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Invariant Theory of Finite Groups

Invariant theory has had a profound effect on the development of algebraic geometry.
For example, the Hilbert Basis Theorem and Hilbert Nullstellensatz, which play a cen-
tral role in the earlier chapters in this book, were proved by Hilbert in the course of his
investigations of invariant theory.

In this chapter, we will study the invariants of finite groups. The basic goal is to
describe all polynomials which are unchanged when we change variables according
to a given finite group of matrices. Our treatment will be elementary and by no means
complete. In particular, we do not presume a prior knowledge of group theory.

§§1 Symmetric Polynomials

Symmetric polynomials arise naturally when studying the roots of a polynomial. For
example, consider the cubic f = x3 + bx2 + cx + d and let its roots be α1, α2, α3.
Then

x3 + bx2 + cx + d = (x − α1)(x − α2)(x − α3).

If we expand the right-hand side, we obtain

x3 + bx2 + cx + d = x3 − (α1 + α2 + α3)x2 + (α1α2 + α1α3 + α2α3)x − α1α2α3,

and thus,

b=−(α1 + α2 + α3),

c= α1α2 + α1α3 + α2α3,(1)
d =−α1α2α3.

This shows that the coefficients of f are polynomials in its roots. Further, since
changing the order of the roots does not affect f , it follows that the polynomials
expressing b, c, d in terms of α1, α2, α3 are unchanged if we permute α1, α2, α3. Such
polynomials are said to be symmetric. The general concept is defined as follows.
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318 7. Invariant Theory of Finite Groups

Definition 1. A polynomial f ∈ k[x1, . . . , xn] is symmetric if

f (xi1 , . . . , xin ) = f (x1, . . . , xn)

for every possible permutation xi1 , . . . , xin of the variables x1, . . . , xn.

For example, if the variables are x, y, and z, then x2+ y2+z2 and xyz are obviously
symmetric. The following symmetric polynomials will play an important role in our
discussion.

Definition 2. Given variables x1, . . . , xn, we define the elementary symmetric func-
tions σ1, . . . , σn ∈ k[x1, . . . , xn] by the formulas

σ1 = x1 + · · · + xn,
...

σr =
∑

i1<i2<···<ir

xi1 xi2 · · · xir ,

...

σn = x1x2 · · · xn .

Thus, σr is the sum of all monomials that are products of r distinct variables. In
particular, every term of σr has total degree r . To see that these polynomials are indeed
symmetric, we will generalize observation (1). Namely, introduce a new variable X
and consider the polynomial

(2) f (X) = (X − x1)(X − x2) · · · (X − xn)

with roots x1, . . . , xn . If we expand the right-hand side, it is straightforward to show
that

f (X) = Xn − σ1 Xn−1 + σ2 Xn−2 + · · · + (−1)n−1σn−1 X + (−1)nσn

(we leave the details of the proof as an exercise). Now suppose that we rearrange
x1, . . . , xn . This changes the order of the factors on the right-hand side of (2), but f
itself will be unchanged. Thus, the coefficients (−1)rσr of f are symmetric functions.

One corollary is that for any polynomial with leading coefficient 1, the other coeffi-
cients are the elementary symmetric functions of its roots (up to a factor of ±1). The
exercises will explore some interesting consequences of this fact.

From the elementary symmetric functions, we can construct other symmetric func-
tions by taking polynomials in σ1, . . . , σn . Thus, for example,

σ 2
2 − σ1σ3 = x2 y2 + x2 yz + x2z2 + xy2z + xyz2 + y2z2

is a symmetric polynomial. What is more surprising is that all symmetric polynomials
can be represented in this way.
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Theorem 3 (The Fundamental Theorem of Symmetric Polynomials). Every sym-
metric polynomial in k[x1, . . . , xn] can be written uniquely as a polynomial in the
elementary symmetric functions σ1, . . . , σn.

Proof. We will use lex order with x1 > x2 > · · · > xn . Given a nonzero symmetric
polynomial f ∈ k[x1, . . . , xn], let LT( f ) = axα . If α = (α1, . . . , αn), we first claim
that α1 ≥ α2 ≥ · · · ≥ αn . To prove this, suppose that αi < αi+1 for some i . Let β
be the exponent vector obtained from α by switching αi and αi+1. We will write this
as β = (. . . , αi+1, αi , . . .). Since axα is a term of f , it follows that axβ is a term of
f (. . . , xi+1, xi , . . .). But f is symmetric, so that f (. . . , xi+1, xi , . . .) = f , and thus,
axβ is a term of f . This is impossible since β > α under lex order, and our claim is
proved.

Now let
h = σ

α1−α2
1 σ

α2−α3
2 · · · σαn−1−αn

n−1 σαn
n .

To compute the leading term of h, first note that LT(σr ) = x1x2 · · · xr for 1 ≤ r ≤ n.
Hence,

(3)

LT(h)= LT(σ
α1−α2
1 σ

α2−α3
2 · · · σαn

n )
= LT(σ1)

α1−α2 LT(σ2)
α2−α3 · · · LT(σn)αn

= xα1−α2
1 (x1x2)

α2−α3 · · · (x1 · · · xn)αn

= xα1
1 xα2

2 · · · xαn
n = xα.

It follows that f and ah have the same leading term, and thus,

multideg( f − ah) < multideg( f )

whenever f− ah �= 0.
Now set f1 = f− ah and note that f1 is symmetric since f and ah are. Hence,

if f1 �= 0, we can repeat the above process to form f2 = f1 − a1h1, where a1 is
a constant and h1 is a product of σ1, . . . , σn to various powers. Further, we know
that LT( f2) < LT( f1) when f2 �= 0. Continuing in this way, we get a sequence of
polynomials f, f1, f2, . . . with

multideg( f ) > multideg( f1) > multideg( f2) > · · · .

Since lex order is a well-ordering, the sequence must be finite. But the only way the
process terminates is when ft+1 = 0 for some t . Then it follows easily that

f = ah + a1h1 + · · · + at ht ,

which shows that f is a polynomial in the elementary symmetric functions. Finally,
we need to prove uniqueness. Suppose that we have a symmetric polynomial f which
can be written

f = g1(σ1, . . . , σn) = g2(σ1, . . . , σn).

Here, g1 and g2 are polynomials in n variables, say y1, . . . , yn . We need to prove that
g1 = g2 in k[y1, . . . , yn].
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If we set g = g1 − g2, then g(σ1, . . . , σn) = 0 in k[x1, . . . , xn]. Unique-
ness will be proved if we can show that g = 0 in k[y1, . . . , yn]. So suppose that
g �= 0. If we write g = ∑

β aβ yβ , then g(σ1, . . . , σn) is a sum of the polynomials
gβ = aβσ

β1
1 σ

β2
2 · · · σβn

n , where β = (β1, . . . , βn). Furthermore, the argument used in
(3) above shows that

LT(gβ) = aβ xβ1+···+βn
1 xβ2+···+βn

2 · · · xβn
n .

It is an easy exercise to show that the map

(β1, . . . βn) �→ (β1 + · · · + βn, β2 + · · · + βn, . . . , βn)

is injective. Thus, the gβ ’s have distinct leading terms. In particular, if we pick β such
that LT(gβ) > LT(gγ ) for all γ �= β, then LT(gβ) will be greater than all terms of the
gγ ’s. It follows that there is nothing to cancel LT(gβ) and, thus, g(σ1, . . . , σn) cannot
be zero in k[x1, . . . , xn]. This contradiction completes the proof of the theorem.

The proof just given is due to Gauss, who needed the properties of symmetric poly-
nomials for his second proof (dated 1816) of the fundamental theorem of algebra. Here
is how Gauss states lex order: “Then among the two terms

Maαbβcγ · · · and Maα′bβ ′cγ ′ · · ·
superior order is attributed to the first rather than the second, if

either α > α′, or α = α′ and β > β ′, or α = α′, β = β ′ and γ > γ ′, or etc.”

[see p. 36 of GAUSS (1876)]. This is the earliest known explicit statement of lex order.
Note that the proof of Theorem 3 gives an algorithm for writing a symmetric poly-

nomial in terms of σ1, . . . , σn . For an example of how this works, consider

f = x3 y + x3z + xy3 + xz3 + y3z + yz3 ∈ k[x, y, z].

The leading term of f is x3 y = LT(σ 2
1 σ2), which gives

f1 = f − σ 2
1 σ2 = −2x2 y2 − 5x2 yz − 2x2z2 − 5xy2z − 5xyz2 − 2y2z2.

The leading term is now −2x2 y2 = −2LT(σ 2
2 ), and thus,

f2 = f − σ 2
1 σ2 + 2σ 2

2 = −x2 yz − xy2z − xyz2.

Then one easily sees that

f3 = f − σ 2
1 σ2 + 2σ 2

2 + σ1σ3 = 0

and hence,
f = σ 2

1 σ2 − 2σ 2
2 − σ1σ3

is the unique expression of f in terms of the elementary symmetric polynomials.
Surprisingly, we do not need to write a general algorithm for expressing a symmetric

polynomial in σ1, . . . , σn , for we can do this process using the division algorithm from
Chapter 2. We can even use the division algorithm to check for symmetry. The precise
method is as follows.
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Proposition 4. In the ring k[x1, . . . , xn, y1, . . . , yn], fix a monomial order where any
monomial involving one of x1, . . . , xn is greater than all monomials in k[y1, . . . , yn]. Let
G be a Groebner basis of the ideal 〈σ1− y1, . . . , σn− yn〉 ⊂ k[x1, . . . , xn, y1, . . . , yn].
Given f ∈ k[x1, . . . , xn], let g = f

G
be the remainder of f on division by G. Then:

(i) f is symmetric if and only if g ∈ k[y1, . . . , yn].
(ii) If f is symmetric, then f = g(σ1, . . . , σn) is the unique expression of f as a

polynomial in the elementary symmetric polynomials σ1, . . . , σn.

Proof. As above, we have f ∈ k[x1, . . . , xn], and g ∈ k[x1, . . . , xn, y1, . . . , yn] is its
remainder on division by G = {g1, . . . , gt }. This means that

f = A1g1 + · · · + At gt + g,

where A1, . . . , At ∈ k[x1, . . . , xn, y1, . . . , yn]. We can assume that gi �= 0 for all i .
To prove (i), first suppose that g ∈ k[y1, . . . , yn]. Then for each i , substitute

σi for yi in the above formula for f . This will not affect f since it involves only
x1, . . . , xn . The crucial observation is that under this substitution, every polynomial in
〈σ1 − y1, . . . , σn − yn〉 goes to zero. Since g1, . . . , gt lie in this ideal, it follows that

f = g(σ1, . . . , σn).

Hence, f is symmetric.
Conversely, suppose that f ∈ k[x1, . . . , xn] is symmetric. Then f = g(σ1, . . . , σn)

for some g ∈ k[y1, . . . , yn]. We want to show that g is the remainder of f on divi-
sion by G. To prove this, first note that in k[x1, . . . , xn, y1, . . . , yn], a monomial in
σ1, . . . , σn can be written as follows:

σ
α1
1 · · · σαn

n = (y1 + (σ1 − y1))
α1 · · · (yn + (σn − yn))αn

= yα1
1 · · · yαn

n + B1 · (σ1 − y1)+ · · · + Bn · (σn − yn)

for some B1, . . . , Bn ∈ k[x1, . . . , xn, y1, . . . , yn]. Multiplying by an appropriate con-
stant and adding over the exponents appearing in g, it follows that

g(σ1, . . . , σn) = g(y1, . . . , yn)+ C1 · (σ1 − y1)+ · · · + Cn · (σn − yn),

where C1, . . . , Cn ∈ k[x1, . . . , xn, y1, . . . , yn]. Since f = g(σ1, . . . , σn), we can
write this as

(4) f = C1 · (σ1 − y1)+ · · · + Cn · (σn − yn)+ g(y1, . . . , yn).

We want to show that g is the remainder of f on division by G.
The first step is to show that no term of g is divisible by an element of LT(G). If this

were false, then there would be gi ∈ G, where LT(gi ) divides some term of g. Hence,
LT(gi ) would involve only y1, . . . , yn since g ∈ k[y1, . . . , yn]. By our hypothesis on
the ordering, it would follow that gi ∈ k[y1, . . . , yn]. Now replace every yi with the
corresponding σi . Since gi ∈ 〈σ1 − y1, . . . , σn − yn〉, we have already observed that
gi goes to zero under the substitution yi �→ σi . Then gi ∈ k[y1, . . . , yn] would mean
gi (σ1, . . . , σn) = 0. By the uniqueness part of Theorem 3, this would imply gi = 0,
which is impossible since gi �= 0. This proves our claim. It follows that in (4), no term
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of g is divisible by an element of LT(G), and since G is a Groebner basis, Proposition 1
of Chapter 2, §6 tells us that g is the remainder of f on division by G. This proves that
the remainder lies in k[y1, . . . , yn] when f is symmetric.

Part (ii) of the proposition follows immediately from the above arguments and we
are done.

