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Preface

Edwaid Davenant said he “would have a man knockt in the head that should
write anything in Mathematiques that had been written of before.” So
reports John Aubrey in his Brief Lives. What is new here then?

To introduce the idea of measure the book opens with Borel’s normal
number theorem, proved by caiculus alone. and there follow short sections
establishing the existence and fundamental properties of probability mea-
sures, including Lebesgue measure on the unit interval. For simple random
variables—ones with finite range—the expected value is a sum instead of an
integral. Measure theory, without integration, therefore suffices for a com-
pletely rigorous study of infinite sequences of simple random variables, and
this is carried out in the remainder of Chapter 1, which treats laws of large
numbers, the optimality of bold play in gambling, Markov chains, large
deviations, the law of the iterated logarithm. These developments in their
turn motivate the general theory of measure and integration in Chapters 2
and 3.

Measure and integral are used together in Chapters 4 and 5 for the study
of random sums, the Poisson process, convergence of measures, characteristic
functions, central limit theory. Chapter 6 begins with derivatives according to
Lebesgue and Radon-Nikodym—a return to measure theory—then applies
them to conditional expected values and martingales. Chapter 7 treats such
topics in the theory of stochastic processes as Kolmogorov’s existence theo-
rem and separability, all illustrated by Brownian motion.

What is new, then, is the alternation of probability’and measure, probabil-
ity motivating measure theory and measure theory generating further proba-
bility. The book presupposes a knowledge of combinatorial and discrete
probability, of rigorous calculus, in particular infinite series, and of elemen-
tary set theory. Chapters 1 through 4 are designed to be taken up in
sequence. Apart from starred sections and some examples, Chapters 5, 6, and
7 are independent of one another; they can be read in any order.

My goal has been to write a book I would myself have liked when I first
took up the subject, and the needs of students have been given precedence
over the requirements of logical economy. For instance, Kolmogorov’s exis-
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vi PREFACE

tence theorem appears not in the first chapter but in the last, stochastic
processes needed ecarlier having been constructed by special arguments
which, although technically redundant, motivate the general result. And the
general result is, in the last chapter, given two proofs at that. It is instructive,
I think, to see the show in rehearsal as well as in performance.

The Third Edition. The main changes in this edition are two For the
theory of Hausdorff measures in Section 19 I have substituted an account of
L7 spaces, with applications to statistics. And for the queueing theory in
Section 24 1 have substituted an introduction to ergodic theory, with applica-
tions to continued fractions and Diophantine approximation. These sections
now fit better with the rest of the book, and they illustrate again the
connections probability theory has with applied mathematics on the one hand
and with pure mathematics on the other.

For suggestions that have led to improvements in the new edition, 1 thank
Raj Bahadur, Walter Philipp, Michael Wichura, and Wing Wong, as well as
the many readers who have sent their comments.

Envoy. I said in the preface to the second edition that there would not be
a third, and yet here it is. There will not be a fourth. It has been a very
agreeable labor, writing these successive editions of my contribution to the
river of mathematics. And although the contribution is small, the river is
great: After ages of good service done to those who people its banks, as
Joseph Conrad said of the Thames, it spreads out “in the tranquil dignity of a
waterway leading to the uttermost ends of the earth.”

PATRICK BILLINGSLEY

Chicago, llinois
December 1994
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CHAPTER

Probability

SECTION 1. BOREL’S NORMAL NUMBER THEOREM

Although sufficient for the development of many interesting topics in mathe-
matical probability, the theory of discrete probability spaces’ does not go far
enough for the rigorous treatment of problems of two kinds: those involving
an infinitely repeated operation, as an infinite sequence of tosses of a coin,
and those involving an infinitely fine operation, as the random drawing of a
point from a segment. A mathematically complete development of probabil-
ity, based on the theory of measure, puts these two classes of problem on the
same footing, and as an introduction to measure-theoretic probability it is the
purpose of the present section to show by example why this should be so.

The Unit Interval

The project is to construct simultaneously a model for the random drawing of
a point from a segment and a model for an infinite sequence of tosses of a
coin. The notions of independence and expected value, familiar in the
discrete theory, will have analogues here, and some of the terminology of the
discrete theory will be used in an informal way to motivate the development.
The formal mathematics, however, which involves only such notions as the
length of an interval and the Riemann integral of a step function, will be
entirely rigorous. All the ideas will reappear later in more general form.

Let Q denote the unit interval (0, 1]; to be definite, take intervals open on
the left and closed on the right. Let w denote the generic point of (2. Denote
the length of an interval I =(a, b] by |I]:

(1.1) 11=I(a, ]| =6 a.

"For the discrete theory, presupposed here, see for example the first half of Volume I of FELLER.
(Names in capital letters refer to the bibliography on p. 581)
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If

n

(1.2) A=UZL= U (a,b],

=1 (=1

where the intervals I, =(a;,b,] are disjoint [A3]" and are contained in {2,

1

assign to A the probability

(13) P(A) = Tlil= ¥ (b-a).

=1 i=1

It is important to understand that in this section P(A) is defined only if A is
a finite disjoint union of subintervals of (0, i]l—never for sets 4 of any other
kind.

If A and B are two such finite disjoint unions of intervals, and if 4 and B
are disjoint, then 4 U B is a finite disjoint union of intervals and

(1.4) P(AUB)=P(A)+P(B).

This relation, which is certainly obvious intuitively, is a consequence of the
additivity of the Riemann integral:

1 1 1
(1.5) [(f(w) +g(@)) do = [ f(w)do+ [ g(o) do.
0 0 0
If f(w) is a step function taking value c; in the interval (x;_,, x;], where 0 =x, <
x; <+ <x, =1, then its integral in the sense of Riemann f'las the value
| k
(1.6) j;f(w)dw= 2 ¢i(x;— %1
i=1

If f=1, and g =1, are the indicators [A5] of 4 and B, then (1.4) follows from (1.5)
and (1.6), provided 4 and B are disjoint. This also shows that the definition (1.3) is
unambiguous—note that A will have many representations of the form (1.2) because
(a, b] U (b, c] = (a,c]. Later these facts will be derived anew from the general theory
of Lebesgue integration.?

According to the usual models, if a radioactive substance has emitted a
single a-particle during a unit interval of time, or if a single telephone call
has arrived at an exchange during a unit interval of time, then the instant at
which the emission or the arrival occurred is random in the sense that it lies
in (1.2) with probability (1.3). Thus (1.3) is the starting place for the

'A notation [An] refers to paragraph n of the appendix beginning on p. 536; this is a collection
of mathematical definitions and facts required in the text.

*Passages in small type concern side issues and technical matters, but their contents are
sometimes required later,
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description of a point drawn at random from the unit interval: (} is regarded
as a sample space, and the set (1.2) is identified with the event that the
random point lies in it.

The definition (1.3) is also the starting point for a mathematical represen-
tation of an infinite sequence of tosses of a coin. With each w associate its
nonterminating dyadic expansion

(1.7) oo ¥ "é,‘,") = d(w)dy(w)...,

n=1

each d,(w) being 0 or 1 [A31]. Thus

(18) (di(@), dx(w),..)

is the sequence of binary digits in the expansion of w. For definiteness, a

point such as +=.1000... = .0111..., which has two expansions, takes the

nonterminating one; 1 takes the expansion .111....

Graph of dy(w) Graph of d,(w)

Imagine now a coin with faces labeled 1 and 0 instead of the usual heads
and tails. If @ is drawn at random, then (1.8) behaves as if it resulted from an
infinite sequence of tosses of a coin. To see this, consider first the set of w
for which d(w)=u; for i=1,...,n, where u,,...,u, is a sequence of (s
and 1’s. Such an w satisfies

, U; °°1
L < w ~ 4 —
= Ly Z2

M:
RS
IIM:

1

{

i

where the extreme values of w correspond to the case d,(w) = 0 for i > n and
the case d,(w) = 1 for { > n. The second case can be achieved, but since the
binary expansions represented by the d{w) are nonterminating——do not end
in (’s—the first cannot, and @ must actually exceed L}_,u,/2". Thus

(1.9) [w:ci,-(w)=u,-,i=l,...,n]= E —E,Z--:-+~2—,, .



4 PROBABILITY
The interval here is open on the left and closed on the right precisely
because the expansion (1.7) is the nonterminating one. In the model for coin

tossing the set (1.9) represents the event that the first n tosses give the
outcomes u,,...,u, in sequence. By (1.3) and (1.9),

(1.10) P[w:d,-(w)=u,-,i=1,...,n]=%,

which is what probabilistic intuition requires.

1000100‘!01010”110011011”0l1“1

Decompositions by dyadic intervals

The intervals (1.9) are called dyadic intervals, the endpcints being adja-
cent dyadic rationals k /2" and (k + 1)/2" with the same denominator, and
n is the rank or order of the interval. For each n the 2" dyadic intervals of
rank n decompose or partition the unit interval. In the passage from the
partition for n to that for n + 1, each interval (1.9) is split into twe parts of
equal length, a left half on which 4, , (w) is 0 and a right half on which
d,.(w)is 1. For u=0 and for u =1, the set {w: d,, (0)=u] is thus a
disjoint union of 2" intervals of length 1/2"*' and hence has probability 3:
Plo: d (o) =u] =} for all n

Note that d,(w) is constant over each dyadic interval of rank { and that for
n > i each dyadic interval of rank # is entirely contained in a single dyadic
interval of rank i. Therefore, d,(w) is constant over each dyadic interval of
rank n if { <n.

The probabilities of various familiar events can be written down immedi-
ately. The sum L7_,d(w) is the number of 1’s among d,(w),..., d,(w), to be
thought of as the number of heads in n tosses of a fair coin. The usual
binomial formula is

(1.11) P[w: gd,-(w)=k]=(2)%, 0<k<n.

This follows from the definitions: The set on the left in (1.11) is the union of
those intervals (1.9) corresponding to sequences u,,...,u, containing k 1’s

and n — k 0’s; each such interval has length 1/2” by (1.10) and there are (:)
of them, and so (1.11) follows from (1.3).
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The functions d,(w) can be looked at in two ways. Fixing n and letting w
vary gives a real function d,, = d,(+) on the unit interval, Fixing w and letting
n vary gives the sequence (1.8) of 0’s and 1’s. The probabilities (1.10) and
(1.11) involve only finitely many of the components d,(w). The interest here,
however, will center mainly on properties of the entire sequence (1.8). It will
be seen that the mathematical properties of this sequence mirror the proper-
ties to be expected of a coin-tossing process that continues forever,

As the expansion (1.7) is the nonterminating one, there is the defect that
for no w is (1.8) the sequence (1,0,0,0,...), for example. It seems clear that
the chance should be 0 for the coin to turn up heads on the first toss and tails
forever after, so that the absence of (1,0,0,0,...)—or of any other single
sequence—should not matter. See on this point the additional remarks
immediately preceding Theorem 1.2,

The Weak Law of Large Numbers

In studying the connection with coin tossing it is instructive to begin with a
result that can, in fact, be treated within the framework of discrete probabil-
ity. namely, the weak law of large numbers:

Theorem 1.1. For each €.}

1 & 1
;;Edi(“’)_ )

—r o0 ]
n i=1

(1.12) lim P[w:

Ze]=0.

Interpreted probabilistically, (1.12) says that if n is large, then there is
small probability that the fraction or relative frequency of heads in n tosses
will deviate much from 3, an idea lying at the base of the frequency
conception of probability. As a statement about the structure of the real
numbers, (1.12) is also interesting arithmetically.

Since d{w) is constant over each dyadic interval of rank n if i <n, the
sum X7_,dw) is also constant over each dyadic interval of rank n. The set in
(1.12) is therefore the union of certain of the intervals (1.9), and so its
probability is well defined by (1.3).

With the Riemann integral in the role of expected value, the usual
application of Chevyshev’s inequality will lead to a proof of (1.12). The
argument becomes simpler if the d,(w) are replaced by the Rademacher

functions,

+1 ifd(w)=1,

(1.13) (@) =2d,(@) =1=1 1 44 (0) =0,

"The standard € and & of analysis will always be understood to be positive.
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_
e
°r

————

Graph of r,(w) Graph of rp{w)

Consider the partial sums

n

(1.14) sf(@) = Y ri(w).

i=1

Since L]_ d{w} = (s,(w)+n)/2, (1.12) with €/2 in place of ¢ is the same
thing as

. 1
(1.15) lim P[w: I;l-sn(w)' > e] =0.

This is the form in which the theorem will be proved.

The Rademacher functions have themselves a direct probabilistic mean-
ing. If a coin is tossed successively, and if a particle starting from the origin
performs a random walk on the real line by successively moving one unit in
the positive or negative direction according as the coin falls heads or tails,
then r{w) represents the distance it moves on the ith step and s, (w)
represents its position after n steps. There is also the gambling interpreta-
tion: If a gambler bets one dollar, say, on each toss of the coin, r{w)
represents his gain or loss on the ith play and s,(w) represents his gain or
loss in # plays.

Each dyadic interval of rank / — 1 splits into two dyadic intervals of rank /;
r,(w) has value — 1 on one of these and value +1 on the other. Thus r{w) is
—1 on a set of intervals of total length § and +1 on a set of total length 5.
Hence [j'r{w)dw =0 by (1.6), and

(1.16) ['su(@) da=0
0

by (1.5). If the integral is viewed as an expected value, then (1.16) says that
the mean position after n steps of a random walk is 0.

Suppose that i <j. On a dyadic interval of rank j— 1, r{w) is constant
and r{w) has value —1 on the left half and +1 on the right. The product
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r{w)r{w) therefore integrates to 0 over each of the dyadic intervals of rank
j—1,and so

(1.17) folr,-(w)rj(w)dw=0, P

This corresponds to the fact that independent random variables are uncorre-
lated. Since r?(w) = 1, expanding the square of the sum (1,14) shows that

(1.18) folsf(w)dw=n.

This corresponds to the fact that the variances of independent random
variables add. Of course (1.16), (1.17), and {1.18) stand on their own, in no
way depend on any probabilistic interpretation.,

Applying Chebyshev's inequality in a formal way to the probability in
(1.15) now leads to

(1.19) Plw: s (w)| =

2

1 1
s2(w)do = —.
1), J(w)do e

The following lemma justifies the inequality.
Let f be a step function as in (1.6): f(w)=c; for w €{x,_,, x;], where
O=x4< '+ <xp=1.

Lemma. If fis a nonnegative step function, then [w: f(w) > alis for a > 0
a finite union of intervals and

(1.20) Plo: f(e) 2a] S_Zlvﬂj:f(w)dw.

The shaded region
has area
aPlw: flw)> al.

Y

Proor. The set in question is the union of the intervals (xj 1 X; ] for
which ¢; > a. If Y denotes summation over those j satisfying ¢, > e, then
Plw: f(w)>a] Z’(x _;) by the definition (1.3). On the other hand,
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since the c; are all nonnegative by hypothesis, (1.6) gives

1 ‘ !
fof(w)dw = Loo(x=x) 2 Le(x;—x;)

;=1

2 E’a’(xj"—xj_l).
Hence (1.20). a

Taking a = n%? and f(w)=sXw) in (1.20) gives (1.19). Clearly, (1.19)
implies (1.15), and as already observed, this in turn implies (1.12).

The Strong Law of Large Numbers

It is possible with a minimum of technical apparatus to prove a stronger
result that cannot even be formulated in the discrete theory of probability.

Consider the set

n
(1.21) N=lo: lim ~ ¥ d/(w) = -
n-w 7 2
consisting of those @ for which the asymptotic relative frequency” of 1 in the
sequence (1.8) is 5. The points in (1.21) are called normal numbers. The idea
is to show that a real number w drawn at random from the unit interval is
“practically certain” to be normal, or that there is “practical certainty” that 1
occurs in the sequence (1.8) of tosses with asymptotic relative frequency 3. It
is impossible at this stage to prove that P(N) =1, because N is not a finite
union of intervals and so has been assigned no probability. But the notion of
“practical certainty” can be formalized in the following way.
Define a subset A of () to be negligible' if for each positive e there exists
a finite or countable? collection I, ,,... of intervals (they may overlap)

satisfying

(1.22) Ac U1,
k
and
(1.23) YLl <e.
k

A negligible set is one that can be covered by intervals the total sum of
whose lengths can be made arbitrarily small. If P(A) is assigned to such an

"The frequency of 1 (the number of occurrences of it} among d(w),..., d(w)is I d(w), the
relative frequency is n” '™ d(w), and the asymprotic relative frequency is the limit in (1.21),
"The term negligible is introduced for the purposes of this section only. The negligible sets will
reappear later as the sets of Lebesgue measure 0,

*Countably infinite is unambiguous, Countable will mean finite or countably infinite, although it
will sometimes for emphasis be expanded as here to finite or countable.
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A in any reasonable way, then for the I, of (1.22) and (1.23) it ought to be
true that P(A) <X, P(1,)=1X,|1,| <e, and hence P(A) ought to be 0. Even
without any assignment of probability at all, the definition of negligibility can
serve as it stands as an explication of “practical impossibility” and “practical
certainty”: Regard it as practically impossible that the random w will lie in A4
if A is negligible, and regard it as practically certain that o will lie in A if its
complement A° {A1] is negligible.

Although the fact plays no role in the next proof, for an understanding of
negligibility observe first that a finite or countable union of negligible sets is
negligible. Indeed, suppose that A, A,,... are negligible. Given ¢, for each
n choose intervals I ,, 1 ,,... such that A, c U, I, and L, |] | <e/2". All
the intervals /., taken together form a countable collection covering U, 4,,,
and their lengths add to £,X,|1,|< L,e/2" = €. Therefore, U, A, is negli-
gible.

A set consisting of a single point is clearly negligible, and so every countable
set s also negligible. The rationals for example form a negligible set. In the
coin-tossing model, a single point of the unit interval has the role of a single
sequence of (’s and 1’s, or of a single sequence of heads and tails. It
corresponds with intuition that it should be “practicaliy impossible” to toss a
coin infinitely often and realize any one particular infinite sequence set down
in advance. It is for this reason not a real shortcoming of the model that for
no w is (1.8) the sequence (1,0,0,0,...). In fact, since a countable set is
negligible, it is not a shortcoming that (1.8) is never one of the countably
many sequences that end in 0’s.

Theorem 1.2. The set of normal numbers has negligible complement.

This is Borel’s normal number theorem,! a special case of the strong law of
large numbers. Like Theorem 1.1, it is of arithmetic as well as probabilistic
interest.

The set N¢ is not countable: Consider a point @ for which
(dw),dw),...)=(1,1,u;,1,1, u,...)—that is, a point for which d(w) =1
unless { is a multiple of 3. Since n™'L"_,d{w) > %, such a point cannot be
normal. But there are uncountably many such points, one for each infinite
sequence (15, Ug,...) of 0’s and 1’s. Thus one cannot prove N° negligible by

proving it countable, and a deeper argument is required.

Proor oF TueoreM 1.2. Clearly (1.21) and

.1
lim ;l—s,,(w) =0

n—w

(1.24) N= [w:

"Emile Borel: Sur les probabilités dénombrables et leurs applications arithmétiques, Circ. Mat
d. Palermo, 29 (1909), 247-271. See DupLey for excellent historical notes on analysis and

probability,



10 PROBABILITY

define the same set (see (1.14)). To prove N¢ negligible requires constructing
coverings that satisfy (1.22) and (1.23) for 4 = N¢. The construction makes
use of the inequality

(1.25) Plw:|s,(w)] = ne| < n41€4 fols:(w)dw.

This follows by the same argument that leads to the inequality in (1.19)—it is

only necessary to take {w) =s2(w) and a = n'e* in (1.20). As the integral in

(1.25) will be shown to have order n?, the inequality is stronger than (1.19).
The integrand on the right in (1.25) is

(1.26) sa(@) = Lry(@)rg(@)r,(w)ry(w),

where the four indices range independently from 1 to n. Depending on how
the indices match up, each term in this sum reduces to one of the following
five forms, where in each case the indices are now distinct:

rr,-"(w) =1,

riz(“’)rjz(w) =1,

(1.27) ri(o)r(@)n(w) =r(@)r(e),
rP(@)r(w) =ri(w)r(w),

rf(“’)"j(“’)rk(“’)rr(“’)-

If, for example, k exceeds i, j, and [, then the last product in (1.27)
integrates to 0 over each dyadic interval of rank & — 1, because r{(w)r(w)r(w)
is constant there, while r,(w) is —1 on the left half and +1 on the right.
Adding over the dyadic intervals of rank k& — 1 gives

](;lr,-(a»)rj(a))rk(w)r,(w) dw =0.

This holds whenever the four indices are distinct. From this and (1.17) it
follows that the last three forms in (1.27) integrate to 0 over the unit interval,
of course, the first two forms integrate to 1.

The number of occurrences in the sum (1.26) of the first form in (1.27) is
n. The number of occurrences of the second form is 3n(n — 1), because there
are n choices for the « in (1.26), three ways to match it with 8, v, or 8, and
n — 1 choices for the value common to the remaining two indices. A term-by-
term integration of (1.26) therefore gives

(1.28) fls:(w)dw=n+3n(n—l)s3n2,
0
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and it follows by (1.25) that

3

1
;s,,(w)) 26] < e

(1.29) P[w:

Fix a positive sequence {e,} going to 0 slowly enough that the series
¥ €7 ‘n 7 converges (take €, = n~"/%, for example). If 4, =[w: [n7's (@) >
¢.], then P(A,) <3e;*n"2 by (1.29), and s0 £, P(A4,) < .

If, for some m, w lies in AS for all n greater than or equal to m, then
In~'s,(w)l <e, for n > m, and it follows that @ is normal because €, — 0 (see
(1.24)). In other words, for each m, N _,, A5 C N, which is the same thing as
Nec U;_,. A, This last relation leads to the required covering: Given e,
cheose m so that > _ P(A4,) <e. Now A, is a finite disjoint union U, I, of
intervals with ©,|7 ,|= P(A,), and therefore U}, 4, is a countable union
Us.,. Ug I, of intervals (not disjoint, but that does not matter) with
v Ll =50_, P(A,) <e. The intervals I,, (n>m, k> 1) provide a

n=nmt

covering of N° of the kind the definition of negligibility calls for. |

Strorng Law Versus Weak

Theorem 1.2 is stronger than Theorem 1.1. A consideration of the forms of the two
propositions will show that the strong law goes far beyond the weak law.
For each n let f (w) be a step function on the unit interval, and consider the

relation

(1.30) lim Plw:|f.(w)|=€] =0
n—om
together with the set

(1.31) [a): lim f,,(w)=0].

n—oo

If f(w)=n""'s(w), then (1.30) reduces to the weak law (1.15), and (1.31) coincides
with the set (1.24) of normal numbers. According to a general result proved below
(Theorem 5.2(ii)), whatever the step functions f,(w) may be, if the set (1.31) has
negligible complement, then (1.30) holds for each positive €. For this reason, a proof
of Theorem 1.2 is automatically a proof of Theorem 1.1.

The converse, however, fails: There exist step functions f,(w) that satisfy (1.30) for
each positive e but for which (1.31) fails to have negligible complement (Example 5.4).
For this reason, a proof of Theorem 1.1 is not automatically a proof of Theorem 1.2;
the latter lies deeper and its proof is correspondingly more complex.

Length

According to Theorem 1.2, the complement N€ of the set of normal numbers
is negligible. What if N itself were negligible? It would then follow that
(0,11 = N U N° was negligible as well, which would disqualify negligibility as
an explication of “practical impossibility,” as a stand-in for ‘probability
zero.” The proof below of the “obvious” fact that an interval of positive
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length is not negligible (Theorem 1.3(ii)), while simple enough, does involve
the most fundamental properties of the real number system.

Consider an interval I=(a,b] of length |I|=b — a; see (1.1). Consider
also a finite or infinite sequence of intervals I, =(a,,b,] While each of
these intervals is bounded, they need not be subintervals of (0, 1].

Theorem 1.3. (i) If U, I, CI, and the I, are disjoint, then L, |I,|<|!|.
(i) If I < U, I, (the I, need not be disjoint), then |I| < L, ||
(iii) If I = U, I, and the 1, are disjoint, then |I|=X,|I,|.

Proor. Of course (iii) follows from (i) and (ii).

Proor orF (i): Finite case. Suppose there are n intervals. The result
being obvious for n = 1, assume that it holds for » — 1. If 4, is the largest
among a,,...,a, (this is just a matter of notation), then U?_1(a,,b,]C
(a,a,l, so that £7_}(b, —a,) <a,—a by the induction hypothesis, and
hence L} _ (b, —a,) <(a,—a)+ (b, —a,)<b-a.

Infinite case. If there are infinitely many intervals, each finite subcollection
satisfies the hypotheses of (i), and so X} _ (b, —a,) < b —a by the finite case.
But as n is arbitrary, the result follows.

ProOOF OF (ii): Finite case. Assume that the result holds for the case of
n — 1 intervals and that (a,b]C U} _,(a,,b,]. Suppose that a, <b <b, (no-
tation again). If a, <a, the result is obvious. Otherwise, (a,a,]C
UrZ1(a,,b,), so that {2 (b, —a,)>a, —a by the induction hypothesis
and hence X} _ (b, —a,)>(a,—a)+ (b, —a,) =b —a. The finite case thus
follows by induction. ‘

Infinite case. Suppose that (a,blC Us_,(a,,b,]. If 0 <e <b —a, the open
intervals (a,, b, +€27%) cover the closed interval {a + ¢, b], and it follows by
the Heine—Borel theorem [A13] that {a +¢,blc UT_ (a,,b, +€27%) for
some n. But then (a +¢,b] C Uf_ (a,,b, +€27%], and by the finite case,
b—(a+e)<Ti_(b,+€27%—a,)<¥3_(b,—a,)+e Since e was arbi-
trary, the result follows, |

Theorem 1.3 will be the starting point for the theory of Lebesgue measure
as developed in Sections 2 and 3. Taken together, parts (i) and (ii) of the
theorem for only finitely many intervals I, imply (1.4) for disjoint A and B.
Like (1.4), they follow immediately from the additivity of the Riemann
integral; but the point is to give an independent development of which the
Riemann theory will be an eventual by-product.

To pass from the finite to the infinite case in part (i) of the theorem is
easy. But to pass from the finite to the infinite case in part (ii) involves
compactness, a profound idea underlying all of modern analysis. And it is
part (ii) that shows that an interval I of positive length is not negligible: || is
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a positive lower bound for the sum of the lengths of the intervals in any
covering of .

The Measure Theory of Diophantine Approximation*

Diophantine approximation has to do with the approximation of real numbers x by
rational fractions p /q. The measure theory of Diophantine approximation has to do
with the degree of approximation that is possible if one disregards negligible sets of
real x.

For each positive integer ¢, x must lie between some pair of successive multiples
of 1/4, so that for some p, |[x —p/ql<1 /q. Since for each g the intervals

(1.32)

decompose the line, the error of approximation can be further reduced to 1 /24: For
each ¢ there is a p such that |x —p /gl < 1/24q. These cbservations are of course
trivial. But for “most” real numbers x there will be many values of p and g for which
x lies very near the center of the interval (1.32), so that p/q is a very sharp
approximation to x.

Theorem 1.4. [f x is irrational, there are infinitely many irreducible fractions p / q
such that

p 1
. - — < —=.
(1.33) F ql "

This famous theorem of Dirichlet says that for infinitely many p and ¢, x lies in
(p/q—1/9% p/q+1/q%) and hence is indeed very near the center of (1.32).

Proor. For a positive integer @, decompose [0,1) into the Q subintervals
[(—1/0,i/0), i=1,...,0. The points (fractional parts) {gx} =qx —lgx]| for ¢ =
0,1,...,0 lie in [0,1), and since there are Q + 1 points’ and only Q subintervals, it
follows (Dirichlet’s drawer principle) that some subinterval contains more than cne
point. Suppose that {g'x} and {g"x} lie in the same subinterval and 0 <¢' <q" < Q.
Take g =q"—q" and p=[q"x]—1lq'x}; then 1<¢<Q and |gx — pl=Hq"x} — {q'x}|
<1/0:

p 1 1
— 2l =< =.
* I qQ 2

(1.34) ; p

If p and g have any common factors, cancel them; this will not change the left side of
(1.34), and it will decrease q.

For each Q, therefore, there is an irreducible p/q satisfying (1.34).} Suppose
there are only finitely many irreducible solutions of (1.33), say p,/4,,...,P,, / 9m-
Since x is irrational, the |x —p, /4, | are all positive, and it is possible to choose Q so
that Q! is smaller than each of them. But then the p /g of (1.34) is a solution of
(1.33), and since |x —p /q| <1 /Q, there is a contradiction. [ ]

*This topic may be omitted.

TAlthough the fact is not technically necessary to the proof, these points are distinct: {g'x} = {g"x)}
implies (¢" — ¢')x =19"x]) —14'x], which in turn implies that x is rational unless ¢’ = g".

¥This much of the proof goes through even if x is rational,
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In the measure theory of Diophantine approximation, one looks at the set of real x
having such and such approximation properties and tries to show that this set is
negligible or else that its complement is. Since the set of rationals is negligible,
Theorem 1.4 implies such a result: Apart from a negligible set of x, (1.33) has
infinitely many irreducible solutions.

What happens if the inequality (1.33) is tightened? Consider

1
1 q%(q)’

(1.35)

and let A_ consist of the real x for which (1.35) has infinitely many irreducible
solutions. Under what conditions on ¢ will A have negligible complement? If
v(q) < 1, then (1.35) is weaker than (1.33): ¢{q) > 1 in the interesting cases. Since x
satisfies (1.35) for infinitely many irreducible p /¢ if and only if x —{x|does, A, may
as well be redefined as the set of x in (0,1) (or even as the set of irrational x in (0, 1))
for which (1.35) has infinitely many solutions.

Theorem 1.5. Suppose that ¢ is positive and nondecreasing. If

(1.36) y— ,

, 9¢(q) -

then A, has negligible complement.

Theorem 1.4 covers the case ¢(g)= 1. Although this is the natural place to state
Theorem 1.5 in its general form, the proof, which involves continued fractions and the
ergodic theorem, must be postponed; see Section 24, p. 324. The converse, on the
other hand, has a very simple proof.

Theorem L1.6. Suppose that ¢ is positive. If

1
(1.37) § 2ol <™

then A, is negligible.

Proor. Given ¢, choose ¢q so that 2, ,1/q¢(q) <e/4. If x €A, then (1.35)
holds for some g > q,, and since 0 <x < 1, the corresponding p lies in the range
0 <p < q. Therefore,

q
P 1 D 1
A - U U - :_+ .
Y g=q9 p=0 7 q%(q) 1 q’o(q)

The right side here is a countable union of intervals covering A, and the sum of
their lengths is

q

2 2
Yy =y At oy 4
929, p=099(4)  gsq, 4

Thus A, satisfies the definition ((1.22) and (1.23)) of negligibility. [ ]



SECTION 1. BOREL’S NORMAL NUMBER THEOREM 15

If ¢(q)=1, then (1.36) holds and hence A, has negligible complement (as
follows also from Theorem 1.4). If ¢,(q)=q", “however, then (1.37) holds and
A, itself is negligible Outside the negligible set Afp UA,. . , therefore, |x—p /ql <
1/q2 has infinitely many irreducible solutions but |x—p/ql<1/4%*< has only
finitely many. Similarly, since L 1 /(q log q) dlverges but 2,1 /(q log! *<q) converges,
outside a negligible set |x —p/q|<1/(q log ) has mﬁmtely many irreducible
solutions but |[x —p /q| <1 /(g* log'*%g) has only finitely many.

Rational approximations to x obtained by truncating its binary (or decimal)
expansion are very inaccurate: see Example 4,17. The sharp rational approximations
to x come from truncation of its continued-fraction expansion: see Section 24.

PROBLEMS

Some problems involve concepts not required for an understanding of the text, or
concepts treated only in later sections; there are no problems whose solutions are
used in the text itself. An arrow T points back to a problem (the one immediately
preceding if no number is given) the solution and terminology of which are assumed.
See Notes on the Problems, p. 552.

1.1. (a) Show that a discrete probability space (see Example 2.8 for the formal
definition) cannot r‘ontam an infinite sequence A;, A,,... of independent
events each of probability 1. Since A4,, could be identified with heads on the nth
toss of a coin, the existence of such a sequence would make this section
superfluous.

(b) Suppose that 0 <p, <1, and put &, = min{p,,1 —p,}. Show that, if I, «,
diverges, then no discrete probability space can contain independent events
Ay, A,,... such that A, has probability p,.

1.2. Show that N and N°€ are dense [A15] in (0, 1].

1.3. 7 Define a set A to be trifling" if for each € there exists a finite sequence of
intervais [, satisfying (1.22) and (1.23). This definition and the definition of
?Oegll]igibility apply as they stand to all sets on the real line, not just to subsets of
(a) Show that a trifling set is negligible.

(b) Show that the closure of a trifling set is also trifling.

(c) Find a bounded negligible set that is not trifling.

(d) Show that the closure of a negligible set may not be negligible,

(e) Show that finite unions of trifling sets are trifling but that this can fail for
countable unions.

14. 7 For i=0,...,r—1, let Ai) be the set of numbers in (0, 1] whose nonter-
minating expansions in the base r do not contain the digit i,
(a) Show that A4 (i) is trifling.
(b) Find a trifling set A such that every point in the unit interval can be
represented in the form x +y with x and y in A.

TLike negligible, trifling is a nonce word used only here. The trifling sets are exactly the sets of
content 0; See Problem 3.15
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L.5.

1.6.

1.7.

1.8.

PROBABILITY

(o) Let A4,Gi,...,i,) consist of the numbers in the unit interval in whose base-r
expansions the digits ¢,,...,i, nowhere appear consecutively in that order.
Show that it is trifling. What does this imply about the monkey that types at
random?

1 The Cantor set C can be defined as the closure of A4,(1)

{a) Show that C is uncountable but trifling.

{b) From [0,1] remove the open middle third (1,3); from the remainder, a
union of two closed intervals, remove the two open middle thirds (3, ) and
-;—, 3). Show that C is what remains when this process is continued ad infinitum.

(c) Show that C is perfect [A15]

Put M(t) = fje"*“’dw, and show by successive differentiations under the
integral that

(1.38) M©(0) = ['sk(w) dw.
0

Over each dyadic interval of rank n, s,(«) has a constant value of the form
+1+1+ - +1, and therefore M(¢)=2""Lexpt(+1+1+ -- +1), where
the sum extends over all 2" »#-long sequences of +1’s and —1’s. Thus

n
el +e!

(1.39) M(t)=( 5 )=(cosht)"

Use this and (1.38) to give new proofs of (1.16), (1.18), and (1.28). (This, the
method of moment generating functions, will be investigated systematically in
Section 9.)

T By an argument similar to that leading to (1.39) show that the Rademacher
functions satisfy

n n ia —ia
1 k4 k
f exp|i ) ayr(0)|do=1T] s__z_e____
0 k=1 k=1
n
= I__[ Cos ay, .
k=1

Take a, =t27%, and from T;_;r(@)27% = 2w — 1 deduce

sint o t
(1.40) = I cosyy
k=1
by letting n — « inside the integral above. Derive Vieta’s formula

JZ V2+V2 \/2+\/2+\/5
e

2

2_
Z -

A number « is normal in the base 2 if and only if for each positive € there exists
an ngle,w) such that |n7'Z7 d,(w) — 3 <e for all n exceeding ngyle, w).
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Theorem 1.2 concerns the entire dyadic expansion, whereas Theorem 1.1
concerns only the beginning segment. Point up the difference by showing that
for e < 3 the ny(e, w) above cannot be the same for all @ in N—in other words,

n~1L7_ dAw) converges to 3 for all @ in N, but not uniformly. But see
Problem 13.9.

1.9. 1.317 (a) Using the finite form of Theorem 1.3(ii), together with Problem
1.3(b), show that a trifling set is nowhere dense [A15].
() Put B=U,(r,—27""% r,+27"2], where r,,r,,... is an enumeration of
the rationals in (0, 1]. Show that (0, 1] — B is nowhere dense but not trifling or
even negligible,
(c) Show that a compact negligible set is trifling

1.10. 7 A set of the first category [A15] can be represented as a countable union of
nowhere dense sets; this is a topological notion of smallness, just as negligibility
is a metric notion of smallness. Neither condition implies the other;

(a) Show that the nonnegligible set N of normal numbers is of the first category
by proving that A_= N*_ [w" |n " 's(w)l <3} is nowhere dense and N C
U, A4,

(b) According to a famous theorem of Baire, a nonempty interval is not of the
first category. Use this fact to prove that the negligible set N©=(0,1]— N is not
of the first category.

1.11. Prove:
(a) If x is rational, (1.33) has only finitely many irreducible solutions

(b) Suppose that ¢(g)>1 and (1.35) holds for infinitely many pairs p,q but
only for finitely many relatively prime ones. Then x is rational.

(c) If ¢ goes to infinity too rapldly, then A is negligible (Theorem 1.6). But
however rapldly ¢ goes to infinity, A _ is nonempty, even uncountable. Hint:
Consider x = X5 _,1/2%%) for mtegraf a(k) increasing very rapidiy to infinity.

SECTION 2. PROBABILITY MEASURES

Spaces

Let ) be an arbitrary space or set of points w. In probability theory
consists of all the possible results or outcomes « of an experiment or
observation. For observing the number of heads in n tosses of a coin the
space (1 is {0, 1,..., n}; for describing the complete history of the n tosses ()
is the space of all 2" n-long sequences of H’s and T’s; for an infinite
sequence of tosses () can be taken as the unit interval as in the preceding
section; for the number of a-particles emitted by a substance during a unit
interval of time or for the number of telephone calls arriving at an exchange
(1 is {0,1,2,...}); for the position of a particle () is three-dimensional
Euclidean space; for describing the motion of the particle () is an appropri-
ate space of functions; and so on. Most {’s to be considered are interesting
from the point of view of geometry and analysis as well as that of probability.
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Viewed probabilistically, a subset of () is an event and an element w of (3
is a sample point.

Assigning Probabilities

In setting up a space {1 as a probabilistic model, it is natura! to try and assign
probabilitics to as many events as possible. Consider again the case Q = (0, 1]
—the unit interval. It is natural to try and go beyond the definition (1.3) and
assign probabilities in a systematic way to sets other than finite unions of
intervals. Since the set of nonnormal numbers is negligible, for example, one
feels it ought to have probability 0. For another probabilistically interesting
set that is not a finite union of intervals, consider

(2.1) U [o: —a<sy(w),...,s,_(w) <b, s,(w) = —a],

n=1

where a and b are positive integers. This is the event that the gambler’s
fortune reaches —a before it reaches +b; it represents ruin for a gambler
with a dollars playing against an adversary with b dollars, the rule being that
they play until one or the other runs out of capital.

The union in (2.1) is countable and disjoint, and for each n the set in the
union is itself a union of certain of the intervals (1.9). Thus (2.1) is a
countably infinite disjoint union of intervals, and it is natural to take as its
probability the sum of the lengths of these constituent intervals. Since the set
of norma! numbers is not a countable disjoint union of intervals, however,
this extension of the definition of probability would still not cover all the
interesting sets (events) in (0, 1].

It is, in fact, not fruitful to try to predict just which sets probabilistic
analysis will require and then assign probabilities to them in some ad hoc
way. The successful procedure is to develop a general theory that assigns
probabilities at once to the sets of a class so extensive that most of its
members never actually arise in probability thecry. That being so, why not
ask for a theory that goes all the way and applies to every set in a space (1?
In the case of the unit interval, should there not exist a well-defined
probability that the random point « lies in A, whatever the set A may be?
The answer turns out to be no (see p. 45), and it is necessary to work within
subclasses of the class of all subsets of a space (). The classes of the
appropriate kinds—the fields and o-fields—are defined and studied in this
section. The theory developed here covers the spaces listed above, including
the unit interval, and a great varniety of others.

Classes of Sets

It is necessary to single out for special treatment classes of subsets of a space
Q, and to be useful, such a class must be closed under various of the
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operations of set theory. Once again the unit interval provides an instructive
example.

Example 2.1." Consider the set N of normal numbers in the form (1.24),
where s, (w) is the sum of the first » Rademacher functions. Since a point w
lies in N if and only if lim_n~'s (w) =0, N can be put in the form

(22) N = F\ O ﬁ lw:{n1s,(w)] <k~1].

Indeed, because of the very meaning of union and of intersection,  lies in
the set on the right here if and only if for every k there exists an m such that
In"'s (w)i<k~! holds for all n>m, and this is just the definition of
convergence to 0—with the usual € replaced by k™! to avoid the formation
of an uncountabie intersection. Since s,(w) is constant over each dyadic
interval of rank n, the set [w: n™'s (w)| <k~ '] is a finite disjoint union of
intervals. The formula (2.2) shows explicitly how N is constructed in steps
from these simpler sets. |

A systematic treatment of the ideas in Section 1 thus requires a class of
sets that contains the intervals and is closed under the formation of count-
able unions and intersections. Note that a singleton [Al] {x} is a countable
intersection N, (x —n "', x] of intervals. If a class contains all the singletons
and is closed under the formation of arbitrary unions, then of course it
contains all the subsets of (). As the theory of this section and the next does
not apply to such extensive classes of sets, attention must be restricted to
countable set-theoretic operations and in some cases even to finite ones.

Consider now a completely arbitrary nonempty space (. A class ¥ of
subsets of () is called a field" if it contains () itself and is closed under the
formation of complements and finite unions:

(i) Qe F;
(i) A € & implies A € F;
(iii) A, B€ % implies AU B € &.

Since (1 and the empty set @ are complementary, (i) is the same in the
presence of (i) as the assumption & € %. In fact, (i} simply ensures that &
is nonempty: If A € &, then A€ % by (i) and R =A UA € F by (iii).

By DeMorgan’s law, ANB=(A°UB) and AUB=(A°NB).If F is
closed under complementation, therefore, it is closed under the formation of
finite unions if and only if it is closed under the formation of finite intersec-

"Many of the examples in the book simply illustrate the concepts at hand, but others contain
definitions and facts needed subsequently
"The term algebra is often used in place of field
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tions. Thus (iii) can be replaced by the requirement
(iii') A, B % implies ANB e .

A class & of subsets of () is a o-field if it is a field and if it is also closed
under the formation of countable unions:

(iv) A, A,,. . € ¥ implies A,UA,U - € F.

By the infinite form of DeMorgan’s law, assuming (iv) is the same thing as
assuming

(iv')) A, A,,... € F implies A, NA,N -+ € F.

Note that (iv) implies (iii) because one can take A, =A and A, =B for
n > 2. A field 1s sometimes called a finitely additive field to stress that it need
not be a o-field. A setin a given class % is said to be measurable & or to be
an Fset. A field or o-field of subsets of () will sometimes be called a field or
o-held in ().

Example 2.2. Section 1 began with a consideration of the sets (1.2), the
finite disjoint unions of subintervals of () =(0,1]. Augmented by the empty
set, this class is a field %,: Suppose that A= (a,a}]V - U(a,,d,],
where the notation is so chosen that a; < -+ <aq,,. If the (a,,a}] are
disjoint, then A" is (0, a,]U(a},a,]U - U (d,,_,,a,]U(a,,,1] and so lies
in &, (some of these intervals may be empty, as a; and a,,, may coincide).
If B=(b,by}u -+ U(b,b,l the (b,b;] again disjoint, then ANB=
UL U= (Ca,, a;1n (b, b1} each intersection here is again an interval or
else the empty set, and the union is disjoint, and hence A N B is in &,,. Thus
B, satisfies (i), (i), and (ii").

Although &, is a field, it is not a o-field: It does not contain the
singletons {x}, even though each is a countable intersection N (x —n~', x]
of %,-sets. And %, does not contain the set (2.1), a countable union of
intervals that cannot be represented as a finite union of intervals. The set
(2.2) of normal numbers is also outside &, ]

The definitions above involve distinctions perhaps most easily made clear
by a pair of artificial examples.

Example 2.3. Let & consist of the finite and the cofinite sets (A being
cofinite if A° is finite). Then & is a field. If () is finite, then & contains all
the subsets of () and hence is a o-field as well. If ) is infinite, however, then
F is not a o-field. Indeed, choose in () a set A that is countably infinite and
has infinite complement. (For example, choose a sequence w;,w,,... Of
distinct points in ( and take A ={w,, w,,...}.) Then A & &, even though
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A is the union, necessarily countable, of the singletons it contains and each
singleton is in &#. This shows that the definition of o-field is indeed more
restrictive than that of field. =

Example 2.4. Let & consist of the countable and the cocountable sets (A
being cocountable if A€ i1s countable). Then & is a o-field. If Q is
uncountable, then it contains a set A4 such that 4 and A° are both
uncountable.? Such a set is not in .%, which shows that even a o-field may
not contain all the subsets of (}; furthermore, this set is the union (uncounta-
ble) of the singleions it contains and each singleton is in %, which shows that
a o-field may not be closed under the formation of arbitrary unions. [ |

The largest o-fieid in {2 is the power class 22, consisting of all the subsets
of (; the smallest o-field consists only of the empty set and Q itself.

The elementary facts about fields and o-fields are easy to prove: If & is a
field, then A,B€ % implies A—-B=ANB‘e &% ahd AaB=(A-B)U
(B —A) € &. Further, it follows by induction on n that A,,..., 4, € ¥
implies A\U - UA, €F and AN NA, € F.

A field is closed under the finite set-theoretic operations, and a o-field is
closed also under the countable ones. The analysis of a probability problem
usually begins with the sets of some rather small class &7, such as the class of
subintervals of (0,1]. As in Example 2.1, probabilistically natural construc-
tions involving finite and countable operations can then lead to sets outside
the initial class @7. This leads one to consider a class of sets that (i} contains
& and (i) is a o-field; it is natural and convenient, as it turns out, to
consider a class that has these two properties and that in addition (iii) is in a
certain sense as small as possible. As will be shown, this class is the
intersection of all the o-fields containing &7, it is called the o-field generated by
& and is denoted by o{ 7).

There do exist o-fields containing 7, the class of all subsets of ) being
one. Moreover, a completely arbitrary intersection of o-fields (however many
of them there may be) is itself a o-field: Suppose that F= N, %,, where ¢
ranges over an arbitrary index set and each %, is a o-field. Then (} € &
for all 6, so that 2 € &. And A € & implies for each 0 that A € ¥, and
hence A° € &, so that A€ F. If A, € F for each n, then A, € &, for
each n and 0, so that U, A, lies in each &, and hence in &.

Thus the intersection in the definition of o(97) is indeed a o-ficld
containing &. it is as small as possible, in the sense that it is contained in
every o-field that contains & if &/C ¢ and £ is a o-field, then # is one of

"If Q is the unit interval, for example, take A =(0,3], say. To show that the general
uncountable )} contains such an A4 requires the axiom of choice [A8]. As a matter of fact, to
prove the existence of the sequence alluded to in Example 2.3 requires a form of the axiom of
choice, as does even something so apparently down-to-earth as proving that a countable union of
negligible sets is negligible. Most of us use the axiom of choice completely unaware of the fact
Even Borel and Lebesgue did; see WaGon, pp. 217 ff. ;
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the o-fields in the intersection defining o(27), so that o(o/)C#. Thus
() has these three properties:

(i) Co(L);
(i1) (&) is a ofield,
(i) if T and £ is a o-field, then o( ) C L.

The importance of o-fields will gradually become clear.

Example 2.5. 1f % is a o-field, then obviously o (%) = &. If & consists
of the singletons, then o(&7) is the o-field in Example 2.4. If o is empty or
&= (D} or &={Q), then o(&) ={, Q). If &/C &', then o() Co(F").
If &/C &/’ Co(), then o() = o (). |

Example 2.6. Let # be the class of subintervals of @ =(0,1], and define
B =o0(#). The elements of & are called the Borel sets of the unit interval.
The field %, of Example 2.2 satisfies #C B, C &, and hence o(B,) = &.

Since % contains the intervals and is a o-field, repeated finite and
countable set-theoretic operations starting from intervals will never lead
outside &. Thus & contains the set (2.2) of normal numbers. [t also contains
for example the open sets in (0,1} If G is open and x € G, then there exist
rationals a, and b, such that x €(a,,b,] CG. But then G = U, .;(a,,b,];
since there are only countably many intervals with rational endpoints, G is a
countable union of elements of .# and hence lies in %.

In fact, & contains all the subsets of (0,1] actually encountered in
ordinary analysis and probability. It is large enough for all “practical”
purposes. It does not contain every subset of the unit interval, however; see
the end of Section 3 (p. 45). The class @ will play a fundamental role in ali
that follows. |

Probability Measures

A set function is a real-valued function defined on some class of subsets of
Q. A set function P on a field & is a probability measure if it satisfies these
conditions:

() 0<P(A)<lfor AeF
(i) P(@)=0, P(Q)=1;
(iii) if A}, A,,... is a disjoint sequence of Fsets and if Us_, A, € &,
then'

(2.3) P( 6 Ak) = i P(A,).
k=1 k=1

"As the left side of (2 3) is invariant under permutations of the A,,, the same must be true of the
right side. But in fact, according to Dirichlet’s theorem [A26], a nonnegative series has the same
value whatever order the terms are summed in.
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The condition imposed on the set function P by (iii) is called countable
additivity. Note that, since % is a field but perhaps not a o-field, it is

necessary in (iii) to assume that Uy _, A, liesin & If A4,,..., A, are disjoint
Fsets, then Uy, A, is also in & and (23) with A,,,=A4,,,= """ =0
gives
n n
(2.4) P(UAk)= EP(AI()
k=1 A=1

The condition that (2.4) holds for disjoint =sets is finite additivity; it is a
consequence of countable additivity., It follows by induction on n that P is
finitely additive if (2.4) bolds for n =2—if P(AUB)=P(A) + P(B) for
disjoint Fsets A and B.

The conditions above are redundant, because (i) can be replaced by
P(A) >0 and (1) by P((2) = 1. Indeed, the weakened forms (together with
(iii)) imply that P(Q}) = P(}) + P(@) + P(B) + - -+, so that P(@¥)=0, and
1=P(Q)=P(A) + P(A°), so that P(A) < 1.

Example 2.7. Consider as in Example 2.2 the field %, of finite disjoint
unions of subintervals of (1 =(0,1]. The definition (1.3) assigns to each
@By-set a number—the sum of the lengths of the constituent intervals—and
hence specifies a set function P on #,,. Extended inductively, (1.4) says that
P is finitely additive. In Section 1 this property was deduced from the
additivity of the Riemann integral (see (1.5)). In Theorem 2.2 below, the
finite additivity of P will be proved from first principles, and it will be shown
that P 1s, in fact, countably additive—is a probability measure on the field
%,. The hard part of the argument is in the proof of Theorem 1.3, already
done; the rest will be easy. [ |

If & is a o-field in () and P is a probability measure on %, the triple
(Q, %, P) is called a probability measure space, or simply a probabzlzty space.
A support of P is any Fset A for which P(A4) = 1.

Example 2.8. let & be the o-field of all subsets of a countable space (1,
and let p(w) be a nonnegative function on (. Suppose that ¥ _ . o plw) = 1,
and define P(4) =% . ,p(w); since p(w)=> 0, the order of summation is
irrelevant by Dirichlet’s theorem [A26]. Suppose that A = U7, A,, where
the A, are disjoint, and let w;;, w;5,... be the points in A,. By the theorem
on nonnegative double series [A27], P(A) =L, plo;)=LL plo;,) =
Y,P(A), and so P is countably additive. This (), &, P) is a discrete
probability space. It is the formal basis for discrete probability theory. |

Example 2.9. Now consider a probability measure P on an arbitrary
o-field & in an arbitrary space (); P is a discrete probability measure if there
exist finitely or countably many points w, and masses m, such that P(A4) =
L., e am; for A in & Here P is discrete, but the space itself may not be. In
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terms of indicator functions, the defining condition is P(A) =Y, m, | (w,)
for A € & If the set {w,, w,,...}) lies in &, then it is a support of P.

If there is just one of these points, say w,, with mass m, =1, then P is a
unit mass at w,. In this case P(A4) = [ (w,) for A € &. |

Suppose that P is a probability measure on a field %, and that A,B€ %
and A CB. Since P(A)+ P(B — A)=P(B), P is monotone:

(2.5) P(A) <P(B) if ACB.
It follows further that P(B — A)= P(B)} — P(A), and as a special case,
(2.6) P(A°) =1-P(A).

Other formulas familiar from the discrete theory are easily proved. For
example,

(2.7) P(A) +P(B)=P(AUB) +P(ANB),

the common value of the two sides being P(4 UB ) +2P(ANB)+ P(A°N
B). Subtraction gives

(2.8) P(AUB)=P(A) +P(B)—P(ANB).
This is the case n =2 of the general inclusion-exclusion formula.
(2.9) P( U Ak) = EP(A,-) - EP(AimA;‘)
k=1 i i<j
+ ¥ P(ANANA)+ - +(=1)"TP(A,0 - nA,).
i<j<k
To deduce this inductively from (2.8), note that (2.8) gives

n

+P(A4,,)) —P( (AMA,,H))-

n+1 n
(U a)-#{ 0 0
k=1 k=1 k=1

Applying (2.9) to the first and third terms on the right gives (2.9) with n + 1

in place of n.

If Bj=A;and B,=A,nA{N *++ NA%_,, then the B, are disjoint and
Uiy A= Ui By, so that P(Uy_;A,)=E;_ P(B,). Since P(B,) <
P(A,) by monotonicity, this establishes the finite subadditivity of P:

(2.10) P( LnJ Ak) < X P(AY).
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Here, of course, the A4, need not be disjoint. Sometimes (2.10) is called
Boole’s inequality.

In these formulas all the sets are naturally assumed to lie in the field &.
The derivations above involve only the finite additivity of P. Countable
additivity gives further properties:

Theorem 2.1. Let P be a probability measure on a field F.

(i) Continuity from below: If A, and A lie in & and' A, 1 A, then
P(A,)1 P(A).
(ii) Continuity from above: If A, and A lie in & and A, | A, then
P(A,)L P(A).
(iii) Countable subadditivity: If A,, A,,... and Uy, A, liein & (the A,
need not be disjoint), then

(2.11) P( DAk) < i P(A,).

k=1

Proor. For (i), put B,=A4, and B, =A, —A,_,. Then the B, are
disjoint, A = Uz, B,, and A4, = Uj;_, B,, so that by countable and finite
additivity, P(A) =X, _,P(B,) =1lim, X% _,P(B,)=1lim, P(A,). For (ii), ob-
serve that A, | A implies A5 1 A, so that 1 — P(A4,)11 — P(A).

As for (iii). increase the right side of {2.10) to Xy’ _,P(A,) and then apply
part (i) to the left side. u

Example 2.16. In the presence of finite additivity, a special case of (ii)
implies countable additivity. If P is a finitely additive probability measure on
the field F, and if A, 1D for sets A, in & implies P(A,)}0, then P is
countably additive. Indeed, if B = U, B, for disjoint sets B, (B and the B, in
F)thenC,=U,.,B,=B—-U,.,B, liesinthefield &, and C, | &. The
hypothesis, together with finite additivity, gives P(B) — L7_,P(B,) =
P(C,) — 0, and hence P(B) =X%_,P(B,). ]

Lebesgue Measure on the Unit Interval

The definition (1.3) specifies a set function on the field &%, of finite disjoint
unions of intervals in (0, 1]; the problem is to prove P countably additive. It
will be convenient to change notation from P to A, and to denote by # the
class of subintervals (a, ] of (0, 1]; then A(J) =|I|=b — a is ordinary length.
Regard @ as an element of .# of length 0. If A= U/, I, the I, being

YFor the notation, see [A4] and [A10],
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disjoint #sets, the definition (1.3) in the new notation is

(212) A(A) = L A(L) = il

i=1 i=1

As pointed out in Section 1, there is a question of uniqueness here, because

m

A will have other representations as a finite disjoint union U7_, J; of #-sets.
But .# is closed under the formation of finite intersections, and so the finite

form of Theorem 1.3(iii) gives

n

(2.13) E|Ii|= E E”{ﬂjj|= EUJL

i=1 i=1;=1 i=1

(Some of the ;N J, may be empty, but the corresponding lengths are then 0.)
The definition is indeed consistent.

Thus (2.12) defines a set function A on %, a set function called Lebesgus
measure.

Theorem 2.2. [Lebesgue measure A is a (countably additive) probability
measure on the field %,.

Proor. Suppose that A = U} ., 4,, where 4 and the A, are B,-sets
and the A, are disjoint. Then A = U['_,I; and A, = U7%, J,; are disjoint
unions of #Zsets, and (2.12) and Theorem 1.3(iii) give

n n o My
(2.14) A(A)= Z|[i|= E Z E”r‘n‘]kj|
i=1 i=1k=1j=1
o0 mk o 4]
= Z E'ka|= ZA(Ak)' u
k=1 j=1 k=1

In Section 3 it is shown how to extend A from %, to the larger class
@& = o(%,) of Borel sets in (0, 1]. This will complete the construction of A as
a probability measure (countably additive, that is) on &. and the construction
is fundamental to all that follows. For example, the set N of normal numbers
lies in & (Example 2.6), and it will turn out that A(N) =1, as probabilistic
intuition requires. (In Chapter 2, A will be defined for sets outside the unit
interval as well.)

It is well to pause here and consider just what is involved in the construc-
tion of Lebesgue measure on the Borel sets of the unit interval. That length
defines a finitely additive set function on the class .# of intervals in (0, 1] is a
consequence of Theorem 1.3 for the case of only finitely many intervals and
thus involves only the most elementary properties of the real number system.
But proving countable additivity on # requires the deeper property of
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compactness (the Heine-Borel theorem). Once A has been proved countably
additive on .#, extending it to %, by the definition (2.12) presents no real
difficulty: the arguments involving (2.13) and (2.14) are easy. Difficulties again
arise, however, in the further extension of A from %, to #=o0(%,), and
here new ideas are again required. These ideas are the subject of Section 3,
where it is shown that any probability measure on any field can be extended
to the generated o-field.

Sequence Space”®

Let S be a finite set of points regarded as the possible outcomes of a simple
observation or experiment. For tossing a coin, S can be {H, T} or {0, 1}; for
rolling a die, S ={1,...,6}; in information theory, § plays the role of a finite
alphabet. Let ) = S* be the space of all infinite sequences

(2.15) w=(z)(@),z,(@),...)

of elements of §: z,(w) &S for all @ €S and k > 1. The sequence (2.15)
can be viewed as the result of repeating infinitely often the simple experi-
ment represented by S. For S = {0, 1}, the space S~ is closely related to the
unit interval, compare (1.8) and (2.15).

The space S” is an infinite-dimensional Cartesian product. Each z,(-) is a
mapping of S* onto §; these are the coordinate functions, or the natural
projections. Let $" =5 X -+ X § be the Cartesian product of n copies of S;
it consists of the n-long sequences (u,,...,u,) of elements of S. For such a
sequence, the set

(2.16) [w: (z(®),..., z(@)) = (uy,...,u,)]

represents the event that the first # repetitions of the experiment give the
outcomes u,,...,u, in sequence. A cylinder of rank n is a set of the form

(2.17) A=[o: (z(w),...,2z,(w)) €H],

where H c §". Note that A is nonempty if H is. If H is a singleton in §",
(2.17) reduces to (2.16), which can be called a thin cylinder.

Let €, be the class of cylinders of all ranks. Then € is a field: S* and
the empty set have the form (2.17) for H=S8" and for H=0. If H is
replaced by $" — H, then (2.17) goes into its complement, and hence 4 is

*The ideas that follow are basic to probability theory and are used further on, in particular in
Section 24 and (in more elaborate form) Section 36. On a first reading, however, one might
prefer to skip to Section 3 and return to this topic as the need arises.
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closed under complementation As for unions, consider (2.17) together with
(2.18) B=[w:(zl(w),...,zm(w))ell,

a cylinder of rank m. Suppose that n <m (symmetry); if H' consists of the
sequences (u,,...,u,,) in §” for which the truncated sequence (u,,...,u,)
lies in H, then (2.17) has the alternative form

(2.19) A=lw: (z(w),...,z,(w)) e H].
Since it i1s now clear that
(2.20) AUB={w: (z(w),....,z(w)) EH UI]

is also a cylinder, ¢, is closed under the formation of finite unions and hence
is indeed a field.

Let p,, u €S, be probabilities on S—nonnegative and summing to 1.
Define a set function P on ¢, (it will turn out to be a probability measure)
in this way: For a cylinder 4 given by (2.17), take

(221) P(A) = Epu, T pu,,’
H

the sum extending over all the sequences (u,,...,u,) in H. As a special case,
(222)  Plo:(z(@),...,z,(@)) = (uy,...,u,)| =p,, " p, .

Because of the products on the right in (2.21) and (2.22), P is called product
measure; it provides a model for an infinite sequence of independent repeti-
tions of the simple experiment represented by the probabilities p, on §. In
the case where §=1{0,1) and p,=p, =3, it is a mode! for independent
tosses of a fair coin, an alternative to the model used in Section 1.

The definition (2.21) presents a consistency problem, since the cylinder A
will have other representations. Suppose that A is also given by (2.19). If
n =m, then H and H' must coincide, and there is nothing to prove. Suppose
then (symmetry) that n <m. Then H’ must consist of those (uy,...,u,) in
§™ for which (u,,...,u,) lies in H: H' = H X S™" ", But then

(2.23) 1Py PuPu,., " Pu,= LPuPu 3 Pu,. " Pu,
H’ H sm-—n

= Y P, Pu,
H

The definition (2.21) is therefore consistent. And finite additivity is now easy:
Suppose that A and B are disjoint cylinders given by (2.17) and (2.18).
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Suppose that #» <m, and put A in the form (2.19). Since 4 and B are
disjoint, A’ and 7 must be disjoint as well, and by (2.20),

(2.24) P(AUB)= Y, p, ' p, =P(A)+P(B).
H'ul

Taking H =S” in (2.21) shows that P(5®) = 1. Therefore, (2.21) defines a
finitely additive probability measure on the field <.

Now, P is countably additive on &}, but this requires no further argument,
because of the following completely general result.

Theorem 2.3.  Every finitely additive probability measure on the field €, of
cylinders in 8% is in fact countably additive.

The proof depends on this fundamenta!l fact:

Lemma. If A4, A, where the A, are nonempty cylinders, then A is
honempty .

Proor oF THEOReEM 2.3. Assume that the lemma is true, and apply
Example 2.10 to the measure P in question: If A, @ for sets in <
(cylinders) but P(A,) does not converge to 0, then P(A,) > e > 0 for some
€. But then the A4, are nonempty, which by the lemma makes A, | J
impossible. |

Proor oF THeE LEMMA." Suppose that A, is a cylinder of rank m,, say
(2.25) A, =[o: (2(0),..., 2, (0)) €H],

where H, € §™. Choose a point @, in A, which is nonempty by assumption.
Write the compenents of the sequences in a square array:

zi(w)) z(wy) z)(w;)
(2.26) z(w)) z(w;) z(w;)

The nth column of the array gives the components of w,.

Now argue by a modification of the diagonal method {Al4]. Since S is
finite, some element u, of § appears infinitely often in the first row of (2.26):
for an increasing sequence {n,, .} of integers, zl(w ) u, for all k. By the
same reasoning, there exist an increasing subsequence {n, k} of {n, .} and an

"The lemma is a special case of Tychonov’s theorem: If S is given the discrete topology, the
topological product $* is compact (and the cylinders are closed).
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element u, of § such that zy(w,, ) =u, for all k. Continue. If n, =n, ,,
then 2z (w, J=u, for k>r, and hence (z(@,,)s- sz @, ) =(uy,...,u,)
for k>r.

Let ° be the element of ST with components u,: °=(u, u,,...) =
(z(°), z,(w®),...). Let ¢t be arbitrary. If k > ¢, then (n, is increasing) n, >t
and hence 0w, €4, e CA,. It follows by (2.25) that, for k > ¢, H, contains the
point (zl(w ) zm,(w,,k)) of $™. But for k >m,, this point is identical
with (z, (w°) zm,(w")), which therefore lies in H,. Thus ° is a point
common to all the A, |

Let ¢ be the o-field in §” generated by ¢7,. By the general theory of the
next section, the probability measure P defired on ¢, by (2.21) extends to
€ The term product measure, properly speaking, applies to the extended P.
Thus (8%, €, P) is a probability space, one important in ergodic theory
(Section 24).

Suppose that S ={0,1} and py =p; = 3. In this case, (5%, ¢, P) is closely related to
((0,11, &, A), although there are essential differences. The sequence (2.15) can end in
0’s, but (1.8) canrot. Thin cylinders are like dyadic intervals, but the sets in 4, (the
cylinders) correspond to the finite disjoint 1nions of intervals with dyadic endpoints, a
field somewhat smaller than %,. While nonempty sets in &, (for example, (3,3 +
27"] can contract to the empty set, nonempty sets in €, cannot. The lemma above
plays here the role the Heine-Borel theorem plays in the proof of Theorem 1.3. The
product probability measure constructed here on €, (in the case §=1{0,1}, py=p,
= 3, that is) is analogous to Lebesgue measure on %, But a finitely additive
probability measure on %, can fail to be countably addmve which cannot happen
in €j,.

Constructing o-Fields*

The o-field o (&7) generated by &7 was defined from above or from the outside, so to
speak, by intersecting all the o-fields that contain &7 (including the o-field consisting
of all the subsets of ). Can o(%7) somehow be constructed from the inside by
repeated finite and countable set-theoretic operations starting with sets in &7

For any class & of sets in () let #* consist of the sets in &, the complements
of sets in &, and the finite and countable unions of sets in #°. Given a class &, put
&, = & and define &), &7, ... inductively by

(227) o, = o* |

”n—

That each &, is contained in (&) follows by induction. One might hope that
&, = o () for some n, or at least that U5, _,&7, = o(&7). But this process applied to
the class of intervals falls to account for all the Borel sets.

Let #, consist of the empty set and the intervals in Q =(0,1] with rational
endpoints, and define £ =.2* | for n=1,2,... . It will be shown that % _,.%,. is
strictly smaller than 8 = o (%).

"See Problem 2.15.
*This topic may be omitted.
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If a, and b, are rationals decreasing to a and b, then (a,b]=U N (a,,b,]=
U,(U (a,,b,J) € 4. The result would therefore not be changed by including in
#, all the intervals in (0, 1].

To prove U5, _,-% smaller than 4, first put

(2.28) W(Al,Az,.-.)=A(.1.UA2UA3UA4U"'

Since # _, contains £} = (0, 1] and the empty set, every element of _#, has the form
(2.28) for some sequence A, A,,... of sets in # _,. Let every positive integer
appear exactly once in the square array

my My,

My My

Inductively define

(2.29) CDO(AI’AZ’ ..)=Al,
D.(A;, 4y, )=‘If(<i>,,_l(Am“,Amu,...),CI),,_l(Amn,Am

)s ),

n=1,2,....

It follows by induction that every element of .# has the form ®,.(A,, A,,...) for
some sequence of sets in #,. Finally, put

(230) (A}, Ay ) =P Ay s Ay YU P A s Ay )Y

Then every element of U%_,.# has the form (2.30) for some sequence A, A,,..
of sets in #,.

If A}, A,,... are in &, then (2.28) is in &, it follows by induction that each
®,(A,, A,,...) is in & and therefore that (2.30) is in .

With each @ in (0, 1] associate the sequence (w;, w,,...) of positive integers such
that Wt ey is the position of the kth 1 in the nonterminating dyadic
expansion of  (the smallest n for which I7_ d (@) =k). Then v © (0, w,,...) is a
one-to-one correspondence between (0,1] and the set of all sequences of posmve
integers. Let 1|, [,,... be an enumeration of the setsin %, put olw} =0, i w yeed )
and define B =[w: o & p(w)]. It will be shown that B is a Borel set but is not
contained in any of the .Z.

Since  lies in B if and only if o lies outside ¢(w), B # ¢(w) for every w. But
every element of U _,.# has the form (2.30) for some sequence in #, and hence
has the form ¢(w) for some w. Therefore, B is not a member of U3 (.~

It remains to show that B 1s a Borel set. Let D, =[w: @ €1, ] Since L,(n) = [w:
w,+ - +wk =n]=[w: ZZ{dw) <k =T d(w)]is a Borel “set, so are [0 @, =
n]= Y l(m)ﬁL,((m +n) and

=[m: wEIwk] = U ([w:wk =n]ﬂ[n).
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Suppose that it is shown that
(2.31) [a,- @ ECDH(I%,INMZ...)] ~®,(D,,D,,,--.)

for every n and every sequence u,, u,,... of positive integers. It will then follow from
the definition (2.30) that

oo

B =lowco(w)]= U |0ocd(l, L, ... )

n=1

= U ( ", nl:,l"'):q)(D“Dz‘...).

n=1

But as remarked above, (2.20), is a Borel set if the 4, are. Therefore, (2.31) will imply
that B¢ and B are Borel sets.

If n =0, (2.31) holds because it reduces by (2.29) to [w: w €1, ] D . Suppose
that (2.31) holds with n — 1 in place of n. Consider the condition

(2.32) wed, (I

[ ¥ Tw » - )
Mg Ming 2

By (2.28) and (2.29), a necessary and sufficient condition for € ®,(1, . 1, o ..) s

that either (2.32) is false for k =1 or else (2.32) is true for some k exceedmg [ But by
the induction hypothesis, (2.32) and its negation can be replaced by o €

®,_(D, ) , D, ) ,---) and its negation. Therefore, w € ®,(1,, ,1, .....) if and only if
m ‘ uipa

w€®(D,,D,,...).

Thus U ,% # &, and there are Borel sets that cannot be arrived at from the
intervals by any finite sequence of set-theoretic operations, each operation being finite
or countable. It can even be shown that there are Borel sets that cannot be arrived at
by any countable sequence of these operations. On the other hand, every Borel set
can be arrived at by a countable ordered set of these operations if it is not required
that they be performed in a simple sequence. The proof of this statement—and
indeed even a precise explanation of its meaning—depends on the theory of infinite
ordinal numbers.”

PROBLEMS

2.1. Define x Vy=max{x, y), and for a collection {x_} define V_x —supa
define x Ay =min{x, y} and A _x_ =inf_x_ . Prove that IAUB——I VIB, N8
=IyAlg, Iy =1-1,, and IAAB ~|IA 13| in the sense that there is equality
at each point of (). Show that 4 CB if and only if I, <y pointwise. Check
the equation x A(y Vz)=(xAy)Vv(xAz) and deduce the distributive law

'See Problem 2.22.
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2.2,

2.3.

2.4.

2.5.

2.6.

2.7.

AN(BUC)=(AnB)U(AnC). By similar arguments prove that

AU(BNC)=(AUB)YN(A4UC(),
AACC (AAB) U (BAC),

(U] - ne
( rn] An)c= L;J AS.

Let Ay,..., A, be arbitrary events, and put U, = U(A4; N --- NA4,; L) and
ﬂ(A, l_l - U A4, ), where the union and intersection extcnd over all the
k tuples sausfymg ] <z, < - <ig<n.Show that U, =1,_, .,

(a) Suppose that Q=% and that 4,B€ & implies 4 —~B=ANB‘e F.
Show that & is a field.

(b) Suppose that () € ¥ and that & is closed under the formation of comple-
ments and finite disjoint unions. Show that % need uot be a field.

Let &, 5,,. . be classes of sets in a common space ().

(a) Suppose that &, are fields satisfying & C %, . Show that U?_,%, is a
field.

(b) Suppose that %, are o-fields satisfying %, € %, ;. Show by example that
U%_ 1% need not be a o-field.

The field f(&) generated by a class &7 in {) is defined as the intersection of all
fields in ) containing &7,

(a) Show that f(&7) is indeed a field, that &/Cf(%7), and that f(&) is
minimal in the sense that if £ is a field and &/C #, then f(&/)C L.

(b) Show that for nonempty &, f(#) is the class of sets of the form
UiZ1NjiA;;, where for each i and j either A;; € & or Af; € &, and where
the m sets N7, 4,;, 1<i<m, are disjoint. The sets in f(m‘) can thus be
explicitly presented, which is not in general true of the sets in o (7).

T (a) Show that if &7 consists of the singletons, then f(&7) is the field in
Example 2.3.

(b) Show that f(&)co(), that f(&/) =0(&) if & is finite, and that
o(f()) =0 (H).

(c) Show that if &7 is countable, then f(&7) is countable.

(d) Show for fields &, and %, that f(F; U %) consists of the finite disjoint
unions of sets 4, N A, with A4; € #. Extend.

2.57 Let H be a a set lying outside %, where % is a field [or o-field]. Show
that the field [or o-field] generated by FU {H} consists of sets of the form

(2.33) (HNA)U(H°NB), A,BEZ.



34

2.8.

29.

2.10.

2.11.

2.12,

2.13.

2.14,

2.15.

2.16.

PROBABILITY

Suppose for each A4 in &7 that A€ is a countable union of elements of &7, The
class of intervals in (0,1] has this property. Show that o (&) coincides with the
smallest class over & that is closed under the formation of countable unions
and intersections.

Show that, if B € o(7), then there exists a countable subclass &7, of & such
that B e 0'(19/3).

(a) Show that if o(27) contains every subset of (), then for each pair » and o’
of distinct points in {) there is in & an A such that [ (w) # [ ()

(b) Show that the reverse implication holds if Q is countable.

(c) Show by example that the reverse implication need not hold for uncount-
able Q)

A o-field is countably generated, or separable, if it is generated by some
countable class of sets.

(a) Show that the o-field & of Borel sets is countably generated.

(b) Show that the o-field of Example 2.4 is countably generated if and onlyif Q0
is countable.

(c) Suppose that &, and %, are o-fields, ¥ C %, and %, is countably
generated. Show by example that &, may not be countably generated.

Show that a o-field cannot be countably infinite-—its cardinality must be finite
or else at least that of the continuum. Show by example that a field can be
countably infinite.

(a) Let & be the field consisting of the finite and the cofinite sets in an infinite
Q, and define P on & by taking P(A4) to be 0 or 1 as A is finite or cofinite.
(Note that P is not well defined if € is finite.) Show that P is finitely additive.

(b) Show that this P is not countably additive if ) is countably infinite.

(c) Show that this P is countably additive if {) is uncountable.

(d) Now let & be the o-field consisting of the countable and the cocountable
sets in an uncountable ), and define P on & by taking P(A4)tobeOor 1 as 4
is countable or cocountable. (Note that P is not well defined if {2 is countable.)
Show that P is countably additive.

In (0, 1] let F be the class of sets that either (i) are of the first category [A15] or
(ii) have complement of the first category. Show that & is a o-field. For 4 in
&, take P(A) to be 0 in case (i) and 1 in case (ii). Show that P is countably
additive,

On the field %, in (0,1] define P(A) to be 1 or 0 according as there does or
does not exist some positive €, (depending on A4) such that A contains the
interval (%,% + € ,]. Show that P is finitely but not countably additive. No such
example is possible for the field €, in $* (Theorem 2.3).

(a) Suppose that P is a probability measure on a field . Suppose that 4, € F
for 1 >0, that A, CA, for s <t, and that 4 = U, ,A4, € . Extend Theorem
2.1(i) by showing that P(A,)T P(A4) as t — «. Show that 4 necessarily lies in &
if it is a o-field.

(b) Extend Theorem 2.1(ii) in the same way.
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2.17.

2.18.

2.19.

Suppose that P is a probability measure on a field &, that A4,, 4,,..., and
A=U_A, lie in &, and that the A, are nearly disjoint in the sense that
P(A4,,NnA,)=0 for m+n. Show that P(4)=X P(A,).

Stochastic arithmetic. Define a set function P, on the class of all subsets of
0={1,2,...} by

(2.34) Pn(A)-:%#[m:lsmsn,meA];

among the first n integers, the proportion that lie in A isjust P(A). Then P, is
a discrete probability measure. The set A has density

(2.35) D(A)=limP,(4),

provided this limit exists. Let 2 be the class of sets having density.

(a}) Show that D is finitely but not countably additive on 2.

(b) Show that 2 contains the empty set and ) and is closed under the
formation of complemnents, proper differences, and finite disjoint unions, but is
not closed under the formation of countable disjoint unions or of finite unions
that are not disjoint.

(c) Let .# consist of the periodic sets M, =[ka: k=1,2,...]. Observe that

(2.36) B(M,) = 1| 2| = 2 =D(M,).

Show that the field f(.#) generated by .# (see Problem 2.5) is contained in 2.
Show that D is completely determined on f(.#) by the value it gives for each a
to the event that m is divisible by a.

(d) Assume that Lp~! diverges (sum over all primes; see Problem 5.20(e)) and
prove that D, although finitely additive, is not countably additive on the field
f(M).

(e) Euler’s function ¢(n) is the number of positive integers less than n and
relatively prime to it. Let p|,..., p, be the distinct prime factors of n; from the
inclusion-exclusion formula for the events [m: p;{m], (2.36), and the fact that
the p, divide n, deduce

(2.37) i’i(,f—)=]_[(1~1).

pln p

(f) Show for 0 <x <1 that D(A) =x for some A.

(g) Show that D is translation invariant: If B=[m + 1: m € A], then B has a
density if and only if A4 does, in which case D(A) = D(B).

A probability measure space (Q, &, P) is nonatomic if P(A4)> 0 implies that
there exists a B such that BC A and 0 <P(B)<P(A) (A and B in &, of
course).

(a) Assuming the existence of Lebesgue measure A on &, prove that it is
nonatomic.

