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Preface

There are many books on various aspects of nonparametric inference such
as density estimation, nonparametric regression, bootstrapping, and wavelets
methods. But it is hard to find all these topics covered in one place. The goal
of this text is to provide readers with a single book where they can find a
brief account of many of the modern topics in nonparametric inference.

The book is aimed at master’s-level or Ph.D.-level statistics and computer
science students. It is also suitable for researchers in statistics, machine learn-
ing and data mining who want to get up to speed quickly on modern non-
parametric methods. My goal is to quickly acquaint the reader with the basic
concepts in many areas rather than tackling any one topic in great detail. In
the interest of covering a wide range of topics, while keeping the book short,
I have opted to omit most proofs. Bibliographic remarks point the reader to
references that contain further details. Of course, I have had to choose topics
to include and to omit, the title notwithstanding. For the most part, I decided
to omit topics that are too big to cover in one chapter. For example, I do not
cover classification or nonparametric Bayesian inference.

The book developed from my lecture notes for a half-semester (20 hours)
course populated mainly by master’s-level students. For Ph.D.-level students,
the instructor may want to cover some of the material in more depth and
require the students to fill in proofs of some of the theorems. Throughout, I
have attempted to follow one basic principle: never give an estimator without
giving a confidence set.



viii Preface

The book has a mixture of methods and theory. The material is meant
to complement more method-oriented texts such as Hastie et al. (2001) and
Ruppert et al. (2003).

After the Introduction in Chapter 1, Chapters 2 and 3 cover topics related to
the empirical cdf such as the nonparametric delta method and the bootstrap.
Chapters 4 to 6 cover basic smoothing methods. Chapters 7 to 9 have a higher
theoretical content and are more demanding. The theory in Chapter 7 lays the
foundation for the orthogonal function methods in Chapters 8 and 9. Chapter
10 surveys some of the omitted topics.

I assume that the reader has had a course in mathematical statistics such
as Casella and Berger (2002) or Wasserman (2004). In particular, I assume
that the following concepts are familiar to the reader: distribution functions,
convergence in probability, convergence in distribution, almost sure conver-
gence, likelihood functions, maximum likelihood, confidence intervals, the
delta method, bias, mean squared error, and Bayes estimators. These back-
ground concepts are reviewed briefly in Chapter 1.

Data sets and code can be found at:

www.stat.cmu.edu/∼larry/all-of-nonpar

I need to make some disclaimers. First, the topics in this book fall under
the rubric of “modern nonparametrics.” The omission of traditional methods
such as rank tests and so on is not intended to belittle their importance. Sec-
ond, I make heavy use of large-sample methods. This is partly because I think
that statistics is, largely, most successful and useful in large-sample situations,
and partly because it is often easier to construct large-sample, nonparamet-
ric methods. The reader should be aware that large-sample methods can, of
course, go awry when used without appropriate caution.

I would like to thank the following people for providing feedback and sugges-
tions: Larry Brown, Ed George, John Lafferty, Feng Liang, Catherine Loader,
Jiayang Sun, and Rob Tibshirani. Special thanks to some readers who pro-
vided very detailed comments: Taeryon Choi, Nils Hjort, Woncheol Jang,
Chris Jones, Javier Rojo, David Scott, and one anonymous reader. Thanks
also go to my colleague Chris Genovese for lots of advice and for writing the
LATEX macros for the layout of the book. I am indebted to John Kimmel,
who has been supportive and helpful and did not rebel against the crazy title.
Finally, thanks to my wife Isabella Verdinelli for suggestions that improved
the book and for her love and support.

Larry Wasserman
Pittsburgh, Pennsylvania

July 2005
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1
Introduction

In this chapter we briefly describe the types of problems with which we will
be concerned. Then we define some notation and review some basic concepts
from probability theory and statistical inference.

1.1 What Is Nonparametric Inference?

The basic idea of nonparametric inference is to use data to infer an unknown
quantity while making as few assumptions as possible. Usually, this means
using statistical models that are infinite-dimensional. Indeed, a better name
for nonparametric inference might be infinite-dimensional inference. But it is
difficult to give a precise definition of nonparametric inference, and if I did
venture to give one, no doubt I would be barraged with dissenting opinions.

For the purposes of this book, we will use the phrase nonparametric in-
ference to refer to a set of modern statistical methods that aim to keep the
number of underlying assumptions as weak as possible. Specifically, we will
consider the following problems:

1. (Estimating the distribution function). Given an iid sample X1, . . . , Xn ∼
F , estimate the cdf F (x) = P(X ≤ x). (Chapter 2.)
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2. (Estimating functionals). Given an iid sample X1, . . . , Xn ∼ F , estimate
a functional T (F ) such as the mean T (F ) =

∫
xdF (x). (Chapters 2

and 3.)

3. (Density estimation). Given an iid sample X1, . . . , Xn ∼ F , estimate the
density f(x) = F ′(x). (Chapters 4, 6 and 8.)

4. (Nonparametric regression or curve estimation). Given (X1, Y1), . . . , (Xn, Yn)
estimate the regression function r(x) = E(Y |X = x). (Chapters 4, 5, 8
and 9.)

5. (Normal means). Given Yi ∼ N(θi, σ
2), i = 1, . . . , n, estimate θ =

(θ1, . . . , θn). This apparently simple problem turns out to be very com-
plex and provides a unifying basis for much of nonparametric inference.
(Chapter 7.)

In addition, we will discuss some unifying theoretical principles in Chapter
7. We consider a few miscellaneous problems in Chapter 10, such as measure-
ment error, inverse problems and testing.

Typically, we will assume that distribution F (or density f or regression
function r) lies in some large set F called a statistical model. For example,
when estimating a density f , we might assume that

f ∈ F =
{

g :
∫

(g′′(x))2dx ≤ c2

}
which is the set of densities that are not “too wiggly.”

1.2 Notation and Background

Here is a summary of some useful notation and background. See also
Table 1.1.

Let a(x) be a function of x and let F be a cumulative distribution function.
If F is absolutely continuous, let f denote its density. If F is discrete, let f

denote instead its probability mass function. The mean of a is

E(a(X)) =
∫

a(x)dF (x) ≡
{ ∫

a(x)f(x)dx continuous case∑
j a(xj)f(xj) discrete case.

Let V(X) = E(X − E(X))2 denote the variance of a random variable. If
X1, . . . , Xn are n observations, then

∫
a(x)dF̂n(x) = n−1

∑
i a(Xi) where F̂n

is the empirical distribution that puts mass 1/n at each observation Xi.
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Symbol Definition
xn = o(an) limn→∞ xn/an = 0
xn = O(an) |xn/an| is bounded for all large n
an ∼ bn an/bn → 1 as n → ∞
an � bn an/bn and bn/an are bounded for all large n
Xn � X convergence in distribution
Xn

P−→X convergence in probability
Xn

a.s.−→X almost sure convergence
θ̂n estimator of parameter θ

bias E(θ̂n) − θ

se

√
V(θ̂n) (standard error)

ŝe estimated standard error
mse E(θ̂n − θ)2 (mean squared error)
Φ cdf of a standard Normal random variable
zα Φ−1(1 − α)

TABLE 1.1. Some useful notation.

Brief Review of Probability. The sample space Ω is the set of possible
outcomes of an experiment. Subsets of Ω are called events. A class of events
A is called a σ-field if (i) ∅ ∈ A, (ii) A ∈ A implies that Ac ∈ A and (iii)
A1, A2, . . . ,∈ A implies that

⋃∞
i=1 Ai ∈ A. A probability measure is a

function P defined on a σ-field A such that P(A) ≥ 0 for all A ∈ A, P(Ω) = 1
and if A1, A2, . . . ∈ A are disjoint then

P

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

P(Ai).

The triple (Ω,A, P) is called a probability space. A random variable is a
map X : Ω → R such that, for every real x, {ω ∈ Ω : X(ω) ≤ x} ∈ A.

A sequence of random variables Xn converges in distribution (or con-
verges weakly) to a random variable X , written Xn � X , if

P(Xn ≤ x) → P(X ≤ x) (1.1)

as n → ∞, at all points x at which the cdf

F (x) = P(X ≤ x) (1.2)

is continuous. A sequence of random variables Xn converges in probability
to a random variable X , written Xn

P−→X , if,

for every ε > 0, P(|Xn − X | > ε) → 0 as n → ∞. (1.3)
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A sequence of random variables Xn converges almost surely to a random
variable X , written Xn

a.s.−→X , if

P( lim
n→∞ |Xn − X | = 0) = 1. (1.4)

The following implications hold:

Xn
a.s.−→X implies that Xn

P−→X implies that Xn � X. (1.5)

Let g be a continuous function. Then, according to the continuous map-
ping theorem,

Xn � X implies that g(Xn) � g(X)

Xn
P−→X implies that g(Xn) P−→ g(X)

Xn
a.s.−→X implies that g(Xn) a.s.−→ g(X)

According to Slutsky’s theorem, if Xn � X and Yn � c for some constant
c, then Xn + Yn � X + c and XnYn � cX .

Let X1, . . ., Xn ∼ F be iid. The weak law of large numbers says that if
E|g(X1)| < ∞, then n−1

∑n
i=1 g(Xi)

P−→E(g(X1)). The strong law of large
numbers says that if E|g(X1)| < ∞, then n−1

∑n
i=1 g(Xi)

a.s.−→E(g(X1)).
The random variable Z has a standard Normal distribution if it has density

φ(z) = (2π)−1/2e−z2/2 and we write Z ∼ N(0, 1). The cdf is denoted by
Φ(z). The α upper quantile is denoted by zα. Thus, if Z ∼ N(0, 1), then
P(Z > zα) = α.

If E(g2(X1)) < ∞, the central limit theorem says that
√

n(Y n − µ) � N(0, σ2) (1.6)

where Yi = g(Xi), µ = E(Y1), Y n = n−1
∑n

i=1 Yi and σ2 = V(Y1). In general,
if

(Xn − µ)
σ̂n

� N(0, 1)

then we will write
Xn ≈ N(µ, σ̂2

n). (1.7)

According to the delta method, if g is differentiable at µ and g′(µ) �= 0
then
√

n(Xn −µ) � N(0, σ2) =⇒ √
n(g(Xn)−g(µ)) � N(0, (g′(µ))2σ2). (1.8)

A similar result holds in the vector case. Suppose that Xn is a sequence of
random vectors such that

√
n(Xn − µ) � N(0, Σ), a multivariate, mean 0
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normal with covariance matrix Σ. Let g be differentiable with gradient ∇g

such that ∇µ �= 0 where ∇µ is ∇g evaluated at µ. Then

√
n(g(Xn) − g(µ)) � N

(
0,∇T

µΣ∇µ

)
. (1.9)

Statistical Concepts. Let F = {f(x; θ) : θ ∈ Θ} be a parametric model
satisfying appropriate regularity conditions. The likelihood function based
on iid observations X1, . . . , Xn is

Ln(θ) =
n∏

i=1

f(Xi; θ)

and the log-likelihood function is �n(θ) = logLn(θ). The maximum likeli-
hood estimator, or mle θ̂n, is the value of θ that maximizes the likelihood. The
score function is s(X ; θ) = ∂ log f(x; θ)/∂θ. Under appropriate regularity
conditions, the score function satisfies Eθ(s(X ; θ)) =

∫
s(x; θ)f(x; θ)dx = 0.

Also, √
n(θ̂n − θ) � N(0, τ2(θ))

where τ2(θ) = 1/I(θ) and

I(θ) = Vθ(s(x; θ)) = Eθ(s2(x; θ)) = −Eθ

(
∂2 log f(x; θ)

∂θ2

)
is the Fisher information. Also,

(θ̂n − θ)
ŝe

� N(0, 1)

where ŝe2 = 1/(nI(θ̂n)). The Fisher information In from n observations sat-
isfies In(θ) = nI(θ); hence we may also write ŝe2 = 1/(In(θ̂n)).

The bias of an estimator θ̂n is E(θ̂)−θ and the the mean squared error mse

is mse = E(θ̂ − θ)2. The bias–variance decomposition for the mse of an
estimator θ̂n is

mse = bias2(θ̂n) + V(θ̂n). (1.10)

1.3 Confidence Sets

Much of nonparametric inference is devoted to finding an estimator θ̂n of
some quantity of interest θ. Here, for example, θ could be a mean, a density
or a regression function. But we also want to provide confidence sets for these
quantities. There are different types of confidence sets, as we now explain.
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Let F be a class of distribution functions F and let θ be some quantity of
interest. Thus, θ might be F itself, or F ′ or the mean of F , and so on. Let
Cn be a set of possible values of θ which depends on the data X1, . . . , Xn. To
emphasize that probability statements depend on the underlying F we will
sometimes write PF .

1.11 Definition. Cn is a finite sample 1 − α confidence set if

inf
F∈F

PF (θ ∈ Cn) ≥ 1 − α for all n. (1.12)

Cn is a uniform asymptotic 1 − α confidence set if

lim inf
n→∞ inf

F∈F
PF (θ ∈ Cn) ≥ 1 − α. (1.13)

Cn is a pointwise asymptotic 1 − α confidence set if,

for every F ∈ F, lim inf
n→∞ PF (θ ∈ Cn) ≥ 1 − α. (1.14)

If || · || denotes some norm and f̂n is an estimate of f , then a confidence
ball for f is a confidence set of the form

Cn =
{
f ∈ F : ||f − f̂n|| ≤ sn

}
(1.15)

where sn may depend on the data. Suppose that f is defined on a set X . A
pair of functions (�, u) is a 1−α confidence band or confidence envelope
if

inf
f∈F

P
(
�(x) ≤ f(x) ≤ u(x) for all x ∈ X ) ≥ 1 − α. (1.16)

Confidence balls and bands can be finite sample, pointwise asymptotic and
uniform asymptotic as above. When estimating a real-valued quantity instead
of a function, Cn is just an interval and we call Cn a confidence interval.

Ideally, we would like to find finite sample confidence sets. When this is
not possible, we try to construct uniform asymptotic confidence sets. The
last resort is a pointwise asymptotic confidence interval. If Cn is a uniform
asymptotic confidence set, then the following is true: for any δ > 0 there exists
an n(δ) such that the coverage of Cn is at least 1 − α − δ for all n > n(δ).
With a pointwise asymptotic confidence set, there may not exist a finite n(δ).
In this case, the sample size at which the confidence set has coverage close to
1 − α will depend on f (which we don’t know).
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1.17 Example. Let X1, . . . , Xn ∼ Bernoulli(p). A pointwise asymptotic 1−α

confidence interval for p is

p̂n ± zα/2

√
p̂n(1 − p̂n)

n
(1.18)

where p̂n = n−1
∑n

i=1 Xi. It follows from Hoeffding’s inequality (1.24) that a
finite sample confidence interval is

p̂n ±
√

1
2n

log
(

2
α

)
. � (1.19)

1.20 Example (Parametric models). Let

F = {f(x; θ) : θ ∈ Θ}

be a parametric model with scalar parameter θ and let θ̂n be the maximum
likelihood estimator, the value of θ that maximizes the likelihood function

Ln(θ) =
n∏

i=1

f(Xi; θ).

Recall that under suitable regularity assumptions,

θ̂n ≈ N(θ, ŝe2)

where

ŝe = (In(θ̂n))−1/2

is the estimated standard error of θ̂n and In(θ) is the Fisher information.
Then

θ̂n ± zα/2ŝe

is a pointwise asymptotic confidence interval. If τ = g(θ) we can get an
asymptotic confidence interval for τ using the delta method. The mle for
τ is τ̂n = g(θ̂n). The estimated standard error for τ is ŝe(τ̂n) = ŝe(θ̂n)|g′(θ̂n)|.
The confidence interval for τ is

τ̂n ± zα/2ŝe(τ̂n) = τ̂n ± zα/2ŝe(θ̂n)|g′(θ̂n)|.

Again, this is typically a pointwise asymptotic confidence interval. �
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1.4 Useful Inequalities

At various times in this book we will need to use certain inequalities. For
reference purposes, a number of these inequalities are recorded here.

Markov’s Inequality. Let X be a non-negative random variable and suppose
that E(X) exists. For any t > 0,

P(X > t) ≤ E(X)
t

. (1.21)

Chebyshev’s Inequality. Let µ = E(X) and σ2 = V(X). Then,

P(|X − µ| ≥ t) ≤ σ2

t2
. (1.22)

Hoeffding’s Inequality. Let Y1, . . . , Yn be independent observations such that
E(Yi) = 0 and ai ≤ Yi ≤ bi. Let ε > 0. Then, for any t > 0,

P

(
n∑

i=1

Yi ≥ ε

)
≤ e−tε

n∏
i=1

et2(bi−ai)
2/8. (1.23)

Hoeffding’s Inequality for Bernoulli Random Variables. Let X1, . . ., Xn ∼ Bernoulli(p).
Then, for any ε > 0,

P
(|Xn − p| > ε

) ≤ 2e−2nε2 (1.24)

where Xn = n−1
∑n

i=1 Xi.

Mill’s Inequality. If Z ∼ N(0, 1) then, for any t > 0,

P(|Z| > t) ≤ 2φ(t)
t

(1.25)

where φ is the standard Normal density. In fact, for any t > 0,(
1
t
− 1

t3

)
φ(t) < P(Z > t) <

1
t
φ(t) (1.26)

and

P (Z > t) <
1
2
e−t2/2. (1.27)



1.4 Useful Inequalities 9

Berry–Esséen Bound. Let X1, . . . , Xn be iid with finite mean µ = E(X1),
variance σ2 = V(X1) and third moment, E|X1|3 < ∞. Let Zn =

√
n(Xn −

µ)/σ. Then

sup
z

|P(Zn ≤ z) − Φ(z)| ≤ 33
4

E|X1 − µ|3√
nσ3

. (1.28)

Bernstein’s Inequality. Let X1, . . . , Xn be independent, zero mean random vari-
ables such that −M ≤ Xi ≤ M . Then

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

{
−1

2

(
t2

v + Mt/3

)}
(1.29)

where v ≥∑n
i=1 V(Xi).

Bernstein’s Inequality (Moment version). Let X1, . . . , Xn be independent, zero
mean random variables such that

E|Xi|m ≤ m!Mm−2vi

2
for all m ≥ 2 and some constants M and vi. Then,

P

(∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > t

)
≤ 2 exp

{
−1

2

(
t2

v + Mt

)}
(1.30)

where v =
∑n

i=1 vi.

Cauchy–Schwartz Inequality. If X and Y have finite variances then

E |XY | ≤
√

E(X2)E(Y 2). (1.31)

Recall that a function g is convex if for each x, y and each α ∈ [0, 1],

g(αx + (1 − α)y) ≤ αg(x) + (1 − α)g(y).

If g is twice differentiable, then convexity reduces to checking that g′′(x) ≥ 0
for all x. It can be shown that if g is convex then it lies above any line that
touches g at some point, called a tangent line. A function g is concave if
−g is convex. Examples of convex functions are g(x) = x2 and g(x) = ex.
Examples of concave functions are g(x) = −x2 and g(x) = log x.

Jensen’s inequality. If g is convex then

Eg(X) ≥ g(EX). (1.32)
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If g is concave then
Eg(X) ≤ g(EX). (1.33)

1.5 Bibliographic Remarks

References on probability inequalities and their use in statistics and pattern
recognition include Devroye et al. (1996) and van der Vaart and Wellner
(1996). To review basic probability and mathematical statistics, I recommend
Casella and Berger (2002), van der Vaart (1998) and Wasserman (2004).

1.6 Exercises

1. Consider Example 1.17. Prove that (1.18) is a pointwise asymptotic
confidence interval. Prove that (1.19) is a uniform confidence interval.

2. (Computer experiment). Compare the coverage and length of (1.18) and
(1.19) by simulation. Take p = 0.2 and use α = .05. Try various sample
sizes n. How large must n be before the pointwise interval has accurate
coverage? How do the lengths of the two intervals compare when this
sample size is reached?

3. Let X1, . . . , Xn ∼ N(µ, 1). Let Cn = Xn ± zα/2/
√

n. Is Cn a finite
sample, pointwise asymptotic, or uniform asymptotic confidence set
for µ?

4. Let X1, . . . , Xn ∼ N(µ, σ2). Let Cn = Xn ± zα/2Sn/
√

n where S2
n =∑n

i=1(Xi − Xn)2/(n − 1). Is Cn a finite sample, pointwise asymptotic,
or uniform asymptotic confidence set for µ?

5. Let X1, . . . , Xn ∼ F and let µ =
∫

xdF (x) be the mean. Let

Cn =
(
Xn − zα/2ŝe, Xn + zα/2ŝe

)
where ŝe2 = S2

n/n and

S2
n =

1
n

n∑
i=1

(Xi − Xn)2.

(a) Assuming that the mean exists, show that Cn is a 1 − α pointwise
asymptotic confidence interval.
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(b) Show that Cn is not a uniform asymptotic confidence interval. Hint :
Let an → ∞ and εn → 0 and let Gn = (1 − εn)F + εnδn where δn is
a pointmass at an. Argue that, with very high probability, for an large
and εn small,

∫
xdGn(x) is large but Xn + zα/2ŝe is not large.

(c) Suppose that P(|Xi| ≤ B) = 1 where B is a known constant. Use
Bernstein’s inequality (1.29) to construct a finite sample confidence in-
terval for µ.



2
Estimating the cdf and Statistical
Functionals

The first problem we consider is estimating the cdf. By itself, this is not a
very interesting problem. However, it is the first step towards solving more
important problems such as estimating statistical functionals.

2.1 The cdf

We begin with the problem of estimating a cdf (cumulative distribution func-
tion). Let X1, . . . , Xn ∼ F where F (x) = P(X ≤ x) is a distribution function
on the real line. We estimate F with the empirical distribution function.

2.1 Definition. The empirical distribution function F̂n is the
cdf that puts mass 1/n at each data point Xi. Formally,

F̂n(x) =
1
n

n∑
i=1

I(Xi ≤ x) (2.2)

where

I(Xi ≤ x) =
{

1 if Xi ≤ x
0 if Xi > x.
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FIGURE 2.1. Nerve data. Each vertical line represents one data point. The solid
line is the empirical distribution function. The lines above and below the middle
line are a 95 percent confidence band.

2.3 Example (Nerve data). Cox and Lewis (1966) reported 799 waiting times
between successive pulses along a nerve fiber. Figure 2.1 shows the data and
the empirical cdf F̂n. �

The following theorem gives some properties of F̂n(x).

2.4 Theorem. Let X1, . . . , Xn ∼ F and let F̂n be the empirical cdf. Then:

1. At any fixed value of x,

E

(
F̂n(x)

)
= F (x) and V

(
F̂n(x)

)
=

F (x)(1 − F (x))
n

.

Thus, MSE = F (x)(1−F (x))
n → 0 and hence F̂n(x) P−→F (x).

2. (Glivenko–Cantelli Theorem).

sup
x

|F̂n(x) − F (x)| a.s.−→ 0.

3. (Dvoretzky–Kiefer–Wolfowitz (DKW) inequality). For any ε > 0,

P

(
sup

x
|F (x) − F̂n(x)| > ε

)
≤ 2e−2nε2 . (2.5)



2.2 Estimating Statistical Functionals 15

From the DKW inequality, we can construct a confidence set. Let ε2n =
log(2/α)/(2n), L(x) = max{F̂n(x) − εn, 0} and U(x) = min{F̂n(x) + εn, 1}.
It follows from (2.5) that for any F ,

P(L(x) ≤ F (x) ≤ U(x) for all x) ≥ 1 − α.

Thus, (L(x), U(x)) is a nonparametric 1 − α confidence band.1

To summarize:

2.6 Theorem. Let

L(x) = max{F̂n(x) − εn, 0}
U(x) = min{F̂n(x) + εn, 1}

where

εn =

√
1
2n

log
(

2
α

)
.

Then, for all F and all n,

P

(
L(x) ≤ F (x) ≤ U(x) for all x

)
≥ 1 − α.

2.7 Example. The dashed lines in Figure 2.1 give a 95 percent confidence

band using εn =
√

1
2n log

(
2

.05

)
= .048. �

2.2 Estimating Statistical Functionals

A statistical functional T (F ) is any function of F . Examples are the mean
µ =

∫
xdF (x), the variance σ2 =

∫
(x − µ)2dF (x) and the median m =

F−1(1/2).

2.8 Definition. The plug-in estimator of θ = T (F ) is defined by

θ̂n = T (F̂n). (2.9)

A functional of the form
∫

a(x)dF (x) is called a linear functional. Re-
call that

∫
a(x)dF (x) is defined to be

∫
a(x)f(x)dx in the continuous case

1There exist tighter confidence bands but we use the DKW band because it is simple.
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and
∑

j a(xj)f(xj) in the discrete case. The empirical cdf F̂n(x) is discrete,
putting mass 1/n at each Xi. Hence, if T (F ) =

∫
a(x)dF (x) is a linear func-

tional then we have:

The plug-in estimator for linear functional T (F ) =
∫

a(x)dF (x) is:

T (F̂n) =
∫

a(x)dF̂n(x) =
1
n

n∑
i=1

a(Xi). (2.10)

Sometimes we can find the estimated standard error ŝe of T (F̂n) by doing
some direct calculations. However, in other cases it is not obvious how to
estimate the standard error. Later we will discuss methods for finding ŝe. For
now, let us just assume that somehow we can find ŝe. In many cases, it turns
out that

T (F̂n) ≈ N(T (F ), ŝe2). (2.11)

In that case, an approximate 1 − α confidence interval for T (F ) is then

T (F̂n) ± zα/2 ŝe (2.12)

where zα is defined by: P(Z > zα) = α with Z ∼ N(0, 1). We will call (2.12)
the Normal-based interval.

2.13 Example (The mean). Let µ = T (F ) =
∫

xdF (x). The plug-in estima-

tor is µ̂ =
∫

xdF̂n(x) = Xn. The standard error is se =
√

V(Xn) = σ/
√

n. If
σ̂ denotes an estimate of σ, then the estimated standard error is ŝe = σ̂/

√
n.

A Normal-based confidence interval for µ is Xn ± zα/2 σ̂/
√

n. �

2.14 Example (The variance). Let σ2 = V(X) =
∫

x2 dF (x) − (∫ xdF (x)
)2.

The plug-in estimator is

σ̂2 =
∫

x2dF̂n(x) −
(∫

xdF̂n(x)
)2

=
1
n

n∑
i=1

X2
i −

(
1
n

n∑
i=1

Xi

)2

=
1
n

n∑
i=1

(Xi − Xn)2.

This is different than the usual unbiased sample variance

S2
n =

1
n − 1

n∑
i=1

(Xi − Xn)2.
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In practice, there is little difference between σ̂2 and S2
n. �

2.15 Example (The skewness). Let µ and σ2 denote the mean and variance of
a random variable X . The skewness — which measures the lack of symmetry
of a distribution — is defined to be

κ =
E(X − µ)3

σ3
=

∫
(x − µ)3dF (x){∫

(x − µ)2dF (x)
}3/2

.

To find the plug-in estimate, first recall that µ̂ = n−1
∑n

i=1 Xi and σ̂2 =
n−1

∑n
i=1(Xi − µ̂)2. The plug-in estimate of κ is

κ̂ =
∫
(x − µ)3dF̂n(x){∫

(x − µ)2dF̂n(x)
}3/2

=
1
n

∑n
i=1(Xi − µ̂)3

σ̂3
. �

2.16 Example (Correlation). Let Z = (X, Y ) and let ρ = T (F ) = E(X −
µX)(Y −µY )/(σxσy) denote the correlation between X and Y , where F (x, y)
is bivariate. We can write T (F ) = a(T1(F ), T2(F ), T3(F ), T4(F ), T5(F )) where

T1(F ) =
∫

xdF (z) T2(F ) =
∫

y dF (z) T3(F ) =
∫

xy dF (z)
T4(F ) =

∫
x2 dF (z) T5(F ) =

∫
y2 dF (z)

and
a(t1, . . . , t5) =

t3 − t1t2√
(t4 − t21)(t5 − t22)

.

Replace F with F̂n in T1(F ), . . . , T5(F ), and take

ρ̂ = a(T1(F̂n), T2(F̂n), T3(F̂n), T4(F̂n), T5(F̂n)).

We get

ρ̂ =
∑n

i=1(Xi − Xn)(Yi − Y n)√∑n
i=1(Xi − Xn)2

√∑n
i=1(Yi − Y n)2

which is called the sample correlation. �

2.17 Example (Quantiles). Let F be strictly increasing with density f . Let
T (F ) = F−1(p) be the pth quantile. The estimate of T (F ) is F̂−1

n (p). We have
to be a bit careful since F̂n is not invertible. To avoid ambiguity we define
F̂−1

n (p) = inf{x : F̂n(x) ≥ p}. We call F̂−1
n (p) the pth sample quantile. �

The Glivenko–Cantelli theorem ensures that F̂n converges to F . This sug-
gests that θ̂n = T (F̂n) will converge to θ = T (F ). Furthermore, we would hope
that under reasonable conditions, θ̂n will be asymptotically normal. This leads
us to the next topic.
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2.3 Influence Functions

The influence function is used to approximate the standard error of a plug-in
estimator. The formal definition is as follows.

2.18 Definition. The Gâteaux derivative of T at F in the direction G

is defined by

LF (G) = lim
ε→0

T
(
(1 − ε)F + εG

)− T (F )
ε

. (2.19)

If G = δx is a point mass at x then we write LF (x) ≡ LF (δx) and we call
LF (x) the influence function. Thus,

LF (x) = lim
ε→0

T
(
(1 − ε)F + εδx

)− T (F )
ε

. (2.20)

The empirical influence function is defined by L̂(x) = LF̂n
(x). Thus,

L̂(x) = lim
ε→0

T
(
(1 − ε)F̂n + εδx

)− T (F̂n)
ε

. (2.21)

Often we drop the subscript F and write L(x) instead of LF (x).

2.22 Theorem. Let T (F ) =
∫

a(x)dF (x) be a linear functional. Then:

1. LF (x) = a(x) − T (F ) and L̂(x) = a(x) − T (F̂n).

2. For any G,

T (G) = T (F ) +
∫

LF (x)dG(x). (2.23)

3.
∫

LF (x)dF (x) = 0.

4. Let τ2 =
∫

L2
F (x)dF (x). Then, τ2 =

∫
(a(x) − T (F ))2dF (x) and if

τ2 < ∞, √
n(T (F ) − T (F̂n)) � N(0, τ2). (2.24)

5. Let

τ̂2 =
1
n

n∑
i=1

L̂2(Xi) =
1
n

n∑
i=1

(a(Xi) − T (F̂n))2. (2.25)

Then, τ̂2 P−→ τ2 and ŝe/se
P−→ 1 where ŝe = τ̂/

√
n and se =

√
V(T (F̂n)).
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6. We have that √
n(T (F ) − T (F̂n))

τ̂
� N(0, 1). (2.26)

Proof. The first three claims follow easily from the definition of the influ-
ence function. To prove the fourth claim, write

T (F̂n) = T (F ) +
∫

LF (x)dF̂n(x)

= T (F ) +
1
n

n∑
i=1

LF (Xi).

From the central limit theorem and the fact that
∫

LF (x)dF (x) = 0, it follows
that √

n(T (F ) − T (F̂n)) � N(0, τ2)

where τ2 =
∫

L2
F (x)dF (x). The fifth claim follows from the law of large num-

bers. The final statement follows from the fourth and fifth claims and Slutsky’s
theorem. �

The theorem above tells us that the influence function LF (x) behaves like
the score function in parametric estimation. To see this, recall that if f(x; θ) is
a parametric model, Ln(θ) =

∏n
i=1 f(Xi; θ) is the likelihood function and the

maximum likelihood estimator θ̂n is the value of θ that maximizes Ln(θ). The
score function is sθ(x) = ∂ log f(x; θ)/∂θ which, under appropriate regularity
conditions, satisfies

∫
sθ(x)f(x; θ)dx = 0 and V(θ̂n) ≈ ∫ (sθ(x))2f(x; θ)dx/n.

Similarly, for the influence function we have that
∫

LF (x)dF (x) = 0 and and
V(T (F̂n)) ≈ ∫ L2

F (x)dF (x)/n.
If the functional T (F ) is not linear, then (2.23) will not hold exactly, but

it may hold approximately.

2.27 Theorem. If T is Hadamard differentiable2 with respect to d(F, G) =
supx |F (x) − G(x)| then

√
n(T (F̂n) − T (F )) � N(0, τ2) (2.28)

where τ2 =
∫

LF (x)2dF (x). Also,

(T (F̂n) − T (F ))
ŝe

� N(0, 1) (2.29)

2Hadamard differentiability is defined in the appendix.



20 2. Estimating the cdf and Statistical Functionals

where ŝe = τ̂/
√

n and

τ̂ =
1
n

n∑
i=1

L2(Xi). (2.30)

We call the approximation (T (F̂n) − T (F ))/ŝe ≈ N(0, 1) the nonpara-
metric delta method. From the normal approximation, a large sample
confidence interval is T (F̂n) ± zα/2 ŝe. This is only a pointwise asymptotic
confidence interval. In summary:

The Nonparametric Delta Method
A 1 − α, pointwise asymptotic confidence interval for T (F ) is

T (F̂n) ± zα/2 ŝe (2.31)

where

ŝe =
τ̂√
n

and τ̂2 =
1
n

n∑
i=1

L̂2(Xi).

2.32 Example (The mean). Let θ = T (F ) =
∫

xdF (x). The plug-in estimator
is θ̂ =

∫
xdF̂n(x) = Xn. Also, T ((1 − ε)F + εδx) = (1 − ε)θ + εx. Thus,

L(x) = x−θ, L̂(x) = x−Xn and ŝe2 = σ̂2/n where σ̂2 = n−1
∑n

i=1(Xi−Xn)2.
A pointwise asymptotic nonparametric 95 percent confidence interval for θ is
Xn ± 2 ŝe. �

Sometimes statistical functionals take the form T (F ) = a(T1(F ), . . . , Tm(F ))
for some function a(t1, . . . , tm). By the chain rule, the influence function is

L(x) =
m∑

i=1

∂a

∂ti
Li(x)

where

Li(x) = lim
ε→0

Ti((1 − ε)F + εδx) − Ti(F )
ε

. (2.33)

2.34 Example (Correlation). Let Z = (X, Y ) and let T (F ) = E(X−µX)(Y −
µY )/(σxσy) denote the correlation where F (x, y) is bivariate. Recall that
T (F ) = a(T1(F ), T2(F ), T3(F ), T4(F ), T5(F )) where

T1(F ) =
∫

xdF (z) T2(F ) =
∫

y dF (z) T3(F ) =
∫

xy dF (z)
T4(F ) =

∫
x2 dF (z) T5(F ) =

∫
y2 dF (z)

and
a(t1, . . . , t5) =

t3 − t1t2√
(t4 − t21)(t5 − t22)

.
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It follows from (2.33) that

L(x, y) = x̃ỹ − 1
2
T (F )(x̃2 + ỹ2)

where

x̃ =
x − ∫ xdF√∫

x2dF − (
∫

xdF )2
, ỹ =

y − ∫ ydF√∫
y2dF − (

∫
ydF )2

. �

2.35 Example (Quantiles). Let F be strictly increasing with positive density
f . The T (F ) = F−1(p) be the pth quantile. The influence function is (see
Exercise 10)

L(x) =

{ p−1
f(θ) , x ≤ θ

p
f(θ) , x > θ.

The asymptotic variance of T (F̂n) is

τ2

n
=

1
n

∫
L2(x)dF (x) =

p(1 − p)
nf2(θ)

. (2.36)

To estimate this variance we need to estimate the density f . Later we shall
see that the bootstrap provides a simpler estimate of the variance. �

2.4 Empirical Probability Distributions

This section discusses a generalization of the DKW inequality. The reader
may skip this section if desired. Using the empirical cdf to estimate the true
cdf is a special case of a more general idea. Let X1, . . . , Xn ∼ P be an
iid sample from a probability measure P . Define the empirical probability
distribution Pn by

P̂n(A) =
number of Xi ∈ A

n
. (2.37)

We would like to be able to say that Pn is close to P in some sense. For a fixed
A we know that nP̂n(A) ∼ Binomial(n, p) where p = P (A). By Hoeffding’s
inequality, it follows that

P
(|P̂n(A) − P (A)| > ε

) ≤ 2e−2nε2. (2.38)

We would like to extend this to be a statement of the form

P

(
sup
A∈A

|P̂n(A) − P (A)| > ε

)
≤ something small
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for some class of sets A. This is exactly what the DKW inequality does by
taking A = {A = (−∞, t] : t ∈ R}. But DKW is only useful for one-
dimensional random variables. We can get a more general inequality by using
Vapnik–Chervonenkis (VC) theory.

Let A be a class of sets. Given a finite set R = {x1, . . . , xn} let

NA(R) = #
{

R
⋂

A : A ∈ A
}

(2.39)

be the number of subsets of R “picked out” as A varies over A. We say that
R is shattered by A if NA(R) = 2n. The shatter coefficient is defined by

s(A, n) = max
R∈Fn

NA(R) (2.40)

where Fn consists of all finite sets of size n.

2.41 Theorem (Vapnik and Chervonenkis, 1971). For any P , n and ε > 0,

P

(
sup
A∈A

|P̂n(A) − P (A)| > ε

)
≤ 8s(A, n)e−nε2/32. (2.42)

Theorem 2.41 is only useful if the shatter coefficients do not grow too quickly
with n. This is where VC dimension enters. If s(A, n) = 2n for all n set
VC(A) = ∞. Otherwise, define VC(A) to be the largest k for which s(A, k) =
2k. We call VC(A) the Vapnik–Chervonenkis dimension of A. Thus, the
VC-dimension is the size of the largest finite set F that is shattered by A. The
following theorem shows that if A has finite VC-dimension then the shatter
coefficients grow as a polynomial in n.

2.43 Theorem. If A has finite VC-dimension v, then

s(A, n) ≤ nv + 1.

In this case,

P

(
sup
A∈A

|P̂n(A) − P (A)| > ε

)
≤ 8(nv + 1)e−nε2/32. (2.44)

2.45 Example. Let A = {(−∞, x]; x ∈ R}. Then A shatters every one point
set {x} but it shatters no set of the form {x, y}. Therefore, VC(A) = 1. Since,
P((−∞, x]) = F (x) is the cdf and P̂n((−∞, x]) = F̂n(x) is the empirical cdf,
we conclude that

P

(
sup

x
|F̂n(x) − F (x)| > ε

)
≤ 8(n + 1)e−nε2/32

which is looser than the DKW bound. This shows that the bound (2.42) is
not the tightest possible. �
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2.46 Example. Let A be the set of closed intervals on the real line. Then A
shatters S = {x, y} but it cannot shatter sets with three points. Consider
S = {x, y, z} where x < y < z. One cannot find an interval A such that
A
⋂

S = {x, z}. So, VC(A) = 2. �

2.47 Example. Let A be all linear half-spaces on the plane. Any three-point
set (not all on a line) can be shattered. No four-point set can be shattered.
Consider, for example, four points forming a diamond. Let T be the leftmost
and rightmost points. This set cannot be picked out. Other configurations can
also be seen to be unshatterable. So VC(A) = 3. In general, halfspaces in Rd

have VC dimension d + 1. �

2.48 Example. Let A be all rectangles on the plane with sides parallel to the
axes. Any four-point set can be shattered. Let S be a five-point set. There
is one point that is not leftmost, rightmost, uppermost or lowermost. Let T

be all points in S except this point. Then T can’t be picked out. So, we have
that VC(A) = 4. �

2.5 Bibliographic Remarks

Further details on statistical functionals can be found in Serfling (1980), Davi-
son and Hinkley (1997), Shao and Tu (1995), Fernholz (1983) and van der
Vaart (1998). Vapnik–Chervonenkis theory is discussed in Devroye et al.
(1996), van der Vaart (1998) and van der Vaart and Wellner (1996).

2.6 Appendix

Here are some details about Theorem 2.27. Let F denote all distribution func-
tions and let D denote the linear space generated by F. Write T ((1 − ε)F +
εG) = T (F + εD) where D = G − F ∈ D. The Gateâux derivative, which we
now write as LF (D), is defined by

lim
ε↓0

∣∣∣∣∣T (F + εD) − T (F )
ε

− LF (D)

∣∣∣∣∣→ 0.

Thus T (F + εD) ≈ εLF (D) + o(ε) and the error term o(ε) goes to 0 as ε → 0.
Hadamard differentiability requires that this error term be small uniformly
over compact sets. Equip D with a metric d. T is Hadamard differentiable
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at F if there exists a linear functional LF on D such that for any εn → 0 and
{D, D1, D2, . . .} ⊂ D such that d(Dn, D) → 0 and F + εnDn ∈ F ,

lim
n→∞

(
T (F + εnDn) − T (F )

εn
− LF (Dn)

)
= 0.

2.7 Exercises

1. Fill in the details of the proof of Theorem 2.22.

2. Prove Theorem 2.4.

3. (Computer experiment.) Generate 100 observations from a N(0,1) distri-
bution. Compute a 95 percent confidence band for the cdf F . Repeat
this 1000 times and see how often the confidence band contains the true
distribution function. Repeat using data from a Cauchy distribution.

4. Let X1, . . . , Xn ∼ F and let F̂n(x) be the empirical distribution func-

tion. For a fixed x, find the limiting distribution of
√

F̂n(x).

5. Suppose that
|T (F ) − T (G)| ≤ C ||F − G||∞ (2.49)

for some constant 0 < C < ∞ where ||F − G||∞ = supx |F (x) − G(x)|.
Prove that T (F̂n) a.s.−→T (F ). Suppose that |X | ≤ M < ∞. Show that
T (F ) =

∫
xdF (x) satisfies (2.49).

6. Let x and y be two distinct points. Find Cov(F̂n(x), F̂n(y)).

7. Let X1, . . . , Xn ∼ Bernoulli(p) and let Y1, . . . , Ym ∼ Bernoulli(q). Find
the plug-in estimator and estimated standard error for p. Find an ap-
proximate 90 percent confidence interval for p. Find the plug-in esti-
mator and estimated standard error for p − q. Find an approximate 90
percent confidence interval for p − q.

8. Let X1, . . . , Xn ∼ F and let F̂ be the empirical distribution function.
Let a < b be fixed numbers and define θ = T (F ) = F (b) − F (a). Let
θ̂ = T (F̂n) = F̂n(b) − F̂n(a). Find the influence function. Find the
estimated standard error of θ̂. Find an expression for an approximate
1 − α confidence interval for θ.

9. Verify the formula for the influence function in Example 2.34.
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10. Verify the formula for the influence function in Example 2.35. Hint : Let
Fε(y) = (1 − ε)F (y) + εδx(y) where δx(y) is a point mass at x, i.e.,
δx(y) = 0 if y < x and δx(y) = 1 if y ≥ x. By the definition of T (F ),
we have that p = Fε(T (Fε)). Now differentiate with respect to ε and
evaluate the derivative at ε = 0.

11. Data on the magnitudes of earthquakes near Fiji are available on the
book website. Estimate the cdf F (x). Compute and plot a 95 percent
confidence envelope for F . Find an approximate 95 percent confidence
interval for F (4.9) − F (4.3).

12. Get the data on eruption times and waiting times between eruptions
of the Old Faithful geyser from the book website. Estimate the mean
waiting time and give a standard error for the estimate. Also, give a
90 percent confidence interval for the mean waiting time. Now estimate
the median waiting time. In the next chapter we will see how to get the
standard error for the median.

13. In 1975, an experiment was conducted to see if cloud seeding produced
rainfall. 26 clouds were seeded with silver nitrate and 26 were not. The
decision to seed or not was made at random. Get the data from

http://lib.stat.cmu.edu/DASL/Stories/CloudSeeding.html

Let θ = T (F1) − T (F2) be the difference in the median precipitation
from the two groups. Estimate θ. Estimate the standard error of the
estimate and produce a 95 percent confidence interval. To estimate the
standard error you will need to use formula (2.36). This formula requires
the density f so you will need to insert an estimate of f . What will you
do? Be creative.

14. Let A be the set of two-dimensional spheres. That is, A ∈ A if A =
{(x, y) : (x−a)2+(y−b)2 ≤ c2} for some a, b, c. Find the VC dimension
of A.

15. The empirical cdf can be regarded as a nonparametric maximum likeli-
hood estimator. For example, consider data X1, . . . , Xn on [0,1]. Divide
the interval into bins of width ∆ and find the mle over all distribu-
tions with constant density over the bins. Show that the resulting cdf

converges to the empirical cdf as ∆ → 0.



3
The Bootstrap and the Jackknife

The bootstrap and the jackknife are nonparametric methods for computing
standard errors and confidence intervals. The jackknife is less computationally
expensive, but the bootstrap has some statistical advantages.

3.1 The Jackknife

The jackknife, due to Quenouille (1949), is a simple method for approximating
the bias and variance of an estimator. Let Tn = T (X1, . . . , Xn) be an estimator
of some quantity θ and let bias(Tn) = E(Tn) − θ denote the bias. Let T(−i)

denote the statistic with the ith observation removed. The jackknife bias
estimate is defined by

bjack = (n − 1)(Tn − Tn) (3.1)

where Tn = n−1
∑

i T(−i). The bias-corrected estimator is Tjack = Tn − bjack.
Why is bjack defined this way? For many statistics it can be shown that

bias(Tn) =
a

n
+

b

n2
+ O

(
1
n3

)
(3.2)

for some a and b. For example, let σ2 = V(Xi) and let σ̂2
n = n−1

∑n
i=1(Xi −

X)2. Then, E(σ̂2
n) = (n− 1)σ2/n so that bias(σ̂2

n) = −σ2/n. Thus, (3.2) holds
with a = −σ2 and b = 0.
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When (3.2) holds, we have

bias(T(−i)) =
a

n − 1
+

b

(n − 1)2
+ O

(
1
n3

)
. (3.3)

It follows that bias(Tn) also satisfies (3.3). Hence,

E(bjack) = (n − 1)
(
E(bias(Tn)) − E(bias(Tn))

)
= (n − 1)

[(
1

n − 1
− 1

n

)
a +

(
1

(n − 1)2
− 1

n2

)
b + O

(
1
n3

)]
=

a

n
+

(2n − 1)b
n2(n − 1)

+ O

(
1
n2

)
= bias(Tn) + O

(
1
n2

)
which shows that bjack estimates the bias up to order O(n−2). By a similar
calculation,

bias(Tjack) = − b

n(n − 1)
+ O

(
1
n2

)
= O

(
1
n2

)
so the bias of Tjack is an order of magnitude smaller than that of Tn. Tjack can
also be written as

Tjack =
1
n

n∑
i=1

T̃i

where
T̃i = nTn − (n − 1)T(−i)

are called pseudo-values.
The jackknife estimate of V(Tn) is

vjack =
s̃2

n
(3.4)

where

s̃2 =

∑n
i=1

(
T̃i − 1

n

∑n
i=1 T̃i

)2

n − 1
is the sample variance of the pseudo-values. Under suitable conditions on T ,
it can be shown that vjack consistently estimates V(Tn). For example, if T is
a smooth function of the sample mean, then consistency holds.

3.5 Theorem. Let µ = E(X1) and σ2 = V(X1) < ∞ and suppose that
Tn = g(Xn) where g has a continuous, nonzero derivative at µ. Then (Tn −
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g(µ))/σn � N(0, 1) where σ2
n = n−1(g′(µ))2σ2. The jackknife is consistent,

meaning that
vjack

σ2
n

a.s.−→ 1. (3.6)

3.7 Theorem (Efron, 1982). If T (F ) = F−1(p) is the pth quantile, then the
jackknife variance estimate is inconsistent. For the median (p = 1/2) we have
that vjack/σ2

n � (χ2
2/2)2 where σ2

n is the asymptotic variance of the sample
median.

3.8 Example. Let Tn = Xn. It is easy to see that T̃i = Xi. Hence, Tjack = Tn,
b = 0 and vjack = S2

n/n where S2
n is the sample variance. �

There is a connection between the jackknife and the influence function.
Recall that the influence function is

LF (x) = lim
ε→0

T ((1 − ε)F + εδx) − T (F )
ε

. (3.9)

Suppose we approximate LF (Xi) by setting F = F̂n and ε = −1/(n−1). This
yields the approximation

LF (Xi) ≈ T ((1 − ε)F̂n + εδxi) − T (F̂n)
ε

= (n − 1)(Tn − T(−i)) ≡ �i.

It follows that

b = − 1
n

n∑
i=1

�i, vjack =
1

n(n − 1)

(∑
i

�2
i − nb2

)
.

In other words, the jackknife is an approximate version of the nonparametric
delta method.

3.10 Example. Consider estimating the skewness T (F ) =
∫

(x−µ)3dF (x)/σ3

of the nerve data. The point estimate is T (F̂n) = 1.76. The jackknife estimate
of the standard error is .17. An approximate 95 percent confidence interval
for T (F ) is 1.76 ± 2(.17) = (1.42, 2.10). These exclude 0 which suggests that
the data are not Normal. We can also compute the standard error using the
influence function. For this functional, we have (see Exercise 1)

LF (x) =
(x − µ)3

σ3
− T (F )

(
1 +

3
2

((x − µ)2 − σ2)
σ2

)
.

Then

ŝe =

√
τ̂2

n
=

√∑n
i=1 L̂2(Xi)

n2
= .18.

It is reassuring to get nearly the same answer. �
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3.2 The Bootstrap

The bootstrap is a method for estimating the variance and the distribution
of a statistic Tn = g(X1, . . . , Xn). We can also use the bootstrap to construct
confidence intervals.

