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Introduction

The course comes in three parts. In the first, we prove isoperimetric theo-
rems in four classical settings:

d-dimensional Euclidean space, with its usual measure;
the d-dimensional hypercube.
the surface of a d-dimensional sphere;

d-dimensional space, with Gaussian measure;

Each of these theorems requires its own technique, and we shall establish
all the results that we shall need on the way (the Prékopa-Leindler inequality,
the Brunn-Minkowski inequality, Haar measure, Poincaré’s Lemma,...).

In the second part, we investigate how the isoperimetric theorems are used
in studying the geometry of Banach spaces, and prove Dvoretzky’s Theorem
on spherical sections.

A typical application of the isoperimetric theorems is that in high dimen-
sions, a Lipschitz function takes values near its median with high probability,
and the probability of large deviations is small. This is known as the con-
centration of measure phenomenon, or the theory of large deviations. In
the third part of the course, we shall study this, even in settings where an
isoperimetric theorem does not exist, such as in ¥,,.

In spite of the geometric setting, this will be a course on Analysis and
Probability. Attendance at the Part II courses on Probability and Measure,
and Linear Analysis, or their equivalents, will be an advantage, as will be
attendance at Michaelmas term Analysis courses. In the third part, we shall
study probabilities on metric spaces: the book by Dudley is an excellent
reference for this.
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[soperimetry

1.1 Isoperimetry in R¢

Suppose that 1 < p < oo and that 1/p+1/p' = 1.
We have Holder’s inequality:
if feLP(Q,%, ) and g € LP (0, %, 1) then fg € LY, %, 1) and

£l = [1faldn < ([ 197 du 7 [ 191" du = 151, gl

Our first inequality goes in the opposite direction, for functions on R¢
with Lebesgue measure .

Proposition 1.1.1 Suppose that A and B are sets of finite positive measure
in R. Then

AA/p+ B/p") = MA/p) + MB/p) = MA)/p+ A(B)/p"

Proof First observe that we can translate sets. Let A, = A—k, Bj= B —1.
Then Ay/p + Bi/p" = Agjpt1/p; if we prove the result for Ay and B;, then
we get the result for A and B.

First suppose that A and B are compact subsets of R. By translating,
we can suppose that sup(A) = inf(B) = 0 so that AN B = {0}. Then
A/p + B/p' contains the (almost disjoint) union of A/p and B/p’, so that
MA/p+ B/p') > MNA/p) + N(B/p'). If A is measurable, then

A(A) = sup{\(K) : K compact K C A},

so that an easy approximation argument shows that the result holds for
general measurable A, B. O
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Proposition 1.1.2 Suppose that u € LP(R), v € L’ (R) and that
Y

[+ )1 2 [u@)ljo)] for all z,y € R.

Then |[w]ly = [lull, [[o]] -

Proof We can clearly suppose that u, v, w > 0 and that v and v are non-zero.
Since

[[ull, = sup{[[f[l, - f bounded , [f] < u},

we can also suppose that u and v are bounded and non-zero. By scaling, we
can suppose that |lu, = ||v]|,, = 1. Recall that [wdA = [° AN w > t)dt.
Let Ay = (u > t'/?) = (uP > t), B; = (v > t'/?") = (v > t). Then A; and
B, are sets of finite positive measure for 0 < ¢ < 1, and A\(4;) = A\(B;) = 0 for
t>1.If0<t<landx € A; andy € B then w(z/p+y/p’) > t/Pt1/P =t
so that (w > t) D Ay/p + By/p' and Mw > t) > AAy)/p + NBy) /7.
Integrating, and using Jensen’s inequality,

/wd)\ — /OOO/\(w>t)dt2/Ol)\(w>t)dt

[ 3@+ B

/
lully /2 + vl /0" = llull, o]l -

Y

Theorem 1.1.1 (The Prékopa-Leindler inequality) Suppose that
ue LP(RY) v € LP (RY) and that
x

Wi+ I%)I > |u()|[o(y)| for all z,y € R™.

Then [lwlly = [ull, [[o]l,-

Proof We prove this by induction on d. It is true for d = 1: suppose that it
is true for d — 1. Let H, = {z : x4 = 7}, and let us identify R~ with Hy,
so that we can write a point of R? as (x,t), with € R% and t € R.. Let us
write wy(z) = w(x,t), ete. Ift =r/p+s/p then wi(z/p+y/p') > ur(x)vs(y),
and so by the d — l-dimensional result [Jwl; > [[ur|, . [lvs],,. Thus if we
set W (t) = willy, U(r) = llurll, and V(s) = [[o,], then W(r/p+ s/p')
U(r)V (s). Applying, the one-dimensional result,

lwlly = W1 = U, IV Iy = ull, 0]l -
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Corollary 1.1.1 (The Brunn-Minkowski inequality) If A and C are
sets of finite positive measure in R then

A4+ = (AT + ()M,
Proof Let a = (A(A))Y? and v = (\(C))/?. Let A = A/a, C = C/, so
)

(
that A(A) = \(C) = 1. Let u = I;, v = I5. Then [ull, = llvll,, = 1. Let

1/p = a/(a + 1), so that 1/p" = /(e + 7). Then A/p = A/(a +7) and
C/p' = C/(a+7), so that

Alp+C/p' = (A+C)/(a+7)
and we can take w = I 41.0)/(at~)- Thus
MA+C)/(a+7)) = llwlly = [lull, o], =1,
and so A(A + C) > (a + v)%; taking d-th roots, we get the result. O

We now obtain the isoperimetric inequality in RY. We avoid measuring
surface areas in the following way. If A is a closed subset of a metric space
(X,p) and € > 0, we set A, = {x :d(z,A) < ¢e}. In R?, A, = A+ eB, where
B is the closed unit ball in R,

Corollary 1.1.2 (The isoperimetric inequality in R?) If A is a closed
subset in R™ and A\(A) = A(B) then A(A¢) > A(Be).

Proof By Brunn-Minkowski,
AN = (MA+eB)V4

(AN + e(A(B))
= (L+\B)Y! = (AB)Y

v

Exercises

(i) Provide the ‘easy approximation argument’ required in Theorem 1.1.1.
(i) Calculate I; = ] sin? 6 do.
(iii) Let Bg denote the unit ball of R?, equipped with the norm Iz, =
(X4 |24|P)'/P, and with ||z, = max; [z;]. Calculate the volumes of
Bg for p = 1,2, 00, and their (d — 1)-dimensional surface areas. How
do these quantities behave as d — 00?
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(iv) Let rd,prDl be the multiple of Bg with the same volume as the eu-
clidean ball BY. How does rqp behave as d — oo, for p = 1,007
How does the surface area of Td7pBg compare with that of BY, for
p=1,007

(v) Suppose that A and B are non-empty compact sets in RY, and that
0 <t < 1. Show that

(1= A +tB)YT = (1 = ) (A(A) M +t(A(B) /7,
and deduce that
ML=t A+1tB) > (MA)' " (A(B))".

Show that the Brunn-Minkowski inequality can be deduced from this
last inequality.

1.2 Isoperimetry in the hypercube

Let Q% = {0,1}¢ = {x = (21,...,24) : 7 = 0 or 1}, be the set of vertices
of the unit hypercube in R%. The map A — I, is a bijection from the set
P({1,...,d}) of subsets of {1,...,d} onto Q% so that we can identify Q¢
with P({1,...,d}).

Let d(z,y) = >{; |zi — yil = |z — yly. d is the Hamming metric on Q7.
Let l(x) = d(z,0), and let By, = {x : I(z) <k}, S = {z: l(x) = k}.

If A is a non-empty subset of Q% let N(A) = {x : d(x, A) < 1}. What is
min{|N(A)|: |A| = k}? For what sets is the minimum attained?

We define a total order on Q?. If  # y, we set x < y if either I(z) < I(y)
or l(xz) = l(y) and x comes before y in the (reverse?) lexicographic order: if
j =inf{i : z; # y;} then x; = 1 and y; = 0. Thus [ is an initial segment if
and only if there exists r such that B, C I < B,41 and I \ B, is an initial
segment of S, in the lexicographic order.

Theorem 1.2.1 (Harper’s theorem) If I is an initial segment of length
k in Q? and |A| = k then |[N(A)| > |N(I)|.

Proof The proof is by induction on d. The case d = 1 is trivial. Suppose
that the result is true for d — 1. For the moment, fix 1 < ¢ < d. Let
[i] = {1,...,d}\{i}, and let Q[i] be the corresponding hypercube. If 2 € Q¢
let P(x); = x; for j € [i]. P is a 2 — 1 mapping of Q¢ onto Q]i].

For n = 0,1, let A, = {x € A: x; = n}, let B, = P(A,), let k, =
|A,| = |By|, and let I, be the initial segment of Q[i| of length k,. Let
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Cp={ze€Q?:z; =nP) €I} and let C = Cy U C;. Note that
C] = |4l

We claim that |N(A4) > |[N(C)|. P((N(Ao))o) = N(Byp) and P((N(A1))o) =
By, and (N(A))o = (N(A0))oU(N(A1))o, so that P((N(A))g) = N(By)UB1,
and |(N(A))o| = |N((Bo) U By. Similaly, [(N(C))o| = [N(To) U Ts|. But
N(Ip) is also an initial segment, and so N(Ip) U I; is either N(Ip) or I.
Thus, using the inductive hypothesis,

[((N(A))o| = [N(Bo) U Bi| = max(|N(Bo)l,|B1l)
> max(|N((lo)], |11]) = [N(Lo) U L] = |(N(C))ol-

Similarly, |(N(4))1] > |(N(C))i], and so [N(4)| > [N(C)].
We call C' = C;(A) the compression of A in the ¢ direction. Note that
|Ci(A)| = |A| and that if A # C;(A) then

Z{l(x) rx e Ci(A)} < Z{l(x) cx € A} (%).

Thus starting with A, either A = C;(A) for all ¢, or we compress in a certain
direction. We iterate this. By (x), the process must stop, and we obtain a
set D such that |D| = |A|, IN(D)| < |[N(A)|, and D = C;(D) for each i.

Unfortunately, this does not imply that D is an initial segment. Suppose
that D is not an initial segment. There exist x ¢ D and y € D with = < y.
Since D = C;(D), x; # y;. This holds for each i. Thus x is uniquely
determined by y, and y is also uniquely determined by x. This means that
D = I\ {z}, where I is an initial segment with largest element y, and z
is the predecessor of y. This can happen uniquely, but in a different way,
depending on the parity of d.

If d =2r+1then I(z) =r and I(y) = r + 1. Thus

z=1(1,...,1,0,...,0) (r ones), and y = (0,...,0,1,...,1) (r+ 1 ones).
If d = 2r then I(z) = l(y) = r. Thus

x=(0,1,...,1,0,...,0) (r ones), and y = (1,0,...,0,1,...,1) (r ones).

In either case, |[N(D)| > |N(J)|, where J is the initial segment with |D|
elements. 0

[This account of the theorem is based on the notes on ‘Extremal combina-
torics’ on Paul Russell’s DPMMS home page, and on the paper by Professor
Leader listed in the introduction.]

Exercises

(i) Calculate |By| and |Sk|
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(ii) It is as natural to work with the probability measure P(A) = |A|/|Q¢|
as it is with counting measure |A|. Suppose that d = 2r is even. Find
an expression for P((B,)¢). How does it behave as d and € grow?

1.3 The Hausdorff metric

Suppose that (X, d) is a compact metric space. Let K*(X) denote the set
of closed non-empty subsets of X. We set

p(K,L)=inf{e >0: K C L., L C K.}.

Since Ketyy 2 (Ke)y, it follows easily that p is a metric on K*(X). Note
that the set of one-point subsets of X is a closed subset of K*(X), naturally
isometric to X.

Proposition 1.3.1 The finite sets are dense in K*(X), and K*(X) is pre-
compact.

Proof An e-net in a metric space is a subset N such that X C U{B¢(n) :
n € N}. A set is precompact if and only if for each € > 0 there exists a
finite e-net.

Suppose that € > 0. Let N be a finite e-net in X. If K € K*(X), let
M = NN K.. Then M is a non-empty subset of K.. If x € K then there
exists y € N with d(z,y) < e. Theny € M and x € M.. Thus X C M,,
and p(X, M) < e. The set P*(NN) of non-empty subsets of N is therefore a
finite e-net in K*(X). O

Proposition 1.3.2 (K*(X), p) is complete.

Proof First we show that if (K™) is a decreasing sequence in K*(X) then
K" — K =N, K™ asn — oo. Suppose that € > 0. Certainly K C K™ C K[
for all n. We claim that there exists ng such that K™ C K™ C K, for
n > ng. If not, for each n there exists =, € K™ with d(x,, K) > €. Since X
is compact there exists a convergent sequence (x,, ), convergent to z, say.
Then z € K, but d(z, K) > €, giving a contradiction.

Secondly, suppose that (K") is a Cauchy sequence, and suppose that
€ > 0. Let L™ = Up,>p K™ Then K" C L™ C L? for all n. There exists
no such that p(K™, K™) < € for m > n > ng. Thus if m > n > ng then
K™ C K, and so L™ C K. Thus p(K",L") < € for n > ng. But (L")
decreases to L = N, L", and so L™ — L. Consequently, K" — L. O
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Corollary 1.3.1 (K*(X), p) is compact.

As examples, take X to be the umit ball in §. (In fact, any finite-
dimensional normed space will do.) Then the set of closed non-empty com-
pact subsets of X is closed in K*(X). So also is the set of sets of the form
E N X, where F is a k-dimensional subspace of lg. In this way the Grass-
mann manifold G, j, of k-dimensional subspaces of lg becomes a compact
metric space.

Exercises

(i) Verify that p is a metric on K*(X).

(ii) Let X = [0,1]. Is the set of two-point sets closed in K*(X)? What
about the set of non-empty sets with at most k& points?

(iii) Suppose that (X, d) is a locally compact metric space. Show that the
set K*(X) of non-empty compact subsets of X is a locally compact
metric space under the Hausdorff metric.

(iv) Show that the set of non-empty convex compact subsets of RY is
closed in K*(R%).

(v) Show that the set of sets of the form FNX, where E is a k-dimensional
subspace of 15, is closed in K*(X).

1.4 Haar measure

Proposition 1.4.1 Suppose that g is an isometry of a compact metric space
(X, d) into itself. Then g is surjective.

Proof ¢(X) is compact, and therefore closed. If X # ¢(X), there exists
v € X\ g(X). Let 6 = d(z,9(X)). Then d(z,g’z) > § for all j. Since g is
an isometry, d(g*(z), g'(z)) > ¢ for all k,l with k < I. Thus (¢*(x)) has no
convergent subsequence, giving a contradiction. ]

Theorem 1.4.1 Suppose that (X,d) is a compact metric space. Let Ix
be the group of isometries of X onto itself. If g,h € Ix, let p(g,h) =
sup{d(g(z),h(x)) : x € X}. Then p is a translation invariant metric on Ix
under which Ix is compact, and the mapping (g,x) — g(x) : Ix x X — X
1s jointly continuous.

Proof 1t is easy to see that p is a translation invariant metric on Iy. Suppose
that (g,) is a sequence in Iy. (X,d) is separable: let (x,,) be a dense
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sequence in X. By a standard diagonal argument, there exists a subsequence
(ht) = (gn,) of (gn) such that g, (z,,) converges as k — oo, for each m.
Suppose that € > 0. There exists M such that {z1,...,za} is an €/3-net in
X, and there exists K such that d(h;(zy,), hg(zm)) < €/3 for j,k > K and
1<m< M. If x € X, there exists 1 < m < M such that d(z,z,,) < €/3.
Then

d(hj(x), hi(2)) < d(hj (@), hj(zm))+d(hj(@m), b (2m))+d(hi(2m), hi () <.

Thus (hj) converges uniformly to h, say, on X. h is an isometry of X, and
p(hig,h) — 0 as k — oo Thus (Ix,p) is sequentially compact, and so is
compact.

