Probability Distributions

Loukia Meligkotsidou
Associate Professor of Statistics
Department of Mathematics
National and Kapodistrian University of Athens

Types of Data

Random variables and Distributions

- Random Variable
- Represents a possible numerical value from a random experiment

Discrete Random Variables

- Can only take on a countable number of values

Examples:

- Roll a die twice

Let X be the number of times 4 comes up (then X could be 0 , 1 , or 2 times)

- Toss a coin 5 times.

Let X be the number of heads (then $X=0,1,2,3,4$, or 5)

Discrete Probability Distribution

Experiment: Toss 2 Coins. Let $X=\#$ heads. Show $P(x)$, i.e., $P(X=x)$, for all values of x :

4 possible outcomes

Probability Distribution

Probability Distribution Required Properties

$P(x) \geq 0$ for any value of x

The individual probabilities sum to 1 ;

$$
\sum_{x} P(x)=1
$$

(The notation indicates summation over all possible \times values)

Cumulative Probability Function

- The cumulative probability function, denoted $F\left(x_{0}\right)$, shows the probability that X is less than or equal to x_{0}

$$
F\left(x_{0}\right)=P\left(X \leq x_{0}\right)
$$

- In other words,

$$
F\left(x_{0}\right)=\sum_{x \leq x_{0}} P(x)
$$

- Compute $P(x)$ from $F(x)$, compute $F(x)$ from $P(x)$

Expected Value

- Expected Value (or mean) of a discrete distribution (Weighted Average)

$$
\mu=E(x)=\sum_{x} x P(x)
$$

- Example: Toss 2 coins,
x = \# of heads,
compute expected value of x :

x	$P(x)$
0	.25
1	.50
2	.25

$$
\begin{aligned}
E(x) & =(0 \times .25)+(1 \times .50)+(2 \times .25) \\
& =1.0
\end{aligned}
$$

Variance and Standard Deviation

- Variance of a discrete random variable X

$$
\sigma^{2}=E(X-\mu)^{2}=\sum_{x}(x-\mu)^{2} P(x)
$$

- Standard Deviation of a discrete random variable X

$$
\sigma=\sqrt{\sigma^{2}}=\sqrt{\sum_{x}(x-\mu)^{2} P(x)}
$$

Standard Deviation Example

- Example: Toss 2 coins, $\mathrm{X}=\mathrm{\#}$ heads, compute standard deviation (recall $E(x)=1$)

$$
\begin{gathered}
\sigma=\sqrt{\sum_{x}(x-\mu)^{2} P(x)} \\
\sigma=\sqrt{(0-1)^{2}(.25)+(1-1)^{2}(.50)+(2-1)^{2}(.25)}=\sqrt{.50}=.707 \\
\substack{\text { Possible number of heads } \\
=0,1, \text { or } 2}
\end{gathered}
$$

Linear Functions of Random Variables

- Let a and b be any constants.
- a) $\mathrm{E}(\mathrm{a})=\mathrm{a}$ and $\operatorname{Var}(\mathrm{a})=0$
i.e., if a random variable always takes the value a, it will have mean a and variance 0
- b) $E(b X)=b \mu_{x} \quad$ and $\quad \operatorname{Var}(b X)=b^{2} \sigma_{x}^{2}$
i.e., the expected value of $b \cdot X$ is $b \cdot E(x)$

Linear Functions of Random Variables

- Let random variable X have mean μ_{x} and variance σ_{x}^{2}
- Let a and b be any constants.
- Let $\mathrm{Y}=\mathrm{a}+\mathrm{bX}$
- Then the mean and variance of Y are

$$
\mu_{Y}=E(a+b X)=a+b \mu_{X}
$$

$$
\sigma^{2} y=\operatorname{Var}(a+b X)=b^{2} \sigma^{2} x
$$

- so that the standard deviation of Y is

$$
\sigma_{Y}=|\mathrm{b}| \sigma_{X}
$$

Probability Distributions

Bernoulli Distribution

" Consider only two outcomes: "success" or "failure"

- Let P denote the probability of success
- Let $1-P$ be the probability of failure
- Define random variable X :

$$
x=1 \text { if success, } x=0 \text { if failure }
$$

- Then the Bernoulli probability function is

$$
P(0)=(1-P) \text { and } P(1)=P
$$

Bernoulli Distribution Mean and Variance

- The mean is $\mu=P$

$$
\mu=E(X)=\sum_{X} x P(x)=(0)(1-P)+(1) P=P
$$

- The variance is $\sigma^{2}=P(1-P)$

$$
\begin{aligned}
\sigma^{2} & =E\left[(X-\mu)^{2}\right]=\sum_{x}(x-\mu)^{2} P(x) \\
& =(0-P)^{2}(1-P)+(1-P)^{2} P=P(1-P)
\end{aligned}
$$

