Estimation and Sampling Distributions

Loukia Meligkotsidou
Associate Professor of Statistics
Department of Mathematics
National and Kapodistrian University of
Athens

Populations and Samples

 A Population is the set of all items or individuals of interest

Examples: All likely voters in the next election
 All parts produced today
 All sales receipts for November

A Sample is a subset of the population

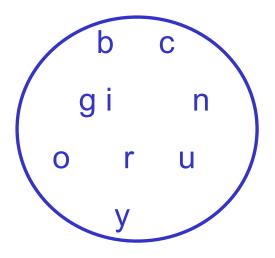
Examples: 1000 voters selected at random for interview
 A few parts selected for destructive testing
 Random receipts selected for audit

Population vs. Sample

Population

ab cd
ef ghijkl m n
opq rs t uv w
x y z

Sample



Why Sample?

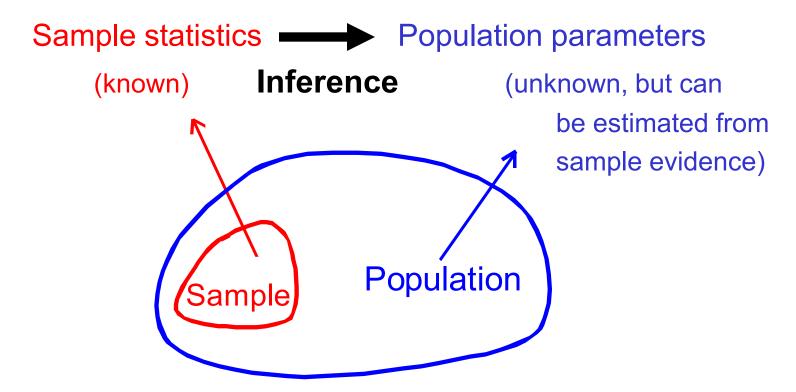
- Less time consuming than a census
- Less costly to administer than a census
- It is possible to obtain statistical results of a sufficiently high precision based on samples.

Simple Random Samples

- Every object in the population has an equal chance of being selected
- Objects are selected independently
- Samples can be obtained from a table of random numbers or computer random number generators
- A simple random sample is the benchmark against which other sample methods are compared

Inferential Statistics

 Making statements about a population by examining sample results



Inferential Statistics

Drawing conclusions and/or making decisions concerning a population based on sample results.

Estimation

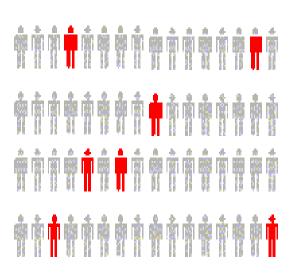
 e.g., Estimate the population mean weight using the sample mean weight

Hypothesis Testing

 e.g., Use sample evidence to test the claim that the population mean weight is 120 pounds

Confidence Intervals

 e.g., Construct a 95% confidence interval for the mean



How is inference made?

- Point estimation: Find the "best" approximations of an unknown population parameter
- Interval estimation: Find a range of values that with high probability covers the unknown population parameter
- Hypothesis testing: Give statements about the population (values of parameters, probability distributions, issues of independence,...) and examine their validity

Estimation methods

Maximum likelihood

Least squares

Method of moments

Method of Moments

• Let X1, X2, . . . Xn represent a random sample from a population with mean μ and variance σ^2

Use as an estimate for µ the sample mean value defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

• Use as an estimate for σ^2 the sample variance

Maximum likelihood

- The population to be investigated is such that the values that comes out in a sample x₁, x₂, ...are governed by a probability distribution
- The probability distribution is represented by a probability density (or mass) function f(x)
- Alternatively, the sample values can be seen as the outcomes of independent random variables X₁, X₂, ... all with probability density (or mass) function f(x)

Maximum likelihood

- We have a sample $\mathbf{x} = (x_1, \dots, x_n)$ from a population
- The population contains an unknown parameter θ
- The functional forms of the distributional functions is known, but depend on the unknown θ .
- Denote generally by $f(x;\theta)$ the probability density or mass function of the distribution
- A *point estimate* of θ is a function of the sample values

Maximum Likelihood

- Principle: Estimate a parameter such that for this value the probability of obtaining an actually observed sample is as large as possible.
- The probability (or density) of an observed sample depends on a parameter which will be adjusted to give it a maximum possible value.
- The maximum likelihood estimate of the unknown population parameter is the value of the parameter that maximizes the probability (or density) of the observed sample.

