equivalent to the generalized eigenvalue problem
Sw = \Gw (6.55)

and so the )\; are eigenvalues of G™1S. It follows from (6.55]) that

AN
wTGw
Let now ¢ = >, w;¢; € Sy, where {¢;} is the chosen basis of S;. Then ||¢]|* = w'Gw,
Vol|? = wTSw, and \; = M. Therefore, if the inverse inequality (6.39]) holds, we
lloll

have that

02
A = Amax(G719) < ﬁ . (6.56)

Hence, a sufficient condition for the stability of the explicit Euler scheme for the ivp
(6.53') or, equivalently, for the ivp (6.53)), is, since (—f—;) k< (—Am)k, k = At, that
—f—fk > -2, ie. % < C%, which is precisely the restriction found by the energy
method. For the implicit Euler or the Crank-Nicolson (i.e. the trapezoidal) scheme for

which o = 400, there is no restriction.
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Chapter 7

The Galerkin Finite Element Method for

the Wave Equation

7.1 Introduction

In this chapter we shall consider Galerkin finite element methods for the following
model second-order hyperbolic initial-boundary-value problem. Let {2 be a bounded
domain in R?, d = 1,2, or 3. We seek a real function v = u(z,t),z € Q,t > 0, such
that

(

utt_Au:fa ZEEQ, t207
u=0, x €0, t>0, (7.1)

u(z,0) = u’(z), w(z,0)=ud(z), v €Q.

\

Here f = f(x,t) and u°, u) are given real functions on Q x [0, 00), and € respectively.
We shall assume that the ibvp has a unique solution, which is sufficiently smooth
for the purposes of the analysis of its numerical approximation. For the theory of
existence-uniqueness and regularity of see [2.2]-[2.5]. We just make two remarks
here for the homogeneous problem, i.e. when f =0 in (|7.1)).
i. Multiplying both sides of the pde in by u;, integrating over (2 using Gauss’s
theorem and the boundary and initial conditions, we easily get the energy conservation
identity

el + I Vull* = [luf]* + [[Vu"]?, £ > 0. (7.2)

ii. The regularity theory for (7.1) requires smoothness and compatibility conditions at
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OQ of the initial data u° u?, and establishes corresponding smoothness and compati-
bility properties in the same spaces of the solutions u and w; for ¢t > 0. Thus, in the
case of (7.1)) we do not have any smoothing effect on the solutions for ¢ > 0 as in the

case of the heat equation, cf. e.g [2.4].

7.2 Standard Galerkin semidiscretization

Multiplying the pde in by v € ﬁl and integrating over () using Gauss’s theorem
we obtain

(uge, v) + (Vu, Vo) = (f,v), t>0. (7.3)
Let Sy be a finite-dimensional subspace of [gf ! satisfying (6.2). Motivated by we
define the (standard Galerkin) semidiscrete approzimation uy of u as a function uy(t)

in Sy,t > 0, such that

(

(uhtta 90) + (Vuh>V80) = (fa %0)7 VQO € Sh7 t Z 07

q un(0) = uf, (7.4)

_,,0
uht(o) = Uy ps
\
here 19, u? iven el f9 imating u°. u? ively. If {oVVr i
where uy, u;;, are given elements ot 5, approximating u-, u;, respectively. {goj } j=118

a basis of S}, and we let
N}L

up(z,t) = Z a;(t)p;(z),

we see that )

Ga+ Sa=F(t), t>0,
a(0) = B, (7.5)

|a(0) =1,
where Gi; = (v5,0:), Sij = (Vp;, Vi), 1 < 4,5 < Ny, F = (f,01), 1 < i < Ny,

a=at) =lay,...,an,]", and 8 = (8;), v = () are the coefficients of up, up,, with

respect to the basis {¢;}. The ivp (7.5) may also be written as

(
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i.e. as an ivp for a first-order system of ode’ s; it is then evident that has a unique
solution for ¢ > 0. If we put ¢ = uy, in with f = 0 it is straightforward to prove
that
lune (17 + [Vun(@)]* = Jugp* + Vbl t =0, (7.6)

which is the discrete analog of and expresses the stability (conservation) of
(wp, up) in IS[l x L2

We recall now the definition of the elliptic projection of a function v € ]?I L as the
element Rpv € Sy, such that (VRv, V) = (Vu, V) for all x € Sj,. Following Dupont,
STAM J. Numer. Anal., 10(1973), 880-889, we have

Theorem 7.1. Let u, u; be the solutions of the ivp’ s (7.1)) and (7.4) respectively.
Then, given T' > 0, there exists a positive constant C' = C(T") such that

Jun(t) = w(®)ll < LUV () = R®) | + gy, = Ries|

mwm+(gwwwwy1}7OSts1 &

Proof. We write as usual u, —u = 6 + o, where 6 = u, — Rpu, 0 = Rpu — u. We have

+h'

as before

lo@®)[| < CA"lu(®)]]., ¢ =0. (7.8)
Now, for ¢ > 0 and any y € S, we have using ([7.4) and (7.3])
(01, x) + (VO,Vx) = (unet, X) + (Vun, Vx) — (Rpug, x) — (VRyu, Vx)
= (f,x) = (Rpuse, x) — (Vu, Vx)
= (uy — Ry, X) = —(0ut; X)-

Given t > 0 take y = 6; in the above to obtain

1d 1 1
5@(”91%”2 +|VO]1?) = —(ox. 0;) < §||Qtt||2 + §||9t||2-

Hence

d
Z (6P +1VOI%) < lloull® + (161 +IVOI*), ¢ = 0. (7.9)

We recall now Gronwall” s lemma: If o'(t) < a(t) + o(t), t > 0, then o(t) < e'o(0) +
f(f e'~sa(s)ds. To see this, note that for t > 0

e to'(t) —eto(t) < e falt).
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Therefore

e to(t) —o(0) < /0 e *a(s)ds,

from which the conclusion follows. Using this result in (7.9) for o = ||6;]]* + || V]]* we

have for 0 <t < T
161 + [[VO|* < C(T) <H@t(0)|\2 +[IVOO)[* + /Ot |!Qtt||2d5> ,
where C(T') = e”. By the definition of § and p it follows that for 0 <t < T
16:17 + IVOIJ* < C(T) [Ilug,h — Ryw?|I* + 1|V (uy — Ryu)||* + Ch* /Ot IIUttHQdS] :

Using now the inequalities \/Lﬁ o< (0o, a2)'? < S, i, valid for a; > 0, we

conclude that for some constant C' = C(T')
1611 + 11V0] < Clllugp — Buugll + 1V (up, — Ryu)|
t 1/2
+ R (/ HuttH?ds) ], 0<t<T. (7.10)
0
We note now that 6(t) = f(f 0:(s)ds + 6(0), from which for ¢ > 0
¢
ot < 100001 + [ 1015 < 1000} + s, 10,5
0 =0

