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Introduction

The course comes in three parts. In the first, we prove isoperimetric theo-
rems in four classical settings:

• d-dimensional Euclidean space, with its usual measure;
• the d-dimensional hypercube.
• the surface of a d-dimensional sphere;
• d-dimensional space, with Gaussian measure;

Each of these theorems requires its own technique, and we shall establish
all the results that we shall need on the way (the Prékopa-Leindler inequality,
the Brunn-Minkowski inequality, Haar measure, Poincaré’s Lemma,...).

In the second part, we investigate how the isoperimetric theorems are used
in studying the geometry of Banach spaces, and prove Dvoretzky’s Theorem
on spherical sections.

A typical application of the isoperimetric theorems is that in high dimen-
sions, a Lipschitz function takes values near its median with high probability,
and the probability of large deviations is small. This is known as the con-
centration of measure phenomenon, or the theory of large deviations. In
the third part of the course, we shall study this, even in settings where an
isoperimetric theorem does not exist, such as in Σn.

In spite of the geometric setting, this will be a course on Analysis and
Probability. Attendance at the Part II courses on Probability and Measure,
and Linear Analysis, or their equivalents, will be an advantage, as will be
attendance at Michaelmas term Analysis courses. In the third part, we shall
study probabilities on metric spaces: the book by Dudley is an excellent
reference for this.
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Isoperimetry

1.1 Isoperimetry in Rd

Suppose that 1 ≤ p <∞ and that 1/p+ 1/p′ = 1.
We have Hölder’s inequality:
if f ∈ Lp(Ω,Σ, µ) and g ∈ Lp′(Ω,Σ, µ) then fg ∈ L1(Ω,Σ, µ) and

‖fg‖1 =
∫
|fg| dµ ≤ (

∫
|f |p dµ)1/p(

∫
|g|p′ dµ)1/p

′
= ‖f‖p ‖g‖p′ .

Our first inequality goes in the opposite direction, for functions on Rd

with Lebesgue measure λ.

Proposition 1.1.1 Suppose that A and B are sets of finite positive measure
in R. Then

λ(A/p+B/p′) ≥ λ(A/p) + λ(B/p′) = λ(A)/p+ λ(B)/p′.

Proof First observe that we can translate sets. Let Ak = A−k, Bl = B− l.
Then Ak/p + Bl/p

′ = Ak/p+l/p′ ; if we prove the result for Ak and Bl, then
we get the result for A and B.

First suppose that A and B are compact subsets of R. By translating,
we can suppose that sup(A) = inf(B) = 0 so that A ∩ B = {0}. Then
A/p + B/p′ contains the (almost disjoint) union of A/p and B/p′, so that
λ(A/p+B/p′) ≥ λ(A/p) + λ(B/p′). If A is measurable, then

λ(A) = sup{λ(K) : K compact K ⊆ A},

so that an easy approximation argument shows that the result holds for
general measurable A, B.
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4 Isoperimetry

Proposition 1.1.2 Suppose that u ∈ Lp(R), v ∈ Lp′(R) and that

|w(
x

p
+
y

p′
)| ≥ |u(x)||v(y)| for all x, y ∈ R.

Then ‖w‖1 ≥ ‖u‖p ‖v‖p′.

Proof We can clearly suppose that u, v, w ≥ 0 and that u and v are non-zero.
Since

‖u‖p = sup{‖f‖p : f bounded , |f | ≤ u},

we can also suppose that u and v are bounded and non-zero. By scaling, we
can suppose that ‖u‖∞ = ‖v‖∞ = 1. Recall that

∫
w dλ =

∫∞
0 λ(w > t) dt.

Let At = (u > t1/p) = (up > t), Bt = (v > t1/p
′
) = (vp

′
> t). Then At and

Bt are sets of finite positive measure for 0 < t < 1, and λ(At) = λ(Bt) = 0 for
t ≥ 1. If 0 ≤ t < 1 and x ∈ At and y ∈ Bt then w(x/p+y/p′) > t1/pt1/p

′
= t,

so that (w > t) ⊃ At/p + Bt/p
′ and λ(w > t) ≥ λ(At)/p + λ(Bt)/p′.

Integrating, and using Jensen’s inequality,∫
w dλ =

∫ ∞

0
λ(w > t) dt ≥

∫ 1

0
λ(w > t) dt

≥
∫ 1

0
λ(At)/p+ λ(Bt)/p′ dt

= ‖u‖pp /p+ ‖v‖p
′

p′ /p
′ ≥ ‖u‖p ‖v‖p′ .

Theorem 1.1.1 (The Prékopa-Leindler inequality) Suppose that
u ∈ Lp(Rd),v ∈ Lp′(Rd) and that

|w(
x

p
+
y

p′
)| ≥ |u(x)||v(y)| for all x, y ∈ Rd.

Then ‖w‖1 ≥ ‖u‖p ‖v‖p′.

Proof We prove this by induction on d. It is true for d = 1: suppose that it
is true for d− 1. Let Hr = {x : xd = r}, and let us identify Rd−1 with H0,
so that we can write a point of Rd as (x, t), with x ∈ Rd and t ∈ R. Let us
write wt(x) = w(x, t), etc. If t = r/p+s/p′ then wt(x/p+y/p′) ≥ ur(x)vs(y),
and so by the d − 1-dimensional result ‖wt‖1 ≥ ‖ur‖p . ‖vs‖p′ . Thus if we
set W (t) = ‖wt‖1, U(r) = ‖ur‖p and V (s) = ‖vs‖p′ then W (r/p + s/p′) ≥
U(r)V (s). Applying, the one-dimensional result,

‖w‖1 = ‖W‖1 ≥ ‖U‖p ‖V ‖p′ = ‖u‖p ‖v‖p′ .
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Corollary 1.1.1 (The Brunn-Minkowski inequality) If A and C are
sets of finite positive measure in Rd then

(λ(A+ C))1/d ≥ (λ(A))1/d + (λ(C))1/d.

Proof Let α = (λ(A))1/d and γ = (λ(C))1/d. Let Ã = A/α, C̃ = C/γ, so
that λ(Ã) = λ(C̃) = 1. Let u = IÃ, v = IC̃ . Then ‖u‖p = ‖v‖p′ = 1. Let
1/p = α/(α + γ), so that 1/p′ = γ/(α + γ). Then Ã/p = A/(α + γ) and
C̃/p′ = C/(α+ γ), so that

Ã/p+ C̃/p′ = (A+ C)/(α+ γ)

and we can take w = I(A+C)/(α+γ). Thus

λ((A+ C)/(α+ γ)) = ‖w‖1 ≥ ‖u‖p ‖v‖p′ = 1,

and so λ(A+ C) ≥ (α+ γ)d; taking d-th roots, we get the result.

We now obtain the isoperimetric inequality in Rd. We avoid measuring
surface areas in the following way. If A is a closed subset of a metric space
(X, ρ) and ε > 0, we set Aε = {x : d(x,A) ≤ ε}. In Rd, Aε = A+ εB, where
B is the closed unit ball in Rd.

Corollary 1.1.2 (The isoperimetric inequality in Rd) If A is a closed
subset in Rn and λ(A) = λ(B) then λ(Aε) ≥ λ(Bε).

Proof By Brunn-Minkowski,

(λ(Aε))1/d = (λ(A+ εB)1/d

≥ (λ(A))1/d + ε(λ(B))1/d

= (1 + ε)(λ(B))1/d = (λ(Bε))1/d.

Exercises

(i) Provide the ‘easy approximation argument’ required in Theorem 1.1.1.
(ii) Calculate Id =

∫ π
0 sind θ dθ.

(iii) Let Bd
p denote the unit ball of Rd, equipped with the norm ‖x‖p =

(
∑d
i=1 |xi|p)1/p, and with ‖x‖∞ = maxi |xi|. Calculate the volumes of

Bd
p for p = 1, 2,∞, and their (d− 1)-dimensional surface areas. How

do these quantities behave as d→∞?
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(iv) Let rd,pBd
p be the multiple of Bd

p with the same volume as the eu-
clidean ball Bd

2 . How does rd,p behave as d → ∞, for p = 1,∞?
How does the surface area of rd,pBd

p compare with that of Bd
2 , for

p = 1,∞?
(v) Suppose that A and B are non-empty compact sets in Rd, and that

0 < t < 1. Show that

λ((1− t)A+ tB)1/d ≥ (1− t)(λ(A))1/d + t(λ(B))1/d,

and deduce that

λ((1− t)A+ tB) ≥ (λ(A))1−t(λ(B))t.

Show that the Brunn-Minkowski inequality can be deduced from this
last inequality.

1.2 Isoperimetry in the hypercube

Let Qd = {0, 1}d = {x = (x1, . . . , xd) : xi = 0 or 1}, be the set of vertices
of the unit hypercube in Rd. The map A → IA is a bijection from the set
P ({1, . . . , d}) of subsets of {1, . . . , d} onto Qd, so that we can identify Qd

with P ({1, . . . , d}).
Let d(x, y) =

∑d
i=1 |xi − yi| = ‖x− y‖1. d is the Hamming metric on Qd.

Let l(x) = d(x, 0), and let Bk = {x : l(x) ≤ k}, Sk = {x : l(x) = k}.
If A is a non-empty subset of Qd, let N(A) = {x : d(x,A) ≤ 1}. What is

min{|N(A)| : |A| = k}? For what sets is the minimum attained?
We define a total order on Qd. If x 6= y, we set x < y if either l(x) < l(y)

or l(x) = l(y) and x comes before y in the (reverse?) lexicographic order: if
j = inf{i : xi 6= yi} then xj = 1 and yj = 0. Thus I is an initial segment if
and only if there exists r such that Br ⊆ I ≤ Br+1 and I \ Br is an initial
segment of Sr+1 in the lexicographic order.

Theorem 1.2.1 (Harper’s theorem) If I is an initial segment of length
k in Qd and |A| = k then |N(A)| ≥ |N(I)|.

Proof The proof is by induction on d. The case d = 1 is trivial. Suppose
that the result is true for d − 1. For the moment, fix 1 ≤ i ≤ d. Let
[i] = {1, . . . , d}\{i}, and let Q[i] be the corresponding hypercube. If x ∈ Qd

let P (x)j = xj for j ∈ [i]. P is a 2− 1 mapping of Qd onto Q[i].
For η = 0, 1, let Aη = {x ∈ A : xi = η}, let Bη = P (Aη), let kη =

|Aη| = |Bη|, and let Iη be the initial segment of Q[i] of length kη. Let
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Cη = {x ∈ Qd : xi = η, P (x) ∈ Iη} and let C = C0 ∪ C1. Note that
|C| = |A|.

We claim that |N(A) ≥ |N(C)|. P ((N(A0))0) = N(B0) and P ((N(A1))0) =
B1, and (N(A))0 = (N(A0))0∪(N(A1))0, so that P ((N(A))0) = N(B0)∪B1,
and |(N(A))0| = |N((B0) ∪ B1|. Similarly, |(N(C))0| = |N(I0) ∪ I1|. But
N(I0) is also an initial segment, and so N(I0) ∪ I1 is either N(I0) or I1.
Thus, using the inductive hypothesis,

|(N(A))0| = |N(B0) ∪B1| ≥ max(|N(B0)|, |B1|)
≥ max(|N((I0)|, |I1|) = |N(I0) ∪ I1| = |(N(C))0|.

Similarly, |(N(A))1| ≥ |(N(C))1|, and so |N(A)| ≥ |N(C)|.
We call C = Ci(A) the compression of A in the i direction. Note that

|Ci(A)| = |A| and that if A 6= Ci(A) then∑
{l(x) : x ∈ Ci(A)} <

∑
{l(x) : x ∈ A}. (∗).

Thus starting with A, either A = Ci(A) for all i, or we compress in a certain
direction. We iterate this. By (∗), the process must stop, and we obtain a
set D such that |D| = |A|, |N(D)| ≤ |N(A)|, and D = Ci(D) for each i.

Unfortunately, this does not imply that D is an initial segment. Suppose
that D is not an initial segment. There exist x 6∈ D and y ∈ D with x < y.
Since D = Ci(D), xi 6= yi. This holds for each i. Thus x is uniquely
determined by y, and y is also uniquely determined by x. This means that
D = I \ {x}, where I is an initial segment with largest element y, and x

is the predecessor of y. This can happen uniquely, but in a different way,
depending on the parity of d.

If d = 2r + 1 then l(x) = r and l(y) = r + 1. Thus

x = (1, . . . , 1, 0, . . . , 0) (r ones), and y = (0, . . . , 0, 1, . . . , 1) (r + 1 ones).

If d = 2r then l(x) = l(y) = r. Thus

x = (0, 1, . . . , 1, 0, . . . , 0) (r ones), and y = (1, 0, . . . , 0, 1, . . . , 1) (r ones).

In either case, |N(D)| ≥ |N(J)|, where J is the initial segment with |D|
elements.

[This account of the theorem is based on the notes on ‘Extremal combina-
torics’ on Paul Russell’s DPMMS home page, and on the paper by Professor
Leader listed in the introduction.]

Exercises

(i) Calculate |Bk| and |Sk|
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(ii) It is as natural to work with the probability measure P(A) = |A|/|Qd|
as it is with counting measure |A|. Suppose that d = 2r is even. Find
an expression for P((Br)ε). How does it behave as d and ε grow?

1.3 The Hausdorff metric

Suppose that (X, d) is a compact metric space. Let K∗(X) denote the set
of closed non-empty subsets of X. We set

ρ(K,L) = inf{ε > 0 : K ⊆ Lε, L ⊆ Kε}.

Since Kε+η ⊇ (Kε)η, it follows easily that ρ is a metric on K∗(X). Note
that the set of one-point subsets of X is a closed subset of K∗(X), naturally
isometric to X.

Proposition 1.3.1 The finite sets are dense in K∗(X), and K∗(X) is pre-
compact.

Proof An ε-net in a metric space is a subset N such that X ⊆ ∪{Bε(n) :
n ∈ N}. A set is precompact if and only if for each ε > 0 there exists a
finite ε-net.

Suppose that ε > 0. Let N be a finite ε-net in X. If K ∈ K∗(X), let
M = N ∩Kε. Then M is a non-empty subset of Kε. If x ∈ K then there
exists y ∈ N with d(x, y) ≤ ε. Then y ∈ M and x ∈ Mε. Thus X ⊆ Mε,
and ρ(X,M) ≤ ε. The set P ∗(N) of non-empty subsets of N is therefore a
finite ε-net in K∗(X).

Proposition 1.3.2 (K∗(X), ρ) is complete.

Proof First we show that if (Kn) is a decreasing sequence in K∗(X) then
Kn → K = ∩nKn as n→∞. Suppose that ε > 0. Certainly K ⊆ Kn ⊆ Kn

ε

for all n. We claim that there exists n0 such that Kn ⊆ Kn0 ⊆ Kε for
n ≥ n0. If not, for each n there exists xn ∈ Kn with d(xn,K) > ε. Since X
is compact there exists a convergent sequence (xnk

), convergent to x, say.
Then x ∈ K, but d(x,K) ≥ ε, giving a contradiction.

Secondly, suppose that (Kn) is a Cauchy sequence, and suppose that
ε > 0. Let Ln = ∪m≥nKn. Then Kn ⊆ Ln ⊆ Lnε for all n. There exists
n0 such that ρ(Km,Kn) ≤ ε for m ≥ n ≥ n0. Thus if m ≥ n ≥ n0 then
Km ⊆ Kn

ε , and so Ln ⊆ Kn
ε . Thus ρ(Kn, Ln) ≤ ε for n ≥ n0. But (Ln)

decreases to L = ∩nLn, and so Ln → L. Consequently, Kn → L.
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Corollary 1.3.1 (K∗(X), ρ) is compact.

As examples, take X to be the unit ball in ld2. (In fact, any finite-
dimensional normed space will do.) Then the set of closed non-empty com-
pact subsets of X is closed in K∗(X). So also is the set of sets of the form
E ∩X, where E is a k-dimensional subspace of ld2. In this way the Grass-
mann manifold Gn,k of k-dimensional subspaces of ld2 becomes a compact
metric space.

Exercises

(i) Verify that ρ is a metric on K∗(X).
(ii) Let X = [0, 1]. Is the set of two-point sets closed in K∗(X)? What

about the set of non-empty sets with at most k points?
(iii) Suppose that (X, d) is a locally compact metric space. Show that the

set K∗(X) of non-empty compact subsets of X is a locally compact
metric space under the Hausdorff metric.

(iv) Show that the set of non-empty convex compact subsets of Rd is
closed in K∗(Rd).

(v) Show that the set of sets of the form E∩X, where E is a k-dimensional
subspace of ln2 , is closed in K∗(X).

1.4 Haar measure

Proposition 1.4.1 Suppose that g is an isometry of a compact metric space
(X, d) into itself. Then g is surjective.

Proof g(X) is compact, and therefore closed. If X 6= g(X), there exists
x ∈ X \ g(X). Let δ = d(x, g(X)). Then d(x, gjx) ≥ δ for all j. Since g is
an isometry, d(gk(x), gl(x)) ≥ δ for all k, l with k < l. Thus (gk(x)) has no
convergent subsequence, giving a contradiction.

Theorem 1.4.1 Suppose that (X, d) is a compact metric space. Let IX
be the group of isometries of X onto itself. If g, h ∈ IX , let ρ(g, h) =
sup{d(g(x), h(x)) : x ∈ X}. Then ρ is a translation invariant metric on IX
under which IX is compact, and the mapping (g, x) → g(x) : IX ×X → X

is jointly continuous.

Proof It is easy to see that ρ is a translation invariant metric on IX . Suppose
that (gn) is a sequence in IX . (X, d) is separable: let (xm) be a dense
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sequence in X. By a standard diagonal argument, there exists a subsequence
(hk) = (gnk

) of (gn) such that gnk
(xm) converges as k → ∞, for each m.

Suppose that ε > 0. There exists M such that {x1, . . . , xM} is an ε/3-net in
X, and there exists K such that d(hj(xm), hk(xm)) < ε/3 for j, k ≥ K and
1 ≤ m ≤ M . If x ∈ X, there exists 1 ≤ m ≤ M such that d(x, xm) ≤ ε/3.
Then

d(hj(x), hk(x)) ≤ d(hj(x), hj(xm))+d(hj(xm), hk(xm))+d(hk(xm), hk(x)) < ε.

Thus (hj) converges uniformly to h, say, on X. h is an isometry of X, and
ρ(hk, h) → 0 as k → ∞ Thus (IX , ρ) is sequentially compact, and so is
compact.

If ρ(g, h) < ε/2 and d(x, y) < ε/2 then

d(g(x), h(y)) ≤ d(g(x), g(y)) + d(g(y), h(y)) ≤ d(x, y) + ρ(g, h) < ε,

and we have joint continuity.

Theorem 1.4.2 Suppose that (X, d) is a compact metric space, Then there
exists a probability measure µ on the Borel sets of X such that

∫
f(x) dµ(x) =∫

f(g(x)) dµ(x) for all f ∈ C(X), g ∈ IX . If IX acts transitively on X (given
x, y ∈ X there exists an isometry of X such that g(x) = y) then µ is unique.

Proof C(X) is a Banach space under the supremum norm, and by the
Riesz representation theorem its dual can be identified with the signed Borel
measures on X. C(X) is separable, so that the unit ball of M(X) is compact
and metrizable under the weak*-topology. The set P(X) = {µ : ‖µ‖ = 1 =
µ(X)} of probability measures is weak*-closed, and so is also compact and
metrizable under the weak*-topology.

