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Chapter 2
Newton’s Equation and Kepler’s Law

We develop in this chapter the earliest important examples of differential equa-
tions, which in fact are connected with the origins of calculus. These equations were
used by Newton to derive and unify the three laws of Kepler. These laws were
found from the earlier astronomical observations of Tycho Brahe. Here we give a
brief derivation of two of Kepler's laws, while at the same time setting forth some
general ideas about differential equations.

The equations of Newton, our starting point, have retained importance through-
out the history of modern physics and lie at the root of that part of physics called
classical mechanics.

The first chapter of this book dealt with linear equations, but Newton’s equa-
tions are nonlinear in general. In later chapters we shall pursue the subject of non-
linear differential equations somewhat systematically. The examples here provide
us with concrete examples of historical and scientific importance. Furthermore, the
case we consider most thoroughly here, that of a particle moving in a central force
gravitational field, is simple enough so that the differential equations can be solved
explicitly using exact, classical methods (just caleulus!). This is due to the existence
of certain invariant functions called tntegrals (sometimes called “first integrals’’;
we do not mean the integrals of elementary calculus). Physically, an integral is a
conservation law; in the case of Newtonian mechanics the two integrals we find
correspond to conservation of energy and angular momentum., Mathematically
an integral reduces the number of dimensions.

We shall be working with a particle moving in a field of force F. Mathematically
I is a vector field on the (configuration) space of the particle, which in our case we
suppose to be Cartesian three space R®. Thus F is a map F: R* — R3 that assigns
to a point z in R?® another point F(z) in R% From the mathematical point of view,
F(z) is thought of as a vector based at z. From the physical point of view, F(z)
1s the force exerted on a particle located at =,

The example of a force field we shall be most concerned with is the gravitational
field of the sun: F'(z) is the force on a particle located at z attracting it to the sun.
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We shall go into details of this field in Section 6. Other important examples of force
fields are derived from electrical forces, magnetic forces, and so on.

The connection between the physical concept of force field and the mathematical
concept, of differential equation is Newton’s second law: F = ma. This law asserts
that a particle in a force field moves in such a way that the force vector at the loca-
tion of the particle, at any instant, equals the acceleration vector of the particle
times the mass m. If () denotes the position vector of the particle at time ¢, where
z: R — R?is a sufficiently differentiable curve, then the acceleration vector is the
second derivative of z(f) with respect to time

a(t) = &(1).
(We follow tradition and use dots for time derivatives in this chapter.) Newton’s
second law states
F(x(t)) = mi(t).

Thus we obtain a second order differential equation:
1
i = — F(x).
.

In Newtonian physics it is assumed that m is a positive constant. Newton’s law of
gravitation is used to derive the exact form of the function F(z). While these equa-
tions are the main goal of this chapter, we first discuss simple harmonic motion
and then basic background material.

§1. Harmonic Oscillators

We consider a particle of mass m moving in one dimension, its position at time
¢ given by a function ¢ — z(¢), : R — R. Suppose the force on the particle at a
point € R is given by —mp2r, where p is some real constant. Then according
to the laws of physics (¢compare Section 3) the motion of the particle satisfies

(1) 7 i+ plx = 0.

This model is called the harmonic oscillator and (1) is the equation of the harmonic
oscillator (in one dimension).

An example of the harmonic oscillator is the simple pendulum moving in a plane,
when one makes an approximation of sin ¢ by © (compare Chapter 9). Another
example is the case where the force on the particle is caused by a spring.

