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Preface

Edwaid Davenant said he "would have a man knockt in the head that should
write anything in Mathernatiques that had been written of before." So
reports John Aubrey in his Brief Lives. What is new here then?

To introduce the idea of measure the book opens with Borel's normal
number theorem, proved by calculus alone. and there follow short sections
establishing the existence and fundamental properties of probability mea-
sures, including Lebesgue measure on the unit interval. For simple random
variables—ones with finite range—the expected value is a sum instead of an
integral. Measure theory, without integration, therefore suffices for a com-
pletely rigorous study of infinite sequences of simple random variables, and
this is carried out in the remainder of Chapter 1, which treats laws of large
numbers, the optimality of bold play in gambling, Markov chains, large
deviations, the law of the iterated logarithm. These developments in their
turn motivate the general theory of measure and integration in Chapters 2
and 3.

Measure and integral are used together in Chapters 4 and 5 for the study
of random sums, the Poisson process, convergence of measures, characteristic
functions, central limit theory. Chapter 6 begins with derivatives according to
Lebesgue and Radon–Nikodym—a return to measure theory—then applies
them to conditional expected values and martingales. Chapter 7 treats such
topics in the theory of stochastic processes as Kolmogorov's existence theo-
rem and separability, all illustrated by Brownian motion.

What is new, then, is the alternation of probability' and measure, probabil-
ity motivating measure theory and measure theory generating further proba-
bility. The book presupposes a knowledge of combinatorial and discrete
probability, of rigorous calculus, in particular infinite series, and of elemen-
tary set theory. Chapters 1 through 4 are designed to be taken up in
sequence. Apart from starred sections and some examples, Chapters 5, 6, and
7 are independent of one another; they can be read in any order.

My goal has been to write a book I would myself have liked when I first
took up the subject, and the needs of students have been given precedence
over the requirements of logical economy. For instance, Kolmogorov's exis-
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v i PREFACE

tence theorem appears not in the first chapter but in the last, stochastic
processes needed earlier having been constructed by special arguments
which, although technically redundant, motivate the general result. And the
general result is, in the last chapter, given two proofs at that. It is instructive,
I think, to see the show in rehearsal as well as in performance.

The Third Edition. The main changes in this edition are two For the
theory of Hausdorff measures in Section 19 I have substituted an account of
L P spaces, with applications to statistics. And for the queueing theory in
Section 24 I have substituted an introduction to ergodic theory, with applica-
tions to continued fractions and Diophantine approximation. These sections
now fit better with the rest of the book, and they illustrate again the
connections probability theory has with applied mathematics on the one hand
and with pure mathematics on the other.

For suggestions that have led to improvements in the new edition, I thank
Raj Bahadur, Walter Philipp, Michael Wichura, and Wing Wong, as well as
the many readers who have sent their comments.

Envoy. I said in the preface to the second edition that there would not be
a third, and yet here it is. There will not be a fourth. It has been a very
agreeable labor, writing these successive editions of my contribution to the
river of mathematics. And although the contribution is small, the river is
great: After ages of good se rvice done to those who people its banks, as
Joseph Conrad said of the Thames, it spreads out "in the tranquil dignity of a
waterway leading to the uttermost ends of the earth."

PATRICK BILLINGSLEY

Chicago, Illinois
December 1994
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CHAPTER 1

Probability

SECTION 1. BORER'S NORMAL NUMBER THEOREM

Although sufficient for the development of many interesting topics in mathe-
matical probability, the theory of discrete probability spacest does not go far
enough for the rigorous treatment of problems of two kinds: those involving
an infinitely repeated operation, as an infinite sequence of tosses of a coin,
and those involving an infinitely fine operation, as the random drawing of a
point from a segment. A mathematically complete development of probabil-
ity, based on the theory of measure, puts these two classes of problem on the
same footing, and as an introduction to measure-theoretic probability it is the
purpose of the present section to show by example why this should be so.

The Unit Interval

The project is to construct simultaneously a model for the random drawing of
a point from a segment and a model for an infinite sequence of tosses of a
coin. The notions of independence and expected value, familiar in the
discrete theory, will have analogues here, and some of the terminology of the
discrete theory will be used in an informal way to motivate the development.
The formal mathematics, however, which involves only such notions as the
length of an interval and the Riemann integral of a step function, will be
entirely rigorous. All the ideas will reappear later in more general form.

Let II denote the unit interval (0,1]; to be definite, take intervals open on
the left and closed on the right. Let co denote the generic point of f/. Denote
the length of an interval I= (a, b] by III:

(1.1)	 III =1(a, b]I =b —a.

t For the discrete theory, presupposed here, see for example the first half of Volume I of FELLER.

(Names in capital letters refer to the bibliography on p. 581 )
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2 	PROBABILITY

If

n 	 n

(I.7) 	 A= Uri = U (a ; ,b1 ^,
i =1	 i =1

where the intervals I ; = (a 	 are disjoint [A3] t and a re contained in 1 ,
assign to A the probability

n 	 n

(1.3)	 P(A) = ^ ^IJ = 	 (b ; –a ; ).
i =1	 i =1

It is important to understand that in this section P(A) is defined only if A is
a finite disjoint union of subintervals of (0,11—never for sets A of any other
kind.

If A and B are two such finite disjoint unions of intervals, and if A and B
are disjoint, then A U B is a finite disjoint union of intervals and

(1.4)	 P(A UB) =P(A) +P(B).

This relation, which is certainly obvious intuitively, is a consequence of the
additivity of the Riemann integral:

(1.5) 	j '(f(w)  +g(w)) da) = j 'f(w)  dco + f 1
g(co ) da,.

0	 0

If f(co) is a step function taking value cf in the interval (x 1 , xj ], where 0 =x0 <
x 1 < • • • <xk = 1, then its integral in the sense of Riemann has the value

k

(1.6) 	f'f(»)dw=0 	E cAxl — xj-1)•
j=1

If f =IA and g = IB are the indicators [A5] of A and B, then (1.4) follows from (1.5)
and (1.6), provided A and B are disjoint. This also shows that the definition (1.3) is
unambiguous—note that A will have many representations of the form (1.2) because
(a, Nu (b, c] = (a, c]. Later these facts will be derived anew from the general theory
of Lebesgue integration.*

According to the usual models, if a radioactive substance has emitted a
single a-particle during a unit interval of time, or if a single telephone call
has arrived at an exchange during a unit interval of time, then the instant at
which the emission or the arrival occurred is random in the sense that it lies
in (1.2) with probability (1.3). Thus (1.3) is the starting place for the

IA notation [An] refers to paragraph n of the appendix beginning on p. 536; this is a collection
of mathematical definitions and facts required in the text.
Passages in small type concern side issues and technical matters, but their contents are

sometimes required later.



SECTION 1. BOREL'S NORMAL NUMBER THEOREM 	 3

description of a point drawn at random from the unit interval: fl is regarded
as a sample space, and the set (1.2) is identified with the event that the
random point lies in it.

The definition (1.3) is also the starting point for a mathematical represen-
tation of an infinite sequence of tosses of a coin. With each w associate its
nonterminating dyadic expansion

(1.7)	 w = E ^ 2^) = . d 1( W ) d2( w ) ...,
n =1

each d„ (w) being 0 or 1 [A311. Thus

( 1 . 8 ) 	 (d1(w),d2(w),... )

is the sequence of binary digits in the expansion of w. For definiteness, a
point such as z = .1000... _ .0111... , which has two expansions, takes the
nonterminating one; 1 takes the expansion .111... .

r•■

L■1!	 I
0
	 1 	 0 	 1

Graph of d1(w) Graph of d7 (w)

Imagine now a coin with faces labeled 1 and 0 instead of the usual heads
and tails. If w is drawn at random, then (1.8) behaves as if it resulted from an
infinite sequence of tosses of a coin. To see this, consider first the set of w
for which di(co) = u i for i = 1, ... , n, where u 1 ,...  , u„ is a sequence of 0's
and l's. Such an w satisfies

n u` 	n u` 	^	 1
2; <W<	 2^ + E Z^,

1	 i= 1	 i =n+1

where the extreme values of w correspond to the case dl(w) = 0 for i > n and
the case d i(w) = 1 for i> n. The second case can be achieved, but since the
binary expansions represented by the d l(w) are nonterminating—do not end
in 0's—the first cannot, and w must actually exceed L.  l u ;/2'. Thus

n uj 	 u`

(1.9)	 [co: d i (w) = u l , i = 1 , ... , n] = E 2^ , ^ 2'i = 1	 i =1



4 	 PROBABILITY

The interval here is open on the left and closed on the right precisely
because the expansion (1.7) is the nonterminating one. in the model for coin
tossing the set (1.9) represents the event that the first n tosses give the
outcomes up ... , u n in sequence. By (1.3) and (1.9),

1
(1.10)	 P[W: d i(w) = u o i = 1,...,n1 = 2" ,

which is what probabilistic intuition requires.

C1 10 	 11

000 	 001 	 010 1 0 1 1 	 100 	 101 1 110 i 111

Decompositions by dyadic intervals

The intervals (1.9) are called dyadic intervals, the endpoints being adja-
cent dyadic rationals k/2" and (k + 1)/2" with the same denominator, and
n is the rank or order of the inte rval. For each n the 2" dyadic intervals of
rank n decompose or partition the unit inte rval. In the passage from the
partition for n to that for n + 1, each interval (1.9) is split into two parts of
equal length, a left half on which do+I(w) is 0 and a right half on which
d" +I(w) is 1. For u = 0 and for u = 1, the set [w: d".^ I(w) = u] is thus a
disjoint union of 2" intervals of length 1/2"+' and hence has probability is
P[w: d"(w) = u] = z for all n.

Note that d i(co) is constant over each dyadic interval of rank i and that for
n> i each dyadic interval of rank n is entirely contained in a single dyadic
interval of rank i. Therefore, d 1(w) is constant over each dyadic interval of
rank n if i < n.

The probabilities of various familiar events can be written down immedi-
ately. The sum En_ I d;(w) is the number of l's among d i (w), ..., d"(w), to be
thought of as the number of heads in n tosses of a fair coin. The usual
binomial formula is

"

(1.11)	 P w : E d,(0)) = k = (nk 2"
i=1

0<k<n.

This follows from the definitions: The set on the left in (1.11) is the union of
those intervals (1.9) corresponding to sequences u I , ... , u" containing k l's
and n — k 0's; each such interval has length 1/2" by (1.10) and there are (k)
of them, and so (1.11) follows from (1.3).
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The functions d n(w) can be looked at in two ways. Fixing n and letting w
vary gives a real function d„= d„(•) on the unit inte rval. Fixing w and letting
n vary gives the sequence (1.8) of 0's and l's. The probabilities (1.10) and
(1.11) involve only finitely many of the components d.(w). The interest here,
however, will center mainly on properties of the entire sequence (1.8). It will
be seen that the mathematical properties of this sequence mirror the proper-
ties to be expected of a coin-tossing process that continues forever.

As the expansion (1.7) is the nonterminating one, there is the defect that
for no w is (1.8) the sequence (1, 0, 0, 0, ... ), for example. It seems clear that
the chance should be 0 for the coin to turn up heads on the first toss and tails
forever after, so that the absence of (1, 0, 0, 0, ... )—or of any other single
sequence—should not matter. See on this point the additional remarks
immediately preceding Theorem 1.2.

The Weak Law of Large Numbers

In studying the connection with coin tossing it is instructive to begin with a
result that can, in fact, be treated within the framework of discrete probabil-
ity. namely, the weak law of large numbers:

Theorem 1.1. For each E,#   

(1.12) 	 lim P w:
n —►oo

P
n ^ d;(w) 2

i=1 
>e =0.   

Interpreted probabilistically, (1.12) says that if n is large, then there is
small probability that the fraction or relative frequency of heads in n tosses
will deviate much from Z, an idea lying at the base of the frequency
conception of probability. As a statement about the structure of the real
numbers, (1.12) is also interesting arithmetically.

Since d i (w) is constant over each dyadic interval of rank n if i < n, the
sum E;=t d;(w) is also constant over each dyadic interval of rank n. The set in
(1.12) is therefore the union of certain of the intervals (1.9), and so its
probability is well defined by (1.3).

With the Riemann integral in the role of expected value, the usual
application of Chevyshev's inequality will lead to a proof of (1.12). The
argument becomes simpler if the d n(w) are replaced by the Rademacher
functions,

1 +1 if dn(w) =1,

––1 if dn(w) – 0
(1.13)	 rn(w) = 2dn(w) – 1 =

tThe standard E and S of analysis will always be understood to be positive.
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0 	 1 	 0 	 1

Graph of r l (w) 	 Graph of r2 (r...))

Consider the partial sums

(1.14)
n

sn( w ) = E rr(w)•
r= i

Since E 1d 1 (w) = (s n(w) + n)/2, (1.12) with 6/2 in place of E is the same
thing as

(1.15) limPw:
n -+«>

^ Sn (w) I ^ 61= 	 0. 

This is the form in which the theorem will be proved.
The Rademacher functions have themselves a direct probabilistic mean-

ing. If a coin is tossed successively, and if a particle starting from the origin
performs a random walk on the real line by successively moving one unit in
the positive or negative direction according as the coin falls heads or tails,
then ri(w) represents the distance it moves on the ith step and sn(w)
represents its position after n steps. There is also the gambling interpreta-
tion: If a gambler bets one dollar, say, on each toss of the coin, r.(w)
represents his gain or loss on the ith play and s n(w) represents his gain or
loss in n plays.

Each dyadic interval of rank i — 1 splits into two dyadic intervals of rank i;
rl (w) has value — 1 on one of these and value + 1 on the other. Thus ri(w) is
—1 on a set of intervals of total length z and + 1 on a set of total length Z.
Hence J0 r1(w) dw = 0 by (1.6), and

(1.16) f ' s(w)dw=O0
by (1.5). If the integral is viewed as an expected value, then (1.16) says that
the mean position after n steps of a random walk is 0.

Suppose that i <j. On a dyadic interval of rank j — 1, r;(w) is constant
and ri(w) has value —1 on the left half and +1 on the right. The product



The shaded region
has area
aP[w: f(w)> a).
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ri (w)r1(w) therefore integrates to 0 over each of the dyadic intervals of rank
j — 1, and so

(1.17) f ' r1(w)r1(w)  do) = 0, i ^ j.

This corresponds to the fact that independent random variables are uncorre-
lated. Since rl(w) = 1, expanding the square of the sum (1.14) shows that

(1.18) j 's(w)dw  = n.
0

This corresponds to the fact that the variances of independent random
variables add. Of course (1.16), (1.17), and (1.18) stand on their awn, in no
way depend on any probabilistic interpretation.

Applying Chehyshev's inequality in a formal way to the probability in
(1.15) now leads to

(1.19) P[w: 1sn(w)I >_ nel S Z 2 flsn ( w) dw 	1 2n E o 	 n^

The following lemma justifies the inequality.
Let f be a step function as in (1.6): f(w) = ci for w E (xj _ 1 , xi ], where

0=x 0 < ••• <xk =1.

Lemma. if f is a nonnegative step function, then [w: f((d) >_ a] is for a > 0
a finite union of intervals and

(1.20) 	 P[w: f(cu) >_ a ] _<_ â 1 1 f(co)  dw.
a

PROOF. The set in question is the union of the intervals (x i_,, x1 ] for
which ci >_ a. If E' denotes summation over those j satisfying ci >_ a, then
P[w: f(w) > a] = E'(x i — x1 _ 1 ) by the definition (1.3). On the other hand,
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since the ci are all nonnegative by hypothesis, (1.6) gives

I 
f( (o ) dw = E ci(x; —xi-^ ) ? E ci( xi —xi

k

I)
j =1

> E a( xi —xi_i).

Hence (1.20). 	 •

Taking a = n 2E 2 and f(w) = s , (w) in (1.20) gives (1.19). Clearly, (1.19)
implies (1.15), and as already observed, this in turn implies (1.12).

The Strong Law of Large Numbers

It is possible with a minimum of technical apparatus to prove a stronger
result that cannot even be formulated in the discrete theory of probability.
Consider the set

(1.21) 	 N= co: 1im n E d i(w) 
1 =1

consisting of those w for which the asymptotic relative frequency* of 1 in the
sequence (1.8) is Z. The points in (1.21) are called normal numbers. The idea
is to show that a real number w drawn at random from the unit interval is
"practically certain" to be normal, or that there is "practical certainty" that 1
occurs in the sequence (1.8) of tosses with asymptotic relative frequency f. It
is impossible at this stage to prove that P(N) = 1, because N is not a finite
union of intervals and so has been assigned no probability. But the notion of
"practical certainty" can be formalized in the following way.

Define a subset A of 11 to be negligiblet if for each positive a there exists
a finite or countable collection / 1 ,12 ,... of intervals (they may overlap)
satisfying

(1.22) 	 A c UIk

k

and

(1.23)
	

E ! Ik ! < E .
k

A negligible set is one that can be covered by intervals the total sum of
whose lengths can be made arbitrarily small. If P(A) is assigned to such an

*The frequency of 1 (the number of occurrences of it) among d 1(w),..., 4(w) is E7=1 d;(w), the
relative frequency is n -lE7=1 dr (w), and the asymptotic relative frequency is the limit in (1.21).
tThe term negligible is introduced for the purposes of this section only. The negligible sets will
reappear later as the sets of Lebesgue measure O.
Countably infinite is unambiguous. Countable will mean finite or countably infinite, although it

will sometimes for emphasis be expanded as here to finite or countable.

Jo
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A in any reasonable way, then for the Ik of (1.22) and (1.23) it ought to be
true that P(A) _< E k P(Ik ) = E k l Ik 1 < E, and hence P(A) ought to be 0. Even
without any assignment of probability at all, the definition of negligibility can
se rve as it stands as an explication of "practical impossibility" and "practical
certainty": Regard it as practically impossible that the random w will lie in A
if A is negligible, and regard it as practically certain that w will lie in A if its
complement A` [All is negligible.

Although the fact plays no role in the next proof, for an understanding of
negligibility obse rve first that a finite or countable union of negligible sets is
negligible. Indeed, suppose that A 1 , A2, ... are negligible. Given E, for each
n choose intervals Inl , I,t ,, ... such that A„ c Uk Ink and Ek I in k' < E/2n. All
the intervals Ink taken together form a countable collection covering Un A n ,
and their lengths add to En Ek l Ink ' < E,, /2n — E. Therefore, Un A,, is negli-
gible.

A set consisting of a single point is clearly negligible, and so every countable
set is also negligible. The rationals for example form a negligible set. In the
coin-tossing model, a single point of the unit interval has the role of a single
sequence of 0's and l's, or of a single sequence of heads and tails. It
corresponds with intuition that it should be "practically impossible" to toss a
coin infinitely often and realize any one particular infinite sequence set down
in advance. It is for this reason not a real shortcoming of the model that for
no w is (1.8) the sequence (1,0,0,0,...). In fact, since a countable set is
negligible, it is not a shortcoming that (1.8) is never one of the countably
many sequences that end in 0's.

Theorem 1.2. The set of normal numbers has negligible complement.

This is Borel's normal number theorem,t a special case of the strong law of
large numbers. Like Theorem 1.1, it is of arithmetic as well as probabilistic
interest.

The set NC is not countable: Consider a point w for which
(d 1(w), d 2(w), ...) = (1, 1, u 3 , 1, 1, u 6 ,... )—that is, a point for which d.(w) = 1
unless i is a multiple of 3. Since n - 1 En= 1d1(co) >_ 3, such a point cannot be
normal. But there are uncountably many such points, one for each infinite
sequence (u 3 , u 6 , ...) of 0's and l's. Thus one cannot prove N` negligible by
proving it countable, and a deeper argument is required.

PROOF OF THEOREM 1.2. Clearly (1.21) and

(1.24) N = w : lim 1 sn ( w ) = 0
n --4 00 n

/ Émile Borel: Sur les probabilités dénombrables et leurs applications arithmétiques, Circ. Mat
d. Palermo, 29 (1909), 247-271. See DUDLEY for excellent historical notes on analysis and
probability,
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define the same set (see (1.14)). To prove N` negligible requires constructing
coverings that satisfy (1.22) and (1.23) for A = N . The construction makes
use of the inequality

(1.25) 	 Pk : isn(w)I ? nE] <  1 4 f Isn (w) dw.n E

This follows by the same argument that leads to the inequality in (1.19)—it is
only necessary to take jr(w) = sn(w) and a = n 4E 4 in (1.20). As the integral in
(1.25) will be shown to have order n 2 , the inequality is stronger than (1.19).

The integrand on the right in (1.25) is

(1.26) 	 sn(w)	 ra(w)ra( w)ry( w)rs( w) ,

where the four indices range independently from 1 to n. Depending on how
the indices match up, each term in this sum reduces to one of the following
five forms, where in each case the indices are now distinct:

(1. 27 )

r,4 (w) = 1,
r1 ( 0 r1(w) = 1,
r,2 (co)r; (w)rk (w) = r;(w)rk(w),

r13 (w)ri (w) =r; (w)rf (ril),

ri(w)rj(w)rk(w)rr(w)•

If, for example, k exceeds i, j, and 1, then the last product in (1.27)
integrates to 0 over each dyadic interval of rank k – 1, because r;(w)rj(w)r!(w)
is constant there, while rk(w) is –1 on the left half and +1 on the right.
Adding over the dyadic intervals of rank k – 1 gives

fo r,(co)r;(w)rk (w)rAw) dw = 0.

This holds whenever the four indices are distinct. From this and (1.17) it
follows that the last three forms in (1.27) integrate to 0 over the unit interval;
of course, the first two forms integrate to 1.

The number of occurrences in the sum (1.26) of the first form in (1.27) is
n. The number of occurrences of the second form is 3n(n – 1), because there
are n choices for the a in (1.26), three ways to match it with /3, y, or S, and
n – 1 choices for the value common to the remaining two indices. A term-by-
term integration of (1.26) therefore gives

j ' s 1 (w)dw = n +311(n – 1) < 3n2,(1.28)
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and it follows by (1.25) that 

Pk. : V- s n(w) (1.29) >E < 
3

n ZE 4 • 

Fix a positive sequence (En) going to 0 slowly enough that the series
En e,^ 4 n -2 converges (take E n = n - ''8 , for example). If A n = [w: I n - 'sn((0)I >_
En ], then P(A n ) < 3E n 4 n -2 by (1.29), and so En P(A n ) < co.

If, for some m, w lies in An for all n greater than or equal to m, then
In -  'sn (w )l < E n for n > m, and it follows that w is normal because En -) 0 (see
(1.24)). In other words, for each m, f) n =,n An c N, which is the same thing as
N` C Un=m A,,. This last relation leads to the required covering: Given E,
choose m so that En. m P(A n ) <E. Now A  is a finite disjoint union Uk in k of
intervals with Ekllnkl =P(A n ), and therefore Un= m A n is a countable union
Un^m Uk Ink of intervals (not disjoint, but that does not matter) with
En=mEk1lnkl = En= m P(A,) < E. The intervals Ink (n > m, k >_ 1) provide a
covering of NC of the kind the definition of negligibility calls for. Y

Strong Law Versus Weak

Theorem 1.2 is stronger than Theorem 1.1. A consideration of the forms of the two
propositions will show that the strong law goes far beyond the weak law.

For each n let fn(w) be a step function on the unit inte rval, and consider the
relation

(1.30) 	 lim P[w: I fn (w)1 >_e} =0no m

together with the set

(1.31) 	 lim fn(w) =01.[co:
L n -• ^

If fn(w) = n - 'sn(w), then (1.30) reduces to the weak law (1.15), and (1.31) coincides
with the set (1.24) of normal numbers. According to a general result proved below
(Theorem 5.2(iî)), whatever the step functions fn(cw) may be, if the set (1.31) has
negligible complement, then (1.30) holds for each positive E. For this reason, a proof
of Theorem 1.2 is automatically a proof of Theorem 1.1.

The converse, however, fails: There exist step functions fn(4)) that satisfy (1.30) for
each positive E but for which (1.31) fails to have negligible complement (Example 5.4).
For this reason, a proof of Theorem 1.1 is not automatically a proof of Theorem 1.2;
the latter lies deeper and its proof is correspondingly more complex.

Length

According to Theorem 1.2, the complement Al' of the set of normal numbers
is negligible. What if N itself were negligible? It would then follow that
(0, 1] = N U NC was negligible as well, which would disqualify negligibility as
an explication of "practical impossibility," as a stand-in for "probability
zero." The proof below of the "obvious" fact that an interval of positive
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length is not negligible (Theorem 1.3(iî)), while simple enough, does involve
the most fundamental properties of the real number system.

Consider an interval I = (a, b] of length III = b - a; see (1.1). Consider
also a finite or infinite sequence of intervals Ik = (a k , b k ]. While each of
these intervals is bounded, they need not be subintervals of (0, 1].

Theorem 1.3. (i) If U k Ik c I, and the Ik are disjoint, then E k ' Ik I < I II•
(ii) If I c Uk Ik (the Ik need not be disjoint), then III <- E k I Ik I.

(iii) If I = U k Ik , and the Ik are disjoint, then III= E k IIk I.

PROOF. Of course (iii) follows from (i) and (ii).

PROOF OF (i): Finite case. Suppose there are n intervals. The result
being obvious for n = 1, assume that it holds for n - 1. If a n is the largest
among a 1 ,..., a n (this is just a matter of notation), then Uk=1 (ak , bk] c
(a, a„), so that Ek: 1(b k - a k ) < a n - a by the induction hypothesis, and
hence Ek= ,(bk - a k ) <_ (a n - a) + (b n - a n ) < b -- a.

Infinite case. If there are infinitely many intervals, each finite subcollection
satisfies the hypotheses of (i), and so Ek= 1(b k - a k ) < b - a by the finite case.
But as n is arbitrary, the result follows.

PROOF OF (ii): Finite case. Assume that the result holds for the case of
n - 1 intervals and that (a, b] C Uk =1 (a k , bk ]. Suppose that a n <b _< bn (no-
tation again). If a n < a, the result is obvious. Otherwise, (a, a n ] c
Uk = 1 (a h , b k ], so that Ek = 1(bk — a k ) > 61,,-a by the induction hypothesis
and hence Ek = 1(bk — a k ) > (a n - a) + (b„- a n ) >_ b - a. The finite case thus
follows by induction.

Infinite case. Suppose that (a, b] c U 1 (a k , b k ]. If 0 < E < b - a, the open
intervals (a k , bk +62') cover the closed interval [a + E, b], and it follows by
the Heine-Borel theorem [A13] that [a + E, b] c Uk =1 (ak, b k E2 - k) for
some n. But then (a + E, b] c Uk =1(a k, b  + E2 -1, and by the finite case,
b - (a + E) < Ek = 1(bk + E 2 - k - ak) < Ek1(bk — ak) + e. Since E was arbi-
trary, the result follows. •

Theorem 1.3 will be the starting point for the theory of Lebesgue measure
as developed in Sections 2 and 3. Taken together, parts (i) and (ii) of the
theorem for only finitely many intervals Ik imply (1.4) for disjoint A and B.
Like (1.4), they follow immediately from the additivity of the Riemann
integral; but the point is to give an independent development of which the
Riemann theory will be an eventual by-product.

To pass from the finite to the infinite case in part (i) of the theorem is
easy. But to pass from the finite to the infinite case in part (ii) involves
compactness, a profound idea underlying all of modern analysis. And it is
part (ii) that shows that an interval I of positive length is not negligible: III is
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a positive lower bound for the sum of the lengths of the intervals in any
covering of L

The Measure Theory of Diophantine Approximation'

Diophantine approximation has to do with the approximation of real numbers x by
rational fractions p/q. The measure theory of Diophantine approximation has to do
with the degree of approximation that is possible if one disregards negligible sets of
real x.

For each positive integer q, x must lie between some pair of successive multiples
of 1 / q, so that for some p, I x — p / q I _< 1 / q. Since for each q the intervals

(1.32)
^q	 +2q' q 2q ^

decompose the line, the error of approximation can be further reduced to 1/ 2q: For
each q there is a p such that !x —p/ql < 1/2q. These observations are of course
trivial. But for "most" real numbers x there will be many values of p and q for which
x lies very near the center of the interval (1.32), so that p/q is a very sharp
approximation to x.

Theorem 1.4. If x is irrational, there are infinitely many irreducible fractions p / q
such that

(1.33)
_ 	 1Ix q I < 92.

This famous theorem of Dirichlet says that for infinitely many p and q, x lies in
(p/q-1 /q 2 , p/q + 1 /q 2 ) and hence is indeed very near the center of (1.32).

PROOF. For a positive integer Q, decompose [0,1) into the Q subintervals
[(i — 1) / Q, i / Q), i = 1, ... , Q. The points (fractional parts) (qx} = qx — [ qx J for q =
0,1, ... , Q lie in [0,1), and since there are Q + 1 points and only Q subintervals, it
follows (Dirichlet's drawer principle) that some subinterval contains more than one
point. Suppose that {q'x} and (q"x} lie in the same subinterval and 0 _< q' <q" < Q.
Take q =q"—q' and p=[q"x{—[q'x {; then 1  <Q and I qx—pi=I{q"x)—{q'x}I
< 1 / Q:

(1.34)
p 	 1	 1I x qI < qQ < q 2

Yf p and q have any common factors, cancel them; this will not change the left side of
(1.34), and it will decrease q.

For each Q, therefore, there is an irreducible p/q satisfying (1.34).* Suppose
there are only finitely many irreducible solutions of (1.33), say pl/q1, — ,P„,/qm.
Since x is irrational, the Ix — p k /q k I are all positive, and it is possible to choose Q so
that Q -1  is smaller than each of them. But then the p / q of (1.34) is a solution of
(1.33), and since Ix — P/q1  < 1/Q, there is a contradiction. •

* This topic may be omitted.
Although the fact is not technically necessary to the proof, these points are distinct: (q'x) _ (q"x)
implies (q" — q')x [q"xJ — [q'xJ, which in turn implies that x is rational unless q' = q".
This much of the proof goes through even if x is rational.
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In the measure theory of Diophantine approximation, one looks at the set of real x
having such and such approximation properties and tries to show that this set is
negligible or else that its complement is. Since the set of rationals is negligible,
Theorem 1.4 implies such a result: Apart from a negligible set of x, (1.33) has
infinitely many irreducible solutions.

What happens if the inequality (1.33) is tightened? Consider

(1.35) x—IP I < 	1 
g 	 q 2cp(q) '

and let A consist of the real x for which (1.35) has infinitely many irreducible
solutions. Under what conditions on cp will A 9 have negligible complement? If
go(q) s 1, then (1.35) is weaker than (1.33): (f)(q) > 1 in the interesting cases. Since x
satisfies (1.35) for infinitely many irreducible p/q if and only if x — [x J does, A 9 may
as well be redefined as the set of x in (0,1) (or even as the set of irrational x in (0, 1))
for which (1.35) has infinitely many solutions.

Theorem 1.5. Suppose that cp is positive and nondecreasing. If

(1.36)
1

=00 ,

g qcP(q)

then A 9 has negligible complement.

Theorem 1.4 covers the case cp(q) = 1. Although this is the natural place to state
Theorem 1.5 in its general form, the proof, which involves continued fractions and the
ergodic theorem, must be postponed; see Section 24, p. 324. The converse, on the
other hand, has a very simple proof.

Theorem 1.6. Suppose that cp is positive. If

(1.37)
1 

^ g5o(g) 
< oo,

then A , is negligible.

PROOF. Given E, choose go so that Eq ag0 1 /gcp(q) < E /4. If x € A ,, then (1.35)
holds for some q z q0, and since 0 < x < 1, the corresponding p lies in the range
0 <p < q. Therefore,

A C 	 q p— 	 1 	p + 	
qqo p0 	

1A 9 	U U g
	g2cP(q ) 

,

 q q24P(q)z ^

The right side here is a countable union of intervals covering A 9 , and the sum of
their lengths is

E E 
 2  = E 2( g + 1) < E  4

q . qo p =0 g 2cP(g) 	 gzqo q 2cP(q) 	 q z qo qcP(q )
<E.

Thus A 9 satisfies the definition ((1.22) and (1.23)) of negligibility. 	 •
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If cp 1(q) = 1, then (1.36) holds and hence A o, has negligible complement (as
follows also from Theorem 1.4). If cp 2(q) = q E, kowever, then (1.37) holds and
A

4P2 
itself is negligible Outside the negligible set A

1̂
 UA , , therefore, Ix — p/qI <

1/q 2 has infinitely many irreducible solutions but Ix — p/ qI < 1/q 2 '  has only
finitely many. Similarly, since Eq 1/(q log q) diverges but Eq 1/(q log s+Eq) converges,
outside a negligible set Ix —p/qI < 1/(q 2 log q) has infinitely many irreducible
solutions but I x —p/qI < 1 /(q 2 log 1+ E,q) has only finitely many.

Rational approximations to x obtained by truncating its binary (or decimal)
expansion are very inaccurate: see Example 4.17. The sharp rational approximations
to x come from truncation of its continued-fraction expansion: see Section 24.

PROBLEMS

Some problems involve concepts not required for an understanding of the text, or
concepts treated only in later sections; there are no problems whose solutions are
used in the text itself. An arrow '1' points back to a problem (the one immediately
preceding if no number is given) the solution and terminology of which are assumed.
See Notes on the Problems, p. 552.

1.1. (a) Show that a discrete probability space (see Example 2.8 for the formal
definition) cannot contain an infinite sequence A 1 , A 2 , ... of independent
events each of probability 1. Since A n could be identified with heads on the nth
toss of a coin, the existence of such a sequence would make this section
superfluous.
(b) Suppose that 0 _<p„ < 1, and put a n = min(p,,,1 —p„}. Show that, if E„a,
diverges, then no discrete probability space can contain independent events
A 1 , A 2 ,... such that A n has probability p,,.

1.2. Show that N and N` are dense [A15] in (0,1].

1.3. 'T Define a set A to be triflingt if for each a there exists a finite sequence of
intervals 1f, satisfying (1.22) and (1.23). This definition and the definition of
negligibility apply as they stand to all sets on the real line, not just to subsets of
(0,1].
(a) Show that a trifling set is negligible.
(b) Show that the closure of a trifling set is also trifling.
(c) Find a bounded negligible set that is not trifling.
(d) Show that the closure of a negligible set may not be negligible.
(e) Show that finite unions of trifling sets are trifling but that this can fail for
countable unions.

1.4. T For i = 0, ... , r — 1, let A r(i) be the set of numbers in (0,1] whose nonter-
minating expansions in the base r do not contain the digit i.
(a) Show that A r(i) is trifling.
(b) Find a trifling set A such that every point in the unit interval can be
represented in the form x +y with x and y in A.

tLike negligible, trifling is a nonce word used only here. The trifling sets are exactly the sets of
content 0: See Problem 3.15
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(c) Let A r(i 1 , ... , i k ) consist of the numbers in the unit interval in whose base-r
expansions the digits i 1 , ... , i k nowhere appear consecutively in that order.
Show that it is trifling. What does this imply about the monkey that types at
random?

1.5. T The Cantor set C can be defined as the closure of A 3(1)
(a) Show that C is uncountable but trifling.
(b) From [0, 1] remove the open middle third (3, 3); from the remainder, a
union of two closed intervals, remove the two open middle thirds (ÿ, ÿ) and

Show that C is what remains when this process is continued ad infinitum.
(c) Show that C is perfect [A15]

1.6. Put M(t) = 1ôe 1 S-1 (' ) dw, and show by successive differentiations under the
integral that

(1.38) Mlkl(0) = f ' s(w) dw.

Over each dyadic interval of rank n, sn(ûi) has a constant value of the form
+1 + 1 + • • • + 1, and therefore M(t) = 2 -"E exp t(± 1 + 1 + • • + 1), where
the sum extends over all 2" n-long sequences of + l's and — I's. Thus

(1.39) 	 M(t)= 	2
1e-'

 ) = (cosh t) "

Use this and (1.38) to give new proofs of (1.16), (1.18), and (1.28). (This, the
method of moment generating functions, will be investigated systematically in
Section 9.)

1.7. T By an argument similar to that leading to (1.39) show that the Rademacher
functions satisfy

fo
n 	 n eiak + e -jak

	exp i E a k rk (w) dw = 1 1 	 2 	
k=1 	 k = 1

n

= 	 cos a k .
k =1

Take a k = t2 -k , and from El = i rk (w)2 -k = 2w — 1 deduce

(1.40)
sin t 	t
t 

— 	 cos
k-1 	 2

by letting n	 a inside the integral above. Derive Vieta's formula

2 a V24-a V2+2+v
Tr 	 2 	 2 	 2

,^

1.8. A number w is normal in the base 2 if and only if for each positive E there exists
an n o(e, w) such that In -l E;`_ t d ; (w) — 2(<€ for all n exceeding n 0(E, co).
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Theorem 1.2 concerns the entire dyadic expansion, whereas Theorem 1.1
concerns only the beginning segment. Point up the difference by showing that
for e < f the n o(€, w) above cannot be the same for all w in N—in other words,
n - r E"r__ r d ;(w) converges to 2 for all w in N, but not uniformly. But see
Problem 13.9.

1.9. 1.3 T (a) Using the finite form of Theorem 1.3(iî), together with Problem
1.3(b), show that a trifling set is nowhere dense [A15].
(b) Put B = U„ (r„ — 2 - " -2  r„ + 2' -2 ], where r r , r 2 ,... is an enumeration of
the rationals in (0,1]. Show that (0, 1] — B is nowhere dense but not trifling or
even negligible.
(c) Show that a compact negligible set is trifling

1.10. T A set of the first category [A15] can be represented as a countable union of
nowhere dense sets; this is a topological notion of smallness, just as negligibility
is a metric notion of smallness. Neither condition implies the other:
(a) Show that the nonnegligible set N of normal numbers is of the first category
by proving that A m = (r,,_ m[ril In - 'S„(w)I < 2] is nowhere dense and N
U m A m .
(b) According to a famous theorem of Baire, a nonempty interval is not of the
first category. Use this fact to prove that the negligible set N` = (0,1] — N is not
of the first category.

1.11. Prove:
(a) If x is rational, (1.33) has only finitely many irreducible solutions
(b) Suppose that cp(q) > 1 and (1.35) holds for infinitely many pairs  p,q but
only for finitely many relatively prime ones. Then x is rational.
(c) If cp goes to infinity too rapidly, then A 9 is negligible (Theorem 1.6). But
however rapidly cp goes to infinity, A is nonempty, even uncountable. Hint.
Consider x = E7_ 1 1 / 2"(k) for integral a(k) increasing very rapidly to infinity.

SECTION 2. PROBABILITY MEASURES

Spaces

Let II be an arbitrary space or set of points w. In probability theory SZ
consists of all the possible results or outcomes co of an experiment or
obse rvation. For observing the number of heads in n tosses of a coin the
space f1 is (0, 1 , ... , n); for describing the complete history of the n tosses CI
is the space of all 2" n-long sequences of H's and T's; for an infinite
sequence of tosses fZ can be taken as the unit interval as in the preceding
section; for the number of a-particles emitted by a substance during a unit
interval of time or for the number of telephone calls arriving at an exchange
CI is (0, 1, 2, ... ); for the position of a particle fZ is three-dimensional
Euclidean space; for describing the motion of the particle SZ is an appropri-
ate space of functions; and so on. Most f1's to be considered are interesting
from the point of view of geometry and analysis as well as that of probability.
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Viewed probabilistically, a subset of SI is an event and an element co of 11
is a sample point.

Assigning Probabilities

In setting up a space SZ as a probabilistic model, it is natural to try and assign
probabilities to as many events as possible. Consider again the case Si = (0, 1]
—the unit interval. It is natural to try and go beyond the definition (1.3) and
assign probabilities in a systematic way to sets other than finite unions of
intervals. Since the set of nonnormal numbers is negligible, for example, one
feels it ought to have probability 0. For another probabilistically interesting
set that is not a finite union of intervals, consider

CC

(2.1)	 U [ co: —a <s t(m),...,s n - i (w) <b, sn(co) = 
— a l,

n=1

where a and b are positive integers. This is the event that the gambler's
fortune reaches — a before it reaches +b; it represents ruin for a gambler
with a dollars playing against an adversary with b dollars, the rule being that
they play until one or the other runs out of capital.

The union in (2.1) is countable and disjoint, and for each n the set in the
union is itself a union of certain of the intervals (1.9). Thus (2.1) is a
countably infinite disjoint union of intervals, and it is natural to take as its
probability the sum of the lengths of these constituent intervals. Since the set
of normal numbers is not a countable disjoint union of intervals, however,
this extension of the definition of probability would still not cover all the
interesting sets (events) in (0, 1].

It is, in fact, not fruitful to try to predict just which sets probabilistic
analysis will require and then assign probabilities to them in some ad hoc
way. The successful procedure is to develop a general theory that assigns
probabilities at once to the sets of a class so extensive that most of its
members never actually arise in probability theory. That being so, why not
ask for a theory that goes all the way and applies to every set in a space f ?
In the case of the unit interval, should there not exist a well-defined
probability that the random point co lies in A, whatever the set A may be?
The answer turns out to be no (see p. 45), and it is necessary to work within
subclasses of the class of all subsets of a space Si. The classes of the
appropriate kinds—the fields and o--fields—are defined and studied in this
section. The theory developed here covers the spaces listed above, including
the unit inte rval, and a great variety of others.

Classes of Sets

It is necessary to single out for special treatment classes of subsets of a space
1l, and to be useful, such a class must be closed under various of the
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operations of set theory. Once again the unit interval provides an instructive
example.

Example 2.1.* Consider the set N of normal numbers in the form (1.24),
where sn (w) is the sum of the first n Rademacher functions. Since a point w
lies in N if and only if lim n n - 1 s n(w)  = 0, N can be put in the form

(22)	 N= n U n [o : I n - 's n (w)1 <k - '].
k= 1 m= 1 n =m

Indeed, because of the very meaning of union and of intersection, w lies in
the set on the right here if and only if for every k there exists an m such that
In - 's n(w)1 < k' holds for all n > m, and this is just the definition of
convergence to 0—with the usua! E replaced by k - ' to avoid the formation
of an uncountable intersection. Since s n(w) is constant over each dyadic
interval of rank n, the set [w: n 's n(w)I < k C' ] is a finite disjoint union of
intervals. The formula (2.2) shows explicitly how N is constructed in steps
from these simpler sets. •

A systematic treatment of the ideas in Section 1 thus requires a class of
sets that contains the intervals and is closed under the formation of count-
able unions and intersections. Note that a singleton [Al] {x} is a countable
intersection I In (x — n - ' ,  x] of intervals. If a class contains all the singletons
and is closed under the formation of arbitrary unions, then of course it
contains all the subsets of ft. As the theory of this section and the next does
not apply to such extensive classes of sets, attention must be restricted to
countable set-theoretic operations and in some cases even to finite ones.

Consider now a completely arbitrary nonempty space ft. A class .r of
subsets of ft is called a fieldt if it contains SZ itself and is closed under the
formation of complements and finite unions:

(i) SI E ffl--;
(ii) A E 5r implies A` E 3-4-;

(iii) A, B E^ implies A U B E ,F.

Since SZ and the empty set 0 are complementary, (i) is the same in the
presence of (ii) as the assumption 0 E .9 In fact, (i) simply ensures that 9
is nonempty: If A E ..5r, then A` E ,7 by (ii) and SZ =A U A` E ^ by (iii).

By DeMorgan's law, A n B = (A` U B`)` and A U B = (A` n B`)`. If Y.- is
closed under complementation, therefore, it is closed under the formation of
finite unions if and only if it is closed under the formation of finite intersec-

"Many of the examples in the book simply illustrate the concepts at hand, but others contain
definitions and facts needed subsequently
tThe term algebra is often used in place of field
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tions. Thus (iii) can be replaced by the requirement

(iii') A, B E 3 implies A n B E ,.

A class 9 of subsets of fZ is a a--field if it is a field and if it is also closed
under the formation of countable unions:

(iv) A 1 , A,,. . E	 implies A l uA 2 u • - -

By the infinite form of DeMorgan's law, assuming (iv) is the same thing as
assuming

(iv') A I , A 2 ,... EYimplies A 1 nA 2 n ••• E ^

Note that (iv) implies (iii) because one can take A 1 = A and A„ = B for
n > 2. A field is sometimes called a finitely additive field to stress that it need
not be a a-field. A set in a given class is said to be measurable or to be
an -set. A field or a--field of subsets of fl will sometimes be called a field or
cr-field in 0.

Example 2.2. Section 1 began with a consideration of the sets (1.2), the
finite disjoint unions of subintervals of SZ = (0,1]. Augmented by the empty
set, this class is a field g o : Suppose that A = (a 1 , a'1 ] u • • • u (a,,,, a;,,],
where the notation is so chosen that a l <_ • • • < a,,,. If the (a 1 , at] are
disjoint, then Ar is (0, a l ] U (a' a 2 ] U • • U (ain„_ I , a„,] u (d 1] and so lies
in 20 (some of these intervals may be empty, as ar and ar+-1 may coincide).
If B = (b 1 , b;] u u (b„, bn], the (b1 , b,] again disjoint, then A n B =
U 71- 1 U ^ ^ ((a ; , a;] n (b1 , b'i ]}; each intersection here is again an interval or
else the empty set, and the union is disjoint, and hence A n B is in go . Thus
go satisfies (i), (ii), and (iii').

Although go is a field, it is not a cr-field: It does not contain the
singletons {x), even though each is a countable intersection f1„ (x — x]
of go-sets. And go does not contain the set (2.1), a countable union of
intervals that cannot be represented as a finite union of intervals. The set
(2.2) of normal numbers is also outside g 1,. •

The definitions above involve distinctions perhaps most easily made clear
by a pair of artificial examples.

Example 2.3. Let Y consist of the finite and the cofinite sets (A being
cofinite if A` is finite). Then Y is a field. If 1k is finite, then Y contains all
the subsets of SZ and hence is a cr-field as well. If 1k is infinite, however, then
Y is not a cr-field. Indeed, choose in II a set A that is countably infinite and
has infinite complement. (For example, choose a sequence co l ,  w 2 , ... of
distinct points in 0 and take A = {(0 2 , 0 4 , ... }.) Then A 0 Y, even though
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A is the union, necessarily countable, of the singletons it contains and each
singleton is in 	 This shows that the definition of a--field is indeed more
restrictive than that of field. 	 •

Example 2.4. Let 	 consist of the countable and the cocountable sets (A
being cocountable if A` is countable). Then 	 is a a-field. If SZ is
uncountable, then it contains a set A such that A and A` are both
uncountable. Such a set is not in 9, which shows that even a a-field may
not contain all the subsets of Si; furthermore, this set is the union (uncounta-
ble) of the singletons it contains and each singleton is in, which shows that
a a-field may not be closed under the formation of arbitrary unions. •

The largest a-field in D. is the power class 2', consisting of all the subsets
of Si; the smallest a-field consists only of the empty set and Si itself.

The elementary facts about fields and a-fields are easy to prove: If 	 is a
field, then A, B E Y- implies A— B= A n B` E	 aid A o B= (A — B) u
(B —A) E 34. Further, it follows by induction on n that A I , ..., A„ E Y-

implies A I u ••• uA„E92and A 1 n ••• nA„EY.
A field is closed under the finite set-theoretic operations, and a o-field is

closed also under the countable ones. The analysis of a probability problem
usually begins with the sets of some rather small class sad, such as the class of
subintervals of (0,1]. As in Example 2.1, probabilistically natural construc-
tions involving finite and countable operations can then lead to sets outside
the initial class d. This leads one to consider a class of sets that (i) contains
sad and (ii) is a a-field; it is natural and convenient, as it turns out, to
consider a class that has these two properties and that in addition (iii) is in a
certain sense as small as possible. As will be shown, this class is the
intersection of all the cr-fields containing ,f; it is called the a-field generated by
sa, and is denoted by a-(saf).

There do exist a--fields containing sat, the class of all subsets of Si being
one. Moreover, a completely arbitrary intersection of a fields (however many
of them there may be) is itself a a-field: Suppose that Y_ n o 3, where 0
ranges over an arbitrary index set and each Yei, is a a-field. Then Si E
for all 0, so that Si E Y. And A E Y implies for each B that A E 3 and
hence A` E , so that A` E Y If A,. E 3 for each n, then A„ E 	 for
each n and B, so that U„ A„ lies in each Ye and hence in Y

Thus the intersection in the definition of o - (322) is indeed a a-field
containing sal It is as small as possible, in the sense that it is contained in
every a-field that contains sad: if s2'c.1 and is a a-field, then d is one of

If SI: is the unit interval, for example, take A = (0, 2], say. To show that the general
uncountable SZ contains such an A requires the axiom of choice [A8]. As a matter of fact, to
prove the existence of the sequence alluded to in Example 2.3 requires a form of the axiom of
choice, as does even something so apparently down-to-earth as proving that a countable union of
negligible sets is negligible. Most of us use the axiom of choice completely unaware of the fact
Even Borel and Lebesgue did; see WAGON, pp. 217 ff.
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the o--fields in the intersection defining o -(Y), so that a(Y) c 1. Thus
o-(sa() has these three properties:

(i) ,sa c 0- (si);
(ii) o ci) is a cr-field;
(iii) if sac,.# and .# is a a-field, then a(32i) c.#.

The importance of o--fields will gradually become clear.

Example 2.5. If Y is a o--field, then obviously o-(Y) = If sad consists
of the singletons, then a(saf) is the o--field in Example 2.4. If sa/ is empty or
,1_ (0) or s1= {f1), then a(sad) = (0, fi). If dc d', then o-(d) c a(d').
If dc sal' c o-(Y), then a(d) = a(sa2'). •

Example 2.6. Let ^ be the class of subintervals of SZ = (0,11, and define
g = o-()f). The elements of . are called the Borel sets of the unit interval.
The field go of Example 2.2 satisfies .fc ,fi e c 2, and hence o- (go ) =

Since 2 contains the intervals and is a o--field, repeated finite and
countable set-theoretic operations starting from intervals will never lead
outside 2. Thus . contains the set (2.2) of normal numbers. It also contains
for example the open sets in (0,11: If G is open and x E G, then there exist
rationals a x and bx such that x E (a x , b,1 C G. But then G = U x E G (ax , bit;
since there are only countably many intervals with rational endpoints, G is a
countable union of elements of .J and hence lies in 2.

In fact, a contains all the subsets of (0,11 actually encountered in
ordinary analysis and probability. It is large enough for all "practical"
purposes. It does not contain every subset of the unit interval, however; see
the end of Section 3 (p. 45). The class 2 will play a fundamental role in all
that follows. •

Probability Measures
A set function is a real-valued function defined on some class of subsets of
Q. A set function P on a field Y is a probability measure if it satisfies these
conditions:

(i) 0< P(A)< 1 for AEY-;
(ii) P(0) = 0, P(SZ) = 1;
(iii) if A1, A 2 , . . . is a disjoint sequence of iFsets and if

thent
^

(2.3) 	1)(6°U A k = E P(A k ).
k=1 	 kil

Uk I A k E

tAs the left side of (2 3) is invariant under permutations of the A n , the same must be true of the
right side. But in fact, according to Dirichlet's theorem [A26], a nonnegative series has the same
value whatever order the terms are summed in.
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The condition imposed on the set function P by (iii) is called countable
additivity. Note that, since .9 is a field but perhaps not a cr-field, it is
necessary in (iii) to assume that UkU. 1 A k lies in Y. If A D ...,, A,, are disjoint
.=sets, then Uk, 1 A k is also in Y and (2.3) with Ann =An F 2 = •   = °
gives

n	 n

(2.4)	 P U Ak = E P ( A k ) •
k^l 	 k-1

The condition that (2.4) holds for disjoint .=sets is finite additivity; it is a
consequence of countable additivity. It follows by induction on n that P is
finitely additive if (2.4) holds for n = 2—if P(A u B) = P(A) + P(B) for
disjoint Y=sets A and B.

The conditions above are redundant, because (i) can be replaced by
P(A) >_ 0 and (ii) by P(S/) = 1. Indeed, the weakened forms (together with
(iii)) imply that Pal) = P(S1) + P(0) + P(0) + • • • , so that P(0) = 0, and
1 = P(SZ) = P(A) + P(A`), so that P(A) < 1.

Example 2.7. Consider as in Example 2.2 the field g o of finite disjoint
unions of subintervals of SZ = (0, 1]. The definition (1.3) assigns to each
20-set a number—the sum of the lengths of the constituent intervals—and
hence specifies a set function P on . Q . Extended inductively, (1.4) says that
P is finitely additive. In Section 1 this property was deduced from the
additivity of the Riemann integral (see (1.5)). In Theorem 2.2 below, the
finite additivity of P will be proved from first principles, and it will be shown
that P is, in fact, countably additive—is a probability measure on the field
go . The hard part of the argument is in the proof of Theorem 1.3, already
done; the rest will be easy. •

If .9 is a afield in SZ and P is a probability measure on .9v, the triple
(SZ, , P) is called a probability measure space, or simply a probability space.
A support of P is any .=set A for which P(A) = 1.

Example 2.8. Let .9 be the (y-field of all subsets of a countable space SZ,
and let p(w) be a nonnegative function on 1Z. Suppose that E, E n p((o) = 1,
and define P(A) = LE A p(w); since p(w)?__ 0, the order of summation is
irrelevant by Dirichlet's theorem [A261. Suppose that A = U 1 A i , where
the A ; are disjoint, and let w it , w iz , ... be the points in A i . By the theorem
on nonnegative double series [A27], P(A) _ EuP(wi;) = EiEjp(wi j) _
E ; P(A i), and so P is countably additive. This (1Z, F, P) is a discrete
probability space. It is the formal basis for discrete probability theory. •

Example 2.9. Now consider a probability measure P on an arbitrary
a--field Y in an arbitrary space fi; P is a discrete probability measure if there
exist finitely or countably many points w k and masses m k such that P(A) =

E., E A m k for A in Y. Here P is discrete, but the space itself may not be. In



24 PROBABILITY

terms of indicator functions, the defining condition is P(A) = Ekmk IA(wk)
for A E Y. If the set (w i , w 2 , ... ) lies in Y, then it is a support of P.

If there is just one of these points, say w 0 , with mass m Q = 1, then P is a
unit mass at to o . In this case P(A) =1A(w O ) for A E .9 	 ■

Suppose that P is a probability measure on a field ., and that A, B E
and A c B. Since P(A) + P(B — A) = P(B), P is monotone:

(2.5) 	 P(A) <P(B)	 if AcB.

It follows further that P(B — A) = P(B) — P(A), and as a special case,

(2.6) 	 P(A`) =1 — P(A).

Other formulas familiar from the discrete theory are easily proved. For
example,

(2.7) 	 P(A) +P(B) =P(A uB) +P(A nB),

the common value of the two sides being P(A u BC) + 2 P(A nB)+ P(A` n
B). Subtraction gives

(2.8) 	 P(A uB) =P(A) +P(B) —P(A nB).

This is the case n = 2 of the general inclusion-exclusion formula:

(2.9) P U Ak = EP(A i ) — EP(A,nA j )
k=1

+ E P(A i nA,nA k )+ ••• +(—i) n+ 'P(A, n 	 nA n ).
<j<k

To deduce this inductively from (2.8), note that (2.8) gives

n+ 1 	 n	 n
P U A k = P U Ak +P(An+1) —P U (Ak nA n +1) •

k=1	 k■=l 	 k=1

Applying (2.9) to the first and third terms on the right gives (2.9) with n +1
in place of n.

If B 1 =A 1 and Bk =Ak nA; n 	 nAk_ 1 , then the Bk are disjoint and
Uk =1 Ak = Uk1 Bk , so that P(Uk= 1 Ak) = Ek=1P(Bk). Since P(Bk ) s
P(A k ) by rnonotonicity, this establishes the finite subadditivity of P:

n 	 n

P U A k < E P(Ak)•
k= 1 	 k=1

(2.10)
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Here, of course, the A k need not be disjoint. Sometimes (2.10) is called
Boole's inequality.

In these formulas all the sets are naturally assumed to lie in the field :

The derivations above involve only the finite additivity of P. Countable
additivity gives further properties:

Theorem 2.1. Let P be a probability measure on a field Y.

(i) Continuity from below: If A„ and A lie in Y and s A„ A, then
P(A„) 1 P(A).

(ii) Continuity from above: If A„ and A lie in Y and A n J. A, then
P(A) J, P(A).

(iii) Countable subadditivity: If A I , A 2, ... and Uk 
. I Ak lie in Y (the A k

need not be disjoint), then

(2.11) P U Ak 	E P(A k ).
k=1 	 k =1

PROOF. For (i), put B 1 =A 1 and Bk =A k — A k _,. Then the Bk are
disjoint, A = Uk.. 1 Bk , and A n = Uk _ I Bk , so that by countable and finite
additivity, P(A) = Ek= 1 P(Bk ) = lim n Ek =1 P(Bk )  = lim n P(A n). For (ii), ob-
serve that A n J. A implies An I A`, so that 1 — P(A n ) T 1 — P(A).

As for (iii), increase the right side of (2.10) to Ek =1 P(A k ) and then apply
part (i) to the left side. 	 •

Example 2.10. In the presence of finite additivity, a special case of (ii)
implies countable additivity. If P is a finitely additive probability measure on
the field .1, and if A n 0 for sets A,, in Y- implies P(A n )j, 0, then P is
countably additive. Indeed, if B = Uk Bk for disjoint sets Bk (B and the Bk in

then Cn = Uk > n Bk = B — U k <n Bk lies in the field , and Cn 10. The
hypothesis, together with finite additivity, gives P(B) — Ek = 1P(Bk) —
P(C,,) -) 0, and hence P(B) = Ek- I P(Bk). •

Lebesgue Measure on the Unit Interval

The definition (1.3) specifies a set function on the field ao of finite disjoint
unions of intervals in (0,1]; the problem is to prove P countably additive. It
will be convenient to change notation from P to A, and to denote by Y the
class of subintervals (a, b] of (0,11; then A(I) =1/1=  b — a is ordinary length.
Regard 0 as an element of Y of length O. If A = U7 I I the It being

t For the notation, see [A4] and [Al0].
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disjoint 5-sets, the definition (1.3) in the new notation is

(2.12)
n 	 n

A (A)=	 A(Ii ) = 	 llil.

As pointed out in Section 1, there is a question of uniqueness here, because
A will have other representations as a finite disjoint union U. 1 J1 of 5-sets.
But 5 is closed under the formation of finite intersections, and so the finite
form of Theorem 1.3(iii) gives

n 	 n 	 rn

(2.13) 	 E I41= E E IIi nJ,l =

(Some of the Ii n J1 may be empty, but the corresponding lengths are then O.)
The definition is indeed consistent.

Thus (2.12) defines a set function h on 211 , a set function called Lebesgue
measure.

Theorem 2.2. Lebesgue measure 	 is a (countably additive) probability
measure on the field a,.

PROOF. Suppose that A = U1 Ak, where A and the A k are 20-sets
and the A k are disjoint. Then A = Un=1 Ii and A k = Ulnk1 Jkj are disjoint
unions of .-sets, and (2.12) and Theorem 1.3(iii) give

(2.14)
n 	 OD m A

A (A) = 	E E E
 i = 1k=1j =1

= E E IJkj l =	 A(A k )•	 •
k=1 j=1	 k=1

In Section 3 it is shown how to extend A from 2 0 to the larger class
0 = o-(20 ) of Borel sets in (0, ii. This will complete the construction of À as
a probability measure (countably additive, that is) on .43 1. and the construction
is fundamental to all that follows. For example, the set N of normal numbers
lies in 2 (Example 2.6), and it will turn out that À(N) = 1, as probabilistic
intuition requires. (In Chapter 2, will be defined for sets outside the unit
interval as well)

It is well to pause here and consider just what is involved in the construc-
tion of Lebesgue measure on the Borel sets of the unit interval. That length
defines a finitely additive set function on the class .5 of intervals in (0, i] is a
consequence of Theorem 1.3 for the case of only finitely many intervals and
thus involves only the most elementary properties of the real number system.
But proving countable additivity on 5 requires the deeper property of
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compactness (the Heine-Borel theorem). Once A has been proved countably
additive on f, extending it to 20 by the definition (2.12) presents no real
difficulty: the arguments involving (2.13) and (2.14) are easy. Difficulties again
arise, however, in the further extension of A from ao to a = 0-(a o ), and
here new ideas are again required. These ideas are the subject of Section 3,
where it is shown that any probability measure on any field can be extended
to the generated a-field.

Sequence Space*

Let S be a finite set of points regarded as the possible outcomes of a simple
observation or experiment. For tossing a coin, S can be {H, T) or (0,11; for
rolling a die, S = (1, ... , 6); in information theory, S plays the role of a finite
alphabet. Let D. = S°° be the space of all infinite sequences

(2.15) 	 co = (z 1(w), z Z (co),... )

of elements of S: zk (w) E S for all w E Sœ and k >_ 1. The sequence (2.15)
can be viewed as the result of repeating infinitely often the simple experi-
ment represented by S. For S = (0,1), the space S°° is closely related to the
unit inte rval; compare (1.8) and (2.15).

The space Sœ is an infinite-dimensional Cartesian product. Each zk ( •) is a
mapping of S°° onto S; these are the coordinate functions, or the natural
projections. Let S" = S x • • • x S be the Cartesian product of n copies of S;
it consists of the n-long sequences (u 1 , ... , u") of elements of S. For such a
sequence, the set

(2.16) 	 [co: (z 1(w),..., z„(w)) = (u 1 ,..., u")]

represents the event that the first n repetitions of the experiment give the
outcomes u 1 ,...,u" in sequence. A cylinder of rank n is a set of the form

(2.17) 	 A = [w: (z 1 (w),...,z"(w)) EH],

where H c S". Note that A is nonempty if H is. If H is a singleton in S",
(2.17) reduces to (2.16), which can be called a thin cylinder.

Let -go be the class of cylinders of all ranks. Then go is a field: S°° and
the empty set have the form (2.17) for H = S" and for H = 0. If H is
replaced by S" — H, then (2.17) goes into its complement, and hence -go is

*The ideas that follow are basic to probability theory and are used further on, in particular in
Section 24 and (in more elaborate form) Section 36. On a first reading, however, one might
prefer to skip to Section 3 and return to this topic as the need arises.
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closed under complementation As for unions, consider (2.17) together with

(2.18) 	 B =[W: (z,(W),... , zm(W)) E 11,

a cylinder of rank m. Suppose that n < m (symmetry); if H' consists of the
sequences (u 1 ,... , u,") in S'" for which the truncated sequence (u,, ... ,u")
lies in H, then (2.17) has the alternative form

	

(2.19) 	 A = [co: (z,(W),..., z,,,(W )) E H']

Since it is now clear that

	

(2.20) 	 AuB= [W: (z ,(u)),...,z,,,(W)) EH' u/1

is also a cylinder, -4 is closed under the formation of finite unions and hence
is indeed a field.

Let p, + , u E S, be probabilities on S—nonnegative and summing to 1.
Define a set function P on -4 (it will turn out to be a probability measure)
in this way: For a cylinder A given by (2.17), take

	

(2.21) 	 P(A) = E p„ 1 ... p„,,,

H

the sum extending over all the sequences (up... ,u") in H. As a special case,

	

(2.22) 	 Pico: (Z,(W),..., z (W)) _ (u,,. .,urr)] =p,J . • • p„.

Because of the products on the right in (2.21) and (2.22), P is called product
measure; it provides a model for an infinite sequence of independent repeti-
tions of the simple experiment represented by the probabilities pü on S. In
the case where S = {0,1} and p 0 = p, = Z , it is a model for independent
tosses of a fair coin, an alternative to the model used in Section 1.

The definition (2.21) presents a consistency problem, since the cylinder A
will have other representations. Suppose that A is also given by (2.19). If
n = m, then H and H' must coincide, and there is nothing to prove. Suppose
then (symmetry) that n <m. Then H' must consist of those (u,, ..., u m) in
Sm for which (u 1 ,... ,u") lies in H: H' = H X Sm -". But then

314,,P14„+1
r(223 1.

	

(2.23) 	 pu 1 . .    
	 pG,n 	 L pu , 	

Y

p
ur, E pun + 1 

• • pun:

H' 	 H 	 Sm

E pu+ ... pur'.

H

The definition (2.21) is therefore consistent. And finite additivity is now easy:
Suppose that A and B are disjoint cylinders given by (2.17) and (2.18).
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Suppose that n <_ m, and put A in the form (2.19). Since A and B are
disjoint, H' and I must be disjoint as well, and by (2.20),

(2.24) 	 P(AuB)= E pü ^ 	püm =P(A)+P(B).
H'u ^

Taking H = S' in (2.21) shows that P(S°) = 1. Therefore, (2.21) defines a
finitely additive probability measure on the field -6°0 .

Now, P is countably additive on eo , but this requires no further argument,
because of the following completely general result.

Theorem 2.3. Every finitely additive probability measure on the field 4o of
cylinders in S" is in fact countably additive.

The proof depends on this fundamental fact:

Lemma. If A n J, A, where the A„ are nonempty cylinders, then A is
nonempty.

PROOF OF THEOREM 2.3. Assume that the lemma is true, and apply
Example 2.10 to the measure P in question: If A n j. 0 for sets in ^o
(cylinders) but P(A n ) does not converge to 0, then P(A n ) >_ E > 0 for some
e. But then the A n are nonempty, which by the lemma makes A n j. 0
impossible. •

PROOF OF THE L>MMA.t Suppose that A, is a cylinder of rank m,, say

(2.25) 	 A, =[w: (Z(W),... , z,n,(W))

where H, c Sm , . Choose a point W n in _A n , which is nonempty by assumption.
Write the components of the sequences in a square array:

(2.26)
Z1( W1 ) 	 Z1( W2) 	Z1(

((

W3)

Z2(W1) Z2(W2) 	 Z21 W3)

The nth column of the array gives the components of co n .
Now argue by a modification of the diagonal method [A14]. Since S is

finite, some element u, of S appears infinitely often in the first row of (2.26):
for an increasing sequence (n,, k } of integers, z 1 (Wn, k ) = u, for all k. By the
same reasoning, there exist an increasing subsequence (n2 k ) of (n, k ) and an

t The lemma is a special case of Tychonov's theorem: If S is given the discrete topology, the
topological product S°° is compact (and the cylinders are closed).
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element u 2 of S such that z2(wn2 k
) = u 2 for all k. Continue. If nk = n k.k ,

then z r (w„ k ) = u r for k- r, and hence (z,(w„ k ), ... , z r(w„)) = (u 1 ,... , u,.)
for k> r.

Let w° be the element of S°° with components u r : w° = (u„ u 2 , ...) =
(z,(w°), z 2(w°), ... ). Let t be arbitrary. If k t, then (n k is increasing) n k > t
and hence co n k E Ank cA,. It follows by (2.25) that, for k >_ t, H, contains the
point (z,(w nk ), ... , z,n (wnk )) of Sm , . But for k >_ m„ this point is identical
with (z,(w°),..., z,.,(w°)), which therefore lies in H,. Thus w° is a point
common to all the A,. •

Let e be the afield in S°° generated by tea . By the general theory of the
next section, the probability measure P defined on eu by (2.21) extends to
-e The term product measure, properly speaking, applies to the extended P.
Thus (Sm, > ', P) is a probability space, one important in ergodic theory
(Section 24).

Suppose that S = {0,1) and p o =p 1 = i . In this case, (Sm, e, P) is closely related to
((0, 11, g, A), although there are essential differences. The sequence (2.15) can end in
0's, but (1.8) cannot. Thin cylinders are like dyadic intervals, but the sets in eo (the
cylinders) correspond to the finite disjoint unions of intervals with dyadic endpoints, a
field somewhat smaller than go . While nonempty sets in 20 (for example, (2, i +
2 -1) can contract to the empty set, nonempty sets in e0 cannot. The lemma above
plays here the role the Heine-Borel theorem plays in the proof of Theorem 1.3. The
product probability measure constructed here on e0 (in the case S —{0,1), p o =p1
= ;, that is) is analogous to Lebesgue measure on .0 0 But a finitely additive
probability measure on 20 can fail to be countably additive,t which cannot happen
in e0 .

Constructing cr-Fields*

The a-field o (.si) generated by d was defined from above or from the outside, so to
speak, by intersecting all the a--fields that contain d (including the a --field consisting
of all the subsets of fi). Can o(f) somehow be constructed from the inside by
repeated finite and countable set-theoretic operations starting with sets in . ?

For any class 67e of sets in II let* consist of the sets in ZZ, the complements
of sets in cr, and the finite and countable unions of sets in air. Given a class, put
sVo _ d and define d1, 2 , ...inductively by

(2.27)

That each me', is contained in o-(c2) follows by induction. One might hope that
. =o-(d) for some n, or at least that U n =o .sin = o-(d). But this process applied to
the class of intervals fails to account for all the Borel sets.

Let .moo consist of the empty set and the intervals in flï = (0,11 with rational
endpoints, and define .^ = ,47.... 1 for n = 1, 2, .... It will be shown that U 7=o-4 • is
strictly smaller than 0 _ o(fo ).

tSee Problem 2.15.
* This topic may be omitted.
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If a,r and b,, are rationals decreasing to a and b, then (a, b] = U m (1 n(a m , b,,1=
U m(U „(a m , bn ]`)` e J. The result would therefore not be changed by including in
.50 all the intervals in (0,11

To prove U n-o._ smaller than 2, first put

(2.28) 	 Ilf(A1,A2,...)=AcIUA2UA3UA4U ••

Since 	 _ 1 contains f = (0, 1] and the empty set, every element of .)fn has the form
(2.28) for some sequence A 1 , A 2 ,... of sets in ,4_ 1 . Let every positive integer
appear exactly once in the square array

m 11 m 12

m21 m 22

Inductively define

(2.29) 	 (100(A 1, A 2 , ..) = A1,

(1)n( AI, A 2 , •• ) —Alf((n_I(Amu, Am12,...),4)n_I(Am21, mz , ."), 	 ),

n 	 1,2, .. .

It follows by induction that every element of 	 has the form 4n(A 1 , A 2 , ...) for
some sequence of sets in A. Finally, put

(2.30) ^( A 1 , A... ) = ^1( A
mii, 

A... } U ^2( A mzi ' `4 mzz ^ ... ) U • ••

Then every element of U: =0 ..1,7, has the form (2.30) for some sequence A 1 , A 2 ,..
of sets in .50 .

If A 1 , A2,... are in 2, then (2.28) is in 2; it follows by induction that each
(MA 1 , A 2 ,...) is in 0 and therefore that (2.30) is in 0.

With each w in (0,1] associate the sequence (w 1 , (0 2 , ...) of positive integers such
that co l  + • • +w k is the position of the kth 1 in the nonterminating dyadic
expansion of w (the smallest n for which E Lidi(w) = k). Then w H (w 1 , w 2 ,...) is a
one-to-one correspondence between (0,1] and the set of all sequences of positive
integers. Let I I , /2 ,... be an enumeration of the sets in .moo , put cp(w) _=, . . .)
and define B —[(0: w 

z
: .4 cp(w)]. It will be shown that B is a Borel set but is not

contained in any of the .^.
Since w lies in B if and only if w lies outside cp(w), B cp(w) for every w. But

every element of U7= 0 ,4 has the form (2.30) for some sequence in .50 and hence
has the form cp((o) for some w. Therefore, B is not a member of U n^o^

It remains to show that B is a Borel set. Let Dk = [w: w E 1 J. Since L k (n) = [w:
w 1 + • • • +w k =n] _ [w: Ejp lidi((0) < k = E7=1 dj (w)] is a Borel set, so are [w: w k =
n]= Um=1Lk- 1(m)n Lk(m + n) and

Dk =[w: w E k,d _ U (fw: w k =n] nIn).
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Suppose that it is shown that

(2.31) 	 [co. 	=4:on ( Dul ,DuZ ,...

for every n and every sequence u 1 , u 2 , . , , of positive integers. It will then follow from
the definition (2.30) that

CO

B` =[c.w:c.w E Cp(w)]= U [w: w E 4)n(I , , I^, ,..
r,rl 	 m,,,

n =1

- U irk(
 D11,r;,D...)

 =(1)(D D2,...).
n =i

But as remarked above, (2.30), is a Borel set if the A, ! are. Therefore, (2.31) will imply
that B` and B are Borel sets.

If n = 0, (2.31) holds because it reduces by (2.29) to [w: w E I ] = Du , Suppose
that (2.31) holds with n - 1 in place of n. Consider the condition " I

(2.32) w E(IDn-i(r l^, 	 ,

„rAI 	 r,rflA7

By (2.28) and (2.29), a necessary and sufficient condition for w E 43n(I^ , I  , ...) isu, rr Z

that either (2.32) is false for k = 1 or else (2.32) is true for some k exceeding 1. But by
the induction hypothesis, (2.32) and its negation can be replaced by w E
(Dn _ 1(DurrrAS , Du rAZ , ...) and its negation. Therefore, w e I , ...) if and only if
w E (1)n(D, D„,,...).

Thus U 
,,

 * . , and there are Borel sets that cannot be arrived at from the
intervals by any finite sequence of set-theoretic operations, each operation being finite
or countable. It can even be shown that there are Borel sets that cannot be arrived at
by any countable sequence of these operations. On the other hand, every Borel set
can be arrived at by a countable ordered set of these operations if it is not required
that they be performed in a simple sequence. The proof of this statement—and
indeed even a precise explanation of its meaning—depends on the theory of infinite
ordinal numbers.'

PROBLEMS

2.1. Define x v y = max{x, y), and for a collection (Xa) define V a xa = supa X a ;
define x A y = min(x, y) and A a xa = infa x a . Prove that IA u B = IA V IB ' IAn B
= IA A IB , IA , = 1 — IA , and IALB =1 IA — "Bi, in the sense that there is equality
at each point of fi.. Show that A cB if and only if 14 _< IB pointwise. Check
the equation x A (y V z) _ (x A y) V (x A z) and deduce the distributive law

)1

'See Problem 2.22.
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A n (B u C) _ (A n B) u (A n C). By similar arguments prove that

Au(BnC)=(AuB)n(AuC),

A ACc(AAB)u(BOC),
r

nu An) — I t Ac„,
^ 	 n

( n A)'=  U A^.
n 	 n

2.2. Let A 1 ,..., A n be arbitrary events, and put Uk = U(A i , n • • • nA 1 , ) and
1k= n(A, 1 t_I • • • U A, ), where the union and intersection extend over all the
k-tuples satisfying l <il < • • • < ik <n. Show that Uk = I„-k +I

2.3. (a) Suppose that SZ E Y and that A, B E Y implies A —B =A n13` E •

Show that Y is a field.
(b) Suppose that SZ E Y and that . is closed under the formation of comple-
ments and finite disjoint unions. Show that Y need not be a field.

2.4. Let Y , Y2 , . . be classes of sets in a common space fi.
(a) Suppose that .9 are fields satisfying .9n c . 	 . Show that U; =1 .^;, is a
field.
(b) Suppose that .9n are a-fields satisfying ✓n c . +1 . Show by example that
U n =1 	 need not be a a-field.

2.5. The field f(d) generated by a class d in Si is defined as the intersection of all
fields in 1k containing .s>2
(a) Show that f(.si ) is indeed a field, that dc f(d), and that f(d) is
minimal in the sense that if 	 is a field and dc .1, then f(.sad) cJ.
(b) Show that for nonempty .sat , f(d) is the class of sets of the form
U m I n;' 1A1» where for each i and j either A il E Si or A ij E .ci, and where
the m sets 117 ,_ 1 A ;; , 1 	 are disjoint. The sets in f(d) can thus be
explicitly presented, which is not in general true of the sets in u(.s>2).

2.6. T (a) Show that if .sf consists of the singletons, then f(c) is the field in
Example 2.3.
(b) Show that f(d)ca(d), that f(d) =o-(d) if d is finite, and that
u(f(SV)) u (sag').
(c) Show that if .sad is countable, then f(d) is countable.
(d) Show for fields Yi and .-2 that f(, u Y2 ) consists of the finite disjoint
unions of sets A l nA 2 with A ; E .`. Extend.

2.7. 2.5 1' Let H be a a set lying outside .^ where Y- is a field [or a-field]. Show
that the field [or a-field] generated by .mou (H) consists of sets of the form

(2.33) 	 (HnA)U(H`nB), 	 A,BE ,f.
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2.8. Suppose for each A in d that A` is a countable union of elements of sit. The
class of intervals in (0,1] has this property. Show that o(d) coincides with the
smallest class over .ci that is closed under the formation of countable unions
and intersections.

2.9. Show that, if B E a(d), then there exists a countable subclass dB of da( such
that B E Q(dB ).

2.10. (a) Show that if o-(d) contains every subset of SZ, then for each pair co and w'
of distinct points in fZ there is in an A such that I 1(w) /JO
(b) Show that the reverse implication holds if f), is countable.
(c) Show by example that the reverse implication need not hold for uncount-
able f1

2.11. A a-field is countably generated, or separable, if it is generated by some
countable class of sets.
(a) Show that the a-field .0 of Borel sets is countably generated.
(b) Show that the a-field of Example 2.4 is countably generated if and only if SZ
is countable.
(c) Suppose that .9 and Y -2 are Q-fields, Yi c .9 , and Y-2 is countably
generated. Show by example that may not be countably generated.

2.12. Show that a a-field cannot be countably infinite—its cardinality must be finite
or else at least that of the continuum. Show by example that a field can be
countably infinite.

2.13. (a) Let .f be the field consisting of the finite and the cofinite sets in an infinite
II, and define P on .f by taking P(A) to be 0 or 1 as A is finite or cofinite.
(Note that P is not well defined if SZ is finite.) Show that P is finitely additive.
(b) Show that this P is not countably additive if fZ is countably infinite.
(c) Show that this P is countably additive if fZ is uncountable.
(d) Now let ,9r be the a-field consisting of the countable and the cocountable
sets in an uncountable n, and define P on Y- by taking P(A) to be 0 or 1 as A
is countable or cocountable. (Note that P is not well defined if fZ is countable.)
Show that P is countably additive.

2.14. In (0,1] let be the class of sets that either (i) are of the first category [A15] or
(ii) have complement of the first category. Show that .9 is a a-field. For A in
.9, take P(A) to be 0 in case (1) and 1 in case (ii). Show that P is countably
additive.

2.15. On the field .moo in (0,1] define P(A) to be 1 or 0 according as there does or
does not exist some positive EA (depending on A) such that A contains the
interval (, i +EA ]. Show that P is finitely but not countably additive. No such
example is possible for the field eca in S°° (Theorem 2.3).

2.16. (a) Suppose that P is a probability measure on a field .9' Suppose that A l E Sr
for t > 0, that A S cA 1 for s < t, and that A =U 1,0A1 E .9 Extend Theorem
2.1(i) by showing that P(A 1 )T P(A) as t -' 03. Show that A necessarily lies in .9
if it is a a-field.
(b) Extend Theorem 2.1(iî) in the same way.



SECTION 2. PROBABILITY MEASURES 	 35

2.17. Suppose that P is a probability measure on a field Sr, that A 1 , A 2 ,..., and
A = U ,, A , lie in 5, and that the A„ are nearly disjoint in the sense that
P(A ni nA n ) =0 for m *n. Show that P(A)= EnP(A n ).

2.18. Stochastic arithmetic. Define a set function Pn on the class of all subsets of
SZ ={1,2, ... } by

(2.34) 	 Pn(A) = n #[m: 1 <_m < n, m EA];

among the first n integers, the proportion that lie in A is just Pn(A). Then P„ is
a discrete probability measure. The set A has density

(2.35) 	 D(A)- limPn(A),

provided this limit exists. Let J1 be the class of sets having density.
(a) Show that D is finitely but not countably additive on .9.
(b) Show that @ contains the empty set and SI and is closed under the
formation of complements, proper differences, and finite disjoint unions, but is
not closed under the formation of countable disjoint unions or of finite unions
that are not disjoint.
(c) Let .W consist of the periodic sets Ma = [ka: k = 1,2,, Observe that

(2.36) Pn(Ma) = n L â J-) n= D(Ma ).

Show that the field f(.A) generated by . l (see Problem 2.5) is contained in ..
Show that D is completely determined on f(4') by the value it gives for each a
to the event that m is divisible by a.
(d) Assume that Ep - I diverges (sum over all primes; see Problem 5.20(e)) and
prove that D, although finitely additive, is riot countably additive on the field
f(M).
(e) Euler's function (p(n) is the number of positive integers less than n and
relatively prime to it. Let p 1 ,...,  pr be the distinct prime factors of n; from the
inclusion-exclusion formula for the events Ern: p i E m), (2.36), and the fact that
the p, divide n, deduce

(2.37) rF(n) =^(1— p l.n 	pl	 II

(f) Show for 0 <_ x < 1 that D(A)--x for some A.
(g) Show that D is translation invariant: If B = [m + 1: m E Al, then B has a
density if and only if A does, in which case D(A)=D(B).

2.19. A probability measure space 	 P) is nonatomic if P(A ) > 0 implies that
there exists a B such that B cA and 0 <P(B) <P(A) (A and B in 	of
course).
(a) Assuming the existence of Lebesgue measure A on .0, prove that it is
nonatomic.
(b) Show in the nonatomic case that P(A) > 0 and E > 0 imply that there exists
a B such that B cA and 0 < P(B) < E.
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(c) Show in the nonatomic case that 0 <x < P(A) implies that there exists a B
such that B cA and P(B) =x. Hint: Inductively define classes 	 , numbers
h,,, and sets HR by , _ (0) _ (Hob 6•14 [ H: H c A — U k < n Hk
P(Uk < „Hk)+ P(H)<xl, h„= sup[P(H)• H E oni, and P(H„)>h n —n -1 .
Consider U k Hk'

(d) Show in the nonatomic case that, if p,, p 2 ,... are nonnegative and add to 1,
then A can be decomposed into sets  B 1 , B2 ,... such that P(B,,) =p„P(A).

2.20. Generalize the construction of product measure: For n = I, 2, ... , let S„ be a
finite space with given probabilities p„,,, u E S„ Let S, x S2 X • be the space
of sequences (2.15), where now zk (w) ESk . Define P on the class of cylinders,
appropriately defined, by using the product p i „, • • p„,, ,, on the right in (2.21)
Prove P countably additive on e,, and extend Theorem 2.3 and its lemma to
this more general setting. Show that the lemma fails if any of the S„ are infinite

2.21. (a) Suppose that d_ {A 1 , A 2 , .. } is a countable partition of fZ Show (see
(2.27)) that , = do = af* coincides with 0-(d). This is a case where cr(d)
can be constructed "from the inside.”
(b) Show that the set of normal numbers lies in .56 .
(c) Show that °* _ A° if and only if oll° is a cr-field. Show that	 is
strictly smaller than .	 for all n.

2.22. Extend (2.27) to infinite ordinals a by defining .tea, = (U 0 , ads r. Show that, if
f is the first uncountable ordinal, then U a < i2` t = 0-(d). Show that, if the
cardinality of . does not exceed that of the continuum, then the same is true
of o(d). Thus has the power of the continuum.

2.23. T Extend (2.29) to ordinals a < SI as follows. Replace the right side of (2.28)
by U;^1(A2,1_1 U As„). Suppose that (Do is defined for f3 < a Let
p a(1), /3 a(2), ... be a sequence of ordinals such that /3 a(n) <a and such that if
/3 <a, then /3 = /3a(n) for infinitely many even n and for infinitely many odd n;
define

(2.38) (13a(A 1 ,A 2 ,...)

= ‘1, ( 4)0a(I )( A m . , A n+12 , .....) ,(13p,,(2) (  	 .) ...).A my , .

Prove by transfinite induction that (2.38) is in .0 if the A n are, that every
element of	 has the form (2.38) for sets A n in 	 and that (2.31) holds with
a in place of ri. Define cpa(co) 	 ..), and show that Ba =[0a:
w e cpa(w)1 lies in	 —	 for a <II Show that `fa is strictly smaller than
for a < /3

SECTION 3. EXISTENCE AND EXTENSION

The main theorem to be proved here may be compactly stated this way:

Theorem 3.1. A probability measure on a field has a unique extension to
the generated a-field.

In more detail the assertion is this: Suppose that P is a probability
measure on a field Y -0 	subsets of fi, and put ,F= a- 0 ). Then there
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exists a probability measure Q on Y such that Q(A) = P(A) for A E ,Fo .
Further, if Q' is another probability measure on Y such that Q'(A) = P(A)
for A c moo , then Q'(A) = Q(A) for A E Y.

Although the measure extended to Y is usually denoted by the same
letter as the original measure on moo , they are really different set functions,
since they have different domains of definition. The class Y -0  only assumed
finitely additive in the theorem, but the set function P on it must be assumed
countably additive (since this of course follows from the conclusion of the
theorem).

As shown in Theorem 2.2, A (initially defined for intervals as length:
A(1) = I1I) extends to a probability measure on the field 00 of finite disjoint
unions of subintervals of (0, 1]. By Theorem 3.1, A extends in a unique way
from go to 0 = a(00 ), the class of Borer sets in (0, 1]. The extended A is
Lebesgue measure on the unit interval. Theorem 3.1 has many other applica-
tions as well.

The uniqueness in Theorem 3.1 will be proved later; see Theorem 3.3. The
first project is to prove that an extension does exist.

Construction of the Extension

Let P be a probability measure on a field .moo . The construction following
extends P to a class that in general is much larger than o-(YY ) but nonethe-
less does not in general contain all the subsets of Si.

For each subset A of Sk, define its outer measure by

(3.1) 	 P*(A) = inf EP(A n ),
n

where the infimum extends over all finite and infinite sequences A 1 , A 2 , ...

of 9a-sets satisfying A c U n An . If the A n form an efficient covering of A,
in the sense that they do not overlap one another very much or extend much
beyond A, then En P(A n ) should be a good outer approximation to the
measure of A if A is indeed to have a measure assigned it at all. Thus (3.1)
represents a first attempt to assign a measure to A.

Because of the rule P(A`) = 1 — P(A) for complements (see (2.6)), it is
natural in approximating A from the inside to approximate the complement
A` from the outside instead and then subtract from 1:

(3.2) P*(A) =1 —P*(A`).

This, the inner measure of A, is a second candidate for the measure of A.t A
plausible procedure is to assign measure to those A for which (3.1) and (3.2)

tAn idea which seems reasonable at first is to define P,,,(A) as the supremum of the sums
En P(A n) for disjoint sequences of .F0-sets in A. This will not do. For example, in the case
where .Q is the unit interval, .^ ò is .0 (Example 2.2), and P is A as defined by (2.12), the set N
of normal numbers would have inner measure 0 because it contains no nonempty elements of
Q0 ; in a satisfactory theory, N will have both inner and outer measure 1.
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agree, and to take the common value P*(A) = P* (A) as the measure. Since
(3.1) and (3.2) agree if and only if

(3.3) 	 P*(A) +P*(A`) = 1,

the procedure would be to consider the class of A satisfying (3.3) and use
P*(A) as the measure.

It turns out to be simpler to impose on A the more stringent requirement
that

(3.4) 	 P*(AnE)+P*(A`nE) =P*(E)

hold for every set E; (3.3) is the special case E = fi, because it will turn out
that P*(SZ) � 1. 1 A set A is called P*-measurable if (3.4) holds for all E; let
4' be the class of such sets. What will be shown is that 4' contains o-(. e )
and that the restriction of P* to J(.97-0 ) is the required extension of P.

The set function P* has four properties that will be needed:

(i) P* (QS) = 0;

(ii) P* is nonnegative: P*(A) > 0 for every A c Si;
(iii) P* is monotone: A C B implies P*(A) < P*(B);

(iv) P* is countably subadditive: P *(Un A n ) < E„ P*(A n ).

The others being obvious, only (iv) needs proof. For a given E, choose
.Fo-sets Bnk such that A„ C U k Bnk and Ek P(Bnk ) < P*(A n ) + E2 - n,
which is possible by the definition (3.1). Now U n An C Un,k Bnk, so that
P*(Un A n ) < In. kP(Bn k) < En P * (A n ) + E, and (iv) follows. Of course, (iv)
implies finite subadditivity.

By definition, A lies in the class 	 of P*-measurable sets if it splits each
E in 2 n in such a way that P* adds for the pieces—that is, if (3.4) holds.
Because of finite subadditivity, this is equivalent to

(3.5) 	P* (A nE) +P*(A`nE) <P*(E).

Lemma 1. The class .,, is a field.

t it also turns out, after the fact, that (3.3) implies that (3.4) holds for all E anyway, see Problem
3.2.
Compare the proof on p. 9 that a countable union of negligible sets is negligible.
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PROOF. It is clear that Si E.4' and that 4' is closed under complementa-
tion. Suppose that A, B E 4' and E c SZ. Then

P*(E) =P*(BnE)+P*(B`nE)

=P*(AnBnE)+P*(A`nBnE)

+P*(A nB`nE) +P*(A`nB`nE)

P*(AnBnE)

+P*((A` nB nE) u (A nB`nE) u (A`nB`nE))

=P*((AnB)nE)+P*((AnB)`nE),

the inequality following by subadditivity. Hencet A n B E 4', and 4' is a
field. 	 •

Lemma 2. If A I , A 2 , ... is a finite or infinite sequence of disjoint .11-sets,
then for each E c SZ,

(3.6) 	 P* E n ( UA k )) = EP * ( E nA k )•
k 	 k

PROOF. Consider first the case of finitely many A k , say n of them. For
n = 1, there is nothing to prove. In the case n = 2, if A l u A 2 = Si, then (3.6)
is just (3.4) with A 1 (or A 2 ) in the role of A. If A 1 u A 2 is smaller than Si,
split E n (A 1 u A 2 ) by A I and A; (or by A 2 and AS) and use (3.4) and
disjointness.

Assume (3.6) holds for the case of n — 1 sets. By the case n = 2, together
with the induction hypothesis, P*(E n (Uk =1 A k )) = P*(E n (Uk=i A k )) +
P*(E nA n ) = Eric' =1 P*(E nA k ).

Thus (3.6) holds in the finite case. For the infinite case use monotonicity:
P*( E n (Uk =1 Ak) )  P*( E n (Uk =1 Ak)) = Ek =1P *(E nA k ). Let n --) oo,
and conclude that the left side of (3.6) is greater than or equal to the right.
The reverse inequality follows by countable subadditivity. •

Lemma 3. The class 4' is a o--field, and P* restricted to 4' is countably
additive.

PROOF. Suppose that A 1 , A 2 , ... are disjoint 	 sets with union A. Since
Fn — U k _ 1 A k lies in the field 4', P*(E)=P*(E n Fn ) + P*(E ni ). To the

tThis proof does not work if (3.4) is weakened to (3.3).
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first term on the right apply (3.6), and to the second term apply monotonicity
(F, DA`): P*(E) > Ek =1 P*(E nA k ) + P*(E nA`). Let n -i co and use (3.6)
again: P*(E) >_ Ek =1 P*(E nA k ) + P*(E nA`) = P*(E nA) + P*(E nA`).
Hence A satisfies (3.5) and so lies in 4', which is therefore closed under the
formation of countable disjoint unions.

From the fact that 4' is a field closed under the formation of countable
disjoint unions it follows that 4' is a o--field (for sets Bk in 4', let A l = B 1

and A k --- Bk n B; n • • • n Bk_,; then the A k are disjoint ,e--sets and
U k Bk — U k A k E4'). The countable additivity of P* on 4' follows from
(3.6): take E =II ■

Lemmas 1, 2, and 3 use only the properties (i) through (iv) of P* derived
above. The next two use the specific assumption that P* is defined via (3.1)
from a probability measure P on the field moo .

Lemma 4. If P* is defined by (3.1), then ,F0 c.

PROOF. Suppose that A E 9. Given E and E, chooseY-0-sets A n such
that E c U n A,, and En P(A n ) < P*(E) + E. The sets Bn — A n nA and Cn =
A n n A` lie in ,Fo because it is a field. Also, E n A c U n Bn and E n A` c
U,C,; by the definition of P* and the finite additivity of P, P*(E nA) +
P*(E nA`) < E„P(B,) + E„P(C,) = E,P(A n ) < P*(E)+ + E . Hence A E Yo
implies (3.5), and so ..nc4'. •

Lemma 5. If P* is defined by (3.1), then

(3.7) 	P* (A) =P(A)	 for  E ,.Fo .

PROOF. It is obvious from the definition (3.1) that P*(A) < P(A) for A
in .moo . If A c U n A n , where A and the A n are in g o , then by the countable
subadditivity and monotonicity of P on 5%, P(A) < E„P(A nA n ) <
En P(A n ). Hence (3.7). •

PROOF OF EXTENSION IN THEOREM 3.1. Suppose that P* is defined via
(3.1) from a (countably additive) probability measure P on the field .. Let
9_ cr( o ). By Lemmas 3 and 4, 1

,Fo c g-c„llc 2 n .

By (3.7), P*(SZ) = P(SZ) = 1. By Lemma 3, P* (which is defined on all of 2 n )
restricted to 4' is therefore a probability measure there. And then P*
further restricted to . is clearly a probability measure on that class as well.

t In the case of Lebesgue measure, the relation is Ro c .Q c.,kc 2 (° ' 1, and each of the three
inclusions is strict; see Example 2.2 and Problems 3.14 and 3.21
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This measure on Y is the required extension, because by (3.7) it agrees with
P on Yo . 	 •

Uniqueness and the rr-X Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary
concepts. A class g3 of subsets of 1 is a Tr-system if it is closed under the
formation of finite intersections:

(7r) A, B E 	 implies A n B EY.

A class / is a A-system if it contains SI and is closed under the formation of
complements and of finite and countable disjoint unions:

(A1) SI EY;
(A2) A E_e° implies A` EY;

(A s) A i , A 2 ,..., E Y and A n nAm = 0 for m * n imply Un A n E -Z.

Because of the disjointness condition in (A 3 ), the definition of A-system is
weaker (more inclusive) than that of o--field. In the presence of (A I ) and (A 2 ),
which imply 0 E., the countably infinite case of (A 3 ) implies the finite one.

In the presence of (A,) and (A 3 ), (A 2 ) is equivalent to the condition that J
is closed under the formation of proper differences:

.

(A'2 ) A, B EY and A cB imply B— A E Y.

Suppose, in fact, that f satisfies (A 2 ) and (A 3 ). If A, B E. and A cB,
then contains B .̀, the disjoint union A UB`, and its complement (A U
B`)` = B —A. Hence (A'2 ). On the other hand, if Y satisfies (A 1 ) and (A'2 ),
then A E I implies A` = SZ -- A E .. Hence (A 2 ).

Although a cr-field is a A-system, the reverse is not true (in a four-point
space take f to consist of 0, SI, and the six two-point sets). But the
connection is close:

Lemma 6. A class that is both a 7r -system and a A-system is a a-field.

PROOF. The class contains SI by (A 1 ) and is closed under the formation
of complements and finite intersections by (A 2 ) and (ar). It is therefore a
field. It is a cr-field because if it contains sets A n , then it also contains the
disjoint sets Bn = A n n A i n • • . n An _ I and by (A 3 ) contains Un An = Un Bn.•
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Many uniqueness arguments depend on Dynkin's 7r-A theorem:

Theorem 3.2. If 9 is a 7r-system and .2 is a A-system, then 9c
implies cr(9) c am.

PROOF. Let .4 be the A-system generated by 9—that is, the intersec-
tion of all A-systems containing 9. It is a A-system, it contains .9, and it is
contained in every A-system that contains 9 (see the construction of gener-
ated o--fields, p. 21). Thus .9c_10 cam. If it can be shown that .) is also a
7r-system, then it will follow by Lemma 6 that it is a a-field. From the
minimality of o-(9) it will then follow that o-(9) coo , so that 9c o-(9) c
-o c./. Therefore, it suffices to show that .) is a 7r-system.

For each A, let to be the class of sets B such that A n B E..4. If A is
assumed to lie in 9, or even if A is merely assumed to lie in .4, then .A
is a A-system: Since A nil =A E./0 by the assumption, ..4 satisfies (A 1 ).
If B1, B2 E'A and B 1 c B 2 , then the A-system .4 contains A n B, and
A n B 2 and hence contains the proper difference (A n B 2 ) — (A n B 1 ) =
A n (B2 — B,), so that .. contains B 2 - B 1 : _A satisfies (A' 2 ). If B„ are
disjoint _A-sets, then .4 contains the disjoint sets A n B„ and hence
contains their union A n (U„ B„): Â satisfies (A 3 ).

If A E 9 and B E (9, then (9 is a 7r-system) A n B E ,9c^ ), or
B E.A . Thus A E 9 implies 9c Â , and since ..4 is a A-system, minimal-
ity gives _Zo c ' .

Thus A E 9 implies .4 c Â , or, to put it another way, A E 9 and
BE.o together imply that B E °LA and hence A c_49 . (The key to, the
proof is that B EYA if and only if A E 4.) This last implication means that
B E 4 implies ,93C-4. Since _zB is a A-system, it follows by minima!ity
once again that B E 4 ) implies _Zo c B̂ . Finally, B E.1) and C Ems,
together imply C E.4, or B n C E.290 . Therefore, .4 is indeed a 7r-
system. 	 •

Since a field is certainly a 7r-system, the uniqueness asserted in Theorem
3.1 is a consequence of this result:

Theorem 3.3. Suppose that P 1 and P2 are probability measures on o-(.9),
where 9 is a 7-system. If P I and P2 agree on 99, then they agree on cr(9).

PROOF. Let ..é be the class of sets A in o-(9) such that P I(A) = P2(A).
Clearly 11 E.J. If A Ems, then P ICA`) = 1 — P I(A) = 1 — P2(A) = P2(A`),
and hence A` E.2. If A n are disjoint sets in _, then P I(Un A n) =En P 1(A„) = E„ P2(A n ) = P2(U n A„), and hence U n A n Ems. Therefore _/ is
a A-system. Since by hypothesis .9c_Z and .9 is a 7r-system, the 77--A
theorem gives o-(.9) cam, as required. 	 •
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Note that the ar-A theorem and the concept of A-system are exactly what
are needed to make this proof work: The essential property of probability
measures is countable additivity, and this is a condition on countable disjoint
unions, the only kind involved in the requirement (A 3) in the definition of
A-system. In this, as in many applications of the n-A theorem, ./c a(.9) and
therefore o-(9) = J, even though the relation o-(9) c_i itself suffices for
the conclusion of the theorem.

Monotone Classes

A class .4l of subsets of SI is monotone if it is closed under the formation of
monotone unions and intersections:

(i) A i , A 2, ... E .fil and A„ î A imply A E.,;
(ii) A 1 , A 2, .. E ,' and A„ ,l A imply A E 4'.

Halmos's monotone class theorem is a close relative of the rr-A theorem but will be
less frequently used in this book.

Theorem 3.4. If Yo is a field and	 is a monotone class, then .fo c.' implies
Œ(,) c.,e.

PROOF. Let m(5') be the minimal monotone class over A—the intersection of
all monotone classes containing A. It is enough to prove a(Y) c m(A); this will
follow if m(A) is shown to be a field, because a monotone field is a o--field.

Consider the class ✓9= [A: A` E m(Yo )]. Since m(A) is monotone, so is S. Since
is a field, A c J, and so m(A) c S. Hence m(9) is closed under complemen-

tation.
Define Si as the class of A such that AUBE m(A) for all B E ✓%. Then .JI is

a monotone class and .moo c J1 ; from the minimality of m(9 ) ) follows m(,n)
Define S2 as the class of B such that A U B E m(3) ) for all A E m( 0 ). Then J2
is a monotone class. Now from m(A) C ,^ 1 it follows that A E m(A) and B E ô
together imply that AUBE m(A); in other words, B E ,o implies that B E J2 .
Thus A c,J2 ; by minimality, m( o ) cJ2 , and hence A, B E m(9) ) implies that
AUBEm(A). •

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0, 1] together with the field 0 0 of
finite disjoint unions of subintervals (Example 2.2) and the o--field . = cr(20 )
of Borel sets in (0,1]. According to Theorem 2.2, (2.12) defines a probability
measure A on A. By Theorem 3.1, A extends to 2, the extended A being
Lebesgue measure. The probability space ((0, 11, 0, A) will be the basis for
much of the probability theory in the remaining sections of this chapter. A
few geometric properties of A will be considered here. Since the intervals in
(0,1] form a 7r-system generating 2, A is the only probability measure on a
that assigns to each interval its length as its measure.
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Some Borel sets are difficult to visualize:

Example 3.1. Let {r,, r 2 ,...) be an enumeration of the rationals in (0, 1).
Suppose that E is small, and choose an open interval I n = (an , b„) such that
r„ E I„ c (0, 1) and A( /„) = b„ — a„<€2 - ”. Put A = VD, = , In . By subadditivity,
0<A(A)< E.

Since A contains all the rationals in (0, 1), it is dense there. Thus A is an
open, dense set with measure near O. If I is an open subinterval of (0, 1),
then I must intersect one of the I,,, and therefore A(A n I) > 0.

If B = (0, 1) — A then 1 — E < A(B) < 1. The set B contains no interval and
is in fact nowhere dense [A15]. Despite this, B has measure nearly 1. •

Example 3.2. There is a set defined in probability terms that has geomet-
ric properties similar to those in the preceding example. As in Section 1, let
d„(w) be the nth digit in the dyadic expansion of w; see (1.7). Let A„ =[(o E
(0, 1]: di(W) = d„ +! (w) = dzn+;(w), i = 1, ..., n], and let A = Um A n . Proba-
bilistically, A corresponds to the event that in an infinite sequence of tosses
of a coin, some finite initial segment is immediately duplicated twice over.
From A(A„) = 2” • 2 -1” it follows that O < MA) < E:_  2 -2" = .Again A is
dense in the unit inte rval; its measure, less than ; , could be made less than c
by requiring that some initial segment be immediately duplicated k times
over with k large. •

The outer measure (3.1) corresponding to A on 0 0 is the infimum of the
sums L„A(A„) for which A„ E gdo and A c U„ A,,. Since each A n is a finite
disjoint union of intervals, this outer measure is

(3.8) A*(A) = inf
n

where the infimum extends over coverings of A by intervals I,,. The notion of
negligibility in Section 1 can therefore be reformulated: A is negligible if and
only if A*(A) = 0. For A in 2, this is the same thing as A(A) = 0. This covers
the set N of normal numbers: Since the complement NC is negligible and lies
in 2, A(N`) = 0. Therefore, the Borel set N itself has probability 1:
A(N) = 1.

Completeness

This is the natural place to consider completeness, although it enters into probability
theory in an essential way only in connection with the study of stochastic processes in
continuous time; see Sections 37 and 38.



SECTION 3. EXISTENCE AND EXTENSION	 45

A probability measure space (1k, Y, P) is complete if A c B, /3 E Y, and P(B) = 0
together imply that A E Y (and hence that P(A) = 0). If (1k, . , P) is complete, then
the conditions A E 5', AAA' CB e Y, and P(B) = 0 together imply that A' E Y
and P(A') = P(A).

Suppose that (,i2, 5, P) is an arbitrary probability space. Define P* by (3.1) for
,r° = Y= cr(Y0 ), and consider the a-field .,, of P*-measurable sets. The arguments
leading to Theorem 3.1 show that P* restricted to A is a probability measure. If
P*(B) = 0 and A C B, then P*(A n E) + P*(A` n E) < P*(B) + P*(E) =P*•(E) by
monotonicity, so that A satisfies (3.5) and hence lies in .,e. Thus (f1,,e, P*) is a
complete probability measure space. In any probability space it is therefore possrble to
enlarge the afield and extend the measure in such a way as to get a complete space.

Suppose that ((0,1], .0, A) is completed in this way. The sets in the completed
a-field .,, are called Lebesgue sets, and A extended to .,, is still called Lebesgue
measure.

Noremeasurable Sets

There exist in (0,1] sets that lie outside 2. For the construction (due to Vitali) it is
convenient to use addition modulo 1 in (0,1]. For x, y E (0,1] take x ® y to be x + y
or x +y — 1 according as x + y lies in (0,1] or not. t Put A ex = [a ®x: a EA].

Let ..' be the class of Borel sets A such that A ®x is a Borel set and
A(A ®x) = A(.A). Then _ is a A-system containing the intervals, and so 0 c.I' by
the Tr-A theorem, Thus A E 2 implies that A ®x E 2 and A(A ®x) = A(A). in this
sense, A is translation-invariant.

Define x and y to be equivalent (x — y) if x ® r = y for some rational r in (0,1].
Let H be a subset of (0,1] consisting of exactly one representative point from each
equivalence class; such a set exists under the assumption of the axiom of choice [A8].
Consider now the countably many sets H ® r for rational r

These sets are disjoint, because no two distinct points of H are equivalent. (If
H ®r 1 and H ®r2 share the point h 1 ® r 1 = h 2 ® r2 , then h i — h 2 ; this is impossible
unless h 1 = h 2 , in which case r 1 = r2 .) Each point of (0,1] lies in one of these sets,
because H has a representative from each equivalence class. (If x — h E H, then
x = h ® r E H ®r for some rational r.) Thus (0,11= U r (H ® r ), a countable disjoint
union.

If H were in .0, it would follow that A(0,11= E r A(H ® r). This is impossible: If
the value common to the A(H® r) is 0, it leads to 1 = 0; if the common value is
positive, it leads to a convergent infinite series of identicai positive terms (a + a + • • •
< co and a > 0), Thus H lies outside 2. •

Two Impossibility Theorems*

The argument above, which uses the axiom of choice, in fact proves this: There exists
on 2 (0. 11 no probability measure P such that P(A ® x) = P(A) for all A E 2 (°' 1] and all
x E (0, 1]. In particular it is impossible to extend A to a translation-invariant probabil-
ity measure on 2 (0,1]

This amounts to working in the circle group, where the translation y —)x ®y becomes a
rotation (1 is the identity). The rationals form a subgroup, and the set H defined below contains
one element from each coset.
* This topic may be omitted. It uses more set theory than is assumed in the rest of the book.
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There is a stronger result There exists on 2 (0•'I no probability measure P such that
P(x) = 0 for each x. Since ,1(x) = 0, this implies that it is impossible to extend A to
2 (0. 11 at all.'

The proof of this second impossibility theorem requires the well-ordering principle
(equivalent to the axiom of choice) and also the continuum hypothesis. Let S be the
set of sequences (s(1), s(2), ...) of positive integers. Then S has the power of the
continuum. (Let the nth partial sum of a sequence in S be the position of the nth 1 in
the nonterminating dyadic representation of a point in (0, 1]; this gives a one-to-one
correspondence.) By the continuum hypothesis, the elements of S can be put in a
one-to-one correspondence with the set of ordinals preceding the first uncountable
ordinal. Carrying the well ordering of these ordinals over to S by means of the
correspondence gives to S a well-ordering relation < W with the property that each
element has only countably many predecessors.

For s,t in S write <t if s(i) < t(i) for all i> 1. Say that t rejects s if t< , s and
s < t, this is a transitive relation. Let T be the set of unrejected elements of S. Let Vs
be the set of elements that reject s, and assume it is nonempty. If t is the first
element (with respect to _<) of Vs , then t E T (if t' rejects t, then it also rejects s,
and since t - < t, there is a contradiction). Therefore, if s is rejected at all, it is
rejected by an element of T.

Suppose T is countable and let t 1 , t 2 ,... be an enumeration of its elements. If
t*(k) = t k (k) + 1, then t* is not rejected by any t k and hence lies in T, which is
impossible because it is distinct from each t k . Thus T is uncountable and must by the
continuum hypothesis have the power of (0,1].

Let x be a one-to-one map of T onto (0,1]; write the image of as x,. Let
Ak = [x,: t(i) = k] be the image under x of the set of t in T for which t(i) = k. Since
t(i) must have some value k, U7= 1 Ak = (0,1]. Assume that P is countably additive
and choose u in S in such a way that P(U k (`' ► A k) > 1 — 1 /2 i+ `  for i >_ 1. If

00 	 u( i ) 	 CO

A = n u 	 Ak 	 n [x,: t ( i) < u ( i ) i = [x , : t <u ] ,
	i =1 k=1	 i=i

then P(A ) > O. If A is shown to be countable, this will contradict the hypothesis that
each singleton has probability O.

Now, there is some t o in T such that u < t o (if u E T, take t o = u, otherwise, u is
rejected by some t o in T). If t < u for a t in T, then t < to and hence t S w t o (since
otherwise t o, rejects t). This means that [t: t <ul is contained in the countable set [t.
t _< W t (; ], and A is indeed countable.

PROBLEMS

3.1. (a) In the proof of Theorem 3.1 the assumed finite additivity of P is used twice
and the assumed countable additivity of P is used once. Where?
(b) Show by example that a finitely additive probability measure on a field may
not be countably subadditive. Show in fact that if a finitely additive probability
measure is countably subadditive, then it is necessarily countably additive as
well.

This refers to a countably additive extension, of course. If one is content with finite additivity,
there is an extension to 2 6"I; see Problem 3.8.
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(c) Suppose Theorem 2.1 were weakened by strengthening its hypothesis to the
assumption that .f is a a-field. Why would this weakened result not suffice for
the proof of Theorem 3.1?

3.2. Let P be a probability measure on a field .fo and for every subset A of 12
define P*(A) by (3.1). Denote also by P the extension (Theorem 3.1) of P to
,f= 0- (Y-0 ).
(a) Show that

(3.9)

and (see (3.2))

(3.10)

P*(A) = inf[P(B): A cB, B E 51

P* (A)=sup[P(C):CcA,C E,f1,

and show that the infimum and supremum are always achieved.
(b) Show that A is P*-measurable if and only if P* (A) = P*(A).
(c) The outer and inner measures associated with a probability measure P on a
u-field Y are usually defined by (3.9) and (3.10). Show that (3.9) and (3.10) are
the same as (3.1) and (3.2) with Y in the role of Y.

3.3. 2.13 2.15 3.2 T For the following examples, describe P* as defined by (3.1)
and .W� -e(P*) as defined by the requirement (3.4). Sort out the cases in which
P* fails to agree with P on .moo and explain why.
(a) Let .moo consist of the sets 0, {1), (2, 3), and 11= (1,2,3], and define proba-
bility measures P 1 and P2 on .o by Pi{1} = 0 and P2{2, 3) = 0. Note that
,e(Pt ) and ,e(Pz) differ.
(b) Suppose that 11 is countably infinite, let Y0 be the field of finite and
cofinite sets, and take P(A) to be 0 or 1 as A is finite or cofinite.
(c) The same, but suppose that (I is uncountable.
(d) Suppose that Cl is uncountable, let .o consist of the countable and the
cocountable sets, and take P(A) to be 0 or 1 as A is countable or cocountable.
(e) The probability in Problem 2.15.
(f) Let P(A) =14((.0 0 ) for A E ,moo , and assume (w 0) E cr(Y0 ).

3.4. Let f be a strictly increasing, strictly concave function on [0,00) satisfying
f(0) = 0. For A c (0,1], define P*(A) = f(A*(A)). Show that P* is an outer
measure in the sense that it satisfies P*(0) = 0 and is nonnegative, monotone,
and countably subadditive. Show that A lies in ./l (defined by the requirement
(3.4)) if and only if A*(A) or A*(A`) is 0. Show that P* does not arise from the
definition (3.1) for any probability measure P on any field Y0 .

3.5. Let Cl be the unit square [(x, y): 0 < x, y < 1], let Y be the class of sets of the
form [(x, y): x EA, 0 <y < 1], where A E 2, and let P have value A(A) at this
set. Show that (Cl, Y, P) is a probability measure space. Show for A = [(x, y):
0 <x < 1, y = ] that P * (A) = 0 and P*(A) = 1.
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3.6. Let P be a finitely additive probability measure on a field .F0 For A c fi, in
analogy with (3.1) define

(3.11) 	 P°(A) = inf E P(A n ),
n

where now the infimum extends over all finite sequences of - sets A n
satisfying A c Un A n . (If countable coverings are allowed, everything is differ-
ent. It can happen that P°(fi) = 0; see Problem 3.3(e)) Let .4l° be the class of
sets A such that P°(E) = P°(A r-1 E) + PIA` n E) for all E c II
(a) Show that P°(0)= 0 and that P° is nonnegative, monotone, and finitely
subadditive Using these four properties of P°, prove: Lemma 1 .,l° is a field.
Lemma 2°: If A i , A,, is a finite sequence of disjoint .,l°-sets, then for each
E c1,

(3.12) 	 P° En ( U A k ) _ EP°(EnA k ).
` k 	 1	 k

Lemma 3°: P° restricted to the field A° is finitely additive.
(b) Show that if P° is defined by (3.11) (finite coverings), then: Lemma 4° -

,9 c.'°. Lemma 50: P°(A) = P(A) for A E .fo .
(c) Define P°(A) = 1 — P°(A`). Prove that if E cA E .9 , then

(3.13) 	 P°( E) =P(A) —P°(A —E).

3.7. 2.7 3.6 T Suppose that H lies outside the field 50 , and let .9 be the field
generated by 5o u (H), so that Yi consists of the sets (H n A) u (H` n B) with
A, B e .moo . The problem is to show that a finitely additive probability measure
P on .9 has a finitely additive extension to . Define Q on .9 t by

(3.14) 	 Q((HnA) u (H`nB)) =P°(HnA) +P° (H`nB)

for A, B E 0 .
(a) Show that the definition is consistent.
(b) Shows that Q agrees with P on ,Fo .
(c) Show that Q is finitely additive on. Show that Q(H) = P°(H).
(d) Define Q' by interchanging the roles of P° and P. on the right in (3 14).
Show that Q' is another finitely additive extension of P to 9. The same is true
of any convex combination Q" of Q and Q'. Show that Q"(H) can take any
value between P°(H) and P°(H).

3.8. T Use Zorn's lemma to prove a theorem of Tarski: A finitely additive
probability measure on a field has a finitely additive extension to the field of all
subsets of the space.

3.9. T (a) Let P be a (countably additive) probability measure on a a-field
Suppose that H E ,F, and let . _ a-(.9 u {H)). By adapting the ideas in
Problem 3.7, show that P has a countably additive extension from 	 to .91.
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(b) It is tempting to go on and use Zorn's lemma to extend P to a completely
additive probability measure on the a-field of all subsets of fZ. Where does the
obvious proof break down?

3.10. 2.17 3.2 T As shown in the text, a probability measure space (i, .f, P) has a
complete extension—that is, there exists a complete probability measure space

P t ) such that .fc . and P, agrees with P 	 Y
(a) Suppose that (,0,„5c-2 , P2 ) is a second complete extension Show by an
example in a space of two points that P, and P2 need not agree on the a-field

n, 2 .
(b) There is, however, a unique minimal complete extension: Let .f+ consist
of the sets A for which there exist `.sets B and C such that A AB c C and
P(C) = 0. Show that Y-+ is a a-field. For such a set A define P + (A) = P(B).
Show that the definition is consistent, that P+ is a probability measure on .F+,
and that (CI, 5+, P + ) is complete. Show that, if (0.,.9 , P I ) is any complete
extension of (0,, Y, P), then .9c 	 and P I agrees with P+ on 	 +;

P+) is the completion of (i, .f, P).
(c) Show that A E 5+ if and only if P * (A) = P*(A), where P* and P* are
defined by (3.9) and (3.10), and that P+(A) = P * (A) = P*(A) in this case. Thus
the complete extension constructed in the text is exactly the completion.

3.11. (a) Show that a A-system satisfies the conditions
(A4) A,BE2and AnB=PimplyAuBE/,
(A5) A I , A2,... E-Z9 and A„ T A imply A E.,
(A 6) A 1 , A 2 ,... E ./ and A n ,l, A imply A e 2.

(b) Show that .I is a A-system if and only if it satisfies (A 1 ), (A' 2 ), and (A 5 ).
(Sometimes these conditions, with a redundant (A 4 ), are taken as the definition.)

3.12. 2.5 3.11 	 (a) Show that if .9 is a 7-system, then the minimal A-system over
.9 coincides with u(9).

(b) Let .9 be a Tr-system and .4l a monotone class. Show that 9c.' does not
imply 0-(.9)c
(c) Deduce the -rr-A theorem from the monotone class theorem by showing
directly that, if a A-system 	 contains a IT-system .9, then 	 also contains the
field generated by .9.

3.13. 2.5 1' (a) Suppose that .9 is a field and P I and P2 are probability measures
on a-(. o ). Show by the monotone class theorem that if P I and P2 agree on e ,
then they agree on cr(. o ).
(b) Let Y-0 	the smallest field over the i-r-system 9. Show by the inclusion-
exclusion formula that probability measures agreeing on 9 must agree also on
Y-0 . Now deduce Theorem 3.3 from part (a).

3.14. 1.5 2.22 T Prove the existence of a Lebesgue set of Lebesgue measure 0 that
is not a Borel set.

3.15. 1.3 3.6 3.14 1 The outer content of a set A in (0,11 is c*(A) = inf
where the infimum extends over finite coverings of A by intervals I„. Thus A is
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trifling in the sense of Problem 1.3 if and only if c*(A) = 0. Define inner content
by c * (A) = 1 — c*(A`). Show that c * (A) = sup En II„I, where the supremum
extends over finite disjoint unions of intervals In contained in A (of course the
analogue for A * fails) Show that c * (A) <c*(A); if the two are equal, their
common value is taken as the content c(A) of A, which is then Jordan
measurable Connect all this with Problem 3.6.

Show that c*(A)=c*(A - ), where A - is the closure of A (the analogue for
A* fails).

A trifling set is Jordan measurable Find (Problem 3.14) a Jordan measurable
set that is not a Borel set.

Show that c * (A) <A * (A) A*(A) < c*(A). What happens in this string of
inequalities if A consists of the rationals in (0, Zj together with the irrationals in
(z ,1)9

3.16. 1 5 1 Deduce directly by countable additivity that the Cantor set has Lebesgue
measure 0.

3.17. From the fact that A(x ® A) = MA), deduce that sums and differences of
normal numbers may be nonnormal.

3.18. Let H be the nonmeasurable set constructed at the end of the section.
(a) Show that, if A is a Borel set and A cH, then A(A) = 0—that is, A * (H) _
0.
(b) Show that, if A*(E) > 0, then E contains a nonmeasurable subset.

3.19. The aim of this problem is the construction of a Borel set A in (0, 1) such that
0 < A(A n G) < A(G) for every nonempty open set G in (0,1).
(a) It is shown in Example 3.1 how to construct a Borel set of positive Lebesgue
measure that is nowhere dense. Show that every interval contains such a set.
(b) Let (I„) be an enumeration of the open intervals in (0, l) with rational
endpoints. Construct disjoint, nowhere dense Borel sets A I , B 1 , A,, B 2 ,... of
positive Lebesgue measure such that A„ U B„ c 1,,.
(c) Let A = U k Ak. A nonempty open G in (0, 1) contains some I,,. Show that
0<A(A„)5A( A n G)< A(A n G)+A(B„)<A(G).

3.20. T There is no Borel set A in (0, 1) such that aA(I) < A(A n 1) < bA(I) for
every open interval I in (0,1), where 0 <a < b < 1. In fact prove:
(a) If MA n I) < bA(I) for all I and if b <1, then A(A) = 0. Hint. Choose an
open G such that A c G c (0,1) and A(G) < b - IA(A); represent G as a disjoint
union of intervals and obtain a contradiction.
(b) If aA(I) < A(A n I) for all I and if a > 0, then A(A) — 1.

3.21. Show that not every subset of the unit interval is a Lebesgue set. Hint: Show
that A* is translation-invariant on 2ca, `I; then use the first impossibility theorem
(p. 45). Or use the second impossibility theorem.
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SECTION 4. DENUMERABLE PROBABILITIES

Complex probability ideas can be made clear by the systematic use of
measure theory, and probabilistic ideas of extramathematical origin, such as
independence, can illuminate problems of purely mathematical interest. It is
to this reciprocal exchange that measure-theoretic probability owes much of
its interest.

The results of this section concern infinite sequences of events in a
probability space.' They will be illustrated by examples in the unit interval.
By this will always be meant the triple (11, , P) for which SZ is (0,11, 5 is
the cr-field 2 of Borel sets therc, and P(A) is for A in the Lebesgue
measure ,1(A) of A. This is the space appropriate to the problems of Section
1, which will be pursued further. The definitions and theorems, as opposed to
the examples, apply to all probability spaces. The unit interval will appear
again and again in this chapter, and it is essential to keep in mind that there
are many other important spaces to which the general theory will be applied
later.

General Formulas

The formulas (2.5) through (2.11) will be used repeatedly. The sets involved
in such formulas lie in the basic o --field Y- by hypothesis. Any probability
argument starts from given sets assumed (often tacitly) to lie in 54; further
sets constructed in the course of the argument must be shown to lie in as
well, but it is usually quite clear how to do this.

If P(A) > 0, the conditional probability of B given A is defined in the
usual way as

(4.1) P(BIA) — P(A nB) .
P(A)

There are the chain-rule formulas

P(A nB) = P(A)P(B1A),

(4.2)	 P( A n B n C) = P( A) P(BIA)P(CCA n B),

If A 1 , A 2, ... partition S1, then

(4.3)	 P(B) = EP(A n )P(BiA„).
n

'They come under what Borel in his first paper on the subject (see the footnote on p. 9) called
probabilités dénombrables, hence the section heading
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Note that for fixed A the function P(BI A) defines
B varies over

If P(A n ) = 0, then by subadditivity P( Un An)
n„ A n has complement U n A`„ of probability 0. This
and over again:

If A,, A 2 , ... are sets of probability 0, so is U„ A„
probability 1, so is (1„ A„.

a probability measure as

= 0. If P(4,r ) = 1, then
gives two facts used over

. If A 1 , A 2, ... are sets of

Limit Sets

For a sequence A 1 , A 2, ... of sets, define a set

c.
(4.4)

and a set

œ œ
(4.5)	 lim inf An= U n A k .

n 	 n°I kin

These setst are the limits superior and inferior of the sequence (A„). They lie
in 5” if all the A n do. Now w lies in (4.4) if and only if for each n there is
some k >_ n for which w E A k ; in other words, w lies in (4.4) if and only if it
lies in infinitely many of the A„. In the same way, w lies in (4.5) if and only if
there is some n such that w E A k for all k > n; in other words, w lies in (4.5)
if and only if it lies in all but finitely many of the A„.

Note that n k=nAk Îlim inf ra A n and IJ k_„A k .1 lim sup,, A„. For every m
and n, n k-,nAk C U k_nAk, because for i max(m, n), A ; contains the first
of these sets and is contained in the second. Taking the union over m and
the intersection over n shows that (4.5) is a subset of (4.4). But this follows
more easily from the observation that if w lies in all but finitely many of the
A„ then of course it lies in infinitely many of them. Facts about limits inferior
and superior can usually be deduced from the logic they involve more easily
than by formal set-theoretic manipulations.

If (4.4) and (4.5) are equal, write

(4.6)	 lim A,,= lim inf A,,= lim sup A n .
n 	 n	 n

To say that A n has limit A, written A n -->A, means that the limits inferior
and superior do coincide and in fact coincide with A. Since lim inf„ A,, c
lira sup s A n always holds, to check whether A,,—>A is to check whether
lira sup„ A n c A C lim inf„ A„. From A„ E . and A n —>A follows Ac Y.

lim sup A„ = n U A 
n 	 n =1k=n

t See Problems 4 1 and 4 2 for the analogy between set-theoretic and numerical limits superior
and inferior.
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Example 4.1. Consider the functions d n(w) defined on the unit interval by
the dyadic expansion (1.7), and let I n(w) be the length of the run of 0's
starting at d n(w): ln(w) = k if dn(w) _ • • = do tk ,(w) = 0 and dn+, k(w) = 1;
here /n(co) = 0 if dn(w) = 1. Probabilities can be computed by (1.10). Since
[w: ln(w) = k] is a union of 2n -1 disjoint intervals of length 2 - n -k , it lies in
3 and has probability 2'. Therefore, [w: /n(co) >_ r] = [w: d ;(w) = 0,
n <i <n + r] lies also in ,F and has probability Ek > r 2-k- I:

(4.7)	 P[w:In(w) >_ r]

If A n is the event in (4.7), then (4.4) is the set of w such that ln(w) >_ r for
infinitely many n, or, n being regarded as a time index, such that 1,,(w)> r
infinitely often. •

Because of the theory of Sections 2 and 3, statements like (4.7) are valid in
the sense of ordinary mathematics, and using the traditional language of
probability—"heads," "runs," and so on—does not change this.

When n has the role of time, (4.4) is frequently written

(4.8) lim sup A n = [ A n i.o.],

where "i.o." stands for "infinitely often."

Theorem 4.1. (1) For each sequence (A n ),

(4.9) P(lim inf A n )
n

lim inf P(A n )
n

< lim sup P( A) S P(lim supA n ).
n 	 n

(ii) If A n -'A, then P(A,,)-- P(A).

PROOF. Clearly (ii) follows from (1). As for (i), if Bn = 
(1 k=n Ak and

Cn = U x  A k , then Bn I lim inf ra A n and Cn J, lim sup ra A n , so that, by parts
(i) and (ii) of Theorem 2.1, P(A,) >_ 1)(B„)-- Minn inf ra A,,) and P(A n ) <
P(Ca ) —> P(lim sup,, A n). •

Example 4.2. Define In(w) as in Example 4.1, and let A n = [w: l,,(w) > r]
for fixed r. By (4.7) and (4.9), P[ w: l,,(w)>_ r i. o.] >_ 2'. Much stronger
results will be proved later. •

Independent Events

Events A and B are independent if P(A n B) = P(A) P(B ). (Sometimes an
unnecessary mutually is put in front of independent.) For events of positive
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probability, this is the same thing as requiring P(B I A) = P(B) or P(A I B) =
P(A). More generally, a finite collection A 1 ,... , A n of events is independent
if

(4.10) 	 P(Ak, n • . ^ nA k) = P(AO • • • P(A k^ )

for 2 <j < n and 1 < lc,  < • • < ki < n. Reordering the sets clearly has no
effect on the condition for independence, and a subcollection of independent
events is also independent. An infinite (perhaps uncountable) collection of
events is defined to be independent in each of its finite subcollections is.

If n = 3, (4.10) imposes for j = 2 the three constraints

(4.11) P(A 1 nA 2 ) = P(A I )P(A 2 ), 	 P(A t nA 3 ) = P(A l )P(A 3 ),

P( A 2 nA 3 ) = P( A 2 ) P( A 3 ),

and for j = 3 the single constraint

(4.12)	 P(Ai nA 2 nA 3 ) =P(A I )P(A 2 )P(A 3 ).

Example 4.3. Consider in the unit interval the events But =[(o: d u(w) _
d,(w)]—the uth and uth tosses agree—and let A l = B 1 2, A 2 = B13, A 3 = B 23 .
Then A I , A 2 , A 3 are pairwise independent in the sense that (4.11) holds (the
two sides of each equation being 1). But since A, nA 2 c A 3 , (4.12) does not
hold (the left side is â and the right is s), and the events are not indepen-
dent. •

Example 4.4. In the discrete space Si = {1, ... , 6) suppose each point has
probability 6 (a fair die is rolled). If A, = (1, 2, 3, 4) and A 2 = A 3 = (4, 5, 6),
then (4.12) holds but none of the equations in (4.11) do. Again the events are
not independent. •

Independence requires that (4.10) hold for each j = 2, ..., n and each
choice of /c o ..., k1, a total of E';_ 2 n = 2' – 1 – n constraints. This re-i
quirement can be stated in a different way: If  B 1 ,... , B,, are sets such that for
each i = 1, ... , n either B 1 = A ; or B, _- SZ, then

(4.13) 	 P(B1 n B 2 n • • • nBn ) = P(B 1 )P(B 2 ) • • • P(B,).

The point is that if B. SZ, then B, can be ignored in the intersection on the
left and the factor P(B; ) = 1 can be ignored in the product on the right. For
example, replacing A 2 by SZ reduces (4.12) to the middle equation in (4.11).

From the assumed independence of certain sets it is possible to deduce
the independence of other sets.
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Example 4.5. On the unit interval the events Hn = [w: dn(w) = 0], n =
1, 2, ... , are independent, the two sides of (4.10) having in this case value 2 - j.
It seems intuitively clear that from this should follow the independence, for
example, of [w: d 2(w) = 0] = H2 and [w: d i(w) = 0, d 3(w) = 1] = H 1 n H3,
since the two events involve disjoint sets of times. Further, any sets A and
B depending, respectively, say, only on even and on odd times (like
[w: d 2r(w) = 0 i.o.] and [w: den ,(w) = 1 i.o.]) ought also to be independent.
This raises the general question of what it means for A to depend only on
even times. Intuitively, it requires that knowing which ones among H2 , H4 , .. .
occurred entails knowing whether or not A occurred—that is, it requires that
the sets H2, H4 , ... "determine" A. The set-theoretic form of this require-
ment is that A is to lie in the field generated by H2 , H4 , .... From
A E cr(H2 , 1/4,...) and B E o(H 1 , H3, ..) it ought to be possible to deduce
the independence of A and B. •

The next theorem and its corollaries make such deductions possible.
Define classes sail , ... , sin in the basic a-field to be independent if for
each choice of A . from .afi , i = 1,..., n, the events A 1 ,..., A n are indepen-
dent. This is the same as requiring that (4.13) hold whenever for each i,
1 <i <n, either B1 E sad or B = SZ.

Theorem 4.2. If di , ... , aft, are independent and each safi is a 7r-system,
then cr(sa?1 ), ... , Q(dn ) are independent.

PROOF. Let A be the class sat augmented by SZ (which may be an
element of sat to start with). Then each gd; is a 7r-system, and by the
hypothesis of independence, (4.13) holds if B; E A, i = 1, ... , n. For fixed
sets B 2 , ... , Bn lying respectively in G312 , ... , 7n , let 22 be the class of `2sets
B 1 for which (4.13) holds. Then .. is a A-system containing the 7r-system 21
and hence (Theorem 3.2) containing o -( 1 ) = o-(d1 ). Therefore, (4.13) holds
if B 1 , B 2 , ... , Bn lie respectively in o-0211), ^2' . ,fin, which means that
cr(d ), ... , aft? are independent. Clearly the argument goes through if 1
is replaced by any of the indices 2, ... , n.

From the independence of o-(sad1), d2 , ... ,  now follows that of
cr(dl ), cr(sai2 ), sa(3, ... and so on. •

If sad= (A 1 ,..., Ak) is finite, then each A in o-(d) can be expressed by a
"formula" such as A = A 2 n A5 or A = (A 2 n A 7 ) U (A 3 nA; n A 8 ). If d is
infinite, the sets in o-(d) may be very complicated; the way to make precise
the idea that the elements of sad "determine" A is not to require formulas,
but simply to require that A lie in o-(d).

Independence for an infinite collection of classes is defined just as in the
finite case: [safe : 0 E 01 is independent if the collection [A 9 : 0 E O] of sets is
independent for each choice of A B from safe . This is equivalent to the
independence of each finite subcollection rn , ... , Yen of classes, because of
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the way independence for infinite classes of sets is defined in terms of
independence for finite classes. Hence Theorem 4.2 has an immediate
consequence:

Corollary 1. If .safe , 9 E O, are independent and each .safe is a Tr-system,
then o-(safe ), 9 E O, are independent.

Corollary 2. Suppose that the array

All A  1

(4.14) A 21 A 22

of events is independent; here each row is a finite or infinite sequence, and there
are finitely or infinitely many rows. If is the o--field generated by the i th row,
then mi, ., ... are independent.

PROOF. If .sa4 is the class of all finite intersections of elements of the ith
row of (4.14), then is a Tr-system and cr() = Let 1 be a finite
collection of indices (integers), and for each i in I let J1 be a finite collection
of indices. Consider for i E I the element C. = n 1 E J; A ;1 of sa;;. Since every
finite subcollection of the array (4.14) is independent (the intersections and
products here extend over i E I and j E

P ( n Cl) = P n n A ;1

= IlP(C,)•

 IIP(Ar1) - 1^P(n^A+!)

It follows that the classes ,safe , .sa^2 , ... are independent, so that Corollary 1
applies. 	 •

Corollary 2 implies the independence of the events discussed in Example
4.5. The array (4.14) in this case has two rows:

H2 H4 H6

H 1 H3 H5
	•

Theorem 4.2 also implies, for example, that for independent A 1 , ... , A n ,

(4.15) 	 P( Ai n •• - nAknAk +ln •-• nA n )

=P(M)---  P(Ack)P(Ak +1) . • • P(An).
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To prove this, let	 consist of A. alone; of course, A` E o-(sali ). In (4.15)
any subcollection of the A, could be replaced by their complements.

Example 4.6. Consider as in Example 4.3 the events B,,, that, in a
sequence of tosses of a fair coin, the uth and uth outcomes agree. Let ,sai l

consist of the events B 12 and B 13 , and let d2 consist of the event B23. Since
these three events are pairwise independent, the classes sail and saf2 are
independent. Since B 23 = (B12 o B 13 )` lies in o-(sil ), however, o-(d1 ) and
o-(d2 ) are not independent. The trouble is that d l is not a Tr-system, which
shows that this condition in Theorem 4.2 is essential. •

Example 4.7. If sa(= ( A 1 , A 2 , ...) is a finite or countable partition of fl
and P(BI A,) = p for each A, of positive probability, then P(B) = p and B is
independent of o(d): If E' denotes summation over those i for which
P(A ; ) > 0, then P(B) = E'P(A, n B) = F'P(A 1 )p = p, and so B is indepen-
dent of each set in the 7-system saiU (0). •

Subfields

Theorem 4.2 involves a number of Œ-fields at once, which is characteristic of
probability theory; measure theory not directed toward probability usually
involves only one all-embracing o-field In proability, o-fields in that
is, sub-o--fields of splay an important role. To understand their function it
helps to have an informal, intuitive way of looking at them:

A subclass sad of 9 corresponds heuristically to partial information.
Imagine that a point w is drawn from II according to the probabilities given
by P: w lies in A with probability P(A). Imagine also an observer who does
not know which w it is that has been drawn but who does know for each A in
sad whether w EA or w (4 A—that is, who does not know w but does know
the value of 1,1(w) for each A in sa?. Identifying this partial information with
the class sa? itself will illuminate the connection between various measure-
theoretic concepts and the premathematical ideas lying behind them.

The set B is by definition independent of the class sad if P(BIA) = P(B)
for all sets A in sad for which P(A) > O. Thus if B is independent of sad,
then the observer's probability for B is P(B) even after he has received the
information in sad; in this case sad contains no information about B. The
point of Theorem 4.2 is that this remains true even if the observer is given
the information in cr(sa(), provided that sad is a 7r-system. It is to be stressed
that here information, like observer and know, is an informal, extramathe-
matical term (in particular, it is not information in the technical sense of
entropy).

The notion of partial information can be looked at in terms of partitions.
Say that points w and W are sa?equivalent if, for every A in ,sad, w and w lie
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either both in A or both in A`—that is, if

(4.16)	 IA(w) = 14 (w'),	 A E sad.

This relation partitions fl into sets of equivalent points; call this the still
partition.

Example 4.8. If w and w' are o-(s1)-equivalent, then certainly they are
sa(equivalent. For fixed w and w', the class of A such that IA(w) =14(W) is a
o--field; if w and w' are sa(equivalent, then this o--field contains sal" and hence
o-(d), so that w and w' are also o-(si)-equivalent. Thus . equivalence
and o-(sal)-equivalence are the same thing, and the s agpartition coincides
with the o-(s1)-partition. •

An observer with the information in o-(sa f) knows, not the point w drawn,
but only the equivalence class containing it. That is exactly the infoinia-
tion he has. In Example 4.6, it is as though an obse rver with the items
of information in sail were unable to combine them to get information
about B23 .

Example 4.9. If Hn = [w: d n(w) = 0] as in Example 4.5, and if sad=
(H 1 , H3, H5, ... }, then w and w' satisfy (4.16) if and only if dn(w) = dn(w) for
all odd n. The information in o-(Y) is thus the set of values of dn(w) for n
odd. •

One who knows that w lies in a set A has more information about w the smaller
A is. One who knows IA(w) for each A in a class sal, however, has more information
about w the larger sad is. Furthermore, to have the information in still and the
information in s212 is to have the information in all U sale , not that in di n d2 .

The following example points up the informal nature of this interpretation of
a-fields as information.

Example 4.10. In the unit interval (fi, ^, P) let LI be the a-field consisting of the
countable and the cocountable sets. Since P(G) is 0 or 1 for each G in .1, each set H
in .9 is independent of J. But in this case the .-partition consists of the singletons,
and so the information in .1 tells the observer exactly which w in 11, has been drawn.
(i) The a-field ✓1 contains no information about H—in the sense that H and J are
independent. (ii) The a-field J contains all the information about H— in the sense
that it tells the observer exactly which w was drawn. •

In this example, (i) and (ii) stand in apparent contradiction. But the mathematics is
in (i)—H and ✓.P are independent—while (ii) only concerns heuristic interpretation.
The source of the difficulty or apparent paradox here lies in the unnatural structure of
the a-field ✓1 rather than in any deficiency in the notion of independence .t The
heuristic equating of a-fields and information is helpful even though it sometimes

1 See Problem 4.10 for a more extreme example
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breaks down, and of course proofs are indifferent to whatever illusions and vagaries
brought them into existence.

The Borel -Cantelli Lemmas

This is the first Borel -Caantelli lemma:

Theorem 4.3. If En P(A n ) converges, then P(lim sup„ A n ) = O.

PROOF. From lim sup ra A C U k_ m Ak follows P(lim sup s A n ) <
P(U k ., Ak) < Ek _„ m P(Ak), and this sum tends to 0 as m -i co if E n P(71„,)
converges. •

By Theorem 4.1, P(A n ) -i 0 implies that P(lim inf ra A n ) = 0; in Theorem
4.3 hypothesis and conclusion are both stronger.

Example 4.11. Consider the run length I n(w) of Example 4.1 and a
sequence {rn) of positive reals. If the series E1/2r" converges, then

(4.17)	 P[w: ln (w)	 r17 i.o.1 = 0.

To prove this, note that if s n is rra rounded up to the next integer, then by
(4.7), P[w: In(w) > rra ] = 2-5„ < 2-r„ Therefore, (4.17) follows by the first
Borel-Cantelli lemma.

If r,, = (1 + E) log e n and E is positive, there is convergence because
2 -r^ = 1/n 1 +€. Thus

(4.18)	 Pico: ln ((0) :2: (1 +E) log 2 n i.o.] = 0.

The limit superior of the ratio / n(w)/log e n exceeds 1 if and only if w
belongs to the set in (4.18) for some positive rational E. Since the union of
this countable class of sets has probability 0,

(4.19)
,

P w: lim sup lo( w}> 1 = O.
n	 g2	 J

To put it the other way around,

(4.20) P w: lim sup lo( w) 	< 1 = 1.
n	 g 2

Technically, the probability in (4.20) refers to Lebesgue measure. Intu-
itively, it refers to an infinite sequence of independent tosses of a fair coin. •

In this example, whether lira sup ra /n(w)/log e n < 1 holds or not is a
property of w, and the property in fact holds for w in an .."--set of probability
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1. In such a case the property is said to hold with probability 1, or almost
surely. In nonprobabilistic contexts, a property that holds for w outside a
(measurable) set of measure 0 holds almost everywhere, or for almost all w.

Example 4.12. The preceding example has an interesting arithmetic consequence.
Truncating the dyadic expansion at n gives the standard (n — 1)-place approximation
Ek_;d k (m)2 -k to w; the error is between 0 and 2 -„ +', and the error relative to the
maximum is

which lies between 0 and 1. The binary expansion of en(co) begins with 1„(cw) 0's, and
then comes a 1 Hence .0 . 01 <e n(w) <— .0...0111..., where there are in(w) 0's in
the extreme terms. Therefore,

(4.22)
11

	 <en( w ) < 21„1.),

so that results on run length give information about the error of approximation.
By the left-hand inequality in (4.22), e, (w) < x„ (assume that 0 <x„ _< 1) implies

that /n(0).. .. --log e x,, -- 1; since E2 - r„ < co implies (4.17), Ex„ < co implies P[w:
en(w) <_ x n i.o.] = 0. (Clearly, [w: en(w) <x ] is a Borel set ) In pa rt icular,

(4.23) 	 P[cw: en (w) <— 1/n 1 +E Lod = 0.

Technically, this probability refers to Lebesgue measure; intuitively, it refers to a
point drawn at random from the unit interval. 	 •

Example 4.13. The final step in the proof of the normal number theorem
(Theorem 1.2) was a disguised application of the first Borel-Cantelli lemma.
If A n =[w: In - 's,,(w)I >_ n - 1 /8 ], then EP(A n ) < co, as follows by (1.29), and
so P[A n i.o.] = O. But for w in the set complementary to [A n 1.0.], n - 'sn(w)
--^ O.

The proof of Theorem 1.6 is also, in effect, an application of the first
Borel -Cantelli lemma.	 •

This is the second Borel-Cantelli lemma:

Theorem 4.4. If (A n) is an independent sequence of events and En P(A n )
diverges, then P(lim sup,, A„)= 1.

PROOF. It is enough to prove that P(U;,=, ilk=n Ak) = 0 and hence
enough to prove that P((1k-n Ak) = 0 for all n. Since 1 - x < e - X,

n+j 	 n+ -1	 n+1

P ^Î Ak =	 (1-P(Ak)) S exp - E P(A k ) .
k=n 	 k 	 k =n
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Since Ek P(A k ) diverges, the last expression tends to 0 as j -* co, and hence
/) (fl;-,r Ak) = lim y P((lk =n Ak) = O.	 •

By Theorem 4.1, limsup n P(A n ) > 0 implies P(limsup n A n) > 0; in Theo-
rem 4.4, the hypothesis E n P(A n ) = co is weaker but the conclusion is stronger
because of the additional hypothesis of independence.

Example 4.14. Since the events [w: 41(0== 0] = [w: d n(w) = 1], n =
1, 2, ..., are independent and have probability 2 , P[w: ln(w) = O i.o.] = 1.

Since the events A n = [w: 1„(w) = 1] =[w: d n(w) = 0, do +1(w) = 1], n =
1, 2, ... , are not independent, this argument is insufficient to prove that

(4.24) 	 P[ w: 1n (w) = 1 i.o.] = L

But the events A2, A4, A 6 , ... are independent (Theorem 4.2) and their
probabilities form a divergent series, and so P[cû: l 2n(w) = 1 i.o.] = 1, which
implies (4.24). ■

Significant applications of the second Borel—Cantelli lemma usually re-
quire, in order to get around problems of dependence, some device of the
kind used in the preceding example.

Example 4.15. There is a complement to (4.17): If rn is nondecreasing and
E2 - r^/rn diverges, then

(4.25)	 P[w: ln(w) > rn i.o.] = 1.

To prove this, note first that if rn is rounded up to the next integer, then
E2 - rn/rn still diverges and (4.25) is unchanged. Assume then that r,, = r(n) is
integral, and define (n k) inductively by n 1 = 1 and n k+ 1 = n k + rnk , k >_ 1. Let
A  = [CO: lnk(w) > r,lk ] =[w: d.(w) = 0, n k : i <n k+1 ]; since the Ak involve
nonoverlapping sequences of time indices, it follows by Corollary 2 to
Theorem 4.2 that A 1 , A 2,... are independent. By the second Borel—Cantelli
lemma, P[A k i.o.] = 1 if Ek P(A k ) = Ek 2 —r(nk) diverges. But since rn is
nondecreasing,

E 2 —r(nk) = E 2 - r(nk)r
-1 (nk)(nk +l — nk)

k >1	 k >1

] E 	 E 	 2 -rnrn 1 = E 2 -r„ rn 1 _
k > 1 nk<n<nk+1 	n > I

Thus the divergence of En 2 - r"rn ' implies that of E k 2 -

r ( nk ), and it follows
that, with probability 1, lnk(w) . rnk for infinitely many values of k. But this is
stronger than (4.25).

The result in Example 4.2 follows if r n = r, but this is trivial. If rn = log 2 n,
then E2 - r^/rn = E1/(n log 2 n) diverges, and therefore

(4.26) 	 P[w: ln(w) . log 2 n i.o.] = 1.
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By (4.26) and (4.20),

(4.27) P co: 	 sup log
w) = —^.lim 	 11

n 	 2

Thus for w in a set of probability 1, log 2 n as a function of n is a kind of
"upper envelope" for the function l„(w). 	 •

Example 4.16. By the right-hand inequality in (4.22), if 1„(w) > log 2 n, then
e„(w) 5 1/ n.  Hence (4.26) gives

(4.28)
11+6 : en( w )<— i.o.I = 1.

This and (4.23) show that, with probability 1, en(w) has 1/n as a "lower envelope.”
The discrepancy between w and its (n — 1)-place approximation Ek=Id k (w)2 -k will
fall infinitely often below 1/(n 2 „-1 ) but not infinitely often below 1 /(n'+E2n -1) •

Example 4.17. Examples 4.12 and 4.16 have to do with the approximation of real
numbers by rationals: Diophantine approximation. Change the x n = 1 /n' +E of (4.23)
to 1 /((n — 1) log 2) 1 +E. Then Ex,, still converges, and hence

P w: e n(w) _< 1/(log 2" -I ) 1+ i.o.] = 0.

And by (4.28),

en (w) < 1/ log 2n - ' l.o.j = 1.

The dyadic rational Ek= Id k(w)2 -k =p/q has denominator q= 2' 1 , and e„(w) =
q(co — p /q). There is therefore probability 1 that, if q is restricted to the powers of 2,
then 0 < w —p/q<1/(q log q) holds for infinitely many p/q but 0 w —p/q _<
1 /(q log' +Eq) holds only for finitely many! But contrast this with Theorems 1.5 and
1.6: The sharp rational approximations to a real number come not from truncating its
dyadic (or decimal) expansion, but from truncating its continued-fraction expansion;
see Section 24. •

The Zero—One Law

For a sequence A l , A 2 ,... of events in a probability space (fi, 3, P)
consider the c -fields cr(An, An+l, ...) and their intersection

CO

(4.29) tl= n c7 ( An, An+1, .. ).
n= 1

tThis ignores the possibility of even p (reducible p/q); but see Problem 1.11(b). And rounding
w up to (p + 1)/q instead of down to p/q changes nothing; see Problem 4.13.
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This is the tail a-field associated with the sequence (A n ), and its elements are
called tail events. The idea is that a tail event is determined solely by the A n

for arbitrarily large n.

Example 4.18. Since lim sup,,, A m = n k >_ n U i > k Ai and lim infm Am —

U k >n n i> k A; are both in ar(A,,, A n + I, ... ), the limits superior and inferior
are tail events for the sequence (A n). •

Example 4.19. Let l n(w) be the run length, as before, and let Hn = [w:
dn(w) = 0]. For each n 0 ,

[w: ln(w) ? rn i.o.] = n U [w: 1k ((.J) > rk]
n >_n ü k ^ n

n U IIk n Hk
 + l n • - - n Hk + rk - I•

n a n ü k Z n

Thus [w: l n(w) > rn i.o.] is a tail event for the sequence (Hn ). 	 •
The probabilities of tail events are governed by Kolmogorov's zero—one

law:t

Theorem 4.5. If A 1 , A 2, ... is an independent sequence of events, then for
each event A in the tail cr-field (4.29), P(A) is either 0 or 1.

PROOF. By Corollary 2 to Theorem 4.2, cr(A 1 ), ... , a(A 1 ),
cr(A n , A n+ 1 , ...) are independent. If A E .T then A E a-(A n , A n+1 , ...) and
therefore A 1 ,..  , A n _ 1 ,  A are independent. Since independence of a collec-
tion of events is defined by independence of each finite subcollection, the
sequence A, A 1 , A 2, ... is independent. By a second application of Corollary
2 to Theorem 4.2, cr(A) and cr(A 1 , A 2 , ...) are independent. But A E J-C
cr(A 1 , A 2, ... ); from A E or(A) and A E Œ(A 1 , A 2 , ...) it follows that A is
independent of itself: P(A nA) = P(A)P(A). This is the same as P(A) _
(P(A)) 2 and can hold only if P(A) is 0 or 1. •

Example 4.20. By the zero—one law and Example 4.18, P(lim sup, A n) is
0 or 1 if the A n are independent. The Borel—Cantelli lemmas in this case go
further and give a specific criterion in terms of the convergence or divergence
of EP(A r ). 	 •

Kolmogorov's result is surprisingly general, and it is in many cases quite
easy to use it to show that the probability of some set must have one of the
extreme values 0 and 1. It is perhaps curious that it should so often be very
difficult to determine which of these extreme values is the right one.

t For a more general version, see Theorem 22.3
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Example 4.21. By Kolmogorov's theorem and Example 4.19, [w: 1 n(w) >_ rn

i.o.] has probability 0 or 1. Call the sequence (rn) an outer boundary or an
inner boundary according as this probability is 0 or 1.

In Example 4.11 it was shown that (ra) is an outer boundary if E2 - ''" < CO.

In Example 4.15 it was shown that (rn) is an inner boundary if r,, is
nondecreasing and E2 - r^rn 1 = co. By these criteria r„ = 8 log 2 n gives an
outer boundary if 8 > 1 and an inner boundary if 8 < 1.

What about the sequence rn = log 2 n +8 log e log 2 n? Here E2 - r^ =
El/n(iog 2 n) °, and this converges for 0 > 1, which gives an outer boundary.
Now 2 —rn rn ' is of the order 1/n(log 2 n)' + 0 , and this diverges if 8 < 0, which
gives an inner boundary (this follows indeed from (4.26)). But this analysis
leaves the range 0 < 8 < 1 unresolved, although every sequence is either an
inner or an outer boundary This question is pursued further in Example 6.5.

•

PROBLEM S

4.1. 2.1 T The limits superior and inferior of a numerical sequence (x,,} can be
defined as the supremum and infimum of the set of limit points—that is, the set
of limits of convergent subsequences. This is the same thing as defining

(4.30)

and

urn supx,, = A V xk
n 	 n=1 k=n

(4.31)
n n=1 k=n

Compare these relations with (4.4) and (4.5) and prove that

Ilimsua„ A n = lim sup 1A, ,	 Il;m;nr,, Au = lim inflA n 'n 	 n

Prove that lim n A n exists in the sense of (4.6) if and only if lim n /A (w) exists for
each w.

4.2. T (a) Prove that

(lim supA n ) n (lim sup Bn ) 3 lim sup ( A n n Bn ),
n n 	 n

(rim sup A n ) U (lim supp Bn ) = rim sup (A n U Bn ),
n n 	 n

(rim infA n ) rl (lim inf Bn ) = lim inf (A n f Bn ),
n n 	 n

(lim inf. A n ) U (lim inf Bn ) c rim inf ( A n U Bn ) .
n n 	 n

Show by example that the two inclusions can be strict.

lim infx. n = V A x k .
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(b) The numerical analogue of the first of the relations in part (a) is

(lim suF xn ) A (tim supyn ) > lim sup(xn Ayn ).
n 	 n	 n

Write out and verify the numerical analogues of the others.
(c) Show that

lim sup/ F„ = (lim infA n ) ,
n 	 n

c
lim infA;, = (tim supA n )

n 	 n

lim sup A  — lim inf A n = lim sup (A,,nA;,^. I )
n 	 n 	 n

= lim sup (An n A,, 1 )

(d) Show that A n -* A and Bn -' B together imply that A n U B, -* A U B and
A n nBn —, AnB.

4.3. Let A n be the square [(x, y): 1x1- 1, 1 yI < 1] rotated through the angle 27rnO.
Give geometric descriptions of lim sup ra A n and lim inf A„ in case
(a) B = r;
(b) 0 is rational;
(c) 0 is irrational. Hint: The 27rnO reduced modulo 27r are dense in [0,27r] if 0
is irrational.
(d) When is there convergence is the sense of (4.6)?

4.4. Find a sequence for which all three inequalities in (4.9) are strict.

4.5. (a) Show that lim n P(lim inf k A n n Ak) = O. Hint: Show that lim sup ra
lim inf k A n nAk is empty.

Put A* = lim sup  A n and A * = lim infn A n .
(b) Show that P(A n —A*) -* 0 and P(A * —A n ) --* O.
(c) Show that A n —) A (in the sense that A = A* = A *) implies P(AO A n ) —> O.
(d) Suppose that A n converges to A in the weaker sense that P(AIA*) _
P(A AA *) = 0 (which implies that P(A* —A *) = 0). Show that P(A a A n) , 0
(which implies that P(A n ) --) P(A)).

4.6. In a space of six equally likely points (a die is rolled) find three events that are
not independent even though each is independent of the intersection of the
other two.

4.7. For events A I , ... , A n, consider the 2n equations P(B 1 n	 n Bn) =
PO I ) • P(Bn ) with B; =A ; or B; = A; for each i. Show that A D ...,, A n are
independent if all these equations hold.

4.8. For each of the following classes d, describe the .i partition defined by (4.16).
(a) The class of finite and cofinite sets.
(b) The class of countable and cocountable sets.
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(c) A partition (of arbitrary cardinality) of fl.
(d) The level sets of sin x (0.= R').
(e) The cr-field in Problem 3.5.

4.9. 2.9 2.101 In connection with Example 4.8 and Problem 2 10, prove these
facts:
(a) Every set in cr(d) is a union of ..equivalence classes.
(b) If . 	 [A s : 0 E Oj, then the sieequivalence classes have the form f) 0 I30 ,
where for each 0, BB is A B or Ace .
(c) Every finite cr-field is generated by a finite partition of fZ.
(d) If .moo is a field, then each singleton, even each finite set, in a-(.f0 ) is a
countable intersection of .moo -sets.

4.10. 3.21 There is in the unit interval a set H that is nonmeasurable in the
extreme sense that its inner and outer Lebesgue measures are 0 and 1 (see (3.9)
and (3.10)): A * (H) = 0 and A"(H) = 1. See Problem 12.4 for the construction

Let fZ = (0, 1], let J consist of the Borel sets in II, and let H be the set just
described. Show that the class .9 of sets of the form (H n G 1 ) u (H` n G 2 ) for
G, and G2 in J is a a-field and that P[(Hn G,) u (Hc n G 2 )] =1A(GI) +
1A(G 2 ) consistently defines a probability measure on Show that P(H) =
and that P(G) = MG) for G E S. Show that J is generated by a countable
subclass (see Problem 2.11). Show that J contains all the singletons and that H
and .J are independent.

The construction proves this: There exist a probability space (fl, .f, P), a
field J in Y, and a set H in ,9, such that P(H) = 2, H and J are

independent, and J is generated by a countable subclass and contains all the
singletons.

Example 4.10 is somewhat similar, but there the cr-field J is not countably
generated and each set in it has probability either 0 or 1. In the present example
J is countably generated and P(G) assumes every value between 0 and 1 as G
ranges over S. Example 4.10 is to some extent unnatural because the .J there
is not countably generated. The present example, on the other hand, involves
the pathological set H. This example is used in Section 33 in connection with
conditional probability; see Problem 33.11.

4.11. (a) If A 1 , A 2 , ... are independent events, then P(l n- 1 A n ) = ran-,P(An) and
P( U n=, A n ) = 1 - nn-1( 1 —P(A,)). Prove these facts and from them derive
the second Borel-Cantelli lemma by the well-known relation between infinite
series and products.
(b) Show that P(lim sup ra A n ) = 1 if for each k the series En , k P(A n lAk n
• • • nAn. i ) diverges. From this deduce the second Borel-Cantelli lemma once

again.
(c) Show by example that P(lim sup ra A n) = 1 does not follow from the diver-
gence of E n P(A nI Ai n • • • nA;,_ 1 ) alone.
(d) Show that P(lim sup ra A n) = 1 if and only if En P(A n A n) diverges for each
A of positive probability.
(e) If sets A n are independent and P(A n) <1 for all n, then P[A n i.o.] = 1 if
and only if P(U n A n ) = 1.

4.12. (a) Show (see Example 4.21) that log 2 n + log 2 log 2 n + B log 2 log 2 log 2 n is an
outer boundary if 0 > 1. Generalize.
(b) Show that log 2 n + log 2 log 2 log 2 n is an inner boundary.
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4.13. Let cp be a positive function of integers, and define B9 as the set of x in (0, 1)
such that Ix -p/21 1 < 1 /2'cp(2') holds for infinitely many pairs p,i. Adapting
the proof of Theorem 1.6, show directly (without reference to Example 4.12)
that E ; 1/c0(2') < co implies A(B,,) = 0.

4.14. 2.19 T Suppose that there are in (SI, ..9 P) independent events A I , A 2, .. .

such that, if a n = min{P(A r,),1 - P(A n )), then Ea r, = co. Show that P is
nonatomic.

4.15. 2.18 T Let F be the set of square-free integers—those integers not divisible by
any perfect square. Let F, be the set of m such that p 2 I m for no p <1, and
show that D(F,)= l-l p ,(1 -p -2 ). Show that PP(F, -F) < Ep , tp- 2 , and con-
clude that the square-free integers have density 1-1 p(1 - p-2) = 6/72.

4.16. 2.181 Reconsider Problem 2.18(d). If D were countably additive on f(., l), it
would extend to o-(4'). Use the second Borel -Cantelli lemma.

SECTION 5. SIMPLE RANDOM VARIABLES

Definition

Let (SZ, ., P) be an arbitrary probability space, and let X be a real-valued
function on SZ; X is a simple random variable if it has finite range (assumes
only finitely many values) and if

(5.1)	 [w: X(w) =xj E

for each real x. (Of course, [w: X(w) = xi = 0 E 	 for x outside the range
of X.) Whether or not X satisfies this condition depends only on not on
P, but the point of the definition is to ensure that the probabilities P[w:
X(w) = x] are defined. Later sections will treat the theory of general random
variables, of functions on SZ having arbitrary range; (5.1) will require modifi-
cation in the general case.

The d r,(w) of the preceding section (the digits of the dyadic expansion) are
simple random variables on the unit interval: the sets [w: d r,(w) = 01 and [w:
d r,(w) = 1] are finite unions of subintervals and hence lie in the a-field g of
Borel sets in (0, 11. The Rademacher functions are also simple random
variables. Although the concept itself is thus not entirely new, to proceed
further in probability requires a systematic theory of random variables and
their expected values.

The run lengths /n(w) satisfy (5.1) but are not simple random variables,
because they have infinite range (they come under the general theory). In a
discrete space, . consists of all subsets of SI, so that (5.1) always holds.

It is customary in probability theory to omit the argument w. Thus X
stands for a general value X(w) of the function as well as for the function
itself, and [X = x 1 is short for [w: X(w) = x]
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A finite sum

(5.2) x= E x ; lA ,

is a random variable if the A ; form a finite partition of fl into ✓z=sets.
Moreover, every simple random variable can be represented in the form
(5.2): for the x ; take the range of X, and put A. = [ X = x ! ]. But X may have
other such representations because x; 

IA; can be replaced by E J x; IA ;; if the
A ;1 form a finite decomposition of A ; into .9sets.

If ..1 is a sub-a-field of 	 a simple random variable X is measurable
or measurable with respect to 1, if [ X = xi E for each x. A simple random
variable is by definition always measurable 9`. Since [ X E Hi=  U [ X = xi,
where the union extends over the finitely many x lying both in H and in the
range of X, [X E H] E.1 for every H c R' if X is a simple random variable
variable measurable 1.

The afield a-(X) generated by X is the smallest a-field with respect to
which X is measurable; that is, cr(X) is the intersection of all a-fields with
respect to which X is measurable. For a finite or infinite sequence X 1 , X2 , ...
of simple random variables, o(X,, X2 , ...) is the smallest afield with respect
to which each X, is measurable. It can be described explicitly in the finite
case:

Theorem 5.1. Let X 1 , ... , X" be simple random variables.

(i) The a-field a(X 1 , ... , X") consists of the sets

(5.3) 	 [(X1,..., Xn) EH] = [ce: (X1(w),..., X"(w)) EHI

for H c R"; H in this representation may be taken finite.
(ii) A simple random variable Y is measurable cr(X 1 , ... , X,) if and only if

(5.4) 	 Y= f(X1,..., X")

for some f: R"

PROOF. Let 4' be the class of sets of the form (5.3). Sets of the form
[(X 1 ,..., X")=(x 1i ...,x")]= (17= 1 [X 1 =x ; ] must lie in o'(X 1 ,...,X"); each
set (5.3) is a finite union of sets of this form because (X 1 ,..., X"), as a
mapping from SZ to R " , has finite range. Thus 4'c a (X 1 , ... , X").

On the other hand, 4' is a cr-field because fl = [(X 1 , ... , X") E R"],
[(X 1 , ... , X") E H]` =[(X 1 ,.. X") E H `], and U 1[(X 1 , ... , X") E H1 ] =
[(X 1 , ..., X") n U ;H,i. But each X; is measurable with respect to 4', be-
cause [X, = x] can be put in the form (5.3) by taking H to consist of those
(x 1 , ... , x") in R" for which x, = x. It follows that u(X 1 , ... , X") is contained
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in 	 and therefore equals .4 As intersecting H with the range (finite)
of (XI , ... , X„) in R” does not affect (5.3), H may be taken finite. This
proves (i).

Assume that Y has the form (5.4)—that is, Y(w) = f(X I(w), ... , X„((0))
for every w. Since [Y = y] can be put in the form (5.3) by taking H to consist
of those x = (x , x„) for which f(x) = y, it follows that Y is measurable
a-(X,,..., X„).

Now assume that Y is measurable cr(X,, ... , X,,). Let y 1 , ... , yr be the
distinct values Y assumes. By part (i), there exist sets H , H, in R „ such
that

[w: Y( w ) = V;] = l w: ( XI( w ) ,... ) X„( w )) E Hi].

Take f = Er= I y; 1H; . Although the H; need not be disjoint, if H and H,
share a point of the form (XI(w), ..., X„(w)), then Y(w) = Y. and Y(w) = y1 ,
which is impossible if i j. Therefore each (X I(w), ... , X„(w)) lies in exactly
one of the Hf , and it follows that f(X 1(w),..., X„(w)) = Y(w). •

Since (5.4) implies that Y is measurable cr(X I ,..., X„ ), it follows in
particular that functions of simple random variables are again simple random
variables. Thus X 2 , e tX, and so on are simple random variables along with X.
Taking f to be ' I x ; , 11 n= I x ; , or max ;  x ; shows that sums, products, and
maxima of simple random variables are simple random variables.

As explained on p. 57, a sub-afield corresponds to partial information
about w. From this point of view, cr(X 1 ,...,X„) corresponds to a knowledge
of the values X I(w), ... , X„(w). These values suffice to determine the value
Y(w) if and only if (5.4) holds. The elements of the cr(XI ,..., X„)-partition
(see (4.16)) are the sets [X I = x I , ... , X„ = x„] for x ; in the range of Xi .

Example 5.1. For the dyadic digits d„(w) on the unit inte rval, d 3 is not
measurable o(d 1 , d 2 ); indeed, there exist w' and w” such that d i (w) = d,(co”)
and d 2(w) = d 2(w") but d 3(W) d 3(co"), an impossibility if d 3(w) _
f(d,(w), d 2(w)) identically in w. If such an f existed, one could unerringly
predict the outcome d 3(w) of the third toss from the outcomes d l(w) and
d 2(w) of the first two. _ •

Example 5.2. Let s„(w) -- Ek= I rk(w) be the partial sums of the
Rademacher functions—see (1.14). By Theorem 5.16i) sk is measurable
cr(r l , ... , r„) for k < n, and rk = sk – sk _ 1 is measurable cr(s l , ... , s„) for
k n. Thus ar(r 1 , ... , r,,) = cr(s l , ... , s„). In random-walk terms, the first n
positions contain the same information as the first n distances moved. In
gambling terms, to know the gambler's first n fortunes (relative to his initial
fortune) is the same thing as to know his gains and losses on each of the first
n plays. •
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Example 5.3. An indicator IA is measurable .9 if and only if A lies in ,i .

And A E o(A,, ..., A n ) if and only if 1'A = f(IAi) ... , IA) for some f: Rn ---) R'.
•

Convergence of Random Variables

It is a basic problem, for given random variables X and X,, X2 , ... on a
probability space (fi, .9, P), to look for the probability of the event that
lim n Xn(w) = X(w). The normal number theorem is an example, one where
the probability is 1. It is convenient to characterize the complementary event:
Xn(w) fails to converge to X(w) if and only if there is some E such that for no
m does I Xn(w) - X(a))I remain below E for all n exceeding m—that is to say,
if and only if, for some E, IXn(w) - X(w)I >- E holds for infinitely many values
of n. Therefore,

(5.5) 	(lirnXnX]C= U [IX -XIE I.o.],
 n	 E

where the union can be restricted to rational (positive) E because the set in
the union increases as E decreases (compare (2.2)).

The event [lim n Xn = X] therefore always lies in the basic afield F and
it has probability 1 if and only if

(5.6) 	 P[IXn-XI > E i.0 .1 =0

for each E (rational or not). The event in (5.6) is the limit superior of the
events [IXn - XI >_ E], and it follows by Theorem 4.1 that (5.6) implies

(5.7)	 limP[IXn—XI E] = O.
n

This leads to a definition: If (5.7) holds for each positive E, then X n is said to
converge to X in probability, written Xn ---P X.

These arguments prove two facts:

Theorem 5.2. (i) There is convergence lim n Xn = X with probability 1 if
and only if (5.6) holds for each E.

(ii) Convergence with probability 1 implies convergence in probability.

Theorem 1.2, the normal number theorem, has to do with the convergence
with probability 1 of n - 'E7= 1 d i(w) to 2. Theorem 1.1 has to do instead with
the convergence in probability of the same sequence. By Theorem 5.2(iî),
then, Theorem 1.1 is a consequence of Theorem 1.2 (see (1.30) and (1.31)).
The converse is not true, however—convergence in probability does not
imply convergence with probability 1:



SECTION 5. SIMPLE RANDOM VARIABLES
	

71

Example 5.4. Take X ° 0 and X„ = 1A . Then X,,--op X is equivalent to
p(A„) --- 0, and [lim n X„ = X]` = [A„ i.o..]. Any sequence {A n) such that
P(A„) --) 0 but PEA,, i.0.1> 0 therefore gives a counterexample to the
converse to Theorem 5.2(0.

Consider the event A n = [co: 1„(o) > log e n] in Example 4.15. Here,
P(A n ) _< 1/n 0, while P[A„ i.o.] = 1 by (4.26), and so this is one coun-
terexample. For an example more extreme and more transparent, define
events in the unit interval in the following way. Define the first two by

, A 1 = (0, 2 ,	 A2=0,11.   

Define the next four by

A3 = (0 ,1], 1	 1A 4 =(4 ,2 ,
 3

AS ==(12,2,4J, A 6 =(4,1].