Let (εk) be a decreasing sequence of positive numbers tending to 0. For
each k, let Nk be an εk-net in X with a minimal number nk of terms. For
f ∈ C(X), let µk(f) = (1/nk)

∑
x∈Nk

f(x). Then µk ∈ P (X), and there
exists a weak*-convergent subsequence (which we denote again by (µk))
which is weak*- convergent to µ, say.

We now show that µ does not depend upon the choice of net (of minimal
size). For this we need Hall’s marriage theorem:

Theorem 1.4.3 Suppose that A is a finite set, and that j is a mapping
from A into the set P (B) of subsets of a set B. Then there exists a marriage
mapping - a one-one mapping φ : A→ B such that φ(a) ∈ j(a) for all a ∈ A
- if and only if whenever C ⊆ A then #(∪{j(a) : a ∈ C} ≥ #(C).
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Proof The condition is trivially necessary. Sufficiency is proved by induction
on #(A). The result is trivially true if #(A) = 1. Suppose that it is true
for sets of cardinality less than d, and that #(A) = d. There are two
possibilities; first #(∪{j(a) : a ∈ C}) > #(C) for each non-empty proper
subset C of A. Then pick a ∈ A and φ(a) ∈ j(A). Let A′ = A \ {a}, and if
a′ ∈ A′ let j′(a′) = j(a′) \ {φ(a)}. Then j′ satisfies the conditions, and, by
the inductive hypothesis, we can define a marriage mapping φ′ : A′ → B.
For a′ ∈ A′, we define φ(a′) = φ′(a′).
Secondly, there exists a non-empty proper subset C ofA such that #(∪{j(a) :
a ∈ C} = #(C). By the inductive hypothesis, we can find a marriage map-
ping ψ : C → B. Let D = A \ C. If d ∈ D, let j′(d) = j(d) \ ψ(C).
Then it is easy to see that j′ satisfies the conditions of the theorem. By the
inductive hypothesis, we can find a marriage mapping χ : D → B. If we
set φ(a) = ψ(a) if a ∈ C and φ(a) = χ(a) if a ∈ D, then φ is a marriage
mapping ψ : A→ B.

Let’s return to the proof of Theorem 1.4.2. Suppose that N ′
k is another

εk-net with a minimal number of elements. If n ∈ Nk, let

j(n) = {n′ ∈ N ′
k : B(n, εk) ∩B(n′, εk) 6= ∅}.

Note that B(n, εk) ⊆ ∪n′∈j(n)B(n′, εk). Suppose that C ⊆ Nk, and let
E = ∪{j(n) : n ∈ C}. Then

∪{B(n′, εk) : n′ ∈ E} ⊇ ∪{B(n, εk) : n ∈ C},

so that (Nk \ C) ∪ E is an εk-net. By minimality, #(E) ≥ #(C). Thus the
conditions of the Hall marriage theorem are satisfied, and so there exists a
marriage mapping φ : Nk → N ′

k. Note that d(n, φ(n)) ≤ 2εk. If f ∈ C(X)
then

|µk(f)− µ′k(f)| = | 1
nk

∑
n∈Nk

f(n)− f(φ(n))|

≤ 1
nk

∑
n∈Nk

|f(n)− f(φ(n))|

≤ sup{|f(x)− f(y)| : d(x, y) ≤ 2εk} → 0

as k →∞, by the uniform continuity of f .
Suppose now that g ∈ IX . Then, for each k, g(Nk) is an εk-net with a

minimal number of terms, and so∫
f(x) dµ(x) = lim

k→∞

 1
nk

∑
n∈Nk

f(n)


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= lim
k→∞

 1
nk

∑
n∈Nk

f(g(n))


=

∫
f(g(x)) dµ(x).

We now turn to uniqueness, in the case where IX acts transitively. If
g, h, k ∈ IX then ρ(hg, kg) = ρ(h, k), and so there exists a measure ν on the
Borel sets of IX such that if f ∈ C(IX) then

∫
f(h) dν(h) =

∫
f(hg) dν(h)

for all g ∈ IX . Suppose that f ∈ C(X). Then∫
X
f(x) dµ(x) =

∫
X
f(h(x)) dµ(x) for h ∈ IX

=
∫
IX

(
∫
X
f(h(x)) dµ(x)) dν(h)

=
∫
X

(
∫
IX

f(h(x)) dν(h)) dµ(x).

But if x, y ∈ X there exists g ∈ IX such that y = g(x). Then∫
IX

f(h(y)) dν(h) =
∫
IX

f(h(g(x))) dν(h) =
∫
IX

f(h(x)) dν(h),

so that
∫
IX
f(h(x)) dν(h) takes a constant value C onX. Thus

∫
X f(x) dµ(x) =

C. But the same argument shows that if µ′ satisfies the conclusion of the
theorem then

∫
X f(x) dµ′(x) = C, and so µ = µ′.

In the case where IX acts transitively on X, the unique invariant measure
is called Haar measure. The standard example is the case where (G, ρ) is a
compact metric group whose topology is defined by a translation invariant
metric ρ. If f ∈ C(G), then∫

G
f(h) dµ(h) =

∫
G
f(gh) dµ(h) =

∫
G
f(hg) dµ(h)

for all g ∈ G: these equations extend to functions in L1(G,µ).
More generally we consider the case where the compact group (G, ρ) acts

continuously as a transitive group of isometries of a compact metric space
(X, d). For example, SOn acts transitively on Sn−1, and also acts transi-
tively on the Grassmann manifold Gn,k.

Proposition 1.4.2 Suppose that a compact group (G, ρ) acts continuously
as a transitive group of isometries of a compact metric space (X, d). Let µ
be Haar measure on X, and let ν be Haar measure on G. If x ∈ X and A
is a Borel set in X then ν({g : g(x) ∈ A}) = µ(A).
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Proof

µ(A) =
∫
X
IA(y) dµ(y) =

∫
X
IA(g(y)) dµ(y) for g ∈ G,

and so

µ(A) =
∫
G
(
∫
X
IA(g(y)) dµ(y)) dν(g) =

∫
X

(
∫
G
IA(g(y)) dν(g)) dµ(y).

But
∫
G IA(g(y)) dν(g) is independent of y, by transitivity, and so

µ(A) =
∫
G
IA(g(x)) dν(g) = ν({g : g(x) ∈ A}).

Similar results hold when (G, τ) is a compact topological group. Haar
measure is then a regular measure on the Borel sets of G. A good account
is given in the book by Zimmer listed above.

The situation is more complicated for locally compact groups. There is a
measure, invariant under left translations, and unique up to scaling, and a
measure, invariant under right translations, and unique up to scaling, but
these need not be the same.

Exercises

(i) Let (IX , ρ) be the group of isometries of a compact metric space
(X, d), and let e be the identity map on X. Show that ρ(gh, e) ≤
ρ(g, e) + ρ(h, e) and that ρ(g−1, e) = ρ(g, e). Deduce that (IX , ρ) is a
compact topological group.

(ii) Show that dx/x is Haar measure on (R+,×).
(iii) Let G = R+ ×R+ ×R, with composition

(x, y, z)(u, v, w) = (xu, yv, xw + zv).

Identify G with a group of upper triangular matrices. Show that the
left-invariant Haar measure is dxdydz/x2y and the right-invariant
Haar measure is dxdydz/xy2.
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1.5 Isoperimetry in Sd

We consider Sd with geodesic metric d and Haar measure µ. A cap in is a
set of the form Br(x). Our aim is to show the following.

Theorem 1.5.1 If A is a measurable subset of Sd and C is a cap of equal
measure, then µ(Cε) ≤ µ(Aε) for each ε > 0.

Let N = (0, . . . , 0, 1) be the north pole of Sd. If φ ∈ Sd and 〈φ,N〉 > 0 let

K+
φ = K+ = {x ∈ Sd : 〈φ, x〉 ≥ 0}

K−
φ = K− = {x ∈ Sd : 〈φ, x〉 < 0}.

Eφ = {x ∈ Sd : 〈φ, x〉 = 0}: Eφ is the φ-equator.

Let Pφ(x) = x−2 〈φ, x〉φ: Pφ is the reflection in the hyperplane {y : 〈φ, y〉 =
0}.

Suppose that A is a closed subset of Sd. Let

Ab = {x ∈ A : Pφ(x) ∈ A},
A+ = {x ∈ A ∩K+ : Pφ(x) 6∈ A},
A− = {x ∈ A ∩K− : Pφ(x) 6∈ A},
A∗φ = A∗ = Ab ∪A+ ∪ Pφ(A−).

Proposition 1.5.1 (i) A∗ is closed.
(ii) µ(A) = µ(A∗).
(iii) (A∗)ε ⊆ (Aε)∗.

Proof (i) Ab ∪ A+ is closed and Pφ(A−) = Pφ(A−) ∪ (A− ∩ Eφ) ⊆ A∗, so
that A∗ is closed.

(ii) Trivial.
(iii) Suppose that x ∈ A∗ and that d(x, y) ≤ ε. We consider cases.
(a) x ∈ A, x ∈ K+, y ∈ K+.

Then y ∈ Aε so y ∈ (Aε)∗.
(b) x ∈ A, x ∈ K+, y ∈ K−.

Then d(x, Pφ(y)) ≤ d(x, y) ≤ ε, so that y ∈ (Aε)b ⊆ (Aε)∗.
(c) x ∈ A, x ∈ K−.

Then x ∈ Ab, so that y ∈ (Aε)b ⊆ (Aε)∗.
(d) x 6∈ A.

Then Pφ(x) ∈ A− and Pφ(y) ∈ Aε. Thus y = Pφ(Pφ(y)) ∈ (Aε)∗.

Corollary 1.5.1 µ((A∗)ε) ≤ µ(Aε).
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We need a couple of lemmas.

Lemma 1.5.1 The set

T = {B : µ(B) = µ(A) and µ(Bε) ≤ µ(Aε) for all ε > 0}

is closed in K∗(Sd).

Proof Suppose that D ∈ T̄ . Then given η > 0 there exists B ∈ T with
ρ(D,B) < η. Then Dε ⊆ (Bη)ε ⊆ Bη+ε, so that µ(Dε) ≤ µ(Bη+ε) ≤
µ(Aη+ε). Let η → 0: µ(Bε) ≤ µ(Aε). Similarly, µ(D) ≤ µ(A). Further,
B ⊆ Dη, so that µ(A) = µ(B) ≤ µ(Dη). Letting η → 0 we see that
µ(A) ≤ µ(D). Thus D ∈ T and T is closed.

Let S be the smallest closed subset of K∗(Sd) such that A ∈ S and if
B ∈ S then B∗

φ ∈ S for all φ with 〈φ,N〉 > 0.

Corollary 1.5.2 If B ∈ S then µ(B) = µ(A) and µ(Bε) ≤ µ(Aε) for all
ε > 0.

Now let C be the cap with centre at the north pole N and with µ(C) =
µ(A).

Lemma 1.5.2 Suppose that α > 0. The set

Jα = {B ∈ S : µ(B ∩ C) ≥ α}

is closed in K∗(Sd).

Proof Suppose that D ∈ Jα. Given η > 0 there exists B ∈ Jα with
ρ(D,B) ≤ η. If x ∈ B ∩C then there exists y ∈ D with d(x, y) ≤ η, so that
y ∈ D ∩ Cη and x ∈ (D ∩ Cη)η ⊆ Dη ∩ C2η. Thus B ∩ C ⊆ Dη ∩ C2η, and
µ(Dη ∩C2η) ≥ α. But ∩η>0(Dη ∩C2η) = D ∩C, and so µ(D ∩C) ≥ α.

Corollary 1.5.3 µ(B ∩ C) attains its maximum on S at a set B0 in S.

Proof Compactness.

Proof of Theorem 1.5.1. We show that B0 ⊇ C: this clearly suffices.
If not, then there exist x and ε > 0 such that Bε(x) ⊆ C and Bε(x)∩B0 =

∅. Then µ(C \ B0) > 0 and so µ(B0 \ C) > 0. Since B0 \ C is precompact,
it can be covered by finitely many balls of radius ε/3, and one of these,
say Bε/3(y), must intersect B0 \ C in a set of positive measure. Note that
d(x, y) ≥ 2ε/3. Let φ = (x − y)/|x − y|, so that N ∈ K+

φ and Pφ(y) = x.
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Then Pφ moves Bε/3(y)∩(B0\C) into C, contradicting the maximal property
of B0.

This proof comes from Yoav Benyamini’s lecture notes, listed above.

1.6 The Beta and Gamma distributions

Suppose that k > 0. A non-negative random variable has a Γ(k) distribution
if it has density

(1/Γ(k))tk−1e−t, where Γ(k) =
∫ ∞

0
tk−1e−t dt = (k − 1)!.

For example if X = Y 2/2, where Y has an N(0, 1) distribution, then

P(X ≤ t) =
1√
2π

∫ √
2t

−
√

2t
e−x

2/2 dx =
2√
2π

∫ √
2t

0
e−x

2/2 dx

=
1√
π

∫ t

0
s−1/2e−s ds,

so that X has a Γ(1/2) distribution.
Let γ denote canonical Gaussian measure on R (with density e−x

2/2/
√

2π).
Making the substitution t = s2/2, we see that

Γk =
∫ ∞

0

s2k−1

2k−1
e−s

2/2 ds =
√

2π
2k

Eγ(|s|2k−1) :
∫ ∞

0
s2k−1e−s

2/2 ds = 2k−1Γk.

Suppose that m,n > 0. A random variable taking values in [0, 1] has a
B(m,n) distribution if it has density

tm−1(1− t)n−1

B(m,n)
, where B(m,n) =

∫ 1

0
tm−1(1− t)n−1 dt.

Theorem 1.6.1 If X has a Γ(m) distribution and Y has a Γ(n) distribution,
and if X and Y are independent, then U = X + Y and V = X/(X +
Y ) are independent; U has a Γ(m + n) distribution, and V has a B(m,n)
distribution.

Proof (X,Y ) has density sm−1tn−1e−(s+t)/Γ(m)Γ(n). If u = s + t and
v = s/(s + t) then s = uv and t = u(1 − v). The Jacobian is −u, so that
(U, V ) has density

um+n−1vm−1(1− v)n−1e−u

Γ(m)Γ(n)
=

=
Γ(m+ n)B(m,n)

Γ(m)Γ(n)
.
um+n−1e−u

Γ(m+ n)
.
vm−1(1− v)n−1

B(m,n)
.
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Corollary 1.6.1 Γ(m+ n)B(m,n) = Γ(m)Γ(n).

Corollary 1.6.2 If X1, . . . , Xn are independent N(0, 1) random variables
then 1

2(X2
1 + · · ·+X2

n) has a Γ(n/2) distribution.

Corollary 1.6.3 If X1, . . . , XN are independent N(0, 1) random variables
and 1 ≤ n ≤ N then (X2

1 +· · ·+X2
n)/(X

2
1 +· · ·+X2

N ) has a B(n/2, (N−n)/2)
distribution.

The Gamma function has its place in Gaussian calculus, when we use
spherical polar co-ordinates. Let γd denote canonical Gaussian measure on
Rd (with density (2π)−d/2e−|x|

2/2). Let µd−1 be rotation-invariant Haar
measure on Sd−1, and let Ad−1 be the d− 1-dimensional volume of Sd−1, so
that σd−1 = Ad−1µd−1 is d− 1-dimensional volume measure on Sd−1. Then
using spherical polar co-ordinates,

(2π)d/2 =
∫
Rd
e−|x|

2/2 dx

= Ad−1

∫ ∞

0
ud−1e−u

2/2 du = 2d/2−1Ad−1Γ(d/2).

Thus Ad−1 = 2πd/2/Γ(d/2). Further,

Vd = vol (B1(ld2)) = Ad−1/d = πd/2/Γ(d/2 + 1).

If f ∈ L1(γd) then∫
Rd
f dγd =

1
(2π)d/2

∫
Rd
f(x)e−|x|

2/2 dx

=
Ad−1

(2π)d/2

∫ ∞

0

(∫
Sd−1

f(uθ)ud−1e−u
2/2 dµd−1(θ)

)
du

=
2

2d/2Γ(d/2)

∫ ∞

0

(∫
Sd−1

f(uθ) dµd−1(θ)
)
ud−1e−u

2/2 du

=
2

2d/2Γ(d/2)

∫
Sd−1

(∫ ∞

0
f(uθ)ud−1e−u

2/2 du

)
dµd−1(θ)

Exercises

(i) Let In =
∫ π
0 sin

nθ dθ. Show that if n = 2k then

In =
(2k)!π

22k(k!)2
∼
√

2π
n
.
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Find a similar formula for In when n is odd.
(ii) Show that B(n/2, 1/2) = In−1.
(iii) Show that Γ(1/2) =

√
π.

(iv) Show that Γ(n+ 1/2)/Γ(n/2) = Γ(1/2)/In−1 ∼
√
n/2.

(v) Show that if α > 0 then∫
Rd
|x|α dγd = 2α/2Γ((d+ α)/2)/Γ(d/2).

Show that if 2k is an even integer then∫
Rd
|x|2k dγd = (d+ k − 1)(d+ k − 2) . . . d.

Show that ∫
Rd
|x| dγd ∼

√
d as d→∞.

(vi) Suppose that ‖.‖ is a semi-norm on Rd. Show that

Eγd
(‖x‖) =

√
2π

Id−1

∫
Sd−1

‖x‖ dµd−1(x).

[Check the constants that occur in these identities!]

1.7 Poincaré’s lemma

We want to approximate canonical Gaussian measure γd (with density
(2π)−d/2e−|x|

2/2). One standard way is given by the central limit theorem,
but there is another way.

Suppose that N > d. Let TN be the sphere with centre 0 and radius
√
N

in RN+1, equipped with rotation-invariant Haar measure τN . Let PN+1 be
the orthogonal projection of RN+1 onto Rd, and let πN be its restriction to
TN .

Theorem 1.7.1 (Poincaré’s Lemma) If A is a Borel subset of Rd then
τN (π−1

N (A)) → γd(A) as N →∞.

Proof Let (gi) be an independent sequence of N(0, 1) random variables. Let
RN+1 = (g2

1 + · · ·+ g2
N+1)

1/2. Then

VN =
√
N

RN+1
(g1, . . . , gN+1)
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has distribution τN , so that if A is a Borel subset of Rd then

τN (π−1
N (A)) = P(VN ∈ π−1

N (A))

= P(
√
N

RN+1
(g1, . . . , gd) ∈ A)

= P

( NR2
d

R2
N+1

)1/2 (
(g1, . . . , gd)

Rd

)
∈ A

 .
Now the random variables R2

N+1−R2
d, R

2
d and (g1, . . . , gd)/Rd are indepen-

dent, so that R2
d/R

2
N+1 and (g1, . . . , gd)/Rd are independent. The first has

distribution B(d/2, (N + 1 − d)/2) and the second is uniformly distributed
over the sphere Sd−1. Thus if µd−1 is rotation-invariant Haar measure on
Sd−1 and B = B(d/2, (N + 1− d)/2), making the substitution u =

√
Nt,

τN (π−1
N (A)) =

=
∫
Sd−1

(
1
B

∫ 1

0
IA(

√
Ntθ)td/2−1(1− t)(N−d−1)/2 dt

)
dµd−1(θ)

=
∫
Sd−1

(
2

Nd/2B

∫ √
N

0
IA(uθ)ud−1(1− u2

N
)(N−d−1)/2 du

)
dµd−1(θ).