It is easy to check that for any constants 4, B, the function

(2) z(t) = A cos pt + B sin pt

is a solution of (1), with initial conditions #(0) = 4, £(0) = pB. In fact, asis proved
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often in calculus courses, (2-) is the only solution of (1) satisfying these initial condi-
tions. Later we will show in a systematic way that these facts are true.
Using basic trigonometric identities, (2) may be rewritten in the form

(3) z(t) = acos (pt + t),

where ¢ = (A? + B?)1is called the amplitude, and cos ¢, = A (A? + B2,
In Section 6 we will consider equation (1) where a constant term is added (repre-
senting a constant disturbing force) :

(4) &+ pxr = K,
Then, similarly to (1), every solution of (4) has the form
K

(5) z(t) = acos (pt + &) + el

The two-dimensional version of the harmonic oscillator concerns a map 2: R — R?
and a force F(z) = —mka (where now, of course, x = (21, ) € R?). Equation
(1) now has the same form
(1) g+ k=0

with solutions given by
(2" x1(t) = A cos kt + B sin ki,

22(t) = C cos kt + D sin k.
See Problem 1. :
Planar motion will be considered more generally and in more detail in later sec-
tions. But first we go over some mathematical preliminaries.

§2. Some Calculus Background

A path of a moving particle in R* (usually n < 3) is given by a map f: I — R»
where I might be the set R of all real numbers or an interval (a, b) of all real num-
bers strictly between a and b. The derivative of f (provided f is differentiable at
each point of I) defines a map f': I — R The map f is called C!, or continuously
differentiable, if f' is continuous (that is to say, the corresponding coordinate func-
tions f{(#) are continuous, ¢ = 1, ..., n). If f': I — R~ is itself C', then f is said
to be C2% Inductively, in this way, one defines a map f: I — R* to be Cr, where r =
3, 4, 5, and so on.

The inner product, or “dot product,” of two vectors, z, ¥ in R* is denoted by
(z, y) and defined by

<IJ y) = Z Ty
i=1
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Thus (z, z) = |z |2 If z, y: I — Rr are C! functions, then a version of the Leibniz
product rule for derivatives is

(31 y)l' = (I’, y) =+ (.’B, y')

as can be easily checked using coordinate functions.

We will have occasion to consider functions f: R* — R (which, for example,
could be given by temperature or density). Such a map f is called C! if the map
R" — R given by each partial derivative z — 8f/9z:(z) is defined and continuous
(in Chapter 5 we discuss continuity in more detail). In this case the gradient of
, called grad f, is the map R* — R~ that sends z into (0f/0z1(2), . . ., 9f/0za()).
Grad f is an example of a vector field on Re, (In Chapter 1 we considered only
linear vector fields, but grad f may be more general,)

Next, consider the composition of two C! maps as follows:

! I
I— R"— R,

The chain rule can be expressed in this context as

ZOU®) = Grad g(s0)), 1)

using the definitions of gradient and inner product, the reader can prove that this
is equivalent to

n

> 2 (7))
-

] +

df;
o (¢).

§3. Conservative Force Fields

A vector field F: R* »R?is called a force field if the vector F(z) assigned to the
point z is interpreted as a force acting on a particle placed at z.

Many force fields appearing in physics arise in the following way. There is a Ct
function

V:R*—> R

vV v av
. (6,—$1 (x),a (x)’E::, (I))
—grad V(z).

(The negative sign is traditional.) Such a force field is called conservative. The
function V is called the potential energy function. (More properly V should be called
a potential energy since adding a constant to it does not change the force field
—grad V(z).) Problem 4 relates potential energy to work.

such that

F(z)
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The planar harmonic oscillation of Section 1 corresponds to the force field
F:R*— R F(x) = —mka.
This field is conservative, with potential energy

V(z) = ymk|z|?
as is easily verified.
For any moving particle = (t) of mass m, the kinelic energy is defined to be

T =3m|z(t) [

Here (1) is interpreted as the velocily vector at time t; its length | £(¢) | is the speed
at time ¢, If we consider the function z: R — R?® as describing a curve in R?, then
&(t) is the tangent vector to the curve at x(t).

For a particle moving in a conservative force field F = —grad V, the potential
energy at z is defined to be V (z). Note that whereas the kinetic energy depends on
the velocity, the potential energy is a function of position.

The total energy (or sometimes simply energy) is

E=T+7V.

This has the following meaning. If z(t) is the trajectory of a particle moving in
the conservative force field, then E is a real-valued function of time:

E@t) = 3| ma@) |* + V(=@®).

