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STABILITY OF THE LOGARITHMIC SOBOLEV INEQUALITY VIA THE

FÖLLMER PROCESS

RONEN ELDAN, JOSEPH LEHEC, AND YAIR SHENFELD

Abstract. We study the stability and instability of the Gaussian logarithmic Sobolev inequality, in
terms of covariance, Wasserstein distance and Fisher information, addressing several open questions
in the literature. We first establish an improved logarithmic Sobolev inequality which is at the same
time scale invariant and dimension free. As a corollary, we show that if the covariance of the measure
is bounded by the identity, one may obtain a sharp and dimension-free stability bound in terms of the
Fisher information matrix. We then investigate under what conditions stability estimates control
the covariance, and when such control is impossible. For the class of measures whose covariance
matrix is dominated by the identity, we obtain optimal dimension-free stability bounds which show
that the deficit in the logarithmic Sobolev inequality is minimized by Gaussian measures, under
a fixed covariance constraint. On the other hand, we construct examples showing that without
the boundedness of the covariance, the inequality is not stable. Finally, we study stability in
terms of the Wasserstein distance, and show that even for the class of measures with a bounded
covariance matrix, it is hopeless to obtain a dimension-free stability result. The counterexamples
provided motivate us to put forth a new notion of stability, in terms of proximity to mixtures of the
Gaussian distribution. We prove new estimates (some dimension-free) based on this notion. These
estimates are strictly stronger than some of the existing stability results in terms of the Wasserstein
metric. Our proof techniques rely heavily on stochastic methods.
keywords: Quantitative functional inequalities, stochastic methods.

1. Introduction

1.1. Overview. The logarithmic Sobolev inequality is one of the fundamental Gaussian functional
inequalities [20]. The inequality was proven independently in the information-theoretic community
by Stam [26] and in the mathematical-physics community by Gross [17]. The form of the inequality
which we consider in this paper states that for any nice enough probability measure µ on R

n,

H(µ | γ) ≤ 1

2
I(µ | γ). (1)

Here γ is the standard Gaussian measure on R
n with density

γ(dx) = (2π)−
n
2 e−

|x|2

2 dx,

and H(µ | γ), I(µ | γ) are the relative entropy and relative Fisher information respectively:

H(µ | γ) =
∫

Rn

log

(

dµ

dγ

)

dµ,

and

I(µ | γ) =
∫

Rn

∣

∣

∣

∣

∇ log

(

dµ

dγ

)
∣

∣

∣

∣

2

dµ.
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The inequality (1) is sharp as can be seen by taking µ to be any translation of γ, and in fact
these are the only equality cases as was proved in [6]. This characterization naturally leads to the
question of stability. That is, supposing that the deficit

δ(µ) :=
1

2
I(µ | γ)−H(µ | γ)

is small, in what sense is µ close to a translate of γ? The study of stability questions for Gaussian in-
equalities is an ongoing active area of research with many applications [15], [23]. The precise notion
of stability is context-dependent, but a common thread is the desire to make the stability estimates
dimension-free. This is because the Gaussian measure itself is inherently infinite-dimensional, so
we expect functional inequalities about Gaussian measures in R

n to extend to infinite dimensions.
Indeed, the infinite-dimensional nature of the logarithmic Sobolev inequality is crucial to its appli-
cations to quantum field theory, which was the original motivation of Gross. For example, it was
proven in a series of works [7], [23, 24], [12], [3] that the Gaussian isoperimetric inequality (which
implies the log-Sobolev inequality) enjoys such dimension-free estimates. The logarithmic Sobolev
inequality however, turns out to be much more delicate.

1.2. Fisher information matrix and deficit. Our first observation is that the log-Sobolev in-
equality can be self-improved in a dimension-free way. This observation then leads to natural
stability results, provided that cov(µ) � Idn. Let us formulate first the log-Sobolev inequality in
an alternative way. Define the entropy and Fisher information of µ with respect to the Lebesgue
measure by

H(µ | L) =
∫

Rn

log

(

dµ

dx

)

dµ,

and

I(µ | L) =
∫

Rn

∣

∣

∣

∣

∇ log

(

dµ

dx

)
∣

∣

∣

∣

2

dµ.

The log-Sobolev inequality (1) then reads

H(µ | L)−H(γ | L) ≤ 1

2
(I(µ | L)− n) .

It is well known (see for instance the very end of [6]) that the above inequality can be improved
via scaling. Let X ∼ µ and let σ > 0. Computing the entropy and Fisher information of the law of
σX, and optimizing over σ, shows that

H(µ | L)−H(γ | L) ≤ n

2
log

(

I(µ | L)
n

)

. (2)

Inequality (2) is known as the dimensional logarithmic Sobolev inequality. Our first result shows
that this bound is sub-optimal, and that one should consider the individual eigenvalues of the
Fisher information matrix:

I(µ | L) :=
∫

Rn

(

∇ log

(

dµ

dx

))⊗2

dµ.

This matrix is of course related to the Fisher information via Tr[I(µ | L)] = I(µ | L).
Theorem 1. Let µ be a probability measure on R

n. Then

H(µ | L)−H(γ | L) ≤ 1

2
log det [I(µ | L)] . (3)

Theorem 1 improves upon (2) by the AM/GM inequality. Note also that (3) is at the same
time scale invariant and dimension-free: both sides of the inequality behave additively when taking
tensor products.
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Remark 1. After the first version of this work was released, we realized that Theorem 1 had already
been obtained by Dembo, see [10], at the beginning of page 12. Its application to the stability of
the logarithmic Sobolev inequality, see Corollary 2 and Theorem 3 below, appears to be new.

Remark 2. A reverse form of Theorem 1 is known when the measure is log-concave. Observe first
the integration by parts identity

I(µ | L) = −
∫

Rn

∇2 log

(

dµ

dx

)

dµ.