If p(g,h) < €/2 and d(z,y) < €/2 then

d(g(z), h(y)) < d(g(z),g(y)) +d(g(y), h(y)) < d(z,y) + p(g,h) <,

and we have joint continuity. O

Theorem 1.4.2 Suppose that (X,d) is a compact metric space, Then there
exists a probability measure j on the Borel sets of X such that [ f(x) du(z) =
[ f(g(z)) du(x) forall f € C(X), g € Ix. If Ix acts transitively on X (given
x,y € X there exists an isometry of X such that g(x) = y) then p is unique.

Proof C(X) is a Banach space under the supremum norm, and by the
Riesz representation theorem its dual can be identified with the signed Borel
measures on X. C'(X) is separable, so that the unit ball of M (X) is compact
and metrizable under the weak™-topology. The set P(X) = {u: ||u]| =1 =
u(X)} of probability measures is weak*-closed, and so is also compact and
metrizable under the weak*-topology.

Let (e) be a decreasing sequence of positive numbers tending to 0. For
each k, let N, be an €;-net in X with a minimal number n; of terms. For
f e C(X), let ur(f) = (1/nk) Xpen, f(z). Then py € P(X), and there
exists a weak®-convergent subsequence (which we denote again by (u))
which is weak*- convergent to u, say.

We now show that p does not depend upon the choice of net (of minimal
size). For this we need Hall’s marriage theorem:

Theorem 1.4.3 Suppose that A is a finite set, and that j is a mapping
from A into the set P(B) of subsets of a set B. Then there exists a marriage
mapping - a one-one mapping ¢ : A — B such that ¢(a) € j(a) for alla € A
- if and only if whenever C C A then #(U{j(a) : a € C} > #(C).
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Proof The condition is trivially necessary. Sufficiency is proved by induction
on #(A). The result is trivially true if #(A) = 1. Suppose that it is true
for sets of cardinality less than d, and that #(A) = d. There are two
possibilities; first #(U{j(a) : a € C}) > #(C) for each non-empty proper
subset C' of A. Then pick a € A and ¢(a) € j(A). Let A’ = A\ {a}, and if
a € A let j'(a') = j(a) \ {¢(a)}. Then j’ satisfies the conditions, and, by
the inductive hypothesis, we can define a marriage mapping ¢’ : A’ — B.
For o' € A’, we define ¢(a’) = ¢'(d’).
Secondly, there exists a non-empty proper subset C of A such that #(U{j(a) :
a € C} = #(C). By the inductive hypothesis, we can find a marriage map-
ping ¢ : C — B. Let D = A\ C. If d € D, let j/(d) = j(d) \ ¥(C).
Then it is easy to see that ;' satisfies the conditions of the theorem. By the
inductive hypothesis, we can find a marriage mapping xy : D — B. If we
set ¢(a) = ¥(a) if a € C and ¢(a) = x(a) if a € D, then ¢ is a marriage
mapping ¢ : A — B. O
Let’s return to the proof of Theorem 1.4.2. Suppose that N; is another
€x-net with a minimal number of elements. If n € Ng, let

j(n) ={n' € Ni: B(n,ex) N B(n',¢e) # 0}.

Note that B(n,ex) € Upejm)B(n,€). Suppose that C C Ny, and let
E =U{j(n) :n € C}. Then

U{B(n,ex) : n' € E} D U{B(n,e) : n € C},
so that (N \ C) U E is an e;-net. By minimality, #(E) > #(C). Thus the
conditions of the Hall marriage theorem are satisfied, and so there exists a

marriage mapping ¢ : Ny — Nj. Note that d(n,¢(n)) < 2¢,. If f € C(X)
then

() — i) = |n1k S Fn) = F(é(n)
neNg

< 1S 1) - fem))
nk nGNk

< sup{|f(z) = f(y)] : d(z,y) < 2ex} — 0

as k — oo, by the uniform continuity of f.
Suppose now that g € Ix. Then, for each k, g(/N;) is an ex-net with a
minimal number of terms, and so

k—o0

[ @ dute) = Jim (1 3 f(n))

U neNg
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We now turn to uniqueness, in the case where Ix acts transitively. If
g, h,k € Ix then p(hg, kg) = p(h, k), and so there exists a measure v on the
Borel sets of Ix such that if f € C(Ix) then [ f(h)dv(h) = [ f(hg)dv(h)
for all g € Ix. Suppose that f € C(X). Then

| t@du@) = [ s 2 for B € Iy

- /I / f(h z)) dv(h)
- /¢ [ 70w i) d).

But if z,y € X there exists g € Ix such that y = g(x). Then

F(hw)) ) = [ F(bote) o) = [ Fnta)) dv(n),
Ix Ix

sothat [;  f(h(x)) dv(h) takes a constant value C on X. Thus [y f(z) du(z) =
C. But the same argument shows that if y' satisfies the conclusion of the
theorem then [y f(z)dp/'(z) = C, and so p = /. O

In the case where Iy acts transitively on X, the unique invariant measure
is called Haar measure. The standard example is the case where (G, p) is a
compact metric group whose topology is defined by a translation invariant
metric p. If f € C(G), then

L swydut) = [ s(ah)dutv) = [ (hg) dptr)
G G G

for all g € G: these equations extend to functions in L*(G, u).

More generally we consider the case where the compact group (G, p) acts
continuously as a transitive group of isometries of a compact metric space
(X,d). For example, SO, acts transitively on S"~!, and also acts transi-
tively on the Grassmann manifold G, j.

Proposition 1.4.2 Suppose that a compact group (G, p) acts continuously
as a transitive group of isometries of a compact metric space (X,d). Let u
be Haar measure on X, and let v be Haar measure on G. If x € X and A
is a Borel set in X then v({g: g(x) € A}) = u(A).
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Proof

f(A) :/XIA(y) du(y) :/XIA(g(y))du(y) for g € G,
and so

p() = [ ([ Tato) duw)avia) = [ ([ 1a(o(w) dv(a) du).

But [ Ia(g(y))dv(g) is independent of y, by transitivity, and so

p(A) = [ La(g(@) dvlg) = vl{g : o(x) € AY).
0

Similar results hold when (G, 7) is a compact topological group. Haar
measure is then a regular measure on the Borel sets of G. A good account
is given in the book by Zimmer listed above.

The situation is more complicated for locally compact groups. There is a
measure, invariant under left translations, and unique up to scaling, and a
measure, invariant under right translations, and unique up to scaling, but
these need not be the same.

Exercises

(i) Let (Ix,p) be the group of isometries of a compact metric space
(X,d), and let e be the identity map on X. Show that p(gh,e) <
p(g,e) +p(h,e) and that p(g~!,e) = p(g,e). Deduce that (Ix,p) is a
compact topological group.

(i) Show that dz/x is Haar measure on (R*, x).

(iii) Let G = RT™ x R x R, with composition

(z,y,2)(u,v,w) = (zu, yv, zw + 2v).

Identify G with a group of upper triangular matrices. Show that the
left-invariant Haar measure is dwdydz/z%y and the right-invariant
Haar measure is dedydz/zy?.
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1.5 Isoperimetry in S¢

We consider S with geodesic metric d and Haar measure p. A cap in is a
set of the form B,(x). Our aim is to show the following.

Theorem 1.5.1 If A is a measurable subset of S and C is a cap of equal
measure, then (Ce) < u(Ae) for each € > 0.

Let N = (0,...,0,1) be the north pole of S%. If ¢ € S and (¢, N) > 0 let
K(; = Kt ={ze8%: (¢,z) >0}
K; = K ={ze5: (¢,x)<0}.
Ey = {z€S8%:(p,z)=0}: B, is the p-equator.

Let Py(x) = x—2 (¢, x) ¢: Py is the reflection in the hyperplane {y : (¢,y) =
0}.

Suppose that A is a closed subset of S?. Let

Ab = {z € A:Py(x) € A},

AT = {z€e ANK"T: Py(x) & A},
A7 = {z € ANK™ : Py(zx) € A},
Ay = A"=A"UATUPy(A).

Proposition 1.5.1 (i) A* is closed.

(i1) 1(A) = p(A¥).
(iii) (A7) C (Ao)".

Proof (i) AU A" is closed and Ps(A~) = Ps(A7) U (A~ N Ey) C A%, so
that A* is closed.
(ii) Trivial.
(iii) Suppose that z € A* and that d(z,y) < e. We consider cases.
(a)ze A, re Kt,ye K+.
Then y € A so y € (Ae)*.
b)reA ze K ye K.
Then d(x, Py(y)) < d(z,y) <€, so that y € (A)® C (Ae)*.
(c)reA ze K.
Then x € A%, so that y € (A.)° C (A)*.
() z & A.
Then Py(x) € A~ and Py(y) € Ae. Thus y = Py(Py(y)) € (Ad)*. O

Corollary 1.5.1 p((A*)e) < u(Ae).
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We need a couple of lemmas.

Lemma 1.5.1 The set
T ={B: u(B)=pu(A) and u(B.) < pu(Ae) for all e > 0}
is closed in K*(S%).

Proof Suppose that D € T. Then given 7 > 0 there exists B € T with
p(D,B) < n. Then D, C (By)e C Byye, so that u(D.) < p(Byte) <
p(Apte). Let n — 00 pu(Be) < p(Ae). Similarly, u(D) < p(A). Further,
B C Dy, so that u(A) = p(B) < p(Dy). Letting n — 0 we see that
u(A) < (D). Thus D € T and T is closed. O

Let S be the smallest closed subset of K*(S?) such that A € S and if
B € S then Bj € S for all ¢ with (¢, N) > 0.

Corollary 1.5.2 If B € S then u(B) = u(A) and pu(Be) < p(Ae) for all
e> 0.

Now let C' be the cap with centre at the north pole N and with u(C) =
1(A).

Lemma 1.5.2 Suppose that o > 0. The set
Jo={BeS:uBNC)>a}
is closed in K*(S9).

Proof Suppose that D € J,. Given > 0 there exists B € J, with
p(D,B) <n. If x € BNC then there exists y € D with d(z,y) < n, so that
ye DNCyand z e (DNCy)y, € DyNCyy. Thus BNC C D, N Cyy,, and
p(Dy N Cay) > . But Nyso(DyNCo) =DNC,andso pf(DNC) > . O

Corollary 1.5.3 u(BNC) attains its mazimum on S at a set By in S.
Proof Compactness. O

Proof of Theorem 1.5.1. We show that By 2 C": this clearly suffices.

If not, then there exist z and € > 0 such that Bc.(z) C C and B.(z)N By =
(. Then p(C \ Bp) > 0 and so u(By \ C) > 0. Since By \ C' is precompact,
it can be covered by finitely many balls of radius €/3, and one of these,
say Bc/3(y), must intersect By \ C' in a set of positive measure. Note that

d(z,y) > 2¢/3. Let ¢ = (x —y)/|z — y|, so that N € qu and Py(y) = .
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Then Py moves B, /3(y)N(Bo\C') into C, contradicting the maximal property
of Bo. ]

This proof comes from Yoav Benyamini’s lecture notes, listed above.

1.6 The Beta and Gamma distributions

Suppose that & > 0. A non-negative random variable has a I'(k) distribution
if it has density

(1/T(k))thLe™, where T'(k) = /Oo thtetat = (k— 1)\
0

For example if X = Y?/2, where Y has an N (0, 1) distribution, then

1 v 2 V22,
P(X <t) = 7/ —w/2g :7/ w2
(X=1) V2T —\/Ee * V21 Jo ° v

I A
= — S e *ds

so that X has a I'(1/2) distribution.
Let v denote canonical Gaussian measure on R (with density e=**/2/1/27).
Making the substitution ¢ = s2/2, we see that

00 2k—1 /9 )
D= |7 Sere s = TR, (s s [T te s 2Ty

Suppose that m,n > 0. A random variable taking values in [0, 1] has a
B(m,n) distribution if it has density
tm_l(l _ t)n_l
B(m,n)

1
, where B(m,n) = / tm 1 — ) Lar.

0
Theorem 1.6.1 If X has a I'(m) distribution and Y has a T'(n) distribution,
and if X and Y are independent, then U = X +Y and V = X/(X +
Y) are independent; U has a T'(m + n) distribution, and V' has a B(m,n)
distribution.

Proof (X,Y) has density s 1" le=(+) /T (m)I(n). If u = s + t and
v=s/(s+t) then s = uv and t = u(1 — v). The Jacobian is —u, so that
(U, V) has density
uer"*lvm*l(l _ 1))”7167“ -
I'(m)I'(n)
_ D(m+n)B(m,n) u™ " te ™11 — )"t
I'(m)C(n "T'(m+n)  B(m,n)
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Corollary 1.6.1 I'(m + n)B(m,n) = I'(m)I'(n).

Corollary 1.6.2 If X1,...,X,, are independent N(0,1) random variables
then (X} + -+ X2) has a I'(n/2) distribution.

Corollary 1.6.3 If X1,..., Xy are independent N(0,1) random variables
and1 <n < N then (X3+ - -+X2)/(X}+---+X%) has a B(n/2,(N—n)/2)
distribution.

The Gamma function has its place in Gaussian calculus, when we use
spherical polar co-ordinates. Let 7, denote canonical Gaussian measure on
R? (with density (27)~%2e712*/2). Let py_1 be rotation-invariant Haar
measure on S 1, and let A4_; be the d — 1-dimensional volume of S¢~1, so
that 041 = Ag_1tg—1 is d — 1-dimensional volume measure on S¢ 1. Then
using spherical polar co-ordinates,

(2m)¥? = / P12 gy
Rd
= Ad,l/o udle=v*/2 du:2d/271Ad,1I‘(d/2).
Thus Ag_; = 27%2/T'(d/2). Further,

Vy= vol (Bi(19)) = Ag_1/d = n%¥?/T(d/2 4+ 1).
If f € L'(v4) then

1 e
/Rdfdw ~ (2m)#2 JRa (z)e 11"/ da
Agq [ .
- a5 /O ( /S gyttt dud1<9)> "
2 = s
N 2d/2r(d/2)/0 <Sd_1f(U9)de—1(9)>u e du

= 2d/2F2(d/2)/sd—1 (/OOO f(ut?)ud7167“2/2 du) dpg—1(0)

Exercises

(i) Let I,, = [; sin™@df. Show that if n = 2k then

I (2k)!7 |27
" 22k ()2 n’
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Find a similar formula for I,, when n is odd.
) Show that B(n/2,1/2) = I,,_;.
(iii) Show that I'(1/2) = /7.
) Show that I'(n + 1/2)/T\(n/2) = T(1/2)/I,,—1 ~ \/n/2.
) Show that if & > 0 then

/Rd |2 dya = 2*/°T((d + ) /2)/T(d/2).
Show that if 2k is an even integer then
/d\a:|2’<d7d (4 k-D(d+k-2)...d
R

Show that
/ 2| dyg ~ Vd as d — oo.
Rd

(vi) Suppose that ||.|| is a semi-norm on R?. Show that

V2n
By(lel) = 7 [, ol dpacs ).

[Check the constants that occur in these identities!]

1.7 Poincaré’s lemma

We want to approximate canonical Gaussian measure vy (with density
(27T)_d/2€_|x|2/2). One standard way is given by the central limit theorem,
but there is another way.

Suppose that N > d. Let Ty be the sphere with centre 0 and radius v N
in RV*! equipped with rotation-invariant Haar measure 7y. Let Py be
the orthogonal projection of RN*! onto R?, and let my be its restriction to
Tn.

Theorem 1.7.1 (Poincaré’s Lemma) If A is a Borel subset of R? then
(TN (A)) — va(A) as N — oo.