Theorem (Conservation of Energy) Let z(1) be the irajectory of a particle moving
in a conservalive force field F = —grad V. Then the total energy E s independent of

time.

Proof. It needs to be shown that E(x(t)) is constant in { or that
d
— (T =0,
7 (R
or equivalently,
d {1
—1= E() 2+ Vis(d = 0.
L (Smis p+vE)
It follows from calculus that
d
(a version of the Leibniz product formula); and also that
d :
X (V(z)) = (grad V(2), £)

(the chain rule).
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These facts reduce the proof to showing that
m{i, ) + {grad V, &) = 0

or {(mi -+ grad V, 2) = 0. But this is so since Newton’s second law is mi -+
grad V(z) = 0 in this instance,

§4. Central Force Fields

A force field F is called central if F(x) points in the direction of the line through
z, for every z. In other words, the vector F'(z) is always a scalar multiple of z, the
coefficient depending on =:

F(z) = AMa)z.

We often tacitly exclude from consideration a particle at the origin; many central
force fields are not defined (or are “infinite’) at the origin.

Lemma Let F be a conservative force field. Then the following statements are
equivalent:

(a) F s ceniral,
(b) F(z) =f(|=z|)=,
(¢) F(z) = —grad V(z) and V(z) = g(| z|).

Proof. Suppose (c¢) is true. To prove (b) we find, from the chain rule:
oV a
= — ol (o T e
6:1:,— &x,-

_¢(=D
|
this proves (b) with f(|z|) = ¢’(|z|)/] = |. It is clear that (b) implies (a). To
show that (a) implies (¢) we must prove that V is constant on each sphere.

Sfx:{xERstl:a}! a> 0.

Tj;

Since any two points in S, can be connected by a curve in S,, it suffices to show that
V is constant on any curve in S,. Hence if J/ C R is an interval and w:J — 8, is
a C' map, we must show that the derivative of the composition V = u

u v

J—=8,C RR>R
is identically 0. This detivative is

d
7 V((®) = (grad V (u(1)), w'(t))
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as in Section 2. Now grad V(2) = —F(z) = —\(z)z since F is central:

V@) = —A@E) @, ¥ (o)

) d
= g lum b

because | u(t) | = «.

In Section 5 we shall consider a special conservative central force field obtained
from Newton’s law of gravitation.

Consider now a central force field, not necessarily conservative.

Suppose at some time fy, that P C R?® denotes the plane containing the particle,
the velocity vector of the particle and the origin. The force vector F(z) for any
point z in P also lies in P. This makes it plausible that the particle stays in the plane
P for all time. In fact, this is true: a particle moving in a central force field moves
in a fixed plane.

The proof depends on the cross product (or vector product) u X v of vectors u,
v in R3. We recall the definition

u X v = (Ugls — Usly, Uy — Urls, Uz — Uaty) € RE

and thatu X v = —v X = |u||v| N sin 6, where N is a unit vector perpendicu-
lar to w and v, (U, v, N) oriented as the axes (‘“right-hand rule”), and @ is the angle
between u and v.

Then the vector w X v = 0 if and only if one vector is a scalar multiple of the
other; if w X v 0, then u X v is orthogonal to the plane containing v and v. If
w and v are functions of ¢ in R, then a version of the Leibniz product rule asserts
(as one can check using Cartesian coordinates) :

d . y
Eg(uXu) =uXv+uXu

Now let z(t) be the path of a particle moving under the influence of a central
force field. We have

Il

d
5 (@Xd) =8 Xd+aXs

=a X &
=0

because £ is a scalar multiple of z. Therefore z(t) X #(t) is a constant vector y.
If y 0, this means that z and 4 always lie in the plane orthogonal to ¥, as asserted.
If y = 0, then @(¢) = g(t)z(t) for some scalar function g(¢). This means that the
velocity vector of the moving particle is always directed along the line through the
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_origin and the particle, as is the force on the particle. This makes it plausible that
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the particle always moves along the same line through the origin. To prove this let
(z: (1), za2(t), 73(t)) be the coordinates of z(f). Then we have three differential
equations

d
gz, k=123

By integration we find

z(l) = e"Om (), h(t) =[ g(s) ds.

