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We derive sharp comparison inequalities between weak 
and strong moments of random vectors in arbitrary finite 
dimensional Banach space. As an application, we show that 
the p-summing constant of any finite dimensional Banach 
space is upper bounded, up to a universal constant, by the p-
summing constant of the Hilbert space of the same dimension. 
We also apply our result to the concentration of measure 
theory for log-concave random vectors in Euclidean spaces.
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1. Introduction

The study of moments of random variables is an essential issue of probability the-
ory, one of the reasons being the fact that tail estimates for random variables are 
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related to bounds for their moments via the Markov inequality. In probabilistic con-
vex geometry and concentration of measure theory one is often interested in bounding 
pth moments of random vectors. To be more precise, the pth strong moment of a ran-
dom vector X in Rn with respect to a given norm structure (Rn, ‖ · ‖) is defined as 
Mp(X) = (E‖X‖p)1/p. Another related quantity is the so-called weak pth moment de-
fined as σp(X) = sup‖t‖∗≤1(E| 〈t,X〉 |p)1/p, where ‖ · ‖∗ denotes the dual norm. Weak 
moments are usually much easier to compute or estimate, and so comparison inequalities 
between weak and strong moments are of interest in convex geometry, see e.g. [6].

Clearly the strong moment always dominates the weak moment. In this article we 
derive a sharp (up to a universal constant) reverse bound.

Theorem 1. For any n-dimensional random vector X and any nonempty set T in Rn we 
have

(
E sup

t∈T
|〈t,X〉|p

)1/p

≤ 2
√
e

√
n + p

p
sup
t∈T

(E|〈t,X〉|p)1/p for p ≥ 2. (1)

In particular, for any normed space (Rn, ‖ · ‖) we have

(E‖X‖p)1/p ≤ 2
√
e

√
n + p

p
sup

‖t‖∗≤1
(E|〈t,X〉|p)1/p for p ≥ 2.

To see that (1) is optimal up to a universal constant it suffices to take any rota-
tionally invariant random vector X and T to be a centered Euclidean ball. In this case 

Mp(X)/σp(X) = (E|U1|p)−1/p ∼
√

n+p
p , where U1 is the first coordinate of a random 

vector uniformly distributed on the unit sphere in Rn.
Obtaining upper bounds for strong moments in terms of weak moments turns out 

to be very challenging. As an example let us mention the Paouris inequality Mp(X) ≤
C(M1(X) + σp(X)) valid for the standard Euclidean norm and arbitrary log-concave 
random vector X in Rn, see [19] and [1] (see also [15] for an extension of this result to 
a larger class of norms). Here and in the sequel C denotes an absolute constant, whose 
value may change at each occurrence. Usually, to derive such bounds one applies the 
concentration of measure theory [17] or the chaining method [23]. What is crucial in 
these reasonings is the regularity of the random vector X and/or the special form of 
the norm. Our proof uses a totally different linear algebra method of Hadamard powers 
inspired by the proof of the so-called Welch bound (see [24]) given in [7].

We now use our result to derive bounds on p-summing norms of operators between 
Banach spaces. The theory of absolutely summing operators is an important part of the 
modern Banach space theory and found numerous powerful applications in harmonic 
analysis, approximation theory, probability theory and operator theory [8]. Recall that 
a linear operator Φ between Banach spaces F1 and F2 is p-summing if there exists a 
constant α < ∞, such that for all x1, . . . xm ∈ F1 one has
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(
m∑
i=1

‖Φxi‖p
)1/p

≤ α sup
x∗∈F∗

1 ,‖x∗‖≤1

(
m∑
i=1

|x∗(xi)|p
)1/p

.

The smallest constant α in the above inequality is called the p-summing norm of Φ and 
will be denoted by πp(Φ). For a Banach space F by the p-summing constant πp(F ) of 
F we mean the p-summing constant of the identity map of F . It is well known that 
πp(F ) < ∞ if and only if F is finite dimensional. Moreover π2(F ) =

√
dimF (see [10, 

Theorem 16.12.3]). The p-summing constants of certain finite dimensional spaces were 
computed by Gordon in [11]. In particular he showed that

πp(�n2 ) = (E|U1|p)−1/p ∼
√

n + p

p
.