Define the next eight, A 7 , .. , A1 4 , as the dyadic intervals of rank 3. And so
on. Certainly, P(A n ) —> 0, and since each point W is covered by one set in
each successive block of length 2 k , the set [A„ i.o.] is all of (0, 1]. •

Independence

A sequence X 1 , X2 ,... (finite or infinite) of simple random variables is by
definition independent if the classes o(X1 ), v(X2 ), ... are independent in the
sense of the preceding section. By Theorem 5.1(i), v(Xi ) consists of the sets
[Xi e H] for H cR l . The condition for independence of X 1 , ... , X„ is
therefore that

(5.8) 	 P[X1 E H1,...,X„E H„] = P[X 1 cH 1 ] -•• P[X„ E H„ ]

for linear sets H 1 , ... , H,, . The definition (4.10) also requires that (5.8) hold if
one or more of the [ X1 E H! ] is suppressed; but taking H; to be R 1 eliminates
it from each side. For an infinite sequence X 1 , X2, ... , (5.8) must hold for
each n. A special case of (5.8) is

	

(59) 	 P[X1 =x l ,..., X„ =xn] =P[X1 =xi] ..• P[Xn =xn]

On the other hand, summing (5.9) over x i E H 1 , ... , x„ E H„ gives (5.8). Thus
the Xi are independent if and only if (5.9) holds for all x 1 ,..., x,,.

Suppose that

X11 X12

	(5.10)
	

X21 X22

•

is an independent array of simple random variables. There may be finitely or
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infinitely many rows, each row finite or infinite. If .s4 consists of the finite
intersections (1 ,[X1 E Hi] with Hf c R', an application of Theorem 4.2
shows that the cr-fields cr(Xii , X 2 , ... ), i = 1, 2, ... are independent. As a
consequence, Y1 , Y2 , ... are independent if Y is measurable cr(Xi1 , Xi 2 , ... )
for each i.

Example S.S. The dyadic digits d,(w), d 2(0,... on the unit interval are
an independent sequence of random variables for which

(5.11) 	 P[dn =0] =P[dn = 1] = 2.

It is because of (5 11) and independence that the d„ give a model for tossing
a fair coin.

The sequence (d,(w), d 2((o), ...) and the point to determine one another.
It can be imagined that w is determined by the outcomes d n((.0) of a
sequence of tosses. It can also be imagined that w is the result of drawing a
point at random from the unit interval, and that w determines the dn(w). In
the second interpretation the dn(w) are all determined the instant w is
drawn, and so it should further be imagined that they are then revealed to
the coin tosser or gambler one by one. For example, cr(d 1 , d 2 ) corresponds to
knowing the outcomes of the first two tosses—to knowing not w but only
d,(w) and d 2(0—and this does not help in predicting the value d 3(w),
because cr(d ,, d 2 ) and cr(d 3 ) are independent. See Example 5.1. 	 •

Example 5.6. Every permutation can be written as a product of cycles.
For example,

(5
1 2 3 4 5 6 7

1 7 4 6 2 3—(1562)(37)(4).

This permutation sends 1 to 5, 2 to 1, 3 to 7, and so on. The cyclic form on
the right shows that 1 goes to 5, which goes to 6, which goes to 2, which goes
back to 1; and so on. To standardize this cyclic representation, start the first
cycle with 1 and each successive cycle with the smallest integer not yet
encountered.

Let SZ consist of the n! permutations of 1, 2, ... , n, all equally probable;
contains all subsets of 11, and P(A) is the fraction of points in A. Let Xk(w)
be 1 or 0 according as the element in the kth position in the cyclic
representation of the permutation w completes a cycle or not. Then S(w)
Lk^ 1Xk(w) is the number of cycles in w. In the example above, n = 7,
X 1 = X2= X3= X5 = O, X4 =X6 =X7 = 1, and S = 3. The following argument
shows that X,,..., Xn are independent and P[Xk =11=  1/(n — k + 1). This
will lead later on to results on P[S E H].
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The idea is this: X 1(w) = 1 if and only if the random permutation to sends
1 to itself, the probability of which is 1/n. If it happens that X 1(w) = 1—that
w fixes 1—then the image of 2 is one of 2, ... , n, and X2(w) = 1 if and only if
this image is in fact 2; the conditional probability of this is 1/(n — 1). If
X 1(w) = 0, on the other hand, then w sends 1 to some i * 1, so that the image
of i is one of 1, ... , i — 1, i + 1,..,n, and X2(co) = 1 if and only if this image
is in fact 1; the conditional probability of this is again 1/(n — 1). This
argument generalizes.

But the details are fussy Let Y /(w),... , Yn(w) be the integers in the successive
positions in the cyclic representation of w Fix k, and let A, be the set where
{X 1 ,

..., Xk_1, Y1 ,...,Yk ) assumes a specific vector of values u=(x... , xk _I,
y 1, .. , yk ) The A, form a partition si of fl, and if P[ Xk = 1IA ] = 1/(n — k+ 1)
for each u, then by Example 4.7, P[Xk = 1) = 1/(n — k+ 1) and Xk is independent of
o-(. ) and hence of the smaller o-field o- (X1,..., Xk_1). It will follow by induction
that X 1 ,..., Xn are independent.

Let j be the position of the rightmost 1 among x 1 , ..., xk _ 1 (j = 0 if there are
none). Then w lies in A, if and only if it permutes y 1 ,

 ... , yy among themselves (in a
way specified by the values x 1 , ... , x1 _ 1 , x- = 1, y 1 ,..., y1 ) and sends each of

yk _ I to the y just to its right. Thus A,. contains (n — k+ 1)! sample points.
And Xk (w) = 1 if and only if w also sends yk to yj+1 . Thus A, [ Xk = 1] contains
(n — k)! sample points, and so the conditional probability of Xk = 1 is 1 /(n — k+1).

•

Existence of Independent Sequences

The distribution of a simple random variable X is the probability measure µ
defined for all subsets A of the line by

(5.12) 	 µ(A) =P[XEA].

This does define a probability measure. It is discrete in the sense of Example
2.9: If x 1 , ... , x 1 are the distinct points of the range of X, then has mass
pi — P[ X = x .1= µ{x;} at x i , and µ(A) _ Ep ; , the sum extending over those i
for which x 1 EA. As µ(A) = 1 if A is the range of X, not only is µ discrete,
it has finite support.

Theorem 5.3. Let {µn} be a sequence of probability measures on the class
of all subsets of the line, each having finite support. There exists on some
probability space (1f, 54, P) an independent sequence {Xn) of simple random
variables such that Xn has distribution µ n .

What matters here is that there are finitely or countably many distribu-
tions µ n . They need not be indexed by the integers; any countable index set
will do.
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PROOF. The probability space will be the unit inte rval. To understand
the construction, consider first the case in which each µn concentrates its
mass on the two points 0 and 1. Put pn = µ n {0} and qn = 1 — pn = µ n{ 1). Split
(0, 1] into two intervals 1 0 and 1 1 of lengths p 1 and q 1 . Define X I(w) = 0 for
w E 10 and X 1(w) = 1 for w E 11. If P is Lebesgue measure, then clearly
P[X I = 0] = p 1 and P[X 1 = 1] = q 1 , so that X1 has distribution µ 1 .

X, =O 	 Xi=1
0- 
	 4 	 s

Pi 	qi

X i =0
_X2 =0

X, =0 	 X 

X2-1 	 X2=0

X, =I
X 2 - 1
	--.  

P1P2 	 Piq2 	 giP2
	 gig?

Now split 10 into two intervals loo and 101 of lengths p 1 p2 and p 1 q 2 , and
split I I into two intervals 1 10 and I II of lengths q 1 p 2 and g 1 g 2 . Define
X2(w) = 0 for w E '00 U 1 10 and X2(w) = 1 for co E 101 U 1 11 . As the diagram
makes clear, P[X 1 = 0, X2 = 0] = p 1 p 2 , and similarly for the other three
possibilities. It follows that X1 and X2 are independent and X2 has
distribution µ 2 . Now X3 is constructed by splitting each of 1 00 ,10l ,1 10, I in
the proportions p 3 and q 3 . And so on.

If pn = qn = 2 for all n, then the successive decompositions here are the
decompositions of (0, 1] into dyadic intervals, and Xn(w) = dn(w).

The argument for the general case is not very different. Let x i1 , ... , xn!

be the distinct points on which µ n concentrates its mass, and put pm .= µn(x n ;i
for 1 <i < ln .

Decompose (0, 1] into 1 1 subintervals 1i' ), ... ,11, 1) of respective lengths
p 11 , ... , p Il( Define X 1 by setting X 1(co) = x 11 for w E I/' ) , i < i 1 1 . Then ( P
is Lebesgue measure) P[w: X 1(w) = x 11 ]=  P(I/ 1) ) = p 11 , 1 < i < 1. Thus X 1 is
a simple random variable with distribution A 1 .

Next decompose each 4 1) into 1 2 subintervals /g ) , ... ,1,
 2' of respective

lengths p 11 p 21 ,..., p11P212. Define X2(w) = x 21 for w E U± 1 I1J, 1 _<j < 1 2 .
Then P[co: X 1(w) — x = x21] = P('h2) =PIIP21• Adding out i shows
that P[w: X2(w) =x 21 ] =p 21, as required. Hence P[X 1 = x 1 1, X2 =x21]

11p21 = P[X 1 = x 1i ]P[X2 = x^1 ], and X 1 and X2 are independent.
The construction proceeds inductively. Suppose that (0, 1] has been de-

composed into 1 1 • • • In intervals

(5.13) I n),̂ , 	i n f 1 < i 1 < 1 1 , .. . , 1 < i n <1,„

t lf b — a = Si + • • +81 and S i > 0, then f; _ (a + E1 X1 $1 , a + E/ s; S1 ] decomposes (a, b] into
subintervals l i , ...,1, with lengths of S ; Of course, J, is empty if S ; = 0.
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of lengths

(5.14) P( (x) •)rl^ i„ =pl,t, • • . Pro„'

Decompose // in ) into l subintervals // in of respective
lengths P(I,(in' i„)p ,, ,, .. , P(Ii(,n' i )pn+ l , +,. These are the intervals of the
next decomposition. This construction gives' a sequence of decompositions
(5.13) of (0, 1] into subintervals; each decomposition satisfies (5.14), and each
refines the preceding one. If µ„ is given for 1 < n < N, the procedure
terminates after N steps; for an infinite sequence it does not terminate at all.

For I < i < 1„, put Xn(m) = X ni if to E U
 ii 

;n i l(i n'  ,. Since each de-
composition (5.13) refines the preceding, Xk (co) = X kik for co E /In) ik in .
Therefore, each element of (5.13) is contained in the element with the same
label i 1 ... in in the decomposition

Ai, 	 = [
(o:X 1 (l0) =x. .., Xn (CrJ) =xnin J . 	1 <l l <_ 1^,...,	 1 <l n ^ 1n.

The two decompositions thus coincide, and it follows by (5.14) that
P[ X 1 = x li , ... , Xn = x] = p 1 i i . . Pn 1 . Adding out the indices i v ..., In _ 1
shows that X„ has distribution A n and hence that X 1 ,... , X, are indepen-
dent. But n was arbitrary. •

In the case where the µ „ are all the same, there is an alternative construction
based on probabilities in sequence space. Let S be the support (finite) common to the
µn , and let p,,, u e S, be the probabilities common to the µ n . In sequence space S°°,
define product measure P on the class iÇ of cylinders by (2.21). By Theorem 2.3, P is
countably additive on eo , and by Theorem 3.1 it extends to (= o (e0 ). The coordi-
nate functions z k (•) are random variables on the probability space (S°°, , P); take
these as the Xk. Then (2.22) translates into P[ X 1 = u 1 , ... , X„ = u„] = p„, p,,,
which is just what Theorem 5.3 requires in this special case.

Probability theorems such as those in the next sections concern indepen-
dent sequences {Xn} with specified distributions or with distributions having
specified properties, and because of Theorem 5.3 these theorems are true not
merely in the vacuous sense that their hypotheses are never fulfilled. Similar
but more complicated existence theorems will come later. For most purposes
the probability space on which the Xn are defined is largely irrelevant.
Every independent sequence {X,} satisfying P[X,, = 11=p and P[X,, = 0] =
1 — p is a model for Bernoulli trials, for example, and for an event likeU n _ 1[Ek = 1 Xk > an], expressed in terms of the Xn alone, the calculation of
its probability proceeds in the same way whatever the underlying space

P) may be.
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It is, of course, an advantage that such results apply not just to some
canonical sequence {Xn} (such as the one constructed in the proof above) but
to every sequence with the appropriate distributions. In some applications of
probability within mathematics itself, such as the arithmetic applications of
run theory in the preceding section, the underlying n does play a role.

Expected Value

A simpie random variable in the form (5.2) is assigned expected value or
mean value

(5.15) E[X]= E Ex ; l'A
 r

= Ex r P(A,).
I	 I

There is the alternative form

(5.16) 	 E[X] = ExP[X =x],
x

the sum extending over the range of X; indeed, (5.15) and (5.16) both
coincide with EX E; a . =c x ; P(A ; ). By (5.16) the definition (5.15) is consistent:
different representations (5.2) give the same value to (5.15). From (5.16) it
also follows that E[X] depends only on the distribution of X; hence
E[X]=E[Y] if P[X=Y]= 1.

If X is a simple random variable on the unit interval and if the A. in (5.2)
happen to be subintervals, then (5.15) coincides with the Riemann integral as
given by (1.6). More general notions of integral and expected value will be
studied later. Simple random variables are easy to work with because the
theory of their expected values is transparent and free of technical complica-
tions.

As a special case of (5.15) and (5.16),

(5.17) 	EPA] =P(A).

As another special case, if a constant a is identified with the random variable
X(m) ° a, then

	

(5.18) 	 E[a] = a.

From (5.2) follows f(X) = E; f(x ; )I
Ar

, and hence

	

(5.19) 	 E[f(X)] = Ef(x,)P(A;) = Ef(x)P[X=x],

the last sum extending over the range of X. For example, the kth moment
E[ X k ] of X is defined by E[X"] = E y yP[ X k = y], where y varies over the
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range of X k , but it is usually simpler to compute it by E[ X k ] = EX x kP[ X= x ],
where x varies over the range of X.

If

(5.20) X= Ex i lA, , Y = E 37, IBi
1

are simple random variables, then aX + f3Y = E i1(ax i + /3 y1 )IA ^ , B  has ex-
pected value Ei1(ax i + ^3y1)P(A i n B1) = caE i x i P(A 1 ) + (3E r y P(B1 ). Ex-
pected value is therefore linear:

(5.21) E[aX+13Y] = aE[X] +13E[Y].

If MO S Y(m) for all co, then x i _< y if A i n B1 is nonempty, and hence
Eux i P(A i n B1 ) < E i1 y1P(A i n B1 ). Expected value therefore preserves or-
der:

(5.22) E[X] < E[Y] 	 if X <Y.

(It is enough that X < Y on a set of probability 1.) Two applications of (5.22)
give E[ -- I X I ] <E[X] < E[  I X U, so that by linearity,

(5.23)

And more generally,

(5.24)

< E[IXI].

E[X -Y] E[IX - YU.

The relations (5.17) through (5.24) will be used repeatedly, and so will the
following theorem on expected values and limits. If there is a finite K such
that I X„(W)I < K for all B, and n, the X„ are uniformly bounded.

Theorem 5.4. If (X„) is uniformly bounded, and if X= lim n X„ with
probability 1, then E[X] = lim n E[X].

PROOF. By Theorem 5.2(iî), convergence with probability 1 implies con-
vergence in probability: Xn --p, X. And in fact the latter suffices for the
present proof. Increase K so that it bounds !Xi (which has finite range) as
well as all the I X I; then IX — X I < 2K. If A = (IX  — Xn I > EL then

IX(G)) —Xn (G1)I <2KIA (u) +€IAc(G1) <2KIA(0)) + E

for all cû. By (5.17), (5.18), (5.21), and (5.22),

E[IX—X„I] < 2KPjX—X„I_E] + E.
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But since X„ --91) X, the first term on the right goes to 0, and since E is
arbitrary, E[CX — Xn !] --- O. Now apply (5.24). 	 •

Theorems of this kind are of constant use in probability and analysis. For
the general version, Lebesgue's dominated convergence theorem, see Sec-
tion 16.

Example 5.7. On the unit interval, take X(w) identically 0, and take
Xn(co)tobe n 2 if0<w5 n - ' and 0if n - '<to< 1.Then Xn(w)-> X(co) for
every co, although E[Xn ] = n does not converge to E[X] = O. Thus theorem
5.4 fails without some hypothesis such as that of uniform boundedness. See
also Example 7.7. •

An extension of (5.21) is an immediate consequence of Theorem 5.4:

Corollary. If X= En Xn on an 9=set of probability 1, and if the partial
sums of En Xn are uniformly bounded, then E[10= En E[ Xn ].

Expected values for independent random variables satisfy the familiar
product law. For X and Y as in (5.20), XY= EiJx; y11A;  n Bi. If the x ; are
distinct and the y1 are distinct, then A l = [ X = x i ] and B1 = [Y= y1 ]; for
independent X and Y, P(A i n B1 ) = P(A i )P(B1 ) by (5.9), and so E[XY] =
E ii x i y1P(A i)P(B) = E[X ]E[Y]. If X, Y, Z are independent, then XY and
Z are independent by the argument involving (5.10), so that E[XYZ] _
E[XY]E[Z] = E[X]E[Y]E[Z]. This obviously extends:

(5.25) 	 E[ X, .. .Xn ]= E[X ^ ]•. E[Xn ]

if X 1 ,... , Xn are independent.
Various concepts flour discrete probability car ry over to simple random

variables. If E[X] = m, the variance of X is

(5.26) 	 Var[X] =E[( X — m ) 2] =E[X 2 ] —m 2 ;

the left-hand equality is a definition, the right-hand one a consequence of
expanding the square. Since aX +0 has mean am + 0, its variance is
E[((aX+ /3) — (am +f3)) 2 }= E[a 2(X—m) 2 ]:

(5.27) 	 Var[aX+0] = a 2 Var[X].

If X 1 , ... , Xn have means m  1 , ... , m n , then S = Er _ 1 X; has mean m =
En^ 1mi, and E[(S — m) 2 ] = E[(ELL 1(X, — m ; )) 2 ] = En_1E[(X1 — m i ) 2 ] +
2E 1 <i < 1sn E[(Xi — m,)(X1 — mi )]. If the Xi are independent, then so are the
X1 — m i , and by (5.25) the last sum vanishes. This gives the familiar formula
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for the variance of a sum of independent random variables:

(5.28)
n 	 n

Var E X;  = E Var[ Xi ].

Suppose that X is nonnegative; order its range: O •x 1 <x 2 < • • <xk .
Then

E[X]= E x ; P[X =x ; ]
; -1

k	 I
= E x ; (P[X > x,] — P[X>_x ; +,]) +x k P[X >x k ]

r=1

k

=x 1 P[X > x 1 ] + E Cr; - x;-I)P[X>x1]•
i 2

Since P[X > x]=P[X>x 1 ] for 0 	 x 1 and P[X > x]=P[X>x ; ] for x ; _ 1

<x _<x . , it is possible to write the final sum as the Riemann integral of a step
function:

^
(5.29) 	 E[X]=Ia f [X x]dx.

This holds if X is nonnegative. Since P[X > x] = 0 for x >xk , the range of
integration is really finite.

There is for (5.29) a simple geometric argument involving the "area over
the curve." If p, =P[X = x i], the area of the shaded region in the figure is
the sum p 1 x 1 + • • • +pk x k = E[ X ] of the areas of the horizontal strips; it is
also the integral of the height P[X >_ x] of the region.
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Inequalities

There are for expected values several standard inequalities that will be
needed. If X is nonnegative, then for positive a (sum over the range of X)
E[X]=Ex xP[X=x]>_ Ex x , a xP[X=x]>_ aEx x , a P[X = x]. Therefore,

(5.30) 	 P[X>a} < âE[X]

if X is nonnegative and a positive. A - special case of this is (1.20). Applied to
I X I k , (5.30) gives Markov's inequality,

(5.31) P[IXI >(Y] < kE[IXl k ],
a

valid for positive a.. If k = 2 and m = E[X] is subtracted from X, this
becomes the Chebyshev (or Chebyshev--Bienaymé) inequality:

(5.32) P[I X— ml > a] < 1
2 Var[ X].

a

A function cp on an interval is convex [A32] if cp(px + (1 —p)y) < pcp(x) +
(1 — p)cp(y) for 0 < p < 1 and x and y in the interval. A sufficient condition
for this is that ço have a nonnegative second derivative. It follows by
induction that cp(EL, p; x ; ) < E; ^ , p1 cp(x ; ) if the pi are nonnegative and add
to 1 and the x ; are in the domain of ço. If X assumes the value x i with
probability p; , this becomes Jensen's inequality,

(5.33) 	 cp(E[ X ]) <E[cp(X)],

valid if cp is convex on an interval containing the range of X.
Suppose that

	

(5.34) 	 P+q=1, 	 p>l, q>1.

Holder's inequality is

	

(5.35) 	 EPXYI] ç E'/a[IXIp] . EI/q[IYIq],

If, say, the first factor on the right vanishes, then X = 0 with probability 1,
hence XY= 0 with probability 1, and hence the left side vanishes also.
Assume then that the right side of (5.35) is positive. If a and b are positive,
there exist s and t such that a = ep - 'S and b = e'1 . Since ex is convex,
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ep -is+g - 'r ^ p -1 es + g - ` e ' , or

ap 	 1) 4
an

 P 
+ 

q 
.

This obviously holds for nonnegative as well as for positive a and b. Let u
and u be the two factors on the right in (5.35). For each w,  

X(w) p + 1
u 	 q 

9X(w) Y( w) 
UV

^1
P

Y( co)
U   

Taking expected values and applying (5.34) leads to (5.35).
If p = q = 2, Holder's inequality becomes Schwarz's inequality:

(5.36) 	 EPXYI] < E'"2 [X 2 ] •E'" 2 [Y 2 ].

Suppose that 0 < a <g. In (5.35) take p =13/a, q =13/0— a), and
Y(w) = 1, and replace X by IX'. The result is Lyapounov's inequality,

(5.37) 	 E'/a[IX11 <E , IIXIll, 0<a LJ3.

PROBLEMS

5.1. (a) Show that X is measurable with respect to the a-field J if and only if
0-(X) c.1. Show that X is measurable 0- (Y) if and only if 0-(X) ca-(Y ).
(b) Show that, if .1= (0,11), then X is measurable J if and only if X is
constant.
(c) Suppose that P(A) is 0 or 1 for every A in S. This holds, for example, if .1'
is the tail field of an independent sequence (Theorem 4.5), or if J consists of
the countable and cocountable sets on the unit interval with Lebesgue measure.
Show that if X is measurable J, then P[X= c) = 1 for some constant c.

5.2. 2.19 T Show that the unit interval can be replaced by any nonatomic probabil-
ity measure space in the proof of Theorem 5.3.

5.3. Show that m = E[X] minimizes E[(X — m) 2 ].

5.4. Suppose that X assumes the values m —a, m, m + a with probabilities p,1 —

2p, p, and show that there is equality in (5.32). Thus Chebyshev's inequality
cannot be improved without special assumptions on X.

5.5. Suppose that X has mean m and variance o. 2 .
(a) Prove Cantelli's inequality

a- 2
P[X —m >a] _<  	 2,	 a >0.

a-2 + a
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(b) Show that P[IX - ml >- a] < 20. 2/(72 + a2 ) . When is this better than
Chebyshev's inequality?
(c) By considering a random variable assuming two values, show that Cantelli's
inequality is sharp.

5.6. The polynomial E[(t I X I + 01 ) 2 1 in t has at most one real zero. Deduce
Schwarz's inequality once more.

5.7. (a) Write (5.37) in the form EP/"[IXIa] <E[IXIŒ)P/"] and deduce it directly
from Jensen's inequality.
(b) Prove that E[1/XP].. 1/EP[X] for p> 0 and X a positive random vari-
able.

5.8. (a) Let f be a convex real function on a convex set C in the plane Suppose
that (X(0)), Y(0))) E C for all co and prove a two-dimensional Jensen's I nequal -

i ty:

(5.38) 	 f(E[X ], E[Y]) < E[f(X , Y)]•

(b) Show that f is convex if it has continuous second derivatives that satisfy

( 5 . 39 ) f>> ? 0 , 	 fz2 ? 0 , 	 ftifz2> f 1i •

5.9. T Holder's inequality is equivalent to E[X  I /PY'/ 1 ] < E`/P[X ] . E h / [Y ]
(p ` + q i - 1), where X and Y are nonnegative random variables. Derive this
from (5.38).

5.10. T Minkowski's inequality is

(5.40) 	 E`/°[IX +YIP] < E'/P[IXIP] + ElIP[IYIP] ,

valid for p > 1. It is enough to prove that E[(X I ' P + Y I/P)P] < (E 1 /P[X ] +
E`/P[Y])P for nonnegative X and Y. Use (5.38).

5.11. For events A 1 , A2,..., not necessarily independent, let Nn - Ek_11 
A k

 be the
number to occur among the first n. Let

(5.41) a - 1 E P(A k ), 	 pr,— r 2 	E P ( A i nA k ).
- n k-1	 n(n —1)

 WGk<n

Show that

(5.42) 	 E[n-^N,r ] =a 	 Var[n - 'N„I =(J n - a,2, an+ 	
n (3 n.

Thus Var[n - iN„] -> 0 if and only if /3„ -- a,2, -> 0, which holds if the A„ are
independent and P(A„) - p (Bernoulli trials), because then a„ -p and X3 ,1 =
p2 =a„.
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5.12. Show that, if X has nonnegative integers as values, then E[X] = En= , P[ X > n].

5.13. Let I ; = IA , be the indicators of n events having union A. Let Sk = Eli , • • • I;k ,
where the summation extends over all k-tuples satisfying 1 < i i < • • - < lk _< n.
Then sk = E[Sk ] are the terms in the inclusion-exclusion formula P(A)=s 1 -
s 2 + • • ±s,,. Deduce the inclusion-exclusion formula from 14 — Si -- S2 +
• • • t S„. Prove the latter formula by expanding the product ïI ,„= 1(1 - I,)

5.14. Let fn(x) be n 2x or 2n -n 2x or 0 according as 0 <x <n -1 or n -1 <
x < 2n 1 or 2n -1 -< x < 1. This gives - a standard example of a sequence of
continuous functions that converges to 0 but not uniformly. Note that J f„(x)dx
does not converge to 0; relate to Example 5.7.

5.15. By Theorem 5.3, for any prescribed sequence of probabilities p,,, there exists
(on some space) an independent sequence of events A n satisfying P(A„) =p„.
Show that if p„ -> O but Epn = 00, this gives a counterexample (like Example 5.4)
to the converse of Theorem 5.2(iî).

5.16. T Suppose that 0 <p„ _< 1 and put a,= min(pn ,1 -pn). Show that, if Ean
converges, then on some discrete probability space there exist independent
events A n satisfying P(A n )=p,,. Compare Problem 1.1(b).

5.17. (a) Suppcse that X, 1 -> p X and that f is continuous. Show that f(X„) -> p f (X ).
(b) Show that E[IX - X„11-> 0 implies X„ -> P X. Show that the converse is
false.

5.18. 2.20 T The proof given for Theorem 5.3 for the special case where the  A n are
all the same can be extended to cover the general case: use Problem 2.20.

5.19. 2.181 For integers m and primes p, let ap(m) be the exact power of p in the
prime factorization of m: m = [l pp a (m) . Let Sp(m) be 1 or 0 as p divides m or
not. Under each P„ (see (2.34)) the a p and Sp are random variables. Show that
for distinct primes p i ,.•.,pu ,

1 n 1
(5.43) P ^apr>k•,i<u^ = ->„	 r 	 n

.Pl . .

Pu r^
p ^, .

.. pu,

and

(5.44) P ^a 	 =k, i <u^^ ^ 	 1 	 1
->

•
k ;	 k,+1

i =1	 Pi 	 Pi

Similarly,

(5.45) 	 P„[Sp,= 1, i <u^ - 1
[ 
	n 	^ 	1 	•

	n p i ... pu
	Pi

...pu

According to (5.44), the ap are for large n approximately independent under
P,,, and according to (5.45), the same is true of the Sp.
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For a function f of positive integers, let

(5.46) En[f ] =	 f(m)
m-^

be its expected value under the probability measure P. Show that

(5.47) E[a ] = ^ 1 	 -;	 1 ,
En [a

	k-^ 
n ^ 

p 
n 

k ] 	 p-	 1

this says roughly that (p - 1) - 1 is the average power of p in the factorization of
large integers.

5.20. T (a) From Stirling's formula, deduce

(5.48) 	 E„[log] = log n + 0(1).

From this, the inequality E„[a p] <-, 2 /p, and the relation log m = E pa p(m) log p,
conclude that Ep p -1 log p diverges and that there are infinitely many primes.
(b) Let log* m = E pS p(m) log p. Show that

(5.49) E„[log*]_ En
P 

log p = log e + O(1).
p	 1

(c) Show that 1.2n/p] - 2[n/p] is always nonnegative and equals 1 in the
range n <p < 2n. Deduce E2i [log*] - E„[log*] = 0(1) and conclude that

(5.50) 	 E log p - 0(x).
pst

Use this to estimate the error removing the integral-part brackets introduces
into (5.49), and show that

(5.51) E 	 log p = log x + 0(1).
p <x

(d) Restrict the range of summation in (5.51) to Ox <p <x for an appropriate
B, and conclude that

(5.52) E log p ^x,
p s x

in the sense that the ratio of the two sides is bounded away from 0 and co.
(e) Use (5.52) and truncation arguments to prove for the number -rr(x) of
primes not exceeding x that

(5.53)
X

TT(x)
	 log x •
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(By the prime number theorem the ratio of the two sides in fact goes to 1.)
Conclude that the rth prime pr satisfies pr r log r and that

(5.54) = CO .

SECTION 6. THE LAW OF LARGE NUMBERS

The Strong Law

Let X 1 , X2 , ... be a sequence of simple random variables on some probabil-
ity space (fi, .`^ P). They are identically distributed if their distributions (in
the sense of (5.12)) are all the same. Define S„= X 1 + • • i- Xn . The strong
law of large numbers:

Theorem 6.1. If the X„ are independent and identically distributed and
E[ X„] = m. then

(6.1) Pf lim n -1S„ =mj = 1.
LL 	 !

PROOF. The conclusion is that n - 'S - m= n t E; ^ 1(X, - m) 0 with
probability 1. Replacing X by X; - m shows that there is no loss of
generality in assuming that m = 0. The set in question does lie in Y (see
(5.5)), and by Theorem 5.2(i), it is enough to show that P[I n - tSI >_ E i.o.] = 0
for each E.

Let E[X2 ] = o- 2 and E[X,4 ] = 6 4. The proof is like that for Theorem 1.2.
First (see (1.26)), E[S 4 ] = EE[Xa X0 Xy Xs ], the four indices ranging inde-
pendently from 1 to n. Since E[X,] = 0, it follows by the product rule (5.25)
for independent random variables that the summand vanishes if there is one
index different from the three others. This leaves terms of the form E[X,4] =
64 , of which there are n, and terms of the form E[ X,2X12 ] = E[ Xf ]E[X12] = 0_4

for i j, of which there are 3n(n - 1). Hence

(6.2)	 EiSn41 =n6 4 + 3n(n - 1 )o- 4 <Kn 2 ,

where K does not depend on n.
By Markov's inequality (5.31) for k = 4, P[IS„I >_ nE] < Kn - 2e ', and so by

the first Borel-Cantelli lemma, P[I n - t S„I >_ E i.o.] = 0, as required. 	 ■

Example 6.1. The classical example is the strong law of large numbers for
Bernoulli trials. Here P[Xn = 1] = p, P[Xn = 0] = 1 - p, m = p; S„ represents
the number of successes in n trials, and n - 'Sn -•- p with probability 1. The
idea of probability as frequency depends on the long-range stability of the
success ratio Sn/n. •
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Example 6.2. Theorem 1.2 is the case of Example 6.1 in which (fi, .9, P)
is the unit interval and the Xn(w) are the digits dn(w) of the dyadic
expansion of w. Here p= Z. The set (1.21) of normal numbers in the unit
interval has by (6.1) Lebesgue measure 1; its complement has measure 0 (and
so in the terminology of Section 1 is negligible). •

The Weak Law

Since convergence with probability 1 implies convergence in probability
(Theorem 5.2(iî)), it follows under the hypotheses of Theorem 6.1 that
n - 'Sn --- P m. But this is of course an immediate consequence of Chebyshev's
inequality (5.32) and the rule (5.28) for adding variances:

P[in - 'Sn — ml E] <
Var[ Sn ] =

n 2 E l

n Var[ X 1 ]
n 2E2 	-^ O.

This is the weak law of large numbers.
Chebyshev's inequality leads to a weak law in other interesting cases as

well:

Example 6.3. Let fi n consist of the n! permutations of 1, 2, ... , n, all
equally probable, and let X ?k(w) be 1. or 0 according as the kth element in
the cyclic representation of w E fi n completes a cycle or not. This is Example
5.6, although there the dependence on n was suppressed in the notation. The
Xn1 , ... , Xnn are independent, and S„ = Xi1 + • • • +Xnr is the number of
cycles. The mean mnk of Xnk is the probability that it equals 1, namely
(n — k + 0-1, and its variance is onk = mnk(1 — m nk ).

If L n = Ekn _ i k -1 , then Sn has mean Ek,imnk = Ln and variance
n

Ek= imnk( 1 — mnk) <Ln. By Chebyshev's inequality,

P L     

Sn — Ln 
> E < 

L"
2 = 2L —40.

E Ln 	E R Ln    

Of the n! permutations on n letters, a proportion exceeding 1 — E^2Ln  1 thus
have their cycle number in the range (1 ± e)L n . Since L„ = log n + 0(1),
most permutations on n letters have about log n cycles. For a refinement, see
Example 27.3.

Since fi n changes with n, it is the nature of the case that there cannot be
a strong law corresponding to this result. 	 •

Bernstein's Theorem

Some theorems that can be stated without reference to probability nonethe-
less have simple probabilistic proofs, as the last example shows. Bernstein's
approach to the Weierstrass approximation theorem is another example.
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Let f be a function on [0,1]. The Bernstein polynomial of degree n
associated with f is

n

0
(6.3)	 13,(x) = kf(n 

) K.

kn xk(1 - x )n -- k
=
k

Theorem 6.2. If f is continuous, B"(x) converges to f(x) uniformly on
[0, 11.

According to the Weierstrass approximation theorem, f can be uniformly
approximated by polynomials; Bernstein's result goes further and specifies an
approximating sequence.

PROOF. Let M = sups I f(x)I, and let 8(E) = sup[I f(x) - f(y)I: ix 
- 

yl < E]
be the modulus of continuity of f. It Will be shown that

(6.4) 	 sup f(x) 
- 

/3n(x)1 <43(E) 	 n

By the uniform continuity of f, Iim E  0 5(E) = 0, and so this inequality (for
E = n'/3 ,  say) will give the theorem.

Fix n >_ 1 and x E [0,1] for the moment. Let X I , ... , X" be independent
random variables (on some probability space) such that P[ X- = 11=x and
P[ X; = 01= 1 -x; put S = X I + • • • +X". Since P[S = 1c1=  ()x k(1 _ x)k,

the formula (5.19) for calculating expected values of functions of random
variables gives E[ f(S/n)] = Bn(x). By the law of large numbers, there should
be high probability that S/n is near x and hence (f being continuous) that
f(S/n) is near f(x); E[ f(S/n)] should therefore be near f(x). This is the
probabilistic idea behind the proof and, indeed, behind the definition (6.3)
itself.

Bound 'fin -1 S) - f(x)1 by S(E) on the set [in'S - xi <El and by 2M on
the complementary set, and use (5.22) as in the proof of Theorem 5.4. Since
E[S] = nx, Chebyshev's inequality gives

Bn(x) - f(x)I E[I f(n - 'S) - f(x)I J
< S(E)P[In -IS -xi <E]+ 2MP[In'S -xi >_ E]
< 5(E) +2M Var[S]/n 2E 2 ;

since Var[S] = nx(1 - x) < n, (6.4) follows. 	 •

A Refinement of the Second Borel-Cantelli Lemma

For a sequence A,, A 2 ,... of events, consider the number Nn = IAA

+ • • • +IAn of occurrences among A,,... , A". Since [A n i.o.] = [w:
sup" Nn(w) = co], PEA" i.o.] can be studied by means of the random varia-
bles N".
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Suppose that the A n are independent. Put Pk = P(A k ) and m„ =p,
+ • • • +pn . From E[I4k ] = pk and Var[IAi) = pk (1 — pk ) <pk follow E[Nn ]
m n and Vai[Nn ] = Ek = ^ Var[I,gk ] < m n . If m n >x, then

(6.5) 	 P[Nn• x]<P[1Nn —m^>m—x]

Var[k] < 	 m n
(mn

 —x)2
	(mn —x) 2 •

If Epn = CO, so that m n --) 00, it follows that lim„ P[Nn <x] = 0 for each x.
Since

(6.6) 	 P[suP Nk <x] <P[N„ <x],

P[supk Nk <x] = 0 and hence (take the union over x = 1, 2, ...) P[sup k Nk <
001= O. Thus P[ A n i.0.1= P[sup n Air = c] = 1 if the A n are independent and
Ep„ = 00, which proves the second Borel—Cantelli lemma once again.

Independence was used in this argument only to estimate Var[N N ]. Even
without independence, E[Nn ] = m n and the first two inequalities in (6.5)
hold.

Theorem 6.3. If EP(A n ) diverges and

L P ( A J nA k)

(6.7) 	 lim inf j, k5n 	 2	 < 1,

n 	E P( A0)
k <n

then P[ A n i.0.1= 1.

As the proof will show, the ratio in (6.7) is at least 1; if (6.7) holds, the
inequality must therefore be an equality.

PROOF. Let On denote the ratio in (6.7). In the notation above,

Var[Nn ]=E[N2 ] —mn= L E[IA/AkJ —mn
j, k 5n

= L P(A1 nAk) — mn = (en — 1)mn
j,k<n

(and On — 1 >_ 0). Hence (see (6.5)) P[Nn <x] <(Bn — 1)mn/(m n — x)2 for
x <m„. Since mn/(m n —x) 2 --' 1, (6.7) implies that liminfn P[N,, <x] =O. It
still follows by (6.6) that P[sup k Nk < x ] = 0, and the rest of the argument is
as before. ■
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Example 6.4. If, as in the second Borel —Cantelli lemma, the A n are
independent (or even if they are merely independent in pairs), the ratio in
(6.7) is 1 + Ek <,;(13k —  Pk)/mn, so that EP(A n ) = oo implies (6.7). • •

Example 6.5. Return once again to the run lengths / n(w) of Section 4. It
was shown in Example 4.21 that {rn} is an outer boundary (P[1,› rn i.o.] = 0)
if E2 -r^ < co. It was also shown that {rn } is an inner boundary (,P[ln rn

1.0.] = 1) if rn is nondecreasing and E2 - r^rn I = co, but Theorem 6.3 can be
used to prove this under the sole assumption that E2 - r^ = co.

As usual, the rn can be taken to be positive integers. Let A n = [l n >— rn ]_
[dn = ... = d o +, _ 1 = 01. If j+ rj < k, then A j and A k are independent. If
j<k <,/+rj, then P(A J IA k ) < P[dj = • • =dk--1=OlAk]= P[dJ = ••• =
c k _, = 01= 112 k- j, and so P(A J nA k ) 5 P(A k )/2k --j. Therefore,

E P(A j nA k )
k <n

< E P(A)+2 E P(Aj)P( Ak) + 2 E 2_(k''P(Ak)
k< n 	j<k<n	 j<k <n

j +ri < k

1 2
< E P(A k ) + ( 	 P(A k ) I +2 E P(A k ).

k <n 	 kÇn 	 !f 	 ksn

If EP(A n ) = E2 - rn diverges, then (6.7) follows.
Thus (r,,) is an outer or an inner boundary according as E2 -r^ converges or

diverges, which completely settles the issue. In particular, r n = log 2 n +
0 log e log e n gives an outer boundary for 0 > 1 and an inner boundary for
0 < 1. •

Example 6.6. It is now possible to complete the analysis in Examples 4.12 and
4.16 of the relative error e n(w) in the approximation of w by Ek=Id k (w)2 -k . It
ln(w) > — log 2 x n (0 <x,, < 1), then en(w) <r n by (4.22). By the preceding example
for the case rn = — log 2 x n , Ex n = co implies that P[w: en(w) <x n i.o.] — 1. By this
and Example 4.12, [w: en(w) <x n i.o.] has Lebesgue measure 0 or 1 according as Ex 
converges or diverges. •

PROBLEMS

6.1. Show that Zn -' Z with probability 1 if and only if for every positive E there
exists an n such that P[IZk — ZI < c, n < k < m] > 1 — c for all m exceeding n.
This describes convergence with probability 1 in "finite" terms.

6.2. Show in Example 6.3 that P[IS, -- L,I ^ L„/ 2 +E] -i O.

6.3. As in Examples 5.6 and 6.3, let w be a random permutation of 1, 2, ... , n Each
k, 1 < k < n, occupies some position in the bottom row of the permutation w;
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let X„k (w) be the number of smaller elements (between 1 and k -- 1) lying to
the right of k in the bottom row. The sum Sn — X„ 1 + • • • +X,,,, is the total
number of inversions—the number of pairs appearing in the bottom row in
reverse order of size. For the permutation in Example 5.6 the values of
X71,..., X77 are 0, 0, 0, 2, 4, 2, 4, and S7 = 12. Show that X„  .. , X,,,, are
independent and P[X„ k = i] = k- 1 for 0 < i < k. Calculate E[S n ] and Var[S„].
Show that S„ is likely to be near n 2 /4.

6.4. For a function f on [0, 1 ] write VIIII = supx If(x)I. Show that, if f has a
continuous derivative f', then II f — B

„ ll <— Ell f'll + 21I f II /n€ 2 . Conclude that
11 f—B„I1= 0(n -1 / 3 ).

6.5. Prove Poisson's theorem: If A,, A 2, ... are independent events, p„
n - 1 E r_ , P(A 1 ), and N =E; r_, l4 , then n_1N,t -p„ -4 1, 0.

In the following problems S„-- X. + • +X,,

6.6. Prove Cantelli's theorem. If X,, X,,... are independent, E[X„] = 0, and E[X,4]
is bounded, then n - IS„ -3 0 with probability 1. The X„ need not be identically
distributed

6.7. (a) Let x x 2 ,... be a sequence of real numbers, and put s„ =x 1  + +x„.
Suppose that n -2s ---3 0 and that the x„ are bounded, and show that n - 1 s„ ---3 0.
(b) Suppose that n - 25 „2 -i 0 with probability 1 and that the X„ are uniformly
bounded (sup„ ,, IX„((0)I < œ). Show that n - 'S„ -3 0 with probability 1 Here
the X„ need not be identically distributed or even independent.

6.8. T Suppose that X1, X2,... are independent and uniformly bounded and
E[k] = 0. Using only the preceding result, the first Borel-Cantelli lemma, and
Chebyshev's inequality, prove that n - 1 S„ --3 0 with probability 1.

6.9. T Use the ideas of Problem 6.8 to give a new proof of Borel's normal number
theorem, Theorem 1.2. The point is to return to first principles and use only
negligibility and the other ideas of Section 1, not the apparatus of Sections 2
through 6; in particular, P(A) is to be taken as defined only if A is a finite,
disjoint union of intervals.

6.10. 5.11 6.71 Suppose that (in the notation of (5.41)) 13, -- a, = 0(1 /n). Show
that n -  a„---) 0 with probability 1. What condition on f3„ - a, will imply a
weak law? Note that independence is not assumed here.

6.11. Suppose that X,, X2, ... are m-dependent in the sense that random variables
more than m apart in the sequence are independent. More precisely, let
sif- k = cr(Xj , ... , Xi), and assume that k ^, ... , dk/ are independent if k;_ 1 +
m <j, for i = 2,.—,, I. (Independent random variables are 0-dependent.) Sup-
pose that the X„ have this property and are uniformly bounded and that
E[X„] = 0. Show that n - IS„ -i 0. Hint: Consider the subsequences
X17 Xi +,»+1 , X,+20n+i), for 1 _< i < m + 1.

6.12. T Suppose that the X„ are independent and assume the values x 1 ,. , . , x 1 with
probabilities p(x 1 ), ... , p(x,). For u 1, ... , u k a k-tuple of the x 1 's, let
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N„(u i , ... , u k ) be the frequency of the k-tuple in the first n + k - 1 trials, that
is, the number of t such that 1 < t < n and X, - u  . .. , X, ^ k _ = uk. Show that
with probability 1, all asymptotic relative frequencies are what they should
be—that is, with probability 1, n -iN„(u... , u k )--'p(u 1 ) p(u k ) for every k
and every k-tuple

6.13. T A number w in the unit interval is completely normal if, for every base b
and every k and every k-tuple of base-b digits, the k-tuple appears in the base-b
expansion of w with asymptotic relative frequency b -k . Show that the set of
completely normal numbers has Lebesgue measure 1.

6.14. Shannon's theorem. Suppose that X1, X2 ,... are independent, identically dis-
tributed random variables taking on the values 1, ... , r with positive probabili-
ties p 1 ,...,P r If p(i 1 ,...,i )=p. .. p, and pn(co)=p„(X t(co),. .,Xn(co)),
then p„(w) is the probability that a new sequence of n trials would produce the
particular sequence X,(w),..., X,,(o.) of outcomes that happens actually to have
been observed. Show that

-n log p„(w)-^h= - Ep ; log p ;
; =1

with probability 1.
In information theory 1, ... , r are interpreted as the letters of an alphabet,

X 1 , X2 ,... are the successive letters produced by an information .lourcc, and h
is the entropy of the source. Prove the asymptotic equipartition property: For
large n there is probability exceeding 1 - E that the probability p,t(w) of the
observed n-long sequence, or message, is in the range e - " ( ' } E ) .

6.15. In the terminology of Example 6.5, show that log 2 n + log 2 log 2 n +
0 log 2 log 2 log 2 n is an outer or inner boundary as 0 > 1 or 0 < 1. Generalize.
(Compare Problem 4.12.)

6.16. 5.20 T Let g(m) = Ep 8p(m) be the number of distinct prime divisors of  M. For
a n = En[g] (see (5.46)) show that a n -4 cc. Show that

(6.8 ) En f
( 8p`L LJ n L g Jl1 	

1
	

1

for p q and hence that the variance of g under Pn satisfies

(6.9) Var„[g] <3 E p .

13 <n

Prove the Hardy-Ramanujan theorem:   

(6.10) lim Pn m:
g ( m)

a n   

Since an - log log n (see Problem 18.17), most integers under n have something
like log log n distinct prime divisors. Since log log 10 7 is a little less than 3, the
typical integer under 10 7 has about three prime factors—remarkably few.
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6.17. Suppose that X1, X2 ,... are independent and P[ Xn = 0] =p. Let L„ be the
length of the run of 0's starting at the nth place: L„ = k if X„ = • • • = Xn±k _ i

= 0 # Xn+ k. Show that P[Ln >_ rn i.o.] is 0 or 1 according as En pr" converges or
diverges. Example 6.5 covers the case p = ..

SECTION 7. GAMBLING SYSTEMS

Let X 1 , X2 , ... be an independent sequence of random, variables (on some
(Q, ,F, P)) taking on the two values +1 and -1 with probabilities P[X,, =
+11=p  and P[X,, = - 1] = q =1-  p. Throughout the section, Xn will be
viewed as the gambler's gain on the nth of a series of plays at unit stakes.
The game is favorable to the gambler if  p> f, fair if p = 2, and unfavorable
if p < 2. The case p < f will be called the subfair case.

After the classical gambler's ruin problem has been solved, it will be
shown that every gambling system is in certain respects without effect and
that some gambling systems are in other respects optimal. Gambling prob-
lems of the sort considered here have inspired many ideas in the mathemati-
cal theory of probability, ideas that carry far beyond their origin.

Red-and-black will provide numerical examples. Of the 38 spaces on a
roulette wheel, 18 are red, 18 are black, and 2 are green. In betting either on
red or on black the chance of winning is 383.

Gambler's Ruin

Suppose that the gambler enters the casino with capital a and adopts the
strategy of continuing to bet at unit stakes until his fortune increases to c or
his funds are exhausted. What is the probability of ruin, the probability that
he will lose his capital, a? What is the probability he will achieve his goal, c?
Here a and c are integers.

Let

(7.1) Sn =XI+ ••• +Xn, So = O.

The gambler's fortune after n plays is a + Sn . The event

n-1
(7.2) 	 Aan=[a +Sn =c] fl n [0 <a+ Sk<c]

k =1

represents success for the gambler at time n, and

n- 1
( 7 . 3 ) 	 Ba,n= [a+ S„ = 0] fl n [0 <a + Sk<c]

k=1
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represents ruin at time n. If sc(a) denotes the probability of ultimate success,
then

œ
(7.4) 	 sc(a) — 19(U  A a,n = E P( Aa n)

n^l 	 n =1

for 0 <a <c.
Fix c and let a vary. For n > 1 and 0 <a <c, define A a n by (7.2), and

adopt the conventions A a , o = 0 for 0 _< a < c and A, o = f (success is
impossible at time 0 if a <c and certain if a = c), as well as 24 0 , n =A c n = 0
for n > 1 (play never starts if a is 0 or c). By these conventions, s c(0) ='0 and
sc(c) = 1.

Because of independence and the fact that the sequence X2 , X3, ... is a
probabilistic replica of X 1 , X2 , ..., it seems clear that the chance of success
for a gambler with initial fortune a must be the chance of winning the first
wager times the chance of success for an initial fortune a + 1, plus the
chalice of losing the first wager times the chance of success for an initial
fortune a — 1. It thus seems intuitively clear that

(7.5) 	 sc(a)=Psc(a 11) +gsc(a-1), 0 <a <c.

For a rigorous argument, define Aa n just as A 	with Sn = X2

+ • • • +X 1 in place of S„ in (7.2). Now P[ X; = x ; , i < n ] = P[ Xi+ , =x ; ,
n] for each sequence x 1 , ... , x„ of + l's and — l's, and therefore

P[(X 1 ,..., X„) E H]=P[(X2 ,...,X„ +1 ) E H] for HcR „ . Take H to be the
set of x = (x i ,..., x n ) in R „ satisfying x ; = +1, a +x,+ • • +x n = c, and
0<a  +x 1 + • • • +x k < c for k < n. It follows then that

(7.6) P(Aa,n) =P(Aa n ).

Moreover, A a•n = (f)(1= +11nAa + i)U {[ X , _ - 1]n Aa_ 1 „_ 1 ) for n
1 and 0 <a <c. By independence and (7.6), P( A a , n ) = PP ( A 1 ) +

gP(A a _ 1 n-1); adding over n now gives (7.5). Note that this argument
involves the entire infinite sequence X 1 , X2 , ...

It remains to solve the difference equation (7.5) with the side conditions
sc(0) = 0, sc(c) = 1. Let p = q/p be the odds against the gambler. Then [A19]
there exist constants A and B such that, for 0 <a < c, sc(a) = A + Bpa if
p q and sc(a) = A + Ba if p = q. The requirements s c(0) = 0 and s c(c) = 1
determine A and B, which gives the solution:

The probability that the gambler can before ruin attain his goal of c from an
initial capital of a is

Pa — 1
_ l z

(7.7)	 sc(a) =
a

p c 0 < a< c, if p= 	 * 1,

0<a<c, if p = 	=1. c '   
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Example 7.1. The gambler's initial capital is $900 and his goal is $1000. If
p = 2, his chance of success is very good: s 1000(900) = .9. At red-and-black,
p = 3 and hence p = s°̂ ; in this case his chance of success as computed by
(7.7) is only about .00003. 	 •

Example 7.2. It is the gambler's desperate intention to convert his $100
into $20,000. For a game in which p = I (no casino has one), his chance of
success is 100/20,000 = .005; at red-and-black it is minute—about 3 X 10 -9l1

•

In the analysis leading to (7.7), replace (7.2) by (7.3). It follows that (7.7)
with p and q interchanged (p goes to V I )1 ) and a and c - a interchanged
gives the probability rc(a) of ruin for the gambler: rc(a) _ (p -(` - a ) - 1)/
(p - 1) if p $ 1 and rc(a) _ (c - a)/c if p = 1. Hence sc(a) -L rc(a) = 1
holds in all cases: The probability is 0 that play continues forever.

For positive integers a and b, let

0o 	 n —1
Ha,b= U [Sn = b] n n [- a < Sk <b]

n=1 	 k^1

be the event that Sn reaches +b before reaching -a. Its probability is simply
(7.7) with c = a + b: P(Ha , b ) = sa+b(a). Now let

hrb = U Ha.b — U [Sn =b] = 
L
sup Sn > b]

a= 1 	 n^1 	 l n

be the event that Sn ever reaches +b. Since .Ha j, I Hb as a --> co, it follows
that P(Hb ) = lim a sa+b(a); this is 1 if p = 1 or p < 1, and it is 1/p b if p> 1.
Thus

(7.8)	 P f sup Sn >_ b] _
ll n

1	 if pq,

( p/q) b if p <q.

This is the probability that a gambler with unlimited capital can ultimately gain
b units.

Example 7.3. The gambler in Example 7.1 has capital 900 and the goal of
winning b = 100; in Example 7.2 he has capital 100 and b is 19,900. Suppose,
instead, that his capital is infinite. If p = 2, the chance of achieving his goal
increases from .9 to 1 in the first example and from .005 to 1 in the second.
At red-and-black, however, the two probabilities .9 100 and .91990° remain
essentially what they were before (.00003 and 3 X i0 -911). •
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Selection Systems

Players often try to improve their luck by betting only when in the preceding
trials the wins and losses form an auspicious pattern. Perhaps the gambler
bets on the nth trial only when among X,, ... , X„ _, there are many more
+ l's than – l's, the idea being to ride winning streaks (he is "in the vein").
Or he may bet only when there are many more – l's than + l's, the idea
being it is then surely time a +1 came along (the "maturity of the chances").
There is a mathematical theorem that, translated into gaming language, says
all such systems are futile.

It might be argued that it is sensible to bet if among X ...  X„ _ there is an
excess of + l's, on the ground that it is evidence of a high value of p. But it is
assumed throughout that statistical inference is not at issue: p is fixed—at 3^, for
example, in the case of red-and-black—and is known to the gambler, or should be.

The gambler's strategy is described by random variables B,, B 2 , ... taking
the two values 0 and 1: If B„ = 1, the gambler places a bet on the nth trial; if
B,, = 0, he skips that trial. If B,, were (X„ + 1)/2, so that B,, = 1 for X,, = + 1
and B„= 0 for X„ = –1, the gambler would win every time he bet, but of
course such a system requires he be prescient—he must know the outcome
X„ in advance. For this reason the value of B„ is assumed to depend only on
the values of X 1 , ... , X„ _ : there exists some function b„: R „ -1 --- IV such
that

(7.9)	 B„= b„(X,,...,X„
- s)•

(Here B 1 is constant.) Thus the mathematics avoids, as it must, the question
of whether prescience is actually possible.

Define

(7.10)	
.^= o-(X,...,X„),	 n= 1,2,... ;

=(0, SZ}.

The a-field, generated by X 1 ,..., X„ _, corresponds to a knowledge of
the outcomes of the first n – 1 trials. The requirement (7.9) ensures that Bn

is measurable ., (Theorem 5.1) and so depends only on the information
actually available to the gambler just before the nth trial.

For n = 1, 2, ... , let N,, be the time at which the gambler places his nth
bet. This nth bet is placed at time k or earlier if and only if the number
Ek= 1 B1 of bets placed up to and including time k is n or more; in fact,
N„ is the smallest k for which .'_ 1 B1 = n. Thus the event [N,, < k] coin-
cides with [V;(_, B ; >_ n]; by (7.9) this latter event lies in or(B 1 , ... , Bk ) c
cr(X,,..., Xk _ 1 ) = k_,. Therefore,

(7.11) 	[Nn =k] = [N„<k^ – [N„^k -1^E^k-^
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(Even though [Nn = k] lies in k _, and hence in ,F, Nn is, as a function on
1 , generally not a simple random variable, because it has infinite range. This
makes no difference, because expected values of the Ain will play no role;
(7.11) is the essential property.)

To ensure that play continues forever (stopping rules will be considered
later) and that the Nn have finite values with probability 1, make the further
assumption that

(7.12)	 P[Bn = 1 i.o.] = 1.

A sequence {Bn} of random variables assuming the values 0 and 1, having the
form (7.9), and satisfying (7.12) is a selection system.

Let Yn be the gambler's gain on the nth of the trials at which he does bet:
Yn = X  . It is only on the set [ Bn = 1 1.0 ] that all the Nn and hence all the Yn

are well defined. To complete the definition, set Yn = —1, say, on [ Bn = 1
i.o.]`; since this set has probability 0 by (7.12), it really makes no difference
how Y, is defined on it.

Now Yn is a complicated function on SZ because Yn(w) = XN oo(w).
Nonetheless,

03

[w: Yn(w) = 1] = U ([(0: N„(w) = k] n [w: Xk (w) = 1])
k= 1

lies in	 , and so does its complement [w: Yn(w) = —1]. Hence Y,, is a simple
random variable.

Example 7.4. An example will fix these ideas. Suppose that the rule is
always to bet on the first ti ail, to bet on the second trial if and only if
X, = +1, to bet on the third trial if and only if X 1 = X2 , and to bet on all
subsequent trails. Here B 1 = 1, [B 2 = 11= [X 1 = +11, [B3 = 1] = [X 1 =X2],
and B4 = B5 = • • • = 1. The table shows the ways the gambling can start out.
A dot represents a value undetermined by X 1 , X2 , X3 . Ignore the rightmost
column for the moment.

X, X2 X3 B, B 2 B3 N, N2 N3 N4 Y1 Y2 Y3 T

-1 -1 -1 1 0 1 1 3 4 5 -1 -1 1
-1 -1 +1 1 0 1 1 3 4 5 -1 +1 1
-1 +1 -1 1 0 0 1 4 5 6 -1 1
-1 +1 +1 1 0 0 1 4 5 6 -1 1
+1 -1 -1 1 1 0 1 2 4 5 +1 -1 2
+1 -1 +1 1 1 0 1 2 4 5 +1 -1 2
+1 +1 -1 1 1 1 1 2 3 4 +1 +1 -1 3
+1 +1 +1 1 1 1 1 2 3 4 +1 +1 +1
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In the evolution represented by the first line of the table, the second bet is
placed on the third trial (N2 = 3), which results in a loss because Y2 = XN2 =
„y3 = —1. Since X3 = — 1, the gambler was "wrong" to bet. But remember
that before the third trial he does not know X3(co) (much less co itself); he
knows only X 1(0)) and X2(0)). See the discussion in Example 5.5. •

Selection systems achieve nothing because {Y„) has the same structure as

{Xn}:

Theorem 7.1. For every selection system, { }) is independent and P[ Y„
+1]= p, P[Y,1= -1 ]=q.

PROOF. Since random variables with indices that are themselves random
variables are conceptually confusing at first, the w's here will not be sup-
pressed as they have been in previous proofs.

Relabel p and q as p(+ 1) and p(— 1), so that P[co: Xk(c)) = x] = p(x) for
x = +1. If A E ` 1  then A and [w: Xk ((.0) = x] are independent, and so
P(A n [w: Xk (w) = x]) = P(A)p(x). Therefore, by (7.11),

P[co: Y„( w) = x ] P[ co: XN„00( to ) =x ]
00_ E P[co: N,t(0) = k, Xk(c)) =x]

k=1_ E P[ N„( co )=kip(x)
k=1

= p ( x ),

More generally, for any sequence x 1 , . . . , xn of + l's,

P[m:Yi (co) = x i , i__<n] =P[co: XN,( „))(co) = x i , i Sn]

E	 P[co: N1 (c).) = k ; , Xk .(co) =x 1 , i n],
k i <... <k„

where the sum extends over n-tuples of positive integers satisfying k l < • • •
< k n . The event [co: N1 (w) = k 1 , i < n] n [co: Xk(w) = x1, i <ni lies in ` -k„_
(note that there is no condition on Xkpw)), and therefore

P[co:Y(m) = x i , i <n]_ 	 E 	 P([6o:N1 (c ) ) =k 1 , i <n]
k i < 	 <k„

n[W: Xki(A) =x 1 , I <nnp(xn)•
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Summing k„ over k 1 + 1, k„_ 1 + 2, ... brings this last sum to

E	 P[co: Ni (m) = k ; , Xk,(w) =x,, i <njp(xn)
k,<	 <k„_ 1

=P[co: XN,( ,, )(o) =x i , 1 <n,p(xn)

= P[co: Y(w) =x i , i <n] p(x„).

It follows by induction that

P co: Y(m) =x i ,iSn] _ flp(x,)= fP[co: Y(o) =xi],
i_n	 i<n

and so the Y are independent (see (5.9)). 	 •

Gambling Policies

There are schemes that go beyond selection systems and tell the gambler not
only whether to bet but how much. Gamblers frequently contrive or adopt
such schemes in the confident expectation that they can, by pure force of
arithmetic, counter the most adverse workings of chance. If the wager
specified for the nth trial is in the amount Wn and the gambler cannot see
into the future, then Wn must depend only on X 1 , ..., X _ 1 . Assume there-
fore that Wn is a nonnegative function of these random variables: there is an
LE : R n—' R' such that

(7.13)	 Wn=fn(XI,...,Xn_1)> 0 .

Apart from nonnegativity there are at the outset no constraints on the fn ,
although in an actual casino their values must be integral multiples of a basic
unit. Such a sequence {Wn} is a betting system. Since Wiz = 0 corresponds to a
decision not to bet at all, betting systems in effect include selection systems.
In the double-or-nothing system, Wn = 2" - ' if X 1 = • • • = Xn  _ —1 (W1 =
1) and Wn = 0 otherwise.

The amount the gambler wins on the nth play is Wn Xn . If his fortune at
time n is Fn , then

(7.14)	 F= Fn _ 1 +WnXn.

This also holds for n = 1 if F0 is taken as his initial (nonrandom) fortune. It
is convenient to let Wn depend on F0 as well as the past history of play and
hence to generalize (7.13) to

(7.15) 	 Wn =gn(F0 , X... Xn_1) > 0



SECTION 7. GAMBLING SYSTEMS
	

99

for a function g,,: R" -i M. In expanded notation, Wn(w) = gn(Fo , X1(w),
,..,X,_ ,(w)). The symbol Wn does not show the dependence on w or on Fo ,
either. For each fixed initial fortune F0 , Wn is a simple random variable; by
(7.15) it is measurable ,9,-;__. 1 .  Similarly, F,, is a function of F0 as well as of
X,(w),..., Xn(w): Fn = F,(F0 , (.0).

If F0 = 0 and gn = 1, the F,, reduce to the partial sums (7.1).
Since • _ 1 and or(X,,) are independent, and since Wn is measurable
_ 1 (for each fixed F0 ), Wn and X,, are independent. Therefore, E[Wn Xn ]

= E[Wn ] • E[X,]. Now E[X,] = p — q < O in the subfair case (p 5 f), with
equality in the fair case (p = 2). Since E[W,,,] > 0, (7.14) implies that E[F,] <
E[ F„ _ 1 ]. Therefore,

(7.16) 	 FQ> E[F,]> • - ? E[F„]? ...

in the subfair case, and

(7.17) 	 F0,=E[F1]= •• - =E[Fn ] = •••

in the fair case. (If p <q and P[W„ > 01> 0, there is strict inequality in
(7.16).) Thus no betting system can convert a subfair game into a profitable
enterprise.

Suppose that in addition to a betting system, the gambler adopts some
policy for quitting. Perhaps he stops when his fortune reaches a set target, or
his funds are exhausted, or the auguries are in some way dissuasive. The
decision to stop must depend only on the initial fortune and the history of
play up to the present.

Let T(F0 , w) be a nonnegative integer for each w in CI and each Fo >— O. If
T = n, the gambler plays on the nth trial (betting Wn ) and then stops; if T = 0,
he does not begin gambling in the first place. The event [w: T(F o , w) = n]
represents the decision to stop just after the nth trial, and so, whatever value
F0 may have, it must depend only on X 1 , ... , X,,. Therefore, assume that

(7.18) 	[(0:1-(F0,6)) =n] EY,:, 	 n = 0,1,2,...

A T satisfying this requirement is a stopping time. (In general it has infinite
range and hence is not a simple random variable; as expected values of T

play no role here, this does not matter.) It is technically necessary to let
T(Fo ,w) be undefined or infinite on an cu-set of probability O. This has no
effect on the requirement (7.18), which must hold for each finite n. But it is
assumed that T is finite with probability 1: play is certain to terminate.

A betting system together with a stopping time is a gambling policy. Let Tr
denote such a policy.

Example 7.5. Suppose that the betting system is given by Wn = Bn , with
B,, as in Example 7.4. Suppose that the stopping rule is to quit after the first
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loss of a wager. Thera [T = n] = U k-1[Nk = n, Y1 _ • ' • = Yk_ 1 = +11 Yk =

- 1]. For j< k<n,[Nk =n,Y=x]= Um - 1[Nk=n, Nj =m, Xm =x] liesin
.9 by (7.11); hence T is a stopping time. The values of T are shown in the
rightmost column of the table,	 •

The sequence of fortunes is governed by (7.14) until play terminates, and
then the fortune remains for all future time fixed at FT (with value FT(F,,,)(W )).
Therefore, the gambler's fortune at time n is

(7.19) F
* r=^ Fn if T>— n,

" 	 ` FT if T <— n.

Note that the case T = n is covered by both clauses here If n — 1 <n —< T,

then F*= Fn = Fn _ 1 +Wn Xn =F* 1 + l4ÇXn; if T <n - 1<n, then F,*_
F = F*_ 1 . Therefore, if 14/:  =1rT , n1 n, them

(7.20) 	 Fn* = F,* 1 + IE., n1 141„ Xn =F* 1 +W*Xn .

But this is the equation for a new betting system in which the wager placed
at time n is W*. If T >— n (play has not already terminated), Wn*  is the old
amount Wn ; if T < n (play has terminated), Wn* is O. Now by (7.18), [T >— n]=
[T <n]` lies in _ 1. Thus ii , n] is measurable _ 1 , so that W * as well as
Wn is measurable 5;;_ 1 , and {W*) represents a legitimate betting system.
Therefore, (7.16) and (7.17) apply to the new system:

(7.21)	 F0= FZ >E[F* ]>— ••• >E[F,*]> •• -

if p < f, and

(7.22)	 F=F6K — E[F*]= ••• =E[F*]= ...

if p = Z .

The gambler's ultimate fortune is FT . Now limn F* = F with probability 1,
since in fact F,* = FT for n> T. If

(7.23)	 lim E[F,*] = E[FT ],
n

then (7.21) and (7.22), respectively, imply that E[FT I < F0 and E[FT ] =F0 .
According to Theorem 5.4, (7.23) does hold if the F* are uniformly bounded.

Call the policy bounded by M (M nonrandom) if

(7.24)	 0 < Fn < M,	 n = 0, 1,2,... .

If F* is not bounded above, the gambler's adversary must have infinite
capital. A negative F* represents a debt, and if F,* is not bounded below,
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the gambler must have a patron of infinite wealth and generosity from whom
to borrow and so must in effect have infinite capital. In case F* is bounded
below, 0 is the convenient lower bound—the gambler is assumed to have in
hand all the capital to which he has access. In any real case, (7.24) holds and
(7.23) follows. (There is a technical point that arises because the general
theory of integration has been postponed: FT must be assumed to have finite
range so that it will be a simple random variable and hence have an expected
value in the sense of Section 5. t ) The argument has led to this result:

Theorem 7.2. For every policy, (7.21) holds if p < i and (7.22) holds if p

I . If the policy is bounded (and FT has finite range), then E[FT ] < P o for p <_ -1-
and E[ FT ] = Fo for p — 2 .

Example 7.6.  The gambler has initial capital a and plays at unit stakes
until his capital increases to c (0 _. a . c) or he is ruined. Here F0 = a and
W„ = 1, and so Fn = a + S„. The policy is bounded by c, and FT is c or 0
according as the gambler succeeds or fails. If p = z and if s is the probability
of success, then a = Fo = E[ F, ] = sc. Thus s = a/c. This gives a new deriva-
tion of (7.7) for the case p = z. The argument assumes however that play is
certain to terminate. If p <1, Theorem 7.2 only gives s __ a/c, which is
weaker than (7.7). •

Example 7.7. Suppose as before that F0 = a and W„ = 1, so that F„ = a +
S„, but suppose the stopping rule is to quit as soon as F„ reaches a + b. Here
F* is bounded above by a + b but is not bounded below. If p = z, the
gambler is by (7.8) certain to achieve his goal, so that FT = a + b. In this case
Fo = a < a + b = E[FT ]. This illustrates the effect of infinite capital. It also
illustrates the need for uniform boundedness in Theorem 5.4 (compare
Example 5.7). •

For some other systems (gamblers call them "martingales"), see the
problems. For most such systems there is a large chance of a small gain and a
small chance of a large loss.

Bold Play*

The formula (7.7) gives the chance that a gambler betting unit stakes can
increase his fortune from a to c before being ruined. Suppose that a and c
happen to be even and that at each trial the wager is two units instead of

TSee Problem 7.11.
*This topic may be omitted.
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one. Since this has the effect of halving a and c, the chance of success is now

P 

	

_a/2_1 	 pa _i.  p` / 2+ 1
	P ` /2 — 1 	p` - 1 pa / 2 +1 '

9 =p#1.
P

If p > 1 (p < Z), the second factor on the right exceeds 1: Doubling the
stakes increases the probability of success in the unfavorable case p > 1. In
the case p = 1, the probability remains the same.

There is a sense in which large stakes are optimal. It will be convenient to
rescale so that the initial fortune satisfies 0 < F0 < 1 and the goal is 1. The
policy of bold play is this: At each stage the gambler bets his entire fortune,
unless a win would carry him past his goal of 1, in which case he bets just
enough that a win would exactly achieve that goal:

(7.25)
Fn _ 1

W^ _
1 — Fn -• 1

if0 _<Fi_1 < i ,

if f < Fn_1 <1-

(It is convenient to allow even irrational fortunes.) As for stopping, the policy
is to quit as soon as Fn reaches 0 or 1.

Suppose that play has not terminated by time k — 1; under the policy
(7.25), if play is not to terminate at time k, then Xk must be +1 or — 1
according as Fk_ 1 —< z or Fk _ 1 : z, and the conditional probability of this is
at most m — max{ p, q). It follows by induction that the probability that bold
play continues beyond time n is at most mn, and so play is certain to
terminate (T is finite with probability 1).

It will be shown that in the subfair case, bold play maximizes the probabil-
ity of successfully reaching the goal of 1. This is the Dubins—Savage theorem.
It will further be shown that there are other policies that are also optimal in
this sense, and this maximum probability will be calculated. Bold play can be
substantially better than betting at constant stakes. This contrasts with
Theorems 7.1 and 7.2 concerning respects in which gambling systems are
worthless.

From now on, consider only policies 7r that are bounded by 1 (see (7.24)).
Suppose further that play stops as soon as Fn reaches 0 or 1 and that this is
certain eventually to happen. Since FT assumes the values 0 and 1, and since
[ FT = id—  Un- 0 [T = n ] n [ F, = x] for x = 0 and x = 1, FT is a simple random
variable. Bold play is one such policy Ir.

The policy 7r leads to success if FT — 1. Let Q,,.(x) be the probability of
this for an initial fortune F0 = x:

(7.26) 	Q(x) = P[ FT = 1] . for F0 —x.



SECTION 7. GAMBLING SYSTEMS
	

103

Since F„ is a function ,„(F0 , X 1(w), ... , X„(co)) = „(F0 , c)), (7.26) in ex-
panded notation is Q,„(x) = P[co: 'T(x w ^(x , co) = 1]. As Tr specifies that play
stops at the boundaries 0 and 1,

(7.27)
Qn(0) — 0, Q,7(1) = 1,
0—< Q„(x)<1,	 0 <_x—<1.

Let Q be the Q, for bold play. (The notation does not show the dependence
of Q and Q, , on p, which is fixed.)

Theorem 7.3. In the subfair case, Q„(x) :<Q(x)  for all n- and all x.

PROOF. Under the assumption p < q, it will be shown later that

(7.28) Q(x)>_pQ(x+t)+qQ(x—t), 	 0<_ x--t —<<x<x+t<1.

This can be interpreted as saying that the chance of success under bold play
starting at x is at least as great as the chance of success if the amount t is
wagered and bold play then pursued from x + t in case of a win and from
x — t in case of a loss. Under the assumption of (7.28), optimality can be
proved as follows.

Consider a policy 	 and let F„ and F,* be the simple random variables
defined by (7.14) and (7.19) for this policy. Now Q(x) is a real function, and
so Q(F,*) is also a simple random variable; it can be interpreted as the
conditional chance of success if nr is replaced by bold play after time n. By
(7.20), F* = x + tX„ if F,* 1 — x and W„* = t. Therefore,

r
Q( Fn* )— 	

rL Fn-^ = x• w^ = f]Ql x+ tX„),
x, t

where x and t vary over the (finite) ranges of F„*_ 1 and W *, respectively.
For each x and t, the indicator above is measurable . 	 and Q(x + tX„)

is measurable cr(X„); since the X„ are independent, (5.25) and (5.17) give

(7.29) 	E[Q(F,,*)] _ EP[F* 1 =x, W*=t1E[Q(x+tX„)]
„,t

By (7.28), E[Q(x + tX„ )] < Q(x) if 0 . x — t < x < x + t < 1. As it is assumed
of ar that F,* lies in [0,1] (that is, W* < min{F,* 1 ,1 — F,* 1 )), the probability
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in (7.29) is 0 unless x and t satisfy this constraint. Therefore,

E[Q(F*)] < EP[F,* 1 =x, Wn* = t]Q(x)

PROBABILITY

x,l

= EP[Fn i = x]Q(x) = E[Q( F* 1)]•

x

This is true for each n, and so E[Q(F,* )] . E[Q(F6 )] = Q(F0 ). Since Q(F,* )
= Q(FT ) for n -r, Theorem 5.4 implies that E[ Q(FT )] < Q(F0 ). Since x = 1
implies that Q(x) = 1, P[ FT = 1] —< E[Q(FT )] < Q(F0 ). Thus Q,T(F0 ) _< Q(F0 )
for the policy 7, whatever F0 may be.

It remains to analyze Q and prove (7.28). Everything hinges on the
functional equation

(7.30) Q(x) — pQ(2x),
	 0 <x < 2,

 p +gQ(2x —1), z--<x <1.

For x = 0 and x = 1 this is obvious because Q(0) = 0 and Q(1) = 1. The idea
is this: Suppose that the initial fortune is x. If x < 2, the first stake under
bold play is x; if the gambler is to succeed in reaching 1, he must win the first
trial (probability p) and then from his new fortune x +x = 2x go on to
succeed (probability Q(2x)); this makes the first half of (7.30) plausible. If
x Z, the first stake is 1 —x; the gambler can succeed either by winning the
first trial (probability p) or by losing the first trial (probability q) and then
going on from his new fortune x — (1 — x) = 2x -- 1 to succeed (probability
Q(2x — 1)); this makes the second half of (7.30) plausible.

It is also intuitively clear that Q(x) must be an increasing function of x
(0 . x < 1): the more money the gambler starts with, the better off he is.
Finally, it is intuitively clear that Q(x) ought to be a continuous function of
the initial fortune x.

A foi mal proof of (7.30) can be constructed as for the difference equation (7.5). If
J3(x) is x for x < f and 1 — x for x > 2, then under bold play Wn = [3(Fn _ 1 ). Starting
from f0(x) =x, recursively define

fn (x; x1,..., xn) =fn-1(x; x1,..., xn-1) +p(fn-ilx; x1,..., xn_1))xn•

Then F„= fn(F0 ; X 1 ,..., X„). Now define

gn(x;x 1 ,...,x0 = max fk(x;xl,...,xk).
0<k<n

If F0 =x, then Tn(x) _ [ gn(x; X 1 ,..., Xn ) = 1] is the event that bold play will by time
n successfully increase the gambler's fortune to 1. From the recursive definition it
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follows by induction on n that for n > 1, fn(x; x 1 , ... , x„)= fn _ 1(x + 13(x)x 1 ;
x 2 , . .. , x" ) and hence that gn(x;x 1 ,... , x n )= max{x, g n _ 1(x+ f3(x)x 1 ,x 2 , ... ,x„)).
Since x 1 implies g n _ 1(x+f3(x)x 1 ;x 2 ,...,x,,) > x+13(x)x 1 = 1, Tn(x)=[g- 1(x+
f3(x)X 1 ; X2 , ... , Xn ) = 1], and since the X; are independent and identically
distributed, P(T„(x)) = P([X 1 = + 1] n T,,(x)) + P([X 1 = — 1] n Tn(x)) _
pP[gn-1(x + f3(x); X 2 ,..., Xn) = 1 ] +gP[én_1(x — f3(x); X2,... , Xn) =pP(Tn- 1(x +
13(x))) + qP(T" 1(x — /3(x))). Letting n —' co now gives Q(x) = pQ(x + (3(x))
+qQ(x —13(x)), which reduces to (7.30) because Q(0) = 0 and Q(1) = 1.

Suppose that y =f„ _ 1(x; x 1 ,	 , x„ _ 1 ) is nondecreasing in x. If x„ = + 1, then
f„(x; x 1 , . , x„) is 2y if 0 < y < z and 1 if 	 1; if x„ _ —1, then f„(x; x 1 , ... , x„)
is 0 if 0 < y < 1 and 2y -- 1 if  _< y 1. In any case, f„(x; x 1 , ... , x„) is also
nondecreasing in x, and by induction this is true for every n. It follows that the same
is true of g„(x; x 1 ,... , x„), of P(T„(x)), and of Q(x). Thus Q(x) is nondecreasing.

Since Q(1) = 1, (7.30) implies that Q(2) = pQ(1) = p, Q(â) = pQ(i) = p 2, Q(4)
p + qQ(2) = p + pq More generally, if p o =p and p 1 = q, then

k 	
r 	 < k	(7 .3 1) Q( -	<	 n>— 12n 1 — E {Pr, ' • ' Pu„: ^ 2; 	7 r: 	 , 	 0<k2",

i =1

the sum extending over n-tuples (u 1 , ... , u n ) of 0's and l's satisfying the condition
indicated. Indeed, it is easy to see that (7.31) is the same thing as

(7.32) 	 Q(.u1 ... u n -i- 2 —" ) — Q(• 14 1. • u n ) -- pu pu  • •  puI 	 2 ^ 	 x

for each dyadic rational .u 1 ... u,, of rank n. If .u 1 ... u „ + 	 < ,-̀- , then u 1 = 0 and by
(7.30) the difference in (7.32) is p o[Q(.u 2 ... u„ + 2 - " + 1 ) — Q(.u 2... u n )]. But (7.32)
follows inductively from this and a similar relation for the case .u 1 ... u,, > i•

Therefore Q(k2 - ") — Q((k — 1)2') is hounded by max(p", q"), and so by mono-
tonicity Q is continuous. Since (7.32) is positive, it follows that Q is strictly increasing
over [0, 1].

Thus Q is continuous and increasing and satisfies (7.30). The inequality
(7.28) is still to be proved. It is equivalent to the assertion that

0 (r, ․ )=Q(a) — pQ(s) — gQ(r) > 0

if 0 < r < s < 1, where a stands for the average: a = 2(r + s). Since Q is
continuous, it suffices to prove the inequality for r and s of the form k/2",
and this will be done by induction on n. Checking all cases disposes of n _ 0.
Assume that the inequality holds for a particular n, and that r and s have
the form k/2" ± '. There are four cases to consider.

CASE 1. s < z. By the first part of (7.30), 0(r, s) = p0(2r, 2s). Since 2r and
2s have the form k/2", the induction hypothesis implies that i(2r,2s) > O.
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CASE 2. z _< r. By the second part of (7.30),

O(r, ․ )=ga(2r-1,2s- 1)> 0.

CASE 3. r<a<Z<s. By(7.30),

a(r, s) = pQ(2a) — p[ p + gQ(2s — 1)] — q[ pQ( 2 r)] .

From z <s —< r + s = 2a <— 1, follows Q(2a) = p + qQ(4 a — 1); and from
0 _< 2a — z _< z , follows Q(2a — Z) = pQ(4 a — 1). Therefore, pQ(2a) = p 2 +
qQ(2a — IX and it follows that

0(r, ․ ) =q[Q(2a — z) — pQ( 2 s — 1) —pQ(2r)1.

Since p —<q, the right side does not increase if either of the two p's is
changed to q. Hence

0( r, s) >— g max[0(2r, 2s — 1), 0(2s — 1,2r)].

The induction hypothesis applies to 2r < 2s — 1 or to 2s — 1 —< 2r, as the case
may be, so one of the two O's on the right is nonnegative.

CASE 4. r —< z < a _< s. By (7.30),

o( r, s) = pq +gQ( 2 a — 1) — pgQ( 2 s — 1) — pgQ( 2 r).

From 0 —< 2a — 1 = r + s — 1 _< -21 ,  follows Q(2a — 1) = pQ(4 a — 2); and fromz < 2a — z = r + s — z < 1, follows Q(2a — z) = p + qQ(4 a — 2). Therefore,
qQ(2a — 1)=pQ(2a — Z) — p 2 , and it follows that

0 (r, s) =p[q — p + Q(2 a	 — qQ(2s — 1) — qQ(2r)].

If 2s — 1 < 2r, the right side here is

p[(q —p)(1 — Q(2r)) + O(2s — 1,2r)] >_ O.

If 2r —< 2s — 1, the right side is

p[(q — p)(1 — Q(2s — 1)) + A(2r,2s — 1)] > 0.

This completes the proof of (7.28) and hence of Theorem 7.3. 	 •

PROBABILITY
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The equation (7.31) has an interesting interpretation. Let Z I , Z2, ... be
independent random variables satisfying P[Z„ = 0] = po = p and P[Z" = 1] =
p 1 = q. From P[Z„ = 1 i.o.] = 1 and E f , "Z 1 2 -` < 2' it follows that
p[E;=1 Z,2 < k2 - "] <_ P[E7=1 Z; 2 - ` < k2 - "] < P[E; I Z f2 < k 2 - "]. Since
by (7.31) the middle term is Q(k2 - "),

DO

(7.33) Q( x) = P ^ Z; 2 - ` <x
=i

holds for dyadic rational x and hence by continuity holds for all x. In Section
31, Q will reappear as a continuous, strictly increasing function singular in
the sense of Lebesgue. On p. 408 is a graph for the case p o = .25.

Note that Q(x) = x in the fair case p = Z. In fact, for a bounded policy
Theorem 7.2 implies that E[Fr ] = F in the fair case, and if the policy is to
stop as soon as the fortune reaches 0 or 1, then the chance of successfully
reaching 1 is P[FT = 1] = E[FT ] = F. Thus in the fair case with initial fortune
x, the chance of success is x for every policy that stops at the boundaries,
and x is an upper bound even if stopping earlier is allowed.

Example 7.8. The gambler of Example 7.1 has capital $900 and goal
$1000. For a fair game (p = Z) his chance of success is .9 whether he bets
unit stakes or adopts bold play. At red-and-black (p = 3x ), his chance of
success with unit stakes is .00003; an approximate calculation based on (7.31)
shows that under bold play his chance Q(.9) of success increases to about .88,
which compares well with the fair case_ •

Example 7.9. In Example 7.2 the capital is $100 and the goal $20,000. At
unit stakes the chance of successes is .005 for p = i and 3 x 10 911 for
p = 18  Another approximate calculation shows that bold play at red-and-black
gives the gambler probability about .003 of success, which again compares
well with the fair case.

This example illustrates the point of Theorem 7.3. The gambler enters the
casino knowing that he must by dawn convert his $100 into $20,000 or face
certain death at the hands of criminals to whom he owes that amount. Only
red-and-black is available to him. The question is not whether to gamble—he
must gamble. The question is how to gamble so as to maximize the chance of
survival, and bold play is the answer. •

There are policies other than the bold one that achieve the maximum
success probability Q(x). Suppose that as long as the gambler's fortune x is
less than z he bets x for x _< â and Z — x for â < x < Z. This is, in effect, the
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bold-play strategy scaled down to the interval [0, 2], and so the chance he
ever reaches f is Q(2x) for an initial fortune of x. Suppose further that if he
does reach the goal of z, or if he starts with fortune at least z in the first
place, then he continues, but with ordinary bold play. For an initial fortune
x >— , the overall chance of success is of course Q(x), and for an initial
fortune x < z, it is Q(2x)Q(f) = pQ(2x) = Q(x). The success probability is
indeed Q(x) as for bold play, although the policy is different. With this
example in mind, one can generate a whole series of distinct optimal policies.

Timid Play'

The optimality of bold play seems reasonable when one considers the effect
of its opposite, timid play. Let the c-timid policy be to bet W„ =
min { c, F„ _ 1 ,1 —F1 7 _ 1 } and stop when F„ reaches 0 or I. Suppose that p < q,
fix an initial fortune x = F0 with 0 <x < 1, and consider what happens as
c —* O. By the strong law of large numbers, lim n n -1 Sn = E[ X I ] = p —q<  0.
There is therefore probability 1 that sup k Sk < co and lim n Sn = —00. Given
?I > 0, choose c so that P[sup k(x + cSk ) < 1] > 1 — q. Since P(U n =1 [x + ESn

< 0]) = 1, with probability at least 1 — 71 there exists an n such that x + ES n

< 0 and max k < n(x + cSk ) < 1. But under the c-timid policy the gambler is in
this circumstance ruined. If Q E(x) is the probability of success under the
E-timid policy, then lim e _, o QE (x) = 0 for 0 < x < 1. The law of large numbers
carries the timid player to his ruin.t

PROBLEMS

7.1. A gambler with initial capital a plays until his fortune increases b units or he is
ruined. Suppose that p> 1. The chance of success is multiplied by 1 + 0
if his initial capital is infinite instead of a. Show that 0 < B < (p° — 1) -I <
(a(p — 1))- I ; relate to Example 7.3.

7.2 As shown on p. 94, there is probability 1 that the gambler either achieves his
goal of c or is ruined. For p o q, deduce this directly from the strong law of
large numbers. Deduce it (for all p) via the Borel-Cantelli lemma from the fact
that if play never terminates, there can never occur c successive + l's.

7.3. 6 12 T If V„ is the set of n-long sequences of ± l's, the function b„ in (7.9)
maps 1/,_ I into (0, 1). A selection system is a sequence of such maps. Although
there are uncountably many selection systems, how many have an  effective

`This topic may be omitted
For each E, however, there exist optimal policies under which the bet never exceeds E; see

DUBINS & SAVAGE.
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description in the sense of an algorithm or finite set of instructions by means of
which a deputy (perhaps a machine) could operate the system for the gambler?
An analysis of the question is a matter for mathematical logic, but one can see
that there can be only countably many algorithms or finite sets of rules
expressed in finite alphabets.

Let YZ( Œ ), Yr ), ... be the random variables of Theorem 7.1 for a particular
system o- , and let C be the w-set where every k-tuple of +1's (k arbitrary)
occurs in Yr )(w),Yr(w),... with the right asymptotic relative frequency (in
the sense of Problem 6.12). Let C be the intersection of Cv over all effective
selection systems o-. Show that C lies in Y (the cr-field in the probability space
(1k, , P) on which the X„ are defined) and that P(C) = 1. A sequence
(X 1(w),X2(w),...) for w in C is called a collective: a subsequence chosen by any
of the effective rules cr contains all k-tuples in the correct proportions

7.4. Let D„ be 1 or 0 according as X2n _ 1 # X2„ or not, and let Mk be the time of
the k th 1—the smallest n such that E„_ 1 D; = k. Let Lk = X2M . In other
words, look at successive nonoverlapping pairs (X2 ,7 _ 1 , X2„), discard accordant
(X2n_1 = X_ 2n ) pairs, and keep the second element of discordant (X 2n _ i #X2n )
pairs. Show that this process simulates a fair coin: Z 1 , Z 2 , ... are independent
and identically distributed and P[Zk = + 1] = P[Zk = -1] = z, whatever p may
be. Follow the proof of Theorem 7.1.

7.5. Suppose that a gambler with initial fortune 1 stakes a proportion 0 (0 < B < 1)
of his current fortune: F0 - 1 and W„ = 9F 1 . Show that F„---11;,7 _ 1 0++ 9Xk )
and hence that

log Fn= 2 L „ log 1 + 8 + log(1 - 0 2 )1.

Show that F„ -' 0 with probability 1 in the subfair case.

7.6. In "doubling,” W1 = 1, W„ = 2W„_ 1 , and the rule is to stop after the first win.
For any positive p, play is certain to terminate. Here FT _ F0 + 1, but of course
infinite capital is required. if F0 = 2 k - 1 and Wn cannot exceed Fn _ 1 , the
probability of FT = F0 + 1 in the fair case is 1 - 2 -k . Prove this via Theorem 7.2
and also directly.

7.7. In "progress and pinch,” the wager, initially some integer, is increased by 1
after a loss and decreased by 1 after a win, the stopping rule being to quit if the
next bet is O. Show that play is certain to terminate if and only if p >_ Z. Show
that FT = Fo + W12 + z(T - 1). Infinite capital is required.

7.8. Here is a common martingale. Just before the nth spin of the wheel, the
gambler has before him a pattern x i , ... , x k of positive numbers (k varies with
n). He bets x 1 +x k , or x i in case k = 1. If he loses, at the next stage he uses the
pattern x 1 , ... , x k , x i +xk (x 1 , x 1 in case k _ 1). If he wins, at the next stage he
uses the pattern x 2 , ... , x k _ I , unless k is 1 or 2, in which case he quits. Show
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that play is certain to terminate if p > 3 and that the ultimate gain is the sum of
the numbers in the initial pattern. Infinite capital is again required.

7.9. Suppose that Wk = 1, so that Fk = F0 + Sk. Suppose that p >_ q and T is a
stopping time such that 1 <T <n with probability 1. Show that E[FT ] < E[F"],
with equality in case p = q. Interpret this result in terms of a stock option that
must be exercised by time n, where F0 + Sk represents the price of the stock at
time k.

7.10. For a given policy, let A* be the fortune of the gambler's adversary at time n.
Consider these conditions on the policy. (i) W* <F,* 1 ; (ii) W* _<An_ i ; (iii)
F,* +An is constant. Interpret each condition, and show that together they
imply that the policy is bounded in the sense of (7.24).

7.11. Show that FT has infinite range if F0 = 1, W„ = 2 - ", and T is the smallest n for
which X" = +1.

7.12. Let u be a real function on [0,1], u(x ) representing the utility of the fortune x.
Consider policies bounded by 1; see (7.24). Let Q,"(F0 ) = E[u(FT )]; this repre-
sents the expected utility under the policy T- of an initial fortune F 0 . Suppose of
a policy 7r 0 that

(7.34)

and that

(7.35)

u(x) <Q„0(x) ,	 0 <x < 1,

Q„.(x) ? PQrro(.ïC + t ) + gQ7f0( x — t) ,

0 <x— t <x<x +t < 1.

Show that Q, .(x) S Q." (x) for all x and all policies Tr. Such a Tro is optimal.
Theorem 7.3 is the special case of this result for p < Z, bold play in the role

of 7r 0 , and u(x) = 1 or u(x)— 0 according as x = 1 or x < 1.
The condition (7.34) says that gambling with policy 7r 0 is at least as good as

not gambling at all; (7.35) says that, although the prospects even under 77- 0

become on the average less sanguine as time passes, it is better to use ITo now
than to use some other policy for one step and then change to 7r 0 .

7.13. The functional equation (7.30) and the assumption that Q is bounded suffice to
determine Q completely. First, Q(0) and Q(1) must be 0 and 1, respectively, and
so (7.31) holds. Let To x = Ix and Ti x = Zx + f; let fo x= px and fi x =p + qx.
Then Q(Tui • • • Tux) = fu i • • • fu Q(x). If the binary expansions of x and y
both begin with the digits  •u 1,.. they have the form x = Tui ... Tu x' and
y = Tui • • • Tug y'. If K bounds Q and if m = max{p, q), it follows that
IQ(x)—Q(y)I < Km'. Therefore, Q is continuous and satisfies (7.31) and (7.33).
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SECTION 8. MARKOV CHAINS

As Markov chains illustrate in a clear and striking way the connection
between probability and measure, their basic properties are developed here
in a measure-theoretic setting.

Definitions

Let S be a finite or countable set. Suppose that to each pair i and j in S
there is assigned a nonnegative number p, and that these numbers satisfy
the constraint

(8.1) Pi, =1,
j eS

i E S.

Let Xo , X I , X2 , ... he a sequence of random variables whose ranges are
contained in S. The sequence is a Markov chain or Markov process if

(8.2) 	 P[Xn+, =jIXQ =i o ,..., Xn =i„]

=P[Xn+1 -jl Xn —l n] = Pii

for every n and every sequence i0 , ... , in in S for which P[ X0 = i 0 , ... , X„ _
in l > O. The set S is the state space or phase space of the process, and the A i

are the transition probabilities. Part of the defining condition (8.2) is that the
transition probability

(8.3) P[xn+ =j1Xn =i] =pr^

does not vary with n.t
The elements of S are thought of as the possible states of a system, Xn

representing the state at time n. The sequence or process X0 , X 1 , X2 , ... then
represents the history of the system, which evolves in accordance with the
probability law (8.2). The conditional distribution of the next state Xn+ 1

given the present state Xn must not further depend on the past X0 ,... , XX _ 1 .
This is what (8.2) requires, and it leads to a copious theory.

The initial probabilities are

(8.4) 	 a;=P[X0 =i].

The a i are nonnegative and add to 1, but the definition of Markov chain
places no further restrictions on them.

Sometimes in the definition of the Markov chain P[Xn+ = j IX„ = i] is allowed to depend on n.
A chain satisfying (8.3) is then said to have stationary transition probabilities, a phrase that will be
omitted here because (8 3) will always be assumed.



112 	 PROBABILITY

The following examples illustrate some of the possibilities. In each one,
the state space S and the transition probabilities pi, are described, but the
underlying probability space (f', Y, P) and the Xn are left unspecified for
now: see Theorem 81. 1

Example 8.1. The Bernoulli-Laplace model of diffusion. Imagine r black
balls and r white balls distributed between two boxes, with the constraint
that each box contains r balls. The state of the system is specified by the
number of white balls in the first box, so that the state space is S = (0, 1, ... , r).
The transition mechanism is this: at each stage one ball is chosen at random
from each box and the two are interchanged. If the present state is i, the
chance of a transition to i -1 is the chance i/r of drawing one of the i white
balls from the first box times the chance i/r of drawing one of the i black
balls from the second box. Together with similar arguments for the other
possibilities, this shows that the transition probabilities are

_ i 	 2 	 r - 1
( r) ^ 	 ii +1 = ( 	 r 	)

2 i(r -i)
pi,i-I ^` \ 	 / 	 1

7 pii = 7 	2	 /

the others being 0. This is the probablistic analogue of the model for the flow
of two liquids between two containers. 	 •

The pii form the transition matrix P = [ pi;) of the process. A stochastic
matrix is one whose entries are nonnegative and satisfy (8.1); the transition
matrix of course has this property.

Example 8.2. Random walk with absorbing barriers. Suppose that S =
{0, 1, . . , r) and

^ 0 0 0 ... 0 G 0 0
g 0 p 0 ... 0 0 0 0
0 g 0 p ... 0 0 0 0

P 	
0 0 0 0 ... g 0 p 0
0 0 0 0 ..• 0 g 0 p
0 0 0 0 0 0 0 1

That is, pi, i + 1 = p and pi . i _ I = q = 1 - p for 0 < i < r and P oo = prr = 1. The
chain represents a particle in random walk. The particle moves one unit to
the right or left, the respective probabilities being p and q, except that each
of 0 and r is an absorbing state—once the particle enters, it cannot leave.
The state can also be viewed as a gambler's fortune; absorption in 0

tFor an excellent collection of examples from physics and biology, see FELLER, Volume 1,
Chapter XV.
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represents ruin for the gambler, absorption in r ruin for his adversary (see
Section 7). The gambler's initial fortune is usually regarded as nonrandom, so
that (see (8.4)) a ; = 1 for some i. •

Example 8.3. Unrestricted random walk. Let S consist of all the integers
i = 0, ± 1, ± 2, ... , and take p  , = p and p, ;  = q —1—p.  This chain rep-
resents a random walk without barriers, the particle being free to move
anywhere on the integer lattice. The walk is symmetric if p = q. •

The state space may, as in the preceding example, be countably infinite. If
so, the Markov chain consists of functions X„ on a probability space
(0,„F, P), but these will have infinite range and hence will not be random
variables in the sense of the preceding sections. This will cause no difficulty,
however, because expected values of the X,, will not be considered. All that
is required is that for each i E S the set [w: X„(w) = i J lie in 5 and hence
have a probability.

Example 8.4. Symmetric random walk in space. Let S consist of the
integer lattice points in k-dimensional Euclidean space R k ; x = (x,, ... , x k )
lies in S if the coordinates are all integers. Now x has 2k neighbors, points
of the form y = (x 1 ,..., x, ± 1, ... , x k ); for each such y let p ry, = (2k) - '.
The chain represents a particle moving randomly in space; for k —1 it
reduces to Example 8.3 with p = q = f. The cases k < 2 and k > 3 exhibit an
interesting difference. If k < 2, the particle is certain to return to its initial
position, but this is not so if k >_ 3; see Example 8.6. •

Since the state space in this example is not a subset of the line, the
X0 , X,, ... do not assume real values. This is immaterial because expected
values of the X„ play no role. All that is necessary is that X„ be a mapping
from Si into S (finite or countable) such that [a): X„ (w) = it E for i E S.
There will be expected values E[ f(X,,)] for real functions f on S with finite
range, but then f(X„(w)) is a simple random variable as defined before.

Example 8.5. A selection problem. A princess must chose from among r suitors.
She is definite in her preferences and if presented with all r at once could choose her
favorite and could even rank the whole group. They are ushered into her presence
one by one in random order, however, and she must at each stage either stop and
accept the suitor or else reject him and proceed in the hope that a better one will
come along. What strategy will maximize her chance of stopping with the best suitor
of all?

Shorn of some details, the analysis is this. Let S,, 5 2 ,..., Sr be the suitors in order
of presentation; this sequence is a random permutation of the set of suitors. Let
X, � 1 and let X2 , X3 , ... be the successive positions of suitors who dominate (are
preferable to) all their predecessors. Thus X2 = 4 and X3 = 6 means that S, domi-
nates S2 and S3 but S4 dominates S,, S 2 , S3 , and that S4 dominates S5 but S6

dominates S,, ... , S5. There can be at most r of these dominant suitors; if there are
exactly m, Xm + ^ = Xm + 2 = • ' • = r + 1 by convention.
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As the suitors arrive in random order, the chance that Si ranks highest among
S,, ... , Si is (i — 1)!/i!=1/i.  The chance that Si ranks highest among S , , ... , Si and
Si ranks next is (j — 2)! /j! = 1 /j(j — 1). This leads to a chain with transition probabili-
ties'

(8.5)	 P[X,l+ ^ =j^X =i] = j(j 1) 	1 <<i < j <r.

If X„ = i, then X,, 1 = r +1 means that Si dominates 5;+  . , Sr as well as S,,. .,S r ,
and the conditional probability of this is

(8.6) 	 P[ Xn+ =r+ llX =i] = r, 1<i <r

As downward transitions are impossible and r+1  is absorbing, this specifies a
transition matrix for S = {1, 2,... , r+1).

It is quite clear that in maximizing her chance of selecting the best suitor of all, the
princess should reject those who do not dominate their predecessors. Her strategy
therefore will be to stop with the suitor in position XT , where T is a random variable
representing her strategy. Since her decision to stop must depend only on the suitors
she has seen thus far, the event [T = n{ must lie in a(X, ... , X,,) If XT = i, then by
(8.6) the conditional probability of success is f(i) = i/r. The probability of success is
therefore E[ f(XT)j, and the problem is to choose the strategy T so as to maximize it.
For the solution, see Example 8 17.$ •

Higher-Order Transitions

The properties of the Markov chain are entirely determined by the transition
and initial probabilities. The chain rule (4.2) for conditional probabilities
gives

P[Xo =i o , X , =i 1 , X2 = iz]

=P[X0 =io]P[X, _^ Xo = l o ] P [Xz =i zI Xo — i o , ^ , — ii]

ca! o p, U;' 131112.

Similarly,

(8.7)	 P[X = , 0 < t<m] = a , p •••X,	 t 	 t,i 	 t,^r,

for any sequence i o , i,, ... , i,,, of states.
Further,

(8.8) P[X,n+ t=j„ 1 <t < ni Xs = is , 0 < s < •] = p . . p.i .

plia-tint

pin- fin ,

The details can be found in DYNKIN & YusHKEVICH. Chapter III.
* With the princess replaced by an executive and the suitors by applicants for an office job, this is
known as the secretary problem
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as follows by expressing the conditional probability as a ratio and applying
(8.7) to numerator and denominator. Adding out the intermediate states now
gives the formula

(8.9) 	 p!j)= PP(m+ n =jiXm = i ]

=	 E	 Pik i Pk ikZ 3 . . Pkn- ,i
k 	 kn-1

(the k 1 range over S) for the nth-order transition probabilities.
Notice that p;j ) is the entry in position (i, j) of P", the nth power of the

transition matrix P. If S is infinite, P is a matrix with infinitely many rows
and columns; as the terms in (8.9) are nonnegative, there are no convergence
problems. It is natural to put

	p`°) - SJl _ 1	 if i = j,
	0 	 if i j .

Then P ° is the identity I, as it should be. From (8.1) and (8.9) follow

(8.10) 	 p■m+n) — EP;m)P
,f,;),

^

An Existence Theorem

Theorem 8.1. Suppose that P = [ p ;1] is a stochastic matrix and that a i are
nonnegative numbers satisfying , E s a i = 1. There exists on some (ci, ., P) a
Markov chain X0 , X1, X2, ... with initial probabilities a i and transition proba-
bilities pii .

PROOF. Reconsider the proof of Theorem 5.3. There the space (fl, .,P)
was the unit interval, and the central part of the argument was the construc-
tion of the decompositions (5.13). Suppose for the moment that S =
First construct a partition I4 °), /P),... of (0,1] into countably manyt subinter-
vals of lengths (P is again Lebesgue measure) P(I<< 0)) = a 1 . Next decompose
each j(0) into subintervals ^^) of lengths P(/11 ))= a ; p11, Continuing induc-
tively gives a sequence of partitions (i Vin ) gi

nl

: i 0 , ... , i n = 1, 2, , ..) such that
each refines the preceding and P(I(̂ ü inn) ) = a• pp[plS • • p,

Put Xn(w) = i if w E Ui in _ , Pr) • 	follows just as in the proof of•
Theorem 5.3 that the set [X° = i ° ,..., Xn = in ] coincides with the interval
I; n) ... Ç. Thus P[X° = i 0 , ... , Xn = i n 3 = a;0pio, . • • • pin—I1n . From this it fol-
lows immediately that (8.4) holds and that the first and third members of

t IfS i + S2+• 	 b—a and S i >_O, then 4 (b—EIS ,Sb—E1 .< 1 S^ ], i= 1,2,...,decompose
(a, bj into intervals of lengths S;.
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(8.2) are the same. As for the middle member, it is P[Xn =in , Xn+I =
j]/P[Xn =i n ]; the numerator is Ea iü piüi , • • . pirt_,irtpini the sum extending
over all i 0 , ... , i n _ 1 , and the denominator is the same thing without the factor
pirt» which means that the ratio is pirtl, as required.

That completes the construction for the case S = (1, 2, ... }. For the gen-
eral countably infinite S, let g be a one-to-one mapping of (1, 2, ... } onto S,
and replace the Xn as already constructed by g(Xn); the assumption S =
[1, 2, ... } was merely a notational convenience. The same argument obviously
works if S is finite.t •

Although strictly speaking the Markov chain is the sequence X0 ,
X,, ... , one often speaks as though the chain were the matrix P together with
the initial probabilities a i or even P with some unspecified set of a i .
Theorem 8.1 justifies this attitude: For given P and ai the corresponding Xn

do exist, and the apparatus of probability theory—the Borel—Cantelli lem-
mas and so on—is available for the study of P and of systems evolving in
accordance with the Markov rule.

From now on fix a chain X 0 , X I , ... satisfying a i > 0 for all i. Denote by Pi

probabilities conditional on [ X 0 = i ]: Pi(A) = P[ A I X0 = i ]. Thus

(8.11)	 Pi [Xt = i t , l < t< n] = pii pi i ..1 	 1 2 	 • pin_ i i rt

by (8.8). The interest centers on these conditional probabilities, and the
actual initial probabilities a i are now largely irrelevant.

From (8.11) follows

(8.12) 	Pi[ 	 1 ... , X►n — i m^ Xm^+-1 —j„"' ^ Xm+n = jn]

- Pi [X, =i,,...,

Suppose that I is a set (finite or infinite) of m-long sequences of states, J is a
set of n-long sequences of states, and every sequence in I ends in j. Adding
both sides of (8.12) for (i I , ... , im ) ranging over I and (j,, .. . , jn ) ranging over
J gives

(8.13)	 P[(X,,..., Xm ) E I, (Xm+l^ ••' ^ Xm+n) EJ ]

= PA( X... , Xm) E I ]
PiRX..., Xn ) EJ].

For this to hold it is essential that each sequence in I end in j. The formulas
(8.12) and (8.13) are of central importance.

I For a different approach in the finite case, see Problem 8.1.
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Transience and Persistence

Let

(8A4)	 fi = P; [X, *j... X, 1 #j, Xn=j]

be the probability of a first visit to j at time n for a system that starts in i,
and let

m 	 m

(8.15) 	fi; = P; U [xn = j ] _ E f,;"'
n =1	 n =,

be the probabiiity of an eventual visit. A state i is persistent if a system
starting at i is certain sometime to return to is f = 1. The state is transient
in the opposite case: f;i < 1.

Suppose that n,, ... , n k are integers satisfying 1 <n,< • • • < n k and
consider the event that the system visits j at times n 1 ... n k but not in
between; this event is determined by the conditions

• X,* j,..., 	 Xn 	 #j ,
	Xn

 i — j,
[ 

Xn i +1 #j,..., 	 Xn2—, # j,	 Xn2 =

Xnk _, ^ j, 	 Xnk =j.

Repeated application of (8.13) shows that under P; the probability of this
event is f (nt )fJn2- n' ) • . • f ink - nk - I )• Add this over the k-tuples n 1 ,..., n k : the

rop	 ^JP.-	 babili that Xn 	fi; fjr= j for at least k different values of n is	 k^'^	 '
Letting k -4 co therefore gives

0	 if fij < 1,
(8.16)	 P;[Xn =j i.o.]=

 fi; 
if 

,f»_— 1.

Recall that i.o. means infinitely often. Taking i = j gives

0	 if fit <1,
(8.17)	 P;[ Xn = 1 I .O. ] _	 _ 	 .

1	 if f« — 1.

Thus Pi[Xn = i i.o.1 is either 0 or 1; compare the zero-one law (Theorem 4.5),
but note that the events [Xn = i1 here are not in general independent.t

t See Problem 8.35



118
	

PROBABILITY

Theorem 8.2.

(i) Transience of i is equivalent to PJXn = i i.o.] = 0 and to En AV < co

(ii) Persistence of i is equivalent to Pi[XX = i i.o.] = 1 and to En pil" ) = 00 .

PROOF. By the first Borel- Cantelli lemma, En p!; ) < oo implies Pi[Xn = i
i.o.] = 0, which by (8.17) in turn implies fi, < 1. The entire theorem will be
proved if it is shown that fii < 1 implies E n e ) < 00

The proof uses a first-passage argument: By (8.13),

n^^-1E rr
pj^ ) =di[Xn =1]	 E Pilx1 oJ, ... ,tin —s -1

s =0

n-1

= E Pif xi #1^•
s = 0

n-1
(n —s) (s)=	 fi)	pi, •

s=0

xn--s-1 #I, Xn-s 	 = j ]

Therefore,

n 	 n t -1

E pi(i)t — E E firçt - s ) e )
^ =1 s = 0

n - 1 	n	 n

= E pri ) E flr 	 Et - s) ^ 1^ Pri )fü •
s 0 	 t =s + 1 	 s=0

Thus (1 — f11 )E"_ 1 p1i ) fi1, and if f,, < 1, this puts a bound on the partial
sums Et= 1 pig).	 •

Example 8.6. P6lya's theorem. For the symmetric k-dimensional random
walk (Example 8.4), all states are persistent if k = 1 or k = 2, and all states
are transient if k >— 3. To prove this, note first that the probability p;;` ) of
return in n steps is the same for all states i; denote this probability by a;,k) to
indicate the dependence on the dimension k. Clearly, a2n) ,^, 1 = O. Suppose
that k = 1. Since return in 2n steps means n steps east and n steps west,

a (1) = 
(2n) 

12n	 n 	2 2" •

t = 1

By Stirling's formula, aZln (wn) - 1 /2 . Therefore, En4 ) = co, and all states
are persistent by Theorem 8.2.
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In the plane, a return to the starting point in 2n steps means equal
numbers of steps east and west as well as equal numbers north and south:

( 2n ) ! 	 1a2n(2)_
 ü

E u!u!(n - u)!(n - u)! 42n

1 2n	 n	 n
	— 4zn 	uu-o u n -

It can be seen on combinatorial grounds that the last sum is ( 2n), and so

az2n = (a (21n) 2 (Trn) -1 . Again, Yn an2) = co and every state is persistent.
For three dimensions,

(2n)!	 1
a 2n(3) _

- E u!u!v!v!(n-u-v)!(n-- u - v )! 62n'

the sum extending over nonnegative u and v satisfying u + v < n. This
reduces to

n	 1 	2 21

(8.18)	 azn) _  	 21
2n ( 

3 
) 2n-21

	a z^n-z1az^),i,.0

as can be checked by substitution. (To see the probabilistic meaning of this
formula, condition on there being 2n - 21 steps parallel to the vertical axis
and 21 steps parallel to the horizontal plane.) It will be shown that az3„ =
O(n -3/2 ), which will imply that En a (n3) <00. The terms in (8.18) for 1= 0 and
1= n are each 0(n -3/2 ) and hence can be omitted. Now aü1) << Ku -1 / 2 and
aü2) -< Ku -1 , as already seen, and so the sum in question is at most

n - 1 	 2n -21 	 21

K2 7 21  (11
  ( ^  (2n - 21) -1/2 (21) -1 .

t=i

Since (2n - 21) - '/2 < 2n 1 /2 (2n - 21) - ' < 4n 1 /2(2n - 2l + 0' and (21)' <
2(21 + 0-1, this is at most a constant times

(2n}! n _ 1 1 2n + 2	 1 2n-21+-1 2
n '/z ( 2n + 2 ) ! l^ 21- 1 3	 3 1 2/+1

= O(n -3/1 ).

Thus En a (n3) < 00, and the states are transient. The same is true for k = 4, 5, ... ,
since an inductive extension of the argument shows that a(nk) = 0(n -k12 ). •

It is possible for a system starting in i to reach j (f,; > 0) if and only if
e' ) > 0 for some n. If this is true for all i and j, the Markov chain is
irreducible.
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Theorem 8.3. If the Markov chain is irreducible, then one of the following
two alternatives holds.

(i) All states are transient, Pi(U j [ X„ = j Lo.]) = 0 for all i, and En 	< o0

for all i and j.
(ii) All states are persistent, Pp((}

j
 [x,, = j Loi) = 1 for all i, and En p;7) = o0

for a//i and ).

The irreducible chain itself can accordingly be called persistent or tran-
sient. In the persistent case the system visits every state infinitely often. In
the transient case it visits each state only finitely often, hence visits each
finite set only finitely often, and so may be said to go to infinity.

PROOF. For each i and j there exist r and s such that p;; ) > 0 and
pi(is ) > 0. Now

(8.19) (r -Ls +n) ] (r) (n) (s)
pij Pjj Pji

and from pM ) > O it follows that E n p^ n ) < co implies En p;7 ) < co: if one
state is transient, they all are. In this case (8.16) gives Pi [X„ =j i.o.] = 0 for
all i and j, so that Pi(U 1[ X„ = j i.o.]) = 0 for all i. Since E,9„....,4" )    =
Em En 	 (v) (n— v ) = E°° 	

(v ^ 	 (m) 	 °° 	 ( t follows thatnil 	 =l fij pjj 	 v ]fi
) E

j mO 	 < Epjj 	 m0 pm)jj ^ i fll 	 h 	 if 1 is
transient, then (Theorem 8.2) E n p;7 ) converges for every i.

The other possibility is that all states are persistent. In this case P.[XX = j

i.o.] = 1 by Theorem 8.2, and it follows by (8.13) that

6m)   = Pi g(
-- 

[ X m =1 ] nÎ [ X  =1 L01)

L Pj[Xm-1, Xm +l 	o1, Xn —1 ]
n >rr.

E(

m ) (n-m) _ (m)
pji fi j 	 — pji fi j'

n >m

There is an m for which p!m ) > 0, and therefore Li = 1. By (8.16), Pi[X„ = j
1.0.] =fij = 1. If En p;7 ) were to converge for some i and j, it would follow by
the first Borel —Cantelli lemma that Pi[X„ = j i.o.] = O. •

Example 8.7. Since EA' ) = 1, the first alternative in Theorem 8.3 is
impossible if S is finite: a finite, irreducible Markov chain is persistent. 	 •

Example 8.8. The chain in Pôlya's theorem is certainly irreducible. If the
dimension is 1 or 2, there is probability 1 that a particle in symmetric random
walk visits every state infinitely often. If the dimension is 3 or more, the
particle goes to infinity. ■
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Example 8.9. Consider the unrestricted random walk on the line (Exam-
ple 8.3). According to the ruin calculation (7.8), fo1 = p/q for p <q. Since
the chain is irreducible, all states are transient. By symmetry, of course, the
chain is also transient if p > q, although in this case (7.8) gives f 01 = 1. Thus
f

1j
 = 1 (i j) is possible in the transient case.
If p = q = f, the chain is persistent by Pôlya's theorem. If n and j — i have

the same parity,

	n 	1. )n — n +Jpl^ ) — 	 — 1 Ti ,
2

^j — i^ <n.

This is maximal if j = i or j = i t 1, and by Stirling's formula the maximal
value is of order n -1/2 .  Therefore, lim n p;! ) = 0, which always holds in the
transient case but is thus possible in the persistent case as well (see Theorem
8.8). •

Another Criterion for Persistence

Let Q = [q ij ] be a matrix with rows and columns indexed by the elements of a
finite or countable set U. Suppose it is substochastic in the sense that q > 0
and E1 g11 < 1. Let Q" — [qf; )] be the nth power, so that

(8.20) qri + 1 ) — E q,Vgn )
'

v

q;° j = S;j .

Consider the row sums

(8.21)

From (8.20) follows

(8.22)

q; j ).

(n+) 	 (n )^; 1 = 	 g;l^j .
J 	

•

Since Q is substochastic cri(1) < 1, and hence cr;( n +1) _ EjE v q;y )qvl =
Lv qv )Q( ' ) < o-;( n ) . Therefore, the monotone limits

(8.23) Cr; = lim nqrj )

# But for each j there must be some i *j for which f;I < 1; see Problem 8.7.
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exist. By (8.22) and the Weierstrass M-test [A28], cri = E i qii cri . Thus the cri

solve the system

(8.24)
x^= ^ q ^jx,,, i   U,

jell

O <x ; <1, 	 i E U.

For an arbitrary solution, x r = Eiqxj < Elgii =aim, and x, < o-f" ) for all i
implies x < < E i gii cri(n) = cr<( " +1) by (8.22). Thus x i < o-<(" ) for all n by induc-
tion, and so X. < moi . Thus the of give the maximal solution to (8.24):

Lemma 1. For a substochastic matrix Q the limits (8.23) are the maximal
solution of (8.24).

Now suppose that U is a subset of the state space S. The p;i for i and j in
U give a substochastic matrix Q. The row sums (8.21) are moi(")

 = Epiiipjij,
• pin Il where the j  1 , ... , j" range over U, and so Cri(n) = P;[ X, E U, tn^ 	 < r ].
Let n --•' oo:

(8.25)
	

17, = PIT Xi E U, t= 1,2...], 	 IC U.

In this case, cr is thus the probability that the system remains forever in U,
given that it starts at i. The following theorem is now an immediate
consequence of Lemma 1.

Theorem 8.4. For U c S the probabilities (8.25) are the maximal solution
of the system

(8.26)
fx;:-.= E prixi ,

jEU

0 <x l <1, i E U.

The constraint x ; >_ 0 in (8.26) is in a sense redundant: Since x ; = 0 is a
solution, the maximal solution is automatically nonnegative (and similarly for
(8.24)). And the maximal solution is x ; = 1 if and only if E j E U p;j = 1 for all i
in U, which makes probabilistic sense.

Example 8.10. For the random walk on the line consider the set U =
(0,1, 2, ... ). The System (8.26) is

x i = px; + 1 +qxi -1^
	 i > 1,

xp = px 1 .

It follows [A19] that x" = A +An if p =q and x" = A — A(q/p)" + 1 if p 0 q
The only bounded solution is x" = 0 if q >_ p, and in this case there is
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probability 0 of staying forever among the nonnegative integers. If q <p,
A = 1 gives the maximal solution x r, = 1 — (q/p)n+ I (and 0 <_A < 1 gives
exactly the solutions that are not maximal). Compare (7.8) and Example 8.9.

•

Now consider the system (8.26) with U = S — {i 0} for an arbitrary single
state io :

(8.27)
x i = E pii x j , i * i o ,

j tio
0 <<— x i <1, 	 i 0i0.

There is always the trivial solution—the one for which x i = O.

Theorem 8.5. An irreducible chain is transient if and only if (8.27) has a
nontrivial solution.

PROOF. The probabilities

(8.28)	 1 —frr„ = Pi[ X#ia, n > 1],	 i *i o ,

are by Theorem 8.4 the maximal solution of (8.27). Therefore (8.27) has a
nontrivial solution if and only if fila < 1 for some ï io . If the chain is
persistent, this is impossible by Theorem 8.36i).

Suppose the chain is transient. Since

00

= Pio [ XI = io ] + E E Piü[ X I = ï , X2 ,é ï o , . . . , Xn _ I ^ i o , Xn = lo ]
n= 2

- 

piüiü + L+ piüifiiü ,

and since fiüiü < 1, it follows that fiiü < 1 for some i # i o. •

Since the equations in (8.27) are homogeneous, the issue is whether they
have a solution that is nonnegative, nontrivial, and bounded. If they do,
0 < xi < 1 can be arranged by resealing!

t See Problem 8.9.
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Example 8.11.	 In the simplest of queueing models the state space is
{0, 1, 2, ... } and the transition matrix has the form

to t 1 t 2 0 0 0
t o t 1 t 2 0 0 0
0 to t 1 t 2 0 0

0 0 to t 1 t 2 0

0 0 0 to t 1 t 2

If there are i customers in the queue and i> 1, the customer at the head of
the queue is served and leaves, and then 0, 1, or 2 new customers arrive
(probabilities to , t 1 , t 2 ), which leaves a queue of length i — 1, i, or i + 1. If
i = 0, no one is served, and the new customers bring the queue length to 0, 1,
or 2. Assume that t o and t 2 are positive, so that the chain is irreducible.

For i o = 0 the system (8.27) is

(8.29)
x 1 = t 1 x 1 +t 2 x 2 ,

X k = toXk_1 +t1Xk +t2Xk+ - 1, 	k >>— 2.

Since to , t 1 , t 2 have the form q(1 — t), t, p(1 — t) for appropriate p, q, t, the
second line of (8.29) has the form xk = pxk +1 + qx k _ 1 , k >_ 2. Now the
solution [A191 is A + B(q/p) k — A + B(to/t 2 ) k if to r t 2 (p q) and A + Bk
if to = t 2 (p = q), and A can be expressed in terms of B because of the first
equation in (8.29). The result is

B((t0/t2) k — 1) if to O t 2 ,

Bk

There is a nontrivial solution if t o < t 2 but not if t o >_ t 2 .
If to < t 2 , the chain is thus transient, and the queue size goes to infinity

with proability 1. If t o t 2 , the chain is persistent. For a nonempty queue the
expected increase in queue length in one step is t 2 — to , and the queue goes
out of control if and only if this is positive. •

Xk

Stationary Distributions

Suppose that the chain has initial probabilities 7r; satisfying

.f t o 	 z1 	 = t •

E 7r; P,;
f ES

j ES.(8.30)
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It then follows by induction that

(8.31) E nTr, p,^ ) =
reS

j E S, n= 0,1, 2,... .

If Tr; is the probability that X0 = i, then the left side of (8.31) is the
probability that X„ = j, and thus (8.30) implies that the probability of [ Xn = j ]
is the same for all n. A set of probabilities satisfying (8.30) is for this reason
called a stationary distribution. The existence of such a distribution implies
that the chain is very stable.

To discuss this requires the notion of periodicity. The state j has period t
if 1357 ) > 0 implies that t divides n and if t is the largest integer with this
property. In other words, the period of j is the greatest common divisor of
the set of integers

(8.32) 	 [n: n	 1 , p5$>O].

If the chain is irreducible, then for each pair i and j there exist r and s
for which pr f ) and psi ) are positive, and of course

(8.33) 	 p(r+ s+n) > psi )pii )Pis) .

Let t i and ti be the periods of i and j. Taking n = 0 in this inequality shows
that t ; divides r + s; and now it follows by the inequality that ei ) > 0 implies
that t i divides r + s + n and hence divides n. Thus t i divides each integer in
the set (8.32), and so t < < t.. Since i and j can be interchanged in this
argument, i and j have the same period. One can thus speak of the period of
the chain itself in the irreducible case. The random walk on the line has
period 2, for example. If the period is 1, the chain is aperiodic

Lemma 2. In an irreducible, aperiodic chain, for each i and j, p j ) > 0 for
all n exceeding some n 0(i, j).

PROOF. Since pj►n+n) >_ p5m )pl j ), if M is the set (8.32) then m E M and
n E M together imply m + n E M. But it is a fact of number theory [A21] that
if a set of positive integers is closed under addition and has greatest common
divisor 1, then it contains all integers exceeding some n 1 . Given i and j,
choose r so that pj ) > 0. If n > n o = n 1 + r, then pr >_ 149p1,1! -- r ) > O. ■

Theorem 8.6. Suppose of an irreducible, aperiodic chain that there exists a
stationary distribution—a solution of (8.30) satisfying Tr ; >_ 0 and E l vr = 1.
Then the chain is persistent,

(8.34) 	 lim p1 j ) =

for all ï and j, the iri are all positive, and the stationary distribution is unique.
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The main point of the conclusion is that the effect of the initial state wears
off. Whatever the actual initial distribution {«l} of the chain may be, if (8.34)
holds, then it follows by the M-test that the probability E ; a ; /4 ) of [Xn = j }
converges to ire .

PROOF. If the chain is transient, then 1 ) --p 0 for all i and j by Theorem
8.3, and it follows by (8.31) and the M-test that Tri is identically 0, which
contradicts ^Tr = 1. The existence of a stationary distribution therefore
implies that thé chain is persistent.

Consider now a Markov chain with state space S x S and transition
probabilities p(ij, kl) = p;k pi; (it is easy to verify that these form a stochastic
matrix). Call this the coupled chain; it describes the joint behavior of a pair of
independent systems, each evolving according to the laws of the original
Markov chain. By Theorem 8.1 there exists a Markov chain (Xn ,Yr ) , n
0,1, ... , having positive initial probabilities and transition probabilities

P[(Xnfl^Yn^ I) = (k , l)I(Xn,Y,)=(i,j)1 =P(ij,kl).

For n exceeding some n o depending on i. j, k, I, the probability
p ( n )(ij, kl) = 1417 )147 ) is positive by Lemma 2. Therefore, the coupled chain is
irreducible. (This proof that the coupled chain is irreducible requires only the
assumptions that the original chain is irreducible and aperiodic, a fact
needed again in the proof of Theorem 8.7.)

It is easy to check that rr(ij) = 7r i 7ri forms a set of stationary initial
probabilities for the coupled chain, which, like the original one, must there-
fore be persistent. It follows that, for an arbitrary initial state (i, j) for the
chain {(Xn ,Yn )) and an arbitrary i o in S, one has P11[(Xn

, Çn) — (io , io)
i.o.] = 1. If T is the smallest integer such that X 7 = YT = io , then T is finite
with probability 1 under Po . The idea of the proof is now this: X„ starts in i
and Yn starts in j; once Xn = i;, = io occurs, Xn and Yn follow identical
probability laws, and hence the initial states i and j will lose their influence.

By (8.13) applied to the coupled chain, if m < n, then

Pji [(Xn ,Yn ) = (k,l), T = m]

=PiIL(X0Y1) ^ (10,10),t C111, ( Xrn ,Ym) _ 0O5 1 0)]

X Piülü [(Xn-m , Yn-m) — (k,l)]
(n —m) (n—m)= P1^ [ T = "I ]  Prük Prül	 •

(Adding out / gives P;f[Xn = k, T = m ] = P;1[T = m]Prünk—m) , and adding out k
gives P;![Y, =1, T = m] = P, [T = m] pül - m ). Take k =1, equate probabilities,
and add over m = 1, ... , n:

P;;[Xn =k,T<n] =P;1[Yn=k, T_<n].
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From this follows

P11[Xn = k] <Pi1 [ X = kT< n]+P11 [T>n]

=Pi1 [Yn =k, T<n ] +P11 [T>n]

0)11 [Yn = k] +P11 [7 > n].

This and the same inequality with X and Y interchanged give

I 	
— P;H)I =I P11[Xn=k] — P1 [Yn =k]I <Pif[T>n].

Since T is finite with probability 1,

(8.35) limI pV —Pjk>I = o .
n

(This proof of (8.35) goes through as long as the coupled chain is irreducible
and persistent— no assumptions on the original chain are needed. This fact
is used in the proof of the next theorem.)

By (8.30,7k — Pjk
)

 — E1 r1(Pik ) — PV, and this goes to 0 by the M-test if
(8.35) holds. Thus lim n pjk ) = Irk . As this holds for each stationary distribu-
tion, there can be only one of them.

It remains to show that the 7r1 are all strictly positive. Choose r and s so
that p4J ) and p5 ) are positive. Letting n - > co in (8.33) shows that 7r 1 is
positive if 7r1 is; since some 71 is positive (they add to 1), all the 7r 1 must be
positive. ■

Example 8.12. For the queueing model in Example 8.11 the equations
(8.30) are

^o = roto + r 1 to,

7r 1 =70 1 +7r 1 t 1 +77- 2 tü ,

TT 2 —70 2 + 7r 1 t 2 + 7r 2 t 1 +7r 3 to ,

Trk ^k -1 t2+ 7rkt1 + 7Tk+i to ,
	 k> 3.

Again write t o , t 1 , t 2 , as q(1 — t), t, p(1 — t). Since the last equation here is
Trk = gTrk+ 1 +Pik –1, the solution is

A + B( p/q) k =A +B(t 2 /to ) k if to * t 2 ,_
7rk 	

A + Bk 	 if t0 = t 2

for k >— 2. If t o < t 2 and E7rk converges, then Ir k = 0, and hence there is no
stationary distribution; but this is not new, because it was shown in Example
8.11 that the chain is transient in this case. If t o = t 2 , there is again no
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stationary distribution, and this is new because the chain was in Example 8.11
shown to be persistent in this case.

If to > t 2 , then E7rk converges, provided A — O. Solving for 7r 0 and 7r 1 in
the first two equations of the system above gives Tr 0 Bt 2 and 7r = Bt 2(1 —
to)/t0 . From Ekirk — 1 it now follows that B = (to — t 2 )/t 2 , and the Trk can
be written down explicitly. Since Irk = B(t2/to) k for k > 2, there is small
chance of a large queue length. 	 •

If t0 '= t 2 in this queueing model, the chain is persistent (Example 8.11)
but has no stationary distribution (Example 8.12). The next theorem de-
scribes the asymptotic behavior of the e' ) in this case.

Theorem 8.7. If an irreducible, aperiodic chain has no stationary distribu-
tion, then

(8.36)

for all i and j.

If the chain is transient, (8.36) follows from Theorem 8.3. What is
interesting here is the persistent case.

PROOF. By the argument in the proof of Theorem 8.6, the coupled chain
is irreducible. If it is transient, then E, i(p;;1)) 2 converges by Theorem 8.2, and
the conclusion follows.

Suppose, on the other hand, that the coupled chain is (irreducible and)
persistent. Then the stopping-time argument leading to (8.35) goes through
as before. If the 4 ) do not all go to 0, then there is an increasing sequence
(n u} of integers along which some p Vin) is bounded away from O. By the
diagonal method [A14], it is possible by passing to a subsequence of  Ind to
ensure that each 41:` ,,) converges to a limit, which by (8.35) must be indepen-
dent of i. Therefore, there is a sequence {n u} such that lim a 1451,i ) = ti exists
for all i and j, where t j is nonnegative for all j and positive for some j. If M
is a finite set of states, then E  j E M t j — lim a E j E M ep' ) <— 1, and hence 0<
t = Li t, <— 1. Now Ek E MP7k " )Pk j < p 7" + 1) — Ek Prk P (kj" ); it is possible to pass
to the limit (u - ' co) inside the first sum (if M is finite) and inside the second
sum (by the M-test), and hence Ek e 114 tk Pk j - k Pik t1 = tj . Therefore,
Ek tk Pkj _< ti; if one of these inequalities were strict, it would follow that
Ek tk Ej Ek tk Pk' < E j tj, which is impossible. Therefore E k tk pk j =t1  for all
j, and the ratios 7rj = tj/t give a stationary distribution, contrary to the
hypothesis. •

The limits in (8.34) and (8.36) can be described in terms of mean return
times. Let

00

limp^^ ^ =0
n

Eµi = 	j i
n= 1

(8.37)



SECTION 8. MARKOV CHAINS 	 129

if the series diverges, write µ i = co. In the persistent case, this sum is to be
thought of as the average number of steps to first return to j, given that
X0 =j. t

Lemma 3. Suppose that j is persistent and that lim n pin ) = u. Then u > 0 if
and only if µi < co, in which case u = 1/kt; .

Under the convention that 0 = 1/00, the case u = 0 and µ = 00 is consis-
tent with the equation u

PROOF. For k > 0 let Pk = En > kf1 ; the notation does not show the
dependence on j, which is fixed. Consider the double series

flfçl) +a ) +, llfç3) + . .il) 

-1-4(12 ) 	 J
 + f c

l
3) + . . .

.fl 11

+ .. •

The k th row sums to pk (k >_ 0) and the nth column sums to nfjj ) (n > 1),
and so [A27] the series in (8.37) converges if and only if Ek pk does, in which
case

(8.38) µ;= E Pk•

k =0

Since j is persistent, the Pi-probability that the system does not hit j up to
time n is the probability that it hits j after time n, and this is pn . Therefore,

1 — p;j ) =P; [ Xn oj]
n-1

Pj[Xl #^ ^ ••• ^ Xn#jj+ L.
r̂

 P; [Xk —i, Xk-1-1 #^ ^
... , Xn j]

k=1
n-1

Pn + L-1 P;k)Pn-k
k=1

and since po = 1,

1 =Poe')+ P1P
(n-1)+ ... 

}Pn-1P;; ) + Pn49)

Keep only the first k + 1 terms on the right here, and let n co; the result is
1 > (p 0 + - • • +pk )u. Therefore u > 0 implies that Ek pk converges, so that

<oo-

t Since in general there is no upper bound to the number of steps to first return, it is not a simple
random variable. It does come under the general theory in Chapter 4, and its expected value is
indeed µ 3 (and (8 38) is just (5.29)), but for the present the interpretation of µ, as an average is
informal See Problem 23.11
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Write xnk — Pk P"j7 -k) for 0 <_ k < n and x„k = 0 for n <k. Then 0 < x nk <
pk and limn xnk = pk u. If µi < co, then Ek pk converges and it follows by the
M-test that 1 = Ek=oink —9 Ek =opk u. By (8.38), 1 = p,ju, so that u > 0 and
u =1/µ j. •

The law of large numbers bears on the relation u = 1 /Ai in the persistent
case. Let Vn be the number of visits to state j up to time n. If the time from
one visit to the next is about Ai , then Vn should be about n/Et : l'n/n l/µ i .
But (if X0 = j) V„/n has expected value n ' Ek = 41.` ) , which goes to u under
the hypothesis of Lemma 3 [A30].

Consider an irreducible, aperiodic, persistent chain. There are two possi-
bilities. If there is a stationary distribution, then the limits (8.34) are positive,
and the chain is called positive persistent. It then follows by Lemma 3 that
p,i < co and Tri = 1 %N-, for all j. In this case, it is not actually necessary to
assume persistence, since this follows from the existence of a stationary
distribution. On the other hand, if the chain has no stationary distribution,
then the limits (8.36) are all 0, and the chain is called null persistent It then
follows by Lemma 3 that µ j = co for all j. This, taken together with Theorem
8.3, provides a complete classification:

Theorem 8.8. For an irreducible, aperiodic chain there are three possibili-
ties:

(i) The chain is transient; then for all i and j, lim n p;7 ) = 0 and in fact
En p 7 ) < Co.

(ii) The chain is persistent but there exists no stationary distribution (the null
persistent case); then for all i and j, p i ) goes to 0 but so slowly that
En 14)  co, and Ai = co.

(iii) There exist stationary probabilities Tri and (hence) the chain is persistent
(the positive persistent case); then for all i and j, lim a pf.  f ) = Trj > 0 and

= 1 /7ri < co.

Since the asymptotic properties of the p ) are distinct in the three cases,
these asymptotic properties in fact characterize the three cases.

Example 8.13. Suppose that the states are 0,1, 2, ... and the transition
matrix is

qo po 0 0

91 0 P, 0

q2 0 0 P2

...

where pi and q; are positive. The state i represents the length of a success
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run, the conditional chance of a further success being pi . Clearly the chain is
irreducible and aperiodic.

A solution of the system (8.27) for testing for transience (with i o — 0) must
have the form x k ==x 1 /p 1 • • • pk _ 1 . Hence there is a bounded, nontrivial
solution, and the chain is transient, if and only if the limit a of p 0 • • pn is
positive. But the chance of no return to 0 (for initial state 0) in n steps is
clearly po • p„ _ 1 ; hence 100 = 1 — a, which checks: the chain is persistent if
and only if a = 0.

Every solution of the steady-state equations (8.30) has the form ir k = vopo
• pk _ 1 .  Hence there is a stationary distribution if and only if Ek P o . • . pk

converges; this is the positive persistent case. The null persistent case is that
in which po - .. pk --•- 0 but Ek po • • pk diverges (which happens, for exam-
ple, if qk = 1/k for k > 1).

Since the chance of no return to 0 in n steps is p 0 • . • p„ _ 1 , in the
persistent case (8.38) gives µo = _0 Po * pk _ 1 • In the null persistent case
this checks with pt o = 00; in the positive persistent case it gives µo =
Ek =0 7rk/r0 = 1/T0, which again is consistent. •

Example 8.14. Since E, pir = 1, possibilities (i) and (ii) in Theorem 8.8
are impossible in the finite case: A finite, irreducible, aperiodic Markov chain
has a stationary distribution. •

Exponential Convergence*

In the finite case, /47 ) converges to Tri at an exponential rate:

Theorem 8.9. If the state space is finite and the chain is irreducible and
aperiodic, then there is a stationary distribution (7r 1 }, and

(n) - 7ri l Ap n ,

where A>_ 0 and 0 _<<p <1.

PROOF. / Let m (in ) = min i p ") and	 maxi pi j ). By (8.10),

min+l)= min E p1 p7)
? min E pip 

m(in) = min ),

b 	 V

M (n+- 1) _ max E pivpvi )

 < max E pmi(n) -- on).
i 	 v

* This topic may be omitted.
# For other proofs, see Problems 8.18 and 8 27.
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Since obviously a6'' ) < MI" ) ,

(8.39) 0 < m (
1
1) < m(2)

J 
<   	 < M Ĵ 2) <— M (

1)J

Suppose temporarily that all the pi j are positive. Let s be the number of
states and let S = min i; Ai. From E j p i j >_ s5 follows 0 < 8 < s - 1 . Fix states u
and y for the moment; let E' denote the summation over j in S satisfying
puj ? pt.j and let E" denote summation over j satisfying puj <p 1 . Then

	(8.40)	 E'( puj —Pt])
 + Err( puj — pij ) = 1 — 1 = 0.

Since E' pc; + E" pul > s 8.

	(8.41)	 E'( puj—PLj)=1— E"puj-E' pLj<1—s8 .

Apply (8.40) and then (8.41):

puk+l) pL k+1) _ ^( puj p^j ) P k )

J

< E'( puJ - p,.J )Mk") + Err( puj - pLj )m(k")

- ^ r
( pu; p 1. j ) ( Mk

" 

) - ►n k" )
)

S (1 —sS)(Mk" ) — mk" ) }.

Since u and y are arbitrary,

Mk" + 1) - m (kr + 1) < (1 S ) ( Mk") m(k")} .

Therefore, Mk" ) — m (k" ) <— (1 — s5)". It follows by (8.39) that m4" ) and MI" }

have a common limit Trj and that

(8.42)	 I pi; ) —TTI <(1 —ss)"
.

Take A = 1 and p = 1 — s6. Passing to the limit in Ei p
Vn )pij = p,,,; + 1) shows

that the Tri are stationary probabilities. (Note that the proof thus far makes
almost no use of the preceding theory.)

If the pi j are not all positive, apply Lemma 2: Since there are only finitely
many states, there exists an m such that g71) >> 0 for all i and j. By the case
just treated, MI' ) — mom` ) < p'. Take A = p - 1 and then replace p by p i/m .•
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Example 8.15.	 Suppose that

Po PI Ps-i

P Ps-t Po Ps-2

P I P 2 Po

The rows of P are the cyclic permutations of the first row: pij = p^-^ , j — i
reduced modulo s. Since the columns of P add to 1 as well as the rows, the
steady-state equations (8.30) have the solution Tr 1 = s -'. If the pi are all
positive, the theorem implies that pf ) converges to s' at an exponential
rate. If X0 , Y1 , 112, ... are independent random variables with range
(0, 1, .. , s — 1), if each Yn has distribution (po , ..., ps _,}, and if X„ =
X0 +171 . - - +Yn , where the sum is reduced modulo s, then P[ Xn = j ] --^

The )4 describe a random walk on a circle of points, and whatever the
initial distribution, the positions become equally likely in the limit. 	 •

Optimal Stopping*

Assume throughout the rest of the section that S is finite. Consider a function
T on fi for which T(w) is a nonnegative integer for each w. Let .9 =
o-(Xo , X ... , X); T is a stopping time or a Markov time if

(8.43)	 [w:T(w) = n] E

for n = 0, 1, .... This is analogous to the condition (7.18) on the gambler's
stopping time. It will be necessary to allow T(w) to assume the special value
co, but only on a set of probability 0. This has no effect on the requirement
(8.43), which concerns finite n only.

If f is a real function on the state space, then f(X 0 ), f(XI ), ... are simple
random variables. Imagine an observer who follows the successive states
X0 , XI , ... of the system. He stops at time T, when the state is X,r (or
XT(c,)(w)), and receives an reward or payoff f(XT ). The condition (8.43)
prevents prevision on the part of the observer. This is a kind of game, the
stopping time is a strategy, and the problem is to find a strategy that
maximizes the expected payoff E( f(101. The problem in Example 8.5 had
this form; there S = {1, 2, ..., r + 1), and the payoff function is f(i) = i/r for
i < r (set f (r + 1) = 0).

If P(A) > 0 and Y= E, yi l'B . is a simple random variable, the Bi forming a
finite decomposition of SZ into (sets, the conditional expected value of Y

* This topic may be omitted.
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given A is defined by

E[YI A] = E y1 P(B; I A).

Denote by E, conditional expected values for the case A = [X0 = i]:

E,[Y] =E[Y1X0 =i]
1

The stopping-time problem is to choose T so as to maximize simultaneously
Ei[ f(XT )] for all initial states i. If x lies in the range of f, which is finite, and
if T is everywhere finite, then [w: f(X T(w)(w)) =x1 = U n_ o [w: T(w) — n,
f (XX(w )) = x] lies in and so f(XT ) is a simple random variable. In order
that this always hold, put f(XT(w)(w)) = 0, say, if T(w) _ 00 (which happens
only on a set of probability 0).

The game with payoff function f has at i the value

(8.44)	 v(i) = sup Ei [ f(XT )],

the supremum extending over all Markov times T. It will turn out that the
supremum here is achieved: there always exists an optimal stopping time. It
will also turn out that there is an optimal T that works for all initial states i.
The problem is to calculate v(i) and find the best T. If the chain is
irreducible, the system must pass through every state, and the best strategy is
obviously to wait until the system enters a state for which f is maximal. This
describes an optimal T, and v(i) = max f for all i. For this reason the
interesting cases are those in which some states are transient and others are
absorbing (pa = 1).

A function cp on S is excessive or superharmonic, if t

(8.45)	 cp(i) >_ Ep;;cp(j), 	 i E S.

In terms of conditional expectation the requirement is cp(i) > E1[cp(X 1 )].

Lemma 4. The value function v is excessive.

PROOF. Given E, choose for each j in S a "good" stopping time 71
satisfying El[ f(XTl )] > v(j) — E. By (8.43), [T1= n] _ [(X0 , ... , Xn ) E Iln] for
some set /in of (n + 1)-long sequences of states. Set T = n + 1 (n >_ 0) on the
set [ X1 = j ] n [(X1 , ... , ,v„,1) E /in ]; that is, take one step and then from the
new state X 1 add on the "good" stopping time for that state. Then T is a

Compare the conditions (7.28) and (7.35).
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stopping time and

Ei[f(XT)] = L.r^ E EPI[XI =j, (X•..Xnkl ) El;n^ Xnk1 =k]f(k)
n=0 j k

CO

_ E E Epr; Pj [(Xo ,..., Xn ) E Il„, Xn = k j f(k)
n=0 j k

Epi j Ej [f(XTJ ),

Therefore, v(i) >_ E;[ f(XT )] > 	 Since E was
arbitrary, y is excessive.

Lemma 5. Suppose that cp is excessive.

(1) For all stopping times T, cp(i) >_ E;[cp(XT )].

(ii) For all pairs of stopping times satisfyitag O- S T, E1[q,(X0.)] > E;[cp(XT )1.

Part (i) says that for an excessive payoff function, T = 0 represents an
optimal strategy.

PROOF. To prove (i), put TN = min{T, N). Then TN is a stopping time,
and

N - 1

(8.46) 	 E,[cp(XrA = E ENT = n, Xn = k]cp(k)
n =q k

+ EPi [T >_ N, XN = k]cp(k).
k

Since [T >_ All=  Fr <NY  E FN_ 1 , the final sum here is by (8.13)

E E PAT ? N, XN_1 = j, XN = k]cP(k)
k 1

_ E E P;[T> N, XN - 1 =j]pjkcp(k) < ENT >_N, XN - 1
 

=j]cP(j )•
k j

Substituting this into (8.46) leads to E1[cp(XTN )] < EAp(XTN , i )]. Since TQ = 0
and E1[cp(X0 )] = cp(i), it follows that E;[cp(XTN )] < cp(i) for all N. But for
T(w) finite, cp(XTN( ,, )(w)) --' cp(XT(u, )(w)) (there is equality for large N), and so

Ei[`p(XTN)] ---> E;[cp(XT )] by Theorem 5.4.
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The proof of (ii) is essentially the same. If TN = min{T, o- + N), then TN is a
stopping time, and

°D N-1	
1

EiLF cp ( XTN)^ - E E EP,[^=m., r=m+n, Xm+n — k^cP(k)
m =0 n =0 k

CO

+ E ^P^ [^ =m,T>m +N, Xm+N=CjcP(k).
m =Q k

Since [o- = m, T>m+ N]=[o-=m]—[a-=m, r<m+N] E gm+N--1 , again
E; [cp(XTN )] s E;[cp(XTN_

i )1 < E;[cp(XT0)]. Since T o = cr, part (ii) follows from
part (i) by another passage to the limit. ■

Lemma 6. If an excessive function cp dominates the payoff function f, then
it dominates the value function v as well.

By definition, to say that g dominates h is to say that g(i) >— h(i) for all i.

PROOF. By Lemma 5, cp(i) >_ E,[cp(X)] >_ E;[ f (XT )] for all Markov times
T, and so cp(i) > v(i) for all i. 	 ■

Since T = 0 is a stopping time, v dominates f. Lemmas 4 and 6 immedi-
ately characterize v:

Theorem 8.10. The value function v is the minimal excessive function
dominating f.

There remains the problem of constructing the optimal strategy T. Let M
be the set of states i for which v(i) = f(i); M, the support set, is nonempty,
since it at least contains those i that maximize f. Let A = (^ n =o[X 014] be
the event that the system never enters M. The following argument shows that
P1(A) = 0 for each i. As this is trivial if M=S,  assume that M S. Choose
S > 0 so that f(i) s v(i) — S for i E S — M. Now Ec[ f(XT)] = En ork P; [ T = n,
Xn = klf(k); replacing the f(k) by v(k ) or v(k) — S according as k E M or
k E S — M gives E;[ f(XT )] s E1[v(10] — SP;[XT E S — M] s E1 [v(XT )] —
SP;(A) v(i) — SPP(A), the last inequality by Lemmas 4 and 5. Since this
holds for every Markov time, taking the supremum over T gives P;(A) = O.
Whatever the initial state, the system is thus certain to enter the support
set M.

Let To(w) = min[n: Xn(w) E Ml be the hitting time for M. Then ro is a
Markov time, and TQ = 0 if Xo E M. It may be that Xn(w) M for all n, in
which case To(w) = 00, but as just shown, the probability of this is O.
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Theorem 8.11. The hitting time To is optimal: E;[ f(XT0)] = v(i) for all i.

PROOF. By the definition of T O , f(XT0 ) = v(X7. 0 ). Put cp(i) = Er[ f(X ü )] _
E,[v(XT 0)1. The first step is to show that cp is excessive. If T 1 = min[n:
n> 1, Xn E Ml, then T 1 is a Markov time and

00

Ei[v(XT)] _ E E P; [X 1 ^M,...,XR _, ^M,X = k^v(k)
n=l keM

co
= E 	 EP;;;o^,...,n_z^M> Xn--1=k1v(k)

n=1 keM jeS

= EpijE1[v(XTO)].
i

Since T o < T 1 , E; [ v(X70 )] >_ E;[v(XT1 )] by Lemmas 4 and 5.
This shows that cp is excessive. And cp(i) . v(i) by the definition (8.44). If

cp(i) >_ f(i) is proved, it will follow by Theorem 8.10 that cp(i) >_ v(i) and
hence that cp(i) = v(i). Since T O = 0 for X0 E M, if i E M then cp(i) =
E;[ f(X0 )1 — f(i). Suppose that cp(i) <f(i) for some values of i in S — M, and
choose i o to maximize f(i) — cp(i). Then O(i) = cp(i) + f(i o) — cp(i o ) dominates
f and is excessive, being the sum of a constant and an excessive function. By
Theorem 8.10, çlf must dominate y, so that çi(io ) > v(i o ), or f(i o ) > v(v o ). But
this implies that i o E M, a contradiction •

The optimal strategy need not be unique. If f is constant, for example, all
strategies have the same value.

Example 8.16. For the symmetric random walk with absorbing barriers at
0 and r (Example 8.2) a function cp on S = {0, 1, ... , r) is excessive if
(p(i) % z cp(; — 1) 4 z cp(i + 1) for 1 _< i r — 1. The requirement is that cp give
a concave function when extended by linear interpolation from S to the
entire interval [0, r]. Hence y thus extended is the minimal concave function
dominating f. The figure shows the geometry: the ordinates of the dots are
the values of f and the polygonal line describes v. The optimal strategy is to
stop at a state for which the dot lies on the polygon.
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If f(r) = 1 and f(i) = 0 for i < r, then y is a straight line; v(i) = i/r. The
optimal Markov time To is the hitting time for M = {0, r), and v(i) _
El[ f(XT0 )] is the probability of absorption in the state r. This gives another
solution of the gambler's ruin problem for the symmetric case. ■

Example 8.17. For the selection problem in Example 8.5, the p . 1 are given by (8.5)
and (8.6) for 1 < i < r, while P r +i. r+ i = 1. The payoff is f(i) = i/r for i < r and
f(r 1- 1) = 0. Thus v(r + 1) = 0, and since y is excessive,

r

(8.47) 	 v(i) > g(i) _ 
	j(j + l) v{ j),j =i +1

1 <i < r.

By Theorem 8.10, v is the smallest function satisfying (8.47) and L(i) >_ f(i) = i/r,
1 < i <r. Since (8.47) puts no lower limit on v(r), it follows that v(r) = f(r) = 1, and r
lies in the support set M. By minimality,

(8.48) 	 v(i) =max ( f(i), g(i)}, 	 1<i <r.

If i e M, then AO= v(i) > g(i)	 — 1) - 'f(j) 
=f (i))J .1 1(! 

— 1) - ', and
hence Ej ; i(j — 1) - ' < 1. On the other hand, if this inequality holds arid i + 1,..., r
all lie in M, then g(i)= E;_, +1 /7"'(j — 1) - 'f(j) = f(i)E;_i+i(j — 0-I f(i), so that
i E M by (8.48). Therefore, M = (s r , i t + 1, .. , r, r + 1), where i t is determined by

(8.49) 	
Jrl + i +1 

+... f r l l <1< i l  1 	il 	r l l r 	 r 	 r

If i < i r , so that i M, then v(i) > f(i) and so, by (8.48),

ir _ 1 	r
U(0= 	 _ 	` 1)	 v M +E 	 1) f(i)

I 	 f 	 ,

!r -1 l 	 l 	 1 	 1 _ E 
,(,

-1)v(j)+ ^ ( i- 1 +... + r -1 ).
^= +1 	 1

It follows by backward induction starting with i = i t — 1 that

(8.50) 	 u(i) =p r =
i r 	1 	1 	1
r ( i r - 1 

^... + r -1)

is constant for 1 < i < i r .
In the selection problem as originally posed, X 1 = 1. The optimal strategy is to

stop with the first Xn that lies in M. The princess should therefore reject the first
i t — 1 suitors and accept the next one who is preferable to all his predecessors (is
dominant). The probability of success is pr as given by (8.50). Failure can happen in
two ways. Perhaps the first dominant suitor after i t is not the best of all suitors; in this
case the princess will be unaware of failure. Perhaps no dominant suitor comes after
i r , in this case the princess is obliged to take the last suitor of all and may be well
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aware of failure. Recall that the problem was to maximize the chance of getting the
best suitor of all rather than, say, the chance of getting a suitor in the top half.

If r is large, (8.49) essentially requires that log r — log i t be near 1, so that i t r/e.
In this case, p, = 1/e.

Note that although the system starts in state 1 in the original problem, its
resolution by means of the preceding theory requires consideration of all possible
initial states. •

This theory carries over in part to the case of infinite S, although this
requires the general theory of expected values, since f(X T ) may not be a
simple random variable. Theorem 8.10 holds for infinite S if the payoff
function is nonnegative and the value function is finite.t But then problems
arise: Optimal strategies may not exist, and the probability of hitting the
support set M may be less than 1. Even if this probability is 1, the strategy of
stopping on first entering M may be the worst one of all.t

PROBLEMS

8.1. Prove Theorem 8.1 for the case of finite S by constructing the appropriate
probability measure on sequence space S°°: Replace the summand on the right
in (2.21) by au, pu o , ' " pun _ ,u,,, and extend the arguments preceding Theorem
2.3. If X,,(•) = z„(•), then X 1 , X2,. . is the appropriate Markov chain (here
time is shifted by 1).

8.2. Let Y0 , Y ) , ... be independent and identically distributed with P[Y, r = 1] = p,
P[YY = 01= q = 1 — p, p # q. Put X„ = Y„ + Yn+ 1 (mod 2). Show that X0 , X l , .. .
is not a Markov chain even though P[X i+1 = jI X„_ 1 = i1= P[Xr+1 = j1. Does
this last relation hold for all Markov chains? Why?

8.3. Show by example that a function f(X 0 ), f(X 1 ),... of a Markov chain need not
be a Markov chain.

8.4. Show that

co 	 co CO

Jij E Pjj ) = E E fl
jm)p^^ -m) = E el)

k-0	 n=1 m=1 	n = 1

and prove that if j is transient, then En pfd ) <00 for each i (compare Theorem
8.3(i)). If j is transient, then

	CO 	 CO

cn)	 c )1 + ^ p ”=	 pij
	n =1	 n=1

tThe only essential change in the argument is that Fatou's lemma (Theorem 16.3) must be used
in place of Theorem 5 4 in the proof of Lemma 5.
# See Problems 8 36 and 8.37
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Specialize to the case i = j: in addition to implying that i is transient (Theorem
8.2(1)), a finite value for )..R _  i p "} suffices to determine f,, exactly.

8.5. Call {x ;) a subsolution of (8.24) if x i < Eimi and 0 <x i < 1, i E U. Extending
Lemma 1, show that a subsolution {x ;} satisfies x ; < o : The solution (o-i) of
(8.24) dominates all subsolutions as well as all solutions. Show that if x ; = E; q;^x^
and —1 <x 1 < 1, then (14} is a subsolution of (8.24).

8.6. Show by solving (8.27) that the unrestricted random walk on the !ine (Example
8.3) is persistent if and only if p =

8.7. (a) Generalize an argument in the proof of Theorem 8.5 to show that fik
Pik + Ei * k P;; f k . Generalize this further to

fik - fikl) + • • +.01,n )

+ E Pi[X, k,...,Xn_1#k,Xn—jlf,k
j ^ k

(b) Take k =i. Show that f,> 0 if and only if /IX,1 
X  = j} > 0 for some n, and conclude that i is transient if and only if f̂ i < 1 for
some j # i such that fii > O.
(c) Show that an irreducible chain is transient if and only if for each i there is a
j i such that f ; < 1.

8.8. Suppose that S = {0,1, 2, ... }, p oo = 1, and f10 > 0 for all i.
(a) Show that P;(U =1 [Xn =i i.o.]) = 0 for all i.
(b) Regard the state as the size of a population and interpret the conditions
poo = 1 and fio > 0 and the conclusion in part (a).

8.9. 8.51' Show for an irreducible chain that (8.27) has a nontrivial solution if and
only if there exists a nontrivial, bounded sequence (xi) (not necessarily nonnega-
tive) satisfying x i = E p; x i i o . (See the remark following the proof of
Theorem 8.5.)

8.10. 1' Show that an irreducible chain is transient if and only if (for arbitrary i o )
the system y i = Ei pij yj , i # i o (sum over all j), has a bounded, nonconstant
solution (y; , i E S),

8.11. Show that the Pi-probabilities of ever leaving U for i E U are the minimal
solution of the system.

(8.51)
z; _ E P,, z! + E P;; 

;Et) 	jœU

0 < zi 51,

i E U,

i EU.

The constraint z i < 1 can be dropped: the minimal solution automatically
satisfies it, since z ; = 1 is a solution.

8.12. Show that sup ;j n o(i, j) = co is possible in Lemma 2.
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8.13. Suppose that (7r 1) solves (8.30), where it is assumed that EIir ; I < Go, so that the
left side is well defined. Show in the irreducible case that the Tr ; are either all
positive or all negative or all 0. Stationary probabilities thus exist in the
irreducible case if and only if (8.30) has a nontrivial solution (Tr ;} (E ;Tr1
absolutely convergent).

8.14. Show by example that the coupled chain in the proof of Theorem 8.6 need not
be irreducible if the original chain is not aperiodic.

8.15. Suppose that S consists of all the integers and

Po,-1 P0.0 =P0,+ = 4,

Pk,k -1 = q7 Pk,k +1 = P )

Pk,k -1 - P3 Pk,k +I = q ,

k< -1,

k >>- 1.

Show that the chain is irreducible and aperiodic. For which p's is the chain
persistent? For which p's are there stationary probabilities?

8.16. Show that the period of j is the greatest common divisor of the set

(8.52) 	 [n: n >_ 1, f;(; ) > 0].

8.17. T Recurrent events, Let f 1 , f2 , ... be nonnegative numbers with f = En
1. Define u I , u 2 , .. , recursively by u I = fl and

(8.53)	 u,, = f1un- + ... +fir_ lu1 + fn .

(a) Show that f< 1 if and only if En un < œ.
(b) Assume that f= 1, set µ = = 1 nfn , and assume that

(8.54) 	 gcd[n: n >_ 1, f">0] =1.

Prove the renewal theorem. Under these assumptions, the limit u = lim n u,,
exists, and u> 0 if and only if pt < oœ, in which case u = 1/µ.

Although these definitions and facts are stated in purely analytical terms,
they have a probabilistic interpretation: Imagine an event d' that may occur at
times 1, 2, .... Suppose fn is the probability W occurs first at time n. Suppose
further that at each occurrence of W the system starts anew, so that f" is the
probability that W next occurs n steps later. Such an W is called a recurrent
event. If un is the probability that W occurs at time n, then (8.53) holds. The
recurrent event W is called transient or persistent according as f < 1 or f =1, it
is called aperiodic if (8.54) holds, and if f =1, µ is interpreted as the mean
recurrence time

8.18. (a) Let T be the smallest integer for which XT = i o . Suppose that the state space
is finite and that the p;1 are all positive. Find a p such that max ;(1 — p110 ) s p < 1
and hence P;[T > n] s p" for all i.
(b) Apply this to the coupled chain in the proof of Theorem 8.6: I P;k 

— p I s
p". Now give a new proof of Theorem 8.9.



{Yi_ E P;jY, + E Pip
 i E T,

JE 	 jEC

0 <y,sl,	 i E T.
(8.55)
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8.19. A thinker who owns r umbrellas wanders back and forth between home and
office, taking along an umbrella (if there is one at hand) in rain (probability p)
but not in shine (probability q). Let the state be the number of umbrellas at
hand, irrespective of whether the thinker is at home or at work. Set up the
transition matrix and find the stationary probabilities. Find the steady-state
probability of his getting wet, and show that five umbrellas will protect him at
the 5% level against any climate (any p).

8.20. (a) A transition matrix is doubly stochastic if E ; p = 1 for each j. For a finite,
irreducible, aperiodic chain with doubly stochastic transition matrix, show that
the stationary probabilities are all equal.
(b) Generalize Example 8.15: Let S be a finite group, let p(i) be probabilities,
and put p ; j = p() • i I ), where product and inverse refer to the group operation.
Show that, if all p(i) are positive, the states are all equally likely in the limit.
(c) Let S be the symmetric group on 52 elements. What has (b) to say about
card shuffling?

8.21. A set C in S is closed if E i E c p; j = 1 for i E C: once the system enters C it
cannot leave. Show that a chain is irreducible if and only if S has no proper
closed subset.

8.22. T Let T be the set of transient states and define persistent states i and j (if
there are any) to be equivalent if f;,› O. Show that this is an equivalence
relation on S — T and decomposes it into equivalence classes C1, C2 , ... , so that
S= TUC ' U C2 U • • Show that each Cm is closed and that f j = 1 for i and j
in the same Cm .

8.23. 8.11 8.21 1' Let T be the set of transient states and let C be any closed set of
persistent states. Show that the P;-probabilities of eventual absorption in C for
i E T are the minimal solution of

8.24. Suppose that an irreducible chain has period t > 1. Show that S decomposes
into sets So ,..., S, _ 1 such that p.1 > 0 only if i e S„ and j E S„+ 1 for some y
(v + 1 reduced modulo t). Thus the system passes through the S„ in cyclic
succession.

8.25. T Suppose that an irreducible chain of period t > 1 has a stationary distribu-
tion (irj), Show that, if i E S i, and j E S„+a (y + a reduced modulo t), then
lim n p j `+a) _ irj . Show that lim n n -  p;n^ _'rj/t for all i and j.

8.26. Eigenvalues. Consider an irreducible, aperiodic chain with state space (1, .. , s).
Let r0 = (7r 1 ,...,vs ) be (Example 8.14) the row vector of stationary probabili-
ties, and let c o be the column vector of l's; then r0 and c o are left and right
eigenvectors of P for the eigenvalue A = 1.
(a) Suppose that r is a left eigenvector for the (possibly complex) eigenvalue A:
rP = Ar. Prove: If A = 1, then r is a scalar multiple of ro (A = 1 has geometric
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multiplicity 1). If A # 1, then IAI < 1 and rco = 0 (the 1 x 1 product of 1 x s and
s X 1 matrices).
(b) Suppose that c is a right eigenvector: Pc = Ac. If A = 1, then c is a scalar
multiple of co (again the geometric multiplicity is 1). If A # 1, then again (A I < 1,
and roc- 0.

8.27. T Suppose P is diagonalizable; that is, suppose there is a nonsingular C such
that C - 'PC = A, where A is a diagonal matrix. Let A 1 , ... , A s be the diagonal
elements of A, let c ... , c s be the successive columns of C, let R =C -1 ,  and
let r 1 , ... , rs be the successive rows of R.
(a) Show that c ; and r; are right and left eigenvectors for the eigenvalue A ; ,
i = 1, ..., s. Show that r;ci = 6 ;f . Let A i = c l r; (s X s). Show that A" is a diagonal
matrix with diagonal elements AI, ...  As and that P" = CA"R = Es, l Anii A u ,n >_ 1.
(b) Part (a) goes through under the sole assumption that P is a diagonalizable
matrix. Now assume also that it is an irreducible, aperiodic stochastic matrix,
and arrange the notation so that A i = 1. Show that each row of A 1 is the vector
(7r 1 , ... , vs ) of stationary probabilities. Since

(8.56)
s

P" =A, + E AûA„
u = 2

and I A u I < 1 for 2 < u < s, this proves exponential convergence once more.
(c) Write out (8.56) explicitly for the case s = 2.
(d) Find an irreducible, aperiodic stochastic matrix that is not diagonalizable.

8.28. T (a) Show that the eigenvalue A = 1 has geometric multiplicity 1 if there is
only one closed, irreducible set of states; there may be transient states, in which
case the chain itself is not irreducible.
(b) Show, on the other hand, that if there is more than one closed, irreducible
set of states, then A = 1 has geometric multiplicity exceeding 1.
(c) Suppose that there is only one closed, irreducible set of states. Show that
the chain has period exceeding 1 if and only if there is an eigenvalue other than
1 on the unit circle.

8.29. Suppose that {X"} is a Markov chain with state space S, and put Y = (X", X"+1).
Let T be the set of pairs (i, j) such that p r1 > 0 and show that {Y"} is a Markov
chain with state space T. Write down the transition probabilities. Show that, if
(X"} is irreducible and aperiodic, so is (Y"}. Show that, if are stationary
probabilities for (X„), then Tr; po are stationary probabilities for {Y"}.

8.30. 6.10 8.29 T Suppose that the chain is finite, irreducible, and aperiodic and
that the initial probabilities are the stationary ones. Fix a state i, let A = [X, =

and let N” be the number of passages through i in the first n steps. Calculate
an and fi" as defined by (5.41). Show that /3" - an = D(1 /n), so that n -11%;,—> Tr;

with probability 1. Show for a function f on the state space that n - 'Ek =i f(Xk )
—) E ; ir ; f(i) with probability 1. Show that n - 'Ek-ig(Xk , Xk+I) —
E11 irrP l1 g(i, j) for functions g on S X S.
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8.31. 6.14 8.301 If X0 (01) = j 0 • , X,,((.0)= i n for states i0,- - • , i,,, Put pn(w) =
Tr;ti pioi ,	 • p in _ j;, , so that pn(w) is the probability of the observation observed.
Show that —n - i log pn(w) —> h = — E r Tr; pif log p li with probability 1 if the
chain is finite, irreducible, and aperiodic. Extend to this case the notions of
source, entropy, and asymptotic equipartition.

8.32. A sequence {Xn) is a Markov chain of second order if P[Xn+ i =iI Xo =
i o ,..., Xn = i n ] = P[Xn+i =f I Xn_ i — i n _1, Xn = in] = pin -ry J. Show that noth-
ing really new is involved because the sequence of pairs (X n , Xn+ i ) is an
ordinary Markov chain (of first order). Compare Problem 8.29. Generalize this
idea into chains of order r.

8.33. Consider a chain on S = {0,1, .., r), where 0 and r are absorbing states and
;+ i =p1 > 0, PH _ = qi = 1—p 1 > 0 for 0 < i < r. Identify state i with a point

z 1 on the line, where 0 = zo < • • . < z r and the distance from z i to zr+ 1 is qr/p;
times that from z•_ 1 to z r. Given a function cp on S, consider the associated
function cp on [0, z r ] defined at the z ; by (p(z,) = cp(i) and in between by linear
interpolation. Show that cp is excessive if and only if cp is concave. Show that
the probability of absorption in r for initial state i is t ; _ i /t r _ i , where t ;

Ek=oqi • • qk /pi • pk. Deduce (7.7). Show that in the new scale the expected
distance moved on each step is 0.

8.34. Suppose that a finite chain is irreducible and aperiodic. Show by Theorem 8.9
that an excessive function must be constant.

8.35. A zero-one law. Let the state space S contain s points, and suppose that
En = sup ra el) — Tri I —, 0, as holds under the hypotheses of Theorem 8.9. For
a <b, let jab be the o-field generated by the sets [ Xa = u a , .. . , X  = ub ] •

Let 	 b ^ a gab ) and 5= f1 a i .l. Show that I P(A n B) — P(A)P(B)I
s(E + Eb+n) for A e so and B e .#bb, m; the Eb+n can be suppressed if the
initial probabilities are the stationary ones. Show that this holds for A E So
and B e 	 +n. Show that C E Y implies that P(C) is either 0 or 1.

8.36 1 Alter the chain in Example 8.13 so that qo = 1 —p o = 1 (the other pi and qr still
positive). Let (3= lim n pi pn and assume that R > 0. Define a payoff func-
tion by f(0)=  1 and f(i) = 1 --fro for i > 0. If X0 , ... , Xn are positive, put
orn = n; otherwise let an be the smallest k such that Xk = 0. Show that
E;[ f(XQ )1—> 1 as n -, co, so that v(i)=--- 1. Thus the support set is M= {0}, and
for an initial state i> 0 the probability of ever hitting M is fro < 1.

For an arbitrary finite stopping time T, choose n so that Pr[T < n =an] > 0.
Then Er[ f(X,r )] < 1 --fr+n , o P;[T < n = o'n ] < 1. Thus no strategy achieves the
value v(i) (except of course for i = 0).

8.37. Let the chain be as in the preceding problem, but assume that R = 0, so
that fro = 1 for all i. Suppose that A i, A 2 , ... exceed 1 and that A l • • • A n —> A <
ocp; put f(0) = 0 and f(i)=A 1 • • • A i _ dp i • • • p 1. For an arbitrary (finite)
stopping time T, the event [T = n] must have the form [(X0 ,..., Xn ) E In ] for
some set In of (n + 1)-long sequences of states. Show that for each i there is at

tThe final three problems in this section involve expected values for random variables with
infinite range.
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most one n> 0 such that (i, i + 1,... , i + n) E I,, . If there is no such n, then
Ei[ f(X,r )] = O. If there is one, then

Ei[f(XT)] =Pi[(X0,. . , X,,) =(i , ... , i+n)]f(i+ n),

and hence the only possible values of E ; [f(XT )] are

0, f(i) , pif(i+ 1 )=f(l)A 1 , Pipi+lf(i + 2 )=f(i)A1Ai+1 , ....