Let VF (Tn) denote the variance of Tn. We have added the subscript F to
emphasize that the variance is a function of F . If we knew F we could, at
least in principle, compute the variance. For example, if Tn = n−1

∑n
i=1 Xi,

then

VF (Tn) =
σ2

n
=

∫
x2dF (x) − (∫ xdF (x)

)2
n

which is clearly a function of F .
With the bootstrap, we estimate VF (Tn) with VF̂n

(Tn). In other words,
we use a plug-in estimator of the variance. Since, VF̂n

(Tn) may be difficult
to compute, we approximate it with a simulation estimate denoted by vboot.
Specifically, we do the following steps:

Bootstrap Variance Estimation

1. Draw X∗
1 , . . . , X∗

n ∼ F̂n.

2. Compute T ∗
n = g(X∗

1 , . . . , X∗
n).

3. Repeat steps 1 and 2, B times to get T ∗
n,1, . . . , T

∗
n,B.

4. Let

vboot =
1
B

B∑
b=1

(
T ∗

n,b −
1
B

B∑
r=1

T ∗
n,r

)2

. (3.11)

By the law of large numbers, vboot
a.s.−→VF̂n

(Tn) as B → ∞. The estimated
standard error of Tn is ŝeboot =

√
vboot. The following diagram illustrates the

bootstrap idea:

Real world: F =⇒ X1, . . . , Xn =⇒ Tn = g(X1, . . . , Xn)
Bootstrap world: F̂n =⇒ X∗

1 , . . . , X∗
n =⇒ T ∗

n = g(X∗
1 , . . . , X∗

n)

VF (Tn)
O(1/

√
n)︷︸︸︷≈ VF̂n

(Tn)
O(1/

√
B)︷︸︸︷≈ vboot.

How do we simulate from F̂n? Since F̂n gives probability 1/n to each data
point, drawing n points at random from F̂n is the same as drawing a
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Bootstrap for the Median
Given data X = (X(1), ..., X(n)):

T = median(X)
Tboot = vector of length B
for(i in 1:N){

Xstar = sample of size n from X (with replacement)
Tboot[i] = median(Xstar)
}

se = sqrt(variance(Tboot))

FIGURE 3.1. Pseudo-code for bootstrapping the median.

sample of size n with replacement from the original data. Therefore
step 1 can be replaced by:

1. Draw X∗
1 , . . . , X∗

n with replacement from X1, . . . , Xn.

3.12 Example. Figure 3.1 shows pseudo-code for using the bootstrap to esti-
mate the standard error of the median. �

The bootstrap can be used to approximate the cdf of a statistic Tn. Let
Gn(t) = P(Tn ≤ t) be the cdf of Tn. The bootstrap approximation to Gn is

Ĝ∗
n(t) =

1
B

B∑
b=1

I
(
T ∗

n,b ≤ t
)
. (3.13)

3.3 Parametric Bootstrap

So far, we have estimated F nonparametrically. There is also a parametric
bootstrap. If Fθ depends on a parameter θ and θ̂ is an estimate of θ, then
we simply sample from Fθ̂ instead of F̂n. This is just as accurate, but much
simpler than, the delta method.

3.14 Example. When applied to the nerve data, the bootstrap, based on B =
1000 replications, yields a standard error for the estimated skewness of .16
which is nearly identical to the jackknife estimate. �
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3.4 Bootstrap Confidence Intervals

There are several ways to construct bootstrap confidence intervals. They vary
in ease of calculation and accuracy.

Normal Interval. The simplest is the Normal interval

Tn ± zα/2 ŝeboot

where ŝeboot is the bootstrap estimate of the standard error. This interval is
not accurate unless the distribution of Tn is close to Normal.

Pivotal Intervals. Let θ = T (F ) and θ̂n = T (F̂n) and define the pivot
Rn = θ̂n − θ. Let H(r) denote the cdf of the pivot:

H(r) = PF (Rn ≤ r).

Let C�
n = (a, b) where

a = θ̂n − H−1
(
1 − α

2

)
and b = θ̂n − H−1

(α

2

)
.

It follows that

P(a ≤ θ ≤ b) = P(θ̂n − b ≤ Rn ≤ θ̂n − a)

= H(θ̂n − a) − H(θ̂n − b)

= H
(
H−1

(
1 − α

2

))
− H

(
H−1

(α

2

))
= 1 − α

2
− α

2
= 1 − α.

Hence, C�
n is an exact 1 − α confidence interval for θ. Unfortunately, a and b

depend on the unknown distribution H but we can form a bootstrap estimate
of H :

Ĥ(r) =
1
B

B∑
b=1

I(R∗
n,b ≤ r)

where R∗
n,b = θ̂∗n,b−θ̂n. Let r∗β denote the β sample quantile of (R∗

n,1, . . . , R
∗
n,B)

and let θ∗β denote the β sample quantile of (θ∗n,1, . . . , θ
∗
n,B). Note that r∗β =

θ∗β − θ̂n. It follows that an approximate 1−α confidence interval is Cn = (â, b̂)
where

â = θ̂n − Ĥ−1
(
1 − α

2

)
= θ̂n − r∗1−α/2 = 2θ̂n − θ∗1−α/2

b̂ = θ̂n − Ĥ−1
(α

2

)
= θ̂n − r∗α/2 = 2θ̂n − θ∗α/2.
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In summary:

The 1 − α bootstrap pivotal confidence interval is

Cn =
(
2θ̂n − θ̂∗((1−α/2)B), 2θ̂n − θ̂∗((α/2)B)

)
. (3.15)

Typically, this is a pointwise, asymptotic confidence interval.

The next result follows from Theorem 3.21.

3.16 Theorem. If T (F ) is Hadamard differentiable and Cn is given in (3.15)
then PF (T (F ) ∈ Cn) → 1 − α.

Studentized Pivotal Interval. There is a different version of the pivotal in-
terval which has some advantages. Let

Zn =
Tn − θ

ŝeboot

and

Z∗
n,b =

T ∗
n,b − Tn

ŝe∗b

where ŝe∗b is an estimate of the standard error of T ∗
n,b not Tn. Now we reason

as in the pivotal interval. The sample quantiles of the bootstrap quantities
Z∗

n,1, . . . , Z
∗
n,B should approximate the true quantiles of the distribution of Zn.

Let z∗α denote the α sample quantile of Z∗
n,1, . . . , Z

∗
n,B, then P(Zn ≤ z∗α) ≈ α.

Let

Cn =
(
Tn − z∗1−α/2ŝeboot, Tn − z∗α/2ŝeboot

)
.

Then,

P(θ ∈ Cn) = P

(
Tn − z∗1−α/2ŝeboot ≤ θ ≤ Tn − z∗α/2ŝeboot

)
= P

(
z∗α/2 ≤ Tn − θ

seboot
≤ z∗1−α/2

)
= P

(
z∗α/2 ≤ Zn ≤ z∗1−α/2

)
≈ 1 − α.

This interval has higher accuracy then all the intervals discussed so far (see
Section 3.5) but there is a catch: you need to compute ŝe∗b for each bootstrap
sample. This may require doing a second bootstrap within each bootstrap.
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The 1 − α bootstrap studentized pivotal interval is(
Tn − z∗1−α/2 ŝeboot, Tn − z∗α/2 ŝeboot

)
where z∗β is the β quantile of Z∗

n,1, . . . , Z
∗
n,B and

Z∗
n,b =

T ∗
n,b − Tn

ŝe∗b
.

Percentile Intervals. The bootstrap percentile interval is defined by

Cn =
(
T ∗

(Bα/2), T ∗
(B(1−α/2))

)
,

that is, just use the α/2 and 1 − α/2 quantiles of the bootstrap sample. The
justification for this interval is as follows. Suppose there exists a monotone
transformation U = m(T ) such that U ∼ N(φ, c2) where φ = m(θ). We do not
suppose we know the transformation, only that one exists. Let U∗

b = m(T ∗
b ).

Note that U∗
(Bα/2) = m(T ∗

(Bα/2)) since a monotone transformation preserves
quantiles. Since, U ∼ N(φ, c2), the α/2 quantile of U is φ − zα/2c. Hence,
U∗

(Bα/2) = φ − zα/2c ≈ U − zα/2c and U∗
(B(1−α/2)) ≈ U + zα/2c. Therefore,

P(T ∗
Bα/2 ≤ θ ≤ T ∗

B(1−α/2)) = P(m(T ∗
Bα/2) ≤ m(θ) ≤ m(T ∗

B(1−α/2)))

= P(U∗
Bα/2 ≤ φ ≤ U∗

B(1−α/2))

≈ P(U − czα/2 ≤ φ ≤ U + czα/2)

= P

(
−zα/2 ≤ U − φ

c
≤ zα/2

)
= 1 − α.

Amazingly, we never need to know m. Unfortunately, an exact normalizing
transformation will rarely exist but there may exist approximate normaliz-
ing transformations. This has led to an industry of adjusted percentile
methods, the most popular being the BCa interval (bias-corrected and ac-
celerated). We will not consider these intervals here.

3.17 Example. For estimating the skewness of the nerve data, here are the
various confidence intervals.

Method 95% Interval
Normal (1.44, 2.09)
percentile (1.42, 2.03)
pivotal (1.48, 2.11)
studentized (1.45, 2.28)
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The studentized interval requires some explanation. For each bootstrap
replication we compute θ̂∗ and we also need the standard error ŝe∗ of θ̂∗.
We could do a bootstrap within the bootstrap (called a double bootstrap)
but this is computationally expensive. Instead, we computed ŝe∗ using the
nonparametric delta method applied to the bootstrap sample as described in
Example 3.10. �

3.5 Some Theory

Under certain conditions, Ĝ∗
n is a consistent estimate of Gn(t) = P(Tn ≤ t).

To make this precise, let PF̂n
(·) denote probability statements made from F̂n,

treating the original data X1, . . . , Xn as fixed. Assume that Tn = T (F̂n) is
some functional of F̂n. Then,

Ĝ∗
n(t) = PF̂n

(T (F̂ ∗
n) ≤ t) = PF̂n

(√
n(T (F̂ ∗

n) − T (F )) ≤ u

)
(3.18)

where u =
√

n(t−T (F )). Consistency of the bootstrap can now be expressed
as follows.

3.19 Theorem. Suppose that E(X2
1 ) < ∞. Let Tn = g(Xn) where g is con-

tinuously differentiable at µ = E(X1) and that g′(µ) �= 0. Then,

sup
u

∣∣∣∣∣PF̂n

(√
n(T (F̂ ∗

n) − T (F̂n)) ≤ u

)
− PF

(√
n(T (F̂n) − T (F ) ≤ u

)∣∣∣∣∣ a.s.−→ 0.

(3.20)

3.21 Theorem. Suppose that T (F ) is Hadamard differentiable with respect to
d(F, G) = supx |F (x) − G(x)| and that 0 <

∫
L2

F (x)dF (x) < ∞. Then,

sup
u

∣∣∣∣∣PF̂n

(√
n(T (F̂ ∗

n) − T (F̂n)) ≤ u

)
− PF

(√
n(T (F̂n) − T (F )) ≤ u

)∣∣∣∣∣ P−→ 0.

(3.22)

Look closely at Theorems 3.19 and 3.21. It is because of results like these
that the bootstrap “works.” In particular, the validity of bootstrap confidence
intervals depends on these theorems. See, for example, Theorem 3.16. There
is a tendency to treat the bootstrap as a panacea for all problems. But the
bootstrap requires regularity conditions to yield valid answers. It should not
be applied blindly.
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It can also be shown that the bootstrap variance estimate is consistent
with some conditions on T . Generally, the conditions for consistency of the
bootstrap are weaker than those for the jackknife. For example, the bootstrap
estimate of the variance of the median is consistent, but the jackknife estimate
of the variance of the median is not consistent (Theorem 3.7).

Let us now compare the accuracy of the different confidence interval meth-
ods. Consider a 1−α one-sided interval [θ̂α,∞). We would like P(θ ≤ θ̂α) = α

but usually this holds only approximately. If P(θ ≤ θ̂α) = α + O(n−1/2) then
we say that the interval is first-order accurate. If P(θ ≤ θ̂α) = α + O(n−1)
then we say that the interval is second-order accurate. Here is the comparison:

Method Accuracy
Normal interval first-order accurate
basic pivotal interval first-order accurate
percentile interval first-order accurate
studentized pivotal interval second-order accurate
adjusted percentile interval second-order accurate

Here is an explanation of why the studentized interval is more accurate.
See Davison and Hinkley (1997), and Hall (1992a), for more details. Let Zn =√

n(Tn−θ)/σ be a standardized quantity that converges to a standard Normal.
Thus PF (Zn ≤ z) → Φ(z). In fact,

PF (Zn ≤ z) = Φ(z) +
1√
n

a(z)φ(z) + O

(
1
n

)
(3.23)

for some polynomial a involving things like skewness. The bootstrap version
satisfies

PF̂ (Z∗
n ≤ z) = Φ(z) +

1√
n

â(z)φ(z) + OP

(
1
n

)
(3.24)

where â(z) − a(z) = OP (n−1/2). Subtracting, we get

PF (Zn ≤ z) − PF̂ (Z∗
n ≤ z) = OP

(
1
n

)
. (3.25)

Now suppose we work with the nonstudentized quantity Vn =
√

n(Tn − θ).
Then,

PF (Vn ≤ z) = PF

(
Vn

σ
≤ z

σ

)
= Φ

( z

σ

)
+

1√
n

b
( z

σ

)
φ
( z

σ

)
+ O

(
1
n

)
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for some polynomial b. For the bootstrap we have

PF̂ (V ∗
n ≤ z) = PF̂

(
Vn

σ̂
≤ z

σ̂

)
= Φ

( z

σ̂

)
+

1√
n

b̂
( z

σ̂

)
φ
( z

σ̂

)
+ OP

(
1
n

)
where σ̂ = σ + OP (n−1/2). Subtracting, we get

PF (Vn ≤ z) − PF̂ (V ∗
n ≤ z) = OP

(
1√
n

)
(3.26)

which is less accurate than (3.25).

3.6 Bibliographic Remarks

The jackknife was invented by Quenouille (1949) and Tukey (1958). The boot-
strap was invented by Efron (1979). There are several books on these top-
ics including Efron and Tibshirani (1993), Davison and Hinkley (1997), Hall
(1992a) and Shao and Tu (1995). Also, see Section 3.6 of van der Vaart and
Wellner (1996).

3.7 Appendix

The book by Shao and Tu (1995) gives an explanation of the techniques
for proving consistency of the jackknife and the bootstrap. Following Section
3.1 of their text, let us look at two ways of showing that the bootstrap is
consistent for the case Tn = Xn = n−1

∑n
i=1 Xi. Let X1, . . . , Xn ∼ F and let

Tn =
√

n(Xn−µ) where µ = E(X1). Let Hn(t) = PF (Tn ≤ t) and let Ĥn(t) =
PF̂n

(T ∗
n ≤ t) be the bootstrap estimate of Hn where T ∗

n =
√

n(X
∗
n −Xn) and

X∗
1 , . . . , X∗

n ∼ F̂n. Our goal is to show that supx |Hn(x) − Ĥn(x)| a.s.−→ 0.
The first method was used by Bickel and Freedman (1981) and is based on

Mallows’ metric. If X and Y are random variables with distributions F and
G, Mallows’ metric is defined by dr(F, G) = dr(X, Y ) = inf (E|X − Y |r)1/r

where the infimum is over all joint distributions with marginals F and G. Here
are some facts about dr. Let Xn ∼ Fn and X ∼ F . Then, dr(Fn, F ) → 0 if
and only if Xn � X and

∫ |x|rdFn(x) → ∫ |x|rdF (x). If E(|X1|r) < ∞ then
dr(F̂n, F ) a.s.−→ 0. For any constant a, dr(aX, aY ) = |a|dr(X, Y ). If E(X2) < ∞
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and E(Y 2) < ∞ then d2(X, Y )2 =
(
d2(X −E(X), Y −E(Y ))

)2 + |E(X −Y )|2.
If E(Xj) = E(Yj) and E(|Xj |r) < ∞, E(|Yj |r) < ∞ then(

d2

( m∑
j=1

Xj ,
m∑

j=1

Yj

))2

≤
m∑

j=1

d2(Xj , Yj)2.

Using the properties of dr we have

d2(Ĥn, Hn) = d2(
√

n(X
∗
n − Xn),

√
n(Xn − µ))

=
1√
n

d2

(
n∑

i=1

(X∗
i − Xn),

n∑
i=1

(Xi − µ)

)

≤
√√√√ 1

n

n∑
i=1

d2(X∗
i − Xn, Xi − µ)2

= d2(X∗
1 − X1, X1 − µ)

=
√

d2(X∗
1 , X1)2 − (µ − E∗X∗

1 )2

=
√

d2(F̂n, F )2 − (µ − Xn)2

a.s.−→ 0

since d2(F̂n, F ) a.s.−→ 0 and Xn
a.s.−→µ. Hence, supx |Hn(x) − Ĥn(x)| a.s.−→ 0.

The second method, due to Singh (1981), uses the Berry–Esséen bound
(1.28) which we now review. Let X1, . . . , Xn be iid with finite mean µ =
E(X1), variance σ2 = V(X1) and third moment, E|X1|3 < ∞. Let Zn =√

n(Xn − µ)/σ. Then

sup
z

|P(Zn ≤ z) − Φ(z)| ≤ 33
4

E|X1 − µ|3√
nσ3

. (3.27)

Let Z∗
n = (X

∗
n − Xn)/σ̂ where σ̂2 = n−1

∑n
i=1(Xi − Xn)2. Replacing F with

F̂n and Xn with X
∗
n we get

sup
z

|PF̂n
(Z∗

n ≤ z) − Φ(z)| ≤ 33
4

∑n
i=1 |Xi − Xn|3

n3/2σ̂3
. (3.28)

Let d(F, G) = supx |F (x) − G(x)| and define Φa(x) = Φ(x/a). Then

sup
z

|PF̂n
(Z∗

n ≤ z) − Φ(z)| = sup
z

∣∣∣∣∣PF̂n

(√
n(X

∗
n − Xn) ≤ zσ̂

)
− Φ

(
zσ̂

σ̂

)∣∣∣∣∣
= sup

t

∣∣∣∣∣PF̂n

(√
n(X

∗
n − Xn) ≤ t

)
− Φσ̂ (t)

∣∣∣∣∣
= d(Ĥn, Φσ̂).
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By the triangle inequality

d(Ĥn, Hn) ≤ d(Ĥn, Φσ̂) + d(Φσ̂, Φσ) + d(Φσ, Hn). (3.29)

The third term in (3.29) goes to 0 by the central limit theorem. For the second
term, d(Φσ̂, Φσ) a.s.−→ 0 since σ̂2 a.s.−→σ2 = V(X1). The first term is bounded by
the right-hand side of (3.28). Since E(X2

1 ) < ∞, this goes to 0 by the following
result: if E|X1|δ < ∞ for some 0 < δ < 1 then n−1/δ

∑n
i=1 |Xi| a.s.−→ 0. In

conclusion, d(Ĥn, Hn) a.s.−→ 0.

3.8 Exercises

1. Let T (F ) =
∫
(x − µ)3dF (x)/σ3 be the skewness. Find the influence

function.

2. The following data were used to illustrate the bootstrap by Bradley
Efron, the inventor of the bootstrap. The data are LSAT scores (for
entrance to law school) and GPA.

LSAT 576 635 558 578 666 580 555 661

651 605 653 575 545 572 594

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43

3.36 3.13 3.12 2.74 2.76 2.88 3.96

Each data point is of the form Xi = (Yi, Zi) where Yi = LSATi and Zi =
GPAi. Find the plug-in estimate of the correlation coefficient. Estimate
the standard error using (i) the influence function, (ii) the jackknife
and (iii) the bootstrap. Next compute a 95 percent studentized pivotal
bootstrap confidence interval. You will need to compute the standard
error of T ∗ for every bootstrap sample.

3. Let Tn = X
2

n, µ = E(X1), αk =
∫ |x−µ|kdF (x) and α̂k = n−1

∑n
i=1 |Xi−

Xn|k. Show that

vboot =
4X

2

nα̂2

n
+

4Xnα̂3

n2
+

α̂4

n3
.

4. Prove Theorem 3.16.
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5. Repeat the calculations in Example 3.17 but use a parametric boot-
strap. Assume that the data are log-Normal. That is, assume that Y ∼
N(µ, σ2) where Y = log X . You will draw bootstrap samples Y ∗

1 , . . . , Y ∗
n

from N(µ̂, σ̂2). Then set X∗
i = eY ∗

i .

6. (Computer experiment.) Conduct a simulation to compare the four boot-
strap confidence interval methods. Let n = 50 and let T (F ) =

∫
(x −

µ)3dF (x)/σ3 be the skewness. Draw Y1, . . . , Yn ∼ N(0, 1) and set Xi =
eYi , i = 1, . . . , n. Construct the four types of bootstrap 95 percent inter-
vals for T (F ) from the data X1, . . . , Xn. Repeat this whole thing many
times and estimate the true coverage of the four intervals.

7. Let
X1, . . . , Xn ∼ t3

where n = 25. Let θ = T (F ) = (q.75 − q.25)/1.34 where qp denotes the
pth quantile. Do a simulation to compare the coverage and length of the
following confidence intervals for θ: (i) Normal interval with standard
error from the jackknife, (ii) Normal interval with standard error from
the bootstrap, (iii) bootstrap percentile interval.

Remark: The jackknife does not give a consistent estimator of the vari-
ance of a quantile.

8. Let X1, . . . , Xn be distinct observations (no ties). Show that there are(
2n − 1

n

)
distinct bootstrap samples.

Hint: Imagine putting n balls into n buckets.

9. Let X1, . . . , Xn be distinct observations (no ties). Let X∗
1 , . . . , X∗

n denote
a bootstrap sample and let X

∗
n = n−1

∑n
i=1 X∗

i . Find: E(X
∗
n|X1, . . . , Xn),

V(X
∗
n|X1, . . . , Xn), E(X

∗
n) and V(X

∗
n).

10. (Computer experiment.) Let X1, . . . , Xn ∼ Normal(µ, 1). Let θ = eµ and
let θ̂ = eX be the mle. Create a data set (using µ = 5) consisting of
n=100 observations.

(a) Use the delta method to get the se and 95 percent confidence in-
terval for θ. Use the parametric bootstrap to get the se and 95 percent
confidence interval for θ. Use the nonparametric bootstrap to get the se

and 95 percent confidence interval for θ. Compare your answers.
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(b) Plot a histogram of the bootstrap replications for the parametric
and nonparametric bootstraps. These are estimates of the distribution
of θ̂. The delta method also gives an approximation to this distribution,
namely, Normal(θ̂, ŝe2). Compare these to the true sampling distribution
of θ̂. Which approximation—parametric bootstrap, bootstrap or delta
method—is closer to the true distribution?

11. Let X1, . . . , Xn ∼ Uniform(0, θ). The mle is

θ̂ = Xmax = max{X1, . . . , Xn}.

Generate a data set of size 50 with θ = 1.

(a) Find the distribution of θ̂. Compare the true distribution of θ̂ to the
histograms from the parametric and nonparametric bootstraps.

(b) This is a case where the nonparametric bootstrap does very poorly.
In fact, we can prove that this is the case. Show that, for the parametric
bootstrap P(θ̂∗ = θ̂) = 0 but for the nonparametric bootstrap P(θ̂∗ =
θ̂) ≈ .632. Hint: Show that, P (θ̂∗ = θ̂) = 1 − (1 − (1/n))n. Then take
the limit as n gets large.

12. Suppose that 50 people are given a placebo and 50 are given a new
treatment. Thirty placebo patients show improvement, while 40 treated
patients show improvement. Let τ = p2 − p1 where p2 is the probability
of improving under treatment and p1 is the probability of improving
under placebo.

(a) Find the mle of τ . Find the standard error and 90 percent confidence
interval using the delta method.

(b) Find the standard error and 90 percent confidence interval using the
bootstrap.

13. Let X1, . . . , Xn ∼ F be iid and let X∗
1 , . . . , X∗

n be a bootstrap sam-
ple from F̂n. Let G denote the marginal distribution of X∗

i . Note that
G(x) = P(X∗

i ≤ x) = EP(X∗
i ≤ x|X1, . . . , Xn) = E(F̂n(x)) = F (x). So

it appears that X∗
i and Xi have the same distribution. But in Exercise

9 we showed that V(Xn) �= V(X
∗
n). This appears to be a contradiction.

Explain.



4
Smoothing: General Concepts

To estimate a curve—such as a probability density function f or a regression
function r—we must smooth the data in some way. The rest of the book is
devoted to smoothing methods. In this chapter we discuss some general issues
related to smoothing. There are mainly two types of problems we will study.
The first is density estimation in which we have a sample X1, . . . , Xn from
a distribution F with density f , written

X1, . . . , Xn ∼ f, (4.1)

and we want to estimate the probability density function f . The second is
regression in which we have a pairs (x1, Y1), . . . , (xn, Yn) where

Yi = r(xi) + εi (4.2)

where E(εi) = 0, and we want to estimate the regression function r. We begin
with some examples all of which are discussed in more detail in the chapters
that follow.

4.3 Example (Density estimation). Figure 4.1 shows histograms of 1266 data
points from the Sloan Digital Sky Survey (SDSS). As described on the SDSS
website www.sdss.org:

Simply put, the Sloan Digital Sky Survey is the most ambitious
astronomical survey project ever undertaken. The survey will map
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in detail one-quarter of the entire sky, determining the positions
and absolute brightnesses of more than 100 million celestial ob-
jects. It will also measure the distances to more than a million
galaxies and quasars.

Each data point Xi is a redshift,1 essentially the distance from us to a galaxy.
The data lie on a “pencil beam” which means that the sample lies in a narrow
tube starting at the earth and pointing out into space; see Figure 4.2. The
full dataset is three-dimensional. We have extracted data along this pencil
beam to make it one-dimensional. Our goal is to understand the distribution
of galaxies. In particular, astronomers are interested in finding clusters of
galaxies. Because the speed of light is finite, when we look at galaxies that are
farther away we are seeing further back in time. By looking at how galaxies
cluster as a function of redshift, we are seeing how galaxy clustering evolved
over time.

We regard the redshifts X1, . . . , Xn as a sample from a distribution F with
density f , that is,

X1, . . . , Xn ∼ f

as in (4.1). One way to find galaxy clusters is to look for peaks in the density
f . A histogram is a simple method for estimating the density f . The details
will be given in Chapter 6 but here is a brief description. We cut the real
line into intervals, or bins, and count the number of observations in each bin.
The heights of the bars in the histogram are proportional to the count in
each bin. The three histograms in Figure 4.1 are based on different numbers
of bins. The top left histogram uses a large number of bins, the top right
histogram uses fewer bins and the bottom left histogram uses fewer still. The
width h of the bins is a smoothing parameter. We will see that large h

(few bins) leads to an estimator with large bias but small variance, called
oversmoothing. Small h (many bins) leads to an estimator with small bias
but large variance, called undersmoothing. The bottom right plot shows
an estimate of the mean squared error (mse) of the histogram estimator,
which is a measure of the inaccuracy of the estimator. The estimated mse is
shown as a function of the number of bins. The top right histogram has 308
bins, which corresponds to the minimizer of the estimated mse.

1When an object moves away from us, its light gets shifted towards the red end of the spec-
trum, called redshift. The faster an object moves away from us, the more its light is redshifted.
Objects further away are moving away from us faster than close objects. Hence the redshift can
be used to deduce the distance. This is more complicated than it sounds because the conversion
from redshift to distance requires knowledge of the geometry of the universe.
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FIGURE 4.1. Three histograms for the astronomy data. The top left histogram has
too many bins. The bottom left histogram has too few bins. The top right histogram
uses 308 bins, chosen by the method of cross-validation as described in Chapter 6.
The lower right plot shows the estimated mean squared error (inaccuracy) versus
the number of bins.

Figure 4.3 shows a more sophisticated estimator of f called a kernel es-
timator which we will describe in Chapter 6. Again there is a smoothing
parameter h and the three estimators correspond to increasing h. The struc-
ture in the data is evident only if we smooth the data by just the right amount
(top right plot). �

4.4 Example (Nonparametric regression). The beginning of the universe is usu-
ally called the Big Bang. It is misleading to think of this as an event taking
place in empty space. More accurately, the early universe was in a hot, dense
state. Since then, the universe has expanded and cooled. The remnants of
the heat from the Big Bang are still observable and are called the cosmic mi-
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FIGURE 4.2. In a pencil beam sample, the positions of galaxies are recorded along
a path from the Earth and outward.

crowave background (CMB) radiation. Figure 4.4 shows CMB data from the
Wilkinson Microwave Anisotropy Probe (WMAP). Information on WMAP is
available at http://map.gsfc.nasa.gov. The image shows the temperature
at each point in the sky. This is a snapshot of the universe 379,000 years after
the Big Bang. The average temperature is 2.73 degrees above absolute zero
but the temperature is not constant across the sky. The fluctuations in the
temperature map provide information about the early universe. Indeed, as the
universe expanded, there was a tug of war between the force of expansion and
contraction due to gravity. This caused acoustic waves in the hot gas (like
a vibrating bowl of jello), which is why there are temperature fluctuations.
The strength of the temperature fluctuations r(x) at each frequency (or mul-
tipole) x is called the power spectrum and this power spectrum can be used
to by cosmologists to answer cosmological questions (Genovese et al. (2004)).
For example, the relative abundance of different constituents of the universe
(such as baryons and dark matter) correspond to peaks in the power spec-
trum. Through a very complicated procedure that we won’t describe here, the
temperature map can be reduced to a scatterplot of power versus frequency.
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FIGURE 4.3. Kernel density estimators and estimated mse for the astronomy data.
Top left: oversmoothed. Top right: just right (bandwidth chosen by cross-validation).
Bottom left: undersmoothed. Bottom right: estimated mse as a function of the
smoothing parameter h.

The first 400 data points are shown in Figure 4.5. (All 899 data points are
shown in Figure 5.3.)

At this point of the analysis, the data consist of n pairs (x1, Y1), . . . , (xn, Yn)
where xi is called the multipole moment and Yi is the estimated power spec-
trum of the temperature fluctuations. If r(x) denotes the true power spectrum
then

Yi = r(xi) + εi

where εi is a random error with mean 0, as in (4.2). The goal in nonparamet-
ric regression is to estimate r making only minimal assumptions about r. The
first plot in Figure 4.5 shows the data and the next three plots show a non-
parametric estimator (called a local regression estimator) of r with increasing
smoothing parameter h. The structure of the data is distorted if we smooth
too little or too much. The details will be explained in the next chapter. �
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FIGURE 4.4. The WMAP (Wilkinson Microwave Anisotropy Probe) temperature
map. This is the heat left over from the Big Bang. The data show the tempera-
ture at each point in the sky. The microwave light captured in this picture is from
379,000 years after the Big Bang (13 billion years ago). The average temperature is
2.73 degrees above absolute zero. The fluctuations in the temperature map provide
important information about the early universe.

4.5 Example (Nonparametric regression). Ruppert et al. (2003) describe data
from a light detection and ranging (LIDAR) experiment. LIDAR is used to
monitor pollutants; see Sigrist (1994). Figure 4.6 shows 221 observations. The
response is the log of the ratio of light received from two lasers. The frequency
of one laser is the resonance frequency of mercury while the second has a dif-
ferent frequency. The estimates shown here are called regressograms, which
is the regression version of a histogram. We divide the horizontal axis into bins
and then we take the sample average of the Yis in each bin. The smoothing
parameter h is the width of the bins. As the binsize h decreases, the estimated
regression function r̂n goes from oversmoothing to undersmoothing. �

4.6 Example (Nonparametric binary regression). This example is from Pagano
and Gauvreau (1993); it also appears in Ruppert et al. (2003). The goal is
to relate the presence or absence of bronchopulmonary dysplasia (BPD) with
birth weight (in grams) for 223 babies. BPD is a chronic lung disease that
can affect premature babies. The outcome Y is binary: Y = 1 if the baby
has BPD and Y = 0 otherwise. The covariate is x =birth weight. A common
parametric model for relating a binary outcome Y to a covariate x is logistic
regression which has the form

r(x; β0, β1) ≡ P(Y = 1|X = x) =
eβ0+β1x

1 + eβ0+β1x
.



4. Smoothing: General Concepts 49

0 200 400 0 200 400

0 200 400 0 200 400

frequency frequency

frequency frequency

po
w

er

po
w

er

po
w

er

po
w

er

FIGURE 4.5. The first 400 data points of the CMB data. Top left: scatterplot of
power versus frequency. Top right: undersmoothed. Bottom left: just right; Bottom
right: oversmoothed.

The parameters β0 and β1 are usually estimated by maximum likelihood. The
estimated function (solid line) r(x; β̂0, β̂1) together with the data are shown
in Figure 4.7. Also shown are two nonparametric estimates. In this example,
the nonparametric estimators are not terribly different from the parametric
estimator. Of course, this need not always be the case. �

4.7 Example (Multiple nonparametric regression). This example, from Venables
and Ripley (2002), involves three covariates and one response variable. The
data are 48 rock samples from a petroleum reservoir. The response is perme-
ability (in milli-Darcies). The covariates are: the area of pores (in pixels out
of 256 by 256), perimeter in pixels and shape (perimeter/

√
area). The goal is

to predict permeability from the three covariates. One nonparametric model
is

permeability = r(area, perimeter, shape) + ε
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FIGURE 4.6. The LIDAR data from Example 4.5. The estimates are regressograms,
obtained by averaging the Yis over bins. As we decrease the binwidth h, the estimator
becomes less smooth.

where r is a smooth function. A simpler, but less general model is the additive
model

permeability = r1(area) + r2(perimeter) + r3(shape) + ε

for smooth functions r1, r2, and r3. Estimates of r1, r2 and r3 are shown in
Figure 4.8. �

4.1 The Bias–Variance Tradeoff

Let f̂n(x) be an estimate of a function f(x). The squared error (or L2) loss
function is

L
(
f(x), f̂n(x)

)
=
(
f(x) − f̂n(x)

)2
. (4.8)
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FIGURE 4.7. The BPD data from Example 4.6. The data are shown with small
vertical lines. The estimates are from logistic regression (solid line), local likelihood
(dashed line) and local linear regression (dotted line).

The average of this loss is called the risk or mean squared error (mse)
and is denoted by:

mse = R(f(x), f̂n(x)) = E
(
L(f(x), f̂n(x))

)
. (4.9)

The random variable in equation (4.9) is the function f̂n which implicitly
depends on the observed data. We will use the terms risk and mse inter-
changeably. A simple calculation (Exercise 2) shows that

R
(
f(x), f̂n(x)

)
= bias2x + Vx (4.10)

where

biasx = E(f̂n(x)) − f(x)

is the bias of f̂n(x) and

Vx = V(f̂n(x))

is the variance of f̂n(x). In words:
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FIGURE 4.8. The rock data from Example 4.7. The plots show r̂1, r̂2, and r̂3 for
the additive model Y = r̂1(x1) + r̂2(x2) + r̂3(x3) + ε.

risk = mse = bias2 + variance. (4.11)

The above definitions refer to the risk at a point x. Now we want to sum-
marize the risk over different values of x. In density estimation problems, we
will use the integrated risk or integrated mean squared error defined
by

R(f, f̂n) =
∫

R(f(x), f̂n(x))dx. (4.12)

For regression problems we can use the integrated mse or the average mean
squared error

R(r, r̂n) =
1
n

n∑
i=1

R(r(xi), r̂n(xi)). (4.13)
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The average risk has the following predictive risk interpretation. Suppose
the model for the data is the nonparametric regression model

Yi = r(xi) + εi.

Suppose we draw a new observation Y ∗
i = r(xi) + ε∗i at each xi. If we predict

Y ∗
i with r̂n(xi) then the squared prediction error is

(Y ∗
i − r̂n(xi))2 = (r(xi) + ε∗i − r̂n(xi))2.

Define the predictive risk

predictive risk = E

(
1
n

n∑
i=1

(Y ∗
i − r̂n(xi))2

)
.

Then, we have
predictive risk = R(r, r̂n) + c (4.14)

where c = n−1
∑n

i=1 E((ε∗i )
2) is a constant. In particular, if each εi has vari-

ance σ2 then

predictive risk = R(r, r̂n) + σ2. (4.15)

Thus, up to a constant, the average risk and the predictive risk are the same.
The main challenge in smoothing is to determine how much smoothing to

do. When the data are oversmoothed, the bias term is large and the variance
is small. When the data are undersmoothed the opposite is true; see Figure
4.9. This is called the bias–variance tradeoff. Minimizing risk corresponds
to balancing bias and variance.

4.16 Example. To understand the bias–variance tradeoff better, let f be a
pdf and consider estimating f(0). Let h be a small, positive number. Define

ph ≡ P

(
−h

2
< X <

h

2

)
=
∫ h/2

−h/2

f(x)dx ≈ hf(0)

and hence
f(0) ≈ ph

h
.

Let X be the number of observations in the interval (−h/2, h/2). Then X ∼
Binomial(n, ph). An estimate of ph is p̂h = X/n and hence an estimate of f(0)
is

f̂n(0) =
p̂h

h
=

X

nh
. (4.17)
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FIGURE 4.9. The bias–variance tradeoff. The bias increases and the variance de-
creases with the amount of smoothing. The optimal amount of smoothing, indicated
by the vertical line, minimizes the risk = bias2 + variance.

We will now show that the mse of this estimator takes the form

mse ≈ Ah4 +
B

nh
(4.18)

for some constants A and B. The first term corresponds to the squared bias
and the second term corresponds to the variance.

Since X is Binomial, it has mean nph. Now,

f(x) ≈ f(0) + xf ′(0) +
x2

2
f ′′(0).

So

ph =
∫ h/2

−h/2

f(x)dx ≈
∫ h/2

−h/2

(
f(0) + xf ′(0) +

x2

2
f ′′(0)

)
dx = hf(0)+

f ′′(0)h3

24

and hence, from (4.17),

E(f̂n(0)) =
E(X)
nh

=
ph

h
≈ f(0) +

f ′′(0)h2

24
.

Therefore, the bias is

bias = E(f̂n(0)) − f(0) ≈ f ′′(0)h2

24
. (4.19)
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To compute the variance, note that V(X) = nph(1 − ph). Therefore,

V(f̂n(0)) =
V(X)
n2h2

=
ph(1 − ph)

nh2
≈ ph

nh2

where we have used the fact that 1 − ph ≈ 1 since h is small. Thus,

V(f̂n(0)) ≈ hf(0) + f ′′(0)h3

24

nh2
=

f(0)
nh

+
f ′′(0)h

24n
≈ f(0)

nh
. (4.20)

Therefore,

mse = bias2 + V(f̂n(0)) ≈ (f ′′(0))2h4

576
+

f(0)
nh

≡ Ah4 +
B

nh
. (4.21)

As we smooth more, that is, as we increase h, the bias term increases and the
variance term decreases. As we smooth less, that is, as we decrease h, the bias
term decreases and the variance term increases. This is a typical bias–variance
analysis. �

4.2 Kernels

Throughout the rest of the book, we will often use the word “kernel.” For
our purposes, the word kernel refers to any smooth function K such that
K(x) ≥ 0 and∫

K(x) dx = 1,

∫
xK(x)dx = 0 and σ2

K ≡
∫

x2K(x)dx > 0. (4.22)

Some commonly used kernels are the following:

the boxcar kernel : K(x) =
1
2
I(x),

the Gaussian kernel : K(x) =
1√
2π

e−x2/2,

the Epanechnikov kernel : K(x) =
3
4
(1 − x2)I(x)

the tricube kernel : K(x) =
70
81

(1 − |x|3)3I(x)

where

I(x) =
{

1 if |x| ≤ 1
0 if |x| > 1.

These kernels are plotted in Figure 4.10.
Kernels are used for taking local averages. For example, suppose we have

pairs of data (x1, Y1), . . . , (xn, Yn) and we want to take the average of all the
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Yi’s whose corresponding xi’s are within a distance h of some point x. This
local average is equal to

n∑
i=1

Yi �i(x) (4.23)

where

�i(x) =
K
(

Xi−x
h

)∑n
i=1 K

(
Xi−x

h

) (4.24)

and K is the boxcar kernel. If we replace the boxcar kernel with another
kernel, then (4.23) becomes a locally weighted average. Kernels will play an
important role in many estimation methods. The smoother kernels lead to
smoother estimates and are usually preferred to the boxcar kernel.

−3 0 3 −3 0 3

−3 0 3 −3 0 3

FIGURE 4.10. Examples of kernels: boxcar (top left), Gaussian (top right), Epanech-
nikov (bottom left), and tricube (bottom right).
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4.3 Which Loss Function?

We can use other loss functions besides squared error. The Lp loss{∫
|f(x) − f̂n(x)|p

}1/p

has received some attention especially L1 which tends to be outlier resistant
and is invariant under one-to-one transformations. The results for other Lp

loss functions are not dramatically different than L2 but Lp is much harder to
work with when p �= 2. Hence, L2 remains the popular choice. In the machine
learning community there is some interest in Kullback–Leibler loss

L(f, f̂n) =
∫

f(x)
(
log f(x)/f̂n(x)

)
dx.

In fact, maximum likelihood estimation implicitly uses this loss function. De-
spite the natural role of Kullback–Leibler distance in parametric statistics, it
is usually not an appropriate loss function in smoothing problems because it
is exquisitely sensitive to the tails of the distribution; see Hall (1987). As a
result, the tails can drive the whole estimation process.

4.4 Confidence Sets

Providing an estimate f̂n of a curve f is rarely sufficient for drawing scientific
conclusions. In the chapters that follow we shall also provide a confidence set
for f . This will either take the form of a ball

Bn =

{
f :
∫

(f(x) − f̂n(x))2 dx ≤ s2
n

}
with some radius sn or a band (or envelope)

Bn =
{
f : �(x) ≤ f(x) ≤ u(x), for all x

}
based on a pair of functions (�(x), u(x)). In either case, we would like to have

Pf (f ∈ Bn) ≥ 1 − α (4.25)

for all f ∈ F where F is some large class of functions. In practice, it may
be difficult to find Bn so that (4.25) is true exactly. Instead, we may have
to settle for some version of (4.25) that holds only approximately. The main
point to keep in mind is that an estimate f̂n without some sort of confidence
set is usually not useful.
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4.5 The Curse of Dimensionality

A problem that occurs with smoothing methods is the curse of dimen-
sionality, a term usually attributed to Bellman (1961). Roughly speaking,
this means that estimation gets harder very quickly as the dimension of the
observations increases.

There are at least two versions of this curse. The first is the computational
curse of dimensionality. This refers to the fact that the computational burden
of some methods can increase exponentially with dimension. Our focus here,
however, is with the second version, which we call the statistical curse of
dimensionality: if the data have dimension d, then we need a sample size n

that grows exponentially with d. Indeed, in the next few chapters we will see
that the mean squared of any nonparametric estimator of a smooth (twice
differentiable) curve will typically have mean squared error of the form

mse ≈ c

n4/(4+d)

for some c > 0. If we want the mse to be equal to some small number δ, we
can set mse = δ and solve for n. We find that

n ∝
( c

δ

)d/4

which grows exponentially with dimension d.
The reason for this phenomenon is that smoothing involves estimating a

function f(x) using data points in a local neighborhood of x. But in a high-
dimensional problem, the data are very sparse, so local neighborhoods contain
very few points.

Consider an example. Suppose we have n data points uniformly distributed
on the interval [−1, 1]. How many data points will we find in the interval
[−0.1, 0.1]? The answer is: about n/10 points. Now suppose we have n data
points on the 10-dimensional unit cube [0, 1]10 = [0, 1]×· · ·× [0, 1]. How many
data points will we find in the cube [−0.1, 0.1]10? The answer is about

n ×
(

.2
2

)10

=
n

10, 000, 000, 000
.

Thus, n has to be huge to ensure that small neighborhoods have any data in
them.

The bottom line is that all the methods we will discuss can, in principle,
be used in high-dimensional problems. However, even if we can overcome the
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computational problems, we are still left with the statistical curse of dimen-
sionality. You may be able to compute an estimator but it will not be accu-
rate. In fact, if you compute a confidence interval around the estimate (as
you should) it will be distressingly large. This is not a failure of the method.
Rather, the confidence interval correctly indicates the intrinsic difficulty of
the problem.

4.6 Bibliographic Remarks

There are a number of good texts on smoothing methods including Silverman
(1986), Scott (1992), Simonoff (1996), Ruppert et al. (2003), and Fan and
Gijbels (1996). Other references can be found at the end of Chapters 5 and 6.
Hall (1987) discusses problems with Kullback–Leibler loss. For an extensive
discussion on the curse of dimensionality, see Hastie et al. (2001).

4.7 Exercises

1. Let X1, . . . , Xn be iid from a distribution F with density f . The likeli-
hood function for f is

Ln(f) =
n∏

i=1

f(Xi).

If the model is set F of all probability density functions, what is the
maximum likelihood estimator of f?

2. Prove equation (4.10).

3. Let X1, . . . , Xn be an iid sample from a N(θ, 1) distribution with den-
sity fθ(x) = (2π)−1/2e−(x−θ)2/2. Consider the density estimator f̂(x) =
fθ̂(x) where θ̂ = Xn is the sample mean. Find the risk of f̂ .

4. Recall that the Kullback–Leibler distance between two densities f and g

is D(f, g) =
∫

f(x) log
(
f(x)/g(x)

)
dx. Consider a one-dimensional para-

metric model {fθ(x) : θ ∈ R}. Establish an approximation relationship
between L2 loss for the parameter θ and Kullback–Leibler loss. Specif-
ically, show that D(fθ, fψ) ≈ (θ − ψ)2I(θ)/2 where θ is the true value,
ψ is close to θ and I(θ) denotes the Fisher information.



60 4. Smoothing: General Concepts

5. What is the relationship between L1 loss, L2 loss and Kullback–Leibler
loss?

6. Repeat the derivation leading up to equation (4.21) but take X to have
d dimensions. Replace the small interval [−h/2, h/2] with a small, d-
dimensional rectangle. Find the value of h that minimizes the mse. Find
out how large n needs so that mse is equal to 0.1.

7. Download the datasets from the examples in this chapter from the book
website. Write programs to compute histograms and regressograms and
try them on these datasets.



5
Nonparametric Regression

In this chapter we will study nonparametric regression, also known as “learn-
ing a function” in the jargon of machine learning. We are given n pairs of ob-
servations (x1, Y1), . . . , (xn, Yn) as in Figures 5.1, 5.2 and 5.3. The response
variable Y is related to the covariate x by the equations

Yi = r(xi) + εi, E(εi) = 0, i = 1, . . . , n (5.1)

where r is the regression function. The variable x is also called a feature.
We want to estimate (or “learn”) the function r under weak assumptions. The
estimator of r(x) is denoted by r̂n(x). We also refer to r̂n(x) as a smoother.
At first, we will make the simplifying assumption that the variance V(εi) = σ2

does not depend on x. We will relax this assumption later.
In (5.1), we are treating the covariate values xi as fixed. We could instead

treat these as random, in which case we write the data as (X1, Y1), . . . , (Xn, Yn)
and r(x) is then interpreted as the mean of Y conditional on X = x, that is,

r(x) = E(Y |X = x). (5.2)

There is little difference in the two approaches and we shall mostly take the
“fixed x” approach except where noted.

5.3 Example (CMB data). Recall the CMB (cosmic microwave background
radiation) data from Example 4.4.
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FIGURE 5.1. CMB data. The horizontal axis is the multipole moment, essentially
the frequency of fluctuations in the temperature field of the CMB. The vertical axis
is the power or strength of the fluctuations at each frequency. The top plot shows
the full data set. The bottom plot shows the first 400 data points. The first peak,
around x ≈ 200, is obvious. There may be a second and third peak further to the
right.

Figure 5.1 shows the data.1 The first plot shows 899 data points over the
whole range while the second plot shows the first 400 data points. We have
noisy measurements Yi of r(xi) so the data are of the form (5.1). Our goal is
to estimate r. The variance V(εi) is most definitely not constant as a function
of x. However, the second plot shows that the constant variance assumption
is reasonable for the first 400 data points. It is believed that r may have three
peaks over the range of the data. The first peak is obvious from the second
plot. The presence of a second or third peak is much less obvious; careful
inferences are required to assess the significance of these peaks. �

1If you want to peek ahead, Figure 5.3 shows a nonparametric estimator of the regression
function. Note that the vertical scale is different on that plot.
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The methods we consider in this chapter are local regression methods
and penalization methods. The former includes kernel regression and
local polynomial regression. The latter leads to methods based on splines.
In Chapters 8 and 9 we will consider a different approach based on orthogonal
functions. All the estimators in this chapter are linear smoothers, a point
we will discuss in Section 5.2.

Before we plunge into nonparametric regression, we first briefly review or-
dinary linear regression and its close relative, logistic regression. For more on
linear regression, see Weisberg (1985).

5.1 Review of Linear and Logistic Regression

Suppose we have data (x1, Y1), . . . , (xn, Yn) where Yi ∈ R and xi = (xi1, . . . ,
xip)T ∈ R

p. The linear regression model assumes that

Yi = r(xi) + εi ≡
p∑

j=1

βjxij + εi, i = 1, . . . , n, (5.4)

where E(εi) = 0 and V(εi) = σ2.
Warning! Usually, we want to include an intercept in the model so we will

adopt the convention that xi1 = 1.
The design matrix X is the n × p matrix defined by

X =

⎛⎜⎜⎜⎝
x11 x12 . . . x1p

x21 x22 . . . x2p

...
...

...
...

xn1 xn2 . . . xnp

⎞⎟⎟⎟⎠ .

The set L of vectors that can be obtained as linear combinations of the
columns of X , is called the column space of X .

Let Y = (Y1, . . . , Yn)T , ε = (ε1, . . . , εn)T , and β = (β1, . . . , βp)T . We can
then write (5.4) as

Y = Xβ + ε. (5.5)

The least squares estimator β̂ = (β̂1, . . . , β̂p)T is the vector that mini-
mizes the residual sums of squares

rss = (Y − Xβ)T (Y − Xβ) =
n∑

i=1

(
Yi −

p∑
j=1

xijβj

)2

.
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Assuming that XT X is invertible, the least squares estimator is

β̂ = (XT X)−1XT Y. (5.6)

The estimate of r(x) at x = (x1, . . . , xp)T is thus

r̂n(x) =
p∑

j=1

β̂jxj = xT β̂.