An immediate consequence of our main result is that, up to a universal constant, Hilbert 
spaces have the largest p-summing constant among all Banach spaces of fixed dimension.

Corollary 2. For any finite dimensional Banach space F and p ≥ 2 we have

πp(F ) ≤ 2
√
e

√
dimF + p

p
≤ Cπp(�dimF

2 ).

Indeed, it suffices to apply Theorem 1 for random vectors uniformly distributed on 
finite subsets of F and T the unit ball in F ∗. We ask the following question.

Question. Is it true that for any finite dimensional Banach space F and p ≥ 2 we have 
πp(F ) ≤ πp(�dimF

2 )? Equivalently, is it true that the best constant in Theorem 1 is equal 
to (E|U1|p)−1/p?

Using the ideal properties of p-summing operators (see [8]) we get a bound for p-
summing constants of finite rank operators.

Corollary 3. Let Φ be a finite rank linear operator between Banach spaces F1 and F2. 
Then the p-summing constant of Φ satisfies

πp(Φ) ≤ 2
√
e

√
rk(Φ) + p

p
‖Φ‖.

For the proof it suffices to consider the decomposition Φ = i ◦ I ◦ Φ̃ where Φ̃ is Φ
considered as an operator between F1 and Φ(F1), I is the identity map on Φ(F1) and i is 
the embedding of Φ(F1) into F2. The ideal property gives πp(Φ) ≤ ‖i‖πp(I)‖Φ̃‖, which 
combined with Corollary 2 gives the desired bound.

Inequality (1) has been conjectured (with a universal constant in place of 2
√
e) in the 

language of the so-called Zp bodies by the first named author in [13] (see Problem 1 
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therein), where certain special cases have been studied. Inequality (1) arose as a result 
of investigating optimal concentration of measure inequalities. The discussion of this 
application will be given in Section 3. Section 2 is devoted to the proof of Theorem 1.

2. Proof of the main result

We shall need the following lemma, which can be found in [2], Lemma 9.2 (see also 
[20] for a version for Gram matrices).

Lemma 4. Suppose A = (aij) is a k × l matrix of rank at most n. Let m be a positive 
integer. Then the Hadamard power A◦m = (amij ) has rank at most 

(
n+m−1

m

)
.

Proof. Since the space spanned by the column vectors of A has dimension at most n, 
there exist vectors v(1), . . . , v(n) in Rk such that every column a = (a1, . . . , ak) of A can 
be written as a linear combination of these vectors, that is a =

∑n
s=1 v

(s)λs for some 
real numbers λs. Restricting this equality to the ith coordinate gives ai =

∑n
s=1 v

(s)
i λs. 

If we now raise this equality to the mth power, we obtain

ami =
n∑

s1,s2,...,sm=1
v
(s1)
i v

(s2)
i · . . . · v(sm)

i λs1λs2 · . . . · λsm .

Thus, every column am of A◦m can be written as a linear combination of the vectors 
(v(s1)

i v
(s2)
i · . . . · v(sm)

i )i=1,...,k. Since these vectors are invariant under permuting the 
numbers si, we can assume that 1 ≤ s1 ≤ s2 ≤ . . . ≤ sm ≤ n. The number of such 
sequences is precisely 

(
n+m−1

m

)
. �

Corollary 5. Let k, l, m and n be positive integers. For any vectors t1, . . . , tk and x1, . . . , xl

in Rn there exist vectors t̃1, . . . , t̃k and x̃1, . . . , x̃l in RN with N =
(
n+m−1

m

)
such that 

〈ti, xj〉m =
〈
t̃i, x̃j

〉
for all 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Proof. The k× l matrix A = (〈ti, xj〉) is of the form A = TX where T is a k×n matrix 
whose ith row is the vector ti and X is a n × l matrix whose jth column is the vector 
xj . Thus A is a matrix of a composition of two linear maps Rl → Rn and Rn → Rk and 
thus has rank at most n. According to Lemma 4 the rank of A◦m = (〈ti, xj〉m) is at most 
N . From the rank factorization theorem the matrix A◦m can be written as a product 
T̃ X̃, where T̃ is a k ×N matrix and X̃ is a N × l matrix. It suffices to take t̃i to be ith 
row of T̃ and x̃j to be the jth column of X̃. �

We now consider the case p = 2 of Theorem 1.