Proof Let (g;) be an independent sequence of N(0, 1) random variables. Let
Ry1 = (g7 + -+ g% y1)"/? Then

VN

Vv —
N Ryi1

(917”-agN+1)
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has distribution 7y, so that if A is a Borel subset of R¢ then

™(ry'(4)) = P(Vy € my'(4))

VN
= Plp—I(91,--,04) € 4)
N+1
9\ 1/2
- P ‘Z\;Rd ((glvagd)>€A )
Ry Rq
Now the random variables R3% 1 —R?%, R? and (g1, . .., ga)/ Ra are indepen-

dent, so that R3/R3, 1 and (g1,...,g4)/Raq are independent. The first has
distribution B(d/2,(N + 1 — d)/2) and the second is uniformly distributed
over the sphere S9=1. Thus if d—1 is rotation-invariant Haar measure on
S9=1 and B = B(d/2,(N + 1 — d)/2), making the substitution v = v/Nt,

T (my (A)) =

1
= o (G [ TR = R ) dp s (0)
Sd—1 B 0

2 VN 3 W
= /Sd—l <]\W2B/O IA(ue)ud 1(1_ N)(N d—1)/2 du) dﬂd—l(g)-

Now as N — oo,

2 B 2I((N +1/2)
N4/2B(d/2,(N +1—d)/2)  T(d/2)T((N +1—d)/2)Nd4/2
2
T T(d/2)29?

and

(1— uQ/N)(N—d—l)/Q N e—u2/2.

Further, (1 — u2/N)N=4-D/2 < c=v*/4 for N > 2d + 2.

We can therefore apply the theorem of dominated convergence:
(e () = e [ ([T It e du) dua 1 (0)
NN T(d/2)292 Jsa-r \Jy ~* Hat

= / Tadyg,
Rd

as N — oo. O
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1.8 Gaussian isoperimetry

Let 4 denote canonical Gaussian measure on R? (with density (27)~% 2¢=lal?/ 2).
Let Hg be the half-space {z : 4 < s}. Note that

Ya(Hy) = ®(s) = (2m)~%/* /; e /2 gt

Theorem 1.8.1 Suppose that A is a measurable subset of R and that
Yd(A) = ®(s) = va(Hs). Then v4(Ac) > ®(s +€) = va((Hs)e) for each
e>0.

Thus half-spaces solve the isoperimetric problem.

Proof Suppose that r < s. Then there exists Ny such that 7y (75" (A4)) >
$(®(s) + @(r)) and 7n(7y' (H,)) < 3(®(s) + @(r)) for N > Ny. Now 7y is
distance-decreasing, so that 7' (A ) (mx (A))e. Also, 7y (H,) is a cap
in SV with measure less than 7y (7' (4)). Thus
)e

(TN (Ad) = v (' (A))e) = T ((my! (Hy))e)-

Now (mx'(H,))e is a cap in SN of the form 75" (Hyiyy). Let 7/vV/N =
cosfy, and let o = Oy — e/\/N Then
r+nN = VN cos ON
= V/N(cos Oy cos(e/VN) + sin fy sin(e/VN))
= rcos(e/VN) + VNsinfysin(e/VN) — r+ €
as N — oo, since Oy — 7/2 as N — oco. Thus if 0 < ¢ < € there exists

N1 > Ny such that r +ny > 7+ ¢, so that 7y (7 (A)e) > v (TN (Hrier)).
Finally,

va(A) = lim 7y(my(Ad) > lim 7y (my!(A)e)
> ]\}im (N (Hy 4 €)) = ®(r + ).

Since this holds for all 7 < s and 0 < € < ¢, the result follows. O

1.9 Some function spaces

Let us introduce some function spaces that we shall work with. Suppose
that (X, d) is a metric space.

The space C(X) is the vector space of all continuous real-valued functions
on X, and Cp(X) is the space of all bounded continuous functions on X.
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Cp(X) is a Banach space under the norm | f||,, = sup{|f(z)| : z € X}. If
X is compact, then C(X) = Cp(X).

The space Lip (X) is the space of all real-valued Lipschitz functions on X:
that is, functions f for which there is a constant L such that |f(z) — f(y)| <
Ld(z,y) for all z,y € X. Lip (X) is a lattice under the natural ordering,
contains the constants, and separates points. Thus if X is compact, then
Lip (X) is dense in C(X). The quantity

111, =sup{ P =T  2y)
is a seminorm on Lip (X). [||f|l, = 0 if and only if f is constant.] A

1-Lipschitz function is a function for which || f]|, < 1.

Theorem 1.9.1 Suppose that g is a Lipschitz function on a subset A of X.
Then g can be extended to a Lipschitz function f on X with || f||, = |9l -

Proof By Zorn’s lemma, there is a maximal extension h of g with [|h||, =
llgll;, = L, say, to B € X. We must show that B = X. Suppose that « ¢ B.
If b,c € B then

h(b) — h(c) < Ld(b,¢) < Ld(b, z) + Ld(x, c),
so that h(b) — Ld(b, x) < h(c)+Ld(z,c). Let h(x) = sup{h(b)—Ld(b,x) : b €
B}. Then h(b)—h(xz) < Ld(b, x) for all b € B. Further, h(x)—h(c) < Ld(z,c)

for all ¢ € B, and so the extension to B U {z} is Lipschitz, without increase
of seminorm. O

The space BL(X) is the space of bounded real-valued Lipschitz functions
on X. It is a Banach space under the norm || f||z; = || flloo + I fll- BL(f)
is a lattice, and a Banach algebra under pointwise multiplication.

Theorem 1.9.2 Suppose that g is a bounded Lipschitz function on a subset
A of X. Then g can be extended to a bounded Lipschitz function f on X

with || fll g = llgll g.-

Proof By Theorem 1.9.1, g can be extended without increase of Lipschitz
norm to h on X. Let f = (hA|gll) V(= lgll)- O

Exercises

(i) Show that BL(X) is a Banach space, a lattice and a Banach algebra
under the norm [ fl[gp, = [[fll + [1fllo-
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(ii) Let Lipy(R) = {f € Lip (R) N L*(R) : [0, fd\ = 0}. Show that
|.]|; is a norm on Lipg(R), and that Lipg(R) is not complete under
this norm. Let ||f|;, = [[fllL+|f(0)]. Is Lipy(R) complete under this
norm? Is Lipy(R) a Banach algebra (under pointwise multiplication)?

1.10 Isoperimetry and concentration of measure

The isoperimetric inequalities that we have established allow us to obtain
accurate estimates of the concentration of measure. Suppose that p is a
probability measure on a compact metric space (X,d). We consider how
u(C(Ae)) decays for sets A of measure at least 1/2. We define the concen-
tration function as

ay(€) = sup{u(C(Ac)) : p(A) = 1/2}.

This is a sensible thing to do: if f is a 1-Lipschitz function on X with
constant 1 then m is a median, or Lévy mean if pu(f < m) > 1/2 and
p(f >m)>1/2. Then pu(f > m+e€) < ayule) and p(f <m—e) < ayle), so
that p(|f —m| > €) < 2ay(e).

Proposition 1.10.1 o, (e) =1 — ®(e) < =12 e\/2r.

Proof The first equation is an immediate consequence of Gaussian isoperime-
try. As for the inequality:

1 e 2 1 e 2 2
1 —dB(e) = —— —z%/2 4 <7/ ~2%/2 40 — =€ /2 [N/
© \/%/e ‘ x_e 21 Je e e e

O

The important feature here is that the concentration function does not
depend on the dimension d.

Proposition 1.10.2 Suppose that u is Haar measure on S®. Then
a,(0) =14-1(0)/21;-1(0), where 1;(0) = /;ﬂ cos?t dt.

Further, a,(0) < ( 7/8)e(d-1)p%/2

Proof Let Ay denote the d-dimensional measure of S¢. Then

w/2
Ay = / Ag_1cos®10.d0 = 21, 1 (0) Ay,

—T
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and in the same way if H is a hemisphere then the d-dimensional measure
of C(Hy) is I_1(0)Aq_1. Thus isoperimetry on S? gives the formula.
Now if 0 < ¢ < 7/2 then
2 2 4 46

t 2
<] - — — < 1= —— — < —t/2
cost <1 2+24_1 2+8 48_6 ;

so that
w/2
I(0) < / eI/ gy
0

w/2—6
= / e_d(t+9)2/2 dt
0

< emdt)2 /°° od?/2 gy [T a2
0 2d

Integrating by parts, dI;(0) = (d—1)I4-2(0). Since (d—1)/d > /(d — 2)/d,
VdI4(0) > /d — 215 5(0). Thus v/dI;(0) > min(I1(0),/212(0)) = 1. Thus

™ 2 (Ul 2
< [0 —(d-1)87)2 < (d—1)0 /2'
ay,(0) 3 1)6 /215-1(0) < /=e

O

Here the essential feature is that, as d — oo, the total mass is concentrated
closer and closer to the equator.

1.11 Sub-Gaussian random variables

Suppose that (€2,%,P) is a probability space. We define Ley,> to be the
space of measurable functions f for which there exists an « > 0 such that
E(e?fI") < 2. This is a vector space, which becomes a Banach space (an
Orlicz function space) when we take {f : E(el/I) < 2} as its unit ball. We
denote the norm by |[.[|o,2-

If X is a random variable with a Gaussian distribution with mean 0 and
variance E(X2) = o2, its moment generating function E(eX) is e t*/2,
This led Kahane to make the following definition. A random variable X is
sub-Gaussian, with ezponent b, if B(e'X) < /2 for —00 < t < oo.

Theorem 1.11.1 Suppose that X is a sub-Gaussian random variable with
exponent b. Then
(i) P(X > R) < e B*/%° 4nd P(X < —R) < e /2 for each R > 0;
(i) X € Lexp2 and || X|| 2 < 2b;

exp



24 Isoperimetry

(i4i) X is integrable, B(X) = 0, and B(X?*) < 281EIb?F for each positive
integer k.

Conversely if X is a real random variable which satisfies (iii) then X is
sub-Gaussian with exponent 2b.
Proof (i) By Markov’s inequality, if ¢ > 0 then
BP(X > R) < E(eY) < /2,

Setting t = R/b%, we see that P(X > R) < e B/ Since —X is also
sub-Gaussian with exponent b, P(X < —R) < e ®/20* a5 well.

(i)

202
= /OO te /4% gy — 9
0

1 o0
E(eX/%) = / te” /" P(|X| > t) dt
0

IN

b2
(iii) Since X € Leyy2, X is integrable. Since tz < e — 1, tE(X) <
e?**/2 _ 1, from which it follows that E(X) < 0. Since —X is also sub-
Gaussian, E(X) > 0 as well. Thus E(X) = 0. Further,
oo
E(X?%) = Qk/ RIP(|1X| > t) dt
0 o0
2.2/{/ 121 t/20 gy
0

(20%)k2k / sFles ds = 2K 1E1p2F,
0

IN

Note that || X||,, < bv2k for k > 2.
Finally, suppose that X is a real random variable which satisfies (iii). If
y > 0and k > 1 then

y2k+1 ka y2k+2
<
Ck+ 1) = 2R T 2kt 20

so that

tx|" tX |2k

- Z (1] (X1

(2 )

< 1+4Z Z :

&=
oo
=

A

<1+2ZE )

since 2(k!)? < (2k)!. O
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Note that this theorem shows that if X is a bounded random variable
with zero expectation then X is sub-Gaussian.

If Xy,..., Xy are independent sub-Gaussian random variables with ex-
ponents by, ..., by respectively, and aq,...,ayN are real numbers, then

N N
212
E(et(alxl-i- +anXn) — I | E(etaan) S | I eanbn/2’
n=1 n=1

so that a1 X1 + -+ + ay Xy is sub-Gaussian, with exponent (a?b? + --- +
1
a%b3,)2.

Suppose that € is a Bernoulli random variable: P(e =1 = P(e = —1) =

1/2. Then E(e*) = cosh \ < eN'/2 50 that € is sub-Gaussian with index 1.

Proposition 1.11.1 Let d be the Hamming metric on Q%, and let y be Haar
measure. Then oy (e) < em2e*/d,

Proof Let sq = Z?Zl €¢;. Then s,4 is sub-Gaussian, with exponent Vd. By
isoperimetry,

au(e) =p(l >d/2+€) = p(sq > 2€) < e (20%/2d _ —2€¢%/d

1.12 Khintchine’s inequality

Suppose that (¢;) is a sequence of Bernoulli random variables and that a € lg,
and that ||a|, = 0. Then Sy = >iL; aje; is sub-Gaussian with index o. We
have the following:

Theorem 1.12.1 (Khintchine’s inequality) Suppose that (e1,...,€q)
are Bernoulli random variables and that a = (ay,...,aq) € 1. Let Sq =
>4 aie;. Then || Sql| exp? < 20, and there exist universal constants Cp, with
Cp ~ /p such that

o = [[Sally < 11Sall, < Cpo.
For 0 < p < 2 there exist universal constants A, such that

Ao < (E[SgP)YP < o

Proof 1f 2k —2 < p < 2k, then o < ||S4l|, < [Salloy, so that by Theorem
1.11.1 we can take C, = Cy, = (28 F1EN1/2k - and Cp ~ /b, by Stirling’s
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formula. In fact we can do a bit better:

d 2k d
> eiag = EQ_ea)™
i=1 i=1
@K
= — a1 ... afE(e .. )
jrtotga=2k T I

o2k . . .
_ RN (). B,

11! 5
jitetja=2k 1

2k

by independence. Now E(e/r) = E(1) = 1 if j, is even, and E(¢Jr) =
E(en) = 0 if 4, is odd. Thus many of the terms in the sum are 0, and

2k

(2Kk)! 1 ,
= 2 (2k1)!...(2kd!)a%k"'aik'

d
> €ia
Jj=1 o  kitetka=k

But (2k1)!... (2k,)! > 2F1ky! .. 2kak,l = 2! K, and so

2k

d

(2K)! k! 2%k 2k,
Zejaj < Z G ... ay
P I B ()P )

(2K)! o

okl 7

Thus we can take Cyy, = ((2k)!/2Fk!)Y/2¢. In particular, we can take Cy =
34,

For the second part, we need Littlewood’s inequality:
Proposition 1.12.1 (Littlewood’s inequality) Suppose that 0 < py <
p1 < oo and that 0 < 0 < 1. Define p by 1/p = (1 —0)/po + 0/p1. If
fe D then f € 17 and |1, < 171, 1712,

Proof Let 1 —~ = (1 — 0)p/po, so that v = Op/p1. We apply Holder’s
inequality with exponents 1/(1 — ) and 1/7:

(v~ (o)
(i) (o)
= (Jumas) ™ (i) v

1£1l,

IN
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Thus if we choose 6 such that 1/2 = (1 —6)/p + 0/4 then
) 2] —0 0
15ally < 1Sall, ™ 1Salls < € 1Sall,™ I1Sallz
0/(1-0 —
s that [|Sgll, < CF/ U7 |84, = 3712 |5, O

This theorem gives A1 = /3. When Littlewood proved the second part
of Khintchine’s inequality, he made a mistake, and obtained A; = /2. For
many years it was an open problem to obtain this constant: this was done
by Szarek, and by Haagerup. Finally, a beautiful proof was given, that also
works for vector-valued sums.

Theorem 1.12.2 (Latala-Oleszkiewicz) Let S; = Z‘le €;a;, whereeq, ..., €eq
are Bernoulli random variables and aq, . .., aq are vectors in a normed space

E. Then ”SdHLQ(E) < \/§HSdHL1(E)

Proof Take Q = Dg, where Dy is the multiplicative group {1, -1}, and
e(w) = wi. If A C {1,...,d}, let the Walsh function wa = [];cq €.
The Walsh functions form an orthonormal basis for L?(D$), so that if
f € Cr(D$) then

d
F=> fawa=E(f)+ > fiei+ > fawa,
A izl

|A|>1

9 .
and |||y = (f.f) = 4 fi-

We now consider a graph with vertices the elements of D and edges the
set of pairs

{(w,n) : w; # n; for exactly one i}.