Now as N →∞,

2
Nd/2B(d/2, (N + 1− d)/2)

=
2Γ((N + 1/2)

Γ(d/2)Γ((N + 1− d)/2)Nd/2

→ 2
Γ(d/2)2d/2

,

and

(1− u2/N)(N−d−1)/2 → e−u
2/2.

Further, (1− u2/N)(N−d−1)/2 ≤ e−u
2/4, for N > 2d+ 2.

We can therefore apply the theorem of dominated convergence:

τN (π−1
N (A)) → 2

Γ(d/2)2d/2

∫
Sd−1

(∫ ∞

0
IA(uθ)ud−1e−u

2/2 du

)
dµd−1(θ)

=
∫
Rd
IAdγd,

as N →∞.
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1.8 Gaussian isoperimetry

Let γd denote canonical Gaussian measure on Rd (with density (2π)−d/2e−|x|
2/2).

Let Hs be the half-space {x : xd ≤ s}. Note that

γd(Hs) = Φ(s) = (2π)−d/2
∫ s

−∞
e−t

2/2 dt.

Theorem 1.8.1 Suppose that A is a measurable subset of Rd and that
γd(A) = Φ(s) = γd(Hs). Then γd(Aε) ≥ Φ(s + ε) = γd((Hs)ε) for each
ε > 0.

Thus half-spaces solve the isoperimetric problem.

Proof Suppose that r < s. Then there exists N0 such that τN (π−1
N (A)) >

1
2(Φ(s) + Φ(r)) and τN (π−1

N (Hr)) < 1
2(Φ(s) + Φ(r)) for N ≥ N0. Now πN is

distance-decreasing, so that π−1
N (Aε) ⊇ (π−1

N (A))ε. Also, π−1
N (Hr) is a cap

in SN with measure less than τN (π−1
N (A)). Thus

τN (π−1
N (Aε)) ≥ τN ((π−1

N (A))ε) ≥ τN ((π−1
N (Hr))ε).

Now (π−1
N (Hr))ε is a cap in SN of the form π−1

N (Hr+ηN ). Let r/
√
N =

cos θN , and let φN = θN − ε/
√
N . Then

r + ηN =
√
N cosφN

=
√
N(cos θN cos(ε/

√
N) + sin θN sin(ε/

√
N))

= r cos(ε/
√
N) +

√
N sin θN sin(ε/

√
N) → r + ε

as N → ∞, since θN → π/2 as N → ∞. Thus if 0 < ε′ < ε there exists
N1 ≥ N0 such that r+ ηN > r+ ε′, so that τN (π−1

N (A)ε) ≥ τN (π−1
N (Hr+ε′)).

Finally,

γd(Aε) = lim
N→∞

τN (π−1
N (Aε)) ≥ lim

N→∞
τN (π−1

N (A)ε)

≥ lim
N→∞

τN (π−1
N (Hr + ε′)) = Φ(r + ε′).

Since this holds for all r < s and 0 < ε′ < ε, the result follows.

1.9 Some function spaces

Let us introduce some function spaces that we shall work with. Suppose
that (X, d) is a metric space.

The space C(X) is the vector space of all continuous real-valued functions
on X, and Cb(X) is the space of all bounded continuous functions on X.
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Cb(X) is a Banach space under the norm ‖f‖∞ = sup{|f(x)| : x ∈ X}. If
X is compact, then C(X) = Cb(X).

The space Lip (X) is the space of all real-valued Lipschitz functions on X:
that is, functions f for which there is a constant L such that |f(x)−f(y)| ≤
Ld(x, y) for all x, y ∈ X. Lip (X) is a lattice under the natural ordering,
contains the constants, and separates points. Thus if X is compact, then
Lip (X) is dense in C(X). The quantity

‖f‖L = sup{|f(x)− f(y)|
d(x, y)

: x 6= y}

is a seminorm on Lip (X). [‖f‖L = 0 if and only if f is constant.] A
1-Lipschitz function is a function for which ‖f‖L ≤ 1.

Theorem 1.9.1 Suppose that g is a Lipschitz function on a subset A of X.
Then g can be extended to a Lipschitz function f on X with ‖f‖L = ‖g‖L.

Proof By Zorn’s lemma, there is a maximal extension h of g with ‖h‖L =
‖g‖L = L, say, to B ⊆ X. We must show that B = X. Suppose that x 6∈ B.
If b, c ∈ B then

h(b)− h(c) ≤ Ld(b, c) ≤ Ld(b, x) + Ld(x, c),

so that h(b)−Ld(b, x) ≤ h(c)+Ld(x, c). Let h(x) = sup{h(b)−Ld(b, x) : b ∈
B}. Then h(b)−h(x) ≤ Ld(b, x) for all b ∈ B. Further, h(x)−h(c) ≤ Ld(x, c)
for all c ∈ B, and so the extension to B ∪ {x} is Lipschitz, without increase
of seminorm.

The space BL(X) is the space of bounded real-valued Lipschitz functions
on X. It is a Banach space under the norm ‖f‖BL = ‖f‖∞ + ‖f‖L. BL(f)
is a lattice, and a Banach algebra under pointwise multiplication.

Theorem 1.9.2 Suppose that g is a bounded Lipschitz function on a subset
A of X. Then g can be extended to a bounded Lipschitz function f on X

with ‖f‖BL = ‖g‖BL.

Proof By Theorem 1.9.1, g can be extended without increase of Lipschitz
norm to h on X. Let f = (h ∧ ‖g‖∞) ∨ (−‖g‖∞).

Exercises

(i) Show that BL(X) is a Banach space, a lattice and a Banach algebra
under the norm ‖f‖BL = ‖f‖L + ‖f‖∞.
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(ii) Let Lip0(R) = {f ∈ Lip (R) ∩ L1(R) :
∫∞
−∞ f dλ = 0}. Show that

‖.‖L is a norm on Lip0(R), and that Lip0(R) is not complete under
this norm. Let ‖f‖L0

= ‖f‖L+|f(0)|. Is Lip0(R) complete under this
norm? Is Lip0(R) a Banach algebra (under pointwise multiplication)?

1.10 Isoperimetry and concentration of measure

The isoperimetric inequalities that we have established allow us to obtain
accurate estimates of the concentration of measure. Suppose that µ is a
probability measure on a compact metric space (X, d). We consider how
µ(C(Aε)) decays for sets A of measure at least 1/2. We define the concen-
tration function as

αµ(ε) = sup{µ(C(Aε)) : µ(A) ≥ 1/2}.

This is a sensible thing to do: if f is a 1-Lipschitz function on X with
constant 1 then m is a median, or Lévy mean if µ(f ≤ m) ≥ 1/2 and
µ(f ≥ m) ≥ 1/2. Then µ(f > m+ ε) ≤ αµ(ε) and µ(f < m− ε) ≤ αµ(ε), so
that µ(|f −m| > ε) ≤ 2αµ(ε).

Proposition 1.10.1 αγd
(ε) = 1− Φ(ε) ≤ e−ε

2/2/ε
√

2π.

Proof The first equation is an immediate consequence of Gaussian isoperime-
try. As for the inequality:

1− Φ(ε) =
1√
2π

∫ ∞

ε
e−x

2/2 dx ≤ 1
ε
√

2π

∫ ∞

ε
xe−x

2/2 dx = e−ε
2/2/ε

√
2π.

The important feature here is that the concentration function does not
depend on the dimension d.

Proposition 1.10.2 Suppose that µ is Haar measure on Sd. Then

αµ(θ) = Id−1(θ)/2Id−1(0), where Id(θ) =
∫ π/2

θ
cosd t dt.

Further, αµ(θ) ≤ (
√
π/8)e−(d−1)θ2/2.

Proof Let Ad denote the d-dimensional measure of Sd. Then

Ad =
∫ π/2

−π/2
Ad−1 cosd−1 θ dθ = 2Id−1(0)Ad−1,
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and in the same way if H is a hemisphere then the d-dimensional measure
of C(Hθ) is Id−1(θ)Ad−1. Thus isoperimetry on Sd gives the formula.

Now if 0 < t < π/2 then

cos t ≤ 1− t2

2
+
t4

24
≤ 1− t2

2
+
t4

8
− t6

48
≤ e−t

2/2,

so that

Id(θ) ≤
∫ π/2

θ
e−dt

2/2 dt

=
∫ π/2−θ

0
e−d(t+θ)

2/2 dt

≤ e−dθ
2/2
∫ ∞

0
e−dt

2/2 dt =
√
π

2d
e−dθ

2/2.

Integrating by parts, dId(0) = (d−1)Id−2(0). Since (d−1)/d ≥
√

(d− 2)/d,√
dId(0) ≥

√
d− 2Id−2(0). Thus

√
dId(0) ≥ min(I1(0),

√
2I2(0)) = 1. Thus

αµ(θ) ≤
√

π

2(d− 1)
e−(d−1)θ2/2/2Id−1(0) ≤

√
π

8
e−(d−1)θ2/2.

Here the essential feature is that, as d→∞, the total mass is concentrated
closer and closer to the equator.

1.11 Sub-Gaussian random variables

Suppose that (Ω,Σ,P) is a probability space. We define Lexp2 to be the
space of measurable functions f for which there exists an α > 0 such that
E(eα|f |

2
) ≤ 2. This is a vector space, which becomes a Banach space (an

Orlicz function space) when we take {f : E(e|f |
2
) ≤ 2} as its unit ball. We

denote the norm by ‖.‖exp2 .
If X is a random variable with a Gaussian distribution with mean 0 and

variance E(X2) = σ2, its moment generating function E(etX) is eσ
2t2/2.

This led Kahane to make the following definition. A random variable X is
sub-Gaussian, with exponent b, if E(etX) ≤ eb

2t2/2 for −∞ < t <∞.

Theorem 1.11.1 Suppose that X is a sub-Gaussian random variable with
exponent b. Then

(i) P (X > R) ≤ e−R
2/2b2 and P (X < −R) ≤ e−R

2/2b2 for each R > 0;
(ii) X ∈ Lexp2 and ‖X‖exp2 ≤ 2b;
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(iii) X is integrable, E(X) = 0, and E(X2k) ≤ 2k+1k!b2k for each positive
integer k.

Conversely if X is a real random variable which satisfies (iii) then X is
sub-Gaussian with exponent 2b.

Proof (i) By Markov’s inequality, if t > 0 then

etRP(X > R) ≤ E(etX) ≤ eb
2t2/2.

Setting t = R/b2, we see that P(X > R) ≤ e−R
2/2b2 . Since −X is also

sub-Gaussian with exponent b, P(X < −R) ≤ e−R
2/2b2 as well.

(ii)

E(eX
2/4b2) =

1
2b2

∫ ∞

0
tet

2/4b2P(|X| > t) dt

≤ 1
b2

∫ ∞

0
te−t

2/4b2 dt = 2.

(iii) Since X ∈ Lexp2 , X is integrable. Since tx ≤ etx − 1, tE(X) ≤
eb

2t2/2 − 1, from which it follows that E(X) ≤ 0. Since −X is also sub-
Gaussian, E(X) ≥ 0 as well. Thus E(X) = 0. Further,

E(X2k) = 2k
∫ ∞

0
t2k−1P(|X| > t) dt

≤ 2.2k
∫ ∞

0
t2k−1e−t

2/2b2 dt

= (2b2)k2k
∫ ∞

0
sk−1e−s ds = 2k+1k!b2k.

Note that ‖X‖2k ≤ b
√

2k for k ≥ 2.
Finally, suppose that X is a real random variable which satisfies (iii). If

y > 0 and k ≥ 1 then

y2k+1

(2k + 1)!
≤ y2k

(2k)!
+

y2k+2

(2k + 2)!
,

so that

E(etX) ≤ 1 +
∞∑
n=2

E(
|tX|n

n!
) ≤ 1 + 2

∞∑
k=1

E(
|tX|2k

(2k)!
)

≤ 1 + 4
∞∑
k=1

k!(2b2t2)k

(2k)!
≤ 1 +

∞∑
k=1

(4b2t2)k

k!
= e4b

2t2 ,

since 2(k!)2 ≤ (2k)!.
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Note that this theorem shows that if X is a bounded random variable
with zero expectation then X is sub-Gaussian.

If X1, . . . , XN are independent sub-Gaussian random variables with ex-
ponents b1, . . . , bN respectively, and a1, . . . , aN are real numbers, then

E(et(a1X1+···+aNXN ) =
N∏
n=1

E(etanXn) ≤
N∏
n=1

ea
2
nb

2
n/2,

so that a1X1 + · · · + aNXN is sub-Gaussian, with exponent (a2
1b

2
1 + · · · +

a2
Nb

2
N )

1
2 .

Suppose that ε is a Bernoulli random variable: P(ε = 1 = P(ε = −1) =
1/2. Then E(eλε) = coshλ ≤ eλ

2/2, so that ε is sub-Gaussian with index 1.

Proposition 1.11.1 Let d be the Hamming metric on Qd, and let µ be Haar
measure. Then αµ(ε) ≤ e−2ε2/d.

Proof Let sd =
∑d
j=1 εj . Then sd is sub-Gaussian, with exponent

√
d. By

isoperimetry,

αµ(ε) = µ(l > d/2 + ε) = µ(sd > 2ε) ≤ e−(2ε)2/2d = e−2ε2/d.

1.12 Khintchine’s inequality

Suppose that (εi) is a sequence of Bernoulli random variables and that a ∈ ld2,
and that ‖a‖2 = σ. Then Sd =

∑n
i=1 aiεi is sub-Gaussian with index σ. We

have the following:

Theorem 1.12.1 (Khintchine’s inequality) Suppose that (ε1, . . . , εd)
are Bernoulli random variables and that a = (a1, . . . , ad) ∈ ld2. Let Sd =∑d
i=1 aiεi. Then ‖Sd‖exp2 ≤ 2σ, and there exist universal constants Cp, with

Cp ∼
√
p such that

σ = ‖Sd‖2 ≤ ‖Sd‖p ≤ Cpσ.

For 0 < p < 2 there exist universal constants Ap such that

Apσ ≤ (E|Sd|p)1/p ≤ σ.

Proof If 2k − 2 ≤ p ≤ 2k, then σ ≤ ‖Sd‖p ≤ ‖Sd‖2k, so that by Theorem
1.11.1 we can take Cp = C2k = (2k+1k!)1/2k, and Cp ∼

√
p, by Stirling’s
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formula. In fact we can do a bit better:∥∥∥∥∥
d∑
i=1

εiai

∥∥∥∥∥
2k

2k

= E(
d∑
i=1

εiai)2k

=
∑

j1+···+jd=2k

(2k)!
j1! . . . jd!

aj11 . . . ajdd E(εj11 . . . εjdd )

=
∑

j1+···+jd=2k

(2k)!
j1! . . . jd!

aj11 . . . ajdd E(εj11 ) . . .E(εjdd ),

by independence. Now E(εjnn ) = E(1) = 1 if jn is even, and E(εjnn ) =
E(εn) = 0 if jn is odd. Thus many of the terms in the sum are 0, and∥∥∥∥∥∥

d∑
j=1

εjaj

∥∥∥∥∥∥
2k

2k

=
∑

k1+···+kd=k

(2k)!
(2k1)! . . . (2kd!)

a2k1
1 . . . a2kd

d .

But (2k1)! . . . (2kn)! ≥ 2k1k1! . . . 2kdkd! = 2kk1! . . . kd!, and so∥∥∥∥∥∥
d∑
j=1

εjaj

∥∥∥∥∥∥
2k

2k

≤ (2k)!
2kk!

∑
k1+···+kd=k

k!
(k1)! . . . (kd!)

a2k1
1 . . . a2kd

d

=
(2k)!
2kk!

σ2k

Thus we can take C2k = ((2k)!/2kk!)1/2k. In particular, we can take C4 =
31/4.

For the second part, we need Littlewood’s inequality:

Proposition 1.12.1 (Littlewood’s inequality) Suppose that 0 < p0 <

p1 < ∞ and that 0 < θ < 1. Define p by 1/p = (1 − θ)/p0 + θ/p1. If
f ∈ Lp0 ∩ Lp1 then f ∈ Lp and ‖f‖p ≤ ‖f‖1−θ

p0
‖f‖θp1.

Proof Let 1 − γ = (1 − θ)p/p0, so that γ = θp/p1. We apply Hölder’s
inequality with exponents 1/(1− γ) and 1/γ:

‖f‖p =
(∫

|f |p dµ
)1/p

=
(∫

|f |(1−θ)p|f |θp dµ
)1/p

≤
(∫

|f |(1−θ)p/(1−γ) dµ
)(1−γ)/p (∫

|f |θp/γ dµ
)γ/p

=
(∫

|f |p0 dµ
)(1−θ)/p0 (∫

|f |p1 dµ
)θ/p1

= ‖f‖1−θ
p0

‖f‖θp1 .
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Thus if we choose θ such that 1/2 = (1− θ)/p+ θ/4 then

‖Sd‖2 ≤ ‖Sd‖1−θ
p ‖Sd‖θ4 ≤ Cθ4 ‖Sd‖

1−θ
p ‖Sd‖θ2 ,

so that ‖Sd‖2 ≤ C
θ/(1−θ)
4 ‖Sd‖p = 31/p−1/2 ‖Sd‖p.

This theorem gives A1 =
√

3. When Littlewood proved the second part
of Khintchine’s inequality, he made a mistake, and obtained A1 =

√
2. For

many years it was an open problem to obtain this constant: this was done
by Szarek, and by Haagerup. Finally, a beautiful proof was given, that also
works for vector-valued sums.

Theorem 1.12.2 (Latala-Oleszkiewicz) Let Sd =
∑d
i=1 εiai, where ε1, . . . , εd

are Bernoulli random variables and a1, . . . , ad are vectors in a normed space
E. Then ‖Sd‖L2(E) ≤

√
2 ‖Sd‖L1(E).

Proof Take Ω = Dd
2 , where D2 is the multiplicative group {1,−1}, and

εi(ω) = ωi. If A ⊆ {1, . . . , d}, let the Walsh function wA =
∏
i∈A εi.

The Walsh functions form an orthonormal basis for L2(Dd
2), so that if

f ∈ CR(Dd
2) then

f =
∑
A

f̂AwA = E(f) +
d∑
i=1

f̂iεi +
∑
|A|>1

f̂AwA,

and ‖f‖2
2 = 〈f, f〉 =

∑
A f̂

2
A.

We now consider a graph with vertices the elements of Dd
2 and edges the

set of pairs

{(ω, η) : ωi 6= ηi for exactly one i}.

If (ω, η) is an edge, we write ω ∼ η. We use this to define the Graph
Laplacian of f as

L(f)(ω) = 1
2

∑
{η:η∼ω}

(f(η)− f(ω)),

and the energy E(f) of f as E(f) = −〈f, L(f)〉. Let us calculate the Lapla-
cian for the Walsh functions. If ω ∼ η and ωi 6= ηi, then

wA(ω) = wA(η) if i 6∈ A,
wA(ω) = −wA(η) if i ∈ A,

so that L(wA) = −|A|wA. Thus the Walsh functions are the eigenvectors of
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L, and L corresponds to differentiation. Further,

−L(f) =
d∑
i=1

f̂iεi +
∑
|A|>1

|A|f̂AwA,

so that

E(f) =
d∑
i=1

f̂2
i +

∑
|A|>1

|A|f̂2
A.

Thus

2 ‖f‖2
2 = 〈f, f〉 ≤ E(f) + 2(E(f))2 +

d∑
i=1

f̂2
i .