The reverse form of Theorem 1 then asserts that if µ is log-concave and if log det is moved inside
the integral in the right-hand side of (3), then the inequality is reversed, see [1]. See also [5] for a
simpler proof based on the functional Santaló inequality.

Self-improvements of the form of (2) and (3) lead to stability results for the log-Sobolev inequality,
provided that the covariance of µ is bounded by the identity. Define the function ∆(t) := t−log(1+t)
for t > −1. It was observed in [4] that if Eµ[|x|2] ≤ n, then (2) implies that

δ(µ) ≥ n

2
∆

(

I(µ | γ)
n

)

. (4)

From (4) one can deduce weaker but more amenable stability statements. For example,

δ(µ) ≥ c

n
W4

2(µ, γ) (5)

for some universal constant c, see [4] for the details. Here, W2(µ, γ) is the Wasserstein two-distance
between µ and γ. In general, the p-Wasserstein distance (p ≥ 1) for probability measures µ, ν is
defined as

Wp(µ, ν) := inf
X,Y

{

E[ |X − Y |p]1/p
}

, (6)

where the infimum is taken over all couplings (X,Y ) of (µ, ν). A problematic feature of both
bounds, (4) and (5), is that they are dimension-dependent: Letting formally n tend to +∞, we
see that the lower bound on the deficit tends to 0 in both cases (observe that ∆(ǫ) ∼ ǫ2/2 when ǫ
tends to 0). Note also that the log-Sobolev deficit behaves additively when taking tensor products,
and that neither of the two lower bounds (4) and (5) does. In particular if µ is the product of a
1-dimensional measure by a (n−1)-dimensional standard Gaussian, the lower bound is of order 1/n
in both cases, whereas the deficit is of order 1. On the other hand, we can deduce from Theorem
1 the following dimension-free estimate.

Corollary 2. Let µ be a probability measure on R
n such that Eµ[x

⊗2] � Idn, and let {βi}ni=1 be the
eigenvalues of its Gaussian Fisher information matrix I(µ | γ). Then

δ(µ) ≥ 1

2

n
∑

i=1

∆(βi). (7)

Again, by concavity of the logarithm, (7) is a strict improvement on (4).
To see how Corollary 2 follows from Theorem 1, note that (3) can be rewritten as

δ(µ) ≥ 1

2

n
∑

i=1

∆(αi − 1), (8)

where α1, . . . , αn are the eigenvalues of the Fisher information matrix of µ with respect to the
Lebesgue measure. Using the integration by parts identity

I(µ | L)− Idn = I(µ | γ) + Idn − Eµ[x
⊗2]
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we see that if Eµ[x
⊗2] � Idn, then

I(µ | L)− Idn � I(µ | γ) � 0.

Since ∆ is increasing on [0,+∞), the inequality (7) thus follows from (8).

Remark 3. Corollary 2 bears an interesting formal resemblance to the following result. Let T be
the Brenier map from µ to γ and let {κi(x)}ni=1 be the eigenvalues of the map DT (x)− Idn. Then
it can be shown [9] that

δ(µ) ≥
n
∑

i=1

Eµ[∆(κi)].

For further appearances of the map ∆ as a cost function in transportation distance, see [4].

Let us note that although Theorem 1 (and thus Corollary 2) follow from a simple scaling argument
(see section 2), it is arguably the only natural dimension-free stability result that has minimal
assumptions on µ. To the best of our knowledge, the only other known dimension-free estimates
of the form of Corollary 2 are the results of [15], which impose strong conditions of the measure µ,
namely that it satisfies a Poincaré inequality.

1.3. Covariance and Gaussian mixtures. As we saw, in order to get stability estimates for the
deficit from the self-improvements of the log-Sobolev inequality, we need to assume that Eµ[|x|2] ≤
n. The phenomenon that the size of cov(µ) serves as a watershed for stability estimates has already
been observed in the literature, but the precise connection has remained unclear. Indeed, [19] raises
the question regarding the relation between the distance of the covariance of µ from the identity,
and the possible lower bounds on the deficit. Our next result completely settles this question.

Theorem 3. Let µ be a probability measure on R
n and let λ := {λi}ni=1 be the eigenvalues of

cov(µ). Then

δ(µ) ≥ 1

2

n
∑

i=1

1{λi<1}(λ
−1
i − 1 + log λi). (9)

In particular, if cov(µ) � Idn, then

δ(µ) ≥ 1

2

n
∑

i=1

(λ−1
i − 1 + log λi) = δ(γλ)

where γλ is a Gaussian measure on R
n having the same covariance matrix as µ.

On the other hand, this becomes completely wrong if we remove the hypothesis on the covariance
matrix, even in dimension 1: there exists a sequence (µk) of mixtures of Gaussian measures on R

such that var(µk) → ∞ while δ(µk) → 0.

The moral of Theorem 3 is, that if cov(µ) � Idn, then the deficit δ(µ) controls the distance
of cov(µ) to the identity. For example, a weaker bound which can be deduced from (9) using
1
x − 1 + log x ≥ 1

2(x− 1)2 for x ∈ (0, 1] is,

δ(µ) ≥ 1

4
‖cov(µ)− Idn‖2HS ,

where the norm on the right hand side is the Hilbert-Schmidt norm. On the other hand, if the
covariance of µ is not a priori bounded by the identity, then one can have an arbitrarily small deficit
with arbitrarily large variance.