If (w,n) is an edge, we write w ~ 7. We use this to define the Graph
Laplacian of f as

LNHwy =5 > (fn)—fw),
{nm~w}
and the energy E(f) of f as E(f) = — (f, L(f)). Let us calculate the Lapla-
cian for the Walsh functions. If w ~ 7 and w; # 7;, then
wa(w) = wa(n)ifi g A,
walw) = —wa(n)ifi € A,

so that L(wa) = —|A|wa. Thus the Walsh functions are the eigenvectors of
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L, and L corresponds to differentiation. Further,

d
—L(f) = fiei+ > |Alfawa,

i=1 |A|>1
so that
d
EH =12+ 3 14f3
i=1 |A]>1
Thus
d
2(£115 = (f, f) S E) + 2B+ f2
=1

We now embed D¢ as the vertices of the unit cube of 14. Let f(z) =
lz1a1 + -+ - + zaaql, so that f(w) = [|Sa()|l, (f, ) = ||Sall72 (), and B(f) =
||Sd||L1(E)- Since f is an even function, f; = 0 for 1 < i < d, and since f is
convex and positive homogeneous,

1 1 d—2 d—2
DY f(n)Zf( > 77) =fl—Fw)=—7"Ff(w),
d {nm~w} d {nm~w} ( d ) d

by Jensen’s inequality. Consequently
~Lf(w) < 5(df(w) = (d=2)f(w)) = f(w)

so that £(f) < [|Ifl5 and 2|5 < [I£]5 + 2(B(f))* Thus [[Sall 2z <
V2(1Sdll 1 (i)- O
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Finite-dimensional normed spaces

2.1 The Banach-Mazur distance

Suppose that (E, ||.||z) and (F, ||.|| ) are two d-dimensional normed spaces.
The Banach-Mazur distance d(E, F') is defined as

d(E, F) = inf{||T| . HT—1H . T invertible in L(E, F)}.
Proposition 2.1.1 d(i¢,19) = Vd.

Proof Let I :1¢ — I¢ be the identity map. Then ||I|| = 1, and, since, by
Cauchy-Schwarz, Y%, |a;| < V(XL |as]?)'/? with equality when a; = 1
for all 4, ||[I7!| = V/d. Thus d(i¢,1§) < Vd.

Suppose that T : 1§ — Zg be invertible: without loss of generality, suppose
that ||7']| = 1. By the parallelogram law,

2

St o= =Sl <
so there exists (¢;) such that HZ?ZI 6T (&) < Vd. But Hzglzl €6l = d,
and so |77 > v/d. Thus d(i¢,1¢) > Vd.
Corollary 2.1.1 d(14,1%) = Vd.
Proof Duality. O

What about d(1¢,1%.)? By the above, it’s bounded by d. Is this the right
order?

29
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Define matrices Wy, recursively by Wy = [1],

W= 5|

Then each W, is a 2F x 2% orthogonal matrix, and each entry in W} has
modulus 1/2k/2. Thus HWk : l%k — lg’; = 1/2k/2. On the other hand, we
can write W,;l = IW,;IJ, where J : lgz — l%k and I : l%k — l%k are the
identity maps, each of norm 2%/2, and W, 1, l%k — l%k is an isometry. Thus
d(2* 120y < 2k/2,

Wit Wiy
Wit Wit |

Exercises

2.1 Show that there exists C such that d(I1¢,14) < CVd.

2.2 Show that d(14,1d) < 2lt/p=1/2],

2.3 Suppose that (E,||.||z) and (F,||.||») are two d-dimensional normed
spaces. Show that there exists T invertible in L(E, F) with | T|| .|| 77| =
d(E,F).

2.2 Caratheodory’s theorem

Theorem 2.2.1 Suppose that E is d-dimensional and that A is a non-empty
bounded closed subset of E. If x € conv(A), x can be written as

d d
T = ZAZ'CLZ‘, where a; € A, \; > 0 and Z)\i =1.
i=0 i=0
Proof We can write
k k
x =Y Naj, where a; € A, \; >0 and » X\ =1,
i=0 i=0

with &k as small as possible. Let y = z — ag and b; = a; — ag, for 0 < i <k,
so that bp = 0 and y = Z?:o Aib;. We show that b1,...,b; are linearly
independent, so that k£ < d.

Suppose not. Then we can write p1b1 + - - -+ ugbg = 0 for some p1, . .., g,
with not all py zero. Let pg = —(u1 + -+ - + ux), so that Ef:o i = 0. There
exists j such that \;/p; is minimal positive. Then

k
A.
y=> (\i— iﬂi)bi = b
j

i=0 i#£j
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But v; > 0 for all ¢, and 3, v; = 1, and = = }_,,; vja;, contradicting the
minimality of k.
Let Agyq = {()\1, .. '))‘d—i-l) P O,Zi A= 1}. The map

d+1 d+1
(A (a1, ... aq)) = Y Niai : Mg x [[(A)i — E
i—1 i=1

maps the compact set Agyq X Hfill (A); continuously onto conv(A), and so
conv(A) is compact, and therefore closed. O

2.3 Operator norms

Suppose that (E,|.||g) and (F,|.||z) are finite-dimensional normed spaces
of dimensions m and n respectively. We can give L(F, F') the operator norm
||.||, but there are other interesting possibilities. The first is defined in terms
of trace duality.
If T'e L(E, F) has rank 1 then we can write T'(x) = ¢(x)y, where ¢ € E*
and T'(F) = span (y). We write T as ¢ ® y.
Suppose that (e;,...epy) is a basis for F, with dual basis (¢1, ..., ¢n). If
T € L(E,F) then
m m
T() = T(Y_ 6ilw)es) = Y du()T(er),
i=1 i=1
so that T = 1", ¢; ® T'(e;). Thus if S € L(F,E) then ST = 1" ¢; ®
ST (e;). Thus
m m
tr(ST) = Z i(ST(e;) = Z S*(¢:)(T(e;)).
i=1 i=1
This is non-singular bilinear form, which does not depend on the choice of
basis of E, on L(E, F) x L(F, E), which we denote by (T, S). in this way, we
identify L(F, E) with the dual of L(E, F'). Thus if « is a norm on L(E, F)
that there is a dual norm o* on L(F, E):

o (8) = sup{| (T, $) | : a(T) < 1}.
We denote the norm dual to the operator norm by n: n is the nuclear

norm.

Theorem 2.3.1
mn+1 mn—+1

n(S) =if{ Y gl llzsll: S = D & @5}
=1 i=1
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Proof If T € L(E,F) then there exists x € E with ||z|| = 1 such that
|T(x)|| = ||T||, and there exists ¢ € F* with ||¢|| = 1 such that ¢(T(z)) =
IT(@)l| = IT]. Thus (T,¢ @ z) = |T|. Let A= {6 : ]| = [lz] = 1.
Then ||T|| = sup{(T, S) : S € A}, and by the theorem of bipolars, the n-unit
ball of L(F, E) is

conv(A) = conv(A)

mn+1 mn+1
= {S:5=3 Noj@z;: |l =zl =1,22>0, > N=1}
j=1 j=1
mn—+1 mn+1
= {5:5=> ¢;@z;: > |lollllasll <1}
j=1 j=1
Thus n(S) < 1if and only if S = Z;’ZLIH ¢j @x; with Zgn:"frl &5l |5 <1,
from which the result follows. O
Here is another example. Suppose that £ =15, F =15. If S,T € L(E, F)

then S and T are represented by matrices, and

tT(S*T) = (T, S*> = Zgijtij-
i,

This is an inner product on L(E,F') which we denote by (T',S)q: the
corresponding norm || ;¢ = (22 Iti;|2)/? = (> IT(e;)||*)/? is called
the Hilbert-Schmidt norm.

Can we define this in a co-ordinate-free way?

Proposition 2.3.1 If E = 15", F =15 and T € L(E,F) then ”TH?{S =
mo(T), where
k

k
2
(m2(T))? = sup{D_ 1T (x;)II" - Y | (wi,y) [P <1 for [ly] <13
j=1 j=1
Proof First take z; = e; for 1 <i < m. If [jy|| <1 then YT, |(ej,9) |* =
2 2 2
lyll” <1, and so || T3z = 352 [ T(e5)II° < (ma(T)*.
Conversely, suppose that % | | (z5,9)|> < 1 for |jy|| < 1. Let fi,..., fa
be the unit vectors in F' = [3. Then

SoAT@EHIZ = DTy, f) P =D (i, T (i) P
j=1 i, Y]

IN

n
ST U = 1T s = I T s
i=1
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We can define mo(T") for general E and F:

k
T) = sup{(}_ IT(z)*)"* : Zlcb zj)|? < 1for ||| < 1}.
7=1

J=1

7y is the 2-summing norm. Note that mo(RST) < ||R| m2(S) [|T|.
We have the following factorization result.

Theorem 2.3.2 Suppose that dim E = m and that F' is an inner-product
space. Let Hy, be an inner-product space of dimension m. If T € L(E,F),
we can write T = AB, where B € L(E, Hy,) and A € L(Hp,, F) and my(A) <

n(T), mo(B) < /n(T).

Proof By Theorem 2.3.1, we can write T = Z§:1 ¢; ® yj, with k =

m dim (T'(E)) + 1 and 25:1 151" llyjll = n(T). We can scale so that
* * 2

16511 = Ily;ll, so that S5 (1[¢11")* = 5=y llyjl|* = n(T). Now let

S(z) = (¢;(x)), sothat S: E — I}

k
R(a) = Zajyj, so that R : 15 — F;

j=1
T = RS. dim (S(E)) < m; let H,, be an m-dimensional subspace of 15
containing S(FE), and let B : E — Hy, be defined by B(z) = S(x). Let
J:H, — l§ be the inclusion mapping, and let A be the restriction of R to

H,,. Then T = AB.

Suppose that 21, ...z, € E, with sup{>_; |¢(z:)|* : [|¢]|* < 1} < 1. Then

l Ik
YMIBEP = DO léi(z)P
i=1 i=1j=1
ko1
= 2.2 19i(=) |2<Zu¢]u
j=1i=1
so that me(B) < /n(T).
Also S [ R(e))|I? = X5y llgs |12 = n(T), and so 75(R) = /(T). Then
ma(A) = ma(JR) < ma(R) = \/n(T). O
Exercises

2.1 Suppose that T' € L(E, F'). Show that n(T") = n(T™).
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2.2 Suppose that T € L(I4, E), so that T* € L(E*,1¢). Show that

n(T) = n(T")

d
sup{)_(T"(¢1), i) : 4]l <1}
i=1
d
= sup{)_ ¢i(T(e:) : [los]l <1}
i=1

d
= D IT()ll-
i=1

Compare this with the results in the proof of Auerbach’s theorem,
below.

2.4 Lewis’ theorem

Theorem 2.4.1 Suppose that dim E = dim F = n and that o is a norm
on L(E,F). Then there exists T € L(E, F) with o(T) = 1 and o* (T~ 1) = n.

Proof Note that for invertible S € L(FE, F),
n=tr(S718) < a(S)a*(S7).

Choosing bases for ' and F, every S can be represented by a matrix
(sij); we define det(S) = det(s;;). |det(S)| is a continuous function on
L(E,F), and so it attains its supremum on the « unit sphere at a point
T. Certainly this supremum is positive, and so T is invertible. Note that
a*(T71) > y/n. If T+ S is invertible, then | det(T + S)/a(T + S)| < |det T},
so that |det(T + S)| < (a(T + S))*|det T|. If S € L(E,F) then T + €S is
invertible for small enough € and then

|det T|| det(I + eT~1S)| = |det(T + €S)| < | det T|(a(T + €S))",
so that
|det(I 4 eT718)| < (a(T + €S))™ < (1 + ea(S))™
But (det(I + eT71S) —1)/e — tr(T~15) as € — 0, so that [tr(T19| <
na(S), and so o*(T71) < n. O

Corollary 2.4.1 (Auerbach’s Theorem) Suppose that (F,|.|p) has di-
mension n. Then there is a basis (f1,..., fn) such that

n n
dSoaifil <D |ail.
i=1 Fooi=l

sup |oy| <
1<i<n
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This says that the identity map (7 — [ factors through F', without increase
of norm.

Proof Let E = 1}. For T € L(E,F) let o(T) = ||T|| = sup; ||T(e;)|. If
S € L(FgE)7 and S(y) = (Sl(y)7"'78n(y)), Where S; c F*, let /6(5) _
>oicy |Isill”. Then

tr(ST)] = |

(2

so that a*(S) < B(5) and 5*(T") < a(T'). On the other hand, given T there
exists 7 such that o(T) = ||T(e;)||, and there exists ¢ € F* with ||¢|* = 1
such that ¢(T'(e;)) = || T(ei)||. Let S = ¢ ® e;. Then tr(ST) = ||T(e)| =
a(T) and (S) =1, so that *(T) > «(T) and o*(T) > S(T). Thus § = a*.

By Lewis’ theorem, there exists 7' with o(T) = 1 and B(T~!) = n. Let
fi = T(e;). Then ||f;||p < 1 for each i, so that ||>°7 i fill p < 2imq |l
On the other hand, T-(y) = (¢1(y), . .. dn(y)), where (¢1, . .. ¢y,) is the dual
basis of (f1,..., fn), so that 31 1 ||¢:]|" = n. But ¢;(f;) = 1, so that ||¢;||”
1 for each i. Thus ||¢;||* = 1 for each i, and so |a;| = |¢:(>—; a;fj)]

=1
HZ?:1 ajfjH for each 1.

si(T(ed))l < a(T) Y |lsill” = a(T)B(S),
= i=1

1

O INIV

2.5 The ellipsoid of maximal volume

Theorem 2.5.1 Suppose that dim (E) = n and that « is a norm on L(l3, E)
with the property that a(TR) < ||R||a(T") for all R € L(I3). If S,T are
invertible elements of L(13, E) with a(S) = a(T) = 1, o*(S7!) = a*(T71) =
n then there exists a unitary (orthogonal) U such that T = SU.

Proof Note that if U is unitary (orthogonal) then a(JU) < a(J) = a(JUU™) <
a(JU), so that a(JU) = a(J). It is enough to prove the result for a par-
ticular S: by Lewis’ Theorem, we can suppose that det(S) = sup{det(J) :
a(J) < 1}.

Let V = S~'T. Then V*V is positive, so there exists an orthonormal basis
(f;) of 13 and A2 > A2 > --- A2 > 0 such that V*V(f;) = A\2f;. Note that
IVUIE = (VAV (), fi) = A2 and that (V(f;), V() = (V*V(fi), £5) = 0
for i # j. Let W(f;) = V(fi)/\i and R(fi) = Aifi, and extend by linearity
to define W, R in L(l3y). V = WR, and W is unitary, R positive, with
eigenvalues \; > Ao > --- A\, > 0.

Now T = SWR, so that |detT| = |det Sdet W det R| = ([[; \i)| det S|.
Thus [[; \; < 1.
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Also [tr(R™1)| = [tr(T71SW)| < o* (T~ a(SW) = n, so that
1 LI |
<1< (T )"
.Z - (1;[ >\z)
Thus we have equality in the AM-GM inequality, which happens only when
all the terms are equal. Thus \; =1 for alli, R=1 and T = SW. O

Let us apply this to «(T) = ||T||. There exists T' such that |det(T)| =
sup{|det J| : [|J]| < 1}. This says that T'(Bjy) is an ellipsoid of maximal
volume within Bg. If S(By) is another such, then T' = SU, so that T'(Bp) =
SU(Biy) = S(Big). Thus the ellipsoid of maximal volume is unique.

Theorem 2.5.2 Let T' € L(l3, E) be such that T(By) is the ellipsoid of
mazimal volume within Bg. Then mo(T™1) = /n.

Proof

First, /i = mo(Ijp) = mo(T7'T) < mo(T1) | T|| = ma(T71).