(b) Show in the nonatomic case that P(4) > 0 and € > 0 imply that there exists
a B such that BC A and 0 < P(B) <e.
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2.20.

2.21.

2,22,

2.23.

PROBABILITY

(c) Show in the nonatomic case that 0 <x < P(A) implies that there exists a B
such that BCA and P(B)=x. Hint: Inductively define classes 5%, numbers
h, and sets H_ by H#,={B}={H)}), # =[H: HcCA - U, H,
P(U, . H)+P(H)<x], h,=suplP(H) HeH), and P(H)>h,-n"".
Consider U , H,.

(d) Show in the nonatomic case that, if p,, p,,... are nonnegative and add to 1,
then A4 can be decomposed into sets B, B,,... such that P(B,) =p, P(A).

Generalize the construction of product measure: For n = 1,2,..., let S, be a
finite space with given probabilities p,,, u €S, Let §; x§,X - be the space
of sequences (2.15), where now z,(w) €S5,. Define P on the class of cylinders,
appropriately defined, by using the product p,, - - p,, on the right in (2.21)
Prove P countably additive on 4, and extend ‘Theorem 2.3 and its lemma to
this more general setting. Show that the lemma fails if any of the S, are infinite

(a) Suppose that &/={4, 4,,.. } is a countable partition of & Show (see
(2.27)) that &) = &7 = &* coincides with o (&7). This is a case where (&)
can be constructed “from the inside.”

(b) Show that the set of normal numbers lies in .

(c) Show that #* = ¥ if and only if # is a o-field. Show that £ _, is
strictly smaller than .#Z for all n.

Extend (2.27) to infinite ordinals « by defining M *. Show that, if
€} is the first uncountable ordinal, then U, . &, U(M) ghow that, if the
cardinality of & does not exceed that of the contmuum then the same is true
of o(&'). Thus & has the power of the continuum.

1 Extend (2.29) to ordinals o < () as follows Replace the right side of (2.28)
by U5 .(A,,-; UAS,) Suppose that is defined for B <a Let
B.1),B.(2),... be a sequence of ordinals sucﬁ that B,(n) <a and such that if
B <a, then B =B_(n) for infinitely many even n and for infinitely many odd n;
define

(2.38) B, (A, A,,...)
=W (P 1 Ay Ay ) Po ) Ay Ay ) oee- )-

Prove by transfinite induction that (2.38) is in & if the A, are, that every
element of Z, has the form (2.38) for sets A, in .%,, and that (2.31) holds with
a in place of n. Define ¢ (0)=®,1,,],,...), and show that B, =[w:
© & @ ()] lies in B— £ for a <. Show that / is strictly smaller than A
for e <8 <.

SECTION 3. EXISTENCE AND EXTENSION

The main theorem to be proved here may be compactly stated this way:

Theorem 3.1. A probability measure on a field has a unique extension to
the generated o-field.

In more detail the assertion is this: Suppose that P is a probability
measure on a field F, of subsets of O, and put F=0(%,). Then there
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exists a probability measure Q on ¥ such that Q(A) = P(A) for 4 € #,.
Further, if Q' is another probability measure on % such that Q'(A) = P(A)
for A € %,, then Q'(A4)=Q(A) for A € F.

Althcugh the measure extended to % is usually denoted by the same
letter as the original measure on %,, they are really different set functions,
since they have different domains of definition. The class %, is only assumed
finitely additive in the theorem, but the set function P on it must be assumed
countably additive (since this of course follows from the conclusion of the
theorem).

As shown in Theorem 2.2, A (initially defined for intervals as length:
A(I) =|I|) extends to a probability measure on the field &, of finite disjoint
unions of subintervals of (0, 1]. By Theorem 3.1, A extends in a unique way
from B, to B=c{B,), the class of Borel sets in (0,1]. The extended A is
Lebesgue measure on the unit interval. Theorem 3.1 has many other applica-
tions as well.

The uniqueness in Theorem 3.1 will be pioved iater; see Theorem 3.3. The
first project is to prove that an extension does exist.

Construction of the Extension

Let P be a probability measure on a field %,. The construction following
extends P to a class that in general is much larger than o-(%,) but nonethe-
iess does not in general contain all the subsets of (1.

For each subset A of (), define its outer measure by

(3.1) P*(A) =inf L P(A,),

where the infimum extends over all finite and infinite sequences A, 4,,...
of F-sets satisfying A c U, A,. If the A, form an efficient covering of A,
in the sense that they do not overlap one another very much or extend much
beyond A, then ¥,P(A,) should be a good outer approximation to the
measure of A if A is indeed to have a measure assigned it at all. Thus (3.1)
represents a first attempt to assign a measure to A.

Because of the rule P{A°)=1 - P(A) for complements (see (2.6)), it is
natural in approximating A from the inside to approximate the complement
A€ from the outside instead and then subtract from 1:

(3.2) P (A)=1-P*(A).

This, the inner measure of A, is a second candidate for the measure of 4.7 A
plausible procedure is to assign measure to those A4 for which (3.1) and (3.2)

"An idea which seems reasonable at first is to define P,(A) as the supremum of the sums
X, P(A,) for disjoint sequences of Fysets in A. This will not do. For example, in the case
where ( is the unit interval, %, is 8, (Example 2.2}, and P is A as defined by (2.12), the set N
of normal numbers would have inner measure 0 because it contains no nonempty elements of
@B, in a satisfactory theory, N will have both inner and outer measure 1.



38 PROBABILITY

agree, and to take the common value P*( 4) =P, (A) as the measure. Since
(3.1) and (3.2) agree if and only if

(3.3) P*(A) + P*(A°) =1,

the procedure would be to consider the class of A satisfying (3.3) and use
P*( A) as the measure.

It turns out to be simpler to impose on A4 the more stringent requirement
that

(3.4) P*(ANE)+P*(A°NE) =P*(E)

hold for every set E; (3.3) is the special case E = (i, because it will turn out
that P*(Q2)=1."A set A is called P*-measurable if (3.4) holds for all E; let
# be the class of such sets. What will be shown is that .# contains (%)
and that the restriction of P* to o(.%,) is the required extension of P.

The set function P* has four properties that will be needed:

(i) P*(@)=0;
(i) P* is nonnegative: P*(A4)> 0 for every A C ();
(iii) P* is monotone: A C B implies P*( A) < P*(B);
(iv) P* is countably subadditive: P*(U, A,) <L, P*(A,).

The others being obvious, only (iv) needs proof. For a given ¢, choose
F,sets B, such that A, cU, B, and L,P(B,)<P*(4,)+e2™",
which is possible by the definition (3.1). Now U, 4, c U, , B,,, so that
P*(U,A)<L, . P(B,)<L,P*(A4,)+e, and (iv) follows.* Of course, (iv)
implies finite subadditivity.

By definition, A4 lies in the class .# of P*-measurable sets if it splits each
E in 2% in such a way that P* adds for the pieces—that is, if (3.4) holds.
Because of finite subadditivity, this is equivalent to

(3.5) P*(ANE) +P*(A°NE) <P*(E).

Lemma 1. The class .# is a field.

"It also turns out, after the fact, that (3.3) implies that (3.4) holds for all E anyway, see Problem
3.2.
¥Compare the proof on p. 9 that a countable union of negligible sets is negligible.
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ProoF. Itis clear that } €.# and that .# is closed under complementa-
tion. Suppose that A, B€.# and E C (). Then

P*(E) =P*(BNE) +P*(B°NE)
=P*(ANBNE)Y+P*(A°NBNE)
+P*(ANB°NE)+P*(A°NB°NE)
>P*(ANBNE)
+P*((A"NBNEYVU(ANB NE)U(A°NB°NE))

=P*((ANB)NE)+P*((ANB) NE),

the inequality following by subadditivity. Hence® A NB&€.#, and .# is a
field. [ |

Lemma 2. If A, A,,... is a finite or infinite sequence of disjoint .#sets,
then for each E C (),

(3.6) P*(En( UAk))= P (ENA,).

k

Proor. Consider first the case of finitely many A,, say n of them. For
n = 1, there is nothing to prove. In the case n =2, if 4, UA, = (), then (3.6)
is just (3.4) with A, (or A,) in the role of A. If 4, UA, is smaller than (),
split EN(A,UA,) by A, and A (or by A, and A9) and use (3.4) and
disjointness.

Assume (3.6) holds for the case of n — 1 sets. By the case n = 2, together
with the induction hypothesis, P*(EN(Ui_, AN =P*EN(U;Z] A+
P*(ENA,)=Z%;_P*(ENA).

Thus (3.6) holds in the finite case. For the infinite case use monotonicity:
PHEN(Uso , AN 2 PHEN(U_, AN=2F_P*(ENA,). Let n—w,
and conclude that the left side of (3.6) is greater than or equal to the right.
The reverse inequality follows by countable subadditivity. [ |

Lemma 3. The class .# is a o-field, and P* restricted to # is countably
additive.

Proor. Suppose that A4, A,,... are disjoint .#sets with union A. Since
F,= U_, A, lies in the field .#, P*(E)=P*(ENE,) +P*(ENF). To the

"This proof does not work if (3.4) is weakened to (3.3).
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first term on the right apply (3.6), and to the second term apply monotonicity
(FfDA). PXHE)2 L, P*(ENA) +P*(ENA). Let n — « and use (3.6)
again: P*(E)>L;_P*(ENA)+P*(ENA)=P*(ENA)+P*(ENA).
Hence A satisfies (3.5) and so lies in .#, which is therefore closed under the
formation of countable disjoint unions.

From the fact that .# is a field closed under the formation of countable
disjoint unions it follows that .# is a o-field (for sets B, in .#, let 4, =B,
and A,=B,NnBin---NB;_,; then the A, are disjoint .#sets and
U, B. = U, A, €4). The countable additivity of P* on .# follows from
(3.6): take E = (). a

Lemmas 1, 2, and 3 use only the properties (i) through (iv) of P* derived
above. The next two use the specific assumption that P* is defined via (3.1)
from a probability measure P on the field %,.

Lemma 4. If P* is defined by (3.1), then &, C A4.

Proor. Suppose that A € &,. Given E and ¢, choose F-sets A, such
that Ec U, 4, and £,P(A,) <P*(E)+e The sets B,=A,NA and C, =
A, NAC lie in &, because it is a field. Also, EnNAc U, B, and ENA°C
U, C,; by the definition of P* and the finite additivity of P, P*(E NA) +
P*(ENA)<Y,P(B,)+L,P(C,)=Y,P(A,) < P*(E)+e. Hence A€ %,
implies (3.5), and so %, C 4. m

Lemma 5. If P* is defined by (3.1), then
(3.7) P*(A)=P(A) forAe %,

Proor. It is obvious from the definition (3.1) that P*(A) < P(A) for A
in %.If AcU, A,, where A and the A, are in %,, then by the countable
subadditivity and monotonicity of P on %, P(A)<L,P(ANA))<
X, P(A,). Hence (3.7). [

Proor ofF ExTensiON IN THEOREM 3.1. Suppose that P* is defined via
(3.1) from a (countably additive) probability measure P on the field %,. Let
F=0(%,). By Lemmas 3 and 4,7

Fy C FC A2

By (3.7), P*(Q}) = P(Q}) = 1. By Lemma 3, P* (which is defined on all of 2?)
restricted to .# Is therefore a probability measure there. And then P*
further restricted to % is clearly a probability measure on that class as well.

'In the case of Lebesgue measure, the relation is @, C Bc.£c2®1 and each of the three
inclusions is strict; see Example 2.2 and Problems 3.14 and 3.21
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This measure on % is the required extension, because by (3.7) it agrees with
P on &, n

Uniqueness and the -\ Theorem

To prove the extension in Theorem 3.1 is unique requires some auxiliary
concepts. A class &2 of subsets of () is a m-system if it is closed under the
formation of finite intersections:

() A,Be & implies ANBe .

A class .2 is a A-system if it contains ) and is closed under the formation of
complements and of finite and countable disjoint unions:

(A) Qes;
(A,) A €. implies A €.7;
(A3) A, A,,..., € and A,NA,, =D form+nimply U, 4,€.2.

Because of the disjointness condition in (A;), the definition of A-system is
weaker (more inclusive) than that of o-field. In the presence of (A;) and (A,),
which imply @ .7, the countably infinite case of (A) implies the finite one.

In the presence of (A,) and (A3), (A,) is equivalent to the condition that .#
is closed under the formation of proper differences:

(X,) A,Be.Zand ACB imply B-A<.?.

Suppose, in fact, that _# satisties (A,) and (A;). If A, B€_# and A CB,
then .# contains B°, the disjoint union A U B¢, and its complement (A U
B<)* =B — A. Hence (X,). On the other hand, if . satisfies (1) and (X,),
then A €_.7 implies A° = ~ A4 .. Hence (A,).

Although a o-field is a A-system, the reverse is not true (in a four-point
space take .2 to consist of &, Q, and the six two-point sets). But the
connection is close:

Lemma 6. A class that is both a w-system and a A-system is a o-field.

Proor. The class contains ( by (A,) and is closed under the formation
of complements and finite intersections by (A,) and (7). It is therefore a
field. It is a o-field because if it contains sets A4,, then it also contains the
diSjOint sets Bn =An nAci n--- nAf,_] and by (A3) contains Un An = Un Bn‘

]
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Many uniqueness arguments depend on Dynkin’s m-A theorem:

Theorem 3.2. If & is a w-system and £ is a A-system, then FcC.L
implies o(&) C.L.

Proor. Let ., be the A-system generated by &2—that is, the intersec-
tion of all A-systems containing &2, It is a A-system, it contains &2, and it is
contained In every A-system that contains &2 (see the construction of gener-
ated o-fields, p. 21). Thus ZPc.#, 2. If it can be shown that £, is also a
m-system, then it will follow by Lemma 6 that it is a o-field. From the
minimality of o(£?) it will then follow that o (&) Cc.#,, so that Fco(F)C
-2y C.Z. Therefore, it suffices to show that £}, is a m-system.

For each A, let .2, be the class of sets B such that ANBe.£,. If A is
assumed to lie in &, or even if A is merely assumed tc lie in £, then £,
is a A-system: Since ANQ =A €., by the assumption, .2, satisfies (A,).
If B,,B,€.#, and B, CB,, ther the A-system .#, contains AN B, and
AN B, and hence contains the proper difference (4ANB,)—-(4ANB,)=
AN (B, —B)), so that ., contains B,— B: ., satisfies (X,). If B, are
disjoint .Z-sets, then .#;, contains the disjoint sets AN B, and hence
contains their union A N(U, B,): £, satisfies (A,).

If A€ and Be P, then (¥ is a w-system) ANBe Pc.f, or
B e £, Thus A € & implies #C_£,, and since ., is a A-system, minimal-
ity gives £, C. 2.

Thus 4 € & implies £, C.£,, or, to put it another way, 4 € & and
B € £, together imply that B&€.#, and hence A .7, (The key to, the
proof is that B €., if and only if 4 €.#5.) This last implication means that
B €./, implies PC.£. Since .£, is a A-system, it follows by minimality
once again that B €.7 implies .£, C.#;,. Finally, B4 and Ce_Z,
together imply C €.y, or BN C €.£,. Therefore, .#, is indeed a -
system. =

Since a field is certainly a w-system, the uniqueness asserted in Theorem
3.1 is a consequence of this result:

Theorem 3.3. Suppose that P, and P, are probability measures on o(%),
where & is a w-system. If P, and P, agree on &, then they agree on o(P).

Proor. Let £ be the class of sets A in o(&) such that P(A4) = P,(A).
Clearly Q€.Z. If A€.Z, then P(A)=1-P(A)=1-P(A)=P,(A°),
and hence A°€.Z. If A4, are disjoint sets in -#, then P(U, A4,)=
L, P(A,)=X,P,(A,) =Py (U, A,), and hence U, A, €.7. Therefore .# is
a A-system. Since by hypothesis #c.# and & is a w-system, the m-A
theorem gives o (&) C £, as required. ]
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Note that the 7-A theorem and the concept of A-system are exactly what
are needed to make this proof work: The essential property of probability
measures s countable additivity, and this is a condition on countable disjoint
unions, the only kind involved in the requirement (A,) in the definition of
A-system. In this, as in many applications of the 7-A theorem, .ZC o(4?) and
therefore o) =_7, even though the relation o(#)c_# itself suffices for
the conclusion of the theorem.

Meonotone Classes

A class # of subsets of  is mcnotorne if it is closed under the formation of
monotone unions and intersections:

(i) A;,A,,... €4 and A, A imply A €.4;
(i) A}, A,, .. €4 and A, ] Aimply A€ L.

Halmos’s monotone class theorem is a close relative of the 7-A theorem but wiil be
less frequently used in this book.

Theorem 3.4. If F, is a field and # is a monotone class, then F,C.# implies
o(F)CH.

Proor. Let m(%;) be the minimal monotone class over %,—the intersection of
all monotone classes containing %,. It is enough to prove o (%)) Cm(F,); this will
follow if m(%,) is shown to be a field, because a monotone field is a o-field.

Consider the class £=[A: A° € m(F,)]. Since m(F,) is monotone, so is . Since
F, isafield, #yC#, and so m(F;) C.£. Hence m(%) is closed under complemen-
tation. ’

Define %, as the class of A such that 4 UB € m(%;) for all B € %,. Then 4 is
a monotone class and &, C #; from the minimality of m(.%,) follows m(%;) € #,.
Define %, as the class of B such that A UB € m( %)) for all A € m(F;). Then %,
is a monotone class. Now from m(%,) C#, it follows that A € m(&;) and B € %,
together imply that 4 UB € m(&); in other words, B€ %, implies that B € .4,.
Thus %, C#,; by minimality, m(%,) C#,, and hence A, B € m(%,) implies that
AUBem(F,). =

Lebesgue Measure on the Unit Interval

Consider once again the unit interval (0,1} together with the field &, of
finite disjoint unions of subintervals (Example 2.2) and the o-field & = (%)
of Borel sets in (0, 1]. According to Theorem 2.2, (2.12) defines a probability
measure A on %,. By Theorem 3.1, A extends to &, the extended A being
Lebesgue measure. The probability space ((0,1], &, A) will be the basis for
much of the probability theory in the remaining sections of this chapter. A
few geometric properties of A will be considered here. Since the intervals in
(0, 1] form a m-system generating 4, A is the only probability measure on &
that assigns to each interval its length as its measure.
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Some Borel sets are difficult to visualize:

Example 3.1. Let {r,r,,...} be an enumeration of the rationals in (0, 1).
Suppose that € is small, and choose an open interval I, = (a,, b,) such that
r,e€l, c(0,1)and A(1,))=b,—a, <e2™". Put A= U>_, I,. By subadditivity,
0 <A(A)<e.

Since A contains all the rationals in (0, 1), it is dense there. Thus A is an
open, dense set with measure near 0. If / is an open subinterval of (0, 1),
then / must intersect one of the I, and therefore A(ANT) > 0.

If B=(0,1)—Athen 1 —€e <A(B) < 1. The set B contains no interval and
is in fact nowhere dense [A15]. Despite this, B has measure nearly 1. ]

Example 3.2. There is a set defined in probability terms that has geomet-
ric properties similar to those in the preceding example. As in Section |, let
d {w) be the nth digit in the dyadic expansion of w; see (1.7). Let 4, =[w €
0,1 dfw)=d, (w)=d,, (w),i=1,...,n],and let A= U>_, A,. Proba-
bilistically, A corresponds to the event that in an infinite sequence of tosses
of a coin, some finite initial segment is immediately duplicated twice over.
From A(A,)=2"-2""" it follows that 0 <A(A) < T*_ 272" =1, Again A is
dense in the unit interval; its measure, less than 1, could be made less than
by requiring that some initial segment be immediately duplicated & times

over with &k large. =

The outer measure (3.1) corresponding to A on &, is the infimum of the
sums X, A(A,,) for which A, € &, and A c U, A,. Since each A4, is a finite
disjoint union of intervals, this outer measure is

(3.8) X (A) = inf YIL.

where the infimum extends over coverings of A by intervals I . The notion of
negligibility in Section 1 can therefore be reformulated: A is negligible if and
only if A*(A)=0. For A4 in &, this is the same thing as A(A) = 0. This covers
the set N of normal numbers: Since the complement N°¢ is negligible and lies
in @, MN)=0. Therefore, the Borel set N itself has probability 1:
AMN)=1.

Completeness

This is the natural place to consider completeness, although it enters into probability
theory in an essential way only in connection with the study of stochastic processes in
continuous time; see Sections 37 and 38.
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A probability measure space (), &, P) is complete if A B, B€ &, and P(B)=0
together imply that A € & (and hence that P(A4) = 0). If (0, &, P) is complete, then
the conditions A € &, AaA'cBe %, and P(B)=0 together imply that A'€ &
and P(A')=P(A).

Suppose that (), &, P) is an arbitrary probability space. Define P* by (3.1) for
Fy = F=0(F), and consider the o-field .# of P*-measurable sets. The arguments
leadmg to Theorem 3.1 show that P* restricted to .# is a probability measure. If
P*(B)=0 and A CB, then P*(ANE)+ P*(A°NE)<P*(B)+P*(E)=P*(E) by
monotonicity, so that A satisfies (3.5) and hence lies in .#. Thus (0, .#, P*) is a
complete probability measure space. In any probability space it is therefore possible to
enlarge the o-field and extend the measure in such a way as to get a complete space.

Suppose that ((0, 1}, &, A) is completed in this way. The sets in the completed
o-field # are called Lebesgue sets, and A extended to . is still called Lebesgue

measure.

Nonmeasurable Sets

There exist in (0, 1) seis that lie outside B. For the construction (due to Vitali) it is
convenient to use addition modulo 1 in (0,1]). For x,y €(0,1] take x &y to be x +y
or x +y — 1 according as x -y lies in (0,1} or not." Put A@x=[a ®x: a €A}

Let . be the class of Borel sets A such that A&x is a Borel set and
AMA dx)=A(A). Then £ is a A-system containing the intervals, and so & .2 by
the m-A theorem. Thus 4 € & implies that A ®x € & and A(A4 & x) = A(A). In this
sense, A is translation-invariant.

Define x and y to be equivalent (x ~y) if x ® r =y for some rational r in (0,1},
Let H be a subset of (0, 1] consisting of exactly one representative point from each
equivalence class; such a set exists under the assumption of the axiom of choice [A8].
Consider now the countably many sets H @ r for rational r

These sets are disjoint, because no two distinct points of H are equivalent. (If
Her, and H & r, share the point &, ®r, =h, @ r,, then h ~ h,; this is impossible
unless %, =h,, in which case r; =r,.) Each point of (0, 1] lies in one of these sets,
because H has a representative from each equivalence class. (If x ~ k& € H, then
x=h®re Ha®r for some rational r.) Thus (0,1}= U,(H &), a countable disjoint
union,.

If H were in &, it would follow that A(0,1}=X,A(H @ r). This is impossible: If
the value common to the A(H®r) is 0, it leads to 1=0; if the common value is
positive, it leads to a convergent infinite series of identicai positive terms (a +a + - -
< and g > 0). Thus H lies outside &. [ |

Two Impossibility Theorems*

The argument above, which uses the axiom of choice, in fact proves this: There exists
on 2001 yo probability measure P such that P(A ® x) = P(A) for all A € 2%Y gnd all
x€(0,1} In partlcular it is impossible to extend A to a translation-invariant probabil-
ity measure on 2%!

"This amounts to working in the circle group, where the translation y - x &y becomes a
rotation (1 is the identity). The rationals form a subgroup, and the set H defined below contains

one element from each coset.
*This topic may be omitted. It uses more set theory than is assumed in the rest of the book.
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There is a stronger result There exists on 2" no probability measure P such that
P{x} =0 for each x. Since A{x} =0, this implies that it is impossible to extend A to
20-1 g allt

The proof of this second impossibility theorem requires the well-ordering principle
(equivalent to the axiom of choice) and also the continuum hypothesis. Let S be the
set of sequences (s(1),s(2),...) of positive integers. Then S has the power of the
continuum. (Let the »th partial sum of a sequence in § be the position of the nth 1 in
the nonterminating dyadic representation of a point in {0, 1}; this gives a one-to-one
correspondence.) By the continuum hypothesis, the elements of § can be put in a
one-to-one correspondence with the set of ordinals preceding the first uncountable
ordinal. Carrying the well ordering of these ordinals over to § by means of the
correspondence gives to § a well-ordering relation <, with the property that each
element has only countably many predecessors.

For s,¢ in § write s <1 if s(i) < 1(;) for all { > 1. Say that ¢ regfects s if t <, s and
§ <t, this is a transitive relation. Let T be the set of unrejected elements of S. Let V,
be the set of elements that reject s, and assume it is nonempty. If ¢ is the first
element (with respect to <) of V,, then ¢t € T' (if ¢’ rejects ¢, then it also rejects s,
and since ¢° < t, there is a contradiction). Therefore, if s is rejected at all, it is
rejected by an element of I.

Suppose T is countable and let ¢,,7,,... be an enumeration of its elements. If
t*(k)=1t,(k)+ 1, then t* is not rejected by any ¢, and hence lies in T, which is
impossible because it is distinct from each ¢,. Thus T is uncountable and must by the
continuum hypothesis have the power of (0, 1}.

Let x be a one-to-one map of T onto (0,1} write the image of ¢ as x,. Let
Al =[x,: t(}) = k] be the image under x of the set of  in T for which (i) = k. Since
t(i) must have some value k, U;_ A} =(0,1]. Assume that P is countably additive
and choose u in S in such a way that P, A4) > 1—1/2"* for i> 1. If

oo w(i)

A= U4d.= N1Ix:1() su(®]=[x:1t=<u],

i=1 k=1 i=1

then P(A) > 0. If A is shown to be countable, this will contradict the hypothesis that
each singleton has probability (.

Now, there is some ¢, in T such that u <1, (if ¥ €T, take 1, = u, otherwise, u is
rejected by some fy in T). If t <u fora r in T, then ¢ <1, and hence ¢ <,, ¢, (since
otherwise t,, rejects ¢). This means that [#: ¢ <u] is contained in the countable set [z.
t <, t;}, and A is indeed countable.

PROBLEMS

3.1. (a) In the proof of Theorem 3.1 the assumed finite additivity of P is used twice
and the assumed countable additivity of P is used once. Where?
(b) Show by example that a finitely additive probability measure on a field may
not be countably subadditive. Show in fact that if a finitely additive probability
measure is countably subadditive, then it is necessarily countably additive as
well.

"This refers to a countably additive extension, of course. If one is content with finite additivity,
there is an extension to 2% !I; see Problem 3.8.
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3.2

3.3.

34.

3.5.

(c) Suppose Theorem 2.1 were weakened by strengthening its hypothesis to the
assumption that & is a o-field. Why would this weakened result not suffice for
the proof of Theorem 3.17

Let P be a probability measure on a field &; and for every subset A of ()
define P*(A) by (3.1). Denote also by P the extension (Theorem 3.1) of P to
F=o0(F).

(a) Show that

(3.9 P*(A)=inf[P(B): ACE,B€ ¥
and (see (3.2))
(3.10) P.(A)=sup[P(C):CcA,Ce F],

and show that the infimum and supremum are always achieved.
(b) Show that A is P*-measurable if and only if P,(A)=P*(A).
(c) The outer and inner measures associated with a probability mcasure P on a

o-field F are usually defined by (3.9) and (3.10). Show that (3.9) and (3.10) are
the same as (3.1) and (3.2) with & in the role of .

2.13 2.15 3.21 For the following examples, describe P* as defined by (3.1)
and .#= .#(P*) as defined by the requirement (3.4). Sort out the cases in which
P* fails to agree with P on %, and explain why.

(a) Let %, consist of the sets &,{1},{2,3), and Q= {1,2,3}, and define proba-
bility measures P, and P, on &, by P{1}=0 and P,{2,3}=0. Note that
A(PY) and #(P¥) differ.

(b) Suppose that ) is countably infinite, iet &, be the field of finite and
cofinite sets, and take P(A) to be 0 or 1 as A is finite or cofinite.

(c) The same, but suppose that € is uncountable.

(d) Suppose that Q is uncountable, let %, consist of the countable and the
cocountable sets, and take P(A) to be 0 or 1 as A is countable or cocountable.

(e) The probability in Problem 2.15.
(0 Let P(A)=1I[(w,) for A € F,, and assume {w,} € o( F).

Let f be a strictly increasing, strictly concave function on [0, ) satisfying
f(0)=0. For Ac(0,1], define P*(A)=f(A*(A)). Show that P* is an outer
measure in the sense that it satisfies P*(<) =0 and is nonnegative, monotone,
and countably subadditive. Show that A lies in .# (defined by the requirement
(3.4)) if and only if A*(A4) or A*(A°) is 0. Show that P* does not arise from the
definition (3.1) for any probability measure P on any field %,.

Let ) be the unit square [(x, y): 0 <x,y <1}, let F be the class of sets of the
form [(x, y): x€A,0<y <1}, where A € &, and let P have value A(A) at this
set. Show that (), &, P) is a probability measure space. Show for 4 =[(x, y):
0<x<1, y=3}that P,(A)=0and P*(A)=1.
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d.6.

3.7.

38.

3.9.

PROBABILITY

Let P be a finitely additive probability measure on a field &, For A CQ, in
analogy with (3.1) define

(3.11) P°(A)=inf }_P(A,),

where now the infimum extends over all finite sequences of Fy-sets A,
satisfying A < U, A,. (If countable coverings are allowed, everything is differ-
ent. It can happen that P°({)) = 0; see Problem 3.3(¢) ) Let .#° be the class of
sets A such that PU(£)=P(ANE)+ P (A NE)for all EC).

(a) Show that P%(J)=0 and that P° is nonnegative, mouotone, and finitely
subadditive Using these four properties of P°, prove: Lemma 1° .#° is a field.
Lemma 2°: If A, A,, is a finite sequence of disjoint .#°-sets, then for each
EcQ,

(3.12) P°(En(UAk))=EP°(EﬂAk).
k k

Lemma 3° P° restricted to the fieid .£° is finirely additive.

(b) Show that if P° is defined by (3.11) (finite coverings), then: Lemma 4°
FoCH°. Lemma 5% P°(A)}=P(A) for A € %,

(¢c) Define P (A)=1—P°(A°). Prove that if Ec A € %, then

(3.13) P(E)=P(A)-P(A—E).

2.7 3.67 Suppose that H lies outside the field 55, and let &, be the field
generated by %, U {H}, so that %, consists of the sets (HNA) U(H N B) with
A, B € &#,. The problem is to show that a finitely additive probability measure
P on &, has a finitely additive extension to %,. Define Q on %, by

(3.14) Q((HNA) U (H N B)) =P (HNA)+P,(H NB)

for A,B € %,.

(a) Show that the definiticn is consistent.

(b) Shows that Q agrees with P on %,.

(c) Show that Q is finitely additive on %,. Show that Q(H) = P°(H).

(d) Define ' by interchanging the roles of P° and P_ on the right in (3 14).
Show that Q' is another finitely additive extension of P to %,. The same is true
of any convex combination Q" of Q and Q'. Show that Q"(H) can take any
value between P (H) and P°(H).

T Use Zorn’s lemma to prove a theorem of Tarski: A finitely additive
probability measure on a field has a finitely additive extension to the field of all
subsets of the space.

T (a) Let P be a (countably additive) probability measure on a o-field %,
Suppose that H& &, and let %, =o(FU{H)). By adapting the ideas in
Problem 3.7, show that P has a countably additive extension from & to #,.
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3.10.

3.11.

3.12.

3.13.

3.14.

3.15.

(b) It is tempting to go on and use Zorn’s lemma to extend P to a completely
additive probability measure on the o-field of all subsets of 2. Where does the

obvious proof break down?

2.17 3.27 As shown in the text, a nrobability measure space (Q), &, P) has a
complete extension—that 1s, there exists a complete probability measure space
(Q, &, P,) such that ¥ &, and P, agrees with P on &

(a) Suppose that (£, %,, P,) is a second complete extension Show by an
example in a space of two points that P, and P, need not agree on the o-field
FNF.

(b) There is, however, a unique minimal complete extension: Let & * consist
of the sets A for which there exist Fsets B and C such that A2Bc C and
P(C) = 0. Show that &* is a o-field. For such a set 4 define P*(A4) = P(B).
Show that the definition is consistent, that P* is a probability measure on ¥,
and that (Q, ¥, P*) is complete. Show that, if (), &, P,) is any complete
extension of (), &, P), then ¥*c % and P, agrees with P* on F*;
(Q, %", P*)is the completion of (Q}, &, P).

(c) Show that 4 € %" if and only if P,(A)=P*(A), where P, and P* are
defined by (2.9) and (3.10), and that P*(A)=P,(A)=P*(A) in this case. Thus
the complete extension constructed in the text is exactiy the completion.

{a) Show that a A-system satisfies the conditions

(A,) A,BE_# and ANB= imply AUB €_7#,

(As) Ay, A,,...€Zand A1 A imply A €_2#,

(Ag) A, A,,...€L and A, | A imply A €2
(b) Show that .# is a A-system if and only if it satisfies (A,), (X;), and (A;).
(Sometimes these conditions, with a redundant (A,), are taken as the definition.)

2.5 3.111t (a) Show that if & is a 7-system, then the minimal A-system over
& coincides with o(£).

(b) Let & be a m-system and .# a monotone class. Show that £C.# does not
imply o(#) C 4.

(¢) Deduce the 7-A theorem from the monotone class theorem by showing
directly that, if a A-system .# contains a w-system &2, then £ also contains the
field generated by &.

2517 (a) Suppose that %, is a field and P, and P, are probability measures
on a(%,). Show by the monotone class theorem that if P, and P, agree on %,
then they agree on o (%;).

(b) Let &, be the smallest field over the m-system &. Show by the inclusion-
exclusion formula that probability measures agreeing on & must agree also on
Fo- Now deduce Theorem 3.3 from part (a).

1.5 2221 Prove the existence of a Lebesgue set of Lebesgue measure 0 that
is not a Borel set.

1.3 3.6 3.147 The outer content of a set A in (0,1} is ¢*(A)=infL {1 |,
where the infimum extends over finite coverings of A by intervals /,. Thus A is
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3.16.

3.17.

3.18.

3.19.

3.20.

3.21.

PROBABILITY

trifling in the sense of Problem 1.3 if and only if ¢*(4) = 0. Define inner content
by ¢, (A)=1-c*(A°). Show that ¢, (A)=supXl |/ |, where the supremum
extends over finite disjoint unions of intervals I, contained in A4 (of course the
analogue for A, fails) Show that c,(A4) <c*(A); if the two are equal, their
common value is taken as the content c¢(A) of A, which is then Jordan
measurable Connect all this with Problem 3.6.

Show that ¢*(A)=c*(A4~), where A~ is the closure of A4 (the analogue for
A* fails).

A trifling set is Jordan measurable Find (Pioblem 3.14) a Jordan measurable
set that is not a Borel set.

Show that ¢ ,(A) <A,(A) <A*(A) <c*(A). What happens in this string of
inequalities if A consists of the rationals in (0, 3] together with the irrationals in

(7.1P

151 Deduce directly by countable additivity that the Cantor set has Lebesgue
measure 0.

From the fact that A(x ® 4)=A(A4), deduce that sums and differences of
normal numbers may be nonnormal.

Let H be the nonmeasurable set constructed at the end of the section.

(a) Show that, if 4 is a Borel set and A C H, then A(A) = 0—thatis, A ,(H) =
0.

(b) Show that, if A*(E) >0, then E contains a nonmeasurable subset.

The aim of this problem is the construction of a Borel set A4 in (0, 1) such that
0 <A(A N G)<AG) for every nonempty oben set G in (0, 1).

(a) It is shown in Example 3.1 how to construct a Borel set of positive Lebesgue
measure that is nowhere dense. Show that every interval contains such a set.

(b) Let {I,} be an enumeration of the open intervals in (0, 1) with rational
endpeints. Construct disjoint, nowhere dense Borel sets A,, B, A5, B,,... of
positive Lebesgue measure such that A, UB, Cl,.

(c) Let A=, A,. A nonempty open G in (0, 1) contains some [,. Show that
0 <A(A,) <AMANG)<MANG)+ AB,) <NG).

1 There is no Borel set A4 in (0,1) such that aA(I) <A(ANI) <bA(]) for
every open interval [ in (0, 1), where 0 <a <b < 1. In fact prove:

(a) If ACANT)<bA(I) for all [ and if b <1, then A(A)=0. Hint. Choose an
openh G such that A <G c(0,1) and A(G) <b™'A(A); represent G as a disjoint
union of intervals and obtain a contradiction.

() If ad(I) < AMANT) for all [ and if a > 0, then A(A4) = 1.

Show that not every subset of the unit interval is a Lebesgue set. Hint: Show
that A* is translation-invariant on 2™ '} then use the first impossibility theorem
(p. 45). Or use the second impossibility theorem.
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SECTION 4. DENUMERABLE PROBABILITIES

Complex probability ideas can be made clear by the systematic use of
measure theory, and probabilistic ideas of extramathematical origin, such as
independence, can illuminate problems of purely mathematical interest. It is
to this reciprocal exchange that measure-theoretic probability owes much of
its interest.

The results of this section concern infinite sequences of events in a
prebability space.” They will be illustrated by examples in the unit interval.
By this will always be meant the triple (), %, P) for which Q is (0,1], & is
the o-field & of Borel sets therc, and P(A) is for 4 in % the Lebesgue
measure A(A) of A. This is the space appropriate to the problems of Section
1, which will be pursued further. The definitions and theorems, as opposed to
the examples, apply to all probability spaces. The unit interval will appear
again and again in this chapter, and it is essential to keep in mind that there
are many other important spaces to which the general theory will be applied
later.

General Formulas

The formulas (2.5) through (2.11) will be used repeatedly. The sets involved
in such formulas lie in the basic o-field % by hypothesis. Ary probability
argument starts from given sets assumed (often tacitly) to lie in % further
sets constructed in the course of the argument must be shown to lie in % as
well, but it is usually quite clear how to do this.

If P(A)> 0, the conditional probability of B given A is defined in the
usual way as

P(ANB)

(4.1) P(B|A) = )

There are the chain-rule formulas

P(ANB) =P(A)P(BlA),
(4.2) P(ANBNC)=P(A)P(B|IAYP(CIANB),

If A,,A,,... partition (1, then

+Thcy come under what Borel in his first paper on the subject (see the footnote on p. 9) called
probabilités dénombrables, hence the section heading
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Note that for fixed A the function P(B|A) defines a probability measure as
B varies over &.

If P(A,)=0, then by subadditivity P(U,A,)=0. If P(4,) =1, then
N, A, has complement |J, A of probability 0. This gives two facts used over

and over again:
IfA,, A,,... are sets of probability 0, sois U, A,. If A,, A,,... are sets of
probability 1, sois N, A,.

Limit Sets

For a sequence A,, 4,,... of sets, define a set

(4.4) limsupA,= [} U 4.
n n=1k-=n

and a set

(4.5) liminf A, = U ﬂAk.
n n=1k=n

These sets' are the limits superior and inferior of the sequence {A4,}. They lie
in & if all the A, do. Now w lies in (4.4) if and only if for each »n there is
some k > n for which w € A,; in other words, w lies in (4.4) if and only if it
lies in infinitely many of the A,. In the same way, w lies in (4.5) if and only if
there is some n such that w € A, for all k > n; in other words, w lies in {4.5)
if and only if it lies in all but finitely many of the A4, .

Note that N5 _,, A, Tliminf, A, and 1J%_,A, llimsup, A,. For every m
and n, N%.,A4, € U%-,A,, because for i > max{m, n}, A; contains the first
of these sets and is contained in the second. Taking the union over m and
the intersection over n shows that (4.5) is a subset of (4.4). But this follows
more easily from the observation that if w lies in all but finitely many of the
A, then of course it lies in infinitely many of them. Facts about limits inferior
and superior can usually be deduced from the logic they invoive more easily
than by formal set-theoretic manipulations.

If (4.4) and (4.5) are equal, write

(4.6) lim A, = lim inf A, = lim sup A4,,.

n

To say that A, has limit A, written A, — A, means that the limits inferior
and superior do coincide and in fact coincide with A. Since liminf, 4, C
limsup, A, always holds, to check whether A, —A is to check whether
limsup, A, CA Climinf, A,. From A, € % and A, — A follows A € &

"See Problems 4 1 and 4 2 for the analogy between set-theoretic and numerical limits superior
and inferior.
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Example 4.1. Consider the functions d,(w) defined on the unit interval by
the dyadic expansion (1.7), and let ! (w) be the length of the run of 0s
startingat d (w): L (0) =k if d (0)= -+ =d,,, (w)=0andd,, (0)=1;
here [ (@) =0 if d,(w)=1. Probabilities can be computed by (1.10). Since
[w: [ (w)=k] is a union of 2"~ ! disjoint intervals of length 27" ~%, it lies in
& and has probability 274", Therefore, [0: [ ()= r]=[w: d(w)=0,
n <i<n+r]lies also in & and has probability £, _ 274

(4.7) Plo:l(w)=r]=2"".

If A, is the event in (4.7), then (4.4) is the set of w such that / (w) > r for
infinitely many n, or, n being regarded as a time index, such that [ (w) > r
infinitely often. &

Because of the theory of Sections Z and 3, statements like (4.7) are valid in
the sense of ordinary mathematics, and using the traditional language of
probability—*“neads,” “runs,” and sc on—does not change this.

When n has the role of time, (4.4) is frequently written

(4.8) limsupA,=[A4,i.0.],

n

where “1.0.” stands for “infinitely often.”

Theorem 4.1. (i) For each sequence {A,),
(4.9) P(lim inf 4,) < lim inf P( A,)

<lim sup P(A,) <P(lim supA,,}.

(ii) If A, — A, then P(A,)— P(A).

Proor. Clearly (ii) follows from (). As for (i), if B,= N%.,A4, and
C,=U%.,A4,, then B, Tliminf, A, and C, |limsup, A4,, so that, by parts

(i) and (ii) of Theorem 2.1, P(A4,)> P(B,)— P(liminf, A,) and P(A,) <
P(C,) - P(limsup, 4,). n

Example 4.2. Define [,(w) as in Example 4.1, and let 4, = [w: [ (@) > ]
for fixed r. By (47) and (4.9), Plw: | (w)>r i.0]=>2"". Much stronger
results will be proved later. |

Independent Events

Events A and B are independent if P(A N B)=P(A)P(B). (Sometimes an
unnecessary mutually 1s put in front of independent.) For events of positive
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probability, this is the same thing as requiring P(B|A) = P(B) or P(A|B) =

P(A). More generally, a finite collection A4,,..., A, of events is independent
if

(4.10) P(Ai,0 - NA)=P(A) - P(A4,)

for 2<j<n and 1<k, < - - <k;<n. Reordering the sets clearly has no

effect on the condition for independence, and a subcollection of independent
events is also independent. An infinite (perhaps uncountable) collection of
events is defined to be independent in each of its finite subcollections is.

If n =3, (4.10) imposes for j = 2 the three constraints

(4.11) P(A,NA,) =P(A)P(A;), P(A NA;)=P{A,)P(A;),
P(A,nA;) =P(A,)P(A;),

and for j = 3 the single constraint
(4.12) P(A, NA,NA3Y=P(A)P(A,)P(A,).

Example 4.3. Consider in the unit interval the events B,, = [w: d (w) =
d, (w)]—the uth and vth tosses agree—and let A, = B,,, A, = B3, A3 = Bys.
Then A,, A,, A; are pairwise independent in the sense that (4.11) holds (the
two sides of each equation being 7). But since A, N A, CA,, (4.12) does not
hold (the left side is % and the right is §), and the events are not indepen-
dent. |

Example 4.4. 1n the discrete space (2 = {1,..., 6} suppose each point has
probability 3 (a fair die is rolled). If A, ={1,2,3,4} and A, = A4, ={4,5,6},
then (4.12) holds but none of the equations in (4.11) do. Again the events are
not independent. |

Independence requires that (4.10) hold for each j=2,...,n and each

choice of ky,...,k;, a total of EJ'-‘=2('J'.)= 2" — 1 — n constraints. This re-
quirement can be stated in a different way: If B,,..., B, are sets such that for

each i=1,...,n either B,=A4; or B,= (), then
(4.13) P(B,NnB,n---NB,)=P(B))P(B,) - P(B,).

The point is that if B, = (), then B; can be ignored in the intersection on the
left and the factor P(B;) = 1 can be ignored in the product on the right. For
example, replacing A, by  reduces (4.12) to the middle equation in (4.11).

From the assumed independence of certain sets it is possible to deduce
the independence of other sets.
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Example 4.5. On the unit interval the events H, =[w: d,(w)=0], n =
1,2,..., are independent, the two sides of (4.10) having in this case value 2.
It seems intuitively clear that from this should follow the independence, for
exarple, of [w: d(w)=0]=H, and [w: d(0)=0, diw)=1}=H, N HS,
since the two events involve disjoint sets of times. Further, any sets A and
B depending, respectively, say, only on even and on odd times (like
[w: d,(w)=0i0}and [w: d,,, (w)=1i0])ought also to be independent,
This raises the general question of what it means for 4 to depend only on
even times. Intuitively, it requires that knowing which ones among H,, H,, ...
occurred entails knowing whether or not A occurred—that is, it requires that
the sets H,, H,,... “determine” A. The set-theoretic form of this require-
ment is that A is to lie in the o-field generated by H,, H,,.... From
Ae€o(H,, H,,...) and Be€o(H|, H,, ..) it ought to be possible to deduce
the independence of 4 and B. =

The next theorem and its corollaries make such deductions possible.
Define classes &/, ..., &, in the basic o-field % to be independent if for
each choice of A; from &7, i=1,...,n, the events A,,..., A, are indepen-
dent. This is the same as requiring that (4.13) hold whenever for each i,
1 <i<n,either B, € &, or B, = ().

Theorem 4.2. If &,,..., &, are independent and each &, is a mw-system,
then o(&)), ...,0(&7) are independent.

Proor. Let & be the class & augniented by (@ (which may be an
element of &7 to start with). Then each & is a w-system, and by the
hypothesis of independence, (4.13) holds if B,€ &, i =1,...,n. For fixed
sets B,,..., B, lying respectively in &,,..., %, let . be the class of Fsets
B, for which (4.13) holds. Then .27 is a A-system containing the m-system %,
and hence (Theorem 3.2) containing o(#,) = o(2,). Therefore, (4.13) holds
if By, B,,...,B, lie respectively in o()), #,,..., %, which means that
o(A,), &5,..., %, are independent. Clearly the argument goes through if 1
is replaced by any of the indices 2,..., n.

From the independence of o(&/)),,,...,o7, now follows that of

n

(), o(A,), o, ..., &, and 50 on. ]

If &/={A,,..., A,} is finite, then each A4 in ¢(&7) can be expressed by a
“formula” such as A=A,NA§ or A=(A,NA)U(A;NASNA). If & is
infinite, the sets in 0(.%7) may be very complicated; the way to make precise
the idea that the elements of & “determine” A is not to require formulas,
but simply to require that A4 lie in o (7).

Independence for an infinite collection of classes is defined just as in the
finite case: [7,: 6 € @] is independent if the collection [A,: 6 € @] of sets is
independent for each choice of A, from &/. This is equivalent to the
independence of each finite subcollection &7 e &/BH of classes, because of
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the way independence for infinite classes of sets is defined in terms of
independence for finite classes. Hence Theorem 4.2 has an immediate
consequence:

Corollary 1. If &7, 6 € ©®, are independent and each &, is a w-system,
then o(7,), 8 € O, are independent .

Corollary 2. Suppose that the array

Ay Ay
(4.14) Ay Ay

of events is independent ; here each row is a finite or infinite sequence, and there
are finitely or infinitely many rows. If & is the o-field generated by the i th row,
then &, &,, ... are independent.

Proor. If &7 is the class of all finite intersections of elements of the ith
row of (4.14), then & is a m-system and o(7) = Z. Let I be a finite
collection of indices (integers), and for each i in I let J; be a finite collection
of indices. Consider for i €[ the element C;= N ;. A;; of &. Since every
finite subcollection of the array (4.14) is independent (the intersections and
products here extend over i €[ and j €1)),

P(ne)-¢(n Na)-TITIP(4) - TTP(0,4,
- [1P(C).

It follows that the classes &7}, &7,,... are independent, so that Corollary 1
applies. [ |

Corollary 2 implies the independence of the events discussed in Example
4.5. The array (4.14) in this case has two rows:

H; H; H;
Theorem 4.2 also implies, for example, that for independent A4,,..., A4,,
(4.15) P(AIN " NANA N - NA,)

=P(A5) - P(AS)P(Ayyr) - P(A,).
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To prove this, let &7, consist of A; alone; of course, A € o(27). In (4.15)
any subcollection of the A, could be replaced by their complements.

Example 4.6. Consider as in Example 4.3 the events B, that, in a
sequence of tosses of a fair coin, the uth and ovth outcomes agree. Let &7
consist of the events B, and B,;, and let &7, consist of the event B,;. Since
these three events are pairwise independent, the classes &7, and &7, are
independent. Since B,; =(B,,2B,;) lies in o(&)), however, o(&7,) and
o(&7,) are not independent. The trouble is that o7, is not a w-systemn, which
shows that this condition in Theorem 4.2 is essential. |

Example 4.7. 1f &/={A,, A,,...} is a finite or countable partition of ()
and P(B|A,) =p for each A, of positive probability, then P(B)=p and B is
independent of o(&7). If ¥’ denotes summation over those i for which
P(A;) >0, then P(B)=YP(A,NnB)=YP(A,)p=p, and so B is indepen-
dent of each set in the m-svstem &7U (). ]

Subfields

Theorem 4.2 involves a number of o-fields at once, which is characteristic of
probability theory; measure theory not directed toward probability usually
involves only one all-embracing o-field %. In proability, o-fields in $—that
is, sub-o-fields of —play an important role. To understand their function it
helps to have an informal, intuitive way of looking at them.

A subclass & of & corresponds heuristically to partial information.
Imagine that a point w is drawn from () according to the probabilities given
by P: w lies in A with probability P(.A). Imagine also an observer who does
not know which w it is that has been drawn but who does know for each A in
& whether w €A or w & A—that is, who does not know w but does know
the value of I (w) for each A4 in &7. Identifying this partial information with
the class &7 itself will illuminate the connection between various measure-
theoretic concepts and the premathematical ideas lying behind them.

The set B is by definition independent of the class &7 if P(B|A) = P(B)
for all sets A in & for which P(A) > 0. Thus if B is independent of &7,
then the observer’s probability for B is P(B) even after he has received the
information in &7 in this case & contains no information about B. The
point of Theorem 4.2 is that this remains true even if the observer is given
the information in o(97), provided that %7 is a w-system. It is to be stressed
that here information, like observer and know, is an informal, extramathe-
matical term (in particular, it is not information in the technical sense of
entropy).

The notion of partial information can be looked at in terms of partitions.
Say that points w and «' are Zequivalent if, for every A in &7, @ and o' lie
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either both in A or both in A°—that is, if
(4.16) L(w)=1,(0"), Ae .

This relation partitions  into sets of equivalent points; call this the &#
partition.

Example 4.8. 1f v and o' are o(&)-equivalent, then certainly they are
&fequivalent. For fixed » and o', the class of 4 such that [ (w) =1 («')isa
o-field; if w and o' are &Zequivalent, then this o-field contains &7 and hence
o(&), so that w and ' are also o(%7)-equivalent. Thus £Zequivalence
and o(%)-equivalence are the same thing, and the Zpartition coincides
with the o (&7 )-partition. =

An observer with the information in o(%) knows, riot the point w drawn,
but only the equivalence class containing it. That is exactly the infoima-
tion he has. In Example 4.6, it is as though an observer with the items
of information in &/ were unable to combine them to get information
about B,,.

Example 4.9. If H,=[w: d,(w)=0] as in Example 4.5, and if o/=
(H,, H;, Hs, ...}, then w and «' satisfy (4.16) if and only if d,(w) = d,{«') for
all odd n. The information in o(&7) is thus the set of values of d,(w) for n
odd. [ |

One who knows that  lies in a set A has more information about « the smaller
A is. Cne who knows [ (o) for each A4 in a class &7, however, has more information
about @ the larger &/ is. Furthermore, to have the information in &7, and the
information in £7, is to have the information in £7] U &7,, not that in &7 N &7,

The following example points up the informal nature of this interpretation of
o-fields as information.

Example 4.10. In the unit interval (Q, &, P) let & be the o-field consisting of the
countable and the cocountable sets. Since P(G) is 0 or 1 for each G in £, eachset H
in % is independent of . But in this case the £Zpartition consists of the singletons,
and so the information in £ tells the observer exactly which @ in ) has been drawn.
(i) The o-field & contains no information about H—in the sense that H and # are
independent. (ii) The o-field # contains all the information about H—in the sense
that it tells the observer exactly which w was drawn. [ |

In this example, (i) and (ii) stand in apparent contradiction. But the mathematics is
in (1)—H and # are independent—while (ii) only concerns heuristic interpretation.
The source of the difficulty or apparent paradox here lies in the unnatural structure of
the o-field ¢ rather than in any deficiency in the notion of independence.! The
heuristic equating of o-fields and information is helpful even though it sometimes

"See Problem 4.10 for a more extreme example
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breaks down, and of course proofs are indifferent to whatever illusions and vagaries
brought them into existence.

The Borel-Cantelli Lemmas

This is the first Borel-Cantelli lemma:

Theorem 4.3. If ¥,P(A,) converges, then P(limsup, 4,)=0.

ProofF. From limsup, A, € U%.,, A, follows P(limsup, A,) <
P(US - AR) < Z5%.,, P(AY), and this sum tends to 0 as m — oo if ©,P(A4,)
converges.

By Theorem 4.1, P(A,) — 0 implies that P(liminf, A,)=0; in Theorem
4.3 hypothesis and concluston are both stronger.

Example 4.11. Consider the tun length [ (w) of Example 4.1 and a
sequence {r,} of positive reals. If the series ©1/2' converges, then

(4.17) Plo:l(w)=r,i0]=0

To prove this, note that if s, is r, rounded up to the next integer, then by
4.7, Plo: | () =r,]=2"% <27 Therefore, (4.17) follows by the first
Borel-Cantelli lemma.

If r,=(1+e€)log,n and € is positive, there is convergence because
27" =1/n'*< Thus

(4.18) Plo:l(w)=(1+€)log,nio]=0
The limit superior of the ratio /(w)/log,n exceeds 1 if and only if w

belongs to the set in (4.18) for some positive rational e. Since the union of
this countable class of sets has probability 0,

[
4.19 Plw: llmsup ( > 1 = (.
( Tog
To put it the other way around,
(4.20) P[w llmsupl (w) ] 1.

Technically, the probability in (4.20) refers to Lebesgue measure. Intu-
itively, it refers to an infinite sequence of independent tosses of a fair coin. B

In this example, whether limsup, {,(w)/log,n <1 holds or not is a
property of w, and the property in fact holds for  in an S%set of probability
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1. In such a case the property is said to hold with probability 1, or almost
surely. In nonprobabilistic contexts, a property that holds for @ outside a
{measurable) set of measure 0 holds almost everywhere, or for almost all w.

Example 4.12. 'The preceding example has an interesting arithmetic consequence.
Truncating the dyadic expansion at n gives the standard (n — 1)-place approximation
Y221d,(0)27% to w; the error is between 0 and 27" *!, and the error relative to the
maximum is

"l (w)27k = .

k=1%k —i

2_.,.,+| = Edn+i—-l(w)2 ?
i=1

(4 21) e(w)= 21—

which lies between 0 and 1. The binary expansion of e,{w) begins with [,(») 0’s, and
then comes a 1 Hence .0 . 01 <¢ (w)<.0...0111..., where there are [ {w) 0's in
the extieme terms. Therefore,

(4.22) <e (w) <

zin(w)+l zlﬂfw) ?

so that results on run length give information about the eiror of approximation.

By the left-hand inequality in (4.22), ¢,(w) < x,, (assume that 0 <x, < 1) implies
that [ (w)> ~log, x, — 1; since 27" < e implies (4.17), Lx, < implies Plw:
efw) <x, i.0}=0. (Clearly, [w: e,(w) <x]is a Borel set) In particular,

(4.23) Plo:e(w)<1/a'* i0.] =0.

Technically, this probability refers to Lebesgue measure; intuitively, it refers to a
point drawn at random from the unit interval. [ |

Example 4.13. The final step in the proof of the normal number theorem
(Theorem 1.2) was a disguised application of the first Borel-Cantelli lemma.
If A,=[w:|n"'s(w)=n""8], then LP(A4,) <, as follows by (1.29), and
so P[A, i.0.]=0. But for w in the set complementary to [A4, i.0.}, n™'s (w)
- (.

The proof of Theorem 1.6 is also, in effect, an application of the first
Borel-Cantelli lemma. [ |

This is the second Borel-Cantelli lemma:

Theorem 4.4. If {A4,} is an independent sequence of events and ¥.,P(A,)
diverges, then P(limsup, A,) = 1.

Proor. It is enough to prove that P(U,_, Ni_, A%) =0 and hence
enough to prove that P(N3_, A5) =0 for all n. Since 1 —x <e™,

n+j n+j

N Az) = T1(1-P(4,)) Sexp[— L P(4)
=n k=n

k=n

P
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Since L, P(A,) diverges, the last expression tends to 0 as j ~> », and hence
P(N%_., A‘;)=limj P(NIH AS) = 0. -

By Theorem 4.1, limsup, P(A4,) > 0 implies P(limsup, A,) > 0; in Theo-
rem 4.4, the hypothesis &, P(A,) = » is weaker but the conclusion is stronger
because of the additional hypothesis of independence.

Example 4.14. Since the events [w: [ (w)=0l=[w: d (w)=1], n=
1,2,..., are independent and have probability 3, Plw: [ (w)=0i.0]}=1.

Since the events A, =[w: [(w)=1]=[w: d(0)=0, d,, (w)=1], n=
1,2,..., are not independent, this argument is insufficient to prove that

(4.24) Plw: ! (w)=1i0.]=1.

But the events A,, A,, A.,... are independent (Theorem 4.2) and their
probabilities form a divergent series, and so Ple: /,,(w) =1 i.0.} =1, which
implies (4.24). m

Significant applications of the second Borel-Cantelli lemma usually re-
quire, in order to get around problems of dependence, some device of the
kind used in the preceding example.

Example 4.15. There is a complement to (4.17): If r, is nondecreasing and
Y27 fr, diverges, then

(4.25) Plo:l(w)2r,i0]=1.

To prove this, note first that if r, is rounded up to the next integer, then
X2 /r, still diverges and (4.25) is unchanged. Assume then that r, = r(n) is
integral, and define {n,} inductively by n, =1and n, ., =n, +r,, k> 1. Let
Ap=lo: [ (0)27r, ]=lo: d(w)=0, n, <i<n, ] since the A4, involve
nonoverlapping sequences of time indices, it follows by Corollary 2 to
Theorem 4.2 that A, A,,... are independent. By the second Borel-Cantelli
lemma, P[A, i0]l=1if ¥,P(A,)=1Y,27"" diverges. But since r, is
nondecreasing,

Y27t =y 277 " ) () — 1)

k>1 k=1
> Z Z 27y 1= E 27y
kzln,<n<ng,, n>1

Thus the divergence of £,2 "=, ! implies that of £,277""«), and it follows
that, with probability 1, I, (w) 2 r, for infinitely many values of k. But this is
stronger than (4.25).

The result in Example 4.2 follows if r, = r, but this is trivial. If r, = log, n,
then X27"/r, = £1/(n log, n) diverges, and therefore

(4.26) Plw:l(w)=log,nio.] =1
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By (4.26) and (4.20),

l
(4.27) Plw: limsup () =1|=1

log, n

Thus for @ in a set of probabilityil, log, n as a function of n is a kind of
“upper envelope” for the function / (w). ]

Example 4.16. By the right-hand inequality in (4.22), if [ (w)=> log,n, then
e (w) <1 /n. Hence (4.26) gives

(4.28) Plo:e(w) < % i.o.f=1.

This and (4.23) show that, with probability 1, ¢, («) has 1 /n as a “lower envelope.”
The discrepancy between  and its (n — 1)-place approximation L7Z1d, ()2 % will
fall infinitely often below 1 /(r 27~ ') but not infinitely often below 1 /(r'*<27~ "), m

Example 4.17. Examples 4.12 and 4.16 have to do with the approximation of real
numbers by rationals: Diophantine approximation. Change the x, =1 /n'*< of (4.23)
to 1 /((n — 1)log2)! *<. Then Lx,, still converges, and hence

Plo:e,(0) <1/(log2"~1)" " “i0.] =0.

And by (4.28),
Plw:e,(w)<1/log2" ! io.] =1

The dyadic rational £%_!d,(@)2™ % =p /g has denominator g =2""!, and e,(w)=
q(w — p /q). There is therefore probability 1 that, if g is restricted to the powers of 2,
then 0 <w—p/q<1/(qlogq) holds for infinitely many p/q but 0 <w —p/q <
1 /(q log'*<q) holds only for finitely many." But contrast this with Theorems 1.5 and
1.6: The sharp rational approximations to a real number come not from truncating its
dyadic (or decimal) expansion, but from truncating its continued-fraction expansion;
see Section 24. =

The Zero—-One Law

For a sequence A,, A,,... of events in a probability space (), %, P)

consider the o-fields o(A4,,, 4, ,,,...) and their intersection

0

(4.29) T= N o(AmAyiir---)

n=1

"This ignores the possibility of even p (reducible p /4); but see Problem 1.11(b). And rounding
w up to (p + 1} /q instead of down to p /g changes nothing; see Problem 4.13.
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This is the tail o-field associated with the sequence {A4,)}, and its elements are
called tail events. The idea is that a tail event is determined solely by the A4,
for arbitrarily large n.

Example 4.18. Since limsup, A, =N\ ,.,U,.A4; and liminf,, A, =
UgsnN;srA; are both in o(A4,, A, ,,,...), the limits superior and inferior
are tail events for the sequence {A4,,}. =

Example 4.19. Let | () be the run length, as before, and let H, =[w:
d,(w) = 0]. For each ny,

[w: 1 (w) 21, 1.0]

N U [e:l{w)2r]

"2"0 I\Zﬂ

= (1 UHH 0 NH,

nznyk=n

Thus [w: [ (@) > r, i.0.] is a tail event for the sequence {H,,}. |

The probabilities of tail events are governed by Kolmogorov’s zero—one
law:T

Theorem 4.5. If A,, A,,... is an independent sequence of events, then for
each event A in the tail o-field (4.29), P(A) is either 0 or 1.

Proor. By Corollary 2 to Theorem 4.2, o(A)),...,0(A,_)),
o(A,, A, -.-)are independent. If A € 7, then 4 €0(A4,,A,,,,.--) and

therefore A4,,.. ,A,_,, A are independent. Since independence of a collec-
tion of events is defined by independence of each finite subcollection, the
sequence A, A;, A,,... is independent. By a second application of Corollary

2 to Theorem 4.2, 0(A) and o(A,, A,,...) are independent. But A € IC
o(A,, A,,...); from A€o(A) and A €d(A,, A,,...) it follows that A is
independent of itself: P(A NA)=P(A)P(A). This is the same as P(A) =
(P(A))? and can hold only if P(A4)is0 or 1. m

Example 4.20. By the zero-one law and Example 4.18, P(limsup,, 4,) is
0 or 1if the A4, are independent. The Borel-Cantelli lemmas in this case go
further and give a specific criterion in terms of the convergence or divergence
of LP(A,). ]

Kolmogorov’s result is surprisingly general, and it is in many cases quite
easy to use it to show that the probability of some set must have one of the
extreme values O and 1. It is perhaps curious that it should so often be very
difficult to determine which of these extreme values is the right one.

"For a more general version, see Theorem 22.3
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Example 4.21. By Kolmogorov’s theorem and Example 4.19, [w: [ {w) > r,
i.0.] has probability 0 or 1. Call the sequence {r,} an outer boundary or an
inner boundary according as this probability is 0 or 1.

In Example 4.11 it was shown that {r,} is an outer boundary if 327" <.
In Example 4.15 it was shown that {r } is an inner boundary if r, is
nondecreasing and L2 ", ' =. By these criteria r, =60log, n gives an
outer boundary if 8 > 1 and an inner boundary if 6 < 1.

What about the sequence r,=log,n +6log,log,n? Here Y27 =
Y1/nliog, n)?, and this converges for 6 > 1, which gives an outer boundary.
Now 2"+ ! is of the order 1/n(log, n)' *%, and this diverges if § <0, which
gives an inner boundary (this follows indeed from (4.26)). But this analysis
leaves the range 0 < 8 <1 unresolved, although every sequence is either an
inner or an outer boundary This question is pursued further in Example 6.5.

[ |

PROBLEMS

4.1. 2.117 The limits superior and infericr of a numerical sequence {x,} can be
defined as the supremum and infimum of the set of limit points—that is, the set
of limits of convergent subsequences. This is the same thing as defining

(4.30) lim supx = /\ V X,
n=\1k=n
and
(4.31) liminfx, = V A x;.
n n=1k=n

Compare thesc relations with (4.4) and (4.5) and prove that

1 =lim sup/, , Diming, 4, = 1im 'E”An

n

limsup, 4,

Prove that lim, A, exists in the sense of (4.6) if and only if lim IA (w) exists for
each w.

42. 1 (a) Prove that
(llm sup A, )n(hm supB,,) > lim sup (A, N B,),
(llm supA,,)u(hm supB,,) lim s:p(A,, UB,),
(1im ir:fA,,) (llm inf B, ) = lim iL:f(A,, nB,),
(1im ing,,)u(lim ing,,) Clim inf (A, U B,).

Show by example that the two inclusions can be strict.
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(b) The numerical analogue of the first of the relations in part (a) is

(lim supx,,) A (lim supy,,) =2 limsup(x, Ay,)-
n n

n

Write out and verify the numerical analogues of the others.
(c) Show that

<

lim sup A<, = (lim infA,) .
n n

(o

lim ian;=(lim sup A, |
n n

o

lim supA, —liminfA4, =hm sup(A4,NA; .,
n

n n

=lim sup (A, NA,,.,)
n

(d) Show that A4, — A and B,— B together imply that 4, UB,—>A4 U B and
A,NB,—>ANB.

4.3. Let A, be the square [(x, y): x| < 1, |y| < 1] rotated through the angie 2mné.
Give geometric descriptions of limsup, A, and liminf 4, in case
(a) 6= %;
(b) 6 is rational;

(¢) 6 isirrational. Hint: The 27né reduced modulo 27 are dense in [0,27]}if
1s irrational.

(d) When is there convergence is the sense of (4.6)?
4.4. Find a sequence for which all three inequalities in (4.9) are strict.

4.5. (a) Show that lim, P(liminf, A, N.A4%) =0. Hmt: Show that lim sup,
liminf, A, N A% is empty.
Put A* =limsup, A, and A, =liminf, A,
(b) Show that P(A, —A*)—>0and P(A4, —A4,) 0.
(c) Show that A, — A (in the sense that A =A* =A,) implies P{AAA,) - 0.

(d) Suppose that A, converges to A in the weaker sense that P(4A A*) =
P(AA A, ) =0 (which implies that P(4* —A,)=0). Show that P(44A4,) -0
(which implies that P(A4,)— P(A)).

4.6. In a space of six equally likely points (a die is rolled) find three events that are
not independent even though each is independent of the intersection of the
other two.

4.7. For events A,,...,A,, consider the 2" equations P(B,n---NB)=
P(B,)--- P(B,) with B;=A; or B;=AS for each i. Show that A,..., A, are
independent if all these equations hold.

4.8. For each of the following classes &, describe the & partition defined by (4.16).
(a) The class of finite and cofinite sets.
(b) The class of countable and cocountable sets.
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4.9.

4.10.

4.11,

PROBABILITY

(c) A partition (of arbitrary cardinality) of Q.
(d) The level sets of sin x (0 =R!).
(e) The o-field in Problem 3.5.

29 2107 In connection with Example 4.8 and Problem 2 10, prove these
facts:
(a) Every set in o(&) is a union of .9Zequivalence classes.

(b) If &/=[A,: 6 € ®], then the &Zequivalence classes have the form N ,B,,
where for each 6, B, is A, or Aj.

{c) Every finite o-field is generated by a finite partition of ).

(d) If &, is a field, then each singleton, even each finite set, in o( %)} is a
countable intersection of j-sets.

3.21 There is in the unit interval a set H that is nonmeasurable in the
extrcme sense that its inner and outer Lebesgue measures are 0 and 1 (see (3.9)
and (3.10)): A,(H)=0 and A*(H)=1. See Problem 12.4 for the construction

Let =0, 1}, let £ consist of the Borel sets in €2, and let 4 be the set just
described. Show that the class F of sets of the form (HN G,) U(H N G,) for
G, and G, in & is a o-field and that P(HNG)U(H NG)l=3AG )+
3A(G,) consistently defines a probability measure on %. Show that P(H)= 3
and that P(G)=A(G) for G €#. Show that # is generated by a countable
subclass (see Problem 2.11). Show that ¢ contains all the singletons and that H
and ¢ are independent.

The construction proves this: There exist a probability space (), #,P), a
ofilld & in F, and a set H in F, such that P(H)=1, H and # are
independent, and £ is generated by a countable subclass and contains all the
singletons.

Example 4.10 is somewhat similar, but there the o-fieid  is not countably
generated and each set in it has probability either 0 or 1. In the present example
<& is countably generated and P(G) assumes every value between 0 and 1 as G
ranges over ¢, Example 4.10 is to some extent unnatural because the ¢ there
is not countably generated. The present example, on the other hand, involves
the pathological set H. This example is used in Section 33 in connection with
conditional probability; see Problem 33.11.

(a) If A, A,,... are independent events, then P(N%_,A4,)=1IT;_,P(A,)and
P(US_1A4,)=1-1T,_ (0 —P(A,). Prove these facts and from them derive
the second Borel-Cantelli lemma by the well-known relation between infinite

* series and products.

4.12.

(b) Show that P(limsup, A,) =1 if for each k the series L, , P(A,lA45N
- NAG_ ) diverges. From this deduce the second Borel-Cantelli lemma once
again.

(c) Show by example that P(limsup, A,)=1 does not follow from the diver-
gence of X, P(A,JA{N -+ NAS,_)) alone.

(d} Show that P(limsup, A,) =1 if and only if £, P(A N A,) diverges for each
A of positive probability.

(e) If sets A, are independent and P(A,) <1 for all n, then P[4, i.0.}=1 if
and only if P(U ,A4,)=1.

(a) Show (see Example 4.21) that log, n + log, log, n + 6 log, log, log, n is an
outer boundary if 8 > 1. Generalize.

(b) Show that log, n +log, log, log, n is an inner boundary.
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4.13. Let ¢ be a positive function of integers, and define B, as the set of x in 0,1)
such that |x —p /2| < 1/2'%(2) holds for infinitely many pairs p,i. Adapting
the proof of Theorem 1.6, show directly (without reference to Example 4.12)
that Z;1/¢(2%) < « implies A(B,) = 0.

4.14. 2.191 Suppose that there are in {2, &, P) independent events A}, A,,...
such that, if «,=min{P(A4,),1—-P(A)}, then e, = Show that P is
nonatomic.

4,15. 2.181 Let F be the set of square-free integers—those integers not divisible by
any perfect square. Let F, be the set of m such that p?{m for no p </, and
show that D(F,)=T1, /(1 —p~?). Show that P(F,—F) <L »> P~ %, and con-
clude that the square-free integers have density [1(1 - 2) =6/

4.16. 2.187 Reconsider Problem 2.18(d). If D were countably additive on f(.#), it
would extend to o (.#). Use the second Borel-Cantelli lemma.

SECTION 5. SIMPLE RANDOM VARIABLES

Definition

Let (2, &, P) be an arbitrary probability space, and let X be a real-valued
function on (); X is a simple random variable if it has finite range (assumes
only finitely many values) and if

(5.1) [w: X(w)=x]€F

for each real x. (Of course, [w: X(w) =x]=@ € & for x outside the range
of X.) Whether or not X satisfies this condition depends only on %, not on
P, but the point of the definition is to ensure that the probabilities P[w:
X(w) = x] are defined. Later sections will treat the theory of general random
variables, of functions on ) having arbitrary range; (5.1) will require modifi-
cation in the general case.

The d,(w) of the preceding section (the digits of the dyadic expansion) are
simple random variables on the unit interval: the sets [w: d,(w) = 0] and [w:
d, (w) = 1] are finite unions of subintervals and hence lie in the o-field & of
Borel sets in (0,1]. The Rademacher functions are also simple random
variables. Although the concept itself is thus not entirely new, to proceed
further in probability requires a systematic theory of random variables and
their expected values.

The run lengths / (w) satisfy (5.1) but are not simple random variables,
because they have infinite range (they come under the general theory). In a
discrete space, & consists of all subsets of (2, so that (5.1) always holds.

It is customary in probability theory to omit the argument w. Thus X
stands for a general value X(w) of the function as well as for the function
itself, and [ X = x ] is short for [w: X(w) = x]
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A finite sum

(5.2) X= inIA,-

is a random variable if the A; form a finite partition of  into Fsets.
Moreover, every simple random variable can be represented in the form
(5.2): for the x; take the range of X, and put 4, =[X = x,]. But X may have
other such representations because x;I, can be replaced by Ljx;l,, if the
A;; form a finite decomposition of A4; into Fsets.

If & is a sub-o-field of %, a simple random variable X is measurable £,
or measurable with respect to £, if [ X =x}e & for each x. A simple random
variable is by definition always measurable #. Since {X€ H]= U[X =x],
where the union extends over the finitely many x lying both in A and in the
range of X, [X € H] € £ for every H CR! if X is a simple random variable
variable measurable .

The o-field o(X) generated by X is the smallest o-field with respect to
which X is measurable; that is, o(X) is the intersection of all o-fields with
respect to which X is measurable. For a finite or infinite sequence X, X,,...
of simple random variables, o(X,, X,,...) is the smallest o-field with respect
to which each X; is measurable. It can be described explicitly in the finite
case:

Theorem 5.1. Let X,,..., X,, be simple random variables.
(i) The o-field o(X,,..., X,) consists of the sets
(5.3) [(X),....X,) €H] = [w: (X(w),..., X,(w)) €H]

for H C R"; H in this representation may be taken finite.
(ii) A simple random variable Y is measurable o{( X, ..., X.,) if and only if

(5.4) Y=f(X,,..., X,)
for some f: R" - R,

Proor. Let .# be the class of sets of the form (5.3). Sets of the form
[(X,..., X)) =(x,..., x, )= N, [X; =x,] must lic in o(X,,..., X,); each
set (5.3) is a finite union of sets of this form because (X,...,X,), as a
mapping from () to R", has finite range. Thus .#Co(X,..., X,).

On the other hand, .# is a o-field because Q=[(X,,..., X, )ER"]
[(X,...,X)EHF=[(X,...,X)€ HY, and U[l(X,,...,X,)€EH]-=
[(X,,....X,)N U,—HJ-]. But each X, is measurable with respect to .#, be-
cause [ X; =x] can be put in the form (5.3) by taking H to consist of those
(xy,...,x,)in R" for which x;=x. It follows that o((X,,..., X,) is contained
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in .# and therefore equals .#. As intersecting H with the range (finite)
of (X,...,X,) in R" does not affect (5.3), H may be taken finite. This
proves (i).

Assume that Y has the form (5.4)—that is, Y(0) = f(X(w),..., X (w))
for every w. Since [Y =y] can be put in the form (5.3) by taking H to consist
of those x =(x,,..., x,) for which f(x) =y, it follows that Y is measurable
o{X,..., X))

Now assume that Y is measurable o(X,,..., X,). Let y,,...,y, be the
distinct values Y assumes. By part (i), there exist sets H,,..., H_ in R" such

that
[w: Y(0) =%] =|o: (X (o),..., X,(0)) €H,].

Take f=Yi_;y;1,. Although the F,; need not be disjoint, if H; and H,
share a point of the form (X(w),..., X, (@), then Y(w) =y, and Y(w) =y,
which is impossible if i + . Therefore each (X (w),..., X (w)) lies in exactly
one of the H., and it follows that f(X (w),..., Xn(w)) = Y(w). =

Since (5.4) implies that Y is measurable o(X,,..., X)), it follows in
particular that functions of simple random variables are again simple random
variables. Thus X 2, ¢%, and so on are simple random variables along with X.
Taking f to be X7_,x;, H{’ 1 X;, OF max; _, x; shows that sums, products, and
maxima of simple random variables are simple random variables.

As explained on p. 57, a sub-o-field corresponds to partial information
about w. From this point of view, a(Xl,..., X,) corresponds to a knowledge
of the values X,(w),..., X (w). These values suffice to determine the value
Y(w) if and only if (5.4) holds. The elements of the o(X|,..., X,)-partition
(see (4.16)) are the sets [X, =x,,..., X, =x,] for x; in the range of X,.

