A note of values of minors for Hadamard matrices

Yongbin Li¹, Junwei Zi², Yan Liu³ and Xiaojun Zhang⁴

School of Mathematical Sciences University of Electronic Science and Technology of China Chengdu 611731, P.R. China

Abstract. In this note we present a formulae for all possible values of $(n - j) \times (n - j)$ minors of an Hadamard matrix of order n

AMS Classification: 65F05 65G05 05B20

Keywords: Hadamard matrices; minors; D-optional design

1 Introduction

An Hadamard matrix is a type of square (-1, 1)-matrix, whose rows are pairwise orthogonal. Two Hadamard matrices H and K are said to be said Hadamard equivalent or H-equivalent if there exist (-1, 0, 1)-monomial matrices A, B with K = AHB. Hadamard matrices of order n have determinant $n^{\frac{n}{2}}$. Whenever a determinant or minor is mentioned in this note, we just mean its absolute value. Sharpe [1] observed that all the $(n - 1) \times (n - 1)$ minors of an Hadamard matrix of order n are zero or $n^{\frac{n}{2}-1}$, and that all $(n - 2) \times (n - 2)$ minors are zero or $2n^{\frac{n}{2}-2}$, and that all $(n - 3) \times (n - 3)$ minors are zero or $4n^{\frac{n}{2}-3}$. The authors in [2,3] give an algorithm for computing $(n - j) \times (n - j)(j = 1, 2, ...)$ minors of Hadamard matrices of order n. The authors in [3] give the following open problem.

Conjecture 1. The n-8 minors of Hadamard matrices of order $n \ge 8$ can take the possible values

$$k \cdot 2^7 \cdot n^{(n/2)-8}, k = 1, 2, \dots, 32$$

Based upon the formulae of all possible values of $(n-j) \times (n-j)$ minors of an Hadamard matrices of order n presented in this note, the above conjecture is true.

2 Main results

We write

$$H_n = \left[\begin{array}{cc} M_k & B \\ C & M_{n-k} \end{array} \right]$$

for the Hadamard matrix of order n, and M_k is the k order leading principal sub-matrix of H_n .

Theorem 2. Let $H_n = \begin{bmatrix} M_k & B \\ C & M_{n-k} \end{bmatrix}$ be an Hadamard matrix of order n where M_k is the k order leading principal sub-matrix of H_n . Then

$$\det(M_{n-k}) = n^{\frac{n}{2}-k} \det(M_k)$$

for 1 < k < n.

Proof. Consider that

$$H_n \cdot (n^{-1}H_n) = I_n.$$

This implies that

$$\begin{bmatrix} M_k & B \\ C & M_{n-k} \end{bmatrix} \cdot \begin{bmatrix} n^{-1}M_k^T & n^{-1}C^T \\ n^{-1}B^T & n^{-1}M_{n-k}^T \end{bmatrix} = \begin{bmatrix} I_k \\ I_{n-k} \end{bmatrix}.$$

Thus, $M_k C^T + B M_{n-k}^T = 0$. Now consider that

$$\begin{bmatrix} M_k & B \\ & I_{n-k} \end{bmatrix} \cdot \begin{bmatrix} n^{-1}M_k^T & n^{-1}C^T \\ n^{-1}B^T & n^{-1}M_{n-k}^T \end{bmatrix} = \begin{bmatrix} I_k \\ n^{-1}B^T & n^{-1}M_{n-k}^T \end{bmatrix}.$$

By taking determinants, we have

$$\det(M_k)\det(n^{-1}H_n) = \det(n^{-1}M_{n-k}).$$

Thus,

$$\det(M_{n-k}) = n^{\frac{n}{2}-k} \det(M_k).$$

$$\det(M_{n-k}) = n^{\frac{n}{2}} \det(\frac{1}{n}M_k)$$

The next following result is straightforward from linear algebra.

Lemma 3. Let A_k be an integer (-1,1)-matrix of order k. Then there exists an integer (0,1)-matrix \overline{A}_{k-1} of order k-1

$$\det(A_k) = 2^{k-1} \det(\overline{A}_{k-1}).$$

For a (0, 1)-matrix of order k, the largest possible determinants β_k for $k = 1, 2, \ldots$ Eric W.Weisstein of Wolfram Research, Inc., computed the sequence $\beta_1 = 1, \beta_2 = 1, \beta_3 = 2, \beta_4 = 3, \beta_5 = 5, \beta_6 = 9, \beta_7 = 32, \beta_8 = 56, \beta_9 = 144, \beta_{10} = 320, \beta_{11} = 1458, \beta_{12} = 3645, \beta_{13} = 9477,$ see [4] for more.

The next result follows directly from Lemma 3.

Corollary 4. Let $H_n = \begin{bmatrix} M_k & B \\ C & M_{n-k} \end{bmatrix}$ be an Hadamard matrix of order n where M_k is the k order leading principal sub-matrix of H_n . Then

$$\det(M_{n-k}) = n^{\frac{n}{2}-k} \det(M_k) = n^{\frac{n}{2}-k} 2^{k-1} \det(\overline{M}_{k-1})$$

where \overline{M}_{k-1} is a (0,1)-matrix of order k-1.

The next result tries to answer Conjecture 1.