By Lewis’ Theorem, n(7~') = n, and by Theorem 2.3.2 we can write
T—! = AB, where B € L(E,H,) and A € L(H,,l%) and m(A) < /n,
mo(B) < /n. But

(BT, A*) ;g = tr(ABT) = tr(I,) = n < mo(A)ma(BT) < ma(A)ma(B) < n,

and so we have equality throughout. Thus, since we have equality in the
Cauchy-Schwarz inequality, A* = aBT = oA~ !, for some a > 0, so that
A = /aJ, where J is an isometry. Then m2(A) = \/an, and so a < 1. Thus
mo(T-1) = mo(AB) < || A ma(B) < V7. 0

Corollary 2.5.1 m(Ig) < /n.
Proof my(Ip) = m(TT™1) < ||T||m(T~1) < /. O
In fact, we have equality.

Corollary 2.5.2 (John) |T7!|| < /n, and d(E,13) < \/n.

Thus, if £ is the ellipsoid of maximum volume in Bg, £ C By C \/n€.
& can be taken as the unit ball of an inner-product norm on FE.
Proposition 2.5.1 There exists an orthonormal basis (e;) of E with respect

to the inner-product norm defined by £ such that

L=lerllp = lleallp -~ = lleallp and Jejll g = 27"/ for each j.
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Proof There exists e; € £ with ||e1]|; = 1. Having defined ey, ..., e,_1, let
Fy. = {e1,...,ex_1}*. Choose e, € £N Fy, with |lex||; as large as possible.
Note that €N Fy, C |lex||y Be. Consider the ellipsoid

n 7j—1 n
2
Dy ={D_aiei: )y lail* + [l O lail®) < 1/4}.
=1 =1 =

If i1 aje; € Dj then Zi;ll la;|? < 1/4, so that Ef;ll ae; € £/2 C Bg/2.
Similarly 37 |arf? < 1/(4j]3), 50 that S0 aser € (€1 F3)/(2 el ) ©
Bpg/2. Thus D; C Bg, and so vol (D;) < vol (£). But

vol (D)) = 27" |lej | ;"7 ol (€),

and so the result follows. |

Corollary 2.5.3 |lej|; > 1/4 for 1 < j <n/2.

Exercises

(i) Suppose that « is a norm on L(I4, F). Show that the following are
equivalent:

(a) a(TS) < a(T) ||S| for all S € L(I), T € L(l4, F);

(b) a(TU) < a(T) for all orthogonal U € L(1Y), T € L(I§, F);

(c) a(TU) = a(T) for all orthogonal U € L(19), T € L(l4, F).

In the following exercises, a d-dimensional normed space (E, ||.|| z)
is identified with R¢ in such a way that the unit ball in the Euclidean
norm |.| is the ellipsoid of maximum volume. We also use the inner
product to identify E* with RY.

(ii) Show that ||z| 5 < |z| < ||z g«

(iii) Show that there are non-zero vectors y1, ...y, and vectors z1,...xg,
with |z;| = 1 for all j such that z = Zle (z,y5) x; for all z, and
n =51 1y -

(iv) By considering traces, show that

k

E* =n.

k k
n= (i) < D 1yl < Nyl
j=1 j=1 j=1
(v) Deduce that y; = cjx;, where ¢; > 0, and that ||z;]|
(vi) By considering (z;,x;), deduce that |z;||, = 1.
(vii) Conclude that z = Z?Zl ¢; (2, ;) z; for all z, where Z?Zl ¢; =n and
the points z; are contact points: points with ||z, = |z;| = 1, and
where the hyperplane {z : (z,z;) = 1} is tangent to both unit balls.

b =1
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2.6 Estimating the median

We consider S%~1, with Haar measure ju = pq_1, as a subset of R? with
Gaussian measure .

Proposition 2.6.1 Suppose that f is a 1-Lipschitz function on S, with
median My and mean E(f) = Ay. Then |Ay — My| < w/4v/d — 2.

Proof

E((f-Mp)*t :/oo 1(f > Myp+t dt<\/F/OO Bl e p— —

((f f)) Oudl(f f ) = 806 4m
Similarly E((f — My)™) < n/4vd — 2. O
Proposition 2.6.2 Suppose that 4 < k < d, and let my,(z) = max¥_, |z;|.
Then

log k
>
/Sd_l my dpg—1 > ¢ 7

where ¢ 1s an absolute constant.

Proof Since [ga—1 my dpg—1 = (Lg—1/V27) [ra mi dyq (Exercise 1.6 (vi)), it
is enough to show that [pa my dyg > cy/logk. Now

2 2
] >a)>2y(a<z<a+l)> ——e (@F)/2
V(x| > a) = 29( )_Jﬂ

so that

Yya(mi < o) < (1 - ief(a+1)2/2)k.

V2r
Now put a = y/2logk — 1, so that k = elat1)?/2 and
21

Ya(mg < @) < (1 - 7)’“ <e VT <12,
v

and

1 v/l1og k
| iz G = S(/2logh — 1) = YR,
R

O

Suppose that (E,|.||z) is an d-dimensional normed space. We consider
the ellipsoid of maximal volume contained in Bpg, use this to define an
inner product on E, take an orthonormal basis (ei,...,eq4) which satisfies
Proposition 2.5.1, and use this to identify E with R%. We consider r(z) =
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|||z on S47L. Tt is a non-negative Lipschitz function on S, 1/v/d <
r(z) <1, and r(e;) > 1/4 for 1 < j < d/2.

Proposition 2.6.3 If d > 3 then M, /2 < A, <2M,.
Proof Sincer >0, A, > f(rZMT) rdug—1 > M, /2. Also M, > 1/\/&, so that

M, (d—2)
> >
4 4/d d
so that A, < (w/4+ 1)M, < 2M,. O

(AT - Mr)a

Proposition 2.6.4 There exists an absolute constant ¢ such that M, >

cy/logd/d.

Proof We can suppose that d > 8. It is enough to establish the correspond-
ing result for A,. Let (e1,...,€q) be Bernoulli random variables. Then

d d

/Sdi1 ;(M@i dpg—1(a) = /Sdil ;q(w)aiei dptg—1
d

- /sd—1 E( ;qaiei ) dptg—1-

Now E(Hz‘;’:l €iaiei||) > |laje;|| for each j, so that

1
) > max [laje;|| > - max |ay],

E(
j<d/2 4 j<d/2

d
> ciaei
1—1

and so

A, = /
Sd—l

1 logd
dpra—1 2 /Sd_1 mqy2(a) dpg-1(a) > c T

d
Z ;€4
i=1

2.7 Dvoretzky’s theorem

Proposition 2.7.1 Suppose that (F, ||.|| ) is a k-dimensional normed space
and that 1 > 0 > 0. Then there exists a 0-net in Sp = {x : |z||p = 1} with

IN| < (1+2/0)" < (3/0)".
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Proof Let N be a maximal subset of Sp with ||z —y|| > 6 for z,y € N.
Then N is a f-net. The sets {z + (0/2) Br}zen are disjoint, and contained
in (1+6/2)Bp, and so > ,cn vol (x+(0/2)Br) < vol (1+6/2)Bp, which
gives the result. O

Suppose that (E,||.||p) is an d-dimensional normed space. As before,
we consider the ellipsoid of maximal volume contained in Bpg, use this to
define an inner product on F, take an orthonormal basis (eq, ..., eq) which
satisfies Proposition 2.5.1, and use this to identify E with R?. We consider
r(z) = ||z||p on S?7L. If F is a k-dimensional subspace of E (an element of
the Grassmannian G y), we denote the Euclidean sphere in F' by Sp.

Proposition 2.7.2 Suppose that 1 > € > 0 and that 1 > 6 > 0. Suppose
that klog(3/6) < (d — 2)e?/4. Let

Crp ={F € Gy : there exists a §-net N C Sp with sup |r(x) — M,| < €}.
TN
Then P(Cy) > 1 — \/me—GQ(d—Q)/Zl.

Proof Let A = {x € S% ! : r(z) = M.}, and let B = {x € S9! :
|r(x) — M| > €}. By Proposition 1.10.2,

T _2(g—
ja 1 (B) < \fze 2(4-9)/2

Let F be any k-dimensional subspace of E, and let N be a 6-net in Sp with
IN| < (3/0)F < el@2/4 Foreachz € N,P(U € SOq: U(z) € B) = u(B),
by Proposition 1.4.2. Thus if G = {U € SO, : U(x) € B for some z € N}
then

P(G) < |N|,U,(B) < \/ZG—EQ(d—2)/4'

But if U ¢ G then U(N) is a net in U(F) with the required properties.
Applying Proposition 1.4.2, we see that P(Cy) > 1 — P(G). O

Theorem 2.7.1 (Dvoretzky’s theorem) Suppose that d > 4. Suppose
that 1 > 6 > 0. There exists a constant ¢ = c(8) such that if (E,||.||z) is a
d-dimensional normed space, and |.| is the norm defined by the ellipsoid of
mazimal volume contained in B, and if k < ch,? and

Dy ={F e€Gap: (1 —-0)Mlz| < |z|g < (14 6)M,|z| for x € E}

then P(Dy,) > 1 — \/m/2e—cdM?
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Proof Let § =§/3, let ¢ = cs = 02/(810g(3/6)) and let € = OM,.. Then

e2(d —2) e(d —2)
— = 2~ 92eM?(d—2) > cdM? > k and cdM? < ——— L,
Alog3/0 _ “© r(d=2) 2 cdM; >k and cdM; < —

Thus, defining Cj, as in Proposition 2.7.2,

P(Cp) >1— \/Ze—(d—2)52/4 >1— \/Ze_chE.

Suppose that ' € C}, and that IV is a suitable #-net in F'. Suppose that
x € Sp. Then there exists ng € N with |z — ng| = aq0 with 0 < o7 < 1. If
ay # 0, there exists ny € N with |(z —ng)/a10 —n1| = aef with 0 < ag < 1,
so that |z — ng — ayni| < ayaef?. Continuing in this way, we can write

o0
x:no—i—ZﬁjGjnj, with 0 < ﬁj <1

j=1

Thus
M,+e 1486
< = < (1
and
lzll = lInoll = llz = moll = (My — €) = 7—5(Mr +¢)
0(1+6
— (1-6- (1_+9))MT > (1= 8)M,,

and so C} C Dy,. O

Recall that dM? > clogd (Proposition 2.6.4). Thus we have the following
general result.

Corollary 2.7.1 Given 0 < 6 <1 and 0 < n < 1 there exists c = c¢(d,n) > 0
such that if E is a d-dimensional normed space and k < clogd then if

Ep={F € Gqy, : d(F,15) < 1+ 6}
then P(Ey) > 1—1/d".

2.8 Type and cotype

In certain circumstances, we can improve on Proposition 2.6.4.

In order to do this, we introduce the notions of type and cotype. These
involve Bernoulli sequence of random variables: for the rest of this chapter,
(en) will denote such a sequence.
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Let us begin, by considering the parallelogram law. This says that if
x1,...,Ty are vectors in a Hilbert space H then

2

= 2
= Il
=1

E

n
> €
=1

We deconstruct this equation; we split it into two inequalities, we change an
index, and we introduce constants.

Suppose that (E,||.||;)is a Banach spaces and that 1 < p < co. We say
that F is of type p if there is a constant C' such that if z1, ..., z, are vectors
in F then
9 1/2

E

n
>
=1

<O Nl e,
E J=1

The smallest possible constant C' is denoted by T),(E), and is called the type
p constant of E. Similarly, we say that F is of cotype p if there is a constant

C such that if x1,...,x, are vectors in F then
o\ \ 1/2
n n
Ol P < C [ B 1Y €(xy)
j=1 j=1 B

The smallest possible constant C' is denoted by C,(E), and is called the
cotype p constant of F.

Thus the parallelogram law states that a Hilbert space H is of type 2 and
cotype 2, and Th(H) = C2(H) = 1.

It follows from the parallelogram law that if E is of type p, for p > 2, or
cotype p, for p < 2, then E = {0}. If E is of type p then E is of type ¢, for
1 <q<p,and T,(E) < T,(F); if E is of cotype p then E is of cotype g, for
p < q < o0, and Cy(E) < Cp(F). Every Banach space is of type 1.

Proposition 2.8.1 If E is of type p, then E* is of cotype p', and Cp(E*) <
T,(E).

Proof Suppose that ¢1, ..., ¢, are vectors in F* and x4, ..., z, are vectors
in E. Then

1> i)l = (B o) ejxy))l
=1 =1

Jj=1
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< EB(Q o) i)l
j=1 j=1
< E(| > o5 ||D_ i)
j=1 j=1
9 1/2 ) 1/2
J=1 j=1
2\ 1/2
< B o T (E)(Y [la]P)M/7.
Jj=1 J=1
But
el = sup{I 3 lel 1] = (2 lesl?) P < 13,
J=1 j=1 j=1
= sup{| D di(ay)]: (O llaylP)P < 13,
j=1 =1
and so

o\ 1/2
n

> o,

j=1

Ol IV < T(B) | E

J=1

As we shall see, the converse of this proposition is not true.

If in the definitions of type and cotype we replace the Bernoulli sequence
(€n) by (gn), where the g; are independent N(0,1) random variables, we
obtain the definitions of Gaussian type and cotype. We denote the corre-
sponding constants by T,/ and C}.

Proposition 2.8.2 If E is of type p (cotype p) then it is of Gaussian type
p (Gaussian cotype p).

Proof Let us prove this for cotype: the proof for type is similar. Let
mp(7) = [lgll,, where g is an N(0,1) random variable. Let z1,..., 25 be
vectors in E. Suppose that the sequence (g,) is defined on Q and the
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sequence (e,) on . Then for fixed w € Q,

2 P/2
n

S g @) P llzslh < | (Cp(E)*Eq
j=1

n
> eigi(w)z;
j=1

E

J

Taking expectations over €2, applying Fubini’s Theorem, and using the sym-
metry of the Gaussian sequence, we find that

p ) )

E

)

< (Cp(E))PEq (‘ z": €95 (w)x;
j=1

(mpM)P DMl < (Cp(E)PEq EQ(
j=1

n
Z €595Tj
J=1

IN

(Cp(E))PEq | Eq (‘ > €igin;
j=1

| )
E
In fact, the converse is also true.
We state the following theorem (which we shall not use) without proof.

= (Gy(E))"Eq

n
Z gjTj
J=1

Theorem 2.8.1 A Banach space (E, ||.||p) is isomorphic to a Hilbert space
if and only if it is of type 2 and cotype 2.

Let us give some examples. We need the following standard result.

Proposition 2.8.3 Suppose that f is a non-negative measurable function
on (Ql,Zl,ul) X (QQ, Zg,ug)and that 0 < p < q < o00. Then

(. ([ s st ) <
< ([ ([ ey manm)
(Lo )
Proof Let r = q/p. Then

</X1( X, f(a, ) dua(y)) " dm(;v))l/q _
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1/rp
= ([ ([ rewrdmmy dm(l“))
1/p
= / f(z,y)P dua(y))g(z) dpa (v )
X1
for some g with ||g|,, =1
1/p
/ f(z,y)Pg(r) dui(x)) dus(y )
Xo

(by Fubini’s theorem)

1
F,y)P" dp ()" dus(y) )

X2 X1

(L
(L
- (
(L
(L

1/p
[ din @) )
U

We can consider f as a vector-valued function f(y) on g, taking val-
ues in L9(Qy), and with fo [|f(9)llF dus < oo: thus f € L, (L§, ). The
proposition then says that f € L& (Lg,) and [[flliza 2 y < 1 fllze o -

213702 2378

Theorem 2.8.2 Suppose that (2, %, p) is a measure space.
(i) If 1 < p < 2 then LP(2, %, p) is of type p and cotype 2.
(11) If 2 < p < oo then LP(2, X, 1) is of type 2 and cotype p.

Proof (i) Suppose that fi,..., f, are in LP(Q, X, ). To prove the cotype
inequality, we use the fact that the inclusion LP — L? is norm-decreasing,
Khintchine’s inequality and Proposition 2.8.3.