Example 5.1. For the dyadic digits d () on the unit interval, d; is not
measurable o(d,, d,); indeed, there exist o' and " such that d (o) = d (")
and d,(«o') =d,(¢") but di(o')+#d,(«"), an impossibility if di(w)=
fld (w), d,(w)) identically in w. If such an [ existed, one could unerringly
predict the outcome d(w) of the third toss from the outcomes d(w) and
d,(w) of the first two. - |

Example 5.2. let s (w)~=L}_,r,(w) be the partial sums of the
Rademacher functions—see (1.14). By Theorem S5.1(ii) s, is measurable
o(ry,...,r,) for k<n, and r,=s, —s,_, is measurable o(s,,...,s,) for
k <n. Thus o(r,,...,r,) =0(s;,...,s,). In random-walk terms, the first n
positions contain the same information as the first n distances moved. In
gambling terms, to know the gambler’s first n fortunes (relative to his initial
fortune) is the same thing as to know his gains and losses on each of the first
n plays. [ |
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Example 5.3. An indicator /, is measurable  if and only if A lies in #.
And A €0(A,,...,A,)ifandonlyif I, =f(1,4,='~s 1, ) for some f: R" - R,
|

Convergence of Random Variables

It is a basic problem, for given random variables X and X, X,,... on a
probability space ((, &, P), to look for the probability of the event that
lim, X (@) = X{(w). The normal number theorem is an example, one where
the probability is 1. It is convenient to characterize the complementary event:
X (w) fails to converge to X(w) if and only if there is some e such that for no
m does | X, (w) — X(w)| remain below e for all n exceeding m—that is to say,
if and only if, for some ¢, | X (w) — X(w)| > € holds for infinitely many values
of n. Therefore,

(5.5) [li:;nX,,=X]c= U [IX, - Xl2eiol],

where the union can be restricted to rational (positive) € because the set in
the union increases as € decreases {(compare (2.2)).

The event [lim, X, = X'] therefore always lies in the basic o-field &, and
it has probability 1 if and only if

(5.6) P[IX, - X|2eio0]=0

for each e (rational or not). The event in (5.6) is the limit superior of the
events [[ X — X|> ], and it follows by Theorem 4.1 that (5.6) implies

(5.7) limP{|X, - X|>¢€] =0.

This leads to a definition: If (5.7) holds for each positive ¢, then X, is said to
converge to X in probability, written X, -, X.
These arguments prove two facts:

Theorem 5.2. (i) There is convergence lim, X = X with probability 1 if
and only if (5.6) holds for each e.

(ii) Convergence with probability 1 implies convergence in probability.

Theorem 1.2, the normal number theorem, has to do with the convergence
with probability T of n™'L"_ d(w) to 3. Theorem 1.1 has to do instead with
the convergence in probability of the same sequence. By Theorem 5.ii),
then, Theorem 1.1 is a consequence of Theorem 1.2 (see (1.30) and (1.31)).
The converse is not true, however—convergence in probability does not

imply convergence with probability 1:
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Example 5.4. Take X=0and X, =1, . Then X, >, X is equivalent to
P(A,)—0, and [lim, X, = X]°=[A, i.0.]. Any sequence {4,} such that
P(A,) >0 but P[A, i.0}>0 therefore gives a counterexample to the
converse to Theorem 5.2(ii).

Consider the event A, =[w: [ (w)>log,n] in Example 4.15. Here,
P(A,)<1/n—0, while P[{A, i.0]=1 by (4.26), and so this is one coun-
terexample. For an example more extreme and more transparent, define
events in the unit interval in the following way. Define the first two by

Al=(01_lz'], A2=('21,1].
Define the next four by
A3=(0’%]’ A4=(%’%]’ A5=(%1% ) A6=(%71]

Define the next eight, A, .., Ay,, as the dyadic intervals of rank 3. And so
on. Certainly, P(A4,)— 0, and since each point w is covered by one set in
each successive block of length 2%, the set {A, i0.]is all of (0, 1]. [ |

Independence

A sequence X, X,,... (finite or infinite) of simple random variables is by
definition independent if the classes o( X)), o(X5,),... are independent in the
sense of the preceding section. By Theorem 5.1(i), o( X,) consists of the sets
[X;€H] for HcR' The condition for independence of X,,..., X, is
therefore that

(58) P[X,€H,,...,X,€H,]=P[X,€H] - P[X,€H,]

for linear sets H,,..., H,. The definition (4.10) also requires that (5.8) hold if
one or more of the [ X; € H;] is suppressed; but taking H; to be R! eliminates
it from each side. For an infinite sequence X, X,,..., (5.8) must hold for
each n. A special case of (5.8) is

(59)  P[X,=xp....X,=x,]=P[X,=x,] - P[X, =x].

On the other hand, summing (5.9) over x; €H,,..., x, € H, gives (5.8). Thus
the X; are independent if and only if (5.9) holds for all x,..., x,.
Suppose that

Xu X
(5.10) Xn X

is an independent array of simple random variables. There may be finitely or
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infinitely many rows, each row finite or infinite. If &7 consists of the finite
intersections ﬂj[X,-jeHi] with HJ-CRI, an application of Theorem 4.2
shows that the o-fields o(X;), X;,,...), i=1,2,... are independent. As a
consequence, Y,,Y,,... are independent if Y, is measurable o(X,,, X;,,...)
for each i.

Example 5.5. The dyadic digits d{w),d{w),... on the unit interval are
an independent sequence of random variables for which

(5.11) Pld,=0]=P[d,=1]= 1.

It is because of (5 11) and independence that the d, give a model for tossing
a fair coin.

The sequence (d(w),d,(w),...) and the point w determine one another.
It can be imagined that w is determined by the outcomes d,{w) of a
sequence of tosses. It can also be imagined that w is the result of drawing a
point at random from the unit interval, and that « determines the d,(w). In
the second interpretation the d,(w) are all determined the instant w is
drawn, and so it should further be imagined that they are then revealed to
the coin tosser or gambler one by one. For example, o(d,, d,) corresponds to
knowing the outcomes of the first two tosses—to knowing not w but only
d(w) and d,(w)—and this does not help in predicting the value dy(w),
because o(d,, d,) and o(d,) are independent. See Example 5.1 ]

Example 5.6. Every permutation can be written as a product of cycles.
For example,
1 2 3 4 5 6
5 1. 7 4 6 2

This permutation sends 1 to 5, 2 to 1, 3 to 7, and so on. The cyclic form on
the right shows that 1 goes to 5, which goes to 6, which goes to 2, which goes
back to 1; and so on. To standardize this cyclic representation, start the first
cycle with 1 and each successive cycle with the smallest integer not yet
encountered.

Let (2 consist of the n! permutations of 1,2,..., s, all equally probable; %
contains all subsets of (), and P(A) is the fraction of points in A. Let X, (w)
be 1 or 0 according as the element in the kth position in the cyclic
representation of the permutation  completes a cycle or not. Then S(w) =

" 1X(w) is the number of cycles in w. In the example above, n =7,
X =X,=X;=-X,=0, X,=X,=X,=1, and § = 3. The following argument
shows that X|,..., X,, are independent and P[ X, = 1] =1/(n — k + 1). This
will lead later on to results on P[S € H].

W

)=(1562x37x4y
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The idea is this: X(w) =1 if and only if the random permutation « sends
1 to itself, the probability of which is 1/n. If it happens that X (w)= 1—that
w fixes 1—then the image of 2 is one of 2,..., n, and X,(w) =1 if and only if
this image is in fact 2; the conditional probability of this is 1/(n — 1). If
X (@) =0, on the other hand, then w sends 1 to some i # 1, so that the image
ofiisoneof 1,...,i—1,i+1,...,n, and X,(w)=1 if and only if this image
is in fact 1; the conditional probability of this is again 1/(n —1). This
argument generalizes.

But the details are fussy Let Y{w),...,¥,(w) be the integers in the successive
positions in the cyclic representation of w Fix k, and let A4, be the set where
(Xps.oy Xy_pY,---,Y,) assumes a specific vector of values v=1(x...,x,_|,
vy, --»¥«) The A, form a partition &7 of Q, and if P[X, =14 1=1/(n—k+1)
for each v, then by Example 4.7, P[X, =1]J=1/(n —k + 1) and X, is independent of
o(&7') and hence of the smaller o-field o(X,,..., X, _ ). It will follow by induction
that X,,..., X,, are independent.

Let j be the position of the rightmost 1 among x,,...,x,_; (j=0 if there are
none}. Then o lies in 4, if and only if it permutes y),..., y; among themselves (in a
way specified by the values xy,...,x,_,, x;=1, y,...,y;) and sends each of
Yirtr---1 Ye—y to the y just to its right. Thus A . contains (n - k + 1)! sample points.
And X, (w)=1 if and only if w also sends y, to y;,,. Thus 4, N[X, = 1] contains
(n — k)i sample points, and so the conditional probability of X, =1is 1/(n—k + 1).

]

Existence of Independent Sequences

The distribution of a simple random variable X is the probability measure
defined for all subsets A of the line by

(5.12) w(A) =P[XeA].

This does define a probability measure. It is discrete in the sense of Exampie
2.9: i x,..., x; are the distinct points of the range of X, then u has mass
p;= Pl X =x1=pulx;} at x;,, and u(A) = L p;, the sum extending over those i
for which x; €A. As u(A)=1if A is the range of X, not only is x discrete,
it has finite support.

Theorem 5.3. Let {n,} be a sequence of probability measures on the class
of all subsets of the line, each having finite support. There exists on some
probability space (), &, P) an independent sequence {X,} of simple random
variables such that X, has distribution p,,.

What matters here is that there are finitely or countably many distribu-
tions u,. They need not be indexed by the integers; any countable index set
will do.
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Proor. The probability space wiil be the unit interval. To understand
the construction, consider first the case in which each p, concentrates its
mass on the two points 0 and 1. Put p, = u {0} and ¢, = 1 —p, = u,{1}. Split
(0,1] into two intervals /, and I, of lengths p, and q,. Define X (w) =0 for
wel, and X(w)=1 for we€l. If P is Lebesgue measure, then clearly
Pl X,=0]=p, and P{ X, = 1] =gq,, so that X, has distribution u,.

X, =0 X, =1
- o *
Py 4
X[= X|'_0 XI= X|=
X2=0 X2=1 X2=0 Xz—-]
s } - )
PP 12U p) d1D0; q:49;

Now split I, into two intervals Iy, and /,, of lengths p, p, and p,q,, and
split I, into two intervals I, and [,; of lengths q,p, and q,q,. Define
X (w)=0for weljpUl,, and X,(w)=1 for w &1, UI,. As the diagram
makes clear, P[X, =0, X,=0]=p,p,, and similarly for the other three
possibilities. It follows that X, and X, are independent and X, has
distribution u,. Now X5 is constructed by splitting each of Iy, Iy, I1q,1,, in
the proportions p; and ¢5. And so on.

If p, =g, =3 for all n, then the successive decompositions here are the
decompositions of (0, 1] into dyadic intervals, and X (w) =d, ().

The argument for the general case is not very different. Let x,,,..., x,,
be the distinct points on which w, concentrates its mass, and put p,; = p {x,,;
forl<i<l|,.

Decompose’r (0,1} into /, subintervals I{",..., 1" of respective lengths
Piy---, Py Define X, by setting X (w) =x, for o eI 1 <i<!, Then (P
is Lebesgue measure) P[w Xfw)=x,;1=PUM)=p,, 1<i<!,. Thus X, is
a simple random variable with dlstrlbutlon K-

Next decompose each If" into /, subintervals I, ... 1(22’ of respective
lengths py:pyy,--., Py; Py, Define Xz(w)—xz for w € U,“II,(JZ), 1<j<l,.
Then Plw: X(w)=x,, Xz(w) xzj]—P(I(z)) PP, Adding out i shows
that Ple: X,(w)=1x,;]=p,; as required. Hence P{X,=x, X,=x,]=
pp2;=PlX, =Jc,,-]P[X2 =x,;}, and X, and X, are independent.

The construction proceeds inductively. Suppose that {0,1] has been de-
composed into /, - -- [ intervals

n

(5.13) I i, 1<i;<l!,...,1<i <l

n—"n?

"fb-a=8,+ -+ +8; and §;>0, then I,= (a+):,<,8}, a+ L;;8;] decomposes (a,b) into

subintervals Iy,..., 1, with lengths of 8; Of course, I; is empty if §;=0.
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of lengths

(5.14) P(I" ) =P1s " P

n

Decompose I{"; into /,,, subintervals 1"”, I - ,I,"”,, of respective
lengths P(I{™, )an 1+ r PO ')p““" These are the intervals of the
next decomposmon This constructlon gives' a sequence of decompositions
(5.13) of (0, 1] into subintervals; each decomposition satisfies (5.14), and each
refines the preceding one. If u, is given for 1 <n <N, the procedure
terminates after N steps; for an infinite sequence it does not terminate at all.

For 1<i<l, put X(w)=x, if o€V, , I, . Since each de-

-1 h H-

composition (5.13) refines the preceding, X,(w)= X i, for well™, .

Therefore, each element of (5.13) is contained in the element with the gam"

label {,...I, in the decomposition
A, i”=[w:Xl(w)=xl,-l,...,Xn(w)=xm-n]. 1<i;<!,,..., 1<i, <l,.

The two decompositions thus coincide, and it follows by (5.14) that

PiX,=xy,...,X,=x,, 1=p,; ...p,, . Adding out the indices i,,...,i,_,
shows that X has distribution u, and hence that X|,..., X, are indepen-
dent. But » was arbitrary. ]

In the case where the u, are all the same, there is an alternative construction
based on probabilities in sequence space. Let S be the support (finite) common to the
i, and let p,, u €S, be the probabilities common to the g ,. In sequence space S~,
define product measure P on the class &, of cylinders by (2.21). By Theorem 2.3, P is
countably additive on ¢, and by Theorem 3.1 it extends to €= o(<,). The coordi-
nate functions z,(-) are random variables on the probability space (§%, €, P); take
these as the X,. Then (2.22) translates into P[X,=u,,...,X,=u,l=p, - p,,
which is just what Theorem 5.3 requires in this special case. '

Probability theorems such as those in the next sections concern indepen-
dent sequences { X, } with specified distributions or with distributions having
specified properties, and because of Theorem 5.3 these theorems are true not
merely in the vacuous sense that their hypotheses are never fulfilled. Similar
but more complicated existence theorems will come later. For most purposes
the probability space on which the X are defined is largely irrelevant.
Every independent sequence { X} satlsfymg PlX,=1}=p and P[X, =0]=
1 —p is a model for Bernoulli trials, for example, and for an event like
U [Z%., X, > anl], expressed in terms of the X, alone, the calculation of
its probability proceeds in the same way whatever the underlying space
(1, &, P) may be.
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It is, of course, an advantage that such results apply not just to some
canonical sequence { X} (such as the one constructed in the proof above) but
to every sequence with the appropriate distributions. In some applications of
probability within mathematics itself, such as the arithmetic applications of
run theory in the preceding section, the underlying Q does play a role.

Expected Value

A simpie random variable in the form (5.2) is assigned expected value or
mean value

(5.15) E[ X] =E[’Zx,-1Ar] = TuP(4).

There is the alternative form

(5.16) E[X]= Y xP[X=1x],

the sum extending over the range of X, indeed, (5.15) and (5.16) both
coincide with Z,¥;, _ x,P(A,). By (5.16) the definition (5.15) is consistent:
different representations (5.2) give the same value to (5.15). From (5.16) it
also follows that E[X] depends only on the distribution of X; hence
E{X]=E[Y]if PIX=Y]=1.

If X is a simple random variable on the unit interval and if the A; in (5.2)
happen to be subintervals, then (5.15) coincides with the Riemann integral as
given by (1.6). More general notions of integral and expected value will be
studied later. Simple random variables are easy to work with because the
theory of their expected values is transparent and free of technical complica-
tions.

As a special case of (5.15) and (5.16),

(5.17) E[1,] = P(A).

As another special case, if a constant « is identified with the random variable
X(w) = a, then

(5.18) Ela] =a.

From (5.2) follows f(X) = ¥;f(x,)I,, and hence

(5.19) E[f(X)] = Lf(x)P(4) = LA(x)P[X =x],

the last sum extending over the range of X. For example, the kth moment
E[X*] of X is defined by E{X*]=T yP[X* =y), where y varies over the
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range of X* but it is usually simpler to compute itby E[ X*} =¥ x*P[ X = x],
where x varies over the range of X.
If

(520) X= Exfl ;i? Y= Z.yjlﬂJ
i j
are simple random variables, then a X +BY =X, (ax; + By, p has ex-

pected value ):U(a’x + ByJ)P(A N B; )=al;x; P(A ) + BE yJ (B ). Ex-
pected value is therefore linear:

(5.21) ElaX+BY]=aE[X]+BE[Y].

If X(w)<Y(w) for al! , then x;<y; if A;NB; is nonempty, and hence
Y% P(A;NB) < ¥, y;P(A;NB)). Expected value therefore preserves or-
der:

(5.22) E[X]<E[Y] ifX<Y.

(It is enough that X < ¥ on a set of probability 1.) Two applications of (5.22)
give E[-| X[l < E[ X]< Ell X}, so that by linearity,

(5.23) |E[ X ]| < E[1X]].
And more generally,
(5.24) [E[X-Y]I<E[IX-YI].
The relations (5.17) through (5.24) will be used repeatedly, and so will the
following theorem on expected values and limits. If there is a finite K such

that | X ()l < K for all w and n, the X, are uniformly bounded.

Theorem 5.4. If {X,} is uniformly bounded, and if X =lim, X, with
probability 1, then E{X] = lim, E{ X, ]

Proor. By Theorem 5.2(ii), convergence with probability 1 implies con-
vergence in probability: X, -, X. And in fact the latter suffices for the
present proof. Increase K so that it bounds | X| (which has finite range) as
well as all the | X |; then | X - X, |<2K. If A=[|X-X,|>¢€], then

| X(0) - X (0)| 2K (0) + el () <2KI () + €
for all w. By (5.17), (5.18), (5.21), and (5.22),

E[IX-X] <2KP{IX-X,|2€] +e.
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But since X, -, X, the first term on the right goes to 0, and since € is
arbitrary, E[| X — X [ - 0. Now apply (5.24). a

Theorems of this kind are of constant use in probability and analysis. For
the general version, Lebesgue’s dominated convergence theorem, see Sec-
tion 16.

Example 5.7. On the unit interval, take X(w) identically 0, and take
X (w) to be nif0<w<n'and0if n~' <w < 1. Then X (w) - X(w) for
every w, although E{X, ]=r does not converge tc E{X]=0. Thus theorem
5.4 fails without some hypothesis such as that of uniform boundedness. See
also Example 7.7. [ |

An extension of (5.21) is an immediate consequence of Theorem 5.4:

Corollary. If X=1% X, on an Sset of probability 1, and if the partial
suris of L, X, are uniformly bounded, then E{ X]=Y E'X ].

Expected values for independent random variables satisfy the familiar
product law. For X and Y as in (5.20), XY =1,x,y;1, ns; If the x; are
distinct and the y; are distinct, then A4, =[X=yx,] and B ={Y= y] for
independent X and Y, P(4,NnB;)= P(A DP(B,) by (5.9), and so E[XY]
):”x,yJP(A JP(B;) = E[X]E[Y] If X,Y, Z are independent, then XY and

Z are 1ndependent by the argument involving (5.10), so that E[XYZ}=
E[XYIE[Z]=E[XE[Y|E[Z]. This obviously extends:

(5:25) E[ X, X,]=E[X,] - E[X,]

if X,,..., X, are independent.
Various concepts fiom discrete probability carry over to simple random
variables. If E{X]=m, the variance of X is

(5.26) Var[ X] = E[(X—m)zl _ E[Xz] —m?:

the left-hand equality is a definition, the right-hand one a consequence of
expanding the square. Since aX + B has mean am + B, its variance is
El(aX +8) — (am + B))?} = Ela®(X - m)*]

(5.27) Var[a X + 8] =a® Var[ X ].

If Xy,...,X, have means m,,...,m,, then §=157 X, has mean m =
£7.ym;, and ES —m)’] = E(ZL (X, - m)?] = LI El(X, — m)?] +
2% i< ;en El(X; = mXX; — m))]. If the X; are independent, then so are the
X; — m;, and by (5.25) the last sum vanishes. This gives the familiar formula
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for the variance of a sum of independent random variables:

(5.28) Var| Y} X;{ = ) Var[ X;].
i=1 i=1
Suppose that X is nonnegative; order its range: 0 <x, <x, < - <x,.
Then

E[X]= ; xP[X=x]
= i xi(P[szr'] _P[szin]) +x P[X2x]

f=1

k
=0 P[X2x, ]+ X (x—x_)P[X2x].

(=2

Since P[X2x]=P[X2x]for0<x <x and P[X>x]=P[X>x]for x,_|
<x < x;, 1t is possible to write the final sum as the Riemann integral of a step
function:

(5.29) E[X]=[O°°P[X2x]dx.

This holds if X is nonnegative. Since P{ X >x]= 0 for x >x,, the range of
integration is really finite.

There is for (5.29) a simple geometric argument involving the “area over
the curve.” If p, = P[ X = x;], the area of the shaded region in the figure is
the sum p,x; + - +p, x, = E[ X] of the areas of the horizontal strips; it is
also the integral of the height P{ X > x] of the region.
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Inequalities

There are for expected values several standard inequalities that will be
needed. If X is nonnegative, then for positive a (sum over the range of X')
E[X]1=Y,xP[X=x]>L%, ., xP[X=x]=2al, ... P[X=x] Therefore,

(5.30) P[Xza}séE[X]

if X is nonnegative and o positive. A'special case of this is (1.20). Applied to
| X|*, (5.30) gives Markov’s inequality,

(5.31) PIX12 o] < — E[IX1"],

valid for positive o. If k=2 and m = E[X] is subtracted from X, this
becomes the Chebyshev (or Chebyshev—-Bienaymé) inequality

(5.32) P[IX—mlzar]séVar[X].

A function ¢ on an interval is convex [A32]if ¢(px +(1 — p)y) <pe(x) +
(1 —p)e(y) for0<p <1 and x and y in the interval. A sufficient condition
for this is that ¢ have a nonnegative second derivative. It follows by
induction that o(X!_, p;x;) < Ii_, p.o(x;) if the p, are nonnegative and add
to 1 and the x; are in the domain of ¢. If X assumes the value x; with
probability p,, this becomes Jensen’s inequality,

(5.33) o(E[X]) <E[ep(X)],

valid if ¢ is convex on an interval containing the range of X.
Suppose that

1 1
5.34 — + == > > 1.
(5.34) > Tg-L  p>L a>1
Holder’s inequality is
(5.35) E[IXY[|<E'?[IX|?]- EVIY|7].

If, say, the first factor on the right vanishes, then X =0 with probability 1,
hence XY =0 with probability 1, and hence the left side vanishes also.
Assume then that the right side of (5.35) is positive. If a and b are positive,
there exist s and ¢ such that a =e?™" and b =e? . Since e* is convex,
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-1 -1 — —
e St l<pTleS+ g7 or
a? bd

ab< — + —.
D q

This obviously holds for nonnegative as well as for positive a and b. Let u
and v be the two factors on the right in (5.35). For each o,

K@) | _1]X(0)
uv pl u

q

”g\M
q v

Taking expected values and applying (5.34) leads to (5.35).
If p=gq =2, Holder’s inequality becomes Schwarz’s inequality:

(536) . E[IXY[] <E'?[ X2]-E'/?[y?].

Suppose that 0 <a <B. In (5.35) take p=pB/a, q=B/(8 —a), and
Y(w) =1, and replace X by | X|% The result is Lyapounov’s inequality,

(5.37) EV[|XI*] <E*[|X’], 0<ax<B.

PROBLEMS

5.1. (a) Show that X is measurable with respect to the o-field # if and only if
o(X)c#. Show that X is measurable o(Y) if and only if o(X) Ca(Y).
(b) Show that, if £=1{0,Q), then X is measurable £ if and only if X is
constant.

(¢) Suppose that P(A4)is 0 or 1 for every A in £. This holds, for example, if &
is the tail field of an independent sequence (Theorem 4.3), or if & consists of
the countable and cocountable sets on the unit interval with Lebesgue measure.
Show that if X is measurable &, then P[X =c]=1 for some constant c.

5.2. 2.197 Show that the unit interval can be replaced by any nonatomic probabil-
ity measure space in the proof of Theorem 5.3.

5.3. Show that m = E[ X'} minimizes E[( X — m)?].

5.4. Suppose that X assumes the values m —a«, m,m + « with probabilities p,1 —
2p, p, and show that there is equality in (5.32). Thus Chebyshev’s inequality
cannot be improved without special assumptions on X.

5.5. Suppose that X has mean m and variance o 2.
(a) Prove Cantelli’s inequality

0,2

P[X-m=za]<

a=>0.
o’ +a’’
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5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

PROBABILITY

(b) Show that P[lX -ml>al<20?/(c?+a?). When is this better than
Chebyshev’s inequality?

(c) By considering a random variable assuming two values, show that Cantelli’s
inequality is sharp.

The polynomial E[(z|X|+|YD?] in ¢t has at most one real zero. Deduce
Schwarz’s inequality once more.

(a) Write (5.37) in the form EP/9[| X|°] < E[I1X|*)?/*] and deduce it directly
from Jensen’s inequality.

(b) Prove that E[t /X?]>1/EP[X] for p >0 and X a positive random vari-
able.

(a) Let f be a convex real function on a convex set C in the plane Suppose
that (X(w),Y(w)) € C for all » and prove a two-dimensional Jensen’s inequal-

ity:
(5.38) fCE[X], E[Y]D <E[f(X,Y)].

(b) Show that f is convex if it has continucus second derivatives that satisfy

(5.39) fu=9, f2220, fufazfi

1t Holder’s inequality is equivalent to E[XVPYVe}<EYP X} EV4Y]
(p~'+ ¢ '=1),where X and Y are nonnegative random variables. Derive this
from (5.38).

1t Minkowski’s inequality is

(5.40) EV®[IX +YI?] <EV?[IXI?] + EV?[IYI?],

valid for p > 1. It is enough to prove that E[{(X!/? +Y!/P)P}<(EV’[X]+
E'?P[Y ))? for nonnegative X and Y. Use (5.38).

For events A, A,,..., not necessarily independent, let N, =¥y _,i, be the
number to occur among the first n. Let

(541) a,=+ L P(A).  B=—— L P(4,04,).
k=1

n(n - 1) 1<f<k<n

Show that

(542)  E[n"N]=a,, Var[nIN,] =, a2+ 2 Pu

Thus Varln™!N,1-0 if and only if B, —a’—0, which holds if the 4, are

mdependent and P(A »)=p (Bernoulli tnals) because then a,=p and Bh

p=al
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5.12.

5.13.

5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

Show that, if X has nonnegative integers as values, then E[X]=X_,P[X = nl].

Let [; =1, be the indicators of n events having union A. Let S, =Lf; - [,

where the summation extends over all k- tuples satisfying 1 <i, < -+ <i, <n.

Then Sk = E[S,] are the terms in the inclusion-exclusion formula P(A) =s, —

s2 + +5,. Deduce the inclusion—exclusion formula from I,=5,~S,+
-+ S, Prove the latter formula by expanding the product T17_ (1 —

Let f(x) be n’x or 2n—n’x or 0 according as O<x<n! or n'<

x<2n7 " or 2n~ ! <x < 1. This gives a standard example of a sequence of
continuous functions that converges to 0 but not uniformly. Note that juf (x)dx
does not converge to 0; relate to Example 5.7.

By Theorem 5.3, for any prescribed sequence of probabilities p,, there exists
(on some space) an independent sequence of events A4, satisfying P(A,) =p,,.
Show that if p, = 0 but L p, = «, this gives a counterexample (like Example 5.4)
to the converse of Theorem 5.2(ii).

T Suppose that 0 <p, <1 and put a,=min{p,,t —p,}. Show that, if Za,
converges, then on some discrete probability space there exist independent
events A, satisfying P(A4,)=p,. Compare Problem t.1(b).

(a) Suppcse that X, =, X and that f is continuous. Show that f(X,) -, f(X).

(b) Show that E[|X ~X [} — 0 implies X, =, X. Show that the converse is
false.

2.201 The proof given for Theorem 5.3 for the special case where the u,, are
all the same can be extended to cover the general case: use Problem 2.20.

2.181 For integers m and primes p, let o, (m) be the exact power of p in the
prime factorization of m: m =II_p®{™. Let §,(m)be 1 or 0 as p divides m or
not. Under each P, (see (2.34)) the a, and 8, are random variables. Show that
for distinct primes py,..., Py,

(5.43) P,,[amzk,.,is:t] = %lp,;l n pff"J - ph .}.pf..
and
5.44 =ki, i (- e
(5.44) Pn[ap,_ k,-,tSu] - il:[l(piki p’_k,-+l)‘
Similarly,

1
(5.45) P8y, =L i<u] = [p, - pul_’ PPy

According to (5.44), the «, are for large n approximately independent under
P,, and according to (5. 45) the same is true of the §,,.

"n?
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5.20.

PROBABILITY

For a function f of positive integers, let

S|

(5.46) ELf1= 5 L f(m)

be its expected value under the probability measure P.. Show that

(5.47) Ele,]= T =

nJ 1
—— ___,-_..__
k=1

pk

this says roughly that (p — 1)~! is the average power of p in the factorization of
large integers.

T (a) From Stirling’s formula, deduce
(5.48) E, [log] = logn + O(1).

From this, the inequality E,[«,] <2 /p, and the relation log m = ¥ e ,(m)log p,
conclude that X oP llogp dwerges and that there are infinitely many primes.

(b) Let log*m =X 8 ,(m)log p. Show that

(5.49) E,[log*] = ¥ %[%l log p =log n + O(1).
P

(c) Show that {2n/p|—2ln/p) is always nonnegative and equals 1 in the
range n <p < 2n. Deduce E,, [log*] - E,[log*] = O(1) and conclude that

(5.50) Y log p =0(x).

psx

Use this to estimate the error removing the integral-part brackets introduces
into (5.49), and show that

(551) Y pllog p =logx + O(1).

p<x

(d) Restrict the range of summation in (5.51) to 6x <p <x for an appropriate
6, and conclude that

(5.52) Y, logpx=x,

ps<x

in the sense that the ratio of the two sides is bounded away from 0 and .

(e) Use (5.52) and truncation arguments to prove for the number w(x) of
primes not exceeding x that

X

(5.53) m(x) < Togx -
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(By the prime number theorem the ratio of the two sides in fact goes to 1.)
Conclude that the rth prime p, satisfies p, < r log r and that

(5.54) D ;1) =,

SECTION 6. THE LAW OF LARGE NUMBERS

The Strong Law

Let X,, X,,... be a sequence of simple random variables on some probabil-
ity space (, %, P). They are identically distributed if their distributions (in
the sense of (5.12)) are all the same. Define S, =X, + -+ +X . The strong
law of large numbers:

Theorem 6.1. If the X are independent and identically distributed and
E[X,]=m. then

(6.1) P[limn"'S =m] - 1.

n
n

Proor. The conclusion is that r ~'S, —m=n"1L7_ (X,—m)— 0 with
probability 1. Replacing X; by X, —m shows that there is no loss of
generality in assuming that m = 0. The set in question does lie in & (see
(5.5)), and by Theorem 5.2(i), it is enough to show that P[|n"!S |> € i.0]=0
for each e.

Let E[X?]=0?% and E[X']=¢* The proof is like that for Theorem 1.2.
First (see (1.26)), £[S!]= LE[IX,Xg X, X;], the four indices ranging inde-
pendently from 1 to s. Since E[X,] = 0, it follows by the product rule (5.25)
for independent random variables that the summand vanishes if there is one
index different from the three others. This leaves terms of the form E[X}'] =
&*, of which there are n, and terms of the form E[ X’ X?] = E[X?1E[ X1 = o*
for i +J, of which there are 3a(n — 1). Hence

(6.2) E[S:] =né*+3n(n - 1)o < Kn?,

where K does not depend on n.
By Markov’s inequality (5.31) for k =4, P[|S_|> nel < Kn"% ™%, and so by
the first Borel-Cantelli lemma, P[|rn 1S | > € i.0.] = 0, as required. ]

Example 6.1. The classical example is the strong law of large numbers for
Bernoulli trials. Here P[X,=1l=p, P[X,=01=1—-p, m = p; S, represents
the number of successes in n trials, and n~'S, — p with probability 1. The
idea of probability as frequency depends on the long-range stability of the
success ratio S_/n. n
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Example 6.2. Theorem 1.2 is the case of Example 6.1 in which (), &, P)
is the unit interval and the X (w) are the digits d,(w) of the dyadic
expansion of w. Here p= 1. The set (1.21) of normal numbers in the unit
interval has by (6.1) Lebesgue measure 1: its complement has measure 0 (and
so in the terminology of Section 1 is negligible). »

The Weak Law

Since convergence with probability 1 implies convergence in probability
(Theorem 5.2(ii)), it follows under the hypotheses of Theorem 6.1 that
n~'S_ -, m. But this is of course an immediate consequence of Chebyshev’s
inequality (5.32) and the rule (5.28) for adding variances:

Var[S,] nVar[ X|]

n’e? nle?

- 0.

P“n"'S,,—m* 26] <

This is the weak law of large numbers.
Chebyshev’s inequality leads to a weak law in other interesting cases as
well:

Example 6.3. Let (}_ consist of the n! permutations of 1,2,...,n, all
equally probable, and let X, (w) be 1 or 0 according as the kth element in
the cyclic representation of w € (1, completes a cycle or not. This is Example
5.6, although there the dependence on n was suppressed in the notation. The
X1+, X,, are independent, and §,=X_;+ -+ +X,, is the number of
cycles. The mean m,; of X,, is the probability that it equals 1, namely
(n —k + 1)1, and its variance is 03, = m_ (1 —m,,).

If L,=X;_ k7', then S, has mean Y7_ym, =L, and variance

r Ml —=m,_ ) <L,. By Chebyshev’s inequality,

P[
Of the n! permutations on » letters, a proportion exceeding 1 — e 2L~ ! thus
have their cycle number in the range (1 +€)L_. Since L, =logn + O(1),
most permutations on n letters have about log n cycles. For a refinement, see
Example 27.3.

Since {1, changes with n, it is the nature of the case that there cannot be
a strong law corresponding to this result. |

L=1—->0.

Sn -L, n
21?2 €L

L

n

=€

<

n

Bernstein’s Theorem

Some theorems that can be stated without reference to probability nonethe-
less have simple probabilistic proofs, as the last example shows. Bernstein’s
approach to the Weierstrass approximation theorem is another example.
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Let f be a function on [0,1]. The Bernstein polynomial of degree n
associated with f is

(63) By = £ A(x) ()0

Theorem 6.2. If f is continuous, B,(x) converges to f(x) uniformly on
[0, 1].

According to the Weierstrass approximation theorem, f can be uniformly
approximated by polynomials; Bernstein’s result goes further and specifies an
approximating sequence.

Proor. Let M =sup, |f(x), and let 8(e) = sup[| f(x) — F(Y)I: |x — y| <€l
be the modulus of continuity of f. It will be shown that

(64) sup | £(x) ~ B,(x)] <3(e) + 2.

By the uniform continuity of f, lim__, ,6(e) =10, and so this inequality (for
e = n~1/3, say) will give the theorem.

Fix n > 1 and x €[0,1] for the moment. Let X,,..., X, be independent
random variables (on some probability space) such that P[X;=1]=x and
PLX,=01= 1 —x; put S =X, + -+ +X,. Since P[S =k]= (7 Jr*(1—x) ¥,
the formula (5.19) for calculating expected values of functions of random
variables gives E[ f(S/n)] = B (x). By the law of large numbers, there should
be high probability that S/n is near x and hence (f being continuous) that
f(S/n) is near f(x); E[f(S/n)] should therefore be near f(x). This is the
probabilistic idea behind the proof and, indeed, behind the definition (6.3)
itself.

Bound |f(r™'S) — f(x)| by 8(e) on the set [{n™'S — x| <e] and by 2M on
the complementary set, and use (5.22) as in the proof of Theorem 5.4. Since
E[S] = nx, Chebyshev’s inequality gives

|B,(x) = f(x)| <E[l f(n™'S) = f(x) ]
<8(e)P[In1S —x|<e]+2MP[|n"'S — x| > €]
< 8(€) +2M Var[§]/n’e?;
since Var[S]=nx(1 —x) < n, (6.4) follows. ]

A Refinement of the Second Borel--Cantelli Lemma

For a sequence A, A,,... of events, consider the number N,=1,
+ ++- +1, of occurrences among A,,...,A4,. Since [A4, i0.]=[w:
sup, N(w) =], P[A, i.0.] can be studied by means of the random varia-

bles N..



88 PROBABILITY

Suppose that the A, are independent. Put p,=P(A,) and m,=p,
+ -+ +p_ . From E[IAk] =p, and Var[lAk] =p,(1—-p,) <p, follow E[N,] =
m, and Vai[N,1=X7_, Varll, 1<m_ . If m, >x, then

(6.5) P[N,<x]<P[IN,-m,|>m, —x|
Var['Nn] mn
< <

T (m,—x)" T (m,—x)"

If ©p, =, so that m, — o, it follows that lim, P[N, <x] =0 for each x.
Since

(6.6) P[5uka5x <P[N, <x],

”

P[sup, N, <x]=0 and hence (take the union over x = 1,2,...) Plsup, N, <
o] =0. Thus P[A, i.0.] = P[sup, N, =] =1 if the 4, are independent and
¥ p, = =, which proves the second Borel-Cantelli lemma once again.

Independence was used in this argument only to estimate Var[N,]. Even
without independence, E[N 1=m, and the first two inequalities in (6.5)
hold.

Theorem 6.3. If LP(A,) diverges and

Y P(A,NA,)
(6.7) lim inf 222" — <1,
" Z pean)

then P[A, i.0.]=1.

As the proof will show, the ratio in {(6.7) is at least 1; if (6.7) holds, the
inequality must therefore be an equality.

Proor. Let 8, denote the ratio in (6.7). In the notation above,

Var[N,] =E[N?] -m2= Y E[Lyls,] —m:
f, k<n ’
= L P(A4,nA) —m;=(6,-1)m;

i k=n

(and 8, —1>=0). Hence (see (6.5)) P[N, <x]1<(8, — Dm2Am, —x)* for
x <m,. Since m2/(m, —x)? - 1, (6.7) implies that liminf, P[N, <x]1=0. It
still follows by (6.6) that P[sup, N, <x]=0, and the rest of the argument is
as before. [
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Example 6.4. 1f, as in the second Borel-Cantelli lemma, the A are
independent (or even if they are merely independent in pairs), the ratio in
67 is1+ X, (p,—p2)/m2,sothat LP(A,) = w implies (6.7). - |

Example 6.5. Return once again to the run lengths ! (w) of Section 4. It
was shown in Example 4.21 that {r,} is an outer boundary (P[/_ =r, i.0.]=0)
if ¥277" <o, It was also shown that {r } is an inner boundary (P[l_ =>r,
i.o.] = 1) if r_ is nondecreasing and ¥2 " ! =, but Theorem 6.3 can be
used to prove this under the sole assumption that £.2 7" = .

As usual, the r, can be taken to be positive integers. Let A, =[l >r]=
[d,= - =d,., =011If j+r,<k, then A; and A, are independent. If
j<k <j+r;, then P(A]|A)<Pld;= - =d,_,=04]1=Pld =" =
de_y=01=1/2%" and so P(A4;NnA,) <P(A,)/2* . Therefore,

Y. P(A;,nA))
J o k&n
< Y P(A)+2 )} P(A)P(A)+2 Y 27%DP(4,)
k<n j<k<n i<k<n
j+risk J,;<j+,—j

< ¥ P(A)+( L P4 +2 L (4L,

k<n k<n k<n

If LP(A,) = L2 " diverges, then (6.7) follows.

Thus {r,} is an outer or an inner boundary according as Y2 converges or
diverges, which completely settles the issue. In particular, r, =log,n +
0 log, log, n gives an outer boundary for @ > 1 and an inner boundary for
0<l1. [ |

Exampie 6.6. It is now possible to complete the analysis in Examples 4.12 and
4.16 of the relative error e,(w) in the approximation of w by Z’,Z;{d,((wﬁ“k. It
[(0)> —log, x, (0 <x, <1), then ¢ (w) <x, by (4.22). By the preceding example

for the case r,= —log, x,, Lx, =« implies that Plw: ¢,(w)<x, i.0.]=1. By this
and Example 4.12, [w: ¢,(w) < x,, i.0.] has Lebesgue measure 0 or 1 according as Lx
converges or diverges. |
PROBLEMS

6.1. Show that Z_— Z with probability 1 if and only if for every positive € there
exists an n such that P[|Z, — Z|<e, n <k <m]> 1 — € for all m exceeding n.
This describes convergence with probability 1 in “finite” terms.

6.2. Show in Example 6.3 that P[|S — L |>LY/2*<] 0.

6.3. As in Examples 5.6 and 6.3, let o be a random permutation of 1,2,..., n Each
k, 1 < k < n, occupies some position in the bottom row of the permutation w;
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6.4.

6.5.

In the fcllowing problems S, =X, + --- +X,

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

PROBABILITY

let X,,(w) be the number of smaller elements (between 1 and k —1) lying to
the right of k in the bottom row. The sum §,= X, + --- +X, is the total
number of inversions—the number of pairs appearing in the bottom row in
reverse order of size. For the permutation in Example 5.6 the values of
Xopp--n Xq97 are 0, 0, 0, 2, 4, 2 4, and §,=12. Show that X, .. , X, are
independent and P[X z] =k~ for 0 <i< k. Calculate E[S, ] and Var[S,,]
Show that §,, is likely to be near n? /4.

For a function f on [0,1] write [|fll=sup,|f(x)l. Show that, if f has a
continuous derivative f’, then ||f— B"||<e||f||+2||f||/ne Conclude that
I f=B,ll=0(n""177.

Prove Poisson’s theorem: If A[,Az,... are independent events, p, =
nT X P(A), and N=T7_ I 4. then n”'N, ~p, =, 0.

”n

Prove Cantelli’s theorem. If X,, X.,... are independent, E[ X, ]1=0, and E[ X]
is bounded, then n 'S - 0 with probability 1. The X, need not be identically
distributed

(a) Let Xy Xg be a sequence of real numbers, and put s, =x; + - +x,.
Suppose that n s .2 —> 0 and that the x, are bOUnded and show that n~ s - 0.

(b) Suppose that n~2S,: — 0 with probablllty 1 and that the X, are umformly
bourded (sup,, ,|X (w) <=). Show that n~'S, — 0 with probability 1 Here
the X, need not be identically distributed or even independent.

T Suppose that X, X,,... are independent and uniformly bounded and
E[ X,,] = 0. Using only the preceding result, the first Borel-Cantelli lemma, and
Chebyshev’s inequality, prove that n~'S_ - 0 with probability 1.

T Use the ideas of Problem 6.8 to give a new proof of Borel’s normal number
theorem, Theorem 1.2. The point is to return to first principles and use only
negligibility and the other ideas of Section 1, not the apparatus of Sections 2
through 6; in particular, P(.4) is to be taken as defined only if A is a finite,
disjoint union of intervals.

511 6. 7T Suppose that (in the notation of (5.41)) 8, —a? = 0O( /n). Show

2

that n~ !N, — &, — 0 with probability 1. What condition on Bn — e will imply a
weak law? Note that independence is not assumed here.
Suppose that X, X, ... are m-dependent in the sense that random variables

more than m apart in the sequence are independent. More precisely, let
& =a(X,..., X,), and assume that o, Ml"f are independent if k;_; +
m <J, for i = 2 ., 1. (Independent random vanablcs are 0-dependent.) Sup-
pose that the X have this property and are uniformly bounded and that
E[X,]=0. Show that n -1§ - 0. Hint: Consider the subsequences
X X+m+l’ va+2(m+l). fOl'lSiS_m+1.

T Suppose that the X, are independent and assume the values x,, ..., x, with
probabilities p(x)),..., p(x,). For u,,...,u, a k-tuple of the xs, let
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6.13.

6.14.

6.15.

6.16. 5

N”(ul,..., u, ) be the frequency of the k-tuple in the first n +k — 1 trials, that
is, the number of ¢ suchthat1 <t<nand X, =u,,..., X,,,_, = u;- Show that
with probablllty 1, all asymptotlc relative frequencnes are what they should
be-—that is, with probability 1, n7 "N, (u,,...,u,) - p(u,) - - - p(u,) for every k
and every k-tuple u,...,u,.

1 A number w in the unit interval is completely normal if, for every base b
and every k and every k-tuple of base-b digits, the k-tuple appears in the base-b
expansion of » with asymptotic relative frequency b~*. Show that the set of
completely normal numbers has Lebesgue measure 1.

Shannon’s theorem. Suppose that X, X,,... are independent, identically dis-
tributed random variables taking on the values 1,...,r with positive probabili-
ties py,....,p, If p(iy,..., i)=p; ..p; and pJw)=p (X (0). . X (),
then p,(w) is the probablllty that a new sequence of n trials would produce the
particular sequence X (w),..., X,(o) of outcomes that happens actually to have
been observed. Show that

1 r
*Elogp,,(w) —-)h: - Epl'logpi
i=1

with probability 1.

In information theory 1,....r are interpreted as the letfers of an alphabet,
X,, X,,... are the successive letters produced by an information source, and h
is the entropy of the source. Prove the asymptotic equipartition property: For
large n there is probability exceeding 1 — € that the probability p,(w) of the
observed n-long sequence, or message, is in the range e ="' %€,

In the terminology of Example 6.5, show that log, n + log, log, n +
6 log, log, log, n is an outer or inner boundary as 6 > 1 or 6 < 1. Generalize.
(Compare Problem 4.12.)

5207 Let g(m)=L,8,(m)be the number of distinct p1ime divisors of m. For
a,=FE [g](see (5 46)) show that a, — «. Show that

o efla a5 5w

for p # q and hence that the variance of g under P, satisfies

(6.9) var,[g] <3 ) 117—

p<n
26] =0.

Since a, ~ loglog n (see Problem 18.17), most mtegers under n have something
like loglogn distinct prime divisors. Since loglog 107 is a little less than 3, the
typical integer under 107 has about three prime factors—remarkably few.

Prove the Hardy-Ramanujan theorem:

(6.10) lim Pn[m: Iﬂa’"—) -1

n
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6.17. Suppose that X, X,,... are independent and P[X,=0]=p. Let L, be the
length of the run of 0's starting at the nth place: L, =k if X,= =X ., _,
=0+ X,,. Show that P[L,>r, i.0.)is O or 1 according as ¥, p" converges or

n—-n

diverges. Example 6.5 covers the case p = 1.

SECTION 7. GAMBLING SYSTEMS

Let X,, X,,... be an independent sequence of random, variables (on some
(Q}, &, P)) taking on the two values +1 and —1 with probabilities P[X, =
+1]=p and P[X, = —1]=g=1- p. Thioughout the section, X, will be
viewed as the gambler’s gain on the nth of a series of plays at unit stakes.
The game is favorable to the gambler if p > 1, fair if p = 3, and unfavorable
if p< 3. The case p < 5 will be called the subfair case.

After the classical gambler’s ruin problem has been solved, it will be
shown that every gambling system is in certain respects without effect and
that some gambling systems are in other respects optimal. Gambling prob-
lems of the sort considered here have inspired many ideas in the mathemari-
cal theory of probability, ideas that carry far beyond their origin.

Red-and-black wiil provide numerical examples. Of the 38 spaces on a
roulette wheel, 18 are red, 18 are black, and 2 are green. In betting either on
red or on black the chance of winning is 3.

Gambler’s Ruin

Suppose that the gambler enters the casino with capital a and adopts the
strategy of continuing to bet at unit stakes until his fortune increases to ¢ or
his funds are exhausted. What is the probability of ruin, the probability that
he will lose his capital, a? What is the probability he will achieve his goal, ¢?
Here a and c are integers.

Let

(7.1) S, =X+ +X,, S,=0.

The gambler’s fortune after n plays is a + S,. The event

(7.2) Aal,,=[a+S,,=c]mn(—]l[0<a+Sk<c]

k=1

represents success for the gambler at time n, and

n—1
(7.3) B,.,=[a+S,=0]n N[0<a+S,<c]
k=1
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represents ruin at time n. If s.(a) denotes the probability of ultimate success,
then

(74) s(a) =P( U A) - Y P(4,.,)
n=1 n=1

for 0 <a <c.

Fix ¢ and let a vary. For n>1 and 0 <a <c, define 4, , by (7.2), and
adopt the conventions A, =@ for 0<a<c and A ,=Q (success is
impossible at time 0 if @ <c and certain if a =c), as well as A, , =4, ,=
for n > 1 (play never starts if a is 0 or ¢). By these conventions, s (0) = 0 and
s.(¢c) = 1. _

Because of independence and the fact that the sequence X,, X5,... is a
probabilistic replica of X, X,,..., it seems clear that the chance of success
for a gambler with initial fortune a must be the chance of winning the first
wager times the chance of success for an initial fortune a + 1, plus the
chance of losing the first wager times the chance of success for an initial
fortune a — 1. It thus seems intuitively clear that

(7.5) s.(a) =ps{(a+1)+gs(a—1), O<a<ec.

For a rigorous argument, define A, , just as A, , but with §, =X,
+ -+ +X,,, in place of S, in (7.2). Now P[X,=x;, i<n]l=PlX,, =x,
i<n] for each sequence x,,...,x, of +1's and —1's, and therefore
Pl(x,,....,X)eH]=PI(X,,....,X,.,) € H] for HCR". Take H to be the
set of x =(x;,...,x,) in R" satisfying x;= +1, a+x,+ -+ +x,=c¢, and
O<a+x,+ - +x, <c for k <n. It follows then that

(76) P(Aa.n) = P( A,a,n)‘

Moreover, 4, ,=(X,=+1nA,,, ,_ JulX,=-1nA,_, , ) for n
>1 and 0 <a <c. By independence and (7.6), P{A, ,)=pP(A,,, ..+
qP(A,_ ,_); adding over n now gives (7.5). Note that this argument
involves the entire infinite sequence X, X,,... .

It remains to solve the difference equation (7.5) with the side conditions
5.(0)=0, s(c) = 1. Let p =q/p be the odds against the gambler. Then [A19]
there exist constants 4 and B such that, for 0 <a <¢, sfa) =A + Bp® if
p+q and s{a)=A + Ba if p=gq. The requirements 5.(0) =0 and s (c)=1
determine A and B, which gives the solution:

The probability that the gambler can before ruin attain his goal of ¢ from an
initial capital of a is

O<ac<c, ifp=%=/=1,

=1.

p
(77) Sc(a)= a
e O<a<c, ifp=

9
p
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Example 7.1. The gambler’s initial capital is $900 and his goal is $1000. If

, his chance of success is very good: §,,0,(900) = .9. At red-and-black,

p= and hence p = %; in this case his chance of success as computed by

(7. 7) lS only about .00003. n

Example 7.2. 1t is the gambler’s desperate intention to convert his $100
into $20,000. For a game in which p = 3 (no casino has one), his chance of
success is 100/20,000 = .005; at red-and-black it is minute—about 3 X 10-°H

|

In the analysis leading to (7.7), replace (7.2) by (7.3). It follows that (7.7)
with p and ¢ interchanged (p goes to p~!) and a and ¢ —a interchanged
gives the probability r.(a) of ruin for the gambler: r.(a)=(p “ 9 -1)/
(p==-1Dif p+1 and rfa)=(c—a)/c if p=1. Hence sfa)+rla)=1
holds in all cases: The probability is O that play continues forever.

For positive integers a and b, let

Heo= U {[s,,=b1n"h'[—a<sk<b]}

n=1 k=1

be the event that S, reaches +b before reaching —a. Its probability is simply
(7.7) with c =a +b: P(H,,) =s,,,(a). Now let

H,= UHa.b= U [Sn=b]

a=1 n=1

sup A b]

be the event that §, ever reaches +b. Since H, , T H, as a — «, it follows
that P(H,) = lim,s,,,(a); thisis 1if p=1o0rp <1, anditis 1/p® if p> 1.
Thus

(7.8) Pl{sup S, > b| =

n

1 if p>q,
(p/a)° if p<gq.

This is the probability that a gambler with unlimited capital can ultimately gain
b units.

Example 7.3. The gambler in Example 7.1 has capital 900 and the goal of
winning b = 100; in Example 7.2 he has capital 100 and b is 19,900. Suppose,
instead, that his capital is infinite. If p = 7, the chance of achieving his goal
increases from .9 to 1 in the first example and from .005 to 1 in the second.
At red-and-black, however, the two probabilities .9'% and .9 remain
essentially what they were before (.00003 and 3 X 10~°'"). m
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Selection Systems

Players often try to improve their luck by betting only when in the preceding
trials the wins and losses form an auspicious pattern. Perhaps the gambler
bets on the nth trial only when among X,,..., X, _, there are many more
+1’s than — 1’s, the idea being to ride winning streaks (he is “in the vein™).
Or he may bet only when there are many more —1’s than +1’s, the idea
being it is then surely time a +1 came along (the “maturity of the chances”).
There is a mathematical theorem that, translated into gaming language, says
all such systems are futile.

It might be argued that it is sensible to bet if among X,,..., X,,_, there is an
excess of +1’s, on the ground that it is evidence of a high value of p. But it is
assumed throughout that statistical inference is not at issue: p is fixed—at i3, for
example, in the case of red-ana-black —and is known to the gambler, or should be.

The gambler’s strategy is described by random variables B;, B,,... taking
the two values 0 and 1: If B, = 1, the gambler places a bet on the nth trial; if
B, = 0, he skips that trial. If B, were (X, + 1)/2, so that B, =1 for X, = +1
and B, =0 for X, = —1, the gambler would win every time he bet, but of
course such a system requires he be prescient—he must know the outcome
X in advance. For this reason the value of B, is assumed to depend only on

the values of X,,..., X,_,: there exists some function b: R"~'— R' such
that

(7.9) B, =b(X,,....,X,_.).

(Here B, is constant.) Thus the mathematics avoids, as it must, the question
of whether prescience is actually possible.
Define

Fo=a(X,,...X,), n=12,..,

(7.10) 7 - (2,0},
The o-field &, | generated by X,..., X, _, corresponds to a knowledge of
the outcomes of the first n — 1 trials. The requirement (7.9) ensures that B,
is measurable %, _; (Theorem 5.1) and so depends only on the information
actually available to the gambler just before the nth trial.

For n=1,2,..., let N, be the time at which the gambler places his nth
bet. This nth bet is placed at time k& or earlier if and only if the number
Y*_ B, of bets placed up to and including time k is n or more; in fact,

i=1

N, is the smallest k for which I¥_,B;=n. Thus the event [N, <k] coin-

n

cides with {Z¥_ B, > n]; by (7.9) this latter event lies in o(B,,..., B,)C

o(X,,..., X, _)= F _,- Therefore,

(7.11) [N, =k]=[N,<k]- [N, <k-1]e Z_,.
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(Even though [N, = k] lies in %, _, and hence in %, N, is, as a function on
(), generally not a simple random variable, because it has infinite range. This
makes no difference, because expected values of the N, will play no role;
(7.11) is the essential property.)

To ensure that play continues forever (stopping rules will be considered
later) and that the N, have finite values with probability 1, make the further
assumption that

(7.12) P[B,=1i.0]=1.

A sequence {B,} of random variables assuming the values 0 and 1, having the
form (7.9), and satisfving (7.12) is a selection system.

Let ¥, be the gambler’s gain on the nth of the trials at which he does bet:
Y, =Xy . Itis only on the set [ B, = 1i.0]that all the N, and hence all the ¥,
are well defined. To complete the definiiion, set Y, = —1, say, on [B, =1
i.0.]; since this set has probability @ by (7.12), it really makes no difference
how Y, is defined on it.

Now Y, is a complicated function on 1 because Y (w)=2X), (@)
Nonetheless, )

[ Yy(w) = 1] = U ({2 N,(w) =k] n[o: Xe(0) = 1]

lies in &, and so does its complement [w: Y (w) = —1). Hence Y, is a simple
random variable.

Example 7.4. An example will fix these ideas. Suppose that the rule is
always to bet on the first tiail, to bet on the second trial if and only if
X, = +1, to bet on the third trial if and only if X, = X, and to bet on all
subsequent trails. Here B, =1, [B,=1]=[X,= +1], [B;=1]=[X, =X,],
and B, =B, = --- = 1. The table shows the ways the gambling can start out.
A dot represents a value undetermined by X, X,, X;. Ignore the rightmost
column for the moment.

X, X, X; B, B, By N N, Ny N, Y, Y, Y, T
-1 -1 -1 1 0 1 1 3 4 5 -1 -1 1
-1 -1 +1 1 0 1 1 3 4 5 —1 +1 1
-1 +1 -1 1 0 0 1 4 5 6 -1 . 1
-1 +1 +1 1 0 0 1 4 5 6 -1 1
+1 -1 -1 1 1 0 1 2 4 5 +1 -1 2
+1 —1 +1 1 1 0 1 2 4 5 +1 -1 2
+1 +1 -1 1 1 1 1 2 3 4 +1 +1 -1 3
+1 +1 +1 1 1 1 1 2 3 4 +1 +1 +1 -
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In the evolution represented by the first line of the table, the second bet is
placed on the third trial (N, = 3), which results in a Ioss because Y, = X,
X;= —1. Since X;= -1, the gambler was “wrong” to bet. But remember
that before the third trial he does not know X,(w) (much less w itself); he
knows only X,(w) and X,(w). See the discussion in Example 5.5. |

Selection systems achieve nothing because {Y,} has the same structure as
{X,})

Theorem 7.1. For every selection system, {Y,} is indeperdent and P| Y, =
+1]=p, PIY, = -1l=q.

Proor. Since random variables with indices that are themselves random
variables are conceptually confusing at first, the w’s here will not be sup-
pressed as they have been in previous preofs.

Relabel p and ¢ as p(+1) and p(— 1), so that Plw: X, (@) =x]= p(x) for
x=+1L1If A€ % _,, then 4 and [w: X,(w) =x] are independent, and so
P(AN[w: X, (w)=x]) =P(A)p(x). Therefore, by (7.11),

Plo: Y(w) =x] =P[w: Xy () =x]

= kglP[a): N(w) =k, X, (w) =x]

ff

i}P[w: N(w) = k]p(x)

=p(x).
More generally, for any sequence x,,..., x, of +1’s,
Plw: Y{w) =x,, P[w Xyl w) = isn]

— 3 P[w:Ni(w)zk;, Xkr_(w)zx,.,iSrz],
k|< e <k

n

where the sum extends over n-tuples of positive integers satisfying k, < -
<k,. The event [w: N(w) =k, i <n]lN[w: X,(w)=1x, i <n]lies in 9? -
(note that there is no condrtlon on X, (w)), and therefore

Plo: Y (o) =x;, i <n]
= Y P(le:N(w)=k, i<n]

k< <k

n

ﬂ[w: Xi(w) =x;, i<n])p(x,,).
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Summing &, over k,_, + 1, k,_, + 2,... brings this last sum to

)y P[“’: ‘Ni(w):ki’Xk,-(w):xi7i<n]p(xn)

k< <k

- Plot Xyu0) =5, 1 <1]o(5,)

= Plw: Y(w) =x,, i <n] p(x,).
It follows by induction that

Plo: Y(w) =x,i<n] = [1p(x) = [1P[w: Yi(v) =x],

i<n i<n

and so the Y; are independent (see (5.9)). n

Gambling Policies

There are schemes that go beyond selection systems aud tell the gambler not
only whether to bet but how much. Gamblers frequently contrive or adopt
such schemes in the confident expectation that they can, by pure force of
arithmetic, counter the most adverse workings of chance. If the wager
specified for the nth trial is in the amount W, and the gambler cannot see
into the future, then W, must depend only on X|,..., X, _,. Assume there-
fore that W, is a nonnegative function of these random variables: there is an
fa: R"~' = R' such that

(7.13) W, =f(Xp-.., X,_,) 2 0.

Apart from nonnegativity there are at the outset no constraints on the f,,
although in an actual casino their values must be integral multiples of a basic
unit. Such a sequence {W,} is a betting system. Since W, = 0 corresponds to a
decision not to bet at all, betting systems in effect include selection systems.
In the double-or-nothing system, W, =2""'if X, = - =X,_ = -1 (W, =
1) and W, = 0 otherwise.

The amount the gambler wins on the rnth play is W, X,,. If his fortune at
time n is F,, then

(714) Fn=Fn—l+u/an‘
This also holds for n =1 if F, is taken as his initial (nonrandom) fortune. It

is convenient to let 1, depend on F, as well as the past history of play and
hence to generalize (7.13) to

(7.15) W, =g (Fy, X\, ., X,_,) 20
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for a function g,; R"— R'. In expanded notation, W (w) =g (F,, X|(w),

.,X, _ (). The symbol W, does not show the dependence on @ or on F,
either. For each fixed initial fortune F,, W, is a simple random variable; by
(7.15) it is measurable %, _|. Similarly, F, is a function of F, as well as of
X{w),..., X (w): F, =F(F; o).

If F;=0and g, =1, the F, reduce to the partial sums (7.1).

Since %,_, and o(X,) are independent, and since W, is measurable
&._, (for each fixed F,), W, and X, are independent. Therefore, E{W, X, ]
= E[W,]- E[X,]. Now E[X,]=p—q <0 in the subfair case (p <3), with
equality in the fair case (p = 3). Since E[W,]> 0, (7.14) implies that E[F,] <
E[F, _,]. Therefore,

(7.16) Fo>E[F]> - 2E[F,]= -

n

in the subfair case, and
(717) Fo=E[Fi= - =E[E]= -

in the fair case. (If p<q and P[W_ >0]>0, there is strict inequality in
(7.16).) Thus no betting system can convert a subfair game into a profitable
enterprise.

Suppose that in addition to a betting system, the gambler adopts some
policy for quitting. Perhaps he stops when his fortune reaches a set target, or
his funds are exhausted, or the auguries are in some way dissuasive. The
decision to stop must depend only on the initial fortune and the history of
play up to the present.

Let 7(F,, w) be a nonnegative integer for each w in () and each F, > C. If
7 = n, the gambler plays on the nth trial (betting W, ) and then stops; if =0,
he does not begin gambling in the first place. The event [w: 7(Fy, w) = n]
represents the decision to stop just after the nth trial, and so, whatever value
Fy may have, it must depend only on X,,..., X,. Therefore, assume that

(7.18) lw: 1(Fp,w)=n|€ %, n=0,1,2,...

A 7 satisfying this requirement is a stopping time. (In general it has infinite
range and hence is not a simple random variable; as expected values of =
play no role here, this does not matter.) It is technically necessary to let
7(F,,0) be undefined or infinite on an w-set of probability 0. This has no
effect on the requirement (7.18), which must hold for each finite »n. But it is
assumed that r is finite with probability 1: play is certain to terminate.

A betting system together with a stopping time is a gambling policy. Let 7
denote such a policy.

Example 7.5. Suppose that the betting system is given by W, =B,, with
B, as in Example 7.4. Suppose that the stopping rule is to quit after the first
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loss of a wager. Themr[r=n]=U}_ [N, =n,Y, = =Y, =+, Y, =

—1].Forjsk5n,[Nk=n,Yj=x] U ,[Nk n, N;=m, X, =x] lies in
F. by (7.11); hence r is a stopping time. The values of T are shown 1n the
rightmost column of the table, [

The sequence of fortunes is governed by (7.14) until play terminates, and
then the fortune remains for all future time fixed at F, (with value F, H(Fy @)
Therefore, the gambler’s fortune at time # is

n

{F if r>n,
F,. ifr<n.

(7.19) Fx =
\

Note that the case +=n i1s covered by both clauses here If n —1<n <,
then F¥X=F =F,_,+W X =F* +W,X,; if r<n-1<n, then F*=
F_=F | Therefore, if W* = 1[T>n]ﬂ/’,,, then

(7.20) Er=Fr +1., WX, =EF  +WrX,.

But this is the equation for a new betting system in which the wager placed
at time n is W*. If 7> n (play has not already terminated), W* is the old
amount W,; if T <n (play has terminated), W,* is 0. Now by (7.18), [r > n] =
[r <nl lies in &, _,. Thus 1, , is measurable 7, _,, so that W,* as well as
W, is measurable &% _,, and {W*} represents a legltlmate bettmg system.
Therefore, (7.16) and (7.17) apply to the new system:

(7.21) Fy=Fr>E[Fr]> ++ 2E[F*]> -
if p<3,and

(7.22) Fo=F§ =E[F¥]= - =E[Fr]= ...
if p=1

The gambler’s ultimate fortune is F,. Now lim,, F," = F, with probability 1,
since in fact F*=F, for n > r. If

(7.23) lim E[F*]=E[F.),

then (7.21) and (7.22), respectively, imply that E[F,} < F, and E[F]=F,
According to Theorem 5.4, (7.23) does hold if the E* are uniformly bounded.
Call the policy bounded by M (M nonrandom) if

(7.24) 0<F*<M, n=0,12,. ...

If EF is not bQunded above, the gambler’s adversary must have infinite
capital. A negative F represents a debt, and if F* is not bounded below,
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the gambler must have a patron of infinite wealth and generosity from whom
to borrow and so must in effect have infinite capital. In case F* is bounded
below, 0 is the convenient lower bound—the gambler is assumed to have in
hand all the capital to which he has access. In any real case, (7.24) holds and
(7.23) follows. (There is a technical point that arises because the general
theory of integration has been postponed: F. must be assumed to have finite
range sO that it will be a simple random variable and hence have an expected
value in the sense of Section 5.7) The argument has led to this result:

Theorem 7.2.  For every policy, (7.21) holds if p < 3+ and (7.22) holds if p =
3. If the policy is bounded (and F, has finite range), then E[F,1 < F forp < 3
and E[F,1=F, forp=1.

Example 7.6. The gamtler has initial capital ¢« and plays at unit stakes
until his capital increases to ¢ (0 <a <c¢) or he is ruined. Here F,=a and
W,=1, and so F,=a +S,. The policy is bounded by ¢, and F, is ¢ or 0
according as the gambler succeeds or fatls. If p= % and if s is the probability
of success, then a = Fy = E[F,]=sc. Thus s =a /c. This gives a new deriva-
tion of (7.7) for the case p= % The argument assumes however that play is
certain to terminate. If p < % Theorem 7.2 only gives s <a/c, which is
weaker than (7.7). [

Example 7.7. Suppose as before that Fy=a and W, =1, so that F,, =a +
S, but suppose the stopping rule is to quit as soon as F, reaches a +b. Here
F¥ is bounded above by a + b but is not bounded below. If p= % the
gambler is by (7.8) certain to achieve his goal, so that F, = a + b. In this case
Fy=a <a+b=E[F.]. This illustrates the effect of infinite capital. It also
illustrates the need for uniform boundedness in Theorem 5.4 (compare
Example 5.7). [

For some other systems (gamblers call them “martingales”), see the
problems. For most such systems there is a large chance of a small gain and a
small chance of a large loss.

Bold Play*

The formula (7.7) gives the chance that a gambler betting unit stakes can
increase his fortune from a to ¢ before being ruined. Suppose that a and ¢
happen to be even and that at each trial the wager is two units instead of

"See Problem 7.11.
*This topic may bs omitted.
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one. Since this has the effect of halving a4 and ¢, the chance of success is now

pa/Z_l_pa__lpc/Z_l_l
p¢/? =1  p-1pa/24 1’

g
2 =pl.
5 =P

If p>1(p< %), the second factor on the right exceeds 1: Doubling the
stakes increases the probability of success in the unfavorable case p > 1. In
the case p = 1, the probability remains the same.

There is a sense in which large stakes are optimal. It will be convenient to
rescale so that the initial fortune satisfies 0 < F; < 1 and the goal is 1. The
policy of bold play is this: At each stage the gambler bets his entire fortune,
unless a win would carry him past his goal of 1, in which case he Dets just
enough that a win would exactly achieve that goal:

n—1 —=&p—

F if0<F,_, <1,
" V1-F,_, ifi<F_ <1

(7.25)

(It is convenient to allow even irrational fortunes.) As for stopping, the policy
is to quit as soon as F, reaches 0 or 1.

Suppose that play has not terminated by time k — 1; under the policy
(7.25), if play is not to terminate at time k, then X, must be +1 or — 1
according as F,_, <3 or F,_, > 1, and the conditional probability of this is
at most m = max{ p, q}. It follows by induction that the probability that bold
play continues beyond time n is at most m”, and so play is certain to
terminate ( is finite with probability 1).

It will be shown that in the subfair case, bold play maximizes the probabil-
ity of successfully reaching the goal of 1. This is the Dubins—Savage theorem.
It will further be shown that there are other policies that are also optimal in
this sense, and this maximum probability will be calculated. Bold play can be
substantially better than betting at constant stakes. This contrasts with
Theorems 7.1 and 7.2 concerning respects in which gambling systems are
worthless.

From now on, consider only policies 7 that are bounded by 1 (see (7.24)).
Suppose further that play stops as soon as F, reaches 0 or 1 and that this is
certain eventually to happen. Since F, assumes the values 0 and 1, and since
[F,=x]=U5_olr=nlNn[F,=x]for x=0and x =1, F, is a simple random
variable. Bold play is one such policy .

The policy = leads to success if F, = 1. Let O, (x) be the probability of
this for an initial fortune F, = x:

(7.26) Q.(x)=P[F.=1] . for F,=x.
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Since F, is a function ¢,(F;, X(w),..., X (0)) =¥ (F,, ), (726) in ex-
panded notation is Q_(x)=Plw: ¥, ,(x,»)=1]. As 7 specifies that play
stops at the boundaries 0 and 1,

0.(0)=0, Q.(1) =1,

(7.27) 0<Q (x)<1, O0O<x<l.

Let Q be the Q. for bold play. (The notation does not show the dependence
of Q and Q_ on p, which is fixed.)

Theorem 7.3. In the subfair case, Q_(x) < Q(x) for all w and all x.

Proor. Under the assumption p < g, it will be shown later that

(728) Q(x)zpQ(x+t)+q0(x—1t), O<x-—-t<x<x+t<].

This can be interpreted as saying that the chance of success under bold play
starting at x is at least as great as the chance of success if the amount ¢ is
wagered and bold play then pursued from x + ¢ in case of a win and from
x —t in case of a loss. Under the assumption of (7.28), optimality can be
proved as follows.

Consider a policy 7, and let F, and F be the simple random variables
defined by (7.14) and (7.19) for this policy. Now Q(x) is a real function, and
so Q(FF) is also a simple random variable; it can be interpreted as the
conditional chance of success if 7 is replaced by bold play after time n. By
(7.20). EX¥ = x +1tX,, if F* | =x and W* = 1. Therefore,

Q(Fn*) = ZI[F,’,"_,=x, Wn*=r]Q(x + tXn)’
X,t

where x and t vary over the (finite) ranges of £* , and W,*, respectively.
For each x and ¢, the indicator above is measurable % _, and Q(x + tX )
is measurable o(X,); since the X, are independent, (5.25) and (5.17) give

(729)  E[Q(EF)] = LPIE =x, Wr=t]E[Q(x +X,)]

Xt

By (7.28), E[Q(x +tX ) < Q(x) if 0 <x—t <x<x+t < 1. As it is assumed
of 7 that F* lies in [0, 1] (that is, W,* < min{F*_ ,,1— F*_|}), the probability
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in (7.29) is 0 unless x and ¢ satisfy this constraint. Therefore,
E[Q(Fn*)] =< ZP[Fn*hl =X, Wn* = t]Q(I)
x,{

= EP[Fn*—l =x]O(x) =E[Q(Fn*—l)]'

This is true for each n, and so E[Q(F*)] < E[Q(FF)] = Q(F,). Since Q(F¥)
= Q(F,) for n > 7, Theorem 5.4 implies that E[Q(F,)] < Q(F,). Since x = 1
implies that Q(x) =1, P[F, = 1] < E[Q(F.)] < Q(F,). Thus Q_(F;) < Q(F,)
for the policy m, whatever F, may be.

It remains to analyze @ and prove (7.28). Everything hinges on the
functional equation

pQ(2x), 0<

(7:30) o(x) p+9Q(2x-1), ;<
For x =0 and x = 1 this is obvious because Q(0) =0 and Q(1) = 1. The idea
is this: Suppose that the initial fortune is x. If x < 3, the first stake under
bold play is x; if the gambler is to succeed in reaching 1, he must win the first
trial (probability p) and then from his new fortune x +x=2x go on to
succeed (probability Q(2x)); this makes the first half of (7.30) plausible. If
x> % the first stake is 1 — x; the gambler canr succeed either by winning the
first trial (probability p) or by losing the first trial (probability g) and then
going on from his new fortune x — (1 —x) =2x — 1 to succeed (probability
Q2 x — 1)); this makes the second half of (7.30) plausible.

It is also intuitively clear that Q(x) must be an increasing function of x
(0 < x <1): the more money the gambler starts with, the better off he is.
Finally, it is intuitively clear that (J(x) ought to be a continuous function of

the initial fortune x.

A formal proof of (7.30) can be constructed as for the difference equation (7.5). If
B(x)is x for x <4 and 1 —x for x> 1, then under bold play W, = 8(F,_,). Starting
from fy(x) =x, recursively define

f;(x;xlr"’xn)==f;—l(X;xlv"’xn—l)—FB(f;—l(x;xl“"’x"“l))x"'
Then F, =f(Fy; X|,..., X_). Now define

En( X3 %y, x,) = max fr(x;xy,...,x;).
O<k<n

If Fy=ux, then T,(x)=[g,(x; X,,..., X,) = 1] is the event that bold play will by time
n successfully increase the gambler’s fortune to 1. From the recursive definition it
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follows by induction on n that for n>1, f(x;x,...,x)=f,_(x+B(x)x;
X, ..., X%,) and hence that g (x;x,...,x,)=max{x,g,_(x+B(x)xs;x,...,x,))
Smce x =1 implies g,_((x +B(x)x; x5 .o, x)=x+B(x)x; =1, T(x)=[g,_(x+
B(x)X; X,,..., X,)=1), and since the X; are independent and identically
distributed, P(T,,(x)) = P(X, = +1]n T,,(x)) + P(X, = —1]n T (x)) =
pPlg, (x + B(x); Xoy..., X)) =1]+qPlg, _(x - B(x) X,,..., X,)=pP(T,_(x +
BLxM) + qP(T, _ (x — B(x))). Letting n —» o now gives O(x) = pQ(x + B(x))
+qQ(x — B(x)), which reduces to (7.30) because Q(0) =0 and O0(1) = 1.

Suppose that y=f, _(x; Xpn o s Xno ,) is nondecreasing in x. If x, = +1, then
flxi x5y, )152y 1f0<y<2and11f <y<lifx,= -1, thenf,,(x Xpseos X,)
is 0 if 0<y<— and 2y -1 if 3 <y<1 In any case ffx;x,...,x,) is also
nondecreasing in x, and by lndUCtlon this is true for every n. It follows that the same
is true of g,(x; x,,...,x,,), of P(T,(x)), and of Q(x). Thus Q(x) is nondecreasing.

Since Q(1) =1, (7.30) implies that Q(3)=pQW) =p, Q) =pO(3) =p? 0(2) =
p +qQ(3) =p +pg More generally, if p, =p and p, =gq, then

l\;:i;":'

, 0<k<2" n=x>1,

231 0(5:)- Z[pu, TR

the sum extending over n-tuples (u,...,u,) of 0’s and 1’s satisfying the condition
indicated. Indeed, it is easy to see that (7.31) is the same thing as

(7.32) Q(uy. oty +27") = QCuy. .u,) =D, Py,--- Py

n

for each dyadic rational .u,...u, of rank n. If .u,...u, + 27" < %, then u; =0 and by
(7.30) the difference in (7.32) is plQCu,y...u, +27"*) —QCu,...u,)]. But (7.32)
follows inductively from this and a similar relation for the case .u;...u, > 3.

Therefore Q(k2") — Q((k — 1)27") is bounded by max{p”", ¢"}, and so by mono-
tonicity Q is continuous. Since (7.32) is positive, it follows that Q is strictly increasing
over [0, 1].

Thus Q is continuous and increasing and satisfies (7.30). The inequality
(7.28) is still to be proved. It is equivalent to the assertion that

A(r,s)=Q(a) —pQ(s) —qQ(r) =0

if 0 <r<s<1, where a stands for the average: a = 3(r+s). Since Q is
continuous, it suffices to prove the inequality for » and s of the form /2",
and this will be done by induction on n. Checking all cases disposes of n =0,
Assume that the inequality holds for a particular », and that r and s have
the form k/2"*', There are four cases to consider.

Caste 1. s < 3. By the first part of (7.30), A(r, s) =pA(2r,2s). Since 2r and
2s have the form k/2", the induction hypothesis implies that AQ2r,2s) > 0.
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Case 2. 3 <r. By the second part of (7.30),

A(r,s)=qA(2r-1,2s—1) = 0.
Case 3. r<a < 3 <s. By (7.30),
A(r,s) =pQ(2a) —p[ p+qQ(2s - 1)] —q[ pQ(2r)].

r+s=2a<1, follows QQa)=p+qQ(4a—1); and from

, follows Q(2a — 1) =pQ(4a — 1). Therefore, pQQRa)=p?*+
gQQ2a — 3), and it follows that

A(r,s) =q[Q(2a — 7) —pQ(2s — 1) —pQ(2r)].