Thus v(i) =f(i)AA • • A i _, for i > 1; no strategy this value. The support set
is M= (0), and the hitting time T o for M is finite, but Ei[ f(XT0 )] = O.

8.38. 5.121 Consider an irreducible, aperiodic, positive persistent chain. Let Ti be
the smallest n such that Xn = j, and let m il = Ei[Ti]. Show that there is an r
such that p = P1[X, # j, . .. , Xr _, j, X,. = i] is positive; from fin+ r ) > pfiin) and

m in <00, conclude that m il < op and nc ii = En Pi[T, > n]. Starting from e r =
r 	 (s) (r  -s)E S _ 1 f;i p^^ ,show that

n 	 n

E (P»)-Pli))  	 (n -n^) r
  - 1 	E r^jj 	PiLTi > m ^.

r =1	 m = 0

Use the M-test to show that

CO

7r• i • = 1 + 	(e.)-  (n )) 

•>m > 	 pli
n=1

If i =j, this gives m il = 1/7ri again; if i # j, it shows how in principle mil can be
calculated from the transition matrix and the stationary probabilities.

SECTION 9. LARGE DEVIATIONS AND THE LAW
OF THE ITERATED LOGARITHM*

It is interesting in connection with the strong law of large numbers to
estimate the rate at which Sn/n converges to the mean m. The proof of the
strong law used upper bounds for the probabilities PH S„Sn — ml >_ a] for large
a. Accurate upper and lower bounds for these probabilities will lead to
the law of the iterated logarithm, a theorem giving very precise rates for
Sn /n ---> m.

The first concern will be to estimate the probability of large deviations
from the mean, which will require the method of moment generating func-
tions. The estimates will be applied first to a problem in statistics and then to
the law of the iterated logarithm.

`This section may be omitted
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Moment Generating Functions

Let X be a simple random variable asssuming the distinct values x 1 ,..., x^
with respective probabilities p p ...,, p r . Its moment generating function is

r
(9.1)	 M(t) = E[e'x ] _ E

i=1

(See (5.19) for expected values of functions of random variables.) This
function, defined for all real t, can be regarded as associated with X itself or
as associated with its distribution—that is, with the measure on the line
having mass p ; at x ; (see (5.12)).

If c max r  I x i I, the partial sums of the series e'x = Ek= o t kX k/k! are
bounded by el'l`, and so the corollary to Theorem 5.4 applies:

(9.2)
k

M(t) = E k^ E[Xk].
k--0

Thus M(t) has a Taylor expansion, and as follows from the general theory
[A291, the coefficient of t k must be Mc k >(0)/k! Thus

(9.3)	 E[Xk] = M ( k )(0).

Furthermore, term-by-term differentiation in (9.1) gives

Muo(t ) _ E prxke`a•=E[Xke`x];
i -t

taking t = 0 here gives (9.3) again. Thus the moments of X can be calculated
by successive differentiation, whence M(t) gets its name. Note that M(0) = 1.

Example 9.1. If X assumes the values 1 and 0 with probabilities p and
q =1 — p, as in Bernoulli trials, its moment generating function is M(t)_
peg + q. The first two moments are M`(0) = p and M"(0) =p, and the
variance is p — 19 2 = pq. 	 ■

If X, ... , X„ are independent, then for each t (see the argument follow-
ing (5.10)), e' x^, ... , e'x^ are also independent. Let M and M 1 , ... , M be the
respective moment generating functions of S = X 1 + • • +X„ and of
X 1 , ... , X„; of course, e'S = II ; e' xj. Since by (5.25) expected values multiply
for independent random variables, there results the fundamental relation

(9.4)	 M(t) =WO ••• M„(t).
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This is an effective way of calculating the moment generating function of
the sum S. The real interest, however, centers on the distribution of S, and
so it is important to know that distributions can in principle be recovered
from their moment generating functions.

Consider along with (9.1) another finite exponential sum N(t)-- E;gi e`YJ,
and suppose that M(t) --= N(t) for all t. If X. = max x i and y10 = max y1 , then
M(t) plüe'xro and N(t) ^' g1üe`Y'0 as t ---) co, and so x10 = y!a and p.ü = qiü. The
same argument now applies to Ei ,;o p; e'x' = E, # foqi e'Y', and it follows induc-
tively that with appropriate relabeling, x, = y i and p! = qi for each i. Thus
the function (9.1) does uniquely determine the x ; and pi .

Example 9.2. If X 1 , ... , X„ are independent, each assuming values 1 and
0 with probabilities p and q, then S =X 1 +  • • • +X,, is the number of
successes in n Bernoulli trials. By (9.4) and Example 9.1, S has the moment
generating function

n

E[e's] = ( pe' +q) n = E ( fl ) pkqn _kelk
.

k

The right-hand form shows this to be the moment generating function of a
distribution with mass ( ; )pq n1 -k at the integer k, 0 S k :5n.  The uniqueness

just established therefore yields the standard fact that P[S = k 1= (n)pkqnk

•
The cumulant generating function of X (or of its distribution) is

(9.5) 	 C(t) = log M(t) = log E[e'X ]

(Note that M(t) is strictly positive.) Since C' = M'/M and C" _ (MM" —
(M') 2 )/M 2 , and since M(0) = 1,

(9.6) 	 C(0) = 0, 	 C'(0) = E[X ],	 C"(0) = Var[X].

Let mk = E[ X k 1. The leading term in (9.2) is m 0 = 1, and so a formal
expansion of the logarithm in (9.5) gives

00 	 1 L^- ^	 ^ m
(9.7) 	 C(t)= E( 	) 	E k ^t k ) •

u =1	 k=1

k=0

Since M(t) —* 1 as t -40, this expression is valid for t in some neighborhood
of 0. By the theory of series, the powers on the right can be expanded and
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terms with a common factor t` collected together. This gives an expansion

(9.8)
^

go=) _ E lf t',
^=1

valid in some neighborhood of 0.
The c i are the cumulants of X. Equating coefficients in the expansions

(9.7) and (9.8) leads to c  E = m 1 and c 2 = m 2 — m 21 , which checks with (9.6).
Each ci can be expressed as a polynomial in m 1 , ... , m i and conversely,
although the calculations soon become tedious. If E[X] = 0, however, so that
m 1 = c i* = 0, it is not hard to check that

(9.9) 	C3= m 3 , 2
C 4 = m 4 _ 3m2

Taking logarithms converts the multiplicative relation (9.4) into the addi-
tive relation

	(9.10)	 C(t) = C 1 (t) + • • • +C,,(t)

for the corresponding cumulant generating functions; it is valid in the
presence of independence. By this and the definition (9.8), it follows that
cumulants add for independent random variables.

Clearly, M"(t) = E[X 2e' X ] >_ 0. Since (M'(t)) 2 = E 2 [Xe' X ] < E[e" 1 •
E[X 2e'X ] = M(t)M"(t) by Schwarz's inequality (5.36), C"(t) > 0. Thus the
moment generating function and the cumulant generating function are both
convex.

Large Deviations

Let Y be a simple random variable assuming values y1 with probabilities pi .
The problem is to estimate P[Y >— a] when Y has mean 0 and a is positive. It
is notationally convenient to subtract a away from Y and instead estimate
P[ Y > 0] when Y has negative mean.

Assume then that

	(9.11)	 E[Y] <0, 	 P[Y> 0] > 0,

the second assumption to avoid trivialities. Let M(t) = E, p; e'Yi be the
moment generating function of Y. Then M'(0) <0 by the first assumption in

M (t)

1
P  

)m- t  
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(9.11), and M(t) 	 co as t oo by the second. Since M(t) is convex, it has its
minimum p at a positive argument T:

(9.12) 	 inf M(t) =M(T) = p, 	 0 <p < 1, r> 0.

Construct (on an entirely irrelevant probability space) an auxiliary random
variable Z such that

(9.13)
eTYj

P[Z=y;] = 
	

P[Y=y; ]

for each y1 in the range of Y. Note that the probabilities on the right do add
to 1. The moment generating function of Z is

T y^	 !
= e

p 	 M^ P+ t 
(9.14) 	 E[e`z]	 ^

1

and therefore

(9.15)
E[Z] = M'(T) = 0, 	 s 2 = E[Z Z 1 = 

M"(T)
 ) > 0.

p 	 p

For all positive t, P[Y> 0] = P[e` Y >_ 11 _s M(t) by Markov's inequality
(5.31), and hence

(9.16) 	P[Y>_ 0] _< p.

Inequalities in the other direction are harder to obtain. If E' denotes
summation over those indices j for which y1 > 0, then

(9.17) 	 P[Y>_ 0] _ r p; =p E'e - TY'Pf Z =3;1.

Put the final sum here in the form e', and let p = P[ Z >_ 01. By (9.16), 0 > O.
Since log x is concave, Jensen's inequality (5.33) gives

—B = log E'e - TYfp -IP[Z = y; ] + log p
r(—Ty; )P - '11Z=y; ] +logp

1	 ^ y;
= — Tsp - E s P^Z = y; ]+ log p.

By (9.15) and Lyapounov's inequality (5.37),

E s' P[Z =y1 ] < s E[^Z^] < TEL/2[z21 = 1.
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The last two inequalities give

(9.18)	 0 
B P[Z> 0] log P[Z >_ 0].

This proves the following result.

Theorem 9.1. Suppose that Y satisfies (9.11). Define p and T by (9.12), let
Z be a random variable with distribution (9.13), and define s 2 by (9.15). Then
P[ Y >_ 01= p e - 8 , where 0 satisfies (9.18).

To use (9.18) requires a lower bound for P[ Z >_ 01.

Theorem 9.2. If E[Z] = 0, E[Z 2 ] = s 2 , and E[Z 4 ] _ e4 > 0, then P[Z >_ 0]
>_s 4/40. 1

PROOF. Let Z+=Z1[z , o] and Z - = —ZI[z7 , o]. Then Z + and Z - are
nonnegative, Z = Z + — Z - , Z 2 = ( Z + ) 2 + (Z - Y2 , and

(9.19)	 s2 = E[(Z + ) 2] + E[(Z - ) 2 ] .

Let p = P[Z >_ 01. By Schwarz's inequality (5.36),

E (Z
+) z _— E[I[z >o]Z21

<E1/2[1[z0]]E1/2[Z4] =p1/20 .

By Holder's inequality (5.35) (for p = i and q = 3)

Er(Z - ) 2] =E[(Z - ) 2/3(Z ) 4/3 J
< E2/3[Z-1E1/3[(Z- )1 <E2/3[z-R4/3.

Since E[Z] = 0, another application of Holder's inequality (for p = 4 and
4

9= 1) gives

E[Z - ] =E[Z+] =E[ZI[zzo11

<E 1 /4 [Z 4 ]E 3/4 [1[4i>0]] — Sp 3 /4 .

Combining these three inequalities with (9.19) gives s2 < p1/22 +
( 3/4 )2/34/3 = 2p 112e 2	 ■

/ For a related result, see Problem 25.19.
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Chernoff's Theoremt

Theorem 9.3. Let X 1 , X2, ... be independent, identically distributed simple
random variables satisfying E[X"] < 0 and P[X" > 01> 0, let M(t) be their
common moment generating function, and put p = inf l M(t). Then

(9.20) Lim 1 log P[ X 1 + • • • +X" >_ 0] = log p.
n g oo n

PROOF. Put Y = X 1 + • • +X". Then E[Y ] < 0 and P[Y, > 0] >_
P"[ X 1 > 01> 0, and so the hypotheses of Theorem 9 1 are satisfied. Define
p/1 and r" by inf, M(t) = M„(Tn ) = p n , where M"(t) is the moment generating
function of Y. Since M (t) = M"(t), it follows that p" = p" and T11 = T, where
M(T) =p.

Let Z" be the analogue for Y" of the Z described by (9.13). Its moment
generating function (see (9.14)) is M"(T + t)/p" _(M(T + t)/p)". This is also
the moment generating function of V 1 + • • • + V" for independent i andom
variables V1 , ... , V" each having moment generating function M(T + t)/p.
Now each V has (see (9.15)) mean 0 and some positive variance 0- 2 and
fourth moment el independent of i. Since Z,, must have the same moments
as V1 + • • • + V", it has mean 0, variance sn = no-2, and fourth moment

= n
e + 3n(n — 00.4 = O(n 2 ) (see (6.2)). By Theorem 9.2, P[Zn >_ 01

4/46n >_ a for some positive a independent of n, By Theorem 9.1 then,
P[Y,, > 01= p"e -8», where 0 < On < T"s"a --1 ` log a = Ta - 1 01r — log a. This
gives (9.20), and shows, in fact, that the rate of convergence is 

^
0(n - 1 /2 ). •

This result is important in the theory of statistical hypothesis testing. An informal
treatment of the Bernoulli case will illustrate the connection.

Suppose S" = X 1 + • • • +X", where the X; are independent and assume the values
1 and 0 with probabilities p and q. Now P[S, z na] = P[Ek, (Xk — a) Z 01, and
Chernof 's theorem applies if p < a < 1. In this case MO) = E[e' ( ^l - Q) ] = e -142(pe 1 +
q). Minimizing this shows that the p of Chernoff's theorem satisfies

—log p=K(a,p)=a log P +b log q ,

where b =1 — a. By (9.20), n - 1 log P[S 	 na] -, — K(a, p); express this as

(9.21)	 P[ Sn 	e - "x(Q.°).

Suppose now that p is unknown and that there are two competing hypotheses
concerning its value, the hypothesis H 1 that p =p 1 and the hypothesis 112 that

This theorem is not needed for the law of the iterated logarithm, Theorem 9.5.
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p = P2, where p i <p 2 .
one decides in favor of
number satisfying p i <
threshold a.

By (9.21),

Given the observed results X 1 , . . , X" of n Bernoulli trials,
H2 if S" > na and in favor of H 1 if Sn < na, where a is some
a <13 2 . The problem is to find an advantageous value for the

(9.22) P[Sn>naIH1] ^ e- nK(a.Po
,

where the notation indicates that the probability is calculated for p =p i —that is,
under the assumption of H i . By symme-try,

(9 23) P[S" <nalHz] — e -nK(a'P2).

The left sides of (9.22) and (9 23) are the probabilities of erroneously deciding in favor
of H2 when H 1 is, in fact, true and of erroneously deciding in favor of H 1 when H2

is, in fact, true—the probabilities describing the level and power of the test.
Suppose a is chosen so that K(a, p 1 ) -= K(a,p 2 ), which makes the two error

probabilities approximately equal. This constraint gives for a a linear equation with
solution

log(g1/q2) 
(9.24) a = a(p 1

, P2) — log(p2/p1) + log(g1/q2)

where q i —1 —pi The common error probability is approximately e - " K( °•p' ) for this
value of a, and so the larger K(a, p i ) is, the easier it is to distinguish statistically
between p i and p 2 .

Although K(a(p 1 , p2), p1) is a complicated function, it has a simple approximation
for p i near p 2 . As x—> 0, log(1 +x) = x — 2x 2 + 0(x 3 ). Using this in the definition of
K and collecting terms gives

2

(9.25)	 K(p +x, p) — 
2
pq +0(x 3 ), 	x—> O.

Fix p i —p, arid let p 2 =p + t; (9.24) becomes a function O(t) of t, and expanding the
logarithms gives

(9.26)	 t,fr(t) = p + 2t +0(t 2 ),	 t —> 0,

after some reductions. Finally, (9.25) and (9.26) together imply that

(9.27)
t 2

K(0(t),p) — 
Spq 

+0(t3),

In distinguishing p 1 —p from p 2 — p + t for small t, if a is chosen to equalize the
two error probabilities, then their common value is about e - "` 2/8". For t fixed, the
nearer p is to 2, the larger this probability is and the more difficult it is to distinguish
p from p + t. As an example, compare p = .1 with p = .5. Now .36nt 2 /8(.1)(.9)=
nt 2 /8(.5)(.5). With a sample only 36 percent as large, .1 can therefore be distin-
guished from .1 + t with about the same precision as .5 can be distinguished from
.5 + t.
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The Law of the Iterated Logarithm

The analysis of the rate at which Sn /ri approaches the mean depends on the
following variant of the theorem on large deviations.

Theorem 9.4. Let Sn = X 1 + • • • +Xn , where the Xn are independent and
identically distributed simple random variables with mean 0 and variance 1. If
an are constants satisfying

	(9.28)	 a,,--> CO,

then

	(9.29)	 [S,, > a n iTz] = e -a'i(1+Cn)/2

for a sequence l'n going to 0.

PROOF. Put Yn — Sn — a n Vt1 = E k=1(Xk — a n/&). Then E[Y,,] <0. Since
X I has mean 0 and variance 1, P[ X 1 > 01> 0, and it follows by (9.28)
that P[X 1 > a n /117d > 0 for n sufficiently large, in which case P[Yn > 0] >_
Pn[ X 1 ` a n // > 01> 0. Thus Theorem 9.1 applies to Yn for all large
enough n.

Let Mn(t), pn , Tn , and Zn be associated with Yn as in the theorem. If m(t)
and c(t) are the moment and cumulant generating functions of the Xn , then
Mn(t) is the nth power of the moment generating function e - '°n/11n m(t) of
X 1 — an / VW, and so Yn has cumulant generating function

(9.30) 	 Cn(t) = — ta n Ft nc(t).

Since Tn is the unique minimum of Cn(t), and since Cn(t) = —a n& +
nc'(t), Tn is determined by the equation c'(T n ) = a n/V . Since X 1 has mean
0 and variance 1, it follows by (9.6) that

(9.31) 	 c(0) = c'(0) = 0, 	 c"(0) = 1.

Now c'(t) is nondecreasing because c(t) is convex, and since c'(Tn ) = a n/&
goes to 0, Tn must therefore go to 0 as well and must in fact be O(a n / &).
By the second-order mean-value theorem for c'(t), a n/ & = c'( Tn ) = Tn +
O(T, ), from which follows

an
---> 0,

n

z
Tn = 

Y 
+ O a n

n	 n .(9.32)
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By the third-order mean-value theorem for c(t),

log pn = Cn(Tn) _ —Tn a n }(n + nc(T,,)

Tn a n ' "_ + n[ ZT , + 0 (T, )] .

Applying (9.32) gives

(9.33)	 log p n = — fa,n, + o(a,2,).

Now (see (9.14)) Zn has moment generating function Mn(T,, + t)/pn and
(see (9.30)) cumulant generating function Dn(t) = Cn(Tn + t) — log p n = — (T„

+ t)an y11 + nc(t + Tn ) -- log o,,. The mean of Z„ is Din(0) = 0. Its variance sn
is D"(0); by (9.31), this is

(9.34)	 s,^, = nc'"(Tn ) = n(c"(0) + O(T n )) = n(1 +0(1)).

The fourth cumulant of Zn is Dn"(0) = ne""(Tn ) = 0(n). By the formula (9.9)
relating moments and cumulants (applicable because E[Zn ] = 0), E[Zn] =
3s4n + Dn“(0). Therefore, E[ Zn ]/sn --' 3, and it follows by Theorem 9.2 that
there exists an a such that P[ Zn >_ 0] >_ a > 0 for all sufficiently large n.

By Theorem 9.1, P[Yn >— 0] = pn e -On with 0 5 On < Tn sn a -1 + log a. By
(9.28), (9.32), and (9.34), On = 0(an ) = o(a, ), and it follows by (9.33) that
P[Yn > 0] = e -

an( 1 +0( 1 ”/ 2. •

The law of the iterated logarithm is this:

Theorem 9.5. Let Sn = X 1 + . • • +Xn , where the Xn are independent,
identically distributed simple random variables with mean 0 and variance 1.
Then

(9.35) P lim sup
 Sn 

= 1 = 1.
n I2 n log log n

Equivalent to (9.35) is the assertion that for positive €

(9.36)
 

P[Sn >_ (1 + E)1/ 2n loglog n i.o.] = 0

and

(9.37)
	

P [ Sn > (1 — E) `/2n log log n i.o.] = 1.

The set in (9.35) is, in fact, the intersection over positive rational E of the sets
in (9.37) minus the union over positive rational E of the sets in (9.36).
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The idea of the proof is this. Write

(9.38) 	 4(n) = 1/2n loglog n .

If A,f = [Sr, >_ (1 + 04)(n)1, then by (9.29), P(An) is near (log  n) - (1 ±E )2. If
n k increases exponentially, say n k 8 k for 8 > 1, then P(A,) is of the order
k -

(1±e)z . Now Ekk
-(1±€)2 converges if the sign is + and diverges if the sign

is —. It will follow by the first Borel--Cantelli lemma that there is probability
0 that A k occurs for infinitely many k. In providing (9.36), an extra
argument is required to get around the fact that the An for n n k must also
be accounted for (this requires choosing 8 near 1). If the An were indepen-
dent, it would follow by the second Borel—Cantelli lemma that with probabil-
ity 1, Ank occurs for infinitely many k, which would in tarn imply (9.37). An
extra argument is required to get around the fact that the  A n-

k
 are dependent

(this requires choosing 8 large).
For the proof of (9.36) a preliminary result is needed. Put Mk

max{SO , S 1 , ... , Sk ), where So = O.

Theorem 9.6. If the Xk are independent simple random variables with
mean 0 and variance 1, then for a >_ 1,1 .

(9.39) 	 P{4 >a <2P Sn >_ a — 	 .

PROOF. If A i = [M, <a& < Mi l, then

M	 S 	 n- 1

P nn >_ ^r < P n̂ >— a — ^ + ^ P Ain 
VT/

<a — 2
Vn 	 Vn 	 I 	 V^

Since Sn — Si has variance n — j, it follows by independence and Chebyshev's
inequality that the probability in the sum is at most

[P A^ n [
!Sn

 S'^ > ÿ2

	

	Pi^P 1Sn S' I  ^1171 VW

<P(A;^ n2n, < z P(AA
Since U7 11A, c [Mn ? a^],

P
 Mn

 >a < P 
Sn

 > a— 	 + 2P 
Mn >

a . 	 •
^ 	 ^ 	 ^
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PROOF OF (9.36). Given E, choose 0 so that 0 > 1 but 02 < 1 + E. Let
n k = [0 k J and x k = 0(2 log log n k )'/2 . By (9.29) and (9.39),

P Mnk > xk < 2expf —z(xk-_ ^ ) (l ++01.
 1V k

where ek 0. The negative of the exponent is asymptotically 02 log k and
hence for large k exceeds ()log k, so that

Mn

P 
	kk

 >— 
x k < k e .

V k

Since 0 > 1, it follows by the first Borel—Cantelli lemma that there is
probability 0 that (see (9.38))

(9.40) 	 Mnk 
>_ 04(nk)

for infinitely many k. Suppose that n k _ 1 < n n k and that

(9.41) 	 Sn> (1 + E)0(n).

Now 0(n) >_ 0(n k _ 1 ) — ' 120(n k ); hence, by the choice of 0, (1 + 6)0(n) >
04(n k ) if k is large enough. Thus for sufficiently large k, (9.41) implies (9.40)
(if n k _ 1 < n < n k ), and there is therefore proability 0 that (9.41) holds for
infinitely many n. •

PROOF OF (9.37)
Take n k = 0 k . Now
a n = xk/1I  k — nk-

. Given E, choose an integer 0 so large that 30 -1 /2 < E.
n k — n k _ 1 co, and (9.29) applies with n = n k — n k _ I and
, where x k = (1 — 0 ')cp(n k ). It follows that

f I  	2

P [ Snk - Snk_^ >xk] =P [Sn k _ „k_i > xk] = exp 	
2 n xn 	(1 +4) ^r 	 k	 k-1

where k --^ 0. The negative of the exponent is asymptotically (1 — 8 - ')log k
and so for large k is less than log k, in which case P[Snk — Snk >_ x k ] >_ k - '
The events here being independent, it follows by the second Borel—Cantelli
lemma that with probability 1, S n — Sn>_ x k for infinitely many k. On the
other hand, by (9.36) applied to (-1(.,}k, - here t is probability 1 that —Snk I <
2 4(n k _ 1 ) < 20 - ' / 2¢(n k ) for all but finitely many k. These two inequalities
give Snk >— xk — 20 -'/2ç(nk) > (1 — E)4(n k ), the last inequality because of the
choice of 0. ■

That completes the proof of Theorem 9.5.
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PROBLEMS

9.1. Prove (6.2) by using (9.9) and the fact that cumulants add in the presence of
independence.

9.2. In the Bernoulli case, (9.21) gives

P[Sn >—np+x„]=exp[—nK(p+ n ,p)(1 +o(1))1,

where p <a <1 and x n = n(a — p). Theorem 9.4 gives

x 2
P[ S„>_ np + x„] = exp 	 „	 (1+0(1)) ,?. npq

where x„ = a„ npq . Resolve the apparent discrepancy. Use (9.25) to compare
the two expressions in case x n/n is small. See Problem 27.17.

9.3. Relabel the binomial parameter p as 0 = f(p), where f is increasing and
continuously differentiable. Show by (9.27) that the distinguishability of 0 from
d + AO, as measured by K, is (iO)2/8p(1 — p)(f'(p)) 2 + 00,0)3 . The leading
coefficient is independent of 0 if f(p) = aresin1.

9.4. From (9.35) and the same result for { —Xn }, together with the uniform bounded-
ness of the Xn, deduce that with probability 1 the set of limit points of the
sequence (Sn(2n log log n) -112 ) is the closed interval from —1 to + 1.

9.5. T Suppose Xn takes the values +1 with probability i each, and show that
P[Sn = 0 i.o.} = 1. (This gives still another proof of the persistence of symmetric
random walk on the line (Example 8.6).) Show more generally that, if the Xn are
bounded by M, then P[I Sn l <—M i.o.} = 1.

9.6. Weakened versions of (9.36) are quite easy to prove. By a fourth-
moment argument (see (6.2)), show that P[Sn > n 3/4(log n)01+ E"i.o.} = O. Use
(9.29) to give a simple proof that P[Sn > (3n log n)'/ 2 i.o.] = O.

9.7. Show that (9.35) is true if Sn is replaced by ISn I or max k , n Sk or max k s „ISk I.



CHAPTER 2

Measure

SECTION 10. GENERAL MEASURES

Lebesgue measure on the unit interval was central to the ideas in Chapter 1.
Lebesgue measure on the entire real line is important in probability as well
as in analysis generally, and a uniform treatment of this and other examples
requires a notion of measure for which infinite values are possible. The
present chapter extends the ideas of Sections 2 and 3 to this more general
setting.

Classes of Sets

The if-field of Borel sets in (0, 11 played an essential role in Chapter 1, and it
is necessary to construct the analogous classes for the entire real line and for
k-dimensional Euclidean space.

Example 10.1. Let x = (x 1 ,..., xk ) be the generic point of Euclidean
k-space R k . The bounded rectangles

(10.1) 	 [x = (x l ,...,xk ): a^ <x ; Sb; , i = 1,..., k]

will play in R k the role intervals (a, b] played in (0, 11. Let am be the Q-field
generated by these rectangles. This is the analogue of the class
of Borel sets in (0, 1]; see Example 2.6. The elements of  R k are the k-
dimensional Borel sets. For k = 1 they are also called the linear Borel sets.

Call the rectangle (10.1) rational if the a and b i are all rational. If G is an
open set in R k and y E G, then there is a rational rectangle Ay such that
y EA y c G. But then G = U y E GA y, and since there are only countably
many rational rectangles, this is a countable union. Thus R k contains the
open sets. Since a closed set has open complement, 9k also contains the
closed sets. Just as 2 contains all the sets in (0,1] that actually a rise in
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ordinary analysis and probability theory, 4, k contains all the sets in R k that
actually arise.

The 0--field R, k is generated by subclasses other than the class of
rectangles. If A n is the x-set where a ; <x < < b; + n -', i = 1, ... , k, then A n is
open and (10.1) is (-1 n A n . Thus Rk is generated by the open sets. Similarly, it
is generated by the closed sets. Now an open set is a countable union of
rational rectangles. Therefore, the (countable) class of rational rectangles
generates a k. •

The cr-field R' on the line R' is by definition generated by the finite
intervals. The cr-field a in (0,1] is generated by the subintervals of (0, 11. The
question naturally arises whether the elements of a are the elements of .Q'
that happen to lie inside (0, 11, and the answer is yes. If d is a class of sets in
a space SI and SZ,3 is a subset of SI, let sain n o = [ A n SZ o : A E an].

Theorem 10.1. (i) If 3 is a cr-field in SI, then .9n fl o is a o--field  in Ç.
(ii) If sad generates the o--field  ,9 in SI, then sain fl o generates the cr-field

3n n o in fl o : c(sadn fl o ) = o(d) n SI 0 .

PROOF. Of course SZ o = SZ n fl o lies in 37-n no. If B lies in Yn fl o , so
that B = A n n o for an A E ,9, then fl o - B = (SZ - A) n n o lies in .9n fl o .
If Bn lies in n fi o for all n, so that Bn =A n n fl o for an A n E 34-, then
U n Bn = (U n A n ) n S ° lies in Y-n SZ 0 . Hence part (i).

Let gro be the o--field do fl o generates in SZ,,. Since do n o c Yn f1 0
and ffl-n fi r, is a cr-field by part (1), 9 0̀ c 92n 11 e .

Now ,Fn fl o c ,90 will follow if it is shown that A E 	 implies A n n o
E .9 , or, to put it another way, if it is shown that 	 is contained in
,0 = [A C SZ: A n fl o E ,F0 1. Since A E sad implies that A n SZ Q lies in sain Si °
and hence in In fl o , it follows that .sac .9. It is therefore enough to show
that .9 is a o--field in n. Since SZ n n o = fi b lies in 5%, it follows that
SI E ,I. If A E ,#, then (fi - A) n fl o = fl o - (A n fl o ) lies in .moo and hence
SZ - A E .9. If A,, E .J for all n, then (U „A„) n n o = U n(A,, n fl o ) lies in
,F0 and hence U n A n E ,9.	 •

If SZ o E.9, then .9nSl o =[A: Acfl o , A E Y- ]. If SZ= R', n o = (0,11,
and ,F= a', and if sad is the class of finite intervals on the line, then do fi
is the class of subintervals of (0, 11, and a' = c(sain fl o ) is given by

(10.2) 	 a -IA: Ac(0,1],AE R ' ] .

A subset of (0,1] is thus a Borel set (lies in .) if and only if it is a linear
Borel set (lies in a'), and the distinction in terminology can be dropped.
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Conventions Involving co

Measures assume values in the set [0, cc] consisting of the ordinary nonnegative reals
and the special value co, and some arithmetic conventions are called for.

For x, y E [0,04 x < y means that y = co or else x and y are finite (that is, are
ordinary real numbers) and x <y holds in the usual sense. Similarly, x <y means that
y = cc and x is finite or else x and y are both finite and x <y holds in the usual
sense.

For a finite or infinite sequence x, x i , x 2 ,... in [0,04

(10.3) 	 X = 	 xk
k

means that either (i) x = co and x k = cc for some k, or (ii) x = co and x k < cc for all k
and Ek Xk is an ordinary divergent infinite series, or (iii) x < co and x k < co for all k
and (10.3) holds in the usual sense for E k X k an ordinary finite sum or convergent
infinite series. By these conventions and Dirichlet's theorem [A26], the order of
summation in (10.3) has no effect on the sum.

For an infinite sequence x, x 1 , x 2 ,... in [0,00],

(10.4) 	 xk T x

means in the first place that Xk < xk+1 <x and in the second place that either (i)
x < cc and there is convergence in the usual sense, or (ii) x k =cc for some k, or (iii)
x — cc and the xk are finite reals converging to infinity in the usual sense.

Measures

A set function µ on a field 	 in a is a measure if it satisfies these
conditions:

(i) µ( A ) E [0, co] for A e Y-;
(ii) 1,c(0) = 0;
(iii) if A I , A 2 , . . . is a disjoint sequence of Y-sets and if U k = 1 A k E ,F,

then (see (10.3))

( Û A k )11 (1.)   = E P.,( Ak ) •
k=] k -]

The measure g is finite or infinite as p.(fk) < co or p,(fI) = co; tiit is a
probability measure if kcal)  = 1, as in Chapter 1.

If 11= A 1 U A 2 U ... for some finite or countable sequence of Xsets
satisfying p,(A k ) < co, then p. is 6-finite. The significance of this concept will
be seen later. A finite measure is by definition a-finite; a a-finite measure
may be finite or infinite. If Y is a subclass of 	 , then p, is if-finite on sal if
fi = U k A k for some finite or infinite sequence of 	 sets satisfying j,(A k ) <
00. It is not required that these sets  Ak be disjoint. Note that if II is not a
finite or countable union of asets, then no measure can be Q-finite on  d. It
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is important to understand that if-finiteness is a joint property of the space
Si, the measure µ, and the class Y.

If µ is a measure on a cr-field 	 in SZ, the triple (fi, Y-, µ) is a measure
space. (This term is not used if 	 is merely a field.) It is an infinite, a
o--finite, a finite, or a probability measure space according as µ has the
corresponding property. If µ(A`) = 0 for an ..:set A, then A is a support of

and 	is concentrated on A. For a finite measure, A is a support if and
only if µ(A) = µ(SZ).

The pair (St, 9) itself is a measurable space if , is a Q-field in fi. To say
that µ is a measure on (Q, indicates clearly both the space and the class
of sets involved.

As in the case of probability measures, (iii) above is the condition of
countable additivity, and it implies finite additivity: If A 1 , ... , A„ are disjoint
✓=sets, then

n

N ^( i Ak )

 k l

As in the case of probability measures, if this holds for n = 2, then it extends
inductively to all n.

Example 10.2. A measure on (Q, 9`) is discrete if there are finitely or
countably many points w, in SZ and masses m ; in [0, co] such that µ(A) =
E. E AmE for A E .. It is an infinite, a finite, or a probability measure as
E lm i diverges, or converges, or converges to 1; the last case was treated in
Example 2.9. If .` contains each singleton {w 1}, then µ is o--finite if and only
if m i < 00 for all i •

Example 10.3. Let 	 be the 6-field of all subsets of an arbitrary fi, and
let µ(A) be the number of points in A, where µ(A) = œ if A is not finite.
This µ is counting measure; it is finite if and only if SZ is finite, and is o --finite
if and only if SZ is countable. Even if 	 does not contain every subset of fi,
counting measure is well defined on 	•

Example 10.4. Specifying a measure includes specifying its domain. If  µ
is a measure on a field .9 and .9 is a field contained in 	 , then the
restriction p 0 of  to Y-0 	also a measure. Although often denoted by the
same symbol, p Q is really a different measure from µ unless YQ = Y. Its
properties may be different: If µ is counting measure on the o --field . of all
subsets of a countably infinite i, then 	 is o--finite, but its restriction to the
v-field Yo = {0, SZ} is not o--finite. 	 •
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Certain properties of probability measures car ry over immediately to the
general case. First, is monotone: µ(A) < µ(B) if A c B. This is derived,
just like its special case (2.5), from µ(A) + µ(B - A) = µ(B). But it is
possible to go on and write µ(B -A) = µ(B) - µ(A) only if µ(B) < oo. If
µ(B) = oo and µ(A) < 00, then µ(B - A) = 00; but for every a E [0, poi there
are cases where µ(A) = ,p(B) = 00 and µ(B -A) = a. The inclusion-exclusion
formula (2.9) also carries over without change to .̀:sets of finite measure:

n
(10.5) 	 µ = E( A i) — E(AinA)+

( klAk )

	i

+(1)n+1µ(Al n
 ... n A n ).

The proof of finite subadditivzty also goes through just as before:

n 	 1I
µ U A k j ^ ^ µ ( Ak) ;

k=1 	 fJ 	 k=1

here the Ak need not have finite measure.

Theorem 10.2. Let p. be a measure on a field .9

(i) Continuity from below: If A n and A lie in Y- and A n T A, then t
µ(A n )T µ(A).

(ii) Continuity from above: If A n and A lie in Sr and A n ^, A, and if
µ(A 1 ) <00, then µ(An)•l µ(A).

(iii) Countable subadditivity: If A 1 , A Z , ... and U k 1 Ak lie in Y -, then

W 	 ^

µ
( klAk )

 k =]

(iv) If p. is Œ-finite on ^, then 3 cannot contain an uncountable, disjoint
collection of sets of positive µ-measure.

PROOF. The proofs of (i) and (iii) are exactly as for the corresponding
parts of Theorem 2.1. The same is essentially true of (ii): If p,(24 1 )< 00,
subtraction is possible and A 1 - A n T A 1 - A implies that µ(A 1 ) - µ(A n )

µ{A1 - An)T µ(A1 - A)=µ(A1) - µ(A).
There remains (iv). Let [Bo : 8 E 01 be a disjoint collection of .=sets

satisfying µ(BB ) > 0. Consider an ✓9 set A for which µ(A) < 00. If O D ...,, 8n
are distinct indices satisfying µ(A n Be ) >_ E > 0, then ne < En- j µ(A n Be )
< µ(A), and so n < µ(A)/E. Thus the index set [0: µ(A n BB) > E] is finite,

tSee (10.4).
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and hence (take the union over positive rational €) [0: µ(A n Be) > 01 is
countable. Since µ is a-finite, SZ = U k A k for some finite or countable
sequence of .=sets Ak satisfying µ(A k ) < oo. But then Ok = [0: IAA  n Be )
> 0] is countable for each k. Since µ(B9) > 0, there is a k for which
µ(A k n B9 ) > 0, and so O = Uk Ok: O is indeed countable. •

Uniqueness

According to Theorem 3.3, probability measures agreeing on a Tr-system (9
agree on ((9). There is an extension to the general case.

Theorem 10.3. Suppose that ^1 and µ 2 are measures on o- 9), where .9
is a 7-system, and suppose they are 6-finite on Y. If p and µ 2 agree on .9,
then they agree on o-(9).

PROOF. Suppose that B E 9 and p. 1(B)  = p. 20) < oo, and let B̂ be
the class of sets A in o(9) for which µ 1(B n A) = µ 2(B n A). Then .4 is a
A-system containing 9 and hence (Theorem 3.2) containing o-(9).

By Q-finiteness there exist £sets Bk satisfying D. = U k Bk and jr, 1(Bk ) =

µ2(Bk) < oo. By the inclusion-exclusion formula (10.5),

n

a U (Bi nA) = E µ a (Bi n A) — E µ a (Bi n B1 nA) + •
i =1	 1 ÇiÇn 	 1 çi <j çn

for a = 1,2 and all n. Since 9 is a 7r-system containing the Bi , it contains
the B i n B and so on. For each o-(9)-set A, the terms on the right above
are therefore the same for a = 1 as for a = 2. The left side is then the same
for a = 1 as for a = 2; letting n --•- co gives µ 1(A) = µ 2(A). •

Theorem 10.4. Suppose A l and 11 2 are finite measures on o-(9), where ,.93

is a •rr-system and SZ is a finite or countable union of sets in 9. If µ1 and µ 2

agree on 9, then they agree on o-(9).

PROOF. By hypothesis, SZ = U k Bk for £sets Bk, and of course
µa(Bk) µa((1) < 0, a = 1, 2. Thus µl and µ2 are Q-finite on .9, and
Theorem 10.3 applies. •

Example 10.5. If 9 consists of the empty set alone, then it is a Tr-system
and a(Y) — {0, SZ}. Any two finite measures agree on .9, but of course they
need not agree on o-(9). Theorem 10.4 does not apply in this case, because
fl is not a countable union of sets in Y. For the same reason, no measure on
u(9) is 6-finite on .9, and hence Theorem 10.3 does not apply. •
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Example 10.6. Suppose that (fl, Y) = (R 1 „92 1 )   and .9 consists of the
half-infinite intervals (— co, x]. By Theorem 10.4, two finite measures on Sr
that agree on (9 also agree on Y The ,9sets of finite measure required in
the definition of u-finiteness cannot in this example be made disjoint. •

Example 10.7. If a measure on (Q, Y) is u-finite on a subfield .9 of .,
then SZ = Uk Bk for disjoint Y-0-sets Bk of finite measure: if they are not
disjoint, replace Bk by Bk n Bi • • • n Bic:_ 1. •

The proof of Theorem 10.3 simplifies slightly if SI = Uk Bk for disjoint
.9Asets with /./103k ) -=  µ 2(Bk ) < oo, because additivity itself can be used in
place of the inclusion-exclusion formula.

PROBLEMS

10.1. Show that if conditions (i) and (iii) in the definition of measure hold, and if
µ(A) < co for some A E ,F, then condition (ii) holds.

10.2. On the -field of all subsets of II = (1, 2, ...) put µ(A) = Ys. E 4 2 - k if A is
finite and µ(A) = co otherwise. Is ,u finitely additive? Countably additive?

10.3. (a) In connection with Theorem 10.20i), show that if A„ 1, A and µ(A k ) < cc
for some k, then µ(A n ),. µ(A).
(b) Find an example in which A n J. A, µ(A n ) = cc, and A= 0.

10.4. The natural generalization of (4.9) is

(10.6) 	 µ (lim inf A n ) < lim inf µ( A n )
n 	 n

lim sup µ(A„) < µ(lim sup A n ).
„ 	 n

Show that the left-hand inequality always holds. Show that the right-hand
inequality holds if µ(U k z n A k ) < cc for some n but can fail otherwise.

10.5. 3.10 A measure space (fi, .97; µ) is complete if A c B, B E `.Jz; and A(B)= 0
together imply that A E ,F—the definition is just as in the probability case. Use
the ideas of Problem 3.10 to construct a complete measure space (fi, .', µ +)
such that .mac ✓ and ,u, and µ+ agree on Y.

10.6. The condition in Theorem 10.26v) essentially characterizes a-finiteness.
(a) Suppose that (fi, .9Ç µ) has no "infinite atoms,” in the sense that for every
A in ., if µ(A) _ cc, then there is in Y a B such that B CA and 0 < µ(B) < co.
Show that if Y does not contain an uncountable, disjoint collection of sets of
positive measure, then µ is a-finite. (Use Zorn's lemma.)
(b) Show by example that this is false without the condition that there are no
"infinite atoms."

10.7. Example 10.5 shows that Theorem 10.3 fails without the a-finiteness condition.
Construct other examples of this kind.
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SECTION 11. OUTER MEASURE

Outer Measure

An outer measure is a set function µ* that is defined for all subsets of a space
SZ and has these four properties:

(i) µ* (A) E [0, co} for every A c SZ;

(ii) µ*(0) = 0;
(iii) µ* is monotone: A cB implies µ*(A) :ç µ*(B);

(iv) ,t.c* is countably subadditive: µ*( U„ A„) _ E„µ*( A„).

The set function P* defined by (3.1) is an example, one which generalizes:

Example 11.1. Let p be a set function on a class d in SI. Assume that
Q1 E d and p(0) = 0, and that p(A) E [0, col for A E ; p and ,sad are
otherwise arbitrary. Put

(11.1) 	 µ*(A) = inf E p(A„),
n

where the infimum extends over all finite and countable coverings of A by
.gsets A. If no such covering exists, take p*(A) = co in accordance with the
convention that the infimum over an empty set is co.

That µ* satisfies (i), (ii), and (iii) is clear. If µ*(A„) = co for some n, then
obviously µ*(U„ A„) < E„µ*(A„). Otherwise, cover each A n by .gsets B„k
satisfying Ek p(B„ k ) < µ*(A„) f E/2"; then ;t.*(U„ A„) <_ E„ kp(Bnk) <
E„µ*(A n ) + E. Thus µ* is an outer measure. •

Define A to be te-measurable if

(11.2) 	 p,*(AnE)+µ*(A` n E) =µ*(E)

for every E. This is the general version of the definition (3.4) used in Section
3. By subadditivity it is equivalent to

(11.3) 	 p,*(A n E) + pc* (A` n E) _< u.*(E) .

Denote by 4'(µ*) the class of µ*-measurable sets.
The extension property for probability measures in Theorem 3.1 was

proved by a sequence of lemmas the first three of which car ry over directly to
the case of the general outer measure: If P* is replaced by µ* and ..11 by
ms(µ*) at each occurrence, the proofs hold word for word, symbol for symbol.
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In particular, an examination of the arguments shows that co as a possible
value for µ* does not require any changes. Lemma 3 in Section 3 becomes
this:

Theorem 11.1. If µ* is an outer measure, then Ake) is a 6-field, and µ*
restricted to ms(µ*) is a measure.

This will be used to prove an extension theorem, but it has other
applications as well.

Extension

Theorem 11.2. A measure on a field has an extension to the generated
o--field.

If the original measure on the field is a-finite, then it follows by Theorem
10.3 that the extension is unique.

Theorem 11.2 can be deduced from Theorem 11.1 by the arguments used
in the proof of Theorem 3.1.t It is unnecessary to retrace the steps, however,
because the ideas will appear in stronger form in the proof of the next result,
which generalizes Theorem 11.2.

Define a class .sat of subsets of CZ to be a semiring if

(1) 0E.;

(ii) A, BEd  implies A n B E d;
(iii) if A, B E d and A c B, then there exist disjoint .sets C 1 , ... , C„

such that B — A = Uk =, Ck.

The class of finite intervals in fl = R 1 and the class of subintervals of
SZ = (0,1] are the simplest examples of semirings. Note that a semiring need
not contain fi.

Theorem 11.3. Suppose that p. is a set function on a semiring saf. Suppose
that p. has values in [0, co], that 11(0)= 0, and that µ is finitely additive and
countably subadditive. Then µ extends to a measure on o-(d).

This contains Theorem 11.2, because the conditions are all satisfied if d
is a field and p. is a measure on it. If CI = Uk A k for a sequence of .sets
satisfying µ(A k ) < co, then it follows by Theorem 10.3 that the extension is
unique.

tSee also Problem 11.1.
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PROOF. If A, B, and the Ck are related as in condition (iii) in the
definition of semiring, then by finite additivity µ(B) = µ(A) + Ek =1 µ(Ck )
µ(A). Thus µ is monotone.

Define an outer measure µ* by (11.1) for p = µ:

(11.4) µ*( A) = inf E µ( AO'
n

the infimum extending over coverings of A by .sets.
The first step is to show that sa?c (µ*). Suppose that AC sai If

µ*(E) = co, then (11.3) holds trivially. If µ*(E) < co, for given E choose sa sets
A n such that E C U n A n and En µ(A n ) < µ*(E) + E. Since sad is a semiring,
Bn = A n A n lies in sad and AC n A n =A n — Bn has the form Uk R 1 Cnk for
disjoint .s sets Cnk . Note that A n = Bn U Uk 1 Cnk, where the union is
disjoint, and that A n E c V n Bn and A' n E c Un Ljk° 1 Cnk. By the defini-
tion of µ* and the assumed finite additivity of p,

„

(A n E) +µ*(Ac nE) < E µ (Bn )+ E E µ(Cnk)
n 	 n k=1

= Eµ( A n ) <µ* ( E) +E.
n

Since E is arbitrary, (11.3) follows. Thus sic.,e(µ*).
The next step is to show that µ* and IL agree on sad If A C Lin A n for

sagsets A and A,,, then by the assumed countable subadditivity of  and the
monotonicity established above, µ(A) < En µ(A n A n ) < En µ(A n ). There-
fore, A E d implies that µ(A) < µ*(A) and hence, since the reverse in-
equality is an immediate consequence of (11.4), µ(A) = µ*(A). Thus µ*
agrees with µ on Y.

Since dc4'(µ*) and 4l(µ*) is a o--field (Theorem 11.1),

sa c 0- ( a') c.,C(µ*) c 2'.

Since µ* is countably additive when restricted to .,e(µ*) (Theorem 11.1
again), µ* further restricted to o-(Y) is an extension of µ on sal, as required.

•
Example 11.2. For sad take the semiring of subintervals of SZ = (0,1]

(together with the empty set). For µ take length A: Ma, b] = b — a. The finite
additivity and countable subadditivity of A follow by Theorem 1.3.t By
Theorem 11.3, A extends to a measure on the class o-(d) _ 2 of Borel sets
in (0,11 •

ton a field, countable additivity implies countable subadditivity, and 	 is in fact countably
additive on af— but .o2 is merely a semiring. Hence the separate consideration of additivity and
subadditivity; but see Problem 11.2.
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This gives a second construction of Lebesgue measure in the unit interval.
In the first construction A was extended first from the class of intervals to the
field go of finite disjoint unions of intervals (see Theorem 2.2) and then by
Theorem 11.2 (in its special form Theorem 3.1) from ao to 2 = o-(20 ).
Using Theorem 11.3 instead of Theorem 11.2 effects a slight economy, since
the extension then goes from saf directly to a without the intermediate stop
at go , and the arguments involving (2.13) and (2.14) become unnecessary.

Example 11.3. In Theorem 11.3 take for sad the semiring of finite inter-
vals on the real line R 1 , and consider A,(a, b] = b — a. The arguments for
Theorem 1.3 in no way require that the (finite) intervals in question be
contained in (0, 1], and so A l is finitely additive and countably subadditive on
this class saf Hence A l extends to the OE-field R' of linear Borel sets, which
is by definition generated by sad This defines Lebesgue measure A l over the
whole real line. •

A subset of (0,1] lies in g if and only if it lies in R 1 (see (10.2)). Now
A 1 ( A) = A( A) for subintervals A of (0.1], and it follows by uniqueness
(Theorem 3.3) that A 1(A) = A(A) for all A in 2. Thus there is no inconsis-
tency in dropping A l and using A to denote Lebesgue measure on R1 as well
as on a.

Example 11.4. The class of bounded rectangles in R k is a semiring, a fact
needed in the next section. Suppose that A = [x: x i E I^ , i < k] and B = [x:
x i E Ji , i _< k] are nonempty rectangles, the I and Ji being finite intervals. If
A c B, then I. cJ„ so that JJ — Ii is a disjoint union 1; U Ii!' of intervals
(possibly empty). Consider the 3 k disjoint rectangles [ x: x i E U , i < k], where
for each i, U is Il or I: or Il'. One of these rectangles is A itself, and B —A
is the union of the others. The rectangles thus form a semiring. •

An Approximation Theorem

If sad is a semiring, then by Theorem 10.3 a measure on Q(Y) is determined
by its values on sad if it is cr-finite there. Theorem 11.4 shows more explicitly
how the measure of a cr(d)-set can be approximated by the measures of
saf:sets.

Lemma 1. If A, 'l b ...,, A,r are sets in a semiring sad, then there are
disjoint sa!sets C ,, ... , Cm such that

A nAin•••nAR=C I u ••• u Cm .

PROOF. The case n = 1 follows from the definition of semiring applied to
A nAi =A —(A nA,). If the result holds for n, then A n Ai n • • • nAn+1
= U;_ ,(Ci n Acn + 1 ); apply the case n =1 to each set in the union. 	 •
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Theorem 11.4. Suppose that ,saf is a semiring, µ is a measure on t9 -_ o-(d),
and 1.I, is o--finite on d.

(i) If B E 	 and E > 0, there exists a finite or infinite disjoint sequence
A 1 , A2,... of .sets such that BC U4 Ak and µ((U k Ak) — B) <E.

(ii) If B E	 and E > 0, and if µ(B) <00, then there exists a finite disjoint
sequence A,, ... , A n of .sets such that µ(B Ak )) < E.

PROOF. Return to the proof of Theorem 11.3. If µ* is the outer measure
defined by (11.4), then .del(µ*) and µ* agrees with µ on .sad, as was
shown. Since µ* restricted to is a measure, it follows by Theorem 10.3
that µ* agrees with on as well.

Suppose now that B lies in 9 and µ(B) = µ*(B) < CO. There exist dsets
Ak such that B C U k A k and µ(Uk Ak) < Ekµ(Ak) < A(B) + E; but then
µ((Uk A k ) - B) < E. To make the sequence {A k} disjoint, replace Ak by
A k n A; n • • • n Ak _ i ; by Lemma 1, each of these sets is a finite disjoint
union of sets in d.

Next suppose that B lies in and µ(B) = µ*(B) = CO. By o-finiteness
there exist Ja-sets C m such that SZ = C m and µ(Cm ) < 00. By what has just
been shown, there exist dsets A mk such that B n C,„ c Uk A mk and
µ(( Uk A mk ) - (B n Cm )) < E /2m. The sets A mk taken all together provide a
sequence A 1 , A 2 , ... of dsets satisfying B c Uk A k and µ((U k A k ) — B) <E.
As before, the Ak can be made disjoint.

To prove part (ii), consider the Ak of part (i). If B has finite measure, so
has A = U k Ak, and hence by continuity from above (Theorem 10.260),
µ(A — Uk 5,1 A k ) <E for some n. But then µ(B o(Uk^1 Ak)) < 2c. •

If, for example, B is a linear Borel set of finite Lebesgue measure, then
MB A (U k =1 A,.)) < E for some disjoint collection of finite intervals
A 1 ,..., A n .

Corollary 1. If ea is a finite measure on a cr field . generated by a field ., then
for each .set A and each positive E there is an .-set B such that µ(A o B) <E.

PROOF. This is of course an immediate consequence of part (ii) of the theorem,
but there is a simple direct argument. Let J be the class of .sets with the required
property. Since ACA BC =A A B, .J is closed under complementation. If A = U,, A, t ,
where A n E J, given E choose n o so that µ(A — U n

  
A n ) < E, and then choose

.9 sets Bn , n5n o, so that pfA,,A13,7 )<c/n o. Since (U„nuAn)A(U„„u Bn)c
Un s n ^^ (A n d B,,), the .-set B = U„ s „ Bn satisfies µ(A d B) < 2c. Of course .o c J;

.since J is a a-field, .mac.1, as required. •

Corollary 2. Suppose that si is a semiring, fZ is a countable union of dsets, and
µi, µ2 are measures on ,F= o (d). If µ,(A) < µ 2(A) < co for A E d, then µ 1(B) <
µ2(B) for B E .F.
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PROOF. Since 11 2 is a-finite on ., the theorem applies. If µ 2(B) < co, choose
disjoint .sets Ak such that B c Uk Ak and E k µ 2(A k ) <µ 2(B) + E. Then µ 1(B) <
Ekµl(Ak) Ekµ2(Ak) < µ2(B) + E.	 •

A fact used in the next section:

Lemma 2. Suppose that µ is a nonnegative and finitely additive set function on a
semiring ., and let A, A  ... , A n be sets in .

(i) If U;=1 A ; cA and the A ; are disjoint, then E;'= µ(A ; ) < µ(A).

(ii) If A C U?_ 1 A i , then µ(A) << E?=11.(Aî)•

PROOF. For part (i), use Lemma 1 to choose disjoint .sets Cf such that
A - U. 1 A ; = U; 1 C . Since µ is finitely additive and nonnegative, it follows that
µ(A)=E lµ(Ai)+ rr 1 µ(C1) Ei =1µ ( Aî ) '

For (ii), take B 1 =A n A 1 and Bi = A n A i n A; n • • n A; _ 1 for i> 1. By Lemma
1, each Bi is a finite disjoint union of .sets Cu. Since the Bi are disjoint,
A= U ; Bi = U 1 C; and Uj C11 CA i , it follows by finite additivity and part (i) that
,u(A) = E; EJ ,u Ci; i < Eiµ(Ad). ■

Compare Theorem 1.3.

PROBLEMS

11.1. The proof of Theorem 3.1 obviously applies if the probability measure is
replaced by a finite measure, since this is only a matter of rescaling. Take as a
starting point then the fact that a finite measure on a field extends uniquely to
the generated a-field. By the following steps, prove Theorem 11.2—that is,
remove the assumption of finiteness.
(a) Let µ be a measure (not necessarily even a-finite) on a field Yo, and let
Y=0-(Y0 ). If A is a nonempty set in .moo and µ(A) < oo, restrict µ to a finite
measure µA on the field . nA, and extend µA to a finite measure µA on the
a-field .9mn A generated in A by Yo n A.
(b) Suppose that E c Y. If there exist disjoint .9'-sets A n such that E C Un A n

and µ(A n ) < co, put µ(E) = EnjA (E nA n) and prove consistency. Otherwise
put µ(E) = cc.
(c) Show that is a measure on Y and agrees with  on Yo .

11.2. Suppose that 	 is a nonnegative and finitely additive set function on a semi-
ring
(a) Use Lemmas 1 and 2, without reference to Theorem 11.3, to show that ,u is
countably subadditive if and only if it is countably additive.
(b) Find an example where ,u, is not countably subadditive.

11.3. Show that Theorem 11.4(11) can fail if µ(B) _ 00 .

11.4. This and Problems 11.5, 16.12, 17.12, 17.13, and 17.14 lead to proofs of the
Daniell-Stone and Riesz representation theorems.
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Let A be a real linear functional on a vector lattice ..' of (finite) real
functions on a space fZ. This means that if f and g lie in 2, then so do f v g
and f A g (with values max{ f(w), g(co )) and min{ f(cu), g(w)}), as well as a f + f3g,
and A(a f + 13g) = aA(f) + (3A(g). Assume further of that f G./ implies
f A 1 e ..e9 (where 1 denotes the function identically equal to 1). Assume further
of A that it is positive in the sense that f > 0 (pointwise) implies A(f) > 0 and
continuous from above at 0 in the sense that f „ 1, 0 (pointwise) implies A( ff ) —, O.
(a) If f <g (f, g E ..'), define in SZ x R' an "interval"

(11 5) 	 (f>g] _ [(w,t): f(w) <t ,g(W)]-

Show that these sets form a semiring
(b) Define a set function v o on .l„ by

(11.6) 	 vo(f, g] = A(g 
-

f ).

Show that v 0 is finitely additive and countably subadditive or .moo .

11.5. t (a) Assume f E 2 and let f,. = (n(f — f A 1)) A 1. Show that
f(co) s 1 implies f(w) = 0 for all n and f(co)> 1 implies f(w) = 1 for all
sufficiently large n. Conclude that for x> 0,

(11.7) 	 (O,xf„]T [w• f(cu)> 1] x(O,x].

(b) Let .9 be the smallest u-field with respect to which every f in 2 is
measurable: F== o-[ f - 'H: f E .I, He .']. Let . be the class of A in 9 for
which A X (0, 1] e u(.clo). Show that .moo is a semiring and that .-=o-( ).
(c) Let v be the extension of v o (see (11.6)) to o-(. o ), and for A e .moo define
µ o(A) = v(A X (0,1]). Show that µ o is finitely additive and countably subaddi-
tive on the semiring ..o .

SECTION 12. MEASURES IN EUCLIDEAN SPACE

Lebesgue Measure

In Example 11.3 Lebesgue measure A was constructed on the class .R I of
linear Borel sets. By Theorem 10.3, A is the only measure on  RI satisfying
A(a, bi = b — a for all intervals. There is in k-space an analogous k-
dimensional Lebesgue measure A k on the class .4 k of k-dimensional Borel
sets (Example 10.1). It is specified by the requirement that bounded rectan-
gles have measure

k

(12.1)	 Ak[x: a < <x r <b i = 1,..., k] _ 11 (b i — a ; ).

This is ordinary volume—that is, length (k = 1), area (k = 2), volume (k = 3),
or hypervolume (k > 4).
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Since an intersection of rectangles is again a rectangle, the uniqueness
theorem shows that (12.1) completely determines A k . That there does exist
such a measure on R k can be proved in several ways. One is to use the ideas
involved in the case k = 1. A second construction is given in Theorem 12.5. A
third, independent, construction uses the general theory of product mea-
sures; this is carried out in Section 18. 1. For the moment, assume the
existence on eq k of a measure A k satisfying (12.1). Of course, A k is cr-finite.

A basic property of A k is translation invariance.*

Theorem 12.1. If A E R k, then A + x = [a + x: a E Al E ,te k and
A k (A) -- A k (A + x) for all x.

PROOF. If ,1 is the class of A such that A + x is in . k for all x, then .9
is a cr-field containing the bounded rectangles, and so ,1D M k . Thus A + x E
R k for A E R k .

For fixed x define a measure µ on R k by µ(A) = A k(A + x). Then p. and
A k agree on the 7r-system of bounded rectangles and so agree for all Borel
sets. •

If A is a (k — 1)-dimensional subspace and x lies outside A, the hyper-
planes A + tx for real t are disjoint, and by Theorem 12.1, all have the same
measure. Since only countably many disjoint sets can have positive measure
(Theorem 10.2(1v)), the measure common to the A + tx must be 0. Every
(k — 1)-dimensional hyperplane has k-dimensional Lebesgue measure O.

The Lebesgue measure of a rectangle is its ordinary volume. The following
theorem makes it possible to calculate the measures of simple figures.

Theorem 12.2. If T: R k -* R k is linear and nonsingular, then A Ea k

implies that TA E R k and

(12.2) 	 Ak(TA) = Idet Tl • A k ( A).

Since a parallelepiped is the image of a rectangle under a linear transfor-
mation, (12.2) can be used to compute its volume. If T is a rotation or a
reflection—an orthogonal or a unitary transformation—then det T= ±1,
and so A k(TA) = A k(A). Hence every rigid transformation or isometry (an
orthogonal transformation followed by a translation) preserves Lebesgue
measure. An affine transformation has the form Fx = Tx + x 0 (the general

t See also Problems 17.14 and 20.4
An analogous fact was used in the construction of a nonmeasurable set on p. 45
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linear transformation T followed by a translation); it is nonsingular if T is. It
follows by Theorems 12.1 and 12.2 that A k(FA) _ Idet TI • A k(A) in the
nonsingular case.

PROOF OF THE THEOREM. Since T U A R = U„ TA„ and TAc = (TA)`
because of the assumed nonsingularity of T, the class .1_ [A: TA E ✓ k] is a
o-field. Since TA is open for open A, it follows again by the assumed
nonsingularity of T that .1 contains all the open sets and hence (Example
10.1) all the Borel sets. Therefore, A E ,te k implies TA E .te k .

For A E ,tek, set µ,(A) = A k(TA) and /4 2(A)— Odet TI • A k(A). Then µ ,
and µ2 are measures, and by Theorem 10.3 they will agree on M k (which is
the assertion (12.2)) if they agree on the 7r-system consisting of the rectangles
[ x: a ; <x, < b ; , i --=1,...,k]  for which the a ; and the b; are all rational
(Example 10.1). It suffices therefore to prove (12.2) for rectangles with sidcs
of rational length. Since such a rectangle is a finite disjoint union of cubes
and A k is translation-invariant, it is enough to check (12.2) for cubes

(12.3) 	 A = [x: 0 <x; <c, i = 1,...,k]

that have their lower corner at the origin.
Now the general T can by elementary row and column operationst be

represented as a product of linear transformations of these three special
forms:

(1°) T(x,,..., x k ) _ (x . 1 , ... , x vk ), where ?r is a permutation of the set
{1, 2, ... , k};

°2) f(x,,...,x k)= ax,,x 2 ,...,x k );
(3°) T(x l ,..., x k ) = (x ! +x 2 , x2,..., xk).

Because of the rule for multiplying determinants, it suffices to check (12.2)
for T of these three forms. And, as observed, for each such T it suffices to
consider cubes (12.3).

(1°): Such a T is a permutation matrix, and so det T= ± 1. Since (12.3) is
invariant under T, (12.2) is in this case obvious.

(2°): Here det T= a, and TA = [ x : x, E H, 0 < x, < c, i = 2, ... , kl, where
H = (0, ac] if a > 0, H = {0} if a = 0 (although a cannot in fact be 0 if T is
nonsingular), and H = [ac, 0) if a < O. In each case, A k(TA) = lai • c k

A k(A).

# BIRKHOFF & MAC LANE, Section 8.9
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(3°): Here det T= 1. Let B = [ x : 0 < x ; < c, i = 3, ... , k ], where B = R k if
k < 3, and define

B 1 = [x: 0 <x, _x 2 <cjrl B,

B2= [x: 0 <x 2 <x i < c1r1B,
B3 --=[ X:  c <x l <c +x 2 , O <x 2 <c] n B.

Then A = B, U B Z , TA— B Z U B3 , and B, + (c, O, . . . , 0) = B3 . Since A k (B, ) _
4(B3 ) by translation invariance, (12.2) follows by additivity. 	 •

If T is singular, then det T =0 and TA lies in a (k — 1)-dimensional subspace.
Since such a subspace has measure 0, (12.2) holds if A and TA lie in S . The
surprising thing is that A E .92 k need not imply that TA e .9 k if T is singular. Even
for a very simple transformation such as the projection T(x ,x 2 )= (x 1 ,0) in the
plane, there exist Borel sets A for which TA is not a Borel seta

Regularity

Important among measures on Rk are those assigning finite measure to
bounded sets. They share with Ak the property of regularity:

Theorem 12.3. Suppose that p, is a measure on Rk such that p.(A) <co if
A is bounded.

(1) For A E Rk and E > 0, there exist a closed C an open G such that
CcAcG and p(G—C)<E.

(ii) If p.(A) < co, then µ(A) = sup µ(K), the supremum extending over the
compact subsets K of A.

PROOF. The second part of the theorem follows form the first: µ(A) < co
implies that µ(A —A 0 ) <E for a bounded subset A Q of A, and it then
follows from the first part that µ(A ° — K) < E for a closed and hence
compact subset K of A 0 .

# See HAUSDORFF, p. 241.
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To prove (1) consider first a bounded rectangle A =[x: a l < x ; <_ b1 , i < k ].
The set G„ = [X: a, <x i < b, + n - I , i < k] is open and Gn A. Since µ(G 1 ) is
finite by hypothesis, it follows by continuity from above that µ(G„ —A) <6
for large n. A bounded rectangle can therefore be approximated from the
outside by open sets.

The rectangles form a semiring (Example 11.4). For an arbitrary set A in
gk, by Theorem 11.4(i) there exist bounded rectangles A k such that A C
Uk A k and µ((Uk A k ) —A) <E. Choose open sets Gk such that A k c Gk

and µ(Gk —A k ) < E. /2 k . Then G = U k Gk is open and µ(G — A) <2E. Thus
the general k-dimensional Borel set can be approximated from the outside by
open sets. To approximate from the inside by closed sets, pass to comple-
ments.

Specifying Measures on the Line

There are on the line many measures other than A that are important for
probability theory. There is a useful way to describe the collection of all
measures on ,9 1 that assign finite measure to each bounded set.

If  is such a measure, define a real function F by

(12.4) 	 F(x) =	
12.(0, x]	 if x z 0,

—µ(x,0] if x <— O.

It is because µ(A) < co for bounded A that F is a finite function. Clearly, F
is nondecreasing. Suppose that xn J, x. If x 0, apply part (ii) of Theorem
10.2, and if x < 0, apply part (i); in either case, F(x n ),, F(x) follows. Thus F
is continuous from the right. Finally,

(12.5) 	 µ(a , b] =F(b) —F(a)

for every bounded interval (a, b]. If p, is Lebesgue measure, then (12.4) gives
F(x) =x.

The finite intervals form a 7r-system generating R I , and therefore by
Theorem 10.3 the function F completely determines it through the relation
(12.5).' But (12.5) and µ do not determine F: if F(x) satisfies (12.5), then so
does F(x) + c. On the other hand, for a given µ , (12.5) certainly determines
F to within such an additive constant.

For finite µ, it is customary to standardize F by defining it not by (12.4)
but by

(12.6) 	 F(x) =µ( —co,x];

then lim a _, 	 F(x) = 0 and lim a 	 F(x)=(R'). If µ is a probability
measure, F is called a distribution function (the adjective cumulative is
sometimes added).
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Measures 11, are often specified by means of the function F. The following
theorem ensures that to each F there does exist a µ.

Theorem 12.4. If F is a nondecreasing, right-continuous real function on
the line, there exists on a 1 a unique measure p. satisfying (12.5) for all a
and b.

As noted above, uniqueness is a simple consequence of Theorem 10.3. The
proof of existence is almost the same as the construction of Lebesgue
measure, the case F(x) = x. This proof is not carried through at this point,
because it is contained in a parallel, more general construction for k-
dimensional space in the next theorem. For a very simple argument establish-
ing Theorem 12.4, see the second proof of Theorem 14.1.

Specifying Measures in R k

The a-field 5 k of k-dimensional Borel sets is generated by the class of
bounded rectangles

(12.7) 	 A — [x: a i <x i <bi , i	 1,...,k]

(Example 10.1). If I. _ (a i , bi t, A has the form of a Cartesian product

	

(12.8) 	 A=11x ••• XIk .

Consider the sets of the special form

	

(12.9) 	 Sx —[y:

Sx consists of the points "southwest" of x = (x 1 ,..., x k ); in the case k = 1 it
is the half-infinite interval (-00, xi. Now Sx is closed, and (12.7) has the form

(12.10) A = S(bl bk)— I S(aibz ..bk> U S(b,a z bk) U • . U S(hlb2 ak)] .

Therefore, the class of sets (12.9) generates R k . This class is a 7r-system.
The objective is to find a version of Theorem 12.4 for k-space. This will in

particular give k-dimensional Lebesgue measure. The first problem is to find
the analogue of (12.5).

A bounded rectangle (12.7) has 2 k vertices—the points x = (x 1 , ... , x k )
for which each x i is either a i or bi . Let sgn A x, the signum of the vertex, be
+ 1 or —1, according as the number of i (1 < i <k) satisfying x i = a i is even
or odd. For a real function F on R k , the difference of F around the vertices
of A is AA F = E sgnA x F(x), the sum extending over the 2 k vertices x of
A. In the case k = 1, A = (a, b1 and A A F = F(b) — F(a). In the case k = 2,
aA F=F(b,,b 2 ) — F(b1, a 2 )— F(a 1 ,b 2 )+ F(a 1,a2).
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Since the k-dimensional analogue of (12.4) is complicated, suppose at first
that p. is a finite measure on £k and consider instead the analogue of (12.6),
namely

(12.11) 	 F(x) =µ[y: y ;

Suppose that Sx is defined by (12.9) and A is a bounded rectangle (12.7).
Then

(12.12) 	 kt(A) = A A F.

To see this, apply to the union on the right in (12.10) the inclusion-exclusion
formula (10.5). The k sets in the union give 2" — 1 intersections, and these
are the sets Sx for x ranging over the vertices of A other than (b 1 , ... , bk ).
Taking into account the signs in (10.5) leads to (12.12).

- + - 	 +

+ -+ -

- + - 	 +

+ -+ -

Suppose x ( R ) j. x in the sense that 4R ) j. x l as n -* co for each i = 1, ... , k.
Then S,r(n) j. Sx , and hence F(x (" )) -* F(x) by Theorem 10.2(h). In this sense,
F is continuous from above.

Theorem 12.5. Suppose that the real function F on R k is continuous from
above and satisfies D A F >_ 0 for bounded rectangles A. Then there exists a
unique measure µ on Rk satisfying (12.12) for bounded rectangles A.

The empty set can be taken as a bounded rectangle (12.7) for which a ; = b,
for some i, and for such a set A, I A F = 0. Thus (12.12) defines a finite-val-
ued set function p. on the class of bounded rectangles. The point of the
theorem is that µ extends uniquely to a measure on R k. The uniqueness is
an immediate consequence of Theorem 10.3, since the bounded rectangles
form a Tr-system generating Rk

If F is bounded, then p. will be a finite measure. But the theorem does not
require that F be bounded. The most important unbounded F is F(x) =x,
•••x k . Here AA F (b,— a l ) •••(bk --a k ) for A given by(12.7). This is the
ordinary volume of A as specified by (12.1). The corresponding measure
extended to 4k is k-dimensional Lebesgue measure as described at the
beginning of this section.
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PROOF OF THEOREM 12.5. As already observed, the uniqueness of the extension
is easy to prove. To prove its existence it will first be shown that ,u as defined by
(12.12) is finitely additive on the class of bounded rectangles. Suppose that each side
I; _ (a ; , b-] of a bounded rectangle (12.7) is partitioned into n ; subintervals Jo =
(t ; i _ 1 , t,,], j = 1, .., n where a, = i 3O < tf < • • • < t frt = b; . The n i n 2 • • n k rectan-
gles

(12.13) 	 B 	 ik =J 	.. x Jk ix'„
1 _<j1 _<ni , •• ,1 <J, <nk ,

then partition A Call such a partition regular. It will first be shown that 	 adds for
regular partitions:

(12.14) 	 ,u(A) ^ E µ(B„, ,kÎ•
Ji 	 ik

The right side of (12.14) is EBEx sgn B x • F(x), where the outer sum extends over
the recrangles B of the form (12.13) and the inner sum extends over the vertices x of
B. Now

(12.15) 	 E E sgn B x • F(x) = EF(x) E sgn B x,
B x 	 x 	 B

where on the right the outer sum extends over each x that is a vertex of one or more
of the B's, and for fixed x the inner sum extends over the B's of which it is a vertex.
Suppose that x is a vertex of one or more of the B's but is not a vertex of A. Then
there must be an i such that x ; is neither a ; nor b; . There may be several such i, but
fix on one of them and suppose for notational convenience that it is i = 1. Then
x i = t 11 with 0 <j < n,. The rectangles (12.13) of which x is a vertex therefore come
in pairs B' =B112 and B" = B  iz if and sgn B• x = — sgn B . x. Thus the inner
sum on the right in (12.15) is 0 if x is not a vertex of A.

On the other hand, if x is a vertex of A as well as of at least one B, then for each
i either x ; = a ; = t;o or x ; = b! tin, . In this case x is a vertex of only one B of the
form (12.13)—the one for which j; = 1 or j; = n., according as x ; = a ; or x 1 = b;— and
sgn B x — sgn A x. Thus the right side of (12.15) reduces to D A F, which proves (12.14).

Now suppose that A = U un =1 A u , where A is the bounded rectangle (12.8),
A u = I lu x • • • x Iku for u =1,...,n,  and the A u are disjoint. For each i (1 <i < k),
the intervals /ii , ... , 1;,, have I; as their union, although they need not be disjoint. But
their endpoints split 1; into disjoint subintervals J 11 , ... , J,,,. such that each Iiu is the
union of certain of the J;.. The rectangles B of the form (12.13) are a regular                                       

t                      
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partition of A, as before; furthermore, the B's contained in a single A„ form a
regular partition of A u . Since the A u are disjoint, it follows by (12.14) that

n 	 n

µ(A) = Eµ(B) = E E µ(B) = E µ( A u)•
B 	 u =1 BCA„ 	 u=1

Therefore, 	 is finitely additive on the class Yk of bounded k-dimensional rectan-
gles.

As shown in Example 114, .5 1` is a scmiring, and so Theorem 11.3 applies. If
A, A,, ... , A n are sets in .5 k , then by Lemma 2 of the preceding section,

n

(12.16) µ(A) E µ(A«)
n=11

if A c U A u .
14 - 1

To apply Theorem 11.3 requires showing that 	 is countably subadditive on .5 k .
Suppose then that A c (Z=1 A u . where A and the A u are in ,f k . The problem is w
prove that

00

(12.17) 	 µ(A) <	 µ(A„).
u

Suppose that E > 0. If A is given by (12.7) and B =[x• a i + S <x i <bi , i < k], then
µ(B) > µ(A) - E for small enough positive S, because is defined by (12.12) and F is
continuous from above. Note that A contains the closure 13 - = [x: a . + S < x i < b i ,
i < k ] of B. Similarly, for each u there is in ._f k a set B„-[x: a iu <x 1 < b iu + S u ,
i < k] such that µ(Bu ) <(A,4 ) + E/2 „ and A„ is in the interior B° = [x: a iu <x i <
biu + S„, i < k] of B,r

Since B - cA c Uu=1 A u c Uû.. B°, it follows by the Heine-Borel theorem that
B c B - c Uu B° C Un . 1 B„ for some n. Now (12.16) applies, and so µ(A) -- E <
µ(B) < EÇ=. 1 µ(B„) < Eu= 1 µ(A„) + E. Since e was arbitrary. the proof of (12.17) is
complete.

Thus ,u, as defined by (12.12) is finitely additive and countably subadditive on the
semiring k. By Theorem 11.3, µ extends to a measure on 92k = o- (fk ). 	 •

Strange Euclidean Sets*

It is possible to construct in the plane a simple curve—the image of [0,1] under a
continuous, one-to-one mapping—having positive area. This is surprising because the
curve is simple: if the continuous map is not required to be one-to-one, the curve can
even fill a square!

Such constructions are counterintuitive, but nothing like one due to Banach and
Tarski: Two sets in Euclidean space are congruent if each can be carried onto the
other by an isometry, a rigid transformation. Suppose of sets A and B in R k that A
can be decomposed into sets A 1 ,..., A n and B can be decomposed into sets
B,, ... , B„ in such a way that A i and Bi are congruent for each i =1,...,n.  In this
case A and B are said to be congruent by dissection. If all the pieces A i and Bi are
Borel sets, then of course A k (A) = E=SkA (A i ) = E” A (B) = A k (B). But if nonmea-r = 1 k i

`This topic may be omitted.
to Peano curve see HAUSDURrr, p 231 For the construction of simple curves of positive area,
see Gri !iAUM & O1 MSTri), pp. 135 ff.
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surable sets are allowed in the dissections, then something astonishing happens: If
k > 3, and if A and B are bounded sets in R k and have nonempty interiors, then A and B
are congruent by dissection. (The result does not hold if k is 1 or 2.)

This is the Banach-Tarski paradox. It is usually illustrated in 3-space this way: It is
possible to break a solid ball the size of a pea into finitely many pieces and then put
them back together again in such a way as to get a solid ball the size of the sun) .

PROBLEMS

12.1. Suppose that is a measure on a; that is finite for bounded sets and is
translation-invariant: µ(A + x) = u(A). Show that µ(A) = aA(A) for some
a >_ O. Extend to R k

12.2. Suppose that A e .ÿp 1 , MA)> 0, and 0 < 0 < 1. Show that there is a hounded
open interval I such that A(A n I) > BA(I). Hint: Show that A(A) may be
assumed finite, and choose an open G such that A c G and A(A)> 0A(G).
Now G= U„ In for disjoint open intervals In [Al2], and E n A(A n I„) >
0E„A(4); use an In .

12.3. T If A E .ÿp 1 and A(A) > 0, then the origin is interior to the difference set
D(A)—[x —y: x, y EA].  Hint Choose a bounded open interval I as in
Problem 12.2 for O =1. Suppose that Uzi < A(I)/2; since A n I and (A n 1) + z
are contained in an interval of length less than 3A(I)/2 and hence cannot be
disjoint, z E D(A).

12.4. T The following construction leads to a subset H of the unit interval that is
nonmeasurable in the extreme sense that its inner and outer Lebesgue mea-
sures are 0 and 1: A * (H) = 0 and A*(H) — 1 (see (3.9) and (3.10)). Complete
the details. The ideas are those in the construction of a nonmeasurable set at
the end of Section 3. It will be convenient to work in G = [0,1); let e and e
denote addition and subtraction modulo 1 in G, which is a group with iden-
tity 0.
(a) Fix an irrational O in G and for n = 0, ± 1, ± 2, ... let 8 be nO reduced
modulo 1. Show that One Sm = On+m, On e 0,n = Bn _m , and the On are distinct.
Show that (02n: n = 0, ± 1, ... } and (B zn+ 1 : n = 0, ± 1, ... } are dense in G.
(b) Take x and y to be equivalent if x S y lies in (On : n = 0, ± 1, ... }, which is
a subgroup. Let S contain one representative from each equivalence class
(each coset). Show that G = U n (S e Sn), where the union is disjoint. Put
H= U,(Se 0 2n ) and show that G —H=He O.
(c) Suppose that A is a Borel set contained in H. If A(A) > 0, then D(A)
contains an interval (0, e); but then some 02k+ 1 lies in (0, e) c D(A) c D(H),
and so 0 2 4-1 = hi — h 2 = h i e h 2 = (s 1 e 02i ) e (s 2 e 0 2„) for some h t , h 2 in
H and some s 1 , s2 in S. Deduce that s i = s2 and obtain a contradiction.
Conclude that A * (H) = O.
(d) Show that A * (H e 0)= 0 and A*(H) = 1.

I See WAGON for an account of these prodigies.
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12.5. 1' The construction here gives sets H„ such that H„ T G and A * (H„) = O. If
J„ = G — Fin , then J„ 4.0 and A*(J„) = 1.
(a) Let H„ = Uk . _„(S ®0 k ), so that H„ T G. Show that the sets H„ ® B(2n + I ^(
are disjoint for different u.

(b) Suppose that A is a Borel set contained in H„. Show that A and indeed
all the A ED Bp„ + of have Lebesgue measure O.

12.6. Suppose that ,u, is nonnegative and finitely additive on ,k and that µ(R k ) < co.
Suppose further that µ(A) = sup µ(K), where K ranges over the compact
subsets of A. Show that µ is countably additive (Compare Theorem 12.3(iî).)

12.7. Suppose is a measure on R k such that bounded sets have finite measure.
Given A, show that there exist an Fa-set U (a countable union of closed sets)
and a Ga-set V (a countable intersection of open sets) such that U cA c V and
µ(V — U)= 0.

12.8. 2.191' Suppose that ,u, is a nonatomic probability measure on (R k , .R k ) and
that µ(A) > O. Show that there is an uncountable compact set K such that
K cA and µ(K) = O.

12.9. The minimal closed support of a measure on .te k is a closed set C IL such that
CA c C for closed C if and only if C supports A. Prove its existence and
uniqueness. Characterize the points of C A as those x such that µ(U) > 0 for
every neighborhood U of x. If k = 1 and if p. and the function F(x) are
related by (12.5), the condition is F(x — €)< F(x + €) for all e; x is in this case
called a point of increase of F .

12.10. Of minor interest is the k-dimensional analogue of (12.4). Let I, be (0, t] for
t 0 and (t,0] for t < 0, and let A S = Is x • • • x i1 . Let cp(x) be + 1 or —1
according as the number of i, 1 <_ i < k, for which x ; < 0 is even or odd. Show
that, if F(x) = cp(x)µ(A X ), then (12.12) holds for bounded rectangles A.

Call F degenerate if it is a function of some k — 1 of the coordinates, the
requirement in the case k = 1 being that F is constant. Show that tA F = 0 for
every bounded rectangle if and only if F is a finite sum of degenerate
functions; (12.12) determines F to within addition of a function of this sort.

12.11. Let G be a nondecreasing, right-continuous function on the line, and put
F(x, y) = min(G(x), y). Show that F satisfies the conditions of Theorem 12.5,
that the curve C = [(x, G(x)): x E RI supports the corresponding measure,
and that A 2(C) = O.

12.12. Let F S and F2 be nondecreasing, right-continuous functions on the line and
put F(x 1 , x 2 ) = F,(x 1 )F2(x 2 ). Show that F satisfies the conditions of Theorem
12.5. Let p. , µ 1 , µ 2 be the measures corresponding to F, F 1 , F2 , and prove that
µ(A , x A 2 ) = µ i(A,)µ 2(A 2 ) for intervals A t and A 2 . This p. is the product of
p. and p. 2 ; products are studied in a general setting in Section 18.
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SECTION 13. MEASURABLE FUNCTIONS AND MAPPINGS

If a real function X on fi has finite range, it is by the definition in Section 5
a simple random variable if [ o: X(w) = x] lies in the basic Œ-field for
each x. The requirement appropriate for the general real function X is
stronger; namely, [w: X(w) EH] must lie in LF for each linear Borel set H.
An abstract version of this definition greatly simplifies the theory of such
functions.

Measurable Mappings

Let (fi,.) and (Si', .9') be two measurable spaces. For a mapping T:
fi --> Si', consider the inverse images  T'A' _ [w E SZ: Tor EA'] for A' c CI'
(See [Al for the properties of inverse images.) The mapping T is measurable
9/3' if T'A' E . for each A' E '.

For a real function f, the image space SZ' is the line R', and in this case
.1L' is always tacitly understood to play the role of 54-'. A real function f on
SZ is thus measurable .9 (or simply measurable, if it is clear from the context
what ..54-- is involved) if it is measurable 9/a'' —that is, if f - 'H =
[w: f(w) E 11]  E .9 for every H E R 1 . In probability contexts, a real measur-
able function is called a random variable. The point of the definition is to
ensure that [w: f(w) E HI has a measure or probability for all sufficiently
regular sets H of real numbers—that is, for all Borel sets H.

Example 13.1. A real function f with finite range is measurable if
r'{ x } E for each singleton {x), but his is too weak a condition to impose
on the general f. (It is satisfied if (fk, 3) = (R', M') and f is any one-to-one
map of the line into itself; but in this case r ill, even for so simple a set H
as an interval, can for an appropriately chosen f be any uncountable set, say
the non-Borel set constructed in Section 3.) On the other hand, for a
measurable f with finite range, f - 'H E Y for every H c R'; but this is too
strong a condition to impose on the general f. (For (Si, ) = (R', .q' ), even
f(x) = x fails to satisfy it.) Notice that nothing is required of fA; it need not
lie in R' for A in 5'. i

If in addition to (Si, 5), (Sr, 3'), and the map T: SZ --- CI', there is a third
measurable space (Si", 9") and a map T': SZ' --' Si", the composition T'T =
T' " T is the mapping SZ --- SZ" that carries w to T'(T(w)).

Theorem 13.1. (i) If T"A' E for each A' E sad' and sad' generates . I,
then T is measurable 57,F'.,9 '.

(ii) If T is measurable ./9`' and T' is measurable '/9" then T'T is
measurable ./.".
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PROOF. Since T- '(SZ' -A') = SZ - T'A' and T- '(U„ An) = U„ T- 'An,
and since 54- is a if-field in SZ, the class [A': T- 'A' E 541 is a if-field in f1'. If
this 6-field contains .sad', it must also contain o (3 l'), and (i) follows.

As for (ii), it follows by the hypotheses that A" E" implies that
(T') - 'A" E ,9', which in turn implies that (T'T) - 'A" = [w: T'TW E
[w: TW E(T)-124"1=  T-1((Tr)-1A") E J^ ■

By part (i), if f is a real function such that [co:  F(W) < x ] lies in for all
x, then f is measurable This condition is usually easy to check.

Mappings into R k

For a mapping f: SZ --o R k carrying 11 into k-space, R k is always understood
to be the 6-field in the image space. In probabilistic contexts, a measurable
mapping into R k is called a random vector. Now f must have the form

(13.1) 	f( to) = (fl( (
i} ) , ...

, fk( W))

for real functions fj(W). Since the sets (12.9) (the "southwest regions")
generate a k , Theorem 13.1(i) implies that f is measurable if and only if
the set

(13.2) 	[w: f1(W)	 = n [W: fj(W) ^ xjJ
j- 1

lies in	 for each (x,,..., x k ). This condition holds if each fj is measurable
On the other hand, if xj = x is fixed and x 1 = • • • = x.   1 = x j+, l = • • • =

x k = n goes to co, the sets (13.2) increase to [co:  fj(w) < x ]; the condition thus
implies that each f, is measurable. Therefore, f is measurable if and only
if each component function fj is measurable . This provides a practical
criterion for mappings into Rk .

A mapping f: R' --> R k is defined to be measurable if it is measurable
R'/✓9 k. Such functions are often called Borel functions. To sum up, T:
SI --- Ç ' is measurable Y/541 if T- 'A' E 	 for all A' E .9'; f: Si --> Rk is
measurable	 if it is measurable 5/✓9 k ; and f: R' --) R k is measurable (a
Borel function) if it is measurable R7✓9 k. If H lies outside R', then IH

(i = k = 1) is not a Borel function.

Theorem 13.2. If f: R' --- R k is continuous, then it is measurable.

PROOF. As noted above, it suffices to check that each set (13.2) lies in
.^'. But each is closed because of continuity. 	 •
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Theorem 13.3. If f1: fl --' R' is measurable . j = 1, ... , k, then
g(f,(w), ... , fk(w)) is measurable 9 if g: R k --* R' is measurable—in particu-
lar, if it is continuous.

PROOF. If the f1 are measurable, then so is (13.1), so that the result
follows by Theorem 13.160.	 •

Taking g(x,, .. , xk ) to be	 ,x;, rjk x ; , and max{x,,..., x k} in turn
shows that sums, products, and maxima of measurable functions are measur-
able. If f(w) is real and measurable, then so are sin f(w), e`f( W ), and so on,
and if f(w) never vanishes, then 1/f(w) is measurable as well.

Limits and Measurability

For a real function f it is often convenient to admit the artificial values 00
and — 00—to work with the extended real line [ — 00,001 Such an f is by
definition measurable if [w: f(w) E H] lies in for each Borel set H of
(finite) real numbers and if [w: f(w) = 00] and [w: f(w) = — 00] both lie in .
This extension of the notion of measurability is convenient in connection with
limits and suprema, which need not be finite.

Theorem 13.4. Suppose that f 	 ... are real functions measurable „F.

(i) The functions sup„ f,, inf ra f,,, lim sup„ fn , and lim infn f, are measur-
able

(ii) If lim n fn exists everywhere, then it is measurable:
(iii) The w-set where (fn(w)) converges lies in
(iv) If f is measurable . then the w-set where fn(w) ---> f(w) lies in

PROOF. Clearly, [sup, fn S x ] = (I n  [ fn < x ] lies in Sr even for x = 00 and
x = — co, and so sup„ fn is measurable. The measurability of inf n fn follows
the same way, and hence lim supra fn = inf n supk  n fk and lim inf, f„=
sup, inf k  n fk are measurable. If lim n f, exists, it coincides with these last
two functions and hence is measurable. Finally, the set in (iii) is the set where
lim sup, fn(w) = lim inf ra fn(w), and that in (iv) is the set where this common
value is f(w).  ■

Special cases of this theorem have been encountered before—part (iv), for
example, in connection with the strong law of large numbers. The last three
parts of the theorem obviously carry over to mappings into R k .

A simple real function is one with finite range; it can be put in the form

(13.3)	 f= E x, IA;,
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where the A i form a finite decomposition of 1Z. It is measurable .`9 if each
A. lies in 	 The simple random variables of Section 5 have this form.

Many results concerning measurable functions are most easily proved first
for simple functions and then, by an appeal to the next theorem and a
passage to the limit, for the general measurable function.

Theorem 13.5. If f is real and measurable ,F, there exists a sequence {f„)
of simple functions, each measurable 5, such that

(13.4) 	 Osf„((.0)r f(w)	 iff(w)>0

and

(13.5) 	 0>_ ,f„( w)  J, f(w)	 if f(w) O.

PROOF. Define

=(13.6) 	fn(w) —

—n

—(k — 1)2 - ”

(k — 1)2 "

if —oo -f(w) < —n,

if —k2 - " <f(w) < —(k — 1)2 - ",
1 <k<n2",

if (k — 1)2 -„ s f(c)) <k2 - ",

n
1 < k 5 n2 ",

if n< f( w )< oo.

This sequence has the required properties. 	 •

Note that (13.6) covers the possibilities f(w) = oo and f(w) _ —00.
If A E 5", a function f defined only on A is by definition measurable if

[w EA: f(w) EH] lies in . for HER' and for H = (oo) and H={ — oo).

Transformations of Measures

Let (1Z, .5) and (1Z', 9') be measurable spaces, and suppose that the
mapping T: 1Z ---1Z' is measurable 3/ 9 . Given a measure µ on ,F, define
a set function µT- ' on .' by

(13.7) 	147 -1 ( A') = µ(T- 'A'),	 A' E Sr '.

That is, µT - ' assigns value µET- 'A) to the set A'. If A' E .F', then
T'A' E because T is measurable, and hence the set function µT-1 is
well defined on 5'. Since T - ' U„ A',,= U„ T- 'A'„ and the T- 'A,, are disjoint



186 	 MEASURE

sets in Si if the A' are disjoint sets in 1Z', the countable additivity of µT - '

follows from that of p. . Thus p,T - ' is a measure. This way of transferring a
measure from 1k to 1Z' will prove useful in a number of ways.

If µ is finite, so is µT— '; if p. is a probability measure, so is p,T- '.t

PROBLEMS

13.1. Functions are often defined in pieces (foi example, let f(x) be x ; or xW' as
x >_ 0 or x < 0), and the following result shows that the function is measurable
if the pieces are.

Consider measurable spaces (û, .') and (11', 5') and a map T û -4 û'
Let A,, A 2 ,... be a countable covering of SZ by .sets. Consider the o field
,f = [ A: A c A „, A E Y ] in A„ and the restriction T„ of T to A n . Show that
T is measurable Sr/ Y if and only if T„ is measurable ✓̂ /Y for each n.

13.2. (a) For a map T and a-fields 5 and Y', define T- 'Y' =IT- 'A':  A' E 51
and TY= [A': T- 'A' E S]. Show that T -', ' and TY are Q-fields and that
measurability Y/ Y' is equivalent to T- 'Y' C Y and to' c TY.
(b) For given Y', T- '..9-`, which is the smallest cr-field for which T is
measurable .9/Y, is by definition the a--field generated by T. For simpie
random variables describe a-(X1 , ... , X„) in these terms.
(c) Let o'(. i') be the o- field in û' generated by se. Show that Q(T- '.l') _
T- '(u'(.d')). Prove Theorem 10.1 by taking T to be the identity map from û 0

to SZ.

13.3. T Suppose that f: fl —> W. Show that f is measurable T- 'Sr' if and only if
there exists a map cp: SI' —' R' such that cp is measurable Y' and f = 9T. Hint:
First consider simple functions and then use Theorem 13.5.

13.4. T Relate the result in Problem 13.3 to Theorem 5.100.

13.5. Show of real functions f and g that f(w)+g(w) <x if and only if there exist
rationals r and s such that r + s < x, f(w)<r, and g(w) <s. Prove directly
that f + g is measurable Y if f and g are.

13.6. Let Y be a a--field in W. Show that Ç' c Y if and only if every continuous
function is measurable Y. Thus 92' is the smallest a--field with respect to
which all the continuous functions are measurable.

13.7. Consider on W the smallest class ,q'' (that is, the intersection of all classes) of
real functions containing all the continuous functions and closed under point-
wise passages to the limit. The elements of are called Baire functions. Show
that Baire functions and Borel functions on R' are the same thing.

13.8. A real function f on the line is upper semicontinuous at x if for each a there
is a S such that Ix -- yl < S implies that f(y) < f(x) + e. Show that, if f is
everywhere upper semicontinuous, then it is measurable.

But see Problem 13.14.
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13.9. Suppose that fR and f are finite-valued, .9measurable functions such that
f„(w) -' f(w) for w EA, where µ(A) <œ (µ a measure on .9v). Prove Egoroff's
theorem: For each E there exists a subset B of A such that µ(B) <E and
f,,(w

) --)f(co) uniformly on A — B. Hint: Let B;» be the set of w in A such
that If(w) — f,(w)I > k - ' for some i >_ n. Show that B,(» WO as n T co, choose
n k so that µ(B„k l) <E/2 k , and put B = Uk= l B;,k)

13.10. T Show that Egoroff's theorem is false without the hypothesis µ(A)<00.

13.11. 2.9 T Show that, if f is measurable o(d), then there exists a countable
subclass siff of sat such that f is measurable 0-( 1f ).

13.12. Circular Lebesgue measure Let C be the unit circle in the complex plane, and
define T: (0,1)-4 C by To = e 2n'(. Let consist of the Borel subsets of [0, 1),
and let A be Lebesgue measure on 2. Show that f= [A: T- 'A E ai ] consists
of the sets in R 2 (identify R 2 with the complex plane) that are contained in
C Show that ' is generated by the arcs of C. Circular Lebesgue measure is
defined as µ =AT - '. Show that µ is invariant under_rotations: µ[Bz: z EA] =
µ(A) for A E e and 0 E C.

13.13. T Suppose that the circular Lebesgue measure of A satisfies µ(A) > 1— n -

andand that B contains at most n points. Show that some rotation carries B into
A 0B cA foi some 0 in C.

13.14. Show by example that p, a-finite does not imply µT-1 a-finite.

13.15. Consider Lebesgue measure A restricted to the class .0 of Borel sets in (0, 1].
For a fixed permutation n l , n 2 , ... of the positive integers, if x has dyadic
expansion .x l x 2 ..., take Tx = .x„i xn2 .... Show that T is measurable .0/..09
and that AT- ' = A.

13.16. Let Hk be the union of the intervals ((i — 1)/2 k , i/2 k ] for i even, 1 < i <2 k .
Show that if 0 <f(w) < 1 for all w and Ak = r'(Hk ), then f(w) =
rk_ I t (w)/2 k , an infinite linear combination of indicators.

13.17. Let S = {0,11, and define a map T from sequence space S°° to [0,1] by
Tw = Ek. l a k (w)/2 k . Define a map U of [0,1] to S°° by Ux = (d l(x), d2(x),... ),
where the dk (x) are the digits of the nonterminating dyadic expansion of x
(and dk (0) = 0). Show that T is measurable if/.l and that U is measurable
2/e. Let P be the measure specified by (2.21) for p o =p 1 = Z. Describe
PT-  and AU- '.

SECTION 14. DISTRIBUTION FUNCTIONS

Distribution Functions

A random variable as defined in Section 13 is a measurable real function X
on a probability measure space (fi, Y, P). The distribution or law of the
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random variable is the probability measure p. on (R', ✓ I ) defined by

(14.1)	 µ( A) = P[X E A],	 A E R '.

As in the case of the simple random variables in Chapter 1, the argument w
is usually omitted: /IX E Al is short for P[w: X(w) EA]. In the notation
(13.7), the distribution is PX- '.

For simple random variables the distribution was defined in Section
5—see (5.12). There p. was defined for every subset of the line, however;
from now on p. will be defined only for Borel sets, because unless X is
simple, one cannot in general be sure that [X EA] has a probability for A
outside R'.

The distribution function of X is defined by

(14.2)	 F(x) =µ( –03, x] =P[X <x]

for real x. By continuity from above (Theorem 10.26i)) for µ, F is right-
continuous. Since F is nondecreasing, the left-hand limit F(x –) _
lim, T x F(y) exists, and by continuity from below (Theorem 10.2(i)) tor µ,

	(14.3)	 F(x –) =p(–oo,x) =P[X <x].

Thus the jump or saltus in F at x is

F(x) –F(x–) =µ(x} =P[X=x].

Therefore (Theorem 10.26v)) F can have at most countably many points of
discontinuity. Clearly,

	

04.4)	 lim F(x ) =0,	 lim F(x) =1.
X —i — CO 	X —aoo

A function with these properties must, in fact, be the distribution function
of some random variable:

Theorem 14.1. If F is a nondecreasing, right-continuous function satisfying
(14.4), then there exists on some probability space a random variable X for
which F(x) = P[X <x].

FIRST PROOF. By Theorem 12.4, if F is nondecreasing and right-continu-
ous, there is on (R', R') a measure p. for which p.(a, b] = F(b) – F(a). But
lim, F(x)= 0 implies that p.( –co, x]= F(x), and lim, F(x)=1 im-
plies that p.(R') = 1. For the probability space take W, 5 4-, P) = (R', R',µ),
and for X take the identity function: X(co) = w. Then P[ X s xi = µ[ w E R' :
w <x] =F(x). ■
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SECOND PROOF. There is a proof that uses only the existence of Lebesgue
measure on the unit interval and does not require Theorem 12.4. For the
probability space take the open unit interval: Si is (0, 1), 3 consists of the
Borel subsets of (0, 1), and P(A) is the Lebesgue measure of A.

To understand the method, suppose at first that F is continuous and
strictly increasing. Then F is a one-to-one mapping of R` onto (0,1); let go:
(0, 1) --' R' be the inverse mapping. For 0 < w < 1, let X(w) = cp(w). Since go
is increasing, certainly X is measurable 5: If 0 < u < 1, then cp(u) < x if and
only if u < F(x). Since P is Lebesgue measure, P[ X <x ] = P[w E (0,1):
(p(w) <x] = P[w E (0,1): w < F(x)1 = F(x), as required.

F (x }

If F has discontinuities or is not strictly increasing, definer

(14.5)	 <p(u) =inf[x: u <_F(x)1

for 0 < u < 1. Since F is nondecreasing, [x: u <_ F(x)] is an interval stretching
to co; since F is right-continuous, this interval is closed on the left. For
0 < u < 1, therefore, [x:  u < F(x )] _ [ cp(u ), co), and so cp(u) < x if and only if
u < F(x). If X(w) = go(co) for 0 < w < 1, then by the same reasoning as
before, X is a random variable and P[ X < x ] = F(x). •

This second argument actually provides a simple proof of Theorem 12.4
for a probability distribution$ F: the distribution ,u (as defined by (14.1)) of
the random variable just constructed satisfies µ( — co, x ] = F(x) and hence
µ(a, b] = F(b) — F(a).

Exponential Distributions

There are a number of results which for their interpretation require random
variables, independence, and other probabilistic concepts, but which can be
discussed technically in terms of distribution functions alone and do not
require the apparatus of measure theory.

This is called the quantile function
For the general case, see Problem 14 2.
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Suppose as an example that F is the distribution function of the waiting
time to the occurrence of some event—say the arrival of the next customer at
a queue or the next call at a telephone exchange. As the waiting time must be
positive, assume that F(0) = O. Suppose that F(x) < 1 for all x, and further-
more suppose that

(14.6)
1 - F( x + y) _ 1- F( y ) ,

1 -F(x)

The right side of this equation is the probability that the waiting time exceeds
y; by the definition (4.1) of conditional probability, the left side is the
probability that the waiting time exceeds x + y given that it exceeds x. Thus
(14.6) attributes to the waiting-time mechanism a kind of lack of memory or
aftereffect: If after a lapse of x units of time the event has not yet occurred,
the waiting time still remaining is conditionally distributed just as the entire
waiting time from the beginning. For reasons that will emerge later (see
Section 23), waiting times often have this property.

The condition (14.6) completely determines the form of F. If U(x) =
1 - F(x), (14.6) is U(x +y) = U(x)U(y). This is a form of Cauchy's
equation [A20], and since U is bounded, U(x) = e -ax for some a. Since
lim a  U(x) = 0, a must be positive. Thus (14.6) implies that F has the
exponential form

(14.7)	
F(x) = (°1-e-ax

and conversely.

Weak Convergence

if x < 0,
if x >_ 0,

Random variables X 1 ,..., Xn are defined to be independent if the events
[X, E A 1 1, ... , [ Xn E A n ] are independent for all Borel sets A i , ... , A n , so
that P[ X1 E A 1 , i = 1, ... , ni = fl . 1 P[ X1 E A 1 ]. To find the distribution func-
tion of the maximum Mn = max{X 1 , ... , Xn}, take A i =  • - = A n = (-co, xi.
This gives P[ Mn < x 1 = 117_ 1 P[ X1 5 x ]. If the X1 are independent and have
common distribution function G and Mn has distribution function F then

(14.8)	 Fn(x) = Gn(x).

It is possible without any appeal to measure theory to study the real
function F,, solely by means of the relation (14.8), which can indeed be taken
as defining Fn . It is possible in particular to study the asymptotic properties
of Fn:
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Example 14.1. Consider a stream or sequence of events, say arrivals of
calls at a telephone exchange. Suppose that the times between successive
events, the interarrival times, are independent and that each has the expo-
nential form (14.7) with a common value of a. By (14.8) the maximum Mn

among the first n interarrival times has distribution function Fn(x ) = (1 —
e -ax)n, x > 0. For each x, lim n Fn(x) = 0, which means that Mn tends to be
large for n large. But P[ M,, — a - I log n <x ] = Fn(x + a - '  log n). This is the
distribution function of Mn — a - I log n, and it satisfies

(14.9)	 Fn(x + a -I log n) _ (1 — e- (ax+log n))n , e—e - ax

as n - co; the equality here holds if log n >_ — ax, and so the limit holds for
all x. This gives for large n the approximate distribution of the normalized
random variable M„— a - ' log n. a

If Fn and F are distribution functions, then by definition, Fn converges
weakly to F, written Fn = F, if

(14.10)	 lim F,(x) =F(x)
n

for each x at which F is continuous.' To study the approximate distribution
of a random variable Yn it is often necessary to study instead the normalized
or resealed random variable (Yn — bn )/a n for appropriate constants an and
bn . If Y„ has distribution function Fn and if a n > 0, then P[(11,, — bn )/a n <x]
= P[Yn —< a n x + bn], and therefore (K t — bn )/a n has distribution function
Fn (a n x + bn ). For this reason weak convergence often appears in the form

(14.11)	 Fn(anx +bn )	 F(x).

An example of this is (14.9): there a n = 1, bn = a - I log n, and F(x) = e- e ax
r

Example 14.2. Consider again the distribution function (14.8) of the
maximum, but suppose that G has the form

G(x) = 1
0
 _ x -a

where a > 0. Here Fn(n 1 /ax) = (1 — n -1x -")n for x > n -I /", and therefore

lrymF l I/a ) O -x -
n n x= e 

" ifx>0.

This is an example of (14.11) in which a n = n i /" and bn = 0.	 •

For the role of continuity, see Example 14.4.
#To write Fn(an x + bn ) — F(x) ignores the distinction between a function and its value at an
unspecified value of its argument, but the meaning of course is that Fn(an x + bn) F(x) at
continuity points x of F.

if x < 1,
if x >>- 1,

if x < 0,
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Example 14.3. Consider (14.8) once more, but for

0 	 if x < 0,
G(x)= 1-(1 -x)" if0<x<1,

1 	 ifx >- 1,

where a > 0. This time F"(n - '/ax + 1) = (1 - n - '(-x)")" if -n'/a <x < 0.
Therefore,

lim " 	

i^" x+l)	 e -(-x )" if x <0,F (n - 	=
" 	 1 	 if x >0,

a case of (14.11) in which a n = n - ' a and 6,7 =1.	 •

Let A be the distribution function with a unit jump at the origin:

(14.12) ^( x ) = 0 if x<0,
1 if x>_0.

If X(w) = 0, then X has distribution function A.

Example 14.4. Let X 1 X2 ,... be independent random variables for which
P[Xk = 1] = P[Xk = -1] = 2, and put Sn =X , + • • • +X". By the weak law
of large numbers,

(14.13) 	 P[In-1S„1> El -^ 0

for E > 0. Let F" be the distribution function of n - 'Sn . If x > 0, then
Fn(x) =1 - P[n - 'S;, > x] -- 1; if x < 0, then Fn (x) < P[In - 'S"I >_ IxI] - O. As
this accounts for all the continuity points of A, Fn = A. It is easy to turn the
argument around and deduce (14.13) from Fn A. Thus the weak law of
large numbers is equivalent to the assertion that the distribution function of
n ' S,, converges weakly to A.

If n is odd, so that Sn = 0 is impossible, then by symmetry the events
[S < 0] and [S" >_ 0] each have probability . and hence F"(0) = 2. Thus F"(0)
does not converge to A(0) = 1, but because A is discontinuous at 0, the
definition of weak convergence does not require this. •

Allowing (14.10) to fail at discontinuity points x of F thus makes it
possible to bring the weak law of large numbers under the theory of weak
convergence. But if (14.10) need hold only for certain values of x, there
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arises the question of whether weak limits are unique. Suppose that Fn F
and Fn — G. Then F(x) = lim n Fn(x) = G(x) if F and G are both continu-
ous at x. Since F and G each have only countably many points of discontinu-
ity,t the set of common continuity points is dense, and it follows by right
continuity that F and G are identical. A sequence can thus have at most one
weak limit.

Convergence of distribution functions is studied in detail in Chapter 5.
The remainder of this section is devoted to some weak-convergence theorems
which are interesting both for themselves and for the reason that they require
so little technical machinery.

Convergence of Types*

Distribution functions F and G are of the same type if there exist constants
a and b, a > 0, such that F(ax + b) = G(x) for all x. A distribution function
is degenerate if it has the form 6(x — x 0 ) (see (14.12)) for some x 0 ; otherwise,
it is nondegenerate.

Theorem 14.2. Suppose that Fn(u n x + vn) = F(x) and Fn(a n x + bn )
G(x), where u n > 0, a n > 0, and F and G are nondegenerate. Then there exist a
and b, a > 0, such that a n/u n -* a, (b„— vn )/u n --o b, and F(ax + b) = G(x).

Thus there can be only one possible limit type and essentially only one
possible sequence of norming constants.

The proof of the theorem is for clarity set out in a sequence of lemmas. In
all of them, a and the a n are assumed to be positive.

Lemma 1. If Fn F, a n --0 a, and bn ---> b, then Fn(a n x + bn ) F(ax + b).

PROOF. If x is a continuity point of F(ax + b) and E > 0, choose conti-
nuity points u and u of F so that u < ax + b < v and F(v) — F(u) < E;
this is possible because F has only countably many discontinuities. For large
enough n, u <a n x + bn < v, IF,(u) — F(u)r <E, and IF,(v) — F(v)l< c; but
then F(ax +b)-2E<F(u)—E<Fn(u)< Fn(a n x +bn ) < Fn(v)<F(v)+E<
F(ax +b)+2E. ■

Lemma 2. If F„ = F and a,,--> co, then Fn(a n x) O(x).

PROOF. Given E, choose a continuity point u of F so large that F(u) >
1 — E. If x > 0, then for all large enough n, a n x > u and IFn(u) — F(u)r < E, so

# The proof following (14.3) uses measure theory, but this is not necessary If the saltus
o-(x)=F(x)— F(x —) exceeds a àt x 1 < • • <x n , then F(x ; )—F(x ; _ i )>e (take x () <x 1 ), and
so ne < F(x„)— F(x 0 ) < 1; hence [x• o-(x)> c] is finite and [x: o (x) > 01 is countable
*This topic may be omitted.
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that Fn(a n x) >_ Fn(u) > F(u) - c> 1 - 2c. Thus lim n Fn(a n x) = 1 for x > 0;
similarly, lim n Fn(a n x) = 0 for x < O. 	 •

Lemma 3. If Fn = F and bn is unbounded, then Fn(x + bn ) cannot con-
verge weakly.

PROOF. Suppose that bn is unbounded and that bn -* co along some
subsequence (the case b„-* -00 is similar). Suppose that F„(x + b,,) G(x).
Given E, choose a continuity point u of F so that F(u) > 1 - E. Whatever x
may be, for n far enough out in the subsequence, x + bn > u and Fn(u) > 1 -
2E, so that Fn(x + b„) > 1- 2c. Thus G(x) = lim n F„(x + b„)- 1 for all con-
tinuity points x of G, which is impossible. •

Lemma 4. If Fn(x) = F(x) and F„(a n x +13,7 ) = G(x), where F and G are
nondegenerate, then

(14.14) 	 0<infan< sup a n <oo, 	 sup Ib„I< oo.
n 	n	 n

PROOF. Suppose that a„ is not bounded above. Arrange by passing to a
subsequence that a n --- co. Then by Lemma 2,

	

(14.15) 	 Fn(anx)	 A(x).

Since

	

(14.16) 	 Fn(an(_r +b„/an)) =Fn(a n x +bn )	 G(x),

it follows by Lemma 3 that bn/a n is bounded along this subsequence. By
passing to a further subsequence, arrange that bn/a n converges to some c. By
(14.15) and Lemma 1, F,(a n(x + bn/a n)) A(x + c) along this subsequence.
But (14.16) now implies that G is degenerate, contrary to hypothesis.

Thus a n is bounded above. If G,(x) = Fn(a,,x + bn ), then Gn(x) GO.)
and Gn(a,7 1 x  - a n 'bn ) = Fn(x) : F(x). The result just proved shows that an t
is bounded.

Thus a n is bounded away from 0 and oo. If bn is not bounded, neither is
bn /a n ; pass to a subsequence along which bn /a n -) ±oo and a n converges to
a positive a. Since, by Lemma 1, Fn(a nx) F(ax) along the subsequence,
(14.16) and bn/a n - * ±oo stand in contradiction (Lemma 3 again). Therefore
bn is bounded. •

Lemma 5. If F(x) = F(ax + b) for all x and F is nondegenerate, then
a=1 and b=0.

PROOF. Since F(x)- F(anx + (an -I + • • ' +a + 1)b), it follows by
Lemma 4 that an is bounded away from 0 and oo, so that a = 1, and it then
follows that nb is bounded, so that b = 0. •
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PROOF OF THEOREM 14.2. Suppose first that u" = 1 and v" = O. Then
(14.14) holds. Fix any subsequence along which a n converges to some positive
a and b" converges to some b. By Lemma 1, F"(a"x + b") = F(ax + b) along
this subsequence, and the hypothesis gives F(ax + b) = G(x).

Suppose that along some other sequence, a,, -414 > 0 and b" v. Then
Flux + v) = G(x) and F(ax + b) = G(x) both hold, so that u = a and v = b
by Lemma 5. Every convergent subsequence of {(a thus converges to
(a, b), and so the entire sequence does.

For the general case, let H"(x) = F"(u"x + v"). Then H"(x) = F(x) and
H"(a"u n ' x + (b" — v ")u, ') = G(x), and so by the case already treated, a"un I
converges to some positive a and (b" — v")un ' to some h, and as before,
F(ax + b) = G(x). •

Extremal Distributions*
A distribution function F is extremal if it is nondegenerate and if, for some
distribution function G and constants a n (a" > 0) and b",

(14.17) 	 G "(a"x + b") F(x).

These are the possible limiting distributions of normalized maxima (see (14.8)), and
Examples 14.1, 14.2, and 14.3 give three specimens. The following analysis shows that
these three examples exhaust the possible types.

Assume that F is extremal. From (14.17) follow G"k (a"x + b") = F k (x) and
G" k (a" k x + b" k ) F(x), and so by Theorem 14.2 there exist constants c k and d k
such that c k is positive and

(14.18) 	 Fk(x) =F(c k x+dk ).

From F(cJk x+dfk )=F'k (x)=F'(c k x+ d k ) =F(ci(c k x+ dk ) +di) follow (Lemma
5) the relations

(14.19) cjk = CiCk , d•k =c.d k +d^=c k d.+d k .

Of course, c 1 — 1 and d 1 = 0. There are three cases to be considered separately.

CASE 1. Suppose that c k = 1 for all k. Then

(14.20) 	 Fk(x)=F(x+dk), 	 F l I k (x)=F(x—d k ).

This implies that FJ/ k (x) = F(x + d1 — dk ). For positive rational r----j/k,  put Sr =d.
— d k ; (14.19) implies that the definition is consistent, and Fr(x) = F(x + Sr ). Since P
is nondegenerate, there is an x such that 0 < F(x) < 1, and it follows by (14.20) that
dk is decreasing in k, so that S r is strictly decreasing in r.

* This topic may be omitted.
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For positive real t let cp(t) = info < r <, 8 r (r rational in the infimum). Then cp(t) is
decreasing in t, and

(14.21) 	 F' (x) =F(x+cp(t))

for all x and all positive t. Further, (14.19) implies that cp(st) = cp(s) + cp(t), so that by
the theorem on Cauchy's equation [A20] applied to cp(eX), cp(t) = —/3 log t, where
/3 > 0 because cp(t) is strictly decreasing. Now (14.21) with t = ell° gives F(x)
exp{e -x/ ,o log F(0)}, and so F must be of the same type as

(14.22) 	 FI(x) = e
-

e ^.

Example 14.1 shows that this distribution function can arise as a limit of distributions
of maxima—that is, F 1 is indeed extremal.

CASE 2. Suppose that ck() 0 1 for some k o , which necessarily exceeds 1. Then there
exists an x' such that c k ^ , x' + d k  =x'; but (14.18) then gives F k o(x') = F(x'), so that
F(x') is 0 or 1. (In Case 1, F has the type (14.22) and so never assumes the values 0
and 1.)

Now suppose further that, in fact, F(x') = O. Let x o be the supremum of those x
for which F(x) = O. By passing to a new F of the same type one can arrange that
x o = 0; then F(x)- 0 for r < 0 and F(x) > 0 for x > O. The new F will satisfy (14.18),
but with new constants dk .

If a (new) d k is distinct from 0, then there is an x near 0 for which the arguments
on the two sides of (14.18) have opposite signs. Therefore, d k = 0 for all k, and

(14.23) 	 Fk(x) =F(c k x), 	 F'/k(x) =
F^ck )

for all k and x. This implies that F'/ k (x) = F(xcJ/c k ). For positive rational r=j/k,
put yr = ci/c k . The definition is again consistent by (14.19), and Fr(x) = F(yr x).
Since 0 < F(x) < 1 for some x, necessarily positive, it follows by (14.23) that c k is
decreasing in k, so that yr is strictly decreasing in r. Put O(t) _ info < r  yr for
positive real t. From (14.19) follows ti(st) = tp(s) p(t), and by the corollary to the
theorem on Cauchy's equation [A20] applied to 9#(e'), it follows that O(t) = t - for
some > O. Since F l (x) = F(/r(t)x) for all x and for t positive, F(x) =
exp{x -1 " log F(1)} for x> O. Thus (take a =1/0 F is of the same type as

(14.24) 	 FZ,.(x)
0 	 if x < 0,
e -x

-a if x >- O.

Example 14.2 shows that this case can arise.

CASE 3. Suppose as in Case 2 that c k 0 1 for some k o , so that F(x') is 0 or 1 for
some x', but this time suppose that F(x 9) = 1. Let x i be the infimum of those x for
which F(x)- 1. By passing to a new F of the same type, arrange that x 1 = 0; then
F(x) < 1 for x < 0 and F(x) = 1 for x> O. If dk 0, then for some x near 0, one side
of (14.18) is 1 and the other is not. Thus d k = 0 for all k, and (14.23) again holds. And
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again y;/k = ci/c k consistently defines a function satisfying Fr(x) = F(yrx). Since F
is nondegenerate, 0 < F(x) <1 for some x, but this time x is necessarily negative, so
that c k is increasing.

The same analysis as before shows that there is a positive 6 such that F'(x) =
FWx) for all x and for t positive. Thus F(x)— exp((—x) 1 / log F(-1)) for x < 0,
and F is of the type

(14.25) F3.a(x) __ 
e -{-x )° if x <— 0,
1 	 if x >>- 0.

Example 14 3 shows that this distribution function is indeed extremal.

This completely characterizes the class of extremal distributions:

Theorem 14.3. The class of extremal distribution functions consists exactly of the
distribution functions of the types (14.22), (14.24), and (14.25).

It is possible to go on and characterize the domains of attraction. That is. it is
possible for each extremal distribution function F to describe the class of G satisfying
(14.17) for some constants a n and bn—the class of G attracted to F.t

PROBLEMS

14.1. The general nondecreasing function F has at most countably many discontinu-
ities. Prove this by considering the open intervals

supF(u), inf F(u))
u<x 	 a>x

—each nonempty one contains a rational.

14.2. For distribution functions F, the second proof of Theorem 14.1 shows how to
construct a measure ,u on (R I , M I ) such that µ(a, b] = F(b) — F(a).
(a) Extend to the case of bounded F.
(b) Extend to the general case. Hint: Let Fn(x) be —n or F(x) or n as
F(x) < — n or —n <— F(x) < n or n F(x). Construct the corresponding u and
define µ(A) =

14.3. (a) Suppose that X has a continuous, strictly increasing distribution function
F. Show that the random variable F(X) is uniformly distributed over the unit
interval in the sense that P[F(X) < u] = u for 0 <— u 1. Passing from X to
F(X) is called the probability transformation.
(b) Show that the function cp(u) defined by (14.5) satisfies F(cp(u) — ) <
u < F(cp(u)) and that, if F is continuous (but not necessarily strictly increasing),
then F((p(u)) = u for 0 < u < 1.
(c) Show that P[F(X) < u3 = F(cp(u) —) and hence that the result in part (a)
holds as long as F is continuous.

tThis theory is associated with the names of Fisher, Fréchet, Gnedenko, and Tippet. For further
information, see GALAMBOS.
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14.4. T Let C be the set of continuity points of F.
(a) Show that for every Borel set A, P[ F(X) EA, X E C] is at most the
Lebesgue measure of A.
(b) Show that if F is continuous at each point of F - IA, then
P[F(X) E A] is at most the Lebesgue measure of A.

14.5. The Lévy distance d(F, G) between two distribution functions is the infimum of
those e such that G(x — e) — e <— F(x) < G(x + e) + e for all x. Verify that this
is a metric on the set of distribution functions. Show that a necessary and
sufficient condition for F„ F is that d(F,,, F) — O.

14.6. 12.3 1 A Borel function satisfying Cauchy's equation [A20] is automatically
bounded in some interval and hence satisfies f(x) =xf(1). Hint: Take K large
enough that A[x: x > s, I f(x)I < K] > O. Apply Problem 12.3 and conclude that
f is bounded in some interval to the right of 0

14.7. T Consider sets S of reals that are linearly independent over the field of
rationals in the sense that n i x ' + +n k x k = 0 for distinct points x ; in S and
integers n • (positive or negative) is impossible unless n ; = O.
(a) By Zorn's lemma find a maximal such S. Show that it is a Hamel basis. That
is, show that each real x can be written uniquely as x = n i x, + • • . +n k x k for
distinct points x ; in S and integers n ; .
(b) Define f arbitrarily on S, and define it elsewhere by f(n,x, + - • +n k x k )
=n 1 f(x,) +	 +n k f(x k ). Show that f satisfies Cauchy's equation but need
not satisfy f(x) =xf(1).
(c) By means of Problem 14.6 give a new construction of a nonmeasurable
function and a nonmeasurable set.

14.8. 14.5 1 (a) Show that if a distribution function F is everywhere continuous,
then it is uniformly continuous.
(b) Let 3 f (c) = sup[F(x) — F(y): Ix --yI < e] be the modulus of continuity of
F. Show that d(F, G) < e implies that sups IF(x) — G(x)I < e + S F(c).
(c) Show that, if F„ F and F is everywhere continuous, then Fn(x) —>F(x)
uniformly in x. What if F is continuous over a closed interval?

14.9. Show that (14.24) and (14.25) are everywhere infinitely differentiable, although
not analytic.



CHAPTER 3

Integration

SECTION 15. THE INTEGRAL

Expected values of simple random variables and Riemann integrals of contin-
uous functions can be brought together with other related concepts under a
general theory of integration, and this theory is the subject of the present
chapter.

Definition

Throughout this section, f, g, and so on will denote real measurable
functions, the values ±co allowed, on a measure space (fi, ^ p,).t The object
is to define and study the definite integral

f fdtt =^ f( (0) dµ( w) = fde (w) µ (dw) •

Suppose first that f is nonnegative. For each finite decomposition (A ;} of
Si into `.sets, consider the sum

(15.1) E inf f(w) µ(A,).
eA ^

In computing the products here, the conventions about infinity are

(15.2)
0 co = co 0 = 0,
x •oo=oo •x=oo

oo•oo=oo

if0 < x <oo,

Although the definitions (15.3) and (15.6) apply even if f is not measurable Sr, the proofs of
most theorems about integration do use the assumption of measurability in one way or another.
For the role of measurability, and for alternative definitions of the integral, see the problems.
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The reasons for these conventions will become clear later. Also in force are
the conventions of Section 10 for sums and limits involving infinity; see (10.3)
and (10.4). If A. is empty, the infimum in (15.1) is by the standard convention
co; but then µ(A ; ) = 0, so that by the convention (15.2), this term makes no
contribution to the sum (15.1).

The integral of f is defined as the supremum of the sums (15.1):

(15.3) 	ffd = sup E inf f(c,)l µ(A i ).
(,1e,4,

The supremum here extends over all finite decompositions (A 1) of fl into
✓̀zsets.

For general f, consider its positive part,

	(15.4)	 Î+(w) = fo ( w)

and its negative part,

	(15.5)	 r( to)

if 0 <f(ce) <^,
if —oo f(w) <0

if —co < f((o) < 0,
if0 < f(w) <oo.

These functions are nonnegative and measurable, and f = f+ —r. The gen-
eral integral is defined by

(15.6) 	 ffd, = ff+dµ— ff dµ5

unless ff+ dµ = f f - dµ —00, in which case f has no integral.
If f f+ dµ and Jr- dµ are both finite, then f is integrable, or integrable µ,

or summable, and has (15.6) as its definite integral. If Jr dµ =00 and
f f - dµ < oo, then f is not integrable but in accordance with (15.6) is assigned
0o as its definite integral. Similarly, if ff+ dµ <00 and ff- dµ = oo, then f is
not integrable but has definite integral —co. Note that f can have a definite
integral without being integrable; it fails to have a definite integral if and only
if its positive and negative parts both have infinite integrals.

The really important case of (15.6) is that in which f f + dµ and Jf - dµ are
both finite. Allowing infinite integrals is a convention that simplifies the
statements of various theorems, especially theorems involving nonnegative
functions. Note that (15.6) is defined unless it involves "co — 00"; if one term
on the right is oo and the other is a finite real x, the difference is defined by
the conventions co — x = co and x —co = —co.

The extension of the integral from the nonnegative case to the general
case is consistent: (15.6) agrees with (15.3) if f is nonnegative, because then
f^=0.



SECTION 15. THE INTEGRAL
	

201

Nonnegative Functions

It is convenient first to analyze nonnegative functions.

Theorem 15.1. (i) If f = E ; x ; IA i is a nonnegative simple function, (A ; }
being a finite decomposition of fl into 9'=sets, then ffdp,

(ii) If 0 < f(t)) <g(to) for all to, then Pfdµ < fgdp..

(iii) If 0 < fn(to) T f(to) for all to, then 0 < ffa dp. T jfdµ.

(iv) For nonnegative functions f and g and nonnegative constants a and  0,
j(af +/3g)d t = affdµ +/3 jgdp.

In part (iii) the essential point is that jfdµ = lim a jfn dµ, and it is
important to understand that both sides of this equation may be co. If fa = /An
and f = IA , where A n T A, the conclusion is that p. is continuous from below
(Theorem 10.2(i)); lim a p,(A a) = p.(A); this equation often takes the form

PROOF OF (i). Let (B1) be a finite decomposition of SL and let /3i be the
infirnum of f over B1. If A. n B1 * 0, then /3i <x ; ; therefore, E1 /31p(B1 ) _
E ;f /3pµ((A ; n < ^ ;^ x ;µ(A ; n B! ) = E ; x 1p(A ; ). On the other hand, there
is equality here if (B1) coincides with (A ; ). 	 •

PROOF OF (ii). The sums (15.1) obviously do not decrease if f is replaced
by g.	 •

PROOF OF (iii). By (ii) the sequence ffn dp. is nondecreasing and bounded
above by jfdµ. It therefore suffices to show that jfdµ < lim a f, n dµ, or that

m
(15.7) 	 lim f fn dµ>S= E v; µ(A ; )

a 	r - 1

if A l ,. . , A m is any decomposition of Si into ✓̀zsets and v ; = info E Ai f(to).

In order to see the essential idea of the proof, which is quite simple,
suppose first that S is finite and all the u ; and µ(A ; ) are positive and finite.
Fix an E that is positive and less than each v and put A ;n = [to EA ; :
Mû)> v ; — d. Since fa T f, A in I A,. Decompose St into A la , ..., Ama and
the complement of their union, and observe that, since µ is continuous from
below,

m

(15.8) 	ffnd/L ^ E (v ; — OA( Ain) E(v- OA( A i )
i=1	 i=1

m

= S — E	 µ(A ; ).
i=1

	Since the µ(A ; ) are all finite, letting E	 0 gives (15.7).
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Now suppose only that S is finite. Each product v;µ(A i) is then finite;
suppose it is positive for i < m o and 0 for i > m o . (Here m 0 < m; if the
product is 0 for all i, then S = 0 and (15.7) is trivial.) Now v ; and µ(A 1 ) are
positive and finite for i < m o (one or the other may be DO for i > m o ). Define
A in as before, but only for i < m o . This time decompose SI into A ... , A man

and the complement of their union. Replace m by m o in (15.8) and complete
the proof as before.

Finally, suppose that S = oo. Then v ; ,,p.(A ; ) = oo for some i 0 , so that v io
and µ(A ;(,) are both positive and at least one is co. Suppose 0 <x < v < co
and 0 < y < p.(A r ) < oo and put A. =	 f (w)[w ŒA 1 :	 > x]. From fn T fA i ,,,, --	 r 	 n
follows A l 11„ T A;.^;	

^ 	 r
hence µ(A ;0„) > y for n exceeding some n o . But then

(decompose SZ into A l n and its complement) Jfn d p. >_ .rµ(A ;on) >_ xy for
n > no, and therefore lim n Jfn d,u > xy. If 1,. = oo, let x 	 oo, and if p,(A ;(,) =
oo, let y —* oo. In either case (15.7) follows: lim n Jfn dµ = oc.	 •

PROOF OF (iv). Suppose at first that f = E ; x; IAr and g = Ei yi IB
; 

are
simple. Then af + /3g = E ;i(ax ; + 13 yi)1A, n Bi , and so

f (af+l3g) dµ = E(ax; +l3yi)µ(Ai nB))

=aEx;µ(A;) + IQ EyiN, ( Bi) =af fdµ +I3 f g dµ•
r 	 j

Note that the argument is valid if some of a, 0, x ; , yi are infinite. Apart from
this possibility, the ideas are as in the proof of (521).

For general nonnegative f and g, there exist by Theorem 13.5 simple
functions fn and g,, such that 0 < f,. T f and 0 < gn T g. But then 0 < a fn +
/3g„ T a f + [3g and j(afn + [3gn) d p. = a jfn d p. + f3 jgn dµ , so that (iv) follows
from (iii). •

By part (i) of Theorem 15.1, the expected values of simple random
variables in Chapter 1 are integrals: E[X] = JX(w)P(d(0). This also covers
the step functions in Section 1 (see (1.6)). The relation between the Riemann
integral and the integral as defined here will be studied in Section 17.

Example 15.1. Consider the line (R', ^' , A) with Lebesgue measure.
Suppose that —00 < a o < a l < ... < a m < oo, and let f be the function with
nonnegative value x ; on (a 1 _,, a ; ], i = 1, ... ,.m, and value 0 on (— oo, a o ] and
(a m ,00). By part (i) of Theorem 15.1, JfdÀ = Em l x(a ; — a ; _ l ) because of the
convention 0 . oo = 0—see (15.2). If the "area under the curve” to the left of
a o and to the right of am is to be 0, this convention is inevitable. From
co 0 = 0 it follows that JfdA = 0 if f is DO at a single point (say) and 0
elsewhere.
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If f = I(a , œ)' the area-under-the-curve point of view makes Jfdµ = 00
natural. Hence the second convention in (15.2), which also requires that the
integral be infinite if f is DO on a nonempty interval and 0 elsewhere. •

Recall that almost everywhere means outside a set of measure 0.

Theorem 15.2. Suppose that f and g are nonnegative.

(i) If f =0 almost everywhere, then ffdp. = O.
(ii) If ilk): f(w) > 01> 0, then Jfdµ > 0.

(iii) If Jfdµ < co, then f < co almost everywhere.
(iv) If f g almost everywhere, then Jfdp, < Jgdj,.
(y) If f = g almost everywhere, then Jf d p. =  Jgdµ.

PROOF. Suppose that f = 0 almost everywhere. If A ; meets [w: f(w) = 0],
then the infimum in (15.1) is 0; otherwise, p,(A,) = 0. Hence each sum (15.1)
is 0, and (i) follows.

If A E = [w: f(w) >_ E], then A E T[w: f((.0)> 0] as a j, 0, so that under the
hypothesis of (ii) there is a positive E for which µ(A E ) > 0. Decomposing ft.
into A E and its complement shows that Jfdµ >_ Ep,(A E ) > 0.

If µ[ f — 00] > 0, decompose 1Z into [ f = 00] and its compiement: Jfdµ >_
00 - p [ f = oo] = 00 by the conventions. Hence (iii).

To prove (iv), let G =[f _< g]. For any finite decomposition (A 1 ,..., A m )
of 1k,

Eiinff ]µ(A ; ) _ E IiAnff ]µ(A ; n G) _< E
`

AinfG fill( A n G)

E!
 inf g}µ(A,f1 G) < fg d,u,
A,nG !

where the last inequality comes from a consideration of the decomposition
A l n G,.., A n G, G`. This proves (iv), and (v) follows immediately. 	 •

Suppose that f = g almost everywhere, where f and g need not be
nonnegative. If f has a definite integral, then since f f = and f - = g^
almost everywhere, it follows by Theorem 15.2(v) that g also has a definite
integral and If = Jgdµ.

Uniqueness

Although there are various ways to frame the definition of the integral, they are all
equivalent—they all assign the same value to Jfdµ. This is because the integral is
uniquely determined by certain simple properties it is natural to require of it.

It is natural to want the integral to have properties (i) and (iii) of Theorem 151
But these uniquely determine the integral for nonnegative functions: For f nonnega-
tive, there exist by Theorem 13.5 simple functions f„ such that 0 <_ f„ T f; by (iii),
Jfdµ must be lim„ Jf„ dµ, and (i) determines the value of each Jfn dµ.
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Property (i) can itself be derived from (iv) (linearity) together with the assumption
that JIA dµ =µ(A) for indicators IA : J(E ;x ; IA .) dµ = E ix i JIA ; dµ = E ;x rµ(A i ).

If (iv) of Theorem 15.1 is to persist when the integral is extended beyond the class
of nonnegative functions, Jfdµ must be J(f+ — f- )dµ = Jf- dµ, which
makes the definition (15.6) inevitable.

PROBLEMS

These problems outline alternative definitions of the integral and clarify the role
measurability plays. Call (15.3) the lower integral, and write it as

(15 9 )	 I fdµ =supE [ W iÉ fAr f(w)iµ(A i )

to distinguish it from the upper integral

(15.10) f fdµ= inf E sup f(w) ,u(A1).
r„ EA,

The infimum in (15 10), like the supremum in (15.9), extends over all finite partitions
{A ; } of SZ into ✓`sets.

15.1. Suppose that f is measurable and nonnegative. Show that f *fdµ =00 if µ[ w:
f(co) > 0] = co or if µ[w: f(w) > a] > 0 for all a

There are many functions familiar from calculus that ought to be integrable but
are of the types in the preceding problem and hence have infinite upper integral.
Examples are x -2 I0 m)(x) and x - I /240 1)(x). Therefore, (15.10) is inappropriate as a
definition of Jfdµ for nonnegative f. The only problem with (15.10), however, is that
it treats infinity the wrong way. To see this, and to focus on essentials, assume that
µ(Q) < co and that f is bounded, although not necessarily nonnegative or measur-
able .9

15.2. T (a) Show that

E
[ 

inf f(w) ^ µ(A ; ) <_ E 
^ 

inf f(w)l µ( Bi )
; mEA ; 	• mEB^	 J

if (Bi) refines {Ar }. Prove a dual relation for the sums in (15.10) and conclude
that

f fdp. <_ ffdµ.

(b) Now assume that f is measurable g- and let M be a bound for If I.
Consider the partition A i =[(0: ie < f(w) < (i + 1)€], where i ranges from —N



SECTION 15. THE INTEGRAL
	 205

to N and N is large enough that NE > M. Show that

E sup f(w) µ(A) — E
[ 

inf f(0)1µ(A ; ) <_Eµ(SZ).
^ Cil EA, 	= L 01 eA ;

Conclude that

(15.12) 	ffdi= J fdp.

To define the integral as the common value in (15.12) is the Darboux—Ycung
approach. The advantage of (153) as a definition is that (in the nonnegative
case) it applies at once to unbounded f and infinite µ

15.3. 3.2 15.21 For A c SZ, define µ*(A) and µ * (A) by (3.9) and (3.10) with in
place of P. Show that J*lA dµ = µ*(A) and J * IA dµ = µ * (A) for every A.
Therefore, (15.12) can fail if f is not measurable (Where was measurability
used in the proof of (15.12)?)

The definitions (15.3) and (15.6) always make formal sense (for finite µ(5Z) and
supj f I), but they are reasonable—accord with intuition—only if (15.12) holds. Under
what conditions does it hold?

15.4. 10.5 15.31 (a) Suppose of f that there exist an 5set A and a function g,
measurable Sr, such that µ(A) = 0 and [ f # g] cA. This is the same thing as
assuming that µ*[ f # g] = 0, or assuming that f is measurable with respect to Sr
completed with respect to A. Show that (15.12) holds.
(b) Show that if (15.12) holds, then so does the italicized condition in part (a).

Rather than assume that f is measurable 5, one can assume that it satisfies the
italicized condition in Problem 15.4(a)—which in case (fl, ,F,µ) is complete is the
same thing anyway. For the next three problems, assume that µ(5Z) < co and that f is
measurable ,F and bounded.

15.5. 1 Show that for positive E there exists a finite partition {A 1 ) such that, if {B)
is any finer partition and (d i E B^ , then

Jfd 
- f(coi)14 13i)

15.6. 1 Show that

k-1 f
	

k-1 	k 1
2 n

Jfd,i =lim E µ w: 2n 	f(w) <
 2"

n lkkn2"

<E.

The limit on the right here is Lebesgue's definition of the integral.
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15.7. T Suppose that the integral is defined for simple nonnegative functions by
j(E,x,/Ai ) dp = E 1 x ;µ(A ; ). Suppose that fn and gn are simple and nondecreas-
ing and have a common limit: 0 < fn T f and 0<_ g„ T f. Adapt the arguments
used to prove Theorem 15.1(iii) and show that lim n jfn dp. = lim y, jg„ dµ. Thus,
in the nonnegative case, Jfdp. can (Theorem 13.5) consistently be defined as
lim n ff„ dp for simple functions for which 0 < fn T f.

SECTION 16. PROPERTIES OF THE INTEGRAL

Equalities and Inequalities

By definition, the requirement for integrability of f is that f f + dµ and
Jf - dµ both be finite, which is the same as the requirement that f f + dµ +
if-- dµ < oo and hence is the same as the requirement that J(f++ f -) dµ < oc

(Theorem 15.1(îv))_ Since f + + f- = l f I, f is integrable if and only if

(16.1) 	 flfl d/1. <œ.

It follows that if If I < I gI almost everywhere and g is integrable, then f is
integrable as well. If ',cal) <00, a bounded f is integrable.

Theorem 16.1. (i) Monotonicity: If f and g are integrable and f < g almost
everywhere, then

(16.2) 	ffdp < fgdp.

(ii) Linearity: If f and g are integrable and a, 0 are finite real numbers, then
a f + /3g is integrable and

(16.3) 	f( af+13g)dp.  = a ffdp  +/i . f gdµ.

PROOF OF (i). For nonnegative f and g such that f < g almost every-
where, (16.2) follows by Theorem 15.26v). And for general integrable f and
g, if f < g almost everywhere, then f+ < g+ and f >_ g - almost everywhere,
and so (16.2) follows by the definition (15.6). •

PROOF OF (ii). First, af + /3g is integrable because, by Theorem 15.1,

fiaf+ j3g1  dµ —< f (ia f I+I0I .Igi) dµ

=lalflfIdµ+I1SlfIgldµ<co.
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By Theorem 15.1(iv) and the definition (15.6), f(a f) dµ = a f f du,—consider
separately the cases a> 0 and a < O. Therefore, it is enough to check (16.3)
for the case a =0 = 1. By definition, (f +g)+-(f +g) - = f + g = f+- f-+
g + — g- and therefore (f +g)++ f- +g - = (f +g) - + f++ g+. All these func-
tions being nonnegative, f(f +g) + dp. + ff- dp. + fg - dp. = f(f +g) - dp. +
ff+ dµ + fg+ dµ, which can be rearranged to give f(f +g) + dp,- f(f +
g) - du= ff+ dµ - ff- dp. + fg + dp. - fg - dµ. But this reduces to (16.3). •

Since -If l _< f s I f I, it follows by Theorem 16.1 that

(16 4) ffdµ s f If' dµ   

for integrable f. Applying this to integrable f and g gives

(16.5) ffdp. - fgd 1it < fl f - g ldµ .   

Example 16.1. Suppose that SI is countable, that 9 consists of all the
subsets of SZ, and that µ is counting measure: each singleton has measure 1.
To be definite, take SZ = { 1, 2, ... }. A function is then a sequence x i , x 2 , ... .
If xnm is xm or 0 as m < n or in > n, the function corresponding to
x n 1, X n2 , ... has integral Em =1 x m by Theorem 15.1(i) (consider the decompo-
sition (1), ... , {n}, {n + 1, n + 2, ... }). It follows by Theorem 15.1(iii) that in
the nonnegative case the integral of the function given by {xm} is the sum
Em xm (finite or infinite) of the corresponding infinite series. In the general
case the function is integrable if and only if Em= 1 lxm l is a convergent infinite
series, in which case the integral is Em=1xm - E °m = 1 x m

The function x m = (-1)m +'m -1 is not integrable by this definition and
even fails to have a definite integral, since E7n _ 1 xm = Em =1 xm = co. This
invites comparison with the ordinary theory of infinite series, according to
which the alternating harmonic series does converge in the sense that
lim M Em=,(- 1)m+1 m -1 = log2. But since this says that the sum of the first
M terms has a limit, it requires that the elements of the space 0 be ordered.
If SZ consists not of the positive integers but, say, of the integer lattice points
in 3-space, it has no canonical linear ordering. And if E m x m is to have the
same finite value no matter what the order of summation, the series must be
absolutely convergent.t This helps to explain why f is defined to be inte-
grable only if f f + du and f f - d p are both finite. •

Example 16.2. In connection with Example 15.1, consider the function
f= 3I(a , c) - 2 I( _ ^, a) . There is no natural value for f f d A (it is "co - co"), and
none is assigned by the definition.

# RuDIN 1 , p. 76.
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If a function f is bounded on bounded intervals, then each function
fn = ft( _ n , n) is integrable with respect to A. Since f = lim n fn , the limit of
jfn dA, if it exists, is sometimes called the "principal value" of the integral of
f. Although it is natural for some purposes to integrate symmetrically about
the origin, this is not the right definition of the integral in the context of
general measure theory. The functions gn = fI( _,,, n +,) for example also
converge to f, and jg„ dA may have some other limit, or none at all; f(x)=x
is a case in point. There is no general reason why fn should take precedence
over gn .

As in the preceding example, f = Ek = I( -1 ) k k - 11(k. k + I) has no integral,
even though the jfn dA above converge. 	 •

Integration to the Limit

The first result, the monotone convergence theorem, essentially restates Theo-
rem 15.1(iii).

Theorem 16.2. If 0 < f„ 1' f almost everywhere, then gn dp. T jfdµ.

PROOF. If 0 < fn T f on a set A with µ(A`) = 0, then 0 _< fn IA T fI holds
everywhere, and it follows by Theorem 15.1(iii) and the remark following
Theorem 152 that jfn dµ = ffnIA dµ t jflA dµ = jfdµ. ■

As the functions in Theorem 16.2 are nonnegative almost everywhere, all
the integrals exist. The conclusion of the theorem is that lim n ff,, dµ and
jfdµ are both infinite or both finite and in the latter case are equal.

Example 16.3. Consider the space (1, 2, ... } together with counting mea-
sure, as in Example 16.1. If for each in one has 0 x n ,,, T x, as n ---> CO, then
limn Emxnm = Emxm, a standard result about infinite series. •

Example 16.4. If µ is a measure on . , and 	 is a o--field contained in
^, then the restriction µo of p, to . is another measure (Example 10.4). If
f = IA and A E Yo , then

Jfd = ffdp o ,

the common value being µ(A) = µ o(A). The same is true by linearity for
nonnegative simple functions measurable .moo . It holds by Theorem 16.2 for
all nonnegative f that are measurable .o because (Theorem 13.5) 0 < fn t f
for simple functions fn that are measurable ForFor functions measurable
Yo , integration with respect to p. is thus the same thing as integration with
respect to p. o. •
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In this example a property was extended by linearity from indicators to
nonnegative simple functions and thence to the general nonnegative function
by a monotone passage to the limit. This is a technique of very frequent
application.

Example 16.5. For a finite or infinite sequence of measures µn on `,
µ(A) = Ed/4A) defines another measure (countably additive because [A27]
sums can be reversed in a nonnegative double series). For indicators f,

ffdp..= E f f dµn,
n

and by linearity the same holds for simple f > O. If 0 S fk T f for simple fk ,
then by Theorem 16.2 and Example 16.3, jf dµ = limk jfk dµ =
lim k ,, jfk dµ n = En lim p jfk dµ n = En jfdµ n . The relation in question thus
holds for all nonnegative f. •

An important consequence of the monotone convergence theorem is
Fatou's lemma:

Theorem 16.3. For nonnegative fn ,

(16.6)	 fliminff d < Um inf f fn dµ .
n 	 n

PROOF. If gn = infk ,„ fk , then 0 _< gn 1' g = lim inf ra f,,, and the preced-
ing two theorems give jfn dµ >_ fg„ dµ --) jgdµ. 	 •

Example 16.6. On (R', . ', A ), the functions f„= n 2 10 ,,--1 ) and f = 0
satisfy fn(x) --> f(x) for each x, but jfdA = 0 and jfn dA = n --^ co. This shows
that the inequality in (16.6) can be strict and that it is not always possible to
integrate to the limit. This phenomenon has been encountered before; see
Examples 5.7 and 7.7. •

Fatou's lemma leads to Lebesgue's dominated convergence theorem:

Theorem 16.4. If I f„I < g almost everywhere, where g is integrable, and if
fn --.) f almost everywhere, then f and the fn are integrable and jfn dµ -* jfdµ.

PROOF. Assume at the outset, not that the f,, 	but only that
they are dominated by an integrable g, which implies that all the fn as well
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as f* = lim sup ra fn and f * = lim inf f„, 	integrable. Since g +fn and
g — Li 	nonnegative, Fatou's lemma gives

fgdp. + ff dµ = f lim inf ( g+ fn ) dµ
n

^ lim inf f( g + fn ) dµ = fgdp.  + lim inf f fn dµ,

and

fgdp. _ f f*dµ = fliminf (g— fn ) dµ
n

< lim inf f ( g— f,. ) dµ = f g dµ — Lim sup f fn dµ .
n

Therefore

(16.7) 	 flirninffn dµ _< lim inf f fn dµ
n	 n

< lim sup Jf1  dµ < f lim sup fn dµ.
n	 n

(Compare this with (4.9).)
Now use the assumption that fn --' f almost everywhere: f is dominated by

g and hence is integrable, and the extreme terms in (16.7) agree with ffdp..
•

Example 16.6 shows that this theorem can fail if no dominating g exists.

Example 16.7. The Weierstrass M-test for series. Consider the space
{ 1, 2 ; ...) together with counting measure, as in Example 16.1_ If I x n ,,, I _< Mn,
and Em Mm < CO, and if lim n Xn,n = x,,, for each m, then limn Em  X nm Em xrn.
This follows by an application of Theorem 16.4 with the function given by the
sequence M l , M2, ... in the role of g. This is another standard result on
infinite series [A281. •

The next result, the bounded convergence theorem, is a special case of
Theorem 16.4. It contains Theorem 5.4 as a further special case.

Theorem 16.5. If µ(SZ) < co and the fn are uniformly bounded, then fn --* f
almost everywhere implies f fn d p. --' f f dµ.

The next two theorems are simply the series versions of the monotone and
dominated convergence theorems.
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Theorem 16.6. If f„- 0, then J En f„ d µ = En J fn dµ.

The members of this last equation are both equal either to 00 or to the
same finite, nonnegative real number.

Theorem 16.7. If En f„ converges almost everywhere and jEk -  I fk j —< g
almost everywhere, where g is integrable, then En f„ and the f„ are integrable
and J E„ f„ dµ = E„ Jf„ dµ•

Corollary. If E n J j f„ j d,u <c0, then En f,, converges absolutely almost
everywhere and is integrable, and f E„ f,, dµ = En Jf„ dµ.

PROOF. The function g = En l f„j is integrable by Theorem 16.6 and is
finite almost everywhere by Theorem 15.2(iii). Hence E„j f„I and E„ fn con-
verge almost everywhere, and Theorem 16.7 applies. •

In place of a sequence (f„) of real measurable functions on (fl, 5, Fc), consider a
family [ f,: t > 0] indexed by a continuous parameter t. Suppose of a measurable f
that

(16 8)

on a set A, where

( 16 . 9 )

lim f, (^^) =f(w), --^ ^

A EA, µ(f—A)=0.

A technical point arises here, since .9 need not contain the w-set where (16.8) holds:

Exampie 16.8. Let ‘F consist of the Borel subsets of SZ = [0, 1), and let H be a
nonmeasurable set—a subset of fi that does not lie in .5 (see the end of Section 3).
Define f,(w) = 1 if w equals the fractional part t — [t] of t and their common value
lies in H`; define f,(w) = 0 otherwise. Each f, is measurable gc -, but if f(w) = 0, then
the w-set where (16.8) holds is exactly H. •

Because of such examples, the set A above must be assumed to lie in  Sc. (Because
of Theorem 13.4, no such assumption is necessary in the case of sequences.)

Suppose that f and the f, are integrable. If I, = Jf, dµ converges to I = Jfdµ as
t — 00, then certainly I, —> I for each sequence (t„) going to infinity. But the converse
holds as well: If I, dies not converge to I, then there is a positive a such that
1I, — /1 > e for a sequence (t„) going to infinity. To the question of whether I,
converges to I the previous theorems apply.

Suppose that (16.8) and I f,(w)I < g(w) both hold for w EA, where A satisfies
(16.9) and g is integrable. By the dominated convergence theorem, f and the f, must
then be integrable and I, —I for each sequence (t„) going to infinity. It follows that
Jf, dµ —> Jfdµ. In this rësult t could go continuously to 0 or to some other value
instead of to infinity.
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Theorem 16.8. Suppose that f(w, t) is a measurable and integrable function of w
for each t in (a, b). Let OW = Jf(w, t)µ(dw).

(i) Suppose that for w E A, where A satisfies (16.9), f (w, t) is continuous in t at t o ;
suppose further that I f (w, t)I _< g(w) for w e A and It — t o I <3, where 8 is independent
of w and g is integrable. Then O(t) is Continuous at t o .

(ii) Suppose that for w EA, where A satisfies (16.9), f(w, t) has in (a, b) a derivative
f'(w, t); suppose further that I f'(w, t)I 5 g(w) for w EA and t e (a, b), where g is
integrable. Then Oft) has derivative Jf'(w, t)µ(dw) on (a, b).

PROOF Part (i) is an immediate consequence of the preceding discussion. To
prove part (ii), consider a fixed t. If w E A, then by the mean-value theorem,

f(w,t +h) —f(w,t) r ,
h	 -- 1 (w ' s) '

where s lies between t and t + h. The ratio on the left goest to f'(w, t) as h —, 0 and
is by hypothesis dominated by the integrable function g(w). Therefore,

q5(t+hh -0(t)  jf(o,t +h^ —Î
(wt)µ( ) 	 rf( 	 )µ( dw -^ J ' w , t 	 dw) •

The condition involving g in part (ii) can be weakened. It suffices to assume that
for each t there is an integrable g(w, t) such that I f'(w, s)I < g(w, t) for w e A and all
s in some neighborhood of t.

Integration over Sets

The integral of f over a set A in ^ is defined by

(16.10) 	 fA µfd = f'A f4.

The definition applies if f is defined only on A in the first place (set f = 0
outside A). Notice that JA f dµ = 0 if µ(A) = O.

All the concepts and theorems above carry over in an obvious way to
integrals over A. Theorems 16.6 and 16.7 yield this result:

Theorem 16.9. If A I , A 2 ,... are disjoint, and if f is either nonnegative or
integrable, then f unAn fdµ = E n JAn fdµ,.

t Letting h go to 0 through a sequence shows that each f'(•, t) is measurable	 on A; take it to
be 0, say, elsewhere.
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The integrals (16.10) usually suffice to determine f:

Theorem 16.10. (1) If f and g are nonnegative and JA f dµ = JAgdµ for all
A in 34-, and ifµ is o--finite, then f = g almost everywhere.

(ii) If f and g are integrable and JA f dµ = JA gdµ for all A in .9 then f=g
almost everywhere.

(iii) If f and g are integrable and JA f d µ = JA gdµ for all A in 9, where 9
is a 7r-system generating wand fZ is a finite or countable union of 9 sets, then
f = g almost everywhere.

PROOF. Suppose that f and g are nonnegative and that JA fdµ < JA gdµ
for all A in Sr. If µ is Q-finite, there are -sets A,„ such that An 1 1Z
and µ(A n ) <00. If B„ _ [0 < g <f, g s n1, then the hypothesized inequal-
ity applied to A n f1 Bn implies JAn n B„ fdµ < Lin n B^ gdµ < 00 (finite be-
cause A n n B„ has finite measure and g is bounded there) and hence
JIA^ n B (f — g) dµ =0. But then by Theorem 15.2(iî), the integrand is 0
almost everywhere, and so µ(A n n BO = 0. Therefore, /40 _< g <f, g < co] _
0, so that f < g almost everywhere; (i) follows.

The argument for (ii) is simpler: If f and g are integrable and JA fdµ <
JA gdµ for all A in Y-, then JI[g < n(f – g) dp. = 0 and hence µ[g < f 1= 0 by
Theorem 15.260.

Part (iii) for nonnegative f and g follows from part (ii) together with
Theorem 10.4. For the general case, prove that r+ g - =f-  + g+ almost
everywhere. •

Densities

Suppose that 5 is a nonnegative measurable function and define a measure v
by (Theorem 16.9)

v(A) = f Sdµ,	 A E 3z-;
A

5 is not assumed integrable with respect to µ. Many measures arise in this
way. Note that µ(A) = 0 implies that v(A) = 0. Clearly, v is finite if and only
if S is integrable p. . Another function 8' gives rise to the same u if S = 8'
almost everywhere. On the other hand, v(A) = JA S'dµ and (16.11) together
imply that 5 = S' almost everywhere if µ is o--finite, as follows from Theorem
16.10(i).

The measure v defined by (16.11) is said to have density 5 with respect
to p.. A density is by definition nonnegative.

Formal substitution dv = 8 dµ gives the formulas (16.12) and (16.13).
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Theorem 16.11. If v has density S with respect to µ, then

(16.12)	 ff dii = JfSdµ

holds for nonnegative f. Moreover, f (not necessarily nonnegative) is integrable
with respect to v if and only if f8 is integrable with respect to p., in which case
(16.12) and

(16.13)	 f fdv _ J fôdµ
A 	 A

both hold. For nonnegative f, (16.13) always holds.

Here f8 is to be taken as 0 if f = 0 or if 3 = 0; this is consistent with the
conventions (15.2). Note that v[8 = 01 = 0.

PRoof. If f = IA , then Jfdv = v(A), so that (16.12) reduces to the
definition (16.11). If f is a simple nonnegative function, (16.12) then follows
by linearity. If f is nonnegative, then f f„ d v = f f„ 6 d p. for the simple func-
tions f„ of Theorem 13.5, and (16.12) follows by a monotone passage to the
limit—that is, by Theorem 16.2. Note that both sides of (16.12) may be
infinite.

Even if f is not nonnegative, (16.12) applies to if 1, whence it follows that
f is integrable with respect to v if and only if  f8 is integrable with respect to
p.. And if f is integrable, (16.12) follows from differencing the same result for
f' and f-. Replacing f by f1A leads from (16.12) to (16.13). •

Example 16.9. If v(A) = µ(A nA g ), then (16.11) holds with 8 = IAü , and
(16.13) reduces to fA f dv = fA n AÜ fdµ. 	

•

Theorem 16.11 has two features in common with a number of theorems
about integration:

(1) The relation in question, (16.12) in this case, in addition to holding for
integrable functions, holds for all nonnegative functions—the point being
that if one side of the equation is infinite, then so is the other, and if both are
finite, then they have the same value. This is useful in checking for integrabil-
ity in the first place.

(ii) The result is proved first for indicator functions, then for simple
functions, then for nonnegative functions, then for integrable functions. In
this connection, see Examples 16.4 and 16.5.

The next result is Scheffé's theorem.
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Theorem 16.12. Suppose that vn(A) - JA5n dµ and v(A) = fAS dµ for
densities Sn and S. If

(16.14) 	un(f1) = v(f1) < oo,	 n =1,2,...,

and if 5,,---> 5 except on a set of kt-measure 0, then

(16.15) 	sup Iv( A) -vn ( A )I5 f IS -8n l dµ ---) 0.
A E ,f 	 n

PROOF. The inequality in (16.15) of course follows from (16.5). Let
g,,= S - 5 n . The positive part gn of g,, converges to 0 except on a set of
p-measure O. Moreover, 0 < gn < S and S is integrable, and so the domi-
nated convergence theorem applies: jgn dµ --- O. But jgn dµ = 0 by (16.14),
and therefore

f lg^ n I d µ = l 	 gn d^gR,o,
µ ^ f gR :o]g n dµ

= 2f 
gn? 0}

gn dµ 2 f̂ gn dµ --9 0. 	 ii

A corollary concerning infinite series follows immediately—takeµ as
counting measure on SZ = (1, 2, ... ).

Corollary. If Em x nm = Em X m < co, the terms being nonnegative, and if
lim n xnm =x m for each m, then lima Emlxnm - 'Xml = O. If }'m is bounded, then
lim n Em Ymxnm = Em Ym X m .

Change of Variable

Let (SI, Y) and (if, Y') be measurable spaces, and suppose that the
mapping T: Si --' Si' is measurable 34/5'. For a measure ii, on Y, define a
measure µT- ' on Y' by

(16.16)	 µT-' (A') =µ(T- 'A'),	 A' E 347 ,

as at the end of Section 13.
Suppose f is a real function on SZ' that is measurable Y', so that the

composition fT is a real function on SZ that is measurable 3 (Theorem
13.10). The change-of-variable formulas are (16.17) and (16.18). If A' =11',
the second reduces to the first.
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Theorem 16.13. If f is nonnegative, then

(16.17)	
fo
	 41,f(a1.1f( Tce)µ(dw) = 	 )T-1(dco').

A function f (not necessarily nonnegative) is integrable with respect to µT - I if
and only if fT is integrable with respect to l.c., in which case (16.17) and

(16.18)	 f f(Tw)14(d(0 = f f(0) # )µT -1 (da)
T A A'

hold. For nonnegative f, (16.18) always holds.

PROOF. If f — IA., then fT = IT-iA ., and so (16.17) reduces to the defini-
tion (16.16). By linearity, (16.17) holds for nonnegative simple functions. If f,,
are simple functions for which 0 _5_ fn T f, then 0 < f, T T fT, and (16.17)
follows by the monotone convergence theorem.

An application of (16.17) to If I establishes the assertion about integrabil-
ity, and for integrable f, (16.17) follows by decomposition into positive and
negative parts. Finally, if f is replaced by fIA., (16.17) reduces to (16.18). •

Example 16.10. Suppose that (fi', 	 _ (R', a') and T = cp is an ordi-
nary real function, measurable 	 If f(x) =x, (16.17) becomes

(16.19) f q,(w)p(dw) = fRix µÇ0-'(dx).

If cp = E l xl IA r is simple, then ucp -' has mass µ(A ; ) at x ; , and each side of
(16.19) reduces to E 1x ip,(A,). •

Uniform Integrability

If f is integrable, then I f I I[I fI z co goes to 0 almost everywhere as a — co and is
dominated by I fl, and hence

(16.20) lim f	 Ifldµ = 0.
a —'°° [IfI>—a]

A sequence (fn) is uniformly integrable if (16.20) holds uniformly in n:

lim sup f 	 {f I dµ = 0.
a -`°° n 	 [If„Iza]

(16.21)
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If (16.21) holds and A(S1) < co, and if a is large enough that the supremum in
(16.21) is less than 1, then

(16.22) 	f IfI  dµ < aµ(n.) + 1,

and hence the f„ are integrable. On the other hand, (16.21) always holds if the f„ are
uniformly bounded, but the fn need not in that case be integrable if ,u(S1) = co. For
this reason the concept of uniform integrability is interesting only for IL finite

If h is the maximum of I f I and Igl, then

f
If+gl>2a

If +gldµ 2f  h 	 2f 	Ifldp. + 2 f 	 Igl dµ
 h , a 	 If^?a 	 Igl>_a

Therefore, if {fn) and (gn} are uniformly integrable, so is { f„ + g„}.

Theorem 16.14. Suppose that µ(fl) < co and fn —' f almost everywhere.

(i) If the fn are uniformly integrable, then f is integrable and

(16.23) 	ff 	 ffd,i.

(ii) If f and the f„ are nonnegative and integrable, then (16.23) implies that the f„
are uniformly integrable.

PROOF. If the f„ are uniformly integrable, it follows by (16.22) and Fatou's
lemma that f is integrable. Define

fn a) — {fn
 if Ifni <a,

0 	 if I fn I >_ a,
f(a) _ f if I f I < a ,

0 if Ifl?a.

If µ[I f I = a] = 0, then f4« ) —' f ( a ) almost everywhere, and by the bounded conver-
gence theorem,

	(16.24) 	ff,du — ff ( a ) dµ.

Since

	(16.25) 	ff dµ — ff(a)  dµ =
 f	 f„ dµ

f

and

(16.26) 	Jfd,i_ffdii=f  fd,
fl^a
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it follows from (16.24) that

lim sup
n ff dp. — ffdp. G sup f 	Ifn i dµ + f 	 I f l dµ-

n If„I>_ a 	 If I?a 

And now (16.23) follows from the uniform integrability and the fact that µII f I= al = 0
for all but countably many a.

Suppose on the other hand that (16.23) holds, where f and the f„ are nonnegative
and integrable. If p.[ f = a] = 0, then (16.24) holds, and from (16.25) and (16.26)
follows

(16.27) 	 .f 	 fn dµ —^  f fdµ.
f 	 f>a

Since f is integrable, there is, for given E, an a such that the limit in (16 27) is less
than E and µ[ f = a] = O. But then the integral on the left is less than E for all n
exceeding some n o. Since the f„ are individually integrable, uniform integrability
follows (increase a). •

Corollary. Suppoce that ,u(fl) < co. If f and the f, ; are integrable, and if f„ --3 f
almost everywhere, then these conditions are equivalent:

(i) f„ are uniformly integrable;
(ii) fI f—fIdg 	 0;
(iii) f l f„l du - i f I f I dµ.

PROOF. If (1) holds, then the differences If-Li '  are uniformly integrable, and
since they converge to 0 almost everywhere, (ii) follows by the theorem, And (ii)
implies (iii) because I I f I - I f„I I I f - f„ I- Finally, it follows from the theorem that (iii)
implies (i). •

Suppose that

(16.28) 	 sup fIf,,I' -l-E  dµ < 00

for a positive E. If K is the supremum here, then

f 	 1.04 	 1  f 	 Ifn11kE dµ   x,
[Ifn Iz al 	 a 	 [If„I?a1 	 a

and so (f„) is uniformly integrable.

Complex Functions
A complex-valued function on SZ has the form f(o) = g(co) + ih(w), where g and h
are ordinary finite-valued real functions on SZ. It is, by definition, measurable .' if g
and h are. If g and h are integrable, then f is by definition integrable, and its
integral is of course taken as

(16.29) 	f(g + ih)dji = fgdp. +i fhdµ.
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Since max{Ig I,1h11 _< I f 1 s Igl + Ihl, f is integrable if and only if WIf I dµ < co, just as in
the real case.

The linearity equation (16.3) extends to complex functions and coefficients—the
proof requires only that everything be decomposed into real and imaginary parts.
Consider the inequality (16.4) for the complex case:

(16.30) ffdji < II f l dµ .   

If f = g + ih and g and h are simple, the corresponding partitions can be taken to be
the same (g = E k x k IA , and h = E k y k lA) ), and (16.30) follows by the triangle inequal-
ity. For the general integrable f, represent g and h as limits of simple functions
dominated by If I, and pass to the limit.

The results on integration to the limit extend as well. Suppose that fk = g k + ih k

are complex functions satisfying Ek JI fk I dp. < co. Then Ek J I gk1 dµ < co, and so by the
corollary to Theorem 16.7, Ek gk is integrable and integrates to Ek Jgk dµ. The same
is true of the imaginary parts, and hence Ek fk is integrable and

(16 31) fYJfkdli= E ffk dµ.

PROBLEMS

16.1. 13.9 1' Suppose that µ(fl) < co and f,, are uniformly bounded.
(a) Assume f,, —> f uniformly and deduce Jf„ da — Jfdµ from (16.5).
(b) Use part (a) and Egorofl?s theorem to give another proof of Theorem 16.5.

16.2. Prove that if 0 <f„ —> f almost everywhere and Jf„ dp <A < co, then f is
integrable and Jfd i <A. (This is essentially the same as Fatou's lemma and is
sometimes called by that name.)

16.3. Suppose that f„ are integrable and sup,, Jf„ dp. < co. Show that, if f,, t f, then
f is integrable and Jf„ dµ —> Jfdµ. This is Beppo Levi's theorem.

16.4. (a) Suppose that functions a„, b„, f„ converge almost everywhere to func-
tions a, b, f, respectively. Suppose that the first two sequences may be integra-
ted to the limit—that is, the functions are all integrable and  fa„ dµ --t fa dµ,
Jb„ d,u — Jbdµ. Suppose, finally, that the first two sequences enclose the third:
a n < f„ s b„ almost everywhere. Show that the third may be integrated to the
limit.
(b) Deduce Lebesgue's dominated convergence theorem from part (a).

16.5. About Theorem 16.8:
(a) Part (i) is local: there can be a different set A for each to . Part (ii) can be
recast as a local theorem. Suppose that for co EA, where A satisfies (16.9),
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f(w, t) has derivative f'(w, to ) at to ; suppose further that

(16.32) f(e to +h) - f(w to) 
h

< gt(w )   

for to E A and 0 < Ihi < S, where S is independent of w and g t is integrable.
Then 0'00 )= ff'(w, t o )µ(dw).

The natural way to check (16.32), however, is by the mean-value theorem,
and this requires (for w EA) a derivative throughout a neighborhood of t o
(b) If ,u. is Lebesgue measure on the unit interval SZ, (a, b)= (0,1), and
f(w, t) = h0 1)(w), then part (i) applies but part (ii) does not. Why? What about
(16.32)?

16.6. Suppose that f(w, ) is, for each w, a function on an open set W in the
complex plane and that f(-, z) is for z in W measurable .f and integrable.
Suppose that A satisfies (16.9), that f(w, ) is analytic in W for w in A, and
that for each zo in W there is an integrable g(•, zo ) such that Igo), z)I <
g(w, zo) for all w EA and all z in some neighborhood of z0 . Show that
f f(w, z)µ(dw) is analytic in W.

16.7. (a) Show that if Ifn i <g and g is integrable, then {Li) is uniformly integrable.
Compare the hypotheses of Theorems 16.4 and 16.14
(b) On the unit interval with Lebesgue measure, let f„ = (n/log n)10 ,,- I ) for
n >_ 3. Show that the f„ are uniformly integrable (and f f„ dµ --> 0) although
they are not dominated by any integrable g.
(c) Show for f„ = n10 „-, off - n10, -1 ,2,7 - 1) that the f„ can be integrated to the
limit (Lebesgue measure) even though the f„ are not uniformly integrable.

16.8. Show that if f is integrable, then for each a there is a S such that µ(A)<S
implies JA I f I dµ < E.

16.9. T Suppose that µ(Q) < co. Show that (f„) is uniformly integrable if and only
if (i) f I f„idµ is bounded and (ii) for each a there is a S such that µ(A) <
implies JA I f„I dµ < e for all n.

16.10. 2.19 16.9 T Assume µ(SZ) < co.
(a) Show by examples that neither of the conditions (i) and (ii) in the
preceding problem implies the other.
(b) Show that (ii) implies (i) for all sequences { f„) if and only if µ is
nonatomic.

16.11. Let f be a complex-valued function integrating to reie , r>_ 0. From f(I f(w)I
-e-wf(w))µ(dµ) = f I f I dµ - r, deduce (16.30).