It follows that the fitted values r = (r̂n(x1), . . . , r̂n(xn))T can be written as

r = Xβ̂ = LY (5.7)

where
L = X(XT X)−1XT (5.8)

is called the hat matrix. The elements of the vector ε̂ = Y − r are called the
residuals. The hat matrix is symmetric L = LT and idempotent, L2 = L.
It follows that r is the projection of Y onto the column space L of X . It can
be shown that the number of parameters p is related to the matrix L by way
of the equation

p = tr(L) (5.9)

where tr(L) denotes the trace of the matrix L, that is, the sum of its diagonal
elements. In nonparametric regression, the number of parameters will be re-
placed with the effective degrees of freedom which will be defined through
an equation like (5.9).

Given any x = (x1, . . . , xp)T , we can write

r̂n(x) = �(x)T Y =
n∑

i=1

�i(x)Yi (5.10)

where
�(x)T = xT (XT X)−1XT .

An unbiased estimator of σ2 is

σ̂2 =
∑n

i=1(Yi − r̂n(xi))2

n − p
=

||ε̂||2
n − p

. (5.11)

Next, we construct a confidence band for r(x). We want to find a pair of
functions a(x), b(x) such that

P
(
a(x) ≤ r(x) ≤ b(x) for all x

) ≥ 1 − α. (5.12)
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Since r̂n(x) =
∑n

i=1 �i(x)Yi, it follows that

V(r̂n(x)) = σ2
n∑

i=1

�2
i (x) = σ2||�(x)||2

which suggests using bands of the form

I(x) = (a(x), b(x)) ≡ (r̂n(x) − c σ̂||�(x)||, r̂n(x) + c σ̂||�(x)||) (5.13)

for some constant c. The following theorem can be found in Scheffé (1959).
Let Fp,n−p denote a random variable that has an F distribution with p and
n − p degrees of freedom. Let Fα;p,n−p denote the upper α quantile for this
random variable, i.e., P(Fp,n−p > Fα;p,n−p) = α.

5.14 Theorem. The confidence band defined in (5.13) with c =
√

pFα;p,n−p

satisfies (5.12).

When the Yi’s are not continuous, ordinary linear regression may not be
appropriate. For example, suppose that Yi ∈ {0, 1}. In this case, a commonly
used parametric model is the logistic regression model given by

pi ≡ pi(β) = P(Yi = 1) =
e
∑

j βjxij

1 + e
∑

j βjxij
. (5.15)

As before, we can include an intercept by requiring that xi1 = 1 for all i.
This model asserts that Yi is a Bernoulli random variable with mean pi. The
parameters β = (β1, . . . , βp)T are usually estimated by maximum likelihood.
Recall that if Y ∼ Bernoulli(p) then its probability function is P(Y = y) ≡
f(y) = py(1 − p)1−y. Thus the likelihood function for the model (5.15) is

L(β) =
n∏

i=1

pYi

i (1 − pi)1−Yi . (5.16)

The maximum likelihood estimator β̂ = (β̂1, . . . , β̂p)T cannot be found in
closed form. However, there is an iterative algorithm called reweighted least
squares which works as follows.

Reweighted Least Squares Algorithm

Choose starting values β̂ = (β̂1, . . . , β̂p)T and compute pi using equation
(5.15), for i = 1, . . . , n with βj replaced by its current estimate β̂j . Iterate
the following steps until convergence.

1. Set

Zi = log
(

pi

1 − pi

)
+

Yi − pi

pi(1 − pi)
, i = 1, . . . , n.
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2. Set the new estimate of β to be

β̂ = (XT WX)−1XT WZ

where W is the diagonal matrix with (i, i) element equal to
pi(1 − pi). This corresponds to doing a (weighted) linear regression
of Z on X .

3. Compute the pis using (5.15) with the current estimate of β̂.

Logistic regression and linear regression are special cases of a class of models
called generalized linear models. See McCullagh and Nelder (1999) for
details.

5.2 Linear Smoothers

As we remarked earlier, all the nonparametric estimators in this chapter are
linear smoothers. The formal definition is as follows.

5.17 Definition. An estimator r̂n of r is a linear smoother if, for each
x, there exists a vector �(x) = (�1(x), . . . , �n(x))T such that

r̂n(x) =
n∑

i=1

�i(x)Yi. (5.18)

Define the vector of fitted values

r = (r̂n(x1), . . . , r̂n(xn))T (5.19)

where Y = (Y1, . . . , Yn)T . It then follows that

r = L Y (5.20)

where L is an n × n matrix whose ith row is �(xi)T ; thus, Lij = �j(xi). The
entries of the ith row show the weights given to each Yi in forming the estimate
r̂n(xi).

5.21 Definition. The matrix L is called the smoothing matrix or the
hat matrix. The ith row of L is called the effective kernel for
estimating r(xi). In analogy to (5.9), we define the effective degrees of
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freedom by
ν = tr(L). (5.22)

Warning! The reader should not confuse linear smoothers—smoothers of
the form (5.18)—with linear regression, in which one assumes that the regres-
sion function r(x) is linear.

5.23 Remark. The weights in all the smoothers we will use have the property
that, for all x,

∑n
i=1 �i(x) = 1. This implies that the smoother preserves

constant curves. Thus, if Yi = c for all i, then r̂n(x) = c.

5.24 Example (Regressogram). Suppose that a ≤ xi ≤ b i = 1, . . . , n. Divide
(a, b) into m equally spaced bins denoted by B1, B2, . . . , Bm. Define r̂n(x) by

r̂n(x) =
1
kj

∑
i:xi∈Bj

Yi, for x ∈ Bj (5.25)

where kj is the number of points in Bj . In other words, the estimate r̂n is a
step function obtained by averaging the Yis over each bin. This estimate is
called the regressogram. An example is given in Figure 4.6. For x ∈ Bj define
�i(x) = 1/kj if xi ∈ Bj and �i(x) = 0 otherwise. Thus, r̂n(x) =

∑n
i=1 Yi�i(x).

The vector of weights �(x) looks like this:

�(x)T =
(

0, 0, . . . , 0,
1
kj

, . . . ,
1
kj

, 0, . . . , 0
)

.

To see what the smoothing matrix L looks like, suppose that n = 9, m = 3
and k1 = k2 = k3 = 3. Then,

L =
1
3
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In general, it is easy to see that there are ν = tr(L) = m effective degrees of
freedom. The binwidth h = (b − a)/m controls how smooth the estimate is.
and the smoothing matrix L has the form �
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5.26 Example (Local averages). Fix h > 0 and let Bx = {i : |xi − x| ≤ h}.
Let nx be the number of points in Bx. For any x for which nx > 0 define

r̂n(x) =
1
nx

∑
i∈Bx

Yi.

This is the local average estimator of r(x), a special case of the kernel
estimator discussed shortly. In this case, r̂n(x) =

∑n
i=1 Yi�i(x) where �i(x) =

1/nx if |xi − x| ≤ h and �i(x) = 0 otherwise. As a simple example, suppose
that n = 9, xi = i/9 and h = 1/9. Then,

L =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 1/2 0 0 0 0 0 0 0
1/3 1/3 1/3 0 0 0 0 0 0
0 1/3 1/3 1/3 0 0 0 0 0
0 0 1/3 1/3 1/3 0 0 0 0
0 0 0 1/3 1/3 1/3 0 0 0
0 0 0 0 1/3 1/3 1/3 0 0
0 0 0 0 0 1/3 1/3 1/3 0
0 0 0 0 0 0 1/3 1/3 1/3
0 0 0 0 0 0 0 1/2 1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. �

5.3 Choosing the Smoothing Parameter

The smoothers we will use will depend on some smoothing parameter h and
we will need some way of choosing h. As in Chapter 4, define the risk (mean
squared error)

R(h) = E

(
1
n

n∑
i=1

(r̂n(xi) − r(xi))2
)

. (5.27)

Ideally, we would like to choose h to minimize R(h) but R(h) depends on the
unknown function r(x). Instead, we will minimize an estimate R̂(h) of R(h).
As a first guess, we might use the average residual sums of squares, also called
the training error

1
n

n∑
i=1

(Yi − r̂n(xi))2 (5.28)

to estimate R(h). This turns out to be a poor estimate of R(h): it is biased
downwards and typically leads to undersmoothing (overfitting). The reason
is that we are using the data twice: to estimate the function and to estimate
the risk. The function estimate is chosen to make

∑n
i=1(Yi − r̂n(xi))2 small

so this will tend to underestimate the risk.
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We will estimate the risk using the leave-one-out cross-validation score
which is defined as follows.

5.29 Definition. The leave-one-out cross-validation score is defined
by

cv = R̂(h) =
1
n

n∑
i=1

(Yi − r̂(−i)(xi))2 (5.30)

where r̂(−i) is the estimator obtained by omitting the ith pair (xi, Yi).

As stated above, Definition 5.29 is incomplete. We have not said what we
mean precisely by r̂(−i). We shall define

r̂(−i)(x) =
n∑

j=1

Yj�j,(−i)(x) (5.31)

where

�j,(−i)(x) =

{
0 if j = i

	j(x)∑
k �=i 	k(x) if j �= i.

(5.32)

In other words we set the weight on xi to 0 and renormalize the other weights
to sum to one. For all the methods in this chapter (kernel regression, local
polynomials, smoothing splines) this form for r̂(−i) can actually be derived as
a property of the method, rather than a matter of definition. But it is simpler
to treat this as a definition.

The intuition for cross-validation is as follows. Note that

E(Yi − r̂(−i)(xi))2 = E(Yi − r(xi) + r(xi) − r̂(−i)(xi))2

= σ2 + E(r(xi) − r̂(−i)(xi))2

≈ σ2 + E(r(xi) − r̂n(xi))2

and hence, recalling (4.15),

E(R̂) ≈ R + σ2 = predictive risk. (5.33)

Thus the cross-validation score is a nearly unbiased estimate of the risk.
It seems that it might be time consuming to evaluate R̂(h) since we appar-

ently need to recompute the estimator after dropping out each observation.
Fortunately, there is a shortcut formula for computing R̂ for linear smoothers.
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5.34 Theorem. Let r̂n be a linear smoother. Then the leave-one-out
cross-validation score R̂(h) can be written as

R̂(h) =
1
n

n∑
i=1

(
Yi − r̂n(xi)

1 − Lii

)2

(5.35)

where Lii = �i(xi) is the ith diagonal element of the smoothing matrix L.

The smoothing parameter h can then be chosen by minimizing R̂(h).
Warning! You can’t assume that R̂(h) always has a well-defined minimum.

You should always plot R̂(h) as a function of h.
Rather than minimizing the cross-validation score, an alternative is to use

an approximation called generalized cross-validation2 in which each Lii

in equation (5.35) is replaced with its average n−1
∑n

i=1 Lii = ν/n where
ν = tr(L) is the effective degrees of freedom. Thus, we would minimize

GCV(h) =
1
n

n∑
i=1

(
Yi − r̂n(xi)

1 − ν/n

)2

. (5.36)

Usually, the bandwidth that minimizes the generalized cross-validation score
is close to the bandwidth that minimizes the cross-validation score.

Using the approximation (1 − x)−2 ≈ 1 + 2x we see that

GCV(h) ≈ 1
n

n∑
i=1

(Yi − r̂n(xi))2 +
2νσ̂2

n
≡ Cp (5.37)

where σ̂2 = n−1
∑n

i=1(Yi − r̂n(xi))2. Equation (5.37) is known as the Cp

statistic3 which was originally proposed by Colin Mallows as a criterion for
variable selection in linear regression. More generally, many common band-
width selection criteria can be written in the form

B(h) = Ξ(n, h) × 1
n

n∑
i=1

(Yi − r̂n(xi))2 (5.38)

for different choices of Ξ(n, h). See Härdle et al. (1988) for details. More-
over, Härdle et al. (1988) prove, under appropriate conditions, the follow-
ing facts about the minimizer ĥ of B(h). Let ĥ0 minimize the loss L(ĥ) =
n−1

∑n
i=1(r̂n(xi)−r(xi))2, and let h0 minimize the risk. Then all of ĥ, ĥ0, and

2Generalized cross-validation has certain invariance properties not shared by leave-one-out
cross-validation. In practice, however, the two are usually similar.

3Actually, this is not quite the Cp formula. Usually, the estimate (5.86) for σ2 is used.
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h0 tend to 0 at rate n−1/5. Also, for certain positive constants C1, C2, σ1, σ2,

n3/10(ĥ − ĥ0) � N(0, σ2
1), n(L(ĥ) − L(ĥ0) � C1χ

2
1

n3/10(h0 − ĥ0) � N(0, σ2
2), n(L(h0) − L(ĥ0) � C2χ

2
1.

Thus, the relative rate of convergence of ĥ is

ĥ − ĥ0

ĥ0

= OP

(
n3/10

n1/5

)
= OP (n−1/10).

This slow rate shows that estimating the bandwidth is difficult. This rate is
intrinsic to the problem of bandwidth selection since it is also true that

ĥ0 − h0

h0
= OP

(
n3/10

n1/5

)
= OP (n−1/10).

5.4 Local Regression

Now we turn to local nonparametric regression. Suppose that xi ∈ R is scalar
and consider the regression model (5.1). In this section we consider estimators
of r(x) obtained by taking a weighted average of the Yis, giving higher weight
to those points near x. We begin with the kernel regression estimator.

5.39 Definition. Let h > 0 be a positive number, called the bandwidth.
The Nadaraya–Watson kernel estimator is defined by

r̂n(x) =
n∑

i=1

�i(x)Yi (5.40)

where K is a kernel (as defined in Section 4.2) and the weights �i(x) are
given by

�i(x) =
K
(

x−xi

h

)∑n
j=1 K

(
x−xj

h

) . (5.41)

5.42 Remark. The local average estimator in Example 5.26 is a kernel esti-
mator based on the boxcar kernel.

5.43 Example (CMB data). Recall the CMB data from Figure 5.1. Figure
5.2 shows four different kernel regression fits (using just the first 400 data
points) based on increasing bandwidths. The top two plots are based on small
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bandwidths and the fits are too rough. The bottom right plot is based on
large bandwidth and the fit is too smooth. The bottom left plot is just right.
The bottom right plot also shows the presence of bias near the boundaries.
As we shall see, this is a general feature of kernel regression. The bottom plot
in Figure 5.3 shows a kernel fit to all the data points. The bandwidth was
chosen by cross-validation. �

0 200 400 0 200 400

0 200 400 0 200 400

multipole multipole

multipole multipole

po
w

er

po
w

er

po
w

er

po
w

er

FIGURE 5.2. Four kernel regressions for the CMB data using just the first 400 data
points. The bandwidths used were h = 1 (top left), h = 10 (top right), h = 50
(bottom left), h = 200 (bottom right). As the bandwidth h increases, the estimated
function goes from being too rough to too smooth.

The choice of kernel K is not too important. Estimates obtained by using
different kernels are usually numerically very similar. This observation is con-
firmed by theoretical calculations which show that the risk is very insensitive
to the choice of kernel; see Section 6.2.3 of Scott (1992). We will often use
the tricube kernel in examples. What does matter much more is the choice
of bandwidth h which controls the amount of smoothing. Small bandwidths
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give very rough estimates while larger bandwidths give smoother estimates. In
general, we will let the bandwidth depend on the sample size so we sometimes
write hn.

The following theorem shows how the bandwidth affects the estimator. To
state these results we need to make some assumption about the behavior of
x1, . . . , xn as n increases. For the purposes of the theorem, we will assume
that these are random draws from some density f .

5.44 Theorem. The risk (using integrated squared error loss) of the Nadaraya–
Watson kernel estimator is

R(r̂n, r) =
h4

n

4

(∫
x2K(x)dx

)2 ∫ (
r′′(x) + 2r′(x)

f ′(x)
f(x)

)2

dx

+
σ2
∫

K2(x)dx

nhn

∫
1

f(x)
dx + o(nh−1

n ) + o(h4
n) (5.45)

as hn → 0 and nhn → ∞.

The first term in (5.45) is the squared bias and the second term is the
variance. What is especially notable is the presence of the term

2r′(x)
f ′(x)
f(x)

(5.46)

in the bias. We call (5.46) the design bias since it depends on the design,
that is, the distribution of the xi’s. This means that the bias is sensitive to
the position of the xis. Furthermore, it can be shown that kernel estimators
also have high bias near the boundaries. This is known as boundary bias.
We will see that we can reduce these biases by using a refinement called local
polynomial regression.

If we differentiate (5.45) and set the result equal to 0, we find that the
optimal bandwidth h∗ is

h∗ =
(

1
n

)1/5

⎛⎜⎝ σ2
∫

K2(x)dx
∫

dx/f(x)

(
∫

x2K2(x)dx)2
∫ (

r′′(x) + 2r′(x) f ′(x)
f(x)

)2

dx

⎞⎟⎠
1/5

. (5.47)

Thus, h∗ = O(n−1/5). Plugging h∗ back into (5.45) we see that the risk
decreases at rate O(n−4/5). In (most) parametric models, the risk of the max-
imum likelihood estimator decreases to 0 at rate 1/n. The slower rate n−4/5

is the price of using nonparametric methods. In practice, we cannot use the
bandwidth given in (5.47) since h∗ depends on the unknown function r. In-
stead, we use leave-one-out cross-validation as described in Theorem 5.34.
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5.48 Example. Figure 5.3 shows the cross-validation score for the CMB ex-
ample as a function of the effective degrees of freedom. The optimal smoothing
parameter was chosen to minimize this score. The resulting fit is also shown
in the figure. Note that the fit gets quite variable to the right. Later we will
deal with the nonconstant variance and we will add confidence bands to the
fit. �
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FIGURE 5.3. Top: The cross-validation (CV) score as a function of the effective
degrees of freedom. Bottom: the kernel fit using the bandwidth that minimizes the
cross-validation score.

Local Polynomials. Kernel estimators suffer from boundary bias and
design bias. These problems can be alleviated by using a generalization of
kernel regression called local polynomial regression.

To motivate this estimator, first consider choosing an estimator a ≡ r̂n(x)
to minimize the sums of squares

∑n
i=1(Yi − a)2. The solution is the constant
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function r̂n(x) = Y which is obviously not a good estimator of r(x). Now
define the weight function wi(x) = K((xi − x)/h) and choose a ≡ r̂n(x) to
minimize the weighted sums of squares

n∑
i=1

wi(x)(Yi − a)2. (5.49)

From elementary calculus, we see that the solution is

r̂n(x) ≡
∑n

i=1 wi(x)Yi∑n
i=1 wi(x)

which is exactly the kernel regression estimator. This gives us an interest-
ing interpretation of the kernel estimator: it is a locally constant estimator,
obtained from locally weighted least squares.

This suggests that we might improve the estimator by using a local poly-
nomial of degree p instead of a local constant. Let x be some fixed value at
which we want to estimate r(x). For values u in a neighborhood of x, define
the polynomial

Px(u; a) = a0 + a1(u − x) +
a2

2!
(u − x)2 + · · · + ap

p!
(u − x)p. (5.50)

We can approximate a smooth regression function r(u) in a neighborhood of
the target value x by the polynomial:

r(u) ≈ Px(u; a). (5.51)

We estimate a = (a0, . . . , ap)T by choosing â = (â0, . . . , âp)T to minimize the
locally weighted sums of squares

n∑
i=1

wi(x) (Yi − Px(Xi; a))2 . (5.52)

The estimator â depends on the target value x so we write â(x) = (â0(x), . . .

, âp(x))T if we want to make this dependence explicit. The local estimate of
r is

r̂n(u) = Px(u; â).

In particular, at the target value u = x we have

r̂n(x) = Px(x; â) = â0(x). (5.53)

Warning! Although r̂n(x) only depends on â0(x), this is not equivalent to
simply fitting a local constant.
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Setting p = 0 gives back the kernel estimator. The special case where p = 1
is called local linear regression and this is the version we recommend as a
default choice. As we shall see, local polynomial estimators, and in particular
local linear estimators, have some remarkable properties as shown by Fan
(1992) and Hastie and Loader (1993). Many of the results that follow are
from those papers.

To find â(x), it is helpful to re-express the problem in vector notation. Let

Xx =

⎛⎜⎜⎜⎜⎝
1 x1 − x · · · (x1−x)p

p!

1 x2 − x · · · (x2−x)p

p!
...

...
. . .

...
1 xn − x · · · (xn−x)p

p!

⎞⎟⎟⎟⎟⎠ (5.54)

and let Wx be the n×n diagonal matrix whose (i, i) component is wi(x). We
can rewrite (5.52) as

(Y − Xxa)T Wx(Y − Xxa). (5.55)

Minimizing (5.55) gives the weighted least squares estimator

â(x) = (XT
x WxXx)−1XT

x WxY. (5.56)

In particular, r̂n(x) = â0(x) is the inner product of the first row of
(XT

x WxXx)−1 XT
x Wx with Y . Thus we have:

5.57 Theorem. The local polynomial regression estimate is

r̂n(x) =
n∑

i=1

�i(x)Yi (5.58)

where �(x)T = (�1(x), . . . , �n(x)),

�(x)T = eT
1 (XT

x WxXx)−1XT
x Wx,

e1 = (1, 0, . . . , 0)T and Xx and Wx are defined in (5.54). This estimator
has mean

E(r̂n(x)) =
n∑

i=1

�i(x)r(xi)

and variance

V(r̂n(x)) = σ2
n∑

i=1

�i(x)2 = σ2||�(x)||2.
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Once again, our estimate is a linear smoother and we can choose the band-
width by minimizing the cross-validation formula given in Theorem 5.34.

5.59 Example (LIDAR). These data were introduced in Example 4.5. Figure
5.4 shows the 221 observations. The top left plot shows the data and the fitted
function using local linear regression. The cross-validation curve (not shown)
has a well-defined minimum at h ≈ 37 corresponding to 9 effective degrees of
freedom. The fitted function uses this bandwidth. The top right plot shows
the residuals. There is clear heteroscedasticity (nonconstant variance). The
bottom left plot shows the estimate of σ(x) using the method in Section 5.6.
(with h = 146 chosen via cross-validation). Next we use the method in Section
5.7 to compute 95 percent confidence bands. The resulting bands are shown in
the lower right plot. As expected, there is much greater uncertainty for larger
values of the covariate. �

Local Linear Smoothing

5.60 Theorem. When p = 1, r̂n(x) =
∑n

i=1 �i(x)Yi where

�i(x) =
bi(x)∑n

j=1 bj(x)
,

bi(x) = K

(
xi − x

h

)(
Sn,2(x) − (xi − x)Sn,1(x)

)
(5.61)

and

Sn,j(x) =
n∑

i=1

K

(
xi − x

h

)
(xi − x)j , j = 1, 2.

5.62 Example. Figure 5.5 shows the local regression for the CMB data for
p = 0 and p = 1. The bottom plots zoom in on the left boundary. Note that
for p = 0 (the kernel estimator), the fit is poor near the boundaries due to
boundary bias. �

5.63 Example (Doppler function). Let

r(x) =
√

x(1 − x) sin
(

2.1π

x + .05

)
, 0 ≤ x ≤ 1 (5.64)

which is called the Doppler function. This function is difficult to estimate
and provides a good test case for nonparametric regression methods. The
function is spatially inhomogeneous which means that its smoothness (second
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FIGURE 5.4. The LIDAR data from Example 5.59. Top left: data and the fitted
function using local linear regression with h ≈ 37 (chosen by cross-validation). Top
right: the residuals. Bottom left: estimate of σ(x). Bottom right: 95 percent confi-
dence bands.

derivative) varies over x. The function is plotted in the top left plot of Figure
5.6. The top right plot shows 1000 data points simulated from Yi = r(i/n)+σεi

with σ = .1 and εi ∼ N(0, 1). The bottom left plot shows the cross-validation
score versus the effective degrees of freedom using local linear regression. The
minimum occurred at 166 degrees of freedom corresponding to a bandwidth
of .005. The fitted function is shown in the bottom right plot. The fit has high
effective degrees of freedom and hence the fitted function is very wiggly. This
is because the estimate is trying to fit the rapid fluctuations of the function
near x = 0. If we used more smoothing, the right-hand side of the fit would
look better at the cost of missing the structure near x = 0. This is always
a problem when estimating spatially inhomogeneous functions. We’ll discuss
that further when we talk about wavelets in Chapter 9. �



5.4 Local Regression 79

0 200 400

1
0
0
0

3
0
0
0

5
0
0
0

0 200 400

1
0
0
0

3
0
0
0

5
0
0
0

0 20 40

5
0
0

1
5
0
0

0 20 40

5
0

0
1

5
0

0

FIGURE 5.5. Locally weighted regressions using local polynomials of order p = 0
(top left) and p = 1 (top right). The bottom plots show the left boundary in more
detail (p = 0 bottom left and p = 1 bottom right). Notice that the boundary bias is
reduced by using local linear estimation (p = 1).

The following theorem gives the large sample behavior of the risk of the
local linear estimator and shows why local linear regression is better than
kernel regression. A proof can be found in Fan (1992) and Fan and Gijbels
(1996).

5.65 Theorem. Let Yi = r(Xi) + σ(Xi)εi for i = 1, . . . , n and a ≤ Xi ≤ b.
Assume that X1, . . . , Xn are a sample from a distribution with density f and
that (i) f(x) > 0, (ii) f , r′′ and σ2 are continuous in a neighborhood of x,
and (iii) hn → 0 and nhn → ∞. Let x ∈ (a, b). Given X1, . . . , Xn, we have
the following: the local linear estimator and the kernel estimator both have
variance

σ2(x)
f(x)nhn

∫
K2(u)du + oP

(
1

nhn

)
. (5.66)
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FIGURE 5.6. The Doppler function estimated by local linear regression. The func-
tion (top left), the data (top right), the cross-validation score versus effective degrees
of freedom (bottom left), and the fitted function (bottom right).

The Nadaraya–Watson kernel estimator has bias

h2
n

(
1
2
r′′(x) +

r′(x)f ′(x)
f(x)

)∫
u2K(u)du + oP (h2) (5.67)

whereas the local linear estimator has asymptotic bias

h2
n

1
2
r′′(x)

∫
u2K(u)du + oP (h2) (5.68)

Thus, the local linear estimator is free from design bias. At the boundary points
a and b, the Nadaraya–Watson kernel estimator has asymptotic bias of order
hn while the local linear estimator has bias of order h2

n. In this sense, local
linear estimation eliminates boundary bias.

5.69 Remark. The above result holds more generally for local polynomials
of order p. Generally, taking p odd reduces design bias and boundary bias
without increasing variance.
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5.5 Penalized Regression, Regularization and Splines

Consider once again the regression model

Yi = r(xi) + εi

and suppose we estimate r by choosing r̂n(x) to minimize the sums of squares

n∑
i=1

(Yi − r̂n(xi))2.

Minimizing over all linear functions (i.e., functions of the form β0 + β1x)
yields the least squares estimator. Minimizing over all functions yields a func-
tion that interpolates the data. In the previous section we avoided these two
extreme solutions by replacing the sums of squares with a locally weighted
sums of squares. An alternative way to get solutions in between these extremes
is to minimize the penalized sums of squares

M(λ) =
∑

i

(Yi − r̂n(xi))2 + λJ(r) (5.70)

where J(r) is some roughness penalty. Adding a penalty term to the cri-
terion we are optimizing is sometimes called regularization.

We will focus on the special case

J(r) =
∫

(r′′(x))2dx. (5.71)

The parameter λ controls the trade-off between fit (the first term of 5.70) and
the penalty. Let r̂n denote the function that minimizes M(λ). When λ = 0,
the solution is the interpolating function. When λ → ∞, r̂n converges to the
least squares line. The parameter λ controls the amount of smoothing. What
does r̂n look like for 0 < λ < ∞? To answer this question, we need to define
splines.

A spline is a special piecewise polynomial.4 The most commonly used splines
are piecewise cubic splines.

5.72 Definition. Let ξ1 < ξ2 < · · · < ξk be a set of ordered points—called
knots—contained in some interval (a, b). A cubic spline is a continuous
function r such that (i) r is a cubic polynomial over (ξ1, ξ2), . . . and (ii) r

has continuous first and second derivatives at the knots. More generally,

4More details on splines can be found in Wahba (1990).
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an M th-order spline is a piecewise M − 1 degree polynomial with M − 2
continuous derivatives at the knots. A spline that is linear beyond the
boundary knots is called a natural spline.

Cubic splines (M = 4) are the most common splines used in practice. They
arise naturally in the penalized regression framework as the following theorem
shows.

5.73 Theorem. The function r̂n(x) that minimizes M(λ) with penalty (5.71)
is a natural cubic spline with knots at the data points. The estimator r̂n is
called a smoothing spline.

The theorem above does not give an explicit form for r̂n. To do so, we will
construct a basis for the set of splines.

5.74 Theorem. Let ξ1 < ξ2 < · · · < ξk be knots contained in an interval (a, b).
Define h1(x) = 1, h2(x) = x, h3(x) = x2, h4(x) = x3, hj(x) = (x − ξj−4)3+
for j = 5, . . . , k + 4. The functions {h1, . . . , hk+4} form a basis for the set of
cubic splines at these knots, called the truncated power basis. Thus, any
cubic spline r(x) with these knots can be written as

r(x) =
k+4∑
j=1

βjhj(x). (5.75)

We now introduce a different basis for the set of natural splines called the
B-spline basis that is particularly well suited for computation. These are
defined as follows.

Let ξ0 = a and ξk+1 = b. Define new knots τ1, . . . , τM such that

τ1 ≤ τ2 ≤ τ3 ≤ · · · ≤ τM ≤ ξ0,

τj+M = ξj for j = 1, . . . , k, and

ξk+1 ≤ τk+M+1 ≤ · · · ≤ τk+2M .

The choice of extra knots is arbitrary; usually one takes τ1 = · · · = τM = ξ0

and ξk+1 = τk+M+1 = · · · = τk+2M . We define the basis functions recursively
as follows. First we define

Bi,1 =
{

1 if τi ≤ x < τi+1

0 otherwise

for i = 1, . . . , k + 2M − 1. Next, for m ≤ M we define

Bi,m =
x − τi

τi+m−1 − τi
Bi,m−1 +

τi+m − x

τi+m − τi+1
Bi+1,m−1
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FIGURE 5.7. Cubic B-spline basis using nine equally spaced knots on (0,1).

for i = 1, . . . , k + 2M −m. It is understood that if the denominator is 0, then
the function is defined to be 0.

5.76 Theorem. The functions {Bi,4, i = 1, . . . , k + 4} are a basis for the set
of cubic splines. They are called the B-spline basis functions.

The advantage of the B-spline basis functions is that they have compact
support which makes it possible to speed up calculations. See Hastie et al.
(2001) for details. Figure 5.7 shows the cubic B-spline basis using nine equally
spaced knots on (0,1).

We are now in a position to describe the spline estimator in more detail.
According to Theorem 5.73, r̂ is a natural cubic spline. Hence, we can write

r̂n(x) =
N∑

j=1

β̂jBj(x) (5.77)

where B1, . . . , BN are a basis for the natural splines (such as the B-splines with
N = n + 4). Thus, we only need to find the coefficients β̂ = (β̂1, . . . , β̂N)T .
By expanding r in the basis we can now rewrite the minimization as follows:

minimize : (Y − Bβ)T (Y − Bβ) + λβT Ωβ (5.78)

where Bij = Bj(Xi) and Ωjk =
∫

B′′
j (x)B′′

k (x)dx.
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5.79 Theorem. The value of β that minimizes (5.78) is5

β̂ = (BT B + λΩ)−1BT Y. (5.80)

Splines are another example of linear smoothers.

5.81 Theorem. The smoothing spline r̂n(x) is a linear smoother, that is, there
exist weights �(x) such that r̂n(x) =

∑n
i=1 Yi�i(x). In particular, the smoothing

matrix L is
L = B(BT B + λΩ)−1BT (5.82)

and the vector r of fitted values is given by

r = LY. (5.83)

If we had done ordinary linear regression of Y on B, the hat matrix would be
L = B(BT B)−1BT and the fitted values would interpolate the observed data.
The effect of the term λΩ in (5.82) is to shrink the regression coefficients
towards a subspace, which results in a smoother fit. As before, we define
the effective degrees of freedom by ν = tr(L) and we choose the smoothing
parameter λ by minimizing either the cross-validation score (5.35) or the
generalized cross-validation score (5.36).

5.84 Example. Figure 5.8 shows the smoothing spline with cross-validation
for the CMB data. The effective number of degrees of freedom is 8.8. The fit is
smoother than the local regression estimator. This is certainly visually more
appealing, but the difference between the two fits is small compared to the
width of the confidence bands that we will compute later. �

Silverman (1984) proved that spline estimates r̂n(x) are approximately ker-
nel estimates in the sense that

�i(x) ≈ 1
f(xi)h(xi)

K

(
xi − x

h(xi)

)
where f(x) is the density of the covariate (treated here as random),

h(x) =
(

λ

nf(x)

)1/4

and

K(t) =
1
2

exp
{
− |t|√

2

}
sin
( |t|√

2
+

π

4

)
.

5If you are familiar with ridge regression then you will recognize this as being similar to ridge
regression.
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FIGURE 5.8. Smoothing spline for the CMB data. The smoothing parameter was
chosen by cross-validation.

Another nonparametric method that uses splines is called the regression
spline method. Rather than placing a knot at each data point, we instead
use fewer knots. We then do ordinary linear regression on the basis matrix
B with no regularization. The fitted values for this estimator are r = LY

with L = B(BT B)−1BT . The difference between this estimate and (5.82) is
that the basis matrix B is based on fewer knots and there is no shrinkage
factor λΩ. The amount of smoothing is instead controlled by the choice of
the number (and placement) of the knots. By using fewer knots, one can save
computation time. These spline methods are discussed in detail in Ruppert
et al. (2003).

5.6 Variance Estimation

Next we consider several methods for estimating σ2. For linear smoothers,
there is a simple, nearly unbiased estimate of σ2.

5.85 Theorem. Let r̂n(x) be a linear smoother. Let

σ̂2 =
∑n

i=1(Yi − r̂(xi))2

n − 2ν + ν̃
(5.86)
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where

ν = tr(L), ν̃ = tr(LT L) =
n∑

i=1

||�(xi)||2.

If r is sufficiently smooth, ν = o(n) and ν̃ = o(n) then σ̂2 is a consistent
estimator of σ2.

We will now outline the proof of this result. Recall that if Y is a random
vector and Q is a symmetric matrix then Y T QY is called a quadratic form
and it is well known that

E(Y T QY ) = tr(QV ) + µT Qµ (5.87)

where V = V(Y ) is the covariance matrix of Y and µ = E(Y ) is the mean
vector. Now,

Y − r = Y − LY = (I − L)Y

and so

σ̂2 =
Y T ΛY

tr(Λ)
(5.88)

where Λ = (I − L)T (I − L). Hence,

E(σ̂2) =
E(Y T ΛY )

tr(Λ)
= σ2 +

rT Λr
n − 2ν + ν̃

.

Assuming that ν and ν̃ do not grow too quickly, and that r is smooth, the
last term is small for large n and hence E(σ̂2) ≈ σ2. Similarly, one can show
that V(σ̂2) → 0.

Here is another estimator, due to Rice (1984). Suppose that the xis are
ordered. Define

σ̂2 =
1

2(n − 1)

n−1∑
i=1

(Yi+1 − Yi)2. (5.89)

The motivation for this estimator is as follows. Assuming r(x) is smooth, we
have r(xi+1) − r(xi) ≈ 0 and hence

Yi+1 − Yi =
[
r(xi+1) + εi+1

]− [r(xi) + εi

] ≈ εi+1 − εi

and hence (Yi+1 − Yi)2 ≈ ε2i+1 + ε2i − 2εi+1εi. Therefore,

E(Yi+1 − Yi)2 ≈ E(ε2i+1) + E(ε2i ) − 2E(εi+1)E(εi)

= E(ε2i+1) + E(ε2i ) = 2σ2. (5.90)
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Thus, E(σ̂2) ≈ σ2. A variation of this estimator, due to Gasser et al. (1986)
is

σ̂2 =
1

n − 2

n−1∑
i=2

c2
i δ

2
i (5.91)

where

δi = aiYi−1 + biYi+1 − Yi, ai = (xi+1 − xi)/(xi+1 − xi−1),
bi = (xi − xi−1)/(xi+1 − xi−1), c2

i = (a2
i + b2

i + 1)−1.

The intuition of this estimator is that it is the average of the residuals that
result from fitting a line to the first and third point of each consecutive triple
of design points.

5.92 Example. The variance looks roughly constant for the first 400 observa-
tions of the CMB data. Using a local linear fit, we applied the two variance
estimators. Equation (5.86) yields σ̂2 = 408.29 while equation (5.89) yields
σ̂2 = 394.55. �

So far we have assumed homoscedasticity meaning that σ2 = V(εi) does
not vary with x. In the CMB example this is blatantly false. Clearly, σ2

increases with x so the data are heteroscedastic. The function estimate
r̂n(x) is relatively insensitive to heteroscedasticity. However, when it comes to
making confidence bands for r(x), we must take into account the nonconstant
variance.

We will take the following approach. See Yu and Jones (2004) and references
therein for other approaches. Suppose that

Yi = r(xi) + σ(xi)εi. (5.93)

Let Zi = log(Yi − r(xi))2 and δi = log ε2i . Then,

Zi = log
(
σ2(xi)

)
+ δi. (5.94)

This suggests estimating log σ2(x) by regressing the log squared residuals on
x. We proceed as follows.

Variance Function Estimation

1. Estimate r(x) with any nonparametric method to get an estimate
r̂n(x).

2. Define Zi = log(Yi − r̂n(xi))2.
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3. Regress the Zi’s on the xi’s (again using any nonparametric method)
to get an estimate q̂(x) of log σ2(x) and let

σ̂2(x) = eq̂(x). (5.95)

5.96 Example. The solid line in Figure 5.9 shows the log of σ̂2(x) for the CMB
example. I used local linear estimation and I used cross-validation to choose
the bandwidth. The estimated optimal bandwidth for r̂n was h = 42 while
the estimated optimal bandwidth for the log variance was h = 160. In this
example, there turns out to be an independent estimate of σ(x). Specifically,
because the physics of the measurement process is well understood, physicists
can compute a reasonably accurate approximation to σ2(x). The log of this
function is the dotted line on the plot. �
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FIGURE 5.9. The dots are the log squared residuals. The solid line shows the log
of the estimated standard variance σ̂2(x) as a function of x. The dotted line shows
the log of the true σ2(x) which is known (to reasonable accuracy) through prior
knowledge.

A drawback of this approach is that the log of a very small residual will be
a large outlier. An alternative is to directly smooth the squared residuals. In
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this case, one might fit a model of the type discussed in Section 5.10 since the
model does not have an additive form and the error will not be Normal.

5.7 Confidence Bands

In this section we will construct confidence bands for r(x). Typically these
bands are of the form

r̂n(x) ± c se(x) (5.97)

where se(x) is an estimate of the standard deviation of r̂n(x) and c > 0 is
some constant. Before we proceed, we discuss a pernicious problem that arises
whenever we do smoothing, namely, the bias problem.

The Bias Problem. Confidence bands like those in (5.97), are not really con-
fidence bands for r(x), rather, they are confidence bands for rn(x) = E(r̂n(x))
which you can think of as a smoothed version of r(x). Getting a confidence
set for the true function r(x) is complicated for reasons we now explain.

Denote the mean and standard deviation of r̂n(x) by rn(x) and sn(x). Then,

r̂n(x) − r(x)
sn(x)

=
r̂n(x) − rn(x)

sn(x)
+

rn(x) − r(x)
sn(x)

= Zn(x) +
bias(r̂n(x))√

variance(r̂n(x))

where Zn(x) = (r̂n(x) − rn(x))/sn(x). Typically, the first term Zn(x) con-
verges to a standard Normal from which one derives confidence bands. The
second term is the bias divided by the standard deviation. In parametric infer-
ence, the bias is usually smaller than the standard deviation of the estimator
so this term goes to zero as the sample size increases. In nonparametric infer-
ence, we have seen that optimal smoothing corresponds to balancing the bias
and the standard deviation. The second term does not vanish even with large
sample sizes.

The presence of this second, nonvanishing term intro-
duces a bias into the Normal limit. The result is that
the confidence interval will not be centered around the
true function r due to the smoothing bias rn(x) − r(x).

There are several things we can do about this problem. The first is: live with
it. In other words, just accept the fact that the confidence band is for rn not r.
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There is nothing wrong with this as long as we are careful when we report the
results to make it clear that the inferences are for rn not r. A second approach
is to estimate the bias function rn(x) − r(x). This is difficult to do. Indeed,
the leading term of the bias is r′′(x) and estimating the second derivative of r

is much harder than estimating r. This requires introducing extra smoothness
conditions which then bring into question the original estimator that did not
use this extra smoothness. This has a certain unpleasant circularity to it.6

A third approach is to undersmooth. If we smooth less than the optimal
amount then the bias will decrease asymptotically relative to the variance.
Unfortunately, there does not seem to be a simple, practical rule for choosing
just the right amount of undersmoothing. (See the end of this chapter for
more discussion on this point.) We will take the first approach and content
ourselves with finding a confidence band for rn.

5.98 Example. To understand the implications of estimating rn instead of r,
consider the following example. Let

r(x) = φ(x; 2, 1) + φ(x; 4, 0.5) + φ(x; 6, 0.1) + φ(x; 8, 0.05)

where φ(x; m, s) denotes a Normal density function with mean m and variance
s2. Figure 5.10 shows the true function (top left), a locally linear estimate r̂n

(top right) based on 100 observations Yi = r(i/10)+ .2N(0, 1), i = 1, . . . , 100,
with bandwidth h = 0.27, the function rn(x) = E(r̂n(x)) (bottom left) and the
difference r(x) − rn(x) (bottom right). We see that rn (dashed line) smooths
out the peaks. Comparing the top right and bottom left plot, it is clear that
r̂n(x) is actually estimating rn not r(x). Overall, rn is quite similar to r(x)
except that rn omits some of the fine details of r. �

Constructing Confidence Bands. Assume that r̂n(x) is a linear smoother,
so that r̂n(x) =

∑n
i=1 Yi�i(x). Then,

r(x) = E(r̂n(x)) =
n∑

i=1

�i(x)r(xi).

For now, assume that σ2(x) = σ2 = V(εi) is constant. Then,

V(r̂n(x)) = σ2||�(x)||2.

6A different approach to estimating bias is discussed in Section 6.4 of Ruppert et al. (2003).
However, I am not aware of any theoretical results to justify the resulting confidence bands.
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FIGURE 5.10. The true function (top left), an estimate r̂n (top right) based on
100 observations, the function rn(x) = E(r̂n(x)) (bottom left) and the difference
r(x) − rn(x) (bottom right).

We will consider a confidence band for rn(x) of the form

I(x) =
(
r̂n(x) − c σ̂||�(x)||, r̂n(x) + c σ̂||�(x)||) (5.99)

for some c > 0 and a ≤ x ≤ b.
We follow the approach in Sun and Loader (1994). First suppose that σ is

known. Then,

P
(
r(x) /∈ I(x) for some x ∈ [a, b]

)
= P

(
max

x∈[a,b]

|r̂(x) − r(x)|
σ||�(x)|| > c

)
= P

(
max

x∈[a,b]

|∑i εi�i(x)|
σ||�(x)|| > c

)
= P

(
max

x∈[a,b]
|W (x)| > c

)
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where W (x) =
∑n

i=1 Zi Ti(x), Zi = εi/σ ∼ N(0, 1) and Ti(x) = �i(x)/||�(x)||.
Now, W (x) is a Gaussian process.7 To find c, we need to be able to compute
the distribution of the maximum of a Gaussian process. Fortunately, this is a
well-studied problem. In particular, Sun and Loader (1994) showed that

P

(
max

x

∣∣∣∣∣
n∑

i=1

ZiTi(x)

∣∣∣∣∣ > c

)
≈ 2 (1 − Φ(c)) +

κ0

π
e−c2/2 (5.100)

for large c, where

κ0 =
∫ b

a

||T ′(x)||dx, (5.101)

T ′(x) = (T ′
1(x), . . . , T ′

n(x)) and T ′
i (x) = ∂Ti(x)/∂x. An approximation for

κ0 is given in Exercise 20. Equation (5.100) is called the tube formula. A
derivation is outlined in the appendix. If we choose c to solve

2 (1 − Φ(c)) +
κ0

π
e−c2/2 = α (5.102)

then we get the desired simultaneous confidence band. If σ is unknown we
use an estimate σ̂. Sun and Loader suggest replacing the right-hand side of
(5.100) with

P(|Tm| > c) +
κ0

π

(
1 +

c2

m

)−m/2

where Tm has a t-distribution with m = n − tr(L) degrees of freedom. For
large n, (5.100) remains an adequate approximation.

Now suppose that σ(x) is a function of x. Then,

V(r̂n(x)) =
n∑

i=1

σ2(xi)�2
i (x).

In this case we take
I(x) = r̂n(x) ± c s(x) (5.103)

where

s(x) =

√√√√ n∑
i=1

σ̂2(xi)�2
i (x),

σ̂(x) is an estimate of σ(x) and c is the constant defined in (5.102). If σ̂(x)
varies slowly with x, then σ(xi) ≈ σ(x) for those i such that �i(x) is large and
so

s(x) ≈ σ̂(x)||�(x)||.

7This means it is a random function such that the vector (W (x1), . . . , W (xk)) has a mul-
tivariate Normal distribution, for any finite set of points x1, . . . , xk.
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Thus, an approximate confidence band is

I(x) = r̂n(x) ± c σ̂(x)||�(x)||. (5.104)

For more details on these methods, see Faraway and Sun (1995).

5.105 Example. Figure 5.11 shows simultaneous 95 percent confidence bands
for the CMB data using a local linear fit. The bandwidth was chosen using
cross-validation. We find that κ0 = 38.85 and c = 3.33. In the top plot, we
assumed a constant variance when constructing the band. In the bottom plot,
we did not assume a constant variance when constructing the band. We see
that if we do not take into account the nonconstant variance, we overestimate
the uncertainty for small x and we underestimate the uncertainty for large x.
�
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FIGURE 5.11. Local linear fit with simultaneous 95 percent confidence bands. The
band in the top plot assumes constant variance σ2. The band in the bottom plot
allows for nonconstant variance σ̂2(x).
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5.106 Remark. We have ignored the uncertainty introduced due to the choice
of smoothing parameter. We can adjust for this extra uncertainty as follows.
When choosing the smoothing parameter h, restrict the search to a finite
set Hn with m = m(n) points. Construct the confidence band at level α/m.
Thus, replace α with α/m on the right-hand side of equation (5.102). Then
the Bonferroni inequality8 guarantees that the coverage is still at least 1−α.

5.107 Remark. There is a substantial literature on using bootstrap meth-
ods to get confidence bands. This requires a more sophisticated use of the
bootstrap than that presented in Chapter 3. See Härdle and Marron (1991),
Neumann and Polzehl (1998), Hall (1993), Faraway (1990), and Härdle and
Bowman (1988), for example.

5.8 Average Coverage

One might argue that requiring bands to cover the function at all x is too
stringent. Wahba (1983), Nychka (1988) and Cummins et al. (2001) introduced
a different type of coverage that we refer to as average coverage. Here we
discuss a method for constructing average coverage bands based on an idea
in Juditsky and Lambert-Lacroix (2003).

Suppose we are estimating r(x) over the interval [0,1]. Define the average
coverage of a band (�, u) by

C =
∫ 1

0

P
(
r(x) ∈ [�(x), u(x)]

)
dx.

In Chapters 7 and 8 we present methods for constructing confidence balls for
r. These are sets Bn(α) of the form

Bn(α) =
{
r : ||r̂n − r|| ≤ sn(α)

}
such that

P(r ∈ Bn(α)) ≥ 1 − α.

Given such a confidence ball, let

�(x) = r̂n(x) − sn(α/2)

√
2
α

, u(x) = r̂n(x) + sn(α/2)

√
2
α

. (5.108)

We now show that these bands have average coverage at least 1 − α. First,
note that C = P(r(U) ∈ [�(U), u(U)]) where U ∼ Unif(0, 1) is independent of

8That is, P(A1
⋃ · · ·⋃Am) ≤∑i P(Ai).
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the data. Let A be the event that r ∈ Bn(α/2). On the event A, ||r̂n − r|| ≤
sn(α/2). Writing sn for sn(α/2) we have,

1 − C = P

(
r(U) /∈ [�(U), u(U)]

)
= P

(
|r̂n(U) − r(U)| > sn

√
2
α

)

= P

(
|r̂n(U) − r(U)| > sn

√
2
α

, A

)
+ P

(
|r̂n(U) − r(U)| > sn

√
2
α

, Ac

)

≤ P

(
|r̂n(U) − r(U)| > sn

√
2
α

, A

)
+ P(Ac)

≤ EIA|r̂n(U) − r(U)|2
s2

n
2
α

+
α

2
=

EIA

∫ 1

0
|r̂n(u) − r(u)|2du

s2
n

2
α

+
α

2

=
EIA||r̂n − r||2

s2
n

2
α

+
α

2
≤ s2

n

s2
n

2
α

+
α

2
≤ α.

5.9 Summary of Linear Smoothing

At this point we have covered many points related to linear smoothing meth-
ods. It seems like a good time so summarize the steps needed to construct the
estimate r̂n and a confidence band.

Summary of Linear Smoothing

1. Choose a smoothing method such as local polynomial, spline, etc.
This amounts to choosing the form of the weights �(x) =
(�1(x), . . . , �n(x))T . A good default choice is local linear smoothing
as described in Theorem 5.60.

