
Estimation and Sampling 
Distributions

Loukia Meligkotsidou
Associate Professor of Statistics

Department of Mathematics
National and Kapodistrian University of 

Athens



 A Population is the set of all items or individuals 
of interest
 Examples: All likely voters in the next election

All parts produced today
All sales receipts for November

 A Sample is a subset of the population
 Examples: 1000 voters selected at random for interview

A few parts selected for destructive testing
Random receipts selected for audit

Populations and Samples



Population vs. Sample
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Why Sample?

 Less time consuming than a census

 Less costly to administer than a census

 It is possible to obtain statistical results of a 
sufficiently high precision based on samples.



Simple Random Samples

 Every object in the population has an equal chance of 
being selected

 Objects are selected independently

 Samples can be obtained from a table of random 
numbers or computer random number generators

 A simple random sample is the benchmark against 
which other sample methods are compared



 Making statements about a population by 
examining sample results

Sample statistics Population parameters
(known)  Inference (unknown, but can 

be estimated from
sample evidence)

Sample Population

Inferential Statistics



Inferential Statistics

 Estimation
 e.g., Estimate the population mean weight using 

the sample mean weight
 Hypothesis Testing

 e.g., Use sample evidence to test the claim that 
the population mean weight is 120 pounds

 Confidence Intervals
 e.g., Construct a 95% confidence interval for 

the mean 

Drawing conclusions and/or making decisions concerning a 
population based on sample results.



How is inference made?

 Point estimation: Find the “best” approximations 
of an unknown population parameter

 Interval estimation: Find a range of values that 
with high probability covers the unknown 
population parameter

 Hypothesis testing: Give statements about the 
population (values of parameters, probability 
distributions, issues of independence,…) and 
examine their validity



Estimation methods

 Maximum likelihood

 Least squares

 Method of moments



Method of Moments

 Let X1, X2, . . . Xn represent a random sample 
from a population with mean μ and variance 

 Use as an estimate for μ the sample mean 
value defined as

 Use as an estimate for      the sample variance



Maximum likelihood

 The population to be investigated is such that
the values that comes out in a sample x1, x2 ,

…are governed by a probability distribution
 The probability distribution is represented by a

probability density (or mass) function f(x)
 Alternatively, the sample values can be seen as

the outcomes of independent random variables
X1, X2, … all with probability density (or mass)
function f(x )



Maximum likelihood 

 We have a sample x = (x1 , … , xn ) from a
population

 The population contains an unknown parameter
θ

 The functional forms of the distributional
functions is known, but depend on the unknown
θ .

 Denote generally by f(x;θ) the probability
density or mass function of the distribution

 A point estimate of θ is a function of the sample
values



Maximum Likelihood
 Principle: Estimate a parameter such that for this value

the probability of obtaining an actually observed sample
is as large as possible.

 The probability (or density) of an observed sample
depends on a parameter which will be adjusted to give it
a maximum possible value.

 The maximum likelihood estimate of the unknown
population parameter is the value of the parameter that
maximizes the probability (or density) of the observed
sample.



Maximum likelihood
 The joint pdf or pmf of  a sample of n random variables 

is given by

if the random variables are independent

 The above function                  is known as the likelihood 
of the observed sample
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Maximum likelihood
 We call the value of θ that maximizes the likelihood function L(θ|x),

the maximum likelihood estimator (MLE) of θ:

 For convenience, we compute the logarithm of the likelihood
function: ln[L(θ|x)]

 The maximum can be found by taking:

 Solve the system of partial derivatives
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Example 1: Bernoulli

 Let be a random sample from a
Bernoulli distribution with parameter p, i.e.

Find the MLE of p

 Compute likelihood
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 Compute log-likelihood function

 Compute the derivative

 Solve the equation (=0) and find the estimator:
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Example 2: Normal 

 Let be a random sample from a
normal distribution with mean μ and variance
Find the MLE of μ and 

 Compute likelihood
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 Compute log-likelihood function

 Compute partial derivatives

 Solve the system and find the estimators:
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Properties of Estimators: Unbiasedness

 A point estimator      is said to be an 
unbiased estimator of the parameter  θ if the 
expected value, or mean, of the sampling 
distribution of      is  θ,

 Examples:  
 The sample mean is an unbiased estimator of μ
 The sample proportion is an unbiased estimator of P
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 is an unbiased estimator,       is biased:
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Properties of Estimators: Unbiasedness