Therefore, using ([7.10) we have for 0 <t < T

[un(t) = u(@® < lle@)] + [16()]]
< ChJu®)l; + 10(0)]| + ¢ max [|6:(s)]

< OOy — Rud || + [V () — By
t 1/2
+Mm@m+uﬂwWQ .

which is the desired estimate (7.7)). (Note that we used Poincaré’ s inequality ||6(0)| <
C|IVO(0)|| in the last inequality.)
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Remarks

a. The estimate implies that if we choose up = Ryu’, u, = Rjuj, then we
have the optimal-order L*-estimate |luy(t) — u(t)|| = O(h"). We may also choose uy),
as any optimal-order (in L?) approximation to «) in Sy, e.g. as Pu;, where P is the
L*-projection onto Sy,. However we cannot do the same for 9, which must be close to

Ryu® in H' to O(h") to guarantee the optimal-order bound in (7.7).
b. From ([7.10]) it also follows that for 0 <¢ < T

[une = wel] < 0] + Nl < C {IIU?,h — Ryuy|

mwm+(zwww@fj},

HIV (= Rl + 17

and

IV (un —w)|| < VO] + [[Vel| < C {HU?,h — Ryuy|

t 1/2
~WWﬁ—RwW+M”hWPH(/HwM®)]}~
0

The latter inequality implies that initial conditions e.g. of the type u) = Pu°,

up), = Puy will give an optimal-order estimate for ||V (u, — u)].

The following result, due to G. Baker, SIAM J. Numer. Anal. 13(1976), 564-576,
relies on a ‘duality’ argument in time and shows that one may after all get an L?
estimate of optimal order starting with any optimal-order L? approximation of u° and
u?. We state it in a form that also improves Theorem with respect to the required
regularity of the solution and the dependence of C on T

Theorem 7.2. Let u, uj, be the solutions of the ivp’ s (7.1), (7.4]), respectively. Then

there exists a constant C', independent of ¢ and h, such that
lun(t) — u(®)]| < C{llu, — Pu®|| + tl|ug), — Puy|
t
0+ [ sy (7.11)
0

Proof. We put e := uj, —u = 0+ o, where 0 = u, — R,u, 0 = Rpu —u. As in the proof
of Theorem we have (0, x) + (V0,Vx) = —(ou, x) for all x € Si, t > 0. Since
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(Bee, X) = %(6;, x) — (61, x¢) we have for any x € Sy, t > 0

(o) + (V0,9X) = =2 (002) ~ (00 ) + (000 0)
= —%(et, X) + (06, xt)- (7.12)

Fix £ > 0 and let x(t) := ff O(s)ds, t > 0. Then x(t) € Sy for t > 0, x(§) = 0, and
Xt = —0. Select x = x in ([7.12)) to obtain

s e d .
(etae) - (vXt7VX) = _E<€taX) - (Qt79)7
i.e.
1d
2dt

1d

. d .
§%||VX||2 = __(et7X) - (Qt70)7 t Z 0.

dt
Integrating both sides of the above with respect to ¢ from 0 to &, we obtain

lo1* —

16612 = [600)]2 = VR + V()
= —2(a©) 7€)+ 2er0). 10) 2 (o 0)d.
Since ¥(€) = 0, ¥ € Sy, we have for any £ > 0:
I6(E)I < 10(O)IF +2(Per(0).5(0) ~2 | (o 0)dr.

Hence

3
16(6)]12 < 16(0)]? + 2] Pex (0) | £(0) | +2 / ledllolde.
We recall that x(0) = fog 0(t)dt. Therefore ||x(0)] < fof |0||dt and therefore
) ) 3 13
10(6)]12 < 16(0)12 + 21| Pes (0) / 16]1dt +2 / ledllolde
3
< sup 011000} + 26 Pen(0)]] + 2 / lodlde).
0<s<¢ 0

Since ¢ was arbitrary, the inequality above holds for all £ € [0,£]. Let 7 € [0,£] be a
point where [|0(7)|| = supg<,<, [|0(s)[|. Applying the inequality for {’ = 7 we get

3
101 < 16()] (||9<o>r| +aclpa)]+2 | ||gt||dt) .
Hence, since [9(6)]|  16(7)]
I3
I06©) < 1600} + 261 Pl +2 | ol
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for any & > 0. Therefore, for ¢ > 0, using the definition of p
t
10| < [[6C0)]| + 2| Pe(0)]| + Chr/ el ds, (7.13)
0

and

t
lunt) = (]l < lle®] + 10O < lle(0)] + / lodds + 168
t
<c {Hu% - Pull -ty — Pl + el + [ ||ut||rds]} ,
0

which is (7.11). (To get the last inequality of the right-hand side we used (|7.13])
and that [[0(0)|| = [[Rxu” — u°|| < CH |||y, |0(0)]| < [Jup — Pu’|| + CR"||u’]|;, and
Pey(0) = P(up,, — uf) = uy), — Puy.) O

It is evident that (7.11]) implies that [Ju(t) — up(t)|| = O(R") if up, uf, are any
optimal-order L?-approximations of u°, u{ in Sy, respectively.
Remark

It is straightforward to check that analogs of Theorems and [7.2] hold for the ibvp

wn— Yoy (@) 22) + ag(a)u = f(,), w€Q, t>0,

u=0 ono, t>0,

u(z,0) = u(z), wuy(z,0)=ud(z), z€Q,

\

where the coefficients a;j, ao satisfy the conditions set forth in Exercise 3 of section
6.2. L.A. Bales has proved (Math. Comp. 43(1984), 383-414) that similar results hold

when a;; and ag depend also on ¢.

7.3 Fully discrete schemes

In this section we shall examine some simple methods for discretizing in time the
semidiscrete Galerkin equations . As usual we put t" =nk, n=0,...,M, Mk =
T > 0. We seek U™ € Sp,, 0 < n < M, approximations of the solution u of at t",
satisfying
LU —2Um + U x) + (VUR VX) = (f3.x), YXESh 1<n<M -1,
U°, U* given in Sy,
(7.14)
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where, for 1 <n < M —1and g > 0, UE = pUT + (1 —28)U" + pU" L, fg =
Bt 4+ (1 —28)f" + Bf L, fm = f(-,t"). Given U}, U™, (7.14) defines uniquely
U™l € S, as solution of the linear system of equations

(G + BE*S) a™™ = (2G — (1 — 2B)k*S) a™ — (G + BK*S) a" ' + K*F},

where U" = vaz’”l allp;, {pi}, G, S, were defined in section 7.2, and Fg is the Nj-
vector with components ( fg, wi). =0 corresponds to the classical Courant-
Friedrichs-Lewy two-step scheme for the wave equation.