Therefore z(t) is always a scalar multiple of z () and so z(t) moves in a fixed line,
and hence in a fixed plane, as asserted.

We restrict attention 1o a conservative central force ﬁe}.d in a plane, which we
take to be the Cartesian plane R? Thus z now denotes a point of R? the potential
energy V is defined on R? and

ov oV
F(z) = —grad V(z) = — ( )
3:5 8.1:-_-
Introduce polar coordinates (r, 6), with r = |z |.
Define the angular momentum of the particle to be
h = mr?,

where 6 is the time derivative of the angular coordinate of the particle.

Theorem (Conservation of Angular Momentum) For a particle moving in a

central force field:
h
i =0, where h = mr%,
dt .

Proof. Let i = i(t) be the unit vector in the direction z(t) so z=ri. Let 7 =
7(t) be the unit vector with a 90° angle from ¢ to j. A computation shows that di/dt =
87, dj/dt = —é7 and hence

t = 71+ ;.
Differentiating again yields
w .. 1d .
&= (r — r®)1 + — — (+%);.
rdi
If the force is central, however, it has zero component perpendicular to z. There-
fore, since £ = m~—1F(z), the component of # along 7 must be 0. Hence

d
= () =

proving the theorem.
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We can now prove one of Kepler's laws. Let A (f) denote the area swept out by
the vector 2(¢) in the time from {; to {. In polar coordinates d4 = 372 do. We define
the areal velocity to be

A = 1%,

the rate at which the position vector sweeps out area. Kepler observed that the
line segment joining a planet to the sun sweeps out equal areas in equal times, which
we interpret to mean A = constant. We have proved more generally that this is
true for any particle moving in a conservative central force field; this is a con-
sequence of conservation of angular momentum.

§5. States

We recast the Newtonian formulation of the preceding sections in such a way
that the differential equation becomes first order, the states of the system are made
explicit, and energy becomes a function on the space of states.

A state of a physical system is information characterizing it at a given time. In
particular, a state of the physical system of Section 1 is the position and velocity
of the particle. The space of states is the Cartesian product R? X R? of pairs (z, v),
z, v in R?; z is the position, v the velocity that a particle might have at a given
moment.

We may rewrite Newton’s equation

(1) mé = F(z)

as a first order equation in terms of « and »v. (The order of a differential equation
is the order of the highest derivative that occurs explicitly in the equation.) Con-
sider the differential equation

dx
1/ = -
(1) ==,
dv
— =} .
m 7 ()

A solution to (1) is a curve t — (x(¢), v({)) in the state space R? X R?such that
T(t) = v(t) and o(t) = mF(x(t)) forallt.

It can be seen then that the solutions of (1) and (1) correspond in a natural
fashion. Thus if z(t) is a solution of (1), we obtain a solution of (1’) by setting
v(t) = @&(t). The map R* X R — R® X R3 that sends (z, v) into (v, m~F(x)) is a
vector field on the space of staies, and this veclor field defines the differential equation,

(1.
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A solution (x(1), v({)) to (1') gives the passage of the state of the system in time,

Now we may interpret energy as a function on the state space, R® X R* - R,
defined by E(z, v) = 3m |v|?+ V(z). The statement that “the energy is an
integral” then means that the composite function

t— (z(1), v(t)) — E(z(1), v(t))

is constant, or that on a solution curve in the state space, £ ts constant.