Since p <gq, the right side does not increase if either of the two p’s is
changed to q. Hence

A(r,s)>qgmax[A(2Zr,2s — 1),A(2s — 1,2r)].
The induction hypothesis applies to 2r <2s — 1 orto 2s — 1 < 2r, as the case
may be, so one of the two A’s on the right is nonnegative.
Case 4. r < 3<a<s. By (7.30),
A(r,s) =pq+q0(2a - 1) —pgQ(2s — 1) — pgQ(2r).
From 0 <2a—1=r+s—1<4, follows Q(2a — 1) =pQ(4a — 2); and from
3<2a—3=r+s—1<1, follows QQa— 3)=p +qgQ(4a—2). Therefore,
gQQ2a — 1)=pQQa — 3) — p?, and it follows that
A(r,s) =p[q ~p+Q02a- %) —qQ(2s—-1) - qQ(Qr)].

If 2s — 1 < 2r, the right side here is

pl(a—p)(1-0(2r)) + A(2s - 1,2r)] = 0.
If 2r <25 — 1, the right side is

pl(@a-p)(1-0(2s — 1)) + A(2r,25 — 1)] = 0.

This completes the proof of (7.28) and hence of Theorem 7.3.
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The equation (7.31) has an interesting interpretation. Let Z,, Z,,... be
independent random variables satisfying P[Z, = 0] =p, =p and P{Z,=1] =
p =g From P[Z, =1 io]=1 and ¥;,,Z277<27" it follows that
P[Y;. Z27 ' <k27"]| < P[E]_ 227 <k27"] < P[E7, ,z 274 <k27"]. Since
by (7. 31) the middle term is Q(k2 ",

(7.33) Q(x)=P[iZ,-2"sx

i=]

holds for dyadic rational x and hence by continuity holds for all x. In Section
31, Q will reappear as a continuous, strictly increasing function singular in
the sense of Lebesgue. On p. 408 is a graph for the case p, = .25.

Note that Q(x)=x in the fair case p= . In fact, for a bounded policy
Theorem 7.2 implies that £[F.] = F, in the fair case, and if the policy is to
stop as soon as the fortune reaches O or 1, then the chance of successfully
reaching 1is P[F, = 1] = E[F,] = F,. Thus in the fair case with initial fortune
x, the chance of success i1s x for every policy that stops at the boundaries,
and x is an upper bound even if stopping earlier is allowed.

Example 7.8. The gambler of Example 7.1 has capital $900 and goal
$1000. For a fair game (p = 3) his chance of success is .9 whether he bets
unit stakes or adopts bold play. At red-and-black (p = 13), his chance of
success with unit stakes is .00003; an approximate calculation based on (7.31)
shows that under bold play his chance Q(.9) of success increases to about .88,
which compares we!ll with the fair case. ]

Example 7.9. In Example 7.2 the capital is $100 and the goal $20,000. At
unit stakes the chance of successes is .005 for p= 1 and 3 x 10™°!"! for
p= i—ﬂ Another approximate calculation shows that bold play at red-and-black
gives the gambler probability about .003 of success, which again compares
well with the fair case.

This example illustrates the point of Theorem 7.3. The gambler enters the
casino knowing that he must by dawn convert his $100 into $20,000 or face
certain death at the hands of criminals to whom he owes that amount. Only
red-and-black is available to him. The question is not whether to gamble—he
must gamble. The question is how to gamble so as to maximize the chance of
survival, and bold play is the answer. [ ]

There are policies other than the bold one that achieve the maximum
success probability O(x). Suppose that as long as the gambler’s fortune x is
less than § he bets x for x < 7 and 3 —x for + <x < . This is, in effect, the



108 PROBABILITY

bold-play strategy scaled down to the interval [0, 1], and so the chance he
ever reaches % is Q(2x) for an initial fortune of x. Suppose further that if he
does reach the goal of 1, or if he starts with fortune at least 3 in the first
place, then he continues, but with ordinary bold play. For an initial fortune
x > 1, the overall chance of success is of course Q(x), and for an initial
fortune x < 3, it is QQx)Q(3)=pQ@(2x) = O(x). The success probability is
indeed Q(x) as for bold play, although the policy is different. With this
example in mind, one can generate a whole series of distinct optimal policies.

Timid Play*

The optimality of bold play seems reasonable when one considers the effect
of its oppcsite, timid play. Let the e-timid policy be to bet W, =
min{e, F,_,,1—F,_,} and stop when F, reaches ¢ or 1. Suppose that p <gq,
fix an initial fortune x =F, with 0 <x <1, and consider what happens as
¢ = 0. By the strong law of large numbers, lim_ n~'S, =E[X,]=p —q <0.
There is therefore probability 1 that sup, S, < and lim, S, = —. Given
n > 0, choose € so that Plsup,(x +¢€S,) <1]>1—n. Since P(U5_ [x +€S,
< 0]) = 1, with probability at least 1 — n there exists an »r such that x + ¢S,
< 0 and max, _ (x +€S,) < 1. But under the e-timid policy the gambler is in
this circumstance ruined. If Q(x) is the probability of success under the
e-timid policy, then lim, _ , @ .(x) = 0 for 0 <x < 1. The law of large numbers
carries the timid player to his ruin.?

PROBLEMS

7.1. A gambler with initial capital a plays until his fortune increases b units or he is
ruined. Suppose that p> 1. The chance of success is multiplied by 1+ 8
if his initial capital is infinite instead of a. Show that 0 <@ < (p?— 1)<
(a(p — 1)~ relate to Example 7.3.

7.2 As shown on p. 94, there is probability 1 that the gambler either achieves his
goal of ¢ or is ruined. For p # g, deduce this directly from the strong law of
large numbers. Deduce it (for all p) via the Borel-Cantelli lemma from the fact
that if play never terminates, there can never occur ¢ successive +1’s.

7.3. 6121 If V, is the set of n-long sequences of +1s, the function b, in (7.9)
maps V, _, into {0, 1}. A selection system is a sequence of such maps. Although
there are uncountably many selection systems, how many have an effective

*This topic may be omitted
"For each e, however, there exist optimal policies under which the bet never exceeds ¢; see
Dusins & SAVAGE.
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7.4.

7.5.

7.6.

7.7.

7.8.

description in the sense of an algorithm or finite set of instructions by means of
which a deputy (perhaps a machine) could operate the system for the gambler?
An analysis of the question is a matter for mathematical logic, but one can see
that there can be only countably many algorithms or finite sets of rules
expressed in finite alphabets.

Let Y{°),Y{%),... be the random variables of Theorem 7.1 for a particular
system o, and let C_ be the w-set where every k-tuple of +1’s (k arbitrary)
occurs in Y{"w),Y{*Xw),... with the right asymptotic relative frequency (in
the sense of Problem 6.12). Let C be the intersection of C, over all effective
selection systems o. Show that C lies in & (the o-field in the probability space
(Q, &, P) on which the X, are defined) and that P(C)=1. A sequence
(X(0), X w),...) for w in C is called a coliective: a subsequence chosen by any
of the effective rules o contains all k-tuples in the correct proportions

Let D, be 1 or 0 according as X,,_; # X,,, or not, and let M, be the time ot
the kth 1—the smallest n such that X_;D,=k. Let Z, =X,,,. In other
words, look at successive nonoverlapping pairs (X5, _;, X,,), discard accordant
(X, =X,,) pairs, and keep the second element of discordant (X,, _, #X,,)
pairs. Show that this process simulates a fair coin: Z,,Z,, ... are independent
and identically distributed and P[Z, = +1)=P[Z, = —1] = 3, whatever p may
be. Follow the proof of Theorem 7.1.

Suppose that a gambler with initial fortune 1 stakes a proportion 8 (0 <6 < 1)
of his current fortune: F;=1 and W, =6F,_,. Show that F, =117 _,(1+6X,)
and hence that

_nls, 1+86 5
lOan— 5 IIonge +log(1—9 )i -

Show that F, — 0 with probability 1 in the subfair case.

In “doubling,” W, =1, W, =2W,_,, and the rule is to stop after the first win.
For any positive p, play is certain to terminate. Here F,_ = F;, + 1, but of course
infinite capital is required. if F,= 2% —1 and W, cannot exceed F,_,, the
probability of F, = Fy + 1 in the fair case is 1 — 27%. Prove this via Theorem 7.2
and also directly.

In “progress and pinch,” the wager, initially some integer, is increased by 1
after a loss and decreased by 1 after a win, the stopping rule being to quit if the
next bet is 0. Show that play is certain to terminate if and only if p > % Show
that F, = Fy + sW? + 3(r — 1). Infinite capital is required.

Here is a common martingale. Just before the nth spin of the wheel, the
gambler has before him a pattern x,,..., x, of positive numbers (k varies with
n). He bets x| +x,, or x, in case k = 1. If he loses, at the next stage he uses the
pattern xy,..., Xy, X; +x, (xy, x; in case k = 1). If he wins, at the next stage he
uses the pattern x,,...,x, _, unless k is 1 or 2, in which case he quits. Show
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7.9.

7.10.

7.1L.

7.12.

7.13.
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that play is certain to terminate if p > 1 and that the ultimate gain is the sum of
the numbers in the initial pattern. Infinite capital is again required.

Suppose that W, =1, so that F, =F,+S,. Suppose that p>q and 7 is a
stopping time such that 1 <7 <n with probability 1. Show that E[F,] <E[F],
with equality in case p =gq. Interpret this result in terms of a stock option that
must be exercised by time n, where F, + S, represents the price of the stock at
time k.

For a given policy, let A* be the fortune of the gambler’s adversary at time ».
Consider these conditions on the policy. (i) Wr <F* ; (i) Wk <A%_; (iii)
F¥ + A% is constant. Interpret each condition, and show that together they
imply that the policy is bounded in the sense of (7.24). |

Show that F, has infinite range if Fy =1, W, =27", and 7 is the smallest n for
which X, = +1.

Let u be a real function on [0, 1], «(x) representing the wutility of the fortune x.
Consider policies bounded by 1; see (7.24). Let Q_(F,) = E[u(F,)}; this repre-
sents the expected utility under the policy 7 of an initial fortune F,. Suppose of
a policy  that

(7.34) u(x)<Q.(x), O=<x<l,
and that
(7.35) Q. () 2pQ, (x+ 1) +49Q, (x—1),

O<x—t<x<x+t<1.

Show that Q_ (x) < Q,(x) for all x and all policies . Such am, is optlmal

Theorem 7.3 is the Specla] case of this result for p < 4, bold play in the role
of 7y, and u(x)=1 or u(x) =0 according as x =1 or x < 1.

The condition (7.34) says that gambling with policy  is at least as good as
not gambling at all; (7.35) says that, although the prospects even under 7
become on the average less sanguine as time passes, it is better to use 7, now
than to use some other policy for one step and then change to .

The functional equation (7.30) and the assumption that Q is bounded suffice to
determine Q completely. First Q(0} and Q(l) must be 0 and 1, respectively, and
so (7.31) holds Let Tyx=1x and T,x = 3x + &; let fox=px and f,x=p + qx.
Then (7, --- T, x) fa, " L, Q(x) if the binary expansions of x and y
both begin w1th the digits Uy, Uy,, they have the form x=7, ... T, x' and

=T, T,y. If K bounds Q and if m=max{p,q), it follows that
IQ(x) — Q(y)| < Km". Therefore, Q is continuous and satisfies (7.31) and (7.33).
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SECTION 8. MARKOV CHAINS

As Markov chains illustrate in a clear and striking way the connection
between probability and measure, their basic properties are developed here
in a measure-theoretic setting.

Definitions

Let S be a finite or countable set. Suppose that to each pair i and j in §
there is assigned a nonnegative number p;; and that these numbers satisfy
the constraint

(8.1) Yp,=1, i€S.

jes

Let X, X), X,,... be a sequence of random variables whose ranges are
contained in S. The sequence is a Markov chain or Markov process if

(8.2) P[Xn+|:j|X0=i0""’Xn=i"]
=P[Xn+l :]|Xn :in] :pjnj

for every n and every sequence iy,...,i, in S for which P[ X, =i,,..., X, =
i, 1> 0. The set § is the state space or phase space of the process, and the DPi;
are the transition probabilities. Part of the defining condition (8.2) is that the
transition probability

(8.3) PlX,, =i X, =i] =p,

does not vary with 7.7

The elements of § are thought of as the possible states of a system, X,
representing the state at time n. The sequence or process X, X, X,,...then
represents the history of the system, which evolves in accordance with the
probability law (8.2). The conditional distribution of the next state X,
given the present state X, must not further depend on the past X,..., X, _,.
This is what (8.2) requires, and it leads to a copious theory.

The tnitial probabilities are

(8.4) a;=P[ X, =i].

The «; are nonnegative and add to 1, but the definition of Markov chain
places no further restrictions on them.

'Sometimes in the definition of the Markov chain P[X,, | =j|X, = i]is allowed to depend on n.
A chain satisfying (8.3) is then said to have stationary transition probabilities, a phrase that will be
omitted here because (8 3) will always be assumed.
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The following examples illustrate some of the possibilities. In each one,
the state space S and the transition probabilities p;, are described. but the
underlying probability space (2, %, P) and the X, are left unspecified for
now: see Theorem 8.1.7

Example 8.1. The Bernoulli-Laplace model of diffusion. Imagine r black
balls and r white balls distributed between two boxes, with the constraint
that each box contains r balls. The state of the system is specified by the
number of white balls in the first box, so that the state spaceis S = (0, 1,...,r}.
The transition mechanism is this: at each stage one ball is chosen at random
from each box and the two are interchanged. If the present state is {, the
chance of a transition to [ — 1 is the chance i /r of drawing one of the { white
balls from the first box times the chance i /r of drawing one of the i black
balls from the second box. Together with similar arguments for the other
possibilities, this shows that the transition probabilities are

. 2 ) . .
] r—i i(r—1i)
Pi,i—i“"(;) ) pi,i+l=( . ) ; pi=2 PP

the others being 0. This is the probablistic analogue of the model for the flow
of two liquids between two containers. [

The p;; form the transition matrix P ={p;;] of the process. A stochastic
matrix is one whose entries are nonnegative and satisfy (8.1); the transition
matrix of course has this property.

Example 8.2. Random walk with absorbing barriers. Suppose that § =
{0,1,...,r} and

[1 0 0 © 0 0 0 0]
g 0 p O 0 0 0 ¢
0 g 0 p 0 0 0 0
p_.O...O...O...O ....... , (]p(]
0 0 0 0 0 g 0 p
0 0 0 O 0 0 0 1]

Thatis, p;;,,=pand p,;_,=q=1—pfor0<i<rand py,=p, =1 The
chain represents a particle in random walk. The particle moves one unit to
the right or left, the respective probabilities being p and g, except that each
of 0 and r is an absorbing state—once the particle enters, it cannot leave.
The state can also be viewed as a gambler’s fortune; absorption in 0

"For an excellent collection of examples from physics and biology, see FELLER, Volume 1,
Chapter XV.
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represents ruin for the gambler, absorption in r ruin for his adversary (see
Section 7). The gambler’s initial fortune is usually regarded as nonrandom, so
that (see (8.4)) a; = 1 for some i. [

Example 8.3. Unrestricted random walk. Let S consist of all the integers
i=0,+1,%+2,...,and take p; ,,=p and p,,_, =q =1 - p. This chain rep-
resents a random walk without barriers, the particle being free to move
anywhere on the integer lattice. The walk is symmetric if p =gq. |

The state space may, as in the preceding example, be countably infinite. If
so, the Markov chain consists of functions X, on a probability space
(Q, &, P), but these will have infinite range and hence will not be random
variables in the sense of the preceding sections. This will cause no difficulty,
however, because expected values of the X, will not be considered. All that
is required is that for each i €S the set {w: X,(w) =] lie in % and hence
have a probability.

Example 8.4. Symmetric random walk in space. Let S consist of the
integer lattice points in k-dimensional Euclidean space R%; x = (x,,...,x,)
lies in S if the coordinates are all integers. Now x has 2k neighbors, points
of the form y =(x,...,x,+1,...,x.); for each such y let p_ =(2k)"".
The chain represents a particle moving randomly in space; for k=1 it
reduces to Example 8.3 with p =g = 3. The cases k <2 and k > 3 exhibit an
interesting difference. If k <2, the particle is certain to return to its initial
position, but this is not so if k > 3; see Example 8.6. [ |

Since the state space in this example is not a subset of the line, the
Xy, X,,... do not assume real values. This i1s immaterial because expected
values of the X, play no role. All that is necessary is that X, be a mapping
from Q into § (finite or countable) such that {w: X, (w)=il€ & for i€S.
There will be expected values E{ f(X,)] for rcal functions f on § with finite
range, but then f(X,(w)) is a simple random variable as defined before.

Example 8.5. A selection problem. A princess must chose from among r suitors.
She is definite in her preferences and if presented with all r at once could choose her
favorite and could even rank the whole group. They are ushered into her presence
one by one in random order, however, and she must at each stage either stop and
accept the suitor or else reject him and proceed in the hope that a better one will
come along. What strategy will maximize her chance of stopping with the best suitor
of all?

Shorn of some details, the analysis is this. Let §,, S,,..., S, be the suitors in order
of presentation; this sequence is a random permutation of the set of suitors. Let
X,=1 and let X,, X3,...be the successive positions of suitors who dominate (are
preferable to) all their predecessors. Thus X, =4 and X; =6 means that §, domi-
nates S, and §; but §, dominates S,, S,, §;, and that §, dominates S; but S
dominates §,,...,Ss. There can be at most r of these dominant suitors; if there are
exactly m, X,,,,=X,,4,2= *"+ =r+ 1 by convention.
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As the suitors arrive in random order, the chance that §; ranks highest among
810y S; is (i —1)!/il=1/i. The chance that S, ranks highest among Sl,...,Sj and
S; ranks next is (j — 2)! /jt = 1/j(j — 1). This leads to a chain with transition probabili-
ties'

i

(85) P[-Xn+l=j|Xn=i]

=—", I<i<j<r.
ji(j—1) !
If X,=1i,then X,,, =r+ 1 meansthat §; dominates S;,,,. ,S5, aswellas §,,. .,§,,
and the conditional probability of this is
(8.6) PX,, =r+1X,=i]=%, lsi<r

As downward transitions are impossible and r+ 1 is absorbing, this specifies a
transition matrix for S={1,2,...,r + 1}.

It is quite clear that in maximizing her chance of selecting the best suitor of all, the
princess should reject those who do not dominate their predecessors. Her stirategy
therefore will be to stop with the suitor in position X, where 7 1s a random variable
representing her strategy. Since her decision to stop must depend only on the suitors
she has seen thus far, the event [t =n] must lie in o(X,..., X,) If X_=i, then by
(8.6) the conditional probability of success is f(i)=i/r. The probability of success is
therefore E[f(X,)], and the problem is to choose the strategy 7 so as to maximize it.
For the solution, see Example 8 17.} »

Higher-Order Transitions
The properties of the Markov chain are entirely determined by the transition
and initial probabilities. The chain rule (4.2) for conditional probabilities
gives
P[X(l:im X, =i, X,=1,]
=P[Xo =i0]P[X| =51|X0 =i0]P[X2 =i2|X0=io: X, =i!]

=; Pii, Pii,-
Similarly,

(8.7) PIX,=i,0<t<m]=a,py, P

I—idm

for any sequence i,,i,,...,i, of states.
Further,

(8.8) PlX,i=J,l<t<n|X,=i,0<s <m|=p,  P;;, P _

"The details can be found in Dynkin & Yusukevicu. Chapter IIL.
*With the princess replaced by an executive and the suitors by applicants for an office job, this is
known as the secretary problem
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as follows by expressing the conditional probability as a ratio and applying
(8.7) to numerator and denominator. Adding out the intermediate states now
gives the formula

(8.9) PP =PlX,\,=i| X, =i
- Z piklpklkZ;.-pkn—U‘
k, &

n=1

(the k, range over §) for the nth-order transition probabilities.

Notice that p}f) is the entry in position (i,j) of P", the nth power of the
transition matrix P. If S is infinite, P is a matrix with infinitely many rows
and columns; as the terms in (8.9) are nonnegative, there are no convergence
problems. It is natural to put

1 ifi=j
O -5 = ’
Pi = O {0 if i ).

Then PO is the identity 7, as it should be. From (8.1) and (8.9) follow

(8.10) pirtm =3 plmpn, Ep‘"’ =1.

An Existence Theorem

Theorem 8.1. Suppose that P = p, j] Is a stochastic matrix and that «; are
nonnegative numbers satisfying ¥, _ ¢a; = 1. There exists on some (0, %, P) a
Markov chain X, X, X,,... with initial probabilities «; and transition proba-
bilities p;;.

Proor. Reconsider the proof of Theorem 5.3. There the space (0, %, P)
was the unit interval, and the central part of the argument was the construc-
tion of the decompositions (5.13). Suppose for the moment that S ={1,2,...).
First construct a partition I{%, I{9,... of (0,1] into countably many subinter-
vals of lengths (P is again Lebesgue measure) P(I{V) = o,;. Next decompose
each I into subintervals I of lengths P(IP) = a, pu Contlnumg induc-
tively gives a sequence of partltlons {[("’ : io,. ..} such that
each refines the preceding and P(I{"™ , ) @ DPig, Pf,,_,z,,-

Put X(w)=iif wEU, , | I,(G"f i _. It follows just as in the proof of
Theorem 5.3 that the set fXO TR G | coincides with the interval
Ii0.. i, Thus P{Xy=ig,...,X, =i d=a; p,, ** p; ;. From this it foi-
10ws lmmedlately that (8.4) ho! ds and that the first and third members of

Tlfﬁ, +8,+- =b-aand§;20,then ;=(b-L,;_;8;,b-L; ;8] i=12,..., decompose
(a, b] into intervals of lengths 8
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(8.2) are the same. As for the middle member, it is P[X, =i, X, , , =
jl/P[X, =i,]; the numerator is Za, p;; - Dp; _; P;; the sum extending
over all i,,...,i,_,, and the denominator is the same thing without the factor
p; j, which means that the ratio 18 p; ;> as required.

That completes the construction for the case § ={1,2,...}. For the gen-
eral countably infinite S, let g be a one-to-one mapping of {1,2,...} onto §,
and replace the X, as already constructed by g(X,); the assumption S =
(1,2,...} was merely a notational convenience. The same argument obviously

works if S is finite." u

Although strictly speaking the Markov chain is the sequence X,
X,,...,one often speaks as though the chain were the matrix P together with
the initial probabilities @, or even P with some unspecified set of «,.
Theorem 8.1 justifies this attitude: For given P and «, the corresponding X,
do exist, and the apparatus of probability theory—the Borel-Cantelli lem-
mas and so on—is available for the study of P and of systems evolving in
accordance with the Markov rule.

From now on fix a chain X, X,.... satisfying a;> 0 for all i. Denote by P,
probabilities conditional on [ X, =i]: P(A)=P[A|X, =il Thus

(8.11) Pl[X,=i,1<t<n]=p;p;; " D

n-itn

by (8.8). The interest centers on these conditional probabilities, and the
actual initial probabilities «; are now largely irrelevant.
From (8.11) follows
(8.12) P X, =i, .. Xp=0 X1 =J1seeor Xppsn =1yl
_—PE[XI =Ly, Xy =in~]me[X1 =Jiser X, :-fn]'
Suppose that [ is a set (finite or infinite) of m-long sequences of states, J is a
set of n-long sequences of states, and every sequence in [ ends in j. Adding
both sides of (8.12) for (i, ..., {,,) ranging over I and (j,,..., j,) ranging over
J gives
(813) Pf[(Xl""7Xm)GI’(Xm+l""’Xm+n)€J]
=PF[(XI""’Xm) EI]PJ;[(X“...,X") EJ]

For this to hold it is essential that each sequence in [ end in j. The formulas
(8.12) and (8.13) are of central importance.

"For a different approach in the finite case, see Problem 8.1.
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Transience and Persistence

Let

(8.14) =P X #,., X,_ #], X, =]]

be the probability of a first visit to j at time n for a system that starts in £,
and let

(8.15) f,-,-:P,-( CJ [Xn:j]) = i fi?

n=1 n=1

be the probabiiity of an eventual visit. A state [ is persistent if a system
starting at { is certain somerime to return to i: f; = 1. The state is transien!
in the opposite case: f;; <1.

Suppose that n,,...,n, are integers satisfying 1 <n, < --- <n, and
consider the event that the system visits j at times n...n, but not in
between; this event is determined by the conditions

Xlij,.--, X _|=7"'ja Xn|=j1
X

n+1

Fjves Xy #is X, =],

#i, X, =i

X i1#ivy X

nk"‘l

Repeated application of (8.13) shows that under P, the probability of this

event is f{Of{remm . fl(j"* "x-1), Add this over the k-tuples n,,..., n,: the

P-probability that X, =/ for at least k different values of n is f,f;
Letting k — oo therefore gives

0 iff;<1,

(8.16) PlX,=jio]= {f“ if fi.=1.

Recall that i.o. means infinitely often. Taking i =j gives

0 if f,<1,

(8.17) P[X,=ii.0.]= {1 £ fm1

Thus P[ X, =ii.0.]is either 0 or 1; compare the zero—one law (Theorem 4.5),
but note that the events { X, =i] here are not in general independent.’

"See Problem 8.35
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Theorem 8.2.

(i) Transience of i is equivalent to P[X,=ii.0]=0 and to L, p{M < w.
(ii) Persistence of i is equivalent to P{X, =ii.0]=1and to L, p{{" = .

ProOF. By the first Borel- Cantelli lemma, £, p{™ < o implies Pl X, =i
i.0.] =0, which by (8.17) in turn implies f;, <1. The entire theorem will be
proved if it is shown that f; <1 implies £_p'™" < «,

The proof uses a first-passage argument: By (8.13),

n-—i

p=P(X,=jl= X PIX #j,... Xy s 15 Xy =5 X, =]]

s=0
n-1
= Y PIX, #js Ky #5, X,y = 1P X, =]
s=0
n-1

= LS
s=0

Therefore,
n n [—1
Y pP=) X fYop
t=1 i=13s5=0
n-1 n n
= 2P L fT0< X
5=0 [=5+1 s=0

Thus (1 —f)L",p’ <f; and if f, <1, this puts a bound on the partial
sums L7_, p". u

Example 8.6. Polya’s theorem. For the symmetric k-dimensional random
walk (Example 8.4), all states are persistent if k=1 or k =2, and all states
are transient if k& > 3. To prove this, note first that the probability p{" of
return in n steps is the same for all states i; denote this probability by af,") to
indicate the dependence on the dimension k. Clearly, a%%), , = 0. Suppose
that k = 1. Since return in 2#n steps means nr steps east and n steps west,

2n) 1
a(21r3=(n )22n.

By Stirling’s formula, a$)) ~ (wn)~1/2, Therefore, L,a{" =, and all states
are persistent by Theorem 8.2,
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In the plane, a return to the starting point in 2r steps means equal
numbers of steps east and west as well as equal numbers north and south:

e (2n)! 1

(2 — E:
a =
o =ulul(n —u)l(n —u)! 427

“wr LG

[t can be seen on combinatorial grounds that the last sum is (Zn”), and so
a@ = (DY’ ~ (wn)~"'. Again, T,aP =  and every state is persistent.
For three dimensions,

(2n)! 1
uwlulvlwl(n —u—-v)l(n—-u-v)! 6

=T

b ]

the sum extending over nonnegative u« and v satisfying u + v <n. This
reduces to

8.18 S0 = i 2n)( 2 o 2 i () 2
(8.18) Aon 21 I\ 3 3| %2n-292/5
i=0

as can be checked by substitution. (To see the probabilistic meaning of this
formula, condition on there being 2n — 2/ steps parallel to the vertical axis
and 2/ steps parallel to the horizontal plane.) It will be shown that a$) =
O(n~3/?), which will imply that ¥,a® < . The terms in (8.18) for / = 0 and
I =n are each O(n"?/?) and hence can be omitted. Now a{l’ < Ku~'/? and

a? < Ku~!, as already seen, and so the sum in question is at most

8 ()3 e

(=1

Since Cn =272 <20 ?2Q2n =20 <4n"?Q2n =21+ 1)"'and Q)" ' <
221 + 1)~ L, this is at most a constant times

n—1 2n-21+1 21+1
,  (2n)! 2n+2\(1 2 4
n (2n +2)! ,§](21—1)(§ (3) =0(n™7).

Thus £, a5’ < «, and the states are transient. The same is true for k = 4,5,...,
since an inductive extension of the argument shows that 4/ = O(n™%/2). m

It is possible for a system starting in i to reach j (f;; > 0) if and only if
p{" >0 for some n. If this is true for all i and j, the Markov chain is
irreducible.
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Theorem 8.3. If the Markov chain is irreducible, then one of the following
two alternatives holds.

(i) All states are transient, PAU,[ X, =jio) =0 foralli,and T, p{’ <
foralliandj.

(i) All states are persistent, PAN\,[ X, =ji.0]) =1 foralli,and ¥, pf}') =
forall i and j.

The irreducible chain itself can accordingly be called persistent or tran-
sient. In the persistent case the system visits every state infinitely often. In
the transient case it visits each state only finitely often, hence visits each
finite set only finitely often, and so may be said to go to infinity.

Proor. For each i and j there exist r and s such that p{’>0 aud
p$ > 0. Now

(8.19) Pyt = plpip,

and from p{p{’ >0 it follows that ¥, p{” < implies L, pj/’ <oo:if one
state is transient, they all are. In this case (8.16) gives P{X, =j i.0.] =0 for
all i and j, so that P(U [X,=j io]) =0 for all i. Since L. lp}j") =
L P = O P < B P, it follows that if j is
transient, then (Theorem 8.2) L, p{” converges for every i.
The other possibility is that all states are persistent. In this case P[X, =]

i.0.] = 1 by Theorem 8.2, and it follows by (8.13) that

" =P([ X, =i]n[X,=jio.l])

< Z P}[Xm=ia Xpr#J,-- s Xy #J, X, =]]
n>m

- (m)f(n—m) _ p(m)
= Y PifY =Py Tij

n>m

There is an m for which p},.’"’ > 0, and therefore f;;=1. By (8.16), P[X, =]
i.o]l=f, =11 L, p{’ were to converge for some i and j, it would follow by
the first Borel-Cantelli lemma that P[ X, =j i.0.] = 0. »

Example 8.7. Since L,p{" =1, the first alternative in Theorem 8.3 is
impossible if § is finite: a finite, irreducible Markov chain is persistent. ]

Example 8.8. The chain in Polya’s theorem is certainly irreducible. If the
dimension is 1 or 2, there is probability 1 that a particle in symmetric random
walk visits every state infinitely often. If the dimension is 3 or more, the
particle goes to infinity. |
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Example 8.9. Consider the unrestricted random walk on the line (Exam-
ple 8.3). According to the ruin calculation (7.8), f,, =p/q for p <q. Since
the chain is irreducible, all states are transient. By symmetry, of course, the
chain is also transient if p > g, although in this case (7.8) gives f;; = 1. Thus
fi;=10#)) 1s possible in the transient case.!

If p=gq = 1, the chain is persistent by Pélya’s theorem. If n and j — i have
the same parity,

p=\ntj—il5. li—il<n

This is maximal if j=1i or j =i+ 1, and by Stirling’s formula the maximal
value is of order n~!/2. Therefore, lim, p{™ = 0, which always holds in the
transient case but is thus possible in the per51stent case as well (see Theorem
8.8). [

Another Criterion for Persistence

Let Q =[g,;] be a matrix with rows and columns iiidexed by the elements of a
finite or countable set U. Suppose it is substochastic in the sense that g;; > 0
and T,g,; < 1. Let Q" =[q{] be the nth power, so that

(8.20) ‘"*”-quwqxh 43 =8;.

Consider the row sums

(8.21) <ﬂ—2¢w

rom (8.20) follows

(8:22) o) = g, 0",

i

Since Q is substochastic o<1, and hence o"*V=1L.Y ¢{'q, =
r, 4" < g Therefore, the monotone limits

(8.23) o;=lim ¥qf”

i

"But for each J there must be some i #j for which f;; <1; see Problem 8.7.
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exist. By (8.22) and the Weierstrass M-test [A28], 0; = £, q;,0;. Thus the o
solve the system

x; = E q;;%,, €U,
(8.24) jeu
O<x,<l, iel.
For an arbitrary solution, x,= X ¢, x, < ¥ g;; = 0", and x, <o for all i
implies x, < L.q,;0{" =o"*V by (8.22). Thus x, <o for all n by induc-
tion, and so x; < o;. Thus the o; give the maximal solution to (8.24):

Lemma 1. For a substochastic matrix Q the limits (8.23) are the maximal
solution of (8.24).

Now suppose that U is a subset of the state space S. The p,; for i and j in
U give a substochastic matrix (. The row sums (8.21) are o/ =LXp, p, ;.
- p; _,, where the jj,..., j, range over U, and so o =P[X €U, t<n]
Let n - oo

(8.25) o.=P[X,eU,t=1,2...], ieU.

In this case, o; is thus the probability that the system remains forever in U,
given that it starts at i. The following theorem is now an immediate
consequence of Lemma 1.

Theorem 8.4. For U CS the probabilities (8.25) are the maximal solution
of the system

X;= Z pix;, €U,
(8.260) jeu
0<x,<1, iey.

The constraint x; > 0 in (8.26) is in a sense redundant: Since x,=0is a
solution, the maximal solution is automatically nonnegative (and similarly for
(8.24)). And the maximal solution is x; =1 if and only if ¥ ;< ,p;; = 1 for all ¢
in U, which makes probabilistic sense.

Example 8.10. For the random walk on the line consider the set U=
(0,1,2,...}). The System (8.26) is

X;=pXigtaqxi_y, 121,

Xo=Dxy.

It follows [A19] that x, =A +An if p=q and x, =A — A(q/p)"*' if p#gq.
The only bounded solution is x, =0 if ¢ >p, and in this case there is
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probability 0 of staying forever among the nonnegative integers. If g <p,
A =1 gives the maximal solution x,=1-(g/p)"*! (and 0<A4 <1 gives
exactly the solutions that are not maximal). Compare (7.8) and Example 8.9.

[ |

Now consider the system (8.26) with U =§ —~ {i,} for an arbitrary single
state I,:

X, = E Dii%,, L# 1y,
(8.27) J#éy
0<x; <1, [+

There is always the trivial solution—the one for which x; = 0.

Theorem 8.5. An irreducible chain is transient if and only if (8.27) has a
nontrivial solution.

Proor. The probabilities
(8.28) 1=fu.=PlX,#i5,n2>1], i+,

are by Theorem 8.4 the maximal solution of (8.27). Therefore (8.27) has a
nontrivial solution if and only if f; <1 for some i+, If the chain is
persistent, this is impossible by Theorem 8.3(ii).

Suppose the chain is transient. Since

figo= P Xi=igl+ ¥ L P[Xy =i, X, #ig,..., X,_y #ig, X, =i{]
n=2i#*i,

::pl'gl'o + Z pfuifl'l'ﬁ’

i#iy
and since f;; <1, it follows that f; <1 for some i # . |

Since the equations in (8.27) are homogeneous, the issue is whether they
have a solution that is nonnegative, nontrivial, and bounded. 1f they do,
0 <x, <1 can be arranged by rescaling.”

"See Problem 8.9.
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Example 8.11. In the simplest of queueing models the state space is
{0,1,2,...} and the transition matrix has the form

~—
o
o
Ay
[N}
o]
<
Lo B e T v B e

Lo
<
S
oy
o
~
~
n

------------------------

If there are i customers in the queue and i > 1, the customer at the head of

the queue is served and leaves, and then 0, 1, or 2 naw customers arrive

(probabilities 7, t;,t,), which leaves a queue of length i — 1, i, or { +1. If

{ = 0, no one is served, and the new customers bring the queue length to 0, 1,

or 2. Assume that ¢, and ¢, are positive, so that the chain is irreducible.
For iy = 0 the system (8.27) is

x,=tx, +i,x,,

8.29
(8.29) Xp=toXe_ +ttx,+tx,, 0, k=>?2.

Since tg, t,,t, have the form g(1—1t),t, p(1 —t) for appropriate p, g, ¢, the
second line of (8.29) has the form x, =px, ., +gx,_,, k>2. Now the
solution [A191is A + B(q/p)* =A + B(ty/t,)* if ty#t, (p+#q) and A+ Bk
if t,=t, (p=¢q), and A can be expressed in terms of B because of the first
equation in (8.29). The result is

. B((to/t;) = 1) if t5#1,,
k Bk iftoztz.

There is a nontrivial solution if ¢y, <t, but not if r, > ¢,.

If ¢4 <t,, the chain is thus transient, and the queue size goes to infinity
with proability 1. If ¢, > t,, the chain is persistent. For a nonempty queue the
expected increase in queue length in one step is t, — t,, and the queue goes
out of control if and only if this is positive. ]

Stationary Distributions

Suppose that the chain has initial probabilities =, satisfying

(8.30) Y mp,;=m, JES.

ics
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It then follows by induction that

(8.31) Y mp" =, jes, n=0,1,2,....

ies
If 7, is the probability that X, =i, then the left side of (8.31) is the
probability that X =j, and thus (8.30) implies that the probability of [ X, =]
is the same for all n. A set of probabilities satisfying (8.30) is for this reason
called a stationary distribution. The existence of such a distribution implies
that the chain is very stable.

To discuss this requires the notion of periodicity. The state j has period t
if p{" >0 implies that ¢ divides n and if ¢ is the largest integer with this
property. In other words, the period of j is the greatest common divisor of
the set of integers

(8.32) [n:n=1, p{P>0].

If the chain is irreducible, then for each pair / and j there exist r and s
for which p{;’ and p{ are positive, and of course

(833) pr(ir+s+n) Zpt'(;f)p.l(';')pjgf)'

Let ¢; and t; be the periods of i and j. Taking n =0 in this inequality shows
that ¢, divides r + s; and now it follows by the inequality that p{/’ > 0 implies
that ¢, divides r +s +n and hence divides n. Thus ¢; divides each integer in
the set (8.32), and so t; <t Since i and j can be interchanged in this
argument, { and j have the same period. One can thus speak of the period of
the chain itself in the irreducible case. The random walk on the line has
period 2, for example. If the period is 1, the chain is aperiodic

Lemma 2. In an irreducible, aperiodic chain, for each i and j, p{ > 0 for
all n exceeding some ny(i, J).

Proor. Since p{"*™ > p(™p(M if M is the set (8.32) then m € M and
n € M together imply m +n € M. But it is a fact of number theory [A21] that
if a set of positive integers is closed under addition and has greatest common
divisor 1, then it contains all integers exceeding some n,. Given i and j,
choose r so that pf> > 0.1f n > ny=n, +r, then p{” > p{p{f~" > 0. [

Theorem 8.6. Suppose of an irreducible, aperiodic chain that there exists a
stationary distribution—a solution of (8.30) satisfying m; >0 and L,m = 1.
Then the chain is persistent,

(8.34) lim p{f” =,

for all i and j, the m; are all positive, and the stationary distribution is unique.
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The main point of the conclusion is that the effect of the initial state wears
off. Whatever the actual initial distribution {«;} of the chain may be, if (8.34)
holds, then it follows by the M-test that the probability T;e; p of [ X, = /]
converges to ;.

Proor. If the chain is transient, then p,(}') — ( for all { and j by Theorem
8.3, and it follows by (8.31) and the M-test that 7; is identically 0, which
contradicts 2,7, =1. The existence of a stationary distribution therefore
implies that the chain is persistent.

Consider now a Markov chain with state space § XS and transition
probabilities p(ij, I} =p,, Pj (it is easy to verify that these form a stochastic
matrix). Call this the coupled chain; it describes the joint behavior of a pair of
independent systems, each evolving according to the laws of the original
Markov chain. By Theorem 8.1 there exists a Markov chain (X,,Y,), n =
0,1, ..., having positive initial probabilities and transition probabilities

P( X1 1, Yast) = (K D|(X,,Y,) = (6,0)] = p(ij, K).

For n exceeding some n, depending on I.j k,I/, the probability
pU™ij, k) = pii’p{" is positive by Lemma 2. Therefore, the coupled chain is
irreducible. (This proof that the coupled chain is irreducible requires only the
assumptions that the original chain is irreducible and aperiodic, a fact
needed again in the proof of Theorem 8.7.)

It is easy to check that 1T(ij)=1r,-1rj forms a set of stationary initial
probabilities for the ccupled chain, which, like the original one, must there-
fore be persistent. It follows that, for an arbitrary initial state (i, j) for the
chain {(X,,Y,)} and an arbitrary i, in §, one has P, [(X,,Y,)=(iy,i,)
i.0.]=1. If = is the smallest integer such that X_ =Y =1, then 7 is finite
with probability 1 under P;;. The idea of the proof is now this: X, starts in i
and Y, starts in j; once X, =Y, =1, occurs, X and Y, follow identical
probability laws, and hence the initial states { and j will lose their influence.

By (8.13) applied to the coupled chain, if m < n, then

P,-j[(X",Y)z(k,l),fr=m]
_Pu[(Xl’Y)i(lO’ 0) t<m, ( m? m :(ioﬁiO)]
X f(,lﬂ[( n—m? n—m)z(kﬂl)]

(n—m)_(n— m)

=Py[r=m]p{ ™}

Adding out [ gives P, [ X, =k, r=m]=P [r=m] p{i=™, and adding out k
gives P [Y, =1, 7= ] Plr=mlp{~ ”’) Take k —l equate probabilities,
and add over m=1,... n:

Pl'j[Xn=vasn] =Pt'j[Y;t=k71-sn]‘
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From this follows

Pl X, =k]<PlX,=k v<n]+Pfr>n]
=P,j[Yn=k,‘rSn]+PU[T>n]
<P,Y,=k]+P,[r>n]

This and the same inequality with X and Y interchanged give

| P - | =Pl X, =k] - PLY,=k]|<P,[r>n].

IjL

Since 7 is finite with probability 1,

(8.35) hm] P —p|=0

(This proof of (8.35) goes through as long as the coupled chain is irreducible
and persistent— no assumptions on the original chain are needed. This fact
is used in the proof of the next theorem.) .

By 831), 7, — p’ = L (p{) — b)), and this goes to 0 by the M-test if
(8.35) holds. Thus lim p("’ = 1,. As this holds for each stationary distribu-
tion, there can be only one of them.

It remains to show that the ; are all strictly positive. Choose r and s so
that p{” and p§’ are positive. Letting n ~  in (8.33) shows that m; is
positive if ) is; since some m; 18 positive (they add to 1), all the 7, must be
positive. |

Example 8.12. For the queucing model in Example 3.11 the equations
(8.30) are
770 = Troto -+ Trlto,
Ty = 1Tot2 + 'ITltz + ’Jthl +7T3t0,

Tp=T_qly+ Tty + 7 qte, k23

Again write ty,¢,,t,, as q(1 —t),t, p(1 —t). Since the last equation here is
Ty =qm, .1 + DTy, the solution is

A+B(p/q) =A+B(t,/1) iftg#1t,,
A + Bk if t,=1t,

for k> 2. If t;<t, and L&, converges, then 7, = 0, and hence there is no
stationary distribution; but this is not new, because it was shown in Example
8.11 that the chain is transient in this case. If t,=t,, there is again no
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stationary distribution, and this is new because the chain was in Example 8.11
shown to be persistent in this case.

If t,>1t,, then L, converges, provided A = 0. Solving for 7, and 7, in
the first two equations of the system above gives 7y = Bt, and 7, = Bt,(1 -
tg)/ty. From L7, =1 it now follows that B = (¢, —¢,)/t,, and the 7, can
be written down explicitly. Since m, = B(t,/t,)* for k> 2, there is small
chance of a large queue length. [ |

If t,=1¢, in this queueing model, the chain is persistent (Example 8.11)
but has no stationary distribution (Example 8.12). The next theorem de-
scribes the asymptotic behavior of the p{ in this case.

Theorem 8.7. If an irreducible, aperiodic chain has no stationary distribu-
tion, then

(8.36) lim p{* =0
foralliandj.

If the chain is transient, (8.36) follows from Theorem 8.3. What is
interesting here is the persistent case.

Proor. By the argument in the proof of Theorem 8.6, the coupled chain
is irreducible. If it is transient, then £ ( p{”)* converges by Theorem 8.2, and
the conclusion follows.

Suppose, on the other hand, that the coupled chain is (irreducible and)
persistent. Then the stopping-time argument leading to (8.35) goes through
as before. If the pfj" do not all go to O, then there is an increasing sequence
(n,} of integers along which some p{ is bounded away from 0. By the
diagonal method [A14], it is possible by passing to a subsequence of {n,} to
ensure that each Pi(f") converges to a limit, which by (8.35) must be indepen-
dent of i. Therefore, there is a sequence {n_} such that lim p,.(j'") =1, exists
for all { and j, where t; is nonnegative for all j and positive for some j. If M
is a finite set of states, then ¥, ¢;=lim, ¥, p{™ <1, and hence 0 <
t=Y;t; <1 Now E, c p DE¥ps; <PV = T, pye P75 it is possible to pass
to the limit (x —» ) inside the first sum (if M is finite) and inside the second
sum (by the M-test), and hence X, ¢t py; < Ly pit; =1, Therefore,
Lyt Dy; <ty if one of these inequalities were strict, it would follow that
Yty = YLyt Py; < L;t;, which is impossible. Therefore ¥, ¢, p,; =1, for all
J, and the ratios m;=1;/t give a stationary distribution, contrary to the
hypothesis. ]

The limits in (8.34) and (8.36) can be described in terms of mean return
times. Let

o =]

(8.37) = 2 nfi;

n=1
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if the series diverges, write p; = . In the persistent case, this sum is to be
thought of as the average number of steps to first return to j, given that
X,=Jj'

Lemma 3. Suppose that j is persistent and that lim,, p{’ = u. Then u > 0 if
and only if p; <o, in which case u=1/p;.

Under the convention that 0 =1/, the case u =0 and p; = « is consis-
tent with the equation u =1/u,;.

Proor. For k>0 let p, =%, , f\"; the notation does not show the

dependence on j, which is fixed. Consider the double series
(1) 4. £2) L F3) .
i Y+
2 3
+f}'(j)+,f;'(1v')+

v 1]
+ -
The kth row sums to p, (k> 0) and the nth column sums to nf{” (n> 1),
and so {A27] the series in (8.37) converges if and only if T, p, does, in which
case

(8.38) =T o

Since j is persistent, the P-probability that the system does not hit j up to
time n is the probability that it hits j after time n, and this is p,. Therefore,

1-p"=P[X,*#j]
n—-1
=P[ X, #j,..., X, #J]+ 2 Pl Xk =], Xes1 #Jo-os Xy #J 1]
k=1
n-1

— k
=p.+ 2 P s
k=1

I — n n—1 1 0
_p”pj(j)-i-plpj('j )+ Tt +pn—ll’}j)+pnp_’l(1)'

Keep only the first &k + 1 terms on the right here, and let n — o; the result is
1>(py+ -~ +p,)u. Therefore u > 0 implies that £, p, converges, so that
;< oo

"Since in general there is no upper bound to the number of steps to first return, it is not a simple
random variable. It does come under the general theory in Chapter 4, and its expected value is
indeed y; (and (8 38) is just (5.29)), but for the present the interpretation of W ; 8s an average is
informal See Problem 23.11
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Write x,,, = p, pf' =% for 0 <k <n and x,, =0 for n <k. Then 0 <x,, <

p, and lim, x,, =p,u. If p; <o, theri L, p, converges and it follows by the
M-test that 1= X3_ox,, = Ly .opr. By (8.38), 1 =p,u, so that u >0 and

u=1/u,. |

The law of large numbers bears on the relation u =1/u; in the persistent
case. Let V, be the number of visits to state j up to time n. If the time from
one visit to the next is about w , then ¥, should be about n/pu;: V, /n=1/p ..
But (if X, =j) V,/n has expected value n~'Z} _, p{’, which goes to u under
the hypothesis of Lemma 3 [A30].

Consider an irreducible, aperiodic, persistent chain. There are two possi-
bilities. If there is a stationary distribution, then the limits (8.34) are positive,
and the chain is called positive persistent. It then follows by Lemma 3 that
p;<c and 7;=1/p, for all j. In this case, it is not actually necessary to
assume persistence, since this foilows from the existence of a stationary
distribution. On the other hand, if the chair has no stationary distribution,
then the limits (8.36) are all 0, and the chain is called rull persistent It then
follows by Lemma 3 that u; = o for all j. This, taken together with Theorem
8.3, provides a complete classification:

Theorem 8.8. For an irreducible, aperiodic chain there are three possibili-
ties:

(i) The chain is transient; then for all i and j, lim, p{’ =0 and in fact
P <o,
(ii) The chain is persistent but there exists no stationary distribution (the null
persistent case);, then for all i and j, p}f) goes to O but so slowly that
(iii) There exist stationary probabilities 7; and (hence) the chain is persistent
(the positive persistent case); then for all i and j, lim, p§}') =m;>0 and

Since the asymptotic properties of the p}j” are distinct in the three cases,
these asymptotic properties in fact characterize the three cases.

Example 8.13. Suppose that the states are 0,1,2,... and the transition
matrix is
rqo pg 0 O
q 0 p, O
q, 0 0 p,

-------------------

where p; and g; are positive. The state i represents the length of a success
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run, the conditional chance of a further success being p,. Clearly the chain is
irreducible and aperiodic.

A solution of the system (8.27) for testing for transience (with i, = 0) must

have the form x, =x, /p! * Di_,- Hence there is a bounded, nontrnvnal
solution, and the chain is transient, if and only if the limit « of p,--- p, is
positive. But the chance of no return to 0 (for initial state 0) in n steps is
clearly pg - - - p,_,; hence f,, =1 —a, which checks: the chain is persistent if
and only if o =0.

Every solution of the steady-state equations (8.30) has the form =, = 7, p,

- Py - Hence there is a stationary distribution if and only if ¥, p, - - - p,
converges; this is the positive persistent case. The null persistent case is that
in which py --- p, = 0 but £, p, - - - p, diverges (which happens, for exam-
ple, if g, = 1/k for k > 1).

Since the chance of no return to § in n steps is p,--- p,_,, in the
persistent case (8.38) gives wo= L3_9P, - Px—;- In the null persistent case
this checks with p,=9; in the positive persistent case it gives u,=
Y <oTi/ T = 1/m,, which again is consistent. |

Example 8.14. Since L; p{" =1, possibilities (i) and (ii) in Theorem 8.8
are impossible in the finite case: A finite, irreducible, aperiodic Markov chain
has a stationary distribution. [ |

Exponential Convergence*

In the finite case, p{/” converges to m; at an exponential rate:

Theorem 8.9. If the state space is finite and the chain is irreducible and
aperiodic, then there is a stationary distribution {m.}, and

(")—17|<Ap ,

where A >0 and 0 <p <1.

Proor." Let m{” =min,; p{” and M{™ = max; p{". By (8.10),

Vj -

n+1) _ . (n) 3 (n) _ ()
mit D = min Y pi, P\ > min > p, " =m{™,
1 4

v

M(n+l) = max Zpru (") S max Zp’v (ﬂ) — Adj(")‘

v

*This topic may be omitted.
'For other proofs, see Problems 8.18 and 8 27.
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Since obviously m{™ < M,

(8.39) 0<mP<m®P< - <MP<MV<1.

Suppose temporarily that all the p;; are positive. Let s be the number of
states and let 8 = min;; p;;. From L;p;; > s& follows 0 <& <s~". Fix states u

and v for the moment; let L' denote the summation over j in § satisfying
p,;2p,; and iet I denote summation over j satisfying p,; <p,;. Then

(8.40) E'( Dy; —po) + Z”( Dyj _puj) =1-1=0.

Since X'p,;+ L'p,; > sb.

(8.41) Z’(Puj_:'),,j)zl_ E”puj_Z,pLjSI_SS'
Apply (8.40) and then (8.41):

(n+1) _ +1) _ _ (n)
P D = ¥ (P~ Do) PR
1

< Z,( Dy, _pt:j)MIEN) + Z”( Pu; _p;,j)mfkn)
=Y. (pu; = p.;) (M —m{)

< (1—58)(M{™ — m{P).

Since u and v are arbitrary,

MY — D < (1 - 58) (M — ).

Therefore, M{™ — m{" < (1 —s8)". It follows by (8.39) that m!{™ and M{™
have a common limit ; and that

(8.42) | i — | < (1-58)".

Take A=1 and p = 1 — sé. Passing to the limit in I, p{"p;; = p{1* " shows

that the m; are stationary probabilities. (Note that the proof thus far makes
almost no use of the preceding theory.)

If the p,; are not all positive, apply Lemma 2: Since there are only finitely
many states, there exists an m such that p{™ > 0 for all i and ;. By the case
just treated, M™) —m{"" < p'. Take A =p~' and then replace p by pl/m.
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Example 8.15. Suppose that

- .
po p] e ps-—-l
p= ps—l pO Ps—z
_pl 203 Po |

The rows of P are the cyclic permutations of the first row: Py=D i j—i
reduced modulo s. Since the columns of P add to 1 as well as the rows, the
steady-state equations (8.30) have the solution 7, =s~'. If the p, are all
positive, the theorem implies that p{"’ converges to s~ at an exponential
rate. If X, Y,,Y,,... are independent random variables with range
(0,1,.. ,s — 1}, if each Y, has distribution {p,,...,p,_,}, and if X, =
X, +Y, + --- +Y,, where the sum is reduced modulo s, then P[ X, =j] -
s~'. The X, describe a random walk on a circle of points, and whatever the
initial distribution, the positions become equally likely in the limit, [ |

Optimal Stopping*

Assume throughout the rest of the section that S is finite. Consider a function
7 on ( for which r(w) is a nonnegative integer for each w. Let & =
o(Xy, Xy,.-., X,); 7 is a stopping time or a Markov time if

(8.43) [0:7(w) =n] € &

for n=20,1,.... This is analogous to the ccndition (7.18) on the gambler’s
stopping time. It will be necessary to allow v(w) to assume the special value
o, but only on a set of probability 0. This has no effect on the requirement
(8.43), which concerns finite # only.

If f is a real function on the state space, then f(X,), f(X,),... are simple
random variables. Imagine an observer who follows the successive states
Xy, X;,... of the systern. He stops at time r, when the state is X, (or
X, o\@)), and receives an reward or payoff f(X,). The condition (8.43)
prevents prevision on the part of the observer. This is a kind of game, the
stopping time is a strategy, and the problem is to find a strategy that
maximizes the expected payoff E[f(X_)]. The problem in Example 8.5 had
this form; there § ={1,2,...,7 + 1}, and the payoff function is f(i)=1i/r for
I<r(set f(r+1)=0).

If P(A)>0and Y = ):jyjIB}_ is a sirnple random variable, the B; forming a
finite decomposition of () into F%sets, the conditional expected value of Y

*This topic may be omitted.
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given A is defined by

E[Y|A] = Ly;P(B]4).

Denote by E; conditional expected values for the case 4 =[X =]

E[Y]=E[Y|X,=i] = EyjPi(Bj-).

;

The stopping-time problem is to choose = so as to maximize simultaneously
EJ[ f(X )] for all initial states i. If x lies in the range of f, which is finite, and
if 7 is everywhere finite, then [w:f(X, ,(w))=x]= U5 ilw:(w)=nr,
f(X (w)) =x] lies in &, and so f(X) is a simple random variable. In order
that this always hold, put f(X,,(@)) =0, say, if r(w) = (which happens
only on a set of probability 0).

The game with payoff function f has at i the value

(8.44) v(i) = sup E;| f(X,)],

the supremum extending over all Markov times 7. It will turn out that the
supremum here is achieved: there always exists an optimal stopping time. It
will also turn out that there is an optimal r that works for all initial states .
The problem is to calculate v(i) and find the best 7. If the chain is
irreducible, the system must pass through every state, and the best strategy is
obviously to wait until the system enters a state for which f is maximal. This
describes an optimal r, and v(i)=max f for all i. For this reason the
interesting cases are those in which some states are transient and others are
absorbing (p; = 1).
A function ¢ on § is excessive or superharmonic, if

(8.45) o(i) = Lpye(i), €S

In terms of conditional expectation the requirement is ¢(i) > Elo(X,)].
Lemma 4. The value function v is excessive.

Proor. Given ¢, choose for each j in § a “good” stopping time 7;
satisfying E{f(X, > 0(j) —e. By (8.43), [r;=nl=[(X,,...,X,)EL,] for
some set [;, of (n “+ 1)-long sequences of states. Set = + 1 (n > 0) on the
set [X; =/1N[(X,,..., X, ) € L,]; that is, take one step and then from the
new state X, add on the “good” stopping time for that state. Then 7 is a

fCompare the conditions (7.28) and (7.35),
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stopping time and

E[f(X.)] ZZP[X =i (Xpse s X)) €Ly, Xy = k] f(K)

,n::

=§Z pupj[(x, LX) €, X, = k] f(k)

= L r,E| £(X.)].

Therefore, v(i} = E[f(X ) =L;p,(v(j)—e€}=1;p;v(J)—€. Since e was
arbitrary, v is excessive. ]

Lemma 5. Suppose that ¢ is excessive.

(i) For all stopping times =, (i) = E[p(X)].
(ii) For all pairs of stopping times satisfying o <1, E{o(X )] = EJe(X ).

Part (i) says that for an excessive payoff function, r =0 represents an
optimal strategy.

Proor. To prove (i), put 7y = min{r, N}. Then 7, is a stopping time,
and

N-1
(8.46) Ele(X,)] = ¥ EP[r=n, X, =kle(k)

n=0

+ Y P[r>N, X, = klo(k).
k

Since [r > N]=[r <NJ €F,_,, the final sum here is by (8.13)

> EP:'[TZNa Xy.1=J, Xy=k]e(k)
k j

= L Y PIr>N, Xy y=i]lppe(k) < LP[72N, Xy_, =j]e(J).

ko J i

Substituting this into (8.46) leads to E, [cp(X N<E; [cp(X )] Since 7, =0
and E[p(X )] = (i), it follows that E[(p(X N <o) for all N. But for
r(w) finite, o(X_ @) = (X, (@) (there is equallty for large N), and so
Ele(X, )] - Ele(X,)] by Theorem 5.4.
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The proof of (ii) is essentially the same. If 7,, = min{r, o + N}, then 7, is a
stopping time, and

o0

Elo(X, )] =¥ i YPlo=m,r=m+n, X,,,=kle(k)
m=0 n=0 k

+ Y Y Plo=m,r2m+N, X, . n=kie(k).
m=0 k

Since [c=m, r2m+N]=[oc=ml-[o=m, r<m+N]e &%, ,_,, again
Ele(X, N<Elo(X, N<Ele(X, )] Since 7y=0, part (i) follows from
part (i) by another passage to the limit. |

Lemma 6. If an excessive function ¢ dominates the payoff function f, then
it dominates the value function v as well.

By definition, to say that ¢ dominates h is to say that g(i) > 4(i) for all ..

Proor. By Lemma 5, ¢(i) > E[e(X )] = E[f(X,)] for all Markov times
7, and so ¢(i) = v(i) for all i. =

Since =0 is a stopping time, v dominates f. Lemmas 4 and 6 immedi-
ately characterize v:

Theoremn 8.10. The value function v is the minimal excessive function
dominating f.

There remains the problem of constructing the optimal strategy r. Let M
be the set of states i for which v(i) = f(i); M, the support set, is nonempty,
since it at least contains those i that maximize f. Let A= N5 _[X, €M]be
the event that the system never enters M. The following argument shows that
P A) =0 for each i. As this is trivial if M = S, assume that M # S. Choose
6 > 0sothat f(i) <v(i)—dforieS —M. Now E[ f(X)]=L;_ L Plr=n,
X, = klf(k); replacing the f(k) by v(k) or v(k) — & according as k €M or
keS—M gives E[f(X)]<E[v(X)]-68P[X,€S~-M]<E[v(X,)]-
8P(A) <v(i) — 8P(A), the last inequality by Lemmas 4 and 5. Since this
holds for every Markov time, taking the supremum over r gives P{A)= 0.
Whatever the initial state, the system is thus certain to enter the support
set M.

Let 7o(®@) = min[n: X,(w) € M] be the hitting time for M. Then 7, is a
Markov time, and 7, =0 if X, € M. It may be that X,(w) € M for all n, in
which case T4(w) = », but as just shown, the probability of this is 0.
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Theorem 8.11.  The hitting time 7, is optimal: E[ f(X, )] =v(i) for all i.
ProoOF. By the definition of 74, f(X, )=v(X, ). Put (i) = E[f(X )=

E[v(X, )] The first step is to show that ¢ is excessive. If 7, = mm[n
n>1, X € M|, then =, is a Markov time and

E[[U(X,l)]

Il

Y Y P[X,EM,... X, V€M, X, = k]u(k)
n=1LkeM

= E E Ep,-ij[XOGEM,...,X,,_ZGEM, Xn-lzk]v(k)
n=1keMjes

= ZP:';‘E}[”(XTO)]'

Since 7o < 7,, E[v(X, )= Efv(X, )] by Lemmas 4 and 5.

This shows that ¢ is excessive. And ¢(i) < v(i) by the definition (8.44). If
¢(i) = f(i) is proved, it will follow by Theorem 8.10 that ¢(i) > v(i) and
hence that ¢(i)=wv(i). Since r,=0 for X, €M, if ieM then (i) =
E[ f(X,) = f(i). Suppose that ¢(i) < f(i) for some values of i in § — M, and
choose iy to maximize f(i) — ¢(i). Then (i) = (i) + f(iy) —o(i,) dominates
f and is excessive, being the sum of a constant and an excessive function. By
Theorem 8.10, ¢ must dominate v, so that (i) > v(i,), or f(iy) = v(v,). But
this implies that i, € M, a contradiction [

The optimal strategy need not be unique. If f is constant, for example, all
strategies have the same value.

Example 8.16. For the symmetric random walk with absorbing barriers at
0 and r (Example 8.2) a tunction ¢ on §$={0,1,...,r} is excessive if
(i) =49 — 1)+ 1p(i + 1) for 1 <i <r — 1. The requirement is that ¢ give
a concave function when extended by linear interpolation from § to the
entire interval [0, r]. Hence v thus extended is the minimal concave function
dominating f. The figure shows the geometry: the ordinates of the dots are
the values of f and the polygonal line describes v. The optimal strategy is to
stop at a state for which the dot lies on the polygon.
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If f(r)=1and f(i)=0for i <r, then v is a straight line; v(i) =i/r. The
optimal Markov time 7, is the hitting time for M ={0,r}, and v(i) =
E,.[f(X,U)] is the probability of absorption in the state r. This gives another
solution of the gambler’s ruin problem for the symmetric case. [ |

Example 8.17. For the selection problem in Example 8.5, the p;, are given by (8.5)
and (8.6) for 1 <i<r, while p_, r+1= 1. The payoff is f(z)—z/r for i <r and
f(r + 1) =0. Thus v(r + 1) =0, and since v is excessive,

r

(8.47) v(i)zg(i)= )

j=i+1

) l<i<r.

By Theorem 8.10, v is the smallest function satisfying (8.47) and v(i) > f(i)=i/r,
1 <i <r. Since (8.47) puts no lower limit on v(r), it follows that v(r)=f(r)=1, and r
lies in the support set M. By minimality,

(8.48) v(i) =max{f(i), g (i)}, 1<i<r.

If i € M, then fu)— U(t)> g =T i G-D7 () = =f(Z (G - 17 1
hence L} i — l<1. On the other hand, if this inequality holds and i + 1,...,r
all lie in M then g(z) e TIG =17 lf(,') ST ,H(J D! <f@), so that
i € M by (8.48). Therefore, M={i,,i,+1,.. ,r,r+1}, where i, is determined by

(8.49)

LIS S PIE E Loy
R B 1= ST =1 r—1

If i <i,, so that i € M, then v(i) > f(i) and so, by (8.48),

i,—1 r

o(iy=g()= X v(j)+ E

J= 1+lj(j 1)

(7 1)f(f)

i—1

- ¥

;,+11(1 )(])+ (’il “+'i1)'

It follows by backward induction starting with i =i, — 1 that

. —1( 1 1
(8.50) o(iy=p,= " (r__lJ,...J,r_l)

is constant for 1 <i<i,.

In the selection problem as originally posed, X, = 1. The optimal strategy is to
stop with the first X, that lies in M. The princess should therefore reject the first
{,— 1 suitors and accept the next one who is preferable to all his predecessors (is
dominant). The probability of success is p, as given by (8.50). Failure can happen in
two ways. Perhaps the first dominant suitor after 7, is not the best of all suitors; in this
case the princess will be unaware of failure. Perhaps no dominant suitor comes after
i ; in this case the princess is obliged to take the last suitor of all and may be well

\
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aware of failure. Recall that the problem was to maximize the chance of getting the
best suitor of all rather than, say, the chance of getting a suitor in the top half.

If r is large, (8.49) essentially requires that log r — log i, be near 1, so that i, = r /e.
In this case, p, = 1 /e.

Note that although the system starts in state 1 in the original problem, its
resolution by means of the preceding theory requires consideration of all possible
initial states. [ |

This theory carries over in part to the case of infinite S, although this
requires the general theory of expected values, since f(X.) may not be a
simple random variable. Theorem 8.10 holds for infinite § if the payoff
function is nonnegative and the value function is finite." But then problems
arise: Optimal strategies may not exist, and the probability of hitting the
support set M may be less than 1. Even if this probability is 1, the strategy of
stopping on first entering M may be the worst one of all.?

PROBLEMS

8.1. Prove Theorem 8.1 for the case of finite § by constructing the appropriate
probability measure on seqtuience space S: Replace the summand on the right
in (221) by @, P, u, " Pu,_,u,»30nd extend the arguments preceding Theorem
23.1f X, (-)=2z2,(), then X, X,,. . is the appropriate Markov chain (here
time is shifted by 1).

8.2. Let Y,,Y,,... be independent and identically distributed with P[Y, =1]=p,
PlY,=0l=gq=1-p,p#q. Put X, =Y, +Y, ., (mod2). Show that Xy; X|,...
is not a Markov chaiu even though P[X, ., =jlX, ,=il=PlX, ,=]jl Does
this last relation hold for all Markov chains? Why?

8.3. Show by example that a function j(X,), f(X,),... of a Markov chain need not
be a Markov chain.

8.4. Show that

o0 [=4] n w0
fjj Z Pﬂ()= Z Z fifim)P}n_m) = Z pl(]n)’
k=0

n=1m=1 n=1

and prove that if j is transient, then I p{” < for each i (compare Theorem
8.3(1)). If j is transient, then

fi= X pf,’-”/(l + ) p},’-").
n=1

n=1

"The only esseniial change in the argument is that Fatou’s lemma (Theorem 16.3) must be used
in place of Theorem 5 4 in the proof of Lemma 5.
*See Problems 8 36 and 8.37
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B8.5.

8.6.

8.7.

8.3.

8.9.

8.10.

8.11.

8.12.

PROBABILITY

Specialize to the case i =j: in addition to implying that { is transient {Theorem
8.2(1)), a finite value for £7_, p{" suffices to determine f; exactly.

Call {x.;} a subsolution of (8.24) if x; < qu,-jxj and 0 <x, <1, i € U. Extending
Lemma 1, show that a subsolution {x;} satisfies x; <o;: The solution {o;} of
(8.24) dominates all subsolutions as well as all solutions. Show that if x; = 1.;q;;x,
and —1 <x, <1, then {|x;[} is a subsolution of (8.24).

Show by solving (8.27) that the unrestricted random walk on the line (Example
8.3) is persistent if and only if p = 3

(a) Generalize an argument in the proof of Theorem 8.5 to show that f;, =
Pix + L; <« Pi;f i« Generalize this further to

fu=f0+ -+

-+ Z Pl[Xl #:ki""Xn-l #:k’ Xn =J']f;k

j=k
{b) Take k=i. Show that f.>0 if and only if P[X,#i,. ., X, |#i,
X, =7J1>0 for some n, and conclude that / is transient if and only if f; <1 for
some j # { such that f;; > 0.
(¢} Show that an irreducible chain is transient if and only if for each / thereis a
J #i such that f; <1.

Suppose that $={0,1,2,...}, pgo=1, and f,, > 0 for all i,

(a) Show that P(U%_,[X, = io.])=0 for all i.

(b) Regard the state as the size of a population and interpret the conditions
Poo =1 and f;, > 0 and the conclusion in part (a).

8.51 Show for an irreducible chain that (8.27) has a nontrivial solution if and
only if there exists a nontrivial, bounded sequence {x;} (not necessarily nonnega-
tive) satisfying x; =X, p;;x;, i #i,. (See the remark following the proof of
Theorem 8.5.)

T Show that an irreducible chain is transient if and only if (for arbitrary i,)
the system y, = Xipi;y, {# g (sum over all j), has a bounded, nonconstant
solution {y,, i € §).

Show that the P-probabilities of ever leaving U for i€ U are the minimal
solution of the system.

&L= Z: pijzj+ E pij’ iEU,
(8.51) jel jeu
0<z;<1, ieU,

The constraint z; <1 can be dropped: the minimal solution automatically
satisfies it, since z; =1 is a solution.

Show that sup,; n#4(/, j) = ® is possible in Lemma 2.
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8.13.

8.14.

8.13.

8.16.

8.17.

8.18.

Suppose that {m;} solves (8.30), where it is assumed that T;l,| < =, so that the
left side is well deﬁned Show in the irreducible case that the ; are either all
positive or all negative or all 0. Stationary probabilities thus exist in the
irreducible case if and only if (8.30) has a nontrivial solution {m;} (T,
absolutely convergent).

Show by example that the coupled chain in the proof of Theorem 8.6 need not
be irreducible if the original chain is not aperiodic.

Suppose that § consists of all the integers and

Po~1=Poo=Po+1= 3
Pi k-1 Pru+1=D, k< -1,
Py k=1=P> Pri+1=4ds k>1.

Show that the chain is irreducible and aperiodic. For which p’s is the chain
persistent? For which p’s are there stationary probabilities?

Show that the period of j is the greatest common divisor of the set

(8.52) [r:n>1, f>0].

T Recurrent events. Let f|, f,,... be nonnegative numbers with f=1_,f <
1. Define u,,u,,... recursively by u, = f, and

(853) un=flun—l+ T +fn-lu'l+fn‘

(a) Show that f<1if and only if T _u, < o,
(b) Assume that f=1, set o =X7_,nf,, and assume that

(8.54) gedln:n>1, f,>0]=1.

Prove the renewal theorem. Under these assumptions, the iimit u=lim_u,
exists, and u > 0 if and only if u < «, in which case u=1/u.

Although these definitions and facts are stated in purely analytical terms,
they have a probabilistic interpretation: Imagine an event & that may occur at
times 1,2,.... Suppose f_ is the probability & occurs first at time n. Suppose
further that at each occurrence of & the system starts anew, so that f, is the
probability that ¢ next occurs n steps later. Such an & is called a recurrent
event. If u_ is the probability that & occurs at time n, then (8.53) holds. The
recurrent event & is called transient or persistent according as f< 1 or f=1, it
is called aperiodic if (8.54) holds, and if f=1, u is interpreted as the mean
recurrence time

(a) Let 7 be the smallest integer for which X_ =i,. Suppose that the state space
is finite and that the p;; are all posmve Find a p such that max (1 —pi)<p <1
and hence P[r>n] <p” for all i.

(b) Apply this to the coupled chain in the proof of Theorem 8.6: | p{” —~p("’| <
p". Now give a new proof of Theorem 8.9.
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8.19.

8.20.

8.22.

8.23.

8.24.

8.25.

8.26.

.Aset Cin S is closed if &

PROBABILITY

A thinker who owns r umbrellas wanders back and forth between home and
office, taking along an umbrella (if there is one at hand) in rain (probability p)
but not in shine (probability g). Let the state be the number of umbrellas at
hand, irrespective of whether the thinker is at home or at work. Set up the
transition matrix and find the stationary probabilities. Find the steady-state
probability of his getting wet, and show that five umbrellas will protect him at
the 5% level against any climate (any p).

(a) A transition matrix is doubly stochastic if ¥, p;, =1 for each ;. For a finite,
irreducible, aperiodic chain with doubly stochastic transition matrix, show that
the stationary probabilities are all equal.

(b) Generalize Example 8.15: Let S be a finite group, let p(i) be probabilities,
and put p;; =p(J-i~ 1), where product and inverse refer to the group operation.
Show that, if all p(i) are positive, the states are all equally likely in the limit.
(¢) Let S be the symmetric group on 52 ¢lements. What has (b) to say about
card shuffling?

ecPij=1 for i € C: once the system enters C it
cannot leave. Show that a chain is irreducible if and only if § has no proper
closed subset.

1 Let T be the set of transient states and define persistent states { and j (if
there are any) to be equivalent if f;;>0. Show that this is an equivalence
relation on § — T and decomposes it into equivalence classes C;,C,,..., so that
§=TUC UC,V -+ Show that each C,, is closed and that f;; =1 for i and j
in the same C,,,.

8.11 8.211 ° Let T be the set of transient states and let C be any closed set of
persistent states. Show that the P-probabilities of eventual absorption in C for
i € T are the minimal solution of

.V,f= Ep11y1+ Epjj: I.GT,
(8.55) jeT jec
0<y <1, ieT.

Suppose that an irreducible chain has period ¢ > 1. Show that § decomposes
into sets 8y,..., S, such that p;;>0 only if /€S, and j€S, ., for some v
(» + 1 reduced modulo ¢). Thus the system passes through the S, in cyclic
succession.

T Suppose that an irreducible chain of period ¢ > 1 has a stationary distribu-
tion {m;}. Show that, if i€ S, and j€S,, (v +a reduced modulo f), then
lim, p{f*** =, Show that lim, n~ "% _, p{™ =/t for all i and j.
Eigenvalues. Consider an irreducible, aperiodic chain with state space {1, .., s}.
Let ro=(my,...,m,) be (Example 8.14) the row vector of stationary probabili-
ties, and let ¢, be the column vector of 1’s; then ry and ¢, are left and right
eigenvectors of P for the eigenvalue A = 1.

(a) Suppose that r is a left eigenvector for the (possibly complex) eigenvalue A:
rP = Ar. Prove: If A =1, then r is a scalar multiple of ro (A =1 has geometric
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8.27.

8.28.

8.29.

8.30.

multiplicity 1). If A # 1, then |A|< 1 and rcy =0 (the 1 X 1 product of 1 X s and
s X 1 matrices).

(b) Suppose that ¢ is a right eigenvector: Pc =Ac. If A =1, then ¢ is a scalar
multiple of ¢, (again the geometric multiplicity is 1). If A # 1, then again {A| < 1,
and I‘OC - 0.

T Suppose P is diagonalizable; that is, suppose there is a nonsingular C such
that C~'PC = A, where A is a diagonal matrix. Let A,..., A, be the diagonal
elements of A, let c,...,c, be the successive columns of C, let R=C"!, and
let r,...,r, be the successive rows of R,

(a) Show that ¢; and r; are right and left eigenvectors for the eigenvalue A;,
i=1,...,s Show that r,c; =8, Let A, =c;r; (s X 5). Show that A" is a diagonal
matrix with diagonal elements A7,..., A7 andthatP"=CA"R=L; _,A"A, ,n> 1.
(b) Part (a) goes through under the sole assumption that P is a diagonalizable
matrix. Now assume also that it is an irreducible, aperiodic stochastic matrix,
and arrange the notation so that A, = 1. Show that each row of A, is the vector
(my,...,m,) of stationary probabilities. Since

N
(8.56) Pr=A4,+ Y A"A,

u=2

and [A, | <1 for 2 <u <, this proves exponential convergence once more.
(c) Write out (8.56) explicitly for the case s = 2.
(d) Find an irreducible, aperiodic stochastic matrix that is not diagonalizable.

T (a) Show that the eigenvalue A =1 has geometric multiplicity 1 if there is
only one closed, irreducible set of states; there may be transient states, in which
case the chain itself is not irreducible.

{b) Show, on the other hand, that if there is more than one closed, irreducible
set of states, then A =1 has geometric multiplicity exceeding 1.

(c) Suppose that there is only one closed, irreducible set of states. Show that
the chain has period exceeding 1 if and only if there is an eigenvalue other than
1 on the unit circle.

Suppose that {X,} is a Markov chain with state space §,and put Y, = (X, X__ ).
Let T be the set of pairs (7, j) such that p;;> 0 and show that {Y.} is a Markov
chain with state space T. Write down the transition probabilities. Show that, if
{X,} is irreducible and aperiodic, so is (Y,}. Show that, if =; are stationary
probabilities for {X,}, then =, p;; are stationary probabilities for {Y,}.

6.10 8.297 Suppose that the chain is finite, irreducible, and aperiodic and
that the initial probabilities are the stationary ones. Fix a state [, let A, =[X, =
{], and let N, be the number of passages through / in the first n steps. Calculate
a, and B, as defined by (5.41). Show that 8, — a2 = O(l1 /n), so that n”"N, —» m,
with probability 1. Show for a function f on the state space that n= 127 _, f(X,)
— X, f(i) with probability 1. Show that n~!'T?_,g(X,, X,, )~
E,-jw,-p,-jg(i,j) for functions g on S X §.
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8.31.

8.32.

8.33.

8.34,

PROBABILITY

6.14 8307 If Xy (w)=igy,..., X (w)=i, for states iy,...,i,, put p(w)=
T;, Diyi, " Pi._,i» 50 that p (e) is the probability of the observation observed.
Show that —n~'log pw)—>h=—L,mp;logp; with probability 1 if the
chain is finite, irreducible, and aperiodic. Extend to this case the notions of
source, entropy, and asymptotic equipartition.