Maximum likelihood

 The joint pdf or pmf of a sample of n random variables is given by

$$L(\theta \mid x) = f(x_1, x_2, ..., x_n \mid \theta) = \prod_{i=1}^{n} f_X(x_i \mid \theta)$$

if the random variables are independent

• The above function $L(\theta \,|\, x)$ is known as the likelihood of the observed sample

Maximum likelihood

We call the value of θ that maximizes the likelihood function L(θ|x),
 the maximum likelihood estimator (MLE) of θ:

$$\hat{\theta} = \arg\max_{\theta} [L(\theta \mid x)]$$

- For convenience, we compute the logarithm of the likelihood function: ln[L(θ|x)]
- The maximum can be found by taking:

$$\frac{\partial \ln L(\theta \mid x)}{\partial \theta} = 0$$

Solve the system of partial derivatives

Example 1: Bernoulli

Let $x_1, x_2, ..., x_n$ be a random sample from a Bernoulli distribution with parameter p, i.e.

$$f(x_i; p) = p^{x_i} (1-p)^{1-x_i}, x_i = 0, 1$$

Find the MLE of p

Compute likelihood

$$L(\theta \mid x) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

Compute log-likelihood function

$$\ln L(\theta \mid x) = \sum_{i=1}^{n} x_i \ln(p) + \left(n - \sum_{i=1}^{n} x_i\right) \ln(1-p)$$

Compute the derivative

$$\frac{\partial \ln L(\theta \mid x)}{\partial p} = \frac{1}{p} \sum_{i=1}^{n} x_i - \frac{1}{1-p} \left(n - \sum_{i=1}^{n} x_i \right)$$

Solve the equation (=0) and find the estimator:

$$\hat{p}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Example 2: Normal

• Let $x_1, x_2, ..., x_n$ be a random sample from a normal distribution with mean μ and variance σ^2 Find the MLE of μ and σ^2

Compute likelihood

$$L(\theta \mid x) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left[-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right]$$
$$= \frac{1}{(2\pi\sigma^{2})^{n/2}} \exp\left[-\frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right]$$

Compute log-likelihood function

$$\ln L(\theta, x) = -\frac{n}{2} \ln(2\pi) - \frac{n}{2} \ln(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$$

Compute partial derivatives

$$\frac{\partial \ln L(\theta \mid x)}{\partial \mu} = -\frac{1}{2\sigma^2} \sum_{i=1}^{n} 2(x_i - \mu)(-1) = \frac{1}{\sigma^2} \sum_{i=1}^{n} (x_i - \mu) = 0$$

$$\frac{\partial \ln L(\theta \mid x)}{\partial \sigma^2} = -\frac{n}{2\sigma^2} - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 (-(\sigma^2)^{-2}) = -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (x_i - \mu)^2 = 0$$

Solve the system and find the estimators:

$$\hat{\mu}_{MLE} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu}_{MLE})^2$