A seeming drawback to the above proposition is the necessity to compute a Groebner
basis for 〈σ1 − y1, . . . , σn − yn〉. However, when we use lex order, it is quite simple
to write down a Groebner basis for this ideal. We first need some notation. Given
variables u1, . . . , us, let

hi (u1, . . . , us) =
∑

|α|=i

uα

be the sum of all monomials of total degree i in u1, . . . , us . Then we get the following
Groebner basis.

Proposition 5. Fix lex order on k[x1, . . . , xn, y1, . . . , yn] with x1 > · · · > xn >
y1 > · · · > yn. Then the polynomials

gk = hk(xk, . . . , xn)+
k∑

i=1

(−1)i hk−i (xk, . . . , xn)yi , k = 1, . . . , n,

form a Groebner basis for the ideal 〈σ1 − y1, . . . , σn − yn〉.

Proof. We will sketch the proof, leaving most of the details for the exercises. The first
step is to note the polynomial identity

(5) 0 = hk(xk, . . . , xn)+
k∑

i=1

(−1)i hk−i (xk, . . . , xn)σi .

The proof will be covered in Exercises 10 and 11.
The next step is to show that g1, . . . , gn form a basis of 〈σ1 − y1, . . . , σn − yn〉. If

we subtract the identity (5) from the definition of gk , we obtain

(6) gk =
k∑

i=1

(−1)i hk−i (xk, . . . , xn)(yi − σi ),

which proves that 〈g1, . . . , gn〉 ⊂ 〈σ1− y1, . . . , σn − yn〉. To prove the opposite inclu-
sion, note that since h0 = 1, we can write (6) as

(7) gk = (−1)k(yk − σk)+
k−1∑

i=1

(−1)i hk−i (xk, . . . , xn)(yi − σi ).

Then induction on k shows that 〈σ1 − y1, . . . , σn − yn〉 ⊂ 〈g1, . . . , gn〉 (see Exer-
cise 12).
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Finally, we need to show that we have a Groebner basis. In Exercise 12, we will ask
you to prove that

LT(gk) = xk
k ·

This is where we use lex order with x1 > · · · > xn > y1 > · · · > yn . Thus the
leading terms of g1, . . . , gk are relatively prime, and using the theory developed in §9
of Chapter 2, it is easy to show that we have a Groebner basis (see Exercise 12 for the
details). This completes the proof.

In dealing with symmetric polynomials, it is often convenient to work with ones that
are homogeneous. Here is the definition.

Definition 6. A polynomial f ∈ k[x1, . . . , xn] is homogeneous of total degree k
provided that every term appearing in f has total degree k.

As an example, note that the i-th elementary symmetric function σi is homogeneous
of total degree i . An important fact is that every polynomial can be written uniquely as
a sum of homogeneous polynomials. Namely, given f ∈ k[x1, . . . , xn], let fk be the
sum of all terms of f of total degree k. Then each fk is homogeneous and f =∑

k fk .
We call fk the k-th homogeneous component of f .

We can understand symmetric polynomials in terms of their homogeneous compo-
nents as follows.

Proposition 7. A polynomial f ∈ k[x1, . . . , xn] is symmetric if and only if all of its
homogeneous components are symmetric.

Proof. Given a symmetric polynomial f, let xi1 , . . . , xin be a permutation of x1, . . . , xn .
This permutation takes a term of f of total degree k to one of the same total degree.
Since f (xi1 , . . . , xin ) = f (x1, . . . , xn), it follows that the k-th homogeneous compo-
nent must also be symmetric. The converse is trivial and the proposition is proved.

Proposition 7 tells us that when working with a symmetric polynomial, we can as-
sume that it is homogeneous. In the exercises, we will explore what this implies about
how the polynomial is expressed in terms of σ1, . . . , σn .

The final topic we will explore is a different way of writing symmetric polynomials.
Specifically, we will consider the power sums

sk = xk
1 + xk

2 + · · · + xk
n .

Note that sk is symmetric. Then we can write an arbitrary symmetric polynomial in
terms of s1, . . . , sn as follows.

Theorem 8. If k is a field containing the rational numbers �, then every symmet-
ric polynomial in k[x1, . . . , xn] can be written as a polynomial in the power sums
s1, . . . , sn.
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Proof. Since every symmetric polynomial is a polynomial in the elementary symmet-
ric functions (by Theorem 3), it suffices to prove that σ1, . . . , σn are polynomials in
s1, . . . , sn . For this purpose, we will use the Newton identities, which state that

sk − σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk = 0, 1 ≤ k ≤ n,

sk − σ1sk−1 + · · · + (−1)n−1σn−1sk−n+1 + (−1)nσnsk−n = 0, k > n.

The proof of these identities will be given in the exercises.
We now prove by induction on k that σk is a polynomial in s1, . . . , sn . This is true

for k = 1 since σ1 = s1. If the claim is true for 1, 2, . . . , k − 1, then the Newton
identities imply that

σk = (−1)k−1 1
k
(sk − σ1sk−1 + · · · + (−1)k−1σk−1s1).

We can divide by the integer k because � is contained in the coefficient field (see
Exercise 16 for an example of what can go wrong when � �⊂ k). Then our inductive
assumption and the above equation show that σk is a polynomial in s1, . . . , sn.

As a consequence of Theorems 3 and 8, every elementary symmetric function can
be written in terms of power sums, and vice versa. For example,

s2 = σ 2
1 − 2σ2 ←→ σ2 = 1

2
(s2

1 − s2),

s3 = σ 3
1 − 3σ1σ2 + 3σ3 ←→ σ3 = 1

6
(s3

1 − 3s1s2 + 2s3).

Power sums will be unexpectedly useful in §3 when we give an algorithm for finding
the invariant polynomials for a finite group.

EXERCISES FOR §§1

1. Prove that f ∈ k[x, y, z] is symmetric if and only if f (x, y, z) = f (y, x, z) = f (y, z, x).
2. (Requires abstract algebra) Prove that f ∈ k[x1, . . . , xn] is symmetric if and only if

f (x1, x2, x3, . . . , xn) = f (x2, x1, x3, . . . , xn) = f (x2, x3, . . . xn, x1). Hint: Show that
the cyclic permutations (1, 2) and (1, 2, . . . , n) generate the symmetric group Sn . See
Exercise 11 in §2.10 of HERSTEIN (1975).

3. Let σ n
i be the i-th elementary symmetric function in variables x1, . . . , xn . The superscript

n denotes the number of variables and is not an exponent. We also set σ n
0 = 1 and σ n

i = 0
if i < 0 or i > n. Prove that σ n

i = σ n−1
i + xnσ n−1

i−1 for all n > 1 and all i . This identity is
useful in induction arguments involving elementary symmetric functions.

4. As in (2), let f (X) = (X − x1)(X − x2) · · · (X − xn). Prove that f = Xn − σ1 Xn−1 +
σ2 Xn−2 + · · · + (−1)n−1σn−1 X + (−1)nσn . Hint: You can give an induction proof using
the identities of Exercise 3.

5. Consider the polynomial

f = (x2 + y2)(x2 + z2)(y2 + z2) ∈ k[x, y, z].

a. Use the method given in the proof of Theorem 3 to write f as a polynomial in the
elementary symmetric functions σ1, σ2, σ3.

b. Use the method described in Proposition 4 to write f in terms of σ1, σ2, σ3.
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You can use a computer algebra system for both parts of the exercise. Note that by stripping
off the coefficients of powers of X in the polynomial (X − x)(X − y)(X − z), you can get
the computer to generate the elementary symmetric functions.

6. If the variables are x1, . . . , xn , show that
∑

i �= j x2
i x j = σ1σ2−3σ3. Hint: If you get stuck,

see Exercise 13. Note that a computer algebra system cannot help here!
7. Let f = xn + a1xn−1 + · · · + an ∈ k[x] have roots α1, . . . , αn , which lie in some bigger

field K containing k.
a. Prove that any symmetric polynomial g(α1, . . . , αn) in the roots of f can be expressed

as a polynomial in the coefficients a1, . . . , an of f .
b. In particular, if the symmetric polynomial g has coefficients in k, conclude that

g(α1, . . . , αn) ∈ k.
8. As in Exercise 7, let f = xn + a1xn−1 + · · · + an ∈ k[x] have roots α1, . . . , αn , which lie

in some bigger field K containing k. The discriminant of f is defined to be

D( f ) =
∏

i �= j

(αi − α j )

a. Use Exercise 7 to show that D( f ) is a polynomial in a1, . . . , an .
b. When n = 2, express D( f ) in terms of a1 and a2. Does your result look familiar?
c. When n = 3, express D( f ) in terms of a1, a2, a3.
d. Explain why a cubic polynomial x3 + a1x2 + a2x + a3 has a multiple root if and only

if −4a3
1a3 + a2

1a2
2 + 18a1a2a3 − 4a3

2 − 27a2
3 = 0.

9. Given a cubic polynomial f = x3+ a1x2+ a2x + a3, what condition must the coefficients
of f satisfy in order for one of its roots to be the average of the other two? Hint: If α1 is
the average of the other two, then 2α1 − α2 − α3 = 0. But it could happen that α2 or α3
is the average of the other two. Hence, you get a condition stating that the product of three
expressions similar to 2α1 − α2 − α3 is equal to zero. Now use Exercise 7.

10. As in Proposition 5, let hi (x1, . . . , xn) be the sum of all monomials of total degree i in
x1, . . . , xn . Also, let σ0 = 1 and σi = 0 if i > n. The goal of this exercise is to show that

0 =
k∑

i=0

(−1)i hk−i (x1, . . . , xn)σi (x1, . . . , xn).

In Exercise 11, we will use this to prove the closely related identity (5) that appears in the
text. To prove the above identity, we will compute the coefficients of the monomials xα that
appear in hk−i σi . Since every term in hk−i σi has total degree k, we can assume that xα has
total degree k. We will let a denote the number of variables that actually appear in xα .
a. If xα appears in hk−i σi , show that i ≤ a. Hint: How many variables appear in each term

of σi ?
b. If i ≤ a, show that exactly

(a
i
)

terms of σi involve only variables that appear in xα . Note
that all of these terms have total degree i .

c. If i ≤ a, show that xα appears in hk−i σi with coefficient
(a

i
)
. Hint: This follows from

part b because hk−i is the sum of all monomials of total degree k−i , and each monomial
has coefficient 1.

d. Conclude that the coefficient of xα in
∑k

i=0(−1)i hk−i σi is
∑a

i=0(−1)i (a
i
)
. Then use

the binomial theorem to show that the coefficient of xα is zero. This will complete the
proof of our identity.

11. In this exercise, we will prove the identity

0 = hk(xk , . . . , xn)+
k∑

i=1

(−1)i hk−i (xk , . . . , xn)σi (x1, . . . , xn)
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used in the proof of Proposition 5. As in Exercise 10, let σ0 = 1, so that the identity can be
written more compactly as

0 =
k∑

i=0

(−1)i hk−i (xk , . . . , xn)σi (x1, . . . , xn)

The idea is to separate out the variables x1, . . . , xk−1. To this end, if S ⊂ {1, . . . , k−1}, let
x S be the product of the corresponding variables and let |S| denote the number of elements
in S.
a. Prove that

σi (x1, . . . , xn) =
∑

S⊂{1,...,k−1}
x Sσi−|S|(xk , . . . , xn),

where we set σ j = 0 if j < 0.
b. Prove that

k∑

i=0

(−1)i hk−i (xk , . . . , xn)σi (x1, . . . , xn)

=
∑

S⊂{1,...,k−1}
x S

⎛

⎝
k∑

i=|S|
(−1)i hk−i (xk , . . . , xn)σi−|S|(xk , . . . , xn)

⎞

⎠ .

c. Use Exercise 10 to conclude that the sum inside the parentheses is zero for every S. This
proves the desired identity. Hint: Let j = i − |S|.