We now embed Dd
2 as the vertices of the unit cube of ld∞. Let f(x) =

‖x1a1 + · · ·+ xdad‖, so that f(ω) = ‖Sd(ω)‖, 〈f, f〉 = ‖Sd‖2
L2(E), and E(f) =

‖Sd‖L1(E). Since f is an even function, f̂i = 0 for 1 ≤ i ≤ d, and since f is
convex and positive homogeneous,

1
d

∑
{η:η∼ω}

f(η) ≥ f

1
d

∑
{η:η∼ω}

η

 = f

(
d− 2
d

ω

)
=
d− 2
d

f(ω),

by Jensen’s inequality. Consequently

−Lf(ω) ≤ 1
2(df(ω)− (d− 2)f(ω)) = f(ω)

so that E(f) ≤ ‖f‖2
2 and 2 ‖f‖2

2 ≤ ‖f‖2
2 + 2(E(f))2. Thus ‖Sd‖L2(E) ≤√

2 ‖Sd‖L1(E).
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Finite-dimensional normed spaces

2.1 The Banach-Mazur distance

Suppose that (E, ‖.‖E) and (F, ‖.‖F ) are two d-dimensional normed spaces.
The Banach-Mazur distance d(E,F ) is defined as

d(E,F ) = inf{‖T‖ .
∥∥∥T−1

∥∥∥ : T invertible in L(E,F )}.

Proposition 2.1.1 d(ld1, l
d
2) =

√
d.

Proof Let I : ld1 → ld2 be the identity map. Then ‖I‖ = 1, and, since, by
Cauchy-Schwarz,

∑d
i=1 |ai| ≤

√
d(
∑d
i=1 |ai|2)1/2 with equality when ai = 1

for all i,
∥∥I−1

∥∥ =
√
d. Thus d(ld1, l

d
2) ≤

√
d.

Suppose that T : ld1 → ld2 be invertible: without loss of generality, suppose
that ‖T‖ = 1. By the parallelogram law,

1
2d
∑

{
∥∥∥∥∥
d∑
i=1

εiT (ei)

∥∥∥∥∥
2

: εi = ±1} =
d∑
i=1

‖T (ei)‖2 ≤ d,

so there exists (εi) such that
∥∥∥∑d

i=1 εiT (ei)
∥∥∥ ≤ √

d. But
∥∥∥∑d

i=1 εiei
∥∥∥ = d,

and so
∥∥T−1

∥∥ ≥ √
d. Thus d(ld1, l

d
2) ≥

√
d.

Corollary 2.1.1 d(ld2, l
d
∞) =

√
d.

Proof Duality.

What about d(ld1, l
d
∞)? By the above, it’s bounded by d. Is this the right

order?

29
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Define matrices Wk recursively by W0 = [1],

Wk =
1√
2

[
Wk−1 −Wk−1

Wk−1 Wk−1

]
.

Then each Wk is a 2k × 2k orthogonal matrix, and each entry in Wk has
modulus 1/2k/2. Thus

∥∥∥Wk : l2
k

1 → l2
k

∞

∥∥∥ = 1/2k/2. On the other hand, we

can write W−1
k = IW−1

k J , where J : l2
k

∞ → l2
k

2 and I : l2
k

2 → l2
k

1 are the
identity maps, each of norm 2k/2, and W−1

k : l2
k

2 → l2
k

2 is an isometry. Thus
d(l2

k

1 , l
2k

∞) ≤ 2k/2.

Exercises

2.1 Show that there exists C such that d(ld1, l
d
∞) ≤ C

√
d.

2.2 Show that d(ld2, l
d
p) ≤ 2|1/p−1/2|.

2.3 Suppose that (E, ‖.‖E) and (F, ‖.‖F ) are two d-dimensional normed
spaces. Show that there exists T invertible in L(E,F ) with ‖T‖ .

∥∥T−1
∥∥ =

d(E,F ).

2.2 Caratheodory’s theorem

Theorem 2.2.1 Suppose that E is d-dimensional and that A is a non-empty
bounded closed subset of E. If x ∈ conv(A), x can be written as

x =
d∑
i=0

λiai, where ai ∈ A, λi ≥ 0 and
d∑
i=0

λi = 1.

Proof We can write

x =
k∑
i=0

λiai, where ai ∈ A, λi > 0 and
k∑
i=0

λi = 1,

with k as small as possible. Let y = x− a0 and bi = ai − a0, for 0 ≤ i ≤ k,
so that b0 = 0 and y =

∑k
i=0 λibi. We show that b1, . . . , bk are linearly

independent, so that k ≤ d.
Suppose not. Then we can write µ1b1 + · · ·+µkbk = 0 for some µ1, . . . , µk,

with not all µk zero. Let µ0 = −(µ1 + · · ·+µk), so that
∑k
i=0 µi = 0. There

exists j such that λj/µj is minimal positive. Then

y =
k∑
i=0

(λi −
λj
µj
µi)bi =

∑
i6=j

νibi.
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But νi ≥ 0 for all i, and
∑
i νi = 1, and x =

∑
i6=j νiai, contradicting the

minimality of k.
Let ∆d+1 = {(λ1, . . . , λd+1) : λi ≥ 0,

∑
i λi = 1}. The map

(λ, (a1, . . . , ad)) →
d+1∑
i=1

λiai : ∆d+1 ×
d+1∏
i=1

(A)i → E

maps the compact set ∆d+1 ×
∏d+1
i=1 (A)i continuously onto conv(A), and so

conv(A) is compact, and therefore closed.

2.3 Operator norms

Suppose that (E, ‖.‖E) and (F, ‖.‖F ) are finite-dimensional normed spaces
of dimensions m and n respectively. We can give L(E,F ) the operator norm
‖.‖, but there are other interesting possibilities. The first is defined in terms
of trace duality.

If T ∈ L(E,F ) has rank 1 then we can write T (x) = φ(x)y, where φ ∈ E∗

and T (E) = span (y). We write T as φ⊗ y.
Suppose that (ei, . . . em) is a basis for E, with dual basis (φ1, . . . , φm). If

T ∈ L(E,F ) then

T (x) = T (
m∑
i=1

φi(x)ei) =
m∑
i=1

φi(x)T (ei),

so that T =
∑m
i=1 φi ⊗ T (ei). Thus if S ∈ L(F,E) then ST =

∑m
i=1 φi ⊗

ST (ei). Thus

tr(ST ) =
m∑
i=1

φi(ST (ei) =
m∑
i=1

S∗(φi)(T (ei)).

This is non-singular bilinear form, which does not depend on the choice of
basis of E, on L(E,F )×L(F,E), which we denote by 〈T, S〉. in this way, we
identify L(F,E) with the dual of L(E,F ). Thus if α is a norm on L(E,F )
that there is a dual norm α∗ on L(F,E):

α∗(S) = sup{| 〈T, S〉 | : α(T ) ≤ 1}.

We denote the norm dual to the operator norm by n: n is the nuclear
norm.

Theorem 2.3.1

n(S) = inf{
mn+1∑
j=1

‖φj‖ ‖xj‖ : S =
mn+1∑
j=1

φj ⊗ xj}.
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Proof If T ∈ L(E,F ) then there exists x ∈ E with ‖x‖ = 1 such that
‖T (x)‖ = ‖T‖, and there exists φ ∈ F ∗ with ‖φ‖ = 1 such that φ(T (x)) =
‖T (x)‖ = ‖T‖. Thus 〈T, φ⊗ x〉 = ‖T‖. Let A = {φ ⊗ x : ‖φ‖ = ‖x‖ = 1}.
Then ‖T‖ = sup{〈T, S〉 : S ∈ A}, and by the theorem of bipolars, the n-unit
ball of L(F,E) is

conv(A) = conv(A)

= {S : S =
mn+1∑
j=1

λjφj ⊗ xj : ‖φj‖ = ‖xj‖ = 1, λj ≥ 0,
mn+1∑
j=1

λj = 1}

= {S : S =
mn+1∑
j=1

φj ⊗ xj :
mn+1∑
j=1

‖φj‖ ‖xj‖ ≤ 1}.

Thus n(S) ≤ 1 if and only if S =
∑mn+1
j=1 φj⊗xj with

∑mn+1
j=1 ‖φj‖ ‖xj‖ ≤ 1,

from which the result follows.

Here is another example. Suppose that E = lm2 , F = ln2 . If S, T ∈ L(E,F )
then S and T are represented by matrices, and

tr(S∗T ) = 〈T, S∗〉 =
∑
i,j

s̄ijtij .

This is an inner product on L(E,F ) which we denote by 〈T, S〉HS : the
corresponding norm ‖T‖HS = (

∑
ij |tij |2)1/2 = (

∑
j ‖T (ej)‖2)1/2 is called

the Hilbert-Schmidt norm.
Can we define this in a co-ordinate-free way?

Proposition 2.3.1 If E = lm2 , F = ln2 and T ∈ L(E,F ) then ‖T‖2
HS =

π2(T ), where

(π2(T ))2 = sup{
k∑
j=1

‖T (xj)‖2 :
k∑
j=1

| 〈xi, y〉 |2 ≤ 1 for ‖y‖ ≤ 1}.

Proof First take xj = ej for 1 ≤ i ≤ m. If ‖y‖ ≤ 1 then
∑m
j=1 | 〈ej , y〉 |2 =

‖y‖2 ≤ 1, and so ‖T‖2
HS =

∑m
j=1 ‖T (ej)‖2 ≤ (π2(T ))2.

Conversely, suppose that
∑k
i=1 | 〈xi, y〉 |2 ≤ 1 for ‖y‖ ≤ 1. Let f1, . . . , fn

be the unit vectors in F = ln2 . Then
m∑
j=1

‖T (xj)‖2 =
∑
i,j

| 〈T (xj), fi〉 |2 =
∑
i,j

| 〈xj , T ∗(fi)〉 |2

≤
n∑
i=1

‖T ∗(fj)‖2 = ‖T ∗‖2
HS = ‖T‖2

HS .
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We can define π2(T ) for general E and F :

π2(T ) = sup{(
k∑
j=1

‖T (xj)‖2)1/2 :
k∑
j=1

|φ(xj)|2 ≤ 1 for ‖φ‖ ≤ 1}.

π2 is the 2-summing norm. Note that π2(RST ) ≤ ‖R‖π2(S) ‖T‖.
We have the following factorization result.

Theorem 2.3.2 Suppose that dim E = m and that F is an inner-product
space. Let Hm be an inner-product space of dimension m. If T ∈ L(E,F ),
we can write T = AB, where B ∈ L(E,Hm) and A ∈ L(Hm, F ) and π2(A) ≤√
n(T ), π2(B) ≤

√
n(T ).

Proof By Theorem 2.3.1, we can write T =
∑k
j=1 φj ⊗ yj , with k =

m dim (T (E)) + 1 and
∑k
j=1 ‖φj‖

∗ ‖yj‖ = n(T ). We can scale so that
‖φj‖∗ = ‖yj‖, so that

∑k
j=1(‖φj‖

∗)2 =
∑k
j=1 ‖yj‖

2 = n(T ). Now let

S(x) = (φj(x)), so that S : E → lk2

R(α) =
k∑
j=1

αjyj , so that R : lk2 → F ;

T = RS. dim (S(E)) ≤ m; let Hm be an m-dimensional subspace of lk2
containing S(E), and let B : E → Hm be defined by B(x) = S(x). Let
J : Hm → lk2 be the inclusion mapping, and let A be the restriction of R to
Hm. Then T = AB.

Suppose that z1, . . . zm ∈ E, with sup{
∑
i |φ(zi)|2 : ‖φ‖∗ ≤ 1} ≤ 1. Then

l∑
i=1

‖B(zi)‖2 =
l∑

i=1

k∑
j=1

|φj(zi)|2

=
k∑
j=1

l∑
i=1

|φj(zi)|2 ≤
k∑
j=1

‖φj‖2 = n(T ),

so that π2(B) ≤
√
n(T ).

Also
∑k
j=1 ‖R(ej)‖2 =

∑k
j=1 ‖yj‖

2 = n(T ), and so π2(R) =
√
n(T ). Then

π2(A) = π2(JR) ≤ π2(R) =
√
n(T ).

Exercises

2.1 Suppose that T ∈ L(E,F ). Show that n(T ) = n(T ∗).
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2.2 Suppose that T ∈ L(ld∞, E), so that T ∗ ∈ L(E∗, ld1). Show that

n(T ) = n(T ∗) = sup{
d∑
i=1

〈T ∗(φi), ei〉 : ‖φi‖ ≤ 1}

= sup{
d∑
i=1

φi(T (ei) : ‖φi‖ ≤ 1}

=
d∑
i=1

‖T (ei)‖ .

Compare this with the results in the proof of Auerbach’s theorem,
below.

2.4 Lewis’ theorem

Theorem 2.4.1 Suppose that dim E = dim F = n and that α is a norm
on L(E,F ). Then there exists T ∈ L(E,F ) with α(T ) = 1 and α∗(T−1) = n.

Proof Note that for invertible S ∈ L(E,F ),

n = tr(S−1S) ≤ α(S)α∗(S−1).

Choosing bases for E and F , every S can be represented by a matrix
(sij); we define det(S) = det(sij). |det(S)| is a continuous function on
L(E,F ), and so it attains its supremum on the α unit sphere at a point
T . Certainly this supremum is positive, and so T is invertible. Note that
α∗(T−1) ≥

√
n. If T +S is invertible, then |det(T +S)/α(T +S)| ≤ |detT |,

so that |det(T + S)| ≤ (α(T + S))n|detT |. If S ∈ L(E,F ) then T + εS is
invertible for small enough ε and then

|detT ||det(I + εT−1S)| = |det(T + εS)| ≤ |detT |(α(T + εS))n,

so that

|det(I + εT−1S)| ≤ (α(T + εS))n ≤ (1 + εα(S))n.

But (det(I + εT−1S) − 1)/ε → tr(T−1S) as ε → 0, so that |tr(T−1S| ≤
nα(S), and so α∗(T−1) ≤ n.

Corollary 2.4.1 (Auerbach’s Theorem) Suppose that (F, ‖.‖F ) has di-
mension n. Then there is a basis (f1, . . . , fn) such that

sup
1≤i≤n

|αi| ≤
∥∥∥∥∥
n∑
i=1

αifi

∥∥∥∥∥
F

≤
n∑
i=1

|αi|.
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This says that the identity map ln1 → ln∞ factors through F , without increase
of norm.

Proof Let E = ln1 . For T ∈ L(E,F ) let α(T ) = ‖T‖ = supi ‖T (ei)‖. If
S ∈ L(F,E), and S(y) = (s1(y), . . . , sn(y)), where si ∈ F ∗, let β(S) =∑n
i=1 ‖si‖

∗. Then

|tr(ST )| = |
n∑
i=1

si(T (ei))| ≤ α(T )
n∑
i=1

‖si‖∗ = α(T )β(S),

so that α∗(S) ≤ β(S) and β∗(T ) ≤ α(T ). On the other hand, given T there
exists i such that α(T ) = ‖T (ei)‖, and there exists φ ∈ F ∗ with ‖φ‖∗ = 1
such that φ(T (ei)) = ‖T (ei)‖. Let S = φ ⊗ ei. Then tr(ST ) = ‖T (ei)‖ =
α(T ) and β(S) = 1, so that β∗(T ) ≥ α(T ) and α∗(T ) ≥ β(T ). Thus β = α∗.

By Lewis’ theorem, there exists T with α(T ) = 1 and β(T−1) = n. Let
fi = T (ei). Then ‖fi‖F ≤ 1 for each i, so that ‖

∑n
i=1 αifi‖F ≤

∑n
i=1 |αi|.

On the other hand, T−1(y) = (φ1(y), . . . φn(y)), where (φ1, . . . φn) is the dual
basis of (f1, . . . , fn), so that

∑n
i=1 ‖φi‖

∗ = n. But φi(fi) = 1, so that ‖φi‖∗ ≥
1 for each i. Thus ‖φi‖∗ = 1 for each i, and so |αi| = |φi(

∑n
j=1 αjfj)| ≤∥∥∥∑n

j=1 αjfj
∥∥∥ for each i.

2.5 The ellipsoid of maximal volume

Theorem 2.5.1 Suppose that dim (E) = n and that α is a norm on L(ln2 , E)
with the property that α(TR) ≤ ‖R‖α(T ) for all R ∈ L(ln2 ). If S, T are
invertible elements of L(ln2 , E) with α(S) = α(T ) = 1, α∗(S−1) = α∗(T−1) =
n then there exists a unitary (orthogonal) U such that T = SU .

Proof Note that if U is unitary (orthogonal) then α(JU) ≤ α(J) = α(JUU∗) ≤
α(JU), so that α(JU) = α(J). It is enough to prove the result for a par-
ticular S: by Lewis’ Theorem, we can suppose that det(S) = sup{det(J) :
α(J) ≤ 1}.

Let V = S−1T . Then V ∗V is positive, so there exists an orthonormal basis
(fi) of ln2 and λ2

1 ≥ λ2
2 ≥ · · ·λ2

n > 0 such that V ∗V (fi) = λ2
i fi. Note that

‖V (fi)‖2 = 〈V ∗V (fi), fi〉 = λ2
i and that 〈V (fi), V (fj)〉 = 〈V ∗V (fi), fj〉 = 0

for i 6= j. Let W (fi) = V (fi)/λi and R(fi) = λifi, and extend by linearity
to define W,R in L(ln2 ). V = WR, and W is unitary, R positive, with
eigenvalues λ1 ≥ λ2 ≥ · · ·λn > 0.

Now T = SWR, so that |detT | = |detS detW detR| = (
∏
i λi)|detS|.

Thus
∏
i λi ≤ 1.
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Also |tr(R−1)| = |tr(T−1SW )| ≤ α∗(T−1)α(SW ) = n, so that

1
n

n∑
i=1

1
λi
≤ 1 ≤ (

n∏
i=1

1
λi

)1/n.

Thus we have equality in the AM-GM inequality, which happens only when
all the terms are equal. Thus λi = 1 for all i, R = I and T = SW .

Let us apply this to α(T ) = ‖T‖. There exists T such that |det(T )| =
sup{|det J | : ‖J‖ ≤ 1}. This says that T (Bln2 ) is an ellipsoid of maximal
volume withinBE . If S(Bln2 ) is another such, then T = SU , so that T (Bln2 ) =
SU(Bln2 ) = S(Bln2 ). Thus the ellipsoid of maximal volume is unique.

Theorem 2.5.2 Let T ∈ L(ln2 , E) be such that T (Bln2 ) is the ellipsoid of
maximal volume within BE. Then π2(T−1) =

√
n.

Proof
First,

√
n = π2(Iln2 ) = π2(T−1T ) ≤ π2(T−1) ‖T‖ = π2(T−1).

By Lewis’ Theorem, n(T−1) = n, and by Theorem 2.3.2 we can write
T−1 = AB, where B ∈ L(E,Hn) and A ∈ L(Hn, l

n
2 ) and π2(A) ≤

√
n,

π2(B) ≤
√
n. But

〈BT,A∗〉HS = tr(ABT ) = tr(In) = n ≤ π2(A)π2(BT ) ≤ π2(A)π2(B) ≤ n,

and so we have equality throughout. Thus, since we have equality in the
Cauchy-Schwarz inequality, A∗ = αBT = αA−1, for some α > 0, so that
A =

√
αJ , where J is an isometry. Then π2(A) =

√
αn, and so α ≤ 1. Thus

π2(T−1) = π2(AB) ≤ ‖A‖π2(B) ≤
√
n.

Corollary 2.5.1 π2(IE) ≤
√
n.

Proof π2(IE) = π2(TT−1) ≤ ‖T‖π2(T−1) ≤
√
n.

In fact, we have equality.

