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Partial Correlation in Linear Regression

Consider the model

yi = β0+β1x1i+β2x2i+. . .+βkxki+εi , εi ∼ N(0, σ2), i = 1, . . . , n.

The coefficient βj , j = 1, . . . , k , is interpreted as the change in the
expected value of Y corresponding to an increase in Xj by one unit
with the values of all other covariates remaining fixed.

I The coefficient βj describes the effect of Xj on Y , having
taken into account the effects of the remaining covariates
(some of which may be correlated with Xj).

I The coefficient βj , though, is measured in some units,
therefore it cannot directly quantify the extent of this effect or
to be used for comparisons.
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The Correlation Coefficient

Covariance: Cov(X ,Y ) = E [(X − µX )(Y − µY )]

Correlation: ρXY = Cov(X ,Y )√
V (X )V (Y )

Sample Correlation: rXY =
∑

(xi−x̄)(yi−ȳ)√∑
(xi−x̄)2

∑
(yi−ȳ)2

Partial Correlation: ρXY |Z = ρXY−ρXZρZY√
1−ρ2

XZ

√
1−ρ2

ZY

(of X ,Y given Z )

The coefficient of Partial Correlation, ρXY |Z , measures the
correlation between Y and X after taking into account the
information in Z , a variable correlated with both Y and X .
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Partial Correlation in the Context of Linear Regression

Consider the model

yi = β0 + β1xi + β2zi + εi , εi ∼ N(0, σ2), i = 1, . . . , n.

Partial Correlation: ρXY |Z = ρXY−ρXZρZY√
1−ρ2

XZ

√
1−ρ2

ZY

The partial correlation ρXY |Z can be thought of as the correlation
between the random errors, εX and εY of the linear regression of X
on Z and of the linear regression of Y on Z , respectively.

Estimation:

1. Estimation of the linear regression of Y on Z and calculation
of the residuals ε̂Y .

2. Estimation of the linear regression of X on Z and calculation
of the residuals ε̂X .

3. Estimate the partial correlation as: rXY |Z = rε̂X ε̂Y .
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Generalisation

The coefficient of Partial Correlation, ρXY |Z1,...,Zp
, measures the

correlation between Y and X after taking into account the
information in Z1, . . . ,Zp.

In multiple regression, several methods of variable selection, such
as, Forward, Backward and Stepwise Regression, are based on
partial correlations. In order to decide which is the next variable to
be included or excluded from the model, the partial correlations of
Y with the available covariates, given those already included in the
model, are examined.
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Partial Autocorrelation

Recall:
Partial Correlation: ρYX |Z = ρXY−ρXZρZY√

1−ρ2
XZ

√
1−ρ2

ZY

(of X ,Y given Z )

In the context of Time Series: Y → Yt , Z → Yt−1, X → Yt−2

ρYtYt−2|Yt−1
=

ρYYt−2
−ρYt−1Yt−1

ρYt−1Yt√
1−ρ2

Yt−2Yt−1

√
1−ρ2

Yt−1Yt

α2 =
ρ2−ρ2

1

1−ρ2
1

Note: Here the partial autocorrelation is defined as a function of
the correlations (in the same manner as the partial correlation
above is defined as a function of the correlations).
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Partial Autocorrelation in the Context of Autoregressive
Models

The coefficient of partial autocorrelation at lag k is defined as the
kth autoregressive coefficient in an AR(k) model:

yt = φ1yt−1+φ2yt−2+. . .+φkyt−k+εt , εt ∼ N(0, σ2), t = 1, . . . ,T .

I The coefficient φk describes the effect of Yt−k on Yt , having
taken into account the effects of Yt−1, . . . ,Yt−k−1 (which are
correlated with Yt).

I The coefficient φt−k , does not have units, therefore it can
directly quantify the extent of this effect.
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Estimation of Partial Autocorrelations

1st way: Estimation through the autoregressive models

AR(1): yt = φ1yt−1 + εt , then α̂1 = φ̂1

AR(2): yt = φ1yt−1 + φ2yt−2 + εt , then α̂2 = φ̂2

.

.

.
AR(p): α̂p = φ̂p

2nd way: Estimation through the coefficients of
autocorrelation

Solution of the Yule-Walker equations: for example α̂2 =
ρ̂2−ρ̂2

1

1−ρ̂2
1
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