A sequence {X,} is a Markov chain of second order if P[X,, , =j|X,=
g os Xy=i 1=PlX, ,  =]|X,_ =i, 1, X,=i]=p; . ; Show that noth-
ing really new is involved because the sequence of pairs (X,, X,,,) is an
ordinary Markov chain (of first order). Compare Problem 8.29. Generalize this
idea into chains of order r.

Consider a chain on $=1{0,1, .., r}, where 0 and r are absorbing states and
Piis1=Pi>0, pi; 1=q;=1—p;>0for 0 <i<r. Identify state i with a point
z; on the line, where 0 =z, < -+ <z, and the distance from z; to z;, | is q;/p;
times that from z; , to z;. Given a function ¢ on §, consider the associated
function ¢ on [0, z ]deﬁned at the z; by ¢{z,) = (i) and in between by linear
interpolation. Show that @ is excessive if and only if ¢ is concave. Show that
the probability of absorption in r for initial state ¢ is t;_,/t,_ |, where ;=

k=0d1 " * 4x/DP; - Pi- Deduce (7.7). Show that in the new scale the expected
distance moved on each step is 0.

Suppose that a finite chain is irreducible and aperiodic. Show by Theorem 8.9
that an excessive function must be constant.

8.35. A zero-one law. Let the state space S contain s points, and suppose that

€,= suP.,|P("’~ a.|— 0, as holds under the hypotheses of Theorem 8.9. For
a <b let f be the o-field generated by the sets [X, =u,,..., X, =u,}
Let 9" a(U 22 and = N%_,7,. Show that |P(A A B) -~ P(A)P(B)Is
s(e, +eb+,,) for A€y and BE L the ¢,,, can be suppressed if the
lmt.al probabilities are the stationary ones. Show that this holds for A ea’o
and B€ 9, ,. Show that C € & implies that P(C) is either 0 or 1.

8.36" Alter the chain in Example 8.13 so that g, = 1 — p, = 1 (the other p; and g; still

8.37.

positive). Let g =lim_ p, - - - p,, and assume that g8 > 0. Define a payoff func-
tion by f(0)=1 and f(i)=1-f, for i>0. If X,,...,X, are positive, put
= n; otherwise let o, be the smallest & such that X, =0. Show that
E[f(X )] = 1as n— w, so that v(i) = 1. Thus the support set is M = {0}, and
for an initial state i > 0 the probability of ever hitting M 1s f;; < 1.
For an arbitrary finite stopping time 7, choose n so that P[r <n=g¢]> 0.
Then E[f(X)]<1~fi,,oPlr<n=0,]<1. Thus no strategy achieves the
value v(i) (except of course for i = 0).

T Let the chain be as in the preceding problem, but assume that B=0, so
that f;, =1 for all i. Suppose that A,,A?_, . exceed land that A; -+ A, =A<
w; put f(0)=0 and f(G)=A; - A,_/D; """ For an arbltrary " (finite)
stopping time 7, the event [r = n] must have the form [(X,,..., X,) L] for
some set I, of (n + 1)-long sequences of states. Show that for each i there is at

"The final three problems in this section involve expected values for random variables with
infinite range.
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most one n >0 such that (i,i+1,...,i +n)el. If there is no such n, then
E[f(X )= 0. If there is one, then

E[f(X)]=Fl(Xo.. .. X,) = (t,....i+n)]f(i +n),

and hence the only possible values of E[f(X.)] are

0, f(i), pif(i+1)=f(@i)A,, DD fUF2Y=F()AA; ... .

Thus v(i) =f(D)A /A, --- A;_, for i > 1; no strategy this value. The support set
is M = {0}, and the hitting time 7, for M is finite, but E[f(X, )]=0.

8.38. 5.127 Consider an irreducible, aperiodic, positive persistent chain. Let 7; be
the smaliest n such that X, =j, and let m;; = E[7;]. Show that there is an r

such that p=P{X,#j,...,X,_#]j, X, —l]!S positive; from f{"*7 > pf\™ and

r—

m; <o, conclude that m;, < and m;; =Y, _oPlr,>n] Starting from p(”—

! (s) (1 s)
s=11ip;, show that

n

(s =of) =1~ L sfp L m)
n =

r=1

Use the M-test to show that

If i =), this gives m;; =1 /7; again; if i #j, it shows how in principle m;; can be
calculated from the transition matrix and the stationary probabilities.

SECTION 9. LARGE DEVIATIONS AND THE LAW
OF THE ITERATED LOGARITHM"*

It is interesting in connection with the strong law of large numbers to
estimate the rate at which S, /n converges to the mean m. The proof of the
strong law used upper bounds for the probabilities P[|S, —m|=> a] for large
«. Accurate upper and lower bounds for these probabilities will lead to
the law of the iterated logarithm, a theorem giving very precise rates for
S./n—m.

The first concern will be to estimate the probability of large deviations
from the mean, which will require the method of moment generating func-
tions. The estimates will be applied first to a problem in statistics and then to
the law of the iterated logarithm.

*This section may be omitted .
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Moment Generating Functions

Let X be a simple random variable asssuming the distinct values x,,..., x,
with respective probabilities p,,..., p,. Its moment generating function is

(9.1) M(t) =E[eX] = Y pe=.

(See (5.19) for expected values of functions of random variables.) This
function, defined for all real ¢, can be regarded as associated with X itself or
as associated with its distribution—that is, with the measure on the line
having mass p; at x; (see (5.12)).

If ¢=max,|x,[, the partial sums of the series e'* = X5_, t¥X"*/k! are
bounded by "', and so the corollary to Theorem 5.4 applies:

(9.2) M(t) = i ,i—';E[Xk].
k-0

Thus M(¢) has a Taylor expansion, and as follows from the general theory
[A29], the coefficient of #* must be M *XQ)/k! Thus

(9.3) E[X*] = M%(0).

Furthermore, term-by-term differentiation in (9.1) gives

l
M® ()= 3 pxke=E[ X*'¥];

i=1

taking r = 0 here gives (9.3) again. Thus the moments of X can be calculated
by successive differentiation, whence M(¢) gets its name. Note that M(0)=1.

Example 9.1. 1f X assumes the values 1 and 0 with probabilities p and
g =1—p, as in Bernoulli trials, its moment generating function is M(¢) =
pe' +q. The first two moments are M'(Q)=p and M”"(0)=p, and the
variance is p — p? = pq. ]

If X,,..., X, are independent, then for each ¢ (see the argument follow-
ing (5.10)), e'*1,..., e"*~ are also independent. Let M and M,,..., M, be the
respective moment generating functions of S=X,+ --- +X, and of
Xpse.-r X, of course, e'S =TT.e'*. Since by (5.25) expected values multiply
for independent random variables, there results the fundamental relation

(9.4) M(t) =M(1) - M,(1).
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This is an effective way of calculating the moment generating function of
the sum S. The real interest, however, centers on the distribution of S, and
so it is important to know that distributions can in principle be recovered
from their moment generating functions.

Consider along with (9.1) another finite exponential sum N(z)=¥;q;e’
and suppose that M(¢)= N(¢) for all ¢. If X;, = max x; and y; = max y,, then
M(t) ~ p; e'*o and N(t) ~q; e"io as t > o, and 50 X; = ¥, and p;,=4a;, The
same argument now applies to X, ., p;e" =X, ; q;e o'V and it follows induc-
tively that with appropriate relabeling, X; =Y and p; =q; for each i. Thus
the function (9.1) does uniquely determine the x; and p;.

Example 9.2. 1If X,,..., X, are independent, cach assuming values 1 and
0 with probabilities p and g, then S=X,+ -+ +X, is the number of

successes in # Bernoulli trials. By (9.4) and Example 9.1, S has the moment
generating function

Ele] - (e v - £ ()it

The right-hand form shows this to be the moment generating function of a
distribution with mass ( )p"q" k at the integer k, 0 < k < n. The uniqueness

just established therefore yields the standard fact that P[S = k] = ( )p" n-k
|

The cumulant generating function of X (or of its distribution) is
(9.5) C(t) =log M(t) =log E[e'¥].

(Note that M(r) is strictly positive.) Since C'=M'/M and C"=(MM" -
(M")*) /M2, and since M(0) =1,

(9.6) "C(0)=0, C'(0)=E[X], C"(0)=Var[X].

Let m, = E[X*]. The leading term in (9.2) is my=1, and so a formal
expansion of the logarithm in (9.5) gives

(°7) e - £ (£ e

Since M(t) — 1 as ¢ — 0, this expression is valid for ¢ in some neighborhood
of 0. By the theory of series, the powers on the right can be expanded and
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terms with a common factor ¢° collected together. This gives an expansion

c

(9.8) C(t) = X 71,
i=1

valid in some neighborhood of 0.

The c; are the cumulants of X. Equating coefficients in the expansions
(9.7) and (9.8) leads to ¢, =m, and ¢, =m, —m;, which checks with (9.6).
Each ¢; can be expressed as a polynomial in m|,...,m; and conversely,
although the calculations soon become tedious. If E[ X]= 0, however, so that
m, =c, =0, it is not hard to check that

(6.9) €3 =M, c,=m,—3m3.

Taking logarithms converts the multiplicative relation (9.4) into the addi-
tive relation

(9.10) C(r)y=C\(t) + - +C. (1)

for the corresponding cumulant generating functions; it is valid in the
presence of independence. By this and the defirition (9.8), it follows that
cumulants add for independent random variables.

Clearly, M"(t) = E[X%'X]> 0. Since (M'(¢))? = E} Xe'X] < E[e'¥] -
E[X?%'*]=M(:)M"(t) by Schwarz’s inequality (5.36), C"(¢) > 0. Thus the
moment generating function and the cumulant generating function are both
convex.

Large Deviations

Let ¥ be a simple random variable assuming values y; with probabilities p.
The problem is to estimate P[Y > a] when Y has mean 0 and « is positive. It
iS notationally convenient to subtract a away from Y and instead estimate
P[Y > 0] when Y has negative mean.

Assume then that

(9.11) E[Y] <0, P[Y>0]>0,

the second assumption to avoid trivialities. Let M(r)=1Y;p,e'” be the
moment generating function of Y. Then M’'(0) <0 by the first assumption in

b= ——

=t
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(9.11), and M(¢) — « as ¢t — » by the second. Since M(¢) is convex, it has its
minimum p at a positive argument 7:

(9.12) inf M(¢t)=M(r)=p, 0<p<l, 7>0.
{

Construct (on an entirely irrelevant probability space) an auxiliary random
variable Z such that

€

TY;
P[Y=y]

(9.13) P[Z=y] =~

for each y; in the range of Y. Note that the probabilities on the right do add
to 1. The moment generating function of Z is

7Yj M{r+t
(914) E[elz] = Z "e—l{,-ely"“—‘ L):
P p
and therefore
MI Mﬂ
(9.15) E[Z]= ,[ET) -0, s*=E[Z?]= TET)” > 0.

For all positive ¢, P[Y>0]=P[e'Y > 1] < M(¢t) by Markov’s inequality
(5.31), and hence

(9.16) P[Y=>0] <p.

Inequalities in the other direction are harder to obiain. If ¥’ denotes
summation over those indices j for which y; > 0, then

(9.17) P[Y20]=3 p;=p). e ™P[Z=y].

Put the final sum here in the form e, and let p = P[Z > 0]. By (9.16), 6 > 0.
Since log x is concave, Jensen’s inequality (5.33) gives

—0 =log Z'e“”’f'p“'P[Z =y,] +logp
> Y. (~1y))p"'P[Z=y;] +log p
- Vi
=—7sp~ 1 ) ~P[Z=y,] +logp.
By (9.15) and Lyapounov’s inequality (5.37),

Y 2p[zy] < 1ElIZI < 2EV[ 2] 1.
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The last two inequalities give

(9.18) 0<6< ~log P[Z > 0].

__ T
P[Z > 0]
This proves the following result.
Theorem 9.1. Suppose that Y satisfies (9.11). Define p and 7 by (9.12), let
Z be a random variable with distribution (9.13}, and define s* by (9.15). Then
P[Y > 0] = pe?, where 0 satisfies (9.18).
To use (9.18) requires a lower bound for P[Z > 0l.

Theorem 9.2. IfE(Z]=0, E[Z?) =52, and E[Z*]=¢*> 0, then P[Z > 0]
> st /agt

Proor. Let Z¥"=Zl;.q and Z7= -ZI, .o Then Z* and Z~ are
nonnegative, Z =Z*—Z",7Z2=(Z*)* +(Z7)?, and

(9.19) s2=E|(z+)’] +E[(z7)Y].
let p=P[Z > 0]. By Schwarz’s inequality (5.36),
N2
E[(2*)"] =E[1z. 2]
SE'I/Z[I[ZZZO]]E;l,’2[24] =pl/2§2.
By Holder’s inequality (5.35) (for p =2 and ¢ =3)
a2 \2/3, oy 4/3
E[(z7y)] =E[(27)(27)""]
<E¥3[Z7] E1/3[(Z")4] <EP[Z7]£4.

Since E[Z]=0, another application of Holder’s inequality (for p=4 and
4 P
= 3) gives
3

E[Z-]|=E[Z*] ::E[ZI[ZZO]]
< El/4[Z4]E3/4[I[4Z/; 0]] =§p3/4.

Combining these three inequalities with (9.19) gives s% <p!/%? +
(§P3/4)2/3§4/3 _ 2p1/2§;2l a

TFor a related result, see Problem 25.19.
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Chernoff’s Theorem'

Theorem 9.3. Let X|, X,,... be independent, identically distributed simple
random variables satisfying E[ X,1<0 and P[X,> 01> 0, let M(¢t) be their
common moment generating function, and put p = inf, M(t). Then

(9.20) lim —!—log Pl[X,+ - +X,>0]=logp.

n— oo n

Proor. Put Y, =X, + - +X,. Then E[Y,]<0 and PlY,>0]2
P"[X,>0]>0, and so the hypotheses of Theorem 9 1 are satisfied. Define
p, and 7, by inf, M, (1) = M (7 ) =p,, where M, (¢) is the moment generating
function of Y . Since M, (¢) = M"(¢), it follows that p, = p" and 7, =7, where
M(7) =p.

Let Z, be the analogue for Y, of the Z described by (9.13). Its moment
generating function (see (9.14)) is M, (7 +1)/p" = (M(7 +t)/p)". This is also
the moment generating function of V; + -+ +V, for independent 1andom
variables V,...,V, each having moment generating function M(r +¢)/p.
Now each V, has (see (9.15)) mean 0 and some positive variance o? and
fourth moment ¢* independent of i. Since Z, must have the same moments
as V,+ -+ +V,, it has mean 0, variance s>=no?, and fourth moment
E=né* + 3n(n — 1)o* = O(n?) (see (6.2)). By Theorem 9.2, P[Z, >0]>
st/4¢1 > a for some positive a independent of n. By Theorem 9.1 then,
PlY, > 0]=p"¢ %, where 0«6, <7,5,a" ! —loga=ra"'ovn - log a. This

n— n-n

gives (9.20), and shows, in fact, that the rate of convergence is O(r~'/%). m

This result is important in the theory of statistical hypothesis testing. An informal
treatraent of the Bernoulli case will illustrate the connection.

Suppose S, =X, + - -- +X,,, where the X, are independent and assume the values
1 and O with probabilities p and q. Now P[S, > nal = P[L}_ (X, —a)=0), and
Chernoff’s theorem applies if p <a < 1. In this case M(t) = E[e" (1™ D] = e~ "9 pe' +
q). Minimizing this shows that the p of Chernoff’s theorem satisfies

-—logp=K(a,p)—“—-alog% +blog%,

where b =1 ~a. By (9.20), n ™! log P[S, > na]l » —K(a, p); express this as
(9.21) P[S, >na] =e mkK@p,

Suppose now that p is unknown and that there are two competing hypotheses
concerning its value, the hypothesis H; that p =p, and the hypothesis H, that

"This theorem is not needed for the law of the iterated logarithm, Theorem 9.5.
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p = p,, where p; <p,. Given the observed results X,. ., X, of n Bernoulli trials,
one decides in favor of H, if S, > na and in favor of H, if S, < na, where a is some
number satisfying p, <a <p,. The problem is to find an advantageous value for the
threshold a.

By (9.21),

(922) P[S,,?JlalHl] ze—nK(a,m)’

where the notation indicates that the probability is calculated for p =p,—that is,
under the assumption of . By symmeiry,

(9 23) P{S <nalH,]=e "k r2),

The left sides of (9.22) and (9 23) are the probabilities of erroneously deciding in favor
of H, when H, is, in fact, true and of erroneously deciding in favor of H, when H,
is, in fact, true—the probabilities describing the level and power of the test.

Suppose a 1s chosen so that K(a,p,;)=K(a,p,), which makes the two error
probabilities approximately equal. This constraint gives for a a linear equation with
solution

log(q:/4,)
leg( po/py) + log(4q,/4,)’

(9.24) a=a(p;,py)=

where g; =1 —p, The common error probability is approximately e ""K(.2) for this
value of a, and so the larger K(a, p,) is, the easier it is to distinguish statistically

between p,; and p,.
Although K(a(p,, p,), p,) is a complicated function, it has a simple approximation
for p; near p,. As x = 0, log{l +x)=x — 2x2 4+ 0(x?). Using this in the definition of

K and collecting terms gives

2

(9.25) K(p +x,p)=-2-’;—q +0(x%), x-0.

Fix p; =p, aud let p, =p + t; (9.24) becomes a function (2) of ¢, ané expanding the
logarithms gives

(9.26) y(t)y=p+3t+0(:*), 1-0,

after some reductions. Finally, (9.25) and (9.26) together imply that

t? 3

(9.27) K(w(1),p)= Spa +0(s%), -0,

In distinguishing p, =p from p, =p + ¢ for small ¢, if a is chosen to equalize the
two error probabilities, then their common value is about e~ /89, For ¢ fixed, the
nearer p is to %, the larger this probability is and the more difficult it is to distinguish
p from p +t. As an example, compare p=.1 with p=.5. Now .36ns°/8(1X.9) =
nt? /8(.5)(.5). With a sample only 36 percent as large, .1 can therefore be distin-
guished from .1+ ¢ with about the same precision as .5 can be distinguished from

S+t
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The Law of the Iterated Logarithm

The analysis of the rate at which S, /n approaches the mean depends on the
following variant of the thecrem on large deviations.

Theorem 94. Let S, =X, + -+ +X,, where the X, are independent and
identically distributed simple random variables with mean 0 and variance 1. If
a, are constants satisfying

0.28 a, —> o, no 0,
(9.28) '
then
(9.29) PlS,2a,n] =e i+

for a sequence {, going to 0.

Proor. PutY, =S, —a,/n =Xi_(X,~a,/Vn). Then E{Y,]1<0. Since
X, has mean 0 and variance 1, P[X,>0]>0, and it follows by (9.28)
that P[X,>a,/Vn]>0 for n sufficiently large, in which case P[Y, > 0] >
P"[X,—a,/Vn >01>0. Thus Theorem 9.1 applies to Y, for all large
enough #.

Let M (¢),p,,7,, and Z, be associated with Y, as in the theorem. if m(z)
and c(¢) are the moment and cumulant generating functions of the X, then
M (¢) is the nth power of the moment generating function e ~'?+/V"m(t) of
X, —a,/Vn, and so Y, has cumulant generating function

(9.30) C,(t)= —ta,Vn 4 nc(t).

Since 7, is the unique minimum of C,(¢), and since C/(¢) = —a,,\/; +
nc'(t), r, is determined by the equation ¢'(r,) =a,/Vn . Siice X, has mean
0 and variance 1, it follows by (9.6) that

(9.31) c(0) =c'(0)=0, c"(0)=1.

Now c’(t) is nondecreasing because c(r) is convex, and since ¢'(r,) = a,/Vn
goes to 0, 7, must therefore go to 0 as well and must in fact be O(a, /Vn).
By the second-order mean-value theorem for ¢'(¢),a,/Vn =c'(z,) =1, +
O(r}), from which follows

(9.32) \ r = ;; 0(%'%).
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By the third-order mean-value theorem for c(z),

log P, = Cn('rn) = _Tna"\/; + nC(‘rn)
= —‘rnan\/rT +n[%73+0(73)].

Applying (9.32) gives
(9.33) log p, = — 3a} + o(a;).

Now (see (9.14)) Z, has moment generating function M (7, +¢)/p, and
(see (9.30)) cumulant generating function D,(¢) = C, (7, +¢t) —logp,= — (1,
+ )a,Vn + nc(t +1,) — log o,. The mean of Z, is D/(0) = 0. Its variance 52
is D"(0); by (9.31), this is

(9.34) sz =nc"(1,) = n(c"(0) + O(r,)) =n(1 +0(1)).

"_

The fourth cumulant of Z, is D.(0) = nc"(r,) = O(n). By the formula (9.9)
relating moments and cumulants (applicable because E[Z, 1=0), E[Z}]=
3s* + D;"(0). Therefore, E[Z}1/s%— 3, and it follows by Theorem 9.2 that
there exists an a such that P[Z_ > 0] > a > 0 for all sufficiently large n.

By Theorem 9.1, P[Y,>0l=p e % with 0<0 <7,5,0" ' +loga. By
(9.28), (9.32), and (9.34), 6, = O(a,) = o(a?), and it follows by (9.33) that
P[Yn > O] =e—a,2,(l+o(l))/2. n

The law of the iterated logarithm is this:
Theorem 9.5. Let S,=X,+ --- +X,, where the X, are independent,

identically distributed simple random uvariables with mean 0 and variance 1.
Then

\)
(9.35) Pllim sup : =1]{=1.

» V2nloglogn

Equivalent to (9.35) is the assertion that for positive ¢

(9.36) P[S,> (1 +¢€)y2nloglognio =0
and

(9.37) P[S,, >(1-€)y2nloglogn i.o.] =1.

The set in (9.35) is, in fact, the intersection over positive rational e of the sets
in (9.37) minus the union over positive rational € of the sets in (9.36).
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The idea of the proof is this. Write

(9.38) ¢(n) =y2nloglogn.

lf Af =[S,> (1 £ e)p(n)], then by (9.29), P(A2*) is near (logn)~ " te’ If

« increases exponentlally, say n, ~ @* for 6 > 1, then P(AZ -) is of the order
k a*e’ Now L,k "+ converges if the sign is + and dlverges if the sign
is —. It will follow by the first Borel-Cantelli lemma that there is probability
0 that AT occurs for infinitely many k. In providing (9.36), an extra
argument is required to get around the fact that the A for n #n, must also
be accounted for (this requires choosing 6 near 1). If the A, were indepen-
dent, it would follow by the second Borel-Cantelli lemma that with probabil-
ity 1, A,,"k occurs for infinitely many k, which would in turn imply (9.37). An
extra argument is required to get around the fact that the A n, are dependent
(this requires choosing 6 large).

For the proof of (9.36) a preliminary result is necded. Put M, =
max{S,, S;,..., S,), where S, =0.

Theorem 9.6. If the X, are independent simple random variables with
mean 0 and variance 1, then for a > V2.

(9.39) P[ M,

i ]szp[jni > fz].

Proor. If 4;=[M,_, <a\/r7ij-], then

M, _
P[\/; > ]<P[T >a

% Sa—ﬁ]).

40

Since S, — §; has variance n — j, it follows by independence and Chebyshev’s
inequality that the probability in the sum is at most

1S, — ;| ) 1S, — S
P(A}-m{ v >t/§])—P(A,.)P{ I >\/5}
<P(4) 551 <1P(4;).
Since U /A, €M, > avn],
M, Sty — 1p| Ma
P[Wza]sP[ﬁza V2 +2P[‘/;,>_a]. ]
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Proor or (9.36). Given e, choose 6 so that 6 >1 but 82 <1 +e¢. Let
n,=10%) and x, = 6Q2loglog n,)'/% By (9.29) and (9.39),

P

yni: 2ka < 2exp[ ~3(x— \/5)2(1 +fk)]-

where £, — 0. The negative of the exponent is asymptotically 6% log k and
hence for large k exceeds 6 log k, so that

P M"" > x <£

Since 6> 1, it follows by the first Borel-Cantelli lemma that there is
probability O that (see (9.38))

(9.40) M, =6¢(n,)

for infinitely many k. Suppose that n, _, <n <n, and that

(9.41) S, > (1+e€)p(n).

Now ¢(n) > ¢(n,_,) ~ 8~ '/%¢(n,); hence, by the choice of 6, (1 + €)¢p(n) >
6d(n,) if k is large enough. Thus for sufficiently large &, (9.41) implies (9.40)

(if n,_; <n <n,), and there is therefore proability 0 that (9.41) holds for
infinitely inany . n

Procr ofF (9.37). Given ¢, choose an integer 6 so large that 36712 <e.
Take n, = 6*. Now n, — n,_, — «, and (9.29) applies with n =n, — n, _, and
@y =X /g —n._y, where x, =(1 — 6~ p(n,). It follows that

r
1
PlS,, =S, _ 2%| =P[Sn s, = %] =exp e "k : ——k __(1+¢&)],
where £, — 0. The negative of the exponent is asymptotically (1 — 6 Dlogk

and so for large k is less than log k, in which case P[S, - S, =zx,]1zk" L
The events here being mdependent 1t follows by the sccond Borel Cantelll
lemma that with probability 1, S, = x, for infinitely many k. On the
other hand, by (9.36) applied to ( X } thcrc is probability 1 that —-§, <
2¢(ny-) <26712p(n,) for all but ﬁmtely many k. These two mequalftlles
give S, >x,— 26" lﬁqb(n,() > (1 — €)¢(n,), the last inequality because of the

choice of 6. n

That completes the proof of Theorem 9.5.
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PROBLEMS

9.1. Prove (6.2) by using (9.9) and the fact that cumulants add in the presence of
independence.

9.2. In the Bernoulli case, (9.21) gives
xﬂ
P[S,=np +x,,lﬁ= exp[ ——nK(p + ~n—,p)(1 +o(1))] ,

where p <a <1 and x, = n(a —p). Theorem 9.4 gives

P[S, 2np+x ]= exp[ ~

where x, =a, ynpq . Resolve the apparent discrepancy. Use (9.25) to compare
the two expressions in case x,/r is small. See Problem 27.17.

9.3. Relabel the binomiai parameter p as 6 =f(p), where f is increasing and
continuously differentiable. Show by (9.27) that the distinguishability of 8 from
¢ + A6, as measured by K, is (A9)*/8p(1 — pX f'(p))* + O(A6)>. The leading

coeflicient is independent of € if f(p) = arcsin\fE.

9.4. From (9.35) and the same result for {—X,}, together with the uniform bounded-
ness of the X,, deduce that with probablllty 1 the set of limit points of the
sequence {5, (Zn loglog n)~1/%} is the closed interval from —1 to +1.

9.5. t Suppose X, takes the values +1 with probability 3 each, and show that
P[S, =0 i.0.] = 1. (This gives still another proof of the persistence of symmetric
random waik on the line (Example 8.6).) Show more generally that, if the X, are
bounded by M, then P[|S,| <M io.]=1.

9.6. Weakened versions of (9.36) are quite easy to prove. By a fourth-
moment argument (see (6.2)), show that P[S, > n*/(log n)(”"/“l 0.}=0. Use
(9.29) to give a simple proof that P[S, > (3n log 1 %0)=

9.7. Show that (9.35) is true if S,, is replaced by [S,| or max, _, S, or max, _ IS,



CHAPTER?2

Measure

SECTION 10. GENERAL MEASURES

Lebesgue measure on the unit interval was central to the ideas in Chapter 1.
Lebesgue measure on the entire real line is important in probability as well
as in analysis generally, and a uniform treatment of this and other examples
requires a notion of measure for which infinite values are possible. The
present chapter extends the ideas of Sections 2 and 3 to this more general
setting.

Classes of Sets

The o-field of Borel sets in (0, 1] played an essential role in Chapter 1, and it
is necessary to construct the analogous classes for the entire real line and for
k-dimensional Euclidean space.

Example 10.1. let x =(x,,...,x,) be the generic poini of Euclidean
k-space R*. The bounded rectangles

(10.1) [x=(x,..c,x)ra; <x;<b;,i=1,... k|

=D

will play in R* the role intervals (a, b] played in (0, 1]. Let £#* be the o-field
gencrated by these rectangles. This is the analogue of the class &
of Borel sets in (0,1]; see Example 2.6. The elements of %% are the k-
dimensional Borel sets. For k = 1 they are also called the linear Borel sets.
Call the rectangle (10.1) rational if the a, and b, are all rational. If G is an
open set in R* and y € G, then there is a rational rectangle A, such that
y€A,CG. But then G=U ,.sA4,, and since there are only countably
many rational rectangles, this is a countable union. Thus #* contains the
open sets. Since a closed set has open complement, 2% also contains the
closed sets. Just as & contains all the sets in (0,1] that actually arise in

158
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ordinary analysis and probability theory, Z* contains all the sets in R* that
actually arise.

The o-field #* is generated by subclasses other than the class of
rectangles. If A4, is the x-set where a; <x; <b,+n~1,i=1,... k, then A4, is
open and (10.1) is N, A,. Thus S* is generated by the open sets. Similarly, it
is generated by the closed sets. Now an open set is a countable union of
rational rectangles. Therefore, the (countable) class of rational rectangles
generates B, |

The o-field %' on the line R' is by definition generated by the finite
intervals. The o-field £ in (0,1] is generated by the subintervals of (0, 1]. The
question naturally arises whether the elements of & are the elements of '
that happen to lie inside (0, 1], and the answer is yes. If &7 is a class of sets in
a space () and ), is a subsct of , let XND=[ANQ;: 4 L]

Theorem 10.1. (i) If & is a o-field in Q, then FNQ, is a o-field in ).

(i) If of generates the o-field F in ), then /N O, generates the o-field
INQ, in @y o(ZN QY =a ()N Q,.

Proor. Of course (3 =0 NQ, lies in FNQ,. If B lies in FN Q,, so
that B=ANQ, foran A € &, then 0, —B=(Q-A)NQ, lies in FN Q,,.
If B, lies in &N, for all n, so that B, =A, N}, for an A, € &, then
U,B,=(U_,A4,) nQ, lies in N Q,. Hence part (i).

Let &, be the o-field &N (), generates in Q. Since N Q< FNQ,
and N Q, is a o-field by part (i), ¥, c FNQ,.

Now #N Q,c F will follow if it is shown that A € & implies AN §),
€ %,, or, to put it another way, if it is shown that & is contained in
F=[AcQ: AnQy € Fl Since 4 € &7 implies that A N Q, liesin ZNQ,
and hence in &N (], it follows that &/c #£. It is therefore enough to show
that & is a o-field in Q. Since 2N Q,=Q, lies in &, it follows that
Ned If A€#, then (1 -A)NQy=Q,- (AN Q) lies in F, and hence
N-Aef If A, & for all n, then (U ,A4,) N Q= U, (A4,N Q) lies in
F, and hence U A4, € &. |

and F= ', and if & is the class of finite intervals on the line, then &N
is the class of subintervals of (0,1], and & = a(ZN ) is given by

(10.2) B=[A4: Ac(0,1], A R').

A subset of (0,1] is thus a Borel set (lies in &) if and only if it is a linear
Borel set (lies in #'), and the distinction in terminology can be dropped.
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Conventions Involving o

Measures assume values in the set [0, ] consisting of the ordinary nonnegative reals
and the special value «, and some arithmetic conventions are called for.

For x,y €[0,%} x <y means that y = or else x and y are finite (that is, are
ordinary real numbers) and x <y holds in the usual sense. Similarly, x <y means that
y = and x is finite or else x and y are both finite and x <y holds in the usual
sense.

For a finite or infinite sequence x, x,, x,,... in [0, ],

(10.3) =YX
k

means that either (i) x = e and x, = « for some k, or (ii) x = and x;, < forall k
and L, x, is an ordinary divergent infinite series, or (iii) x < and x, < for all k
and (10.3) holds in the usual sense for ¥, x, an ordinary finite sum or convergent
infinite series. By these conventions and Dirichlet’s theorem [A26], the order of
summaticn in (10.3) has no effect on the sum.

For an infinite sequence x, x|, x5,... in [0, ],

(10.4) X, Tx

means in the first place that x, <x,,, <x and in the second place that either (i)
x <o and there is convergence in the usual sense, or (ii) x, =« for some k, or (iii)
x = and the x, are finite reals converging to infinity in the usual sense.

Measures

A set function x on a field & in  is a measure if it satisfies these
conditions:

(i) u(A)e[0,] for A = F;
(i) (@)= 0;
(iii) if A,, A,,... is a disjoint sequence of Fsets and if U%_,4, € &,
then (see (10.3))

m

,,(_OJ Ak) = i M(Ak)-

k=1

The measure p is finite or infinite as p(}) <w or u(l)=o0; it is a
probability measure if y(Q2) =1, as in Chapter 1.

If =A4,UA,U ... for some finite or countable sequence of %sets
satisfying u(A,) <o, then y is o-finite. The significance of this concept will
be seen later. A finite measure is by definition o-finite; a o-finite measure
may be finite or infinite. If &7 is a subclass of %, then u is o-finite on &7 if
Q= U, A, for some finite or infinite sequence of &fsets satisfying u(A4,) <
o, It is not required that these sets A4, be disjoint. Note that if () is not a
finite or countable union of sets, then no measure can be o-finite on &7, It
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is important to understand that o-finiteness is a joint property of the space
(), the measure w, and the class 7.

If 1 is a measure on a o-field & in (, the triple (), &, 1) is a measure
space. (This term is not used if % is merely a field.) It is an infinite, a
o-finite, a finite, or a probability measure space according as p has the
corresponding property. If u(A°) =0 for an Fset A, then A4 is a support of
w, and p is concentrated on A. For a finite measure, A is a support if and
only if u(A)=pu().

The pair (€, &) itself is a measurable space if F is a o-field in ). To say
that w is a measure on (£}, %) indicates clearly both the space and the class
of sets involved.

As in the case of probability measures, (iii) above is the condition of
countable additivity, and it implies finite additivity: If A,,..., A, are disjoint
F=sets, then

"

0 Ak) = i p(Ag)-
k=1 k=1

As in the case of probability measures, if this holds for # = 2, then it extends
inductively to all n.

Example 10.2. A measure p on (QQ, &) is discrete if there are finitely or
countably many points w; in 0 and masses m; in [0,] such that u(A)=
Lo,cam; for A€ . It is an infinite, a finite, or a probability measure as
L;m; diverges, or converges, or converges to 1; the last case was treated in
Example 2.9. If & contains each singleton {w}, then p is o-finite if and only
if m, <ooforall i [

Example 10.3. let & be the o-field of all subsets of an arbitrary (), and
let u(A) be the number of points in A, where u(A) =« if A is not finite.
This w is counting measure; it is finite if and only if () is finite, and is o-finite
if and only if £ is countable. Even if % does not contain every subset of (),
counting measure is well defined on &, [

Example 10.4. Specifying a measure includes specifying its domain. If u
iS a measure on a field & and %, is a field contained in %, then the
restriction u, of u to &, is also a measure. Although often denoted by the
same symbol, u, is really a different measure from g unless &, = Z. Its
properties may be different: If x is counting measure on the o-field & of all
subsets of a countably infinite (2, then p is o-finite, but its restriction to the
o-field &, = {J, (1} is not o-finite. [
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Certain properties of probability measures carry over immediately to the
general case. First, u is monotone: u(A)<u(B) if A cB. This is derived,
just like its special case (2.5), from u(A) + u(B —A)=pnu(B). But it is
possible to go on and write u(B —A)=u(B) —u(A) only if u(B) <, If
p(B) = and u(A) <o, then u(B — A)=x; but for every a €[0, =] there
are cases where u(A) = u(B) = © and u(B — A) = a. The inclusion-exclusion
formula (2.9) also carries over without change to =sets of finite measure:

(10.5)

Ln) Ak) ZM(A ) - Yu(4,nA)+

i<j

+(=1D)"u(4,n - n4,).

The proof of finite subadditivity also goes through just as before:

n

U Ak) = kglﬂ(Ak);

here the A, need not have finite measure.
Theorem 10.2. Let u be a measure on a field &

(i) Continuity from below: If A, and A lie in & and A, 1 A, then'
(AT u(A).
(ii) Continuity from above: If A, and A lie in F and A, | A, and if
u(A,) <o, then p(A,)} u(A).
(iit) Countable subadditivity: If A, A,,... and U%_, A, lie in &, then

#( O Ak) = i n(Ag).
k=1 k=1

(iv) If u is o-finite on F, then F cannot contain an uncountable, disjoint
collection of sets of positive u-measure.

Proor. The proofs of (i) and (iii) are exactly as for the corresponding
parts of Theorem 2.1. The same is essentially true of (ii): If u(A,) <o,
subtraction is possible and 4, — A4, 1 A, — A implies that u(A4,) — u(A4,) =
#(A[ _An)T PL(AI —A)= ,U'(Al) _LL(A).

There remains (iv). Let [B,: 6 € ®] be a disjoint collection of Fsets
satisfying p(B,) > 0. Consider an Fset A for which u(A4) <. If 6,,...,6,
are distinct indices satisfying (AN By) > €>0, then ne < Xf_;u(ANB,)
< u(A), and so n < u(A)/e. Thus the index set [6: u(A mBe) > €] is finite,

"See (10.4).
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and hence (take the union over positive rational €) [8: u(A NBy) > 0] is
countable. Since p is o-finite, } = U, A, for some finite or countable
sequence of Fsets A, satisfying u( A,) <. But then O, =[0: u( A, N B,)
> 0] is countable for each k. Since wu(B,) >0, there is a k& for which
(A, NBy)>0,and so ® = U,0,: O is indeed countable. m

Uniqueness

According to Theorem 3.3, probability measures agreeing on a m-system &
agree on o(&?). There is an extension to the general case.

Theorem 10.3.  Suppose that p, and p., are measures on o(), where &
is a mw-system, and suppose they are o-finite on &. If yu, and ., agree on &,
then they agree on o(&).

Proor. Suppose that B€ & and u(B)=p{B)<w, and let £ be
the class of sets A in o(&) for which u (BNA)=pu,(BNA). Then £, isa
A-system containing & and hence (Theorem 3.2) containing o ().

By o-finiteness there exist Hsets B, satisfying Q= U, B, and u,(B,) =
1o B,) < . By the inclusion-exclusion formula (10.5),

= L w(BinA) = X wu (B NBNA)+ -

I<i<n l<i<jzn

Ma(_g (B;NA)

for @ =1,2 and all n. Since & is a 7-system containing the B;, it contains
the B, N B;, and so on. For each o(P)-set A, the terms on the right above
are therefore the same for & = 1 as for o = 2. The lefi side is then the same
for & = 1 as for & = 2; letting n — o gives u(A) = u,( A). m

Theorem 10.4. Suppose p, and ., are finite measures on o(%), where &
is a m-system and () is a finite or countable union of sets in L. If p, and p,
agree on P, then they agree on o().

Proor. By hypothesis, 0= U, B, for HAsets B,, and of course
LB <u (Q)<w a=1,2. Thus u; and u, are o-finite on &, and
‘Theorem 10.3 applies. |

Example 10.5. 1f & consists of the empty set alone, then it is a 7-system
and o(&) = {, (1}. Any two finite measures agree on &, but of course they
need not agree on o(&). Theorem 10.4 does not apply in this case, because
(} is not a countable union of sets in &. For the same reason, 70 measure on
o(Z) is o-finite on &, and hence Theorem 10.3 does not apply. m
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Example 10.6. Suppose that (Q, F)=(R!, #!) and & consists of the
half-infinite intervals (—o, x]. By Theorem 10.4, two finite measures on %
that agree on & also agree on %. The Hsets of finite measure required in
the definition of o-finiteness cannot in this example be made disjoint. n

Example 10.7. If a measure on ({), %) is o-finite on a subfield %, of F,
then Q= U, B, for disjoint Fy-sets B, of finite measure: if they are not
disjoint, replace B, by B,N B --- N Bf_,. ]

The proof of Theorem 10.3 simplifies slightly if & = U, B, for disjoint
Asets with u(B,)=p,(B,) <x, because additivity itself can be used in
place of the inclusion-exclusion formula.

PROBLEMS

10.1. Show that if conditions (i) and (iii) in the definition of measure hold, and if
u{A) <« for some A € F, then condition (i) holds.

10.2. On the o-field of all subsets of Q={1,2,...} put uW{A)=X,c 275 if A is
finite and u(A) =« otherwise. Is « finitely additive? Countably additive?

10.3. (a) In connection with Theorem 10.2(ii), show that if 4, | A and u(A,) <
for some k, then (A, )| u(A).
(b) Find an example in which A_| A, u(A,)=w, and A =@.

10.4. The natural generalization of (4.9) is

(10.6) u(tim inf 4, ) <Jim inf u(4,)
n n
<lim sup u(A,) s,u(lim supAn).
n n

Show that the left-hand inequality always holds. Show that the right-hand
inequality holds if u(U, ., A,) < for some n but can fail otherwise,

10.5. 3.10 A measure space (£, &, ) is complete if ACB, B€ %, and u(B)=0
together imply that 4 € %—the definition is just as in the probability case. Use
the ideas of Problem 3.10 to construct a complete measure space (0, F*, u*)
such that ¥c %% and u and u* agree on &.

10.6. The condition in Theorem 10.2(iv) essentially characterizes o-finiteness.

(a) Suppose that (£, %, u) has no “infinite atoms,” in the sense that for every
Ain F,if u(A) =, then there is in & a B such that B A4 and 0 < u(B) < .
Show that if ¥ does not contain an uncountable, disjoint collection of sets of
positive measure, then u is o-finite. (Use Zorn’s lemma.)
(b) Show by example that this is false without the condition that there are no
“infinite atoms.”

10.7. Example 10.5 shows that Theorem 10.3 fails without the o-finiteness condition.
Construct other examples of this kind.
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SECTION 11. OUTER MEASURE

Quter Measure

An outer measure is a set function p* that is defined for all subsets of a space
) and has these four properties:

(i) p*(A) [0, =] for every A C (};
(i) p*(@)=0;
(ifi) w* is monotone: A C B implies u*(A) < u*(B);
(iv) u* is countably subadditive: u*(U, A4,) <L u*(A,).

The set function P* defined by (3.1) is an example, one which generalizes:

Example 11.1. et p be a set function on a class & in (). Assume that
@e o and p{@) =0, and that p(A)e[0,] for A€ ; p and & are
otherwise arbitrary. Put

(11.1) ur(A) = inf T p(A,),

where the infimum extends over all finite and countable coverings of A by
Hsets A_. If no such covering exists, take u*(A) = « in accordance with the
convention that the infimum over an empty set is co.

That u* satisfies (i), (i), and (iii) is clear. If u*(A,) = « for some n, then
obviously u*(U, A.) < T, u*(A4,). Otherwise, cover each A, by &sets B, ,
satisfying X, p(B,,) <up*(A4,) +€/27 then u*(U,A) <X, p(B,)<
Y, u*(A,) + e. Thus p* is an outer measure. =

Define A4 to be u*-measurable if
(11.2) p*(ANE) +u*(A°NE) =p*(E)

for every E. This is the general version of the definition (3.4) used in Section
3. By subadditivity it is equivalent to

(11.3) p*(ANE)+u*(A°NE) <p*(E).

Denote by .#(u*) the class of p*-measurable sets.

The extension property for probability measures in Theorem 3.1 was
proved by a sequence of lemmas the first three of which carry over directly to
the case of the general outer measure: If P* is replaced by u* and .# by
A#(u*) at each occurrence, the proofs hold word for word, symbol for symbol.
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In particular, an examination of the arguments shows that « as a possible
value for u* does not require any changes. Lemma 3 in Section 3 becomes
this:

Theorem 11.1. If u* is an outer measure, then A#(u*) is a o-field, and p*
restricted to #(u*) is a measure.

This will be used to prove an extension theorem, but it has other
applications as well.

Extension

Theorem 11.2. A measure on a field has an extension to the generated
o-field.

If the original measure on the field is o-finite, then it follows by Theorem
10.3 that the extension is unique.

Theorem 11.2 can be deduced from Theorem 11.1 by the arguments used
in the proof of Theorem 3.1.7 It is unnecessary to retrace the steps, however,
because the ideas will appear in stronger form in the proof of the next result,
which generalizes Theorem 11.2.

Define a class o7 of subsets of () to be a semiring if

(i) T e o
(ii) A, B € & implies ANB e &;
(ii) if A, B€ & and A CB, then there exist disjoint &sets Cy,...,C,
such that B—A4 = U;_,C,.

The class of finite intervals in = R! and the class of subintervals of
Q =(0,1] are the simplest examples of semirings. Note that a semiring need
not contain ().

Theorem 11.3. Suppose that p. is a set function on a semiring &/, Suppose
that p has values in [0,=], that u(&) =0, and that u is finitely additive and
countably subadditive. Then p extends to a measure on o(27).

This contains Theorem 11.2, because the conditions are all satisfied if &7
is a field and w is a measure on it. If = U, A, for a sequence of .%sets
satisfying u(A4,) <, then it follows by Theorem 10.3 that the extension is
unique.

TSee also Problem 11.1.
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Proor. If A, B, and the C, are related as in condition (iii) in the
definition of semiring, then by finite additivity u(B) = u(A) + i _,u(C,) >
pu(A). Thus u is monotone.

Define an outer measure p* by (11.1) for p = u:

(11.4) p*(A) =inf } u(A4,),

the infimum extending over coverings of A by &Zsets.

The first step is to show that &/c.#(u*). Suppose that A€ o/ If
p*(E) = o, then (11.3) holds trivially. If 4*(E} < o, for given € choose &sets
A, such that ECcU_A_and ¥, u(A,) <u*(E)+e. Since & is a semiring,
B,=ANA, lies in & and A°NA,=A,— B, has the form Uy=,C,, for
disjoint £fZsets C,,. Note that 4, =B U U=, C,,, where the union is
disjoint, and that ANEC U, B, and AANE CU_U7=,C,.. By the defini-
tion of u* and the assumed finite additivity of wu,

p(ANE) +p*(ANE) < Y u(B,)+ 1 kZ" 1(Coi)
n n =1

=2 u(A,) <p*(E) te.

Since € is arbitrary, (11.3) follows. Thus o/C.#Z(u*).

The next step is to show that u* and p agree on &7. If AC U, A, for
fsets A and A, then by the assumed countable subadditivity of x and the
monotonicity established above, u(A) <L u(ANA,)<X, u(A,). There-
fore, A€ & implies that u(A4) < u*(A) and hence, since the reverse in-
equality is an immediate consequence of (11.4), u(A)=u*(A). Thus p*
agrees with p on 7.

Since &/C.#(u*) and #(n*) is a o-field (Theorem 11.1),

ACa(L) CH(p) 2

Since w* is countably additive when restricted to .#(u*) (Theorem 11.1
again), u* further restricted to o(2/) is an extension of u on 27, as required.
|

Example 11.2. For & take the semiring of subintervals of Q=(0,1]
(together with the empty set). For u take length A: A(a, b] = b — a. The finite
additivity and countable subadditivity of A follow by Theorem 1.3.' By
Theorem 11.3, A extends to a measure on the class o( /) = @ of Borel sets
in (0, 1]. [

'On a field, countable additivity implies countable subadditivity, and A is in fact countably
additive on 27—but 27 is merely a semiring. Hence the separate consideration of additivity and
subadditivity; but see Problem 11.2.
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This gives a second construction of Lebesgue measure in the unit interval.
In the first construction A was extended first from the class of intervals to the
field &, of finite disjoint unions of intervals (see Theorem 2.2) and then by
Theorem 11.2 (in its special form Theorem 3.1) from %, to %= a(%)).
Using Theorem 11.3 instead of Theorem 11.2 effects a slight economy, since
the extension then goes from &7 directly to & without the intermediate stop
at @,, and the arguments involving (2.13) and (2.14) become unnecessary.

Example 11.3. In Theorem 11.3 take for &/ the semiring of finite inter-
vals on the real line R!, and consider Afa,bl=b —a. The arguments for
Theorem 1.3 in no way require that the (finite) intervals in question be
contained in (0, 1], and so A, is finitely additive and countably subadditive on
this class &7. Hence A, extends to the o-field %' of linear Borel sets, which
is by definition generated by &7. This defines Lebesgue measure A, over the
whole real line. |

A subset of (0,1] lies in & if and only if it lies in %! (see (10.2)). Now
A(A)=A(A) for subintervals A of (0.1], and it follows by uniqueness
(Theorem 3.3) that A (A)=A(A) for all A in &. Thus there is no inconsis-
tency in dropping A, and using A to denote Lebesgue measure on ! as well
as on %.

Example 11.4. The class of bounded rectangles in R* is a semiring, a fact
needed in the next section. Suppose that 4 =[x: x; €[, i<k]and B=[x:
x; €J;, i < k] are nonempty rectangles, the I; and J; being finite intervals. If
A CB, then I,CJ, so that J;,— I, is a disjoint union I] U/’ of intervals
(possibly empty). Consider the 3% disjoint rectangles [ x: x; €U, i <k], where
for each i, U; is I, or I/ or I;’. One of these rectangles is A itself, and B —A

is the union of the others. The rectangles thus form a semiring. |

An Approximation Theorem

If &7 is a semiring, then by Theorem 10.3 a measure on ¢(27) is determined
by its values on &7 if it is o-finite there. Theorem 11.4 shows more explicitly
how the measure of a o(&7)-set can be approximated by the measures of
Lfsets.

Lemma 1. If A, A,,..., A, are sets in a semiring &, then there are
disjoint &fsets Cy,...,C,. such that

ANAIN - NAL=C,U - UC,,.

Proor. The case n =1 follows from the definition of semiring applied to

ANA{=A-(ANA). If the result holds for n, then ANA{N -+ NAS,,
= U7Li(C;n 47, ); apply the case n =1 to each set in the union. |
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Theorem 11.4.  Suppose that &/ is a semiring, p. is a measure on F= (),
and p is o-finite on .

(i) If BE & and € >0, there exists a finite or infinite disjoint sequence
Ay, Ay, ... of fsets such that BC U, A, and p((U, 4,) - B) <e.

(i) If BE F and € >0, and if p(B) < o, then there exists a finite disjoint
sequence A, ..., A, of Asets such that u(Ba(U7_, A,)) <e.

Proor. Return to the proof of Theorem 11.3. If w* is the outer measure
defined by (11.4), then Fc.#(u*) and u* agrees with y on &7, as was
shown. Since p* restricted to & is a measure, it follows by Theorem 10.3
that p* agrees with u on & as well.

Suppose now that B lies in & and u(B) = u*{B) < . There exist Hsets
A, such that Bc U, 4, and w(U, A,) <X, u(A,) <u(B)+e; but then
p((U, A) — B) <e. To make the sequence {A4,} disjoint, replace 4, by
A, NATN === NAS_; by Lemma 1, each of these sets is a finite disjoint
union of sets in .

Next suppose that B lies in & and u(B)=pu*(B)= . By o-finiteness
there exist o#sets C,, such that Q= U _C,_ and u(C,,) <. By what has just
been shown, there exist ofsets A, , such that BNC,c U, A4, and
p(U, 4,.)—(BNC,)) <es/2™ The sets A_, taken all together provide a
sequence A, A,,... of fsets satisfying Bc U, A, and u((U, A,) — B) <e.
As before, the A, can be made disjoint.

To prove part (ii), consider the A, of part (i). If B has finite measure, so
has A= U, A,, and hence by continuity from above (Theorem 10.2(ii)),
(A - U, A <e for some r. But then p{Ba(U;_, 4,)) <2e m

If, for example, B is a linear Borel set of finite Lebesgue measure, then
ABa(Us.,4,)) <e¢ for some disjoint collection of finite intervals
Ay, A,

Corollary 1. If u is a finite measure on a o-field F generated by a field F,, then
for each F=set A and each positive € there is an Fyset B such that y(A s B) <e.

Proor. This is of course an immediate consequence of part (ii) of the theorem,
but there is a simple direct argument. Let & be the class of Fsets with the required
property. Since A°aB°=AaB, # is closed under complementation. If A= U, A4,,
where A, € 4, given € choose ny so that u(4— U, ., A,) <e, and then choose
Fysets B,, n<ng, so that u(A,sB,)<e/n,. Since (U, ., A2, , B)C
U, <n, (A, 2B,) the Fyset B=U, ., B, satisfies u(A 2 B) < 2e. Of course FC #;
since £ is a o-field, F¥C &, as required. |

Corollary 2. Suppose that &7 is a semiring, € is a countable union of sets, and
By o are measures on F=o (). If u(A)< u,(A) <w for A€, then u(B) <
#z(B) fOI‘ Be %#.
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Proor. Since u, is o-finite on &7, the theorem applies. If u,(B) <, choose
disjoint o#sets A, such that BC U, A, and L, u,(A,) <u,(B)+e Then p(B) <
Zk#l(Ak)S Zk,uz(Ak)<p,2(B)+E. |

A fact used in the next section:

Lemma 2. Suppose that n is a nonnegative and finitely additive set function on a
semiring &7, and let A, A,,. .., A, be sets in .

() If UL, A,CA and the A, are disjoint, then Y]_ u(A;) <ulA).
(i) IfAC UL A;, then p(A) <27 u(A).

PROOF For part (i), use Lemma 1 to choose disjoint £Zsets C, such that

A- Ui, Since u is finitely additive and nonnegative, it follows that
;L(A)— -_lu(A)+f_1u(C;>Z_lp.(A)
For (ii), take B, = A4 nA and Bi=ANA,NA{N - - NA;_ fori>1. ByLemma

1, each B; is a finite dlS]Olnt unicn of Msets C,;- Since the B, are disjoint,
A=U;B;=U,C;, and U,;C;;CA,, it foliows by finite additivity and part (i) that
w(A) = 5 5,0(C,3 < Tyl A,). =

Compare Theorem 1.3.

PROBLEMS

11.1. The proof of Theorem 3.1 obviously applies if the probability measure is
replaced by a finite measure, since this is only a matter of rescaling. Take as a
starting point then the fact that a finite measure on a field extends uniquely to
the generated o-field. By the following steps, prove Theorem 11.2—that is,
remove the assumption of finiteness.

(a) Let u be a measure (not necessarily even o-finite) on a field %, and let
F=0(F,). If A isa nonempty set in %, and u(A) <o, restrict u to a finite
measure u 4 on the field %, N A, and extend u, to a finite measure g, on the
o-field ¥N A generated in A by F;NA.

(b) Suppose that E € Z. If there exist disjoint F;-sets A, suchthat EC U, A4,
and u(A,) <o, put WE)=Y, 4, (ENA,) and prove con51stency Otherwise
put a(E) = o,

(c) Show that £ is a measure on % and agrees with u on %

11.2. Suppose that p is a nonnegative and finitely additive set function on a semi-
ring 7.

(a) Use Lemmas 1 and 2, without reference to Theorem 11.3, to show that g is
countably subadditive if and only if it is countably additive.

(b) Find an example where p is not countably subadditive.
11.3. Show that Theorem 11.4(ii) can fail if u(B)= oo

11.4. This and Problems 11.5, 16.12, 17.12, 17.13, and 17.14 lead to proofs of the
Daniell-Stone and Riesz representation theorems.
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11.5.

Let A be a real linear functional on a vector lattice .Z of (finite) real
functions on a space ). This means that if f and g lie in ., thensodo fvg
and f A g (with values max{f(e), g(w)} and min{f(w), g(w)}), aswell as a f + Bg,
and Alaf+Bg)=aA(f)+BA(g). Assume further of .2 that f& . implies
f A 1€ _# (where 1 denotes the function identically equal to 1). Assume further
of A that it is positive in the sense that f >0 (pointwise) implies A(f) >0 and
continuous from above at 0 in the sense that f, | 0 (pointwise) implies A(f,) — 0.

(a) If f<g (f, g €.2), define in @ X R' an “interval”

(11 5) (f g} =[(w.1): f(o) <t <g(w)]

Show that these sets form a semiring %7},.
(b) Define a set function v, on &, by

(11.6) vo(f. 8] =A(g~f)-
Show that v, is finitely additive and countably subadditive on 7.

t (a) Assume fe€_Z and let f =(n(f—fA 1)1l Show that
flw) <1 implies f(w)=0 for all n and f(w)>1 implies f(w)=1 for all
sufficiently large n. Conclude that for x > 0,

(11.7) 0, xf,] 1 [w. f(w)> 1] x(0, x].

(b) Let & be the smallest o-field with respect to which every f in . is
measurable: F=o[f'H: fe £, He ®']. Let %, be the class of A in F for
which A4 % (0, 1] € o(&7,). Show that %, is a semiring and that %= (%).
(c) Let v be the extension of v, (see (11.6)) to o(&}), and for A € F; define
po(A)=v(A x(0,1]). Show that u, is finiteiy additive and countably subaddi-
tive on the semiring %.

SECTION 12. MEASURES IN EUCLIDEAN SPACE

Lebesgue Measure

In Example 11.3 Lebesgue measure A was constructed on the class %' of
linear Borel sets. By Theorem 10.3, X is the only measure on %' satisfying
Ma,bl=b —a for all intervals. There is in k-space an analogous k-
dimensional Lebesgue measure A, on the class %% of k-dimensional Borel
sets (Example 10.1). It is specified by the requirement that bounded rectan-
gles have measure

k
(12.1) Afxia;<x;<b,i=1,..,k]l=T1(b:—a).

This is ordinary volume—that is, length (k = 1), area (k = 2), volume (k = 3),
or hypervolume (k > 4).
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Since an intersection of rectangles is again a rectangle, the uniqueness
theorem shows that (12.1) completely determines A,. That there does exist
such a measure on #* can be proved in several ways. One is to use the ideas
involved in the case k = 1. A second construction is given in Theorem 12.5. A
third, independent, construction uses the general theory of product mea-
sures; this is carried out in Section 18. For the moment, assume the
existence on #* of a measure A, satisfying (12.1). Of course, A, is o-finite.

A basic property of A, is translation invariance.*

Theorem 12.1. If A€ R* then A+x=[a+x. acAle R* and
A (A)=A (A +x) forall x.

Proor. If # is the class of A4 such that A + x is in #* for all x, then &
is a o-field containing the bounded rectangles, and so #> %" Thus A +x €
R+ for A€ F*

For fixed x define a measure y on #Z* by u(A)=A,(A4 + x). Then u and
A, agree on the w-system of bounded rectangles and so agree for all Borel
sets. |

If A is a (k — 1)-dimensional subspace and x lies outside A, the hyper-
planes A + tx for real r are disjoint, and by Theorem 12.1, all have the same
measure. Since only countably many disjoint sets can have positive measure
(Theorem 10.2(iv)), the measure common to the A + tx must be 0. Every
(k — 1)-dimensional hyperplane has k-dimensional Lebesgue measure 0.

The Lebesgue measure of a rectangle is its ordinary volume. The following
theorem makes it possible to calculate the measures of simple figures.

Theorem 12.2. If T: R* - R* is linear and nonsingular, then A € B*
implies that TA € #* and

(12.2) A(TA) =|det T|- A, (A).

Since a parallelepiped is the image of a rectangle under a linear transfor-
mation, (12.2) can be used to compute its volume. If T is a rotation or a
reflection—an orthogonal or a unitary transformation—then detT= +1,
and so A,(TA)=A,(A). Hence every rigid transformation or isometry (an
orthogonal transformation followed by a translation) preserves Lebesgue
measure. An affine transformation has the form Fx = Tx + x, (the general

TSee also Problems 17.14 and 20.4
*An analogous fact was used in the construction of a nonmeasurable set on p. 45



SECTION 12. MEASURES IN EUCLIDEAN SPACE 173

linear transformation T followed by a translation); it is nonsingular if T is. It
follows by Theorems 12.1 and 12.2 that A, (FA)=IdetT|-A,(A) in the
nonsingular case.

Proor oF THE THEOREM. Since TU, A, = U, TA, and TA®=(TA)
because of the assumed nonsingularity of T, the class &Z=[A4: TA € #*]is a
o-field. Since TA is open for open A, it follows again by the assumed
nonsingularity of T that & contains all the open sets and hence (Example
10.1) all the Borel sets. Therefore, 4 € Z* implies TA € Z*.

For A€ %", set u(A)=A(TA) and p,(A)=|det T|- A, (A). Then p,
and p, are measures, and by Theorem 10.3 they will agree on Z#* (which is
the assertion (12.2)) if they agree on the 7-system consisting of the rectangles
[x: a;<x;<b;,, i=1,..., k] for which the a, and the b; are all rational
(Example 10.1). It suffices therefore to prove (12.2) for rectangles with sidcs
of rational length. Since such a rectangle is a finite disjoint union of cubes
and A, is translation-invariant, it is enough to check (12.2) for cubes

(12.3) A=[x:0<x,<c,i=1,...,k]

that have their lower corner at the origin.

Now the general T can by elementary row and column operations’ be
represented as a product of linear transformations of these three special
forms:

(1°) T(xyyeeesx)=(x_,..., X ), where 7 is a permutation of the set
{1,2,...,k};

(2°) T(xpy. .oy x ) =Cax;, xy,..., 0 );

(3°) T(xypyeryx,)=(0x; + 25, 5,0, x,),

Because of the rule for multiplying determinants, it suffices to check (12.2)
for T of these three forms. And, as observed, for each such T it suffices to
consider cubes (12.3).

(1°): Such a T is a permutation matrix, and so det T= + 1. Since (12.3) is
invariant under T, (12.2) is in this case obvious.

(2°): Here detT=a, and TA =[x: x, €H, 0<x,<c, i=2,..., k], where
H=(0,aclif a>0, H={0} if =0 (although «a cannot in fact be 0 if T is
nonsingular), and H = [ac,0) if @ <0. In each case, A, (TA) =|a|c* =|al-
A (A).

'Birknorr & Mac Lang, Section 8.9
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Y

(3°): Here detT=1. Let B=[x:0<x,<c, i=3,...,k], where B=R* if
k <3, and define

B,=[x:0<x,<x,<c]NB,
B,=[x:0<x,<x,<c]NB,
By=[x:c<x,<c+x,,0<x;<c]NnB.

Then A =B,UB,, TA=B,UB,, and B, +(c,0,...,0) = B;. Since A,(B,) =
A,(B-) by translation invariance, (12.2) follows by additivity. [ |

if T is singular, then det T=0 and TA lies in a (k — 1)-dimensional subspace.
Since such a subspace has measure 0, (12.2) holds if 4 and TA lie in #*. The
surprising thing is that 4 € #* need not imply that T4 € #* if T is singular. Even
for a very simple transformation such as the projection T(x%,xz)-—*(xl,O) in the
plane, there exist Borel sets A for which TA is not a Borel set.

Regularity

Important among measures on #* are those assigning finite measure to
bounided sets. They share with A, the property of regularity:

Theorem 12.3. Suppose that u is a measure on R* such that u(A) < if
A is bounded.

(i) For A € #* and € >0, there exist a closed C an open G such that
CCACGand u(G—-C)<e.

(i) If u(A) <o, then p(A)=supu(K), the supremum extending over the
compact subsets K of A.

Proor. The second part of the theorem follows form the first: u(A4) <oo
implies that u(A4-—A,)<e for a bounded subset A, of A, and it then
follows from the first part that u(A,—K)<e for a closed and hence
compact subset K of A,

TSee HAUSDORFF, p. 241.
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To prove (i) consider first a bounded rectangle 4 =[x: a, <x,<b;, i <kl.
The set G, =[x: a,<x,<b,+n"',i<klisopenand G, | A.Since u(G,) is
finite by hypothesis, it follows by continuity from above that u(G, —A4) <e
for large n. A bounded rectangle can therefore be approximated from the
outside by open sets.

The rectangles form a semiring (Example 11.4). For an arbitrary set A4 in
#*, by Theorem 11.4(i) there exist bounded rectangles 4, such that 4 c
Ue A, and p((U, A,) —A) <e. Choose open sets G, such that A, CG,
and u(G, —A,) <e/2% Then G = U, G, is open and u(G — A4) < 2¢. Thus
the general k-dimensional Borel set can be approximated from the outside by
open sets. To approximate from the inside by closed sets, pass to comple-
ments. [

Specifying Measures on the Line

There are on the line many measures other than A that are important for
probability theory. There is a useful way to describe the collection of all
measures on %' that assign finite measure to each bounded set.

If p is such a measure, define a real function F by

w(0,x] if x>0,

2.4 F = ]
(12.4) (x) —u(x,0] if x<0.
It is because u(A) < for bounded A that F is a finite function. Clearly, F
is nondecreasing. Suppose that x, | x. If x > 0, apply part (ii) of Theorem
10.2, and if x <0, apply part (i); in either case, F(x,)} F(x) follows. Thus F
is continuous from the right. Finally,

(12.5) u(a,b] =F(b) - F(a)

for every bounded interval (a, b]. If 1 is Lebesgue measure, then (12.4) gives
F(x)=x.

The finite intervals form a w-system generating %!, and therefore by
Theorem 10.3 the function F completely determines p through the relation
(12.5)."But (12.5) and w do not determine F: if F(x) satisfies (12.5), then so
does F(x) + c¢. On the other hand, for a given p, (12.5) certainly determines
F to within such an additive constant.

For finite u, it is customary to standardize F by defining it not by (12.4)
but by

(12.6) F(x)=p(—»,x|;

then lim, , ., F(x)=0 and lim,_  F(x)=u(R"). If 1 is a probability
measure, F is called a distribution function (the adjective cumulative is
sometimes added).
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Measures p are often specified by means of the function F. The following
theorem ensures that to each F there does exist a u.

Theorem 12.4. If F is a nondecreasing, right-continuous real function on
the line, there exists on R' a unique measure y satisfying (12.5) for all a
and b.

As noted above, uniqueness is a simple consequence of Theorem 10.3. The
proof of existence is almost the same as the construction of Lebesgue
measure, the case F(x)=x. This proof is not carried through at this point,
because it is contained in a parallel, more general construction for k-
dimensional space in the next theorem. For a very simple argument establish-
ing Theorem 12.4, see the second proof of Theorem 14.1.

Specifying Measures in R*

The o-field #* of k-dimensional Borel sets is generated by the class of
bounded rectangles

(12.7) A=[x:a,<x,<b,i=1,.. . k]

(Example 10.1). If I, =(a,,b;], A has the form of a Cartesian product
(12.8) A=I X - X1,

Consider the sets of the special form

(12.9) S.=[y:yi<x,i=1,...,k);

S, consists of the points “southwest” of x = (x,,..., x,); in the case k=1 it
is the half-infinite interval (—o, x]. Now §, is closed, and (12.7) has the form

(12'10) A = S(bl bk) - [S(albz .-bk) v S(blGZ bk) VeV S(blbz ak)] )

Therefore, the class of sets (12.9) generates #*. This class is a 7-system.

The objective is to find a version of Theorem 12.4 for k-space. This will in
particular give k-dimensional Lebesgue measure. The first problem is to find
the analogue of (12.5).

A bounded rectangle (12.7) has 2% vertices—the points x =(x,,..., x,)
for which each «x; is either a; or b;. Let sgn 4 x, the signum of the vertex, be
+1 or —1, according as the number of i (1 <i < k) satisfying x; =4, is even
or odd. For a real function F on R, the difference of F around the vertices
of Ais A,F=Ysgn, x- F(x), the sum extending over the 2% vertices x of
A. In the case k=1, A =(a,b] and A F = F(b) — F(a). In the case k =2,
A F =F(b,,b,) — F(bj,a,) - Fla;,b,)+ F(a,, a,).
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Since the k-dimensional analogue of (12.4) is complicated, suppose at first
that w is a finite measure on &Z* and consider instead the analogue of (12.6),
namely

(12.11) F(x)=ply:y,<x,i=1,...,k].

Suppose that S, is defined by (12.9) and A is a bounded rectangle (12.7).
Then

(12.12) w(A)=AF.

To see this, apply to the union on the right in (12.10) the inclusion-exclusion
formula (10.5). The k sets in the union give 2% — 1 intersections, and these

are the sets S, for x ranging over the vertices of A4 other than (b,,...,b,).
Taking into account the signs in (10.5) leads to (12.12).

— +
- +1- +
+ ~|+ -
- + [~ ]
+ —|+ -
+ p—
Suppose x| x in the sense that x{™ | x, as n > w foreach i =1,...,k.

Then S, | S,, and hence F(x'”)— F(x) by Theorem 10.2(ii). In this sense,
F is continuous from abouve.

Theorem 12.5. Suppose that the real function F on R* is continuous from
above and satisfies A F >0 for bounded rectangles A. Then there exists a
urique measure p on KX satisfying (12.12) for bounded rectangles A.

The empty set can be taken as a bounded rectangle (12.7) for which a; = b,
for some i, and for such a set A, A F = 0. Thus (12.12) defines a finite-val-
ued set function p on the class of bounded rectangles. The point of the
theorem is that y extends uniquely to a measure on Z#*. The uniqueness is
an immediate consequence of Theorem 10.3, since the bounded rectangles
form a m-system generating Z*.

If F is bounded, then x will be a finite measure. But the theorem does not
require that F be bounded. The most important unbounded F is F(x) =x,
-+ x,. Here A ,F=(b, —a,) (b, ~a,) for A given by (12.7). This is the
ordinary volume of A as specified by (12.1). The corresponding measure
extended to #* is k-dimensional Lebesgue measure as described at the
beginning of this section.
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ProoF oF THEOREM 12.5. As already observed, the uniqueness of the extension
is easy tc prove. To prove its existence it will first be shown that u as defined by
(12.12) is finitely additive on the class of bounded rectangles. Suppose that each side
I, =(a;, b;] of a bounded rectangle (12.7) is partitioned intc r; subintervals J, =

(-t =1, ..,n;, where a; =ty <t;; < -+ <t;, =b,. The nyn, - n, rectan-
gles
(1213) B, ,=J X' Xy, 1<iisn,.,1<j<n,

then partition 4 Call such a partition regular. It will first be shown that u adds for
regular partitions:

(12.14) u(A) = E_“(BI. )

7

The right side of (i2.14) is X, sgng x * F(x), where the outer sum extends over
the rectangles B of the form (12.13) and the inner sum extends over the vertices x of

B. Now

(12.15) Y. Y sengx-F(x)= Y F(x)) sgngx,
B x X B

where on the right the cuter sum extends over each x that is a vertex of one or more
of the B’s, and for fixed x the inner sum extends over the B’s of which it is a vertex.
Suppose that x is a vertex of one or more of the B’s but is not a vertex of 4. Then
there must be an i such that x; is neither a; nor b,. There may be several such i, but
fix on one of them and suppose for notational convenience that it is i =1, Then
xy=1ty; with 0 <j <n, The rectangles (12.13) of which x is a vertex therefore come
in pairs B'=8B;; and B"=B;,., , and sgng x = —sgng. x. Thus the inner
sum cn the rrght in (12 15) is 0 if x 1s not a vertex of A.

On the other hand, if x is a vertex of A as well as of at least one B, then for each
i either x;,=a;=1, or x,=b, = t,, . In this case x is a vertex of only cne B of the
form (12. 13)—the one for which j, = 1 or j, = n;, according as x, =a,; or x;=b— and
sgng x = sgn , x. Thus the right side of (12.15) reduces to A ,F, which proves (12.14).

Now suppose that 4= UL, A,, where A is the bounded rectangle (12.8),
A, =1,%X X Iku for u=1,...,n, and the A, are disjeint, For each i (1 <i <k),
the intervals [,,..., I, have I, as thelr union, although they need not be dlS_]Olnt But
their endpomts spllt I, into dlSjOln[ subintervals Jy,...,J,, such that each [, is the
unicn of certain of the Jige The rectangles B of the form (12.13) are a regular
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partition of A, as before; furthermore, the B’s contained in a single A4, form a
regular partition of A,. Since the A, are disjcint, it follows by (12.14) that

p.(A)—):ﬂ-(B)— ): Y n(B)= E#(A ).

u=1 BCA, u=1

Therefore, u is finitely additive on the class £* of bounded k-dimensicnal rectan-

gles.

As shown in Example 114, £* is a scmiring, and so Theorem 11,3 applies. If
A Ay,..., A, are sets in Sk then by Lemma 2 of the preceding section,
(12.16) p(A) < Y pu(A4,) if Ac | A,

n=1 u=1

To apply Theorem 11.3 requires showing that u is ccuntably subadditive on 4.
Suppose then that A c US_, A,. where A and the A, are in £*, The problem is 1o
prove that

(12.17) p(A)< Y u(A4).

u=1

Suppose that € > 0. If A is given by (12.7) and B =[x"a,+ § <x; <b, i < k], then
#(B) > u( A) — € for small encugh pasitive &, because u is defined by (12.12) and F is
continucus from above. Note that A4 contains the closure B =[x: a;,+8 <x,<b,,
i <k] of B. Similarly, for each u there is in £ a set B, =[x: g, <x,5b,u +38,,
i <k]such that u(B,) <u(A4,)+¢/2" and A, is in the interior Bﬁ —[x a;, <x; <
b, +8, i<k]of B,

Since B‘CA < Us-1 AL C U, B, it follows by the Heine—Borel theorem that
BcB cU]. B, cU’.,B, for some n. Now (12.16) applies, and sc u(A)-e€ <

u(B) < Z,,__,,u(B,,) <Xn_jm(A,)+e€. Since e was arbitrary. the proof of (12.17) is
complete.

Thus u as defined by (12.12) is finitely additive and countably subadditive on the
semiring #*. By Theorem 11.3, u extends to a measure on #* = g (F*). m

Strange Euclidean Sets”

it is possible to construct in the plane a simple curve—the image of [0, 1] under a
continuous, one-to-one mapping—having positive area. This is surprising because the
curve is simple: if the continucus map is not required to be one-tc-one, the curve can
even fill a square.”

Such constructions are counterintuitive, but nothing like cne due te Banach and
Tarski: Two sets in Euclidean space are congruent if each can be carried onto the
other by an iscmetry, a rigid transformation. Suppcse of sets 4 and B in R* that 4
can be decomposed intc sets A,,...,A, and B can be decompocsed into sets
B,,...,B, in such a way that A, and B, are congruent for each i =1,...,n. In this
case A and B are said to be congruent by dissection. If all the pieces A4; and B; are

Borel sets, then of course A (A) = E'. (A (A,) =T A (B;) = A, (B). But if nonmea-

“This topic may be omitted.
'A Peano curve see Hausporrr, p 231 For the construction of simple curves of positive area,
see Grinaum & Qimstrn, pp. 135 ff,
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surable sets are allowed in the dissections, then semething astonishing happens: If
k >3, and if A and B are bounded sets in R* and have nonempty interiors, then A and B
are congruent by dissection. (The result does not hold if k is 1 or 2.)

This is the Banach-Tarski paradox. It is usually illustrated in 3-space this way: It is
possible to break a solid ball the size of a pea into finitely many pieces and then put
them back together again in such a way as to get a solid ball the size of the sun.!

PROBLEMS

12.1.

12.2.

12.3.

12.4.

Suppose that p is a measure on 2! that is finite for bounded sets and is
translaticn-invariant: u(A + x) =wu(A). Show that u(A4)=ar(A) for scme
a > 0. Extend to R*

Suppose that 4 € 2, AM(4) >0, and 0 < 6 < 1. Show that there is a bounded
cpen interval [ such that A(ANT)> 6A(]). Hint: Show that A(A) may be
assumed finite, and cheose an open G such that A € G and A(A) > 60A(G).
Now G = U, I, for disjcint open intervals I [Al2], and L A(ANT)>
6%, A(1); use an I,

T If A€ and A(A) > 0, then the origin is interior to the difference set
D(A)=[x—y: x,y€A]l. Hint Choose a bounded open interval [ as in
Problem 12.2 for @ = 2. Suppose that |z|< A(/)/2;since ANTand (AN +z
are contained in an interval of length less than 3A(/)/2 and hence cannot be
disjoint, z € D(A).

1 The fellowing construction leads to a subset H of the unit interval that is
ncnmeasurable in the extreme sense that its inner and outer Lebesgue mea-
sures are 0 and 1: A, (H)=0 and A*(H)=1 (see (3.9) and (3.10)). Complete
the details. The ideas are those in the construction of a nonmeasurable set at
the end of Section 3. It will be convenient tc work in G =[0,1); let & and ©
denote addition and subtraction module 1 in G, which is a group with iden-
tity 0.

(a) Fix an irrational  in G and for n=0,+ 1, +2,... let 4, be nd reduced
modulo 1. Show that 6, ®6,=6,,,.,6,©0, =46,__, and the 6, are distinct.
Show that {6,,: n=0,+1,...}and {8,,,,: n=0,+ 1,...} are dense in G.

(b) Take x and y to be equivalent if xSy liesin {6.: n=0, + 1,...}, which is
a subgroup. Let § contain one representative from each equivalence class
(each coset). Show that G = U, (S & 6,), where the union is disjeint. Put
H=U,(S®6,,) and show that G —H=H & 6.

(c) Suppose that A is a Borel set contained in H. If A(A) > 0, then D(A)
contains an interval (0, €); but then some 6, , lies in (0, ) .D(A) C D(H),
and s6 0y, ., =h, —h,=h, 0 h,=(s5,® 03,,)© (5,0 8,, ) for some Ay, h, in
H and seme s,,s, in §. Deduce that s, =s, and cbtain a contradiction.
Conclude that A ,(H) = 0.

(d) Show that A, (H® 6)=0 and A*(H) = 1.

See WaGoN for an account of these prodigies.
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12.5.

12.6.

12.7.

12.8.

12.9.

12.10.

12.11.

12.12.