Lemma 6. For any n-dimensional random vector X and any nonempty set T in Rn we 
have
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E sup
t∈T

|〈t,X〉|2 ≤ n sup
t∈T

E|〈t,X〉|2.

Proof. By an approximation argument without loss of generality we may assume that 
X is bounded and has a nondegenerate covariance matrix C. We can also assume that 
X is symmetric (if not multiply X by an independent symmetric ±1 random variable). 
Let α := supt∈T E|〈t, X〉|2 = supt∈T 〈Ct, t〉. Then

E sup
t∈T

|〈t,X〉|2 ≤ E sup{|〈s,X〉|2 : 〈Cs, s〉 ≤ α}

= E sup{|〈C1/2s, C−1/2X〉|2 : |C1/2s|2 ≤ α} = αE|C−1/2X|2 = αn. �
The crucial case of Theorem 1 is the case of p being an even integer.

Proposition 7. Suppose m is a positive integer. Then for any n-dimensional random 
vector X and any nonempty set T in Rn we have

E sup
t∈T

|〈t,X〉|2m ≤
(
n + m− 1

m

)
sup
t∈T

E|〈t,X〉|2m.

Proof. By an easy approximation argument we can assume that T = {t1, . . . , tk} is a 
finite subset of Rn and X is uniformly distributed on a finite number of points x1, . . . , xl

in Rn. In this case the above inequality reads

l∑
j=1

sup
1≤i≤k

| 〈ti, xj〉 |2m ≤
(
n + m− 1

m

)
sup

1≤i≤k

l∑
j=1

| 〈ti, xj〉 |2m. (2)

From Corollary 5 there exist vectors t̃1, . . . , t̃k and x̃1, . . . , x̃l in RN with N =
(
n+m−1

m

)
such that 〈ti, xj〉m =

〈
t̃i, x̃j

〉
for all 1 ≤ i ≤ k and 1 ≤ j ≤ l. From Lemma 6 used 

to the set T ′ = {t̃1, . . . , t̃k} ⊂ RN and a random variable X ′ uniformly distributed in 
{x̃1, . . . , x̃l} ⊂ RN we have

l∑
j=1

sup
1≤i≤k

|
〈
t̃i, x̃j

〉
|2 ≤ N sup

1≤i≤k

l∑
j=1

|
〈
t̃i, x̃j

〉
|2.

This is precisely (2). �
Our next lemma shows that the best constant Cn,p in the inequality (1) is a monotone 

function of p.

Lemma 8. Let p > 0 and let Cn,p be the best constant such that for any n-dimensional 
random vector X and any nonempty set T in Rn we have
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(
E sup

t∈T
|〈t,X〉|p

)1/p

≤ Cn,p sup
t∈T

(E|〈t,X〉|p)1/p . (3)

Then the function p → Cn,p is non-increasing.

Proof. Suppose 0 < p < q and let μX be the law of X. By rescaling X one can assume 
that E supt∈T | 〈t,X〉 |q−p = 1. This allows us to define a new random vector Y whose 
law μY is given by

μY (A) =
∫
A

sup
t∈T

| 〈t, x〉 |q−pdμX(x).

Thus, by Hölder’s inequality

E sup
t∈T

| 〈t,X〉 |q = E sup
t∈T

| 〈t, Y 〉 |p ≤ Cp
n,p sup

t∈T
E| 〈t, Y 〉 |p

= Cp
n,p sup

t∈T
E

[
| 〈t,X〉 |p sup

s∈T
| 〈s,X〉 |q−p

]

≤ Cp
n,p sup

t∈T
(E| 〈t,X〉 |q)

p
q

(
E sup

s∈T
| 〈s,X〉 |q

) q−p
q

.

