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Chapter 1

o-algebras

1.1 o-algebras.

Definition 1.1 Let X be a non-empty set and ¥ a collection of subsets of X.
We call ¥ a o-algebra of subsets of X if it is non-empty, closed under
complements and closed under countable unions. This means:
(i) there exists at least one A C X so that A € 3,
(ii) if A€ X, then A° € &, where A° =X \ A, and
(i4i) if A, € X for alln € N, then Uf> A, € 2.

The pair (X,X) of a non-empty set X and a o-algebra ¥ of subsets of X is
called a measurable space.

Proposition 1.1 Every o-algebra of subsets of X contains at least the sets ()
and X, it is closed under finite unions, under countable intersections, under
finite intersections and under set-theoretic differences.

Proof: Let ¥ be any o-algebra of subsets of X.

(a) Take any A € ¥ and consider the sets Ay = A and A4,, = A€ for all n > 2.
Then X = AU A® = U/ A, € ¥ and also | = X¢ € ¥.

(b) Let Ay,...,Axy € X. Consider 4, = Ay for all n > N and get that
UN_ A, =UtNA, X

(c) Let A, € ¥ for all n. Then N> A, = (U2 A4S)¢ € .

(d) Let Aq,...,Ay € 3. Using the result of (b), we get that N2 A, =
(UY_ A € 5.

(

e) Finally, let A, B € ¥. Using the result of (d), we get that A\B = ANB° € ¥.
Here are some simple examples.

Examples.

1. The collection {0, X'} is a o-algebra of subsets of X.

2. If E C X and F is non-empty and different from X, then the collection
{0, E, E¢, X} is a o-algebra of subsets of X.

7



8 CHAPTER 1. 0-ALGEBRAS

3. P(X), the collection of all subsets of X, is a o-algebra of subsets of X.

4. Let X be an uncountable set. The collection {A C X | A is countable or A€ is
countable} is a o-algebra of subsets of X. Firstly, ) is countable and, hence,
the collection is non-empty. If A is in the collection, then, considering cases, we
see that A€ is also in the collection. Finally, let A,, be in the collection for all
n € N. If all A,’s are countable, then U;> 4, is also countable. If at least one
of the A%’s, say A% | is countable, then (U2 A4,)¢ C AZ_ is also countable. In
any case, U:SA,L belongs to the collection.

The following result is useful.

Proposition 1.2 Let X be a o-algebra of subsets of X and consider a finite
sequence { A, }N_; or an infinite sequence {A,,} in X. Then there exists a finite
sequence {B,})_, or, respectively, an infinite sequence {B,} in ¥ with the
properties:

(i) B, C A, foralln=1,...,N or, respectively, alln € N,

(i) UN_ B,, = UN_| A,, or, respectively, UT> B,, = U2 A,, and

(i4i) the B, ’s are pairwise disjoint.

Proof: Trivial, by taking By = A; and By = A \ (41 U--- U Ai_q) for all
k=2,...,N or, respectively, all k =2,3,....

1.2 Generated o-algebras.

Proposition 1.3 The intersection of any o-algebras of subsets of the same X
s a o-algebra of subsets of X.

Proof: Let {¥;};cr be any collection of o-algebras of subsets of X, indexed by an
arbitrary non-empty set I of indices, and consider the intersection ¥ = N;cr3;.
(i) Since f € X; for all ¢ € I, we get § € ¥ and, hence, ¥ is non-empty.

(ii) Let A € ¥. Then A € %, for all ¢ € I and, since all ¥;’s are o-algebras,
A€ € X, for all i € I. Therefore A° € X.

(iii) Let A, € X for all n € N. Then A, € ¥; for alli € I and all n € N
and, since all ¥;’s are o-algebras, we get US> A, € %; for all i € I. Thus,
U A, € 3.

Definition 1.2 Let X be a non-empty set and £ be an arbitrary collection of
subsets of X. The intersection of all o-algebras of subsets of X which include
€ is called the o-algebra generated by £ and it is denoted by X(E). Namely

(&) = ﬂ{Z | X is a o-algebra of subsets of X and £ C ¥} .
Note that there is at least one o-algebra of subsets of X which includes £ and

this is P(X). Note also that the term o-algebra used in the name of X(&) is
justified by its definition and by Proposition 1.3.
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Proposition 1.4 Let £ be any collection of subsets of the non-empty X. Then
Y(&) is the smallest o-algebra of subsets of X which includes E. Namely, if 3
is any o-algebra of subsets of X such that € C X, then L(E) C X.

Proof: 1If ¥ is any o-algebra of subsets of X such that £ C ¥, then X is one of
the o-algebras whose intersection is denoted ¥(€). Therefore ¥(&) C X.

Looking back at two of the examples of o-algebras, we easily get the following
examples.

Examples.

1. Let E C X and F be non-empty and different from X and consider £ = {E}.
Then X(&) = {0, E, B, X}. To see this just observe that {0, F,E, X} is a
o-algebra of subsets of X which contains F and that there can be no smaller
o-algebra of subsets of X containing F, since such a g-algebra must necessarily
contain (), X and E° besides E.

2. Let X be an uncountable set and consider £ = {A C X | A is countable}.
Then ¥(€) = {A C X|A is countable or A° is countable}. The argument is the
same as before. {A C X|A is countable or A€ is countable} is a o-algebra of
subsets of X which contains all countable subsets of X and there is no smaller
o-algebra of subsets of X containing all countable subsets of X, since any such
o-algebra must contain all the complements of countable subsets of X.

The next section describes a much more important example.

1.3 Borel o-algebras.

Definition 1.3 Let X be a topological space and T the topology of X, i.e. the
collection of all open subsets of X. The o-algebra of subsets of X which is
generated by T, namely the smallest o-algebra of subsets of X containing all
open subsets of X, is called the Borel o-algebra of X and we denote it Bx:

Bx =X(T), T the topology of X.

The elements of Bx are called Borel sets in X and Bx is also called the
o-algebra of Borel sets in X.

By definition, all open subsets of X are Borel sets in X and, since By is a
o-algebra, all closed subsets of X (which are the complements of open subsets)
are also Borel sets in X. A subset of X is called a Ggs-set if it is a countable
intersection of open subsets of X. Also, a subset of X is called an F,-set if it
is a countable union of closed subsets of X. It is obvious that all Gs-sets and
all F,-sets are Borel sets in X.

Proposition 1.5 If X is a topological space and F is the collection of all closed
subsets of X, then Bx = 3(F).
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Proof: Every closed set is contained in (7). This is true because 3(7) contains
all open sets and hence, being a o-algebra, contains all closed sets. Therefore,
F C X(T). Since X(7) is a o-algebra, Proposition 1.4 implies X(F) C (7).

Symmetrically, every open set is contained in 3(F). This is because X(F)
contains all closed sets and hence, being a g-algebra, contains all open sets (the
complements of closed sets). Therefore, T C 3(F). Since X(F) is a o-algebra,
Proposition 1.4 implies (7)) C E(F).

Therefore, ¥(F) = X(T) = Bx.

Examples of topological spaces are all metric spaces of which the most fa-
miliar is the euclidean space X = R"™ with the usual euclidean metric or even
any subset X of R™ with the restriction on X of the euclidean metric. Because
of the importance of R™ we shall pay particular attention on Bgrn.

The typical closed orthogonal parallelepiped with axis-parallel edges is a set of
the form @ = [a1,b1] X - -+ X [an, by], the typical open orthogonal parallelepiped
with axis-parallel edges is a set of the form R = (a1, b1) X+ - -X(an, b, ), the typical
open-closed orthogonal parallelepiped with axis-parallel edges is a set of the form
P = (a1,b1] X+ -+ X (ay, b,] and the typical closed-open orthogonal parallelepiped
with axis-parallel edges is a set of the form T' = [a1,b1) X -+ X [an, by). More
generally, the typical orthogonal parallelepiped with axis-parallel edges is a set
S, a cartesian product of n bounded intervals of any possible type. In all cases
we consider —oo < a; < b; < 400 for all j =1,...,n and, hence, all orthogonal
parallelepipeds with axis-parallel edges are bounded sets in R”™.

If n = 1, then the orthogonal parallelepipeds with axis-parallel edges are
just the bounded intervals of all possible types in the real line R. If n = 2, then
the orthogonal parallelepipeds with axis-parallel edges are the usual orthogonal
parallelograms of all possible types with axis-parallel sides.

Since orthogonal parallelepipeds with axis-parallel edges will play a role in
much of the following, we agree to call them, for short, n-dimensional inter-
vals or intervals in R".

Lemma 1.1 All n-dimensional intervals are Borel sets in R™.

Proof: For any j = 1,...,n, a half-space of the form {z = (z1,...,2,)|2; <b;}
or of the form {z = (z1,...,2,)|x; < b;} is a Borel set in R™, since it is an open
set in the first case and a closed set in the second case. Similarly, a half-space of
the form {z = (z1,...,2,)|a; < z;} or of the form {z = (x1,...,2,) |a; < z;}
is a Borel set in R"™. Now, every interval S is an intersection of 2n of these
half-spaces and, therefore, it is also a Borel set in R".

Proposition 1.6 If £ is the collection of all closed or of all open or of all
open-closed or of all closed-open or of all intervals in R™, then Brn = %(E).

Proof: By Lemma 1.1 we have that, in all cases, &€ C Bgrn. Proposition 1.4
implies that X(&) C Bgrn.

To show the opposite inclusion consider any open subset U of R"™. For every
x € U find a small open ball B, centered at x which is included in U. Now,
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considering the case of £ being the collection of all closed intervals, take an
arbitrary Q, = [a1,b1] X -+ X [an, b,] containing x, small enough so that it is
included in B,, and hence in U, and with all a1, ..., an,, b1, ..., b, being rational
numbers. Since x € Q, C U for all z € U, we have that U = U,cy@,. But the
collection of all possible @,’s is countable (!) and, thus, the general open subset
U of R™ can be written as a countable union of sets in the collection £. Hence
every open U belongs to (&) and, since () is a o-algebra of subsets of R”
and Bgr~ is generated by the collection of all open subsets of R™, Proposition
1.4 implies that Br» C X(&).

Of course the proof of the last inclusion works in the same way with all other
types of intervals.

It is convenient for certain purposes, and especially because functions are
often infinitely valued, to consider R = R U {400, —00} and C = C U {oo} as
topological spaces and define their Borel o-algebras.

The e-neighborhood of a point 2 € R is, as usual, the interval (x—e, z+¢€) and
we define the e-neighborhood of 400 to be (X, +00] and of —oco to be [~o0, —1).
We next say that U C R is open in R if for every point of U there is an
e-neighborhood of the point included in U. Tt is trivial to see (justifying the
term open) that the collection of all sets open in R is a topology of R, namely
that it contains the sets () and R and that it is closed under arbitrary unions
and under finite intersections. It is obvious that a set U C R is open in R if
and only if it is open in R. It is also obvious that, if a set U C R is open in R,
then U N R is open in R.

The next result says, in particular, that we may construct the general Borel
set in R by taking the general Borel set in R and adjoining none or any one or
both of the points +o00, —oo to it.

Proposition 1.7 We have
B = {A, AU {400}, AU{—o0}, AU {+00, —0c0} | A € Br}.

Also, if £ is the collection containing {+o0o} or {—oo} and all closed or all open
or all open-closed or all closed-open or all intervals in R, then B = X(&).

Proof: (a) Consider the collection ¥ = {A € R|A € Bg}. This collection
obviously contains (). If A € ¥, then R\ A € Bg and, since R is open in R, we
get R\A=(R\A)NR € Bg. Hence, R\ A€ . If 4, € ¥ for all n € N,
then all A,,’s are included in R and are contained in Bg. Therefore U™ A,, is
included in R and it is contained in By and, hence, Uy A,, € ¥. This proves
that ¥ is a o-algebra of subsets of R. We now observe that all open subsets of
R are also open subsets of R and, hence, belong to . Proposition 1.4 implies
that all Borel sets in R belong to ¥ and, by definition of ¥, we get that all
A € Br are contained in Bg.

The set [—oo, +00) is open in R and, hence, the set {+o0} is contained in
Bg . Similarly, {—oc} and, hence, {400, —c0} are contained in B .

We conclude that {4, AU{+o0}, AU{—o0}, AU{+00, —c0} | A € Br} C Bg.
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If U is open in R, then A = UNR is open in R and, thus, U can be written
U=AorU=AU{4+o0}or U=AU{—o0} or U= AU{+00,—00} for some
A which is open in R. This means that all sets open in R are contained in the
collection {A, AU {+o0}, AU {—00}, AU {+00,—00} | A € Br}. It is a trivial
matter to prove that this collection is a o-algebra of subsets of R and, hence,
by Proposition 1.4, Bg € {A, AU{+00}, AU{—00}, AU{+00, —00} | A € Br}.

Therefore, the first statement of this proposition is proved.

(b) Let & = {{+o0}, (a,b]| —o0 <a <b< +o0}.

We have already seen that {+oo} € Bg and since (a,b] = (a,b+1)\ (b,b+1)
is the difference of two open sets in R we get that (a,b] € Bg. Hence £ C Bg
and, by Proposition 1.4, ¥(€) C Bg .

As we have seen in the proof of Proposition 1.6, every open set A in R is a
countable union of intervals of the form (a,b]. Therefore, every open set A in
R is contained in X(&).

In particular, the set R is contained in 3(€) and, hence, (—oo,+o0] =
R U {+00} is contained in %(€). Thus, also {—oo} = R\ (—o0, +00] belongs to
2(€).

In the proof of (a) we have seen that every U open in R can be written as
U=AorU=AU{+x} or U =AU{-0} or U = AU{+00, —c0} for some A
which is open in R. By the last two paragraphs, every U open in R is contained
in ¥(€) and Proposition 1.4 implies that By C X(£).

This concludes the proof of the second statement for this particular choice
of £ and the proof is similar for all other choices.

We now turn to the case of C = C U {oc}. The e-neighborhood of a point
x = (x1,22) = 1 + iz € C is, as usual, the open disc B(z;¢) = {y = (y1,¥2) €
Clly — z| < €}, where |y — 2|? = (y1 — 21)? + (y2 — 22)%. We define the e
neighborhood of oo to be the set {y € C|ly| > 1} U {occ}, the exterior of a
closed disc centered at 0 together with the point co. We say that a set U C C
is open in C if for every point of U there is an e-neighborhood of the point
included in U. The collection of all sets which are open in C contains () and C
and is closed under arbitrary unions and under finite intersections, thus forming
a topology in C. It is clear that a set U C C is open in C if and only if it is
open in C and that, if a set U C C is open in C, then U N C is open in C.

As in the case of R, we may construct the general Borel set in C by taking
the general Borel set in C and at most adjoining the point co to it.

Proposition 1.8 We have
Bs = {A,AU{OO}\A € Bc}.

Also, if € is the collection of all closed or all open or all open-closed or all
closed-open or all intervals in C = R?, then Bs = X(€).

Proof: The proof is very similar to (and slightly simpler than) the proof of
Proposition 1.7. The steps are the same and only minor modifications are
needed.
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1.4 Algebras and monotone classes.

Definition 1.4 Let X be non-empty and A a collection of subsets of X. We call
A an algebra of subsets of X if it is non-empty, closed under complements
and closed under unions. This means:

(i) there exists at least one A C X so that A € A,

(ii) if A€ A, then A° € A and

(iii) if A,B € A, then AUB € A.

Proposition 1.9 Every algebra of subsets of X contains at least the sets ()
and X, it is closed under finite unions, under finite intersections and under
set-theoretic differences.

Proof: Let A be any algebra of subsets of X.

(a) Take any A € A and consider the sets A and A°. Then X = AUA° € A
and then ) = X¢ € A.

(b) Tt is trivial to prove by induction that for any n € N and any Ay,..., 4, € A
it follows A; U---U A, € A.

(c) By the result of (b), if Aq,..., A, € A, then N}_,; Ay = (U}_,A7)° € A.

(d) If A, B € A, using the result of (¢), we get that A\ B= AN B° € A.

Examples.

1. Every o-algebra is also an algebra.

2. If X is an infinite set then the collection {A C X | A is finite or A€ is finite}
is an algebra of subsets of X.

We have already dealt with the (n-dimensional) intervals in R™, which are
cartesian products of n bounded intervals in R. If we allow these intervals to
become unbounded, we get the so-called generalized intervals in R™, namely
all sets of the form I x --- x I,,, where each I is any, even unbounded, interval
in R. Again, we have the subcollections of all open or all closed or all open-
closed or all closed-open generalized intervals. For example, the typical open-
closed generalized interval in R™ is of the form P = (a1,b1] X -+ X (an, by),
where —oco < a; < b; < +oo for all j. The whole space R™ is an open-closed
generalized interval, as well as any of the half spaces {z = (21,...,2,)|2z; < b;}
and {z = (z1,...,2,) |a; <z;}. In fact, every open-closed generalized interval
is, obviously, the intersection of 2n such half-spaces.

Proposition 1.10 The collection A = {Py U---U Py |k € N, Py,..., P are
patrwise disjoint open-closed generalized intervals in R™} is an algebra of sub-
sets of R™.

In particular, the following are true:

(i) The intersection of two open-closed generalized intervals is an open-closed
generalized interval.

(ii) For all open-closed generalized intervals P, Py, ..., P, there are pairwise dis-
joint open-closed generalized intervals Py, ..., P, so that P\ (PLU---UP,,) =
PlU---UP,.
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(iii) For all open-closed generalized intervals Py, ..., Py, there are pairwise dis-
joint open-closed generalized intervals Py, ..., P} so that P,U---UP,, = P{ U
U P

Proof: (a) The intervals (a, b] and (a’, '] are not disjoint if and only if a” < ",
where o’ = max(a, a’) and b = min(b,?’). In case a” < b”, then (a,b]N(a’,b'] =
(a”,b"]. Now if P = (a1,b1] X -+ X (an,b,] and P’ = (a},b]] x --- x (al,,bl,],
then P and P’ are not disjoint if and only if for all 7 = 1,...,n we have that

(aj,b;] and (a}, b}] are not disjoint. Hence if P, P’ are not disjoint, then a7 < b/

for all j, where a} = max(ay;,a}) and b} = min(b;,b}), and then PN P" = P”,
where P” = (af,by] x -+ x (a2, b”]. This proves (i).

If A=UF | P, where the P, ..., Py are pairwise disjoint, and A’ = UézllDJ{7
where the P{,..., P/ are also pairwise disjoint, are two elements of A, then

ANA = Ulgigk,lgg‘gl P;N P}. The sets P; N P/ are pairwise disjoint and they
all are open-closed generalized intervals, as we have just seen.
Hence, A is closed under finite intersections.

(b) Consider the open-closed generalized interval P = (aj, b1] X - - - X (ap, by]. It
is easy to see that P° can be written as the union of 2n (some may be empty)
pairwise disjoint open-closed generalized intervals. To express this in a concise
way, for every I = (a,b] denote I!). = (—o0,a] and I") = (b,400] the left
and right compementary intervals of I in R (they may be empty). If we write
P =1 x---x I, then P¢is equal to

Il(l)xqu-xR U Il(T)xRxn-xR U
leIQ(l)xqu-xR U lelér)xRxn-xR U

I1><-~><In_2><I,(llll><R U I1><"'><In—2><If(Q1XR U
Lo Lo IO U e Iy x 10,

Hence, for every open-closed generalized interval P the complement P¢ is an
element of A.

Now, if A = UF_| P;, where the Py,..., P, are pairwise disjoint, is any ele-
ment of A, then A° = N¥_, P¢ is a finite intersection of elements (Pf’s) of A.
Because of the result of (a), A° € A and A is closed under complements.

(c)If A, A’ € A, then, because of the results of (a) and (b), AUA’ = (A°NAC)° €
A and A is closed under finite unions.
Therefore A is an algebra and (ii) and (iii) are immediate.

If {A,} is a sequence of subsets of a set X and A,, C A, 11 for all n, we say

that the sequence is increasing. In this case, if A = UT> A, we write

A, T A.

If A1 C A, for all n, we say that the sequence {A,} is decreasing and, if
also A = N7 A,, we write
A, | A
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Definition 1.5 Let X be a non-empty set and M a collection of subsets of X.
We call M a monotone class of subsets of X if it is closed under countable
increasing unions and closed under countable decreasing intersections. That is,
if A1, As,... € M and A, T A, then A € M and, if A1, As,... € M and
A, | A, then Ae M.

It is obvious that every o-algebra is a non-empty monotone class.

Proposition 1.11 The intersection of any monotone classes of subsets of the
same set X is a monotone class of subsets of X.

Proof: Let {M;};cr be any collection of monotone classes of subsets of X,
indexed by an arbitrary non-empty set I of indices, and consider the intersection
M = Nier M.

Let Ay, As,... € M with A, T A. Then A, € M, foralli € [ and alln € N
and, since all M;’s are monotone classes, we get that A € M; for all ¢ € I.
Therefore A € M.

The proof in the case of a countable decreasing intersection is identical.

Definition 1.6 Let X be a non-empty set and £ be an arbitrary collection of
subsets of X. Then the intersection of all monotone classes of subsets of X
which include £ is called the monotone class generated by £ and it is
denoted by M(E). Namely

M(E) = ﬂ{M | M is a monotone class of subsets of X and & C M}.

There is at least one monotone class including £ and this is P(X). Also note
that the term monotone class, used for M(£), is justified by Proposition 1.11.

Proposition 1.12 Let £ be any collection of subsets of the non-empty X. Then
M(E) is the smallest monotone class of subsets of X which includes £. Namely,
if M is any monotone class of subsets of X such that € C M, then M(E) C M.

Proof: If M is any monotone class of subsets of X such that £ C M, then M
is one of the monotone classes whose intersection is M(E). Thus, M(E) C M.

Theorem 1.1 Let X be a non-empty set and A an algebra of subsets of X.
Then M(A) = X(A).

Proof: ¥(A) is a o-algebra and, hence, a monotone class. Since A C X(A),
Proposition 1.12 implies M(A) C L(A).

Now it is enough to prove that M(A) is a o-algebra. Since A C M(A),
Proposition 1.4 will immediately imply that X(A4) C M(A) and this will con-
clude the proof.

(a) M(A) is non-empty because § € 4 C M(A).
(b) Fix any A € A and consider the collection M4 = {B C X | AUB € M(A)}.

It is very easy to show that M4 includes A and that it is a monotone class
of subsets of X. In fact, if B € A then AUB € A and thus B € M 4. Also, if
Bi,Bsy,... € M4 and B, T B, thenAUBl,AUBg,... € M(.A) and AUB, T
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AU B. Since M(A) is a monotone class, we find that AU B € M(A). Thus,
B € M4 and M 4 is closed under countable increasing unions. In a similar way
we can prove that M4 is closed under countable decreasing intersections and
we conclude that it is a monotone class.

Proposition 1.12 implies that M(A) C M 4. This means that:

i. AUB € M(A) for all A€ A and all B e M(A).

Now fix any B € M(A) and consider Mg ={AC X|AUB € M(A)}. As
before, M p is a monotone class of subsets of X and, by i., it includes A. Again,
Proposition 1.12 implies M(A) C Mg, which means:

ii. AUB e M(A) for all A€ M(A) and all B € M(A).

(c) We consider the collection M = {A C X |A° € M(A)}. As before, we
can show that M is a monotone class of subsets of X and that it includes A.
Therefore, M(A) € M, which means:

ili. A° € M(A) for all A € M(A).

It is implied by ii. and iii. that M(A) is closed under finite unions and
under complements.
(d) Now take A1, Ag,... € M(A) and define B,, = A;U---UA,, for all n. From
ii. we have that B,, € M(A) for all n and it is clear that B,, C B, for all n.
Since M(.A) is a monotone class, Uf> 4, = U2 B,, € M(A).

Hence, M(A) is a o-algebra.

1.5 Restriction of a o-algebra.

Proposition 1.13 Let X be a o-algebra of subsets of X and Y C X be non-
empty. If we denote
SIY ={ANnY |A e X},

then XY is a o-algebra of subsets of Y.

Proof: Since () € ¥, we have that ) =0 NY € XY

If Be XY, then B=ANY for some A € ¥. Since X \ A € 3, we get that
Y\B=(X\A)NY eX]Y.

If By, Bs,... € XY, then, for each k, By = A NY for some A; € ¥. Since
U5 Ak € B, we find that US> By, = (Uf24,) NY € Y.

Definition 1.7 Let ¥ be a o-algebra of subsets of X and let Y C X be non-
empty. The o-algebra XY, defined in Proposition 1.13, is called the restric-
tion of ¥ on Y.

In general, if £ is any collection of subsets of X and Y C X, we denote

ElY = {ANY|Ad €&}
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and call £]Y the restriction of £ on Y.

Theorem 1.2 Let £ be a collection of subsets of X and Y C X be non-empty.
Then
L(EY) =&)Y,

where X(E1Y) is the o-algebra of subsets of Y generated by 1Y .

Proof: (a) If B € £]Y, then B = ANY for some A € £ C ¥(&) and, thus,
B € 3(€)]Y. Hence, 1Y C £(€)]Y and, since, by Proposition 1.13, £(£)]Y is
a o-algebra of subsets of Y, Proposition 1.4 implies X(£1Y) C (&)Y

(b) Now, define the collection

S={ACX|ANY € 3(E]Y)}.

We have that ) € 3, because PNY =0 € X(E]Y).

If A€ ¥, then ANY € X(1]Y). Therefore, X\ A € X, because (X \4)NY =
Y\ (ANY) € (&]Y).

If Ay, Ag,... € X, then A NY, A, NY,... € ¥(£]Y). This implies that
(U4 NY = U (A NY) € B(E]Y) and, thus, US> Ay € 3.

We conclude that ¥ is a o-algebra of subsets of X.

If Ae &, then ANY € £]Y C X(€1Y) and, hence, A € 3. Therefore, € C ¥
and, by Proposition 1.4, ¥(£) C ¥. Now, for an arbitrary B € 3%(£)]Y, we have
that B = ANY for some A € ¥(£) C ¥ and, thus, B € ¥(€]Y). This implies
that 2(€)]Y C Z(£]Y).

If X is a topological space with the topology 7 and if Y C X, then, as is well-
known (and easy to prove), the collection 7|Y ={UNY |U € T} is a topology
of Y which is called the relative topology or the subspace topology of Y.

Theorem 1.3 Let X be a topological space and let the non-empty Y C X have
the subspace topology. Then
By = Bx Y.

Proof: If T is the topology of X, then 7Y is the subspace topology of Y.
Theorem 1.2 implies that By = 3(7Y) = X(7)]Y = Bx Y.

Thus, the Borel sets in the subset Y of X (with the subspace topology) are
Just the intersections with Y of the Borel sets in X.

Example.
It is clear from Propositions 1.7 and 1.8 that

These two equalities are also justified by Theorem 1.3, since the topology of
R coincides with its subspace topology as a subset of R and the topology of C
coincides with its subspace topology as a subset of C.
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1.6 Exercises.
1. Let X be a non-empty set and Ap, As,... C X. We define

limsup 4,, = N/ ( U;LOZ Aj), Eﬂlﬂf A, = U:jl) ( ﬂjzoz Aj).

n—-+4oo
Only in case liminf, ;. A, =limsup,_,, . A,, we define

lim A, =liminf A, = limsup A4,,.
n—-+o0o n—-+oo n—-+4o0

Prove the following.

(i) limsup,, o An = {2z € X |2 € A, for infinitely many values of n}.
(ii) iminf,, o A, = {z € X |z € A, for all large enough n}.

(iii) (liminf, 4o Ap)¢ = limsup,_, A5 and (limsup, . 4,)¢ =
liminf,, o0 AS.

(iv) liminf, 4 A, Climsup,_, . A,.

(v) If A, C A,y for all n, then lim,, ;oo Ay = U:i’iAn.

(vi) If A1 C A, for all n, then lim, 4o 4, = ﬁ;ti’jAn.

(vii) Find an example where liminf, . A, # limsup,,_, . A,.

(viii) If A,, € B, for all n, then limsup,,_,, A, C limsup,,_,, B, and
liminf, . A, Climinf, o By.

(ix) If A, = B, UC, for all n, then limsup,,_,, ., A, C limsup,,_,,,, B,U
limsup,, ., Cp, liminf, .| B, Uliminf, . C, C liminf, .| A,.

2. Let A be an algebra of subsets of X. Prove that A is a o-algebra if and
only if it is closed under increasing unions.

3. The inclusion-ezxclusion formula.

Let (X, ¥, ) be a measure space. Prove that for all n and Ay,..., 4, € &

Ui A) + > S u(An NN Ay

keven1<igi<---<ig<n

= Z Z M(Ailm"'mAik)'

& odd 1Si1<<ir<n

4. Let X be non-empty. In the next three cases find (&) and M(E).
(i) E=0.
(i) Fix EC X andlet E={F|ECFC X}.
(iii) Let £ = {F | F' is a two-point-subset of X}.

5. Let &1, & be two collections of subsets of the non-empty X. If & C & C
(&), prove that (&) = X(&).

6. Let Y be a non-empty subset of X.
(i) If A is an algebra of subsets of X, prove that A]Y is an algebra of
subsets of Y.
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10.

11.

12.

(ii) If M is a monotone class of subsets of X, prove that MY is a mono-
tone class of subsets of Y.
(iii) If 7 is a topology of X, prove that 7Y is a topology of Y.

(i) Let ¥ be a o-algebra of subsets of X and let Y C X be non-empty. If
Y € ¥, prove that Z]Y = {ACY|A e X}.

(ii) Let X be a topological space and Y be a non-empty Borel set in X.
Prove that By = {ACY | A € Bx}.

Push-forward of a o-algebra.

Let ¥ be a o-algebra of subsets of X and let f : X — Y. Then the
collection

{BCY|f'(B)ex}

is called the push-forward of ¥ by f on Y.
(i) Prove that the collection {B C Y |f~Y(B) € ¥} is a o-algebra of
subsets of Y.

Consider also a o-algebra ¥’ of subsets of Y and a collection £ of subsets
of Y so that (&) = ¥".

(ii) Prove that, if f~1(B) € ¥ for all B € &, then f~!(B) € X for all
BeX.

(iii) If X,Y are two topological spaces and f : X — Y is continuous, prove
that f~!(B) is a Borel set in X for every Borel set B in Y.

. The pull-back of a o-algebra.

Let ¥ be a o-algebra of subsets of Y and let f : X — Y. Then the
collection

{f71(B)|Bex}
is called the pull-back of ¥’ by f on X.
Prove that {f~*(B)| B € ¥'} is a o-algebra of subsets of X.
(i) Prove that Brn is generated by the collection of all half-spaces in R™
of the form {x = (z1,...,2,) |a; < x;}, where j =1,...,n and a; € R.

(ii) Prove that Br~ is generated by the collection of all open balls B(z;r)
or of all closed balls B(x;r), where z € R™ and r € R..

(i) Prove that By is generated by the collection of all (a,+oc], where
a €R.
(ii) Prove that Bg is generated by the collection of all open discs B(z;r)

or of all closed discs B(z;7), where z € C and r € R..

Let X be a metric space with metric d. Prove that every closed F' C X is a
Gs-set by considering the sets U, = {z € X |d(z,y) < 1 for some y € F}.
Prove, also, that every open U C X is an F,-set.
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13.

14.
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(i) Suppose that f : R™ — R. Prove that {x € R™| f is continuous at z}
is a Gg-set in R™.

(ii) Suppose that f : R™ — R is continuous in R" for every k. Prove that
{z € R"|{fr(x)} converges} is an F,s-set, i.e. a countable intersection
of F,-sets.

Let £ be an arbitrary collection of subsets of the non-empty X. Prove
that for every A € ¥(&) there is some countable subcollection D C € so
that A € X(D).



Chapter 2

Measures

2.1 General measures.

Definition 2.1 Let (X,X) be a measurable space. A function p: % — [0, +00]
is called a measure on (X,X) or, simply, a measure on ¥ if
(i) p(0) =
(i1) ,u(Ui ) S w(A,) for all sequences {A,} of pairwise disjoint sets
which are contamed n X.

The triple (X, X, 1) of a non-empty set X, a o-algebra of subsets of X and
a measure i on X is called a measure space.

Note that the values of a measure are non-negative real numbers or 4oc.

Property (ii) of a measure is called o-additivity and sometimes a mea-
sure is also called o-additive measure to distinguish from a so-called finitely
additive measure p which is defined to satisfy u(0) = 0 and u(UN_,A,) =
25:1 w(Ay) for all N € N and all pairwise disjoint A;,..., Ay € X.

Proposition 2.1 Every measure is finitely additive.

Proof: Let u be a measure on the o-algebra . If A;,..., Ay € X are pair-
wise disjoint, we consider A, = @) for all n > N and we get p(UY_ A,) =

p(UESAL) = S50 u(An) = S0 u(Ay).

Examples.
1. The simplest measure is the zero measure which is denoted o and is defined
by o(A) = 0 for every A € X.
2. Let X be an uncountable set and consider ¥ = {A C X | A is countable or A°
is countable}. We define p(A) = 0 if A is countable and p(A) = 1 if A° is count-
able.

Then it is clear that p(@) = 0 and let Aj, As,... € ¥ be pairwise dis-
joint. If all of them are countable, then U2 A, is also countable and we get
(U5 A,) = 0 = 327 u(A,). Observe that if one of the A,’s, say A, is

21
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uncountable, then for all n # ng we have A,, C AfLO which is countable. There-
fore p(An,) = 1 and M(A ) = 0 for all n # ng. Since (U}2]A,)(C AS ) is
countable, we get u(UFTA4,) =1 = 37> u(A,).

Theorem 2.1 Let (X, Z,u) be a measure space.

(i) (Monotonicity) If A,B € ¥ and A C B, then u(A) < u(B).

(is) If A,BeX, AC B and u(A) < +oo, then u(B\ A) = u(B ) u(A).

(i4i) (o-subadditivity) If Ay, Ag,... € X, then (U2 A,) < Zn 1 M(Ar).

(iv) (Continuity from below) If Ay, A, ... € ¥ and A, T A, then u(A,) T p(A).
(v) (Continuity from above) If Ay, Aa,... € X, p(A41) < 400 and A, | A, then

w(An) | p(A).

Proof: (i) We write B = AU (B \ A). By finite additivity of u, p(B) =
u(A) + u(B\ A) > ().

(ii) From both sides of u(B) = p(A) + u(B \ A) we subtract p(A).

(iii) Using Proposition 1.2 we find By, Ba, ... € ¥ which are pairwise disjoint and
satisfy B, C A, for all n and U/ B, = U/ A,,. By o-additivity and mono-
tonicity of 1 we get ju(UF An) = p(UF Ba) = S175 (Ba) < 55775 il An).
(iv) We write A = Ay U Ugj(AkH \ Ag), where all sets whose union is taken in
the right side are pairwise disjoint. Applying o-additivity (and finite additivity),
u(A) = u(A) + 305 AlAkr \ Ag) =l poc[p (A1) + 30500 i \ Ar)] =
limy, 4o (A1 U ULy (Ak-',-l \ Ag)) = limy— oo u(Ay).

(v) We observe that A; \ A, T A1 \ A and continuity from below implies
p(Ai\ Ay) T (A1 \ A). Now, u(Aq) < +oo implies p(A4,) < +oo for all n
and pu(A) < 4oo. Applying (ii), we get p(A1) — u(An) T p(A41) — p(A) and,
since p1(A1) < +oo, we find p(A,) | u(A).

Definition 2.2 Let (X,X, u) be a measure space.

(i) p is called finite if (X)) < +o00.

(i4) p is called o-finite if there exist X1, Xo,... € ¥ so that X = U X,, and
w(Xn) < +oo for alln € N.

(i) 1 is called semifinite if for every E € ¥ with u(E) = +oo there is an
FeX sothat FCE and 0 < pu(F) < +o0.

(iv) A set E € X is called of finite (u-)measure if u(E) < +o0.

(v) A set E € 3 is called of o-finite (u-)measure if there exist 1, Es,... € 2
so that E C U E,, and u(E,) < +oo for all n.

Some observations related to the last definition are immediate.

1. If p is finite then all sets in ¥ are of finite p-measure. More generally, if
E € ¥ is of finite p-measure, then all subsets of it in ¥ are of finite p-measure.
2. If p is o-finite then all sets in 3 are of o-finite y-measure. More generally,
if B € ¥ is of o-finite p-measure, then all subsets of it in ¥ are of o-finite
p-measure.

3. The collection of sets of finite y-measure is closed under finite unions.

4. The collection of sets of o-finite p-measure is closed under countable unions.
5. If p is o-finite, applying Proposition 1.2, we see that there exist pairwise
disjoint X1, Xs,... € ¥ so that X = U+°°X and u(X,) < +oo for all n.
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Similarly, by taking successive unions, we see that there exist X7, Xo,... € X so
that X, T X and p(X,) < +oo for all n. We shall use these two observations
freely whenever o-finiteness appears in the sequel.

6. If p is finite, then it is also o-finite. The next result is not so obvious.

Proposition 2.2 Let (X,X, u) be a measure space. If u is o-finite, then it is
semifinite.

Proof: Take X1, Xs,... € ¥ so that X,, T X and pu(X,) < +oo for all n. Let
E € ¥ have u(E) = +o00. From ENX,, T E and continuity of u from below, we
get u(E N X,) T 4+o00. Therefore, u(E N X,,) > 0 for some ng and we observe
that u(E N X)) < p(Xy,) < +o00.

Definition 2.3 Let (X,%, u) be a measure space. E € 3 is called (u-)null if
u(E) = 0.

The following is trivial but basic.

Theorem 2.2 Let (X,X, 1) be a measure space.
(i) If E € ¥ is p-null, then every subset of it in ¥ is also p-null.
(ii) If Ev, Ea,... € Y are all p-null, then their union U E,, is also pu-null.

Proof: The proof is based on the monotonicity and the o-subadditivity of pu.

2.2 Point-mass distributions.

Before introducing a particular class of measures we shall define sums of non-
negative terms over general sets of indices. We shall follow the standard practice
of using both notations a(i) and a; for the values of a function a on a set I of
indices.

Definition 2.4 Let I be a non-empty set of indices and a : I — [0,4+00]. We
define the sum of the values of a by

Z a; = sup { Z a; | F non-empty finite subset of I}.

i€l ieF
If I =0, we define Y ;. a; =0.

Of course, if F' is a non-empty finite set, then ), a; is just equal to the sum

Zszl a;,, where F = {a;,,...,a;,} is an arbitrary enumeration of F.
We first make sure that this definition extends a simpler situation.

Proposition 2.3 If I is countable and I = {iy,is,...} is an arbitrary enume-
ration of it, then ), a; = S as, foralla: I — [0,+00].

Proof: For arbitrary N we consider the finite subset F' = {iy,...,iny} of I.
Then, by the definition of ), _; a;, we have Zszl Uiy = Y iep @i < D icr i
Since N is arbitrary, we find 32, a;, < Y icr i
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Now for an arbitrary non-empty finite F© C I we consider the indices of
the elements of F' provided by the enumeration I = {ij,is,...} and take the
maximal, say N, of them. This means that F C {iy,i2,...,ixy}. Therefore
Yier @i < Zszl ai, <3755 a;, and, since F is arbitrary, by the definition of
> icr @i, we find that >, a; < Sy,

Proposition 2.4 Let a : I — [0,+o00]. If Y, ;a; < 400, then a; < 400 for
all i and the set {i € I'|a; > 0} is countable.

Proof: Let ) ;. a; < 4o00. Tt is clear that a; < +oo for all i (take F' = {i}) and,
for arbitrary n, consider the set I, = {i € I|a; > 1}. If F is an arbitrary finite
subset of I,, then L card(F) < 3, pa; < 3 ,c;a;. Therefore, the cardinality
of the arbitrary finite subset of I,, is not larger than the number n ), _; a; and,
hence, the set I,, is finite. But then, {i € I'|a; > 0} = U1, is countable.

Proposition 2.5 (i) If a,b : I — [0,400] and a; < b; for all i € I, then
Dier @i < ) ieq biv

(i) If a: I — [0,+o00] and J C I, then Y, a; <> o a;.

Proof: (i) For arbitrary finite F* C I we have ), cpa; < Y, cpbi < D ;b
Taking supremum over the finite subsets of I, we find ), ;a; <., b;.

(ii) For arbitrary finite " C J we have that /' C I and hence ) ;. pa; < > a;.
Taking supremum over the finite subsets of J, we get > .., a; <> ..} a;.

Proposition 2.6 Let [ = Ugci Ji, where K is a non-empty set of indices and
the Ji’s are non-empty and pairwise disjoint. Then for every a : I — [0, +0o0]

we have Y i ai = Y pere (Yicy, @i)-

Proof: Take an arbitrary finite F' C I and consider the finite sets Fy, = F N Jk.
Observe that the set L = {k € K|F; # 0} is a finite subset of K. Then,
using trivial properties of sums over finite sets of indices, we find ), pa; =
> kel (ZieFk ai). The definitions imply that ), pa; <>, cp (ZieJk a,-) <
Y okek (ZieJk a;). Taking supremum over the finite subsets F' of I we find
Dier i S Dk (ZieJk a;).

Now take an arbitrary finite L C K and arbitrary finite Fj, C Ji for each
k€ L. Then ), (ZleFk ai) is, clearly, a sum (without repetitions) over
the finite subset Upep Fy of I. Hence ), (ZieFk ai) < > ier @i Taking
supremum over the finite subsets Fj of Ji for each k € L, one at a time, we
get that >, c; (Y, @) < Xies ai- Finally, taking supremum over the finite
subsets L of K, we find ), (Ziel,k a;) <> ;c; @i and conclude the proof.

After this short investigation of the general summation notion we define a
class of measures.

Proposition 2.7 Let X be non-empty and consider a : X — [0,4+00]. We
define i : P(X) — [0, +00] by

pwE)=> a,, ECX.
zeE
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Then p is a measure on (X, P(X)).

Proof: Tt is obvious that pu(0) = > g az = 0.
If Ey, By, ... are pairwise disjoint and E = U} > E,,, we apply Propositions

2.3 and 2.6 to find u(E) = ¥ cpae = Y en (Xoen, t2) = Yonen 4(En) =
30 i(E).

Definition 2.5 The measure defined in the statement of the previous proposi-
tion is called the point-mass distribution on X induced by the function
a. The value a, is called the point-mass at x.

Examples.
1. Consider the function which puts point-mass a, = 1 at every z € X. It is
then obvious that the induced point-mass distribution is

4(B) = card(E), if E is a finite C X,
| oo, if £ is an infinite C X.

This is called the counting measure on X.
2. Take a particular o € X and the function which puts point-mass a, = 1 at
zo and point-mass a, = 0 at all other points of X. Then the induced point-mass

distribution is
_J1, ifzpe ECX,
5I0(E)_{07 1f]}0¢E§X

This is called the Dirac measure at xg or the Dirac mass at xg.

Of course, it is very easy to show directly, without using Proposition 2.7,
that these two examples, f and d,,, constitute measures.

2.3 Complete measures.

Theorem 2.2(i) says that a subset of a p-null set is also p-null, provided that
the subset is contained in the o-algebra on which the measure is defined.

Definition 2.6 Let (X,X, 1) be a measure space. Suppose that for every E € ¥
with w(E) =0 and every F C E it is implied that F € ¥ (and hence pu(F) =0,
also). Then p is called complete and (X, X, 1) is a complete measure space.

Thus, a measure p is complete if the o-algebra on which it is defined contains
all subsets of p-null sets.

If (X,X1,p1) and (X, X9, uo) are two measure spaces on the same set X,
we say that (X, Yo, us) is an extension of (X, ¥, uq) if ¥ C ¥y and p1(E) =
po(E) for all E € X4

Theorem 2.3 Let (X, 3, 1) be a measure space. Then there is a unique small-
est complete extension (X, %, 1) of (X, X, u). Namely, there is a unique measure
space (X,%,70) so that

(i) (X,3, 1) is an extension of (X, %, i),
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(i1) (X,i,@ is complete,

(iii) if (X, 5, 72) is another complete extension of (X,%, ), then it is an exten-
sion also of (X,X, ).

Proof: We shall first construct (X, %, 7). We define
Y={AUF|A€¥ and F C E for some E € ¥ with u(E) = 0}.

(a) We prove that X is a o-algebra. We write ) = QU(), where the first () belongs
to X and the second {) is a subset of () € ¥ with p(()) = 0. Therefore §) € 3.

Let B€ X. Then B= AUF for A € ¥ and F C of some E € ¥ with
w(E) = 0. Write B¢ = A; U F1, where A; = (AUE)®and F} = E\ (AUF).
Then A; € ¥ and F; C E. Hence B® € X.

Let By, Bs,... € X. Then for every n, B,, = A, UF, for A, € ¥ and F,, C
of some F,, € ¥ with u(E,) = 0. Now U/ B,, = (U2 A4,) U (U F,), where
UrNA, € ¥ and UTSFE, C UfNE, € ¥ with u(U/>FE,) = 0. Therefore
Ut> B, €%

(b) We now construct . For every B € X we write B = AU F for A € ¥ and
F C of some E € ¥ with p(E) = 0 and define

7i(B) = n(A).

To prove that fi(B) is well defined we consider that we may also have B =
A'UF' for A’ € ¥ and F’ C of some E’' € ¥ with pu(E’) = 0 and we must prove
that u(A) = u(A’). Since A C B C A’ UE’, we have u(A) < p(A') + u(E') =
w(A”") and, symmetrically, u(A") < p(A).

(¢) To prove that i is a measure on (X,¥) let ) = QU as in (a) and get 1(0) =
(D) = 0. Let also By, Ba, ... € ¥ be pairwise disjoint. Then B,, = A,, U F}, for
A, €X¥ and F, C E,, € ¥ with u(E,) = 0. Observe that the A,,’s are pairwise
disjoint. Then U B, = (U} A,) U (UFNF,) and U F, C UfNE, € %
with 4(UFS By = 0. Therelore (UISBa) = (U3 An) = 3003 A(An) =
3023 A(Bn)- _

(d) We now prove that 7 is complete. Let B € ¥ with f(B) = 0 and let
B’ C B. Write B=AUF for A€ Y and F C E € ¥ with u(F) = 0 and
observe that (A) = (B) = 0. Then write B’ = A’UF’, where A’ = () € ¥ and
F' =B C F' where ' = AUE € ¥ with p(E£’") < u(A4) + u(E) = 0. Hence
B' e X

(e) To prove that (X, 3, 7) is an extension of (X, X, u) we take any A € ¥ and
write A = AU, where ) C () € X with () = 0. This implies that A € 3 and
(4) = u(A). -

(f) Now suppose that (X, X, i) is another complete extension of (X, Y, i1). Take
any B € ¥ and thus B= AUF for A€ ¥ and F C E € ¥ with pu(E) = 0.

But then A, FE € T and (E) = p(E) = 0. Since 1z is complete, we get that also
FeS and hence B=AUF € 3.

Moreover, i(A) < (B) < n(A) + (F) = n(A), which implies @(B) =
i(A) = ju(A) = i(B).
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(g) It only remains to prove the uniqueness of a smallest complete extension of
(X,3, ). This is obvious, since two smallest complete extensions of (X, X, i)
must both be extensions of each other and, hence, identical.

Definition 2.7 If (X, X, u) is a measure space, then its smallest complete ex-
tension is called the completion of (X,X, ).

2.4 Restriction of a measure.

Proposition 2.8 Let (X,X, ) be a measure space and let Y € X. If we define
py =3 — [0,400] by

py(A) =p(ANY),  AeX,

then uy is a measure on (X, X) with the properties that py (A) = p(A) for every
AeX, ACY, and that py (A) =0 for every A€ X, ANY =10.

Proof: We have py (0) = p(@NY) = u(d) = 0.