We abbreviate R3 X R? by 8. An dntegral (for (1')) on § is then any function.
that is constant on every solution curve of (1'). It was shown in Section 4 that in
addition to energy, angular momentum is also an integral for (1'). In the nineteenth
century, the idea of solving a differential equation was tied to the construction of a
sufficient number of integrals, However, it is realized now that integrals do not exist
for differential equations very generally; the problems of differential equations have
been considerably freed from the need for integrals,

Finally, we observe that the force field may not be defined on all of R3, but only
on some portion of it, for example, on an open subset U C R? In this case the path
z(t) of the particle is assumed to lie in U. The force and velocity vectors, however,
are still allowed to be arbitrary vectors in R3, The foree field is then a vector field
on U, denoted by F: U — R3. The state space is the Cartesian product U X R3, and
(1') is a first order equation on U X R

§6. Elliptical Planetary Orbits

‘We now pass to consideration of Kepler’s first law, that planets have elliptical
orbits. For this, a central force is not sufficient. We need the precise form of V as
given by the “inverse square law.”

We shall show that in polar coordinates (r, #), an orbit with nonzero angular
momentum # is the set of points satisfying

(1l + e cos 8) = [l = constant; e = constant,

which defines a conie, as can be seen by putting r cos 6 = z, 12 = 22 4 ¥

Astronomical observations have shown the orbits of planets to be (approxi-
mately) ellipses.

Newton's law of gravitation states that a body of mass m, exerts a force on a
body of mass ms. The magnitude of the force is gmyms/r?, where r is the distance
between their centers of gravity and g is a constant. The direction of the force on
Mz 18 from m, to my.

Thus if m, lies at the origin of R3 and m, lies at x € R3, the force on m, is

e
gmy 2|$|3.

The force on m, is the negative of this.
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We must now face the fact that both bodies will move. However, if m, is much
greater than m,, its motion will be much less since acceleration is inversely propor-
tional to mass. We therefore make the simplifying assumption that one of the
bodies does not move; in the case of planetary motion, of course it is the sun that
is assumed at rest. (One might also proceed by taking the center of mass at the
origin, without making this simplifying assumption.)

We place the sun at the origin of R? and consider the force field corresponding
to a planet of given mass m. This field is then

T

|z ]”

where C is a constant. We then change the units in which force is measured to obtain
the simpler formula

F(z) = —C

T

|_$_P.

F(z) = —

It is clear this force field is ecentral. Moreover, it is conservative, since

. :
W = grad V,

where

Observe that F(z) is not defined at 0.

As in the previous section we restrict attention to particles moving in the plane
R?; or, more properly, in R? — 0. The force field is the Newtonian gravitational field
inR% Fz) = —z/|z %

Consider a particular solution curve of our differential equation & = m=1F(z).
The angular momentum k and energy F are regarded as constants in time since
they are the same at all points of the curve. The case & = 0 is not so interesting; it
corresponds to motion along a straight line toward or away from the sun. Hence
we assume h # 0.

Introduce polar coordinates (r, 8); along the solution curve they become func-
tions of time (r(#), 6(¢)). Since 7% is constant and not 0, the sign of 6 is constant
along the curve. Thus 6 is always increasing or always decreasing with time. There-
fore r is a function of 6 along the curve.

Let u(f) = 1/r(f); then w is also a function of §(t). Note that

u= —V,

We have a convenient formula for kinetic energy 7'.
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1R [ fdu\?
T=2=|(= 2|
Zm[(dﬁ) +u]

Proof. Y¥rom the formula for & in Section 4 and the definition of T' we have

T = Im[# 4+ (r0)7].

Lemma

Also,
i d__u : h du

= — ==

ut do m df
by the chain rule and the definitions of % and k; and also

h hat
= — = —,
mr m

Substitution in the formula for T' proves the lemma.

Now we find a differential equation relating « and ¢ along the solution curve.
Observe that ' = F — V = I + u. From the lemma we get

du\\* 2m
]. b 2 = — E -
(1) (de)w S E+w
Differentiate both sides by 8, divide by 2 du/d8, and use dE/df = 0 (conservation
of energy). We obtain another equation 4 i
: d*u m
¢ Tt

where m/h? is a constant,.