12. This exercise is concerned with the proof of Proposition 5. Let gk be as defined in the
statement of the proposition.
a. Use equation (7) to prove that 〈σ1 − y1, . . . , σn − yn〉 ⊂ 〈g1, . . . , gn〉.
b. Prove that LT(gk) = xk

k .
c. Combine part (b) with the results from §9 of Chapter 2 (especially Theorem 3 and Propo-

sition 4 of that section) to prove that g1, . . . , gn form a Groebner basis.
13. Let f be a homogeneous symmetric polynomial of total degree k.

a. Show that f can be written as a linear combination (with coefficients in k) of polynomi-
als of the form σ

i1
1 σ

i2
2 · · · σ in

n where k = i1 + 2i2 + · · · + nin .
b. Let m be the maximum degree of x1 that appears in f . By symmetry, m is the maximum

degree in f of any variable. If σ
i1
1 σ

i2
2 · · · σ in

n appears in the expression of f from part
(a), then prove that i1 + i2 + · · · + in ≤ m.

c. Show that the symmetric polynomial
∑

i �= j x2
i x j can be written as aσ1σ2+bσ3 for some

constants a and b. Then determine a and b. Compare this to what you did in Exercise 6.
14. In this exercise, you will prove the Newton identities used in the proof of Theorem 8. Let

the variables be x1, . . . , xn .
a. As in Exercise 3, set σ0 = 1 and σi = 0 if either i < 0 or i > n. Then show that the

Newton identities are equivalent to

sk − σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk = 0

for all k ≥ 1.
b. Prove the identity of part (a) by induction on n. Hint: Write σi as σ n

i , where the exponent
denotes the number of variables, and similarly write sk as sn

k . Use Exercise 3, and note
that sn

k = sn−1
k + xk

n .
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15. This exercise will use the identity (5) to prove the following nonsymmetric Newton identities:

xk
i − σ1xk−1

i + · · · + (−1)k−1σk−1xi + (−1)kσk = (−1)k σ̂ i
k , 1 ≤ k < n,

xk
i − σ1xk−1

i + · · · + (−1)n−1σn−1xk−n+1
i + (−1)nσn xk−n

i = 0, k ≥ n,

where σ̂ i
k = σk(xi , . . . , xi−1, xi+1, . . . , xn) is the k-th elementary symmetric function of

all variables except xi . We will then give a second proof of the Newton identities.
a. Show that the nonsymmetric Newton identity for k = n follows from (5). Then prove

that this implies the nonsymmetric Newton identities for k ≥ n. Hint: Treat the case
i = n first.

b. Show that the nonsymmetric Newton identity for k = n − 1 follows from the one for
k = n. Hint: σn = xi σ̂

i
k−1.

c. Prove the nonsymmetric Newton identity for k < n by decreasing induction on k. Hint:
By Exercise 3, σk = σ̂ i

k + xi σ̂
i
k−1.

d. Prove that
∑n

i=1 σ̂ i
k = (n−k)σ̂k . Hint: A term xi1 · · · xik , where 1 ≤ i1 < · · · < ik ≤ n,

appears in how many of the σ̂ i
k ’s?

e. Prove the Newton identities.
16. Consider the field �2 = {0, 1} consisting of two elements. Show that it is impossible to

express the symmetric polynomial xy ∈ �2[x, y] as a polynomial in s1 and s2 with coeffi-
cients �2. Hint: Show that s2 = s2

1 !
17. Express s4 as a polynomial in σ1, . . . , σ4 and express σ4 as a polynomial in s1 . . . , s4.
18. We can use the division algorithm to automate the process of writing a polynomial

g(σ1, . . . , σn) in terms of s1, . . . , sn . Namely, regard σ1, . . . , σn, s1, . . . , sn as variables
and consider the polynomials

gk = sk = σ1sk−1 + · · · + (−1)k−1σk−1s1 + (−1)kkσk , 1 ≤ k ≤ n.

Show that if we use the correct lex order, the remainder of g(σ1, . . . , σn) on division by
g1, . . . , gn will be a polynomial (s1, . . . , sn) such that g(σ1, . . . , σn) = h(s1, . . . , sn).
Hint: The lex order you need is not σ1 > σ2 > · · · > σn > s1 > · · · > sn .

§§2 Finite Matrix Groups and Rings of Invariants

In this section, we will give some basic definitions for invariants of finite matrix groups
and we will compute some examples to illustrate what questions the general theory
should address. For the rest of this chapter, we will always assume that our field k
contains the rational numbers �. Such fields are said to be of characteristic zero.

Definition 1. Let GL(n, k) be the set of all invertible n × n matrices with entries in
the field k.

If A and B are invertible n× n matrices, then linear algebra implies that the product
AB and inverse A−1 are also invertible (see Exercise 1). Also, recall that the n × n
identity matrix In has the properties that A · In = In · A = A and A · A−1 = In for all
A ∈ GL(n, k). In the terminology of Appendix A, we say that GL(n, k) is a group.

Note that A ∈ GL(n, k) gives an invertible linear map A : kn → kn via matrix mul-
tiplication. Since every linear map from kn to itself arises in this way, it is customary
to call GL(n, k) the general linear group.
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We will be most interested in the following subsets of GL(n, k).

Definition 2. A finite subset G ⊂ GL(n, k) is called a finite matrix group provided
it is nonempty and closed under matrix multiplication. The number of elements of G is
called the order of G and is denoted |G|.

Let us look at some examples of finite matrix groups.

Example 3. Suppose that A ∈ GL(n, k) is a matrix such that Am = In for some
positive integer m. If m is the smallest such integer, then it is easy to show that

Cm = {In, A, . . . , Am−1} ⊂ GL(n, k)

is closed under multiplication (see Exercise 2) and, hence, is a finite matrix group. We
call Cm a cyclic group of order m. An example is given by

A =
(

0 −1
1 0

)
∈ GL(2, k).

One can check that A4 = I2, so that C4 = {I2, A, A2, A3} is a cyclic matrix group of
order 4 in GL(2, k).

Example 4. An important example of a finite matrix group comes from the per-
mutations of variables discussed in §1. Let τ denote a permutation xi1 , . . . , xin of
x1, . . . , xn . Since τ is determined by what it does to the subscripts, we will set
i1 = τ(1), i2 = τ(2), . . . , in = τ(n). Then the corresponding permutation of vari-
ables is xτ(1), . . . , xτ(n).

We can create a matrix from τ as follows. Consider the linear map that takes
(x1, . . . , xn) to (xτ(1), . . . , xτ(n)). The matrix representing this linear map is denoted
Mτ and is called a permutation matrix. Thus, Mτ has the property that under matrix
multiplication, it permutes the variables according to τ :

Mτ ·
⎛

⎜⎝
x1
...

xn

⎞

⎟⎠ =
⎛

⎜⎝
xτ(1)

...
xτ(n)

⎞

⎟⎠ .

We leave it as an exercise to show that Mτ is obtained from the identity matrix by
permuting its columns according to τ . More precisely, the τ(i)-th column of Mτ is the
i-th column of In . As an example, consider the permutation τ that takes (x, y, z) to
(y, z, x). Here, τ(1) = 2, τ (2) = 3, and τ(3) = 1, and one can check that

Mτ ·
⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠

⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
y
z
x

⎞

⎠ .

Since there are n! ways to permute the variables, we get n! permutation matrices.
Furthermore, this set is closed under matrix multiplication, for it is easy to show that

Mτ · Mν = Mντ ,
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where vτ is the permutation that takes i to v(τ (i)) (see Exercise 4). Thus, the permuta-
tion matrices form a finite matrix group in GL(n, k). We will denote this matrix group
by Sn . (Strictly speaking, the group of permutation matrices is only isomorphic to Sn
in the sense of group theory. We will ignore this distinction.)

Example 5. Another important class of finite matrix groups comes from the symme-
tries of regular polyhedra. For example, consider a cube in �3 centered at the origin.
The set of rotations of �3 that take the cube to itself is clearly finite and closed under
multiplication. Thus, we get a finite matrix group in GL(3,�). In general, all finite ma-
trix groups in GL(3, �) have been classified, and there is a rich geometry associated
with such groups (see Exercises 5–9 for some examples). To pursue this topic further,
the reader should consult BENSON and GROVE (1985), KLEIN (1884), or COXETER
(1973).

Finite matrix groups have the following useful properties.

Proposition 6. Let G ⊂ GL(n, k) be a finite matrix group. Then:
(i) In ∈ G.

(ii) If A ∈ G, then Am = In for some positive integer m.
(iii) If A ∈ G, then A−1 ∈ G.

Proof. Take A ∈ G. Then {A, A2, A3, . . .} ∈ G since G is closed under multipli-
cation. The finiteness of G then implies that Ai = A j for some i > j , and since
A is invertible, we can multiply each side by A− j to conclude that Am = In , where
m = i − j > 0. This proves (ii).

To prove (iii), note that (ii) implies In = Am = A · Am−1 = Am−1 · A. Thus,
A−1 = Am−1 ∈ G since G is closed under multiplication. As for (i), since G �= φ, we
can pick A ∈ G, and then, by (ii), In = Am ∈ G.

We next observe that elements of GL(n, k) act on polynomials in k[x1, . . . , xn]. To
see how this works, let A = (ai j ) ∈ GL(n, k) and f ∈ k[x1, . . . , xn]. Then

(1) g(x1, . . . , xn) = f (a11x1 + · · · + a1n xn, . . . , an1x1 + · · · + ann xn)

is again a polynomial in k[x1, . . . , xn]. To express this more compactly, let x denote
the column vector of the variables x1, . . . , xn . Thus,

x =
⎛

⎜⎝
x1
...

xn

⎞

⎟⎠ .

Then we can use matrix multiplication to express equation (1) as

g(x) = f (A · x).

If we think of A as a change of basis matrix, then g is simply f viewed using the new
coordinates.
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For an example of how this works, let f (x, y) = x2 + xy + y2 ∈ �[x, y] and

A = 1√
2

(
1 −1
1 1

)
∈ GL(2,�).

Then

g(x, y)= f (A · x) = f
(

x − y√
2

,
x + y√

2

)

=
(

x − y√
2

)2

+ x − y√
2
· x + y√

2
+

(
x + y√

2

)2

= 3
2

x2 + 1
2

y2.

Geometrically, this says that we can eliminate the xy term of f by rotating the
axes 45◦.

A remarkable fact is that sometimes this process gives back the same polynomial
we started with. For example, if we let h(x, y) = x2 + y2 and use the above matrix A,
then one can check that

h(x) = h(A · x).

In this case, we say that h is invariant under A.
This leads to the following fundamental definition.

Definition 7. Let G ⊂ GL(n, k) be a finite matrix group. Then a polynomial f (x) ∈
k[x1, . . . , xn] is invariant under G if

f (x) = f (A · x)

for all A ∈ G. The set of all invariant polynomials is denoted k[x1, . . . , xn]G.

The most basic example of invariants of a finite matrix group is given by the sym-
metric polynomials.

Example 8. If we consider the group Sn ⊂ GL(n, k) of permutation matrices, then it
is obvious that

k[x1, . . . , xn]Sn = {all symmetric polynomials in k[x1, . . . , xn]}.
By Theorem 3 of §1, we know that symmetric polynomials are polynomials in the
elementary symmetric functions with coefficients in k. We can write this as

k[x1, . . . , xn]Sn = k[σ1, . . . , σn].

Thus, every invariant can be written as a polynomial in finitely many invariants (the
elementary symmetric functions). In addition, we know that the representation in terms
of the elementary symmetric functions is unique. Hence, we have a very explicit
knowledge of the invariants of Sn .
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One of the goals of invariant theory is to examine whether all invariants
k[x1, . . . , xn]G are as nice as Example 8. To begin our study of this question,
we first show that the set of invariants k[x1, . . . , xn]G has the following algebraic
structure.

Proposition 9. Let G ⊂ GL(n, k) be a finite matrix group. Then the set k[x1, . . . , xn]G

is closed under addition and multiplication and contains the constant polynomials.

Proof. We leave the easy proof as an exercise.

Multiplication and addition in k[x1, . . . , xn]G automatically satisfy the distributive,
associative, etc., properties since these properties are true in k[x1, . . . , xn]. In the ter-
minology of Chapter 5, we say that k[x1, . . . , xn]G is a ring. Furthermore, we say that
k[x1, . . . , xn]G is a subring of k[x1, . . . , xn].

So far in this book, we have learned three ways to create new rings. In Chapter 5,
we saw how to make the quotient ring k[x1, . . . , xn]/I of an ideal I ⊂ k[x1, . . . , xn]
and the coordinate ring k[V ] of an affine variety V ⊂ kn . Now we can make the ring
of invariants k[x1, . . . , xn]G of a finite matrix group G ⊂ GL(n, k). In §4, we will see
how these constructions are related.

In §1, we saw that the homogeneous components of a symmetric polynomial were
also symmetric. We next observe that this holds for the invariants of any finite matrix
group.

Proposition 10. Let G ⊂ GL(n, k) be a finite matrix group. Then a polynomial f ∈
k[x1, . . . , xn] is invariant under G if and only if its homogeneous components are.

Proof. See Exercise 11.

In many situations, Proposition 10 will allow us to reduce to the case of homo-
geneous invariants. This will be especially useful in some of the proofs given in §3.

The following lemma will prove useful in determining whether a given polynomial
is invariant under a finite matrix group.

Lemma 11. Let G ⊂ GL(n, k) be a finite matrix group and suppose that we have
A1, . . . , Am ∈ G such that every A ∈ G can be written in the form

A = B1 B2 · · · Bt ,

where Bi ∈ {A1, . . . , Am} for every i (we say that A1, . . . , Am generate G). Then
f ∈ k[x1, . . . , xn] is in k[x1, . . . , xn]G if and only if

f (x) = f (A1 · x) = · · · = f (Am · x).

Proof. We first show that if f is invariant under matrices B1, . . . , Bt , then it is also
invariant under their product B1 · · · Bt . This is clearly true for t = 1. If we assume it is
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true for t − 1, then

f ((B1 · · · Bt ) · x) = f ((B1 · · · Bt−1) · Bt x)

= f (Bt x) (by our inductive assumption)
= f (x) (by the invariance under Bt ).