Remark 4. Theorem 3 can also be phrased as a statement about minimizing the deficit subject to
a covariance constraint. For simplicity let us consider the one-dimensional situation. Fix a scalar
σ > 0. Of all distributions µ with variance σ, which one minimizes δ(µ)? Theorem 3 shows that
the answer is dramatically different depending on whether or not σ is greater than 1. (If σ = 1
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then obviously µ = γ minimizes δ(µ).) If σ < 1, then the minimizer is the Gaussian measure
with variance σ. On the other hand, if σ > 1, then by taking µ to be an appropriate mixture of
Gaussians, we can make δ(µ) smaller than the Gaussian with variance σ.

The Gaussian mixtures in Theorem 3 served as counterexamples to stability estimates in terms
of the distance of cov(µ) from the identity. In fact, such mixtures show the impossibility of many
other stability estimates:

Theorem 4. For m ∈ R
n let γm,Id be the Gaussian measure centered at m with identity covariance

matrix. There exists a sequence (µk) of probability measures on R, each of which is a mixture of
two Gaussian measures of variance 1, satisfying δ(µk) → 0 and

lim
k→∞

inf
m∈R

{W1(µk, γm,Id)} = +∞.

Additionally, there exists a sequence of dimensions n(k) ↑ +∞ and a sequence (µk) of isotropic

(i.e. centered with identity as covariance) measures on R
n(k), satisfying δ(µk) = O(n(k)−1/3) → 0

and
inf

m∈Rn(k)
{W2(µk, γm,Id)} = Ω(n(k)1/6) → +∞.

The first statement shows that the log-Sobolev inequality is unstable for W1, even in dimension
1. The second statement shows that even for isotropic measures, there is no dimension-free stability
result for W2. Note however that our second counterexample does not work for W1; as far as we
know it could still be the case that δ(µ) ≥ cW1(µ, γ)

2 for every isotropic µ on R
n. (Recall that

by Jensen’s inequality we have W1(µ, ν) ≤ W2(µ, ν).) Explicit counterexamples to stability were
discussed recently in the literature, see [18]. These examples however are complicated and require
a lot of tedious computations while ours are completely elementary. We just observe that Gaussian
mixtures have small log-Sobolev deficit, see Proposition 5 below. Similar Gaussian mixture exam-
ples can be found in the context of stability of the entropy power inequality, see [8] and references
therein.

Proposition 5. Let p be a discrete measure on R
n and let S(p) = −∑

p(x) log p(x) be its Shannon
entropy. Then

δ(p ∗ γ) ≤ S(p).

1.4. Decompositions into mixtures. If we take stock of the results in the preceding sections,
we see that while a result of the form

δ(µ) ≥ c

n
W4

2(µ, γ)

holds under the assumption that Eµ[|x|2] ≤ n, we cannot replace the right hand side by c′√
n
W3

2(µ, γ),

let alone c′′W2
2(µ, γ). (These bounds increase in strength since W2

2(µ, γ) ≤ 2n under the assumption
Eµ[|x|2] ≤ n.) As we saw, mixtures of Gaussians pose counterexamples to such bounds. Our next
result shows that in a certain sense, these counterexamples are the only obstacles.

Theorem 6. Let µ be a probability measure on R
n. Then there exists a measure ν on R

n such that

δ(µ) ≥ 1

15

W3
2(µ, ν ∗ γ)√

n
, (10)

and so that ν is a Dirac point mass whenever δ(µ) = 0.

In fact, that a small deficit implies that µ is close to being a mixture of Gaussians, is an impli-
cation which comes out naturally from our stochastic proof technique as we will see below. The
relation between approximate equality in the log-Sobolev inequality and proximity to mixtures of
product measures, appears in a recent work of Austin [2] in a more abstract setting of product
spaces. Given Theorem 6 and Proposition 5 we pose the following question.
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Question 7. Given a probability measure µ on R
n, is it true that there exists a discrete probability

measure p on R
n satisfying S(p) ≤ C δ(µ) and

W2
2(µ, p ∗ γ) ≤ C δ(µ),

where C is a universal constant?

Note that both sides of the inequality above behave additively when taking tensor products. The
inequality is thus completely dimension-free, which is our main motivation for it.

Remark 5. While the Wasserstein distance is a bona fide distance between probability measures, in
the context of the log-Sobolev inequality it seems more natural to work with lower bounds which
are expressed in terms of relative entropy and relative Fisher information. Thus one may wonder,
whether it is possible to replace the lower bound on the deficit in Question 7 by the relative entropy
or Fisher information between µ and a mixture of Gaussians. We focus on the Wasserstein two-
distance distance since by the log-Sobolev and Talagrand’s inequalities such results are weaker.
Moreover, our decomposition results are easier to prove for the Wasserstein distance.

As a step towards answering this question, we prove that an estimate similar in spirit does indeed
hold. We show that a random vector distributed like µ, can be written as the sum of two random
vectors which are orthogonal in expectation, one of which is close to a Gaussian in a dimension-free
way.

Theorem 8. Let µ be a probability measure on R
n and let X ∼ µ. There exists a decomposition

X
D
= Y +W with the property that E[〈Y,W 〉] = 0, such that

δ(µ) ≥ 1

2
W2

2(ν, γ)

where Y ∼ ν.

Theorem 8 can be seen as an improvement on (5). Indeed, assume that Eµ[|x|2] ≤ n. The
theorem implies that

W2(µ, γ) ≤ W2(µ, ν) +W2(ν, γ) ≤ E[|W |2]1/2 +
√

2δ(µ).

Moreover, since E[〈Y,W 〉] = 0, we have

E[|W |2] = E[|X|2]− E[|Y |2] ≤ n− E[|Y |2].
If δ(µ) ≥ Cn, then (5) holds trivially, so we can assume additionally that δ(µ) = O(n). Then by
the theorem W2(ν, γ) = O(

√
n) and thus

E[|Y |2] ≥ n− C
√
nW2(ν, γ) ≥ n− C

√

2nδ(µ).