If Ay, As,... € ¥ are pairwise disjoint, uy(U;':OfAj) = u((U;':“fAj) ny) =
p(U2S (A5 0Y)) = 3050 (A nY) = 305 v (4y).

Therefore, py is a measure on (X,3) and its two properties are trivial to
prove.

Definition 2.8 Let (X,X, 1) be a measure space and let Y € .. The measure
wy on (X,X) of Proposition 2.8 is called the restriction of n on'Y.

There is a second kind of restriction of a measure. To define it we recall
that the restriction X]Y of the o-algebra 3 of subsets of X on the non-empty
Y C X is defined as XY = {ANY |4 e X}

Lemma 2.1 Let ¥ be a o-algebra of subsets of X and let Y € ¥ be non-empty.
Then

DY ={Aex|ACY).

Proof: Weset ¥ = {A e S|ACY) IfBex|Y,then B=ANY for
some A € ¥. Since Y € X, we find that B € ¥ and B = ANY C Y and,
hence, B € ¥’. Conversely, if B € ¥/, then B € ¥ and B C Y and, if we set
A=BeX wehave B=ANY € X]Y.

Proposition 2.9 Let (X, 3, u) be a measure space and let Y € ¥ be non-empty.
We consider 1Y = {A € | A CY} and define p]Y : 1Y — [0, +00] by

(1IY)(A) = p(4), AeXly.
Then p]Y is a measure on (Y, X]Y).

Proof: Obvious.
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Definition 2.9 Let (X,X, 1) be a measure space and let Y € ¥ be non-empty.
The measure p|Y on (Y, X]Y) of Proposition 2.9 is called the restriction of
pon XY

Informally speaking, we may describe the relation between the two restric-
tions of p as follows. The restriction py assigns value 0 to all sets in ¥ which
are included in the complement of ¥ while the restriction ]Y simply ignores
all those sets. Both restrictions py and p]Y assign the same values (the same
to the values that p assigns) to all sets in ¥ which are included in Y.

2.5 Uniqueness of measures.

The next result is very useful when we want to prove that two measures are
equal on a g-algebra X. It says that it is enough to prove that they are equal on
an algebra which generates X, provided that an extra assumption of o-finiteness
of the two measures on the algebra is satisfied.

Theorem 2.4 Let A be an algebra of subsets of the non-empty set X and let
W, v be two measures on (X,X(A)). Suppose there exist A1, Ag,... € A with
Ap 1T X and p(Ag), v(Ag) < oo for all k.

If p,v are equal on A, then they are equal also on L(A).

Proof: (a) Suppose that u(X),v(X) < +o0.

We define the collection M = {E € X(A)|u(E) = v(E)}. It is easy to
see that M is a monotone class. Indeed, let Eq, FEs,... € M with E, T E.
By continuity of measures from below, we get p(FE) = lim, 400 (En) =
lim, 400 ¥(Ep) = v(E) and thus E € M. We do exactly the same when
E, | E, using the continuity of measures from above and the extra assumption
w(X),v(X) < 4o0.

Since M is a monotone class including A, Proposition 1.12 implies that
M(A) € M. Now Theorem 1.1 implies that 3(A) C M and thus u(E) = v(E)
for all E € 3(A).

(b) The general case.
For each k, consider the restrictions of u, v on Ay. Namely,

1ay(B) = f(EN A, va (E) = v(ENAy)

for all E € X(A). All puga, and va, are finite measures on (X,X), because
pa, (X) = p(Ar) < +o0o and va, (X) = v(Ag) < +oo. We clearly have that
ta,,va, are equal on A and, by the result of (a), they are equal also on X(.A).
For every E € ¥(A) we can write, using the £ N A T E and the continuity
of measures from below, p(E) = limy,—, oo p(E N Ag) = limy, 400 1, (E) =
limy,— oo Va4, (F) = limy, 400 ¥(EN Ag) = v(E).
Thus, u, v are equal on X(A).
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2.6 Exercises.

1.

Let (X, 3, i) be a measure space and Ay, Ay, ... € ¥. Prove u(Uf254,,) =
limy, -, oo (U= Ak)-

. Let (X, X, u) be a measure space and Y € . Prove that py is the only

measure on (X, ) with the properties:
(i) py (E) = u(E) for all E € ¥ with ECY,
(ii) uy (E) =0 for all EF € ¥ with E CY*°.

. Positive linear combinations of measures.

Let pi, p1 12 be measures on the measurable space (X, X) and x € [0, +00).
(i) Prove that skp : ¥ — [0, +00], which is defined by

(kp)(E) = & - u(E)

for all E € X, is a measure on (X,Y). The measure ku is called the
product of i by k.
(ii) Prove that p; + po : 3 — [0, +00], which is defined by

(11 + p2)(E) = pn (E) + pa(E)
for all E € 3, is a measure on (X, X). The measure p; + p2 is called the
sum of p; and ps.
Thus we define (positive) linear combinations xip; + - + Kpfn.
Let X be non-empty and consider a finite A C X. If a : X — [0,+00]
satisfies a, = 0 for all ¢ A, prove that the point-mass distribution u

on X induced by a can be written as a positive linear combination (see
Exercise 2.6.3) of Dirac measures:

= K10z + -+ Kilqg, -

. Let X be infinite and define for all £ C X

(E) = 0, if F is finite,
&)= +o00, if E is infinite.

Prove that p is a finitely additive measure on (X,P(X)) which is not a
measure.

. Let (X, X, 1) be a measure space and E € ¥ be of o-finite measure. If

{D;}ier is a collection of pairwise disjoint sets in X, prove that the set
{i e I|u(E N D;) > 0} is countable.

Let X be uncountable and define for all £ C X

(E) = 0, if E is countable,
ME)= 400, if E is uncountable.

Prove that p is a measure on (X, P(X)) which is not semifinite.
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Let (X,3,u) be a complete measure space. If A € ¥, B C X and
u(AAB) = 0, prove that B € ¥ and u(B) = p(A).

Let p be a finitely additive measure on the measurable space (X, X).

(i) Prove that p is a measure if and only if it is continuous from below.
(ii) If p(X) < +o0, prove that p is a measure if and only if it is continuous
from above.

Let (X, X, 1) be a measure space and Ay, Ag,... € X. Prove that
(1) p(liminf,, 4o Ay) < liminf, 4o p(Ay),
(ii) lim sup,, 4 o u(A ) < p(limsup, o An), if #(Up234,) < +oo,

(iii) p(limsup,,_, 4o An) = 0, if 7% u(A,) < +o0.
Increasing limits of measures are measures.
Let {u, } be a sequence of measures on (X, ) which is increasing. Namely,

tn(E) < piny1(E) for all E € 3 and all n. We define

W(E) = lim_ i, (E)

n—-+o0o
for all E € 3. Prove that p is a measure on (X, X).

Let I be a set of indices and a,b: I — [0, +0].

(i) Prove that ), ;a; = 0 if and only if a; = 0 for all i € [.
(ii) If J ={i € I|a; >0}, prove that ) ., a; = .. ;a;
(iii) Prove that, for all x € [0, +0o0],

E Kai:/ﬁé Q; .
icl i€l

(iv) Prove that

Zal—i—b Zal—FZb

el el el

Tonelli’s Theorem for sums.

Let I, J be two sets of indices and a : I x J — [0, +o0]. Using Proposition
2.6, prove that

DD ag)= > a=> (D aiy).

iel  jeJ () EIXT jeJ el

Recognize as a special case the

dai+b) =Y ai+> b

iel el i€l

for every a,b: I — [0, +o0].
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14.

15.

16.

17.

Let X be non-empty and consider the point-mass distribution p defined
by the function a : X — [0, +00]. Prove that

(i) p is semifinite if and only if a, < +oo for every x € X,

(ii) p is o-finite if and only if a, < +oo for every z € X and the set
{z € X |a, > 0} is countable.

Let (X, X, 1) be a measure space.

(i) If A,B € ¥ and u(AAB) =0, prove that u(A) = u(B).

(ii) We define A ~ B if A,B € ¥ and u(AAB) = 0. Prove that ~ is an
equivalence relation on 3.

We assume that u(X) < +oo and define

d(A, B) = n(AAB)

for all A,B € X.

(iii) Prove that d is a pseudometric on . This means: 0 < d(4, B) < +oo0,
d(A,B) =d(B,A) and d(A,C) < d(A,B) +d(B,C) for all A,B,C € %.
(iv) On the set ¥/ ~ of all equivalence classes we define

d([A], [B]) = d(A, B) = n(AAB)

for all [A], [B] € ¥/ ~. Prove that d([A], [B]) is well-defined and that d is
a metric on 3/ ~.

Let p be a semifinite measure on the measurable space (X, X). Prove that
for every E € ¥ with p(E) = 400 and every M > 0 there is an F' € X so
that FF C F and M < p(F) < 4o0.

The saturation of a measure space.

Let (X, 3, 1) be a measure space. We call the set E C X locally mea-
surable if ENA € ¥ for all A € X with p(A) < +oo. We define

S = {E C X | E is locally measurable}.

(i) Prove that © C ¥ and that 3 is a o-algebra. If ¥ = 3, then (X, 3, 1)
is called saturated.
(ii) If p is o-finite, prove that (X, X, p) is saturated.

We define (B)
o (wE), fEES,
AE) = {+oo, if £ e\ 5.
(iii) Prove that fi is a measure on (X,Y), and hence (X, ¥, [i) is an exten-
sion of (X, %, u).
(iv) If (X, X, u) is complete, prove that (X, X, i) is also complete.
(v) Prove that (X, X, ) is a saturated measure space.
(

X, 3, ) is called the saturation of (X, ¥, ).
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The direct sum of measure spaces.

Let {(X;, X, ;) }ier be a collection of measure spaces, where the X;’s are
pairwise disjoint. We define

X = Uier X;, E:{E§X|EﬂXleElforallz€I}

and

wE)=> " w(ENX;)
iel

for all £ € X.
(i) Prove that (X, ¥, u) is a measure space. It is called the direct sum
of {(Xi, %, pi) bier and it is denoted P, (Xy, X4, pq).-
(ii) Prove that u is o-finite if and only if the set J = {i € I'|u; # o} is
countable and p; is o-finite for all ¢ € J.
Characterisation of point-mass distributions.

Let X # (). Prove that every measure pu on (X, P(X)) is a point-mass
distribution.
The push-forward of a measure.

Let (X,3, u) be a measure space and f : X — Y. We consider the o-
algebra X' = {B C Y | f~1(B) € £}, the push-forward of ¥ by f on YV
(see Exercise 1.6.7). We define

W(B)=p(f~(B), Bex.

Prove that g/ is a measure on (Y,¥’). It is called the push-forward of
uwby fonY.
The pull-back of a measure.

Let (Y,Y, 1) be a measure space and f : X — Y be one-to-one and onto
Y. We consider the o-algebra ¥ = {f~1(B)| B € X'}, the pull-back of ¥’
by f on X (see Exercise 1.6.8). We define

WA = 1(F(4), Aex.

Prove that p is a measure on (X, X). It is called the pull-back of 1/ by
f on X.
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Outer measures

3.1 Outer measures.

Definition 3.1 Let X be a non-empty set. A function p* : P(X) — [0, +00] is
called outer measure on X if
(i) (@) =0,
(i) p*(A) < p*(B) if ACBC X,
(iii) p* (U525 An) < SO0 p*(Ay) for all sequences {A,} of subsets of X.
Thus, an outer measure on X is defined for all subsets of X, it is monotone and
o-subadditive.

We shall see now how a measure is constructed from an outer measure.

Definition 3.2 Let u* be an outer measure on the non-empty set X. We say
that the set A C X is u*-measurable if

W (BN A) + 1 (E N A%) = " (E)

forall EC X.
We denote X+ the collection of all p*-measurable subsets of X.

Thus, a set is p*-measurable if and only if it decomposes every subset of X into
two disjoint pieces whose outer measures add to give the outer measure of the
subset.

Observe that £ = (ENA)U(ENA)UPUPU- - - and by the o-subadditivity
of p* we have p*(E) < p*(ENA)+ p*(ENA°) +0+4+0+---. Therefore, in
order to check the validity of the equality in the definition, it is enough to check
the inequality p*(ENA) + p*(E N A°) < p*(F). Furthermore, it is enough to
check this last inequality in the case p*(E) < +o0.

Theorem 3.1 (Caratheodory) If u* is an outer measure on X, then the collec-
tion X,- of all pu*-measurable subsets of X is a o-algebra. If we denote 1 the
restriction of p* on X, then (X,X,-, 1) is a complete measure space.

33
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Proof: (a) p*(ENQ) + p*(EN0°) = p*(0) + p*(E) = p*(E) and § € X,-.

If A € ¥,~, then p* (ENA®)+p*(EN(A°)°) = p*(ENA)+p* (ENA°) = u*(E)
for all £ C X. This says that A° € ¥, and X~ is closed under complements.
(b) Let now A, B € ¥,,- and take an arbitrary £ C X. To check AUB € ¥,-
write p*(EN(AUB))+p*(EN(AUB)¢) = p*(EN(AUB))+p*(EN(A°N B9))
and use the subadditivity of p* for the first term to get < p*(E N (AN B9)) +
p(EN(BNAS))+u*(EN(ANB))+u*(EN(A°N B°)). Now combine the first
and third term and also the second and fourth term with the p*-measurability
of Btoget = p*(ENA)+p*(ENA®), which is = p*(FE) by the p*-measurability
of A.

This proves that AU B € X, and by induction we get that X, is closed

under finite unions. Since it is closed under complements, it is an algebra of
subsets of X and, hence, it is also closed under finite intersections and under
set-theoretic differences.
(c) Let A, B € ¥,,» with ANB = ) and get for all E C X that p*(EN(AUB)) =
p((EN(AUB)NA) +p*([EN(AUB)NA°) =p*(ENA)+ p*(ENB). By
an obvious induction we find that if Aq,..., Ay € X+ are pairwise disjoint and
E C X is arbitrary then p*(EN(A1U---UAN)) = p*(ENA)+- - -+p*(ENAy).
If now Ay, Ag,... € X~ are pairwise disjoint and £ C X is arbitrary, then, for
all N, " (ENAL)+- - +p* (BNAy) = p* (EN(A1U- - -UA)) < p*(BN(UF2 An))
by the monotonicity of u*. Hence %7 p*(FNA,) < p*(EN(U25A,)). Since
the opposite inequality is immediate after the o-subadditivity of u*, we conclude
the basic equality

+oo
> WH(ENA) =p (BN (U5 A,))
n=1
for all pairwise disjoint A1, As,... € ¥, and all £ C X.
(d) If Ay, As,... € £+ are pairwise disjoint and £ C X is arbitrary, then, by
the result of (b), UY_, A,, € £, for all N. Hence pu*(E) = p*(EN(UY_,A,)) +
p*(E N (UN_1A,)°) > ny:l p(ENA) + p*(EN (U2 AL)¢), where we used
the basic equality for the first term and the monotonicity of p* for the second
term. Since N is arbitrary, p*(E) > S5 u*(ENA,) + p*(EN(UFSA,)°) =
(BN (U A) + p* (BN (U2 A,)°) by the basic equality.
This means that U2 A,, € 3+
If Ay, Ay, ... € ¥~ are not necessarily pairwise disjoint, we write B; = A
and B, = 4, \ (A U---UA,_1) for all n > 2. Then, by the result of (b),
all B,’s belong to X, and they are pairwise disjoint. Therefore, by the last
paragraph, UT>} A, = U2 B,, € ¥ ,,-. We conclude that ¥, is a o-algebra.
(e) We now define p : ¥+ — [0,4+00] as the restriction of p*, namely pu(A) =
p(A) for all A € 3«
Using F = X in the basic equality, we get that for all pairwise disjoint
A17A27... S ZM*’

+oo +oo
D n(An) = pt(An) = p (U2 AR) = n(Uf25Ay).
n=1

n=1
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Since p(0) = p*(0) = 0 we see that (X,X,-, 1) is a measure space.
(f) Let A € ¥+ with u(A) =0 and B C A. Then p*(B) < p*(A) = u(4) =0
and for all E C X we get u*(E N B) + p*(ENB°) < p*(B) + p*(E) = p*(E).
Hence B € X~ and p is complete.

As a by-product of the proof of Caratheodory’s theorem we get the useful

Proposition 3.1 Let u* be an outer measure on the non-empty X.
(i) If BC X has p*(B) =0, then B is p*-measurable.
(ii) For all pairwise disjoint p*-measurable A1, Ag, ... and all E C X

ST (BN Ay) = 1 (B0 (U5 A0).

n=1

Proof: The proof of (i) is in part (f) of the proof of the theorem of Caratheodory
and the proof of (ii) is the basic equality in part (c) of the same proof.

3.2 Construction of outer measures.

Definition 3.3 Let X be a non-empty set. A collection C of subsets of X is
called a o-covering collection for X if ) € C and there exist X1, Xa,...€C
so that X = US> X,,.

Theorem 3.2 Suppose we have a o-covering collection C for X and an arbi-
trary function 7 : C — [0, +o00] with 7(0) = 0. If we define

1nf{z )| C1,Ca, ... €C so that E C UICy }

for all E C X, then u* is an outer measure on X.

Before the proof, observe that in the definition of p*(E) the set over which the
infimum is taken is not empty, since there is at least one countable covering of
E, in fact even of X, with elements of C. This is clear from the definition of a
o-covering collection.

Proof: For ) the covering § COUPU - -- implies p* (@) < 7(0) + 7(0) +--- = 0.

Let A C B C X and take an arbltrary covering B C U+_IC' with C’l, ...eC.
Then we also have A C Uth and by the definition of p*(A) we get u*(A) <
ZJ 1 7(C;). Therefore, by the definition of p*(B) we find p*(A) < p*(B).

Finally, let’s prove u*(Uf>A4,) < Zn 11 (A,) for all Al,AQ,... C X.
If the right side is = 400, the inequality is clear. Therefore we assume that
the right side is < 400 and, hence, that p*(A,) < +oo for all n. By the
definition of each p*(A,,), for every € > 0 there exist C), 1,Chp 2,... € C so that
A, CUZC, ; and Z;OT 7(Chyj) < 1*(An) + 55
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Then U2 A4, C U(n,j)enxNChn,j and, using an arbitrary enumeration of

N x N and Proposition 2.3, we get by the definition of u*(U:>jA,) that
u*(U+°°An) < > (nj)enxn T(Cnyj). Proposition 2.6 implies pr (U A,) <
“+o0 * . .

n (2 T(Cng)) < a2 (0t (An) + 57) = 02w (An) + € Since e is

arbltrary, we conclude that p*(Uf>5A,) < Zn 1 (Ap).
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3.3 Exercises.

1. Let u* be an outer measure on X and Y C X. Define p§ (E) = p*(ENY)
for all E C X and prove that uj is an outer measure on X and that Y is
113-measurable.

2. Let p*,pf, u5 be outer measures on X and k € [0,+00). Prove that
Kk, i + pd and max(pf, ) are outer measures on X, where these are
defined by the formulas

(k" )(E) = & - p* (E), (11 + p3)(E) = pi(E) + ps(E)

and
max (7, t3)(E) = max(pj (E), p3(E))
for all F C X.

3. Let X be a non-empty set and consider p*(f) = 0 and p*(E) = 1 if
) # E C X. Prove that p* is an outer measure on X and find all the
w*-measurable subsets of X.

4. For every E C N define x(E) = limsup,, _,, %card(E N{1,2,...,n}).
Is k an outer measure on N7

5. Let {u)} be a sequence of outer measures on X. Let u*(E) = sup,, ) (F)
for all £ C X and prove that p* is an outer measure on X.

6. Let u* be an outer measure on X. If Ay, Ay, ... € ¥,» with A, C A, for
all n and E C X, prove that lim,, 1o u*(A4, NE) = p* ( Ut (4,n E))

n=1
7. Eztension of a measure, I.

Let (X, Xq, o) be a measure space. For every E C X we define
“+oo
,LL*(E) = inf { Z‘LLO(AJ) |A1,A2, ... € 20, E g Uj:Oi]AJ},
j=1

(i) Prove that p* is an outer measure on X. We say that p* is induced
by the measure pg.

(ii) Prove that p*(E) = min {po(A) | A € 3o, E C A}

(iii) If (X, X+, 1) is the complete measure space which results from p* by
the theorem of Caratheodory (i.e. p is the restriction of u* on X, ), prove
that (X, X+, 1) is an extension of (X, 3o, to)-

(iv) Assume that £ C X and Ay, As,... € 3¢ with E C Uj‘:fAj and
1(A;) < +oo for all j. Prove that E € ¥+ if and only if there is some
A € ¥y so that E C A and p*(A\ E) = 0.

(v) If p is o-finite, prove that (X, X, p) is the completion of (X, 3o, uo).
(vi) Let X be an uncountable set, X9 = {A C X | A is countable or A€ is
countable} and po(A) = §(A) for every A € Xy. Prove that (X, X, p0) is
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a complete measure space and that ¥,- = P(X). Thus, the result of (v)
does not hold in general.

(vii) Prove that (X,¥,-, ) is always the saturation (see exercise 2.5.15)
of the completion of (X, Xg, 10).

Measures on algebras.

Let A be an algebra of subsets of the non-empty X. We say that u: A —
[0, +0c] is a measure on (X, A) if

(i) u(9) =0 and

(ii) ,u(ujr:O‘fAj) = Zj:f 1(A;) for all pairwise disjoint Ay, A, ... € A with
U%A4; € A

Prove that if 4 is a measure on (X, .A), where A is an algebra of subsets of
X, then pu is finitely additive, monotone, o-subadditive, continuous from
below and continuous from above (provided that, every time a countable
union or countable intersection of elements of A appears, we assume that
this is also an element of A).

Ezxtension of a measure, II.

Let Ap be an algebra of subsets of the non-empty X and pg be a measure
on (X, Ay) (see exercise 3.3.8). For every E C X we define

+oo
j=1

(i) Prove that p* is an outer measure on X. We say that p* is induced
by the measure pyg.

(ii) Prove that u*(A) = uo(A) for every A € Ap.

(iii) Prove that every A € Ay is p*-measurable and hence 3(Ay) C X,,+.

Thus, if (after Caratheodory’s theorem) p is the restriction of p* on X+,
the measure space (X, X+, 1) is a complete measure space which extends
(X, Ao, o)-

If we consider the restriction (X,X(Ag), ), then this is also a measure
space (perhaps not complete) which extends (X, Ag, uo)-

(iv) If (X,%(Ap),v) is another measure space which is an extension of
(X, Ao, po), prove that u(E) < v(E) for all E € ¥(Ap) with equality in
case p(E) < +oo.

(v) If the original (X, Ao, po) is o-finite, prove that p is the unique measure
on (X, X(Ap)) which is an extension of ug on (X, Ap).

Regular outer measures.

Let p* be an outer measure on X. We say that u* is a regular outer
measure if for every £ C X there is A € ¥,« so that £ C A and
w*(E) = p(A) (where p is the usual restriction of p* on X+ ).

Prove that p* is a regular outer measure if and only if p* is induced by
some measure on some algebra of subsets of X (see exercise 3.3.9).
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Measurable covers.

Let p* be an outer measure on X and p be the induced measure (the
restriction of p*) on ¥,,-. If E,G C X we say that G is a p*-measurable
cover of £ if E C G, G € ¥+ and for all A € ¥, for which AC G\ E
we have p(A) = 0.

(i) If G1,G2 are p*-measurable covers of E, prove that u(G1AG2) = 0
and hence u(G1) = u(Gs).

(ii) Suppose E C G, G € X+ and p*(E) = pu(G). If p*(E) < 400, prove
that G is a p*-measurable cover of E.

We say ' C R has an infinite condensation point if £ has uncount-
ably many points outside every bounded interval. Define p*(F) =0 if E
is countable, p*(E) = 1 if E is uncountable and does not have an infinite
condensation point and p*(E) = 4oco if E has an infinite condensation
point. Prove that p* is an outer measure on R and that A C R is p*-
measurable if and only if either A or A¢ is countable. Does every E C R
have a p*-measurable cover? Is p* a regular outer measure? (See exercises
3.3.10 and 3.3.11).

Consider the collection C of subsets of N which contains () and all the
two-point subsets of N. Define 7(f) = 0 and 7(C) = 2 for all other C € C.
Calculate p*(F) for all E C N, where p* is the outer measure defined as
in Theorem 3.2, and find all the p*-measurable subsets of N.
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Chapter 4

Lebesgue-measure in R"

4.1 Volume of intervals.

We consider the function vol,,(S) defined for general intervals S, which is just
the product of the lengths of the edges of S: the so-called (n-dimensional)
volume of S. In this section we shall investigate some properties of the volume
of intervals.

Lemma 4.1 Let P = (a1,b1] X --- X (an,bn] and, for each k = 1,...,n, let
ag =c) <ch <<t =by. Ifweset Py o= (P e x (dip T dln]

for1<ip <mq,...,1<i, <my,, then

vol,(P) = Z voln(Piy,.. i )-

1<ii<ma,...,1<ip <myp,

Proof: For the second equality in the following calculation we use the distribu-
tive property of multiplication of sums:

Z voly (P, i)

1<ii<ma,...,1<ip <my,

= > (et = ™h) (e =)

1<i1<ma,..., 1<, <my,

ml . . m7L . .
= (=T Y e =)
=1 in=1

= (by —ay) - (b, — a,) = vol,(P).

Referring to the situation described by Lemma 4.1 we shall use the expres-

sion: the intervals P;, .. ;. result from P by subdivision of its edges.

Lemma 4.2 Let P, Py,..., P, be open-closed intervals and Py, ..., P, be pair-
wise disjoint. If P =Py U---U Py, then vol,(P) = vol,,(Py) + - - - + vol,,(F)).

41
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Proof: Let P = (a1,b1] X -+ - X (an,b,] and P; = (al,b)] x - - - x (ad,, b3 ] for every
j=1,...,1

For every k= 1,...,n we set
0 1 I g1 1
{Ck,...,c;cnk} = {ak,...,ak,bk,...,bk},
so that ax = cg < c,l€ < oo < "™ = bg. This simply means that we rename
the numbers a?,...,al, bl ... bl in increasing order and so that there are no
repetitions. Of course, the smallest of these numbers is ay and the largest is by,
otherwise the Pi,..., P, would not cover P.
It is almost obvious that
(a) every (aj, b} is the union of some successive among (¢, ct], ..., (ci™* ", ¢,
(b) none of (c* !, ¢i*] intersects two disjoint among (a},, bl ]’s.
We now set
C S
Pilv--win = (6111 76111] Koo X (Czl" laC:{l]
for 1 <iy <mq,...,1 <4, <my,.

It is clear that the P;
also almost clear that
(c) the intervals among the P, ., which belong to a P; result from it by
subdivision of its edges (this is due to (a)).

(d) every P, .. ;, is included in exactly one from Py, ..., P, (this is due to (b)).

We now calculate, using Lemma 4.1 for the first and third equality and
grouping together the intervals F;, . ; which are included in the same P; for
the second equality:

vol,(P) = Z 0ol (P ... i)

1<ii<myq,...,1<i, <my,

= ) ( Z voln(Pil,...,in))

’s result from P by subdivision of its edges. It is

1y-9tn

sin

Lemma 4.3 Let P, Py,..., P, be open-closed intervals and Py, ..., P, be pair-
wise disjoint. If PLU---U P, C P, then vol,(Py) + -+ - +vol,(P;) < vol,(P).

Proof: We know from Proposition 1.10 that P\ (P, U---UPF) =P/ U---UP}
for some pairwise disjoint open-closed intervals Pj, ..., P}. Then P = P U---U
P,UP{U---UP| and Lemma 4.2 now implies that vol,(P) = vol,,(P1) + --- +
vol, (Py) + vol, (Py) + - - - + voly, (P}) > voly,(P1) + - - - + voly, (F)).

Lemma 4.4 Let P, Py, ..., P, be open-closed intervals. If P C P, U---U P,
then vol, (P) < vol,(Py) + - - - + vol,, (P,).

Proof: We first write P = P/U- - -UP] where P] = P;NP are open-closed intervals
included in P. We then write P = P{U(Pj\ P{)U---U(P/\ (P{U---UP/_})).
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Each of these [ pairwise disjoint sets can, by Proposition 1.10, be written as a
finite union of pairwise disjoint open-closed intervals: P/ = P and

P{\(P{U---UP}_)=P/U---UP],

for2<j<lI.
Lemma 4.2 for the equality and Lemma 4.3 for the two inequalities imply

l m;
vol,(P) = wol,(P])+ Z ( Z vol, (P},))
j=2 m=1
! l
< wol,(P]) + Zvoln(PJ{) < Zvoln(Pj).
Jj=2 Jj=1

Lemma 4.5 Let Q be a closed interval and Ry, ..., R; be open intervals so that
QC RyU---UR;. Then vol,(Q) < wvolp(Ry) + -+ 4+ vol,(Ry).

Proof: Let P and P; be the open-closed intervals with the same edges as () and,
respectively, R;. Then PC Q C Ry U---UR; € PLU---U P, and by Lemma
4.4, vol,(Q) = vol, (P) < wolyp(Py) + -+ +vol,(P) = vol,(Ry) + - - - +voly, (Ry).

4.2 Lebesgue-measure in R".

Consider the collection C of all open intervals in R™. Since we can write R" =
U2 (—k, k) x - -+ x (—k, k), the collection is o-covering for R™.
Next we consider

T(R) = volp(R) = (b —ay) - - - (b — an)

for every R = (a1,b1) X -+ X (an, by) € C.
If we define

+oo
my(E) = inf{Zvoln(Rj) | R1,Ra,... € C sothat E C Ujﬁi’Rn}
j=1

for all £ C R"™, then Theorem 3.2 implies that m} is an outer measure on R".
Now Theorem 3.1 implies that the collection £,, = Y of m} -measurable sets
is a o-algebra of subsets of R™ and, if m,, is defined as the restriction of m;, on
L, then m,, is a complete measure on (X, L,,).

Definition 4.1 (i) L,, is called the o-algebra of Lebesgue-measurable sets
in R",

(ii) m}, is called the (n-dimensional) Lebesgue-outer measure in R" and
(#ii) m,, is called the (n-dimensional) Lebesgue-measure in R".

Our aim now is to study properties of Lebesgue-measurable sets in R™ and
especially their relation with the Borel sets or even more special sets in R", like
open sets or closed sets or unions of intervals.
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Theorem 4.1 Every interval S in R™ is Lebesgue-measurable and m,(S) =
vol, (S).

Proof: (a) Let Q = [a1,b1] X -+« X [an, by).

Since @ C (a1 — €,b1 +€) X -+ X (an — €,b, + €), we get by the definition
of m} that m}(Q) < wol,((a1 —€,b1 +€) x -+ X (ap, —€,b, +€)) = (b1 —ar +
2€) - - - (by, — an + 2€). Since € > 0 is arbitrary, we find m} (Q) < vol,(Q).

Now take any covering, @ C Ry U Ry U -+ of @ by open intervals. Since @
is compact, there is [ so that Q C Ry U---U R;, and Lemma 4.5 implies that
00l (Q) < voly(Ry) + -+ 4+ vol,(Ry) < Z',:;“l’ voly, (Ry). Therefore vol, (Q) <
m? (@), and hence m}(Q) = vol,(Q).

Now take any general interval S and let a1, by, ..., ay,, b, be the end-points of
its edges. Then Q' C S C Q”, where Q' = [a1+€,b; —€] X - - X [ap+e€,b, —€] and
Q" =a1 —€by+€] X+ X [an, — € b, +€]. Hence m%(Q') < mX(S) <mi(Q"),
namely (by —a1 —2€) - (b, —an, —2€¢) <mk(S) < (by—a1+2€) - (b, —an +2€).
Since € > 0 is arbitrary we find m? (S) = vol,,(S).

(b) Consider an open-closed interval P and an open interval R. Take the open-
closed interval Pr with the same edges as R. Then m} (RNP) < m}(PrNP) =
vol,(Pr N P) and m} (RN P°) < m}(PrN P°). Now Proposition 1.10 implies
PrNP¢ = Pr\P = P{U---UP, for some pairwise disjoint open-closed intervals
P{,...,P.. Hence m (RN P°) < mi(P)+ - +m}(P,) = vol,(P{) + -+
vol, (P]). Altogether, m} (RN P) + m} (RN P°) < wvol,(Pgr N P) + vol,(P]) +
-+ 4vol,(P}) and, by Lemma 4.2, this is = vol,(Pr) = vol,(R). We have just
proved that m) (RN P)+m% (RN P°) < wol,(R).
(¢) Consider any open-closed interval P and any E C R™ with m}(E) < +oo.
Take, for arbitrary € > 0, a covering £ C U °IR; of E by open intervals so that

jlvol (R;) < m},(E)+e. Then m} (EﬂP)—i—m (EﬂPC)<Zj 1my(R; N

P)+ 322 my(R; N P) = Y20y (R; N P) + my(R; N P¢)] which, by the
result of (b) is < Z+ Lvol,(R;) < m}(E)+ e. This implies that m},(E N P) +
mi(ENP°) < (E) and P is Lebesgue-measurable.

If T is any interval at least one of whose edges is a single point, then m* (T') =
vol,(T) = 0 and, by Proposition 3.1, T is Lebesgue-measurable.

Now any interval S differs from the open-closed interval P, which has the

same sides as S, by finitely many T’s, and hence S is also Lebesgue-measurable.
Theorem 4.2 Lebesgue-measure is o-finite but not finite.

Proof: We write R" = Uﬁ;’?@k with Qr = [k, k] x -+ x [k, k], where
M (Qr) = vol, (Qr) < +oo for all k.

On the other hand, for all k, m,(R"™) > m,(Qr) = (2k)™ and hence
m,(R™) = 400.

Theorem 4.3 All Borel sets in R™ are Lebesgue-measurable.

Proof: Theorem 4.1 says that, if £ is the collection of all intervals in R”, then
g g En. But then BRn = 2(5) g ;Cn.

Therefore all open and all closed subsets of R™ are Lebesgue-measurable.
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Theorem 4.4 Let E C R"™. Then

(i) E € L, if and only if there is A, a countable intersection of open sets, so
that E C A and m’(A\ E) =0.

(i) E € Ly, if and only if there is B, a countable union of compact sets, so that
BCFE and m(E\ B)=0.

Proof: (i) One direction is easy. If there is A, a countable intersection of open
sets, so that E C A and m} (A \ E) = 0, then, by Proposition 3.1, A\ E € L,
and thus E = A\ (A\ E) € L,,.

To prove the other direction consider, after Theorem 4.2, Y7,Y5,... € L, so
that R" = U >Y), and m,(Y)) < +oo for all k. Define Ex = ENYj, so that
E = U2 E), and m,(Ey) < 400 for all k.

For all k£ and arbitrary I € N find a covering Ej C Ujﬁ‘l’Rf’l by open
intervals so that ;:T voln(R;?’l) < mn(Er) + pr and set UM = U;;"TR?’Z.
Then B, C UM and m, (U"!) < my,(Er) + ¢ from which

ma(UP\ EBy) < L
" 12k

Now set U! = U:ﬁf{ U*!. Then U'! is open and E C U and it is trivial to see

that U'\ E C U2 (UM \ E;) from which we get

+oo +oo
1 1
I B < kol S o
m,(U'\ E) < ,;:1 m, (U \ Ey) < 2 ok =

Finally, define A = N;2°U" to get that E C A and m,,(A\E) < m,(U'\E) <
% for all I and thus
mu(A\ E) =0.

(ii) If B is a countable union of compact sets, so that B C F and m}(E\B) =0,
then, by Proposition 3.1, E\ B € £,, and thus E = BU (E '\ B) € L.

Now take E € L,,. Then E° € L,, and by (i) there is an A, a countable
intersection of open sets, so that E¢ C A and m, (A \ E¢) = 0.

We set B = A€, a countable union of closed sets, and we get m,(E \ B) =
mp(A\ E°) = 0. Now, let B = U;LO?FJ», where each F} is closed. We then write
Fj = U2 Fj i, where Fj, = F; N ([—k, k] x - -+ x [=k, k]) is a compact set. This
proves that B is a countable union of compact sets: B = U x)eNxNF} k-

Theorem 4.4 says that every Lebesque-measurable set in R™ is, except from
a my,-null set, equal to a Borel set.

Theorem 4.5 (i) m,, is the only measure on (R™, Brn) with m,,(P) = vol, (P)
for every open-closed interval P.
(i) (R™, L, my) is the completion of (R™, Brn,my,).

Proof: (i) If p is any measure on (R",Bgrn) with u(P) = wvol,(P) for all
open-closed intervals P, then it is trivial to see that u(P) = +oo for any un-
bounded generalised open-closed interval P: just take any increasing sequence



46 CHAPTER 4. LEBESGUE-MEASURE IN RV

of open-closed intervals having union P. Therefore p(UJL,; P;) = Z;n:l w(P;) =
>oimymn(Py) = my(UfL P;) for all pairwise disjoint open-closed generalised
intervals Py,..., P,,. Therefore the measures u and m,, are equal on the alge-
bra A = {UJL, P;j[m € N, Py,..., Py, pairwise disjoint open-closed generalised
intervals}. By Theorem 2.4, the two measures are equal also on X(A) = Brn.
(ii) Let (R™, Brn, ;) be the completion of (R™, Brn,my,).

By Theorem 4.3, (R™, L,,m,) is a complete extension of (R", Brn,my).
Hence, Br» C L,, and m,(E) = m,(E) for every E € Brn.

Take any F € L,, and, using Theorem 4.4, find a Borel set B so that B C E
and my,(F \ B) = 0. Using Theorem 4.4 once more, find a Borel set A so that
(E\ B) C Aand m,(A\ (F\ B)) = 0. Therefore, m,(A) = m,(A\ (F\ B)) +
mu(E\ B) =0.

Hence we can write E = BU L, where B € Bgn and L=FE\ B C A € Bgr~
with m,,(A) = 0. After Theorem 2.3, we see that E has the form of the typical
element of Bgr» and, thus, £,, C Br~. This concludes the proof.

Theorem 4.6 Suppose E € L, with m,(E) < +oo. For arbitrary € > 0, there
are pairwise disjoint open intervals Ry, ..., Ry so that m,(EA(R1U---UR})) < e.

Proof: We consider a covering E C U;;o‘f R} by open intervals such that
j_:f voln (R}) < mp(E) + 5.
Now we consider the open-closed interval P]’- which has the same edges as
R}, and then E C U\ P} and /% vol, (P)) < mn(E) + 5.
Take m so that 1720 vol,(P]) < § and observe that £\ (P{U---UP;,)

! -
j=m-+ =
Uiss 1 Pjand (P{U---UP, )\E C (Ujﬁ‘l’P]’)\E Hence m., (E\(P{U---UP;)) <

Jj=m+1

j:ofn+1 vol, (Pj) < 5 and m,((P{U---UP;, )\ E) < mn(U;':oTPj()—mn(E) < 3.

Altogether,
mp(EA(P{U---UP!)) <e.
Proposition 1.10 implies that P{U---UP, = Py U---U P, for some pairwise
disjoint open-closed intervals P, ---, P, so that
mp(EA(PLU---UPR)) <e.

We consider Ry to be the open interval with the sarr;e edges as Pj so that
Ui::le - Uéc:lpk and mn((Uéczlpk) \ (Ugclek)) < g1 mn(Pe \ Ry) = 0.
This easily implies that

mp(EA(RLU---URy)) < e

4.3 Lebesgue-measure and simple transforma-
tions.

Some of the simplest and most important transformations of R™ are the trans-
lations and the linear transformations.
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Every y € R" defines the translation 7, : R” — R" by the formula
y(z) =2 +y, xeR"™

Then 7, is a one-to-one transformation of R" onto R™ and its inverse transfor-
mation is 7_,. 7, is linear only if y = 0. For every & C R" we define

y+E={y+z|zeE}(=1y(F)).
Every A > 0 defines the dilation [y : R® — R" by the formula
Ixz) = Az, ze€R"

Then [, is a linear one-to-one transformation of R™ onto R"™ and its inverse
transformation is [ 1. For every F C R"™ we define

AE ={)z|z € E} (=1\(F)).

If S is any interval in R, then any translation transforms it onto another
interval (of the same type) with the same volume. In fact, if ai,b1,...,an, b,
are the end-points of the edges of S, then the translated y + .S has y1 +a1,y1 +
b1,y Yn + Gn,Yn + by as end-points of its edges. Therefore vol,(y + S) =
((yl+b1)_(yl —|—a1)) ce ((yn+bn)_(yn+an)) = (by—ay) - (bp—a,) = vol,(5).

If we dilate the interval S with ay,bq,...,ay,,b, as end-points of its edges
by the number A > 0, then we get the interval AS with Aai, Aby, ..., Aan, Ab,
as end-points of its edges. Therefore, vol,(AS) = (Aby — Aaq) -+ - (Ab, — Aay,) =
A" (by —aq) -+ (bn — an) = Aol (S).

Another transformation is r, reflection through 0, with the formula

r(z) =—z, x€R"
This is one-to-one onto R™, linear and it is the inverse of itself. We define
—E={-z|zec E}(=r(F))

for all E C R™. If S is any interval with aq,b1,...,a,, b, as end-points of its
edges, then —S is an interval with —by, —ay, ..., —b,, —a, as end-points of its
edges and vol,(—S) = (—a1 + b1) - -+ (—an, + by) = vol, (S).

After all these, we may say that n-dimensional volume of intervals is invari-
ant under translations and reflection and it is positive-homogeneous of degree n
under dilations.

We shall see that the same are true for n-dimensional Lebesgue-measure of
Lebesgue-measurable sets in R™.

Theorem 4.7 (i) L,, is invariant under translations, reflection and dilations.
That is, for all A € L,, we have that y+A,—A, A € L, for everyy € R™, A > 0.
(ii) my, is invariant under translations and reflection and positive-homogeneous
of degree n under dilations. That is, for all A € L,, we have that

mu(y+ A) =mu(A), mu(—A) =my(A4), mp(AA) = A"m,(A)

for every y € R™, A > 0.
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Proof: (a) Let E C R™ and y € R™. Then for all coverings E C U+°OR by open
intervals we get y+E C U;':Of(y+R ). Hence m* (y+F) < Z+ 1 Uol (y+R;) =

+ _; vol,(R;). This implies that m} (y + E) < m (E). Now, applying this to
y+E translated by —y, we get m, (E) = m},(—y+(y+E)) < m)(y+E). Hence

my,(y + E) = m, (E)

for all E CR™ and y € R™.

Similarly, —F C Uj:“f(—Rj), which implies m* (—F) < +°° Lvol,(—R;) =
Z+ Lvol,(R;). Hence m)(—FE) < m}(E). Applying this to E7 we also get
me (E) =mi(—(—FE)) <m}(—F) and thus

n

m,(—=E) = m;,(E)
for all £ C R™.

Also AE C Uj:‘xl’()\R ), from which we get m} (AE) < ZJF 1 vol, (AR;) =
A" 3" vol, (R;) and hence mj,(AE) < A"mj,(E). Applying to ; and to AE,
we ﬁnd mn(E) =m}(+(AE)) < (3)"m},(AE), which gives

m(AE) = N'm (E).

(b) Suppose now that A € £,, and E C R".

Then m} (EN(y+A))+mi(EN(y+A)°) = ( (—y+E)NA]) +m(y+
[(—y+ E)NA) =ms ((— y+E NA) +mi((— mAC)— mi(—y+ E) =
m. (E). Therefore y + A € L,,.

Also my (EN(=A)) +my (EN(=A)°) = m;, (= [(=E)NA]) +mj (= [(-E)N
A) = m;((-E) N A) + mi,((-E) N A°) = m},(—E) = m}(E). Therefore
—Ael,.

Finally m;(E N(AA))+mi(EN(AA)°) = m? (A[(%E) NA]) +m? ()\[(%E) N

) = \"m ( ﬂA)+)\" n((%E)ﬂAC) = )\"m;‘l(%E) = m? (F). Therefore
A e L,.

(¢) If A € L,,, then my,(y + A) = mi(y+ A) = mi(A) = my,(4), mp(—A) =
mi(—A) =mi(A) = m,(4) and m,(AA) = mS(AA) = \"m}(A) = A\"m, (A).

Reflection and dilations are special cases of linear transformations of R™. As
is well known, a linear transformation of R™ is a function 7' : R™ — R such
that

Tx+y)=T)+T(y), z,y € R",

and every such T has a determinant, det(T') € R. In particular, det(r) = (—1)"
and det(ly) = A™.

We recall that T is one-to-one and onto R™ if and only if det(7") # 0 and
that, if T =T} o Ty, then det(T) = det(T7) det(T3).

Theorem 4.8 Let T : R™ — R" be a linear transformation. If A € L,,, then
T(A) € L, and m,(T(A)) = |det(T)| m,(A).
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Proof: At first we assume that det(7") # 0.
(a) If T has the form T(zq,22,...,2,) = (Ax1,22,...,2,) for a certain A €
R\ {0}, then det(T) = X and, if P = (a1,b1] X (az,be] X -+ X (an,by], then
T(P) = (/\(117 )\bl] X (ag, bg} XX (an, bn] or T(P) = ()\b1, /\al] X (CLQ, bg] XX
(an, by], depending on whether A > 0 or A < 0. Thus T'(P) is an interval and
mn(T(P)) = [Almn,(P) = | det(T') |mn (P).
If T($1,£C27 ey L1, Lgy Ly 1y - - - ,l’n) = ({ITZ',IEQ, ey L1, X1, L1y e - - ,.’En)
for a certain ¢ # 1, then det(T) = —1 and, if P = (a1,b1] X (ag,bg] X -+ X
(ai_l, bi—l] X (ai, bl} X (ai+1, bi+l] X X (G,n, bn], then T(P) = (ai, bl] X (0,2, bg] X
s X (ai_1, bz’—l] X (al, bl] X (CLi_H, bi+1] XX (an, bn]. Thus T(P) is an interval
and m, (T'(P)) = m,(P) = | det(T)|m,(P).
If T(xl, ey L1y Xy L1y e - - ,.%n) = (1'1, ey Lj1,X4 + L1y Ljglye- s xn) for
a certain ¢ # 1, then det(T) = 1 and, if P = (a1,b1] X -+ X (aj_1,b;i—1] X
(aiy b;] X (ajg1,big1] X -+ X (ap, by], then T(P) is not an interval any more but
T(P) = {(y1,---,yn) |y; € (a;,bj] for j # i,y; —y1 € (ai,b;]} is a Borel set
and hence it is in £,,. We define the following three auxilliary sets: L =
(@1,b1] x -+ x (@i—1,bi—1] X (a; + a1,b; + b1] X (@iy1,bip1] X --- X (an,byl,
M = {(y1,.--»un)|y; € (aj,b;] for j # i,a;+a1 <y < a;+y1} and N =
{1, yn) y; € (a;,b;] for j # i,b; + a1 < y; < b; +y1}. It is easy to see
that all four sets, T'(P), L, M, N, are Borel sets and T(P)NM =0, LN N =0,
T(P)UM = LUN and that N = M +xq, where g = (0,...,0,b; —a;,0,...,0).
Then m, (T(P)) + mp,(M) = m,(L) + m,(N) and mn(M) mn(N)7 implying
that m, (T (P)) = my, (L) = m,(P) = |det(T)|m,(P), because L is an interval.
(b) Now, let T be any linear transformation of the above three types. We
have shown that m,(T(P)) = |det(T)|m,(P) for every open-closed interval
P. If R = (a1,b1) X -+ X (an,by) it is easy to see, just as in the case of
open-closed intervals, that T'(R) is a Borel set. We consider P; = (a1, b1] %
X (G, by,] and Py, = (a1,b1 — €] X -+ X (an, b, — €] and, from P, C R C
Py, we get T(P,) C T(R) C T(P1). Hence |det(T)|mn(P2) < my(T(R)) <
| det(T)|m,(Py) = |det(T)|m,(R) and, taking the limit as e — 04, we find
mp(T(R)) = | det(T)|my(R) for every open interval R.
(¢) Let, again, T be any linear transformation of one of the three types in (a).
Take any E' C R™ and consider an arbitrary covering £ C U} OOR by open in-
tervals. Then T(E) C U/5{T(R;) and hence m},(T(E)) < Z] 1 mn(T(Rj)) =
| det(T)] Z > m,(R;). Taking the infimum over all coverings, we conclude
i (T(E)) < | det(T)|m3 (E).
(d) If T is any linear transformation with det(T") # 0, there are linear trans-
formations T7,...,TxN, where each is of one of the above three types so that
T =T0---0Ty. Applying the result of (c) repeatedly, we find m(T(E)) <
|det(Th)] - - | det(Tn)|m%(E)| = | det(T)|m% (E) for every E C R™. In this in-
equality, use now the set T'(E) in the place of E and T~! in the place of T,
and get m*(E) < |det(T—Y)|m:(T(E)) = |det(T)|"'m*(T(FE)). Combining
the two inequalities, we conclude that

my(T(E)) = | det(T)|m;, (E)

n
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for every linear transformation T with det(T") # 0 and every E C R™.