Theorem 5. Let M_{n-k} be an $(n-k) \times (n-k)$ minor of an Hadamard matrix of order n with n > k > 1. If β_k be the largest possible determinants of a (0,1)-matrix of order k, then

$$\det(M_{n-k}) \in \{m \cdot 2^{k-1} \cdot n^{\frac{n}{2}-k} \mid m = 0, 1, 2, \dots, \beta_{k-1}\}.$$

Proof. It follows directly from Corollary 4 and the definition of β_{k-1} that

$$\det(M_{n-k}) = n^{\frac{n}{2}-k} \det(M_k) = 2^{k-1} \cdot n^{\frac{n}{2}-k} \cdot \det(\overline{M}_{k-1}) \le 2^{k-1} \cdot n^{\frac{n}{2}-k} \cdot \beta_{k-1}.$$

Example 6. Consider $\beta_7 = 32$. we know that the n - 8 minors of Hadamard matrices of order $n \gg 8$ can take the possible values

$$m \cdot 2^7 \cdot n^{(n/2)-8}, m = 0, 1, 2, \dots, 32.$$

Therefore, Conjecture 1 in [3] is true. The next table presents all possible $(n-k) \times (n-k)$ minors of an Hadamard matrix of order n > 13 for $k = 1, 2, \dots, 13$.

order	Values of minors
n-8	$0, 1 \cdot 2^7 \cdot n^{(n/2)-8}, 2 \cdot 2^7 \cdot n^{(n/2)-8}, \cdots, 32 \cdot 2^7 \cdot n^{(n/2)-8}$
n-9	$0, 1 \cdot 2^8 \cdot n^{(n/2)-9}, 2 \cdot 2^8 \cdot n^{(n/2)-9}, \cdots, 56 \cdot 2^8 \cdot n^{(n/2)-9}$
n - 10	$0, 1 \cdot 2^9 \cdot n^{(n/2)-10}, 2 \cdot 2^9 \cdot n^{(n/2)-10}, \cdots, 144 \cdot 2^9 \cdot n^{(n/2)-10}$
n - 11	$0, 1 \cdot 2^{10} \cdot n^{(n/2)-11}, 2 \cdot 2^{10} \cdot n^{(n/2)-11}, \cdots, 320 \cdot 2^{10} \cdot n^{(n/2)-11}$
n - 12	$0, 1 \cdot 2^{11} \cdot n^{(n/2)-12}, 2 \cdot 2^{11} \cdot n^{(n/2)-12}, \cdots, 1458 \cdot 2^{11} \cdot n^{(n/2)-12}$
n - 13	$0, 1 \cdot 2^{12} \cdot n^{(n/2)-13}, 2 \cdot 2^{12} \cdot n^{(n/2)-13}, \cdots, 9477 \cdot 2^{12} \cdot n^{(n/2)-13}$

3 An application

A *D*-optional design of order n is a (-1, 1)-matrix having maximum determinant. Throughout this note we write H_n for a Hadmard matrix of order n and D_j for D-optional design of order j. The notation $D_j \in H_n$ means that D_j is embedded in some H_n with j < n. The authors in [5] show that every Hadamard matrix of order ≥ 4 contains a sub-matrix equivalent to

$$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & - & 1 & - \\ 1 & 1 & - & - \\ 1 & - & - & 1 \end{bmatrix}.$$

Theorem 7. If $\frac{\det(D_k)}{\det(D_{n-k})} > n^{\frac{n}{2}-k}$ with $k > \frac{n}{2}$, then $D_k \notin H_n$.

Proof. If $D_k \in H_n$, with without loss of generality we suppose that

$$H_n = \left[\begin{array}{cc} A_{n-k} & B \\ C & D_k \end{array} \right],$$

then

$$\det(D_k) = n^{\frac{n}{2}-k} \det(A_{n-k})$$

by Theorem 2. It implies that

$$\det(D_k) \le n^{\frac{n}{2}-k} \det(D_{n-k}).$$

Thus,

$$\frac{\det(D_k)}{\det(D_{n-k})} \le n^{\frac{n}{2}-k}.$$

Example 8. Consider

$$det(D_5) = 48, det(D_3) = 4, det(D_6) = 160, det(D_2) = 2 det(D_7) = 576, det(D_1) = 1.$$

We have

$$\frac{\det(D_5)}{\det(D_3)} = 12 > 8^{4-3} = 8,$$

$$\frac{\det(D_6)}{\det(D_2)} = 80 > 8^{4-2} = 64,$$

$$\frac{\det(D_7)}{\det(D_1)} = 576 > 8^{4-1} = 512.$$

It follows from Theorem 7 that $D_5, D_6, D_7 \notin H_8$ which are presented in Lemmas 1,2 and 3 in [6].

References

- F.R. Sharpe, The maximum value of a determinant, Bull. Amer. Math. Soc., 14,121-123,1907.
- [2] C. Koukouvinos, M. Mitrouli, and J. Seberry. An algorithm to find formulae and values of minors for Hadamard matrices. *Linear Algebra Appl.*, 330:129-147,2001.
- [3] C. Koukouvinos, M. Mitrouli, and J. Seberry. An algorithm to find formulae and values of minors for Hadamard matrices II. *Linear Algebra Appl.*, 371:111-124,2003.
- [4] N.J.A. Sloane, The On-Line Encyclopedia of Integer sequences, published electronically at www.research.att.com/ njas/sequences/:1996-2011

- [5] Day, J., Peterson, B., Growth in Gaussian elimination. Amer. Math. Monthly, 95:489-513,1988.
- [6] Jennifer Seberry, Marilena Mitrouli, Some remarks on Hadamard matrices, Cryptogr. Commun., 2: 293-306,2010.