Putting everything together, we get

W2(µ, γ) ≤
√

2δ(µ) + C ′ n1/4δ(µ)1/4 ≤ C ′′ n1/4δ(µ)1/4,

which is (5).

1.5. Methods. We provide two sets of proofs for Theorems 1 and 3. The first set of proofs proceeds
by establishing Theorem 1 via a scaling argument, and then deduces the first part of Theorem 3
from Theorem 1 via the Cramér-Rao bound. The second set of proofs uses a stochastic process
known as the Schrödinger bridge, or the Föllmer process, depending on the context. This process is
entropy-minimizing and is thus suitable for the logarithmic Sobolev inequality. For example, it is
used in [21] to give a simple proof of the log-Sobolev inequality (see section 3), and in [13] to obtain
a reversed form (see also [14]). We use this process to prove Theorems 6 and 8 as well. Some of our
arguments are essentially semigroup proofs (see [19]), phrased in a stochastic language, which uses
the semigroup of the Föllmer process rather than the more common heat or Ornstein-Uhlenbeck
semigroups. A key point in our proofs is that we essentially compute two derivatives of the entropy
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rather than one. This gives us more precise information about the log-Sobolev inequality. The
stochastic formulation allows for relatively simple computations. We go however an additional step
beyond semigroup techniques, and also analyze pathwise behavior of the Föllmer process. This
analysis provides us with a natural way of decomposing the measure µ (see the proofs of Theorem
6 and Theorem 8).

1.6. Organization of paper. In section 2 we give the first set of proofs of Theorems 1 and 3.
In section 3 we define the Föllmer process and analyze its properties. This analysis provides us
with ways of decomposing µ. Section 4 contains the second set of proofs of Theorems 1 and 3
via the Föllmer process, and section 5 contains the proofs of Theorems 6 and 8. Finally, the
counterexamples to stability (and the proof of Theorem 4) are discussed in section 6.

1.7. Acknowledgments. We are grateful to Ramon van Handel for his enlightening comments, in
particular, the observation that the first part of Theorem 3 can be deduced from Theorem 1 via the
Cramér-Rao bound, is due to him. Our original proof of the first part of Theorem 3 can be found
in section 4. We are grateful to Djalil Chafäı for bringing reference [10] to our attention. We would
also like to thank Max Fathi, Michel Ledoux and Dan Mikulincer for discussions and suggestions.
In addition we would like to thank an anonymous referee for useful comments which improved the
quality of this manuscript. Finally, we would like to acknowledge the hospitality of MSRI and to
thank the organizers of the program on Geometric Functional Analysis and Applications in the fall
2017 where part of this work was done.

2. self-improvements of the log-Sobolev inequality

In this section we show how Theorem 1 and the first part of Theorem 3 follow from scaling
the log-Sobolev inequality appropriately and the Cramér-Rao bound. Recall that the log-Sobolev
inequality can be rewritten

H(µ | L)−H(γ | L) ≤ 1

2
(I(µ | L)− n) . (11)

Let Σ be an n× n symmetric positive definite matrix and let µΣ be the law of ΣX where X ∼ µ.
Easy computations show that

H(µΣ | L) = H(µ | L)− log det Σ and I(µΣ | L) = Σ−1I(µ | L)Σ−1.

In particular

I(µΣ | L) = Tr
(

Σ−2I(µ | L)
)

.

Applying (11) to µΣ thus yields

H(µ | L)−H(γ | L) ≤ 1

2

(

Tr
(

Σ−2I(µ | L)
)

− n+ log detΣ2
)

.

The right-hand side of the inequality is minimal when Σ =
√

I(µ | L). This choice of Σ yields
the desired inequality (3). Note that the scaling proof of (2) amounts to considering only diagonal
matrices of the form Σ = σIdn for some scalar σ > 0.

The first part of Theorem 3 follows from Theorem 1 via the Cramér-Rao bound:

cov(µ)−1 � I(µ | L). (12)
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Indeed, recall that {λi} and {αi} denote the eigenvalues of cov(µ) and I(µ | L), respectively. Since
the map x 7→ 1{x>1}(x− 1− log x) is increasing on [0,+∞), inequality (12) imply that

1

2

n
∑

i=1

1{λi<1}(λ
−1
i − 1 + log λi) ≤

1

2

n
∑

i=1

1{αi>1}(αi − 1− logαi)

≤ 1

2

n
∑

i=1

(αi − 1− logαi).

By Theorem 1 this is upper bounded by the deficit δ(µ) and we obtain the first statement of
Theorem 3. The second part of the theorem follows from a straightforward computation which
shows that

δ(γλ) =
1

2

n
∑

i=1

(

1

λi
− 1 + log λi

)

,

see section 6 below. The third part is also proved in section 6.

3. The Föllmer Process

Given an absolutely continuous probability measure µ on R
n we consider a stochastic process

(Xt) which is as close as possible to being a Brownian motion while having law µ at time 1.
Namely X1 has law µ, and the conditional law of X given the endpoint X1 is a Brownian bridge.
Equivalently, the law of X has density ω 7→ f(ω1) with respect to the Wiener measure, where f is
the density of µ with respect to γ and ω is an element of the classical Wiener space. In particular the
process X minimizes the relative entropy with respect to the Wiener measure among all processes
having law µ at time 1. This process was first considered by Schrödinger who was interested in the
problem of minimizing the entropy with endpoint constraints, see [25] and the survey [22] where a
nice historical account on the Schrödinger problem is given as well as the connection with optimal
transportation.

It was first observed by Föllmer [16] that the process (Xt) solves the following stochastic differ-
ential equation:

dXt = dBt +∇ logP1−tf(Xt) dt

where (Bt) is a standard Brownian motion, and (Pt) is the heat semigroup, defined by

Pth(x) = E[h(x+Bt)]

for every test function h. We call the process (Xt) the Föllmer process and the process (vt) given
by vt := ∇ log P1−tf(Xt), the Föllmer drift.

