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Binomial Link Functions 

• Logit Link function: 

 

 

• Probit Link function: 

 

 

• Complentary Log Log 

function:   
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Motivating Example 

• A researcher is examining beetle mortality after 
5 hours of exposure to carbon disulphide, at 
various levels of concentration of the gas.  

• Beetles were exposed to gaseous carbon 
disulphide at various concentrations (in mg/L) for 
five hours (Bliss, 1935) and the number of 
beetles killed were noted. The data are in the 
following table: 



Example (continued) 

> beetle<-read.table("BeetleData.txt",header=TRUE) 

> head(beetle) 

    Dose Num.Beetles Num.Killed 

1 1.6907             59             6 

2 1.7242             60            13 

3 1.7552             62            18 

4 1.7842             56            28 

5 1.8113             63            52 

6 1.8369             59            53 

 

> logitmodel<-glm(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle, 
family = binomial) > summary(logitmodel) 

> probitmodel<-glm(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle, 
family = binomial(link=probit))  

> summary(probitmodel) 

> logmodel<-glm(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle, family 
= binomial(link=cloglog))  

> summary(logmodel) 



Don’t forget to plot the data! 



 

 

LOGIT MODEL: 

 

Call: 

glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,  

    family = binomial, data = beetle) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.5941  -0.3944   0.8329   1.2592   1.5940   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -60.717      5.181  -11.72   <2e-16 *** 

Dose          34.270      2.912   11.77   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 284.202  on 7  degrees of freedom 

Residual deviance:  11.232  on 6  degrees of freedom 

AIC: 41.43 

 

Number of Fisher Scoring iterations: 4 



 

 

PROBIT MODEL: 

 

Call: 

glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,  

    family = binomial(link = probit), data = beetle) 

 

Deviance Residuals:  

    Min       1Q   Median       3Q      Max   

-1.5714  -0.4703   0.7501   1.0632   1.3449   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -34.935      2.648  -13.19   <2e-16 *** 

Dose          19.728      1.487   13.27   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 284.20  on 7  degrees of freedom 

Residual deviance:  10.12  on 6  degrees of freedom 

AIC: 40.318 

 

Number of Fisher Scoring iterations: 4 



 

 

COMPLEMENTARY LOG-LOG MODEL: 

 

Call: 

glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,  

    family = binomial(link = cloglog), data = beetle) 

 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-0.80329  -0.55135   0.03089   0.38315   1.28883   

 

Coefficients: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  -39.572      3.240  -12.21   <2e-16 *** 

Dose          22.041      1.799   12.25   <2e-16 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

(Dispersion parameter for binomial family taken to be 1) 

 

    Null deviance: 284.2024  on 7  degrees of freedom 

Residual deviance:   3.4464  on 6  degrees of freedom 

AIC: 33.644 

 

Number of Fisher Scoring iterations: 4 



Example (continued) 



Binomial Link Functions 

• Differences in choice of link affect model and 

deviance. 

• Why have 3 link functions and what about them 

cause these differences. 

• “All models are wrong, but some are useful” – 

George Box 

 

  



Differences in Link Functions 



Differences in Link Functions 

• Numerically, consider the specific value of 
each function corresponding to various levels 
of p: 

 
p Logit Probit C Log Log 

0.005 -5.2933 -2.5758 -5.2958 

0.5 0 0 -0.3665 

0.99  4.5951 2.3263 1.5271 



Deviances 

 

 

 

• Logit: 

 

• Probit: 

 

• C Log Log: 
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Differences in Link Functions 
probLowerlogit <- vector(length=1000) 

probLowercloglog <-vector(length=1000) 

logitDeviance <-vector(length=1000) 

probitDeviance <-vector(length=1000) 

cloglogDeviance <- vector(length=1000) 

probLowerlogitclog <- vector(length=1000) 

for(i in 1:1000){ 

   

  x <- rnorm(1000) 

  y <- rbinom(n=1000, size=1, prob=pnorm(x)) 

   

  logitModel <- glm(y~x, family=binomial(link="logit")) 

  probitModel <- glm(y~x, family=binomial(link="probit")) 

  cloglogModel <- glm(y~x, family=binomial(link="cloglog")) 

   

  logitDeviance[i] <- deviance(logitModel) 

  probitDeviance[i] <- deviance(probitModel) 

  cloglogDeviance[i] <- deviance(cloglogModel) 

   

  probLowerlogit[i] <- probitDeviance[i] < logitDeviance[i] 

  probLowercloglog[i] <- probitDeviance[i] < cloglogDeviance[i] 

  probLowerlogitclog[i] <- logitDeviance[i] < cloglogDeviance[i] 

   

} 



Differences in Link Functions 

>sum(probLowerlogit)/1000  

[1] 0.695  

> sum(probLowercloglog)/1000  

[1] 0.906 

>sum(probLowerlogitclog)/1000  

[1] 0.877 

 