Properties of Estimators: Unbiasedness

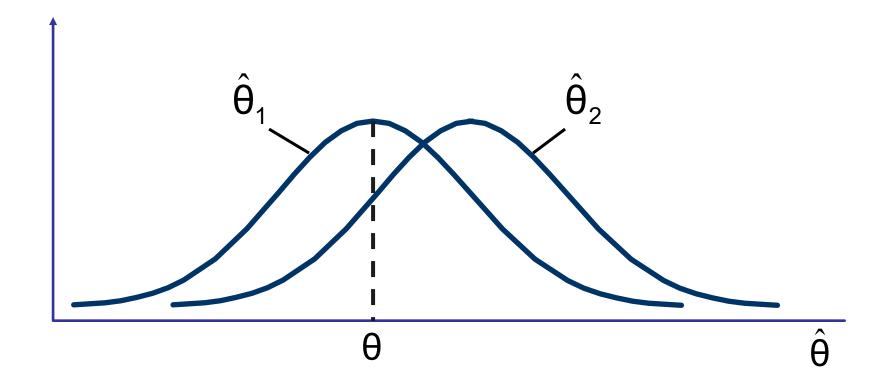
A point estimator θ̂ is said to be an unbiased estimator of the parameter θ if the expected value, or mean, of the sampling distribution of θ̂ is θ,

$$E(\hat{\theta}) = \theta$$

- Examples:
 - The sample mean is an unbiased estimator of μ
 - The sample proportion is an unbiased estimator of P

Properties of Estimators: Unbiasedness

• $\hat{\theta}_1$ is an unbiased estimator, $\hat{\theta}_2$ is biased:



Properties of Estimators: Bias

• Let $\hat{\theta}$ be an estimator of θ

• The bias in $\hat{\theta}$ is defined as the difference between its mean and θ

$$\mathsf{Bias}(\hat{\theta}) = \mathsf{E}(\hat{\theta}) - \theta$$

The bias of an unbiased estimator is 0

Properties of Estimators: Efficiency

- Suppose there are several unbiased estimators of θ
- The most efficient estimator or the minimum variance unbiased estimator of θ is the unbiased estimator with the smallest variance
- Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be two unbiased estimators of θ , based on the same number of sample observations. Then,
 - $\hat{\theta}_1$ is said to be more efficient than $\hat{\theta}_2$ if $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$

Example 1:Unbiasedness of Sample Mean

- Let $X_1, X_2, ... X_n$ represent a random sample from a population with mean μ and variance σ^2
- The sample mean value of these observations is defined as

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$

• The Expected value of the sample mean is:

$$E(\overline{X}) = E(\frac{1}{n} \sum_{i=1}^{n} X_i) = \mu$$

The sample mean is an unbiased estimator of µ

Example 1: Variance of the sample mean

The variance of the sample mean is:

$$V(\overline{x}) = V(\frac{1}{n} \sum_{i=1}^{n} x_i) = \frac{\sigma^2}{n}$$

A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 Note that the standard error of the mean decreases as the sample size increases

Example 2: Unbiasedness of proportionVariance of proportion

Let $X_1, X_2, \ldots X_n$ be a random sample from a Bernoulli distribution with parameter p, i.e. A Binomial experiment with n trials and probability of success p.

The maximum likelihood estimate of proportion is unbiased:

$$E(\hat{P}) = p$$

The variance of the proportion is given by:

$$V(\hat{p}) = V(\frac{x}{n}) = \frac{1}{n^2} V(x) = \frac{1}{n^2} np(1-p) = \frac{p(1-p)}{n}$$

The standard error of the estimate of proportion is given by:

$$\sigma_{\hat{p}} = \sqrt{V(\hat{p})} = \sqrt{\frac{p(1-p)}{n}}$$

Law of Large Numbers

- Informally: An average of many measurements is more accurate than a single measurement.
- Formally: Let $X_1, X_2,...$ be i.i.d. random variables all with mean μ and standard deviation σ .