Below we recall some basic properties of this process, and we repeat the proof from [21] of the
log-Sobolev inequality based on the Föllmer process. We then prove more refined properties of the
bridge which are needed for our stability results. Roughly, the properties (i),(ii) below correspond to
the first derivative of entropy along the process while the further properties (iii),(iv),(v) correspond
to the second derivative. Finally we show how the Föllmer process leads to natural decompositions
of µ.

From now on we assume that the measure µ has finite Fisher information

I(µ | γ) =
∫

Rn

|∇ log f |2 dµ < +∞.

Proposition 9. The Föllmer drift (vt) has the following properties:

(i) The relative entropy of µ with respect to γ satisfies

H(µ | γ) = 1

2
E

[
∫ 1

0
|vt|2 dt

]

. (13)

(ii) The Föllmer drift (vt) is a square integrable martingale.
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The proof of this proposition can be found in [21]. As was noticed in [21], the log-Sobolev
inequality follows immediately from these properties once it is realized that

E[|v1|2] = I(µ | γ). (14)

Indeed, as (vt) is a martingale, (|vt|2) is a sub-martingale so

H(µ | γ) = 1

2
E

[
∫ 1

0
|vt|2dt

]

≤ 1

2
E[|v1|2] =

1

2
I(µ | γ).

In particular we obtained the following expression for the deficit.

Proposition 10. Let µ be a probability measure on R
n with finite Fisher information and let (vt)

be the associated Föllmer drift. Then

δ(µ) =
1

2
E

[
∫ 1

0
|v1 − vt|2dt

]

.

Proof. Since (vt) is a square integrable martingale we have E[〈v1, vt〉] = E[|vt|2] so
E
[

|v1|2 − |vt|2
]

= E
[

|v1 − vt|2
]

.

Combining this with (13) and (14) yields the result. �

The above proof of the log-Sobolev inequality utilizes information about the first derivative of
the entropy, that is, the fact that the derivative |vt|2 is a sub-martingale. In order to obtain stability
estimates for the log-Sobolev inequality we need to look at the second derivative of the entropy.
This is the role of the next proposition. In what follows (Ft) is the natural filtration of the process
(Xt) and

cov(X1 | Ft) := E[X⊗2
1 | Ft]− E[X1 | Ft]

⊗2

denotes the conditional covariance of X1 given Ft.

Proposition 11. Set Qt = ∇2P1−tf(Xt), then

(iii) vt =
∫ t
0 QsdBs for all t.

(iv) At least for t < 1 the following alternative expressions for Qt hold true

Qt =
cov(X1 | Ft)

(1− t)2
− Idn

1− t
(15)

= E[∇2 log f(X1) | Ft] + cov(v1 | Ft). (16)

(v) The process (Qt +
∫ t
0 Q

2
s ds) is a martingale.

Proof. The computation of dvt is a straightforward application of Itô’s formula.
For (iv) recall that P1−tf is the convolution of f with some Gaussian. Putting derivatives on the
Gaussian we get after some computations

∇2 logP1−tf = − Idn
1− t

+
1

(1− t)2
P1−t(f(x)x

⊗2)

P1−tf
− 1

(1− t)2

(

P1−t(f(x)x)

P1−tf

)⊗2

.

On the other hand, for every test function u, the following change of measure formula holds true

E[u(X1) | Ft] =
P1−t(uf)(Xt)

P1−tf(Xt)
.

This follows from the explicit expression that we have for the law of (Xt). Plugging this into the
previous display yields (15). The proof of (16) is similar, only we put the derivatives on f rather
than the Gaussian when computing ∇2 log P1−tf .
To get (v) observe that by (16)

Qt = martingale− vt ⊗ vt.

Now since vt = QtdBt we have d(vt ⊗ vt) = d(martingale) +Q2
t dt. Hence the result. �
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Note that since X1 = B1 +
∫ 1
0 vt dt and since the expectation of vt is constant over time, the

expectation of vt coincides with that of µ. In addition, it follows from (15) that

E[Qt] = Eµ[∇2 log f + (∇ log f)⊗2]− E[vt ⊗ vt]

for every t. Integrating by parts yields the following:

Proposition 12. For every time t we have E[vt] = Eµ[x] and

E[Qt] = Eµ[x⊗ x]− Idn − E[vt ⊗ vt]

= cov(µ)− Idn − cov(vt).

Other than facilitating an immediate proof of the log-Sobolev inequality, the Föllmer process
provides a canonical decomposition of the measure µ which we now describe. Recall that

E[h(X1) | Ft] =
P1−t(hf)(Xt)

P1−tf(Xt)
,

for every test function h. This allows to compute the density of the conditional law of X1 given
Ft. Namely, let µt be the conditional law of X1−Xt√

1−t
given Ft. Then

µt(dx) =
f(
√
1− t x+Xt)

P1−tf(Xt)
γ(dx). (17)

Lemma 13. We have

X1 =

∫ 1

0
cov(µt)dBt (18)

almost-surely, and

δ(µ) ≥
∫ 1

0
E [δ(µt)] dt. (19)

Proof. Again E[X1 | Ft] = P1−t(xf)(Xt)/P1−tf(Xt). So

dE[X1 | Ft] = ∇
(

P1−t(xf)

P1−tf

)

(Xt) dBt.