Rearranging gives the inequality

(E sup
t∈T

| 〈t,X〉 |q)1/q ≤ Cn,p sup
t∈T

(E| 〈t,X〉 |q)1/q

and thus Cn,q ≤ Cn,p. �
We are now ready to give a proof of the main result.

Proof of Theorem 1. Let m be a positive integer such that 2m ≤ p < 2m + 2. By 
Lemma 8 and Proposition 7 we get that the best constant Cn,p in (3) satisfies

C2
n,p ≤ C2

n,2m ≤
(
n + m− 1

m

)1/m

≤ e(n + m− 1)
m

≤ e
n + p/2
p/4 ≤ 4en + p

p
. �

3. Optimal concentration of measure

Let us notice that by homogeneity one can always assume that the supremum on the 
right hand side of (1) is one. Then by enlarging the set T we may assume that T is the 
set of all vectors t satisfying E| 〈t,X〉 |p ≤ 1. Thus, inequality (1) may be equivalently 
stated as

(
E‖X‖pZp(X)

)1/p
≤ 2

√
e

√
n + p

, (4)

p
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where

‖s‖Zp(X) := sup{|〈t, s〉| : E|〈t,X〉|p ≤ 1}.

This has been conjectured (with a universal constant in place of 2
√
e) by the first named 

author in [13] (see Problem 1 therein), where the result in the case of unconditional 
random vectors was obtained. Thus Theorem 1 positively resolves this conjecture.

The motivation behind inequality (4) was the study of the concentration of measure 
phenomenon. Let ν be a symmetric exponential measure with parameter 1, i.e. the 
measure on the real line with the density 12e

−|x|. Talagrand [22] showed that the product 
measure νn satisfies the following two-sided concentration inequality

νn(A) ≥ 1
2 =⇒ 1 − νn(A + C

√
pBn

2 + CpBn
1 ) ≤ e−p(1 − νn(A)), p > 0.

This is a remarkably strong concentration result implying, for example, the celebrated 
concentration of measure phenomenon for the canonical Gaussian measure γn on Rn:

γn(A) ≥ 1
2 =⇒ 1 − γn(A + C

√
pBn

2 ) ≤ e−p(1 − γn(A)), p > 0,

discovered (in the sharp isoperimetric form) by Sudakov and Tsirelson in [21], and inde-
pendently by Borell in [4].

It is not hard to check that Zp(νn) ∼ √
pBn

2 + pBn
1 and Zp(γn) ∼ √

pBn
2 for p ≥ 2, 

where for a probability measure μ on Rn and a random vector X distributed according 
to μ we set

Zp(μ) = Zp(X) = {t ∈ Rn : ‖t‖Zp(X) ≤ 1}.

In the context of convex geometry it is natural to ask if similar inequalities hold for 
other log-concave measures, namely measures with densities of the form e−V , where 
V : Rn → (−∞, ∞] is convex. An easy observation from [16] shows that if μ is a 
symmetric log-concave probability measure and K is a convex set such that for any 
halfspace A satisfying μ(A) ≥ 1

2 we have μ(A +K) ≥ 1 − 1
2e

−p, then necessarily K ⊃ 1
CZp. 

This motivates the following definition proposed in [16].

Definition 9. We say that a measure μ satisfies the optimal concentration inequality with 
constant β (CI(β) in short) if for any Borel set A we have

μ(A) ≥ 1
2 =⇒ 1 − μ(A + βZp(μ)) ≤ e−p(1 − μ(A)), p ≥ 2.

All centered product log-concave measures satisfy the optimal concentration inequality 
with a universal constant β ([16]). A natural conjecture (discussed in [16,14]) states that 
this is true also for nonproduct measures. However, one has to mention that it would 
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imply (see Corollary 3.14. in [16]) the celebrated KLS conjecture (proposed in [12] as a 
tool for proving efficiency of certain Metropolis type algorithms for computing volumes 
of convex sets) on the boundedness of the Cheeger constant for isotropic log-concave 
measures. It was shown in [14] that every log-concave measure on Rn satisfies CI(c

√
n)

with a universal constant c. The following corollary improves upon this bound.