2. Choose the bandwidth h by cross-validation using (5.35).

3. Estimate the variance function σ̂2(x) as described in Section 5.6.

4. Find κ0 from (5.101) and find c from (5.102).

5. An approximate 1 − α confidence band for rn = E(r̂n(x)) is

r̂n(x) ± c σ̂(x) ||�(x)||. (5.109)

5.110 Example (LIDAR). Recall the LIDAR data from Example 4.5 and Ex-
ample 5.59. We find that κ0 ≈ 30 and c ≈ 3.25. The resulting bands are
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shown in the lower right plot. As expected, there is much greater uncertainty
for larger values of the covariate. �

5.10 Local Likelihood and Exponential Families

If Y is not real valued or ε is not Gaussian, then the basic regression model
we have been using might not be appropriate. For example, if Y ∈ {0, 1} then
it seems natural to use a Bernoulli model. In this section we discuss nonpara-
metric regression for more general models. Before proceeding, we should point
out that the basic model often does work well even in cases where Y is not
real valued or ε is not Gaussian. This is because the asymptotic theory does
not really depend on ε being Gaussian. Thus, at least for large samples, it is
worth considering using the tools we have already developed for these cases.

Recall that Y has an exponential family distribution, given x, if

f(y|x) = exp
{

yθ(x) − b(θ(x))
a(φ)

+ c(y, φ)
}

(5.111)

for some functions a(·), b(·) and c(·, ·). Here, θ(·) is called the canonical pa-
rameter and φ is called the dispersion parameter. It then follows that

r(x) ≡ E(Y |X = x) = b′(θ(x)),

σ2(x) ≡ V(Y |X = x) = a(φ)b′′(θ(x)).

The usual parametric form of this model is

g(r(x)) = xT β

for some known function g called the link function. The model

Y |X = x ∼ f(y|x), g(E(Y |X = x)) = xT β (5.112)

is called a generalized linear model.
For example, if Y given X = x is Binomial (m, r(x)) then

f(y|x) =
(

m

y

)
r(x)y(1 − r(x))m−y

which has the form (5.111) with

θ(x) = log
r(x)

1 − r(x)
, b(θ) = m log(1 + eθ)
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and a(φ) ≡ 1. Taking g(t) = log(t/(m−t)) yields the logistic regression model.
The parameters β are usually estimated by maximum likelihood.

Let’s consider a nonparametric version of logistic regression. For simplicity,
we focus on local linear estimation. The data are (x1, Y1), . . . , (xn, Yn) where
Yi ∈ {0, 1}. We assume that

Yi ∼ Bernoulli(r(xi))

for some smooth function r(x) for which 0 ≤ r(x) ≤ 1. Thus, P(Yi = 1|Xi =
xi) = r(xi) and P(Yi = 0|Xi = xi) = 1 − r(xi). The likelihood function is

n∏
i=1

r(xi)Yi(1 − r(xi))1−Yi

so, with ξ(x) = log(r(x)/(1 − r(x))), the log-likelihood is

�(r) =
n∑

i=1

�(Yi, ξ(xi)) (5.113)

where

�(y, ξ) = log

[(
eξ

1 + eξ

)y ( 1
1 + eξ

)1−y
]

= yξ − log
(
1 + eξ

)
. (5.114)

To estimate the regression function at x we approximate the regression
function r(u) for u near x by the local logistic function

r(u) ≈ ea0+a1(u−x)

1 + ea0+a1(u−x)

(compare with (5.15)). Equivalently, we approximate log(r(u)/(1−r(u))) with
a0 + a1(x − u). Now define the local log-likelihood

�x(a) =
n∑

i=1

K

(
x − Xi

h

)
�(Yi, a0 + a1(Xi − x))

=
n∑

i=1

K

(
x − Xi

h

)(
Yi(a0 + a1(Xi − x)) − log(1 + ea0+a1(Xi−x))

)
.

Let â(x) = (â0(x), â1(x)) maximize �x which can be found by any convenient
optimization routine such as Newton–Raphson. The nonparametric estimate
of r(x) is

r̂n(x) =
eâ0(x)

1 + eâ0(x)
. (5.115)
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The bandwidth can be chosen by using the leave-one-out log-likelihood
cross-validation

CV =
n∑

i=1

�(Yi, ξ̂(−i)(xi)) (5.116)

where ξ̂(−i)(x) is the estimator obtained by leaving out (xi, Yi). Unfortunately,
there is no identity as in Theorem 5.34. There is, however, the following ap-
proximation from Loader (1999a). Recall the definition of �(x, ξ) from (5.114)
and let �̇(y, ξ) and �̈(y, ξ) denote first and second derivatives of �(y, ξ) with
respect to ξ. Thus,

�̇(y, ξ) = y − p(ξ)

�̈(y, ξ) = −p(ξ)(1 − p(ξ))

where p(ξ) = eξ/(1 + eξ). Define matrices Xx and Wx as in (5.54) and let Vx

be a diagonal matrix with jth diagonal entry equal to −�̈(Yi, â0 + â1(xj −xi)).
Then,

cv ≈ �x(â) +
n∑

i=1

m(xi)
(
�̇(Yi, â0)

)2

(5.117)

where
m(x) = K(0)eT

1 (XT
x WxVxXx)−1e1 (5.118)

and e1 = (1, 0, . . . , 0)T . The effective degrees of freedom is

ν =
n∑

i=1

m(xi)E(−�̈(Yi, â0)).

5.119 Example. Figure 5.12 shows the local linear logistic regression esti-
mator for an example generated from the model Yi ∼ Bernoulli(r(xi)) with
r(x) = e3 sin(x)/(1 + e3 sin(x)). The solid line is the true function r(x). The
dashed line is the local linear logistic regression estimator. We also computed
the local linear regression estimator which ignores the fact that the data are
Bernoulli. The dotted line is the resulting local linear regression estimator.9

cross-validation was used to select the bandwidth in both cases. �

5.120 Example. We introduced the BPD data in Example 4.6. The outcome
Y is presence or absence of BPD and the covariate is x = birth weight. The
estimated logistic regression function (solid line) r(x; β̂0, β̂1) together with the

9It might be appropriate to use a weighted fit since the variance of the Bernoulli is a function
of the mean.
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FIGURE 5.12. Local linear logistic regression. The solid line is the true regression
function r(x) = P(Y = 1|X = x). The dashed line is the local linear logistic regres-
sion estimator. The dotted line is the local linear regression estimator.

data are shown in Figure 5.13. Also shown are two nonparametric estimates.
The dashed line is the local likelihood estimator. The dotted line is the local
linear estimator which ignores the binary nature of the Yi’s. Again we see
that there is not a dramatic difference between the local logistic model and
the local linear model. �

5.11 Scale-Space Smoothing

There is another approach to smoothing championed by Chaudhuri and Mar-
ron (1999) and Chaudhuri and Marron (2000) called scale-space smoothing
that eschews the idea of selecting a single bandwidth. Let r̂h(x) denote an es-
timator using bandwidth h. The idea is to regard r̂h(x) as an estimator of
rh(x) ≡ E(r̂h(x)), as we did in Section 5.7. But rather than choosing a single
bandwidth, we examine r̂h over a set of bandwidths h as a way of exploring
the scale-space surface

S =
{
rh(x), x ∈ X , h ∈ H

}
where X is the range of x and H is the range of h.

One way to summarize the estimated scale-space surface

Ŝ =
{
r̂h(x), x ∈ X , h ∈ H

}
is to isolate important shape summaries. For example, Chaudhuri and Marron
(1999) look for points x where r′h(x) = 0 by using r̂′h(x) as a set of test
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FIGURE 5.13. The BPD data. The data are shown with small vertical lines. The
estimates are from logistic regression (solid line), local likelihood (dashed line) and
local linear regression (dotted line).

statistics. They call the resulting method SiZer (significant zero crossings of
derivatives).

5.12 Multiple Regression

Suppose now that the covariate is d-dimensional,

xi = (xi1, . . . , xid)T .

The regression equation takes the form

Y = r(x1, . . . , xd) + ε. (5.121)

In principle, all the methods we have discussed carry over to this case eas-
ily. Unfortunately, the risk of a nonparametric regression estimator increases
rapidly with the dimension d. This is the curse of dimensionality that we dis-
cussed in Section 4.5. It is worth revisiting this point now. In a one-dimensional
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problem, the optimal rate of convergence of a nonparametric estimator is
n−4/5 if r is assumed to have an integrable second derivative. In d dimensions
the optimal rate of convergence is is n−4/(4+d). Thus, the sample size m re-
quired for a d-dimensional problem to have the same accuracy as a sample
size n in a one-dimensional problem is m ∝ ncd where c = (4 + d)/(5d) > 0.
This implies the following fact:

To maintain a given degree of accuracy of an estimator, the sample

size must increase exponentially with the dimension d.

Put another way, confidence bands get very large as the dimension d increases.
Nevertheless, let us press on and see how we might estimate the regression
function.

Local Regression. Consider local linear regression. The kernel function
K is now a function of d variables. Given a nonsingular positive definite d× d

bandwidth matrix H , we define

KH(x) =
1

|H |1/2
K(H−1/2x).

Often, one scales each covariate to have the same mean and variance and then
we use the kernel

h−dK(||x||/h)

where K is any one-dimensional kernel. Then there is a single bandwidth
parameter h. At a target value x = (x1, . . . , xd)T , the local sum of squares is
given by

n∑
i=1

wi(x)

(
Yi − a0 −

d∑
j=1

aj(xij − xj)

)2

(5.122)

where

wi(x) = K(||xi − x||/h).

The estimator is

r̂n(x) = â0 (5.123)

where â = (â0, . . . , âd)T is the value of a = (a0, . . . , ad)T that minimizes the
weighted sums of squares. The solution â is

â = (XT
x WxXx)−1XT

x WxY (5.124)
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where

Xx =

⎛⎜⎜⎜⎝
1 x11 − x1 · · · x1d − xd

1 x21 − x1 · · · x2d − xd

...
...

. . .
...

1 xn1 − x1 · · · xnd − xd

⎞⎟⎟⎟⎠
and Wx is the diagonal matrix whose (i, i) element is wi(x).

The theoretical properties of local polynomial regression in higher dimen-
sions is discussed in Ruppert and Wand (1994). The main result is as follows.

5.125 Theorem (Ruppert and Wand, 1994). Let r̂n be the multivariate local
linear estimator with bandwidth matrix H and assume the regularity conditions
given in Ruppert and Wand (1994). Suppose that x is a nonboundary point.
Conditional on X1, . . . , Xn we have the following: The bias of r̂n(x) is

1
2
µ2(K)trace(HH) + oP (trace(H)) (5.126)

where H is the matrix of second partial derivatives of r evaluated at x and
µ2(K) is the scalar defined by the equation

∫
uuT K(u)du = µ2(K)I. The

variance of r̂n(x) is

σ2(x)
∫

K(u)2du

n|H |1/2f(x)
(1 + oP (1)). (5.127)

Also, the bias at the boundary is the same order as in the interior, namely,
OP (trace(H)).

Thus we see that in higher dimensions, local linear regression still avoids
excessive boundary bias and design bias.

Splines. If we take a spline approach, we need to define splines in higher
dimensions. For d = 2 we minimize∑

i

(Yi − r̂n(xi1, xi2))2 + λJ(r)

where

J(r) =
∫ ∫ [(

∂2r(x)
∂x2

1

)
+ 2

(
∂2r(x)
∂x1∂x2

)
+
(

∂2r(x)
∂x2

2

)]
dx1dx2.

The minimizer r̂n is called a thin-plate spline. It is hard to describe and
even harder (but certainly not impossible) to fit. See Green and Silverman
(1994) for more details.
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Additive Models. Interpreting and visualizing a high-dimensional fit is
difficult. As the number of covariates increases, the computational burden be-
comes prohibitive. Sometimes, a more fruitful approach is to use an additive
model. An additive model is a model of the form

Y = α +
d∑

j=1

rj(xj) + ε (5.128)

where r1, . . . , rd are smooth functions. The model (5.128) is not identifiable
since we can add any constant to α and subtract the same constant from one
of the rj ’s without changing the regression function. This problem can be fixed
in a number of ways, perhaps the easiest being to set α̂ = Y and then regard
the rj ’s as deviations from Y . In this case we require that

∑n
i=1 r̂j(xi) = 0

for each j.
The additive model is clearly not as general as fitting r(x1, . . . , xd) but it

is much simpler to compute and to interpret and so it is often a good starting
point. This is a simple algorithm for turning any one-dimensional regression
smoother into a method for fitting additive models. It is called backfitting.

The Backfitting Algorithm

Initialization: set α̂ = Y and set initial guesses for r̂1, . . . , r̂d.
Iterate until convergence: for j = 1, . . . , d:

• Compute Ỹi = Yi − α̂ −∑k �=j rk(xi), i = 1, . . . , n.

• Apply a smoother to Ỹi on xj to obtain r̂j .

• Set r̂j(x) equal to r̂j(x) − n−1
∑n

i=1 r̂j(xi).

5.129 Example. Let us revisit Example 4.7 involving three covariates and one
response variable. The data are plotted in Figure 5.14. Recall that the data
are 48 rock samples from a petroleum reservoir, the response is permeability
(in milli-Darcies) and the covariates are: the area of pores (in pixels out of
256 by 256), perimeter in pixels and shape (perimeter/

√
area). The goal is to

predict permeability from the three covariates. First we fit the additive model

permeability = r1(area) + r2(perimeter) + r3(shape) + ε.

We could scale each covariate to have the same variance and then use a com-
mon bandwidth for each covariate. Instead, I took the more adventurous ap-
proach of performing cross-validation to choose a bandwidth hj for covariate
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xj during each iteration of backfitting. I am not aware of any theory that guar-
antees convergence if the smoothing parameters are changed this way during
the algorithm. Nonetheless, the bandwidths and the functions estimates con-
verged rapidly. The estimates of r1, r2 and r3 are shown in Figure 5.15. Y was
added to each function before plotting it. Next consider a three-dimensional
local linear fit (5.123). After scaling each covariate to have mean 0 and vari-
ance 1, we found that the bandwidth h ≈ 3.2 minimized the cross-validation
score. The residuals from the additive model and the full three-dimensional
local linear fit are shown in Figure 5.16. Apparently, the fitted values are quite
similar suggesting that the generalized additive model is adequate. �
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FIGURE 5.14. The rock data.

Projection Pursuit. Friedman and Stuetzle (1981) introduced another
method for dealing with high-dimensional regression called projection pur-
suit regression. The idea is to approximate the regression function
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FIGURE 5.15. The rock data. The plots show r̂1, r̂2, and r̂3 for the additive model
Y = r̂1(x1) + r̂2(x2) + r̂3(x3) + ε.

r(x1, . . . , xp) with a function of the form

µ +
M∑

m=1

rm(zm)

where
zm = αT

mx

and each αm is a unit vector (length one) for m = 1, . . . , M . Note that each
zm is the projection of x into a subspace. The direction vector α is chosen at
each stage to minimize the fraction of unexplained variance. In more detail,
let S(·) denote the mapping that outputs n fitted values from some smoothing
method, given the Yis and some one-dimensional covariate values z1, . . . , zn.
Let µ̂ = Y and replace Yi with Yi − Y . Hence, the Yi’s now have mean 0.
Similarly, scale the covariates so that they each have the same variance. Then
do the following steps:
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FIGURE 5.16. The residuals for the rock data. Top left: residuals from the additive
model. Top right: qq-plot of the residuals from the additive model. Bottom left:
residuals from the multivariate local linear model. Bottom right: residuals from the
two fits plotted against each other.

Step 1: Initialize residuals ε̂i = Yi, i = 1, . . . , n and set m = 0.
Step 2: Find the direction (unit vector) α that maximizes

I(α) = 1 −
∑n

i=1(ε̂i − S(αT xi))2∑n
i=1 ε̂2i

and set zmi = αT xi, r̂m(zmi) = S(zmi).
Step 3: Set m = m + 1 and update the residuals:

ε̂i ←− ε̂i − r̂m(zmi).

If m = M stop, otherwise go back to Step 2.

5.130 Example. If we apply projection pursuit regression to the rock data
with M = 3 we get the functions r̂1, r̂2, r̂3 shown in 5.17. The fitting was done
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using the ppr command in R and each fit was obtained using smoothing splines
where the smoothing parameter is chosen by generalized cross-validation. The
direction vectors are

α1 = (.99, .07, .08)T , α2 = (.43, .35, .83)T , α3 = (.74,−.28,−.61)T

Thus, z1 = .99 area+ .07 peri+ .08 shape and so on. If we keep adding terms to
the model, the residual sums of squares will keep getting smaller. The bottom
left plot in Figure 5.17 shows the residual sums of squares as a function of
the number of terms M . We see that after including one or two terms in the
model, further terms add little. We could try to choose an optimal M by using
cross-validation. �
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FIGURE 5.17. Projection pursuit applied to the rock data. The plots show r̂1, r̂2,
and r̂3.
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Regression Trees. A regression tree is a model of the form

r(x) =
M∑

m=1

cmI(x ∈ Rm) (5.131)

where c1, . . . , cM are constants and R1, . . . , RM are disjoint rectangles that
partition the space of covariates. Tree models were introduced by Morgan and
Sonquist (1963) and Breiman et al. (1984). The model is fitted in a recursive
manner that can be represented as a tree; hence the name. Our description
follows Section 9.2 of Hastie et al. (2001).

Denote a generic covariate value by x = (x1, . . . , xj , . . . , xd). The covariate
for the ith observation is xi = (xi1, . . . , xij , . . . , xid). Given a covariate j and
a split point s we define the rectangles R1 = R1(j, s) = {x : xj ≤ s} and
R2 = R2(j, s) = {x : xj > s} where, in this expression, xj refers the the jth

covariate not the jth observation. Then we take c1 to be the average of all
the Yi’s such that xi ∈ R1 and c2 to be the average of all the Yi’s such that
xi ∈ R2. Notice that c1 and c2 minimize the sums of squares

∑
xi∈R1

(Yi−c1)2

and
∑

xi∈R2
(Yi − c2)2. The choice of which covariate xj to split on and which

split point s to use is based on minimizing the residual sums if squares. The
splitting process is on repeated on each rectangle R1 and R2.

Figure 5.18 shows a simple example of a regression tree; also shown are
the corresponding rectangles. The function estimate r̂ is constant over the
rectangles.

Generally one grows a very large tree, then the tree is pruned to form a
subtree by collapsing regions together. The size of the tree is a tuning param-
eter chosen as follows. Let Nm denote the number of points in a rectangle Rm

of a subtree T and define

cm =
1

Nm

∑
xi∈Rm

Yi, Qm(T ) =
1

Nm

∑
xi∈Rm

(Yi − cm)2.

Define the complexity of T by

Cα(T ) =
|T |∑

m=1

NmQm(T ) + α|T | (5.132)

where α > 0 and |T | is the number of terminal nodes of the tree. Let Tα be
the smallest subtree that minimizes Cα. The value α̂ of α can be chosen by
cross-validation. The final estimate is based on the tree Tα̂.

5.133 Example. Figure 5.19 shows a tree for the rock data. Notice that the
variable shape does not appear in the tree. This means that the shape variable
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c1 c2

x2 c3

x1

< 100 ≥ 100

< 50 ≥ 50

R3

R1

R2

x1

x2

50

110

FIGURE 5.18. A regression tree for two covariates x1 and x2. The function estimate
is r̂(x) = c1I(x ∈ R1) + c2I(x ∈ R2) + c3I(x ∈ R3) where R1, R2 and R3 are the
rectangles shown in the lower plot.
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was never the optimal covariate to split on in the algorithm. The result is that
tree only depends on area and peri. This illustrates an important feature of
tree regression: it automatically performs variable selection in the sense that a
covariate xj will not appear in the tree if the algorithm finds that the variable
is not important. �

area < 1403

area < 1068 area < 3967

area < 3967
peri < .1991

peri < .1949

7.746 8.407 8.678 8.893 8.985 8.099 8.339

FIGURE 5.19. Regression tree for the rock data.

MARS. Regression trees are discontinuous and they do not easily fit main
effects. (In contrast, additive models fit only main effects unless interactions
are put in the model.) MARS—which stands for multivariate adaptive
regression splines—was introduced by Friedman (1991) as an attempt to
improve on regression trees.

The MARS algorithm is as follows. We follow Section 9.4 of Hastie et al.
(2001). Define

�(x, j, t) = (xj − t)I(xj > t), r(x, j, t) = (t − xj)I(xj < t).

Both �(x, j, t) and r(x, j, t) are functions of the whole vector x = (x1, . . . , xd)
but their values only depend on the jth component xj . Let

Cj =
{

�(x, j, t), r(x, j, t), t ∈ {x1j , . . . , xnj}
}
.
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Thus, Cj is a set of linear splines that depend only on xj , with knots at the
observations. Now let C =

⋃d
j=1 Cj . A MARS model is of the form

r(x) = β0 +
M∑

m=1

βmhm(x) (5.134)

where every function hm is either in C or is the product of two or more
such functions. The model is fitted in a forward, stepwise manner, much like
regression trees. See Hastie et al. (2001) for more details.

Tensor Product Models. Another class of models for multiple regres-
sion are of the form

r(x) =
M∑

m=1

βmhm(x) (5.135)

where each hm is a basis function in a tensor product space. These models
will be considered in Chapter 8.

5.13 Other Issues

Here we discuss a few other issues related to nonparametric regression.

Plug-In Bandwidths. An alternative method to cross-validation for choos-
ing the bandwidth is to use a plug-in bandwidth. The idea is to write down
a formula for the asymptotically optimal bandwidth and then insert estimates
of the unknown quantities in the formula. We describe one possible approach
based on Section 4.2 of Fan and Gijbels (1996).

When using local linear regression, and assuming that the Xi’s are randomly
selected from some density f(x), the (asymptotically) optimal bandwidth is

h∗ =

⎛⎝ C
∫ σ2(x)

f(x) dx

n
∫
(r(2)(x))2dx

⎞⎠1/5

(5.136)

where

C =
∫

K2(t)dt

(
∫

K(t)dt)2
(5.137)

and r(2) is the second derivative of r. To get a crude estimate of h∗ proceed
as follows. Fit a global quartic

r̃(x) = β̂0 + β̂1x + β̂2x
2 + β̂3x

3 + β̂4x
4
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using least squares and let σ̃2 = n−1
∑n

i=1(Yi− r̃(xi))2. We call r̃(x) the pilot
estimate. Let (a, b) denote the range of the Xi’s and approximate f with a
uniform over (a, b). Then,

n

∫ b

a

r(2)(x)2dx = n

∫ b

a

r(2)(x)2

f(x)
f(x)dx

≈
n∑

i=1

r(2)(Xi)2

f(Xi)
= (b − a)

n∑
i=1

(r(2)(Xi))2

and we estimate h∗ by

h∗ ≈
(

C σ̃2 (b − a)∑n
i=1(r̃(2)(Xi))2

)1/5

. (5.138)

Testing for Linearity. A nonparametric estimator r̂n can be used to
construct a test to see whether a linear fit is adequate. Consider testing

H0 : r(x) = β0 + β1x for some β0, β1

versus the alternative that H0 is false.
Denote the hat matrix from fitting the linear model by H and the smoothing

matrix from fitting the nonparametric regression by L. Let

T =
||LY − HY ||/λ

σ̂2

where λ = tr((L − H)T (L − H)) and σ̂2 is defined by (5.86). Loader (1999a)
points out that under H0, the F-distribution with ν and n− 2ν1 + ν2 degrees
of freedom provides a rough approximation to the distribution of T . Thus we
would reject H0 at level α if T > Fν,n−2ν1+ν2,α. A more rigorous test that
uses bootstrapping to estimate the null distribution is described in Härdle
and Mammen (1993).

As with any test, the failure to reject H0 should not be regarded as proof
that H0 is true. Rather, it indicates that the data are not powerful enough to
detect deviations from H0. In such cases, a linear fit might be considered a
reasonable tentative model. Of course, making such decisions based solely on
the basis of a test can be dangerous.

Optimality. Local linear estimators have certain optimality properties.
We highlight a few results from Fan and Gijbels (1996). Let x0 be an interior
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(nonboundary) point and let

F =
{
r :
∣∣r(x) − r(x0) − (x − x0)r′(x0)

∣∣ ≤ C|x − x0|
}
.

Suppose that the covariates X is random with density f that is positive at
x0. Also, assume that the variance function σ(x) is continuous at x0. Let L
denote all linear estimators of r(x0). The linear minimax risk is defined by

RL
n = inf

θ̂∈L
sup
r∈F

E((θ̂ − r(x0))2|X1, . . . , Xn). (5.139)

Fan and Gijbels (1996) show that

RL
n =

3
4
15−1/5

(√
Cσ2(x0)
nf(x0)

)4/5

(1 + oP (1)). (5.140)

Moreover, this risk is achieved by the local linear estimator r̂∗ with Epanech-
nikov kernel and bandwidth

h∗ =
(

15σ2(x0)
f(x0)C2n

)1/5

.

The minimax risk is defined by

Rn = inf
θ̂

sup
r∈F

E((θ̂ − r(x0))2|X1, . . . , Xn) (5.141)

where the infimum is now over all estimators. Fan and Gijbels (1996) show
that r̂∗ is nearly minimax in the sense that

Rn

supr∈F E((r̂∗(x0) − r(x0))2|X1, . . . , Xn)
≥ (0.894)2 + oP (1). (5.142)

See Chapter 7 for more discussion on minimaxity.

Derivative Estimation. Suppose we want to estimate the kth derivative
r(k)(x) of r(x). Recall that the local polynomial estimator begins with the
approximation

r(u) ≈ a0 + a1(u − x) +
a2

2
(u − x)2 + · · · + ap

p!
(u − x)p.

Thus, r(k)(x) ≈ ak and we can estimate this with

r̂(k)
n (x) = âk =

n∑
i=1

�i(x, k)Yi (5.143)
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where �(x, k)T = (�1(x, k), . . . , �n(x, k)),

�(x, k)T = eT
k+1(X

T
x WxXx)−1XT

x Wx,

ek+1 = (0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
p−k

)T

and Xx and Wx are defined in (5.54).
Warning! Note that r̂

(k)
n (x) is not equal to the kth derivative of r̂n.

To avoid boundary and design bias, take the order of the polynomial p so
that p − k is odd. A reasonable default is p = k + 1. So, for estimating the
first derivative, we would use local quadratic regression instead of local linear
regression. The next theorem gives the large sample behavior of r̂

(k)
n . A proof

can be found in Fan (1992) and Fan and Gijbels (1996). To state the theorem,
we need a few definitions. Let µj =

∫
ujK(u)du and νj =

∫
ujK2(u)du. Define

(p + 1) × (p + 1) matrices S and S∗ whose (r, s) entries are

Srs = µr+s−2, S∗
rs = νr+s−2.

Also, let cp = (µp+1, . . . , µ2p+1)T and c̃p = (µp+2, . . . , µ2p+2)T . Finally, let

ek+1 = (0, . . . , 0︸ ︷︷ ︸
k

, 1, 0, . . . , 0︸ ︷︷ ︸
p−k

)T .

5.144 Theorem. Let Yi = r(Xi) + σ(Xi)εi for i = 1, . . . , n. Assume that
X1, . . . , Xn are a sample from a distribution with density f and that (i) f(x) >

0, (ii) f , r(p+1) and σ2 are continuous in a neighborhood of x, and (iii) h → 0
and nh → ∞. Then, given X1, . . . , Xn, we have the following:

V(r̂(k)
n (x)) = eT

k+1S
−1S∗S−1ek+1

k!2σ2(x)
f(x)nh1+2k

+ oP

(
1

nh1+2k

)
. (5.145)

If p − k is odd, the bias is

E(r̂(k)
n (x)) − r(x) = eT

k+1S
−1cp

k!
(p + 1)!

r(p+1)(x)hp+1−k

+oP (hp+1−k). (5.146)

If p− k is even then f ′ and m(p+2) are continuous in a neighborhood ofx and
nh3 → ∞ then the bias is

E(r̂(k)
n (x)) − r(x) = eT

k+1S
−1c̃p

k!
(p + 2)!

×
(

r(p+2)(x) + (p + 2)m(p+1)(x)
f ′(x)
f(x)

)
hp+2−k

+oP (hp+2−k). (5.147)
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Define

K∗
k(t) = K(t)

p∑
	=0

S(k−1)(	−1)t	.

Then it can be shown that the (asymptotically) optimal bandwidth is

h∗ =

⎛⎝ C(k, p)
∫ σ2(x)

f(x) dx

n
∫
(r(p+1)(x))2dx

⎞⎠1/(2p+3)

(5.148)

where

C(k, p) =
(

(p + 1)!2(2k + 1)
∫

K∗2
k (t)dt

2(p + 1 − k)(
∫

tp+1K∗
k(t)dt)2

)1/(2p+3)

.

Estimating a derivative is much harder then estimating the regression func-
tion because we observe the regression function (plus error) but we do not
observe the derivative directly. See Chapter 6.1 of Loader (1999a) for a co-
gent discussion of the difficulties in estimating derivatives.

Variable Bandwidths and Adaptive Estimation. Instead of using
one bandwidth h, we might try to use a bandwidth h(x) that varies with x.
Choosing a bandwidth this way is called variable bandwidth selection.
This seems appealing because it might allow us to adapt to varying degrees
of smoothness. For example, r(x) might be spatially inhomogeneous meaning
that it is smooth for some values of x and wiggly for other values of x. Perhaps
we should use a large bandwidth for the smooth regions and a small bandwidth
for the wiggly regions. Such a procedure is said to be locally adaptive or
spatially adaptive. See Chapter 4 of Fan and Gijbels (1995) and Ruppert
(1997), for example. However, the improvements in the function estimate are
often quite modest unless the sample size is very large and the noise level is
low. For more discussion on spatial adaptation, see Chapter 9 and in particular
Section 9.9.

Correlated Data. We have assumed that the errors εi = Yi − r(xi)
are independent. When there is dependence between the errors, the meth-
ods need to be modified. The type of modification required depends on the
type of dependence that is present. For time-ordered data, for example, time
series methods are usually required. More generally, some knowledge of the
dependence structure is required to devise suitable estimation methods. See
Chapter 10 for more on this point.
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Robustness and Quantile Regression. The estimators we have used
are based on squared error loss. This is an easy loss function to use but the re-
sulting estimator is potentially not robust to outliers. In robust regression,
we choose â to minimize

n∑
i=1

wi(x)ρ

⎛⎝
(
Yi − a0 − a1(u − x) + · · · + ap

p! (u − x)p
)

s

⎞⎠ (5.149)

instead of minimizing (5.52). Here, s is some estimate of the standard devi-
ation of the residuals. Taking ρ(t) = t2 gets us back to squared error loss. A
more robust estimator is obtained by using Huber’s function defined by the
equation

ρ′(t) = max{−c, min(c, t)} (5.150)

where c is a tuning constant. We get back squared error as c → ∞ and we
get absolute error as c → 0. A common choice is c = 4.685 which provides a
compromise between the two extremes. Taking

ρ(t) = |t| + (2α − 1)t (5.151)

yields quantile regression. In this case, r̂n(x) estimates ξ(x), where P(Y ≤
ξ(x)|X = x) = α so that ξ(x) is the α quantile of the conditional distribution
of Y given x. See Section 5.5 of Fan and Gijbels (1996) for more detail.

Measurement Error. In some cases we do not observe x directly. Instead,
we observe a corrupted version of x. The observed data are (Y1, W1), . . . ,
(Yn, Wn) where

Yi = r(xi) + εi

Wi = xi + δi

for some errors δi. This is called a measurement error problem or an errors-
in-variables problem. Simply regressing the Yi’s on the Wi’s leads to incon-
sistent estimates of r(x). We will discuss measurement error in more detail in
Chapter 10.

Dimension Reduction and Variable Selection. One way to deal with
the curse of dimensionality is to try to find a low-dimension approximation
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to the data. Techniques include principal component analysis, indepen-
dent component analysis projection pursuit and others. See Hastie et al.
(2001) for an introduction to these methods as well as relevant references.

An alternative is to perform variable selection in which covariates that
do not predict Y well are removed from the regression. See Zhang (1991), for
example. Currently, there seems to be few variable selection methods in non-
parametric regression that are both practical and have a rigorous theoretical
justification.

Confidence Sets for Multiple Regression. The confidence band
method in Section 5.7 can also be used for additive models. The method
also extends to linear smoothers in higher dimensions as explained in Sun and
Loader (1994). For more complicated methods like trees, MARS and projec-
tion pursuit regression, I am not aware of rigorous results that lead to valid
bands.

Undersmoothing. One approach to dealing with the bias problem in con-
structing confidence sets is undersmoothing. The issue is discussed in Hall
(1992b), Neumann (1995), Chen and Qin (2000), and Chen and Qin (2002).
Here, we briefly discuss the results of Chen and Qin.

Let r̂n(x) be the local linear estimator using bandwidth h and assume that
the kernel K has support on [−1, 1]. Let

αj(x/h) =
∫ x/h

−1

ujK(u)du,

f̂0(x) =
1
n

n∑
i=1

1
h

K

(
x − Xi

h

)
, f̂(x) = f̂0(x)/α0(x/h),

σ̂2(x) =
1
n

∑n
i=1

1
hK

(
x−Xi

h

)
(Yi − r̂n(x))2

f̂0(x)

and

I(x) = r̂n(x) ± zα

√
v(x/h)σ̂(x)

nhf̂(x)

where

v(x/h) =

∫ x/h

−1
(α2(x/h) − uα1(x/h))2K2(u)du

(α0(x/h)α2(x/h) − α2
1(x/h))2

.
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Undersmoothing eliminates the asymptotic bias; this means we must take
nh5 → 0. Assuming we do take nh5 → 0, and subject to some regularity
conditions, Chen and Qin (2002) show that

P(r(x) ∈ I(x)) = 1 − α + O

(
nh5 + h2 +

1
nh

)
(5.152)

at interior points and

P(r(x) ∈ I(x)) = 1 − α + O

(
nh5 + h +

1
nh

)
(5.153)

near the boundary. It is interesting that local linear regression eliminates
boundary bias of r̂n but the coverage probability is poor near the boundaries.
The lack of uniformity of the accuracy of the coverage probability can be
fixed using an approach in Chen and Qin (2000). The confidence interval they
propose is {

θ : �(θ) ≤ cα

}
(5.154)

where cα is the upper α quantile of a χ2
1 random variable,

�(θ) = 2
n∑

i=1

log(1 + λ(θ)Wi(Yi − θ)),

λ(θ) is defined by
n∑

i=1

Wi(Yi − θ)
1 + λ(θ)Wi(Yi − θ)

= 0,

Wi = K

(
x − Xi

h

)(
sn,2 − (x − Xi)sn,1

h

)
,

and

sn,j =
1

nh

n∑
i=1

K
(

x−Xi

h

)
(x − Xi)j

hj
.

Assuming we do take hn5 → 0, and subject to some regularity conditions,
Chen and Qin (2000) show that

P(r(x) ∈ I(x)) = 1 − α + O

(
nh5 + h2 +

1
nh

)
(5.155)

over all x. The optimal bandwidth, in terms of minimizing the coverage error
is

h∗ =
c

n1/3
.

Unfortunately, the constant c depends on the unknown function r. It would
appear that practical implementation is still an open research problem.



5.14 Bibliographic Remarks 119

5.14 Bibliographic Remarks

The literature on nonparametric regression is very large. Some good starting
points are Fan and Gijbels (1996), Härdle (1990), Loader (1999a), Hastie and
Tibshirani (1999), and Hastie et al. (2001). A good source of the theory of
splines is Wahba (1990). See also Hastie et al. (2001) and Ruppert et al.
(2003). Local regression and local likelihood are discussed in detail in Loader
(1999a) and Fan and Gijbels (1996). Variable bandwidth selection is discussed
in Fan and Gijbels (1995).

5.15 Appendix

Derivation of the Tube Formula (5.100). Let W (x) =
∑n

i=1 ZiTi(x)
and recall that ||T (x)||2 =

∑n
i=1 Ti(x)2 = 1 so that the vector T (x) is on the

unit sphere, for each x. Since, Z = (Z1, . . . , Zn) are multivariate Normal,

P(sup
x

W (x) > c) = P(sup
x
〈Z, T (x)〉 > c)

= P

(
sup

x

〈
Z

||Z|| , T (x)

〉
>

c

||Z||

)

=
∫ ∞

c2
P

(
sup

x
〈U, T (x)〉 >

c√
y

)
h(y)dy

where U = (U1, . . . , Un) is uniformly distributed on the n−1-dimensional unit
sphere S and h(y) is the density for a χ2 with n degrees of freedom. Since
||U −T (x)||2 = 2(1−〈U, T (x)〉), we see that supx〈U, T (x)〉 > c√

y if and only if

U ∈ tube(r, M) where r =
√

2(1 − c/
√

y), M = {T (x) : x ∈ X} is a manifold
on the sphere S,

tube(r, M) = {u : d(u, M) ≤ r}
and

d(u, M) = inf
x∈X

||u − T (x)||.
Therefore,

P

(
sup

x
〈U, T (x)〉 >

c√
y

)
= P(U ∈ tube(r, M))

=
volume(tube(r, M))

An

where An = 2πn/2/Γ(n/2) is the area of the unit sphere. The formula for
volume(tube(r, M)) was derived by Hotelling (1939) and Naiman (1990) and
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is given by

κ0
An

A2
P(B1,(n−2)/2 ≥ w2) + �0

An

2A1
P(B1/2,(n−1)/2 ≥ w2)

where w = c/
√

y. Inserting this into the integral and ignoring terms of order
smaller than c−1/2e−c2/2 yields (5.100).

The formula can also be obtained using the upcrossing theory of Rice (1939).
Specifically, if W is a Gaussian process on [0, 1] and if Nc denotes the number
of upcrossings of W above c then

P(sup
x

W (x) > c) = P(Nc ≥ 1 or W (0) > c)

≤ P(Nc ≥ 1) + P(W (0) > c)

≤ E(Nc) + P(W (0) > c).

Since W (0) has a Normal distribution, the second term can be easily com-
puted. Moreover, under smoothness conditions on W we have

E(Nc) =
∫ 1

0

∫ ∞

0

ypt(c, y)dydt (5.156)

where pt is the density of (W (t), W ′(t)).

5.16 Exercises

1. In Example 5.24, construct the smoothing matrix L and verify that
ν = m.

2. Prove Theorem 5.34.

3. Get the data on fragments of glass collected in forensic work from the
book website. Let Y be refractive index and let x be aluminium con-
tent (the fourth variable). Perform a nonparametric regression to fit the
model Y = r(x) + ε. Use the following estimators: (i) regressogram, (ii)
kernel, (iii) local linear, (iv) spline. In each case, use cross-validation
to choose the amount of smoothing. Estimate the variance. Construct
95 percent confidence bands for your estimates. Pick a few values of x

and, for each value, plot the effective kernel for each smoothing method.
Visually compare the effective kernels.

4. Get the motorcycle data from the book website. The covariate is time
(in milliseconds) and the response is acceleration at time of impact. Use
cross-validation to fit a smooth curve using local linear regression.
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5. Show that with suitable smoothness assumptions on r(x), σ̂2 in equation
(5.89) is a consistent estimator of σ2.

6. Prove Theorem 5.34.

7. Prove Theorem 5.60.

8. Find conditions under which the estimate in equation (5.86)
is consistent.

9. Consider the data in Exercise 3. Examine the fit as a function of the
bandwidth h. Do this by plotting the fit for many values of h. Add
confidence bands to all the fits. If you are feeling very ambitious, read
Chaudhuri and Marron (1999) and apply that method.

10. Using five equally spaced knots on (0,1), construct a B-spline basis of
order M for M = 1, . . . , 5. Plot the basis functions.

11. Get the motorcycle data from the book website. Fit a cubic regression
spline with equally spaced knots. Use leave-one-out cross-validation to
choose the number of knots. Now fit a smoothing spline and compare
the fits.

12. Recall the Doppler function defined in Example 5.63. Generate 1000
observations from the model Yi = r(xi) + σεi where xi = i/n and
εi ∼ N(0, 1). Make three data sets corresponding to σ = .1, σ = 1 and
σ = 3. Plot the data. Estimate the function using local linear regression.
Plot the cross-validation score versus the bandwidth. Plot the fitted
function. Find and plot a 95 percent confidence band.

13. Repeat the previous question but use smoothing splines.

14. Download the air quality data set from the book website. Model ozone as
a function of temperature. Use kernel regression and compare the fit you
get when you choose the bandwidth using cross-validation, generalized
cross-validation, Cp and the plug-in method.

15. Let Yi ∼ N(µi, 1) for i = 1, . . . , n be independent observations. Find
the estimators that minimizes each of the following penalized sums of
squares:

(a)
n∑

i=1

(Yi − µ̂i)2 + λ

n∑
i=1

µ̂2
i
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(b)
n∑

i=1

(Yi − µ̂i)2 + λ

n∑
i=1

|µ̂i|

(c)
n∑

i=1

(Yi − µ̂i)2 + λ

n∑
i=1

I(µ̂i = 0).

16. Show that a locally polynomial smoother of order p reproduces polyno-
mials of order p.

17. Suppose that r : [0, 1] → R satisfies the following Lipschitz condition:

sup
0≤x<y≤1

|r(y) − r(x)| ≤ L|y − x| (5.157)

where L > 0 is given. The class of all such functions is denoted by
Flip(L). What is the maximum bias of a kernel estimator r̂n based on
bandwidth h, if r ∈ Flip(L)?

18. Implement quantile regression on the glass data (Exercise 3) with
α = 1/2.

19. Prove that the weights �i(x) for the local polynomial smoother satisfy

�i(x) = K

(
xi − x

h

)
Pi(x) (5.158)

for some polynomial

Pi(x) = α0 + α1(xi − x) + · · · + αp(xi − x)p.

Moreover, if the ith observation (xi, Yi) is omitted, the resulting weights
satisfy (5.32). Thus, while we took (5.32) as the definition of the leave-
one-out weights, one can derive this form of the weights.

20. Suppose that �i(x) = K((x−xi)/h) for some smooth kernel K and that
the xi’s are equally spaced. Define κ0 as in (5.101). Show that, if we
ignore boundary effects,

κ0 ≈
(

b − a

h

) ||K ′||
||K||

where ||g||2 =
∫ b

a
g2(x)dx.

21. Show how to construct a confidence band for the derivative estimator
r̂(k) given in (5.143). Hint: Note that the estimator is linear and follow
the construction of the confidence band for r̂n(x).
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22. Download the air quality data set from the book website. Model ozone
as a function of solar R, wind and temperature. Use (i) multiple local
linear regression, (ii) projection pursuit, (iii) additive regression, (iv)
regression trees, and (v) MARS. Compare the results.

23. Explain how to construct confidence bands in additive models. Apply
this to the data from Exercise 22.

24. Let r̂n(x1, x2) =
∑n

i=1 Yi�i(x1, x2) be a linear estimator of the multiple
regression function r(x1, x2). Suppose we want to test the hypothesis
that the covariate x2 can be dropped from the regression. One possibility
is to form a linear estimator of the form r̃n(x1) =

∑n
i=1 Yi�̃i(x1) and

then compute

T =
n∑

i=1

(r̂n(x1i, x2i) − r̃n(x1i))2.

(i) Assume that the true model is Yi = r(x1i) + εi where εi ∼ N(0, σ2).
For simplicity take σ known. Find an expression for the distribution of
T .

(ii) The null distribution in part (i) depends on the unknown function
r(x1). How might you estimate the null distribution?

(iii) Create simulated data from the model in (i) (use any function r(x1)
you like) and see if your proposed method in (ii) does approximate the
null distribution.



6
Density Estimation

Let F be a distribution with probability density f = F ′ and let

X1, . . . , Xn ∼ F

be an iid sample from F . The goal of nonparametric density estimation
is to estimate f with as few assumptions about f as possible. We denote the
estimator by f̂n. As with nonparametric regression, the estimator will depend
on a smoothing parameter h and choosing h carefully is important.

6.1 Example (Bart Simpson). The top left plot in Figure 6.1 shows the density

f(x) =
1
2
φ(x; 0, 1) +

1
10

4∑
j=0

φ(x; (j/2) − 1, 1/10) (6.2)

where φ(x; µ, σ) denotes a Normal density with mean µ and standard deviation
σ. Marron and Wand (1992) call this density “the claw” although we will call
it the Bart Simpson density. Based on 1000 draws from f , I computed a kernel
density estimator, described later in the chapter. The top right plot is based
on a small bandwidth h which leads to undersmoothing. The bottom right plot
is based on a large bandwidth h which leads to oversmoothing. The bottom
left plot is based on a bandwidth h which was chosen to minimize estimated
risk. This leads to a much more reasonable density estimate. �
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FIGURE 6.1. The Bart Simpson density from Example 6.1. Top left: true density.
The other plots are kernel estimators based on n = 1000 draws. Bottom left: band-
width h = 0.05 chosen by leave-one-out cross-validation. Top right: bandwidth h/10.
Bottom right: bandwidth 10h.

6.1 Cross-Validation

We will evaluate the quality of an estimator f̂n with the risk, or integrated
mean squared error, R = E(L) where

L =
∫

(f̂n(x) − f(x))2dx

is the integrated squared error loss function. The estimators will depend
on some smoothing parameter h and we will choose h to minimize an es-
timate of the risk. The usual method for estimating risk is leave-one-out
cross-validation. The details are different for density estimation than for
regression. In the regression case, the cross-validation score was defined as∑n

i=1(Yi − r̂(−i)(xi))2 but in density estimation, there is no response variable
Y . Instead, we proceed as follows.
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The loss function, which we now write as a function of h, (since f̂n will
depend on some smoothing parameter h) is

L(h) =
∫

(f̂n(x) − f(x))2 dx

=
∫

f̂ 2
n (x) dx − 2

∫
f̂n(x)f(x)dx +

∫
f2(x) dx.

The last term does not depend on h so minimizing the loss is equivalent to
minimizing the expected value of

J(h) =
∫

f̂ 2
n (x) dx − 2

∫
f̂n(x)f(x)dx. (6.3)

We shall refer to E(J(h)) as the risk, although it differs from the true risk by
the constant term

∫
f2(x) dx.

6.4 Definition. The cross-validation estimator of risk is

Ĵ(h) =
∫ (

f̂n(x)
)2

dx − 2
n

n∑
i=1

f̂(−i)(Xi) (6.5)

where f̂(−i) is the density estimator obtained after removing the ith

observation. We refer to Ĵ(h) as the cross-validation score or estimated
risk.

6.2 Histograms

Perhaps the simplest nonparametric density estimator is the histogram. Sup-
pose f has its support on some interval which, without loss of generality, we
take to be [0, 1]. Let m be an integer and define bins

B1 =
[
0,

1
m

)
, B2 =

[
1
m

,
2
m

)
, . . . , Bm =

[
m − 1

m
, 1
]

. (6.6)

Define the binwidth h = 1/m, let Yj be the number of observations in Bj ,
let p̂j = Yj/n and let pj =

∫
Bj

f(u)du.
The histogram estimator is defined by

f̂n(x) =
m∑

j=1

p̂j

h
I(x ∈ Bj). (6.7)
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To understand the motivation for this estimator, note that, for x ∈ Bj and h

small,

E(f̂n(x)) =
E(p̂j)

h
=

pj

h
=

∫
Bj

f(u)du

h
≈ f(x)h

h
= f(x).

6.8 Example. Figure 6.2 shows three different histograms based on n = 1, 266
data points from an astronomical sky survey. These are the data from Example
4.3. Each data point represents a “redshift,” roughly speaking, the distance
from us to a galaxy. Choosing the right number of bins involves finding a
good tradeoff between bias and variance. We shall see later that the top left
histogram has too many bins resulting in oversmoothing and too much bias.
The bottom left histogram has too few bins resulting in undersmoothing. The
top right histogram is based on 308 bins (chosen by cross-validation). The
histogram reveals the presence of clusters of galaxies. �
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FIGURE 6.2. Three versions of a histogram for the astronomy data. The top left
histogram has too many bins. The bottom left histogram has too few bins. The
top right histogram uses 308 bins (chosen by cross-validation). The lower right plot
shows the estimated risk versus the number of bins.
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6.9 Theorem. Consider fixed x and fixed m, and let Bj be the bin containing
x. Then,

E(f̂n(x)) =
pj

h
and V(f̂n(x)) =

pj(1 − pj)
nh2

. (6.10)

6.11 Theorem. Suppose that f ′ is absolutely continuous and that∫
(f ′(u))2du < ∞. Then

R(f̂n, f) =
h2

12

∫
(f ′(u))2du +

1
nh

+ o(h2) + o

(
1
n

)
. (6.12)

The value h∗ that minimizes (6.12) is

h∗ =
1

n1/3

(
6∫

(f ′(u))2du

)1/3

. (6.13)

With this choice of binwidth,

R(f̂n, f) ∼ C

n2/3
(6.14)

where C = (3/4)2/3

(∫
(f ′(u))2du

)1/3

.

The proof of Theorem 6.11 is in the appendix. We see that with an optimally
chosen binwidth, the risk decreases to 0 at rate n−2/3. We will see shortly
that kernel estimators converge at the faster rate n−4/5 and that, in a certain
sense, no faster rate is possible; see Theorem 6.31. The formula for the optimal
binwidth h∗ is of theoretical interest but it is not useful in practice since it
depends on the unknown function f . In practice, we use cross-validation as
described in Section 6.1. There is a simple formula for computing the cross-
validation score Ĵ(h).