Arguing as in the proof of (iv) we get

∇
(

P1−t(xf)

P1−tf

)

(Xt) =
cov(X1 | Ft)

1− t
= cov(µt),

which proves (18). For the inequality (19), observe that by (17)

δ(µt) =
1− t

2
E[|∇ log f(X1)|2 | Ft]− E[log f(X1) | Ft] + log P1−tf(Xt).

Also, by Itô’s formula

d log P1−tf(Xt) = vt dBt +
1

2
|vt|2 dt.

Putting everything together we get

E [δ(µt)] =
1

2

∫ 1

t
E
[

|v1 − vs|2
]

ds.

Thus, by Proposition 10
∫ 1

0
E [δ(µt)] dt =

1

2

∫ 1

0
sE[|v1 − vs|2] ds ≤ δ(µ). �

Remark 6. At this stage it maybe worth noticing that the measure-valued process (µt) coincides
with a simplified version of the stochastic localization process of the first named author [11].
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4. Comparison theorems

In this section we prove Theorems 1 and 3 via the Föllmer process.

Proof of Theorem 1. Because the result is invariant by scaling we can assume without loss of gen-
erality that cov(µ) is strictly smaller than the identity. Let m(t) = −E[Qt]. We know from
Proposition 12 that

m(t) = −cov(µ) + Idn + cov(vt). (20)

This shows in particular that m(t) is positive definite. Item (v) of Proposition 11 shows that
d
dtm(t) � m(t)2. Since m(t) is positive definite this amounts to d

dtm(t)−1 � −Idn. We use this
information to compare m(t) with m(1). We get

m(t) �
(

m(1)−1 + (1− t)Idn
)−1

. (21)

Let f̃ be the density of µ with respect to the Lebesgue measure and observe that

m(1) = −E[Q1] = −Eµ[∇2 log f ]

= −Eµ[∇2 log f̃ ]− Idn

= I(µ | L)− Idn.

Taking the trace in (21) and using Proposition 12 thus gives

−Eµ[|x|2] + n+ E[|vt|2] ≤
n
∑

i=1

1

(αi − 1)−1 + 1− t
,

where the αi are the eigenvalues of I(µ | L). Integrating between 0 and 1 and applying item (i) of
Proposition 9 yields

−Eµ[|x|2] + n+ 2H(µ | γ) ≤
n
∑

i=1

log(αi).

Lastly, a straightforward computation shows that the left hand side equals 2H(µ | L) − 2H(γ |
L). �

Proof of Theorem 3. Consider the orthogonal decomposition cov(µ) =
∑n

i=1 λiu
⊗2
i where ui are

unit orthogonal vectors, and again let m(t) = −E[Qt]. Recall (20), which shows in particular that
m(0) = −cov(µ) + Idn. Fix i ∈ [n] such that λi < 1 and denote θ = ui. Note that

〈θ,m(0)θ〉 = 1− λi > 0.

Moreover, we have

d

dt

〈

θ,m(t)θ
〉

≥
〈

θ,m(t)2θ
〉

≥
〈

θ,m(t)θ
〉2
.

Since the function g(t) = 1
1/c−t solves the ordinary differential equation d

dtg(t) = g(t)2 with the

boundary condition g(0) = c, an application of Grônwall’s inequality gives

〈θ,m(t)θ〉 ≥ 1

〈θ,m(0)θ〉−1 − t
=

1

(1 − λi)−1 − t
.

Summing up over all i such that λi < 1, we have

d

dt
E[|vt|2] = Tr

(

m(t)2
)

≥
n
∑

i=1

1{λi<1}

((1− λi)−1 − t)2
.

Integrating this between t and 1, we obtain

E[|v1|2]− E[|vt|2] ≥
n
∑

i=1

1{λi<1}

(

1

λi
− 1− 1

(1− λi)−1 − t

)

.
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Now we integrate between 0 and 1 and we use Proposition 10. We get

δ(µ) ≥ 1

2

n
∑

i=1

1{λi<1}

(

1

λi
− 1 + log λi

)

,

which is the desired inequality. �

5. Decompositions into mixtures

In this section we prove Theorems 6 and 8.

Proof of Theorem 6. The idea of the proof is to show that for any t, the transportation distance
between X1 and the sum of the independent random vectors E[X1 | Ft]+(B1−Bt) can be controlled
by the deficit. Optimizing over t yields the theorem.
The map

t 7→ E
[

|v1|2 − |vt|2
]

is a non-increasing function since (|vt|2) is a sub-martingale. Hence by Proposition 10 and as (vt)
is a martingale,

δ(µ) =
1

2
E

[
∫ 1

0
|v1 − vt|2dt

]

=
1

2

∫ 1

0
E
[

|v1| − |vt|2
]

dt ≥ t

2
E
[

|v1 − vt|2
]

(22)

for every t ∈ [0, 1]. Let Yt = E[X1 | Ft] + B1 − Bt and note that since B1 − Bt is independent of
Ft, the random vector Yt has law νt ∗ γ0,1−t where νt is the law of E[X1 | Ft]. Hence since X1 has
law µ and

E[X1 | Ft] = Xt + (1− t)vt,

we get by Jensen’s inequality that

W2
2(µ, νt ∗ γ0,1−t) ≤ E

[

|X1 − Yt|2
]

= E

[

∣

∣

∣

∣

∫ 1

t
(vs − vt)ds

∣

∣

∣

∣

2
]

≤ (1− t)

∫ 1

t
E
[

|vs − vt|2
]

ds

≤ (1− t)2E[|v1 − vt|2] ≤ E[|v1 − vt|2].
Combining this with (22) yields

W2
2(µ, νt ∗ γ0,1−t) ≤

2

t
δ(µ).