16.12. 11.5 T Consider the vector lattice _I and the functional A of Problems 11.4
and 11.5. Let µ be the extension (Theorem 11.3) to .9-= o-(9) of the set
function µo on Sro .
(a) Show by (11.7) that for positive x, y 1 , y2 one has v([ f > 1] X (0, x])=
xµ o [ f> 1] =xµ[ f > 1] and v([y1 <f < y2] X (0, x]) =xµ[y 1 <f- y2].
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(b) Show that if fE..", then f is integrable and

A( f) = ffdµ

(Consider first the case f > O.) This is the Daniell—Stone representation
theorem.

SECTION 17. THE INTEGRAL WITH RESPECT TO LEBESGUE
MEASURE

The Lebesgue Integral on the Line

A real measurable function on the line is Lebesgue integrable if it is
integrable with respect to Lebesgue measure A, and its Lebesgue integral
jfd A is denoted by jf(x) dx, or, in the case of integration over an interval, by
jb f(x) dx. The theory of the preceding two sections of course applies to the
Lebesgue integral. It is instructive to compare it with the Riemann integral.

The Riemann Integral

A real function f on an interval (a, b] is by definition# Riemann integrable,
with integral r, if this condition holds: For each E there exists a S with the
property that

(17.1) t — Ef(x)A(I,) <E   

if {I;} is any finite partition of (a, b] into subintervals satisfying A(/; )< S and
if x, E I, for each i. The Riemann integral for step functions was used in
Section 1.

Suppose that f is Borel measurable, and suppose that f is bounded, so
that it is Lebesgue integrable. If f is also Riemann integrable, the r of (17.1)
must coincide with the Lebesgue integral fâ f(x) dx. To see this, first note
that letting x ; vary over I; leads from (17.1) to

(17.2) r— E sup f( x)'A(I; )+<E .

1 

Consider the simple function g with value sup x E t; f(x) on I. Now f < g, and
the sum in (17.2) is the Lebesgue integral of g. By monotonicity of the

t For other definitions, see the first problem at the end of the section and the Note on
terminology following it.
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Lebesgue integral, Jâ f(x) dx < Jâ g(x) dx < r + E. The reverse inequality fol-
lows in the same way, and so Jaf(x) dx = r. Therefore, the Riemann integral
when it exists coincides with the Lebsegue integral.

Suppose that f is continuous on [a, b]. By uniform continuity, for each E
there exists a S such that I f(x) —f(y)l<  €/(b — a) if Ix — yI < S. If A(11 ) < S
and x i E 1, then g = E ; f(x 1 )I, r satisfies If — gI < €/(b — a) and hence
I Jabf dx — Jâ gdxl < E. But this is (17.1) with r replaced (as it must be) by the
Lebesgue integral Jâ f dx: A continuous function on a closed interval is
Riemann integrable.

Example 17.1. If f is the indicator of the set of rationals in (0,1], then the
Lebesgue integral J0(x) dx is 0 because f = 0 almost everywhere. But for an
arbitrary partition {I! } of (0, 1] into intervals, E ; f(x ; )A(1) with x i E I, is 1 if
each x i is taken from the rationals and 0 if each x i is taken from the
irrationals. Thus f is not Riemann integrable. ■

Example 17.2. For the f of Example 17.1, there exists a g (namely, g = 0)
such that f = g almost everywhere and g is Riemann integrable. To show
that the Lebesgue theory is not reducible to the Riemann theory by the
casting out of sets of measure 0, it is of interest to produce an f (bounded
and Borel measurable) for which no such g exists.

In Examples 3.1 and 3.2 there were constructed Borel subsets A of (0,1]
such that 0 < A(A) < 1 and such that A(A n I) > 0 for each subinterval I of
(0,1 ]. Take f = IA . Suppose that f = g almost everywhere and that f/;) is a
decomposition of (0, 1] into subintervals. Since A(1 n A n [f= g]) = A(11 nA)
> 0, it follows that g(y; ) = f(y r ) = 1 for some y 1 in I n A, and therefore,

(17.3) 	 Eg(yr)A(o =1 >A(A).

If g were Riemann integrable, its Riemann integral would coincide with the
Lebesgue integrals fg dx = ff dx = A(A), in contradiction to (17.3). 	 ■

It is because of their extreme oscillations that the functions in Examples
17.1 and 17.2 fail to be Riemann integrable. (It can be shown that a bounded
function on a bounded interval is Riemann integrable if and only if the set of
its discontinuities has Lebesgue measure 0. 1 ) This cannot happen in the case
of the Lebesgue integral of a measurable function: if f fails to be Lebesgue
integrable, it is because its positive part or its negative part is too large, not
because one or the other is too irregular.

See Problem 17.1.
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Example 17.3. It is an important analytic fact that

(17.4) lim 
r`  sin x ^ _ -rr .

o 	 2

The existence of the limit is simple to prove, because f(n'r  1)ir x -1 sin x dx
alternates in sign and its absolute value decreases to 0; the value of the limit
will be identified in the next section (Example 18.4). On the other hand,
x -1 sin x is not Lebesgue integrable over (0,00), because its positive and
negative parts integrate to 00. Within the conventions of the Lebesgue theory,
(17.4) thus cannot be written fox -1 sin xdx = 7r/2—although such "im-
proper" integrals appear in calculus texts. It is, of course, just a question of
choosing the terminology most convenient for the subject at hand. •

The function in Example 17.2 is not equal almost everywhere to any
Riemann integrable function. Every Lebesgue integrable function can, how-
ever, be approximated in a certain sense by Riemann integrable functions of
two kinds.

Theorem 17.1. Suppose that f l f I dx <00 and € > 0.

(i) There is a step function g = Ek_ 1 x ; IA ,, with bounded intervals as the A ; ,
such that f I f - dx < E.

(ii) There is a continuous integrable h with bounded support such that
fIf - hidx<E.

PROOF. By the construction (13.6) and the dominated convergence theo-
rem, (i) holds if the A ; are not required to be intervals; moreover, A(A i ) < 00
for each i for which x, 0. By Theorem 11.4 there exists a finite disjoint
union B; of intervals such that A(A,OB,) < E/kIx,i. But then E,x,IB . satisfies
the requirements of (i) with 2E in place of E.

To prove (ii) it is only necessary to show that for the g of (i) there is a
continuous h such that fi g — hi dx < E. Suppose that A. = (a,, b,]; let h i(x)
be 1 on (a,, b,] and 0 outside (a, - 8, b, + 8], and let it increase linearly from
0 to 1 over (a, - S, a,] and decrease linearly from 1 to 0 over (b,, b, + 6].
Since f 114 . - h» dx -40  as 6 -4 0, h = Ex,h, for sufficiently small 6 will
satisfy the requirements. •

The Lebesgue integral is thus determined by its values for continuous
functions.t

tThis provides another way of defining the Lebesgue integral on the line. See Problem 17.13.
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The Fundamental Theorem of Calculus

Adopt the convention that if = — fi if a > p. For positive h,

1
h f x}h

f(Y) dy — f(x) ` h rhlf(Y) — f(x) 1 dY 

< sup[If(y)—f(x)1: x <y<x +h],

and the right side goes to 0 with h if f is continuous at x. The same thing
holds for negative h, and therefore fa f(y) dy has derivative f(x):

(17.5) ci, 
f 	

Y ) dy=f(x)

if f is continuous at x.
Suppose that F is a function with continuous derivative F' = f; that is,

suppose that F is a primitive of the continuous function f. Then

(17.6)	 fbfMf bF)(b) —F(a),
a 	 a

as follows from the fact that F(x)—F(a) and faf(y) dy agree at x = a and
by (17.5) have identical derivatives. For continuous f, (17.5) and (17.6) are
two ways of stating the fundamental theorem of calculus. To the calculation
of Lebesgue integrals the methods of elementary calculus thus apply.

As will follow from the general theory of derivatives in Section 31, (17.5) holds
outside a set of Lebesgue measure 0 if f is integrable—it need not be continuous. As
the following example shows, however, (17.6) can fail for discontinuous f.

Example 17.4. Define F(x) = x 2 sin x -2 for 0 <x < i and F(x) — 0 for x < 0 and
for x >— 1. Now for i <x < 1 define F(x) in such a way that F is continuously
differentiable over (0, co). Then F is everywhere differentiable, but F'(0) = 0 and
Ft(x) = 2x sin x -2 — 2x -I cos x -2 for 0 <x < f. Thus F' is discontinuous at 0; F' is,
in fact, not even integrable over (0,1], which makes (17.6) impossible for a = O.

For a more extreme example, decompose (0,1] into countably many subintervals
(an , b,,]. Define G(x) = 0 for x < 0 and x. 1, and on (a n , b„] define G(x) = F((x —
a n )/(bn — a n )). Then G is everywhere differentiable, but (17.6) is impossible for G if
(a, b] contains any of the (a,,, bn ], because G is not integrable over any of them. •

Change of Variable

For

(17.7) 	 [ a, b] 14-  [u, v] 13 R',
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the change-of-variable formula is

(17.8)	 fbf(T)TIdx
 = f Thf(y)dy.

If T' exists and is continuous, and if f is continuous, the two integrals are
finite because the integrands are bounded, and to prove (17.8) it is enough to
let b be a variable and differentiate with respect to it.#

With the obvious limiting arguments, this applies to unbounded intervals
and to open ones:

Example 17.5. Put T(x) = tan x on (-7r/2,7r/2). Then r(x) = 1 +
T 2 (x), and (17.8) for f(y) = (1 +y 2 ) - ' gives

(17.9) f
oe dy

 = 7r.
_co 1 + y 2

•

The Lebesgue Integral in R k

The k-dimensional Lebesgue integral, the integral in (R k, k , A k ), is de-
noted jf(x) dx, it being understood that x = (x 1 , ..., x k ). In low-dimensional
cases it is also denoted JfA f(x 1 , x 2 ) dx l dx2 , and so on.

As for the rule for changing variables, suppose that T: U --> R k , where U is
an open set in R k . The map has the form Tx = (t l(x), ..., tk(x)); it is by
definition continuously differentiable if the partial derivatives ti1(x) = at i/dx1

exist and are continuous in U. Let Ds = [tl1(x); be the Jacobian matrix, let
J(x) = det Ds be the Jacobian determinant, and let V = TU.

Theorem 17.2. Let T be a continuously differentiable map of the open set U
onto V. Suppose that T is one-to-one and that J(x) 0 for all x. If f is
nornnegative, then

(17.10) 	ff(Tx)IJ(x)Idx = ff(y)dy.

By the inverse-function theorem [A35], V is open and the inverse point
mapping is continuously differentiable. It is assumed in (17.10) that f:
V --- R' is a Borel function. As usual, for the general f, (17.10) holds with I fl
in place of f, and if the two sides are finite, the absolute-value bars can be
removed; and of course f can be replaced by fIB or fITA.

tSee Problem 17.11 for extensions.
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Example 17.6. Suppose that T is a nonsingular linear transformation on
U = V = R". Then Ds is for each x the matrix of the transformation. If T is
identified with this matrix, then (17.10) becomes

(17.11)	 IdetTl f f(Tx) dx= f f(y)dy.
U 	 V

If f = ITA, this holds because of (12.2), and then it follows in the usual
sequence for simple f and for the general nonnegative f: Theorem 17.2 is
easy in the linear case. •

Example 17.7. In R 2 take U= [(p,0): p>0, 0<0< 2.1r] and T(p,0)=
(p cos 0, p sin 0). The Jacobian is J(p, 0) = p, and (17.10) gives the formula
for integrating in polar coordinates:

(17.12) ff .>
	f(pcos0,p sin 0)pdpd0= f fRZf(x,y)dxdy.

0c8<27r

Here V is R 2 with the ray [(x, 0): x > 01 removed; (17.12) obviously holds
even though the ray is included on the right. If the constraint on 0 is
replaced by 0 < 0 < 47r, for example, then (17.12) is false (a factor of 2 is
needed on the right). This explains the assumption that T is one-to-one. •

Theorem 17.2 is not the strongest possible; it is only necessary to assume that T is
one-to-one on the set U0 = [ x E U: J(x) _* O]. This is because, by Sard's theorem, t
A k (V— TU0)= O.

PROOF OF THEOREM 17.2. Suppose it is shown that

(17.13) 	 f f(Tx)IJ(x)I (Ix >_ ff() dy

for nonnegative f. Apply this to T- ': V U, which [A35] is continuously differen-
tiable and has Jacobian J -1 (T- ' y) at y:

j g(T1y)IJ_1(T_ 'y)I dy > fg(x) dx

for nonnegative g on V. Taking g(x) = f(Tx)I J(x)I here leads back to (17.13), but
with the inequality reversed. Therefore, proving (17.13) will be enough.

For f = ITA , (17.13) reduces to

(17.14) f 1J(x)I dx >_ A k (TA).
A

tSP1vAK, p. 72.
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Each side of (17.14) is a measure on 9e= U n .GP k . If ..Q( consists of the rectangles A
satisfying A - c U, then d is a semiring generating k, U is a countable union of
.ladsets, and the left side of (17.14) is finite for A in al (supA -IJI <co). It follows by
Corollary 2 to Theorem 11.4 that if (17.14) holds for A in d, then it holds for A in
%. But then (linearity and monotone convergence) (17.13) will follow.

Proof of (17.14) for A in 	 Split the given rectangle A into finitely many
subrectangles Qi satisfying

(17.15) 	 diam Co, <S,

8 to be determined. Let x ; be some point of Q t . Given E, choose 3 in the first place
so that 11(x) —J(.01<  E if x, x' EA -  and Ix — x'I < S. Then (17.15) implies

(17.16) ElJ(xt)IAk(Qi) < fA IJ(x)I dx+EA k (A).
;

Let Q; E be a rectangle that is concentric with Qi and similar to it and whose edge
lengths are those of Qi multiplied by 1 + E. For x in U consider the affine transforma-
tion

(17.17) rj z=DX(z—x)+Tx, z E R k ;

4z will [A34] be a good approximation to Tz for z near x. Suppose, as will be
proved in a moment, that for each E there is a 3 such that, if (17.15) holds, then, for
each i, psi approximates T so well on Qi that

(17.18) TQi c 0X . Q7 E

By Theorem 12.2, which shows in the nonsingular case how an affine transforma-
tion changes the Lebesgue measures of sets, Ak(/X;Q, E) —1.1(x 1 )14(Q7').  If (17.18)
holds, then

( 17. 19 )	 Ak (TA ) _ EA k (TQ i ) 	 (0x;Q! E)

L.+IJ( x i)IAk (Qt E )= ( 1 +E) k L.+I•l(xt)IAk(Qi)•

(This, the central step in the proof, shows where the Jacobian in (17.10) comes from.)
If for each E there is a 3 such that (17.15) implies both (17.16) and (17.19), then
(17.14) will follow. Thus everything depends on (17.18), and the remaining problem is
to show that for each E there is a 8 such that (17.18) holds if (17.15) does.

Proof of (17.18). As (x, z) varies over the compact set A - x [z: Izl = 11, 'Dr-1z'  is
continuous, and therefore, for some c,

(17.20) I Dz 'zI ^ clzl 	 for x EA, z E Rk.

Since the t ai are uniformly continuous on A -, 8 can be chosen so that 151(z) — t.i(x)I
< E/k 2c for all j, l if z, x EA and I z — xi <3. But then, by linear approximation
[A34: (16)], I Tz — Tx — Ds(z — x)I G Ec - 'Iz —xl < Ec -18. If (17.15) holds and 3 < 1,
then by the definition (17.17),

(17.21) 	 ITz- 4 
r

zI <c/c 	 for z E Qi.
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To prove (17.18), note that z E Q. implies

10Z. I Tz — z 1 =10x, I Tz — <AZ `OX, z I — I D;r ' ( Tz — ^X z } I
<cl Tz —^x . z l <E,

where the first inequality follows by (17.20) and the second by (17.21). Since 4 -I' Tz is
within c of the point z of Q 1 , it lies in 	X I Tz E Q7€, or Tz E jX^Q^ E , hence
(17.18) holds, which completes the proof. 	 •

Stieltjes Integrals

Suppose that F is a function on R'` satisfying the hypotheses of Theorem
12.5, so that there exists a measure µ such that ,u(A) = C A F for bounded
rectangles A. In integrals with respect to g. , g.(dx) is often replaced by
dF(x):

(17.22) 	 ff(x) dF(x) = f f(x)p(dx).

The left side of this equation is the Stieltjes integral of f with respect to F;
since it is defined by the right side of the equation, nothing new is involved.

Suppose that f is uniformly continuous on a rectangle A, and suppose
that A is decomposed into rectangles A m small enough that I f(x) — f(y)I <
E/g.(A) for x, y EA m . Then

f f( x) dF( x)—E f( x,n ) AAA 	 mF
m

for x„m E A. In this case the left side of (17.22) can be defined as the limit of
these approximating sums without any reference to the general theory of
measure, and for historical reasons it is sometimes called the
Riemann—Stieltjes integral; (17.22) for the general f is then called the
Lebesgue—Stieltjes integral. Since these distinctions are unimportant in
the context of general measure theory, jf(x) dF(x) and jfdF are best
regarded as merely notational variants for jf (x) p,(dx) and f f dµ.

PROBLEMS

Let f be a bounded function on a bounded interval, say [0,1]. Do not assume that f
is a Borel function. Denote by L * f and L*f (L for Lebesgue) the lower and upper
integrals as defined by (15.9) and (15.10), where g is now Lebesgue measure A on the
Borel sets of [0,1]. Denote by R * f and R*f (R for Riemann) the same quantities but
with the outer supremum and infimum in (15.9) and (15.10) extending only over finite
partitions of [0,1] into subintervals. It is obvious (see (15.11)) that

< E

(17.23 ) 	R* f <L * f <L*f <R*f.
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Suppose that f is bounded, and consider these three conditions:

(i) There is an r with the property that for each c there is a 6 such that (17.1) holds
if {I;} partitions [0, 1] into subintervals with A(11 ) <6 and if x 1 E I.

(ii) R * f= R*f.
(iii) If Di- is the set of points of discontinuity of f, then A(Df ) = 0.

The conditions are equivalent.

17.1. Prove:
(a) D f is a Borel set.
(b) (i) implies (ii).
(c) (ii) implies (iii).
(d) (iii) implies (i).
(e) The r of (i) mast coincide with the R * f = R*f of (ii).

A note on terminology. An f on the general (9,, ‘.9-,,a)  is defined to be integrable
not if (15.12) holds, but if (16.1) does. And an f on [0,1] is defined to be integrable
with respect to Lebesgue measure not if L * f = L*f holds, but, rather, if

(17.24) f'If(x)I dx < cc

does. The condition L * f = L*f is not at issue, since for bounded f it always holds if
f is a Borel function, and in this book f is always assumed to be a Borel function
unless the contrary is explicitly stated. For the Lebesgue integral, the question is
whether f is small enough that (17.24) holds, not whether it is sufficiently regular that
L * f = L*f. For the Riemann integral, the terminology is different because R * f <R*f
holds for all sorts of important Borel functions, and one way to define Riemann
integrability is to require R * f = R*f. In the context of general integration theory, one
occasionally looks at the Riemann integral, but mostly for illustration and compari-
son.

17.2. 3.15 17.11' (a) Show that an indicator IA for A c [0,1] is Riemann inte-
grable if and only if A is Jordan measurable.
(b) Find a Riemann integrable function that is not a Borel function.

17.3. Extend Theorem 17.1 to R k .

17.4. Show that if f is integrable, then

lim f lf( x + t) — f(x)1 dx = O.
t -4 0

Use Theorem 17.1.

17.5. Suppose that 	 is a finite measure on ,92 k and A is closed. Show that
µ(x +A) is upper semicontinuous in x and hence measurable.

17.6. Suppose that J l f(x)l dx < co. Show that for each c, A[x: x > a, l f(x)I> c] —> 0
as a -, cc. Show by example that f(x) need not go to 0 as x — co (even if f is
continuous).
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17.7. Let f(x)=x"' - 2x 2i - '. Calculate and compare Jô , i fn(x) dx and
En _ i Jo fn(x) dx. Relate this to Theorem 16.6 and to the corollary to Theorem
16.7.

17.8. Show that (1 + y 2 ) - ' has equal integrals over (- co,- 1), (-1, 0), (0, 1), (1, co).
Conclude from (17.9) that J c1(1 + y 2 ) - ' dy = it/4. Expand the integrand in a
geometric series and deduce Leibniz's formula

Ir 1 1 1

by Theorem 16.7 (note that its corollary does not apply).

17.9. Show that if f is integrable, there exist continuous, integrable functions g,,
such that g n(x) -)f(x) except on a set of Lebesgue measure 0. (Use Theorem
17.16i) with E = n -2 .)

17.10. 13.9 17.91 Let f be a finite-valued Borel function over [0,1] By the
following steps, prove Lusin's theorem: For each E there exists a continuous
function g such that A[x e (0, 1): fix)* g(x)] <E.
(a) Show that f may be assumed integrable, or even bounded.
(b) Let g,, be continuous functions converging to f almost everywhere.
Combine Egoroff's theorem and Theorem 12.3 to show that convergence
is uniform on a compact set K such that A((0,1) - K) <€. The limit
lim n gn(x) = f(x) must be continuous when restricted to K.
(c) Exhibit (0,1) - K as a disjoint union of open intervals Ik [Al2], define g as
f on K, and define it by linear interpolation on each 'k .

17.11. Suppose in (17.7) that T' exists and is continuous and f is a Borel function,
and suppose that fail f(Tx)T'(x)I dx < co_ Show in steps that JT(,b)l f(y)I dy < co
and (17.8) holds. Prove this for (a) f continuous, (b) f = ifs,,, (c) f = 'B ,
(d) f simple, (e) f > 0, (f) f general.

17.12. 16.121 Let 2 consist of the continuous functions on R' with compact
support. Show that ....2 is a vector lattice in the sense of Problem 11.4 and has
the property that I . e../  implies f A 1 E2 (note that 1 e 2). Show that the
cr-field Sr generated by 2 is ..1^'. Suppose A is a positive linear functional on
2; show that A has the required continuity property if and only if fn(x).j,0
uniformly in x implies A(fn ) -> 0. Show under this assumption on A that there
is a measure µ on .92' such that

(17.25) A(f) = f fd,u, f E.i.

Show that ,u is a-finite and unique. This is a version of the Riesz representation
theorem.

17.13. 1 Let A(f) be the Riemann integral of f, which does exist for f in 2.
Using the most elementary facts about Riemann integration, show that the µ
determined by (17.25) is Lebesgue measure. This gives still another way of
constructing Lebesgue measure.

17.14. 1 Extend the ideas in the preceding two problems to Rk.
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SECTION 18. PRODUCT MEASURE AND FUBINI'S THEOREM

Let (X, g.) and (Y, sJ) be measurable spaces. For given measures p and v
on these spaces, the problem is to construct on the Cartesian product X x Y
a product measure 7r such that Tr(A x B) = µ(A)v(B) for A c X and B c Y.
In the case where .t and y are Lebesgue measure on the line, 7r will be
Lebesgue measure in the plane. The main result is Fubini's theorem, accord-
ing to which double integrals can be calculated as iterated integrals.

Product Spaces

It is notationally convenient in this section to change from (Q, 9) to (X, l)
and (Y, E"). In the product space X X Y a measurable rectangle is a product
A x B for which A E . and B E sJ. The natural class of sets in X X Y to
consider is the if-field ."x V generated by the measurable rectangles. (Of
course, l'x / is not a Cartesian product in the usual sense.)

Example 18.1. Suppose that X — Y = R' and gc'= 7= .Q'. Then a mea-
surable rectangle is a Cartesian product A X B in which A and B are linear
Borel sets. The term rectangle has up to this point been reserved for
Cartesian products of intervals, and so a measurable rectangle is more
general. As the measurable rectangles do include the ordinary ones and the
latter generate ✓) 2 , it follows that R2 cR' x R'. On the other hand, if A
is an interval, [B: A XBE gi' 2 1 contains R' (A X R' = u n(A x ( — n, n]) E
.9 2 ) and is closed under the formation of proper differences and countable
unions; thus it is a if-field containing the intervals and hence the Borel sets.
Therefore, if B is a Borel set, [A: A x B E.Q 2 1 contains the intervals and
hence, being a if-field, contains the Borel sets. Thus all the measurable
rectangles are in .J 2 , and so ✓ ' x . I = aj 2 consists exactly of the two-
dimensional Borel sets. •

As this example shows, ."x V is in general much larger than the class of
measurable rectangles.

Theorem 18.1. (i) If E E g.x 	 then for each x the set [y: (x, OE E]
lies in	 and for each y the set [ x: (x, y) E El lies in:

(ii) If f is measurable .Tx eJ, then for each fixed x the function f(x, -) is
measurable sJ, and for each fixed y the function f(-, y) is measurable':

The set [y: (x, y) E El is the section of E determined by x, and f(x, •) is
the section of f determined by x.

PROOF. Fix x, and consider the mapping Tx :  Y --- X x Y defined by
Tx y = (x, y). If E =A x B is a measurable rectangle, TX IE is B or 0
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according as A contains x or not, and in either case TX 'E E W. By Theorem
13.1(i), Tx is measurable W/g .x W. Hence [y: (x,y) E El = Tx 'E E W for
E E g. x W. By Theorem 13.16i), if f is measurable "x'/, ', then fTx is
measurable //..'. Hence f(x, -) = f Tx(•) is measurable W. The symmetric
statements for fixed y are proved the same way. •

Product Measure

Now suppose that (X,.T, µ) and (Y, 37, v) are measure spaces, and suppose
for the moment that µ and v are finite. By the theorem just proved v[ y:
(x, y) E E] is a well-defined function of x. If Y is the class of E in ."x W
for which this function is measurable T, it is not hard to show that J is a
A-system. Since the function is IA(x)v(B) for E =A x B, f contains the
7r-system consisting of the measurable rectangles. Hence . coincides with

'x W by the 7r-A theorem. It follows without difficulty that

(18.1) 	 77-'(E)= f v[y: (x,y)EE]µ(dx),	 EEg-X W,
X

is a finite measure on g-x sJ, and similarly for

(18.2) 	 7r"(E)= f µ[x:(x,y)EE]v(dy),	 EECxs".
Y

For measurable rectangles,

(18.3) 	 7r'(A x B) =7r"(A X B) =µ(A) • v(B).

The class of E in ^x " for which 77-'(E) =77-"(E) thus contains the
measurable rectangles; since this class is a A-system, it contains ^x W. The
common value 7r'(E) = 7r"(E) is the product measure sought.

To show that (18.1) and (18.2) also agree for if-finite p. and u, let (Am) and
(B a } be decompositions of X and Y into sets of finite measure, and put
µ,n(A) = p(A nA m ) and vn(B) = v(B n Bn ). Since u(B) = Em vm(B), the in-
tegrand in (18.1) is measurable in the o--finite as well as in the finite case;
hence 7r' is a well-defined measure on g'x 2J and so is 7r". If 77 - nn and 7rm"„
are (18.1) and (18.2) for µm and vn ,Ahen by the finite case, already treated
(see Example 16.5), 77-'(E) = Emn77-mn(E) = Emn7rmn(E) =7r"(E). Thus (18.1)
and (18.2) coincide in the if-finite case as well. Moreover, 77'(A x B) =
Emnµm(A)vn(B) = µ(A)v(B).

Theorem 18.2. If (X, , p.) and (Y, ', v) are if-finite  measure spaces,
7r(E) = 7r'(E) —7r"(E) defines a o--finite measure on X  it is the only
measure such that 7r(A x B) = µ(A) • v(B) for measurable rectangles.
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PROOF. Only o--finiteness and uniqueness remain to be proved. The
products A m x B„ for (A m) and {B„) as above decompose X x Y into
measurable rectangles of finite 77 --measure. This proves both o --finiteness and
uniqueness, since the measurable rectangles form a 7r-system generating
"x V (Theorem 10.3). •

The 7r thus defined is called product measure; it is usually denoted p, x v.
Note that the integrands in (18.1) and (18.2) may be infinite for certain x and
y, which is one reason for introducing functions with infinite values. Note
also that (18.3) in some cases requires the conventions (15.2).

Fubini's Theorem

Integrals with respect to 7r are usually computed via the formulas

(18.4) 	 f fix, y)?(d(x , y)) — J  ff( x, y)v(dy) µ(dx)
X x Y 	 X Y

and

(18.5) 	 fXxY f(x,y)17-(d(x,y)) = fy[tfix,Y)Accixdv(dY)•

The left side here is a double integral, and the right sides are iterated
integrals. The formulas hold very generally, as the following argument shows.

Consider (18.4). The inner integral on the right is

(18.6) 	 ff(x,y)u(dy).

Because of Theorem 18.1(iî), for f measurable gx " the integrand here is
measurable 7; the question is whether the integral exists, whether (18.6) is
measurable " as a function of x, and whether it integrates to the left side
of (18.4).

First consider nonnegative f. If f = 'E , everything follows from Theorem
18.2: (18.6) is v[y: (x, y) E El, and (18.4) reduces to 7r(E) =17-'(E). Because
of linearity (Theorem 15.1(îv)), if f is a nonnegative simple function, then
(18.6) is a linear combination of functions measurable " and hence is itself
measurable C; further application of linearity to the two sides of (18.4)
shows that (18.4) again holds. The general nonnegative f is the monotone
limit of nonnegative simple functions; applying the monotone convergence
theorem to (18.6) and then to each side of (18.4) shows that again f has the
properties required.

Thus for nonnegative f, (18.6) is a well-defined function of x (the value co
is not excluded), measurable g', whose integral satisfies (18.4). If one side of
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(18.4) is infinite, so is the other; if both are finite, they have the same finite
value.

Now suppose that f, not necessarily nonnegative, is integrable with
respect to Tr. Then the two sides of (18.4) are finite if f is replaced by If I.
Now make the further assumption that

(18.7) 	 kf(x,Y)Iv(dY)  <co

for all x. Then

(18.8) 	 f f(x,y)(dy)= ff(x,y)v(dy) - ff(x,y)v(dy).
Y	 'Y	 Y

The functions on the right here are measurable g and (since f +, f - . I f I)
integrable with respect to ,u, and so the same is true of the function on the
left. Integrating out the x and applying (18.4) to f} and to f- gives (18.4)
for f itself.

The set A o of x satisfying (18.7) need not coincide with X, but
µ(X -- A 0 ) = 0 if f is integrable with respect to Tr, because the function in
(18.7) integrates to 'If I dTr (Theorem 15.2(iii)). Now (18.8) holds on A 0 ,
(18.6) is measurable on A o , and (18.4) again follows if the inner integral
on the right is given some arbitrary constant value on X - A o .

The same analysis applies to (18.5):

Theorem 18.3. Under the hypotheses of Theorem 18.2, for nonnegative f
the functions

(18.9) 	ff(x,y)v(dy),j f(x,y)/L(d)
Y	 X

are measurable ,q'' and ', respectively, and (18.4) and (18.5) hold. If f (not
necessarily nonnegative) is integrable with respect to Tr, then the two functions
(18.9) are finite and measurable on A o and on B o , respectively, where p,(X -
A 0 ) = v(Y — Bo ) = 0, and again (18.4) and (18.5) hold.

It is understood here that the inner integrals on the right in (18.4) and
(18.5) are set equal to 0 (say) outside A o and Bo!

This is Fubini's theorem; the part concerning nonnegative f is sometimes
calléd Tonelli's theorem. Application of the theorem usually follows a two-step
procedure that parallels its proof. First, one of the iterated integrals is
computed (or estimated above) with If I in place of f. If the result is finite,

tSince two functions that are equal almost everywhere have the same integral, the theory of
integration could be extended to functions that are only defined almost everywhere; then A o and
Bo would disappear from Theorem 18.3.
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then the double integral (integral with respect to 7r) of If must be finite, so
that f is integrable with respect to 7r; then the value of the double integral of
f is found by computing one of the iterated integrals of f. If the iterated
integral of If is infinite, f is not integrable 7r.

Example 18.2. Let D,. be the closed disk in the plane with center at the
origin and radius r. By (17.12),

A 2(Dr )= JJ dxdy= f f p dp de.
Dr 	o<p<r

0<o<27r

The last integral can be evaluated by Fubini's theorem:

A2( Dr) = 27r f p dp = 7rr 2 . ■

Example 18.3. Let 1= f m
 me -x 2 dx. By Fubini's theorem applied in the

plane and by the polar-coordinate formula,

1 2 = ffe272)dxdy  = f f e - p p dp dB.
R 2 	p >0

0<B<2Tr

The double integral on the right can be evaluated as an iterated integral by
another application of Fubini's theorem, which leads to the famous formula

(18.10) 	
f oe 2

 dx = ÿ7r .

As the integrand in this example is nonnegative, the question of integrability
does not arise. 	 •

Example 18.4. It is possible by means of Fubini's theorem to identify the
limit in (17.4). First,

fo
l
e - ux sin xdx = 1
 1+u

2 11- e - "'(u sin t +cos 01,

as follows by differentiation with respect to t. Since

0f 1 [fx . x
du dx = f'Isinxl x - 'dx< t <^

0
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Fubini's theorem applies to the integration of e' sin x over (0, t) x (0,00):

^
foi 

sin x dx - (o'sin x [f
o
 e - "x du dx

.- f: (te -ux sin xdx du

°° du 	°° e - ut
z I01+2 si n t +cos t)1+uu

The next-to-1ast integral is 7r/2 (see (17.9)), and a change of variable ut = s
shows that the final integral goes to 0 as t -> co. Therefore,

f r sin x 	 Tr
rl^ ^ ... 	

x	dx = 2 .
a

■

Integration by Parts

Let F and G be two nondecreasing, right-continuous functions on an interval
[a, b], and let /./. and y be the corresponding measures:

µ(x,)1 ] =F(y)-F(x), v(x,y;-G(y)-G(x),	 a <x^y<b.

In accordance with the convention (17.22) write dF(x) and dG(x) in place of
p.(dx) and v(dx).

Theorem 18.4. If F and G have no common points of discontinuity in
(a, b], then

(18.12)	 f	 G(x) dF(x)
(a,b ]

=F(b)G(b) -F(a)G(a) - f	 F(x)dG(x).
(a,b ]

In brief: jG dF = OFG - JFdG. This is one version of the partial integra-
tion formula.

PROOF. Note first that replacing F(x) by F(x) -- C leaves (18.12) un-
changed—it merely adds and subtracts Cv(a, b] on the right. Hence (take
C = F(a)) it is no restriction to assume that F(x) = µ(a, xi and no restriction
to assume that G(x) = v(a, x]. If 7 = µ X v is product measure in the plane,
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then by Fubini's theorem,

(18.13)

and

7r[(x, Y): a <y < x < b]

= f v(a, x]µ(dx) = f G( x) dF(x)
(a,b]	 (a, b]

(18.14) 	 77-[(x, y): a <x <y <b]

= f µ(a , Y]v(dy) = f F(y) dG(y).
(a, b]	 (a, b]

The two sets on the left have as their union the square S = (a, b] x (a, M.
The diagonal of S has 7r-measure

77-[(x, y): a <x =y <b] f= v{x}µ(dx) =0a b] 

because of the assumption that and y share no points of positive measure.
Thus the left sides of (18.13) and (18.14) add to Tr(S) = µ(a, b]v(a, b] _
F(b)G(b). ■

Suppose that v has a density g with respect to Lebesgue measure and let
G(x) = c + fa g(t) dt. Transform the right side of (18.12) by the formula
(16.13) for integration with respect to a density; the result is

(18.15) 	 f G(x) dF(x)
(a, U]

=F(b)G(b) —F(a)G(a) — f bF(x)g(x)dx.
a

A consideration of positive and negative parts shows that this holds for any g
integrable over (a, b].

Suppose further that has a density f with respect to Lebesgue measure,
and let F(x) = c' + fa f(t) dt. Then (18.15) further reduces to

(18.16) fG(x)f(x)d=F(b)G(b) — F(a)G(a) — fF(x)g(x)dz.
a 	 a

Again, f can be any integrable function. This is the classical formula for
integration by parts.

Under the appropriate integrability conditions, (a, b] can be replaced by
an unbounded interval.



238 	 INTEGRATION

Products of Higher Order

Suppose that (X, a", i.), (Y,, v), and (Z, Y, n) are three o--finite measure
spaces. In the usual way, identify the products X x Y x Z and (X x Y) x Z.
Let g'x Vx y be the cr-field in X x Y x Z generated by the A x B x C
with A, B, C in a's, W, a2, respectively. For C in Z, let Sc be the class of
E E x 2J for which E x C E .Tx W"x 1. Then Sc is a cr-field containing
the measurable rectangles in X x Y, and so Sc _ l'x W. Therefore, (g'x

') x yc g'x Wx ?. But the reverse relation is obvious, and so ("x /)
xa2=g'x Wx y.

Define the product µ x v x ri on a'x Wx L as (µ >0)) x n. It gives to
A x B x C the value (p. x v) (A x B) • n(C) = p(A)v(B)ri(C), and it is the
only measure that does. The formulas (18.4) and (18.5) extend in the obvious
way.

Products of four or more components can clearly be treated in the saine
way. This leads in particular to another construction of Lebesgue measure in
R k = R' x • • • x R' (see Example 18.1) as the product Ax • • • x A (k fac-
tors) on Mk -- M I x • • • x M'. Fubini's theorem of course gives a practical
way to calculate volumes:

Example 18.5. Let Vk be the volume of the sphere of radius 1 in R k ; by
Theorem 12.2, a sphere in R k with radius r has volume r k lVk . Let A be the
unit sphere in R k, let B = [(x 1 , x 2 ): x; +x 2 < 11, and let C(x l , x 2 ) =
[(x 3 , ... , x k ): Ek= 3 ... x? < 1 — x 21 - 4].  By Fubini's theorem,

Vk . [(Ix, . . dxk — f dX 1 dx2 f	 dx3 	 dvkB 	 C(xi, x Z )

= f ^1 ^2 Vk -2( 1 —xi — x2)B
(k- 2)/2

= Vk -2 fj  (1 — p2)(k -2)
/2p dp d8

o <e<27r
0<p<1

^ 77 -2 f 1t(k 2)/2 dI = 
2?TVk -2 

o 	 k 	•

If V0 is taken as 1, this holds for  k— 2 as well as for k> 3. Since V1 = 2, it
follows by induction that

2(27r) rI
V21 -1 	lx3x5x ••• x(2i -1)'

Ver 	 (27)r

2x4x 	 x(2i)

for i = 1, 2, .... Example 18.2 is a special case. 	 •
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PROBLEMS

18.1. Show by Theorem 18.1 that if A X B is nonempty and lies in "x s/, then
AE^ and B E

18.2. 29 T Suppose that X = Y is uncountable and "= eJ consists of the count-
able and the cocountable sets. Show that the diagonal E = [(x, y): x = y] does
not lie in "x ^J , even though [y: (x, y) E E} E 	 and [x: (x, y) E E] E
for all x and y.

18.3. 10.5 18.1 T Let (X, g', u) = (Y, ,v) be the completion of (1V,92 ( , A).
Show that (X x Y, g'x 	 a x y) is not complete.

18.4. The assumption of a-finiteness in Theorem 18.2 is essential: Let µ be Lebesgue
measure on the line, let v be counting measure on the line, and take
E =[(x, y): x = y]. Then (18.1) and (18.2) do not agree.

18.5. Example 18.2 in effect connects it as the area of the unit disk D 1 with the 7r
of trigonometry.
(a) A second way: Calculate A 2(D I ) directly by Fubini's theorem: A 2(D I )=
f ` , 2(1 — x 2 ) 1 /2 dx. Evaluate the integral by trigonometric substitution.
(b) A third way: Inscribe in the unit circle a regular polygon of n sides. Its
interior consists of n congruent isosceles triangles with angle 2wr/n at the
apex; the area is n sin(7r/n)cos(7r/n), which goes to 7r.

18.6. Suppose that f is nonnegative on a Q-finite measure space (11,5;0.d. Show
that

J fdµ —(µ x 'Oka), y) E fZ X R': G s y s f(w)] .

Prove that the set on the right is measurable. This gives the "area under the
curve." Given the existence of µ x A on 11 x R', one can use the right side of
this equation as an alternative definition of the integral.

18.7. Reconsider Problem 12.12.

18.8. Suppose that v[ y: (x, y) E E] = v[ y: (x, y) E F] for all x, and show that
(µ x v)(E) = (µ X v)( F). This is a general version of Cavalieri's principle.

18.9. (a) Suppose that ,u is a--finite, and prove the corollary to Theorem 16.7 by
Fubini's theorem in the product of (fl, Y-, µ) and (1, 2, ... ) with counting
measure.
(b) Relate the series in Problem 17.7 to Fubini's theorem.
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18.10. (a) Let ,u = y be counting measure on X = Y= {1, 2, ... }. If

2 — 2 -x 	 if x = y,
f(x, y)= —2 +2^r if x= y+1,

0 	 otherwise,

then the iterated integrals exist but are unequal. Why does this not contradict
Fubini's theorem?
(b) Show that xy/(x 2 +y 2 ) 2 is not integrable over the square {(x, y) ;xl,Iyl <
1] even though the iterated integrals exist and are equal

18.11. Exhibit a case in which (18.12) fails because F and G have a common point of
discontinuity.

18.12. Prove 08.16) for the case in which all the functions are continuous by
differentiating with respect to the upper limit of integration.

18.13. Prove for distribution functions F that f °° „(F(x + c) — F(x)) dx = c.

18.14. Prove for continuous distribution functions that fc° jF(x) dF(x) = 2.

18.15. Suppose that a number fn is defined for each n> n o and put F(x) =
InU < n 5 xfn'

 Deduce from (18.15) that

(18. 1 7) E G(n)fn = F(x)G(x) — f xF( t )g(t) dt
n U <n <x	 nU

if G( Y) — G(x) = fr g(t) dt, which will hold if G has continuous derivative g.
First assume that the fn are nonnegative.

18.16. T Take n o = l , f., = 1, and G(x) = 1/x, and derive En xn -' = log x + y +
O(1/x), where y = 1 — 1 i (t - jt J)t-2 dt is Euler's constant.

18.17. 5.20 18.15 T Use (18.17) and (5.51) to prove that there exists a constant c
such that

(18.18) .^ p= log log x + c + O( log 	 x )'
p

 Euler's gamma function is defined for positive t by F(t)= jo x' - le'  dx.
(a) Prove that F (k )(t) = fôx' - '(log x) k e -xdx.
(b) Show by partial integration that I'(t + 1) = tI'(t) and hence that I'(n + 1)
= n! for integral n.

(c) From (18.10) deduce r(1)=1,g.
(d) Show that the unit sphere in R k has volume (see Example 18.5)
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18.19. By partial integration prove that J (sin x)/x) 2 dx = n-I2 and f°° (1 —
cos x)x -2 dx =ir.

18.20. Suppose that ,u, is a probability measure on (X, e") and that, for each x in X,
vx is a probability measure on (Y, '). Suppose further that, for each B in
vx(B) is, as a function of x, measurable a. Regard the µ(A) as initial
probabilities and the vx(B) as transition probabilities:
(a) Show that, if E E .TX W,  then vx[ y: (x, y) E E] is measurable g
(b) Show that 1r(E) = ffvx[ y: (x, y) E E]µ(dx) defines a probability measure
on .X'x 	 If vx = y does not depend on x, this is just (18.1).
(c) Show that if f is measurable "x 	 and nonnegative, then I  f(x, y)vx(dy)
is measurable .: Show further that

jXxY 
Î(x, y)ir(d(x, y)) = 1X Y1 ^^x , y)vXoy) µ(dx),

which extends Fubini's theorem (in the probability case). Consider also f's that
may be negative.
(d) Let v(B) = fx vx(B)µ(dx). Show that 7r(X X B) = v(B) and

f f( y)( dy ) = fXr f f(y)vx(dy) µ(dx).
^

SECTION 19. THE L" SPACES*

Definitions

Fix a measure space (fi, .9, p,). For 1 <p < co, let LP = Lp(f1, , µ) be the
class of (measurable) real functions f for which If I° is integrable, and for f
in L", write

(19.1)
I/P

Ilfllp = f µ 	 •

There is a special definition for the case p = co: The essential supremum of f
is

(19.2) 	VII. = inf[a: µ[w: If(w)I >a] = 0];

take LŒ to consist of those f for which this is finite. The spaces L" have a
geometric structure that can usefully guide the intuition. The basic facts are
laid out in this section, together with two applications to theoretical statistics.

* The results in this section are used nowhere else in the book. The proofs require some
elementary facts about metric spaces, vector spaces, and convex sets, and in one place the
Radon—Nikodym theorem of Section 32 is used. As a matter of fact, it is possible to jump ahead
and read Section 32 at this point, since it makes no use of Chapters 4 and 5
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For 1 < p, q <03, p and q are conjugate indices if p -1 + q - 1 = 1; p and q
are also conjugate if one is 1 and the other is co (formally, 1-' +1 ' = 1).
Holder's inequality says that if p and q are conjugate and if f E LP and
g E Lq, then fg is integrable and

(19.3) ffgdp. s flfgl dp. ^ 11f llpllgll q .   

This is obvious if p= 1 and q = co. If 1 <p, q <03 and p. is a probability
measure, and if f and g are simple functions, (19.3) is (5.35). But the proof
in Section 5 goes over without change to the general case.

Minkowski's inequality says that if f, g E LP (1 . p . oo), then f+ g E L p
and

(19.4)	 Ilf+gllp<_ II fllp+lIgllp.

This is clear if p = 1 or p = oo. Suppose that 1 <p <00. Since If + g I < 2(I f I p
+ Iglp) 1 / 1', f+g does lie in L". Let q be conjugate to p. Since p -1=p/q,
Holder's inequality gives

Ilf+gllp= f

< flfl - If +gl p/g dµ+ flgl - If+gl p/g dµ

Ilfllp-iiIf+glp /qli q +llgllp'ilIf +g1p / q11 q

1/q= (Ilf Ilp +- IIgIIp) f I f +glp dµ

= (Il f Ilp + llgllp)Il f +gll p / g-

Since p - p/q = 1, (19.4) follows. t
If a is real and f E LP, then obviously a f E LP and

(19.5)	 Ilaf Ilp = l al • lIf Ilp.

Define a metric on LP by d p(f, g) = II f --- g II p• Minkowski's inequality
gives the triangle inequality for dp , and dp is certainly symmetric. Further,
dp(f, g) = 0 if and only if if - gl p integrates to 0, that is, f =g almost
everywhere. To make L' a metric space, identify functions that are equal
almost everywhere.

t The Holder and Minkowski inequalities can also be proved by convexity arguments, see
Problems 5.9 and 5.10.
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If II f 	 0 and p < co, so that j IIf — fn IP dµ -i 0, then fn is said to
converge to f in the mean of order p.

If f = f' and g = g' almost everywhere, then f +g - f' +g' almost every-
where, and for real a, af = a f' almost everywhere. In LP, f and f' become
the same function, and similarly for the pairs g and g', f +g and f' + g', and
af and af'. This means that addition and scalar multiplication are unam-
biguously defined in LP, which is thus a real vector space. It is a normed
vector space in the sense that it is equipped with a norm II - IIp satisfying (19.4)
and (19.5).

Completeness and Separability

A normed vector space is a Banach space if it is complete under the
corresponding metric. According to the Riesz-Fischer theorem, this is true
of LP:

Theorem 19.1. The space LP is complete.

PROOF. It is enough to show that every fundamental sequence contains a
convergent subsequence. Suppose first that p <co. Assume that Il fm - f„ilp -^
0 as m, n - oo, and choose an increasing sequence {n k ) so that II fm - fn llp <
2-(p+i)k for m, n > n k . Since jl fm — fnlP

 dµ > «PA[Ifm — fnl >_ a] (this is
just a general version of Markov's inequality (5.31)), µ[If n - fml > 2 -9
2Pkll fm —f IIp 2 -k for mf k' Therefore, f +[--n> n Therefore E [I f I >_ 2 — k] < oon P— 	 µ fnk 	 n k

and it follows by the first Borel-Cantelli lemma (which works for arbitrary
measures) that, outside a set of µ-measure 0, Ek lfnk+l — fnk l converges.
But then fn k converges to some f almost everywhere, and by Fatou's
lemma, jl f — fn k l P dµ < lirn inf ; j^ f - f„kl P dµ < 2 - k . Therefore, f E LP and
II f - fn k II p 	 0, as required.

1f p = co, choose {n k ) so that Ilfm - fn lim < 2 - k for ni, n > n k . Since
fn,, - fnk l < 2 - k almost everywhere, fn, converges to some f, and if -  fnk l <

2 -k almost everywhere. Again, II f — f n . llp O. 	 •

The next theorem has to do with separability.

Theorem 19.2. (i) Let U be the set of simple functions Ern i a,15, for a;

and µ(B ; ) finite. For 1 <p < oo, U is dense in LP.
(ii) If µ is a-finite and , is countably generated, and if p < oo, then LP is

separable.

PROOF. Proof of (1). Suppose first that p <co. For f E LP, choose (Theo-
rem 13.5) simple functions f„ such that f„--ff and I fn l < If I. Then fn E LP,
and by the dominated convergence theorem, 11f - f I P dµ -i O. Therefore,
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II   — f"II p < E for some n; but each fn is in U. As for the case p = 00, if
n2" > 1I f II., then the f„ defined by (13.6) satisfies IIf — f" IIm < 2 -" (< E for
large n).

Proof of (ii). Suppose that . is generated by a countable class e and
that SI is covered by a countable class 3 of Y--sets of finite measure. Let
E 1 , E2 ,... be an enumeration of eu..; let ^" (n > 1) be the partition
consisting of the sets of the form F, n - • - n F", where F; is E, or E; ; and let

	

be the field of unions of the sets in g" Then	 = U n .9 is a
countable field that generates Y -, and µ is o--finite on	 . Let V be the set
of simple functions Em 1 a 1 14 , for a ; rational, A. E ., and µ(A S ) < co.

Let g — Em J a ; lB; be the element of U constructed in the proof of part (i).
Then IIf — g II p <E, the a ; are rational by (13.6), and any a ; that vanish can
be suppressed. By Theorem 11.4(iî), there exist sets A l in ,o such that
µ(B ;îA ; ) <(E/mla ; I)p, provided p <CO, and then h= EM 1a,lA; lies in V
and 11f — h I; p < 2E. But V is countable_t ■

Conjugate Spaces

A linear functional on LP is a real-valued function y such that

(19.6)	 y(af + a'f') =ay(f) +a'y (f')-

The functional is bounded if there is a finite M such that

(19.7) 	 ly(f)I <M - IlfIlp
for all f in LP. A bounded linear functional is uniformly continuous on  LP
because IIf — f ' I I p < E/M implies 1y( f ) — y(f ')I < E (if M > 0; and M = 0
implies y(f ) = 0). The norm !IyII of y is the smallest M that works in (19.7):
Ilyll = sup[Iy(f )I/IIf IIp: f # o1.

Suppose p and q are conjugate indices and g E Lq. By Holder's inequality,

( 19 .8 )	 yg(f) = ffgdµ

is defined for f E LP and satisfies (19.7) if M _ II g l l q ; and yg is obviously
linear. According to the Riesz representation theorem, this is the most general
bounded linear functional in the case p < co :

Theorem 19.3. Suppose that 	 is o--finite, that 1 < p < co, and that q is
conjugate to p. Every bounded linear functional on LP has the form (19.8) for
some g E Lq; further,

(19.9)	 Ilygll — 11gllq,

and g is unique up to a set of p.-measure O.

t Part (ii) definitely requires p < cc; see Problem 19.2.
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The space of bounded linear functionals on LP is called the dual space, or
the conjugate space, and the theorem identifies Lq as the dual of LP. Note
that the theorem does not cover the case p = 00. 1

PROOF. Case 1: p. finite. For A in .7, define cp(A)= y(IA ). The linearity
of y implies that cp is finitely additive. For the M of (19.7), Icp(A)I < M • 111A II p

M •Iµ(A)I'/p. If A = U „A n , where the A n are disjoint, then cp(A) _
En=lcp(A„)+cp(Un>NAn), and since I'p(Un>NAn)I QM ,il l /p(Un>NAn) --

0, it follows that cp is an additive set function in the sense of (32.1).
The Jordan decomposition (322) represents cp as the difference of two

finite measures cp + and cp - with disjoint supports A+ and A -. If µ(A) = 0,
then cp+(A) = cp(A n A+) < Mp."'(A) = O. Thus cw+ is absolutely continu-
ous with respect to p. and by the Radon-Nikodyrn theorem (p. 422) has an
integrable density g+: cp+(A)= IA g+ du.. Together with the same result for
cp -, this shows that there is an integrable g such that y(IA ) = cp(A) _
ff gdµ = fIA gdp.. Thus y(f) = ffgdµ for simple functions f in L".

Assume that this g lies in Lq, and define yg by the equation (19.8). Then
y and yg are bounded linear functionals that agree for simple functions;
since the latter are dense (Theorem 19.2(i)), it follows by the continuity of y
and yg that they agree on all of L”. It is therefore enough (in the case of
finite µ) to prove g E Lq. It will also be shown that IIg11q is at most the M of
(19.7); since 11 g II q does work as a bound in (19.7), (19.9) will follow. If
yg(f) = 0, (19.9) will imply that g = 0 almost everywhere, and for the general
y it will follow further that two functions g satisfying yg(f) = y(f) must
agree almost everywhere.

Assume that 1 <p, q < co. Let g n be simple functions such that 0 < g n '' I g I q,
and take h n = g,l,/p sgn g. Then kg= gn/p lgl > g„/pg„ /q = gn , and since h n

is simple, it follows that fg„ dµ < fh n gdp. = yg (h„) = y(h r ) _s M. IIh„II p =
M[ fg n dµ]'/p. Since 1 -- 1/p = 1/q, this gives [ fg„ dµ]I/q < M. Now the
monotone convergence theorem gives g E LP and even Il gllq < M.

Assume that p = 1 and q = co. In this case, I ffg dµl = Iyg (f )1= Iy(f )I _< M •
H f Hi for simple functions f In LI . Take f = sgn g • 1[igi > a j . Then aµ[ I g I > a] <
f I [1g1 > a .1g1 dµ = ffgdµ < M • IIf H1 = Mµ[1 gI > a]. If a > M, this inequality
gives µ^ I g I>_ a] = 0; therefore Mgt,.IIm = II g 11 q < M and g E L°° = Lq.

Case II: µ cr-finite. Let A n be sets such that A n I S. and µ(A n ) < co. If
µ n(A) = µ(A nA n ), then I y(fiq „ )1 s M' IIfJA

n
IIp = M. [ f If 1pdt,n]1/p for f E

Lp(f1A E L°(µ) CLp (p. m )). By the finite case, A n supports a g„ in Lq such
that y(f1A n ) = fflA n gn dµ for f E Lp, and IIgn1Iq M. Because of uniqueness,

gn+1
  

can be taken to agree with gn on A n (L"(µ n +,) c L"(µ,,)). There is
therefore a function g on SZ such that g = g n on A n and II IA „g 11 q < M. It
follows that 11gII q < M and g E Lg . By the dominated convergence theorem
and the continuity of y, f E LP implies ffg dµ = lim n ffIA g dµ
lim n y(flA ) = y(f ). Uniqueness follows as before.	 ■

t Problem 19 3
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Weak Compactness

For f E LP. and g E Lq, where p and q are conjugate, write

(19.10)	 (f, g) — ffgd/L.

For fixed f in L", this defines a bounded linear functional on Lq; for fixed g
in Lq, it defines a bounded linear functional on L. By Holder's inequality,

(19.11) 	 I(f, g)I s IIf Ilpl;gll q .

Suppose that f and fn are elements of L". If (f, g) = lirn n(f.r , g) for each
g in Lq, then f„ converges weakly to f. If If — f, î1 p ---, 0, then certainly f„
converges weakly to f, although the converse is false.t

The next theorem says in effect that if p > 1, then the unit ball B; _
{ f EL": IIf lip  1] is compact in the topology of weak convergence.

Theorem 19.4. Suppose that p. is o--finite and	 is countably generated. If
1 <p < co, then eve!), sequence in B; contains a subsequence converging weakly
to an element of B; .

Suppose of elements f,,, f, and f' of LP that f„ converges weakly both to f
and to f'. Since, by hypothesis, p, is a--finite and p > 1, Theorem 19.3 applies if
the p and q there are interchanged. And now, since (f, g) = (f', g) for all g in
Lq, it follows by uniqueness that f = f'. Therefore, weak limits are unique under
the present hypothesis. The assumption p > 1 is essential.*

PROOF. Let q be conjugate to p (1 <q < ce). By Theorem 19.2(iî), Lq
contains a countable, dense set G. Add to G all finite, rational linear
combinations of its elements; it is still countable. Suppose that {f„} c Bi .

By (19.11), I(f„, g)I I I g li q for g E L”. Since {(f,,, g )} is bounded, it is
possible by the diagonal method [A14) to pass to a subsequence of {f„} along
which, for each of the countably many g in G, the limit lirn n(f„, g) = y(g)
exists and Iy(g)I —< IIgII,. For g, g' E G, ly(g) — Y(g')1= lim„I(f„, g — g')I < IIg

x, '11 9 . Therefore, y is uniformly continuous on G and so has a unique
continuous extension to all of L”. For g, g' E G, y(g +g') = lim„(f„, g +g')

y(g) + y(g'); by continuity, this extends to all of L”. For g E G and a
rational, y(ag) = a lim„(f„, g) = ay(g); by continuity, this extends to all real
a and all g in L”: y is a linear functional on L”. Finally, ly(g)I —< lIgllq
extends from G to Lq by continuity, and y is bounded in the sense of (19.7).

t Problem 19.4
# Problem 19.5.
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By the Riesz representation theorem (1 < q < co), there is an f in L P (the
space adjoint to Lq) such that y(g) _ (f, g) for all g. Since y has norm at
most 1, (19.9) implies that II  II  <_ 1: f lies in Bi".

Now (f, g) = lirn"(fn , g) for g in G. Suppose that g' is an arbitrary
element of Lq, and choose g in G so that Hg' — g Il q <E. Then

I(f , g') — (fn> g')I

< I(f, g/) — (f > g)I +I( J , g) — (f", g)l +l(fn„ g) — lfit , g)I

< 11f Ilpllg' 	 glI q +1(f, g) — (f"„ g)I + Ilf„Ilpllg	 g'll q

< 2e +l(f,g) — (	 g)I•

Since g E G, the last term here goes to 0, and hence lirn„(f". g')= (f, g') for
all g' in Lq. Therefore, f" converges weakly to f. ■

Some Decision Theory

The weak compactness of the unit ball in L°° has interesting implications for statistical
decision theory. Suppose that is o-finite and Y- is countably generated. Let
f 1 , ... , fk be probability densities with respect to µ—nonnegative and integrating to
1. Imagine that, for some i, w is drawn from SI according to the probability measure
PP(A) = fA fi dµ. The statistical problem is to decide, on the basis of an observed w,
which fi is the right one.

Assume that if the right density is fi , then a statistician choosing fj incurs a
nonnegative loss L(jl i). A decision rule is a vector function S(w) _ (5 1(w),..., S k (w)),
where the 3 i(w) are nonnegative and add to 1; the statistician, observing w, selects fi

with probability S i(w). If, for each w, S i(w) is 1 for one i and 0 for the others, S is a
nonrandomized rule; otherwise, it is a randomized rule. Let D be the set of all rules.
The problem is to choose, in some more or less rational way that connects up with the
losses L(jl i), a rule S from D.

The risk corresponding to S and fi is

R,(3)= I E 3,(w)L0l0 fi(«)µ(dw) ,

which can be interpreted as the loss a statistician using S can expect if fi is the right
density. The risk point for S is R(3)=(R 1(6),...,R k(6)). If R i(6') <R.(S) for all i
and R i(S') < R 1(8) for some i—that is, if the point R(S') is "southwest" of R(3)—then
of course S' is taken as being better than S. There is in general no rule better than all
the others. (Different rules can have the same risk point, but they are then indistin-
guishable as regards the decision problem.)

The risk set is the collection S of all the risk points; it is a bounded set in the first
orthant of R k . To avoid trivialities, assume that S does not contain the origin (as
would happen for example if the L(jl i) were all 0).

Suppose that S and S' are elements of D, and A and A' are nonnegative and add to
1. If 87(w) = AS i (w) + A'S;(w), then S" is in D and R(3")= AR(3) + A'R(S'). There-
fore, S is a convex set.

Lying much deeper is the fact that S is compact. Given points x 0' in S, choose
rules 8 0' ) such that R(3 ( " ))= x ( " ) . Now Si"R(•) is an element of L°°, in fact of B,, and
so by Theorem 19.4 there is a subsequence along which, for each j = 1,.,. , k, 37')
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converges weakly to a function S in Br. If IAA) < co, then JS1IA die =
lim n JS," )IA ciµ >_ 0 and J(1 — L1 61)IA dp. = Sim" J(1 — EMn))IA d eu = 0, so that Si >— 0
and Ei Si = 1 almost everywhere on A. Since p. is a-finite, the Si can be altered on a
set of ,u-measure 0 in such a way as to ensure that S = (S I , ... S k ) is an element of D.
But, along the subsequence, x ( " ) --> R(S), Therefore: The risk set is compact and
convex.

The rest is geometry. For x in R k , let Qx be the set of x' such that 0 <x; <x i for
all i. If x = R(3) and x' = R(S'), then 6' is better than S if and only if x' E Qs and
x' x. A rule S is admissible if there exists no S' better than S; it makes no sense to
use a rule that is not admissible. Geometrically, admissibility means that, for x = R(S),
S n QS consists of x alone.       

^     

Let x = R(3) be given, and suppose that S is not admissible. Since S n Q1 is
compact, it contains a point x' nearest the origin (x' unique, since S n Qx is convex as
well as compact); let 6' be a corresponding rule: x' = R(S'). Since S is not admissible,
x' fix, and S' is better than S. If S n Qx . contained a point distinct from x', it would
be a point of S n Q , nearer the origin than x', which is impossible. This means that
Q. contains no point of S other than x' itself, which means in turn that 8' is
admissible. Therefore, if  8 is not itself admissible, there is a 8' that is admissible and
is better than S. This is expressed by saying that the class of admissible rules is
complete.

Let p = (p,, ... , pk ) be a probability vector, and view pi as an a priori probability
that f, is the correct density. A rule S has Bayes risk R(p, S) = E ; p; R,(S) with
respect to p. This is a kind of compound risk: f, is correct with probability p; , and the
statistician chooses fi with probability Si (cw). A Bayes rule is one that minimizes the
Bayes risk for a given p. In this case, take a = R(p, S) and consider the hyperplane

(19.12)

and the half space

(19.13)

H= z: Epi z; =a

Then x= R(S) lies on H, and S is contained in H+; x is on the boundary of S, and
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H is a supporting hyperplane. If p; > 0 for all i, then QS meets S only at x, and so 6
is admissible.

Suppose now that S is admissible, so that x = R(S) is the only point in S n Q x and
x lies on the boundary of S. The problem is to show that S is a Bayes rule, which
means finding a supporting hyperplane (19.12) corresponding to a probability vector
p. Let T consist of those y for which Q, meets S. Then T is convex: given a convex
combination y" = A y + A'y' of points in T, choose in S points z and z' southwest of y
and y', respectively, and note that z"= Az + A'z' lies in S and is southwest of y".
Since S meets Q S only in the point x, the same is true of T, so that x is a boundary
point of T as well as of S. Let (19.12) (p # 0) be a, supporting hyperplane through x•
x E H and T c H+. If p;(,< 0, take z = x ; ^ i + 1 and take z ; = x ; for the other i; then z
lies in T but not in H+, a contradiction. (The right-hand figure shows the role of T:
the planes H, and !-I2 both support S, but only H2 supports T and only H2
corresponds to a probability vector.) Thus p; >_ 0 for all i, and since E ; p, = 1 can be
arranged by normalization, S is indeed a Bayes rule. Therefore The admissible rules
are Bayes rules, and they form a complete class.

The Space L2

The space L2 is special because p = 2 is its own conjugate index. If f, g E L2 ,
the inner product (f, g) = jfg d p, is well defined, and by (19.10—write II f II in
place of 11f 11 2—K f, g )I —< 11f II • II g I!• This is the Schwarz (or Cauchy—Schwarz)
inequality. If one of f and g is fixed, (f, g) is a bounded (hence continuous)
linear functional in the other. Further, (f, g) = (g, f), the norrrl is givers by
11f 11 2 = (f, f ), and L2 is complete under the metric d(f , g) = 1 1 f — g ll. A
Hilbert space is a vector space on which is defined an inner product having all
these properties.

The Hilbert space L2 is quite like Euclidean space. If (f, g) = 0, then f
and g are orthogonal, and orthogonality is like perpendicularity. If f 	 fn

are orthogonal (in pairs), then by linearity, (E ; f; , E, f1 ) = E ; E1(f1 ,
11E ; f; II 2 = E ; 11 f; 11 2 . This is a version of the Pythagorean theorem. If

f and g are orthogonal, write f 1g. For every f, f 1 0.
Suppose now that	 is a-finite and . is countably generated, so that L'

is separable as a metric space. The construction that follows gives a sequence
(finite or infinite) cp,, 'P 2 , ... that is orthonormal in the sense that Ilcpn ll = 1 for
all n and (cpm , con ) = 0 for m n, and is complete in the sense that (f, cp n ) = 0
for all n implies f = 0—so that the orthonormal system cannot be enlarged.
Start with a sequence f,, f2 ,... that is dense in L 2. Define g„ g 2 ,...
inductively: Let g, = f,. Suppose that g,,..., gn have been defined and are
orthogonal. Define g n +, = fn+ , — E;= 	where a n; is (fn+ ,, g;)/IIg;11 2 if
g ; 0 0 and is arbitrary if g ; = O. Then g n , is orthogonal to g,, ... , g n , and
f,, + is a linear combination of g ,, ... , gn +,. This, the Gram—Schmidt method,
gives an orthogonal sequence g 1 , g 2 ,... with the property that the finite
linear combinations of the g„ include all the fn and are therefore dense in
L2 . If g n 0, take cpn = g n /IIg„II; if g n = 0, discard it from the sequence. Then
cp,, cp 2 , ... is orthonormal, and the finite linear combinations of the cpn are
still dense. It can happen that all but finitely many of the g„ are 0, in which
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case there are only finitely many of the cp n . In what follows it is assumed that
cp 1 ,cp 2 ,... is an infinite sequence; the finite case is analogous and somewhat
simpler.

Suppose that f is orthogonal to all the cp,r . If a 1 are arbitrary scalars, then
f, a,cp,, ... , a n cp„ is an orthogonal set, and by the Pythagorean property,
IIf — E"- , a1'p1I1 2 = IIf 11 2 + 	 I I f 11 2 . If IIf 11 > 0, then f cannot be ap-
proximated by finite linear combinations of the cp„, a contradiction: cp,, cp 2 ,. ..
is a complete orthonormal system.

Consider now a sequence a 1 , a 2 ,... of scalars for which E7_ 1 4 converges.
If s„ = Ei= ,a,cp1 , then the Pythagorean theorem gives 11s,, - s, 7 11 2 = Em <; Sna i
Since the scalar series converges, (sn ) is fundamental and therefore by
Theorem 19.1 converges to some g in L2 . Thus g = lim n E;= ,a,cp 1 , which it is
natural to express as g = E7= ,a 1 cp 1 . The series (that is to say, the sequence of
partial sums) converges to g in the mean of order 2 (not almost everywhere).
By the following argument, every element of L2 has a unique representation
in this form.

The Fourier coefficients of f with respect to {cp1) are the inner products
a l = (f, cp l). For each n, 0 	 11f — E"=la1cP;11 2 = IIf 11 2 — 2Z, ; a ;(f, (p i ) +
E ;1 a l a 1 (cp l , cp,) =11f11 2 — Ei_ 1 a 2 , and hence, n being arbitrary, E°=,4 _.<11f11 2

By the argument above, the series 1 1 a l cp 1 therefore converges. By linearity,
(f - 	1 a ; (p1 , cp1 ) = 0 for n >_ j, and by continuity, (f - Et ,a 1 cp1 , (pi ). 0.
Therefore, f - Em ,a 1 cp1 is orthogonal to each cp1 and by completeness must
be 0:

(19.14) 	f= E (f , w;)cP;•
1=1

This is the Fourier representation of f. It is unique because if f = ̂l a i c() ; is
0 (Ea? < co), then a = (f, cp1 ) = O. Because of (19.14), (cp„} is also called an
orthonormal basis for L2 .

A subset M of L2 is a subspace if it is closed both algebraically (f, f' E M
implies a f + a' f' E M) and topologically (fn EM, fn f implies f E M). If
L2 is separable, then so is the subspace M, and the construction above
carries over: M contains an orthonormal system (cp„) that is complete in M, in
the sense that f = 0 if (f, cp„) = 0 for all n and if f E M. And each f in M has
the unique Fourier representation (19.14). Even if f does not lie in M,
E7= 1 (f, cp;) 2 converges, so that E7= 1( f, cp1 )cp 1 is well defined.

This leads to a powerful idea, that of orthogonal projection onto M. For an
orthonorrnal basis {cp l) of M, define PM f = E;% 1( f, cp,)cp, for all f in L2 (not
just for f in M). Clearly, PM f E M. Further, f - E"_ 1(f, cp,)cp, 1 (pi for n > j
by linearity, so that f - PM f 1 cpj by continuity. But if f - PM f is orthogonal
to each cp1 , then, again by linearity and continuity, it is orthogonal to the
general element E;= ; bj cpl of M. Therefore, PM f E M and f - PM f 1M. The
map f --, PM f is the orthogonal projection on M.
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The fundamental properties of PM are these:

(i) g E M and f — g 1 M together imply g = PM f;
(ii) f E M implies PM f = f;

(iii) g E M implies II f — g 11 ? II f — PMf II;
(iv) PM (a f + a f')=  aPM f + a' Pm f'.

Property (i) says that PMf is uniquely determined by the two conditions
PM f E M and f — PM 1 M. To prove it, suppose that g, g' E M, f — g 1M,
and f — g' 1 M. Then g — g' E M and g — g' 1 M, so that g — g' is orthogo-
nal to itself and hence Il g — g'11 2 = 0: g = g'. Thus the mapping PM is
independent of the particular basis (cp ;}; it is determined by M alone.

Clearly, (ii) follows from (i); it implies that pM is idempotent in the sense
that PMf = PM f. As for (iii), if g lies in M, so does PM f — g, so that, by the
Pythagorean relation, 11 f — g 11 2 = II  — P,,,f 11 2 + II PM f — g 11 2 >_ II  — PM f 11 2 ; the
inequality is strict if g PM f. Thus PMf is the unique point of M lying
nearest to f. Property (iv), linearity, follows from (i).

An Estimation Problem
First, the technical setting: Let (fl, gr, u) and (O, , 7r) be a a-finite space and a
probability space, and assume that .9 and 6' are countably generated. Let fe(w) be a
nonnegative function on O x S2 , measurable ex 5, and assume that f fe(w)u(dw)
= 1 for each B E O. For some unknown value of B, w is drawn from II according to
the probabilities PB(A) = JA fe(cw),u(dw), and the statistical problem is to estimate the
value of g(B), where g is a real function on O. The statistician knows the functions
f(-) and g(•), as well as the value of w; it is the value of B that is unknown.

For an example, take SZ to be the line, f(w) a function known to the statistician,
and fe(w) = a f(aw + /3), where B = (a, p) specifies unknown scale and location
parameters; the problem is to estimate g(0)= a, say. Or, more simply, as in the
exponential case (14.7), take fe(w) = af(aw), where B = g(0)= a.

An estimator of g(B) is a function t(w). It is unbiased if

(19.15) f^t (w)fe (w )µ(dw) = g( 0 )

for all B in O (assume the integral exists); this condition means that the estimate is on
target in an average sense. A natural loss function is (t(w) — g(B))2 , and if fe is the
correct density, the risk is taken to be fo(t(w)—g(0)) 2fe(w)µ(dO).

If the probability measure 7r is regarded as an a priori distribution for the
unknown B, the Bayes risk of t is

(19.16)	 R(ir, t ) = fo ff ( t(cw) — g(0)) 2 fe (w)µ(d(0)7r(d0);

this integral, assumed finite, can be viewed as a joint integral or as an iterated integral
(Fubini's theorem). And now to is a Bayes estimator of g with respect to 7r if it
minimizes R(7r, t) over t. This is analogous to the Bayes rules discussed earlier. The
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following simple projection argument shows that, except in trivial cases, no Bayes
estimator is unbaised

Let Q be the probability measure on 4x .9 having density fe( w ) with respect to
x µ , and let L 2 be the space of square-integrable functions on (O x11, cfx

Then Q is finite and cfx is countably generated. Recall that an element of L 2 is
an equivalence class of functions that are equal almost everywhere with respect to Q.
Let G be the class of elements of L 2 containing a function of the form g(0, co) = g(w)
—functions of B alone Then G is a subspace. (That G is algebraically closed is clear;
if f„ E G and II f„ — f II -' 0, then—see the proof of Theorem 19.1—some subse-
quence converges to f outside a set of Q-measure 0, and it follows easily that f E G.)
Similarly, let T be the subspace of functions of w alone: t(B, w) = t(w). Consider only
functions g and their estimators t for which the corresponding g and i are in L2 .

Suppose now that t o is both an unbiased estimator of gg and a Bayes estimator of
go with respect to 73". By (19 16) for g o , R(ir, t) = Ilt —G1 1 , and since t o is a Bayes
estimator of g o , it follows that Ifro — go11 2 s Ili — 'gar  for all i in T. This means that t o
is the orthogonal projection of g o on the subspace T and hence that go — t o 1 to . On
the other hand, from the assumption that t o is an unbiased estimator of g o , it follows
that, for every g(0, w) = g(0) in G,

(to — go , g) = Jfon(to(w) — gci( 0 ))g( 0 )fe(w)µ(dw»r(d0 )

= f
eg(B) fn( to(w) — go(B))fe(w)µ(deo) ir(d0) = 0.

This means that to — g o 1 G: go is the orthogonal projection of to on the subspace G
But go — to 1 to and to — go 1 go together imply that t o —go is orthogonal to itself:
t o = go . Therefore, t o(w) = t0(û, w) = go(0, w) = g 0(û) for (0, w) outside a set of Q-
measu re 0.

This implies that t o and go are essentially constant. Suppose for simplicity that
fe(w) > 0 for all (0, w), so that (Theorem 15.2) (Tr x µ)[(B, w): t o(w) # go(û)] = 0. By
Fubini's theorem, there is a 0 such that, if a = g o(0), then µ[w: t o(w) * a] = 0; and
there is an w such that, if b = t o(w), then vr[0: g o(0) b] = 0. It follows that, for
(0, w) outside a set of (ir x µ)-measure 0, t o(w) and g o{0) have the common value
a = b: ir[B: g 0(û)=a]= 1 and PB[w: to(w) = a] = 1 for all 0 in O.

PROBLEMS

19.1. Suppose that µ(fl) < co and f E Lam. Show that II f IIp T I f II..

19.2. (a) Show that U((0, 1], .^ , A) is not separable.
(b) Show that L "((),1], , µ) is not separable if 	 is counting measure (µ is
not a-finite).
(c) Show that L "(fl , ✓^ P) is not separable if (Theorem 36.2) there is on the
space an independent stochastic process [X,: 0 <t < 1] such that X, takes the
values +1 with probability i each (Sr is not countably generated).

tThis is interesting because of the close connection between Bayes rules and admissibility; see
BERGER, pp. 546 fi.
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19.3. Show that Theorem 19.3 fails for Lî(0, 1], 0, A). Hint: Take y(f) to be a
Banach limit of nft;/"f(x)dx.

19.4. Consider weak convergence in L "((0,1],., A).
(a) For the case p = cc, find functions f" and f such that f" goes weakly to f
but II f —f i ll !,  does not go to 0.
(b) Do the same for p = 2.

19.5. Show that the unit ball in L'((0,1], .0, A) is not weakly compact.

19.6. Show that a Bayes rule corresponding to p = (p„ -, p k ) may not be admissible
if p, = 0 for some i But there will be a better Bayes rule that is admissible

19.7. The Neyman-Pearson lemma. Suppose f 1 and f2 are rival densities and L(i li) is
0 or 1 as j = i or j i, so that R i(b) is the probability of choosing the opposite
density when f; is the right one. Suppose of 6 that 3 2(cw) = 1 if f2(w) > tf,(w)
and 6 2(w) = 0 if f2(w) < tfi(w), where t > 0 Show that b is admissible: For any
rule 3', f3'2 1. 1 dµ < f32 f r du implies JS1J2 dµ > f6 1 f2 dµ. Hint. 1(3 2 — 32)
(f2 — tf r ) d u >_ 0, since the integrand is nonnegative.

19.8. The classical orthonormal basis for L 2 [0, 27r] with Lebesgue measure is the
trigonometric system

(19.17) (27r) - ', 	 7r - ' /2 sin nx, 	 7r - 1 / 2 cos nx, 	 n = 1,2,..

Prove orthonormality. Hint: Express the sines and cosines in terms of e i" ±
e -1", multiply out the products, and use the fact that J0'eim1 dx is 27r or 0 as
m = 0 or m # 0. (For the completeness of the trigonometric system, see Problem
26.26.)

19.9. Drop the assumption that L 2 is separable. Order by inclusion the orthonormal
systems in L 2 , and let (Zorn's lemma) = [cp y : y E I'] be maximal.
(a) Show that Ff = [y: (f, cpy ) # 0] is countable. Hint. Use E;= 1(f, (py ) 2 _< 11 f 11 2

and the argument for Theorem 10.20v).
(b) Let Pf = E ) E i .(f, (p y )cpy. Show that f — Pf 1 c and hence (maximality)
f = Pf. Thus D is an orthonormal basis.
(c) Show that (13 is countable if and only if L 2 is separable.
(d) Now take (13 to be a maximal orthonormal system in a subspace M, and
define PM f = E y E r (f, cp y )cpy . Show that P44 E M and f — 	 1 43, that g=
PM g if g E M, and that f — PM f 1M. This defines the general orthogonal
projection.



CHAPTER 4

Random Variables
and Expected Values

SECTION 20. RANDOM VARIABLES AND DISTRIBUTIONS

This section and the next cover random variables and the machinery for
dealing with them—expected values, distributions, moment generating func-
tions, independence, convolution.

Random Variables and Vectors

A random variable on a probability space (SZ, ,F, P) is a real-valued function
X = X(w) measurable Sections 5 through 9 dealt with random variables of
a special kind, namely simple random variables, those with finite range. All
concepts and facts concerning real measurable functions car ry over to ran-
dom variables; any changes are matters of viewpoint, notation, and terminol-
ogy only.

The positive and negative parts X+ and X- of X are defined as in (15.4)
and (15.5). Theorem 13.5 also applies: Define

(k - 1)2 -" if (k -1)2' <x <k2- ",
(20.1)	 On( x ) -	 1 <k <n2",

n 	 if x >- n.

If X is nonnegative and X" = i"(X ), then 0 < X" T X. If X is not necessarily
nonnegative, define

(20.2) X _ 	
^i"( X )	 if X >_ 0," - O"( -X) if X <0.

(This is the same as (13.6).) Then 0 <X"(m)1' X(00) if X(W)>_ 0 and 0>-

254
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X„ (co) X(co) if X(w) < 0; and I X„(m)I T I X(w)I for every co. The random
variable X„ is in each case simple.

A random vector is a mapping from Si to Rk that is measurable Y. Any
mapping from Si to R k must have the form co X(w) = {X , (co), , , Xk{c,))),
where each Xi(c)) is real; as shown in Section 13 (see (13.2)), X is measur-
able if and only if each X, is. Thus a random vector is simply a k-tuple
X= (X,,..., Xk ) of random variables.

Subfields

If is a a--field for which ,lc .  a k-dimensional random vector X is of
course measurabie .1 if [co: X(co) E H] E .# for every H in R k . The a--field
o-(X) generated by X is the smallest a--field with respect to which it is
measurable. The a-field generated by a collection of random vectors is the
smallest a-field with respect to which each one is measurable.

As explained in Sections 4 and 5, a sub-a-field corresponds to partial
information about to. The information contained in o-(X) _ o-(X ... , Xk )
consists of the k numbers X,(),..., Xk (co).' The following theorem is the
analogue of Theorem 5.1, but there are technical complications in its proof.

Theorem 20.1. Let X= (X 1 ,..., Xk ) be a random vector.

(1) The o-field o-(X) = cr(X,, .. , Xk ) consists exactly of the sets [ X E H ]
for H E

(ii) In order that a random variable Y be measurable a-(X) _ o-(X,,..., Xk )
it is necessary and sufficient that there exist a measurable map f: R k --' R' such
that Y(w) = f(X , (w), ... , Xk (w)) for all w.

PROOF. The class .1 of sets of the form [ X E H] for H E gk is a
a--field. Since X is measurable a-(X ), .mac o-(X). Since X is measurable
a-(X) c 5. Hence part (1).

Measurability of f in part (ii) refers of course to measurability R k/R'.
The sufficiency is easy: if such an f exists, Theorem 13.1(iî) implies that Y is
measurable o-(X).

To prove necessity, suppose at first that Y is a simple random variable,
and let y,, ... , ym be its different possible values. Since A. _ [ co: Y(w) = y ; ]
lies in a-(X ), it must by part (i) have the form [w: X(c)) E H; ] for some Hi in
Rk . Put f = E I y,IH,; certainly f is measurable. Since the A ; are disjoint, no
X(co) can lie in more than one H; (even though the latter need not be
disjoint), and hence f(X(m)) = Y(w).

tThe partition defined by (4.16) consists of the sets [e,. X(w) = x] for x E R k .
For a general version of this argument, see Problem 13.3.
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To treat the general case, consider simple random variables Y„ such that
Yn(w) --> Y(w) for each w. For each n, there is a measurable function fn :
R k --0 R' such that Y„(w) = n(X(w)) for all w. Let M be the set of x in R k
for which { fn(x)) converges; by Theorem 13.4(iii), M lies in M k. Let
f(x) = lim n f„(x) for x in M, and let f(x) = 0 for x in R k — M. Since
f =lim n fn IM and fn IM is measurable, f is measurable by Theorem 13.46i).
For each w, Y(w) = lim n fn(X(w)); this implies in the first place that X(w)
lies in M and in the second place that Y(w) = lim n fn(X(w)) = f(X(w)). •

Distributions

The distribution or law of a random variable X was in Section 14 defined as
the probability measure on the line given by /./. = PX- ' (see (133)), or

(20.3)	 µ(A) = P[X E A], 	 A ER'.

The distribution function of X was defined by

(20.4)	 F(x)=µ(—^,x] =P[XSx]

for real x. The left-hand limit of F satisfies

(20.5)
F(x—)=µ( —03,x) =P[X <x],

F(x) —F(x—)=µ {x} =P[X =x],

and F has at most countably many discontinuities. Further, F is nondecreas-
ing and right-continuous, and lim x _,  F(x) = 0, lim x  F(x) = 1. By Theo-
rem 14.1, for each F with these properties there exists on some probability
space a random variable having F as its distribution function.

A support for p, is a Borel set S for which µ(S) = 1. A random variable,
its distribution, and its distribution function are discrete if µ has a countable
support S = {x 1 , x 2 ,...}. In this case µ is completely determined by the
values µ{x,), µ{xz},...

A familiar discrete distribution is the binomial:

(20.6)	 P[X =r] =µ{r} = r pr(1 — p) n
- r 	

r = 0,1,..., n.

There are many random variables, on many spaces, with this distribution: If
{ Xk ) is an independent sequence such that P[ Xk = 1] =p and P[ Xk = 0] = 1
— p (see Theorem 5.3), then X could be E°_, X1, or E$ ±9 Xi , or the sum of
any n of the Xi , Or SZ could be (0, 1,... , n) if consists of all subsets,
P{r) = p.{r), r = 0,1,..., n, and X(r) = r. Or again the space and random
variable could be those given by the construction in either of the two proofs
of Theorem 14.1. These examples show that, although the distribution of a
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random variable X contains all the information about the probabilistic
behavior of X itself, it contains beyond this no further information about the
underlying probability space (1Z, g-, P) or about the interaction of X with
other random variables on the space.

Another common discrete distribution is the Poisson distribution with
parameter A > 0:

Ar
(20.7) 	 P[X=r] =µ{r} =e - ' 17T , -- r = 0,1,....

A constant c can be regarded as a discrete random variable with X(a)) ° c.
In this case P[ X - cl = pjc} = 1. For an artificial discrete example, let
(x,, x 2 ,...} be an enumeration of the rationals, and put

(20.8)	 Î.L{xr} = 2 - r;

the point of the example is that the support need not be contained in a
lattice.

A random variable and its distribution have density f with respect to
Lebesgue measure if f is a nonnegative Borel function on R' and

(20.9)	 P[X EA] = µ( A) = fAf (x) dx,	 A E.^'.

In other words, the requirement is that id, have density f with respect to
Lebesgue measure A in the sense of (16.11). The density is assumed to be
with respect to A if no other measure is specified.

Taking A = R' in (20.9) shows that f must integrate to 1. Note that f is
determined only to within a set of Lebesgue measure 0: if f = g except on a
set of Lebesgue measure 0, then g can also serve as a density for X and A.

It follows by Theorem 3.3 that (20.9) holds for every Borel set A if it holds
for every interval—that is, if

F(b)-F(a)= fbf(x)dx
a

holds for every a and b. Note that F need not differentiate to f everywhere
(see (20.13), for example); all that is required is that f integrate
properly—that (20.9) hold. On the other hand, if F does differentiate to f
and f is continuous, it follows by the fundamental theorem of calculus that f
is indeed a density for F.t

t The general question of the relation between differentiation and integration is taken up in
Section 31



258 	 RANDOM VARIABLES AND EXPECTED VALUES

For the exponential distribution with parameter a > 0, the density is

(20.10) 	 f(x) = a
if x < 0,
if x>>- 0 .

The corresponding distribution function

(20.11) F(x) =;0
^ 1

— e -«r
if x < 0,
if > 0

was studied in Section 14.
For the normal distribution with parameters m and a, o- > 0,

2( 20 . 12) 	 .f(x) = 	 11/7.r
 a 	 2^exp 	

(x —m) , — oo <x < co;

a change of variable together with (18.10) shows that f does integrate to 1.
For the standard normal distribution, m = 0 and o- = 1.

For the uniform distribution over an interval (a, b],

(20.13)
1 	

if a < x < b,f(x)= h — a
0	 otherwise.

The distribution function F is useful if it has a simple expression, as in
(20.11). It is ordinarily simpler to describe ,u, by means of a density f(x) or
discrete probabilities µ{x r).

If F comes from a density, it is continuous. In the discrete case, F
increases in jumps; the example (20.8), in which the points of discontinuity
are dense, shows that it may nonetheless be very irregular. There exist
distributions that are not discrete but are not continuous either. An example
is µ(A) = 14A) + z /..c 2(A)  for µ, discrete and A 2 coming from a density;
such mixed cases arise, but they are few. Section 31 has examples of a more
interesting kind, namely functions F that are continuous but do not come
from any density. These are the functions singular in the sense of Lebesgue;
the Q(x) describing bold play in gambling (see (7.33)) turns out to be one of
them. See Example 31.1.

If X has distribution ,u, and g is a real function of a real variable,

(20.14) 	 P[g(X)EA] =P[XEg - 'A] — µ(g - 'A).

Thus the distribution of g(X) is µ g - ' in the notation (13.7).
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In the case where there is a density, f and F are related by

(20.15)	 F(x) = f 
x

 f(t) dt.o

Hence f at its continuity points must be the derivative of F. As noted above,
if F has a continuous derivative, this derivative can se rve as the density f.
Suppose that f is continuous and g is increasing, and let T = g - '. The
distribution function of g(X) is P[g(X) <_ x] = P[ X . T(x)] = F(T(x)). If T
is differentiable, this differentiates to f(T(x))T'(x), which is therefore the
density for g(X). If g is decreasing, on the other hand, then P[g(X) <xi _
P[X > T(x)i= 1 - F(T(x)), and the derivative is equal to -f(T(x))T'(x) =
f(T(x))IT'(x)I. In either case, g(X) has density

(20.16) ^P[g(X)
 <x]

 -f(T(x))1T'(x)1.

If X has the normal density (20.12) and a > 0, (20.16) shows that aX + b
has the normal density with parameters am 1- b and ao-. Finding the density
of g(X) from first principles, as in the argument leading to (20.16), often
works even if g is many-to-one:

Example 20.1. If X has the standard normal distribution, then

p[ X z <x ] =  1  f v/: e - ' z /z dt= 2 `re z /Zdt
-vi 	 277- o

for x > 0. Hence X 2 has density

0	 if x < 0,

f(x) = 	1  	 if x > 0.1 1— x "2e" 2
1-

•

Multidimensional Distributions

For a k-dimensional random vector X = (X 1 , ... , Xk), the distribution p. (a
probability measure on R k ) and the distribution function F (a real function
on R k ) are defined by

(20.17)
µ(A) - P[( X i , ..., Xk ) EA],	 A E ak,

F(x l ,...,x k ) ., P[XI :5 x1 , •" , Xk:5 xk ] — ii, (Sx) ,

where Sx = [ y: y, < x i , i = 1, ... , k ] consists of the points "southwest" of x.
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Often µ and F are called the joint distribution and joint distribution
function of X I , X1 , ..., Xk .

Now F is nondecreasing in each variable, and A A F > 0 for bounded
rectangles A (see (12.12)). As h decreases to 0, the set

Sx,h =b1: Yi <x i +li, i = 1,..., k]

decreases to Sx , and therefore (Theorem 2.1(iî)) F is continuous from above
in the sense that limb 1 0 F(x 1 + h,. , xk + h) = F(x,, ... , xk ). Further,
F(x 1 , ... , x k) 0 if x i --- – co for some i (the other coordinates held fixed),
and F(x i , ... , x k ) --- 1 if x ; -* co for eacn i. For any F with these properties
there is by Theorem 12.5 a unique probability measure  on S k such that
µ(A) _ A A for bounded rectangles A, and µ(Sx ) = F(x) for all x.

As h decreases to 0, Sx , _ h increases to the interior Sx = [ y: y i <x i ,
i = 1, ... , k ] of Sx , and so

(20.18) 	 lim F(x 1 --h,...,x k –h ) =µ(Sx).
h 10

Since F is nondecreasing in each variable, it is continuous at x if and only if
it is continuous from below there in the sense that this last limit coincides
with F(x). Thus F is continuous at x if and only if F(x) = µ(S x ) = µ(S: ),
which holds if and only if the boundary aSx = Sx – Sx (the y-set where y i < x i

for all i and y i = x i for some 1) satisfies µ(ôSx ) = O. If k > 1, F can have
discontinuity points even if  has no point masses: if µ corresponds to a
uniform distribution of mass over the segment B =[(x,0):  0 < x < 1] in the
plane (u(A) _ A[x: 0 < x < 1, (x, 0) EA,  then F is discontinuous at each
point of B. This also shows that F can be discontinuous at uncountably many
points. On the other hand, for fixed x the boundaries 3S  h are disjoint for
different values of h, and so (Theorem 10.2(îv)) Only countably many of them
can have positive µ-measure. Thus x is the limit of points (x 1 + h, ..., x k + h)
at which F is continuous: the continuity points of F are dense.

There is always a random vector having a given distribution and distribu-
tion function: Take (I2,	 P) (R k , ✓ k, µ) and X(co) = m. This is the
obvious extension of the construction in the first proof of Theorem 14.1.

The distribution may as for the line be discrete in the sense of having
countable support. It may have density f with respect to k-dimensional
Lebesgue measure: µ(A) = f  f(x) dx. As in the case k = 1, the distribution
µ is more fundamental than the distribution function F, and usually is
described not by F but by a density or by discrete probabilities.

If X is a k-dimensional random vector and g: R k --' R` is measurable,
then g(X) is an i-dimensional random vector; if the distribution of X is µ,
the distribution of g(X) is p g - ', just as in the case k = 1—see (20.14). If g1 :
R k --' R' is defined by gi(x 1 , ... , x k ) = xi , then gi(X) is Xi, and its distribu-
tion µi = p. gi- ' is given by µ!(A) = 4(x 1 ,..., x k ): xi EA]  = P[ Xi EA]  for
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A E R'. The µi are the marginal distributions of µ. If p. has a density f in
R k , then µi has over the line the density

(20.19)

.fi(x) = fie _ if(
 

XI, ... ,X^^1,X,X^ + 1,...,Xk) dxl ... dx;_l chi +1 ...
 dXk9

since by Fubini's theorem the right side integrated over A comes to
µ[(x 1 ,. ., xi ): xi E/1].

Now suppose that g is a one-to-one, continuously differentiable map of V
onto U, where U and V are open sets in R k. Let T be the inverse, and
suppose its Jacobian J(x) never vanishes. If X has a density f supported by
V, then for A c U, P[g(X) E Ai P[ X E TA] = jTA f( y ) dy, and by (17.10),
this equals JA f(Tx)1 J(x)I dx. Therefore, g(X) has density

(20.20) d(x) {f(Tx)If(x)I for x E U,

for x U.

This is the analogue of (20.16).

Example 20.2. Suppose that (X 1 , X2 ) has density

f(x1, x 2 ) = (270 -1 exp[ — z(xi +xz)1,

and let g be the transformation to polar coordinates. Then U, V, and T are
as in Example 17.7. If R and O are the polar coordinates of (X 1 , X2 ), then
(R, O) = g(X 1 , X2 ) has density (277-) -1pe -p2 /2 in V. By (20.19), R has density
pc -P2 /2 on (0, co), and O is uniformly distributed over (0, 277-). •

For the normal distribution in R k, see Section 29.

Independence

Random variables X 1 ,..., Xk are defined to be independent if the a-fields
Q(X 1 ), ... , r(Xk ) they generate are independent in the sense of Section 4.
This concept for simple random variables was studied extensively in Chapter
1; the general case was touched on in Section 14. Since o-(X,) consists of the
sets [ X1 E H ] for H ER', X

, ,
 ... , Xk are independent if and only if

(20.21) P[X,EH...,XkE Hk]=R[X1EH1] ... P[XkEHk)

for all linear Borel sets H l , ..., Hk . The definition (4.10) of independence
requires that (20.21) hold also if some of the events [Xi E Hi ] are suppressed
on each side, but this only means taking Hl = R'.
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Suppose that

(20.22)	 P[XI<x1,...,Xkxk]=P[X1 ^ x1]...P[Xk ^ xk]

for all real x 1 , ... , xk ; it then also holds if some of the events [Xi < x ; ] are
suppressed on each side (let x ; --' co). Since the intervals (— oo, xi form a
7r-system generating ,9', the sets [ X f < x] form a 7r-system generating 6(X; ).
Therefore, by Theorem 4.2, (20.22) implies that X 1 , ... , Xk are independent.
If, for example, the X. are integer-vaiued, it is enough that P[ X I =
n 1 , ... , Xk = n k ] = P[X 1 = n l ] • • • P[Xk = n k] for integral 1 , ..., n k (see
(5.9)).

Let (X 1 , ... , Xk ) have distribution µ and distribution function F, and let
the X; have distributions µ; and distribution functions F! (the marginals). By
(20.21), X 1 , ... , Xk are independent if and only if µ is product measure in
the sense of Section 18:

(20.23)	 µ =µx • • • X µ k .

By (20.22), X ! , ... , Xk are independent if and only if

(20.24)	 F(xl,..., x k ) = F l (x l ) • • Fk (x k ).

Suppose that each µ: has density f1 ; by Fubini's theorem, f 1(y1) . • • fk(yk)
integrated over (— co, x 1 ] x • • • x (— oo, Xk ] is just FA!) Fk(xk), so that
µ has density

(20.25)	 f(x) 
	• fk(xk)

in the case of independence.
If .9 , ... , A, are independent OE-fields and X. is measurable ,, i =

1,... , k, then certainly X I , ... , Xk are independent.
If X, is a d i-dimensional random vector, i = 1,... , k, then X I , ... , Xk are

by definition independent if the 0--fields Q(X 1 ), ... , 0-(Xk ) are independent.
The theory is just as for random variables: X 1 , ... , Xk are independent if and
only if (20.21) holds for H 1 E ✓ I d1, ... , Hk E Rdk. Now (X 1 , ... , Xk ) can be
regarded as a random vector of dimension d = Ek^ 1 d 1 ; if µ is its distribution
in R d = R d i x X R dk and µ; is the distribution of X, in R d', then, just as
before, X 1 ,..., Xk are independent if and only if = µ, x • • • x µk. In none
of this need the d i components of a single X; be themselves independent
random variables.

An infinite collection of random variables or random vectors is by defini-
tion independent if each finite subcollection is. The argument following (5.10)
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extends from collections of simple random variables to collections of random
vectors:

Theorem 20.2. Suppose that

X11 X 1 2

(20.26)
	

X21 X22

is an independent collection of random vectors. If , ; is the Œ-field generated by
the i th row, then Y-1 , ,^ ... are independent.

PROOF. Let di consist of the finite intersections of sets of the form
[X11 E in with H a Borel set in a space of the appropriate dimension, and
apply Theorem 4.2. The Œ-fields .9 _ r(c), i = 1, ... , n, are independent
for each n, and the result follows. ■

Each row of (20.26) may be finite or infinite, and there may be finitely or
infinitely many rows. As a matter of fact, rows may be uncountable and there
may be uncountably many of them.

Suppose that X and Y are independent random vectors with distributions
p and v in R' and R k. Then (X, Y) has distribution kt v in R' x R k = R'+ k

Let x range over R' and y over R k . By Fubini's theorem,

(20.27) (µ x v)(B) = f v[ y: (x, y) EB]µ(dx),	 B ER'+ k

Replace B by (A x R k ) n B, where A E g' and B E R' +k . Then (20.27)
reduces to

(20.28)	 (p. x v)((A xR k ) nB) = f v[ y: (x, y) EB]µ(dx),

A E. 1, B Egi +k

If Bx = [ y: (x, y) E B] is the x-section of B, so that Bx E ak (Theorem
18.1), then P[(x, Y) E BI = P[cv: (x,Y(w)) E B] = P[w: Y(to) E Bx ] = v(BX ).
Expressing the formulas in terms of the random vectors themselves gives this
result:

Theorem 20.3. If X and Y are independent random vectors with distribu-
tions t,c, and v in R' and R k , then

(20.29) P[(X,Y) EB] = fivP[(x,Y)EBlp,(dx), 	 B Ea' +k,
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and

(20.30)	 P[XEA,(X,Y) EB] = f P[( x,Y) EB]p.(dx),

A E , B E R i
+k ,

Example 20.3. Suppose that X and Y are independent exponentially
distributed random variables. By (20.29), P[Y/X > z] = f P[Y/x >_
z]ae - °'x dx = f e -

"zae -'x dx = (1+ z) -1 . Thus Y/X has density (1 + z)_
2

for z >_ O. Since P[X >_ z 1 , Y/X >_ z 2 ] = J P[Y/x >_ z z ]ae - °x dx by (20.30),
the joint distribution of X and Y/X can be calculated as well. 	 •

The formulas (20.29) and (20.30) are constantly applied as in this example.
There is no virtue in making an issue of each case, however, and the appeal
to Theorem 20.3 is usually silent.

Example 20.4. Here is a more complicated argument of the same sort. Let
X 1 ,...,Xn be independent random variables, each uniformly distributed over [0, t].
Let Yk be the kth smallest among the X,, so that 0 <— Y 1 < • • • < Y„ —< t. The X1

divide [0, t] into n +1 subintervals of lengths Y1 ,Y2 — Y1 , ..., Y, — Y_ 1 , t — Yn ; let M
be the maximum of these lengths. Define tip, a) = P[M —< a]. The problem is to show
that

(20.31) ^(t,a)= ^^^ (-- 1}k nk 1 l
kQ)

+'
(

	)(1

k-0

where x + = (x + Ixl)/2 denotes positive part.
Separate consideration of the possibilities 0 <a <t/2, t/2 <a <t, and t < a

disposes of the case n=1.  Suppose it is shown that the probability tpn(t, a) satisfies
the recursion

(20.32)
).7 -1 dx

^n(t,a)—nf
a 	

xn- 1(t —,a)( t —xt
T •o

Now (as follows by an integration together with Pascal's identity for binomial
coefficients) the right side of (20.31) satisfies this same recursion, and so it will follow
by induction that (20.31) holds for all n.

In intuitive form, the argument for (20.32) is this: If [M < a] is to hold, the smallest
of the X, must have some value x in [0, a]. If X1 is the smallest of the X,, then
X2 ,..., Xn must all lie in [x, t] and divide it into subintervals of length at most a; the
probability of this is (1 — x/t)n — / On ._ 1(t — x, a), because X2,..., Xn have probability
(1 — x/t)n_ 1 of all lying in [x, t], and if they do, they are independent and uniformly
distributed there. Now (20.32) results from integrating with respect to the density for
X1 and multiplying by n to allow for the fact that any of X 1 ,... , Xn may be the
smallest.

To make this argument rigorous, apply (20.30) for  j= 1 and k = n — 1. Let A be
the interval [0, a], and let B consist of the points (x 1 ,... , x n ) for which 0 • x ; < t, x 1

is the minimum of x 1 ,... , xn , and x 2 ,..., x  divide [x 1 ,t] into subintervals of length
at most a. Then P[X1 = min X,, M _< a] = P[ Xi EA, (X 1 ,..., Xn ) E B]. Take X 1 for
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X and (X2 ,..., X„) for Y in (20.30). Since X 1 has density 1/t,

(20.33) P[X,= min Xi , M <al = fpP[(x, X2 ,. .,Xn )EB1
t̂p 	 '

If C is the event that x <Xi < t for 2 —< i < n, then P(C)== (l — x/t)''. A simple
calculation shows that P[X1 -- x < s, , 2 < i < n C] =1 -I 2(s;/(t — x)); in other words,
given C, the random variables X2 — x,..., X„ — x are conditionally independent and
uniformly distributed over [0, t — x]. Now X2 ,..., X„ are random variables on some
probability space (fi, ✓ ,̂ P); replacing P by P(-IC) shows that the integrand in
(20.33) is the same as that in (20.32). The same argument holds with the index 1
replaced by any k (1 < k < n), which gives (20.32). (The events [ Xk = min X! , Y < a]
are not disjoint, but any two intersect in a set of probability 0.) p

Sequences of Random Variables

Theorem 5.3 extends to general distributions µ„.

Theorem 20.4. If {µ„] is a finite or infinite sequence of probability mea-
sures on 0, there exists on some probability space (fl, P) an independent
sequence (X„) of random variables such that X„ has distribution A n .

PROOF. By Theorem 5.3 there exists on some probability space an
independent sequence Z 1 , Z 2 , ... of random variables assuming the values 0
and 1 with probabilities P[Z„ = 0] = P[ Z„ = 1] = -1.  As a matter of fact,
Theorem 5.3 is not needed: take the space to be the unit interval and the
Z„(w) to be the digits of the dyadic expansion of w—the functions d„(w) of
Sections and 1 and 4.

Relabel the countably many random variables Z„ so that they form a
double array,

ZII Z12

Z21 Z 22

All the Znk are independent. Put Un = )k = 1 Znk 2  	 The series certainly
converges, and U„ is a random variable by Theorem 13.4. Further, U 1 , U2, ...

is, by Theorem 20.2, an independent sequence.
Now P[Z„ 1 = z ; , 1 < i < k] = 2 —k for each sequence z 1 , ... , zk of 0's and

l's; hence the 2 k possible values j2 -k, 0 < j <2 k ,  of S„ k = ^k 1 Z2 - ` all
have probability 2 -k . If 0 < x < 1, the number of the j2 -k that lie in [0, x] is
12 kxi + 1, and therefore P[S„ k _< x] = (1.2 k x]+ 1)/2 k . Since Snk (w)T Un(w) as
k T co, it follows that [S„k _<x] J,[U„fi x] as k T co, and so P[UK < x] =

limk P[Snk <_ x] = lim k (12 kxJ + 1)/2 k = x for 0 <x < 1. Thus Un is uniformly
distributed over the unit inte rval.
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The construction thus far establishes the existence of an independent
sequence of random variables U„ each uniformly distributed over [0, 1]. Let
F„ be the distribution function corresponding to µ,,, and put cp„(u) = infix:
u < F„(x)] for 0 < u < 1. This is the inverse used in Section 14—see (14.5).
Set cp„(u) = 0, say, for u outside (0, 1), and put X„(w) = cp„(U„(w)). Since
cp„(u) < x if and only if u <_ F„(x)—see the argument following (14.5)—P[ X„
< x] = P[U„ < F„(x)] = F„(x). Thus X„ has distribution function F„. And by
Theorem 20.2, X1, X2 , ... are independent. ■

This theorem of course includes Theorem 5.3 as a special case, and its
proof does not depend on the earlier result. Theorem 20.4 is a special case of
Kolmogorov's existence theorem in Section 36.

Convolution

Let X and Y be independent random variables with distributions µ and u.
Apply (20.27) and (20.29) to the planar set B = [(x, y): x +y EH] with
H E ✓̂ ':

l(20.34)	 P[X+ YEH] = f v(H-x)µ(^lx)o

= rP[YEH - x1p.( d) .^

The convolution of µ and v is the measure kt* v defined by

(20.35)
^

(^,* v)(H ) = f v( H -x)^,(dx), 	 HE^'.clv(

 X and Y are independent and have distributions p. and v, (20.34) shows
that X + Y has distribution p. * v. Since addition of random variables is
commutative and associative, the same is true of convolution: p, * v = v * µ
and p.*(v*r1)=(µ*v)* r^.

If F and G are the distribution functions corresponding to µ and v, the
distribution function corresponding to µ * v is denoted F * G. Taking H =
(- co, y] in (20.35) shows that

(20.36) (F *G)(y)= f :G(y - x) dF(x).

(See (17.22) for the notation dF(x).) If G has density g, then G(y -x) =
f y g(s) ds = f , og(t - x) dt, and so the right side of (20.36) is J !1.[ j °°^g(t
- x) dF(x)] dt by Fubini's theorem. Thus F * G has density F * g, where

œ(20.37)	 (F * g)(y) = f g(y - x) dF(x);œ
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this holds if G has density g. If, in addition, F has density f, (20.37) is
denoted f * g and reduces by (16.12) to

(20.38) 	 g)( œ

This defines convolution for densities, and µ * y has density f * g if µ and y
have densities f and g. The formula (20.38) can be used for many explicit
calculations.

Example 20.5. Let X 1 , ... , Xk be independent random variables, each
with the exponential density (20.10). Define gk by

(20.39)
(ax)k-1

gk(x) = a (k _ 1). P
-^x ^ x> 0, k = 1,2,...;

put g k(x) = 0 for x< 0. Now

v
(gk -1 * g1)(Y) — fo gk-1()' —x)gl(x) dx,

which reduces to g k( y). Thus gk - gk-1 * g 1, and since g 1 coincides with
(20.10), it follows by induction that the sum X I + +Xk has density gk .
The corresponding distribution function is

k-I (ax)
(20.40) Gk(x) = 1— e -"x E 

1^i=o

e _^, x (ax)

1!	 '

as follows by differentiation. 	 •

Example 20.6. Suppose that X has the normal density (20.12) with m = 0
and that Y has the saine density with T in place of cr. If X and Y are
independent, then X + Y has density

1 	  r^ exp —( y —x
)

2 	 x2 
dx.

27TQT J 	 2•2 	 2T2

A change of variable u = x{6 2 + T z ) 112/UT reduces this to                 

Y2 

2(6 2 + T 2 )                

T/Q 
du                                                                                                         



F„(x , w) = n E t—^ x](Xk (w))
k _t

„

(20.42)
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Thus X + Y has the normal density with m = 0 and with cr 2 + 7 2 in place of
if 2 . 	 •

If p. and v are arbitrary finite measures on the line, their, convolution is
defined by (20.35) even if they are not probability measures.

Convergence in Probability

Random variables X„ converge in probability to X, written X„ -> P X, if

(20.41)	 limP[IX„ -XI >_ c] = 0

for each positive e. t This is the same as (5.7), and the proof of Theorem 5.2
carries over without change (see also Example 5.4)

Theorem 20.5. (i) If X„ --> X with probability 1, then X„--> p X.
(ii) A necessary and sufficient condition for X„ P X is that each subse-

quence {X,,) contain a further subsequence (X„ k(i)) such that X„k(. --'X with
probability 1 as i -' 00

PROOF. Only part (ii) needs proof. If X„ --'e X, then given {ilk), choose a
subsequence (n k(1)) so that k >	 nk(i) implies that PH X k — X I >_ i  I ] < 2 - ' By
the first Borel-Cantelli lemma there is probability 1 that I X„ - X < i -- I forAcs)
all but finitely many i. Therefore, lim; X„k(i) = X with probability 1.

If X„ does not converge to X in probability, there is some positive e for
which PH X„ A - XI > €1 > e holds along some sequence (n k ). No subsequence
of (X„ A ) can converge to X in probability, and hence none can converge to X
with probability 1. •

It follows from (ii) that if  X„--> p X and X,--> p Y, then X = Y with
probability 1. It follows further that if f is continuous and X„ --' P X, then
f(X„)-->p f(X).

In nonprobabilistic contexts, convergence in probability becomes conver-
gence in measure: If f, and f are real measurable functions on a measure
space (1f, Y, p.), and if µ[w: If(w) - fn(co)l...  el --' 0 for each e > 0, then f,,
converges in measure to f.

The Glivenko-Cantelli Theorem*

The empirical distribution function for random variables X I , ..., X„ is the
distribution function F„(x, w) with a jump of n' at each Xk(w):

This is often expressed p lim n X„ = X
* This topic may be omitted
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If the Xk have a common unknown distribution function F(x), then F„(x, w)
is its natural estimate. The estimate has the right limiting behavior, according
to the Glivenko-Cantelli theorem:

Theorem 20.6. Suppose that X 1 , X2, .. , are independent and have a com-
mon distribution function F; put D„(w) = sup x 1 F„(x, w) - F(x )I. Then Dn --> 0
with probability 1.

For each x, F„(x, w) as a function of w is a random variable. By right
continuity, the supremum above is unchanged if x is restricted to the
rationals, and therefore D„ is a random variable.

The summands in (20.42) are independent, identically distributed simple
random variables, and so by the strong law of large numbers (Theorem 6.1),
for each x there is a set A x of probability 0 such that

(20.43) limF„( x,w) =F(x)

for w OA x . But Theorem 20.6 says more, Namely that (20.43) holds for co
outside some set A of probability 0, where A does not depend on x—as
there are uncountably many of the sets A x , it is conceivable a priori that
their union might necessarily have positive measure. Further, the conver-
gence in (20.43) is uniform in x. Of course, the theorem implies that with
probability 1 there is weak convergence F„(x, w) F(x) in the sense of
Section 14.

PROOF OF THE THEOREM. As already observed, the set A x where (20.43)
fails has probability O. Another application of the strong law of large
numbers, with /e-co x) in place of /e-co x1 in (20.42), shows that (see (20.5))

F„(x - , w) = F(x - ) except on a set BX of probability O. Let cp(u) =
infix: u < F(x)1 for 0 < u <1 (see (14.5)), and put x k = cp(k/m), m > 1,
1 <k <m. It is not hard to see that F(cp(u) - ) F(cp(u)); hence F(x„, , k
-) — F(xm,k-1) < m - ', F(xm , l -) <m - ', and F(x,n , m ) >- 1- m - '. Let
D,„ „(w) be the maximum of the quantities I Fn(x,„ ,k , w) - F( Xm k )I and
IF„ (xm k — ,(0) -- F(xm , k - )1 for k = 1 , ..., m.

If xm, k-1 < x < x,n k, then F,(x, w) < Fn(xrn,k , (0) < F(xm, k —) +

Dm,n (w) <F(x)+m - ' + Dm,n (w) and F(n x,w)> F(nxm 	w)> F(xm k_1)k— l ^ 	 ,
Dm , n(w) >_ F(x) - m - ' - D „(w). Together with similar

,

 arguments for the
cases x <x„,,,  and x >_ x 	 , this shows that

(20.44)	 D„(w) <Dm n (w) + m - '.

If w lies outside the union A of all the Ax 
'n

andand 
Bx», k,

 then lim n Dm , n(w)
= 0 and hence lim n D„(w) = 0 by (20.44). But A has probability 0.	 •
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PROBLEMS

20.1. 2.11 1 A necessary and sufficient condition for a o--field ,$ to be countably
generated is that ..0= o-(X) for some random variable X. Hint: If .#=
o(A^, A 2 ,...), consider X = =t f(IAk )/10 k , where f(x) is 4 for x= 0 and 5
for x#0.

20.2. If X is a positive random variable with density f, then X- ' has density
f(1/x)/x 2 . Prove this by (20.16) and by a direct argument.

20.3. Suppose that a two-dimensional distribution function F has a continuous
density f. Show that f(x, y) = a 2F(x, y)/ax ay.

20.4. The construction in Theorem 20.4 requires only Lebesgue measure on the unit
interval. Use the theorem to prove the existence of Lebesgue measure on R k .
First construct Ak restricted to (-n, n] x • x (-n, n], and then pass to the
limit (n - cc). The idea is to argue from first principles, and not to use previous
constructions, such as those in Theorems 12.5 and 18.2.

20.5. Suppose that A, B, and C are positive, independent random variables with
distribution function F. Show that the quadratic Az` T Bz +C has real zeros
with probability 1ôNF(x 2/4y) dF(x)dF(y).

20.6. Show that X1 , X2 , ... are independent if o-(X 1 , ... , X„ _ ^ ) and 0-(X„) are
independent for each n.

20.7. Let X0 , X1 , ... be a persistent, irreducible Markov chain, and for a fixed state
j let T1 , T2 ,... be the times of the successive passages through j. Let Z 1 = Ti
and Z„ = Tn - 7;7 _ 1 , n >_ 2. Show that Z1, Z2,.. , are independent and that
P[Z,, = k]=fink) for n> 2.

20.8. Ranks and records. Let X1, X2, ... be independent random variables with a
common continuous distribution function. Let B be the w-set where
X,,,(w) = Xn(w) for some pair m, n of distinct integers, and show that P( B) = 0.
Remove B from the space SZ on which the X„ are defined. This leaves the
joint distributions of the X„ unchanged and makes ties impossible.

Let T (n )(w) _ (T^„ ^(w) , ... , Tin )(w )) be that permutation (t 1 , ... , tn) of
(1,..., n) for which X, ( (0) < X, (w) < • .. < X, (w). Let Y„ be the rank of Xn

among X 1 , ... , X„: Y„= r if and only if X1 <t,, for exactly r -1 values of i
preceding n.
(a) Show that To) is uniformly distributed over the n! permutations.
(b) Show that P[Y„ = r] = 1/n,  1 < r < n.

(c) Show that Yk is measurable o(T („)) for k < n.
(d) Show that Y1 , Y2 , ... are independent.

20.9. 1 Record values. Let A„ be the event that a record occurs at time n:
max k <„ Xk <X„.
(a) Show that A 1 , A 2 , , . , are independent and P(A„) = 1/n.
(b) Show that no record stands forever.
(c) Let IV,, be the time of the first record after time n. Show that P[ N„ =n +
k]=n(n+k - 1)-'(n+kr'.



2n/2 r(n/2)
1 	x(n /z)--le—x/2(20.46)
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20.10. Use Fubini's theorem to prove that convolution of finite measures is commuta-
tive and associative.

20.11. Suppose that X and Y are independent and have densities. Use (20.20) to find
the joint density for (X+ Y, X) and then use (20.19) to find the density for
X + Y. Check with (20.38).

20.12. If F(x - c) < F(x + c) for all positive c, then x is a point of increase of F (see
Problem 12.9). If F(x - ) < F(x ), then x is an atom of F.
(a) Show that, if x and y are points of increase of F and G, then x + y is a
point of increase of F * G.
(b) Show that, if x and y are atoms of F and G, then x + y is an atom of
F*G.

20.13.. Suppose that ,u and y consist of masses a n and /3 r, at n, n = 0, 1, 2, .... Show
that ,a * y consists of a mass of Ek=oakt3n-k at n, n = 0, 1, 2, .... Show that
two Poisson distributions (the parameters may differ) convolve to a Poisson
distribution.

20.14. The Cauchy distribution has density

(20.45) c„( x) = 
1	 u

7r u 2 +x 2' — co <x< co,

for u > 0. (By (17.9), the density integrates to 1.)
(a) Show that cu * c, = c„ + , . Hint: Expand the convolution integrand in
partial fractions.
(b) Show that, if X1 ,..., X„ are independent and have density c,„ then
(X1 + • . • +X„)/n has density Cu as well.

20.15. T (a) Show that, if X and Y are independent and have the standard normal
density ; then X/Y has the Cauchy density with u = 1.
(b) Show that, if X has the uniform distribution over (-Tr/2,ir/2), then
tan X has the Cauchy distribution with u = 1.

20.16. 18.18 T Let XI , ... , X„ be independent, each having the standard normal
distribution Show that

X,2, =
Xi+...+X^

has density

over (0, co). This is called the chi squared distribution with n degrees of freedom.
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f

20.17. T The gamma distribution has density

(20.47)
a u

f(x;a , u) — r(u) xu-le--ax

over (0,00) for positive parameters a and u, Check that (20.47) integrates to 1
Show that

(20.48)	 f( ,a,u)* f( ;a,c) =f(•;a,u +u).

Note that (20.46) is fix; 1,n/2), and from (20.48) deduce again that (20.46) is
the density of xn. Note that the exponential density (20 10) is fix; a, 1), and
from (20 48) deduce (20 39) once again.

20.18. T Let N, X 1 , X2 ,... be independent, where P[ N = n ] = q" - I p , n >_ 1, and
each Xi, has the exponential density f(x; a,1). Show that X 1 + • +XN has
density f(x; ap,1).

20.19. Let A n ,,,(E) = [IZk - ZI <E, n _< k m]. Show that Z,-)Z with probability 1
if and only if lim n lim n P(A nn(c)) = 1 for all positive c, whereas Z"  Z if
and only if lim n P(A nh(E))= 1 for all positive E.

20.20. (a) Suppose that f: R 2 -> R` is continuous. Show that X, -4 13 X and Yn - p Y
imply f(XX ,Y,)-) P f(X,Y).
(b) Show that addition and multiplication preserve convergence in probability.

20.21. Suppose that the sequence (X,,) is fundamental in probability in the sense that
for E positive there exists an NE such that P[I Xn - X,7 1> E] < E for m,n > NE .
(a) Prove there is a subsequence (Xnk ) and a random variable X such that
lim k Xn = X with probability 1. Hint: Choose increasing n k such that
P[I X, kXn l > 2 - k ] < 2 -k for m,n z n 4 . Analyze P[ I Xnk+r - Xnk I > 2-k].
(b) Show that X„-> p X.

20.22. (a) Suppose that X 1 _<X2 • • • • and that Xi? -> P X. Show that Xn -> X with
probability 1.
(b) Show by example that in an infinite measure space functions can converge
almost everywhere without converging in measure.

20.23. If XX —> 0 with probability 1, then n -I Ek = ,Xk -> 0 with probability 1 by the
standard theorem on Cesàro means [A30]. Show by example that this is not so
if convergence with probability 1 is replaced by convergence in probability,

20.24. 2.19 T (a) Show that in a discrete probability space convergence in probabil-
ity is equivalent to convergence with probability 1,
(b) Show that discrete spaces are essentially the only ones where this equiva-
lence holds: Suppose that P has a nonatomic part in the sense that there is a
set A such that P(A) > 0 and P( IA) is nonatomic. Construct random
variables Xn such that X„ —' P 0 but X„ does not converge to 0 with probabil-
ity 1.
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'0.25. 20.21 20.241 Let d(X,Y) be the infimum of those positive c for which
NIX - YI> E] <E.
(a) Show that d(X, Y) = 0 if and only if X = Y with probability 1. Identify
random variables that are equal with probability 1, and show that d is a metric
on the resulting space.
(b) Show that X„ -> P X if and only if d(X,,, X) - 0.
(c) Show that the space is complete.
(d) Show that in general there is no metric d o on this space such that X„ - X
with probability 1 if and only if do( X,,, X) . 0.

20.26. Construct in R k a random variable X that is uniformly distributed over the
surface of the unit sphere in the sense that 1X1= 1 and UX has the same
distribution as X for orthogonal transformations U. Hint Let Z be uniformly
distributed in the unit ball in R k , define 0(x) =x/IxI (Ir(0) = (1,0, ,0), say),
and take X = 0(Z).

20.27. T Let ei and 4) be the longitude and latitude of a random point on the
surface of the unit sphere in R 3 . Show that Co and 4) are independent, O is
uniformly distributed over [0,27r), and 4) is distributed over [ -a/2, +71./2]
with density ï cos 0

SECTION 21. EXPECTED VALUES

Expected Value as Integral

The expected value of a random variable X on (i, .9, P) is the integral of X
with respect to the measure P:

E[X] = fxdP= f X(co)P(dco).
n

All the definitions, conventions, and theorems of Chapter 3 apply. For
nonnegative X, E[X] is always defined (it may be infinite); for the general
X, E[X] is defined, or X has an expected value, if at least one of E[X} ] and
E[X- ] is finite, in which case E[X] = E[X+] - E[X- 1; and X is integrable if
and only if E[I X I] < co. The integral JA XdP over a set A is defined, as
before, as E[ IA X ]. In the case of simple random variables, the definition
reduces to that used in Sections 5 through 9.

Expected Values and Limits

The theorems on integration to the limit in Section 16 apply. A useful fact; If
random variables X„ are dominated by an integrable random variable, or if
they are uniformly integrable, then E[ X„] --- E[X] follows if X„ converges to
X in probability —convergence with probability 1 is not necessary. This
follows easily from Theorem 20.5.
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Expected Values and Distributions

Suppose that X has distribution p. . If g is a real function of a real variable,
then by the change-of-variable formula (16.17),

œ(21.1)	 E[g(X)] = f g(x)µ(^)^^

(In applying (16.17), replace T: SZ ---> IT by X: SI R I , p. by P, µT -1 by p,
and f by g.) This formula holds in the sense explained in Theorem 16.13: It
holds in the nonnegative case, so that

^

(21 2)	 Eilg(X)1] — f 
if one side is infinite, then so is the other. And if the two sides of (21.2) are
finite, then (21.1) holds.

If p. is discrete and µ(x i , x 2 ,...) = 1, then (21.1) becomes (use Theorem
16.9)

(21.3)	 E(g(X)] = E g (x r ) µt x r }.

If X has density f, then (21.1) becomes (use Theorem 16.11)

(21.4)	 E[g(X)] = f
i

g(x)f(x)dx.

If F is the distribution function of X and p., (21.1) can be written E[g(X)1
= j°° mg(x)dF(x) in the notation (17.22).

Moments

By (21.2), p. and F determine all the absolute moments of X:

(21.5) EEIXIk} = 
f oe kp.()  =f

c.° Ixl dF(x),	 k— 1,2,....

Since j <k implies that IxI' < 1 + Ixl k, if X has a finite absolute moment of
order k, then it has finite absolute moments of orders 1, 2, ... , k —1 as well.
For each k for which (2.15) is finite, X has kth moment

(21.6)	 Ef X k l = 
f

^ x kµ(dx) = f x k  dF(x).œ
	œ

These quantities are also referred to as the moments of µ and of F. They
can be computed by (21.3) and (21.4) in the appropriate circumstances.
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Example 21.1. Consider the normal density (20.12) with m = 0 and 0- = 1.
For each k, x k e -x 2 /2 goes to 0 exponentially as x --' ±c* , and so finite
moments of all orders exist. Integration by parts shows that

1 (°° x k e -x z / 2 dx = 
k 27r

 f°
	 ^

xk-ze-x z ^z^ J 	 k = 2,3,....
2^r J -^ 	 ^

(Apply (18.16) to g(x) = x k-z and f(x) =xe -x 2 /z , and let a 	 -co, b 	 oo.)
Of course, E[X] = 0 by symmetry and E[ X °] = 1. It follows by induction
that

(21.7) 	 El X 2k ] = 1 x 3 x 5 x 	 x(2k - 1),	 k = 1, 2,

and that the odd moments all vanish. 	 ■

If the first two moments of X are finite and E[X] = m, then just as in
Section 5, the variance is

1(x(21.8)	 Var[X] =E r ( X- m) 21 = f 	 -m)2µ(^)

=EfX 2 1 -m 2 .

From Example 21.1 and a change of variable, it follows that a randorn
variable with the normal density (20.12) has mean m and variance o2.

Consider for nonnegative X the relation

(21.9)	 E[X] = f^P[X> *it = f P[X > t] dt.
a

Since P[ X = t] can be positive for at most countably many values of t, the
two integrands differ only on a set of Lebesgue measure 0 and hence the
integrals are the same. For X simple and nonnegative, (21.9) was proved in
Section 5; see (5.29). For the general nonnegative X, let X„ be simple
random variables for which 0 <X, T X (see (20.1)). By the monotone conver-
gence theorem E[ X ] 1' E[X]; moreover, P[ X > t] T' P[ X > t ], and therefore
f p P[ XX > di*dt T J P[ X > t ] dt, again by the monotone convergence theorem.
Since (21.9) holds for each XX , a passage to the limit establishes (21.9) for X
itself. Note that both sides of (21.9) may be infinite. If the integral on the
right is finite, then X is integrable.

Replacing X by XI[x>  leads from (21.9) to

(21.10) f 	 XdP=aP[X>a]+ f P[X>t]dt,	 a >0.
[x>^]

As long as a >- 0, this holds even if X is not nonnegative.
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Inequalities

Since the final term in (21.10) is nonnegative, aP[X > a] < f[x , a] XdP
E[ X]. Thus

(21.11) P[Xa]< a f 	 XdP< âE[X], 	 a>0,
[X>_ a]

for nonnegative X. As in Section 5, there follow the inequalities

P[^X^ > a] <(21.12) 1 f
	 ^X^k dP < lk E^iX V` ] .

a [Ixl_a] 	 a

It is the inequality between the two extreme terms here that usually goes
under the name of Markov; but the left-hand inequality is often useful, too.
As a special case there is Chebyshev's inequality,

(21.13) 	 P[1X — ml>_ a] < 12 Var[X]

(m=E[X]).
Jensen's inequality

(21.14) 	 cp(E[X]) < E[cp(X)]

holds if cp is convex on an interval containing the range of X and if X and
cp(X) both have expected values. To prove it, let 1(x) ax + b be a support-
ing line through (E[X], cp(E[ X ]))—a tine lying entirely under the graph of cp
[A33]. Then aX(w) + b s cp(X(0), so that aE[ X] ± b < E[ cp(X )]. But the
left side of this inequality is cp(E[X ]).

Holder's inequality is

(21.15) 	 E[IXY1] <E 1 /a1IX1p]E I / 4 1IY1 9 ], 1 + 
1
 — 1

P q

For discrete random variables, this was proved in Section 5; see (5.35). For
the general case, choose simple random variables X„ and Y„ satisfying
0 < IX,7 l1 IX' and 0 <lY„ lT lY^; see (20.2). Then (5.35) and the monotone
convergence theorem give (21.15). Notice that (21.15) implies that if PO P
and tYr' are integrable, then so is XY. Schwarz's inequality is the case
p=q= 2:

(21.16) 	 EHXYl] < E 1 /2 [X 2 ]E 1 /2 [Y 2 ].

If X and Y have second moments, then XY must have a first moment.
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The same reasoning shows that Lyapounov's inequality (5.37) carries over
from the simple to the general case.

Joint Integrals

The relation (21.1) extends to random vectors. Suppose that (X,,..., X k ) has
distribution 	in k-space and g: R k 	R'. By Theorem 16.13,

(21.17)	 E[g( X I , ..., Xk)} = fRkg(x)µ(dx),

with the usual provisos about infinite values. For example, E[X,X 1 ] =
JRkx ; xlµ(dx). If E[Xf 1= m ; , the covariance of X, and Xf is

Coy' X X1] =E[(Xr — mr)(XI — m i)1 = f(x 1 —m 1 )(x—m1 )p.(dx).

Random variables are uncorrelated if they have covariance 0.

Independence and Expected Value

Suppose that X and Y are independent. If they are also simple, then
E[XY] — E[X]E[Y], as proved in Section 5—see (5.25). Define X„ by (20.2)
and similarly define Y„ = iJn (Y+ ) — //in(Y- ). Then X„ and Y„ are independent
and simple, so that E[I XY„ I1= E[I X„IJE[I Y„11, and 0 < IX„IT IXI, 0 < IY„IT IYI•
If X and Y are integrable, then E[I X„Y„I] = E[I X„I]E[I Y„I]T EjIXI] E[I YII,
and it follows by the monotone convergence theorem that E[I XY I] < co; since
X„Y„ --' XY and I X„Y„1 < I XYI, it follows further by the dominated conver-
gence theorem that E[ XI' = lim n E[X„Y„] = lim n E[X„]E[Y„] = E[X ]E[Y 1.
Therefore, XY is integrable if X and Y are (which is by no means true for
dependent random variables) and E[XY]= E[ X]E[Y1.

This argument obviously extends inductively: If X 1 , ... , Xk are indepen-
dent and integrable, then the product X, - Xk is also integrable and

(21.18)	 E[X, • • Xk ] =E[X l ] .. E[Xk ]•

Suppose that .A and A are independent o-fields, A lies in A, X, is
measurable ..A, and X2 is measurable „A. Then /A X, and X2 are indepen-
dent, so that (21.18) gives

(21.19) fAXI X2 dP= f X,dP•E[ X2]
 A

if the random variables are integrable. In particular,

f X
 dP == A) E[ X2 J.(21.20)
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From (21.18) it follows just as for simple random variables (see (5.28)) that
variances add for sums of independent random variables. It is even enough
that the random variables be independent in pairs.

Moment Generating Functions

The moment generating function is defined as

(21.21)	 M(s) = E[esxl = f ep.(dc)  = fle" dF(X)
] 

for all s for which this is finite (note that the integrand is nonnegative).
Section 9 shows in the case of simple random variables the power of moment
generating function methods. This function is also called the Laplace trans-
form of µ, especially in nonprobabilistic contexts.

Now fie xp(dx) is finite for s < 0, and if it is finite for a positive s, then it
is finite for all smaller s. Together with the corresponding result for the left
half-line, this shows that M(s) is defined on some interval containing O. If X
is nonnegative, this interval contains (-- 03,0] and perhaps part of (0, co); if X
is nonpositive, it contains [0,09) and perhaps part of (-00,0). It is possible
that the interval consists of 0 alone; this happens, for example, it p. is
concentrated on the integers and µ{n} = µ{ — n) = C/n 2 for n = 1, 2, ... .

Suppose that M(s) is defined throughout an interval (—s o , so ), where
so > 0. Since el"1 < esx + e-sX and the latter function is integrable µ for
1st <s o , so is Ek_0Isxlk/k! — esX'. By the corollary to Theorem 16.7, µ has
finite moments of all orders and

(21.22) M(s) _ E k I E^Xk^ _ ^ k^ f m

 xkµ (dx),	 Isl <s o .
k =0	 k=0 	 - 00

Thus M(s) has a Taylor expansion about 0 with positive radius of conver-
gence if it is defined in some (—s o , se ) ), s o > 0. If M(s) can somehow be
calculated and expanded in a series Ek a k s k , and if the coefficients a k can be
identified, then, since a k must coincide with E[X k 1/k!, the moments of X
can be computed: E[Xk] =a k k! It also follows from the theory of Taylor
expansions [A29] that a k k! is the kth derivative M ( k )(s) evaluated at s = 0:

(21.23) M("(0) ^E[Xki
^

— f
a,
x kli(dx).

This holds if M(s) exists in some neighborhood of O.
Suppose now that M is defined in some neighborhood of s. If v has

density e"/M(s) with respect to µ (see (16,11)), then v has moment
generating function N(u) = M(s + u)/M(s) for u in some neighborhood of O.



Ar
M( s) — E erse - 1̂ 	= e ^ (e s- ^),

r!r=0

CO

(21.27)
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But then by (21,23), N (k)(0) = j°°,°x k v(dx) = f xkesxµ(dx)/M(s), and since
N (k)(0 ) — M (k)(s)/M(s),

(21.24) M (k)(s ) = f x ke/L (dx ) .

 ^

This holds as long as the moment generating function exists in some neigh-
borhood of s, If s = 0, this gives (21,23) again. Taking k = 2 shows that M(s)
is convex in its interval of definition.

Example 21.2. For the standard normal density,

M(s)=  1
 irc°

-2^r 
	esxe-xz /z ^ = 	1  es z /z (°° e — (x —s) z /z ^
^ 	 2^r 	 -m

and a change of variable gives

(21.25) 	 M(s) =es 2 /2 .

The moment generating function in this case defined for all s. Since es 2 / 2

has the expansion

es 2 /2 — 00 1 S2 
k 	 o0 1 X3 X ''' X (2k — 1) S2k

.k 2 ^ 	
E 

( 2k )^k-0 	 k=Q 

the moments can be read off from (21,22), which proves (21.7) once more. •

Example 21.3. In the exponential case (20.10), the moment generating
function

(21.26)
M(

 5, = f eSXcve —ax cfr _
0

s k

a — S
 ^ 

L k
k = 0 a

is defined for s <a, By (21.22) the kth moment is k!a -k. The mean and
variance are thus a -1 and a -2 . 	 •

Example 21.4. For the Poisson distribution (20,7),

Since M'(s) = AesM(s) and M"(s) = (A2 e 2 s + Aes)M(s), the first two mo-
ments are M'(0) = A and M"(0) = A2 + A; the mean and variance are both A.

•
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Let X I , ..., Xk be independent random variables, and suppose that each
Xi has a moment generating function M;(s) = E[esxi] in (—s o , so ). For
is) <s o , each exp(sX! ) is integrable, and, since they are independent, their
product exp(s E _  1 X1 ) is also integrable (see (21.18)). The moment generating
function of X 1 + • • • +Xk is therefore

(21 28)	 M(s) — M1(s) • Mk(s)

in ( — s o , so ). This relation for simple random variables was essential to the
arguments in Section 9.

For simple random variables it was shown in Section 9 that the moment
generating function determines the distribution. This will later be proved for
general random variables; see Theorem 22.2 for the nonnegative case and
Section 30 for the general case.

PROBLEMS

21.1. Prove

111.2,-.77. 	
m

e --/x2 /2 dx = t - 1/2

 — m

,

differentiate k times with respect to t inside the integral (justify), and derive
(21.7) again.

21.2. Show that, if X has the standard normal distribution, then E[IXI 2"+'J _

2"n! 2,/•rr .

21.3. 20.9 T Records. Consider the sequence of records in the sense of Problem
20.9. Show that the expected waiting time to the next record is infinite.

21.4. 20.14 T Show that the Cauchy distribution has no mean.

21.5. Prove the first Borel—Cantellï lemma by applying Theorem 16.6 to indicator
random variables. Why is Theorem 16.6 not enough for the second
Borel --Cantelli lemma?

21.6. Prove (21.9) by Fubini's theorem.

21.7. Prove for integrable X that

E[X]= fœP[X>t]dt— f° P[X<t]dt.
o	 ^
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21.8. (a) Suppose that X and Y have first moments, and prove

E[Y]-E[X]= fm (P[X<t.Y]--P[Y<t<X])dt.

(b) Let (X, Y] be a nondegenerate random interval Show that its expected
length is the integral with respect to t of the probability that it covers t.

21.9. Suppose that X and Y are random variables with distribution functions F
and G.
(a) Show that if F and G have no common jumps, then E[F(Y)] + E[G(X)]

1.
(b) If F is continuous, then E[F(X)] ----- z.
(c) Even if F and G have common jumps, if X and Y are taken to be
independent, then EI F(Y)] + E[G(X )] = 1 -r P[ X — Y ].
(d) Even if F has jumps, E[F(X)] = g 4E,./32[X  =x]

21.10. (a) Show that uncorrelated variables need not be independent.
(b) Show that Var[E',.'=' X; ] = E',. 1 Cov[X,, Xi ] = E!'= Var[X ; ] +

2E 1 ,, <j 51 Cov[X,, X ]. The cross terms drop out if the X; are uncorrelated,
and hence drop out if they are independent.

21.11. T Let X, Y, and Z be independent random variables such that X and Y
assume the values 0,1, 2 with probability -`, each and Z assumes the values 0
and t with probabilities i and . Let X' = X and Y' - X+ Z (mod 3).
(a) Show that X', Y', and X' + Y' have the same one-dimensional distribu-
tions as X, Y, and X + Y, respectively, even though (X', Y') and (X, Y) have
different distributions.
(b) Show that X' and Y' are dependent but uncorrelated
(c) Show that, despite dependence, the moment generating function of X' + Y'
is the product of the moment generating functions of X' and Y'.

21.12. Suppose that X and Y are independent, nonnegative random variables and
that E[X] = co and E[Y] = 0. What is the value common to E[XY] and
E[X]E[Y]? Use the conventions (15.2) for both the product of the random
variables and the product of their expected values. What if E[X] = co and
0< E[Y] <co?

21.13. Suppose that X and Y are independent and that fix, y) is nonnegative. Put
g(x) = E[ f(x,Y)] and show that E[g(X)] =E[ f(X,Y)]. Show more generally
that fx A g(X) dP = jX A f(X, Y) dP. Extend to f that may be negative.

21.14. T The integrability of X + Y does not imply that of X and Y separately.
Show that it does if X and Y are independent.

21.15. 20.25T Write d i( X, Y) = E[I X -- Y1/(1 + I X - YI)]. Show that this is a metric
equivalent to the one in Problem 20.25.

21.16. For the density C exp(-Ix l ` /2 ), -co < x < co, show that moments of all orders
exist but that the moment generating function exists only at s = 0.
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u„
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21.17. 16.6 1 Show that a moment generating function M(s) defined in (—s o , so ),
so > 0, can be extended to a function analytic in the strip [z: —s 11 < Re z < so ].
If M(s) is defined in [0, so ), so > 0, show that it can be extended to a function
continuous in [z: 0 < Re z <so ] and analytic in [z• 0 < Re z < so ].

21.18. Use (21.28) to find the generating function of (20.39).

21.19. For independent random variables having moment generating functions, show
by (21.28) that the variances add.

21.20. 2(117T Show that the gamma density (20.47) has moment generating function
(1 — s/aY" for s < a. Show that the kth moment is u(u + 1) .. (u + k —
1)/a k Show that the chi-squared distribution with n degrees of freedom has
mean n and variance 2n.

21.21. Let X 1 , X2 ,... be identically distributed random variables with finite second
moment. Show that nP[I XI  > E147z ] --' 0 and n - 1 / 2 max k < n I Xk I -'110.

SECTION 22. SUMS OF INDEPENDENT RANDOM VARIABLES

Let X 1 , X2,... be a sequence of independent random variables on some
probability space. It is natural to ask whether the infinite series 12:7_ 1 X,,
converges with probability 1, or as in Section 6 whether n -' Ek =1 Xk con-
verges to some limit with probability 1. It is to questions of this sort that the
present section is devoted.

Throughout the section, Sn will denote the partial sum Eric' =1 Xk (S0=0),

The Strong Law of Large Numbers

The central result is a general version of Theorem 6.1.

Theorem 22.1. If X 1 , X2,... are independent and identically distributed
and have finite mean, then S„/n -* E[X 1 ] with probability 1.

Formerly this theorem stood at the end of a chain of results. The following
argument, due to Etemadi, proceeds from first principles.

PROOF. If the theorem holds for nonnegative random variables, then
n - 'S n  = n -' Ek , 1 Xk — n -' Ek _ I Xk - i E[ X I ] — E[ X1 ] = E[ X 1 1 with proba-
bility 1. Assume then that Xk _ O.

Consider the truncated random variables Yk = Xk l[xk< k] and their partial
sums S,*, = Ek = ,Yk. For a > 1, temporarily fixed, let u„ —lei The first step
is to prove
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Since the Xn are independent and identically distributed,

n 	 n

Var[ S,* ] _ E Var[ Yk ] < E E [ Yk 1
k=1 	 k^ 1

11

E E[ XiI[x, <kj l —< nE[ XiI[x, <n]] •
k=1

It follows by Chebyshev's inequality that the sum in (22.1) is at most

Var[ S  ^ 	 1	 °°E 	2 Z„  < Z E X; ^ ^ I[xi , ^^ni
n = 1	 E u n 	E 	n=I n

Let K = 2a/(a - 1), and suppose x > 0. If N is the smallest n such that
u n _> x, then a"' > x, and since y < 21y1 for y >_ 1,

E u n- ' < 2 E a —n = Ka —N << Kx ^'•

u n >X 	nzN

Therefore, Ett =, u„ 'I[x, < „ n ] < KX; ' for X, > 0, and the sum in (22,1) is at
most KE -2E[X,] < CO,

From (22.1) it follows by the first Borel-Cantelli lemma (take a union over
positive, rational E) that (Su - E[Sû ])/u n -* 0 with probability 1, But by the
consistency of Cesàro summation [A301, n - 'E[S: ] = n - ' Ek= , E[Yk ] has the
same limit as E[1], namely. E[ X 1 ], Therefore S n/u n -* E[ X 1 ] with proba-
bility 1. Since

^ 	 «

E P[Xn Yn ]= E P[X>n] < fP[X i >tJdt=E[X 1 J <c,
n =1	 n-1

another application of the first Borel-Cantelli lemma shows that (Sn - Sn )/n
-* 0 and hence

S
(22.2)	 ù"" --* E [ X 1 ]

n

with probability 1.
If u n < k < un+ ,, then since Xi > 0,

U n S„ n < Sk < un +1 Sun + I

un+- I U n 	k 	 un Un +1
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But u„,,/u n --)oz, and so it follows by (22.2) that

. Sâ E[ X, ]< lim inf k < l im sup k < crE[ X , ]
k 	 k

with probability 1. This is true for each a > 1, Intersecting the corresponding
sets over rational a exceeding 1 gives lim k Sk/k = E[Xi] with probability 1.

•

Although the hypothesis that the X" all have the same distribution is used
several times in this proof, independence is used only through the equation
Var[S*] — EZ , Var[Yk ], and for this it is enough that the X" be indepen-
dent in pairs, The proof given for Theorem 6,1 of course extends beyond the
case of simple random variables, but it requires E[ XJ ] < co.

Corollary. Suppose that X 1 , X2 , . , . are independent and identically dis-
tributed and E[ X 11 <00, E[ X; ] = oo (so that E[X1]=c). Then n -1 E', = , Xk

—) oo with probability 1,

PROOF. By the theorem, n - ' Ek ï I Xk -* E[ X, ] with probability 1, and so
it suffices to prove the corollary for the case X 1 = X; >_ 0, If

X ( u ) = 1
10 	 if X">u,

then n - ' Ek ^ , Xk >_ n - `Ekï , Xkl') -- E[ X; 14) 1 by the theorem. Let u - * œ. •

The Weak Law and Moment Generating Functions

The weak law of large numbers (Section 6) carries over without change to the
case of general random variables with second moments—only Chebyshev's
inequality is required, The idea can be used to prove in a very simple way
that a distribution concentrated on [0, co) is uniquely determined by its
moment generating function or Laplace transform,

For each A, let YA be a random variable (on some probability space)
having the Poisson distribution with parameter A. Since Y,, has mean and
variance A (Example 21.4), Chebyshev's inequality gives

^Y,^ - A 
P	A  A

>E < A ÉZ -^0, A -*oo.  

X" if0 <X" _<u,
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Let GA be the distribution function of Y,,/A, so that

	[Ail 	 Air

	Ga(t) _ E	 l	k=0 	k .

The result above can be restated as

(22.3) lim GAO) = 1 if t > 1,
0	 if t < 1.

In the notation of Section 14, GA(x)	 ,6,(x — 1) as A	 00.
Now consider a probability distribution µ concentrated on [0, co). Let F be

the corresponding distribution function, Define

(22.4)	 M(s) = f e - sXµ(dx),
0

here 0 is included in the range of integration. This is the moment generating
function (21.21), but the argument has been reflected through the origin, It is
a one-sided Laplace transform, defined for all nonnegative s.

For positive s, (21.24) gives

m
(22.5)	 Mck>(s) _ (-1) k fo ykeSyµ(dy).

Therefore, for positive x and s,

[sxl	 _ 1 k	 œ [sx1 	
(sy)

k

(22.6)	 E (

 k! ) 
s kM (k) (s) = f ^ e^sY 

k! µ( dY)
k =0 	0 k^o

= f°° x
o GsY y µ ( dy )`

Fix x> O. If t 0 < y <x, then Gsy(x/y) -* 1 as s —*co by (22.3); if y >x, the
limit is 0. If µ(x} = 0, the integrand on the right in (22.6) thus converges as
s --> x to I[0 x)(y) except on a set of p.-measure O. The bounded convergence
theorem then gives

[sx l 	

_) 

k
(22.7)	 lim E ( k^ s kM^ k ^(s) = µ[O,x] =F(x).

s" k=0

t If y = O, the integrand in (22.5) is 1 for k = 0 and 0 for k >_ 1, hence for y = 0, the integrand in
the middle term of (22 6) is 1.
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Thus M(s) determines the value of F at x if x> 0 and µ(x} = 0, which
covers all but countably many values of x in [0,00), Since F is right-continu-
ous, F itself and hence p, are determined through (22,7) by M(s), In fact p, is
by (22,7) determined by the values of M(s) for s beyond an arbitrary s o :

Theorem 22.2. Let a and v be probability measures on [0, oc), If

f e - sxµ( d ) ^ f e - sx `, ( dx ) ,

0	 0
s > so ,

where s o >_ 0, then p = v.

Corollary. Let f i and f2 be real functions on [0,03). If

f e-sx 
fi(x) dx = f e-sxf2(x) dx,

0	 0
s >_ so ,

where so >_ 0, then f ( = f2 outside a set of Lebesgue measure 0.

The f, need not be nonnegative, and they need not be integrable, but
e -sx f;(x) must be integrable over [0,00) for s >_ so ,

PROOF. For the nonnegative case, apply the theorem to the probability
densities g1(x) = e - saxff(x)/m, where m = foe -soxff(x)dx, i = 1, 2, For the
general case, prove that f; + f2 = f2 + f; almost everywhere, •

Example 211. If µ * µ2 = µ 3 , then the corresponding transforms (22,4)
satisfy M ((s)M 2(s) = M3(s) for s >_ 0. If µ; is the Poisson distribution with
mean A ; , then (see (21.27)) M;(s) = exp[A ;(e - s - 1)1 It follows by Theorem
22.2 that if two of the p., are Poisson, so is the third, and A, + A2 = A 3 . ■

Kolmogorov's Zero-One Law

Consider the set A of w for which n-1 Ek  Xk ((0) --* 0 as n -*00,  For each
m, the values of X ( (w), ... , X„,_ 1 (w) are irrelevant to the question of
whether or not w lies in A, and so A ought to lie in the a-field
o-(X,7„ Xm+ ,, , , , ), In fact, lim n n -  Ek (Xk(w) = 0 for fixed m, and hence w
lies in A if and only if lim n n - ' Ek =n7 Xk(w) = 0, Therefore,

(22,8)	 A - n u n w:
E N >m n >N

n -( E Xk( w )
k =rn

CE ,  

the first intersection extending over positive rational E. The set on the inside
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lies in 6(X„,, X, 1 ,...), and hence so does A. Similarly, the co-set where the
series E„ X„(w) converges lies in each a(X„,, X,,, +, 1 , , , , ),

The intersection J-= (1 	 1 6(X,,, X„,„ 1 ,...) is the tail o--field associated
with the sequence X 1 , X2 , , . , ; its elements are tail events, In the case
X„ =1A,,, this is the Q-field (4,29) studied in Section 4. The following general
form of Kolmogorov's zero--one law extends Theorem 4.5.

Theorem 22.3. Suppose that {X„} is independent and that A E J-=
fl n=1a(X„, xi,,,,„.).    Then either P(A)-- 0 or P(A)— 1.

PROOF. Let .F0 = U 	 10-(X1, . , . , Xk), The first thing to establish is that
.moo is a field generating the o--field 6(X 1 , X2 , , , , ), If B and C lie in Y-0 ,
then B E o-(X 1 , ... , X3) and C E o-(X i , . , . , Xk ) for some j and k; if m
max{ j, k), then B and C both lie in 6(X 1 , , , , , X„,), so that BUCE
6(X 1 , , .. , X,„) c .0 , Thus Yo is closed under the formation of finite unions;
since it is similarly closed under complementation, .moo is a field, For
H E M I , [ X„ E 1/)  E ffl-o c 6(F0 ), and hence X„ is measurable a-(34-0 ); thus
34-0 generates 6(X 1 , X2, ...) (which in general is much larger than .moo ).

Suppose that A lies in Y. Then A lies in 6(Xk+1, Xk+2,...) for each k.
Therefore, if B E 6(X 1 , ... , Xi), then A and B are independent by Theorem
20.2. Therefore, A is independent of Yo and hence by Theorem 4.2 is also
independent of 6(X 1 , X2,...). But then A is independent of itself: P(A n
A) = P(A)P(A). Therefore, P(A) = P 2(A), which implies that P(A) is ei-
ther 0 or 1. •

As noted above, the set where E„X„(w) converges satisfies the hypothesis
of Theorem 22.3, and so does the set where n - 1 Ek_ 1 Xk(w) -* 0. In many
similar cases it is very easy to prove by this theorem that a set at hand must
have probability either 0 or 1. But to determine which of 0 and 1 is, in fact,
the probability of the set may be extremely difficult.

Maximal Inequalities

Essential to the study of random series are maximal inequalities—inequali-
ties concerning the maxima of partial sums. The best known is that of
Kolmogorov.

Theorem 22.4. Suppose that X 1 ,..., X,, are independent with mean 0 and
finite variances. For a > 0,

(22.9)	 P[ max ' Sk i ? al < 
12

Var[ S id.
15ksn 	 J 	 a
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PROOF. Let A k be the set where I S k l >_ a but I SC I < a for j < k. Since the
Ak are disjoint,

E [ S rfl>_ E f S 2 dP
k=1 Ak

= E f [ s+2sk ( sfl _sk ) + (sfl _sk )2]dP
k=1 Ak

> E f [Sk+2S k (S„-Sk )1 dP.
k^l Ak

Since Ak and Sk are measurable o-(X 1 , ... , Xk ) and Sn — Sk is measurable
Xn ), and since the means are all 0, it follows by (21.19) and

independence that jAkS,,(S„ — Sk ) dP = 0. Therefore,
n	 n

E[S2] >_ E f Sk dP> E a 2P(A k )
k=1 Ak 	 k=1

=a2P[ max !Sk I>_ a ] .	 •
1<k<n

By Chebyshev's inequality, P[IS„I >_ al _< a -2 Var[Sj. That this can be
strengthened to (22.9) is an instance of a general phenomenon: For sums of
independent variables, if max k , n 15k 1 is large, then ISnl is probably large as
well. Theorem 9.6 is an instance of this, and so is the following result, due to
Etemadi.

Theorem 22.5. Suppose that X„ ... , Xn are independent. For a >_ 0,

(22.10)
P[

 max 'S k i 3a1 _<3 max P[ISk I>_a].
1<k<n 1<k<n

PROOF. Let Bk be the set where ISk I >— 3a but IS;I < 3a for <k. Since
the Bk are disjoint,

n-1

P[
 max I Sk^? 3al ^ P[ISn l>_ a] + E P(Bk n [iSn i <a])
llsk<n 	 k=1

n- 1
< P[ISn l?a] + E P(Bk n[ISn —Sk l> 2a])

k=1
n-1

= P[1Sn 1>_ a] + E P(Bk )P[lSn -Sk l> 2a]
k=1

.. PjISn I - a] + max
1<k<n

a] + max
I<ksn

3 max P[ISk j >_ a] .
1 <k < n

PHS,► — Sk i >_2a]

(P[ISnI > a] +P[^Sk I? a])

•
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If the Xk have mean 0 and Chebyshev's inequality is applied to the right
side of (22.10), and if a is replaced by a/3, the result is Kolmogorov's
inequality (22.9) with an extra factor of 27 on the right side. For this reason,
the two inequalities are equally useful for the applications in this section.

Convergence of Random Series

For independent Xn , the probability that EX, converges is either 0 or 1. It is
natural to try and characterize the two cases in terms of the distributions of
the individual Xn .

Theorem 22.6. Suppose that {Xn} is an independent sequence and E[Xn ] _
0. If E Var[ X„ ] < oo, then X„ converges with probability 1.

PROOF. By (22.9),

P[	
1 r

P
L

max IS„ Fk ^ Snl > E ^ < Z E Var[X,}+k ]•
1<k <r	 E k=1

Since the sets on the left are nondecreasing in r, letting r co gives

P supISn+k - Sn l > E _< z E Var[X,r+k]-
k >1 	 E k=1

Since E Var[Xn ] converges,

(22.11)
	

lime supl Sn+k —Sn 1 >E =0
k >1

for each E.
Let E(n, E) be the set where sup], k > n IS; — Ski > 2E, and put E(E) =

f „Mn, E). Then E(n, E) 4. E(E), and (22.11) implies P(E(E)) = O. Now
U E E(E), where the union extends over positive rational E, contains the set
where the sequence {Sn} is not fundamental (does not have the Cauchy
property), and this set therefore has probability 0. •

Example 22.2. Let Xn(w) = rn(w)a n , where the rn are the Rademacher
functions on the unit interval—see (1.13). Then X„ has variance  a,2„ and so
Ea n2 < oo implies that Ern(w)a n converges with probability 1. An interesting
special case is a n - n -'. If the signs in E + n' are chosen on the toss of a
coin, then the series converges with probability 1. The alternating harmonic
series 1 - 2 - ' + + • • • is thus typical in this respect. •

If EXn converges with probability 1, then Sn converges with probability 1
to some finite random variable S. By Theorem 20.5, this implies that
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Sn --op S. The reverse implication of course does not hold in general, but it
does if the summands are independent.

Theorem 22.7. For an independent sequence {JO, the S„ converge with
probability 1 if and only if they converge in probability.

PROOF. It is enough to show that if Sn -4 1, S, then {Sn} is fundamental
with probability 1. Since

P[ I S„ +j — s„I > E] < P[IS„+j — sl >— 2 ] + P[ISn — s^ ? 2 ] ,
Sn --o ff, S implies

(22.12)	 limsupP[ISn F1 —SnI>E] = 0.
j,

But by (22.10),

11 max ISn +j — S n I >_ el < 3 max P[ISn + j —
1 <j<k J 1 <j<k

S„I >_ 3],
and therefore

P Sup ISn+k — Sn I>E <3 sup P[ISn+k
k^I 	 kz1

—Sn I , E
] .

It now follows by (22.12) that (22.11) holds, and the proof is completed as
before.	 •

The final result in this direction, the three-series theorem, provides neces-
sary and sufficient conditions for the convergence of EX„ in terms of the
individual distributions of the Xn . Let XV be Xn truncated at c: X,» =

■
Xn 1 [IX,rI <cj .

Theorem 22.8. Suppose that {Xn} is independent, and consider the three
series

(22.13)	 EP[IXnI > c],	 EE[XV], 	 E Var[X,c9] .

In order that EXn converge with probability 1 it is necessary that the three
series converge for all positive c and sufficient that they converge for some
positive c.



SECTION 22. SUMS OF INDEPENDENT RANDOM VARIABLES 	 291

PROOF OF SUFFICIENCY. Suppose that the series (22.13) converge, and
put m (ǹ ) = E[X,(,` ) ]. By Theorem 22.6, E(X,` ) — m (ǹ ) ) converges with probabil-
ity 1, and since Em (ǹ ) converges, so does EXn` ) . Since P[ X„ * Xn` ) i.o.] — 0
by the first Borel—Cantelli lemma, it follows finally that EXn converges with
probability 1. •

Although it is possible to prove necessity in the three-series theorem by
the methods of the present section, the simplest and clearest argument uses
the central limit theorem as treated in Section 27. This involves no circularity
of reasoning, since the three-series theorem is nowhere used in what follows.

PROOF OF NECESSITY. Suppose that EX„ converges with probability 1,
and fix c > 0. Since X, 0 with probability 1, it follows that EX n( ` ) con-
verges with probability 1 and, by the second Borel—Cantelli lemma, that
EP[IX„I> c] <00.

Let MV and s (ǹ ) be the mean and standard deviation of S;,` ) = Eric' =1 X .
If s;,` ) co, then since the Xn` ) — m (ǹ ) are uniformly bounded, it follows by
the central limit theorem (see Example 27.4) that

(22.14)
S(`' — M  

lim P x <  "	 n < y = 	  
n 	 Sn`) 	 2Tr 

jY _ 2 12

x

And since EXn( c ) converges with probability 1, sn` ) 00 also implies Sn` )/sn` )

--) 0 with probability 1, so that (Theorem 20.5)

(22.15)	 limP[ISn`)/sn`)I >— E] = O.
n

But (22.14) and (22.15) stand in contradiction: Since

S(`) — M(`)
P x < n  S(c) n 

 <_ y,
n

is greater than or equal to the probability in (22.14) minus that ill (22.15), it is
positive for all sufficiently large n (if x <y).  But then

x— E < — Mn`)/s (p,̀ ) < y+ E,

and this cannot hold simultaneously for, say, (x — E, y + E) = ( - 1, 0) and
(x — E, y + E) = (0,1). Thus sn` ) cannot go to 00, and the third series in (22.13)
converges.

And now it follows by Theorem 22.6 that E(X, — m (ǹ ) ) converges with
probability 1, so that the middle series in (22.13) converges as well. 	 •

Example 22.3. If X„ = rn a n, where r„ are the Rademacher functions,
then Ean < 00 implies that EXn converges with probability 1. If EXn con-
verges, then a n is bounded, and for large c the convergence of the third

< E  
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series in (22.13) implies Ea n, < 00: If the signs in E ± a„ are chosen on the toss
of a coin, then the series converges with probability 1 or 0 according as Ean2
converges or diverges. If Ean converges but EIa"l diverges, then E ± a n is
with probability 1 conditionally but not absolutely convergent. •

Example 22.4. If a„ 10 but Ea n2 = œ, then E ± a n converges if the signs
are strictly alternating, but diverges with probability 1 if they are chosen on
the toss of a coin. •

Theorems 22.6, 22.7, and 22.8 concern conditional convergence, and in the
most interesting cases, EX" converges not because the X„ go to 0 at a high
rate but because they tend to cancel each other out. In Example 22.4, the
terms cancel well enough for convergence if the signs are strictly alternating,
but not if they are chosen on the toss of a coin.

Random Taylor Series*

Consider a power series E ± z", where the signs are chosen on the toss of a
coin. The radius of convergence being 1, the series represents an analytic
function in the open unit disk D o = [z: IzI < 1] in the complex plane. The
question arises whether this function can be extended analytically beyond
Do . The answer is no: With probability 1 the unit circle is the natural
boundary.

Theorem 22.9. Let {X"} be an independent sequence such that

(22.16) 	 P[X" = 1] = PfX, ^ —1] ^ lz ,
n- 0, 1 , ...

There is probability 0 that

CO

(22.17) F(W, z ) _ E X"(w)zn

n=0

coincides in D o with a function analytic in an open set properly containing D o .

It will be seen in the course of the proof that the (0-set in question lies in
Œ(X0 , X1 ,...) and hence has a probability. It is intuitively clear that if the set
is measurable at all, it must depend only on the X" for large n and hence
must have probability either 0 or 1.

PROOF. Since

(22.18) 	 I X"( co)I=1, 	 n=0,1,...

* This topic, which requires complex variable theory, may be omitted.
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with probability 1, the series in (22.17) has radius of convergence 1 outside a
set of measure O.

Consider an open disk D = [z: I z -1. 1 <11, where 4- E Do and r > O. Now
(22.17) coincides in D o with a function analytic in D o U D if and only if its
expansion

œ
F(w, z) ^ E m̂  Prn000, 0( z — 4- )m

m=0

about 4- converges at least for I z -- ‘I < r. Let A D be the set of w for which
this holds. The coefficient

yy 	
^
ra m (w) = nl^ F (m)(w,5) ^ L ( m )X,20.0gri - rn

n = m

is a complex-valued random variable measurable cr(Xm , Xm+ ,,...). By the
root test, w E A D if and only if lim sup ra Ia m(w)I" < r - '. For each m o , the
condition for w E A D can thus be expressed in terms of amo(w ), amo „(w),...
alone, and so AD E (T(Xme Xmo + i'..)• Thus A D has a probability, and in
fact P(A D) is 0 or 1 by the zero-one law.

Of course, P(A D )-- 1 if D cD o . The central step in the proof is to show
that P(A D ) = 0 if D contains points not in D o . Assume on the contrary that
P(A D ) = 1 for such a D. Consider that part of the circumference of the unit
circle that lies in D, and let k be an integer large enough that this arc has
length exceeding 271-/k. Define

Xn (w) if n * 0 (mod k) ,
Yn(w)
	- Xn(w) if n = 0 (mod k). {

Let BD be the w-set where the function
CO

(22.19) G(w, z) = E Yn(w)zn

n= 0

coincides in Do with a function analytic in D o U D.
The sequence {Yo , Y 1 ,...) has the same structure as the original sequence:

the Y„ are independent and assume the values +1 with probability z each.
Since BD is defined in terms of the Yn in the same way as AD is defined in
terms of the Xn , it is intuitively clear that P(BD ) and P(A D) must be the
same. Assume for the moment the truth of this statement, which is somewhat
more obvious than its proof.

If for a particular w each of (22.17) and (22.19) coincides in D o with a
function analytic in D o U D, the same must be true of

CO

(22.20) 	F(0), z) - G(w, z) = 2 E Xmk (w)Zmk.
m =0
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Let D I = z E D1. Since replacing z by ze2'1 /k leaves the function
(22.20) unchanged, it can be extended analytically to each D e U D 1 , 1=
1, 2, .... Because of the choice of k, it can therefore be extended analytically
to [z: IzI < 1 + E1 for some positive E; but this is impossible if (22.18) holds,
since the radius of convergence must then be 1.

Therefore, AD n BD cannot contain a point w satisfying (22.18). Since
(22.18) holds with probability 1, this rules out the possibility P(A D ) = P(BD )
= 1 and by the zero-one law leaves only the possibility P(A D ) = P(BD ) = 0.
Let A be the w-set where (22.17) extends to a function analytic in some open
set larger than D o . Then w EA if and only if (22.17) extends to D o U D for
some D =[z:  l z - '41< ri for which D - D o * 0, r is rational, and 4' has
rational real and imaginary parts; in other words, A is the countable union of
A D for such D. Therefore, A lies in o-(X0 , X„...) and has probability 0.

It remains only to show that P(A D ) = P(BD ), and this is most easily done
by comparing {X"} and {Y"} with a canonical sequence having the same
structure. Put Z"(w) = (X"(w) + 1)/2, and let no be ER_ 0 47(w)2 - " - ' on
the w-set A* where this sum lies in (0,11; on Si - A* let no be 1, say.
Because of (22.16) P(A*) = 1. Let 9= 6(X0 , X I ,...) and let 0 be the
o--field of Borel subsets of (0,11; then T: Si -' (0,11 is measurable 3472. Let
r"(x) be the nth Rademacher function. If M � [x: r-(x) = u 1 , i = 1...., n ],
where u ; = +1 for each i, then P(T-1M) = P[w: X1 (w) = u 1 , i = 0,1, ..., n -
11= 2 -", which is the Lebesgue measure A(M) of M. Since these sets form a
7-system generating ^, P(T- 'M) = A(M) for all M in 2 (Theorem 3.3).

Let MD be the set of x for which Ett= Q r",(x)z" extends analytically to
Do U D. Then MD lies in 2, this being a special case of the fact that A D lies
in Moreover, if w EA*, then w EA D if and only if Tw E MD : A* nA D =
A* n r- imp. Since P(A*) = 1, it follows that P(A D ) = A(MD ).

This argument only uses (22.16), and therefore it applies to {Y"} and BD as
well. Therefore, P(BD)- A(MD ) = P(A D ). 	 •

PROBLEMS

22.1. Suppose that X,, X2,... is an independent sequence and Y is measurable
o- (X", X" + ,, ...) for each n. Show that there exists a constant a such that
P[Y=a)= 1.

22.2. Assume (X,) independent, and define X,'» as in Theorem 22.8. Prove that for
to converge with probability 1 it is necessary that EP[IX"I> c] and

EE[I XV 11 converge for all positive c and sufficient that they converge for some
positive c. If the three series (22.13) converge but EE[IXVI] = co, then there is
probability 1 that EX" converges conditionally but not absolutely.

22.3. T (a) Generalize the Borel—Cantelli lemmas: Suppose X,, are nonnegative
If EE[X"] < co, then EX,, converges with probability 1. If the X " are indepen
dent and uniformly bounded, and if EE[X"] = co, then EX,, diverges wit
probability 1.



SECTION 22. SUMS OF INDEPENDENT RANDOM VARIABLES 	 295

(b) Construct independent, nonnegative X" such that EX" converges with
probability 1 but EE[ X"] diverges For an extreme example, arrange that
P[ X" > 0 i.o.] = 0 but E[ X,, ] = co.

22.4. Show under the hypothesis of Theorem 22.6 that EX" has finite variance and
extend Theorem 22.4 to infinite sequences.

22.5. 20.14 22.11 Suppose that X 1 , X2, ... are independent, each with the Cauchy
distribution (20.45) for a common value of u.

(a) Show that n -' Ek = I Xk does not converge with probability 1. Contrast with
Theorem 22.1.
(b) Show that P[n - ' max k 	 Xk X1 —> e -„/" for x > 0. Relate to Theorem
14.3.

22.6. If X,, X2 , ... are independent and identically distributed, and if P[ X , > 0] = 1
and P[ X I > 01> 0, then E"X" _ co with probability 1. Deduce this from
Theorem 22.1 and its corollary and also directly: find a positive a such that
X,. > c infinitely often with probability 1.

22.7. Suppose that X 1 , X2,... are independent and identically distributed and
E[IX 1 1] _ co. Use (21.9) to show that E"P[IX„I >_ an] = co for each a, and
conclude that sup,, n - 'I X"I = co with probability 1. Now show that sup,,
= co with probability 1. Compare with the corollary to Theorem 22.1.

22.8. Wald's equation. Let X i , X2 i ... be independent and identically distributed
with finite mean, and put S,, =X 1 + +X". Suppose that T is a stopping
time: T has positive integers as values and [T = n] E o-(X 1 , ... , X"); see Section
7 for examples. Suppose also that E[T] < co.
(a) Prove that

(22.21) 	 E[ ST] =E[X,]E[T].

(b) Suppose that X,, is +1 with probabilities p and q, p # q, let T be the first
n for which S,, is —a or b (a and b positive integers), and calculate E[T]. This
gives the expected duration of the game in the gambler's ruin problem for
unequal p and q.

22.9. 20.91 Let Z" be 1 or 0 according as at time n there is or is not a record in
the sense of Problem 20.9. Let R" = Z 1 + • • • +Z" be the number of records
up to time n. Show that R”/log n 1.