6.15 Theorem. The following identity holds:

Ĵ(h) =
2

h(n − 1)
− n + 1

h(n − 1)

m∑
j=1

p̂ 2
j . (6.16)

6.17 Example. We used cross-validation in the astronomy example. We find
that m = 308 is an approximate minimizer. The histogram in the top right
plot in Figure 6.2 was constructed using m = 308 bins. The bottom right plot
shows the estimated risk, or more precisely, Ĵ , plotted versus the number of
bins. �
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Next, we want a confidence set for f . Suppose f̂n is a histogram with m bins
and binwidth h = 1/m. For reasons explained in Section 5.7, it is difficult to
construct a confidence set for f . Instead, we shall make confidence statements
about f at the resolution of the histogram. Thus, define

fn(x) = E(f̂n(x)) =
m∑

j=1

pj

h
I(x ∈ Bj) (6.18)

where pj =
∫

Bj
f(u)du. Think of fn(x) as a “histogramized” version of f .

Recall that a pair of functions (�, u) is a 1 − α confidence band for fn if

P
(
�(x) ≤ fn(x) ≤ u(x) for all x

) ≥ 1 − α. (6.19)

We could use the type of reasoning as in (5.100) but, instead, we take a simpler
route.

6.20 Theorem. Let m = m(n) be the number of bins in the histogram f̂n.
Assume that m(n) → ∞ and m(n) log n/n → 0 as n → ∞. Define

�n(x) =
(

max
{√

f̂n(x) − c, 0
})2

un(x) =
(√

f̂n(x) + c

)2

(6.21)

where

c =
zα/(2m)

2

√
m

n
. (6.22)

Then, (�n(x), un(x)) is an approximate 1 − α confidence band for fn.

Proof. Here is an outline of the proof. From the central limit theorem,
and assuming 1 − pj ≈ 1, p̂j ≈ N(pj , pj(1 − pj)/n). By the delta method,√

p̂j ≈ N(√pj, 1/(4n)). Moreover, the
√

p̂j ’s are approximately independent.
Therefore,

2
√

n

(√
p̂j −√

pj

)
≈ Zj (6.23)

where Z1, . . . , Zm ∼ N(0, 1). Let

A =
{

�n(x) ≤ fn(x) ≤ un(x) for all x

}
=
{

max
x

∣∣∣∣√f̂n(x) −
√

f(x)
∣∣∣∣ ≤ c

}
.

Then,

P(Ac) = P

(
max

x

∣∣∣∣√f̂n(x) −
√

f(x)
∣∣∣∣ > c

)
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FIGURE 6.3. Ninety-five percent confidence envelope for astronomy data using
m = 308 bins.

= P

(
max

j
2
√

n
∣∣∣√p̂j −√

pj

∣∣∣ > zα/(2m)

)
≈ P

(
max

j
|Zj | > zα/(2m)

)
≤

m∑
j=1

P
(|Zj | > zα/(2m)

)
=

m∑
j=1

α

m
= α. �

6.24 Example. Figure 6.3 shows a 95 percent confidence envelope for the
astronomy data. We see that even with over 1000 data points, there is still
substantial uncertainty about f as reflected by the wide bands. �

6.3 Kernel Density Estimation

Histograms are not smooth. In this section we discuss kernel density estimators
which are smoother and which converge to the true density faster. Recall that
the word kernel refers to any smooth function K satisfying the conditions
given in (4.22). See Section 4.2 for examples of kernels.
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6.25 Definition. Given a kernel K and a positive number h, called the
bandwidth, the kernel density estimator is defined to be

f̂n(x) =
1
n

n∑
i=1

1
h

K

(
x − Xi

h

)
. (6.26)

This amounts to placing a smoothed out lump of mass of size 1/n over each
data point Xi; see Figure 6.4.

−10 −5 0 5 10

FIGURE 6.4. A kernel density estimator f̂n. At each point x, f̂n(x) is the average
of the kernels centered over the data points Xi. The data points are indicated by
short vertical bars. The kernels are not drawn to scale.

As with kernel regression, the choice of kernel K is not crucial, but the
choice of bandwidth h is important. Figure 6.5 shows density estimates with
several different bandwidths. (This is the same as Figure 4.3.) Look also at
Figure 6.1. We see how sensitive the estimate f̂n is to the choice of h. Small
bandwidths give very rough estimates while larger bandwidths give smoother
estimates. In general we will let the bandwidth depend on the sample size so
we write hn. Here are some properties of f̂n.
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FIGURE 6.5. Kernel density estimators and estimated risk for the astronomy data.
Top left: oversmoothed. Top right: just right (bandwidth chosen by cross-validation).
Bottom left: undersmoothed. Bottom right: cross-validation curve as a function of
bandwidth h. The bandwidth was chosen to be the value of h where the curve is a
minimum.

6.27 Theorem. Assume that f is continuous at x and that hn → 0 and nhn →
∞ as n → ∞. Then f̂n(x) P−→ f(x).

6.28 Theorem. Let Rx = E(f(x)− f̂ (x))2 be the risk at a point x and let R =∫
Rx dx denote the integrated risk. Assume that f ′′ is absolutely continuous

and that
∫
(f ′′′(x))2dx < ∞. Also, assume that K satisfies (4.22). Then,

Rx =
1
4
σ4

Kh4
n(f ′′(x))2 +

f(x)
∫

K2(x)dx

nhn
+ O

(
1
n

)
+ O(h6

n)

and

R =
1
4
σ4

Kh4
n

∫
(f ′′(x))2dx +

∫
K2(x)dx

nh
+ O

(
1
n

)
+ O(h6

n) (6.29)

where σ2
K =

∫
x2K(x)dx.
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Proof. Write Kh(x, X) = h−1K ((x − X)/h) and f̂n(x) = n−1
∑

i Kh(x, Xi).
Thus, E[f̂n(x)] = E[Kh(x, X)] and V[f̂n(x)] = n−1

V[Kh(x, X)]. Now,

E[Kh(x, X)] =
∫

1
h

K

(
x − t

h

)
f(t) dt

=
∫

K(u)f(x − hu) du

=
∫

K(u)
[
f(x) − huf ′(x) +

h2u2

2
f ′′(x) + · · ·

]
du

= f(x) +
1
2
h2f ′′(x)

∫
u2K(u) du · · ·

since
∫

K(x) dx = 1 and
∫

xK(x) dx = 0. The bias is

E[Khn(x, X)] − f(x) =
1
2
σ2

Kh2
nf ′′(x) + O(h4

n).

By a similar calculation,

V[f̂n(x)] =
f(x)

∫
K2(x) dx

n hn
+ O

(
1
n

)
.

The first result then follows since the risk is the squared bias plus variance.
The second result follows from integrating the first. �

If we differentiate (6.29) with respect to h and set it equal to 0, we see that
the asymptotically optimal bandwidth is

h∗ =
(

c2

c2
1A(f)n

)1/5

(6.30)

where c1 =
∫

x2K(x)dx, c2 =
∫

K(x)2dx and A(f) =
∫

(f ′′(x))2dx. This
is informative because it tells us that the best bandwidth decreases at rate
n−1/5. Plugging h∗ into (6.29), we see that if the optimal bandwidth is used
then R = O(n−4/5). As we saw, histograms converge at rate O(n−2/3) showing
that kernel estimators are superior in rate to histograms. According to the
next theorem, there does not exist an estimator that converges faster than
O(n−4/5). For a proof, see, for example, Chapter 24 of van der Vaart (1998).

6.31 Theorem. Let F be the set of all probability density functions and let
f (m) denote the mth derivative of f . Define

Fm(c) =
{

f ∈ F :
∫

|f (m)(x)|2dx ≤ c2

}
.
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For any estimator f̂n,

sup
f∈Fm(c)

Ef

∫
(f̂n(x) − f(x))2dx ≥ b

(
1
n

)2m/(2m+1)

(6.32)

where b > 0 is a universal constant that depends only on m and c.

In particular, taking m = 2 in the previous theorem we see that n−4/5 is
the fastest possible rate.

In practice, the bandwidth can be chosen by cross-validation but first we
describe another method which is sometimes used when f is thought to be
very smooth. Specifically, we compute h∗ from (6.30) under the idealized
assumption that f is Normal. This yields h∗ = 1.06σn−1/5. Usually, σ is
estimated by min{s, Q/1.34} where s is the sample standard deviation and Q

is the interquartile range.1 This choice of h∗ works well if the true density is
very smooth and is called the Normal reference rule.

The Normal Reference Rule

For smooth densities and a Normal kernel, use the bandwidth

hn =
1.06 σ̂

n1/5

where

σ̂ = min
{

s,
Q

1.34

}
.

Since we don’t want to necessarily assume that f is very smooth, it is usually
better to estimate h using cross-validation. Recall from Section 6.1 that the
cross-validation score is

Ĵ(h) =
∫

f̂2(x)dx − 2
n

n∑
i=1

f̂−i(Xi) (6.33)

where f̂−i denotes the kernel estimator obtained by omitting Xi. The next
theorem gives a simpler expression for Ĵ .

6.34 Theorem. For any h > 0,

E

[
Ĵ(h)

]
= E [J(h)] .

1Recall that the interquartile range is the 75th percentile minus the 25th percentile. The
reason for dividing by 1.34 is that Q/1.34 is a consistent estimate of σ if the data are from a
N(µ, σ2).
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Also,

Ĵ(h) =
1

hn2

∑
i

∑
j

K∗
(

Xi − Xj

h

)
+

2
nh

K(0) + O

(
1
n2

)
(6.35)

where K∗(x) = K(2)(x) − 2K(x) and K(2)(z) =
∫

K(z − y)K(y)dy.

6.36 Remark. When K is a N(0,1) Gaussian kernel then K(2)(z) is the N(0, 2)
density. Also, we should point out that the estimator f̂n and the cross-validation
score (6.35) can be computed quickly using the fast Fourier transform; see
pages 61–66 of Silverman (1986).

A justification for cross-validation is given by the following remarkable the-
orem due to Stone (1984).

6.37 Theorem (Stone’s theorem). Suppose that f is bounded. Let f̂h denote
the kernel estimator with bandwidth h and let ĥ denote the bandwidth chosen
by cross-validation. Then,∫ (

f(x) − f̂ĥ(x)
)2

dx

infh

∫ (
f(x) − f̂h(x)

)2

dx

a.s.−→ 1. (6.38)

The bandwidth for the density estimator in the upper right panel of Figure
6.5 is based on cross-validation. In this case it worked well but of course there
are lots of examples where there are problems. Do not assume that, if the
estimator f̂ is wiggly, then cross-validation has let you down. The eye is not
a good judge of risk.

Another approach to bandwidth selection called plug-in bandwidths. The
idea is as follows. The (asymptotically) optimal bandwidth is given in equation
(6.30). The only unknown quantity in that formula is A(f) =

∫
(f ′′(x))2dx. If

we have an estimate f̂ ′′ of f ′′, then we can plug this estimate into the formula
for the optimal bandwidth h∗. There is a rich and interesting literature on this
and similar approaches. The problem with this approach is that estimating f ′′

is harder than estimating f . Indeed, we need to make stronger assumptions
about f to estimate f ′′. But if we make these stronger assumptions then the
(usual) kernel estimator for f is not appropriate. Loader (1999b) has inves-
tigated this issue in detail and provides evidence that the plug-in bandwidth
approach might not be reliable. There are also methods that apply corrections
to plug-in rules; see Hjort (1999).

A generalization of the kernel method is to use adaptive kernels where
one uses a different bandwidth h(x) for each point x. One can also use a
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different bandwidth h(xi) for each data point. This makes the estimator more
flexible and allows it to adapt to regions of varying smoothness. But now we
have the very difficult task of choosing many bandwidths instead of just one.
See Chapter 9 for more on adaptive methods.

Constructing confidence bands for kernel density estimators is more com-
plicated than for regression. We discuss one possible approach in Section 6.6.

6.4 Local Polynomials

In Chapter 5 we saw that kernel regression suffers from boundary bias and
that this bias can be reduced by using local polynomials. The same is true for
kernel density estimation. But what density estimation method corresponds
to local polynomial regression? One possibility, developed by Loader (1999a)
and Hjort and Jones (1996) is to use local likelihood density estimation.

The usual definition of log-likelihood is L(f) =
∑n

i=1 log f(Xi). It is conve-
nient to generalize this definition to

L(f) =
n∑

i=1

log f(Xi) − n

(∫
f(u) du − 1

)
.

The second term is zero when f integrates to one. Including this term allows
us to maximize over all non-negative f with imposing the constraint that∫

f(u)du = 1. The local version of this log-likelihood is as follows:

6.39 Definition. Given a kernel K and bandwidth h, the local
log-likelihood at a target value x is

Lx(f) =
n∑

i=1

K

(
Xi − x

h

)
log f(Xi) − n

∫
K

(
u − x

h

)
f(u) du. (6.40)

The above definition is for an arbitrary density f . We are interested in the
case where we approximate log f(u) by a polynomial in a neighborhood of x.
Thus we write

log f(u) ≈ Px(a, u) (6.41)

where

Px(a, u) = a0 + a1(x − u) + · · · + ap
(x − u)p

p!
. (6.42)



138 6. Density Estimation

Plugging (6.41) into (6.40) yields the local polynomial log-likelihood

Lx(a) =
n∑

i=1

K

(
Xi − x

h

)
Px(a, Xi) − n

∫
K

(
u − x

h

)
ePx(a,u)du. (6.43)

6.44 Definition. Let â = (â0, . . . , âp)T maximize Lx(a). The local
likelihood density estimate is

f̂n(x) = ePx(â,x) = eâ0 . (6.45)

6.46 Remark. When p = 0, f̂n reduces to kernel density estimation.

6.5 Multivariate Problems

Suppose now that the data are d-dimensional so that Xi = (Xi1, . . . , Xid). As
we discussed in the two previous chapters, we can generalize the methods to
higher dimensions quite easily in principle, though the curse of dimensionality
implies that the accuracy of the estimator deteriorates quickly as dimension
increases.

The kernel estimator can easily be generalized to d dimensions. Most often,
we use the product kernel

f̂n(x) =
1

nh1 · · ·hd

n∑
i=1

⎧⎨⎩
d∏

j=1

K

(
xj − Xij

hj

)⎫⎬⎭ . (6.47)

The risk is given by

R ≈ 1
4
σ4

K

⎡⎣ d∑
j=1

h4
j

∫
f2

jj(x)dx +
∑
j �=k

h2
jh

2
k

∫
fjjfkkdx

⎤⎦ +

(∫
K2(x)dx

)d
nh1 · · ·hd

(6.48)
where fjj is the second partial derivative of f . The optimal bandwidth satisfies
hi = O(n−1/(4+d)) leading to a risk of order R = O(n−4/(4+d)). Again, we
see that the risk increases quickly with dimension. To get a sense of how
serious this problem is, consider the following table from Silverman (1986)
which shows the sample size required to ensure a relative mean squared error
less than 0.1 at 0 when the density is multivariate normal and the optimal
bandwidth is selected.
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Dimension Sample Size
1 4
2 19
3 67
4 223
5 768
6 2790
7 10,700
8 43,700
9 187,000

10 842,000

This is bad news. If you do attempt to estimate a density in a high dimen-
sional problem, you should not report the results without reporting confidence
bands. The confidence band method described in Section 6.6 can be extended
for the multivariate case, although we do not report the details here. These
bands get very wide as d increases. The problem is not the method of estima-
tion; rather, the wide bands correctly reflect the difficulty of the problem.

6.6 Converting Density Estimation Into Regression

There is a useful trick for converting a density estimation problem into a
regression problem. Then we can use all the regression methods from the
previous chapter. This trick is an old idea but was recently made rigorous
by Nussbaum (1996a) and Brown et al. (2005). By converting to regression,
we can use all the tools we developed in the previous chapter, including the
method for constructing confidence bands.

Suppose X1, . . . , Xn ∼ F with density f = F ′. For simplicity, suppose the
data are on [0, 1]. Divide the interval [0, 1] into k equal width bins where
k ≈ n/10. Define

Yj =

√
k

n
×
√

Nj +
1
4

(6.49)

where Nj is the number of observations in bin j. Then,

Yj ≈ r(tj) + σεj (6.50)

where εj ∼ N(0, 1), σ =
√

k
4n , r(x) =

√
f(x) and tj is the midpoint of the

jth bin. To see why, let Bj denote the jth bin and note that

Nj ≈ Poisson

(
n

∫
Bj

f(x)dx

)
≈ Poisson

(
nf(tj)

k

)
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so that E(Nj) = V (Nj) ≈ nf(tj)/k. Applying the delta method, we see that
E(Yj) ≈

√
f(tj) and V(Yj) ≈ k/(4n).

We have thus converted the density estimation problem into a nonparamet-
ric regression problem with equally spaced xis and constant variance. We can
now apply any nonparametric regression method to get an estimate r̂n and
take

f̂n(x) =
(r+(x))2∫ 1

0 (r+(s))2 ds

where r+(x) = max
{
r̂n(x), 0

}
. In particular, we can construct confidence

bands as in Chapter 5. It is important to note that binning is not a smoothing
step; binning is being used to turn density estimation into regression.

6.51 Example. Figure 6.6 shows the method applied to data from the Bart
Simpson distribution. The top plot shows the cross-validation score. The bot-
tom plot shows the estimated density and 95 percent confidence bands. �

6.7 Bibliographic Remarks

Kernel smoothing was invented by Rosenblatt (1956) and Parzen (1962). The
cross-validation method is due to Rudemo (1982). Two very good books on
density estimation are Scott (1992) and Silverman (1986). For information
on a different approach called the scale-space approach see Chaudhuri and
Marron (1999) and Chaudhuri and Marron (2000).

6.8 Appendix

proof of Theorem 6.11. For any x, u ∈ Bj ,

f(u) = f(x) + (u − x)f ′(x) +
(u − x)2

2
f ′′(x̃)

for some x̃ between x and u.
Hence,

pj =
∫

Bj

f(u)du =
∫

Bj

(
f(x) + (u − x)f ′(x) +

(u − x)2

2
f ′′(x̃)

)
du

= f(x)h + hf ′(x)
(

h

(
j − 1

2

)
− x

)
+ O(h3).
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27 34 43

−3 0 3

0.
0

0.
5

FIGURE 6.6. Density estimation by regression. The data were binned and ker-
nel regression was used on the square root of the counts. The top plot shows the
cross-validation score by effective degrees of freedom. The bottom plot shows the
estimate and a 95 percent confidence envelope. See Example 6.51.

Therefore, the bias b(x) is

b(x) = E(f̂n(x)) − f(x) =
pj

h
− f(x)

=
f(x)h + hf ′(x)

(
h
(
j − 1

2

)− x
)

+ O(h3)
h

− f(x)

= f ′(x)
(

h

(
j − 1

2

)
− x

)
+ O(h2).

By the mean value theorem we have, for some x̃j ∈ Bj, that∫
Bj

b2(x) dx =
∫

Bj

(f ′(x))2
(

h

(
j − 1

2

)
− x

)2

dx + O(h4)

= (f ′(x̃j))2
∫

Bj

(
h

(
j − 1

2

)
− x

)2

dx + O(h4)
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= (f ′(x̃j))2
h3

12
+ O(h4).

Therefore, ∫ 1

0

b2(x)dx =
m∑

j=1

∫
Bj

b2(x)dx + O(h3)

=
m∑

j=1

(f ′(x̃j))2
h3

12
+ O(h3)

=
h2

12

m∑
j=1

h (f ′(x̃j))2 + O(h3)

=
h2

12

∫ 1

0

(f ′(x))2dx + o(h2).

Now consider the variance. By the mean value theorem, pj =
∫

Bj
f(x)dx =

hf(xj) for some xj ∈ Bj . Hence, with v(x) = V(f̂n(x),∫ 1

0

v(x) dx =
m∑

j=1

∫
Bj

v(x) dx =
m∑

j=1

∫
Bj

pj(1 − pj)
nh2

=
1

nh2

m∑
j=1

∫
Bj

pj − 1
nh2

m∑
j=1

∫
Bj

p2
j =

1
nh

− 1
nh

m∑
j=1

p2
j

=
1

nh
− 1

nh

m∑
j=1

h2f2(xj) =
1

nh
− 1

n

m∑
j=1

hf2(xj)

=
1

nh
− 1

n

(∫ 1

0

f2(x)dx + o(1)
)

=
1

nh
+ o

(
1
n

)
. �

6.9 Exercises

1. Prove Theorem 6.27.

2. Let X1, . . . , Xn ∼ f and let f̂n be the kernel density estimator using the
boxcar kernel:

K(x) =
{

1 − 1
2 < x < 1

2
0 otherwise.

(a) Show that

E(f̂(x)) =
1
h

∫ x+(h/2)

x−(h/2)

f(y)dy
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and

V(f̂(x)) =
1

nh2

⎡⎣∫ x+(h/2)

x−(h/2)

f(y)dy −
(∫ x+(h/2)

x−(h/2)

f(y)dy

)2
⎤⎦ .

(b) Show that if h → 0 and nh → ∞ as n → ∞ then f̂n(x) P−→ f(x).

3. Prove that Ĵ(h) is an unbiased estimate of J(h) for histograms and
kernel density estimates.

4. Prove equation 6.35.

5. Data on the salaries of the chief executive officer of 60 companies is
available at:

http://lib.stat.cmu.edu/DASL/Datafiles/ceodat.html

Investigate the distribution of salaries using a histogram and a ker-
nel density estimator. Use least squares cross-validation to choose the
amount of smoothing. Also consider the Normal reference rule for pick-
ing a bandwidth for the kernel. There appear to be a few bumps in the
density. Are they real? Use confidence bands to address this question.
Finally, try using various kernel shapes and comment on the resulting
estimates.

6. Get the data on fragments of glass collected in forensic work from the
book website. Estimate the density of the first variable (refractive index)
using a histogram and a kernel density estimator. Use cross-validation to
choose the amount of smoothing. Experiment with different binwidths
and bandwidths. Comment on the similarities and differences. Construct
95 percent confidence bands for your estimators. For the kernel, exper-
iment with different kernel shapes.

7. Consider the data in Exercise 6. Examine the fit as a function of the
bandwidth h. Do this by plotting the fit for many values of h. Add
confidence bands to all the fits. If you are feeling very ambitious, read
Chaudhuri and Marron (1999) and apply that method.

8. Prove that local likelihood density estimation reduces to kernel density
estimation when the degree of the polynomial p = 0.

9. Apply local polynomial density estimation to the data in Exercise 6.
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10. Generate data from the Bart Simpson distribution (6.2). Compare ker-
nel density estimation to the method in Section 6.6. Try the following
sample sizes: n = 25, 50, 100, 1, 000.



7
Normal Means and Minimax Theory

In this chapter we will discuss the many Normal means problem which
unifies some nonparametric problems and will be the basis for the methods in
the next two chapters. The material in this chapter is more theoretical than
in the rest of the book. If you are not interested in the theoretical details, I
recommend reading sections 7.1, 7.2, and 7.3 and then skipping to the next
chapter, referring back as needed. If you want more details on this topic, I
recommend Johnstone (2003).

7.1 The Normal Means Model

Let Zn = (Z1, . . . , Zn) where

Zi = θi + σn εi, i = 1, . . . , n, (7.1)

ε1, . . ., εn are independent, Normal(0, 1) random variables,

θn = (θ1, . . . , θn) ∈ R
n

is a vector of unknown parameters and σn is assumed known. Typically σn =
σ/

√
n but we shall not assume this unless specifically noted. Sometimes we

write Zn and θn as Z and θ. The model may appear to be parametric but
the number of parameters is increasing at the same rate as the number of
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θ1 θ2 . . . θi . . . θn

X11 X21 . . . Xi1 . . . Xn1

...
...

...
...

...
...

X1j X2j . . . Xij . . . Xnj

...
...

...
...

...
...

X1n X2n . . . Xin

... Xnn

Z1 Z2 . . . Zi . . . Zn

FIGURE 7.1. The Normal means model. Xij = θi + N(0, σ2) and
Zi = n−1∑n

j=1 Xij = θi + σnεi where σn = σ/
√

n. Estimating the parame-
ters θ1, . . . , θn from the n column means Z1, . . . , Zn leads to the model (7.1) with
σn = σ/

√
n.

data points. This model carries with it all the complexities and subtleties of a
nonparametric problem. We will also consider an infinite-dimensional version
of the model:

Zi = θi + σn εi, i = 1, 2, . . . , (7.2)

where now the unknown parameter is θ = (θ1, θ2, . . .).
Throughout this chapter we take σ2

n as known. In practice, we would need to
estimate the variance using one of the methods discussed in Chapter 5. In this
case, the exact results that follow may no longer hold but, under appropriate
smoothness conditions, asymptotic versions of the results will hold.

7.3 Example. To provide some intuition for this model, suppose that we have
data Xij = θi + σδij where 1 ≤ i, j ≤ n and the δij are independent N(0,1)
random variables. This is simply a one-way analysis of variance model; see
Figure 7.1. Let Zi = n−1

∑n
j=1 Xij . Then the model (7.1) holds with σn =

σ/
√

n. We get the infinite version (7.2) by having infinitely many columns in
Figure 7.1 (but still n rows). �

Given an estimator θ̂n = (θ̂1, . . . , θ̂n) we will use the squared error loss

L(θ̂n, θn) =
n∑

i=1

(θ̂i − θi)2 = ||θ̂n − θn||2

with risk function

R(θ̂n, θn) = Eθ

(
L(θ̂n, θn)

)
=

n∑
i=1

Eθ(θ̂i − θi)2.

An obvious choice for an estimator of θn is θ̂n = Zn. This estimator has
impressive credentials: it is the maximum likelihood estimator, it is the min-
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imum variance unbiased estimator and it is the Bayes estimator under a flat
prior. Nonetheless, it is a poor estimator. Its risk is

R(Zn, θn) =
n∑

i=1

Eθ(Zi − θi)2 =
n∑

i=1

σ2
n = nσ2

n.

We shall see that there are estimators with substantially smaller risk.
Before we explain how we can improve on the mle, let’s first see how the

normal means problem relates to nonparametric regression and density esti-
mation. To do that, we need to review some theory about function spaces.

7.2 Function Spaces

Let L2(a, b) denote the set of functions f : [a, b] → R such that
∫ b

a f2(x) dx <

∞. Unless otherwise indicated, assume that a = 0 and b = 1. The inner
product between two functions f and g in L2(a, b) is

∫ b

a
f(x)g(x)dx and the

norm of f is ||f || =
√∫ b

a
f2(x) dx. A sequence of functions φ1, φ2, . . . is called

orthonormal if ||φj || = 1 for all j (normalized) and
∫ b

a φi(x)φj(x)dx = 0 for
i �= j (orthogonal). The sequence is complete if the only function that is
orthogonal to each φj is the zero function. A complete, orthonormal set of
functions forms a basis, meaning that if f ∈ L2(a, b) then f can be expanded
in the basis:

7.4 Theorem. If f ∈ L2(a, b) then1

f(x) =
∞∑

j=1

θjφj(x) (7.5)

where

θj =
∫ b

a

f(x)φj(x) dx. (7.6)

Furthermore, ∫ b

a

f2(x)dx =
∞∑

j=1

θ2
j (7.7)

which is known as Parseval’s identity.

1The equality sign in (7.5) means that
∫ b
a (f(x) − fN (x))2dx → 0 as N → ∞, where

fN =
∑N

j=1 θjφj(x).
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An example of an orthonormal basis for L2(0, 1) is the cosine basis

φ0(x) = 1, φj(x) =
√

2 cos(2πjx), j = 1, 2, . . . .

Another example is the Legendre basis defined on (−1, 1):

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(3x2 − 1), P3(x) =

1
2
(5x3 − 3x), . . .

These polynomials are defined by the relation

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n.

The Legendre polynomials are orthogonal but not orthonormal since∫ 1

−1

P 2
n(x)dx =

2
2n + 1

.

However, we can define modified Legendre polynomials Qn(x) =
√

(2n + 1)/2
Pn(x) which then form an orthonormal basis for L2(−1, 1).

Next we introduce Sobolev spaces, which are sets of smooth functions. Let
Djf denote the jth weak derivative2 of f .

7.8 Definition. The Sobolev space of order m, is defined by

W (m) =
{
f ∈ L2(0, 1) : Dmf ∈ L2(0, 1)

}
.

The Sobolev space of order m and radius c, is defined by

W (m, c) =
{
f : f ∈ W (m), ||Dmf ||2 ≤ c2

}
.

The periodic Sobolev class is

W̃ (m, c) =
{
f ∈ W (m, c) : Djf(0) = Djf(1), j = 0, . . . , m − 1

}
.

An ellipsoid is a set of the form

Θ =

{
θ :

∞∑
j=1

a2
jθ

2
j ≤ c2

}
(7.9)

where aj is a sequence of numbers such that aj → ∞ as j → ∞.

2The weak derivative is defined in the appendix.
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7.10 Definition. If Θ is an ellipsoid and if a2
j ∼ (πj)2m as j → ∞, we call

Θ a Sobolev ellipsoid or a Sobolev body and we denote it by Θ(m, c).

Now we relate Sobolev spaces to Sobolev ellipsoids.

7.11 Theorem. Let {φj , j = 0, 1, . . .} be the Fourier basis:

φ1(x) = 1, φ2j(x) =
1√
2

cos(2jπx), φ2j+1(x) =
1√
2

sin(2jπx), j = 1, 2, . . .

Then,

W̃ (m, c) =

{
f : f =

∞∑
j=1

θjφj ,

∞∑
j=1

a2
jθ

2
j ≤ c2

}
(7.12)

where aj = (πj)m for j even and aj = (π(j − 1))m for j odd.

Thus, a Sobolev space corresponds to a Sobolev ellipsoid with aj ∼ (πj)2m.
It is also possible to relate the class W (m, c) to an ellipsoid although the
details are more complicated; see Nussbaum (1985).

In Sobolev spaces, smooth functions have small coefficients θj when j is
large, otherwise

∑
j θ2

j (πj)2m will blow up. Thus, to smooth a function, we
shrink the θjs closer to zero. Hence:

smoothing f corresponds to shrinking the θj ’s towards zero for

large j.

A generalization of Sobolev spaces are Besov spaces. These include Sobolev
spaces as a special case but they also include functions with less smoothness.
We defer discussion of Besov spaces until Chapter 9.

7.3 Connection to Regression and Density
Estimation

Consider the nonparametric regression model

Yi = f(i/n) + σεi, i = 1, . . . , n (7.13)

where εi ∼ N(0, 1), σ is known and f ∈ L2(0, 1). Let φ1, φ2, . . . be an or-
thonormal basis and write f(x) =

∑∞
i=1 θjφj(x) where θj =

∫
f(x)φj(x)dx.

First, approximate f by the finite series f(x) ≈∑n
i=1 θjφj(x). Now define

Zj =
1
n

n∑
i=1

Yi φj(i/n) (7.14)
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for j = 1, . . . , n. The random variable Zj has a Normal distribution since Zj

is a linear combination of Normals. The mean of Zj is

E(Zj) =
1
n

n∑
i=1

E(Yi)φj(i/n) =
1
n

n∑
i=1

f(i/n)φj(i/n)

≈
∫

f(x)φj(x) dx = θj .

The variance is

V(Zj) =
1
n2

n∑
i=1

V(Yi) φ2
j (i/n) =

σ2

n

1
n

n∑
i=1

φ2
j (i/n)

≈ σ2

n

∫
φ2

j (x)dx =
σ2

n
≡ σ2

n.

A similar calculation shows that Cov(Zj , Zk) ≈ 0. We conclude that the Zj

are approximately independent and

Zj ∼ N(θj , σ
2
n), σ2

n =
σ2

n
. (7.15)

We have thus converted the problem of estimating f into the problem of
estimating the means of n Normal random variables as in (7.1) with σ2

n =
σ2/n. Also, squared error loss for f corresponds to squared error loss for θ

since, by Parseval’s identity, if f̂n(x) =
∑∞

j=1 θ̂jφj(x),

||f̂n − f ||2 =
∫ (

f̂n(x) − f(x)
)2

dx =
∞∑

j=1

(θ̂j − θj)2 = ||θ̂ − θ||2 (7.16)

where ||θ|| =
√∑

j θ2
j .

It turns out that other nonparametric problems, such as density estimation,
can also be connected to the Normal means problem. In the case of density
estimation, it is the square root of the density that appears in the white noise
problem. In this sense, the many Normal means problem serves as a unifying
framework for many nonparametric models. See Nussbaum (1996a), Claeskens
and Hjort (2004) and the appendix for more details.

7.4 Stein’s Unbiased Risk Estimator (sure)

Let θ̂ be an estimate of θ. It will be useful to have an estimate of the risk of θ̂.
In previous chapters we used cross-validation to estimate risk. In the present
context there is a more elegant method for risk estimation due to Stein (1981)
known as Stein’s unbiased risk estimator or sure.
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7.17 Theorem (Stein). Let Z ∼ Nn(θ, V ), let θ̂ = θ̂(Z) be an estimate of θ

and let g(Z1, . . . , Zn) = θ̂ − Z. Note that g maps R
n to R

n. Define

R̂(z) = tr(V ) + 2tr (V D) +
∑

i

g2
i (z) (7.18)

where tr denotes the trace of a matrix, gi = θ̂i − Zi and the (i, j) component
of D is the partial derivative of the ith component of g(z1, . . . , zn) with respect
to zj. If g is weakly differentiable3 then

Eθ(R̂(Z)) = R(θ, θ̂).

If we apply Theorem 7.17 to the model (7.1) we get the following.

The sure Formula for the Normal Means Model

Let θ̂ be a weakly differentiable estimator of θ in model (7.1). An unbiased
estimate of the risk of θ̂ is

R̂(z) = nσ2
n + 2σ2

n

n∑
i=1

Di +
n∑

i=1

g2
i (7.19)

where g(Z1, . . . , Zn) = θ̂n − Zn and Di = ∂g(z1, . . . , zn)/∂zi.

proof of Theorem 7.17. We will prove the case where V = σ2I. If
X ∼ N(µ, σ2) then E(g(X)(X − µ)) = σ2

Eg′(X). (This is known as Stein’s
Lemma and it can be proved using integration by parts. See Exercise 4.)
Hence, σ2

EθDi = Eθgi(Zi − θ) and

Eθ(R̂(Z)) = nσ2 + 2σ2
n∑

i=1

EθDi +
n∑

i=1

Eθ(θ̂i − Zi)2

= nσ2 + 2
n∑

i=1

Eθ (gi(Zi − θi)) +
n∑

i=1

Eθ(θ̂i − Zi)2

=
n∑

i=1

Eθ(Zi − θi)2 + 2
n∑

i=1

Eθ

(
(θ̂i − Zi)(Zi − θi)

)
+

n∑
i=1

Eθ(θ̂i − Zi)2

=
n∑

i=1

Eθ(θ̂i − Zi + Zi − θi)2 =
n∑

i=1

Eθ(θ̂i − θi)2 = R(θ̂, θ). �

3Weak differentiability is defined in the appendix.
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7.20 Example. Let V = σ2I. Consider θ̂ = Z. Then g(z) = (0, . . . , 0) and
R̂(Z) = nσ2. In this case, R̂ is equal to the true risk. Now consider the linear
estimator θ̂ = bZ = (bZ1, . . . , bZn). Hence, g(Z) = bZ − Z = (b − 1)Z and
Di = b− 1. Therefore, R̂(Z) = (2b− 1)nσ2 + (1− b)2

∑n
i=1 Z2

i . Next consider
the soft threshold estimator defined by

θ̂i =

⎧⎨⎩
Zi + λ Zi < −λ
0 −λ ≤ Zi ≤ λ
Zi − λ Zi > λ

(7.21)

where λ > 0 is a constant. We can write this estimator more succinctly as

θ̂i = sign(Zi)(|Zi| − λ)+.

In Exercise 5 you will show that the sure formula gives

R̂(Z) =
n∑

i=1

(
σ2 − 2σ2I(|Zi| ≤ λ) + min(Z2

i , λ2)
)

. (7.22)

Finally, consider the hard threshold estimator defined by

θ̂i =
{

Zi |Zi| > λ
0 |Zi| ≤ λ

(7.23)

where λ > 0 is a constant. It is tempting to use sure but this is inappropriate
because this estimator is not weakly differentiable. �

7.24 Example (Model selection). For each S ⊂ {1, . . . , n} define

θ̂S = ZiI(i ∈ S). (7.25)

We can think of S as a submodel which says that Zi ∼ N(θi, σ
2
n) for i ∈ S and

Zi ∼ N(0, σ2
n) for i /∈ S. Then θ̂S is the estimator of θ assuming the model S.

The true risk of θ̂S is

R(θ̂S , θ) = σ2
n|S| +

∑
i∈Sc

θ2
i

where |S| denotes the number of points in S. Replacing θ2
i in the risk with its

unbiased estimator Z2
i − σ2

n yields the risk estimator

R̂S = σ2
n|S| +

∑
i∈Sc

(Z2
i − σ2

n). (7.26)

It is easy to check that this corresponds to the sure formula. Now let S be
some class of sets where each S ∈ S is a subset of {1, . . . , n}. Choosing S ∈ S
to minimize R̂S is an example of model selection. The special case where

S =
{
∅, {1}, {1, 2}, . . . , {1, 2, . . . , n}

}
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is called nested subset selection. Taking S to be all subsets of {1, . . . , n}
corresponds to all possible subsets. For any fixed model S, we expect that
R̂S will be close to R(θ̂S , θ). However, this does not guarantee that R̂S is close
to R(θ̂S , θ) uniformly over S. See Exercise 10. �

7.5 Minimax Risk and Pinsker’s Theorem

If Θn is a subset of R
n, we define the minimax risk over Θn by

Rn ≡ R(Θn) ≡ inf
θ̂

sup
θ∈Θn

R(θ̂, θ) (7.27)

where the infimum is over all estimators. Two questions we will address are:
(i) what is the value of the minimax risk R(Θn)? and (ii) can we find an
estimator that achieves this risk?

The following theorem4 gives the exact, limiting form of the minimax risk
for the L2 ball

Θn(c) =

{
(θ1, . . . , θn) :

n∑
i=1

θ2
i ≤ c2

}
.

7.28 Theorem (Pinsker’s theorem). Assume the model (7.1) with σ2
n = σ2/n.

For any c > 0,

lim inf
n→∞ inf

θ̂
sup

θ∈Θn(c)

R(θ̂, θ) =
σ2c2

σ2 + c2
. (7.29)

The right-hand side of (7.29) gives an exact expression for the (asymptotic)
minimax risk. This expression is strictly smaller than σ2 which is the risk for
the maximum likelihood estimator. Later, we will introduce the James–Stein
estimator which asymptotically achieves this risk. The proof of the theorem,
which is in the appendix, is a bit technical and may be skipped without loss
of continuity. Here is the basic idea behind the proof.

First, we note that the estimator with coordinates θ̂j = c2Zj/(σ2 + c2) has
risk bounded above by σ2c2/(σ2 + c2). Hence,

Rn ≤ σ2c2

σ2 + c2
. (7.30)

If we could find a prior π on Θn(c) whose posterior mean θ̃ also has risk
σ2c2/(σ2 + c2) then we could argue that, for any estimator θ̂, we have

σ2c2

σ2 + c2
=
∫

R(θ, θ̃)dπ(θ) ≤
∫

R(θ, θ̂)dπ(θ) ≤ sup
θ∈Θn

R(θ, θ̂) = Rn. (7.31)

4This is a finite-dimensional version of Pinsker’s theorem. Theorem 7.32 is the usual version.
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Combining (7.30) and (7.31) would yield Rn = σ2c2/(σ2 + c2). The proof is
essentially an approximate version of this argument. One finds a prior over
all of R

n whose risk is arbitrarily close to σ2c2/(σ2 + c2) and one then shows
that the prior asymptotically concentrates on Θn(c).

Now let us see how minimax theory works for smooth functions.

7.32 Theorem (Pinsker’s theorem for Sobolev ellipsoids). Let

Zj = θj +
σ√
n

εj, j = 1, 2, . . . (7.33)

where ε1, ε2, . . . ∼ N(0, 1). Assume that θ ∈ Θ(m, c), a Sobolev ellipsoid (recall
Definition 7.10). Let Rn denote the minimax risk over Θ(m, c). Then,

lim
n→∞n2m/(2m+1)Rn =

(σ

π

)2m/(2m+1)

c2/(2m+1)Pm (7.34)

where

Pm =
(

m

m + 1

)2m/(2m+1)

(2m + 1)1/(2m+1) (7.35)

is the Pinsker constant. Hence, the minimax rate is n−2m/(2m+1), that is,

0 < lim
n→∞n2m/(2m+1)Rn < ∞.

Here is a more general version of the theorem.

7.36 Theorem (Pinsker’s theorem for ellipsoids). Let

Θ =

{
θ :

∞∑
j=1

ajθ
2
j ≤ c2

}
.

The set Θ is called an ellipsoid. Assume that aj → ∞ as j → ∞. Let

Rn = inf
θ̂

sup
θ∈Θ

R(θ̂, θ)

denote the minimax risk and let

RL
n = inf

θ̂∈L
sup
θ∈Θ

R(θ̂, θ)

denote the minimax linear risk where L is the set of linear estimators of the
form θ̂ = (w1Z1, w2Z2, . . .). Then:

(1) linear estimators are asymptotically minimax: Rn ∼ RL
n as n → ∞;

(2) the minimax linear risk satisfies

RL
n =

σ2

n

∑
i

(
1 − ai

µ

)
+
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where µ solves
σ2

n

∑
i

ai(µ − ai)+ = c2.

(3) The linear minimax estimator is θ̂i = wiZi where wi = [1 − (ai/µ)]+.
(4) The linear minimax estimator is Bayes5for the prior with independent

components such that θi ∼ N(0, τ2
i ), τ2

i = (σ2/n)(µ/ai − 1)+.

7.6 Linear Shrinkage and the James–Stein Estimator

Let us now return to model (7.1) and see how we can improve on the mle using
linear estimators. A linear estimator is an estimator of the form θ̂ = bZ =
(bZ1, . . . , bZn) where 0 ≤ b ≤ 1. Linear estimators are shrinkage estimators
since they shrink Z towards the origin. We denote the set of linear shrinkage
estimators by L = {bZ : b ∈ [0, 1]}.

The risk of a linear estimator is easy to compute. From the basic bias–
variance breakdown we have

R(bZ, θ) = (1 − b)2||θ||2n + nb2σ2
n (7.37)

where ||θ||2n =
∑n

i=1 θ2
i . The risk is minimized by taking

b∗ =
||θ||2n

nσ2
n + ||θ||2n

.

We call b∗Z the ideal linear estimator. The risk of this ideal linear estimator
is

R(b∗Z, θ) =
nσ2

n||θ||2n
nσ2

n + ||θ||2n
. (7.38)

Thus we have proved:

7.39 Theorem.

inf
θ̂∈L

R(θ̂, θ) =
nσ2

n||θ||2n
nσ2

n + ||θ||2n
. (7.40)

We can’t use the estimator b∗Z because b∗ depends on the unknown pa-
rameter θ. For this reason we call R(b∗Z, θ) the linear oracular risk since
the risk could only be obtained by an “oracle” that knows ||θ||2n. We shall now
show that the James–Stein estimator nearly achieves the risk of the ideal
oracle.

5The Bayes estimator minimizes Bayes risk
∫

R(θ, θ̂)dπ(θ) for a given prior π.
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The James–Stein estimator of θ is defined by

θ̂JS =
(

1 − (n − 2)σ2
n∑n

i=1 Z2
i

)
Z. (7.41)

We’ll see in Theorem 7.48 that this estimator is asymptotically optimal.

7.42 Theorem. The risk of the James–Stein estimator satisfies the following
bound:

R(θ̂JS , θ) ≤ 2σ2
n +

(n − 2)σ2
n||θ||2n

(n − 2)σ2
n + ||θ||2n

≤ 2σ2
n +

nσ2
n||θ||2n

nσ2
n + ||θ||2n

(7.43)

where ||θ||2n =
∑n

i=1 θ2
i .

Proof. Write θ̂JS = Z + g(Z) where g(z) = −(n − 2)σ2
nz/

∑
i z2

i . Hence

Di =
∂gi

∂zi
= −(n − 2)σ2

n

(
1∑
i z2

i

− 2z2
i

(
∑

i z2
i )2

)
and

n∑
i=1

Di = − (n − 2)2σ2
n∑n

i=1 z2
i

.

Plugging this into the sure formula (7.19) yields

R̂(Z) = nσ2
n − (n − 2)2σ4

n∑
i Z2

i

.

Hence, the risk is

R(θ̂JS , θ) = E(R̂(Z)) = nσ2
n − (n − 2)2σ4

nE

(
1∑
i Z2

i

)
. (7.44)

Now Z2
i = σ2

n((θi/σn) + εi)2 and so
∑n

i=1 Z2
i ∼ σ2

nW where W is noncentral
χ2 with n degrees of freedom and noncentrality parameter δ =

∑n
i=1(θ

2
i /σ2

n).
Using a well-known result about noncentral χ2 random variables, we can then
write W ∼ χ2

n+2K where K ∼ Poisson(δ/2). Recall that (for n > 2) E(1/χ2
n) =

1/(n− 2). So,

Eθ

[
1∑
i Z2

i

]
=

(
1
σ2

n

)
E

[
1

χ2
n+2K

]
=
(

1
σ2

n

)
E

(
E

[
1

χ2
n+2K

∣∣∣∣∣ K
])

=
(

1
σ2

n

)
E

[
1

n − 2 + 2K

]
≥

(
1
σ2

n

)
1

(n − 2) + σ−2
n
∑n

i=1 θ2
i

from Jensen′s inequality

=
1

(n − 2)σ2
n +

∑n
i=1 θ2

i

.
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Substituting into (7.44) we get the first inequality. The second inequality
follows from simple algebra. �

7.45 Remark. The modified James–Stein estimator is defined by

θ̂ =
(

1 − nσ2
n∑

i Z2
i

)
+

Z (7.46)

where (a)+ = max{a, 0}. The change from n − 2 to n leads to a simpler
expression and for large n this has negligible effect. Taking the positive part
of the shrinkage factor cannot increase the risk. In practice, the modified
James–Stein estimator is often preferred.

The next result shows that the James–Stein estimator nearly achieves the
risk of the linear oracle.

7.47 Theorem (James–Stein oracle inequality). Let L = {bZ : b ∈ R} denote
the class of linear estimators. For all θ ∈ R

n,

inf
θ̂∈L

R(θ̂, θ) ≤ R(θ̂JS , θ) ≤ 2σ2
n + inf

θ̂∈L
R(θ̂, θ).

Proof. This follows from (7.38) and Theorem 7.42. �

Here is another perspective on the James–Stein estimator. Let θ̂ = bZ.
Stein’s unbiased risk estimator is R̂(Z) = nσ2

n+2nσ2
n(b−1)+(b−1)2

∑n
i=1 Z2

i

which is minimized at

b̂ = 1 − nσ2
n∑n

i=1 Z2
i

yielding the estimator

θ̂ = b̂Z =
(

1 − nσ2
n∑n

i=1 Z2
i

)
Z

which is essentially the James–Stein estimator.
We can now show that the James–Stein estimator achieves the Pinsker

bound (7.29) and so is asymptotically minimax.

7.48 Theorem. Let σ2
n = σ2/n. The James–Stein estimator is asymptotically

minimax, that is,

lim
n→∞ sup

θ∈Θn(c)

R(θ̂JS , θ) =
σ2c2

σ2 + c2
.

Proof. Follows from Theorem 7.42 and 7.28. �
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7.49 Remark. The James–Stein estimator is adaptive in the sense that it
achieves the minimax bound over Θn(c) without knowledge of the
parameter c.

To summarize: the James–Stein estimator is essentially optimal over all
linear estimators. Moreover, it is asymptotically optimal over all estimators,
not just linear estimators. This also shows that the minimax risk and the linear
minimax risk are asymptotically equivalent. This turns out to (sometimes) be
a more general phenomenon, as we shall see.

7.7 Adaptive Estimation Over Sobolev Spaces

Theorem 7.32 gives an estimator that is minimax over Θ(m, c). However, the
estimator is unsatisfactory because it requires that we know c and m.

Efromovich and Pinsker (1984) proved the remarkable result that there
exists an estimator that is minimax over Θ(m, c) without requiring knowledge
of m or c. The estimator is said to be adaptively asymptotically minimax.
The idea is to divide the observations into blocks B1 = {Z1, . . . , Zn1}, B2 =
{Zn1+1, . . . , Zn2}, . . . and then apply a suitable estimation procedure within
blocks.

Here is particular block estimation scheme due to Cai et al. (2000). For any
real number a let [a] denote the integer part of a. Let b = 1 + 1/ logn and let
K0 be an integer such that [bK0 ] ≥ 3 and [bk] − [bk−1] ≥ 3 for k ≥ K0 + 1.
Let B0 = {Zi : 1 ≤ i ≤ [bK0 ]} and let Bk = {Zi : [bk−1] < i ≤ [bk]} for
k ≥ K0 + 1. Let θ̂ be the estimator obtained by applying the James–Stein
estimator within each block Bk. The estimator is taken to be 0 for i > [bK1 ]
where K1 = [logb(n)] − 1.

7.50 Theorem (Cai, Low and Zhao, 2000). Let θ̂ be the estimator above. Let
Θ(m, c) = {θ :

∑∞
i=1 a2

i θ
2
i ≤ c2} where a1 = 1 and a2i = a2i+1 = 1+(2iπ)2m.

Let Rn(m, c) denote the minimax risk over Θ(m, c). Then for all m > 0 and
c > 0,

lim
n→∞

supθ∈Θ(m,c) R(θ̂, θ)
Rn(m, c)

= 1.



7.8 Confidence Sets 159

7.8 Confidence Sets

In this section we discuss the construction of confidence sets for θn. It will
now be convenient to write θ and Z instead of θn and Zn.

Recall that Bn ⊂ R
n is a 1 − α confidence set if

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α. (7.51)

We have written the probability distribution Pθ with the subscript θ to em-
phasize that the distribution depends on θ. Here are some methods for con-
structing confidence sets.