. 2\ \ 1/2 . P\ \ 1/P
E||D el > |E||D ¢
j=1 » j=1 »
1/p
= (/|Z€yfy )P dp( )))
n 1/p
- |[® (!Zejfjw)\p) du<w>)
Q =
>

1/p
(/ (I d <>)
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n p /
A (Z ([usem )’ ) 2

J=1

= A NI
j=1

\Y]

Thus LP($2, X, ) is of cotype 2.

To prove the type inequality, we use Theorem 1.12.2, the fact that the in-
clusions L? — LP — L' are norm-decreasing, and the fact that the inclusion
l, — l2 is norm-decreasing.

1/2

Zejfj

j=1

n

Yol

Jj=1

n

Yol

J=1

E V2E 2| B

IN

p p

— - e (NP du(w /p
- V2 E(/Q@ @ du( >))>1
n 1/p
- V2| [E (I;qu(w)!p) du(w))
1/p
A Z|f )P dp >>

by (/m )P da( )) "

]:

- VAP

p

IN
S

IN

Thus LP(Q2, X, u) is of type p.

(ii) Since Lp/(Q, Y, ) is of type p/, LP(Q, X, p) is of cotype p, by Propo-
sition 2.8.1. Suppose that fi,..., f, are in LP(2, %, u). To prove the type
inequality, we use the fact that the inclusion LP — L? is norm-decreasing,
Khintchine’s inequality and Corollary 2.8.3.

o\ \ 1/2 A\ /P

n

> el

J=1

n

> €l

J=1

E < |E

p p

1/p
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1/p

- ( (/IZG;JZ )P du >)>
n 1/p

= ( (\;ﬁjfj(w)!p> du(W))

1/p
< ( Zlf 2P dp(w ))
1/2
2/p
< ( ([ 1P dute)) )
= oS
=1
Thus LP(Q, X, u) is of type 2. O

We now return to the situation of Proposition 2.6.4.

Proposition 2.8.4 If 2 < p < oo, there exists a constant c, such that

M, > g1z,
B C”( )

Proof Once again, it is enough to establish the result for A,. If we knew

that
2

))1/2
E

d

> e

=1

) > V2(E(

E

d
E(| > yies
i=1

(which follows from Theorem 1.12.2 and de Moivre’s central limit theorem),

we could use the following argument:

C’;(E)Ar > Cp( cd 1/2/ Zaze, dvq(a
E
= Cg(E)c;d_l/QE( Z’yiei
=1 E
1 1/p
>V ZH@’ [P > a1/l (621) — d/P12,

=1

Instead, we argue as follows, replacing the Gaussian cotype constant by
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the cotype constant.

A = / iCi dud 1(a)
B / w)aiei||  dpa—1(a)
E
- /Sd—l E( ;Qaiei E) dpta-1(a)
1 d 2
B \/§ Sd—l( ( 12:31 o Hd 1( )
1 d )
N Tl aiei|P)YP dpg_1(a
~ V20,(E) /5d1(;u 1) pd—1(a)
1 Ld/2] y
> = a;P)Y? dug_1(a
T 4V20C,(E) /Sdl(; |ail?)™? dpa—1(a)
di/p ld/2] -
= WRC. (B2 i)Y dpg-
T 4V20,(E)d? /S<; @il *)"* dpa—1(a)
c dl/l’ Ld/2]
> p 2322 dryg(a
= C,(B)d Rdg ji[?)1/2 drya()
cpd/P
> 9t
=GB
Here we use the fact that (Z?:l la;[P)1/P > k,l/p_l/Q(E?:l )12, and
that if X;,..., X} are independent normalized Gaussian random variables

and Zy = (X% + -+ X?) then

k
L i) 2 dvata) = VEE(ZL) = VAL((k + 1)/2)/T(k/2) ~ VE.
i=1
O
Corollary 2.8.1 There exists ¢1 such that if E = lg and 1 < p < 2 then

M, > c1. If 2 < p < oo there exists ¢, such that if E = lg then M, >
cpd/P=1/2,
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Exercises

(i) Show that if E is of type p, for p > 2, or cotype p, for p < 2, then
E = {0}. Show that if E'is of type p then F is of type ¢, for 1 < g < p,
and T,(E) < T,(E); show that if E is of cotype p then E is of cotype
q, for p < ¢ < 00, and Cy(E) < Cp(E). Every Banach space is of
type 1.

(ii) Is a subspace of type p (or of cotype p) of type p (cotype p)? What
about quotient spaces?

(iii) Let Q = ZY. Show that there is an isometric embedding of I; into
L*>(Q), and show that L>°(2) is not of cotype p for 2 < p < oo, and
is not of type p, for p > 1.

(iv) Complete the proof of Proposition 2.8.2.

(v) Show that if p > ¢ > 0 then (Z?zl |a;|P)1/P > kl/pfl/q(zgzl la;|9)1/a.

(vi) Let X be a random variable taking values in a finite-dimensional
normed space (E, ||.||z), with E(]|X||) < co. By considering a norm-
ing functional, show that ||E(X)| < E(||X])).

(vii) Suppose that €y, ..., €, are Bernoulli random variables on a proba-
bility space 2 and gy, ..., g, are independent normalized Gaussian
random variables on €. Show that (g;), (€;9;) and (;]g;|) have the
same distribution.

Suppose that 1 < p < co. Show that

iz:;ei<w>:cl -z g E(jgi)a

pre n
< SR gl )
=1
n p
< \/7 Z w)|gil; 1/p'
Show that
il < 2

2.9 Dvoretzky’s Theorem, revisited

Theorem 2.9.1 Suppose that p > 2. Then there exists a constant ky(0) such
that if k < ky(8)d?/?/(C)(E))? then P(Dy) > 1 — \/[2e ko017 [(C(E)?,
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In particular, if B = I¢ and k < ko(6)d/2 then P(Dy) > 1—/m /2 *2(9)4/2,
and if p > 2 there exists k;,(6) such that if & < k:l’g(é)dwp then P(Dy) >

1-— \/77/267%(5”2/1'.

These results are sharp.

Proposition 2.9.1 Suppose that 2 < p < oo and E is a k-dimensional
subspace of R on which x|, < |z| < Lllzl,. Then k < L2ng2/p, where
Cp is the constant in Khintchine’s inequality.

Proof Let (u™V, ..., u®) be an orthonormal basis of F, and let (e, ..., €,)
be Bernoulli random variables. Then

k
k12 = Z Ej(w)u(j)
j=1

<L
2

)

k .
3 65wt
j=1

p

so that
k

d .
K2 < IP3 1S 6(w)ul P,

i=1 j=1

and

d .
P2 < IPE (2 > ej-(w)uE“rp)

IN
h
S
Q
3
=

IN
h
S
Q
S
S

Thus k < L2C2d*/?. O
d

o0

improve the general result in Dvoretzky’s theorem. Recall that C), < 2,/p.

We deduce a corresponding result for [, which shows that we cannot

Corollary 2.9.1 Suppose that E is a k-dimensional subspace of R* on which
Izl < llzlly < Lzl Then k < 4L*¢?*logd.
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Proof [[zfliega < ll2lly < L2l < Ll[]1gq: S0 that

k< L2CY, 4d* 8% = L?e*C, , < 4L%e* log d.

2.10 The Kashin decomposition

It follows from Dvoretzky’s theorem that for 4 > 0 there exists a constant cs
such that if (E, ||.|| ;) is a d-dimensional normed space then for k < ¢;C2(E)d
there are many k-dimensional subspaces F of E with d(F,15) <1+ 6. For
small §, cs must be small. But what if we want k to be big, and are prepared
for § to be quite big?

We consider [2¥, with unit ball B. Then the ellipsoid of maximal volume
contained in B is D = {z € R%*:;||z|, < v2k}. Now the volume of B is
22k /(2k)! (it is the union of 22* hyper-quadrants) and, as we have seen, the
volume of D is 7% /(2k)*k!, so that

( vol B>1/2k B (8)1/2 BhR ) < <2e>1/2
vol D A\ (2k)! RN ’
a bound that does not depend on the dimension 2k.
Generally, if (E,||.||z) is a d-dimensional normed space, and D is the

ellipsoid of maximal volume contained in Bg, we define the volume ratio
vr(E) as

) = (o)

Theorem 2.10.1 Suppose that (E, |.||z) is a 2k-dimensional normed space,
with volume ratio R. Let |.| be the inner-product norm defined by the ellipsoid
of maximum volume contained in Bg. If

Fy = {F € Goy. : |z| < 108R?||z|| for z € FY},

then P(Fy) > 1 —1/2%,

Proof We can suppose that D is the unit ball of l%k. Then

vien ., ok
vol B = Agi—1 u du | du(8) = Vay, 101" dp(8).
S2k=1\ Jo §2k—1
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Let Ly = {F € Gagy. : J5, 1017 du(6) > (2R)*}. Then

R = [ e due) = [ ([ 1617 au(0)) aP(P) = 2R™P(L).

so that P(Ly) < 272,
Let t = 1/36R?, so that t/9 = (2tR)%. Let

bp={0eSp:|0]| <t}={0eSp:|0] 2 >1/t}.
Suppose that F' ¢ L. Then

b _
HOE) < [ el aue) < 2Ry,
t Sp

so that u(bp) < (2Rt)?* < (t/9)*. Now by Proposition 2.7.1 there exists a
t/3-net N in Sp with less than (9/t)* points. Then since the balls {By3(n) :
n € N} cover Sp, p(By/3(n)NSk) > (t/9)F. Thus if n € N then By3(n)NSk
is not contained in br, and so there exists y € By/3(n) N Sg with [ly|| > t.
Consequently, for each x € Sp there exists y € Sp with ||y|| > ¢ and
lz —y| < |z —y|l <2t/3. Thus ||z|| > t/3 = 1/108R? for all z € Sk.

U

Corollary 2.10.1 Let J, = {F € Goi : F € F}, and FL ¢ F}. Then
P(Jy) >1—1/22%1,

Exercise
Investigate the extent to which you can reduce the constant 108 in The-
orem 2.10.1 if you only require that P(F;) > 1/2 and P(J;) > 0.
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Concentration of measure

We now consider the problem of determining how a probability measure on a
metric space is concentrated, when we do not have an isoperimetric theorem
to help us.

Throughout, we shall suppose that P is a probability measure on the
Borel sets of a complete separable metric space (X, d).

3.1 Martingales

Many of the results for independent random variables, such as Khintchine’s
inequality, can be extended to martingales. Suppose that (£, X, P) is a prob-
ability space and that Y is a sub-o-field of ¥. Then if f is non-negative and
Y-measurable, there exists a unique non-negative Yg-measurable function g
(possibly taking the value oo) such that [, gdP = [, fdP for all A € 3.
g is the conditional expectation of f, and is denoted E(f|Xg). In particular,
E(E(f|X0)) = E(f). If h is a non-negative X-measurable function then
E(hf|S0) = AE(f|S0). I $o C Sy C S then B(f|So) = E(E(f[S1)[S0).
If f € LY, %,P), we can define E(f|Zg) = E(f*[X0) — E(f~|20), and
E(-|X¢) is a norm-decreasing projection: L'(X) — L'(%g). Its restriction to
L?(X) is the orthogonal projection of L?(X) onto L?(X).

Suppose that Fy C F; C ... C F; is a filtration of o-fields of Borel sets of
a metric probability space (X, d,P). We assume that Fy is the trivial field
{X,0}. If f € LY(Fx), let fj = E(f|F;). We suppose that E(f) = fo = 0.
Then (fj)j‘::o is a martingale. Let d; = f; — fj—1, for 1 < j < k: (d;) is a
martingale difference sequence. Note that E(d;|F;_1) = 0.

Recall that a random variable X is sub-Gaussian, with exponent b, if
E(etX) < /2 for —c0 < t < c0.

Theorem 3.1.1 (Azuma’s theorem) Suppose that (fj)?:o is a martingale

53
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with fo = 0, and that E(e'%|F;_1) < EARE for each t and j, where b; is a
constant. Then f = fi is sub-Gaussian, with exponent ( ?:1 b?)l/Q.

Proof
E(e) = B(E(!1e|F )
E(c/*1E(e!% | F_1))
< E(etfk—l)ebitQ/g,
and so
k :
E(c!/ (etfo H b22/2 _ Z;‘ L B)E2/2
[Note that all the functions that we consider are integrable.] O

This theorem holds in particular when each d; is bounded. Then f = f;
is sub-Gaussian, with exponent (Z?Zl deﬂio)lﬂ.

We shall apply Azuma’s theorem to finite sets, equipped with the uniform
probability. The problem is then to find a good metric and good filtration.

Suppose that (X, d) is a finite metric space, and that Fo C F; C ... C Fi
is a filtration, that Fy is the trivial field {X,0} and that F, = P(X).
Suppose that for each j there exists a; such that if A; and B; are two F;
atoms inside the same F;_; atom Cj_ then there is a bijection ¢ : A; — B;
such that d(z,¢(x)) < aj. Then we say that (X,d) has length at most
( k . aj)l/?

Example 1. The hypercube Qd, with the Hamming metric. Let F; be
the partition defined by fixing the first j terms. If C;_; is an F;_; atom,
then C;_1 = A;UB;, where A; and B; are F; atoms. Let ¢ be the mapping
Aj — Bj such that (¢(z)); = z;, for i # j. Then d(z, ¢(x)) = 1, and so Q¢
has length at most v/d.

Example 2. %, the group of permutations of {1,...,n}. We define a
metric by setting d(o,p) = 1 if op~!
the path length. Thus ¥, has diameter n — 1, since every permutation can
be written as the product of at most n — 1 transpositions. Let F; be the
partition defined by fixing o(1),...,0(j). If Cj—1 is an F;_; atom, then
Cj_1 is the union of n — j + 1 F; atoms, each determined by the value of

o(y). If

is a transposition, and define d to be

Ay = {o:0(l)=1dy,...,0( — 1] =ij_1,0; =k},
and B; = {UZJ(l)Iil,...,U(]—l]:zjil’o-j:l},
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then B; = (k,l)A;: set ¢(o) = (k,l)o. Then d(o,¢(c)) = 1, and so the
length of ¥, is at most v/n — 1.

Note that both of these examples concern a finite group G and a set of
generators of G.

Theorem 3.1.2 Suppose that (X,d) is a finite metric space, equipped with
the uniform probability distribution, and of length l. If f is a 1-Lipschitz
function on X with E(f) = 0 then f is sub-Gaussian, with exponent [.

Proof Let Fo C F1 C ... C Fi be a filtration which realizes the length. Let
Cj-1 be a F;_1 atom, let Aj and Bj be atoms contained in C;_; and let
¢ : Aj — Bj be a suitable mapping. f; is constant on each of A and Bj:
let f]( ;) and f;(B ) be the values. Then

Zf Zf Z ) < aj.

fi(Aj)—fi(B

Thus |f;(A;) — fj(Bj)| < a;. Since fj_1(C;_1) is the average of the f;(A;)s,
it follows that |d;j| < aj. We now apply Azuma’s theorem to obtain the
result. O

Corollary 3.1.1 P(f > ¢) < e /2,

3.2 Sub-Gaussian measures
Let

Lip o(X) = {f € Lip (X) : f integrable and E(f) = 0}.
We define the Laplace functional Ep of P as
Ep(t) = sup{E(¢") : f € Lip o(X), [ flip <1}, fort € R.

We say that P is sub-Gaussian, with exponent b, if Ep(t) < bt/ 2. for
all t € R.

Proposition 3.2.1 If P is sub-Gaussian with exponent b then Lip o(X) C
L and [[fl_, < 2 [fl - for f € Lip o(X).

Conversely, if Lip o(X) C Leyp2, and ||f”Lexp2 < 2b||f||Lip , for f €
Lip o(X) then P is sub-Gaussian, with exponent 4b.

Proof The first statement is an immediate consequence of Theorem 1.11.1.
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For the converse, if f € Lip ,(X) and HfHLip < 1/2b then

E(f%) < KIE(e!™) < 2(k)).