22.10. 22.1 1 (a) Show that for an independent sequence (X"} the radius of conver-
gence of the random Taylor series E"X"z" is r with probability 1 for some
nonrandom r.
(b) Suppose that the X" have the same distribution and P[X, o (A> 0. Show
that r is 1 or 0 according as log+IX1I has finite mean or not.

22.11. Suppose that X0 , X 1 ,... are independent and each is uniformly distributed
over (0,273-1. Show that with probability 1 the series E"e` X.z" has the unit
circle as its natural boundary.

22.12. Prove (what is essentially Kolmogorov's zero-one law) that if A is independent
of a Tr-system .9 and A E o-(9), then P(A) is either 0 or 1.
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22.13. Suppose that d is a semiring containing OE
(a) Show that if P(A n B) < bP(B) for all B E d, and if b <1 and A E a(d),
then P(A) = 0.
(b) Show that if P(A n B) _< P(A)P(B) for all B E d, and if A E a(d),
then P(A) is 0 or 1.
(c) Show that if aP(B) _< P(A n B) for all B E d, and if a > 0 and A E cr(d),
then P(A) = 1.
(d) Show that if P(A)P(B) _< P(A n B) for all BE .sd, and if A E o(d),
then P(A) is 0 or 1.
(e) Reconsider Problem 3.20

22.14. 22.121 Burstin's theorem. Let f be a Borel function on [0, 1] with arbitrarily
small periods: For each c there is a p such that 0 <p < c and f(x) = f(x + p)
for 0 —< x < 1 — p. Show that such an f is constant almost everywhere:
(a) Show that it is enough to prove that P(f- 'B) is 0 or 1 for every Borel set
B, where P is Lebesgue measure on the unit inte rval.
(b) Show that f- 'B is independent of each interval [0, x], and conclude that
P(f-113) is 0 or 1.
(c) Show by example that f need not be constant.

22.15. Assume that X 1 ,...,  X„ are independent and s, t, a are nonnegative Let

L(s) = maxP[ISk I>_4 R(s) = maxP[IS„ —Sk i > Si,
k S n 	 k5n

M(s)=P[maxiSk l>_sl, T(s)— P[IS„I>— s].
k n 	 JJ

(a) Following the first part of the proof of (22.10), show that

(22.22)	 M(s + t) _<T(t) +M(s+t1R(s).

(b) Take s = 2a and t = a; use (22.22), together with the inequalities T(s) <
L(s) and R(2s) < 2 L(s), to prove Etemadi's inequality (22.10) in the form

(22.23)	 M(3a) _< BE (a) = 1 n 3L(a).

(c) Car ry the rightmost term in (22.22) to the left side, take s = t = a, and
prove Ottaviani's inequality:

(22.24)

(d) Prove

A (2a) < B	 Ao(a) = 1 
	T(a) 

1 R(a) '

BE (a) _< 3Bo(a/2), B0 (a) < 3BE(a/6).

This shows that the Etemadi and Ottaviani inequalities are of the same power
for most purposes (as, for example, for the proofs of Theorem 22.7 and (37.9)).
Etemadi's inequality seems the more natural of the two. Neither inequality can
replace (9.39) in the proof of the law of the iterated logarithm.
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SECTION 23. THE POISSON PROCESS

Characterization of the Exponential Distribution

Suppose that X has the exponential distribution with parameter a:

(23.1) P[X > x] = e - "x , 	 x > O.

The definition (4.1) of conditional probability then gives

(23.2)	 P[X>x+y1X>x] =P[X>y], 	 x,y > 0.

Image X as the waiting time for the occurrence of some event such as the
arrival of the next customer at a queue or telephone call at an exchange. As
observed in Section 14 (see (14.6)), (23.2) attributes to the waiting-time
mechanism a lack of memory or aftereffect. And as shown in Section 14, the
condition (23.2) implies that X has the distribution (23.1) for some positive
a. Thus if in the sense of (23.2) there is no aftereffect in the waiting-time
mechanism, then the waiting time itself necessarily follows the exponential
law.

The Poisson Process

Consider next a stream or sequence of events, say arrivals of calls at an
exchange. Let X, be the waiting time to the first event, let X2 be the waiting
time between the first and second events, and so on. The formal model
consists of an infinite sequence X 1 , X2 , ... of random variables on some
probability space, and S,r = X 1 + • • • +Xn represents the time of occurrence
of the nth event; it is convenient to write So = O. The stream of events itself
remains intuitive and unformalized, and the mathematical definitions and
arguments are framed in terms of the Xn .

If no two of the events are to occur simultaneously, the Sn must be strictly
increasing, and if only finitely many of the events are to occur in each finite
interval of time, Sn must go to infinity:

(23.3)	 0 = So (w) <S,(w) <S2 (w) < • • • ,	 supSn(w) = co.
n

This condition is the same thing as

(23.4)	 XI(w) >0, X2(w)>0,...,	 EXn(w)=co.
n

Throughout the section it will be assumed that these conditions hold every-
where—for every w. If they hold only on a set A of probability 1, and if
Xn(w) is redefined as Xn(w) = 1, say, for w A, then the conditions hold
everywhere and the joint distributions of the Xn and Sn are unaffected.
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Condition 0°. For each w, (23.3) and (23.4) hold.

The arguments go through under the weaker condition that (23.3) and
(23.4) hold with probability 1, but they then involve some fussy and uninter-
esting details. There are at the outset no further restrictions on the  Xi ;  they
are not assumed independent, for example, or identically distributed.

The number N, of events that occur in the time interval [0, t] is the largest
integer n such that S,r < t:

(23.5)	 N,=max[n:S„ <t].

Note that N, = 0 if t < S, = X 1 ; in particular, No = O. The number of events
in (s, t] is the increment N, — Ns .

^—^3

2
N1 = 2
^--	

N1 =i

N1 = 0

.SQ = 0 
	l 	I	 I     

S^ = Xi 	S2 = X^ + X2 	S3 = X^ + X2 + X3

From (23.5) follows the basic relation connecting the N, with the S,,:

(23.6)

From this follows

(23.7)

[Nt ? td= [S„. t].

[N,= Id= [SGt<S,, ,,].

Each N, is thus a random variable.
The collection [Ni : t z 0] is a stochastic process, that is, a collection of

random variables indexed by a parameter regarded as time. Condition 0° can
be restated in terms of this process:

Condition 0 0. For each w, N,(w) is a nonnegative integer for t >_ 0, No(w) = 0,
and Lim, N,(w) = X; further, for each w, N,(w) as a function oft is
nondecreasing and right-continuous, and at the points of discontinuity the saltus
N(w) — sup s <, Ns(w) is exactly 1.

It is easy to see that (23.3) and (23.4) and the definition (23.5) give random
variables N, having these properties. On the other hand, if the stochastic
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process [IV,: t 0] is given and does have these properties, and if random
variables are defined by S„(w) = inflt: N,(w) > n] and X„(w) = S„(w) -
S„ _,(w), then (23.3) and (23.4) hold, and the definition (23.5) gives back the
original N,. Therefore, anything that can be said about the X„ can be stated
in terms of the N,, and conversely. The points 5 1 (w), S 2(w), ... of (0, co) are
exactly the discontinuities of N,((o) as a function of t; because of the
queueing example, it is natural to call them arrival times.

The program is to study the joint distributions of the N, under conditions
on the waiting times X„ and vice versa. The most common model specifies
the independence of the waiting times and the absence of aftereffect:

Condition 1°. The X„ are independent, and each is exponentially distributed
with parameter a.

In this case P[ X„ > 0] = 1 for each n and n - `S„ --' a -1 by the strong law
of large numbers (Theorem 22.1), and so (23.3) and (23.4) hold with probabil-
ity 1; to assume they hold everywhere (Condition 0°) is simply a convenient
normalization.

Under Condition 1°, S,, has the distribution function specified by (20.40),
so that P[N, > n] _ E „e -"t(at) i/i! by (23.6), and

(23.8) „P[N, = Tr] =e-",(«t), n = 0, 1, .. .

Thus N, has the Poisson distribution with mean at. More will be proved in a
moment.

Condition 2°. (i) For 0 < t, < • • • < t  the increments N,1, N, 2 — Nil , ... , Nrk
- N, k _ are independent.

(ii) The individual increments have the Poisson distribution:

t -s „(23.9 ) P[N, —Ns = n] =e - "( ` - S
)

(a (
 ^ 

}^ n! 	 n = 0,1,..., 0S s < t.

Since No = 0, (23.8) is a special case of (23.9). A collection [N,: t >_ 0] of
random variables satisfying Condition 2° is called a Poisson process, and a is
the rate of the process. As the increments are independent by (i), if r <s <t,
then the distributions of NS - Nr and N, - NS must convolve to that of
N, - Nr . But the requirement is consistent with (ii) because Poisson distribu-
tions with parameters u and y convolve to a Poisson distribution with
parameter u + v.

Theorem 23.1. Conditions 1° and 2° are equivalent in the presence of
Condition 0°.
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PROOF OF 1 ° —* 2°. Fix t, and consider the events that happen after time
t. By (23.5), SA,, < t < SN + 1 , and the waiting time from t to the first event
following t is SN + 1 — t; the waiting time between the first and second events
following t is XN + 2 ; and so on. Thus

(23.10) Xit ) — 5N1+1 — t, 	Alt) = XN + 2,	 X(3t ) = XN +s, ..

define the waiting times following t. By (23.6), N +, -- Nt > m, or Nt +s >— Nt +
m, if and only if SN+m < t + s, which is the same thing as X;t ) + • . • +Xmt ) <
s. Thus

(23.11) Nt+s—Nt=maxim: Xit ) + ••• +Xmt ) <s].

Hence fN —N =m]=[X^t)+ ••• +Xt)<s <X^t)+ ••• +Xt)t+s  , ,n(  m^+l]. A
comparison of (23.11) and (23.5) shows that for fixed t the random variables
N, +s — N for s >_ 0 are defined in terms of the sequence (23.10) in exactly the
same way as the Ns are defined in terms of the original sequence of waiting
times.

The idea now is to show that conditionally on the event [Nt = n] the
random variables (23.10) are independent and exponentially distributed.
Because of the independence of the Xk and the basic property (23.2) of the
exponential distribution, this seems intuitively clear. For a proof, apply
(20.30). Suppose y >_ 0; if Gn is the distribution function of Sn , then since
X„,_ 1 has the exponential distribution,

P [S„ t < Sn r l,sn+l —
t >y]= P[Snt, Xn +1 >t +y —

Sn]

= 	 P[X„ +1 > t +y —x]dGn(x)
x <t

= e - aY f P[ X,, +1 > t— x] dG„( x)
x <,

= e - aYP[Sn Ç t, Xn+ > t — Sn ].

By the assumed independence of the Xn ,

P i`S►t+I — t > y 1 , Xn+ 2 >y 2 ...Xn+ 1 >yj , S„ <t <Sn+11

= P[Sn +1 — t >y l , S„ < t <Sn+ 1 ]e- aY2 ... e — aYi

=P[Sn <t<Sn+1]e-aY1 ... —ay;

If H = (y 1 , oo) x • • • x (y,, oo), this is

(23.12) P[Nt = n, (X;t ) ,... , X^t ) ) ^ Hi= P[N, = n]P^(X... , Xj ) EH ]
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By Theorem 10.4, the equation extends from H of the special form above to
all H in R'.

Now the event [Ni. = m l , 1 < i -1.1] can be put in the form [(X 1 , ... , X) E

H], where j = m ü + 1 and H is the set of x in R' for which x 1 + • . +x m . <
sl <x 1 + • - • +x , 1

, 1 < i < u. But then [(X1r ),..., XJr )) EH] is by (23.11)
the same as the event [Nr+s — Art =m l , 1 < i < u ]. Thus (23.12) gives

P[Nr = n, IV, +s;— IV, =m 1 ,1<i<u] =P[ IV, =n]P[N,=m,1<i <u].

From this it follows by induction on k that if 0 = t o < t 1 < • . • < tk , then

(23.13) 	 P[Nr; —Nri _. =n 1 , 1 <i <k] _ ^P[Nr^-r; ^ =rt 1 ^.
►=1

Thus Condition 1° implies (23.13) and, as already seen, (23.8). But from
(23.13) and (23.8) follow the two parts of Condition 2°. 	 •

PROOF of 2° -* 1°. If 2° holds, then by (23.6), P[X 1 > d= PEN, = 0] =
e', so that X 1 is exponentially distributed. To find the joint distribution of
X I and X2 , suppose that 0 <s 1 <t 1 <s 2 <t 2 and perform the calculation

P[s I <S 1 <t l , s 2 <5 2 <t 2 ]

=P[Nsi =O, N—Ns^= 1, N 2 - 141,, =0, Nr2 — Ns5 >_ 1 1
= e -asi X a( t 1 —sl)e"a(ri--si) x e --a(s 2 "r

1 ) X (1 — e -a(r 2 - 5 2 ))

=a(t l —S 1 )(e
- as 2 _e —ar2) =

 J J s j <y, < r,
 a2e- " Y 2 dy 1 dy 2 .

s 2 <y 2 .1 2

Thus for a rectangle A contained in the open set G = [(y 1 , y 2 ): 0 <y 1 <y 2 ].

PRS 1 , S2 ) EA] = fa 2 e - "Y 2 dy l dy 2 .A 

By inclusion—exclusion, this holds for finite unions of such rectangles and
hence, by a passage to the limit, for countable ones. Therefore, it holds for
A = G n G' if G' is open. Since the open sets form a v-system generating the
Borel sets, (S 1 , S 2 ) has density a 2e - "Y2 on G (of course, the density is'O
outside G).

By a similar argument in R k (the notation only is more complicated),
(S 1 ,..., Sk ) has density a ke -4"k on [y: 0 <y 1 < - <y k ]. If a linear trans-
formation g(y) = x is defined by x, = y,. — yl_ 1, then (X 1 , ...; Xd =
g(S 1 ,..., Sk ) has by (20.20) the density IIk l ae -axr (the Jacobian is identi-
cally 1). This proves Condition 1°. •



r
r

^

L: Pn k  
	 0,

k =1

rn 	 ^!

P E Znk = 1 —* ie ^1 ^
'

(23.14)

then

(23.15)
k=1

max Pnk ^ 0'
1 5 k < r,

i= 0,1,2 , . . .
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The Poisson Approximation

Other characterizations of the Poisson process depend on a generalization of
the classical Poisson approximation to the binomial distribution.

Theorem 23.2. Suppose that for each n, Z,, 1 ,..., Zn,. are independent
random variables and Znk assumes the values 1 and 0 with probabilities pnk

and 1- pnk. If

If A = 0, the limit in (23.15) is interpreted as 1 for i = 0 and 0 for i >_ 1. In
the case where rn = n and pnk = A/n, (23.15) is the Poisson approximation to
the binomial. Note that if A > 0, then (23.14) implies rn -' oe.

ro il — p
0 1	 ri'p 

1  I J2 	T ..Jp:e — 12 J 1 •e'pp/ 1 ! 

PROOF. The argument depends on a construction like that in the proof of
Theorem 20.4. Let U 1 , U2 , ... be independent random variables, each uni-
formly distributed over [0,1). For each p, 0 <p S 1, split [0, 1) into the two
intervals I0(p) = [0,1 - p) and I 1(p) = [1 -p, 1),  as well as into the sequence
of intervals J1(p) = 0, 1, .... Define Vnk = 1
if Uk E D1-, and Vnk = O if Uk E Io( pnk ) . Then Vn 1, ... , Vnr are indepen-
dent, and Vnk assumes the values 1 and 0 with probabilities P[ Uk E I1(pnk)] _
pnk and P[Uk E lo( PNk)] = 1 — Pn k. Since Vnl ,..., VnrR have the same joint
distribution as Z 1

, ... , Znrn, (23.15) will follow if it is shown that Vn = Ek= 1Vnk
satisfies

(23.16) P[Vn = i] ->e^^^^.

Now define Wnk = i if Uk E J;(pnk ), i =0,1,....  Then P[Wnk = i] =
e -nnk pn

k/i!— Wn k has the Poisson distribution with mean pnk . Since the Wnk
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are independent, Wn = Ek 1Wnk has the Poisson distribution with mean
An = 	_ 1 pnk• Since 1 - p < e -P, J 1(p) C I 1(p) (see the diagram). Therefore,

P[Vnk 0 Wnk] = P[Vnk = l Wnk] = P[Uk E II(pnk) —J l( pnk)]

e ^' '
—pnk —
	

pnk — pn
2
k

and
r
r

n

P[ Vn ° Wn 1J < Lr pnk Ç A n max Pnk —0 O
k= 1	 1 < k5rn

by (23.14). And now (23.16) and (23.15) follow because

P[Ÿbn = i] = e -A^A;, /i! -- e --AAt/i!	 e

Other Characterizations of the Poisson Process

The condition (23.2) is an interesting characterization of the exponential
distribution because it is essentially qualitative. There are qualitative charac-
terizations of the Poisson process as well.

For each co, the function /Vi (co) has a discontinuity at t if and only if
Sn(w) = t for some n >_ 1; t is a fixed discontinuity if the probability of this is
positive. The condition that there be no fixed discontinuities is therefore

(23.17) P[Sn = t] = 0, t- 0, n  >_ 1;

that is, each of S I , S2, ... has a continuous distribution function. Of course
there is probability 1 (under Condition 0°) that N(w) has a discontinuity
somewhere (and indeed has infinitely many of them). But (23.17) ensures that
a t specified in advance has probability 0 of being a discontinuity, or time of
an arrival. The Poisson process satisfies this natural condition.

Theorem 23.3. If Condition 0° holds and [N,: t >- 0] has independent
increments and no fixed discontinuities, then each increment has a Poisson
distribution.

This is Prékopâ's theorem. The conclusion is not that [ Nr: t >_ 0] is a
Poisson process, because the mean of N,- NS need not be proportional to
t - s. If sp is an arbitrary nondecreasing, continuous function on [0, c) and
co(0) = 0, and if [N: t >_ 0] is a Poisson process, then N9(() satisfies the
conditions of the theorem. (

PROOF. The problem is to show for t' <t" that No - N,- has for some
A >- 0 a Poisson distribution with mean A, a unit mass at 0 being regarded as
a Poisson distribution with mean 0.

This is in fact the general process satisfying them; see Problem 23.8
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The procedure is to construct a sequence of partitions

(23.18) t' = tno < tnl < . . . < t
nr = t"

of [t', t"] with three properties. First, each decomposition refines the preced-
ing one: each tnk is a tn+ 1,;. Second,

rn

(23.19) r
^ P[ Ntnk — ^ rn.k

 > 1 T
k=1

for some finite A and

	

(23.20)	 max P[ Nink - N	 > 11 0.
15k 5rn 	 ^n,k — I -

Third,

	

(23.21)	 P max ( N,
nk -N,	)>_2 -*0.

15k5rn

Once the partitions have been constructed, the rest of the proof is easy:
Let Z„ k be 1 or 0 according as N, n k - Nrn k-, 

is positive or not. Since [N,:
t > 0] has independent increments, the Znk are independent for each n. By
Theorem 23.2, therefore, (23.19) and (23.20) imply that Zn = Ek..1Znk satis-
fies P[Z,, = i] --* e -AA`/i! Now Ni.,, - N- >_ Zn , and there is strict inequality if
and only if N, n k — N, k _ I >_ 2 for some k. Thus (23.21) implies P[ N,,, - N,- 0
Zn ] -^ 0, and therefore

n

P[ N,,, - Ni, = i] = e -AA'/i!
To construct the partitions, consider for each t the distance Dr = inf,n >1

It - Sml from t to the nearest arrivai time. Since S„,-* CO, the infimum is
achieved. Further, D, = 0 if and only if Sm = t foi some m, and since by
hypothesis there are no fixed discontinuities, the probability of this is 0:
P[ D, = 0] = 0. Choose S, so that 0 < S, < n -' and P[ D, < S r ] <n".  The
intervals (t - 3„t +5,) for t' < t < t" cover [t', t"]. Choose a finite subcover,
and in (23.18) take the tnk for 0 < k <r„ to be the endpoints (of intervals in
the subcover) that are contained in (t', t"). By the construction,

(23.22) mâx (tnk—tn,k-1) 	0,
15k5rn

and the probability that (tn k-1 , tnk] contains some Sm is less than This
gives a sequence of partitions satisfying (23.20). Inserting more points in a
partition cannot increase the maxima in (23.20) and (23.22), and so it can be
arranged that each partition refines the preceding one.

To prove (23.21) it is enough (Theorem 4.1) to show that the limit superior
of the sets involved has probability 0. It is in fact empty: If for infinitely many
n, N,nk(ce) - N,n k Jcw) >_ 2 holds for some k < r then by (23.22), N,(ca) as a
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function of t has in [t', t"] discontinuity points (arrival times) arbitrarily close
together, which requires S m(w) E [t', t"] for infinitely many m, in violation of
Condition 0°.

It remains to prove (23.19). If Znk and Z„ are defined as above and
Pnk = P[Znk = 1], then the sum in (23.19) is Ek pnk = E[Z„]. Since Z,,,+ 1 >_ Z,,,
Ek pnk is nondecreasing in n. Now

P[N„-N,,=O] =P[Znk =0,k .r,,]

r^	 r„

= II(1 -pnk)<exp - E pnk I.
k=1 	 k =1

If the left-hand side here is positive, this puts an upper bound on E k p,;k , and
(23.19) follows. But suppose P[N,.. - N, = 0] = 0. If s is the midpoint of t'
and t", then since the increments are independent, one of P[ Ns - N,, = 0]
and P[N,. -- Ns = 0] must vanish. It is therefore possible to find a nested
sequence of intervals [u m , v„] such that Um — u m -* 0 and the event A„,=
[N 

m
 - Nun, > 1] has probability 1. But then P( f) rAm) = 1, and if t is the

point common to the [u m , Um], there is an arrival at t with probability 1,
contrary to the assumption that there are no fixed discontinuities. •

Theorem 23.3 in some cases makes the Poisson model quite plausible. The
increments will be essentially independent if the arrivals to time s cannot
seriously deplete the population of potential arrivals, so that Ns has for t> s
negligible effect on N, - Ns. And the condition that there are no fixed
discontinuities is entirely natural. These conditions hold for arrivals of calls
at a telephone exchange if the rate of calls is small in comparison with the
population of subscribers and calls are not placed at fixed, predetermined
times. If the arrival rate is essentially constant, this leads to the following
condition.

Condition 3°. (i) For 0 < t, < • • • < t k the increments N,,, N,,- N, ,, ... ,
N, k - N, k are independent.

(ii) The distribution of N,- Ns depends only on the difference t - s.

Theorem 23.4. Conditions 1°, 2°, and 3° are equivalent in the presence of
Condition 0°.

PROOF. Obviously Condition 2° implies 3°. Suppose that Condition 3°
holds. If J, is the saltus at t (J, = N, - sup s <, Ns ), then [ N, - N_1 >_ 1] i
[J,> 1], and it follows by (ii) of Condition 3° that P[J, >_ 1] is the same for all
t. But if the value common to P[J, >_ 1] is positive, then by the independence
of the increments and the second Borel-Cantelli lemma there is probability 1
that J, >- 1 for infinitely many rational t in (0,1), for example, which contra-
dicts Condition 0°.
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By Theorem 23.3, then, the increments have Poisson distributions. If f(t)
is the mean of N,, then N,- NS for s <t must have mean f(t) - f(s) and
must by (ii) have mean f(t - s); thus AO= f(s) + f(t - s). Therefore, f
satisfies Cauchy's functional equation [A20] and, being nondecreasing, must
have the form f(t) = at for a >_ 0. Condition 0° makes a = 0 impossible. •

One standard way of deriving the Poisson process is by differential
equations.

Condition 4°. If C < t ^ < • • • < tk and if n 1 ,... , n k are nonnegative integers,
then

	(23.23)	 P[N,k +h - N = 11N, i = n i , j S k1 = ah +o(h)

and

	(23.24)
	

P[ Ntk +h - N, ? 2 ^ Nr^ = n 1 , j< k 1 = o( h)

as h 10. Moreover, [ N,: t >_ 01 has no fixed discontinuities.

The occurrences of o(h) in (23.23) and (23.24) denote functions, say 4 1(h),
and 0 2(h ), such that 12 - '0 ;(h ) -* 0 as h J, 0; the 4 ,

 may depend a priori on
k, t 1 , ... , t k , and n 1 ,... , n k as well as on h. It is assumed in (23.23) and
(23.24) that the conditioning events have positive probability, so that the
conditional probabilities are well defined.

Theorem 23.5. Conditions 1° through 4° are all equivalent in the presence
of Condition 0°.

PROOF OF 2° -* 4°. For a Poisson process with rate a, the left-hand sides
of (23.23) and (23.24) are e - "hah and 1 - e - "h - e - "hah , and these are
ah + o(h) and o(h), respectively, because Ca" = 1 - ah + o(h). And by the
argument in the preceding proof, the process has no fixed discontinuities. •

PROOF OF 4° -* 2°. Fix k, the ti, and the n 1 ; denote by A the event
[N,` = n i, j < k]; and for t >_ 0 put pn(t) = P[N, k+ , - N,, = nI A). It will be
shown that

n
pn( t ) = e -at  ( ^tl)  , n = 0,1,....(23.25)
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This will also be proved for the case in which pn(t) = PEN, = n]. Condition 2°
will then follow by induction.

If t > 0 and It -  s l< n - 1 , then

I P[Nt = n] -P[NS = n]I < P[Nt *NS] _<P[Nt +n - i - Nt - n -
i? 1].

As n -> C°, the right side here decreases to the probability of a discontinuity
at t, which is 0 by hypothesis. Thus PEN, = n] is continuous at t. The same
kind of argument works for conditional probabilities and for t = 0, and so
pn(t) is continuous for t >- O.

To simplify the notation, put D. = Ntk+t - Ntk. If D r +h = n, then D, = m
for some m S n. If t> 0, then by the rules for conditional probabilities,

pn(t +h) = pn(t)P[Dt +h - Dt= O1An[Dt= 'i]]

+pn-1(t)P[Dt+h - D, = 1IA n [D, = n - 1]]

n - 2

+ E pm(t)P[Dt +h -Dt =n -mIA n [Dt =m]].
m= o

For n < 1, the final sum is absent, and for n = 0, the middle term is absent as
well. This holds in the case pn(t) = PEN, = n] if D, = Nt and A = SI. (If t = 0,
some of the conditioning events here are empty; hence the assumption t> O.)
By (23.24), the final sum is o(h) for each fixed n. Applying (23.23) and (23.24)
now leads to

pn(t +h,) = pn(t)(1 - ah) +pn _ 1(t)ah +o(h),

and letting h .1. 0 gives

(23.26) pn(t) = - a pn(t) +apn
- 1(t)•

In the case n = 0, take p_ 1(t) to be identically O. In (23.26), t> 0 and pn(t) is
a right-hand derivative. But since pn(t) and the right side of the equation are
continuous on [0, co), (23.26) holds also for t = 0 and pn(t) can be taken as a
two-sided derivative for t> 0 [A221.

Now (23.26) gives [A23]

pn(t) =e -at 
pn( 0) +afotpn -

1(S)e aS dS .

Since pn(0) is 1 or 0 as n = 0 or n> 0, (23.25) follows by induction on n. ■
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Stochastic Processes

The Poisson process [N,: t > 01 is one example of a stochastic process—that
is, a collection of random variables (on some probability space (1k, ^ P))
indexed by a parameter regarded as representing time. In the Poisson case,
time is continuous. In some cases the time is discrete: Section 7 concerns the
sequence {Fn ) of a gambler's fortunes; there n represents time, but time that
increases in jumps.

Part of the structure of a stochastic process is specified by its finite-dimen-
sional distributions. For any finite sequence t 1 ,... , tk of time points, the
k-dimensional random vector (N,,,..., NO has a distribution µ,i ,k over R k .
These measures µ, i ,k are the finite-dimensional distributions of the pro-
cess. Condition 2° of this section in effect specifies them for the Poisson case:

k CY	
nii -i

( (ti —t i  1 ))

(23.27) PfN,i = n1 , 1 < k1 = 	 n ^
 n _ ^ 

i =1 	 ( ,	 1 1 ).

if0<n i s ••• <n k and 0<t 1 < ••• < tk (take n Q =t o =0).
The finite-dimensional distributions do not, however, contain all the

mathematically interesting information about the process in the case of
continuous time. Because of (23.3), (23.4), and the definition (23.5), for each
fixed w, N,(w) as a function of t has the regularity properties given iii the
second version of Condition 0°. These properties are used in an essential way
in the proofs.

Suppose that f(t) is t or 0 according as t is rational or irrational. Let 1V,
be defined as before, and let

(23.28) 	 M,(w) = N,(0)) + f(t +X 1(w)).

If R is the set of rationals, then Pjw: f(t +X 1(w)) 0 01= P[w: X,(w) E
R — t]=  0 for each t because R -- t is countable and X 1 has a density. Thus
P[M, =N,] = 1 for each t, and so the stochastic process [M,: t > 0] has the
same finite-dimensional distributions as [N,: t >_ 01. For w fixed, however,
Mr (w) as a function of t is everywhere discontinuous and is neither mono-
tone nor exclusively integer-valued.

The functions obtained by fixing w and letting t vary are called the path
functions or sample paths of the process. The example above shows that the
finite-dimensional distributions do not suffice to determine the character of
the path functions. In specifying a stochastic process as a model for some
phenomenon, it is natural to place conditions on the character of the sample
paths as well as on the finite-dimensional distributions. Condition 0° was
imposed throughout this section to ensure that the sample paths are nonde-
creasing, right-continuous, integer-valued step functions, a natural condition
if N, is to represent the number of events in [0, t]. Stochastic processes in
continuous time are studied further in Chapter 7.



ad,(x) = (1 +at )e-ax
if 0 <x <t,
if x >_ t .

a 2xe -ax
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PROBLEMS

Assume the Poisson processes here satisfy Condition 0° as well as Condition 1°.

23.1. Show that the minimum of independent exponential waiting times is again
exponential and that the parameters add. 	 .

23.2. 20.171 Show that the time S„ of the nth event in a Poisson stream has the
gamma density f(x; a, n) as defined by (20.47). This is sometimes called the
Erlang density.

23.3. Let A, = t - SN he the time back to the most recent event in the Poisson
stream (or to 0), and let B, = SN+I — t be the time forward to the next event.
Show that A, and B, are independent, that B, is distributed as X 1 (exponen-
tially with parameter a), and that A, is distributed as min{X ; , t}: PEA, < t ] is
0, 1-e - "x,or1 as x<0,0<<x< t, orx>_ t.

23.4. 1 Let L, = A, + B, = SN,+ i - SNf be the length of the interarrival interval
covering t.
(a) Show that L, has density

(b) Show that EEL,] converges to 2E[X I ] as t -> co. This seems paradoxical
because L, is one of the X,,. Give an intuitive resolution of the apparent
paradox.

23.5. Merging Poisson streams. Define a process {N,} by (23.5) for a sequence (X„) of
random variables satisfying (23.4). Let {X;,) be a second sequence of random
variables, on the sanie probability space, satisfying (23.4), and define (N,`) by
N,' = max[n: Xi + • • • +X,, -t]. Define {N,") by N," = N, +N,`. Show that, if
o-(X 1 , X7 ,...) and o-(X;, X2,...) are independent and {N,) and {N,`} are
Poisson processes with respective rates a and /3, then {AÇ") is a Poisson process
with rate a + f3.

23.6. 1 The nth and (n + 1)st events in the process {N,} occur at times S„ and
S„ .i_
(a) Find the distribution of the number Nsn+

i

 - Ns , of events in the other
process during this time interval.
(b) Generalize to Kn - Ni..,

23.7. Suppose that X„ X2 , ... are independent and exponentially distributed with
parameter a, so that (23.5) defines a Poisson process {N,}. Suppose that
Y1 , Y2,... are independent and identically distributed and that o-(X I , X2,... )
and U(Y,, Y2 ,...) are independent. Put Z,= Ek s N,Yk . This is the compound
Poisson process. If, for example, the event at time S„ in the original process

1•
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represents an insurance claim, and if Y„ represents the amount of the claim,
then Z, represents the total claims to time t.
(a) If Yk = 1 with probability 1, then {Z,} is an ordinary Poisson process.
(b) Show that {Z,) has independent increments and that ZS+ , — Z ., has the
same distribution as Z r .
(c) Show that, if Yk assumes the values 1 and 0 with probabilities p and 1 — p
(0 <p < 1), then (Z,) is a Poisson process with rate pa.

23.8. Suppose a process satisfies Condition 0° and has independent, Poisson-distrib-
uted increments and no fixed discontinuities. Show that it has the form {N 9 , 0),
where {N,) is a standard Poisson process and cp is a nondecreasing, continuous
function on [0,00) with cp(0) = 0.

23.9. If the waiting times Xn are independent and exponentially distributed with
parameter a, then S„/n —*a -I with probability 1, by the strong law of large
numbers. From lim, N, = co and SN, < t <SN,+1 deduce that lim, N,/t =
a with probability 1.

23.10. 1 (a) Suppose that X,, X2 ,... are positive, and assume directly that
Sn/n —, m with probability 1, as happens if the X„ are independent and
identically distributed with mean m. Show that lim, N,/t = 1 /m with probabil-
ity 1.
(b) Suppose now that Sn/n -* oo with probability 1, as happens if the Xn are
independent and identically distributed and have infinite mean. Show that
lim, N,/t =0 with probability 1.

The results in Problem 23.10 are theorems in renewal theory: A component of
some mechanism is replaced each time it fails or wears out The Xn are the lifetimes
of the successive components, and N, is the number of replacements, or renewals, to
time t.

23.11. 20.7 23.10 1 Consider a persistent, irreducible Markov chain, and for a fixed
state j let N„ be the number of passages through j up to time n. Show that
Nn /n —, 1/m with probability 1, where m = = ikf ̂ k» is the mean return time
(replace 1/m by 0 if this mean is infinite). See Lemma 3 in Section 8.

23.12. Suppose that X and Y have Poisson distributions with parameters a and /3.
Show that I P[X = n — P[Y= i]I < la — f31. Hint: Suppose that a <p, and repre-
sent Y as X+ D, where X and D are independent and have Poisson distribu-
tions with parameters a and f3 - a.

23.13. I. Use the methods in the proof of Theorem 23.2 to show that the error in
(23.15) is bounded uniformly in i by IA — A n I + An maxi, Pnk•

SECTION 24. THE ERGODIC THEOREM*

Even though chance necessarily involves the notion of change, the laws
governing the change may themselves remain constant as time passes: If time

`This section may be omitted. There is more on ergodic theory in Section 36.
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does not alter the roulette wheel, the gambler's fortunes fluctuate according
to constant probability laws. The ergodic theorem is a version of the strong
law of large numbers general enough to apply to any system governed by
probability laws that are invariant in time.

Measure-Preserving Transformations

Let (Si, ffl-, P) be a probability space. A mapping T: SZ --*f/ is a measure-pre-
serving transformation if it is measurable 9/ and P(T-1A) = P(A) for all
A in 3, from which it follows that P(T-nA) = P(A) for n > O. If, further, T
is a one-to-one mapping onto Si and the point mapping T-1 is measurable
Y/ Y (TA E Y for A E Y), then T is invertible; in this case T -1 automati-
cally preserves measure: P(A) = P(T - 'TA) = P(TA).

The first result is a simple consequence of the yr—A theorem (or Theorems
13.1(1) and 3.3).

Lemma 1. If .9 is a 7r-system generating 3, and if T - 'A E Y and
P(T-1A) = P(A) for A E .9, then T is a measure-preserving transformation.

Example 24.1. The Bernoulli shift. Let S be a finite set, and consider the
space S°° of sequences (2.15) of elements of S. Define the shift T by

(24.1) 	To) = (z2(w) , z 3 (w),... );

the first element of w = (z i(w), z 2(w),...) is lost, and T shifts the remaining
elements one place to the left: z k(Tw) = zk +1(w) for k >_ 1. If A is a cylinder
(2.17), then

(24.2)	 T-1A = [w: (z 2 (w),..., zn+i(w)) EH]

= [w: (zi(w),..., zn+i(w)) ES XH1

is another cylinder, and since the cylinders generate the basic if-field -g, T is
measurable e/ e.

For probabilities pu on S (nonnegative and summing to 1), define product
measure P on the field -go of cylinders by (2.21). Then P is consistently
defined and countably additive (Theorem 2.3) and hence extends to a
probability measure on e= o-(&0). Since the thin cylinders (2.16) form a
7r-system that generates e, P is completely determined by the probabilities it
assigns to them:

(24.3)	 P[w: (z i (w),..., z„(w)) = (u 1 ,..., un) ] = Pu, . . . puR.
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If A is the thin cylinder on the left here, then by (24.2),

(24.4) 	 P(T-IA) _ E PüPu 
.. . Pun = Pu. . .. pün = P(A),

u ES

and it follows by the lemma that T preserves P. This T is the Bernoulli shift.
If A = [w: z,(w) = u] (u E S), then IA(Tk- '(o) is 1 or 0 according as z k (w)

is u or not. Since by (24.3) the events [w: zk (w) = u] are independent, each
with probability pu , the random variables IA (Tk- 'w) are independent and
take the value 1 with probability p„= P(A). By the strong law of large
numbers, therefore,

(24.5)
n

lim —n  E IA (Tk — 'w) = P(A)
k=1

with probability 1. 	 ■

Example 24.1 gives a model for independent trials, and that T preserves P
means the probability laws governing the trials are invariant in time. In the
present section, it is this invariance of the probability laws that plays the
fundamental role; independence is a side issue.

The orbit under T of the point w is the sequence (w, Tw, T 2w, ... ), and
(24.5) can be expressed by saying that the orbit enters the set A with
asymptotic relative frequency P(A). For A = [w: (z,(w), z 2(w)) = (u 1 , u 2 )],
the IA(T

k- '(0) are not independent, but (24.5) holds anyway. In fact, for the
Bernoulli shift, (24.5) holds with probability 1 whatever A may be (A E ).
This is one of the consequences of the ergodic theorem (Theorem 24.1).
What is more, according to this theorem the limit in (24.5) exists with
probability 1 (although it may not be constant in (0) if T is an arbitrary
measure-preserving transformation on an arbitrary probability space, of which
there are many examples.

Example 24.2. The Markov shift. Let P = [ p;i ] be a stochastic matrix with
rows and columns indexed by the finite set S, and let 77- ; be probabilities on
S. Replace (2.21) by P(A) = EHTu i PUU2 • • • PU _iu . The argument in Section
2 showing that product measure is consistently defined and finitely additive
carries over to this new measure: since the rows of the transition matrix add
to 1,

L 	 Punun+i • • • Pune-lun, 	 1,
un+ 1 	 une

and so the argument involving (2.23) goes through. The new measure is again
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countably additive on -60o (Theorem 2.3) and so extends to e. This probabil-
ity measure P on e is uniquely determined by the condition

(24.6) 	 P[w: (z1(w) , -.. , zn( (0 )) _ (u1,.••, un)] = 7 •14ipuiu2 ... Pun_
 'uR.

Thus the coordinate functions z n(•) are a Markov chain with transition
probabilities pii and initial probabilities 7r ; .

Suppose that the 7r1 (until now unspecified) are stationary: E i 7r ; p,! = Try .

Then

Ef Tru putr i /Ju iu2 . . - pun
 – un — Trui pu„uz . - pun

–tun'
u ES

and It follows (see (24.4)) that T preserves P. Under the measure P specified
by (24.6), T is the Markov shift. 	 •

The shift T, qua point transformation on Sœ, is the same in Examples 24.1
and 24.2. A measure-preserving transformation, however, is the point trans-
formation together with the o-field with respect to which it is measurable and
the measure it preserves.

Example 24.3. Let P be Lebesgue measure A on the unit inte rval, and take
Tw =2w (mods):

2w	 if0<co <_z,Ted =
2w-1 if2<w<1.

If w has nonterminating dyadic expansion w = .d 1(w)d2(w) ... , then To, =
.d2(w)d 3(w)...: T shifts the digits one place to the left—compare (24.1). Since
T-1 (0, x]= (0, ix] u (2, z + zx], it follows by Lemma 1 that T preserves Lebesgue
measure. This is the dyadic transformation. •

Example 24.4. Let 11 be the unit circle in the complex plane, let Sr be the o•-field
generated by the arcs, and let P be normalized circular Lebesgue measure: map [0, 1)
to the unit circle by 4(x)=e 2 ir 1 x and define P by P(A) =A(4 -1A). For a fixed c in
SZ, let To) = cw. Since T is effectively the rotation of the circle through the angle
arg c, T preserves P. The rotation turns out to have radically different properties
according as c is a root of unity or not. •

Ergodicity

The ,`set A is invariant under T if T - 1A = A; it is a nontrivial invariant set
if 0 < P(A) < 1. And T is by definition ergodic if there are in 5r no
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nontrivial invariant sets. A measurable function f is invariant if f(Tw) = f(w)
for all w; A is invariant if and only if IA is.

The ergodic theorem:

Theorem 24.1. Suppose that T is a measure-preserving transformation on
(11,5', P) and that f is measurable and integrable. Then

(24.7) urn n n
E f(Tk

-

Iw) =f(w)
n	 k = I

with probability 1, where f is invariant and integrable and E[f] = E[ f ]. If T is
ergodic, then f= E[ f ] with probability 1.

This will be proved later in the section. In Section 34, f will be identified
as a conditional expected value (see Example 34.3).

If f = 1A , (24.7) becomes

(24.8) lim n n

E IA(Tk - 1(0) =fA (w),
n 	 k =I

and in the ergodic case,

(24.9) 	 IA(w) =P(A)

with probability 1. If A is invariant, then IA(w) is 1 on A and 0 on Ac, and
so the limit can certainly be nonconstant if T is not ergodic.

Example 24.5. Take SZ = {a, b, c, d, e) and ,F= 2 n. If T is the cyclic
permutation T = (a, b, c, d, e) and T preserves P, then P assigns equal
probabilities to the five points. Since 0 and SZ are the only invariant sets, T
is ergodic. It is easy to check (24.8) and (24.9) directly.

The transformation T = (a, b, c)(d, e), a product of two cycles, preserves P
if and only if a, b, c have equal probabilities and d, e have equal probabili-
ties. If the probabilities are all positive, then since {a, b, c) is invariant, T is
not ergodic. If, say, A = {a, d}, the limit in (24.8) is 3 on {a, b, c) and f on
{d, e). This illustrates the essential role of ergodicity. •

The coordinate functions z n(-) in Example 24.1 are independent, and
hence by Kolmogorov's zero-one law every set in the tail field ,T=
n „Cr(z,,, z„ + I , ...) has probability 0 or 1. (That the z,, take values in the
abstract set S does not affect the arguments.) If A E 0-(2 1 ,..., zk ), then
T - nA E Œ( z n+1 , • • •, Zn+k ) Co(Zn+I , zn+2 , ... ); since this is true for each k,
A E 9_ Œ(z I , Z 2 ,...) implies (Theorem 13.1(i)) T -nA E cr(z„ +1 ,  Z r, +D... 

).

For A invariant, it follows that A E .T: The Bernoulli shift is ergodic. Thus
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the ergodic theorem does imply that (24.5) holds with probability 1, whatever
A may be.

The ergodicity of the Bernoulli shift can be proved in a different way. If
A = [(z 1 ,..., zn) =u] and B=[(z,,..., z k ) = v] for an n-tuple u and a k-
tuple y, and if P is given by (24.3), then P(A n T -AB) = P(A)P(B) because
T-nB = [(zn+- 1, ... , zn+k) = v]. Fix n and A, and use the 7r-A theorem to
show that this holds for all B in: If B is invariant, then P(A n B) =
P(A)P(B) holds for the A above, and hence en--A again) holds for all A.
Taking . B = A shows that P(B) = (P(B)) 2 for invariant B, and P(B) is 0 or
1. This argument is very close to the proof of the zero-one law, but a
modification of it gives a criterion for ergodicity that applies to the Markov
shift and other transformations.

Lemma 2. Suppose that ,9c .9 c 5r, where 5r0 is a field, every set in .o
is a finite or countable disjoint union of .9-sets, and gço generates : Suppose
further that there exists a positive c with this property: For each A in (9 there is
an integer n A such that

(24.10) 	 P(A n T- nAB) >_ cP(A)P(B)

for all B in .9. Then 1— ' C = C implies that P(C) is 0 or 1.

It is convenient not to require that T preserve P; but if it does, then it is
an ergodic measure-preserving transformation. In the argument just given, .9
consists of the thin cylinders, nA = n if A = [(z,, ... , zn ) = u], c = 1, and

o = io is the class of cylinders.

PROOF. Since every 5%-set is a disjoint union of .9-sets, (24.10) holds for
B E .moo (and A E .9). Since for fixed A the class of B satisfying (24.10) is
monotone, it contains g' (Theorem 3.4). If B is invariant, it follows that
P(A nB) >_ cP(A)P(B) for A in .9. But then, by the same argument, the
inequality holds for all A in .9 Take A = B`: If B is invariant, then
P(B`) P(B) = 0 and hence P(B) is 0 or 1. •

To treat the Markov shift, take ,Fo to consist of the cylinders and 9' to
consist of the thin ones. If A = [(z,, ... , zn ) _ (u 1 , ... , u n )], n A = n +m—  1,
and B = [(z,, ... , z k ) _ (v,, ... , v k )], then

(24.11)
P(A) P(B) = TTui pu^uz . • . p

 n
-

lunTri ,
 pl i

1 2 • • • p1k
- ii k'

P(A n Jr- RAB) = 7T i pu,uz . • • pun-iunpu71
)

ipL ii2 • . . 191 k
- ilk'

The lemma will apply if there exist an integer m and a positive c such that
cTri for all i and j. By Theorem 8.9 (or Lemma 2, p. 125), there is in

the irreducible, aperiodic case an m such that all pfm ) are positive; take c
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less than the minimum. By Lemma 2, the corresponding Markov shift is
ergodic.

Example 24.6. Maps preserve ergodicity. Suppose that fir: SZ —> SZ is measurable
.9/Y- and commutes with T in the sense that SOT) = If T preserves P, it also
preserves Per - ': Per -1 (T - 1A) = P(T - '0 - 'A) = P/i -1 (A). And if T is ergodic under
P, it is also ergodic under PV': if A is invariant, so is IV 1A, and hence Per -1 (A) is
0 or 1. These simple observations are useful in studying the ergodicity of stochastic
processes (Theorem 36.4). •

Ergodicity of Rotations

The dyadic transformation, Example 24.3, is essentially the same as the Bernoulli
shift. In any case, it is easy to use the zero-one law or Lemma 2 to show that it is
ergodic. From this and the ergodic theorem, the normal number theorem follows once
again.

Consider the rotations of Example 24.4_ If the complex number c defining the
rotation (To) = cw) is —1, then the set consisting of the first and third quadrants is a
nontrivial invariant set, and hence T is not ergodic. A similar construction shows that
T is nonergodic whenever c is a root of unity.

In the opposite case, c ergodic. In the first place, it is an old number-theoretic
fact due to Kronecker that if c is not a root of unity then the orbit (w, cc,, c 2w, ...) of
every w is dense. Since the orbits are rotations of one another, it suffices to prove that
the orbit (1, c, c 2, ...) of I is dense. But if a is not a root of unity, then the elements of
this orbit are all distinct and hence by compactness have a limit point co o . For
arbitrary E, there are distinct points c" and c" +k within E/2 of w 0 and hence within
E of each other (distance measured along the arc). But then, since the distance from
Cn +jk to Cn +(j+1)k is the same as that from c" to c" +k, it is clear that for some m the
points Cn, 

C n +k , ..., Cn +mk form a chain which extends all the way around the circle
and in which the distance from one point to the next is less than E. Thus every point
on the circle is within E of some point of the orbit (1, c, c 2 , ... ), which is indeed dense.

To use this result to prove ergodicity, suppose that A is invariant and P(A) > O.
To show that P(A) must then be 1, observe first that for arbitrary E there is an arc I,
of length at most c, satisfying P(A n 1) > (1 — E)P(A). Indeed, A can be covered by
a sequence I 1 , 12 , ... of arcs for which P(A)/(1 — E) > En P(In ); the arcs can be taken
disjoint and of length less than c. Since En P(A n I") = P(A) > (1 — E)E„P(I"), there
is an n for which P(A n In ) > (1 — E)P(In ): take I= In . Let I have length a; a <c.

Since A is invariant and T is invertible and preserves P, it follows that P(A n
T"I) > (1 — c)P(T"I ). Suppose the arc I runs from a to b. Let n 1 be arbitrary and,
using the fact that (T"a) is dense, choose n 2 so that T "t I and T" 2 1 are disjoint and
the distance from T"(b to Tn2 a is less than Ea. Then choose n 3 so that T"1I,T"21,T" -4I
are disjoint and the distance from T" 2 b to T"la is less than ca. Continue until T"kb
is within a of T""a and a further step is impossible. Since the T"! are disjoint,
ka < 1; and by the construction, the T "iI cover the circle to within a set of measure
kEa +a, which is at most 2E. And now by disjointness,

k 	 k
P(A). E P(A n rid 	(1 — E) E P(T"iI) >_ (1 —E)(1 —2E).

1=1 	 1=1

Since E was arbitrary, P(A) must be 1: T is ergodic if c is not a root of unity.t

t For a simple Fourier-series proof, see Problem 26,30,
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Proof of the Ergodic Theorem

The argument depends on a preliminary result the statement and proof of
which are most clearly expressed in terms of functional operators. For a real
function f on fi, let Uf be the real function with value (Uf)(w) = f(Tw) at
B►. If f is integrable, then by change of variable (Theorem 16.13),

(24.12) E[Uf ] = f f(Tw)P(dw) = f f(w)PT- `(dw) = E[ f ].

And the operator U is nonnegative in the sense that it carries nonnegative
functions to nonnegative functions; hence f<_ g (pointwise) implies Uf Ug.

Make these pointwise definitions: S0 f = 0, S,, f = f + Uf + • • • + U
n- I f,

M,,f= max o < k <n Skf, and Mmf= sup„ >0 Snf =sup,, >0 Mn f. The maximal
ergodic theorem:

Theorem 24.2. If f is integrable, then

(24.13) f 	 fdP _>. 0.
Mxf>0

PROOF. Since B,, _ [M,, f > 0]T[Mj> 0], it is enough, by the dominated
convergence theorem, to show that fB f dP >_ O. On B,,, M,, f =
max i <k < n Skf. Since the operator U is nonnegative, Skf = f + us k _ I f 5
f + UM,, f for 1 < k ..n, and therefore M,, f < f + UM,, f on B,,. This and the
fact that the function UMn f is nonnegative imply

f M,,fdP= f M,,fdP _< f (f+ UM„ f)dP
S^ 	B„	 B„

< f f dP + f UM,,fdP= f f dP + f M,,fdP,
B„ 	 o 	 B„	 o

where the last equality follows from (24.12). Hence fB f dP >_ O. 	 •

Replace f by f1A . If A is invariant, then Sn(f1A ) = (S,, f )IA , and Mo(f1A )
_ (Mtf )1A , and therefore (24.13) gives

(24.14) f 	 fdP>_ 0 	 if T- IA =A.
A n [Mxf>0]

Now replace f here by f — A, A a constant. Clearly [Mœ(f — A) > 0] is the set



FA = ce: sup 
n E f(Tk -1w ) > A ;

111 k=1

n

(24.15)

318
	

RANDOM VARIABLES AND EXPECTED VALUES

where for some n > 1, Sn(f — A) > O. or n - 'Sn f > A. Let

it follows by (24.14) that IA , FA (f
—
 A) dP >_ 0, or

(24.16) AP(A n FA) < f fdP 	 if V IA =A.
A n FA

The A here can have either sign.

PROOF OF THEOREM 24.1. To prove that the averages a n(w) =
n -' Ek , f(T k - '(.0) converge, consider the set

Aa 0 = f co: lim infa n (ce) <a < 13 < 1im sup a n(w)
n 	 n

for a <0. Since A a 0 —A. 0
  

n F1 and A a f3 is invariant, (24.16) gives
f3P(A a j ) < f ig F fdP. The same result with —f, -0, —a in place of f, a, f3 is
IA a fdP < aP(A a , a). Since a < 0, the two inequalities together lead to
P(A a p) = O. Take the union over rational a and 0: The averages a n(w)
converge, that is,

(24.17) 	 liman(w) =f(w)
n

with probability 1, where f may take the values ±co at certain values of w.
Because of (24.12), E[an] = E[ f ]; if it is shown that the a n(w) are

uniformly integrable, then it will follow (Theorem 16.14) that f is integrable
and E[f]=E[f].

By (24.16), AP(FA ) . E[I f I]. Combine this with the same inequality for  —f:
1f Gk = [w: SUP n la n(w)I > A], then AP(GA ) < 2 E[I f I] (trivial if A < 0). There-
fore, for positive a and A,

f 	
n 	

f ( 	 (Ia n l dP < n ^.f I f(Tk-1w)IP(dw)[la„I>a] 	k=1 GA

1 n
— ^ I:
^ k = 1 	 I( f(T ' cû)I> a

= f 	 I f(w)1P(dw) +aP(G a )
If(co)I>a

<— f 	 I f(w) IP( dw) + 2^ EDI fI].
I f((o)I>a

I f(T k - '(o)IP(dco) +aP(Ga )

Take a = A'/2 ; since f is integrable, the final expression here goes to 0 as
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A --*00. The a n(w) are therefore uniformly integrable, and  E[I] = E[f]. The
uniform integrability also implies E[Ia n — f t] -* 0.

Set f(w) = 0 outside the set where the a n(w) have a finite limit. Then
(24.17) still holds with probability 1, and f(Tw) =1(w). Since [w: f(w) <x] is
invariant, in the ergodic case its measure is either 0 or 1; if x o is the infimumA
of the x for which it is 1, then f (w) =x 0 with probability 1, and fromA 	 A
x o = E[ f ] = E[f] it follows that f (w) =E[f]  with probability 1. 	 ■

The Continued-Fraction Transformation

Let D. consist of the irrationals in the unit interval, and for x in SZ let
Tx = {i/x} and a 1(x) — [1/x] be the fractional and integral parts of 1/x. This
defines a mapping

r}
(24.18) 	 Tx= {x

1 }=x1 —[!] =x1 —a
1(x)

of D. into itself, a mapping associated with the continued-fraction expansion
of x [A36]. Concentrating on irrational x avoids some trivial details con-
nected with the rational case, where the expansion is finite; it is an inessential
restriction because the interest here centers on results of the almost-every-
where kind.

For x E SZ and n> 1 let a„(x) = a l(Tn - l x) be the nth partial quotient,
and define integer-valued functions pn(x) and qn(x) by the recursions

(24.19)
p_ 1(x)= 1,	 po(x)= 0, 	pn(x)=an(r)pn-1(x)+pn-z(x), n > 1,
4_ 1(x) = 0,	 q0(x)= 1, 	 qn(x) = an(x)gn-1(x) +gn-z(x), n> 1.

Simple induction arguments show that

(24.20) 	 pn-1(x)gn(x) — pn(x)gn-1(x) _ ( - 1) n , 	 n> 0,

and [A37: (27)]

(24.21) x= 1 a 1 (x)+ ••• +Ja n _ 1(x)+Ja n (x)+ Tax, 	 n > 1.

It also follows inductively [A36: (26)] that

(24.22) 	 1 a l (x) + • • • +Ja n _ 1 (x) +1.1a n (x) + t

Pa( x) + tpn_1(x) 
qn(x) + tga_1(x) '

n >— 1, 0 <t<1.



(24.23) 1 a,(x ) + • • • +ilan(x) =
 gn(x)

pn ( x )

n > 1,
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Taking t = 0 here gives the formula for the nth convergent:

where, as follows from (24.20), pn(x) and qn(x) are relatively prime. By
(24.21) and (24.22),

(24.24) 	x = pn(x) (T nx)pn--1(x)
qn(x) + (Tr' x)gn-I(x) e

n > 0,

which, together with (24.20), impliest

(24.25) x— pn(x)
gri t x } 	x	 I 	x + 	 x
	,
gn( x )(( Tn ) - qn( ) gn-i( )^

Thus the convergents for even n fall to the left of x, and those for odd n
fall to the right. And since (24.19) obviously implies that qn(x) goes to infinity
with n, the convergents pn(x)/qn(x) do converge to x: Each irrational x in
(0,1) has the infinite simple continued-fraction representation

(24.26) 	 x= lia i (x) +11a 2 (x) + --• .

The representation is unique [A36: (35)11, and Tx — .J a 2 (x) + 1 a 3(x) + • • :
T shifts the partial quotients in the same way the dyadic transformation
(Example 24.3) shifts the digits of the dyadic expansion. Since the continued-
fraction transformation turns out to be ergodic, it can be used to study the
continued-fraction algorithm.

Suppose now that a l , a 2 ,... are positive integers and define pn and qn by
the recursions (24.19) without the argument x. Then (24.20) again holds
(without the x), and so pn /qn — p /q = (- 1)n+ I /qn lgn, n >— 1. Since1 -1 — -
qn increases to infinity, the right side here is the nth term of a convergent
alternating series. And since p0/q 0 = 0, the nth partial sum is pn /qn , which
therefore converges to some limit: Every simple infinite continued fraction
converges, and [A36: (36)1 the limit is an irrational in (0,1).

Let Qa i . .a„ be the set of x in f such that a k(x) — a k for 1 —< k < n; call it
a fundamental set of rank n. These sets are analogous to the dyadic intervals
and the thin cylinders. For an explicit description of Aa i an— necessary for
the proof of ergodicity—consider the function

(24.27 ) 	 ^a ^••• a(t} = 1 a l + - • • +1 a 	 + 1 a n + t.

ITheorem 1.4 follows from this.



SECTION 24. THE ERGODEC THEOREM
	 321

If x E 0 Q. an,	 ..Qnthen x =:fi 	 (Tnx) by (24.21); on the other hand, becauseQ^ 

of the uniqueness of the partial quotients [A36: (33)], if t is an irrational in
the unit interval, then (24.27) lies in0 Q Q . Thus ^ Q Q is the image underi 	 n	 l	 n

(24.28) `f' Q' Qn( t ) = pn
 + tr n " 1 .qn + tgn -- 1

And a✓iQ. Q (t) is increasing or decreasing in t according as n is even or odd,
as is clear from the form of (24.27) (or differentiate in (24.28) and use
(24.20)). It follows that

Qn T

pn pn + pn — 1 n
qn ' q.,+ gn - 1 ]

Pn + Pn - I

 Pn  n1 	
SZ

^ qn+gn- I ^ qn

if n is even,

if n is odd.   

By (24.20), this set has Lebesgue measure

(24.29)
1 

/O Q . 	_Qn ^ gn(gn + gn- 1) •

The fundamental sets of rank n form a partition of fi, and their unions
form a field ; let Y-0  U n-1 54,-, • Then o is the field generated by the
class .9` of all the fundamental sets, and since each set in Yo is in some . ,
each is a finite or countable disjoint union of .9Lsets. Since qn >_ 2qn _ 2 by
(24.19), induction gives qn >_ 2 (n -1)/ 2 for n> 0. And now (24.29) implies that
.Fo generates the 6-field .- of linear Borel sets that are subsets of fi (use
Theorem 10.1(iî)). Thus (9, -, Y - are related as in the hypothesis of Lemma
2. Clearly T is measurable 9/92

Although T does not preserve A, it does preserve Gauss's measure,
defined by

(24.30) 1 	dx 
P(A) 	 jj 

log2 JA 1 +x ' A E ^:

In fact, since

(24.27) of Si itself.
Just as (24.22) follows by induction, so does

T- I((0, t) n SI) = U ((k + , n fl) ,
k- 1
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it is enough to verify

1 dx	 CO

	1 /k	 dx	 CO
1 /k 	 dx 

	= E	 	— ^fa 1+x	 k=1 1/(k+1) 1 +x	
k = 1 -` /(k+r) 1 +x •

Gauss's measure is useful because it is preserved by T and has the same sets
of measure 0 as Lebesgue measure does.

Proof that T is ergodic. Fix a 1 , ... , a n , and write On for Oa , 	 and An for
^ a a • Suppose that n is even, so that On is increasing. If x E A n , then
(since x = IPn(Tnx)) s < Tnx <t if and only if 1iin(s) <x < tpn(t); and this last
condition implies x E O n . Combined with (24.28) and (24.20), this shows that

A (0 n n [ x : s < T "x <t]) = qin (t) — tpn (s) = 	
(qn +sq

t — s 

n -1)
.

^ gn + tgn — : .

If B is an interval with endpoints s and t, then by (24.29),

A(O n n T - nB) =A(On)A(B) (	
gn(gn +

(

qn_1} on
 +sgn-1)(qn + kin-1)

A similar argument establishes this for n odd. Since the ratio on the right lies
between 2 and 2,

(24.31) 	 iA(An)A(B) ÇA(A n n T-nB) < 2A(A n )A(B).

Therefore, (24.10) holds for 9, -, Y- as defined above, A = O n , nA = n,
c = 2, and A in the role of P. Thus T- 'C = C implies that A(C) is 0 or 1, and
since Gauss's measure (24.30) comes from a density, P(C) is 0 or 1 as well.
Therefore, T is an ergodic measure preserving transformation on (fi, . , P).

It follows by the ergodic theorem that if f is integrable, then

(24.32)
n
	(1 	 111m n- E f(Tk- ]x } — 

log2 J 1 1 (-^ ?
 Ix

n 	k=1	 ^

holds almost everywhere. Since the density in (24.30) is bounded away from 0
and 00, the "integrable" and "almost everywhere" here can refer to P or to A
indifferently.

Taking f to be the indicator of the x-set where a,(x) = k shows that the
asymptotic relative frequency of k among the partial quotients is almost
everywhere equal to

1 j 1 /k 	 cbc
—
 1 

log (k + 
 1) z

log2J l/ck+1) 1 +x	 log2 	 k(k +2)'

In particular, the partial quotients are unbounded almost everywhere.
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For understanding the accuracy of the continued-fraction algorithm, the
magnitude of an(x) is less important than that of qn(x). The key relationship
is

(24.33) 	 1
gn(x)(gn(x) +qn+I(x))

x Pn( X) 

gn( x)

1 

gn( X)gn +I( X) '  

which follows from (24.25) and (24.19). Suppcse it is shown that

(24.34)
z

lim n log qn (x) - 12 log 2n

almost everywhere; (24.33) will then imply that

(24.35) lim n log
n

pn (X) 

qn (x ) 

TT 2  

6log2'      

The discrepancy between x and its nth convergent is almost everywhere of
the order e'77- 

 /(6 log 2)

To prove (24.34), note first that since p +1(x) = gi(Tx) by (24.19), the
product 1Zk=1 pn_k+1(Tk—IX)/qn—k+1(Tk—'x) telescopes to 1 /qn(x):

(24.36) log 	 1 = E log Pn-k
+1( T k - I X

) .
gn(X) 	 k=1	 gn-k+1( Tk -1X)

As observed earlier, qn(x) > 2 ( n- ' )/ 2 for n >- 1. Therefore, by (24.33),

x 	1

pn(X)/qn(X)
S q 1

( x <— 2̂ ẑ , n >_ 1 •
n+1( )

Since ilog(1 +s)I < 41st if IsI < 1/a,  

log x - log Pn(x ) 
qn( x)

< 4
2n/

z   

Therefore, by (24.36),  

E log Tk-Ix - log Pn -k +1(
Tk—IX

) 
(Tk-lx

)k= 1 	 gn-k+ 1

4E 2112 < °o.

n 	 1
E log Tk- 'x - log 

qn( x)
k=1

i=1
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By the ergodic theorem, then,#

lim
n
 n log ((

lx 

— log
1

 2 J I 1 g+ x 
Ix

 log 2 J I log(1 +x) ^
qnl )	 0 	 0

1 co 	(1) k
	_Tr z

log2 
k
E=0 (k + 1) 2 121og2'

Hence (24.34).

Diophantine Approximation

The fundamental theorem of the measure theory of Diophantine approximation, due
to Khinchine, is Theorem 1.5 together with Theorem 1.6. As in Section 1, let cp(q) be
a positive function of integers and let 11 4, be the set of x in (0,1) such that

(24.37)
_ 	1 

i x p i <q	 gzcp(q)

has infinitely many irreducible solutions p/q. If E1/gcp(q) converges, then A y, has
Lebesgue measure 0, as was proved in Section 1 (Theorem 1.6). It remains to prove
that if cp is nondecreasing and F1/gcp(q) diverges, then A y, has Lebesgue measure 1
(Theorem 1.5). It is enough to consider irrational x.

Lemma 3. For positive a n , the probability (P or A) of [x: a n(x) > a n i.o.] is 0 or 1
as El /a n converges or diverges.

PROOF. Let En =[x: a n(x) > an ]. Since P(En ) = P[x: a l(x) > an ] is of the order
1/a n , the first Borel—Cantelli lemma settles the convergent case (not needed in the
proof of Theorem 1.5).

By (24.31),

A(An n Eni-I) > 2A ( °n)A[x: al(x) > an+I]  ZA(A n ) a^1 t 1

Taking a union over certain of the an shows that for m <n,

A(Emn ••• nE`nEn+1 ) >_A(E^n ••• nEn)
2(an+

1

1 +1)'

By induction on n,

n 	1
A(Emn .., nEn)< n 1

k =rn 	 2(ak+1 + 1) )
n
	1< exp — E 	

k = m 2(ak+1 + 1) ,

as in the proof of the second Borel —Cantelli lemma. 	 •

# Integrate by parts over (a, 1) and then let a W. For the series, see Problem 26.28. The specific
value of the limit in (24.34) is not needed for the application that follows.
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PROOF OF THEOREM 1.5. Fix an integer N such that log N exceeds the limit in
(24.34). Then, except on a set of measure 0,

(24.38) 	 g"(x) <N"

holds for all but finitely many n. Since -ids nondecreasing,

1 	 N

N"s ^NR+, q9(q) < cP(N") ,

and E1/9(N") diverges if E1/g9(q) does. By the lemma, outside a set of measure 0,
a„ +1(x) >_.p(N") holds for infinitely many n. If this inequality and (24.38) both hold,
then by (24.33) and the assumption that cp is nondecreasing,

p„(x )

x
 qn(x)

1 	 1 
< gn(x)gn +1(x) 	 an +1(x)gn(x)

1 	 1 

C cp(N")qn (x) 	 cP(g"(x))gn(x) • 

But p„(x)/q"(x) is irreducible by (24.20). 	 •

PROBLEMS

24.1. Fix (,f2, 9) and a T measurable Y/ Y. The probability measures on (5I, Y)
preserved by T form a convex set C. Show that T is ergodic under P if and only
if P is an extreme point of C—cannot be represented as a proper convex
combination of distinct elements of C.

24.2. Show that T is ergodic if and only if n - I EKj 1 P(A n T-k B) -> P(A)P(B) for
all A and B (or all A and B in a Ir-system generating Y).

24.3. T The transformation T is mixing if

(24.39) 	 P(A n T- "13) -> P(A)P(B)

for all A and B.
(a) Show that mixing implies ergodicity.
(b) Show that T is mixing if (24.39) holds for all A and B in a 7r-system
generating Y.
(c) Show that the Bernoulli shift is mixing.
(d) Show that a cyclic permutation is ergodic but not mixing.
(e) Show that if c is not a root of unity, then the rotation (Example 24.4) is
ergodic but not mixing.
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24.4. T Write T= [T'A: A E .9r], and call the cr-field . = l nT^"^ triv-
ial if every set in it has probability either 0 or 1. (If T is invertible, is .5 and
hence is trivial only in uninteresting cases.)
(a) Show that if 	 is trivial, then T is ergodic. (A cyclic permutation is
ergodic even though X, is not trivial.)
(b) Show that if the hypotheses of Lemma 2 are satisfied, then .f is trivial.
(c) It can be shown by martingale theory that if .f is trivial, then T is mixing;
see Problem 35.20. Reconsider Problem 24.3(c)

24.5. 8.35 24.4 T (a) Show that the shift corresponding to an irreducible, aperiodic
Markov chain is mixing. Do this first by Problem 8 35, then by Problem 24.4(b),
(c).
(b) Show that if the chain is irreducible but has period greater than 1, then the
shift is ergodic but not mixing.
(c) Suppose the state space splits into two closed, disjoint, nonempty subsets,
and that the initial distribution (stationary) gives positive weight to each. Show
that the corresponding shift is not ergodic.

24.6. Show that if T is ergodic and if f is nonncgative and E[f] = «o, then
n ^ ' E. i f(T k - iw) — with probability 1.

24.7. 24.3 1 Suppose that P0(A) = fA 3 dP for all A (S >_ 0) and that T is mixing
with respect to P (T need not preserve P0 ). Use (21.9) to prove

Po( T—nA ) = f
T- "A S

dP-^P(A).
^

24.8. 24.61' (a) Show that

1 ^--
n E a k (x) -> 00

k = l

and

n 	 ^ 

Va i (x) •• a n(x) ^^ (1 + kz1+2 k

)(IOk)/UO 2)

almost everywhere.
(b) Show that     

1
log qn(x) x _ pn(x) 

qn(x)
Tr Z  

121og2 •     

24.9. 24.4 24.7 T (a) Show that the continued-fraction transformation is mixing.
(b) Show that

A[x: T"x <t] ->
log(1 +t) 

log2 	 ' 0<_ t < 1.



CHAPTER 5

Convergence of Distributions

SECTION 25. WEAK CONVERGENCE

Many of the best-known theorems in probability have to do with the asymp-
totic behavior of distributions. This chapter covers both general methods for
deriving such theorems and specific applications. The present section con-
cerns the general limit theory for distributions on the real line, and the
methods of proof use in an essential way the order structure of the line. For
the theory in R k , see Section 29.

Definitions

Distribution functions Fn were defined in Section 14 to converge weakly to
the distribution function F if

(25.1) limFn(x) =F(x)
n

for every continuity point x of F; this is expressed by writing Fn F.
Examples 14.1, 14.2, and 14.3 illustrate this concept in connection with the
asymptotic distribution of maxima. Example 14.4 shows the point of allowing
(25.1) to fail if F is discontinuous at x; see also Example 25.4. Theorem 25.8
and Example 25.9 show why this exemption is essential to a useful theory.

If µ„ and p, are the probability measures on (R', »2') corresponding to Fn

and F, then Fn F if and only if

(25.2)	 limp,n(A) _ u,(A)
n

for every A of the form A = (— co, x] for which µ(x) = 0—see (20.5). In this
case the distributions themselves are said to converge weakly, which is
expressed by writing µ n th. Thus Fn F and A n µ are only different
expressions of the same fact. From weak convergence it follows that (25.2)
holds for many sets A besides half-infinite intervals; see Theorem 25.8.

327



328	 CONVERGENCE OF DISTRIBUTIONS

Example 25.1. Let F„ be the distribution function corresponding to a unit
mass at n: F,,= IEn co). Then lim n Fn(x) = 0 for every x, so that (25.1) is
satisfied if F(x) = 0. But F,, = F does not hold, because F is not a distribu-
tion function. Weak convergence is defined in this section only for functions
F,, and F that rise from 0 at -cc to 1 at +œ—that is, it is defined only fçr
probability measures A n and p..# •

Example 25.2. Poisson approximation to the binomial. Let p,„ be the
binomial distribution (20.6) for p = A,in and let p be the Poisson distribution
(20.7). For nonnegative integers k,

 A
k

k 
) (À)'(1
	 À i

Ak (1 _ A/n) „	1	 k -1 	 1 l

k!	 X 	 k n (1 n l(1 -A/n) t=0

if n >_ k. As n -* co the second factor on the right goes to 1 for fixed k, and so
An(k) --* kak); this is a special case of Theorem 23.2. By the series form of
Scheffé's theorem (the corollary to Theorem 16.12), (25.2) holds for every set
A of nonnegative integers. Since the nonnegative integers support p. and the
µ n , (25.2) even holds for every linear Borel set A. Certainly p., converges
weakly to p, in this case. •

Example 25.3. Let fi n  correspond to a mass of n -1 at each point k /n,
k = 0,1, ... , n -- 1; let µ be Lebesgue measure confined to the unit interval.
The corresponding distribution functions satisfy F„(x) _ (.nx j + 1)/n -* F(x)
for 0 <_ x < 1, and so Fn F. In this case (25.1) holds for every x, but (25.2)
does not, as in the preceding example, hold for every Borel set A: if A is the
set of rationals, then A n(A) = 1 does not converge to µ(A) = 0. Despite this,
p.,, does converge weakly to p.. •

Example 25.4. If p, n is a unit mass at x„ and p. is a unit mass at x, then
A n 	p. if and only if x,, --* x. If xn > x for infinitely many n, then (25.1) fails
at the discontinuity point of F. 	 •

Uniform Distribution Modulo 1*

For a sequence x 1 , x 2 ,... of real numbers, consider the corresponding sequence of
their fractional parts (xn ) =x, — lxn ]. For each n, define a probability measure µ n by

(25.3) 	1L(A)= --#[k: 1 < k <n, {x k ) EA];

1 There is (see Section 28) a related notion of vague convergence in which may be defective in
the sense that µ(R') < 1. Weak convergence is in this context sometimes called complete
convergence.
`This topic, which requires ergodic theory, may be omitted.
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µn has mass n -1 at the points (x 1 ),... , (x"), and if several of these points coincide,
the masses add. The problem is to find the weak limit of (µ n } in number-theoretically
interesting cases.

If the µn defined by (25.3) converge weakly to Lebesgue measure restricted to the
unit interval, the sequence x is said to be uniformly distributed modulo 1. In
this case every subinterval has asymptotically its proportional share of the points  (x n );
by Theorem 25.8 below, the same is then true of every subset whose boundary has
Lebesgue measure 0.

Theorem 25.1. For B irrational, 0, 2B, 30,... is uniformly distributed modulo 1.

PROOF. Since (n0) = (n(0)), 0 can be assumed to lie in [0,1]. As in Example 24.4,
map [0, 1) to the unit circle in the complex plane by 0(x) = e 2" . If B is irrational,
then c = 0(0) is not a root of unity, and so (p. 000) Tw = ca, defines an ergodic
transformation with respect to circular' Lebesgue measure P. Let 5 be the class of
open arcs with endpoints in some fixed countable, dense set. By the ergodic theorem,
the orbit {T"w} of almost every w enters every I in .5 with asymptotic relative
frequency P(I). Fix such an (0. If I l ci c I2 , where J is a closed arc and I i , I2 are in
5, then the upper and lower limits of n - I Ek w) are between P(1 1 ) and
P(12 ), and therefore the limit exists and equals P(J). Since the orbits and the arcs are
rotations of one another, every orbit enters every closed arc J with frequency P(J).
This is true in particular of the orbit (cn) of 1.

Now car ry all this back to [0,1) by 0 -1 : For every x in [0,1), {n0} = 4 - '(c9 lies in
[0, x] with asymptotic relative frequency x. 	 •

For a simple proof by Fourier series, see Example 26.3.

Convergence in Distribution

Let X" and X be random variables with respective distribution functions F,,
and F. If F" = F, then X" is said to converge in distribution or in law to X,
written X" 

= X. This dual use of the double arrow will cause no confusion.
Because of the defining conditions (25.1) and (25.2), X , 

= X if and only if

(25.4) limP[X" G x ] =P[X <x]

for every x such that P[ X =x1=  O.

Example 25.5. Let X1, X2 , ... be independent random variables, each
with the exponential distribution: P[X,, > x] = e -"x, x> O. Put M,, =
max(X„ ... , X") and b,,= a - t log n. The relation (14.9), established in Exam-
ple 14.1, can be restated as P[M,, — b" <x]-i e_e -aX. If X is any random
variable with distribution function a - e -ux, this can be written M,,— b" = X.

•

One is usually interested in proving weak convergence of the distributions
of some given sequence of random variables, such as the Mn — b,, in this
example, and the result is often most clearly expressed in terms of the
random variables themselves rather than in terms of their distributions or



330
	

CONVERGENCE OF DISTRIBUTIONS

distribution functions. Although the Mn - bra here arise naturally from the
problem at hand, the random variable X is simply constructed to make it
possible to express the asymptotic relation compactly by Mn - bra X. Recall
that by Theorem 14.1 there does exist a random variable for any prescribed
distribution.

Example 25.6. For each n, let Sin be the space of n-tuples of 0's and l's,
let consist of all subsets of fi n , and let Pn assign probability (A/n)k (1 -
A/n)n -k to each w consisting of k l's and n - k 0's. Let Xn(w) be the
number of l's in w; then X,,, a random variable on (Sin, ) Pr)) represents
the number of successes in n Bernoulli trials having probability A/n of
success at each.

Let X be a random variable, on some (c', .-, P), having the Poisson
distribution with parameter A. According to Example 25.2, X n X. 	 •

As this example shows, the random variables X,, may be defined on
entirely different probability spaces. To allow for this possibility, the P on the
left in (25.4) really should be written Pn . Suppressing the n causes no
confusion if it is understood that P refers to whatever probability space it is
that Xn is defined on; the underlying probability space enters into the
definition only via the distribution µn it induces on the line. Any instance of
F,, F or of p.n p. can be rewritten in terms of convergence in distribution:
There exist random variables X n and X (on some probability spaces) with
distribution functions F,, and F, and F,, F and X,, X express the same
fact.

Convergence in Probability

Suppose that X, X 1 , X2, ... are random variables all defined on the
same probability space (1i, ,t, P). If Xn - ) X with probability 1, then
P[I Xn — XI >_ E i.o.] = 0 for E > 0, and hence

(25.5) limP[IX,-XI>E] =0
n

by Theorem 4.1. Thus there is convergence in probability Xn -i p X; see
Theorems 5.2 and 20.5.

Suppose that (25.5) holds for each positive E. Now P[X .x - d- P[I X, -
XI>E]. P[X, < x]<P[X. x+E]+P[IXn -xI>E];letting n tend to0oand
then letting E tend to 0 shows that P[ X < x ] < lim inf n P[ Xn < x ] <
lim sup ra P[X, .)c]. P[X <x]. Thus P[Xn < x] - 0 P[X < x] if P[X =x] = 0,
and so X,, = X:

Theorem 25.2. Suppose that X,, and X are random variables on the same
probability space. If Xn -) X with probability 1, then Xn -) p X; If X,, --gyp X,
then Xn = X.
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Of the two implications in this theorem, neither converse holds. Because
of Example 5.4, convergence in probability does not imply convergence with
probability 1. Neither does convergence in distribution imply convergence
in probability: if X and Y are independent and assume the values 0 and 1
with probability z each, and if X„= Y, then X„ = X, but Xn --) p X cannot
hold because P[IX - YI] = 1 = z. What is more, (25.5) is impossible if X and
the X,, are defined on different probability spaces, as may happen in the case
of convergence in distribution.

Although (25.5) in general makes no sense unless X and the X„ are
defined on the same probability space, suppose that X is replaced by a
constant real number a —that is, suppose that X(w) = a. Then (25.5) be-
comes

(25.6) 	limP[IX,, -al > E] = 0,
n

and this condition makes sense even if the space of X„ does vary with n.
Now a can be regarded as a random variable (on any probability space at all),
and it is easy to show that (25.6) implies that X,, = a: Put E = Ix - al; if
x>a, then P[X„ < x]P[IXn - aI <E]--- 1, and if x <a, then P[X„ <x] <
P[I Xn - al > e;-- O. If a is regarded as a random variable, its distribution
function is 0 for x < a and 1 for x - a. Thus (25.6) implies that the distribu-
tion function of X„ converges weakly to that of a.

Suppose, on the other hand, that X,, a. Then P[I Xn - al > El < P[X„ <
a - E]+1--P[X„<a+E] - 0, so that (25.6) holds:

Theorem 25.3. The condition (25.6) holds for all positive E if and only if
X,, = a, that is, if and only if

0 if  <a,limP[Xn x] _
n 	 1 ifx>a.

If (25.6) holds for all positive E, X,, may be said to converge to a in
probability. As this does not require that the X„ be defined on the same
space, it is not really a special case of convergence in probability as defined
by (25.5). Convergence in probability in this new sense will be denoted
Xn = a, in accordance with the theorem just proved.

Example 14.4 restates the weak law of large numbers in terms of this
concept. Indeed, if X 1 , X2, ... are independent, identically distributed ran-
dom variables with finite mean m, and if S„ = X 1 + • • • +X,,, the weak law of
large numbers is the assertion n - `S„ = m. Example 6.3 provides another
illustration: If S,, is the number of cycles in a random permutation on n
letters, then Sn/log n 1.
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Example 25.7. Suppose that X„ = X and 5,, —00. Given € and rt, choose
x so that MIX' >_ x ] < ri and P[ X = +x]= 0, and then choose n o so that
n- n o implies that !S„! < E/x and !P[X,, < y] — P[X s y]! < rj for y = ±x.
Then P[!S„X„! >_ E] < 371 for n >_ n o . Thus X,, = X and 5„ -i 0 imply that
S„X„ = 0, a restatement of Lemma 2 of Section 14 (p. 193). •

The asymptotic properties of a random variable should remain unaffected
if it is altered by the addition of a random variable that goes to 0 in
probability. Let (X,,, Y„) be a two-dimensional random vector.

Theorem 25.4. If X„ X and X„ — Y„ 0, then Y„ X.

PROOF. Suppose that y' <x <y” and P[X = y'] = P[X = y"1= O. If y' <
x— E< x< x+ e< y", then

(25.7) P[X„ < y'] — P[IX„ — Y„:>_ E] <P[Y„ < x]

P[X„ y"] +P[IX„ —Y„!E].

Since X„ X, letting n -i co gives

(25.8) 	 P[X < y'] < lim infP[Y„ <x]
n

<limsupP[Y„ Sx] <P[Xÿ'].
n

Since P[X = y] = 0 for all but countably many y, if P[X = xi = 0, then y'
and y” can further be chosen so that P[ X < y' ] and P[ X < y”] are arbitrarily
near P[X <x]; hence P[Y„ x] -* P[X <x]. •

Theorem 25.4 has a useful extension. Suppose that (X4" ) , Y„) is a two-dimensional
random vector.

Theorem 25.5. If, for each u, X4” ) X(u ) as n —> co, if X ( " ) =-.  X as u —> co , and if

(25.9) 	 limlim sup P[ I X„" )— Y„I>_E l =0
u 	 n

for positive E, then Y, = X.

PROOF. Replace X„ by Xn" ) in (25.7). If P[ X = y' ] = 0 ° P[ X (" ) = y' ] and MX
= y"] - 0 = PIX (") = y"], letting n —) co and then u —> co gives (25.8) once again. Since
P[ X =y]  = 0 = P[X" ) = y ] for all but countably many y, the proof can be completed
as before. 	 ■
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Fundamental Theorems

Some of the fundamental properties of weak convergence were established in
Section 14. It was shown there that a sequence cannot have two distinct weak
limits: If Fn F and Fn G, then F = G. The proof is simple: The hypothe-
sis implies that F and G agree at their common points of continuity, hence at
all but countably many points, and hence by right continuity at all points.
Another simple fact is this: If lim n Fn(d) = F(d) for d in a set D dense in R',
then Fn = F. Indeed, if F is continuous at x, there are in D points d' and d"
such that d' <x <d" and F(d") – F(d) < E, and it follows that the limits
superior and inferior of Fn(x) are within E of F(x).

For any probability measure on (R', ) there is on some probability
space a random variable having that measure as its distribution. Therefore,
for probability measures satisfying µn = µ, there exist random variables Yn

and Y having these measures as distributions and satisfying Yn = Y. Accord-
ing to the following theorem, the Kr and Y can be constructed on the same
probability space, and even in such a way that Yn(w) -i Y(w) for every w—a
condition much stronger than Yn — Y. This result, Skorohod's theorem,
makes possible very simple and transparent proofs of many important facts.

Theorem 25.6. Suppose that µ n and p. are probability measures on
(R', ) and µn µ. There exist random variables Yn and Y on a common
probability space (SZ, , P) such that Y,, has distribution p n , Y has distribution
p., and Yn(w) -0 Y(w) for each w.

PROOF. For the probability space (fi, .9, P), take SI = (0,1), let ffl- con-
sist of the Borel subsets of (0, 1), and for P(A) take the Lebesgue measure
of A

The construction is related to that in the proofs of Theorems 14.1 and
20.4. Consider the distribution functions F,, and F corresponding to µn and
µ. For 0 < w < 1, put Yn(w) = infix: w < Fn(x)1 and Y(w) = inf[x: co _< F(x)1.
Since w <F,(x) if and only if Yn(w) <x (see the argument following (14.5)),
P[w: Yn(w) <x} = P[w: w < F,(x)1= Fn(x). Thus Yn has distribution function
Fn ; similarly, Y has distribution function F.

It remains to show that Y,(w) Y(w). The idea is that Yn and Y are
essentially inverse functions to Fn and F; if the direct functions converge, so
must the inverses.

Suppose that 0 < w < 1. Given E, choose x so that Y(w) – E <x < Y(w)
and µ(x} = O. Then F(x) < co; F,(x) - 0 F(x) now implies that, for n large
enough, F,,(x) < w and hence Y(w) – E <x < Yn(w). Thus lim infn YK(w) >
Y(w). If w < w' and E is positive, choose a y for which Y(w') < y < Y(w') + E
and µ(y} = 0. Now w < w' < F(Y(w')) < F(y), and so, for n large enough,
w < F,(y) and hence Yn(w) < y < Y(w') + E. Thus lim sup,Y,(w) < Y(w') if
w < (01 .  Therefore, Y,(w) - 0 Y(w) if Y is continuous at w.
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Since Y is nondecreasing on (0,1), it has at most countably many disconti-
nuities. At discontinuity points w of Y, redefine Yn(w) = Y(w) = 0. With this
change, Y,,(w) - > Y(w) for every w. Since Y and the Yn have been altered
only on a set of Lebesgue measure 0, their distributions are still µ n and µ. ■

Note that this proof uses the order structure of the real line in an essential
way. The proof of the corresponding result in R k is more complicated.

The following mapping theorem is of very frequent use.

Theorem 25.7. Suppose that h: R' -i R' is measurable and that the set Dh
of its discontinuities is measurable.! If A n µ and p.(D h ) = 0, then µ n h - ` —
µh - `

Recall (see (13.7)) that µh -' has value p(h - 'A) at A.

PROOF. Consider the random variables Yn and Y of Theorem 25.6. Since
Y,,(w) - > Y(w), if Y(w) 44 Dh then h(YY(w)) -› h(Y(w)). Since P[w: Y(w) E
Dh ] = µ(Dh ) = 0, it follows that h(Y,,(w)) --> h(Y(w)) with probability 1. Hence
h(Yn ) h(Y) by Theorem 25.2. Since P[h(Y) EA] = P[YE h - 'A] = µ(h - IA),
h(Y) has distiibution p.h -'; similarly, h(Y,,) has distribution µ,,h -1 . Thus
h(Yn ) h(Y) is the same thing as µ nh -' — Ali'. ■

Because of the definition of convergence in distribution, this result has an
equivalent statement in terms of random variables:

Corollary 1. If Xn = X and P[X E Dh] = 0, then h(X,,) = h(X).

Take X ° a:

Corollary 2. If Xn = a and h is continuous at a, then h(Xn ) = h(a).

Example 25.8. From Xn = X it follows directly by the theorem that
aXn + b aX + b. Suppose also that a n -› a and bp, --> b. Then (a„- a)Xn 0
by Example 25.7, and so (a nXn + b„)- (aX„ + b) O. And now a n Xn + bn

aX + b follows by Theorem 25.4: If Xn X, a n -i a, and bn -) b, then
a n Xn + bn = aX + b. This fact was stated and proved differently in Section 14
—see Lemma 1 on p. 193. 	 ■

By definition, µ n µ means that the corresponding distribution functions
converge weakly. The following theorem characterizes weak convergence

That Dh lies in .9' is generally obvious in applications. In point of fact, it always holds (even if
h is not measurable): Let A(E,8) be the set of x for which there exist y and z such that
[x--yi<8, [x—zi< 8, and ih(y)— h(z)1>_ E. Then A(€,8) is open and D i, = U, (l SA(E,8),
where E and 8 range over the positive rationals.
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without reference to distribution functions. The boundary 3A of A consists
of the points that are limits of sequences in A and are also limits of
sequences in Ac; alternatively, 3A is the closure of A minus its interior. A
set A is a g-continuity set if it is a Borel set and 1.1,(3A) = O.

Theorem 25.8. The following three conditions are equivalent.

(i) A n g;
(ii) f f dg„ —> ffdµ for every bounded, continuous real function f;
(iii) A n(A) -i g(A) for every g-continuity set A.

PROOF. Suppose that g„ g, and consider the random variables Y„
and Y of Theorem 25.6. Suppose that f is a bounded function such
that g(D) = 0, where Df is the set of points of discontinuity of F. From
P[ YE D» = a(Df ) = 0 it follows that f(Y„) -i f(Y) with probability 1, and so
by change of variable (see (21.1)) and the bounded convergence theorem,
ffdµ„ = E[ f(Y,,)] -i E[ f(Y)1 = ffdµ. Thus µ„ = µ and µ(D1 ) = 0 together
imply that ffdµ„ — ffdµ if f is bounded. In particular, (i) implies (ii).
Further, if f= IA , then Df = 3A, and from µ(3A) = 0 and g„ it follows
g„(A) = ffdp,,, -i ffdµ = A(A). Thus (i) also implies (iii).

Since a( — co, xi = (x), obviously (iii) implies (i). It therefore remains only
to deduce g„ = g from (ii). Consider the corresponding distribution func-
t ions. Suppose that x <y, and let f(t) be 1 for t < x, 0 for t> y, and
interpolate linearly on [x, yl: f(t)= (y — t)/(y — x) for x S t <y. Since
F„ (x) < ffdµ„ and ffdµ < F(y), it follows from (ii) that lim sup„ F„ (x) <
F(y); letting y 4, x shows that lira sup„ Fn(x) < F(x). Similarly, F(u) <
l im inf„ F„ (x) for u <x and hence F(x — ) < lim inf„ F(x). This implies
convergence at continuity points. •

The function f in this last part of the proof is uniformly continuous.
Hence g„ = it follows if ffdµ„ -i ffdµ for every bounded and uniformly
continuous f.

Example 25.9. The distributions in Example 25.3 satisfy A n g, but
g„(A) does not converge to g(A) if A is the set of rationals. Hence this A
cannot be a g-continuity set; in fact, of course, 3A = R'. ■

The concept of weak convergence would be nearly useless if (25.2) were
not allowed to fail when g(3A) > O. Since F(x) — F(x — ) = A(x)=
g(3(— co, xi), it is therefore natural in the original definition to allow (25.1) to
fail when x is not a continuity point of F.
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Helly's Theorem

One of the most frequently used results in analysis is the Helly selection
theorem:

Theorem 25.9. For every sequence (Fn} of distribution functions there exists
a subsequence (Fnk) and a nondecreasing, right-continuous function F such that
lim k Fnk(x) = F(x) at continuity points x of F.

PROOF. An application of the diagonal method [A141 gives a sequence
(n k) of integers along which the limit G(r) = lim k Fnk(r) exists for every
rational r. Define F(x) = inf[G(r): x < r]. Clearly F is nondecreasing.

To each x and c there is an r for which x < r and G(r) < F(x) + e. If
x < y < r, then F(y) < G(r) < F(x) + e. Hence F is continuous from the
right.

If F is continuous at x, choose y < x so that F(x) – e < F(y); now choose
rational r and s so that y < r <x < s and G(s) < F(x) e. From F(x) – e <
G(r) < G(s) < F(x) + E and FF(r) < F,(x) < Fr(s) it follows that as k goes to
infinity Fnk(x) has limits superior and inferior within e of F(x). •

The F in this theorem necessarily satisfies 0 < F(x) _< 1. But F need not
be a distribution function: if F,, has a unit jump at n, for example, F(x) = 0
is the only possibility. It is important to have a condition which ensures that
for some subsequence the limit F is a distribution function.

A sequence of probability measures µn on (R', R') is said to be tight if
for each a there exists a finite interval (a, b] such that p.,,(a, b] > 1 – E for all
n. In terms of the corresponding distribution functions n, the condition is
that for each E there exist x and y such that Fn(x) < e and F,,(y)> 1 – e for
all n. If µn is a unit mass at n, (µ n} is not tight in this sense—the mass of µ n

"escapes to infinity." Tightness is a condition preventing this escape of mass.

Theorem 25.10. Tightness is a necessary and sufficient condition that for
every subsequence (A n) there exist a further subsequence (µ nk())} and a probabil-
ity measure p. such that µ	 = p. as j -i 00.nk(il

Only the sufficiency of the condition in this theorem is used in what
follows.

PROOF. Sufficiency. Apply Helly's theorem to the subsequence (Fnk) of
corresponding distribution functions. There exists a further subsequence
(Fnk) such that lim 1 Fnk(j (x) = F(x) at continuity points of F, where F is
nondecreasing and right-continuous. There exists by Theorem 12.4 a measure
µ on (R', R') such that µ(a, b] = F(b) – F(a). Given E, choose a and b so
that µ,,(a, b] > 1 – e for all n, which is possible by tightness. By decreasing a
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and increasing b, one can ensure that they are continuity points of F. But
then µ(a, b] >_ 1 — E. Therefore, it is a probability measure, and of course

µ nk(i) 	 µ'
Necessity. If (µn} is not tight, there exists a positive E such that for each

finite interval (a, b], µ n(a, b] s 1 — E for some n. Choose n k so that
µ nk( — k, k] < 1 — E. Suppose that some subsequence (µ nk( }} of (µnk } were to
converge weakly to some probability measure µ. Choose (a, b] so that
µ (a) = µ(b} = 0 and µ(a, b] > 1 — E. For large enough j, (a, b] c
( — k(j), k( Pt and so 1 — E >_ µnk(i( — k(j) , k(j)] > µ nk(; (a, b] -^ µ(a, b]. Thus
µ(a, b] < 1 — E, a contradiction. 	 •

Corollary. If (µ n} is a tight sequence of probability measures, and if each
subsequence that converges weakly at all converges weakly to the probability
measure µ, then µn = µ.

PROOF. By the theorem, each subsequence (fi nd contains a further
subsequence (µ,,

k
)converging weakly (j -i 00) to some limit, and that limit

must by hypothesis be µ. Thus every subsequence (A nd contains a further
subsequence ( fl( } converging weakly to µ.

Suppose that µ n µ is false. Then there exists some x such that µ{x} = 0
but µn( — co, xi does not converge to µ( — co, xi. But then there exists a
positive E such that Iµ nk( —co, xi — p.(—co, x]i >_ E for an infinite sequence (n k }
of integers, and no subsequence of (µ n ,, } can converge weakly to µ. This
contradiction shows that µn µ. •

If pn is a unit mass at x,,, then (µn) is tight if and only if (x n} is bounded.
The theorem above and its corollary reduce in this case to standard facts
about real, line; see Example 25.4 and A10: tightness of sequences of
probability measures is analogous to boundedness of sequences of real
numbers.

Example 25.10. Let A n be the normal distribution with mean m n and
variance one. If m n and one are bounded, then the second moment of µn is
bounded, and it follows by Markov's inequality (21.12) that (µ n } is tight. The
conclusion of Theorem 25.10 can also be checked directly: If (n k( J)} is chosen
so that Lim; m = m and lim . 0- 2 = o 2 , then µn µ, where µ is normal1 	 nkU)	 1 NU) 	 k())
with mean m and variance o- 2 (a unit mass at m if o- 2 = 0).

If m,, > b, then µ n(b, co) > Z; if m n < a, then µn( — co, a] > Z. Hence (µ n )
cannot be tight if mn is unbounded. If m n is bounded, say by K, then
µn( — oo, a] >— v( — 00, (a — K)o-„ I ], where v is the standard normal distribu-
tion. If orris unbounded, then v( — co, (a — K)o-,T `] -i 2 along some subse-
quence, and (p.,,) cannot be tight. Thus a sequence of normal distributions is
tight if and only if the means and variances are bounded. •
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Integration to the Limit

Theorem 25.11. If Xn = X, then E[I X I] < lim inf ra E[I X,,I].

PROOF. Apply Skorohod's Theorem 25.6 to the distributions of Xn and
X: There exist on a common probability space random variables Yn and Y
such that Y = lim n Yn with probability 1, Yn has the distribution of X,,, and Y
has the distribution of X. By Fatou's lemma, E[IYI] _< liminf o E[IY,,I]. Since
IX! and IYI have the same distribution, they have the same expected value
(see (21.6)), and similarly for IXnI and I YnI. •

The random variables Xn are said to be uniformly integrable if

(25.10) lim sup 1	IXnI dP = 0;
a^OD n [IX n I>_a]

see (16.21). This implies (see (16.22)) that

(25.11)	 supE[IXnI] < co .
n

Theorem 25.12. If Xn X and the Xn are uniformly integrable, then X is
integrable and

(25.12)	 E[Xn) -iE[X].

PROOF. Construct random variables Yn and Y as in the preceding proof.
Since Yn -- Y with probability 1 and the Yn are uniformly integrable in the
sense of (16.21), E[Xn ] = E[17n ] -- E[Y] = E[X] by Theorem 16.14. •

If sup, E[I XnI' +E ] < oc for some positive E, then the Xn are uniformly
integrable because

(25.13)
I41x,71al

IXnI dP< âE E[IXn I l .
 !

11

Since X,, X implies that Xn = X r by Theorem 25.7, there is the following
consequence of the theorem.

Corollary. Let r be a positive integer. If X,, = X and sup,, E[I X„I r}E ] < co,
where E > 0, then E[I X I r] < co and E[XÇ] -i E[X r].

The X„ are also uniformly integrable if there is an integrable random
variable Z such that P[I X,,I > t] < P[IZI > t] for t > 0, because then (21.10)
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gives

J	 IX"idP<^f 	 ilidP.
[,X",>_a] 	 [IZI>a]

From this the dominated convergence theorem follows again.

PROBLEMS

25.1. (a) Show by example that distribution functions having densities can converge
weakly even if the densities do not converge: Hint: Consider f„(x) = 1 +
cos 27rnx on [0, 1].
(b) Let f„ be 2” times the indicator of the set of x in the unit interval for
which d„ + i(x) = 	 = dz"(x) = 0, where dk (x) is the k th dyadic digit. Show
that f„(x) —' 0 except on a set of Lebesgue measure 0; on this exceptional set,
redefine f„(x) = 0 for all n, so that f"(x) —)O  everywhere. Show that the
distributions corresponding to these densities converge weakly to Lebesgue
measure confined to the unit inte rval.
(c) Show that distributions with densities can converge weakly to a limit that
has no density (even to a unit mass).
(d) Show that discrete distributions can converge weakly to a distribution that
has a density.
(e) Construct an example, like that of Example 25.3, in which µ„(A) — µ(A)
fails but in which all the measures come from continuous densities on [0,1].

25.2. 14.8 T Give a simple proof of the Gilvenko-Cantelli theorem (Theorem 20.6)
under the extra hypothesis that F is continuous.

25.3. Initial digits. (a) Show that the first significant digit of a positive number x is d
(in the scale of 10) if and only if {log e x} lies between log 10 d and log 10(d + 1),
d = 1, ... , 9, where the braces denote fractional part.
(b) For positive numbers x  i , x2 , ... , let Nr(d) be the number among the first
n that have initial digit d. Show that

(25.14) 	 lim n N"(d) = log ic,(d + 1) — log io d,	 d = 1,...,9,

if the sequence log o x„, n = 1, 2, ... , is uniformly distributed modulo 1. This is
true, for example, of x„ —.6” if log o 	is irrational.

(c) Let D” be the first significant digit of a positive random variable X,,. Show
that

(25.15) 	 fimP[D„= d] =1og io (d +1) -1og io d,	 d = 1,., ,,9,
"

if {log 10 X") 	U, where U is uniformly distributed over the unit interval.

n

25.4. Show that for each probability measure p on the line there exist probability
measures µ„ with finite support such that p,„ A. Show further that p, „(x) can
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be taken rational and that each point in the support can be taken rational,
Thus there exists a countable set of probability measures such that every p is
the weak limit of some sequence from the set. The space of distribution
functions is thus separable in the Lévy metric (see Problem 14.5).

25.5. Show that (25,5) implies that P([X <x] A[ Xn < x]) —> 0 if P[X =x1= O.

25.6. For arbitrary random variables Xn there exist positive constants a n such that
a n Xn = O.

25.7. Generalize Example 25.8 by showing for three-dimensional random vectors
(A n , Bn , Xn) and constants a and b, a >- 0, that, if A n a, B„ b, and
Xn X, then A n Xn + Bn aX + b Hint: First show that if Y,, Y and
D,, =4 then Dry, O.

25.8. Suppose that Xn =X and that h n and h are Borel functions. Let E be the set
of x for which h n xn -4 hx fails for some sequence x, ->x. Suppose that
E E ‘92' and P[X E E] = O. Show that h„Xn hX.

25.9. Suppose that the distributions of random variables Xn and X have densities
fn and f. Show that if fn(x) ->f(x) for x outside a set of Lebesgue measure 0,
then Xn -=a X.

25.10. T Suppose that Xn assumes as values yn + kSn , k = 0, + 1, ... , where Sn > O.
Suppose that Sn -* 0 and that, if k n is an integer varying with n in such a way
that yn + k,3,-)x, then P[X,, = yn + k n S n ]8,;' -> f(x), where f is the density
of a random variable X. Show that Xn = X.

25.11. T Let Sn have the binomial distribution with parameters n and p. Assume as
known that

(25.16) PESn =k n ](np(1 - p) } l/2 —> e
27T 

-xz/2

if (k n - np)(np(1 - p))"' /2 —> x. Deduce the DeMoivre--Laplace theorem: (Sr,
- np)(np(1 - p))"'/ 2 = N, where N has the standard normal distribution.
This is a special case of the central limit theorem; see Section 27.

25.12. Prove weak convergence in Example 25.3 by using Theorem 25.8 and the
theory of the Riemann integral.

25.13. (a) Show that probability measures satisfy µn p if µ n (a, b] -> µ(a, b] when-
ever µ{a} = A(b) = O.
(b) Show that, if Jf dp. -> Jfdµ for all continuous f with bounded support,
then A n µ.
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25.14. T Let  	 be Lebesgue measure confined to the unit interval; let  A n corre-
spond to a mass of xn,1 — xn,i_ 1 at some point in (x n r _ 1 , xa , ; ], where 0 =xn0
<xi1 < • ' • <xnn = 1. Show by considering the distribution functions that
µn p, if maxi<n(xn,i — xr.,1. 1) O. Deduce that a bounded Borel function
continuous almost everywhere on the unit interval is Riernann integrable. See
Problem 17.1.

25.15. 2.18 5.19 T A function f of positive integers has distribution function F if F
is the weak limit of the distribution function Pn[m: f(m) <x] of f under the
measure having probability 1/n at each of 1 , ... , n (see 2.34)). In this case
D[m: f(m) , x]= F(x) (see (2.35)) for continuity points x of F. Show that
cp(m)/m (see (2.37)) has a distribution:
(a) Show by the mapping theorem that it suffices to prove that f(m) =
log(cp(m)/m) = Ep 6p(m) log(1 — 1/p) has a distribution.
(b) Let ff(m) = Ep „S (m)log(1 -- 1/p), and show by (5.45) that fa has
distribution function Fa(x) = P[Ep 5 u X p log(1 — 1/p) <xl„ where the X  are
independent random variables (one for each prime p) such that P[Xp = 1] =
1/p and P[Xp =O]=1-1/p.
(c) Show that Ep Xp log(1 — l/p) converges with probability 1. Hint: Use
Theorem 22.6.
(d) Show that lim a _,.sup ra En[I f —fa n = 0 (see (5.46) for the notation).
(e) Conclude by Markov's inequality and Theorem 25.5 that f has the
distribution of the sum in (c).

25.16. For A E ^2 1 and T > 0, put A T(A) = A([— T,T] n A)/2T, where A is Lebesgue
measure. The relative measure of A is

(25.17) 	 p(A) = lim AAA),
T —+ co

provided that this limit exists. This is a continuous analogue of density (see
(2.35)) for sets of integers. A Borel function f has a distribution under A T; if
this converges weakly to F, then

(25.18) 	 p[x: f(x) <u] =F(u)

for continuity points u of F, and F is called the distribution function of f .

Show that all periodic functions have distributions.

25.17. Suppose that sup ra f f dµ n < co for a nonnegative f such that f(x) —* cm as
x —> ±00. Show that {µ n) is tight.

25.18. 23.4 T Show that the random variables A, and L 1 in Problems 23.3 and 23.4
converge in distribution. Show that the moments converge.

25.19. In the applications of Theorem 9.2, only a weaker result is actually needed:
For each K there exists a positive a = a(K) such that if E[X]= 0, E[X 2 ] = 1,
and E[X4] <K, then P[X —> 0] >>— a. Prove this by using tightness and the
corollary to Theorem 25.12.

25.20. Find uniformly integrable random variables X  for which there is no inte-
grable Z satisfying P[I XX I >_ t] <PEIZI >_ t] for t > 0.
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SECTION 26. CHARACTERISTIC FUNCTIONS

Definition

The characteristic function of a probability measure /..L on the line is defined
for real t by

cp ( t ) = f
cc
 erixµ(^)
^

= f cos txµ(dx) + iif sin txµ(dx);

see the end of Section 16 for integrals of complex-valued functions.# A
random variable X with distribution 	 has characteristic function

cP(t) — 
E [ e«x] = f e rrxµ(^ )

oe 

The characteristic function is thus defined as the moment generating function
but with the real argument s replaced by it; it has the advantage that it
always exists because a"x is bounded. The characteristic function in nonprob-
abilistic contexts is called the Fourier transform.

The characteristic function has three fundamental properties to be estab-
lished here:

(i) If µ i and 11 2 have respective characteristic functions cp,(t) and cp 2(t),
then µ, *A 2 has characteristic function cp,(t)cp 2(t). Although convolution is
essential to the study of sums of independent random variables, it is a
complicated operation, and it is often simpler to study the products of the
corresponding chat acteristic functions.

(ii) The characteristic function uniquely determines the distribution. This
shows that in studying the products in (i), no information is lost.

(iii) From the pointwise convergence of characteristic functions follows
the weak convergence of the corresponding distributions. This makes it
possible, for example, to investigate the asymptotic distributions of sums of
independent random variables by means of their characteristic functions.

Moments and Derivatives

It is convenient first to study the relation between a characteristic function
and the moments of the distribution it comes from.

t From complex variable theory only De Moivre's formula and the simplest properties of the
exponential function are needed here.



cp(t) — 	 (krE[Xk]
k= 0

itXin+l 	 2ltXln
(n +1)!' 	 n! 	)1 -

(26.5) _< E min 	
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Of course, cp(0) = 1, and by (16.30), 1p(t)1 < 1 for all t. By Theorem 16.8(1),
cp(t) is continuous in t. In fact, lcp(t + h) — cp( t)l < f 	x — 1lµ(dx), and so it
follows by the bounded convergence theorem that cp(t) is uniformly continu-
ous.

In the following relations, versions of Taylor's formula with remainder, x
is assumed real. Integration by parts shows that

n+l
(26.1)	

^x
(x—s) n etscls n + ^ + n +1 J x ( x —

s)n
-l- lers ^ ,

0 	 0

and it follows by induction that

n ( .ix ) k 	 in+l 	n
(26.2)	 erx= E k^ + n! f (x — s) 	 ds

0

for n > O. Replace n by n — 1 in (26.1), solve for the integral on the right,
and substitute this for the integral in (26.2); this gives

(26.3)	 erx 	In (Lx)1(

 -^ 	 ` n 	r
 f

(xS) n-1( e i; _ 1) ci 'k . 	 (n 	 1). 0k = 0

Estimating the integrals in (26.2) and (26.3) (consider separately the cases
x > O and x < 0) now leads to

(26.4)
 n (L )k

E 	 k!
k=0

< min	 I xln +l ' 2lxl n

(n +1)!	 n!   

for n >— 0. The first term on the right gives a sharp estimate for 1x1 small, the
second a sharp estimate for 1x1 large. For n = 0,1, 2, the inequality special-
izes to

e"
—

	

(26.4 0 )	 l e`x — 1l < min{lxl, 2),

	(26.4 1 )	 le" — (1 +ix)l <min{2x 2 ,2lxl},

	(26.42)	 le'x —  (1 +ix — ix2)I <min(6ix13,x2}.

If X has a moment of order n, it follows that



n
Lim

 It^"E[IXInj — 0,n!(26.6)
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For any t satisfying

ço(t) must therefore have the expansion

(26.7)

compare (21.22). If

œ
OA — E ^

.

(it)k E[X k l,
k= 0 	 .

^ lki^ E[iX Ik] = E[eirx,1 < x,
k = 0

then (see (16.31)) (26.7) must hold. Thus (26.7) holds if X has a moment
generating function over the whole line.

Example 26.1. Since E[e 1 ' x i] < 00 if X has the standard normal distribu-
tion, by (26.7) and (21.7) its characteristic function is

(26.8)

cP(t)= ^ (it)2^
1 x3x

k = 0 (2k).

co

x(2k -1)= E k^ - 2
z 

w e —,z ^ 2

k=0

This and (21.25) formally coincide if s = it.	 •

If the power-series expansion (26.7) holds, the moments of X can be read
off from it:

(26.9) cP( k )(0) = IkE[Xl.

This is the analogue of (21.23). It holds, however, under the weakest possible
assumption, namely that E[IX k I] < x. Indeed,

cP(t +h^ — cP(t)
 E[iXe"x ] = E errx

erhx _^ _ ^hX

By (26.4 1 ), the integrand on the right is dominated by 21X1 and goes to() with
h; hence the expected value goes to 0 by the dominated convergence
theorem. Thus cp'(t) = E[iXe"x ]. Repeating this argument inductively gives

(26.10)	 cP(k)(t) = E[(iX) ke"x]
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if E[I X k l] < oo. Hence (26.9) holds if E[I X k l] < oo. The proof of uniform
continuity for cp(t) works for cp(k)(t) as well.

If E[ X 21 is finite, then

(26.11)	 co(t) = 1 +itE[X] - Zt 2E1 X 2 ] +o(t 2 ), 	 0.

Indeed, by (26.4 2 ), the error is at most t 2 E[min{ItI IX1 3, X 2)], and as t 	 0
the integrand goes to 0 and is dominated by X 2 . Estimates of this kind are
essential for proving limit theorems.

The more moments  has, the more derivatives cp has. This is one sense in
which lightness of the tails of  is reflected by smoothness of cp. There are
results which connect the behavior of cp(t) as Id _, co with smoothness
properties of µ. The Riemann-Lebesgue theorem is the most important of
these:

Theorem 26.1. If µ has a density, then cp(t) 0 as 1tI --* co.

PROOF. The problem is to prove for integrable f that f f (x )e i`x dx -, 0 as
ItI -* 00. There exists by Theorem 17.1 a step function g = Ek a k lAk, a finite
linear combination cf indicators of intervals Ak = (a k , bk ], for which f ! f -
gI dx < E. Now f f(x)e itx dx differs by at most E from fg(x)e i tx dx =
Ek a k(e" bk - e ttak)/it, and this goes to 0 as ItI -*Do. •

Independence

The multiplicative property (21.28) of moment generating functions extends
to characteristic functions. Suppose that X 1 and X2 are independent random
variables with characteristic functions cp 1 and cp2. If Y = cos X! and Z1 =
sin tX1, then (Y1 , Z 1 ) and (Y2 , Z 2 ) are independent; by the rules for integrat-
ing complex-valued functions,

cp, ( t) cp 2 ( t) = (E[ Y, ] + iE[Z, ])(E[Y2 ] + iE[Z 2 ])

= E[Y,]E [ Y2 ] -- E[Z,]E[Z 2 ]

+ i(E[ Y1 ]E[Z 2 ] + E[Z 1 ]E[ Y2 ])

=	 Y,Y2 -- Z,Z 2 + i( Y1 Z2 + Z1Y2)] — Ef e`<<x i+xz >] .

This extends to sums-of three or more: If X,, ... , X„ are independent, then

n
E [ e irEk=,xk] =	 E f e rrxk ]

L 	 k=1
(26.12)
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If X has characteristic function cp(t), then aX + b has characteristic
function

(26.13) E[ e !t(aX-+-b)] = e i t bcp(at) .

In particular, -X has characteristic function cp(-t), which is the complex
conjugate of cp(t).

Inversion and the Uniqueness Theorem

A characteristic function cp uniquely determines the measure µ it comes
from. This fundamental fact will be derived by means of an inversion formula
through which p. can in principle be recovered from cp.

Define

S(T) = ro
T sin x

clxx 	 '

In Example 18.4 it is shown that

T > O.

(26.14) Um S( T) _ 
Tr

 .
T--co 2'

S(T) is therefore bounded. If sgn 6 is +1, 0, or - 1 as 0 is positive, 0, or
negative, then

(26.15)
r T sin t0 J 	 t	dt= sgn O - S(T I O^), 	 T >-0.
0

Theorem 26.2. If the probability measure µ has characteristic function cp,
and if p f a} = µ(b) = 0, then

(26.16)
1 

(

T e - ita - e -itb
11(a, b^	 Tzm 2Tr J_ T 	it

	cP(t) dt.

Distinct measures cannot have the same characteristic function.

Note: By (26.4 1 ) the integrand here converges as t --> 0 to b - a, which is
to be taken as its value for t = 0. For fixed a and b the integrand is thus
continuous in t, and by (26.40 ) it is bounded. If µ is a unit mass at 0, then
cp(t) = 1 and the integral in (26.16) cannot be extended over the whole line.

PROOF. The inversion formula will imply uniqueness: It will imply that if
p. and y have the same characteristic function, then µ(a, b] = v(a, b] if
AO = v(a) = µ(b} = v(b} = 0; but such intervals (a, b] form a 7r- system gen-
erating R',



Wa,b(x) = 1 if a <x < b,
' 	 if x = b,

if b <x,

(26.18)
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Denote by IT the quantity inside the limit in (26.16). By Fubini's theorem

2

0

(26,17)
1 r (1T 
2_^ IIT_ T It dt µ ` dX).

This interchange is legitimate because the double integral extends over a set
of finite product measure and by (26.4 0 ) the integrand is bounded by lb - al.
Rewrite the integrand by DeMoivre's formula. Since sin s and cos s are odd
and even, respectively, (26.15) gives

IT = fœ
 sgn(

:
- a) S(T "Ix- al)- sgn( ^- b) S(T Ix - bl) µ(dx}.

- ^

The integrand here is bounded and converges as T -*co to the function

0 if x <a,

z 	if x = a,

Thus 17---* J`Ya, b dµ, which implies that (26.16) holds if µ(a) = µ(b) = 0.	 •
The inversion formula contains further information. Suppose that

(26.19) Lœ tt<00.

In this case the integral in (26.16) can be extended over R'. By (26.4 0 ), 

e -itb 
- e — ita 	l e it(b - a) _ 1l 	= 	 <lb - al;

Itl it    

therefore, µ(a, b) < (b -- a) j°°,olcp(t)l dt, and there can be no point masses.
By (26.16), the corresponding distribution function satisfies

F(x +h) - F(x) - 1	
^ 

e -itx _ e -rt(x+h)
h	 277-f , 	 ith	 cp(t) dt

(whether h is positive or negative). The integrand is by (26.4 0 ) dominated by
Icp(t)I and goes to e`txcp(t) as h -* O. Therefore, F has derivative

1 	r oe

f(x) = 27r .1 	
e -itxcp(t) dt.
oe 

(26.20)
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Since f is continuous for the same reason cp is, it integrates to F by the
fundamental theorem of the calculus (see (17,6)). Thus (26.19) implies that µ
has the continuous density (26,20). Moreover, this is the only continuous
density. In this result, as in the Riemann-Lebesgue theorem, conditions on
the size of cp(t) for large ItI are connected with smoothness properties of µ.

The inversion formula (26.20) has many applications. In the first place, it
can be used for a new derivation of (26.14). As pointed out in Example 17.3,
the existence of the limit in (26.14) is easy to prove. Denote this limit
temporarily by ir 0/2—without assuming that 17 - 0 = Tr. Then (26.16) and
(26.20) follow as before if Tr is replaced by Tr o . Applying the latter to the
standard normal density (see (26.8)) gives

(26.21) 1  e -xZ/2
127r

1
J^

e- irxe -
r z

/ Z dt
27%0 	,

where the Tr on the left is that of analysis and geometry----it comes ultimately
from the quadrature (18.10). An application of (26.8) with x and t inter-
changed reduces the right side of (26.21) to ( 2Tr /27ro )e - x2 / 2 , and therefore
Tr o does equal Tr .

Consider the densities in the table. The characteristic function for the
normal distribution has already been calculated. For the uniform distribution
over (0,1), the computation is of course straightforward; note that in this case
the density cannot be recovered from (26.20), because cp(t) is not integrable;
this is reflected in the fact that the density has discontinuities at 0 and 1,

Distribution Density Interval
Characteristic

Function

1. Normal e- x2/2 —co <x < e —IZ /2
^r

2, Uniform 1 0 <x <1
e"- 1

it

3, Exponential e-x 0 <x < cc 11 — it
4. Double 1

exponential
or Laplace

ie-lxl — co <x < œ
1 +t 2

1 	 1 
5. Cauchy

IT 1 +x2 	
—0c <x <cc 	e - Ihf

6. Triangular 	 1 — 1x1 	 — 1 <x <1	 2
1—cos t
 2

t
7, 	

1 1—cos x
	—00<x <cc 	 (1 — 	 1.1p )

11- 	X2
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The characteristic function for the exponential distribution is easily calcu-
lated; compare Example 21.3. As for the double exponential or Laplace
distribution, e - lxlertx integrates over (0, co) to (1 — it) - ' and over (-00,0) to
(1 + it r', which gives the result. By (26.20), then,

e -lx1 = 1  foe e -►rx  dt
r i , 	 1 + t 2 '

For x = 0 this gives the standard integral foe œ dt/(1 + t 2 ) = 7r; see Example
17.5. Thus the Cauchy density in the table integrates to 1 and has character-
istic function e - ItI. This distribution has no first moment, and the characteris-
tic function is not differentiable at the origin.

A straightforward integration shows that the triangular density has the
characteristic function given in the table, and by (26.20),

œ'( 1 — ixi)I(-i,i^(x) __ 7r 
f e -«x  — 2as t

_ ^, 	
dt.

t

For x = 0 this is f °° ,o(1 — cos t )t - 2 dt = 7r; hence the last line of the table.
Each density and characteristic function in the table can be transformed

by (26.13), which gives a family of distributions.

The Continuity Theorem

Because of (26.12), the characteristic function provides a powerful means of
studying the distributions of sums of independent random variables. It is
often easier to work with products of characteristic functions than with
convolutions, and knowing the characteristic function of the sum is by
Theorem 26.2 in principle the same thing as knowing the distribution itself.
Because of the following continuity theorem, characteristic functions can be
used to study limit distributions.

Theorem 26.3. Let µ n ,µ be probability measures with characteristic func-
tions cpa , cp. A necessary and sufficient condition for A n = p, is that cpn(t) -* cp(t )
for each t.

PROOF. Necessity. For each t, a"x has bounded modulus and is continu-
ous in x. The necessity therefore follows by an application of Theorem 25.8
(to the real and imaginary parts of a"x)
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Sufficiency. By Fubini's theorem,

(26.22)
1
u f 

u 

( 1 - cpn(t)) di = 11
[

C(1
 _ ex) dtµn(d)

 u

sin ux
)ux µn(dx)

>2f 	 1 thT
) , L fl(d)

> µn x: I x ! 2

(Note that the first integral is real.) Since cp is continuous at the origin and
cp(0) = 1, there is for positive e a u for which u -' j" u(1 - cp(t)) dt <E. Since
',on converges to cp, the bounded convergence theorem implies that there
exists an n o such that u ' j"u(1 - cpn(t)) dt < 2E for n >_ n o . If a = 2/u in
(26.22), then µn[x: 1x1. a] < 2e for n> n o . Increasing a if necessary will
ensure that this inequality also holds for the finitely many n preceding n o .
Therefore, (µn) is tight.

By the corollary to Theorem 25.10, fl n µ will follow if it is shown that
each subsequence (A nd that converges weakly at all converges weakly to µ .

But if µ nk = v as k -* co, then by the necessity half of the theorem, already
proved, v has characteristic function lim k cpnk(t) = cp(t). By Theorem 26.2, u
and must coincide. •

Two corollaries, interesting in themselves, will make clearer the structure
of the proof of sufficiency given above. In each, let µ n be probability
measures on the line with characteristic functions cpn .

Corollary 1. Suppose that lim n cpn(t) = g(t) for each t, where the limit
function g is continuous at 0. Then there exists a µ such that µ n µ, and µ
has characteristic function g.

PROOF. The point of the corollary is that g is not assumed at the outset
to be a characteristic function. But in the argument following (26.22), only
cp(0) = 1 and the continuity of cp at 0 were used; hence (µ n) is tight under the
present hypothesis. If µ k v as k - co, then v must have characteristic
function lim k cpnk(t) = g(t). Thus g is, in fact, a characteristic function, and
the proof goes through as before. •
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In this proof the continuity of g was used to establish tightness. Hence if
(µ n) is assumed tight in the first place, the hypothesis of continuity can be
suppressed:

Corollary 2. Suppose that lim n cp„(t) = g(t) exists for each t and that (µn )
is tight. Then there exists a µ such that An µ, and µ has characteristic
function g.

This second corollary applies, for example, if the µn have a common
bounded support.

Example 26.2. If A n is the uniform distribution over ( -n, n), its charac-
teristic function is (nt) -1 sin to for t 0, and hence it converges to I to}(t). In
this case {A n; is not tight, the limit function is not continuous at 0, and A n
does not converge weakly. •

Fourier Series*

Let p, be a probability measure on 5p' that is supported by [0, 27r]. Its Foui ier
coefficients are defined by

(26.23) f
a imxz 
e µ(dx), m=0,±1,±2,... .

These coefficients, the values of the characteristic function for integer arguments,
suffice to determine except for the weights it may put at 0 and 27r. The relation
between p, and its Fourier coefficients can be expressed formally by

(26.24)
co

(dx)  2Tr E c 1 e - ilx dx:

1 = —^

if the p,(dx) in (26.23) is replaced by the right side of (26.24), and if the sum over 1 is
interchanged with the integral, the result is a formal identity.

To see how to recover p from its Fourier coefficients, consider the symmetric
partial sums sm(t) = (27r) - 1 )7 ` _ m c le - 111 and their Cesàro averages crm(t) =
m — lEm -`s,(t). From the trigonometric identity [A24]

(26.25)	 E 1 E e lkx = sinZ Zmx

1=0 k= —1 	 Sin212x

it follows that

(26.26)	 ^m(t)
	 1 fzv sin 2 +m( — t ) µ(^)•
21rm o 	sin2 1 (x — t)

`This topic may be omitted
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If p is (27r) - ' times Lebesgue measure confined to [0,27], then c o = 1 and cm = 0
for m # 0, so that cr,n(t) = sm(t) _ (27r) -1 ; this gives the identity

(26.27)
2 ^1

 f_iT

7r sin z^ ds= 1.2m 	 sin2 2s

Suppose that 0 < a <b <27,  and integrate (26.26) over (a, b). Fubini's theorem
(the integrand is nonnegative) and a change of variable lead to

2i
(26.28) 	 JŒm(t) dt_Jb

	2

^ 	1 Ib-x x s 2in i ms 
ds µ(dx ).

a	 o [ 2 m_x  s i n Zs

The denominator in (26.27) is bounded away from 0 outside (-S, S), and so as m goes
to 0o with S fixed (0 <3 < 7),

1 f
	

sin22zms ^^0	 1 
 f 	

sin22ms
ds -,1.

27rm s <I SI <^ s in Zs	 27m ISI <s sin ; s

Therefore, the expression in brackets in (26.28) goes to 0 if 0 < x < a or b < x < 27,
and it goes to 1 if a < x < b; and because of (26.27), it is bounded by 1. It follows by
the bounded convergence theorem that

(26.29) µ 	
b

( a,b ] = 1im f a-m(t)dt
m a

if u (a) = A{14= 0 and 0 <a < b < 27.
This is the analogue of (26.16). If p and v have the same Fourier coefficients, it

follows from (26.29) that A(A)= v(A) for A c (0,27) and hence that ,u{0,27) =
v{0,27). It is clear from periodicity that the coefficients (26.23) are unchanged if µ{0)
and µ{27) are altered but A{0} + µ{27r} is held constant.

Suppose that it is supported by [0, 27T ] and has coefficients c;77 ), and suppose that
lim n c;.;: 1 = c m for all m. Since {µ n) is tight, ,u n µ will hold if µ nk v (k -, co)
implies v = A. But in this case ✓ and µ have the same coefficients cm , and hence
they are identical except perhaps in the way they split the mass v{0,2 7} =
µ{0, 27) between the points 0 and 27. But this poses no problem if A{0,270== 0: If
lim n c;;: 1 = c m for all m and µ{0} = µ{27r) = 0, then A n A.

Example 26.3. If p is (27r) - ' times Lebesgue measure confined to the interval
[0,27], the condition is that lim n c;,n° = 0 for m 0 O. Let x 1 , x 2 ,... be a sequence of
reals, and let µ n put mass n -1 at each point 27{x k }, 1 < k <n, where {x k ) =xk - [xk ]
denotes fractional part. This is the probability measure (25.3) rescaled to I0,27]. The
sequence x 1 , x 2 ,... is uniformly distributed modulo 1 if and only if

n 	 nn j` e 2^rri (x k^m = n^

k

	e2aixkm _, 0
G-.,1 	 k = 1

for m 0 O. This is Weyl's criterion.
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If x k = k6, where 8 is irrational, then exp(2 iriûm) # 1 for m # 0 and hence
n

^

e 2 rrikBm = ^ e 2iri8m

k=1

1— e2rrin8m

1— e2aiBm 	0•

Thus 0,20,30,... is uniformly distributed modulo 1 if 0 is irrational, which gives
another proof of Theorem 25.1. 	 •

PROBLEMS

26.1. A random variable has a lattice distribution if for some a and b, b> 0, the
lattice [a + nb: n= 0, ± 1, ... ] supports the distribution of X. Let X have
characteristic function cp.
(a) Show that a necessary condition for X to have a lattice distribution is that
I0t)I = 1 for some t # O.
(b) Show that the condition is sufficient as well.
(c) Suppose that Icp(t)I =I9(t')I= 1 for incommensurable t and t' (t *0,
t' # 0, t/t' irrational). Show that P[ X = c ] = 1 for some constant c.

26.2. If i(— co, x] = µ[ —x, cc) for all x (which implies that µ(A) = a(—A) for all
A e a 1 ), then µ is symmetric. Show that this holds if and only if the
characteristic function is real.

26.3. Consider functions cp that are real and nonnegative and satisfy cp(—t) =
cp(t) and cp(0) = 1.
(a) Suppose that d i , d2 ,... are positive and E7 = 1 dk = co, that s 1 >_ s2

0 and lim k sk = 0, and that )J Iskdk = 1. Let cp be the convex polygon whose
successive sides have slopes —s 1 , —s 2 ,... and lengths d i , d 2 ,... when pro-
jected on the horizontal axis: cp has value 1— EJ=1 ss di at tk =d 1 +  •	 +dk . If
s,,= 0, there are in effect only n sides. Let cp o(t) = (1 — I t I)I( _ 1.i p) be the
characteristic function in the last line in the table on p. 348, and show that cp(t )
is a convex combination of the characteristic functions cpo(t/t k ) and hence is
itself a characteristic function.
(b) Pôlya's criterion. Show that cp is a characteristic function if it is even and
continuous and, on [0, co), nonincreasing and convex (cp(0) = 1).

^v

-s '

—s2

d2 	d3
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26.4. T Let (p i and (p 2 be characteristic functions, and show that the set A = [t:
cp 1(t) = cp2(t)] is closed, contains 0, and is symmetric about O. Show that every
set with these three properties can be such an A. What does this say about the
uniqueness theorem?

26.5. Show by Theorem 26.1 and integration by parts that if ,u has a density f with
integrable derivative f', then cp(t) = o(t -1 ) as Id —> co. Extend to higher deriva-
tives.

26.6. Show for independent random variables uniformly distributed over (-1, + 1)
that X 1 + • • • +X,r has density it- 'J ((sin t)/t)" cos txdt for n- 2.

26.7. 21.171 Uniqueness theorem for moment generating functions. Suppose that F
has a moment generating function in (—s o , so), so > 0. From the fact that
Jo?

 ocezx dF(x) is analytic in the strip —so < Re z < s o , prove that the moment
generating function determines F. Show that it is enough that the moment
generating function exist in 10, s o ), so > 0.

26.8. 21.20 26.7 1 Show that the gamma density (20.47) has characteristic func-
tion

1	 u =expl —u log(1— ^
)J

,
(1— it/a)	 ll

where the logarithm is the principal part. Show that foezxf(x; a, u)dx
analytic for Re z <a.

26.9. Use characteristic functions for a simple proof that the family of Cauch•
distributions defined by (20.45) is closed under convolution; compare th
argument in Problem 20.14(a). Do the same for the normal distributic
(compare Example 20.6) and for the Poisson and gamma distributions.

26.10. Suppose that F" F and that the characteristic functions are dominated by
integrable function. Show that F has a density that is the limit of the densit
of the F".

26.11. Show for all a and b that the right side of (26.16) is µ(a, b) + zµ{a} + zµ
26.12. By the kind of argument leading to (26.16), show that

(26.30) µ (a) = lim 1 f T e '"°cp(t) dt.
T--,^ 2T —T

26.13. 1 Let x 1 , x 2 ,... be the points of positive µ-measure. By the following
prove that

(26.31) lim ZTfT ^^P(t)I2 dt= E(µ{xk))2.
k
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Let X and Y be independent and have characteristic function cp.
(a) Show by (26.30) that the left side of (26.31) is P[ X — Y= 0].
(b) Show (Theorem 20.3) that P[X — Y = 0] = fQ „0 P[ X = y]µ(dy) =
Ek(11, {xk]) 2 .

26.14. Î Show that µ has no point masses if cp 2(t) is integrable.

26.15. (a) Show that if {µn) is tight, then the characteristic functions cp„(t) are
uniformly equicontinuous (for each E there is a 6 such that Is — ti < 6 implies
that I cpn(s) — çn(t )I < E for all n).
(b) Show that µ n µ implies that (MO—) cp(t) uniformly on bounded sets.
(c) Show that the convergence in part (b) need not be uniform over the entire
line.

26.16. 14.5 26.15 Î For distribution functions F and G, define d'(F, G) =
sup, Icp(t) — ilr(t)I/(1 + It I), where cp and # are the corresponding characteristic
functions. Show that this is a metric and equivalent to the Lévy metric.

26.17. 25.16 T A real function f has mean value

(26.32) M[ f( x ) ] = lim 2T 
f T f( x ) dx,

T--^ 	 T

provided that f is integrable over each [ — T, T ] and the limit exists.
(a) Show that, if f is bounded and e"fix ) has a mean value for each t, then f
has a distribution in the sense of (25.18).
(b) Show that

(26.33) Mie"
1 if t = 0,
0 if t #0.

Of course, f(x) = x has no distribution.

24 '8. Suppose that X is irrational with probability 1. Let µ n be the distribution of
the fractional part {nX). Use the continuity theorem and Theorem 25.1 to
show that n - I Ek I µ k converges weakly to the uniform distribution on [0,1].

26 "1 25.13 T The uniqueness theorem for characteristic functions can be derived
from the Weierstrass approximation theorem. Fill in the details of the follow-
ing argument. Let  and v be probability measures on the line. For continuous
f with bounded support choose a so that µ(—a, a) and v(—a, a) are nearly 1
and f vanishes outside (—a, a). Let g be periodic and agree with f in ( — a, a),
and by the Weierstrass theorem uniformly approximate g(x) by a trigonomet-
ric sum p(x) = Ek l a k e"kx. If µ and v have the same characteristic function,
then ffdµ - fgdµ =. fpdµ = fpdv ^ fgdv = ffdv.

26.20. Use the continuity theorem to prove the result in Example 25.2 concerning the
convergence of the binomial dist ribution to the Poisson.
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26.21. According to Example 25.8, if X„ X, an -) a, and b,r -> b, then a„ X„ + b„
aX + b. Prove this by means of characteristic functions.

26.22. 26.1 26.151 According to Theorem 14.2, if X „ X and a„X„ + b, Y,
where an > 0 and the distributions of X and Y are nondegenerate, then
a,, -> a > 0, b„ -> b, and aX + b and Y have the same distribution. Prove this
by characteristic functions. Let cp,, , cp , ^i be the characteristic functions of
X,r , X, Y.
(a) Show that I cp„(a„t )I - I i (t)I uniformly on bounded sets and hence that an
cannot converge to 0 along a subsequence.
(b) Interchange the roles of cp and 	 and show that an cannot converge to
infinity along a subsequence.
(e) Show that an converges to some a > 0.
(d) Show that e"b” — O(t)/cp(at) in a neighborhood of 0 and hence that
fôe'Sb^ ds - fo(/r(s) /cp(as)) ds. Conclude that b„ converges.

26.23. Prove a continuity theorem for moment generating functions as defined by
(22.4) for probability measures on [0,00). For uniqueness, see Theorem 22.2;
the analogue of (26.22) is

2 ruu .ro (1 -M(s))ds >_µ ü,00

26.24. 26.41 Show by example that the values cp(m) of the characteristic function at
integer arguments may not determine the distribution if it is not supported by
[0, 2rr].

26.25. If f is integrable over [0,2711, define its Fourier coefficients as fô Seim f(x)dx.
Show that these coefficients uniquely determine f up to sets of measure 0.

26.26. 19.8 26.251
 

Show that the trigonometric system (19.17) is complete.

26.27. The Fourier-series analogue of the condition (26.19) is E,,,Icm I < co. Show that
it impliesµ has density f(x) = (2,) -1

Encm
e_lm1 on 10,21r], where f is

continuous and f(0) =f(273-). This is the analogue of the inversion formula
(26.20).

26.28. 1 Show that

7r 2 	ces mx
( IT— x)2= 3 + 4 E 	 2 ,

m= 1 m 0 <x < 2ir.

Show that Em_ 1 1/m 2 = 1T 2/6 and EM^ 1(-1)m +1 /m 2 =,r 2/12.

26.29. (a) Suppose X' and X" are independent random variables with values in
[0,27r], and let X be X' + X" reduced module 2ir. Show that the correspond-
ing Fourier coefficients satisfy c m = cm c';.
(b) Show that if one or the other of X' and X" is uniformly distributed, so
is X.
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26.30. 26.25 T The theory of Fourier series can be carried over from [0,2r] to the
unit circle in the complex plane with normalized circular Lebesgue measure P.
The circular functions e l' become the powers wm, and an integrable f is
determined to within sets of measure 0 by its Fourier coefficients can =
fn wmf(w)P(dw). Suppose that A is invariant under the rotation through the
angle arg c (Example 24.4). Find a relation on the Fourier coefficients of 1,q ,
and conclude that the rotation is ergodic if c is not a root of unity. Compare
the proof on p. 316.

SECTION 27. THE CENTRAL LIMIT THEOREM

Identically Distributed Summands

The central limit theorem says roughly that the sum of many independent
random variables will be approximately normally distributed if each sum-
mand has high probability of being small. Theorem 27.1, the Lindeberg-Lévy
theorem, will give an idea of the techniques and hypotheses needed for the
more general results that follow.

Throughout, N will denote a random variable with the standard normal
distribution:

(27.1)	 P[NEA] = 	
jA e

- x 2
/

2 dx.1 
Tr

Theorem 27.1. Suppose that (Xn) is an independent sequence of random
variables having the same distribution with mean c and finite positive variance
o-2 . If Sn = X 1 +  - • • +Xn , then

(27.2) Sn -nc N
mrti

By the argument in Example 25.7, (27.2) implies that n -1Sn = c. The
central limit theorem and the strong law of large numbers thus refine the
weak law of large numbers in different directions.

Since Theorem 27.1 is a special case of Theorem 27.2, no proof is really
necessary. To understand the methods of this section, however, consider the
special case in which Xk takes the values +1 with probability 1/2 each.
Each Xk then has characteristic function cp(t) = le i' + 2e-1.i = cos t. By
(26.12) and (26.13), Sn/' has characteristic function cpn(t/ /), and so, by
the continuity theorem, the problem is to show that cosy t/& --- E[e 1iN ] =
e -i2/2 , or that n log cos t/& (well defined for large n) goes to - 1t 2 . But
this follows by 1'Hopital's rule: Let t/1/72 = x go continuously to O.



1
2

< iti 3

2n n3/2
(27.3)  .
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For a proof closer in spirit to those that follow, note that (26.5) for n = 2
gives Icp(t) — (1 — ft 2 )I < Iti 3 (IX kl 1). Therefore,

Rather than take logarithms, use (27.5) below, which gives (n large)

cP" t
	

1 — 2n 	 < 
kV

—^(27.4)  

But of course (1 — t 2/2n)" -* e -12 /2 , which completes the proof for this
special case.

Logarithms for complex arguments can be avoided by use of the following
simple lemma.

Lemma 1. Let z 1 ,... , z,n, and w 1 ,..., w," be complex numbers of modulus
at most 1; then

m
(27.5) 	 lZ1 . . • Zm — WI • • • Wm i < E lZk - WkI

k=1

	PROOF. This follows by induction from z, 	 zm — w, • • • Wm =

(Z, — WIXZ2 ... Zm) + WI(Z2 • • • Zm — W2 ... Wm). 	 •

Two illustrations of Theorem 27.1:

Example 27.1. In the classical De Moivre-Laplace theorem, X" takes the
values 1 and 0 with probabilities p and q =1 — p, so that c =p, and a- 2 = pq.
Here S" is the number of successes in n Bernoulli trials, and (S" —
np)/npq = N. ■

2 " 3

Example 27.2. Suppose that one wants to estimate the parameter a of an
exponential distribution (20.10) on the  basis of an independent sample
X 1 ,...,  X. As n—> co the sample mean X" = n - I Ek = I Xk converges in prob-
ability to the mean 1/a of the distribution, and hence it is natural to use
1/X" to estimate a itself. How good is the estimate? The variance of the
exponential distribution being 1/a 2 (Example 21.3), al(X" — 1/a) N by
the Lindeberg-Lévy theorem. Thus X" is approximately normally distributed
with mean 1/a and standard deviation 1/a1,171.

By Skorohod's Theorem 25.6 there exist on a single probability space
random variables Y" and Y having the respective distributions of X„ and N
and satisfying ai,171(Y"(w) — 1/a) —> Y(co) for  each w. Now Y"(w) --^ 1/a and
a- 1 v(Ÿ"(w) - 1 — a) = a&(a~ 1 — Y"(w))/aY"(w) --- —Y(w). Since —Y has
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the distribution of N and Y„ has the distribution of Xn , it follows that

— a N;

thus 1/K is approximately normally distributed with mean a and standard
deviation a/&. In effect, 1/Xn has been studied through the local linear
approximation to the function 1/x. This is called the delta method. •

The Lindeberg and Lyapounov Theorems

Suppose that for each n

(27.6) Xnl ,.. ., Xnrn

are independent; the probability space for the sequence may change with n.
Such a collection is called a triangular array of random variables. Put
Sn = Xn1 + • +Xnr . Theorem 27.1 covers the special case in which rn = n
and Xnk = Xk . Exam

n

ple 6.3 on the number of cycles in a random permuta-
tion shows that the idea of triangular array is natural and useful. The central
limit theorem for triangular arrays will be applied in Example 27.3 to the
same array.

To establish the asymptotic normality of Sn by means of the ideas in the
preceding proof requires expanding the characteristic function of each Xnk
to second-order terms and estimating the remainder. Suppose that the means
are 0 and the variances are finite; write

rn

(27.7) 	 E[Xnkj =0, 	 Œnk= E[Xnki, sZ= ^ 6k .
k =1

The assumption that Xnk has mean 0 entails no loss of generality. Assume
sn > 0 for large n. A successful remainder estimate is possible under the
assumption of the Lindeberg condition:

rn

(27.8) 	 lim ^ z 1 	
XnkdP= O

n—>°° k=1 Sn ^Xnk^^ESn

for E > 0.

Theorem 27.2. Suppose that for each n the sequence Xni , ... , Xnrn
is independent and satisfies (27.7). If (27.8) holds for all positive E, then
Sn/sn N.
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This theorem contains the preceding one: Suppose that Xnk = Xk and
rn = n, where the entire sequence (Xk) is independent and the Xk all have
the same distribution with mean 0 and variance 6 2 . Then (27.8) reduces to

(27.9) lim 
1 f 	X^ dP= O,

^OO Q IX i I ^ E^fn

which holds because [I X 1 >_ co-VW. ],.0 as n Tco.

PROOF OF THE THEOREM. Replacing Xnk by Xnk /Sn shows that there is
no loss of generality in assuming

(27.10)
rn

=
 

S2n	 ^nk = 1.
k =1

By (26.4 2 ),

l e itx 
— (l +ltX — 2t 2x 2 )I < m in{Itx l 2 ,^tXI 3}.

Therefore, the characteristic function cpnk of Xnk satisfies

( 27. 11 ) I çonk( t ) — (1	 zt 2Œk) 1 	 E [m in{`tXnkl2, I tXnk13}].

Note that the expected value is finite.
For positive E the right side of (27.11) is at most

I XnkI 3 dP J 	I tXnkI2dP<EIt I3Œk+ t 2f	 Xnk dP .

IXnkIGE 	 I Xnkl .E 	 IXnkI ^ E

Since the Œ k add to 1 and € is arbitrary, it follows by the Lindeberg
condition that

rn

(27.12) L: l Dnk( t ) — ( 1 2t 2Œk)1 ^ 0
k=1

for each fixed t. The objective now is to show that

(27.13)
rn 	rnr

^[[
n ^nk(t) = 1!. (1—
k=1 	 k=1

â t 2Œk) +O(1)

rn

= ^ e-t2crnk/2 +o(1) = e -12/2 +0(1).
k^l
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For E positive,

Onk 
<,2 J 	 X2 dPnk 	 ,

^Xrtk^ > E

and so it follows by the Lindeberg condition (recall that sn is now 1) that

(27.14) max 0nk --^ 0.
15k5r,

For large enough n, 1— 2t 2onk are all between 0 and 1, and by (27.5),
flk lcpnk(t) and flk^ 1(1 — 2t 20n2k ) differ by at most the sum in (27.12). This
establishes the first of the asymptotic relations in (27.13).

Now (27.5) also implies that

rn 	rn

^
e -tz^nk/2 — 	 (1 — 1t 2.2

^ ( 	 2 nk)
k=1 	 k=1

rn

< 
r ^ e -t Z Qnk,^ 2 — 1 + ^t 20 2 ILr 	 2 	 nk '

k =1

For complex z,

(27.15)
^ k 2
-,

lez — 1 — zI < IzI 2 Z, zk ,
k =2

Using this in the right member of the preceding inequality bounds it by
t 4et

2
 Ek., 1 0n k , by (27.14) and (27.10), this sum goes to 0, from which the

second equality in (27.13) follows. ■

It is shown in the next section (Example 28.4) that if the independent array {Xnk)
satisfies (27.7), and if Sn/s„ N, then the Lindeberg condition holds, provided
mark sr ink/s,2, O. But this converse fails without the extra condition: Take  Xnk =
Xk normal with mean 0 and variance On = o, where r = 1 and Q,? = nsn _ 1.

Example 27.3. Goncharov's theorem. Consider the sum S,, = Ek=1Xnk in
Example 6.3. Here Sn is the number of cycles in a random permutation on n
letters, the Xnk are independent, and

P[X"k -11 n—k+l — 1 — P[Xnk =O].

The mean m n is Ln = Ek = 1 k -1 , and the variance sn is L,, + 0(1). Lindeberg's
condition for Xnk — (n — k +1) -1 is easily verified because these random
variables are bounded by 1.

The theorem gives (Sr,— L,,)/s,, = N. Now, in fact, L,, = log n + 0(1), and
so (see Example 25.8) the sum can be renormalized: (Sn — log n)/ %%log n N.

•
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Suppose that the !Xnk12+8 are integrable for some positive S and that
Lyapounov's condition

(27.16)
r„

lnm s +SEtiXnkl2
+ 3 1L = 0

k =1 n

holds. Then Lindeberg's condition follows because the sum in (27.8) is
bounded by

n 	 112	 IXns l s +
	dP < ES L-+ 2 +s E^ ^ Xnk^

2 +S 1
.

k=1 Sn IXnkI^ESn	 E Sn 	E k-=1 Sn 	
JJ

Hence Theorem 27.2 has this corollary:

Theorem 27.3. Suppose that for each n the sequence X, , ... , Xnrn is
independent and satisfies (27.7). If (27.16) holds for some positive 5, then
Sn/sn _ N.

Example 27.4. Suppose that X1 , X2 , ... are independent and uniformly
bounded and have mean 0. If the variance sn of S i., = X1 + +X,, goes to
00, then Sn/s,„ N: If K bounds the Xn , then

1 
E ^X ^ 3 ^	

KE[ 
J —

K
Z	 Z	 --^ 0g ^ k ]	

Xk
3 	  S 

k=1 Sn 	 k=1 	 Sn	 n

which is Lyapounov's condition for S = 1. •

Example 27.5. Elements are drawn from a population of size n, randomly and
with replacement, until the number of distinct elements that have been sampled is rn ,
where 1 < rn < n. Let Sn be the drawing on which this first happens. A coupon
collector requires S„ purchases to fill out a given portion of the complete set. Suppose
that r,, varies with n in such a way that rn/n —)p, 0 <p < 1. What is the approximate
distribution of Sn?

Let Yp be the trial on which success first occurs in a Bernoulli sequence with
probability p for success: P[Yp = k] = q k -1 p , where q = 1 — p. Since the moment
generating function is pes/(1 — qes), E[Yp ] = p -1 and Var[Yp ] = qp -2 . If k - 1 dis-
tinct items have thus far entered the sample, the waiting time until the next distinct
one enters is distributed as Yp as p = (n — k + 1)/n. Therefore, Sn can be repre-
sented as Er—iXnk for independent summands Xnk distributed as Y rt_k+l)/n• Since
rn pn, the mean and variance above give

mn = E[Sn ] = E (i _
k n lj -1 N nfp l ^x

k=1 	 J 	 o
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and

s 2 _ En k-1
 ^1 

k n 11 -Z ^ n rv xdx
rt 	k- 1 	J	 10 (1 x

Lyapounov's theorem applies for S = 2, and to check (27.16) requires the inequal-
ity

(27.17)	 E1(Yp—p-1)41 <Kp -4

for some K independent of p. A calculation with the moment generating function
shows that the left side is in fact qp -4(1 + 7q + q 2). It now follows that

363

)2.

(27.18)
rR

^ E {Xnk
k=1

n k ^1 4

)4 1 ^K i (1 
	 )n

=1
n--k +1

P dxKn fo (1—x)4 .

Since (27.16) follows from this, Theorem 27.3 applies: (S„ — m n)/s rt N.	 •

Dependent Variables*

The assumption of independence in the preceding theorems can be relaxed
in various ways. Here a central limit theorem will be proved for sequences in
which random variables far apart from one another are nearly independent
in a sense to be defined.

For a sequence X 1 , X2 , ... of random variables, let a n be a number such
that

(27.19)	 IP(A nB) -P(A)P(B)I _<a n

for A E a(X l , ... , Xk ), B E Q(Xk+n, Xk+n+l, • • • ),
 and k >_ 1, n >_ 1. Suppose

that a n -) 0, the idea being that Xk and Xk+n are then approximately
independent for large n. In this case the sequence (Xn) is said to be
a-mixing. If the distribution of the random vector (Xn , Xn +1 , ... , Xn +i ) does
not depend on n, the sequence is said to be stationary.

Example 27.6. Let {Y) be a Markov chain with finite state space and
positive transition probabilities p;1 , and suppose that Xn = f(Y ), where f is
some real function on the state space. If the initial probabilities pi are the
stationary ones (see Theorem 8.9), then clearly {Xn } is stationary. Moreover,
by (8.42), 1111 ) —P;i . P n, where p < 1. By (8.11), P[Yi = i i , .. •, Yk = ik ,

Yk+n — Jo , ••• , Yk+n+l — Il i — P; [ P;i2; ••• Pi k - 1ki P,n^P 	 P11-I!! , which differs
kJü lull• 

`This topic may be omitted.
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from P[Y1 = ^ • • • , Yk = l k ]P[Yk+n = 10' • • Yk+n+1 = ill by at most
Pi , pi,i2 . • • pi k i k p np 1 • • • Pj  ,. It follows by addition that, if s is the number
of states, then for sets of the form A = [(Y1 , ... , Yk ) E H] and B =

[(Yk +nl ' • • l Yk+n +1 ) E H'], (27.19) holds with a n = spn. These sets (for k and
n fixed) form fields generating a-fields which contain 0-(X 1 ,...,  Xk ) and
(7(Xk+n , Xk+n+1: • • • ), respectively. For fixed A the set of B satisfying (27.19)
is a monotone class, and similarly if A and B are interchanged. It follows by
the monotone class theorem (Theorem 3.4) that an } is a-mixing with
a n = Spn. O

The sequence is m-dependent if (X 1 ,..., Xk ) and (Xk+n, • • • , Xk+n +l) are
independent whenever n> m. In this case the sequence is a-mixing with
an = 0 for n> ln. In this terminology an independent sequence is 0-depen-
dent.

Example 27.7. Let Y1 ,172 ,... be independent and identically distributed,
and put Xn = f(Yn , ..., Yn +m) for a real function f on Rm +I . Then (Xn ) is
stationary and m-dependent. ■

Theorem 27.4. Suppose that X i , X2,... is stationary and a-mixing with
a n = 0(n -5) and that E[Xn ] — 0 and E[X,1 2 ] < oo. If Sn = X 1 + • • • +X n ,
then

^

(27.20) 	n-1 Var[S n ] -+Q 2 = E[Xn + 2 E E(X1Xl+k],
k =1

where the series converges absolutely. If o->  0, then Sn /a1,171 	 N.

The conditions a n = O(n -5 ) and E}X„ 2 ] < co are stronger than necessary;
they are imposed to avoid technical complications in the proof. The idea of
the proof, which goes back to Markov, is this: Split the sum X 1 + • • • +Xn

into alternate blocks of length bn (the big blocks) and In (the little blocks).
Namely, let

(27.21) Uni = X(i— ]xb„+In)+ ] + ... fX(i_ 1x6„+In)+6n' 1 < 1 <— rn ,

where rn is the largest integer i for which (i — 1)(bn + In ) + bn < n. Further,
let

(27.22)
Yni X(i— lxb „ + 1„) +b„+1 + . . . +Xi(b „ +107

vnrn ^ X(rn — 1xbn +1n ) +6„+ 1 
+ • • • +X •

1 < 1 < rn ,

Then Sn = Er" 1Ui + Ei 1= 1 17ni, and the technique will be to choose the I n

small enough that E,Vni is small in comparison with EiUni but large enough
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that the Gni are nearly independent, so that Lyapounov's theorem can be
adapted to prove Um asymptotically normal.

Lemma 2. If Yis measurable a(X 1 , ..., Xk ) and bounded by C, and if Z is
measurable a(Xk+n? Xk+n+1 , • • •) and bounded by D, then

(27.23) 	IE[YZ] -E[Y]E[Z]I <4CDa,,.

PROOF. It is no restriction to take C = D = 1 and (by the usual approxi-
mation method) to take Y= E i yi tA , and Z= Ej z1 I8i simple (Iyi l,Izi I < 1). If
d ij = P(A 1 n Bj ) -P(A i )P(B1 ), the left side of (27.23) is IE ;; yzd i; I. Take 6
to be +1 or -1 as Ej zid 1i is positive or not; now take rli to be +1 or -1 as
Eiid i j is positive or not. Then

Lyi ZJ di, < E L Z;dij - EcE Zjdij
i 	 + 	 j

L Sidijl = 	 = L.r ^i rlj dij•     E   

Let A (°) [B (°) ] be the union of the A i [ B1 ] for which i = +1 [nj = + 1]. and
let A ( ' ) =11 -Am [B(')=11 - Bm1. Then

arljdij < E I P( A (u ) n B (0 ) - P(A (u ))P(B")I < 4a,,. 	 ■
u,L

Lemma 3. If Y is measurable a(X 1 , ... , Xk ) and E[Y 4 ]<C, and if Z is
measurable a(Xk+n, Xk+n+1• • • •) and E[Z 4 ] D, then

(27.24)	 I E[YZ] -E[Y]E[Z]I <8(1 +C+D)a,' r/ 2 .

PROOF. Let Yo = YIn ,, l < ap Y1 = n i n, ap Z0 = ZI < al, Z 1 = ZInZi , a ^.
By Lemma 2, I E[Y°Z° ] - E[Y° ]E[Z° ]I < 4a 2a,,. Further,

IE[YoZ1] - E[Y0]E[Z1] ^E[I Yo - E LYo]I 'I Z 1 — E[zl]I]
< 2a • 2E[IZ1I] <4aE ^ IZ1I • IZ , /ai 31 < 4D/a 2 .

Similary, I E[Y1 Z° ] - E[Yl ]E[Z° ]I < 4C/a 2 . Finally,

E[Y1Z1] - E[Y1]E[Z1]I <Var 1/2 [Yl]Var 1/2 [Z1] <E' /2 [ Y12 ] E 1/2 [ Z1]
<E1/2[Yi /a2]E1/2[Zi/a2] <C1/2D1/2 /a2.

Adding these inequalities gives 4a 2a n + 4(C + D)a - 2 + C'/2D'/2a - 2 as a
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bound for the left side of (27.24). Take a =a: 1 /4 and obse rve that 4 + 4(C +
D)+C'/ 2D 1 /2 <4 +4(C'/2 +D'/2 ) 2 <4+8(C+D). 	 ■

PROOF OF THEOREM 27.4. By Lemma 3, IE[X1X1+n1I < 8( 1 +
2E[Xi 1)a,'t /2 = O(n -5/2 ), and so the series in (27.20) converges absolutely. If
pk = E[XIX1+kl, then by stationary E[Sn1= npo + 2Ek_,(n — k)p k and
therefore kr 2 — n'E[Snl1 < 2Ek ipk I + 2n -1 E7:11 E1 pk i; hence (27.20).

By stationarity again,

E[S^1 <4!nE l
where the indices in the sum are constrained by i, j, k >_ 0 and i +3 + k <n.
By Lemma 3 the summand is at most

8(1 E[ X 14 1 + E [X1 fiXi+i +;Xi+i +;+ka;/2,

which is at mostt

8(1 + E[ Xn + E[ X i 2 j ) a1 / 2 = Kta1 /2.

Similarly, K 1 4/ 2 is a bound. Hence

EE S4I < 4!n 2 E K 1 min{a,/ 2 , ak/ 2 }
i,kz0
i+k<n

00

< 1{2n 2 E ak/2= K
2
n 2 E (k+ oa k/2.

0<<i<k	 k =0

Since a k = O(k -5 ), the series here converges, and therefore

(27.25) 	 E[Sn1 _<Kn Z

for some K independent of n.
Let b„ = [n 3/4 1 and In = [n'/4 1. If r„ is the largest integer i such that

(i — 1Xbn +In )+ b„<n, then

(27.26) ,^, 	 /4bn n3 
, In ^' n 1 /4 ,	 rn ^' n l /4 .

Consider the random variables (27.21) and (27.22). By (27.25), (27.26), and

tEjXYZi <E 1 /31;W ' E2/3IYZI 3/2 < E 1 /3I;03 . E 1 /31Y1 3 ' E1/303.
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	r„-1 	^

> E < EP ^ vn  ^ ] 'WWn 1
	1=1 	rn

	r 4 	K
^ 	n 	^/ 2 	

E 4Q 4 n 2 
r Llnln `v 640.4n1/4 -^ Oi

(27.25) and (27.26) also give

1 	 bn+ln)2 	 K
PI-

 QV
 Ivnrnl ^ E < K( E 4^ 4 n2
	  '. 

F4^ 4n 1/2 —O .

Therefore, E ;^ I Vn;/o- ^ = 0, and by Theorem 25.4 it suffices to prove that
EAR lUni/a►/ = N.

Let U„' ; , 1 _< i r,,, be independent random variables having the distribu-
tion common to the Un; . By Lemma 2 extended inductively the characteristic
functions of E!^ l Un;/if& and of Ern IUnVoi differ by at mostt 16rn a in .
Since a n = 0(n - 5 ), this difference is 0(n - ') by (27.26).

The characteristic function of E,^ 1 Un;/a- will thus approach e —'2/2 if
that of EL^ 1 U,' 1/-1 does. It therefore remains only to show that

N. Now E[ l U„' ; 1 2 ] = E[ Un, ] bn cr 2 by (27.20). Further,
E[l U„'^1 4 ] . Kbn by (27.25). Lyapounov's condition (27.16) for 8 = 2 therefore
follows because

rnE [1Un114 ^
	E[1(^n'114r

(rn E[IU,11 2 ]) 2
 rn b,2,o- 4

K
rn ^ 4 •

Example 27.8. Let {Yn } be the stationary Markov process of Example 27.6.
Let f be a function on the state space, put m = L i p; f(i), and define
X„ = f (Yn ) - m. Then {Xn} satisfies the conditions of Theorem 27.4. If
f3, = 8 ;i p 1 -p; p1 + 2p; Lk =104 ) - pi), then the Q 2 in (27.20) is E;,f3 ;1(f(i) -
171)(f(j) - m), and Ek-I f(Yk) is approximately normally distributed with
mean nm and standard deviation Œ&.

If f(i) = 5 ;0; , then Erik = 1 f(Yk) is the number of passages through the
state io in the first n steps of the process. In this case m = p, and (T 2 =
p;ü(1 -p ;ü) + 2 Pi, E k - 1(plü ü -- p11,). •

Example 27.9. If the Xn are stationary and m-dependent and have mean
0, Theorem 27.4 applies and cr 2 = E[ X ? ] + 2E7, 1 = I E[ X I X I +k I. Example 27.7
is a case in point. Taking m = 1 and f(x, y) _ x -- y in that example gives an
instance where a 2 = 0. •

t The 4 in (27.23) has become 16 to allow for splitting into real and imaginary parts.
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PROBLEMS

27.1. Prove Theorem 23.2 by means of characteristic functions. Hint: Use (27.5) to
compare the characteristic function of Ere— 1Znk with exp[Ek pnk(e" - 1)]

27.2. If {Xn) is independent and the X„ all have the same distribution with finite
first moment, then n - -► E[ X i ]  with probability 1 (Theorem 22.1), so that
n - 'Sn E[X 1 ]. Prove the latter fact by characteristic functions. Hint: Use
(27.5).

27.3. For a Poisson variable YA with mean A, show that (YA - A)/ 	 N as A -► 00.
Show that (22.3) fails for t = 1.

27.4. Suppose that IX n k l . Mn with probability 1 and Mn/sn -> 0 Verify Lyapounov's
condition and then Lindeberg's condition.

27.5. Suppose that the random variables in any single row of the triangular array are
identically distributed. To what do Lindeberg's and Lyapounov's conditions
reduce?

27.6. Suppose that Z1, Z2 ,... are independent and identically distributed with mean
0 and variance 1, and suppose that Xnk —ŒnkZk• Write down the Lindeberg
condition and show that it holds if maxk sr„ o k = o (Ek^ io_ k }.

27.7. Construct an example where Lindeberg's condition holds but Lyapounov's
does not.

27.8. 22.9 T Prove a central limit theorem for the number R„ of records up to
time n.

27.9. 6.3 T Let Sn be the number of inversions in a random permutation on n
letters. Prove a central limit theorem for Sn .

27.10. The 3-method. Suppose that Theorem 27.1 applies to {Xn), so that
v'n o- '(Xn - c) N, where Xn = n — 'Ek = 1 Xk . Use Theorem 25.6 as in Exam-
ple 27.2 to show that, if f(x) has a nonzero derivative at c, then J(f(Xn ) -
f(c))/0- 1r(c)IN:  Xn is_ approximately normal with mean c and standard
deviation o-/ Vn , and f (Xn ) is approximately normal with mean f(c) and
standard deviation I f'(c)I o-/ V . Example 27.2 is the case  f(x) = 1/x.

27.11. Suppose independent Xn have density ix1 -3 outside (-1, +1). Show that
(n log 0-1/2S

n = N.

27.12. There can be asymptotic normality even if there are no moments at all.
Construct a simple example.

27.13. Let dn(w) be the dyadic digits of a point w drawn at random from the unit
interval. For a k-tuple (u 1 ,... , u k ) of 0's and l's, let Nn(u 1 ,..., u k ; w) be the
number of min for which (d,n(w),...,dm+k -1(w))=(u1,..•,uk)• Prove a
central limit theorem for Nn (u 1 ,..., u k ; (0). (See Problem 6.12.)



SP r
^ 	

Sp,N
,

cr u,

SECTION 27. THE CENTRAL LIMIT THEOREM 	 369

27.14. The central limit theorem for a random number of summands. Let X 1 , X2 , ... be
independent, identically distributed random variables with mean 0 and vari-
ance a- 2, and let Sn = X 1 + • • • +Xn . For each positive t, let v, be a random
variable assuming positive integers as values; it need not be independent of the
X. Suppose that there exist positive constants a, and 0 such that

v, g
a,

as t -, Go. Show by the following steps that

(27.27)

(a) Show that it may be assumed that 0 = 1 and the a, are integers.
(b) Show that it suffices to prove the second relation in (27.27).

(c) Show that it suffices to prove (Sp, - Say ii--„ .0.
(d) Show that

P C 1S„r - Sa
 r I '- Eia, 1 -< P[Iv, - ati c3ar!

+ P	 max ISk - Sai l > E a, ,
Ik — arl5c 3a,

and conclude from Kolmogorov's inequality that the last probability is at most
2E47 2

27.15. 21.21 23.10 23.141' A central limit theorem in renewal theory. Let
X 1 , X2 ,... be independent, identically distributed positive random variables
with mean m and variance 0- 2, and as in Problem 23.10 let N, be the
maximum n for which Sn 5 t. Prove by the following steps that

Qt l /zm - 3/2  N
.

(a) Show by the results in Problems 21.21 and 23.10 that (SN! - 0/1/-l-)/ v = 0.
(b) Show that it suffices to prove that

Nr - SN,m - i _ - (SN, - mNr)
a 1 1/2 m -3/2	 Qt i/2 m -1/2 	 N.

N, — Im -1

(c) Show (Problem 23.10) that Nit m, and apply the theorem in Prob-
lem 27.14.
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27.16. Show by partial integration that

(27.28) 	! 	 /2 du -  1 	 e--r2 /2
1127 X 	 2n- x

as x -> cc .

27.17. 1 Suppose that X I , X2 , ... are independent and identically distributed with
mean 0 and variance 1, and suppose that a n -, oc. Formally combine the
central limit theorem and (27.28) to obtain

(27.29) 	P[ Sn > a n ,/72] -  1 r e -a2 i2 = e -a2c1 +Cn) /2
Tr an 1

where 4-„ -> 0 if a n -, co. For a case in which this does hold, see Theorem 9.4.

27.18. 21.2T Stirling's formula. Let S„ = X 1 + • • • +Xn , where the X„ are indepen-
dent and each has the Poisson distribution with parameter 1. Prove succes-
sively.

nn +(1 /2)e -n
(a) E S„^ n =e-n

k = UI n ' n -
^
k n k

y'^ k!
Vn)

n!

S„ -n
(b) ^ N-.

^

(c) ER Sn  - n	 -j >E[N]r_1
^r

(d) n! - 	 7Tnn+(1 /2)e-n.

27.19. Let ln(w) be the length of the run of 0's starting at the nth place in the dyadic
expansion of a point w drawn at random from the unit interval; see Example
4.1
(a) Show that 1 1 ,12 ,... is an a-mixing sequence, where a n = 4/2".
(b) Show that Er; =1 1k is approximately normally distributed with mean n and
variance 6n.

27.20. Prove under the hypotheses of Theorem 27.4 that Sn/n -, 0 with probability 1.
Hint: Use (27.25).

27.21. 26.1 26.291 Let X 1 , X2 , ... be independent and identically distributed, and
suppose that the distribution common to the X„ is supported by [0,27r] and is
not a lattice distribution. Let Sn = X 1 + • • • +X,,, where the sum is reduced
modulo 27r. Show that Sn U, where U is uniformly distributed over [0,21r].
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SECTION 28. INFINITELY DIVISIBLE DISTRIBUTIONS*

Suppose that ZA has the Poisson distribution with parameter A and that
X 1 ,..., Xnn are independent and P[ Xn k = 11 = A /n, P[ Xn k = 0] = 1 — A/n.
According to Example 25.2, Xi 1 + • • • +X n ZA. This contrasts with the
central limit theorem, in which the limit law is normal. What is the class of all
possible limit laws for independent triangular arrays? A suitably restricted
form of this question will be answered here.

Vague Convergence

The theory requires two preliminary facts about convergence of measures Let A n and
µ be finite measures on (R', .GP'). If µ n(a, b] —> µ(a, b] for every finite interval for
which µ{a} = µ{b} = 0, then µn converges vaguely to µ , written 'i n —*, A. If An and µ
are probability measures, it is not hard to see that this is equivalent to weak
convergence . An A. On the other hand, if A n is a unit mass at n and µ(R') = C,
then An —' , µ , but A n µ makes no sense, because is not a probability measure.

The first fact needed is this: Suppose that µ —► µ and

	(28.1)	 supµn(R') < 03;

then

	(28.2) 	Jfdii—ffdii

for every continuous real f that vanishes at ±op in the sense that lim iXi _.,o f(x) = 0.
Indeed, choose M so that p(R I )<M and µ n (R') < M for all n. Given c, choose a
and b so that µ{a} = µtb} = 0 and If(x)1 < c/M if x e  = (a, b]. Then I JAc fdµn l <c
and I JAd f dµl <E. If µ(A) > 0, define v(B) =µ(BHA)/µ(A) and vn(B) = p (B n
A)/µ n(A). It is easy to see that vn v, so that Jfdvn —, Jfdv. But then I JA f dµn —
JA fdµ l < F for large n, and hence f Jfdµ n — Jfdµl < 3E for large n. If µ(A) = 0, then
jA fdµn —► 0, and the argument is even simpler.

The other fact needed below is this: If (28.1) holds, then there is a subsequence
{µ ,, k } and a finite measure such that µnk µ as k Indeed, let Fn(x) =
µn(—co, x]. Since the Fn are uniformly bounded because of (28.1), the proof of Helly's
theorem shows there exists a subsequence {Fnk } and a bounded, nondecreasing,
right-continuous function F such that lim k Fnk(x) = F(x) at continuity points x of F.
If 	is the measure for which µ(a, b] = F(b) — F(a) (Theorem 12.4), then clearly
ILnkt )1.6

The Possible Limits

Let Xn1 , ... , X„„n = 1, 2, ..., be a triangular array as in the preceding
section. The random variables in each row are independent, the means are 0,

*This section may be omitted.
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and the variances are finite:

(28.3)	 E[Xnk] 0,
rn

2	 ( 2 Ï	 2 = ^ Z
^nk ELXnkJ , 	Sn	 Crnk•

k=1

Assume s,2, > 0 and put Sn = Xn , + • • • +Xnr n. Here it will be assumed that
the total variance is bounded:

(28.4)
	

sup s, < ce .
n

In order that the Xnk be small compared with Sn , assume that

(28.5) lim max onk =0.
n k <rn

The arrays in the preceding section were normalized by replacing Xnk by
Xnk /5 n • This has the effect of replacing sn by 1, in which case of course (28.4)
holds, and (28.5) is the same thing as rnax 0.k  k /sn –, 0.