Taking for simplicity f = 0 in and putting y = U™ — U"~! we obtain for
1<n<M-1

(U —2um + U UM U + (VU V(U - UmT)) = 0. (7.15)
Now

(Un—i-l U™ + Un—l’ Un+l - Un—l)
_ ((Un+1 - Un) o (Un o (]n—l)7 (Un+1 - Un) + (Un o Un—l))
— ||Un+1 _ Un||2 o ||Un . Un—1||2'

In addition

(VU3 V(U™ = U"h) = (V(BU™! + (1= 28)U" + U ), V(U™ = U™ )
— ﬁ((VUn—H, VUn+1) o (VUn_l,VUn_l))
+ (1 =28)((VU" ™, vU™) — (VU", VU™ )).

Hence, summing in ([7.15]) with respect to n from n =1 to [, where 1 <[ < M — 1, we

see that

[0 = U2 + BRIV U2 + [VUUIP) + (1 - 26)R (VU™ VT
= U = U + BE(IVUY + [ VOIP) + (1 — 26)*(VU", U°),

which, motivated by the identity

(554’?4)2 1 2
1 +(5—1)(I—y),

Bl +y*) + (1 - 28)xy =
we rewrite as
k2 1
U = U'))? + ZHV(Ul+1 +UN?+ (8 - Z—L)IIV(UZ+1 - U

203



k2 1
= U = U + VU + VP + (8 = DIVT = UO)IP, (7.16)

which is valid for 0 <1 < M — 1. With the aid of the identity ((7.16)) we may prove the
following stability result for the fully discrete scheme ((7.14)).

Proposition 7.1. Suppose that there exists a constant ¢, independent of h and k,
such that
|U' = U < ck (7.17)
and
V(U £ U <e. (7.18)

Then, there exists a constant C', independent of h and k, such that for all g > }1 the
solution of (7.14) with f = 0 satisfies

max ||[U"]| < C. (7.19)

0<n<M

Ifo<pg< }L and the inverse inequality (6.39) is valid in Sy, then ([7.19) holds provided

% < «, where « is some constant depending on C, and f.

Proof. If 3 > 1, (7.16) and (7.17) - (7.18) give, for { >0 and k < 1, |[U - U'|| < C
and ||V (U™ — Ul)H < C. Hence, by Poincaré’s inequality, U £ U < C, 1 > 0,

and ([7.19)) follows since [|[U"]| = || (U"+12+U") . <U"+1 Un) I
If0 < 8 < 4, (716) and (7.17) - (7.18) give for I > 0

k2 1
[T = TP + IV + UDIP < 2 (5 = BIVITTT = U + Ok,

Therefore, by the inverse inequality (6.39) we have

k2 k1

[~ U+ SV U < T (5~ BT — VY + O,

i.e.
o k7 1 I+1 e, K I+1 N 2

-G - v Bee v o <o i

Hence, if
k 2

we have that ||[U*! + U!|| < C(«a) and ( - follows O

204



As we remarked in Section 6.4, a more general sufficient stability condition is
2
Vv1—45
The inverse inequality (6.39) and imply (7.21).

We proceed now to derive L?-error estimates for the scheme , following e.g.

k Pamax(G719)] Y < (7.21)

1
4

value of 8 for which (7.19)) holds unconditionally. The proof for the other § > 0 follows

Dupont, op.cit. For simplicity we treat only the case g = 1, i.e. the case of smallest

along similar lines. The basic step of the proof is the following result.

Proposition 7.2. Let u be the solution of (7.1]), U™ the solution of the scheme ([7.14])
for g = ;11, and 0" = U™ — Rpu", where u"™ = u(t"). Then, there exists a constant C
independent of A, k and T such that for 0 <n < M —1

1 1
s (1071 = 81+ 1907+ 001 ) < 0 216 = ] + 196"+
1/2

0<i<n
1/2 1
+VT |h" (/ |]utt\|3ds> e (/ H(9t4u||2ds> . (7.22)
0 0

Proof. For 1 < n < M — 1 we denote 02¢" = (g™ — 29" + g™ "), §" = 91y =
Hg 4207+ g ), U = (U7 — Ry) + (Ry” =) = 0" + g%, using (T3

with 5= 1/4 and (7.1]), we have for 1 <n < M — 1, x € S,

tn+1

(920", x) + (V0" V) =
O™ — O (Rpu™) + af, — 02u", x)

where w" := 47, — 9?u™. Therefore, for any x € Sy,

(071 = 20" + 0" x) + KA(VO", VX) = K (=07¢" +w",x), 1<n< M1 (7.23)

We take now y = U™ — U""! and sum both sides of (7.23]) with respect to n from
n=1tol, for 1 <l < M —1. As in the proof of Proposition [7.1] we obtain
k> k?
167 = 6'11* + IV (O + 69117 = [l6" — °1* + V(6" + )"
!

+EY (020" w0 —0n ), (7.24)

n=1
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For any € > 0 we have

l l
k2 Z(_aan —|—0Jn,9n+1 _ Qn_l) < kzz H _ 872_Qn +wnHH9n+1 _ 9n—1||

n=1 n=1

g2 2 !
ek
2 2 872_@” wnHQ 5 E H6n+1 _0n71”2

2 !
Z 1070"|* + — Z o™ [ + (o™ = 0" + 1™ — 6"~ "[])*

n=1
2 l
- 82 n |2 - ni|2 2 k?2 0n+1 Qn 2 725
65_ | ||+ E [lw™[|* + 2¢ nEOII [ (7.25)

We estimate now the first two terms in the right-hand side of the above. By Taylor’s

theorem we have

tn+1
=4 koy + / (t”Jrl — 7T)ou(T) dr,
tn

tnfl

0"t = 0" — ko + / ("' — 7)ou(T) dr.
t

n

Therefore

1 tn+1 tn

872_ - ﬁ / (tn+1 — T)Qtt dT — / 1(tn_l — T)Qtt dT .
tn tn—
Since
¢+l 2 ¢+l gn+1
(/ (t”Jrl — T)Qttd7'> < / (15”Jrl — T)QdT/ (gtt)2d7'
t’VL t7l tn
k3 tn+1
< Y / (Qtt)QdTa
tn

we have

tn+1

C
@er < g [ (s

and we conclude by the definition of p that

l
C
aTQn 2 < _/
S o0 <

A 1

loull2ds < Ck—lh%/ el |2ls.