Corollary 2.5.2 (John)
∥∥T−1

∥∥ ≤ √
n, and d(E, ln2 ) ≤

√
n.

Thus, if E is the ellipsoid of maximum volume in BE , E ⊆ BE ⊆
√
nE .

E can be taken as the unit ball of an inner-product norm on E.

Proposition 2.5.1 There exists an orthonormal basis (ei) of E with respect
to the inner-product norm defined by E such that

1 = ‖e1‖E ≥ ‖e2‖E · · · ≥ ‖en‖E and ‖ej‖E ≥ 2−n/(n−j) for each j.
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Proof There exists e1 ∈ E with ‖e1‖E = 1. Having defined e1, . . . , ek−1, let
Fk = {e1, . . . , ek−1}⊥. Choose ek ∈ E ∩ Fk with ‖ek‖E as large as possible.
Note that E ∩ Fk ⊆ ‖ek‖E BE . Consider the ellipsoid

Dj = {
n∑
i=1

aiei :
j−1∑
i=1

|ai|2 + ‖ej‖2
E (

n∑
i=j

|ai|2) ≤ 1/4}.

If
∑n
i=1 ajej ∈ Dj then

∑j−1
i=1 |ai|2 ≤ 1/4, so that

∑j−1
i=1 aiei ∈ E/2 ⊆ BE/2.

Similarly
∑n
i=j |ai|2 ≤ 1/(4 ‖ej‖2

E), so that
∑n
i=j aiei ∈ (E ∩Fj)/(2 ‖ej‖E) ⊆

BE/2. Thus Dj ⊂ BE , and so vol (Dj) ≤ vol (E). But

vol (Dj) = 2−n ‖ej‖−(n−j)
E vol (E),

and so the result follows.

Corollary 2.5.3 ‖ej‖E ≥ 1/4 for 1 ≤ j ≤ n/2.

Exercises

(i) Suppose that α is a norm on L(ld2, F ). Show that the following are
equivalent:

(a) α(TS) ≤ α(T ) ‖S‖ for all S ∈ L(ld2), T ∈ L(ld2, F );
(b) α(TU) ≤ α(T ) for all orthogonal U ∈ L(ld2), T ∈ L(ld2, F );
(c) α(TU) = α(T ) for all orthogonal U ∈ L(ld2), T ∈ L(ld2, F ).
In the following exercises, a d-dimensional normed space (E, ‖.‖E)

is identified with Rd in such a way that the unit ball in the Euclidean
norm |.| is the ellipsoid of maximum volume. We also use the inner
product to identify E∗ with Rd.

(ii) Show that ‖x‖E ≤ |x| ≤ ‖x‖E∗ .
(iii) Show that there are non-zero vectors y1, . . . yk and vectors x1, . . . xk,

with |xj | = 1 for all j such that z =
∑k
j=1 〈z, yj〉xj for all z, and

n =
∑k
j=1 ‖yj‖E∗ .

(iv) By considering traces, show that

n =
k∑
j=1

〈xj , yj〉 ≤
k∑
j=1

|yj | ≤
k∑
j=1

‖yj‖E∗ = n.

(v) Deduce that yj = cjxj , where cj > 0, and that ‖xj‖E∗ = 1.
(vi) By considering 〈xj , xj〉, deduce that ‖xj‖E = 1.
(vii) Conclude that z =

∑k
j=1 cj 〈z, xj〉xj for all z, where

∑k
j=1 cj = n and

the points xj are contact points: points with ‖xj‖E = |xj | = 1, and
where the hyperplane {z : 〈z, xj〉 = 1} is tangent to both unit balls.
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2.6 Estimating the median

We consider Sd−1, with Haar measure µ = µd−1, as a subset of Rd with
Gaussian measure γd.

Proposition 2.6.1 Suppose that f is a 1-Lipschitz function on Sd−1, with
median Mf and mean E(f) = Af . Then |Af −Mf | ≤ π/4

√
d− 2.

Proof

E((f−Mf )+) =
∫ ∞

0
µd−1(f > Mf+t) dt ≤

√
π

8

∫ ∞

0
e−(d−2)t2/2 dt =

π

4
√
d− 2

.

Similarly E((f −Mf )−) ≤ π/4
√
d− 2.

Proposition 2.6.2 Suppose that 4 ≤ k ≤ d, and let mk(x) = maxki=1 |xi|.
Then ∫

Sd−1
mk dµd−1 ≥ c

√
log k
d

,

where c is an absolute constant.

Proof Since
∫
Sd−1 mk dµd−1 = (Id−1/

√
2π)

∫
Rd mk dγd (Exercise 1.6 (vi)), it

is enough to show that
∫
Rd mk dγd ≥ c

√
log k. Now

γ(|x| > α) ≥ 2γ(α < x < α+ 1) ≥ 2√
2π
e−(α+1)2/2,

so that

γd(mk ≤ α) ≤ (1− 2√
2π
e−(α+1)2/2)k.

Now put α =
√

2 log k − 1, so that k = e(α+1)2/2 and

γd(mk ≤ α) ≤ (1−
√

2
π

1
k
)k ≤ e−

√
2/π < 1/2,

and ∫
Rd
mk dγd ≥

α

2
=

1
2
(
√

2 log k − 1) ≥
√

log k
4

.

Suppose that (E, ‖.‖E) is an d-dimensional normed space. We consider
the ellipsoid of maximal volume contained in BE , use this to define an
inner product on E, take an orthonormal basis (e1, . . . , ed) which satisfies
Proposition 2.5.1, and use this to identify E with Rd. We consider r(x) =
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‖x‖E on Sd−1. It is a non-negative Lipschitz function on Sd−1, 1/
√
d ≤

r(x) ≤ 1, and r(ej) ≥ 1/4 for 1 ≤ j ≤ d/2.

Proposition 2.6.3 If d ≥ 3 then Mr/2 ≤ Ar ≤ 2Mr.

Proof Since r ≥ 0, Ar ≥
∫
(r≥Mr) r dµd−1 ≥Mr/2. Also Mr ≥ 1/

√
d, so that

πMr

4
≥ π

4
√
d
≥

√
(d− 2)
d

(Ar −Mr),

so that Ar ≤ (π/4 + 1)Mr ≤ 2Mr.

Proposition 2.6.4 There exists an absolute constant c such that Mr ≥
c
√

log d/d.

Proof We can suppose that d ≥ 8. It is enough to establish the correspond-
ing result for Ar. Let (ε1, . . . , εd) be Bernoulli random variables. Then∫

Sd−1

∥∥∥∥∥
d∑
i=1

aiei

∥∥∥∥∥ dµd−1(a) =
∫
Sd−1

∥∥∥∥∥
d∑
i=1

εi(ω)aiei

∥∥∥∥∥ dµd−1

=
∫
Sd−1

E(

∥∥∥∥∥
d∑
i=1

εiaiei

∥∥∥∥∥) dµd−1.

Now E(
∥∥∥∑d

i=1 εiaiei
∥∥∥) ≥ ‖ajej‖ for each j, so that

E(

∥∥∥∥∥∥
d∑
i−1

εiaiei

∥∥∥∥∥∥) ≥ max
j≤d/2

‖ajej‖ ≥
1
4

max
j≤d/2

|aj |,

and so

Ar =
∫
Sd−1

∥∥∥∥∥
d∑
i=1

aiei

∥∥∥∥∥ dµd−1 ≥
1
4

∫
Sd−1

md/2(a) dµd−1(a) ≥ c

√
log d
d

.

2.7 Dvoretzky’s theorem

Proposition 2.7.1 Suppose that (F, ‖.‖F ) is a k-dimensional normed space
and that 1 > θ > 0. Then there exists a θ-net in SF = {x : ‖x‖F = 1} with

|N | ≤ (1 + 2/θ)k ≤ (3/θ)k.
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Proof Let N be a maximal subset of SF with ‖x− y‖ > θ for x, y ∈ N .
Then N is a θ-net. The sets {x+ (θ/2)BF }x∈N are disjoint, and contained
in (1 + θ/2)BF , and so

∑
x∈N vol (x+ (θ/2)BF ) ≤ vol (1 + θ/2)BF , which

gives the result.

Suppose that (E, ‖.‖E) is an d-dimensional normed space. As before,
we consider the ellipsoid of maximal volume contained in BE , use this to
define an inner product on E, take an orthonormal basis (e1, . . . , ed) which
satisfies Proposition 2.5.1, and use this to identify E with Rd. We consider
r(x) = ‖x‖E on Sd−1. If F is a k-dimensional subspace of E (an element of
the Grassmannian Gd,k), we denote the Euclidean sphere in F by SF .

Proposition 2.7.2 Suppose that 1 > ε > 0 and that 1 > θ > 0. Suppose
that klog(3/θ) ≤ (d− 2)ε2/4. Let

Ck = {F ∈ Gd,k : there exists a θ-net N ⊆ SF with sup
x∈N

|r(x)−Mr| < ε}.

Then P(Ck) ≥ 1−
√
π/2e−ε

2(d−2)/4.

Proof Let A = {x ∈ Sd−1 : r(x) = Mr}, and let B = {x ∈ Sd−1 :
|r(x)−Mr| > ε}. By Proposition 1.10.2,

µd−1(B) ≤
√
π

2
e−ε

2(d−2)/2.

Let F be any k-dimensional subspace of E, and let N be a θ-net in SF with
|N | ≤ (3/θ)k ≤ e(d−2)ε2/4. For each x ∈ N , P(U ∈ SOd : U(x) ∈ B) = µ(B),
by Proposition 1.4.2. Thus if G = {U ∈ SOd : U(x) ∈ B for some x ∈ N}
then

P(G) ≤ |N |µ(B) ≤
√
π

2
e−ε

2(d−2)/4.

But if U 6∈ G then U(N) is a net in U(F ) with the required properties.
Applying Proposition 1.4.2, we see that P(Ck) ≥ 1−P(G).

Theorem 2.7.1 (Dvoretzky’s theorem) Suppose that d ≥ 4. Suppose
that 1 > δ > 0. There exists a constant c = c(δ) such that if (E, ‖.‖E) is a
d-dimensional normed space, and |.| is the norm defined by the ellipsoid of
maximal volume contained in BE, and if k ≤ cdM2

r and

Dk = {F ∈ Gd,k : (1− δ)Mr|x| ≤ ‖x‖E ≤ (1 + δ)Mr|x| for x ∈ E}

then P (Dk) ≥ 1−
√
π/2e−cdM

2
r .
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Proof Let θ = δ/3, let c = cδ = θ2/(8 log(3/θ)) and let ε = θMr. Then

ε2(d− 2)
4 log 3/θ

= 2cM2
r (d− 2) ≥ cdM2

r ≥ k and cdM2
r ≤

ε2(d− 2)
4

.

Thus, defining Ck as in Proposition 2.7.2,

P(Ck) ≥ 1−
√
π

2
e−(d−2)ε2/4 ≥ 1−

√
π

2
e−cdM

2
r .

Suppose that F ∈ Ck, and that N is a suitable θ-net in F . Suppose that
x ∈ SF . Then there exists n0 ∈ N with |x− n0| = α1θ with 0 ≤ α1 ≤ 1. If
α1 6= 0, there exists n1 ∈ N with |(x−n0)/α1θ−n1| = α2θ with 0 ≤ α2 ≤ 1,
so that |x− n0 − α1n1| ≤ α1α2θ

2. Continuing in this way, we can write

x = n0 +
∞∑
j=1

βjθ
jnj , with 0 ≤ βj ≤ 1.

Thus

‖x‖ ≤ Mr + ε

1− θ
=

1 + θ

1− θ
Mr ≤ (1 + δ)Mr

and

‖x‖ ≥ ‖n0‖ − ‖x− n0‖ ≥ (Mr − ε)− θ

1− θ
(Mr + ε)

= (1− θ − θ(1 + θ)
1− θ

)Mr ≥ (1− δ)Mr,

and so Ck ⊆ Dk.

Recall that dM2
r ≥ c log d (Proposition 2.6.4). Thus we have the following

general result.

Corollary 2.7.1 Given 0 < δ < 1 and 0 < η < 1 there exists c = c(δ, η) > 0
such that if E is a d-dimensional normed space and k ≤ c log d then if

Ek = {F ∈ Gd,k : d(F, lk2) < 1 + δ}

then P(Ek) ≥ 1− 1/dc.

2.8 Type and cotype

In certain circumstances, we can improve on Proposition 2.6.4.
In order to do this, we introduce the notions of type and cotype. These

involve Bernoulli sequence of random variables: for the rest of this chapter,
(εn) will denote such a sequence.
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Let us begin, by considering the parallelogram law. This says that if
x1, . . . , xn are vectors in a Hilbert space H then

E


∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2
 =

n∑
j=1

‖xj‖2
H .

We deconstruct this equation; we split it into two inequalities, we change an
index, and we introduce constants.

Suppose that (E, ‖.‖E)is a Banach spaces and that 1 ≤ p < ∞. We say
that E is of type p if there is a constant C such that if x1, . . . , xn are vectors
in E then E


∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2

E




1/2

≤ C(
n∑
j=1

‖xj‖pE)1/p.

The smallest possible constant C is denoted by Tp(E), and is called the type
p constant of E. Similarly, we say that E is of cotype p if there is a constant
C such that if x1, . . . , xn are vectors in E then

(
n∑
j=1

‖xj‖pE)1/p ≤ C

E


∥∥∥∥∥∥
n∑
j=1

εj(xj)

∥∥∥∥∥∥
2

E




1/2

.

The smallest possible constant C is denoted by Cp(E), and is called the
cotype p constant of E.

Thus the parallelogram law states that a Hilbert space H is of type 2 and
cotype 2, and T2(H) = C2(H) = 1.

It follows from the parallelogram law that if E is of type p, for p > 2, or
cotype p, for p < 2, then E = {0}. If E is of type p then E is of type q, for
1 ≤ q < p, and Tq(E) ≤ Tp(E); if E is of cotype p then E is of cotype q, for
p < q <∞, and Cq(E) ≤ Cp(E). Every Banach space is of type 1.

Proposition 2.8.1 If E is of type p, then E∗ is of cotype p′, and Cp′(E∗) ≤
Tp(E).

Proof Suppose that φ1, . . . , φn are vectors in F ∗ and x1, . . . , xn are vectors
in E. Then

|
n∑
j=1

φj(xj)| = |E((
n∑
j=1

εjφj)(
n∑
j=1

εjxj))|
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≤ E(|(
n∑
j=1

εjφj)(
n∑
j=1

εjxj)|)

≤ E(

∥∥∥∥∥∥
n∑
j=1

εjφj

∥∥∥∥∥∥
∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥)
≤

E

∥∥∥∥∥∥
n∑
j=1

εjφj

∥∥∥∥∥∥
2


1/2E

∥∥∥∥∥∥
n∑
j=1

εjxj

∥∥∥∥∥∥
2


1/2

≤

E

∥∥∥∥∥∥
n∑
j=1

εjφj

∥∥∥∥∥∥
2


1/2

Tp(E)(
n∑
j=1

‖xj‖p)1/p.

But

(
n∑
j=1

‖φj‖p
′
)1/p

′
= sup{|

n∑
j=1

|cj | ‖φj‖ : (
n∑
j=1

|cj |p)1/p ≤ 1},

= sup{|
n∑
j=1

φj(xj)| : (
n∑
j=1

‖xj‖p)1/p ≤ 1},

and so

(
n∑
j=1

‖φj‖p
′
)1/p

′ ≤ Tp(E)

E

∥∥∥∥∥∥
n∑
j=1

εjφj

∥∥∥∥∥∥
2


1/2

.

As we shall see, the converse of this proposition is not true.
If in the definitions of type and cotype we replace the Bernoulli sequence

(εn) by (gn), where the gi are independent N(0, 1) random variables, we
obtain the definitions of Gaussian type and cotype. We denote the corre-
sponding constants by T γp and Cγp .

Proposition 2.8.2 If E is of type p (cotype p) then it is of Gaussian type
p (Gaussian cotype p).

Proof Let us prove this for cotype: the proof for type is similar. Let
mp(γ) = ‖g‖p, where g is an N(0, 1) random variable. Let x1, . . . , xn be
vectors in E. Suppose that the sequence (gn) is defined on Ω and the
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sequence (εn) on Ω′. Then for fixed ω ∈ Ω,

n∑
j=1

|(gj(ω)|p ‖xj‖pF ≤

(Cp(E))2EΩ′


∥∥∥∥∥∥
n∑
j=1

εjgj(ω)xj

∥∥∥∥∥∥
2

E



p/2

≤ (Cp(E))pEΩ′

∥∥∥∥∥∥
n∑
j=1

εjgj(ω)xj

∥∥∥∥∥∥
p

E

 .
Taking expectations over Ω, applying Fubini’s Theorem, and using the sym-
metry of the Gaussian sequence, we find that

(mp(γ))p
n∑
j=1

‖xj‖pF ≤ (Cp(E))pEΩ

EΩ′

∥∥∥∥∥∥
n∑
j=1

εjgjxj

∥∥∥∥∥∥
p

E


≤ (Cp(E))pE′

Ω

EΩ

∥∥∥∥∥∥
n∑
j=1

εjgjxj

∥∥∥∥∥∥
p

E


= (Cp(E))pEΩ

∥∥∥∥∥∥
n∑
j=1

gjxj

∥∥∥∥∥∥
p

E

 .

In fact, the converse is also true.
We state the following theorem (which we shall not use) without proof.

Theorem 2.8.1 A Banach space (E, ‖.‖E) is isomorphic to a Hilbert space
if and only if it is of type 2 and cotype 2.

Let us give some examples. We need the following standard result.

Proposition 2.8.3 Suppose that f is a non-negative measurable function
on (Ω1,Σ1, µ1)× (Ω2,Σ2, µ2)and that 0 < p ≤ q <∞. Then(∫

X1

(
∫
X2

f(x, y)p dµ2(y))q/p dµ1(x)
)1/q

≤

≤
(∫

X2

(
∫
X1

f(x, y)q dµ1(x))p/q dµ2(y)
)1/p

.

Proof Let r = q/p. Then(∫
X1

(
∫
X2

f(x, y)p dµ2(y))q/p dµ1(x)
)1/q

=
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=
(∫

X1

(
∫
X2

f(x, y)p dµ2(y))r dµ1(x)
)1/rp

=
(∫

X1

(
∫
X2

f(x, y)p dµ2(y))g(x) dµ1(x)
)1/p

for some g with ‖g‖r′ = 1

=
(∫

X2

(
∫
X1

f(x, y)pg(x) dµ1(x)) dµ2(y)
)1/p

(by Fubini’s theorem)

≤
(∫

X2

(
∫
X1

f(x, y)pr dµ1(x))1/r dµ2(y)
)1/p

=
(∫

X2

(
∫
X1

f(x, y)q dµ1(x))p/q dµ2(y)
)1/p

.

We can consider f as a vector-valued function f(y) on Ω2, taking val-
ues in Lq(Ω1), and with

∫
Ω2
‖f(y)‖pq dµ2 < ∞: thus f ∈ LpΩ2

(LqΩ1
). The

proposition then says that f ∈ LqΩ1
(LpΩ2

) and ‖f‖Lq
Ω1

(Lp
Ω2

) ≤ ‖f‖Lp
Ω2

(Lq
Ω1

).

Theorem 2.8.2 Suppose that (Ω,Σ, µ) is a measure space.
(i) If 1 ≤ p ≤ 2 then Lp(Ω,Σ, µ) is of type p and cotype 2.
(ii) If 2 ≤ p <∞ then Lp(Ω,Σ, µ) is of type 2 and cotype p.