Now suppose that f is invariant under A1, . . . , Am . Since elements A ∈ G can be
written A = B1 · · · Bt , where every Bi is one of A1, . . . , Am , it follows immediately
that f ∈ k[x1, . . . , xn]G . The converse is trivial and the lemma is proved.

We can now compute some interesting examples of rings of invariants.

Example 12. Consider the finite matrix group

V4 =
{(±1 0

0 ±1

)}
⊂ GL(2, k).

This is sometimes called the Klein four-group. We use the letter V4 because “four” in
German is “vier.” You should check that the two matrices

(−1 0
0 1

)
,

(
1 0
0 −1

)

generate V4. Then Lemma 11 implies that a polynomial f ∈ k[x, y] is invariant under
V4 if and only if

f (x, y) = f (−x, y) = f (x,−y)

Writing f =∑
i j ai j xi y j , we can understand the first of these conditions as follows:

f (x, y) = f (−x, y)⇐⇒
∑

i j

ai j xi y j =
∑

i j

ai j (−x)i y j

⇐⇒
∑

i j

ai j xi y j =
∑

i j

(−1)i ai j xi yi

⇐⇒ ai j = (−1)i ai j for all i, j

⇐⇒ ai j = 0 for i odd

It follows that x always appears to an even power. Similarly, the condition f (x, y) =
f (x,−y) implies that y appears to even powers. Thus, we can write

f (x, y) = g(x2, y2)

for a unique polynomial g(x, y) ∈ k[x, y]. Conversely, every polynomial f of this
form is clearly invariant under V4. This proves that

k[x, y]V4 = k[x2, y2].

Hence, every invariant of V4 can be uniquely written as a polynomial in the two
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homogeneous invariants x2 and y2. In particular, the invariants of the Klein four-group
behave very much like the symmetric polynomials.

Example 13. For a finite matrix group that is less well-behaved, consider the cyclic
group C2 = {±I2} ⊂ GL(2, k) of order 2. In this case, the invariants consist of the
polynomials f ∈ k[x, y] for which f (x, y) = f (−x,−y). We leave it as an exercise
to show that this is equivalent to the condition

f (x, y) =
∑

i j

ai j xi y j , where ai j = 0 whenever i + j is odd.

This means that f is invariant under C2 if and only if the exponents of x and y always
have the same parity (i.e., both even or both odd). Hence, we can write a monomial
xi y j appearing in f in the form

xi y j =
{

x2k y2l = (x2)k(y2)l if i, j are even
x2k+1 y2l+1 = (x2)k(y2)l xy if i, j are odd.

This means that every monomial in f , and hence f itself, is a polynomial in the ho-
mogeneous invariants x2, y2 and xy. We will write this as

k[x, y]C2 = k[x2, y2, xy].

Note also that we need all three invariants to generate k[x, y]C2 .
The ring k[x2, y2, xy] is fundamentally different from the previous examples be-

cause uniqueness breaks down: a given invariant can be written in terms of x2, y2, xy
in more than one way. For example, x4 y2 is clearly invariant under C2, but

x4 y2 = (x2)2 · y2 = x2 · (xy)2.

In §4, we will see that the crux of the matter is the algebraic relation x2 · y2 = (xy)2

between the basic invariants. In general, a key part of the theory is determining all alge-
braic relations between invariants. Given this information, one can describe precisely
how uniqueness fails.

From these examples, we see that given a finite matrix group G, invariant theory has
two basic questions to answer about the ring of invariants k[x1, . . . , xn]G :
• (Finite Generation) Can we find finitely many homogeneous invariants f1, . . . , fm

such that every invariant is a polynomial in f1, . . . , fm?
• (Uniqueness) In how many ways can an invariant be written in terms of f1, . . . , fm?

In §4, we will see that this asks for the algebraic relations among f1, . . . , fm .
In §§3 and 4, we will give complete answers to both questions. We will also describe
algorithms for finding the invariants and the relations between them.

EXERCISES FOR §§2

1. If A, B ∈ GL(n, k) are invertible matrices, show that AB and A−1 are also invertible.
2. Suppose that A ∈ GL(n, k) satisfies Am = In for some positive integer. If m is the smallest

such integer, then prove that the set Cm = {In, A, A2, . . . , Am−1} has exactly m elements
and is closed under matrix multiplication.
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3. Write down the six permutation matrices in GL(3, k).
4. Let Mτ be the matrix of the linear transformation taking x1, . . . , xn to xτ(1), . . . , xτ(n).

This means that if e1, . . . , en is the standard basis of kn , then Mτ · (
∑

j x j e j ) =∑
j xτ( j)e j .

a. Show that Mτ · eτ(i) = ei . Hint: Observe that
∑

j x j e j =
∑

j xτ( j)eτ( j).
b. Prove that the τ(i)-th column of Mτ is the i-th column of the identity matrix.
c. Prove that Mτ · Mν = Mντ , where ντ is the permutation taking i to ν(τ(i)).

5. Consider a cube in �3 centered at the origin whose edges have length 2 and are parallel to
the coordinate axes.
a. Show that there are finitely many rotations of �3 about the origin which take the cube

to itself and show that these rotations are closed under composition. Taking the matrices
representing these rotations, we get a finite matrix group G ⊂ GL(3,�).

b. Show that G has 24 elements. Hint: Every rotation is a rotation about a line through the
origin. So you first need to identify the “lines of symmetry” of the cube.

c. Write down the matrix of the element of G corresponding to the 120◦ counterclockwise
rotation of the cube about the diagonal connecting the vertices (−1,−1,−1) and (1, 1, 1).

d. Write down the matrix of the element of G corresponding to the 90◦ counterclockwise
rotation about the z-axis.

e. Argue geometrically that G is generated by the two matrices from parts (c) and (d).
6. In this exercise, we will use geometric methods to find some invariants of the rotation group

G of the cube (from Exercise 5).
a. Explain why x2+ y2+ z2 ∈ �[x, y, z]G . Hint: Think geometrically in terms of distance

to the origin.
b. Argue geometrically that the union of the three coordinate planes V(xyz) is invariant

under G.
c. Show that I(V(xyz)) = (xyz) and conclude that if f = xyz, then for each A ∈ G, we

have f (A · x) = axyz for some real number a.
d. Show that f = xyz satisfies f (A ·x) = ±xyz for all A ∈ G and conclude that x2 y2z2 ∈

k[x, y, z]G . Hint: Use part (c) and the fact that Am = I3 for some positive integer m.
e. Use similar methods to show that the polynomials(

(x + y + z)(x + y − z)(x − y + z)(x − y − z)
)2

,
(
(x2 − y2)(x2 − z2)(y2 − z2)

)2

are in k[x, y, z]G . Hint: The plane x+ y+ z = 0 is perpendicular to one of the diagonals
of the cube.

7. This exercise will continue our study of the invariants of the rotation group G of the cube
begun in Exercise 6.
a. Show that a polynomial f is in k[x, y, z]G if and only if f (x, y, z) = f (y, z, x) =

f (−y, x, z). Hint: Use parts (c), (d), and (e) of Exercise 5.
b. Let

f = xyz,

g = (x + y + z)(x + y − z)(z − y + z)(x − y − z),

h = (x2 − y2)(x2 − z2)(y2 − z2).

In Exercise 6, we showed that f 2, g2, h2 ∈ k[x, y, z]G . Show that f, h �∈ k[x, y, z]G ,
but g, f h ∈ k[x, y, z]G . Combining this with the previous exercise, we have invariants
x2+ y2+z2, g, f 2, f h, and h2 of degrees 2, 4, 6, 9, and 12, respectively, in k[x, y, z]G .
ln §3, we will see that h2 can be expressed in terms of the others.

8. In this exercise, we will consider an interesting “duality” that occurs among the regular
polyhedra.
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a. Consider a cube and an octahedron in�3, both centered at the origin. Suppose the edges
of the cube are parallel to the coordinate axes and the vertices of the octahedron are on
the axes. Show that they have the same group of rotations. Hint: Put the vertices of the
octahedron at the centers of the faces of the cube.

b. Show that the dodecahedron and the icosahedron behave the same way. Hint: What do
you get if you link up the centers of the 12 faces of the dodecahedron?

c. Parts (a) and (b) show that in a certain sense, the “dual” of the cube is the octahedron and
the “dual” of the dodecahedron is the icosahedron. What is the “dual” of the tetrahedron?

9. (Requires abstract algebra) In this problem, we will consider a tetrahedron centered at the
origin of �3.
a. Show that the rotations of �3 about the origin which take the tetrahedron to itself give

us a finite matrix group G of order 12 in GL(3, �).
b. Since every rotation of the tetrahedron induces a permutation of the four vertices, show

that we get a group homomorphism ρ : G → S4.
c. Show that ρ is injective and that its image is the alternating group A4. This shows that

the rotation group of the tetrahedron is isomorphic in A4.
10. Prove Proposition 9.
11. Prove Proposition 10. Hint: If A = (ai j ) ∈ GL(n, k) and xi1

1 · · · xin
n is a monomial of total

degree k = i1 + · · · + in appearing in f , then show that

(a11x1 + · · · + a1n xn)i1 · · · (an1x1 + · · · + ann xn)in

is homogeneous of total degree k.
12. In Example 13, we studied polynomials f ∈ k[x, y] with the property that f (x, y) =

f (−x,−y). If f = ∑
i j ai j xi y j , show that the above condition is equivalent to ai j = 0

whenever i + j is odd.
13. In Example 13, we discovered the algebraic relation x2 · y2 = (xy)2 between the invariants

x2, y2, and xy. We want to show that this is essentially the only relation. More precisely,
suppose that we have a polynomial g(u, v, w) ∈ k[u, v, w] such that g(x2, y2, xy) = 0.
We want to prove that g(u, v, w) is a multiple (in k[u, v, w]) of uv − w2 (which is the
polynomial corresponding to the above relation).
a. If we divide g by uv −w2 using lex order with u > v > w, show that the remainder can

be written in the form u A(u, w)+ v B(v, w)+ C(w).
b. Show that a polynomial r = u A(u, w) + v B(v, w) + C(w) satisfies r(x2, y2, xy) = 0

if and only if r = 0.
14. Consider the finite matrix group C4 ⊂ GL(2,�) generated by

A =
(

i 0
0 −i

)
∈ GL(2,�)

a. Prove that C4 is cyclic of order 4.
b. Use the method of Example 13 to determine �[x, y]C4 .
c. Is there an algebraic relation between the invariants you found in part (b)? Can you give

an example to show how uniqueness fails?
d. Use the method of Exercise 13 to show that the relation found in part (c) is the only

relation between the invariants.
15. Consider

V4 =
{
±

(
1 0
0 1

)
, ±

(
0 1
1 0

)}
⊂ GL(2, k)
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a. Show that V4 is a finite matrix group of order 4.
b. Determine k[x, y]V4 .
c. Show that any invariant can be written uniquely in terms of the generating invariants you

found in part (b).
16. In Example 3, we introduced the finite matrix group C4 in GL(2, k) generated by

A =
(

0 −1
1 0

)
∈ GL(2, k).

Try to apply the methods of Examples 12 and 13 to determine k[x, y]C4 . Even if you cannot
find all of the invariants, you should be able to find some invariants of low total degree. In
§3, we will determine k[x, y]C4 completely.

§§3 Generators for the Ring of Invariants

The goal of this section is to determine, in an algorithmic fashion, the ring of invariants
k[x1, . . . , xn]G of a finite matrix group G ⊂ GL(n, k). As in §2, we assume that
our field k has characteristic zero. We begin by introducing some terminology used
implicitly in §2.

Definition 1. Given f1, . . . , fm ∈ k[x1, . . . , xn], we let k[ f1, . . . , fm] denote the sub-
set of k[x1, . . . , xn] consisting of all polynomial expressions in f1, . . . , fm with coeffi-
cients in k.

This means that the elements f ∈ k[ f1, . . . , fm] are those polynomials which can
be written in the form

f = g( f1, . . . , fm),

where g is a polynomial in m variables with coefficients in k.
Since k[ f1, . . . , fm] is closed under multiplication and addition and contains the

constants, it is a subring of k[x1, . . . , xn]. We say that k[ f1, . . . , fm] is generated by
f1, . . . , fm over k. One has to be slightly careful about the terminology: the subring
k[ f1, . . . , fm] and the ideal 〈 f1, . . . , fm〉 are both “generated” by f1, . . . , fm , but in
each case, we mean something slightly different. In the exercises, we will give some
examples to help explain the distinction.

An important tool we will use in our study of k[x1, . . . , xn]G is the Reynolds oper-
ator, which is defined as follows.

Definition 2. Given a finite matrix group G ⊂ GL(n, k), the Reynolds operator of
G is the map RG : k[x1, . . . , xn] → k[x1, . . . , xn] defined by the formula

RG( f )(x) = 1
|G|

∑

A∈G

f (A · x)

for f (x) ∈ k[x1, . . . , xn].
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One can think of RG( f ) as “averaging” the effect of G on f . Note that division by
|G| is allowed since k has characteristic zero. The Reynolds operator has the following
crucial properties.