0
Now

n __ ~n 2 n __ [(an n n 2 n\ ., n n
w" =ty — O7u" = (g — ugy) + (uyy — O7u") =: Wi + wy.
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For w} by Taylor’ s theorem we have

1 tn+1
Wl = 1 [/ (" — 8)0tuds + / i s)@fuds] :
tn tn

tn+1

w1 (0tu)?ds and

tn—l

Hence (w})? < ck? [,

tH—l

l
SlaflP <kt [ otulas
n=1 0

Similarly,

l tl+1
wl|? < ck? Otu|?ds.
2 t
n=1 0

We conclude that

]{;2 l l ck 1L g1
- (Z 102" + 2 Hw”\P) <= [h” | Haé‘uHst]
n=1 n=1
k
= %al, 1<I<M-1. (7.26)

Therefore, by (7.24)) - (7.26)) we obtain for 0 <1 < M — 1

k? k?
61 = 61 + IV + > < 116" - 6% + V(6" + 67
+ %+ 251{:221: 167 — 67| + k—2||V(9”+1 + o)
e ! — 4
k? k
< [0 = 61 + V(8" + ) >+ o
k2
+ 2ekT max (||9”+1 — 0" + ||V (" + 9")||2) :
0<n<lI 4

since (I+ 1)k < T. Choose now € = . Then, for 0 <1< M —1
k? k?
1671 = 6'11* + IV (O + 6D)]* < [l6" — 0°1]* + [V (6" + ")
1 k?
2 - n+1l _ gn||2 v n+1 ny\ |2
+ CTko; + 5 dnax (||9 6™ ||* + 1 V(" + 67| ) . (7.27)

Fix [ for the moment and let m, 0 < m < [, be an integer for which

k2 k2
n+l _ gn|2 v n+1 n\[12 | — m+1 _ gm||2 v m-+1 my||2
ma, (10 = 0+ IV o) = ot om+ w4 o
Then, from ([7.27)), since o, is increasing with n
k? k?
ot — 0 e g < - e+ e )

1 K’
+OTRa+ g (I = o+ S om0
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Therefore
k2 k2
1™ —6m)% + ZHV@m+1 —om)|* < 2[ll6" —6°|1* + ZHV(Q1 +6°)|%] + CTk 0.
But
I+1 112 k2 I+1 1\ (12 m+1 m||2 k2 m+1 m\ |2
641 = 011 + V(6 + )2 < 6 — 072+ =V (0m 4 m)|
Hence,
k2 k2
16 — 6']|* + ZIIV(G’+1 +6|P < Cllo" - 6°)* + ZHV(H1 + 6% + Tk

Dividing both sides of the above by k? and taking square roots we obtain (7.22) in
view of ([7.26]). O

Exercise 1. Using the technique of the proof of Proposition [7.1]show that an estimate

of the form ([7.22)) holds for the solution of ([7.14]) for any 5 > 0, provided the stability
condition (7.20) holds if 0 < 3 < 1.
Exercise 2. The scheme ((7.14) in the case g = é is known as the Stormer-Numerov

method. Show that this scheme is fourth-order accurate in time: Specifically prove that

for g = %
tl+1

;”W <at [ otulfas
and consequently that the last term in the right-hand side of is of O(k*), provided
holds with g = % (The Stormer-Numerov scheme is the only fourth-order
accurate in k scheme of the family . For all other § > 0 the temporal truncation
error is of O(k?).)

We present now some straightforward implications of Proposition [7.2]

Proposition 7.3. Let the hypotheses of Proposition hold and assume in addition
that for some constant C' independent of h and k we have
L6 — 6] + V(8" +6)] < COR + ). (7.28)
Then, there is a constant C' = C'(u,T") such that
(4) ||%(U”+1 —U™) — (") < O+ b7, "2 =" 4 g 0<n<M-—1,
m)H%vwm1+ww—vmﬂﬂﬂugcw?+m1% 0<n<M-—1,

(iti) max U™ —u"|| < C(k> + h").

0<n<M
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Proof. (i). Let 0 <n < M — 1. Since

1 1 1
E(UnJrl _ Un) . ut(tn+1/2) _ E(9n+l _ (9”) + ERh(unJrl _ un) _ ut<tn+l/2)

n+1

(0" = 6") 4 Ry () = () + (———— — (")

1 1 1
= E(6n+1 — 9") —+ E/ (Rhut — ut)ds + (E(un+l _ un) _ ut(tn+1/2))’
t

o=

n

we have

1 1
|2 U= U") = (") < 207 = 07| + CRT maxfug(s)]l»

tn Ssgtnle

+Ck* max |luw(s)],

tngsgtn-&-l

and (i) follows from ((7.22)) and ([7.28)).
(ii). Let 0 <n < M — 1. Since

%V(UnJrl + Un) . vu<tn+l/2) _ %V(ewrl + en) + %V(Rh(un+1 + un) o (un+1 + un))

1
+ V(G ) = (),
we have

1 1
ISV@™+U") = Vu( )| < SV + 07+ b (lum e + Ju]l.)

+Ck* max ||[Vuu(s)]],

tngsgtn-}—l

and (ii) follows from ([7.22)) and ((7.28)).
(iii). Since
U—u=0"+4, 0<I1<M,

we have

|U" = < |64 + Chr |||, 0<1< M. (7.29)

But for 0 < n < M — 1, 7+ = 0400 4 k(00 =0")  Hence by (7.22), (7.28) and

Poincaré’ s inequality

16" < 5167 + 67 + 52 leT — 67|

2
k‘ en—f—l _ en

<OVET + 0 + SlIl——F—I < C(** +h"),
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for 0 <n < M — 1. In addition, since 00 = 248 _ %(91_90), we have by the Poincaré

2 k
inequality and ([7.28)

k 0t —6°

_H kHQI_eO”
2 k

C
<= 1 0 v
| < SIVE + 6]+ 50—

< O(k* +h").

1
16°1 < S 116"+ 6°1l +

Therefore (iii) follows from (7.29)) and these estimates.
[l

We turn now to the matter of choosing U° and U! in S}, so that ((7.28)) holds. We
choose first

U% = Ry, (7.30)

This implies that 8° = 0; hence, U! must be chosen so that
1
IO+ V0| < Ok + A7), (7.31)

A straightforward way of doing this is using Taylor expansions:
Let
k> _
u*(z) = u(z) + kul (z) + ?(AU()(I) + f(z,0)), =z €. (7.32)

Since by (7.1) uy = Au + f, it is clear that u* [so= 0 and that we have
u* =u(k)+Ok*), Vu* = Vu(k)+ O(k*).
We let
U' = Ryu*. (7.33)
Then by Poincaré’ s inequality
101 = 1U" = Ryu(k)l| = [|Bn(u” — u(k))]
< O VRw(u* = u(k))|| < CIV(u*" = u(k))|| < CK,
and
IV = IV Ry (w" = u(k))]| < [V (u" —u(k))|] < CK.