Proof (i) Suppose that f1, . . . , fn are in Lp(Ω,Σ, µ). To prove the cotype
inequality, we use the fact that the inclusion Lp → L2 is norm-decreasing,
Khintchine’s inequality and Proposition 2.8.3.E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
2

p




1/2

≥

E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
p

p




1/p

=

E

∫
Ω
|
n∑
j=1

εjfj(ω)|p dµ(ω)

1/p

=

∫
Ω

E

| n∑
j=1

εjfj(ω)|p
 dµ(ω)

1/p

≥ A−1
p

∫
Ω
(
n∑
j=1

|fj(ω)|2)p/2 dµ(ω)

1/p
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≥ A−1
p

 n∑
j=1

(∫
Ω
(|fj(ω)|p) dµ(ω)

)2/p
1/2

= (A−1
p (

n∑
j=1

‖fj‖2
p)

1/2.

Thus Lp(Ω,Σ, µ) is of cotype 2.

To prove the type inequality, we use Theorem 1.12.2, the fact that the in-
clusions L2 → Lp → L1 are norm-decreasing, and the fact that the inclusion
lp → l2 is norm-decreasing.

E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
2

p




1/2

≤
√

2E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
p

 ≤
√

2

E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
p

p




1/p

=
√

2

E

∫
Ω
|
n∑
j=1

εjfj(ω)|p dµ(ω)

)1/p

=
√

2

∫
Ω

E

| n∑
j=1

εjfj(ω)|p
 dµ(ω)

1/p

≤
√

2

∫
Ω
(
n∑
j=1

|fj(ω)|2)p/2 dµ(ω)

1/p

≤
√

2

 n∑
j=1

(∫
Ω
|fj(ω)|p dµ(ω)

)1/p

=
√

2(
n∑
j=1

‖fj‖p)1/pp .

Thus Lp(Ω,Σ, µ) is of type p.

(ii) Since Lp
′
(Ω,Σ, µ) is of type p′, Lp(Ω,Σ, µ) is of cotype p, by Propo-

sition 2.8.1. Suppose that f1, . . . , fn are in Lp(Ω,Σ, µ). To prove the type
inequality, we use the fact that the inclusion Lp → L2 is norm-decreasing,
Khintchine’s inequality and Corollary 2.8.3.E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
2

p




1/2

≤

E


∥∥∥∥∥∥
n∑
j=1

εjfj

∥∥∥∥∥∥
p

p




1/p
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=

E

∫
Ω
|
n∑
j=1

εjfj(ω)|p dµ(ω)

1/p

=

∫
Ω

E

| n∑
j=1

εjfj(ω)|p
 dµ(ω)

1/p

≤ Cp

∫
Ω
(
n∑
j=1

|fj(ω)|2)p/2 dµ(ω)

1/p

≤ Cp

 n∑
j=1

(∫
Ω
|fj(ω)|p dµ(ω)

)2/p
1/2

= Cp(
n∑
j=1

‖fj‖2
p)

1/2.

Thus Lp(Ω,Σ, µ) is of type 2.

We now return to the situation of Proposition 2.6.4.

Proposition 2.8.4 If 2 ≤ p <∞, there exists a constant cp such that

Mr ≥
cp

Cγp (E)
d1/p−1/2.

Proof Once again, it is enough to establish the result for Ar. If we knew
that

E(

∥∥∥∥∥
d∑
i=1

γiei

∥∥∥∥∥
E

) ≥
√

2(E(

∥∥∥∥∥
d∑
i=1

γiei

∥∥∥∥∥
2

E

))1/2

(which follows from Theorem 1.12.2 and de Moivre’s central limit theorem),
we could use the following argument:

Cγp (E)Ar ≥ Cγp (E)c′pd
−1/2

∫
Rd

∥∥∥∥∥
d∑
i=1

aiei

∥∥∥∥∥
E

dγd(a)

= Cγp (E)c′pd
−1/2E(

∥∥∥∥∥
d∑
i=1

γiei

∥∥∥∥∥
E

)

≥ c′′pd
−1/2(

d∑
i=1

‖ei‖pE)1/p ≥ c′′pd
−1/2 1

4

(
d

2

)1/p

= cpd
1/p−1/2.

Instead, we argue as follows, replacing the Gaussian cotype constant by
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the cotype constant.

Ar =
∫
Sd−1

∥∥∥∥∥
d∑
i=1

aiei

∥∥∥∥∥
E

dµd−1(a)

=
∫
Sd−1

∥∥∥∥∥
d∑
i=1

εi(ω)aiei

∥∥∥∥∥
E

dµd−1(a)

=
∫
Sd−1

E(

∥∥∥∥∥
d∑
i=1

εiaiei

∥∥∥∥∥
E

) dµd−1(a)

≥ 1√
2

∫
Sd−1

(E(

∥∥∥∥∥
d∑
i=1

εiaiei

∥∥∥∥∥
2

E

))1/2 dµd−1(a)

≥ 1√
2Cp(E)

∫
Sd−1

(
d∑
i=1

‖aiei‖pE)1/p dµd−1(a)

≥ 1
4
√

2Cp(E)

∫
Sd−1

(
bd/2c∑
i=1

|ai|p)1/p dµd−1(a)

≥ d1/p

4
√

2Cp(E)d1/2

∫
Sd−1

(
bd/2c∑
i=1

|ai|2)1/2 dµd−1(a)

≥
c′pd

1/p

Cp(E)d

∫
Rd

(
bd/2c∑
i=1

|xi|2)1/2 dγd(x)

≥ cpd
1/p

Cp(E)d1/2
.

Here we use the fact that (
∑k
j=1 |ai|p)1/p ≥ k1/p−1/2(

∑k
j=1 |ai|2)1/2, and

that if X1, . . . , Xk are independent normalized Gaussian random variables
and Zk = 1

2(X2
1 + · · ·+X2

k) then∫
Rd

(
k∑
i=1

|xi|2)1/2 dγd(x) =
√

2E(Z1/2
k ) =

√
2Γ((k + 1)/2)/Γ(k/2) ∼

√
k.

Corollary 2.8.1 There exists c1 such that if E = ldp and 1 ≤ p < 2 then
Mr ≥ c1. If 2 < p < ∞ there exists cp such that if E = ldp then Mr ≥
cpd

1/p−1/2.
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Exercises

(i) Show that if E is of type p, for p > 2, or cotype p, for p < 2, then
E = {0}. Show that if E is of type p then E is of type q, for 1 ≤ q < p,
and Tq(E) ≤ Tp(E); show that if E is of cotype p then E is of cotype
q, for p < q < ∞, and Cq(E) ≤ Cp(E). Every Banach space is of
type 1.

(ii) Is a subspace of type p (or of cotype p) of type p (cotype p)? What
about quotient spaces?

(iii) Let Ω = ZN
2 . Show that there is an isometric embedding of l1 into

L∞(Ω), and show that L∞(Ω) is not of cotype p for 2 ≤ p <∞, and
is not of type p, for p > 1.

(iv) Complete the proof of Proposition 2.8.2.
(v) Show that if p > q > 0 then (

∑k
j=1 |ai|p)1/p ≥ k1/p−1/q(

∑k
j=1 |ai|q)1/q.

(vi) Let X be a random variable taking values in a finite-dimensional
normed space (E, ‖.‖E), with E(‖X‖) <∞. By considering a norm-
ing functional, show that ‖E(X)‖ ≤ E(‖X‖).

(vii) Suppose that ε1, . . . , εn are Bernoulli random variables on a proba-
bility space Ω and g1, . . . , gn are independent normalized Gaussian
random variables on Ω′. Show that (gi), (εigi) and (εi|gi|) have the
same distribution.

Suppose that 1 ≤ p <∞. Show that∥∥∥∥∥
n∑
i=1

εi(ω)xi

∥∥∥∥∥ =
√
π

2

∥∥∥∥∥
n∑
i=1

εi(ω)E′(|gi|)xi

∥∥∥∥∥
≤

√
π

2
E′(

∥∥∥∥∥
n∑
i=1

εi(ω)|gi|xi

∥∥∥∥∥)
≤

√
π

2
E′(

∥∥∥∥∥
n∑
i=1

εi(ω)|gi|xi

∥∥∥∥∥
p

)1/p.

Show that ∥∥∥∥∥
n∑
i=1

εixi

∥∥∥∥∥
p

≤
√
π

2

∥∥∥∥∥
n∑
i=1

gixi

∥∥∥∥∥
p

.

2.9 Dvoretzky’s Theorem, revisited

Theorem 2.9.1 Suppose that p ≥ 2. Then there exists a constant kp(δ) such
that if k ≤ kp(δ)d2/p/(Cγp (E))2 then P(Dk) ≥ 1−

√
π/2e−kp(δ)d2/p/(Cγ

p (E))2.
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In particular, if E = ld1 and k ≤ k2(δ)d/2 then P(Dk) ≥ 1−
√
π/2e−k2(δ)d/2,

and if p ≥ 2 there exists k′p(δ) such that if k ≤ k′p(δ)d
2/p then P(Dk) ≥

1−
√
π/2e−k

′
p(δ)d2/p

.
These results are sharp.

Proposition 2.9.1 Suppose that 2 < p < ∞ and E is a k-dimensional
subspace of Rd on which ‖x‖p ≤ |x| ≤ L ‖x‖p. Then k ≤ L2C2

pd
2/p, where

Cp is the constant in Khintchine’s inequality.

Proof Let (u(1), . . . , u(k)) be an orthonormal basis of E, and let (ε1, . . . , εn)
be Bernoulli random variables. Then

k1/2 =

∥∥∥∥∥∥
k∑
j=1

εj(ω)u(j)

∥∥∥∥∥∥
2

≤ L

∥∥∥∥∥∥
k∑
j=1

εj(ω)u(j)

∥∥∥∥∥∥
p

,

so that

kp/2 ≤ Lp
d∑
i=1

|
k∑
j=1

εj(ω)u(j)
i |p,

and

kp/2 ≤ LpE

 d∑
i=1

|
k∑
j=1

εj(ω)u(j)
i |p


= Lp

d∑
i=1

E

| k∑
j=1

εj(ω)u(j)
i |p


≤ LpCpp

d∑
i=1

 k∑
j=1

|u(j)
i |2

p/2

= LpCpp

d∑
i=1

 k∑
j=1

|
〈
u(j), ei

〉
|2
p/2

≤ LpCppd.

Thus k ≤ L2C2
pd

2/p.

We deduce a corresponding result for ld∞, which shows that we cannot
improve the general result in Dvoretzky’s theorem. Recall that Cp ≤ 2

√
p.

Corollary 2.9.1 Suppose that E is a k-dimensional subspace of Rd on which
‖x‖∞ ≤ ‖x‖2 ≤ L ‖x‖∞. Then k ≤ 4L2e2 log d.
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Proof ‖x‖log d ≤ ‖x‖2 ≤ L ‖x‖∞ ≤ L ‖x‖log d, so that

k ≤ L2C2
log dd

2/ log d = L2e2C2
log d ≤ 4L2e2 log d.

2.10 The Kashin decomposition

It follows from Dvoretzky’s theorem that for δ > 0 there exists a constant cδ
such that if (E, ‖.‖E) is a d-dimensional normed space then for k ≤ cδC2(E)d
there are many k-dimensional subspaces F of E with d(F, lk2) ≤ 1 + δ. For
small δ, cδ must be small. But what if we want k to be big, and are prepared
for δ to be quite big?

We consider l2k1 , with unit ball B. Then the ellipsoid of maximal volume
contained in B is D = {x ∈ R2k; ‖x‖2 ≤

√
2k}. Now the volume of B is

22k/(2k)! (it is the union of 22k hyper-quadrants) and, as we have seen, the
volume of D is πk/(2k)kk!, so that

(
vol B
vol D

)1/2k

=
(

8
π

)1/2
(
kkk!
(2k)!

)1/2k

≤
(

2e
π

)1/2

,

a bound that does not depend on the dimension 2k.
Generally, if (E, ‖.‖E) is a d-dimensional normed space, and D is the

ellipsoid of maximal volume contained in BE , we define the volume ratio
vr(E) as

vr(E) =
(

vol (BE)
vol (D)

)1/d

.

Theorem 2.10.1 Suppose that (E, ‖.‖E) is a 2k-dimensional normed space,
with volume ratio R. Let |.| be the inner-product norm defined by the ellipsoid
of maximum volume contained in BE. If

Fk = {F ∈ G2k,k : |x| ≤ 108R2 ‖x‖ for x ∈ F},

then P(Fk) ≥ 1− 1/22k.

Proof We can suppose that D is the unit ball of l2k2 . Then

vol BE = A2k−1

∫
S2k−1

(∫ 1/‖θ‖

0
u2k−1 du

)
dµ(θ) = V2k

∫
S2k−1

‖θ‖−2k dµ(θ).
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Let Lk = {F ∈ G2k,k :
∫
SF
‖θ‖−2k dµ(θ) > (2R)2k}. Then

R2k =
∫
S2k−1

‖θ‖−2k dµ(θ) =
∫
G2k,k

(∫
SF

‖θ‖−2k dµ(θ)
)
dP(F ) ≥ (2R)2kP(Lk).

so that P(Lk) ≤ 2−2k.
Let t = 1/36R2, so that t/9 = (2tR)2. Let

bF = {θ ∈ SF : ‖θ‖ < t} = {θ ∈ SF : ‖θ‖−2k > 1/t2k}.

Suppose that F 6∈ Lk. Then

µ(bF )
t2k

≤
∫
SF

‖θ‖−2k dµ(θ) ≤ (2R)2k,

so that µ(bF ) ≤ (2Rt)2k ≤ (t/9)k. Now by Proposition 2.7.1 there exists a
t/3-net N in SF with less than (9/t)k points. Then since the balls {Bt/3(n) :
n ∈ N} cover SF , µ(Bt/3(n)∩SF ) > (t/9)k. Thus if n ∈ N then Bt/3(n)∩SF
is not contained in bF , and so there exists y ∈ Bt/3(n) ∩ SF with ‖y‖ ≥ t.
Consequently, for each x ∈ SF there exists y ∈ SF with ‖y‖ ≥ t and
‖x− y‖ ≤ |x − y| ≤ 2t/3. Thus ‖x‖ ≥ t/3 = 1/108R2 for all x ∈ SF .

Corollary 2.10.1 Let Jk = {F ∈ G2k,k : F ∈ Fk and F⊥ ∈ Fk}. Then
P(Jk) ≥ 1− 1/22k−1.

Exercise
Investigate the extent to which you can reduce the constant 108 in The-

orem 2.10.1 if you only require that P(Fk) > 1/2 and P(Jk) > 0.
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Concentration of measure

We now consider the problem of determining how a probability measure on a
metric space is concentrated, when we do not have an isoperimetric theorem
to help us.

Throughout, we shall suppose that P is a probability measure on the
Borel sets of a complete separable metric space (X, d).

3.1 Martingales

Many of the results for independent random variables, such as Khintchine’s
inequality, can be extended to martingales. Suppose that (Ω,Σ,P) is a prob-
ability space and that Σ0 is a sub-σ-field of Σ. Then if f is non-negative and
Σ-measurable, there exists a unique non-negative Σ0-measurable function g
(possibly taking the value ∞) such that

∫
A g dP =

∫
A f dP for all A ∈ Σ0.

g is the conditional expectation of f , and is denoted E(f |Σ0). In particular,
E(E(f |Σ0)) = E(f). If h is a non-negative Σ0-measurable function then
E(hf |Σ0) = hE(f |Σ0). If Σ0 ⊆ Σ1 ⊆ Σ then E(f |Σ0) = E(E(f |Σ1)|Σ0).
If f ∈ L1(Ω,Σ,P), we can define E(f |Σ0) = E(f+|Σ0) − E(f−|Σ0), and
E(·|Σ0) is a norm-decreasing projection: L1(Σ) → L1(Σ0). Its restriction to
L2(Σ) is the orthogonal projection of L2(Σ) onto L2(Σ0).

Suppose that F0 ⊆ F1 ⊆ . . . ⊆ Fk is a filtration of σ-fields of Borel sets of
a metric probability space (X, d,P). We assume that F0 is the trivial field
{X, ∅}. If f ∈ L1(Fk), let fj = E(f |Fj). We suppose that E(f) = f0 = 0.
Then (fj)kj=0 is a martingale. Let dj = fj − fj−1, for 1 ≤ j ≤ k: (dj) is a
martingale difference sequence. Note that E(dj |Fj−1) = 0.

Recall that a random variable X is sub-Gaussian, with exponent b, if
E(etX) ≤ eb

2t2/2 for −∞ < t <∞.

Theorem 3.1.1 (Azuma’s theorem) Suppose that (fj)kj=0 is a martingale

53
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with f0 = 0, and that E(etdj |Fj−1) ≤ eb
2
j t

2/2 for each t and j, where bj is a
constant. Then f = fk is sub-Gaussian, with exponent (

∑k
j=1 b

2
j )

1/2.

Proof

E(etfk) = E(E(etfk−1etdk |Fk−1))

= E(etfk−1E(etdk |Fk−1))

≤ E(etfk−1)eb
2
kt

2/2,

and so

E(etf ) ≤ E(etf0)
k∏
j=1

eb
2
j t

2/2 = e
(
∑k

j=1
b2j )t2/2

.

[Note that all the functions that we consider are integrable.]

This theorem holds in particular when each dj is bounded. Then f = fk
is sub-Gaussian, with exponent (

∑k
j=1 ‖dj‖

2
∞)1/2.

We shall apply Azuma’s theorem to finite sets, equipped with the uniform
probability. The problem is then to find a good metric and good filtration.

Suppose that (X, d) is a finite metric space, and that F0 ⊆ F1 ⊆ . . . ⊆ Fk
is a filtration, that F0 is the trivial field {X, ∅} and that Fk = P (X).
Suppose that for each j there exists aj such that if Aj and Bj are two Fj
atoms inside the same Fj−1 atom Cj−1 then there is a bijection φ : Aj → Bj
such that d(x, φ(x)) ≤ aj . Then we say that (X, d) has length at most
(
∑k
j=1 a

2
j )

1/2.
Example 1. The hypercube Qd, with the Hamming metric. Let Fj be

the partition defined by fixing the first j terms. If Cj−1 is an Fj−1 atom,
then Cj−1 = Aj ∪Bj , where Aj and Bj are Fj atoms. Let φ be the mapping
Aj → Bj such that (φ(x))i = xi, for i 6= j. Then d(x, φ(x)) = 1, and so Qd

has length at most
√
d.

Example 2. Σn, the group of permutations of {1, . . . , n}. We define a
metric by setting d(σ, ρ) = 1 if σρ−1 is a transposition, and define d to be
the path length. Thus Σn has diameter n− 1, since every permutation can
be written as the product of at most n − 1 transpositions. Let Fj be the
partition defined by fixing σ(1), . . . , σ(j). If Cj−1 is an Fj−1 atom, then
Cj−1 is the union of n − j + 1 Fj atoms, each determined by the value of
σ(j). If

Aj = {σ : σ(1) = i1, . . . , σ(j − 1] = ij−1, σj = k},
and Bj = {σ : σ(1) = i1, . . . , σ(j − 1] = ij−1, σj = l},
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then Bj = (k, l)Aj : set φ(σ) = (k, l)σ. Then d(σ, φ(σ)) = 1, and so the
length of Σn is at most

√
n− 1.

Note that both of these examples concern a finite group G and a set of
generators of G.

Theorem 3.1.2 Suppose that (X, d) is a finite metric space, equipped with
the uniform probability distribution, and of length l. If f is a 1-Lipschitz
function on X with E(f) = 0 then f is sub-Gaussian, with exponent l.

