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Binomial Link Functions

» Logit Link function: n(p) = |”(ﬁj

» Probit Link function: n(p)=07(p)

 Complentary Log Log
function: n(p)=In(=In(1- p))



Motivating Example

« A researcher is examining beetle mortality after
5 hours of exposure to carbon disulphide, at
various levels of concentration of the gas.

» Beetles were exposed to gaseous carbon
disulphide at various concentrations (in mg/L) for
five hours (Bliss, 1935) and the number of
beetles killed were noted. The data are in the
following table:




Example (continued)

> peetle<-read.table("BeetleData.txt",header=TRUE)
> head(beetle)
Dose Num.Beetles Num.Killed

1 1.6907 59 6
21.7242 60 13
31.7552 62 18
41.7842 56 28
51.8113 63 52
6 1.8369 59 53

> |logitmodel<-glm(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle,
family = binomial) > summary(logitmodel)

> probitmodel<-gim(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle,
family = binomial(link=probit))

> summary(probitmodel)

> logmodel<-gim(cbind(Num.Killed,Num.Beetles-Num.Killed) ~ Dose, data = beetle, family
= binomial(link=cloglog))

> summary(logmodel)



Frobability

Don't forget to plot the data!
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LOGIT MODEL:

Call:
glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,
family = binomial, data = beetle)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5941 -0.3944 0.8329 1.2592 1.5940

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -60.717 5.181 -11.72 <2e-16 ***
Dose 34.270 2,912 11.77 <2e-16 ***

Signif. codes: 0 ***' 0.001 ***0.01 *0.05° 0.1 *’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.202 on 7 degrees of freedom

Residual deviance: 11.232 on 6 degrees of freedom

AIC: 41.43

Number of Fisher Scoring iterations: 4



PROBIT MODEL:

Call:
glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,
family = binomial(link = probit), data = beetle)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.5714 -0.4703 0.7501 1.0632 1.3449

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -34.935 2.648 -13.19 <2e-16 ***
Dose 19.728  1.487 13.27 <2e-16***

Signif. codes: 0 ***' 0.001 ***0.01 *0.05° 0.1 *’ 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.20 on 7 degrees of freedom

Residual deviance: 10.12 on 6 degrees of freedom

AIC: 40.318

Number of Fisher Scoring iterations: 4



COMPLEMENTARY LOG-LOG MODEL.:

Call:
glm(formula = cbind(Num.Killed, Num.Beetles - Num.Killed) ~ Dose,
family = binomial(link = cloglog), data = beetle)

Deviance Residuals:
Min 1Q Median 30 Max
-0.80329 -0.55135 0.03089 0.38315 1.28883

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -39.572  3.240 -12.21 <2e-16 ***
Dose 22.041 1.799 12.25 <2e-16 ***

Signif. codes: 0 ***' 0.001 ***0.01 *0.05° 0.1 *’ 1
(Dispersion parameter for binomial family taken to be 1)
Null deviance: 284.2024 on 7 degrees of freedom
Residual deviance: 3.4464 on 6 degrees of freedom

AIC: 33.644

Number of Fisher Scoring iterations: 4



Frobability
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Binomial Link Functions

* Differences in choice of link affect model and
deviance.

* Why have 3 link functions and what about them
cause these differences.

« “All models are wrong, but some are useful” —
George Box



Differences In Link Functions
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Differences In Link Functions

* Numerically, consider the specific value of

each function corresponding to various levels

of p:
P Logit Probit |C Log Log
0.005 | -5.2933 | -2.5758 | -5.2958
0.5 0 0 -0.3665
0.99 45951 | 2.3263 1.5271




Deviances

D= 22{% In(yi yi)+(ni y) In(ni - % " ﬂ;yi —n.p,

Logit =&

. It: =
o9 i 1+e%7
* Probit: p. = (X' f)

- ClogLog: B=1-ep{-epx A}



Differences In Link Functions

probLowerlogit <- vector(length=1000)
probLowercloglog <-vector(length=1000)
logitDeviance <-vector(length=1000)
probitDeviance <-vector(length=1000)
cloglogDeviance <- vector(length=1000)
probLowerlogitclog <- vector(length=1000)
for(i in 1:2000){

X <- rnorm(1000)
y <- rbinom(n=1000, size=1, prob=pnorm(x))

logitModel <- glm(y~x, family=binomial(link="logit"))
probitModel <- gim(y~x, family=binomial(link="probit"))
cloglogModel <- glm(y~x, family=binomial(link="cloglog"))

logitDeviance[i] <- deviance(logitModel)
probitDeviance[i] <- deviance(probitModel)
cloglogDeviance]i] <- deviance(cloglogModel)

probLowerlogit[i] <- probitDeviance][i] < logitDevianceli]
probLowercloglog]i] <- probitDeviance]i] < cloglogDeviance[i]
probLowerlogitclog[i] <- logitDeviance]i] < cloglogDeviance[i]