We re-examine the meaning of just what we are doing and of (2). A particular
orbit of the planar central foree problem is considered, the force being gravitational.
Along this orbit, the distance r from the origin (the source of the force) is a function
of 9, as is 1/r = u. We have shown that this function v = u(6) satisfies (2), where
h is the constant angular momentum and m is the mass.

The solution of (2) (as was seen in Section 1) is

m
(3) u=E+C‘cos(B+ﬁu),
where C' and 6, are arbitrary constants.
To obtain a solution to (@HSB (3) to compute du/dd and d?u/dé*, substitute

the resulting expression into 1)) and solve for C. The result is ( A

C = ,}E (2mR2E + m2)Ve.
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Putting this into (3) we get
E}g 1/2
u=ﬂ[1i(1 +2—L) cos (B—I-q)],
h? m

where ¢ is an arbitrary constant. There is no need to consider both signs in front

of the radical since cos(6 + ¢ + ) = —cos(8 + ¢). Moreover, by changing the
variable 6 to 6 — ¢ we can put any particular solution in the form

m ER\?
(4) u=—[1—l—(1+2 ) cose].

h? m

We recall from analytic geometry that the equation of a conic in polar coordinates
is

(5) u=%(1+ecosﬁ), U =

5=

Here [ is the latus rectum and e > 0 is the eccentricity. The origin is a focus and the
three cases € > 1, ¢ = 1, ¢ < 1 correspond respectively to a hyperbola, parabola,
and ellipse. The case € = 0 is a circle.

Since (4) is in the form (5) we have shown that the orbit of a particle moving under
the influence of a Newtonian gravitational force is a conic of eccentricity

: 2ER\?
- (1+25)
m

Clearly, e > 1if and only if £ > 0. Therefore the orbit is a hyperbola, parabola, or
ellipse according to whether £ > 0, E = 0, or I < 0.
The quantity « = 1/r is always positive. From (4) it follows that

2ERN\Y?
(1 + ) cosd > —1.
Vs

But if § = 4= radians, cos # = —1 and hence

2ER\V?
(1 =+ ) < L
m

This is equivalent to £ < 0. For some of the planets, including the earth, complete
revolutions have been observed; for these planets cos § = —1 at least once a year.
Therefore their orbits are ellipses. In fact from a few observations of any planet it
can be shown that the orbit is in fact an ellipse.




NOTES

PROBLEMS

A particle of mass m moves in the plane R? under the influence of an elastic
band tying it to the origin. The length of the band is negligible. Hooke’s law
states that the force on the particle is always directed toward the origin and
is proportional to the distance from the origin. Write the force field and verify
that it is conservative and central. Write the equation F = ma for this case
and solve it. (Compare Section 1.) Verify that for “most’ initial conditions the
particle moves in an ellipse.

Which of the following force fields on R? are conservative?
(a) F(z,y) = (—2* —2¢)

(b) F(z,y) = (2 — ¥’ 23y)

(¢) F(z,y) = (z,0)

Consider the case of a particle in a gravitational field moving directly away
from the origin at time ¢ = 0. Discuss its motion. Under what initial conditions
does it eventually reverse direction?

Let F(z) be a force field on R3. Let xo, z; be points in R? and let y(s) be a path
in R?, sy < s < &1, parametrized by arc length s, from 2, to z;. The work done
in moving a particle along this path is defined to be the integral

[ e, v,

where y'(s) is the (unit) tangent vector to the path. Prove that the force field
is conservative if and only if the work is independent of the path. In fact if
F = —grad V, then the work done is V(21) — V (2).

How can we determine whether the orbit of (a) Earth and (b) Pluto is an
ellipse, parabola, or hyperbola?

Fill in the details of the proof of the theorem in Section 4.

Prove the angular momentum A, energy E, and mass m of a planet are related
by the inequality
m

E>-—.
= ow

Notes

Lang's Second Course in Calculus [12] is a good background reference for the
mathematics in this chapter, especially his Chapters 3 and 4. The physics material
1s covered extensively in a fairly elementary (and perhaps old-fashioned) way in