T The construction here gives sets H, such that H 1 G and A,(H,)=0. If
J,=G—H, then J | D and A*(J,)= 1.

(a) Let H,=Uj_ _,(S®6,),s0that H, 1 G. Show that the sets H, ® 6,5, ),
are disjoint for different v.

(b) Suppose that A is a Borel set contained in H,. Show that A4 and indeed
all the A ® 6,,,,,, have Lebesgue measure 0.

Suppose that g is nonnegative and finitely additive on %* and that u(R¥) < .
Suppose further that pu(A)=supu(K), where K ranges over the compact
subsets of A. Show that u is countably additive (Compare Thecrem 12.3(i).)

Suppose p is a measure on &% such that bounded sets have finite measure.
Given A, show that there exist an F_ -set U (a countable union of closed sets)
and a G;-set V (a countable intersection of open sets) such that U ¢4 c V and
u(V-U)=0.

2.191 Suppose that g is a nenatomic probability measure on (R*, #2*) and
that w(A)> 0. Show that there is an uncountable compact set K such that
KCA and u(K)=0.

The minimal closed support of a measure u cn #2* is a closed set C, such that
C, cC for closed C if and only if C supports u. Prove its existence and
unigueness. Characterize the points of C, as those x such that p(U) >0 for
every neighberticod U of x. If k=1 and if u and the function F(x) are
related by (12.5), the condition is F(x —e) < F(x + €) for all €, x is in this case
called a point of increase of F.

Of miner interest is the k-dimensional analogue of (12.4). Let I, be (0,¢] for
t>0and (1,0} for r<0, and let A, =1, X -~ X1 . Let p(x) be +1 or —1
according as the number of i, 1 <i < k, for which x; <0 is even or cdd. Show
that, if F(x)=¢(x)u(A,), then (12.12) holds for bounded rectangles A.

Call F degenerate if it i1s a functicn of some k — 1 of the coordinates, the
requirement in the case k =1 being that F is constant. Show that A ,F =0 for
every bounded rectangle if and only if F is a finite sum of degenerate
functions; (12.12) determines F to within additicn of a functicn of this sort.

Let G be a nondecreasing, right-continucus function on the line, and put
F(x,y)=min{G(x), y}. Show that F satisfies the conditions of Theorem 12.5,
that the curve C =[(x,G(x)): x € R'] supports the correspending measure,
and that A(C) =0.

Let F, and F, be nondecreasing, right-continuous functions on the line and
put F(x, x,)=F(x)Fy)(x,). Show that F satisfies the ccnditions of Theorem
12.5. Let g, u(, u, be the measures correspending to F, F\, F,, and prove that
(A, xAy)=u (A Iu,(A,) for intervals A, and A,. This u is the product of
i, and p,; preducts are studied in a general setting in Section 18.
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If a real function X on (1 has finite range, it is by the definition in Section 5
a simple random variable if [w: X(w)=x] lies in the basic o-field F for
each x. The requirement appropriate for the general real function X is
stronger; namely, [w: X(w) € H] must lie in % for each linear Borel set H.
An abstract version of this definition greatly simplifies the theory of such
functions.

Measurable Mappings

Let (2, %) and (), ¥') be two measurable spaces. For a mapping T:
) — (', consider the inverse images T-'A'=[w €): Tw €A'] for A'c
(See [A7] for the properties of inverse images.) The mapping T is measurable
F/F if T'A € foreach A' '€ .

For a real function f, the image space (}' is the line R, and in this case
Z' is always tacitly understood to play the role of . A real function f on
(1 is thus measurable % (or simply measurable, if it is clear from the context
what % is involved) if it is measurable %/#'—that is, if f'H=
[0 lw)eH]e & for every H € Z'. In probability contexts, a real measur-
able function is called a random variable. The point of the definition is to
ensure that [w: f(w) € H] has a measure or probability for all sufficiently
regular sets H of real numbers—that is, for all Borel sets H.

Example 13.1. A real function f with finite range is measurable if
fYx} € F for each singleton {x}, but his is too weak a condition to impose
on the general f. (It is satisfied if (0, %) = (R', #"') and f is any one-to-one
map of the line into itself; but in this case f~'H, even for so simple a set H
as an interval, can for an appropriately chosen f be any uncountable set, say
the non-Borel set constructed in Section 3.) On the other hand, for a
measurable f with finite range, f~'H € & for every H C R'; but this is too
stiong a condition to impose on the general f. (For (Q, %) =(R', #'), even
f(x) =x fails to satisfy it.) Notice that nothing is required of fA4; it need not
liein &' for A in F. =

If in addition to ((}, %), (¥, &), and the map T: 1 — (), there is a third
measurable space (2", ") and a map T": (' — Q", the composition T'T =
T'>T is the mapping () — (" that carries w to T'(T(w)).

Theorem 13.1. () If T7'A' € F for each A' € &/ and /' generates F,
then T is measurable ¥/ 5.

(i) If T is measurable /" and T' is measurable &' /" then T'T is
measurable F/ F".
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Proor. Since T -A)=Q-T"Y and T (U, A4,)=U,T 4,
and since % is a o-field in (, the class {4 T"'4' € ¥ is a o-field in . If
this o-field contains &7°, it must also contain ¢(27"), and (i) follows.

As for (ii), it follows by the hypotheses that A" € %" implies that
(T 'A" € %', which in turn implies that (T'T) 4" =[w: T'Tw €A"] =
[w: Tw €(T)Y AN =T"'(T) 4" e &F. n

By part (i), if f is a real function such that [w: F(w) <x] lies in & for all
x, then f is measurable #. This condition is usually easy to check.

Mappings into R*

For a mapping f: 0 = R* carrying {} into k-space, #* is always understood
to be the o-field in the image space. In probabilistic contexts, a measurable
mapping into R* is called a random vector. Now f must have the form

(13.1) f(@) = (f @), fl @))

for real functions f(w). Since the sets (12.9) (the “southwest regions”)
generate %%, Theorem 13.1(i) implies that f is measurable .% if and only if
the set

(13.2) [o: flw) <x...., file) <x,]= .Ol[w:fj(w) Sx.]

lies in & for each (x,..., x,). This condition holds if each f; is measurable
&. On the other hand, if x;=x isfixedand x;= -+ =x;, | =x;,,= -+~ =
x, =n goes to «, the sets (13.2) increase to [w: fi{w) <x]; the condition thus
implies that each f, is ineasurable. Therefore, fis measurable & if and only
if each component function f; is measurable &. This provides a practical
criterion for mappings into R*.

A mapping f: R’ - R* is defined to be measurable if it is measurable
R'/R*. Such functions are often called Borel functions. To sum up, T:
Q- is measurable #/ % if T4’ € F for ali A'€ F'; f: Q- RF is
measurable & if it is measurable #/%*; and f: R' -» R* is measurable (a
Borel function) if it is measurable &*/%Z*. If H lies outside #', then I,
(i=k=1) is not a Borel function.

Theorem 13.2. If f: R' — R* is continuous, then it is measurable.

Proor. As noted above, it suffices to check that each set (13.2) lies in
Z'. But each is closed because of continuity. n
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Theorem 13.3. If f: Q—>R' is measurable &%, j=1,...,k, then
g(f(w),..., fi{®)) is measurable F if g: R* - R' is measurable—in particu-
lar, if it is continuous.

Proor. If the f; are measurable, then so is (13.1), so that the result
follows by Theorem 13.1(ii). n

Taking g(x,, .., x;) to be ¥, x,, [T ,x,, and max{x,,..., x,} in turn
shows that sums, products, and maxima of measurable functions are measur-
able. If f(w) is real and measurable, then so are sin f(w), ¢"/*?, and so on,
and if f(w) never vanishes, then 1/f(w) is measurable as well.

Limits and Measurability

For a real function f it is often convenient to admit the artificial values «
and —oco—to work with the extended real line [— o, ). Such an f is by
definition measurable % if [w: f(w) € H] lies in % for each Borel set H of
(finite) real numbers and if [w: f(w) = ] and [w: f(w) = — ] both lie in &.
This extension of the notion of measurability is convenient in connection with
limits and suprema, which need not be finite.

Theorem 13.4. Suppose that f|, f,,... are real functions measurable F.

(i) The functions sup, f,, inf, f,, limsup, f,, and liminf, f, are measur-
able &

(i) If lim,, f, exists everywhere, then it is measurable F.
(iii} The w-set where {f,(w)} converges lies in F.
(iv) If f is measurable F, then the w-set where f (w) — f(w) lies in F.

Proor. Clearly, [sup, f, <x}=N,[f, <x]lies in & even for x = » and
x = —oo, and so sup,, f, is measurable. The measurability of inf, f, follows
the same way, and hence limsup, f, = inf, sup, ., f, and liminf, f, =
sup,, inf, ., . f, are measurable. If lim, f, exists, it coincides with these last
two functions and hence is measurable. Finally, the set in (iii) is the set where
limsup, f, (@) = liminf, f (w), and that in (iv) is the set where this common

value is f(w). m

Special cases of this theorem have been encountered before—part (iv), for
example, in connection with the strong law of large numbers. The last three
parts of the theorem obviously carry over to mappings into R*.

A simple real function is one with finite range; it can be put in the form

(13.3) f=Yxl,,
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where the A, form a finite decomposition of (). It is measurable % if each
A; lies in . The simple random variables of Section 5 have this form.

Many results concerning measurable functions are inost easily proved first
for simple functions and then, by an appeal to the next theorem and a
passage to the limit, for the general measurable function.

Theorem 13.5. If f is real and measurable 5, there exists a sequence {f,)
of simple functions, each measurable &, such that

(13.4) 0<f (@)t f(@) iff(w)20
and
(13.5) 0=f,(w)! f(w) ifflw) <0.

ProoF. Define

—n if —o<f(w) < —n,
—(k—-1)27" if —k27" <f(w) < —(k—-1)27",
1<k <n2”
3.6 = . A ’
(13.6) fu(w) (k-1)27" f(k-1)27"<f(w) <k27",
1<k <n2",
|7 if n <f(w) <.
This sequence has the required properties. [ |

Note that (13.6) covers the possibilities f(w) = o and f(w)= —c.
If A€ %, afunction f defined only on A is by definition measurable if
[weA: flw)€H]lies in F for He 2" and for H={x} and H ={—)}.

Transformations of Measures

Let (Q,%) and (£}, ") be measurable spaces, and suppose that the
mapping T: (1 - (}' is measurable ¥/ .%". Given a measure u on %, define
a set function 7' on & by

(13.7) pI~N(A) =p(T'A), AesF.

That is, w7~ ' assigns value u(T '4) to the set A" If A'€ %", then
T '4' € & because T is measurable, and hence the set function p7 ' is
well defined on F". Since T™' U, A, = U, T 'A" and the T~ 'A’, are disjoint
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sets in () if the A’ are disjoint sets in )', the countable additivity of pT '
follows from that of u. Thus w7~ ' is a measure. This way of transferring a
measure from  to ()’ will prove useful in a number of ways.

If w is finite, so is T~ '; if w is a probability measure, so is w7~ "7

PROBLEMS

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

13.8.

Functions are often defined in pieces (foi example, let f(x) be x' or x' as

x >0 or x <0), and the following result shows that the functicn is measurable
if the pieces are. '

Consider measurable spaces ({0, F)and (M, F)andamap T Q-Q'
Let A,, A,,... be a countable covering of 0 by Fsets. Consider the o-field
F =[A: ACA,, A€ Flin A, and the restriction T, of T to A,. Show that
T is measurable &7/ %" if and only if T,, is measurable & /%" for each n.

(a) For a map T and o-fields & and &, define T\ =T '4": A'e ¥}
and TF=[A": T"'4' € F}. Show that T LF" and TS are o-fields and that
measurability &/ %' is equivalent to T"'\%' ¢ F and toc F' cT&.

(b) For given &', T~'%', which is the smallest o-field for which T is
measurable /%, is by definition the o-field generated by T. For simpie
random variables describe o(X),..., X,) in these terms.

(c) Let o'(&") be the o-field in )’ generated by &, Show that o (T~ ') =
T~ '(a'("). Prove Theorem 10.1 by taking T to be the identity map from Q,
to ().

T Suppose that f: {0 —» R!. Show that f is measurable T~ '%" if and only if
there exists a map ¢: ()’ — R' such that ¢ is measurable %’ and f=¢T. Hint:
First consider simple functions and then use Theorem 13.5.

1 Relate the result in Problem 13.3 te Thecrem 5.1(ii).

Show of real functions f and g that f(w)+ g(w) <x if and only if there exist
raticnals r and s such that r+s <ux, flw)<r, and g(w) <s. Prove directly
that f+ g is measurable & if f and g are.

Let & be a o-field in R'. Show that &' c & if and only if every continucus
function is measurable %. Thus ' is the smallest o-field with respect to
which all the continucus functions are measurable.

Consider on R' the smallest class 2" (that is, the intersection of all classes) of
real functions containing all the continuous functions and closed under peint-
wise passages to the limit. The elements of 2 are called Baire functions. Show
that Baire functicns and Borel functions on R! are the same thing.

A real function f on the line is upper semicontinuous at x if for each e there
is a & such that |x - y|< & implies that f(y) <f(x)+e. Show that, if f is
everywhere upper semicontinuocus, then it is measurable.

TBut see Problem 13.14.
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13.9. Suppose that f, and f are finite-valued, S measurable functions such that

13.10.

13.11.

13.12.

13.13.

13.14.

13.15.

13.16.

13.17.

f(@) = f(o) for € A, where p(A) <o (4 a measure on & ). Prove Egoroff’s
theorem: For each e there exists a subset B of A such that p(B) <e and
f.{@) = f(w) uniformly on A — B. Hint: Let B be the set of w in A such
that | f(w) — fw)| > k™" for some i > n. Show that B(*) | /& as n 1w, choose
n, so that u(B{¥) <e/2% and put B = Us_, BLX.

ny

T Show that Egeroff’s theorem is false without the hypothesis u(A) < .

297 Show that, if f is measurable o(&7), then there exists a countable
subclass &7, of &7 such that f is measurable o ().

Circular Lebesgue measure Let C be the unit circle in the complex plane, and
define T: (0,1) » C by Tew =™, Let & consist of the Borel subsets of [0, i),
and let A be Lebesgue measure on &. Show that €=[A: T '4 € &) consists
of the sets in #? (identity R? with the complex plane) that are contained 1n
C Sheow that ¢ is generated by the arcs of C. Circular Lebesgue measure is
defined as u = AT ~'. Show that y is invariant under rotations: u[0z: z €A} =
u(A) for A€ ¢ and 6 € C.

T Suppose that the circular Lebesgue measure of A satisfies u(A) > 1 —n !
and thiat B contains at most n points. Show that some rotaticn carries B into
A 6B cA for some 8 in C.

Show by example that u o-finite does not imply uT™! o-finite.

Consider Lebesgue measure A restricted to the class & of Borel sets in (0, 1].
For a fixed permutation n,,n,,... of the positive integers, if x has dyadic
expansion .x x,..., take Tx=.x, x, .... Show that T is measurable &/%
and that AT ' = A. )

Let H, be the union of the intervals (i — 1)/2%,i/2%] for i even, 1 <i < 2¥,
Show that if 0 <f(w)<1 for all w and A,=f"'(H), then flw)=
Y%~ 114 (@)/2%, an infinite linear combination of indicators.

Let $=1{0,1}, and define a map T from sequence space S tc (0,1} by
Tw =% a,(w) /2% Define amap U of [0, 1} te $* by Ux = (d,(x),d(x),...),
where the d,(x) are the digits of the nonterminating dyadic expansicn of x
(and 4,(0) =0). Show that T is measurable €/ % and that U is measurable
B/€. Let P be the measure specified by (2.21) for p,=p, = 3. Describe
PT™ ! and AU L

SECTION 14. DISTRIBUTION FUNCTIONS

Distribution Functions

A random variable as defined in Section 13 is a measurable real function X
on a probability measure space (0, F, P). The distribution or law of the
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random variable is the probability measure y on (R', #") defined by
(14.1) p(A)y=P[XxeA], AeR.

As in the case of the simple random variables in Chapter 1, the argument
is usually omitted: P{ X € A] is short for Plw:X(w) € A] In the notation
(13.7), the distribution is PX ™"

For simple random variables the distribution was defined in Section
5—see (5.12). There p was defined for every subset of the line, however;
from now on p will be defined only for Borel sets, because unless X is
simple, one cannot in general be sure that [ X €A4] has a probability for A
putside #'.

The distribution function of X is defined by

(14.2) F(x)=p(—o,x] =P[X <x]

for real x. By continuity {from above (Theorem 10.2(ii)) for u, F is right-
continuous. Since F is nondecreasing, the left-hand limit F(x —) =
lim, , . F(y) exists, and by continuity from below (Theorem 10.2(i)) for ,

(14.3) F(x—=)=u(—,x)=P[X <x].
Thus the jump or saltus in F at x is
F(x)=F(x=)=u{x} =P[X=x].

Therefore (Theorem 10.2(iv)) F can have at most countably many points of
discontinuity. Clearly,

(14.4) lim F(x)=0, lim F(x)=1.

xX— —o X —c0

A function with these properties must, in fact, be the distribution function
of some random variable:

Theorem 14.1. If F is a nondecreasing, right-continuous function satisfying
(14.4), then there exists on some probability space a random variable X for
which F(x) =P[ X <«x].

FirsT PROOF. By Theorem 12.4, if F is nondecreasing and right-continu-
ous, there is on (R', 2') a measure p for which u(a, b] = F(b) — F(a). But
lim, , _, F(x)=0 implies that u(—o, x]1=F(x), and lim, ,_ F(x)=1 im-
plies that #(R') = 1. For the probability space take (2, &, P) = (R, R ),
and for X take the identity function: X(w) =w. Then P[X <x]=pulw €R":
w <x]=F(x). |
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Seconp Proor.  There is a proof that uses only the existence of Lebesgue
measure on the unit interval and does not require Theorem 12.4. For the
probability space take the open unit interval: () is (0,1), . consists of the
Borel subsets of (G,1), and P(A) is the Lebesgue measure of A.

To understand the method, suppose at first that F is continuous and
strictly increasing. Then F is a one-to-one mapping of R' onto (0,1); let ¢:
(0,1) > R' be the inverse mapping. For 0 <w <1, let X(w) = ¢(w). Since ¢
is increasing, certainly X is measurable & If 0 <u <1, then ¢(u) < x if and
only if u < F(x). Since P is Lebesgue measure, P[X <x]=Plw €(0,1):
o(w) <x] =Plw €(0,1): w < F(x)] = F(x), as required.

F(x}
A
) S —/
° -
Y ¥ _
I X
elu) (v}

If F has discontinuities or is not strictly increasing, define!
(14.5) @(u) =inf[x: u <F(x)]

for 0 <u < 1. Since F is nondecreasing, [x: u < F(x)] is an interval stretching
to o; since F is right-continuous, this interval is closed on the left. For
0 <u < 1, therefore, [x: u < F(x)] =[¢@(u), )}, and so o(u) <x if and only if
u<F(x) If X(w)=¢(w) for 0 <w <1, then by the same reasoning as
before, X is a random variable and P[ X <x]=F(x). n

This second argument actually provides a simple proof of Theorem 12.4
for a probability distribution* F: the distribution p (as defined by (14.1)) of
the random variable just constructed satisfies u(—o, x]=F(x) and hence
ula,bl=F(b) ~ F(a).

Exponential Distributions

There are a number of results which for their interpretation require random
variables, independence, and other probabilistic concepts, but which can be
discussed technically in terms of distribution functions alone and do not
require the apparatus of measure theory.

"This is called the quantile function
*For the general case, see Problem 14 2.
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Suppose as an example that F is the distribution function of the waiting
time to the occurrence of some event—say the arrival of the next customer at
a queue or the next call at a telephone exchange. As the waiting time must be
positive, assuine that F(0) = 0. Suppose that F(x) <1 for all x, and further-
more suppose that

1-F(x+y)
1 -F(x)

(14.6) =1-F(y), x,y20.

The right side of this equation is the probability thar the waiting time exceeds
y; by the definition (4.1) of conditional probability, the left side is the
probability that the waiting time exceeds x + y given that it exceeds x. Thus
(14.6) attributes to the waiting-time mechanism a kind of lack of memory or
aftereffect: If after a lapse of x units of time the event has not yet occurred,
the waiting time stili remaining is conditionally distributed just as the entire
waiting time from the beginning. For reasons that will emerge later (see
Section 23), waiting times often have this property.

The condition (14.6) completely determines the form of F. If U(x) =
1—-F(x), (14.6) is U(x +y)=U(x)U(y). This is a form of Cauchy’s
equation [A20], and since U is bounded, U(x)=e"** for some a. Since
lim, , U(x)=0, « must be positive. Thus (14.6) implies that F has the
exponential form

_ /0 if x <0,
(14.7) F(x) {1~e—“ if x>0,
and conversely.
Weak Convergence
Random variables X|,..., X, are defined to be independent if the events

a—

[X, €4,],...,[X, €A4,] are independent for all Borel sets A,,..., 4, so
that P[X,€4,,i=1,...,n]=TI".,P[X;€A,] To find the distribution func-
tion of the maximum M, = max{X,,..., X}, take A;= -~ =4, =(—oo, x].
This gives P[M, <x1=T11"_,P[ X, <x]. If the X, are independent and have
common distribution function G and M, has distribution function F,, then

(14.8) F,(x) = G"(x).

It is possible without any appeal to measure theory to study the real
function F, solely by means of the relation (14.8), which can indeed be taken
as defining F,. It is possible in particular to study the asymptotic properties
of F,:
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Example 14.1. Consider a stream or sequence of events, say arrivals of
calls at a telephone exchange. Suppose that the times between successive
events, the interarrival times, are independent and that each has the expo-
nential form (14.7) with a common value of a. By (14.8) the maximum M,
among the first n interarrival times has distribution function F(x)=(1 -
e~ **)", x > 0. For each x, lim, F,(x) = 0, which means that M_ tends to be
large for n large. But P[M, —a 'logn <x]1=F(x +a” 'logn). This is the
distribution function of M, — «~'log n, and it satisfies

(14.9) F(x+a 'logn) =(1—e (axtloemy” _, pme™=

as n — o; the equality here holds if log n > —ax, and so the limit holds for
all x. This gives for large n the approximate distribution of the normalized
randorn variable M, —a ™' log n. &

If F, and F are distribution functions, then by definition, F, converges
weakly to F, written F, = F, if

(14.10) lim F,(x) = F(x)

for each x at which F is continuous.! To study the approximate distribuiion
of a random variable Y, it is often necessary to study instead the normalized
or rescaled random variable (Y, —b,)/a, for appropriate constants a, and
b . If Y, has distribution function F, and if a, > 0, then P[(Y, - b,)/a, <x]
=P[Y, <a,x +b,], and therefore (Y,—b,)/a, has distribution function
F(a,x +b,). For this reason weak convergence often appears in the form*

(14.11) F(a,x+b,)=F(x).

—aXx

An example of this is (14.9): there a, =1, b, =a 'logn, and F(x)=e"¢

Example 14.2. Consider again the distribution function (14.8) of the
maximum, but suppose that G has the form

0 if x<1,
1—x7® ifx>1,

6(x) - {
where a > 0. Here F(n'/*x) =(1 —n"'x7*)" for x > n~1/%, and therefore

0 if x <0,

lian(nl/“x)={ oo
n € iIx .

This is an example of (14.11) in which a,, = n!/* and b, = 0. |

YFor the role of continuity, see Example 14.4,

*To write F(a,x +b,)= F(x) ignores the distinction between a function and its value at an
unspecified value of its argument, but the meaning of course is that F{a,x +b,) = F(x) at
continuity points x of F.
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Example 14.3. Consider (14.8) once more, but for

0 if x <0,
G(x)={1-(1-x)" if0<x<]l,
1 if x>1,

where a > 0. This time F(n "*x + 1)=(1 —n"(-x)*)" if —n'/*<x <0,
Therefore,

—(—=x)*
lian(n_'/—“x+1)=:{el :i"fg
n X ’

a case of (14.11) in which ¢, =n~'"/*and b, = 1. |

Let A be the distribution function with a unit jump at the origin:

{0 ifx<0,
(14.12) A(x)—{l Y

If X(w)=0, then X has distribution function A.

Example 14.4. let X, X,,... be independent random variables for which
P[X,=1]1=P[X,= -1]=3, and put S, =X, + - - +X,. By the weak law
of large numbers,

(14.13) P[|n7's,|>€] >0

for e >0. Let F, be the distribution function of n~'S,. If x>0, then
F(x)=1-P[n7'S >x]1>1;if x <0, then F(x)<P[ln7'S,|=|x[]—> 0. As
this accounts for all the continuity points of A, F, = A. It is easy to turn the
argument around and deduce (14.13) from F, = A. Thus the weak law of
large numbers is equivalent to the assertion that the distribution function of
n~'S, converges weakly to A.

If n is odd, so that S, =0 is impossible, then by symmetry the events
[S, <0l and [S, > 0] each have probability 5 and hence F,(0) = 5. Thus F,(0)
does not converge to A(0) =1, but because A is discontinuous at 0, the
definition of weak convergence does not require this. [ ]

Allowing (14.10) to fail at discontinuity points x of F thus makes it
possible to bring the weak law of large numbers under the theory of weak
convergence. But if (14.10) need hold only for certain values of x, there
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arises the question of whether weak limits are unique. Suppose that F, = F
and F, = G. Then F(x)=Ilim, F(x) =G(x) if F and G are both continu-
ous at x. Since F and G each have only countably many points of discontinu-
ity,! the set of common continuity points is dense, and it follows by right
continuity that F and G are identical. A sequence can thus have at most one
weak limit.

Convergence of distribution functions is studied in detail in Chapter 5.
The remainder of this section is devoted to some weak-convergence theorems
which are interesting both for themselves and for the reason that they require
so little technical machinery.

Convergence of Types*

Distribution functions F and G are of the same fype if there exist constants
a and b, a > 0, such that F(ax + b) = G(x) for all x. A distribution function
is degenerate if it has the form A(x — x,) (see (14.12)) for some x,; otherwise,
it is nondegenerate.

Theorem 14.2. Suppose that F,(u,x +v,) = F(x) and F(a, x +b,)=
G(x), where u, > 0, a, > 0, and F and G are nondegenerate. Then there exist a
and b, a >0, such that a, /u, - a, (b,—v,)/u,— b, and Flax +b) = G(x).

Thus there can be only one possible limit type and essentially only one
possible sequence of norming constants.

The proof of the theorem is for clarity set out in a sequence of lemmas. In
all of them, a and the a, are assumed to be positive. '

Lemma 1. IfF, =F,a,—a,andb,~b, then F(a,x + b )= F(ax +b).

Proor. If x is a continuity point of F(ax + b) and € > 0, choose conti-
nuity points # and ¢ of F so that u<ax+b<v and F(v)- F(u)<e;
this is possible because F has only countably many discontinuities. For large
enough n, u<a,x+b,<v, |F(u)— F(u)l<e, and |F(v) - F(v)| <e; but
then F(ax +b)~2e <F(u)~e<FW)<F(a,x+b,)<F(v)<F(v)+e<
F(ax + b) + 2e. [ |

Lemma 2. IfF,= Fanda, > «, then F(a,x)= A(x).

Proor. Given ¢, choose a continuity point u of F so large that F(u)>
1 —e. If x>0, then for all large enough n, a,x > u and |F (u) — F(u)| <e, so

"The proof following (14.3) uses measure theory, but this is not necessary If the saltus
o(x)=F(x)— F(x —)exceeds € at x| < * - <x,, then F(x,)— F(x,_,)> e (take x, <x,), and
so ne < F(x,}— F(xy) < 1; hence [x* a(x)> €] is finite and [x: a(x) > 0] is countable

*This topic may be omitted.
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that F,(a,x)> F(u)> F(u) —e>1-2¢. Thus lim, F(a,x)=1 for x>0,
similarly, lim, F,(a,x)= 0 for x <0. m

Lemma 3. If F,=F and b, is unbounded, then F(x +b,) cannot con-
verge weakly.

Proor. Suppose that b, is unbounded and that b, — « along some
subsequence (the case b, — — is similar). Suppose that F (x +b,) = G(x).
Given ¢, choose a continuity point # of F so that F(u)> 1 —e. Whatever x
may be, for n far enough out in the subsequence, x +b, >u and F(u)> 1 -
2e, so that F,(x +b,) > 1~ 2e. Thus G(x) =lim, F(x +b,) = 1 for all con-
tinuity points x of G, which is impaossible. |

Lemma 4. If F,(x)= F(x) and F (a,x +b,) = G(x), where F and G are
nondegenerate, then

(14.14) 0<infa, <supa, <o, sup |b,| < .

Proor. Suppose that a, is not bounded above. Arrange by passing to a
subsequence that a, * «. Then by Lemma 2,

(14.15) Fy(a,x) = A(x).
Since
(14.16) F(ax+b,/a,)) =F(a,x +b,) = G(x),

it follows by Lemma 3 that b,/a, is bounded along this subsequence. By
passing to a further subsequence, arrange that b, /a, converges to some c. By
(14.15) and Lemma 1, F,(a,(x +b,/a,)) = A(x +¢) along this subsequence.
But (14.16) now implies that G is degenerate, contrary to hypothesis.

Thus a, is bounded above. If G, (x)=F(a,x +b,), then G (x)=G(x)
and G{a, 'x —a;'b,) = F,(x) = F(x). The result just proved shows that a_ '
is bounded.

Thus a,, is bounded away from 0 and . If b, is not bounded, neither is
b,/a,; pass to a subsequence along which b, /a, = + and a, converges to
a positive a. Since, by Lemma 1, F (a,x) = F(ax) along the subsequence,
(14.16) and b, /a, — + stand in contradiction (Lemma 3 again). Therefore
b, is bounded. =

Lemma 5. If F(x)=F(ax +b) for all x and F is nondegenerate, then
a=1and b=0.

ProofF. Since F(x)=F(a"x + (@" '+ -+ +a + 1)b), it follows by
Lemma 4 that a” is bounded away from 0 and », so that a = 1, and it then
follows that »nb is bounded, so that b = 0. |
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Proor OF THEOREM 14.2. Suppose first that u, =1 and v, =0. Then
(14.14) holds. Fix any subsequence along which a, converges to some positive
a and b, converges to some b. By Lemma 1, F,(a,x +b,) = F(ax + b) along
this subsequence, and the hypothesis gives F(ax + b) = G(x).

Suppose that along some other sequence, a, »u >0 and b, —v. Then
F(ux +v) = G(x) and F(ax + b) = G(x) both hold, so that u =a and v =05
by Lemma 5. Every convergent subsequence of {(a,,b )} thus converges to
(a, b), and so the entire sequence does.

For the general case, let H,(x)=F(u,x +uv,). Then H (x)= F(x) and
H(a,u;'x+(b,—v)u,"')= G(x),and so by the case already treated, a,u "
converges to some positive a and (b, —v,)u,' to some b, and as before,
F(ax + b) = G(x). |

n*>n

Extremal Disiributions”

A distribution function F is extremal if it is nondegenerate and if, for some
distribution function G and consiants a, (a, > 0) and b,,,

(14.17) G"(a,x +b,) = F(x).

These are the possible limiting distributions of normalized maxima (see (14.8)), and
Examples 14.1, 14.2, and 14.3 give three specimens. The following analysis shows that
these three examples exhaust the possible types.

Assume that F is extremal. From (14.17) follow G"(a,x +b,)= F*(x) and
G""(ankx+bnk) = F(x), and so by Theorem 14.2 there exist constants ¢, and 4,
such that ¢, is positive and

(14.18) Fk(x)=F(c,x+4d,).

From F(c ,(x+d]k)—F"‘(x)—F’(ckx +d ) =F(c{c,x+d,)+d)) follow (Lemma
5) the relations

(14.]9) Cjk=cfck’ d}k:zcjdk +dj“:ckdj+dk'

Of course, c; = 1 and 4, = 0. There are three cases to be considered separately.

Case 1. Suppose that ¢, =1 for all k. Then
(14.20) F"(x)=F(x+dk), Fl/"(x)=F(x—dk).

This implies that F//*(x)=F(x +d,—d ). For positive rational r=j/k, put 8, =

—d,; (14.19) implies that the definition 1s consistent, and F'(x) =F(x+4,). Since }é
is nondegenerate, there is an x such that 0 < F(x) <1, and it follows by (14 20) that
d, is decreasing in k, so that §, is strictly decreasing in r.

"This topic may be omitted.
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For positive real ¢ let ¢(¢) =infy ., ., 8, (r rational in the infimum). Then ¢(z) is
decreasing in ¢, and

(14.21) Fi(x)=F(x+g¢(1))

for all x and all positive ¢. Further, (14.19) implies that o(st) = (s) + ¢(¢), so that by
the theorem on Cauchy’s equation [A20] applied to @(e*), ¢(t)= —Blog ¢, where
B >0 because ¢(¢) is strictly decreasing. Now (14.21) with r=e*/P gives F(x)=
exp{e */P log F(0)}, and so F must be of the same type as

(14.22) F(x)=e*".

Example 14.1 shows that this distribution function can arise as a limit of distributions
of maxima—that is, F, is indeed extremal.

Case 2. Suppose that Ck, # 1 for some ko, which necessarily exceeds 1. Then there
exists an x' such that ¢, x +d =x'; but (14.18) then gives F*o(x*) = F(x"), so that
F(x")is 0 or 1. (In Case 1, F has the type (14.22) and so never assumes the values 0
and 1.)

Now suppose further that, in fact, F(x")=0. Let x, be the supremum of those x
for which F(x)=0. By passing to a new F of the same type one can arrange that
xo=0; then F(x)=0for ¥ <0and F(x) > 0 for x > 0. The new F will satisfy (14.18),
but with new constants d,.

If a (new) d, is distinct from 0, then there is an x near 0 for which the arguments
on the two sides of (14.18) have opposite signs. Therefore, 4, = 0 for all k, and

(14.23) FE(x) =F(c,x),  FY/¥(x) =F(C—xk-)

for all k and x. This implies that F//*(x) = F(xc,/c,). For positive rational r =j /k,
put y,=c,/c,. The definition is again con51stent by (14.19), and F'(x)= r(y,x)
Since 0 <I~(x)<1 for some x, necessarily posmve, it follows by (14.23) that ¢, is
decreasing in k, so that vy, is strictly decreasing in r. Put ¢(t) =inf,, ., v for
positive real t. From (14.19) follows ¢s(sz) = (s)(¢), and by the corollary to the
theorem on Cauchy’s equation [A20] applied to ¢(e*), it follows that ¢(z)=¢"¢ for
some £>0. Since F'(x)=F(@(t)x) for all x and for t positive, F(x)=
exp{x~ "¢ log F(1)} for x > 0. Thus (take @ =1/¢) F is of the same type as

0 if x <0,

14.24 F. = —a
( ) 2.a( %) (e_‘ if x> 0.

Example 14.2 shows that this case can arise.

CASE 3. Suppose as in Case 2 that ck # 1 for some kg, so that F(x') is 0 or 1 for
some x', but this time suppose that F(x )= 1. Let x, be the infimum of those x for
which F(x)~1 By passing to a new F of the same type, arrange that x, = 0; then
F(x)<1for x<0and F(x)=1for x> 0. If d, # 0, then for some x near 0, one side
of (14.18) is 1 and the other is not. Thus d, =0 for all k, and (14.23) again holds. And
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again ;4 =¢;/c, consistently defines a function satisfying F"(x) = F(y,x). Since F
is nondegenerate, 0 < F(x) < 1 for some x, but this time x is necessarily negative, so
that c, is inCreasing.

The same analysis as before shows that there is a positive £ such that F'(x) =
F(tfx) for all x and for ¢ positive. Thus F(x)=exp{(—x)!/¢ log F(—1)} for x <0,
and F is of the type

=(-x)*
25 F _Jle if x<0,
(14.25) s.alX) {1 if x> 0.

Example 14 2 shows that this distribution function is indeed extremal.

This completely characterizes the class of extremal distributions:

Theorem 14.3. The class of extremal distribution functions consists exactly of the
distribution functions of the types (14.22), (14.24), and (14.25).

It is possible to gc on and characterize the domains of attraction. That is. it is
possible for each extremal distribution function F to describe the class of G satisfying
(14.17) for some constants a,, and b —the class of G attracted to F.'

PROBLEMS

14.1. The general nondecreasing function F has at most countably many discontinu-
ities. Prove this by considering the open intervals

(supF(u),LigiF(u))

U <x

—each nonempty one contains a rational.

14.2. For distribution functions £, the second proof of Theorem 14.1 shows how to
construct a measure u on (R', #') such that u(a, b}= F(b) — F(a).
(a) Extend to the case of bounded F.
(b) Extend to the general case. Hint: Let F(x) be —n or F(x) or n as
F(x)< —nor —n < F(x) <n or n < F(x). Construct the corresponding u,, and
define u(A)=I1im, u,(A).

14.3. (a) Suppose that X has a continuous, strictly increasing distribution function
F. Show that the random vaiiable F(X) is uniformly distributed over the unit
interval in the sense that P[F(X)<ul=u for 0 <u < 1. Passing from X to
F(X) is called the probability transformation.

(b) Show that the function ¢(u) defined by (14.5) satisfies F(o(u)—)<
u < F(p(u)) and that, if F is continuous (but not necessarily strictly increasing),
then F(o(u))=u for 0 <u <1.

(¢) Show that P[F(X) < ul=F(¢(u)—) and hence that the result in part (a)
holds as long as F is continuous.

"This theory is associated with the names of Fisher, Fréchet, Gnedenko, and Tippet. For further
information, see GaLAMBOS.
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144. 1 Let C be the set of continuity points of F.

14.5.

14.6.

14.7.

14.8.

14.9.

(a) Show that for every Borel set A, P[F(X)€A, X<} is at most the
Lebesgue measure of A.

(b) Show that if F is continuous at each point of F~4, then
P[F(X) < A] is at most the Lebesgue measure of A.

The Lévy distance d(F,G) between two distribution functions is the infimum of
those € such that G(x —e) —e < F(x) < G(x + €) + ¢ for all x. Verify that this
is a metric on the set of distribution functions. Show that a necessary and
sufficient condition for F, = F is that d(F,, F) — 0.

12.31 A Borel function satisfying Cauchy’s equation [A20] is automatically
bounded in some interval and hence satisfies f(x)=xf(1). Hint: Take K large
enough that A[x: x >s, [f(x)] < K]> 0. Apply Problem 12.3 and conclude that
f is bounded in some intervai to the right of 0

1 Consider sets S of reals that are linearly independent over the field of
rationals in the sense that n,x, + --+ +n,x, = 0 for distinct points x; in § and
integers n; (positive or negative) is impossible unless n, =0.

(a) By Zorn'’s lemma find 2 maximal such S. Show that it is a Hamel basis. That
is, show that each real x can be wntten uniquely as x=nx, + -+ +n,x, for
distinct points x; in S and integers #,.

(b) Define f arbitrarily on S, and define it elsewhere by f(n,x, + -+ +n,x;)
=nf(x,)+ -+ +n, f(x,). Show that f satisfies Cauchy’s equation but need
not satisfy f(x)=xf(1).

(¢) By means of Problem 14.6 give a new construction of a nonmeasurable
function and a nonmeasurable set.

1451 (a) Show that if a distribution function F is everywhere continuous,
then it is uniformly continuous.

(b) Let 8.(e)=sup[ F(x) — F(y): |x —y| < €] be the modulus of continuity of
F. Show that d(F, G) < ¢ implies that sup , |F(x) — G(x)| <€ + 8(e).

(¢) Show that, if F, = F and F is everywhere continuous, then F,(x) - F(x)
uniformly in x. What if F is coatinuous over a closed interval?

Show that (14.24) and (14.25) are everywhere infinitely differentiable, although
not analytic.



CHAPTERS3

Integration

SECTION 15. THE INTEGRAL

Expected values of simple random variables and Rieinann integrals of contin-
uous functions can be brought together with other related concepts under a
general theory of integration, and this theory is the subject of the present
chapter.

Definition

Throughout this section, f, g, and so on will denote real measurable
functions, the values + allowed, on a measure space (0, &, n)." The object
is to define and study the definite integral

[féu= [ f(w) du(w) = [ f@)n(da).

Suppose first that f is nonnegative. For each finite decomposition {A4,} of
(1 into F%sets, consider the sum

(15.1) )

wiggl_f(w)]u(Ai)-

In computing the products here, the conventions about infinity are

0-0o=-0=0,
(15.2) X0 =00")x =00 if 0 <x < oo,
00+ 00 = O,

Although the definitions (15.3) and (15.6) apply even if f is not measurable %, the proofs of
most theorems about integration do use the assumption of measurability in one way or another.
For the role of measurability, and for alternative definitions of the integral, see the problems.

199
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The reasons for these conventions will become clear later. Also in foice are
the conventions of Section 10 for sums and limits involving infinity; see (10.3)
and (10.4). If A, is empty, the infimum in (15.1) is by the standard convention
oo, but then u(A4;) =0, so that by the convention (15.2), this term makes no
contribution to the sum (15.1).

The integral of f is defined as the supremum of the sums (15.1):

(153) [fdu = supz[wigg f(@)|n(4).

The supremum here extends over all finite decompositions {A4;} of (0 into
Fsets.
Sor general f, consider its positive part,

w) if0<f(w)<»,
(15.4) f*(w)=-{£( ) ;._miifgw):;o

and its negative part,

—flw if —0 <f(w) <0,
(15.5) f—(w)={0f( ) ;msf(i()s)w_

These functions are nonnegative and measurable, and f=f*— f. The gen-
eral integral is defined by

(156) [fdu=[f* du~ [f dp,

unless [f* du = [f~ du = o, in which case f has no integral.

If [f* du and [f~ du are both finite, then f is integrable, or integrable u,
or summable, and has (15.6) as its definite integral. If [f* du = and
Jf~ du <o, then f is not integrable but in accordance with (15.6) is assigned
o as its definite integral. Similarly, if [f* du < and [f~ du =, then f is
not integrable but has definite integral —o. Note that f can have a definite
integral without being integrable; it fails to have a definite integral if and only
if its positive and negative parts both have infinite integrals.

The really important case of (15.6) is that in which [f* du and [f~ du are
both finite. Allowing infinite integrals is a convention that simplifies the
statements of various theorems, especially theorems involving nonnegative
functions. Note that (15.6) is defined unless it involves “co — ™; if one term
on the right is « and the other is a finite real x, the difference is defined by
the conventions © —x =c and x — o = —oo0,

The extension of the integral from the nonnegative case to the general
case is consistent: (15.6) agrees with (15.3) if f is nonnegative, because then

f=o.
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Nonnegative Functions

It is convenient first to analyze nonnegative functions.

Theorem 15.1. () If f=X;x,1, is a nonnegative simple function, {4}
being a finite decomposition of () into Fsets, then [fdu =¥ x,u(A)).

(i) If 0 <f(w) <g(w) for all w, then [fdu < [gdpu.

(i) If 0 <f(w)1 flw) for all w, then 0 < [f, du 1 [fdu.

(iv) For nonnegative functions f and g and nonnegative constants o and 3,
f(af +Bg)du = affdu +Bgdp.

In part (iii) the essential point is that (fdu =lim, [f,du, and it is
important to understand that both sides of this equation may be . If f, = [,
and [=1,, where A, 1 A, the conclusion is that y is continuous from below
(Theorem 10.2(1)): lim, u(A,) = u(A); this equation often takes the form

00 == 00,

Proor oF (i). Let {B}} be a finite decomposition of £ and let B; be the
infimum of f over B;. If A;,NB;# &, then B; <x,; therefore, ¥ .8;u(B;) =
LBu(A,NBY) <X, x;u(A;NB)=¥L,x;u(A;). On the other hand, there
is equality here if {B;} coincides with {4 }. n

Proor oF (ii). The sums (15.1) obviously do niot decrease if f is replaced
by g. [ ]

ProoF oF (iii). By (ii) the sequence [f, du is nondecreasing and bounded
above by [fdu. It therefore suffices to show that [fdu < lim, [f, du, or that

n
(15.7) lim [f,, du=S= Y vu(A)
n i=1
if 4,...,4,, is any decomposition of () into F=sets and v, = inf, . 4, flw).

In order to see the essential idea of the proof, which is quite simple,
suppose first that S is finite and all the v; and pu(A;) are positive and finite.
Fix an e that is positive and less than each v,, and put A4, =[w€A4;:
flw)>v; —¢€]. Since f,1f, A;, T A;. Decompose (2 into A4,,,..., A, and
the complement of their union, and observe that, since w is continuous from
below,

(158)  [fdnz T (- On(4n) - T (- eu(4)

=S—€§:P‘(Ai)'
i=1

Since the u(A,) are all finite, letting € — 0 gives (15.7).
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Now suppose only that § is finite. Each product v;u(A,) is then finite;
suppose it is positive for i <m, and 0 for i >m, (Here m,<m; if the
product is 0 for all i, then § =0 and (15.7) is trivial.) Now u; and u(A,) are
positive and finite for { < m, (one or the other may be « for i > m,). Define
A;, as before, but only for i <m,. This time decompose {1 into A,,,..., 4, ,
and the complement of their union. Replace m by m in (15.8) and complete
the proof as before.

Finally, suppose that § = . Then v; u(A4, )= for some iy, so that v;
and u(A,; ) are both positive and at least one is «. Suppose 0 <x < v, <
and O<y<,u(A J< and put A4, ,=lw€4d,: flw)>x] From f,1f
follows A; , 1 A; ; hence u(A; ,,)>y “for n exceeding some ny. But then
(dccompose 0 mto A; . and its complement) ff, du > m(A ,) >xy for
n > r,, and therefore llm,, [fadp 2 xy. If v; =, let x > o, and if u(A; )=

o, let y — oo. In either case (15.7) follows: lim o [f,du = . m

PrOOF OF (iv). Suppose at first that f=¥x,/, and g= L;yils are
simple. Then af +Bg =1, (ax; + By, g, and so

[(af+Bg)du = Y (ax;+By;)n(4,nB)
—aEx,u(A)+B):yu —affdu+ﬁfgdu

Note that the argument is valid if some of a, 8, x;, y; are infinite. Apart from
this possibility, the ideas are as in the proof of (5.21).

For general nonnegative f and g, there exist by Theorem 13.5 simple
functions f, and g, such that 0 <f. 1 f and 0 <g, 1 g But then 0 <af, +
Bg,Taf+Bg and [(af,+Bg,)dr = aff, du +B/g, du, so that (iv) follows
from (iii). |

By part (i) of Theorem 15.1, the expected values of simple random
variables in Chapter 1 are integrals: E[X] = [X(w)P(dw). This also covers
the step functions in Section 1 (see (1.6)). The relation between the Riemann
integral and the integral as defined here will be studied in Section 17.

Example 15.1. Consider the line {R', %! A) with Lebesgue measure.

Suppose that —w <gy<a; < - < am <o, and let f be the function with
nonnegative value x; on (a,_,,a;], i = .,m, and value 0 on (-, a,] and
(a,,,). By part (i) of Theorem 15. 1, jfd)\ Y™ x(a;— a,_,) because of the

convention 0 - © = 0—see (15.2). If the “area under the curve” to the left of
a, and to the right of 4, is to be 0, this convention is inevitable. From
-0 =0 it follows that [fdA =0 if f is « at a single point (say) and O
elsewhere.
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If f=1,., the area-under-the-curve point of view makes [fdu =
natural. Hence the second convention in (15.2), which also requires that the
integral be infinite if f is c on a nonempty interval and 0 elsewhere. |

Recall that almost everywhere means outside a set of measure 0.
Theorem 15.2. Suppose that f and g are nonnegative.

(1) If f =0 almost everywhere, then [fdu = 0.

(i) If plw: flw)> 01> 0, then [fdu > 0.
(i) If [fdu <o, then f <« almost everywhere.
(iv) If f < g almost everywhere, then [fdu < [gdpu.
(v) If f = g almost everywhere, then fdu = [gdp.

Proor. Suppose thai f= 0 almost everywhere. If A; meets[w: fw) = 0],
then the infimum in (15.1) is 0; otherwise, w(A;) = 0. Hence each sum (15.1)
is 0, and (i) follows.

If A, =[w: flw)>€], then A T[w: f(w)>0] as € | 0, so that under the
hypothesis of (ii) there is a positive e for which u(A_) > 0. Decomposing )
into A, and its complement shows that jfdu > eu(A4.) > 0.

If u[f=w]>0, decompose (1 into [ f= =] and its compiement: [fdu >
w - u[ f =] = 0 by the conventions. Hence (iii).

To prove (iv), let G =[f <g]. For any finite decomposition {A4,,..., A4,.}
of O,

E[i;}ff]u(Af) - E[igff]u(AiﬂG) < E[Aigfcf]u(AsﬂG)
< E{Aigfcg]p(A,r1 G) _<._fgd,u,,

where the last inequality comes from a consideration of the decomposition
A, NG,..., A, NG,G*. This proves (iv), and (v) follows immediately. ]

Suppose that f=g almost everywhere, where f and g need not be
nonnegative. If f has a definite integral, then since ff=g" and f =g~
almost everywhere, it follows by Theorem 15.2(v) that g also has a definite
integral and [fdu = [gdpu.

Uriqueness

Although there are various ways to frame the definition of the integral, they are all
equivalent—they all assign the same value to ffdu. This is because the integral is
uniquely determined by certain simple properties it is natural to require of it.

It is natural to want the integral to have properties (i) and (iii) of Theorem 15.1.
But these uniquely determine the integral for nonnegative functions: For f nonnega-
tive, there exist by Theorem 13.5 simple functions f, such that 0 <f, T f; by (iii),
[fdp must be lim,, [f, du, and (i) determines the value of each [f, du.
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Property (i) can itself be derived from (iv) (linearity) together with the assumption
that fI,du = u(A) for indicators L [(T,x;1,)du =2 x;fl, du =Tx;u(A).

If (iv) of Theorem 15.1 is to persist when the integral is extended beyoud the class
of nonnegative functions, [fdu must be [(f*'—f")du = [f" du — [f~ du, which
makes the definition (15.6) inevitable.

PROBLEMS

These problems outline alternative definitions of the integral and clarify the role
measurability plays. Call (15.3) the lower integral, and write it as

(159) [ fdu =sup>:[ inf f(w)]u(A,-)
* i w i
to distinguish it from the upper integral

(15.10) [ fdu = infz:[ sup f(w)],u(A,-).

mEA,

The infimum in (15 10), like the supremum in (15.9), extends over all finite partitions
{A.} of Q) into Fsets.

15.1. Suppose that f is measurable and nonnegative. Show that [*fdu = if ulw:
flw)> 0}=w or if ulw: f(w)>a]l> 0 for all a

There are many functions familiar from calculus that ought to be integrable but
are of the types in the preceding problem and hence have infinite upper integral.
Examples are x 2] ,.(x) and x~ /%] | (x). Therefore, (15.10) is inappropriate as a
definition of ffdu for nonnegative f. The only problem with (15.10), however, is that
it treats infinity the wrong way. To see this, and to focus on essentials, assume tnat
u(Q1) < and that f is bounded, although not necessarily nonnegative or measur-

able %.

15.2. 7 (a) Show that
Zi:[wiggff(w)]u(ft.-) < ?[wiggif(w)]u(t?,-)

if]{Bj} refines {A4.}. Prove a dual relation for the sums in (15.10) and conclude
that

(15.11) [ fdu < [ fdu.

(b) Now assume that { js measurable & and let M be a bound for |f].
Consider the partition A, =[w: ie < flw) < (i + 1)e], where i ranges from — N
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to N and N is large enough that Ne > M. Show that

)

sup f(w)|n(4)) - L [wigg _f(w)]u(A.-) <en(Q).

wEA;

Conclude that
(15.12) [ fou =/ fdp.

To define the integral as the common value in (15.12) is the Darboux-Ycung
approach. The advantage of (i5.3) as a definition is that (in the nonnegative
case) it applies at once to unbounded f and infinite u

153. 321521 For AC{, define u*(A4) and p,(A) by (3.9) and (3.10) with u in
place of P. Show that [*I,du =u*(A) and [, I, du =u,(A) for every A.
Therefore, (15.12) can fail if f is not measurable &. (Where was measurability
used in the proof of (15.12)?)

The definitions (15.3) and (15.6) always make formal sense (for finite u(Q) and
supi fD, but they are reasonable—accord with intuition—only if (15.12) holds. Under
what conditions does it hold?

15.4. 10.5 15317 (a) Suppose of f that there exist an Fset A and a function g,
measurable &, such that u(A)=0 and [f+g]CA. This is the same thing as
assuming that u*[f# g}=0, or assuming that f is measurable with respect to &
completed with respect to u. Show that (15.12) holds.

(b) Show that if (15.12) holds, then so does the italicized condition in part (a).

Rather than assume that f is measurable %, one can assume that it satisfies the
italicized condition in Problem 15.4(a)—which in case (Q, %, u) is complete is the
same thing anyway. For the next three problems, assume that u({}) < = and that f is
measurable & and bounded.

15.5. 1 Show that for positive € there exists a finite partition {A4,} such that, if {Bj}
is any finer partition and ; € B}, then

<e€.

‘ffdﬂ = Zf(“’j)#( B;)
15.6. T Show that

ffd#t:“m Y —mfer = <fle) <3|

T lklgn2m

k—1 [ k—1 k

The limit on the right here is Lebesgue’s definition of the integral.
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15.7. T Suppose that the integral is defined for simple nonnegative functions by
f(Tixil,)du = L, x,u(A;). Suppose that f, and g, are simple and nondecreas-
ing and have a common limit: 0<f, 1 f and 0<g, T f. Adapt the arguments
used to prove Theorem 15.1(iii) and show that lim, [f, du =lim,, [g, du. Thus,
in the nonnegative case, [fdu can (Theorem 13.5) consistently be defined as
lim,, [f, du for simple functions for which 0 <f, 1 f.

SECTION 16. PROPERTIES OF THE INTEGRAL

Equalities and Inequalities

By definition, the requirement for integrability of f is that [f* du and
Jf~ dp both be finite, which is the same as the requirement that [f* du +
Jf~ dp <o and hence is the same as the requirement that ((f*+f")du <
(Theorem 15.1(iv)). Since f*+f~=ifl, f is integrable if and only if

(16.1) flfld,u < .

It follows that if |f|<|g| almost everywhere and g is integrable, then f is
integrable as well. If x({2) <o, a bounded f is integrable.

Theorem 16.1. (i) Monotonicity: If f and g are integrable and f < g almost
everywhere, then

(16.2) [fdp, < fgd,u..

(ii) Linearity: If fand g are integrable and «, B are finite real numbers, then
af + Bgis integrable and

(16.3) J(af+B8)du=affdu+8[edu.

Proor of (i). For nonnegative f and g such that f<g almost every-
where, (16.2) follows by Theorem 15.2(iv). And for general integrable f and
g, if f <g almost everywhere, then f*<g* and f~> g~ almost everywhere,
and so (16.2) follows by the definition (15.6). [

ProoF oF (ii). First, af + Bg is integrable because, by Theorem 15.1,

flaf +Bgldu < [(lal-1f1+18I-|g]) du

= lalf1f1dp +18Iflgl dp <.
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By Theorem 15.1(iv) and the definition (15.6), [(af)du = a [fdu—consider
separately the cases a > 0 and a <0. Therefore, it is enough to check (16.3)
for the case a =B = 1. By definition, (f+g)" —(f+g) =f+g =f"—f+
g*—g~ and therefore (f+g)"+f +g7=(f+g) +f"+g™*. All these func-
tions being nonnegative, [(f+g) du + [f~du + [g du = [(f+8) du +
/f* du + fg* du, which can be rearranged to give [(f+g)*du— [(f+
g) du=[ftdu— [f"du+ [g* du — [g~ du. But this reduces to (16.3). ®

Since —|fl<f<|fl, it follows by Theorem 16.1 that

(16 4) [ffdu < [If1dn

for integrable f. Applying this to integrable f and g gives

< [if-gldp.

(16.5) ’ffdp. —[gdp,

Example 16.1. Suppose that (i is countable, that & consists of all the
subsets of (), and that p is counting measure: each singleton has measure 1.
To be definite, take ) ={1,2,...}). A function is then a sequence x, x,,... .
If x,, is x,, or 0 as m <n or m>n, the function corresponding to
X1 X2, -- has integral I _ x by Theorem 15.1() (consider the decompo-
sition {1},...,{n}, (n + 1, n +2,...}). It follows by Theorem 15.1(iii) that in
the nonnegative case the integral of the function given by {x, } is the sum
L. X, (finite or infinite) of the corresponding infinite series. In the general
case the function is integrable if and only if 7 _,|x,, | is a convergent infinite
series, in which case the integral is ¥, _ x,; —X> _ x .

The function x,,=(—1)™*'m~! is not integrable by this definition and
even fails to have a definite integral, since ¥° _ x) =Y~ _,x, =. This
invites comparison with the ordinary theory of infinite series, according to
which the alternating harmonic series does converge in the sense that
lim,, =¥_ (- D™*'m~! = log2. But since this says that the sum of the first
M terms has a limit, it requires that the elements of the space () be ordered.
If (1 consists not of the positive integers but, say, of the integer lattice points
in 3-space, it has no canonical linear ordering. And if 2, x, is to have the
same finite value no matter what the order of summation, the series must be
absolutely convergent.” This helps to explain why f is defined to be inte-

grable only if [f* du and [f~ du are both finite. |
Example 16.2. In connection with Example 15.1, consider the function
f=31, w21, There is no natural value for [fdA (it is “o — "), and

none is assigned by the definition.

*RUDlNl, p. 76.
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If a function f is bounded on bounded intervals, then each function
fu=Ffi_n ny 18 integrable with respect to A. Since f=lim, f, , the limit of
Jf.dA, if it exists, is sometimes called the “principal value” of the integral of
f. Although it is natural for some purposes to integrate symmetrically about
the origin, this is not the right definition of the integral in the context of
general measure theory. The functions g, =f[_, ., for example also
converge to f, and (g, dA may have some other limit, or none at all; f(x) =x
is a case in point. There is no general reason why f, should take precedence

over g,..
As in the preceding example, f= Z;_ (- D*k~'I, , ., has no integral,
even though the [f,, dA above converge. |

Integration to the Limit

The first result, the monotone convergence theorem, essentially restates Theo-
rem 15.1(iii).

Theorem 16.2. If 0 <f, 1 f almost everywhere, then [f, du 1 [fdp.

Proor. If0<f, 1 fonaset Awith u(A)=0,then0<f,1,1 fl, holds
everywhere, and it follows by Theorem 15.1(iii) and the remark following
Theorem 15.2 that [f, du = [f, I, du 1 [fl,du = [fdu. n

As the functions in Theorem 16.2 are nonnegative almost everywhere, all
the integrals exist. The conclusion of the theorem is that lim, [f, du and
/fdp are both infinite or both finite and in the latter case are equal.

Example 16.3. Consider the space {1,2,...} together with counting mea-
sure, as in Example 16.1. If for each m one has 0 <x,, T x,, as n — o, then
lim, Y x,,=L,xX,,astandard result about infinite series. =

Example 16.4. If p is a measure on &, and %, is a o-field contained in
&, then the restriction p, of u to &, is another measure (Example 10.4). If
f=1,and 4 € %, then

[fdu = [fduo,

the common value being u(A) = uy(A). The same is true by linearity for
nonnegative simple functions measurable %,. It holds by Theorem 16.2 for
all nonnegative f that are measurable %, because (Theorem 13.5)0<f, 1 f
for simple functions f, that are measurable %;. For functions measurable
F,, integration with respect to y is thus the same thing as integration with
respect to - ]
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In this example a property was extended by linearity from indicators to
nonnegative simple functions and thence to the general nonnegative function
by a monotone passage to the limit. This is a technique of very frequent
application.

Example 16.5. For a finite or infinite sequence of measures u, on %,
pn(A) = L, un,(A) defines another measure (countably additive because [A27]
sums can be reversed in a nonnegative double series). For indicators f,

[fan =L [fdu,,

and by linearity the same holds for simple f> 0. If 0 <f, 1 f for simple f,,
then by Theorem 16.2 and Example 163, [fdu = lim, [f, du =
lim, X, [f, du, =X, lim, [f,du,=LX, [fdu, The relation in question thus
holds for all nonnegative f. |

An important consequence of the monotone convergence theorem is
Fatou’s lemma:

Theorem 16.3. For nonnegative f,,
(16.6) Jlimin £, d < timinf [f, du.

Proor. If g,=inf, ., f,, then 0 <g, 1 g=liminf, f,, and the preced-
ing two theorems give [f, du > fg, dp — fgdpu. u

Example 16.6. On (R',%',)), the functions f,=nlg -, and f=0
satisfy f,(x) — f(x) for each x, but [fdA =0and [f, dA = n — . This shows
that the inequality in (16.6) can be strict and that it is not always possible to
integrate to the limit. This phenomenon has been encountered before; see
Examples 5.7 and 7.7. a

Fatou’s lemma leads to Lebesgue’s dominated convergence theorem:

Theorem 16.4. If |f,|<g almost everywhere, where g is integrable, and if
fa = f almost everywhere, then f and the f, are integrable and [f, du — [fdp.

Proor. Assume at the outset, not that the f, converge, but only that
they are dominated by an integrable g, which implies that all the f, as well
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as f*=Ilimsup, f, and f, =liminf f, are integrable. Since g+ f, and
g — f, are nonnegative, Fatou’s lemma gives

Jedun+ [fudu= [limint(g+5,)dn

< liminff(g +f.)du = fgdp. + liminf[f,, du,

and
[gdp — [£*du = [liminf(g - £,) du
< limix:ff(g —f)du = jgdy, — lim sup ff,, du.
Therefore
(16.7) f liminf f, du < liminf [ f.du

< lim sup jf,, du < [limsupf, dp.

(Compare this with (4.9).)
Now use the assumption that f, - f almost everywhere: f is dominated by
g and hence is integrable, and the extreme terms in (16.7) agree with [fdpu.
|

Example 16.6 shows that this theorem can fail if no dominating g exists.

Example 16.7. The Weierstrass M-test foir series. Consider the space
{1,2,...} together with counting measure, as in Example 16.1. If |x, |<M,,
and ¥ M, <o, and if lim, x,, =x,, for each m, thenlim, ¥, x,, =L, X,
This follows by an application of Theorem 16.4 with the function given by the
sequence M,,M,,... in the role of g. This is another standard result on

infinite series [A28]. u

The next result, the bounded convergence theorem, is a special case of
Theorem 16.4. It contains Theorem 5.4 as a further special case.

Theorem 16.5. If u(Q}) < and the f, are uniformly bounded, then f, — f
almost everywhere implies [f, du — [fdu.

The next two theorems are simply the series versions of the monotone and
dominated convergence theorems.
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Theorem 16.6. Iff >0, then (L f, du=1,[f, du.

The members of this last equation are both equal either to « or to the
same finite, nonnegative real number.

Theorem 16.7. If ¥ f, converges almost everywhere and [L}_,f.|<g
almost everywhere, where g is integrable, then L, f, and the f, are integrable

and [, f,dp =L, [f, du.

Corollary. If T, [|f.|du <w, then L,f, converges absolutely almost
everywhere and is integrable, and (L, f,du =L, [f, du.

Proor. The function g= % |f,i is integrable by Theorem 16.6 and is
finite almost everywhere by Theorem 15.2(iii). Hence ¥ |f,| and ¥_f, con-
verge almost everywhere, and Theorem 16.7 applies. |

In place of a sequence {f,} of real measurable functions on (2, &, 1), consider a
family [f,: ¢ > 0] indexed by a continuous parameter . Suppose of a measurable f
that

(16 8) lim f(w)=f(w)
on a set A, where
(16.9) Ae ZF, p(Q—-A4)=0.

A techrical point arises here, since % need not contain the w-set where (16.8) holds:

Exampie 16.8. lLet ¥ consist of the Borel subsets of Q2 =[0,1), and let H be a
nonmeasurable set—a subset of £} that does not lie in % (see the end of Section 3).
Define f,(w) =1 if w equals the fractional part r —}z] of ¢ and their common value
lies in H¢; define f,(w) = 0 otherwise. Each f, is measurable &, but if f(w)= 0, then
the w-set where (16.8) holds is exactly H. [

Because of such examples, the set 4 above must be assumed to lie in %, (Because
of Theorem 13.4, no such assumption is necessary in the case of sequences.)

Suppose that f and the f, are integrable. If I, = [f, du converges to = [fdu as
t = o, then certainly I, — I for each sequence {z,, } going to infinity. But the converse
holds as well: If |, does not converge to 1, then there is a positive e such that
|I —I|>€¢ for a sequence {t,} going to 1nﬁnlty To the question of whether f,
converges to [ the previous theorems apply.

Suppose that (16.8) and |f(w)| < g(w) both hold for @ € A, where A satisfies
(16.9) and g is integrable. By the dominated convergence theorem, f and the f, must
then be integrable and I, — I for each sequence {z,} going to infinity. It follows that
jf, du — [fdu. In this result t could go contmuously to 0 or to some other value
instead of to infinity.
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Theorem 16.8. Suppose that f(w,1) is a measurable and integrable function of w
for each t in (a,b). Let ¢(t) = [f(w, Hu(dw).

(i) Suppose that for € A, where A satisfies (16.9), f(w, t) is continuous in t at t,;
suppose further that | f(w, )| < g(w) for w € A and |t —ty| < 8, where 8 is independent
of w and g is integrable. Then $(t) is continuous at 1.

(ii) Suppose that for w € A, where A satisfies (16.9), f(w, t) has in (a, b) a derivative
f'(w,t); suppose further that |f'(w,t)l <g(w) for o €A and t €(a,b), where g is
integrable. Then ¢(t) has derivative [f'(w, )u(dw) on (a, b).

Proor Part (i) is an immediate consequence of the preceding discussion. To
prove part (ii), consider a fixed ¢. If w € A, then by the mean-value theorem,

=J w,s),

flo,t+h)—f(w,t)
h

where s lies between ¢ and ¢ + h. The ratio on the left goes' to f'(w,t) as h — 0 and
is by hypothesis dominated by the integrable function g(w). Therefore,

Mth -¢(1) =[f(wat+h2 _f(“”t)”(dw) aff’(w,t)#(dw)- .

The condition involving g in part (ii) can be weakened. It suffices to assume that
for each ¢ there is an integrable g(w, t) such that | f'(w, s)| < g(w, t) for w € A and all
s in some neighborhood of .

Integration over Sets

The integral of f over a set A in % is defined by

(16.10) fAfdp, = [Lfdu.

The definition applies if f is defined only on A in the first place (set f=0
outside A). Notice that [, fdu =0 if u(A)=0.

All the concepts and theorems above carry over in an obvious way to
integrals over A. Theorems 16.6 and 16.7 yield this result:

Theorem 16.9. If A, A,,... are disjoint, and if f is either nonnegative or
integrable, then [, 4 fdu ==Y, [, fdu.

"Letting # go to 0 through a sequence shows that each f'(-, 1) is measurable & on A; take it to
be 0, say, elsewhere.
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The integrals (16.10) usually suffice to determine f:

Theorem 16.10. (i) If f and g are nonnegative and [, fdu = [,8du for all
Ain &, and if p is o-finite, then f=g almost everywhere.

(ii) If fand g are integrable and [, fdu = [,gdu forall Ain &, then f=g
almost everywhere.

(iii) If f and g are integrable and [,fdu = [,gdu for all A in P, where &
is a w-system generating & and () is a finite or countable union of P-sets, then
f = g almost everywhere.

Proor. Suppose that f and g are nonnegative and that [, fdu < [,gdu
for all A4 in & If p is o-finite, there are Fsets A, such that A4 1
and p(A )< If B, =10<g <f, g <nl, then the hypothesized inequal-
ity applied to A,NB, implies [, np fdu <[4 np §du < (finite be-
cause A, NB, has finite measure and g is bounded there) and hence
/Iy n(f—g)du=0. But then by Theorem 15.2(ii), the intcgrand is O
almost everywhere, and so u(A, N B,) = 0. Therefore, ul0 <g <f, g <wj=
0, so that f <g almost everywhere; (i) follows.

The argument for (ii) is simpler: If f and g are integrable and [, fdu <
[48du for all A in &, then [I,  (f—g)du =0and hence ulg <f]=0by
Theorem 15.2(ii).

Part (iii) for nonnegative f and g follows from part (ii) together with
Theorem 10.4. For the general case, prove that f*+g =f"+g" almost
everywhere. [

Densities

Suppose that & is a nonnegative measurable function and define a measure v
by (Theorem 16.9)

(16.11) v(A)=[ddu, A€F;
A

& is not assumed integrable with respect to p. Many measures arise in this
way. Note that u(A) = 0 implies that »(A) = 0. Clearly, » is finite if and only
if & is integrable . Another function &' gives rise to the same v if 6 =6’
almost everywhere. On the other hand, v(A4) = [,6'dun and (16.11) together
imply that & = 8’ almost everywhere if u is o-finite, as follows from Theorem
16.1001).

The measure v defined by (16.11) is said to have density & with respect
to u. A density is by definition nonnegative.

Formal substitution dv =& du gives the formulas (16.12) and (16.13).



214 INTEGRATION

Theorem 16.11. [If v has density & with respect to ., then
(16.12) [fdv=[fodn

holds for nonnegative f. Moreover, f (not necessarily nonnegative) is integrable
with respect to v if and only if {6 is integrable with respect to p, in which case
(16.12) and

(16.13) ffduszad,u

both hold. For nonnegative f, (16.13) always holds.

Here f§ is to be taken as 0 if f=0 or if § = 0; this is consistent with the
conventions (15.2). Note that ¥[8 = 0] = 0.

Proor. If f=1,, then [fdv=v(A), so that (16.12) reduces to the
definition (16.11). If f is a simple nonnegative function, (16.12) then follows
by linearity. If f is nonnegative, then [f, dv = [f,6du for the simple func-
tions f, of Theorem 13.5, and (16.12) follows by a monotone passage to the
limit—that is, by Theorem 16.2. Note that both sides of (16.12) may be
infinite.

Even if f is not nonnegative, (16.12) applies to |f|, whence it follows that
f is integrable with respect to v if and only if f6 is integrabie with respect to
w. And if f is integrable, (16.12) follows from differencing the same result for
f* and f~. Replacing f by fI, leads from (16.12) to (16.13). m

Example 16.9. If v(A) =u(A NA,), then (16.11) holds with § =1, , and
(16.13) reduces to [, fdv = [, 4 fdu. |

Theorem 16.11 has two features in common with a number of theorems
about integration:

(i) The relation in question, (16.12) in this case, in addition to holding for
integrable functions, holds for ail nonnegative functions—the point being
that if one side of the equation is infinite, then so is the other, and if both are
finite, then they have the same value. This is useful in checking for integrabil-
ity in the first place.

(ii) The result is proved first for indicator functions, then for simple
functions, then for nonnegative functions, then for integrable functions. In
this connection, se¢¢ Examples 16.4 and 16.5.

The next result is Scheffé’s theorem.
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Theorem 16.12. Suppose that v,(A) = [,8, dy and v(A)= [,6du for
densities 8, and 8. If

(16.14) v, (Q)=v(Q)<ew, n=12,...,

and if 6, —> & except on a set of y-measure 0, then

(16.15) sup lv( A) —v,(A)| < [16-8,ldu 0.
Ae F Q

Proor, The inequality in (16.15) of course follows from (16.5). Let
g, =6 —38,. The positive part g of g, converges to 0 except on a set of
p-measure 0. Moreover, 0 <g7 <& and § is integrable, and so the domi-
nated convergence theorem applies: [g, du — 0. But [g, du =0 by (16.14),
and therefore

flg,,ldu=f g, du — g, du
0 g, 0] [g,<0]

=2 du =2 tdu 0. [ ]
'/;gnzﬂlg" # [ﬂg" #

A corollary concerning infinite series follows immediately—take p as
counting measure on Q ={1,2,...}.

Corollary. If Y x,,=1L,X, <o, the terms being nonnegative, and if
lim, x,_,, =x,, foreach m, then lim, ¥ |x, . —x,|=0.Ify, is bounded, then
limn zm-ymxnm = Z:mym‘xm‘

Change of Variable

Let (), %) and (), %") be measurable spaces, and suppose that the
mapping T: (1 - £}’ is measurable &%/ .%". For a measure u on %, define a
measure uT ! on & by

(16.16) uT™YA) =w(T7A), AeF,

as at the end of Section 13.

Suppose f is a real function on () that is measurable %", so that the
composition fT is a real function on {2 that is measurable % (Theorem
13.1(i1)). The change-of-variable formulas are (16.17) and (16.18). If A'=Q/,
the second reduces to the first.
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Theorem 16.13. If f is nonnegative, then

(16.17) [Qf( To)u(dew) = _I;I’f(w')p,T_'(dw').

A function f (not necessarily nonnegative) is integrable with respect to pT—1 if
and only if fT is integrable with respect to pn., in which case (16.17) and

(16.18) quA,f(Tw)'u(dw) =L’f(w')uT_'(dw')

hold. For nonnegative f, (16.18) always holds.

Proor. If f=1,, then fT =1;-.,, and so (16.17) reduces to the defini-
tion (16.16). By linearity, (16.17) holds for nonnegative simple functions. If f,
are simple functions for which 0 <f 1 f, then 0<f,T 1 fT, and (16.17)
follows by the monotone convergence theorem.

An application of (16.17) to |f| establishes the assertion about integrabil-
ity, and for integrable f, (16.17) foliows by decomposition into positive and
negative parts. Finally, if f is replaced by fI,, (16.17) reduces to (16.18). =

Example 16.10. Suppose that (0, ) =(R', #") and T = ¢ is an ordi-
nary real function, measurable %. If f(x)=x, (16.17) becomes

(16.19) [ o(@)u(dw) = [ xue~'(dx).
Q R
If ¢ =F;x,1, is simple, then ue~' has mass u(A,) at x,, and each side of

(16.19) reduces to L,x;ul A;). [

Uniform Iniegrability

If f is integrable, then |fljj712 «; BO€S to O almost everywhere as a — o and is
dominated by |f|, and hence

(16.20) lim |fldp = 0.

a— o [|f|2a]

A sequence {f,) is uniformly integrable if (16.20) holds uniformly in n:

(16.21) im sup {f,ldpn =0.
]

2o , lfdlze
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If (16.21) holds and () <, and if « is large enough that the supremum in
(16.21) is less than 1, then

(16.22) Jifddp < an(@) +1,

and hence the f, are integrable. On the other hand, (16.21) always holds if the f, are
uniformly bounded, but the f, need not in that case be integrable if u({)) = <. For
this reason the concept of uniform integrability is interesting only for u finite

If # is the maximum of |f| and |g|, then

[ If+eldu<2[ hdp<2f Ifldu+2f Igldp
If+gl22a hz>a Iflza lglza

Therefore, if {f,} and {g,} are uniformly integrable, so is {f, + g,.}.
Theorem 16.14. Suppose that u({}) < and f, = f almost everywhere.

(i) If the f,, are uniformly integrable, then f is integrable and

(16.23) ff" du — ffd,u.

(ii) If f and the f, are nonnegative and integrable, then (16.23) implies that the f,,
are uniformly integrable.

Proor. If the f. are uniformly integrable, it follows by (16.22) and Fatou’s
lemma that f is integrable. Define

(a) —

o iflfi<a o [ iflfl<e
n 0 iflfl>e,

0 iflflza.

If ullfl=a)=0, then f!*) > f(*) almost everywhere, and by the bounded conver-
gence theorem,

(16.24) [ridu ~ [ dp.
Since

(16.25) [fadu=[firdu=[ _frdu
and

(16.26) [fdu— [ dp={  fdu,

Iflza
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it follows from (16.24) that

[frdn~ [fdn

lim sup ssup[ |fn|d;.(,+f TiE™
n a lf lza flza

And now (16.23) follows from the uniform integrability and the fact that u[lf|=a]=10
for all but countably many a.

Suppose on the other hand that (16.23) holds, where f and the f, are nonnegative
and integrable. If u[f=a]=0, then (16.24) holds, and from (16.25) and (16.26)

follows
(16.27) ff} fodu— | fdpu.

Since f is integrable, there is, for given €, an « such that the limit in (16 27) is less
than ¢ and u[f=a)=0. But then the integral on the left is less than e for all »
exceeding some n,. Since the f, are individually integrable, uniform integrability
follows (increase «). [ ]

Corollary. Suppose that u(Q2) <. If f and the f, are integrable, and if f, - f
almost everywhere, then these conditions are equivalent:

() f, are uniformly integrable;
Gi) [If—fldu —0;
(i) fIf,ldu = [Ifldp.

Proor. If (i) holds, then the differences |f—f,| are uniformly integrable, and
since they converge to 0 almost everywhere, (ii) follows by the theorem. And (i)
implies (iii) because || f|—|f, || <|f —f,|. Finally, it follows from the theorem that (iii)
implies (i). [ |

Suppose that
(16.28) sup j|f,,|‘+f dy < w

for a positive €. If K is the supremum here, then

1 K
|f.ldp < — If, ' dp < =,
'I;If,,lzal « f[lf,,lza]f a

and so {f,} is uniformly integrable.