Differences In Link Functions

>sum(probLowerlogit)/1000 Differences (last iteration):

[1] 0.695 > deviance(logitModel) - deviance(probitModel)

> sum(probLowercloglog)/1000 [1] 0.6076806

[1] 0.906 > deviance(cloglogModel) - deviance(probitModel)
>sum(probLowerlogitclog)/1000 [1] -1.152768

[1] 0.877

Consider the last iteration of the script:

Dev Probit Dev Logit Dev. cloglog

1025.759 1026.366 1024.606




Origins of the
Binomial Link Functions

1. Complementary log log link (1922)
2. Probit link (1933)

3. Logit link (1944)



Complementary log-log link (1922)

* R. A. Fisher, English Statistician
* Dilution assay §12.3

* Describes an experiment where
a series of dilutions were made
of a soll or water sample to
determine the presence or
absence of some microbial
contaminant.

 Used a cll transformation and
applied maximum likelihood
estimation.



Complementary log-log link (1922)

* Assume that dilutions are made in powers of 2,
then after x dilutions the number of infective
organisms, p,., per unit volume is

Px = Po/2* x=01,...

« where p, Is the density of infective organisms
In the original solution (we wish to estimate).

* The expected number of organisms on any
plate is p, v, and the actual number of
organisms follows a Poisson distribution with
this parameter.



Complementary log-log link (1922)
* The probabillity that a plate is infected is
T, = 1 — exp{—p,v}

o At dilution x we have,

log(—log(1 —m,)) =logv + logp,
= logv + logp, — xlog 2

 If at dilution x we have r infected plates out of m,
the observed proportion of infected plates is

y =r/m, and E(Y]| x) = &,
* A complementary log-log transformation is

log(—log(1—m,)) = a+ Bx



Probit link (1933/1934)

* John Gaddum was an English
pharmacologist who wrote a
comprehensive report on the
statistical interpretation of bio-
assay.

 Bliss was largely self taught,
worked with Fisher, and
eventually settled at Yale.

— Published 2 brief notes in Science
where he introduced the word
‘probit’ (probability unit).




Probit link (1933/1934)

* Bliss uses an example of the effectiveness of a
pesticide to combat an insect pest.

— Describes how a dosage-mortality curve has an
asymmetrical S-shaped curve.
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Probit link (1933/1934)

* Observation that in many physiological

orocesses equal increments in res
oroduced when dose is increased
oroportion of the given dosage, rat
constant amount.

DONSe are
DYy a constant

ner than by a

 Bliss proposed the same rule might hold for
toxicological processes, in which case dosage
would have to be plotted in logarithmic terms to
show a uniform increase in mortality.

Proposed to transform the percentage killed to a

probit and then plot against the logarithm of the

dose to achieve a straight line.



Probit link (1933/1934)

« Transformation by use of logarithms and probits.
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Logit link (1944)

« Joseph Berkson was a medical doctor and chief
statistician of the Mayo Clinic.

« Research was on statistical methodology of bio-
assay.

* Proposed the use of the logistic instead of the
normal probability function, coining the term
logit’ by analogy to the ‘probit’ of Bliss.



Logit link (1944)

« Berkson gives several reasons for using the logit

— The logistic function is very close to the integrated
normal curve.

— Since it applies to a wide range of physiochemical
phenomena, it may have a better theoretical basis
than the integrated normal curve.

— It Is easier to handle statistically.

* |nitially the logit was regarded as inferior and
disreputable, since it cannot be related to an
underlying normal distribution of tolerance
levels.



Logit link (1944)

* By the 1960s, Berkson's
logit had gained
acceptance.

* The power of the logistic’s
analytical properties were

starting to surface.

* By the 1970s, the logit

takes the lead because it

was now widely used

among many disciplines.

Table 1. Number of articles in statistical journals
containing the word ’probit’ or ‘logit’.

probit  logit

1935 — 39 6 -

1940 — 44 3 1

1945 — 49 22 6

1950 — 54 50 15
1955 — 5¢ 53 23
1960 — 64 11 27
1965 — 69 13 11
1970 — 74 18 61
1975 - 79 15 72
1980 — 84 93 147
1985 — 89 08 215
1990 — 94 127 311




Logit iIs Considered the Default Link

« Advantages of Logit link function:

— Leads to simpler mathematics due to
complexity of the standard normal CDF

— It Is easier to interpret (Log odds)



Final Remarks

* If the logit link Is considered the default
link, why do we still use probit and
Complementary log log?

— Theoretical Considerations

— Influences by disciplinary tradition
« Economists favour probit models
 Toxicologists favour logit models

— Underlying characteristics of the data

« Complementary log log works best with extremely
skewed distributions
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