Therefore ¢[|6*] + ||[V#'|| < Ck? and (7.31) holds. It is then straightforward to check
that the initial conditions ((7.30]) and (7.33)) satisfy the hypotheses (7.17) and (|7.18) for
the L2-stability of the scheme ([7.14)). Indeed, we have by Poincaré’ s inequality, that

JU" = U0l = | Rulu” —u)]| < ClIV(u" —u')]| < Ck,

210



and
V(U £ U = [[VRu(u" £ w)|| < C|V(u" £ )| < C.
Exercise 3. Consider the Stormer-Numerov method (see Exercise 2.). Take U° = Rju’

and U' = Ryu*™, where u™* = u® + ku? + utt( )+ g—?@fu(O) + %Gfu(O). Prove that

with these choices one has
1
EIW — I+ V(0" +0°) < Ck?, (7.34)

so that by Exercises 1 and 2 and Proposition (iii) one obtains for the Stoérmer-

Numerov scheme the error estimate

max ||[U" —u"|| < C(k* + h"),

0<n<M

provided - ) holds for 3 = 5. (Note that for the wave equation,

02u(0) = Au® + £(0), 92u(0) = Aud + f£,(0),
0ju(0) = 0 (Au+ f) Ti—o= A% + AF(0) + fu(0),

so that, in principle, u** can be computed by the data of ( m Finally show that
these choices in U and U also satisfy the estimates and (7.18).

Remarks

a. The choice U' = R,u* has the disadvantage that it needs the computation of Au®.
Alternatively (see Dougalis and Serbin, Comput. Math. Appl. 7(1981), 261-279)),
one may compute initial conditions for the scheme ) for B # L — as follows: (For

simplicity we consider only the homogeneous equation, f = 0).Take again U° = Rju®

and compute U! € S}, as solution of the problem
(U, x) + BEH(VU', Vx) = (U%,x) + (B = 5)k*(VU", Vx) + k() x), Vx € Sh.

It can be shown that for this choice of U® and U, ) and - - ) hold.

b. In the case of the Stérmer-Numerov method (8 = ﬁ) the choice U' = Rpu** (see
Exercise 3 above) requires computing Au®, AuY, A%u°; f;(0), fi(0), Af(0), which may
be difficult or impossible in practice. A more efficient way (see Dougalis and Serbin,

op. cit) of computing UY, U', so that (7.34) and (7.17)-(7.18)) hold, is the following.
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(We take f = 0 for simplicity.) Define again U° = Rju" and compute successively U%!,

U%2 and U in S}, by the equations

k2 k2
(U™ x) + E(VU“, Vx) =6(U°% x) + 5(VU°,V><) + k(ug,x), VX € Sh,
2

k
(U2 x) + E(VUO’Q, Vx) = (U, x), VYx € S,

Ut =U% —50°.

c. For higher-order accurate in time full discretizations of the second-order semidis-
crete problem ([7.4) one may use e.g. the so-called cosine methods (cf. e.g. Baker et
al., Numer. Math. 35(1980), 127-142, RAIRO Anal. Numer. 13 (1979), 201-226),
extended to problems with time-dependent coefficients by Bales et al., Math.Comp.
45(1985), 65-89, and to nonlinear problems by Bales and Dougalis 52(1989) 299-319,
and Makridakis, Comput. Math. Appl. 19(1990), 19-34, or linear multistep methods
(cf. e.g. Dougalis, Math. Comp. 33(1979), 563-584), etc.

Another class of fully discrete Galerkin methods for the wave equation is obtained
by writing (7.1)) as a first-order system in the temporal variable:

(

a=Au+f, x€Q,t>0,

Uy = g, Z’EQ,tZO,
(7.35)

u=0,¢=0, x€0Q, t>0,

L u(2,0) =u’(x), q(z,0) =uf, ze

We may then consider the Galerkin semidiscretization of ((7.35) and its temporal dis-
cretization by single-step or multistep schemes. For example, consider the trapezoidal

method in which we seek U", Q™ in S;, for 0 < n < M satistying
U’ =Pru’, Q"= Pul,
and forn=0,1,..., M — 1:

n+1_ n n n
(LX) + 5 (5 V) = 57+ ), YXE S

%(Un+1 _ Un) — %(Qn+1 + Qn)
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(Here P is the L2-projection onto Sy.) The scheme is easily solvable for Q"' by
substituting U™*! from the second equation into the first one. Taking y = U™l — U™
in the first equation and the L2-inner product of both sides of the second equation by

Q" — Q™ we easily obtain the stability estimate
ni2 E VUn 2 012 ﬁ VUO 2
1" I7 + SIVU™ " = [l + S VU,

that may be viewed as a discrete analog of . Baker, STAM J. Numer. Anal.,
13(1976), 564-576, has analyzed the convergence of the scheme and shown that

max,, [|[U" —u"|| = O(k?* + h"). Higher-order temporal discretizations for the Galerkin
semidiscretization of have been studied by Baker and Bramble, RATRO Anal.
Numer. 13(1979), 75-100, and extended by Bales (Math. Comp. 43(1984), 383-414,
STAM J. Numer. Anal., 23(1986), 27-43, Comput. Math. Appl. 12A(1986), 581-604)

to the case of equations with time-dependent coefficients and nonlinear terms.
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Appendix A

Proofs of results about function spaces

In this Appendix we prove some results on function spaces needed in the notes. Unless

stated otherwise, 2 will be an open (possibly unbounded) set in R¢.
Proposition A 2.1. The step functions are dense in LP(Q2), 1 < p < oc.

Proof. By a ‘step function’ ¢ € LP(€2) we mean a function such that ¢(z) = ¢; in
(2;, where ¢; is a nonzero constant if 1 < j < N, and ¢ny41 = 0. Here the §2; are
measurable subsets of {2 such that 2 = U;V:JEIQj, Q;NQy, = @ for j # k, and we assume
that the ;, 1 < j < N, are nonempty. It follows that p(€;) < oo for 1 < j < N,
since [, [o|P > fﬂj ;1P = |¢;]P1e(§2;). Hence only Q1 (where ¢ = ¢y = 0) may be
unbounded.

In what follows we let, for p > 0, K, = {x eRe: 2| < p} (where, for x € RY,
|z| = (Zle x?>1/2). Given f € LP(2), 1 <p < oo, welet S, ={zx € Q:|f(x)| >r}
for r > 0. We have Q = wy Uws, where w; = (2—K,)US,, wy = K,N(2—S,). Clearly
w1 Nwy = @. (K, is introduced since 2 may be unbounded, while S, is introduced since
| f] may be equal to +o00 on a set of measure zero in §2. Thus u(S,) — 0 as r — oco. If
2 is bounded or f is e.g. continuous and bounded on €2 the proof may be simplified.)