Proof Let F0 ⊆ F1 ⊆ . . . ⊆ Fk be a filtration which realizes the length. Let
Cj−1 be a Fj−1 atom, let Aj and Bj be atoms contained in Cj−1 and let
φ : Aj → Bj be a suitable mapping. fj is constant on each of Aj and Bj :
let fj(Aj) and fj(Bj) be the values. Then

fj(Aj)−fj(Bj) =
1
|Aj |

∑
x∈Aj

f(x)− 1
|Bj |

∑
x∈bj

f(x) =
1
|Aj |

∑
x∈Aj

(f(x)−φ(x)) ≤ aj .

Thus |fj(Aj)− fj(Bj)| ≤ aj . Since fj−1(Cj−1) is the average of the fj(Aj)s,
it follows that |dj | ≤ aj . We now apply Azuma’s theorem to obtain the
result.

Corollary 3.1.1 P(f > ε) ≤ e−ε
2/2l2.

3.2 Sub-Gaussian measures

Let

Lip 0(X) = {f ∈ Lip (X) : f integrable and E(f) = 0}.

We define the Laplace functional EP of P as

EP(t) = sup{E(etf ) : f ∈ Lip 0(X), ‖f‖Lip ≤ 1}, for t ∈ R.

We say that P is sub-Gaussian, with exponent b, if EP(t) ≤ eb
2t2/2, for

all t ∈ R.

Proposition 3.2.1 If P is sub-Gaussian with exponent b then Lip 0(X) ⊆
Lexp2, and ‖f‖Lexp2

≤ 2b ‖f‖Lip , for f ∈ Lip 0(X).

Conversely, if Lip 0(X) ⊆ Lexp2, and ‖f‖Lexp2
≤ 2b ‖f‖Lip , for f ∈

Lip 0(X) then P is sub-Gaussian, with exponent 4b.

Proof The first statement is an immediate consequence of Theorem 1.11.1.
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For the converse, if f ∈ Lip 0(X) and ‖f‖Lip ≤ 1/2b then

E(f2k) ≤ k!E(ef
2
) ≤ 2(k!).

Thus f is sub-Gaussian with exponent 2, by Theorem 1.11.1. Thus P is
sub-Gaussian, with exponent 4b.

Proposition 3.2.2 If P is sub-Gaussian with exponent b then the concen-
tration function αP satisfies αP(ε) ≤ e−ε

2/8b2.

Corollary 3.2.1 If (X, d) is a finite metric space, equipped with the uniform
probability distribution, and of length l then αP(ε) ≤ e−ε

2/8l2.

Proof Suppose that P(A) ≥ 1/2. Let fA(x) = min(d(x,A), ε). Then
E(fA) ≤ ε/2, so that

1−P(Aε) ≤ P(fA = ε) ≤ P(fA ≥ E(fA) + ε/2) ≤ e−ε
2/8b2 ,

since fA −E(fA) is a 1-Lipschitz function in Lip 0(X).

Proposition 3.2.3 Suppose that P is sub-Gaussian on (X, d), with exponent
b, and that Q is sub-Gaussian on (Y, ρ), with exponent c. Give X × Y

the metric τ((x1, y1), (x2, y2)) = d(x1, x2) + ρ(y1, y2). Then P ×Q is sub-
Gaussian, with exponent (b2 + c2)1/2.

Proof Suppose that f is an integrable 1-Lipschitz function in Lip 0(X×Y ).
Let g(y) =

∫
X f(x, y) dP(x). Note that g is a 1-Lipschitz function on Y and

E(g) = 0. Then∫
X×Y

etf(x,y) dP(x)dQ(y) =
∫
Y
etg(y)

(∫
X
et(f(x,y)−g(y)) dP(x)

)
dQ(y)

≤
∫
Y
etg(y)et

2b2/2 dQ(y) ≤ et
2b2/2et

2c2/2.

When is P sub-Gaussian? We don’t have to consider all Lipschitz func-
tions to find out. We consider X ×X with the metric

d((x1, y1), (x2, y2)) = d(x1, x2) + d(y1, y2).

Let

µP(d) =
∫
X×X

d(x, y) dP(x)dP(y).

µP(d) is the mean distance apart of two points of X.
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Proposition 3.2.4 The following are equivalent:
(i) µP(d) <∞.
(ii)

∫
X d(x, x0) dP(x) <∞ for some x0 ∈ X;

(iii)
∫
X d(x, x0) dP(x) <∞ for all x0 ∈ X;

Proof If (i) holds, then by Fubini’s theorem,
∫
X d(x, y) dP(x) < ∞ for

almost all y, and so for some y.∫
X d(x, y) dP(x) ≤ d(y, z) +

∫
X d(x, z) dP(x), so that (ii) implies (iii).

Since d(x, y) ≤ d(x, z) + d(y, z),

µP(d) ≤ 2
∫
X
d(x, z) dP(x), for all z ∈ X.

Thus (iii) implies (i).

Theorem 3.2.1 P is sub-Gaussian if and only if µP(d) <∞ and d(x, y)−
µP(d) is sub-Gaussian on (X ×X,P×P).

Proof The condition is necessary, by Proposition 3.2.3.
Conversely, suppose that d(x, y)−µP(d) is sub-Gaussian on (X×X,P×P),

with exponent b. Suppose that f is an integrable 1-Lipschitz function on X
with E(f) = 0. Note that E(etf ) ≥ 1 for all t, by Jensen’s inequality. If
k > 0 then

‖d(x, y)‖2k ≤ ‖d(x, y)− µP(d)‖2k + µP(d) ≤ 2k+1k!b+ µP(d)

so that

E(d(x, y)2k) ≤ (2k+1k!b+ µP(d))2k ≤ 2k+1k!(b+ µP(d)/4)2k.

Thus ∫
X×X

(f(x)− f(y))2k dP(x)dP(y) ≤ 2k+1k!(b+ µP(d)/4)2k.

Thus it follows from Theorem 1.11.1 that f(x) − f(y) is sub-Gaussian,
with exponent 2

√
2(b+ µP(d)/4). Thus

E(etf ) ≤
∫
X
etf(x) dP(x)

∫
X
e−tf(y) dP(y)

≤ e4t
2(b+µP(d)/4)2 .
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3.3 Convergence of measures

Suppose that Σ is a σ-field of subsets of X. A signed measure is a bounded
countably additive real-valued function on Σ. The set of signed measures
forms a vector space M(X). The Hahn-Jordan decomposition theorem says
that if µ ∈ M(X) then there exists a partition X = P ∪N , with P,N ∈ Σ
such that if A ∈ Σ then µ(A ∩ P ) ≥ 0 and µ(A ∩ N) ≤ 0. Then, setting
µ+(A) = µ(A∩P ) and µ−(A) = −µ(A∩N), µ+ and µ− are (non-negative)
measures on Σ, and µ = µ+−µ−. Set |µ| = µ++µ−, and set ‖µ‖ = ‖µ‖TV =
|µ|(X). ‖.‖TV is a norm on M(X), the total variation norm, under which
M(X) is a Banach space, and a Banach lattice.

We are interested in measures on topological spaces, and in particular
on compact Hausdorff spaces and metric spaces. We require that (X, τ) is
Hausdorff and normal: it then follows from Urysohn’s lemma that if A and
B are closed and disjoint then there exists a continuous f : X → [0, 1] with
f(a) = 0 for a ∈ A and f(b) = 1 for b ∈ B. Note that if f ∈ C(X) then
(f ≤ t) =

∫∞
n=1(f < t = 1/n) is a closed Gδ set - a countable intersection of

open sets. It is therefore natural to consider the Baire σ-field - the σ-field
generated by the closed Gδ sets: this is the smallest σ- field for which the
continuous real-valued functions on X are measurable.

Theorem 3.3.1 Suppose that µ is a finite Baire measure on a normal Haus-
dorff space (X, τ). Then µ is closed Gδ regular: if A is a Baire set then

µ(A) = sup{µ(F ) : F a closed Gδ set, F ⊆ A}
= inf{µ(U) : U an open Fσ set, U ⊇ A}.

[An Fσ set is a countable union of closed sets.]

Proof Let T be the collection of Baire sets for which the result holds.
Suppose that A = ∩nUn is a closed Gδ set. Then there exist fn : X → [0, 1]
with fn(a) = 0 for a ∈ A and fn(x) = 1 for x 6∈ Un. Then A ⊆ (fn < 1) ⊆ Un
so that A = ∩n(fn < 1); since (fn < 1) is an open Fσ set, A ∈ T .

It is therefore enough to show that T is a σ-field. Since A ∈ T if and
only if C(A) ∈ T , it is enough to show that if (An) is a sequence in T

then A = ∪nAn ∈ T . Suppose that ε > 0. Then for each n there exist
Fn ⊆ An ⊆ Un (Fn a closed Gδ set, Un an open Fσ set) with µ(An \ Fn) <
ε/2n+1 and µ(Un \ An) < ε/2n. Then U = ∪nUn is an open Fσ set, and
U\A ⊂ ∪n(Un\An), so that µ(U\A) ≤

∑
n µ(Un\An) < ε. Let Bn = ∪ni=1Ai.

Then Bn ↗ A, and so there exists N such that µ(A \ BN ) < ε/2. Then
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GN = ∪Ni=1Fj is a closed Gδ set, and BN \ GN ⊆ ∪Ni=1(Ai \ Fi) so that
µ(BN \GN ) ≤

∑N
i=1 µ(Ai \ Fi), ε/2. Thus µ(A \GN ) < ε.

We shall be concerned with probability measures on metric spaces (X, d).
Note that any closed set A in a metric space (X, d) is a Gδ set, since A =
{x : d(x,A) < 1/n}, and so the Baire sets and the Borel sets are the same.
We shall restrict attention to complete separable metric spaces, or Polish
spaces. These need not be compact, nor even locally compact. Nevertheless,
compactness plays an essential role. A probability measure P is regular if

P(A) = sup{P(K) : K compact ,K ⊆ A}

for each Borel set A. By Theorem 3.3.1, this happens if and only if P is
tight - that is sup{P(K) : K compact } = 1.

Theorem 3.3.2 A probability measure P on a Polish space is tight.

Proof Let (xn) be a dense sequence in (X, d), and, for δ > 0, let Bδ(xn) =
{x : d(x, xn) ≤ δ}. Suppose that ε > 0. The balls B1/mxn cover X, and so
there exists Nm such that, setting Cm = ∪Nm

n=1B1/m(xn), P(Cm) > 1− ε/2m.
Let K = ∩∞m=1Cm. Then K is closed and precompact, and so it is compact.
Since P(X \K) ≤

∑∞
m=1 ε/2

m = ε, P is tight.

Suppose that X is a normal Hausdorff space and that M(X) is the space
of signed Baire measures on X. If f ∈ Cb(X) and µ ∈ M(X), let φµ(f) =∫
X f dµ. φ is an order preserving isometry of (M(X), ‖.‖TV ) into Cb(X)∗:

‖µ‖TV = sup{|
∫
X
f dµ| : f ∈ Cb(X), ‖f‖∞ = 1}.

Things become easier when (X, τ) is a compact Hausdorff space.

Theorem 3.3.3 (The Riesz representation theorem) If (X, τ) is a
compact Hausdorff space then the mapping φ is surjective.

The norm topology ‖.‖TV is too strong for most purposes: instead, we
consider the weak topology, induced by the weak*-topology on Cb(X)∗.

Corollary 3.3.1 If (X, τ) is a compact Hausdorff space then the closed unit
ball M1(X) is weakly compact, and P (X) is a weakly closed, and therefore
weakly compact, subset of M1(X).

Proof The first statement follows from the Banach-Alaoglu theorem, and the
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second from the fact that P (X) = {µ : µ ∈ M1(X) : µ(X) =
∫
X 1 dµ = 1}.

Suppose now that (X, d) is a Polish space. We show that weakly conver-
gent sequences in P (X) can be defined in terms of a norm. [We do not show
that the norm defines the weak topology on P (X).]

If P,Q ∈ P (X), let

β(P,Q) = sup{|
∫
X
f dP−

∫
X
f dQ| : ‖f‖BL ≤ 1} = ‖P−Q‖∗BL .

Then β is a metric on P (X).

Theorem 3.3.4 Suppose that (X, d) is a Polish space. If C ⊂ P (X) is
β-precompact then A is uniformly tight: given ε > 0 there exists a compact
subset K of X such that P(K) > 1− ε for all P ∈ C.

We need some lemmas, the first of interest in its own right.

Lemma 3.3.1 Suppose that 0 < ε < 1. If β(P,Q) ≤ ε2/2 then Q(Aε) ≥
P(A)− ε, for all closed sets A.

Proof Let f(x) = (1− d(x,A)/ε)+. Then ‖f‖BL ≤ 1 + 1/ε, so that

|
∫
X
f dP−

∫
X
f dQ| ≤ ε2(1 + 1/ε)/2 < ε.

Thus

Q(Aε) ≥
∫
X
f dQ ≥

∫
X
f dP− ε ≥ P(A)− ε.

Lemma 3.3.2 If 0 < ε < 1 there exists a finite set F in X such that
Q(Fε) > 1− ε for all Q ∈ C.

Proof There exists a finite set D in C such that C ⊆ Dε2/8. There exists
a compact subset KD of X such that P(KD) > 1 − ε/2 for P ∈ D. There
exists a finite subset F of X such that KD ⊆ Fε/2, so that (KD)ε/2 ⊆ Fε. If
Q ∈ C, there exists P ∈ D with β(Q,P) ≤ ε2/8, and so

Q(Fε) ≥ Q((KD)ε/2) ≥ P(KD)− ε/2 ≥ 1− ε.
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Proof of the Theorem. Suppose that 0 < ε < 1. Let εn = ε/2n. For each n,
there exists a finite set Fn such that Q((Fn)εn) ≥ 1 − εn, for Q ∈ C. Let
K = ∩∞n=1((Fn)εn). K is compact, and Q(K) ≥ 1− ε for all Q ∈ C.

Theorem 3.3.5 Pn → P weakly if and only if β(Pn,P) → 0 as n→∞.

Proof Suppose first that Pn → P weakly. Suppose that 0 < ε < 1. By
tightness,there exists a compact subset K of X such that P(K) > 1− ε/11.
By the Arzelà-Ascoli theorem, A = {f|K ; ‖f‖BL ≤ 1} is precompact in
C(K), and so there exist g1, . . . gk ∈ A such that A ⊆ ∪ki=1Bε/11(gi). By
Theorem 1.9.1, each gi can be extended without increasing the BL norm to
fi ∈ BL(X). Also, let h(x) = (1−11d(x,K)/ε)+. Then there exists N such
that

|
∫
X
h dPn −

∫
X
h(x) dP| < ε/11 and |

∫
X
fi dPn −

∫
X
fi(x) dP| < ε/11

for 1 ≤ i ≤ k and n ≥ N . Note that

Pn(Kε/11) ≥
∫
X
h dPn ≥

∫
X
h dP− ε/11 ≥ 1− 2ε/11

for n ≥ N . If ‖f‖BL ≤ 1 there exists fi such that |fi(x)− f(x)| ≤ ε/11 for
x ∈ K. Using the Lipschitz condition, |fi(y)− f(y)| ≤ 3ε/11 for y ∈ Kε/11.

Now∫
X
|f−fi| dPn ≤

∫
Kε/11

|f−fi| dPn+
∫
X\Kε/11

(|f |+|fi|) dPn ≤ 3ε/11+4ε/11

and∫
X
|f − fi| dP =

∫
K
|f − fi| dP +

∫
X\K

(|f |+ |fi|) dP ≤ ε/11 + 2ε/11

Thus if n ≥ N then

|
∫
X
f dPn −

∫
X
f dP| ≤

≤ |
∫
X
fi dPn −

∫
X
fi dP|+

∫
X
|f − fi| dPn +

∫
X
|f − fi| dP

≤ ε/11 + 7ε/11 + 3ε/11 = ε,

and so β(Pn,P) ≤ ε for n ≥ N .
Conversely, suppose that β(Pn,P) → 0. Then {Pn : n ∈ N} is β-

precompact, and so is uniformly tight. Thus given ε > 0 there exists a
compact subset K of X such that P(K) ≥ 1 − ε/7 and Pn(K) ≥ 1 − ε/7
for all n. Suppose that f ∈ Cb(X) and that ‖f‖∞ ≤ 1. By the Stone-
Weierstrass theorem, there exists g ∈ BL(K) such that ‖g‖C(K) ≤ 1 and
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‖f − g‖C(K) ≤ ε/7. We can extend g to h ∈ BL(X), with ‖h‖C(X) ≤ 1
Then

|
∫
X
f dPn−

∫
X
f dP| ≤ |

∫
X
h dPn−

∫
X
h dP|+

∫
X
|f−h| dPn+

∫
X
|f−h| dP.

Now∫
X
|f − h| dPn ≤

∫
K
|f − h| dPn +

∫
C(K)

|f | dPn +
∫
C(K)

|h| dPn ≤ 3ε/7,

and similarly
∫
X |f − h| dP ≤ 3ε/7, and so

|
∫
X
f dPn −

∫
X
f dP| ≤ |

∫
X
h dPn −

∫
X
h dP|+ 6ε/7 < ε

for large enough n.

Theorem 3.3.6 (P (X), β) is complete.

Proof Suppose that (Pn) is a β-Cauchy sequence. Then {Pn : n ∈ N} is
β-precompact, and so is uniformly tight. Thus there exists an increasing
sequence (Kj) of compact subsets of X such that Pn(Kj) > 1/2j for all n
and j. Let P(j)

n be the restriction of Pn to the Borel sets of Kj . Then, taking
a subsequence if you must (but it isn’t necessary), P(j)

n converges weakly to
some µj ∈M(Kj). Then if A is a Borel set contained in Kj , µk(A) = µj(A)
for k ≥ j. If A is any Borel set in X, let P(A) = limj→∞ µj(A). Then it
is straightforward to verify that P is a measure, that P(X) = 1 and that
Pn → P.

Exercise

(i) Suppose that A ⊆ P (X) is uniformly tight. Show that A is β-
precompact.

(ii) Give the full details of Theorem 3.3.6.



3.4 The transportation problem 63

3.4 The transportation problem

Suppose that (X, τ) and (Y, ρ) are compact Hausdorff spaces, that P and
Q are Baire probability measures on X and Y respectively, and that c ∈
C+(X × Y ). c(x, y) is the cost of transportation from x to y. We want to
transport a mass distributed as P to a mass distributed as Q at minimal
cost. This is the Monge transportation problem.

Let π be a Baire probability measure on X×Y . π defines a transport plan:
π(A,B) denotes the amount of matter transported from A to B. π must have
marginal distributions P and Q: π(A× Y ) = P(A) and π(X ×B) = Q(B).
The cost is then

∫
X×Y c dπ, and we want to choose π to minimize this. Thus

we have a constrained optimization problem. When X and Y are finite,
this is a classical linear programming problem. But we, like Monge, want to
consider the more general problem.

Theorem 3.4.1 (The Kantorovitch-Rubinstein theorem I) Suppose
that (X, τ) and (Y ρ) are compact Hausdorff spaces, that P and Q are Baire
probability measures on X and Y respectively, and that c ∈ C+(X × Y ).
Then there is a Baire probability measure π on X×Y with marginals P and
Q which minimises

∫
X×Y c dπ under these constraints. Let

mc(P,Q) = sup{
∫
X
f dP+

∫
Y
g dQ : f ∈ C(X), g ∈ C(Y ), f(x)+g(y) ≤ c(x, y)}.