A distribution function F is infinitely divisible if for each n there is a
distribution function Fn such that F is the n-fold convolution Fn * • • • * Fn

(n copies) of Fn . The class of possible limit laws will turn out to consist of the
infinitely divisible distributions with mean 0 and finite variance.t It will be
possible to exhibit the characteristic functions of these laws in an explicit
way.

Theorem 28.1. Suppose that

(28.6)	 cp(t) =exn I ! (e``x— 1— itx ) Ẑ µ(dx),
-	 RI

where µ is a finite measure. Then cp is the characteristic function of an infinitely
divisible distribution with mean 0 and variance µ(R`).

By (26.4 2 ), the integrand in (28.6) converges to – t 2/2 as x ---> 0; take this
as its value at x = O. By (26.4 1 ), the integrand is at most t 2/2 in modulus and
so is integrable.

The formula (28.6) is the canonical representation of cp, and µ is the
canonical measure.

Before proceeding to the proof, consider three examples.

Example 28.1. If µ consists of a mass of o-2 at the origin, (28.6) is
e —(r212/2 , the characteristic function of a centered normal distribution F. It is
certainly infinitely divisible—take Fn normal with variance o-2/n. •

# There do exist infinitely divisible distributions without moments (see Problems 28.3 and 28.4),
but they do not figure in the theory of this section
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Example 28.2. Suppose that µ consists of a mass of A x 2 at x O. Then
(28.6) is exp A(e rex — 1 — itx); but this is the characteristic function of x(ZA -
A), where ZA has the Poisson distribution with mean A. Thus (28.6) is the
characteristic function of a distribution function F, and F is infinitely
divisible—take Fn to be the distribution function of x(ZAzn - A/n). •

Example 28.3. If cp1(t) is given by (28.6) with µ i for the measure, and if
p. = E i =1 µ i , then (28.6) is cp 1(t)...cp k(t). It follows by the preceding two
examples that (28.6) is a characteristic function if µ consists of finitely many
point masses. It is easy to check in the preceding two examples that the
distribution corresponding to cp(t) has mean 0 and variance µ(R'), and since
the means and variances add, the same must be true in the present example.

•

PROOF OF THEOREM 28.1. Let µk have mass µ(j2 -k,(j + 1)2 -k ] at 12 -k

for j = 0, ± 1, ... , + 2 2k. Then µ k --0, p.. As observed in Example 28.3, if
cp k(t) is (28.6) with µk in place of p., then cp k is a characteristic function. For
each t the integrand in (28.6) vanishes at ±co; since sup k p k(R') < co,
cpk(t) --j cp(t) follows (see (28.2)). By Corollary 2 to Theorem 26.3, cp(t) is
itself a characteristic function. Further, the distribution corresponding to
cp k(t) has second moment µ k(R'), and since this is bounded, it follows
(Theorem 25.11) that the distribution corresponding to cp(t) has a finite
second moment. Differentiation (use Theorem 16.8) shows that the mean is
cp10) = 0 and the variance is — cp"(0) = µ(R 1 ). Thus (28.6) is always the
characteristic function of a distribution with mean 0 and variance µ(R' ).

If On(t) is (28.6) with µ/n in place of p., then cp(t) = 1y,"(t), so that the
distribution corresponding to cp(t) is indeed infinitely divisible. 	 •

The representation (28.6) shows that the normal and Poisson distributions
are special cases in a very large class of infinitely divisible laws.

Theorem 28.2. Every infinitely divisible distribution with mean 0 and finite
variance is the limit law of Sn for some independent triangular array satisfying
(28.3), (28.4), and (28.5). •

The proof requires this preliminary result:

Lemma. If X and Y are independent and X + Y has a second moment,
then X and Y have second moments as well.

PROOF. Since X 2 +Y 2 < (X+ Y) 2 +21XYL, it suffices to prove IXYI
integrable, and by Fubini's theorem applied to the joint distribution of X and
Y it suffices to prove 1X1 and IYI individually integrable. Since IYI < Ix1 +
Ix + Y1, E[IYI] = cc would imply E[Hx + Y11= co for each x; by Fubini's
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theorem again E[ I Y I ] = 00 would therefore imply E[ I X + Yll = 00, which is
impossible. Hence E[I Y I] <00,  and similarly E[I XI] < co. 	 •

PROOF OF THEOREM 28.2. Let F be infinitely divisible with mean 0 and
variance a-2. if F is the n-fold convolution of Fn , then by the lemma
(extended inductively) Fn has finite mean and variance, and these must be 0
and o-2/n.  Take rn = n and take X, 1 ,..., Xnn independent, each with distri-
bution function Fn. •

Theorem 28.3. If F is the limit law of S n for an independent triangular
array satisfying (28.3), (28.4), and (28.5), then F has characteristic function of
the form (28.6) for some finite measure µ.

PROOF. The proof will yield information making it possible to identify
the limit. Let cpnk(t) be the characteristic function of Xnk . The first step is to
prove that

r,, 	 r„

(28.7)	 11 çonk(t) - exp E (cpr,k( t) - 1) —.)0
k =1 	 k=1

for each t. Since I z l < 1 implies that le'' I = e'_' <1, it follows by (27.5)
that the difference 6n(t) in (28.7) satisfies 16 n(t)I < Ek=l lcp nk (t) —
exp(cpnk(t) — 1)1. Fix t. If cpnk(t) - 1 = enk , then lenkl < t 2Q k/2, and it follows
by (28.4) and (28.5) that maxklenkl --) 0 and Ek l enk l = 0(1). Therefore, for
sufficiently large n, l8n(t)l < E k I1 + 8nk - eenkl < e 2 Ek lenk l 2 < e 2 max k lenk1
Ek lenk l by (27.15). Hence (28.7).

If Fnk is the distribution function of Xnk , then

r„
E (cpnk(t)

k=1

r,,
1) = E f (e r►x- i)dFnk(x)

k=1 R'

rn

= E f (eux _
k -1 R'

1 -itx)dFnk (x).

Let µ n be the finite measure satisfying

rn

(28.8)	 µn( - oo , x] - E f y2 dFnk( y) ,

k=1 Ysx

and put

(28.9)	 q)„(t) = exp f ' ( e i,x - 1 - itx) 1 /in(dx)•



SECTION 28. INFINITELY DIVISIBLE DISTRIBUTIONS
	 375

Then (28.7) can be written

( 28.10) nçonk( t) son(t)-3 0.
k=1

By (28.8), g n(R ' ) = s,^, and this is bounded by assumption. Thus (28.1)
holds, and some subsequence {An } converges vaguely to a finite measure g.rr
Since the integrand in (28.9) vanishes at ± co, (AT (t) converges to (28.6). But,
of course, lim n cpn(t) must coincide with the characteristic function of the
limit law F, which exists by hypothesis. Thus F must have characteristic
function of the form (28.6). •

Theorems 28.1, 28.2, and 28.3 together show that the possible limit laws
are exactly the infinitely divisible distributions with mean 0 and finite vari-
ance, and they give explicitly the form the characteristic functions of such
laws must have.

Characterizing the Limit

Theorem 28.4. Suppose that F has characteristic function (28.6) and that
an independent triangular array satisfies (28.3), (28.4), and (28.5). Then Sn has
limit law F if and only if g n --> g, where g n is defined by (28.8).

PROOF. Since (28.7) holds as before, S„ has limit law F if and only if
cp„(t) (defined by (28.9)) converges for each t to cp(t) (defined by (28.6)). If
g„ --^ g , then cpn(t) --- (p(t) follows because the integrand in (28.9) and (28.6)
vanishes at ± co and because (28.1) follows from (28.4).

Now suppose that con(t) --> cp(t). Since µn(R 1 ) = s,2, is bounded, each subse-
quence (A n) contains a further subsequence 

(gnrrl.>}
 converging vaguely to

some y. If it can be shown that y necessarily coincides with g, it will follow
by the usual argument that g n •-> A. But by the definition (28.9) of cpn(t), it
follows that cp(t) must coincide with 1y(t) = exp fR I(e ulx - 1 - itx)x` 2 v(dx).
Now cp`(t) = icp(t) fR I(e''x - 1)x - 'g(dx), and similarly for //(t). Hence cp(t) =
O(t) implies that fR L(e`'x - 1)x -1 v(dx) = fR I(e i'x -1)x - 1p.(dx).  A further
differentiation gives JR :e"xg(dx) = fR ie`txv(dx) This implies that g(R 1 ) =
u(R' ), and so g = v by the uniqueness theorem for characteristic functions.

•

Example 28.4. The normal case. According to the theorem, Sn = N if and
only if A n converges vaguely to a unit mass at O. If  s,2,= 1, this holds if and
only if Ek  > e x 2 dFnk(x) --9 0, which is exactly Lindeberg's condition. •

Example 28.5. The Poisson case. Let Zn1 , ... , Znr„ be an independent
triangular array, and suppose Xnk = Znk — m nk satisfies the conditions of the
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theorem, where m nk = E[Z„ k ]. If ZA has the Poisson distribution with
parameter A, then Ek X„ k ZA — A if and only if µ„ converges vaguely to a
mass of A at 1 (see Example 282). If  s, --•- A, the requirement is µ n[1 — E,

1 + E]--> A, or

(28.11) L 	 ( Znk — mnk )Z dP ' 0
k iZ„k—mnk — 11>E

for positive E. If s,2, and Ek mnk both converge to A, (28.11) is a necessary and
sufficient condition for EkZnk ZA. The conditions are easily checked under
the hypotheses of Theorem 23.2: Z r ,, assumes the values 1 and 0 with
probabilities pnk and 1 — p, , Ek pnk —9 A, and rnaxk Pnk --9 0

PROBLEMS

28.1. Show that A n -,, µ implies µ(R 1 ) <- liminf„ µ„(R 1 ). Thus in vague conver-
gence mass can "escape to infinity” but mass cannot "enter from infinity.”

28.2. (a) Show that p.,,,-, , p. if and only if (28.2) holds for every continuous f with
bounded support.
(b) Show that if p.n -,, p. but (28.1) does not hold, then there is a continuous f
vanishing at +03 for which (28.2) does not hold.

28.3. 23.71 Suppose that N, Y1 , Y2, ... are independent, the Y„ have a common
distribution function F, and N has the Poisson distribution with mean a. Then
S = Y1 + • . • +YN has the compound Poisson distribution.
(a) Show that the distribution of S is infinitely divisible. Note that S may not
have a mean.
(b) The distribution function of S is E^ =o e — "a nF n* (x)/n!, where Fn* is the
iv-fold convolution of F (a unit jump at 0 for n = 0). The characteristic function
of S is exp aJ .(eu 1x - 1) dF(x).
(c) Show that, if F has mean 0 and finite variance, then the canonical measure
µ in (28.6) is specified by µ(A) =a jA x 2 dF(x).

28.4. (a) Let v be a finite measure, and define

itx 	 z
(28.12) 	 cp(t) � exp iyt + f cc

_ co
 -1

 1 +x 2 ) I x2 v {dx) ,

where the integrand is - t 2/2 at the origin. Show that this is the characteristic
function of an infinitely divisible distribution.
(b) Show that the Cauchy distribution (see the table on p. 348) is the case
where y = 0 and v has density it -1 (1 +x 2) 1 with respect to Lebesgue
measure.

28.5. Show that the Cauchy, exponential, and gamma (see (20.47)) distributions are
infinitely divisible.
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28.6. Find the canonical representation (28.6) of the exponential distribution with
mean 1:
(a) The characteristic function is Joe"xe -xdx = (1 — it) -1 = cp(t).
(h) Show that (use the principal branch of the logarithm or else operate
formally for the moment) d(log cp(t ))/dt = icp(t) = i joe"xe -x dx. Integrate with
respect to t to obtain

(28.13) 1 I it 
— exp I m (e►►x _ 1) exx  dx

0

Verify (28 13) after the fact by showing that the ratio of the two sides has
derivative O.
(c) Multiply (28.13) by 	 i1 to center the exponential distribution at its mean:
The canonical measure 	 has density xe -x over (0, co).

28.7. 	 If X and Y are independent and each has the exponential density e - x,
then X — Y has the double exponential density 	 (see the table on p. 348).
Show that its characteristic function is

1
= exp j (e`►x _ 1— itx) —

x
12 	dx.

1 + t 2

28.8. 1 Suppose X 1 , X2 ,... are independent and each has the double exponential
density. Show that E . X"/n converges with probability 1. Show that the
distribution of the sum is infinitely divisible and that its canonical measure has
density Ixle_lx 1/(1— e - Ixl)= 77 - 1 IxI e - E"x^.

28.9. 26.8 1 Show that for the gamma density e -xxu-1 /F(u) the canonical mea-
sure has density uxe' over (0, cc).

The remaining problems require the notion of a stable law. A distribution function
F is stable if for each n there exist constants a n and b,,, a" > 0, such that, if
X1 , . ., X,,, are independent and have distribution function F, then a n 1 (X1+ . . +X„) + b” also has distribution function F.

28.10. Suppose that for all a, a', b, b' there exist a", b" (here a, a', a" are all positive)
such that F(ax + b)* F(a'x +b') = F(a"x + b"). Show that F is stable.

28.11. Show that a stable law is infinitely divisible.

28.12. Show that the Poisson law, although infinitely divisible, is not stable.

28.13. Show that the normal and Cauchy laws are stable.

28.14. 28.10 1 Suppose that F has mean 0 and variance 1 and that the dependence
of a", b" on a, a', b, b' is such that

Fj 1̂ j *F( 2̂ j= F ^^2 	).
` 	 JJ 	 JJ 	 ^ 1	 2

Show that F is the standard normal distribution.
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28.15. (a) Let Ynk be independent random variables having the Poisson distribution
with mean en"/I kI' ", where c> 0 and 0 <a < 2. Let Z„ = n - 'Ek? _nzkYnk
(omit k = 0 in the sum), and show that if c is properly chosen then the
characteristic function of Zn converges to e - iirr .

(b) Show for 0 < a <2 that e -1 `IQ is the characteristic function of a symmetric
stable distribution; it is called the symmetric stable law of exponent a. The case
a = 2 is the normal law, and a =1 is the Cauchy law.

SECTION 29. LIMIT THEOREMS IN R k

If F„ and F are distribution functions on R k , then Fn converges weakly to F,
written Fn = F, if lim n Fn(x) = F(x) for all continuity points x of F. The
corresponding distributions p. n and p. are in this case also said to converge
weakly: µn µ. If Xn and X are k-dimensional random vectors (possibly on
different probability spaces), Xn converges in distribution to X, written
Xn X, if the corresponding distribution functions converge weakly. The
definitions are thus exactly as for the line.

The Basic Theorems

The closure A - of a set in R k is the set of limits of sequences in A; the
interior is A° = R k - (R k - AY; and the boundary is ôA = A - - A°. A Borel
set A is a p,-continuity set if µ(dA) = O. The first theorem is the k-dimen-
sional version of Theorem 25.8.

Theorem 29.1. For probability measures A n and p, on (R k , M k ), each of
the following conditions is equivalent to the weak convergence of  A n to p,:

(i) lim n ffdp n = ffdp. for bounded continuous f;

(ii) lim sup ra µ n(C) < µ(C) for closed C;
(iii) lira inf ra µ(G) >_ µ(G) for open G;
(iv) lim n p, n(A) = µ(A) for p, -continuity sets A.

PROOF. It will first be shown that (i) through (iv) are all equivalent.
(i) implies (ii): Consider the distance dist(x,C) = inf[Ix — yI: y E CI from x

to C. It is continuous in x. Let

I 	if t < 0,
cpf ( t ) = 1 — jt if 0 < t <r i ,

0 	 if j - ' << t .
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Then f1(x) = cpp(dist(x,C)) is continuous and bounded by 1, and ff(x) J, 1c (x)
as j T 00 because C is closed. If (i) holds, then lim sup„ µ, f(C)<_ lim a ff, dµ„
=f f1 dµ. As j T co, f ff dµ J, jlc dµ = µ(C).

(ii) is equivalent to (iii). Take C = R k — G.
(ii) and (iii) imply (iv): From (ii) and (iii) follows

µ( A°) S lim infµ„( A°) _< lim infµ„( A)
n 	 n

< lim sup µ(A) 5 lim sup p, 	 _<µ(A - ) .

n 	 ^i

Clearly (iv) follows from this.
(iv) implies (i): Suppose that f is continuous and I f(x)I is bounded by K.

Given E, choose reals a0 < a l < • • < a ! so that a0 < — K <K <a 1 , a i —
a i _ i < E, and µ[x: f(x) = a ;]= 0. The last condition can be achieved be-
cause the sets [x: f(x) = a] are disjoint for different a. Put A i _ [x:
a ; _ i < f(x) < a i ]. Since f is continuous, A; c [x: a 1 < f(x) < a i] and

D [x: a 1 _ 1 <f(x)<a i ]. Therefore, 3A 1 c[x: f(x)=a i _ i ]U[x: f(x)= ai J,
and therefore µ((A i ) = O. Now f f dµ„ — Ei= laiµn(A►)I < E and similarly for
µ, and EL --0 L 1a,p.(A i ) because of (iv). Since E was arbitrary,
(1) follows.

It remains to prove these four conditions equivalent to weak convergence.
(iv) implies µ µ: Consider the corresponding distribution functions. If

Sx = [ y: yi s x i , i =1,...,1c],  then F is continuous at x if and only if
µ(ôSx ) = 0; see the argument following (20.18). Therefore, if F is continuous
at x, F„(x)=µ„(Sx )--0µ(Sx)=F(x), and F„ F.

µ implies (iii): Since only countably many parallel hyperplanes can
have positive p,-measure, there is a dense set D of reals such that µ[x:
x i = d] = 0 for d E D and i = 1, ... , k. Let sad be the class of rectangles
A =[x: a i < x ; < b, i = 1, ... , k] for which the a 1 and the b i all lie in D. All
2 k vertices of such a rectangle are continuity points of F, and so F„ = F
implies (see (12.12)) that µ„(A) = AA F„ --* A A F = µ(A). It follows by the
inclusion—exclusion formula that µ„(B) -> µ(B) for finite unions B of ele-
ments of .2. Since D is dense on the line, an open set G in R k is a
countable union of sets A m in d. But µ(U m MAm) = lim a µ„(U m 5 MAm)
< lim inf„ µ„(G). Letting M --- co gives (iii). •

Theorem 29.2. Suppose that h: R k --0 R' is measurable and that the set Dh
of its discontinuities is measurable.t If µ 	 µ in R k and µ(Dh ) = 0, then

µh
-1 inRf.

tThe argument in the footnote on p. 334 shows that in fact Dh e 6 always holds.
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PROOF. Let C be a closed set in R'. The closure (h - 'C) - in R k satisfies
(h - 'CY c Dh U h — 'C. If µ„ µ, then part (ii) of Theorem 29.1 gives

lim supµ„h - '(C) < lim supµ n ((h - 'C)
n 	 n

(D h) +µ(h - 'C).

Using (ii) again gives µh -' ^ µh -' if µ(Dh ) w O. •
Theorem 29.2 is the k-dimensional version of the mapping theorem —The-

orem 25.7. The two proofs just given provide in the case k = 1 a second
approach to the theory of Section 25, which there was based on Skorohod's
theorem (Theorem 25.6). Skorohod's theorem does extend to R k , but the
proof is harder. t

Theorems 29.1 and 29.2 can of course be stated in terms of random
vectors. For example, X„ = X if and only if P[ X E G] 5 lim inf rt P[ X„ E G]
for all open sets G.

A sequence (µ,r} of probability measures on (R k , R k ) is tight if for every E
there is a bounded rectangle A such that µ„(A) > 1 - E for all n.

Theorem 29.3. If (µn} is a tight sequence of probability measures, there is a
subsequence (µ„;} and a probability measure µ such that µ n . = p. as i-> co.

PROOF. Take S = [y: y1 < xf , j < k] and F,,(x) = µ,r (Sx ). The proof of
Helly's theorem (Theorem 25.9) carries over: For points x and y in R k ,
interpret x < y as meaning x u < y  = 1, ... , k, and x < y as meaning
x u < yu , u = 1 , ... , k. Consider rational points r— points whose coordinates
are all rational—and by the diagonal method [A14] choose a sequence (n! )
along which lim 1 F„(r) = G(r) exists for each such r. As before, define
F(x) = inf[G(r): x < r]. Although F is clearly nondecreasing in each vari-
able, a further argument is required to prove AA F > 0 (see (12.12)).

Given E and a rectangle A = (a l , b 1 ] X • X (a k , bk ], choose a 5 such
that if z = (S,..., S), then for each of the 2 k vertices x of A, x < r <x +z
implies 1 F(x) - G(r)1<E /2". Now choose rational points r and s such that
a<r<a+z and b<s<b+z. If B= (r 1 ,s 1 ]X ••• X(rk ,sk ], then IAA F -
1 B Gi < E. Since O BG =1 1m 1 _BF.  >_ 0 and E is arbitrary, it follows that
DA F > 0.

With the present interpretation of the symbols, the proof of Theorem 25.9
shows that F is continuous from above and lim 1 F,,(x) = F(x) for continuity
points x of F.

tThe approach of this section carries over to general metric spaces; for this theory and its
applications, see BILLINGSLEY' and BILLINGSLEY2. Since Skorohod's theorem is no easier in R k

than in the general metric space, it is not treated here.
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By Theorem 12.5, there is a measure on (R k , M k ) such that p,(A) _ AA  
for rectangles A. By tightness, there is for given E a t such that µ„[ y:
- t < y < t , j < k ] > 1 - E for all n. Suppose that all coordinates of x exceed
t: If r >x, then F„ (r) > 1 - E and hence (r rational) G(r) >- 1 - E, so that
F(x) >_ 1 - E. Suppose, on the other hand, that some coordinate of x is less
than -t:  Choose a rational r such that x <r and some coordinate of r is
less than - t; then F(r) <E, hence G(r) < E, and so F(x) < E. Therefore, for
every E there is a t such that

(29.1) F(x)
>1— E

<E

if xi > t for all j,

if x i < -t for some j.

If Bs -[y: - s < yf <xf , j < k ], then µ(SX ) = Lim, µ(B S ) = lim s L, BSF. Of
the 2 k terms in the sum AR F, all but F(x) go to 0 (s -* co) because of the
second part of (29.1). Thus' µ(Sx ) = F(x).t Because of the other part of
(29.1), µ is a probability measure. Therefore, F„ F and A n µ. •

Obviously Theorem 29.3 implies that tightness is a sufficient condition that
each subsequence of (µn} contain a further subsequence converging weakly
to some probability measure. (An easy modification of the proof of Theorem
25.10 shows that tightness is necessary for this as well.) And clearly the
corollary to Theorem 25.10 now goes through:

Corollary. If (µ n) is a tight sequence of probability measures, and if each
subsequence that converges weakly at all converges weakly to the probability
measure µ, then A n µ.

Characteristic Functions

Consider a random vector X = (X I , ..., Xk) and its distribution  in R k . Let
t • x = E u = I tü x if denote inner product. The characteristic function of X and
of µ is defined over R k by

(29.2) co(t)= fRke ir xµ (
dx

) _ E [ ei, 
x)

.

To a great extent its properties parallel those of the one-dimensional charac-
teristic function and can be deduced by parallel arguments.

t This requires proof because there exist (Problem 12.10) functions F' other than F for which
p(A) = A A F' holds for all rectangles A.
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The inversion formula (26.16) takes this form: For a bounded rectangle
A = [x: a u <x u 5 b, u <k] such that p(3A) = 0,

1 	 k e —ir„a„ _ e - ir„b„

(29.3) 	 µ( A) = lim  	 I^
T--400 (27) )117-u---1BTU =1 	

itu
cp(t) dt,

where BT =[t  E R k : I tu i < T, u < k ] and dt is short for dt, • dtk . To prove
it, replace cp(t) by the middle term in (29.2) and reverse the integrals as in
(26.17): The integral in (29.3) is

1 	 k e „a„ - e —ir „ b „
IT — 	r	 ^ 	 it

	eau'. dt µ ( ^)
(
27T 

k 
`"R k B u) Tu = 1

The inner integral may be evaluated by Fubini's theorem in R k , which gives

k sgn(x u -
IT = 

J
^ - 	° u )  S(T • Ix u - a u l)

Rku=1 	 7T

sgnOc u - bü ) S(T• lx u _bu l} µ(dx)•7r

Since the integrand converges to 1Zû=1p,,.b,(xu) (see (26.18)), (29.3) follows
as in the case k = 1.

The proof that weak convergence implies (iii) in Theorem 29.1 shows that
for probability measures and y on R k there exists a dense set D of reals
such that µ(OA) = v(tA) = 0 for all rectangles A whose vertices have coordi-
nates in D. If µ(A) = v(A) for such rectangles, then 1.1, and v are identical by
Theorem 3.3.

Thus the characteristic function cp uniquely determines the probability mea-
sure µ Further properties of the characteristic function can be derived from
the one-dimensional case by means of the following device of Cramer and
Wold. For t E R k , define h 1 : Rk -)R 1 by h 1 (x) = t •x. For real a, [x:
t x < a] is a half space, and its µ-measure is

(29.4) 	 µ[x: 	 =µh,-1(-co, a].

By change of variable, the characteristic function of µh71 is

(29.5) 	 fieiyµhl1(dy) = f ke ' x)µ()

	

 

=cp(St1,...,Stk), 	 SERI .

To know the µ-measure of every half space is (by (29.4)) to know each µhi
and hence is (by (29.5) for s = 1) to know cp(t) for every t; and to know the
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characteristic function cp of µ is to know µ. Thus µ is uniquely determined by
the values it gives to the half spaces. This result, very simple in its statement,
seems to require Fourier methods—no elementary proof is known.

If µ„ = µ for probability measures on R k, then cp„(t) --* cp(t) for the
corresponding characteristic functions by Theorem 29.1. But suppose that the
characteristic functions converge pointwise. It follows by (29.5) that for each
t the characteristic function of µ„h ' converges pointwise on the line to the
characteristic function of µhr '; by the continuity theorem for characteristic
functions on the line then, µ„h ;--' µh». Take the uth component of t to
be 1 and the others 0; then the µ h; ! are the marginals for the uth
coordinate. Since (µ„n, ') is weakly convergent, there is a bounded interval
(a,,, b,„] such that p,„[x E Rk: a u < x u < bu ] = µ„h( '(a u , hu ] > 1- €/k for all
n. But then „(A) > 1 - c for the bounded rectangle A -[x: a u <xu

u = 1 , ... ; k]. The sequence (µ„) is therefore, tight. If a subsequence (A n )
converges weakly to v, then (Fiji') converges to the characteristic function of
v, which is therefore cp(t). By uniqueness, v = µ, so that µ n . = µ. By the
corollary to Theorem 29.3, µ n = µ. This proves the continuity theorem for
k-dimensional characteristic functions: µ„ p, if and only if cp„(t) -) cp(t) for
all t.

The Cramér-Wold idea leads also to the following result, by means of
which certain limit theorems can be reduced in a routine way to the
one-dimensional case.

Theorem 29.4. For random vectors X„ = (Xn1 , ... , X„ k) and Y =
(Y1 , ... , Yk ), a necessary and sufficient condition for X„ = Y is that E 

Eû. l tu Yu for each (t l ,...,t k) in R k .

PROOF. The necessity follows from a consideration of the continuous
mapping h, above—use Theorem 29.2. As for sufficiency, the condition
implies by the continuity theorem for one-dimensional characteristic func-
tions that for each (t 1 , ... , tk )

E l elsEk- i t u Xnui -0 E l els4 -1rul

for all real s. Taking s = 1 shows that the characteristic function of X,,
converges pointwise to that of Y. 	 •

Normal Distributions in R k

By Theorem 20.4 there is (on some probability space) a random vector
X = (X, ... , Xk ) with independent components each having the standard
normal distribution. Since each Xu has density e —x2/2/ 27r, X has density
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(see (20.25))

(29.6)	 f(x) = 	 1 k/2 e-ix'z/2
(27r)

where IxI2= Eû_ x 2 denotes Euclidean norm. This distribution plays the
role of the standard normal distribution in R k . Its characteristic function is

k 	 k

(29.7)	 E 	_ 	 e -r„/2 = e -
l'i 2 / 2 .

u= 1 	 u= 1

Let A = [a.]] be a k X k matrix, and put Y =AX. where X is viewed as a
column vector. Since E[ Xa XR ] = Sa0 , the matrix I = [emu, ] of the covariances
of Y has entries Qu , = E[YuY;) = Ea= lauaa, a. Thus / =AA', where the
prime denotes transpose. The matrix / is symmetric and nonnegative defin-
ite: Eu , Qu , x u x, = IA'xI 2 >- O. View t also as a column vector with transpose
t', and note that t • x = t'x. The characteristic function of AX is thus

(29.8)	 EIe«"x)] = E[e' (A1 ' 1x ] = CV' ' 1z /2 - p - I'D/ 2

Define a centered normal distribution as any probability measure whose
characteristic function has this form for some symmetric nonnegative
definite 1.

If I, is symmetric and nonnegative definite, then for an appropriate
orthogonal matrix U, U'I U = D is a diagonal matrix whose diagonal ele-
ments are the eigenvalues of and hence are nonnegative. If  D o is the
diagonal matrix whose elements are the square roots of those of D, and if
A = UD o , then = AA'. Thus for every nonnegative definite there exists a
centered normal distribution (namely the distribution of AX) with covari-
ance matrix and characteristic function exp(-

If / is nonsingular, so is the A just constructed. Since X has density
(29.6), Y = AX has, by the Jacobian transformation formula (20.20), density
f(A -' x )Idet A -' I. From / =AA' follows Idet A -' I = (det /) -1 /2 . Moreover,
/ -1 = ( A') - 'A -', so that IA - ' x1 2 = x'ï - 'x. Thus the normal distribution
has density (27r) k /2(det 1) -1 /2 exp(- 2x' - 'x) if X is nonsingular. If I is
singular, the A constructed above must be singular as well, so that AX is
confined to some hyperplane of dimension k - 1 and the distribution can
have no density.

By (29.8) and the uniqueness theorem for characteristic functions in R k, a
centered normal distribution is completely determined by its covariance matrix.
Suppose the off-diagonal elements of I are 0, and let A be the diagonal
matrix with the o-t / 2 along the diagonal. Then I = AA', and if X has the
standard normal distribution, the components X1 are independent and hence
so are the components o-;; / ZX; of AX. Therefore, the components of a
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normally distributed random vector are independent if and only if they are
uncorrelated.

If M is a j X k matrix and Y has in R k the centered normal distribution
with covariance matrix /, then MY has in R' the characteristic function
exp(— f (M't)'/(M't)) = exp(— zt'(M/M')t) (t E R'). Hence MY has the
centered normal distribution in R' with covariance matrix M.M'. Thus a
linear transformation of a normal distribution is itself normal.

These normal distributions are special in that all the first moments vanish.
The general normal distribution is a translation of one of these centered
distributions. It is completely determined by its means and covariances.

The Central Limit Theorem

Let X„ _ (Xnl ,..., X,) be independent random vectors all having the same
distribution. Suppose that E[X ;,] < co; let the vector of means be c =
(c 1 ,..., ck ), where cu = E[Xnu ], and let the covariance matrix be Z =[0.,,,l,
where au , = E[(Xnu — c u XX,,, — c, )]. Put S„ = X,+ • • • +X,,.

Theorem 29.5. Under these assumptions, the distribution of the random
vector (Sn — nc)/ VW converges weakly to the centered normal distribution with
covariance matrix 1.

PROOF. Let Y= (Y1 , ... , Yk ) be a normally distributed random vector
with 0 means and covariance matrix 1. For given t = (t 1 , ... , tk ), let Z,, =
Eû_ 1tu(Xnu — c u ) and Z = Euk ,tutu . By Theorem 29.4, it suffices to prove
that n -' / 2 Ei -1 Z1 = Z (for arbitrary t). But this is an instant consequence of
the Lindeberg—Lévy theorem (Theorem 27.1). ■

PROBLEMS

29.1. A real function f on R k is everywhere upper semicontinuous (see Problem
13.8) if for each x and E there is a S such that Ix -- yI < S implies that
f(y) < f(x) - 1- E; f is lower semicontinuous if —f is upper semicontinuous.
(a) Use condition (iii) of Theorem 29.1, Fatou's lemma, and (21.9) to show
that, if µ n µ and f is bounded and lower semicontinuous, then

(29.9) 	lim inf jfdµ n >— ffdµ.
n

(b) Show that, if (29.9) holds for all bounded, lower semicontinuous functions
f, then µ n µ.

(c) Prove the analogous results for upper semicontinuous functions.
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29.2. (a) Show for probability measures on the line that µ X v„ µ X y if and only
if µ„ µ and v„ v.
(b) Suppose that X„ and Y,, are independent and that X and Y are indepen-
dent. Show that, if X„ X and Yn Y, then (X,,, Y,,) (X, Y) and hence that
X„+Yn = X+ Y.
(c) Show that part (b) fails without independence.
(d) If Fn = F and G„ = G, then F„ * G„ = F *G. Prove this by part (b) and
also by characteristic functions.

29.3. (a) Show that {µn) is tight if and only if for each E there is a compact set K
such that ,u„(K) > i — E for all n.
(b) Show that {µ n) is tight if and only if each of the k sequences of marginal
distributions is tight on the line.

29.4. Assume of (X„, Yn ) that X7 X and Y„ c. Show that (X.,, Yn ) (X, c). This
is an example of Problem 29.2(b) where X,, and Y. need not be assumed
independent.

29.5. Prove analogues for R k of the corollaries to Theorem 26.3.

29.6. Suppose that f(X) and g(Y) are uncorrelated for all bounded continuous f
and g. Show that X and Y are independent. Hint: Use characteristic func-
tions.

29.7. 20.16 T Suppose that the random vector X has a centered k-dimensional
normal distribution whose covariance matrix has 1 as an eigenvalue of multi-
plicity r and 0 as an eigenvalue of multiplicity k — r. Show that IXI 2 has the
chi-squared distribution with r degrees of freedom.

29.8. T Multinomial sampling. Let p ie ..., p k be positive and add to 1, and let
Z 1 , Z2, ... be independent k-dimensional random vectors such that Z„ has
with probability p i a 1 in the ith component and 0's elsewhere. Then f„=
(f„1, • • fnk) — gin= 1Zm is the frequency count for a sample of size n from a
multinomial population with cell probabilities pi . Put X„ i — (f,, i — npi )/ Vn7pi

and X„ _ (Xn1 ,..., Xnk ).
(a) Show that Xn has mean values 0 and covariances crij _ (S i^p1 -
pi0/
(b) Show that the chi squared statistic Ek 1(f„, — np i ) 2/np ! has asymptotically
the chi-squared distribution with k —1 degrees of freedom.

29.9. 20.26 T A theorem of Poincaré. (a) Suppose that X„ _ (X i, ... , Xnn ) is
uniformly distributed over the surface of a sphere of radius  Vtz in R”. Fix t,
and show that Xi1 ,..., X„, are in the limit independent, each with the
standard normal distribution. Hint: If the components of Y„ _ (Y„,,...,Y„n )
are independent, each with the standard normal distribution, then X,, has the
same distribution as %Y„/IY„I.
(b) Suppose that the distribution of X„ _ (Xn1 , ..., X„„) is spherically sym-
metric in the sense that X„/I X„I is uniformly distributed over the unit sphere.
Assume that I X„I 2/n 1, and show that X„ ,, ... , X„, are asymptotically
independent and normal.
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29.10. Let X„ = (Xn1 , . _ _ , (Tk ), n = 1, 2,..., be random vectors satisfying the mixing
condition (27.19) with a n = 4(n -5 ). Suppose that the sequence is stationary
(the distribution of (Xn,..., X„ +) is the same for all n), that E[Xnu ] = 0, and
that the Xnu are uniformly bounded. Show that if Sn = X 1 + • - • +X,,, then
Sn/ V has in the limit the centered normal distribution with covariances

E(X1uX1r J + E E[X1uX1+ J.r] + E E[ XI +J uXli J
.

J= 1	 1=1

Hint: Use the Cramér—Wold device.

29.11. T As in Example 27.6, let {Yn} be a Markov chain with finite state space
S = {1,..., s), say. Suppose the transition probabilities pu, are all positive and
the initial probabilities pu are the stationary ones. Let Liu be the number of i
for which and Y = u. Show that the normalized frequency count

n --1/2
(fn1 — np l ,. .., fnk — nPk)

has in the limit the centered normal distribution with covariances

Suc pu Pi + E (P2) -PuPr)+ E (piJ„1 -Pi Pu ).
l	 l = 1

29.12. Assume that

= 
611 612

 612 622

is positive definite, invert it explicitly, and show that the corresponding two-di-
mensional normal density is

(29.10) 	 f( XI, xz) 	 271-D 1 /`
exp

L
— 2D (6zzx i  2612x1x2 +6 11 x2) ,

where D = 6 11 622 - 42'

29.13. Suppose that Z has the standard normal distribution in R 1. Lei 	 be the
mixture with equal weights of the distributions of (Z, Z) and (Z, —Z), and let
(X, Y) have distribution ,u. Prove:
(a) Although each of X and Y is normal, they are not jointly normal.
(b) Although X and Y are uncorrelated, they are not independent.
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SECTION 30. THE METHOD OF MOMENTS*

The Moment Problem

For some distributions the characteristic function is intractable but moments
can nonetheless be calculated. In these cases it is sometimes possible to
prove weak convergence of the distributions by establishing that the moments
converge. This approach requires conditions under which a distribution is
uniquely determined by its moments, and this is for the same reason that the
continuity theorem for characteristic functions requires for its proof the
uniqueness theorem.

Theorem 30.1. Let p, be a probability measure on the line having finite
moments a  = foe œx kµ(dx) of all orders. If the power series Lk a k r k/k! has a
positive radius of convergence, then p. is the only probability measure with the
moments a I , a 2 , ... .

PROOF. Let f3k = f °' jxl kµ(dx) be the absolute moments. The first step is
to show that

(30.1)
Okrk
k ! --*0 , k - co,

for some positive r. By hypothesis there exists an s, 0 <s < 1, such
that a k s k/k! -* 0. Choose 0 < r <s; then 2 kr 2k - I <5 2k  for large k. Since
cxl2k-, < 1 + Jx1 2k ,

r2k- 1
02k- 	

r 2
1

-1 	
0202k0202k1 

( 2 k — 1)! —.< (2k — 1) r + (2k)!

for large k. Hence (30.1) holds as k goes to infinity through odd values; since
/3k = a k for k even, (30.1) follows.

By (26.4),

ne itx e ihx — 	 (Ihx)k
k!

k=0

liar'
(n +1)!'  

and therefore the characteristic function cp of µ satisfies

^(t + h) - E k^ f °° ( ^ ) k e irxµ(dx )
k-0	 -oe 	

l
< 1171

I '1+1)9,i+ ,

— (n +1)! '  

* This section may be omitted.
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By (26.10), the integral here is cp(k)(t). By (30.1),

(30.2) 	 (p(t +h) _ Eœ q)(k)(t )
kl 	 h k ,	 r .

k -0

If y is another probability measure with moments a k and characteristic
function t],(t), the same argument gives

(30.3)
(k) t

^i(t + h) _ E ^ k( 
) hk, 	 11/1< r.

k=0

Take t = 0; since cp(k)(0) = i kak = ti (k)(0) (see (26'.9)), cp and ly agree in
( -- r, r) and hence have identical derivatives there. Taking t = r - E and
t = - r + E in (30.2) and (30.3) shows that cp and i' also agree in (-2r + E, 2r
- E) and hence in (- 2r, 2r). But then they must by the same argument agree
in (- 3r, 3r) as well, and so on.t Thus cp and tfr coincide, and by the
uniqueness theorem for characteristic functions, so do a and i. •

A probability measure satisfying the conclusion of the theorem is said to
be determined by its moments.

Example 30.1. For the standard normal distribution, 'a /c ! < k!, and so the
theorem implies that it is determined by its moments. 	 •

But not all measures are determined by their moments:

Example 30.2. If N has the standard normal density, then e N has the
log-normal density

1	 1 e -(logx)2 /2
f(x) = V2Tr X

0

if x > 0,

if x< 0.

Put g(x) = f(x)(1 + sin(27 log x)). If

f kfs•(2log )dz0 , 	 k= 0,1,2,...,

then g, which is nonnegative, will be a probability density and will have the
same moments as f. But a change of variable log x = s + k reduces the

fiThis process is a version of analytic continuation.
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integral above to

1 œ
	e k2 / 2 f e s Z 1 2 s in 27rsds,

2Tr	 - co

which vanishes because the integrand is odd. 	 •

Theorem 30.2. Suppose that the distribution of X is determined by its
moments, that the Xn have moments of all orders, and that lim n E[X,r] =
E[ X r ] for r = 1, 2, .... Then X, = X.

PROOF. Let A n and µ be the distributions of Xn and X. Since E[X,2 ]
converges, it is bounded, say by K. By Markov's inequality, P[I X,l > x] <
K/x 2 , which implies that the sequence (µ n] is tight.

Suppose that A n, v, and let Y be a random variable with distribution v.
If u is an even integer exceeding r, the convergence and hence boundedness
of E[X,u ] implies that E[Xnk] -* E[Yr], by the corollary to Theorem 25.12.
By the hypothesis, then, E[Yr] = E[X i—that is, y and µ have the same
moments. Since p, is by hypothesis determined by its moments, y must be the
same as µ, and so µnk = A. The conclusion now follows by the corollary to
Theorem 25.10. •

Convergence to the log-normal distribution cannot be proved by establish-
ing convergence of moments (take X to have density f and the Xn to have
density g in Example 30.2). Because of Example 30.1, however, this approach
will work for a normal limit.

Moment Generating Functions

Suppose that µ has a moment generating function M(s) for s E [ — S o , S o ],
so > 0. By (21.22), the hypothesis of Theorem 30.1 is satisfied, and so u is
determined by its moments, which are in turn determined by M(s) via
(21.23). Thus µ is determined by M(s) if it exists in a neighborhood of O. The
version of this for one-sided transforms was proved in Section 22—see
Theorem 22.2.

Suppose that A n and p. have moment generating functions in a common
interval [ -so , so ], so > 0, and suppose that Mn(s) -* M(s) in this interval.
Since p,,[( - a, a)i < e -5o►°(M,(-s o ) + M,(so )), it follows easily that (i,} is
tight. Since M(s) determines µ, the usual argument now gives A n A.

tFor another proof, see Problem 26.7. The present proof does not require the idea of analyticity.
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r

Sr" = E E' 	 r
r! 	 1

ru ! u!u'
.. . Xrr^

L1 	nr ^

u =l 	 l•
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Central Limit Theorem by Moments

To understand the application of the method of moments, consider once
again a sum Sn = Xn1 + • • • +Xnkn , where Xn1 , ... , Xnk„ are independent and

(30.4) 	 E [XnkJ = 0, 	 E Xnk _0-n k , 2 = ^ 2
Sn	 (ink '

k

Suppose further that for each n there is an Mn such that !Xnk < M,„
k= 1,..., kn , with probability 1. Finally, suppose that

(30.5)
Mn

sn

All moments exist, ands

where E' extends over the u-tuples (r 1 , ... , ru) of positive integers satisfying
r + • • • + ru = r and E" extends over the u-tuples (i 1 ,..., i ü) of distinct
integers in the range 1 < is < k n .

By independence, then,

r 	I
(30.7) 	 E 

S
sn r =^ ^^ r I .r • r I u l An( r,,..., ru

),n	 u-1	 l 	 u'

where

(30.8) A n(r^,..., ru) = L 	E
r Xn)s1 . .. E[`^nlaj '

n L

and E' and E" have the same ranges as before. To prove that (30.7) converges
to the rth moment of the standard normal distribution, it suffices to show
that

(30.9) limA n (r l ,..., ru ) _
n

1 	 if r t = ••• =ru = 2,
0 otherwise

Indeed, if r is even, all terms in (30.7) will then go to 0 except the one for
which u= r/2 and ra = 2, which will go to r!/(r 1 ! • • • ru !u!) = 1 x 3 X 5
x • • • X (r - 1). And if r is odd, the terms will go to 0 without exception.

tTo deduce this from the multinomial formula, restrict the inner sum to u-tuples satisfying
1	 i 1 < • • • < i „ S k n and compensate by striking out the 1/u!.
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If ra = 1 for some a, then (30.9) holds because by (30.4) each summand in
(30.8) vanishes. Suppose that ra > 2 for each a and ra > 2 for some a. Then
r > 2u, and since lE[ X,r;]C < Mnra -2)0ni, it follows that A n(r i , ... , ru ) <
(M,/s,)r - z uA,(2, ... , 2). But this goes to 0 because (30.5) holds and because
A n(2, ... , 2) is bounded by 1 (it increases to 1 if the sum in (30.8) is enlarged
to include all the u-tuples (i 1 ,... , i u )).

It remains only to check (30.9) for r, = • • • = ru = 2. As just noted,
A(2,... , 2) is at most 1, and it differs from 1 by Esn  zuCrn 2. , the sum extending
over the (j 1 ,... , i u ) with at least one repeated index. Since? < Mn , the
terms for example with i u = i u _, sum to at most M„,-s 2u Eo 2.  arz <

Mn n
zs1z.
	nThus 1 — A (2, • , 2)<u 2Mzsnn--z

--^ 0. 	
-^

" 
This proves that the moments (30 7) converge to those of the normal

distribution and hence that Sn/sn N

Application to Sampling Theory

Suppose that n numbers

xn ,, x, Z ,..., xnn ,

not necessarily distinct, are associated with the elements of a population of
size n. Suppose that these numbers are normalized by the requirement

(30.10)
rt 	 n

xn;^ —_ 0, 	 xn
2h =_ 1,

h=1 	 h=1
M, = maxIx, h l.

hSn

An ordered sample X ... , Xnk is taken, where the sampling is without
replacement. By (30.10), E[XnkI = n0 and E[Xnk ] = 1/n. Let sn = k n/n be
the fraction of the population sampled. If the X,k were independent, which
they are not, Sn = X, 1 • • • +Xnk would have variance s, . If k, is small in
comparison with n, the effects of dependence should be small. It will be
shown that Sn /Sn — N if

(30.11) 	 sn = Mn -a 0, M, -^ 0, 	 k n -> co.
n

Since M,^ > n -1 by (30.10), the second condition here in fact implies the
third.

The moments again have the form (30.7), but this time E[ X„r), • • • XXy. ]
cannot be factored as in (30.8). On the other hand, this expected value is by
symmetry the same for each of the (k n)u = k n(k n - 1) • • • (k n - u + 1) choices
of the indices is in the sum E". Thus

A n(r i ,...,ru ) _ ( Sn) UE[X/
r i •.• X,^ü]•L

The problem again is to prove (30.9).
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The proof goes by induction on u. Now A„(r) = k nsn rn -1 Eh =1 X ;,h , so that
A n(1) = 0 and A n(2) = 1. If r>_ 3, then !xnh l <MM -2Xnh , and so jAn(r)I s
(Mn/sn)r-2 _-•> 0 by (30.11).

Next suppose as induction hypothesis that (30.9) holds with u — 1 in place
of u. Since the sampling is without replacement, E[Xnri • • • X,,ü] = Exnh , • • •
xnr% /(n)", where the summation extends over the u-tuples (h 1 ,... , h") of
distinct integers in the range 1 < h a < n. In this last sum enlarge the range by
requiring of (h 1 , h 2 , ... , h") only that h 2 ,... , h" be distinct, and then com-
pensate by subtracting away the terms where h 1 = h 2 , where h 1 = h 3 , and so
on. The result is

E[ X,ri • • • X ,^ __
nu
r 	E X r' EX r -

•••Xr„

n(n

( n)u 
1 	^ nl^	 ^ n 2 	 nu^

— ^^ (n)u -1
 E

L
^X, 2 • • . Xnâ+rtr • . • Xrû^.

a(-j2 (n) u

This takes the place of the factorization made possible in (30.8) by the
assumed independence there. It gives

A n(r 1 ,...,r") =
n 	 k,, —u +1

n — u + 1	 k,,
An(r1)An(r2,..., r")

k n —u+1 "
n —u+1 E A n(r2 ,...,r 1 +ra ,• .,r„).

a = 2

By the induction hypothesis the last sum is bounded, and the factor in
front goes to 0 by (30.11). As for the first term on the right, the factor in front
goes to 1. If r 1 0 2, then A n(r 1 ) --' 0 and A „(r2 ,..., ru ) is bounded, and so
A n(r 1 , ... , r") --> 0. The same holds by symmetry if ra 0 2 for some a other
than 1. If r 1 = • • • = r" = 2, then A n(r 1 ) = 1, and A n(r 2 , ... , r") --' 1 by the
induction hypothesis.

Thus (30.9) holds in all cases, and Sn /sn N follows by the method of
moments.

Application to Number Theory

Let g(m) be the number of distinct prime factors of the integer m; for
example g(3 4 x 5 2 ) = 2. Since there are infinitely many primes, g(m) is
unbounded above; for the same reason, it drops back to 1 for infinitely many
m (for the primes and their powers). Since g fluctuates in an irregular way, it
is natural to inquire into its average behavior.

On the space f/ of positive integers, let Pn be the probability measure that
places mass 1/n at each of 1,2,..., n, so that among the first n positive
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integers the proportion that are contained in a given set A is just P„(A). The
problem is to study P„[m: g(m) <x] for large n.

If Sp(m) is 1 or 0 according as the prime p divides m or not, then

(30.12) g(m) = ESp(m).

Probability theory can be used to investigate this sum because under P„ the
S(m) behave somewhat like independent random variables. If p i , ... , pu are
distinct primes, then by the fundamental theorem of arithmetic, 8 (m) =
• • • = 8 r, (m) = 1—that is, each pi divides m—if and only if the product

p i • pu divides m. The probability under P„ of this is just n - I times the
number of m in the range 1 < m < n that are multiples of p i • • • pu , and this
number is the integer part of n/p i • • • pu . Thus

(30.13)	P„[m: Spi(m) = 1, i = 1 , ... , u^ = 
1 	

	n 	pu

for distinct pi .
Now let Xp be independent random variables (on some probability space,

one variable for each prime p) satisfying

PIXp = 1] = p , 	PIXp=0 ^ =1— p .

If p i , ... , pu are distinct, then

(30.14) P[ X
P,
 = 1, i = 1, ..., u1 = 	

1
p I 	• pu

For fixed p 1 ,..., pu , (30.13) converges to (30.14) as n -i 00. Thus the behavior
of the Xp can serve as a guide to that of the Sp(m). If in s n, (30.12) is
Ep  n Sp(m), because no prime exceeding m can divide it. The ideal- is to
compare this sum with the corresponding sum Ep  „Xp .

This will require from number theory the elementary estimates

(30.15) 1
E p = loglog x + 0(1).

p SX

The mean and variance of Ep S n Xp are Ep „p -1 and Ep s n p — f(1 —p — I );
since Epp -2 converges, each of these two sums is asymptotically log log n.

Compare Problems 2.18, 5.19, and 6.16.
See, for example, Problem 18.17, or  HARDY & WRIGHT, Chapter XXII.
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Comparing Ep < „Sp(m) with Ep ‹ „Xp then leads one to conjecture the
Erdôs-Kac central limit theorem for the prime divisor function:

Theorem 30.3. For all x,

(30.16)	 Pn m :[
g(m) - log log n 

^x --> 1  fX eu2/2du.
log log n	 21r _.

PROOF. The argument uses the method of moments. The first step is to
show that (30.16) is unaffected if the range of p in (30.12) is further
restricted. Let {a„} be a sequence going to infinity slowly enough that

(30.17)

but fast enough that

(30.18)

log a
n
 -00

log n

^ 	
1
 = o( log log n )Ii 2 .

a„<p<n p

Because of (30.15), these two requirements are met if, for example, log a n _
(Iog n)/log log n.

Now define

(30.19) gn(m) _ E Sp(m).
p Sa„

For a function f of positive integers, iet

n
En[ f ] = n -1 E f(m)m=1

denote its expected value computed with respect to P„. By (30.13) for u = 1,

E„ E Sp = E P„[rn: Sp(m) = 1] ^ ^ 1 [
p >a„ 	 a„<pSn 	 an<pn p

By (30.18) and Markov's inequality,

Pn[m:,g(m) - gn(m), ? E(loglogn) 1 1 --› O.

Therefore (Theorem 25.4), (30.16) is unaffected if gn(m) is substituted for
g(m).
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Now compare (30.19) with the corresponding sum Sn L P < an Xp. The
mean and variance of Sn are

cn = sn= E p 
1—

p ,p < a n

and each is log log n + o(log log n)"2 by (30.18). Thus (see Example 25.8),
(30.16) with g(m) replaced as above is equivalent to

x
(30.20)	 Pn m: gn(m - cn <x -^  1  J e-" Z ^Zdu.

n 	 27r - ^

It therefore suffices to prove (30.20).
Since the XP are bounded, the analysis of the moments (30.7) applies

here. The only difference is that the summands in Sn are indexed not by the
integers k in the range k < k n but by the primes p in the range p 5 a n ; also,
XP must be replaced by X - p - ' to center it. Thus the rth moment of
(Sn - cn )/sn converges to that of the normal distribution, and so (30.20) and
(30.16) will follow by the method of moments if it is shown that as n 00,

(30.21)
r

E JnS-nCn	 -E gnCn
n ^
	 sn
	)r -* 0

for each r.
Now E[S,,] is the sum

(30.22) 7 E'	 r! 	1 ^	 Pi
" E X 	 • XPu ^

r i 	r„
^. 	 r ...	 •r 	 u l 	 '

u=1 	 ^^
I 	

"^I

where the range of E' is as in (30.6) and (30.7), and E" extends over the
u-tuples (p 1 ,..., pu ) of distinct primes not exceeding a,,. Since XP assumes
only the values 0 and 1, from the independence of the XP and the fact that
the pi are distinct, it follows that the summand in (30.22) is

(30.23)
_ 	1E( XPI . .. 

XPu1	 pl .. • Pu

By the definition (30.19), En[gn] is just (30.22) with the summand replaced
by E,[S4 • • • Sp«]. Since SP(m) assumes only the values 0 and 1, from (30.13)
and the fact that the pi are distinct, it follows that this summand is

1 1 	n 	Ir 	 _
En l sP ^ • . . sPu ^ 	 n [Pi  .

(30.24)
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But (30.23) and (30.24) differ by at most 1/n, and hence E[S] and En [ g,Ç ]
differ by at most the sum (30.22) with the summand replaced by 1/n.
Therefore,

r

(30.25) 	 lE[Sn] —En [gn]1 < n E 1 <
p5a„

a;,

n'

Now

r
	r 	 ^-+

	E [( Sn — Cn) 	 L k() E[s:I(—cflyk
k = 0

and En[(gn — cn )r] has the analogous expansion. Comparing the two expan-
sions term for term and applying (30.25) shows that

(30.26) 	 IE[(Sn—Cn)r] — En[(gn — Cn) r ] I
r

r

< E k
' a

n n -k = n (an + cn) •
k = 0

Since cn s an , and since an/n 0 by (30.17), (30.21) follows as required. ■

The method of proof requires passing from (30.12) to (30.19). Without
this, the a n on the right in (30.26) would instead be n, and it would not
follow that the difference on the left goes to 0; hence the truncation (30.19)
for an an small enough to satisfy (30.17). On the other hand, a n must be
large enough to satisfy (30.18), in order that the truncation leave (30.16)
unaffected.

PROBLEMS

30.1. From the central limit theorem under the assumption (30.5) get the full
Lindeberg theorem by a truncation argument.

30.2. For a sample of size kn with replacement from a population of size n, the
probability of no duplicates is 'VIVO  --1/n). Under the assumption
kn/ v — 0 in addition to (30.10), deduce the asymptotic normality of S n by a
reduction to the independent case.

30.3. By adapting the proof of (21.24), show that the moment generating function of
µ in an arbitrary interval determines µ.

30.4. 25.13 30.3 T Suppose that the moment generating function of µ„ converges
to that of ,u in some interval. Show that An µ.
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30.5. Let p, be a probability measure on R k for which fR kIx ; I,u(dx) < co for i =
k and r = 1, 2,... Consider the cross moments

a(ri,...,rk)= fRkx ^, ... r kkµ(dx)

for nonnegative integers r; .
(a) Suppose for each i that

(30.27)
^ r f^ r̂  k ix;i Î-^(^-)

r 	 R

has a positive radius of convergence as a power series in O. Show that p is
determined by its moments in the sense that, if a probability measure y
satisfies a(r i ,..., rk ) = 14. • • xkkv(dx) for all r 1 ,.... rk , then y coincides
with p,.
(b) Show that a k-dimensional normal distribution is determined by its mo-
ments.

30.6. T Let A n and p, be probability measures on R k. Suppose that for each i,
(30.27) has a positive radius of convergence. Suppose that

fie
x '1.1 .. • x ( dx) fRkx • • • xk (d-x)

for all nonnegative integers r 1 ,..., rk . Show that µ"	 p..

30.7. 30.5 T Suppose that X and Y are bounded random variables and that X'
and Y" are uncorrelated for m, n = 1, 2, .... Show that X and Y are indepen-
dent.

30.8. 26.17 30.6 T (a) In the notation (26.32), show for A # 0 that

(30.28) M[(cos Âx) r ] = r/2 2r
for even r and that the mean is 0 for odd r. It follows by the method of
moments that cos A x has a distribution in the sense of (25.18), and in fact of
course the relative measure is

(30.29) p[x: cos Axs u] =1
— ^ 

arccos u, —1 <u<1.

(b) Suppose that A I , A 2 ,... are linearly independent over the field of rationals
in the sense that, if n 1 A I + +nm A m = 0 for integers no then n i = • • =
n ,,, = 0. Show that

(30.30) MI
k

11 (cos Avx)r]_
k

M [(COS Avx )r°]

v =f v =i

for nonnegative integers ri,..., rk.
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(e) Let X1, X2,... be independent and have the distribution function on the
right in (30.29). Show that

(30.31)

(d) Show that

k
p x : E cos A i x <u =P[X i + ••• -#-Xk ÇU].

1 =i

k
(30.32) lim p x: u i <11-17 E cos A ^ x < u 2 =

k--0 co 	
.1=i

1 	f"z -^ 2 z du.
"1/T

1 e ^

.- 7n-u,

For a signal that is the sum of a large number of pure cosine signals with
incommensurable frequencies, (30.32) describes the relative amount of time
the signal is between u i and u 2 .

30.9. 6.16 1 From (30.16), deduce once more the Hardy-Ramanujan theorem (see
(6.10)).

30.10. 1 (a) Prove that (if Pn puts probability 1/n at 1, ... , n)      

(30.33) IimP„ m:
log log m - log log n 

1Jlog log n  

(b) From (30.16) deduce that (see (2.35) for the notation)

(30.34)	 D m: g(m - loglogm <
x = kn. f::-"Z/z du.

Jloglogm  

30.11. 	 Let G(m) be the number of prime factors in m with multiplicity counted.
In the notation of Problem 5.19, G(m) = Ep ap(m).
(a) Show for k >_ 1 that Pn [m: ap(m) -Sp(m) >- k] < 1/pk+i; hence En[ap -

p ] < 2/p 2 .
(b) Show that En [G - g] is bounded.
(c) Deduce from (30.16) that

G( m) - log log n 	 1 fx	 u 2 zPn m: 	 <- x ^ 	 J e - ^ du.
I/loglog n 	 27r -^

(d) Prove for G the analogue of (30.34).

30.12. 1 Prove the Hardy-Ramanujan theorem in the form  

D m: g(m) log log m  

Prove this with G in place of g.



CHAPTER 6

Derivatives and
Conditional Probability

SECTION 31. DERIVATIVES ON THE LINE

This section on Lebesgue's theory of derivatives for real functions of a real
variable serves to introduce the general theory of Radon-Nikodym deriva-
tives, which underlies the modern theory of conditional probability. The
results here are interesting in themselves and will be referred to later for
purposes of illustration and comparison, but they will not be required in
subsequent proofs.

The Fundamental Theorem of Calculus

To what extent are the operations of integration and differentiation inverse
to one another? A function F is by definition an indefinite integral of another
function f on [a, b] if

	

(31.1)	 F(x) - F(a) = fx f(t) dt

for a .x <b; F is by definition a primitive of f if it has derivative f:

	(31.2)	 F'(x) = f(x)

for a < x < b. According to the fundamental theorem of calculus (see (17.5)),
these concepts coincide in the case of continuous f:

Theorem 31.1. Suppose that f is continuous on [a, b].

(i) An indefinite integral off is a primitive of f: if (31.1) holds for all x in
[ a, IA then so does (31.2).

(ii) A primitive off is an indefinite integral of f: if (31.2) holds for all x in
[a, b], then so does (31.1).

* This section may be omitted.
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A basic problem is to investigate the extent to which this theorem holds if
f is not assumed continuous. First consider part (i). Suppose f is integrable,
so that the right side of (31.1) makes sense. If f is 0 for x <m and 1 for
x >_ m (a < m <b), then an F satisfying (31.1) has no derivative at m. It is
thus too much to ask that (31.2) hold for all x. On the other hand, according
to a famous theorem of Lebesgue, if (31.1) holds for all x, then (31.2) holds
almost everywhere—that is, except for x in a set of Lebesgue measure O. In
this section almost everywhere will refer to Lebesgue measure only. This
result, the most one could hope for, will be proved below (Theorem 31.3).

Now consider part (ii) of Theorem 31.1. Suppose that (31.2) holds almost
everywnere, as in Lebesgue's theorem, just stated. Does (31.1) follow? The
answer is no: If f is identically 0, and if F(x) is 0 for x < m and 1 for x > m
(a <m <b), then (31.2) holds almost everywhere, but (31.1) fails for x> m.
The question was wrongly posed, and the trouble is not far to seek: If f is
integrable and (31.1) holds, then

(31.3)	 F(x+h) — F(x) = f 
b 

1(x , x+h)(t)f(t)dt ---> 0
a

as h 4.0 by the dominated convergence theorem. Together with a similar
argument for h TO this shows that F must be continuous. Hence the question
becomes this: If F is continuous and f is integrable, and if (31.2) holds
almost everywhere, does (31.1) follow? The answer, strangely enough, is still
no: In Example 31.1 there is constructed a continuous, strictly increasing F
for which F'(x) = 0 except on a set of Lebesgue measure 0, and (31.1) is of
course impossible if f vanishes almost everywhere and F is strictly increas-
ing. This leads to the problem of characterizing those F for which (33.1) does
follow if (31.2) holds outside a set of Lebesgue measure 0 and f is integrable.
In other words, which functions are the integrals of their (almost everywhere)
derivatives? Theorem 31.8 gives the characterization.

It is possible to extend part (ii) of Theorem 31.1 in a different direction. Suppose
that (31.2) holds for every x, not just almost everywhere. In Example 17.4 there was
given a function F, everywhere differentiable, whose derivative f is not integrable,
and in this case the right side of (31.1) has no meaning. If, however, (31.2) holds for
every x, and if f is integrable, then (31.1) does hold for all x. For most purposes of
probability theory, it is natural to impose conditions only almost everywhere, and so
this theorem will not be proved here. t

The program then is first to show that (31.1) for integrable f implies that
(31.2) holds almost everywhere, and second to characterize those F for which
the reverse implication is valid. For the most part, f will be nonnegative and
F will be nondecreasing. This is the case of greatest interest for probability
theory; F can be regarded as a distribution function and f as a density.

t For a proof, see RuDiN 2 , p 179
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In Chapters 4 and 5 many distribution functions F were either shown to
have a density f with respect to Lebesgue measure or were assumed to have
one, but such F's were never intrinsically characterized, as they will be in this
section.

Derivatives of Integrals

The first step is to show that a nondecreasing function has a derivative almost
everywhere. This requires two preliminary results. Let A denote Lebesgue
measure.

Lemma 1. Let A be a bounded linear Borel set, and let	 be a collection
of open intervals covering A. Then 	 contains a finite, disjoint subcollection
I,,..., Ik for which Ek_ , A(ti ) >_ A(A)/6.

PROOF. By regularity (Theorem 12.3) A contains a compact subset K
satisfying A(K) >- A(A)/2. Choose in a finite subcollection Jo covering
K. Let I I be an interval in ,sfo of maximal length; discard from ,5 -0 the
interval I I and all the others that intersect Among the intervals remaining
in ,sfQ , let I2 be one of maximal length; discard I 2 and all intervals that
intersect it. Continue this way until .mo is exhausted. The 4 are disjoint. Let
J1 be the interval with the same midpoint as I. and three times the length. If
I is an interval in JQ that is cast out because it meets 4, then I cJi. Thus
each discarded interval is contained in one of the Ji , and so the J cover K.
Hence EA(l) = EA(4)/3 >_ A(K)/3 > A(A)/6. •

If

(31.4)	 A: a=ao <a,< ••• <a k =b

is a partition of an interval [a, b] and F is a function over [a, b], let

k

(31.5) ^IF^Ia = E 1F(ai) - F(ai-i)1•
i= 1

Lemma 2. Consider a partition (31.4) and a nonnegative B. If

(31.6)

and if

(31.7)

F(a) < F(b),

F(ai) - F(a ^ - t) S -B
a i - a i _,

for a set of intervals [a i _,, a i ] of total length d, then

^^F^^n >^F(b) - F(a)I +20d.



SECTION 31. DERIVATIVES ON THE LINE
	 403

This also holds if the inequalities in (31.6) and (31.7) are reversed and - 0 is
replaced by 0 in the latter.

PROOF. The figure shows the case where k = 2 and the left-hand interval
satisfies (31.7). Here F falls at least Od over [a, a + d], rises the same amount
over [a + d, u], and then rises F(b) - F(a) over [u, b].

For the general case, let E' denote summation oser those i satisfying (31.7)
and let E" denote summation over the remaining i (1 s i k ). Then

IIFIIa = E ' (F(ar-i) -F(a1))+ E"IF(a;) - F(a;-1)I

E'(F(a;-i) - F(a i )) +1E" (F(ai) -F(a,-i))1

= E'(F(a;_1) - F(a,))+1(F(b) - F(a)) + E' (F(a r -1) - F(at))I.

As all the differences in this last expression are nonnegative, the absolute-
value bars can be suppressed; therefore,

IIFIIa - F(h) - F(a) + 2 E'(F(a 1 _ I ) - F(a ; ))

	

Fe))-F(a)+20E'(a ; -a i _ 1 ).	 ■
A function F has at each x four derivates, the upper and lower right

derivatives

DF(x) = lim sup 
F(x + h)- F(x ) 

h 10 h

DF(x) = lim inf 
F(x+h) - F(x) 

h10 	 h

and the upper and lower left derivatives

F(x)-F(x --h) 
FD(x) = limsup 	 h

h10

FD(x) = lim inf 
F(x) -F(x -h)

h10 	 h	 •
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There is a derivative at x if and only if these four quantities have a common
value. Suppose that F has finite derivative F'(x) at x. If u < x <v, then

F(v) —F(u) F 1(x)v — u 	 ( )

Therefore,

F(v)—F(x) F'(x)v — x
F(x) — F(u)

F' (x)x—u 	 ( )

< v - x
v - U

(31.8)
F(v) — F(u) , 

F(x)v — u

as u I x and y J, x; that is to say, for each E there is a 5 such that u <x < v
and 0 < v — u <8 together imply that the quantities on either side of the
arrow differ by less than E.

Suppose that F is measurable and that it is continuous except possibly at
countably many points. This will be true if F is nondecreasing or is the
difference of two nondecreasing functions. Let M be a countable, dense set
containing all the discontinuity points of F; let rn(x) be the smallest number
of the form k/n exceeding x. Then

D F ( x ) = lim 	 sup 
F( yÿ — 

x
(x)    ;

n-+00 x<y<r„(x)
yEM

the function inside the limit is measurable because the x-set where it exceeds
a is

U [x: x<y<r„(.C),F(y)—F(x)>a(y--x)].
yEM

Thus D F(x) is measurable, as are the other three derivates. This does not
exclude infinite values. The set where the four derivates have a common
finite value F' is therefore a Borel set. In the following theorem, set F' = 0
(say) outside this set; F' is then a Borel function.

Theorem 31.2. A nondecreasing function F is differentiable almost every-
where, the derivative F' is nonnegative, and

(31.9) 	 f1'F'(t)dt^F(b) —F(a)
a

for alla and b.

This and the following theorems can also be formulated for functions over
an interval.
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PROOF. If it can be shown that

(31.10) DF(x) - F D(x)

except on a set of Lebesgue measure 0, then by the same result applied to
G(x) _ —F(—x) it will follow that FD(x) — D G( —x) < G D( -x) = DF(x) al-
most everywhere. This will imply that DF(x) <D F(x) < F D(x) < FD(x) <
DF(x) almost everywhere, since the first and third of these inequalities are
obvious, and so, outside a set of Lebesgue measure 0, F will have a
derivative, possibly infinite. Since F is nondecreasing, F' must be nonnega-
tive, and once (31.9) is proved, it will follow that F' is finite almost every-
where.

If (31.10) is violated for a particular x, then for some pair 01,0 of rationals
satisfying a </3, x will lie in the set Aao = [x: F D(x) <a </i <DF(x)].
Since there are only countably many of these sets, (31.10) will hold outside a
set of Lebesgue measure 0 if A(A as ) = 0 for all a and P.

Put G(x) = F(x) — 2(a + $)x and 0 = 2(0 — a). Since differentiation is
linear, A as = B8 = [ x: GD(x) < - 0 < 0 < D G(x)]. Since F and G have only
countably many discontinuities, it suffices to prove that A(C0 ) = 0, where Co

is the set of points in BB that are continuity points of G. Consider an interval
(a, b), and suppose for the moment that G(a) < G(b). For each x in Co

satisfying a <x <b, from G D(x) < —0 it follows that there exists an open
interval (a x , bx ) for which x E (a x , bx ) c (a, b) and

G(bx) — G(ax)
 <

bx — ax

There exists by Lemma 1 a finite, disjoint collection (ax ., bx ) of these
intervals of total length E(b x  — a x ) >_ A((a, b) n C0 )/6. Let Ô be the parti-
tion (31.4) of [ a, b ] with the poi

, ,
nts a xe and bx .

 in the role of the a l ,. . , a 
By Lemma 2,

(31.12) IIGIIa >_ 1G(b) — G(a)l + 30A((a, b) n C0 ).

If instead of G(a) < G(b) the reverse inequality holds, choose a x and bx so
that the ratio in (31.11) exceeds 0, which is possible because D G(x) > 0 for
x E CO . Again (31.12) follows.

In each interval [a, b] there is thus a partition (31.4) satisfying (31.12).
Apply this to each interval [a 1 _ 1 , a ; ] in the partition. This gives a partition A i

that refines A, and adding the corresponding inequalities (31.12) leads to

IIGIIa, ? IIGIIa + 13- 0A((a,  b) n CB ).

Continuing leads to a sequence of successively finer partitions A n such that

(31.13) 	 IIGIIa >_ n 14(a,  b) n Co).
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Now II GI I a is bounded by !F(b) — F(a)I+ ja + f3l(b — a) because F is mono-
tonic. Thus (31.13) is impossible unless À((a, b) n C0 ) = 0. Since (a, b) can be
any interval, À(CB ) = 0. This proves (31.10) and establishes the differentiabil-
ity of F almost everywhere.

It remains to prove (31.9). Let

(31.14) fn(x) — F(x
+n - ') —F(x)

n
_

'

Now fn is nonnegative, and by what has been shown, fn(x) -+ F'(x) except
on a set of Lebesgue measure 0. By Fatou's lemma and the fact that F is
nondecreasing,

fbF$()  dx S liln inf f b fn( x ) dx
a 	n a

= lim inf [ni  b +n-I F. (x) dx — nfa+ n- F(x) dx Î
n 	 b 	 a	 1

<lim infiF(b +n - ')—F(a)1 =F(b+) —F(a).
n

Replacing b by b — E and letting E -' 0 gives (31.9). 	 v

Theorem 31.3. If f is nonnegative and integrable, and if F(x) = f %f(t)  dt,
then F'(x) = f(x) except on a set of Lebesgue measure 0.

Since f is nonnegative, F is nondecreasing and hence by Theorem 31.2 is
differentiable almost everywhere. The problem is to show that the derivative
F' coincides with f almost everywhere.

PROOF FOR BOUNDED f Suppose first that f is bounded by M. Define f„
by (31.14). Then fn(x) = n fx + n f(t) dt is bounded by M and converges
almost everywhere to F'(x), so that the bounded convergence theorem gives

fbFI() dx = lim f bfn( x) dx
a 	n a

= linm n f
b

b+n-!F(x) dx — n fa +n -1F(x) dx .

Since F is continuous (see (31.3)), this last limit is F(b) — F(a) = faf(x) dx.
Thus fA F'(x) dx = fA f(x) dx for bounded intervals A = (a, M. Since these

form a Tr-system, it follows (Theorem 16.10(iii)) that F' = f almost every-
where. ■
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PROOF FOR INTEGRABLE f Apply the result for bounded functions to f
truncated at n: If h n(x) is f(x) or n as f(x) < n or f(x) > n, then Hn(x) =
f x cfi n(t) dt differentiates almost everywhere to h,r(x) by the case already
treated. Now F(x)=.11,,(x)+ f x m(f(t) - h n(t)) dt; the integral here is nonde-
creasing because the integrand is nonnegative, and it follows by Theorem
31.2 that it has almost everywhere a nonnegative derivative. Since differenti-
ation is linear, F'(x) >- H,(x) = h n(x) almost everywhere. As n was arbitrary,
F'(x) ? f(x) almost everywhere, and so jbF'(x)dx >_ j,bf(x)dx = F(b) - F(a).
But the reverse inequality is a consequence of (31.9). Thereforé, jab(F'(x) -
f(x))dx = 0, and as before F' = f except on a set of Lebesgue measure O. •

Singular Functions

If f(x) is nonnegative and integrable, differentiating its indefinite integral
f x m f(t) dt leads back to f(x) except perhaps on a set of Lebesgue measure
O. That is the content of Theorem 31.3. The converse question is this: If F(x)
is nondecreasing and hence has almost everywhere a derivative F'(x), does
integrating F'(x) lead back to F(x)? As stated before, the answer turns out
to be no even if F(x) is assumed continuous:

Example 31.1. Let X 1 , X2 , ... be independent, identically distributed
random variables such that P[ X,, = 0] =p c, and P[ X„ = 1 ] = p i = 1 - p 0 , and
let X = En  X,,2 - ". Let F(x) = P[ X < x ] be the distribution function of X.
For an arbitrary sequence u 1 , u 2 ,... of 0's and l's, P[ X,, = u n , n = 1, 2,...] =
limn 

pul 
• • ° pun = 0; since x can have at most two dyadic expansions

x = En u n 2 -n, P[X =x1= O. Thus F is everywhere continuous. Of course,
F(0) = 0 and F(1) = 1. For 0 < k < 2n, k2_n has the form En 1 u ;2 - ' for
some n-tuple (u 1 ,..., u,,) of 0's and l's. Since F is continuous,

(31.15) F (k 2n 
l)

 - F ( 2 P 2<  < 
k2n l 

11 

= 
P[ X; 

= u ; , i < n] = pu • pun .n

This shows that F is strictly increasing over the unit inte rval.
If p o = p 1 = Z, the right side of (31.15) is 2 - ", and a passage to the limit

shows that F(x) =x for 0 <x < 1. Assume, however, that p 0 Op 1 . It will be
shown that F'(x) = 0 except on a set of Lebesgue measure 0 in this case.
Obviously the derivative is 0 outside the unit inte rval, and by Theorem 31.2 it
exists almost everywhere inside it. Suppose then that 0 <x <1 and that F
has a derivative F'(x) at x. It will be shown that F'(x) = 0.

For each n choose k n so that x lies in the interval I„= (k n 2 - ",
(kn + 1)2 - "]; In is that dyadic interval of rank n that contains x. By (31.8),

P[ X E In ] - F(( k n + 1)2 —n ) — F( k„2-n) 
	 x) .2—n	 2 -n
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Graph of F(x) for p o = .25, p 1 _ .75. Because of the recursion (31.17), the part of the graph
over [0,.5] and the part over [.5, 1] are identical, apart from changes in scale, with the whole
graph Each segment of the curve therefore contains scaled copies of the whole, the extreme
irregularity this implies is obscured by the fact that the accuracy is only to within the width of the
printed line.

If F'(x) is distinct from 0, the ratio of two successive terms here must go to 1,
so that

(31.16)
P[ X E In+ I] 	1
P[X EIn] ' 2'

If In consists of the reals with nonterminating base-2 expansions beginning
with the digits u I , ..., un , then P[X E In ] = pui • . • pL1n by (31.15). But In+ 1
must for some un + I consist of the reals beginning u 1 ,... , u n , u n + I (un +, is 1
or 0 according as x lies to the right of the midpoint of In or not). Thus
P[X E In+ I ]/P[ X E In I = pu i is either pQ or p 1 , and (31.16) is possible only
if p0 = p i , which was excluded by hypothesis.

Thus F is continuous and strictly increasing over [0,11, but F'(x ) = 0
except on a set of Lebesgue measure O. For 0 <x s f independence gives
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F(x) = P[X ] = 0, E72 ..=2 	< 2x] = p0 F(2x). Similarly, F(x) - Po =
p, F(2 x -- 1) for z < x < 1. Thus

(31.17)
p0F(2x) 	 if 0 <x < 2,

F(x)=
po +p,F(2x- 1) if i <x <1.

In Section 7, F(x) (there denoted Q(x)) entered as the probability of success
at bold play; see (7.30) and (7.33). 	 •

A function is singular if it has derivative 0 except on a set of Lebesgue
measure 0. Of course, a step function constant over intervals is singular.
What is remarkable (indeed, singular) about the function in the preceding
example is that it is continuous and strictly increasing but nonetheless has
derivative 0 except on a set of Lebesgue measure O. Note that there is strict
inequality in (31.9) for this F.

Further properties of nondecreasing functions can be discovered through
a study of the measures they generate. Assume from now on that F is
nondecreasing, that F is continuous from the right (this is only a normaliza-
tion), and that 0 = lim, r _ m F(x) < lim a _, „ F(x) = m <00. Call such an F
a distribution function, even though m need not be 1. By Theorem 12.4 there
exists a unique measure 11, on the Borel sets of the line for which

(31.18) 	 µ(a, bj = F(b) - F(a).

Of course, µ(R') = m is finite.
The larger F' is, the larger µ is:

Theorem 31.4. Suppose that F and u. are related by (31.18) and that F'(x )
exists throughout a Borel set A.

(i) If F'(x) s a for x EA, then t.t(A) < aA(A).
(ii) If F'(x) >_ a for x EA, then µ(A) > «MA).

PROOF. It is no restriction to assume A bounded. Fix e for the moment.
Let E be a countable, dense set, and let A„= n (A n I), where the intersec-
tion extends over the intervals I = (u, v] for which u, v E E, 0 < A(I)<n - ' ,
and

(31.19) 	 µ(I) <(a+E)A(I).

Then A" is a Borel set and (see (31.8)) A n " A under the hypothesis of (i).
By Theorem 11.4 there exist disjoint intervals Ink (open on the left, closed on
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the right) such that A n C U k ink and

(31.20) 	 EA(Ink) <A(A n ) +E.
k

It is no restriction to assume that each Ink has endpoints in E, meets A n ,
and satisfies A(Ink ) < n -1 . Then (31.19) applies to each Ink , and hence

kt(An) < Eµ(ink) < (a+E) LA(Ink) <(a+E)(A(A n ) +E).
k 	 k

In the extreme terms here let n --* co and then E --* 0; (i) follows.
To prove (ii), let the countable, dense set E contain all the discontinuity

points of F, and use the same argument with µ(I) > (a — E)A(I) in place of
(31.19) and E kµ(Ink ) < µ(A n ) + E in place of (31.20). Since E contains all
the discontinuity points of F, it is again no restriction to assume that each Ink
has endpoints in E, meets A,,, and satisfies A(Ink ) < n —'. It follows that

^d( A n ) + E > 	 µ( Ink ) > (a — E) EA(Ink) > (a—E)A(An).
k 	 k

Again let n co andthen E -*O. 	 •

The measures p. and A have disjoint supports if there exist Borel sets Sµ

and SA . such that

(31.21)
A(R1 - SA ) =0,

Sµ n SA = O .

Theorem 31.5. Suppose that F and p, are related by (31.18). A necessary
and sufficient condition for µ and A to have disjoint supports is that F'(.z) = 0
except on a set of Lebesgue measure 0.

PROOF. By Theorem 31.4, µ[x: l xk a, F'(x) ^ E] < 2aE, and so (let
E -i 0 and then a - > co) µ[x: F'(x) = 0] = O. If F'(x) = 0 outside a set of
Lebesgue measure 0, then SA = [x: F'(x) = 0] and Sµ = R' — SA satisfy (31.21).

Suppose that there exist Sp, and SA satisfying (31.21). By the other half of
Theorem 31.4, EA[x: F'(x) >_ E] = EA[x: x E SA, F'(x) >_ E] < µ(SA ) = 0, and
so (let E —) 0) F'(x) = 0 except on a set of Lebesgue measure 0. •

Example 31.2. Suppose that is discrete, consisting of a mass m k at each
of countably many points x k . Then F(x) = Em k , the sum extending over the
k for which x k 5 x. Certainly, p. and A have disjoint supports, and so F' must
vanish except on a set of Lebesgue measure O. This is directly obvious if the
x k have no limit points, but not, for example, if they are dense. •
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Example 31.3. Consider again the distribution function F in Example
31.1. Here µ(A) = P[X E A]. Since F is singular, µ and A have disjoint
supports. This fact has an interesting direct probabilistic proof_

For x in the unit interval, let d 1 (x ), d 2 (x ), ... be the digits in its nontermi-
nating dyadic expansion, as in Section 1. If (k2 - " , (k + 1)2 -1 is the dyadic
interval of rank n consisting of the reals whose expansions begin with the
digits u 1 , ..., u n , then, by (31.15),

(31.22) 	 µ(2 , k2
n l = p,[x: d i(x) =u l , i <n] =pu I 

... pun.

If the unit interval is regarded as a probability space under the measure µ ,

then the d i(x) become random variables, and (31.22) says that these random
variables are independent and identically distributed and µ[ x: d i(x) = 0] = p 0 ,
µ[x: d i(x) = 11= p,.

Since these random variables have expected value p,, the strong law of
large numbers implies that their averages go to p i with probability 1:

(31.23)
n

µ x E( 0,1 : l i m n E d ; ( x) =p i } 1.
n 	 ; ^^

On the other hand, by the normal number theorem,

(31.24) A x E(0,1]: lim n E d;(x) = 
1
	1.

n 	= 1

(Of course, (31.24) is just (31.23) for the special case po — p, = 2; in this case
µ and A coincide in the unit interval.) If p 1 * 2, the sets in (31.23) and
(31.24) are disjoint, so that p. and A do have disjoint supports.

It was shown in Example 31.1 that if F'(x) exists at all (0 <x < 1), then it
is O. By part (i) of Theorem 31.4 the set where F'(x) fails to exist therefore
has µ-measure 1; in particular, this set is uncountable. •

In the singular case, according to Theorem 31.5, F' vanishes on a support
of A. It is natural to ask for the size of F' on a support of  p.. If B is the x-set
where F has a finite derivative, and if (31.21) holds, then by Theorem 31.4,
µ[x E B: F'(x)<n]=µ[xEB^1S: F'(x)<n]<nA(Sµ )= 0, and hence
µ(B) = O. The next theorem goes further.

Theorem 31.6. Suppose that F and  are related by (31.18) and that p.
and A have disjoint supports. Then, except for x in a set of µ-measure 0,
F D( x) °°•
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If j has finite support, then clearly F D(x) = co if µ(x) > 0, while DF(x) = 0
for all x. Since F is continuous from the right, FD and DF play different
roles.t

PROOF. Let A„ be the set where F D(x) < n. The problem is to prove
that µ(A n ) = 0, and by (31.21) it is enough to prove that µ(A n n S) = O.
Further, by Theorem 12.3 it is enough to prove that µ(K) = 0 if K is a
compact subset of A n n Sµ .

Fix c. Since A(K) = 0, there is an open G such that K c G and A(G) < E.
If x E K, then x E A n , and by the definition of F D and the right-continuity of
F, there is an open interval Ix for which x E Ix c G and p(1x ) < nA(Ix ). By
compactness, K has a finite subcover Ixl , ... , Ix,. If some three of these have
a nonempty intersection, one of them must be contained in the union of the
other two. Such superfluous intervals can be removed from the subcover, and
it is therefore possible to assume that no point of K lies in more than two of
the ButBut then

µ(K) it( U Ix
;) < L (1x;) < n E A(Ixi )

< 2nA( U It) < 2nA(G) < 2nE.
 ^

Since E was arbitrary, A(K) = 0, as required. 	 •

Example 31.4. Restrict the F of Examples 31.1 and 31.3 to (0,1), and let g be the
inverse. Thus F and g are continuous, strictly increasing mappings of (0,1) onto itself.
If A = Ex E (0,1): F'(x) = 0], then A(A) = 1, as shown in the examples, while µ(A) =
0. Let H be a set in (0,1) that is not a Lebesgue set. Since H — A is contained in a set
of Lebesgue measure 0, it is a Lebesgue set; hence H a = H nA is not a Lebesgue set,
since otherwise H = Ho u (H — A) would be a Lebesgue set. If B = (0, xi, then
Ag^'(B) = A(0, F(x)] = F(x) = µ(B), and it follows that A g — '(B) = µ(B) for all Borel
sets B. Since g _ 'Ho is a subset of g — IA and A(g — 'A) = µ(_A) = 0, C I Ho is a
Lebesgue set. On the other hand, if g — 'Ho were a Borel set, Ho = F — I(g — 'Ho ) would
also be a Borel set. Thus g — 'Ho provides an example of a Lebesgue set that is not a
Borel seta •

Integrals of Derivatives

Return now to the problem of extending part (ii) of Theorem 31.1, to the
problem of characterizing those distribution functions F for which F' inte-
grates back to F:

(31.25)
x

F(x) =
J
 F'(t)dt.o

tSee Problem 31.8
* For a different argument, see Problem 3.14.
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The first step is easy: If (31.25) holds, then F has the form

(31.26) 	 F(x) = Çf(t)  dt

for a nonnegative, integrable f (a density), namely f = F'. On the other hand,
(31.26) implies by Theorem 31.3 that F' = f outside a set of Lebesgue
measure 0, whence (31.25) foliows. Thus (31.25) holds if and only if F has the
form (31.26) for some f, and the problem is to characterize functions of this
form. The function of Example 31.1 is not among them.

As observed earlier (see (31.3)), an F of the form (31.26) with f integrable
is continuous. It has a still stronger property: For each E there exists a 8 such
that

(31.27) j f(x)d<E 	 if A(A) <S.

Indeed, if A n = [x: f(x)> n], then A n 1,0, and since f is integrable, the
dominated convergence theorem implies that IA n f(x) dx < E/2 for large n.
Fix such an n and take S = E/2n. If A(A) < 6, then IA f (x) dx <
IA-A n f(x)dx + IA f(x) dx < nÀ(A) + 6/2<e.

[CIF is given byn (31.26), then F(b) — F(a) =f bf(x)dx, and (31.27) has this
consequence: For every E these exists a 6 such that for each finite collection
[a 1 , b ; ], i = 1, ... , k, of nonoverlappingt intervals,

(31.28)
k 	 k

LIF(b,) — F(a ; )I<E 	 if E (b ; — a i ) <S.
r =1

A function F with this property is said to be absolutely continuous.$ A
function of the form (31.26) (f integrable) is thus absolutely continuous.

A continuous distribution function is uniformly continuous, and so for
every E there is a 6 such that the implication in (31.28) holds provided that
k = 1. The definition of absolute continuity requires this to hold whatever k
may be, which puts severe restrictions on F. Absolute continuity of F can be
characterized in terms of the measure µ:

Theorem 31.7. Suppose that F and µ are related by (31.18). Then F is
absolutely continuous in the sense of (31.28) if and only if µ(A) = 0 for every A
for which A(A) = O.

t Intervals are nonoverlapping if their interiors are disjoint. In this definition it is immaterial
whether the intervals are regarded as closed or open or half-open, since this has no effect on
(31.28).
The definition applies to all functions, not just to distribution functions If F is a distribution

function as in the present discussion, the absolute-value bars in (31.28) are unnecessary
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PROOF. Suppose that F is absolutely continuous and that A(A) = 0.
Given E, choose 8 so that (31.28) holds. There exists a countable disjoint
union B = U k Ik of intervals such that A cB and A(B) < S. By (31.28) it
follows that /L(U k=l Ik ) < E for each n and hence that µ(A) 5µ(B) 5 E.
Since E was arbitrary, µ(A) = 0.

If F is not absolutely continuous, then there exists an E such that for every
5 some finite disjoint union A of intervals satisfies A(A) < S and µ(A) >_ E.

Choose A n so that A(A n ) < n -2 and µ(A n ) >_ E. Then A(lim sup„ A„)= 0 by
the first Borel—Cantelli lemma (Theorem 4.3, the proof of which does not
require P to be a probability measure or even finite). On the other hand,
µ(lim sup ra A,,)- c> 0 by Theorem 4.1 (the proof of which applies because µ
is assumed finite). •

This result leads to a characterization of indefinite integrals.

Theorem 31.8. A distribution function F(x) has the form fx Wf(t) dt for
an integrable f if and only if it is absolutely continuous in the sense of (31.28).

PROOF. That an F of the form (31.26) is absolutely continuous was
proved in the argument leading to the definition (31.28). For another proof,
apply Theorem 31.7: if F has this form, then A(A) = 0 implies that µ(A) =
fA f(t)dt=0.

To go the other way, define for any distribution function F

(31.29)

and

(31.30)

x
Fac (x) = f F'(t) dt

,^

F5(x) = F(x) — Fac(x).

Then FS is right-continuous, and by (31.9) it is both nonnegative and
nondecreasing. Since Fac comes form a density, it is absolutely continuous. By
Theorem 31.3, Fac — F' and hence FS = 0 except on a set of Lebesgue
measure 0. Thus F has a decomposition

(31.31) 	 F(x) =Fac(x) +FS(x),

where Fac has a density and hence is absolutely continuous and FS is singular.
This is called the Lebesgue decomposition.

Suppose that F is absolutely continuous. Then FS of (31.30) must, as the
difference of absolutely continuous functions, be absolutely continuous itself.
If it can be shown that FS is identically 0, it will follow that F = Fac has the
required form. It thus suffices to show that a distribution function that is both
absolutely continuous and singular must vanish.
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If a distribution function F is singular, then by Theorem 31.5 there are
disjoint supports Sµ and SA . But if F is also absolutely continuous, then from
A(SA ) = 0 it follows by Theorem 31.7 that µ(Sµ ) = O. But then µ(R') = 0, and
so F(x) = O. •

This theorem identifies the distribution functions that are integrals of their
derivatives as the absolutely continuous functions. Theorem 31.7, on the
other hand, characterizes absolute continuity in a way that extends to spaces
1 without the geometric structure of the line necessary to a treatment
involving distribution functions and ordinary derivatives.t The extension is
studied in Section 32.

Functions of Bounded Variation

The remainder of this section briefly sketches the extension of the preceding theory to
functions that are not monotone. The results are for simplicity given only for a finite
interval [a, b] and for functions F on [a, b] satisfying F(a) = O.

If F(x) = faf(t) dt is an indefinite integral, where f is integrable but not necessar-
ily nonnegative, then F(x) = jaf+ (t)dt — JQr(t)dr exhibits F as the difference of
two nondecreasing functions. The problem of characterizing indefinite integrals thus
leads to the preliminary problem of characterizing functions representable as a
difference of nondecreasing functions.

Now F is said to be of bounded variation over [a, b] if sups IIFIIL is finite, where
II F II A is defined by (31.5) and A ranges over all partitions (31.4) of [ a, Id. Clearly, a
difference of nondecreasing functions is of bounded variation. But the converse holds
as well: For every finite collection r of nonoverlapping intervals [x,, y 1 ] in [ a, b], put

Pr= E(F(yf)-F(x;))*,
	

Nr= E(F(y;)-F(xi)) •

Now define

	P(x) = sup Pr ,	 N(x) = sup Nr ,
r 	 r

where the suprema extend over partitions r of [a, x]. If F is of bounded variation,
then P(x) and N(x) are finite. For each such r, Pr = Nr + F(x ). This gives the
inequalities

	Pr S N(x)+F(x),	 P(x)Nr +F(x),

which in turn lead to the inequalities

	P(x)N(x) +F(x),	 P(x) N(x) +F(x).

Thus

(31.32) 	 F(x)=P(x)—N(x)

gives the required representation: A function is the difference of two nondecreasing
functions if and only if it is of bounded variation.

tTheorems 31.3 and 31 8 do have geometric analogues in R k ; see RuoiN 2 , Chapter 8.
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If T,-= P ;- + Nr , then Tr = EIF(y; ) — F(x ; )I. According to the definition (31.28), F
is absolutely continuous if for every E there exists a S such that T r < E whenever the
intervals in the collection 1' have total length less than 3. If F is absolutely
continuous, take the S corresponding to an E of 1 and decompose [a, b] into a finite
number, say n, of subintervals [u j _ i ,ui ] of lengths less than S. Any partition A of
[a, b] can by the insertion of the u i be split into n sets of intervals each of total length
less than S, and it follows t that IIFIIn <n. Therefore, an absolutely continuous
function is necessarily of bounded variation.

An absolutely continuous F thus has a representation (31.32). It follows by the
definitions that P(y) — P(x) is at most sup r T 1., where F ranges over the partitions of
[x, y]. If [x ; , y;] are nonoverlapping intervals, then E(P(y;) — P(x ; )) is at most
sup r Tr , where now F ranges over the collections of intervals that partition each of
the [x ; , y] Therefore, if F is absolutely continuous, there exists for each E a S such
that E(y, —x i ) <6 implies that E(P(y; ) —P(x ; )) <E. In other words, P is absolutely
continuous. Similarly, N is absolutely continuous.

Thus an absolutely continuous F is the difference of two nondecreasing absolutely
continuous functions. By Theorem 31.8, each of these is an indefinite integral, which
implies that F is an indefinite integral as well: For an F on [a, b] satisfying F(a) = 0,
absolute continuity is a necessary and sufficient condition for F to be an indefinite
integral—to have the form F(x) = Jâf(t) dt for an integrable f.

PROBLEMS

31.1. Extend Examples 31.1 and 31.3: Let po , ..., pr_ be nonnegative numbers
adding to 1, where r >— 2; suppose there is no i such that p t = 1. Let X1 ,
X2 ,... be independent, identically distributed random variables such that
P[XR = i] =p;, 0< i <r, and put X = En= 1 X„r -". Let F be the distribution
function of X. Show that F is continuous. Show that F is strictly increasing
over the unit interval if and only if all the p ; are strictly positive. Show that
F(x) x for 0 < x < 1 if p = r r and that otherwise F is singular; prove
singularity by extending the arguments both of Example 31.1 and of Exampie
31.3. What is the analogue of (31.17)?

31.2. T In Problem 31.1 take r = 3 and po =p2 = Z , p1 = 0. The corresponding F
is called the Cantor function. The complement in [0,1] of the Cantor set (see
Problems 1.5 and 3.16) consists of the middle third (-I, 1), the middle thirds
(ÿ, ÿ } and (ÿ,), and so on. Show that F is i on the first of these intervals, â
on the second, 4 on the third, and so on. Show by direct argument that F' = 0
except on a set of Lebesgue measure 0.

31.3. A real function f of a real variable is a Lebesgue function if [x: f(x) <_a] is a
Lebesgue set for each a.
(a) Show that, if fr is a Borel function and f2 is a Lebesgue function, then
the composition f 1 f2 is a Lebesgue function.
(b) Show that there exists a Lebesgue function f and a Lebesgue (even Borel,
even continuous) function f2 such that fr f2 is not a Lebesgue function. Hint:
Use Example 31.4.

t This uses the fact that llFlla cannot decrease under passage to a finer partition.
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31.4. T An arbitrary function f on (0,1] can be represented as a composition of a
Lebesgue function f 1 and a Borel function f2 . For x in (0,1], let d„(x) be the
nth digit in its nonterminating dyadic expansion, and define f2(x) =
E =1 2d„(x)/3". Show that f2 is increasing and that f2 (0,1] is contained in the
Cantor set. Take f1(x) to be f(f2 1 (x )) if x E f2(0, 1] and 0 if x E (0,1] -f 2(0, 1].
Now show that f =f,  f,.

31.5. Let r 1 , r 2 ,... be an enumeration of the rationals in (0,1) and put F(x)_
Lk rk 5 x 2 -k • Define cp by (14.5) and prove that it is continuous and singular.

31.6. Suppose that p. and F are related by (31.18). If F is not absolutely continuous,
then µ(A) > 0 for some set A of Lebesgue measure 0. It is an interesting fact,
however, that almost all translates of A must have µ-measure 0. From Fubini's
theorem and the fact that A is invariant under translation and reflection
through 0, show that, if A(A) = 0 and µ is Q-finite, then µ(A + = 0 for x
outside a set of Lebesgue measure 0.

31.7. 17.4 31.61 Show that F is absolutely continuous if and only if for each
Borel set A, µ(A + x) is continuous in x.

31.8. Let F(X) = lim b , 0 inf(F(u) - F(u))/(u - u), where the infimum extends
over u and u such that u <x < u and u - u < S. Define F*(x) as this limit with
the infimum replaced by a supremum. Show that in Theorem 31.4, F' can be
replaced by F* in part (1) and by F,, in part (ii). Show that in Theorem 31.6,
F D can be replaced by F,, (note that F,,(x) < F D(x)).

31.9. Lebesgue's density theorem. A point x is a density point of a Borel set A if
A((u, u] nA)/(u - u) — 1 as u T x and u 1 x. From Theorems 31.2 and 31.4
deduce that almost all points of A are density points. Similarly, A((u, u] n
A)/(u - u) -* 0 almost everywhere on A`.

31.10. Let f: [a, b] -, R k be an arc; f(t) = (f1(t), ..., fk (t)). Show that the arc is
rectifiable if and only if each f is of bounded variation over [a, b].

31.11. T Suppose that F is continuous and nondecreasing and that F(0) = 0,
F(1) = 1. Then f(x) _ (x, F(x)) defines an arc f: [0,1] -* R 2. It is easy to see
by monotonicity that the arc is rectifiable and that, in fact, its length satisfies
L(f) < 2. It is also easy, given e, to produce functions F for which L(f) > 2 - E.
Show by the arguments in the proof of Theorem 31.4 that L(f) = 2 if F is
singular.

31.12. Suppose that the characteristic function of F satisfies lim sup, ., Icp(t)I = 1.
Show that F is singular. Compare the lattice case (Problem 26.1). Hint: Use
the Lebesgue decomposition and the Riemann -Lebesgue theorem.

31.13. Suppose that X 1 , X2 , ... are independent and assume the values ±1 with
probability z each, and let X = En . 1 X„/2". Show that X is uniformly dis-
tributed over [-1, +1]. Calculate the characteristic functions of X and X,
and deduce (1.40). Conversely, establish (1.40) by trigonometry and conclude
that X is uniformly distributed over [- 1, + 1].
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31.14. (a) Suppose that X 1 , X2, ... are independent and assume the values 0 and 1
with probability 1 each. Let F and G be the distribution functions of_ 1 X2„ _ 1 /2 2n- and En =1 X2„/2 2". Show that F and G are singular but
that F * G is absolutely continuous.
(b) Show that the convolution of an absolutely continuous distribution func-
tion with an arbitrary distribution function is absolutely continuous.

31.15. 31.21 Show that the Cantor function is the distribution function of
E: =1 X"/3", where the Xn are independent and assume the values 0 and 2
with probability i each. Express its characteristic function as an infinite
product.

31.16. Show for the F of Example 31.1 that F D(1) = co and D F(0) = 0 if
p o < 2. From (31 17) deduce that fD(x) = co and D F(x) = 0 for all dyadic
rationals x. Analyze the case p o > z and sketch the graph

31.17. 6.14 T Let F be as in Example 31.1, and let ,u be the corresponding
probability measure on the unit interval. Let dn(x) be the nth digit in the
nonterminating binary expansion of x, and let s"(x) = Ek 1 dk(x). If I"(x) is
the dyadic interval of order n containing x, then

(31.33) - 711 logµtl"(x )) = - (1 - s„(x)  )lo o sn(x) log p1•

(a) Show that (31.33) converges on a set of A-measure 1 to the entropy
h = -p o log p o -p i log p 1 . From the fact that this entropy is less than log2 if
p o Z, deduce in this case that on a set of ,u-measure 1, F does not have a
finite derivative.
(b) Show that (31.33) converges to - i log p o - log p 1 on a set of Lebesgue
measure 1. If p o f this limit exceeds log2 (arithmetic versus geometric
means), and so µ(I"(x))/2 -" -* 0 except on a set of Lebesgue measure O. This
does not prove that F'(x) exists almost everywhere, but it does show that,
except for x in a set of Lebesgue measure O. if F'(x) does exist, then it is O.
(c) Show that, if (31.33) converges to 1, then

(31.34) lim µ ( 
I"( x )) _ cc if a > //log 2,

n 	 (2—")a 	 0 if a <1/log2.

If (31.34) holds, then (roughly) F satisfies a Lipschitz conditions of (exact)
order 1/log 2. Thus F satisfies a Lipschitz condition of order h/log 2 on a set
of A-measure 1 and a Lipschitz condition of order(- i log p o - f log p 1 )/log2
on a set of Lebesgue measure 1.

31.18. van der Waerden's continuous, nowhere differentiable function is f(x ) =
Ek=U a k (x), where a o(x) is the distance from x to the nearest integer and
a k ( x) = 2 -ka0(2k x). Show by the Weierstrass M-test that f is continuous. Use
(31.8) and the ideas in Example 31.1 to show that f is nowhere differentiable.

to Lipschitz condition of order a holds at x if F(x + h) - F(x) = O(EhI a ) as h - 0, for a > 1
this implies F'(x)- 0, and for 0 <a < 1 it is a smoothness condition stronger than continuity
and weaker than differentiability.
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31.19. Show (see (31.31)) that (apart from addition of constants) a function can have
only one representation F 1 +F2 with F 1 absolutely continuous and F2 singu-
lar.

31.20. Show that the FS in the Lebesgue decomposition can be further split into
Fd + FCS , where Fcs is continuous and singular and Fd increases only in jumps
in the sense that the corresponding measure is discrete. The complete decom-
position is then F = Fac + FC5 + Fd .

31.21. (a) Suppose that x 1 <x 2 < • • • and E„IF(x„)I = co. Show that, if F assumes
the value 0 in each interval (x,,, x„ +1 ), then it is of unbounded variation.
(b) Define F over [0,11 by F(0) = 0 and F(x) =x" sin x -1 for x > O. For
which values of a is F of bounded variation?

31.22. 14.4 1 If f is nonnegative and Lebesgue integrable, then by Theorem 31.3
and (31.8), except for x in a set of Lebesgue measure 0,

(31.35) v 1 	 u fü
i

f(t ) dt _,f(x )

if u < x < u, u < u, and u, u - x. There is an analogue in which Lebesgue
measure is replaced by a general probability measure µ: If f is nonnegative
and integrable with respect to µ, then as h 10,

(31.36)
1	

7
4x_h,x+h]

f(t)/1(dt)
µ(x - h, x + h] 	—> f(x)

on a set of p,-measure 1. Let F be the distribution function corresponding to
ea, and put (p(u)= infix: u < F(x)] for 0 < u < 1 (see (14.5)). Deduce (31.36)
from (31.35) by change of variable and Problem 14.4.

SECTION 32. THE RADON—NIKODYM THEOREM

If f is a nonnegative function on a measure space (D., Y-, p,), then v(A) =
1A f dµ defines another measure on Y-. In the terminology of Section 16, v
has density f with respect to p,; see (16.11). For each A in Y-, µ(A) = 0
implies that v(A) = O. The purpose of this section is to show conversely that
if this last condition holds and v and p, are Œ-finite on Y -, then v has a
density with respect to ix. This was proved for the case (R', .q', A) in
Theorems 31.7 and 31.8. The theory of the preceding section, although
illuminating, is not required here.

Additive Set Functions

Throughout this section, (fi, y- ) is a measurable space. All sets involved are
assumed as usual to lie in Y.
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An additive set function is a function cp from .`1 to the reals for which

(32.1) cp( U An ) = E cP( An)
n 	 n

if A 1 , A 2, ... is a finite or infinite sequence of disjoint sets. A set function
differs from a measure in that the values cp(A) may be negative but must be
finite—the special values +o and -00 are prohibited. It will turn out that
the series on the right in (32.1) must in fact converge absolutely, but this need
not be assumed. Note that cp(0) = O.

Example 32.1. If 12. 1 and µ 2 are finite measures, then cp(A) = µ 1 (A ) --
p 2(A) is an additive set function. It will turn out that the general additive set
function has this form. A speciai case of this if cp(A) = fA f dµ, where f is
integrable (not necessarily nonnegative). •

The proof of the main theorem of this section (Theorem 32.2) requires
certain facts about additive set functions, even though the statement of the
theorem involves only measures.

Lemma 1. If Eu T E or Eu 4, E, then cp(Eu ) -+ cp(E).

PROOF. If EL, T E, then cp(E) = cp(E 1 U U: - i(E u +1  - Eu)) = cp(E1) +
Eû=1cP(Eu+, - E„) = limjcp(E 1 ) + Eu=icP(Eu +1 - Eu )] = lim, cp(E,) by
(32.1). If Eu ,i, E, then Eû Î E`, and hence cp(Eu ) = (p(fZ) - cp(Eü) -+ cp(fZ) -
cp(E`) = cp(E). •

Although this result is essentially the same as the corresponding ones for
measures, it does require separate proof. Note that the limits need not be
monotone unless cp happens to be a measure.

The Hahn Decomposition

Theorem 32.1. For any additive set function cp, there exist disjoint sets A +

and A - such that A + U  A - = II, cp(E) >_ 0 for all E in A +, and cp(E)- 0 for
all EinA - .

A set A is positive if cp(E) >_ 0 for E cA and negative if cp(E) < 0 for
E cA. The A + and A - in the theorem decompose fZ into a positive and a
negative set. This is the Hahn decomposition.

If cp(A) = IA f dp. (see Example 32.1), the result is easy: take A + = [ f >_ 0]
and A - = [ f < 0].
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PROOF. Let a = sup[cp(A): A E 9]. Suppose that there exists a set A +
satisfying cp(A +) = a (which implies that a is finite). Let A fl - A }. If
A cA+ and cp(A) < 0, then cp(A + - A)> a, an impossibility; hence A + is a
positive set. If A cA - and cp(A) > 0, then cp(A + UA) > a, an impossibility;
hence A - is a negative set.

It is therefore only necessary to construct a set A+ for which cp(A +) = a.
Choose sets A n such that cp(A n ) --' a, and let A = U n A". For each n
consider the 2n sets Bn1 (some perhaps empty) that are intersections of the
form" n k = 1 Ak, where each A 'k is either Ak or else A - Ak. The collection
.^„ = [Bn; : 1 5 c < 2"] of these sets partitions A. Clearly, ^ refines ^ _ 1 :
each Bn1 is contained in exactly one of the Bn _ 1 ;.

Let Cn be the union of those B" 1 in n for which cp(B„,) > O. Since A n is
the union of certain of the it follows that cp(A,) < cp(C,). Since the
partitions a 1 , a2' ... are successively finer, m < n implies that (C”, U • • U
Cr, _ 1 U Cn ) - (Cm U • • • U Cn _ 1 ) is the union (perhaps empty) of certain of

-the sets Bra ; the Bra in this union must satisfy cp(Bn; ) > 0 because they are
contained in C,,. Therefore, cp(Cm U • U Cn _ 1 ) < cp(C,,, U • • U Cn ), so that
by induction cp(A m ) < cp(Cm ) < cp(Cm U • U Cn ). If Dm

 = U ,=mCn, then by
Lemma 1 (take E, = C,„ U • U Cm+L.) cp(A m ) < cp(Dm ). Let A + = fl m-1Dm
(note that A + - lim sup, Cn ), so that D,,, 4, At By Lemma 1, a =11m m cp(A,")
< lim m cp(Dm ) = cp(A+). Thus A+ does have maximal cp-value. ■

If cp + (A) = cp(A nA+) and cp - (A) = - cp(A nA - ), then cp + and cp — are
finite measures. Thus

(32.2) 	 cP(A) =cP + (A) - cP - (A)

represents the set function cp as the difference of two finite measures having
disjoint supports. If E cA, then cp(E) < cp+(E) < cp + (A), and there is equal-
ity if E =A n14 +. Therefore, cp+(A) = supEc A cp(E). Similarly, cp - (A) =
- inf A (IAE). The measures cp + and cp - are called the upper and lower
variations of cp, and the measure IcpI with value cp + (A) + cp - (A) at A is
called the total variation. The representation (32.2) is the Jordan decomposi-
tion.

Absolute Continuity and Singularity

Measures u and v on (11, ) are by definition mutually singular if they have
disjoint supports—that is, if there exist sets Sµ and S„ such that

µ(0,- Sv) =0, v(iZ - Sy ) =0,

St, n S„rv 0.
(32.3)
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In this case µ is also said to be singular with respect to y and y singular with
respect to p.. Note that measures are automatically singular if one of them is
identically O.

According to Theorem 31.5 a finite measure on R' with distribution
function F is singular with respect to Lebesgue measure in the sense of
(32.3) if and only if F'(x) = 0 except on a set of Lebesgue measure 0. In
Section 31 the latter condition was taken as the definition of singularity, but
of course it is the requirement of disjoint supports that can be generalized
from R' to an arbitrary CZ.

The measure v is absolutely continuous with respect to p. if for each A in
µ(A) = 0 implies v(A) = O. In this case v is also said to be dominated by

and the relation is indicated by v « µ. If v « p and p. « v, the measures
are equivalent, indicated by v = µ.

A finite measure on the line is by Theorem 31.7 absolutely continuous in
this sense with respect to Lebesgue measure if and only if the corresponding
distribution function F satisfies the condition (31.28). The latter condition,
taken in Section 31 as the definition of absolute continuity, is again not the
one that generalizes from R 1 to SI.

There is an E-8 idea related to the definition of absolute continuity given
above. Suppose that for every E there exists a 8 such that

(32.4) 	 v(A) <E 	 if µ(A) <S.

If this condition holds, µ(A) = 0 implies that v(A) <e for all E, and so
v « µ. Suppose, on the other hand, that this condition fails and that v is
finite. Then for some E there exist sets A n such that µ(A n ) < n -2 and
v(A„) >_ E. 1f A = limsup n A n , then µ(A) = 0 by the first Borel—Cantelli
lemma (which applies to arbitrary measures), but v(A) >_ E > 0 by the right-
hand inequality in (4.9) (which applies because if is finite). Hence v « µ fails,
and so (32.4) follows if v is finite and v « A. If v is finite, in order that
v « µ it is therefore necessary and sufficient that for every E there exist a 8
satisfying (32.4). This condition is not suitable as a definition, because it need
not follow from v « µ if v is infinite. t

The Main Theorem

If v(A) = fA f dµ, then certainly v « p.. The Radon—Nikodym theorem goes
in the opposite direction:

Theorem 32.2. If µ and v are Œ-finite measures such that v « µ, then
there exists a nonnegative f, a density, such that v(A) = IA fdµ for all A E „

For two such densities f and g, µE f g] = O.

tSee Problem 32.3.
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The uniqueness of the density up to sets of µ-measure 0 is settled by
Theorem 16.10. It is only the existence that must be proved.

The density f is integrable µ if and only if v is finite. But since f is
integrable 1.1. over A if v(A) < co, and since y is assumed o --finite, f < co
except on a set of µ-measure 0; and f can be taken finite everywhere. By
Theorem 16.11, integrals with respect to v can be calculated by the formula

(32.5) 	 f hdv = f hfdµ.
A 	 A

The density whose existence is to be proved is called the Radon—Nikodym
derivative of y with respect to  and is often denoted dv/dµ. The term
derivative is appropriate because of Theorems 31.3 and 31.8: For an abso-
lutely continuous distribution function F on the line, the corresponding
measure  has with respect to Lebesgue measure the Radon—Nikodym
derivative F. Note that (32.5) can be written

(32.6) fhdv=jh-d,i.
A 	 A

Suppose that Theorem 32.2 holds for finite µ and v (which is in fact
enough for the probabilistic applications in the sections that follow). In the
o--finite case there is a countable decomposition of SZ into 9sets A n for
which µ(A n ) and v(A n) are both finite. If

(32.7) 	 µ11(A) =µ(A nA n ),	 vn(A) = v(A nA n ),

then v « µ implies vn « µn , and so vn(A) = fAf, dµ n for some density fn .
Since A n has density 

IAn
 with respect to  (Example 16.9),

v(A) _ E vn( A) _ E f fn dµ„.. L f fnIA R dµ
n 	 n A 	 n A

= f EfnlAn di.1,.
A n

Thus En fn IA is the density sought.
It is therefore enough to treat finite µ and v. This requires a preliminary

result.

Lemma 2. If µ and v are finite measures and are not mutually singular,
then there exists a set A and a positive € such that µ(A) > 0 and Eµ(E) < v(E)
for all E c A.
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PROOF. Let A„ U A,, be a Hahn decomposition for the set function
v - n - 'ix;  put M = U „A„+ ,  so that MC = Ii „A,;. Since MC is in the negative
set An for y - n - l µ, it follows that v(M`) < n - 'µ(M`); since this holds for
all n, v(M`) = O. Thus M supports v, and from the fact that p. and v are not
mutually singular it follows that MC cannot support p.—that is, that µ(M)
must be positive. Therefore, p.(A„) > 0 for some n. Take A =A„ and
E = n - '. ii

Example 32.2. Suppose that (1Z, .9) = (R 1 , a'), p. is Lebesgue measure
A, and v(a, b] = F(b) - F(a). If v and A do not have disjoint supports, then
by Theorem 31.5, A[x: F'(x) > 0] > 0 and hence for some E, A = [x: F'(x) >
E] satisfies A(A) > O. If E = (a, b] is a sufficiently small interval about an x in
A, then v(E)/A(E) = (F(b) - F(a))/(b - a) >_ E, which is the same thing as
EA(E) -< v(E). V

Thus Lemma 2 ties in with derivatives and quotients v(E)/µ(E) for
"small" sets E. Martingale theory links Radon-Nikodym derivatives with
such quotients; see Theorem 35.7 and Example 35.10.

PROOF OF THEOREM 32.2. Suppose that µ and v are finite measures
satisfying v « p.. Let .J be the class of nonnegative functions g such that
fEgdp. < v(E) for all E. If g and g' lie in J, then max(g, g') also lies in .J
because

fE max( g, g') dN, = f
Fn[^ ^ ^7gd

^,t,
 + f	

g^ dN,
En[g'>^] 

< v(E n [g ? g']) + v(E n[g'>g]) = v(E).

Thus .1 is closed under the formation of finite maxima. Suppose that
functions g„ lie in .J and g„ T g. Then jE gdµ = lim n jE g„ dµ _< v(E) by the
monotone convergence theorem, so that g lies in J. Thus ,.J is closed under
nondecreasing passages to the limit.

Let a = sup fgdp. for g ranging over .1 (a s v(f),)). Choose gn in .1 so
that jg„ dµ > a - n - '. If fn = max(g l ,..., g„) and f = lim f„, then f lies in
,J and jfdµ - lim n jfn dµ >- lim n jgn dp. = a. Thus f is an element of .1 for
which jfdµ is maximal.

Define vac by vac(E) = jE fdµ and vs by vs(E) = v(E) - vac(E). Thus

(32.8) 	 v(E) =v ac(E) +vs(E) = f fdµ+vs(E).

Since f is in .J, vs as well as vac is a finite measure—that is, nonnegative. Of
course, vac is absolutely continuous with respect to µ,
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Suppose that vs fails to be singular with respect to µ. It then follows from
Lemma 2 that there are a set A and a positive E such that µ(A) > 0 and
Eµ(E) 5 vs(E) for all E cA. Then for every E

f, (f +EIA ) dµ= f fdµ+Eµ(EnA) < f fdN,+ vs( EnA)

= f fdµ+ vs( E n A) + f fdµ
Ef1A 	 E-A

=v(EnA) + f fdµ <v(EnA) +v(E —A)
E-A

=v(E).

In other words, f +EIA lies in .1; since j(f+ EIA ) dµ = a + Eµ(A) > a, this
contradicts the maximality of f.

Therefore, µ and vs are mutually singular, and there exists an S such that
vs(S) = µ(S`) = O. But since y « µ, vs(S`) s v(S`) = 0, and so vs(fl) = O. The
rightmost term in (32.8) thus drops out. ■

Absolute continuity was not used until the last step of the proof, and what
the argument shows is that v always has a decomposition (32.8) into an
absolutely continuous part and a singular part with respect to µ. This is the
Lebesgue decomposition, and it generalizes the one in the preceding section
(see (31.31)).

PROBLEMS

32.1. There are two ways to show that the convergence in (32.1) must be absolute:
Use the Jordan decomposition. Use the fact that a series converges absolutely
if it has the same sum no matter what order the terms are taken in.

32.2. If A + uA - is a Hahn decomposition of cp, there may be other ones Al UAL .
Construct an example of this. Show that there is uniqueness to the extent that
cp(A +oAi) = cp(A - AAA) = O.

32.3. Show that absolute continuity does not imply the f-e condition (32.4) if v is
infinite. Hint. Let g- consist of all subsets of the space of integers, let v be
counting measure, and let p have mass n -2 at n. Note that u is finite and v is
a--finite.

32.4. Show that the Radon-Nikodym theorem fails if ,u, is not a-finite, even if v is
finite. Hint: Let Y- consist of the countable and the cocountable sets in an
uncountable fZ, let µ be counting measure, and let v(A) be 0 or 1 as A is
countable or cocountable.
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32.5. Let µ be the restriction of planar Lebesgue measure A 2 to the a-field
5‘-= {A X R': A E R') of vertical strips. Define y on Sr by v(A x R I ) = A 2(A
x (0,1)). Show that y is absolutely continuous with respect to p. but has no
density. Why does this not contradict the Radon-Nikodym theorem?

32.6. Let µ, â; and p be a-finite measures on (fi, .). Assume the Radon-Nikodym
derivatives here are everywhere nonnegative and finite.
(a) Show that y « µ and p. «p imply that y « p and

dv _ dvdµ
dp dµ dp '

(b) Show that v = µ implies

dv	 ( µ }
-I

dµ =lidu /dv>0]` dv 1 •

(c) Suppose that p. <<p  and y «p, and let A be the set where dv/dp > 0 =
dµ /d p. Show that y « p. if and only if p(A) = 0, in which case

dv dv/dp
dµ =

l
[d
^/dP

>o1dµ /dp .

32.7. Show that there is a Lebesgue decomposition (32.8) in the a-finite as well as
the finite case. Prove that it is unique.

32.8. The Radon-Nikodym theorem holds if µ is a-finite, even if y is not. Assume
at first that p. is finite (and y « µ).
(a) Let - be the class of (Ysets) B such that A(E)= 0 or v(E) _ 00 for each
E c B. Show that Q contains a set Bo of maximal µ-measure.
(b) Let f be the class of sets in fi a = Bt; that are countable unions of sets of
finite v-measure. Show that f contains a set Co of maximal µ-measure. Let
D o = fi 0 - Co .
(c) Deduce from the maximality of B o and Co that µ(D o ) = v(D o ) = 0.
(d) Let v o(A) = v(A f n o ). Using the Radon-Nikodym theorem for the pair
p. , v o , prove it for µ, v.
(e) Now show that the theorem holds if p. is merely a-finite.
(f) Show that if the density can be taken everywhere finite, then y is Q-finite.

32.9. Let µ and v be finite measures on (fi, Y), and suppose that ,f° is a a field
contained in .91 Then the restrictions p.° and y 0 of p. and y to 5" are
measures on (Si, Y O). Let vac , vs , va°c , vs be, respectively, the absolutely contin-
uous and singular parts of y and v° with respect to µ and µ°. Show that
vdc(E) >_ vac(E) and vs (E) _< vs(E) for E E Y.'.

32.10. Suppose that µ, v, v„ are finite measures on (fi, .f) and that v(A) = E„v„(A)
for all A. Let v„(A) = fA f„ dµ + v^,(A) and v(A) = fA fdµ + v'(A) be the
decompositions (32.8); here y' and vn are singular with respect to A. Show that
f = En f„ except on a set of µ-measure 0 and that v'(A) = Env'„(A) for all A.
Show that y « µ if and only if ?Jr, «µ for all n.
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32.11. 32.2T Absolute continuity of a set function cp with respect to a measure ,u, is
defined just as if cp were itself a measure: µ(A) = 0 must imply that cp(A) = O.
Show that, if this holds and ,u, is tr-finite, then cp(A) = fA fd a for some
integrable f. Show that A + = [w: f(w) >_ 0] and A - = [co: f(ca) < 0] give a
Hahn decomposition for cp. Show that the three variations satisfy cp + (A) =
fA f+ dµ, 9 - (A) = fA f - dµ, and I t'I(A) = fA l f I dµ. Hint: To construct f, start
with (32.2).

32.12. 1 A signed measure cp is a set function that satisfies (32.1) if A 1 , A 2 ,... are
disjoint and may assume one of the values +co and —co but not both. Extend
the Hahn and Jordan decompositions to signed measures

32.13. 31.22/ Suppose that µ and y are a probability measure and a tr-finite
measure on the line and that y « ,u. Show that the Radon-Nikodym derivative
f satisfies

v(x-h,x+h1 f( )hm̂ µ 	 h](x - h, x 	̂ - x

on a set of ,u-measure 1.

32.14. Find on the unit interval uncountably many probability measures µp , 0 <p < 1,
with supports Sp such that k, v{x) = 0 for each x and p and the Sp are disjoint
in pairs.

32.15. Let 5r0 be the field consisting of the finite and the cofinite sets in an
uncountable fZ. Define cp on Sro by taking tp(A) to be the number of points in
A if A is finite, and the negative of the number of points in A` if A is cofinite.
Show that (32.1) holds (this is not true if II is countable). Show that there are
no negative sets for tp (except the empty set), that there is no Hahn decomposi-
tion, and that tp does not have bounded range.

SECTION 33. CONDITIONAL PROBABILITY

•
The concepts of conditional probability and expected value with respect to a
cr-field underlie much of modern probability theory. The difficulty in under-
standing these ideas has to do not with mathematical detail so much as with
probabilistic meaning, and the way to get at this meaning is through calcula-
tions and examples, of which there are many in this section and the next.

The Discrete Case

Consider first the conditional probability of a set A with respect to another
set B. It is defined of course by P(A I B) = P(A n B)/P(B ), unless P(B)
vanishes, in which case it is not defined at all.

It is helpful to consider conditional probability in terms of an observer in
possession of partial information.t A probability space (1/,,F, P) describes

tAs always, observer, information, know, and so on are informal, nonmathematical terms; see the
related discussion in Section 4 (p. 57).
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the working of a mechanism, governed by chance, which produces a result w
distributed according to P; P(A) is for the obse rver the probability that the
point w produced lies in A. Suppose now that w lies in B and that the
observer learns this fact and no more. From the point of view of the obse rver,
now in possession of this partial information about w, the probability that w
also lies in A is P(AIB) rather than P(A). This is the idea lying back of the
definition.

If, on the other hand, w happens to lie in  BC and the obse rver learns of
this, his probability instead becomes P(AI B`). These two conditional proba-
bilities can be linked together by the simple function

(33.1)
P( AI B )

f(w) – P(AI B `)

if co E B,
it co E B`.

The obse rver learns whether w lies in B or in BC; his new probability for the
event w EA is then just f(w). Although the observer does not in general
know the argument w of f, he can calculate the value f(co) because he knows
which of B and B` contains w. (Note conversely that from the value f(w) it
is possible to determine whether co lies in B or in BC, unless NAB) =
P(AIB`)—that is, unless A and B are independent, in which case the
conditional probability coincides with the unconditional one anyway.)

The sets B and B` partition ft, and these ideas carry over to the general
partition. Let B 1 , B2, ... be a finite or countable partition of SI into .sets,
and let .# consist of all the unions of the B,. Then ✓9 is the cr-field generated
by the B ; . For A in ., consider the function with values

(33.2) f(w) =P(Alg ; ) – 
P(AnB;)

 if wEB,,
P(B,)

i =1,2, .. .

If the observer learns which element B; of the partition it is that contains co,
then his new probability for the event w EA is f(w). The partition {B 1), or
equivalently the o--field ,g, can be regarded as an experiment, and to learn
which B; it is that contains w is to learn the outcome of the experiment. For
this reason the function or random variable f defined by (33.2) is called the
conditional probability of A given ,5 and is denoted P[ All ,g]. This is written
P[A II.9)„, whenever the argument w needs to be explicitly shown.

Thus P[All.1] is the function whose value on B; is the ordinary condi-
tional probability P(AI B; ). This definition needs to be completed, because
P(AI B ;) is not defined if P(B ;) = O. In this case P[AII.#] will be taken to
have any constant value on Bi ; the value is arbitrary but must be the same
over all of the set B. If there are nonempty sets B ; for which P(B; ) = 0,
P[AII #] therefore stands for any one of a family of functions on ft. A
specific such function is for emphasis often called a version of the conditional
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probability. Note that any two versions are equal except on a set of probabil-
ity O.

Example 33.1. Consider the Poisson process. Suppose that 0 <s <_ t, and
let A = [ N5 = 0] and B; _ [ NN = c ], i = 0 , 1 , .... Since the increments are
independent (Section 23), P(AI Bl ) = P[ N5 = 0]P[ NN – N5 = i ]/P[ Ni = i ] , and
since they have Poisson distributions (see (23.9)), a simple calculation reduces
this to

S `
(33.3) 	 P[N5 =0II.1]^, =(1 – t ) 	 ifw EB ; ,	 i- 0,1,2,....

Since i = Ma)) on B ; , this can be written

(33.4)
S N,( . )

P[Id5 =011S] „, = ( 1 —
 t) 	

-

Here the experiment or observation corresponding to {B ;} or .1 deter-
mines the number of events —telephone calls, say—occurring in the time
interval [0, t]. For an observer who knows this number but not the locations
of the calls within [0, t], (33.4) gives his probability for the event that none of
them occurred before time s. Although this obse rver does not known co, he
knows Nr (w), which is all he needs to calculate the right side of (33.4). •

Example 33.2. Suppose that X0 , X 1 ,... is a Markov chain with state
space S as in Section 8. The events

(33.5) 	 [ X°= in, •--Xn–in]

form a finite or countable partition of SI as i° , ... , i„ range over S. If .1n is
the a-field generated by this partition, then by the defining condition (8.2) for
Markov chains, P[ Xn+, =j11.41. = p4 , holds for w in (33.5). The sets

(33.6)
	

[X„= l]

for i E S also partition Si, and they generate a Œ-field , n ° smaller than . .
Now (8.2) also stipulates P[ X„ + , =jII.1„° ],, =pi; for w in (33.6), and the
essence of the Markov property is that

(33.7) P[Xn+, = jll^„] =P^Xn+^ =jll^„°]- •

The General Case

If .# is the Œ-field generated by a partition B 1 , B 2 , ... , then the general
element of .1 is a disjoint union B;1 U B1 2 U • - •  finite or countable, of
certain of the B ; . To know which set B ; it is that contains w is the same thing
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as to know which sets in contain w and which do not. This second way of
looking at the matter carries over to the general o --field J contained in 9.
(As always, the probability space is (fi, , P).) The o--field J will not in
general come from a partition as above.

One can imagine an observer who knows for each G in whether w E G
or w E G`. Thus the o--fieldJ can in principle be identified with an
experiment or obse rvation. This is the point of view adopted in Section 4; see
p. 57. It is natural to try and define conditional probabilities P[ All J] with
respect to the experiment S. To do this, fix an A in ,F and define a finite
measure y on J by

v(G)=P(A_nG), 	 G E,^.

Then P(G) = 0 implies that v(G) = O. The Radon—Nikodym theorem can be
applied to the measures v and F on the measurable space (fZ, J) because
the first one is absolutely continuous with respect to the second! It follows
that there exists a function or random variable f, measurable and
integrable with respect to P, such thatt P(A n G) = v(G) = IG fdP for all G
in S.

Denote this function f by P[All J]. It is a random variable with two
properties:

(i) P[ A II J] is measurable	 and integrable.
(ii) P[ A II J] satisfies the functional equation

(33.8) 	j P[AMJJdP=P(AnG), 	 G E,^.
G

There will in general be many such random variables P[	 but any two
of them are equal with probability 1. A specific such random variable is
called a version of the conditional probability.

If J is generated by a partition B 1 , B 2 , ... the function f defined by
(33.2) is measurable J because [w: f(w) EH] is the union of those B. over
which the constant value of f lies in H. Any G in J is a disjoint union
G = U k B ik , and P(A n G) = Ek P(A I B;k )P(B ik ), so that (33.2) satisfies (33.8)
as well. Thus the general definition is an extension of the one for the discrete
case.

Condition (i) in the definition above in effect requires that the values of
P[ AIIJ] depend only on the sets in S. An obse rver who knows the outcome
of J viewed as an experiment knows for each G in whether it contains co
or not; for each x he knows this in particular for the set [w': P[ All J] (L, , = x ],

*Let P0 be the restriction of P to .1 (Example 10.4), and find on (SI, .1) a density f for v with
respect to Po . Then, for G E .1 , v(G)-- jcfdPo IcfdP (Example 16.4). If g is another such
density, then P[ f # g ] = P0 [ f # g ] 0.
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and hence he knows in principle the functional value P[ A Ik9]u, even if he
does not know w itself. In Example 33.1 a knowledge of N r (w) suffices to
determine the value of (33.4)—w itself is not needed.

Condition (ii) in the definition has a gambling interpretation. Suppose that
the observer, after he has learned the outcome of 5, is offered the opportu-
nity to bet on the event A (unless A lies in 5, he does not yet know whether
or not it occurred). He is required to pay an entry fee of  P[ A115] units and
will win 1 unit if A occurs and nothing otherwise. If the obse rver decides to
bet and pays his fee, he gains 1 – P[ AMA  if A occurs and –P[ A11 ,1]
otherwise, so that his gain is

(1 - P[AIIs])I,a +( - P[AIIt5 ])IA , =IA -P[AIIg].

If he declines to bet, his gain is of course O. Suppose that he adopts the
strategy of betting if G occurs but not otherwise, where G is some set in 5.
He can actually carry out this strategy, since after learning the outcome of
the experiment .5 he knows whether or not G occurred. His expected gain
with this strategy is his gain integrated over G:

f(IA -P[AIIJ])dP.

But (33.8) is exactly the requirement that this vanish for each G in S.
Condition (ii) requires then that each strategy be fair in the sense that the
observer stands neither to win nor to lose on the average. Thus P[AIMJ] is
the just entry fee, as intuition requires.

Example 33.3. Suppose that A E .J, which will always hold if 5 coin-
cides with the whole Œ-field Y: Then IA satisfies conditions (i) and (ii), so
that P[A115] – IA with probability 1. If A E J, then to know the outcome of
5 viewed as an experiment is in particular to know whether or not A has
occurred. •

Example 33.4. If 5 is {0,(k), the smallest possible Œ-field, every function
measurable 5 must be constant. Therefore, P[ AWL = P(A) for all w in
this case. The obse rver learns nothing from the experiment J. •

According to these two examples, P[AII{0, 1 }] is identically P(A), whereas
IA is a version of P[ A II9 ]. For any .1, the function identically equal to
P(A) satisfies condition (i) in the definition of conditional probability, whereas
IA satisfies condition (ii). Condition (i) becomes more stringent as 5 de-
creases, and condition (ii) becomes more stringent as .5 increases. The two
conditions work in opposite directions and between them delimit the class of
versions of P[ A I IJ].
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Example 33.5. Let fl be the plane R 2 and let ,. be the class R2 of
planar Borel sets. A point of SI is a pair (x, y) of reals. Let # be the if-field
consisting of the vertical strips, the product sets E x R' =[(x, y): x E El,
where E is a linear Borel set. If the observer knows for each strip E x R'
whether or not it contains (x, y), then, as he knows this for each one-point
set E, he knows the value of x. Thus the experiment 9 consists in the
determination of the first coordinate of the sample point. Suppose now that
P is a probability measure on R2 having a density f(x, y) with respect to
planar Lebesgue measure: P(A) = f fA f(x, y)dxdy. Let A be a horizontal
strip R' x F = [(x, y): y E F), F being a linear Borel set. The conditional
probability P[AUI.1) can be calculated explicitly.

Put

(33.9)
f f(x, t) dt

cp(x, y) _ F 	.j f(x, t)dt

Set cp(x, y) = 0, say, ât points where the denominator here vanishes; these
points form a set of P-measure O. Since cp(x, y) is a function of x alone, it is
measurable ,#. The general element of # being E x R', it will follow that cp
is a version of P[ AEI S] if it is shown that

(33.10)
'Ex R'

cp( x, y) dP(x, y )= P(A n( E x R')).

Since A = R' x F, the right side here is P(E x F). Since P has density
Theorem 16.11 and Fubini's theorem reduce the left side to

f,

J {fR '

cP(x,Y)f(x,Y)dY dx= fE1
l J

F
f(x,t)dt dx

-ffEx F (x,y)dxdy =P(ExF).

Thus (33.9) does give a version of P[R' x FIIl]. 	 •

The right side of (33.9) is the classical formula for the conditional
probability of the event R' x F (the event that y E F) given the event
(x) x R' (given the value of x). Since the event {x) x R' has probability 0,
the formula P(A I B) = P(A n B)/P(B) does not work here. The whole point
of this section is the systematic development of a notion of conditional
probability that covers conditioning with respect to events of probability 0.
This is accomplished by conditioning with respect to collections of
events—that is, with respect to if-fields .1.
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Example 33.6. The set A is by definition independent of the u-field .1 if
it is independent of each G in .1: P(A n G) = P(A)P(G). This being the
same thing as P(A n G) = jG P(A) dP, A is independent of .1 if and only if
P[AII.#] = P(A) with probability 1. •

The if-field u(X) generated by a random variable X consists of the sets
[w: X(w) E H] for H E R 1 ; see Theorem 20.1. The conditional probability
of A given X is defined as P[ A II 0 - (X )1 and is denoted P[ A II X ]. Thus
P[ A I I X ] = P[ A II u(X )1 by definition. From the experiment corresponding to
the u-field 0- (X), one learns which of the sets [w': X(w') = xi contains w and
hence learns the value X(w). Example 33.5 is a case of this: take X(x, y) = x
for (x, y) in the sample space f = R 2 there.

This definition applies without change to random vector, or, equivalently,
to a finite set of random variables. It can be adapted to arbitrary sets of
random variables as well. For any such set [ X,, t E T], the Q-field u[X,,
t E T] it generates is the smallest o--field with respect to which each X, is
measurable. It is generated by the collection of sets of the form [w: X,(c)) E
H] for t in 7' and H in R I . The conditional probability P[ A I I X,, t E T] of A
with respect to this set of random variables is by definition the conditional
probability P[ A I I u[ X, , t E T]] of A with respect to the u-field u[X,, t ET].

In this notation the property (33.7) of Markov chains becomes

(33.11) 	 P[Xn+1 =. IIX0,...,Xn] =P[Xn+1 =AIX,] .

The conditional probability of [X,, +1 = j] is the same for someone who knows
the present state Xn as for someone who knows the present state X n and the
past states X0 ,..., Xn _ 1 as well.

Example 33.7. Let X and Y be random vectors of dimensions j and k,
let /./. be the distribution of X over R', and suppose that X and Y are
independent. According to (20.30),

P[X EH, (X, Y) EJ] = fHP[(x,Y) EJ]µ(dx)

for H E.^i^' and J E R'+k. This is a consequence of Fubini's theorem; it has
a conditional-probability interpretation. For each x in R' put

(33.12) 	 f(x) =P[(x,Y) EJ] =P[w': (x,Y(w')) EJ].

By Theorem 20.1(iî), f(X(w)) is measurable 0- (X), and since j.i, is the
distribution of X, a change of variable gives

f[XEHlf(X(w))P(dw) = fHf(x)µ(dx) =P([(x,Y) EJ] n [XEH]).
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Since [X EH] is the general element of 0-(X), this proves that

(33.13) 	 f(X(w)) =P[(X,Y) EJIIXL,

with probability 1. 	 •
The fact just proved can be written

P[(X,Y) EJII X]W —P[(X(w),Y) EJ]

=P[w': ( X(w),Y(w')) FJ].

Replacing w' by w on the right here causes a notational collision like the one
replacing y by x causes in fâ f(x, y)dy.

Suppose that X and Y are independent random variables and that Y has
distribution function F. For J = [(u, v): max{u, v} < ml, (33.12) is 0 for m <x
and F(m) for m > x; if M = max{ X, Y), then (33.13) gives

(33.14) 	 P[M<m11X1„, = Ilx ,,,, i(co)F(m)

with probability 1. All equations involving conditional probabilities must be
qualified in this way by the phrase with probability 1, because the conditional
probability is unique only to within a set of probability O.

The following theorem is useful for checking conditional probabilities.

Theorem 33.1. Let *9 be a 7r-system generating the 6-field .1, and suppose
that 11 is a finite or countable union of sets in .9. An integrable function f is a
version of P[AlI ✓1] if it is measurable 9 and if

(33.15)

holds for all G in .9.

ffdP=P(A n G)G 

PROOF. Apply Theorem 10.4. 	 •

The condition that 1Z is a finite or countable union of .9sets cannot be
suppressed; see Example 10.5.

Example 33.8. Suppose that X and Y are independent random variables with a
common distribution function F that is positive and continuous. What is the condi-
tional probability of [X . x] given the random variable M = max(X, Y}? As it should
clearly be 1 if M x, suppose that M > x. Since X< x requires M = Y, the chance of
which is z by symmetry, the conditional probability of [X <x] should by indepen-
dence be ZF(x)/F(m) = z P[ X <xIX <m] with the random variable M substituted
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for m. Intuition thus gives

(33.16) P[X xIIM]^,=I[M s xj(w) + 2I[M>xj(w)F 
F(x)

 ( 	 ( 
)).

It suffices to check (33.15) for sets G = [M < m], because these form a Tr-system
generating o-(M). The functional equation reduces to

(33.17) P[M< min{x,m}]+
1
f 	 F( M) dP=P[M<m, X < x].

x<M Sm

Since the other case is easy, suppose that x <m. Since the distribution of (X, Y) is
product measure, it follows by Fubini's theorem and the assumed continuity of F that

fx<mm F(M)
1 	 dP 	 F(10= f f  	 dF(u)dF(v)

u Six <i sm

+ f f 	 F( u) dF(u) dF(v) = 2(17(m) —F(x)),
1<u
x <u s m

which gives (33.17). 	 •

Example 33.9. A collection [X,: t >— 0] of random variables is a Markov
process in continuous time if for k > 1, 0 < t 1 < 	 < tk < u, and H E

(33.18) 	 P^X EHIIX,...,X] =P[Xu EHIIX,k]

holds with probability 1. The analogue for discrete time is (33.11). (The X„
there have countable range as well, and the transition probabilities are
constant in time, conditions that are not imposed here.)

Suppose that t < u. Looking on the right side of (33.18) as a version of the
conditional probability on the left shows that

(33.19) 	 fP[X EHIIX1dP =P([XEH]n G)
G

if 0 < t I < • • < tk = t < u and G E Q(X, ... , X, k ). Fix t, u, and H, and let
k and t 1 ,... , tk vary. Consider the class .9= U cr(X , , ... , XXk

 ), the union
extending over all k > 1 and all k-tuples satisfying 0 < t 1 .ç • .. < tk = t. Xf
A Eo(X, i,...,X, k ) and BEQ(X... , XS^), then AnBE ^(X^,...,X,.),
where the ra are the so and the ty merged together. Thus ,9` is a iT-system.
Since .9 generates cr[XS: s _< t] and P[Xu E HII X,] is measurable with
respect to this u-field, it follows by (33.19) and Theorem 33.1 that P[Xu E
HII X,] is a version of P[Xu E HMI XS , s < t]:

(33.20) P f Xu E H ^^ XS , s	 = P iX« E H II Xr] ,	 t< u,

with probability 1.
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This says that for calculating conditional probabilities about the future,
the present cr(X,) is equivalent to the present and the entire past 0-[ Xs :
s < t]. This follows from the apparently weaker condition (33.18). U

Example 33.10. The Poisson process [ N, : t > O] has independent incre-
ments (Section 23). Suppose that 0 < t 1 < • • • < tk < u. The random vector
(N, ,N,,— N,,... , N, k — N, k  ,) is independent of Nu - N, k, and so (Theorem
20.2) (N, i , N, 2 , ..., N, k ) is independent of Nu - No,. If J is the set of points
(x,, ... , x k , y) in R k+ ' such that x k + y E H, where H EM I ,, and if v is the
distribution of Nu - N k, then (33.12) is P[(x,, ... , x k , Nu - N,k ) E J ] = P[ x k

+ N„ — N, E H] = v(H — x k ). Therefore, (33.13) gives P[Nu E
HII N,^.... , N, k ] = v(H — N, k ). This holds also if k = 1, and hence P[N„ E
HII N, i , ..., N4') = P[N„ E HII No, ]. The Poisson process thus has the Markov
property (33.18); this is a consequence solely of the independence of the
increments. The extended Markov property (33.20) follows. r

Properties of Conditional Probability

Theorem 33.2. With probability 1, P[0I,9] = 0, P[flUI,i] = 1; and

(33.21)	 0 < P[A11,11 < 1

for each A. If A I , A 2, ... is a finite or countable sequence of disjoint sets, then

(33.22) P U A n ll1 _ EP[ A n lli]
n 	 n

with probability 1.

PROOF. For each version of the conditional probability, JG P[ A ll A dP =
P(A n G) >— 0 for each G in .#; since P[ All #] is measurable ,1, it must be
nonnegative except on a set of P-measure 0. The other inequality in (33.21) is
proved the same way.

If the A n are disjoint and if G lies in #, it follows (Theorem 16.6) that

f(LP[Allv1)dP=  E f P[A n llil dP= EP(A n n G)
G n 	 n G 	 n

=PU U An) n G
Ĵ

.
^

Thus En P[A n llA, which is certainly measurable 9, satisfies the functional
equation for P[ U n A n Ik9], and so must coincide with it except perhaps on a
set of Y-measure 0. Hence (33.22). 	 •
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Additional useful facts can be established by similar arguments. If A C B, then

(33.23) P[B 	 =P[BII,1]

The inclusion—exclusion formula

P[ AIIS ] < P[B11,1 ].

(33.24) 	 P U A i ll ,1 = E P[ A,II s] - E PI A ; nA ; llS1 + . • •
i =1 	 i 	 i <j

holds. If A„ I A, then

	

(33.25) 	 P[A,,IJJ]T P[A11.#],

and if A 1 A, then

	

(33.26) 	 P[A„11.4] 1 P[A119]•

Further, P(A) = 1 implies that

	(33.27)	 P[AIIJ] = 1,

and P(A) = 0 implies that

	(33.28)	 P[ A11,9] =0.

Of course (33.23) through (33.28) hold with probability 1 only.

Difficulties and Curiosities

This section has been devoted almost entirely to examples connecting the
abstract definition (33.8) with the probabilistic idea lying back of it. There are
pathological examples showing that the interpretation of conditional proba-
bility in terms of an obse rver with partial information breaks down in certain
cases.

Example 33.11. Let (S?, ,̂ P) be the unit interval II with Lebesgue
measure P on the u-field .F of Borel subsets of SZ. Take 1 to be the cr-field
of sets that are either countable or cocountable. Then the function identically
equal to P(A) is a version of P[AII.#]: (33.8) holds because P(G) is either 0
or 1 for every G in .1. Therefore,

(33.29)	 P[A11.1]41 =P(A)

with probability 1. But since .1 contains all one-point sets, to know which
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elements of .# contain w is to know w itself. Thus # viewed as an
experiment should be completely informative—the obse rver given the infor-
mation in # should know w exactly—and so one might expect that

(33.30) ],^ = 
1 if w EA,

P[A11i 0 if w (EA-

This is Example 4.10 in a new form. 	 •

The mathematical definition gives (33.29); the heuristic considerations
lead to (33.30). Of course, (33.29) is right and (33.30) is wrong. The heuristic
view breaks down in certain cases but is nonetheless illuminating and cannot,
since it does not intervene in proofs, lead to any difficulties.

The point of view in this section has been "global." To each fixed A in Y-

has been attached a function (usually a family of functions) P[ A 1I # ] w

defined over all of SZ. What happens if the point of view is reversed—if w is
fixed and A varies over .`? Will this result in a probability measure on Sr?
Intuition says it should, and if it does, then (33.21) through (33.28) all reduce
to standard facts about measures.

Suppose that B,, ... , B r is a partition of D. into Y--sets, and let ^9=
Q(B,, ... , B r ). If P(B I ) = 0 and P(13,)> 0 for the other 1, then one version of
P[A11J] is

17
P[A11.IL= P(AnB i ) 

P( Bi)

if co E B 1 ,

ifw EB i= 2,...,r.

With this choice of version for each A, P[AII 1] 41 is, as a function of A, a
probability measure on Y - if w E B 2 U . • . U Br, but not if w e B 1 . The
"wrong" versions have been chosen. If, for example,

P( A)

P[A11.1].= P(AnB i )
P(B i )

if w E B l ,

ifwE B i = 2, ... , r,

then P[AII.9] c,, is a probability measure in A for each w. Clearly, versions
such as this one exist if 9 is finite.

It might be thought that for an arbitrary o--field .5 in 	 versions of the
various P[ A 11.g] can be so chosen that P[ A I1 # ] c , is for each fixed w a
probability measure as A varies over .9. It is possible to construct a
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counterexample showing that this is not so.t The example is possible because
the exceptional w-set of probability 0 where (33.22) fails depends on the
sequence A,, A D ...... ; if there are uncountably many such sequences, it can
happen that the union of these exceptional sets has positive probability
whatever versions P[A II#] are chosen.

The existence of such pathological examples turns out not to matter.
Example 33.9 illustrates the reason why. From the assumption (33.18) the
notably stronger conclusion (33.20) was reached. Since the set [X„ E H] is
fixed throughout the argument, - it does not matter that conditional probabili-
ties may not, in fact, be measures. What does matter for the theory is
Theorem 33.2 and its extensions.

Consider a point w 0 with the property that P(G) > 0 for every G in J
that contains co o . This will be true if the one-point set {w 0 } lies in Ç5-4- and has
positive probability. Fix any versions of the P[ A II J]. For each A the set [ o:
P[ A II Si,, < 0] lies in J and has probability 0; it therefore cannot contain
w o. Thus P[ AIIJ],,, >_ 0. Similarly, P[C MJL - 1, and, if the A n are dis-
joint, PEU A n IIJ],, 0 = E n P[AIIJ]W0. Therefore,n e, P[A IIJL 0 is a probability
measure as A ranges over 5.

Thus conditional probabilities behave like probabilities at points of posi-
tive probability. That they may not do so at points of probability 0 causes no
problem because individual such points have no effect on the probabilities of
sets. Of course, sets of points individually having probability 0 do have an
effect, but here the global point of view reenters.

Conditional Probability Distributions

Let X be a random variable on (II, ,F, P), and let J be a OE-field in .

Theorem 33.3. There exists a function µ(H, w), defined for H in .^i and
w in f/, with these two properties:

(i) For each w in fl, µ(• , w) is a probability measure on ✓ I .
(ii) For each H in R I , µ(H, •) is a version of P[X E HIIJ].

The probability measure µ(•,w) is a conditional distribution of X given S.
If J= 0-(Z), it is a conditional distribution of X given Z.

PROOF. For each rational r, let F(r, w) be a version of P[X _< rlIJ]u,. If
r _< s, then by (33.23),

(33.31) 	 F(r,w) SF(s,w)

tThe argument is outlined in Problem 33.11. It depends on the construction of certain
nonmeasurable sets.
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for w outside a .1set A rs of probability 0. By (33.26),

( 33.32) 	FO-, co)  = lim F( r + n - ', co)
n

for w outside a .1set B r of probability 0. Finally, by (33.25) and (33.26),

(33.33) _ lim F( r, w) = 0, 	 lsrn F( r, w) = 1
r-> -.r->oo

outside a ,set C of probability 0. As there are only countably many of these
exceptional sets, their union E lies in .1 and has probability 0.

For w E extend F(•, w) to all of R' by setting F(x, w) = inf[ F(r, w):
x < r]. For w E E take F(x, co) = F(x), where F is some arbitrary but fixed
distribution function. Suppose that w E. By (33.31) and (33.32), F(x, w)
agrees with the first definition on the rationals and is nondecreasing; it is
right-continuous; and by (33.33) it is a probability distribution function.
Therefore, there exists a probability measure p(•, w) on (R I , ✓ 1 ) with
distribution function F(•, w). For w E E, let µ(•, w) be the probability
measure corresponding to F(x). Then condition (i) is satisfied.

The class of H for which µ(H, • ) is measurable .1 is a A-system
containing the sets H = (-00, r] for rational r; therefore µ(H, . ) is measur-
able .1 for H in R I .

By construction, µ((- 00, r], w) = P[ X < rII.l1,0 with probability 1 for ratio-
nal r; that is, for H = (-00,r) as well as for H = R',

fG,u.(H,w)P(dw	 ([) =PX EH] n G)

for all G in .1. Fix G. Each side of this equation is a measure as a function
of H, and so the equation must hold for all H in a'. 	 •

Example 33.12. Let X and Y be random variables whose joint distribu-
tion v in R 2 has density f(x, y) with respect to Lebesgue measure: P[(X, Y)
EA] = v(A) = ffAf(x, y) dxdy. Let g(x, y) = f(x, y)/fR' f(x, t) dt, and let
µ(H, x) = f1g(x, y) dy have probability density g(x, • ); if fR I f(x, t) dt = 0,
let g(•, x) be an arbitrary probability measure on the line. Then µ(H, X(w ))
will serve as the conditional distribution of Y given X. Indeed, (33.10) is the
same thing as /ExR6(AF, x) dv(x, y) = v(E x F), and a change of variable
gives f[X E Eiµ(F, X(w))P(dw) = P[ X E E, Y E F]. Thus µ(F, X(w)) is a ver-
sion of P[Y E FII XL. This is a new version of Example 33.5. 0
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PROBLEMS

33.1. 20.271 Borel's paradox. Suppose that a random point on the sphere is
specified by longitude 0 and latitude 4), but restrict 0 by 0 < Co < Tr, so that 0
specifies the complete meridian circle (not semicircle) containing the point,
and compensate by letting I range over ( -7r, 7].

(a) Show that for given 0 the conditional distribution of (I) has density
4lcos ¢1 over ( -7r, +rr]. If the point lies on, say, the meridian circle through
Greenwich, it is therefore not uniformly distributed over that great circle.

(b) Show that for given 4) the conditional distribution of 0 is uniform over
(0, 7). If the point lies on the equator (43 is 0 or rr), it is therefore uniformly
distributed over that great circle.

Since the point is uniformly distributed over the spherical surface and
great circles are indistinguishable, (a) and (b) stand in apparent contradiction.
This shows again the inadmissibility of conditioning with respect to an isolated
event of probability 0. The relevant o--field must not be lost sight of.

33.2. 20.16 T Let X and Y be independent, each having the standard normal
distribution, and let (R,0) be the polar coordinates for ( X, Y).

(a) Show that X + Y and X — Y are independent and that R 2 = [(X +Y) 2 +
(X — Y) 2 ]/2, and conclude that the conditional distribution of R 2 given X — Y
is the chi-squared distribution with one degree of freedom translated by
( X — Y) 2/2.

(b) Show that the conditional distribution of R 2 given O is chi-squared with
two degrees of freedom.

(c) If X — Y = 0, the conditional distribution of R 2 is chi-squared with one
degree of freedom. If 0 = 7r/4 or 0 = 57r/4, the conditional distribution of
R 2 is chi-squared with two degrees of freedom. But the events [ X— Y= 0] and
[0 = it/4] U [0 = 57/4] are the same. Resolve the apparent contradiction.

33.3. T Paradoxes of a somewhat similar kind arise in very simple cases.

(a) Of three prisoners, call them 1, 2, and 3, two have been chosen by lot for
execution. Prisoner 3 says to the guard, "Which of 1 and 2 is to be executed?
One of them will be, and you give me no information about myself in telling
me which it is." The guard finds this reasonable and says, "Prisoner 1 is to be
executed." And now 3 reasons, "I know that 1 is to be executed; the other will
be either 2 or me, and so my chance of being executed is now only Z, instead of
the 3 it was before," Apparently, the guard has given him information.

If one looks for a o-field, it must be the one describing the guard's answer,
and it then becomes clear that the sample space is incompletely specified.
Suppose that, if 1 and 2 are to be executed, the guard's response is "1" with
probability p find "2" with probability 1 —p; and, of course, suppose that, if 3
is to be executed, the guard names the other victim. Calculate the conditional
probabilities.

(b) Assume that among families with two children the four sex distributions
are equally likely. You have been introduced to one of the two children in such
a family, and he is a boy. What is the conditional probability that the other is a
boy as well?
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33.4. (a) Consider probability spaces (1,.9, P) and (i,.9' , P'); suppose that T:
Sl! if is measurable 5/54 ' and P' = PT -1 . Let ✓I' be a a-field in .5', and
take .I to be the a-field [T-1 G': G' E .1']. For A' E 5c-', show by (16.18) that
P[T -1A'IILI]W = P'[A'll^']T

,
 with P-probability 1.

(b) Now take 	 P') _ (R 2 , . Z, µ), where µ is the distribution of a
random vector (X, Y) on (II, .f P). Suppose that (X, Y) has density f, and
show by (33.9) that

f f(X(w),t)dt
P[Y E FI I X]„, -- 	

fR/c X(o), t) dt

with probability 1.

33.5. T (a) There is a slightly different approach to conditional probability. Let
(St, ‘F, P) be a probability space, (S1', .T- ') a measurable space, and T: SZ —, S1'
a mapping measurable .9/ L'. Define a measure y on . ' by v(A') = P(A rl
T -1A') for A' E .5'. Prove that there exists a function p(A lw') on S).', measur-
able .9v' and integrable PT -1 , such that JA.p(Al w')PT -1 (dw') = P(A n 1.4' )
for all A' in ‘F'. Intuitively, p(Alcor) is the conditional probability that w E A
for someone who knows that no = w'. Let ✓I_ [T - 'A': A' E 5']; show that LI
is a a-field and that p(AI Tw) is a version of P[ AIIJ]w .
(b) Connect this with part (a) of the preceding problem.

33.6. T Suppose that T = X is a random variable, (if, 9 ') = (R 1 ,.î 1 ), and x is
the general point of R 1 . In this case p(Alx) is sometimes written PEAIX=xi.
What is the problem with this notation?

33.7. For the Poisson process (see Example 33.1) show that for 0 <s < t,

( pv 1
( L )k(1 	

1 
1 N,-k

P [Ns = k II N,] —	 k	 j 	 J k <N,

0, 	 k >N^.

Thus the conditional distribution (in the sense of Theorem 33.3) of Ns given N.
is binomial with parameters N and s/t.

33.8. 29.12 1 Suppose that (X1, X2 ) has the centered normal distribution—has in
the plane the distribution with density (29.10). Express the quadratic form in
the exponential as

1 x2 + ^11

 (x 2

w
Q12 x

Q11 1 	Ü 	 Q11 1

1 
,

2
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integrate out the x 2 and show that

	f (x1,x2) 1 	1_ 	 ^1z 	 zexp — --(x 2 --- x )
f W f{x 1 , t ) dt 	 TrT 	 all	2 	 2T 	 z —

	
1
 I,

.

where T := 	-
 cr12u111• Describe the conditional distribution of X2 given X i .

33.9. (a) Suppose that µ(H, w) has property (i) in Theorem 33.3, and suppose that
µ(H, •) is a version of P[X E HIV] for H in a Tr-system generating R I . Show
that µ( • , w) is a conditional distribution of X given J.
(b) Use Theorem 12.5 to extend Theorem 33.3 from R 1 to R k .
(c) Show that conditional probabilities can be defined as genuine probabilities
on spaces of the special form (11,o-0C,, ... , Xk ), P).

33.10. T Deduce from (33.16) that the conditional distribution of X given M is

1 r 	1 µ(Hr( - 00, P✓1 (w)1) 
GI[MEH]lw) -f- 2 	it( —oo,M(w)l)	

,

where µ is the distribution corresponding to F (positive and continuous). Hint:
First check H = (— œ, x ].

33.11. 4.10 12.41 The following construction shows that conditional probabilities
may not give measures. Complete the details.

In Problem 4.10 it is shown that there exist a probability space (Si, ✓`, P), a
o--field J in .5', and a set H in .9 such that P(H) = 2, H and J are
independent, ,J contains all the singletons, and J is generated by a countable
subclass. The countable subclass generating J can be taken to be a Tr-system
,9= (B 1 , B z , ...) (pass to the finite intersections of the sets in the original
class).

Assume that it is possible to choose versions P[AIIJ] so that P[AIIJ],, is
for each w a probability measure as A varies over 5'. Let C„ be the w-set
where P1/3„11 ,1]. = IB (w); show (Example 313) that C = f1 „C„ has probabil-
ity 1. Show that w E ^C implies that P[GIIJ]0, = 1G(w) for all G in J and
hence that P[{(0)IIJ]u,= 1.

Now w E H r C implies that P[HIIJL >— P[{w}IIJL = 1 and co E IF r C
implies that P[HII ✓ ,0 < P[f — (w)II.J10 = 0. Thus w E C implies that
P[HIIJL = IH(w). But since H and J are independent, P[HII JL _
P(H) = i with probability 1, a contradiction.

This example is related to Example 4.10 but concerns mathematical fact
instead of heuristic interpretation.

gX( y) =

33.12. Let a and 0 be a--finite measures on the line, and let f(x, y) be a probability
density with respect to a X f3. Define

(33.34) ./r( X/ y) ,

I
R f(x, t)0(dt)
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unless the denominator vanishes, in which case take gx(y) = 0, say. Show that,
if (X, Y) has density f with respect to a x (3, then the conditional distribution
of Y given X has density gx(y) with respect to /3. This generalizes Examples
33.5 and 33.12, where a and /3 are Lebesgue measure.

33.13. 18.20 1 Suppose that ea and vX (one for each real x) are probability measures
on the line, and suppose that v.,(B) is a Borel function in x for each B E
Then (see Problem 18 20)

(33.35) 	71E) = fRiv,[ y • (x, y) E E]µ(dx)

defines a probability measure on (R 2 , .9P Z ).

Suppose that (X, Y) has distribution -rr, and show that vx is a version of the
conditional distribution of Y given X.

33.14. 	 Let a and j3 be a-finite measures on the line. Specialize the setup of
Problem 33.13 by supposing that ,u has density f(x) with respect to a and v
has density gx(y) with respect to /3. Assume that gx(y) is measurable .g 2
in the pair (x, y), so that 'x(B) is automatically measurable in x. Show
that (33.35) has density f(x)gx(y) with respect to a x /3: ,r(E) =
f fc f(x)gx(y)a(dx) f (dy). Show that (33.34) is consistent with f(x, y)=
f(x)gx (y). Put

py(x) 
	f(x)gX(y) 

fR ,f(S)gs(y)a(ds)

Suppose that (X, Y) has density f(x)gx(y) with respect to a x (3, and show
that p y(x) is a density with respect to a for the conditional distribution of X
given Y.

In the language of Bayes, f(x) is the prior density of a parameter x, gx(y)
is the conditional density of the obse rvation y given the parameter, and py(x)
is the posterior density of the parameter given the observation.

33.15. Now suppose that a and 13 are Lebesgue measure, that f(x) is positive,
continuous, and bounded, and that gX( y) = e (-' n /2/ 1/27/n . Thus the
observation is distributed as the average of n independent normal variables
with mean x and variance 1. Show that

py V + Tri )

1 e -X'-/z

11271-

for fixed x and y. Thus the posterior density is approximately that of a normal
distribution with mean y and variance 1/n.

33.16. 32.131 Suppose that X has distribution µ. Now P[ All X ], = f(X(w)) for
some Borel function f. Show that lim b _, o P[Al x — h < X .LÇ x +i d== f(x) for x
in a set of µ-measure 1. Roughly speaking, P[ A Ix — h < X x + h] —' P[ A I X
=x]. Hint: Take v(B)=P(A n[XE B]) in Problem 32.13.



SECTION 34. CONDITIONAL EXPECTATION 	 445

SECTION 34. CONDITIONAL EXPECTATION

In this section the theory of conditional expectation is developed from first
principles. The properties of conditional probabilities will then follow as
special cases. The preceding section was long only because of the examples in
it; the theory itself is quite compact.

Definition

Suppose that X is an integrable random variable on (1f, 3, P) and that 5 is
a o--field in ^: There exists a random variable E[X  III], called the condi-
tional expected value of X given .5, having these two properties:

(1) E[X II.9] is measurable .# and integrable.
(ii) E[X II.9] satisfies the functional equation

(34.1)	 JE[XILIJdP=JXdP,
G
	GES .

To prove the existence of such a random variable, consider first the case of
nonnegative X. Define a measure v on .5 by v(G) = JGX dP. This measure
is finite because X is integrable, and it is absolutely continuous with respect
to P. By the Radon—Nikodym theorem there is a function f, measurable .1,
such that v(G) = fG f dP.t This f has properties (i) and (ii). If X is not
necessarily nonnegative, E[X+ IIJ] — E[X - 1151 clearly has the required
properties.

There will in general be many such random variables E[X II#]; any one of
them is called a version of the conditional expected value. Any two versions
are equal with probability 1 (by Theorem 16.10 applied to P restricted to .5).

Arguments like those in Examples 33.3 and 33.4 show that E[X 11{0, fill =
E[X] and that E[X Ii9] = X with probability 1. As .5 increases, condition
(i) becomes weaker and condition (ii) becomes stronger.

The value E[ XII.#],, at w is to be interpreted as the expected value of X
for someone who knows for each G in .9 whether or not it contains the point
w, which itself in general remains unknown. Condition (i) ensures that
E[X 1151 can in principle be calculated from this partial information alone.
Condition (ii) can be restated as jc(X — E[X III]) dP = 0; if the observer, in
possession of the partial information contained in .5, is offered the opportu-
nity to bet, paying an entry fee of E[ X1151 and being returned the amount
X, and if he adopts the strategy of betting if G occurs, this equation says that
the game is fair.

tAs in the case of conditional probabilities, the integral is the same on (1Z, .9, P) as on (11, ..1)
with P restricted to .1 (Example 16.4).
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Example 34.1. Suppose that B 1 , B 2 ,... is a finite or countable partition of
D. generating the o--field .#. Then E[X I1.g1 must, since it is measurable .#,
have some constant value over B,, say a,. Then (34.1) for G = B, gives
a,P(B,) = 1B1 XdP. Thus

(34.2) 	 E[X I1^1^, = 
P(

^

i) 
f XdP, w E B,,
a;

P( Bi )> 0.

If P(B,) = 0, the value of E[ X II91 over B. is constant but arbitrary. 	 •

Example 34.2. For an indicator IA the defining properties of E[IA II.I1
and P[AII.I] coincide; therefore, E[IAII.l1=P[241I,11 with probability 1. It
is easily checked that, more generally, E[X II ,1] = E 1 a,P[_A,II.g] with pioba-
bility 1 for a simple function X= E,a,IA,. •

In analogy with the case of conditional probability, if [XX , t E T] is a
collection of random variables, E[ X II Xt , t E T ] is by definition E[X II i]
with a[X,, t E T] in the role of .9.

Example 34.3. Let .f be the o--field of sets invariant under a measure-
preserving transformation^ T on (SI, ^, P). For f integrable, the limit f in
(24.7) is E[ f11,51: Since f is invariant, it is measurable J If G is invariant,
then the averages a„ in the proof of the ergodic theorem (p. 318) satisfy
E[IG a,l ] = E[IG f ]. But since the a„ converge to f and are uniformly inte-
grable, E[ IG f 1= E[ 1G f ]. •

Properties of Conditional Expectation

To prove the first result, apply Theorem 16.10(iii) to f and E[X III] on
P)•

Theorem 34.1. Let .9 be a 7-system generating the 6-field .5, and suppose
that CI is a finite or countable union of sets in .5. An integrable function fis a
version of E[X II.#1 if it is measurable .5 and if

(34.3) 	 f fdP=fxdP
G 	c

holds for all G in .9.

In most applications it is clear that SZ E
All the equalities and inequalities in the following theorem hold with

probability 1.
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Theorem 34.2. Suppose that X, Y, X„ are integrable.

(i) If X = a with probability 1, then E[ X II.5] = a.
(ii) For constants a and b, E[aX + bYli#] = aE[XII6] + bE[YII.#]•
(iii) If X < Y with probability 1, then E[ X 116] < E[ Y II 6]•
(iv) IE[XII.]I s E[IXI III.
(v) If lim n X„ = X with probability 1, IX„I _< Y, and Y is integrable, then

lim n E[X„II6] = E[X III] with probability 1.

PROOF. If X = a with probability 1, the function identically equal to a
satisfies conditions (i) and (ii) in the definition of E[X III], and so (i) above
follows by uniqueness.

As for (ii), aE[X II.#] t bE[ YIId] is integrable and measurable J, and

f(aE[XI6?J + bE[YIi6?J) dP = a fGE[XIIS]dP +b fcE[YIIs]dP

=a f XdP+b f YdP= f (aX+bY)dP
G 	 G 	 G

for all G in .5, so that this function satisfies the functional equation.
If X < Y with probability 1, then fG(E[YII6] — E[X III]) dP = fG(Y —

X) dP > 0 for all G in S. Since E[YII 6] — E[X III] is measurable .5, it
must be nonnegative with probability 1 (consider the set G where it is
negative). This proves (iii), which clearly implies (iv) as well as the fact that
E[X II ✓?] = E[YII 6] if X = Y with probability 1.