(e) Let A € L,,. For all E C R™ we get m(ENT(A)) +mi(EN(T(A))°) =

mi (T(T~HE) N A)) + mj (T(T~HE) N A%)) = |det(T)|[m}(T~H(E) N A) +
)

“ )
m* (T~ E)NA°)] = | det(T)|m* (T~(E)) = m} (E). This says that T(A) € L,,.

n
Moreover,

mn(T(A)) = my, (T(A)) = | det(T)|my, (A) = | det(T)[mn(A).

If det(T) = 0, then V = T(R™) is a linear subspace of R™ with dim(V) <
n — 1. We shall prove that m, (V) = 0 and, from the completeness of m,,, we
shall conclude that T'(A) C V is in £, with m,(T(A)) = 0 = |det(T)|m,(A)
for every A € L,,.

Let {f1,..., fm} be a base of V (with m <n — 1) and complete it to a base
{f1s - fms fnaty - - -5 fn} of R™. Take the linear transformation S : R® — R"
given by

S(£1f1++xnfn) = (-Tl,...,.%‘n)-

Then S is one-to-one and hence det(S) # 0. Moreover
S(V)={(z1,--.,2m,0,...,0) | z1,...,2m € R}.

We have S(V) = U{ 2 Qx, where Q = [k, k] x -+ - x [—k, k] x {0} x - - - x {0}
Each @y is a closed interval in R™ with m,,(Q) = 0. Hence, m,(S(V)) =0
and, then, m, (V) = | det(S)|~tm,(S(V)) = 0.

If b,b1,...,b, € R", then the set
M={b+ r1b1 + -+ knbn |0 < K1,..., 5, <1}

is the typical closed parallelepiped in R™. One of the vertices of M is b and
b1,...,by, are the edges of M which start from b. For such an M we define the
linear transformation T : R" — R by T'(z) = T(z1,...,%n) = 2101+ -+x,b,
for every x = (z1,...,2,) € R™. We also consider the translation 7, and observe
that

M =7,(T(Qo)),

where Qo = [0,1]™ is the unit qube in R™. Theorems 4.7 and 4.8 imply that M
is Lebesgue-measurable and

My (M) = my (T(Qo)) = | det(T)|mn(Qo) = | det(T)].

The matrix of T with respect to the standard basis {e1,...,e,} of R™ has as
columns the vectors T'(e1) = b1, ..., T(e,) = b,. We conclude with the rule that
the Lebesgue-measure of a closed parallelepiped is given by the absolute value of
the determinant of the matriz having as columns the sides of the parallelepiped
starting from one of its vertices.
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4.4 Cantor’s set.

Since a set {x} consisting of only one point of R™ is a degenerate interval,
we see that m,({z}) = vol,({z}) = 0. Now, every countable subset of R™ has
Lebesgue-measure zero: if A = {x1, z2,...} then m,,(4) = Z::{ my({xr}) = 0.
The aim of this section is to provide an uncountable set in R whose Lebesgue-
measure is zero.
We start with the interval
Iy = [07 1]7

then take

next

1 21 27 8
[2 - [07 9] U [97 3] U [3’ 9] U [971]’
and so on, each time dividing each of the intervals we get at the previous stage
into three subintervals of equal length and keeping only the two closed subin-
tervals on the sides.

Therefore we construct a decreasing sequence {I,,} of closed sets so that
every I,, consists of 2" closed intervals all of which have the same length 3%
We define

C=n>1,

and call it the Cantor’s set.

C'is a compact subset of [0, 1] with m;(C) = 0. To see this observe that for
every n, mi(C) < my(I,,) = 2" - 3 which tends to 0 as n — +oo.

We shall prove by contradiction that C' is uncountable. Namely, assume that
C = {x1,z9,...}. We shall describe an inductive process of picking one from
the subintervals constituting each I,,. It is obvious that every x,, belongs to I,
since it belongs to C.

At the first step choose the interval IV to be the subinterval of I; which
does not contain x;. Now, I (1) includes two subintervals of I and at the second
step choose the interval I(?) to be whichever of these two subintervals of I(*)
does not contain z,. (If both do not contain s, just take the left one.) And
continue inductively: if you have already chosen 1"~V from the subintervals
of I,,_1, then this includes two subintervals of I,,. Choose as I(™ whichever of
these two subintervals of 1("~1) does not contain x,. (If both do not contain
Zn, just take the left one.)

This produces a sequence {I (”)} of intervals with the following properties:
(i) I™ C I, for all n,

(ii) 1™ C 1=V for all n,
(iii) voly (I) = & — 0 and
(iv) 2, ¢ I™ for all n.
From (ii) and (iii) we conclude that the intersection of all 1(™)’s contains a single
point:
ST = {ao}
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for some . From (i) we see that xg € I, for all n and thus zg € C. Therefore,
xg = X, for some n € N. But then zy € I and, by (iv), the same point z,
does not belong to I,

We get a contradiction and hence C' is uncountable.

4.5 A non-Lebesgue-measurable set in R.

We consider the following equivalence relation in the set [0,1). For any z,y €
[0,1) we write z ~ y if and only if z—y € Q. That ~ is an equivalence relation
is easy to see:
(a) x ~ x, because x —x =0 € Q.
()Ifxwy,thenm—yeQ,theny—x——( y) € Q, then y ~ z.
(c)Ifx ~yand y ~ z, then z —y € Q and y — 2z € Q, then z — z =
(x—y)+ (y —Z)EQ,thenmwz.

Using the Axiom of Choice, we form a set N containing exactly one element
from each equivalence class of ~. This means that:

(i) for every x € [0,1) there is exactly one T € N so that x — 7 € Q.

Indeed, if we consider the equivalence class of z and the element T of N from
this equivalence class, then x ~ T and hence x — T € Q. Moreover, if there are
twoZ,T € Nsothat r—T€ Qand z—7 € Q, then x ~ T and = ~ T, implying
that N contains two different elements from the equivalence class of .
Our aim is to prove that N is not Lebesgue-measurable.
We form the set
A= U (N +r).

r€QnN[0,1)

Diferent (N + r)’s are disjoint:
(ii) if 1,70 € QN [0,1) and r1 # ro, then (N 4+ r1) N (N 4+ r2) = 0.

Indeed, if z € (N 4+71) N (N +r2), then z —ry,2 —ro € N. But z ~ 2z — 1
and & ~ x — 79, implying that N contains two different (since r; # ry) elements
from the equivalence class of z.

(i) A C [0,2).

This is clear, since N C [0,1) implies N +r C [0,2) for all r € QN [0,1).

Take an arbitrary x € [0,1) and, by (i), the unique T € N with x — T € Q.
Since —1 < & — T < 1 we consider cases: if r =2 —Z € [0,1), thenx =T +r €
N+r C A, whileifr =2—7 € (-1,0), then z+1 =T+(r+1) € N+(r+1) C A.
Therefore, for every x € [0,1) either z € A or x + 1 € A. It is easy to see that
exactly one of these two cases is true. Because if z € A and z + 1 € A,
then € N4+ r; and 2 +1 € N + ry for some r1,r5 € QN [0,1). Hence,
x—ri,x+1—ry € N and N contains two different (since ro — 71 # 1) elements
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of the equivalence class of x. Thus, if we define the sets
Ei={ze0,l)|ze A}, Ea={xe[0,1)|z+1€ A}

then we have proved that

(iv) FyUFEy =10,1), EyNEy=40.

From (iv) we shall need only that [0,1) C Ey U Es.
We can also prove that

(V)Elu(Eg—‘rl):A, Elﬂ(E2+1):®

In fact, the second is easy because Ep, Es C [0,1) and hence F5 + 1 C [1,2).
The first is also easy. If x € Fy then x € A. If x € E5 + 1 then x — 1 € Ey
and then z = (x — 1) +1 € A. Thus Ey U (E2 +1) € A. On the other hand,
if £ € ACJ0,2), then, either x € AN[0,1) implying € Fy, or x € ANJ[L,2)
implying x — 1 € Ey ie. * € E9+ 1. Thus AC By U (E2+1).

From (v) we shall need only that E1,Es +1 C A.

Now suppose that N is Lebesgue-measurable. By (ii) and by the invari-
ance of my under translations, we get that mi(A) = >, cqro) m1(N +71) =
> reqnio,ny M1(N). If mi(N) > 0, then my(A) = +oo, contradicting (iii). If
m1(N) = 0, then m;(A) = 0, implying by (v) that m(E1) = mi(Es +1) =0,
hence my(E1) = mi(E2) = 0, and finally from (iv), 1 = m4([0,1)) < my(E1) +
ml(EQ) =0.

We arrive at a contradiction and N is not Lebesgue-measurable.
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4.6 Exercises.

1. If A € £,, and A is bounded, prove that m,,(A) < +oo. Give an example
of an A € £,, which is not bounded but has m,(A) < 4oc.

2. The invariance of Lebesgue-measure under isometries.

Let T : R® — R” be an isometric linear transformation. This means that
T is a linear transformation satisfying |T'(x) — T'(y)| = |z — y| for every
z,y € R" or, equivalently, TT* = T*T = I, where T is the adjoint of T’
and [ is the identity transformation.

Prove that, for every E € L,,, we have m,,(T(E)) = m,(E).

3. A parallelepiped in R" is called degenerate if it is included in a hyper-
plane of R", i.e. in a set of the form b+ V, where b € R™ and V is a
linear subspace of R™ with dim(V) <n — 1.

Prove that a parallelepiped M is degenerate if and only if m, (M) = 0.
4. State in a formal way and prove the rule
volume = base area x height
for parallelepipeds in R™.

5. Regularity of Lebesgue-measure.

Suppose that A € L,,.

(i) Prove that there is a decreasing sequence {U;} of open sets in R™ so
that A C U; for all j and m,(U;) — m,(A). Conclude that m,(A) =
inf{m,(U)|U open D A}.

(ii) Prove that there is an increasing sequence {K;} of compact sets in
R"™ so that K; C A for all j and m,(K;) — m,(A). Conclude that
my(A) = sup{m,(K)| K compact C A}.

The validity of (i) and (ii) for (R™, £,,, m,,) is called regularity. We shall
study this notion in chapter 5.

6. An example of an mq-null uncountable set, dense in an interval.
Let QN [0,1] = {1, x9,...}. For every e > 0 we define

+oo “+oo 1
UvO=U (e~ gootg5). A=V
n=1

Jj=1

i) Prove that mq(U(e)) < 2e.

ii) If e < 1, prove that [0, 1] is not a subset of U (e).

iii) Prove that A C [0,1] and m4(A4) = 0.

iv) Prove that Q N [0,1] C A and that A is uncountable.

Py

7. Let A=QnNJ0,1]. If Ry,..., R, are open intervals so that A C UL Rj,

prove that 1 < 377, voly (R;). Discuss the contrast to mj(4) = 0.
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8.

10.

11.

Prove that the Cantor’s set is perfect: it is closed and has no isolated
point.

. The Cantor’s set and ternary expansions of numbers.

(i) Prove that for every sequence {a,} in {0,1,2} the series >.t> o
converges to a number in [0, 1].

(ii) Conversely, prove that for every number z in [0, 1] there is a sequence
{an} in {0,1,2} so that = 3.7 g=. Then we say that 0.a1az...is a
ternary expansion of z and that a1, as, ... are the ternary digits of
this expansion.

(iii) If 2 € [0,1] is a rational g%, where m = 1(mod3) and N € N, then x
has exactly two ternary expansions: one is of the form 0.a; ...an—-11000. ..

and the other is of the form 0.a;...any_10222... .

If z € [0,1] is either irrational or rational 3%, where m = 0 or 2(mod3)
and N € N, then it has exactly one ternary expansion which is not of
either one of the above forms.

(iv) Let C be the Cantor’s set. If « € [0, 1], prove that « € C if and only
if x has at least one ternary expansion containing no ternary digit equal
to 1.

The Cantor’s function.

Let Iy = [0,1], I1, I3, . . . be the sets used in the construction of the Cantor’s
set C. For each n € N define f, : [0,1] — [0, 1] as follows. If, going from
left to right, J7*,..., J5% _; are the 2" — 1 subintervals of [0, 1]\ I,,, then
define f,(0) = 0, fo(1) = 1, define f, to be constant 2 in J;* for all
k=1,...,2" —1 and to be linear in each of the subintervals of I,, in such
a way that f, is continuous in [0, 1].

(i) Prove that | f,(2) — fu—1(2)| < 55+ for alln > 2 and all z € [0,1]. This
implies that for every z € [0,1] the series fy(z) + 3775 (fx(z) — fr1(x))
converges to a real number.

(ii) Define f(z) to be the sum of the series appearing in (i), and prove
that | f(z) — fu(z)| < 54 for all x € [0,1]. Therefore, f, converges to f
uniformly in [0, 1].

(iii) Prove that f(0) =0, f(1) = 1 and that f is continuous and increasing
in [0, 1].

(iv) Prove that for every n: f is constant QL inJforallk=1,...,2" —1.
(v) Prove that, if z,y € C and = < y and z,y are not end-points of the
same complementary interval of C, then f(z) < f(y).

This function f is called the Cantor’s function.

The difference set of a set.

(i) Let E C R with mj(E) > 0 and 0 < o < 1. Considering a covering
of E by open intervals of total length < é -mj(E), prove that there is a
non-empty open interval (a,b) so that mi(E N (a,b)) > a - (b— a).

(ii) Let E C R be a Lebesgue-measurable set with m4(F) > 0. Applying
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13.

14.

15.
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(i) with o = 2, prove that EN(E+z)N(a,b) # 0 for all z with 2| < 1(b—a).
(iii) Let E C R be a Lebesgue-measurable set with m(E) > 0. Prove
that the set D(F) = {z — y|x,y € E}, called the difference set of F,
includes some open interval of the form (—¢,¢).

Another construction of a non-Lebesgue-measurable set in R.

(i) For any z,y € R define x ~ y if x —y € Q. Prove that ~ is an
equivalence relation in R.

(ii) Let L be a set containing exactly one element from each of the equiv-
alence classes of ~. Prove that R = (J,cq(L + 7) and that the sets
L+7r reQ, are pairwise disjoint.

(iii) Prove that the difference set of L (see exercise 4.6.8) contains no ra-
tional number # 0.

(iv) Using the result of exercise 4.6.8, prove that L is non-Lebesgue-
measurable.

Non-Lebesgue-measurable sets are everywhere, I.

We shall prove that every EF C R with m}(E) > 0 includes at least one
non-Lebesgue-measurable set.

(i) Consider the non-Lebesgue-measurable set N C [0, 1] which was con-
structed in section 4.5 and prove that, if B C N is Lebesgue-measurable,
then mq(B) = 0. In other words, if M C N has m{(M) > 0, then M is
non-Lebesgue-measurable.

(ii) Consider an arbitrary £ C R with mj(E) > 0. If a = 1—mJ (), then
0 < o < 1, and consider an interval (a,b) so that mj(EN(a,b)) > a(b—a)
(see exercise 4.6.8). Then the set N’ = (b — a)N + a is included in [a, b],
has m{(N') = (1 —«) - (b—a) and, if M’ C N’ has mj(M’) > 0, then M’
is non-Lebesgue-measurable.

(iii) Prove that E N N’ is non-Lebesgue-measurable.

Non-Lebesgue-measurable sets are everywhere, I1.

(i) Consider the set L from exercise 4.6.9. Then E = {J,cq(EN (L +71))
and prove that the difference set (exercise 4.6.8) of each EN(L+r) contains
no rational number # 0.

(ii) Prove that, for at least one r € Q, the set EN(L+r) is non-Lebesgue-
measurable (using exercise 4.6.8).

Not all Lebesgue-measurable sets in R are Borel sets and not all continuous
functions map Lebesgue-measurable sets onto Lebesgue-measurable sets.
Let f : [0,1] — [0, 1] be the Cantor’s function constructed in exercise 4.6.7.
Define g : [0, 1] — [0, 2] by the formula

g(@) = f(z) +z,  x€l0,1].

(i) Prove that g is continuous, strictly increasing, one-to-one and onto
[0,2]. Its inverse function g=! : [0,2] — [0, 1] is also continuous, strictly
increasing, one-to-one and onto [0, 1].
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16.

17.

18.

19.

(ii) Prove that the set g([0, 1]\ C), where C' is the Cantor’s set, is an open
set with Lebesgue-measure equal to 1. Therefore the set E = g(C) has
Lebesgue-measure equal to 1.

(iii) Exercises 4.6.10 and 4.6.11 give non-Lebesgue-measurable sets M C
E. Consider the set K = g~1(M) C C. Prove that K is Lebesgue-
measurable.

(iv) Using exercise 1.5.6, prove that K is not a Borel set in R.

(v) g maps K onto M.

More Cantor’s sets.

Take an arbitrary sequence {e,} so that 0 < ¢, < % for all n. We split
Io = [0,1] into the three intervals [0, £ — €], (3 — €1, g—i— €1), (2 +e€1,1] and
form I as the union of the two closed intervals. Inductively, if we have
already constructed I,,_; as a union of certain closed intervals, we split
each of these intervals into three subintervals of which the two side ones
are closed and their proportion to the original is % — €,. The union of the

new intervals is the I,,.

We set K = U > 1,.

(i) Prove that K is compact, has no isolated points and includes no open
interval.

(ii) Prove that K is uncountable.

(iii) Prove that mq(I,) = (1 —2€1) -+ (1 — 2¢,) for all n.

(iv) Prove that mq(K) = limy, 4 00(1 — 2€1) -+ (1 — 2¢5,).

(v) Taking €, = 55 for all n, prove that m;(K) > 1 —e.

(Use that (1 —a1)---(1 —ap) > 1 — (a1 + -+ + ay) for all n and all
ai,...,an € 10,1]).

(vi) Prove that my (K) > 0 if and only if 37> ¢, < +o0.

(Use the inequality you used for (v) and also that 1 —a < e~ for all a.)

Uniqueness of Lebesgue-measure.

Prove that m,, is the only measure g on (R",Bgrn) which is invariant
under translations (i.e. u(E + z) = p(E) for all Borel sets E and all x)
and which satisfies 1(Qo) = 1, where Qo = [-1,1] x - -+ x [=1,1].

Let E C R be Lebesgue-measurable and A be a dense subset of R. If
m1(EA(E + x)) =0 for all x € A, prove that m1(E) = 0 or my(E) = 0.

Let E C R be Lebesgue-measurable and § > 0. If mi(EN(a,b)) > 6(b—a)
for all intervals (a, b), prove that m4(E°) = 0.
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Chapter 5

Borel measures

5.1 Lebesgue-Stieltjes-measures in R.

Lemma 5.1 If —co < a <b<+o00 and F : (a,b) — R is increasing, then

(i) for all x € [a,b) we have F(x+) = inf{F(y) |z < y},

(i) for all x € (a,b] we have F(x—) =sup{F(y) |y < z},

(iii) if a < x <y < z<b, then F(z—) < F(z) < F(z+) < F(y) < F(z—) <
F(2) < F(=),

(i) for all x € [a,b) we have F(z+) = lim,_,,4 F(y+),

(v) for all x € (a,b] we have F(z—) = lim,_,_ F(y+).

Proof: (i) Let M = inf{F(y)|z < y}. Then for every v > M there is some
t > x so that F(t) < v. Hence for all y € (z,t) we have M < F(y) < . This
says that F(z+) = M.

(ii) Similarly, let m = sup{F(y) |y < z}. Then for every v < m there is some
t < x so that v < F(t). Hence for all y € (¢,2) we have v < F(y) < m. This
says that F(z—) = m.

(iii) F(z) is an upper bound of the set {F(y)|y < =} and a lower bound of
{F(y)|« < y}. This, by (i) and (ii), implies that F(z—) < F(z) < F(z+) and,
of course, F(z—) < F(z) < F(z+). Also, if z < y < z, then F(y) is an element
of both sets {F(y) |z < y} and {F(y) |y < z}. Therefore F(y) is between the
infimum of the first, F'(z+), and the supremum of the second set, F'(z—).

(iv) By the result of (i), for every v > F(z+) there is some ¢ > x so that
F(z+) < F(t) < 7. This, combined with (iii), implies that F'(z+) < F(y+) <
for all y € (z,t). Thus, F(z+) = lim,_,4 F(y=£).

(v) By (ii), for every v < F(x—) there is some t < x so that v < F(t) < F(z—).
This, combined with (iii), implies v < F(y%) < F(z—) for all y € (¢,z). Thus,
F(z—) =limy_,, F(y=£).

Consider now ag, by with —oco < ag < by < 400 and an increasing function
F: (ap,bp) — R and define a non-negative function p acting on subintervals of

99
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(ag,bp) as follows:
p((a,b)) = F(b—) = F(a+),  p(la,b]) = F(b+) — F(a—),

p((a,b]) = F(b+) = Flat+),  p(la,b)) = F(b—) — F(a—).

The mnemonic rule is: if the end-point is included then approach it from the
outside while if the end-point is not included then approach it from the inside.

We use the collection of all open subintervals of (ag,bp) and the function
p to define, as an application of Theorem 3.2, the following outer measure on

(ao,bo):
+o00o
pi(B) =inf {3 p((a;,0)) | E C U (a;,b;), (a5,b;)  (ao, bo) for all 5},
j=1

for every E C (ag, bo).

Theorem 3.1 implies that the collection of pj-measurable sets is a o-algebra
of subsets of (ag, bp), which we denote by X, and the restriction, denoted pp,
of u}% on Y is a complete measure.

Definition 5.1 The measure up is called the Lebesgue-Stieltjes-measure
induced by the (increasing) F : (ag,by) — R.

If F(x) = « for all x € R, then p(S) = vol1(S) for all intervals S and, in
this special case, pup coincides with the 1-dimensional Lebesgue-measure m; on
R. Thus, the new measure is a generalization of Lebesgue-measure.

Following exactly the same procedure as with Lebesgue-measure, we shall
study the relation between the o-algebra Y.p and the Borel sets in (ag,bp). In
the following Lemmas 5.2 - 5.6 all intervals that appear are included in (ag, bo).

Lemma 5.2 Let P = (a,b] C (ao,bo) and a = A<t << em =0 If
Py = (¢!, ¢, then p(P) = p(P1) + -+ + p(Prm).

Proof: A telescoping sum: p(Py) + -+ p(P) = Yoimy (F(c+) — F(c714)) =
F(b+) — F(a+) = p((a, b]).

Lemma 5.3 If P, P1,..., P, are open-closed subintervals of (ag,bo), P1,..., B
are pairwise disjoint and P = Py U---U Py, then p(P) = p(P1) + - -- + p(P).

Proof: Exactly one of Py, ..., P, has the same right end-point as P. We rename
and call it P;. Then exactly one of P, ..., P,_;1 has right end-point coinciding
with the left end-point of P;. We rename and call it P,_;. We continue until
the left end-point of the last remaining subinterval, which we shall rename P,
coincides with the left end-point of P. Then the result is the same as the result
of Lemma 5.2.

Lemma 5.4 If P, Py,..., P, are open-closed subintervals of (ag,bo), P1,..., P
are pairwise disjoint and Py U---U P, C P, then p(Py) + -+ -+ p(P) < p(P).
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Proof: We know that P\ (P,U---UP,) = P{U---UP] for some pairwise disjoint
open-closed intervals P[,..., P/. By Lemma 5.3 we get p(P) = p(P1) +--- +
p(R) +p(PL) + -4 p(By) 2 p(P1) + -+ p(B).

Lemma 5.5 Suppose that P, Py, ..., P, are open-closed subintervals of (ag,bo)
and PC PLU---UP,. Then p(P) < p(P1)+ -+ p(P).

Proof: We write P = P{U---U P/ where P] = P; N P are open-closed intervals
included in P. Then write P = P{ U (P} \ P{)U---U (P/\ (P{U---UP/,)).
Each of these [ pairwise disjoint sets can be written as a finite union of pairwise
disjoint open-closed intervals: P = P{ and

P{\(P{U---UP}_)=P/U---UP],

for 2 <j <.
Lemma 5.3 (for the equality) and Lemma 5.4 (for the two inequalities) imply
l m;
p(P) = p(P)+>_ (D p(PL)
j=2 m=1
1 1
< P+ p(P) <D p(Py).
j=2 j=1
Lemma 5.6 Let Q be a closed interval and Ry, ..., R; be open subintervals of

(ao,bo). If Q C Ry U---URy, then p(Q) < p(R1) + -+ p(Ry).
Proof: Let Q = [a,b] and R; = (aj,b;) for j =1,...,l. We define for e > 0
Pe=(a—e€bl,  Pje=(ajb; ¢
We shall first prove that there is some €y > 0 so that for all € < ¢;
P.CP.U---UP..

Suppose that, for all n, the above inclusion is not true for e = % Hence, for all n
there is z,, € (a— £, b] so that z,, ¢ U'_, (a;,b;— £]. By the Bolzano-Weierstrass
theorem there is a subsequence {z,, } converging to some Z. Looking carefully
at the various inequalities, we get T € [a,b] and T ¢ Uézl(aj,bj). This is a
contradiction and the inclusion we want to prove is true for some ¢y = nio If
€ < €g, then the inclusion is still true because the left side becomes smaller while
the right side becomes larger.

Now Lemma 5.5 gives for € < ¢y that

l
F(b+) = F((a—e)+) <Y (F((b; — ©)+) — F(a;+))
j=1

and, using Lemma 5.1,

l l

p(Q) = F(b+) — Fla—) <Y (F(bj=) = Fla;+)) = Y p(R,).

Jj=1 Jj=1
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Theorem 5.1 Let F : (ag,by) — R be increasing. Then every subinterval S of
(ao,bo) is pi-measurable and pr(S) = p(S).

Proof: (a) Let Q = [a,b] C (ap, bp)-

Then p5(Q) < p((a —e,b+¢€)) = F((b+¢€)—) — F((a — €)+) for all small
enough € > 0 and, thus, p5.(Q) < F(b+) — F(a—) = p([a, b]).

For every covering @ C U;;O‘f R; by open subintervals of (ag, b), there is (by
compactness) [ so that @ C Ué-:le. Lemma 5.6 implies p(Q) < 22:1 p(R;) <
E;r:(xf p(R;). Hence p(Q) < p5(Q) and we conclude that

p(Q) = p1r(Q)

for all closed intervals @ C (ag, bo).

If P = (a,b] € (ao,bo), then up(P) < p((a,b+€)) = F((b+¢)—) — F(at)
for all small enough € > 0. Hence p5(P) < F(b+) — F(a+) = p(P).

If R = (a,b) C (ao,bo), then up(R) < p((a,b)) = p(R).

(b) Now let P = (a,b], R = (c,d) be included in (ag, by) and take P = (¢,d—¢].

We write pj(RNP) = pp((PRNP)U((d—€,d) NP)) < pp(PrNP)+
pi((d—ed) < p(PrNP)+ F(d—) — F((d — €)4) by the results of (a). The
same inequalities, with P¢ instead of P, give u5(R N P¢) < uh(Pgr N P¢) +
F(d—) — F((d — €)+). Taking the sum, we find u5 (RN P) + pup(RN P°) <
p(Pr N P) + 5 (Pr N PC) + 2[F(d—) — F((d —¢)+)].

Now write Pr N P¢ = P, U---U P, for pairwise disjoint open-closed intervals
and get p(Pg N P) + pj(Pr N P¢) < p(PR N P) + 3, iin(P;) < p(Pr 0 P) +
22:1 p(P;) = p(Pr) by the results of (a) and Lemma 5.3.

Therefore k(RN P) + pik(RNPC) < p(Pg) + 2[F(d—) — F((d — €)+)] =
F((d—e€)+) — F(ct) 4+ 2[F(d—) — F((d — €)+)] and, taking limit, pi.(RN P) +
W (RO P°) < P(d—) — F(ct) = p(R).

We proved that

1 (RN P) + (RO PY) < p(R)

for all open intervals R and open-closed intervals P which are C (ag, bp).
(c) Now consider arbitrary E C (ag,bg) with u}.(E) < +oo. Take a covering
EC U;r:"ij by open subintervals of (ag, bg) so that Zjﬁf p(R;) < uy(E) +e.
By o-subadditivity and the result of (b) we find pi(E N P) + pi(E N P°) <
725 (e (R 0 P) + pip(Ry 0 P)) < 37 p(Ry) < pip(E) + e
Taking limit: u§(E N P) + uh(E N P°) < uh(E) concluding that P € Xp.
If Q@ = [a,b] C (ag,bo), we take any {aj} in (ag, by) so that ai 1 a and, then,
Q = N;25(ak, b] € Sp. Moreover, by the results of (a), ur(Q) = pi(Q) = p(Q).
If P = (a,b] C (ag,bp), we take any {ax} in (a,b] so that ap | a and
we get that pp(P) = limy_ oo pr([ar,b]) = limg i oo(F(b+) — Flag—)) =
F(b+) — F(a+) = p(P).
If T = [a,b) C (ag,by), we take any {bi} in [a,b) so that by T b and we
get that 7 = U;>[a,by] € Sp. Moreover, pup(T) = limg— oo pir([a, by]) =
limp oo (F(bi) — F(a—)) = F(b—) — Pla—) = p(T).
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Finally, if R = (a,b) C (ao, bo), we take any {ax} and {by} in (a,b) so that
ar | a, by T band a; < b;. Then R = UZﬁ[ak,bk] € Yr. Moreover up(R) =
oo (0 by]) = Tty oo (F(bpt) — Flay—)) = F(b—)— F(a+) = p(R).

Theorem 5.2 Let F : (ag,bp) — R be increasing. Then pp is o-finite and it
is finite if and only if F' is bounded. Also, up((ao, bo)) = F(bop—) — F(ao+).

Proof: We consider any two sequences {ax} and {bx} in (ag, bo) so that ay | ao,
br T bo and a3 < by. Then (ag,by) = U;f;’ol[ak,bk] and pp([ag,br]) = F(bg+) —
F(ap—) < +oo for all k. Hence up is o-finite.

By continuity of pp from below, F(bop—) — F(ao+) = limg— 400 (F(bp+) —
Flag—)) = limg.yoo - ([ax, b)) = (a0, bo)).

Hence, if pp is finite, then F'(bp—) < 400 and F(ap+) < +oo. This im-
plies that all values of F' lie in the bounded interval [F(ag+), F(bp—)] and F is
bounded. Conversely, if F' is bounded, then the limits F(ag+), F'(bg—) are finite
and, by the previous calculation, we get up((ag, b)) = F(bg—)— F(ag+) < +oo.

It is easy to prove that the collection of all subintervals of (ag,bo) generates
the o-algebra of all Borel sets in (ag,bg). Indeed, let £ be the collection of all
intervals in R and F be the collection of all subintervals of (ag,bp). It is clear
that F = &1(ap, bo) and Propositions 1.14 and 1.15 imply that

Bay,bo) = Brl(ao0, bo) = X(E)](ao, bo) = X(F).

Theorem 5.3 Let F : (ag,by) — R be increasing. Then all Borel sets in
(ag,bo) belong to Xp.

Proof: Theorem 5.1 implies that the collection F of all subintervals of (ag, bp) is
included in ¥ r. By the discussion of the previous paragraph, we conclude that
B(aoybo) = Z(}—) CYp.

Theorem 5.4 Let F : (ag,bp) — R be increasing. Then for every E C (ag,bp)
we have

(i) E € X if and only if there is A C (ag,bg), a countable intersection of open
sets, so that E C A and pi(A\ E) = 0.

(ii) E € g if and only if there B, a countable union of compact sets, so that
B CE and u},(E\ B) =0.

Proof: The proof is exactly the same as the proof of the similar Theorem 4.4.
Only the obvious changes have to be made: m,, changes to ur and m}, to uj,
R™ changes to (ag, by), vol, changes to p and L, changes to Xp.

Therefore every set in Xp is, except from a pp-null set, equal to a Borel set.

Theorem 5.5 Let F': (ag,by) — R be increasing. Then

(i) pp is the only measure on ((ao, bo), B(ag,by)) with pr((a,b]) = F(b+)—F(a+)
for all intervals (a,b] C (ag, bo).

(i1) ((ao,bo),ZF,uF) is the completion of ((ao,bo),B(ao,bo),,up).
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Proof: The proof is similar to the proof of Theorem 4.5. Only the obvious
notational modifications are needed.

It should be observed that the pp measure of a set {2} consisting of a single
point = € (ag,bg) is equal to pup({z}) = F(z+) — F(z—), the jump of F at x.
In other words, the pp-measure of a one-point-set is positive if and only if F' is
discontinuous there. Also, observe that the pp-measure of an open interval is 0
if and only if F' is constant in this interval.

It is very common in practice to consider the increasing function F' with the
extra property of being continuous from the right. In this case the measure of
an open-closed interval takes the simpler form

pr((a,b]) = F(b) — F(a).

This is not a serious restriction. Given any increasing F' : (ag,by) — R we
may define the function Fy : (ag,bo) — R by the formula Fy(z) = F(z+) for all
x € (ap, bp) and it is immediate from Lemma 5.1 that Fp is increasing, continuous
from the right, i.e. Fo(z+) = Fo(x) for all z, and Fy(z+) = F(z+), Fo(z—) =
F(xz—) for all . This implies that Fy, F' have the same jump at every x and,
in particular, they have the same continuity points. Now it is obvious that
Fy, F induce the same Lebesgue-Stieltjes-measure on (ag, bg), simply because
the corresponding functions p(S) (from which the construction of the measures
Ly, pr starts) have the same values at every interval S.

Summarising, given any increasing function there is another increasing func-
tion which is continuous from the right so that the Lebesgue-Stieltjes-measures
induced by the two functions are equal.

5.2 Borel measures.

Definition 5.2 Let X be a topological space and (X, X, 1) be a measure space.
The measure 1 is called a Borel measure on X if Bx C X, i.e. if all Borel
sets in X are in 2.

The Borel measure p is called locally finite if for every x € X there is
some open neighborhood U, of x (i.e. an open set containing x) such that
w(Uy) < +o0.

Observe that, for u to be a Borel measure, it is enough to have that all open
sets or all closed sets are in 3. This is because Bx is generated by the collections
of all open or all closed sets and because ¥ is a g-algebra.

Examples

The Lebesgue-measure on R™ and, more generally, the Lebesgue-Stieltjes mea-
sure on any generalized interval (ag,bg) (induced by any increasing function)
are locally finite Borel measures. In fact, the content of the following theo-
rem is that the only locally finite Borel measures on (ag,by) are exactly the
Lebesgue-Stieltjes measures.
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Lemma 5.7 Let X be a topological space and v a Borel measure on X. If u is
locally finite, then pu(K) < 400 for every compact K C X.

If w is a locally finite Borel measure on R™, then u(M) < +oo for every
bounded M C R™.

Proof: We take for every x € K an open neighborhood U, of x so that u(U,) <
+o00. Since K C UgegU, and K is compact, there are x1,...,x, so that
K CUp_ Uy, Hence, u(K) <3201 i(Usy,) < +00. o

If M C R"™ is bounded, then M is compact and then u(M) < pu(M) < +oo.

Theorem 5.6 Let —oo < ag < by < 400 and ¢o € (ag, by). For every locally
finite measure p on (ag,by) there is a unique increasing and continuous from
the right I : (ag,bo) — R so that p = pp on Bgy ) and F(co) = 0. For any
other increasing and continuous from the right G : (ag,bg) — R, it is true that
w = pqg if and only if G differs from F by a constant.

Proof: Define the function

_ J ul(co,]), ifco <@ < by,
Fle) = {_M((%Co]), ifap <z < ¢g.

By Lemma 5.7, F is real valued and it is clear that F is increasing, by the
monotonicity of u. Now take any decreasing sequence {x,} so that =, | . If
¢o < z, by continuity of u from above, lim,,, 4 oo F'(z,) = lim,,— 1 o0 p((co, zn]) =
w((co, z]) = F(z). Also, if z < ¢g, then z,, < ¢ for large n, and, by continuity of
p from below, limy, 400 F(2y,) = — limy, 400 (20, co]) = —p((z, co]) = F(z).
Therefore F' is continuous from the right at every x.

If we compare p and the induced p at the intervals (a, b], we get upr((a,b]) =
F(b)—F(a) = p((a,b]), where the second equality becomes trivial by considering
cases. Theorem 5.5 implies that ur = p on By, p,)-

If G is increasing, continuous from the right with ug = (= pr) on Ba, b))
then G(z) — G(co) = pa((co,2]) = pr((co,z]) = F(z) — F(Co) or all z > co
and, similarly, G(co) — G(z) = pa((z, co]) = pr((x,co)) = F(ep) — F(z) for all
x < ¢g. Therefore F, G differ by a constant. Hence, if F/(¢y) = 0 = G(cp), then
F, G are equal on (ag, bp).

If the locally finite Borel measure p on (ag, bo) satisfies the u((aq, co]) < +o0,
then we may make a different choice for F' than the one in Theorem 5.6. Add
the constant p((ag, co]) to the function of the theorem and get the function

F(z) = p((ao, z]), x € (ag, bo).

This last function is called the cumulative distribution function of u.

A central notion related to Borel measures is the notion of regularity, and
this is because of the need to replace the general Borel set (a somewhat obscure
object) by open or closed sets.

Let E be a Borel subset in a topological space X and p a Borel measure on
X. Tt is clear that p(K) < p(E) < p(U) for all K compact and U open with
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K C ECU. Hence
sup{u(K) | K compact C E} < u(E) <inf{u(U)|U open D E}.

Definition 5.3 Let X be a topological space and p a Borel measure on X. Then
w is called regular if the following are true for every Borel set E in X:

(i) W(E) = inf{u(U) | U open 2 B},

(1) p(E) = sup{p(K) | K compact C E}.

Therefore, p is regular if the measure of every Borel set can be approximated
from above by the measures of larger open sets and from below by the measures
of smaller compact sets.

Proposition 5.1 Let O be any open set in R™. Then there is an increasing
sequence { K, } of compact subsets of O so that int(K,,) 1 O and, hence, K, T
O also.

Proof: Define the sets
1
Ky ={x€O]|z|] <mand |y — x| > — for all y ¢ O},
m

where |22 = 22 + .- + 22 for all x = (z1,...,2,).

The set K, is bounded, since |z| < m for all z € K,,.

If {z;} is a sequence in K, converging to some z, then from |z;| < m for
all j we get |z| < m, and from |y — z;| > L for all j and for all y ¢ O we get
ly —x| > L forall y ¢ O. Thus z € K, and K, is closed.

Thus K,, is a compact subset of O and, clearly, K,,, C K,,,+1 C O for all m.
Hence, int(K,,) C int(K,,4+1 for every m.

Now take any x € O and a small enough ball {y | |y—z| < 2¢} C O. Consider
M so large that M > max(|z|+¢€,1). It is trivial to see that B(z;e) € Ky and
thus © € int(Kys). Therefore int(K,,) T O.

Theorem 5.7 Let X be a topological space with the properties that every open
set in X is the union of an increasing sequence of compact sets and that there
is an increasing sequence of compact sets whose interiors cover X .

Suppose that p is a locally finite Borel measure on X. Then:
(i) For every Borel set E and every € > 0 there is an open U and a closed F' so
that F CE CU and p(U\ E),u(E\ F) < e. If also u(E) < +oo, then F can
be taken compact.
(ii) For every Borel set E in X there is A, a countable intersection of open sets,
and B, a countable union of compact sets, so that BC E C A and u(A\ E) =
w(E\ B) =0.
(i) p is regular.

Proof: (a) Suppose that pu(X) < +oo.

Consider the collection S of all Borel sets E in X with the property expressed
in (i), namely that for every e > 0 there is an open U and a closed F so that
FCECUand p(U\E),u(E\F) <e.
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Take any open set O C X and arbitrary € > 0. If we consider U = O, then
p(U\ O) =0 < e. By assumption there is a sequence {K,,} of compact sets
so that K, T O. Therefore, O \ K,, | 0 and, since u(O \ K1) < pu(X) < +oo,
continuity from above implies that lim,, 4. (O \ K,,) = 0. Therefore there
is some m so that, if F = K,,, p(O\ F) < e.

Thus all open sets belong to S.

If E € § and ¢ > 0 is arbitrary, we find an open U and a closed F' so
that F C E C U and (U \ E),u(E \ F) < e. Then F¢ is open, U® is closed,
UeCE°CFCand u(Fe\E°)=u(E\F)<eand p(E°\U°) =pu(U\ E) <e
This implies that E€ € S.

Now, take Ey,Fs,... € S and F = U;':OTEJ-. For € > 0 and each E; take
open Uj; and closed Fj so that F; C E; C U and pu(U; \ Ej), w(E; \ Fy) < 57.
Define B = Uj':oi’Fj and the open U = U;‘ZOTUj so that B C E C U. Then
U\ E CU/%(U;\ E;) and E\ B C U/%(E; \ Fj). This implies u(U \ E) <
Zj:{ wU; \ Ej) < j:(xf 57 = € and, similarly, u(E\ B) < e. The problem now
is that B is not necessarily closed. Consider the closed sets I} = Fy U--- U F},
so that [} C Fj., for all j. Then E\ Fj,; C E\ F] for all j and, since
p(E\ F{) < p(X) < 400, continuity from below implies lim;_, ;o0 u(E \ Fj) =
(N5 (E\F})) = p(E\ B) < €. Therefore there is some j so that u(E\ F}) < e.
The inclusion F; C E is clearly true.

We conclude that E = U;“:"T € § and S is a g-algebra.

Since S contains all open sets, we have that Bx C S and finish the proof of
the first statement of (i) in the special case pu(X) < 4o0.

(b) Now, consider the general case, and take any Borel set F in X which is
included in some compact set K C X. For each z € K we take an open
neighborhood U, of z with u(U,) < 4+00. By the compactness of K, there exist
Z1,...,Tn € K so that K C U}_,Us,. We form the open set G = U}_,U,, and
have that

ECaG, w(G) < +o0.

We next consider the restriction pg of p on the G, which is defined by the
formula

ne(A) = p(ANG)

for all Borel sets A in X. It is clear that pg is a Borel measure on X which is
finite, since ug(X) = pu(G) < +o0.

By (a), for every e > 0 there is an open U and a closed F so that F C E C U
and pg(U \ E),ug(E\ F) < e. Since E C G, we get u((GNU)\ E) =
WGN(U\E)) = pno(U\E) < e and p(E\ F) = p(GN(E\F)) = p(E\ F) < €.

Therefore, if we consider the open set U' = GNU, we get F C E C U’ and
w(U'\ E),u(E\ F) < € and the first statement of (i) is now proved with no
restriction on p(X) but only for Borel sets in X which are included in compact
subsets of X.

(c) We take an increasing sequence {K,,} of compact sets so that int(K,,) T X.
For any Borel set E in X we consider the sets F1 = ENK; and F,, = EN
(Km \ Kyn—1) for all m > 2 and we have that E = U} E,,. Since E,, C K,,,
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(b) implies that for each m and every e > 0 there is an open U,, and a closed
Fy, so that Fy, C Eyy C Uy, and (U \ Ern ), (B \ Fi) < 5% . Now define the
open U = U U, and the closed (!, why?) F = U} F,, so that F C E C U.
As in the proof of (a), we easily get u(U \ E), u(E\ F) < e.

This concludes the proof of the first statement of (i).
(d) Let u(F) < +oo. Take a closed F so that F C E and u(E\ F) < ¢,
and consider the compact sets K,, of part (¢). Then the sets F,,, = F N K,
are compact and F,, T F. Therefore, E\ F,,, | E\ F and by continuity of p
from above, u(E \ F,,) — p(E \ F). Thus there is a large enough m so that
w(E \ Fy,) < e. This proves the second statement of (i).
(e) Take open U; and closed Fj so that F; C E C U; and u(U;\E), u(E\Fj) < %
Define A = ﬂj':"i’Uj and B = U;r:(XfFj so that B C E C A. Now for all j we
have u(A\ E) < u(U; \ E) < % and u(E\ B) < w(E\ F;) < % Therefore
p(A\ E) = w(E\ B) = 0. We define the compact sets K;,, = F; N K, and
observe that B = U(; m)enxNKjm. This is the proof of (ii).
(f) If u(F) = o0, it is clear that u(F) = inf{u(U)|U open and E C U}.
Also, from (ii), there is some B = U} K/  where all K/, are compact, so
that B C E and u(B) = p(E) = 4oo. Consider the compact sets K,, =
K{U---UK], which satisfy K,, T B. Then u(K,,) = u(B) = u(E) and thus
sup{u(K) | K compact and K C E} = u(E).

If u(E) < +oo, then, from (a), for every € > 0 there is a compact K and
an open U so that K C EF C U and pu(U \ E),u(E \ K) < e. This implies
w(E) —e < u(K) and p(U) < u(E) + € and thus the proof of (iii) is complete.

Examples

1. Proposition 5.1 implies that the euclidean space R satisfies the assumptions
of Theorem 5.7. Therefore, every locally finite Borel measure on R™ is regular.
2. Let X be an open subset of R™ with the subspace topology and we consider
any O C X which is open in X. Then O is open in R™ and, by Proposition 5.1,
there is an increasing sequence {K,,} of compact sets so that intgn (K,,) T O.
The set intrn (K, ) is the interior of K, with respect to R™ but, since K,,, C X,
it coincides with the interior intx (K,,) of K,, with respect to X. Theorem 5.7
implies again that every locally finite Borel measure on X is regular.

3. Let X be an closed subset of R™ with the subspace topology and take any
O C X which is open in X. Then O = O’ N X for some O’ C R™ which is open
in R™ and, by Proposition 5.1, there is an increasing sequence { K, } of compact
subsets of O’ so that intg~(K],) T O’, where the set intrn (K,) is the interior
of K/, with respect to R”. We set K,, = K/, N X and have that each K,, is a
compact subset of O. Moreover, intx (K,,) = intrn (K],,) N X for every m and,
thus intx (K,,) T O. Theorem 5.7 implies, now, that every locally finite Borel
measure on X is regular.
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5.3 Exercises.

1.

If —co<zi <z < - <oy <+4ooand 0 < Aq,..., Ay < 400, then find
(and draw) the cumulative distribution function of u = Z]kvzl AkOz, -

The Cantor’s measure.

Consider the Cantor’s function f extended to R by f(x) =0 for all z < 0

and f(xz) =1 for all z > 1. Then f: R — [0,1] is increasing, continuous

and bounded.

(i) f is the cumulative distribution function of p.

(ii) Prove that p(C) = pus(R) = 1.

(iii) Each one of the 2™ subintervals of I,, (look at the construction of C)
1

has pp-measure equal to 5.

. Let p be a locally finite Borel measure on R such that u((—o00,0]) < +o0.

Prove that there is a unique f : R — R increasing and continuous from
the right so that y = py and f(—oo0) = 0. Which is this function?