Method I: The χ2 Confidence Set. The simplest confidence set for θ

is based on the fact that ||Z − θ||2/σ2
n has a χ2

n distribution. Let

Bn =
{
θ ∈ R

n : ||Z − θ||2 ≤ σ2
n χ2

n,α

}
(7.52)

where χ2
n,α is the upper α quantile of a χ2 random variable with n degrees of

freedom. It follows immediately that

Pθ(θ ∈ Bn) = 1 − α, for all θ ∈ R
n.

Hence, (7.51) is satisfied. The expected radius of this ball is nσ2
n. We will see

that we can improve on this.

Improving the χ2 Ball by Pre-testing. Before discussing more com-
plicated methods, here is a simple idea—based on ideas in Lepski (1999)—
for improving the χ2 ball. The methods that follow are generalizations of this
method.

Note that the χ2 ball Bn has a fixed radius sn = σn
√

n. When applied to
function estimation, σn = O(1/

√
n) so that sn = O(1) and hence the radius of

the ball does not even converge to zero as n → ∞. The following construction
makes the radius smaller. The idea is to test the hypothesis that θ = θ0. If we
accept the null hypothesis, we use a smaller ball centered at θ0. Here are the
details.

First, test the hypothesis that θ = (0, . . . , 0) using
∑

i Z2
i as a test statistic.

Specifically, reject the null when

Tn =
∑

i

Z2
i > c2

n

and cn is defined by

P

(
χ2

n >
c2
n

σ2
n

)
=

α

2
.
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By construction, the test has type one error rate α/2. If Z denotes a N(0,1)
random variable then

α

2
= P

(
χ2

n >
c2
n

σ2
n

)
= P

⎛⎝χ2
n − n√

2n
>

c2
n

σ2
n
− n

√
2n

⎞⎠ ≈ P

⎛⎝Z >

c2
n

σ2
n
− n

√
2n

⎞⎠
implying that

c2
n ≈ σ2

n(n +
√

2nzα/2).

Now we compute the power of this test when ||θ|| > ∆n where

∆n =
√

2
√

2zα/2 n1/4σn.

Write Zi = θi + σnεi where εi ∼ N(0, 1). Then,

Pθ(Tn > c2
n) = Pθ

(∑
i

Z2
i > c2

n

)
= Pθ

(∑
i

(θi + σnεi)2 > c2
n

)
= Pθ

(
||θ||2 + 2σn

∑
i

θiεi + σ2
n

∑
i

ε2i > c2
n

)
.

Now, ||θ||2+2σn

∑
i θiεi+σ2

n

∑
i ε2i has mean ||θ||2+nσ2

n and variance 4σ2
n||θ||2+

2nσ4
n. Hence, with Z denoting a N(0,1) random variable,

Pθ(Tn > c2
n) ≈ P

(
||θ||2 + nσ2

n +
√

4σ2
n||θ||2 + 2nσ4

nZ > c2
n

)
≈ P

(
||θ||2nσ2

n +
√

4σ2
n||θ||2 + 2nσ4

nZ > σ2
n(n +

√
2nzα/2)

)
= P

⎛⎝Z >

(√
2zα/2 − ||θ||2√

nσ2
n

)
2 + 4||θ||2

nσ2
n

⎞⎠ ≥ P

⎛⎝Z >

(√
2zα/2 − ||θ||2√

nσ2
n

)
2

⎞⎠
≥ 1 − α

2

since ||θ|| > ∆n implies that(√
2zα/2 − ||θ||2√

nσ2
n

)
2

≥ −zα/2.

In summary, the test has type-one error α/2 and type-two error no more than
α/2 for all ||θ|| > ∆n.

Next we define the confidence procedure as follows. Let φ = 0 if the test
accepts and φ = 1 if the test rejects. Define

Rn =

⎧⎨⎩
Bn if φ = 1{

θ : ||θ|| ≤ ∆n

}
if φ = 0.
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Thus, Rn is a random radius confidence ball. The radius is the same as the
χ2 ball when φ = 1 but when φ = 0, the radius is ∆n which is much smaller.
Let us now verify that the ball has the right coverage.

The noncoverage of this ball when θ = (0, . . . , 0) is

P0(θ /∈ R) = P0(θ /∈ R, φ = 0) + P0(θ /∈ R, φ = 1)

≤ 0 + P0(φ = 1) =
α

2
.

The noncoverage of this ball when θ �= (0, . . . , 0) and ||θ|| ≤ ∆n is

Pθ(θ /∈ R) = Pθ(θ /∈ R, φ = 0) + Pθ(θ /∈ R, φ = 1)

≤ 0 + Pθ(θ /∈ B) =
α

2
.

The noncoverage of this ball when θ �= (0, . . . , 0) and ||θ|| > ∆n is

Pθ(θ /∈ R) = Pθ(θ /∈ R, φ = 0) + Pθ(θ /∈ R, φ = 1)

≤ Pθ(φ = 0) + Pθ(θ /∈ B) ≤ α

2
+

α

2
= α.

In summary, by testing whether θ is close to (0, . . . , 0) and using a smaller
ball centered at (0, . . . , 0) when the test accepts, we get a ball with proper
coverage and whose radius is sometimes smaller than the χ2 ball. The message
is that:

a random radius confidence ball can have an expected radius that is

smaller than a fixed confidence ball at some points in the parameter

space.

The next section generalizes this idea.

Method II: The Baraud Confidence Set. Here we discuss the
method due to Baraud (2004) which builds on Lepski (1999), as discussed
above. We begin with a class S of linear subspaces of R

n. Let ΠS denote the
projector onto S. Thus, for any vector Z ∈ R

n, ΠSZ is the vector in S closest
to Z.

For each subspace S, we construct a ball BS of radius ρS centered at an
estimator in S, namely,

BS =
{
θ : ||θ − ΠSZ|| ≤ ρS

}
. (7.53)

For each S ∈ S, we test whether θ is close to S using ||Z − ΠSZ|| as a test
statistic. We then take the smallest confidence ball BS among all unrejected
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subspaces S. The key to making this work is this: the radius ρS is chosen so
that

max
θ

Pθ(S is not rejected and θ /∈ BS) ≤ αS (7.54)

where
∑

S∈S αS ≤ α. The resulting confidence ball has coverage at least 1−α

since

max
θ

Pθ(θ /∈ B) ≤
∑
S

max
θ

Pθ(S is not rejected and θ /∈ BS)

=
∑
S

αS ≤ α.

We will see that the n-dimensional maximization over θ ∈ R
n can be reduced

to a one-dimensional maximization since the probabilities only depend on θ

through the quantity z = ||θ − ΠSθ||.
The confidence set has coverage 1 − α even if θ is not close to one of the

subspaces in S. However, if it is close to one of the subspaces in S, then the
confidence ball will be smaller than the χ2 ball.

For example, suppose we expand a function f(x) =
∑

j θjφj(x) in a basis, as
in Section 7.3. Then, the θis correspond to the coefficients of f in this basis. If
the function is smooth, then we expect that θi will be small for large i. Hence,
θ might be well approximated by a vector of the form (θ1, . . . , θm, 0, . . . , 0).
This suggests that we could test whether θ is close to the subspace Sm of
the vectors of the form (θ1, . . . , θm, 0, . . . , 0), for m = 0, . . . , n. In this case we
would take the class of subspaces to be S = {S0, . . . , Sn}.

Before we proceed with the details, we need some notation. If Xj ∼ N(µj , 1),
j = 1, . . . , k are iid, then T =

∑k
j=1 X2

j has a noncentral χ2 distribution
with noncentrality parameter d =

∑
j µ2

j and k degrees of freedom and we
write T ∼ χ2

d,k. Let Gd,k denote the cdf of this random variable and let
qd,k(α) = G−1

d,k(1 − α) denote the upper α quantile. By convention, we define
qd,k(α) = −∞ for α ≥ 1.

Let S be a finite collection of linear subspaces of R
n. We assume that

R
n ∈ S. Let d(S) be the dimension of S ∈ S and let e(S) = n − d(S). Fix

α ∈ (0, 1) and γ ∈ (0, 1) where γ < 1 − α. Let

A =

{
S :

||Z − ΠSZ||2
σ2

n

≤ c(S)

}
(7.55)

where

c(S) = q0,e(S)(γ). (7.56)
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Think of ||Z−ΠSZ||2 as a test statistic for the hypothesis that θ ∈ S. Then A
is the set of nonrejected subspaces. Note that A always includes the subspace
S = R

n since, when S = R
n, ΠSZ = Z and ||Z − ΠSZ||2 = 0.

Let (αS : S ∈ S) be a set of numbers such that
∑

S∈S αS ≤ α. Now define
the ρS as follows:

ρ2
S = σ2

n ×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
infz>0

{
Gz,n(q0,n(γ)) ≤ αS

}
if d(S) = 0

supz>0

{
z + q0,d(S)

(
αS

Gz,e(S)(c(S))

)}
if 0 < d(S) < n

ρ2
S = σ2

nq0,n(αS) if d(S) = n.
(7.57)

Define
Ŝ = argminS∈A ρS ,

θ̂ = ΠŜZ, and ρ̂ = ρŜ . Finally, define

Bn =
{
θ ∈ R

n : ||θ − θ̂||2 ≤ ρ̂2
}
. (7.58)

7.59 Theorem (Baraud 2004). The set Bn defined in (7.58) is a valid confi-
dence set:

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α. (7.60)

Proof. Let BS = {θ : ||θ − ΠSZ||2 ≤ ρ2
S}. Then,

Pθ(θ /∈ Bn) ≤ Pθ(θ /∈ BS for some S ∈ A)

≤
∑
S

Pθ(||θ − ΠSZ|| > ρS , Ŝ ∈ A)

=
∑
S

Pθ

(||θ − ΠSZ|| > ρS , ||Z − ΠSZ||2 ≤ c(S)σ2
n

)
.

Since
∑

S αS ≤ α, it suffices to show that a(S) ≤ αS for all S ∈ S, where

a(S) ≡ Pθ

(
||θ − ΠSZ|| > ρS , ||Z − ΠSZ||2 ≤ σ2

n c(S)
)

. (7.61)

When d(S) = 0, ΠSZ = (0, . . . , 0). If ||θ|| ≤ ρS then a(0) = 0 which is less
than αS . If ||θ|| > ρS , then

a(S) = Pθ

(
n∑

i=1

Z2
i ≤ σ2

nq0,n(γ)

)
= G||θ||2/σ2

n,n(q0,n(γ)) ≤ Gρ2
0/σ2

n,n(q0,n(γ))

≤ αS
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since Gd,n(u) is decreasing in z for all u and from the definition of ρ2
0.

Now consider the case where 0 < d(S) < n. Let

A =
||θ − ΠSZ||2

σ2
n

= z +
m∑

j=1

ε2j , B =
||θ̂ − Z||2

σ2
n

where z = ||θ − ΠSθ||2/σ2
n. Then A and B are independent, A ∼ z + χ2

0,d(S),
and B ∼ χ2

z,e(S). Hence,

a(S) = Pθ

(
A >

ρ2
m

σ2
n

, B < c(S)

)

= Pθ

(
z + χ2

d(S) >
ρ2

S

σ2
n

, χ2
z,e(S) < c(S)

)
(7.62)

=

(
1 − G0,d(S)

(
ρ2

S

σ2
n

− z

))
× Gz,e(S)

(
c(S)

)
. (7.63)

From the definition of ρ2
S ,

ρ2
S

σ2
n

− z ≥ q0,d(S)

(
αS

Gz,e(S)(c(S))
∧ 1

)

and hence,

1 − G0,d(S)

(
ρ2

S

σ2
n

− z

)
≤ 1 − G0,d(S)

(
q0,d(S)

(
αS

Gz,e(S)(c(S))

))
=

αS

Gz,e(S)(c(S))
. (7.64)

It then follows (7.63) and (7.64) that a(S) ≤ αS .
For the case d(S) = n, ΠSZ = Z, and ||θ − ΠSZ||2 = σ2

n

∑n
i=1 ε2i

d= σ2
nχ2

n

and so

a(S) = Pθ

(
σ2

nχ2
n > q0,n(αS)σ2

n

)
= αS

by the definition of q0,n. �

When σn is unknown we estimate the variance using one of the methods dis-
cussed in Chapter 5 and generally the coverage is only asymptotically correct.
To see the effect of having uncertainty about σn, consider the idealized case
where σn is known to lie with certainty in the interval I = [

√
1 − ηnτn, τn].

(In practice, we would construct a confidence interval for σ and adjust the
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level α of the confidence ball appropriately.) In this case, the radii ρS are now
defined by:

ρ2
S =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
infz>0

{
supσn∈I Gz/σ2

n,n(q0,n(γ)τ2
n/σ2

n) ≤ αS

}
if d(S) = 0

supz>0,σn∈I

{
zσ2

n + σ2
nq0,d(S)(hS(z, σn))

}
if 0 < d(S) < n

q0,n(αS)τ2
n if d(S) = n

(7.65)
where

hS(z, σ) =
αS

Gz,e(S)

(
Gz,e(S)(q0,e(S)(γ)τ2

n/σ2)
) (7.66)

and A is now defined by

A =
{
S ∈ S : ||Z − ΠSZ||2 ≤ q0,e(S)(γ)τ2

n

}
. (7.67)

Beran–Dümbgen–Stein Pivotal method. Now we discuss a different
approach due to Stein (1981) and developed further by Li (1989), Beran and
Dümbgen (1998), and Genovese and Wasserman (2005). The method is sim-
pler than the Baraud–Lepski approach but it uses asymptotic approximations.
This method is considered in more detail in the next chapter but here is the
basic idea.

Consider nested subsets S = {S0, S1, . . . , Sn} where

Sj =
{
θ = (θ1, . . . , θj , 0, . . . , 0) : (θ1, . . . , θj) ∈ R

j
}
.

Let θ̂m = (Z1, . . . , Zm, 0, . . . , 0) denote the estimator under model Sm. The
loss function is

Lm = ||θ̂m − θ||2.
Define the pivot

Vm =
√

n(Lm − R̂m) (7.68)

where R̂m = mσ2
n +

∑n
j=m+1(Z

2
j − σ2

n) is sure. Let m̂ minimize R̂m over m.
Beran and Dümbgen (1998) show that Vm̂/τ̂ � N(0, 1) where

τ2
m = V(Vm) = 2nσ2

n

(
nσ2

n + 2
n∑

j=m+1

θ2
j

)

and

τ̂2 = 2nσ2
n

(
nσ2

n + 2
n∑

j=m̂+1

(Z2
j − σ2

n)

)
.
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Let
r2
n = R̂m +

τ̂ zα√
n

and define
Bn =

{
θ ∈ R

n : ||θm − θ̂||2 ≤ r2
n

}
.

Then,

Pθ(θ ∈ Bn) = Pθ(||θ − θ̂||2 ≤ r2
n) = Pθ(Lm ≤ r2

n)

= Pθ

(
Lm ≤ R̂m +

τ̂ zα√
n

)
= Pθ

(
Vm̂

τ̂
≤ zα

)
→ 1 − α.

A practical problem with this method is that r2
n can be negative. This is due

to the presence of the term
∑n

j=m+1(Z
2
j − σ2

n) in R̂ and τ . We deal with this
by replacing such terms with max{∑n

j=m+1(Z
2
j − σ2

n), 0}. This can lead to
over-coverage but at least leads to well-defined radii.

7.69 Example. Consider nested subsets S = {S0, S1, . . . , Sn} where S0 =
{(0, . . . , 0)} and

Sj =
{
θ = (θ1, . . . , θj , 0, . . . , 0) : (θ1, . . . , θj) ∈ R

j
}

.

We take α = 0.05, n = 100, σn = 1/
√

n, and αS = α/(n + 1) for all S so
that

∑
αS = α as required. Figure 7.2 shows ρS versus the dimension of S

for γ = 0.05, 0.15, 0.50, 0.90. The dotted line is the radius of the χ2 ball. One
can show that

ρ0

ρn
= O

(
n−1/4

)
(7.70)

which shows that shrinking towards lower-dimensional models leads to smaller
confidence sets. There is an interesting tradeoff. Setting γ large makes ρ0

small leading to a potentially smaller confidence ball. However, making γ

large increases the set A which diminishes the chances of choosing a small
ρ. We simulated under the model θ = (10, 10, 10, 10, 10, 0, . . . , 0). See Table
7.1 for a summary. In this example, the pivotal method seems to perform the
best. �

7.9 Optimality of Confidence Sets

How small can we make the confidence set while still maintaining correct
coverage? In this section we will see that if Bn is a confidence ball with radius
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1 50 100

0.
5

1.
0 γ = 0.05

γ = 0.90

FIGURE 7.2. Constants ρS from Example 7.69. The horizontal axis is the dimension
of the submodel. The four curves show ρS for γ = 0.05, 0.15, 0.50, 0.90. The highest
curve corresponds to γ = 0.05 and the curves get lower as γ increases. The dotted
line is the radius of the χ2 ball.

Method Coverage Radius
χ2 0.950 1.115
Baraud (γ = 0.90) 1.000 0.973

(γ = 0.50) 1.000 0.904
(γ = 0.15) 1.000 0.779
(γ = 0.05) 0.996 0.605

Pivotal 0.998 0.582

TABLE 7.1. Simulation results from Example 7.69 based on 1000 simulations.
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sn then Eθ(sn) ≥ C1σnn1/4 for every θ and Eθ(sn) ≥ C2σnn1/2 for some
θ. Here, C1 and C2 are positive constants. The χ2 ball has radius σnn1/2 for
all θ. This suggests that the χ2 ball can be improved upon, and indeed, the
Baraud confidence ball can achieve the faster σnn1/4 rate at some points in
the parameter space. We will provide some of the details in this section. But
first, let us compare this with point estimation.

From Theorem 7.32, the optimal rate of convergence of a point estimator
over a Sobolev space of order m is n−2m/(2m+1). According to Theorem 7.50,
we can construct estimators that achieve this rate, without prior knowledge
of m. This raises the following questions: Can we construct confidence balls
that adaptively achieve this optimal rate? The short answer is no. Robins and
van der Vaart (2005), Juditsky and Lambert-Lacroix (2003), and Cai and Low
(2005) show that some degree of adaptivity is possible for confidence sets but
the amount of adaptivity is quite restricted. Without any smoothness assump-
tions, we see from our comments above that the fastest rate of convergence
one can attain is σnn1/4 which is of order O(n−1/4) when σn = σ/

√
n.

Turning to the details, we begin with the following Theorem due to Li
(1989).

7.71 Theorem (Li 1989). Let Bn = {θn ∈ R
n : ||θ̂n − θn|| ≤ sn} where θ̂n is

any estimator of θn and sn = sn(Zn) is the radius of the ball. Suppose that

lim inf
n→∞ inf

θn∈Rn
Pθn(θn ∈ Bn) ≥ 1 − α. (7.72)

Then for any sequence θn and any cn → 0,

lim sup
n→∞

Pθn(sn ≤ cnσnn1/4) ≤ α. (7.73)

Finite sample results are available from Baraud (2004) and Cai and Low
(2005). For example, we have the following result, whose proof is in the ap-
pendix.

7.74 Theorem (Cai and Low 2004). Assume the model (7.1). Fix 0 < α <

1/2. Let Bn = {θ : ||θ̂ − θ|| ≤ sn} be such that

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α.

Then, for every 0 < ε < (1/2)− α,

inf
θ∈Rn

Eθ(sn) ≥ σn(1 − 2α − 2ε)n1/4(log(1 + ε2))1/4. (7.75)
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In particular, if σn = σ/
√

n, then

inf
θ∈Rn

Eθ(sn) ≥ C

n1/4
(7.76)

where C = σ(1 − 2α − 2ε)(log(1 + ε2))1/4.

The lower bound in the above theorem cannot be attained everywhere, as
the next result shows.

7.77 Theorem (Cai and Low 2004). Assume the model (7.1). Fix 0 < α <

1/2. Let Bn = {θ : ||θ̂ − θ|| ≤ sn} be such that

inf
θ∈Rn

Pθ(θ ∈ Bn) ≥ 1 − α.

Then, for every 0 < ε < (1/2) − α,

sup
θ∈Rn

Eθ(sn) ≥ ε σnzα+2ε

√
n

√
ε

1 − α − ε
. (7.78)

In particular, if σn = σ/
√

n, then

sup
θ∈Rn

Eθ(sn) ≥ C (7.79)

where C = εzα+2ε

√
ε/(1 − α − ε).

Despite these pessimistic sounding results, there is some potential for adap-
tation since the infimum in Theorem 7.74 is smaller than the supremum in
Theorem 7.77. For example, the χ2 ball has radius O(σn

√
n) but the lower

bound in the above theorem is O(σnn1/4) suggesting that we can do better
than the χ2 ball. This was the motivation for the Baraud and pivotal confi-
dence sets. The Baraud confidence set does have a certain type of adaptivity:
if θ ∈ S then ρ̂ ≤ ρS with high probability. This follows easily from the way
that the ball is defined. Let us formalize this as a lemma.

7.80 Lemma. Define S, α, γ and (ρS : S ∈ S) as in Theorem 7.59. For each
S ∈ S,

inf
θ∈S

Pθ(ρ̂ ≤ ρS) ≥ 1 − γ. (7.81)

Baraud also gives the following results which show that his construction
is essentially optimal. The first result gives a lower bound on any adaptive
confidence ball. The result after that shows that the radius ρS of his confidence
set essentially achieves this lower bound.
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7.82 Theorem (Baraud 2004). Suppose that θ̂ = θ̂(Z) and r = r(Z) are such
that B = {θ : ||θ − θ̂||2 ≤ r2} is a 1 − α confidence ball. Also suppose that
2α + γ < 1 − e−1/36 and that d(S) ≤ n/2. If

inf
θ∈S

Pθ(r ≤ rS) ≥ 1 − γ (7.83)

then, for some C = C(α, γ) > 0,

r2
S ≥ Cσ2

n max
{

d(S),
√

n
}
. (7.84)

Taking S to consist of a single point yields the same result as Theorem 7.74
and taking S = R

n yields the same result as Theorem 7.77.

7.85 Theorem (Baraud 2004). Define S, α, γ and (ρS : S ∈ S) as in Theo-
rem 7.59. Assume that d(S) ≤ n/2 for every S ∈ S except for S = R

n. There
exists a universal constant C > 0 such that

ρ2
S ≤ C σ2

n max
{
d(S),

√
n log(1/αS), log(1/αS)

}
. (7.86)

When σn is only known to lie in an interval I = [
√

1 − ηnτn, τn], Baraud
shows that the lower bound (7.84) becomes

r2
S ≥ Cτ2

n max
{

ηnn/2, d(S)(1 − ηn),
√

n − d(S)(1 − ηn)
}

(7.87)

which shows that information about σ is crucial. Indeed, the best we realisti-
cally could hope for is to know σ2 up to order ηn = O(n−1/2) in which case
the lower bound is of order max{√n, d(S)}.

7.10 Random Radius Bands?

We have seen that random radius confidence balls can be adaptive in the
sense that they can be smaller than fixed radius confidence balls at some
points in the parameter space. Is the same true for confidence bands? The
answer is no, as follows from results in Low (1997). Actually, Low considers
estimating a density f at a single point x but essentially the same results
apply to regression and to confidence bands. He shows that any random radius
confidence interval for f(x) must have expected width at least as large as a
fixed width confidence interval. Thus, there is a qualitative difference between
constructing a confidence ball versus a confidence band.

Similar comments apply for other norms. The Lp norm is defined by

||θ||p =
{

(
∑

i |θi|p)1/p p < ∞
maxi |θi| p = ∞.
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Confidence bands can be thought of as L∞ confidence balls. It can be shown
that confidence balls in the Lp norm with 2 < p < ∞ fall in between the two
extremes of L2 and L∞ in the sense that they have some adaptivity, but not
as much as in the L2 norm. Similar comments apply to hypothesis testing; see
Ingster and Suslina (2003).

7.11 Penalization, Oracles and Sparsity

Consider again the many Normal means problem

Zi ∼ θi + σnεi, i = 1, . . . , n.

If we choose θ̂ to minimize the sums of squares
∑n

i=1(Zi− θ̂i)2, we get the mle

θ̂ = Z = (Z1, . . . , Zn). If instead we minimize a penalized sums of squares, we
get different estimators.

7.88 Theorem. Let J : R
n → [0,∞), λ ≥ 0 and define the penalized sums

of squares

M =
n∑

i=1

(Zi − θi)2 + λJ(θ).

Let θ̂ minimize M . If λ = 0 then θ̂ = Z. If J(θ) =
∑n

i=1 θ2
i then θ̂i = Zi/(1+λ)

which is a linear shrinkage estimator. If J(θ) =
∑n

i=1 |θi| then θ̂ is the soft-
thresholding estimator (7.21). If J(θ) = #{θi : θi �= 0} then θ̂ is the hard-
thresholding estimator (7.23).

Thus we see that linear shrinkage, soft thresholding and hard thresholding
are all special cases of one general approach. The case of the L1 penalty∑n

i=1 |θi| is especially interesting. According to Theorem 7.88, the estimator
that minimizes

n∑
i=1

(Zi − θ̂i)2 + λ

n∑
i=1

|θi| (7.89)

is the soft-threshold estimator θ̂λ = (θ̂λ,1, . . . , θ̂λ,n) where

θ̂i,λ = sign(Zi)(|Zi| − λ)+.

The criterion (7.89) arises in variable selection for linear regression under the
name lasso (Tibshirani (1996)) and in signal processing under the name basis
pursuit (Chen et al. (1998)). We will see in Chapter 9 that soft thresholding
also plays an important role in wavelet methods.
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To get more insight on soft thresholding, we consider a result from Donoho
and Johnstone (1994). Consider estimating θi and suppose we use either Zi

or 0 as an estimator. Such an estimator might be appropriate if we think the
vector θ is sparse in the sense that it has many zeroes. The risk of Zi is σ2

n

and the risk of 0 is θ2
i . Imagine an oracle that knows when Zi has better risk

and when 0 has better risk. The risk of the oracles estimator is min{σ2
n, θ2

i }.
The risk for estimating the whole vector θ is

Roracle =
n∑

i=1

min
{
σ2

n, θ2
i

}
.

Donoho and Johnstone (1994) showed that soft thresholding gives an estima-
tor that comes close to the oracle.

7.90 Theorem (Donoho and Johnstone 1994). Let λ = σn

√
2 log n. Then, for

every θ ∈ R
n,

Eθ||θ̂λ − θ||2 ≤ (2 log n + 1)(σ2
n + Roracle).

Moreover, no estimator can get substantially closer to the oracle in the sense
that, as n → ∞,

inf
θ̂

sup
θ∈Rn

Eθ||θ̂ − θ||2
σ2

n + Roracle
∼ 2 logn. (7.91)

Consider now a sparse vector θ that is 0 except for k large components,
where k << n. Then, Roracle = kσ2

n. In function estimation problems, we will
see in the next chapter that σ2

n = O(1/n) and hence Roracle = O(k/n) which
is small in sparse cases (k small).

7.12 Bibliographic Remarks

The idea of reducing nonparametric models to Normal means models (or the
white noise model in the appendix) dates back at least to Ibragimov and
Has’minskii (1977), Efromovich and Pinsker (1982), and others. See Brown
and Low (1996), Nussbaum (1996a) for examples of recent results in this
area. A thorough treatment of Normal decision theory and its relation to
nonparametric problems is contained in Johnstone (2003). There is also a
substantial literature on hypothesis testing in this framework. Many of the
results are due to Ingster and are summarized in Ingster and Suslina (2003).
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7.13 Appendix

The White Noise Model. Regression is also connected with the white noise
model. Here is a brief description. Recall that a standard Brownian motion
W (t), 0 ≤ t ≤ 1 is a random function such that W (0) = 0, W (s+ t)−W (s) ∼
N(0, t) and, W (v) − W (u) is independent of W (t) − W (s) for 0 ≤ u ≤ v ≤
s ≤ t. You can think of W as a continuous version of a random walk. Let
Zi = f(i/n) + σεi with εi ∼ N(0, 1). For 0 ≤ t ≤ 1, define

Zn(t) =
1
n

[nt]∑
i=1

Zi =
1
n

[nt]∑
i=1

f(i/n) +
σ√
n

1√
n

[nt]∑
i=1

Zi.

The term 1
n

∑[nt]
i=1 f(i/n) converges to

∫ t

0 f(s)ds as n → ∞. The term n−1/2∑[nt]
i=1 Zi converges to a standard Brownian motion. (For any fixed t, this is

just an application of the central limit theorem.) Thus, asymptotically we can
write

Z(t) =
∫ t

0

f(s)ds +
σ√
n

W (t).

This is called the standard white noise model, often written in differential
form as

dZ(t) = f(t)dt +
σ√
n

dW (t) (7.92)

where dW (t) is the white noise process.6

Let φ1, φ2, . . . be an orthonormal basis for L2(0, 1) and write f(x) =∑∞
i=1 θiφi(x) where θi =

∫
f(x)φi(x)dx. Multiply (7.92) by φj and inte-

grate. This yields Zi = θi + (σ/
√

n)εi where Zi =
∫

φi(t)dZ(t) and εi =∫
φi(t)dW (t) ∼ N(0, 1). We are back to the Normal means problem. A more

complicated argument can be used to relate density estimation to the white
noise model as in Nussbaum (1996a).

Weak Differentiability. Let f be integrable on every bounded interval. Then
f is weakly differentiable if there exists a function f ′ that is integrable on
every bounded interval, such that∫ y

x

f ′(s)ds = f(y) − f(x)

whenever x ≤ y. We call f ′ the weak derivative of f . An equivalent condition
is that for every φ that is compactly supported and infinitely differentiable,∫

f(s)φ′(s)ds = −
∫

f ′(s)φ(s)ds.

6Intuitively, think of dW (t) as a vector of Normals on a very fine grid.
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See Härdle et al. (1998), page 72.

Proof of Pinsker’s Theorem (Theorem 7.28). (Following Nussbaum (1996b).)
We will need to use Bayes estimators, which we now review. Let πn be a prior
for θn. The integrated risk is defined to be B(θ̂, πn) =

∫
R(θ̂n, θn)dπn(θn) =

EπnEθL(θ̂, θ). The Bayes estimator θ̂πn minimizes the Bayes risk:

B(πn) = inf
θ̂

B(θ̂n, πn). (7.93)

An explicit formula for the Bayes estimator is

θ̂πn(y) = argminaE
(
L(a, θ)

∣∣ Zn
)
.

In the case of squared error loss L(a, θ) = ||a − θ||2n, the Bayes estimator is
θ̂πn(y) = E(θ|Zn).

Let Θn = Θn(c). Let
Rn = inf

θ̂
sup

θ∈Θn

R(θ̂, θ)

denote the minimax risk. We will find an upper bound and a lower bound on
the risk.

Upper Bound. Let θ̂j = c2Zj/(σ2 + c2). The bias of this estimator is

Eθ(θ̂j) − θj = − σ2θj

σ2 + c2

and the variance is

Vθ(θ̂j) =
(

c2

c2 + σ2

)2

σ2
n =

(
c2

c2 + σ2

)2
σ2

n

and hence the risk is

Eθ||θ̂ − θ||2 =
n∑

j=1

[(
σ2θj

σ2 + c2

)2

+
(

c2

c2 + σ2

)2 (
σ2

n

)]

=
(

σ2

σ2 + c2

)2 n∑
j=1

θ2
j + σ2

(
σ2

σ2 + c2

)2

≤ c2

(
σ2

σ2 + c2

)2

+ σ2

(
σ2

σ2 + c2

)2

=
σ2c2

σ2 + c2
.

Hence,

Rn ≤ c2σ2

c2 + σ2
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for all n.

Lower Bound. Fix 0 < δ < 1. Let πn be a Normal prior for which
θ1, . . . , θn are iid N(0, c2δ2/n). Let B(πn) denote the Bayes risk. Recall that
B(πn) minimizes the integrated risk B(θ̂, πn) over all estimators. The mini-
mum is obtained by taking θ̂ to be the posterior mean which has coordinates
θ̂j = c2δ2Zj/(c2δ2 + σ2) with risk

R(θ, θ̂) =
n∑

i=1

⎡⎣θ2
i

(
σ2

n
c2δ2

n + σ2
n

)2

+ σ2

(
c2δ2

n
c2δ2

n + σ2
n

)2
⎤⎦ .

The Bayes risk is

B(πn) =
∫

R(θ, θ̂)dπn(θ) =
σ2δ2c2

σ2 + δ2c2
.

So, for any estimator θ̂,

B(πn) ≤ B(θ̂, πn)

=
∫

Θn

R(θ, θ̂)dπn +
∫

Θc
n

R(θ, θ̂)dπn

≤ sup
θ∈Θn

R(θ, θ̂) +
∫

Θc
n

R(θ, θ̂)dπn

≤ sup
θ∈Θn

R(θ, θ̂) + sup
θ̂

∫
Θc

n

R(θ, θ̂)dπn.

Taking the infimum over all estimators that take values in Θn yields

B(πn) ≤ Rn + sup
θ̂

∫
Θc

n

R(θ, θ̂)dπn.

Hence,

Rn ≥ B(πn) − sup
θ̂

∫
Θc

n

R(θ, θ̂)dπn

=
σ2δ2c2

δ2c2 + σ2
− sup

θ̂

∫
Θc

n

R(θ, θ̂)dπn.

Now, using the fact that ||a + b||2 ≤ 2(||a||2 + ||b||2), and the Cauchy–
Schwartz inequality,

sup
θ̂

∫
Θc

n

R(θ, θ̂)dπn ≤ 2
∫

Θc
n

||θ||2dπn + 2 sup
θ̂

∫
Θc

n

Eθ||θ̂||2dπn

≤ 2
√

πn(Θc
n)

√√√√√Eπn

⎛⎝∑
j

θ2
j

⎞⎠2

+ 2c2πn(Θc
n).
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Thus,

Rn ≥ σ2δ2c2

σ2 + δ2c2
− 2
√

πn(Θc
n)

√√√√√Eπn

⎛⎝∑
j

θ2
j

⎞⎠2

− 2c2πn(Θc
n). (7.94)

We now bound the last two terms in (7.94).
We shall make use of the following large deviation inequality: if Z1, . . . , Zn ∼

N(0, 1) and 0 < t < 1, then

P

⎛⎝∣∣∣∣∣∣ 1n
∑

j

(Z2
j − 1)

∣∣∣∣∣∣ > t

⎞⎠ ≤ 2e−nt2/8.

Let Zj =
√

nθj/(cδ) and let t = (1 − δ2)/δ2. Then,

πn(Θc
n) = P

⎛⎝ n∑
j=1

θ2
j > c2

⎞⎠ = P

⎛⎝ 1
n

n∑
j=1

(Z2
j − 1) > t

⎞⎠
≤ P

⎛⎝∣∣∣∣∣∣ 1n
∑

j

(Z2
j − 1)

∣∣∣∣∣∣ > t

⎞⎠ ≤ 2e−nt2/8.

Next, we note that

Eπn

⎛⎝∑
j

θ2
j

⎞⎠2

=
n∑

i=1

Eπn(θ4
i ) +

n∑
i=1

n∑
j �=i

Eπn(θ2
i )Eπn(θ2

j )

=
c4δ4

E(Z4
1 )

n
+
(

n

2

)
c4δ4

n2
= O(1).

Therefore, from (7.94),

Rn ≥ σ2δ2c2

σ2 + δ2c2
− 2

√
2e−nt2/16O(1) − 2c2e−nt2/8.

Hence,

lim inf
n→∞ Rn ≥ σ2δ2c2

σ2 + δ2c2
.

The conclusion follows by letting δ ↑ 1. �

Proof of Theorem 7.74. Let

a =
σn

n1/4
(log(1 + ε2))1/4
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and define

Ω =
{

θ = (θ1, . . . , θn) : |θi| = a, i = 1, . . . , n
}
.

Note that Ω contains 2n elements. Let fθ denote the density of a multivariate
Normal with mean θ and covariance σ2

nI where I is the identity matrix. Define
the mixture

q(y) =
1
2n

∑
θ∈Ω

fθ(y).

Let f0 denote the density of a multivariate Normal with mean (0, . . . , 0) and
covariance σ2

nI. Then,∫
|f0(x) − g(x)|dx =

∫ |f0(x) − g(x)|√
f0(x)

√
f0(x)dx

≤
√∫

(f0(x) − g(x))2

f0(x)
dx

=

√∫
g2(x)
f0(x)

dx − 1.

Now,∫
q2(x)
f0(x)

dx =
∫ (

q(x)
f0(x)

)2

f0(x)dx = E0

(
q(x)
f0(x)

)2

=
(

1
2n

)2 ∑
θ,ν∈Ω

E0

(
fθ(x)fν(x)

f2
0 (x)

)

=
(

1
2n

)2 ∑
θ,ν∈Ω

exp
{
− 1

2σ2
n

(||θ||2 + ||ν||2)
}

E0

(
exp

{
εT (θ + ν)/σ2

n

})
=
(

1
2n

)2 ∑
θ,ν∈Ω

exp
{
− 1

2σ2
n

(||θ||2 + ||ν||2)
}

exp

{
n∑

i=1

(θi + νi)2/(2σ2
n)

}

=
(

1
2n

)2 ∑
θ,ν∈Ω

exp
{ 〈θ, ν〉

σ2
n

}
.

The latter is equal to the mean of exp(〈θ, ν〉/σ2
n) when drawing two vectors θ

and ν at random from Ω. And this, in turn, is equal to

E exp
{

a2
∑n

i=1 Ei

σ2
n

}
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where E1, . . . , En are independent and P(Ei = 1) = P(Ei = −1) = 1/2.
Moreover,

E exp
{

a2
∑n

i=1 Ei

σ2
n

}
=

n∏
i=1

E exp
{

a2Ei

σ2
n

}
=

(
E exp

{
a2E1

σ2
n

})n

=
(

cosh
(

a2

σ2
n

))n

where cosh(y) = (ey + e−y)/2. Thus,∫
q2(x)
f0(x)

dx =
(

cosh
(

a2

σ2
n

))n

≤ ea4n/σ4
n

where we have used the fact that cosh(y) ≤ ey2
. Thus,∫

|f0(x) − q(x)|dx ≤
√

ea4n/σ4
n − 1 = ε.

So, if Q denotes the probability measure with density q, we have, for any
event A,

Q(A) =
∫

A

q(x)dx =
∫

A

f0(x)dx +
∫

A

(q(x) − f0(x))dx

≥ P0(A) −
∫

A

|q(x) − f0(x)|dx ≥ P0(A) − ε. (7.95)

Define two events, A = {(0, . . . , 0) ∈ Bn} and B = {Ω⋂Bn �= ∅}. Every
θ ∈ Ω has norm

||θ|| =
√

na2 = σnn1/4(log(1 + ε2))1/4 ≡ cn.

Hence, A
⋂

B ⊂ {sn ≥ cn}. Since Pθ(θ ∈ Bn) ≥ 1−α for all θ, it follows that
Pθ(B) ≥ 1 − α for all θ ∈ Ω. Hence, Q(B) ≥ 1 − α. From (7.95),

P0(sn ≥ cn) ≥ P0(A
⋂

B) ≥ Q(A
⋂

B) − ε

= Q(A) + Q(B) − Q(A
⋃

B) − ε

≥ Q(A) + Q(B) − 1 − ε

≥ Q(A) + (1 − α) − 1 − ε

≥ P0(A) + (1 − α) − 1 − 2ε

≥ (1 − α) + (1 − α) − 1 − 2ε

= 1 − 2α − 2ε.
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So, E0(sn) ≥ (1− 2α− 2ε)cn. It is easy to see that the same argument can be
used for any θ ∈ R

n and hence Eθ(sn) ≥ (1 − 2α − 2ε)cn for every θ ∈ R
n. �

Proof of Theorem 7.77. Let a = σnzα+2ε where 0 < ε < (1/2)(1/2− α) and
define

Ω =
{

θ = (θ1, . . . , θn) : |θi| = a, i = 1, . . . , n
}
.

Define the loss function L = L(θ̂, θ) =
∑n

i=1 I(|θ̂i −θi| ≥ a). Let π be the uni-
form prior on Ω. The posterior mass function over Ω is p(θ|y) =

∏n
i=1 p(θi|yi)

where

p(θi|yi) =
e2ayi/σ2

n

1 + e2ayi/σ2
n
I(θi = a) +

1
1 + e2ayi/σ2

n
I(θi = −a).

The posterior risk is

E(L(θ̂, θ)|y) =
n∑

i=1

P(|θ̂i − θi| ≥ a|yi)

which is minimized by taking θ̂i = a if yi ≥ 0 and θ̂i = −a if yi < 0. The risk
of this estimator is

n∑
i=1

(
P(Yi < 0|θi = a)I(θi = a) + P(Yi > 0|θi = −a)I(θi = −a)

)
= nΦ(−a/σn) = n(α + 2ε).

Since this risk is constant, it is the minimax risk. Therefore,

inf
θ̂

sup
θ∈Rn

n∑
i=1

Pθ(|θ̂i − θi| ≥ a) ≥ inf
θ̂

sup
θ∈Ω

n∑
i=1

Pθ(|θ̂i − θi| ≥ a)

= n(α + 2ε).

Let γ = ε/(1 − α − ε). Given any estimator θ̂,

γnPθ(L < γn) + nPθ(L ≥ γn) ≥ L

and so

sup
θ

(
γnPθ(L < γn) + nPθ(L ≥ γn)

) ≥ sup
θ

Eθ(L) ≥ n(α + 2ε).

This inequality, together with the fact that Pθ(L < γn) + Pθ(L ≥ γn) = 1
implies that

sup
θ

Pθ(L ≥ γn) ≥ α + ε.
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Thus,
sup

θ
Pθ(||θ̂ − θ||2 ≥ γna2) ≥ sup

θ
Pθ(L ≥ γn) ≥ α + ε.

Therefore,

sup
θ

Pθ(s2
n ≥ γna2) ≥ sup

θ
Pθ(s2

n ≥ ||θ̂ − θ||2 ≥ γna2)

= sup
θ

Pθ(s2
n ≥ ||θ̂ − θ||2) + sup

θ
Pθ(||θ̂ − θ||2 ≥ γna2) − 1

≥ α + ε + 1 − α − 1 = ε.

Thus, supθ Eθ(sn) ≥ εa
√

γn. �

7.14 Exercises

1. Let θi = 1/i2 for i = 1, . . . , n. Take n = 1000. Let Zi ∼ N(θi, 1) for
i = 1, . . . , n. Compute the risk of the mle. Compute the risk of the
estimator θ̃ = (bZ1, bZ2, . . . , bZn). Plot this risk as a function of b. Find
the optimal value b∗. Now conduct a simulation. For each run of the
simulation, find the (modified) James–Stein estimator b̂Z where

b̂ =
[
1 − n∑

i Z2
i

]+
.

You will get one b̂ for each simulation. Compare the simulated values of
b̂ to b∗. Also, compare the risk of the mle and the James–Stein estimator
(the latter obtained by simulation) to the Pinsker bound.

2. For the Normal means problem, consider the following curved soft thresh-
old estimator:

θ̂i =

⎧⎨⎩
−(Zi + λ)2 Zi < −λ
0 −λ ≤ Zi ≤ λ
(Zi − λ)2 Zi > λ

where λ > 0 is some fixed constant.

(a) Find the risk of this estimator. Hint: R = E(sure).

(b) Consider problem (1). Use your estimator from (2a) with λ chosen
from the data using sure. Compare the risk to the risk of the James–
Stein estimator. Now repeat the comparison for

θ = (

10 times︷ ︸︸ ︷
10, . . . , 10,

990 times︷ ︸︸ ︷
0, . . . , 0).
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3. Let J = Jn be such that Jn → ∞ and n → ∞. Let

σ̂2 =
n

J

n∑
i=n−J+1

Z2
i

where Zi ∼ N(θi, σ
2/n). Show that if θ = (θ1, θ2, . . .) belongs to a

Sobolev body of order m > 1/2 then σ̂2 is a uniformly consistent esti-
mator of σ2 in the Normal means model.

4. Prove Stein’s lemma: if X ∼ N(µ, σ2) then E(g(X)(X−µ)) = σ2
Eg′(X).

5. Verify equation 7.22.

6. Show that the hard threshold estimator defined in (7.23) is not weakly
differentiable.

7. Compute the risk functions for the soft threshold estimator (7.21) and
the hard threshold estimator (7.23).

8. Generate Zi ∼ N(θi, 1), i = 1, . . . , 100, where θi = 1/i. Compute a 95
percent confidence ball using: (i) the χ2 confidence ball, (ii) the Baraud
method, (iii) the pivotal method. Repeat 1000 times and compare the
radii of the balls.

9. Let ||a−b||∞ = supj |aj −bj|. Construct a confidence set Bn of the form
Bn = {θ ∈ R

n : ||θ −Zn||∞ ≤ cn} such that Pθ(θ ∈ Bn) ≥ 1−α for all
θ ∈ R

n under model (7.1) with σn = σ/
√

n. Find the expected diameter
of your confidence set.

10. Consider Example 7.24. Define

δ = max
S∈S

sup
θ∈Rn

|R̂S − R(θ̂S , θ)|.

Try to bound δ in the following three cases: (i) S consists of a single
model S; (ii) nested model selection; (iii) all subsets selection.

11. Consider Example 7.24. Another method for choosing a model is to use
penalized likelihood. In particular, some well-known penalization model
selection methods are AIC (Akaike’s Information Criterion), Akaike
(1973), Mallows’ Cp, Mallows (1973), and BIC (Bayesian Information
Criterion), Schwarz (1978). In the Normal means model, minimizing
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sure, AIC and Cp are equivalent. But BIC leads to a different model
selection procedure. Specifically,

BICB = �B − |B|
2

log n

where �B is the log-likelihood of the submodel B evaluated at its max-
imum likelihood estimator. Find an explicit expression for BICB. Sup-
pose we choose B by maximizing BICB over B. Investigate the properties
of this model selection procedure and compare it to selecting a model by
minimizing sure. In particular, compare the risk of the resulting esti-
mators. Also, assuming there is a “true” submodel (that is, θi �= 0 if and
only if i ∈ B), compare the probability of selecting the true submodel
under each procedure. In general, estimating θ accurately and finding
the true submodel are not the same. See Wasserman (2000).

12. By approximating the noncentral χ2 with a Normal, find a large sample
approximation to for ρ0 and ρn in Example 7.69. Then prove equation
(7.70).



8
Nonparametric Inference Using
Orthogonal Functions

8.1 Introduction

In this chapter we use orthogonal function methods for nonparametric infer-
ence. Specifically, we use an orthogonal basis to convert regression and density
estimation into a Normal means problem and then we construct estimates and
confidence sets using the theory from Chapter 7. In the regression case, the
resulting estimators are linear smoothers and thus are a special case of the es-
timators described in Section 5.2. We discuss another approach to orthogonal
function regression based on wavelets in the next chapter.

8.2 Nonparametric Regression

The particular version of orthogonal function regression that we consider here
was developed by Beran (2000) and Beran and Dümbgen (1998). They call
the method react, which stands for Risk Estimation and Adaptation
after Coordinate Transformation. Similar ideas have been developed by
Efromovich (1999). In fact, the basic idea is quite old; see Cenc̆ov (1962), for
example.

Suppose we observe

Yi = r(xi) + σεi (8.1)
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where εi ∼ N(0, 1) are iid. For now, we assume a regular design meaning
that xi = i/n, i = 1, . . . , n.

Let φ1, φ2, . . . be an orthonormal basis for [0, 1]. In our examples we will
often use the cosine basis:

φ1(x) ≡ 1, φj(x) =
√

2 cos((j − 1)πx), j ≥ 2. (8.2)

Expand r as

r(x) =
∞∑

j=1

θjφj(x) (8.3)

where θj =
∫ 1

0
φj(x)r(x)dx.

First, we approximate r by

rn(x) =
n∑

j=1

θjφj(x)

which is the projection of r onto the span of {φ1, . . . , φn}.1 This introduces
an integrated squared bias of size

Bn(θ) =
∫ 1

0

(r(x) − rn(x))2dx =
∞∑

j=n+1

θ2
j .

If r is smooth, this bias is quite small.

8.4 Lemma. Let Θ(m, c) be a Sobolev ellipsoid.2 Then,

sup
θ∈Θ(m,c)

Bn(θ) = O

(
1

n2m

)
. (8.5)

In particular, if m > 1/2 then supθ∈Θ(m,c) Bn(θ) = o(1/n).

Hence this bias is negligible and we shall ignore it for the rest of the chapter.
More precisely, we will focus on estimating rn rather than r. Our next task is
to estimate the θ = (θ1, . . . , θn). Let

Zj =
1
n

n∑
i=1

Yi φj(xi), j = 1, . . . . (8.6)

1More generally we could take rn(x) =
∑p(n)

j=1 θjφj(x) where p(n) → ∞ at an appropriate
rate.

2See Definition 7.2.



8.2 Nonparametric Regression 185

As we saw in equation (7.15) of Chapter 7,

Zj ≈ N

(
θj ,

σ2

n

)
. (8.7)

We know from the previous chapter that the mle Z = (Z1, . . . , Zn) has large
risk. One possibility for improving on the mle is to use the James–Stein
estimator θ̂JS defined in (7.41). We can think of the James–Stein estimator
as the estimator that minimizes the estimated risk over all estimators of the
form (bZ1, . . . , bZn). react generalizes this idea by minimizing the risk over
a larger class of estimators, called modulators.

A modulator is a vector b = (b1, . . . , bn) such that 0 ≤ bj ≤ 1, j = 1, . . . , n.
A modulation estimator is an estimator of the form

θ̂ = bZ = (b1Z1, b2Z2, . . . , bnZn). (8.8)

A constant modulator is a modulator of the form (b, . . . , b). A nested
subset selection modulator is a modulator of the form

b = (1, . . . , 1, 0, . . . , 0).

A monotone modulator is a modulator of the form

1 ≥ b1 ≥ · · · ≥ bn ≥ 0.

The set of constant modulators is denoted by MCONS, the set of nested sub-
set modulators is denoted by MNSS and the set of monotone modulators is
denoted by MMON.

