A note of values of minors for Hadamard matrices

Yongbin Li^{1}, Junwei Zi^{2}, Yan Liu ${ }^{3}$ and Xiaojun Zhang ${ }^{4}$
School of Mathematical Sciences
University of Electronic Science and Technology of China
Chengdu 611731, P.R. China

Abstract

In this note we present a formulae for all possible values of $(n-j) \times(n-j)$ minors of an Hadamard matrix of order n

AMS Classification: 65F05 65G05 05B20
Keywords: Hadamard matrices; minors; D-optional design

1 Introduction

An Hadamard matrix is a type of square $(-1,1)$-matrix, whose rows are pairwise orthogonal.Two Hadamard matrices H and K are said to be said Hadamard equivalent or H-equivalent if there exist $(-1,0,1)$-monomial matrices A, B with $K=A H B$. Hadamard matrices of order n have determinant $n^{\frac{n}{2}}$. Whenever a determinant or minor is mentioned in this note, we just mean its absolute value. Sharpe [1] observed that all the $(n-1) \times(n-1)$ minors of an Hadamard matrix of order n are zero or $n^{\frac{n}{2}-1}$, and that all $(n-2) \times(n-2)$ minors are zero or $2 n^{\frac{n}{2}-2}$, and that all $(n-3) \times(n-3)$ minors are zero or $4 n^{\frac{n}{2}-3}$. The authors in [2, 3] give an algorithm for computing $(n-j) \times(n-j)(j=1,2, \ldots)$ minors of Hadamard matrices of order n. The authors in [3] give the following open problem.

Conjecture 1. The $n-8$ minors of Hadamard matrics of order $n \geq 8$ can take the possible values

$$
k \cdot 2^{7} \cdot n^{(n / 2)-8}, k=1,2, \ldots, 32
$$

Based upon the formulae of all possible values of $(n-j) \times(n-j)$ minors of an Hadamard matrices of order n presented in this note, the above conjecture is true.

2 Main results

We write

$$
H_{n}=\left[\begin{array}{cc}
M_{k} & B \\
C & M_{n-k}
\end{array}\right]
$$

for the Hadamard matrix of order n, and M_{k} is the k order leading principal sub-matrix of H_{n}.
Theorem 2. Let $H_{n}=\left[\begin{array}{cc}M_{k} & B \\ C & M_{n-k}\end{array}\right]$ be an Hadamard matrix of order n where M_{k} is the k order leading principal sub-matrix of H_{n}. Then

$$
\operatorname{det}\left(M_{n-k}\right)=n^{\frac{n}{2}-k} \operatorname{det}\left(M_{k}\right)
$$

for $1<k<n$.

Proof. Consider that

$$
H_{n} \cdot\left(n^{-1} H_{n}\right)=I_{n} .
$$

This implies that

$$
\left[\begin{array}{cc}
M_{k} & B \\
C & M_{n-k}
\end{array}\right] \cdot\left[\begin{array}{cc}
n^{-1} M_{k}^{T} & n^{-1} C^{T} \\
n^{-1} B^{T} & n^{-1} M_{n-k}^{T}
\end{array}\right]=\left[\begin{array}{cc}
I_{k} & \\
& I_{n-k}
\end{array}\right] .
$$

Thus, $M_{k} C^{T}+B M_{n-k}^{T}=\mathbf{0}$. Now consider that

$$
\left[\begin{array}{cc}
M_{k} & B \\
& I_{n-k}
\end{array}\right] \cdot\left[\begin{array}{cc}
n^{-1} M_{k}^{T} & n^{-1} C^{T} \\
n^{-1} B^{T} & n^{-1} M_{n-k}^{T}
\end{array}\right]=\left[\begin{array}{cc}
I_{k} & \\
n^{-1} B^{T} & n^{-1} M_{n-k}^{T}
\end{array}\right] .
$$

By taking determinants, we have

$$
\operatorname{det}\left(M_{k}\right) \operatorname{det}\left(n^{-1} H_{n}\right)=\operatorname{det}\left(n^{-1} M_{n-k}\right) .
$$

Thus,

$$
\begin{aligned}
& \operatorname{det}\left(M_{n-k}\right)=n^{\frac{n}{2}-k} \operatorname{det}\left(M_{k}\right) . \\
& \operatorname{det}\left(M_{n-k}\right)=n^{\frac{n}{2}} \operatorname{det}\left(\frac{1}{n} M_{k}\right) .
\end{aligned}
$$