Thus f is sub-Gaussian with exponent 2, by Theorem 1.11.1. Thus P is
sub-Gaussian, with exponent 4b. O

Proposition 3.2.2 If P is sub-Gaussian with exponent b then the concen-
tration function ap satisfies ap(€) < e /8%

Corollary 3.2.1 If (X, d) is a finite metric space, equipped with the uniform
probability distribution, and of length | then ap(e) < o= /8%,

Proof Suppose that P(A) > 1/2. Let fa(x) = min(d(x,A),e). Then
E(fa) < €/2, so that

1—P(A) <P(fa =€) <P(fa > B(fa) +¢/2) < e /%,
since f4 — E(fa) is a 1-Lipschitz function in Lip ¢(X). O
Proposition 3.2.3 Suppose that P is sub-Gaussian on (X, d), with exponent
b, and that Q is sub-Gaussian on (Y,p), with exponent c. Give X XY

the metric T((x1,y1), (z2,y2)) = d(x1,22) + p(y1,y2). Then P x Q is sub-
Gaussian, with exponent (b* 4 ¢2)1/2.

Proof Suppose that f is an integrable 1-Lipschitz function in Lip (X x Y).
Let g(y) = [y f(z,y) dP(x). Note that g is a 1-Lipschitz function on Y and
E(g) = 0. Then

/ 6tf(:v,y) dP(l‘)dQ(y) — / etg(y) </ et(f(m,y)fg(y)) dP(.T)) dQ(y)
XxY Y X
S / etg(y)€t2b2/2 dQ(y) S et2b2/2€t262/2-
Y

O

When is P sub-Gaussian? We don’t have to consider all Lipschitz func-
tions to find out. We consider X x X with the metric

d((z1,91), (2,92)) = d(z1,22) + d(y1,92).
Let
pe(d) = [ d@.y) dP@)dP(y).

pp(d) is the mean distance apart of two points of X.
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Proposition 3.2.4 The following are equivalent:

(i) e (d) < oo.
(it) [y d(z,x0)dP(z) < oo for some xg € X;
(iii) [y d(z,x0) dP(z) < oo for all zg € X;

Proof 1If (i) holds, then by Fubini’s theorem, [ d(z,y)dP(z) < oo for
almost all y, and so for some y.

Jx d(z,y)dP(z) < d(y, z) + [y d(z, z) dP(z), so that (ii) implies (iii).
Since d(z,y) < d(x, z) + d(y, 2),

pp(d) < 2/ d(z,z)dP(x), for all z € X.
b's
Thus (iii) implies (i). O

Theorem 3.2.1 P is sub-Gaussian if and only if up(d) < oo and d(z,y) —
pp(d) is sub-Gaussian on (X x X, P x P).

Proof The condition is necessary, by Proposition 3.2.3.

Conversely, suppose that d(z, y)—pup(d) is sub-Gaussian on (X x X, PxP),
with exponent b. Suppose that f is an integrable 1-Lipschitz function on X
with E(f) = 0. Note that E(et/) > 1 for all ¢, by Jensen’s inequality. If
k > 0 then

ld(z, Yo < lld(z,y) — pp(d)|ly + pp(d) < 2K + pp(d)
so that

E(d(z,y)*") < "k + pp (d))?F < 2" TRI(b + pp () /4)%.
Thus

[ @) = F)* dP(@)dP(y) < 2RI+ e (d) /4

Thus it follows from Theorem 1.11.1 that f(z) — f(y) is sub-Gaussian,
with exponent 2v/2(b + up(d)/4). Thus

/etf(ﬂﬁ) dP(w)/ e~ tf (W) dP(y)
X X

< APCHp()/1)?

E(e')

IA
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3.3 Convergence of measures

Suppose that ¥ is a o-field of subsets of X. A signed measure is a bounded
countably additive real-valued function on . The set of signed measures
forms a vector space M (X). The Hahn-Jordan decomposition theorem says
that if p € M(X) then there exists a partition X = PUN, with PN € ¥
such that if A € ¥ then u(ANP) > 0 and (AN N) < 0. Then, setting
pt(A) = u(ANP)and p=(A) = —u(ANN), pt and p~ are (non-negative)
measures on ¥, and g = pT—p~. Set |pu| = pT4p7, and set [|u]| = ||y =
\wl(X). |Illpy is a norm on M(X), the total variation norm, under which
M(X) is a Banach space, and a Banach lattice.

We are interested in measures on topological spaces, and in particular
on compact Hausdorff spaces and metric spaces. We require that (X, 7) is
Hausdorff and normal: it then follows from Urysohn’s lemma that if A and
B are closed and disjoint then there exists a continuous f : X — [0, 1] with
f(a) =0 for a € A and f(b) = 1 for b € B. Note that if f € C(X) then
(f <t)=[2,(f <t=1/n)is a closed Gs set - a countable intersection of
open sets. It is therefore natural to consider the Baire o-field - the o-field
generated by the closed Gy sets: this is the smallest o- field for which the
continuous real-valued functions on X are measurable.

Theorem 3.3.1 Suppose that p is a finite Baire measure on a normal Haus-
dorff space (X, 7). Then p is closed Gs regular: if A is a Baire set then

w(A) = sup{u(F): F a closed Gs set, F C A}
= inf{u(U) : U an open F, set,U D A}.

[An F, set is a countable union of closed sets.]

Proof Let T be the collection of Baire sets for which the result holds.
Suppose that A =N, U, is a closed Gs set. Then there exist f,, : X — [0, 1]
with f,(a) =0fora € Aand f,(z) =1forz ¢ U,. Then A C (f, < 1) C U,
so that A = Ny, (fn < 1); since (f, < 1) is an open F, set, A € T

It is therefore enough to show that T is a o-field. Since A € T if and
only if C(A) € T, it is enough to show that if (A,) is a sequence in T
then A = U,A,, € T. Suppose that ¢ > 0. Then for each n there exist
F, C A, CU, (F, aclosed Gs set, Uy, an open F, set) with u(A, \ F,) <
€/2"" and u(U, \ Ap) < €/2". Then U = U,U, is an open F, set, and
U\A C Up(U,\Ay), so that p(U\A) <>, u(Up\A4,) < €. Let B, = U | A;.
Then B, / A, and so there exists N such that u(A\ By) < €/2. Then
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Gy = UN,F; is a closed G5 set, and By \ Gy C UY(4; \ F;) so that
p(Bn\ Gn) < T u(Ai \ F),€/2. Thus pu(A\ Gy) <e. u

We shall be concerned with probability measures on metric spaces (X, d).
Note that any closed set A in a metric space (X,d) is a G set, since A =
{z :d(z,A) < 1/n}, and so the Baire sets and the Borel sets are the same.
We shall restrict attention to complete separable metric spaces, or Polish
spaces. These need not be compact, nor even locally compact. Nevertheless,
compactness plays an essential role. A probability measure P is reqular if

P(A) = sup{P(K) : K compact , K C A}
for each Borel set A. By Theorem 3.3.1, this happens if and only if P is
tight - that is sup{P(K) : K compact } = 1.

Theorem 3.3.2 A probability measure P on a Polish space is tight.

Proof Let (z,,) be a dense sequence in (X, d), and, for 6 > 0, let Bs(x,) =
{z : d(z,z,) < §}. Suppose that € > 0. The balls B,z cover X, and so
there exists Ny, such that, setting C,, = U,]y;"lBl/m(mn), P(Cy) > 1—¢/2™.
Let K =Ny°_,Cy,. Then K is closed and precompact, and so it is compact.
Since P(X \ K) < > °_,€/2™ =€, P is tight. O

Suppose that X is a normal Hausdorff space and that M (X) is the space
of signed Baire measures on X. If f € Cy(X) and p € M(X), let ¢u(f) =
Jx fdu. ¢ is an order preserving isometry of (M (X),||.||;y) into Cp(X)*:

lillry = supd] | £ dul: £ € Co(xX), 1l = 1.
Things become easier when (X, 7) is a compact Hausdorff space.

Theorem 3.3.3 (The Riesz representation theorem) If (X,7) is a
compact Hausdorff space then the mapping ¢ is surjective.

The norm topology ||.||;y is too strong for most purposes: instead, we
consider the weak topology, induced by the weak*-topology on Cj(X)*.

Corollary 3.3.1 If (X, 1) is a compact Hausdorff space then the closed unit
ball M1(X) is weakly compact, and P(X) is a weakly closed, and therefore
weakly compact, subset of Mi(X).

Proof The first statement follows from the Banach-Alaoglu theorem, and the
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second from the fact that P(X) = {p: p € Mi(X) : p(X) = [y Ldp = 1}.
U

Suppose now that (X, d) is a Polish space. We show that weakly conver-
gent sequences in P(X) can be defined in terms of a norm. [We do not show
that the norm defines the weak topology on P(X).]

If P,Q e P(X), let

3(P.Q) =supf| [ faP~ [ 7dQl: s <1} = [P - Qllp.
Then f is a metric on P(X).

Theorem 3.3.4 Suppose that (X,d) is a Polish space. If C C P(X) is
B-precompact then A is uniformly tight: given € > 0 there exists a compact
subset K of X such that P(K) >1—¢ for allP € C.

We need some lemmas, the first of interest in its own right.

Lemma 3.3.1 Suppose that 0 < ¢ < 1. If B(P,Q) < €2/2 then Q(A.) >
P(A) — ¢, for all closed sets A.

Proof Let f(xz) = (1 —d(xz,A)/e)*. Then | f|lg;, <1+ 1/, so that

[ rap~ [ saqi< ez <e
Thus
Q(AE)Z/deszxfdP—ezP(A)—e.

O

Lemma 3.3.2 If 0 < € < 1 there exists a finite set F' in X such that
Q(F.) >1—¢€ forallQeC.

Proof There exists a finite set D in C such that C' C D2 /5. There exists
a compact subset Kp of X such that P(Kp) > 1 —¢/2 for P € D. There
exists a finite subset ' of X such that Kp C F, )y, so that (Kp)./p C Fe. If
Q € O, there exists P € D with 8(Q,P) < €2/8, and so

Q(Fe) 2 Q((Kp)ej2) 2 P(Kp) —€/22 1 -
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Proof of the Theorem. Suppose that 0 < e < 1. Let €, = ¢/2". For each n,
there exists a finite set F;, such that Q((Fy)e,) > 1 — €, for Q € C. Let
K =22 ((Fn)e,)- K is compact, and Q(K) > 1—e€for all Q € C. O

Theorem 3.3.5 P, — P weakly if and only if 5(P,,P) — 0 as n — oc.

Proof Suppose first that P,, — P weakly. Suppose that 0 < ¢ < 1. By
tightness,there exists a compact subset K of X such that P(K) > 1—¢/11.
By the Arzela-Ascoli theorem, A = {fik;||fllg, < 1} is precompact in
C(K), and so there exist g1,...g9x € A such that A C UleBe/ll(gi). By
Theorem 1.9.1, each g; can be extended without increasing the BL norm to
fi € BL(X). Also, let h(z) = (1—11d(x, K)/€e)™. Then there exists N such
that

\/ thn—/ h(z) dP| < ¢/11 and \/ fidPn—/ fi(z) dP| < /11
X X X X
for 1 <7<k and n > N. Note that
Pu(Ken) > / hdP, > / hdP — /11 > 1 — 2¢/11
X X

for n > N. If || f|| g, < 1 there exists f; such that |f;(x) — f(x)] < €/11 for
x € K. Using the Lipschitz condition, |fi(y) — f(y)| < 3¢/11 for y € K /1;.
Now

/ |f = fil Py < / |f_fi’dPn+/ (If1+]fi]) dPy < 3e/11+4€/11
X Kejn X\Ke/ll
and

/ |f = fil dP = / |f = fi\dP+/ (If] + | fi]) dP < €/11 + 2¢/11

e K X\K

Thus if n > N then

|/dePn—/deP|§
< \/sz-dPn—/XfidP|+/X\f—f1—|dPn+/X|f—fi|dP
< €/11+Te/11 + 3e/11 = ¢,

and so B(P,,P) <eforn> N.

Conversely, suppose that 5(P,,P) — 0. Then {P, : n € N} is -
precompact, and so is uniformly tight. Thus given € > 0 there exists a
compact subset K of X such that P(K) > 1 —¢/7 and P, (K) > 1 —¢/7
for all n. Suppose that f € Cy(X) and that ||f||,, < 1. By the Stone-
Weierstrass theorem, there exists g € BL(K) such that [|g[|ox) < 1 and
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1f = 9llcy < €/7. We can extend g to h € BL(X), with [|h][ox) < 1
Then

y/ fdPn—/ fdP|§|/ thn—/ th|+/ |f—hydPn+/ |f—h|dP.
X X X X X X
Now

/|f_hydpng/ |f—h]dPn+/ |f|dPn+/ b dP,, < 3¢/T,
X K C(K) C(K)

and similarly [ |f —h|dP < 3¢/7, and so

|/ fdPn—/ fdP\g\/ thn—/ hdP| + 6¢/7 < €
X X X X

for large enough n. O
Theorem 3.3.6 (P(X),3) is complete.

Proof Suppose that (P,) is a f-Cauchy sequence. Then {P, : n € N} is
B-precompact, and so is uniformly tight. Thus there exists an increasing
sequence (K;) of compact subsets of X such that P,(K;) > 1/27 for all n
and j. Let Pg) be the restriction of P,, to the Borel sets of K;. Then, taking
a subsequence if you must (but it isn’t necessary), Pg ) converges weakly to
some p; € M(Kj). Then if A is a Borel set contained in K, ui(A) = p;(A)
for k > j. If A is any Borel set in X, let P(A) = limj_o p1;(A). Then it
is straightforward to verify that P is a measure, that P(X) = 1 and that
P,—P. O

Exercise

(i) Suppose that A C P(X) is uniformly tight. Show that A is (-
precompact.
(ii) Give the full details of Theorem 3.3.6.
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3.4 The transportation problem

Suppose that (X, 7) and (Y, p) are compact Hausdorff spaces, that P and
Q are Baire probability measures on X and Y respectively, and that ¢ €
CH(X xY). ¢(z,y) is the cost of transportation from x to y. We want to
transport a mass distributed as P to a mass distributed as Q at minimal
cost. This is the Monge transportation problem.

Let 7 be a Baire probability measure on X xY. 7 defines a transport plan:
(A, B) denotes the amount of matter transported from A to B. m must have
marginal distributions P and Q: m(A xY) = P(A) and 7(X x B) = Q(B).
The cost is then [, cdm, and we want to choose 7 to minimize this. Thus
we have a constrained optimization problem. When X and Y are finite,
this is a classical linear programming problem. But we, like Monge, want to
consider the more general problem.

Theorem 3.4.1 (The Kantorovitch-Rubinstein theorem I) Suppose
that (X, 1) and (Y p) are compact Hausdorff spaces, that P and Q are Baire
probability measures on X and Y respectively, and that ¢ € CT(X xY).
Then there is a Baire probability measure m on X XY with marginals P and
Q which minimises [y cdm under these constraints. Let

me(P, Q) = sup{ /X fdP+ /Y gdQ: f € C(X), g € C(Y), f(2)+9(y) < c(z,9)}.
Then [y cdm =m.(P,Q).

Proof If m has marginals P and Q, and f(x) 4+ ¢g(y) < ¢(z,y) then

/fdP+/ng= f<x>+g<y>d7r(m,y)§/ cdn,
X Y XxY

XxXY

so that m.(P,Q) < [y.y cdr. We need to find m for which the reverse
inequality holds.

Let L={f(z)+gy): feC(X),ge C(Y)} CC(X xY). Lis a linear
subspace of C(X xY). If f+g € Llet ¢(f+g) = [y fdP+ [, dQ. Thisis a
well-defined linear functional on L, since if f+¢g = f'+¢ then f—f' =¢'—¢g
is a constant k, so that [y f'dP = [y fdP —k and [, ¢ dQ = [, gdQ + k.
Further, ¢(1) = 1, so that ¢ is non-zero.