Sequences of x Successes in n Trials

- The number of sequences with x successes in n independent trials is:

$$
C_{x}^{n}=\frac{n!}{x!(n-x)!}
$$

$$
\text { Where } n!=n \cdot(n-1) \cdot(n-2) \cdots 1 \text { and } 0!=1
$$

- These sequences are mutually exclusive, since no two can occur at the same time

Binomial Probability Distribution

- A fixed number of observations, n
- e.g., 15 tosses of a coin
- Two mutually exclusive and collectively exhaustive categories
- e.g., head or tail in each toss of a coin
- Generally called "success" and "failure"
- Probability of success is P, probability of failure is $1-P$
- Constant probability for each observation
- e.g., Probability of getting a tail is the same each time we toss the coin
- Observations are independent
- The outcome of one observation does not affect the outcome of the other

Binomial Distribution Formula

$$
P(x)=\frac{n!}{x!(n-x)!} P^{x}(1-P)^{n-x}
$$

$P(x)=$ probability of x successes in n trials, with probability of success P on each trial
x = number of 'successes' in sample, ($x=0,1,2, \ldots, n$)
n = sample size (number of trials or observations)
$P=$ probability of "success"

Example: Flip a coin four times, let $x=\#$ heads:
$\mathrm{n}=4$
$P=0.5$
$1-P=(1-0.5)=0.5$
$x=0,1,2,3,4$

Example: Calculating a Binomial Probability

What is the probability of one success in five observations if the probability of success is 0.1 ?

$$
x=1, n=5, \text { and } P=0.1
$$

$$
\begin{aligned}
P(x=1) & =\frac{n!}{x!(n-x)!} P^{x}(1-P)^{n-x} \\
& =\frac{5!}{1!(5-1)!}(0.1)^{1}(1-0.1)^{5-1} \\
& =(5)(0.1)(0.9)^{4} \\
& =.32805
\end{aligned}
$$

Binomial Distribution

- The shape of the binomial distribution depends on the values of P and n
- Here, $n=5$ and $P=0.1$

Binomial Distribution Mean and Variance

- Mean

$$
\mu=E(x)=n P
$$

- Variance and Standard Deviation

$$
\begin{aligned}
& \sigma^{2}=n \mathrm{P}(1-\mathrm{P}) \\
& \sigma=\sqrt{\mathrm{nP}(1-\mathrm{P})}
\end{aligned}
$$

Where $n=$ sample size
$P=$ probability of success
$(1-P)=$ probability of failure

The Poisson Distribution

- Apply the Poisson Distribution when:
- You wish to count the number of times an event occurs in a given continuous interval (of time or space)
- The probability that an event occurs in one subinterval is very small and is the same for all subintervals
- The number of events that occur in one subinterval is independent of the number of events that occur in the other subintervals
- The average number of events per unit is λ

Poisson Distribution Formula

where:
$x=$ number of occurrences per unit
$\lambda=$ expected number of occurrences per unit
$e=$ base of the natural logarithm system (2.71828...)

Poisson Distribution Characteristics

- Mean

$$
\mu=E(x)=\lambda
$$

- Variance and Standard Deviation

$$
\begin{gathered}
\sigma^{2}=E\left[(X-\mu)^{2}\right]=\lambda \\
\sigma=\sqrt{\lambda}
\end{gathered}
$$

where $\lambda=$ expected number of successes per unit

Graph of Poisson Probabilities

Graphically:
$\boldsymbol{\lambda}=. \mathbf{5 0}$

	$\boldsymbol{\lambda}=$
\mathbf{X}	$\mathbf{0 . 5 0}$
0	0.6065
\mathbf{x}	
	0.3033
2	0.0758
3	0.0126
4	0.0016
5	0.0002
6	0.0000
7	0.0000

Poisson Distribution Shape

- The shape of the Poisson Distribution depends on the parameter λ :
$\lambda=0.50$

Continuous Probability Distributions

- A continuous random variable is a variable that can assume any value in an interval
- time required to complete a task
- height, in inches
- Return of an asset
- These can potentially take on any value, depending only on the ability to measure accurately.