. Linear combinations of reqular Borel measures.

If p,p1, o are regular Borel measures on the topological space X and
A € [0, 400), prove that A and pq + po are regular Borel measures on X .

. Prove that every locally finite Borel measure on R" is o-finite.

The support of a reqular Borel measure.

Let p be a regular Borel measure on the topological space X. A point
x € X is called a support point for u if u(U,) > 0 for every open
neighborhood U, of x. The set

supp(p) = {x € X |z is a support point for u}

is called the support of .

(i) Prove that supp(u) is a closed set in X.

(ii) Prove that p(K) = 0 for all compact sets K C (supp(u))©.

(iii) Using the regularity of u, prove that p((supp(,u)c)) =0.

(iv) Prove that (supp(u))© is the largest open set in X which is p-null.

If f is the Cantor’s function of exercise 5.3.2, prove that the support
(exercise 5.3.6) of py is the Cantor’s set C.

. Supports of Lebesgue-Stieltjes-measures.

Let FF: R — R be any increasing function. Prove that the complement
of the support (exercise 5.3.6) of the measure pp is the union of all open
intervals on each of which F' is constant.

. Let a : R — [0, +00] induce the point-mass-distribution ¢ on (R, P(R)).

Then p is a Borel measure on R.
(i) Prove that y is locally finite if and only if }© ,_ o pas < 400 for all
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R >0.
(ii) In particular, prove that, if p is locally finite, then {x € R|a, > 0} is
countable.

Restrictions of reqular Borel measures.

Let p be a o-finite regular Borel measure on the topological space X and
Y be a Borel subset of X. Prove that the restriction py is a regular Borel
measure on X.

Continuous regular Borel measures.

Let p be a regular Borel measure on the topological space X so that
u({xz}) =0 for all z € X. A measure satisfying this last property is called
continuous. Prove that for every Borel set A in X with 0 < p(A4) < 400
and every t € (0, u(A)) there is some Borel set B in X so that B C A and

w(B) =t.

Let X be a separable, complete metric space and p be a Borel measure
on X so that u(X) = 1. Prove that there is some B, a countable union of
compact subsets of X, so that u(B) = 1.



Chapter 6

Measurable functions

6.1 Measurability.

Definition 6.1 Let (X,X) and (Y,X') be measurable spaces and f: X — Y.
We say that f is (3,%')—measurable if f~1(E) € X for all E € Y.

Example

A constant function is measurable. In fact, let (X, %) and (Y, X’) be mea-
surable spaces and f(z) = yo € Y for all x € X. Take arbitrary E € X'. If
yo € E, then f~Y(E) =X € %. If yo ¢ E, then f~'(E) =0 € 3.

Proposition 6.1 Let (X,X) and (Y,Y') measurable spaces and f : X — Y.
Suppose that € is a collection of subsets of Y so that ©(E) =X'. If f~1(E) e X
for all E € &, then f is (X,%)—measurable.

Proof: We consider the collection S = {E CY | f~1(E) € ©}.

Since f~1(0) = 0 € %, it is clear that () € S.

If E €S8, then f71(E°) = (f~1(E))¢ € ¥ and thus E° € S.

If E1,FE5,... € S, then f_l(U;r:Oij) = U;r:‘xf ~1(E;) € %, implying that
Uj:o?Ej €S.

Therefore S is a g-algebra of subsets of Y. &£ is, by hypothesis, included in
S and, thus, X' = 3(€) € S. This concludes the proof.

Proposition 6.2 Let X,Y be topological spaces and f : X — Y be continuous
on X. Then f is (Bx,By)—measurable.

Proof: Let £ be the collection of all open subsets of Y. Then, by continuity,
f~Y(B) is an open and, hence, Borel subset of X for all E € £. Since ¥(€) = By,
Proposition 6.1 implies that f is (Bx, By )—measurable.

6.2 Restriction and gluing.

If f: X =Y and A C X, then the function f4 : A — Y, defined by fa(z) =
f(x) for all z € A, is the usual restriction of f on A.

71
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Lemma 6.1 Let ¥ be a o-algebra of subsets of X and A € ¥ and consider
Y4={ECA|E€X}. Then X4 is a o-algebra of subsets of A.

Proof: 1t is clear that § € X 4.

If F€Xs, then EC Aand E € ¥ and hence A\E C Aand A\ F € %.
Thus A\E € X4

IfE; € ¥4 forall j,then E; C Aand E; € ¥ for all j. Therefore U;LSEJ- cA
and U;Loij € ¥ and thus U;':Oij €Xa.

Definition 6.2 Let X be a o-algebra of subsets of X and A € . The o-algebra
34 of subsets of A, which was defined in the statement of Lemma 6.1, is called
the restriction of ¥ on A.

Proposition 6.3 Let (X,Y), (Y,X') be measurable spaces and f : X — Y.
Suppose Ay, ..., A, €3 are pairwise disjoint with Ay U---U A, = X.

[ is (X, %) —measurable if and only if fa; is (Xa,,%")—measurable for all
7=1,...,n.

Proof: Let f be (X, Y")—measurable. For all E € ¥’ we have f;jl(E) =f~YE)N
Aj € 4, because the set f~!(E)NA; belongs to ¥ and is included in A;. Hence
fa; is (¥4,,%")—measurable for all j.

Now, let fa, be (X4,,%")—measurable for all j. For every £ € ¥’ we have
that f~H(E)N A, = fgjl(E) € X4, and, hence, f~Y(E)N A; € X for all j.
Therefore f~H(E) = (f~H(E)NA)U---U(f~L(E)NA,) € X, implying that f
is (X, ¥')—measurable.

In a free language: measurability of a function separately on complementary
(measurable) pieces of the space is equivalent to measurability on the whole space.

There are two operations on measurable functions that are taken care of
by Proposition 6.3. One is the restriction of a function f : X — Y on some
A C X and the other is the gluing of functions f4, : A; — Y to form a single
f X — Y, whenever the finitely many A;’s are pairwise disjoint and cover
X. The rules are: restriction of measurable functions on measurable sets are
measurable and gluing of measurable functions defined on measurable subsets
results to a measurable function.

6.3 Functions with arithmetical values.

Definition 6.3 Let (X,Y) be measurable space and f : X — R or R or C or
C. We say f is X—measurable if it is (3, Br or By or B or Bg)—measurable,
respectively.

In the particular case when (X,X) is (R™, Brn) or (R™, L,), then we use

the term Borel-measurable or, respectively, Lebesgue-measurable for f.

If f: X — R, then it is also true that f : X — R. Thus, according to the
definition we have given, there might be a conflict between the two meanings
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of ¥—measurability of f. But, actually, there is no such conflict. Suppose, for
example, that f is assumed (3, Br)—measurable. If £ € By, then ENR € Br
and, thus, f~1(E) = f~*(ENR) € X. Hence f is (3, Bg)—measurable. Let,
conversely, f be (X, Bg)—measurable. If E € Br, then E € Bg and, thus,
fYE) € . Hence f is (X, Br)—measurable.

The same question arises when f : X — C, because it is then also true that
f: X — C. Exactly as before, we may prove that f is (X, Bc)—measurable if
and only if it is (3, Bg)—measurable and there is no conflict in the definition.

Proposition 6.4 Let (X,X) be measurable space and f : X — R™. Let, for
eachj=1,...,n, f; : X — R denote the j-th component function of f. Namely,
f@)=(fi(x),..., fu(x)) for allz € X.

Then f is (X, Brn)—measurable if and only if every f; is ¥—measurable.

Proof: Let f be (X, Brr)—measurable. For all intervals (a, b] we have

f;l((a’bb:f_l(RX“~><RX(a’b]xRx...XR)

which belongs to ¥. Since the collection of all (a, b] generates Br, Proposition
6.1 implies that f; is ¥ —measurable.
Now let every f; be ¥ —measurable. Then

f_l((al’bl} XX (ambn]) = f{l((al’bl]) n--- mfrjl((anvbn])

which is an element of ¥. The collection of all open-closed intervals generates
Br~ and Proposition 6.1, again, implies that f is (3, Bg»)— measurable.

In a free language: measurability of a vector function is equivalent to mea-
surability of all component functions.

The next two results give simple criteria for measurability of real or complex
valued functions.

Proposition 6.5 Let (X,X) be measurable space and f : X — R. Then [ is
Y —measurable if and only if f~((a,+00)) € ¥ for all a € R.

Proof: Since (a,+00) € Br, one direction is trivial.

If f~((a,+00)) € ¥ for all a € R, then f~1((a,b]) = f~1((a,+)) \
F7Y((b,+00)) € X for all (a, b]. Now the collection of all intervals (a, b] generates
Br and Proposition 6.1 implies that f is ¥ —measurable.

Of course, in the statement of Proposition 6.5 one may replace the intervals
(a,4+00) by the intervals [a, +00) or (—o00,b) or (—oo,b].

If f: X — C, then the functions R(f),3(f) : X — R are defined by
R(f)(z) = R(f(z)) and S(f)(z) = S(f(x)) for all z € X and they are called
the real part and the imaginary part of f, respectively.

Proposition 6.6 Let (X,X) be measurable space and f : X — C. Then f is
Y —measurable if and only if both R(f) and S(f) are X—measurable.
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Proof: An immediate application of Proposition 6.4.

The next two results investigate extended-real or extended-complex valued
functions.

Proposition 6.7 Let (X,Y) be measurable space and f : X — R. The follow-
g are equivalent.

(i) f is X—measurable.

(ii) f71({+00}), fLH(R) € ¥ and, if A= f~Y(R), the function fa : A — R is
Y 4—measurable.

(iii) f~1((a,+oc]) € X for all a € R.

Proof: 1t is trivial that (i) implies (iii), since (a, +oo] € By for all a € R.

Assume (ii) and consider B = f~1({+o0}) € ¥ and C = f~}({-o0}) =
(AU B)° € 3. The restrictions fp = +o00 and fo = —oo are constants and
hence are, respectively, ¥ p—measurable and ¥c—measurable. Proposition 6.3
implies that f is ¥—measurable and thus (ii) implies (i).

Now assume (iii). Then f~'({+o0}) = N> f~1((n,+oo]) € ¥ and then
fH(a,40)) = f~H((a,+]) \ f71({+00}) € X for all a € R. Moreover,
FHR) = U f~((—n, +00)) € X. For all (a, +00) we have f;'((a,+00)) =
f~Y((a,+00)) € L4, because the last set belongs to ¥ and is included in A.
Proposition 6.5 implies that f4 is ¥ 4—measurable and (ii) is now proved.

Proposition 6.8 Let (X,Y) be measurable space and f : X — C. The follow-
ing are equivalent.

(i) f is X—measurable.
(ii) f~1(C) € £ and, if A= f~1(C), the fa: A — C is ¥ a—measurable.

Proof: Assume (ii) and consider B = f~1({oo}) = (f~1(C))¢ € X. The restric-
tion fp is constant co and hence ¥ p—measurable. Proposition 6.3 implies that
f is ¥—measurable. Thus (ii) implies (i).

Now assume (i). Then A = f~!(C) € ¥ since C € Bg. Proposition 6.3
implies that f4 is ¥4 —measurable and (i) implies (ii).

6.4 Composition.
Proposition 6.9 Let (X,Y), (Y,Y), (Z,%") be measurable spaces and let f :

X =Y, g:Y > Z If fis (B,%)—measurable and g is (X', X" )—measurable,
then go f : X — Z is (X, X")—measurable.

Proof: For all E € X" we have (go f)"Y(E) = f~'(¢7'(E)) € %, because
g Y E)eY.

Hence: composition of measurable functions is measurable.
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6.5 Sums and products.

The next result is: sums and products of real or complex valued measurable
functions are measurable functions.

Proposition 6.10 Let (X, X)) be a measurable space and f,g: X — R or C be
Y—measurable. Then f + g, fg are X—measurable.

Proof: (a) We consider H : X — R? by the formula H(z) = (f(x), g(z)) for all
x € X. Proposition 6.4 implies that H is (X, Brz)—measurable. Now consider
¢,7 : R? — R by the formulas ¢(y, z) = y+2 and ¥(y, 2) = yz. These functions
are continuous and Proposition 6.2 implies that they are (Bgrz, Br)—measurable.
Therefore the compositions ¢ o H,9 o H : X — R are Y —measurable. But
(poH)(x) = f(x) +9g(z) = (f +9)(x) and (Y o H)(z) = f(z)g(z) = (fg)(x) for
all x € X and we conclude that f+¢ = ¢oH and fg = ypo H are X —measurable.
(b) In the case f,g: X — C we consider R(f), 3(f), R(g9),S(g) : X — R, which,
by Proposition 6.6, are all ¥ —measurable. Then, part (a) implies that (f+g¢g) =
R(f) +R(g), S(f +9) = S(f) +S(g), R(fg) = R(f)R(g) — S(f)S(9),S(fg) =
R(H)S(g) + S(f)R(g) are all X—measurable. Proposition 6.6 again, gives that
f+g, fg are ¥—measurable.

If we want to extend the previous results to functions with infinite values,
we must be more careful.

The sums (+00) + (—0o0), (—o0) + (+00) are not defined in R and neither is
00 + oo defined in C. Hence, when we add f,g: X — R or C, we must agree
on how to treat the summation on, respectively, the set B = {z € X | f(x) =
+00,g(z) = —o0 or f(x) = —00,g(x) = +oo} or the set B = {x € X | f(z) =
00, g(x) = co}. There are two standard ways to do this. One is to ignore the
bad set and consider f 4+ g defined on B¢ C X, on which it is naturally defined.
The other way is to choose some appropriate h defined on B and define f4+g = h
on B. The usual choice for h is some constant, e.g h = 0.

Proposition 6.11 Let (X,X) be a measurable space and f,g : X — R be
Y —measurable. Then the set

B ={rec X|f(x)=+o0,9(x) = —o0 or f(z) = —00, g(x) = +o0}

belongs to X. o
(i) The function f + g : B¢ — R is ¥ gc—measurable.
(ii) If h : B — R is X g—measurable and we define

7+ o)) = { i) T Am e

then f+¢g: X — R is Y—measurable.
Similar results hold if f,g: X — C and B={z € X | f(x) = 00, g(x) = c0}.

Proof: We have
B=(f""({+oeh) ng ({—oc})) J (f " ({=0c}) N g~ ({+00})) € =.
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(i) Consider the sets A = {z € X | f(z),9(z) € R}, C1 = {z € X|f(z) =
+00,g9(x) # —o0 or f(x) # —o0,g(x) = 400} and Cy = {z € X | f(z) =
—00,g(x) # oo or f(x) # 4o00,g9(x) = —oc}. It is clear that A,C1,Cs € 3,
that B = AU C1 U Cs and that the three sets are pairwise disjoint.

The restriction of f+ g on A is the sum of the real valued fa,g4. By Propo-
sition 6.3, both f4, g4 are 3 4—measurable and, by Proposition 6.10, (f+¢)a =
fa+ ga is ¥ a—measurable. The restriction (f + g)¢, is constant +oo, and is
thus X ¢, —measurable. Also the restriction (f+g)c, = —o0 is X, —measurable.
Proposition 6.3 implies that f + g : B® — R is ¥ gc—measurable.

(ii) This is immediate after the result of (i) and Proposition 6.3.

The case f,g: X — C is similar, if not simpler.

For multiplication we make the following
Convention. (£00)-0=0-(+o0)=0in R andoo-0=0-00 =0 in C.

Thus, multiplication is always defined and we may state that: the product
of measurable functions is measurable.

Proposition 6.12 Let (X,Y) be a measurable space and f,g: X — R or C be
Y—measurable. Then the function fg is X—measurable.

Proof: Let f,g: X — R.

Consider the sets A = {z € X|f(x),9(z) € R}, C1 = {&x € X | f(2)
+00,g9(x) > 0or f(z) = —o0,9(x) < Oor f(z) > 0,9(z) = +o0 or f(z)
0,g(z) = —o0}, Cs = {o € X | f(z) = —o0,g(z) > O or f(z) = +o0,g(x)
0or f(x) > 0,g9(z) = —cc or f(z) < 0,9(z) = +oo} and D = {z € X | f(x)
+00,g9(x) =0 or f(x) = 0,g(x) = oo}. These four sets are pairwise disjoint,
their union is X and they all belong to X.

The restriction of fg on A is equal to the product of the real valued fa,ga4,
which, by Propositions 6.3 and 6.10, is 3 4 —measurable. The restriction (fg)c,
is constant +oo and, hence, Y, —measurable. Similarly, (fg)c, = —oo is
Y, —measurable. Finally, (fg)p = 0 is ¥p—measurable.

Proposition 6.3 implies now that fg is X —measurable.

If f,g: X — C, the proof is similar and slightly simpler.

A A

6.6 Absolute value and signum.

The action of the absolute value on infinities is: | + oo| = | — 00| = 400 and
|oo| = +o0.

Proposition 6.13 Let (X,X) be a measurable space and f : X — R or C be
Y —measurable. Then the function |f]: X — [0, +o0] is Z—measurable.

Proof: Let f : X — R. The function | -| : R — [0, +00] is continuous and,
hence, (Bg, Bg)—measurable. Therefore, |f|, the composition of |- | and f, is
Y —measurable.

The same proof applies in the case f : X — C.
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Definition 6.4 For cvery z € C we define

g e £0,
sign(z) =4 0, ifz=0,

00, if z = o0.

If we denote C* = C \ {0,00}, then the restriction signg- : C* — C is
continuous. This implies that, for every Borel set F in C, the set signal (E)
is a Borel set contained in C*. The restriction signggy is constant 0 and the

restriction sign. is constant co. Therefore, for every Borel set £ in C, the sets
signgol} (E),szgnfolo}(E) are Borel sets. Altogether, sign™(E) = signgt(E) U
sign{_ol}(E) U sign{_olo}(E) is a Borel set in C. This means that sign : C — C is
(Bg, Bg)—measurable.

All this applies in the same way to the function sign : R — R with the

simple formula
1, if 0 < x < +o0,
sign(z) = { -1, if —oo <z <0,
0, if z =0.
Hence sign : R — R is (Bg, Bg)—measurable.
For all z € C we may write
z = sign(z) - |z]
and this is called the polar decomposition of z.

Proposition 6.14 Let (X,X) be a measurable space and f : X — R or C be
Y —measurable. Then the function sign(f) is X—measurable.

Proof: If f : X — R, then sign(f) is the composition of sign : R — ﬁjnd f
and the result is clear by Proposition 6.9. The same applies if f: X — C.

6.7 Maximum and minimum.

Proposition 6.15 Let (X,X) be measurable space and f1,...,fn: X — R be
Y —measurable. Then the functions max(fi,..., fn),min(f1,...,fn) : X = R
are Y—measurable.

Proof: If h = max(fi,..., fn), then for all @ € R we have h~!((a, +]) =
U};lf;l((a,—i—oo]) € ¥. Proposition 6.7 implies that h is ¥ —measurable and
from min(f1,..., fn) = —max(—fi,..., —fn) we see that min(f,..., f,) is also
Y —measurable.

The next result is about comparison of measurable functions.

Proposition 6.16 Let (X,Y) be a measurable space and f,g : X — R be
Y—measurable. Then {x € X | f(x) = g(x)},{r € X| f(x) < g(x)} € .
If f,g: X — C is X—measurable, then {x € X | f(x) = g(x)} € X.
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Proof: Consider the set A = {x € X | f(z),9(xz) € R} € . Then the functions
fa,94 are ¥ 4—measurable and thus fa4 — ga is X 4—measurable. Hence the

sets {z € Al f(z) = g(x)} = (fa —ga)"'({0}) and {z € A| f(z) < g(x)} =
(fa — ga) t((—00,0)) belong to ¥ 4. This, of course, means that these sets
belong to ¥ (and that they are subsets of A).

We can obviously write {z € X | f(z) = g(z)} = {z € A| f(x) = g(x)} U
(fTr{—occh) Ng M ({—ooh)) U (f 1 ({+00}) N g ({+o0})) € . In a similar
manner, {z € X|[f(z) < g(2)} = {z € A[f(z) < g(x)}U(f'({-00}) N
97 (=00, +00])) U (£~ ([=00, +00)) N g~* ({+00})) € 2.

The case of f,g: X — C and of {x € X | f(z) = g(z)} is even simpler.

6.8 Truncation.

There are many possible truncations of a function.
Definition 6.5 Let f: X — R and consider o, 3 € R with a < 3. We define
f@), ifa<flz)<p,
Q@) =2a,  iffz) <a,
B, if B<f(z).
We write fP) instead of f((flo) and f(o) instead of f((c—:)oo).
The functions f((f)),f(ﬂ),f(a) are called truncations of f.

Proposition 6.17 Let (X,X) be a measurable space and f : X — R be a

Y—measurable function. Then all truncations f((f)) are Y—measurable.

Proof: The proof is obvious after the formula f((f )) = min (max( fra), ﬂ).

An important role is played by the following special truncations.

Definition 6.6 Let f: X — R. The f*: X — [0, +00] and f~ : X — [0, +o0]
defined by the formulas

Cff@). 0<f@), . . [0 if0< f(x),
f+(”3)‘{0, iff <o, 1 (x)_{—f(w% if f(z) <0,

are called, respectively, the positive part and the negative part of f.

It is clear that f+ = Joyand f7 = —f©, Hence if ¥ is a o-algebra of subsets
of X and f is ¥—measurable, then both f™ and f~ are ¥—measurable. It is
also trivial to see that at every z € X either f*(z) =0 or f~(z) =0 and that

frrf = ==

There is another type of truncations used mainly for extended-complex val-
ued functions.
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Definition 6.7 Let f : X — R or C and consider v € [0, +oc]. We define

/(@) {r~sign(f(:v)), if < |f()

The functions ) f are called truncations of f.
Observe that, if f: X — R, then (") f = f((i)r)

Proposition 6.18 Let (X,Y) be a measurable space and f : X — R or C a
Y —measurable function. Then all truncations ) f are X—measurable.

Proof: Observe that the function ¢, : R — R with formula

QZST(I){JC’ 1f‘l’|§r,

r-sign(x), if r <z,

is continuous on R and hence (Bg, Bg)—measurable. Now "M f = ¢ro0fis
Y —measurable. o
The proof in the case f : X — C is similar.

6.9 Limits.

The next group of results is about various limiting operations on measurable
functions. The rule is, roughly: the supremum, the infimum and the limit of a
sequence of measurable functions are measurable functions.

Proposition 6.19 Let (X,%) be a measurable space and {f;} a sequence of

Y—measurable functions f; : X — R. Then all the functions sup,cn fj,
infjen fj, imsup,_, | o f; and liminf; . f; are ¥—measurable.

Proof: Let h = sup;cn fj : X — R. For every a € R we have h™'((a, +00]) =
Uj:of fj_l((a, +o0]) € X. Proposition 6.7 implies that h is ¥—measurable.

Now infjen fj = —sup;en(—f;) is also X—measurable.

And, finally, limsup,;_,| . f; = infjen (SquZj fk) and liminf,; .| f; =
SUp,eN (inf;@j fk) are Y —measurable.

Proposition 6.20 Let (X,X%) be a measurable space and {f;} a sequence of
Y —measurable functions f; : X — R. Then the set

A={reX| lim f;(z) exists in R}
Jj—+o0

belongs to 2. o

(i) The function lim;_, o fj : A — R is ¥ a—measurable.

(i1) If h : A — R is ¥ qc—measurable and we define

j——+oo
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then lim;_, o0 fj : X — R is X—measurable.
Similar results hold if f; : X — C for all j and we consider the set A =
{z € X | lim;_; f;(x) exists in C}.

Proof: (a) Suppose that f; : X — R for all j.

Proposition 6.19 implies that limsup;_, . . f; and liminf;, ;o f; are both
Y—measurable. Since lim;_, ; f;(z) exists if and only if limsup;_, f;(z) =
liminf; . f;j(z), we have that

A={z e X|limsup fj(z) = limjnf fi(x)}
; oo

J—too

and Proposition 6.16 implies that A € 3.

(i) It is clear that the function lim;_, f; : A — R is just the restriction of
limsup;_, . f; (or of liminf; ;o f;) to A and hence it is 34 —measurable.
(i) The proof of (ii) is a direct consequence of (i) and Proposition 6.3.

(b) Let now f; : X — C for all j.

Consider the set B = {z € X | lim;_,; f;(z) exists in C} and the set C' =
{z € X | lim;_,; f;j(z) = c0}. Clearly, BUC = A.

Now, C' = {z € X | lim; 4 |fj|(z) = +o0}. Since |f;| : X — R for all
J, part (a) implies that the function lim;_,; |f;| is measurable on the set on
which it exists. Therefore, C' € 3.

B is the intersection of B; = {z € X | lim;_, 4 R(f;)(z) exists in R} and
By = {z € X | lim;_ o S(f;)(x) exists in R}. By part (a) applied to the se-
quences {R(f;)}, {S(f;)} of real valued functions, we see that the two functions
lim; 4 o0 R(f;), limj_ o S(f;) are both measurable on the set on which each of
them exists. Hence, both By, By (the inverse images of R under these functions)
belong to ¥ and thus B = B; N By € X.

Therefore A=BUC € X.

We have just seen that the functions lim;_ . R(f;),lim;_ 4o S(f;) are
measurable on the set where each of them exists and hence their restrictions to
B are both ¥ z—measurable. These functions are, respectively, the real and the
imaginary part of the restriction to B of lim;_, ., f; and Proposition 6.6 says
that lim;_ 4o f; is ¥ p—measurable. Finally, the restriction to C of this limit
is constant oo and thus it is Y¥c—measurable. By Proposition 6.3, lim;_.; f;
is 3 4—measurable.

This is the proof of (i) in the case of complex valued functions and the proof
of (ii) is immediate after Proposition 6.3.

(c) Finally, let f; : X — C for all j.

For each j we consider the function

() = L Fi(@), A (@) # oo,
9i( )_{j, if f;(z) = 0.

If we set A; = f;l(C) € X, then (g;)a, = (fj)4, is ¥4, —measurable. Also
gi)ac is constant j and hence X 4c—measurable. Therefore g; : X — C is
7 )AS y J
Y —measurable.
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It is easy to show that the two limits lim; 1 g;(z) and lim;_, 4 fj(2)
either both exist or both do not exist and, if they do exist, they are equal. In
fact, let lim;_ o fj(7) = p € C. If p € C, then for large enough j we shall have
that f;(z) # oo, implying g;(z) = f;(z) and thus lim;_,1 . g;(z) =p. Iif p = oo,
then |fj(x)] — +4oo. Therefore |g;(z)| > min(|f;(x)],j) — +oo and hence
lim;_, o0 gj(2) = 00 = p in this case also. The converse is similarly proved. If
lim;_, 4~ gj(x) = p € C, then, for large enough j, g;(z) # j and thus f;(z) =
gj(z) implying lim;_, 4o fj(x) = lim; 4o gj(z) = p. If lim; 4 g;(x) = o0,
then lim;_ 4 |g;(z)| = 4+o0. Since |f;(z)] > |g;(z)] we get im;_ 1o | f;(x)] =
+o00 and thus lim;_, 1« f;(z) = oo.

Therefore A = {z € X | lim;_,; g;(z) exists in C} and, applying the result
of (b) to the functions g; : X — C, we get that A € ¥. For the same reason, the
function lim;_. 4, fj, which on A is equal to lim;_. 4 g;, is 3 4 —measurable.

6.10 Simple functions.
Definition 6.8 Let E C X. The function xg : X — R defined by

1, fxek,
XE(”‘{O, ifr¢E,

18 called the characteristic function of E.

Observe that, not only E determines its xg, but also xg determines the set E

by E={x e X |xg() =1} = xz ({1}).
The following are trivial:

MEFTREXF = AXp\r+(AFE)XEnFHREX\E  XEXF = XBEnF  XEe = l—XE
forall E, FF C X and all A,k € C.

Proposition 6.21 Let (X,X) be a measurable space and E C X. Then xg is
Y —measurable if and only if E € X.

Proof: If x g is ¥—measurable, then E = x;'({1}) € =.

Conversely, let £ € X. Then for an arbitrary F € Bgr or Bc we have
Xg (F)=0if0,1¢ F, xz'(F)=FEiflc Fand0¢ F, x;'(F)=E°if 1 ¢ F
and 0 € F and x5 (F) = X if 0,1 € F. In any case, x5 (F) € ¥ and g is
Y —measurable.

Definition 6.9 A function defined on a non-empty set X is called a simple
function on X if its range is a finite subset of C.

The following proposition completely describes the structure of simple func-
tions.

Proposition 6.22 (i) A function ¢ : X — C is a simple function on X if
and only if it is a linear combination with complex coefficients of characteristic
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functions of subsets of X.
(ii) For every simple function ¢ on X there are m € N, different £1,...,km € C
and non-empty pairwise disjoint Ey, ..., E, C X with UJL Ej = X so that

¢ =KiXE, +  + EmXE,,-

This representation of ¢ is unique (apart from rearrangement).
(iti) If ¥ is a o-algebra of subsets of X, then ¢ is X—measurable if and only if
all Ey’s in the representation of ¢ described in (ii) belong to .

Proof: Let ¢ = Z;—;l AjXF;, where \; € C and F; C X forall j = 1,...,n.
Taking an arbitrary « € X, either « belongs to no Fj, in which case ¢(z) = 0,
or, by considering all the sets F},,. .., Fj, which contain x, we have that ¢(z) =
Aj; + -+ Aj,.. Therefore the range of ¢ contains at most all the possible sums
Aj, + -+ A, together with 0 and hence it is finite. Thus ¢ is simple on X.

Conversely, suppose ¢ is simple on X and let its range consist of the different
Ki,.--,km € C. We consider E; = {z € X |¢(z) = k;} = ¢ *({k;}). Then
every x € X belongs to exactly one of these sets, so that they are pairwise
disjoint and X = E; U---U E,,. Now it is clear that ¢ = Z;n:;l KjXE,, because
both sides take the same value at every x.

If p = ZZl KX 7 is another representation of ¢ with different k}’s and non-
empty pairwise disjoint E!’s covering X, then the range of ¢ is exactly the set
{ki,..., K, }. Hence m' = m and, after rearrangement, K} = K1, ..., KL, = km.
Therefore B = ¢~ ({x}}) = ¢~ ' ({k;}) = E; for all j =1,...,m. We conclude
that the representation is unique.

Now if all E;’s belong to the o-algebra ¥, then, by Proposition 6.21, all
XE,’s are X —measurable and hence ¢ is also X —measurable. Conversely, if ¢ is
Y—measurable, then all E; = ¢~ *({x;}) belong to X.

Definition 6.10 The unique representation of the simple function ¢, which is
described in part (ii) of Proposition 6.22, is called the standard representa-
tion of ¢.

If one of the coefficients in the standard representation of a simple function is
equal to 0, then we usually omit the corresponding term from the sum (but then
the union of the pairwise disjoint sets which appear in the representation is not,
necessarily, equal to the whole space).

Proposition 6.23 Any linear combination with complex coefficients of simple
functions is a simple function and any product of simple functions is a simple
function. Also, the mazximum and the minimum of real valued simple functions
are simple functions.

Proof: Let ¢, be simple functions on X and p,q € C. Assume that Ay,..., A\,
are the values of ¢ and kq,..., K, are the values of 1. It is obvious that the
possible values of pgp + g are among the nm numbers p\; 4+ qx; and that the
possible values of ¢t are among the nm numbers A;x;. Therefore both functions
po + qp, o1 have a finite number of values. If ¢, are real valued, then the
possible values of max(¢, 1) and min(¢, 1)) are among the n+m numbers A;, ;.
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Theorem 6.1 (i) Given f : X — [0,+00], there exists an increasing sequence
{dn} of non-negative simple functions on X which converges to f pointwise on
X. Moreover, it converges to f uniformly on every subset on which f is bounded.
(i) Given f : X — C, there is a sequence {¢,} of simple functions on X which
converges to f pointwise on X and so that {|¢,|} is increasing. Moreover, {¢,}
converges to f uniformly on every subset on which f is bounded.

If ¥ is a o-algebra of subsets of X and f is X—measurable, then the ¢, in
(i) and (ii) can be taken to be X—measurable.

Proof: (i) For every n,k € N with 1 < k < 22", we define the sets

o (= | R A S (CUR N

and the simple function

22n

k-1 n
¢":Z on Xz +2"XF,-
k=1

For each n the sets E}, .. .,E,%zn,Fn are pairwise disjoint and their union is
the set f~1((0,+00]), while their complementary set is G = f~1({0}). Observe
that if f is ¥ —measurable then all E¥ and F),, belong to ¥ and hence ¢,, is
Y —measurable.

In G we have 0 = ¢,, = f, in each E¥ we have ¢,, = kQ_nl <f< 2% = (bn—&—Q—ln
and in F,, we have ¢,, = 2" < f.

Now, if f(z) = +oo, then z € F, for every n and hence ¢,(z) =
+oo = f(z). If 0 < f(z) < +oo then for all large n we have 0 < f(a:) < 2”
and hence 0 < f(z) — ¢p(2) < 5+, which implies that ¢, (z) — f(z ) Therefore,
¢n — [ pointwise on X.

If K C X and f is bounded on K, then there is an ng so that f(z) < 2™ for
all z € K. Hence for all n > ng we have 0 < f(z) — ¢pp(z) < 5 for all z € K.
This says that ¢,, — f uniformly on K.

It remains to prove that {¢,} is increasing. If z € G, then ¢,(z) =
¢n+1(z) = f(z) = 0. Now observe the relations

E2k 1 U EQk

k 2
n+1 n+1 — En? 1 S k S 2 n7

and 2(n+1)
24tn l
(Ul:22"+1+lEn+l) U Fn+1 - Fn

The first relation implies that, if z € EF then ¢, (z) = 52 and ¢ny1(z) =
% or Znﬂ . Therefore, if € E¥, then ¢, (x) < ¢pi1(2).

The second relation implies that, if z € F,, then ¢,(z) = 2" and ¢,41(x) =

2n+1 n
% or...or % or 21, Hence, if z € F,,, then ¢, (z) < ¢n+1(x
(ii) Let A = f~1(C), whence f = oo on A¢. Consider the restriction f4 : A — C

and the functions

(R(La) ™5 (R(f4)) 7, (S(fa)) T, (3(fa)) ™+ A = [0, +00).
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If f is ¥—measurable, then A € ¥ and these four functions are ¥4 —measurable.

By the result of part (i) there are increasing sequences {p,}, {¢»}, {rn} and
{sn} of non-negative (real valued) simple functions on A so that each converges
to, respectively, (R(fa))T, (R(fa))™, (S(fa))" and (S(fa))~ pointwise on A
and uniformly on every subset of A on which f4 is bounded (because on such
a subset all four functions are also bounded). Now it is obvious that, if we
set ¢ = (Pn — qn) + i(rn, — Sn), then ¢, is a simple function on A which is
> 4a—measurable if f is Y —measurable. It is clear that ¢, — fa pointwise on A
and uniformly on every subset of A on which f4 is bounded.

Also |pn] = /(Pn — @n)2 + (rn — 80)2 = /P2 + ¢2 + 72 + 52 and thus the
sequence {|¢,|} is increasing on A.

If we define ¢,, as the constant n on A¢, then the proof is complete.

6.11 The role of null sets.

Definition 6.11 Let (X,X, 1) be a measure space. We say that a property P(x)
holds p-almost everywhere on X or for u-almost every x € X, if the set
{zr € X | P(x) is not true} is included in a p-null set.

We also use the short expressions: P(x) holds p-a.e. on X and P(z) holds
for p-a.e. x € X.

It is obvious that if P(z) holds for p-a.e. © € X and p is complete then
the set { € X | P(x) is not true} is contained in ¥ and hence its complement
{z € X | P(x) is true} is also in X.

Proposition 6.24 Let (X, 3, 1) be a measure space and (X, %, 1) be its comple-
tion. Let (Y,X') be a measurable space and f : X — Y be (¥,%")—measurable.
If g: X =Y is equal to f p-a.e on X, then g is (X, X")—measurable.

Proof: There exists N € ¥ so that {z € X | f(z) # g(z)} C N and u(N) =0.
Take an arbitrary £ € ¥ and write g '(E) = {z € X |g(z) € E} = {z €
N¢|g(x) € E}U{x € N|g(x) € E} ={x € N°| f(z) € E}U{x € N|g(x) € E}.
The first set is = N°N f~1(E) and belongs to ¥ and the second set is C N.
By the definiton of the completion we get that ¢~ '(E) € ¥ and hence g is
(3, ¥')—measurable.

In the particular case of a complete measure space (X,X, ) we have the
rule: if f is (X, %")—measurable on X and g is equal to [ p-a.e. on X, then g
is also (3, %")—measurable on X.

Proposition 6.25 Let (X, X, ) be a measure space and (X,X, 1) be its com-
pletion. Let {f;} be a sequence of S—measurable functions f; : X — R or C.
Ifg: X — R or C is such that g(z) = lim;_,; « f;(z) for p-a.e. * € X, then g
is Y. —measurable.

Proof: {x € X|limj_ 4 f;j(z) does not exist oris # g(z)} € N for some
N € 3 with pu(N) =0.



6.11. THE ROLE OF NULL SETS. 85

N°¢ belongs to ¥ and the restrictions (f;)ne are all ¥ yc—measurable. By
Proposition 6.20, the restriction gye = limj_, ;oo (fj)ne is Xne—measurable.
This, of course, means that for every F € ¥/ we have {x € N¢|g(z) € E} € X.

Now we write g~ 1(E) = {z € N¢|g(z) € E}U{z € N|g(z) € E}. The
first set belongs to ¥ and the second is C N. Therefore g~'(E) € ¥ and g is

Y —measurable.

Again, in the particular case of a complete measure space (X, X, i) the rule
is: if {f;} is a sequence of E—measurable functions on X and its limit is equal
to g p-a.e. on X, then g is also X—measurable on X.

Proposition 6.26 Let (X, 3, 1) be a measure space and (X, %, 1) be its comple-
tion. Let (Y,X') be a measurable space and f : A — Y be (X 4,%)—measurable,
where A € ¥ with w(A°) = 0. If we extend f to X in an arbitrary manner, then
the extended function is (¥, ¥')—measurable.

Proof: Let h: A°— Y be an arbitrary function and let

flx), ifxe A,
F(z) = {h(x), if ¢ € A°.

Take an arbitrary E € ¥/ and write F~1(E) = {z € A| f(x) € E} U{x €
A¢|h(z) € E} = f~Y(E)U{x € A°|h(x) € E}. The first set belongs to ¥4

and hence to X, while the second set is C A°. Therefore F~YE)e X and F is
(2, ¥')—measurable.

If (X,%, ) is a complete measure space, the rule is: if f is defined p-a.e.
on X and it is measurable on its domain of definition, then any extension of f
on X is X—measurable.
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6.12 Exercises.

1. Let (X,¥) be a measurable space and f : X — R. Prove that f is
Y —measurable if f~1((a,+o0]) € X for all rational a € R.

2. Let f: X - R. If g,h: X — R are such that g,h >0 and f = g — h on
X, prove that f* <gand f~ <hon X.

3. Let (X,Y) be a measurable space and f : X — R or C be ¥ —measurable.
We agree that 0P = +o00, (+00)? = 0 if p < 0 and 0° = (+0)° = 1. Prove
that, for all p € R, the function |f|? is ¥—measurable.

4. Prove that every monotone f : R — R is Borel-measurable.

5. Translates and dilates of functions.

Let f: R™ — Y and take arbitrary y € R™ and A € (0,4+00). We define
g,h:R" =Y by

g(@)=J@—-y).  h@)=1(5)

for all z € R™. g is called the translate of f by y and h is called the
dilate of f by A.

Let (Y, X') be a measurable space. Prove that, if f is (£,, ¥')—measurable,
then the same is true for g and h.

6. Functions with prescribed level sets.

Let (X, %) be a measurable space and assume that the collection {E)}xer
of subsets of X has the properties:

(i) Ex C Ej, for all A,k with A < &,

(i) UxerEx = X, NaerEx =0,

(iil) Nk x> B = Ey for all A € R.

Consider the function f: X — R defined by f(z) = inf{\ € R|xz € E\}.
Prove that f is ¥—measurable and that E\ = {x € X | f(z) < A} for
every A € R.

How will the result change if we drop any of the assumptions in (ii) and
(iif)?

7. Not all functions are Lebesgue-measurable and not all Lebesque-measurable
functions are Borel-measurable.

(i) Prove that a Borel-measurable g : R — R is also Lebesgue-measurable.
(ii) Find a non-Lebesgue-measurable function f: R — R.

(iii) Using exercise 4.6.12, find and a function ¢ : R — R which is
Lebesgue-measurable but not Borel-measurable.

8. Give an example of a non-Lebesgue-measurable f : R — R so that | f] is
Lebesgue-measurable.
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10.

11.

12.

13.

14.

. Starting with an appropriate non-Lebesgue-measurable function, give an

example of an uncountable collection { f; };cs of Lebesgue-measurable func-
tions f; : R — R so that sup,¢; f; is non-Lebesgue-measurable.

(i) Prove that, if G : R — R is continuous and H : R — R is Borel-
measurable, then H o G : R — R is Borel-measurable.

(ii) Using exercise 4.6.12, construct a continuous G : R — R and a
Lebesgue-measurable H : R — R so that Ho G : R — R is not Lebesgue-
measurable.

Let (X, X, 1) be a measure space and f : X — R or C be ¥ —measurable.
Assume that u({z € X ||f(z)| = +o0}) = 0 and that there is M < 400
so that u({z € X||f(z)| > M}) < +co.

Prove that for every e > 0 there is a bounded Y—measurable g : X — R
or C so that u({z € X|g(x) # f(x)}) < e. You may try a suitable
truncation of f.

We say that ¢ : X — C is an elementary function on X if it has count-
ably many values. Is there a standard representation for an elementary
function?

Prove that for any f: X — [0,4+00), there is an increasing sequence {¢,, }
of elementary functions on X so that ¢, — f uniformly on X. If ¥ is a
o-algebra of subsets of X and f is X —measurable, prove that the ¢,’s can
be taken Y —measurable.

We can add, multiply and take limits of equalities holding almost every-
where.

Let (X,X, 1) be a measure space.

(i) Let f,g,h: X - Y. If f =g p-a.e. on X and g = h p-a.e. on X, then
f=h p-ae on X.

(ii) Let f1, f2,91,92 : X — R. If f1 = fo p-a.e. on X and g1 = g2 p-a.e.
on X, then f1 +¢1 = fo + g2 and f191 = foge p-a.e. on X.

(iii) Let f;,g; : X — R so that f; = g; p-a.e. on X for all j € N. Then
Sup,en fj = supjen g; p-a.e. on X. Similar results hold for inf, lim sup
and lim inf.

(iv) Let fj,g; : X — R so that f; = g; p-a.e. on X forall j € N. If A =
{z € X|limj_, ;o fj(x) exists} and B = {x € X | limj_, 1 g;(2) exists},
then AAB C N for some N € ¥ with y(N) = 0 and lim;_ ., f; =
lim;_ 4o g; p-a.e. on AN B. If, moreover, we extend both lim;_ 4 f;
and lim;_, - g; by a common function h on (AN B)®, then lim;_,; f; =
lim; .4 g; p-a.e. on X.

Let (X, 3, 1) be a measure space and (X, Y, 1) be its completion.

(i) If E € %, then there is A € ¥ so that xg = ya p-a.e. on X.

(ii) If ¢ : X — C is a L—measurable simple function, then there is a
Y —measurable simple function ¥ : X — C so that ¢ = ¢ p-a.e. on X.
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15.

16.

17.

18.
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(iii) Use Theorem 6.1 to prove that, if g : X — R or C is X—measurable,
then there is a X —measurable f : X — R or C so that g = f p-a.e. on X.

Let X,Y be topological spaces of which Y is Hausdorff. This means that,
if y1,92 € Y and y; # y2, then there are disjoint open neighborhoods
Vir Vi of Y1, 42, respectively. Assume that p is a Borel measure on X so
that u(U) > 0 for every open U C X. Prove that, if f,g: X — Y are
continuous and f = g p-a.e. on X, then f =g on X.

The support of a function.

(a) Let X be a topological space and a continuous f : X — C. The set
supp(f) = f~1(C\ {0}) is called the support of f. Prove that supp(f)
is the smallest closed subset of X outside of which f = 0.

(b) Let © be a regular Borel measure on the topological space X and
f : X — C be a Borel-measurable function. A point x € X is called
a support point for f if u({y € U, | f(y) # 0}) > 0 for every open
neighborhood U, of x. The set

supp(f) = {x € X |z is a support point for f}

is called the support of f.

i) Prove that supp(f) is a closed set in X.

ii) Prove that u({z € K|f(z) # 0}) = 0 for all compact sets K C
iii) Using the regularity of u, prove that f = 0 u-a.e on (supp(f))©.

iv) Prove that (supp(f))¢ is the largest open set in X on which f =0
j-a.e.

(c) Assume that the p appearing in (b) has the additional property that
w(U) > 0 for every open U C X. Use exercise 6.12.15 to prove that for
any continuous f : X — C the two definitions of supp(f) (the one in (a)
and the one in (b)) coincide.

The restriction of a o-algebra.

(a) Let 3 be a o-algebra of subsets of X and A C X.

(i) We define ¥4 = {EN A|E € ¥} to be the restriction of 3 on A.
Prove that X 4 is a o-algebra of subsets of A and that, in case A € %, this
definition coincides with the Definition 6.2.

(ii) Now let € be a collection of subsets of X and let £4 = {ENA|E € £}.
Prove that, if ¥ = X(&), then ¥4 = X(€4).

(b) Let X be a topological space and A C X. Consider A equipped with
the relative topology - namely, a set is open in A if and only if it is the
intersection of some open set in X with A. Prove that B4 = (Bx)a.

The Theorem of Lusin.

We shall prove that every Lebesgue-measurable function which is finite
mp-a.e. on R™ is equal to a continuous function except on a set of arbi-
trarily small m,,-measure.
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(i) For each a < a+0 < b—J < b we consider the function 7,55 : R = R
which: is 0 outside (a,b), is 1 on [a+d, b—§] and is linear on [a, a+4J] and on
[b— 0, b] so that it is continuous on R. Now, let R = (a1, b1) X -+ X (ap, by)
and, for small enough § > 0, we consider the function 7r s : R" — R by
the formula

TR,(S('I17 e 71771) = Tal,bh(s(xl) T Tan,7b7176($n)'

If Rs = (a1 +9,b1 — ) x --- x (an + 0,b, — §), prove that 75 = 1 on
Rs, Tr,s = 0 outside R, 0 < 7ps < 1 on R"™ and 7gs is continuous
on R™. Therefore, prove that for every ¢ > 0 there is § > 0 so that
ma({z € RY | 7s(w) # Xa(@)}) < €.

(i) Let E € L, with m, (E) < 4+00. Use Theorem 4.6 to prove that for
every € > 0 there is a continuous 7 : R® — R so that 0 <7 <1 on R”
and m,({x € R"|7(z) # xg(x)}) <e.

(iii) Let ¢ be a non-negative Lebesgue-measurable simple function on R™
which is 0 outside some set of finite m,,-measure. Prove that for all ¢ > 0
there is a continuous 7 : R™ — R so that 0 < 7 < maxg~» ¢ on R” and
ma({ € R?| 7(z) # 6(2)}) <

(iv) Let f : R™ — [0,+o0] be a bounded Lebesgue-measurable function
which is 0 outside some set of finite m,-measure. Use Theorem 6.1 to
prove that f = Zzzol 1, uniformly on R"™, where all ¢, are Lebesgue-
measurable simple functions with 0 < v < 2% on R™ for all k. Now
apply the result of (iii) to each 1 and prove that for all ¢ > 0 there
is a continuous g : R" — R so that 0 < g < maxg~ f on R"™ and
ma({z € R | g(z) £ f(2)}) < e

(v) Let f: R™ — [0, +00] be a Lebesgue-measurable function which is 0
outside some set of finite m,,-measure and finite m,-a.e. on R". By taking
an appropriate truncation of f prove that for all e > 0 there is a bounded
Lebesgue-measurable function i : R™ — [0, +00] which is 0 outside some
set of finite m,-measure so that m,({x € R |h(z) # f(x)}) < e. Now
apply the result of (iv) to find a continuous g : R™ — R so that m,,({z €
R" | g(x) £ f(2)}) < .