This inequality gives the distance between µ and a mixture of Gaussians but with the wrong
covariance. To remedy that we must pay a dimensional price. By the triangle inequality for W2

and the fact that W2
2(γ0,1−t, γ0,1) ≤ (1−

√
1− t)2n ≤ t2n, we get

W2(µ, νt ∗ γ) ≤ W2(µ, νt ∗ γ0,1−t) +W2(νt ∗ γ0,1−t, νt ∗ γ)
≤ W2(µ, νt ∗ γ0,1−t) +W2(γ0,1−t, γ)

≤
√

2δ(µ)

t
+

√
nt.

If δ(µ) ≤ n, choosing t =
(

δ(µ)
n

)
1
3
in the previous display gives

W2(µ, νt ∗ γ) ≤ (
√
2 + 1)n

1
6 δ(µ)

1
3 ,

which in turn yields the desired inequality (10). If on the contrary δ(µ) ≥ n, inequality (10) holds
with ν = µ, simply because W2(µ, µ ∗ γ) = √

n. If δ(µ) = 0 the argument shows that µ = ν0 ∗ γ,
where ν0 is the Dirac point mass at E[X1]. �
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Proof of Theorem 8. The starting point of the proof is identity (18):

X1 =

∫ 1

0
cov(µt)dBt.

The idea is then to extract from this identity two processes (Yt), (Zt) close to each other in trans-
portation distance such that Z1 ∼ γ. We then write X1 = Y1 + W for some random vector W
and show that E[〈Y,W 〉] = 0. The requirement Z1 ∼ γ is enforced by ensuring that the quadratic
variation of (Zt) satisfies [Z]1 = Idn.

We start with some notation. Let M be an n × n symmetric matrix and let M =
∑n

i=1 κi ui ⊗
ui be its eigenvalue decomposition. We then set M+ :=

∑n
i=1max(κi, 0)ui ⊗ ui and similarly

max(M, Idn) =
∑n

i=1max(κi, 1)ui⊗ui. Using Theorem 3 together with the fact that 1
x−1+log(x) ≥

1
2(x− 1)2 for all x ∈ (0, 1], we conclude that for every measure ν, one has

δ(ν) ≥ 1

2
Tr

[

(Idn − cov(ν))2+

]

.

Using this bound and inequality (19) we get,

δ(µ) ≥ 1

2
E

[
∫ 1

0
Tr

[

(Idn − cov(µt))
2
+

]

dt

]

. (23)

Next we will write the right-hand side above as roughly the difference in transportation distance
between the random vectors Y1 and Z1 mentioned above.

For convenience, define At := cov(µt). We now define a random process (Ct) taking values in
the set of symmetric matrices as follows. Set C0 = 0 and

dCt = max(A2
t , Idn) dt, t ∈ [0, τ1)

where τ1 is the first time the largest eigenvalue of Ct hits the value 1. Notice that tIdn � Ct on
[0, τ1), so τ1 ≤ 1. If Cτ1 6= Idn, which implies that τ1 < 1, we let O1 be the orthogonal projection
onto the range of Cτ1 − Idn, and set

dCt = O1 max(A2
t , Idn)O1 dt, t ∈ [τ1, τ2)

where τ2 is the first time the largest eigenvalue of O1CtO1 hits the value 1. If Cτ2 6= Idn we let O2

be the projection onto the range of Cτ2 − Idn and proceed similarly, and so on, until the first time
τk such that Cτk = Idn. On [τk, 1] we let dCt = 0 and thus Ct = Idn. To sum up, the matrix Ct

satisfies 0 � Ct � Idn for all t ∈ [0, 1], C1 = Idn and

dCt = Ltmax(A2
t , Idn)Lt dt,

where Lt is the orthogonal projection onto the range of Ct − Idn.
Next, consider the processes (Yt), (Zt) defined by

Y0 = Z0 = 0, dYt = LtAtdBt, dZt = Ltmax (At, Idn) dBt.

and note that

[Z]t =

∫ t

0
Lsmax

(

A2
s, Idn

)

Lsds = Ct.
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This implies that [Z]1 = Idn almost surely so Z1 ∼ γ. On the other hand, we have by (23) and
Itô’s isometry,

E[|Y1 − Z1|2] = E

[
∫ 1

0
Tr

[

Lt (max (At, Idn)−At)
2 Lt

]

dt

]

≤ E

[
∫ 1

0
Tr

[

(max (At, Idn)−At)
2
]

dt

]

= E

[
∫ 1

0
Tr

[

(

(Idn −At)+
)2
]

dt

]

≤ 2δ(µ).

Letting ν be the law of Y1, we thus get W2
2(ν, γ) ≤ 2δ(µ). Now define the random vector W :=

∫ 1
0 (At − LtAt) dBt so by (18), X1 = Y1 +W . It remains to show that E[〈Y,W 〉] = 0. This is again
a consequence of Itô’s isometry:

E[〈Y,W 〉] = E

[
∫ 1

0
Tr

(

LtAt (At − LtAt)
T
)

dt

]

= E

[
∫ 1

0
Tr

(

LtA
2
t − LtA

2
tLt

)

dt

]

= 0

since Lt = L2
t . This completes the proof. �

6. Counterexamples to stability

In this section we provide simple counterexamples to the stability of the logarithmic Sobolev
inequality with respect to the Wasserstein distance, thus proving Theorem 4 as well as the third
part of Theorem 3. The standard Gaussian on R is denoted by γ and for a ∈ R, s ≥ 0 we let
γa,s be the Gaussian centered at a with variance s. Our counterexamples are nothing more than
Gaussian mixtures. For such measures, the following two lemmas provide a lower bound on the
Wasserstein p-distance to translated Gaussians, and an upper bound on the log-Sobolev deficit.
The combination of these two lemmas will prove Theorems 4 and 3. We start with the upper
bound on the log-Sobolev deficit.

Lemma 14. Let a, b ∈ R, and σ, t ∈ [0, 1]. Then

δ ((1− t)γa,σ + tγb,σ) ≤
1

4

(

σ−1 − 1
)2 − (1− t) log(1− t)− t log t.