The next following result is straightforward from linear algebra.
Lemma 3. Let A_{k} be an integer ($-1,1$)-matrix of order k. Then there exists an integer (0,1)-matrix \bar{A}_{k-1} of order $k-1$

$$
\operatorname{det}\left(A_{k}\right)=2^{k-1} \operatorname{det}\left(\bar{A}_{k-1}\right)
$$

For a $(0,1)$-matrix of order k, the largest possible determinants β_{k} for $k=1,2, \ldots$. Eric W.Weisstein of Wolfram Research, Inc., computed the sequence $\beta_{1}=1, \beta_{2}=1, \beta_{3}=2, \beta_{4}=$ $3, \beta_{5}=5, \beta_{6}=9, \beta_{7}=32, \beta_{8}=56, \beta_{9}=144, \beta_{10}=320, \beta_{11}=1458, \beta_{12}=3645, \beta_{13}=9477$, see [4] for more.

The next result follows directly from Lemma 3,
Corollary 4. Let $H_{n}=\left[\begin{array}{cc}M_{k} & B \\ C & M_{n-k}\end{array}\right]$ be an Hadamard matrix of order n where M_{k} is the k order leading principal sub-matrix of H_{n}. Then

$$
\operatorname{det}\left(M_{n-k}\right)=n^{\frac{n}{2}-k} \operatorname{det}\left(M_{k}\right)=n^{\frac{n}{2}-k} 2^{k-1} \operatorname{det}\left(\bar{M}_{k-1}\right)
$$

where \bar{M}_{k-1} is a $(0,1)$-matrix of order $k-1$.

The next result tries to answer Conjecture 1 ,
Theorem 5. Let M_{n-k} be an $(n-k) \times(n-k)$ minor of an Hadamard matrix of order n with $n>k>1$. If β_{k} be the largest possible determinants of $a(0,1)$-matrix of order k, then

$$
\operatorname{det}\left(M_{n-k}\right) \in\left\{\left.m \cdot 2^{k-1} \cdot n^{\frac{n}{2}-k} \right\rvert\, m=0,1,2, \ldots, \beta_{k-1}\right\} .
$$

Proof. It follows directly from Corollary 4 and the definition of β_{k-1} that

$$
\operatorname{det}\left(M_{n-k}\right)=n^{\frac{n}{2}-k} \operatorname{det}\left(M_{k}\right)=2^{k-1} \cdot n^{\frac{n}{2}-k} \cdot \operatorname{det}\left(\bar{M}_{k-1}\right) \leq 2^{k-1} \cdot n^{\frac{n}{2}-k} \cdot \beta_{k-1} .
$$

Example 6. Consider $\beta_{7}=32$. we know that the $n-8$ minors of Hadamard matrices of order $n \gg 8$ can take the possible values

$$
m \cdot 2^{7} \cdot n^{(n / 2)-8}, m=0,1,2, \ldots, 32 .
$$

Therefore, Conjecture [1in [3] is true. The next table presents all possible $(n-k) \times(n-k)$ minors of an Hadamard matrix of order $n>13$ for $k=1,2, \cdots, 13$.

order	Values of minors
$n-8$	$0,1 \cdot 2^{7} \cdot n^{(n / 2)-8}, 2 \cdot 2^{7} \cdot n^{(n / 2)-8}, \cdots, 32 \cdot 2^{7} \cdot n^{(n / 2)-8}$
$n-9$	$0,1 \cdot 2^{8} \cdot n^{(n / 2)-9}, 2 \cdot 2^{8} \cdot n^{(n / 2)-9}, \cdots, 56 \cdot 2^{8} \cdot n^{(n / 2)-9}$
$n-10$	$0,1 \cdot 2^{9} \cdot n^{(n / 2)-10}, 2 \cdot 2^{9} \cdot n^{(n / 2)-10}, \cdots, 144 \cdot 2^{9} \cdot n^{(n / 2)-10}$
$n-11$	$0,1 \cdot 2^{10} \cdot n^{(n / 2)-11}, 2 \cdot 2^{10} \cdot n^{(n / 2)-11}, \cdots, 320 \cdot 2^{10} \cdot n^{(n / 2)-11}$
$n-12$	$0,1 \cdot 2^{11} \cdot n^{(n / 2)-12}, 2 \cdot 2^{11} \cdot n^{(n / 2)-12}, \cdots, 1458 \cdot 2^{11} \cdot n^{(n / 2)-12}$
$n-13$	$0,1 \cdot 2^{12} \cdot n^{(n / 2)-13}, 2 \cdot 2^{12} \cdot n^{(n / 2)-13}, \cdots, 9477 \cdot 2^{12} \cdot n^{(n / 2)-13}$