Corollary 10. Every centered log-concave probability measure on Rn satisfies the optimal 
concentration inequality with constant β ≤ Cn5/12.

Proof. We follow the ideas explained after the proof of Proposition 7 in [14], but instead 
of Eldan’s bound on the Cheeger constant [9] we use the recent result of Lee and Vempala 
[18].

Since the concentration inequality is invariant with respect to linear transformations 
we may assume that μ is isotropic. Then in particular Zp(μ) ⊃ Z2(μ) = Bn

2 .
By Proposition 2.7 in [16] CI(β) may be equivalently stated as

μ(A + βZp(μ)) ≥ min
{

1
2 , e

pμ(A)
}
, p ≥ 2.

To show the above bound with β = Cn5/12 we consider two cases.
i) If 2 ≤ p ≤ n1/6 then

μ(A + Cn5/12Zp(μ)) ≥ μ(A + Cn1/4pBn
2 ) ≥ min

{
1
2 , e

pμ(A)
}
,

where the last inequality follows by the Lee-Vempala [18] Cn1/4 bound on the Cheeger 
constant.

ii) If p ≥ max{2, n1/6} then observe first that inequality (4) yields

μ

(
2e3/2

√
n + p

p
Zp(μ)

)
≥ 1 − e−p.

Therefore Lemma 9 in [14] gives

μ(A + Cn5/12Zp(μ)) ≥ μ

(
A + 18e3/2

√
n + p

p
Zp(μ)

)
≥ min

{
1
2 , e

pμ(A)
}
. �

In general one cannot reverse bound (4) for 2 � p � n. Indeed, let e1, . . . , en be the 
canonical basis of Rn and P (X = ±ei) = 1/(2n) for 1 ≤ i ≤ n. Then for s, t ∈ Rn,

E|〈t,X〉|p = 1
n

n∑
i=1

|ti|p, ‖s‖Zp(X) = n1/p

(
n∑

i=1
|si|q

)1/q

,

where q denotes the Hölder dual to p. Thus for 2 � p � n,
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(
E‖X‖pZp(X)

)1/p
= n1/p �

√
n + p

p
.

Corollary 6 in [13] states that for unconditional log-concave vectors in Rn and 2 ≤ p ≤ n

we have

1
C

√
n

p
≤ E‖X‖Zp(X) ≤

(
E‖X‖

√
np

Zp(X)

)1/√np

≤ C

√
n

p
.

We do not know whether such bounds hold without unconditionality assumptions. We 
are only able to show the following weaker lower bound. Recall that the isotropic constant 
of a centered logconcave vector X with density g is defined as

LX := (sup
x

g(x))1/n(det Cov(X))1/(2n).

It is known that for all log-concave vectors one has LX ≥ 1/C. The famous open conjec-
ture, due to Bourgain [5], states that LX ≤ C (see [3,6] for more details and discussions 
of known upper bounds).

Proposition 11. For any centered log-concave n-dimensional random vector with nonde-
generate covariance matrix we have

E‖X‖Zp(X) ≥
1

CLX

√
n

p
for 1 ≤ p ≤ n,

where LX is the isotropic constant of X.

Proof. Since the assertion is linearly invariant we may and will assume that X is 
isotropic, i.e. it has the identity covariance matrix. The density of X is then bounded by 
Ln
X , hence

P
(
‖X‖Zp(X) ≤ t

√
n/p

)
= P

(
X ∈ t

√
n/pZp(X)

)
≤ Ln

Xvol
(
t
√
n/pZp(X)

)
≤ (C1tLX)n,

where the last estimate follows by the Paouris [19] bound on the volume of Zp-bodies 
(see also [6, Theorem 5.1.17]).

Thus

E‖X‖Zp(X) ≥
1

2C1LX

√
n

p
P

(
‖X‖Zp(X) >

1
2C1LX

√
n

p

)
≥ 1

4C1LX

√
n

p
. �

In the last years it was showed that various constants related to the n-dimensional log-
concave measures (isotropic constant, Cheeger constant, thin-shell constant) are bounded 
by Cn1/4. We think that the same should be true for the CI constant.