Let

$$\overline{x}_n = \frac{X_1 + X_2 + \dots + X_n}{n} = \frac{\sum_{i=1}^n X_i}{n}$$

Then, for any (small number) a, we have that

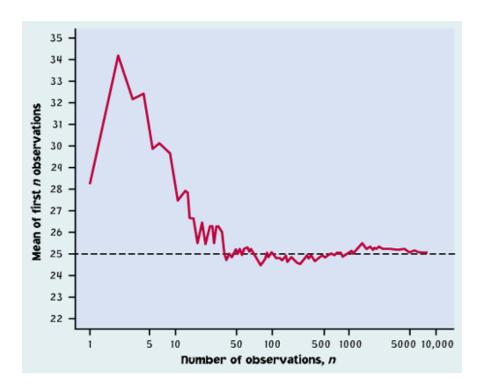
$$\lim_{n\to\infty} P(|\overline{x}_n - \mu| < a) = 1$$

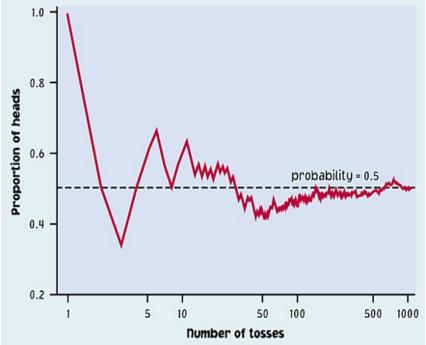
The law of large numbers

Law of large numbers: As the number of randomly-drawn observations (n) in a sample increases

the mean of the sample $(\overline{\chi})$ gets closer and closer to the population mean μ (quantitative variable).

the sample proportion gets closer and closer to the population proportion *p* (categorical variable).





Sampling distribution of the mean case1: the Population is Normal

 If a population is normal with mean μ and standard deviation σ, the sampling distribution of X is also normally distributed with

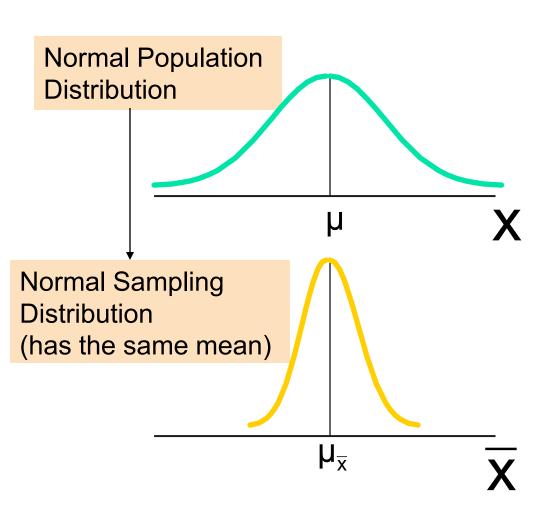
$$\mu_{\overline{X}} = \mu$$
 and

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Sampling distribution of the mean case1: the Population is Normal

$$E(\overline{x}) = \mu_{\overline{x}} = \mu$$

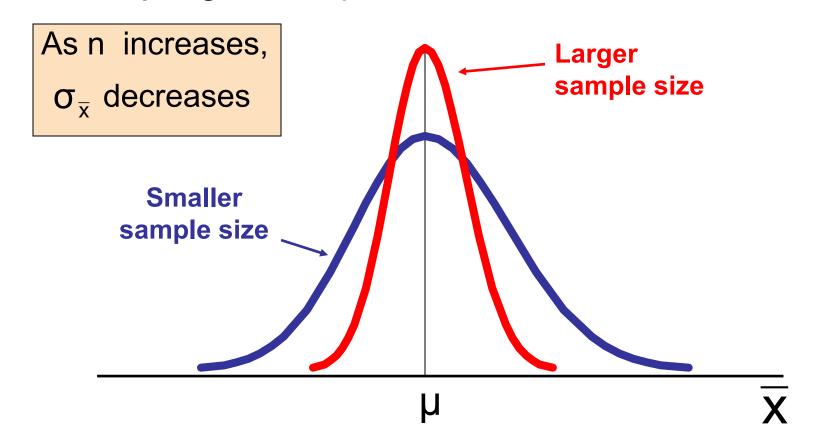
(i.e. X is unbiased)



Sampling distribution of the mean case1: the Population is Normal

(continued)

For sampling with replacement:



Sampling distribution of the mean case2: the Population is not Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

Properties of the sampling distribution:

$$\mu_{\overline{x}} = \mu$$
 and

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

The Central Limit Theorem

Formally: Let $X_1, X_2,...$ be i.i.d. random variables all with mean μ and standard deviation σ .