Proposition 3. Let RG be the Reynolds operator of the finite matrix group G.
(i) RG is k-linear in f .

(ii) If f ∈ k[x1, . . . , xn], then RG( f ) ∈ k[x1, . . . , xn]G.
(iii) If f ∈ k[x1, . . . , xn]G, then RG( f ) = f .

Proof. We will leave the proof of (i) as an exercise. To prove (ii), let B ∈ G. Then

(1) RG( f )(Bx) = 1
|G|

∑

A∈G

f (A · Bx) = 1
|G|

∑

A∈G

f (AB · x).

Writing G = {A1, . . . , A|G|}, note that Ai B �= A j B when i �= j (otherwise,
we could multiply each side by B−1 to conclude that Ai = A j ). Thus the subset
{A1 B, . . . , A|G|B} ⊂ G consists of |G| distinct elements of G and hence must equal
G. This shows that

G = {AB : A ∈ G}.
Consequently, in the last sum of (1), the polynomials f (AB · x) are just the f (A · x),
possibly in a different order. Hence,

1
|G|

∑

A∈G

f (AB · x) = 1
|G|

∑

A∈G

f (A · x) = RG( f )(x),

and it follows that RG( f )(B · x) = RG( f )(x) for all B ∈ G. This implies RG( f ) ∈
k[x1, . . . , xn]G .

Finally, to prove (iii), note that if f ∈ k[x1, . . . , xn]G , then

RG( f )(x) = 1
|G|

∑

A∈G

f (A · x) = 1
|G|

∑

A∈G

f (x) = f (x)

since f invariant. This completes the proof.

One nice aspect of this proposition is that it gives us a way of creating invariants.
Let us look at an example.

Example 4. Consider the cyclic matrix group C4 ⊂ GL(2, k) of order 4 generated by

A =
(

0 −1
1 0

)
.

By Lemma 11 of §2, we know that

k[x, y]C4 = { f ∈ k[x, y] : f (x, y) = f (−y, x)}.
One can easily check that the Reynolds operator is given by

RC4( f )(x, y) = 1
4
( f (x, y)+ f (−y, x)+ f (−x,−y)+ f (y,−x))
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(see Exercise 3). Using Proposition 3, we can compute some invariants as follows:

RC4(x2)= 1
4 (x2 + (−y)2 + (−x)2 + y2) = 1

2 (x2 − y2),

RC4(xy)= 1
4 (xy + (−y)x + (−x)(−y)+ y(−x)) = 0,

RC4(x3 y)= 1
4 (x3 y + (−y)3x + (−x)3(−y)+ y3(−x)) = 1

2 (x3 y − xy3),

RC4(x2 y2)= 1
4 (x2 y2 + (−y)2x2 + (−x)2(−y)2 + y2(−x)2) = x2 y2.

Thus, x2+y2, x3 y−xy3, x2 y2 ∈ k[x, y]C4 . We will soon see that these three invariants
generate k[x, y]C4 .

It is easy to prove that for any monomial xα , the Reynolds operator gives us a
homogeneous invariant RG(xα) of total degree |α| whenever it is nonzero. The
following wonderful theorem of Emmy Noether shows that we can always find finitely
many of these invariants that generate k[x1, . . . , xn]G .

Theorem 5. Given a finite matrix group G ⊂ GL(n, k), we have

k[x1, . . . , xn]G = k[RG(xβ) : |β| ≤ |G|].
In particular, k[x1, . . . , xn]G is generated by finitely many homogeneous invariants.

Proof. If f =∑
α cαxα ∈ k[x1, . . . , xn]G , then Proposition 3 implies that

f = RG( f ) = RG

(∑

α

cαxα

)
=

∑

α

cα RG(xα).

Hence every invariant is a linear combination (over k) of the RG(xα). Consequently, it
suffices to prove that for all α, RG(xα) is a polynomial in the RG(xβ), |β| ≤ |G|.

Noether’s clever idea was to fix an integer k and combine all RG(xβ) of total degree
k into a power sum of the type considered in §1. Using the theory of symmetric func-
tions, this can be expressed in terms of finitely many power sums, and the theorem will
follow.

The first step in implementing this strategy is to expand (x1 + · · · + xn)k into a sum
of monomials xα with |α| = k:

(2) (x1 + · · · + xn)k =
∑

|α|=k

aαxα·

In Exercise 4, you will prove that aα is a positive integer for all |α| = k.
To exploit this identity, we need some notation. Given A = (ai j ) ∈ G, let Ai denote

the i-th row of A. Thus, Ai ·x = ai1x1+· · ·+ain xn . Then, if α1 = (α1, . . . , αn) ∈ �n
≥0,

let
(A · x)α = (A1 · x)α1 · · · (An · x)αn .
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In this notation, we have

RG(xα) = 1
|G|

∑

A∈G

(A · x)α.

Now introduce new variables u1, . . . , un and substitute ui Ai · x for xi in (2). This
gives the identity

(u1 A1 · x+ · · · + un An · x)k =
∑

|α|=k

aα(A · x)αuα.

If we sum over all A ∈ G, then we obtain

Sk =
∑

A∈G

(u1 A1 · x+ · · · + un An · x)k =
∑

|α|=k

aα

(
∑

A∈G

(A · x)α

)
uα

(3)
=

∑

|α|=k

bα RG(xα)uα,

where bα = |G|aα . Note how the sum on the right encodes all RG(xα) with |α| =
k. This is why we use the variables u1, . . . , un : they prevent any cancellation from
occurring.

The left side of (3) is the k-th power sum Sk of the |G| quantities

UA = u1 A1 · x+ · · · + un An · x
indexed by A ∈ G. We write this as Sk = Sk(UA : A ∈ G). By Theorem 8 of §1, every
symmetric function in the |G| quantities UA is a polynomial in S1, . . . , S|G|. Since Sk
is symmetric in the UA, it follows that

Sk = F(S1, . . . , S|G|)

for some polynomial F with coefficients in k. Substituting in (3), we obtain

∑

|α|=k

bα RG(xα)uα = F

⎛

⎝
∑

|β|=1

bβ RG(xβ)uβ, . . . ,
∑

|β|=|G|
RG(xβ)uβ

⎞

⎠ .

Expanding the right side and equating the coefficients of uα , it follows that

bα RG(xα) = a polynomial in the RG(xβ), |β| ≤ |G|.
Since k has characteristic zero, the coefficient bα = |G|aα is nonzero in k, and hence
RG(xα) has the desired form. This completes the proof of the theorem.

This theorem solves the finite generation problem stated at the end of §2. In the
exercises, you will give a second proof of the theorem using the Hilbert Basis Theorem.

To see the power of what we have just proved, let us compute some invariants.
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Example 6. We will return to the cyclic group C4 ⊂ GL(2, k) of order 4 from Exam-
ple 4. To find the ring of invariants, we need to compute RC4(xi y j ) for all i + j ≤ 4.
The following table records the results:

xi y j RC4(xi y j ) xi y j RC4(xi y j )

x 0 xy2 0
y 0 y3 0

x2 1
2 (x2 + y2) x4 1

2 (x4 + y4)

xy 0 x3 y 1
2 (x3 y − xy3)

y2 1
2 (x2 + y2) x2 y2 x2 y2

x3 0 xy3 − 1
2 (x3 y − xy3)

x2 y 0 y4 1
2 (x4 + y4)

By Theorem 5, it follows that k[x, y]C4 is generated by the four invariants x2+y2, x4+
y4, x3 y − xy3 and x2 y2. However, we do not need x4 + y4 since

x4 + y4 = (x2 + y2)2 − 2x2 y2.

Thus, we have proved that

k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2].

The main drawback of Theorem 5 is that when |G| is large, we need to compute
the Reynolds operator for lots of monomials. For example, consider the cyclic group
C8 ⊂ GL(2,�) of order 8 generated by the 45◦ rotation

A = 1√
2

(
1 −1
1 1

)
∈ GL(2,�).

In this case, Theorem 5 says that k[x, y]C8 is generated by the 44 invariants
RC8(xi y j ), i + j ≤ 8. In reality, only 3 are needed. For larger groups, things are
even worse, especially if more variables are involved. See Exercise 10 for an example.

Fortunately, there are more efficient methods for finding a generating set of invari-
ants. The main tool is Molien’s Theorem, which enables one to predict in advance the
number of linearly independent homogeneous invariants of given total degree. This
theorem can be found in Chapter 7 of BENSON and GROVE (1985) and Chapter 2 of
STURMFELS (1993). The latter also gives an efficient algorithm, based on Molien’s
Theorem, for finding invariants that generate k[x1, . . . , xn]G .

Once we know k[x1, . . . , xn]G = k[ f1, . . . , fm], we can ask if there is an algorithm
for writing a given invariant f ∈ k[x1, . . . , xn]G in terms of f1, . . . , fm . For example,
it is easy to check that the polynomial

(4) f (x, y) = x8 + 2x6 y2 − x5 y3 + 2x4 y4 + x3 y5 + 2x2 y6 + y8
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satisfies f (x, y) = f (−y, x), and hence is invariant under the group C4 from Example
4. Then Example 6 implies that f ∈ k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2]. But
how do we write f in terms of these three invariants? To answer this question, we will
use a method similar to what we did in Proposition 4 of §1.

We will actually prove a bit more, for we will allow f1, . . . , fm to be arbitrary
elements of k[x1, . . . , xn]. The following proposition shows how to test whether a
polynomial lies in k[ f1, . . . , fm] and, if so, to write it in terms of f1, . . . , fm .

Proposition 7. Suppose that f1, . . . , fm ∈ k[x1, . . . , xn] are given. Fix a monomial
order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involving one of x1, . . . , xn
is greater than all monomials in k[y1, . . . , ym]. Let G be a Groebner basis of the
ideal 〈 f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . x,y1, . . . , ym]. Given f ∈ k[x1, . . . , xn], let
g = f

G
be the remainder of f on division by G. Then:

(i) f ∈ k[ f1, . . . , fm] if and only if g ∈ k[y1, . . . , ym].
(ii) If f ∈ k[ f1, . . . , fm], then f = g( f1, . . . , fm) is an expression of f as a polyno-

mial in f1, . . . , fm.

Proof. The proof will be similar to the argument given in Proposition 4 of §1 (with
one interesting difference). When we divide f ∈ k[x1, . . . , xn] by G = {g1, . . . , gt },
we get an expression of the form

f = A1g1 + · · · + At gt + g.

with A1, . . . , At , g ∈ k[x1, . . . , xn, y1, . . . , ym].
To prove (i), first suppose that g ∈ k[y1, . . . , ym]. Then for each i , substitute fi

for yi in the above formula for f . This substitution will not affect f since it in-
volves only x1, . . . , xn , but it sends every polynomial in 〈 f1 − y1, . . . , fm − ym〉 to
zero. Since g1, . . . , gt lie in this ideal, it follows that f = g( f1, . . . , fm). Hence,
f ∈ k[ f1, . . . , fm].

Conversely, suppose that f = g( f1, . . . , fm) for some g ∈ k[y1, . . . , ym]. Arguing
as in §1, one sees that

(5) f = C1 · ( f1 − y1)+ · · · + Cm · ( fm − ym)+ g(y1, . . . , ym)

[see equation (4) of §1]. Unlike the case of symmetric polynomials, g need not be the
remainder of f on division by G—we still need to reduce some more.

Let G ′ = G ∩ k[y1, . . . , ym] consist of those elements of G involving only
y1, . . . , ym . Renumbering if necessary, we can assume G ′ = {g1, . . . , gs}, where
s ≤ t . If we divide g by G ′, we get an expression of the form

(6) g = B1g1 + · · · + Bs gs + g′,

where B1, . . . , Bs, g′ ∈ k[y1, . . . , ym]. If we combine equations (5) and (6), we can
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write f in the form

f = C ′1 · ( f1 − y1)+ · · · + C ′m · ( fm − ym)+ g′(y1, . . . ym).

This follows because, in (6), each gi lies in 〈 f1 − y1, . . . , fm − ym〉. We claim that
g′ is the remainder of f on division by G. This will prove that the remainder lies in
k[y1, . . . , ym].

Since G a Groebner basis, Proposition 1 of Chapter 2, §6 tells us that g′ is the re-
mainder of f on division by G provided that no term of g′ is divisible by an element of
LT(G). To prove that g′ has this property, suppose that there is gi ∈ G where LT(gi ) di-
vides some term of g′. Then LT(gi ) involves only y1, . . . , ym since g′ ∈ k[y1, . . . , ym].
By our hypothesis on the ordering, it follows that gi ∈ k[y1, . . . , ym] and hence,
gi ∈ G ′. Since g′ is a remainder on division by G ′, LT(gi ) cannot divide any term
of g′. This contradiction shows that g′ is the desired remainder.

Part (ii) of the proposition follows immediately from the above arguments, and we
are done.