10 R. Latała, P. Nayar / Advances in Mathematics 375 (2020) 107414
Acknowledgments

The authors are very grateful to the anonymous referee for communicating the refer-
ence to Lemma 4.

References

[1] R. Adamczak, R. Latała, A. Litvak, K. Oleszkiewicz, A. Pajor, N. Tomczak-Jaegermann, A short 
proof of Paouris’ inequality, Can. Math. Bull. 57 (2014) 3–8.

[2] N. Alon, Problems and results in extremal combinatorics. I, in: EuroComb’01 (Barcelona), Discrete 
Math. 273 (1–3) (2003) 31–53.

[3] S. Artstein-Avidan Shiri, A. Giannopoulos, V.D. Milman, Asymptotic Geometric Analysis. Part I, 
Mathematical Surveys and Monographs, vol. 202, American Mathematical Society, Providence, RI, 
2015.

[4] C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975) 207–216.
[5] J. Bourgain, On high-dimensional maximal functions associated to convex bodies, Am. J. Math. 

108 (1986) 1467–1476.
[6] S. Brazitikos, A. Giannopoulos, P. Valettas, B.H. Vritsiou, Geometry of Isotropic Convex Bodies, 

Mathematical Surveys and Monographs, vol. 196, American Mathematical Society, Providence, RI, 
2014.

[7] S. Datta, S. Howard, D. Cochran, Geometry of the Welch bounds, Linear Algebra Appl. 437 (2012) 
2455–2470.

[8] J. Diestel, H. Jarchow, A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced 
Mathematics, vol. 43, Cambridge University Press, Cambridge, 1995.

[9] R. Eldan, Thin shell implies spectral gap up to polylog via a stochastic localization scheme, Geom. 
Funct. Anal. 23 (2013) 532–569.

[10] D.J.H. Garling, Inequalities: A Journey into Linear Analysis, Cambridge University Press, Cam-
bridge, 2007.

[11] Y. Gordon, On p-absolutely summing constants of Banach spaces, Isr. J. Math. 7 (1969) 151–163.
[12] R. Kannan, L. Lovász, M. Simonovits, Isoperimetric problems for convex bodies and a localization 

lemma, Discrete Comput. Geom. 13 (1995) 541–559.
[13] R. Latała, On Zp-norms of random vectors, J. Math. Sci. (N.Y.) 238 (4) (2019) 484–494.
[14] R. Latała, On some problems concerning log-concave random vectors, in: Convexity and Con-

centration, in: The IMA Volumes in Mathematics and Its Applications, vol. 161, Springer, 2017, 
pp. 525–539.

[15] R. Latała, M. Strzelecka, Weak and strong moments of lr-norms of log-concave vectors, Proc. Am. 
Math. Soc. 144 (2016) 3597–3608.

[16] R. Latała, J.O. Wojtaszczyk, On the infimum convolution inequality, Stud. Math. 189 (2008) 
147–187.

[17] M. Ledoux, The Concentration of Measure Phenomenom, Mathematical Surveys and Monographs, 
vol. 89, American Mathematical Society, Providence, RI, 2001.

[18] Y.T. Lee, S. Vempala, Eldan’s stochastic localization and the KLS hyperplane conjecture: an im-
proved lower bound for expansion, in: 58th Annual IEEE Symposium on Foundations of Computer 
Science – FOCS 2017, IEEE Computer Soc., Los Alamitos, CA, 2017, pp. 998–1007.

[19] G. Paouris, Concentration of mass on convex bodies, Geom. Funct. Anal. 16 (2006) 1021–1049.
[20] I. Peng, S. Waldron, Signed frames and Hadamard products of Gram matrices, Linear Algebra Appl. 

347 (2002) 131–157.
[21] V.N. Sudakov, B.S. Tsirelson, Extremal properties of half-spaces for spherically invariant measures, 

in: Problems in the Theory of Probability Distributions, II, Zap. Nauč. Semin. LOMI 41 (1974) 
14–24.