To prove (v), consider Z„ = Supk, niXk — X]. Now Z„ J, 0 with probability
1, and by (ii), (iii), and (iv), I E[Xn iI #] -- E[ X IId]I < E[Z„II.']. It suffices,
therefore, to show that E[Z„IId] J,0 with probability 1. By (iii) the sequence
E[Z„IId] is nonincreasing and hence has a limit Z; the problem is to prove
that Z = 0 with probability 1, or, Z being nonnegative, that E[Z] = O. But
0 < Zn _< 2Y, and so (34.1) and the dominated convergence theorem give
E[Z] = fE[ZII?]dP < fE[Z n II6]dP=E[4] -* 0. •

The properties (33.21) through (33.28) can be derived anew from Theorem
34.2. Part (ii) shows once again that E[E;a;IA .II.] = E 1 a 1 P[A ; II6] for sim-
ple functions.

If X is measurable .5, then clearly E[X II.J] = X with probability 1. The
following generalization of this is used constantly. For an obse rver with the
information in ✓5, X is effectively a constant if it is measurable 6:

Theorem 343. If X is measurable ?, and if Y and XY are integrable, then

E[ XYII .5 ] =XE[Y II5](34.4)

with probability 1.
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PROOF. It will be shown first that the right side of (34.4) is a version of
the left side if X= /G0  and G o E Since IG.E[YII.#] is certainly measur-
able .#, it suffices to show that it satisfies the functional equation
fc ic^ E[YII ✓g] dP =Ic ic^ YdP, G E ,^. But this reduces to fc n c(, E[Y II.h] dP
= fc n c(,YdP, which holds by the definition of E[ Y I Id' ]. Thus (34.4) holds if
X is the indicator of an element of g.

It follows by Theorem 34.2(iî) that (34.4) holds if X is a simple function
measurable #. For the general X that is measurable .# , there exist simple
functions X„, measurable .^ , such that I X,.I < XI and lim n Xn = X (Theorem
13.5). Since I X„YI < IXYI and IXYI is integrable, Theorem 34.2(v) implies
that lim n E[ XY II # ] = E[ XY II9] with probability 1. But E[ X„Y II #} =
Xn E[YII 1] by the case already treated, and of course lim n X„ E[Y IId'} =
XE[YII.9]. (Note that IXn E[YII#]I = IE[X„YII#]I < E[IX„YI III]  <
E[I XYI ll ✓1 ], so that the limit XE[YI!l] is integrable.) Thus (34.4) holds in
general. Notice that X has not been assumed integrable. ■

Taking a conditional expected value can be thought of as an averaging or
smoothing operation. This leads one to expect that averaging X with respect
to `#2 and then averaging the result with respect to a coarser (smaller)
a--field should lead to the same resuit as would averaging with respect to

in the first place:

Theorem 34.4. If X is integrable and the a-fields ^ and .#2 satisfy
g2 , then

(34.5) E[E[X11 ,12] Il î] = E[X11,1i]

with probability 1.

PROOF. The left side of (34.5) is measurable 4, and so to prove that it is
a version of E[ X I I #1 ], it is enough to verify f f E[ E[ X I I ✓#Z ]II JI ] dP = JGX dP
for G E . . But if G E..11, then G E'p2 , and the left side here is
Ic E[XIIS2 ]dP = fG XdP. ■

If g2 = Y, then E[X II.g2] = X, so that (34.5) is trivial. If ^ = {0, 1Z} and
`4'2 = .^ , then (34.5) becomes

(34.6)	 E[E[XII.#]] = E[X],

the special case of (34.1) for G = ft.
If g1 c,ÿ2 , then E[ X II4 ], being measurable .g1 , is also measurable A,

so that taking an expected value with respect to .#2 does not alter it:
E[ E[ X I I ^, }I I ^2 ] = E[ X I I g1 ]. Therefore, if .ÿ1 c .ÿ2 , taking iterated expected
values in either order gives E[ X 1Lÿ1 ].



SECTION 34. CONDITIONAL EXPECTATION 449

The remaining result of a general sort needed here is Jensen's inequality
for conditional expected values: If cp is a convex function on the line and X
and cp(X) are both integrable, then

(34.7) 	 cp( E[X II-4]) s E[cp( X )II ,4]

with probability 1. For each x o take a support line [A33] through (x0 , cp(x 0 )):
cp(x 0 ) +A(x 0 Xx - x 0 ) _< cp(x). The slope A(x 0 ) can be taken as the right-hand
derivative of gyp, so that it is nondecreasing in x 0 . Now

cp(E [ XII ,1 ] ) + A(E[ X 1 1
-4]) ( X - E[ 	 cp(X ).

Suppose that E[X II.#] is bounded. Then all three terms here are integrable
(if cp is convex on R', then cp and A are bounded on bounded sets), and
taking expected values with respect to and using (34.4) on the middle term
gives (34.7).

To prove (34.7) in general, let G = [ I E[ X11. -411  < n ]. Then E[ IG^X 11.1] =
IGnE[X III] is bounded, and so (34.7) holds for IGnX: cp(IGnE[X Iill)
E[cp(IGnX )II9]. Now E[cp(IQ „X )III] = E[IGncp(X) + IGn cp(0)II.'] =
IG^E[cp(X )II.] + IGecp(0) -^ E[cp(X )11.1]. Since cp(IG^E[X III]) converges to
cp(E[ X 1I.1 ]) by the continuity of cp, (34.7) follows. If cp(x) = 1 xl, (34.7) gives
part (iv) of Theorem 34.2 again.

Conditional Distributions and Expectations

Theorem 34.5. Let µ(•,w) be a conditional distribution with respect to .g
of a random variable X, in the sense of Theorem 33.3. If 9: R' -* R' is a Borel
function for which 9(X) is integrable, then I R icp(x)µ(dx,w) is a version of
E[ç(X)II.1L.

PROOF. If cp = IH and H ER', this is an immediate consequence of the
definition of conditional distribution, and by Theorem 34.2(iî) it follows for cp
a simple function over R'. For the general nonnegative cp, choose simple cpn

such that 0 < cp„(x)1' cp(x) for each x in R'. By the case already treated,
fR icp„(x)µ(dx, w) is a version of E[cp„(X )11.11,. The integral converges by the
monotone convergence theorem in (R', ,w)) to fR icp(x)µ(dx, (o) for
each w, the value +co not excluded, and E[cp„(X)II.#]„, converges to
E[cp(X )II.#1,, with probability 1 by Theorem 34.2(v). Thus the result holds for
nonnegative cp, and the general case follows from splitting into positive and
negative parts. •

It is a consequence of the proof above that fR icp(x)µ(dx, w) is measurable
.1 and finite with probability 1. if X is itself integrable, it follows by the
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theorem for the case cp(x) =x that

E[XII 9 ], = Jxp(d,w)
W

with probability 1. If co(X) is integrable as well, then

W
(34.8) E[cp(X)IIJ]W= f cp(x)4dx,w)

with probability 1. By Jensen's inequality (21.14) for unconditional expected
values, the right side of (34.8) is at least cp(f °°,,xµ(dx, co)) if cp is convex. This
gives another proof of (34.7).

Sufficient Subfields*

Suppose that for each 0 in an index set 0, P6 is a probability measure on (fi, 5). In
statistics the problem is to draw inferences about the unknown parameter B from an
obse rvation w.

Denote by PB[AII,J] and EB[XII,J] conditional probabilities and expected values
calculated with respect to the probability measure Po on (f2, ^). A o-field .1 in .5r
is sufficient for the family [P0 : 8 E 0] if versions Po[AII.J] can be chosen that are
independent of 0—that is, if there exists a function p(A, w) of A E ,9 and w E SZ
such that, for each A E .9 and 0 E 0, p(A, -) is a version of PB[AIIJ]. There is no
requirement that p(•, w) be a measure for w fixed. The idea is that although there
may be information in .5r not already contained in .1, this information is irrelevant to
the drawing of inferences about 0. t A sufficient statistic is a random variable or
random vector T such that o-(T) is a sufficient subfield.

A family .' of measures dominates another family .'V if, for each A, from
µ(A) — O for all ii, in .41, it follows that v(A) = 0 for all y in ✓1! If each of .,l and ✓Y
dominates the other, they are equivalent. For sets consisting of a single measure these
are the concepts introduced in Section 32.

Theorem 34.6. Suppose that [Po : 0 E 01 is dominated by the o finite measure µ. A
necessary and sufficient condition for .J to be sufficient is that the density fe of Po with
respect to µ can be put in the form fe = ge h for a go measurable S.

It is assumed throughout that go and h are nonnegative and of course that h is
measurable .9 Theorem 34.6 is called the factorization theorem, the condition being
that the density kJ splits into a factor depending on w only through ✓.P and a factor
independent of 0. Although g o and h are not assumed integrable µ, their product f0 ,
as the density of a finite measure, must be. Before proceeding to the proof, consider
an application.

Example 34.4. Let (Si, . ) _ (R k,.i k ), and for 0 > 0 let Po be the measure
having with respect to k-dimensional Lebesgue measure the density

B-k 	 if0 <x ; <_B,i =I.,..., k ,
fB(x) _— fB (x l ,..., x k ) _

0 	 otherwise.

* This topic may be omitted.
# See Problem 34.19.
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If X1 is the function on R k defined by X1(x) =x i , then under P0 , XI,..., Xk are
independent random variables, each uniformly distributed over [0, 0]. Let T(x)
max ; s k X;(x). If g o(t) is 0 -k for 0 < t 0 and 0 otherwise, and if h(x) is 1 or 0
according as all x{ are nonnegative or not, then fe(x) = g e(T(x))h(x). The factoriza-
tion criterion is thus satisfied, and T is a sufficient statistic.

Sufficiency is clear on intuitive grounds as well: 0 is not involved in the conditional
distribution of X 1 ,..., Xk given T because, roughly speaking, a random one of them
equals T and the others are independent and uniform over [0, T]. If this is true, the
distribution of Xi given T ought to have a mass of ICI at T and a uniform
distribution of mass 1 — k' over [0, T], so that

(34.9) 	 E0[X;IIT]=1 T +kk1 Tk2k 1
T.

For a proof of this fact, needed later, note that by (21 9)

(34 10) f X; dPe = f Po [T < t X > u] du
T<t

^ u (1) k -1 	t k+]fit —

du
= 2ek

if 0 < t <0. On the other hand, PB [T < t] = (t/B)k , so that under P0 the distribution
of T has density kt k -I /0 k  over [0, 0]. Thus

(34.11)
k--I 	 k+ 1

f k2k 1 TdPe = k2 
l  it

k 	 uk 
u k 

 du = t k .
T<t 	 o	 B	 2B

Since (34.10) and (34.11) agree, (34.9) follows by Theorem 34.1. 	 •
The essential ideas in the proof of Theorem 34.6 are most easily understood

through a preliminary consideration of special cases.

Lemma 1. Suppose that [Po : 0 E 0] is dominated by a probability measure P and
that each Po has with respect to P a density g o that is measurable S. Then ,.I is
sufficient, and P[ All ,$] is a version of PB[ All J] for each B in 0.

PROOF. For G in ✓̂ , (34.4) gives

jP[AIIJ]dP0 = f
 E[J4 IIJJg 0 dP = f E[Ig0IIJ] dP

= f 
/A g o

 dP= f
godP=PB(A rI G) .

G	 a
nG 

Therefore, P[AII,$]—the conditional probability calculated with respect to P—does
serve as a version of PB[AII.J] for each 0 in 0. Thus J is sufficient for the family
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[Pe : 0 e 0]—even for this family augmented by P (which might happen to lie in the
family to start with). 	 •

For the necessity, suppose first that the family is dominated by one of its members.

Lemma 2. Suppose that [Pe : 0 E 0] is dominated by Po for some 00 E 0. If J is
sufficient, then each Po has with respect to Poo a density g o tlhat is measurable S.

PROOF. Let p(A, w) be the function in the definition of sufficiency, and take
PB[Afl J]„, =PEA, w) for all A E ,Y, w e SZ, and 0 E 0. Let d e be any density of Po
with respect to Poo. By a number of applications of (34.4),

J Ee^,[dell.^] dPeo = fIA EO[d011 ✓̂ ] dPa
^

= f Eeo{IA Eea [ de lls Ds' } dteo = JE0{ 'A ll J E00[d 0 llJ j dPeu

= fE00 [  Een( IA IIS) d e llSi dPe„ = JEO{ ( 'As) d e dPeo

= f Peo [ AIIs] dPe = f PP [ Avi dPB = po( A ) ,

the next-to-last equality by sufficiency (the integrand on either side being p (A, • )).
Thus go = Eoo[de ll 4, which is measurable ✓J, can se rve as a density for Po with
respect to Poo. •

To complete the proof of Theorem 34.6 requires one more lemma of a technical
sort.

Lemma 3. If [Pe: 0 E 01 is dominated by a a finite measure, then it is equivalent to
some finite or countably infinite subfamily.

In many examples, the Po are all equivalent to each other, in which case the
subfamily can be taken to consist of a single Pei

PROOF. Since u is a--finite, there is a finite or countable partition of 11 into
✓zsets A n such that 0 <p(An) < oc. Choose positive constants a,,, one for each A,,,
in such a way that En an <00. The finite measure with value E„a„µ(A nA„)/µ(A„)
at A dominates a. In proving the lemma it is therefore no restriction to assume the
family dominated by a finite measure p.

Each Po is dominated by  	 and hence has a density fe with respect to it. Let
So = [w: fe(w) > 0]. Then PB(A) = PB(A n S0 ) for all A, and PB(A) = 0 if and only if
µ(A n S0 ) = O. In particular, So supports Pe .

Call a set B in Y a kernel if B c So for some 0, and call a finite or countable
union of kernels a chain. Let a be the supremum of µ(C) over chains C. Since p, is
finite and a finite or countable union of chains is a chain, a is finite and µ(C) = a for
some chain C. Suppose that C — U„ B,,, where each B„ is a kernel, and suppose that
Bn c So

n
.

The problem is to show that [Pe : 0 E 0] is dominated by [P0 : n = 1, 2,...] and
hence equivalent to it. Suppose that Po (A) = 0 for all n. Then µ(A n S o ) = 0, as
observed above. Since Cc U„ S B , µ(A n C) = 0, and it follows that PB(A n C) = 0
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whatever 0 may be. But suppose that PB(A — C) > O. Then PB((A — C) n S0 ) _
P0(A -- C) is positive, and so (A — C) n So is a kernel, disjoint from C, of positive
a-measure; this is impossible because of the maximality of C. Thus PB(A — C) is 0
along with PB(A n C), and so PB(A) = O. •

Suppose that [Pe : 0 E CO] is dominated by a a-finite µ, as in Theorem 34.6, so that,
by Lemma 3, it contains a finite or infinite sequence Pet , P02,... equivalent to the
entire family. Fix one such sequence, and choose positive constants c„, one for each
0,,, in such a way that E„c„ = 1. Now define a probability measure P on 5r by

(34.12) 	 P(A)= Ec„PB (A).
n

Clearly, P is equivalent to [Po i , PB , . • ] and hence to [Po : 0 E 0], and all three are
dominated by µ.

(34.13) P- [ PB i ,PBZ ,...1 = [Pe : O E 0] «µ.

PROOF OF SUFFICIENCY IN THEOREM 34.6. If each Po has density g e h with
respect to µ, then by the construction (34.12), P has density fh with respect to p.,
where f = E„c„ge . Put re = golf if f > 0, and rd = 0 (say) if f = O. If each go is
measurable ,5, thë same is true of f and hence of the re . Since P[ f — 01= 0 and P is
equivalent to the entire family, Po [ f = 0] = 0 foi all O. Therefore,

	J ro dP=fro fhdp. =f 	 refhdµ=fgehdµ
A 4	 IA 	An[f>0]

= Po ( A n [ f > 0])= PB (A).

Each Po thus has with respect to the probability measure P a density measurable ,5,
and it follows by Lemma 1 that ✓5 is sufficient 	 •

PROOF OF NECESSITY IN THEOREM 34.6. Let p(A, w) be a function such that, for
each A and 0, p(A, •) is a version of PB[AII.1], as required by the definition of
sufficiency. For P as in (34.12) and G E .5,

(34.14) 	 f p(A,w)P(dcw)= Ec„ fG p(A,cw)PB„(dw)G 

= Ec„ f PB! [AII ✓̂ ]dPe
n 	 G

= Ec„PB (A n G)=P(A n G).
n

Thus p(A, •) serves as a version of P[ AII ✓'] as well, and ,5 is still sufficient if P is
added to the family Since P dominates the augmented family, Lemma 2 implies that
each Po has with respect to P a density go that is measurable S. But if h is the
density of P with respect to µ (see (34.13)), then Po has density geh with respect
to µ. •
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A sub-u-field so sufficient with respect to [P0 : 0 E 0] is minimal if, for each
sufficient ,.I, ,Io is essentially contained in J in the sense that for each A in ,$o
there is a B in ✓P such that PB(A A B) = 0 for all 0 in O. A sufficient ✓1 represents a
compression of the information in  and a minimal sufficient t.go represents the
greatest possible compression.

Suppose the densities fe of the Po with respect to ,u, have the property that fe(w)
is measurable &`'X .^ where o is a a-field in 0. Let it be a probability measure on

and define P as fo Pe -rr(dO), in the sense that P(A)=1efA fe(w)µ(dw)7r(dO) =
fo Pe(A)rr(dO). Obviously, P «[P0 : B E 0]. Assume that

(34 15) [PB: B E 01 «P= f PB -rr(dB).

If 7r has mass c„ at 8,,, then P is given by (34.12), and of course, (35.15) holds if
(34.13) does. Let re be a density for Po with respect to P.

Theorem 34.7. If (34.15) holds, then ✓moo = a-[ re : B E 0] is a minimal sufficient
sub-u-field.

PROOF. That So is sufficient follows by Theorem 34.6. Suppose that J is
sufficient. It follows by a simple extension of (34.14) that J is still sufficient if
P is added to the family, and then it follows by Lemma 2 that each Po has with
respect to P a density g o that is measurable J. Since densities are essentially unique,
P[g e = re ] = 1. Let ° be the class of A in Jo such that P(A A B) = 0 for some B in
.^. Then ale is a a-field containing each set of the form A = [re E H] (take
B =[g 0 E H]) and hence containing So. Since, by (34.15), P dominates each Po , Jo
is essentially contained in J , in the sense of the definition. 	 •

Minimum-Variance Estimation*

To illustrate sufficiency, let g be a real function on 0, and consider the problem of
estimating g(0). One possibility is that 0 is a subset of the line and g is the identity;
another is that 0 is a subset of R k and g picks out one of the coordinates. (This
problem is considered from a slightly different point of view at the end of Section 19.)
An estimate of g(B) is a random variable Z, and the estimate is unbiased if
Eo[Z] =g(0) for all 0. One measure of the accuracy of the estimate Z is E0[(Z —
g(e)) 2 ].

If .J is sufficient, it follows by linearity (Theorem 34.2(iî)) that EB[ X ItJ] has for
simple X a version that is independent of O. Since there are simple X„ such that
IX„I IXI and X„ —* X, the same is true of any X that is integrable with respect to
each Po (use Theorem 34.2(v)). Suppose that .1 is, in fact, sufficient, and denote by
E[ X II S] a version of E0[ X II J] that is independent of O.

Theorem 34.8. Suppose that E0[(Z — g(B)) 2 ] < co for all B and that .1 is sufficient.
Then

(34.16) 	 E0[(E[ZII,1] — g(B)) 2] < Ee[(Z g( 0 )) 2J

for all O. If Z is unbiased, then so is E[ Z II ✓J]•

`This topic may be omitted.
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PROOF. By Jensens's inequality (34.7) for cp(x) _ (x - g(0)) 2 , (E[ZII#] - g(0)) 2
< E0[(Z - g(0))2 11J]• Applying E0 to each side gives (34.16). The second statement
follows from the fact that EB[E[ZII.I]]= EB[Z]• •

This, the Rao-Blackwell theorem, says that E[ZII.5] is at least as good an estimate
as Z if .9 is sufficient.

Example 34.5. Returning to Example 34.4, note that each X. has mean 0/2
under P0 , so that if Fe=  k - 'Ek_ 1 X; is the sample mean, then 2X is an unbiased
estimate of 0. But there is a better one. By (34.9), E0 [2 X II T ] = (k + 1)T/k = T', and
by the Rao-Blackwell theorem, T' is an unbiased estimate with variance at most that
of 2 X.

In fact, for an arbitrary unbiased estimate Z, EB[(T - 0) 2 ] < EB[(Z - 0)2 ]. To
prove this, let 3 = T' - E[ZII T]. By Theorem 20.1(iî), S =f(T) for some Borel
function f, and Eo[ f(T)] = 0 for all 0. Taking account of the density for T leads to
Joe f(x)x k -1 dx = 0, so that f(x)x k -1 integrates to 0 over all intervals. Therefore,
f(x) along with f(x)x k -1 vanishes for x> 0, except on a set of Lebesgue measure 4,
and hence Po[ f(T) = 01= 1 and PB[T' = E[ZIIT ]] = 1 for all 0. Therefore, E0 [(T' -
0) 2 ] = E0[(E[ZlI T ] - 0) 2 ] < EB[(Z - 9) 2 ] for Z unbiased, and T' has minimum vari-
ance among all unbiased estimates of 0. •

PROBLEMS

34.1. Work out for conditional expected values the analogues of Problems 33.4, 33.5,
and 33.9.

34.2. In the context of Examples 33.5 and 33.12, show that the conditional expected
value of Y (if it is integrable) given X is g(X), where

f(x,y)ydy

g(x) — -^ 	^J f(x, y)dy

34.3. Show that the independence of X and Y implies that E[YII X] = E[Y], which
in turn implies that E[XY] = E[X]E[Y]. Show by examples in an fl of three
points that the reverse implications are both false.

34.4. (a) Let B be an event with P(B) > 0, and define a probability measure P0 by
Po(A) = NAB). Show that Po[AIi#] = P[A n BII.#]/P[BII ✓1] on a set of
Po measure 1.
(b) Suppose that .F is generated by a partition B 1 , B2 ,..., and let .1v Z?
cr(,JU °). Show that with probability 1,

P[A1l.1v 	 ] = 	 B, P[B1II.1]1

P[ A n BI OS] 
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34.5. The equation (34.5) was proved by showing that the left side is a version of the
right side. Prove it by showing that the right side is a version of the left side.

34.6. Prove for bounded X and Y that E[YE[ X IIJ]] = E[ XE[YII.1 ]].

34.7. 33.9 T Generalize Theorem 34.5 by replacing X with a random vector

34.8. Assume that X is nonnegative but not necessarily integrable. Show that it is
still possible to define a nonnegative random variable E[XIIJ], measurable .1,
such that (34.1) holds. Prove versions of the monotone convergence theorem
and Fatou's lemma.

34.9. (a) Show for nonnegative X that EfXII,J]= (oP[X> tIIJ]dt with probabil-
ity 1.
(b) Generalize Markov's inequality: P[I X I 	 a-kE[I X I k II J] with
probability 1.
(c) Similarly generalize Chevyshev's and Wilder's inequalities.

34.10. (a) Show that, if J, c ,J2 and E[X 2 ] < co, then E[(X — E[ X 11J2 ])2 ] < E[( X
- E[ X IIJ1 ])2 ]. The dispersion of X about its conditional mean becomes

smaller as the o--field grows.
(b) Define Var[XIIJ] = E[(X — E[X11J]) 2 1I.1]. Prove that Var[X] =
E[Var[X11J]] + Var[E[XIIJ]].

34.11. Let 4, J2, J3 be o--fields in .Y, let 4 ) be the o--field generated by 4U 4,
and let A. be the generic set in 4. Consider three conditions:
(i) P[A 3 II4 2 ] = P[A 3 1I,1] for all A 3 .

(ii) P[ AlnA 3IIJ2 ] = P[A 1 1iJ2 ]P[A 3 II.#2 ] for all A l and A 3 .
(iii) P[A111d23] = P[ A111 ✓12] for all A 1 .

If ✓11 , s2 , and ,13 are interpreted as descriptions of the past, present, and
future, respectively, (i) is a general version of the Markov property: the
conditional probability of a future event A 3 given the past and present 112 is
the same as the conditional probability given the present t12 alone. Condition
(iii) is the same with time reversed. And (ii) says that past and future events A i

and A 3 are conditionally independent given the present .12. Prove the three
conditions equivalent.

34.12. 33.7 34.111 Use Example 33.10 to calculate P[Ns = kIIN„ u >_ t] (s <t) for
the Poisson process.

34.13. Let L2 be the Hilbert space of square-integrable random variables on
P). For .1 a o--field in let M, be the subspace of elements of L 2

that are measurable S. Show that the operator Pi defined for X E L2 by
P,X = E[ X114 is the perpendicular projection on Mi .

34.14. 1 Suppose in Problem 34.13 that .1_ o-(Z) for a random variable Z in L2 .
Let Sz be the one-dimensional subspace spanned by Z. Show that Sz may be
much smaller than MO z), so that E[ X IIZ] (for X E L2 ) is by no means the
projection of X on Z. Flint: Take Z the identity function on the unit interval
with Lebesgue measure.
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34.15. 1. Problem 34.13 can be turned around to give an alternative approach to
conditional probability and expected value. For a a--field J in .^ , let Pg be
the perpendicular projection on the subspace Mg. Show that PgX has for
X E L2 the two properties required of E[ X IIJ]. Use this to define E[ X II J]
for X E L2 and then extend it to all integrable X via approximation by random
variables in L2 . Now define conditional probability.

34.16. Mixing sequences. A sequence A 1 , A 2 ,... of`Ysets in a probability space
(fl, Y, P) is mixing with constant a if

(34.17) 	 lim P(A nE) =aP(E)

for every E in Y. Then a = lim„P(A„).
(a) Show that (A,.) is mixing with constant a if and only if

(34.18) li
n
m fA XdP= a f XdP

R

for each integrable X (measurable .Y).
(b) Suppose that (34.17) holds for E e .9, where .9 is a Tr-system, SZ E,9,
and A n E o-(9) for ail n. Show that (A,,) is mixing. Hint: First check (34.18)
for X measurable o-(9) and then use conditional expected values with respect
to o(9).
(c) Show that, if Po is a probability measure on (SZ, .F) and P() « P, then
mixing is preserved if P is replaced by Pt) .

34.17. 1 Application of mixing to the central limit theorem. Let X 1 , X2, ... be
random variables on ((i , . ,̂ P), independent and identically distributed with
mean 0 and variance a- 2 ,  and put S,,= X 1 + • • • +X„. Then S„/o-117 N by
the Lindeberg-Lévy theorem. Show by the steps below that this still holds if P
is replaced by any probability measure P)) on (fl, .F) that P dominates. For
example, the central limit theorem applies to the sums E 1r^(w) of
Rademacher functions if w is chosen according to the uniform density over the
unit interval, and this result shows that the same is true if w is chosen
according to an arbitrary density.

Let Y,, = SR/criFi and Z„ _ (S„ - S [lo „
]
)/°V, and take .9 to consist of

the sets of the form [(X , , ... , Xk) E H ], k >_ 1, He ,9k. Prove successively:
(a) P[Y,,-çx]->P[N <_x).
(b) P[IY„ - Z„ I?c]—'0.
(c) P[Z„ -<x] — PEN _<x].
(d) P(E n [Z„ 5x]) -> P(E)P[N _< x] for E E 9.
(e) P(E n[Z„ <x])->P(E)P[N <x] for E E
(f) Po[Z„<_x] ->P[N <_x].
(g) Po[IY„ - Z„I>e] ->O.
(h) Po[Y„ <x] -, P[N <x].

34.18. Suppose that J is a sufficient subfield for the family of probability measures
P0 , B E 0, on ( (i, Y). Suppose that for each B and A, p(A, w) is a version of
PB [AII.J]w . and suppose further that for each co, p(•, w) is a probability
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measure on 67: Define Q  on 	 by WA) = f p(A, w)P0(dw), and show that
Qe = Pe

The idea is that an obse rver with the information in .1 (but ignorant of w
itself) in principle knows the values p(A, w) because each p(A, - ) is measur-
able S. If he has the appropriate randomization device, he can draw an w'
from SZ according to the probability measure p( -, w), and his w' will have the
same distribution Q0 = P0 that w has. Thus, whatever the value of the
unknown B, the observer can on the basis of the information in ,J alone, and
without knowing w itself, construct a probabilistic replica of w.

34.19. 34.13 T In the context of the discussion on p. 252, let :9"--- be the a-field of sets
of the form 0 X A for A E Y: Show that under the probability measure Q, t o
is the conditional expected value of g o given Y:

34.20. (a) In Example 34.4, take 7r to have density e -° over 0 = (0,00). Show by
Theorem 34.7 that T is a minimal sufficient statistic (in the sense that o-(T) is
minimal).
(b) Let Pe be the distribution for samples of size n from a normal distribution
with parameter B =(M,0- 2 ),  0-2 > 0, and let Tr put unit mass at (0,1). Show
that the sample mean and variance form a minimal sufficient statistic.

i

SECTION 35. MARTINGALES

Definition

Let X1 , X2, ... be a sequence of random variables on a probability space
(f', , P), and let .91 , ,F2 ,... be a sequence of o--fields in .9. The sequence
((X,,, `.): n = 1, 2, ...) is a martingale if these four conditions hold:

(i) 9c;

(ii) X,, is measurable .;

(iii) E[IX,,I1 < Do;
(iv) with probability 1,

(35.1)	 E[X„+,II Y: ] =X,,.

Alternatively, the sequence X I . X2 , ... is said to be a martingale relative to
the o--fields  3, .2 , .... Condition (i) is expressed by saying the .9 form a
filtration and condition (ii) by saying the X„ are adapted to the filtration.

If X„ represents the fortune of a gambler after the nth play and ✓n
represents his information about the game at that time, (35.1) says that his
expected fortune after the next play is the same as his present fortune. Thus
a martingale represents a fair game, and sums of independent random
variables with mean 0 give one example. As will be seen below, martingales
arise in very diverse connections.
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The sequence X 1 , X2 , ... is defined to be a mart ingale if it is a martingale
relative to some sequence ✓;,92 ,.... In this case, the a-fields ✓in =
o-(X 1 , ... , X„) always work: Obviously, .i„ c 4 +1 and X„ is measurable 4,,
and if (35.1) holds, then E[X„ + ,11.x] = E[E[X„ + 111]114] = E[X„II] =
X„ by (34.5). For these special a-fields 4, (35.1) reduces to

(35.2) 	 EIX„+IIIX1,-.., X„] =X,,.

Since o-(X 1 , ... , X n ) c . 	 if and only if X„ is measurable . for each n,
the o-(X 1 , ... , X„) are the smallest a -fields with respect to which the X„ are a
martingale.

The essential condition is embodied in (35.1) and in its specialization
(35.2). Condition (iii) is of course needed to ensure that E[ X„ +, II,9 ] exists.
Condition (iv) says that X„ is a version of E[ X„ + 1II.9]; since X„ is
measurable ., the requirement reduces to

(35.3) f Xn+ , dP= f X„dP,
A 	 A

A Efflr-i

Since the 	 are nested, A E . implies that JA X„ dP = JA X„ + , dP =

. ” . = IAX„+k dP. Therefore, X„, being measurable , is a version of
E[Xn+kll„]:

	

(35.4) 	 EIX„+kll3 I =X„

with probability 1 for k > 1. Note that for A = D., (35.3) gives

	

(35.5) 	 E[ XI ] = E[ X2 ] = • • •

The defining conditions for a martingale can also be given in terms of the
differences

	

(35.6) 	 0„ =X„ —X„_,

(A, =X 1 ). By linearity, (35.1) is the same thing as

	

(35.7) 	 E[i„+1II3 ] =0.

Note that, since Xk = 0, + • • • +i k and O k = Xk - Xk _,, the sets X,, ... , X„
and A,, ... , A n generate the same o-field:

(35.8) 	 Q(X,,. . ., X„) = o- (6, 1 , . . ., A „).

Example 35.1. Let A,, 6, 2, ... be independent, integrable random vari-
ables such that E[A„] = 0 for n > 2. If .9 is the a-field (35.8), then by
independence E[ 0„+ 1 ll. ] — E[ 0„ +1 ]  = 0. If A is another random variable,
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independent of the A n , and if Y,-, is replaced by 6(A, A I , ... , A n ), then the
X" _ 6, 1 + • • • +A n are still a martingale relative to the .9. It is natural and
convenient in the theory to allow a--fields .9 larger than the minimal ones
(35.8). •

Example 35.2. Let (fi, Y-, P) be a probability space, let v be a finite
measure on :-, and let Y;, Y-2 ,... be a nondecreasing sequence of a-fields
in Y. Suppose that P dominates v when both are restricted to ✓n—that is,
suppose that A E and P(A) = 0 together imply that v(A) = O. There is
then a density or Radon-Nikodym derivative X" of v with respect to P
when both are restricted to .; X" is a function that is measurable and
integrable with respect to P, and it satisfies

(35.9) 	fXdP=v(A),	 A E^.

If A E ..9, then A E .9 +1 as well, so that IAXn+1 dP = v(A); this and (35.9)
give (35.3). Thus the Xn are a martingale with respect to the .9.	 •

Example 35.3. For a specialization of the preceding example, let P be
Lebesgue measure on the OE-field of Borel subsets of fi = (0, 1], and let .9
be the finite a--field generated by the partition of CI into dyadic intervals
(k 2 - ", (k + 1)2 -1 0 k < 2". If A E . and P(A) = 0, then A is empty.
Hence P dominates every finite measure v on .9 . The Radon-Nikodyrn
derivative is

(35.10) X"( W ) = v(k2 -",(k 1)2 -"]

	if w E(k2 -",(k + 1)21.

There is no need here to assume that P dominates v when they are
viewed as measures on all of Y. Suppose that v is the distribution of
Ek= 1 Zk 2 -k for independent Zk assuming values 1 and 0 with probabilities p
and 1 - p. This is the measure in Examples 31.1 and 31.3 (there denoted by
p.), and for p / z, v is singular with respect to Lebesgue measure P. It is
nonetheless absolutely continuous with respect to P when both are restricted
to in. •

Example 35.4. For another specialization of Example 35.2, suppose that v
is a probability measure Q on , and that _ 0-(Y1 ,... , Yn ) for random
variables Y 1 , Y2 , ... on (Si, 3). Suppose that under the measure P the
distribution of the random vector (Y1 , ... , Yn ) has density pn(y 1 , ... , yn ) with
respect to n-dimensional Lebesgue measure and that under Q it has density
9,01 ,

• • • , y). To avoid technicalities, assume that pn is everywhere positive.
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Then the Radon—Nikodym derivative for Q with respect to P on	 is

X _ gn ( Yi, ... , Yn) 
n pn Y1, • -, K) .

To see this, note that the general element of . is [(Y1 , ... , Yn ) E in,
H E a»; by the change-of-variable formula,

f r qn(y1 , ••• , Yn)

l(YJ, ,Y„)EH XnC
^P=

 JHpn(Y>>..., Yn) pn( Y1'...,Yn)dY, ... dyn

=Q[(Y1,. .,Yn ) EHl.

In statistical terms, (35.11) is a likelihood ratio: pn and qn are rival
densities, and the larger Xn is, the more strongly one prefers qn as an
explanation of the obse rvation (Y1 ,... ,Yn ). The analysis is carried out under
the assumption that P is the measure actually governing the Yn ; that is, Xn is
a martingale under P and not in general under Q.

In the most common case the Yn are independent and identically dis-
tributed under both P and Q: pn(y1 , ... , yn) = p(y1) . • - p(yn) and
qn(y 1, ... , yn) = q(y 1 ) ... q(yn) for densities p and q on the line, where p is
assumed everywhere positive for simplicity. Suppose that the measures corre-
sponding to the densities p and q are not identical, so that P[Y,, EH]
Q[ Y„ E H] for some H E ,Q 1 . If Zn = ,Cl rn E Hp then by the strong law of large
numbers, n -' Ek , 1 Zk converges to P[ Y1 E H] on a set (in 5) of P-measure
1 and to Q[Y1 E H] on a (disjoint) set of Q-measure 1. Thus P and Q are
mutually singular on ,F even though P dominates Q on .K. •

Example 35.5. Suppose that Z is an integrable random variable on
(11,..9--, P) and that . are nondecreasing o--fields in	 : If

(35.12) Xn =E[ Z II Y,-, ],

then the first three conditions in the martingale definition are satisfied, and
by (34.5), E[Xn+1 II. ] = E[E[ZII ✓n + 11II..94,;] = E[ZII3] = Xn . Thus Xn is a
martingale relative to .. •

Example 35.6. Let Nnk , n, k = 1, 2, ... , be an independent array of iden-
tically distributed random variables assuming the values 0, 1,2,... . Define
Z 0 , Z 1 , Z 2 , ... inductively by Z 0(w) = 1 and Z n(w) = N 1(w)
+ • • • +Nn z _ 1m(w); Z n(w) = 0 if Zn _ 1(w) = 0. If Nn k is thought of as the
number of progeny of an organism, and if 4_ 11 represents the size at time
n — 1 of a population of these organisms, then Z, n represents the size at time
n. If the expected number of progeny is E[ Nnk ] = m, then E[Zn IIZn _ 1 1=
Zn _ 1 m, so that X„ = Zn /m n, n = 0,1, 2, ... , is a martingale. The sequence
Z0 , Z 1 , ... is a branching process. •

461
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In the preceding definition and examples, n ranges over the positive
integers. The definition makes sense if n ranges over 1, 2, ... , N; here
conditions (ii) and (iii) are required for 1 < n < N and conditions (i) and (iv)
only for 1 < n < N. It is, in fact, clear that the definition makes sense if the
indices range over an arbitrary ordered set. Although martingale theory with
an interval of the line as the index set is of great interest and importance,
here the index set will be discrete.

Submartingales

Random variables X„ are a submartingale relative to Q-fields .9 if (1), (ii),
and (iii) of the definition above hold and if this condition holds in place of
(iv).

(iv') with probability 1,

(35.13) 	 E[Xn+1Il. ]?Xn•

As before, the X„ are a submartingale if they are a submartingale with
respect to some sequence .:, and the special sequence . = o-(X 1 ,..., Xn )
works if any does. The requirement (35.13) is the same thing as

(35.14) f X+1dP^  f
 ,4

AE.

This extends inductively (see the argument for (35.4)), and so

(35.15) 	 E[Xn+kii3 ] ?Xn

for k >_ 1. Taking expected values in (35.15) gives

(35.16) E[X1] :ç E[  < • • • .

Example 35.7. Suppose that the A n are independent and integrable, as in
Example 35.1, but assume that E[o n 1 is for n >_ 2 nonnegative rather than O.
Then the partial sums 0 1 + • • • + 0 n form a submartingale. •

Example 35.8. Suppose that the X n are a martingale relative to the 3.
Then PO is measurable Y and integrable, and by Theorem 34.26v),
ER Xn + 1 I II. ] >_ I E[ Xn + 1 11. ]U _ PO.O. Thus the POi are a submartingale rela-
tive to the .. Note that even if X 1 , ... , Xn generate ., in general
1X 1 1,... , i Xn i will generate a o-field smaller than .. •

Reversing the inequality in (35.13) gives the definition of a supermartin-
gale. The inequalities in (35.14), (35.15), and (35.16) become reversed as well.
The theory for supermartingales is of course symmetric to that of submartin-
gales.
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Gambling

Consider again the gambler whose fortune after the nth play is X n and
whose information about the game at that time is represented by the cr-field
.. If .9 = 6(X,, ... , Xn ), he knows the sequence of his fortunes and
nothing else, but .9 could be larger. The martingale condition (35.1)
stipulates that his expected or average fortune after the next play equals his
present fortune, and so the martingale is the model for a fair game. Since the
condition (35.13) for a submartingale stipulates that he stands to gain (or at
least not lose) on the average, a submartingale represents a game favorable
to the gambler. Similarly, a supermartingale represents a game unfavorable
to the gambler.

Examples of such games were studied in Section 7, and some of the results
there have immediate generalizations. Start the martingale at n – 0, X0

representing the gambler's initial fortune. The difference O n = Xn – Xn _,
represents the amount the gambler wills on the nth play,* a negative win
being of course a loss. Suppose instead that O n represents the amount he
wins if he puts up unit stakes. If instead of unit stakes he wagers the amount
Wn on the nth play, IV, O n represents his gain on that play. Suppose that
Wn >– 0, and that Wn is measurable .9n _, to exclude prevision: Before the
nth play the information available to the gambler is that in _ ,, and his
choice of stake Wn must be based on this alone. For simplicity take Wn

bounded. Then IV, A n is integrable, and it is measurable . if O n is, and if
Xn is a martingale, then E[ W„ o„II. _ 1 ] = W„ E[ A n II. _ 1 1= 0 by (34.2). Thus

(35.17)	 Xo+W,O,+--•+ Wnt1n

is a martingale relative to the ,9. The sequence W,, W2, ... represents a
betting system, and transforming a fair game by a betting system preserves
fairness; that is, transforming Xn into (35.17) preserves the martingale
property. •

The various betting systems discussed in Section 7 give rise to various
martingales, and these martingales are not in general sums of independent
random variables—are not in general the special martingales of Example
35.1. If Wn assumes only the values 0 and 1, the betting system is a selection
system; see Section 7.

If the game is unfavorable to the gambler—that is, if Xn is a supermartin-
gale—and if Wn is nonnegative, bounded, and measurable .9;;_ i , then the
same argument shows that (35.17) is again a supermartingale, is again
unfavorable. Betting systems are thus of no avail in unfavorable games.

The stopping-time arguments of Section 7 also extend. Suppose that fX n }
is a martingale relative to (.9V; it may have come from another martingale

/ There is a reversal of terminology here: a subfair game (Section 7) is against the gambler, while
a submartingale favors him.
The notation has, of course, changed. The F„ and X„ of Section 7 have become X, and An.
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via transformation by a betting system. Let T be a random variable taking on
nonnegative integers as values, and suppose that

(35.18)	 [T = n] E Jan .

If T is the time the gambler stops, [T = n] is the event he stops just after the
nth play, and (35.18) requires that his decision is to depend only on the
information . available to him at that time. His fortune at time n for this
stopping rule is

(35.19) 	X,* Xn if n < T ,

X,r if n >_ T.

Here XT (which has value XT((L0((.0) at (0) is the gambler's ultimate fortune,
and it is his fortune for all times subsequent to T.

The problem is to show that XQ , Xe , ... is a martingale relative to
Q , 1 , ... . First,

n-1
E[IXn1] = E f 	 !Xi,' dP + f IXnI dP < E E[IXk l] <00.

k =0 [r = k]	 [r>n]	 kw0

Since [T>n]=f1—[T<n] E

[X,*EH]= U [T=k,Xk EH]U [ T >n, Xn EH]E .^.
k 0

Moreover,

fx:dP= f 	 Xn dP + f 	X
A 	 An[r>n] 	 An[rsn]

and

f X,*+ 1 dP= f 	 Xn+1dP+ f 	Xr dP.
A 	 A n[r>n]	 AnlrSn]

Because of (35.3), the right sides here coincide if A E .9 ; this establishes
(35.3) for the sequence Xi', XZ , ... , which is thus a martingale. The same
kind of argument works for supermartingales.

Since X,* = X. for n > T, X: —9 X,. . As pointed out in Section 7, it is not
always possible to integrate to the limit here. Let X n = a + 0 + • • • + A n ,
where the On are independent and assume the values ± 1 with probability i
(Xo = a), and let T be the smallest n for which 1 + • • • + An = 1. Then
E[X6 ] = a and X,. = a + 1. On the other hand, if the Xn are uniformly
bounded or uniformly integrable, it is possible to integrate to the limit:
E[XT ] = E[X0].
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Functions of Martingales

Convex functions of martingales are submartingales:

Theorem 35.1. (1) If X 1 , X2 ,... is a martingale relative to ., Y2 ,..., if
cp is convex, and if the cp(X„) are integrable, then cp(X 1 ), cp(X2 ),... is a
submartingale relative to .`;, Y2 .

(ii) If X 1 , X2 , ... is a submartingale relative to .9 , Y -2 ,..., if cp is nonde-
creasing and convex, and if the cp(X„) are integrable, then cp(X 1 ), cp(X2 ),... is
a submartingale relative to Y1 , Y2 ,... .

PROOF. In the submartingale case, X„ <_ E[X„ +1 11.9], and if cp is non-
decreasing, then cp(X„) < cp(E[ X„ + 1 II.9]). In the martingale case, X„ _
E[ X„ +, Il .91, and so cp(X„) = cp(E[ X„ +, H.l). If cp is convex, then by Jensen's
inequality (34.7) for conditional expectations, it follows that cp(E[ X„ +  1 11 ,9„ ]) <_
E[p(X„+1)II3I. m

Example 35.8 is the case of part (i) for cp(x) = Ixl.

Stopping Times

Let T be a random variable taking as values positive integers or the special
value co. It is a stopping time with respect to {,9} if [T = Id E ,9k for each
finite k (see (35.18)), or, equivalently, if [T < k l E `Fk for each finite k.
Define

(35.20)	 .97.;=[ AE ,}": An [ T < k ] E `FI, 1 < k <oo].

This is a u-field, and the definition is unchanged if [T < k] is replaced by
[T = k] on the right. Since clearly [T --=j1  E . 	 for finite j, T is measurable

If T(w) < co for all w and ,9 = cr(X 1 , ..., X„), then IA(w) = IA(w') for all
A in .` if and only if X1(w) = X;(w') for i < T(w) -- T(w'): The information
in . consists of the values T(w), X 1(w), ..., XT()(w).

Suppose now that T 1 and T2 are two stopping times and T1 < T2. If
A E , ^, then A n [T, < k ] E ,9k and hence A n [T 2 < k ] = A n [T, < k ] n
[T 2 < k] E , k :. L c . Z .

Theorem 35.2. If X 1 ,...,  X„ is a submartingale with respect to Y1,..., ,
and T i , T2 are stopping times satisfying 1 _< T 1 < T 2 < n, then X71 , X72 is a
submartingale with respect to .9 .74;2.
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This is the optional sampling theorem. The proof will show that XT. , XT2 is
a martingale if XI

,
 ... , X is.

PROOF. Since the XT . are dominated by Ek. l IXkI, they are integrable. It
is required to show that É[X^ 2 II.` i ] >_ X or

(35.21)	 f (XT2 — XT, ) dP>_ 0,	 A E ..

ButA E .9 implies that A n [T I < k . T Z ] _ (A n [T I < k — 1]) n [T 2 < k — 1]`
lies in .9rk _ I. If A k = Xk — Xk _ I , then

nf (X^ z — XT
I
) dP= f E Ir L1 k dP

A	 Ak=1
n

= 	 Ak dPz O
k=1 AnjTi<kTzl

by the submartingale property. 	 ■

Inequalities

There are two inequalities that are fundamental to the theory of martingales.

Theorem 35.3. If X 1 ,...,  X, is a submartingale, then for a> 0,

(35.22)
1Pf maxXi >_a] < —E
a

[IXn I].
LL i s n 

This extends Kolmogorov's inequality: If S 1 , S2, ... are partial sums of
independent random variables with mean 0, they form a martingale; if the
variances are finite, then V, SZ, ... is a submartingale by Theorem 35.1(i),
and (35,22) for this submartingale is exactly Kolmogorov's inequality (22.9).

PROOF. Let 72 = n; let T I be the smallest k such that Xk >_ a, if there is
one, and n otherwise. If Mk = maxi s k Xi, then [ M„_ a] n [T, < k]=
[Mk _ a] E.k , and hence [M„ >_ a] is in . . By Theorem 35.2,

(35.23)	 aP[M„ >_ a] < f 	 XT dP < f	X„ dP
1M„?,a] 	 1M„ 1)()

	< f 	 X„ dP<E[X,f] <_E[IX.I]. 	 •
lm„ (x)

This can also be proved by imitating the argument for Kolmogorov's
inequality in Section 23. For improvements to (35.22), use the other integrals
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in (35.23). If X 1 , ... , X„ is a martingale, 1X 1 1,...
so (35.22) gives P [max  1 I Xi ! >_ a] < a - 'E[ I X„ I ]

The second fundamental inequality requires
Let [a, 0] be an interval (a <0) and let X 1 , .
Inductively define variables r 1 , T 2 , ... :

, POI is a submartingale, and

the notion of an uperossing.
.. , Xn be random variables.

T1 is the smallest j such that 1 <_ j < n and X1 < a, and is n if there is no
such
for even k is the smallest j such that Tk _ 1 < j _< n and Xi > f3, and is n if
there is no such j;
for odd k exceeding 1 is the smallest j such that Tk _ 1 <j < n and X1 < a,
and is n if there is no such j.

The number U of uperossings of [a, 0] by X 1 , ..., X„ is the largest i such
that X^ 2 < <_ a < f3 <— XTZ;. In the diagram, n = 20 and there are three up-
crossings.

^

a

Ti T2 Ti T4 T5 T6

Theorem 35.4. For a submartingale X 1 ,...,  X„, the number U of upeross-
ings of [a, p] satisfies

(35.24)	 E[U] < E[IX„I] +I «1 .[3 — a

PROOF. Let Yk = max{0, Xk — a) and 64 = f3 — a. By Theorem 35.1(iî),
Y1 , ... , Y„ is a submartingale. The Tk are unchanged if in the definitions
X1 < a is replaced by Y = 0 and Xi z 0 by Y > 0, and so U is also the
number of uperossings of [0, 0] by Y1 , ... , K. If k is even and Tk _ 1 is a
stopping time, then for j <n,

1 -1

[Tk - 1] — ^ [
Tk-1—i,Y+ 1 <0,...,Y_1<0, Y Z 0]

i =1

j;
Tk

Tk
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lies in . and [rk = rd= [T^ < n — l]` lies in . , and so Tk is also a stopping
time. With a similar argument for odd k, this shows that the Tk are all
stopping times. Since the Tk are strictly increasing until they reach n, Tn = n.
Therefore,

n	

l r 	 ^Yn
	 Tq^ YT „ - YTI 	 L^ (YTk —Y k -i l 

= LQ+4of

k 2

where E e and E0 are the sums over the even k and the odd k in the range
2 < k < n . By Theorem 35.2, > o has nonnegative expected value, and there-
fore, E[Y„] > E[^ e ].

If Y  = 0 < 8 < K 2, (which is the same thing as XT 21 
< a <0 < XT2 ),

then the difference Y Zr — YTZ _ 1 appears in the suns E e and is at least O. Since
there are U of these differences, E e > OU, and therefore E[Yn] OE[U]. In
terms of the original variables, this is

(IQ —«)E[U] < f 	 (Xn—a)dP<E[IX„I] +lal- 	 •
[X„>a]

In a sense, an uperossing of [a, 01 is easy: since the X k form a submartin-
gale, they tend to increase. But before another uperossing can occur, the
sequence must make its way back down below a, which it resists. Think of
the extreme case where the Xk are strictly increasing constants. This is
reflected in the proof. Each of 4 e and E o has nonnegative expected value,
but for Ie the proof uses the stronger inequality E[E e ] >_ E[OU ].

Convergence Theorems

The martingale convergence theorem, due to Doob, has a number of forms.
The simplest one is this:

Theorem 35.5. Let X 1 , X2, .. , be a submartingale. If K = sup, E[IXn D < 00,
then Xn ---> X with probability 1, where X is a random variable satisfying
E[IXI]<_K.

PROOF. Fix a and f3 for the moment, and let Un be the number of
uperossings of [a, 01 by X 1 , ..., X. By the uperossing theorem, E[Un ]
(E[I X„I] + Ial)/(f3 — a) < (K + I a l)/(f3 — a). Since Un is nondecreasing and
E[ Un ] is bounded, it follows by the monotone convergence theorem that
sup„ Un is integrable and hence finite-valued almost everywhere.

Let X* and X * be the limits superior and inferior of the sequence
X 1 , X2, ... ; they may be infinite. If X * <a < f3 <x*,  then Un must go to
infinity. Since Un is bounded with probability 1, P[ X * < a < f3 <X1=  0.
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Now

(35.25)	 [X* <X*] = U [X * <a <0 <X*],

where the union extends over all pairs of rationals a and O. The set on the
left therefore has probability O.

Thus X* and X. are equal with probability 1, and X„ converges to their
common value X, which may be +co. By Fatou's lemma, E[1 X1] <
lim inf n E[IXn i] < K. Since it is integrable, X is finite with probability 1. •

If the X„ form a martingale, then by (35.16) applied to the submartingale
1X 1 1,1X2 1,... the E[IXn i] are nondecreasing, so that K = lien E[IX n it The
hypothesis in the theorem that K be finite is essential: If Xn = + • • • + A n ,
where the A, are independent and assume values ± 1 with probability
then Xn does not converge; E[I Xn i] goes to infinity in this case.

If the Xn form a nonnegative martingale, then E[SXn I] = E[Xn ] =E[X I ]
by (35.5), and K is necessarily finite.

Example 35.9. The Xn in Example 35.6 are nonnegative, and so Xn =
Z,,/m" --- X, where X is nonnegative and integrable. If m < 1, then, since Zn
is an integer, Zn = 0 for large n, and the population dies out. In this case,
X = 0 with probability 1. Since E[X] = E[X0 ] = 1, this shows that E[X] --->
E[X] may fail in Theorem 35.5. •

Theorem 35.5 has an important application to the martingale of Example
35.5, and this requires a lemma.

Lemma. If Z is integrable and .9 are arbitrary a--fields,  then the random
variables E[ Z II.] are uniformly integrable.

For the definition of uniform integrability, see (16.21). The .9 must, of
course, lie in the o--field but they need not, for example, be nondecreas-
ing.

PROOF OF THE LEMMA. Since IE[ZII34,-,]I . E[IZI II.9], Z may be assumed
nonnegative. Let A an = [E[ZIIS] >_ al. Since Aan E

f E[ZIIY,; ] dP = f ZdP.
^an 	 Aa„

It is therefore enough to find, for given E, an a such that this last integral is
less than E for all n. Now JA ZdP is, as a function of A, a finite measure
dominated by P; by the E —S version of absolute continuity (see (32.4)) there
is a S such that P(A) < 8 implies that JA ZdP <E. But P[E[ZIIS] >_a]
a - 'E[E[ZII.]] = a`'E[Z] < 8 for large enough a.	 •
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Suppose that . are Q-fields satisfying 3 c ,F2 c • • • . If the union
(4_ 1 Xgenerates the a--field X, this is expressed by X ' X. The require-
ment is not that L coincide with the union, but that it be generated by it.

Theorem 35.6. If .9 T 9 and Z is integrable, then

(35.26)

with probability 1.

Ej z ll 	 ]	 E jz IIX ] .

PROOF. According to Example 35.5, the random variables X„ = E[ZII.]
form a martingale relative to the .9 . By the lemma, the X„ are uniformly
integrable. Since E[I XI] < E[IZII, by Theorem 35.5 the X n converge to an
integrable X. The problem is to identify X with E[ Z II ✓̀J.

Because of the uniform integrability, it is possible (Theorem 16.14) to
integrate to the limit: jA XdP =limn JAXn dP. If A E ^ and n z k, then
IA Xf dP = IA E[ZII.]dP = jAZdP. Therefore, jA XdP = jA ZdP for all A in
the v-system U7, 1 Yk; since X is measurable X, it follows by Theorem 34.1
that X is a version of E[ Z II 9 . ■

Applications: Derivatives

Theorem 35.7. Suppose that (fi, , P) is a probability space, v is a finite
measure on 9r, and , T 5rœ c . Suppose that P dominates y on each .;,
and let Xn be the corresponding Radon—Nikodym derivatives. Then X n --' X
with probability 1, where X is integrable.

(i) If P dominates v on .9, then X is the corresponding Radon—Nikodym
derivative.

(ii) If P and v are mutually singular on, then X = 0 with probability 1.

PROOF. The situation is that of Example 35.2. The density Xn is measur-
able . and satisfies (35.9). Since Xn is nonnegative, E[I Xn I] = E[Xn ]
vat), and it follows by Theorem 35.5 that X n converges to an integrable X.
The limit X is measurable X.

Suppose that P dominates v on X and let Z be the Radon—Nikodym
derivative: Z is measurable .9, and jA ZdP = v(A) for A E X. It follows
that jA ZdP = JAXf dP for A in .9, and so X,--= E[ZII.]. Now Theorem
35.6 implies that Xn --- E[ZII ] = Z.

Suppose, on the other hand, that P and v are mutually singular on X, so
that there exists a set S in such that v(S) = 0 and P(S) = 1. By Fatou's
lemma jA XdP _< liminf n fAXf dP. If A E .9 , then JAXf dP = v(A) for n > k,
and so jA XdP _< v(A) for A in the field U 1 `9k . It follows by the monotone
class theorem that this holds for all A in X. Therefore, jXdP = js X dP <
v(S) = 0, and X vanishes with probability 1. ■
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Example 35.10. As in Example 35.3, let v be a finite measure on the unit
interval with Lebesgue measure (1),, S', P). For	 the cr-field generated by
the dyadic intervals of rank n, (35.10) gives X,,. In this case T - .F.
For each w and n choose the dyadic rationals a"(w) = k 2 -" and b"(w) _
(k + 1)2^" for which a"(w) < w < bn(w). By Theorem 35.7, if F is the
distribution function for v, then

(35.27) F(b"(w))'F(a"(w))
 ,X(w)b"(w) -a"(w)

except on a set of Lebesgue measure O.
According to Theorem 31.2, F has a derivative F' except on a set of

Lebesgue measure 0, and since the intervals (a Jo)), b"(w )] contract to w, the
difference ratio (35.27) converges almost everywhere to Fr(w) (see (31.8)).
This identifies X. Since (35.27) involves intervals (a"(w), bn(w)] of a special
kind, it does not quite imply Theorem 31.2.

By Theorem 35.7, X = F' is the density for v in the absolutely continuous
case, and X = F' - 0 (except on a set of Lebesgue measure 0) in the singular
case, facts proved in a different way in Section 31. The singular case gives
another example where E[ X"] ---) E[ X ] fails in Theorem 35.5. •

Likelihood Ratios

Return to Example 35.4: v = Q is a probability measure, ,`°" = o-(Y1 , ..., Y")
for random variables Y", and the Radon-Nikodym derivative or likelihood
ratio Xn has the form (35.11) for densities p" and rl" on R. By Theorem
35.7 the X,, converge to some X which is integrable and measurable

- = Q(Y1 , Y2 , ... 1.
If the Y" are independent under P and under Q, and if the densities are

different, then P and Q are mutually singular on cr(Y1 , Y2 , ... ), as shown in
Example 35.4. In this case X = 0 and the likelihood ratio converges to 0 on a
set of P-measure 1. The statistical relevance of this is that the smaller X  is,
the more strongly one prefers P over Q as an explanation of the observation
(Y1 , ..., Y"), and Xn goes to 0 with probability 1 if P is in fact the measure
governing the Y".

It might be thought that a disingenuous experimenter could bias his results
by stopping at an X" he likes—a large value if his prejudices favor Q, a
small value if they favor P. This is not so, as the following analysis shows. For
this argument P must dominate Q on each ffl-n = Q(Y1) ... , Y"), but the
likelihood ratio X" need not have any special form.

Let T be a positive-integer-valued random variable representing the time
the experimenter stops. Assume that T is finite, and to exclude prevision,
assume that it is a stopping time. The 0--field  ✓T defined by (35.20) repre-
sents the information available at time T, and the problem is to show that XT
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is the likelihood ratio (Radon—Nikodym derivative) for Q with respect to P
on .97,- . First, X is clearly measurable .54,- . Second, if A E .9, then A n [-r =
n] E , 1, and therefore

CO

Xn dP= E Q(An[-r=rd) =Q(A),
A 	 n- 1 Afl[r= n] 	 n =1

as required.

Reversed Martingales

A left-infinite sequence ... , X_ 2 ,  X_ 1 is a martingale relative to 0--
fields ... ,	 2, 	 if conditions (ii) and (iii) in the definition of martingale
are satisfied for n <— — 1 and conditions (i) and (iv) are satisfied for n < — 1.
Such a sequence is a reversed or backward martingale.

Theorem 35.8. For a reversed martingale, lim n œ X_ n = X exists and is
integrable, and E[ X ] = E[ X _ n ] for all n.

PROOF. The proof is ahnost the same as that for Theorem 35.5. Let X*
and X. be the limits superior and inferior of the sequence X_ 1 , X_ 2 , ... .
Again (35.25) holds. Let Un be the number of uperossings of [a,[31 by
X_ n ,.. ,, X_ 1 . By the uperossing theorem, E[Un ] <_ (ER X_ 1 11 + lap/(f3 - a).
Again E[Un ] is bounded, and so sup n Un is finite with probability 1 and the
sets in (35.25) have probability O.

Therefore, lim n  X_ n = X exists with probability 1. By the property
(35.4) for martingales, X,n = El X _ 1 11,F n ] for n = 1, 2, .... The lemma above
(p. 469) implies that the X_ n are uniformly integrable. Therefore, X is
integrable and E[X] is the limit of the E[X_ n ]; these all have the same value
by (35.5). •

If .9 are Œ-fields satisfying .51 D ` 2 ... , then the intersection nn-
X11 is also a Œ-field, and the relation is expressed by

Theorem 35.9. If .9 .. ,F0 and Z is integrable, then

(35.28)	 E[ZII3 I -9 E[ZII.U 1

with probability 1.

PROOF. If X_,, = E[ZII.9], then ..., X_2, X_ 1 is a martingale relative
to ... ,  .9 . By the preceding theorem, E[ Z II9 ] converges as n -j oo to
an integrable X and by the lemma, the E[ZII.9 1 are uniformly integrable. As
the limit of the E[ZII.] for n z k, X is measurable .k ; k being arbitrary,
X is measurable .9 .

fXdP= J
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By uniform integrability, A E .0 implies that

f XdP = lim f E[ZIIY: ] dP = lim f E[ E[ZIIffl,, ] IIffl-0 ] dP
A	 n A	 n A

	= l^ A 	Am fE[Zll^o]dP= f E[ZIk9] dP.

Thus X is a version of E[ZII 9 ].	 •

Theorems 35.6 and 35.9 are parallel. There is an essential difference
between Theorems 35.5 and 35.8, however. In the latter, the martingale has a
last random variable, namely X.__,, and so it is unnecessary in proving
convergence to assume the E[I X n l] bounded. On the other hand, the proof in
Theorem 35.8 that X is integrable would not work for a submartingale.

Applications: de Finetti's Theorem

Let 8, X 1 , X2, ... be random variables such that 0 < 9 < 1 and, conditionally
on 8, the X., are independent and assume the values 1 and 0 with probabili-
ties 8 and 1 - 0: for up...,, u„ a sequence of 0's and l's,

(35.29) P[Xl = 14 1 , . . ., X  - u n ite] = e s ( 1 - 8)n—s7

where s = u l + • • • +un .

To see that such sequences exist, let  0,Z 1, Z2, ... be independent random vari-
ables, where 6 has an arbitrarily prescribed distribution supported by [0,1] and the Zn
are uniformly distributed over [0,1]. Put X, = I z <01. If, for instance, f(x) =x(1 —x)
= P[Z 1 < x, Z 2 > x], then P[X 1 = 1, X2 = 0!IO] = f(e(û))) by (33.13). The obvious
extension establishes (35.29).

Integrate (35.29):

(35.30) 	 P[X1 = u 1 ,..., Xn - u n ] -E[es(1 -On-1.

Thus (Xn} is a m ixture of Bernoulli processes. It is clear from (35.30) that the
Xk are exchangeable in the sense that for each n the distribution of
(X 1 ,..., Xn ) is invariant under permutations. According to the following
theorem of de Finetti, every exchangeable sequence is a m ixture of Bernoulli
sequences.

Theorem 35.10. If the random variables X 1 , X2, ... are exchangeable and
take values 0 and 1, then there is a random variable 0 for which (35.29) and
(35.30) hold.
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PROOF. Let Sm = X , +	 +Xm . If t -< m, then

P[Sm =t]= 	 P[X,=U 1i ... , Xm =um],
u l 	um

where the sum extends over the sequences for which u, + • +um = t. By
exchangeability, the terms on the right are all equal, and since there are (T)
of them,

—1

P [X, = u , , . . . , X  = U m I sm	
m

= t] —	 •

Suppose that s _< n < m and u, +	 +un = s <- t <- m; add out the
.., u m that sum to t - s:

P[X, = U , ,...,Xn - U n ^ `Sm
.` t] = m —	 IIrri ;

t —s j it

where

_ (t )s(m 
(m)n

— fn,s,m( tm) 7

	s-1	 • n—s—I
fn,s,m(x) = 

^ (x_ 
m ) 

11
i

	

r-0 	 i -0 ix — m )I
n-1

^ (1—
i-0

The preceding equations still hold if further constraints Sm + , = t,, ... , Sm +,
= ti are joined to Sm = t. Therefore, P[X, = u 1 , ..., Xn = Un I;Sm , ..., Sm+j] _

fn,s,m(Sm/ m)'
Let `4n — Œ(Sr , sm + ,, ...) and	 nm ..7m . Now fix n and u , , ... , U n , and

suppose that u, + - • • +u n = s. Let j co and apply Theorem 35.6: P[X, _
up...,, X  = u II m̂ ] — fn, s, m (Sm /m ). Let m ---, co and apply Theorem 35.9:

r Sm (co) 
P[ X 1 = u 1 ,. .., Xn = UnIVL = limfn,s,,nj m

m	 `

holds for to outside a set of probability O.
Fix such an w and suppose that (S m(w)/m} has two distinct limit points.

Since the distance from each Sm(w)/m to the next is less than 2/m, it
follows that the set of limit points must fill a nondegenerate interval. But
lim k x mk =x implies limk fn, s, m k(xm k ) -x 5(1 - x )n -s, and so it follows fur-
ther that x 5(1 - x)" 5 must be constant over this interval, which is impossi-
ble. Therefore, S m(w)/m must converge to some limit 6(w). This shows that
P[X, = U 1 ,..., Xn = u n ll /] = 8s(1 - Or —s

 with probability 1. Take a condi-
tional expectation with respect to o-(9), and (35.29) follows. •
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Bayes Estimation

From the Bayes point of view in statistics, the 8 in (35.29) is a parameter
governed by some a priori distribution known to the statistician. For given
X 1 ,..., X,,, the Bayes estimate of 8 is E[O I X 1 , ... , X„1. The problem is to
show that this estimate is consistent in the sense that

(35.31)	 E[811X1,..., X„] -•- 0

with probability 1. By Theorem 35.6, E[811 X 1 , ..., X„1, -* E[8II3 ], where
Y-0, _ o (X 1 , X2 , ... ), and so what must be shown is that E[01152 — 8 with
probability 1.

By an elementary argument that parallels the unconditional case, it follows
from (35.29) for S„ =X 1 + • • • +X,, that E[S„1181 = n8 and E[(S„ — n8) 2 1101
= n8(1 — 8). Hence E[(n -1S„ — 8) 2 1 • n -1 ,  and by Chebyshev's inequality
n - IS„ converges in probability to O. Therefore (Theorem 20.5), lim k n k IS„ k

= 8 with probability 1 for some subsequence. Thus 0=0'  with probability 1
for a O' measurable .9, and E[011Y:,,1= E[8'1191= 8' = 8 with probability 1.

A Central Limit Theorem*

Suppose X 1 , X2 , ... is a martingale relative to 3'1 , . 2 , ... , and put Y„ = X„
—X„_ 1 (Y1 =X 1 ), so that

(35.32)	 E[Y„II. _1] = 0.

View Y„ as the gambler's gain on the nth trial in a fair game. For example, if
AI, s 2 ,...  are independent and have mean 0, = o (a 1 , ... , Q„), W„ is
measurable_ 1 , and Y„ = W„0„, then (35.32) holds (see (35.17)). A special-
ization of this case shows that Xn = Ek =1Yk need not be approximately
normally distributed for large n.

Example 35.11. Suppose that O n takes the values +1 with probability z
each and W1 = 0, and suppose that W„ = 1 for n- 2 if O1 = 1, while W„ = 2
for n >_ 2 if 0 1 = —1. If S„ = a 2 + • • • + A n , then X,, is S„ or 2S„ according
as A l is +1 or —1. Since Sn /1/7/ has approximately the standard normal
distribution, the approximate distribution of X„/6 is a mixture, with equal
weights, of the centered normal distributions with standard deviations 1
and 2. •

To understand this phenomenon, consider conditional variances. Suppose
for simplicity that the Y„ are bounded, and define

(35.33) Q2 =E[Y„211Y,; --I]

`This topic, which requires the limit theory of Chapter 5, may be omitted.
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(take .0 = {0,1 }). Consider the stopping times

(35.34)	 v, = min n: k crk > t .
k=1

Under appropriate conditions, X„ /VT will be approximately normally
distributed for large t. Consider the preceding example. Roughly: If  = + 1,
then EkQ = n - 1, and so v, - t and Xv, /1/i = S , /i; if Al = - 1,  then
Ek=1ok = 4(n - 1), and so v, t /4 and Xvi /1/7 - 2S(/4 /Vi = S i / 4 ^t /4.
In either case, Xv /W approximately follows the standard normal law.

If the nth play takes o2 units of time, then v, is essentially the number of
plays that take place during the first t units of time. This change of the time
scale stabilizes the rate at which money changes hands.

Theorem 35.11. Suppose the Yn = Xn - Xn _ 1 are uniformly bounded and
satisfy (3532), and assume that En o-n2 = Do with probability 1. Then X„ ,/ 	 N.

This will be deduced from a more general result, one that contains the
Lindeberg theorem. Suppose that, for each n, Xn1 , Xn2 , ... is a martingale
with respect to .9, , 2 , ... • Define Yn k = Xnk - Xn,k-I, suppose the Ya k
have second moments, and put onkE[Ynk ^l., k -1](0 = (0, n)). The
probability space may vary with n. If the martingale is originally defined only
for 1 < k < rn , take Ynk = 0 and .9-k r„ for k> rn . Assume that LkYnk
and ET( ..._ 1 0 k converge with probability 1.

Theorem 35.12. Suppose that

(35.35)
co
LiVa 2 	 2

^nkP ^ 7

k=1

where o- is a positive constant, and that
CO

(36.36)	 E E YnkzIIIYnkIZEd 	
0

k = 1

for each E. Then Ek = l Ynk 0N•

PROOF OF THEOREM 35.11. The proof will be given for t going to infinity
through the integers). Let Ynk =11v^ k1Yk/ rn and , k = 	 . From [vn > k]
= [E1

= 11 2<n] E k- 2 follow E[ Yn k ^l ,k-1] = 0 and onk= E[ YnkII`7 n,k l ]
= 1LP„z kl4/n. If K bounds the IYk ', then 1 < Ek=10,, k — n -1 	1 +
K 2/n, so that (35.35) holds for o- -  1. For n large enough that K/ 	 <E,
the sum in (35.36) vanishes. Theorem 35.12 therefore applies, and
Ek-lYk/ / - Ek—lYnk=N•	 •

For the general case, first check that the proof of Theorem 35.12 goes through without change
if n is replaced by a parameter going continuously to infinity.
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PROOF OF THEOREM 35.12. Assume at first that there is a constant c such
that

CO

(35.37)
^ 

Q k Ç C,
k=1

which in fact suffices for the application to Theorem 35.11.

Eco 	
Sk = E= I Yn; (S0 = 0), S

- _ E;=1Yn;, ^k = j_ i6 i (10 ---= 0), and
L.c = E7 , 1crn2i; the dependence on n is suppressed in the notation. To prove
E[e i r s-1 --0 e 	

'2p.2, observe first that

I E [ e ,'sx _e -'Z^z] I
=^E[ei,sY(1 —e;,z^xe -?,`QZ ) + e - ', Zrr 2 ( e ;, Z F,, e i,s, _ 1) ]1

<E[;1 —e ;, z ^Ye-;r Z^ z lJ 
+I E [ e;l z2 xe i,sr — 1] I =A +B.

The term A on the right goes to 0 as n oo, because by (35.35) and (35.37)
the integrand is bounded and goes to 0 in probability.

The integrand in B is

E e i,sk -il e ; , Y,k — e ^ ^ Z°^kl e;' Zv k

k =1	 l 	
l

because the mth partial sum here telescopes to ei'sme ' 2 m — 1. Since, by
(35.37), this partial sum is bounded uniformly in m, and since Sk _ 1 and 1 k

are measurable . , k - 1 , it follows (Theorem 16.7) that

^

E E[e i, sk-lez' ZIk(e 1lY^k _ e - ^^zŒ°k)
1

k=1
CO

^ E I E[ e i , sk—t e ; , z'kE[ e i , YPik — n, k - 1J I
k =1

B

00

<e'' 2` E EH E[e l ' Ynk — e — ' lZœ"kIl n,k
k=1

To complete the proof (under the temporary assumption (35.37)), it is enough
to show that this last sum goes to O.

By (26.4 2 ),

(35.38) 	 e"Ynk = 1 + itYnk _ it2Y„2k + 0,

where (write Ink = /mild „€I and let K, bound t 2 and ItI 3 )

lei < min(ItYnk 1 3 , ItYnk 1 2 } < IC, (Ynk Ink + EYnk).
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And

(38.39) e -71 2ank = 1 — '-t 2^ 2 + B'^nk 

where (use (27.15) and increase K,)

►   	 2 2 iZunkle I < ( 121 217 2 nk ) e < t4Q k e2 'ZC < K ,Q k.

Because of the condition E[Ynk II -n k - 1 1= 0 and the definition of k, the
right sides of (35.38) and (35.39), minus 0 and 0', respectively, have the same
conditional expected value given k _ ,. By (35.37), therefore,

oo
	( 

E E[I E le riYnk , e —^ilanAil.^„,k-1 ^ I]
k= 1

CO

< k1 E (Ef ynkink] t EE[ Q k1 +ELun kJ I
k=1

cc< K, E E[Ynklnk] +Ec +cE sup Q k ^f
k=1 	k >_i 	 1

Since o k G E[E 2 + Ynk Ink 11 , k-11 <E 2 + ^^= iE[Yn^ Ins Ii ✓n _ 1 ^, it follows by
(35.36) that the last expression above is, in the limit, at most K !(Ec + cE 2 ).
Since E is arbitrary, this completes the proof of the theorem under the
assumption (35.37).

To remove this assumption, take c > 0- 2, define A nk = [E 1 Q ; c 1 and
A n0 _ [E7= 1 0-,,2i    < c 1, and take Znk = Ynk l n k. From A ,,k E n, k-1 follow
EkZnk I2^,k_11 = 0 and TZk = E[Zn Z iI k-11 = ,a n kœk• Since E7 1 T J is
EJ= io-ni on Ank -- An , k+ l and Ei-oni on A n00, the Z-array satisfies (35.37).
Now P(A n0) --> 1 by (35.35), and on A n00, Tnk = o k for all k, so that the
Z-array satisfies (35.35). And it satisfies (35.36) because I Z nk I < I Ynk I. There-
fore, by the case already treated,  4 = i Zn k = oN. But since k = I Yn k coin-
cides with this last sum on A n00, it, too, is asymptotically normal. •

PROBLEMS

35.1. Suppose that A I , A 2 ,...  are independent random variables with mean O. Let
X 1 = 11 1 and Xn+1 = Xn + °n+l fn(X1, ..., Xn), and suppose that the X„ are
integrable. Show that {Xn} is a martingale. The martingales of gambling have
this form.

35.2. Let Y1 , Y2, ... be independent random variables with mean 0 and variance 0- 2.
Let Xn = (Lk I Yk ) 2 — no- 2 and show that {Xn } is a martingale.



SECTION 35. MARTINGALES 479

35.3. Suppose that (Y„} is a finite-state Markov chain with transition matrix [p u t
Suppose that E; p11x( j) = Ax(i) for all i (the x(i) are the components of a right
eigenvector of the transition matrix). Put X, = A - "x(Y") and show that (X"} is
a martingale.

35.4. Suppose that 111 , Y2 , ... are independent, positive random variables and that
E[Y„} = 1. Put X” = Yi • • • Y".
(a) Show that (Xn } is a martingale and converges with probability I to an
integrable X.
(b) Suppose specifically that Y„ assumes the values i and with probability
each. Show that X=0  with probability 1. This gives an example where
E[n„ =1Y„] n:= 1 E[Y„] for independent, integrable, positive random vari-
ables. Show, however, that E[n7,_ 1 Y"] _< nn_ 1 E[Y"] always holds.

35.5. Suppose that X1 , X,, ... is a martingale satisfying E[ Xi ] = 0 and E[ X,2 ] < co.
Show that E[(X„ + ,. — Xn12 ] = Ek 1 E [( Xn +k — Xn +k _ I ) ] (the variance of the
sum is the sum of the variances). Assume that En E[(Xn — X_ 1 )2 1 < 00 and
prove that X„ converges with probability 1. Do this first by Theorem 35.5 and
then (see Theorem 22.6) by Theorem 35.3.

35.6. Show that a submartingale Xn can be represented as X„ — /In + Z„, where Y”
is a martingale and 0 < Z 1 < Z2 < • • • . Hint. Take X0 = 0 and a. " =X„ — Xn _ 1 ,
and define Zn = Er; =1E[ z kII4`k_1] ( 34-0 = (0,SZ}).

35.7. If X 1 , X2, ... is a martingale and bounded either above or below, then
sup,, 	 X"I] < 00 .

35.8. T Let X" = 4 1 + • • • +O n , where the ^ " are independent and assume the
values +1 with probability i each. Let T be the smallest n such that Xn = 1
and define X,* by (35.19). Show that the hypotheses of Theorem 35.5 are
satisfied by (X,*} but that it is impossible to integrate to the limit. Hint: Use
(7.8) and Problem 35.7.

35.9. Let X 1 , X2 , ... be a martingale, and assume that I X 1 (c )I and I X„(c)) — X,_ 1((-6)1
are bounded by a constant independent of W and n. Let T be a stopping time
with finite mean. Show that XT is integrable and that E[XT ] = E[X1 1.

35.10. 35.8 35.9 Use the preceding result to show that the T in Problem 35.8 has
infinite mean. Thus the waiting time until a symmetric random walk moves one
step up from the starting point has infinite expected value.

35.11. Let X 1 , X2, ... be a Markov chain with countable state space S and transition
probabilities p 1 j . A function cp on S is excessive or superharmonic if cp(i) .
E; p, f cp(j ). Show by martingale theory that cp(X„) converges with probability 1
if cp is bounded and excessive. Deduce from this that if the chain is irreducible
and persistent, then cp must be constant. Compare Problem 8.34.

35.12. 1 A function cp on the integer lattice in R k is superharmonic if for each
lattice point x, cp(x)>_ (2k) -l Ecp(y), the sum extending over the 2k nearest
neighbors y. Show for k= 1 and k= 2 that a bounded superharmonic function
is constant. Show for k> 3 that there exist nonconstant bounded harmonic
functions.
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35.13. 32.7 32.9 T Let (fl, 	 P) be a probability space, let v be a finite measure
on .9-, and suppose that For n , let Xn be the Radon-
Nikodym derivative with respect to P of the absolutely continuous part of v
when P and v are both restricted to . The problem is to extend Theorem
35.7 by showing that X„ -' X. with probability 1.
(a) For n < co, let

v(A)= f Xn dP+Œn ( A), 	 A E .in,
A

be the decomposition of v into absolutely continuous and singular parts with
respect to P on .9. Show that X 1 , X2, ... is a supermartingale and converges
with probability 1.
(b) Let

cr„(A) = f Zn dP+^;(A),	 A E
A

be the decomposition of u, into absolutely continuous and singular parts with
respect to P on „Fn . Let Yn = E[X„ II S], and prove

f (Yn +Z, 2 )dP+r,(A)jXn dP±t7n(4),	 A E .54;1 .

Conclude that Yn + Zn = Xn with probability 1. Since Yn converges to X,„ Zn
converges with probability 1 to some Z. Show that JA ZdP <Q,„(A) for A e .9,
and conclude that Z= 0 with probability 1.

35.14. (a) Show that {Xn) is a martingale with respect to (.9) if and only if, for all n
and all stopping times T such that T < n, E[ Xn ll.] = XT•

(b) Show that, if {Xn} is a martingale and T is a bounded stopping time, then
E[XT ] = E[X 1 ].

35.15. 31.9 T Suppose that .9 T .f and A e X, and prove that P[All.9] IA
with probability 1. Compare Lebesgue's density theorem.

35.16. Theorems 35.6 and 35.9 have analogues in Hilbert space. For n < co, let Pn be
the perpendicular projection on a subspace Mn . Then P,,x -4 P„x for all x if
either (a) M1 c M2 c • • • and M. is the closure of U n < ^ Mn or (b) 1V!1 D M2
D • • • and M. = n n <m Mrr•

35.17. Suppose that 0 has an arbitrary distribution, and suppose that, conditionally
on B, the random variables Y1 , Y2 ,... are independent and normally dis-
tributed with mean B and variance o- 2 . Construct such a sequence {B, Y1, Y2, ... },
Prove (35.31).

35.18. It is shown on p. 471 that optional stopping has no effect on likelihood ratios
This is not true of tests of significance. Suppose that X1, X2 ,... are indepen-
dent and identically distributed and assume the values 1 and 0 with probabili-
ties p and 1 —p. Consider the null hypothesis that p = i and the alternative
that p> 2. The usual .05-level test of significance is to reject the null
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hypothesis if

(35.40) 	 2 (X I + ••• +X„— In) > 1.645.
1/71

481

For this test the chance of falsely rejecting the null hypothesis is approximately
PEN > 1.645] --..05  if n is large and fixed. Suppose that n is not fixed in
advance of sampling, and show by the law of the iterated logarithm that, even
if p is, in fact, 2, there are with probability 1 infinitely many n for which
(35.40) holds.

35.19. (a) Suppose that (35.32) and (35.33) hold. Suppose further that, for constants
s,, sr-i-

n 2
E7, = Icrk — 1 and s,2)k =, E[Yk210y 1> S„1 ] -^ 0, and show that

s,ï'Ek . I Yk = N. Hint: Simplify the proof of Theorem 35.11.
(b) The Lindeberg-Lévy theorem for martingales Suppose that

•••, Y_I,Y0,YI,•••

is stationary and ergodic (p. 494) and that

E[Y2 ] <cc and E[YkIIYk_I,Y,k_2 , ...]= 0 .

Prove that E ric' = 1 Y /F is asymptotically normal. Hint: Use Theorem 36.4 and
the remark following the statement of Lindeberg's Theorem 27.2.

35.20. 24.4 T Suppose that the o•-field X in Problem 24.4 is trivial. Deduce from
Theorem 35.9 that P[AIIT - n.9 ] —> P[All.9] =P(A) with probability 1, and
conclude that T is mixing.



CHAPTER 7

Stochastic Processes

SECTION 36. KOLMOGOROV'S EXISTENCE THEOREM

Stochastic Processes

A stochastic process is a collection [ X,: t E T ] of random variables on a
probability space (1f, (F, P). The sequence of gambler's fortunes in Section 7,
the sequences of independent random variables in Section 22, the martin-
gales in Section 35—all these are stochastic processes for which T = (1, 2,... L
For the Poisson process [N,: t >_ 01 of Section 23, T = [0,00). For all these
processes the points of T are thought of as representing time. In most cases,
T is the set of integers and time is discrete, or else T is an interval of the line
and time is continuous. For the general theory of this section, however, T can
be quite arbitrary.

Finite-Dimensional Distributions

A process is usually described in terms of distributions it induces in Eu-
clidean spaces. For each k-tuple (t,, ... , tk ) of distinct elements of T, the
random vector (X, i , ..., X, k ) has over R k some distribution p,,. ,, k :

(36.1) 	 kt,, ,k(H) =PRX,i,...,X,k)EH1, 	HEak.

These probability measures p.,, , , k are the finite-dimensional distributions of
the stochastic process [X,: t E T]. The system of finite-dimensional distribu-
tions does not completely determine the properties of the process. For
example, the Poisson process [N,: t ? 01 as defined by (23.5) has sample paths
(functions Ni(w) with w fixed and t varying) that are step functions. But
(23.28) defines a process that has the same finite-dimensional distributions
and has sample paths that are not step functions. Nevertheless, the first step
in a general theory is to construct processes for given systems of finite-
dimensional distributions.

482
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Now (36.1) implies two consistency properties of the system µ,. 4 .
Suppose the H in (36.1) has the form H = H l X • • • X Hk (H; E .^ 1 ), and
consider a permutation ar of (1, 2, ... , k). Since [(X,,, ... , X, k ) E (H 1 X • • . x
/4 )1 and [(X,,... , X, ,k ) E (H.^, x • • x Hak )] are the same event, it follows
by (36.1) that

(36.2) 	 /z it .4( H i X • • • X Hk) = µf„ .1 irk(Hirl X • X Hnk)•

For example, if pc,,, = v X v', then necessarily µ, •S = v'
The second consistency condition is

X v.

(36.3) 	 µi, l,t-1(H1 X... X Hk-i) =µi l lk-trk`H1 X ... XHk-1 X R')•

This is clear because (X,,..., X, k _ I) lies in H l X • • • X Hk - 1 if and only if
(X, ^,..., X,k-i ,X, k ) lies in H, x • • • x Hk _ 1 X R'.

Measures µ,^ , k coming from a process [X,: t E T] via (36.1) necessarily
satisfy (36.2) and (36.3). Kolmogorev's existence theorem says conversely that
if a given system of measures satisfies the two consistency conditions, then
there exists a stochastic process having these finite-dimensional distributions.
The proof is a construction, one which is more easily understood if (36.2) and
(36.3) are combined into a single condition.

Define cp, 1.: R k --0 R k by

(p i.,(x 1 ,...,x k ) = (x„-1 1 ,...,x 7r -ik );

cp,,. applies the permutation 'r to the coordinates (for example, if 7r sends x 3

to first position, then 77--1 1 = 3). Since cp,^'(H 1 X • • • x Hk ) = H„, X • • • X

H„k , it follows from (36.2) that

k 1„, .1,rk 'prr ' (H) = il, /,  ..1,(H)

for rectangles H. But then

(36.4) 	 µl, . ! k = µ1,r,. errkço; I.

Similarly, if cp: Rk —0 R k- 1 is the projection cp(x,, ... , x k ) = (x,, ... , x 1; _ 1 ),
then (36.3) is the same thing as

(36.5) 1
µl,.. I k _,__ l^l, . 1,,(P•

The conditions (36.4) and (36.5) have a common extension. Suppose that
(u 1 , ... , u,,,) is an m-tuple of distinct elements of T and that each element of
(t,,..., tk ) is also an element of (u,, _.., um ). Then (t 1 , ..., tk ) must be the
initial segment of some permutation of (u 1 , ..., u m ); that is, k < m and there
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is a permutation 7r of (1, 2, ... , m) such that

(U„-1 1 ,...,U„-im ) = (t l ,...,tk ,tk+1 ,...,tm ),

where tk +1, ... , tm are elements of (u 1 , . . . , u m ) that do not appear in
(t l ,..., tk ). Define tJi: Rm ---) R k by

(36.6) 	 0(Xl,...,xm) =(x„-l l ,...,x, r -' k );

tfr applies it to the coordinates and then projects onto the first k of them.
Since if(Xu,, ..., X„. ) = (X,,,..., X,,),

(36.7) rr11 	 _ 	 1
r" lj lk - A u ! . u ^ ^ 

'

This contains (36.4) and (36.5) as special cases, but as tfi is a coordinate
permutation followed by a sequence of projections of the form (x  1 , ... , x 1 ) ---
(x 1 ,..., x 1 . 1 ), it is also a consequence of these special cases.

Product Spaces

The standard construction of the general process involves product spaces.
Let T be an arbitrary index set, and let R T be the collection of all real
functions on T—all maps from T into the real line. If T = (1, 2,..., k), a real
function on T can be identified with a k-tuple (x 1 ,..., x k ) of real numbers,
and so R T can be identified with k-dimensional Euclidean space R 1̀ . If
T = (1, 2,... ), a real function on T is a sequence (x 1 , x 2 , ...) of real numbers.
If T is an inte rval, R T consists of all real functions, however irregular, on the
interval. The theory of R T is an elaboration of the theory of the analogous
but simpler space S°° of Section 2 (p. 27).

Whatever the set T may be, an element of RT will be denoted x. The
value of x at t will be denoted x(t) or x 1 , depending on whether x is viewed
as a function of t with domain T or as a vector with components indexed by
the elements t of T. Just as R k can be regarded as the Cartesian product of
k copies of the real line, R T can be regarded as a product space—a product
of copies of the real line, one copy for each t in T.

For each t define a mapping Z,: RTRI by

(36.8) 	 Z,(x) =x(t) =x,.

The Z, are called the coordinate functions or projections. When later on a
probability measure has been defined on R T , the Z, will be random variables,
the coordinate variables. Frequently, the value Z,(x) is instead denoted
Z(t, x). If x is fixed, Z(• , x) is a real function on T and is, in fact, nothing
other than x(•)—that is, x itself. If t is fixed, Z(t, • ) is a real function on R T

and is identical with the function Z, defined by (36.8).
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There is a natural generalization to RT of the idea of the tr-field of
k-dimensional Borel sets. Let RT be the a--field generated by all the
coordinate functions Z 1 , t E T: RT = a-[Z1 : t E T]. It is generated by the sets
of the form

[ x E RT:Z,(x )E H] = [ x E RT : x , E H]

for t E T and H E a 1 . If T = (1, 2, ... , k), then RT coincides with ✓ k .
Consider the class Rô consisting of the sets of the form

(36.9) 	 A = [x ER T: (Z, i(x),...,Z, k(x)) EHJ

[X E R T: (x 1 ,..., x, k ) CHI,

where k is an integer, (t,, ... , tk ) is a k-tuple of distinct points of T, and
H E Rk. Sets of this form, elements of RI -, are called finite-dimensional sets,
or cylinders. Of course, .i' generates RT. Now ,moo is not a a--field, does
not coincide with RT (unless T is finite), but the following argument shows
that it is a field.

1, I 2

If T is an interval, the cylinder Ex E R T: a t <x(t i ) J3 I , a 2 <x(t 2 ) </3 2 ] consists of the
functions that go through the two gates shown; y lies in the cylinder and z does not (they need
not be continuous functions, of ccurse)

The complement of (36.9) is RT — A =[x E R T: (x 1 ,... , x 1 ,) E R k — H],
and so ^Q is closed under complementation. Suppose that A is given by
(36.9) and B is given by

(36.10) B= [x E R T: (x s ^ ,..., x s ) EI],

where I E a'. Let (u 1 , ... , u m ) be an m-tuple containing all the ta and all
the so . Now (t 1 , ... , t k ) must be the initial segment of some permutation of
(u 1 , ... , u m ), and if tp is as in (36.6) and H' = tG - `H, then H' E am and A is
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A =[x 	 (x u. ,..., x uM ) E H']

as well as by (36.9). Similarly, B can be put in the form

(36.12) B=[x E RT:(xu,...;xu )EI'l,

where l' E Mm. But then

(36.13) AuB=[xERT:(xu,,...,xu 
m
)EH'uI'i.

Since H' u I' E , 'n, A u B is a cylinder. This proves that RI; is a field such
that RT = ff(R ).

The Z, are measurable functions on the measurable space (R T, RT). If P
is a probability measure on R T , then [Z,: t E T] is a stochastic process on
(RT, ✓)T, P), the coordinate-variable process.

Kolmogorov's Existence Theorem

The existence theorem can be stated two ways:

Theorem 36.1. If µ,. , k are a system of distributions satisfying the consis-
tency conditions (36.2) and (36.3), then there is a probability measure P on RT

such that the coordinate-variable process [Z,: t E T] on (R T, a T, P) has the
N,,, , k as its finite-dimensional distributions.

Theorem 36.2. if µ,i ,k are a system of distributions satisfying the consis-
tency conditions (36.2) and (36.3), then there exists on some probability space
(fl,, P) a stochastic process [X,: t E T] having the µ, ., k as its finite-
dimensional distributions.

For many purposes the underlying probability space is irrelevant, the joint
distributions of the variables in the process being all that matters, so that the
two theorems are equally useful. As a matter of fact, they are equivalent
anyway. Obviously, the first implies the second. To prove the converse,
suppose that the process [X,: t E T] on (fk,,F, P) has finite-dimensional
distributions µ, i ,,, k, and define a map : fl --)R T by the requirement

(36.14) 	 Z,(Ow)) =X,(w), 	 t E T.

For each w, 6(w) is an element of R T, a real function on T, and the
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requirement is that Xi(to) be its value at t. Clearly,

(36.15)	 r[x ERT : (Z, i(x),..., Z, k(x)) EH]

= [w E fZ: (Z4f(w)),..., Z, k(e(w))) E H]

_[wEft (X, i(w), ..., X, k(w)) E H l ;

since the X, are random variables, measurable Y -, this set lies in .9 if
H E R ic. Thus - 'A E for A E .. for, and so (Theorem 13.1) is measur-
able 5/R T. By (36.15) and the assumption that [X1 : t E 11 has finite-
dimensional distributions A li , A, P - ' (see (13.7)) satisfies

(36.16) Pr'[x ER T: (Z, i(X),..., Z, k(x)) EH]

=P[w EfZ: (X, i(w),...,X, k(w)) EH] =µ, i , k(H).

Thus the coordinate-variable process [Z,: t E 11 on (R T, ✓̂ T, P -') also has
finite-dimensional distributions µ ,i , k .

Therefore, to prove either of the two versions of Kolmogorov's existence
theorem is to prove the other one as well.

Example 36.1. Suppose that T is finite, say T = (1, 2, ... , k). Then
(R T, RT ) is (R k , Rk ), and taking P = µI 2 „ , k satisfies the requirements of
Theorem 36.1. •

Example 36.2. Suppose that T = (1, 2, ... } and

( 36.1 7 ) 	 P-r,...rk - P-r, X • • • X Ate

where µ I , µ 2 , ... are probability distributions on the line. The consistency
conditions are easily checked, and the probability measure P guaranteed by
Theorem 36.1 is product measure on the product space (RT, 9T ). But by
Theorem 20.4 there exists on some (1k, Y-, P) an independent sequence
X 1 , X2, ... of random variables with respective distributions  A i , µ 2 , ... ; then
(36.17) is the distribution of (X11 ,..., X1.). For the special case (36.17),
Theorem 36.2 (and hence Theorem 36.1) was thus proved in Section 20. The
existence of independent sequences with prescribed distributions was the
measure-theoretic basis of all the probabilistic developments in Chapters 4,
5, and 6: even dependent processes like the Poisson were constructed from
independent sequences. The existence of independent sequences can also be
made the basis of a proof of Theorems 36.1 and 36.2 in their full generality;
see the second proof below. •
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Example 36.3. The preceding example has an analogue in the space S°° of
sequences (2.15). Here the finite set S plays the role of R', the z„(•) are
analogues of the Z„( • ), and the product measure defined by (2.21) is the
analogue of the product measure specified by (36.17) with µ i = µ. See also
Example 24.2. The theory for S°° is simple because S is finite: see Theorem
2.3 and the lemma it depends on. •

Example 36.4. If T is a subset of the line, it is convenient to use the order
structure of the line and take the µs, sk

 to be specified initially only for
k-tuples (s,, ... , sk ) that are in increasing order:

(36.18) 	 S 1 <s2 < • • < Sk.

It is natural for example to specify the finite-dimensional distributions for the
Poisson processes for increasing sequences of time points alone; see (23.27).

Assume that the µ si sk for k-tuples satisfying (36.18) have the consistency
property

(36.19) µ 	 sk(11 1 x ••• x Hr
- I x Hi+ 1 x ... x Hk )

Tµs, s k(HIx
... xHi - IxR I xHl+lx

... xHk).

For given s i , ...  sk satisfying (36.18), take (X51 ,..., Xsk ) to have distribution

µsi sk. If t 1 , ... , tk is a permutation of s,, ... , sk , take µ,i 
,k
 to be the

distribution of (X, ..., X, k ):

(36.20) µe, ,k(HI x ... x Ilk )=p[X,
, EH,, i <k^.

This unambiguously defines a collection of finite-dimensional distributions.
Are they consistent?

If t,^ l , ... , t,rk is a permutation of t o ...,, tk , then it is also a permutation of
S,, ... , sk , and by the definition (36.20), µ, , , k is the distribution of

X, „k ), which immediately gives (36.2), the first of the consistency
conditions. Because of (36.19), pt, 	is the distribution of

(Xsi , .. Ỳs; 	 Xs, +,' ” ' , Xsk ), and if tk = s,, then t 1 , ... , t k _ 1 is a permutation
of s,, ... , s1 _,, s ; + 1 , ...  sk , which are in increasing order. By the definition
(36.20) applied to t l , ... , tk _ 1 it therefore follows that µ, j  .4_1 is the
distribution of (X, 1 ,..., X, k_i ). But this gives (36.3), the second of the
consistency conditions.

It will therefore follow from the existence theorem that if T c R' and

µsi .sk is defined for all k-tuples in increasing order, and if (36.19) holds,
then there exists a stochastic process [ X, : t E 11 satisfying (36.1) for increas-
ing t l , ... , tk . 	 •
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Two proofs of Kolmogorov's existence theorem will be given. The first is
based on the extension theorem of Section 3.

2

FIRST PROOF OF KOLMOGOROV'S THEOREM. Consider the first formula-
tion, Theorem 36.1. If A is the cylinder (36.9), define

(36.21)	 P(A) =µ r ,. ik(H)•

This gives rise to the question of consistency because A will have other
representations as a cylinder. Suppose, in fact, that A coincides with the
cylinder B defined by (36.10). As observed before, if (u 1 , ... , u m ) contains all
the to and so , A is also given by (36.11), where H' = & —IH and 111 is defined
in (36.6). Since the consistency conditions (36.2) and (36.3) imply the more
general one (36.7), P(A) = µ l, , k(H)=µ u, ..u

n

(H'). Similarly, (36.10) has
the form (36.12), and P(B) = A s, 41) = i.. u (l' ). Since the u y are dis-
tinct, for any real numbers z 1 , ... , z,,, there are points x of R T for which
(x ü ,, ..., x u ) _ (z 1 , ..., z,,,). From this it follows that if the cylinders (36.11)
and (36.12 coincide, then H' = I'. Hence A = B implies that P(A)
µu, u (H l )— µu, u (1') = P(B), and the definition (36.21) is indeed consis-
tent.

Now consider disjoint cylinders A and B. As usual, the index sets may be
taken identical. Assume then that A is given by (36.11) and B by (36.12), so
that (36.13) holds. If H' n I' were nonempty, then A n B would be nonempty
as well. Therefore, H' n l' = 0, and

P(A uB) =µ u, , um(H'u1')

=µu, u,,,(H') +µu,.. um(1') =P(A) +P(B).

Therefore, P is finitely additive on .94-. Clearly, P(RT ) = 1.
Suppose that P is shown to be countably additive on AT. By Theorem 3.1,

P will then extend to a probability measure on RT. By the way P was
defined on AT,

(36.22) 	Pk ER T: (Z,,(x),..•,Z rk(x)) EH ] =µ1, ,i k(H) ,

and therefore the coordinate process [Z,: t E T] will have the required
finite-dimensional distributions.

It suffices, then, to prove P countably additive on aô, and this will follow
if A n E .moo and A n 1 0 together imply P(A u )10 (see Example 2.10). Sup-
pose that A l DA  D • • • and that P(A,,) > E > 0 for all n. The problem is to
show that fl n A n must be nonempty. Since A n E Aô and since the index set
involved in the specification of a cylinder can always be permuted and
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expanded, there exists a sequence t 1 , t 2 ,... of points in T for which

A„=[xER T :(x,... , x, " ) EH ,

where Hn E . n .

Of course, P(A n ) = µ ... tn(Hn ). By Theorem 12.3 (regularity), there
exists inside fin a compact set K,, such that A li , (H,, — K„ ) <c / 2" ±I . If
Bn =[x  E R T: (x 11 , ... , x 1 ) E IQ, then P(A,, — B„) <6 / 2"1.1. Put Cn =

n k =1Bk• Then Cn c Bn cA n and P(A n — C„) <E/ 2, so that P(CO ) > E/ 2
> O. Therefore, Cn c Cn_ i and Cn is nonempty.

Choose a point x ( n ) of R T in Cn . If n > k, then x (" ) E C„ c Ck cBk and
hence (x (n), ... , x(n ) ) E K k . Since Kk is bounded, the sequence (x (l) , 4k2),...}  
is bounded for each k. By the diagonal method [A14] select an kincrasing
sequence n 1 , n 2 , ... of integers such that lim y x;k i) exists for each k. There is
in R T some point x whose tk th coordinate is this limit for each k. But then,
for each k, (x, ... , x, k ) is the limit as i ---> 00 of (470, ... , x') and hence lies
in Kk. But that means that x itself lies in Bk and hence in A k . Thus
x E fl k =1 A k, which completes the proof.t •

The second proof of Kolmogorov's theorem goes in two stages, first for countable
T, then for gcneral T.*

SECOND PROOF FOR COUNTABLE T. The result for countable T will be proved in
its second formulation, Theorem 36.2. It is no restriction to enumerate T as (t1, t2,... )
and then to identify to with n; in other words, it is no restriction to assume that
T = (I,2,... ). Write A n in place of µ1 , 2. , n•

By Theorem 20.4 there exists on a probability space (Il, ,f , P) (which can be taken
to be the unit inte rval) an independent sequence U1 , U2, ... of random variables each
uniformly distributed over (0,1). Let F1 be the distribution function corresponding to
A i . If the "inverse” g 1 of F1 is defined over (0,1) by g i(s) = inf[x: s <F1(x)], then
X1 � g i(U1 ) has distribution Ai by the usual argument: P[g i(U1 ) <x]=P[U1 Fi(x)]
= Fi(x).

The problem is to construct X2 , X3, ... inductively in such a way that

(36.23) 	 Xk=hk(Ui,...,Uk)

for a Borel function h k and (X 1 ,... , Xn) has the distribution µ,,. Assume that
X1 , ...,Xn _ i have been defined (n> 2): they have joint distribution µn1 and (36.23)
holds for k < n — I. The idea now is to construct an appropriate conditional distribu-
tion function Fn(xlx 1 ,... , x); here F„(xI X i(w),..., Xn _ i(w)) will have the value
P[Xn <xIIX 1 ,..., Xn _ 1 ]„ would have if Xn were already defined. If g„(•Ix i ,...,xn _ i )

t In general, A n will involve indices t 1  ... , tan, where a l <a2 < 	 . For notational simplicity an ,
is taken as n. As a matter of fact, this can be arranged anyway: Take A l„," =A,,, 41,=[x:  

= RT for k <a 1 , and Ak=[x: (x, i ,...,x,k ) EH„xRk- Q"] =A„ for an <
k < a„ + 1 . Now relabel A;, as A n .
* The last part of the argument is, in effect, the proof that a countable product of compact sets is
compact.
`This second proof, which may be omitted, uses the conditional-probability theory of Section 33.
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is the "inverse" function, then Xn(w) = g"(U"(w )I X l(w ), ... , X 1(0)) will by the
usual argument have the right conditional distribution given X 1 , ..., Xn _ 1 , so that
(X1 , ..., Xn_ 1, Xn ) will have the right distribution over R".

To construct the conditional distribution function, apply Theorem 33.3 in
(R", .GP", µ n ) to get a conditional distribution of the last coordinate of (x i , . , . , xn )
given the first n — 1 of them. This will have (Theorem 20.1) the form
v(H; x 1 , ... , xn _ 1 ); it is a probability measure as H varies over R I , and

v(H; x i , ..., xn -1) dµ n(x1, ...,xn)
(xi, ,x„-1)EM

=µ n [ xE Rn' (x1, ..., xn_ 1) E M, xn E H ].

Since the integrand involves only x 1 , ..., x" _ 1 , and since A n by consistency projects to
An_ 1 under the map (x 1 ,..., xn ) —> (x 1 , . , . , x,, _ 1 ), a change of variable gives

JM(;1n1)
 d1(x17.. . , xn_1)

=µ n x E Rn : (x1,.. , ,xn-1)E M, xnE H].

Define F"(xlx 1 ,...,x,,_ 1 )=v(( — co, x]; x 1 ,...,xn _ 1 ). Then F,,(.Ix l ,.•.,xn _ i ) is a
probability distribution function over the line, Fn(xI ) is a Borel function over R" - I ,

and

IMF"(x^x1,...,xn-1) 	 Xn-1)

=µ n xE Rn: (x l, ... , xn -1 )EM, xn <x

Put g„(ulx 1 , ... , xn_1) = inf[x: u < F„(xIx 1 , ... , x rt _ 1 )] for O < u < 1. Since
Fn(xlx 1 ,...,x n _ 1 ) is nondecreasing and right-continuous in x, g(ulx l i ...,xn - 1 ) <x
if and only if u < Fn(xI x 1 , ... , xn _ 1 ). Set Xn = gn(U"I X l , ... , X"_ 1 ). Since

Xn _ 1 ) has distribution µ n _ 1 and by (36.23) is independent of Un, an
application of (20.30) gives

R[(X1,..., Xn -1) E M, Xn •x]

=P[(Xl ,..., Xn-1) EM, Un <Fn (xIX 1 ,...,Xn -1) 1

= 1 P[Un <Fn(xlx 1 ,...,xn _ 1 ) J dµn- 1( x 1 ,..., xn -1 )
M

jM n( m f h ) fh( m f h)

=µ n[xER n : (x1 , ...,xn -1) E M, x n Sx

Thus (X 1 ,..., Xn ) has distribution µ n . Note that X,,, as a function of X 1 , ... , Xn_ 1
and U", is a function of U1 , ..., U,, because (36.23) was assumed to hold for k <n.
Hence (36.23) holds for k = n as well. •
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SECOND PROOF FOR GENERAL T. Consider (RT, RT) once again. If S C T, let
9 = cr[Z,: t eS]. Then Ys c YT = gr.

Suppose that S is countable. By the case just treated, there exists a process [ X,:
t E S] on some (SI, Y, P)—the space and the process depend on S—such that
(X, 1 ,...,X, k ) has distribution p,^ , k for every k-tuple (t 1 ,..., tk ) from S. Define a
map e: SI —> RT by requiring that

Z^(^(w)) = 
X,(w) if t E S,
U 	if t E S .

Now (36.15) holds as before if t 1 , ... , t k all lie in S, and so e is measurable Y/Ys .
Further, (36.16) holds for t 1 , ... , t k in S, Put Ps = Pf - ' on Ys Then Ps is a
probability measure on (R T, Ys ), and

(36,24) 	 Ps[x E RT: (Z,Sx),., ., Z, k(x)) E H I] = µri , k( H)

if HE .yp k and t 1 , ... , t k all lie in S. (The various spaces (SI, ,F, P) and processes
[X,: t E S] now become irrelevant.)

If Su c S, and if A is a cylinder (36.9) for which the t 1 ,..., tk lie in So , then Ps (A)
and Ps(A) coincide, their common value being µ, 1 ,k(H). Since these cylinders
generate `^s^^ , Psu A) = Ps(A) for all A in .fsu. If A lies both in Ysi and Ysz , then
Ps (A) � Ps, us Z(A) = Ps,(A). Thus P(A) = Ps(A) consistently defines a set function
on the class U s Y, the union extending over the countable subsets S of T. If A„ lies
in this union and A n E Ys (S„ countable), then S = U „S„ is countable and U „A„
lies in ,mss. Thus U s. s is â u-field and so must coincide with 91 T. Therefore, P is a
probability measure on M T, and by (36.24) the coordinate process has under P the
required finite-dimensional distributions. •

The Inadequacy of RT

Theorem 36.3. Let [ X, : t E 11 be a family of real functions on S1.

(i) If A E 6[ X, : t E 11 and w E A, and if X,(co) = X;(W ) for all t E T,
then of E A.

(ii) If A E cr[X,: t E T], then A co-[1(1 : t E S] for some countable subset S
of T.

PROOF. Define : SI --> R T by Z,((w)) = X,(w). Let ,F= o-[X,: t E T].
By (36.15), is measurable ./R T and hence contains the class [6 - 'M:
M E , T ]. 'I he latter class is a u-field, however, and by (36.15) it contains the
sets [w E SZ: (X,(w), ..., X, (w)) E HI, H E Mk, and hence contains the
u-field ,F they generate. Therefore

(36.25)	 Ql Xi : t E T] = f e- 'M: MERT].

This is an infinite-dimensional analogue of Theorem 20.1(i).



SECTION 36. KOLMOGOROV'S EXISTENCE THEOREM 	 493

As for (i), the hypotheses imply that w EA = - 'M and .((o) = (w'), so
that co' EA certainly follows.

For S c T, let 5rs = cr[ X,: t E S]; (ii) says that 9r= `FT coincides with
1= U s , the union extending over the countable subsets S of T. If
A 1 , A 2 , ... lie in .1, A„ lies in fis„

 for some countable Sn , and so U n A n lies
in .1 because it lies in 5'-s for S= U „Sn . Thus 1 is a a--field, and since it
contains the sets [X, E H], it contains the 0--field ." they generate. (This part
of the argument was used in the second proof of the existence theorem.) •

From this theorem it follows that various important sets lie outside the
class M T. Suppose that T =[0,00).  Of obvious interest is the subset C of R T

consisting of the functions continuous over [0, co). But C is not in RT. For
suppose it were. By part (ii) of the theorem (let 1 = R T and put [Z 1 : t E T] in
the role of [X,: t E T]), C would lie in o-[Z,: t E S] for some countable
S c [0, co). But then by part (i) of the theorem (let Si =RT and put [Z,:  t E S ]
in the role of [ X, : t E 71), if x E C and Z,(x) = Z,(y) for all t E S, then
y E C. From the assumption that C lies in RT thus follows the existence of a
countable set S such that, if x E C and x(t) = y(r) for all t in S, then y E C.
But whatever countable set S may be, for every continuous x there obviously
exist functions y that have discontinuities but agree with x on S. Therefore,
cannot lie in R T.

What the argument shows is this: A set A in R T cannot lie in RT unless
there exists a countable subset S of T with the property that, if x EA and
x(t) = y(t) for all t in S, then y E A. Thus A cannot lie in R T if it
effectively involves all the points t in the sense that, for each x in A and
each t in T, it is possible to move x out of A by changing its value at t alone.
And C is such a set. For another, consider the set of functions x over
T = [0, co) that are nondecreasing and assume as values x(t) only nonnegative
integers:

(36.26) f x ERE": x( s ) < x(t), x < t; x(t) E (0,1,...), t >_ 01.

This, too, lies outside M'.
In Section 23 the Poisson process was defined as follows: Let X 1 , X2 ,...

be independent and identically distributed with the exponential distribution
(the probability space Si on which they are defined may by Theorem 20.4 be
taken to be the unit interval with Lebesgue measure). Put S o = 0 and
Sn = X, + • • • +Xn . If Sn(w) < Sn ,+ ,(w) for n > 0 and Sn(w) --> co, put N(t, co)
= N(w) = max[n: Sn(w) < t] for t > 0; otherwise, put N(t, (o) = N,(w) = 0 for
t >_ O. Then the stochastic process [N1 : t >_ 0] has the finite-dimensional
distributions described by the equations (23.27). The function N(•, w) is the
path function or sample functions corresponding to w, and by the construc-
tion every path function lies in the set (36.26). This is a good thing if the

tOther terms are realization of the process and trajectory.
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process is to be a model for, say, calls arriving at a telephone exchange: The
sample path represents the history of the calls, its value at t being the
number of arrivals up to time t, and so it ought to be nondecreasing and
integer-valued.

According to Theorem 36.1, there exists a measure P on R T for T = [0, c)
such that the coordinate process [Z 1 : t >_ 0] on (R T, P) has the finite-
dimensional distributions of the Poisson process. This time does the path
function Z(• , x) lie in the set (36.26) with probability 1? Since Z(• , x) is just
x itself, the question is whether the set (36.26) has P-measure 1. But this set
does not lie in M T, and so it has no measure at all.

An application of Kolmogorov's existence theorem will always yield a
stochastic process with prescribed finite-dimensional distributions, but the
process may lack certain path-function properties that it is reasonable to
require of it as a model for some natural phenomenon. The special construc-
tion of Section 23 gets around this difficulty for the Poisson process, and in
the next section a special construction will yield a model for Brownian
motion with continuous paths. Section 38 treats a general method for
producing stochastic processes that have prescribed finite-dimensional distri-
butions and at the same time have path functions with desirable regularity
properties.

A Return to Ergodic Theory*

Write R°°, ^^ gr for RT, .GPI , AP T in the case where the index set (0, ± 1, ± 2,... )
consists of all the integers. Then R°° is analogous to S°° (Sections 2 and 24), except
that here the sequences are doubly infinite:

x = ( . . . Z_ l(x) , Zo(x ), 	 ).

Let T (not an index set) denote the shift: Zk (Tx) = Zk+
l 
(x), k = 0, ± 1, .... This is

like the shift in Section 24. Since A E .GPo implies T- 'A e GPÛ, T is measurable
R°792'. Clearly, it is invertible.

For a stochastic process X = (... , X_,, X0 , X 1 , ...) on (SI, .9 , P), define f: SI -i R°°
by (36.14): ew = X(w) = (... , X_ ,(cw), X0(0), X1(0),...). The measure P6 -1 = PX- '
on (R°°, Q) can be viewed as the distribution of X. Suppose that X is stationary in
the sense that, for each k >_ 1 and H E IC, P[(X^,..., X„ +k ) E 1-I] is the same for
all n = 0, ± 1,.... Then the shift preserves P6 - ' (use (36.16) and Lemma 1, p. 311).
The process X is defined to be ergodic if under P - ' the shift is ergodic in the sense
of Section 24.

In the ergodic case, it follows by the ergodic theorem that

(36.27) 	 n ^ 
f(T kx) —) fR f(x)P6 - '(dx)

k=1

*This topic, which requires Section 24, may be omitted.
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on a set of Pe - I-measure 1, provided f is measurable .GP°° and integrable. Car ry
(36.27) back to (D., 	 P) by the inverse set mapping 	 Then

n
(36.28) n E f(•.., Xk-1>k^Xk+1,...)	 E[ f(...,X_1,Xo,X1,.. •)]

k=1

with probability 1: (36.28) holds at w if and only if (36.27) holds at x = w = X( (0). It
is understood that on the left in (36.28), Xk is the center coordinate (the 0th
coordinate) of the argument of f, and on the right, X 0 is the center coordinate: For
stationary, ergodic X and integrable f, (36.28) holds with probability 1.

If the Xk are independent, then the Zk are independent under Pe -I . In this case,
lim n Pe-1(A n T - nB) =Pe-1(A)Pe-1(B) for A and B in .920', because for large
enough n the cylinders A and T'B depend on disjoint sets of time indices and
hence are independent. But then it follows by approximation (Corollary 1 to Theorem
11.4) that the same limit holds for all A and B in R°°. But for invariant B, this
implies P6 -I(3` n B)= Pe-1( wwe-10), so that Pf -1 (B) is 0 or 1, and the shift is
ergodic under Pe -1 : If X is stationary and independent, then it is ergodic.

If f depends on just one coordinate of x, then (36.28) is in the independent case a
consequence of the strong law of large numbers, Theorem 22.1. But (36.28) follows by
the ergodic theorem even if f involves all the coordinates in some complicated way.

Consider now a measurable real function 4) on R°° . Define fi: R°° --s R°° by

I/r(x ) _ ( ...,^(T^ 1x)^(x)^(Tx)... 
);

here 0(x) is the center coordinate: Zk (/i(x)) _ 0(T kx).
measurable ^2°7.92°° and commutes with the shift in
Therefore, T preserves P6 -10 -1 if it preserves P6 -

Pe -1 11/ -1 if it is ergodic under Pe -I .
This translates immediately into a result on stoch

(... , Y_ 1 , Y0 , I'D ...) in terms of X by

It is easy to show that ,/i is
the sense of Example 24.6.
1 , and it is ergodic under

astic processes. Define Y=

(36.29) YZ =0(...,Xn_1,JICn,Xn+1,") 7

that is to say, Y(w) _ /i(X(w)) _ igw. Since P6 -1 is the distribution of X, P6 -1 0 -1

6) - 1 = PY -1 is the distribution of Y:

Theorem 36.4. If X is stationary and ergodic, in particular if the X„ are indepen-
dent and identically distributed, then Y as defined by (36.29) is stationary and ergodic.

This theorem fails if Y is not defined in terms of X in a time-invariant way—if the
in (36.29) is not the same for all n: If 4n(x) = Z_ n(x) and 4) is replaced by On in

(36.29), then Yn = X0 ; in this case Y happens to be stationary, but it is not ergodic if
the distribution of X0 does not concentrate at a single point.

Example 36.5. The autoregressive model. Let 0(x) = _oPkZ_k(x) on the set
where the series converges, and take 4)(x) = 0 elsewhere. Suppose that I/3I < 1 and
that the Xn are independent and identically distributed with finite second moments.
Then by Theorem 22.6, Y„ _ = of3 kXn _k converges with probability 1, and by
Theorem 36.4, the process Y is ergodic. Note that Yn+1 = /3Yn + Xn+1 and that Xn+1
is independent of Yn . This is the linear autoregressive model of order 1. •
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The Hewitt-Savage Theorem*

Change notation: Let (R°°, .a') be the product space with (1,2,...) as the index set,
the space of one-sided sequences. Let P be a probability measure on br. If the
coordinate variables Z" are independent under P, then by Theorem 22.3, P(A) is 0
or 1 for each A in the tail afield Y. If the Z" are also identically distributed under
P, a stronger result holds.

Let ..4, be the class of R°°-sets A that are inva riant under permutations of the
first n coordinates: if it is a permutation of (1, ... , n}, then x lies in A if and only if
(Z^ 1(x), ..., Z"n(x), Z"+i(x), ...) does. Then ..4 is a o--field. Let ..= nœ,7 _,..4, be
the cr-field of Roe-sets invariant under all finite permutations of coordinates. Then ./
is larger than Y, since, for example, the x-set where Ek = i Zk(x) > c" infinitely often
lies in ../ but not in T

The Hewitt-Savage theorem is a zero-one law for ../ in the independent, identi-
cally distributed case.

Theorem 36.5. If the Zn are independent and identically distributed under P, then
P(A) is 0 or 1 for each A in ..7".

PROOF. By Corollary 1 to Theorem 11.4, there are for given A and E an n and a
set U = [(Z 1 .. , Zn ) E H] (H E a") such that P(A A U) < E. Let V =
[(Zn+ 1,..., Z2") E H]. If the Zk are independent and identically distributed, then
P(A o U) is the same as

Pl^{Zn +1,...,Z2rt, Z1,...,Zn• Z2n+l,Z2n +2 , ..)EA]

o[{Zn +i ,..., Z2rt ,Z 1 ,..., Z„) E H x R"]).

But if A E ..i2n , this is in turn the same as P(A A V). Therefore, P(A A U) = P(A o V).
But then, P(A V) <E and P(A A (tin V)) <_P(A AU)+P(AAV) < 2E. Since U

and V have the same probability and are independent, it follows that P(A) is within
E of P(U) and hence P 2 (A) is within 2E of P 2(U) = P(U)P(V) = P(U n V), which is
in turn within 2E of P(A). Therefore, 1P 2(A) - P(A)I < 4E for all E, and so P(A)
must be 0 or 1. •

PROBLEMS

36.1. 1. Suppose that [ X,: t E T] is a stochastic process on (SI, ,f, P) and A E .9:
Show that there is a countable subset S of T for which P[ All X„ t E T ] =
P[AII X„ t E S] with probability 1. Replace A by a random variable and prove
a similar result.

36.2. Let T be arbitrary and let K(s, t) be a real function over T x T. Suppose that
K is symmetric in the sense that K(s, t) = K(t, s) and nonnegative-definite in
the sense that E 1 _ 1 K(t i , t1 )x ix1 >_ 0 for k z 1, t l ,... , t k in T, and x l , ..., xk

real. Show that there exists a process [ X,: t e T] for which (X, , ... , X,) has
the centered normal distribution with covariances K(t ; , ti), i , j

*This topic may be omitted-
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36.3. Let L be a Borel set on the line, let consist of the Borel subsets of L, and
let LT consist of all maps from T into L. Define the appropriate notion of
cylinder, and let YT be the a-field generated by the cylinders. State a version
of Theorem 36.1 for (LT, YT ). Assume T countable, and prove this theorem
not by imitating the previous proof but by observing that LT is a subset of R T

and lies in RT

36.4. Suppose that the random variables X 1 , X2, ... assume the values 0 and 1 and
P[ Xn = 1 i.o.] = 1. Let p be the distribution over (0,11 of E =, Xn /2 n . Show
that on the unit interval with the measure µ, the digits of the nonterminating
dyadic expansion form a stochastic process with the same finite-dimensional
distributions as X 1 , X2, ... .

36.5. 36.3 T There is an infinite-dimensional version of Fubini's theorem. In the
construction in Problem 36.3, let L = I = (0,1), T = {1, 2, ... ), let .f consist of
the Borel subsets of I, and suppose that each k-dimensional distribution is the
k-fold product of Lebesgue measure over the unit inte rval. Then 1 T is a
countable product of copies of (0,1), its elements are sequences x = (x 1 , x 2 , ... )
of points of (0,1), and Kolmogorov's theorem ensures the existence on (I T .5T )

of a product probability measure 7r: 7r[ x: x ; < a ; , i < n] = a, • • • a n for
0 <a < s 1. Let I" denote the n-dimensional unit cube.
(a) Define fir: In x I T _ I T by

111((x,,...,x n ),(Yl,y2,... )) =(x,,...,x n ,Y l ,Y 2 ,...).

Show that Ili is measurable .J" X Jo' /..." T and , r l is measurable .E T/f"

x T Show that 0 -1 (A n X71-)=7r, where A n is n-dimensional Lebesgue
measure restricted to I".
(b) Let f be a function measurable jT and, for simplicity, bounded. Define

(xn+l,xn	
w f l . .. f 'f(i... •)(+2 , ' •)	 , Yn,xnl*•	 dy,	 dy^fn U 	 0

in other words, integrate out the coordinates one by one. Show by Problem
34.18, martingale theory, and the zero-one law that

(36.30) fn(xn+l,xn +2,...) —) f ,f(y)71-(dy)

except for x in a set of 7r-measure 0.
(c) Adopting the point of view of part (a), let g n(x,, . . . 7 xn) be the result of
integrating the variable (Yn+l , Yn+2 , • • •) out (with respect to Tr) from
f(x,, • ;. , x ,, , yn+1 , ... ). This may suggestively be written as

	l 	 l	gn(x,,..., xn)— f 	 ... {(x ...>xn,Yn +l Yn +2 , ... ) dyn +l dyn+2	 •
U U

Show that gn(x,, ..., x n ) —> f(x,, x 2 ,...) except for x in a set of Tr-measure 0.

36.6. (a) Let T be an interval of the line. Show that g2 T fails to contain the sets of:
linear functions, polynomials, constants, nondecreasing functions, functions of
bounded variation, differentiable functions, analytic functions, functions con-
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tinuous at a fixed t o , Borel measurable functions. Show that it fails to contain
the set of functions that: vanish somewhere in T, satisfy x(s) < x(t) for some
pair with s < t, have a local maximum anywhere, fail to have a local maximum.
(b) Let C be the set of continuous functions on T = [0, co). Show that A E ..91 r
and A c C imply that A = 0. Show, on the other hand, that A E M T

C cA do not imply that A = R T.

36.7. Not all systems of finite-dimensional distributions can be realized by stochastic
processes for which ,i2 is the unit interval. Show that there is on the unit
interval with Lebesgue measure no process [X,: t > 0] for which the X, are
independent and assume the values 0 and 1 with probability z each. Compare
Problem 1.1.

36.8. Here is an application of the existence theorem in which T is not a subset of
the line. Let (N, ./V, v) be a measure space, and take T to consist of the ./V-sets
of finite v-measure. The problem is to construct a generalized Poisson process,
a stochastic process [XA : A E T] such that (i) X4 has the Poisson distribution
with mean v(A) and (ii) X4 , ... , X4 are independent if A 1 ,... , A n are
disjoint. Hint: To define the Iinite-dimensional distributions, generalize this
construction: For A, B in T, consider independent random variables Y 1 , Y2, Y3

having Poisson distributions with means v(A n B`), v(A n B), v(A` n B), take
µAB to be the distribution of (Yl + Y2, Y2 + Y3).

SECTION 37. BROWNIAN MOTION

Definition

A Brownian motion or Wiener process is a stochastic process [W,: t >_ 0], on
some (SI, , P), with these three properties:

(1) The process starts at 0:

(37.1) 	 P[WU = 01= 1.

(ii) The increments are independent: If

(37.2)
then

O 	 to 	ti < ... <t k ,

	(37.3)	 P^W — W  E H,, i < k^ = ^ P[W — W,,_ 1 E Hi ] .
<k

(iii)(iii) For 0 5 s <t the increment W,— WS is normally distributed with mean
0 and variance t — s:

	(37.4)	 P[W, — WS E H] =  1 	
J 

e-x2/u`-S) dx.
^2Tr( t — s} H

The existence of such processes will be proved.
Imagine suspended in a fluid a particle bombarded by molecules in

thermal motion. The particle will perform a seemingly random movement
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first described by the nineteenth-century botanist Robert Brown. Consider a
single component of this motion—imagine it projected on a vertical axis—and
denote by W, the height at time t of the particle above a fixed horizontal
plane. Condition (i) is merely a convention: the particle starts at O. Condition
(ii) reflects a kind of lack of memory. The displacements W, , – W, o, ... , W, k _
– W 

k _ Z the particle undergoes during the intervals [ t o , t i ],...,  [ tk _ 2 , tk _ 1 1 in
no way influence the displacement W k – W, k _. it undergoes during [ t k _ 1 , tk ].
Although the future behavior of the particle depends on its present position,
it does not depend on how the particle got there. As for (iii), that W, – WS

has mean 0 reflects the fact that the particle is as likely to go up as to go
down—there is no drift. The variance grows as the length of the interval
[s, t]; the particle tends to wander away from its position at time s, and
having done so suffers no force tending to restore it to that position. To
Norbert Wiener are due the mathematical foundations of the theory of this
kind of random motion.

A Brownian motion path.

The increments of the Brownian motion process are stationary in the
sense that the distribution of W, – WS depends only on the difference t – s.
Since W0 = 0, the distribution of these increments is described by saying that
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W, is normally distributed with mean 0 and variance t. This implies (37.1). If
0 < s < t, then by the independence of the increments, E[WS W ] = E[(WS (W,
- WS )] + E[W,2 ] = E[W]E[W1 - WS ] + E[WS 2 1 = s. This specifies all the
means, variances, and covariances:

(37.5) 	E[W1] = 0, 	 E[W, 2 ] = t, 	 E[WS W,] = min{s, t}.

If 0 < t, < . • • < tk , the joint density of (W W z - W .. , W k - W k _ ' ) is
by (20.25) the product of the corresponding normal densities. By the Jacobian
formula (20.20), (14'Ç 1 ,..., W, k ) has density

k 	 (x; —x ;—^) 2(37.6) L i , k(x... , x k } = 	 ^ j   exp -
r =1 V2^( t^ -t,_,) 	 2( tt - tr - 1) '

where t o =x 0 = O.
Sometimes W, will be denoted W(t), and its value at w will be W(t, w).

The nature of the path functions W( , w) will be of great importance.
The existence of the Brownian motion process follows from Kolmogorov's

theorem. For 0 < t 1 < < tk let a, , A be the distribution in R k with
density (37.6). To put it another way, let Ali ,k be the distribution of
(S,, ... ,Sk ), where S. = X1 + +X; and where X1 , ... , Xk are indepen-
dent, normally distributed random variables with mean 0 and variances
1 1 ,t 2 - t 1 ,..., tk - tk_,. If g(x,, ..., x k ) _ (x 1 , ..., xr_1, x!+ ,, ... , x k ), then
g(S , , ... , Sk ) = (S,, ..., S ; _,, 5 ;+1 , ..., Sk ) has the distribution prescribed for

; —s; +.  ,k. This is because X; +Xi+ , is normally distributed with mean 0
and variance tt+1 - t ; _,; see Example 20.6. Therefore,

( 37 . 7 )
^

1 k = N' t[ 	 ik 	 .

The µ 11 ,k defined in this way for increasing, positive t 1 ,..., tk thus
satisfy the conditions for Kolmogorov's existence theorem as modified in
Example 36.4; (37.7) is the same thing as (36.19). Therefore, there does exist
a process [W,: t > 01 corresponding to the A il • , k. Taking W, = 0 for t = 0
shows that there exists on some (1k,., P) a process [W, : t >_ 01 with the
finite-dimensional distributions specified by the conditions (1), (ii), and (iii).

Continuity of Paths

If the Brownian motion process is to represent the motion of a particle, it is
natural to require that the path functions W(•, w) be continuous. But
Kolmogorov's theorem does not guarantee continuity. Indeed, for T = [0,00),
the space (n, Y- ) in the proof of Kolmogorov's theorem is (R T, RT), and as
shown in the last section, the set of continuous functions does not lie in RT.
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A special construction gets around this difficulty. The idea is to use for
dyadic rational t the random variables W, as already defined and then to
redefine the other W, in such a way as to ensure continuity. To carry this
through requires proving that with probability 1 the sample path is uniformly
continuous for dyadic rational arguments in bounded intervals.

Fix a space (SZ, ,F, P) and on it a process [W,: t >- 0] having the finite-
dimensional distributions prescribed for Brownian motion. Let D be the set
of nonnegative dyadic rationals, let ink = [k2 -n,(k + 2)2 - "], and put

Mnk(w) = sup IWO, w) W(k2 - ",w)1

Mn(w) = max Mnk( w).0 <k <n2"

Suppose it is shown that E P[ M" > n -1 ]  converges. The first Borel-Cantelli
lemma will then imply that B = [Mn > n - ' i.o.] has probability 0. But
suppose w lies outside B. Then for every t and E there exists an n such that
t < n, 2n' < E, and M"(cw) < n -'. Take S = 2 -n. Suppose that r and r' are
dyadic rationals in [0, t] and I r - r'I <S. Then r and r' must for some
k < n2" lie in a common interval ink (length 2 x 2 -'), in which case 1W(r, co)

W(r, w) is for every t uniformly continuous as r ranges over the dyadic
rationals in [0, t], and hence it will have a continuous extension to [0,00).

To prove E P[ Mn > n -' ] < 00, use Etemadi's maximal inequality (2210),
which applies because of the independence of the increments. This, together
with Markov's inequality, gives

P[ max. I W(t +Si2 - m) - W(t)I > al

3maxP[IW(t+Si2 -m) - W(t)I >a/31
r<2M

3
4 E[( W(t + 5) - W(t)) 4] = 34 .352 = KS2 

(a/3)	 a4 	 a

(see (21.7) for the moments of the normal distribution). The sets on the left
here increase with m, and letting m --- 00 leads to

(37.9)	 P sup IW(t+rS)- W(t)I>a < 
âS z

o5r <1
rED

Therefore,

( 	 ")2 — 	 5P[M">n - '^ <n2
"K 2X2 - 	4Kn

(37.8)

- W(r', w)^ < 2M"k(w) 2M"(w) < 2n - ' < E. Therefore, co B implies that

( 
n.")4
	2" ,

and EP[ M" > n] does converge.
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Therefore, there exists a measurable set B such that P(B) = 0 and such
that for w outside B, W(r, w) is uniformly continuous as r ranges over the
dyadic rationals in any bounded interval. If w 0 B and r decreases to t
through dyadic rational values, then W(r, w) has the Cauchy property and
hence converges. Put

lim W( r, (0) if (.00 B,

W/ 1 ( 0) ) = W'(t,w) = ri/

o 	 if w EB,

where r decreases to t through the set D of dyadic rationals. By construc-
tion, W'(t, w) is continuous in t for each w in II. If w 0 B, then W(r, w) =
W'(r, w) for dyadic rationals, and W'(-, w) is the continuous extension to all
of [0, co).

The next thing is to show that the W,' have the same joint distributions as
the W,. It is convenient to prove this by a lemma which will be used again
further on.

Lemma 1. Let X„ and X be k-dimensional random vectors, and let Fn(x)
be the distribution function of Xn . If X,,---> X with probability 1 and F,(x) -->
F(x) for all x, then F(x) is the distribution function of X.

PROOF. # Let X have distribution function H. By two applications of
Theorem 4.1, if h > 0, then

F(x y ,...,x k ) = limsupFn(x l ,...,xk ) < H(x l ,...,xk )
n

liminfFn(x i + h,. ..,x k +h)
n

F(x,+h,...,x k +h).

It follows by continuity from above that F and H agree.	 •

Now, for 0 < t 1 < - - - < tk , choose dyadic rationals ri(n) decreasing to the
t i . Apply Lemma 1 with (i+ ( ,, ) ,.. . , 

Wrk(n))
 and (W,`.,...,  W,k) in the roles of

X„ and X, and with the distribution function with density (37.6) in the role of
F. Since (37.6) is continuous in the ti , it follows by Scheffé's theorem that
F,,(x) --' F(x), and by construction Xn --' X with probability 1. By the lemma,
(W,'0 ... , W,k) has distribution function F, which of course is also the distribu-
tion function of (W,,, ... , Wk).

Thus [W,': t >_ 0] is a stochastic process, on the same probability space as
[W,, t >_ 01, which has the finite-dimensional distributions required for Brown-
ian motion and moreover has a continuous sample path W'(-, w) for every w.

tThe lemma is an obvious consequence of the weak-convergence theory of Section 29; the point
of the special argument is to keep the development independent of Chapters 5 and 6.
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By enlarging the set B in the definition of W'(w) to include all the w for
which W(0, to)* 0, one can also ensure that W'(0, (o) = 0. Now discard the
original random variables W, and relabel W,' as W,. The new [W,: t >_ 0] is a
stochastic process satisfying conditions (i), (ii), and (iii) for Brownian motion
and this one as well:

(iv) For each w, W(t, w) is continuous in t and W(0, w) = 0.

From now on, by a Brownian motion will be meant a process satisfying (iv)
as well as (i), (ii), and (iii). What has been proved is this:

Theorem 37.1. There exist processes [W,: t >_ 01 satisfying conditions (i),
(ii), (iii), and (iv)—Brownian motion processes.

In the construction above, Wr for dyadic r was used to define W, in
general. Foi that reason it suffices to apply Kolmogorov's theorem for a
countable index set. By the second proof of that theorem, the space (1f, Y, P)
can be taken as the unit interval with Lebesgue measure.

The next section treats a general scheme for dealing with path-function
questions by in effect replacing an uncountable time set by a countable one.

Measurable Processes

Let T be a Borel set on the line, let [X,: t E T] be a stochastic process on an
(ft, ,F, P), and consider the mapping

(37.10) 	 (t,w) --*X,(w) =X(t,w)

carrying T x 1 into R'. Let Y be the Œ-field of Borel subsets of T. The
process is said to be measurable if the mapping (37.10) is measurable
Yx 370.

In the presence of measurability, each sample path X(, w) is measurable
Y by Theorem 18.1. Then, for example, f, cp(X(t, co))  dt makes sense if
(a, b) c T and cp is a Borel function, and by Fubini's theorem

E f bcp(X(t,•))dt = f bE[ço(X,)l dt if fbEIIq,(X)Il dt<.
a	 a	 a

Hence the usefulness of this result:

Theorem 37.2. Brownian motion is measurable.

PROOF. If

W ( " ) (t,w) = W(k2 - ",co)	 for 	 k2-"<t< (k+1)2-",

k= 0, 1,2,...,
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then the mapping (t, w) ---) W (" )(t, w) is measurable J-x Y-. But by the
continuity of the sample paths, this mapping converges to the mapping
(37.10) pointwise (for every (t, w)), and so by Theorem 13.4(iî) the latter
mapping is also measurable J -X 370. •

Irregularity of Brownian Motion Paths

Starting with a Brownian motion [Nit : t >— 0] define

(37. 11 ) 	K(w) = c - 1 1K2,(w),

where c > 0. Since t -* c 2 t is an increasing function, it is easy to see that the
process [W,': t >_ 0] has independent increments. Moreover, W,' — W' =
c - '(IK.z, — Wc zs ), and for s < t this is normally distributed with mean 0 and
variance c -Z(c 2 t — c 2s) = t — s. Since the paths W'(•, w) all start from 0 and
are continuous, [W,': t >_ 0] is another Brownian motion. In (37.11) the time
scale is contracted by the factor c 2 , but the other scale only by the factor c.

That the transformation (37.11) preserves the properties of Brownian
motion implies that the paths, although continuous, must be highly irregular.
It seems intuitively clear that for c large enough the path W(•, w) must with
probability nearly 1 have soniewhere in the time interval [0,c] a chord with
slope exceeding, say, 1. But then W'(-, w) has in [0,c - 1 1 a chord with slope
exceeding c. Since the W' are distributed as the W„ this makes it plausible
that W(•, w) must in arbitrarily small intervals [0, S] have chords with
arbitrarily great slopes, which in turn makes it plausible that W(•, w) cannot
be differentiable at 0. More generally, mild irregularities in the path will
become ever more extreme under the transformation (37.11) with ever larger
values of c. It is shown below that, in fact, the paths are with probability 1
nowhere differentiable.

Also interesting in this connection is the transformation

(37.12) W," (w) _ r W1/,(w) if t > 0,
0	 if t =0.

Again it is easily checked that the increments are independent and normally
distributed with the means and variances appropriate to Brownian motion.
Moreover, the path W"(•, w) is continuous except possibly at t = 0. But (37.9)
holds with Ws" in place of Ws because it depends only on the finite-dimen-
sional distributions, and by the continuity of W"(•, w) over (0,œ) the
supremum is the same if not restricted to dyadic rationals. Therefore,
P[sup s  „-3I W5'I > n - '] K/n 2 , and it follows by the first Borel—Cantelli
lemma that W"(•,co) is continuous also at 0 for w outside a set M of
probability 0. For w E M, redefine W"(t, (.0= 0; then [W,": t >_ 0] is a Brown-
ian motion and (37.12) holds with probability 1.
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The behavior of W(•, (0) near 0 can be studied through the behavior of
W"(• , w) near 00 and vice versa. Since (W," - W1 )/t = W1 ^ , W"(-,w) cannot
have a derivative at 0 if W(-,w) has no limit at 00. Now, in fact,

(37.13)	 inf W„ _ -00, 	 sup W,, +00
n

with probability 1. To prove this, note that W„ = X 1 + • • • +X,,, where the
Xk = Wk — Wk _1 are independent. Consider

CO 	 a

[

sup Wn <ool = U n [ maxWu ];
n jJ u=1 m-1 1-.5171 1

this is a tail set and hence by the zero-one law has probability 0 or 1. Now
-X 1 , -X2 ,... have the same joint distributions as X I , X2 ,..., and so this
event has the same probability as

^  FiF in>_001 = U 	 [rnax ( _w ) ^uJ
n 	u=1 ►n= 1 + sm

If these two sets have probability 1, so has [SUp n I Wn I < c01, so that P[sup„I W,I
<x] > 0 for some x. But P[IWn i <x] = P[I W1 I <x/n 1 / 2 ] -•' O. This proves
(37.13).

Since (37.13) holds with probability 1, W"(•, w) has with probability 1
upper and lower right derivatives of +00 and -00 at t = O. The same must be
true of every Brownian motion. A similar argument shows that, for each fixed
t, W(-, w) is nondifferentiable at t with probability 1. In fact, W(•, co) is
nowhere differentiable:

Theorem 373. For w outside a set of probability 0, W(-, w) is nowhere
differentiable.

PROOF. The proof is direct—makes no use of the transformations (37.11)
and (37.12). Let

(37.14) Xnk = max W( k 2R i )^- W( 2 ) ,

w(k;2) w(k;, 1 

W( k2 3 ) - W( k Z 2) }. 

By independence and the fact that the differences here have the distribution
of 2-n/2..,1, P[Xnk < E] = P 3[IW1 I < 2n /2d; since the standard normal den-
sity is bounded by 1, P[X,,k < E] < (2 X 2n/2 E)3. If Yn = min k n2" Xnk, then

(37.15)	 P[Y„ < E] < n2'7 (2 X 2n/ 2 E ) 3 .
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Consider now the upper and lower right-hand derivatives

W(t +h, w) - W(t,w) 
D W(t,(o} = limsup 	 h 	,

h 10

D^^,(t,w} = l im inf 
W(t+h,w) - W(t,w)

h,^0 	 h

Define E (not necessarily in ) as the set of w such that D W(t, w) and
D W(t, co) are both finite for some value of t. Suppose that w lies in E, and
suppose specifically that

-K <D H,(t,w) <DW(t,w) <K.

There exists a positive S (depending on w, t, and K) such that t < s <t -f- fi
implies IW(s, (0) - W(t, w)I < KIs - tI. If n exceeds some n o (depending on 6,
K, and t), then

4x2' <6, 	 8K<n, 	 n> t.

Given such an n, choose k so that (k - 1)2' < t <k2 - ". Then Ii2 - " - tI < S
for i = k, k +1,k  + 2, k + 3, and therefore X"k(w) < 2K(4 x 2 -") < n2".
Since k - 1 < t2" < n2", Y"(w) _< n2 - ".

What has been shown is that if w lies in E, then w lies in A" = [Y" < n2 - "1
for all sufficiently large n: E c lim inf" A. By (37.15),

P(A n ) < n 2"(2x 2 "/ 2 Xn2 - ") 3 --4 0.

By Theorem 4.1, liminf" A n has probability 0, and outside this set W(-, co) is
nowhere differentiable—in fact, nowhere does it have finite upper and lower
right-hand derivatives. (Similarly, outside a set of probability 0, nowhere does
W(-, w) have finite upper and lower left-hand derivatives.) •

If A is the set of w for which W(•, w) has a derivative somewhere, what
has been shown is that A c B for a measurable B such that P(B) = 0;
P(A) = 0 if A is measurable, but this has not been proved. To avoid such
problems in the study of continuous-time processes, it is convenient to work
in a complete probability space. The space (fi, Y, P) is complete (see p. 44)
if A cB, B E Y-, and P(B) = 0 together imply that A E 9 (and then, of
course, P(A) = 0). If the space is not already complete, it is possible to
enlarge Y- to a new o--field and extend P to it in such a way that the new
space is complete. The following assumption therefore entails no loss of
generality: For the rest of this section the space (fi, tF, P) on which the
Brownian motion is defined is assumed complete. Theorem 37.3 now becomes:
W(-, w) is with probability 1 nowhere differentiable.
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A nowhere-differentiable path represents the motion of a particle that at
no time has a velocity. Since a function of bounded variation is differentiable
almost everywhere (Section 31), W(-, w) is of unbounded variation with
probability 1. Such a path represents the motion of a particle that in its
wanderings back and forth travels an infinite distance in finite time. The
Brownian motion model thus does not in its fine structure represent physical
reality. The irregularity of the Brownian motion paths is of considerable
mathematical interest, however. A continuous, nowhere-differentiable func-
tion is regarded as pathological, or used to be, but from the Brownian-motion
point of view such functions are the rule not the exception!

The set of zeros of the Brownian motion is also interesting. By property
(iv), t = 0 is a zero of W(-, w) for each w. Now [W,": t >_ 0] as defined by
(37.12) is another Brownian motion, and so by (37.13) the sequence (W„":
n = 1, 2, ...) _ (nWIz ,,: n = 1, 2, ...) has supremum + co and infimum — co for
w outside a set of probability 0; for such an w, W(-, w) changes sign infinitely
often near 0 and hence by continuity has zeros arbitrarily near O. Let Z(w)
denote the set of zeros of W(-, w). What has just been shown is that
0 E Z(w) for each w and that 0 is with probability 1 a limit of positive points
in Z(w). From (37.13) it also follows that Z(w) is with probability 1 un-
bounded above. More is true:

Theorem 37.4. The set Z(w) is with probability 1 perfect [A15], un-
bounded, nowhere dense, and of Lebesgue measure O.

PROOF. Since W( -, co) is continuous, Z(w) is closed for every w. Let A
denote Lebesgue measure. Since Brownian motion is measurable (Theorem
37.2), Fubini's theorem applies:

f À( Z( w )) P ( dw) = (A x Pl [( t, w): W( t, co) = 01

= fœP[: W(t, co) =0]dt=0.
0

Thus A(Z(w)) = 0 with probability 1.
If W(-, w) is nowhere differentiable, it cannot vanish throughout an

interval 1 and hence must by continuity be nonzero throughout some subin-
terval of I. By Theorem 37.3, then, Z(w) is with probability 1 nowhere dense.

It remains to show that each point of Z(w) is a limit of other points of
Z(w). As observed above, this is true of the point 0 of Z(w). For the general
point of Z(w), a stopping-time argument is required. Fix r 0 and let

t For the construction of a specific example, see Problem 31.18.
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T(w) = inf[t: t >_ r, W(t, w) = 01; note that this set is nonempty with probabil-
ity 1 by (37.13). Thus T(w) is the first zero following r. Now

[w: 1-(w) -t] = [co: inf I W( s, co) I = 0 1 ,
L	 r <s<t

and by continuity the infimum here is unchanged if s is restricted to
rationals. This shows that T is a random variable and that

[w. T ( w) 5 t] E0[Wu : u < t ].

A nonnegative random variable with this property is a stopping time.
To know the value of T is to know at most the values of W„ for u < T.

Since the increments are independent, it therefore seems intuitively clear
that the process

(37.16) W,*(w) = WT(.)+ , (w) — 
WT(w)ta)) = W* , >+f (w), 	 t > 0,

ought itself to be a Brownian motion. This is, in fact, true by the next result,
Theorem 37.5. What is proved there is that the finite-dimensional distribu-
tions of [W,*:  t >_ 0] are the right ones for Brownian motion. The other
properties are obvious: W*(-  , w) is continuous and vanishes at 0 by construc-
tion, and the space on which [W,*; t >_ 0] is defined is complete because it is
the original space (SZ, Y-, P), assumed complete.

If [W*:  t > 0] is indeed a Brownian motion, then, as observed above, for w
outside a set Br of probability 0 there is a positive sequence (t n } such that
t„ ---> 0 and W *(t,f , w) = 0. But then W(T((o) + t,,, w) = 0, so that T(w), a ze ro
of W(, w), is the limit of other larger zeros of W(-, w). Now T(w) was the
first zero following r. (There is a different stopping time T for each r, but
the notation does not show this.) If B is the union of the Br for rational r,
the first point of Z(w) following r is a limit of other, larger points of Z(w).
Suppose that w 0 B and t E Z(w), where t > 0; it is to be shown that t is a
limit of other points of Z(w). If t is the limit of smaller points of Z(w), there
is of course nothing to prove. Otherwise, there is a rational r such that r < t
and W(•, co) does not vanish in [r, t); but then, since w 0 Br , t is a limit of
larger points s that lie in Z(w). This completes the proof of Theorem 37.4
under the provisional assumption that (37.16) is a Brownian motion. •

The Strong Markov Property

Fix t o >_ 0 and put

(37.17) W ' = W ü +f - Wfü , t >_ O.

It is easily checked that [W': t > 01 has the finite-dimensional distributions
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appropriate to Brownian motion. As the other properties are obvious, it is in
fact a Brownian motion.

Let

(37.18)	 5 _ Œ[WS : s t].

The random variables (37.17) are independent of ü. To see this, suppose
that 0 < s 1 < • • • < s^ < to and 0 < t i < • • • < tk . Put u t = t o + t t . Since the
increments are independent, (W,i, WZ - . , Wyk

 - Wki ) _ (Wu, -
W ü , Wu , - Wu , , ... , Wk - Wuk _ i) is independent of (Ws , WSZ - W J , ... , WS . -

Wsi _ i ). But then (W, ', W z, ... , WO is independent of ^W ., WSZ , ... , W). By
Theorem 4.2, (u; ... , WO is independent of .; ü . Thus

(37.19)	 P ( [(W,i,... , Wk) E H] nA)

= P [ (W^, ..., Wk) E 111P ( A)

=P(W,, ... , W,k ) EH ] P ( A ) , 	A E (,ü,

where the second equality follows because (37.17) is a Brownian motion. This
holds for all H in .Çk .

The problem now is to prove all this when t o is replaced by a stopping time
T-a nonnegative random variable for which

(37.20) [w:T ( (0)<t] EJ" t , 	 t > O.

It will be assumed that r is finite, at least with probability 1. Since [T= t]
[T 5 t] - U „[T _< t - n -1 1,  (37.20) implies that

(37.21) [w: T( (0) =t] 	t >>- O.

The conditions (37.20) and (37.21) are analogous to the conditions (7.18) and
(35.18), which prevent prevision on the pa rt of the gambler.

Now 3r0 contains the information on the past of the Brownian motion up
to time t o , and the analogue for T is needed. Let .9 consist of all
measurable sets M for which

(37.22)	 Mn [w: T(w) < t] E ^

for all t. (See (35.20) for the analogue in discrete time.) Note that .` is a
Œ-field and T is measurable .9v. Since M n [T = t] = M n [T = t] n [T _< t],

(37.23)	 Mn[w:T(w)=t] E ,9

for M in .9v. For example, T= inf[t: W, = 1] is a stopping time and
[infs s ,. W > - 1] is in . .
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Theorem 37.5. Let T be a stopping time, and put

(37.24) W*(w) = W (w)+!((o) — WT(w)(w), t >_ 0.

Then [W,*: t >1 is a Brownian motion, and it is independent of .9—that is,
Œ [14/ç* : t >_ 0] is independent of .9v:

(37.25) P([(W*,...,W,k ) E H] nM)

= P[(W*,...,W,k ) EHI P(M) =P[(W,,...,W k ) EHJP(M)

for H in q k and M in ,F,".

That the transformation (37.24) preserves Brownian motion is the strong
Markov property.# Part of .the conclusion is that the W* are random vari-
ables.

PROOF. Suppose first that T has countable range V and let to be the
general point of V. Since

W*r

Iw: W, *(w) EH] = U [w: W10+1(w) – W ü(w) EH, T(w)=to i,
t ü E V

is a random variable. Also,

P([(W*,...,Wk ) EH] nM)

= E P([(W,*,..., W,k ) EH] nMn [T= to ]).
roe 

If Mc Y-,- , then Mn [T = t0] E g,ü by (37.23). Further, if T '" to , then W,*
coincides with W' as defined by (37.17). Therefore, (37.19) reduces this last
sum to

E P[(W,,..., W, k ) E H]P( M n [T = to])
roe 

= P[( W, i ,..., W, k ) E H] P(M).

This proves the first and third terms in (37.25) equal; to prove equality with
the middle term, simply consider the case M = ft.

Since the Brownian motion has independent increments, it is a Markov process (see Examples
33.9 and 33.10); hence the terminology.
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Thus the theorem holds if -r has countable range. For the general T, put

(37.26) 	 Tn = 
k 2 -" if (k ^- 1)2 - n <T<k2 - ", k = 1,2,...
0 	 if T = O.

If k 2 - "< t < (k +1)2 -n, then [T"<t]_ [ T <k2 -n ] E 	 Z c . Thus each
Tn is a stopping time. Suppose that ME . 	 and k 2 - " < t < (k + 1)2 - ".
Then M n [Tn < t = M n [T < k2 -1 E 1 Z -„ c ,9 . Thus . c ✓  • Let
W (n )(w) = W 	 (w) - 	 (w)—that is, let W ( " ) be the W* correspond-
ing to the stopping time T". If M E . 	 then M E .37T-n , and by an application
of (37.25) to the discrete case already treated,

(37.27) P([(W, (i n ) ,..., W (k" ) ) EH] nM) = P[(W  i ,..., W k ) E H1 P(M).

But Ta(w) -47-(w) for each w, and by continuity of the sample paths,
W, (n )(w) --- W,*(w) for each w. Condition on M and apply Lemma 1 with
(W7 ), ...,1411 (a ) ) for Xn , (W*, ..., W,,^`) for X, and the distribution function of
(W ... , W R ) for F = Fn . Then (37.25 follows from (37.27). •

The T in the proof of Theorem 37.4 is a stopping time, and so (37.16) is a
Brownian motion, as required in that proof. Further applications will be
given below.

If Y* = Œ[W,*: t >_ 0], then according to (37.25) (and Theorem 4.2) the
cr-fields . 	 and .9 	 are independent:

(37.28) 	 P(A nB) = P(A)P(B), 	 A E ,9, B E Sr*.

For fixed t define Tn by (37.26) but with t2 —n in place of 2 —n at each
occurrence. Then [WT <x] n [T < t] is the limit superior of the sets [WTn <x]

CZ;n [T < t], each of which lies in .. This proves that [W 	 . TT <x] lies in 	 and
hence that WT is measurable .. Since T is measurable „`T,

(37.29)

for planar Borel sets H.

[(T, WT ) E H] E Y;

The Reflection Principle

For a stopping time T, define

(37.30) 	 W,"
W,

WT - ( W -
if t < T,

WT) if t >- T.

The sample path for [W,":  t >_ 0] is the same as the sample path for [W,: t >- 0]
up to T, and beyond that it is reflected through the point WT . See the figure.
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Wr 

The process defined by (37.30) is a Brownian motion, and to prove it, one
need only check the finite-dimensional distributions: PRW,... ,Wk )EH]=
P[04 , ... , WO E Hi. By the argument starting with (37.26), it is enough to
consider the case where T has countable range, and for this it

 

is enough to
check the equation when the sets are intersected with [T = t o ].

Consider for notational simplicity a pair of points:

(37.31) 	 P[T = to , (WS ,W) EH] = P[T = to , (Ws',W") EH].

if s < t < to , this holds because the two events are identical. Suppose next
that s < t o < t. Since [T = to ] lies in , it follows by the independence of the
increments, symmetry, and the definition (37.30) that

PÎT = t o , (WS , W ü ) EI, W, — W ü EJ]

=P[T= to , (Ws ,Wü ) El, —(W,—

=P[T= to , (WS', Wü) E 1, Wr '— Wü EJ] .

1f K=1xJ, this is

P[T= to, (WS ,W, ü , W, — W, ü )EK] =P[T= to, (WS ', W, ü , W,' — W ü )EK],

and by 7r—A it follows for all K E' 3 . For the appropriate K, this gives
(37.31). The remaining case, t o < s < t, is similar.

These ideas can be used to derive in a very simple way the distribution of
M, = sup s <, Ws . Suppose that x > 0. Let T = inf[s: Ws >_ x], define W" by
(37.30), and put T" = inf[s: Ws' >_ x] and M^' = sup s , Ws". Since T" = T and
W" is another Brownian motion, reflection through the point W 7 = x shows
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that

P[ Al, >x] =P[T5t]

=P[Tst, W, < x]+P[T <t, W, > x]
= P[r" _<t, W" <x] +P[T<t, W >x]

=P[T" <t, W,>x] +P[T<t, W^>_x]

=P[T<t, W, x]+P[T_<t , W>x]=2P[W,?x].

Therefore,

(37.32)
^

P[M,>x] _	 ( e^"Z^Zdu.
2 Tr Jx/Vr

This argument, an application of the reflection principle,t becomes quite
transparent when referred to the diagram.

Skorohod Embedding*

Suppose that X 1 , X2 , ... are independent and identically distributed random
variables with mean 0 and variance  0' 2 .  A powerful method, due to Skoro-
hod, of studying the partial sums Sn = X 1 + • • • +Xn is to construct an
increasing sequence TO = 0, T 1 , T 2 , ... of stopping times such that W(T n ) has
the same distribution as Sn . The differences Tk — Tk_ 1 will turn out to be

large numbers n - 1 Tn = n -

 1 Lk= I(Tk — Tk_ 1) is likely to be near o-2 . But if Tn

independent and identically distributed with mean o-2 , so that by the law of

is near ncr 2 , then by the continuity of Brownian motion paths W(Tn ) will be
near W(ncr 2 ), and so the distribution of Sn/Q&, which coincides with the
distribution of W6-n )/o6, will be near the distribution of W(nc 2 )/Q&
—that is, will be near the standard normal distribution. The method will thus
yield another proof of the central limit theorem, one independent of the
characteristic-function arguments of Section 27.

But it will also give more. For example, the distribution of max k <n Sk/o-VW
is exactly the distribution of max k W(Tk)/01  , and this in turn is near the
distribution of sup s ^ nQ Z W(t)/^ , which can be written down explicitly
because of (37.32). It will thus be possible to derive the limiting distribution
of max k s n Sk

 The joint behavior of the partial sums is closely related to the
behavior of Brownian motion paths.

The Skorohod construction involves the class J - of stopping times for
which

(37.33)

(37.34)

E[WT] = 0,

E[T] = E[WT2 1,

t See Problem 37.18 for another application.
* The rest of this section, which requires martingale theory, may be omitted.
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and

(37.35) 	 E[-r2] < 4E[141,4 1.

Lemma 2. All bounded stopping times are members of Y.

PROOF. Define YB , = exp(OW, - iB e t) for all B and for t >- O. Suppose
that s < t and A E ✓S. Since Brownian motion has independent increments,

fA Ye , dP = fA
eeWs-ezs/2 dP • E f e e^w,- ws)-e2(r-s)/2] ,

and a calculation with moment generating functions (see Example 21.2)
shows that

(37.36) f Y
9 s dP = f Y0 s -<t, AEYs .

This says that for 0 fixed, [Y: t >_ 0] is a continuous-time martingale
adapted to the Œ-fields . It is the  moment-generating-function martingale
associated with the Brownian motion.

Let f(0, t) denote the right side of (37.36). By Theorem 16.8,

a0 f( 0, t) = f YE,r(Wr - Ot) dP,
A

2

aB 2 f(e?t) = f Ye d(W,-  0t) 2 - t] dP,
A

a4

304 f( ° ' t) = f Y9, ,[(W1 - 0t)4 -604/,-  0t)2t + 3t 2 ] dP.
A

Differentiate the other side of the equation (37.36) the same way and set
0 = O. The result is

fdP=fW1 dP,	 .st,t, AE,

f (4 2 _s)dPf( 2 _t)dp, 	 s _< t, A E ,J,

f ( 4 _o 2s +3s 2 ) dP=f(U1 4 _6 2 t+3t 2 )dP,	 s < t, AE ✓ ,

This gives three more martingales: If Z. is any of the three random variables

Wt2 - t, 	 W4 - 6W,2t + 3t 2,Wt ,(37.37)
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then Z0 = 0, Z. is integrable and measurable S;, and

(37.38) J Z5 dPJZ,dP, 	 s<t, A EYrs .
A 	 A

In particular, E[Z] _ [ Z0] = O.
If T is a stopping time with finite range (t 1 ,... , t,n) bounded by t, then

(37.38) implies that

E[ ZT ] _ 	 Z,; dP = E f 	 Z., dP = E[ Z., ]= O.
; 	 [T=t,]

Suppose that T is bounded by t but does not necessarily have finite range.
Put Tn = k2 - rat if (k — 1)2 - rat < T < k2 - rat, 1 < k < 2", and put Tn = 0 if
T = O. Then Tn is a stopping time and E[ Z.7 ] = 0. For each of the three
possibilities (37.37) for Z,, supsc ,IZs i is integrable because of (37.32). It
therefore follows by the dominated convergence theorem that E[Z,F ] =

E[ZTn ] = 0.
Thus E[Z] = 0 for every bounded stopping time T. The three cases

(37.37) give

E[W]=E[WZ — Ti= E[W4 -6W2 T+3T 2 1 = 0.

This implies (37.33), (37.34), and

0 = E[W4] — 6E[WT2T] + 3E[T 2 ]

>— E[W4 ] — 6E 1 /2 [WT
41 E 1 / 2 [T 2 ] 3E[T 2 ].

If C = E 1 / 2 [W4 ] and x = E 1 / 2 [7 2 ], the inequality is 0 >— q(x) = 3x 2 - 6Cx +
C 2 . Each zero of q is at most 2C, and q is negative only between these two
zeros. Therefore, x < 2C, which implies (37.35). •

Lemma 3. Suppose that T and Tn are stopping times, that each Tn is a
member of Y, and that Tn --- T with probability 1. Then T is a member of .T if
(i) E[W n]  < E[WT4 ] <00 for all n, or if (ii) the W 4 are uniformly integrable.

PROOF. Since Brownian motion paths are continuous, W T --0 Wr with
probability 1. Each of the two hypotheses (i) and (ii) implies that E[W7.4 ] is
bounded and hence that E[T,2 ] is bounded, and it follows (see (16.28)) that
the sequences { Tn}, {Wn}, and {WTn} are uniformly integrable. Hence (37.33)
and (37.34) for T follow by Theorem 16.14 from the same relations for the T n .
The first hypothesis implies that lim inf ra E[W7.4 ] < E[14/.7.4 ], and the second
implies that lim n E[[ WT4 ] = E[W4 ]. In either case it follows by Fatou's lemma
that E[T 2 ] < lim inf ra EtT,2 ] < 41im inf ra E[W „] < 4E[W 4]. •
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Suppose that a, b >_ 0 and a + b > 0, and let T(a, b) be the hitting time for
the set (—a, b): T(a, b) = inf[t: W. E ( — a, b)]. By (37.13), T(a, b) is finite with
probability 1, and it is a stopping time because T(a, b) < t if and only if for
every m there is a rational r < t for which Wr is within m' of — a or of b.
From I W(min(T(a, b), n))I < max(a, b) it follows by Lemma 36i) that T(a, b) is
a member of Y. Since WT(Q b) assumes only the values —a and b, E[ W (a,b)]
= 0 implies that

(37.39) 	 PIWT(a b)= —a ] = a b+ b 	P [W(a.b)
— b 1	 a + b •

This is obvious on grounds of symmetry in the case a = b.
Let µ be a probability measure on the line with mean O. The program is to

construct a stopping time T for which WT has distribution A. Assume that
µ(0) < 1, since otherwise T = 0 obviously works. If µ consists of two point
masses, they must for some positive a and b be a mass of b/(a + b) at — a
and a mass of a/(a + b) at b; in this case T(a b) is by (37.39) the required
stopping time. The general case will be treated by adding together stopping
times of this sort.

Consider a random variable X having distribution p. . (The probability
space for X has nothing to do with the space the given Brownian motion is
defined on.) The technique will be to represent X as the limit of a martingale
X 1 , X2 , ... of a simple form and then to duplicate the martingale by
WT ,, W 2 , ... for stopping times Tn ; the Tn will have a limit T such that WT has
the same distribution as X.

The first step is to construct sets

An'• a^n ) < din ) < . • . < a(n)

and corresponding partitions

1(7 = ( — oc, don ) ] ,

.9n : Ik = (4n) 1 , aka ) ] , 1 < k <•rn ,

I R+i = (a" ) ,cxD).

Let M(H) be the conditional mean:

M(H) _
^( H ) JH 

xµ(dx)	 if µ(H) >O.

Let 0, consist of the single point M(R 1 ) = E[X] = 0, so that .9, consists of
Iô = ( - 00,01 and I = (0, co). Suppose that An and .91n are given. If µ((0°)
> 0, split Ik by adding to On the point M(0, which lies in (I,)°; if
pxo. )°) = 0, Ik appears again in 9'n+ i.
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Let .gn be the o--field generated by the sets [XE Ik], and put Xn =
E[X II4]. Then X 1 , X is a martingale and X = M(Ik) on [X E Ik]. The
X„ have finite range, and their joint distributions can be written out explic-
itly. In fact, [ X 1 = M(Ik ) , ... , X„ =11I(1kR )] = [ X E Ik ... , X EIkR ] , and this
set is empty unless / 1!. D . • • D IkR, in which case it is [X,, = MU/1:n )] = [X E
41R ]. Therefore, if k,,.... 1 = j and Jr =1k_  1 U Ik,

P[X — M(Tn_ )IIX MITI )
	 X„_1 	 kM { In-1)] = A(1,7_ 1 )

n 	 k l	 1 — 	ki ^ •. , 	 i	 n-1
µ { 1; 

)

and

I n
P[X — (In' X M(I 1 ) 	 X_ 	 M{In — ' ) ] = µ k) n M— 	 k^II 	 — 	 ki "' 	r, 1 — 	 kR_ t 	1 ^p.(111- )

provided the conditioning event has positive probability. Thus the martingale
(X,,) has the Markov property, and if x = M(11 - 1 ), u = M(Ik_ 1 ) , and y =
M(4), then the conditional distribution of X,, given Xn _ , = x is concen-
trated at the two points u and y and has mean x. The structure of (Xn) is
determined by these conditional probabilities together with the distribution

P[ X 1 = MN)] = µ^ IQ ) P[Xt=M(101= p(II).

of X 1 .
If 1_ c(U ,A,), then Xn -•> E[X II.#] with probability 1 by the martingale

theorem (Theorem 35.6). But, in fact, X,, X with probability 1, as the
following argument shows. Let B be the union of all open sets of p,-measure
O. Then B is a countable disjoint union of open intervals; enlarge B by
adding to it any endpoints of p,-measure 0 these intervals may have. Then
p,(B) = 0, and x B implies that µ(x — E, x] > 0 and p,[x, x + c)> 0 for all
positive E. Suppose that x = X(co) B and let x n = X„ (w). Let Ik be the
element of . „̂ containing x; then x„ +1 = M(4) and Ik ^. I for someR 
interval I. Suppose that x,,, 1 <x — E for n in an infinite sequence N of
integers. Then x n} 1 is the left endpoint of IkR+, for n in N and converges
along N to the left endpoint, say a, of I, and (x — E , x] cl. Further,
x,,,1 = MOZ)—>--> M(1) along N, so that M(1) = a. But this is impossible
because µ(x — E, x] > O. Therefore, xn >_ x — E for large n. Similarly, x,, <x
+ E for large n, and so x n —>x. Thus X,(w) -•' X(w) if MOO B, the
probability of which is 1.

Now X 1 = E[ X II.9I ] has mean 0, and its distribution consists of point
masses at — a = MUD and b = M(1 11). If 7 1 = T(a, b) is the hitting time to
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( - a, b), then (see (37.39)) Ti is a stopping time, a member of J and 141

has the same distribution as X 1 .
Let 7 2 be the infimum of those t for which t >_ T1 and W, is one of the

points M(I1 ), 0 < k < r2 + 1. By (37.13), 7 2 is finite with probability 1; it is a
stopping time, because 7 2 < t if and only if for every m there are rationals r
and s such that r < s + m - 1 ,  r < t, s < t, Wr is within m -1  of one of the
points M(111 ), and WS is within m -1 of one of the points M(I1 ). Since
W(min(T 2 , n))I is at most the maximum of the values IM(I)I, it follows by
Lemma 360 that 7 2 is a member of J.

Define Wt* by (37.24) with TI for T. If x = M(I'), then x is an endpoint
common to two adjacent intervals I/ _ 1 and Ik; put u = M(Ik_  1 ) and y -
M(/k2 ). If W

ri 
= x, then u and y are the only possible values of 14Ç 2. If T* is

the first time the Brownian motion [1 ,11,*: t >_ 0] hits u -x or y - x, then by
(37.39),

v —x
P[ WI = u — x]T v

 — 
u

'

—

P[WT^ =v—x]= 
x u

.v — u

On the set [WT , = x], 7 2 coincides with Ti +T* , and it follows by (37.28) that

P[W ^ = x ,WTZ = v] = P[W, =x,x+ WTI =v]

x — u
= P[W i =x] P[WA = v — x] = P[WTi] v — U .

This, together with the same computation with u in place of  y, shows that for
WTi 

=x the conditional distribution of W z is concentrated at the two points
u and y and has mean x. Thus the conditional distribution of 

Wr2
 given WTi

coincides with the conditional distribution of X2 given X I . Since 
WTi

 and X 1

have the saine distribution, the random vectors (WTI , W. 2 ) and (X 1 , X2 ) also
have the same distribution.