Cumulative Distribution Function

- The cumulative distribution function, $F(x)$, for a continuous random variable X expresses the probability that X does not exceed the value of x

$$
F(x)=P(X \leq x)
$$

- Let a and b be two possible values of X, with $a<b$. The probability that X lies between a and b is

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

Probability Density Function

The probability density function, $f(x)$, of random variable X has the following properties:

1. $f(x)>0$ for all values of x
2. The area under the probability density function $f(x)$ over all values of the random variable X is equal to 1.0, i.e. $\int f(x) d x=1$
3. The probability that X lies between two values is the area under the density function graph between the two values

Probability as an Area

Shaded area under the curve is the probability that X is between a and b

Expectations for Continuous Random Variables

- The mean of X, denoted μ_{x}, is defined as the expected value of X

$$
\mu_{\mathrm{X}}=\mathrm{E}(\mathrm{X})=\int \mathrm{x} \cdot \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

- The variance of X, denoted $\sigma_{x}{ }^{2}$, is defined as the expectation of the squared deviation, $\left(X-\mu_{X}\right)^{2}$, of a random variable from its mean

$$
\sigma_{X}^{2}=E\left[\left(X-\mu_{x}\right)^{2}\right]
$$

Linear Functions of Variables

- Let $W=a+b X$, where X has mean μ_{X} and variance $\sigma_{x}{ }^{2}$, and a and b are constants
- Then the mean of W is

$$
\mu_{w}=E(a+b X)=a+b \mu_{x}
$$

- the variance is

$$
\sigma_{w}^{2}=\operatorname{Var}(a+b X)=b^{2} \sigma_{x}^{2}
$$

- the standard deviation of W is

$$
\sigma_{\mathrm{w}}=|\mathrm{b}| \sigma_{\mathrm{x}}
$$

Linear Functions of Variables

- An important special case of the previous results is the standardized random variable

$$
Z=\frac{X-\mu_{x}}{\sigma_{x}}
$$

which has a mean 0 and variance 1

The Normal Distribution

- Bell Shaped
- Symmetrical
- Mean, Median and Mode are Equal
Location is determined by the mean, μ
Spread is determined by the standard deviation, σ

The random variable has an infinite theoretical range:

$+\infty$ to $-\infty$

The Normal Distribution

- The normal distribution closely approximates the probability distributions of a wide range of random variables
- Distributions of sample means approach a normal distribution given a "large" sample size
- Computations of probabilities are direct and elegant
- The normal probability distribution has led to good business decisions for a number of applications

Many Normal Distributions

By varying the parameters μ and σ, we obtain different normal distributions

The Normal Distribution Shape

Given the mean μ and variance σ we define the normal distribution using the notation

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

The Normal Probability Density Function

- The formula for the normal probability density function is

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}
$$

Where $\quad e=$ the mathematical constant approximated by 2.71828
$\pi=$ the mathematical constant approximated by 3.14159
$\mu=$ the population mean
$\sigma=$ the population standard deviation
$x=$ any value of the continuous variable, $-\infty<x<\infty$

Cumulative Normal Distribution

- For a normal random variable X with mean μ and variance σ^{2}, i.e., $X \sim N\left(\mu, \sigma^{2}\right)$, the cumulative distribution function is

$$
F\left(x_{0}\right)=P\left(X \leq x_{0}\right)
$$

Finding Normal Probabilities

The probability for a range of values is measured by the area under the curve

$$
\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b})=\mathrm{F}(\mathrm{~b})-\mathrm{F}(\mathrm{a})
$$

Finding Normal Probabilities

The Standardized Normal

- Any normal distribution (with any mean and variance combination) can be transformed into the standardized normal distribution (Z), with mean 0 and variance 1

$$
\mathrm{Z} \sim \mathrm{~N}(0,1)
$$

- Need to transform X units into Z units by subtracting the mean of X and dividing by its standard deviation

$$
Z=\frac{X-\mu}{\sigma}
$$

The Standardized Normal Table

- The Standardized Normal table in textbooks shows values of the cumulative normal distribution function
- For a given Z-value a, the table shows $F(a)$ (the area under the curve from negative infinity to a)

The Standardized Normal Table

- For negative Z-values, use the fact that the distribution is symmetric to find the needed probability:
Example:

$$
P(Z<-2.00)=1-0.9772
$$

$$
=0.0228
$$