Then
∫
X×Y c dπ = mc(P,Q).

Proof If π has marginals P and Q, and f(x) + g(y) ≤ c(x, y) then∫
X
f dP +

∫
Y
g dQ =

∫
X×Y

f(x) + g(y) dπ(x, y) ≤
∫
X×Y

c dπ,

so that mc(P,Q) ≤
∫
X×Y c dπ. We need to find π for which the reverse

inequality holds.
Let L = {f(x) + g(y) : f ∈ C(X), g ∈ C(Y )} ⊆ C(X × Y ). L is a linear

subspace of C(X×Y ). If f+g ∈ L let φ(f+g) =
∫
X f dP+

∫
Y dQ. This is a

well-defined linear functional on L, since if f+g = f ′+g′ then f−f ′ = g′−g
is a constant k, so that

∫
X f

′ dP =
∫
X f dP− k and

∫
Y g

′ dQ =
∫
Y g dQ + k.

Further, φ(1) = 1, so that φ is non-zero.
Now let

U = {h ∈ C(X × Y ) : h(x, y) < c(x, y) for all (x, y) ∈ X × Y }.

U is a non-empty convex open subset of C(X×Y ). U ∩L is also non-empty.
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If f + g ∈ U ∩ L then

φ(f + g) ≤ sup{f(x) : x ∈ X}+ sup{g(y) : y ∈ Y }
< sup{c(x, y) : (x, y) ∈ X × Y },

so that φ is bounded above on U ∩L. Let M = sup{φ(h) : h ∈ U ∩L}, and
let B = {l ∈ L : φ(l) ≥M}. Then B is a non-empty convex set disjoint from
U . By the Hahn-Banach theorem, there exists a non-zero continuous linear
functional ψ on C(X × Y ) such that if h ∈ U then ψ(h) < K = inf{ψ(b) :
b ∈ B}. If h > 0 then −αh ∈ U for all sufficiently large α, and so ψ(h) ≥ 0.
In particular, ψ(1) ≥ 0. But since ψ 6= 0, ψ(1) > 0. Let θ = ψ/ψ(1). θ is
a non-negative linear functional on C(X × Y ), and θ(1) = 1; by the Riesz
representation theorem θ is represented by a Baire probability measure π on
X × Y . We shall show that π has the required properties.

Note that if h ∈ U , θ(h) < Λ = inf{θ(b) : b ∈ B}. If l0 ∈ L and
φ(l0) = 0, then φ(M.1 + αl0) = M , so that M.1 + αl0 ∈ B for all α, and
so θ(M.1 + αl0) = M + αθ(l0) ≥ Λ for all α, and so θ(l) = 0. If l ∈ L then
l = φ(l)1+l0, where φ(l0) = 0, and so θ(l) = φ(l): θ extends φ. In particular,
this means that Λ = M . If f ∈ C(X) then

∫
X×Y f(x) dπ(x, y) = φ(f) =∫

X f dP, and a similar result holds for g ∈ C(Y ); thus π has marginals P
and Q. Finally,

mc(P,Q) = sup{
∫
X
f dP +

∫
Y
g dQ : f(x) + g(y) ≤ c(x, y)}

= sup{φ(h) : h ∈ U ∩ L} = M,

and
∫
c dπ = sup{

∫
h dπ : h ∈ U} ≤M .

3.5 The Wasserstein metric

Recall that µP(d) =
∫
X×X d(x, y) dP(x) dP(y); µP(d) is the mean distance

on X. We restrict attention to P1(x) = {P ∈ P (X) : µP(d) < ∞}. If
P,Q ∈ P1(X), let

γ(P,Q) = sup{|
∫
X
f dP−

∫
X
f dQ| : f ∈ Lip X , ‖f‖L ≤ 1}.

γ is a metric on P1(X), and γ ≥ β|P1(X).
If P,Q ∈ P1(X) let

mL(P,Q) = sup{
∫
X
f dP+

∫
X
g dP : f, g ∈ Lip (X) : f(x)+g(y) ≤ d(x, y)}.
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Note that if (X, d) is compact, then mL = md, the metric obtained by taking
d as the cost function.

Proposition 3.5.1 If P,Q ∈ P1(X) then γ(P,Q) = mL(P,Q).

Proof Setting g = −f , we see that γ(P,Q) ≤ mL(P,Q).
Conversely, suppose that f, g ∈ Lip (X) and f(x) + g(y) ≤ d(x, y). Let

h(x) = inf{d(x, y)− g(y) : y ∈ X}.

Then h(x) − h(z) ≤ d(x, z), so that ‖h‖L ≤ 1. Also f(x) ≤ h(x) ≤ −g(x),
so that ∫

X
f dP +

∫
X
g dQ ≤

∫
X
h dP−

∫
X
h dQ.

Thus γ(P,Q) ≥ mL(P,Q).

Corollary 3.5.1 If (X, d) is compact then γ(P,Q) = md(P,Q).

We now define, for P,Q ∈ P1(X),

W (P,Q) = inf{
∫
X×X

d(x, y) dπ(x, y) : π ∈ P1(X,Y ) with marginals P and Q}.

Theorem 3.5.1 (The Kantorovitch-Rubinstein theorem II) W = γ.

Proof If π has marginals P and Q and if ‖f‖L ≤ 1 then∫
X
f dP−

∫
X
f dQ =

∫
X×X

f(x)− f(y) dπ(x, y) ≤
∫
X×X

d(x, y) dπ(x, y),

so that γ(P,Q) ≤W (P,Q).
Conversely, pick a base point x0 ∈ X, and let r(x) = d(x, x0).
Now rdP and rdQ are bounded measures on (X, d) and are therefore

tight. Thus there exists an increasing sequence (Kn) of compact subsets of
X containing x0 such that

P(Kn) > 1/n, Q(Kn) > 1/n,
∫
X\Kn

r dP < 1/n and
∫
X\Kn

r dQ < 1/n.

If A is a Borel subset of Kn, let

Pn(A) = P(A) + (1− µ(Kn))δx0(A)

Qn(A) = Q(A) + (1− µ(Kn))δx0(A).

Then by the compact Kantorovitch-Rubinstein theorem there exists a mea-
sure πn on Kn × Kn with marginals Pn and Qn such that md(Pn,Qn) =
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W (Pn,Qn). We can extend Pn, Qn to probability measures on X and πn to
a probability measure on X×X in the obvious way. Then the sequence (πn)
is uniformly tight on X × X and so it is weakly relatively compact. Thus
there is a subsequence (πnk

) which converges weakly to a probability π. The
marginals Pnk

and Qnk
then converge weakly to P and Q respectively.

Now let I =
∫
X×X d(x, y) dπ(x, y) and suppose that ε > 0. Let dj(x, y) =

min(d(x, y), j). dj is a bounded metric on X equivalent to d, and Ij =∫
X×X dj dπ ↗ I. Thus there exists J such that Ij ≥ I − ε/4 for j ≥ J . But∫
X×X dJ dπnk

→ IJ as k →∞, and so there exists K such that∫
X×X

d(x, y) dπnk
≥
∫
X×X

dJ(x, y) dπnk
≥ I − ε/2

for k ≥ K. Now suppose that k ≥ K. There exists f ∈ Lip (Knk
) with

‖f‖L ≤ 1 and f(x0) = 0 such that∫
Knk

f dPnk
−
∫
Knk

f dQnk
>

∫
X×X

d(x, y) dπnk
− ε/4 ≥ I − 3ε/4.

By Theorem 1.9.1, we can extend f → X without increasing the Lipschitz
norm. Then |f(x)| ≤ r(x) for all x ∈ X. Thus

|(
∫
X
f dP−

∫
X
f dQ)− (

∫
X
f dPnk

−
∫
X
f dQnk

)| =

= |
∫
X\Knk

f dP−
∫
X\Knk

f dQ|

≤
∫
X\Knk

r dP +
∫
X\Knk

r dQ

≤ 2/nk < ε/4

for large enough k. Thus∫
X
f dP−

∫
X
f dQ ≥ I − ε,

and so W (P,Q) ≤ γ(P,Q).

The metric W is called the Wasserstein metric.

Exercises

3.1 Suppose that x, y ∈ (X, d). Calculate ‖δx − δy‖TV , β(δx, δy) and
W (δx, δy).

3.2 On R, let Pn = (1−1/n)δ0+δn/n. Calculate ‖Pn − δ0‖TV , β(Pn, δ0)
and W (Pn, δ0).
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3.6 Entropy

We now turn to entropy, which provides a measure of the spread of values
of a function. If f ≥ 0 and f ∈ L1 we define the entropy Ent(f) as

Ent(f) = E(f log f)− ‖f‖1 log ‖f‖1 = E(f log(f/ ‖f‖1)).

Note the following:

• We take 0 log 0 = 0, since x log x→ 0 as x→ 0.
• If ‖f‖1 = 1 then Ent(f) = E(f log f).
• Ent(αf) = αEnt(f) for α > 0.
• By Jensen’s inequality, Entf ≥ 0, and Entf = 0 if and only if f is constant.

We have the following inequality, known as the entropy inequality.

Proposition 3.6.1 Suppose that f ≥ 0, f ∈ L1(µ) and fg− ∈ L1(µ). Then∫
fg dµ ≤ ‖f‖1 log(

∫
eg dµ) + Ent(f).

Proof The condition on g ensures that
∫
fg dµ exists, taking values in

(−∞,∞]. By homogeneity, we can suppose that ‖f‖1 = 1. Then∫
fg dµ =

∫
f>0

f log f + f log
(
eg

f

)
dµ

= Ent(f) +
∫
f>0

log
(
eg

f

)
fdµ.

Since fdµ is a probability measure and log is concave, the result follows
from Jensen’s inequality.

Corollary 3.6.1 If f ≥ 0 and f ∈ L1(µ) then

Ent(f) = sup{
∫
fg dµ : fg− ∈ L1(µ),

∫
eg dµ = 1}.

Proof The proposition implies that

Ent(f) ≥ sup{
∫
fg dµ : fg− ∈ L1(µ),

∫
eg dµ = 1}.

But setting g = log(f/ ‖f‖1)χ(f>0),∫
eg =

∫
(f/ ‖f‖1) dµ and

∫
fg dµ = Entf,

and so we obtain equality.
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Where does this definition come from? In information theory, one con-
siders a probability P on a finite set I of size n, and if P({i}) = pi, defines
the information entropy as ent(P) =

∑
I pi log(1/pi) = −

∑
I pi log(pi). Let

π be the uniform probability on I, so that π({i}) = 1/n, and let fi = npi.
Then

Entπ(f) =
∑
i∈I

(npi log(npi)/n

=
∑
i∈I

pi log pi + log n = ent(π)− ent(P)

Thus our entropy is a relative entropy, measuring the extent to which ent(P)
is less than the maximum entropy log n. This accounts for the change in
sign.

Theorem 3.6.1 (The Csiszár-Kullback-Pinsker inequality) Suppose
that f ∈ L1(P)+ and that E(f) = 1. Then ‖P− fdP‖TV = E(|f−E(f)|) ≤√

2EntP(f).

Proof We need the following inequality, due to Pinsker:

g(x) = 2(x+ 2)(x log x− x+ 1)− 3(x− 1)2 ≥ 0 for x > 0.

For g(1) = 0 and

g′(x) = 4((x+ 1) log x− 2(x− 1)) ≥ 0 for x ≥ 1

since log x =
∫ x
1 dt/t ≥ 2(x−1)/(x+1), by Jensen’s inequality. If 0 < x < 1

and y = 1/x then

g′(x) = −4((y + 1) log y − 2(y − 1))/y ≤ 0.

Thus, using the Cauchy-Schwarz inequality,

E)(|f −E(f)|) ≤
√

2/3E(
√

(f + 2)(f log f − f + 1))

≤
√

2/3(E(f + 2))1/2(E(f log f − f + 1)
1/2

=
√

2(E(f log f))1/2.

The total variation norm does not take account of the metric d, but the
Wasserstein metric does. We say that a probability measure P on a Pol-
ish metric space (X, d) satisfies a transport inequality with constant c if
W (fP,P) ≤

√
2cEntP(f) for all f ∈ L1(P)+ with E(f) = 1.
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Theorem 3.6.2 (Marton) If that a probability measure P on a Polish
metric space (X, d) satisfies a transport inequality then the concentration
function αP (r) satisfies αP(r) ≤ e−r

2/8c for r2 ≥ 8c log 2.

Proof Suppose that P(A) > 0 and P(B) > 0. Let fA = IA/P(A), fB =
IB/P(B). Then by the triangle inequality,

W (fAdP, fBdP) ≤ W (fAdP,P) +W (fAdP,P)

≤
√

2cEntP(fA) +
√

2cEntP(fB)

=
√

2c log(1/P(A)) +
√

2c log(1/P(B))

On the other hand, if π has marginals fAdP and fBdP then π must be
supported on A×B, so that

W (fAdP, fBdP) ≥ d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

Applying this to a set A with P(A) ≥ 1/2, and to B = C(Ar), we see that

r ≤
√

2c log 2 +
√

2c log(1/P(C(Ar))),

from which the result follows.

Proposition 3.6.2 Suppose that P ∈ P1(X), where (X, d) is a Polish metric
space. Then P is sub-Gaussian, with exponent b, if and only if, whenever
ψ ∈ Lip 0(X) with ‖ψ‖L ≤ 1, and f ∈ (L1)+ with E(f) = 1, then

E((tψ − b2t2/2)f) ≤ EntP(f) for all t ∈ R. (†)

Proof If P is sub-Gaussian, with exponent b, then E(etψ−b
2t2/2) ≤ 1. If

f ∈ (L1)+ and E(f) = 1 then, by Corollary 3.6.1,

EntP (f) = sup{
∫
fg dµ : fg− ∈ L1(µ),

∫
eg dµ = 1}

≥ E((tψ − b2t2/2)f).

Conversely, suppose that (†) holds, and suppose that ψ ∈ Lip 0, with
‖ψ‖L ≤ 1. Let ψN = (ψ ∧ N) − E(ψ ∧ N). Then etψN is bounded; let
fN = etψN /E(etψN ). Then

EntP(fN ) = E

(
etψN

E(etψN )
(tψN − log E(etψN ))

)

≥ E

(
etψN

E(etψN )
(tψN − b2t2/2)

)
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so that log(E(etψN )) ≤ b2t2/2, and E(etψN ) ≤ eb
2t2/2. Suppose that t ≥ 0.

Since E(ψN ) ≤ E(ψ) = 0, ψ ∧N ≤ ψN , and so E(et(ψ∧N)) ≤ eb
2t2/2. Thus

E(etψ) ≤ eb
2t2/2, by monotone convergence. Since −ψ also satisfies (†),

E(etψ) ≤ eb
2t2/2 for t < 0, as well.

Theorem 3.6.3 (Bobkov-Götze) Suppose that P ∈ P1(X), where (X, d)
is a Polish metric space. Then P is sub-Gaussian, with exponent b, if and
only if it satisfies a transport inequality with constant b2.

Proof Suppose first that P is sub-Gaussian, with exponent b, and that f ∈
(L1)+, with E(f) = 1. Suppose that ψ ∈ Lip (X) and that ‖ψ‖L ≤ 1. Then
ψ ∈ L1(P), since P ∈ P1(X). Let ψ0 = ψ − E(ψ). Then, by Proposition
3.6.2,

tE(ψf − ψ) = E(tψ0f) ≤ b2t2

2
+ EntP(f),

for all t ∈ R. Setting t =
√

2EntP (f)/b,

E(ψf − ψ) ≤
√

2b2EntP (f),

so that W (fdP,P) = γ(fdP,P) ≤
√

2b2EntP (f), by the Kantorovitch-
Rubinstein theorem.

Conversely, suppose that W (fdP,P) ≤
√

2b2EntP (f). Then if f ∈ (L1)+,
with E(f) = 1, and ψ ∈ Lip 0(X), with ‖ψ‖L ≤ 1, and if t > 0

E(ψf) = E(ψf − ψ) ≤
√

2b2EntP (f) ≤ b2t

2
+

1
t
EntP(f),

so that E((tψ − b2t2/2)f) ≤ EntP(f). Replacing ψ by −ψ, we see that the
same inequality holds for t < 0, and so P is sub-Gaussian, with exponent b,
by Proposition 3.6.2.



4

Appendix

4.1 The bipolar theorem

Suppose first that E is a finite-dimensional vector space with dual E∗. We
can take a basis, and use it to give E and E∗ Euclidean norms. If A is a
non-empty subset of E we define its polar as

A◦ = {φ ∈ E∗ : sup
a∈A

|φ(a)| ≤ 1}.

A◦ is a closed convex symmetric subset of E∗. Similarly if B is a non-empty
subset of E∗, we define B◦◦ ⊆ E.

Theorem 4.1.1 If A is a non-empty closed convex symmetric subset of E,
then A = A◦◦.

Proof Certainly A ⊆ A◦◦. Suppose that y 6∈ A. There exists z ∈ A such
that ‖y − z‖ = d(y,A). Let w = y − z, and let φ(x) = 〈x,w〉, so that
φ(y) − φ(z) = ‖w‖2 > 0. If a ∈ A and 0 ≤ λ ≤ 1 then (1 − λ)z + λa ∈ A,
and y − ((1− λ)z + λa) = w + λ(z − a), so that

〈w + λ(z − a), w + λ(z − a)〉 ≥ 〈w,w〉 ;

that is,

2λ 〈z − a,w〉+ λ2 ‖z − a‖2 ≥ 0.

Thus φ(z) ≥ φ(a). Since A is symmetric, φ(z) ≥ |φ(a)|. Choose φ(z) < r <

φ(y), and let ψ = φ/r. Then ψ ∈ A◦ and so y 6∈ A◦◦.

Corollary 4.1.1 If A is non-empty and symmetric, then conv(A) = A◦◦.

What about the infinite-dimensional case? Here we use the Hahn-Banach
Theorem.

71
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Theorem 4.1.2 Suppose that C is a non-empty closed convex subset of a
real normed space (E, ‖.‖E), and that x 6∈ E. Then there exists a continuous
linear functional φ on E such that φ(x) > sup{φ(c) : c ∈ C}.

Proof Without loss of generality, we can suppose that 0 ∈ C. Let 0 < d <

d(x,C)/2, and let A = C + dB, where B is the unit ball of E. Then A is a
convex absorbing set. Let p(y) = inf{λ : y ∈ λA}. p is a sublinear functional
on E. Since x − dx/ ‖x‖ 6∈ A, p(x) > 1. Let ψ(αx) = αp(x) Then ψ is a
linear functional on span (x) and ψ(αx) ≤ p(αx). By the Hahn-Banach
theorem, ψ extends to a linear functional φ on E with φ(y) ≤ p(y) for all
y ∈ E. Then φ(x) > 1 and φ(y) ≤ 1 for y ∈ A, so that φ(c) ≤ 1 for c ∈ C.
Finally, if ‖y‖ ≤ 1 then dy ∈ A and so φ(y) = φ(dy)/d ≤ 1/d: thus φ is
continuous.

Corollary 4.1.2 Suppose that C is a symmetric closed convex subset of a
real normed space (E, ‖.‖E). Then C = C◦◦.

Proof As before, C ⊆ C◦◦. If x 6∈ C, there exists a continuous linear
functional φ on E with φ(x) > 1, φ(c) ≤ 1 for c ∈ C. Since C is symmetric,
|φ(c)| ≤ 1 for c ∈ C, so that φ ∈ C◦ and x 6∈ C◦◦.