3 An application

A D-optional design of order n is a $(-1,1)$-matrix having maximum determinant. Throughout this note we write H_{n} for a Hadmard matrix of order n and D_{j} for D-optional design of order j. The notation $D_{j} \in H_{n}$ means that D_{j} is embedded in some H_{n} with $j<n$. The authors in [5] show that every Hadamard matrix of order ≥ 4 contains a sub-matrix equivalent to

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & - & 1 & - \\
1 & 1 & - & - \\
1 & - & - & 1
\end{array}\right]
$$

Theorem 7. If $\frac{\operatorname{det}\left(D_{k}\right)}{\operatorname{det}\left(D_{n-k}\right)}>n^{\frac{n}{2}-k}$ with $k>\frac{n}{2}$, then $D_{k} \notin H_{n}$.

Proof. If $D_{k} \in H_{n}$, with without loss of generality we suppose that

$$
H_{n}=\left[\begin{array}{cc}
A_{n-k} & B \\
C & D_{k}
\end{array}\right],
$$

then

$$
\operatorname{det}\left(D_{k}\right)=n^{\frac{n}{2}-k} \operatorname{det}\left(A_{n-k}\right)
$$

by Theorem 2, It implies that

$$
\operatorname{det}\left(D_{k}\right) \leq n^{\frac{n}{2}-k} \operatorname{det}\left(D_{n-k}\right) .
$$

Thus,

$$
\frac{\operatorname{det}\left(D_{k}\right)}{\operatorname{det}\left(D_{n-k}\right)} \leq n^{\frac{n}{2}-k}
$$

Example 8. Consider

$$
\begin{aligned}
\operatorname{det}\left(D_{5}\right) & =48, \operatorname{det}\left(D_{3}\right)=4 \\
\operatorname{det}\left(D_{6}\right) & =160, \operatorname{det}\left(D_{2}\right)=2 \\
\operatorname{det}\left(D_{7}\right) & =576, \operatorname{det}\left(D_{1}\right)=1
\end{aligned}
$$

We have

$$
\begin{gathered}
\frac{\operatorname{det}\left(D_{5}\right)}{\operatorname{det}\left(D_{3}\right)}=12>8^{4-3}=8 \\
\frac{\operatorname{det}\left(D_{6}\right)}{\operatorname{det}\left(D_{2}\right)}=80>8^{4-2}=64 \\
\frac{\operatorname{det}\left(D_{7}\right)}{\operatorname{det}\left(D_{1}\right)}=576>8^{4-1}=512 .
\end{gathered}
$$

It follows from Theorem 7 that $D_{5}, D_{6}, D_{7} \notin H_{8}$ which are presented in Lemmas 1,2 and 3 in 6].

References

[1] F.R. Sharpe, The maximum value of a determinant, Bull. Amer. Math. Soc., 14,121123,1907.
[2] C. Koukouvinos, M. Mitrouli, and J. Seberry. An algorithm to find formulae and values of minors for Hadamard matrices. Linear Algebra Appl., 330:129-147,2001.
[3] C. Koukouvinos, M. Mitrouli, and J. Seberry. An algorithm to find formulae and values of minors for Hadamard matrices II. Linear Algebra Appl., 371:111-124,2003.
[4] N.J.A. Sloane, The On-Line Encyclopedia of Integer sequences, published electronically at www.research.att.com/ njas/sequences/:1996-2011
[5] Day,J.,Peterson,B.,Growth in Gaussian elimination. Amer. Math. Monthly, 95:489513,1988.
[6] Jennifer Seberry, Marilena Mitrouli, Some remarks on Hadamard matrices, Cryptogr. Commun., 2: 293-306,2010.