(vi) Find pairwise disjoint open-closed qubes P* so that R" = Uzi‘i P* and
let R* be the open qube with the same edges as P*. Consider for each k
a small enough 03, > 0 so that m,,({x € R™ | Tgr 5, () # xrr(?)}) < 557
(vii) Let f : R™ — [0,4+00] be Lebesgue-measurable and finite my-a.e.
on R™. If R* are the qubes from (vi), then each fxgr : R® — [0, +00]
is Lebesgue-measurable, finite m,-a.e. on R"™ and 0 outside RF. Ap-
ply (v) to find continuous g : R™ — R so that m,({z € R"|gix(z) #

f@)xre(2)}) < 555
Prove that m,({z € R" | g 5, (2)gr(x) # f(2)XRr(2)}) < 5.
Define g = Z;:i Trk 5,9k and prove that g is continuous on R™ and that

ma({z € R" |g(2) # f(2)}) <e _
(viii) Extend the result of (vii) to all f : R™ — R or C which are Lebesgue-

measurable and finite m,,-a.e. on R"™.
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19. Let f : R™ — R be continuous at my,-a.e. = € R™. Prove that f is
Lebesgue-measurable on R™.



Chapter 7

Integrals

7.1 Integrals of non-negative simple functions.

In this whole section (X, 3, u) will be a fixed measure space.

Definition 7.1 Let ¢ : X — [0,+00) be a non-negative S-measurable simple
function. If ¢ = >"/" | KiXE, is the standard representation of ¢, we define

/X pdp = Z K p(E)

k=1

and call it the integral of ¢ over X with respect to u or, shortly, the
integral of ¢.

We can make the following observations.

(i) If one of the values kj, of ¢ is equal to 0, then, even if the corresponding set
Ej, has infinite p-measure, the product xiu(Fy) is equal to 0. In other words,
the set where ¢ = 0 does not matter for the calculation of the integral of ¢.

(ii) We also see that [, ¢du < +oc if and only if ju(Ey) < +oo for all k for
which kg > 0. Taking the union of all these E}’s we see that fX odp < oo if
and only if p({x € X |¢(x) > 0}) < +oo. In other words, ¢ has a finite integral
if and only if ¢ = 0 outside a set of finite p-measure.

(iii) Moreover, [y ¢du = 0 if and only if pu(Ej) = 0 for all k for which kj > 0.
Taking, as before, the union of these Ej’s we see that fX ¢dp < 4oo if and
only if u({z € X |¢(x) > 0}) = 0. In other words, ¢ has vanishing integral if
and only if ¢ =0 outside a p-null set.

Lemma 7.1 Let ¢ = Z?zl AjXF;, where 0 < X; < +oo for all j and the sets
Fj € ¥ are pairwise disjoint. Then [ ¢du =377 \ju(F}).

The representation ¢ = 2?21 Ajxr; in the statement may not be the standard
representation of ¢. In fact, the A;’s are not assumed different and it is not
assumed either that the F}’s are non-empty or that they cover X.

91
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Proof: (a) In case all Fj’s are empty, then their characteristic functions are 0
on X and we get ¢ =0 =0 xx as the standard representation of ¢. Therefore
Jxédp = 0-pu(X) =0 = 37" \ju(F}), since all measures are 0. In this
particular case the result of the lemma is proved.
(b) In case some, but not all, of the Fj’s are empty, we rearrange so that
Fy,...,F, # 0 and Fj4q,...,F, = 0. (We include the case | = n.) Then we
have ¢ = 22:1 AjXF;, where all F}’s are non-empty, and the equality to be
proved becomes [y ¢ dp = Z;Zl Nip(Fy).

In case the Fj’s do not cover X we introduce the non-empty set Fj4q =
(FLU---UF;)° and the value A\;y; = 0. We can then write ¢ = Zéill Ajxr; for

the assumed equality and [ y ¢du = Zl-ﬂ

j=1 Ajp(F}) for the one to be proved.
In any case, using the symbol k for [ or [ + 1 we have to prove that, if
¢ = 2?21 AjXF;, where all F; € 3 are non-empty, pairwise disjoint and cover
X, then [, ¢du= Z§:1 Ajp(Fy).
It is clear that Aq,..., Ax are all the values of ¢ on X, perhaps with repeti-
tions. We rearrange in groups, so that

AL == A, = Ky,
Aby+1 =0 = Mgy +ky = K2,
Abytethm 141 = 7 = Mgyt = Km

are the different values of ¢ on X (and, of course, k1 +-- -+ k,, = k). For every

i =1,...,m we define E; = U?::ljk-s-k,,lﬂ F; ={z € X|¢(z) = k;}, and
then

m
¢ = Z RiXE;
i=1

is the standard representation of ¢. By definition

m m ki+-+k;
/ pdp = ZﬁiM(Ei) = Zl‘il( Z w(F;))
X i=1 i=1  j=kiteotkioi+l

m i k
= Z( > Aju(Fy)) = Z)‘ju(Fj)'

Lemma 7.2 If ¢,v are non-negative X —measurable simple functions and 0 <

A < oo, then [((p+U)du= [y ¢du+ [ bdp and [ Apdp =X [ pdp.

Proof: (a) If A =0, then A¢ =0 = 0- xx is the standard representation of A¢
and hence [\ Agpdp=0-pu(X)=0= X[ pdpu.

Now let 0 < A < +o0. If ¢ = Z;nzl KjXE; 1s the standard representation
of ¢, then \¢ = Z;"Zl AkjxE; is the standard representation of A¢. Hence

Jx Mdp =300 Akjp(Ey) = A3 kin(Ej) = A [ ¢ dp.
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(b) Let ¢ = >0, kjxm, and ¥ = 371, Aixr, be the standard representations
of ¢ and . It is trivial to see that X = Ui<j<m,1<i<n(E; N F;) and that the
sets F/; N F; € ¥ are pairwise disjoint. It is also clear that ¢ + 1) is constant
kj + A; on each E; N F; and thus

¢+1p= > (ki + N)xenE-

1<j<m,1<i<n

Lemma 7.1 implies that

/X(¢+w)du

Z (k5 + X)u(E; N F)

SJSM, 11>

= Z kin(E; N F;) + Z Aip(Ej N Fy)

1<j<m,1<i<n 1<j<m 1<i<n

= f:nj ZuE NE)) Z ZME NE))
j=1 =1

= Y miu(E)+ Y Nip(F) /¢du+/ b dp.
j=1 i=1

Lemma 7.3 If ¢,v are non-negative X—measurable simple functions so that
¢ < onX, then [y pdp < [ 1pdp.

Proof: Let ¢ = Z] Lkixe, and ¢ = 37" | Aixp, be the standard representa-
tions of ¢ and ¢. Whenever E; N F; # (), we take any « € E; N F; and find
ki = ¢(z) < P(x) = \. Therefore since in the calculation below only the
non-empty intersections really matter,

/X¢du = Y mulE) = Y. muENE)
i=1

1<j<m,1<i<n
< Y auENF) ZM ) = [ wdn.
1<j<m,1<i<n X

Lemma 7.4 Let ¢ be a non- negative Y —measurable simple function and {A,}
an increasing sequence in 3 with U] °°A = X. Then fX oxa, dp — fX odpu.
Proof: Let ¢ = ijl kX E,; be the standard representation of ¢. Then ¢xa, =
DI KiXE; XA, = )joi KjXE;nA,. Lemma 7.1 implies that [ dxa, dp =
E;'nzl rip(Ey 0 Ap).

For each j we see that u(E; N A,) — ( Ej;) by the continuity of p from
below. Therefore [y ¢xa, dp — Z;nzl kin(E;) = [ ¢ dp.
Lemma 7.5 Let ¢, ¢1, ¢o,... be non-negative X—measurable simple functions

so that ¢, < ppi1 on X for all n.
(i) If limy, oo n < ¢ on X, then lim, 4o [ dndp < [y ¢ dp.
(i) If ¢ < limy, .y oo ¢ on X, then [y ¢pdp <lim, oo [y o dp.
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Proof: Lemma 7.3 implies that [y ¢, dp < [y ¢ny1 dp for all n and hence the
limit limy, 400 [ @n dp exists in [0, +oc].
(i) Since, by Lemma 7.3, [y ¢ndp < [y ¢du, we get limy, oo [y ¢ndp <
Jx ¢ dp-
(ii) Consider arbitrary « € [0,1) and define 4,, = {z € X |ad(z) < ¢n(z)} € X.
It is easy to see that {4, } is increasing and that U > A,, = X. Indeed, if there is
any x ¢ U1 A, then ¢,,(z) < ag(x) for all n, implying that 0 < ¢(x) < ad(z)
which cannot be true.

Now we have that agxa, < ¢, on X. Lemmas 7.2, 7.3 and 7.4 imply that

a/X(;Sdu = /Xo@dﬂ

= lim apxa, dp < lim /(bndu.
X

n—-+o0o X n—-+o0o
We now take the limit as o — 1— and get [, ¢ dp <lim, o [y dn dp.

Lemma 7.6 If {¢,} and {1} are two increasing sequences of non-negative
Y —measurable simple functions and if limy,— 4 oo ¢r, = limy 400 ¥ on X, then
Proof: For every k we have that ¢, < lim, . ¢, on X. Lemma 7.5 im-
plies that [ ¢ dp < lim, 4 oo [ & dp. Taking the limit in &, we find that

lim, 400 fX U dp < limy 4 oo fX O A
The opposite inequality is proved symmetrically.

7.2 Integrals of non-negative functions.

Again in this section, (X, X, u) will be a fixed measure space.

Definition 7.2 Let f : X — [0, +00] be a X—measurable function. We define
the integral of f over X with respect to p or, shortly, the integral of f

by
/fduz lim /qbndu,
X n—-+oo X

where {¢n} is any increasing sequence of non-negative Y—measurable simple
functions on X such that lim,_ o ¢, = f on X.

Lemma 7.6 guarantees that f « J dp is well defined and Theorem 6.1 implies the
existence of at least one {¢,} as in the definition.

Proposition 7.1 Let f,g : X — [0,400] be ¥—measurable functions and let
A€ [0,400). Then [ (f+g)dn= [y fdu+ [y gdp and [ Nfdp=X [y f dp.

Proof: Consider arbitrary increasing sequences {¢,} and {1, } of non-negative
Y —measurable simple functions on X with lim,, 1o ¢p = f, lim, 1 0c ¥ = ¢
on X. Then {¢, +1,} is an increasing sequence of non-negative X —measurable
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simple functions with lim,, 4 (¢n + ¢n) = f + g on X. By definition and
Lemma 7.2, [(f +¢g)dp = limy, 4o [ (dn +¥n) dp = limy oo [ O dp +
limy, 4 o0 fX Yy dp = fX Jdu+ fX gdu.

Also, {A¢,} is an increasing sequence of non-negative ¥ —measurable simple
functions on X such that lim,_ . A¢, = Af on X. Lemma 7.2 implies again
that [\ Af dp = limy, . yoo [ Adn dp = Nimy, oo [ dndp =X [y fdp.

Proposition 7.2 Let f,g: X — [0, 400] be X—measurable functions such that
f<gonX. Then [ fdu< [y gdu.

Proof: Consider arbitrary increasing sequences {¢,} and {¢,,} of non-negative
Y —measurable simple functions with lim,,_, oo ¢, = f, lim,, 1 oo ¥, = g on X.
Then for every k we have that ¢ < f < g = lim,—, o0 ¥, on X. Lemma 7.5
implies that fX Or dp < limy, 4 oo fX U dpp = fX g dp. Taking the limit in k& we
conclude that [ fdu < [, gdp.

Proposition 7.3 Let f,g: X — [0,+00] be X—measurable functions on X.
(i) [ fdp=0if and only if f =0 p-a.e. on X.
(it) If f = g p-a.e. on X, then [, fdu= [y gdp.

Proof: (i) Suppose that [, fdu = 0. Define A, = {z € X|+ < f(2)} =
71 ([%, +00]) for every n € N. Then x4, < f on X and Proposition 7.2 says
that L u(A,) = [ 2xa, du < [y fdp=0. Thus u(A,) = 0 for all n and, since
{zeX|f(z)#0}= UiflAn, we find that u({z € X| f(z) #0}) =0.
Conversely, let f = 0 p-a.e. on X. Consider an arbitrary increasing sequence
{¢n} of non-negative X —measurable simple functions with lim,, . ¢, = f on
X. Clearly, ¢, = 0 p-a.e. on X for all n. Observation (iii) after Definition 7.1
says that [y ¢, dp =0 for all n. Hence [ fdu =lim, ;o [y ¢ndp=0.
(ii) Consider A = {z € X | f(x) = g(x)} € E. Then there is some B € ¥ so that
A€ C B and p(B) =0. Define D = B¢ C A. Then fxp, gxp are —measurable
and fxp = gxp on X. Also, fxg =0 p-a.e. on X and gxp =0 p-a.e. on X.
By part (i), we have that [, fxpdu = [y gxpdp = 0 and then Proposi-
tion 7.1 implies [y fdu = [y (fxp + fxs)dp = [y fxpdp = [y 9xpdp =
Jx(gxp +9xB)dp = [y gdp.

The next three theorems, together with Theorems 7.9 and 7.10 in the next
section, are the most important results of integration theory.

Theorem 7.1 (The Monotone Convergence Theorem) (Lebesgue, Levi)
Let f,fn + X — [0,400] (n € N) be E—measurable functions on X so that
fn < fog1 prace. on X and limy, 4 oo fro = f p-a.e. on X. Then

lim /fndu:/fdu.
n—-+oo X X

Proof: (a) Assume that f,, < f,11 on X and lim, .1 fr, = f on X.
Proposition 7.2 implies that [y fn dp < [y fay1dp < [y fdp for all n and
hence the lim, o [y fn dp exists and it is < [ fdp.
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(i) Take an arbitrary increasing sequence {¢,} of non-negative ¥ —measurable
simple functions so that lim,, .1 ¢, = f on X. Then for every k we have
or < f =limp 400 fn. We now take an arbitrary a € [0,1) and define the
set A, = {z € X|agr(x) < fo(z)} € 3. Tt is clear that {4,} is increasing
and X = UZﬁAn. It is also true that agrxa, < fn on X and, using Lemma
7.5, fX Grdp = fX agp dp = limy, 4 oo fX a¢kXAn dp < limy, 4o fX In dp.
Taking limit as o« — 1—, we find [y ¢p dp < lim, 4 oo [y fr dp. Finally, taking
limit in &, we conclude that [y fdu < lim,_ 4o [y fndp and the proof has
finished.

(ii) If we want to avoid the use of Lemma 7.5, here is an alternative proof of the
inequality [y fdp <lim,_io [y fndp.

For each k take an increasing sequence {1/} of non-negative ¥ —measurable
simple functions so that lim,, ., ;o ¥* = f on X. Next, define the non-negative
Y —measurable simple functions ¢, = max(}, ... ¥m).

It easy to see that {¢,} is increasing, that ¢, < f, < f on X and that
¢n — fon X. For the last one, take any x € X and any ¢ < f(z). Find & so that
t < fe(x) and, then, a large n > k so that ¢t < ¢¥(x). Then t < ¢, (x) < f(x)
and this means that ¢, (z) — f(x).

Thus [ fdp =lim,—joo [y Ondp <limy_yoo [y frdp.

(b) In the general case, Theorem 2.2 implies that there is some A € ¥ with
1(A°) =0 so that f, < f,41 on A for all n and lim,, o fr, = f on A. These
imply that foxa < farixa on X for all n and lim, 4o fnxa = fxa on X.
From part (a) we have that lim, o [ faxadp = [y fxadp.

Since f = fxa p-a.e. on X and f, = f,xa p-a.e. on X, Proposition 7.3
implies that [y fdu = [y fxadpand [y fndp= [y faxadp for all n. Hence,
limy,— 4 00 fX fndp = limy,— 4 fX faxadp = fX fxadp= fX [dp.

Theorem 7.2 Let f, f, : X — [0,400] (n € N) be Z—measurable on X so that
+f°1 n=f p-a.e. on X. Then

gl{fndu/xfdu-

Proof: We write g, = f1 + -+ + fn for each n. {g,} is an increasing sequence
of non-negative X —measurable functions with g, — f p-a.e. on X. Proposition

7.1 and Theorem 7.1 imply that Y7, [y frdp = [y gndp — [ fdp.

Theorem 7.3 (The Lemma of Fatou) Let f, f, : X — [0,+00] (n € N) be
Y—measurable. If f =liminf,, ., fn p-a.e. on X, then

X n—too Jx

Proof: We define g,, = infy>,, fi. Then each g, : X — [0, +00] is ¥—measura-
ble, the sequence {g,} is increasing and g,, < f,, on X for all n. By hypothesis,
f =1lm, 4 gy, pae on X. Proposition 7.2 and Theorem 7.1 imply that

fX fdp=1lim, 4 fX gn dp < liminf, 4 fX fndp.
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7.3 Integrals of complex valued functions.

Let (X,X, u) be a fixed measure space.

Definition 7.3 Let f : X — R be a X —measurable function and consider its
positive and negative parts f¥,f~ : X — [0,+0c0]. If at least one of fX frdu
and [ [~ dp is < 400, we define

/deu=/xf+du—/xf*du

and call it the integral of f over X with respect to p or, simply, the
integral of f.

We say that f is integrable on X with respect to i or, simply, integrable
if [ fdp is finite.

Lemma 7.7 Let f : X — R be a S—measurable function. Then the following
are equivalent:

(i) f is integrable

(i) [ fTdp <400 and [y f~dp < +o0

(11i) [ |f]dp < +oo.

Proof: The equivalence of (i) and (ii) is clear from the definition.
We know that |f| = f* + f~ and, hence, fT, f~ < |f| on X. Therefore,

Jx lfldw =[x ffdp+ [ f~dp and [y fTdp, [ f~dp < [y |fldp. The
equivalence of (ii) and (iii) is now obvious.

Proposition 7.4 Let f : X — R be a Y—measurable function. If f is inte-
grable, then

(i) f(z) € R for p-a.e. x € X and

(i1) the set {x € X | f(x) # 0} is of o-finite p-measure.

Proof: (i) Let f be integrable. Lemma 7.7 implies [ |f]|du < 4oc0. Consider
the set B = {x € X ||f(z)| = +o00} € X. For every r € (0,400) we have that
rxg < |f] on X and hence ru(B) = [y rxpdp < [y |f|dp < 4oco. This implies
that 4(B) < L [, |f|dp and, taking the limit as r — +o0, we find u(B) = 0.
(ii) Consider the sets A = {z € X | f(z) # 0} and A, = {z € X ||f(z)| = 1}.

From x4, < |f| on X, we get Lp(A,) = [y 2xa, du < [ |fldp < +oc.
Thus p(A,) < +oo for all n and, since A = UF> A,,, we conclude that A is of
o-finite p-measure.

Definition 7.4 Let f : X — C be X—measurable. Then |f| : X — [0, +oc] is
Y—measurable and we say that f is integrable on X with respect to u or,
simply, integrable, if [ |f|dp < +oo.

Proposition 7.5 Let f: X — C be X—measurable. If f is integrable, then
(1) f(z) € C for p-a.e. x € X and
(i1) the set {x € X | f(x) # 0} is of o-finite pi-measure.
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Proof: Immediate application of Proposition 7.4 to | f].

Assume now that f : X — C is a Y—measurable integrable function. By
Proposition 7.5, the set Dy = {z € X | f(z) € C} = f~}(C) € ¥ has a p-null
complement. The function

f, Oan
fXDf_{O, OHD; .X"C

is ¥—measurable and fxp, = f p-a.e. on X. The advantage of fxp, over f
is that fxp, is compler valued and, hence, the R(fxp,), 3(fxp,) : X — R
are defined on X. We also have that |[R(fxp,)| < [fxp,| < |f| on X and
similarly |3(fxp,)| < |f| on X. Therefore [ [R(fxp,)|du < [y |fldu < +oo,
implying that R(fxp,) is an integrable real valued function. The same is true for

S(fxp,) and thus the integrals [ R(fxp,)dp and [y S(fxp,) dp are defined
and they are (finite) real numbers.

Definition 7.5 Let f : X — C be a X—measurable integrable function and let
Dy ={z e X|f(zx) € C}. We define

[ sau= [ Rirodusi [ St de

and call it the integral of f over X with respect to u or just the integral
of f.

We shall make a few observations regarding this definition.

(i) The integral of an extended-complex valued function is defined only if the
function is integrable and then the value of its integral is a (finite) complex
number. Observe that the integral of an extended-real valued function is defined
if the function is integrable (and the value of its integral is a finite real number)
and also in certain other cases when the value of its integral can be either +oo
or —oo.

(ii) We used the function fxp,, which changes the value oo of f to the value
0, simply because we need complex values in order to be able to consider their
real and imaginary parts. We may allow more freedom and see what happens

if we use a function ; D
_ s on f .

where h is an arbitrary % De —measurable complex valued function on D3. 1t is
clear that ' = fxp, p-a.e. on X and hence R(F) = R(fxp,) p-a.e. on X.
Of course, this implies that R(F)* = (fXDf)+ and 8?( )T = %(fxpf)_ -
a.e. on X. From Proposition 7.3, [ R(F)du = [ R(F)* dp— [, R( dp =
fX fXDf +d‘LL fX fXDf) d‘LL fX fXDf)d,u‘ SlmllarIYa fX dﬂf
[ S « S(fxp, du Therefore there is no difference between the possible definition
Jx fdu= [ R(F)du+i [ S(F)dp and the one we have given. Of course, the
function 0 on D5 is the simplest of all choices for h.
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(iii) If f : X — C is complex valued on X, then Dy = X and the definition
takes the simpler form

/deMZ/XSR(f)du+i/X%(f)du.

We also have

R([ ran) = [ ®nde S s = [ s(pan

The next is helpful and we shall make use of it very often.

Lemma 7.8 If f : X — C is integrable, there is F : X — C so that F = f
p-a.e. on X and [ Fdu= [y fdpu.

Proof: We take F = fxp,, where Dy = f~1(C).

Theorem 7.4 Let f,g: X — R or C be X—measurable so that f = g pi-a.e. on
X and [y fdp is defined. Then [, gdp is also defined and [, gdp = [ fdp.

Proof: (a) Let f,g : X — R. If f = g p-a.e. on X, then ft = g+ u-
a.e. on X and f~ = g~ p-a.e. on X. Proposition 7.3 implies that fX frdu=
Jx 9 dpand [ f~du= [y g du. Nowif [ ftduor [y f~ duis finite, then,
respectively, [ gt dpor [ g~ duis also finite. Therefore [, gdp is defined and
Jx fdp= [y gdp.

(b) Let f,g: X - Cand f =g p-a.e on X.

If f is integrable, from |f| = |g| p-a.e. on X and from Proposition 7.3, we
find [y [gldp = [y |f]dp < +o0 and, hence, g is also integrable.

Now, Lemma 7.8 says that there are F;G : X — Csothat F = fand G=g
p-a.e. on X and also [ Fdu = [ fdp and [ Gdp = [ gdp. From f =g
p-a.e. on X we see that F' = G p-a.e. on X. This implies that R(F) = R(G)
p-a.e. on X and, from (a), [\ R(F)dp = [, R(G)dp. Similarly, [, S(F)dp =
Jx S(G) dp.

Therefore, [ fdu= [y Fdu= [ R(F)du+i [ S(F)dp= [ R(G)du+
i [ S(G)dp= [ Gdu= [y gdpu.

Theorem 7.5 Let f : X — R or C be S—measurable. Then the following are
equivalent:

(i) f =0 p-a.e. on X

(i1) [ |f di=0

(i) fX fxadu =0 for every A € 2.

Proof: If [, |f|du = 0, Proposition 7.3 implies that |f| = 0 and, hence, f =0
p-a.e. on X.

If f=0 p-a.e. on X, then fx4 =0 p-a.e. on X for all A € ¥. Theorem 7.4
implies that [ fxadp = 0.

Finally, let [, fxadp =0 for every A € 3.
(a)If f : X — Rwetake A = f1([0, +00]) and find [ fTdpu = [y fxadu=0.
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Similarly, [ f~ du =0 and thus [, |fldu= [ fTdu+ [ f~dp=0.

(b) If f : X — C, we first take A = X and find [ fdp = 0. This says, in
particular, that f is integrable. We take some F': X — C so that F = f pu-a.e.
on X.

For every A € ¥ we have F'xya = fxa pa.e. on X and, from Theorem 7.4,
Jx Fxadp = [y fxadp = 0. This implies [ R(F)xadu = [ R(Fxa)dp =
R([y Fxadp) = 0 and, from part (a), R(F) = 0 p-a.e. on X. Similarly,
$(F) = 0 prae. on X and thus F' = 0 p-a.e. on X. We conclude that f =0
p-a.e. on X.

Theorem 7.6 Let f: X — R or C be X—measurable and A € R or C.
() If f: X =R, Xe R and [ fdu is defined, then [, \f dp is also defined

and
/X)\fdu:)\/xfdu.

(ii) If f is integrable, then \f is also integrable and the previous equality is
again true.

Proof: (i) Let f : X — R and [ f du be defined and, hence, either [, f*du <
400 or [ [T dp < +oo.

If 0 < A < 400, then (Af)T = AfT and (Af)™ = Af~. Therefore, at least
one of [((Af)Tdu = X[y fTdpand [ (\f)"du= X[y f~ duis finite. This
means that fX Af du is defined and

Joaran= [ opran= [ ondu=a(f srau= [ a=a [ ran

If —co < A <0, then (\f)"™ = —=Af~ and (\f)” = —AfT and the previous
argument can be repeated with no essential change.

If A =0, the result is trivial.

(ii) If f : X — R is integrable and A € R, then [ |Af|du = |A| [ [f| dp < 400,
which means that \f is also integrable. The equality | Afdp =X / « [ du has
been proved in (i).

If f: X — C is integrable and A € C, the same argument gives that \f is
also integrable.

We, now, take F' : X — C so that F = f p-a.e. on X. Then, also A\F = \f
p-a.e. on X and Theorem 7.4 implies that [\ AFdu = [ \f dpand [ Fdp =
J fdu. Hence, it is enough to prove that [\ AFdu = A [ F dp.

From R(AF) = R(A)R(F) — S(N)S(F) and from the real valued case we get
that

/X RF) du = R(N) /X R(F) dp — S(N) /X S(F) dp.

Similarly,

/X SOF) djt = ROV /X S(F) dpi + S(N) /X R(F) dy.
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From these two equalities

/)\qu:A/ §R(F)du+z'>\/ %(F)du:A/ Fdp.
X X X X

Theorem 7.7 Let f,g : X — R or C be X—measurable and consider any
Y—measurable definition of f + g.

(i) If f,g :+ X — R and [y fdu, [y gdu are both defined and they are not
opposite infinities, then fX(f + g)du is also defined and

/X(f+g)du:/xfdu+/xgdu-

(ii) If f,g : X — R or C are integrable, then f + g is also integrable and the
previous equality is again true.

Proof: (i) Considering the integrals [y f*du, [ f~dp, [ 97 du, [y g~ dp, the
assumptions imply that at most the [, f*du, [, g% du are 400 or at most the
Jx [~ du, [ g~ dp are +oc.

Let [ f~dp < 400 and [y g~ dp < 4oo0.

Proposition 7.4 implies that, if B = {z € X | f(z) # —o0,g(x) # —oo},
then p(B¢) = 0. We define the functions F = fyp and G = gxp. Then
F,G: X — (—00,+0] are ¥—measurable and F = f and G = g p-a.e. on X.

The advantage of F,G over f,g is that F(z) + G(x) is defined for every
reX.

Observe that for all ¥ —measurable definitions of f+g, we have F+G = f+g
pu-a.e. on X. Because of Theorem 7.4, it is enough to prove that the fX (F+G)dpu
is defined and that [, (F + G)du= [y Fdu+ [ Gdpu.

From F=Ft - F " <FfTandG=G" -G  <GTon X weget F+G <
F*+G" on X. Hence (F+ G)" < F' + G on X and similarly (F + G)~ <
F~+ G on X.

From (F+G)” < F~+G on X we find [ (F+G) dp < [ F~du+
Jx G~ dp < +00. Therefore, [ (F 4+ G)dy is defined.

We now have (F+G)" —(F+G)" =F+G=(Ft+G")—(F~ +G") or,
equivalently, (F+G)t + F~+ G~ = (F+G)" + Ft + G*.

Proposition 7.1 implies that

/ (F+G)* du+/ F~ du+/ G dp = / (F+G)~ du+/ Ft du+/ Gt dp.
X X X X X X

Because of the finiteness of [ (F + G)~ dpu, [ F~ du, [ G~ du, we get
/(F—i—G)du = /(F—I—G)"'du—/(F—i-G)_du
X X X
/F+du+/G+d,u—/F_du—/G_du
X X X X
/Fd;H—/ Gdp.
X X
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The proof in the case when [, fTdu < 400 and [y g7 du < +00 is similar.
(ii) By Lemma 7.8, there are F,G : X — C so that F' = f and G = g p-a.e.
on X. This implies that for all ¥—measurable definitions of f 4+ g we have
F+G=f+g pae onX. Now, by Theorem 7.4, it is enough to prove that
F + G is integrable and [\ (F + G)du = [y Fdu+ [ Gdpu.

Now [y |F + Gldp < [ |F|ldu+ [y |Gldp < 400 and, hence, F + G is
integrable.

By part (i) we have [, R(F + G)dp = [ R(F)dp + [ R(G)dp and the
same equality with the imaginary parts. Combining, we get [ (F+G)dp =
Jx Fdu+ [ Gdp.

Theorem 7.8 Let f,g: X — R be X—measurable. If fX fdu and fX gdu are
both defined and f < g on X, then

/depg/xgdu.

Proof: From f < g =g — g~ < g" we get f* < g*. Similarly, g < f~.
Therefore, if [ g% du < +oo, then [y f*du < 400 and, if [ f~dp < +oo,
then [y g~ du < 4oo0.

Hence we can subtract the two inequalities

/f*du§/9+du7 /g‘dué/f‘du
X X X X

and find that [y fdu < [ gdp.

Theorem 7.9 Let f: X — R or C be X—measurable.
(i) If f: X = R and [y fdp is defined, then

\/deu|§/x\f|du~

(ii) If f : X — C is integrable, then the inequality in (i) is again true.

Proof: (i) We write | [ fdu| =| [y fTdu— [y f~du| < [ fTdu+ [ f~dp =
Jx |fldn.
(ii) Consider F' : X — C so that F' = f p-a.e. on X. By Theorem 7.4, it is

enough to prove | [ Fdu| < [ |F|dp.
If [ Fdu =0, then the inequality is trivially true. Let 0 # [, Fdu € C
and take A = sign( [y F'du) # 0. Then

y/ Fdyu| = )\/ Fdy = / NFdpy = %(/ AFdp) = /%(AF)du
X X X X X
[mopide < [ 3ride = [ (Fds

X X X

IN
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Theorem 7.10 (The Dominated Convergence Theorem) (Lebesgue) Con-
sider the X—measurable f, f, : X — R or C (n € N) and g : X — [0, +00].
Assume that f = limy, oo frn p-a.e. on X, that, for all n, |f,| < g p-a.e. on
X and that fng,u < 400. Then dll f,, and f are integrable and

/andu—>/xfdu.

Proof: From the |f,| < g p-a.e. on X we find [y |fn|dp < [ gdp < +00 and
hence f,, is integrable. Also, from |f,| < g p-a.e. on X and f = lim, 4o fn
p-a.e. on X, we get that |f| < g p-a.e. on X and, for the same reason, f is also
integrable.

We may now take F, F,, : X — R or Cso that F = f and F,, = f, p-a.e. on
X for all n. We, then, have |F,| < g p-a.e. on X and F = lim,,_, 1o F,, p-a.e.
on X and it is enough to prove [y F,, du — [ Fdp.
(i) Let F,F, : X — R. Since 0 < g+ F,,,g — F}, on X, the Lemma of Fatou
implies that

/ gdu:l:/ Fdp <liminf | (9 F,)du
X X

n—-+4oo X

and hence

/gdu:l:/quS/gdu—l—liminf:ﬁ:/ F, dpu.
X X X n—too  Jx

Since [ gdp is finite, we get that £ [\ Fdp < liminf, . .+ [, F, dp and
hence
lim Sup/ F,du < / Fdp < liminf F, du.
X X X

n—+o00 n—+o0
This implies [ F, du — [, Fdp.
(ii) Let F,F,, : X — C. From |R(F,)| < |F,| < g p-a.e. on X and from
R(F,) — R(F) p-a.e. on X, part (i) implies [y R(F,)dp — [y R(F) dp. Simi-
larly, [ S(Fp)dp — [y S(F)dp and, from these two, [\ Frdp — [y Fdpu.
Theorem 7.11 (The Series Theorem) Consider the ¥—measurable f, fy :
X —-RorC (neN). If 5% [ |faldu < +00, then
(i) S5 fulx) exists for p-a.e. x € X,

(is) if f= Zzz n(z) p-a.e. on X, then

/deuz/xfndu-

Proof: (i) Define g = Zz |fn] + X — [0,400] on X. From Theorem 7.2 we
have [, gdp = tee Jx |faldp < +oc0. This implies that g < 400 p-a.e. on
X, which means that the series Z:g fn(z) converges absolutely, and hence
converges, for p-a.e. z € X.

(ii) Consider s, = >.p_, fx for all n. Then lim, .is 8, = f pae. on X
and [s,| < g on X. Theorem 7.10 implies that Y | [ fodp = [ sndp —
Jx I dp.
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Theorem 7.12 (Approxzimation) Let f : X — R or C be integrable. Then
for every € > 0 there is some YX—measurable simple function ¢ : X — R or C

so that [y |f —¢|ldp < e.

Proof: If f : X — [0,400] is X—measurable with [, fdu < 400, there is
an increasing sequence {¢,} of non-negative ¥ —measurable simple functions
so that ¢, T f on X and fX On du T fX fdu. Therefore, for some n we have
Sy Fdin—e< [ bndp < [y fdp. Thus [ |f = duldp = [y (f = én) dp < e.

Now if f : X — R is integrable, then [, f*du < 400 and [y f~ du < +oc.
From the first case considered, there are non-negative Y —measurable simple
functions ¢1, ¢ so that [y [fT — ¢1ldp < § and [ |f~ — ¢o|ldp < 5. We
define the simple function ¢ = ¢ — ¢ : X — R and get [, |f — ¢[dp <
Jx lff = uldu+ [ |f~ — b2l dp < e

Finally, let f : X — C be integrable. Then there is F : X — C so that
F = f p-a.e. on X. The functions R(F), S(F) : X — R are both integrable,
and hence we can find real valued ¥ —measurable simple functions ¢, ¢2 so that
Jx IR(F) — ¢1]dp < § and [ [S(F) — ¢2|dp < §. We define ¢ = ¢1 +i¢p2 and
get fx‘f_¢|d,u:fx|F_¢|du<e~

7.4 Integrals over subsets.

Let (X,%, 1) be a measure space.

Let A€ X and f: X — R or C be ¥—measurable. In order to define an
integral of f over A we have two natural choices. One way is to take fx.a, which
is f in A and 0 outside A, and consider [ fxa dp. Another way is to take the
restriction f4 of f on A and consider f 4 Ja dp with respect to the restricted p
on (A,X4). The following lemma says that the two procedures are equivalent
and give the same results.

Lemma 7.9 Let Ac X and f: X — R or C be L —measurable.

(i) If f : X — R and either [y fxadp or [, fadu exists, then the other also
exists and they are equal.

(i) If f + X — C and either [ |fxaldu or [, |faldu is finite, then the other
is also finite and the integrals fX fxadp and fA fadu are equal.

Proof: (a) Take a non-negative ¥ —measurable simple function ¢ = Z;ﬂzl KjiXE;
with its standard representation. Now ¢xa = Z;”Zl KiXE;nA @ X — [0, 4+00)
has [y dxadp = 3270 kjpu(E;NA). On the other hand, ga = >0 KjXEna
A — [0,400) (where we omit the terms for which E; N A = ()) has exactly the
same integral [, ¢adp = 377", w;u(E; N A).

(b) Now let f : X — [0,4+00] be ¥—measurable. Take an increasing sequence
{én} of non-negative ¥ —measurable simple ¢,, : X — [0, +00) with ¢, — f.
Then {¢,xa} is increasing and ¢,xa — fxa. Also, {(¢n)a} is increasing
and (¢n)a — fa. Hence, by (a) we get, [y fxa = limp_yoo [y dnxadp =
limy, 4 oo fA((bn)A dp = fA fa dp.

() If f: X — R is Y—measurable, then fTx4 = (fxa)™ and f~xa =
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(fxa)~ and also (fa)* = (f*)a and (fa)~ = (f7)a. Hence, by (b) we
get [y (fxa)tdu = [y frxadp = [,(f)adp = [((fa)* du and, similarly,
Jx(fxa)”du= [y (fa)” du. These show (i).
(d) Finally, let f : X — C be Y —measurable. Then |fxa| = |f|xa and |fa]| =
|[fla- By (b) we have [ |fxaldp = [y |flxadp = [y1fladn = [,|faldp,
implying that fxa and fa are simultaneously integrable or non-integrable.
Assuming integrability, there is an F' : X — C so that F' = fxa p-a.e. on
X. Tt is clear that F'xy4 = fxa p-a.e. on X and, also, F4 = fa p-a.e. on A.
Therefore, it is enough to prove that fX Fxadyp = fA Fydu.
Now part (c) implies fX (Fxa)du = fX Fixadp = [, R(F)adp =
J4R(Fa)dp. Similarly, [, S(Fxa)dp = [, S(Fa)dp and we conclude that
Jx Fxadp= [, Fadp.

Definition 7.6 Let f: X — R or C be X—measurable and A € X.
(i) If f: X —- R and fX fxadup or, equivalently, fA fadu is defined, we say
that the [, fdu is defined and define

[ tau= [ peadu= [ faan

(ii) If f : X — C and fxa is integrable on X or, equivalently, fa is integrable
on A, we say that f is integrable on A and define fAfd,u exactly as in (i).

Lemma 7.10 Let f: X — R or C be ¥ —measurable.
(i) If f : X — R and [ fdu is defined, then [, f dp is defined for every A € X.
(ii) If f : X — C is integrable then f is integrable on every A € 3.

Proof: (i) We have (fxa)* = ffxa < f* and (fxa)™ = f~xa < f~ on
X. Therefore, either [ (fxa)tdp < [y fTdu < 400 or [(fxa) dp <
Jx [~ dp < +oc. This says that [, fxadp is defined and, hence, [, fdpu is
also defined.

(ii) If f: X — C is integrable, then [ [fxaldu < [y |fldp < +oo and fx4 is
also integrable.

Proposition 7.6 Let f : X — R be Y—measurable and fod,u be defined.
Then either fA fdu € (—o0,4+00] for all A€ X or fA fdu € [—o00,400) for all
AeX.

Proof: Let [, f~du < +oo. Then [, (fxa)” dp < [y f~ dp < 400 and hence

Jofdu= [y fxadp>—oc forall AeX.
Similarly, if [ fTdu < 400, then [, fdu < +oc for all A € X.

Theorem 7.13 If f : X — R and fod,u is defined or f : X — C and f is
integrable, then

(i) [, fdp=0 for all A € ¥ with p(A) =0,

(i) [, fdp = o u, fdp for all pairwise disjoint A1, As, ... € ¥ with A =
Un23 4,
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(iii) fAn fdp— [, fdu for all increasing {A,} in X with A = U} Ay,
(iv) fAn fdp — [, fdu for all decreasing {A,} in ¥ with A = N} A, and
|fA1fdu| < +o0.

Proof: (i) This is easy because fxa = 0 p-a.e. on X.
(ii) Let Ay, Ag,... € ¥ be pairwise disjoint and A = U5 A,,.

If f: X — [0,+00] is ¥—measurable, since fxa = 3., fxa, on X, Theo-
rem 7.2 implies fAfd,u = fX fxadu= Z:iol fX fxa, dp= :: a, [ dp

If f: X — C and f is integrable, we have by the previous case that

it < [fxa,ldp = roe fAn |fldp = [,|fldp < +o00. Because of fxa =

:z fxa, on X, Theorem 7.11 implies that fA fdu= :L_g A, fdu.

If f: X — R and fX f~du < 400, we apply the first case and get

oo w, fTdu = [, f*dp and Sobee w, f7du = [, fdp < +oo. Sub-
tracting, we find 7,7 w, fdp= S 4 fdp.

If [ fT dp < 400, the proof is similar.

(iii) Write A = A; UU;25(Ax \ Ag_1), where the sets in the union are pairwise
disjoint. Apply (ii) to get [, fdu = [, Fdu+075 fAk\Ak—l fdw= [, fdu+
limy,— oo Dy fA,C\A,Cf1 fdp =1limy, 1o fAn fdp.

(iv) Write A; \ A = U725 (A; \ A,), where {A4; \ A,} is increasing. Apply (iii)
to get fAl\Anfdﬂ—? fAl\Afdu.

From fAl\Ade+fAfd“ = [4, fdp and from | [, fdu| < 400 we im-
mediately get that also | [ 4 fdu| < +oo. From the same equality we then get
fAl\Afdu = [, fdp— [, fdp. Similarly, fAl\Anfdu = fAlfd,u—fAnfdu
and hence [, fdu—[, fdu— [, fdu—[, fdu. Becauseof| [, fdu|<-+oo
again, we finally have fA" fdu— [, fdu.

We must say that all results we have proved about integrals [  over X
hold without change for integrals [, over an arbitrary A € 3. To see this we
either repeat all proofs, making the necessary minor changes, or we just apply
those results to the functions multiplied by x 4 or to their restrictions on A. As
an example let us look at the following version of the Dominated Convergence
Theorem.

Assume that f, f, : X — R or C are X—measurable, that g : X — [0, +00]
has [, gdp < 400, that |fn| < g p-a.e. on A and f, — f p-a.e. on A. The
result is that [, fndp— [, fdp.

Indeed, we have then that [, gxadp < 400, that |foxa| < gxa p-a.e. on
X and f,xa — fxa p-a.e. on X. The usual form of the dominated convergence
theorem (for X) implies that [, fndu = [y faxadp — [y fxadp= [, fdu.

Alternatively, we observe that [, g4 du < +00, that |(fn)a] < ga p-a.e. on
A and (fn)a — fa p-a.e. on A. The dominated convergence theorem (for A)
implies that fA Jndp= fx(fn)A dp — fX fadp= fAfd/J-
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7.5 Point-mass distributions.

Consider the point-mass distribution y induced by a function a : X — [0, +o0]
through the formula
W(E) = Z Az

zEE
forall E C X.
We observe that all functions f : X — Y, no matter what the (Y,3') is, are
(X, ¥)—measurable.
If ¢ = Z?=1 K;jXE,; is any non-negative simple function on X with its stan-
dard representation, then [y ¢du = 37, kju(E;) = 320 5i(F,ep, @) =
Z;l:l(zmeEj Kjly) = Z?:l(zzeEj ¢(z)a,). We apply Proposition 2.6 to get

[ odn=3 @

zeX

Proposition 7.7 If f : X — [0, +00] then

| ran=3 f@a.

zeX

Proof: Consider an increasing sequence {¢,} of non-negative simple functions
so that ¢, T fon X and [ ¢ du 1 [y fdp.

Then [y ¢ndp = 3, cx On(®) az < 3 o f()a, and, taking limit in n,
we find [y fdpu <Y o f(@)a,.

If F'is a finite subset of X, then )  _pon(r)ar < D cx On(r)a, =
Jx ®n dp. Using the obvious imy, . 4o0 Do cp On(2) ae = >, cp f() @z, we find

>ower f(®)az < [ fdp. Taking supremum over F, Y- v f(z)a, < [y fdu
and, combining with the opposite inequality, the proof is finished.

We would like to extend the validity of this Proposition 7.7 to real valued or
complex valued functions, but we do not have a definition for sums of real valued
or complex valued terms! We can give such a definition in a straightforward
manner, but we prefer to use the theory of the integral developed so far.

The amusing thing is that any series ), ; b; of non-negative terms over the
general index set I can be written as an integral

Sobi= [bas.
iel I

where f is the counting measure on I (and we freely identify b; = b(¢)). This is
a simple application of Proposition 7.7.

Using properties of integrals we may prove corresponding properties of sums.
For example, it is true that

S bite) =) bi+Y ¢, > Ai=A> b

i€l iel iel iel el
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for every non-negative b;, ¢; and A. The proof consists in rewriting || (btc)df =
J;bdt+ [;cdfand [, Abdf =X [,bd}§ in terms of sums.

For every b € R we write b™ = max(b, 0) and b~ = — min(b,0) and, clearly,
b=>bt—b" and |b| =b" +b".

Definition 7.7 If I is any index set and b : I — R, we define the sum of
{bi}icr over I by

I S

icl iel iel
only when either Y, ;b < 400 or >, b; < 4oo. We say that {b;}icr is

summable (over 1) if 3, ., b; is finite or, equivalently, if both 3., b and
> icr bi are finite.

Since we can write

Zbi:ij—Zb;:/Ib+dﬁ—/jb‘dﬂ:/lbdﬁ

i€l i€l i€l

iel

and also

Z\bi\:ijJeri‘:/b+dﬁ+/1b*dﬁ:/l|b|dﬁ,

iel iel iel I

we may say that {b;}ier is summable over I if and only if b is integrable over
I with respect to counting measure § or, equivalently, if and only if Y., |bi| =
J; bl dt < +o0. Also, the Y-, ., bi is defined if and only if the [, bd} is defined
and they are equal.

Further exploiting the analogy between sums and integrals we have

iel

Definition 7.8 If I is any index set and b : I — C, we say that {b;}icr is
summable over I if ), |b;| < +oc.

This is the same condition as in the case of b: I — R.

Proposition 7.8 Letb: I — R or C. Then {b;}ics is summable over I if and
only if the set {i € I|b; # 0} is countable and, taking an arbitrary enumeration
(i1, iz, ...} of it, 525 biy| < +o0.

Proof: An application of Propositions 2.3 and 2.4.

In particular, if {b;};cs is summable over I then b; is finite for all ¢ € I. This
allows us to give the

Definition 7.9 Let b : I — C be summable over I. We define the sum of

{bi}icr over I as
D b= R(bi)+iy S(bi).

i€l icl icl
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Therefore, the sum of complex valued terms is defined only when the sum is
summable and, hence, this sum always has a finite value. Again, we can say
that if b : I — C is summable over I (which is equivalent to b being integrable
over I with respect to counting measure) then

> b _/bdn

i€l

We shall see now the form that some of the important results of general
integrals take when we specialize them to sums. They are simple and straight-
forward formulations of known results but, since they are very important when
one is working with sums, we shall state them explicitly. Their content is the
interchange of limits and sums. It should be stressed that it is very helpful to
be able to recognize the underlying integral theorem behind a property of sums.
Proofs are not needed.