In the exercises, you will use this proposition to write the polynomial

f (x, y) = x8 + 2x6 y2 − x5 y3 + 2x4 y4 + x3 y5 + 2x2 y6 + y8

from (4) in terms of the generating invariants x2 + y2, x3 y − xy3, x2 y2 of k[x, y]C4 .
The problem of finding generators for the ring of invariants (and the associated

problem of finding the relations between them—see §4) played an important role in
the development of invariant theory. Originally, the group involved was the group of
all invertible matrices over a field. A classic introduction can be found in HILBERT
(1993), and STURMFELS (1993) also discusses this case. For more on the invariant
theory of finite groups, we recommend BENSON (1993), BENSON and GROVE (1985),
SMITH (1995) and STURMFELS (1993).

EXERCISES FOR §§3

1. Given f1, . . . , fm ∈ k[x1, . . . , xn], we can “generate” the following two objects:
• The ideal 〈 f1, . . . , fm〉 ⊂ k[x1, . . . , xn] generated by f1, . . . , fm . This consists of all

expressions
∑m

i=1 hi fi , where h1, . . . , hm ∈ k[x1, . . . , xn].
• The subring k[ f1, . . . , fm ] ⊂ k[x1, . . . , xn] generated by f1, . . . , fm over k. This con-

sists of all expressions g( f1, . . . , fm) where g is a polynomial in m variables with coef-
ficients in k.

To illustrate the differences between these, we will consider the simple case where f1 =
x2 ∈ k[x].
a. Explain why 1 ∈ k[x2] but 1 /∈ 〈x2〉.
b. Explain why x3 /∈ k[x2] but x3 ∈ 〈x2〉.

2. Let G be a finite matrix group in GL(n, k). Prove that the Reynolds operator RG has the
following properties:
a. If a, b ∈ k and f, g ∈ k[x1, . . . ., xn], then RG(a f + bg) = a RG( f )+ bRG(g).
b. RG maps k[x1, . . . , xn] to k[x1, . . . , xn]G and is onto.
c. RG ◦ RG = RG .
d. If f ∈ k[x1, . . . , xn]G and g ∈ k[x1, . . . , xn], then RG( f g) = f · RG(g).
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3. In this exercise, we will work with the cyclic group C4 ⊂ GL(2, k) from Example 4 in the
text.
a. Prove that the Reynolds operator of C4 is given by

RC4 ( f )(x, y) = 1
4 ( f (x, y)+ f (−y, x)+ f (−x,−y)+ f (y,−x)).

b. Compute RC4 (xi y j ) for all i + j ≤ 4. Note that some of the computations are done in
Example 4. You can check your answers against the table in Example 6.

4. In this exercise, we will study the identity (2) used in the proof of Theorem 5. We will use
the multinomial coefficients, which are defined as follows. For α = (α1, . . . , αn) ∈ �n≥0,
let |α| = k and define (

k
α

)
= k!

α1!α2! · · ·αn!
.

a. Prove that
(k
α

)
is an integer. Hint: Use induction on n and note that when n = 2,

(k
α

)
is a

binomial coefficient.
b. Prove that

(x1 + · · · + xn)k =
∑

|α|=k

(
k
α

)
xα.

In particular, the coefficient aα in equation (2) is the positive integer
(k
α

)
. Hint: Use

induction on n and note that the case n = 2 is the binomial theorem.
5. Let G ⊂ GL(n, k) be a finite matrix group. In this exercise, we will give Hilbert’s proof

that k[x1, . . . , xn]G is generated by finitely many homogeneous invariants. To begin the
argument, let I ⊂ k[x1, . . . , xn] be the ideal generated by all homogeneous invariants of
positive total degree.
a. Explain why there are finitely many homogeneous invariants f1, . . . , fm such that

I = 〈 f1, . . . , fm〉. The strategy of Hilbert’s proof is to show that k[x1, . . . , xn]G =
k[ f1, . . . , fm ]. Since the inclusion k[ f1, . . . , xn] ⊂ k[x1, . . . , xn]G is obvious, we
must show that k[x1, . . . , xn]G �⊂ k[ f1, . . . , fm ] leads to a contradiction.

b. Prove that k[x1, . . . , xn]G �⊂ k[ f1, . . . , fm ] implies there is a homogeneous invariant f
of positive degree which is not in k[ f1, . . . , fm ].

c. For the rest of the proof, pick f as in part (b) with minimal total degree k. By definition,
f ∈ I , so that f = ∑m

i=1 hi fi for h1, . . . , hm ,∈ k[x1, . . . , xn]. Prove that for each i ,
we can assume hi fi is 0 or homogeneous of total degree k.

d. Use the Reynolds operator to show that f = ∑m
i=1 RG(hi ) fi . Hint: Use Proposition

3 and Exercise 2. Also show that for each i, RG(hi ) fi is 0 or homogeneous of total
degree k.

e. Since fi has positive total degree, conclude that RG(hi ) is a homogeneous invariant of
total degree < k. By the minimality of k, RG(hi ) ∈ k[ f1, . . . , fm ] for all i . Prove that
this contradicts f /∈ k[ f1, . . . , fm ].

This proof is a lovely application of the Hilbert Basis Theorem. The one drawback is that it
does not tell us how to find the generators—the proof is purely nonconstructive. Thus, for
our purposes, Noether’s theorem is much more useful.

6. If we have two finite matrix groups G and H such that G ⊂ H ⊂ GL(n, k), prove that
k[x1, . . . , xn]H ⊂ k[x1, . . . , xn]G .

7. Consider the matrix
A =

(
0 −1
1 −1

)
∈ GL(2, k).
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a. Show that A generates a cyclic matrix group C3 of order 3.
b. Use Theorem 5 to find finitely many homogeneous invariants which generate k[x, y]C3 .
c. Can you find fewer invariants that generate k[x, y]C3 ? Hint: If you have invariants

f1, . . . , fm , you can use Proposition 7 to determine whether f1 ∈ k[ f2, . . . , fm ].
8. Let A be the matrix of Exercise 7.

a. Show that −A generates a cyclic matrix group C6, of order 6.
b. Show that−I2 ∈ C6. Then use Exercise 6 and §2 to show that k[x, y]C6 ⊂ k[x2, y2, xy].

Conclude that all nonzero homogeneous invariants of C6 have even total degree.
c. Use part (b) and Theorem 5 to find k[x, y]C6 . Hint: There are still a lot of Reynolds

operators to compute. You should use a computer algebra program to design a procedure
that has i, j as input and RC6 (xi y j ) as output.

9. Let A be the matrix

A = 1√
2

(
1 −1
1 1

)
∈ GL(2, k).

a. Show that A generates a cyclic matrix group C8 ⊂ GL(2, k).
b. Give a geometric argument to explain why x2 + y2 ∈ k[x, y]C8 . Hint: A is a rotation

matrix.
c. As in Exercise 8, explain why all homogeneous invariants of C8 have even total degree.
d. Find k[x, y]C8 . Hint: Do not do this problem unless you know how to design a procedure

(on some computer algebra program) that has i, j as input and RC8 (xi y j ) as output.
10. Consider the finite matrix group

G =
⎧
⎨

⎩

⎛

⎝
±1 0 0

0 ±1 0
0 0 ±1

⎞

⎠

⎫
⎬

⎭ ⊂ GL(3, k).

Note that G has order 8.
a. If we were to use Theorem 5 to determine k[x, y, z]G , for how many monomials would

we have to compute the Reynolds operator?
b. Use the method of Example 12 in §2 to determine k[x, y, z]G .

11. Let f be the polynomial (4) in the text.
a. Verify that f ∈ k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2].
b. Use Proposition 7 to express f as a polynomial in x2 + y2, x2 y − xy3, x2 y2.

12. In Exercises 5, 6, and 7 of §2, we studied the rotation group G ⊂ GL(3,�) of the cube in
�3 and we found that k[x, y, z]G contained the polynomials

f1 = x2 + y2 + z2,

f2 = (x + y + z)(x + y − z)(x − y + z)(x − y − z),

f3 = x2 y2z2,

f4 = xyz(x2 − y2)(x2 − z2)(y2 − z2).

a. Give an elementary argument using degrees to show that f4 /∈ k[ f1, f2, f3].
b. Use Proposition 7 to show that f3 /∈ k[ f1, f2].
c. In Exercise 6 of §2, we showed that

(
(x2 − y2)(x2 − z2)(y2 − z2)

)2 ∈ k[x, y, z]G .
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Prove that this polynomial lies in k[ f1, f2, f3]. Why can we ignore f4?
UsingMolien’sTheoremandthemethodsofSTURMFELS (1993),onecanprove thatk[x, y, z]G =
k[ f1, f2, f3, f4].

§§4 Relations Among Generators
and the Geometry of Orbits

Given a finite matrix group G ⊂ GL(n, k), Theorem 5 of §3 guarantees that there are
finitely many homogeneous invariants f1, . . . , fm such that

k[x1, . . . , xn]G = k[ f1, . . . , fm].

In this section, we will learn how to describe the algebraic relations among f1, . . . , fm ,
and we will see that these relations have some fascinating algebraic and geometric
implications.

We begin by recalling the uniqueness problem stated at the end of §2. For a sym-
metric polynomial f ∈ k[x1, . . . , xn]Sn = k[σ1, . . . , σn], we proved that f could
be written uniquely as a polynomial in σ1, . . . σn . For a general finite matrix group
G ⊂ GL(n, k), if we know that k[x1, . . . , xn]G = k[ f1, . . . , fm], then one could sim-
ilarly ask if f ∈ k[x1, . . . , xn]G can be uniquely written in terms of f1, . . . , fm .

To study this question, note that if g1 and g2 are polynomials in k[y1, . . . , ym], then

g1( f1, . . . , fm) = g2( f1, . . . , fm)⇐⇒ h( f1, . . . , fm) = 0,

where h = g1 − g2. It follows that uniqueness fails if and only if there is a nonzero
polynomial h ∈ k[y1, . . . , ym] such that h( f1, . . . , fm) = 0. Such a polynomial is a
nontrivial algebraic relation among f1, . . . , fm .

If we let F = ( f1, . . . , fm), then the set

(1) IF = {h ∈ k[y1, . . . , ym] : h( f1, . . . , fm) = 0 in k[x1, . . . , xn]}
records all algebraic relations among f1, . . . , fm . This set has the following properties.

Proposition 1. If k[x1, . . . , xn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be as in
(1). Then:

(i) IF is a prime ideal of k[y1, . . . , ym].
(ii) Suppose that f ∈ k[x1, . . . , xn]G and that f = g( f1, . . . , fm) is one representa-

tion of f in terms of f1, . . . , fm. Then all such representations are given by

f = g( f1, . . . , fm)+ h( f1, . . . , fm),

as h varies over IF .

Proof. For (i), it is an easy exercise to prove that IF is an ideal. To show that it is
prime, we need to show that f g ∈ IF implies that f ∈ IF or g ∈ IF (see Definition 2
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of Chapter 4, §5). But f g ∈ IF means that f ( f1, . . . , fm)g( f1, . . . , fm) = 0. This is a
product of polynomials in k[x1, . . . , xn], and hence, f ( f1, . . . , fm) or g( f1, . . . , fm)
must be zero. Thus f or g is in IF .

We leave the proof of (ii) as an exercise.

We will call IF the ideal of relations for F = ( f1, . . . , fm). Another name for IF
used in the literature is the syzygy ideal. To see what Proposition 1 tells us about
the uniqueness problem, consider C2 = {±I2} ⊂ GL(2, k). We know from §2 that
k[x, y]C2 = k[x2, y2, xy], and, in Example 4, we will see that IF = 〈uv − w2〉 ⊂
k[u, v, w]. Now consider x6 + x3 y3 ∈ k[x, y]C2 . Then Proposition 1 implies that all
possible ways of writing x6 + x3 y3 in terms of x2, y2, xy are given by

(x2)3 + (xy)3 + (x2 · y2 − (xy)2) · b(x2, y2, xy)

since elements of 〈uv − w2〉 are of the form (uv − w2) · b(u, v, w).
As an example of what the ideal of relations IF can tell us, let us show how it can

be used to reconstruct the ring of invariants.

Proposition 2. If k[x1, . . . , xn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be the
ideal of relations. Then there is a ring isomorphism

k[y1, . . . , ym]/IF ∼= k[x1, . . . , xn]G

between the quotient ring of IF (as defined in Chapter 5, §2) and the ring of invariants.

Proof. Recall from §2 of Chapter 5 that elements of the quotient ring k[y1, . . . , ym]/IF
are written [g] for g ∈ k[y1, . . . , ym], where [g1] = [g2] if and only if g1 − g2 ∈ IF .

Now define φ : k[y1, . . . , ym]/IF → k[x1, . . . , xn]G by

φ([g]) = g( f1, . . . , fm).

We leave it as an exercise to check that φ is well-defined and is a ring homomorphism.
We need to show that φ is one-to-one and onto.

Since k[x1, . . . , xn]G = k[ f1, . . . , fm], it follows immediately that φ is onto. To
prove that φ is one-to-one, suppose that φ([g1]) = φ([g2]). Then g1( f1, . . . , fm) =
g2( f1, . . . , fm), which implies that g1 − g2 ∈ IF . Thus, [g1] = [g2], and hence, φ is
one-to-one.