Complex Functions

A complex-valued function on Q has the form f(w)=g(w) + ih(w), where g and k
are ordinary finite-valued real functions on Q. Ut is, by definition, measurable % if g
and £ are. If g and A are integrable, then f is by definition integrable, and its
integral is of course taken as

(16.29) f(g+ih)dp=fgdp +i[hdy.
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Since max{lgl, |k} <|fl<|g|+|hl, f is integrable if and only if [|f| du <, just as in
the real case.

The linearity equation (16.3) extends to complex functions and coefficients—the
proof requires only that everything be decomposed into real and imaginary parts.
Consider the inequality (16.4) for the complex case:

sflfld,u.

(16.30) ’ f fdu

If f=g +ih and g and h are simple, the corresponding partitions can be taken to be
the same (g = X, x, [, and h=1%,y,1, ), and (16.30) follows by the triangle inequal-
ity. For the general integrable f, represent g and A as limits of simple functions
dominated by |f|, and pass to the limit.

The results on integration to the limit extend as well. Suppose that f, =g, +ih,
are complex functions satisfying £, [|f,|du <. Then T, flg,| du < o, and so by the
corollary to Theorem 16.7, L, g, Iis integrable and integrates to 2, [g, du. The same
is true cof the imaginary parts, and hence ¥, f, is integrable and

(16 31) fsz dp = fok du.
k k

PROBLEMS

16.1. 1391 Suppose that u(€}) <o and f, are uniformly bounded.
(a) Assume f, — f uniformly and deduce [f, du — [fdu from (16.5).
(b) Use part (a) and Egoroff’s theorem to give another proof of Theorem 16.5.

16.2. Prove that if 0 <f, —f almost everywhere and [f, du <A <o, then f is
integrable and [fdu <A. (This is essentially the same as Fatou’s lemma and is
sometimes called by that name.)

16.3. Suppose that f, are integrable and sup,, [f, dp < . Show that, if f,_ 1 f, then
f is integrable and [f, du — [fdu. This is Beppo Levi’s theorem.

16.4. (a) Suppose that functions a,,b,, f, converge almost everywhere to func-
tions a, b, f, respectively. Suppose that the first two sequences may be integra-
ted to the limit—that is, the functions are all integrable and fa, du — fadyu,
fb,du — fbdu. Suppose, finally, that the first two sequences enclose the third:
a, <f,<b, almost everywhere. Show that the third may be integrated to the
limit.

(b) Deduce Lebesgue’s dominated convergence theorem from part (a).

16.5. About Theorem 16.8:

(a) Part (i) is local: there can be a different set A for each ¢,. Part (ii) can be
recast as a local theorem. Suppose that for w € 4, where A satisfies (16.9),
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16.6.

16.7.

16.8.

16.9.

16.10.

16.11.

16.12.

INTEGRATION

f(w, t) has derivative f'(w, y) at t4; suppose further that

flo,tg+h) - f(o,1y)
h

(16.32) <gw)

for w € A and 0 <|h| < 8, where & is independent of w and g, is integrable.
Then ¢'(¢y) = [f'(w, tylu(dw).

The natural way to check (16.32), however, is by the mean-value theorem,
and this requires (for w € A) a derivative throughout a neighborhood of ¢,
(b) If n is Lebesgue measure on the unit interval (), (a,b)=(0,1), and
flw, 1) =1, (o), then part (i) applies but part (ii) does not. Why? What about
(16.32)?

Suppose that flw, -) is, for each w, a function on an open set W in the
complex plane and that f(-, z) is for z in W measurable % and integrable.
Suppose that A satisfies (16.9), that f(w, -) is analytic in W for w in A, and
that for each z; in W there is an integrable g{-, z,) such that |f'(w, z)l <
g(w, z,) for all w €A and all z in some neighborhood of z,. Show that
[f(w, z)u(dw) is analytic in W,

(a) Show that if |f,i<g and g is integrable, then {f,} is uniformly integrable.
Compare the hypotheses of Theorems 16.4 and 16.14

(b) On the unit interval with Lebesgue measure, let f, = (rn/log n)l, ,-1, for
n > 3. Show that the f, are uniformly integrable (and [f, du — 0) although
they are riot dominated by any integrable g.

(¢) Show for f,, =nlg -1, — nl,-1 ,,-1, that the f, can be integrated to the
limit (Lebesgue measure) even though the f,, are not uniformly integrable.

Show that if f is integrable, then for each e there is a § such that u(A4)<é
implies [ |fldu <e.

T Suppose that u(£2) <. Show that {f,} is uniformly integrable if and only
if () flf{dp is bounded and (ii) for each ¢ there is a § such that p(A4)<$
implies [,if,ldu <e for all n.

2.19169 7 Assume u(Q) <co.
(a) Show by examples that neither of the conditions (i) and (ii) in the
preceding problem implies the other.

(b) Show that (ii) implies (i) for all sequences {f,} if and only if u is
nonatomic.

Let f be a complex-valued function integrating to re‘®, r > 0. From [(| f(w)|—
e f(wMuldu) = [1fl du —r, deduce (16.30).

11.5 1t Consider the vector lattice .# and the functional A of Problems 11.4
and 11.5. Let u be the extension (Theorem 11.3) to F=0(%,) of the set
function uy on F.

(a) Show by (11.7) that for positive x,y;,y, one has v([f>1]X (0, x])=
xpol f> 1 =xulf>1]and v(y, < f<y, )X O, xD =xuly, <f<y,].
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(b) Show that if f€.#, then f is integrable and

A(f) = [fdn.

(Consider first the case f=>0.) This is the Daniell-Stone representation
theorem.

SECTION 17. THE INTEGRAL WITH RESPECT TO LEBESGUE
MEASURE

The Lebesgue Integrai on the Line

A real measurable function on the line is Lebesgue integrable if it is
integrable with respect to Lebesgue measure A, and its Lebesgue integral
ffdA is denoted by [f(x)dx, or, in the case of integration over an interval, by
[2f(x}dx. The theory of the preceding two sections of course applies to the
Lebesgue integral. It is instructive to compare it with the Riemann integral.

The Riemann Integral

A real function f on an interval (a, b] is by definition™ Riemann integrable,
with integral r, if this condition holds: For each € there exists a § with the
property that

(17.1) 1= Lf(x)MI)| <e

if {1} is any finite partition of (a,b] into subintervals satisfying A([;) < § and
if x, €1, for each i. The Riemann integral for step functions was used in
Section 1.

Suppose that f is Borel measurable, and suppose that f is bounded, so
that it is Lebesgue integrable. If f is also Riemann integrable, the r of (17.1)
must coincide with the Lebesgue integral [2f(x)dx. To see this, first note
that letting x, vary over [; leads from (17.1) to

(17.2) r— Y supf(x)-A(l)| <e.

i x€l;

Consider the simple function g with value sup, ., f(x) on I;. Now f<g, and
the sum in (17.2) is the Lebesgue integral of g. By monotonicity of the

TFor other definitions, see the first problem at the end of the section and the Note on
terminology following it.
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Lebesgue integral, [2f(x)dx <f be(x)dx <r + €. The reverse inequality fol-
lows in the same way, and so [Pf(x) dx = r. Therefore, the Riemann integral
when it exists coincides with the Lebsegue integral.

Suppose that f is continuous on [a, b]. By uniform continuity, for each e
there exists a & such that |f(x) —f(y) <e/(b—a)if [x —y[ <8 If M([)<$
and x; €[, then g =1, f(x)I, satisfies |f-gl<e/(b—a) and hence
If"’fdx /. gdxl <e. But this is (17.1) with r replaced (as it must be) by the
Lebesgue integral [°fdx: A continuous function on a closed interval is
Riemann integrable.

Example 17.1. 1f f is the indicator of the set of rationals in (0, 1], then the
Lebesgue integral [j(x)dx is 0 because f= 0 almost everywhere. But for an
arbitrary partition {7,} of (0,1] into intervals, I, f(x JA(I) with x, €1, is 1 if
each x, is taken from the rationals and 0 if each x; is taken from the
irrationals, Thus f is not Riemann integrable. ®

Example 17.2. For the f of Example 17.1, there exists a g (namely, g = 0)
such that f=g almost everywhere and g is Riemann integrable. To show
that the Lebesgue theory is not reducible to the Riemann theory by the
casting out of sets of measure 0, it is of interest to produce an f (bounded
and Borel measurable) for which no such g exists.

In Examples 3.1 and 3.2 there were constructed Borel subsets A of (0, 1]
such that 0 < A(A) <1 and such that A(ANT)> 0 for each subinterval [ of
(0,1). Take f=1,. Suppose that f=g almost everywhere and that {/} is a
decomposition of (0, 1] into subintervals. Since A(I,NAN[f=gD) =AMI,NA)
> 0, it follows that g(y;)=f(y,) =1 for some y, in I, N A, and therefore,

(17.3) L e(u)A) = 1> A(A),

If g were Riemann integrable, its Riemann integral would coincide with the
Lebesgue integrals fgdx = [fdx = A(A4), in contradiction to (17.3). |

It is because of their extreme oscillations that the functions in Examples
17.1 and 17.2 fail to be Riemann integrable. (It can be shown that a bounded
function on a bounded interval is Riemann integrable if and only if the set of
its discontinuities has Lebesgue measure 0.%) This cannot happen in the case
of the Lebesgue integral of a measurable function: if f fails to be Lebesgue
integrable, it is because its positive part or its negative part is too large, not
because one or the other is too irregular.

*See Problem 17.1.
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Example 17.3. It is an important analytic fact that

(17.4) tim [ v =7

The existence of the limit is simple to prove, because [77,, x~'sin xdx
alternates in sign and its absolute value decreases to 0; the value of the limit
will be identified in the next section (Example 18.4). On the other hand,
x~'sin x is not Lebesgue integrable over (0, ), because its positive and
negative parts integrate to c. Within the conventions of the Lebesgue theory,
(17.4) thus cannot be written [5x~'sin xdx = 7/2—although such “im-
proper” integrals appear in calculus texts. It is, of course, just a question of

choosing the terminology most convenient for the subjeci at hand. [ |

The function in Example 17.2 is not equal almost everywhere to any
Riemann integrable function. Every Lebesgue integrable function can, how-
ever, be approximated in a certain sense by Riemann integrable functions of
two kinds.

Theorem 17.1.  Suppose that [|f|dx < « and € > 0.

(i) There is a step function g = Lf_,x;1, , with bounded intervals as the A,,
such that [|f—gldx <e.

(ii) There is a continuous integrable h with bounded support such that
[If—hldx <e.

Proor. By the construction (13.6) and the dominated convergence theo-
rem, (1) holds if the A, are not required to be intervals; moreover, A(A4;) <
for each i for which x; # 0. By Theorem 11.4 there exists a finite disjoint
union B; of intervals such that A(4;AB,) < e/k|x,|. But then ¥;x,1, satisfies
the requirements of (i) with 2¢ in place of e.

To prove (ii) it is only necessary to show that for the g of (i) there is a
continuous % such that [|g — k| dx <e. Suppose that A; =(a;, b,]; let k£ (x)
be 1 on (a;, b;] and 0 outside (a;, — 8, b, + 6], and let it increase linearly from
0 to 1 over {a; — 8, a;] and decrease linearly from 1 to 0 over (b, b; + §].
Since [[I, —h;ldx—>0 as 6§ >0, h=Xx;h, for sufficiently small & will
satisfy the fequirements. |

The Lebesgue integral is thus determined by its values for continuous
functions.”

"This provides another way of defining the Lebesgue integral on the line. See Problem 17.13.
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The Fundamental Theorem of Calculus

Adopt the convention that ff = — [ if a > . For positive #,

<3 [0y - F)l @

X

l%f””f(y)dy—f(x)
<sup[lf(y) = f(x): x <y <x + 4],

and the right side goes to 0 with % if f is continuous at x. The same thing
holds for negative #, and therefore [ff(y)dy has derivative f(x):

(17.5) & [ 1) & =1(x)

if f is continuous at x.
Suppose that F is a function with continuous derivative F' = f; that is,
suppose that F is a primitive of the continuous function f. Then

(17.6) j;bf(x)dx=];bF’(x)dx=F(b)—F(a),

as follows from the fact that F(x) — F(a) and [ f(y}dy agree at x =a and
by (17.5) have identical derivatives. For continuous f, (17.5) and (17.6) are
two ways of stating the fundamental theorem of calculus. To the calculation
of Lebesgue integrals the methods of elementary calculus thus apply.

As will follow from the general theory of derivatives in Section 31, (17.5) holds
outside a set of Lebesgue measure 0 if f is integrable—it need not be continuous. As
the following example shows, however, (17.6) can fail for discontinuous f.

Example 17.4. Deﬁne F(x)=x?sinx? for 0 <x < 3 and F(x) =90 for x <0 and
for x> 1. Now for 3 <x <1 define F(x) in such a way that F is continuously
differentiable over (0,«). Then F is everywhere differentiable, but F'(0)=0 and
F(x)=2xsinx~2~2x"lcosx~2 for 0 <x < 3. Thus F' is discontinuous at 0; F" is,
in fact, not even integrable over (0, 1], which makes (17.6) impossible for a = 0.

For a more extreme example, decompose (0, 1) into countably many subintervals

a,,b,). Define G{x)=0 for x <0 and x> 1, and on (a,,b,] define G(x)=F(x —
a )/(b —a,)). Then G is everywhere differentiable, but (17.6) is impossible for G if
(a, b] COntains any of the (a,, b, ], because G is not integrable over any of them. [ ]

Change of Variable

For

(17.7) [a,6] 5 [u,0] LR,
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the change-of-variable formula is

(1738) [FET(x) de= ["f(y) ay.

If T' exists and is continuous, and if f is continuous, the two integrals are
finite because the integrands are bounded, and to prove (17.8) it is enough to
let b be a variable and differentiate with respect to it

With the obvious limiting arguments, this applies to unbounded intervals
and to open ones:

Example 17.5. Put T(x)=tanx on (—7w/2,7/2). Then T{x)=1+
T2(x), and (17.8) for f(y)=(1+y*}~! gives

2] dy
(17.9) / T =

The Lebesgue Integral in R*

The k-dimensional Lebesgue integral, the integral in (R¥, 2% 1)), is de-
noted [f(x)dx, it being understood that x = (x, ..., x,). In low-dimensional
cases it is also denoted [, f(x,, x,) dx, dx,, and so on.

As for the rule for changing variables, suppose that T: U/ - R*, where U is
an open set in R*. The map has the form Tx = (¢,(x),...,£,(x)); it is by
definition continuously differentiable if the partial derivatives ¢;(x) =dt, /dx;
exist and are continuous in U. Let D, ={r,(x)] be the Jacobian matrix, let
J(x) = det D_ be the Jacobian determinant, and let V'=TU.

Theorem 17.2. Let T be a continuously differentiable map of the open set U
onto V. Suppose that T is one-to-one and that J(x)+ 0 for all x. If f is
nonnegative, then

(17.10) fuf(Tx)IJ(x)I dx = [Vf(y) dy.

By the inverse-function theorem [A35], V' is open and the inverse point
mapping T~ is continuously differentiable. It is assumed in (17.10) that f:
V- R' is a Borel function. As usual, for the general f, (17.10) holds with | f|
in place of f, and if the two sides are finite, the absolute-value bars can be
removed; and of course f can be replaced by fl; or fl,,.

*See Problem 17.11 for extensions.
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Example 17.6. Suppose that T is a nonsingular linear transformation on
U=V =R* Then D, is for each x the matrix of the transformation. If T is
identified with this matrix, then (17.10) becomes

(17.11) IdetTlfo(Tx) dx = fo(y)dy.

If f=1I,,, this holds because of (12.2), and then it follows in the usual
sequence for simple f and for the general nonnegative f: Theorem 17.2 is
easy in the linear case. ]

Example 17.7. In R? take U={(p,0): p>0, 0<8<27] and T(p,0) =
(pcos@, psin 8). The Jacobian is J(p,0) =p, and (17.10) gives the formula
for integrating in polar coordinates:

(17.12) [[M f(pcost,psin8)pdpdb = [/sz(x,y) dxdy.

0<8<2m

Here V is R* with the ray {(x,0): x > 0} removed; (17.12) obviously holds
even though the ray is included on the right. If the constraint on @ is
replaced by 0 < 6 <41, for example, then (17.12) is false (a factor of 2 is
needed on the right). This explains the assumption that T is one-to-one. &

Theorem 17.2 is not the strongest possible; it is only necessary to assume that T is
one-to-one on the set Uy =[x € U: J(x)+ 0] This is because, by Sard’s theorem,’
Ak(V_ TUO) =,

Proor oF Tueorem 17.2. Suppose it is shown that

(17.13) fU_f(Tx)IJ(x)I dx > fo(y)dy

for nonnegative f. Apply this to T-': ¥~ U, which [A35] is continuously differen-
tiable and has Jacobian J~ (T !y) at y:

ng(T—ly)IJ‘l(T‘ly)My?_fug(x)dx

for nonnegative g on V. Taking g(x)=f(Tx)|J(x)l here leads back to (17.13), but
with the inequality reversed. Therefore, proving (17.13) will be enough.
For f=1,,, (17.13) reduces to

(17.14) Ll](x)ldxz).k(TA).

TSP]VAK, p.- 72.
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Each side of (17.14) is a measure on 2= U N 2L If & consists of the rectangles A
satisfying A~ C U, then & is a semiring generating %, U/ is a countable union of
ofsets, and the left side of (17.14) is finite for A in &7 (sup ,-|J| < ). It follows by
Corollary 2 to Theorem 11.4 that if (17.14) holds for 4 in &7, then it holds for A in
%. But then (linearity and monotone convergence) (17.13) will follow.

Proof of (17.14) for A in &Z. Split the given rectangle A into finitely many
subrectangles Q, satisfying

(17.15) diam Q, <5,

"8 to be determined. Let x,; be some point of Q,. Given ¢, choose § in the first place
so that [J(x) —J(x)| <€ if x,x' €A™ and |x — x'| <. Then (17.15) implies

(17.16) ZiJ(x,)IAk(Q,-)sLIJ(x)Idx+eAk(A).

Let Q€ be arectangle that is concentric with Q, and similar to it and whose edge
lengths are those of Q; multiplied by 1 + €. For x in U consider the affine transforma-
tion

(17.17) ¢, z=D(z—x) +Tx, zERK;

¢,z will [A34] be a good approximation to Tz for z near x. Suppose, as will be
ploved in a moment, that for each € there is a § such that, if (17.15) holds, then, for
each i, ¢, approximates T so well on Q; that

(17.18) TQ,Cé, O}°.

By Theorem 12.2, which shows in the nonsingular case how an affine transforma-
tion changes the Lebesgue measures of sets, A, (¢, Q;F€)=|J(x)Ir,(Q¢). 1f (17.18)
holds, then

(17.19)  A(TA) = Ta(T0:) < Lhe(6,07)
= IR ) =1+ ) B (x)Ia(Q)-

(This, the central step in the proof, shows where the Jacobian in (17.10) comes from.)
If for each e there is a § such that (17.15) implies both (17.16) and (17.19), then
(17.14) will follow. Thus everything depends on (17.18), and the remaining problem is
to show that for each ¢ there is a § such that (17.18) holds if (17.15) does.

Proof of (17.18). As (x, z) varies over the compact set A~Xx[z: |z|=1], |D 'zl is
continuous, and therefore, for some c,

(17.20) |D; 'zl <clzl  forx€A, zeR-

Since the t;; are uniformly continuous on A7, § can be chosen so that |¢;(z) — ,,(x)l
<e/k’c for all j,l if z,x€A and |z— x|<6 But then, by linear approXimation
[A34: (16)), |Tz - Tx— D (z —x)l <ec™ !z —x| <ec™'8. If (17.15) holds and 8 <1,
then by the definition (17.17),

(17.21) Tz — ¢, z1<e/c  forzeQ,.
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To prove (17.18), note that z € Q, implies

|6, ' Tz —2l=¢p ' Tz — ¢5 ', 2| =D (Tz — &, 2)

<c|lTz - ¢, zI <,

where the first inequality follows by (17.20) and the second by (17.21). Since ¢, 'Tz is
within ¢ of the point z of Q,, it lies in Q; < ¢>;,'Tz €QorTz€¢, 0 Hence
(17.18) holds, which completes the proof. ]

Stieltjes Integrals

Suppose that F is a function on R* satisfying the hypotheses of Theorem
12.5, so that there exists a measure p such that u(A4)=A_ F for bounded
rectangles A. In integrals with respect to w, u{dx) is often replaced by
dF(x):

(17.22) [ Sy dF(x) = [ fOx)u(x).

The left side of this equation is the Stieltjes integral of f with respect to F;
since it is defined by the right side of the equation, nothing new is involved.

Suppose that f is uniformly continuous on a rectangle A, and suppose
that A is decomposed into rectangles A, small enough that |f(x) — f(y)| <
e/u(A) for x,y €A,,. Then

[0 @) = Zor)8,F] <o

for x,, €A,,. In this case the left side of (17.22) can be defined as the limit of
these approximating sums without any reference to the general theory of
measure, and for historical reasons it is sometimes called the
Riemann—Stieltjes integral; (17.22) for the general f is then called the
Lebesgue—Stielties integral. Since these distinctions are unimportant in
the context of general measure theory, [f(x)dF(x) and [fdF are best
regarded as merely notational variants for [f(x)u(dx) and [fdu.

PROBLEMS

Let f be a bounded function on a bounded interval, say [0, 1). Do not assume that f
is a Borel function. Denote by L, f and L*f (L for Lebesgue) the lower and upper
integrals as defined by (15.9) and (15.10), where u is now Lebesgue measure A on the
Borel sets of [0,1]. Denote by R, f and R*f (R for Riemann) the same quantities but
with the outer supremum and infimum in (15.9) and (15.10) extending only over finite
partitions of [0, 1] into subintervals. It is obvious (see {15.11)) that

(17.23) R,f<L,f<L*<R*.
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Suppose that f is bounded, and consider these three conditions:

(i) There is an r with the property that for each € there is a 8 such that (17.1) holds
if {I,} partitions [0, 1) into subintervals with A(I) <8 and if x,€ I
(i) R, f=R*.
(iii) If Dy is the set of points of discontinuity of f, then A(D;) = Q.

The conditions are equivalent.

17.1. Prove:
(a) D; is a Borel set.
(b) (i) implies (ii).
(¢) (i) implies (iii).
(d) (iii) implies ().
(e) The r of (i) mast coincide with the R, f= R*f of (ii).

A note on terminology. An f on the general (Q, %, 1) is defined 10 be integrable
not if (15.12) holds, but if (16.1) does. And an f on [0,1] is defined to be integrable
with respect to Lebesgue measure not if L, f= L*f holds, but, rather, if

(17.24) [0'|f(x)|dx<oo

does. The condition L, f= L*f is not at issue, since for bounded f it always holds if
f is a Borel function, and in this book f is always assumed to be a Borel function
unless the contrary is explicitly stated. For the Lebesgue integral, the question is
whether f is small enough that (17.24) holds, not whether it is sufficiently regular that
L, f=L*f. For the Riemann integral, the terminology is different because R, f <R*f
holds for all sorts of important Borel funcCtions, and one way to define Riemann
integrability is to require R, f= R*f. In the context of general integration theory, one
occasionally looks at the Riemann integral, but mostly for illustration and compari-
son.

17.2. 3.15 17.17 (a) Show that an indicator I, for .4 c[0,1] is Riemann inte-

grable if and only if A is Jordan measurable.
(b) Find a Riemann integrable function that is not a Borel function.

17.3. Extend Theorem 17.1 to R*.

17.4. Show that if f is integrable, then

lim fIf(x+t)=f(x)ldx=0.
1—Q
Use Theorem 17.1.

17.5. Suppose that p is a finite measure on #* and A is closed. Show that
u(x + A) is upper semicontinuous in x and hence measurable.

17.6. Suppose that [i|f(x)| dx < «. Show that for each e; Alx: x>a, | f(x)[>€]—>0
as o — «, Show by example that f(x) need not go to 0 as x = « (even if [ is
continuous),



230

17.7.

17.8.

17.9.

17.10.

17.11.

17.12.

17.13.

17.14.

INTEGRATION

Let f,‘()c)z)c"‘l —2x2*~! Calculate and compare [J¥%_,f.(x)dx and
X5~ Jof(x)dx. Relate this to Theorem 16.6 and to the corollary to Theorem
16.7.

Show that (1 +y2)~' has equal integrals over (—o, — 1),(—1,0),(0, 1),(1, «).
Conclude from (17.9) that fJ(1 +y?)~'dy =7/4. Expand the integrand in a
geometric series and deduce Leibniz’s formula

E=1_1 1 1

7 3t3 Tt

by Theorem 16.7 (note that its corollary does not apply).

Show that if f is integrable, there exist Continuous, integrable functions g,
such thatg (x) — f(x) except on a set of Lebesgue measure 0. (Use Theorem
17.1Gii) with e =n~2)

13.9 1791 Let f be a finite-valued Borel function over [0,1] By the
following steps, prove Lusin’s theorem: For each € there exists a continuous
function g such that A[x €(0,1): f(x)#g(x)] <e.

(a) Show that f may be assumed integrable, or even bounded.

(b) Let g, be continuous functions converging to f almost everywhere.
Combine Egoroff’s theorem and Theorem 12.3 to show that convergence
is uniform on a compact set K such that A((0,1) — K) <e. The limit
lim, g,(x)=f(x) must be continuous when rcstricted to K.

(c) Exhibit (0,1) — K as a disjoint union of open intervals I, [A12], define g as
f on K, and define it by linear interpolation on each /,.

Suppose in (17.7) that T" exists and is continuous and f is a Borel function,
and suppose that [f| f(Tx)T'(x)| dx < co_ Show in steps that [7, ,| f(¥)l dy <
and (17.8) holds. Prove this for (a) f continuous, (b) f=1, ., (€} f=1Ig,
(d) f simple, (e) f> 0, () f general.

16.127 Let _# consist of the continuous functions on R!' with compact
support. Show that .# is a vector lattice in the sense of Problem 11.4 and has
the property that fe_# implies f A 1 €_# (note that 1 & ). Show that the
o-field & generated by .~ is 2. Suppose A is a positive linear functiona! on
-Z; show that A has the required continuity property if and only if f,(x)}0
uniformly 1n x implies A(f,) — 0. Show under this assumption on A that there
is a measure x on %' such that

(17.25) A(f)= [fdu, fe2.

Show that g is o-finite and unique. This is a version of the Riesz representation
theorem.

T Let A(f) be the Riemann integral of f, which does exist for f in £.
Using the most elementary facts about Riemann integration, show that the g
determined by (17.25) is Lebesgue measure. This gives still another way of
constructing Lebesgue measure.

T Extend the ideas in the preceding two problems to R*.
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SECTION 18. PRODUCT MEASURE AND FUBINI'S THEOREM

Let (X, Z) and (Y, 2') be measurable spaces. For given measures p and v
on these spaces, the problem is to construct on the Cartesian product X XY
a product measure m such that w(A4 X B) = u(A)w(B) for AcX and BCY.
In the case where p and v are Lebesgue measure on the line, = will be
Lebesgue measure in the plane. The main result is Fubini’s theorem, accord-
ing to which double integrals can be calculated as iterated integrals.

Product Spaces

It is notationally convenient in this section to change from (Q}, ) to (X, 2")
and (Y, Z'). In the product space X X Y a measurable rectangle is a product
A X B for which A € & and B € %. The natural class of sets in X XY to
consider is the o-field 2°X % generated by the measurable rectangles. (Of
course, Z X % is not a Cartesian product in the usual sense.)

Example 18.1. Suppose that X=Y =R! and 2= &= #'. Then a mea-
surable rectangle is a Cartesian product A X B in which 4 and B are linear
Borel sets. The term rectangle has up to this point been reserved for
Cartesian products of intervals, and so a measurable rectangle is more
general. As the measurable rectangles do include the ordinary ones and the
latter generate %2, it follows that 2% c &' x #'. On the other hand, if A
is an interval, {B: A X B € %?] contains R' (A xR'=U (A x(-n,n)e
H#?) and is closed under the formation of proper differences and countable
unions; thus it is a o-field containing the intervals and hence the Borel sets.
Therefore, if B is a Borel set, {.A: A X B € #?] contains the intervals and
hence, being a o-field, contains the Borel sets. Thus all the measurable
rectangles are in %2, and so ' X R'=.%? consists exactly of the two-
dimensional Borel sets. |

As this example shows, 2°X % is in general much larger than the class of
measurable rectangles.

Theorem 18.1. (i) If E € 2% %, then for each x the set [y: (x,y) € E]
lies in % and for each y the set [x: (x,y) € E] lies in Z.

Gi) If f is measurable Z"X %/, then for each fixed x the function f(x,-) is
measurable %/, and for each fixed y the function f(-,y) is measurable & .

The set {y: (x, y) € Elis the section of E determined by x, and f(x,-) is
the section of f determined by x.

Proor. Fix x, and consider the mapping 7,: Y - X XY defined by
T.,y=(x,y). If E=AXB is a measurable rectangle, T,'E is B or @
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according as A contains x or not, and in either case T, 'E € . By Theorem
13.1(i), T, is measurable 2/ 22X % Hence [y: (x,y)€E]l=T'E€ % for
E € X %. By Theorem 13.1(ii), if f is measurable 2'x 2/, then fT, is
measurable 2/%'. Hence f(x,-)=fT.(-) is measurable 2. The symmetric
statements for fixed y are proved the same way. [ |

Product Measure

Now suppose that (X, Z, ) and (Y, %/, v) are measure spaces, and suppose
for the moment that p and v are finite. By the theorem just proved i y:
(x,y) € E]is a well-defined function of x. If _# is the class of E in X &
for which this function is measurable &, it is not hard to show that .~ is a
A-system. Since the function is I (x)»(B) for E =A X B, . contains the
w-system consisting of the measurable rectangles. Hence .2 coincides with
A< % by the w-A theorem. It follows without difficulty that

(18.1) w’(E)=fv[y:(x,y)€E];.¢(dx), E€c X%,
X

is a finite measure on & X %/, and similarly for

(182)  w(E)=[ulx:(xy)€El(dy), EeXx¥.
Y

For measurable rectangles,
(18.3) T (AXB)=7"(AXB)=pu(A) v(B).

The class of E in X % for which 7w'(E)=w"(E) thus contains the
measurable rectangles; since this class is a A-system, it contains 2" X 2. The
common value 7'(E) = #"(E) is the product measure sought.

To show that (18.1) and (18.2) also agree for o-finite u and », let {4, ) and
{B,} be decompositions of X and Y into sets of finite measure, and put
s (A)=pu(ANA,) and v,(B)=v(BNB,). Since v(B)=X v, (B), the in-
tegrand in (18.1) is measurable & in the o-finite as well as in the finite case;
hence 7' is a well-defined measure on "X & and sois =". If ., and 7",
are (18.1) and (18.2) for u,, and v,,-then by the finite case, already treated
(see Example 16.5), w'(E}=X,_ 7 (E)=L =" (E)=="(E). Thus (18.1)

and (18.2) coincide in the o-finite case as well. Moreover, 7w'(4A X B) =
Lt (A (B) = n(A)w(B).

Theorem 18.2. If (X, 2 n) and (Y, %, v) are o-finite measure spaces,
m(E)=7m'(E)=m"(E) defines a o-finite measure on 4'X % it is the only
measure such that w(A X B) = u(A)- v(B) for measurable rectangles.
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Proor. Only o-finiteness and uniqueness remain to be proved. The
products A4,, X B, for {A,} and {B,} as above decompose X XY into
measurable rectangles of finite w-measure. This proves both o-finiteness and
uniqueness, since the measurable rectangles form a x-system generating
2% % (Theorem 10.3). m

The 7 thus defined is called product measure; it is usually denoted u X v.
Note that the integrands in (18.1) and (18.2) may be infinite for certain x and
y, which is one reason for introducing functions with infinite values. Note
also that (18.3) in some cases requires the conventions (15.2).

Fubini’s Thieorem

Integrals with respect to 7 are usually computed via the formulas

p(dx)

(184) [ fCenmacen) - [ ][ @)

and

(185) [ ey = [[[ s rman]|pa.

The left side here is a double integral, and the right sides are iterated
integrals. The formulas hold very generally, as the following argument shows.
Consider (18.4). The inner integral on the right is

(18.6) fyf(x,y)v(dy).

Because of Theorem 18.1(ii), for f measurable 2" X % the integrand here is
measurable %/, the question is whether the integral exists, whether (18.6) is
measurable & as a function of x, and whether it integrates to the left side
of (18.4).

First consider nonnegative f. If f= I, everything follows from Theorem
18.2: (18.6) is v[y: (x, y) € E], and (18.4) reduces to w(E) = #'(E). Because
of linearity (Theorem 15.1(iv)), if f is a nonnegative simple function, then
(18.6) is a linear combination of functions measurable £" and hence is itself
measurable £, further application of linearity to the two sides of (18.4)
shows that (18.4) again holds. The general nonnegative f is the monotone
limit of nonnegative simple functions; applying the monotone convergence
theorem to (18.6) and then to each side of (18.4) shows that again f has the
properties required.

Thus for nonnegative f, (18.6) is a well-defined function of x (the value
is not excluded), measurable &, whose integral satisfies (18.4). If one side of
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(18.4) is infinite, so is the other; if both are finite, they have the same finite
value.

Now suppose that f, not necessarily nonnegative, is integrable with
respect to 7. Then the two sides of (18.4) are finite if f is replaced by |f|.
Now make the further assumption that

(18.7) fylf(x,y)lv(dy) <o

for all x. Then

(188) [ f(x,y)v(dy) = [f*(x,9)0(d) = [f (2, 9)9(dy).

The functions on the right here are measurable 2" and (since f*, f"<|[f])
integrable with respect to u, and so the same is true of the function on the
left. Integrating out the x and applying (18.4) to f* and to f~ gives (18.4)
for f itself.

The set A, of x satisfying (18.7) need not coincide with X, but
p(X --A4,)=0if f is integrable with respect to 7, because the function in
(18.7) integrates to [|fldm (Theorem 15.2(iii)). Now (18.8) holds on A,,
(18.6) is measurable 2" on A,, and (18.4) again follows if the inner integral
on the right is given some arbitrary constant value on X — A,.

The same analysis applies to (18.5):

Theorem 18.3. Under the hypotheses of Theorem 18.2, for nonnegative f
the functions

(18.9) [fCeyyu(ay), [ f(x,y)u(d)

are measurable 2" and %, respectively, and (18.4) and (18.5) hold. If f (not
necessarily nonnegative) is integrable with respect to w, then the two functions
(18.9) are finite and measurable on A, and on B,, respectively, where u(X —
Aq) =v(Y—=By) =0, and again (18.4) and (18.5) hold.

It is understood here that the inner integrals on the right in (18.4) and
(18.5) are set equal to 0 (say) outside 4, and B,.!

This is Fubini’s theorem; the part concerning nonnegative f is sometimes
called Tonelli’s theorem. Application of the theorem usually follows a two-step
procedure that parallels its proof. First, one of the iterated integrals is
computed (or estimated above) with |f] in place of f. If the result is finite,

*Since two functions that are equal almost everywhere have the same integral, the theory of
integration could be extended to functions that are only defined almost everywhere; then A, and
B, would disappear from Theorem 18.3.
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then the double integral (integral with respect to =) of |f| must be finite, so
that f is integrable with respect to m; then the value of the double integral of
f is found by computing ore of the iterated integrals of f. If the iterated
integral of |f|is infinite, f is not integrable .

Example 18.2. Let D, be the closed disk in the plane with center at the
origin and radius r. By (17.12),

\(D) = [[dedy = [[ pdpds.
D,

O<px<r
0<0<2w

The last integral can be evaluated by Fubini’s theorem:
AZ(D,)=21Tfpdp=1Tr2. |
0

Example 18.3. letl I= ]fme""zdx. By Fubini’s theorem applied in the
plane and by the polar-coordinate formula,

2 "(2"'2)(1x _ 2 ‘
I jl;[e Ty dy ;)/;j(; e Ppdpdb

0<@<2w

The double integral on the right can be evaluated as an iterated integral by
another application of Fubini’s theorem, which leads to the famous formula

(18.10) [ e ax=vr.

— a0

As the integrand in this example is nonnegative, the question of integrability
does not arise. [ |

Example 18.4. 1t is possible by means of Fubini’s theorem to identify the
limit in (17.4). First,

fle_“"sin xdx= !
0 1

Y [1 —e‘“’(usint+cost)],

as follows by differentiation with respect to ¢. Since

1 o0 . !,
f[f Ie‘“"smx|du]dx=f|smx|-x"det<oo,
0 L70 0
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Fubini’s theorem applies to the integration of e~ “*sin x over (0, t) X (0, «):

j:Sil;xdx:j:sin x[j:e““‘du dx

== j:[_/:e"“ sin xdx] du

—ul

© d ) .
=j; 1+uu2_fo le+u2(usmt+cost)du.

The next-to-last integral is 7 /2 (see (17.9)), and a change of variable ut = s
shows that the final integral goes to 0 as ¢ — . Therefore,

18in x

(18.11) lim [ ~—=dx=7. m

{—o~(}

Integration by Parts

Let F and G be two nondecreasing, right-continuous functions on an interval
[a, b], and let . and v be the corresponding measures:

p(x,yl=F(y)-F(x), v(x,y}=G(y)-G(x), a<x<y<b.

In accordance with the convention (17.22) write dF(x) and dG(x) in place of
w(dx) and v(dx).

Theorem 18.4. If F and G have no common points of discontinuity in
(a, b), then

(1812) |

(a,

G(x) dF(x)
b]

= F(b)G(b) - F(a)G(a) ~ [ ]F(x) dG(x).

(a,

In brief: [GdF = AFG — (FdG. This is one version of the partial integra-
tion formula.

Proor. Note first that replacing F(x) by F(x)~ C leaves (18.12) un-
changed—it merely adds and subtracts Cwv(a, b] on the right. Hence (take
C = F(a)) it is no restriction to assume that F(x) = u(a, x] and no restriction
to assume that G(x) = v(a, x]. If 7 = u X v is product measure in the plane,
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then by Fubini’s theorem,

(18.13) 'rr[(x,y):a<y_<_xsb]

_ (a,b]y(a,x],u,(dx)=j;a'b]G(x)dF(x)

and

(18.14) w[(x,y):a<x<y<b]

_—_j(’a,b]p,(a, y]v(dy) =f(a'b]F(Y) dG(y).

The two sets on the left have as their union the square S =(a,b] X (a, b).
The diagonal of § has m-measure

w[(x,y):a <x=y<b] =f(a v xu(dn) =0

because of the assumption that . and v share no points of positive measure.
Thus the left sides of (18.13) and (18.14) add to w(S)= ula,blv(a,bl=
F(b)G(b). =

Suppose that v has a density g with respect to Lebesgue measure and let
G(x)=c+ [fg(t)dt. Transform the right side of (18.12) by the formula
(16.13) for integration with respect to a density; the result is

(18.15) [ ']G(x)dF(x)

(a,b

= F(b)G(b) — F(a)G(a) - j:’F(x)g(x) dx.

A consideration of positive and negative parts shows that this holds for any g
integrable over (a, b].

Suppose further that p has a density f with respect to Lebesgue measure,
and let F(x)=c'+ [*f(t)dt. Then (18.15) fur-ther reduces to

(18.16) j:’c;(x)f(x) dx = F(b)G(b) - F(a)G(a) - fabF(x)g(x) d.

Again, f can be any integrable function. This is the classical formula for
integration by parts.

Under the appropriate integrability conditions, (a, b] can be replaced by
an unbounded interval.
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Products of Higher Order

Suppose that (X, Z, ), (Y, Z,v), and (Z, 2, n) are three o-finite measure
spaces. In the usual way, identify the products X XY X Z and (X XY) X Z.
Let X X 3 be the o-field in X XY X Z generated by the A X B X C
with 4,B,C in 2, %, %, respectively. For C in Z, let &. be the class of
Ee€ X & for which EXC e Z'X X 2. Then ¥, is a o-field containing
the measurable rectangles in X X Y, and so &= 2'x %. Therefore, (Z"x
L)X PC XX X Z. But the reverse relation is obvious, and so (2'X %)
X =X ZX 3.

Define the product p X vX 7 on Z'X X 9 as (u X v) X n. It gives to
A X BXC the value (u Xv) (AXB)-1(C)=u(AW(B)n(C), and it is the
only measure that does. The formulas (18.4) and (18.5) extend in the obvious
way.

Products of four or more components can clearly be treated in the same
way. This leads in particular to another construction of Lebesgue measure in
R¥=R'Xx --- xR (see Example 18.1) as the product A X --- X A (k fac-
tors) on R =R x -+ x #'. Fubini’s theorem of course gives a practical
way to calculate volumes:

Example 18.5. Let V, be the volume of the sphere of radius 1 in R¥; by
Theorem 12.2, a sphere in R* with radius r has volume r*V,. Let A be the
unit sphere in R¥, let B=[(x,x,): x2+x2<1], and let C(x, x,)=
[(x3,...,%,): Z¥ ... x} <1 —x?—x32]. By Fubini’s theorem,

Vk‘_‘del"'dxk:j;dxldxzj; dxy - dx,

(xi’ xz)

= [ deydey Vioo(1 - x2—x3) 7P
B

(k-—2)/2p dp 6

=V s jjr (I—Pz)
0<@<2m
0<p<l

27V,
:fn‘Vk_z-[Olt(k“Z)/z d[ = _lkk_g.

If V, is taken as 1, this holds for k = 2 as well as for k > 3. Since V, =2, it
follows by induction that

(2m)’
2X4xX - X(20)

2(27)""
IX3X5X - x(2i-1)°

T Vi =

fori=1,2,.... Example 18.2 is a special case. [ |
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PROBLEMS

18.1.

18.2.

18.3.

18.4.

18.5.

18.6.

18.7.

18.8.

18.9.

Show by Theorem 18.1 that if A X B is nonempty and lies in Z'X %/, then
A€ Z and B Z.

291 Suppose that X =Y is uncountable and 2= % consists of the count-
able and the cocountable sets. Show that the diagonal E =[(x, y): x=y] does
not lie in 2'X %, even though [y: (x,y)€ El€ % and [x: (x,y)EE)le &
for all x and y.

10.5 18117 Let (X,Z,u)=(Y,%,v) be the completion of (R', %' A).
Show that (X X Y, Z"X %/, u X ) is not complete.

The assumption of o-finiteness in Theorem 18.2 is essential: Let u be Lebesgue
measure on the line, let v be counting measure on the line, and take
E =[(x,y): x=y] Then (18.1) and (i8.2) do not agree.

Example 18.2 in effect connects 7 as the area of the unit disk D, with the =
of trigonometry.

(a) A second way: Calculate A,(D,) directly by Fubini’s theotem: A,(D)) =
{1.2(1 —x?)1/? dx. Evaluate the integral by trigonometric substitution.

(b) A third way: Inscribe in the unit circle a regular polygon of » sides. Its
interior consists of n congruent isosceles triangles with angle 27 /n at the
apex; the area is n sin(ar/n)cos(ar/n), which goes tc .

Suppose that f is nonnegative on a o-finite measure space (£, %, u). Show
that

fnfd,u.=(,uXA)[(w,y)eQxR‘:Osysf(w)].

Prove that the set on the right is measurable. This gives the “area under the
curve.” Given the existence of u X A on X R', one can use the right side of
this equation as an alternative definition of the integral.

Reconsider Problem 12.12.

Suppose that ¥[y: (x,y)€ El=1v[y: (x,y)€ F] for all x, and show that
(u X v X E)=(u X vXF). This is a general version of Cavalieri’s principle.

(a) Suppose that u is o-finite, and prove the corollary to Theorem 16.7 by
Fubini’s theorem in the product of (Q, %, u) and {1,2,...} with counting
measure.

(b) Relate the series in Problem 17.7 to Fubini’s theorem.



240

18.10.

18.11.

18.12.

18.13.

18.14.

18.15.

18.16.

18.17.

18.18.

INTEGRATION
(a) Let g =v be counting measure on X=Y={1,2,...}. If

2-27F if x=y,
f(x,y)=(-2+27" ifx=y+1,
0 otherwise,

then the iterated integrals exist but are unequal. Why does this not contradict
Fubini’s theorem?

(b) Show that xy/(x2+ y?)? is not integrable over the square {(x, y) {x|,|yl <
1] even though the iterated integrals exist and are equal

Exhibit a case in which (18.12) fails because F and G have a common point of
discontinuity.

Prove (18.16) for the case in which all the functions are continuous by
differentiating with respect to the upper limit of integration.

Prove for distribution functions F that [ (F(x +¢)— F(x))dx=c.
Prove for continuous distribution functions that [© _F(x)dF(x)= 3.

Suppose that a number f, is defined for each n>n, and put F(x)=
Ly <n<xfn Deduce from (18.15) that

(18.17) Y G(n)fo=F(x)G(x) - [ F(1)g(1) d

ng<n<x ny

if G(y)— G(x)= [Yg(t)dt, which will hold if G has continuous derivative g.
First assume that the f, are nonnegative.

T Take ng=1, f,=1, and G(x)=1/x, and derive £, _,n '=logx +7 +
O(1/x), where y =1~ j7(t — |t)t~2 dt is Euler’s constant.

5.20 18.151 Use (18.17) and (5.51) to prove that there exists a constant ¢
such that

1 1
E—loglogx+c+0(logx).

(18.18) Y
p=x

Euler’s gamma function is defined for positive ¢ by T'(¢) = [gx'~le " dx.

(a) Prove that T®)(¢) = [&°x'~!(log x)*e ™* dx.

(b) Show by partial integration that I'(z + 1) =¢T'(¢) and hence that T'(n + 1)

= n! for integral n.

(c) From (18.10) deduce I'(3) = V.

(d) Show that the unit sphere in R* has volume (see Example 18.5)

k2

(18.19) V, = e
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18.19. By partial integration prove that [J(sin x)/x)?>dx=m/2 and [% (1 -
cos x)x "2 dx = .

18.20. Suppose that u is a probability measure on (X, £°) and that, for each x in X,
v, is a probability measure on (Y, 2/). Suppose further that, for each B in &,
v,(B) is, as a function of x, measurable 2" Regard the u(A) as initial
probabilities and the v (B) as transition probabilities:

(a) Show that, if F€ 2'X %, then »,[y: (x, y) € E] is measurable &

(b) Show that w(E)= [, v [y: (x, y) € E]u(dx) defines a probability measure
on Z'X . If v, = v does not depend on x, this is just (18.1).

(c) Show that if f is measurable 2°X 2/ and nonnegative, then [y f(x, y)v, (dy)
is measurable Z". Show further that

.&Mﬂxmﬁdﬂnyn=jJLﬂLyWA®ﬂuMna

which extends Fubini's theorem (in the probability case). Consider also f’s that
may be negative.
(d) Let v(B)= [yv (B)u(dx). Show that w(X X B) = v(B) and

fyf(y)b(dy)=fx{fyf(y)vx(dy)]u(dﬂ-

SECTION 19. THE L’ SPACES"

Definitions

Fix a measure space (0, %, u). For 1 <p <, let L? =LP(Q, %, 1) be the
class of (measurable) real functions f for which |f|” is integrable, and for f
in L7, write

(19.1) nﬂu=[ﬂdeur”.

There is a special definition for the case p = «: The essential supremum of f
is

(19.2) Ifll = inf[a: u[w: |f(w)]>a] =0];

take L” to consist of those f for which this is finite. The spaces L* have a
geometric structure that can usefully guide the intuition. The basic facts are
laid out in this section, together with two applications to theoretical statistics.

*The results in this section are used nowhere else in the book. The proofs require some
elementary facts about metric spaces, vector spaces, and convex sets, and in one place the
Radon-Nikodym theorem of Section 32 is used. As a matter of fact, {t is possible to jump ahead
and read Section 32 at this point, since it makes no use of Chapters 4 and 5
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For 1 <p,q <, p and q are conjugate indices if p™' +g~!=1; p and g
are also conjugate if one is 1 and the other is © (formally, 17!+« = 1)
Holder’s inequality says that if p and g are conjugate and if fe L? and
g€ L9, then fg is integrable and

(193) [ [fedu| < [Ifel du <IIfllgl,.

This is obvious if p=1 and g=. If 1 <p, ¢ <o and p is a probability
measure, and if f and g are simple functions, (19.3) is (5.35). But the proof
in Section 5 goes over without change to the general case.

Minkowski’s inequality says that if f,g€ L? (1 <p <), then f+geL?
and

(19.4) If+gll, <l fll, +ligll,.
This is clear if p=1 or p = . Suppose that 1 <p <. Since |f+g|<2(|f|?

+1g1V?, f+g does liein L?. Let g be conjugate to p. Since p—1=p/gq,
Holder’s inequality gives

If+glZ= [If+2l” du

< fIf1-1f +el”/dp + [Igl- If +¢17/ dp
<UfFl,-Nif+g12/2l, +ligh, - lif + 217740,

1/9
= (Il i'||g||p)[f|f+g|pdu}
= (lfll, + gl ) f+gllp” .

Since p - p/q =1, (19.4) follows.
If aisreal and f&€ L?, then obviously af € L? and

(19.5) lafll, =lal-lfll,.

Define a metric on L? by 4,(f,g)=If~gl,. Minkowski’s inequality
gives the triangle inequality for d,, and d, is certainly symmetric. Further,
d,(f,g)=0 if and only if |f—g|” integrates to 0, that is, f=g almost
everywhere. To make L* a metric space, identify functions that are equal
almost everywhere.

"The Holder and Minkowski inequalities can also be proved by convexity arguments, see
Problems 5.9 and 5.10.
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If lf—f,ll,—0and p<w,so that [|f—f |°du — 0, then f, is said to
converge to f in the mean of order p.

If f=f" and g =g' almost everywhere, then f+g =f" +g' almost every-
where, and for real a, af = af' almost everywhere. In L?, f and f' become
the same function, and similarly for the pairs g and g’, f+g and f' + g’, and
af and af’. This means that addition and scalar multiplication are unam-
biguously defined in L?, which 1s thus a real vector space. It is a normed
vector space in the sense that it is equipped with a norm | - ||, satisfying (19.4)
and (19.5).

Completeness and Separability

A normed vector space is a Banach space if it is complete under the
corresponding metric. According to the Riesz—Fischer theorem, this is true
of L?;

Theorem 19.1. Tke space L? is complete.

Proor. It 1s enough to show that every fundamental sequence contains a
convergent subsequence. Suppose first that p <. Assume that || f,, - f,il, =
0 as m,n — =, and choose an increasing sequence {n,} so that ||f — f.II5 <
2_2'“’*”" for m,n>=n,. Since f[|f, —f.l°du=a?ullf, —f,l=eal (this is
just a general version of Markov’s inequality (5.31)), ullf, —f.1=27*]<
27K f, ~ foll; <27% for m,n > n,. Therefore, Z, pllf, —f.|= 2""]. < oo,
and 1t follows by the first Borel-Cantelli lemma (which works for arbitrary
measures) that, outside a set of u-measure 0, L,[f, —f, | converges.
But then f, converges to some f almost everywhere, and by Fatou’s
lemma, jlf_fnkl”dp, < liminf, f|f, *f,ul"’ dp < 27% Therefore, f € L? and
If = £, |l, = 0, as required.

If p=o, choose {r,} so that ||f,—f,l.<2"% for m,n=n, Since
| fur,, — fa, | <27 % almost everywhere, f, converges to some f, and |f —f, | <
27% almost everywhere. Again, [|f ~ f, I, — 0. |

The next theorem has to do with separability.

Theorem 19.2. (i) Let U be the set of simple functions L.7_ a1, for a;
and p(B,) finite. For 1 <p <w, U is dense in L.

(i) If p is o-finite and F is countably generated, and if p <, then L7 is
separable.

ProoF.  Proof of (i). Suppose first that p <o, For f &€ L?, choose (Theo-
rem 13.5) simple functions f, such that f, —f and |f,| <|f| Then f, €L?,

r

and by the dominated convergence theorem, [|f - f,|” du — 0. Therefore,
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|f—f,ll, <e for some n; but each f is in U. As for the case p =, if
n2" > | fllw then the f, defined by (13.6) satisfies ||f ~f |l <27" (<€ for
large n).

Proof of (if). Suppose that & is generated by a countable class € and
that 1 1s covered by a countable class & of Fsets of finite measure. Let
E,,E,,... be an enumeration of €UZ; let & (n >1) be the partition
consisting of the sets of the form F, N --- N F,, where F, is E; or Ef; and let
&, be the field of unions of the sets in & Then F=U>_,F is a
countable field that generates %, and g is o-finite on %,. Let I/ be the set
of simple functions 1", \a;I, for «; rational, 4; € %,, and u(A,;) <o

Let g=X" a;I; be the element of U constructed in the proof of part (i).
Then || f - g”p <E, the a; are rational by (13.6), and any «; that vanish can
be suppressed. By Thcorem 11.4(ii), there exist sets A, in %, such that
u(B;A A;) <(e/mla)?, provided p <, and then h =Y. a1, lies in V
and ||f — i, <2e. But V¥ is countable." =

Conjugate Spaces

A linear functional on L” is a real-valued function v such that

(19.6) y(af +a'fy =ay(f) +a'y(f).
The functional is bounded if there is a finite M such that
(19.7) ly(F)l < M-lIfll,

for all f in L?. A bounded linear functional is uniformly continuous on L7
because || f—f'll, <e/M implies |y(f)—y(f)l<e (f M>0;, and M=0
implies y(f) = 0). The norm ||y| of vy is the smallest M that works in (19.7):

Iyl = suplly(ON/Nfl,: £+ 01

Suppose p and ¢q are conjugate indices and g € L?. By Holder’s inequality,

(19.8) v(£) = [fedp

is defined for f&€L? and satisfies (19.7) if M > (Igll,; and 1y, is obviously
linear. According to the Riesz representation theorem, this is the most general
bounded linear functional in the case p < o:

Theorem 19.3. Suppose that u is o-finite, that 1 <p <o, and that q is
conjugate to p. Every bounded linear functional on L? has the form (19.8) for
some g € LY; further,

(19.9) ly,ll= llgll,,

and g is unique up to a set of y-measure 0.

"Part (ii) definitely requires p < o: see Problem 19.2.
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The space of bounded linear functionals on L7 is called the dual space, or
the conjugate space, and the theorem identifies L9 as the dual of L”. Note
that the theorem does not cover the case p = .7

Proor. Case I: u finite. For A in &, define ¢(A) = y(1,). The linearity
of y implies that ¢ is finitely additive. For the M of (19.7), (A <M - I,
=M p(ADVP I A= U,A, where the 4, are disjoint, then ¢(A)=
IV 19(4,) +e(U, ., yA4,), and since (U . yA )N <Mu'/?(U,, nA,) =
0, it follows that ¢ is an additive set function in the sense of (32.1).

The Jordan decomposition (32.2) represents ¢ as the difference of two
finite measures ¢ * and ¢~ with disjoint supports 4" and 4~ If u(A4)=10,
then ¢ (A)=p(ANAY) <Mu?(A)=0. Thus ©* is absolutely continu-
ous with respect to p and by the Radon-Nikodym theorem (p. 422) has an
integrable density g*: ¢ *(A4) = [,g* du. Together with the same result for
¢, this shows that there is an integrable g such that y(I,)=¢(A4)=
[s8duw = [1,8du. Thus y(f) = [fedu for simple functions f in L?.

Assume that this g lies in L7, and define vy, by the equation (19.8). Then
y and y, are bounded linear functionals that agree for simple functions;
since the latter are dense (Theorem 19.2(i)), it follows by the continuity of vy
and v, that they agree on all of L”. It is therefore enough (in the case of
finite ) to prove g € L7. It will also be shown that ||gll, is at most the M of
(19.7); since |lgll, does work as a bound in (19.7), (19.9) will follow. If
Y, (f)=0,(19.9) will imply that g = 0 almost everywhere, and for the general
y it will follow further that two functions g satisfying y,(f)= y(f) must
agree almost everywhere.

Assume that 1 <p,q <. let g_be simple functions such that 0 <g, 1(gl%,
and take h, =gl/?sgng. Then h g=gl/?|gl>gl/Pg!/1 =g, , and since h
is simple, it follows that [g,du < fh,gdu="y,(h,)=y(h)<M-||hl,
Ml g, dul/?. Since 1-1/p=1/q, this gives [[g, dul"/? <M. Now the
monotone convergence theorem gives g € L” and even |[|gl|, < M.

Assume that p=1 and g = . In this case, |[fedul =y, (fl=ly(Hll<M-
| £1l; for simple functions f in L!. Take f=sgng - I » oy Then aullgl=al <
g1 oy 18l di = [fedp <M -||flly = Mullgl 2 @]. If a > M, this inequality
gives p,hgl > a] = 0; therefore ||gll- = llgll; <M and g L™= L7,

Case II: p ofinite. Let A, be sets such that 4 1Q and u(A,) <. If
w(A)=pu(ANA), then ly(fI, N<M-|Iflyll,=M[[1f1°dr,]'/? for fe
LP(fl, € LP(n) <L” (n,). By the finite case, 4, supports a g, in L? such
that y(f],,") = [fl, g, du for feL?, and |g,ll, < M. Because of uniqueness,
g, .1 can be taken to agree with g, on A, (L?(u, ) CL?(p,)). There is
therefore a function g on ( such that g=g, on A4, and IIIA"gIIqu. It
follows that ||gll, < M and g € L?. By the dominated convergence theorem
and the continuity of y, fe&L” implies [fgdu = lim, [fl, gdu =
lim,, y(fI, ) = y(f). Uniqueness follows as before. n

X

"Problem 193
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Weak Compactness

For feL?.and g €L7% where p and g are conjugate, write

(19.10) (f.8)= [fedu.

For fixed f in L?, this defines a bounded linear functional on L7 for fixed g
in 19, it defines a bounded linear functional on L”. By Hdlder’s inequality,

(19.11) ICf ) <Ifllliglly.

Suppose that f and f, are elements of LZ. If (f, g) =!lim (f,, g) for each
g in LY then f, converges weakly to f. If ||f~f,il, — 0, then certainly f,
converges weakly to f, although the converse is false.’

The next theorem says in effect that if p> 1, then the unit ball Bf =
{feL? |fll, <1]is compact in the topology of weak convergence.

Theorem 19.4. Suppose that p is o-finite and F is countably generated. If
1 <p < x, then every sequence in BP contains a subsequence converging weakly
to an element of Bf.

Suppose of elements f,, f, and f' of L* that f, converges weakly both to f
and to f'. Since, by hypothesis, . is o-finite and p > 1, Theorem 19.3 applies if
the p and q there are interchanged. And now, since (f,g)=(f',g) for all g in
LA, it follows by uniqueness that f = f'. Therefore, weak limits are unique under
the present hypothesis. The assumption p > 1 is essential *

Proor. let g be conjugate to p (1 <g < ). By Theorem 19.2(ii), L7
contains a countable, dense set G. Add to G all finite, rational linear
combinations of its elements; it is still countable. Suppose that {f,} C Bf.

By (19.11), [(f,, &)l <llgli, for g €L? Since {(f, g)} is bounded, it is
possible by the diagonal method {A14] to pass to a subsequence of {f,} along
which, for each of the countably many g in G, the limit lim (f ,g) = vy(g)
exists and |y(g)| <|gll,. For g, 8" €G, ly(g) — (g =lim Kf, g —gN<llg
~ 2'll;- Therefore, y is uniformly continuous on G and so has a unique
continuous extension to all of L% For g,8'€G, y(g+g")=Ilim (f,,g+g")
= y(g) + v(g"); by continuity, this extends to all of L% For g€ G and «
rational, y(ag) =« lim (f,, g) = ay(g); by continuity, this extends to all real
o and all g in L7 v is a linear functional on L?. Finally, |[y(g)l <llgll,
extends from G to L7 by continuity, and v is bounded in the sense of (19.7).

"Problem 19.4
*Problem 19.5.
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By the Riesz representation theorem (1 < g < ), there is an f in L? (the
space adjoint to L7) such that y(g) =(f, g) for all g. Since ¥ has norm at
most 1, (19.9) implies that ||f|l, <1: f lies in B?.

Now (f, g)=1lim (f,,g) for g in G. Suppose that g' is an arbitrary
element of L7 and choose g in G so that ||g" —gl|, <e. Then

(f.8") — (fur &)
<I(f.8)—(f. &)N+If.8)—(far 8N+ S 8) = (fn: &)
<\fllolig" —glla +1(f,8) = (f.- )+ IS llpllg —g'll,
<2e+l(f.g) - (f..8)l

Since g € G, the last term here goes to 0, and hence lim (f,. g") = (f, g") for
all g’in L7. Therefore, f, converges weakly to f. |

Some Decision Theory

The weak compactness of the unit ball in L™ has interesting implications for statistical
decision theory. Suppose that u is o-finite and & is countably generated. Let
fi1.---,fr be probability densities with respect to u—nonnegative and integrating to
1. Imagine that, for some i, @ is drawn from )} according to the probability measure
P(A)=[,f; du. The statistical problem is to decide, on the basis of an observed w,
which f, is the right one.

!

Assume that if the right density is f;, then a statistician choosing f, incurs a
nonnegative loss L(j|i). A decision rule is a vector function 8(w) = (§,(w),...,8,(w)),
where the §,(w) are nonnegative and add to 1: the statistician, observing w, selects f;
with probability §(w). If, for each w, §(w) is 1 for one ¢ and 0 for the others, & is a
nonrandomized rule; otherwise, it is a randomized rule. Let D be the set of all rules.
The problem is to choose, in some more or less rational way that connects up with the
losses L(jli{), a rule § from D.

The risk corresponding to & and f; is
R(8)= | [Ea,.(w)L(ili)]f.-(w)u(dw),
i

which can be interpreted as the loss a statistician using § can expect if f; is the right
density. The risk point for § is R(8) =(R(8),..., R, (8)). If R(8") <R/(8) for all i
and R(8") <R/$) for some i—that is, if the point R(8') is “southwest” of R(8)—then
of course &' is taken as being better than 6. There is in general no rule better than all
the others. (Different rules can have the same risk point, but they are then indistin-
guishable as regards the decision problem.)

The risk set is the collection § of all the risk poiats; it is a bounded set in the first
orthant of R*. To avoid trivialities, assume that S does not contain the origin (as
would happen for example if the L(j|i) were all 0).

Suppose that § and &' are elements of D, and A and A’ are nonnegative and add to
1. If §/(0)=A8{(w)+ X8{w), then §” is in D and R(8")=AR(8) + A'R(8'). There-
fore, S is a convex set.

Lying much deeper is the fact that § is compact. Given points x¢*’ in S, choose
rules 8 such that R(§?) =x™. Now &{")(-) is an element of L*, in fact of BT, and
so by Theorem 19.4 there is a subsequence along which, for each j=1,...,k, 8}"’
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converges weakly to a function &, in BY. If u(A) <o, then [§1,du =
lim,, /8], dp > 0 and [(1 - 5,8, 4 du = tim , [(1 - £,6%) 1, du =0, so that 8, > 0
and I;0; =1 almost everywhere on A. Since u is o-finite, the §; can be altered on a
set of w-measure 0 in such a way as to ensure that § = (8,,...,8,) is an element of D.
But, along the subsequence, x'™ — R(8). Therefore: The risk set is compact and
convex.

The rest is geometry. For x in R¥, let O, be the set cf x' such that 0 <x} <x, for
all i. If x = R(8) and x’ = R(8"), then &' is better than § if and only if x' € Q,_ and
x"#x, A rule § is admissible if there exists no &' better than §; it makes no sense to
use a rule that is not admissible. Geometrically, admissibility means that, for x = R(8),
S N Q, consists of x alone.

Let x = R(8) be given, and suppose that § is not admissible. Since SN Q, is
compact, it contains a point x' nearest the origin (x' unique, since S N Q, is convex as
well as compact); let 6’ be a conesponding rule: x’ = R(8’). Since § is not admissible,
x'#x, and §' is better than 8. If S~ Q,. contained a point distinct from x’, it would
be a point of S N @, nearer the origin than x', which is impossible. This means that
Q, contains no point of § other than x' itself, which means in turn that § is
admissible. Therefore, if § is not itself admissible, there is a &' that is admissible and
is better than §. This is expressed by saying that the class of admissible rules is
complete.

Let p=(p,,..., p;) be a probability vector, and view p; as an a priori probability
that f; is the correct density. A rule § has Bayes risk R(p,8)=X,p,R{8) with
respect to p. This is a kind of compound risk: f; is correct with probability p;, and the
statistician chooses f, with probability § (). A Bayes rule is one that minimizes the
Bayes risk for a given p. In this case, take &« = R(p, §) and consider the hyperplane

(19.12) H= [z: Ep,-z,:a]
i
and the half space

(19.13) H*= [z: Y pz>a
{

Then x = R(8) lieson H, and § is contained in H*: x is on the boundary of S, and
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H is a supporting hyperplane. If p, > 0 for all i, then Q, meets S only at x, and so §
is admissible.

Suppose now that § is admissible, so that x = R(8) is the only point in S N Q, and
x lies on the boundary of S. The problem is to show that § is a Bayes rule, which
means finding a supporting hyperplane (19.12) corresponding to a probability vector
p. Let T consist of those y for which Q meets S. Then T is convex: given a convex

combination y" =Ay + A’y’ of points in T, choose in S points z and z' southwest of y
and y’, respectively, and note that z”=Az + A’z' lies in § and is southwest of y".
Since S meets @, only in the point x, the same is true of T, so that x is a boundary
point of T as well as of S. Let (19.12) ( p # 0) be a supporting hyperplane through x-
x€Hand TCH". If p; <0, take z; =x; +1andtake z;=x; for the other ; then z
lies in T but not in H*, a contradiction. (The right-hand figure shows the role of T:
the planes H, and H, both support §, but only H, supports T and only H,
corresponds to a probability vector.) Thus p; >0 for all i, and since ¥, p, = 1 can be
arranged by normalization, § is indeed a Bayes rule. Therefore The admissible rules
are Bayes rules, and they form a complete class.

The Space L?

The space L? is special because p = 2 is its own conjugate index. If f, g € L2,
the inner product (f, g) = [fgdu is well defined, and by (19.11} —write |||l in
place of [|fll.—I(f, &)l <IIfll-llgl. This is the Schwarz (or Cauchy—Schwarz)
inequality. If one of f and g is fixed, (f, g) is a bounded (hence continuous)
linear functional in the other. Further, (f, g) =(g, f), the norm is given by
IfI>=(f, f), and L? is complete under the metric d(f,g)=IIf—gl. A
Hilbert space is a vector space on which is defined an inner product having all
these properties.

The Hilbert space L? is quite like Euclidean space. If (f,g) =0, then f
and g are orthogonal, and orthogonality is like perpendicularity. If f,..., f,
ate orthogonal (in pairs), then by linearity, (X,f,,X;f)=L.XZ/(f,f)=
SF F)E £:I> = Sl f:|I°. This is a version of the Pythagorean theorem. If
f and g are orthogonal, write f L g. For every f, f L 0.

Suppose now that p is o-finite and & is countably generated, so that L’
is separable as a metric space. The construction that follows gives a sequence
(finite or infinite) ¢@,, @,, ... that is orthonormal in the sense that g, = 1 for
all n and (¢, ¢,) = 0 for m # n, and is complete in the sense that (f,¢,) =0
for all n implies f= 0—so that the orthonormal system cannot be enlarged.
Start with a sequence f,,f,,... that is dense in L% Define g,,g,,...
inductively: Let g, = f,. Suppose that g,,..., g, have been defined and are
orthogonal. Define g,,, = f,,, — Li_ 8> where a,; is (f,,,, g)/llg* if
g;+ 0 and is arbitrary if g,=0. Then g,,, is orthogonal to g,,..., g,, and
f. ., is a linear combination of g,,..., g, ,- This, the Gram—-Schmidt method,
gives an orthogonal! sequence g, g,,... With the property that the finite
linear combinations of the g, include all the f, and are therefore dense in
L2 1f g, #0, take ¢, =g, /lg,l; if &, =0, discard it from the sequence. Then
©»@5,-.. is orthonormal, and the finite linear combinations of the ¢, are
still dense. It can happen that all but finitely many of the g, are 0, in which
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case there are only finitely many of the ¢_. In what follows it is assumed that

®,,¥,,..- 1s an infinite sequence; the finite case is analogous and somewhat
simpler.

Suppose that f is orthogonal to all the ¢,. If a; are arbitrary scalars, then
f.a,@,...,a cp,, is an orthogOnal set, and by the Pythagorean property,

|f— X5 a0l ||f|| + X a? ||f|| If Ifll>0, then f cannot be ap-
proximated by finite linear combinations of the ¢_, a contradiction: ¢,, ¢,,. ..
is a complete orthonormal system.

Consider now a sequence a,, a,,... of scalars for which 7_ ,a converges.
If s, = L"_,a,¢;, then the Pythagorean theorem gives ||s, — s, ||° = Lncicnlr
Since the scalar series converges, {s ) is fundamental and therefore by
Theorem 19.1 converges to some g in L?. Thus g =lim_ X" a,¢,, which it is
natural to express as g = L7_,a,¢,. The series (that is to say, the sequence of
partial sums) converges to g in the mean of order 2 (not almost everywhere).
By the following argument, every element of L? kas a unique representation
in this form.

The Fourier coefficients of f with respect to {¢,) are the inner products
a;, = (f, ). For each n, 0 <I|If - L ia.00 = IfI? - 2La(f @) +
):”a,a,(cp, @) = IFII% = a?, and hence, n being arbitrary, £_ a2 < ||f|I°.
By the argument above, the selies L7_,a;¢; therefore converges. By hneanty,
(f—-Zra, cp,,(pj) 0 for n>j, and by continuity, (f— E7. a,¢,¢,)=0.

Therefore, f— ¥L7_ a,¢; is orthogonal to each ¢, and by completeness must
be 0:
(19.14) f= 2 (f, 0

i=1

This is the Fourier representation of f. It is unique because if = E7_,a;¢; is
0 (Ea} <), then a; =(f, ¢;) = 0. Because of (19.14), {p,} is also called an
orthonormal basis for L.

A subset M of L? is a subspace if it is closed both algebraically (f, f e M
implies af+a'f' € M) and topologically (f, €M, f, — f implies f€ M). If
L? is separable, then so is the subspace M, and the construction above
carries over: M contains an orthonormal system {¢,) that is complete in M, in
the sense that f=0if (f, ¢,) =0 for all nand if f M. And each f in M has
the unique Fourier representation (19.14). Even if f does not lie in M,
T2 (f, @) converges, so that ©7_ (f, ¢;)¢; is well defined.

This leads to a powerful idea, that of orthogonal projection onto M. For an
orthonormal basis {¢,} of M, define Py, f=X7_(f, ¢, for all f in L? (not
just for f in M). Clearly, Py, f € M. Further, f— L7 (f, ¢.)¢; L p; for n>j
by linearity, so that f— Py, f L ¢, by continuity. But if f— P,,f is orthogonal
to each ¢;, then, again by linearity and continuity, it is orthogonal to the
general element £7_(b;¢; of M. Therefore, P,,f€M and f— P, f L M. The
map f— P, f is the orthogonal projection on M.
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The fundamenta!l properties of P,, are these:

(i) g€ M and f-g L M together imply g = P, f;
(i) feM implies P,,f=f;
(iii) g € M implies |[f—gll= I f— Py, fIk

(v) Pylaf+a'f)=aPyf+a'Py,f.

Property (i) says that P, f is uniquely determined by the two conditions
PyfeEM and f- P, LM. To prove it, suppose that g, g'eM, f—g i M,
and f—g' L M. Then g—g'€M and g—g' L M, so that g — g’ is orthogo-
nal to itself and hence |g—g'|°=0: g=g'. Thus the mapping P, s
independent of the particular basis {¢,}; it is determined by M alone.

Clearly, (ii) follows from (i); it implies that P,, is idempotent in the sense
that P f= P, f. As for (iii), if g liesin M, so does P, f—g, so that, by the
Pythagorean relation, || f — gl? = | f— PMfII2 +Py f - gl > Ilf- PMfIIZ; the
inequality is strict if g # P, f. Thus P, f is the unique point of M lying
nearest to f. Property (iv), linearity, follows from (i).

An Estimaltion Problem

First, the technical setting: Let (£}, %, u) and (©,&°,7) be a o-finite space and a
probability space, and assume that & and & are countably generated. Let f,(w) be a
nonnegative function on ® X ), measurable £X &, and assume that [, fo(w)u(dw)
=1 for each € € O. For some unknown value of 8, w 15 drawn from ()} according to
the probabiiities Py( A) = [, fe(w)u(dw), and the statistical problem is to estimate the
value of g(8), where g is a real function on @. The statistician knows the functions
f(-) and g(-), as well as the value of w; it is the value of 6 that is unknown.

For an example, take ) to be ithe line, f(w) a function known to the statistician,
and fyw)=af(aw + ), where 6 =(a,B) specifies unknown scale and location
parameters; the problem is to estimate g(8)=a, say. Or, more simply, as in the
exponential case (14.7), take fy(w)=af(aw), where 6 = g(8) = .

An estimator of g(8) is a function t(w). It is unbiased if

(19.15) [ (@) fo@n(do) =5(6)

for all 8 in © (assume the integral exists); this condition means that the estimate is on
target in an average sense. A natural loss function is (#(w) —g{6))?, and if f, is the
correct density, the risk is taken to be [o(f(w) — g(8))*f5(w)u(d0).

If the probability measure = is regarded as an a priori distribution for the
unknown 6, the Bayes risk of ¢ is

(19.16) R(m.0)= [ [ (1(0) =8(8)) fo(w)u(dw)m(do);

this integral, assumed finite, can be viewed as a joint integral or as an iterated integral
(Fubini’s theorem). And now t, is a Bayes estimator of g with respect to  if it
minimizes R(m,t) over t. This is analogous to the Bayes rules discussed earlier. The
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following simple projection argument shows that, except in trivial cases, no Bayes
estimator is unbaised

Let @ be the probability measure on £’X & having density fy(w) with respect to
m X u, and let L* be the space of square-integrable functions on (© X (), &X F, Q).
Then Q is finite and £X & is countably generated. Recall that an element of L2 is
an equivalence class of functions that are equal almost everywhere with respect to Q.
Let G be the class of elements of L? containing a function of the form (6, w) = g(w)
—functions of @ alone Then G is a subspace. (That G is algebraically closed is clear:
if f,€G and ||f, —fll— 0, then—see the proof of Theorem 19.1—some subse-
quence converges to f outside a set of Q-measure 0, 2nd it follows easily that f€ G.)
Similarly, let T be ihe subspace of functions of w alone: #, w) = t(w). Consider only
functions g and their estimators ¢ for which the corresponding g and 7 are in L2

Suppose now that ¢ is both an unbiased estimator of g, and a Bayes estimator of
gy Wwith respect to . By (19 16) for gy, R(m,t) =t —g,l", and since ¢, is a Bayes
estimator of gy, it follows that [[f, — g,lI> < | — g,ll” for all 7 in 7. This means that 7,
is the orthcgonal projection of 2, on the subspace T and hence that g,—t, L z,. On
the other hand, from the assuinption that ¢, is an unbiased estimator of g, it follows
that, for every g(8, w) =g(8) in G,

(v=20.2) = [ [ (1a(@) = 20(0))8(6) o () m(do)

= j;)g(ﬂ)[ J (16(@) = 80(8)) fo(@)n(d) | (d8) =0,

This means that £, — g, L G: g, is the orthogonal projection of ¢, on the subspace G
But g§,— 1, Lt and f; — g, L g, together imply that 1, — g, is orthogonal to itself:
1y = &o- Therefore, ty(w)=14(6, ) = (6, @) = g(8) for (8, ®) outside a set of Q-
measure 0.

This implies that ty and g, are essentially constant. Suppose for simplicity that
folw) >0 for all (8, w), so that (Theorem 15.2) (7 X pl(6, w): ty(w) # g,(6)] =0. By
Fubini’s theorem, there 1s a 6 such that, if a = g(8), then plw: t(w) + a}=0; and
there is an  such that, if b=1(w), then w[8: g,(8) #51=0. It foliows that, for
{6, w) outside a set of (7w X u)-measure 0, ty{w) and g,(0) have the common value
a=>b: w[0: g(6) =al=1 and Pyw: ty(w) =al=1 for all & in O.

PROBLEMS
19.1. Suppose that u() < and feL”. Show that [ fll, 1 Il fll.

19.2. (a) Show that L™((0, 1}, &, A) is not separable.
(b) Show that L?((0,1}, &, u) is not separable if u is counting measure (g is
not o-finite).
(c) Show that LP(Q, %, P) is not separable if (Theorem 36.2) there is on the
space an independent stochastic process [ X,: 0 < < 1] such that X, takes the
values +1 with probability 5 each (% is not countably generated).

"This is interesting because of the close connection between Bayes rules and admissibility; see
BERGER, pp- 546 fI.
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19.3.

19.4.

19.5.

19.6.

19.7.

19.8.

19.9.

Show that Theorem 19.3 fails for L((0, 1]}, &, A). Hint: Take y(f) to be a
Banach limit of nf;/"f(x)dx.

Consider weak convergence in L7((0,1}, &, A).

(a) For the case p =, find functions f, and f such that f, goes weakly to f
but || f—f,Il, does not go to 0.

(b) Do the same for p =2.
Show that the unit ball in L*((C, t], &, A) is not weakly compact.