We first prove that given ¢ > 0, there exist p(¢) and r(g) such that for p > p(e),

r > r(e), we have

[ur<3 (A1)

[’1|f|pS[2Kp|f|p+[qT’f|p' (A2)
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We prove first that fST» |fIP — 0 as » — oo. This is equivalent to showing that
lim, o foSr fIP = lim, oo [, Xoos, | fIP = [, |fIP, where Xp will denote in gen-
eral the characteristic function of a set B in R%. To show the latter fact, take for
example an increasing sequence of positive numbers r; such that r, — oco. Then
1(Sr,) = p(ME_1S,), dees limy oo (S, ) = p(N321S,,) = 0 since f € LP(Q). It follows
that as k — oo, Xo_s, (2)[f(2)[P — [f(z)[P, a.e. in ©, and by Lebesgue’s Dominated
Convergence Theorem (LDCT), limy o0 [, Xo-s, [fIP = [ |f[P, as claimed. We con-

clude that given € > 0 there exists r(¢) > 0 such that for r > r(¢)

P
P <= (A.3)
S 4

We also have lim,_, [, K, |f|P = 0. (To see this note that it is equivalent to showing
that lim, o mep 1P = [, |fIP, ie. that lim, e [, Xork, [f[? = [ |f[P. The latter
follows from the fact that lim,_,o Xongk, () |f(2)[P = |f(z)?, Vo € Q, and LDCT.) We
conclude that given € > 0 there exists p(¢) > 0 such that for p > p(e)

[our<s, (A1)

and therefore, by (A.2), (A.3), and (A.4), that for p > p(e), r > r(e), (A.1)) holds.

Given now p,r > 0 we may approximate f on the bounded set wy = K, N (2 — S,),
where |f(z)| < r, by a sequence of step functions f,, that converge uniformly to f and
satisfy | f,,| < |f|- This construction is classical and will be repeated here.
Suppose first that f > 0 on ws. For x € wy define the step function
0, ifz:0< flx) <3,
fiz) =

, ifr g < flo) <o

N3

Then, for z € wy, 0 < fi < f and [f — fi| < §. Next define the step function f, for

T € wy as
0, ifx:0< f(x) <,
T ifx: < f(z) <3,
foz) = <
3 ifx:%ﬁf(x)<%,
\?jf, ifz:3 < flx) <

215



It follows that 0 < f1 < fo < fand |f — fo| < § for x € wy. In general, for a positive
integer m, divide [0, 7] into 2™ subintervals of length 57 and define for x € ws the step
function f,,(x) as

0, if x:0< f(z) < 3w,

=, ifz: 5 < flz) < 2,

\(277;;1)7', if x : (2";_;1% < fz) <

It follows that 0 < f1 < fo <... < foo < fand |fo, — f| < 53, 7 € wo.

In general, for a real-valued function f on wy we write

flx) = fV(2) = fP(2), = € w,

where f) = max(0, f) and f® = max(0, —f). Obviously f@ >0, and fM.f® = 0.
Therefore |f| = v/(f®)2 + (f®)2, and since |f(z)| < r on wy we have 0 < f@(x) < r.

Construct as above, for ¢+ = 1,2, increasing sequences of step functions gbgﬁ) satisfying
0 < ¢4 < fO(x) and |¢%)(2) — fO(2)] < 5=, © € wy. Define f,, = ¢ — o).

Then f,, is a step function, and, since ¢%)¢$3) = 0, it is straightforward to verify that

|fm(@)] < |f(2)| and |f(x) — f(2)| < sm5 for o € wy. Hence, given 7, p > 0, the
construction of a sequence of step functions that converges uniformly to f on ws is now

complete. Obviously f,, € LP(w,) and

/ lf — fmlP = 0, m — oc. (A.5)

07 to emphasize that

In order to conclude the proof of the proposition, write f,, =
fm depends on p,r, i.e. on wy. Extend ff(,'f’r) by zero outside wy to all of 2. Then j}gfﬂ
are step functions in LP(Q2) in the sense mentioned in the beginning of the proof. It

follows that
1 = £, 0 = / P+ / = ful (A.6)

Given € > 0 pick r > r(e), p > p(e) so that (A.6) holds. For these values of r, p pick
m > m(p,r,e) such that, in view of (A.5)),

[i-rr<3 (A7)
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Therefore by (A.6), (A.1)) and (A.7) we get

1f = £ vy < e,
which concludes the proof. O]
Theorem A 2.2. The space C.(Q2) is dense in LP(Q2), 1 < p < 0.

Proof. In view of Proposition it suffices to prove that any step function in
LP(2) may be approximated arbitrarily closely in LP by some function in C.().
With notation introduced in the beginning of the proof of Proposition [A 2.1 let
¢ = Zj\zl $;Xq, be such a step function. (Recall that p(€2;) < oo, 1 < j < N,
and ¢y = 0) It is easily seen then that it suffices to prove our result for a char-
acteristic function Xp of a measurable subset B of  with u(B) < oo. By a ba-
sic property (regularity) of the Lebesgue measure, for each ¢ > 0 there exists an
open set O. C € of finite measure such that B C O, and p(O. — B) < e. Since
Jo lXo. — Xs|P = [, |Xo, — Xs| = [, Xo.—5 = n(O. — B) < ¢, it follows that it
suffices to prove our result for characteristic functions of open sets O C 2 of finite

o0

measure. Any such set may be written as O = U2,Q;, where Q; are disjoint open
rectangles in . Since p(0) = Y277, u(Q;) < oo, Ve > 0 IM = M(e) such that
0 < 1u(O0) = XM u(@) < & Then [, | — SV, o P = [y X0 — X, Xg,| =
o Xo-uM @ = wu(0) — Z;‘il w(Q;) < e. We conclude that it suffices to prove our
result for characteristic functions of rectangles, i.e. to show that given a rectangle @),

Q C Q, and € > 0, there exists f € C.(Q) such that
If = Xollri) < e (A.8)

Consider such a rectangle Q. Since @ is bounded, the distance d(Q, 9§2) = inf, 5 ,co0 lT—
y| is a positive number. Let ky > 1 be an integer such that d(Q, Q) > ﬁ For integer
k > kg, i.e. for which % < ﬁ, consider, for x € ) the function f; defined by

(

1, if z € Q (i.e. when d(z,Q) =0),

fe@) = 41— kd(z,Q), if0<d(zQ)< 1,

0, if d(z,Q) > 1,

\
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where d(z, Q) = inf,cq |r—y]| is the distance of x from Q). It is clear that 0 < fi(z) <1,

supp fr = QU {y € Q:0<d(y,Q) < %}, i.e. that supp fi is a compact set in §2, and
that Q C supp fiy1 C supp fi for each k. Moreover fi(z) is a continuous function of z.
This follows from the fact that d(z, Q) is a continuous function of x € Q. (This is true

for any bounded set @ in a metric space X, p: Fix 2/, € X and take y € (). Then

p(2',y) < p(a',2) + p(z, y).