Now let

U={heC(X xY):h(x,y) <c(z,y) for all (z,y) € X xY}.

U is a non-empty convex open subset of C(X xY'). UNL is also non-empty.
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If f+g9€UNL then

¢(f+9) < sup{f(x):zeX}+sup{g(y):y eV}
< sup{c(z,y): (z,y) € X x Y},

so that ¢ is bounded above on U N L. Let M = sup{¢(h): h € UN L}, and
let B={l€ L:¢()> M}. Then B is a non-empty convex set disjoint from
U. By the Hahn-Banach theorem, there exists a non-zero continuous linear
functional ¢ on C(X x Y) such that if h € U then ¢(h) < K = inf{¢(b) :
be B}. If h > 0 then —ah € U for all sufficiently large «, and so ¢ (h) > 0.
In particular, (1) > 0. But since ¢ # 0, ¥(1) > 0. Let 6§ = ¢/ (1). 0 is
a non-negative linear functional on C(X x Y), and (1) = 1; by the Riesz
representation theorem 6 is represented by a Baire probability measure 7 on
X x Y. We shall show that 7 has the required properties.

Note that if h € U, (h) < A = inf{f(b) : b € B}. If [p € L and
¢(lo) = 0, then ¢(M.1 + aly) = M , so that M.1 + alp € B for all «, and
so O(M.1+ aly) = M + af(lp) > A for all a, and so §(I) = 0. If | € L then
I = ¢(l)141y, where ¢(lp) = 0, and so (1) = ¢(1): 6 extends ¢. In particular,
this means that A = M. If f € C(X) then [y, f(z)dn(z,y) = ¢(f) =
Jx fdP, and a similar result holds for g € C(Y'); thus 7 has marginals P
and Q. Finally,

m(P.Q) = sup{ [ faP+ [ 9dQ: f(z) + 9(y) < cla.m))
= sup{¢(h):heUNL} =M,

and [cdm =sup{[hdr:he U} < M.

3.5 The Wasserstein metric

Recall that up(d) = [y, x d(z,y) dP(z) dP(y); pp(d) is the mean distance
on X. We restrict attention to Pi(z) = {P € P(X) : up(d) < oo}. If
P,Q € Pi(X), let

1(P,Q) =sup{|/deP—/deQ| L feLip x| fll, <1}

7 is a metric on P1(X), and v > B)p, (x)-
IfP,Q ¢ P(X) let

mp(P, Q) = supf /X fdP+ /X gdP : f,g € Lip (X) : f(2)+9(y) < d(z,y)}-
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Note that if (X, d) is compact, then mj, = mg, the metric obtained by taking
d as the cost function.

Proposition 3.5.1 If P,Q € P, (X) then v(P,Q) = mr(P,Q).

Proof Setting g = —f, we see that v(P,Q) < m(P,Q).
Conversely, suppose that f,g € Lip (X) and f(z) 4+ ¢g(y) < d(z,y). Let

h(z) = inf{d(z,y) — g(y) : y € X}
Then h(z) — h(z) < d(z, z), so that ||h||;, < 1. Also f(z) < h(z) < —g(z),

so that B
/ fdP+/ ngg/ th—/ hdQ.
X X X X

Thus ’V(Pv Q) > mL(Pv Q) O

Corollary 3.5.1 If (X, d) is compact then v(P,Q) = mq(P, Q).
We now define, for P,Q € P;(X),

W(P,Q) = inf{/ d(z,y)dr(z,y) : 7 € Pi(X,Y) with marginals P and Q}.
XxX

Theorem 3.5.1 (The Kantorovitch-Rubinstein theorem II) W = ~.
Proof If m has marginals P and Q and if ||f|, <1 then

Jorae— [ raa= [ @ - twdny) < [ dey) ),

so that (P, Q) < W(P, Q).

Conversely, pick a base point zg € X, and let r(x) = d(z, z¢).

Now rdP and rdQ are bounded measures on (X,d) and are therefore
tight. Thus there exists an increasing sequence (K,) of compact subsets of
X containing x( such that

P(K,) > 1/n, Q(K,) > 1/n, /X\ rdP < 1/n and /X\K rdQ < 1/n.

n

If A is a Borel subset of K,,, let
Pn(A) = P(A> + (1 - M(Kn)>5$o (A)
Qn(A) = Q(A) + (1 - H(Kn))éxo (A)

Then by the compact Kantorovitch-Rubinstein theorem there exists a mea-
sure m, on K, x K, with marginals P,, and Q,, such that my(P,,Q,) =
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W (P, Q). We can extend P,,, Q,, to probability measures on X and m, to
a probability measure on X x X in the obvious way. Then the sequence ()
is uniformly tight on X x X and so it is weakly relatively compact. Thus
there is a subsequence (7, ) which converges weakly to a probability w. The
marginals P,, and Q,, then converge weakly to P and Q respectively.

Now let I = [y, y d(z,y)dn(x,y) and suppose that e > 0. Let d;(z,y) =
min(d(z,y),7). d; is a bounded metric on X equivalent to d, and I; =
Jx«x djdr / I. Thus there exists J such that I; > I —e/4 for j > J. But
fXXX djdmy, — 15 as k — 00, and so there exists K such that

/ d(z,y) dmy, 2/ dj(x,y)dmy,, >1—¢€/2
XxX XxX

for k > K. Now suppose that k¥ > K. There exists f € Lip (K,,) with
Il fll;, <1and f(xp) =0 such that

/ fdP,, —/ £dQ,, > / d(w,y) dm, — /4> T — 3¢/4.
K, K, XxX

By Theorem 1.9.1, we can extend f — X without increasing the Lipschitz
norm. Then |f(z)| < r(x) for all z € X. Thus

/fdP [ 1dQ) ([ rapu, ~ [ riQ.)|-
o fap- / fiQ
\Eny

/ rdP + / rdQ
X\Kn, X\Kn,

< 2/nk < 6/4

IN

for large enough k. Thus
[ fap— [ raq=1-c
X X

and so W(P,Q) <~(P, Q). O

The metric W is called the Wasserstein metric.

Exercises

3.1 Suppose that z,y € (X,d). Calculate |6, — dyl|sy B(0z,0,) and
W (0z, 6y).

3.2 OnR,let P, = (1-1/n)do+6,/n. Calculate |P,, — dol|y > B(Pn,do)
and W (P, dp).
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3.6 Entropy

We now turn to entropy, which provides a measure of the spread of values
of a function. If f > 0 and f € L' we define the entropy Ent(f) as

Ent(f) = E(flog f) — || flly log [l /]I, = E(f log(f/ I f]l1))-
Note the following;:

We take 0log 0 = 0, since zlogz — 0 as z — 0.

If £, = 1 then Ent(f) = E(flog /),

Ent(af) = aEnt(f) for a > 0.

By Jensen’s inequality, Entf > 0, and Ent f = 0 if and only if f is constant.

We have the following inequality, known as the entropy inequality.

Proposition 3.6.1 Suppose that f >0, f € L'(u) and fg~ € L'(u). Then

[ Fadu < 151 oe( [ €@ du) + Bt ).

Proof The condition on g ensures that [ fgdu exists, taking values in
(—00, 00]. By homogeneity, we can suppose that ||f||; = 1. Then

/fgdu

flog f+ flog @ dp
£>0 f

eg

= Ent(f) +/f>010g <f> fdpu.

Since fdp is a probability measure and log is concave, the result follows
from Jensen’s inequality. O

Corollary 3.6.1 If f >0 and f € L'(u) then

Ent(f) = Sup{/ fgdu: fg~ € Ll(u)v/eg dp =1}
Proof The proposition implies that

Ent(f) > sup{/ fgdu: fg~ € Ll(u),/eg dp = 1}.
But setting g = log(f/ [l fll1)x(s>0);

[er=[G/1A1) diand [ fgdu=Encr,

and so we obtain equality. O
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Where does this definition come from? In information theory, one con-
siders a probability P on a finite set I of size n, and if P({i}) = p;, defines
the information entropy as ent(P) = >"; p;log(1/p;) = —>_; pilog(p;). Let
7 be the uniform probability on I, so that 7w({i}) = 1/n, and let f; = np;.
Then

Ent.(f) = > (np;log(np;)/n

iel

= > pilogp; +logn = ent(w) — ent(P)
el
Thus our entropy is a relative entropy, measuring the extent to which ent(P)

is less than the maximum entropy logn. This accounts for the change in
sign.

Theorem 3.6.1 (The Csiszar-Kullback-Pinsker inequality) Suppose
that f € LY(P)" and that E(f) = 1. Then |P — fdP| v = E(|f—E(f)]) <
2E7Ltp(f)

Proof We need the following inequality, due to Pinsker:
g(x) = 2(x + 2)(xlogz — x4+ 1) — 3(x — 1) > 0 for z > 0.
For ¢g(1) = 0 and
g(x)=4((z +1)logz —2(x — 1)) >0 for x > 1

since logz = [{" dt/t > 2(x—1)/(x+1), by Jensen’s inequality. If 0 < x < 1
and y = 1/z then

g'(x) =—4((y+1)logy —2(y — 1))/y < 0.

Thus, using the Cauchy-Schwarz inequality,

E)(If ~E(f)) < 2/3EG/(f +2)(flogf — f +1))
< 2BE ) ESlogf - 1+ 1)

V2(E(flog £))"/2.
0
The total variation norm does not take account of the metric d, but the

Wasserstein metric does. We say that a probability measure P on a Pol-
ish metric space (X,d) satisfies a transport inequality with constant ¢ if

W (fP,P) < /2cEntp(f) for all f € L}(P)* with E(f) =
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Theorem 3.6.2 (Marton) If that a probability measure P on a Polish
metric space (X,d) satisfies a transport inequality then the concentration
function ap(r) satisfies ap(r) < e /8¢ for r2 > 8clog 2.

Proof Suppose that P(A) > 0 and P(B) > 0. Let fa = I4/P(A), fp =
Ip/P(B). Then by the triangle inequality,
W(fadP, fpdP) < W(fadP,P)+W(fadP,P)
< \/2cEntp(fA) + \/2cEntp(fB)
= \/2clog(1/P(A)) + \/ZClog(l/P(B))

On the other hand, if 7 has marginals fqdP and fpdP then m must be
supported on A x B, so that

W(fadP, fpdP) > d(A, B) = inf{d(a,b) : a € A,b € B}.
Applying this to a set A with P(A) > 1/2, and to B = C(A4,), we see that

r < \/2clog2 + \/2clog(1/P(C(Ar))),

from which the result follows. O

Proposition 3.6.2 Suppose that P € Py(X), where (X, d) is a Polish metric
space. Then P is sub-Gaussian, with exponent b, if and only if, whenever
Y € Lip o(X) with |||, <1, and f € (LY)" with E(f) = 1, then

E((ty — b*t?/2)f) < Entp(f) for allt € R. (1)
Proof 1If P is sub-Gaussian, with exponent b, then E(e®—0"*/2) < 1. If
f € (LYt and E(f) = 1 then, by Corollary 3.6.1,
Bute(f) = s [ fodu: fg~ € L), [ e dn=1)
> B((t6 - P2/2)f).

Conversely, suppose that (t) holds, and suppose that ¢ € Lip (, with
], < 1. Let ¥y = (p A N) — E(x) A N). Then eV is bounded; let
fn = eV /E(e!¥V). Then

Entp(fny) = E (E(etlbz\f)(tw]v — log E(eW}N)))

elton
> E (E(e“/’N)(WN - 52752/2))
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so that log(E(ef¥N)) < b%2/2, and E(e!¥~) < ¢¥"#/2. Suppose that ¢ > 0.
Since E(¢y) < E(1) =0, ¥ AN < ¢, and so E(e!¥"V)) < ¢0*#/2 Thus
E(e!) < e"™/2, by monotone convergence. Since —i also satisfies (1),
E(e!?) < /2 for t < 0, as well. O

Theorem 3.6.3 (Bobkov-Gotze) Suppose that P € P(X), where (X, d)
is a Polish metric space. Then P is sub-Gaussian, with exponent b, if and
only if it satisfies a transport inequality with constant b>.

Proof Suppose first that P is sub-Gaussian, with exponent b, and that f €
(LY*, with E(f) = 1. Suppose that ¢ € Lip (X) and that [[4||; < 1. Then
Y € LY(P), since P € P(X). Let 19 = ¢ — E(¢0). Then, by Proposition
3.6.2,

2,42

RS ) = B(tbof) < "o+ Ent (),
for all t € R. Setting t = \/2Entp(f)/b,

E(yf —1) < y/20%Entp(f),

so that W(fdP,P) = ~(fdP,P) < /2b’Entp(f), by the Kantorovitch-
Rubinstein theorem.

Conversely, suppose that W (fdP,P) < \/2b2Entp(f). Then if f € (L')*,
with E(f) =1, and ¢ € Lip ((X), with |||, <1, and if ¢ > 0

2
B(0S) = BWf ) < \/22Enip(f) < 5 + TBnte (),

so that E((ty — b%t?/2)f) < Entp(f). Replacing 1) by —, we see that the
same inequality holds for ¢t < 0, and so P is sub-Gaussian, with exponent b,
by Proposition 3.6.2. O



Appendix

4.1 The bipolar theorem

Suppose first that F is a finite-dimensional vector space with dual E*. We
can take a basis, and use it to give F and E* Euclidean norms. If A is a
non-empty subset of E we define its polar as

A ={¢ € B supo(a)| < 1}.
acA

A° is a closed convex symmetric subset of E*. Similarly if B is a non-empty
subset of £*, we define B°° C F.

Theorem 4.1.1 If A is a non-empty closed convex symmetric subset of E,
then A = A®°.

Proof Certainly A C A°°. Suppose that y ¢ A. There exists z € A such
that ||y — z|| = d(y,A). Let w = y — 2z, and let ¢(z) = (z,w), so that
d(y) —d(z) = |w|[* >0. fac Aand 0 < A < 1 then (1 — )z + Aa € 4,
and y — ((1 = Nz + Aa) = w + A(z — a), so that

(w+ Az —a),w+ Az —a)) > (w,w);
that is,
I (z — a,w) + A2z — a|® > 0.

Thus ¢(z) > ¢(a). Since A is symmetric, ¢(z) > |¢(a)|. Choose ¢(2) < r <
o(y), and let ¢ = ¢/r. Then ¢ € A° and so y ¢ A°°. O

Corollary 4.1.1 If A is non-empty and symmetric, then conv(A) = A°°.

What about the infinite-dimensional case? Here we use the Hahn-Banach
Theorem.
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Theorem 4.1.2 Suppose that C is a non-empty closed convex subset of a
real normed space (E, ||.||p), and that x ¢ E. Then there exists a continuous
linear functional ¢ on E such that ¢(z) > sup{¢(c) : c € C}.

Proof Without loss of generality, we can suppose that 0 € C. Let 0 < d <
d(x,C)/2, and let A = C' 4 dB, where B is the unit ball of E. Then A is a
convex absorbing set. Let p(y) = inf{\ : y € AA}. pis a sublinear functional
on E. Since x — dz/ ||z|| € A, p(x) > 1. Let ¥(ax) = ap(x) Then 1) is a
linear functional on span (z) and ¥ (ax) < p(ax). By the Hahn-Banach
theorem, 1 extends to a linear functional ¢ on E with ¢(y) < p(y) for all
y € E. Then ¢(x) > 1 and ¢(y) < 1 for y € A, so that ¢(c) <1 for c € C.
Finally, if ||y|]| < 1 then dy € A and so ¢(y) = ¢(dy)/d < 1/d: thus ¢ is

continuous. O

Corollary 4.1.2 Suppose that C' is a symmetric closed convex subset of a
real normed space (E, ||.||z). Then C = C°°.

Proof As before, C C C°°. If ¢ ¢ C, there exists a continuous linear
functional ¢ on E with ¢(z) > 1, ¢(c) < 1 for ¢ € C. Since C is symmetric,
|p(c)| <1 for c € C, so that ¢ € C° and x & C°°. O