Proof. Let ϕ(t) = t log t + (1 − t) log(1 − t) and µ, ν be probability measures on R. The lemma
follows immediately by combining the estimates

δ ((1− t)µ+ tν) ≤ (1− t)δ (µ) + tδ (ν)− ϕ(t) (24)

and

δ(γ0,σ) ≤
1

4

(

σ−1 − 1
)2

. (25)

(when σ ≤ 1) and using the fact that δ is invariant under translations.
The validity of (24) follows immediately from the combination of the convexity estimates

I ((1− t)µ+ tν | γ) ≤ (1− t)I(µ | γ) + tI(ν | γ)
and

H ((1− t)µ+ tν | γ) ≥ (1− t)H(µ | γ) + tH(ν | γ) + ϕ(t).

The convexity of the Fisher information is a well-known fact, it is a direct consequence of the
convexity of the map (x, y) 7→ y2/x on (0,∞) × R. For the second inequality, let f and g be the
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respective densities of µ and ν with respect to γ and use the fact that the logarithm is increasing
to write

((1− t)f + tg) log ((1− t)f + tg) ≥ (1− t)f log ((1− t)f) + tg log(tg).

Integrating with respect to γ yields the result.
For the estimate (25), a direct computation shows that H(γ0,σ | γ) = 1

2 (σ − 1− log σ) and I(γ0,σ |
γ) = (σ − 1)2/σ, so that

δ(γ0,σ) =
1

2

(

σ−1 − 1 + log(σ)
)

.

We conclude using x− 1− log x ≤ (x− 1)2/2 for x ≥ 1. �

Proof of Proposition 5. When σ = 1, Lemma 14 can be rewritten δ(p∗γ) ≤ S(p) for any probability
measure p in R which is a combination of two Dirac point masses. The argument can easily be
generalized to any discrete probability measure p, and to any dimension, proving Proposition 5. �

Proof of the third part of Theorem 1. Note that

var((1− t)γa,1 + tγb,1) = 1 + t(1− t)(b− a)2.

Set µk =
(

1− 1
k

)

γ0,1 +
1
kγk2,1. Then var(µk) → ∞. On the other hand δ(µk) → 0 by Lemma

14. �

Next we move on to the lower bound on the Wasserstein distance.

Lemma 15. Let a, b ∈ R, σ ∈ (0, 1], t ∈ [0, 1] and let µ = (1− t)γa,σ + tγb,σ. Suppose that

min(t, 1− t) ≥ 2 exp

(

−(b− a)2

32

)

. (26)

Then, for every p ≥ 1

inf
m∈R

{

Wp
p(µ, γm,1)

}

≥ min(t, 1− t)
|b− a|p
4p+1

.

Proof. Letm ∈ R and suppose without loss of generality that |a−m| ≤ |b−m| and that b > a. Define

z = m+
√

2 log
(

2
t

)

and note that the assumption (26) together with the fact that b−m ≥ 1
2 |b−a|

implies that b− z ≥ 1
4 |b−a|. Now, by a standard Gaussian tail estimate we have γm,1

(

[z,∞)
)

≤ t
4 .

On the other hand

µ([b,∞)) ≥ tγb,σ2([b,∞)) =
t

2
.

Therefore, in order to transport γm,1 to µ, at least t/4 unit of mass to the left of z should move to
the right of b. As a result

Wp
p(µ, γm,1) ≥

t

4
(b− z)p ≥ t

4

( |b− a|
4

)p

,

which yields the result. �

Proof of Theorem 4. For the first part of the theorem we shall work in dimension 1 but the result
extends to any dimension by taking the tensor product of the one dimensional example by a standard
Gaussian. Consider the sequence of measures (µk) given by

µk =

(

1− 1

k

)

γ0,1 +
1

k
γk2,1.

Lemmas 14 and 15 imply that δ(µk) → 0 and infm∈R {W1(µk, γm,1)} → ∞.
For the second part of the theorem, define µk = (1− t)γa,σ + tγb,σ with

t = k−3/2, a = −k−1, b = −1− t

t
a, σ = 1− t(1− t)(b− a)2.
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It is straightforward to check that µk is isotropic. Since (b− a)2 = a2/t2 = k, the hypothesis (26)
is satisfied for large enough k and Lemma 15 gives

inf
m

{

W2
2(µk, γm,1)

}

≥ t
(b− a)2

64
=

1

64
√
k
.

On the other hand, we have σ = 1− k−1/2 + o(k−1/2) so that Lemma 14 gives

δ(µk) ≤
1

k
+ o

(

1

k

)

.

Set n(k) =
⌊

k3/4
⌋

. Since both the deficit and W2
2 behave additively when taking tensor products

we have

inf
m∈Rn(k)

{

W2
2

(

µ
⊗n(k)
k , γm,Idn(k)

)}

= Ω(k1/4) = Ω(n(k)1/3)

and δ
(

µ
⊗n(k)
k

)

= O(k−1/4) = O(n(k)−1/3). �
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École Normale Supérieure, 75005 Paris, France
E-mail address: lehec@ceremade.dauphine.fr

Sherrerd Hall 323, Princeton University, Princeton, NJ 08544, USA
E-mail address: yairs@princeton.edu


	1. Introduction
	1.1. Overview
	1.2. Fisher information matrix and deficit
	1.3. Covariance and Gaussian mixtures
	1.4. Decompositions into mixtures
	1.5. Methods
	1.6. Organization of paper
	1.7. Acknowledgments

	2. self-improvements of the log-Sobolev inequality
	3. The Föllmer Process
	4. Comparison theorems
	5. Decompositions into mixtures
	6. Counterexamples to stability
	References