It is a general fact that if a ring homomorphism is one-to-one and onto, then its
inverse function is a ring homomorphism. This proves that φ is a ring isomorphism.

A more succinct proof of this proposition can be given using the Isomorphism Theorem
of Exercise 16 in Chapter 5, §2.
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For our purposes, another extremely important property of IF is that we can compute
it explicitly using elimination theory. Namely, consider the system of equations

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

Then IF can be obtained by eliminating x1, . . . , xn from these equations.

Proposition 3. If k[x1, . . . , xn]G = k[ f1, . . . , fm], consider the ideal

JF = 〈 f1 − y1, . . . , fm − ym〉 ⊂ k[x1, . . . , xn, y1, . . . , ym].

(i) IF is the n-th elimination ideal of JF . Thus, IF = JF ∩ k[y1, . . . , ym].
(ii) Fix a monomial order in k[x1, . . . , xn, y1, . . . , ym] where any monomial involving

one of x1, . . . , xn is greater than all monomials in k[y1, . . . , ym] and let G be a
Groebner basis of JF . Then G ∩ k[y1, . . . , ym] is a Groebner basis for IF in the
monomial order induced on k[y1, . . . , ym].

Proof. Note that the ideal JF appeared earlier in Proposition 7 of §3. To relate
JF to the ideal of relations IF , we will need the following characterization of JF : if
p ∈ k[x1, . . . , xn, y1, . . . , ym], then we claim that

(2) p ∈ JF ⇐⇒ p(x1, . . . , xn, f1, . . . , fm) = 0 in k[x1, . . . , xn].

One implication is obvious since the substitution yi �→ fi takes all elements of JF =
〈 f1−y1, . . . , fm−ym〉 to zero. On the other hand, given p ∈ k[x1, . . . , xn, y1, . . . , ym],
if we replace each yi in p by fi − ( fi − yi ) and expand, we obtain

p(x1, . . . , xn, y1, . . . , ym) = p(x1, . . . , xn, f1, . . . , fm)

+ B1 · ( f1 − y1)+ · · · + Bm · ( fm − ym)

for some B1, . . . , Bm ∈ k[x1, . . . , xn, y1, . . . , ym] (see Exercise 4 for the details). In
particular, if p(x1, . . . , xn, f1, . . . , fm) = 0, then

p(x1, . . . , xn, y1, . . . , ym) = B1 · ( f1 − y1)+ · · · + Bm · ( fm − ym) ∈ JF .

This completes the proof of (2).
Now intersect each side of (2) with k[y1, . . . , ym]. For p ∈ k[y1, . . . , ym], this

proves

p ∈ JF ∩ k[y1, . . . , ym] ⇐⇒ p( f1, . . . , fm) = 0 in k[x1, . . . , xn],

so that JF ∩ k[y1, . . . , ym] = IF by the definition of IF Thus, (i) is proved and (ii) is
then an immediate consequence of the elimination theory of Chapter 3 (see Theorem 2
and Exercise 5 of Chapter 3, §1).

We can use this proposition to compute the relations between generators.
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Example 4. In §2 we saw that the invariants of C2 = {±I2} ⊂ GL(2, k) are given by
k[x, y]C2 = k[x2, y2, xy]. Let F = (x2, y2, xy) and let the new variables be u, v, w.
Then the ideal of relations is obtained by eliminating x, y from the equations

u = x2,

v = y2,

w= xy.

If we use lex order with x > y > u > v > w, then a Groebner basis for the ideal
JF = 〈u − x2, v − y2, w − xy〉 consists of the polynomials

x2 − u, xy − w, xv − yw, xw − yu, y2 − v, uv − w2.

It follows from Proposition 3 that

IF = 〈uv − w2〉.
This says that all relations between x2, y2, and xy are generated by the obvious relation
x2 · y2 = (xy)2. Then Proposition 2 shows that the ring of invariants can be written as

k[x, y]C2 ∼= k[u, v, w]/〈uv − w2〉.
Example 5. In §3, we studied the cyclic matrix group C4 ⊂ GL(2, k) generated by

A =
(

0 −1
1 0

)

and we saw that
k[x, y]C4 = k[x2 + y2, x3 y − xy3, x2 y2].

Putting F = (x2 + y2, x3 y − xy3, x2 y2), we leave it as an exercise to show that
IF ⊂ k[u, v, w] is given by IF = 〈u2w − v2 − 4w2〉. So the one nontrivial relation
between the invariants is

(x2 + y2)2 · x2 y2 = (x3 y − xy3)2 + 4(x2 y2)2.

By Proposition 2, we conclude that the ring of invariants can be written as

k[x, y]C4 ∼= k[u, v, w]/〈u2w − v2 − 4w2〉.
By combining Propositions 1, 2, and 3 with the theory developed in §3 of Chap-

ter 5, we can solve the uniqueness problem stated at the end of §2. Suppose that
k[x1, . . . , xn]G = k[ f1, . . . , fm] and let IF ⊂ k[y1, . . . , ym] be the ideal of relations.
If IF �= {0}, we know that a given element f ∈ k[x1, . . . , xn]G can be written in more
than one way in terms of f1, . . . , fm . Is there a consistent choice for how to write f ?

To solve this problem, pick a monomial order on k[y1, . . . , ym] and use Proposition
3 to find a Groebner basis G of IF . Given g ∈ k[y1, . . . , ym], let gG be the remainder of
g on division by G. In Chapter 5, we showed that the remainders gG uniquely represent
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elements of the quotient ring k[y1, . . . , ym]/IF (see Proposition 1 of Chapter 5, §3).
Using this together with the isomorphism

k[y1, . . . , ym]/IF ∼= k[x1, . . . , xn]G

of Proposition 2, we get a consistent method for writing elements of k[x1, . . . , xn]G

in terms of f1, . . . , fm . Thus, Groebner basis methods help restore the uniqueness lost
when IF �= {0}.

So far in this section, we have explored the algebra associated with the ideal of rela-
tions IF . It is now time to turn to the geometry. The basic geometric object associated
with an ideal is its variety. Hence, we get the following definition.

Definition 6. If k[x1, . . . , xn]G = k[ f1, . . . , fm], let IF ⊂ k[y1, . . . , ym] be the ideal
of relations for F = ( f1, . . . , fm). Then we have the affine variety

VF = V(IF ) ⊂ km .

The variety VF has the following properties.

Proposition 7. Let IF and VF be as in Definition 6.
(i) VF is the smallest variety in km containing the parametrization

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

(ii) IF = I(VF ), so that IF is the ideal of all polynomial functions vanishing on VF .
(iii) VF is an irreducible variety.
(iv) Let k[VF ] be the coordinate ring of VF as defined in §4 of Chapter 5. Then there

is a ring isomorphism
k[VF ] ∼= k[x1, . . . , xn]G .

Proof. Let JF = 〈 f1− y1, . . . , fm− ym〉. By Proposition 3, IF is the n-th elimination
ideal of JF . Then part (i) follows immediately from the Polynomial Implicitization
Theorem of Chapter 3 (see Theorem 1 of Chapter 3, §3).

Turning to (ii), note that we always have IF ⊂ I(V(IF )) = I(VF ). To prove
the opposite inclusion, suppose that h ∈ I(VF ). Given any point (a1, . . . , an) ∈ kn,
part (i) implies that

( f1(a1, . . . , an), . . . , fm(a1, . . . , an)) ∈ VF .

Since h vanishes on VF , it follows that

h( f1(a1, . . . , an), . . . , fm(a1, . . . , an)) = 0

for all (a1, . . . , an) ∈ kn . By assumption, k has characteristic zero and, hence, is
infinite. Then Proposition 5 of Chapter 1, §1 implies that h( f1, . . . , fm) = 0 and,
hence, h ∈ IF .
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By (ii) and Proposition 1, I(VF ) = IF is a prime ideal, so that VF is irreducible by
Proposition 4 of Chapter 5, §1. (We can also use the parametrization and Proposition 5
of Chapter 4, §5 to give a second proof that VF is irreducible.)

Finally, in Chapter 5, we saw that the coordinate ring k[VF ] could be written as

k[VF ] ∼= k[y1, . . . , ym]/I(VF )

(see Theorem 7 of Chapter 5, §2). Since I(VF ) = IF by part (ii), we can use the
isomorphism of Proposition 2 to obtain

(3) k[VF ] ∼= k[y1, . . . , ym]/IF ∼= k[x1, . . . , xn]G .

This completes the proof of the proposition.

Note how the isomorphisms in (3) link together the three methods (coordinate rings,
quotient rings and rings of invariants) that we have learned for creating new rings.

When we write k[x1, . . . , xn]G = k[ f1, . . . , fm], note that f1, . . . , fm are not
uniquely determined. So one might ask how changing to a different set of generators
affects the variety VF . The answer is as follows.

Corollary 8. Suppose that k[x1, . . . , xn]G = k[ f1, . . . , fm] = k[ f ′1, . . . , f ′m′ ]. If we
set F = ( f1, . . . , fm) and F ′ = ( f ′1, . . . , f ′m′), then the varieties VF ⊂ km and
VF ′ ⊂ km′ are isomorphic (as defined in Chapter 5, §4).

Proof. Applying Proposition 7 twice, we then have isomorphisms k[VF ] ∼=
k[x1, . . . , xn]G ∼= k[VF ′], and it is easy to see that these isomorphisms are the
identity on constants. But in Theorem 9 of Chapter 5, §4, we learned that two varieties
are isomorphic if and only if there is an isomorphism of their coordinate rings which
is the identity on constants. The corollary follows immediately.

One of the lessons we learned in Chapter 4 was that the algebra–geometry cor-
respondence works best over an algebraically closed field k. So for the rest of this
section we will assume that k is algebraically closed.

To uncover the geometry of VF , we need to think about the matrix group G ⊂
GL(n, k) more geometrically. So far, we have used G to act on polynomials: if f (x) ∈
k[x1, . . . , xn], then a matrix A ∈ G gives us the new polynomial g(x) = f (A · x).
But we can also let G act on the underlying affine space kn . We will write a point
(a1, . . . , an) ∈ kn as a column vector a. Thus,

a =
⎛

⎜⎝
a1
...

an

⎞

⎟⎠ ·

Then a matrix A ∈ G gives us the new point A · a by matrix multiplication.
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We can then use G to describe an equivalence relation on kn : given a, b ∈ kn , we
say that a ∼G b if b = A · a for some A ∈ G. We leave it as an exercise to verify
that ∼G is indeed an equivalence relation. It is also straightforward to check that the
equivalence class of a ∈ kn is given by

{b ∈ kn : b ∼G a} = {A · a : A ∈ G}·
These equivalence classes have a special name.

Definition 9. Given a finite matrix group G ⊂ GL(n, k) and a ∈ kn, the G-orbit of a
is the set

G · a = {A · a : A ∈ G}.
The set of all G-orbits in kn is denoted kn/G and is called the orbit space.

Note that an orbit G · a has at most |G| elements. In the exercises, you will show
that the number of elements in an orbit is always a divisor of |G|.

Since orbits are equivalence classes, it follows that the orbit space kn/G is the set
of equivalence classes of∼G . Thus, we have constructed kn/G as a set. But for us, the
objects of greatest interest are affine varieties. So it is natural to ask if kn/G has the
structure of a variety in some affine space. The answer is as follows.

Theorem 10. Let G ⊂ GL(n, k) be a finite matrix group, where k is algebraically
closed. Suppose that k[x1, . . . , xn]G = k[ f1, . . . , fm]. Then:
(i) The polynomial mapping F : kn → VF defined by F(a) = ( f1(a), . . . , fm(a)) is

surjective. Geometrically, this means that the parametrization yi = fi (x1, . . . , xn)
covers all of VF .

(ii) The map sending the G-orbit G · a ⊂ kn to the point F(a) ∈ VF induces a one-to-
one correspondence

kn/G ∼= VF .

Proof. We prove part (i) using elimination theory. Let JF = 〈 f1 − y1, . . . , fm − ym〉
be the ideal defined in Proposition 3. Since IF = JF ∩ k[y1, . . . , ym] is an elimination
ideal of JF , it follows that a point (b1, . . . , bm) ∈ VF = V(IF ) is a partial solution of
the system of equations

y1 = f1(x1, . . . , xn),
...

ym = fm(x1, . . . , xn).

If we can prove that (b1, . . . , bm) ∈ V(IF ) extends to (a1, . . . , an, b1, . . . , bm) ∈
V(JF ), then F(a1, . . . , an) = (b1, . . . , bm) and the surjectivity of F : kn → VF will
follow.
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We claim that for each i , there is an element pi ∈ JF ∩ k[xi , . . . , xn, y1, . . . , ym]
such that

(4) pi = x N
i + terms in which xi has degree < N ,

where N = |G|. For now, we will assume that the claim is true.
Suppose that inductively we have extended (b1, . . . , bm) to a partial solution

(ai+1, . . . , an, b1, . . . , bm) ∈ V(JF ∩ k[xi+1, . . . , xn, y1, . . . , ym]).