Theorem 7.14 (i) (The Monotone Convergence Theorem) Let b,b*) :
I —[0,400] (k€ N). Ifb™ 1 b; for all i, then Y, b 15, bi
(ii) Let b*) = T — [0, +0oc] (k € N). Then Y, (3055 bﬁ’“) = 3 (e 0.
(iii) (The Lemma of Fatou) Let b,b*) : I — [0,+00] (k € N). If b; =
liminfy, 400 b for alli € I, then Y ,c; by < liminfy o0 3,e; b,
(iv) (The Dominated Convergence Theorem) Let b,b®) : I — [0, +00]
(k € N)and ¢ : I — [0,+0c0]. If \b(k)| < ¢ foralliand k, if Y, ;¢ < 400
and if b — b; for all i, then Y, b — 3., bi
(v) (The Series Theorem) Let b'*) : I — [0,400] (k € N). Assuming that
Z:{(Zieﬂbgk”) < oo, then 375 bgk) converges for every i. Moreover,
Cier(CiZ0Y) = TiS (Sier 7).
Observe that the only #-null set is the (). Therefore, saying that a property
holds f-a.e. on I is equivalent to saying that it holds at every point of I.
Going back to the general case, if y is the point-mass distribution induced
by the function a : X — [0, +oo] and f : X — R, then [, fdu is defined

if and only if either Ezexf (z)ay = [y fTdp < +o0or > oy [T (2)a, =
Jx [~ dp < 400, and in this case we have

[ran=[ srau= [ an= Y@= Y @ = X s

zeX reX rzeX

icl

Moreover, f is integrable if and only if Y7 |f(x)]as = [y [f|dp < +oo. This
is also true when f : X — C, and in this case we have

/ fd/.l/ = Z ER XDf ax +1 Z XDf ))awa
reX zeX

where Dy = {z € X | f(z) # oo}. Since ) . |f(x)|az < +o0, it is clear that
f(z) = oo can happen only if a,; = 0 and a, = +oo can happen only if f(x) = 0.
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But, then f(z)a, € C for all * € X and, moreover, f(x)xp,(v)a, = f(v)a, for
all x € X. Therefore, we get

[ fn= 3 R0 +i X (@) = 3 floa

zeX reX rzeX
Now we have arrived at the complete interpretation of sums as integrals.

Theorem 7.15 Let p be a point-mass distribution induced by a : X — [0, +00].
If f : X — R orC, then the [ fdu exists if and only if the 3 .« f(x)a, exists

and, in this case,
/ fdu= Z f(z)a,.
X

zeX

A simple particular case of a point-mass distribution is the Dirac mass dy,
at g € X. We remember that this is induced by a, =1 if z = x9 and a, =0
if x # x¢. In this case the integrals become very simple:

/ f by, = f(xo)
X

for every f. It is clear that f is integrable if and only if f(zo) € C. Thus,
integration with respect to the Dirac mass at xqg coincides with the so-called
point evaluation at xg.

7.6 Lebesgue-integral.

A function f : R® — R or C is called Lebesgue-integrable if it is integrable
with respect to m,.

It is easy to see that every continuous f : R™ — R or C which is 0 outside
some bounded set is Lebesgue-integrable. Indeed, f is then Borel-measurable
and if @ is any closed interval in R™ outside of which f is 0, then |f| < Kxg,
where K = max{|f(z)||z € Q} < +oo. Therefore, [o, |f|dm, < Km,(Q) <
+o0 and f is Lebesgue-integrable.

Theorem 7.16 (Approximation) Let f : R — R or C be Lebesque-integra-
ble. Then for every e > 0 there is some continuous function g : R® — R or C
which is 0 outside some bounded set so that [g, |g — f|dm, <e.

Proof: (a) Let —0o < a < b < +oo and for each § € (0,%5%) consider the

continuous function 7,55 : R — [0,1] which is 1 on (a4 6,6 — ¢), is 0 outside
(a,b) and is linear in each of [a,a + 6] and [b — 4, b].

Let R = (a1,b1) X -+ X (an,b,) be an open interval in R™. Consider, for
small § > 0, the open interval Rs = (a1 +6,b1 — ) x -+ X (an +8,b, — 8) C R.
Then it is clear that, by choosing ¢ small enough, we can have m,(R\ Rs) < €.
Define the function 755 : R™ — [0,1] by the formula

TRS(T1, -y Tn) = Tay by,6(T1) *** Tay, b, ,8(Tn)-



7.6. LEBESGUE-INTEGRAL. 111

Then, 7r s is continuous on R”, it is 1 on R; and it is 0 outside R. Therefore,
fRn ITR.s — XR|MH < Mp(R\ Rs) < €.
(b) Let E € L, have m,(F) < +o0o. Theorem 4.6 implies that there are
pairwise disjoint open intervals Ry, ..., R; so that m,(EA(R1U---UR;)) < 5.
The functions xg and xg, + --- + xg, differ (by at most 1) only in the set
EA(Ry U---URy). Hence, fR" | 22:1 Xr, — XE|dm, < §.

By (a), we can take small enough § > 0 so that, for each R;, we have

.. . l l

Jrn ITRis — XR:Mn < 37 This implies [g,. [> ;21 Tri.s — Doim1 XR, | dmyn <

1
dlim13 = 5

Denoting ¢ = Y°_, 7r, 5 : R” — R, we have Jrn 10 —xE|dmy, < e. Observe
that ¢ is a continuous function which is 0 outside the bounded set U._, R;.
(¢) Let now f : R™ — R or C be Lebesgue-integrable. From Theorem 7.12
we know that there is some L, —measurable simple ¢ : R" — R or C so
that [g.[¢ — fldm, < §. Let ¢ = 377, kjxm, be the standard representa-
tion of v, where we omit the possible value k = 0. From Z;”:l |kj|mn(E;) =
fR" || dm, < fR" |f] danrfRn |f—v|dm, < 400, we get that m,(E;) < +o0
for all j. By part (b), for each E; we can find a continuous ¢; : R® — R so
that [g. [V; — x5, | dm, < m

If we set g = Z;nzl k;%;, then this is continuous on R™ and

/nlg—fldmn < /"|g—¢\dmn—|—/Rn\¢_f|dmn

m
€
m

€ €
D lnilgapeytg = ©
j=1 J

A

Since each 1); is 0 outside a bounded set, g is also 0 outside a bounded set.

We shall now investigate the relation between the Lebesgue-integral and the
Riemann-integral. We recall the definition of the latter.

Assume that @Q = [a1,b1] X« - X[an, by] is a closed interval in R™ and consider
a bounded function f: Q — R.

If m € N is arbitrary and @1, ...,Q; are arbitrary closed intervals which
have pairwise disjoint interiors and so that Q@ = Q1 U---U @y, then we say that

A={Q1,...Qi}

is a partition of Q. If P, Py, ..., P, are the open-closed intervals with the same
sides as, respectively, @, Q1,...,Qy, then {Q1,...Q;} is a partition of @ if and
only if the Py,..., P, are pairwise disjoint and P = P;U---UP;. Now, since f is
bounded, in each @; we may consider the real numbers m; = inf{f(z) |z € Q;}
and M; = sup{f(z)|z € Q;}. We then define the upper Darboux-sum and
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the lower Darboux-sum of f with respect to A as, respectively,

1
S(f;4) =Y M;jvol,(Q;),

Jj=1

1
S(f58) = myvoln(Q;)-
j=1
If m =inf{f(z) |z € Q} and M = sup{f(z)|z € Q}, we have that m < m; <
M; < M for every j and, using Lemma 4.2, we see that
muvol,(Q) < X(f;A) <E(f;A) < Mwol,(Q).

If Ay ={Q1,...,Q},} and Ay = {Q3,...,Q}} are two partitions of Q, we
say that Ay is finer than A, if every Q7 is included in some Qj. Then it is
obvious that, for every Q]l of Ay, the Q?’s of Ay which are included in Q]l cover
it and hence form a partition of it. Therefore, from Lemma 4.2 again,

m; vol, (Q}) < Z m? vol,(Q7F) < Z M7 vol, (QF) < M vol, (Q5).
Qice; QIcQ;

Summing over all j =1,...,l; we find
2(f; A1) < B(f;82) <B(f;49) < B(f; A1),

Now, if Ay = {Q1,..., Qlll} and Ay = {Q?,..., lez} are any two partitions of
@, we form their common refinement A = {le NQ?|1<j<l,1<i<lh}.
Then, X(f; A1) < 3(f;A) < B(f;A) < X(f; Az) and we conclude that

muvol,(Q) < X(f; A1) < B(f;Ag) < M woln(Q)
for all partitions Ay, As of Q. We now define

(Rn)/ f=sup{2(f;A)| A partition of Q}
—Q

(Rn)/Qf = inf{3(f; A)| A partition of Q}

and call them, respectively, the lower Riemann-integral and the upper
Riemann-integral of f. It is then clear that

moola(Q) < (Ry) / f<(Ry) / < Mui(Q).
Laq

We say that f is Riemann-integrable over Q if (R")iQf = (Rn)TQf and

in this case we define

®o) [ 1= | - =) [ 1

to be the Riemann-integral of f.
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Lemma 7.11 Let Q be a closed interval in R™ and f : Q — R be bounded.
Then f is Riemann-integrable if and only if for every € > 0 there is some
partition A of Q so that X(f; A) — X(f;A) <e.

Proof: To prove_the sufficiency, take arbitrary € > 0 and the corresponding A.
Then 0 < (Rn)[of — (Rn)fo < X(f;A) — X(f;A) < e. Taking the limit
as € — 0+, we prove the equality of the upper Riemann-integral and the lower
Riemann-integral of f. o

For the necessity, assume (R")iQf = (Rn)fo and for each ¢ > 0 take

partitions A1, Ag of @ so that (R,) fo -5 < X(f;A1) and N(f;As) <

(Rn) fQ f + 5. Therefore, if A is the common refinement of A; and Ay, then
E(f;A) = Z(f;4) S B(f; A2) -~ Z(f; A1) <e

Proposition 7.9 Let Q be a closed interval in R™ and f : Q@ — R be continuous
on Q. Then f is Riemann-integrable.

Proof: Since f is uniformly continuous on @), given any € > 0 there is a § > 0

so that |f(z) — f(y)] < vor7gy for all z,y € @ whose distance is < J. We take

any partition A = {Q1,...,Q;} of @, so that every @; has diameter < §. Then

|f(x) — fy)] < m for all z,y in the same @;. This implies that for every

Q; we have M; —m; = max{f(z) |z € Q;} —min{f(y) |y € Q;} < ;5t5q-
Hence

l l

S(f;A) = 2(f;4) =Y (M —my) voln(Q;) < Z 2 (Q5) =

]:1 =

and Lemma 7.11 implies that f is Riemann-integrable.

Theorem 7.17 Let @ be a closed interval in R™ and f : Q — R be Riemann-
integrable. If we extend f as 0 outside Q, then f is Lebesgue-integrable and

Rnfdmn/Qfdmn(Rn)/Qf-

Proof: Lemma 7.11 implies that, for all k¥ € N, there is a partition Ay =
{QF, .. .,QZ_} of @ so that X(f; Ag) — X(f;A%) < % We consider the simple

functions
lk lk
_ k _ k
Y = m; Xpk, oK = Mj XPF,
J J
=1 =1

where PJ is the open-closed interval with the same sides as Q¥ and m} =
inf{f(z) |z € QF}, My = sup{f(x)|z € Qf}.

S(f; A0, S/ Ay) — / .
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It is clear that ¢, < fxp < ¢ for all k, where P is the open-closed interval
with the same sides as Q. It is also clear that

I
- G dmy = mk vol, (PF) = B(f; A)
j=1

G dmy, =Y MFool, (PF) = S(f; A).

Hence [g.(¢x — ¥r) dm, < + for all k.
We define g = limsupy,_,, ., ¥, and h = liminfy,_, o ¢5 and then, of course,
g < fxp < h. The Lemma of Fatou implies that

/ (h — g) dm,, = lim inf/ (¢ — ) dmy, = 0.
n k—+oo Jrn

By Proposition 7.3, g = h m,-a.e. on R" and, thus, f = g = h my-a.e. on R".
Since g, h are Borel-measurable, Proposition 6.24 implies that f is Lebesgue-
measurable. f is also bounded and is 0 outside Q. Hence |f| < Kxg, where
K = sup{|f(z)||z € Q}. Thus, [z, [fldm, < Km,(Q) < +oco and f is
Lebesgue-integrable.

Another application of the Lemma of Fatou gives

/ (h— fxp)dm, < liminf (or — fxp)dmy
" k—-+oco R"

= liminff(f;Ak)—/ fxpdmy
k—-+o0 R”
= (Rn)/f— fxp dm,.
Q R"

Hence [g.hdm, < (R,) fo and, similarly, (R,) fo < Jgn gdmy,. Since
f=g9=h my-a.e. on R", we conclude that

<Rn)/Qf= f dm,.

R'H.

Theorem 7.17 incorporates the notion of Riemann-integral in the notion
of Lebesgue-integral. It says that the collection of Riemann-integrable func-
tions is included in the collection of Lebesgue-integrable functions and that the
Riemann-integral is the restriction of the Lebesgue-integral on the collection of
Riemann-integrable functions.

Furthermore, Theorem 7.17 provides a tool to calculate Lebesgue-integrals,
at least in the case of R. If a function f is Riemann-integrable over a closed
interval [a,b] C R, we have many techniques (integration by parts, change
of variable, antiderivatives) to calculate its f: f(z)dx. In case the given f is
Riemann-integrable over intervals [ag, bi] with ax | —oo and by T 400 and we
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can calculate the integrals f;: f(z) dx, then it is a matter of being able to pass

to the limit fab: f(x)dx — fjof f(x) dz to calculate the integral over R. To do
this we may try to use the Monotone Convergence Theorem or the Dominated
Convergence Theorem.

On the other hand we have examples of bounded functions f : Q — R which
are Lebesgue-integrable but not Riemann-integrable.

Example
Define f(z) =1, if € @ has all coordinates rational, and f(z) = 0, if at least
one of the coordinates of x is irrational. If A = {Q1,...,Q;} is any partition

of @, then all ;’s with non-empty interior (the rest do not matter because
they have zero volume) contain at least one  with f(x) =1 and at least one x
with f(z) = 0. Hence, for any such @Q; we have M; = 1 and m; = 0. Hence,

S(f;A) = vol,(Q) and X(f; A) = 0 for every A and this says that (R”)fo =1
and (R,) [ o f =0. Thus, f is not Riemann-integrable.

On the other hand, f extended as 0 outside Q) is 0 m,-a.e. on R"™ and hence
it is Lebesgue-integrable on R™ with [, fdm, = fQ fdm, = 0.

Notation
If Q = [a,b] is any closed interval in R, then the Riemann-integral (R,,) f[a !
of a function f : [a,b] — R is, traditionally, denoted by

/abf’ /abf(”dﬂ% /abf(t)dt, etc.

After Theorem 7.17 we are allowed to use the same notations for the correspond-
ing Lebesgue-integral f[a p J dma. We also observe that mi({a}) =m1({b}) =0
and, hence, the above notations cover all integrals |, g [ dmi, where S is any of
the intervals with end-points a and b. This is also extended to include the cases
of all unbounded intervals (—oo, b), (—00, b], (a, +0), [a, +00) and (—o0, 4+00).

Therefore, in all cases of intervals S with end-points a,b € R we use any of

/a " fama. /S F(@) dmy (2), / " fla) dma (@), / 'y /S #(x) da, / ' fla)dr

for the Lebesgue-integral fs fdmy of f over S.
The notation dmq (z),dmq(t),dz,dt etc. for Lebesgue-measure is used also
in higher dimensions. We may, thus, write

[ t@amia). [ e

for the Lebesgue-integral [ 4 dmy, of f over the Lebesgue-measurable A C R™.

The last topic will be the change of Lebesgue-integral under transformations
of the space.
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Proposition 7.10 Let T : R™ — R™ be a linear transformation with det(T") #
0. If (Y,X') is a measurable space and f : R" — 'Y is (L,,X')—measurable,
then foT~1:R"™ =Y is also (L,,%")—measurable.

Proof: For every E € ¥/ we have (f o T-Y)™YE) =T(f~Y(E)) € L,, because
of Theorem 7.18.

Theorem 7.18 Let T': R™ — R" be a linear transformation with det(T) # 0
and f: R"™ — R or C be Lebesgue-measurable.
(i) If f : R" — R and the [g, fdm,, ezists, then the [g, f o T " dm, also
exists and
foT tdm, = |det(T)| fdmyg,.

R~ Rn
(ii) If f : R™ — C is integrable, then f o T~ is also integrable and the equality
of (i) is again true.

Proof: (a) Let ¢ : R™ — [0,4+00) be a non-negative Lebesgue-measurable
simple function and ¢ = Z;n:1 kjXxE; be its standard representation. Then
Jrn @dmy = 3770 Kjma(Ej).

It is clear that ¢ o 71 = 37 | wjxm, 0 T—" = 37", kX7 () from which
we get g, ¢ o T~ dmy = 3300 kjma(T(E;)) = |det(T)| 3272, wymn(E;) =
| det(T)] fg. & dim.

(b) Let f : R® — [0,400] be Lebesgue-measurable. Take any increasing
sequence {¢x} of non-negative Lebesgue-measurable simple functions so that
¢r — f on R™ Then {¢, o T~!} is increasing and ¢ o T-1 — fo T !
on R™. From part (a), [g. [ o T=tdm, = lims_ o fRn ¢p o TV dm, =
| det(T)| limp— 400 fRn or dmy, = |det(T)| fRn Jdmy,.

(c) Let f: R" — R and the [g, fdm, exist. Then (foT 1)t = ftoT"!
and (foT ') = f~oT7 ' and from (b) we get [, (f o T ") dm, =
|det(T)| [gn [T dmy, and [5, (f o T71)" dmy, = |det(T)| [g. [~ dmy. Now (i)
is obvious.

(d) Let f: R™ — C be integrable. From |f o T7!| = |f| o T~! and from (b) we
have that [g, |f o T ! dm, = |det(T)| [z, |fldmn < +oo. Hence foT ' is
also integrable.

We take an F': R" — C so that F' = f m,-a.e. on R".

If A={x e R"|F(z) # f(x)} and B = {z € R"|FoT (z) # fo
T—1(x)}, then B = T(A). Hence, m,(B) = |det(T)|m,(A) = 0 and, thus,
FoT™! = foT ! my-a.e. on R". Therefore, to prove (ii) it is enough to prove
Jan FoT " dmy, = |det(T)| g F dm,.

We have R(FoT ') = R(F)oT~" and, from part (c), [z, R(FoT™')dm, =
| det(T)| Jgn R(F) dmy,. We, similarly, prove the same equality with the imagi-
nary parts and, combining, we get the desired equality.

The equality of the two integrals in Theorem 7.19 is nothing but the (linear)
change of variable formula. If we write y = T!(x) or, equivalently, z =
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T(y), then

foT Y wydr= [ F(T(x))dz = |det(T)| / ) dy.
R” R" RrR»

Thus, the informal rule for the change of differentials is

dx = |det(T)|dy.

7.7 Lebesgue-Stieltjes-integral.

Every monotone f : R — R is Borel-measurable. This is seen by observing
that f=1((a,b]) is an interval, and hence a Borel set, for every (a,b]. If, now,
F : R — R is another increasing function and pp is the induced Borel-measure,
then f satisfies the necessary measurability condition and the fR fdup exists
provided, as usual, that either [p fT dup < 400 or [g f~ dur < +oo.

The same can, of course, be said when f is continuous.

In particular, if f is continuous or monotone in a (bounded) interval S and
it is bounded on S, then it is integrable over S with respect to pp.

We shall prove three classical results about Lebesgue-Stieltjes-integrals.

Observe that the four integrals which we get from |, s [ dur, by taking S =
[a,b], [a,b), (a,b] and (a,b), may be different. This is because the f{a} fdup =
f@pr({a}) = fa)(Flat) — F(a—)) and [, fdpp = fO)(F(b+) — F(b-))

may not be zero.

Proposition 7.11 (Integration by parts) Let F,G : R — R be two increasing
functions and pp, pe be the induced Lebesgue-Stieltjes-measures. Then

[ Gdn ot [P = GOHF0) - Glat) Pl
a,b (a,b

for all a,b € R with a <b. In this equality we may interchange F with G.
Similar equalities hold for the other types of intervals, provided we use the
appropriate limits of F,G at a,b in the right side of the above equality.

Proof: We introduce a sequence of partitions Ay = {cf, ..., cfk} of [a, b] so that
a=cf<ch<... <cfk = b for each k and so that

. ko k . _
kEI—iI-loo max{cj —cjq [1<j<I}=0.

We also introduce the simple functions

ekl

Uy s
g =Y GEHIX@ oy fo= D F(e5at)xe
Jj=1 j=1

It is clear that G(a+) < gr < G(b+) and F(a+) < fr < F(b—) for all k.
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If, for an arbitrary = € (a,b] we take the interval (c?_l,c;?] containing x

(observe that j = j(k,z)), then gi(z) = G(ck+) and fi(z) = F(cf_,+). Since

limg_ 4 0o (c;€ - c;?_l) — 0, we have that c;‘-' — z and c;?_l — x. Therefore,

gr(x) = Glat),  fulz) = Flz—)

as k — +o0.
We apply the Dominated Convergence Theorem to find

ZG(C§+)(F(C§+) - F(C?—ﬁr)) = / gk dpp — G(z+)dur,
(a,b] (a,b]

j=1
173
SR G — G4 = [ fedua— [ Fle-)due
j=1 (a,b] (ab]
as k — +oo0.
Adding the two last relations we find
G+H)F(b+) — Gla+)F(a+) = G(z+)dpr +/ F(z—)dug.
(a,b] (a,b]

If we want the integrals over (a,b), we have to subtract from the right side
of the equality the quantity f{b} G(z+) dpr + f{b} F(2—) dug which is equal to
Gb+)(F(+)—F(b—))+F(b—)(Gb+)—G(b—)) = G(b+)F(b+)—-G(b—)F(b—).
Then, subtracting the same quantity from the left side of the equality, this
becomes F'(b—)G(b—) — F(a+)G(a+). We work in the same way for all other
types of intervals.

The next two results concern the reduction of Lebesgue-Stieltjes-integrals
to Lebesgue-integrals. This makes calculation of the former more accessible in
many situations.

Proposition 7.12 Assume that F : R — R is increasing and has a continuous
derivative on (a,b) for some a,b with —oo < a < b < 4o00. Then

/LF(E):/EF’(x)dx

for every Borel set E C (a,b) and

b
fine= [ F@F (@) ds

(a7b)

for every Borel-measurable f : R — R or C for which either of the two integrals
exr1sts.
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Proof: (i) The assumptions on F' imply that it is continuous on (a,b) and that
F' >0 on (a,b). For every [c,d] C (a,b) we have, by the fundamental theorem
of calculus, that fcd F'(z)dx = F(d) — F(c) = pr((c,d]). If we apply this to
two strictly monotone sequences ¢, | a and d,, T b, we get, by the monotone
convergence theorem, that f: F'(x)dx = F(b—) — F(a+) = pr((a,b)) < +o0.
Hence, F” is integrable over (a,b).

We now introduce the Borel measure p on R by the formula

W(E) = neE\@W) + [ Fla)da

EN(a,b)

for every Borel set E C R. If (¢,d] C (—o0,a] or if (¢,d] C [b,+00), then
obviously p((c,d]) = pr((e,d]). If (¢,d] C (a,b), then, by what we said in the
first paragraph, again u((c,d]) = f(c’d] F'(z)dx = pp((c,d]). Tt is easy, now, to
prove that for every (¢, d] we have p((c,d]) = pur((c,d]). We just need to break
the interval into at most three subintervals.

Theorem 5.5 implies that 4 = pp and hence pp(E) = pp(E \ (a,b)) +

fEn(a,b) F'(z) dx for every Borel set F C R. This implies

1r(E N (a,b)) = / F(z)do

EN(a,b)

for every Borel £ C R and this can be written f(a’b) xedpr = pr(EN(a, b)) =
fEﬁ(a b) F'(z)dx = fj XE(z)F'(x) dx. Taking linear combinations of character-

istic functions, we find f(a,b) ddpp = fab () F'(x) dx for all Borel-measurable
simple functions ¢ : R — [0, +00). Now, applying the Monotone Convergence
Theorem to an appropriate increasing sequence of simple functions, we get

b
fdue = [ )P/ (@) da
(a,b) a

for every Borel-measurable f : R — [0,400]. The proof is easily concluded for
any f : R — R, by taking its positive and negative parts, and then for any
f: R — C, by taking its real and imaginary parts (and paying attention to the
set where f = 00).

Proposition 7.13 Assume that F : R — R is increasing and G : (a,b) — R
has a bounded, continuous derivative on (a,b), where —co < a < b < +o0.
Then,

b
Gdur = GO-)F(b—) — Glat)Flat) — / Fla—)C (2) da
(a,b) a
b
- G(b—)F(b—)—G(a+)F(a+)—/ Fla+)@ (z) da.
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Proof: (A) By the assumptions on G we have that it is continuous on (a,b) and
that the limits G(b—) and G(a+) exist. We then extend G as G(b—) on [b, +00)
and as G(a+) on (—o0,a] and G becomes continuous on R. We use the same
partitions Ay, as in the proof of Proposition 7.11 and the same simple functions

gk:ZG( )X(ek k]*ZG ok

j=1
We have again that |gix| < M where M = sup{|G(x)||z € [a,b]} and that

gx(z) — G(z+) = G(x) for every = € (a,b]. By the Dominated Convergence
Theorem,

Uy
ZG(c?)(F(c§+)F(c§_l+))/( b]gkdupﬂ - G(z) dup
=1 a, a

as k — +oo.
By the mean value theorem, for every j with j = 1,...,l;, we have

C?A) = G/(ff)(C? - 02?71)

for some &% € (cb_,,¢F). Hence

Iy
S () (G -G ZF )G (ER) (ke / e

j=1

where we set ¢ = l’“ V(e 1+)G’(§k)x(c k-
17
We have that ¢y (z ) F(z—)G'(z) for every x € (a,b) and that |¢| < K on
(a,b) for some K which does not depend on k. By the Dominated Convergence

Theorem, f or(z) de — f F(z—)G'(z) dz. We combine to get

b

G(b)F(b+) — G(a)F(a+) = - G(z)dur + / F(x—)G'(z) dx

From both sides we subtract f{b} G(z)dur = G(b)(F(b+) — F(b—)) to find

b
Gb)F(b—) — G(a)F(a+) = / G(z)dur + / F(z—)G'(z) dz

(a,b)
which is the first equality in the statement of the proposition. The second
equality is proved in a similar way.
(B) There is a second proof making no use of partitions.

Assume first that G is also increasing in (a,b). Then its extension as G(a+)
on (—oo,a] and as G(b—) on [b, +00) is increasing in R. We apply Proposition
7.11 to get

| Giue=Go-)F0-) - Glat)Fas) - [ Pla-)due,
(a,b) (a,b)
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which, by Proposition 7.12, becomes the desired

b
Gdup = G(b—)F(b—) — G(a+)F(a+) —/ F(z—)G' (z) da.
(a7b) a

If G is not increasing, we take an arbitrary zo € (a,b) and write G(z) =
G(xo)Jrffo G/ (t) dt for every x € (a,b). Now, (G')T and (G')~ are non-negative,
continuous, bounded functions on (a, b) and we can write G = G7 — G5 on (a, b),
where

Gi(x) zG(a:o)+/x(G')+(t) dt, Ga(x) :/I(G’)‘(t) dt

Zo

for all t € (a,b). By the continuity of (G')* and (G’)” and the fundamental
theorem of calculus, we have that G| = (G')* > 0 and G = (G')~ > O on (a,b).
Hence, G; and G are both increasing with bounded, continuous derivative on
(a,b) and from the previous paragraph we have

b
Gy dup = Gi(b-)F(b-) — Gi(a+)F(a+) — / Fla—)G)(x) da
(a,b) a

for i = 1,2. We subtract the two equalities and prove the desired equality.

It is worth keeping in mind the fact, which is included in the second proof
of Proposition 7.13, that an arbitrary G with a continuous, bounded derivative
on an interval (a,b) can be decomposed as a difference, G = G; — G, of two
increasing functions with a continuous, bounded derivative on (a,b). We shall
generalise it later in the context of functions of bounded variation.

7.8 Reduction to integrals over R.
Let (X,X, 1) be a measure space.

Definition 7.10 Let f : X — [0,+00] be X—measurable. Then the function
Af 1 [0,400) — [0,400], defined by

Ap(t) = p({z € X |t < f(2)}),
1s called the distribution function of f.

Some properties of A; are easy to prove. It is obvious that A is non-negative
and decreasing on [0,400). Since {z € X |t, < f(z)} T{z € X |t < f(z)} for
every ty, | t, we see that Ay is continuous from the right on [0, +00).

Hence, there exists some ¢y € [0, +00] with the property that A; is 400 on
the interval [0, to) (which may be empty) and Ay is finite in the interval (o, +00)
(which may be empty).
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Proposition 7.14 Let f : X — [0, +00] be X—measurable and G : R — R be
increasing with G(0—) = 0. Then

/}(G(f(m)—)duz/moo) A du.

Moreover, if G has continuous derivative on (0,400), then
+oo
/ Go fdy :/ A (0)G (1) dt + Ap(0)G(0+).
X 0

Thus, [ fdu= ["°° A (t) dt.

Proof: (a) Let ¢ = Z;”:l KjXE; be a non-negative Y—measurable simple func-
tion on X with its standard representation, where we omit the value 0. Rear-
range so that 0 < k1 < -+ < Ky, and then

/,L(El) + /,[/(EQ) + -+ /.L(Em), if0<t< kK

[L(EQ)—F"'—F,U(Em), if k1 <t < kg
As(t) =4 -
w(En), if K1 <t < km
0, if Ky <t
Then
/[ ))‘cb dpa = (W(Br) + p(Es) + -+ p(En)) (G(r1—) — G(0-))
0,+00

+H(u(E2) + -+ + p(Bm)) (G(h2—) — G(k1-))

JF,L‘(Em)(G(’im*) - G(Hm—lf))
k1= )(E1) + G(ra—=)p(E2) + - + G(km—) u(Enm)

G
/QWHW-
X

because G(4(x)—) is a simple function taking value G(k;—) on each E; and
value G(0—) =0on (F1U---UE;)".

(b) Take arbitrary ¥—measurable f : X — [0, +00] and any increasing sequence
{¢n} of non-negative X —measurable simple ¢,, : X — [0, +00) so that ¢, T f
on X. Then 0 < G(¢,(x)—) T G(f(z)—) for every z € X and, by the Monotone
Convergence Theorem,

/G%mﬂ@ﬁ/ammw.
X X

Since {z € X |t < ¢p(x)} T {2z € X |t < f(x)}, we have that A4, (t) T A¢(t)
for every t € (0,+00). Again by the Monotone Convergence Theorem,

/ )\¢n d;LG — )\f d,ug.
[0,+00) [0,400)



7.8. REDUCTION TO INTEGRALS OVER R. 123

By the result of (a), we combine and get [ G(f(x)—)du = f[o o) M i
Proposition 7.12 implies the second equality of the statement and the special
case G(t) =t implies the last equality.

Proposition 7.15 Let u(X) < 400 and f : X — [0, +00] be X—measurable.
We define F: R — R by

Fy(0) = il € X1 f2) <o) = { 400 720 HO 1 <0

Then F is increasing and continuous from the right and, for every increasing
G:R — R with G(0—) = 0, we have

[ G@-yau= [ Gt-)dur, + Glroclu(f " (+o0)).
X [0,400)
Proof: It is obvious that F is increasing. If ¢, | t, then {z € X | f(z) < t,} |
{z € X| f(z) < t}. By the continuity of p from above, we get F¢(t,) | Fy(t)
and F is continuous from the right.

We take any n € N and apply Proposition 7.11 to find

G(t—)dur, = G(n+)Fy(n) — /

Frduo = [ (Fy(n) = Fy)duo.
[0,n] [0,n]

(0,n]

The left side is = f[o’_m) G(t=)x[o,n) (t) dpr, T f[0’+oo) G(t—)dpr,, by the
Monotone Convergence Theorem.

Similarly, the right side is = f[0,+<>o) p{z € X |t < f(x) <n})xjom(t) dpc 1
f[o +00) p{z € X |t < f(z) < +o0}) dug, again by the Monotone Convergence
Theorem.

Therefore, [i , G(t=)dur, = [, oy n{z € X[t < f(z) < +oo}) duc
and, adding to both sides the quantity G(4+oo)u({zx € X | f(x) = +o0}) we find

|G dur, + Glrooutis € X | ) = +och) = [ Ardua.
[0,400) [0,400)

Now, the equality of the statement is an implication of Proposition 7.14.
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7.9 Exercises.

1.

The graph and the area under the graph of a function.
Let f : R™ — [0, 400] be Lebesgue-measurable. If

A ={(z1,...,2n,Tn+1) |0 < Tpp1 < fz1,...,20)} C R,

Gy ={(x1,- ., Tn,Tnt1) |Tnp1 = fz1,...,20)} SR,

prove that Ay, Gy € L, 41 and

Mypy1(Ayf) = . fdmy, M1 (Gy) = 0.

An equivalent definition of the integral.

Let f : X — [0,+00] be ¥—measurable. Take all A = {E,...,E},
where [ € N and the non-empty sets E1,..., E; € ¥ are pairwise disjoint

and cover X. Such A are called ¥—partitions of X. Define X(f, A) =
2221 m;u(E;), where m; = inf{f(z) |z € E;}. Prove that

/ fdp=sup{Z(f,A)| A is a X—partition of X}.
X

If f,g,h: X — R are X—measurable, g, h are integrable and ¢ < f < h
p-a.e. on X, prove that f is also integrable.

The Uniform Convergence Theorem.

Let all f,, : X — R or C be integrable and let f,, — f uniformly on X. If
(X)) < +o0, prove that f is integrable and that [y fndp — [y fdp.

The Bounded Convergence Theorem.

Let f,f, : X — R or C be ¥—measurable. If u(X) < +oo and there is
M < +o0 so that |f,| < M p-a.e. on X and f, — f p-a.e. on X, prove

that [y fndu — [y fdp.

Let f,f, : X — R or C be Y—measurable and g : X — [0,+0cc] be
integrable. If |f,| < g p-a.e. on X for every n and f, — f p-a.e. on X,
prove that [ [fn, — f|dp — 0.

Let f, fn : X — [0,+00] be X —measurable with f,, < f p-a.e. on X and
fn — f pa.e. on X. Prove that fX Jndp — fx fdp.

Let f, fn : X — [0,+00] be ¥—measurable and f,, — f p-a.e. on X. If
there is M < +o00 so that fX fndu < M for infinitely many n’s, prove
that f is integrable.
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10.

11.

12.

13.

14.

15.

. Generalisation of the Lemma of Fatou.

Assume that f, g, fn : X — R are ¥—measurable and fX g~ dp < 4o0.
If g < f, prae. on X and f = liminf,, ., f, p-a.e. on X, prove that

[y fdp < liminf, o0 [y frdp.

Let f, fn : X — [0, +00] be X—measurable with f,, | f p-a.e. on X and
Jx fidp < +oc. Prove that [ fodu | [y fdp.

Use either the Lemma of Fatou or the Series Theorem 7.2 to prove the
Monotone Convergence Theorem.

Generalisation of the Dominated Convergence Theorem.

Let f,fn : X - Ror C, g,g, : X — [0,+00] be X—measurable. If
|fnl < gn prace. on X, if [ gndp — [ gdp < 400 and if fr, — f p-a.e.
on X and g, — g p-a.e. on X, prove that [y fndu— [y fdp.

Assume that all f, f,, : X — [0, +00] are ¥—measurable, f, — f p-a.e.
on X and [y fndp — [y fdu < 4oco. Prove that [, fndp — [, fdp for
every A € 3.

Let f,f, : X — R or C be integrable and f, — f p-a.e. on X. Prove
that [y [fn — fldp — 0if and only if [y |fn|dp — [y |f|dp.

Improper Integrals.

Let f : [a,b) — R, where —oo < a < b < 4o00. If f is Riemann-integrable
over [a,c] for every ¢ € (a,b) and the limit lim._,— [ f(2)dz exists in
R, we say that the improper integral of f over [a,b) exists and we
define it as

—b

(x)dx = Erél_ cf(a:) dz.

a

We have a similar terminology and definition for ff{_ f(z)dx, the im-
proper integral of f over (a,b].

(i) Let f : [a,b) — [0,+00) be Riemann-integrable over [a,c| for every
¢ € (a,b). Prove that the Lebesgue-integral f; f(x)dz and the improper

integral fa—)b f(z) dx both exist and they are equal.

(ii) Let f : [a,b) — R be Riemann-integrable over [a, c] for every ¢ € (a, b).
Prove that, if the Lebesgue-integral f; f(x)dx exists, then f:b f(x)dx
also exists and the two integrals are equal.

(iii) Prove that the converse of (ii) is not true in general. Look at the
fourth function in exercise 7.9.17.

(iv) If f:b |f(z)|dx < 400 (we say that the improper integral is ab-
solutely convergent), prove that the f:b f(z)dx exists and is a real
number (we say that the improper integral is convergent.)
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16.

17.

18.

19.
20.

21.

22.

23.
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Using improper integrals (see exercise 7.9.15), find the Lebesgue-integral
—+o00 . .
7 f(z) dz in the following cases:

1 R 11 1
€ ) ) — T ——X|-1,1]
1+l’2’ ; (E2X[0’+ ) x \37| \/mX[ 1,1]

Using improper integrals (see exercise 7.9.15), find the Lebesgue-integral
fjoos f(z) dz in the following cases:

+ool

Z 27X(n,n+1]7

n=1

400 1
Z ;X(n,n-‘rl] 5
n=1

Apply the Lemma of Fatou for Lebesgue-measure on R and the sequences:

1 n+1
o X(n,n+1]s

X(n n+1]-

>
+Z 1)+l

. . X
X(n,n-‘rl)a X(n,—i—oo)a nXO,%)a 1+ szgn(sm(?”%)).

Let f : [-1,1] — C be integrable. Prove that lim,_, f_ll 2" f(x)dx = 0.

The discontinuous factor.
Prove that
if0<a< 4o

1 +o0 t 07
—tee T Ja Ttz 1, if —co<a<0

Prove that

n 1 .
. - ——, ifl<a
1 1+ 2)le @ dp =49 a1 |
n=sFoo 0 ( + n) T {Jroo, ifa<l1

Let f : X — [0,400] be X—measurable with 0 < ¢ = fodp < +o00.
Prove that

400, if0<a<l1

ngrfoon/xlog{lJr({l)a}du{c, %fazl

0, if 1 <a<4oo.

Consider the set A = Q N[0,1] = {r1,re,...} and a sequence {a,} of real
numbers so that Z 1 lan| < +00. Prove that the series

Z —_—

converges absolutely for mq-a.e. x € [0,1].
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The measure induced by a function.

Let f: X — [0,4+c0] be ¥—measurable. Define v : ¥ — [0, +0c] by

u(E) = [ fau

for all E € ¥. Prove that v is a measure on (X, ) which is called the
measure induced by f. Prove that

(i) [y 9dv = [y gf dp for every X—measurable g : X — [0, +00],

(i) if g : X — R is Y —measurable, then Jx gdv exists if and only if
fX gf dp exists and in such a case the equality of (i) is true,

(iii) if g : X — C is ©—measurable, then g is integrable with respect to
v if and only if gf is integrable with respect to p and in such a case the
equality of (i) is true.

Assume that f : X — R or C is integrable and prove that for every e > 0
there is an F € ¥ with u(E) < 400 and [, |f|dp < e
Absolute continuity of the integral of f.

Let f : X — R or C be integrable. Prove that for every e > 0 there is
§ > 0 so that: | [, fdu| <eforall E € ¥ with u(E) < 4.

(Hint: One may prove it first for simple functions and then use the ap-
proximation theorem.)

Let f : R — R or C be Lebesgue-integrable. Prove F(z) = [*__ f(t)dt is
a continuous function of z on R.

Continuity of translations.

Assume that f: R® — R or C is Lebesgue-integrable. Prove that

Al - |f(x —h) = f(z)|dz = 0.

(Hint: Prove it first for continuous functions which are 0 outside a bounded
set and then use the approximation theorem.)

The Riemann-Lebesgue Lemma.
Assume that f: R — R or C is Lebesgue-integrable. Prove that
—+oo —+oo
lim f(t) cos(xt)dt = lim f(t)sin(xt) dt =0

r—+oo [ r—+oo [

oo oo

in two ways.

Prove the limits when f is the characteristic function of any interval and
then use an approximation theorem.

Prove that | [7°° f(t) cos(at) dt| = 3| [T22(f(t — T) — f(t)) cos(at) dt| <
%fjof |f(t = %) — f(t)| dt and then use the result of exercise 7.9.28.
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31.

32.

33.

34.

35.

CHAPTER 7. INTEGRALS

Let @ C R"™ be a closed interval and zp € Q. If f: Q@ — R is Riemann-
integrable over @ and g : Q@ — R coincides with f on Q \ {z¢}, prove that
g is also Riemann-integrable over @ and that (R,,) fQ g=(Ry) |, of

Let @ C R"™ be a closed interval, A € R and f,g : @ — R be Riemann-
integrable over ). Prove that f+ g, \f and fg are all Riemann-integrable
over () and

(R)/(f+g /f+ / (R)/AfA /f

Let Q € R™ be a closed interval.

(i) If the bounded functions f, fx : @ — R are all Riemann-integrable over
Qand 0 < fi T f on Q, prove that (R,) fQ fr — (Ry) fQ f

(ii) Find bounded functions f, fi, : @ — R so that 0 < fx T f on @ and so
that all fi are Riemann-integrable over @, but f is not Riemann-integrable
over Q.

Continuity of an integral as a function of a parameter.

Let f: X x (a,b) - R and g : X — [0, +0o0] be such that

(i) g is integrable and, for every t € (a,b), f(-,t) is ¥—measurable,
(ii) for p-a.e. x € X f(z,-) is continuous on (a,b),

(iii) for every t € (a,b), \f( t)| < g p-a.e. on X.

Prove that F(t) = [, f X t) dp is continuous as a function of ¢ on (a, b).

Dzﬁerentiabzlzty of an mtegml as a function of a parameter.

Let f: X x (a,b) — R and g : X — [0, +00] be such that

(i) g is integrable and, for every ¢t € (a,b), f(:,t) is ¥—measurable,

(ii) for at least one tg € (a,b), f(-,to) is integrable,

(iii) for p-a.e. x € X, f(x,-) is differentiable on (a, b) and |%(x,t)| < g(z)
for every t € (a b).

Prove that F(t) = [y f(-,t) dp is differentiable as a function of ¢ on (a, b)
and that iF i

—(t) = t)d t<b

a0 /dt< Ddp,  a<t<b

where % A X (a,b) — R for some A € ¥ with u(X \ A) =0.

The integral of Gauss.
Consider the functions f,h : [0,+00) — R defined by

1 z 1 2 1=t 2(t241)

(i) Prove that f'(z) + h/(z) = 0 for every x € (0,400) and, hence, that
f(z) + h(z) = T for every z € [0, +00).
(ii) Prove that

+OO 142
/ e 2 dt = V2.
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36. The distribution (or measure) of Gauss.

37.

38.

Consider the function g : R — R defined by

1 T 1
g(l‘) = E/ € 3t dt.
—00

(i) Prove that g is continuous, strictly increasing, with g(—oo) = 0 and

g(+00) = 1 and with continuous derivative ¢'(x) = \/1276’%1’2, z €R.

(ii) The Lebesgue-Stieltjes measure p, induced by g is called the distri-
bution or the measure of Gauss. Prove that uy,(R) =1, that

(E) = L e 2 dg
Ha Vor Jg

for every Borel set in R and that

/Rfdug = \/% /_-:0 f(ac)e*%“”2 dx

for every Borel-measurable f : R — R or C for which either of the two
integrals exists.

(i) Prove that the function F : (0, +00) — R defined by

+o00 3
F(t) = / et 22T gy
0

xT

is differentiable on (0, +00) and that 4F(t) = —H_% for every ¢ > 0. Find

the lim;_, o F(t) and conclude that F(t) = arctan 1 for every t > 0.

(ii) Prove that the function S2Z is not Lebesgue-integrable over (0, +00).

(iii) Prove that the improper integral fOHJFOO % dz exists.
(iv) Justify the equality lim; o4 F(t) = foﬁ—mo SIRL .
(

v) Conclude that
/ sinz do — E.
0 xr 2
(vi) Prove that

e 0, if0<a<+oo
1 +oo t )
lim f/ Sm(x)da:{é, ifa=0
a 1’

t— .
toom v if —co<a<0

The gamma-function.

Let H. = {s =z +iy € C|z > 0} and consider the functionI': H; — C
defined by

“+oo
T'(s) = / t*~ et dt.
0
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This is called the gamma-function.
(i) Prove that this Lebesgue-integral exists and is finite for every s € H.
(ii) Prove that
or el
%(5) = —Z@(s)
for every s € H;. This means that I' is holomorphic in H .
(iii) Prove that I'(n) = (n — 1)! for every n € N.

The invariance of Lebesgque-integral and of Lebesgue-measure under isome-
tries.

Let T: R™ — R" be an isometric linear transformation. This means that
|T(x) — T(y)| = |x — y| for every x,y € R™ or, equivalently, that TT* =
T*T = I, where T™* is the adjoint of T and [ is the identity transformation.
Prove that, for every E € L,,, we have m,(T(E)) = m,(FE), and that

foT tdm, =/ fdmy,
R» R"
for every Lebesgue-measurable f : R® — R or C, provided that at least

one of the two integrals exists.

(i) Consider the Cantor’s set C and the Iy = [0,1], 1, I3, ... which were
used for its construction. Prove that the 2"~! subintervals of I,,_1 \ I,
n € N, can be described as

ai Ap—1 1 ai Ap—1 2
(3+ +3”*1+3”’3+ 4—3”*1—’—3”)7
where each of aq,...,a,_1 takes the values 0 and 2.

(ii) Let f be the Cantor’s function, which was introduced in exercise 4.6.7,

extended as 0 in (—00,0) and as 1 in (1,+00). Prove that f is constant
gt an—1 1
f - 922 + + on + on

in the above subinterval (% +--- + $2=1 + %, Y4t 4+ 3%,)
(iii) If G : (0,1) — R is another function with bounded derivative in (0, 1),
prove that

—+00
a Ay — 1
Gd,uf:G(l—)—Z Z (?;+...+ Ly

n=lay,...,an-1=0,2

a

(071)

ay p-1 2 ax an—1 1
(G ++ 3+ ) -6+ + 3 +30)-

(iv) In particular, [ (
(v) Prove that

/(011) e dpy = ezt nEToo cos (%) -+ - COS (3%)

for every t € R.

1
m)xdﬂf =3
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Let F,G : R — R be increasing and assume that F'G is also increasing.
Prove that

,uGF(E):/JEG(x+)duF+/]'3F(x—)duG

for every Borel set F C R and
/ F(@) dugr = / F(2)G(at) du + / F@)F(a—) duc
R R R

for every Borel-measurable f : R — R or C for which at least two of the
three integrals exist.

If F: R — R is increasing and continuous and f : R — [0, +o0] is
Borel-measurable, prove that fR foFdup = flf((jw)) ft)de.

oo

Show, by example, that this may not be true if F' is not continuous.

Riemann’s criterion for convergence of a series.
Assume F : R — [0,+00) is increasing and ¢ : (0,400) — [0,400) is

decreasing. Let a,, > 0 for all n and

t{nfan = g(x)} < F(x)

for every z € (0,+00) and f(o ooy 9 dpp < +00. Prove that S a, <
+00.
Mean values.

Let f : X — R or C be integrable and F' be a closed subset of R or C.
If ﬁ fEfd,u € F for every E € ¥ with 0 < u(FE), prove that f(z) € F
for p-a.e. x € X.

Let E € ¥ have o-finite y-measure. Prove that thereisan f : X — [0, +00]
with [ fdp < 400 and f(x) > 0 for every x € E.