Properties of Estimators: Bias

 Let      be an estimator of θ

 The bias in     is defined as the difference 
between its mean and θ

 The bias of an unbiased estimator is 0
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Properties of Estimators: Efficiency

 Suppose there are several unbiased estimators of θ
 The most efficient estimator or the minimum variance 

unbiased estimator of θ is the unbiased estimator with the 
smallest variance

 Let      and      be two unbiased estimators of θ, based on 
the same number of sample observations.  Then,

 is said to be more efficient than     if )θVar()θVar( 21
ˆˆ <

1θ̂ 2θ̂

1θ̂ 2θ̂



Example 1:Unbiasedness of Sample 
Mean

 Let X1, X2, . . . Xn represent a random sample from a 
population with mean μ and variance 

 The sample mean value of these observations is 
defined as

 The Expected value of the sample mean is:

 The sample mean is an unbiased estimator of μ
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Example 1: Variance of the sample 
mean

 The variance of the sample mean is:

 A measure of the variability in the mean from sample to 
sample is given by the Standard Error of the Mean:

 Note that the standard error of the mean decreases as 
the sample size increases
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Example 2: Unbiasedness of proportion
- Variance of proportion
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Let X1, X2, . . . Xn be a random sample from a Bernoulli distribution 
with parameter p, i.e. A Binomial experiment with n trials and 
probability of success p.

The maximum likelihood estimate of proportion is unbiased:

The variance of the proportion is given by:

The standard error of the estimate of proportion is given by:
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Law of Large Numbers

 Informally: An average of many measurements is more accurate than a 
single measurement. 

 Formally: Let                 be i.i.d. random variables all with mean µ and 
standard deviation σ. 
Let 

Then, for any (small number) a, we have that 
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The law of large numbers
Law of large numbers: As the number of randomly-drawn observations 
(n) in a sample increases

the mean of the sample (  ) gets closer 
and closer to the population mean µ 

(quantitative variable).

the sample proportion (  ) gets closer 
and closer to the population proportion 

p (categorical variable).
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Sampling distribution of the mean 
case1 : the Population is Normal

 If a population is normal with mean μ and 
standard deviation σ, the sampling distribution 
of        is also normally distributed with

and

X

μμX =
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Normal Population 
Distribution

Normal Sampling 
Distribution 
(has the same mean)

Sampling distribution of the mean 
case1 : the Population is Normal
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Sampling distribution of the mean 
case1 : the Population is Normal

 For sampling with replacement:
As n  increases,        

decreases
Larger 
sample size

Smaller 
sample size

x

(continued)
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Sampling distribution of the mean 
case2 : the Population is not Normal

 We can apply the Central Limit Theorem:

 Even if the population is not normal,
 …sample means from the population will be

approximately normal as long as the sample size is 
large enough.

Properties of the sampling distribution:
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The Central Limit Theorem

Formally: Let                 be i.i.d. random variables all with mean µ and 
standard deviation σ. 
Let 

For large n,

Standardized         or         
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The central limit theorem
Central Limit Theorem: When randomly sampling from any population 
with mean µ and standard deviation σ, when n is large enough, the 
sampling distribution of       is approximately normal: N(µ,σ/√n).

Population with 
strongly skewed 

distribution

Sampling 
distribution of    

for n = 2 
observations

Sampling 
distribution of 

for n = 10 
observations

Sampling 
distribution of 
     for n = 25 
observations
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Population Distribution

Sampling Distribution 
(becomes normal as n increases)

Central Tendency

Variation

x

x

Larger 
sample 
size

Smaller 
sample size

If the Population is not Normal
(continued)

Sampling distribution 
properties:
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How Large is Large Enough?

 For most distributions, n > 25 will give a 
sampling distribution that is nearly normal

 For normal population distributions, the 
sampling distribution of the mean is always 
normally distributed



Standardization

 If the random variable X has a N(μ,σ)
distribution, then the random variable Z=(X-μ)/σ 
has the standard normal N(0,1) distribution.

 Standardization of the sample mean helps in 
calculating probabilities related to 

For example, P( < a)=P(Z<(a-μ)/σ)
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Example

 The weight of cereal in a box is normally 
distributed with mean 368gr and standard 
deviation 15gr. We select a random sample of 
25 boxes. What is the probability that the 
sample mean is below 365gr?

 Xbar~N(368,15/5)

 P(Xbar<365)=P((Xbar-368)/3<(365-368)/3)
=P(Z<-3/3)=P(Z<1)
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