Since k is algebraically closed, the Extension Theorem of Chapter 3, §1 asserts that we
can extend to (ai , ai+1, . . . , an, b1, . . . , bm), provided the leading coefficient in xi of
one of the generators of JF ∩ k(xi , . . . , xn, y1, . . . , ym] does not vanish at the partial
solution. Because of our claim, this ideal contains the above polynomial pi and we
can assume that pi is a generator (just add it to the generating set). By (4), the leading
coefficient is 1, which never vanishes, so that the required ai exists (see Corollary 4 of
Chapter 3, §1).

It remains to prove the existence of pi . We will need the following lemma.

Lemma 11. Suppose that G ⊂ GL(n, k) is a finite matrix group and f ∈ k[x1, . . . , xn].
Let N = |G|. Then there are invariants g1, . . . , gN ∈ k[x1, . . . , xn]G such that

f N + g1 f N−1 + · · · + gN = 0.

Proof. Consider the polynomial
∏

A∈G(X − f (A · x)). If we multiply it out, we get
∏

A∈G

(X − f (A · x)) = X N + g1(x)X N−1 + · · · + gN (x),

where the coefficients g1, . . . , gN are in k[x1, . . . , xn]. We claim that g1, . . . , gN are
invariant under G. To prove this, suppose that B ∈ G. In the proof of Proposition 3 of
§3, we saw that the f (AB · x) are just the f (A · x), possibly in a different order. Thus

∏

A∈G

(X − f (AB · x)) =
∏

A∈G

(X − f (A · x)),

and then multiplying out each side implies that

X N + g1(B · x)X N−1 + · · · + gN (B · x) = X N + g1(x)X N−1 + · · · + gN (x)

for each B ∈ G. This proves that g1, . . . , gN ∈ k[x1, . . . , xn]G .
Since one of the factors is X − f (In ·x) = X − f (x), the polynomial vanishes when

X = f , and the lemma is proved.

We can now prove our claim about the polynomial pi . If we let f = xi in Lemma
11, then we get

(5) x N
i + g1x N−1

i + · · · + gN = 0,
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where N = |G| and g1, . . . , gN ∈ k[x1, . . . , xn]G . Using k[x1, . . . , xn]G =
k[ f1, . . . , fm], we can write g j = h j ( f1, . . . , fm) for j = 1, . . . , N . Then let

pi (xi , y1, . . . , ym) = x N
i + h1(y1, . . . , ym)x N−1

i + · · · + hN (y1, . . . , ym)

in k[xi , y1, . . . , ym]. From (5), it follows that p(xi , f1, . . . , fm) = 0 and, hence, by
(2), we see that pi ∈ JF . Then pi ∈ JF ∩ k[xi , . . . , xn, y1, . . . , ym], and our claim is
proved.

To prove (ii), first note that the map

F̃ : kn/G → VF

defined by sending G ·a to F(a) = ( f1(a), . . . , fm(a)) is well-defined since each fi is
invariant and, hence, takes the same value on all points of a G-orbit G ·a. Furthermore,
F is onto by part (i) and it follows that F̃ is also onto.

It remains to show that F̃ is one-to-one. Suppose that G · a and G · b are distinct
orbits. Since ∼G is an equivalence relation, it follows that the orbits are disjoint. We
will construct an invariant g ∈ k[x1, . . . , xn]G such that g(a) �= g(b). To do this, note
that S = G ·b∪G ·a−{a} is a finite set of points in kn and, hence, is an affine variety.
Since a /∈ S, there must be some defining equation f of S which does not vanish at a.
Thus, for A ∈ G, we have

f (A · b) = 0 and f (A · a) =
{

0 ifA · a �= a
f (a) �= 0 ifA · a = a.

Then let g = RG( f ). We leave it as an exercise to check that

g(b) = 0 and g(a) = M
|G| f (a) �= 0,

where M is the number of elements A ∈ G such that A · a = a. We have thus found
an element g ∈ k[x1, . . . , xn]G such that g(a) �= g(b).

Now write g as a polynomial g = h( f1, . . . , fm) in our generators. Then g(a) �=
g(b) implies that fi (a) �= fi (b) for some i , and it follows that F̃ takes different values
on G · a and G · b. The theorem is now proved.

Theorem 10 shows that there is a bijection between the set kn/G and the variety VF .
This is what we mean by saying that kn/G has the structure of an affine variety. Fur-
ther, whereas IF depends on the generators chosen for k[x1, . . . , xn]G , we noted in
Corollary 8 that VF is unique up to isomorphism. This implies that the variety struc-
ture on kn/G is unique up to isomorphism.

One nice consequence of Theorem 10 and Proposition 7 is that the “polynomial
functions” on the orbit space kn/G are given by

k[VF ] ∼= k[x1, . . . , xn]G .

Note how natural this is: an invariant polynomial takes the same value on all points
of the G-orbit and, hence, defines a function on the orbit space. Thus, it is reason-
able to expect that k[x1, . . . , xn]G should be the “coordinate ring” of whatever variety
structure we put on kn/G.
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Still, the bijection kn/G ∼= VF is rather remarkable if we look at it slightly differ-
ently. Suppose that we start with the geometric action of G on kn which sends a to
A · a for A ∈ G. From this, we construct the orbit space kn/G as the set of orbits. To
give this set the structure of an affine variety, look at what we had to do:
• we made the action algebraic by letting G act on polynomials;
• we considered the invariant polynomials and found finitely many generators; and
• we formed the ideal of relations among the generators.
The equations coming from this ideal define the desired variety structure VF on kn/G.

In general, an important problem in algebraic geometry is to take a set of interesting
objects (G-orbits, lines tangent to a curve, etc.) and give it the structure of an affine
(or projective—see Chapter 8) variety. Some simple examples will be given in the
exercises.

EXERCISES FOR §§4

1. Given f1, . . . , fm ∈ k[x1, . . . , xn], let I = {g ∈ k[y1, . . . , ym ] : g( f1, . . . , fm) = 0}.
a. Prove that I is an ideal of k[y1, . . . , ym ].
b. If f ∈ k[ f1, . . . , fm ] and f = g( f1, . . . , fm) is one representation of f in terms

of f1, . . . , fm , prove that all such representations are given by f = g( f1, . . . , fm) +
h( f1, . . . , fm) as h varies over I .

2. Let f1, . . . , fm ,∈ k[x1, . . . , xn] and let I ⊂ k[y1, . . . , ym ] be the ideal of relations defined
in Exercise 1.
a. Prove that the map sending a coset [g] to g( f1, . . . , fm) defines a well-defined ring

homomorphism
φ : k[y1, . . . , ym ]/I −→ k[ f1, . . . , fm ].

b. Prove that the map φ of part (a) is one-to-one and onto. Thus φ is a ring isomorphism.
c. Use Exercise 13 in Chapter 5, §2 to give an alternate proof that k[y1, . . . , ym ]/I and

k[ f1, . . . , fm ] are isomorphic. Hint: Consider the ring homomorphism � : k[y1, . . . ,
ym ] → k[ f1, . . . , fm ] which sends yi to fi .

3. Although Propositions 1 and 2 were stated for k[x1, . . . , xn]G , we saw in Exercises 1 and
2 that these results held for any subring of k[x1, . . . , xn] of the form k[ f1, . . . , fm ]. Give a
similar generalization of Proposition 3. Does the proof given in the text need any changes?

4. Given p ∈ k[x1, . . . , xn, y1, . . . , ym ], prove that

p(x1, . . . , xn, y1, . . . , ym)= p(x1, . . . , xn, f1, . . . , fm)

+ B1 · ( f1 − y1)+ · · · + Bm · ( fm − ym)

for some B1, . . . , Bm ∈ k[x1, . . . , xn, y1, . . . , ym ]. Hint: In p, replace each occurrence of
yi by fi − ( fi − yi ). The proof is similar to the argument given to prove (4) in §1.

5. Complete Example 5 by showing that IF ⊂ k[u, v, w] is given by IF = 〈u2w− v2− 4w2〉
when F = (x2 + y2, x3 y − xy3, x2 y2).

6. In Exercise 7 of §3, you were asked to compute the invariants of a certain cyclic group
C3 ⊂ GL(2, k) of order 3. Take the generators you found for k[x, y]C3 and find the relations
between them.

7. Repeat Exercise 6, this time using the cyclic group C6 ⊂ GL(2, k) of order 6 from Exercise
8 of §3.
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8. In Exercise 12 of §3, we listed four invariants f1, f2, f3, f4 of the group of rotations of the
cube in �3.
a. Using ( f4/xyz)2 and part (c) of Exercise 12 of §3, find an algebraic relation between

f1, f2, f3, f4.
b. Show that there are no nontrivial algebraic relations between f1, f2, f3.
c. Show that the relation you found in part (a) generates the ideal of all relations between

f1, f2, f3, f4. Hint: If p( f1, f2, f3, f4) = 0 is a relation, use part (a) to reduce to a
relation of the form p1( f1, f2, f3) + p2( f1, f2, f3) f4 = 0. Then explain how degree
arguments imply p1( f1, f2, f3) = 0.

9. Given a finite matrix group G ⊂ GL(n, k), we defined the relation ∼G on kn by a ∼G b if
b = A · a for some A ∈ G.
a. Verify that ∼G is an equivalence relation.
b. Prove that the equivalence class of a is the set G · a defined in the text.

10. Consider the group of rotations of the cube in �3. We studied this group in Exercise 5 of
§2, and we know that it has 24 elements.
a. Draw a picture of the cube which shows orbits consisting of 1, 6, 8, 12 and 24 elements.
b. Argue geometrically that there is no orbit consisting of four elements.

11. (Requires abstract algebra) Let G ⊂ GL(n, k) be a finite matrix group. In this problem, we
will prove that the number of elements in an orbit G · a divides |G|.
a. Fix a ∈ kn and let H = {A ∈ G : A · a = a}. Prove that H is a subgroup of G. We call

H the isotropy subgroup or stabilizer of a.
b. Given A ∈ G, we get the left coset AH = {AB : B ∈ H} of H in G and we let G/H

denote the set of all left cosets (note that G/H will not be a group unless H is normal).
Prove that the map sending AH to A · a induces a bijective map G/H ∼= G · a. Hint:
You will need to prove that the map is well-defined. Recall that two cosets AH and B H
are equal if and only if B−1 A ∈ H .

c. Use part (b) to prove that the number of elements in G · a divides |G|.
12. As in the proof of Theorem 10, suppose that we have disjoint orbits G · a and G · b. Set

S = G · b ∪ G · a− {a}, and pick f ∈ k[x1, . . . , xn] such that f = 0 on all points of S but
f (a) �= 0. Let g = RG( f ), where RG is the Reynolds operator of G.
a. Explain why g(b) = 0.
b. Explain why g(a) = M

|G| f (a) �= 0, where M is the number of elements A ∈ G such that
A · a = a.

13. In this exercise, we will see how Theorem 10 can fail when we work over a field that is not
algebraically closed. Consider the group of permutation matrices S2 ⊂ GL(2,�).
a. We know that �[x, y]S2 = �[σ1, σ2]. Show that IF = {0} when F = (σ1, σ2), so that

VF = �2. Thus, Theorem 10 is concerned with the map F̃ : �2/S2 → �2 defined by
sending S2 · (x, y) to (y1, y2) = (x + y, xy).

b. Show that the image of F̃ is the set {(y1, y2) ∈ �2 : y2
1 ≥ 4y2} ⊂ �2. This is the

region lying below the parabola y2
1 = 4y2. Hint: Interpret y1 and y2 as coefficients of

the quadratic X2 − y1 X + y2. When does the quadratic have real roots?
14. There are many places in mathematics where one takes a set of equivalences classes

and puts an algebraic structure on them. Show that the construction of a quotient ring
k[x1, . . . , xn]/I is an example. Hint: See §2 of Chapter 5.

15. In this exercise, we will give some examples of how something initially defined as a set
can turn out to be a variety in disguise. The key observation is that the set of nonvertical
lines in the plane k2 has a natural geometric structure. Namely, such a line L has a unique
equation of the form y = mx+b, so that L can be identified with the point (m, b) in another
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2-dimensional affine space, denoted k2∨. (If we use projective space—to be studied in the
next chapter—then we can also include vertical lines.)

Now suppose that we have a curve C in the plane. Then consider all lines which are
tangent to C somewhere on the curve. This gives us a subset C∨ ⊂ k2∨. Let us compute
this subset in some simple cases and show that it is an affine variety.
a. Suppose our curve C is the parabola y = x2. Given a point (x0, y0) on the parabola,

show that the tangent line is given by y = 2x0x − x2
0 and conclude that C∨ is the

parabola m2 + 4b = 0 in k2∨.
b. Show that C∨ is an affine variety when C is the cubic curve y = x3.
In general, more work is needed to study C∨. In particular, the method used in the above
examples breaks down when there are vertical tangents or singular points. Nevertheless, one
can develop a satisfactory theory of what is called the dual curve C∨ of a curve C ⊂ k2.
One can also define the dual variety V∨ of a given irreducible variety V ⊂ kn .