Given a modulator b = (b1, . . . , bn), the function estimator is

r̂n(x) =
n∑

j=1

θ̂jφj(x) =
n∑

j=1

bjZjφj(x). (8.9)

Observe that

r̂n(x) =
n∑

i=1

Yi �i(x) (8.10)

where

�i(x) =
1
n

n∑
j=1

bjφj(x)φj(xi). (8.11)

Hence, r̂n is a linear smoother as described in Section 5.2.
Modulators shrink the Zjs towards 0 and, as we saw in the last chapter,

shrinking tends to smooth the function. Thus, choosing the amount of shrink-
age corresponds to the problem of choosing a bandwidth that we faced in
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Chapter 5. We shall address the problem using Stein’s unbiased risk estima-
tor (Section 7.4) instead of cross-validation.

Let

R(b) = Eθ

[
n∑

j=1

(bjZj − θj)2
]

denote the risk of the estimator θ̂ = (b1Z1, . . . , bnZn). The idea of react is
to estimate the risk R(b) and choose b̂ to minimize the estimated risk over
a class of modulators M. Minimizing over MCONS yields the James–Stein
estimator, so react is a generalization of James–Stein estimation.

To proceed, we need to estimate σ. Any of the methods discussed in Chapter
5 can be used. Another estimator, well-suited for the present framework, is

σ̂2 =
1

n − Jn

n∑
i=n−Jn+1

Z2
i . (8.12)

This estimator is consistent as long as Jn → ∞ and n − Jn → ∞ as n → ∞.
As a default value, Jn = n/4 is not unreasonable. The intuition is that if r is
smooth then we expect θj ≈ 0 for large j, and hence Z2

j = (θ2
j + σεj/

√
n)2 ≈

(σεj/
√

n)2 = σ2ε2j/n. Therefore,

E(σ̂2) =
1

n − Jn

n∑
n−Jn+1

E(Z2
i ) ≈ 1

n − Jn

n∑
n−Jn+1

σ2

n
E(ε2i ) = σ2.

Now we can estimate the risk function.

8.13 Theorem. The risk of a modulator b is

R(b) =
n∑

j=1

θ2
j (1 − bj)2 +

σ2

n

n∑
j=1

b2
j . (8.14)

The (modified)3 sure estimator of R(b) is

R̂(b) =
n∑

j=1

(
Z2

j − σ̂2

n

)
+

(1 − bj)2 +
σ̂2

n

n∑
j=1

b2
j (8.15)

where σ̂2 is a consistent estimate of σ2 such as (8.12).

3We call this a modified risk estimator since we have inserted an estimate σ̂ of σ and we
replaced (Z2

j − σ̂2/n) with (Z2
j − σ̂2/n)+ which usually improves the risk estimate.
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8.16 Definition. Let M be a set of modulators. The modulation
estimator of θ is θ̂ = (̂b1Z1, . . . , b̂nZn) where b̂ = (̂b1 . . . , b̂n) minimizes
R̂(b) over M. The react function estimator is

r̂n(x) =
n∑

j=1

θ̂jφj(x) =
n∑

j=1

b̂jZjφj(x).

For a fixed b, we expect that R̂(b) approximates R(b). But for the react

estimator we require more: we want R̂(b) to approximate R(b) uniformly for
b ∈ M. If so, then infb∈M R̂(b) ≈ infb∈M R(b) and the b that minimizes R̂(b)
should be nearly as good as the b that minimizes R(b). This motivates the
next result.

8.17 Theorem (Beran and Dümbgen, 1998). Let M be one of MCONS, MNSS

or MMON. Let R(b) denote the true risk of the estimator (b1Z1, . . . , bnZn).
Let b∗ minimize R(b) over M and let b̂ minimize R̂(b) over M. Then

|R(̂b) − R(b∗)| → 0

as n → ∞. For M = MCONS or M = MMON, the estimator θ̂ = (̂b1Z1, . . .,
b̂nZn) achieves the Pinsker bound (7.29).

To implement this method, we need to find b̂ to minimize R̂(b). The min-
imum of R̂(b) over MCONS is the James–Stein estimator. To minimize R̂(b)
overMNSS, we compute R̂(b) for every modulator of the form (1, 1 . . . , 1, 0, . . . , 0)
and then the minimum is found. In other words, we find Ĵ to minimize

R̂(J) =
Jσ̂2

n
+

n∑
j=J+1

(
Z2

j − σ̂2

n

)
+

(8.18)

and set r̂n(x) =
∑Ĵ

j=1 Zjφj(x). It is a good idea to plot the estimated risk as
a function of J . To minimize R̂(b) over MMON, note that R̂(b) can be written
as

R̂(b) =
n∑

i=1

(bi − gi)2Z2
i +

σ̂2

n

n∑
i=1

gi (8.19)

where gi = (Z2
i − (σ̂2/n))/Z2

i . So it suffices to minimize

n∑
i=1

(bi − gi)2Z2
i
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subject to b1 ≥ · · · ≥ bn. This is simply a weighted least squares problem sub-
ject to a monotonicity constraint. There is a well-known algorithm called the
pooled-adjacent-violators (PAV) algorithm for performing this minimization;
See Robertson et al. (1988).

Usually, monotone modulators lead to estimates that are close to the NSS
modulators and the latter are very easy to implement. Thus, as a default, the
NSS method is reasonable. At this point, we can summarize the whole react

procedure.

Summary of react

1. Let Zj = n−1
∑n

i=1 Yi φj(xi) for j = 1, . . . , n.

2. Find Ĵ to minimize the risk estimator R̂(J) given by equation (8.18).

3. Let

r̂n(x) =
Ĵ∑

j=1

Zjφj(x).

8.20 Example (Doppler function). Recall that the Doppler function from
Example 5.63 is

r(x) =
√

x(1 − x) sin
(

2.1π

x + .05

)
.

The top left panel in Figure 8.1 shows the true function. The top right panel
shows 1000 data points. The data were simulated from the model Yi = r(i/n)+
σεi with σ = 0.1 and εi ∼ N(0, 1). The bottom left panel shows the estimated
risk for the NSS modulator as a function of the number of terms in the fit.
The risk was minimized by using the modulator:

b = (1, . . . , 1︸ ︷︷ ︸
187

, 0, . . . , 0︸ ︷︷ ︸
813

).

The bottom right panel shows the react fit. Compare with Figure 5.6. �

8.21 Example (CMB data). Let us compare react to local smoothing for the
CMB data from Example 4.4. The estimated risk (for NSS) is minimized by
using J = 6 basis functions. The fit is shown in Figure 8.2. and is similar to
the fits obtained in Chapter 5. (We are ignoring the fact that the variance is
not constant.) The plot of the risk reveals that there is another local minimum
around J = 40. The bottom right plot shows the fit using 40 basis functions.
This fit appears to undersmooth. �



8.2 Nonparametric Regression 189

0.0 0.5 1.0

−1
0

1

0.0 0.5 1.0

−1
0

1
0 500 1000 0.0 0.5 1.0

−1
0

1

FIGURE 8.1. Doppler test function. Top left: true function. Top right: 1000 data
points. Bottom left: estimated risk as a function of the number of terms in the fit.
Bottom right: final react fit.

There are several ways to construct a confidence set for r. We begin with
confidence balls. First, construct a confidence ball Bn for θ = (θ1, . . . , θn)
using any of the methods in Section 7.8. Then define

Cn =

{
r =

n∑
j=1

θjφj : (θ1, . . . , θn) ∈ Bn

}
. (8.22)

It follows that Cn is a confidence ball for rn. If we use the pivotal method
from Section 7.8 we get the following.

8.23 Theorem (Beran and Dümbgen, 1998). Let θ̂ be the MON or NSS esti-
mator and let σ̂2 be the estimator of σ defined in (8.12). Let

Bn =

{
θ = (θ1, . . . , θn) :

n∑
j=1

(θj − θ̂j)2 ≤ s2
n

}
(8.24)

where

s2
n = R̂(̂b) +

τ̂ zα√
n

τ̂2 =
2σ̂4

n

∑
j

(
(2b̂j − 1)(1 − cj)

)2

+ 4σ̂2
∑

j

(
Z2

j − σ̂2

n

)(
(1 − b̂j) + (2b̂j − 1)cj

)2
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FIGURE 8.2. CMB data using react. Top left: NSS fit using J = 6 basis functions.
Top right: estimated risk. Bottom left: NSS fit using J = 40 basis functions.

and

cj =
{

0 if j ≤ n − J
1/J if j > n − J.

Then, for any c > 0 and m > 1/2,

lim
n→∞ sup

θ∈Θ(m,c)

|Pθ(θ ∈ Bn) − (1 − α)| = 0.

To construct confidence bands, we use the fact that r̂n is a linear smoother
and we can then use the method from Section 5.7. The band is given by (5.99),
namely,

I(x) =
(
r̂n(x) − c σ̂||�(x)||, r̂n(x) + c σ̂||�(x)||

)
(8.25)

where

||�(x)||2 ≈ 1
n

n∑
j=1

b2
jφ

2
j(x) (8.26)

and c is from equation (5.102).

8.3 Irregular Designs

So far we have assumed a regular design xi = i/n. Now let us relax this
assumption and deal with an irregular design. There are several ways to
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handle this case. The simplest is to use a basis {φ1, . . . , φn} that is orthogonal
with respect to the design points x1, . . . , xn. That is, we choose a basis for
L2(Pn) where Pn = n−1

∑n
i=1 δi and δi is a point mass at xi. This requires

that

||φ2
j || = 1, j = 1, . . . , n

and

〈φj , φk〉 = 0, 1 ≤ j < k ≤ n

where

〈f, g〉 =
∫

f(x)g(x)dPn(x) =
1
n

n∑
i=1

f(xi)g(xi)

and

||f ||2 =
∫

f2(x)dPn(x) =
1
n

n∑
i=1

f2(xi).

We can construct such a basis by Gram–Schmidt orthogonalization as follows.
Let g1, . . . , gn be any convenient orthonormal basis for R

n. Let

φ1(x) =
ψ1(x)
||ψ1|| where ψ1(x) = g1(x)

and for 2 ≤ r ≤ n define

φr(x) =
ψr(x)
||ψr|| where ψr(x) = gr(x) −

r−1∑
j=1

ar,jφj(x)

and

ar,j = 〈gr, φj〉.

Then, φ1, . . . , φn form an orthonormal basis with respect to Pn.
Now, as before, we define

Zj =
1
n

n∑
i=1

Yi φj(xi), j = 1, . . . , n. (8.27)

It follows that

Zj ≈ N

(
θj ,

σ2

n

)
and we can then use the methods that we developed in this chapter.
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8.4 Density Estimation

Orthogonal function methods can also be used for density estimation. Let
X1, . . . , Xn be an iid sample from a distribution F with density f with support
on (0, 1). We assume that f ∈ L2(0, 1) so we can expand f as

f(x) =
∞∑

j=1

θjφj(x)

where, as before, φ1, φ2, . . . , is an orthogonal basis. Let

Zj =
1
n

n∑
i=1

φj(Xi), j = 1, 2, . . . , n. (8.28)

Then,

E(Zj) =
∫

φj(x)f(x)dx = θj

and

V(Zj) =
1
n

(∫
φ2

j (x)f(x)dx − θ2
j

)
≡ σ2

j .

As in the regression case, we take θ̂j = 0 for j > n and we estimate θ =
(θ1, . . . , θn) using a modulation estimator θ̂ = bZ = (b1Z1, . . . , bnZn). The
risk of this estimator is

R(b) =
n∑

j=1

b2
jσ

2
j +

n∑
j=1

(1 − bj)2θ2
j . (8.29)

We estimate σ2
j by

σ̂2
j =

1
n2

n∑
i=1

(φj(Xi) − Zj)
2

and θ2
j by Z2

j − σ̂2
j ; then we can estimate the risk by

R̂(b) =
n∑

j=1

b2
j σ̂

2
j +

n∑
j=1

(1 − bj)2
(
Z2

j − σ̂2
j

)
+

. (8.30)

Finally, we choose b̂ by minimizing R̂(b) over some class of modulators M.
The density estimate can be negative. We can fix this by performing surgery:
remove the negative part of the density and renormalize it to integrate to 1.
Better surgery methods are discussed in Glad et al. (2003).
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8.5 Comparison of Methods

The methods we have introduced for nonparametric regression so far are lo-
cal regression (Section 5.4), spline smoothing (Section 5.5), and orthogonal
function smoothing. In many ways, these methods are very similar. They all
involve a bias–variance tradeoff and they all require choosing a smoothing
parameter. Local polynomial smoothers have the advantage that they auto-
matically correct for boundary bias. It is possible to modify orthogonal func-
tion estimators to alleviate boundary bias by changing the basis slightly; see
Efromovich (1999). An advantage of orthogonal function smoothing is that
it converts nonparametric regression into the many Normal means problem,
which is simpler, at least for theoretical purposes. There are rarely huge dif-
ferences between the approaches, especially when these differences are judged
relative to the width of confidence bands. Each approach has its champions
and its detractors. It is wise to use all available tools for each problem. If they
agree then the choice of method is one of convenience or taste; if they disagree
then there is value in figuring out why they differ.

Finally, let us mention that there is a formal relationship between these ap-
proaches. For example, orthogonal function can be viewed as kernel smoothing
with a particular kernel and vice versa. See Härdle et al. (1998) for details.

8.6 Tensor Product Models

The methods in this chapter extend readily to higher dimensions although
our previous remarks about the curse of dimensionality apply here as well.

Suppose that r(x1, x2) is a function of two variables. For simplicity, assume
that 0 ≤ x1, x2 ≤ 1. If φ0, φ1, . . . is an orthonormal basis for L2(0, 1) then the
functions {

φj,k(x1, x2) = φj(x1)φk(x2) : j, k = 0, 1, . . . ,
}

form an orthonormal basis for L2([0, 1] × [0, 1]), called the tensor product
basis. The basis can be extended to d dimensions in the obvious way.

Suppose that φ0 = 1. Then a function r ∈ L2([0, 1]× [0, 1]) can be expanded
in the tensor product basis as

r(x1, x2) =
∞∑

j,k=0

βj,k φj(x1)φk(x2)

= β0 +
∞∑

j=1

βj,0 φj(x1) +
∞∑

j=1

β0,j φj(x2) +
∞∑

j,k=1

βj,k φj(x1)φk(x2).
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This expansion has an ANOVA-like structure consisting of a mean, main ef-
fects, and interactions. This structure suggests a way to get better estimators.
We could put stronger smoothness assumptions on higher-order interactions
to get better rates of convergence (at the expense of more assumptions). See
Lin (2000), Wahba et al. (1995), Gao et al. (2001), and Lin et al. (2000).

8.7 Bibliographic Remarks

The react method is developed in Beran (2000) and Beran and Dümbgen
(1998). A different approach to using orthogonal functions is discussed in Efro-
movich (1999). react confidence sets are extended to nonconstant variance
in Genovese et al. (2004), to wavelets in Genovese and Wasserman (2005),
and to density estimation in Jang et al. (2004).

8.8 Exercises

1. Prove Lemma 8.4.

2. Prove Theorem 8.13.

3. Prove equation (8.19).

4. Prove equation (8.26).

5. Show that the estimator (8.12) is consistent.

6. Show that the estimator (8.12) is uniformly consistent over Sobolev
ellipsoids.

7. Get the data on fragments of glass collected in forensic work from the
book website. Let Y be refractive index and let x be aluminium con-
tent (the fourth variable). Perform a nonparametric regression to fit the
model Y = r(x)+ ε. Use react and compare to local linear smoothing.
Estimate the variance. Construct 95 percent confidence bands for your
estimate.

8. Get the motorcycle data from the book website. The covariate is time
(in milliseconds) and the response is acceleration at time of impact. Use
react to fit the data. Compute 95 percent confidence bands. Compute
a 95 percent confidence ball. Can you think of a creative way to display
the confidence ball?
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9. Generate 1000 observations from the model Yi = r(xi) + σεi where
xi = i/n, εi ∼ N(0, 1) and r is the Doppler function. Make three data
sets corresponding to σ = .1, σ = 1 and σ = 3. Estimate the function
using local linear regression and using react. In each case, compute a
95 percent confidence band. Compare the fits and the confidence bands.

10. Repeat the previous exercise but use Cauchy errors instead of Normal
errors. How might you change the procedure to make the estimators
more robust?

11. Generate n = 1000 data points from (1/2)N(0, 1)+ (1/2)N(µ, 1). Com-
pare kernel density estimators and react density estimators. Try µ =
0, 1, 2, 3, 4, 5.

12. Recall that a modulator is any vector of the form b = (b1, . . . , bn) such
that 0 ≤ bj ≤ 1, j = 1, . . . , n. The greedy modulator is the modulator
b∗ = (b∗1, . . . , b

∗
n) chosen to minimize the risk R(b) over all modulators.

(a) Find b∗.

(b) What happens if we try to estimate b∗ from the data? In particular,
consider taking b̂∗ to minimize the estimated risk R̂. Why will this not
work well? (The problem is that we are now minimizing R̂ over a very
large class and R̂ does not approximate R uniformly over such a large
class.)

13. Let
Yi = r(x1i, x2i) + εi

where εi ∼ N(0, 1), x1i = x2i = i/n and r(x1, x2) = x1 + cos(x2).
Generate 1000 observations. Fit a tensor product model with J1 basis
elements for x1 and J2 basis elements for x2. Use sure (Stein’s unbiased
risk estimator) to choose J1 and J2.

14. Download the air quality data set from the book website. Model ozone
as a function of solar R, wind and temperature. Use a tensor product
basis.
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Wavelets and Other Adaptive Methods

This chapter concerns estimating functions that are spatially inhomoge-
neous, functions r(x) whose smoothness varies substantially with x. For ex-
ample, Figure 9.1 shows the “blocks” function whose definition is given in
Example 9.39. The function is very smooth except for several abrupt jumps.
The top right plot shows 100 data points drawn according to Yi = r(xi) + εi

with εi ∼ N(0, 1), and the xis equally spaced.
It might be difficult to estimate r using the methods we have discussed so

far. If we use local regression with a large bandwidth, then we will smooth out
the jumps; if we use a small bandwidth, then we will find the jumps but we
will make the rest of the curve very wiggly. If we use orthogonal functions and
keep only low-order terms, we will miss the jumps; if we allow higher-order
terms we will find the jumps but we will make the rest of the curve very wiggly.
The function estimates in Figure 9.1 illustrate this point. Another example of
an inhomogeneous function is the Doppler function in Example 5.63.

Estimators that are designed to estimate such functions are said to be spa-
tially adaptive or locally adaptive. A closely related idea is to find globally
adaptive estimators; these are function estimators that perform well over large
classes of function spaces. In this chapter we explore adaptive estimators with
an emphasis on wavelet methods. In Section 9.9 we briefly consider some
other adaptive methods.
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FIGURE 9.1. The blocks function (upper left plot) is inhomogeneous. One-hundred
data points are shown in the upper right plot. A local linear smoother with a small
bandwidth (lower left) picks up the jumps but adds many wiggles. A local linear
smoother with a large bandwidth (lower right) is smooth but misses the jumps.

Caveat Emptor! Before proceeding, a warning is in order. Adaptive esti-
mation is difficult. Unless the signal-to-noise ratio is large, we cannot expect
to adapt very well. To quote from Loader (1999b):

Locally adaptive procedures work well on examples with plenty of
data, obvious structure and low noise. But . . . these are not difficult
problems . . . . The real challenges . . . occur when the structure
is not obvious, and there are questions as to which features in
a dataset are real. In such cases, simpler methods . . . are most
useful, and locally adaptive methods produce little benefit.

The reader is urged to keep this in mind as we proceed. See Section 9.10 for
more discussion on this point. Despite the caveat, the methods in this chapter
are important because they do work well in high signal-to-noise problems and,
more importantly, the conceptual ideas underlying the methods are important
in their own right.
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The wavelet methods discussed in this chapter illustrate a concept that is
becoming increasingly important in statistics and machine learning, namely,
the notion of sparseness. A function f =

∑
j βjφj is sparse in a basis

φ1, φ2, . . . if most of the βj ’s are zero (or close to zero). We will see that even
some fairly complicated functions are sparse when expanded in a wavelet
basis. Sparseness generalizes smoothness: smooth functions are sparse but
there are also nonsmooth functions that are sparse. It is interesting to note
that sparseness is not captured well by the L2 norm but it is captured by
the L1 norm. For example, consider the n-vectors a = (1, 0, . . . , 0) and b =
(1/

√
n, . . . , 1/

√
n). Then both have the same L2 norm: ||a||2 = ||b||2 = 1.

However, the L1 norms are ||a||1 =
∑

i |ai| = 1 and ||b||1 =
∑

i |bi| =
√

n. The
L1 norms reflects the sparsity of a.

Notation. Throughout this chapter, Z denotes the set of integers and Z+

denotes the set of positive integers. The Fourier transform f∗ of a function
f is

f∗(t) =
∫ ∞

−∞
e−ixtf(x)dx (9.1)

where i =
√−1. If f∗ is absolutely integrable then f can be recovered at

almost all x by the inverse Fourier transform

f(x) =
1
2π

∫ ∞

−∞
eixtf∗(t)dt. (9.2)

Given any function f and integers j and k, define

fjk(x) = 2j/2f(2jx − k). (9.3)

9.1 Haar Wavelets

We begin with a simple wavelet called the Haar wavelet. The Haar father
wavelet or Haar scaling function is defined by

φ(x) =
{

1 if 0 ≤ x < 1
0 otherwise. (9.4)

The mother Haar wavelet is defined by

ψ(x) =
{ −1 if 0 ≤ x ≤ 1

2
1 if 1

2 < x ≤ 1.
(9.5)
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FIGURE 9.2. Some Haar wavelets. Left: the mother wavelet ψ(x); right: ψ2,2(x).

For any integers j and k define φjk(x) and ψjk(x) as in (9.3). The function
ψjk has the same shape as ψ but it has been rescaled by a factor of 2j/2 and
shifted by a factor of k. See Figure 9.2 for some examples of Haar wavelets.

Let
Wj = {ψjk, k = 0, 1, . . . , 2j − 1}

be the set of rescaled and shifted mother wavelets at resolution j.

9.6 Theorem. The set of functions{
φ, W0, W1, W2, . . . ,

}
is an orthonormal basis for L2(0, 1).

It follows from this theorem that we can expand any function f ∈ L2(0, 1) in
this basis. Because each Wj is itself a set of functions, we write the expansion
as a double sum:

f(x) = α φ(x) +
∞∑

j=0

2j−1∑
k=0

βjkψjk(x) (9.7)

where

α =
∫ 1

0

f(x)φ(x) dx, βjk =
∫ 1

0

f(x)ψjk(x) dx.

We call α the scaling coefficient and the βjk’s are called the detail
coefficients. We call the finite sum

fJ(x) = αφ(x) +
J−1∑
j=0

2j−1∑
k=0

βjkψjk(x) (9.8)
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the resolution J approximation to f . The total number of terms in this sum
is

1 +
J−1∑
j=0

2j = 1 + 2J − 1 = 2J .

9.9 Example. Figure 9.3 shows the Doppler signal (Example 5.63) and its
resolution J approximation for J = 3, 5 and J = 8. �
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FIGURE 9.3. The Doppler signal (top left) and its reconstruction
fJ (x) = αφ(x) +

∑J−1
j=0

∑
k βjkψjk(x) based on J = 3 (top right), J = 5

(bottom left) and J = 8 (bottom right).

When j is large, ψjk is a very localized function. This makes it possible
to add a blip to a function in one place without adding wiggles elsewhere.
This is what makes a wavelet basis a good tool for modeling inhomogeneous
functions.

Figure 9.4 shows that blocks function and the coefficients of the expansion
of the function in the Haar basis. Notice that the expansion is sparse (most
coefficients are zero) since nonzero coefficients are needed mainly where the
function has jumps.
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FIGURE 9.4. The blocks function f(x) is shown on top. The second plot show the
coefficients of the father wavelets. The third plot show the coefficients of the sec-
ond-level mother wavelets. The remaining plots show the coefficients of the mother
wavelets at higher levels. Despite the fact that the function is not smooth, the func-
tion is sparse: most coefficients are zero.
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9.2 Constructing Wavelets

Haar wavelets are useful because they are localized, that is, they have bounded
support. But Haar wavelets are not smooth. How can we construct other
wavelets? In particular, how can we construct localized, smooth wavelets?
The answer is quite involved. We will give a brief synopsis of the main ideas;
see Härdle et al. (1998) and Daubechies (1992) for more details.

Given any function φ define

V0 =

{
f : f(x) =

∑
k∈Z

ckφ(x − k),
∑
k∈Z

c2
k < ∞

}
,

V1 =
{

f(x) = g(2x) : g ∈ V0

}
, (9.10)

V2 =
{

f(x) = g(2x) : g ∈ V1

}
,

...
...

...

9.11 Definition. Given a function φ, define V0, V1, . . . , as in (9.10). We
say that φ generates a multiresolution analysis (MRA) of R if

Vj ⊂ Vj+1, j ≥ 0, (9.12)

and ⋃
j≥0

Vj is dense in L2(R). (9.13)

We call φ the father wavelet or the scaling function.

Equation (9.13) means that for any function f ∈ L2(R), there exists a
sequence of functions f1, f2, . . . such that each fr ∈ ⋃j≥0 Vj and ||fr−f || → 0
as r → ∞.

9.14 Lemma. If V0, V1, . . . is an MRA generated by φ, then {φjk, k ∈ Z} is
an orthonormal basis for Vj.

9.15 Example. If φ is the father Haar wavelet, then Vj is the set of functions
f ∈ L2(R) that are piecewise constant on [k2−j , (k + 1)2−j) for k ∈ Z. It is
easy to check that V0, V1, . . . form an MRA. �

Suppose we have an MRA. Since φ ∈ V0 and V0 ⊂ V1, we also have that
φ ∈ V1. Since {φ1k, k ∈ Z} is an orthonormal basis for V1, we can thus write
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φ as a linear combination of functions in V1:

φ(x) =
∑

k

�k φ1k(x) (9.16)

where �k =
∫

φ(x)φ1k(x)dx and
∑

k �2
k < ∞. Equation (9.16) is called the

two-scale relationship or the dilation equation. For Haar wavelets �0 =
�1 = 2−1/2 and �k = 0 for k �= 0, 1. The coefficients {�k} are called scaling
coefficients. The two-scale relationship implies that

φ∗(t) = m0(t/2)φ∗(t/2) (9.17)

where m0(t) =
∑

k �ke−itk/
√

2. Applying the above formula recursively, we
see that φ∗(t) = m0(t/2)

∏∞
k=1 m0(t/2k)φ∗(0). This suggests that, given just

the scaling coefficients, we can compute φ∗(t) and then take the inverse Fourier
transform to find φ(t). An example of how to construct a father wavelet from
a set of scaling coefficients is given in the next theorem.

9.18 Theorem. Given coefficients {�k, k ∈ Z}, define a function

m0(t) =
1√
2

∑
k

�ke−itk. (9.19)

Let

φ∗(t) =
∞∏

j=1

m0

(
t

2j

)
(9.20)

and let φ be the inverse Fourier transform of φ∗. Suppose that

1√
2

N1∑
k=N0

�k = 1 (9.21)

for some N0 < N1, that

|m0(t)|2 + |m0(t + π)|2 = 1,

that m0(t) �= 0 for |t| ≤ π/2, and that there exists a bounded nonincreasing
function Φ such that

∫
Φ(|u|)du < ∞ and

|φ(x)| ≤ Φ(|x|)

for almost all x. Then φ is a compactly supported father wavelet and φ is zero
outside the interval [N0, N1].
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Next, define Wk to be the orthogonal complement of Vk in Vk+1. In other
words, each f ∈ Vk+1 can be written as a sum f = vk + wk where vk ∈ Vk,
wk ∈ Wk, and vk and wk are orthogonal. We write

Vk+1 = Vk

⊕
Wk.

Thus,

L2(R) =
⋃
k

Vk = V0

⊕
W0

⊕
W1

⊕
· · · .

Define the mother wavelet by

ψ(x) =
√

2
∑

k

(−1)k+1�1−k φ(2x − k).

9.22 Theorem. The functions {ψjk, k ∈ Z} form a basis for Wj . The
functions {

φk, ψjk, k ∈ Z, j ∈ Z+

}
(9.23)

are an orthonormal basis for L2(R). Hence, any f ∈ L2 can be written as

f(x) =
∑

k

α0k φ0k(x) +
∞∑

j=0

∑
k

βjk ψjk(x) (9.24)

where

α0k =
∫

f(x)φ0k(x)dx and βjk =
∫

f(x)ψjk(x)dx.

We have been denoting the first space in the MRA by V0. This is simply
a convention. We could just as well denote it by Vj0 for some integer j0 in
which case we write

f(x) =
∑

k

αj0k φj0k(x) +
∞∑

j=j0

∑
k

βjk ψjk(x).

Of course, we still have not explained how to choose scaling coefficients
to create a useful wavelet basis. We will not discuss the details here, but
clever choices of scaling coefficients lead to wavelets with desirable properties.
For example, in 1992 Ingrid Daubechies constructed a smooth, compactly
supported “nearly” symmetric1 wavelet called a symmlet. Actually, this is a

1There are no smooth, symmetric, compactly supported wavelets.
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family of wavelets. A father symmlet of order N has support [0, 2N −1] while
the mother has support [−N + 1, N ]. The mother has N vanishing moments
(starting with the 0th moment). The higher N is, the smoother the wavelet.
There is no closed form expression for this wavelet (or for most wavelets) but
it can be computed rapidly. Figure 9.5 shows the symmlet 8 mother wavelet
which we will use in our examples. The scaling coefficients are:

0.0018899503 -0.0003029205 -0.0149522583 0.0038087520

0.0491371797 -0.0272190299 -0.0519458381 0.3644418948

0.7771857517 0.4813596513 -0.0612733591 -0.1432942384

0.0076074873 0.0316950878 -0.0005421323 -0.0033824160

−2 0 2

−
1

0
1

FIGURE 9.5. The symmlet 8 mother wavelet.

9.3 Wavelet Regression

Consider the regression problem

Yi = r(xi) + σεi (9.25)

where εi ∼ N(0, 1) and xi = i/n. We will further assume that n = 2J for
some J . We will need to do some boundary corrections for x near 0 or 1; we
defer that issue until later.
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To estimate r using wavelets, we proceed as follows: First, approximate r

with an expansion using n terms:

r(x) ≈ rn(x) =
2j0−1∑
k=0

αj0,kφj0,k(x) +
J∑

j=j0

2j−1∑
k=0

βjkψjk(x) (9.26)

where αj0,k =
∫

r(x)φj0 ,k(x)dx and βjk =
∫

r(x)ψjk(x)dx. We refer to {βjk,

k = 0, 1, . . .} as the level-j coefficients. Form preliminary estimates of the
coefficients:2

Sk =
1
n

∑
i

φj0,k(xi)Yi and Djk =
1
n

∑
i

ψjk(xi)Yi (9.27)

which are called the empirical scaling coefficients and the empirical de-
tail coefficients. Arguing as in the last chapter, we have that

Sk ≈ N

(
αj0,k,

σ2

n

)
and Djk ≈ N

(
βjk,

σ2

n

)
.

Next we use the following robust estimator for σ:

σ̂ =
√

n × median
(|DJ−1,k − median(DJ−1,k)| : k = 0, . . . , 2J−1 − 1

)
0.6745

.

Inhomogeneous functions may have a few large wavelet coefficients even at
the highest level J and this robust estimator should be relatively insensitive
to such coefficients.

For the scaling coefficients, we take

α̂j0,k = Sk.

2In practice, we do not compute Sk and Djk using (9.27). Instead, we proceed as follows.
The highest level scaling coefficients αJ−1,k are approximated by Yk. This is reasonable since
φJ−1,k is highly localized and therefore

E(Yk) = f(k/n) ≈
∫

f(x)φJ−1,k(x)dx = αJ−1,k.

Then we apply the cascade algorithm to get the rest of the coefficients; see the appendix for
details. Some authors define

Sk =
1√
n

∑
i

φj0,k(xi)Yi and Djk =
1√
n

∑
i

ψjk(xi)Yi

instead of using (9.27). This means that Sk ≈ N(
√

nαj0,k, σ2) and Djk ≈ N(
√

nβjk, σ2).
Hence, the final estimates should be divided by

√
n. Also, the estimate of the variance should

be changed to

σ̂ =
median

(|DJ−1,k − median(DJ−1,k)| : k = 0, . . . , 2J−1 − 1
)

0.6745
.
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To estimate the coefficients βjk of the mother wavelets we use a special type
of shrinkage on the Djk called thresholding which we describe in more detail
in the next section. Finally, we plug the estimates into (9.26):

r̂n(x) =
2j0−1∑
k=0

α̂j0,kφj0,k(x) +
J∑

j=j0

2j−1∑
k=0

β̂jkψjk(x).

9.4 Wavelet Thresholding

The wavelet regression method is the same as the procedure we used in the last
chapter except for two changes: the basis is different and we use a different
type of shrinkage called thresholding in which β̂jk is set to 0 if Djk is
small. Thresholding works better at finding jumps in the function than linear
shrinkage. To see why, think of a function that is smooth except that it has
some jumps in a few places. If we expand this function in a wavelet basis,
the coefficients will be sparse, meaning that most will be small except for a
few coefficients corresponding to the location of the jumps. Intuitively, this
suggests setting most of the estimated coefficients to zero except the very large
ones. This is precisely what a threshold rule does. More formally, we will see in
the next section that thresholding shrinkage yields minimax estimators over
large function spaces. Here are the details.

The estimates of the coefficients αj0,k of the father wavelet are equal to
the empirical coefficients Sk; no shrinkage is applied. The estimates of the
coefficients of the mother wavelets are based on shrinking the Djk’s as follows.
Recall that

Djk ≈ βjk +
σ√
n

εjk. (9.28)

The linear shrinkers we used in Chapters 7 and 8 were of the form β̂jk = cDjk

for some 0 ≤ c ≤ 1. For wavelets, we use nonlinear shrinkage called thresh-
olding which comes in two flavors: hard thresholding and soft thresh-
olding. The hard threshold estimator is

β̂jk =
{

0 if |Djk| < λ
Djk if |Djk| ≥ λ.

(9.29)

The soft threshold estimator is

β̂jk =

⎧⎨⎩
Djk + λ if Djk < −λ
0 if − λ ≤ Djk < λ
Djk − λ if Djk > λ

(9.30)
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λ−λ
D

β̂(D)

Hard thresholding

λ−λ
D

β̂(D)

Soft thresholding

FIGURE 9.6. Hard and soft thresholding.

which can be written more succinctly as

β̂jk = sign(Djk)(|Djk| − λ)+. (9.31)

See Figure 9.6. In either case, the effect is to keep large coefficients and set
the others equal to 0.

We will restrict attention to soft thresholding. We still need to choose the
threshold λ. There are several methods for choosing λ. The simplest rule is
the universal threshold defined by

λ = σ̂

√
2 logn

n
. (9.32)

To understand the intuition behind this rule, consider what happens when
there is no signal, that is, when βjk = 0 for all j and k. In this case, we would
like all β̂jk to be 0 with high probability.

9.33 Theorem. Suppose that βjk = 0 for all j and k and let β̂jk be the soft-
threshold estimator with the universal threshold (9.32). Then

P(β̂jk = 0 for all j, k) → 1

as n → ∞.
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Proof. To simplify the proof, assume that σ is known. Now, Djk ≈
N(0, σ2/n). Recall Mills’ inequality: if Z ∼ N(0, 1) then P(|Z| > t) ≤ (c/t)
e−t2/2 where c =

√
2/π is a constant. Thus,

P(max |Djk| > λ) ≤
∑
j,k

P(|Djk| > λ) ≤
∑
j,k

P

(√
n|Djk|

σ
>

√
nλ

σ

)

=
∑
j,k

cσ

λ
√

n
exp

{
−1

2
nλ2

σ2

}
=

c√
2 log n

→ 0. �

More support for the thresholding rule is given by the following theorem
which shows that soft thresholding does nearly as well as an “oracle” that
chooses the best threshold.

9.34 Theorem (Donoho and Johnstone 1994). Let

Yi = θi +
σ√
n

εi, i = 1, . . . , n

where εi ∼ N(0, 1). For each S ⊂ {1, . . . , n} define the kill it or keep it
estimator

θ̂S =
(
X1I(1 ∈ S), . . . , XnI(n ∈ S)

)
.

Define the oracle risk
R∗

n = min
S

R(θ̂S , θ) (9.35)

where the minimum is over all kill it or keep it estimators, that is, S varies
over all subsets of {1, . . . , n}. Then

R∗
n =

n∑
i=1

(
θ2

i ∧ σ2

n

)
. (9.36)

Further, if
θ̂ = (t(X1), . . . , t(Xn))

where t(x) = sign(x)(|x|−λn)+ and λn = σ
√

2 logn/n, then for every θ ∈ R
n,

R∗
n ≤ R(θ̂, θ) ≤ (2 log n + 1)

(
σ2

n
+ R∗

n

)
. (9.37)

Donoho and Johnstone call wavelet regression with the universal threshold,
VisuShrink. Another estimator, called SureShrink is obtained by using a
different threshold λj for each level. The threshold λj is chosen to minimize
SURE (see Section 7.4) which, in this case, is

S(λj) =
nj∑

k=1

[
σ̂2

n
− 2

σ̂2

n
I(|β̃jk| ≤ λj) + min(β̃2

jk, λ2
j )
]

(9.38)
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where nj = 2j−1 is the number of parameters at level j. The minimization is
performed over 0 ≤ λj ≤ (σ̂/

√
nj)
√

2 log nj .3

9.39 Example. The “blocks” function—introduced by Donoho and Johnstone
(1995)—is defined by r(x) = 3.655606×∑11

j=1 hjK(x − tj) where

t = (0.10, 0.13, 0.15, 0.23, 0.25, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81)

h = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2).

The top left panel in Figure 9.7 shows r(x). The top right plot shows 2048 data
points generates from Yi = r(i/n) + εi with ε ∼ N(0, 1). The bottom left plot
is the wavelet estimator using soft-thresholding with a universal threshold.
We used a symmlet 8 wavelet. The bottom right plot shows a local linear fit
with bandwidth chosen by cross-validation. The wavelet estimator is slightly
better since the local linear fit has some extra wiggliness. However, the dif-
ference is not dramatic. There are situations where even this small difference
might matter, such as in signal processing. But for ordinary nonparametric
regression problems, there is not much practical difference between the esti-
mators. Indeed, if we added confidence bands to these plots, they would surely
be much wider than the difference between these estimators.

This is an easy example in the sense that the basic shape of the curve is
evident from a plot of the data because the noise level is low. Let us now
consider a noisier version of this example. We increase σ to 3 and we reduce
the sample size to 256. The results are shown in Figure 9.8. It is hard to say
which estimator is doing better here. Neither does particularly well. �

9.5 Besov Spaces

Wavelet threshold regression estimators have good optimality properties over
Besov spaces which we now define. Let

∆(r)
h f(x) =

r∑
k=0

(
r

k

)
(−1)kf(x + kh).

Thus, ∆(0)
h f(x) = f(x) and

∆(r)
h f(x) = ∆(r−1)

h f(x + h) − ∆(r−1)
h f(x).

3In practice, SureShrink is sometimes modified to include one more step. If the coefficients
at level j are sparse, then universal thresholding is used instead. See Donoho and Johnstone
(1995).
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FIGURE 9.7. The “blocks” function from Example 9.39. Top left: the function r(x).
Top right: 2048 data points. Bottom left: r̂n using wavelets. Bottom right: r̂n using
local linear regression with bandwidth chosen by cross-validation.
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FIGURE 9.8. The “blocks” function from Example 9.39. Top left: the function r(x).
Top right: 256 data points. Bottom left: r̂n using wavelets. Bottom right: r̂n using
local linear regression with bandwidth chosen by cross-validation.
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Next define
wr,p(f ; t) = sup

|h|≤t

||∆(r)
h f ||p

where ||g||p =
{∫ |g(x)|pdx

}1/p. Given (p, q, ς), let r be such that r−1 ≤ ς ≤ r.
The Besov seminorm is defined by

|f |ςp,q =
[∫ ∞

0

(h−ςwr,p(f ; h))q dh

h

]1/q

.

For q = ∞ we define

|f |ςp,∞ = sup
0<h<1

wr,p(f ; h)
hς

.

The Besov space Bς
p,q(c) is defined to be the set of functions f mapping

[0, 1] into R such that
∫ |f |p < ∞ and |f |ςp,q ≤ c.

This definition is hard to understand but here are some special cases. The
Sobolev space W (m) (see Definition 7.8) corresponds to the Besov ball Bm

2,2.
The generalized Sobolev space Wp(m) which uses an Lp norm on the mth

derivative is almost a Besov space in the sense that Bm
p,1 ⊂ Wp(m) ⊂ Bm

p,∞. Let
s = m+δ for some integer m and some δ ∈ (0, 1). The Hölder space is the set
of bounded functions with bounded mth derivative such that |fm(u)−fm(t)| ≤
|u − t|δ for all u, t. This space is equivalent to Bm+δ

∞,∞. The set T consisting
of functions of bounded variation satisfies: B1

1,1 ⊂ T ⊂ B1
1,∞. Thus, Besov

spaces include a wide range of familiar function spaces.
It is easier to understand Besov spaces in terms of the coefficients of the

wavelet expansion. If the wavelets are sufficiently smooth then the wavelet
coefficients β of a function f ∈ Bς

p,q(c) satisfy ||β||ςp,q ≤ c, where

||β||ςp,q =

⎛⎝ ∞∑
j=j0

⎛⎝2j(ς+(1/2)−(1/p))

(∑
k

|βjk|p
)1/p

⎞⎠q⎞⎠1/q

. (9.40)

In the theorem that follows, we use the following notation: write an � bn

to mean that an and bn go to 0 at the same rate. Formally,

0 < lim inf
n→∞

∣∣∣∣an

bn

∣∣∣∣ ≤ lim sup
n→∞

∣∣∣∣an

bn

∣∣∣∣ < ∞.

9.41 Theorem (Donoho–Johnstone 1995). Let r̂n be the SureShrink estima-
tor. Let ψ have r null moments and r continuous derivatives where r >

max{1, ς}. Let Rn(p, q, ς, C) denote the minimax risk over the Besov ball
Bς

p,q(c). Then

sup
r∈Bς

p,q(C)

1
n

E

(∑
i

(r̂n(xi) − r(xi))2
)

� Rn(p, q, ς, c)
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for all 1 ≤ p, q ≤ ∞, C ∈ (0,∞) and ς0 < ς < r where

ς0 = max

{
1
p
, 2
(

1
p
− 1

2

)+
}

.

No linear estimator achieves the optimal rate over this range of spaces. The
universal shrinkage rule also attains the minimax rate, up to factors involving
log n.

The theorem says that wavelet estimators based on threshold rules achieve
the minimax rate, simultaneously over a large set of Besov spaces. Other
estimators, such as local regression estimators with a constant bandwidth, do
not have this property.

9.6 Confidence Sets

At the time of this writing, practical, simultaneous confidence bands for
wavelet estimators are not available. An asymptotic pointwise method is given
in Picard and Tribouley (2000). Confidence balls are available from Genovese
and Wasserman (2005).

For a Besov space Bς
p,q, let

γ =
{

ς p ≥ 2
ς + 1

2 − 1
p 1 ≤ p < 2.

(9.42)

Let B(p, q, γ) be the set of wavelet coefficients corresponding to functions in
the Besov space. We assume that the mother and father wavelets are bounded,
have compact support, and have derivatives with finite L2 norms. Let µn =
(µ1, . . . , µn) be the first n wavelet coefficients strung out as a single vector.

9.43 Theorem (Genovese and Wasserman 2004). Let µ̂ be the estimated wavelet
coefficients using the universal soft threshold λ = σ̂

√
log n/n. Define

Dn =
{

µn :
n∑

	=1

(µ	 − µ̂	)2dx ≤ s2
n

}
(9.44)

where
s2

n =
√

2σ2 zα√
n

+ Sn(λ), (9.45)

Sn(λ) =
σ̂2

n
2j0 +

J∑
j=j0

S(λj) (9.46)
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and

Sj(λj) =
nj∑

k=1

[
σ2

n
− 2

σ2

n
I(|β̃jk| ≤ λj) + min(β̃2

jk, λ2
j)
]

.

Then, for any δ > 0,

lim
n→∞ sup

µ∈∆(δ)

|P(µn ∈ Dn) − (1 − α)| = 0 (9.47)

where
∆(δ) =

⋃{
B(p, q, γ) : p ≥ 1, q ≥ 1, γ > (1/2) + δ

}
.

9.7 Boundary Corrections and Unequally Spaced
Data

If the data live on an interval but the wavelet basis lives on R, then a correction
is needed since the wavelets will not usually be orthonormal when restricted
to the interval. The simplest approach is to mirror the data. The data are
repeated in reverse order around the endpoint. Then the previously discussed
methods are applied.

When the data are not equally spaced or n is not a power of 2, we can
put the data into equally spaced bins and average the data over the bins. We
choose the bins as small as possible subject to having data in each bin and
subject to the number of bins m being of the form m = 2k for some integer k.

For other approaches to these problems see Härdle et al. (1998) as well as
the references therein.

9.8 Overcomplete Dictionaries

Although wavelet bases are very flexible, there are cases where one might want
to build even richer bases. For example, one might consider combining several
bases together. This leads to the idea of a dictionary.

Let Y = (Y1, . . . , Yn)T be a vector of observations where Yi = r(xi) + εi.
Let D be an n × m matrix with m > n. Consider estimating r using Dβ

where β = (β1, . . . , βm)T . If m were equal to n and the columns of D were
orthonormal, we are back to orthogonal basis regression as in this and the last
chapter. But when m > n, the columns can no longer be orthogonal and we
say that the dictionary is overcomplete. For example, we might take D to
have m = 2n columns: the first n columns being the basis elements of a cosine
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basis and the second n columns being the basis elements of a “spike” basis.
This would enable us to estimate a function that is “smooth plus spikes.”

There is growing evidence—theoretical and practical—that the method
called basis pursuit, due to Chen et al. (1998), leads to good estimators.
In this method, one chooses β̂ to minimize

||Y − Dβ||22 + λ||β||1

where || · ||2 denotes the L2 norm, || · ||1 denotes the L1 norm and λ > 0 is a
constant. Basis pursuit is related to the regression variable selection techniques
called the lasso (Tibshirani (1996)) and LARS (Efron et al. (2004)).

9.9 Other Adaptive Methods

There are many other spatially adaptive methods besides wavelets; these in-
clude variable bandwidth kernel methods (Lepski et al. (1997), Müller and
Stadtmller (1987)), local polynomials (Loader (1999a) and Fan and Gijbels
(1996)) variable knot splines (Mammen and van de Geer (1997)) among oth-
ers. Here we outline an especially simple, elegant method due to Goldenshluger
and Nemirovski (1997) called intersecting confidence intervals (ICI).

Consider estimating a regression function r(x) at a point x and let Yi =
r(xi)+ εi where εi ∼ N(0, σ2). To simplify the discussion, we will assume that
σ is known. The idea is to construct a confidence interval for r(x) using a
sequence of increasing bandwidths h. We will then choose the first bandwidth
at which the intervals do not intersect. See Figure 9.9.

Let

r̂h(x) =
n∑

i=1

Yi�i(x, h)

be a linear estimator depending on bandwidth h. Let the bandwidth h vary
in a finite set h1 < · · · < hn and let r̂j = r̂hj (x). For example, with equally
spaced data on [0, 1] we might take hj = j/n. We can write

r̂j =
n∑

i=1

r(xi)�i(x, hj) + ξj

where

ξj =
n∑

i=1

εi�i(x, hj) ∼ N(0, s2
j), sj = σ

√√√√ n∑
i=1

�2
i (x, hj).
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FIGURE 9.9. The Goldenshluger and Nemirovski ICI method. All the intervals
{Dj : j ≤ j∗} contain the true value r(x). All the intervals {Dj : j ≤ j+} overlap.
The estimate r̂(x) is no more than 2ρj+ + 4ρj∗ ≤ 6ρj∗ away from r(x).

Let ρj = κsj where κ >
√

2 log n. Then

P
(
max

j
|ξj | > ρj , for some j

) ≤ nP
(|N(0, 1)| > κ

)→ 0 as n → ∞.

So |ξj | ≤ ρj for all j expect on a set of probability tending to 0. For the rest
of the argument, assume that |ξj | ≤ ρj for all j.

Form n intervals

Dj =
[
r̂j(x) − 2ρj, r̂j(x) + 2ρj

]
, j = 1, . . . , n.

The adaptive estimator is defined to be

r̂(x) = r̂j+(x) (9.48)

where j+ is the largest integer such that the intervals overlap:

j+ = max

{
k :

k⋂
j=1

Dj �= ∅
}

. (9.49)
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We now outline why r̂(x) is adaptive.
Let rj = E(r̂j) and note that

|r̂j − r(x)| ≤ |r̂j − rj | + |rj − r(x)| = bj + |ξj |
where bj = |r̂j − rj| is the bias. Assume—as is the case for most smoothers—
that bj decreases in j while s2

j = V(ξj) increases in j. Let

j∗ = max{j : bj ≤ ρj}.
The bandwidth hj∗ balances the bias and variance. The risk of the estimator
with bandwidth hj∗ is of order ρj∗ . Thus, ρj∗ is the risk of an oracle estimator
that knows the best bandwidth. We will refer to ρj∗ as the oracle risk.