Taking the inf in the left-hand side with respect to y, we have that d(z/,Q) =
inf e p(2’,y) < p(a,x) + p(z,y). Hence d(2/,Q) < p(a,z) + d(z, Q). Reversing
the role of x and 2’ we see that d(z,Q) < p(z/,x) + d(2/,Q). We conclude that
|d(2', Q) — d(z, Q)| < p(2/,x), i.e. that d(z, Q) is a continuous function of z.)
Returning to our proof, we conclude that f, € C.(Q) for k > ky. Therefore, by the

properties of fi, [, | Xq— ful? = fsuppfk—é |fel? < pu(supp fr — Q) — 0 as k — oo. This
concludes the proof of the Theorem. n

Proposition A 2.3. If f € L{ () is such that
/ fu=0, Yue C.(Q), (A.9)
o)
then f =0 a.e. in €.

Proof. We first prove the result under the additional hypotheses that f € L'(€2) and
11(€2) < oo. Since by Theorem [A 2.2 C.(9) is dense in L'(12), given £ > 0 there exists
J1 € Ce(2) such that ||f — fillp1 <e. Let u € C.(Q). Then, using (A.9), we have

[l

Now let K1y ={z € Q: fi(x) > e}, Kb ={x € Q: fi(x) < —}. The sets K; and K>

ul < ||f = fillovo lullze @) < ellullze@)- (A.10)

are compact, disjoint subsets of ). By an extension of Urysohn’s theorem, there exists
a function uy € C.(2) such that ug(z) = 1, if 2z € Ky, uo(x) = —1, if z € K5, and
lup(z)| <1, x € Q. Let K = K; U K,. Then

/Kw:/Kl\fm/%rm=/Klf1+/KQ<—f1>: [ o+ [ -
/Kfﬂto:/ﬂfluo— QinIUOS /Qfﬂto + /QKfﬂto

(using (A.10) and the fact that |ug] < 1on Q) <e +/ | f1]-

Q-K

<
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Hence,

[iai= [+ [ inisere [ Gnlsereepe-m, A

Q K 0-K O-K

since | f1| < e on Q — K. We conclude by (A.10) with u = uy and (A.11)) that
Il < M1 = fillerey + 1Al @) < 26+ 26 p(Q — K),

and since ¢ > 0 was arbitrary, that || f||,1) =0, i.e. f =0 a.e. in Q.

1
loc

bounded. For n =1,2,3,... let Q, = {z € Q : dist(z,0Q) > 1, |z| < n}. Obviously

We now turn to the general case wherein f € L; (2) and € is not necessarily
Q=0 ,Q,, Q,, compact and Q,, C Qp11. Hence Q = lim,,_, 2,. We apply the first
part of the proposition to ,, Indeed, if f € Li () then f € L*(Q,) for some n. Also,
from the hypothesis [, fu =0, Yu € C.(Q) it follows that [, fu =0, Yu € Ce(Qn).
Therefore, by the first part of the proposition, f = 0 a.e. in Q. (Indeed, if f # 0
everywhere on a subset M C  with p(M) # 0, take n large enough so that MNQ,, # &

whence f =0 on M N, a contradiction. m

Lemma A 2.5. (i) Let f € C(R%). Then p,* f € C®(R%) and p, x f — f, n — oo,

uniformly on every compact set K C R?, i.e.

sup £(z) = (pa * F)(a)] 0., n = o0

vV K compact C RY.

(i) Let f € C.(Q). Extend f by zero on the whole of R%. Then, for sufficiently large
n, p, * f € C2(Q) and

sup | (@) = (pnx )(@)[ = 0, n = oo

(iii) Let f € LP(Q), 1 < p < oco. Extend f by zero to the whole of R¢. Then
pn * [ € C(R?Y). Moreover p, x f € LP(Q), |lpn * fllre < |Ifllzr), and

\f = pn* fller@) — 0, n = oco.

Proof. First note in the definition of the convolution of two functions f,g on R? if

for fixed € R? the integral [,, f(z — y)g(y) dy exists, then the change of variables

z =1 —y gives fRd flx—y)g(y)dy = f]Rd g(x — 2)f(z)dz, i.e. that fxg=g=* f.
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(i) Let f € C(R?). Then it is clear that for cach z € R? the integral [, pn(z—y)f(y) dy

exists, since supp p, = B(0, ) implies that p,(z —y) = 0 for [z —y| > %, so that

Jrapn(z =) f(W)dy = [\ yc1 pn(z = y) f(y) dy.
In the sequel we set f, = p, * f. First we show that f,, € C(R%). To this end,

fix 2 = (7;) € R? and for 0 < § < 1 define 2/ = (2}) € R? by 2} = x; + \%, so that
|z — 2’| = 4. Then
fu(@')=fun(x) = / [on (2" =y) —pn(z—y)]f (y) dy = / [on (&' =) =pn(z—y)]f (y) dy.
R4 yilz—y|<E+1
Therefore, letting B(a,r) = {z € R?: |z — a| <71},
(@) = fa(@) < max |f()] (@’ —y) = pulz —y)ldy.  (A12)

yeB(z, yeB(x,241)
By the mean-value theorem in R it follows that p, (2’ —y) — pn(x—y) = Vp.(€)(z'—2),
where £ = 0(z' —y) + (1 — 0)(z — y), for some 6 € [0,1], i.e. |po (2" —y) — pu(x — )| <
SUp,cpra |Vpn(2)| 6. Hence, by | fn(2) — fu(x)] < C6, for some positive constant
C = C(f,n,x), proving that f,, € C(R?).
We next show that af” 9n(®) oxists, af" € C(R%), and af" = Jga ‘gg’ll (x—vy)f(y)dy. Fix

r€R% et 0<d <1, and deﬁnex € ]Rd as &’ = (:E1+5,a72, ..., Zq) so that |2/ — x| = 0.
Then

1 , 1 /
S —f) = [ Sl =) ke )] S

and since by the mean-value theorem in the direction x;

n )|

S lonla’ =) = pale )| < 3max |22

0 zcRd

it follows for y € B(z, + 1) that ol y)é p”(z_y)f(y)‘ < C for some constant C' =
C(f,n,x); by LDCT, lims_g 5 (fu(2) — fu(x)) exists and is equal to

/EB( 1) bimy 1( n(@ = y) — pulx —y)) f(y) dy.

6—0 0
Therefore T’I(x) exists and 8f” = Jpa gf!f x —y)f(y)dy. As before, we conclude
that = af" € C(R?) since supp <8p”> C B(0,2).