Let f: X — [0,+0c]. Prove that

PILEYCEE LD IERVCY

nez neZ
and, hence, that f is integrable if and only if the > _, 2" Af(2") is finite.

Equidistributed functions.

Let f,g : X — [0,400] be ¥—measurable. The two functions are called
equidistributed if Af(t) = A\y(t) for every t € [0, +00).

Prove that, if f, g are equidistributed, then fX fPdu = fX gP du for every
p € (0,+00).
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Let ¢, : X — [0,400) be two ¥ —measurable simple functions and let
¢ = >0t kixe, and ¢ = 3711, NjxF, be their standard representations
sothat 0 < k1 < -+ < Ky, and 0 < Ay < -+ < A\,, where we omit the
possible value 0.

If ¢ and 1 are integrable, prove that they are equidistributed (exercise
7.9.47) if and only if m = n, K1 = Ap,...,6m = Ap and p(Ey) =

The inequality of Chebychev.
If f: X — [0,400] is ¥—measurable, prove that

plle € X|t< @) =A< 7 [ fau

for every t € (0,400). Prove also that, if f is integrable, then

lim tAf(t) = 0.

t——+oo

If f: X — [0,400] is ¥—measurable and 0 < p < 400, prove that
“+o0
/ fPdu :p/ tPINf(t) dt.
X 0 '

If, also, f < +o00 p-a.e. on X, prove that

/ fpd/'L:/ tpd/J’Ffv
X [0,4-00)

where F is defined in Proposition 7.15.

The Jordan-content of sets in R™.

If £ C R" is bounded we define its inner Jordan-content

c(E) = sup{>_vol,(R;)|m € N, E\, ..., Ep, pairwise disjoint
j=1

open intervals with U, R; C E}

and its outer Jordan-content

ANE) = inf{z voly,(Rj)|m € N, Ey, ..., E, open intervals
j=1

with U, R; 2 E}.

(i) Prove that the values of cl )(E) and ¢\ (E) remain the same if in the
above definitions we use closed intervals instead of open intervals.

(ii) Prove that cgf)(E) < csLo)(E) for every bounded E C R".
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52.

The bounded E is called Jordan-measurable if c )(E) =) (E), and
the value

cn(B) = ¢ (E) = ¢ (E)
is called the Jordan-content of E.
(iii) If E is bounded and c,(f)(E) = 0, prove that E is Jordan-measurable.
(iv) Prove that all intervals S are Jordan-measurable and ¢, (S) = vol,,(.S).
(v) If E is bounded, prove that it is Jordan-measurable if and only if for
every € > 0 there exist pairwise disjoint open intervals Ry, ..., R,, and
open intervals Ry, ..., R}, so that U | R; C E C U}, R and

k m
Z voly, (R}) — Z vol,(R;) < e.
i=1 j=1

(vi) If E is bounded, prove that E is Jordan-measurable if and only if
AO(OE) = 0.

(vii) Prove that the collection of bounded Jordan-neasurable sets is closed
under finite unions and set-theoretic differences. Moreover, if Eq,..., F;
are pairwise disjoint Jordan-measurable sets, prove that

cn(B) =) culE)).

j=1
(viii) Prove that if the bounded set E is closed, then m,(E) = 0 implies
cn(E) = 0. If E is not closed, then this result may not be true. For
example, if E = QN [0,1] C R, then m;(E) =0, but cgi)(E) =0<1=
cﬁo)(E) and, hence, F is not Jordan-measurable. (See exercise 4.6.4.)

(ix) If the bounded set E is Jordan-measurable, prove that it is Lebesgue-

measurable and
my(E) = cn(E).

(x) Let E be bounded and take any closed interval @ so that £ C Q. Prove
that E is Jordan-measurable if and only if x g is Riemann-integrable over
Q@ and that, in this case,

en(E) = (Ry) /Q xE-

(xi) Let @ be a closed interval, f,¢g : @ — R be bounded and £ C @
be Jordan-measurable with ¢, (E) = 0. If f is Riemann-integrable over @
and f =g on @\ E, prove that g is also Riemann-integrable over @ and

that (Rn) fQ f = (Rn) fQ g.
Lebesgue’s characterisation of Riemann-integrable functions.

Let Q@ C R™ be a closed interval and f : Q@ — R be bounded. Prove that
f is Riemann-integrable if and only if {z € Q| f is discontinuous at x} is
a my,-null set.
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Chapter 8

Product-measures

8.1 Product-c-algebra.

If I is a general set of indices, the elements of the cartesian product J],.; X;
are all functions = : I — U;erX; with the property: z(i) € X; for every i € I. It
is customary to use the notation x;, instead of z(i), for the value of x at ¢ € I
and, accordingly, to use the notation (z;);es for x € [],c; Xi.

If T is a finite set, I = {1,...,n}, besides writing * = (z;)ics, we also
use the traditional notation x = (x1,...,2,) for the elements of [[,.; X; =
[T°, X; = Xy x -+ x X,,. And if I is countable, say I = N = {1,2,...}, we
write = (x1, 22, ...) for the elements of [, ; X; = jzof Xi=X; x Xgx---.

Definition 8.1 If I is a set of indices, then, for every j € I, the function
7 [Lier Xi — X defined by

(@) = z;
for all x = (x;)icr € [[;c; Xi, is called the j-th projection of [[,.; X; or the
projection of [[,.; X; onto its j-th component X;.

In case I = {1,...,n} or I =N, the formula of the j-th projection is

mi(z) = z;

for all z = (z1,...,2,) € X1 X --- x X, or, respectively, x = (x1,22,...) €
X1 XX2 Xoee :H:;OloXZ
It is clear that the inverse image 7Tj_1(Aj) ={z € [l;c; Xilz; € A} of an
arbitrary A; C X is the cartesian product
_ X;, ifi#j
g : . i
T (AJ)*HY“ where YZ{AJ-, ifi=j

i€l
In particular, if I = {1,...,n}, then

ﬂ-j_l(Aj):XlX”.XXj_lXAjXXj'f‘lX"'XXn

135
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and, if 7 = N, then

W;l(Aj):XlX~..><Xj71XAjXXj+1><,,,.

Definition 8.2 If (X;, ;) is a measurable space for every i € I, we consider
the o-algebra of subsets of the cartesian product [, X;

Q=i =S({m " (A)) | € 1.4; € 5,)),
el

called the product-o-algebra of ¥;, i € I.

In particular, Q);_; X; is generated by the collection of all sets of the form
Xy X - XXj_l XAj XXj+1 X oo X Xy, where lgjgnand Aj EE]-.

Similarly, ®j':°f 3); is generated by the collection of all sets of the form
XXX Xj_1 xAj x Xj4q1 x -+, where j € N and A; € X;.

Proposition 8.1 Let (X;,¥;) be a measurable space for each i € I. Then
X1 Xi is the smallest o-algebra ¥ of subsets of [[;c; X for which all projec-
tions mj : [[;c; Xi — X are (X, X;)—measurable.

Proof: For every j and every A; € ¥; we have that ijl(Aj) € @, X and,
hence, every 7; is (&Q),;; Xi, £j)—measurable.

Now, let ¥ be a o-algebra of subsets of [],.; X; for which all projections
7 [Lier Xi — Xj are (¥, X;)—measurable. Then for every j and every 4; € ;
we have that 7Tj_1(Aj) € X. This implies that {7rj_1(Aj) ljel,A; €%} C%
and, hence, @,.; X; C X.

Proposition 8.2 Let (X;,X;) be a measurable space for each i € 1. If &; is a
collection of subsets of X; with ¥; = X(&;) for alli € I, then @Q,;; X = X(E),
where

&= {ﬂ';l(Ej> |] el, Ej S EJ}

Proof: Since € C {71';1(14]-) lj€l,A; € 55} C Qs Xi, it is immediate that

Y(E) € Qer X
We, now, fix j € I and consider the m; : [[,c; Xi — X;. We have that

71']»_1(Ej) € &€ C X(€) for every E; € ;. Proposition 6.1 implies that m; is
(3(€), ¥j)—measurable and, since j is arbitrary, Proposition 8.1 implies that

Ricr Xi € X(E).
Proposition 8.3 Let (X;,%;) be measurable spaces. If &; is a collection of

subsets of X; so that ¥; = X(&;) for every i € I, then @Q,;c; Xi = X(E), where

E= {H E; | E; # X; for at most countably many i € I and E; € & if E; # X;}.
i€l

Proof: We observe that w]l(Ej) € & for every j € I and every E; € & and,
hence, £ C £ C %(€). This implies X(€) C X(E).
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Now take any [[,.; Ei € E. We set {i1,ig,...} = {i € I|E; # X;} and
observe that

+oo
[[1E = (= (&) €xE)
el n=1

Thus, £ C %(£) and, hence, $(€) C %(E). Proposition 8.2 finishes the proof.

In particular, ®?:1 >, is generated by the collection of all cartesian products
of the form Ey x --- x E,, where E; € & forall j =1,...,n.

Also, ®:;°1O ¥; is generated by the collection of all cartesian products of the
form Fy x Ey x ---, where E; € &; for all j € N.

Example

If we consider R" = []_; R and, for each copy of R, we take the collection of
all open-closed 1-dimensional intervals as a generator of Br, then Proposition
8.3 implies that the collection of all open-closed n-dimensional intervals is a
generator of @, Br. But we already know that the same collection is a
generator of Br~. Therefore,

BRH = ® BR
i=1

This can be generalised. If ny +-- -4+ ng = n, we formally identify the typical
element (z1,...,2,) € R™ with

((,’El, ce ,l’nl), ey (xn1+~~+nk_1+1a N 7xn1+---+nk))7
i.e. with the typical element of H§:1 R"™. We thus identify

k

R" = HR”J'.

=1

Now, ®§:1 Brr; is generated by the collection of all products H?:l Aj, where

each A; is an n;-dimensional open-closed interval. This means that H?:l A; is,
by the same identification, the typical n-dimensional open-closed interval and,
hence, ®f:1 Bgrr; is generated by the collection of all open-closed intervals in

R™. Therefore,
k
BRH - ® BR"]‘ .
j=1

If v € [[;c; Xs and J C I, we denote, as usual, x; € [];c; X; the restriction
of x on J. Then x ;. € HiEJU X, is the restriction of x on J¢ and, obviously,
x uniquely determines both z; and xj.. Conversely, x is uniquely determined

by its restrictions x; and xjc. Namely, if y € [[,c; X and z € [],c ;. X; are
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given, then there is a unique = € Hiel X; so that x; =y and xj. = z. We just
define z; = y;, if 1 € J, and x; = z;, if i € JC.

This produces an identification between the product spaces Hie ;1 X; and
(ITics Xi) x (Il;cye Xi). We identify the element x of the first space with the
pair (y, z) of the second space, whenever y = x; and z = xje. Or, in the same
context, we may identify [[,c; X and (J[;cje Xi) X (I[;c; Xi), by identifying
x with the pair (z,y).

In case I = {1,...,n} and J = {i1,...,ipn} with 1 < i3 < -+ < 4, < m,
we prefer the vector notation and write z; = (x;,,...,2;,). For example, if
r = (x1,%2,23,%4,%5), then xyy 35 = (21,23,75) and (543 = (T2,74). It
is obvious that & = (21,29, x3, x4, x5) uniquely determines and is uniquely de-
termined by the restrictions y = (x1,z3,z5) and z = (29,x4) and we identify
x = (x1,x9,x3, T4, x5) With (y,2) = ((xl,x37x5) (mg,x4)). It must be stressed
that these are formal 1dent1ﬁcat10ns (logically supported by the underlying bi-
jections) and not actual equalities.

Definition 8.3 Let £ C [[;.; X; and J C I. For every z € []
define

zGJC we

Ez:{yEHXi\xGE, where:cJ:y,a:Jc:z}:{yGHXiHy,z)GE}
i€J ieJ

and call it the z-section of E.

It is clear that every z-section of E is a subset of [[,.; X
We have E(,, ,,) = {(x1,23,25) | (21, 22,23, 24, 75) € E} Q X; x X3 x X5
for the simple example before Definition 8.3.

Definition 8.4 Let f : [[,c; Xi =Y and J C I. For every z € [| we

define f. : [[,c; Xi = Y by the formula

f(y) = f(x) = f(y,2),  where z; =y and x ;e = 2,

zEJC

and call it the z-section of f.

For example, f(y, o) (71,23, 25) = f(x1, 22, 23,74, T5).
In the case where J¢ = {ip} is a one-point set, for simplicity we prefer to
write Ey, and le.o, instead of E(mio) and f(mio).

Theorem 8.1 Let (X;,X;) be a measurable space for every i € I and consider
JCI Ifaset EC [l X is @Q;c; Xi—measurable, then E. C [[,c; X; is

X, Li—measurable for every z € [],;c ;e Xi.

Proof: Consider the collection ¥ of all £ C H
is @), Xi—measurable for every z € [|
Clearly, () belongs to .
If £ €%, then (E°), = (E.)¢ is @Q,c; Xi—measurable for all z € J]
and, hence, E° € .

zEI X; with the property that F,

1€JC

ZG]C
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If E1,FE5,... € X, then (U:{i’jEn)z = Urfi'j (En). is @), ; Xi—measurable for
all z € [, ;. X; and, hence, U/ E, € X.
Therefore, ¥ is a o-algebra of subsets of [[,.; X;. Consider, now, an arbi-
trary i9 € I and an arbitrary A;, € ¥,,. We observe that, if iy € J, then
A, ifi=1
—1 . _ - - 109 0
(Wio (Azo))z - I;‘EY; ) where Y; - {Xz ifie J\ {ZO}
and, if 79 € J¢, then

104y, = JLies Xis i zip € Ay
(750 (Aiy))= = {@, if z;, & A, .

In both cases we have that (m; '

i
z € [l;ese Xi and, hence, Wi_ol(Aio) € X. Since iy and A;, are arbitrary, by
Definition 8.2 we have that X),.;%; € ¥. This says that, if £ C [[,.; X; is
&), Xi—measurable, then E € ¥ and, hence, E, is &), ; X;—measurable for
every z € [[;c e Xi.

(Aiy))= 18 @, s Xi—measurable for every

icJ

Theorem 8.2 Let (V,%'), (X;,%;) be measurable spaces for every i € I and
consider J C I.

If f i [Lie; Xi = Y is (Qe; i, X')—measurable, then f. : [[;c; Xi — Y is
(®cs Xi, X )—measurable for every z € [];c e Xi.
Proof: Take an arbitrary E € ¥'. Then (f,) ' (E) = (f~'(E)), for every

z € HieJc Xi-

If fis (®,;c; Xi, X')—measurable, then f~!(E) € ®,.; X; and, by Theorem
8.1, (f2)71(E) = (f1(E)): € X,y Xi- Since E is arbitrary, we have that f.
is (®,cs X4, ') —measurable.

The last two theorems say, in informal language, that sets or functions which
are measurable in a product space have all their sections measurable in the ap-
propriate product subspaces.

The converse in not true in general.

Examples
1. Let us consider R" = [[I, R, where I = {1,...,n}, and take a J =
{i1,. o yim} with 1 <4 < -+ < 4y, < n. We write J¢ = {if,...,4,_,,} with

1<ih <<y, _,, <n.

We, naturally, identify [, ; R with R™, by writing y = z; = (v;,,...,2;,,)
as y = (Y1,-.-,Ym). We similarly identify [],c;c R with R"™™, by writing
Z=Tje = (xill,...,xi;_m) as 2= (21, Zn—m)-

Therefore, @, ; Br = Brm and &), ;- BrR = Brn—m.

Now, if F is a Borel set in R"™, then, for arbitrary z € []
the z-section E, of E is a Borel set in R™.

2. Take any A C R which is not a Borel set in R and consider the set

_ pn—m
iEJcR =R ’

E = {(33171‘2) S R2|l‘1 =9 € A}
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Clearly, all 1-dimensional sections of E are either empty or one-point sets
and, hence, are Borel sets in R. We shall see that F is not a Borel set in R?.

Indeed, assume that E is a Borel set in R? and consider the invertible linear
transformation 7 : R?> — R? given by the formula

xr1+ Ty 1 — 172)
2 7 2
Then T(E) = {(z1,0)|x; € A} is a Borel set in R? and, hence, all 1-
dimensional sections of T'(E) must be Borel sets in R. In particular, the (hori-

zontal) section {z1 |z1 € A} = A must be a Borel set in R and we, thus, arrive
at a contradiction.

T(.Tl, 1‘2) = (

8.2 Product-measure.

In this section we shall limit ourselves to cartesian products of finitely many
spaces. We fix the measure spaces (X1,31, 1), - - -, (Xn, Zn, ftr) and the mea-
surable space ([T7_, X;, @J_, %))

From Proposition 8.3 zmd~ the paragraph after it, we know that ®?=1 Y is
generated by the collection £ of all sets of the form H?Zl Aj, where A; € ¥;
for all j. Since [[_, X; belongs to € and ) = [[-,0¢€ &, we obviously have
that this collection is a o-covering collection for H;’:l X;.

The elements of € play the same role that open-closed intervals play for the
introduction of Lebesgue-measure on R™. We agree to call these sets measur-
able intervals in H;-lzl X, a term which will be justified by Theorem 8.3, and

denote them by
R=1]4;.
j=1

Proposition 8.4 Let (X;,%;) be a measurable space for every j = 1,...,n.
The collection

A={R U---UR,,|m € N,Ry,...,R,, pairwise disjoint elements of £}
is an algebra of subsets of H?:l X;.
Proof: If R = [[j=, Aj and R = [[j-=, B; are elements of £, then RNR' =
[1j-.(A; N B;) is an element of £.

Moreover, if R = H?Zl A;j is an element of &, then

R = AfxAyx---xA, U

@] X1XXQX"'XXj,lXA?XAJ'+1X"'XA”U

U X3 xXogx---xX,_1xA;
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is a disjoint union of elements of &, i.c. an element of A.
Now, if R1 -U Rm and R’ -U R’ are any two elements of A, then

(RiU---URy)N (R’ "UR) = U1<J<m 1<Z<k(R N RY), is, by the result
of the ﬁrst paragraph, also an element of A. Hence, A is closed under finite
intersections. Also, if Ry U---U R,, is an element of A, then (R1 U--URp, )e =
RC N RC is, by the rcsult of the second paragraph, a finite intersection of
elements of A and, hence, an element of A.

Therefore, A is closed under finite intersections and under complements.
This implies that it is an algebra of subsets of H?:1 X

For each R = H?Zl Aj € &, we define the quantity

R) = HJU’J(AJ)

which plays the role of volume of the measurable interval R.

Definition 8.5 Let (X;,X;, ;) be a measure space for every j =1,...,n. For
every E C [[7_, X; we define

1nf{z \R ESfOTallzandECU Rl}

Theorem 3.2 implies that the function p* @ P([]7_, X;) — [0,400] is an
outer measure on [[7_, X;.

Prop051t10n 8.5 Let (X;,%;, ;) be a measure space for every j = 1,...,n
and R, R; be measumble intervals for every ¢ € N.

(i) IfRC Ry, then 7(R ) ST T(Ry).
(it) If R = U R; and all R; are pairwise disjoint, then 7(R) = 3.0 7(R;).

Proof: (i) Let R =[I}_, A; and R; = [[j-, A, where A;, A% € %; for every
i€ N and j with 1 < j <n.
From [[7_, A; C o (H?Zl AL), we get that

n
EXA7($]) = XH;;l Aj(xl,"';xn)

+oo n
< ZXH" 331,---, Z H Xai (7))
=1 j=1

for every x1 € X1,...,z, € X,. Integrating over X; with respect to u;, we find

n

+o00o
1(A7) HXA z;) <Z 11 (A}) HXA (z5)
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for every x4 € Xo,...,x, € X,. Integrating over X with respect to po, we get

(A1>:“2(A2)H 5 (@5) <Z i1 (A7) o (A5) l—IXAz xj))

j=3 j=3

for every zs € Xs,...,x, € X,. We continue until we have integrated all
variables.
(if) We use equalities everywhere in the above calculations.

The next result justifies the term measurable interval for each Reé.

Theorem 8.3 Let (X;, %, pi) be a measure space for everyi=1,...,n and pu*
the outer measure of Definition 8.5. FEvery measurable interval R = H?Zl Aj s

w*-measurable and
pr(R) = 7(R) = [ ni(4;)
=1

Also, ®;-l:1 X is included in the o-algebra of u*-measurable subsets of H?Zl X;.

Proof: (a) If R is a measurable interval, then R € £ and, from R C R, we
obviously get p*(R) < 7(R).

Proposition 8.5 implies 7(R R) < Z+ 7(R;) for every covering R C |J/ R;
with R; € € for all i € N. Hence, 7(R) < u*(R) and we conclude that

i (R) = 7(R).

(b) We take any two measurable intervals R, R and Proposition 8.4 implies that
there are pairwise disjoint measurable intervals Ri,...,R,, so that R' \ R =
R1U---UR,,. By the subadditivity of u*, the result of (a) and Proposition 8.5,

pHROR) +p (RAR) < p"(RIOR)+ M(R)+---+/f*(1?n)
= (R' R) +7(R1) + -+ 7(Ry)

= 7(R).
(¢) Let R € € and consider an arbitrary E C H;;l X, with p*(E) < 4o00. For

any € > 0 we consider a covering F C Uj:lo R; with R; € € for all i € N, such
that 3270 7(R;) < u*(E) + €. By the result of (b) and the subadditivity of u*,

“+oo “+o0
W(ENR) +p7(B\R) <Y (0" (RiNR)+ 7 (RA\R)) <) r(Ri) < p(E) +e.
i=1 =1

Since e is arbitrary, u*(E N R) + p*(F \ R) < p*(E) and we conclude that R is
w*-measurable.

Since ®?:1 Y; is generated by the collection of all measurable intervals, it
is included in the o-algebra of all p*-measurable sets.
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Definition 8.6 Let (X;,%;, 1) be a measure space for each i = 1,...,n and
w* be the outer measure of Definition 8.5. The measure induced from p* by
Theorem 3.1 is called the product-measure of p;, 1 < j < n, and it is
denoted
®§L:1lu’j'
We denote by Z®;z,:1uj the o-algebra of p*-measurable subsets of H;‘L:1 X;.
Therefore, (H;-lzl X, Ben_ u;, ®F_q15) is a complete measure-space.

J

Theorem 8.3 implies that @;_, X C Xgr_ ; and

@) (][] 4)) = H 1 (A;)

j=1
for every Ay € ¥q,..., A, € 3.

It is very common to consider the restriction, also denoted by ®'_,u;, of
®j=1Hj on ®;:1 .

Theorem 8.4 Let (X;,%;, u;) be a measure space for each i = 1,...,n. If
U1, .-, Uy aTe O-finite measures, then

(i) ®%_qp; is the unique measure on (H?:l Xj,®?:1 ¥;) with the property:
(®§L:1,uj)(l_[?:l Aj) = H;‘L:1 wi(A;) for every Ay € ¥q,..., A, €5, and

(i) the measure space (H?:1 X Xor_ ;0 ®Y_qH;) is the completion of the mea-

sure space ([17_; Xj, @j_y Xj, @ p5)-

Proof: (i) We consider the algebra A of subsets of H;;l X described in Propo-
sition 8.4. If uis any measure on (Il X, @j—, ;) such that w(R) =
(®%_115)(R) for every R € &, then, by additivity of the measures, we have
that u(Ry U--- U Ry) = (®§‘:1uj)(él U---UR,,) for all pairwise disjoint
Rl, e R, €€. Therefore, the measures p and ®7_qp; are equal on A.

Since all measures 11; are o-finite, there exist A% € X; with p;(A?) < +o0
for every 1,7 and Aé T X, for every j. This iNmplies that the measurablNe in-
tervals S; = []j_, A} have the property that S; 1 [[;_; X; and that u(S;) =

(@5 21415)(Si) = [Tj=y 11 (A%) < 400 for every i.

Since ®’_, 3j = X(€) = X(A), Theorem 2.4 implies that u and ®7_, ; are

n

equal on @Q);_; ¥;. :
(ii) We already know that (J[;_, Xj,2®;:1uj,®?:1uj) is a complete exten-
sion of ([T;_, X;, &}, Xj,®}_1p15). Therefore, it is also an extension of the
completion (]_[?:1 X, ®?:1 ¥;,®J_ ;) and it is enough to prove that every
E € Xgr_ ., belongs to @), X;.

Take any E € Xgr_ ,,, and assume, at first, that (®7_,p;)(E) < +oo.

We take arbitrary k& € N and we find a covering E C ;L:f Rf by pair-

wise disjoint measurable intervals so that 3,70 7(RF) < (®F_1p1;)(E) + . We
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define By = |J ¥ R ¢ &)_, ¥; and have that £ C By, and (®7_,u;)(E) <
(®7F_1 1) (Br) < (@7—1115)(E)+ . Now, define A = NS By € Q. _12 Then
EC A and (@3_,1))(E) = (&_y1;)(A). Therefore (&5_,1,)(4 \ E) = 0.

In case (®7_;p;)(E) = +oo, we consider the specific sets S;, which were
constructed in the proof of part (i), and take the sets F; = E N S;. These
sets have (®7_;u;)(E;) < +oo and, by the previous paragraph, we can find
A; €®" ¥; so that E; C A; and (®7_,0;)(A; \ E;) = 0. We define A =

A€®_1E so that E C A and, since A\ E C U (4 \ Ei), w
conclude that ( 1) (A\ E) = 0.

We have proved that for every E € 2®;:1 u,; there exists A € ®?=1 %, so
that £ C A and (®}_;p;)(A\ E) = 0.

Considering A\ E instead of E, we find a set B € ®;.L=1 ¥; so that A\EF C B
and (®%_,;)(B\ (A\ E)) = 0. Of course, (®"_,u;)(B) = 0.

Now we observe that E' = (A\ B) U (E N B), where A\ B € @}_, ¥; and
ENBC BeQj_,%; with (®}_,;)(B) = 0. This says that E € @}_, %

We shall examine, now, the influence to the product-measure of replacing
the measure spaces (X ¥, i) by their completions (X, 3, ;).

Theorem 8.5 Let (X;,3;, ,uj) and (X;,%;,7i;) be a measure space and its com-
pletion for every j =1,.

(i) The measure spaces (X E],ﬂ]) induce the same product-measure space as
their completions (X;,%;,71;). Namely,

H Xj, Ben_ u;» ®f=1py) = (H Xy Xgn_ 7y ®F_115)-

Moreover, the above product-measure space is an extension of both measure

Spa’ces (H;:l XJ7 ®;l:1 E]’ ®§L=1/’LJ) a’nd (H?:l X]7 ®;L:1 27.77 ®;L=1/'L7J)7 Of thCh
the second is an extension of the first.
(11) If each (X;,%;, uj) is o-finite, then (H?:l s Lon_ g @71 115) 18 the com-

pletion of both (H?:1 X;, ®;L:1 X, ®%_qp5) cmd (HJ:1 7®;-L:1 i, @Y _11t7)-

Proof: (i) To construct the product-measure space ([[;_, X , Sen_ s s @01 15)s

we first consider all ®”_; ¥;—measurable intervals of the form R = H?Zl A
for arbitrary A; € 3; and then define the outer measure

+oo
= inf { Z |R are ® Y j—measurable intervals and £ C U R; }
J=1 i=1

where 7(R) = [T, 12j(A;) for all R= [Tj=1 4y
To construct the product-measure space (H?:lX Z®] e ®F_11j), we

now consider all ®?:127j—measurable intervals of the form R = H?:1 A; for
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arbitrary A; € ¥; and define the outer measure

+o00o
= inf { Z ;)| R; are ® ¥, —measurable intervals and E C U R},
j=1 i=1

where 7(R) = [1-, 75 (A4;) for all R= [[= A

Our first task will be to prove that the two outer measures pj and p3 are
identical.

We observe that all ®"_1 Y j—measurable intervals are at the same time

®J 1 ¥j—measurable and, hence, p3(E) < p}(E) for every E C R™.

Novv take any E C R™ with ,uz( ) < 400 and an arbitrary € > 0. Then
there exists a coverlng E C U R with ®?:1 Y j—measurable intervals R;
so that Y7 7(R) < ps(E) + e For each i, write Ri = [T5-, A With
A;- EAEj. It is clear that there exist Bj € X; so that :4§ C B; and (A% =
p1j(B}). We form the @J_, ¥;—measurable intervals R} = [[j_, B} and have
R; C R! and 7(R;) = 7(R)) for all i. We now have a covering E C U+°°R’
with ®;L 1 £j—measurable intervals, and this implies pf(E) < Zl 1 T(R}) =

T r(R;) < u(E) + e. Since € is arbitrary, we find pf(E) < p5(E). In the
remammg case us(E) = +oo the inequality uj(E) < ui(E) is obviously true
and we conclude that

1 (E) = ps(E)
for every E C R".
The next step in forming the product measure is to apply the process of

Caratheodory to the common outer measure p* = pi = pb and find the common
complete product-measure space

(H Xja E@;Zl,u_] ) ] 1:“’] H ®F_1H5 ®§L:1N7J)
j=1

where ¥gn . = Xgn 7 is the symbol we use for ¥, the o-algebra of p*-
j=1H3 j=1Hi I3
measurable sets, and ®7_; u; = ®7_,f; is the restriction of p* on X«
Theorem 8.3 says that @]_, ¥; and @]_, ¥; are inclgied in Xgn_ , and,
since every @’_; ¥j—measurable interval is also a @}_, 3;—measurable inter-
val, we have that @7_, ¥; is included in ®_, ;. Thus

n n
Q=i T € ey,
j=1 j=1

(ii) The proof is immediate from Theorem 8.4.

The most basic application of Theorem 8.5 is related to the n-dimensional
Lebesgue-measure. The next result is no surprise, since the n-dimensional
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Lebesgue-measure of any interval in R™ is equal to the product of the 1-
dimensional Lebesgue-measure of its edges:

ma ([ [lag.051) = [T ma(las.bs))-

Theorem 8.6 (i) The Lebesgue-measure space (R™,L,, my) is the product-
measure space of n copies of (R, Br,m1) and, at the same time, the product-
measure space of n copies of (R, L1, my).

(ii) The Lebesgue-measure space (R™, L,,,my,,) is the completion of both measure
spaces (R, @j_, Br,my) = (R, Brn,my) and (R™,Q’_, L1,my), of which
the second is an extension of the first.

Proof: We know that ®?:1 Br = Bgr-, that (R, £, m1) is the completion of
(R, Br,m1) and that my is a o-finite measure.

Hence, Theorem 8.5 implies immediately that the n copies of (R, Bgr,m1)
and, at the same time, the n copies of (R, L1, m1) induce the same product-
measure space (R", Z®;;:1ml , ®}_ym1), which is the completion of both measure
spaces (R", Brn, ®}_ym1) and (R", ®;L:1 L1,®7_ym1), of which the second is
an extension of the first.

Theorem 8.3 says that, for every Borel-measurable interval R = H?=1 Aj, we

have (@7_ym;)(R) = [Tj=1mi(4). In particular, (®7_;m1)(P) = vol,(P) for
every open-closed interval P in R" and Theorem 4.5 implies that ®7_;m1 = m,,
on Br~». Hence

(Rn7 BR" ) ®;‘l:]_m1) = (Rn7 BR”; mn)
The proof finishes because (R"™, £,,, m,,) is the completion of (R™, Brn,my,).

It is, perhaps, surprising that, although the measure space (R, L1, m1) is
complete, the product (R”,®?:1 L1,my) is not complete (when n > 2, of
course). It is easy to see this. Take any non-Lebesgue-measurable set A C R
and form the set F = A x {0} x --- x {0} C R". Consider, also, the Lebesgue-
measurable interval R=Rx {0} x---x {0} € R". We have that E C R and
my(R) = mi(R)mi({0}) ---mq ({0}) = 0. If we assume that (R", @J_, L1,my)
is complete, then we conclude that E € ®?:1 L1. We, now, take z = (0,...,0) €
R™! and, then, the section E, = A must belong to £;. This is not true and
we arrive at a contradiction.

8.3 Multiple integrals.

The purpose of this section is to give the mechanism which reduces the calcu-
lation of product-measures of subsets of cartesian products and of integrals of
functions defined on cartesian products to the calculation of the measures or,
respectively, the integrals of their sections. The gain is obvious: the reduced
calculations are over sets of lower dimension.
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For the sake of simplicity, we further restrict to the case of two measure
spaces.

Theorem 8.7 Let (X1,%1,p1) and (Xo,X0, 1) be two measure spaces and
(X1 %X X9, %, @uss 11 ® o) be their product-measure space.

If B € ¥, 9u, has o-finite pu1 ® pa-measure, then E,, € 3y and E,, € ¥
for pi-a.e. 1 € X1 and ps-a.e. xo € Xo and the a.e. defined functions

w1 = m2(Ey,), w2 fin(Ea,)

are 1 —measurable and, respectively, Yo—measurable. Also,

(1 @ p2)(B) = [

f2(E, ) dfii(21) = / 7 (Ey,) d7is ().
X1

X

Proof: As shown by Theorem 8.5, it is true that Xremm = X, eu, and 1 @7z =
p1 @ po. It is also immediate that E,, € 3 for uj-a.e. 21 € X if and only if
E,, € Xy for fij-a.e. x1 € X and, similarly, E,, € ¥ for uys-a.e. z2 € Xo if
and only if £, € Y, for hz-a.e. T2 € Xo. Hence, the whole statement of the
theorem remains the same if we replace at each occurence the measure spaces
(X1,%1, p1) and (Xa, 3o, pe) by their completions (X1, X1, fi7) and (X, Yo, liz).
Renaming, we restate the theorem as follows:

Let (X1,%1, 11), (X2,9, p2) and (X1 X Xo, X, @u,, 41 & p2) be two complete
measure spaces and their product-measure space. If E € ¥, gu, has o-finite
1 ® po-measure, then B, € Yo and E,, € ¥1 for u1-a.e. x1 € X1 and us-a.e.
o € Xo and the a.e. defined functions

xry — ,MQ(E:Cl)a T2 — ,Ul(Exz)

are Y1 —measurable and, respectively, Yo—measurable. Also,

(11 ® p2)(E) = /X pia(Bay) dpn (1) = / 11 (E,y) dpis ().

X2

We are, now, going to prove the theorem in this equivalent form and we
denote N the collection of all sets E € ¥,,,5,, which have all the properties in
the conclusion of the theorem.

(a) Every measurable interval R = A; x Ay belongs to N.

Indeed, le =0, if 1 ¢ Ay, and Rm = Ay, if x € A;. Hence, ug(}%l) =
pa(Az2)xa, (z1) for every ;1 € X, implying that the function z; +— /,I/Q(Rwl) is
i —measurable. Moreover, we have [, pa(Ry,) dpy = pa(As) Jx, xa, dpn =

pa(A2)p1 (A1) = (1 ® p2)(R). The same arguments hold for za-sections.
(b) Assume that the sets Ei,...FE,, € N are pairwise disjoint. Then E =
EiU---UE, eN.

Indeed, from E,, = (F1)z, U---U (Ep)s, for every x; € Xp, we have that
E,, € X5 for py-ae. x1 € X1 and pa(Eyy) = p2((B1)ay) + - + p2((Em)ay)
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for pi-a.e. x; € X;. By the completeness of /~L17 the function z1 +— pa(FEy,)
is ¥1—measurable and [y po(Ey,) dpi(z1) = 3500, [ p2((EBj)ay) dpa(21) =
> (i @ p2)(Ej) = (11 ® po)(E). The same argument holds for zs-sections.
(c) Assume that E,, € N for every n € N. If E,, | E, then E € N.

From (E,)z, T E., for every 1 € X1, we have that E,, € X5 for uj-a.e.
x1 € X;. Continuity of us from below implies that us((En)z,) 1 pe(Ey,) for
pi-a.e. x1 € X;. By the completeness of pi, the function z; +— ug(Eml) is
31— measurable. By continuity of p; ® puo from below and from the Monotone
Convergence Theorem, we get (j1 ® p12)(E) = [y, p2(Ex,) dpn(21). The same
can be proved, symmetrically, for zs-sections.

(d) Now, fix any measurable interval R with (j; ® ug)(R) < 400 and consider
the collection N of all sets E € ¥, g, for which E N ReN.

If B, e Nj for all n and E,, | E, then E € Nj.

Indeed, we have that E, N R | EN R and, hence, (E, N R),, | (ENR),,
for every z1 € Xj. This imphes that (E N R)xl € Yo for pi-ae. x1 € Xj.
From the result of (a), [y p2(Ra,)dpn(z1) = (11 ® p2)(R) < 400 and, hence,
ug(Rzl) < 400 for pi-a.e. w1 € X;. Therefore, ug((El N R)zl) < 400 for p-
a.e. r1 € X and, by the continuity of ps from above, we find ug((En N R)ml) l
ug((E N R)zl) for pi-a.e. 1 € X;. By the completeness of 1, the function
Ty ,ug((E N R)Il) is 31—measurable. Another application of continuity
from above gives (1 @ p2)(E N R) = Ix, p2((EN f%)ml) dp (1) and, since all
arguments hold for z,-sections as well, we conclude that ENR € N and, hence,
NS NR

If E, € Nj for all n and E,, 1 E, then E, N R 1 ENR and, from the result
of (¢), E € Np.

We have proved that the collection Nj is a monotone class of subsets of
X1 X XQ.

If the Ey, ..., E, € Ny are pairwise disjoint and £ = E; U --- U E,,, then
ENR=(EyNR)U---U(E,NR) and, by the result of (b), E € M. From (a),
we have that N £ contains all measurable rectangles and, hence, N £ contains
all elements of the algebra A of Proposition 8.4. Therefore, N includes the
monotone class generated by A, which, by Theorem 1.1, is the same as the
o-algebra generated by A, namely ¥; ® X.

This says that N R € N for every E € X1 ® X9 and every measurable
interval R with (j1 ® p2)(R) < +0oc.

(e) If A is, again, the algebra of Proposition 8.4, an application of the results
of (b) and (d) implies that ENF € N for every F € 31 ® 33 and every F € A
with (1 ® pe)(F) < +o0.
(f) NOW let £ €31 ® Xy with (11 ® ug)(E) < +o00. We find a covering E C

* R; by measurable intervals so that 3" (11 ®@pu2)(R;) < (11 @pe2)(E)+1 <
+oo. We define F,, = JI, R; € A and we have that (j; ® p2)(Fy,) < oo for
every n. The result of (e) implies that £ N F,, € N and, since, ENF,, T E, we
have, by the result of (c), that £ € N.

Hence, E € N for every E € ¥1 ® ¥y with (u1 ® p2)(E) < +o0.



8.3. MULTIPLE INTEGRALS. 149

(g) Now let E € 3,0, with (11 ® po)(E) = 0. We shall prove that E € N.

We find, for every k € N, a covering E C Uj;olo ]:Ef“ by measurable intervals
so that 7% (11 ® pa) (RF) < £. We define 4y, = J;7 R¥ € £, ® T3 and have
that E C Ay and (u1 ® pe)(Ag) < % We then write A = ﬂ;‘:{ AL €Y @9
and have that £ C A and (p; ® u2)(A) = 0. From the result of (f) we have that
A € N and, in particular, 0 = le pa(Ay,) dp(x1) = fX2 p1(Az,) dpe(z2). The
first equality implies that ps(A,,) = 0 for pi-a.e. 1 € X;. From E,, C A,
and from the completeness of pg, we see that E,, € ¥g and us(F,,) = 0 for us-
a.e. r1 € X;. Now, from the completeness of i1, we get that the function z; —
p2(Ey, ) is ¥ —measurable. Moreover, (1 @ pu2)(E) =0 = le p2(Eqgy ) dpa (z1)
and the same arguments hold for z»-sections. Therefore, E € N.
(h) If E € ¥,,,0u, has (111 @ p2)(E) < 400, then E € N.

Indeed, for every k € N we find a covering £ C Lof Rf by measurable
intervals so that 3270 (11 ® p2)(RF) < (1 ® pa)(E) + +. We define A, =

;Of ];Zf € 21 ®Ys and have that E C Ay, and (1 Qpuo)(Ax) < (11 ®u2)(E)+%.

We then write A = (25 A), € $1®%, and have that E C A and (3 ® p2)(A) =
(11 @ p2)(E). Hence A\ E € ¥,,, o, has (11 ® p2)(A\ E) = 0. As in part (g),
we can find A’ € 31 ® ¥g so that A\ E C A" and (1 ® p2)(A’) = 0. We set
B=A\A" €% ®%y and we have B C F and (u1 ® p2)(E \ B) = 0. By the
result of (g), we have E\ B € A and, by the result of (f), B € A/. By the result
of (b), E=BU(E\B)€eN.
(i) Finally, if E € ¥, g, has o-finite (11 ® po)-measure, we find E,, € £, gu,
with (u1 ® u2)(E,) < +oo for every n and so that E,, T E. Another application
of the result of (c) implies that £ € N.

Theorem 8.8 Let (X1,%1, p1) and (Xa, Yo, u2) be o-finite measure spaces and
(X1 x X2,%1 ® 3o, 1 ® pa) be their (restricted) product-measure space.
If E € 31 0%, then By, € 39 and E;, € X4 for every x1 € X1 and 2 € Xo
and the functions
x1 e pip(Eey), w2 pn(Esy)

are Y1 —measurable and, respectively, Yo—measurable. Also,

0 w)(B) = [ palBa)diaCen) = [ gin(Eny) dua(oo).
X1 X2
Proof: Exactly as in the proof of Theorem 8.7, we denote A the collection of all
F € Y1 ® Yo which satisfy all the properties in the conclusion of this theorem.
(a) If R is any measurable interval, then R € \.

The proof is identical to the proof of the result of (a) of Theorem 8.7. Observe
that, now, all statements hold for every x; € X; and zo € X5 and there is no
need of completeness.

(b) If the sets E1, ... E,, € N are pairwise disjoint, then E = E;U---UE,, € N.

The proof is identical to the proof of the result of (b) of Theorem 8.7.

(c) If E,, € N for every n € N and E,, T E, then E € N.

The proof is identical to the proof of the result of (¢) of Theorem 8.7.

(d) We fix any measurable interval R = A; x Ay with pui(A4;) < +oo and
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p2(A2) < +oo and consider the collection N of all sets E € ¥ ® Xy for which
ENR € N. The rest of the proof of part (d) of Theorem 8.7 continues unchanged
and we get that N, & s a monotone class of subsets of X; x X5 which includes
the algebra A of Proposition 8.4. Hence, N includes X1 ® ¥ and this says that
ENREN for every E € 31 ® Y5 and every measurable interval R= A X Ay
with ,ul(Al) < 400 and /.LQ(AQ) < +o00.
(e) Since pq is o-finite, we can find an increasing sequence { A} } so that A} € ¥4,
AT 1 X1 and 0 < p1 (A7) < +oo for every n. Similarly, we can find an increasing
sequence {A%} so that A} € Yo, A% T X5 and 0 < pus(AY) < +oo for every n
and we form the measurable intervals R,, = A} x A%.

We take any F € 31 ® Xy and, from the result of (d), we have that all sets
E, = EN R, belong to N. Since E, 1 E, an application of the result of (c)
implies that £ € N.

Theorem 8.9 (Tonelli) Let (X1,%1,p1) and (Xao, X9, uo) be measure spaces
and (X1 X Xo, 3, @u,» 11 © p2) be their product-measure space.

If f: X1 x Xo — [0,400] is X, @u, —measurable and if f~1((0,+oc]) has
o-finite 11 @ pg-measure, then f,, is Ya—measurable for ui-a.e. 1 € X1 and
fu, is B1—measurable for jg-a.e. xo € Xo and the a.e. defined functions

1'1 = f£C1 d@? IQ = fxz dm
X2 Xl

are 1 —measurable and, respectively, Yo—measurable. Also,

/lef Ay @pz) = /X( | e i) (o) = /X ([ g am) dmte).

Proof: (a) A first particular case is when f = y g is the characteristic function
of an E € ¥, o, With o-finite p; ® po-measure.

Theorem 8.7 implies that (xg)s, = Xg, is Yo—measurable for puj-a.e.

Ty

r1 € X7 and the function z; — sz (XE)z, dliz = Hiz(Ey,) is X1 —measurable.
Finally, we have [ Xpd(p1 ®@p2) = (11 @ p2)(E) = [ f2(Ex,) diin(z1) =
Ix, (sz (XE)z, d@) dpir(z1). The argument for zo-sections is the same.

(b) Next, we take ¢ = Z;nzl ;X E; to be the standard representation of a simple
¢ X1 x Xo — [0,400), where we omit the possible value k = 0, and which is
%, @u, —measurable and so that UL, Ej = ¢~ 1((0, +00]) has o-finite 1 ® po-
measure. Then, ¢, = >0 Kj(XE; )z and ¢z, = D00 Kji(XE, )z, for every
x1 € X7 and x9 € X5. Therefore, this case reduces, by linearity, to (a).

(c) Finally, we take any X,,gu, —measurable f : X; x Xy — [0,+00] with
F71((0,4+00]) having o-finite 11 ® po-measure. We take an increasing sequence
{¢n} of ¥, @, —measurable simple functions ¢, : X1 x Xy — [0, 400] so that
¢n T f on X1 x Xo. From ¢, < f, it is clear that ¢, *((0,+oc]) has o-finite
(1 ® po-measure for every n. Part (b) says that every ¢,, satisfies the conclusion
of the theorem and, since (¢n)g, 1 fo, and (dn)z, 1 fz, for every z; € X; and
T2 € Xo, an application of the Monotone Convergence Theorem implies that f
also satisfies the conclusion of the theorem.
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Theorem 8.10 (Fubini) Let (X1,%1, 1) and (Xo, Yo, u2) two measure spaces
and (X1 X Xo, Xy, @u,» 1 @ p2) their product-measure space.

If f: X1 x Xo — R or C is integrable with respect to ji; @ g, then fu,
is integrable with respect to fiz for pi-a.e. x1 € Xy and fy, is integrable with
respect to iy for ps-a.e. x9 € Xo and the a.e. defined functions

Xy = f;cl dpiz, ZT2 — facg dpy
X2 Xl

are integrable with respect to i1 and, respectively, integrable with respect to Jis.
Also,

/X1><X2 fd(m@nz) = /X1 ( X far dﬁ) dpi(21) = /X2 ( . fao dm) dpiz(x2).

Proof: (a) If f : X1 x Xo — [0,400] is integrable with respect to p; ® ua,
Theorem 8.9 gives

/Xl( Xszldm)dm:/X

This implies fX2 fz, diiz < +00 for pi-a.e. x1 € X and le Juo diT < 400
for ps-a.e. xo € Xs. Thus, the conclusion of the theorem is true for non-negative
functions.

(b) If f: X; x X5 — R is integrable with respect to y; ® p2, the same is true
for f* and f~ and, by the result of (a), the conclusion is true for these two
functions. Since fo; = (fT)ay — (f )z, and foy, = (fT)ay — (f )z, for every
1 € X7 and x9 € X5, the conclusion is, by linearity, true also for f.

(¢) If f: X1 x X5 — C is integrable with respect to p; ® e, the same is true
for R(f) and I(f). By the result of (b), the conclusion is true for R(f) and
S(f) and, since fo, = R(f)ay +iS(f)z, and fo, = R(f)a, +iS(f)a, for every
r1 € X7 and zo € Xs, the conclusion is, by linearity, true for f.

(d) Finally, let f : X; x X5 — C be integrable with respect to y; ® po. Then
the set £ = f~!({o0}) € X, 04, has (11 ® p2)(E) = 0. Theorem 8.7 implies
that z(E,,) = 0 for yi-a.e. 1 € X3 and Gy (E,,) = 0 for ps-a.e. x4 € Xo.

If we define F' = fxge, then F': X x X9 — C is integrable with respect to
1 ® pg and, by (c), the conclusion of the theorem holds for F'.