For j ≤ j∗, |r̂j − r(x)| ≤ bj + ρj ≤ 2ρj . Hence, r(x) ∈ Dj for all j ≤ j∗.
In particular, all Dj, j ≤ j∗ have at least one point in common, namely, r(x).
By the definition of j+ it follows that j∗ ≤ j+. Also, every point in Dj∗ is at
most 4ρj∗ away from r(x). Finally, Dj+

⋂
Dj∗ �= ∅ (from the definition of j∗)

and Dj+ has half-length 2ρj+ . Thus,

|r̂(x) − r(x)| ≤ |r̂(x) − r̂j∗ | + |r̂j∗ − r(x)| ≤ 2ρj+ + 4ρj∗ ≤ 6ρj∗ .

We conclude that, with probability tending to 1, |r̂(x) − r(x)| ≤ 6ρj∗ .
A specific implementation of the idea is as follows. Fit a polynomial of order

m over an interval ∆ containing the point x ∈ (0, 1). The resulting estimator
is

r̂∆(x) =
∑

i

α∆(xi, x)Yi

for weights α∆(xi, x). The weights can be written as

α∆(x, u) =
m∑

j=0

q
(j)
∆ (x)

(
u − a

b − a

)j

where a = min{xi : xi ∈ ∆} and b = max{xi : xi ∈ ∆}. It can be shown
that

|α∆(xi)| ≤ cm

N∆

where Nδ is the number of points in ∆ and cm is a constant depending only
on m. Also, it can be shown that the quantity

τm ≡ N∆

θm
max

i,j
|q(j)

∆ (xi)|

depends only on m. Let

D∆ =
[
r̂∆ − 2κs∆, r̂∆ + 2κs∆

]



9.9 Other Adaptive Methods 219

where

s∆ =

(∑
i

α2
∆(xi)

)1/2

and
κn = 2σ

√
(m + 2) logn 2m(m + 1)c2

mτm.

Now let ∆̂ be the largest interval ∆ containing x such that⋂
δ∈D
δ⊂∆

Dδ �= ∅

where D denotes all intervals containing x. Finally let r̂(x) = r̂∆̂(x).
Now we suppose that r is � times differentiable on an interval ∆0 = [x −

δ0, x + δ0] ⊂ [0, 1] for some � ≥ 1. Also, assume that(∫
∆0

|r(	)(t)|pdt

)1/p

≤ L

for some L > 0, and p ≥ 1, where

� ≤ m + 1, p � > 1.

Then we have4 the following:

9.50 Theorem (Goldenshluger and Nemirovski 1997). Under the conditions above,(
E|r̂(x) − r(x)|2

)1/2

≤ CBn (9.51)

for some constant C > 0 that only depends on m, where

Bn =

[(
log n

n

)(p	−1)/(2p	+p−2)

Lp/(2p	+p−2) +
√

log n

nδ0

]
. (9.52)

The right-hand side of (9.51) is, except for logarithmic factors, the best
possible risk. From the results of Lepskii (1991), the logarithmic factor is un-
avoidable. Since the estimator did not make use of the smoothness parameters
p, � and L, this means that the estimator adapts to the unknown smoothness.

Let us also briefly describe (a version of) the method of Lepski et al. (1997).
Let H = {h0, h1, . . . , hm} be a set of bandwidths, where hj = a−j where a > 1

4I’ve stated the result in a very specific form. The original result is more general than this.
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(they use a = 1.02) and m is such that hm ≈ σ2/n. Let r̂h(x) be the kernel
estimator based on bandwidth h and kernel K. For each bandwidth h, we test
the hypothesis that further reducing h does not significantly improve the fit.
We take ĥ to be the largest bandwidth for which this test does not reject.
Specifically,

ĥ = max
{

h ∈ H : |r̂h(x) − r̂η(x)| ≤ ψ(h, η), for all η < h, η ∈ H
}

where

ψ(h, η) =
Dσ

nη

√
1 + log

(
1
η

)
and D > 2(1 + ||K||√14). They show that this bandwidth selection method
yields to an estimator that adapts over a wide range of Besov spaces.

9.10 Do Adaptive Methods Work?

Let us take a closer look at the idea of spatial adaptation following some ideas
in Donoho and Johnstone (1994). Let A1, . . . , AL be intervals that partition
[0, 1]:

A1 = [a0, a1), A2 = [a1, a2), . . . , AL = [aL−1, aL]

where a0 = 0 and aL = 1. Suppose that r is a piecewise polynomial, so that
r(x) =

∑L
	=1 p	(x)I(x ∈ A	) where p	 is a polynomial of degree D on the set

A	. If the breakpoints a = (a1, . . . , aL) and the degree D are known, then
we can fit a polynomial of degree D over each A	 using least squares. This
is a parametric problem and the risk is of order O(1/n). If we do not know
the breakpoints a and we fit a kernel regression then it can be shown that
the risk is in general not better than order O(1/

√
n) due to the possibility of

discontinuities at the breakpoints. In contrast, Donoho and Johnstone show
that the wavelet method has risk of order O(log n/n). This is an impressive
theoretical achievement.

On the other hand, examples like those seen here suggest that the prac-
tical advantages are often quite modest. And from the point of view of in-
ference (which features in the estimate are real?) the results in Chapter 7
show that wavelet confidence balls cannot converge faster than n−1/4. To see
this, consider the piecewise polynomial example again. Even knowing that r

is a piecewise polynomial, it still follows that the vector (r(x1), . . . , r(xn)) can
take any value in R

n. It then follows from Theorem 7.71 that no confidence
ball can shrink faster than n−1/4. Thus, we are in the peculiar situation that
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the function estimate may converge quickly but the confidence set converges
slowly.

So, do adaptive methods work or not? If one needs accurate function esti-
mates and the noise level σ is low, then the answer is that adaptive function
estimators are very effective. But if we are facing a standard nonparametric
regression problem and we are interested in confidence sets, then adaptive
methods do not perform significantly better than other methods such as fixed
bandwidth local regression.

9.11 Bibliographic Remarks

A good introduction to wavelets is Ogden (1997). A more advanced treatment
can be found in Härdle et al. (1998). The theory of statistical estimation
using wavelets has been developed by many authors, especially David Donoho
and Iain Johnstone. The main ideas are in the following remarkable series of
papers: Donoho and Johnstone (1994), Donoho and Johnstone (1995), Donoho
et al. (1995), and Donoho and Johnstone (1998). The material on confidence
sets is from Genovese and Wasserman (2005).

9.12 Appendix

Localization of Wavelets. The idea that wavelets are more localized than sines
and cosines can be made precise. Given a function f , define its radius to be

∆f =
1

||f ||
{∫

(x − x)2|f(x)|2dx

}1/2

where

x =
1

||f ||2
∫

x|f(x)|2dx.

Imagine drawing a rectangle on the plane with sides of length ∆f and ∆f∗ .
For a function like a cosine, this is a rectangle with 0 width on the y-axis and
infinite width in the x-axis. We say that a cosine is localized in frequency but
nonlocalized in space. In contrast, a wavelet has a rectangle with finite length
in both dimensions. Hence, wavelets are localized in frequency and space.
There is a limit to how well we can simultaneously localize in frequency and
space.
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9.53 Theorem (Heisenberg’s uncertainty relation). We have that

∆f∆f∗ ≥ 1
2

(9.54)

with equality when f is a Normal density.

This inequality is called the Heisenberg uncertainty principle since
it first appeared in the physics literature when Heisenberg was developing
quantum mechanics.

Fast Computations for Wavelets. The scaling coefficients make it easy to
compute the wavelet coefficients. Recall that

αjk =
∫

f(x)φjk(x)dx and βjk =
∫

f(x)ψjk(x)dx.

By definition, φjk(x) = 2j/2φ(2jx−k) and by (9.16), φ(2jx−k) =
∑

r �rφ1,r(2jx−
k). Hence,

φjk(x) =
∑

r

�r 2j/2φ1,r(2jx − k) =
∑

r

�r 2(j+1)/2φ(2j+1x − 2k − r)

=
∑

r

�r φj+1,	+2k(x) =
∑

r

�r−2k φj+1,r(x).

Thus,

αjk =
∫

f(x)φjk(x)dx =
∫

f(x)
∑

r

�r−2kφj+1,r(x)dx

=
∑

r

�r−2k

∫
f(x)φj+1,r(x)dx =

∑
r

�r−2k αj+1,r .

By similar calculations, one can show that βjk =
∑

r(−1)r+1�−r+2k+1 αj+1,r.

In summary we get the following cascade equations:

The Cascade Equations

αjk =
∑

r

�r−2k αj+1,r (9.55)

βjk =
∑

r

(−1)r+1�−r+2k+1 αj+1,r . (9.56)

Once we have the scaling coefficients {αjk} for some J , we may determine
{αjk} and {βjk} for all j < J by way of the cascade equations (9.55) and
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αJ , αJ−1,

βJ−1,

L

H

αJ−2,

βJ−2,

L

H

L

H

. . .

. . .

FIGURE 9.10. The cascade algorithm.

(9.56). This method of computing the coefficients is called the pyramid al-
gorithm or the cascade algorithm.

In regression problems, we will use the data Y1, . . . , Yn to approximate
the scaling coefficients at some high-level J . The other coefficients are found
from the pyramid algorithm. This process is called the discrete wavelet
transform. It only requires O(n) operations for n data points.

These ideas can be expressed in the language of signals and filters. A sig-
nal is defined to be a sequence {fk}k∈Z such that

∑
k f2

k < ∞. A filter
A is a function that operates on signals. A filter A can be represented by
some coefficients {ak}k∈Z and the action of A on a signal f—called discrete
convolution—produces a new signal denoted by Af whose kth coefficient is

(Af)k =
∑

r

ar−2kfr. (9.57)

Let αj, = {αjk}k∈Z be the scaling coefficients at level j. Let L be the filter
with coefficients {�k}. L is called a low-pass filter. From Equation (9.55) we
get

αj−1, = Lαj, and αj−m, = Lmαj, (9.58)

where Lm means: apply the filter m times. Let H be the filter with coefficients
hk = (−1)k+1�1−k. Then (9.56) implies that

βj−1, = Hαj, and βj−m, = HLm−1αj,. (9.59)

H is called a high-pass filter. See Figure 9.10 for a schematic representation
of the algorithm.

9.13 Exercises

1. Show that, for the Haar wavelet, �0 = �1 = 2−1/2 and �k = 0 for k �= 0, 1.
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2. Prove Theorem 9.6.

3. Prove that the Haar wavelets form an MRA; see Example 9.15.

4. Prove equation (9.17).

5. Generate data
Yi = r(i/n) + σεi

where r is the doppler function, n = 1024, and εi ∼ N(0, 1).

(a) Use wavelets to fit the curve. Try the following shrinkage methods:
(i) James–Stein applied to each resolution level, (ii) universal shrinkage
and (iii) SureShrink. Try σ = .01, σ = .1, σ = 1. Compare the function
estimates to the react method and to local linear regression.

(b) Repeat (a) but add outliers to the εi by generating them from:

εi ∼ .95 N(0, 1) + .05 N(0, 4).

How does this affect your results?

6. Let X1, . . . , Xn ∼ f for some density f on [0, 1]. Let’s consider con-
structing a wavelet histogram. Let φ and ψ be the Haar father and
mother wavelet. Write

f(x) ≈ φ(x) +
J∑

j=0

2j−1∑
k=0

βjkψjk(x)

where J ≈ log2(n+1). The total number of wavelet coefficients is about
n. Now,

βjk =
∫ 1

0

ψjk(x)f(x)dx = Ef [ψjk(X)] .

An unbiased estimator of βjk is

β̃jk =
1
n

n∑
i=1

ψjk(Xi).

(a) For x < y define

Nx,y =
n∑

i=1

I(x ≤ Xi < y).

Show that

β̃jk =
2j/2

n
(N2k/(2j+1),(2k+1)/(2j+1) − N(2k+1)/(2j+1),(2k+2)/(2j+1)).
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(b) Show that
β̃jk ≈ N(βjk, σ2

jk).

Find an expression for σjk.

(c) Consider the shrinkage estimator β̂jk = aj β̃jk. (Same shrinkage co-
efficient across each level of wavelets.) Take σjk as known, and find aj

to minimize Stein’s unbiased risk estimate.

(d) Now find an estimate of σjk . Insert this estimate into your formula
for aj . You now have a method for estimating the density. Your final
estimate is

f̂(x) = φ(x) +
∑

j

∑
k

β̂jkψjk(x).

Try this on the geyser duration data from the book website. Compare
it to the histogram with binwidth chosen using cross-validation.

(e) Notice that β̃jk is 2j/2 times the difference of two sample propor-
tions. Furthermore, βjk = 0 corresponds to the two underlying Binomial
parameters being equal. Hence, we can form a hard threshold estimator
by testing (at some level α) whether each βjk = 0 and only keeping
those that are rejected. Try this for the data in part (d). Try different
values of α.

7. Let R∗
n be the oracle risk defined in equation (9.35).

(a) Show that

R∗
n =

n∑
i=1

(
σ2

n
∧ θ2

i

)
where a ∧ b = min{a, b}.
(b) Compare R∗

n to the Pinsker bound in Theorem 7.28. For which
vectors θ ∈ R

n is R∗
n smaller than than the Pinsker bound?

8. Find an exact expression for the risk of the hard threshold rule and the
soft threshold rule (treating σ as known).

9. Generate data
Yi = r(i/n) + σεi

where r is the Doppler function, n = 1024, and εi ∼ N(0, 1) and σ = 0.1.
Apply the ICI method from Section 9.9 to estimate r. Use a kernel
estimator and take the grid of bandwidths to be {1/n, . . . , 1}. First, take
σ as known. Then estimate σ using one of the methods from Section 5.6.
Now apply the method of Lepski et al. (1997) also from Section 5.6.
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Other Topics

In this chapter we mention some other issues related to nonparametric infer-
ence including: measurement error, inverse problems, nonparametric Bayesian
inference, semiparametric inference, correlated errors, classification, sieves,
shape-restricted inference, testing, and computation.

10.1 Measurement Error

Suppose we are interested in regressing the outcome Y on a covariate X but we
cannot observe X directly. Rather, we observe X plus noise U . The observed
data are (X•

1 , Y1), . . . , (X•
n, Yn) where

Yi = r(Xi) + εi

X•
i = Xi + Ui, E(Ui) = 0.

This is called a measurement error problem or an errors-in-variables
problem. A good reference is Carroll et al. (1995) which we follow closely in
this section.

The model is illustrated by the directed graph in Figure 10.1. It is tempting
to ignore the error and just regress Y on X• but this leads to inconsistent
estimates of r(x).
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Y = r(X) + ε

X

X• = X + U

FIGURE 10.1. Regression with measurement error. X is circled to show that it is
not observed. X• is a noisy version of X. If you regress Y on X•, you will get an
inconsistent estimate of r(x).

Before discussing the nonparametric problem, we first consider the linear
regression version of this problem. The model is

Yi = β0 + β1Xi + εi

X•
i = Xi + Ui.

Let σ2
x = V(X), and assume that ε is independent of X , has mean 0 and

variance σ2
ε . Also assume that U is independent of X , with mean 0 and vari-

ance σ2
u. Let β̂1 be the least squares estimator of β1 obtained by regressing

the Yi’s on the X•
i ’s. It can be shown (see Exercise 2) that

β̂
a.s.−→ λβ1 (10.1)

where

λ =
σ2

x

σ2
x + σ2

u

< 1. (10.2)

Thus, the effect of the measurement is to bias the estimated slope towards 0,
an effect that is usually called attenuation bias. Staudenmayer and Ruppert
(2004) showed that a similar result holds for nonparametric regression. If we
use local polynomial regression (with odd degree polynomial) and do not
account for the measurement error, the estimator r̂n(x) has, asymptotically,
an excess bias of

σ2
u

(
f ′(x)
f(x)

r′(x) +
r′′(x)

2

)
(10.3)

where f is the density of X .
Returning to the linear case, if there are several observed values of X• for

each X then σ2
u can be estimated. Otherwise, σ2

u must be estimated by external
means such as through background knowledge of the noise mechanism. For
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our purposes, we will assume that σ2
u is known. Since, σ2

• = σ2
x + σ2

u, we can
estimate σ2

x by
σ̂2

x = σ̂2
• − σ2

u (10.4)

where σ̂2
• is the sample variance of the X•

i s. Plugging these estimates into
(10.2), we get an estimate λ̂ = (σ̂2• − σ2

u)/σ̂2• of λ. An estimate of β1 is

β̃1 =
β̂1

λ̂
=

σ̂2
•

σ̂2• − σ2
u

β̂1. (10.5)

This is called the method of moments estimator. See Fuller (1987) for
more details.

Another method for correcting the attenuation bias is simex which stands
for simulation extrapolation and is due to Cook and Stefanski (1994) and
Stefanski and Cook (1995). Recall that the least squares estimate β̂1 is a
consistent estimate of

β1σ
2
x

σ2
x + σ2

u

.

Generate new random variables

X̃i = X•
i +

√
ρ Ui

where Ui ∼ N(0, 1). The least squares estimate obtained by regressing the
Yi’s on the X̃i’s is a consistent estimate of

Ω(ρ) =
β1σ

2
x

σ2
x + (1 + ρ)σ2

u

. (10.6)

Repeat this process B times (where B is large) and denote the resulting
estimators by β̂1,1(ρ), . . . , β̂1,B(ρ). Then define

Ω̂(ρ) =
1
B

B∑
b=1

β̂1,b(ρ).

Now comes some clever sleight of hand. Setting ρ = −1 in (10.6) we see that
Ω(−1) = β1 which is the quantity we want to estimate. The idea is to compute
Ω̂(ρ) for a range of values of ρ such as 0, 0.5, 1.0, 1.5, 2.0. We then extrapolate
the curve Ω̂(ρ) back to ρ = −1; see Figure 10.2. To do the extrapolation, we
fit the values Ω̂(ρj) to the curve

G(ρ; γ1, γ2, γ3) = γ1 +
γ2

γ3 + ρ
(10.7)

using standard nonlinear regression. Once we have estimates of the γ’s, we
take

β̃1 = G(−1; γ̂1, γ̂2, γ̂3) (10.8)
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�

�

-1.0 0.0 1.0 2.0
ρ

Uncorrected Least Squares Estimate β̂

simex Estimate β̃

Ω̂(ρ)

FIGURE 10.2. In the simex method we extrapolate Ω̂(ρ) back to ρ = −1.

as our corrected estimate of β1. Fitting the nonlinear regression (10.7) is
inconvenient; it often suffices to approximate G(ρ) with a quadratic. Thus,
we fit the Ω̂(ρj) values to the curve

Q(ρ; γ1, γ2, γ3) = γ1 + γ2ρ + γ3ρ
2

and the corrected estimate of β1 is

β̃1 = Q(−1; γ̂1, γ̂2, γ̂3) = γ̂1 − γ̂2 + γ̂3.

An advantage of simex is that it extends readily to nonparametric regres-
sion. Let r̂n(x) be an uncorrected estimate of r(x) obtained by regressing the
Yi’s on the X•

i ’s in the nonparametric problem

Yi = r(Xi) + εi

X•
i = Xi + Ui.

Now perform the simex algorithm to get r̂n(x, ρ) and define the corrected
estimator r̃n(x) = r̂n(x,−1). There remains the problem of choosing the
smoothing parameter. This is an area of active research; see Staudenmayer
and Ruppert (2004), for example.

A more direct way to deal with measurement error is suggested by Fan and
Truong (1993). They propose the kernel estimator

r̂n(x) =

∑n
i=1 Kn

(
x−X•

i

hn

)
Yi∑n

i=1 Kn

(
x−X•

i

hn

) (10.9)

where

Kn(x) =
1
2π

∫
e−itx φK(t)

φU (t/hn)
dt,
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where φK is the Fourier transform of a kernel K and φU is the characteristic
function of U . This is a standard kernel estimator except for the unusual kernel
Kn, which will be motivated later in this section, after equation (10.21).

Yet another way to deal with measurement error, due to Stefanski (1985),
is motivated by considering the asymptotics in which σu → 0 rather than
keeping σu fixed as n increases. Let us apply Stefanski’s “small σu” approach
to the nonparametric regression problem. Write the uncorrected estimator as

r̂n(x) =
n∑

i=1

Yi �i(x, X•
i ) (10.10)

where we have written the weights as �i(x, X•
i ) to emphasize the dependence

on X•
i . If the Xi’s had been observed, the estimator of r would be

r∗n(x) =
n∑

i=1

Yi �i(x, Xi).

Expanding �i(x, X•
i ) around Xi we have

r̂n(x) ≈ r∗n(x) +
n∑

i=1

Yi(X•
i − Xi)�′(x, Xi) +

1
2

n∑
i=1

Yi(X•
i − Xi)2�′′(x, Xi).

(10.11)
Taking expectations, we see that the excess bias due to measurement error
(conditional on the Xis) is

b(x) =
σ2

u

2

n∑
i=1

r(Xi)�′′(x, Xi). (10.12)

We can estimate b(x) with

b̂(x) =
σ2

u

2

n∑
i=1

r̂(X•
i )�′′(x, X•

i ). (10.13)

This yields a bias corrected estimate for r, namely,

r̃n(x) = r̂n(x) − b̂(x) = r̂n(x) − σ2
u

2

n∑
i=1

r̂(X•
i )�′′(x, X•

i ). (10.14)

This estimator still has measurement error bias due to the estimation of b(x)
but, for small σ2

u, it will be less biased than r̂n.
Now consider density estimation. Suppose that

X1, . . . , Xn ∼ F

X•
i = Xi + Ui, i = 1, . . . , n
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where, as before, the Xi’s are not observed. We want to estimate the density
f(x) = F ′(x). The density of X• is

f•(x) =
∫

f(s)fU (x − s)ds (10.15)

where fU is the density of U . Since f• is the convolution of f and fU , the
problem of estimating f is called deconvolution.

One way to estimate f is to use Fourier inversion. Let ψ(t) =
∫

eitxf(x)dx

denote the Fourier transform (characteristic function) of X and define ψ• and
ψU similarly. Since X• = X + U , it follows that ψ•(t) = ψ(t)ψU (t) and hence

ψ(t) =
ψ•(t)
ψU (t)

. (10.16)

If f̂• is an estimate of f• then

ψ̂•(t) =
∫

eitxf̂•(x)dx (10.17)

is an estimate of ψ•. By Fourier inversion and equation (10.16),

f(x) =
1
2π

∫
e−itxψ(t)dt =

1
2π

∫
e−itx ψ•(t)

ψU (t)
dt (10.18)

which suggests the estimator

f̂(x) =
1
2π

∫
e−itx ψ̂•(t)

ψU (t)
dt. (10.19)

In particular, if f̂• is a kernel estimator,

f̂•(x) =
1

nh

n∑
j=1

K

(
x − X•

j

h

)

then f̂(x) can be written as

f̂(x) =
1

nh

n∑
j=1

K∗

(
x − X•

j

h
, h

)
(10.20)

where
K∗(t, h) =

1
2π

∫
eitu ψK(u)

ψU (u/h)
du (10.21)

and ψK is the Fourier transform of the kernel K. Equations (10.20) and (10.21)
motivate the kernel regression estimator (10.9).
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The risk of (10.20) is

E(f̂Y (y) − f(y))2 ≈ ch4 +
1

2πnh

∫ (
ψK(t)

|ψU (t/h)|
)2

dt (10.22)

where
c =

1
4

∫
y2K(y)dy

∫
(f ′′(y))2dy. (10.23)

Note that ψU (t/h) appears in the denominator of (10.22). Thus, if ψU (t/h)
has thin tails, the risk will be large. Now ψU (t/h) has thin tails when fU

is smooth, implying that if fU is smooth, the rate of convergence is slow. In
particular, if fU is Normal, it can be shown that the best rate of convergence is
O(1/(log n))2 which is very slow. Stefanski (1990) showed the surprising result
that, under fairly general conditions, the optimal bandwidth is h = σu/

√
log n

which does not depend on f .
In these asymptotic calculations, n is increasing while σ2

u = V(U) stays
fixed. As we mentioned earlier, a more realistic asymptotic calculation might
also have σ2

u tending to 0. In this approach, the convergence rate is less dis-
couraging. The small σu approach suggests the corrected estimator

f̂n(x) − σ2
u

2nh

n∑
i=1

K ′′
(

X•
j − x

h

)
where f̂n is the naive, uncorrected kernel estimator using the X•

i s.

10.2 Inverse Problems

A class of problems that are very similar to measurement error are inverse
problems. In general, an inverse problem refers to reconstructing properties
of an object given only partial information on an object. An example is trying
to estimate the three-dimensional structure of an object given information
from two-dimensional slices of that object. This is common in certain types
of medical diagnostic procedures. Another example is image reconstruction
when the image is subject to blurring. Our summary here follows O’Sullivan
(1986).

In the regression framework, a common inverse problem is of the form

Yi = Ti(r) + εi, i = 1, . . . , n (10.24)

where r is the regression function of interest and Ti is some operator acting on
r. A concrete example, which we shall use for the rest of this section, is Ti(r) =
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Ki(s)r(s)ds for some smooth function Ki such as Ki(s) = e−(s−xi)

2/2. The
model becomes

Yi =
∫

Ki(s)r(s)ds + εi. (10.25)

If Ki is a delta function at xi, then (10.25) becomes the usual nonparametric
regression model Yi = r(xi) + εi. Think of

∫
Ki(s)r(s)ds as a blurred version

of r. There are now two types of information loss: the noise εi and blurring.
Suppose we estimate r with a linear smoother as defined in Section 5.2:

r̂n(x) =
n∑

i=1

Yi �i(x). (10.26)

The variance is the same as without blurring, namely, V(r̂n(x)) = σ2
∑n

i=1 �2
i (x)

but the mean has a different form:

E(r̂n(x)) =
n∑

i=1

�i(x)
∫

Ki(s)r(s)ds =
∫

A(x, s)r(s)ds

where

A(x, s) =
n∑

i=1

�i(x)Ki(s) (10.27)

is called the Backus–Gilbert averaging kernel.
Suppose that r can be approximated as an expansion in some basis {φ1, . . . , φk}

(see Chapter 8), that is, r(x) =
∑k

j=1 θjφj(x). Then,

∫
Ki(s)r(s)ds =

∫
Ki(s)

k∑
j=1

θjφj(s)ds = ZT
i θ

where θ = (θ1, . . . , θk)T and

Zi =

⎛⎜⎜⎜⎝
∫

Ki(s)φ1(s)ds∫
Ki(s)φ2(s)ds

...∫
Ki(s)φk(s)ds

⎞⎟⎟⎟⎠ .

The model (10.25) can then be written as

Y = Zθ + ε (10.28)

where Z is an n× k matrix with ith row equal to ZT
i , Y = (Y1, . . . , Yn)T and

ε = (ε1, . . . , εn)T . It is tempting to estimate θ by the least squares estimator
(ZT Z)−1ZT Y . This may fail since ZT Z is typically not invertible in which
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case the problem is said to be ill-posed. Indeed, this is a hallmark of inverse
problems and corresponds to the fact that the function r cannot be recovered,
even in the absence of noise, due to the information loss incurred by blurring.
Instead, it is common to use a regularized estimator such as θ̂ = LY where

L = (ZT Z + λI)−1ZT ,

I is the identity matrix and λ > 0 is a smoothing parameter that can be cho-
sen by cross-validation. It should be noted that cross-validation is estimating
the prediction error n−1

∑n
i=1(

∫
Ki(s)r(s)ds − ∫ Ki(s)r̂(s)ds)2 rather than∫

(r(s) − r̂(s))2ds. In Chapter 5 we observed that these two loss functions
were essentially the same. This is no longer true in the present context. In
principle, it is also possible to devise a cross-validation estimator for the loss∫
(r(s) − r̂(s))2ds but this estimator may be very unstable.

10.3 Nonparametric Bayes

Throughout this book we have taken a frequentist approach to inference. It is
also possible to take a Bayesian approach.1 Indeed, Bayesian nonparametric
inference is a thriving research enterprise in statistics as well as in machine
learning. Good references are Ghosh and Ramamoorthi (2003), Dey et al.
(1998), Walker (2004) and references therein. However, the area is far to large
and growing far too quickly for us to cover the topic here.

A small sampling of relevant references, in addition to those already men-
tioned, includes Schwartz (1965), Diaconis and Freedman (1986), Barron et al.
(1999b), Ghosal et al. (1999), Walker and Hjort (2001), Hjort (2003), Ghosal
et al. (2000), Shen and Wasserman (2001), Zhao (2000), Huang (2004), Cox
(1993), Freedman (1999), McAuliffe et al. (2004), Teh et al. (2004), Blei et al.
(2004), Blei and Jordan (2004), and Wasserman (1998).

10.4 Semiparametric Inference

As the name suggests, semiparametric models are models that are part
parametric and part nonparametric. An example is a partially linear regression
model of the form

Y = βX + r(Z) + ε (10.29)

1See Chapter 11 of Wasserman (2004) for a general discussion of the advantages and pitfalls
of Bayesian inference.
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where r is some smooth function. The theory of inference for such models can
get quite complex. Consider estimating β in (10.29), for example. One strategy
is to regress Yi− r̂n(Zi) on Xi where r̂n is an estimate of r. Under appropriate
conditions, if r̂n is chosen carefully, this will lead to good estimates of β. See
Bickel et al. (1993) and Chapter 25 of van der Vaart (1998) for details.

10.5 Correlated Errors

If the errors εi in the regression model Yi = r(xi) + εi are correlated, then
the usual methods can break down. In particular, positive correlation can
make methods like cross-validation to choose very small bandwidths. There
are several approaches for dealing with the correlation. In modified cross-
validation, we drop out blocks of observations instead of single observations.
In partitioned cross-validation, we partition the data, and use one obser-
vation per partition to construct the cross-validation estimate. The estimates
obtained this way are then averaged. The properties of these methods are
discussed in Chu and Marron (1991). A review of nonparametric regression
with correlated observations can be found in Opsomer et al. (2001).

10.6 Classification

In the classification problem we have data (X1, Y1), . . . , (Xn, Yn) where Yi

is discrete. We want to find a function ĥ so that, given a new X , we can predict
Y by ĥ(X). This is just like regression except for two things: (i) the outcome
is discrete and (ii) we do not need to estimate the relationship between Y and
X well; we only need to predict well.

In an earlier version of this book, there was a long chapter on classification.
The topic is so vast that the chapter took on a life of its own and I decided
to eliminate it. There are many good books on classification such as Hastie
et al. (2001). I will only make a few brief comments here.

Suppose that Yi ∈ {0, 1} is binary. A classifier is a function h that maps
each x into {0, 1}. A commonly used risk function for classification is L(h) =
P(Y �= h(X)). It can be shown that the optimal classification rule—called the
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Bayes rule2—is

h(x) =
{

1 if r(x) ≥ 1/2
0 if r(x) < 1/2

where r(x) = E(Y |X = x). This suggests a natural (and not uncommon)
approach to classification. Form an estimate r̂n(x) of r(x) then estimate h by

ĥ(x) =
{

1 if r̂n(x) ≥ 1/2
0 if r̂n(x) < 1/2.

Now even if r̂n is a poor estimator of r, ĥ might still be a good classifier. For
example, if r(x) = .6 but r̂n(x) = .9, we still have that h(x) = ĥ(x) = 1.

10.7 Sieves

A sieve is a sequence of models, indexed by sample size n, that increase in
complexity as n → ∞. A simple example is polynomial regression where the
maximum degree of the polynomial p(n) increases with n. Choosing p(n) is like
choosing a bandwidth: there is the usual tradeoff between bias and variance.

We use sieves informally all the time in the sense that we often fit more
complex models when we have more data. The sieve idea was made formal
by Grenander (1981) and Geman and Hwang (1982). Since then an enormous
literature has developed. See Shen et al. (1999), Wong and Shen (1995), Shen
and Wong (1994), Barron et al. (1999a), van de Geer (1995), Genovese and
Wasserman (2000), and van de Geer (2000).

10.8 Shape-Restricted Inference

In the presence of shape restrictions, it is possible to make consistent, non-
parametric inferences for a curve without imposing smoothness constraints.
A typical example is estimating a regression function r when r is monotonic.
A standard reference is Robertson et al. (1988).

Suppose that
Yi = r(xi) + εi, i = 1, . . . , n

where x1 < · · · < xn, E(εi) = 0 and σ2 = E(ε2i ). Further, suppose that
r is nondecreasing. (This assumption can be tested as described in Section

2This is a poor choice of terminology. The Bayes rule has nothing to do with Bayesian
statistical inference. Indeed, the Bayes rule h can be estimated by frequentist or Bayesian
methods.
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10.9.) The least squares estimator r̂n is obtained by solving the restricted
minimization:

minimize
n∑

i=1

(Yi − r(xi))2 subject to r ∈ F↑

where F↑ is the set of nondecreasing functions. The resulting estimator r̂n is
called the isotonic regression estimator.

The solution r̂n may be described as follows. Let P0 = (0, 0) and Pj =
(j,
∑j

i=1 Yi). Let G(t) be the greatest convex minorant, that is, G(t) is
the supremum of all convex functions that lie below the points P0, . . . , Pn.
Then r̂n is the left derivative of G.

The convex minorant G can be found quickly using the pooled-adjacent-
violators (PAV) algorithm. Start by joining all the points P0, P1, . . . with line
segments. If the slope between P0 and P1 is greater than the slope between
P1 and P2, replace these two segments with one line segment joining P0 and
P2. If the slope between P0 and P2 is greater than the slope between P2 and
P3, replace these two segments with one line segment joining P0 and P3. The
process is continued in this way and the result is the function G(t). See pages
8–10 of Robertson et al. (1988) for more detail.

A number of results are available about the resulting estimator. For exam-
ple, Zhang (2002) shows the following. If

Rn,p(r) =

(
1
n

n∑
i=1

E|r̂n(xi) − r(xi)|p
)1/p

where 1 ≤ p ≤ 3, then

0.64 + o(1) ≤ n1/3

σ2/3V 1/3
sup

V (r)≤V

Rn,p(r) ≤ Mp + o(1) (10.30)

where V (r) is the total variation of r and Mp is a constant.
Optimal confidence bands are obtained in Dümbgen (2003), and Dümbgen

and Johns (2004). Confidence bands for monotone densities are obtained in
Hengartner and Stark (1995).

10.9 Testing

In this book we have concentrated on estimation and confidence sets. There
is also a large literature on nonparametric testing. Many of the results can
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be found in the monograph by Ingster and Suslina (2003). Other references
include: Ingster (2002), Ingster (2001), Ingster and Suslina (2000), Ingster
(1998), Ingster (1993a), Ingster (1993b), Ingster (1993c), Lepski and Spokoiny
(1999), and Baraud (2002).

For example, let Yi = θi + εi where εi ∼ N(0, 1), i = 1, . . . , n and θ =
(θ1, . . . , θn) is unknown. Consider testing

H0 : θ = (0, . . . , 0) versus H1 : θ ∈ Vn =
{
θ ∈ R

n : ||θ||p ≥ Rn

}
where

||θ||p =

(
n∑

i=1

|θi|p
)1/p

for 0 < p < ∞. The type I and type II error of a test ψ are

αn(ψ) = E0(ψ), βn(ψ, θ) = Eθ(1 − ψ).

Let
γn = inf

ψ

(
αn(ψ) + sup

θ∈Vn

βn(ψ, θ)
)

be the smallest possible sum of the type I error and maximum type II error,
over all tests. Ingster showed that

γn → 0 ⇐⇒ Rn

R∗
n

→ ∞ and γn → 1 ⇐⇒ Rn

R∗
n

→ 0

where

R∗
n =

{
n(1/p)−(1/4) if p ≤ 2

n1/(2p) if p > 2.

Thus, R∗
n is a critical rate that determines when the alternative is distinguish-

able. Results like these are intimately related to the results on confidence sets
in Chapter 7.

The results for qualitative hypotheses are of a different nature. These are
hypotheses like: f is monotone, f is positive, f is convex and so on. The
defining characteristic of such hypotheses is that they are cones, that is, they
are closed under addition. For example, if f and g are monotone nondecreasing
functions, then f + g is also monotone nondecreasing. References include:
Dümbgen and Spokoiny (2001), Baraud et al. (2003a), Baraud et al. (2003b),
and Juditsky and Nemirovski (2002). Consider testing the null hypothesis that
a regression function r is nonincreasing. Suppose further that

r ∈
{
f : [0, 1] → R : |r(x) − r(y)| ≤ L|x − y|s, for all x, y ∈ [0, 1]

}
where L > 0 and 0 < s ≤ 1. Then there exist tests with uniformly large
power for each function whose distance from the null is at least of order
L1/(1+2s)n−s/(1+2s).
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10.10 Computational Issues

I have completely neglected issues about efficient computation. Nonparamet-
ric methods work best with large data sets but implementing nonparametric
methods with large data sets requires efficient computation.

Binning methods are quite popular for fast calculations. See Hall and Wand
(1996), Fan and Marron (1994), Wand (1994), Holmström (2000), Sain (2002),
and Scott (1992), for example. Chapter 12 of Loader (1999a) contains a
good discussion of computation. In particular, there is a description of k-
d trees which are intelligently chosen partitions of the data that speed up
computations. A number of publications on the use of k-d trees in statistics
can be found at http://www.autonlab.org. Useful R code can be found at
http://cran.r-project.org. The locfit program by Catherine Loader for
local likelihood and local regression can be found at http://www.locfit.info.

10.11 Exercises

1. Consider the “errors in Y ” model:

Yi = r(Xi) + εi

Y •
i = Yi + Ui, E(Ui) = 0

and the observed data are (X1, Y
•
1 ), . . . , (Xn, Y •

n ). How does observing
Y •

i instead of Yi affect the estimation of r(x)?

2. Prove 10.1.

3. Prove equation (10.20).

4. Draw X1, . . . , Xn ∼ N(0, 1) with n = 100.

(a) Estimate the density using a kernel estimator.

(b) Let Wi = Xi + σuUi where Ui ∼ N(0, 1). Compute the uncorrected
and corrected density estimator from the Wis and compare the estima-
tors. Try different values of σu.

(c) Repeat part (b) but let Ui have a Cauchy distribution.

5. Generate 1000 observations from the model:

Yi = r(Xi) + σεεi

Wi = Xi + σuUi
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where r(x) = x + 3 exp(−16x2), εi ∼ N(0, 1), Ui ∼ N(0, 1), Xi ∼
Unif(−2, 2), σε = 0.5, and σu = 0.1.

(a) Use kernel regression to estimate r from (X1, Y1), . . . , (Xn, Yn). Find
the bandwidth h using cross-validation. Call the resulting estimator r∗n.
Use the bandwidth h throughout the rest of the question.

(b) Use kernel regression to estimate r from (W1, Y1), . . . , (Wn, Yn).
Denote the resulting estimator by r̂n.

(c) Compute the corrected estimator r̃n given by (10.14).

(d) Compare r, r∗n, r̂n and r̃n.

(e) Think of a way of finding a good bandwidth using only the Yi’s and
the Wi’s. Implement your method and compare the resulting estimator
to the previous estimators.

6. Generate 1000 observations from the model:

Yi =
∫

Ki(s)ds + σεi

where r(x) = x + 3 exp(−16x2), εi ∼ N(0, 1), σ = 0.5, Ki(s) =
e−(s−xi)

2/b2 , and xi = 4(i/n)− 2. Try b = .01, .1 and 1.

(a) Plot the Backus–Gilbert averaging kernel for several values of x.
Interpret.

(b) Estimate r using the method described in this chapter. Comment
on the results.

7. Consider the infinite-dimensional Normal means model from Chapter 7
given by:

Yi = θi +
1√
n

εi, i = 1, 2, . . .

Assume that θ = (θ1, θ2, . . .) is in the Sobolev ellipsoid Θ = {θ :∑∞
j=1 θ2

j j
2 ≤ c2} for some c > 0. Let the prior be such that each θi

is independent and θi ∼ N(0, τ2
i ) for some τi > 0.

(a) Find the posterior of the θi’s. In particular, find the posterior
mean θ̂.

(b) Find conditions on the τ2
i such that the posterior is consistent in

the sense that
Pθ(||θ − θ̂|| > ε) → 0

for any ε, as n → ∞.
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(c) Let θj = 1/j4. Simulate from the model (take n = 100), find the
posterior and find bn such that P(||θ̂ − θ|| ≤ bn|Data) = 0.95. Set Bn =
{θ ∈ Θ : ||θ̂ − θ|| ≤ bn}. Repeat this whole process many times and
estimate the frequentist coverage of Bn (at this particular θ) by counting
how often θ ∈ Bn. Report your findings.

(d) Repeat (c) for θ = (0, 0, . . .).
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Dümbgen, L. and Johns, R. (2004). Confidence bands for isotonic median
curves using sign-tests. Journal of Computational and Graphical Statistics
13 519–533.
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List of Symbols

R real numbers
P(A) probability of event A
FX cumulative distribution function
fX probability density (or mass) function
X ∼ F X has distribution F
X ∼ f X has distribution with density f

X
d= Y X and Y have the same distribution

iid independent and identically distributed
X1, . . . , Xn ∼ F iid sample of size n from F
φ standard Normal probability density
Φ standard Normal distribution function
zα upper α quantile of N(0, 1): zα = Φ−1(1 − α)
E(X) =

∫
xdF (x) expected value (mean) of random variable X

V(X) variance of random variable X
Cov(X, Y ) covariance between X and Y

P−→ convergence in probability
� convergence in distribution
xn = o(an) xn/an → 0
xn = O(an) |xn/an| is bounded for large n

Xn = oP (an) Xn/an
P−→ 0

Xn = OP (an) |Xn/an| is bounded in probability for large n
T (F ) statistical functional (the mean, for example)
Ln(θ) likelihood function
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Cp statistic, 70
Lp loss, 57
χ2 confidence set, 159
σ-field, 3
BCa intervals, 34
react, 183, 188
simex, 229
sure, 150

adaptive estimation, 158
adaptive inference, 115
adaptive kernels, 136
additive model, 50, 103
adjusted percentile methods, 34
AIC, 181
all possible subsets, 153
almost sure convergence, 4
attenuation bias, 228
average coverage, 94
average mean squared error, 52
averaging kernel, 234

backfitting, 103
Backus–Gilbert averaging kernel, 234
bandwidth, 71, 132
Baraud’s confidence set, 161
Bart Simpson, 125
basis, 147
basis pursuit, 171, 216
Bayes rule, 237
Beran–Dümbgen–Stein pivotal method,

165
Bernstein’s inequality, 9
Berry–Esséen bound, 9
Besov seminorm, 213
Besov space, 149, 211, 213
bias problem, 89
bias–variance decomposition, 5
bias–variance tradeoff, 50
bias-corrected and accelerated, 34
BIC, 181
Big Bang, 45
binning, 140
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bins, 127
binwidth, 127
Bonferroni inequality, 94
bootstrap, 30

parametric, 31
bootstrap confidence interval, 32

percentile, 34
pivotal, 32
studentized pivotal, 33

boundary bias, 73
boxcar kernel, 55

cascade equations, 222
Cauchy–Schwartz inequality, 9
central limit theorem, 4
Chebyshev’s inequality, 8
classification, 236
claw, 125
CMB, 46
column space, 63
complete, 147
confidence ball, 6
confidence band, 6, 15, 64
confidence envelope, 6
confidence interval, 6

bootstrap, 32
pivotal, 32

confidence set, 5, 57, 159
χ2, 159
Baraud, 161
Beran–Dümbgen–Stein method,

165
finite sample, 6
Lepski, 161
pointwise asymptotic, 6
uniform asymptotic, 6

continuous mapping theorem, 4
convergence in distribution, 3
convergence in probability, 3

convex function, 9
correlation, 17
cosine basis, 148
cosmic microwave background, 46
covariate, 61
cross-validation, 126, 127, 135
cubic spline, 81
curse of dimensionality, 58, 100, 138,

193

deconvolution, 232
delta method, 4, 7
density estimation, 43, 125

orthogonal series, 192
design bias, 73
detail coefficients, 200
dictionary, 215
dilation equation, 204
Doppler function, 77, 188
double bootstrap, 35
Dvoretzky–Kiefer–Wolfowitz (DKW)

inequality, 14

effective degrees of freedom, 64, 67
ellipsoid, 148, 154
empirical detail coefficients, 207
empirical distribution function, 2,

13
empirical influence function, 18
empirical probability distribution,

21
empirical scaling coefficients, 207
Epanechnikov kernel, 55
errors-in-variables, 116, 227
estimated risk, 127
events, 3

fast Fourier transform, 136
father wavelet, 203
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feature, 61
filter, 223
Fisher information, 5
fitted values, 66
Fourier basis, 149
Fourier transform, 199

Gateâux derivative, 18, 23
Gaussian kernel, 55
Gaussian process, 92
generalized cross-validation, 70
generalized linear model, 66, 96
Glivenko–Cantelli theorem, 14
greatest convex minorant, 238
greedy modulator, 195

Hölder space, 213
Haar father wavelet, 199
Haar scaling function, 199
Haar wavelet, 199
Hadamard differentiable, 19, 23
hard thresholding, 152, 208
hat matrix, 66
Heisenberg uncertainty principle, 222
heteroscedastic, 87
histogram, 127
Hoeffding’s inequality, 8
homoscedasticity, 87
Huber’s function, 116

ICI, 216, 225
ideal linear estimator, 155
idempotent, 64
ill-posed, 235
independent component analysis, 117
influence function, 18, 29
inner product, 147
integrated mean squared error, 52,

126

integrated risk, 52, 174
integrated squared error, 126
interquartile range, 135
intersecting confidence intervals, 216
inverse Fourier transform, 199
inverse problems, 233
irregular design, 190
isotonic regression, 238

jackknife, 27
jackknife bias estimate, 27
James–Stein estimator, 153, 155, 185

minimaxity, 157
Jensen’s inequality, 9

k-d trees, 240
kernel, 55, 131
kernel density estimator, 131, 132
kernel estimator, 71
kernel regression, 71
kill it or keep it, 210
knots, 81
Kullback–Leibler loss, 57

LARS, 216
lasso, 171, 216
leave-one-out cross-validation, 69,

126
Legendre basis, 148
Lepski’s confidence set, 161
likelihood function, 5
linear functional, 15
linear minimax risk, 113
linear shrinkage estimators, 155
linear smoother, 66
Lipschitz, 122
local linear regression, 76
local log-likelihood, 97
local polynomial, 75
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local polynomial log-likelihood, 138
local polynomial regression, 74
locally adaptive, 115, 197
log-likelihood function, 5
logistic regression, 48
logistic regression model, 65
loss function, 57

Mallows’ Cp, 181
Mallows’ metric, 37
Markov’s inequality, 8
MARS, 110
maximum likelihood estimator, 5
mean squared error, 44, 51, 68
measurement error, 116, 227
method of moments estimator, 229
Mill’s inequality, 8
minimax risk, 113, 153
minimax theory, 145
mirror, 215
model selection, 152
modified cross-validation, 236
modulator, 185
monotone modulator, 185
mother Haar wavelet, 199
mother wavelet, 205
MRA, 203
MSE, 51, 68
multiresolution analysis, 203
multivariate adaptive regression splines,

110

Nadaraya–Watson kernel estimator,
71

nested subset selection, 153, 185
nonparametric delta method, 20
nonparametric regression, 61, 71
norm, 147
normal means model, 145

normal reference rule, 135
normal-based interval, 16

olive nonparametric statistics, i
oracle, 155, 157, 171, 172, 210
orthonormal, 147
outlier resistant, 57
oversmoothing, 44

parametric bootstrap, 31
partitioned cross-validation, 236
PAV, 188, 238
penalization, 171
penalized regression, 81
penalized sums of squares, 81
percentile interval, 34
periodic Sobolev class, 148
pilot estimate, 112
Pinsker constant, 154
Pinsker’s theorem, 153
pivot, 165
pivotal interval, 32

studentized, 33
plug-in bandwidth, 111, 136
plug-in estimator, 15
pooled-adjacent-violators, 188, 238
predictive risk, 53
principal component analysis, 117
probability measure, 3
probability space, 3
projection pursuit, 117
projection pursuit regression, 104
pseudo-values, 28

quadratic form, 86
quantile regression, 116
quantiles, 17

random variable, 3
react, 183
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redshift, 44
regression

kernel, 71
nonparametric, 71

regression splines, 85
regression tree, 108
regressogram, 48, 67
regular design, 184
regularization, 81
residuals, 64
response variable, 61
reweighted least squares, 65
ridge regression, 84
risk, 126
risk estimation and adaptation af-

ter coordinate transforma-
tion, 183

robust regression, 116
roughness penalty, 81

sample quantile, 17
sample space, 3
scale-space, 140
scale-space smoothing, 99
scaling coefficients, 200, 204
scaling function, 203
score function, 5
semiparametric models, 235
shatter, 22
shrinkage, 155
sieve, 237
signal, 223
simulation extrapolation, 229
skewness, 17
Slutsky’s theorem, 4
smoother, 61
smoothing, 43
smoothing bias, 89
smoothing matrix, 66

smoothing parameter, 44
Sobolev space, 148
soft threshold estimator, 152
soft thresholding, 208
sparse, 199, 208
sparsity, 171
spatially adaptive, 115, 197
spatially inhomogeneous, 77, 115,

197
splines, 81
squared error, 50
squared prediction error, 53
statistical functional, 15
statistical model, 2
Stein’s lemma, 151
Stein’s unbiased risk estimator, 150
Stone’s theorem, 136
strawberry fields forever, 7
strong law of large numbers, 4
studentized pivotal interval, 33
SureShrink, 210
surgery, 192
symmetric, 64
symmlet, 205

tensor product, 193
thin-plate spline, 102
trace, 64
training error, 68
tricube kernel, 55
truncated power basis, 82
tube formula, 92, 119
two-scale relationship, 204

undersmoothing, 44, 90, 117
upcrossing, 120

Vapnik–Chervonenkis (VC) theory,
22
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variable bandwidth selection, 115
variable selection, 117
VC dimension, 22
VisuShrink, 210

wavelets, 197
weak convergence, 3
weak differentiability, 173
weak law of large numbers, 4
white noise model, 173
wiggly, 2, 115
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