Let

$$\overline{X}_{n} = \frac{X_{1} + X_{2} + \dots + X_{n}}{n} = \frac{\sum_{i=1}^{n} X_{i}}{n}$$

$$S_{n} = X_{1} + X_{2} + \dots + X_{n}$$

For large n,

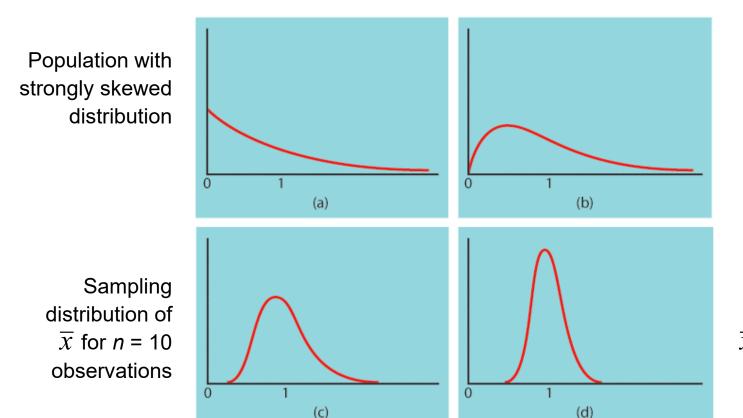
$$\overline{x}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$S_n \sim N\left(n\mu, n\sigma^2\right)$$

Standardized S_n or $\overline{X}_n \sim N(0,1)$

The central limit theorem

Central Limit Theorem: When randomly sampling from any population with mean μ and standard deviation σ , when n is large enough, the sampling distribution of \overline{x} is approximately normal: $N(\mu, \sigma l \sqrt{n})$.



Sampling distribution of \overline{x} for n = 2 observations

Sampling distribution of \overline{x} for n = 25 observations

If the Population is not Normal

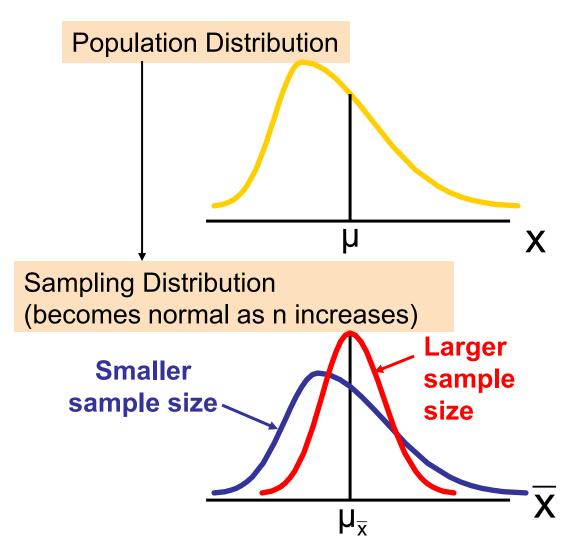
(continued)

Sampling distribution properties:

Central Tendency

$$\mu_{\bar{x}} = \mu$$

$$\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$



How Large is Large Enough?

- For most distributions, n > 25 will give a sampling distribution that is nearly normal
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Standardization

- If the random variable X has a N(μ,σ) distribution, then the random variable Z=(X-μ)/σ has the standard normal N(0,1) distribution.
- Standardization of the sample mean helps in calculating probabilities related to $\overline{\chi}$

For example, P(
$$\overline{\chi}$$
 < a)=P(Z<(a- μ)/ σ)

Example

- The weight of cereal in a box is normally distributed with mean 368gr and standard deviation 15gr. We select a random sample of 25 boxes. What is the probability that the sample mean is below 365gr?
- Xbar~N(368,15/5)
- P(Xbar<365)=P((Xbar-368)/3<(365-368)/3)=P(Z<-3/3)=P(Z<1)