Condidence Intervals An Introduction

Loukia Meligkotsidou
Associate Professor of Statistics
Department of Mathematics
National and Kapodistrian
University of Athens

Confidence Intervals

- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval and Confidence Level

- If $\mathrm{P}(\mathrm{LL}<\mu<\mathrm{UL})=1-\alpha$ then the interval from the LL to UL is called a $100(1-\alpha) \%$ confidence interval of μ.
- The quantity $(1-\alpha)$ is called the confidence level of the interval (probability between 0-1)
- In repeated samples of the population, the true value of the parameter μ would be contained in $100(1-\alpha) \%$ of intervals calculated this way.
- The confidence interval calculated in this manner is written as $\mathrm{LL}<\mu<\mathrm{UL}$ with $100(1-\alpha) \%$ confidence

Confidence Level, (1- α)

- Suppose the confidence level = 95\%
- Also written $(1-\alpha)=0.95$ or $\alpha=0.05$
- A relative frequency interpretation:
- From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter

General Formula

- The general formula for all confidence intervals is:

Point Estimate \pm k * Standard Error

- K often called reliability factor and depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ (σ^{2} Known)

- Assumptions
- Population variance σ^{2} is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate:

$$
\overline{\mathrm{x}}-\mathrm{z}_{1-\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{z}_{1-\alpha / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

(where $z_{1-\alpha / 2}$ is $1-\alpha / 2$ percentile of the standard normal distribution)

Percentiles of the standard normal

- Consider a 95\% confidence interval:

- Find $\mathrm{z}_{.025}= \pm 1.96$ from the standard normal distribution table

Construction of confidence interval for the mean

$$
\begin{aligned}
& \bar{x} \sim N\left(\mu, \frac{\sigma^{2}}{n}\right) \Rightarrow \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1) \\
& P\left(Z_{a / 2}<\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}<Z_{1-a / 2}\right)=1-a \Rightarrow P\left(-Z_{1-a / 2}<\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}<Z_{1-a / 2}\right)=1-a \Rightarrow \\
& P\left(-Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}<\bar{x}-\mu<Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}\right)=1-a \Rightarrow \\
& P\left(-\bar{x}-Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}<-\mu<-\bar{x}+Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}\right)=1-a \Rightarrow \\
& P\left(\bar{x}+Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}>\mu>\bar{x}-Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}\right)=1-a \Rightarrow \\
& P\left(\bar{x}-Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}<\mu<\bar{x}+Z_{1-a / 2} \frac{\sigma}{\sqrt{n}}\right)=1-a
\end{aligned}
$$

Intervals and Level of Confidence

Sampling Distribution of the Mean

Example

- Consider the grades of 9 students:

$$
3,8,4,11,8,6,9,10,5
$$

We know from past exams that the population standard deviation is 1.5 (assume Normality)

- Construct a 95\% confidence interval for the true mean grade of the population.

Example

- Solution:

$$
\begin{aligned}
& \overline{\mathrm{x}}=\sum_{i=1}^{n} x_{i} / n=(3+8+4+11+8+6+9+10+5) / 9=64 / 9=7.11 \\
& Z_{1-a / 2}=Z_{1-0.05 / 2}=Z_{0.975}=1.96 \\
& \overline{\mathrm{x}} \pm \mathrm{Z}_{1-a / 2} \frac{\sigma}{\sqrt{\mathrm{n}}}=7.11 \pm 1.96(1.5 / \sqrt{9})=7.11 \pm 1.96 \cdot 0.5= \\
& \quad=7.11 \pm 0.98
\end{aligned}
$$

$$
6.13<\mu<8.09
$$

Interpretation

- We are 95% confident that the true mean grade is between 6.13 and 8.09
- Although the true mean may or may not be in this interval, 95\% of intervals formed in this manner will contain the true mean

Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
- with mean \bar{x} and standard deviation s
- from a normally distributed population with mean μ
- Then the variable

$$
t=\frac{\bar{x}-\mu}{s / \sqrt{n}}
$$

follows the Student's t distribution with ($n-1$) degrees of freedom

Confidence Interval for μ (σ^{2} Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

- Assumptions
- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$
\overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1,1-\alpha / 2} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1,1-\alpha / 2} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}
$$

where $t_{n-1,1-\alpha / 2}$ is the $1-a / 2$ percentile of the t distribution with $n-1$ degress of freedom

Student's t Distribution

- The t is a family of distributions
- The t value depends on the degrees of freedom (d.f.)
- The number of observations that are free to vary after the sample mean has been calculated

$$
\text { d.f. }=\mathrm{n}-1
$$

Student's t Distribution

Note: $\mathrm{t} \longrightarrow \mathrm{Z}$ as n increases

Example

- Consider the grades of 9 students:

$$
3,8,4,11,8,6,9,10,5
$$

(assume normality)

- Construct a 95\% confidence interval for the true mean grade of the population.

Example

- Solution:

$$
\begin{aligned}
& \quad \overline{\mathrm{x}}=\sum_{i=1}^{n} x_{i} / n=(3+8+4+11+8+6+9+10+5) / 9=64 / 9=7.11 \\
& \\
& \hat{\sigma}^{2}=s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}= \\
& =\left[(3-7.11)^{2}+(8-7.11)^{2}+(4-7.11)^{2}+(11-7.11)^{2}+(8-7.11)^{2}+\right. \\
& \left.+(6-7.11)^{2}+(9-7.11)^{2}+(10-7.11)^{2}+(5-7.11)^{2}\right] / 8= \\
& = \\
& 60.89 / 8=7.61 \\
& \hat{\sigma}=\sqrt{7.61}=2.76
\end{aligned}
$$

Example

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{n}-1,1-\alpha / 2}=\mathrm{t}_{8,0.975}=2.306 \\
& \overline{\mathrm{x}}-\mathrm{t}_{\mathrm{n}-1,1-\omega / 2} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}}<\mu<\overline{\mathrm{x}}+\mathrm{t}_{\mathrm{n}-1,1-\alpha / 2} \frac{\mathrm{~S}}{\sqrt{\mathrm{n}}} \\
& 7.11-(2.306) \frac{2.76}{\sqrt{9}}<\mu<7.11+(2.306) \frac{2.76}{\sqrt{9}} \\
& 7.11-2.12<\mu<7.11+2.12 \\
& 4.99<\mu<9.23
\end{aligned}
$$