An inductive extension of this argument proves the existence of a se-
quence of stopping times Tn such that T1 < 72 < • - - , each Tn is a member of
J, and for each n, WTI , ... , KR have the same joint distribution as
X 1 ,..., Xn . Now suppose that X has finite variance. Since Tn is a member of
J-, E[Tn ] = E[Wr2] = E[X„2 ] = E[E 2[X II.5n ]] < E[X 2 ] by Jensen's inequality
(34.7). Thus T = lim n Tn is finite with probability 1. Obviously it is a stopping
time, and by path continuity, Wr W with probability 1. Since Xn X with
probability 1, it is a consequen

R
ce of the following lemma that W has the

distribution of X.

Lemma 4. If X„—) X and Y„—) Y with probability 1, and if Xn and Yn have
the same distribution, then so do X and Y.
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PROOF! By two applications of (4.9),

P[X. x] <P[X<x +€1 . lim infP[X, <x +E]
n

< lim SUP P[Y,<x+E]P[Y<x+el.
n

Let € --> 0: P[X <x] < P[Y <x]. Now interchange the roles of X and Y. •

Since X,2 < E[X 2 11.#n ], the Xn are uniformly integrable by the lemma
preceding Theorem 35.6. By the monotone convergence theorem and Theo-
rem 16.14, E[T] = lim n E[Tn ] = lim n E[WTR] = lim n E[X„] = E[ X 2 ] = E[W 2 ].
If E[X 4 ] <co, then E[W4 ] = E[X,4 ] <E[X 4 1 =E[W4 ] (Jensen's inequality
again), and so T is a member of ,T. Hence E[1- 2 ] < 4E[W7.4 ].

This construction establishes the first of Skorohod's embedding theorems:

Theorem 37.6. Suppose that Xis a random variable with mean 0 and finite
variance. There is a stopping time T such that Wr has the same distribution as
X, E[T] = E[X 2 ], and E[T 2 ] < 4E[X4 ].

Of course, the last inequality is trivial unless E[X 4 ] is finite. The theorem
could be stated in terms not of X but of its distribution, the point being that
the probability space X is defined on is irrelevant. Skorohod's second
embedding theorem is this:

Theorem 37.7. Suppose that X 1 , X2,... are independent and identically
distributed random variables with mean 0 and finite variance, and put S i,, = X 1

+ • • • +X,. There is a nondecreasing sequence Ti, T2, ... of stopping times
such that the Wry have the same joint distributions as the S, and T 1 , T2 — T1, T3
— T 2 , ... are independent and identically distributed random variables satisfying

E[Tn - rn_ 1] = E[X 12 ] and E[(Tn - Tn- 1)2] < 4E[X4].

PROOF. The method is to repeat the construction above inductively. For
notational clarity write W, = W, (1) and put (l) = Œ[W» ): 0 < s < t] and
34-(1) =0-[W,(1) : t >- 0]. Let 3 1 be the stopping time of Theorem 37.6, so that
W ^') and X 1 have the same distribution. Let Y-5(, 1)  be the class of M such
that Mn [61 < t] E (9 ( I ) for all t.

Now put j4,(2) = 141%< - W5(1), 	 (2) _ Œ[W(2): 0 < s < t ], and ^(2) w

O[W,(2): t >_ 0]. By another application of Theorem 37.6, construct a stopping
time 6 2 for the Brownian motion [W,(2) : t >- 0] in such a way that 14/5(22)  has the
same distribution as X 1 . In fact, use for 6 2 the very same martingale
construction as for 6 1 , so that (S 1 , W5(.1) )  and (6 2 ,14122) ) have the same
distribution. Since ^ 1) and Y-(2) are independent (see (37.28)), it follows
(see (37.29)) that (8 1)

 41)) and (6 2 , W Z2}) are independent.

This is obvious from the weak-convergence point of view.
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Let (2) be the class of M such that M n [6 2 < t] E y(2) for all t. If
W(3) = Ws )_, t - WIZ) and Y-(3) is the o--field generated by these random
variables, then again (2) and Y-(3) are independent. These two cr-fields
are contained in Y-(2), which is independent of Vi(f ' ). Therefore, the three
cr-fields 3i'>, z2), sz-(3) are independent. The procedure therefore extends
inductively to give independent, identically distributed random vectors
(Sn , W(n )). If Tn = 8 1 + • • • +Sn , then WT(' ) = W5( ' )  + .. • + In" ) has the dis-
tribution of X 1 + - • • +Xn. •

Invariance*

If E[X I2] o-2 , then, since the random variables Tn -- Tn _ 1 of Theorem 37.7
are independent and identically distributed, the strong law of large numbers
(Theorem 22.1) applies and hence so does the weak one:

(37.40) P[In—'Tn -62I>E] --0 0.

(If E[ X; ] < co, so that the Tn — Tn _ 1 have second moments, this follows
immediately by Chebyshev's inequality.) Now Sn has the distribution of
W(T,), and Tn is near no t by (37.40); hence Sn should have nearly the
distribution of W(ncr 2 ), namely the normal distribution with mean 0 and
variance no-2 .

To prove this, choose an increasing sequence of integers Nk such that
P[I n - 'Tn - 0.2i> k - '] < k — ' for n> Nk, and put E n = k - ' for Nk < n < Nk+1
Then E n --> 0 and P[I n - 'T, - 62I >- En ] < En . By two applications of (37.32),

ôn(E) - P
 I W( ncr 2 ) -- WWI

 E
^Vn

<P[In -1,rn -o- 2I?En ] +P 	 sup 	 IW(t)"_W(no-2 )1 ? EQV1a
It -nvZISen n

< En +4P[IW(En n)I Z Eol4711,

and it follows by Chebyshev's inequality that lim n 6 (E) = 0. Since S,, is
distributed as W(T,),

z
P W( n^ ) < x - E - Sn(E) < P 

Sn <x

o- 1171 	 crvn

z
< P 

W(nQ ) Sx 
+ E + Sn (E).

QVTi

*This topic may be omitted.
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Here W(no- 2 )/c1W can be replaced by a random variable N with the
standard normal distribution, and letting n --- cc and then E --' 0 shows that

S
lime 	 rn <x = P[N <x].

n 	 QVn

This gives a new proof of the central limit theorem for independent, identi-
cally distributed random variables with second moments (the Lindeberg-Lévy
theorem—Theorem 27.1). Obse rve that none of the convergence theory of
Chapter 5 has been used.

This proof of the central limit theorem is an application of the invariance
principle: S n has nearly the distribution of W(no- 2 ), and the distribution of
the latter does not depend on (vary with) the distribution common to the X.
More can be said if the Xn have fourth moments.

For each n, define a stochastic process [YÇ(t): 0 c t < 1] by Yn(0, w) = 0
and

(37.41) Yn (t, co) = 1 Sk(w) if k n 	 1 <t<_ n, 	 k = 1, ... ,n.^^

If k/n = t > 0 and n is large, then k is large, too, and Y,,(t) = t 1 / 2 Sk /UIX is
by the central limit theorem approximately normally distributed with mean 0
and variance t. Since the Xn are independent, the increments of (37.41)
should be approximately independent, and so the process should behave
approximately as a Brownian motion does.

Let Tn be the stopping times of Theorem 37.7, and in analogy with (37.41)
put Zn(0) = 0 and

(37.42) Zn(t} = 
1

0.1 -2  W(-rk } if k n 1 < t < k , 	 k = 1,..., n.

By construction, the finite-dimensional distributions of [Yn(t): 0 < t < 1] coin-
cide with those of [Z,,(t): 0 < t <1]. It will be shown that the latter process
nearly coincides with [W(tncr 2 )/Q 171 : 0 <t<  1], which is itself a Brownian
motion over the time interval [0, 1]--see (37.11). Put Wn(t) = W(tncr 2 )/o-VTI .

Let Bn(6) be the event that irk - kcr 2 I >- 8ncr 2 for some k <n. By
Kolmogorov's inequality (22.9),

(37.43)
	Var[- ,, 1 	 4E[ Xll

P(Bn(S}} < 	
82n2o.4 < 82no.4

-9 0.

If (k - 1)n -1 < t _<kn -1 and n> 5 -1 , then

Tk 	k
 +n < 2 8n o- 2      

Tk
t Ç 

n o- 2      
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on the event (Bn(S))`, and so

14(0 
- Wn(t) I =

Wn ( no- ) — Wn(t) < sup I Wn(s) - Wn(t)I
Is-tI<28  

on (Bn(6))`. Since the distribution of this last random variable is unchanged
if the Wn(t) are replaced by W(t),

P supIZn(t)-Wn(t)iH
ts1

<P(Bn(â)) +P sup sup IW(s) - W(t) l >_ E .
t < 1 rc-tk2S

Let n --- co and then 6 --) 0; it follows by (37.43) and the continuity of
Brownian motion paths that

(37.44) lime
n

Sup l ZZf(t) — Wr (t) i >_ E
t<1

= 0

for positive E. Since the processes (37.41) and (37.42) have the same finite-
dimensional distributions, this proves the following general invariance princi-
ple or functional central limit theorem.

Theorem 37.8. Suppose that X1 , X2 , ... are independent, identically dis-
tributed random variables with mean 0, variance o- 2 ,  and finite fourth mo-
ments, and define Yn (t) by (37.41). There exist (on another probability space),
for each n, processes [ Z n(t ): 0 < t < 1] and [KW: 0 < t 5 1] such that the first
has the same finite-dimensional distributions as [Yn(t): 0 < t < 1], the second is
a Brownian motion, and P[sup t <1IZn(t) - Wn(t)i > E] -4 0 for positive E.

As an application, consider the maximum Mn = maxi, s n Sk . Now
Mn /Œ& = sup, Yn(t) has the same distribution as sup, Zn(t), and it follows
by (37.44) that

P isupZn(t) - sup Wn(t)I>_ E --j0.
t< i 	 t<1

But P[sup r S 1 Writ) >_ x] = P[sup, s 1 W(t) > x] = 2P[N >_ x] for x >- 0 by
(37.32). Therefore,

(37.45) 	 P 
M

o.v7i
n
 <x --->2P[N<x], 	 x >0.
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PROBLEMS

37.1. 36.2 T Show that K(s, t) = min(s, t) is nonnegative-definite; use Problem 36.2
to prove the existence of a process with the finite-dimensional distributions
prescribed for Brownian motion.

37.2. Let X(t) be independent, standard normal variables, one for each dyadic
rational t (Theorem 20.4; the unit interval can be used as the probability
space). Let W(0) = 0 and W(n) = Ek =1 X(k). Suppose that W(t) is already
defined for dyadic rationals of rank n, and put

W ( 2k + 1
 ) = +w()+w(k)+	 1 (2k+ 1

2n + 1 	21 +n /^
,

 X l 2n4-1  j

Prove by induction that the W(t) for dyadic t have the finite-dimensional
distributions prescribed for Brownian motion. Now construct a Brownian
motion with continuous paths by the argument leading to Theorem 37.1. This
avoids an appeal to Kolmogorov's existence theorem.

37.3. T For each n define new variables Wn(t) by setting Wn(k/2") = W(k/2") for
dyadics of order n and interpolating linearly in between. Set S„ =
sup, s "IW"+1(t) — W"(t)I, and show that

an max W(22n +11^ [
12W

` 2 )+2
W(k2f?  )11.

The construction in the preceding problem makes it clear that the difference
here is normal with variance 1/2"+ 2 . Find positive xn such that Ex n and
EP[Sn >_ xn] both converge, and conclude that outside a set of probability 0,
Wn(t, w) converges uniformly over bounded intervals. Replace W(t, w) by
lim n Wn(t, w). This gives another construction of a Brownian motion with
continuous paths.

37.4. 36.6 T Let T =[0,03),  and let P be a probability measure on (RT , . ? T) having
the finite-dimensional distributions prescribed for Brownian motion. Let C
consist of the continuous elements of R T.
(a) Show that P* (C) = 0, or P*(R T — C) = 1 (see (3.9) and (3.10)). Thus
completing (R T , .GP T, P) will not give C probability 1.
(b) Show that P*(C) 1.

37.5. Suppose that [W,; t > 01 is some stochastic process having independent, sta-
tionary increments satisfying E[W,] = 0 and E[W, 2 ] = t. Show that if the
finite-dimensional distributions are preserved by the transformation (37.11),
then they must be those of Brownian motion.

37.6. Show that n „ oo[ 4' : s >_ t] contains only sets of probability 0 and 1. Do the
same for n E > 0 u[W,: 0 < t <€]; give examples of sets in this a-field.

37.7. Show by a direct argument that W(•, w) is with probability 1 of unbounded
variation on [0,1]: Let Y" = E;: 1 I W(i2 - ") — W((i — 1)2 -9I. Show that Yn
has mean 2"/ 2E[In] and variance at most Var[IW1 I]. Conclude that
EP[Yn< n]<00.
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37.8. Show that the Poisson process as defined by (23.5) is measurable.

37.9. Show that for T = [0, 00) the coordinate-variable process [Z t : t e T] on (R T , .9P T )
is not measurable.

37.10. Extend Theorem 37.4 to the set [t: W(t, co) = a].

37.11. Let Ta be the first time the Brownian motion hits a > 0: Ta = inf[t: W,
Show that the distribution of Ta has over (0, co) the density

(37.46)
ha(t) = 27; t 3/2e

Show that E[Ta ] =00. Show that Ta has the same distribution as a 2/N 2 , where
N is a standard normal variable.

37.12. 1 (a) Show by the strong Markov property that Ta and Ta ,}, $ — Ta are
independent and that the latter has the same distribution as To . Conclude that
h a * h,3 =h a.+,3. Show that 13Ta has the same distribution as Ta

(b) Show that each h a is stable—see Problem 28.10.

37.13. 1 Suppose that X I , X2 ,... are independent and each has the distribution
(37.46).
(a) Show that (X 1 + - • • +X„)/n 2 also has the distribution (37.46). Contrast
this with the law of large numbers.
(b) Show that P[n -2 max k s „ Xk <x1 —> exp(-42/77x) for x > O. Relate
this to Theorem 14.3.

37.14. 37.11 1 Let p(s, t) be the probability that a Brownian path has at least one
zero in (s, t). From (37.46) and the Markov property deduce

(37.47) p(s, t) — 
2
r arccos ^ t .

Hint: Condition with respect to W,.

37.15. 1 (a) Show that the probability of no zero in (t, 1) is (2/7)aresin ji and
hence that the position of the last zero preceding 1 is distributed over (0,1)
with density 77- '(t(1 —  t)) '/2.

(b) Similarly calculate the distribution of the position of the first zero follow-
ing time 1.
(c) Calculate the joint distribution of the two zeros in (a) and (b).

37.16. 1 (a) Show by Theorem 37.8 that in fs s u s t Y„(u) and inf s    	 Z„(u) both
converge in distribution to inf s<u s, W(u) for 0 <— s —< t _< 1. Prove a similar
result for the supremum.
(b) Let A n(s, t) be the event that Sk, the position at time k in a symmetric
random walk, is 0 for at least one k in the range sn < k < tn, and show that
P(A„(s, t)) —' (2/7) arccos s/t .
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(c) Let T„ be the maximum k such that k < n and Sk = 0. Show that T„/n has
asymptotically the distribution with density 77- - 1 (t(1 - t)) -1 /2 over (0,1). As
this density is larger at the ends of the interval than in the middle, the last time
during a night's play a gambler was even is more likely to be either early or late
than to be around midnight.

37.17. T Show that p(s, t) = p(t - ', s - ') = p(cs, ct). Check this by (37.47) and also
by the fact that the transformations (37.11) and (37.12) preserve the properties
of Brownian motion.

37.18. Deduce by the reflection principle that (M,, W,) has density

2(2y -x ) 	(2y -x) 2
	 exp 	 2 tt11271 ,

on the set where y > 0 and y >x. Now deduce from Theorem 37.8 the
corresponding limit theorem for symmetric random walk.

37.19. Show by means of the transformation (37.12) that for positive a and b the
probability is 1 that the process is within the boundary -at <14; < bt for all
sufficiently large t. Show that a/(a +b) is the probability that it last touches
above rather than below.

37.20. The martingale calculation used for (37.39) also works for slanting boundaries.
For positive a, b, r, let T be the smallest t such that either W = - a + rt or
W, = b + rt, and let p(a, b, r) be the piobability that the exit is through the
upper barrier—that 14;.= b + rT.
(a) For the martingale YB , t in the proof of Lemma 2, show that E[YB.t ] = 1.
Operating formally at first, conclude that

(37.48) E[eBW
7-B2T/21 = 1.

Take 0 = 2r, and note that OW,. -10 2 7- is then 2rb if the exit is above
(probability p(a, b, r)) and -2ra if the exit is below (probability 1 -p(a, b, r)).
Deduce

1- e2ra
p(a, b, r ) _

(b) Show that p(a, b, r) -, a/(a + b) as r -> 0, in agreement with (37.39).
(c) It remains to justify (37.48) for 0 =2r. From E[Y8 , r ] = 1 deduce

(37.49) 	 E[e2r{wo-r2(r)1 = 1

for nonrandom a•. By the arguments in the proofs of Lemmas 2 and 3, show
that (37.49) holds for simple stopping times Q, for bounded ones, for o = T A n,
for a = T.

e 2rb — e -2ra '
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SECTION 38. NONDENUMERABLE PROBABILITIES*

Introduction

As observed a number of times above, the finite-dimensional distributions do
not suffice to determine the character of the sample paths of a process. To
obtain paths with natural regularity properties, the Poisson and Brownian
motion processes were constructed by ad hoc methods. It is always possible
to ensure that the paths have a certain very general regularity property called
separability, and from this property will follow in appropriate circumstances
various other desirable regularity properties.

Section 4 dealt with "denumerable" probabilities; questions about path
functions involve all the time points and hence concern "nondenumerable"
probabilities.

Example 38.1. For a mathematically simple illustration of the fact that
path properties are not entirely determined by the finite-dimensional distri-
butions, consider a probability space (SI, Y, P) on which is defined a positive
random variable V with continuous distribution: P[ V = xi = 0 for each x. For
t > 0, put X(t, w) = 0 for all w, and put

(38.1) Y(t,w) = I
0

if V(w) = t,

if V(w)t.

Since V has continuous distribution, P[X, = Y ] = 1 for each t, and so [X,:
. t > 0] and [Y: t > 0] are stochastic processes with identical finite-dimensional
distributions; for each t i , ... , tk , the distribution At,  ,k common to
(X, i , ..., X, k ) and (Y, i , ..., Y k ) concentrates all its mass at the origin of R k .
But what about the sample paths? Of course, X(•, w) is identically 0, but
Y(•, w) has a discontinuity—it is 1 at t = V(w) and 0 elsewhere. It is because
the position of this discontinuity has a continuous distribution that the two
processes have the same finite-dimensional distributions. •

Definitions

The idea of separability is to make a countable set of time points serve to
determine the properties of the process. In all that follows, the time set T
will for definiteness be taken as [0, 0). Most of the results hold with an
arbitrary subset of the line in the role of T.

As in Section 36, let R T be the set of all real functions over T = [0, co). Let
D be a countable, dense subset of T. A function x—an element of R T —is
separable D, or separable with respect to D, if for each t in T there exists a

`This section may be omitted.
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sequence t l , t 2 ,... of points such that

(38.2) 	 tn E D,	 t„-->t,	 x(t„) ->x(t).

(Because of the middle condition here, it was redundant to require D dense
at the outset.) For t in D, (38.2) imposes no condition on x, since to may be
taken as t. An x separable with respect to D is determined by its values at
the points of D. Note, however, that separability requires that (38.2) hold for
every t—an uncountable set of conditions. It is not hard to show that the set
of functions separable with respect to D lies outside R T.

Example 38.2. If x is everywhere continuous or right-continuous, then it
is separable with respect to every countable, dense D.

Suppose that x(t) is 0 for t u and 1 for t = y, where u > 0. Then x is not
separable with respect to D unless u lies in D. The paths Y(•, w) in Example
38.1 are of this form. •

The condition for separability can be stated another way: x is separable D
if and only if for every t and every open interval I containing t, x(t) lies in
the closure of [ x(s): s E I n D].

Suppose that x is separable D and that I is an open interval in T. If
E > 0, then x(t 0 ) + E > sup ! E 1 x(t) = u for some to in I. By separability
Ix(s0 ) — x(t 0 )I < E for some s o in I n D. But then x(s 0 ) + 2E > u, so that

(38.3) 	 supx(t) = sup x(t).

1E1	 JEInD

Similarly,

(38.4)

and

infx(t) = inf x(t)
,1E1 	 lEInD

(38.5) 	 sup 	 Ix(t) —x(t o )F = 	 sup 	 Fx(t) —x(t o )I.
1 0 51 <10 +S	 1p51 <1 0 +5

lE D

A stochastic process [X e : t >_ 01 on (D, ,F, P) is separable D if D is a
countable, dense subset of T = [0,00) and there is an .9 set N such that
P(N) = 0 and such that the sample path X(•, w) is separable with respect to
D for w outside N. Finally, the process is separable if it is separable with
respect to some D; this D is sometimes called a separant. In these definitions
it is assumed for the moment that X(t, w) is a finite real number for each t
and w.

Example 38.3. If the sample path X(•, w) is continuous for each w, then
the process is separable with respect to each countable, dense D. This covers
Brownian motion as constructed in the preceding section. •
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Example 38.4. Suppose that [W,: t >_ 01 has the finite-dimensional distri-
butions of Brownian motion, but do not assume as in the preceding section
that the paths are necessarily continuous. Assume, however, that [W,: t >- 01
is separable with respect to D. Fix to and S. Choose sets Dm = (tm1 , ... , tmm}
of D-points such that t o < tm1 < • • • < tmm < to + 8 and D,,, T D n (t o , t o +3).
By the argument leading to (37.9),

z
(38.6)	 P	 sup	 11/1/,W^^- 1 > a < KS .

l ü _l <Iü+S 	 a
lED

For sample points outside the N in the definition of separability, the
supremum in (38.6) is unaltered, because of (38.5), if the restriction t E D is
dropped. Since P(N) = 0,

z
P sup I - 147, 01 > a < 

KS .

l ü <1 <I ü+E a

Define M„ by (37.8) but with r ranging over all the reals (not just over the
dyadic rationals) in [k 2 -', (k + 2)2 -"j. Then P[M„ > n - '1. 4Kn 5/2" fol-
lows just as before. But for w outside B =[M,, > n' i.o.], W(•, w) is
continuous. Since P(B) = 0, W(•, (0) is continuous for (0 outside an Yzset of
probability 0. If (fi, g -, P) is complete, then the set of w for which W(•, (0) is
continuous is an .`set of probability 1. Thus paths are continuous with
probability 1 for any separable process having the finite-dimensional distribu-
tions of Brownian motion—provided that the underlying space is complete,
which can of course always be arranged. •

As it will be shown below that there exists a separable process with any
consistently prescribed set of finite-dimensional distributions, Example 38.4
provides another approach to the construction of continuous Brownian
motion. The value of the method lies in its generality. It must not, however,
be imagined that separability automatically ensures smooth sample paths:

Example 38.5. Suppose that the random variables X,, t > 0, are indepen-
dent, each having the standard normal distribution. Let D be any countable
set dense in T = [0, co). Suppose that I and J are open intervals with rational
endpoints. Since the random variables X, with t E D n I are independent,
and since the value common to the P[X, E J] is positive, the second
Borel-Cantelli lemma implies that with probability 1, X, OE,/ for some t in
D n I. Since there are only countably many pairs I and J with rational
endpoints, there is an Y=set N such that P(N) = 0 and such that for w
outside N the set [X(t, (0): t ED n 11 is everywhere dense on the line for
every open interval I in T. This implies that [X,: t > 0] is separable with
respect to D. But also of course it implies that the paths are highly irregular.
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This irregularity is not a shortcoming of the concept of separability—it is a
necessary consequence of the properties of the finite-dimensional distribu-
tions specified in this example. •

Example 38.6. The process [Ye : t > Ol in Example 38.1 is not separable:
The path Y(•, w) is not separable D unless D contains the point V(w). The
set of w for which Y(•, w) is separable D is thus contained in [w: V(w) E Dl,
a set of probability 0, since D is countable and V has a continuous
distribution. •

Existence Theorems

It will be proved in stages that for every consistent system of finite-dimen-
sional distributions there exists a separable process having those distribu-
tions. Define x to be separable D at the point t if there exist points to in D
such that t„ --> t and x(t„) --- x(t). Note that this is no restriction on x if t
lies in D, and note that separability is the same thing as separability at
every t.

Lemma 1. Let [X,: t > 0] be a stochastic process on (n, Y--, P). There
exists a countable, dense set D in [0, co), and there exists for each t an .set
N(t), such that P(N(t)) = 0 and such that for w outside N(t) the path function
X(•, w) is separable D at t.

PROOF. Fix open intervals I and J, and consider the probability

p(U) =P( n [Xs oil)
sEu

for countable subsets U of 1 n T. As U increases, the intersection here
decreases and so does p(U). Choose U„ so that p(U„) --' info p(U). If
U(I, J) = U „U,,, then U(I, J) is a countable subset of I n T making p(U)
minimal:

(38.7) 	 P	 n [xs ^J] < P( n [xs oJ])
sEU(I,J)	 sEU

for every countable subset U of 1 n T. If t E 1 n T, then

(38.8) P [X, EJ] n n [x5.(411) =0,
sEU(1,J)

because otherwise (38.7) would fail for U = U(I, J) u (t).
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Let D = U U(I, J), where the union extends over all open intervals I and
J with rational endpoints. Then D is a countable, dense subset of T. For
each t let

(38.9) 	 N(t) = lJ ( [X1EJn n [XS on ,
U(/, .1)

where the union extends over all open intervals J that have rational end-
points and over all open intervals I that have rational endpoints and contain
t. Then N(t) is by (38.8) an , set such that P(N(t)) = 0.

Fix t and w ONO). The problem is to show that X(•, co) is separable with
respect to D at t. Given n, choose open intervals I and J that have rational
endpoints and lengths less than n - ' and satisfy t E 1 and X(t, co) EJ. Since
w lies outside (38.9), there must be an s,r in U(1, J) such that X(s,,, w) E J.
But then SED, Is, -tl <n -1 , and I X(s,,, co) -- X(t, w)I <n -1 . Thus s„ ---) t
and X(s,,, (o) --*X(t, w) for a sequence s l , s 2 , ... in D. •

For any countable D, the set of w for which X(• , w) is separable with
respect to D at t is

CO

(38.10) n 	 U [w: pqt,(0) -X(s,w)1 <n -1 ].
n= 1s--11<n _i

s E D

This set lies in 	 for each t, and the point of the lemma is that it is possible
to choose D in such a way that each of these sets has probability 1.

Lemma 2. Let [X,:  t >- 01 be a stochastic process on (SI, 	P). Suppose
that for all t and w

(38.11) 	 a <X(t,w) <b.

Then there exists on (1f, F, P) a process [X,':  t > 01 having these three
properties:

(1) P[ X! = X,1= 1 for each t.
(ii) For some countable, dense subset D of [0, co), X'(•, (o) is separable D

for every w in SZ.
(iii) For all t and w,

(38.12) 	 a <X'(t, w) < b.

PROOF. Choose a countable, dense set D and .`sets N(t) of probability
0 as in Lemma 1. If t E D or if w 0 N(t), define X'(t, co) = X(t, co). If t OD,
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fix some sequence {4,1 in D for which lim n s (nt ) = t, and define X'(t, w) =
limsup n X(4,' ) , w) for w E N(t). To sum up,

1 X(t, w)	 if tEDorwN(t),
(38.13) X'(t,w) = 1 1imsupX(s',w) if t 0D and w EN(t).

n

Since NO) E ,., X,' is measurable .. for_each t. Since P(N(t)) = 0, P[X, =
X' ] = 1 for each t.

Fix t and w. If t E D, then certainly X'(•, w) is separable D at t, and so
assume t 0 D. If w (4 N(t), then by the construction of N(t), X(•, w) is
separable with respect to D at t, so that there exist points s„ in D such that
sn --' t and X(sn , co) --)X(t, w). But X(sn , w) =X'(sn , co) because sn E D, and
X(t, w) = X'(t, w) because w N(t). Hence X'(s n , w) --)X'(t, (0), and so
X'(•, w) is separable with respect to D at t. Finally, suppose that t 0 D and
CO E N(t). Then X'(t, w) = lim k X(snk, w) for some sequence [il k } of integers.
As k co, snk --' t and X'(snk, (o) =X(snk, co) -' X'(t, w), so that again
X'(•, w) is separable with respect to D at t. Clearly, (38.11) implies (38.12).

•

Example 38.7. One must allow for the possibility of equality in (38.12).
Suppose that V(w) > 0 for all w and that V has a continuous distribution.
Define

f(t) =
{ eHnI

0
if to 0,
if t = 0,

and put X(t, co) =fit — V(w)). If [X:: t > 0] is any separable process with the
same finite-dimensional distributions as [X,: t >_ 0], then X'(•, co) must with
probability 1 assume the value 1 somewhere. In this case (38.11) holds for
a < 0 and b = 1, and equality in (38.12) cannot be avoided. •

If

(38.14) 	 suplX(t,w)1 <oo,
/ 5 0)

then (38.11) holds for some a and b. To treat the case in which (38.14) fails,
it is necessary to allow for the possibility of infinite values. If x(t) is co or
—co, replace the third condition in (38.2) by x(tn ) --' co or x(tn ) -, --co. This
extends the definition of separability to functions x that may assume infinite
values and to processes [X,: t >_ 0] for which X(t, (0 = ±oo is a possibility.

Theorem 38.1. If [X,: t>_ 0] is a finite-valued process on W, f, P), there
exists on the same space a separable process [X» t > 0] such that P[X; = X,] = 1
for each t.
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It is assumed for convenience here that X(t, w) is finite for all t and w,
although this is not really necessary. But in some cases infinite values for
certain X'(t, w) cannot be avoided—see Example 38.8.

PROOF. If (38.14) holds, the result is an immediate consequence of
Lemma 2. The definition of separability allows an exceptional set N of
probability 0; in the construction of Lemma 2 this set is actually empty, but it
is clear from the definition this could be arranged anyway.

The case in which (38.14) may fail could be treated by tracing through the
preceding proofs, making slight changes to allow for infinite values. A simple
argument makes this unnecessary. Let g be a continuous, strictly increasing
mapping of R' onto (0,1). Let Y(t, w) =g(X(t, w)). Lemma 2 applies to [Y,:
t > 01; there exists a separable process 1Y,': t >- 0] such that P[ Y,' = Y,1= 1.
Since 0 < Y(t, w) < 1, Lemma 2 ensures 0 _< Y'(t, w) s 1. Define

- co 	 if Y'(t, w) =0,

X'(t, co) = g -I (Y'(t, w))	 if 0< Y'(t, co) < 1,
+ co 	 if Y'(t, co) = 1.

Then [X:: t >- 01 satisfies the requirements. Note that P[X; - ±coa = 0 for
each t.	 •

Example 38.8. Suppose that V(w) > 0 for all w and V has a continuous
distribution. Define

{ Iti-I=h(t) - 0 if t * 0,
if t = 0,

and put X(t, w) = h(t - V(w)). This is analogous to Example 38.7. If [X;:
t >_ 01 is separable and has the finite-dimensional distributions of [X,: t > 01,
then X'(•, w) must with probability 1 assume the value cc for some t. •

Combining Theorem 38.1 with Kolmogorov's existence theorem shows that
for any consistent system of finite-dimensional distributions µ,, ,k there exists a
separable process with the µ,i ,k as finite-dimensional distributions. As shown
in Example 38.4, this leads to another construction of Brownian motion with
continuous paths.

Consequences of Separability

The next theorem implies in effect that, if the finite-dimensional distributions
of a process are such that it "should" have continuous paths, then it will in
fact have continuous paths if it is separable. Example 38.4 illustrates this.
The same thing holds for properties other than continuity.
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Let R T be the set of functions on T =[0,00)  with values that are ordinary
reals or else œ or —00. Thus R T is an enlargement of the RT of Section 36, an
enlargement necessary because separability sometimes forces infinite values.
Define the function Z. on R T by Z r(x) = Z(t, x) = x(t). This is just an
extension of the coordinate function (36.8). Let RT be the o--field in R T

generated by the Z r , t >_ 0. _ T _
Suppose that A is a subset of R, not necessarily in ✓̂ T• For D c T = [0,00),

let AD consist of those elements x of R T that agree on D with some
element y of A:

(38.15) AD = U n [xERT: x ( t ) = y (t ) l•
yEA iED

Of course, A cA D . Let SD denote the set of x in R T that are separable with
respect to D.

In the following theorem, [Xe : t > 0] and [X:: t > 0] are processes on
spaces (SI, 3, P) and (SZ', .^', P'), which may be distinct; the path functions
are X(-, co) and X'(•, co').

Theorem 38.2. Suppose of A that for each countable, dense subset D of
T — [0, 00), the set (38.15) satisfies

(38.16) 	 AD E R T, 	 AD n SD cA.

If [Xe : t >_ 0] and [X:: t >_ 0] have the same finite-dimensional distributions, if
[w: X(•, w) EA] lies in Y and has P-measure 1, and if [X:: t % 0] is
separable, then [w': X'(•, w') E A] contains an 9"-set of P'-measure 1.

If (S),', .`v', P') is complete, then of course [w': X'(•, w') EA] is itself an
.'-set of P'-measure 1.

PROOF. Suppose that [X::  t >01 is separable with respect to D. The
difference [co': X'(•, w') EA D ] — [w : X'(• , W) EA] is by (38.16) a subset of
[W : X'(•, w') E R T — SD ], which is contained in an .9'-set of N' of P'-mea-
sure 0. Since the two processes have the same finite-dimensional distributions
and hence induce the same distribution on (R T, TO T), and since A D lies in
.^T it follows that P'[w': X'(•, co') EA D ] = P[w: X(•, co) EA D ] > P[w:
X(-, co) EA] = 1. Thus the subset [w': X'(• , co') EA D ] — N' of [w : X'( •, co')
EA]  lies in 9' and has P'-measure 1. •

Example 38.9. Consider the set C of finite-valued, continuous functions
on T. If x E SD and y E C, and if x and y agree on a dense D, then x and y
agree everywhere: x = y. Therefore, CD n SD c C. Further,

	CD = n u 	 ix(s) co, l (0 1
e,r 	 8	 s
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where E and S range over the positive rationals, t ranges over D, and the
inner intersection extends over the s in D satisfying Is — ti <8. Hence
CD E RT. Thus C satisfies the condition (38.16).

Theorem 38.2 now implies that if a process has continuous paths with
probability 1, then any separable process having the same finite-dimensional
distributions has continuous paths outside a set of probability O. In particular,
a Brownian motion with continuous paths was constructed in the preceding
section, and so any separable process with the finite-dimensional distribu-
tions of BrowninD motion has continuous paths outside a set of probability O.
The argument in Example 38.4 now becomes supererogatory. •

Example 38.10. There is a somewhat similar argument for the step functions of
the Poisson process. Let Z + be the set of nonnegative integers; let E consist of the
nondecreasing functions x in KT such that x(t) e Z -1- for all t and such that for every
n E Z + there exists a nonempty interval I such that x(t) = n for t E 1. Then

ED = n [x: x(t ) E Z +] n 	 n [ A : x(s) <_x(t)]

tED	 s, tED, s <t

OD

n n u n [x: x(t) =n],
n=0 1 tEDn!

where I ranges over the open intervals with rational endpoints. Thus ED E RT.
Clearly, ED n SD C E, and so Theorem 38.2 applies.

In Section 23 was constructed a Poisson process with paths in E, and therefore any
separable process with the same finite-dimensional distributions will have paths in E
except for a set of probability 0. •

Example 38.11. For E as in Example 38.10, let E0 consist of the elements of E
that are right-continuous; a function in E need not lie in E 0 , although at each t it
must be continuous from one side or the other. The Poisson process as defined in
Section 23 by N. = max[n: Sn _< t] (see (23.5)) has paths in E0 . But if P4 = max[n:
Sr, < t], then [N4': t z 0] is separable and has the same finite-dimensional distributions,
but its paths are not in E0 . Thus E0 does not satisfy the hypotheses of Theorem 38.2.
Separability does not help distinguish between continuity from the right and continu-
ity from the left. •

Example 38.12. The class of sets A satisfying (38.16) is closed under the forma-
tion of countable unions and intersections but is not closed under complementation.
Define Xt and Y as in Example 38.1, and let C be the set of continuous paths. Then
[Y: t >_ 0] and [X,: t z 0] have the same finite-dimensional distributions, and the
latter is separable; Y(•, w) is in KT - C for each w, and X(•, w) is in RT — C for
no w. •

Example 38.13. As a final example, consider the set J of functions with disconti-
nuities of at most the first kind: x is in J if it is finite-valued, if x(t + ) = lira s t x(s)
exists (finite) for t z 0 and x(t — ) = lim n r t s(s) exists (finite) for t> 0, and if x ( t) lies
between x(t +) and x(t —) for t> 0. Continuous and right-continuous functions are
special cases.
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Let V denote the general system

(38.17) 	 V: k; r 1 ,..., rk ; s 1 ,..., sk ; a 1 ,..., ak,

where k is an integer, where the rr, s and a ; are rational, and where

0 = r 1 <s, <r2 <s 2 < • 	 <rk <sk .

Define

k

J(D,V,E) = n [x: a ; <x(t) <ar+E, tE (r,,s ; ) n D^
t =1

k

n n [x: min{a ; _ o a ; } -x(t) max{a ; _ i ,a ; } +E, t c(s; _ 1 ,r! ) nD]
i =2

Let gem k s be the class of systems (38.17) that have a fixed value for k and satisfy
r; — s,_ 1 ' < S, i = 2 , ... , k, and sk > m. It will be shown that

^ 	 CO

(38.18) JD = n nun u J(D,V,E),
I77=1 e k=1 S VEgem.k

where E and S range over the positive rationals. From this it will follow that JD E .^T.

It will also be shown that JD n SD cJ, so that J satisfies the hypothesis of Theorem
38.2.

Suppose that y E J. For fixed E, let H be the set of nonnegative h for which there
exist finitely many points t ; such that 0 = t o < t 1 < • • • < t,. = h and I y(t) -- Y(t 1 )1<  E
for t and t' in the same interval (t,_ 1 , t ; ). If hn E H and h„ T h, then from the
existence of y(h —) follows h E H. Hence H is closed. If h E H, from the existence of
y(h +) it follows that H contains points to the right of h. Therefore, H =[0, co). From
this it follows that the right side of (38.18) contains Jo.

Suppose that x is a member of the right side of (38.18). It is not hard to deduce
that for each t the limits

(38.19) lim x(s) , 	 lim x(s)
s t, sED	 sT r,sE D

exist and that x(t) lies between them if t E D. For t E D take y(t) = x(t), and for
t e D take y(t) to be the first limit in (38.19). Then y E./ and hence x EJD . This
argument also shows that JD n SD Cf. •



Appendix

Gathered here for easy reference are certain definitions and results from set theory
and real analysis required in the text. Although there are many newer books,
HAUSDORFF (the early sections) on set theory and HARDY on analysis are still
excellent for the general background assumed here.

Set Theory

Al. The empty set is denoted by 0. Sets are variable subsets of some space that is
fixed in any one definition, argument, or discussion; this space is denoted either
generically by ft or by some special symbol (such as R k for Euclidean k-space). A
singleton is a set consisting of just one point or element. That A is a subset of B is
expressed by A cB. In accordance with standard usage, A c B does not preclude
A= B; A is a proper subset of B if A c B and A B.

The complement of A is always relative to the overall space II; it consists of the
points of II not contained in A and is denoted by AC. The difference between A and
B, denoted by A — B, is A n BC; here B need not be contained in A, and if it is, then
A — B is a proper difference. The symmetric difference  A AB = (A n B`) U (A` n B)
consists of the points that lie in one of the sets A and B but not in both.

Classes of sets are denoted by script letters. The power set of SZ is the class of all
subsets of fZ; it is denoted 2 n .

A2. The set of w that lie in A and satisfy a given property p(w) is denoted [w E A:
p(w)]; if A = SI, this is usually shortened to [w: p(w)].

A3. In this book, to say that a collection [A 0 : B E 0] is disjoint always means that it
is pairwise disjoint: A B nA e, = 0 if B and O' are distinct elements of the index set 0.
To say that A meets B, or that B meets A, is to say that they are not disjoint:
A nB 0. The collection [A 0 : B e 01 covers B if B c U 0A0. The collection is a
decomposition or partition of B if it is disjoint and B = U 0A0.

A4. By A ri l' A is meant A 1 cA 2 c ••• and A = U n A,,; by A n ,i A is meant
A 1 D A 2 ••• and A= n n A n .

AS. The indicator, or indicator function, of a set A is the function on fZ that
assumes the value 1 on A and 0 on A`; it is denoted IA. The alternative term
"characteristic function" is reserved for the Fourier transform (see Section 26).

536



APPENDIX
	

537

A6. De Morgan's laws are (U 0 /1 0 )` = n B Aé and (n o A 0 )` = U B Aé. These and the
other facts of basic set theory are assumed known: a countable union of countable
sets is countable, and so on.

A7. If T: SZ -> if is a mapping of fZ into if and A' is a set in if, the inverse image
of A' is T-IA' = [w E SZ: Tw EA']. It is easily checked that each of these statements is
equivalent to the next: w E n- T -IA' , w T-IA', Tw CA', Tw E n' -A', w E T-1 (11'
- A'). Therefore, n - T- IA' = T- I(SZ' -A'). Simple considerations of this kind show
that U 0T- IA e = T- I(U 0 A'0) and n 0 T -111'0 = T- '( n 0 A'0), and that A' n B' = 0
implies T- IA' n T-I B' = 0 (the reverse implication is false unless Tf! = (!').

If f maps n into another space, f(w) is the value of the function f at an
unspecified value of the argument w. The function f itself (the rule defining the
mapping) is sometimes denoted f(•). This is especially convenient for a function
f(w, t) of two arguments: For each fixed t, f(•, t) denotes the function on SZ with
value f(w, t) at w.

A8. The axiom of choice. Suppose that [A 0 : 0 E 0] is a decomposition of fZ into
nonempty sets. The axiom of choice says that there exists a set (at least one set) C
that contains exactly one point from each A B : C nA 0 is a singleton for each B in 0.
The existence of such sets C is assumed in "everyday" mathematics, and the axiom of
choice may even seem to be simply true. A careful treatment of set theory, however, is
based on an explicit list of such axioms and a study of the relationships between them;
see HALMOS 2 Or DUDLEY.

A few of the problems require Zorn's lemma, which is equivalent to the axiom of
choice; see DUDLEY Or KAPLANSKY.

The Real Line

A9. The real line is denoted by R I ; x v y = max{x, y) and x A y = min{x, y). For
real x, [ x J is the integer part of x, and sgn x is +1, 0, or -1 as x is positive, 0, or
negative. It is convenient to be explicit about open, closed, and half-open intervals:

(a,b) = [x: a <x <b],

[a,b] = [x: a <x <b],

(a,b]=[x:a<x <_b],

[a,b)=[x: a__<x<b].

A10. Of course x n ->x means lim n x„= x; x„ T x means x 1 < x 2 < • . • and x n ->x;
x, i x means x i L. x 2 > • • • and x n - x.

A sequence {x n) is bounded if and only if every subsequence (x nk ) contains a further
subsequence {xnk .) that converges to some x: lim y x1140)= x. If {x n) is not bounded,
then for each k there is an n k for which Ix„ k l> k; no subsequence of {x n k } can
converge. The implication in the other direction is a simple consequence of the fact
that every bounded sequence contains a convergent subsequence.

If (x„) is bounded, and if each subsequence that converges at all converges to x, then
lim n x n - x. If x n does not converge to x, then I x nk - x I > E for some positive € and
some increasing sequence {n k ) of integers; some subsequence of {x nk } converges, but
the limit cannot be x.

All. A set G is defined as open if for each x in G there is an open interval I such
that x E I c G. A set F is defined as closed if F` is open. The interior of A, denoted
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A°, consists of the x in A for which there exists an open interval 1 such that
x E I cA. The closure of A, denoted A -, consists of the x for which there exists a
sequence (x n ) in A with x„ -' X. The boundary of A is aA =A - —A°. The basic facts
of real analysis are assumed known: A is open if and only if A = A°; A is closed if
and only if A =A -; A is closed if and only if it contains all limits of sequences in it; x
lies in aA if and only if there is a sequence (xn) in A and a sequence {yn ) in A` such
that x„ -, x and yn —, x; and so on.

Al2. Every open set G on the line is a countable, disjoint union of open intervals.
To see this, define points x and y of G to be equivalent if x —<y and [x, y] C G or
y <x and [y, x] c G. This is an equivalence relation. Each equivalence class is an
inte rval, and since G is open, each is in fact an open interval. Thus G is a disjoint
union of open (nonempty) intervals, and there can be only countably many of them,
since each contains a rational.

A13. The simplest form of the Herne-Borel theorem says that if [a, Mc
U k = I(a k , b k ), then [ a, b ] c U k =1(ak, b k ) for some n. A set A is defined to be
compact if each cover of it by open sets has a finite subcover--that is, if [GB : B E a]
covers A and each GB is open, then some finite subcollection (G0 , ... , G0 ) covers A.
Equivalent to the Heine-Borel theorem is the assertion that a bounded, closed set is
compact. Also equivalent is the assertion that every bounded sequence of real
numbers has a convergent subsequence.

A14. The diagonal method. From this last fact follows one of the basic principles of
analysis.

Theorem. Suppose that each row of the array

XI , ' 	 X 1,2 	 X1,3

(1) X2.1
	

X2,2
	 X2 . 3

•

is a bounded sequence of real numbers. Then there exists an increasing sequence
n 1 , n 2 , ... of integers such that the limit lim k x r,,,A exists for r = 1, 2, ... .

PROOF. From the first row, select a convergent subsequence

(2) x I , ni.i' x1 . 77 1 2' 
x 1 ,,1 , ,,...;

here {n, k ) is an increasing sequence of integers and lim k x 1,,,,, exists. Look next at
the second row of (1) along the sequence n 1,1 , n1,2 , • • .

(3 ) X2 n1.1' x2 ,n1 2' 
x 2. ,, 1 ;,... .

As a subsequence of the second row of (1), (3) is bounded. Select from it a convergent
subsequence

x2,n2 t' x2 n 2 ,9 x2 .n2 1 ,...;

here {n 2 k) is an increasing sequence of integers, a subsequence of (n 1 , k ), and
lim p X2,,2 A exists.
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Continue inductively in the same way. This gives an array

(4)
	n1,1	 n1,2 	 n1,3

	n2,1	 n2,2 	 n2,3

with three properties: (i) Each row of (4) is an increasing sequence of integers. (ii)
The rth row is a subsequence of the (r — 1)st. (iii) For each r, lim k Xr n, k exists. Thus

x r, n,. l' xr.n,. 2, x r n, 	 .

is a convergent subsequence of the rth row of (1).
Put n k = n k k . Since each row of (4) is increasing and is contained in the preceding

row, n 1 , n 2 , n 3 , ... is an increasing sequence of integers. Furthermore,
nr, nr+ i , n r+2 ,.. • is a subsequence of the rth row of (4). Thus xr.^, xr n l , xrn r+z ' .. .
is a subsequence of (5) and is therefore convergent. Thus lim k Xr nk does exist.. •
Since (nk) is the diagonal of the array (4), application of this theorem is called the
diagonal method.

A15. The set A is by definition dense in the set B if for each x in B and each open
interval J containing x, J meets A. This is the same thing as requiring B cA -. The
set E is by definition nowhere dense if each open interval I contains some open
interval J that does not meet E. This makes sense: It I contains an open interval J
that does not meet E, then E is not dense in I; the definition requires that E be
dense in no interval I.

A set A is defined to be perfect if it is closed and for each x in A and positive c,
there is a y in A such that 0 < I x — yl < e. An equivalent requirement is that A be
closed and for each x in A there exist a sequence (xn) in A such that x n # x and
x n x. The Cantor set is uncountable, nowhere dense, and perfect.

A set that is nowhere dense is in a sense small. If A is a countable union of sets
each of which -is nowhere dense, then A is said to be of the first category. This is a
weaker notion of smallness. A set that is not o f the first category is said to be of the
second category.

Euclidean k-Space

A16. Euclidean space of dimension k is denoted R k. Points (a 1 ,..., a k ) and
(b 1 ,..., b k ) determine open, closed, and half-open rectangles in R k :

[x: a ! <x i <bi , i = 1,..., k],

[x: a ! <x ; <bi , i = 1,..., k].

A rectangle (without a qualifying adjective) is in this book a set of this last form.
The Euclidean distance (Ek_ 1(x1 — 02)1/2 between x = (x 1 , ... , x k ) and y =

(y1 ,, . ,, yk) is denoted by ix --y1.

A17. All the concepts in All carry over to R k : simply take the I there to be an open
rectangle in R k . The definition of compact set also carries over word for word, and
the Heine-Borel theorem in R k says that a closed, bounded set is compact.

( 5)
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Analysis

A18. The standard Landau notation is used. Suppose that (x") and (y") are real
sequences and y„ > O. Then x" = O(yn ) means x"/y, is bounded; x,, = o(yn) means
x"/yn — 0; x" y„ means x„/y„ -, 1; x” y„ means x„/y„ and y„/x„ are both
bounded. To write x ” = z,,+ 0(y"), for example, means that x" =z„+  u” for some
(u") satisfying u n = 0(y„)—that is, that x„ — z„ = 0(y„).

A19. A difference equation. Suppose that a and b are integers and a < b. Suppose
that x,, is defined for a <n <b and satisfies

(6) x„ =px" +I +gx n _ t 	for a < n < b,

where p and q are positive and p +q=  1. The general solution of this difference
equation has the form

(7)
A B(q/p)” for a <n<—b if p0q,

x ”
_ 

A +Bn 	 for a < n < b if P=q•

That (7) always solves (6) is easily checked. Suppose the values x„t and x n2 are given,
where a n 1 < n 2 < b. If p # q, the system

A +B(q/p) ”' =x,21' A +B(q/p)"2 =x
'2

can always be solved for A and B. If p = q, the system

A +Bn I =x".,	 A +Bn 2= x „ 2

can always be solved. Take n 1 = a and n 2 = a + 1; the corresponding A and B satisfy
(7) for n = a and for n =a + 1, and it follows by induction that (7) holds for all n.
Thus any solution of (6) can indeed be put in the form (7). Furthermore. the equation
(6) and any pair of values x" and x„ (n 1 o n 2 ) suffice to determine all the x„.

If x,, is defined for a —< t n < co and satisfies (6) for a <n < co, then there are
constants A and B such that (7) holds for a <n < co.

A20. Cauchy's equation.

Theorem. Let f be a real function on (0, cc), and suppose that f satisfies Cauchy's
equation: f(x + y) = f(x) + f ( y) for x, y > O. If there is some interval on which f is
bounded above, then f(x) = xf(1) for x> O.

PROOF. The problem is to prove that g(x) = f(x) — xf(1) vanishes identically.
Clearly, g(1) = 0, and g satisfies Cauchy's equation and on some interval is bounded
above. By induction, g(nx) = ng(x); hence ng(m/n) = g(m) = mg(1) = 0, so that
g(r) = 0 for positive rational r. Suppose that g(x o ) 0 0 for some x o. If g(x 0 ) <0,
then g(ro — x 0 ) = —g(x 0 )> 0 for rational ro > x o . It is thus no restriction to assume
that g(x 0 )> O. Let I be an open interval in which g is bounded above. Given a
number M, choose n so that ng(x 0 )> M, and then choose a rational r so that nxo + r
lies in I. If r > 0, then g(r + nx o ) = g(r) + g(nx o ) = g(nx o ) = ng(x o ). If r < 0, then
ng(xo) = g(nx o ) = g(( — r) + (nxo + r)) = g(—r) + g(nx o + r) = g(nx o + r). In either
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case, g(nx 0 ) + r) = ng(x 0 ); of course this is trivial if r = O. Since g(nx o + r) =
ng(x o ) > M and M was arbitrary, g is not bounded above in I, a contradiction. 	 •

Obviously, the same proof works if f is bounded below in some inte rval.

Corollary. Let Ube a real function on (0, co) and suppose that U(x + y) = U(x)U(y)
for x, y > O. Suppose further that there is some interval on which U is bounded above.
Then either U(x) = 0 for x > 0, or else there is an A such that U(x) = e Ax for x > O.

PROOF. Since U(x) = U 2 (x/2), U is nonnegative. If U(x) = 0, then U(x/2n) = 0
and so U vanishes at points arbitrarily near O. If U vanishes at a point, it must by the
functional equation vanish everywhere to the right of that point. Hence U is
identically 0 or else everywhere positive.

In the latter case, the theorem applies to f(x) = log U(x), this function being
bounded above in some inte rval, and so f(x) =Ax for A = log U(1).

A21. A number-theoretic fact.

Theorem. Suppose that M is a set of positive integers closed under addition and that
M has greatest common divisor 1. Then M contains all integers exceeding some n o .

PROOF. Let M 1 consist of all the integers m, —m, and m — m' with m and m' in
M. Then M 1 is closed under addition and subtraction (it is a subgroup of the group of
integers). Let d be the smallest positive element of M 1 . If n E MI, write n = qd + r,
where 0 < r < d. Since r = n — qd lies in M I , r must actually be O. Thus M 1 consists
of the multiples of d. Since d divides all the integers in M 1 and hence all the integers
in M, and since M has greatest common divisor 1, d = 1. Thus M 1 contains all the
integers.

Write 1 = m — m' with m and m' in M (if 1 itself is in M, the proof is easy), and
take n o = (m + m') 2 . Given n > n o , write n = q(m + m9+ r, where 0 < r < m +m' .
From n > n o (r + lxm + m') follows q = (n — r)/(m + m') > r. But n =
q(m + m9+ r(m — m') = (q + r)m + (q — r)m', and since q + r _> q — r > 0, n lies
in M. •

A22. One- and two-sided derivatives.

Theorem. Suppose that f and g are continuous on [0, co) and g is the right-hand
derivative off on (0,0): f+(t) = g(t) for t > O. Then f+ (0) = g(0) as well, and g is the
two-sided derivative off on (0, cc).

PROOF. It suffices to show that F(t) = f(t) — f(0) — Jog(s)ds vanishes for t > O.
By assumption, F is continuous on [0,00) and F+(t) - 0 for t > O. Suppose that
F(t o ) > F(t 1 ), where 0 < t o < t I . Then G(t) = F(t) — (t — to )(F(t 1 ) — F(to ))/(t 1 — to )
is continuous on [0, cc), G(to ) = G(t 1 ), and G(t)> O on (0, cc). But then the maximum
of G over [t o , t1] must occur at some interior point; since G + < 0 at a local maximum,
this is impossible. Similarly F(t o ) <F(ti) is impossible. Thus F is constant over (0, 00)
and by continuity is constant over [0,00). Since F(0) = 0, F vanishes on [0, 0). •

A23. A differential equation. The equation f'(t) =Af(t) +g(t) (t >_ 0; g continuous)
has the particular solution fo(t)= e A 'Jog(s)e - As ds; for an arbitrary solution f,
(f(t) — fo(t))e - A' has derivative 0 and hence equals f(0) identically. All solutions
thus have the form f(t) = e A '[ f(0) + Jog(s)e-Asds].
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A24. A trigonometric identity. If z # 1 and z 0, then

and hence

1 	 21
	21+1E zk = z—I E zk z—I 1 — z

1 — z
k= —1 	 k=0

z -1 — z1+ 1

1— z

rn -1 	/
E E zk

1= 0 k= —1

in - 1 z -1_ z1+1
L 1— z=0 —

1 r1 — z' 	 1 — zm l
1 z 1_ z -1 z 1—z

1 — z -m +1—z	 lm ( zm /2 _ z —m/2)2_ 
(1 —z)(1 _ z -1) 	( z 1/2_ z _1/2)2

Take z = e'X. If x is not an integral multiple of 27r, then

^I 
1
 e1" = 

(sin Z mx)
2

1=0 k= —1 	 (sin 1x)
2

If x = 27rn, the left-hand side here is m 2 , which is the limit of the right-hand side as
x—> 2 7rn.

Infinite Series

A25. Nonnegatiue series. Suppose x i , x 2 ,... are nonnegative. If E is a finite set of
integers, then E C (1, 2, ... , n) for some n, so that by nonnegativity Ek E EXk < Ek = i x k •
The set of partial sums Ek = I xk thus has the same supremum as the larger set of sums
Eke Exk (E finite). Therefore, the nonnegative series E7 =1 x k converges if and only if
the sums Ek E E xk for finite E are bounded, in which case the sum is the supremum:
E7c= 1xk = supE Ek EExk•

A26. Dirichlet's theorem. Since the supremum in A25 is invariant under permuta-
tions, so is Ek = 1 x k : If the x k are nonnegative and y  = xf(k) for some one-to-one
map f of the positive integers onto themselves, then Ek x k and E k yk diverge or
converge together and in the latter case have the same sum.

A27. Double series. Suppose that x li , i , j = 1,2,..., are nonnegative. The ith row
gives a series Eix lf, and if each of these converges, one can form the series E I Ef x,f .
Let the terms x 11 be arranged in some order as a single infinite series E li x li ; by
Dirichlet's theorem, the sum is the same whatever order is used.

Suppose each Eixli converges and E;Eixtf converges. If E is a finite set of the
pairs (i, j), there is an n for which E^I,i>EExlf _< E1snEis n xi; < EIsnE xli < E,Eixlf;
hence Etf x li converges and has sum at most E lEx l . On the other hand, if E,ix,i
converges, then El 5 m E f 5 n xif < E l f x t f; letting n —' co and then m —> cc shows that
each Ei x i converges and that E,Eix ri Ç Etfxli• Therefore, in the nonnegative case,
Etf x l converges if and only if the Eix1i all converge and E ; Ei x ;i converges, in which
case L1; x 1; = EIE x,i.

By symmetry, E lix li = E E l x 1 f . Thus the order of summation can be reversed in a
nonnegative double series: EiEfxlf = EfElx1!.

A28. The Weierstrass M-test.
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Theorem. Suppose that lim n xnk = xk for each k and that I xnk I < Mk , where
Ek Mk < 00 • Then Ek x k and all the EX converge, and limn Ekx nk = Ek xk .

PROOF. The series of course converge absolutely, since Ek Mk < Da. Now
IEk xnk — Ek xk I < Ek 5 k,,I x nk — xkI + 2Ek > k 0 Mk . Given E, choose k o so that
Ek > k 0 Mk <E / 3, and then choose n o so that n> n o implies I x nk - x k I <c/3k 0  for
k _< k o . Then n > n o implies IE k x nk — E k x k I < E. •

A29. Power series. The principal fact needed is this: If f(x) = Ek = o a k x k converges
in the range I xl <r, then it is differentiable there and

CO

(8) f,(x) _ 
E 

kakxk- 1
\ 	k=1

For a simple proof, choose ro and r 1 so that Ix'  < ro <r, <r. If IhI < ro — I x I, so that
lx ± hI < ro , then the mean-value theorem gives (here 0 < 0h <— 1)

(9 )

(x + h)
k —xk kxk -1

h =I k(x+Shlt) k- 1 — ^ k -1 I<2kro - `.   

Since 2krô -1/ri goes to 0, it is bounded by some M, and if Mk = Ia k I • Mr1, then
Ek Mk < 00 and Ia k I times thè left member of (9) is at most Mk for IhI < ro — 'xi. By
the M-test [A28] (applied with h —, 0 instead of n —> 00),

0o k 	 k 	 o0

lim 
E

 ak (x + h —x = E kakxk -1.a
k -0 	k=0

Hence (8).
Repeated application of (8) gives

CO

f (1)(x) = E k(k —1) ... (k —; + l)a k xk — i.
k =3

For x = 0, this is a, = f ( ' )(0)/j!, the formula for the coefficients in a Taylor series.
This shows in particular that the values of f(x) for Ixl <r determine the coefficients
a k •

A30. Cesaro averages. If xn -'x, then n -1 Ek = 1 x k -' x. To prove this, let M bound
I x k I, and given E, choose k o so that Ix —x k I <E/2 for k >_ k o. If n > k o and
n> 4k o M/E, then 

k„ -1 	 n
< n E 2M+ n ^ 2 < E.

k=1 	 k =kU
x — n E x k

k=1

A31. Dyadic expansions. Define a mapping T of the unit interval f = (0, 1] into itself
by

2wif0<co_<<Z,Tm =
2w- 1 ifZ<co<1.



544

Define a function d 1 on SZ by 
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d , (w) =
0 if0<w —<z,
1 ifz<w<1, 

and let d ;(w) = d t (T` - `w). Then

(10)	 Li 

di(w) 
<w < 

v," di(w) 
+ Zn

1=t	 r=1

for all w e w and n >- 1. To verify this for n = 1, check the cases w <- i and w >
separately. Suppose that (10) holds for a particular n and for all w. Replace w by Tw
in (10) and use the fact that di(Tw) = d i+1(w); separate consideration of the cases
w < Z and w > Z now shows that (10) holds with n + 1 in place of n

Thus (10) holds for all n and w, and it follows that w = 	 i d,(w)/2'. This gives
the dyadic representation of w. If d,(w) = 0 for all i > n, then w = E', 7= i d ; (w)/2',
which contradicts the left-hand inequality in (10). Thus the expansion does not
terminate in 0's.

Convex Functions

A32. A function cp on an open interval I (bounded or unbounded) is convex if

(11)	 cp(tx+(1-1)y) <t9(x)+(1-t)9(y)

for x, y E I and 0 _< t < 1. From this it follows by induction that

n 	 ■I 	 n

(12) cP E p^x^Pi9( < E 	 r;)
+= i 1=1

if the x, lie in I and the p; are nonnegative and add to 1.
If cp has a continuous, nondecreasing derivative cp' on I, then cp is convex. Indeed,

if a <b < c, the average of cp' over (a, b) is at most the average over (b, c ):

cP(bb-^i (a) 	b
1
 aJ

b l()dI(b)
`pss 	< ca

_ cp(c) -cp(b)
c - b	 '

1— f cp'(s)ds

The inequality between the extreme terms here reduces to

(13) (c - a)9(b) < (c - b)9(a) + (b - a)cp(c),

which is (11) with x = a, y = c, t = (c - b)/(c - a).

A33. Geometrically, (11) means that the point B in Figure (i) lies on or below the
chord AC. But then slope AB < slope AC; algebraically, this is (cp(b) - cp(a))/(b - a)
<- (cp(c) - 9(a))/(c - a), which is the same as (13). As B moves to A from the right,
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(i) (ii) (i ii)
 (iv)

slope AB is thus nonincreasing and hence has a limit. In other words, cp has a
right-hand derivative cp +. Figure (ii) shows that slope DE < slope EF < slope FG. Let
E move to D from the right and let G move to F from the right: The right-hand
derivative at D is at most that at F, and cp + is nondecreasing. Since the slope of XY
in Figure (iii) is at least as great as the right-hand derivative at X, the curve to the
right of X lies on or above the line through X with slope cp+(x):

(14) cp(y) > cp(x) +(y — x )cp +(x),	 y >—x.

Figure (iii) also makes it clear that p is right-continuous.
Similarly, cp has a nondecreasing left-hand derivative cp —

 and is left-continuous.
Since slope AB < slope BC in Figure (i), cp - (b) < cp , (b). Since clearly cp + (b) < cc

and —co <cp - (b), cp + and cp - are finite. Finally, (14) and its right-sided analogue
show that the curve lies on or above each line through Z in Figure (iv) having slope
between cp - (z) and cp + (z):

(15) cp(x) ^ cp(z) + m ( x —z), 	(p - (z)Srn <,p + (z).

This is a support line.

Some Multivariable Calculus

A34. Suppose that U is an open set in R k and T: U R k is continuously differen-
tiable; let D,r = [t;;(x)] and J(x) = det D.A. be the Jacobian matrix and determinant, as
in Theorem 17.2. Let Q - be a closed rectangle in U.

Theorem. If I t,1(x') — t;1(x)I < a for x, x' E Q - and all i, j, then

(16) I Tx' —Tx—Dx(x'—x)I<k 2alx'—xl,	 x,x' E Q-

Before proceeding to the proof, note that, since the t ;j are continuous, a can be
taken to go to 0 as Q contracts to the point x. In other words, (16) implies

(17) lim 
I Tx' —Tx—Dx(x'—x)i —

0.
x'.x	 Ix' — xI

This shows that Dx acts as a multivariable derivative. Suppose on the other hand that
(17) holds at x for an initially unspecified matrix D. Take x'. = xj + h and x 'i = x i for
1# j, and let h go to O. It follows that the entires of DX must be the partial derivatives
tu(x): If (17) holds, then DX must be the Jacobian matrix.
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(v) (v i)

PROOF OF (16). For j = 0, , k, let z' agree with x' in the first j places and
with x in the last k — j places. Then z ° = x, z k = x', and I z' — z-' i l = I(z i — z' -1 )j1=
Ix I  x1 l (Figure (v)). By the mean-value theorem in one dimension, there is a point
w'' on the segment from z' - 1 to z' such that t ;(z') - t 1(z 1 ) = t. (w''X z' — zj -1 )j .
Since

•(Dx(zj-zi -1 ))i - Eti!(x)(zi-zi -1 )1-trl(x)(zl
 - z' -1 ) !'

!

it follows that

ITx' — Tx — Dx (x' — x)i

< ^I t, (^j) -t, ( z j- 1) - (Dx (^j - z ' - 1)) r 4

i

rr
j

	((- ^-+lt,Jl10 ) - tr1(x)1 . f (z' - z' -1 )JI
Fj

_< ^alxJ 
—xl <- k 2alx' —xl. 	 •

lj

A35, The multivariable inverse function theorem. Let x o be a point of the open set U.

Theorem. If J(x o) # 0, then there are open sets X and Y, containing x o and
y o = Tx 0 , respectively, such that T is a one-to-one map from X onto Y= TX; further,
T-1 : Y--> X is continuously differentiable, and the Jacobian matrix of T -1 at y is 13 -1 1 y _

This is a local theorem. It is not assumed, as in Theorem 17.2, that T is one-to-one
on U and J(x) never vanishes; but under those additional conditions, TU is open and
the inverse point mapping is continuously differentiable. To understand the role of
the condition J(x 0) # 0, consider the case where k = 1, x ° = 0, and Tx is x 2 or x 3 .

PROOF. Let Q be a rectangle such that x o E Q° C Q - c U and J(x) # 0 for
x E Q. As (x, u) ranges over the compact set Q - X [u: lul = 1], IDx ul is bounded
below by some positive /3:

(18) 	 IDxul> PIuI 	 if x E Q - , u ER k .
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Making Q smaller will ensure that It;;(x) — t ;)(x')I < /3/2k 2 for all x and x' in Q -
and all i, j. Then (16) and (18) give, for x, x' E Q - ,

ITx'— Txl >_I D(x' —x )i —iTx'— Tx —Dx( x' —x)i

— x)i — z18 1x' - xl? 1I0 1x1- xi•

Thus

(19) 	 Ix' —xl<- ITx'— TxI 	 for x,x'EQ - .

This shows that T is ore-to-one on Q - .
Since x o does not lie in the compact set aQ, infx „Q I Tx — Tx o l = d > 0. Let Y be

the open ball with center y o = Tx 0 and radius d/2 (Figure (vi)). Fix a y in Y. The
problem is to show that y = Tx for some x in Q°, which means finding an x such that
cp(x) = I  — Tx1 2 = E ;(y; -- t ;(x)) 2 vanishes. By compactness, the minimum of tit)
on Q - is achieved there. If x E aQ (and y E Y), then 2I y — y 0 1 < d . 17'x — Y01 < ITx —
yl +ly — yol, so that Iy — Tx o l <ly— Tx'. Therefore, cp(x o ) <cp(x) for x E aQ, and so
the minimum occurs in Q° rather than on aQ. At the minimizing point, acp/ax j =
—E r 2(y ; — t ;(x))to(x) = 0, and since Dx is nonsingular, it follows that y = Tx: Each y
in Y is the image under T of some point x in Q°. By (19), this x is unique (although
it is possible that y = Tz for some z outside Q).

Let X = Q° n T- 'Y. Then X is open and T is a one-to-one map of X onto Y.
Now let T- ' denote the inverse point transformation on Y. By (19), T -1 is continu-
ous.

To prove differentiability, consider in Y a fixed point y and a variable point y'
such that y' —> y and y' y. Let x = T- ' y and x' = T - ty'; then x' is a function of y',
x' —> x, and x' x. Define v by Tx' — Tx = Dx(x' —x)+  u; then u is a function of x'
and hence of y', and  — x —> 0 by (17). Apply D»: DX t (Tx' — Tx) =x' —x+
DX tu, or T-t y' —T- t y=Dx t(y'—y)—DX'u. By(18) and (19),

IT- Iy, — T-ty—Dx t(y' 	_ 1Dx t ui Ix' — xl 	lul/p 	2
Iy' — yl 	 ix' —xi Iv' —yl ` Ix' — xl P .

The right side goes to 0 as y' —> y.
By the remark following (17), the components of Dx t must be the partial

derivatives of the inverse mapping. T -1 has Jacobian matrix DT!1 at y. The
components of an inverse matrix vary continuous with the components of the original
matrix (think for example of the inverse as specified by the cofactors), and so T-I is
even continuously differentiable on Y. •

Continued Fractions

A36. In designing a planetarium, Christian Huygens confronted this problem: Given
the ratio x of the periods of two planets, approximate it by the ratio of the periods of
two linked gears. If one gear has p teeth and the other has q, then the ratio of their
periods is p/q, so that the problem is to approximate the real number x by the
rational p/q. Of course x, being empirical, is already rational, but the numerator and
denominator may be so large that gears with those numbers of teeth are not practical:
in the approximation p/q, both p and q must be of moderate size.
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Since the gears play symmetrical roles, there is no more reason to approximate x
by r = p/q than there is to approximate 1/x by 1/r = q/p. Suppose, to be definite,
that x and r lie to the left of 1. Then

(20) Ix - rl=xrl x - r   

and the inequality is strict unless x = r: If x < 1, it is better to approximate 1/x and
then invert the approximation, since that will control both errors.

For a numerical illustration, approximate x = .127 by rounding it yip to r = .13; the
calculations (to three places) are

r — x= .13 — .127=.003,

( 21)	 1 — —1  7.874 — 7.692 = .182.x 	 r

The second error is large. So instead, approximate 1/x = 7.874 by rounding it down to
1/r' = 7.87. Since 1/7.87 = .1271 (to four places), the calculations are

(22)
1	 1
x — r' = 7.874 — 7.87 = .004,

r'—x= .1271 —.127= .0001.

This time, both errors are small, and the error .0001 in the new approximation to x is
smaller than the corresponding .003 in (21). It is because x lies to the left of 1 that
inversion improves the accuracy; see (20).

If this inversion method decreases the error, why not do another inversion in the
middle, in finding a rational approximation to 1/x? It makes no sense to invert 1/x
itself, since it lies to the right of 1 (and inversion merely leads back to x anyway). But
to approximate 1/x = 7.874 is to approximate the fractional part .874, and here a
second inversion will help, for the sanie reason the first one does. This suggests
Huygens's iterative procedure.

In modern notation, the scheme is this. For x (rational or irrational) in (0, 1), let
Tx = (1/x} and a 1(x) = [1/x] be the fractional and integral parts of 1/x; and set
TO = 0. This defines a mapping of [0,1) onto itself:

(23)

Then

(24)

1 , 	 1 _ 1 	 1
Tx= 	 x; x	 x = .7 	 if0<x<1,

0 	 if x= O.

1_x a
t( x) + Tx

if 0 <x <1.

What (20) says is that replacing Tx on the right in (24) by a good rational approxima-
tion to it gives an even better rational approximation to x itself.
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To carry this further requires a convenient notation. For positive variables z,
define the continued fractions

1 	 1 LET =i z 	lz1+ lz2= 	 1
^ 	 zi+ T-2

FT, +l z 2 +1 z- 1   
1 	 '

Z1 + 1
Z2 + Z3

and so on. It is "typographically" clear that

(25) 1 FiT+ ••• +1 z =i/jz i +(ni-2 + ••• +1R1

and

(26) 11-4 +  ••• +1 z"=1 z i + ••• +Jz i +1/z,,.

For a formal theory, use (25) as a recursive definition and then prove (26) by
induction (or vice versa). An infinite continued fraction is defined by

1 z i + n-2-2 + • • • = lim 1 z l + • • • + 1 zn ,

provided the limit exists. A continued fraction is simple if the z, are positive integers.
If T" - 'x > 0, let a n(x) = a i(T" -lx); the a n(x) are the partial quotients of x. If x

and Tx are both positive, then (24) applies to each of them:

x — 	 + Tx= lla ^(x) +1.1a 2 (x) + T 2x.

If none of the iterates x, Tx , ... , Tn^ 1 x vanishes, then it follows by induction (use
(26)) that

(27) 	 x =11at(x)+ ••• +ila n _ 1(x)+11a„(x)+ Trtx.

This is an extension of (24), and the idea following (24) extends as well: a good
rational approximation to Tnx in (27) gives a still better rational approximation to x.
Even if Tnx is approximated very crudely by 0, there results a sharp approximation

(28) x ^ 1 a i(x)-}- • • +Jan(x)

to x itself. The right side here is the nth convergent to x, and it goes very rapidly to
x; see Section 24.

By the definition (23), x and Tx are both rational or both irrational. For an
irrational x, therefore, T"x remains forever among the irrationals, and (27) holds for
all n. If x is rational, on the other hand, Tnx remains forever among the rationals,
and in fact, as the following argument shows, Tnx eventually hits 0 and stays there.
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Suppose that x is a rational in (0,1): x = d I /d o , where 0 <d 1 < d o . If Tx > 0, then
Tx = {d o/d i ) = d2 /d 1 , where 0 <d 2 <d 1 because 0 < Tx < L (If d i /d o is irreducible,
so is d 2 /d 1 .) If T e x > 0, the argument can be repeated:

(29) x = 
d1 
, Tx= d2 , T Z x= 

d 3

di 	 do>d I >d2>d3>0.do 	dI	 d 2

And so on. Since the d" decrease as long as the T"x remain positive, T"x must
vanish for some n, and then Tmx = 0 for m > n. If n  is the smallest integer for which
T"x = 0 (n, _> 1 if x > 0), then by (27),

(30) x = 1 a I( x ) + 	 +^a"̂ F(x}.

Thus each positive rational has a representation as a finite simple continued fraction.
If 0 <x <1 and Tx = 0, then 1 > x = 1/a 1(e), so that a I(x) >— 2. Applied to T"; -Ix,
this shows that the a" (x) in (30) must be at least 2.

Section 24 requires a uniqueness result. Suppose that

(31) x=1 a I +	 +1W-1:—,_ ! +1 a"+t,

where the a ; are positive integers and

(32) 0< x <1, 	 0 <t <1, 	 a"+t> 1.

The last condition rules out a n = 1 and t = 0 (which in the case n =1 is also ruled out
by x < 1). It follows from (31) and (32) that

(33) 	 at(x)=al,...,a"(x)=a, 	 T"x=t.

The case n=1  being easy, suppose the implication holds for n — 1, where n >— 2.
Since 0 < 1/(a + t) < 1, the induction hypothesis (use (26)) gives a k (x) = a k for
k <n and T" -fix = 1/(a" + t). Now apply the case n =1 to T" - lx. (If a,= 1 and
t = 0, then a k (x) = a k for k < n — 2, a_ 1(x)=a_ 1 + 1, and T" - lx = 0.)

Consider now the infinite case. Assume that

(34) x=l a i +1 a z + •••,

converges, where the a n are positive integers. Then

(35) a"(x)=a", T"x=1 a"+t+ 1 a"+2+ n> 1.

To prove this, let n — co in (25): the continued fraction t =1 a2 + j -a 3 + 	 con-
verges and x = 1/(a 1 + t). It follows by induction (use (26)) that

(36) 	 aT>1 a I + •• +1 a" ^1 a I +1 a 2 , 	 n >_ 2.

Hence 0 <x < 1, and the same must be true of t. Therefore, a l and t are the integer
and fractional parts of 1/x, which proves (35) for  n= 1. Apply the same argument to
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Tx, and continue. The x defined by (34) is irrational: otherwise, Tnx = 0 for some n,
which contradicts (35) and (36).

Thus the value of an infinite simple continued fraction uniquely determines the
partial quotients. The same is almost true of finite simple continued fractions. Since
(31) and (32) imply (33), it follows that if x is given by (30), then any continued
fraction of nX terms that represents x must indeed match (30) term for term. But, for
example, if  + _lf5= lli + lr+ 1 1. This is always possible: replace a n (x) in (30)
(where a n,(x) >— 2) by a„y(x) — 1 + 0. Apart from this ambiguity, the representation
is unique—and the representation (30) that results from repeated application of T to
a rational x never ends with a partial quotient of t. #

t See ROCKETT & Szusz for more on continued fractions.



Notes on the Problems

These notes consist of hints, solutions, and references to the literature. As a rule a
solution is complete in proportion to the frequency with which it is needed for the
solution of subsequent problems

Section 1

Li. (a) Each point of the discrete space lies in one of the four sets A t nA 2 ,
As nA 2 , A l nA2, Ai nA2 and hence would have probability at most 2 -2 ;
continue.
(b) If, for each i, B, is A. or A;, then B, n • • - n B„ has probability at most
I17= 1(1 —ad < exp[ — E"_ 1 a ; ]

1.3. (b) Suppose A is trifling and let A - be its closure. Given E choose intervals
(a k ,bk ], k=1,...,n, such that A c lJ k=l(ak , bk] and Ek=1(bk — ak)<E/2. If
X k = a k —E/2n, then A -  U k = l(xk,bk] and Ek„i(bk — x k ) < E.

For the other parts of the problem, consider the set of rationals in (0, 1).

1.4. (a) Cover _A,.(i) by (r — 1)” intervals of length r - ".
(c) Go to the base r k . Identify the digits in the base r with the keys of the
typewriter. The monkey is certain eventually to reproduce the eleventh edition
of the Britannica and even, unhappily, the fifteenth.

1.5. (a) The set A 3(1) is itself uncountable, since a point in it is specified by a
sequence of 0's and 2's (excluding the countably many that end in 0's).
(b) For sequences u 1 , ... , u„ of 0's, l's, and 2's, let Mug u ,, consist of the points
in (0, 1] whose nonterminating base-3 expansions start out with those digits.
Then A 3(1) = (0,1] — U Mu, ^, where the union extends over n >— 1 and the
sequences u 1 , ... , u n containing at least one 1. The set described in part (b) is
[0,1] — U M° u , where the union is as before, and this is the closure of A 3(1).

From this representation of C, it is not hard to deduce that it can be defined
as the set of points in [0,1] that can be written in base 3 without any l's if
terminating expansions are also allowed. For example, C contains = .1222 - -
= .2000... because it is possible to avoid l in the expansion.
(e) Given E and an w in C, choose w' in A 3(1) within E/2 of w; now define w"
by changing from 2 to 0 some digit of w' far enough out that w" differs from w'
by at most E/2.

552
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1.7. The interchange of limit and integral is justified because the series Ek rk (w)2
converges uniformly in w (integration to the limit is studied systematically
in Section 16). There is a direct derivation of (1.40): let n -* co in sin t =
2"sin2 - "t Ilk =1 cos 2 -k t, which follows by induction from the half-angle for-
mula.

1.10. (a) Given m and a subinterval (a, b] of (0,1], choose a dyadic interval I in
(a, b], and then choose in I a dyadic interval J of order n > m such that
In - `s"(w)I> z for w E J. This is possible because to specify J is to specify the
first n dyadic digits of the points in J, choose the first digits in such a way that
J C I and take the following ones to be 1, with n so large that n - 'sn(w) is near 1
for w E J.
(b) A countable union of sets of the first category is also of the first category;
(0,11= N U N` would be of the first category if N` were. For Baire's theorem,
see ROYDEN, p 139.

1.11. (a) If x =p 0/q0 # p/q, then

p _ I p oq gopl I x _ g I 	 gag 	 goq

(c) The rational Ek =1 1/2" (k) has denominator 2" ( " ) and approximates x to
within 2/2" ("+ 1) .

Section 2

2.3. (b) Let SZ consist of four points, and let g- consist of the empty set, SI itself,
and all six of the two-point sets.

2.4. (b) For example, take SZ to consist of the integers, and let , 	 be the a-field
generated by the singletons {k) with k < n. As a matter of fact, any example in
which ✓n is a proper subclass of .5; +  for all n will do, because it can be
shown that in this case U ".t„ necessarily fails to be a a-field; see A. Broughton
and B. W. Huff: A comment on unions of sigma-fields, Amer. Math. Monthly,
84 (1977), 553-554.

2.5. (b) The class in question is certainly contained in f(.) and is easily seen to be
closer under the formation of finite intersections. But (U . MIL L AO' =
n m 1 U	 and U 	 U jL 1[A n n k=iA ;k ] has the required form.

2.8. If° is the smallest class over sal closed under the formation of countable
unions and intersections, clearly .3' 'c o(, ). To prove the reverse inclusion, first
show that the class of A such that AC Ex is closed under the formation of
countable unions and intersections and contains d and hence contains ,£'.

2.9. Note that U "B" E a-(U ". 8n ).

2.10. (a) Show that the class of A for which IA(w) = IA(w') is a a-field. See Exam-
ple 4.8.

	

2.11. (b) Suppose that 	 is the a-field of the countable and the cocountable sets in

	

Si. Suppose that 	 is countably generated and SI is uncountable. Show that SI-
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is generated by a countable class of singletons; if ft o is the union of these, then
Sc- must consist of the sets B and B U fro with B c ft o , and these do not
include the singletons in ftô, which is uncountable because ft is.
(c) Let .2 consist of the Borel sets in fl = (0,1], and let ,9i consist of the
countable and the cocountable sets there.

2.12. Suppose that A 1 , A 2 ,... is an infinite sequence of distinct sets in a a--field
and let J consist of the nonempty sets of the form n 7,= 1 B,,, where BR =A rt or
B,7 = An, n = 1,2,.... Each A„ is the union of the Jsets it contains, and since
the A„ are distinct, ✓.P must be infinite. But there are uncountably many distinct
countable unions of ,-sets, and they all lie in Sr.

2.18. For this and the subsequent problems on applications of probability theory to
arithmetic, the only number theory required is the fundamental theorem of
arithmetic and its immediate consequences. The other problems on stochastic
arithmetic are 4.15, 4.16, 5.19, 5.20, 6.16, 18.17, 25.15, 30.9, 30.10, 30.11, and
30.12. See also Theorem 30.3.
(b) Let A consist of the even integers, let Ck = Em: Uk < m <v k + 1;, and let B
consist of the even integers in C I U C3 U • • • together with the odd integers in
C2 U C4 U • • • ; take Uk to increase very rapidly with k and consider A n B.
(c) If c is the least common multiple of a and b, then Ma n Mb= Mc . From
Ma E 	 conclude in succession that Ma n M6 E 2, Ma n	 n
Ma , n Mb n	 n M6 E 2, f(4') c g. By the same sequence of steps, show
how D 	 .4' determines D on f(4').
(d) If Bt = Ma - U p < !Map, then a E Bt and (the inclusion-exclusion formula
requires only finite additivity)

D ( Bi ) - 	^t 	 + 
x-

^ aP4p5 	 p<q _ t

= a 11 I 1- p ^

< a exp -- E p 	0.
l̀ 	 pst

Choose la so that, if Ca = Bt , then D(Ca ) < 2 - a -1 . If D were a probability
measure on f(.,l), D(f1) < 14 would follow. See Problem 4.16 for a different
approach.

2.19. (a) Apply the intermediate-value theorem to the function f(x) = A(A n (0, xi).
Note that this even proves part (c) for A (under the assumption that A exists).
(b) If 0 < P(B) < P(A), then either 0 < P(B) _< P(A) or 0 < P(B -- A)
< ZP(A). Continue.
(c) If P(U k I k) < x, choose C so that C cA — U k Hk and 0 < P(C) <x —
P(U klid. If n -1 <P(C), then P(U k 	 h„<P(U k<RHk)+P(H„)+
P(C) _< P(U k <,► Hk) + h  R .

2.21. (c) If .^  1 were a a -field, g c , _ 1 would follow.

2.22. Use the fact that, if a l ,a 2 ,... is a sequence of ordinals satisfying a„ < ft, then
there exists an ordinal a such that a <ft and a n <a for all n.
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2.23. Suppose that B1 E U p < a ,.^̂ , j = 1, 2, .... Choose odd integers n ) in such a way
that B. E .5"0a(n) and the n; are all distinct; choose ...moo-sets such that

(1)0 .07 	Cm j„ i ..) = B^

for n not of the form n ^ , choose Jto- sets for which 4 $a ( „ )(C,,, ,, ,, C,,, ,,2 ,...) is 0 or
(0,1] as n is odd or even. Then U j= 1 B) _ ^a(C 1 , C2 ,...). Similarly, B` _
(I)a(C 1 , C2, ...) for .50-sets Cr, if B E U < a J . The rest of the proof is essen-
tially the same as before.

Section 3

3.1. (a) The finite additivity of P is used in the proof that Yo c.‘ and again (via
monotonicity; see (2.5)) in the proof of (3.7). The countable additivity of P is
used (via countable subadditivity; see Theorem 2.1) in the proof of (3.7).
(b) For a specific example consider U (2 - t + n -1 ,1] in connection with Prob-
lem 2.15. But an example is provided by every P that is finitely but not countably
additive: If P is finitely additive on a field 50 and A,, are disjoint .moo-sets
whose union A also lies in Yo , then monotonicity (which requires
finite additivity only) gives Ek < „P(Ak) = P(U k s n Ak) P(A) and hence
Ek P(A k ) < P(A). Countable subadditivity will ensure that there is equality
here.
(c) The proof of (3.7) involves the countable subadditivity of P on .moo , which is
only assumed to be a field (that being the whole point of the theorem).

3.2. (a) Given c, choose .o-sets A n such that A c U „Art and EP(A n ) <P*(A) +
c; if B = U nAn, then A c B, B E Y, and P(B) < P*(A) + c; hence the right
side of (3.9) is at most P*(A) On the other hand, A cB and B e , imply
P*(A) < P*(B) = P(B). Hence (3.9). If A c Bk, Bk E ,f, P(Bk) < P* (A) + k 1 ,
and B = fl k Bk , then A c B, B E Y, and P*(A) = P(B). For (3.10), argue by
complementation.
(b) Suppose that P * (A) = P*(A) and chose ` .:sets A 1 and A 2 in such a way
that A l cA cA 2 and P(A 1 ) = P(A 2 ). Given E, choose an Yset B in such a
way that E c B and P*(E) = P(B). Then P*(A n E) + P*(A` n E) <
P(A 2 n B) + P(Ai n B). Now use (2.7) to bound the last sum by P(B) + P(A 2
-A 1 ) = P*(E).

3.3. First note the general fact that P* agrees with P on `o if and only if P is
countably, additive there, a condition not satisfied in parts (b) and (e). Using
Problem 3.2 simplifies the analysis of P* and 4'(P*) in the other parts.

Note in parts (b) and (e) that, if P* and P* are defined by (3.1) and (3.2),
then, since P*(A) = 0 for all A, (3.4) holds for all A and (3.3) holds for no A.
Countable additivity thus plays an essential role in Problem 3.2.

3.6 (c) Split EC by A: P° ( E)=1- P° (E`)= 1- P°(A n E`)- Pc' (A`nE`)=1-
P° (AnE`)-P(A`)=P(A)-P° (A-E).

3.7, (b) Apply (3.13): For A E ,moo , Q(A) = P° (H nA) + P° (H` n A) = P° (H nA)
+P(A)-P°(A -(H` nA))=P(A).
(c) If A l and A2 are disjoint .9 -sets, then by (3.12),

P° (Hn (A, uA 2 )) = P° (HnA 1 ) +P°(HnA2).
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Apply (3.13) to the three terms in this equation, successively using A 1 U A 2 ,  A t ,
and A2 for A:

Po (H` n (A l uA 2 )) = Po (H` nA t ) +Po (H`nA 2 ).

But for these two equations to hold it is enough that HnA 1 nA 2 = 0 in the
first case and IF nA i nA 2 = 0 in the second (replacing A l by A l nA2
changes nothing).

3.8. By using Banaclt limits (BANACH, p. 34) one can similarly prove that density D
on the class (Problem 2.18) extends to a finitely additive probability on the
class of all subsets of fZ = (1, 2, ... ).

3.14. The argument is based on cardinality. Since the Cantor set C has Lebesgue
measure 0, 2c is contained in the class of Lebesgue sets in (0,1]. But C is
uncountable: card a' card(0, 1) < card 2 c < card _Z.

3.18. (a) Since the A ® r are disjoint Borel sets, Er A(A® r) < 1, and so the common
value A(A) of the A(A ® r) must be 0. Similarly, if A is a Borel sct contained in
some H ® r, then A(A) = O.
(b) If the E n (H 0 r) are all Borel sets, they all have Lebesgue measure 0, and
so E is a Borel set of Lebesgue measure 0.

3,19, (b) Given A 1 , B 1 ,..., A„_ t , B„ _ 1 , note that their union C„ is nowhere dense,
so that In contains an interval J„ disjoint from C. Choose in J„ disjoint,
nowhere dense sets A n and Bn of positive measure.
(e) Note that A and Bn are disjoint and that A n U Bn c G.

3,20. (a) If In are disjoint open intervals with union G, then b -tA(A) > EA(0>
En b -1A(A n1)>_b - 'A(A).

Section 4

4.1. Let r be the quantity on the right in (4.30), assumed finite. Suppose that x < r;
then x < V k =n x k for n >_ 1 and hence x < x k for some k >_ n: x < x n i.o.
Suppose that x < x„ i.o.; then x < V k =„ x k for n >_ 1: x _< r. It follows that
r = sup[ x: x <x ,, i.o.], which is easily seen to be the supremum of the limit
points of the sequence. The argument for (4.31) is similar.

4.10. The class .9 is the o-field generated by ✓JU (H) (Problem 2.7(a)). If
(H n G I ) U (H` n G 2 ) _ (H n Gs) U (H` n G2), then G t e G1 c IF and
G2 A G '2 CH; consistency now follows because A .(H)=  A * (1-19---== 0. If A n =
(H n Gr) u (H` n Gr) are disjoint, then G1"') n G(In ) c H` and Gym ) n GZ„ c
H for m n, and therefore (see Problem 2.17) P(U „ A n ) = ZA(U nGr)
+ ZA(U „G 2"^) = E„(ZA(G;"^) + ZA(G2 ^)) = E„P(An ). The intervals with ratio-
nal endpoints generate

4.14. Show as in Problem 1.1(b) that the maximum of P(B I n • • n B„), where B, is
A. or A; , goes to 0. Let A x = [w: E„IA (w)2 - ” <x], show that P(A nA X) is
continuous in x, and proceed as in Problem 2.19(a).
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4.15. Calculate D(F1) by (2.36) and the inclusion-exclusion formula, and estimate
Pn(F1 - F) by subadditivity; now use 0 < Pn(Fj) - Pn(F) = Pn(F1 - F). For the
calculation of the infinite product, see HARDY & WRIGHT, p. 246.

Section 5

5.5. (a) Ifm=0, a>_ 0,and x> 0,then P[X> a]<P[(X+x) 2 (a+ x)2 ]<< E[(X
+ x) 2 ]/(a +x)2 = (0-2 + x2 )/(a + x) 2 ; minimize over x.

5.8. -(b) It is enough to prove that q(t) = f(t(x', y') + (1 - txx, y)) is convex in t
(0 <t < 1) for (x, y) and (x', y') in C. If a = x' - x and f3 = y' - y, then (if
fi i > 0)

(P" —f11a 2 + 2 f12aP +f22N 2

flt 
( flla 4112P) 	 J11/+ f1! ^

f11f22 — .1 i2) ^ 2 > 0.

Examples like f(x, y) = y 2 - 2xy show that convexity in each variable sepa-
rately does not imply convexity.

5.9. Check (5.39) for f(x, y) = -x l /py l /q.

5.10. Check (5.39) for f(x, y) = — (x 1/p + y'/p)p.

5.19. For (5.43) use (2.36) and the fundamental theorem of arithmetic - since the p i

are distinct, the pi' individually divide m if and only if their product does. For
(5.44) use inclusion-exclusion. For (5.47), use (5.29) (see Problem 5.12)).

5.20. (a) By (5.47), En[ap ] < E7_ I p -k .2/p. And, of course, n -1 log n! w En [log] =
Ep En [a p ]log p.
(b) Use (5.48) and the fact that En[a p - S p ] < Ek 2 p -k

(c) By (5.49),

E log p =
n 52

E ( ^ Pn ^ —
2 ^ P +) 1og P

n<p5 2n ` 	 1

< 2n(E2 [log * ] - En [log* ]) = 0(n).

Deduce (5.50) by splitting the range of summation by successive powers of 2.
(d) If K bounds the 0(1) terms in (5.51), then

E log p >_ Bx E p - 1 log p > Bx(logB -1 - 2K).
p 5x 	 Bx <p 5x

(e) For (5.53) use

x- log p < 7r(x) < E 1+ E 	log p 

Pax 
log x 	 lo 	 t/2

p<x 1/2 	xI/2<p5x 
g x

2
<x 1/2 + log x E log p.

p 5x
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By (5.53), 73-(x) >— x 1 /2 for large x, and hence log 7r(x) log x and 7r(x)
x/log 71-(x). Apply this with x =pr and note that 7r(pr ) = r.

Section 6

6.3. Since for given values of X 1(),... , Xn, k _I(w) there are for Xn(w) the k
possible values 0, 1,.. _ , k — 1, the number of values of (Xn1(w), • • •, Xnn(w)) is
n!. Therefore, the map w (Xn 1(w), _.., Xn„(w)) is one-to-one, and the Xnk (w)
determine w. It follows that if 0 <x ; < i for 1 <i < k , then the number of
permutations w satisfying Xn;(w) = x ; , 1 _< i < k , is just (k + lxk + 2) • • • n, so
that P[ Xn; = x 1 <i < k ] = 1/k!. It now follows by induction on k that
Xn1 , _.. , Xnk are independent and P[X„k =x] = k -1 (0 _<x < k).

Now calculate

k-1 
E[ Xnk ] = 2 ,

0 + 1 + • • • +(rt — 1) 	 n(n — 1) 	 n2
	E[S,;]= 2 	 = 	4	 — 4'

0 2 + 1 2 + ••• +(k-1) 2 k-1 2	k2 — I.
	Var[ Xnk ] = 	 k 	 ^ 	 2 ^ — 	12 ,

1 n 2 	2n3 + 3n 2 — 5n 	 n 3
Var[Sn l = 12 ^ (k2- 1 } - 

	72	 — 36 'k	 1 

Apply Chebyshev's inequality.

6.7. (a) If k 2 < n <(k + 1) 2 , let a n = k 2 ; if M bounds the Ix n l, then

^ n sn — a sQ^f ^ < I n —a nM+â ( n—a „)M= 2M n a an ^ 0.
n 	 n 	 n 	 n

6.16. From (5.53) and (5.54) it follows that a n = 	 nIn/p] co. The left side of
(6.8) is

l n
	V11-1n n
	 1 	 1

nl Pg l 	
l
n 

	
^q^< 

1
Pq — P —

1 	1
n ( g — n ) < np

1 + nq1 .

Section 7

7.3. If one grants that there are only countably many effective rules, the result is an
immediate consequence of the mathematics of this and the preceding sections:
C is a countable intersection of .9sets of measure 1. The argument proves in
particular the nontrivial fact that collectives exist.

7.7. If n _< T, then Wn = Wn _ 1 -- X„ _ 1 = W 1 — S 1 , and T is the smallest n for which
Sn _ 1 = W1. Use (7.8) for the question of whether the game terminates. Now

r- 1

FT =Fo + E (Wi - Sk - 1) Xk =F0 +WiST--1 — 1(ST- 1 —(T — 1)).
k=1
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7.8. Let x 1 , . _.. x ; be the initial pattern and put E 0 =x 1 + • • • +x ; . Define X„ =
W„X,,, L o — k, and L„— L„_ 1 —  (3X„ + 1)/2. Then T is the smallest n

such that L„ <0, and T is by the strong law finite with probability 1 if
E[3X,, + 11= 6(p — )) > O. For n < T, in is the sum of the pattern used to
determine 1,17, 1_ 1 . Since F„— Fn _ 1 = X„ _ I —in ,  it follows that F„= Fo + £ o — Xn

and FT = F0 +1 0 .

7.9. Observe that E[ F„ -- Fr]=E[Ek_ , Xkl[r<k]] — Ek_1 E[ Xk]P [ T< k ] .

- Section 8

8.8. (b) With probability 1 the population either dies out or goes to infinity. If, for
example, pko = 1 — Pk,k+1 = 1/k 2, then extinction and explosion each have
positive probability.

8.9. To prove that x_ ; = 0 is the only possibility in the persistent case, use Problem
8.5, or else argue directly: If x ; = Ej # ;„ i # ia , and K bounds the ^.c ; 1, then
x•= Ep;j ... pi•n _ 1 •x^n, where the sum is over j^,__.,jn _ 1 distinct from i t) , and
hence 'A i l <_ KP;[Xk #i o , k_<n1 -' 0.

8.13. Let P be the set of r' for which Tri> 0, let N be the set of r' for which Tr; < 0,
and suppose that P and N are both nonempty. For i o E P and jo E N choose n
so that prim > 0. Then

0 < E E iri pil ) 	 ^-+ ^l 	 E E ^^ pil )
jENiEf jEN jENIEN

— E Tr; E p);.7)  0.
iEN Jet'

Transfer from N to P any i for which vi = 0 and use a similar argument.

8.16. Denote the sets (8.32) and (8.52) by P and by F, respectively_ Since F cP,
gcd P < gcd F. The reverse inequality follows from the fact that each integer in
P is a sum of integers in F.

8.17. Consider the chain with states 0, 1, .. _ and a and transition probabilities
Poj =f1+1 for j >_ 0, po. = 1 —f, p, ; _ 1 = 1 for i >_ 1, and paa = 1 (a is an
absorbing state). The transition matrix is

f1 f2 f3 •	 -- 1 -- f
1 0 0 0
0 1 0 •• 0

0 0 0 1

Show that f 1 = f„ and p 1 =u,„ and apply Theorem 8.1. Then assume f =1,
discard the state a and any states j such that fk = 0 for k> j, and apply
Theorem 8.8.



560
	

NOTES ON THE PROBLEMS

In FELLER, Volume 1, the renewal theorem is proved by purely analytic
means and is then used as the starting point for the theory of Markov chains_
Here the procedure is the reverse.

8.19. The transition probabilities are p or = 1 and p; r_i+ i = p, p ; r _ ; = q, 1 i < r;
the stationary probabilities are u 1 = ' • = u r = q -t u o = (r +q) - 1 . The chance
of getting wet is u o p, of which the maximum is 2r +1-  21/r(r + 1) _ For r = 5
this is .046, the pessimal value of p being .523. Of course, u o p < 1/4r. In more
reasonable climates fewer umbrellas suffice: if p = _25 and r = 3, then u o p
.050; if p = .1 and r = 2, then u op = .031. At the other end of the scale, if
p = .8 and r = 3, then u o p = _050; and if p = .9 and r = 2, then u o p = .043.

8.22. For the last part, consider the chain with state space C m and transition
probabilities p;i for 1,1 E Cm (show that they do add to 1)_

8.23. Let C' = S - (TU C), and take U = TUC' in (8-51)_ The probability of absorp-
tion in C is the probability of ever entering it, and for initial states i in TUC
these probabilities are the minimal solution of

Y; = E P;; Yj + E P;j + E P;jyj iETU C ,
jET 	 jEC 	 jEC

0<y < <1, 	 i E TU C .

Since the states in C' (C' = 0 is possible) are petsistent and C is closed, it is
impossible to move from C' to C. Therefore, in the minimal solution of the
system above, y 1 = 0 for i E C. This gives the system (8.55)_ It also gives, for the
minimal solution, Ej E TPIJYj E C Pif = 0, i E C'. This makes probabilistic
sense: for an i in C', not only is it impossible to move to a j in C, it is
impossible to move to a j in T for which there is positive probability of
absorption in C.

8.24. Fix on a state i, and let S„ consist of those j for which p;! > > 0 for some n
congruent to y modulo t. Choose k so that p» > 0; if and pl p are
positive, then t divides m + k and n + k, so that m and n are congruent
modulo t_ The S, are thus well defined_

8.25. Show that Theorem 8,6 applies to the chain with transition probabilities p;j ) .

8.27. (a) From PC= CA follows Pc ; = A l c,, from RP= AR follows r; P = A ; r; , and

41) _ Eut Ci , An, sut R L] = Lu 4(c u ru ) i j = 'u Au(A u );j .
from RC =I follows r.cj = 3,j_ Clearly An is diagonal and P" = CA"R. Hence

(b) By Problem 8.26, there are scalars p and y such that r i -pro = p(ir1, . vs)
and c i = yc o , where c o is the column vector of l's. From r i c e =1 follows
py = 1, and hence A l = c i r i = c oro has rows (nr 1 , ... , ers ). Of course, (8.56) gives
the exact rate of convergence. It is useful for numerical work; see ÇINLAR, pp.
364 ff.
(e) Suppose all four p ;j are positive. Then Tri = p 21/(P21 +p12 ) , 7r2=p1e/(P21
+p 12 ), the second eigenvalue is A = 1 - P12 — p21, and

7r 2
+ A"

7T 2 	—

7T2 	 —71- 2

7r 1 •
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Note that for given n and E, A" > 1 —c is possible, which means that the  1417))
are not yet near the Tri . In the case of positive pif, P is always diagonalizable by

	[Tr! 	ir2R=
	1 	 —1

(d) For example, take t = 3, 0 <E < t, and

t 	 t	 t
P=	 t	 t	 t .

t— E t+ E t

In this case, 0 is an eigenvalue with algebraic multiplicity 2 and geometric
multiplicity 1.

8.30. Show that an = ar; and

2 	n--1
f3 — a= 	  ^ Tr. ( n k ) ( ,k ) —

 1
ri )n 	 n(n — 1)

k=1
r

= O 
12 E (n — k)pk = 0(0,

n k^t

where p is as in Theorem 8.9.

8.36. The definitions give

Eil `Va.) ] =Pi[Qn < nif( 0 ) +Pi[an=n]f(i +n)

= 1 — P; [crn =n] +Pi[crn =n]( 1 — fi +n,0)

= 1 — pi••• pi+n-1 +pl•••pi +n -1(pi+npi +n+ 1 •• )^

and this goes to 1, Since PAT _< n = vn ) >_ PAT	 f [ Xk > 0, k > 1]) -' 1 —
fi0 > 0, there is an n of the kind required in the last part of the problem. And
now

E;[ f(Xr)] < PAT <n=^„ ] f(i + n)+1 —Pi [T<n=cru ]

= 1 — PATT < n — cr n ] f i + n , 0 •

8.37. If i >-1, n 1 <n 2 , (i,.. •,i+ n i ) Elni , and (i....,i +n 2 )EIn2 , then Pik = n i ,
T=n2]>_ Pi[Xk =i +k, k _<n 2 ]> 0, which is impossible.

Section 9

9.3. See BAHADUR.

9.7. Because of Theorem 9.6 there are for P[M,, >_a] bounds of the same order as
the ones for P[Sn >— a] used in the proof of (9.36).
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Section 10

10.7. Let µ l be counting measure on the o-field of all subsets of a countably infinite
fZ, let p. 2 = 2µ l , and let .9 consist of the cofinite sets. Granted the existence
of Lebesgue measure A on M l , one can construct another example: let µ l = A
and p. 2 = 2A, and let .9 consist of the half-infinite intervals (— co, x].

There are similar examples with a field ,moo in place of Y. Let SI consist of
the rationals in (0,1], let µ, be counting measure, let p. 2 = 2µ 1 , and let 5o
consist of finite disjoint unions of "intervals" [r E fZ: a <r

Section 11

11.4. (b) If (f, g] C U k (fk , g k ], then (f(w), g(c0)] c U k (fk (cd), fk (w)] for all w, and
Theorem 1.3 gives g(w) — f(w) 	 k(gk(co) — fk(w))• If h m — (g — f — Ek <n
(gk — fk)) V 0, then h,, O and g — f < Ek < ,,(gk — fk) + h n . The positivity and
continuity of A now give v o(f, g] < E k v o(fk , g k ]. A similar, easier argument
shows that Ek v o( fk , 	vo(f, g] if (fk , gk ] are disjoint subsets of (f, g].

11.5. (b) From (11.7) it follows that [ f > 1] E ,fo for f in . Since 	 is linear,
[ f >x] and [ f < --x] are in .moo for f E.J and x> 0. Since the sets (x,co) and
(— cc, —x) for x > 0 generate R I , each f in is measurable o (,9 ). Hence
.9 = r(5r0 ).

It is easy to show that .fo is a semiring and is in fact closed under the
formation of proper differences. It can happen that II .moo—for example, in
the case where fZ = (1,2) and2 consists of the f with f(1) = 0. See Jiirgen
Kindler; A simple proof of the Daniell—Stone representation theorem. Amer.
Math. Monthly, 90 (1983), 396-397_)

Section 12

12.4. (a) If Bn = 0,,,, then Bn _ m = O and n = m because 0 is irrational. Split G into
finitely many intervals of length less than c; one of them must contain points 02n
and 02m with 02u < 0 2m . If k = m — n, then 0 < 0 2m — 0 2n = 02ne a 02n 02k < E,

and the points 02k/ for 1 s [02k' ] form a chain in which the distance from
each to the next is less than E, the first is to the left of c, and the last is to the
right of 1 — c.
(c) If S l a S2 = - 2k + l e °2n,® O2n2 lies in the subgroup, then s, = s 2 and 02k4 1=
0 2(ni_n2) .

12.5. (a) The S ® 0m are disjoint, and (2n + 1)v + k = (2n + 1)v' + k' with s ki, I k'I <n
is impossible if v # v'.
(b) The A ® 0( 2n +1)i are disjoint, contained in G, and have the same Lebesgue
measure.

12.6. See Example 2.10 (which applies to any finite measure).

12.8. By Theorem 12.3 and Problem 2.19(b), A contains two disjoint compact sets of
arbitrarily small positive measure. Construct inductively compact sets Ku,...u„
(each u r is 0 or 1) such that 0 < µ(Kun „) < 3' and Ku, u no and K,,, u„1
are disjoint subsets of Kun u,,, Take K = n,, U u ,

u Kui u . The Cantor set is
a special case.
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Section 13

13.3. If f = EixilAi and A i E 7-1 ,5", take A', in 	 so that A ; = T -1/1 1i , and set
(19= E i x i l4 .̂ . For the general f measurable T- 'Y', there exist simple functions
f,,, measurable T - '5', such that f„(w) -> f(w) for each w. Choose cp,r ,
measurable .9' , so that f„ = cp„T. Let C' be the set of w' for which cp„(w') has
a finite limit, and define cp(w') = lim n cp„(w') for w' E C' and cp(w) = 0 for
w' C'. Theorem 20.1(iî) is a special case.

13.7. The class of Bord functions contains the continuous functions and is closed
under pointwise passages to the limit and hence contains .:

By imitating the proof of the ir--A theorem, show that, if f and g lie in g”,
then so do f +g, fg, f- g, f v g (note that, for example, [ g: f +g E a] is
closed under passages to the limit). If fn(x) is 1 or 1 - n(x - a) or 0 as x < a
or a <x < a +n - ' or a +n - ' <<x, then f„ is continuous and f„(x) ->
I(-co a ^(x). Show that [A: IA E ,9”] is a A-system. Conclude that ” contains
all indicators of Borel sets, all simple Borel functions, all Borel functions.

13.13. Let B = (b l , ... , bk ), where k < n, Ei = C - b ; 'A, and E = U k_ Er . Then
E = C - U k_ b, 'A . Since µ is invariant under rotations, µ(Eî) = 1 - µ(A) <
n -1 , and hence µ(E) < 1. Therefore C - E = n k_ ! b, 'A is nonempty. Use
any 0inC-E.

Section 14

14.3. (b) Since u < F(x) is equivalent to cp(u) <x, it follows that u < F(.p(u)). And
since F(x) < u is equivalent to x < cp(u), it follows further that F(cp(u) - E) < u
for positive E.

14.4. (a) If 0< u < u <1, then P[u<F(X)<v, X E C]= P[cp(u)<X<cp(v), XE
Cl. If cp(u) E C, this is at most P[cp(u) < X < cp(u)] = F(cp(u) -) - F(cp(u) - )
= F(cp(v) -) - F(cp(u)) < v - u; if cp(u) C, it is at most P[cp(u) <X < cp(v)]
= F(cp(v) -) - F(cp(u)) < u - u. Thus P[F(X) E [u, u), X E C] < A[u, v) if 0 <
u < u < 1. This is true also for u =0 (let u IC and note that P[F(X) = 01= 0)
and fo, v = 1 (let u T1). The finite disjoint unions of intervals [u,v) in [0,1)
form a field there, and by addition P[F(X) EA, X E C] < A(A) for A in this
field. By the monotone class theorem, the inequality holds for all Borel sets in
[0,1). Since P[F(X) = 1, X E C] = 0, this holds also for A = (1).

14.5. The sufficiency is easy. To prove necessity, choose continuity points x i of F in
such a way that x 0 <x i < • • • <x k , F(x 0) <E, F(x k ) > 1 -E, and x ; - x i _ l <
E. If n exceeds some n o , I F(x i) - F„(x i)I < E/2 for all i. Suppose that
x _< x i. Then F„(x) _< F„(x i ) < F(x i) + E/2 < F(x + E) + E/2. Establish a simi-
lar inequality going the other direction, and give special arguments for the
cases x < x0 and x >-x k .

Section 15

15.1. Suppose there is an 5cpartition such that E i[supA f]µ(A i) < co. Then
a i = supA , f < co for i in the set I of indices for which µ(A 1 ) > 0, If a =
max i a i , I then µ[f> a]=i iµ(A i n[f>a]) 1 1 ,u(A i n[f>a i ])= 0. And
A i n [ f > 0] = 0 for i outside the set J of indices for which µ(A i ) < co, so that
µ[f> 0]= lµ(A i n[f> 0]) <cc.
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15.4. Let (fi, .9", µ +) be the completion (Problems 3.10 and 10.5) of (ft, Y-, µ). If g
is measurable .f, [ f # g ] cA, A e .f µ(A) = 0, and H E .9P 1 , then [ f E H] _
(A` n [fE HD U(A n[fE HD =(A` n [g E HD U (A n [f E H]) lies in Y-+ ,
and hence f is measurable Sr'.
(a) Since f is measurable .F+, it will be enough to prove that for each (finite)
Y-+-partition (B1) there is an ✓rpartition (A1) such that r[infA _ f ]µ(A ; ) >-
/,,[infB .f ]µ + (Bi ), and to prove the dual relation for the upper sums. Choose
(Problem 3.2) ✓rsets A, so that A ; c Br and µ(A) = µ * (Br ) = µ + (Br ). For
the partition consisting of the A. together with (U 1 A 1 )`, the lower sum is at
least E 1 [infe, f ]µ(A 1 ) _ I r[inf8 . 

f ]µ +(Br).

(h) Choose successively finer .partitions (A„ r) in such a way that the corre-
sponding upper and lower sums differ by at most 1/n 3. Let g„ and f„ have
values infA . f and supA; f on A,, ; . Use Markov's inequality—since µ(fl) is
finite, it may as well be 1—to show that µ[ f„ - g„ >_ 1/n] < 1/n 2 , and then use
the first Borel-Cantelli lemma to show that f„ - g„-) 0 almost everywhere.
Take g w lim n g,,.

Section 16

16 .3 . 0 În - f1r f - f1.

16.4. (a) By Fatou's lemma,

ffd/.L - fad/i = f lim(f„ -a,,) dµ

< lim inf f ( fn - an) dµ = lim inf Jf,,d,i - Jad,j

and

fbd/i  - ffd/i  = f lim(bn -fn) dµ

< lim inf f(b,,  - fn ) dµ = fbdp  - lim sup f f,, dµ.

Therefore

lim sup Jf,,  dµ < f f dµ < lim inf f fn dµ .
n 	 n

16.6. For w EA and small enough complex h,

If(w+z o +h) — f(w, zo)1 — f
=u+h

f'(w,z)dz
z o

<Ihlg(w, z0).   

16.8. Use the fact that J4I f I dµ _< aµ(A) + I1111 a1 If I d µ
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16.9. If µ(A) <3 implies JA I f f I dµ <c for all n, and if a -' sup ra J I fn i dµ < S, then
µ[I ff I > a] s aJI f„W dµ <S and hence Ju f,i , a]ifn l d,u <E for all n. For the
reverse implication adapt the argument in the preceding note.

16.10. (b) Suppose that fn are nonnegative and satisfy condition (ii) and ,u is
nonatomic_ Choose S so that µ(A) <3 implies JAfn dµ <1 for all n. If
µ[f,, = co] > 0, there is an A such that A c [ f,, = cc] and 0 < µ(A) < S; but then
JA fn dµ = co_ Since µ[ f„ = co] = 0, there is an a such that µ[f„> a] < S _<
µ[fn >— a]_ Choose B c [fn = a] in such a way that A = [fn > a] u B satisfies
µ(A) = S. Then aS = aµ(A) < JA f, d a < 1 and Jfn dµ < 1 +aa(A`) < 1 +
3 - Ipt(fl,)_

16.12. (b) Suppose that f E ..? and f > O. If f„ = (1 — n - `) f V 0, then f,, E.., and
fn T f, so that v(fn , f ] = A(f — fn )10. Since v(f1 , f ] <cc, it follows that v[(w, t):
f(m) = t]=  0. The disjoint union

n2”
Bn— 

^ 
(l27 <f 12n1]x (°,Znl)r 	 f

increases to B, where B c (0,f] and (0,f ] — B c [(w, t): f(co) = t]. Therefore

	n2" 	r	 1
A( f ) = v(0, fl = 1im v(Bn ) = 1im E 2" µj 2n <f s 1 2n 1 J — f fdµ.

n 	 n 1=1 L

Section 17

17.1. (a) Let A E be the set of x such that for every S there are points y and z
satisfying I y —xf <3,1z —xi <6, and Iffy) — f(z)I >_ E. Show that A E is closed
and D f is the union of the A.
(c) Given c and 1), choose a partition into intervals I; for which the corre-
sponding upper and lower sums differ by at most cll. By considering those i,
whose interiors meet A E , show that Eri > EA(A E ).
(d) Let Al bound VII and, given E, find an open G such that Df c G and
A(G) < E/M. Take C = [0,1] — G and show by compactness that there is a S
such that I f(y) — f(x)I < f if x (but perhaps not y) lies in C and Iy —xi <3. If
[0,1] is decomposed into intervals 1, with A(l ; ) <3, and if x ; E I let g be the
function with value f(x i ) on l; . Let E' denote summation over those i for
which l; meets C, and let E" denote summation over the other i. Show that

j'f(x)d_ Ef(x,)A(l;) < j'lf(x) -g(x)Idr

< E'2E41; ) + E"2MA(l; ) <4E.

17.10. (c) Do not overlook the possibility that points in (0,1) — K converge to a point
in K.

17.11. (b) Apply the bounded convergence theorem to f,,(x) = (1 — n dist(x,[s, t]))+.
(c) The class of Borel sets B in [u, v] for which f = IB satisfies (17.8) is a
A-system.
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(e) Choose simple f„ such that 0 _< fn T f To (17.8) for f =f„, apply the
monotone convergence theorem on the right and the dominated convergence
theorem on the left.

17.12. If g(x) is the distance from x to [a, b], then f„ _ (1 - ng) v 0,1. Ita b] and
fn Ems; since the continuous functions are measurable .%Q ', it follows that

.92'_ If f„(x),f 0 for each x, then the compact sets [x: f„(x) > E] decrease
to 0 and hence one of them is 0; thus the convergence is uniform.

17.13. The linearity and positivity of A are certainly elementary facts, and for the
continuity property, note that if 0 <f _< E and f vanishes outside [a, b], then
elementary considerations show that 0 < A(f) < c(b - a).

Section 18

18.2. First, . Ck a- is generated by the sets of the forms {x} x X and X x {x}. If the
diagonal E lies inc ^”, then there must be a countable S in X such that E
lies in the o --field .7- generated  by the sets of these two forms for x in S. If .9
consists of Sc. and the singletons in S, then Y is the class of unions of sets in
the partition [P1 X P2: P1, P2 E .9]. But E E Sc is impossible.

18.3. Consider A x B, where A consists of a single point and B lies outside the
completion of .GP' with respect to A.

18.17. Put f = p - ' log p, and put fn = 0 if n is not a prime In the notation of
(18.17), F(x) = log x + cp(x), where cp is bounded because of (5.51). If G(x) =
-1/log x, then

1 _ F(x) + rxF(t)dt
p	 log x	 I2 t log e t

cp(x) 	 fx  dt
	j

oecp(t)dt 	 ^cp(t)dt
= 1 +

logx + l2 t log t + 	1

Section 19

19.3. See BANACH, p. 34.

19.4. (a) Take f = 0 and f„ = /(0, 1 /„)_
(b) Take f = 0, and let {f„) be an infinite orthonormal set. Use the fact that
En( fn ,g) 2 < IIgl1 2 .

19.5. Take f„ w nl(0",, ) , and suppose that f„k converges weakly to some f in L'_
Integrate against the L°°-functions sgn f • 1(€ 1) and conclude that f = 0 almost
everywhere; now integrate against the function identically 1 and get a contra-
diction.

p <x

2 t log 2 t	 x t log 2 t •

Section 20

20.4. Suppose U1 ,. _ _, Uk are independent and uniformly distributed over the unit
interval, put V = 2nU, - n, and let µ „ be (2n) k times the distribution of



A= 2
u + ( y — x ) 2

2y(y -x)
2	 2 'u + (y — x)

y 2 +v 2
— u 2

B=

y 2 — v 2 + u 2
C = D

2 yx 
v 2 +x 2 

.
v 2 +x2 ,
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I = (a 	X - X (a h , bk ] C Q " ,
 then µ e(I) = 11k__ 01 - a ; ). Further, if

(Vo _.. . , Ilk ). Then µ" is supported by Qe = ( — n, n ] X - • X ( - n, n ], and if

A C Q, C Q,,, (n <m), then A n( A) = µ m(A). Define A k (A) = lim e µ e(A f1 Q e ).

20.7. By the argument preceding (8.16),

[	 ( i) f (^,,-P, T, =n , ,..., Tk = nk] =fri" 
»
	 ni)	 (ek—ek- I)

For the general initial distribution, average over i.

20.8. (a) Use the Tr-À theorem to show that P[(X„,, ... , X„,,) E H] is the same for
all permutations Tr_

(b) Use part (a) and the fact that Yn = r if and only if V" ) = n_
(c) If k < n, then Yk = r if and only if exactly r - 1 among the integers
1,.. , k - 1 precede k in the permutation T ( n ) .
(d) Observe that T ( " ) = (t 1 , ... , t") and Y" +; = r if and only if T ( " + ' ) =

n + 1, t r , ... , t n), and conclude that cr(Yn+ ,) is independent of
o-(T (")) and hence of o-(Y1 , _ . _, Y„)—see Problem 20"6"

20.12. If X and Y are independent, then

P[I( X + Y) - ( x +y)I < E] > P[ IX -xl < <E] P[ IY-yI <

and

P [X +Y =x + y] > P[X= x ]P[Y = y ].

20.14. The partial-fraction expansion gives

cu(y-x)c,(x)= ^2 R(A +B+C+D),

where R =(u 2 - b 2 ) 2 + 2(u 2 +v 2 )y 2 + y 4 and

After the fact this can of course be checked mechanically. Integrate over
[-t,t] and let t —co: f t t Ddx =0, fr,Bdx ->0, and f70,(A +C)dx=(y 2 +
u 2 u 2 )u —' ?r+(y 2 v 2 + u 2 )U — ' 7T= u ' U ^' Tr 2Rcu+ , (Y) There is a very
simple proof by characteristic functions; see Problem 26.9_

20.16. See Example 20.1 for the case n = 1, prove by inductive convolution and a
change of variable that the density must have the form K n x (

e/2) _'e - X/ 2 , and
then from the fact that the density must integrate to 1 deduce the form of Kn .

20.17. Show by (20.38) and a change of variable that the left side of (20.48) is some
constant times the right side; then show that the constant must be 1.
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20.20. (a) Given c choose M so that P[I XI > M] <c and P[IYI> M] <c, and
then choose 8 so that 141A _<M, Ix -x'I <3, and Iy - y'I <8 imply that
If(x',y') -f(x,y)I <c. Note that P[I f(X,,, r,) -f(X,Y)I ? c]< 2c+P[IX„ -
XI ^ 8]+P[IY„-YI 3].

20.23. Take, for example, independent X„ assuming the values 0 and n with proba-
bilities 1 - n -1  and n -1 .  Estimate the probability that Xk = k for some k in
the range n/2 < k < n_

20.24. (b) For each m split A into 2'” sets A„,k of probability P(A)/2 M. Arrange all
the Amk in one infinite sequence, and lct X„ be the indicator of the nth set
in it_

20.27. To get the distribution of 43 , show by integration that for 0 < ¢ < 27r, the
intersection with the unit ball of the (x 1 , x 2 , x 3 )-set where 0 _<x 3 < (4 +
x2) 1 /2 tan 4) has volume 47r sin 4).

Section 21

21.5. Consider LIA . A random variable is finite with probability 1 if (but not only if)
it is integrablë.

21.6. Calculate Jô xdF(x) = Jo Jo dy dF(x) = Jô Jÿ dF(x) dy.

21.8. (a) Write E[Y- X]= Jx<ylx <r <_ y dtdP- Jy<xJY<I x dtdP.

21.10. (a) The most important dependent uncorrelated random variables are the
trigonometric functions—the random variables sin 27rnw and cos2Trnw on the
unit interval with Lebesgue measure_ See Problem 19.8.

21.13. Use Fubini's theorem; see (20.29) and (20.30)_

21.14. Even if X= -Y is not integrable, X +Y =  0 is Since IYI -< IxI + Ix + YI,
E[I YI] = co implies that E[Ix + YI] = cc for each x; use Problem 21.13. See also
the lemma in Section 28.

21.21. Use (2.1.12).

Section 22

22.2. For sufficiency, use E[EI X,'i] = EE[I X, 1]•

22.8. (a) Put U=E k l]ksT] Xk and V=EkItksT]X4, so that ST =U - V. Since
[T>_ id= SZ-[TSk- 1] lies in o-(X 1 ,_.., Xk_1), it follows that E[I{T z k]Xk]=
E[ IET z k ] ]E[ Xk ] = PET >_ k ]E[ Xt ]. Hence E[U] = Ek _ 1 E[ Xt ]P[T >- id=
E[Xt ]E[T]. Treat V the same way.
(b) To prove Eli.] < co, show that P[T > (a + b)n] <(1 - p a + b ) „. By (7.7), ST

is b with probability (1- pa)/(1 - pa+b) and -a with the opposite probability.
Since E[X 1 ]=p- q,

^ ]	 a 	 a+b  1-p aE T = q-p q _p 
1_p	P-  $1



^ 1 - 2BF(s)
BF(s)

	3 BE( s). •
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22.11. For each 0, E net x^(er ez)r' has the same probabilistic behavior as the original
series, because the X„ + nB reduced modulo 2n1- are independent and uni-
formly distributed. Therefore, the rotation idea in the proof of Theorem 22.9
carries over. See ICAHANE for further results_

22.14. (b) Let A =f--1.8  and suppose p is a period of f_ Let m = [x/p] and
n =DM. By periodicity, P(A n [y, y +p]) is the same for all y; there-
fore, IP(A n[0, x]) - mP(A n[0,P])I-<p, INA) — nP(A n[0,p])I_<p, and
P(A n [0, x]) - P(A)xl < 2p + I x - m /ni -< 3p. Since p can be taken arbitrar-

ily small, P(A n [0, x])= P(A)x.

22.15. (a) By the inequalities L(s) -<M(s) and (22.24),

BE(2s) = 1 A 3L(2s) ^3M(2s) <3B0(s).

For the other inequality, note first that T(s) is nonincreasing and that R(2s) <
2 L(s) and T(s).. L(s) < M(s). If BE(s) < 1/3, then

T(6s) 	T(3s) 	M(3s) 
B0(6s) _< 1- R(6s) 	 1- 2L (3s) 	] - 2M(3s)

On the other hand, if BF(s)> 1/3, then B0(6s) < 1 < 3BF(s). In either case,
B0(6s) < 3BE(s).

Section 23

23.3. Note that A, cannot exceed t. If 0 _< u < t and y > 0, then PEA, > u, B, >
P[N, +t -N- u =0]= e -aue -at

23.4. (a) Use (20.37) and the distributions of A, and B,.
(b) A long interarrival interval has a better chance of covering t than a short
one does_

23.6. The probability that NS +, - Mu = j is

f°°e--^s (^x)! a k xk-- le --ax^= 	akf.31 
	( 1 + k - 1)!

jo 	j!	 r(k) 	 (a +R)k +i j!(k 1)! •

23.8. Let M, be the given process and put cp(t) = E[M, ]_ Since there are no fixed
discontinuities, cp(t) is continuous_ Let iI'(u) = inf[t: uç cp(t)], and show that
Nu = M4,cu) is an ordinary Poisson process and M , = N,m,).

23.9. Let t-* 00in

SN, 	 t	 5N,+1 N, + 1
Nt 	 N, 	 N, +1 N, •
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23.11. Restrict t in Problem 23.10 to integers. The waiting times are the Z„ of
Problem 20.7, and account must be taken of the fact that the distribution of Z 1

may differ from that of the other Z,,.

Section 25

25.1. (e) Let G be an open set that contains the rationals and satisfies A(G) <
For k = 0,1, . _ . , n - 1, construct a triangle whose base contains k/n and is
contained in G: make these bases so narrow that they do not overlap, and
adjust the heights of the triangles so that each has area 1/n. For the nth
density, piece together these triangular functions, and for the limit density, use
the function identically 1 over the unit inte rval.

25.2. By Problem 14.8 it suffices to prove that F„( , (.6)	 F with probability 1, and
for this it is enough that F„(x, (0)-* F(x) with probability 1 for each rational x.

25.3. (b) It can be shown, for example, that (25.14) holds for x„ = n!_ See Persi
Diaconis: The distribution of leading digits and uniform distribution mod 1,
Ann. Prob., 5 (1977), 72-8L
(c) The first significant digits of numbers drawn at random from empirical
compilations such as almanacs and engineering handbooks seem approximately
to follow the limiting distribution in (25.15) rather than the uniform distribu-
tion over 1,2,... , 9. This is sometimes called Benford's law_ One explanation is
that the distribution of the obse rvation X and hence of logo X will be spread
over a large interval; if log o X has a reasonably smooth density, it then seems
plausible that {log lo X) should be approximately uniformly distributed. See
FELLER, Volume 2, p. 62.

25.9. Use Scheffé's theorem.

25.10. Put f„(x) = P[X„ = y„ + k&„]5,7 1 for y„ + ka„ <x < y„ + (k +1)3 n . Construct
random variables Yn with densities f„, and first prove Y„ X. Show that
Z  = yn + [(Yn — yn )/S„]S„ has the distribution of X„ and that Yn - Zn 0.

25.11. For a proof of (25.16) see FELLER, Volume 1, Chapter 7.

25.13. (b) Follow the proof of Theorem 25.8, but approximate I(X, y] instead of
l( _., Xi .

25,20. Let Xn assume the values n and 0 with probabilities p„ = 1/(n log n) and
1 -p„.

Section 26

26.1. (b) Let p, be the distribution of X. If I cp(t)I = 1 and t 0 0, then cp(t) = e 1ta for
some a, and 0 = f °° (1 - e' t cx-a) )p,(dx) = r .(1 - cos t(x - a))p (dx). Since the
integral vanishes, p must confine its mass to the points where the nonnegative
integrand vanishes, namely to the points x for which t(x - a) = 2irn for some
integer n.
(c) The mass of p, concentrates at points of the form a + 27rn/t and also at
points of the form a' + 27rn/t'. If p, is positive at two distinct points, it follows
that t/t' is rational.
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26.3. (a) Let fo(x) = 7 -1x -2 (1 — cos x) be the density corresponding to o(t). If
pk = (Sk — Sk + 1)tk, then E . 1 p k = 1; since Ek _ 1 pk cp 0(t /tk ) = cp(t) (check the
points t = 11 ), cp(t) is the characteristic function of the continuous density
Ek=1 pktkf0(tk, x).

(b) If lim 1 „ cp(t) = 0, approximate cp by functions of the kind in part (a), pass
to the limit, and use the first corollary to the continuity theorem. If cp does not
vanish at infinity, mix in a unit mass at 0.

26.12. On the right in (26.30) replace p(t) by the integral defining it and apply
Fubini's theorem; the integral average comes to

µ(a) + 
r
	siT{x x a)	) 14(dx).

X^a

Now use the bounded convergence theorem.

26.15. (a) Use (26.4 0 ) to prove that I cp n(t + h) — cp„(t)I < 2µ n(—a. a)` + aI hI.
(b) Use part (a).

26.17. (a) Use the second corollary to the continuity theorem.

26.19. For the Weierstrass approximation theorem, see RUD1N 1 , Theorem 7.32.

26.22. (a) If a n goes to 0 along a subsequence, then 10(01 ---= 1; use part (c) of
Problem 26.1.
(c) Suppose two subsequences of (a n} converge to a 0 and a, where 0 <a 0 < a;
put B = a 0/a and show that I9(t)I = kp(O k t)I.
(d) Observe that

-1
b = — i f e irb„ _ 1] jre isb„ ^J

0

26.25. First do the nonnegative case; then note that if f and g have the same
coefficients, so do f+ + g - and g + + f-

Section 27

27.8. By the same reasoning as in Example 27.3, (R n — log n)/ flog n N.

27.9. The Lindeberg theorem applies: (S„ — n 2/4)/ /n3/36 N.

27.11. Let Y, be Xn or 0 according as I X„I  —< n 1 /2 log n or not. Show that X„ = Yn for
large n, with probability 1, and that Lyapounov's theorem (6 = 1) applies to
the K.

27.12. For example, let the distribution of X„ be the mixture, with weights 1 — n -2
and n -2 , of the standard normal and Cauchy distributions.

27.16. Write JXe - " 2 /2 du =x -1e -x 2 — JX u -2e - " 2 du.
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27.17. For another approach to large-deviation theory, see Mark Pinsky: An elemen-
tary derivation of Khintchine's estimate for large deviations, Proc. Amer.
Math. Soc., 22 (1969), 288-290.

27.19. (a) Everything comes from (4.7). If A = [(l 1 , ... , l k ) E H] and B e
°( 1k +n+ 1k +n+1 , • • • ), then

I P(AnB)-P(A)P(B)I

< ^I P([lu =i u ,u <k] nB) -P[1u =iu ,u <k]P(B)^,

where the sum extends over the k-tuples (i 1 , ... , i k ) of nonnegative integers in
H. The summand vanishes if u + i u < k + n for u <k, the remaining terms add
to at most 2Eû 1 P[1„ > k + n - u] < 4/2'
(b) To show that o- 2 = 6 (see (27.20)), show that 1 1 has mean 1 and variance 2
and that

[f- rl 
l l dP= 

(P[1 1 - c]iE[1 1 +n] if i <n,

r 1 1+n P t i 1 l if i >_ n.i - [ i ] ( 
n )

Section 28

28.2. (b) Pass to a subsequence along which µ,(R 1 ) -> co, choose E n so that it
decreases to 0 and c n p, n(R') -> 00, and choose x n so that it increases to 00 and

x„) > 2µ,(R ); consider the f that satisfies f(±x,} = E n for all n and
is defined by linear interpolation in between these points.

28.4. (a) If all functions (28.12) are characteristic functions, they are all certainly
infinitely divisible. Since (28.12) is continuous at 0, it need only be exhibited as
a limit of characteristic functions. If µ„ has density Il -, • ,^(1 +x 2 ) with respect
to y, then

co 	 X
exp iyt ill

 w 1 + x 2 1`'n(^) + f
oe (

errx- 1 -itx)^ µ n (G^X)

is a characteristic function and converges to (28.12). It can also be shown that
every infinitely divisible distribution (no moments required) has characteristic
function of the form (28.12); see GNEDENKO &KOLMOGOROv, p. 76.
(b) Use (see Problem 18.19) - IiI = Tr - If' Jcos tx - 1)x -2 dx.

28.14. If X1, X2 , ... are independent and have distribution function F, then (X1 +
• • + X,)/4 also has distribution function F. Apply the central limit theo-

rem.

28.15. The characteristic function of Zn is

c 	 1 	 °° e"X _ 1
exp n

k {I I/n) 1
+a ( e ifk/n _ 1) ^ exp c f 

W Ix I l+a ^k 

°° 1 - cos x
= exp -cltl^ f W

411+”^
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Section 29

29.1. (a) If f is lower semicontinuous, [x: f(x) > t] is open. If f is positive, which is
no restriction, then Jf dµ = Joµ[ f > t] dt < J^ lim info µ n[ f > t] dt _<
lim info Joµ„[ f > t]dt = lim info Jfdµ n .
(h) If G is open, then IG is lower semicontinuous.

29.7. Let 	 be the covariance matrix. Let M be an orthogonal matrix such that the
entries of MEM' are 0 except for the first r diagonal entries, which are L If
Y = MX, then Y has covariance matrix MEM', and so Y= (Y1 , ..: , Yr , 0, ... , 0),
where Y1 , . , Yr are independent and have the standard normal distribution.
But IX1 2 = E1Y, 2 .

29.8. By Theorem 29.5, X,, has asymptotically the centered normal distribution with
covariances o-, . Put x = pI/2) and show that Ex' = 0, so that 0 is an
eigenvalue of E. Show that 1y' = y' if y is perpendicular to x, so that / has 1
as an eigenvalue of multiplicity k — 1. Use Problem 29.7 together with Theo-
rem 29.2 (h(x) =;x1 2 ).

29.9. (a) Note that n - 1 E;_ I Y? 	 1 and that (X i  ... , X„,) has the same distribu-
tion as (Y,,,,...,Y,,,)/(n-1E;=1Y7)'72.

Section 30

30.1. Rescale so that sn = 1, and put L n(E) = Ek J IX, ^ kI > E Xnk dP. Choose increasing
n u so that L,i(u -I ) <<u -3 for n>> n u , and put M,„= u -I for n„ <n <nu+1•
Then M„ -, 0 and- L n(Mn ) < Mn. Put Yn k = X„k I[ix,1 S M,^]. Show that
Ek E[Ynk] —' 0 and E   E[Yk] -' he1, and apply to Ek Ynk t central limit theo-
rem under (30.5). Show that Ek P[ Xnk * Y„ k ] -, 0.

30.4. Suppose that the moment generating function M„ of µ „ converges to the
moment generating function M of µ in some interval about s. Let v„ have
density esx/M,,(s) with respect to µ„, and let y have density e"/M(s) with
respect to A. Then the moment generating function of Vn converges to that of
v in some interval about 0, and hence vn v. Show that J °° „ f(x)µ„(dx) -,
J°°„ f(x)µ(dx) if f is continuous and has bounded support; see Problem
25.13(b).

30.5. (a) By Holder's inequality 	 1t1x Ir < k r- 1E/b. 1 ^t 1 x1 I r, and so
E r OrJIE1 tjx1 l µ(dx)/r! has positive radius o?convergence. Now

rk txr 	 r 	
r

J k L.^ ^^ µ(^^ = Di' ... tkka(rl,...,rk),
R 

!
= 1

where the summation extends over k-tuples that add to r. Project 11, to the line
by the mapping E 1 t1 x1, apply Theorem 30.1, and use the fact that µ is
determined by its values on half-spaces.

30.6. Use the Cramér-Wold idea.
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30.8. Suppose that k = 2 in (30.30). Then

M[(cos A I x) r '(cos A 2x)1

e iA,x + e --iA,x r1 e 1A 2 x + e - il e x

2 	 2=M
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r1 	
r2

= 2, -r1-r22, -r1-r2 E L 	 .

Iz-Q J! 	 I2

By (26.33) and the independence of A i and A 2 , the last mean here is 1 if
2j 1 - r i = 2j 2 - r2 = 0 and is 0 otherwise. A similar calculation for k= I gives
(30 28), and a similar calculation for general k gives (30.30). The actual form of
the distribution in (30.29) is unimportant. For (30.31) use the multidimensiona!
method of moments (Problem 30.6) and the mapping theorem. For (30.32) use
the central limit theorem; by (30.28). X i has mean 0 and variance 2.

30.10. If n 1 /2 <m <,n and the inequality in (30.33) holds, then loglog n 1 /2 <
log log n- E(log log n) 1 /2 , which implies log log n <E -2  log 2 2. For large n the
probability in (30.33) is thus at most 1/VW.

Section 31

31.1. Consider the argument in Example 31.1. Suppose that F has a nonzero
derivative at x, and let In be the set of numbers whose base-r expansions
agree in the first n places with that of x. The analogue of (31.16) is P[XE
In + 1 ]/P[X E 1,7 1 -) r- 1 , and the ratio here is one of p o ,..., pr . If pi * r-1 for
some i, use the second Borel -Cantelli lemma to show that the ratio is p i

infinitely often except on a set of Lebesgue measure 0. (This last part of the
argument is unnecessary if r= 2.)

The argument in Example 31.3 needs no essential change. The analogue of
(31.17) is

i 	i+1
F(x) =p o + •• +p i - l +p i F(rx -i), 	<x _< r , 0 _<i<r - 1.

31.3. (b) Take f1= 4-1 H„ and f2 = F; (f 1 f2 )-1 {1} =Ho is not a Lebesgue set.

31.9. Suppose that A is bounded, define µ by µ(B) = A(B nA), and let F be the
corresponding distribution function. It suffices to show that F'(x) = 1 for x in
A, apart from a set of Lebesgue measure 0. Let C E be the set of x in A for
which F'(x) s 1 - E. From Theorem 31.4(i) deduce that A(C E ) = µ(CE ) (1 --

E)A(CE ) and hence A(CE )= 0. Thus F'(x) > 1- E almost everywhere on A.
Obviously, F'(x) < 1.

31.11. Let A be the set of x in the unit interval for which F'(x) = 0, take a = 0, and
define A n as in the first part of the proof of Theorem 31.4. Choose n so that
A(A n ) >- 1 - E. Split {1, 2,..., n) into the set M of k for which ((k - 1)/n, k/n]
meets A n and the opposite set N. Prove successively that Ek E M[F(k/n) —

F((k - 1 )/n)]<E, )kE N[F(k/n)-F((k- 1 )/n)]? 1- E, ) kEM 1 /n?A(A„)
1 — E, E vict f(k/n)-f((k- 1)/n)I. 2-2E.
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31.15. Fr_ 	 + 4e2"/3n).

31.18. For x fixed, let u„ and un be the pair of successive dyadic rationals of order n
(Un — u n = 2 - ") for which u n <x < U n . Show that

Î(U
Un—

) f(un) _ ^ I
 ak(UU ) _ûk (u n ) _ n-1 ^{ ),ak x

 n 	 k=0	 n 	 n 	k=0

where ak is the left-hand derivative. Since a(x) _ + L_for all x and k, the
difference ratio cannot have a finite limit

31.22. Let A be the x-set where (31.35) fails if f is replaced by fc'; then A has
Lebesgue measure O. Let G be the union of all open sets of µ-measure 0;
represent G as a countable disjoint union of open intervals, and let B be G
together with any endpoints of zero µ-measure of these intervals. Let D be the
set of discontinuity points of F. If F(x) A, x B, and x D, then F(x — h)
< F(x) < F(x + h), F(x f h)—> F(x), and

F(x +h) 1F (x — h) 1F^ Xx h^ )f(`p(t)) dt —> f(cp(F(x))}.

Now x — c < cp(F(x)) <x follows from F(x — €)< F(x), and hence cp(F(x)) _
x. If A is Lebesgue measure restricted to (0,1), then µ = Àcp — ', and (31.36)
follows by change of variable. But (36.36) is easy if x E D, and hence it holds
outside B U (D` n F - 'A). But A(B)= 0 by construction and µ(D` n F - 'A) = O
by Problem 14.4.

Section 32

32.7. Define A n and vn as in (32.7), and write v = vân ) + vs" ), where vLn ) is
absolutely continuous with respect to µn and v" ) is singular with respect to
µ n . Take vac = E n va" ) and vs = E n v!" ) .

Suppose that va°(E) + vs(E) = vac(E) + vs(E) for all E in Sr. Choose an S
in Sr that supports vs and vs and satisfies µ(S) = O. Then va,(E)
vac(E n S`) = vac( E n SC) + vs(E n S`) = vaVE n S`) + vs(E n S`) = vat c(E n
S`) = c(E). A similar argument shows that vs(E) = vs(E).

32.8. (a) Show that .0 is closed under the formation of countable unions, choose
96-sets Bn such that µ(Bn ) —' sup er µ(B) (< co), and take Bo = U n Bn .
(b) The same argument.
(e) Suppose µ(Do ) > O. The maximality of B o implies that B o U D o contains
an E such that µ(E) > 0 and v(E) < co. Since Bo n E c Bo E .Q, µ(Bo (1 E) = 0
(v(E) < co rules out v(80 fl E) = cc). Therefore, µ(D o fl E) > 0 and
v(D o n E) < co, which contradicts the maximality of C o .
(d) Take the density to be on on fro- .

32.9. Define f and vs as in (32.8), and let f and vs be the corresponding func-
tion and measure for Yo: v(E) = JE f ° dµ + vs (E) for E E Y°, and there
is an Y° -set S° such that v:(0, — S°) = 0 and µ(S° ) = O. If E E .f° , it fol-
lows that JE f ° dµ = JE_.0 f ° dµ = JE-S° f ° dµ° = v ° (E - 5° ) = v(E —
1E---.0fdµ = JEfdµ
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It is instructive to consider the extreme case .f° = (0, fl), in which v° is
absolutely continuous with respect to µ° (provided µ(fl) > 0) and hence vs
vanishes.

Section 33

33.2. (a) To prove independence, check the covariance. Now use Example 33.7.
(b) Use the fact that R and 0 are independent (Example 20.2).
(c) As the single event [X = Y] = [X — Y= 0] _ [0 = 7r/4] u [0 = 57/4] has
probability 0, the conditional probabilities have no meaning, and strictly
speaking there is nothing to resolve But whether it is natural to regard the
degrees of freedom as one or as two depends on whether the 45° line through
the origin is regarded as an element of the decomposition of the plane into 45°
lines or whether it is regarded as the union of two elements of the decomposi-
tion of the plane into rays from the origin.

Borel's paradox can be explained the same way: The equator is an element
of the decomposition of the sphere into lines of constant latitude; the Green-
wich meridian is an element of the decomposition of the sphere into great
circles with common poles. The decomposition matters, which is to say the
a-field matters.

33.3. (a) If the guard says, "1 is to be executed," then the conditional probability
that 3 is also to be executed is 1/(1 +p). The "paradox" comes from assuming
that p must be 1, in which case the conditional probability is indeed 2. But if
p # 2, then the guard does give prisoner 3 some information.
(b) Here "one" and "other" are undefined, and the problem ignores the
possibility that you have been introduced to a girl. Let the sample space be

bbo a
, 	 bgo f3 ,gbo 4 ,	 ggo 4 ,
1—a 	 1 —/3	 1— y	 1- 6bby  4 , bgy 4 ,gbY 4 , ggY - 4 •

For example, bgo is the event (probability /3/4) that the older child is a boy,
the younger is a girl, and the child you have been introduced to is the older;
and ggy is the event (probability (1 — 6)/4) that both children are girls and the
one you have been introduced to is the younger. Note that the four sex .

distributions do have probability 4. If the child you have been introduced to is
a boy, then the conditional probability that the other child is also a boy is
p = 1/(2 + /3 - y). If f3 =1 and y = 0 (the parents present a son if they have
one), then p = 4. If /3 = y (the parents are indifferent), then p = 2. Any p
between 4 and 1 is possible.

This problem shows again that one must keep in mind the entire experi-
ment the sub-a-field ,1 represents, not just one of the possible outcomes of
the experiment.

33.6. There is no problem, unless the notation gives rise to the illusion that p(AIx)
is P(A n [X =x])/P[X =x].

33.15. If N is a standard normal variable, then

	 X
^py Y+ ,În) 2^re 2/2f

 Y+iri) IE Î Y+fil
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Section 34

34.3. If (X, Y) takes the values (0, 0), (1, —1), and (1,1) with probability 3 each, then
X and Y are dependent but E[YII X] = E[Y] = O.

If (X, Y) takes the values (-1,1), (0, —2), and (1,1) with probability each,
then E[X]=E[Y]=E[XY]= 0 and so E[XY]=E[X]E[Y], but E[YIIX]=
Y # 0 = E[Y ]. Of course, this is another example of dependent but uncorre-
lated random variables.

34.4. First show that f fdPo = JB fdP/P(B) and that P[BhI.#] > 0 on a set of Po-
measure 1. Let G be the general set in S.
(a) Since

f P0 [AII.1]P[BII.9] dP= f P0[AILI]J5dP= f 10P0[AIIJ1dP

= P(B) , f L̂ [IG Pp AII^] dPo = P(B)Po (A n G)

= JP[A n B lIS ] dP,

it follows that

Po [AIId]P[BIIS] =P[A nBIIS]

holds on a set of P-measure 1.
(b) If P,(A) = P(AI B,), then

f Pi [ AV] âP=P(B; ) f 1G P; [AII,1]dPi =P(B,)P; (A n G)
G n B; 	f2

 âl dP.
GnB ;

Therefore, fcIB P,[A11J]dP = IcIB	 c°]dP if C= G n B,, and of
course this holds for C= G n B1 it j # i. But C's of this form constitute a
rr-system generating .1v or, and hence IB .P,[AII1] =1B .P[AII.1v °] on a
set of P-measure 1. Now use the result in part (a).

34.9. All such results can be proved by imitating the proofs for the unconditional
case or else by using Theorem 34.5 (for part (c), as generalized in Problem
34.7). For part (a), it must be shown that it is possible to take the integral
measurable .1.

34.10. (a) If Y=X—E[X11J1 ], then X — E[X1 1 .12]=Y — E[Y11.12], and E[(Y—
E[Y11J2 ]) 2 11J2 ] = E[Y 2 11J2 ] — E 2 [Y11, 2̂ ] < E[Y 2 11J2 ]. Take expected values.

34.11. First prove that

P[A 1 nA 3 11...12 ] =E[IA,P[A31142]V2] •
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From this and (i) deduce (ii). From

E[rA,P[As11-12pz1 = P[A1 11 .12]P[A311^2],

(ii), and the preceding equation deduce

f 	 P[A311Jz]dP= f	 P[A311J12]dP .

A,nA 2 	A,nA2

The sets A 1 n A 2 form a 7T-system generating 42.

34.16. (a) Obviously (34.18) implies (34.17). If (34.17) holds, then clearly (34.18) holds
for X simple. For the general X, choose simple Xk such that lien k Xk = X and
I Xk I < I X_ I. Note that

f XdP-aJXdP
A„

f Xk dP-ct fXk dP
/1 ,f

+(1 +Ial)E[IX - Xk l];

let n -> cc and then let k -> cc.
(b) If Ç E 9, then the class of E satisfying (34.17) is a A-system, and so by
the 7r-A theorem and part (a), (34.18) holds if X is measurable o-C9). Since
A n E o-(. ), it follows that

f XdP= f E[XIIaG.9)]dP ->a f E[Xliv(y°)]dP
A„ 	 A n

= a f XdP .

(c) Replace X by XdPo/dP in (34.18).

34.17. (a) The Lindeberg-Lévy theorem.
(b) Chebyshev's inequality.
(e) Theo1 em 25.4.
(d) Independence of the X".
(e) Problem 34.16(b).
(f) Problem 34.16(c).
(g) Part (b) here and the c-S definition of absolute continuity.
(h) Theorem 25.4 again.

Section 35

35.4. (b) Let S" be the number of k such that 1 _< k _< n and Yk = 2. Then
X" = 3 5,12". Take logarithms and use the strong law of large numbers.
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35.9. Let K bound IX,I and the IXn - Xn _ II. Bound I XT I by KT. Write L. k XT dP=
E i 1 1r ^,X; dP = Ek_ 1(JT z, Xi dP - J

T z r+ 1 X1 dP). Transform the last integral
by the martingale property and reduce the expression to E[X1] - JT > k Xk +1 dP.
Now

f Xk+1 dP
>k
 <K{k + 1)P[T> k] <K( k + 1)k -1 f TdP-> O.

T >k  

35.13. (a) By the result in Problem 32.9, X 1 , X2, .. is a supermartingale. Since
E[I X,r I] = E[Xn ] <_ v(fl), Theorem 35.5 applies.
(b) If A E ,J;;, then JA(Yn + Zn ) dP + un(A) = JAX^

 dP + crofA) = v(A)
JA X„ dP + on(A). Since the Lebesgue decomposition is unique (Problem 32.7),
Y„ + Z„ = X„ with probability 1. Since X„ and Y„ converge, so does Z„. If
A E .9 and n >_ k, then JA Zn dP < cr,(A), and by Fatou's lemma, the limit Z
satisfies LI Z dP <Q-(A). This holds for A In U k.9 and hence (monotone
class theorem) for A in .9 . Choose A so that P(A) = 1 and a- (A) = 0:
E[Z] = JA ZdP -< u,SA) = O.

It can happen that o-n(n) = 0 and °œ() = v(5l) > 0, in which case o-n does
not converge to oc and the X, cannot be integrated to the limit.

35.17. For a very general result, see J. L. Doob: Application of the theory of
martingales, Le Calcul des Probabilités et ses Applications (Colloques Interna-
tionaux du Centre de la Recherche Scientifique, Paris, 1949).

Section 36

36.5. (b) Show by part (a) and Problem 34.18 that fn is the conditional expected
value of f with respect to the a-field 5;,,, generated by the coordinates
xn+l , xn+2. • • • • By Theorem 35.9, (36.30) will follow if each set in n nT has
Tr-measure either 0 or 1, and here the zero-one law applies.
(c) Show that g n is the conditional expected value of f with respect to the
a-field generated by the coordinates x, , ... , x n , and apply Theorem 35.6.

36,7. Let 2 be the countable set of simple functions E ; a ; IA for a ; rational and
{A 1 } a finite decomposition of the unit interval into subintervals with rational
endpoints. Suppose that the X, exist, and choose (Theorem 17.1) Y, in 2 so
that E[I X, - Y, I] < â. From E[I XS - X,I] = 2, conclude that E[IYS - Yi n  > 0 for
s # t. But there are only countably many of the Y,. It does no good to replace
Lebesgue measure by some other measure on the unit interval.

Section 37

37.1. If t,,..., t k are in increasing order and t o = 0, then

min{i,j)
Ex i x ` E (t,-1,_,)

i,i 	 i,j 	 t^1

2

- E(tr-ti-!)(Exi) >_0.
t 	 r >t
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37.4 (a) Use Problem 36.6(b).
(b) Let [W,: t >_ 0] be a Brownian motion on (f, . P0 ), where W(•, w) E C
for every w. Define e: û -* RT by Z,(e(w)) = W,(w). Show that 6 is mea-
surable ,f/yQT and P = Po i—'. If C cA E .9l, then P(A) = Po (Ç— IA) _
P0(û)= 1.

37.5. Consider W(1) = Ek 1(W(k /n) - W((k - 1)/n)) for notational convenience.
Since

nf 	 w2(1^ dP= f 	 W2(1) dP^ O,
IW( 1 ; n)I?E 	 n 	 ^

/ 	 It^/(^)IzE^n

the Lindeberg theorem applies.

37.14. By symmetry,

p(s, t ) = 2PEWS > 0, inf (Wu - Ws ).. -Ws ];
s <u S r

Ws and the infimum here are independent because of the Markov property,
and so by (20.30) (and symmetry again)

p(s , t) = 2 f ^
P[rX t 

- s] 1 e -x 2 /2 s dd
o	 12Trs

= 2 f cc f r--s x 	 1 e-x2/2u  1  e—XZ /2s du dr.
0 o 1127r u 372 	1127s

Reverse the integral, use Foxe -x2r/2 dx = 1/r, and put u = (s/(s + u))'72:

1r -s 1	 s' /2
P(s't)

- 74.0 u+s u i /2du
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Convergence of random series, 289
Convergence of types, 193
Convex functions, A32
Convolution, 266

Coordinate function, 27, 484
Coordinate variable, 484
Countable, 8
Countable additivity, 23, 161
Countable subadditivity, 25, 162
Countably generated a-field, 2 11
Countably infinite, 8
Counting measure, 161
Coupled chain, 126
Coupon problem, 362
Covariance, 277
Cover, A3
Cramér-Wold theorem, 383
Cylinder, 27, 485

Daniell-Stone theorem, 11 14, 16 12
Darboux-Young definition, 15.2
is-distribution, 192
Decision theory, 247
Decomposition, A3
de Finetti theorem, 473
Definite integral, 200
Degenerate distribution function, 193
Delta method, 359
DeMoive-Laplace theorem, 25.11, 358
DeMorgan law, A6
Dense, A15
Density of measure, 213, 422
Density point, 31.9
Density of random variable or distribution,

257, 260
Density of set of integers, 2.18
Denumerable probabilities, 51
Dependent random variables, 363
Derivatives of integrals, 402
Diagonal method, 29, A14
Difference equation, A19
Difference set, Al
Diophantine approximation, 13, 324
Dirichlet theorem, 13, A26
Discontinuity of the first kind, 534
Discrete measure, 23, 161
Discrete random variable, 256
Discrete space, 1.1, 23, 5.16
Disjoint, A3
Disjoint supports, 410, 421
Distribution:

of random variable, 73, 187, 256
of random vector, 259

Distribution function, 175, 188, 256, 259, 409
Dominated convergence theorem, 78, 209
Dominated measure, 422
Double exponential distribution, 348
Double integral, 233
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Double series, A27
Doubly stochastic matrix, 8.20
Dual space, 245
Dubins-Savage theorem, 102
Dyadic expansion, 3, A31
Dyadic interval, 4
Dyadic transformation, 313
Dynkin's 1r-A theorem, 42

e-5 definition of absolute continuity, 422
Egorov theorem, 13 9
Eigenvalues, 8.26
Empirical distribution function, 268
Empty set, Al
Entropy, 57, 6.14, 8.31, 31.17
Equicontinuous, 355
Equivalence class, 58
Equivalent measures, 422
Erd6s-Kac central limit theorem, 395
Ergodic theorem, 314
Erlang density, 23.2
Essential supremum, 241
Estimation, 251, 452
Etemadi, 282, 288, 22.15
Euclidean distance, A16
Euclidean space, Al, A16
Euler function, 2.18
Event, 18
Excessive function, 134
Exchangeable, 473
Existence of independent sequences, 73, 265
Existence of Markov chains, 115
Expected value, 76, 273
Exponential convergence, 131, 8.18
Exponential distribution, 189, 258, 297, 348
Extension of measure, 36, 166, 11.1
Extremal distribution, 195

Factorization and sufficiency, 450
Fair game, 92, 463
Fatou lemma, 209
Field, 19, 2.5
Filtration, 458
Finite add itivity, 20, 23, 2.15, 3 8, 161
Finite or countable, 8
Finite-dimensional distributions, 308, 482
Finite-dimensional sets, 485
Finitely additive field, 20
Finite subadditivity, 24, 162
First Borel-Cantelli lemma, 59
First category, 1.10, A15
First passage, 118
fixed discontinuity, 303
Fourier representation, 250

Fourier series, 351, 26.30
Fourier transform, 342
Frequency, 8
Fubini theorem, 233
Functional central limit theorem, 522
Fundamental in probability, 20 21
Fundamental set, 320
Fundamental theorem of calculus, 224, 400
Fundamental theorem of Diophantine

approximation, 324

Gambling policy, 98
Gamma distribution, 20.17
Gamma function, 18 18
Generated a--field, 21
Glivenko-Cantelli theorem, 269
Goncharov's theorem, 361

Hahn decomposition, 420
Hamel basis, 14 7
Hardy-Ramanujan theorem, 6.16
Heine-Borel theorem, A13, A17
Hewitt-Savage zero-one law, 496
Hilbert space, 249
Hitting time, 136
Hdlder's inequality, 80, 5 9, 242, 276
Hypothesis testing, 151

Inadequacy of ,9P T, 492
Inclusion-exclusion formula, 24, 163
Indefinite integral, 400
Identically distributed, 85
Independent classes, 55
Independent events, 53
Independent increments, 299, 498
Independent random variables, 71, 261
Independent random vectors, 263
Indicator, A5
Infinitely divisible distributions, 371
Infinitely often, 53
Infinite series, A25
Information, 57
Initial digit problem, 25.3
Initial probabilities, 111
Inner boundary, 64
Inner measure, 37, 3.2
Integrable, 200, 206
Integral, 199
Integral with respect to Lebesgue measure,

221
Integrals of derivatives, 412
Integration by parts, 236
Integration over sets, 212
Integration with respect to a density, 214
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Interior, All
Interval, A9
Invariance principle, 520
Invariant set, 313
Inverse image, A7, 182
Inversion formula, 346
Irreducible chain, 119
Irregular paths, 504
Iterated integral, 233

Jacobian, 225, 261, 545
Jensen inequality, 80, 276, 449
Jordan decomposition, 421
Jordan measurable, 3.15

k-dimensional Bore! set, 158
k-dimensional Lebesgue measure, 171, 177,

17 14, 20.4
Kolmogorov existence theorem, 483
Kolmogorov zero-one law, 63, 287

Landau notation, A18
Laplace distribution, 348
Laplace transform, 285
Large deviations, 148
Lattice distribution, 26.1
Law of the iterated logarithm, 153
Law of large numbers:

strong, 9, 11, 85, 282
weak, 5, 11, 86, 284

Lebesgue decomposition, 414, 425
Lebesgue density theorem, 31.9, 35.15
Lebesgue function, 31.3
Lebesgue integrable, 221, 225
Lebesgue measure, 25, 43, 167, 171, 177
Lebesgue set, 45
Leibniz formula, 17.8
Lévy distance, 14.5, 25.4, 26.16
Likelihood ratio, 461, 471
Limit inferior, 52, 4.1
Limit of sets, 52
Lindeberg condition, 359
Lindeberg-Lévy theorem, 357
Linear Borel set, 158
Linear functional, 244
Linearity of expected value, 77
Linearity of the integral, 206
Linearly independent reals, 14.7, 30.8
Lipschitz condition, 418
Log-normal distribution, 388
Lower integral, 204, 228
Lower semicontinuous, 29.1
Lower variation, 421
LP-space, 241

A-system, 41
Lusin theorem, 17.10
Lyapounov condition, 362
Lyapounov inequality, 81, 277

Mapping theorem, 344, 380
Marginal distribution, 261
Markov chain, 111, 363, 367, 29.11, 429
Markov inequality, 80, 276
Markov process, 435, 510
Markov shift, 312
Markov time, 133
Martingale, 101, 458, 514
Martingale central limit theorem, 475
Martingale convergence theorem, 468
Maximal ergodic theorem, 317
Maximal inequality, 287
Maximal solution, 122
p.-continuity set, 335, 378
m-dependent, 6 11, 364
Mean value, 26.17
Measurable mapping, 182
Measurable process, 503
Measurable rectangle, 231
Measurable with respect to a cr•field, 68, 225
Measurable set, 20, 38, 165
Measurable space, 161
Measure, 22, 160
Measure-preserving transformation, 311
Measure space, 161
Meets, A3
Method of moments, 388, 30.6
Minimal sufficient field, 454
Minimum-variance estimation, 454
Minkowski inequality, 5.10, 242
Mixing, 24.3, 363, 29.10, 34.16
Mixture, 473
µ*-measurable, 165
Moment, 274
Moment generating function, 1.6, 146, 278,

284, 390
Monotone, 24, 162, 206
Monotone class, 43, 3.12
Monotone class theorem, 43
Monotone convergence theorem, 208
M-test, 210, A28
Multidimensional central limit theorem, 385
Multidimensional characteristic function, 381
Multidimensional distribution, 259
Multidimensional normal distribution, 383
Multinomial sampling, 29.8

Negative part, 200, 254
Negligible set, 8, 1.3, 1.9, 44
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Neyman-Pearson lemma, 19.7
Nonatomic, 2.19
Nondenumerable probabilities, 526
Nonmeasurable set, 45, 12 4
Nonnegative series, A25
Norm, 243
Normal distribution, 258, 383
Normal number, 8, 1 8, 86, 6 13
Normal number theorem, 9, 6.9
Nowhere dense, A15
Nowhere differentiable, 31.18, 505
Null persistent, 130
Number theory, 393

Open set, All
Optional sampling theorem, 466
Optimal stopping, 133
Order of dyadic interval, 4
Orthogonal projection, 250
Orthonormal, 249
Ottaviani inequality, 22.15
Outer boundary, 64
Outer measure, 37, 3.2, 165

Pairwise disjoint, A3
Partial-fraction expansion, 20.14
Partial information, 57
Partition, A3
Path function, 308, 493, 500
Payoff function, 133
Perfect set, A15
Peano curve, 179
Period, 125
Permutation, 72, 86, 361
Persistent, 117, 120
Phase space, 111
a•À theorem, 42
P*-measurable, 38
Poincaré theorem, 29.9
Point of increase, 12 9, 20.12
Poisson approximation, 302, 328
Poisson distribution, 257, 299, 375
Poisson process, 297, 436
Poisson theorem, 6.5
Polar coordinates, 226, 261
Polya criterion, 26.3
Polya theorem, 118
Positive part, 200, 254
Positive persistent, 130
Power class, 21, Al
Power series, A29
Prékopà theorem, 303
Primitive, 224, 400
Probability measure, 22

Probability measure space, 23
Probability transformation, 14 3
Product measure, 28, 12.12, 233, 487
Product space, 27, 231, 484
Projection, 27, 484
Proper difference, Al
Proper subset, Al
1r-system, 41

Rademacher functions, 5, 289, 291
Radon-Nykodym derivative, 423, 460, 470
Radon-Nykodym theorem, 422, 32.8
Random Taylor series, 292
Random variable, 67, 182, 254
Random vector, 183, 255
Random walk, 112
Rank, 4, 320
Ranks and records, 20.8
Rate of Poisson process, 299
Rational rectangle, 158
Realization of process, 493
Record values, 20.9, 21.3, 22.9, 27 8
Rectangle, 158, A16
Recurrent event, 8.17
Red-and-black, 92
Reflection principle, 511
Regularity, 174
Relative frequency, 8
Relative measure, 25.16
Renewal theory, 8.17, 310
Reversed martingale, 472
Riemann integral, 2, 12, 221, 228, 25 12
Riemann -Lebesgue lemma, 345
Riesz-Fischer theorem, 243
Riesz representation theorem, 17.12, 244
Right continuity, 175, 256
Rigid transformation, 172
Risk, 247, 251

Saltus, 188
Sample function, 188
Sample path, 188, 308
Sample point, 18
Sampling theory, 392
Scheffé theorem, 215
Schwarz inequality, 81, 5 6, 249, 276
Second Borel-Cantelli lemma, 60, 4.11, 88
Second category, 1.10, A15
Second-order Markov chain, 8.32
Secretary problem, 114
Section, 231
Selection problem, 113, 138
Selection system, 95, 7.3
Semicontinuous, 29 1
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Semiring, 166
Separable function, 526
Separable process, 527, 531
Separable a--field, 2.11
Separant, 527
Sequence space, 27, 311
Set function, 22, 420
a-field, 20
a--field generated by a class of sets, 21
a-field generated by a random variable, 68,

255
a--finite on a class, 160
cr-finite measure, 160
Shannon theorem, 6.14, 8 31
Signed measure, 32.12
Simple function, 184
Simple random variable, 67, 185, 254
Singleton, Al
Singular function, 407
Singularity, 421
Singular part, 425
Skorohod embedding, 513, 519
Skorohod theorem, 333
Southwest, 176, 247
Space, Al, 17
Souare-free integers, 4.15
Stable law, 377
Standard normal distribution, 258
State space, 111
Stationary distribution, 124
Stationary increments, 499
Stationary probabilities, 124
Stationary process, 363, 494
Stationary sequence of random variables, 363
Stationary transition probabilities, 111
Stieltjes integral, 228
Stirling formula, 27.18
Stochastic arithmetic, 2.18, 4.15, 4.16, 5.19,

6.16, 18.17, 25.15, 393, 30.9, 30.10, 30.11
Stochastic matrix, 112
Stochastic process, 298, 308, 482
Stopping time, 99, 133, 464, 465, 508
Strong law of large numbers, 8, 9, 11, 85, 6.8,

282, 312, 27.20
Strong Markov property, 508
Subadditivity:

countable, 25, 162
finite, 24, 162

Subfair game, 92, 102
Submartingale, 462
Subset, Al
Subsolution, 8.5

Sufficient subfield, 450
Superharmonic function, 134
Supermartingale, 462
Support line, A33
Support of measure, 23, 161
Symmetric difference, Al •
Symmetric random walk, 113, 35.10
Symmetric stable law, 378
System, 111

Tail a--field, 63, 287, 496
Tarski theorem, 3.8
Taylor series, A29, 292
Thin cylinders, 27
Three series theorem, 290
Tightness, 336, 380
Timid play, 108
Tonelli theorem, 234
Total variation, 421
Trajectory of process, 493
Transformation of measures, 185, 215
Transient, 117, 120
Transition probabilities, 111
Translation invariance, 45, 172
Triangular array, 359
Triangular distribution, 348
Trifling set, 1.3, 1.9, 3.15
Type, 193

Unbiased estimate, 251, 454
Uncorrelated random variables, 7, 277
Uniform distribution, 258, 348
Uniform distribution modulo 1, 328, 352
Uniform integrability, 216, 338
Uniformly equicontinuous, 26.15
Uniqueness of extension, 36, 42, 163
Uniqueness theorem for characteristic

functions, 346, 382
Uniqueness theorem for moment generating

functions, 147, 284, 26.7, 390
Unit inte rval, 51
Unit mass, 24
Uperossing, 467
Upper integral, 204, 228
Upper semicontinuous, 29.1
Upper variation, 421
Utility function, 7 12

Vague convergence, 371
Value of payoff function, 134
van der Waerden function, 31.18
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Variance, 78, 275
Version of conditional expected value, 445
Version of conditional probability, 430
Vieta formula, 1.7

Wald equation, 22.8
Weak convergence, 190, 327, 378
Weak law of large numbers, 5, 11, 86, 284
Weierstrass approximation theorem, 87, 26 19

Weierstrass M-test, 210, A28
Weiner process, 498
With probability 1, 60

Zeroes of Brownian motion, 507
Zero-one law, 63, 117, 8.35, 286, 22.12, 314,

496, 37.4
Zorn's lemma, A8
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