Condidence Intervals An Introduction

Loukia Meligkotsidou
Associate Professor of Statistics
Department of Mathematics
National and Kapodistrian
University of Athens

Confidence Intervals

- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval and Confidence Level

- If P(LL < μ < UL) = 1 α then the interval from the LL to UL is called a 100(1 - α)% confidence interval of μ.
- The quantity (1 α) is called the confidence level of the interval (probability between 0 - 1)
 - In repeated samples of the population, the true value of the parameter μ would be contained in 100(1 α)% of intervals calculated this way.
 - The confidence interval calculated in this manner is written as LL < μ < UL with 100(1 α)% confidence

Confidence Level, $(1-\alpha)$

- Suppose the confidence level = 95%
- Also written $(1 \alpha) = 0.95$ or $\alpha = 0.05$
- A relative frequency interpretation:
 - From repeated samples, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter

General Formula

The general formula for all confidence intervals is:

Point Estimate ± k * Standard Error

 K often called reliability factor and depends on the desired level of confidence

Confidence Intervals

Confidence Interval for μ (σ² Known)

- Assumptions
 - Population variance σ² is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:

$$\overline{x} - z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z_{1-\alpha/2} \frac{\sigma}{\sqrt{n}}$$

(where $z_{1-\alpha/2}$ is 1- $\alpha/2$ percentile of the standard normal distribution)

Percentiles of the standard normal

Consider a 95% confidence interval:

• Find $z_{.025} = \pm 1.96$ from the standard normal distribution table

Construction of confidence interval for the mean

$$\overline{x} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

$$P(Z_{a/2} < \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < Z_{1-a/2}) = 1 - a \Rightarrow P(-Z_{1-a/2} < \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < Z_{1-a/2}) = 1 - a \Rightarrow$$

$$P(-Z_{1-a/2} \frac{\sigma}{\sqrt{n}} < \overline{x} - \mu < Z_{1-a/2} \frac{\sigma}{\sqrt{n}}) = 1 - a \Rightarrow$$

$$P(-\overline{x} - Z_{1-a/2} \frac{\sigma}{\sqrt{n}} < -\mu < -\overline{x} + Z_{1-a/2} \frac{\sigma}{\sqrt{n}}) = 1 - a \Rightarrow$$

$$P(\overline{x} + Z_{1-a/2} \frac{\sigma}{\sqrt{n}} > \mu > \overline{x} - Z_{1-a/2} \frac{\sigma}{\sqrt{n}}) = 1 - a \Rightarrow$$

$$P(\overline{x} - Z_{1-a/2} \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + Z_{1-a/2} \frac{\sigma}{\sqrt{n}}) = 1 - a \Rightarrow$$

Intervals and Level of Confidence

Consider the grades of 9 students:

3, 8, 4, 11, 8, 6, 9, 10, 5 We know from past exams that the population standard deviation is 1.5 (assume Normality)

 Construct a 95% confidence interval for the true mean grade of the population.

Solution:

$$\overline{\mathbf{x}} = \sum_{i=1}^{n} x_i / n = (3+8+4+11+8+6+9+10+5)/9 = 64/9 = 7.11$$

$$Z_{1-a/2} = Z_{1-0.05/2} = Z_{0.975} = 1.96$$

$$\overline{x} \pm Z_{1-a/2} \frac{\sigma}{\sqrt{n}} = 7.11 \pm 1.96 (1.5/\sqrt{9}) = 7.11 \pm 1.96 \cdot 0.5 =$$

$$= 7.11 \pm 0.98$$

$$6.13 < \mu < 8.09$$

Interpretation

- We are 95% confident that the true mean grade is between 6.13 and 8.09
- Although the true mean may or may not be in this interval, 95% of intervals formed in this manner will contain the true mean

Confidence Intervals

Student's t Distribution

- Consider a random sample of n observations
 - with mean \bar{x} and standard deviation s
 - from a normally distributed population with mean μ
- Then the variable

$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

follows the Student's t distribution with (n - 1) degrees of freedom

Confidence Interval for μ (σ² Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the normal distribution

Confidence Interval for μ (σ Unknown)

Assumptions

- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate:

$$\overline{x} - t_{n-1, 1-\alpha/2} \, \frac{S}{\sqrt{n}} \; < \; \mu \; < \; \overline{x} + t_{n-1, 1-\alpha/2} \, \frac{S}{\sqrt{n}}$$

where $t_{n-1,1-\alpha/2}$ is the 1-a/2 percentile of the t distribution with n-1 degress of freedom

Student's t Distribution

- The t is a family of distributions
- The t value depends on the degrees of freedom (d.f.)
 - The number of observations that are free to vary after the sample mean has been calculated

$$d.f. = n - 1$$

Student's t Distribution

Note: $t \rightarrow Z$ as n increases

Consider the grades of 9 students:

3, 8, 4, 11, 8, 6, 9, 10, 5 (assume normality)

 Construct a 95% confidence interval for the true mean grade of the population.

Solution:

$$\overline{x} = \sum_{i=1}^{n} x_i / n = (3+8+4+11+8+6+9+10+5)/9 = 64/9 = 7.11$$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$\hat{\sigma}^2 = s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1} = [(3-7.11)^2 + (8-7.11)^2 + (4-7.11)^2 + (11-7.11)^2 + (8-7.11)^2 + (6-7.11)^2 + (9-7.11)^2 + (10-7.11)^2 + (5-7.11)^2]/8 = 60.89/8 = 7.61$$

$$\hat{\sigma} = \sqrt{7.61} = 2.76$$

$$t_{n-1,1-\alpha/2} = t_{8,0.975} = 2.306$$

$$\begin{split} \overline{x} - t_{n-1,1-\alpha/2} \, \frac{S}{\sqrt{n}} \, < \, \mu \, < \, \overline{x} + t_{n-1,1-\alpha/2} \, \frac{S}{\sqrt{n}} \\ 7.11 - (2.306) \frac{2.76}{\sqrt{9}} \, < \, \mu \, < \, 7.11 + (2.306) \frac{2.76}{\sqrt{9}} \\ 7.11 - 2.12 \, < \, \mu \, < \, 7.11 + 2.12 \\ 4.99 \, < \, \mu \, < \, 9.23 \end{split}$$