Show that a Bayes rule corresponding to p =(p,, .,p,) may not be admissible
if p, =0 for some ¢ But there will be a better Bayes rule that is admissible

The Neyman-Pearson lemma. Suppose f, and f, are rival densities and L(;[:) is
Oorlas j=iorj+#1i,sothat R(5)is the probability of choosing the opposite
density when f; is the right one. Suppose of & that §,(w) =1 if fi(w) > tf(w)
and &,(w) =0 if f)(w)<tf(w), where t >0 Show that b is admissible: For any
tule &', [8,f,dp < [8,f, du implies [, f,du > [8,f,du. Hint. [(5,— &)
(f, —tf)du =0, since the integrand is nonnegative.

The classical orthonormal basis for L2[0,2#] with Lebesgue measure is the
trigonometric system

(19.17y 2=)~', 7 Y’sinnx, w Y?cosmx, n=1,2,..

Prove orthonormality. Hint: Express the sines and cosines in terms of ei"* +
e "%, multiply out the products, and use the fact that [}"e’™* dx is 2 or 0 as
m =0 or m # 0. (For the completeness of the trigonometric system, see Problem
26.26.)

Drop the assumption that L? is separable. Order by inclusion the orthionormal
systems in L?, and let (Zorn's lemma) ¢ =[¢_: y € I'] be maximal.

(a) Show that T;=[y: (f,,) # 0] is countable. Hint Use T]_(f,¢,) =< Fils
and the argument for Theorem 10. 2(iv).

(b) Let Pf=Y. c(f )¢, Show that f—Pfid and hence (marimality)
f=Pf. Thus & is an orthonormal basis.

(c) Show that ® is countable if and only if L? is separable.

(d) Now take & to be a maximal orthonormal system in a subspace M, and
define P, f=Y i (f, ¢,)¢,. Show that P, f€M and f— P, f1L ®, that g=
Pyg if geM, "and "that f—P,fLM. This defines the general orthogonal
projection.



CHAPTER 4

Random Variables
and Expected Values

SECTION 20. RANDOM VARIABLES AND DISTRIBUTIONS

This section and the next cover random variables and the machinery for
dealing with them—expected values, distributions, moment generating func-
tions, independence, convolution.

Random Variables and Vectors

A random variable on a probability space ({1, &, P) is a real-valued function
X = X(w) measurable #. Sections 5 through 9 dealt with random variables of
a special kind, namely simple random variables, those with finite range. All
concepts and facts concerning real measurable functions carry over to ran-
dom variables; any changes are matters of viewpoint, notation, and terminol-
ogy only.

The positive and negative parts X* and X~ of X are defined as in (15.4)
and (15.5). Theorem 13.5 also applies: Define

(k—1)27" if(k—1)27"<x <k27",
(20.1) W (x) = 1<k <n2",

n if x> n.

If X is nonnegative and X, = ¢,(X), then 0 < X, T X. If X is not necessarily
nonnegative, define

(20.2) y | (X)) iHX=0,
| " -d(-X) if X<0.

(This is the same as (13.6).} Then 0 <X (0)? X(w) if X(w)>0 and 0>
254
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X (0)} X(w) if X(w)<0; and | X (0)|7|X(w)| for every w. The random
variable X, is in each case simple.

A random vector is a mapping from  to R* that is measurable .%. Any
mapping from Q to R* must have the form w - X(w) = (X (w),..., X, (@),
where each X(w) is real; as shown in Section 13 (see (13.2)), X is measur-
able if and only if each X; is. Thus a random vector is simply a k-tuple
X=(X,,..., X,) of random variables.

Subfields

If £ is a o-field for which £c &, a k-dimensional random vector X is of
course measurabie & if [w: X(w)€E H] € £ for every H in Z*. The o-field
o(X) generated by X is the smallest o-field with respect to which it is
measurable. The o-field generated by a coilection of random vectors is the
smallest o-field with respect to which each one is measurable.

As explained in Sections 4 and 5, a sub-o-field corresponds to partial
inforrnation about . The information contained in o(X)=0(X,,..., X,)
consists of the & numbers X(w),..., X,{w)." The following theorem is the
analogue of Theorem 5.1, but there are technical complications in its proof.

Theorem 20.1. Let X=(X,,..., X,) be a random vector.

(i) The o-field o(X)=0(X,, .., X,) consists exactly of the sets [ X € H]
for H e Z*.

(ii) In order that a random variable Y be measurable o(X)=o0(X,,..., X,)
it is necessary and sufficient that there exist a measurable map f: R* — R' such
that Y(w) = f(X(w), ..., X, (w)) forall ».

Proor. The ciass # of sets of the form [X€ H] for He%Z* is a
o-field. Since X is measurable o(X), £Co(X). Since X is measurable &,
o(X)c #. Hence part (i).

Measurability of f in part (ii) refers of course to measurability #Z*/%".
The sufficiency is easy: if such an f exists, Theorem 13.1(ii) implies that Y is
measurable o(X).

To prove necessity,t suppose at first that Y is a simple random variable,
and let y,,...,y, be its different possible values. Since A4; = [w: Y(w)=1y,]
lies in o/(X), it must by part (i) have the form [w: X(w) € H,] for some H, in
R*. Put f=1,y,I,; certainly f is measurable. Since the A, are disjoint, no
X(w) can lie in more than one H; (even though the latter need not be
disjoint), and hence f(X(w))=Y(w).

"The partition defined by (4.16) consists of the sets [w. X(w) = x] for x € R*.
*For a general version of this argument, see Problem 13.3.
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To treat the general case, consider simple random variables Y, such that
Y (w)— Y(w) for each w. For each n, there is a measurable function f,:
R* — R' such that Y () = f (X(w)) for all w. Let M be the set of x in R*
for which {f(x)} converges; by Theorem 13.4(iii), M lies in %* Let
f(x)=1lim, f(x) for x in M, and let f(x)=0 for x in R*— M. Since
f=lim, f,I,, and f, 1I,, is measurable, f is measurable by Theorem 13.4(ii).
For each w, Y(w)=lim, f,(X(w)); this implies in the first place that X(w)
lies in M and in the second place that Y(w) =lim_ f (X(w)) = f(X(w)). =

Distributions

The distribution or law of a random variable X was in Section 14 defined as
the probability measure on the line given by u = PX ™' (see (13.7)), or

(20.3) p(A)=P[X e A], AeR'.
The distribution function of X was defined by

(20.4) F(x)=p(—=,x] =P[X<x]
for real x. The left-hand limit of F satisfies

F(x—)=p(—-wo,x)=P[X<x],

(20.5)
F(x) —F(x-)=u{x} =P[X=x],

and F has at most countably many discontinuities. Further, F is nondecreas-
ing and right-continuous, and lim, , _, F(x)=0,lim, _ . F(x)= 1. By Theo-
rem 14.1, for each F with these properties there exists on some probability
space a random variable having F as its distribution function.

A support for p is a Borel set S for which u($)= 1. A random variable,
its distribution, and its distribution function are discrete if 1 has a countable
support § ={x, x,,...}. In this case u is completely determined by the
values p{x ), ulx,}....

A familiar discrete distribution is the binomial:

(20.6) P[X=r]=u{r}= (’:)p'(l -p)" ", r=0,1,...,n.

There are many random variables, on many spaces, with this distribution: If
{X,} is an independent sequence such that P[X, =1]=p and P[X, =0]=1
— p (see Theorem 5.3), then X could be £7_, X,, or L3}7X,, or the sum of
any n of the X;, Or @ could be {0,1,...,n} if & consists of all subsets,
Plry=ulr), r=0,1,...,n, and X(r)=r. Or again the space and random
variable could be those given by the construction in either of the two proofs
of Theorem 14.1. These examples show that, although the distribution of a
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random variable X contains all the information about the probabilistic
behavior of X itself, it contains beyond this no further information about the
underlying probability space (0, &, P) or about the interaction of X with
other random variables on the space.

Another common discrete distribution is the Poisson distribution with
parameter A > (:

B

e r=01,....

(20.7) P[X=r]=n{r} =¢

A constant ¢ can be regarded as a discrete random variable with X(w) =c.
In this case P[X =c]=ulc}=1. For an artificial discrete example, let
{x,,x,,...} be an enumeration of the rationals, and put

(20.8) u{x,) =27";

the point of the examiple is that the support need not be contained in a

lattice.
A random variable and its distribution have density f with respect to
Lebesgue measure if f is a nonnegative Borel function on R! and

(20.9) P[XeAl=p(A)= [ f(x)dx, A€

In other words, the requirement is that . have density f with respect to
Lebesgue measure A in the sense of (16.11). The density is assumed to be
with respect to A if no other measure is specified.

Taking A = R' in (20.9) shows that f must integrate to 1. Note that f is
determined only to within a set of Lebesgue measure 0: if f=g except on a
set of Lebesgue measure 0, then g can also serve as a density for X and u.

It follows by Theorem 3.3 that (20.9) holds for every Borel set A if it holds
for every interval—that is, if

F(b) = F(a)= [*f(x)

holds for every a and b. Note that F need not differentiate to f everywhere
(see (20.13), for example); all that is required is that f integrate
properly—that (20.9) hold. On the other hand, if F does differentiate to f
and f is continuous, it follows by the fundamental theorem of calculus that f
is indeed a density for F.T

"The general question of the relation between differentiation and integration is taken up in
Section 31
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For the exponential distribution with parameter a > (0, the density is

0 if x <0,
(20.10) f(x) {ae-“ if x> 0.
The corresponding distribution function

-10 if x <0,

(20.11) I"()f)=\1_e—ar if >0

was studied 1n Section 14.
For the normal distribution with parameters m and o, o > 0,

202

oo
(20.12) f(x)= e exp| - ———|, —o0 < x < o0;

a change of variable together with (18.10) shows that f does integrate to 1.
For the standard normal distribution, m = (0 and o = 1.
For the uniform distribution over an interval (a, b],

1 .
(20.13) f(x)={F—_a if a <x=<b,

0 otherwise.

The distribution function F is useful if it has a simple expression, as in
(20.11). It is ordinarily simpler to describe u by means of a density f(x) or
discrete probabilities w{x,}.

If F comes from a density, it is continuous. In the discrete case, F
increases in jumps; the example (20.8), in which the points of discontinuity
are dense, shows that it may nonetheless be very irregular. There exist
distributions that are not discrete but are not continuous either. An example
is u(A)= 3 ,(A)+ Ju,(A) for u, discrete and w, coming from a density;
such mixed cases arise, but they are few. Section 31 has examples of a more
interesting kind, namely functions F that are continuous but do not come
from any density. These are the functions singular in the sense of Lebesgue;
the OQ(x) describing bold play in gambling (see (7.33)) turns out to be one of
them. See Example 31.1.

If X has distribution » and g is a real function of a real variable,

(20.14) Plg(X)eA]=P[Xecg U] =u(g'4).

Thus the distribution of g(X)is ug™' in the notation (13.7).
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In the case where there is a density, f and F are related by

(20.15) F(x)= [ f(r)a.

Hence f at its continuity points must be the derivative of F. As noted above,
if F has a continuous derivative, this derivative can serve as the density f.
Suppose that f is continuous and g is increasing, and let T=g"'. The
distribution function of g(X)is Plg(X) <x]1=P[X<TX)]=FT(). If T
is differentiable, this differentiates to f(T(x))T'(x), which is therefore the
density for g(X). If g is decreasing, on the other hand, then P[g(X)<x]=
P[X>T(x)]=1- F(T(x)), and the derivative is equal to —f(T(x)T"'(x) =
F(T(xNIT'(x). In either case, g(X) has density

(20.16) 2 Plg(X) <x] = ((T(x))|T'(x)].

If X has the normal density (20.12) and a > 0, (20.16) shows that ¢X + b
has the normal density with parameters am + b and ao. Finding the density
of g(X) from first principles, as in the argument leading to (20.16), often
works even if g is many-to-one:

Example 20.1. 1f X has the standard normal distribution, then

1 V2 2 Jxo_ 2
PlX’<x|=— eV 2dt=——= [V e " /24t
[ ] V2 f—‘/; V2 [0
for x > 0. Hence X*° has density
0 if x <0,
f(x) = ! x"12e=5/2 if x> 0. u
2
Multidimensional Distributions
For a k-dimensional random vector X =(X/,..., X,), the distribution u (a

probability measure on #*) and the distribution function F (a real function
on R¥) are defined by

pw(A) =P[(X,,..., X)) €A], AeR,

(20.17)
F(xh""xk) :P[Xl le?"WXkak]:"‘L(Sx)?

where S, =[y: y,<x, i=1,..., k] consists of the points “southwest” of x.



260 RANDOM VARIABLES AND EXPECTED VALUES
Often y and F are called the joint distribution and joint distribution
function of X,..., X,.
Now F is nondecreasing in each variable, and A F >0 for bounded
rectangles A (see (12.12)). As h decreases to 0, the set
Sen=lyiyi<x;+h,i=1,... k]

decreases to S,, and therefore (Theorem 2.1(ii)) F is continuous from above

in the sense that lim, , F(x,+h,...,x,+h)=F(x,,..., x,). Further,
F(x,...,x,) >0 if x;, > — for some i (the other coordinates held fixed),
and F(x,,...,x,) > 1if x; > o for eacn i. For any F with these properties

there is by Theorem 12.5 a unique probability measure . on #2* such that
u(A) = A F for bounded rectangles A4, and u(S,) = F(x) for all x.

As h decreases to 0, S, _, increases to the interior 37 =[y: y; <x,
i=1,...,k]lof §,, and so

(20.18) Lirrtl]F(x,hh,...,xk—h)=;L(S§).
1

Since F is nondecreasing in each variable, it is continuous at x if and only if
it is continuous from below there in the sense that this last limit coincides
with F(x). Thus F is continuous at x if and only if F(x)=pu(S,) = pu(S?),
which holds if and only if the boundary 85 =S, — S (the y-set where y, <x;,
for all i and y,=x,; for some i) satisfies u(3S,)=0. If k> 1, F can have
discontinuity points even if 4 has no point masses: if x corresponds to a
uniform distribution of mass over the segment B =[(x,0): 0 <x < 1] in the
plane (u(A4)=Alx: 0 <x <1, (x,0) €A]), then F is discontinuous at each
point of B. This also shows that F can be discontinuous at uncountably many
points. On the other hand, for fixed x the boundaries 4§, , are disjoint for
different values of A, and so (Theorem 10.2(iv)) only countably many of them
can have positive y-measure. Thus x is the limit of points (x, + h,..., x, + h)
at which F is continuous: the continuity points of F are dense.

There is always a random vector having a given distribution and distribu-
tion function: Take (Q, %, P)=(R*, #* 1) and X(w)=w. This is the
obvious extension of the construction in the first proof of Theorem 14.1.

The distribution may as for the line be discrete in the sense of having
countable support. It may have density f with respect to k-dimensional
Lebesgue measure: u(A) = [, f(x)dx. As in the case k =1, the distribution
p is more fundamental than the distribution function F, and usually p is
described not by F but by a density or by discrete probabilities.

If X is a k-dimensional random vector and g: R*— R’ is measurable,
then g(X) is an i-dimensional random vector; if the distribution of X is g,
the distribution of g(X) is wg™!, just as in the case k = 1—see (20.14). If g
R¥ — R! is defined by g(x,,...,x,) =x,, then g/(X) is X;, and its distribu-
tion p,j=,ug,71 is given by p(A)=upul(x,...,x,) x;€A]=P[X;€A] for
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A€ R The u; are the marginal distributions of y. If p has a density f in
R*, then y; has over the line the density

(20.19)
ff(x)=fR f(xp o X l,x,xj,,,,...,xk)dxl---dxj_ldxjﬂ--.dxk’

since by Fubini’s theorem the right side integrated over A4 comes to
plxy, ..., x, ) x, €Al

Now suppose that g is a one-to-one, continuously differentiable map of I/
onto U, where U and V are open sets in R*. Let T be the inverse, and
suppose its Jacobian J(x) never vanishes. If X has a density f supported by
V, then for A C U, Plg(X)e A)=P[X € TAl = [, f(y)dy, and by (17.10),
this equals [, f(Tx)|/(x)| dx. Therefore, g(X) has density

(20.20) d(x)=(f(Tx)|J(x)| forxe U,
0 forxe U.

This is the analogue of (20.16).

Example 20.2. Suppose that (X, X,) has density

f(xix,) = 2m) " exp| =3 (x}+x3)],

and let g be the transformation to polar coordinates. Then U, VV, and T are
as in Example 17.7. If R and O are the polar coordinates of (X;, X,), then
(R, @) g(X,, X,) has density Q7) 'pe =P"/2 in V. By (20.19), R has denSIty
pe P /2 on (0,), and @ is uniformly distributed over (0,2). ]

For the normal distribution in R*, see Section 29.

Independence

Random variables X|,..., X, are defined to be independent if the o-fields
o(X)),...,o(X,) they generate are independent in the sense of Section 4.
This concept for simple random variables was studied extensively in Chapter
1; the general case was touched on in Section 14. Since o(X;) consists of the
sets [X;€ H] for He %', X,,..., X, are independent if and only if

(2021) P[X,€H,,....,X,€H])=P[X,€H] - P[X,€H,]
for all linear Borel sets H,,..., H,. The definition (4.10) of independence

requires that (20.21) hold also if some of the events [ X; € H;] are suppressed
on each side, but this only means taking H, = R'.
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Suppose that
(20.22) P[Xlle,...,Xkak]=P[Xlel]“' P[stxk]

for all real x,,..., x,; it then also holds if some of the events [ X; <x;] are
suppressed on each side (let x; —> ). Since the intervals (—oo, x] form a
m-system generating &', the sets [ X; < x] form a m-system generating o(X,).
Therefore, by Theorem 4.2, (20.22) implies that X,..., X, are independent.
If, for example, the X; are integer-vaiued, it is enough that P[X, =
ny...,Xe=n1=P[X,=n]l - P[X,=n,] for integral n,,...,n, (see
(5.9)).

Let (X,,..., X)) have distribution g and distribution function F, and let
the X; have distributions p; and distribution functions F; (the marginals). By
(20.21), X,,..., X, are independent if and only if x is product measure in

the sense of Section 18:

(20.23) L=p X X .

By (20.22), X,,..., X, are independent if and only if
(20.24) F(xp,....,x )y =F/(x;) - F.(x,).

Suppose that each u, has density f;; by Fubini’s theorem, f(y,) - fi(y,)
integrated over (—o, x; ] X - X (—oo, x, ] is just F(x,) - F.(x,), so that
i has density

(20.25) f(x)=fi(x1) - fulxe)

in the case of independence.
If #,...,% are independent o-fields and X; is measurable &, i=

{

1,...,k, then certainly X,..., X, are independent.

If X, is a d;-dimensional random vector, i = 1,...,k, then X,,..., X, are
by definition independent if the o-fields o(X)),...,0(X,) are independent.
The theory is just as for random variables: X,..., X, are independent if and

only if (20.21) holds for H, € #,..., H, € #%. Now (X,,..., X,) can be
regarded as a random vector of dimension d = XX_,d;; if u is its distribution
in RY=R%x -+- x R% and u; is the distribution of X, in R%, then, just as
before, X|,..., X, are independent if and only if 4 =p, X -+ X u,. In none
of this need the d; components of a single X; be themselves independent
random variables.

An infinite collection of random variables or random vectors is by defini-
tion independent if each finite subcollection is. The argument following (5.10)
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extends from collections of simple random variables to collections of random
vectors:

Theorem 20.2. Suppose that

Xy Xp
(20.26) Xy Xy

is an independent collection of random vectors. If F. is the o-field generated by
the i th row, then #,, F,, ... are independent.

Proor. lLet &7 consist of the finite intersections of sets of the form
[X;;€ H] with H a Borel set in a space of the appropriate dimension, and
apply Theorem 4.2. The o-fields & =o(), i =1,...,n, are independent
for each n, and the result follows. [}

Each row of (20.26) may be finite or infinite, and there may be finitely or
infinitely many rows. As a matter of fact, rows may be uncountable and there
may be uncountably many of them.

Suppose that X and Y are independent random vectors with distributions
p and v in R’ and R*. Then (X, Y) has distribution pXvin R/ X R¥=RI*k
Let x range over R’ and y over R*. By Fubini’s theorem,

(20.27) (ux'u)(B)=[Rju[y:(x,y)ea]u(dx), Be @itk

Replace B by (A X R¥)N B, where A€ %’ and Be€ %'**. Then (20.27)
reduces to
(20.28) (uXw)((A4 XRk)ﬂB)zfAv[y:(x,y)EB],u,(dx),

AR, BeRH*

If B_=[y: (x,y) €B] is the x-section of B, so that B, € Z* (Theorem
18.1), then P[(x,Y)€B]=Plw: (x,Y(w)) € B]l=Plo: Y(w)€ B 1=v(B,).
Expressing the formulas in terms of the random vectors themselves gives this
result:

Theorem 20.3. If X and Y are independent random vectors with distribu-
tions u and v in R’ and R*, then

(2029) P[(X,Y)eB]=[ P[(x,Y)<B]u(dx), BeR'*
RJ
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and

(2030)  P[X€A,(X,Y)<B] =_[P[(x,Y)eB],u.(dx),
AR, BeR*k

Example 20.3. Suppose that X and Y are independent exponentially
distributed random variables. By (20.29), P[Y/X > z] = [fPlY/x =
zlae ™ dx = [Fe"**ae " dx =(1+2)"". Thus Y/X has density (1+2)"°
for z>0. Since P[ X2z, Y/X=2z,]= [;‘:P[Y/x > z,lae ™" dx by (20.30),
the joint distribution of X and Y /X can be calculated as well. |

The formulas (20.29) and (20.30) are constantly applied as in this example.
There is no virtue in making an issue of each case, however, and the appeal
to Theorem 20.3 is usually silent.

Example 20.4. Here is a more complicated argument of the same sort. Let
Xi,-..,X, be independent random variables, each uniformly distributed over [0,¢].
Let Y, be the kth smallest among the X, so that 0 <Y, < --- <Y, <t. The X;
divide [0, t] into n + 1 subintervals of lengths Y,,Y, - Y,....Y, =Y, _,t—Y let M
be the maximum of these lengths. Define (¢, a) = P[M < a]. The problem is to show
that

_"“ zk[n+1 .2 5
(20.31) "’"(t’“)_go( 1)( K )(1 "z);

where x = {(x +|x[)/2 denotes positive part.

Separate consideration of the possibilities 0 <a <t/2, t/2 <a <t, and (<a
disposes of the case n = 1. Suppose it is shown that the probability ¢, (¢, a) satisfies
the recursion

(20.32) ¢,,(:,a)=n[0"¢n_,(z —x,a:)(’:"“)ﬂ—I =

Now (as follows by an integration together with Pascal’s identity for binomial
coefficients) the right side of (20.31) satisfies this same recursion, and so it will follow
by induction that (20.31) holds for all n.

In intuitive form, the argument for (20.32) is this: If [M < a] is to hold, the smallest
of the X, must have some value x in [0,a]. If X, is the smallest of the X,, then
X,,..., X, must all lie in [x, ¢] and divide it into subintervals of length at most a; the
probability of this is (1 — x /)"y, _ (t — x, @), because X,,..., X, have probability
(1 —x/t)"~ 1 of all lying in [x, ], and if they do, they are independent and uniformly
distributed there. Now (20.32) results from integrating with respect to the density for
X, and multiplying by n to allow for the fact that any of X|,..., X, may be the
smallest.

To make this argument rigorous, apply (20.30) for j=1 and k=n—1. Let 4 be
the interval [0, a), and let B consist of the points (x,,...,x,) for which 0 <x,; <¢, x,
is the minimum of x,..., x,, and x,,..., x, divide [x,,#] into subintervals of length
at most a. Then Pl X, =min X,, M<al=P[X, €4, (X,,..., X,) €B]. Take X, for
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X and (X,,..., X,) for Y in (20.30). Since X, has density 1 /1,
. a dx
(20.33) P[X,=min X, M <a]= [ P[(x, X,,. . X,)EB] =
0

If C is the event that x <X, <t for 2 <i <n, then P(C)=(1 —x/1)"~ 1. A simple
calculation shows that P[ X, - x <s,, 2 <f <alC]=TI1}.,(s,/(t — x)); in other words,
given C, the random variables X, —x,..., X,, — x are conditionally independent and
uniformly distributed over [0,¢ — x]. Now X,,..., X, are random varjables on some
probability space (£, %, P); replacing P by P(:|C) shows that the integrand in
(20.33) is the same as that in (20.32). The same argument holds wiih the index 1
replaced by any k (1 <k < ), which gives (20.32). (The events [ X, = min X,, Y <a]
are not disjoint, but any two intersect in a set of probability 0.) »

Sequences of Random Variables

Theorem 5.3 extends to genera! distributions u,,.

Theorem 20.4. If {u ) is a finite or infinite sequence of probability mea-
sures on R', there exists on some probability space (), &, P) an independent
sequence { X} of random variables such that X, has distribution p,.

Proor. By Theorem 5.3 there exists on some probability space an
independent sequence Z,, Z,,... of random variables assuming the values 0
and 1 with probabilities P[Z, =0]=P[Z,=1]=3. As a matter of fact,
Theorem 5.3 is not needed: take the space to be the unit interval and the
Z,(w) to be the digits of the dyadic expansion of w—the functions d,(w) of
Sections and 1 and 4.

Relabel the countably many random variables Z, so that they form a
double array,

le ZlZ
ZZ] 222

All the Z,, are independent. Put U, =X%_,Z, ,27% The series certainly
converges, and U, is a random variable by Theorem 13.4. Further, U}, U,,. ..
is, by Theorem 20.2, an independent sequence.

Now P[Z =z, 1<i<k]=2"* for each sequence z,,...,z, of 0’s and
1’s; hence the 2% possible values j27%, 0<j<2% of § ,=1F ,Z,27" all
have probability 27%. If 0 <x < 1, the number of the j27* that lie in [0, x] is
[2%x] + 1, and therefore P[S,, <x]=(2%x|+1)/2*. Since S, (@)1 U w) as
k 1o, it follows that [S,, <x]{[U,<x] as k1o, and so P[U,<x]=
lim, P[S,, <x]1=Ilim, (|2%x]+ 1) /2% =x for 0 <x < 1. Thus U, is uniformly
distributed over the unit interval.
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The construction thus far establishes the existence of an independent
sequence of random variables U, each uniformly distributed over [0, 1]. Let
E, be the distribution function corresponding to wx,, and put ¢, (u) = inf{ x:
u <F (x)] for 0 <u < 1. This is the inverse used in Section 14—see (14.5).
Set ¢ (1) =0, say, for u outside (0, 1), and put X (w)=¢ (U(w)). Since
¢, (1) <x if and only if u < F (x)—see the argument following (14.5)—P[ X,
<x]=P[U, <F(x)]=F(x). Thus X, has distribution function F,. And by

n—-n

Theorem 20.2, X, X,,... are independent. a

This theorem of course includes Theorem 5.3 as a special case, and its
proof does not depend on the earlier result. Theorem 20.4 is a special case of
Kolmogorov's existence theorem in Section 36.

Convolution

Let X and Y be independent random variables with distributions x and ».
Apply (20.27) and (20.29) to the planar set B=[(x,y). x+yeH] with
He %"

(20.34) PIX+YeH)= [ v(H-x)u(dv)
zf:OP[YeH—-x]p(dx).

The convolution of p and v is the measure p * v defined by

(2035)  (w=v)(H) =[_°°mu(H_x)p.(dx), He®"

If X and Y are independent and have distributions w and v, (20.34) shows
that X +Y has distribution yu *v. Since addition of random variables is
commutative and associative, the same is true of convolution: p*xv=v=x gy
and p*(v*n)=(u*v)xn.

If F and G are the distribution functions corresponding to x and v, the
distribution function corresponding to u * v is denoted F *(. Taking H =
(—oo, y] in (20.35) shows that

(20.36) (F+G)(y) = fij(y —x) dF(x).

(See (17.22) for the notation dF(x).) If G has density g, then G(y —x) =
v Fg(s)ds =¥ _g(t —x)dt, and so the right side of (20.36) is [ [ [Z.g(t
— x) dF(x)]dt by Fubini’s theorem. Thus F * G has density F = g, where

(2037) (Fx8)(5) = [ g(y—x)dF(x);
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this holds if G has density g. If, in addition, F has density f, (20.37) is
denoted f * g and reduces by (16.12) to

(20.38) (Fe)(s)= [ 8(y—x)f(x)dx

This defines convolution for densities, and u * v has density f = g if y and v
have densities f and g. The formula (20.38) can be used for many explicit
calculations.

Example 20.5. Let X,,..., X, be independent random variables, each
with the exponential density (20.10). Define g, by

{20.39) gk(x)=ame"‘”, x>0, k=1,2,...;

put g,{x)=0 for x < (0. Now

(81 * 81)() =f;gk_,(y—x)g.(x>dx,

which reduces to g,(y). Thus g, =g,_,* g, and since g, coincides with
(20.10), it follows by induction that the sum X, + --- +X, has density g,.
The corresponding distribution function is

k- l(ax)
(20.40) G (x)=1-e** )
i=0

x>0,

E
as follows by differentiation. n
Example 20.6. Suppose that X has the normal density (20.12) with m =0

and that Y has the saimne density with 7 in place of ¢. If X and Y are
independent, then X + Y has density

exp[ (¥~ x) xz]dx.

2w07

A change of variable u = x(¢* + 7%)'/% /o7 reduces this to

2
1 1 ® _1 _ T/O‘ _ y2
\/277 ‘7 +77 \/217 f"“"exp[ 2(“ y\/()'2+1'2 ) 2(02+72)]du
1

B \/217(0'2 + 72)

e“y2/2(0'2+12).
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Thus X + Y has the normal density with m =0 and with ¢? + 72 in place of
2
ag“. |

If 4 and v are arbitrary finite measures on the line, their convolution is
defined by (20.35) even if they are not probability measures.

Convergence in Probability
Random variables X, converge in probability to X, written X, —, X, if
(20.41) limP(|X, —X|>¢| =0

for each positive ¢." This is the same as (5.7), and the proof of Theorem 5.2
carries over without change (see also Example 5.4)

Theorem 20.5. (i) If X, = X with probability 1, then X, -, X.

(i) A necessary and sufficient condition for X, —, X is that each subse-
quence (X, } contain a further subsequence {X,, )} such that X, = — X with
probability 1 as i — o

Proor. Only part (ii) needs proof. If X, —», X, then given {n,}, choosc a
subsequence {n, ;) so that k > k(i) implies that P[| X, —X!> i~!'1<2 " By
the first Borel-Cantelli lemma there is probability 1 that iX,,m — X|<i~!for
all but finitely many i. Therefore, lim, X,,km = X with probability 1.

If X, does not converge to X in probability, there is some positive € for
which P[IX,,JL — X| > €] > € holds along some sequence {n,}. No subsequence
of {X,,k] can converge to X in probability, and hence none can converge to X
with probability 1. |

It follows from (ii) that if X,—~, X and X,—-,Y, then X=Y with
probability 1. It follows further that if f is continuous and X, —, X, then

f(x,) -, f(X).

In nonprobabilistic contexts, convergence in probability becomes conver-
gence in measure: If f and f are real measurable functions on a measure
space (2, %, ), and if plo: |f(w) ~ f, ()= €] - 0 for each € >0, then f,
converges in measure to f.

The Glivenko—-Cantelli Theorem*

The empirical distribution function for random variables X|,..., X, is the
distribution function F,(x,w) with a jump of n~! at each X, (w):

(20.42) F(x )= %kg o Xe(@)).

"This is often expressed plim, X, = X
*This topic may be omitted
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If the X, have a common unknown distribution function F(x), then F, (x, w)
is its natural estimate. The estimate has the right limiting behavior, according
to the Glivenko—-Cantelli theorem:

Theorem 20.6. Suppose that X,, X,,... are independent and have a com-
mon distribution function F; put D (@) = sup, |F (x,®) — F(x)|. Then D, — 0
with probability 1.

For each x, F (x,w) as a function of w is a random variable. By right
continuity, the supremum above is unchanged if x is restricted to the
rationals, and therefore D, 1s a random variable.

The summands in (20.42) are independent, identically distributed simple
random variables, and so by the strong law of large numbers (Theorem 6.1),
for each x there is a set A4, of probability 0 such that

(20.43) limF,(x,w) = F(x)

for w € A,. But Theorem 20.6 says more, namely that (20.43) holds for
outside some set 4 of probability 0, where A4 does not depend on x—as
there are uncountably many of the sets A,, it 1s conceivable a priori that
their union might necessarily have positive measure. Further, the conver-
gence in (20.43) is uniform in x. Of course, the theorem implies that with
probahility 1 there is weak convergence F,(x,w) = F(x) in the sense of
Section 14.

ProoF oF THE THEOREM. As already observed, the set 4, where (20.43)
fails has probability 0. Another application of the strong law of large
numbers, with /_, ., in place of I(_wlx] in (20.42), shows that (see (20.5))
lim, F(x -,0)=F(x - ) except on a set B, of probability 0. Let ¢(u)=
inflx: u < F(x)] for 0 <u <1 (see (14.5)), and put x, , = p(k/m), m=1,
1 <k <m. It is not hard to see that F(e(u) - ) <u < F(¢(u)); hence F(x,, ,

-)-F(x, .)<m™', F(x,,-)<m™', and F(x, ,)>1-m ' Let

D,, (») be the maximum of the quantltles |F(x,, w)— F(x, )| and
|F(x,, x> 0)— F(x, ,~—)lfork=1,.

If ‘xmlk_, <x <xm‘k, then F(x, w) < F,,(xm,k -,0) <F(x,, - )+
D, (@) <F(x)+m~'+D, (@) and F(x,0)>F,(x, (. ©)2F(x, ,_)
—D,, (@)= F(x)-m™' - D, (). Together with similar arguments for the
cases x <x, , and x>x this shows that

(20.44) ‘ D,(w) <D, (w)+m"

If w lies outside the union A of all the 4, and B, ,thenlim, D, ()
= 0 and hence lim, D, (w) = 0 by (20.44). But "4 has probablhty 0. |
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PROBLEMS

20.1.

20.2.

20.3.

20.4.

20.5.

20.6.

20.7.

20.8.

20.9.

2.1117 A necessary and sufficient condition for a o-field # to be countably
generated is that £=o(X) for some random variable X. Hinr: If Z=
o(A,;, Ay,...), consider X = Z",::lf(IAk)/lO", where f(x)is 4 for x=0and 5
for x #0.

If X is a positive random variable with density f, then X~! has density
f(1/x)/x?. Prove this by (20.16) and by a direct argument,

Suppose that a two-dimensional distribution function F has a continuous
density f. Show that f(x,y) =32F(x, y)/dxdy.

The construction in Theorem 20.4 requires only Lebesgue measure on the unit
interval. Use the theorem to prove the existence of Lebesgue measure on R,
First construct A, restricted to (—n,n] X + - X (—n,n), and then pass to the
limit (n — ). The idea is to argue from first principles, and not to use previous
constructions, such as those in Theorems 12.5 and 18.2.

Suppose that A4, B, and C are positive, independent random variables with
distribution function F. Show that the quadratic Az + Bz + C has real zeros
with probability [5/¢F(x2/4y)dF(x)dF(y).

Show that X), X,,... are independent if o(X,,..., X,_,) and o(X,) are
independent for each n.

Let X,, X,,... be a persistent, irreducible Markov chain, and for a fixed state
j let T\, T,,... be the times of the successive passages through j. Let Z, =T,
and Z,=T,—-T,_,, n>2. Show that Z,,Z,,... are independent and that
PlZ, —k]—f"" for n> 2.

Ranks and records. Let X, X,,... be independent random variables with a
common continuous distribution function. Let B be the w-set where
X,(0) = X {w) for some pair m, n of distinct integers, and show that P(B) = 0.
Remove B from the space {1 on which the X, are defined. This leaves the
joint distributions of the X, unchanged and makes ties impossible.

Let TY(w)=(T{"(w),...,T"w)) be that permutation (¢,,...,t,) of
(1,...,n) for which X(w) <X (w)< -+ <X, (w). Let Y, be the rank of X,
among X, X, Y, = if and only if X; <X for exactly r — 1 values of i
preceding n.

(a) Show that T is uniformly distributed over the n! permutations.
(b) Show that P[Y,=rl=1/n,1<r<n.

(c) Show that Y, is measurable o(T™) for k <n.

(d) Show that Y,,Y,,... are independent.

T Record values. Let A, be the event that a record occurs at time n:
max, ., X, <X,.

(a) Show that A4,, A,,... are independent and P(A,)=1/n.

(b) Show that no record stands forever.

(c) Let N, be the time of the first record after time n. Show that P[N, =n +
k]=n(n +k-1)"Yn + k)1,
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20.10.

20.11.

20.12.

20.13.

20.14.

20.15.

20.16.

Use Fubini’s theorem to prove that convolution of finite measures is commuta-
tive and associative.

Suppose that X and Y are independent and have densities. Use (20.20) to find
the joint density for (X + Y, X) and then use (20.19) to find the density for
X + Y. Check with (20.38).

If F(x — €) < F(x + ¢€) for all positive €, then x is a point of increase of F (see
Problem 12.9). If F(x —) < F(x), then x is an atom of F.

(a) Show that, if x and y are points of increase of F and G, then x +y is a
point of increase of F *G.

(b) Show that, if x and y are atoms of F and G, then x +y is an atom of
FxG,

Suppose that g and v consist of masses «,, and B, at n, n=0,1,2,.... Show
that p = v consists of a mass of L} _gaxB,_« at n, n=0,1,2,.... Show that
two Poisson distributions (the parameters may differ) convolve to a Poisson
distribution.

The Cauchy distribution has density

(20.45) ¢, (x)= ;,_-;217, —00 < x < 0o

for u > 0. (By (17.9), the density integrates to 1.)

(a) Show that ¢, *c, =c,,,. Hint: Expand the convolution integrand in
partial fractions.

(b) Show that, if Xj,..., X, are independent and have density c,, then
(X, + -+~ +X,)/n has density ¢, as well.

1 (a) Show that, if X and Y are independent and have the standard normal
density, then X/Y has the Cauchy density with u =1,

(b) Show that, if X has the uniform distribution over (—m/2,7/2), then
tan X has the Cauchy distribution with « = 1.

18.181 Let X|,..., X, be independent, each having the standard normal
distribution Show that

KP4 X

has density

1
20.46 —— (/A1 /2
( ) 2n/2r(n/2)x ¢

over (0, «). This is called the chi-squared distribution with n degrees of freedom.
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20.17.

20.18.

20.19.

20.20.

20.21.

20.22.

20.23.

20.24.

RANDOM VARIABLES AND EXPECTED VALUE¢
<
T The gammma distribution has density

u

(20.47) flxsa.u) = Fosx u=lq-ax

over (0, ) for positive parameters @ and u. Check that (20.47) integrates to 1
Show that

(20.48) fOa,u)xf( 5e,0)=f(;a,u+0v).

Note that (20. 46) is f(x;3,n/2), and from (20.48) deduce again that (20.46) is
the density of y2. Note that the exponentlal density (2010) is f(x; a,1), and
from (20 48) deduce (20 39) cnce again.

1 Let N, X,, X,,... bc independent, where P[N=n]=q""'p, n>1, and
each X, has the exponential density f(x;ea,1). Show that X, + - - +X, has
density f(x;ap,1).

Let A,,(e)=[Z,~Z|<e€, n <k <m], Show that Z, — Z with probability 1
if and only if lim, lim,, P(A4,,(eY) =1 for all positive ¢, whereas Z, -, Z if
and only if lim,, P(A,.(€)) =1 for all positive .

(a) Suppose that f: R* —» R! is continuous. Show that X, =, X and ¥, >, Y
lmply f(Xrn Yn) _)P f(X7Y)
(b) Show that addition and multiplication preserve convergence in probability.

Suppose that the sequence {X,} is fundamental in probability in the sense that
for € positive there exists an N, such that P[|X,, — X,,|> €] <€ for m,n>N_.
(a) Prove there is a subsequence {X_ .} and a random variable X such that
lim, X, =X with probability 1. Hmt Choose increasing n, such that
PIX, ZX,|>27¥1<2 % for m,n >n,. Analyze Pllx, —X,I|>27%.

(b) Show that X, —, X.

(a) Suppose that X, <X, < --- and that X, -, X. Show that X, - X with
probability 1.

(b) Show by example that in an infinite measure space functions can converge
almost everywhere without converging in measure.

If X, — 0 with probability 1, then n~'T}_, X, - 0 with probability 1 by the
standard theorem on Cesiaro means [A30). Show by example that this is not so
if convergence with probability 1 is replaced by convergence in probability,

2.191 (a) Show that in a discrete probability space convergence in probabil-
ity is equivalent to convergence with probability 1,

(b) Show that discrete spaces are essentially the only ones where this equiva-
lence holds: Suppose that P has a nonatomic part in the sense that there is a
set A such that P(A)>0 and P(|A) is nonatomic. Construct random
variables X, such that X, —», 0 but X, does not converge to 0 with probabil-
ity 1.
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[4

*0.25. 20.21 2024t Let d(X,Y) be the infimum of those positive € for which
PlIX-Y|ze€] <e.

(a) Show that 4(X,Y)=0 if and only if X=Y with probability 1. Identify
random variables that are equal with probability 1, and show that 4 is a metric
on the resulting space.

(b) Show that X, —», X if and only if d(X,, X)—0.
(c) Show that the space is complete.

(d) Show that in general there is no metric d;, on this space such that X, - X
with probability 1 if and only if do( X, X) = 0.

20.26. Construct in R* a random variable X that is uniformly distributed over the
surface of the unit sphere in the sense that |X|=1 and UX has the same
distribution as X for orthogonal transformations U. Hint Let Z be uniformly
distributed in the unit ball in R¥, define ¢(x) =x/|x|((0) = (1,0, ,0), say),
and take X =¢(Z).

20.27. 1 Let ® and ® be the longitude and latitude of a random point on the
surface of the unit sphere in R®. Show that ® and @ are independent, © is
uniformly distributed over [0,27), and @ is distributed over [—7/2, + /2]
with density - cos ¢

SECTION 21. EXPECTED VALUES

Expected Value as Integral

The expected value of a random variabie X on (£, &, P) is the integral of X
with respect to the measure P:

E[X]= [XdP= an(w)P(dw).

All the definitions, conventions, and theorems of Chapter 3 apply. For
nonnegative X, E[X] is always defined (it may be infinite); for the general
X, E[ X]is defined, or X has an expected value, if at least one of E[ X™*] and
E[ X~ 1is finite, in which case E[X]1= E[X"]— E[X”]; and X is integrable if
and only if E[|X[] <. The integral [,XdP over a set A is defined, as
before, as ElI,X]. In the case of simple random variables, the definition
reduces to that used in Sections 5 through 9.

Expected Values and Limits

The theorems on integration to the limit in Section 16 apply. A useful fact: If
random variables X, are dominated by an integrable random variable, or if
they are uniformly integrable, then E[ X ] — E[X] follows if X converges to
X in probability—convergence with probability 1 is not necessary. This
follows easily from Theorem 20.5.



274 RANDOM VARIABLES AND EXPECTED VALUES

Expected Values and Distributions

Suppose that X has distribution . If g is a real function of a real variable,
then by the change-of-variable formula (16.17),

(21.1) E[s(X)] = [ &(x)u(dx).

(In applying (16.17), replace T: 2 - €' by X: Q- R', u by P, uT™! by u,
and f by g.) This formula holds in the sense explained in Theorem 16.13: It
holds in the nonnegative case, so that

(212) E[le(X)| = [ |a(x)lu(a);

if one side is infinite, then so is the other. And if the two sides of (21.2) are
finite, then (21.1) holds.
If  is disciete and u{x,, x,,...} =1, then (21.1) becomes (use Theorem

16.9)
(21.3) E(g(X)] = Xa(x,)u{x}.

If X has density f, then (21.1) becomes (use Theorem 16.11)

(21.4) E[g(X)] =fmwg(x)f(x)dx.

If F is the distribution function of X and u, (21.1) can be written E[g( X)]
= [* .8(x)dF(x) in the notation (17.22).

Moments

By (21.2), # and F determine all the absolute moments of X:
(215) E[IX1*] = [ Ixl*u(dx) = [ IxI*aF(x), k=1,2....

Since j <k implies that x|’ <1 +|x|%, if X has a finite absolute moment of
order k, then it has finite absolute moments of orders 1,2,...,k —1 as well.
For each & for which (2.15) is finite, X has kth moment

(21.6) E[X*] = f:x",u(dx) =f°°wx'< dF(x).

These quantities are also referred to as the moments of p and of F. They
can be computed by (21.3) and (21.4) in the appropriate circumstances.
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Example 21.1. Cg)nsider the normal density (20.12) with m =0 and o = 1.
For each k, x¥e /% goes to 0 exponentially as x —» +o, and so finite
moments of all orders exist. Integration by parts shows that

Ff xke=x2/2 [ K-2e=x*/2gy  k=23,...

(Apply (18.16) to g(x) =x*"2 and f(x)=xe™"/2 and let a > —o, b — .
Of course, E[X]=0 by symmetry and E[X°]=1. It follows by induction
that

(21.7)  E[X%*|=1x3x5x%x -~ x(2k-1), k=12, .,
and that the odd moments all vanish. [ |

If the first two moments of X are finite and E[ X]=m, then just as in
Section 5, the variance is

(21.8) Var[ X] = E[(X - m)?] =fjm(x—m)2u(dx)
= E[Xz] —m?

From Example 21.1 and a change of variable, it follows that a random
variable with the normal density (20.12) has mean m and variance o2,
Consider for nonnegative X the relation

(21.9) E[X)= [ P[X>d)dt=[ P[X21]d.
0 0

Since P[ X =1t] can be positive for at most couniably many values of ¢, the
two integrands differ only on a set of Lebesgue measure 0 and hence the
integrals are the same. For X simple and nonnegative, (21.9) was proved in
Section 5; see (5.29). For the general nonnegative X, let X be simple
randem variables for which ¢ < X_ 1 X (see (20.1)). By the monotone conver-
gence theorem E[ X 11 E[ X]; moreover, P[ X, >t]1 P[ X > t], and therefore
[oPlX, > t]ldt 1 [fP[ X > t]dt, again by the monotone convergence theorem.
Since (21.9) holds for each X, a passage to the limit establishes (21.9) for X
itself. Note that both sides of (21.9) may be infinite. If the integral on the
right is finite, then X is integrable.
Replacing X by XI . ,, leads from (21.9) to

(2110) [ XdP=aP[X>al+ [ P[X>t)di, a0
[X>a] a

As long as a > 0, this holds even if X is not nonnegative.
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Inequalities

Since the final term in (21.10) is nonnegative, a*P[Xza]sj[Xza]XdPs
E[X]. Thus

1 1
(21.11) P[X2a]<—[  XdP<-E[X], a>0,

[ Xz2al

for nonnegative X. As in Section 5, there follow the inequalities

1 k 1 k
(21.12) P[IXIza]s;;f[ X1*aP < —E[1X1"].

1 X1z ol

It is the inequality between the two extreme terms here that usually goes
under the name of Markov; but the left-hand inequality is often useful, too.
As a special case there is Chebyshev’s inequality,

(21.13) PlIX -m|> a] 5%Var[){]

(m=E[XD.
Jensen’s inequality

(21.14) o(E[X]) <E[e(X)]

holds if ¢ is convex on an interval containing the range of X and if X and
©(X) both have expected values. To prove it, let I(x) =ax + b be a support-
ing line through (E] X1, ¢( E[ X ]))—a line lying entirely under the graph of ¢
(A33]. Then aX(w)+b < p(X(w)), so that aE[X]+ b < E[¢(X)]. But the
left side of this inequality is @( E[ X]).

Holder’s inequality is

(2115)  E[xvI) <EVP[IXPP]EVevle], 5+
For discrete random variables, this was proved in Section 5; see (5.35). For
the general case, choose simple random variables X, and Y, satisfying
0 <|X,[T1X] and 0 <|Y,|7|Y];, see (20.2). Then (5.35) and the monotone
convergence theorem give (21.15). Notice that (21.15) implies that if |X|?
and |Y|? are integrable, then so is XY. Schwarz’s inequality is the case

p=q=2
(21.16) E[lxyl) <E'V?[ Xx?]|E'?[Y?].

If X and Y have second moments, then XY must have a first moment.
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The same reasoning shows that Lyapounov’s inequality (5.37) carries over
from the simple to the general case.

Joint Integrals

The relation (21.1) extends to 1andom vectors. Suppose that (X,,..., X,) has
distribution g in k-space and g: R* — R'. By Theorem 16.13,

(2117 E[g(X0r- . X0 = [ g(x)u(d),

with the usual provisos about infinitc values. For example, E[X, X/]=
frex;x,u(dx). If E[X;]=m,, the covariance of X; and X is

Cov| X, X,] = E[(X,— m;)(X,—m,)] = [Rk(x,- —m){ x, —m;)u(dr).

Random variables are uncorrelated if they have covariance 0.

Independence and Expected Value

Suppose that X and Y are independent. if they are also simple, then
E[ XY 1= E[X]E[Y]), as proved in Section 5—see (5.25). Define X, by (20.2)
and similarly define ¥, =4 (Y*) — ¢ (Y7). Then X, and Y, are independent
and simple, so that E[| X Y, [1= E[| X RE[|Y, ], and 0 <| X, 171 X], 0 <Y, |T(Y].
If X and Y are integrable, then E[|X,Y, 1= E[XE[Y, 11 E(lXIE[IY],
and it follows by the monotone convergence theorem that E[| XY ] < «; since
XY, - XY and | X Y !<|XY] it follows further by the dominated conver-
gence theorem that E[XY]=lim_ E[X,Y,]=1lim, E{ X, 1E[Y,1=E[Y]E[Y ]
Therefore, XY is integrable if X and Y are (which is by no means true for
dependent random variables) and E[ XY ] =E[X]E[Y].

This argument obviously extends inductively: If X|,..., X, are indepen-
dent and integrable, then the product X, --- X, is also integrable and

(21.18) E[X, - X]=E[X\] - E[X,].

Suppose that & and #, are independent o-fields, A lies in &, X, is
measurable &, and X, is measurable %,. Then I, X, and X, are indepen-
dent, so that (21.18) gives

(21.19) fX,Xz dP:]X, dP-E[ X,]
A A
if the random variables are integrable. In particular,

(21.20) szdP=P(A)E[X2].
A
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From (21.18) it follows just as for simple random variables (see (5.28)) that
variances add for sums of independent random variables. It is even enough
that the random variables be independent in pairs.

Moment Generating Functions

The moment generating function is defined as
(21.21) M(s)=E[eX] = [ eu(dx) = [ e dF(x)

for all s for which this is finite (note that the integrand is nonnegative).
Saction 9 shows in the case of simple random variables the power of moment
generating function methods. This function is also called the Laplace trans-
form of u, especially in nonprobabilistic contexts.

Now [ge**u(dx) is finite for s <0, and if it is finite for a positive s, then it
is finite for all smaller s. Together with the corresponding result for the left
half-line, this shows that M(s) is defined on some interval containing 0. If X
is nonnegative, this interval contains ( — %,0] and perhaps part of (0, ®); if X
is nonpositive, it contains [0,%) and perhaps part of (—,0). It is possible
that the interval consists of O alone; this happens, for example, if p is
concentrated on the integers and u{n} = u{-n)=C/n*forn=1,2,....

Suppose that M(s) is defined throughout an interval (—sg,s,), where
5o > 0. Since e'”'<e”+e ** and the latter function is integrable p for
sl <sg, s0 is T2 _,lsx|*/k!=e"*. By the corollary to Theorem 16.7, u has
finite moments of all orders and

aQ oo

(21.22) M(s)= Y E[X”]— k,[ xu(dr),  lsl<s.

k=0

Thus M(s) has a Taylor expansion about 0 with positive radius of conver-
gence if it is defined in some (s, s,), s,>> 0. If M(s) can somehow be
calculated and expanded in a series L a, s*, and if the coefficients a, can be
identified, then, since a, must coincide with E[ X*]/k!, the moments of X
can be computed: E[X*}=a, k! It also follows from the theory of Taylor
expansions [A29] that a, k! is the kth derivative M‘¥)(s) evaluated at s =0:

(21.23) M©(0) = E[X¥] = [ x¥u(d).

This holds if M(s) exists in some neighborhood of 0.

Suppose now that M is defined in some neighborhood of s. If » has
density e’*/M(s) with respect to p (see (16.11)), then » has moment
generating function N(u) = M(s + u)/M(s) for u in some neighborhood of 0.
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But then by (21.23), N®X0) = /2 x*v(dx) = [* _x*es*u(dx)/M(s), and since
NEO) = ME(s)/M(s),

(21.24) M®(s5) = [xk Fu(dx).

This holds as long as the moment generating function exists in some neigh-
borhood of s. If s =0, this gives (21.23) again. Taking k = 2 shows that M(s)
is convex in its interval of definition.

Example 21.2. For the standard normal density,

1 2 ® L2
oS /zj’ e~ (x=5) /zdx,

es* —x2/2 _
M(s) = f dx e N

and a change of variable gives

(21.25) M(s)=e"?,

The moment generating function in this case defined for all s. Since L
has the expansion

2 =1 % IxX3Xx - X(2k-1)
s4/2 2k
¢ kz k'( ) {; (2k)] S

the moments can be read off from (21.22), which proves (21.7) once more. W

Example 21.3. In the exponential case (20.10), the moment generating
function

<0

Sx —-—ax —_ o
(21.26) M(s):[oe qe™ ¥ dv = ——

B k{:O a

is defined for s <a. By (21.22) the kth moment is k!a~*. The mean and
variance are thus « ! and o~ 2. m

Example 21.4. For the Poisson distribution (20.7),

= AT ,
(21.27) M(s) = Z eIy =Ml

Since M'(s)=Ae’M(s) and M"(s) = (A%e?* + Ae’IM(s), the first two mo-
ments are M'(0) = A and M”(0) = A> + A; the mean and variance are both A.
n
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Let X,,..., X, be independent random variables, and suppose that each
X, has a moment generating function M(s)= E[e**] in (—s,,s,). For
Is] <sq, each exp(sX;) is integrable, and, since they are independent, their
product exp(s XX, X,) is also integrable (see (21.18)). The moment generating
function of X, + --- +X, is therefore

(21 28) M(s) = My(s) -~ M,(s)

in (—s,,5,). This relation for simple random variables was essential to the
arguments in Section 9,

For simple random variables it was shown in Section 9 that the moment
generating function determines the distribution. This will later be proved for
generai random variables; see Theorem 22.2 for the nonnegative case and
Section 30 for the general case.

PROBLEMS

21.1. Prove

1 me“”‘z/zdx=t_'/2,
V2im /-

differentiate k£ times with respect to ¢ inside the integral (justify), and derive
(21.7) again.

21.2. Show that, if X has the standard normal distribution, then E[IX|**'}=

2"l 2/,

2L.3. 20.97 Records. Consider the sequence of records in the sense of Problem
20.9. Show that the expected waiting time to the next record is infinite,

21.4. 20.141 Show that the Cauchy distribution has no mean.

2L.5. Prove the first Borel-Cantelli lemma by applying Theorem 16.6 to indicator
random variables, Why is Theorem 16.6 not enough for the second
Borel-Cantelli lemma?

21.6. Prove (21.9) by Fubini’s theorem.

21.7. Prove for integrable X that

E[X]=f0°°P[X>t]dt~ j_” P[X <t]d:.
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21.8.

219,

21.10.

2111,

21.12,

21.13.

21.14.

21.15.

21.16.

(a) Suppose that X and Y have first moments, and prove
E[Y]-E[X]= [ (P[X<t<Y]-P[Y<i<X])d.

(b) Let (X,Y] be a nondegenerate random interval Show that its expected
length is the integral with respect to ¢ of the probability that it covers z.

Suppose that X and Y are random variables with distribution functions F
and G.

{a) Show that if F and G have no common jumps, then E[F(Y)] + E[G(X)]
= 1.

(b) If F is continuous, then E[F(X)] = 3.

(¢) Even if F and G have common jumps, if X and Y are taken to be
independent, then EIF(Y)}+E[G(X)]=1+P[X=Y]

(d) Even if F has jumps, E[F(X)]=3 +iX PX =x]

(a) Show that uncorrelated variables need not be independent.

(b) Show that Var[£7,X,}= I7 _, CovlX,, X, = T0., Var[X,] +
2X) i< j<nCovl X}, X;]. The cross terms drop out if the X, are uncorrelated,
and hence drop out it}they are independent,

T Let X, Y, and Z be independent random variables such that X and Y
assume the values 0, 1,2 with probability § each and Z assumes the values 0
and 1 with probabilities + and 2, Let X’=X and Y’ =X + Z (mod 3).

(a) Show that X', Y’, and X'+ Y’ have the same one-dimensional distribu-
tions as X, Y, and X+ Y, respectively, even though (X’,Y’) and (X,Y) have
different distributions.

(b) Show that X’ and Y’ are dependent but uncorrelated

(c) Show that, despite dependence, the moment generating function of X’ + Y’
is the product of the moment generating functions of X and Y".

Suppose that X and Y are independent, nonnegative random variables and
that E[X}=c and E[Y]=0. What is the value common to E[XY] and
E[X1E[Y}? Use the conventions (15.2) for both the product of the random
variables and the product of their expected values. What if E[X]=c and
0 <E[Y]}<®?

Suppose that X and Y are independent and that f(x, y) is nonnegative. Put
g(x) = E[ f(x,Y)] and show that E[g(X)]=E[ f(X,Y)]. Show more generally
that [y c 48(X)dP = [y 4f(X,Y)dP. Extend to f that may be negative.

T The integrability of X +Y does not imply that of X and Y separately.
Show that it does if X and Y are independent.

20.251 Write d(X,Y) =E[lX - Y|/(1 +1X — Y]] Show that this is a metric
equivalent to the one in Problem 20.25.

For the density Cexp(—~|x|'/2), —o0 < x < o, show that moments of all orders
exist but that the moment generating function exists only at s =0.
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21.17. 16.67T Show that a moment generating function M(s) defined in (—sy, s,),
sp > 0, can be extended to a function analytic in the strip [z: —s, <Re z < s5,].
If M(s) is defined in [0, s4), 5, > 0, show that it can be extended to a function
continuous in [z: 0 < Re z <s,] and analytic in [z- 0 < Re z < s,].

21.18. Use (21.28) to find the generating function of (20.39).

21.19. For independent random variables having moment generating functions, show
by (21.28) that the variances add.

21.20. 20.177 Show that the gamma density (20.47) has moment generating function
(1 -s/a)™™ for s <a. Show that the kth moment is w(u+1) - (u+k -
1)/a* Show that the chi-squared distribution with n degrees of freedom has
mean 1 and variance 2n,

21.21. Let X,, X,,... be identically distributed random variables with finite second
moment, Show that nP[|X,|> e/n]— 0 and n="/?max, _,|X,| -, 0.

SECTION 22. SUMS OF INDEPENDENT RANDOM VARIABLES

Let X, X,,... be a sequence of independent random variables on some
probability space. It is natural to ask whether the infinite series X7 X
converges with probability 1, or as in Section 6 whether n™'L]_, X, con-
verges to some limit with probability 1. It is to questions of this sort that the
present section is devoted.

Throughout the section, S, will denote the partial sum X7 _, X, (§,=0).

The Strong Law of Large Numbers

The central result is a general version of Theorem 6.1,

Theorem 22.1. If X, X,,... are independent and identically distributed
and have finite mean, then S_/n — E[ X1 with probability 1.

Formerly this theorem stood at the end of a chain of results. The following
argument, due to Etemadi, proceeds from first principles.

Proor. If the theorem holds for nonnegative random variables, then
n 'S =nT'T0_ X -n T8 X, > E[X{1- E[X;1=E[X,] with proba-
bility 1. Assume then that X, > 0.

Consider the truncated random variables Y, = X, I;x, ., and their partial
sums S¥ = Y7 _Y,. For a > 1, temporarily fixed, let u, = |a"|. The first step
is to prove

(22.1) i P[

n=1

sz, - £[5:

Iy,

>el| <oo,

u

n
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Since the X, are independent and identically distributed,
Var[ $*] = Z Var[ Y, ] < EE[Y ]

= X E[XlZI[X,sk]] SnE[X‘ZI[XIS”]]'

k=1
It follows by Chebyshev’s inequality that the sum in (22.1) is at most

e Var[S*] 1 1
Y —— 5 < —ZE[XE )» u_nl[xnsunl]'

a1 € U, €

Let K=2a/(a — 1), and suppose x > 0. If N is the smallest » such that
u, > x, then a” >x, and since y < 2y] for y > 1,

Yu'<2) a"=Ka V<Kx'

U,>x nz2N

Therefore, . u, 'l x <, S KX{' for X, >0, and the sum in (22.1) is at
most Ke 2E[X,]1< .

From (22.1) it follows by the first Borel-Cantelli lemma (take a union over
positive, rational ¢) that (S* E[S* D/u, — 0 with probability 1. But by the
consistency of Cesaro summation [A30], n ™ 'E[S*]=n"'E7_ E[Y,] has the
same limit as E[Y, ], namely. E[ X,]. Therefore S /iy —>E[X ] with proba-
bility 1. Since

{', P[X +Y]= i Pl X, >n] < mP[X,>t]dt=E[X,]<OO,

n=1 n=1

o"'\

another application of the first Borel-Cantelli lemma shows that (S* — S )/n
— (0 and hence

S,
(222) 2 > E[X)]

n

with probability 1.
If u,<k<u,,,, then since X;>0,

u S“ Sk un+l S”n+l
< T < —_—
urt+l un un un+l
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But u,,,/u, — a, and so it follows by (22.2) that

S S
lE[X,] <lim inf 2% <lim sup 2* <aE[ X,]
(44 k X k

with probability 1. This is true for each « > 1. Intersecting the corresponding
sets over rational « exceeding 1 gives lim, §, /k = E[ X,] with probability 1.
[ |

Although the hypothesis that the X all have the same distribution is used
several times in this proof, independence is used only through the equation
Var[S*]= ¥} _, Var[Y,], and for this it is enough that the X, be indepen-
dent 1n pairs. The proof given for Theorem 6.1 of course extends beyond the
case of simple random variables, but it requires E[ X;'] < o,

Corollary. Suppose that X, X,,... are independent and identically dis-
tributed and E[X;]<w, E[X]]= (so that E[X,]=). Then n™'L}_, X,
— o with probability 1.

Proor. By the theorem, n™'Lf_ X, — E[ X; ] with probability 1, and so
it suffices to prove the corollary for the case X, =X > 0. If

[X if0<X <u,
Xr(’u)z n n

|0 if X, >u,
then n ™ 'E0_ X, >n"'Th_ XM — E[ X{"] by the theorem. Let u ., =

The Weak Law and Moment Generating Functions

The weak law of large numbers (Section 6) carries over without change to the
case of general random variables with second moments—only Chebyshev’s
inequality is required. The idea can be used to prove in a very simple way
that a distribution concentrated on [0,%) is uniquely determined by its
moment generating function or Laplace transform.

For each A, let Y, be a random variable (on some probability space)
having the Poisson distribution with parameter A. Since Y, has mean and
variance A (Example 21.4), Chebyshev’s inequality gives

Y, —A A
P[ A/\ ’2€]SAZ—€2—)O’ A — oo,
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Let G, be the distribution function of Y, /A, so that

{At] A6

G(t) = E e _A
The result above can be restated as

(22.3) lim G,(1) =

A=

I ife>1,
0 ifr<l.

In the notation of Section 14, G(x) = A(x — 1) as A — x,
Now consider a probability distribution w concentrated on [0, ). Let F be
the corresponding distribution function. Define

(22.4) M(s) = [Ome"”p(d.x), 5> 0;

here 0 is included in the range of integration. This is the moment generating
function (21.21), but the argument has been reflected through the origin, It is
a one-sided Laplace transform, defined for all nonnegative s.

For positive s, (21.24) gives

(22.5) M®(s) = (- 1)kf0my"e‘”p,(dy).

Therefore, for positive x and s,

Lsx] ,_ 1y*% w Lx}
26) L Ghsmee - [T e 2" ()
k=0 ’ k=0
= f:Gsy(%)u(dﬂ

Fix x> 0. IfT 0 <y <x, then G, (x/y) > 1 as s > o by (22.3); if y >x, the
limit is 0. If u{x} = 0, the integrand on the right in (22.6) thus converges as
§ — o to 1[0,11( y) except on a set of u-measure 0. The bounded convergence

theorem then gives

s (D)
(22.7) lim Y 4 sKM®(s) =pu[0,x]=F(x).

T k=0

T y =0, the integrand in (22.5) is 1 for k = 0 and 0 for k = 1, hence for y = 0, the integrand in
the middle term of (22 6) is 1,
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Thus M(s) determines the value of F at x if x >0 and u{x} =0, which
covers all but countably many values of x in [0,), Since F is right-continu-
ous, F itself and hence p are determined through (22.7) by M(s). In fact g is
by (22.7) determined by the values of M(s) for s beyond an arbitrary s,:

Theorem 22.2. Let p and v be probability measures on [0, ). If

oo

_/:e"”u(dx)=j;}e‘“r(dx), 52> 5,

where 5, > 0, then yu = v.

Corollary. Let f, and f, be real functions on [0,), If

[y de= [ py(x)de, sz,

where 5,> 0, then f, = f, outside a set of Lebesgue measure 0.

The f; need not be nonnegative, and they need not be integrable, but

H

e —**f(x) must be integrable over [0, ) for 5 > s,.

Proor. For the nonnegative case, apply the theorem to the probability
densities gA{x)=e " f(x)/m, where m = [Je ***f{x)dx, i=1,2, For the
general case, prove that f +f, = f, + f; almost everywhere, m

Example 22.1. 1f p,* p, = u,, then the corresponding transforms (22.4)
satisfy M (s)M,(s) = My(s) for s >0. If u, is the Poisson distribution with
mean A;, then (see (21.27)) M.(s) = exp[A,(e™* — 1)]. It follows by Theorem
22.2 that if two of the p, are Poisson, so is the third, and A, + A, = A;. |

Kolmogorov’s Zero—One Law

Consider the set 4 of w for which n ™'Y} _, X,(0) - 0 as n — «. For each
m, the values of X(w),..., X, _ [(w) are 1rrelcvant to the question of
whether or not w lies in A4, and so A ought to lie in the o-field
o(X,,, Xns1s...) In fact, lim, n~ "7 ) X, (@) = 0 for fixed m, and hence w

m?

lies in A if and only if lim, n ™'Y} _, X,(w)= 0. Therefore,

ilz X (w)

@8  A-0 U nN[w

the first intersection extending over positive rational €. The set on the inside
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lies in 0(X,, X, ,,,...), and hence so does A, Similarly, the w-set where the
series L, X, (w) converges lies in each o(X,,, X ,,,...).

The intersection 9= N, _,0(X,, X, ,,,...) is the tail o-field associated
with the sequence X, X,,...; its elements are tail events. In the case
X, =1, , this is the o-field (4.29) studied in Section 4. The following general

form of Kolmogorov’s zero—one law extends Theorem 4.5.

Theorem 22.3. Suppose that {X,) is independent and that A€ I=
Ns_,6(X,, X, 1,...). Then either P(A)=0 or P(A)= 1.

ProoF. Let &= U%.,0(X,,..., X,). The first thing to establish is that
&, is a field generating the o-field (X, X,,...). If B and C lie in &,,
then BGO‘(XI,...,XJ) and C€o(X,,...,X,) for some ; and k; if m =
max{j, k}, then B and C both lie in o(X,,...,X,), so that BUC€&
a(X,,...,X,)C %, Thus &, is closed under the formation of finite unions;
since it is similarly closed under complementation, &, is a field. For
HeR' [X,eHle Fca(F), and hence X, is measurable ¢(F,); thus
Z, generates o(X, X,,...) (which in general is much larger than %,).

Suppose that A4 lies in &. Then A lies in (X, ,,, X¢,,,...) for each k.
Therefore, if B €o(X,,..., X;), then A and B are independent by Theorem
20.2. Therefore, A4 is independent of %, and hence by Theorem 4.2 is also
independent of (X, X,,...). But then A is independent of itself: P(A N
A) = P(A)P(A). Therefore, P(A)= P?(A), which implies that P(A) is ei-
ther 0 or 1. [ |

As noted above, the set where X (w) converges satisfies the hypothesis
of Theorem 22.3, and so does the set where n ™! r-1X (@) - 0. In many
similar cases it is very easy to prove by this theorem that a set at hand must
have probability either 0 or 1. But to determine which of 0 and 1 is, in fact,

the probability of the set may be extremely difficult.

Maximal Inequalities

Essential to the study of random series are maximal inequalities—inequali-
ties concerning the maxima of partial sums. The best known is that of
Kolmogorov.

Theorem 22.4. Suppose that X, ..., X, are independent with mean 0 and
finite variances. For a > 0,

(22.9) P| max |S, |2« séVar[Sn].

I<k<n
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Proor. Let A4, be the set where |S,|> a but [S,| <« for j <k. Since the
A, are disjoint,

E|S?]| > S? dp
52 £ 1.

:
= ¥ [ [s24250(S, - 50 + (S, 8] ap
:

> ¥ [ [$2+28(S,-S,)] aP.
17 A
Since A, and S, are measurable o(X,,..., X,) and §, — §, is measurable
o(X,.,,...,X,), and since the means are all 0, it follows by (21.19) and

independence that [, §,(S, —§,)dP = 0. Therefore,

n n

E[S2]2 ¥ [ StdP> ¥ a’P(A,)
k=1"4¢ k=1
=a2P[ max !SkIZa]. n
l<k<n

By Chebyshev’s inequality, P[|S,|>a]l<a~?Var[S,]. That this can be
strengthened to (22.9) is an instance of a general phenomenon: For sums of
independent variables, if max, _, |S,| is large, then [S,| is probably large as
well. Theorem 9.6 is an instance of this, and so is the following result, due to
Etemadi.

Theorem 22.5. Suppose that X,,..., X, are independent. For a > {,

(22.10) P[ max ISk|23ar] <3 max P[IS,|>al.
l<sk<n l<k<n
Proor. Let B, be the set where |S,|>3a but |S| <3« for j <k. Since
the B, are disjoint,

n—1

P| max |sk|23a} <P[IS,|>a] + ¥ P(B.N]IS,I<a])

l<k=<n k=1
n-1
<P[IS,|=a] + ¥ P(B.N[IS,— S,>2a])
k=1

n—1
=PlIS |=a] + Y P(B,)P[IS, - S.>2a]
k=1
<P[IS,|=a] + max P{|S, —S,|>2a]
l<sk<n
<P[IS|=ea] + max (P[IS,|=a] +P[IS,[>«])
i<k<n

<3 max P[IS,|>«]. n

l<k<n
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If the X, have mean 0 and Chebyshev’s inequality is applied to the right
side of (22.10), and if « is replaced by «/3, the result is Kolmogorov’s
inequality (22.9) with an extra factor of 27 on the right side. For this reason,
the two inequalities are equally useful for the applications in this section.

Convergence of Random Series

For independent X, the probability that XX, converges is either 0 or 1. It is
natural to try and characterize the two cases in terms of the distributions of
the individual X .

Theorem 22.6. Suppose that {X,} is an independent sequence and E[ X ] =
0. If Y Varl X, ] <, then =X, converges with probability 1.

Proor. By (22.9),

P[ inax |S, FkhSn|>e} < iz Z Var[ X, ., ].

l<kxr

Since the sets on the left are nondecreasing in r, letting r — o gives

1 o .
P supISn+k—Sn|>e] <— Y Var[X,,,]
€ v o

kz1

Since ¥ Var[ X, ] converges,

(22.11) limP[suplSn+k— S |> e] =0

R k=1

for each e.

Let E(n,e) be the set where sup; ,.,|S;—S,>2¢, and put E(e)=
N, E(n,e). Then E(n,e)} E(e), and (22.11) implies P(E(¢e))=90. Now
U EE(e) where the union extends over positive rational e, contains the set
where the sequence {S,} is not fundamental (does not have the Cauchy
property), and this set therefore has probability 0. |

Example 22.2. Llet X (w)=r(w)a,, where the r, are the Rademacher
functions on the unit interval—see (1.13). Then X, has variance a2, and so
Ya? < implies that Lr,(w)a, converges with probability 1. An interesting
special case is a, =n~". If the signs in £ + n~' are chosen on the toss of a
coin, then the series converges with probability 1. The alternating harmonic
series 1 —27'+ 37! + -+ is thus typical in this respect. |

If £X, converges with probability 1, then S, converges with probability 1
to some finite random variable S. By Theorem 20.5, this implies that
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S, —p S. The reverse implication of course does not hold in general, but it
does if the summands are independent.

Theorem 22.7. For an independent sequence {X ), the S, converge with
probability 1 if and only if they converge in probability .

Proor. It is enough to show that if S, —, S, then {S,} is fundamental
with probability 1. Since

P[1S, ;= S|z ¢] <P[1S,,; - SI= 5] + P[5, - SI= 5],

2

n+j
S, —p S implies

(22.12) lim sup P[1S, ., ~S,l= €] =0.
n

izl

But by (22.10),

P{ max |Sn+j—S,,|2€] < 3 max P[IS,,+j—S,,|2 %],

l<j<k 1<i<k

and therefore

P{suplS, ., — S,,|>e] s3supP[|Sn+k—S"|2 %J

k>l k=1

It now follows by {22.12) that (22.11) holds, and the proof is completed as
before. [ |

The final result in this direction, the three-series theorem, provides neces-
sary and sufficient conditions for the convergence of ¥ X, in terms of the
individual distributions of the X,. Let X!9 be X, truncated at c: X{)=

Xodyx, <y

Theorem 22.8. Suppose that {X,} is independent, and consider the three
series

(22.13) YPlX,>c], YE[Xx©], ¥ va[x©].

In order that Y X, converge with probability 1 it is necessary that the three
series converge for all positive ¢ and sufficient that they converge for some
positive C.
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Proor orF Surriciency. Suppose that the series (22.13) converge, and
put m{ = E[ X{]. By Theorem 22.6, (X — m©)) converges with probabil-
ity 1, and since Lm!" converges, so does LX . Since P[ X, #X!9 i.0]=0
by the first Borel-Cantelli lemma, it follows finally that ¥ X converges with
probability 1. [ |

Although it is possible to prove necessity in the three-series theorem by
the methods of the present section, the simplest and clearest argument uses
the central limit theorem as treated in Section 27. This involves no circularity
of reasoning, since the three-series theorem is nowhere used in what follows.

Proor orF NEcessiTy. Suppose that X converges with probability 1,
and fix ¢ > 0. Since X, — 0 with probability 1, it follows that X con-
verges with probability 1 and, by the second Borel-Cantelli lemma, that
LPX, I>c]l <o,

Let M{? and 50 be the mean and standard deviation of S =X _, X{°.
If s{ — o, then since the X () —m!*) are uniformly bounded, it follows by
the central limit theorem (see Example 27.4) that

S(C} - M(C)
(22.14) lim P " 4 ] !
n

-y 5
peSME L P
S,(IC) 277 x

And since LX{“ converges with probability 1, s’ — « also implies S /s{*)
-» (0 with probability 1, so that (Theorem 20.5)

(22.15) lim P[|S) /58 = €] = 0.

But (22.14) and (22.15) stand in contradiction: Since

S _ ppled S
P[x<—”—-(c)—"—gy, (nc) <e
§ §
n n

is greater than or equal to the probability in (22.14) minus that in (22.15), it is
positive for all sufficiently large n (if x <y). But then

x—e< M s <y +e,

and this cannot hold simultaneously for, say, (x — ¢,y +¢€)=(~1,0) and
(x — €,y +e€)=(0,1). Thus s cannot go to =, and the third series in (22.13)
converges.

And now it follows by Theorem 22.6 that L( X! — m{") converges with
probability 1, so that the middle series in (22.13) converges as well. ]

Example 22.3. 1f X, =r,a,, where r, are the Rademacher functions,
then La2 <o implies that X, converges with probability 1. If £X_ con-
verges, then a, is bounded, and for large ¢ the convergence of the third
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series in (22.13) implies Ya? < o If the signs in ¥ + a,, are chosen on the toss
of a coin, then the series converges with probability 1 or 0 according as La?
converges or diverges. If Ta2 converges but Lla,| diverges, then L +a,, is
with probability 1 conditionally but not absolutely convergent. |

Example 22.4. 1f a, }0 but Ya? = «, then ¥ +a, converges if the signs
are strictly alternating, but diverges with probability 1 if they are chosen on
the toss of a coin. [ |

Theorems 22.6, 22.7, and 22.8 concern conditicnal convergence, and in the
most interesting cases, L X, converges not because the X, go to 0 at a high
rate but because they tend to cancel each other out. In Exampie 22.4, the
terms cancel well enough for convergence if the signs are strictly aiternating,
but not if they are chosen on the toss of a coin.

Random Taylor Series®

Consider a power series L + z", where the signs are chosen on the toss of a
coin. The radius of convergence being 1, the series represents an analytic
function in the open unit disk D,=[z: [z| < 1] in the complex plane. The
question arises whether this function can be extended analytically beyond
D,. The answer is no: With probability 1 the unit circle is the natural
boundary.

Theorem 22.9. Let { X} be an independent sequence sich that
(22.16) P[X,=1]=P[X,=-1]=%,  n=01,....

There is probability 0 that
(22.17) Flw,z) = Y X(w)z"
n=0

coincides in D with a function analytic in an open set properly containing D,,