[22] M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, in: 
Israel Seminar (GAFA), in: Lecture Notes in Math., vol. 1469, Springer, Berlin, 1991, pp. 94–124.

[23] M. Talagrand, Upper and Lower Bounds for Stochastic Processes, Ergebnisse der Mathematik und 
ihrer Grenzgebiete, vol. 60, Springer, Heidelberg, 2014.

[24] L. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. Inf. Theory 20 
(1974) 397–399.

http://refhub.elsevier.com/S0001-8708(20)30442-4/bibFB8EF0C5A2C9399A438554202AAF6512s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibFB8EF0C5A2C9399A438554202AAF6512s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibD4B9967B6C3F9CDB6210CB408E82A5BEs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibD4B9967B6C3F9CDB6210CB408E82A5BEs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib950E0A14E4BBCD47C6C34DCB10B2C565s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib950E0A14E4BBCD47C6C34DCB10B2C565s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib950E0A14E4BBCD47C6C34DCB10B2C565s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib3D905D7A6C55049156A7BDEF7D7FCAFDs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibC47C17C51E6290BB8DC1FA32B63C5793s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibC47C17C51E6290BB8DC1FA32B63C5793s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib616B6822202DB6F8692A218F835ABC53s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib616B6822202DB6F8692A218F835ABC53s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib616B6822202DB6F8692A218F835ABC53s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibB2815413875C2B9E80A0D1D70B3917B2s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibB2815413875C2B9E80A0D1D70B3917B2s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib064A38CD345AE71645D9906B5A73C6DFs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib064A38CD345AE71645D9906B5A73C6DFs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib9CF613017452B1A648D100BBCE3D293As1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib9CF613017452B1A648D100BBCE3D293As1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibE78CF885951F47A47BF1EFCD5C9CC1C1s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibE78CF885951F47A47BF1EFCD5C9CC1C1s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib5F075AE3E1F9D0382BB8C4632991F96Fs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib429CE8973ACFFE4A5277BD54B6841CA8s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib429CE8973ACFFE4A5277BD54B6841CA8s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib1586BF9A7EBB455F9A1B133D05248A59s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib046220A712EAB9AD0811C3BDFFC5035Fs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib046220A712EAB9AD0811C3BDFFC5035Fs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib046220A712EAB9AD0811C3BDFFC5035Fs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib0793521E015964DE2562CCBE13519DC6s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib0793521E015964DE2562CCBE13519DC6s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibC556331DE98FF0977430DADE00C6C714s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibC556331DE98FF0977430DADE00C6C714s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibBCCD5EC3EC8FD3A4471E71E9B407C60Cs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibBCCD5EC3EC8FD3A4471E71E9B407C60Cs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibA7BDEE32CB21F0ABBF9F878CB06CFE16s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibA7BDEE32CB21F0ABBF9F878CB06CFE16s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibA7BDEE32CB21F0ABBF9F878CB06CFE16s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibA13DF921D517C3E3508B5A752A79D53Bs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib1B77697B886EFCF3FE95A8839064C1CBs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib1B77697B886EFCF3FE95A8839064C1CBs1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib52E56A107A1D1025D2C48E8B9219835Ds1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib52E56A107A1D1025D2C48E8B9219835Ds1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib52E56A107A1D1025D2C48E8B9219835Ds1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib86A1EA3ADF8FBB53EB7A9B6B6B01C020s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bib86A1EA3ADF8FBB53EB7A9B6B6B01C020s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibEF35294FD3447DF9B33FF2E1F943EB05s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibEF35294FD3447DF9B33FF2E1F943EB05s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibEB74A80984D24AC903FFC1133C334D85s1
http://refhub.elsevier.com/S0001-8708(20)30442-4/bibEB74A80984D24AC903FFC1133C334D85s1

	Hadamard products and moments of random vectors
	1 Introduction
	2 Proof of the main result
	3 Optimal concentration of measure
	Acknowledgments
	References