If now @ = (aq,...,0a4) is a d-vector of nonnegative integers (a so-called multi-

aa1+.4.+ad

y [0 Zu—
index) and we let D* = T

denote the partial differential operator on R? of

order (v, . .., ag), we may easily extend the argument above, since p, € C5°(R?) and
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supp(D®p,) C B(0, 1), and prove that D*f, € C(R?) and D*f,(z) = [ou D2pn(z —
y)f(x)dy. Consequently f,, € C*=(R?). In order to show now the remaining assertion
of (i), note that for x € R?, the properties of f, imply that

(@)= f(2)| =

AJ“$—w—fmﬂ%@ymy:

[ U= @) ) dy
yeB(0,2)
< sup [f(z—y) = f(z)]. (A.13)
yeB(0,+)
Let K C R? be compact. Then Ve > 0 35 > 0 such that |f(x —y) — f(x)] < ¢ for
all 2 € K and y : |y| < 6. Using (A.13) for n > : we conclude that for such n,
|fu(z) — f(z)] <€, Va € K, ie. that sup,cp | fu(z) — f(2)] = 0, n = 0.

(ii) Let K = supp f. Then K is a compact subset of Q. For n = 1,2,3,... define
K,={zeR?:3y € K,|r —y| <1} (Thus K, is K increased by a band of width
% around K.) Since € is open, the distance of supp f from 02 is positive; therefore
for some integer ng, K,, is a compact subset of (2. Obviously, K, C K,, for n > n,.
Note now that supp f, C K,. (Indeed, since f,(x) = [papn(z —y) f(y) dy, if © & K,
then Vy € K it holds that |z — y| > %, ie. pn(a: —y) = 0, implying f,(x) = 0.)
We conclude that for n > ng, supp f,, C K,,, and by (i) sup,cq |f(z) — fu(2)] =
W,erey 11(2) = fule)] 0, a5 = o0

(iii) Let f € LP(Q2), 1 < p < oo, and extend f by zero to the whole of R%. Fix z € R

Then f,(x), i.e. the integral [o, pn(z—y) f(y)dy, exists, since [0, |pn(z—y) f(y)|dy =
Jp,ry pn(@ = ) [fW)ldy < max.cp 1) pn(2) [, 1) [fW)dy = Co [, 1) [F ()] dy,
Where C,, is a positive constant, and [ Bal) | f(y)| dy obviously exists if p = 1, while if
1 < p < oo by the Hoélder inequality we have for % + i =1

/ |f(y)|dy < (/ 1th) (/ |f(y)|pdy> < Cfllze
B(z,L) B(z,L) B(z,1)

for some positive constant C' = C'(n, ¢, x).
We may also check that f,, € C(R?). To this end fix x € R? and define 2’ € R? by
x;:xi—i—\%forogég 1 so that |z — /| = 0. Then

16 = fs@ < [ Il =) = onle =)l o)y <

max lon (2" —y) — po(z — ¥y |/ y)|dy. (A.14)

yeB(z, L)
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The integral in the right-hand side of this inequality may be bounded as above by
| fllL1) if p=1and by C(n,q,2) || fllzr) if 1 < p < oco. In addition, since p, (2" —y) —
pn(z—y) = Vp,(§)(2'—x) by the mean-value theorem, we have |p, (2’ —y)—pp(x—y)| <
max,cgd |Vpn(2)|d; the continuity of f,, at = follows then from (A.14)).

That in fact f, € C®(R?) is straightforward to prove. Fixing x € R? and taking

e.g. ¥’ such that #) =z + 6, 2, =x;, 2 <i < d, for 0 < < 1, we have

() =0 = [

Arguing as above to bound | Bz, 1 41) |f(y)|dy and using the mean-value theorem in

[on (2" —y) — pu(z —y)] f(y) dy.

S| =
SO

the direction z; to bound $|p, (2’ —y) — pa(z — y)| for y € B(z, =+1) we may apply
the LDCT to take the limit as § — 0, and conclude that %’;( ) exists and 8f" “(z) =
9en (2 —y) f(y) dy from which we infer that g—i’; € C(RY). (See also the proof of (i).)

)

R4 Oz
The fact that D f,(z) = [pa D2pn(z—y) f(y) dy and, consequently, that D f,, € C(R?

for any multiindex o follows easily. Therefore f,, € C°°(R?).
We now prove that for all n, f,, € LP(Q) and || fullze) < || fllzr@). For z € RY,

1 < p < oo, and é + % = 1, we have by Holder’s inequality and the properties of p,

@ =| [ ie-nmwa| < ([ -k swa)
< ([1se—vrnwa) ([ a) = [ 15t -upoma

Therefore, by Fubini’s theorem, since f = 0 outside €2,

that

ulliioy < 1ol < [ [ 17 =P pulo) dyo =

[t ([ e =wipac)ay= ([ o) an) 1l = Wl

which proves the result. The case p = 1 is obvious.

Finally we show that f, — f in LP(§2) as n — oo. First assume that f € C.(€2) and
recall from the proof of (ii) that in such a case supp f,, C K, for n > ng, where K, is a
compact set included in §2 such that supp f = K C Ko, and maxeex,, |f(z)—fo(z)| —
0. Therefore, since ||f — fn||1£p(m = fKno |f = fol? < maxeek,, |f — fal? 1(Kn,), we
see that ||f — fullLr@@) = 0, n — oco. Hence the result is true for f € C.(Q). By
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Theorem [A 2.2 we know that C,(€2) is dense in LP(§2). Therefore, given f € LP() and
e > 0, there exists g. € C,(Q2) such that ||g. — f|lzr) < €. Hence, putting (g.), =
P * ge we have [|(g2)n — fullze) = 1(9e = Flallzr) < l9e = fllzr) < €. Therefore
I f=Fallze) < 1 =gell o) +119:—(9e)nll @)+ (g )n—fall o) < 26+|ge— (92 )nll o (-
Now, since for each € > 0, g. € C.(Q2), we have proved above that (g.), — g. in LP(Q)
for each € > 0, as n — oo. Thus, there exists N = N(¢) such that ||g. — (g:)n|lr) < €
for n > N(e). We conclude that for n > N(e), || f = fullr@) < 3¢, ie. that f, = fin
LP(§2) as n — oo. O

Proposition A 2.6. The space C2°(£2) is dense in LP(2), if 1 < p < oc.

Proof. By Theorem we know that C.(€) is dense in LP(Q2) if 1 < p < oco. If
f € C.(Q), then arguing as in the last part of the proof of Lemma (iii), we may
construct a sequence in C2°(£2), namely f,, for n > ng, such that f, — f in LP(Q),

n — 00. O
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