 

 

Consider the last iteration of the script: 

 

 

 

 

 

Dev Probit Dev Logit Dev. cloglog 

1025.759 1026.366 1024.606 

Differences (last iteration):  

> deviance(logitModel) - deviance(probitModel)  

[1] 0.6076806  

> deviance(cloglogModel) - deviance(probitModel)  

[1] -1.152768 

 

 



Origins of the  

Binomial Link Functions 

1. Complementary log log link (1922) 

 

2. Probit link (1933) 

 

3. Logit link (1944) 



Complementary log-log link (1922)  

• R. A. Fisher, English Statistician 

• Dilution assay  §12.3 

• Describes an experiment where 

a series of dilutions were made 

of a soil or water sample to 

determine the presence or 

absence of some microbial 

contaminant. 

• Used a cll transformation and 

applied maximum likelihood 

estimation. 



Complementary log-log link (1922)  

• Assume that dilutions are made in powers of 2, 

then after 𝑥 dilutions the number of infective 

organisms, 𝑝𝑥, per unit volume is 

𝑝𝑥 = 𝑝0/2𝑥 

• where 𝑝0 is the density of infective organisms 

in the original solution (we wish to estimate). 

• The expected number of organisms on any 

plate is 𝑝𝑥𝑣, and the actual number of 

organisms follows a Poisson distribution with 

this parameter.   

 

 

𝑥 = 0,1,… 



Complementary log-log link (1922)  
• The probability that a plate is infected is 

π𝑥 = 1 − exp {−𝑝𝑥𝑣} 

• At dilution 𝑥 we have, 

 

 

• If at dilution 𝑥 we have r infected plates out of m, 

the observed proportion of infected plates is               

y = r/m, and E(Y| 𝑥) = π𝑥 

• A complementary log-log transformation is 

log − log 1 − π𝑥 = α + β𝑥 

  

 

 

 

 

 

log − log 1 − π𝑥 = log 𝑣 + log 𝑝𝑥 
                                                      = log 𝑣 + log 𝑝𝑜 − 𝑥 log 2 



Probit link (1933/1934) 

• John Gaddum was an English 

pharmacologist who wrote a 

comprehensive report on the 

statistical interpretation of bio-

assay. 

• Bliss was largely self taught, 

worked with Fisher, and 

eventually settled at Yale. 

– Published 2 brief notes in Science 

where he introduced the word 

‘probit’ (probability unit). 



• Bliss uses an example of the effectiveness of a 

pesticide to combat an insect pest.  

– Describes how a dosage-mortality curve has an 

asymmetrical S-shaped curve. 

 

 

Probit link (1933/1934) 



• Observation that in many physiological 

processes equal increments in response are 

produced when dose is increased by a constant 

proportion of the given dosage, rather than by a 

constant amount.   

• Bliss proposed the same rule might hold for 

toxicological processes, in which case dosage 

would have to be plotted in logarithmic terms to 

show a uniform increase in mortality. 

• Proposed to transform the percentage killed to a 

probit and then plot against the logarithm of the 

dose to achieve a straight line. 

 

Probit link (1933/1934) 



• Transformation by use of logarithms and probits. 

Probit link (1933/1934) 



Logit link (1944) 

• Joseph Berkson was a medical doctor and chief 

statistician of the Mayo Clinic. 

• Research was on statistical methodology of bio-

assay. 

• Proposed the use of the logistic instead of the 

normal probability function, coining the term 

‘logit’ by analogy to the ‘probit’ of Bliss. 

 



Logit link (1944) 

• Berkson gives several reasons for using the logit 

– The logistic function is very close to the integrated 

normal curve. 

– Since it applies to a wide range of physiochemical 

phenomena, it may have a better theoretical basis 

than the integrated normal curve. 

– It is easier to handle statistically. 

• Initially the logit was regarded as inferior and 

disreputable, since it cannot be related to an 

underlying normal distribution of tolerance 

levels. 

 



Logit link (1944) 

• By the 1960s, Berkson’s 

logit had gained 

acceptance.   

• The power of the logistic’s 

analytical properties were 

starting to surface. 

• By the 1970s, the logit 

takes the lead because it 

was now widely used 

among many disciplines.   

 

 



Logit is Considered the Default Link 

• Advantages of Logit link function: 

– Leads to simpler mathematics due to 

complexity of  the standard normal CDF 

– It is easier to interpret (Log odds) 



Final Remarks 

• If the logit link is considered the default 
link, why do we still use probit and 
Complementary log log? 

– Theoretical Considerations 

– Influences by disciplinary tradition 
• Economists favour probit models 

• Toxicologists favour logit models 

– Underlying characteristics of the data 
• Complementary log log works best with extremely 

skewed distributions 
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