Since F' = f holds (u; ® pg)-a.e. on X1 X X3, we have fX1><X2 Fd(p ®
t2) = [x .x, fd(p1 @ p2). We, also, have that F,, = f,, on X\ By,
and, hence, F,, = f,, holds mz-a.e. on Xo for pj-a.e. 1 € X;. Therefore,
fu, is integrable with respect to fiz and [y fo, dfiz = [y, Fu, dfiz, for pi-ae.

21 € X1. This implies [, ( I, for dm) dpi(a1) = [y, ( I, Fo, dm) dr(z1)
and, equating the corresponding integrals of F, we find leXx2 fd(pr ® pg) =
le (sz fan d@) dir(x1). The argument is the same for zo-sections.

([ fetm)dm=[  famon) <+
X1 X1><X2

2

The power of the Theorems of Tonelli and of Fubini lies in the resulting
successive integration formula for the calculation of integrals over product spaces
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and in the interchange of successive integrations. The function f to which we
may want to apply Fubini’s Theorem must be integrable with respect to the
product measure g1 ® puo. The Theorem of Tonelli is applied to non-negative
functions f which must be ¥, g,,—measurable and whose set f~1((0,+o0])
must be of o-finite p; ® po-measure. Thus, the assumptions of Theorem of
Tonelli are, except for the sign, weaker than the assumptions of the Theorem of
Fubini.

The strategy, when we want to calculate the integral of f over the prod-
uct space by means of successive integrations or to interchange successive in-
tegrations, is first to prove that f is 3, ¢., —measurable and that the set
{(z1,22) | f(z1,22) # 0} is of o-finite p; ® po-measure. We, then, apply the
Theorem of Tonelli to |f| and have

[ = [ ([ i am)am= [ ([ e, dm) ans

By calculating either the second or the third term in this string of equalities,
we calculate the lexXz |f] d(p1 ® po). If it is finite, then f is integrable with
respect to the product measure p ® o and we may apply the Theorem of Fubini
to find the desired

Jo femdme e = [ ([ s am) i)
- /( f(xlvffZ)dE(%))dE(xg).
Xo X

Of the two starting assumptions, the o-finiteness of {(x1,z2) | f(z1,22) # 0}
is usually easy to check. For example, if the measure spaces (X1,%1, 1) and
(X2, X2, o) are both o-finite, then the measure space (X1 x Xa, X, @u,, i1 ® 12)
is also o-finite and all subsets of X; x X, are obviously of o-finite p1 ® uo-
measure.

The assumption of ¥, ., —measurability of f is more subtle and sometimes
difficult to verify.

Theorem 8.11 (Tonelli) Let (X1,%1, p1) and (Xa, Yo, u2) be o-finite measure
spaces and (X1 X Xa,31 ® o, i1 ® pa) be their (restricted) product-measure
space.

If f: X1 x X3 — [0, 400] is 1 @ Xg—measurable, then f,, is Yo—measurable
for every x1 € X1 and fy, is ¥1—measurable for every xo € Xo and the functions

1 Sy dpsa, Ty fzs dpt1
Xa X3

are Y1 —measurable and, respectively, Yo—measurable. Also,

/Xl><X2 Jdlp@pz) = /X1 ( Xs Jan dw) dpn (1) = /X2 ( ” fas dul) dpa(x2).
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Proof The measurability of the sections is an immediate application of Theorem
8.2 and does not need the assumption about o-finiteness. Otherwise, the proof
results from Theorem 8.8 in exactly the same way in which the proof of Theorem
8.9 results from Theorem 8.7.

Theorem 8.12 (Fubini) Let (X1,%1, p1) and (X2, Xa, u2) be two o-finite mea-
sure spaces and (X1 x Xo, 31 ®Xa, p11 @ pu2) be their (restricted) product-measure
space.

Let f: X1 x Xo — R or C be Iy @ Xo—measurable and integrable with
respect to 1 @ pa. Then fr, is Yo—measurable for every x1 € X1 and integrable
with respect to ps for pi-a.e. x1 € Xq. Also, fz, is X1—measurable for every
9 € Xo and integrable with respect to py for ps-a.e. xo € Xo. The a.e. defined
functions

x1 / Ja, dpz, To Sy dpa
X X1

are integrable with respect to py and, respectively, integrable with respect to po
and

/X1><X2 Jdp®pz) = /Xl ( X, far d'u2) dpy (r1) = /Xz ( “ fas dm) dpa(x2).

Proof: Again, the measurability of the sections is an immediate application of
Theorem 8.2 and does not need the assumption about o-finiteness. Otherwise,
the proof results from Theorem 8.11 in exactly the same way in which the proof
of Theorem 8.10 results from Theorem 8.9.

8.4 Surface-measure on S™ 1.

For every x = (x1,...,2,) € R? = R™\ {0} we write

r=|z|=y/22+ - +22 € RT = (0, +00), yz%éS"il,

where S"71 = {y € R"||y| = 1} is the unit spere of R".
The mapping ® : R? — Rt x "~ ! defined by

@) = (ry) = (|l )

|z
is one-to-one and onto and its inverse ! : Rt x §"~! — R” is given by
e (ry) =a =ry.

The numbers r = |z] and y = \%I are called the polar coordinates of z and
the mappings ® and ®~! determine an identification of R” with the cartesian
product R x §"~! where every point x # 0 is identified with the pair (r,y) of
its polar coordinates.
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As usual, we consider S"~! as a metric subspace of R™. This means that
the distance between points of S"~! is their euclidean distance considered as
points of the larger space R™. Namely

ly—y'l= \/(yl — Y1)t (g —yn)%

for every y = (y1,---,yn), ¥ = (¥}, .., yl,) € S"~1. No two points of S"~! have
distance greater that 2 and, if two points have distance 2, then they are opposite
or, equivalently, anti-diametric. The open ball in S”~! with center y € S"~!
and radius r > 0 is the spherical cap S(y;r) = {y’ € "' ||y’ — y| < r}, which
is the intersection of the euclidean ball B(y;r) = {z € R" ||z — y| < r} with
Sn~1. In fact, the intersection of an arbitrary euclidean open ball in R™ with
S™—1 is, if non-empty, a spherical cap of S7~!.

It is easy to see that there is a countable collection of spherical caps with
the property that every open set in S"~! is a union (countable, necessarily) of
spherical caps from this collection. Indeed, such is the collection of the (non-
empty) intersections with S"~1 of all open balls in R™ with rational centers and
rational radii: if U is an arbitrary open subset of S"~! and we take arbitrary
y € U, we can find r so that B(y;r) N S"~! C U. Then, we can find an open
ball B(a';r") with rational 2’ and rational ' so that y € B(z';r") C B(y;r).
Now, y belongs to the spherical cap B(x';r")NnS"~1 C U.

If we equip Rt x S™~! with the product-topology through the product-metric

d((r,y), (r',y")) = max(jr — [, [y — ¢/]),

then the mappings ® and ®~! are both continuous. In fact, it is clear that the
convergence (7x,yx) — (r,y) in the product-metric of R* x S"~! is equivalent
to the simultaneous r, — r and yr — y. Therefore, if x;, — x in R?, then
rr = |xg| — |z] = r and y, = 7 = o7 = ¥ and hence O(zg) = (T, yx) —
(r,y) = ®(z) in RT x S"~1. Conversely, if (ry,yx) — (r,y) in RT x §"~! then
ri, — 7 and yx — y and hence ® (g, yx) = rryp — ry = @ (r,y) in R™.

We may observe that the open balls in the product-topology of Rt x 71
are exactly all the cartesian products (a, b) x S(y;r) of open subintervals of R*
with spherical caps of 7~ 1.

Proposition 8.6 Let X be a topological space and Y C X with the restricted
topology. This means that a subset of Y is open in Y if and only if it is the
intersection with Y of a set open in X. Then By = {ANY |A € Bx}.

Proof: Consider ¥ = {ANY|A € Bx}. It is easy to prove that ¥ is a o-
algebra of subsets of Y and that it contains all subsets of Y which are open in
Y. Therefore, By C ¥ and it remains to prove the opposite inclusion.

We set ¥1 = {A C X|ANY € By}. It is again easy to see that X is a
o-algebra of subsets of X and contains all subsets of X which are open in X.
Hence Bx C ;. This means that ANY € By for every A € Bx or, equivalently,
that ¥ C By.
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The next proposition contains information about the Borel structures of R}
and of R*, S”~! and their product Rt x §»~1.

Proposition 8.7 (i) By = {E € Br» | E CR}}.

(i1) B+ = {E € Br|E C Rt} and Br+ is generated by the collection of all
open subintervals of RY and, also, by the collection of all open-closed subinter-
vals of RT.

(iii) Bgn-1 = {E € Bgn
of all spherical caps.
(ZU) BR+><S"—1 = BR+ ® Bsn—l.

(v) ®(E) is a Borel set in RT x S"~1 for every Borel set E in R and ®~1(E)
is a Borel set in R" for every Borel set E in Rt x §"~1,

E C S" 1} and Bgn-1 is generated by the collection

Proof: The equalities of (i),(ii) and (iii) are simple consequences of Proposition
8.6. That Br+ is generated by the collection of all open or of all open-closed
subintervals of R is due to the fact that every open subset of R is a countable
union of such intervals. Also, that Bg.-1 is generated by the collection of all
spherical caps is due to the fact that every open subset of S~ ! is a countable
union of spherical caps.

(iv) Both Br+yxgn-1 and Br+ ® Bgn—1 are o-algebras of subsets of the space
R* x S"~1. The second is generated by the collection of all cartesian products
of open subintervals of Rt with spherical caps of S"~! and all these sets are
open subsets of Rt x §"~! and, hence, belong to the first o-algebra. Therefore,
the second o-algebra is included in the first. Conversely, the first o-algebra is
generated by the collection of all open subsets of R* x S"~1 and every such set
is a countable union of open balls, i.e. of cartesian products of open subintervals
of Rt with spherical caps of S"~!. Thus, every open subset of Rt x S*~! is
contained in the second o-algebra and, hence, the first o-algebra is included in
the second.

(v) Since @ is continuous, it is (Brn, Br+ x gn-1) —measurable and, thus, @~ (E)
is a Borel set in R for every Borel set F in R* x S"~!. The other statement
is, similarly, a consequence of the continuity of ®~1.

A set T' C R” is called a positive cone if rz € T for every r € R* and
every ¢ € [ or, equivalently, if I" is closed under multiplication by positive
numbers or, equivalently, if I" is invariant under dilations. If B C RZ, then
the set RT - B = {rb|r € RT,b € B} is, obviously, a positive cone and it is
called the positive cone determined by B. It is trivial to see that, if I is
a positive cone and A = I' N S®~!, then T is the positive cone determined by
A and, conversely, that, if A C S"~! and I is the positive cone determined by
A, then I'NS"~! = A. This means that there is a one-to-one correspondence
between the subsets of S”~! and the positive cones of R™.

The next result expresses a simple characterization of open and of Borel
subsets of S"~1 in terms of the corresponding positive cones.

Proposition 8.8 Let A C S™ 1.
(i) A is open in S~ if and only if the cone RY - A is open in R™.
(ii) A is a Borel set in S~ if and only if R* - A is a Borel set in R™.
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Proof: (i) By the definition of the product-topology, A is open in S"~! if and
only if RT x A is open in R* x §”~!. By the continuity of ® and ®~', this
last one is true if and only if RT - A = ®~1(R* x A) is open in R? if and only
if RT - A is open in R™.

(i) If A is a Borel set in S™~! then, as a measurable interval, R x A is a Borel
set in Rt x 5"~ 1. Conversely, if RT x A is a Borel set in RT x S”~ !, then
all its r-sections, and in particular A, are Borel sets in S"~!. Therefore, 4 is a
Borel set in S~ 1 if and only if R* x A is a Borel set in R x S"~1. Proposition
8.7 implies that this is true if and only if RT - A = ®~}(RT x A) is a Borel set
in R™ if and only if R - A is a Borel set in R™.

The following is useful.

Proposition 8.9 (i) If B is open in R?, then R™ - B is open in RY.
(i1) If B is a Borel set in R?, then RY - B is a Borel set in R".

Proof: (i) Assume that B C R” is open and take arbitrary x € R* - B. Then
x =z’ for some r € R and some 2’ € B. We take § > 0 so that B(z';86) C B
and we have that B(x;rd) = r- B(2’;6) Cr-B C R" - B. Hence, R* - B is
open in R}.

(ii) We consider the collection X of all B C R" with the property that R*-B €
Brr. We easily prove that X is a o-algebra of subsets of RY. Part (i) implies
that 3 contains all open subsets of R} and, hence, Br» C X.

Proposition 8.7 implies that the set M - A = {ry|r € M,y € A} is a Borel
set in R” for every Borel set A in S"~! and every Borel set M in R*. This
is true because M - A = ® (M x A) and M x A is a Borel set (measurable
interval) in R+ x §"~1L.

Proposition 8.10 If we define
On—1(A) =n-m,((0,1] - A)
for every A € Bgn-1, then o,_1 is a measure on (S"~1, Bgn-1).

Proof: We have o,—1(0) = n-m,((0,1] - 0) = n-m,(0) = 0. Moreover, if
A1, Ag, ... € Bgn-1 are pairwise disjoint, then the sets (0,1] - A1, (0,1] - Ao, ...
are also pairwise disjoint. Hence, an_l(uj:OfAj) =n-m,((0,1] - U;;OTA]-) =

nemy (U7 ((0,1] A7) = 327 n-mn ((0,1] - A;) = 3275 01(4;).

Definition 8.7 The measure o, _1 on (S"~1,Bgn-1), which is defined in Propo-
sition 8.10, is called the (n — 1)-dimensional surface-measure on S"'.

Lemma 8.1 If we define
p(N) :/ " Ldr
N

for every N € Bry+, then p is a measure on (R¥, Br+).
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Proof: A simple consequence of Theorem 7.13.

Lemma 8.2 If we define
My (E) = m, (@7 (E))

for every Borel set E in RT x S™~1, then m,, is a measure on the measurable
space (RT x S 1 Brtygn-1).

Proof: The definition makes sense because, by Proposition 8.7, ®~1(E) is a
Borel set in R7.

Clearly, Tﬁ;(@) = m, (<I>_1((Z))) = m,(0) = 0. If F1,Fs,... are pairwise
disjoint, then ®~(E;), ®~!(Ey),... are also pairwise disjoint and we find that

M (U2 Ej) = ma (@7 (USS E))) = ma (U507 (E))) = 3225 ma(@71(E)))

= 320 i (E).

Lemma 8.3 The measures m, and p ® o,_1 are identical on the measurable
space (RT x 8" Briygn-1) = (Rt x S"7 1 Br+ ® Bgn-1).

Proof: The equality Br+ygn-1 = Br+ ® Bgn-1 is in Proposition 8.7.

If Ais a Borel set in S"~!, then the sets (0,b] - A and (0,1] - A are both
Borel sets in R™ and the first is a dilate of the second by the factor b > 0. By
Theorem 4.7, m, ((0,0] - A) = b"m,((0,1] - A) for every b > 0. By a simple
subtraction we find that m,((a,b] - A) = (b" — a™)m,((0,1] - A) for every a,b
with 0 < a < b < 4o0.

Therefore, if A is a Borel set in S”~!, then

my((a,b] x A) = m,(®((a,0] x A)) = my((a,b] - A)

= @ —ama(0.1]-4) = T ()

= /( ) " rdr on—1(A) = p((a,b]) on-1(A)
(p®@opn-_1) ((a,b] x A).

If we define
p(N) =mp(N x A),  v(N)=(p®0n_1)(N x A4)

for every Borel set N in R¥, it is easy to see that both p and v are Borel
measures on RT and, by what we just proved, they satisfy u((a,b]) = v((a,b])
for every interval in RT. This, obviously, extends to all finite unions of pairwise
disjoint open-closed intervals. Theorem 2.4 implies, now, that the two measures
are equal on the o-algebra generated by the collection of all these sets, which,
by Proposition 8.7, is Bg+. Therefore,

(N x A) = (p® 01)(N x 4)

for every Borel set N in Rt and every Borel set 4 in "1,
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Theorem 8.4 implies now the equality of the two measures, because both
measures p and o,_1 are o-finite.

If E C R?, we consider the set ®(E) C R x S"~1. We, also, consider the
r-sections ®(E), = {y € S""!|(r,y) € ®(E)} = {y € S" 1 |ry € E} and the
y-sections ®(E), = {r e RT|(r,y) € ®(E)} = {r e R |ry € E} of ®(E). We
extend the notation as follows.

Definition 8.8 If E C R", we define, for every r € R* and every y € S™71,
E.={yeS" '|ryc E}, E,={reRt|ryecE}
and call them the r-sections and the y-sections of E, respectively.

Observe that E may contain 0, but this plays no role. Thus, the sections
of E are, by definition, exactly the same as the sections of ®(E \ {0}). This is
justified by the informal identification of E \ {0} with ®(E \ {0}).

Theorem 8.13 Let E be any Borel set in R™. Then, E,. is a Borel set in S?~1
for every r € R and E, is a Borel set in RT for every y € S™! and the
functions

7 op_1(E;), y»—>/ r"~Ldr
Ey

are Br+—measurable and, respectively, Bgn—1—measurable. Also,

my(E) = /0+OO On_1(B)r" Vdr = /Sn_1 (/Ey rnl dr) dop—1(y).

Proof: The set E \ {0} is a Borel set in R?, while F, = ®(F \ {0}), and
Ey = ®(E\ {0})y-

Lemmas 8.2 and 8.3 imply that m,(E) = m,(E\{0}) = m, (®(E\ {0})) =
(p®0p—1)(®(E\ {0})). Proposition 8.7 says that ®(E \ {0}) is a Borel set in
R* x S™~! and the rest is a consequence of Theorem 8.8.

The next result gives a simple description of the completion of the measure
space (S" !, Bgn-1,0,_1) in terms of positive cones.

Definition 8.9 We denote (S"~1,S,,_1,0,_1) the completion of the measure
space (8" 1, Bgn-1,0,_1).

Proposition 8.11 If A C S™~!, then
(i) A€ 8,1 if and only if RT - A € L,, if and only if (0,1]- A € L,,,
(it) on-1(A) =n-my((0,1] - A) for every A € S,_1.

Proof: (i) If A € S,,—1, there exist Ay, Ay € Bgn—1 with o,_1(A2) = 0 so
that Ay € A and A\ A; C Ay. Proposition 8.8 implies that the positive
cones Rt - A4; and Rt - A, are Borel sets in R” with RT - 4; C Rt - 4 and
(RT-A)\ (RT-4;) CR" - A;. Lemmas 8.2 and 8.3 or Theorem 8.13 imply
mp(RY - A3) = p(R)o,_1(A3) = 0. Hence, RT - A € L,,.
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Conversely, let RT™ - A € £,. Then, there are Borel sets By, By C R"
with m,,(By) = 0, so that By C R" - A and (R" - A) \ B; C By. For every
r € R* we have that (By), C A and A\ (By), C (By),. From Theorem 8.13,
f0+°o on—1((Ba)r)r"~tdr = my,(Bs) = 0, implying that o,,_1((B2),) = 0 for
my-a.e. r € (0,400). If we consider such an r, since (By), and (Bs), are Borel
sets in S”1, we conclude that A € S,,_1.

If R"-A € L, then (0,1]- A = (R - A)n B, € L,. Conversely, if

(0,1]- A € Ly, then RT - A = U2 k- ((0,1] - A) € L.
(ii) We take A € S,—1 and Ay, As € Bgn-1 with 0,_1(A2) = 0so that A; C A
and A\ Ay C A;. Then the sets (0,1] - A; and (0,1] - Ay are Borel sets in
R” with (0,1] - A, € (0,1] - A and (0,1] - A\ (0,1] - A; C (0,1] - As. Since
mn((0,1] - A2) = L 5,,_1(A2) = 0, we conclude that o,_1(4) = 0,_1(A;) =
n-my((0,1] - A1) =n-my((0,1] - A).

The next result is an extension of Theorem 8.13 to Lebesgue-measurable
sets.

Theorem 8.14 Let E € L,. Then, E, € S,_1 for mi-a.e. v € Rt and
E, € Ly for op_1-a.e. y € S"7! and the a.e. defined functions

7 on_1(Er), Y "~ Ldr
Ey

are L1—measurable and, respectively, S, _1—measurable. Also,

mn(E)_/()+oo an_l(Er)rnfldr:/Snil (/E T’Hdr) don_1(y).

Proof: We consider Borel sets By, B2 in R™ with m,,(Bs) = 0, so that By C E
and F \ Bl g Bg.

Theorem 8.13 implies that, for every r € RT, (By), and (Bs), are Borel sets
in S"~1 with (By), C E, and E, \ (B1), C (Bz),. From Theorem 8.13 again,
[ 01 ((Bao),)r™ L dr = m,(Bs) = 0 and we get that o,—1((Bz),) = 0 for
mi-a.e. v € RT. Therefore, £, € S,,_1 and 0, _1(E,.) = 0,_1((B1).) for mi-a.e.
reRT.

Similarly, for every y € S"~!, (By), and (Bs), are Borel sets in RT with
(B1)y € Ey and E, \ (By), C (Bz)y. From [, , (f(BQ)y " hdr) doy—1(y) =
mn(B2) = 0, we get that f(Bz)y "~ ldr = 0 for o,_1-a.e. y € S~ This
implies m1((Bz2),) = 0 for o,_1-a.e. y € S" ! and, hence, E, € £; and
fEu rldr = f(Bl),, r"~tdr for o, _1-a.e. y € S""!. Theorem 8.13 implies

mn(E) = myp(By) - O+°o on_1((By))r"tdr = f0+°o on_1(E.)r""Ldr and,

also, = [gn (f(Bl)y r"=ldr) don-1(y) = [gu (ny r*ldr) do, -1 (y).

The rest of this section consists of a series of theorems which describe the
so-called method of integration by polar coordinates.



160 CHAPTER 8. PRODUCT-MEASURES

Definition 8.10 Let f : R® — Y. For every r € R and every y € S"! we
define the functions f.: S"™' =Y and f,: R™ =Y by the formulas

fr(y) = fy(r) = f(ry).
fr is called the r-section of [ and f, is called the y-section of f.

The next two theorems cover integration by polar coordinates for Borel-
measurable functions.

Theorem 8.15 Let f : R™ — [0, +00] be Brn—measurable. Then, every f, is
Bgn-1—measurable and every f, is Br+—measurable. The functions

+oo
T flry)dop—1,  yr flryyr"=tdr
Sn—1 0

are Br+—measurable and, respectively, Bgn—1—measurable. Moreover
+oo

@dmaa) = [ ([ sy o)t ar
0 sn—1

- /Snil (/O+DO flry)rmt dr) dop—1(y).

Proof: The results of this theorem and of Theorem 8.13 are the same in case
f = xg. Using the linearity of the integrals, we prove the theorem in the
case of a simple function ¢ : R™ — [0, +0o0]. Finally, applying the Monotone
Convergence Theorem to an increasing sequence of simple functions, we prove
the theorem in the general case.

R»

Theorem 8.16 If f : R® — R or C is Br»—measurable and integrable with
respect to m,,, then every f, is Bgn—1—measurable and, for mi-a.e. r € RT,
fr is integrable with respect to 0y,—1. Also, every f, is Br+—measurable, and
for op_1-a.e. y € ST, f, is integrable with respect to my. The a.e. defined
functions

“+o0
re f(ry) don-1(y), Y= / flry)r™tdr
Sn—1 0

are integrable with respect to my and, respectively, with respect to o,_1. Also
+oo

@dme) = [ ([ fowdoi)ar
0 Sn—1

- /SW1 (/{:00 flry)rmt dr) dop-1(y).

Proof: We use Theorem 8.15 to pass to the case of functions f : R" — R, by
writing them as f = fT — f~. We next treat the case of f : R* — C, by writing
f=R(f) +iS(f), after we exclude, in the usual manner, the set f~!({oo}).

Rn
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The next two theorems treat integration by polar coordinates in the case
of Lebesgue-measurable functions. They are proved, one after the other, using
Theorem 8.14 exactly as Theorems 8.15 and 8.16 were proved with the use of
Theorem 8.13.

Theorem 8.17 Let f : R™ — [0,400] be L, —measurable. Then, for mi-a.e.
r € RY, the function f, is S,,—1—measurable and, for o,_1-a.e. y € S"1, the
function f, is L1—measurable. The a.e. defined functions

+o00
r— f(ry) danq(y), Y — / f(ry)rn—l dr
sn—1 .

are L1—measurable and, respectively, S, _1—measurable. Moreover
+oo

@dm@) = [ ([ fondoi)rar
0 Sn—

/SH (/Om flry)r! dr) don_1(y).

Theorem 8.18 If f : R® — R or C is L,—measurable and integrable with
respect to my, then, for my-a.e. v € RT, f. is integrable with respect to o,_1
and, for op,_1-a.e. y € S"7, f, is integrable with respect to mi. The a.e.
defined functions

Rn

+oo
7 flry) don-1(y), Y — / Flry)rdr
Sn—1 0

are integrable with respect to my and, respectively, with respect to o,_1. Also
+oo

@dnaa) = [ ([ sy o) ar
0 Sn—l

/SH ( /O - flry)yrm! dr) don1(y).

Definition 8.11 A set E C R" is called radial if v € E implies that ' € E
for all &’ with |z'| = |z|.
A function f: R™ =Y is called radial if f(x) = f(2') for every x, 2’ with

|| = [2"].

R»

It is obvious that E is radial if and only if x g is radial.
If the set F is radial, we may define the radial projection of E as

E={reRt|z e E when |z| =1}

Also, if f is radial, we may define the radial projection of f as the function
f:RT =Y by
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for every x € R™ with |z| = r.

It is obvious that a radial set or a radial function is uniquely determined
from its radial projection (except from the fact that the radial set may or may
not contain the point 0 and that the value of the function at 0 is not determined
by its radial projection).

Proposition 8.12 (i) The radial set E C R"™ is in Brn or in L, if and only
if its radial projection is in Br+ or, respectively, in L1. In any case we have

mu(E) = 0,_1(S™1) /~r”71 dr.
E
(i) If (Y,X') is a measurable space, then the radial function f : R™ — Y is
(Brr,X')—measurable or (L, X')—measurable if and only if its radial projection
is (Br+, X')—measurable or, respectively, (L1,%")—measurable.
If f : R™ — [0, +00] is Borel- or Lebesgue-measurable or if f : R* — R or
C is Borel- or Lebesque-measurable and integrable with respect to m.,, then

+oo

(z) dmy(z) = 0, 1(S™ 1) / fr)yr™tar.

R 0

Proof: (i) If E € Br» or E € L, is radial, then, for every y € S"~!, we have
E, = E and, hence, the result is a consequence of Theorems 8.13 and 8.14.

For the converse we may argue as follows: we consider the collection of all
subsets of RT which are radial projections of radial Borel sets in R", we then
prove easily that this collection is a o-algebra which contains all open subsets
of R and we conclude that it contains all Borel sets in RT.

Now, if E is radial and E € £y, we take Borel sets My, M3 in R* with
mi(Msz) = 0 so that My C E and E\ M; C M,. We consider the radial sets
FEi,E; C R" so that E = M; and E; = M>, which are Borel sets, by the
result of the previous paragraph. Then we have F;y C F and E \ E; C FEs.

Since 0 = my(F2) = [g._u (f(E2)y 1 d?“) dop_1 = op_1(S"71) fﬁ;} "L dr,
we have f1352 r"~Ldr and, hence, mi(FE3) = 0. This implies that E € £;.
(ii) The statement about measurability is a trivial consequence of the definition

of measurability and the result of part (i). The integral formulas are conse-
quences of Theorems 8.15 up to 8.18.
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8.5 Exercises.

1. Consider the measure spaces (R,Bgr,m1) and (R,P(R),t), where § is
the counting measure. If E = {(xl,xg) |0 < 27 = x5 < 1}, prove that

all numbers (m1 ® §)(E), [g §(Ey,)dmi(z1) and [ mi(Ey,) df(zs) are
different.

2. Consider @, , =1if m =n, amn =—lifm=n+1 and Gym.n = 0 in any
other case. Then :j( ) # E (e lam n). Explain,

through the Theorem of Fubini.

3. The graph and the area under the graph of a function.
Suppose that (X,3, ) is a measure space and f : X — [0,+0o0] is
Y —measurable. If
Ap ={(z,y) e X xR|0 <y < f(x)}
and
Gy ={(z,y) € X xR|y = f(x)},

prove that both Ay and G; are ¥ ® Bg—measurable. If, moreover, p is
o-finite, prove that

(om)(An) = [ fdu  (wem)(Gy) =0,

4. The distribution function.

Suppose that (X, X, 1) is a o-finite measure space and f : X — [0, +o0] is
Y—measurable. Calculating the measure u® p of the set Ay = {(z,y) €
X xR |0 <y< f(x)}, prove Proposition 7.14.

5. Consider two measure spaces (X1, X1, pu1) and (Xa, Xo, u2), a X1 —measu-
rable f; : X; — C and a Ys—measurable fo : Xo — C. Consider the
function f: X7 x Xo — C defined by f(z1,z2) = fi(x1)f2(z2).

Prove that f is ¥ ® ¥o—measurable.

If f1 is integrable with respect to p; and fy is integrable with respect to
L2, prove that f is integrable with respect to p1; ® uo and that

/ fd(p1 @ p2) = J1dp fadps.
X1><X2 Xl X2

6. The volume of the unit ball in R™ and the surface-measure of S?1.

(i) If v, = my,(B,,) is the Lebesgue-measure of the unit ball of R™, prove

that .
Uy = 2’Un_1/ (1 — t2)n51
0
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(ii) Set J,, = fol(l — 2)"2 dt for n > 0 and prove the inductive formula
Jn = %Jn_z, n Z 2.
(iii) Prove that the gamma-function (defined in Exercise 7.9.38) satisfies

the inductive formula
I(s+1) =sI(s)

for every s € H,, and that I'(1) = 1, I'(}) = /7.
(iii) Prove that

[NE

z _ 2w
O'nfl(Sn 1) _ -

7 -

w[3

7. The integral of Gauss and the measures of B, and of S™ 1.

Define ,
I, :/ e*% dx.

(i) Prove that I,, = I}* for every n € N.
(ii) Use integration by polar coordinates to prove that Iy = 27 and, hence,

that ,
/ e dr = (2m)%.

(iii) Use integration by polar coordinates to prove that

n +m 7'2
(2m)=> = Un_l(S”_l)/ e zr"tdr
0

and, hence,

n
M2

L(g+1)°

3

2w
a'n—l(Snil) = 1—‘7 s Up = mn(Bn) =

|3
N~—

8. From [’ 8% dg = [* (f0+°° e~ dt) sinx dz, prove that
— 400 -
sin 7r
/ dr=—.
0 T 2
9. Convolution.

Let f,g: R®™ — R or C be £, —measurable.

(i) Prove that the function H : R® x R® — R or C, which is defined by
the formula

H(z,y) = f(z —y)g(y),

is Lo, —measurable.

Now, let f and g be integrable with respect to m,,.
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10.

(ii) Prove that H is integrable with respect to ma, and

/ \H| s, < / fldm, / 9] dmy.
R2n R R~

(iii) Prove that, for my-a.e. © € R™ the function f(x —-)g(-) is integrable
with respect to m.,.

The a.e. defined function f % g: R™ — R or C by the formula

(fxg)(x) = flxz—y)g(y) dy

R’Vl
is called the convolution of f and g.

(iv) Prove that f g is integrable with respect to m,,, that

| wsgyim, = [ gam, [ gam,

/ |f*g|dmns/ Ifldmn/ 9] dm,.
n Rn Rn

(v) Prove that, for every f,g,h, f1, fo which are Lebesgue-integrable, we
have my-a.e. on R™ that fxg = gxf, (f*xg)xh = f*(gxh), (A f)xg = A(fxg)
and (fi+ fa)xg= fixg+ faxg.

The Fourier transforms of Lebesgue-integrable functions.

Let f: R" — R or C be Lebesgue-integrable over R™. We define the
function f: R™ — R or C by the formula

o= [ emeesada

where z-§ = 2161 + -+ - x, &, is the euclidean inner-product. The function
f is called the Fourler transform of f.

(i) Prove that f1 + fo = f1 + f> and )\f /\f

(ii) Prove that f *xg = f g, where fx*g is the convolution defined in Exercise
8.5.9.

(iii) If g(z) = f(z — a) for a.e. € R™, prove that §(¢) = e~ 27e€ f(¢) for
all £ € R™.

(iv) If g(z) = e~2™@% f(2) for a.e. x € R™, prove that §(¢) = f(£ + a) for
all £ e R™.

(v) If g(z) = f(z) for a.e. = € R", prove that §(¢) = f(—¢) for all
e R

(vi) If T : R® — R" is a linear transformation with det( ) # 0 a
g(z) = f(Tx) for a.e. x € R™, prove that g(¢) = #(T) f(( )71E)) for
all £ € R™, where T™ is the adjoint of T'.

(vii) Prove that fis continuous on R".

(viii) Prove that |f(&)] < Jrn | fI dmy, for every & € R™.

and
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12.

13.

14.

15.

16.

17.
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Let C be a Cantor-type set in [0, 1] with m1(C) > 0. Prove that the set
{(z,y) € [0,1] x [0,1] |z —y € C} is a compact subset of R? with positive
meo-measure, which does not contain any measurable interval of positive
Mmo-measure.

Uniqueness of Lebesgue-measure.

Let 1 and v be two locally finite Borel measures on R", which are trans-
lation invariant. Namely: pu(A+2) = u(A) and v(A+x) = v(A) for every
z € R" and every A € Brn.

Working with [5, g Xa(@)xB(z + y)d(p @ v)(z,y), prove that either
1= or v= Ay for some A € [0, +0c0).

Conclude that the only locally finite Borel measure on R™ which has value
1 at the unit cube [0, 1]™ is the Lebesgue-measure m,,.

Let E C [0,1] x [0, 1] have the property that every horizontal section E,
is countable and every vertical section F, has countable complementary
set [0,1] \ E,. Prove that E is not Lebesgue-measurable.

Let (X, 3, u) be a measure space and (Y, ¥’) be a measurable space. Sup-
pose that for every x € X there exists a measure v, on (Y,Y’) so that for
every B € ¥/ the function z — v,(B) is ¥—measurable.

We define v(B) = [ vo(B) du(x) for every B € X'.

(i) Prove that v is a measure on (Y, %').

(ii) If g : Y — [0, 400] is ¥'—measurable and if f(z) = [, gdv, for every
x € X, prove that f is Y—measurable and [, fdu = [, gdv.

Interchange of successive summations.

If I, I5 are two sets of indices with their counting measures, prove that
the product-measure on I; X I5 is its counting measure.

Applying the theorems of Tonelli and Fubini, derive results about the

validity of
Z Ciyyin = Z ( Z Cil,iz) = Z ( Z CilyiQ)'

i1€11,i2€12 1€l i2€l> io€ly i1€l

Consider, for every p € (0,+00), the function f : R™ — [0, +00], defined
by f(z) = -

(i) Prove that f is not Lebesgue-integrable over R™.

(ii) Prove that f is integrable over the set As = {x € R" |0 < ¢ < |z|} if
and only if p > 1.

(iii) Prove that f is integrable over the set Bg = {z € R"||z| < R < 400}
if and only if p < 1.

Suppose that (Y, %) and (X;,%;) are measurable spaces for all ¢ € T and
that g : X;, — Y is (¥4, £)—measurable. If we define f:[[;c; X; =Y
by f((xi)icr) = g(xi,), prove that f is (®),c; 3i, ¥)—measurable.
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18. Integration by parts.

Consider the intervalj:% = (a,b] x (a,b] and partition it into the two
sets Ap = {(t,s) € R[t < s} and Ay = {(t,s) € R[s < t}. Writing
(e @pr)(R) = (he @ pr) (A1) + (pe @ pr)(Asz), prove Proposition 7.11.
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Chapter 9

Convergence of functions

9.1 a.e. convergence and uniformly a.e. conver-
gence.

The two types of convergence of sequences of functions which are usually stud-
ied in elementary courses are the pointwise convergence and the uniform con-
vergence. We, briefly, recall their definitions and simple properties.

Suppose A is an arbitrary set and f, f, : A — R or C for every n € N. We
say that {f,} converges to f pointwise on A if f,(z) — f(z) for every x € A.
In case f(z) is finite, this means that for every e > 0 there is an ny = ng(e, x)
so that: | f,(z) — f(z)] < € for every n > ng.

Suppose A is an arbitrary set and f, f,, : A — C for every n € N. We say
that {f,} converges to f uniformly on A if for every € > 0 there is an ng = ng(e)
so that: |fn(z) — f(z)| < € for every z € A and every n > ng or, equivalently,
SUPLea |fn(x) — f(x)] < € for every n > ng. In other words, {f,} converges to
f uniformly on A if and only if sup,c 4 | fn(z) — f(z)] — 0 as n — +o0.

It is obvious that uniform convergence on A of {f,} to f implies pointwise
convergence on A. The converse is not true in general. As a counter-example,
if f, = X(0,1) for every n, then f, converges to f = 0 pointwise on (0,1) but
not uniformly on (0,1).

Let us describe some easy properties.

The pointwise limit (if it exists) of a sequence of functions is unique and,
hence, the same is true for the uniform limit.

Assume that f,g, fn,gn : A — C for all n. If {f,} converges to f and
{gn} converges to g pointwise on A, then {f, + g,} converges to f + g and
{fngn} converges to fg pointwise on A. The same is true for uniform conver-
gence, provided that in the case of the product we also assume that the two
sequences are uniformly bounded: this means that there is an M < +00 so that
| fn(@)],|gn(z)| < M for every & € A and every n € N.

Another well-known fact is that, if f,, : A — C for all n and {f,} is Cauchy
uniformly on A, then there is an f : A — C so that {f,} converges to f

169
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uniformly on A. Indeed, suppose that for every € > 0 there is an ng = ng(e) so
that: |fn(z) — fm(x)] < € for every z € A and every n,m > ng. This implies
that, for every z, the sequence { f,,(x)} is a Cauchy sequence of complex numbers
and, hence, it converges to some complex number. If we define f : A — C by
f(z) = lim,— 4o fn(z) and if in the above inequality |f, (z) — fi(z)| < € we
let m — 400, we get that | f,(z) — f(z)| < € for every x € A and every n > ng.
Hence, {f,} converges to f uniformly on A.

It is almost straightforward to extend these two notions of convergence to
measure spaces. Suppose that (X, X, 1) is an arbitrary measure space.

We have already seen the notion of y-a.e. convergence. If f, f, : X — R or
C for every n, we say that {f,} converges to f (pointwise) y-a.e. on A € ¥
if there is a set B € ¥, B C A, so that u(A\ B) = 0 and {f,} converges to f
pointwise on B.

If f, f : X — Ror C for every n, we say that { f,,} converges to f uniformly
p-a.e. on A € X if there is a set B € X, B C A, so that u(A\ B) =0, f and
fn are finite on B for all n and {f,} converges to f uniformly on B.

It is clear that uniform convergence p-a.e. on A implies convergence p-a.e.
on A. The converse is not true in general and the counter-example is the same
as above.

If {fn} converges to both f and f’ p-a.e. on A, then f = f’ up-a.e. on A.
Indeed, there are B, B’ € ¥ with B, B’ C A so that u(A\ B) = p(A\ B') =0
and f,, converges to f pointwise on B and to f’ pointwise on B’. Therefore, f,
converges to both f and f’ pointwise on BN B’ and, hence, f = f' on BN B'.
Since u(A\ (BN B')) = 0, we get that f = f' a.e. on A. This is a common
feature of almost any notion of convergence in the framework of measure spaces:
the limits may be considered unique only if we agree to identify functions which
are equal a.e. on A. This can be made precise by using the tool of equivalence
classes in an appropriate manner, but we postpone this discussion for later.

We can, similarly, prove that if {f,} converges to both f and f’ uniformly
p-a.e. on A, then f = f’ p-a.e. on A.

Moreover, if f, g, fn,gn : A — C p-a.e. on A for every n and {f,} converges
to f and {g,} converges to g p-a.e. on A, then {f, + g} converges to f + g and
{fngn} converges to fg p-a.e. on A. The same is true for uniform convergence
p-a.e., provided that in the case of the product we also assume that the two
sequences are uniformly bounded p-a.e.: namely, that there is an M < +00 so
that |fnl, lgn| < M p-a.e. on A for every n € N.

9.2 Convergence in the mean.

Assume that (X, 3, u) is a measure space.

Definition 9.1 Let f, f, : X — R or C be ¥ —measurable for all n. We say
that {fn} converges to f in the mean on A € X if f and f,, are finite u-a.e.
on A for all n and

[ 1fa= fldu =0
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as n — +00.
We say that {f,} is Cauchy in the mean on A € ¥ if f,, is finite u-a.e.
on A for alln and

/ |fn = fmldp — 0
A
as m,n — +00.

It is necessary to make a comment regarding the definition. The functions
|fn— fl and |fr, — fim| are defined only p-a.e. on A. In fact, if all f, f,, are finite
on B € ¥ with B C Aand u(A\B) =0, then | f,— f| and | f,,— f,| are all defined
on B and are ¥ p—measurable. Therefore, only the integrals [ |f, — f| du and
1} g |fn — fm|du are well-defined. If we want to be able to write the integrals
Salfn = fldp and [, |fn — fm|dp, we must extend the functions |f,, — f| and
|fn — fm| on X so that they are ¥—measurable and, after that, the integrals
Jalfn = fldpw and [, |fn — fm|dp will be defined and equal to [ |fn — f|dp
and [ |fn — fm| dp, respectively. Since the values of the extensions outside B
do not affect the resulting values of the integrals over A, it is simple and enough
to extend all f, f,, as 0 on X \ B.

Thus, the replacement of all f, f, by 0 on X \ B makes all functions finite
everywhere on A without affecting the fact that {f,} converges to f in the mean
on A or that {f,} is Cauchy in the mean on A.

Proposition 9.1 If {f,} converges to both f and f’ in the mean on A, then
f=1f p-a.e. on A.

Proof: By the comment of the previous paragraph, we may assume that all f, f’
and f, are finite on A. This does not affect either the hypothesis or the result
of the statement.

We write [, |f — f/|dp < [, |fa = fldp+ [, |fn — f'|dp — 0 as n — +o0.
Hence, [, |f — f'|dp =0, implying that f = f" p-a.e. on A.

Proposition 9.2 Suppose {f,} converges to f and {g,} converges to g in the
mean on A and A € C. Then

(i) {fn + gn} converges to f + g in the mean on A.

(ii) {A\fn} converges to Af in the mean on A.

Proof: We may assume that all f,g, f,, g, are finite on A.

Then, fA‘(fn+gn>_(f+g)|dM§fAlfn_f‘dM+fA|gn_g‘dﬂ_)Oas
n— +oo, and [, |Afn — Mfldp=|A [, |fn — fldp — 0 as n — +oo0.

It is trivial to prove that, if {f,} converges to f in the mean on A, then
{fn} is Cauchy in the mean on A. Indeed, assuming all f, f,, are finite on A,

Jalfn = fmldp < [y 1fn = fldp+ [y 1fm — fldp — 0 as n,m — 4oco. The
following basic theorem expresses the converse.

Theorem 9.1 If {f,} is Cauchy in the mean on A, then there is f : X — C
so that {f,} converges to f in the mean on A. Moreover, there is a subsequence
{fn.} which converges to f p-a.e. on A.
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As a corollary: if {fn} converges to f in the mean on A, there is a subse-
quence { fn, } which converges to f p-a.e. on A.

Proof: As usual, we assume that all f, f,, are finite on A.

We have that, for every k, there is nj so that fA [frn — fmldp < 2% for
every n,m > ng. Since we may assume that each nj is as large as we like,
we inductively take {nj} so that ny < np41 for every k. Therefore, {f,,} is a
subsequence of {f,}.

From the construction of nj and from ny < ngy1, we get that

1
/ |fnk+1 - fnk|d:u < 27]6
A
for every k. Then, the X—measurable function G : X — [0, +o00] defined by

G:{ l:_z‘fnk+1_fnk|y on A
0,

on A°

satisfies [y Gdp = 3025 [4 1 fonss — fanldp = 1 < +oo. Thus, G < 400
p-a.e. on A and, hence, the series >, (frgsr () = fn, () converges for pu-
a.e. x 6 A. Therefore, there is a B € X, B C A so that u(A\ B) = 0
and )° 2 (frpss (®) = fr,(x)) converges for every z € B. We define the ¥—
measurable f: X —-Chbhy

f { fnl + Z (f"k+1 fnk), on B

on B°.

On B we have that f = f,,, +limx_, 4 Zk 1 (fnk+1 fr) =Mk yoo frg
and, hence, {f,,} converges to f p-a.e. on A.

We, also, have on B that |fn,. — f| = |fox — fn1 — Jroo(fnk+1 — [l =
|Zk 1 (fnk+1 fnk) - z:i(fnkﬂ fnk)‘ < Z ‘fnk+1 fnk| fOI‘ au K

Hence,

+o0 +o00o 1 1
J b = 1< S [ e = fuldu < Y- 5 = g5 =0
A k=K "’A k:K2 2

as K — +oo.

From nj, — +oo, we get [, [fr—fldu < [, [fx—faldp+ 4 | fu, —fldp— 0
as k — 4oo and we conclude that {f,} converges to f in the mean on A.

Example

C0n51der the sequence f1 = X@o.1:f2 = X0 0.1)s f3 = Xx@ 1) f1 = X021y, f5 =
(1.2, fo = X(2,1), 7 = X(0,0), fs = X2 2) 7f9—X(§ 2y, f10 = Xx(21) andsoon
It is clear that f(o,l |fn( )| dx — 0 as n — +oo (the sequence of integrals

is1,3,3,%4,4, 5,3, 5,5, 4,...) and, hence, {f,} converges to 0 in the mean on

(0,1). By Theorem 9.1, there exists a subsequence converging to 0 mi-a.e. on
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(0,1) and it is easy to find many such subsequences: indeed, f1 = X(0,1), f2 =
X(0,1)> fa= X(0,1); fr= X(0,1) and so on, is one such subsequence.

But, it is not true that {f,} itself converges to 0 mj-a.e. on (0,1). In fact, if
x is any irrational number in (0, 1), then x belongs to infinitely many intervals
of the form (21, £y (for each value of m there is exactly one such value of k)
and, thus, {f,(z)} does not converge to 0. It easy to see that f,(z) — 0 only
for every rational x € (0,1).

We may now complete Proposition 9.2 as follows.

Proposition 9.3 Suppose {fn} converges to f and {g,} converges to g in the
mean on A.

(i) If there is M < 400 so that |fn,| < M p-a.e. on A, then |f| < M p-a.e. on
A.

(i1) If there is an M < +o00 so that |fn|, |gn] < M p-a.e. on A, then {fngn}
converges to fg in the mean on A.

Proof: (i) Theorem 9.1 implies that there is a subsequence {f,, } which con-
verges to f u-a.e. on A. Therefore, |f,,| — |f] p-a.e. on A and, hence, |f| < M
p-a.e. on A.

(ii) Assuming that all f,g, f», g are finite on A and using the result of (i),

Jalfougn = foldp < [ |fugn — fgnldp+ [y |fon — foldn < M [, [fo— fldp+
M [, |gn — gldp — 0 as n — 4oo0.

9.3 Convergence in measure.

Assume that (X, ¥, u) is a measure space.

Definition 9.2 Let f, f, : X — R or C be ¥ —measurable for all n. We say
that {f,} converges to [ in measure on A € X if all f, f,, are finite u-a.e.
on A and if for every e > 0 we have

p(fz € Al fu(x) = f(2)] = €}) = 0

as n — +0o0o.
We say that {f,.} is Cauchy in measure on A € X if all f,, are finite
p-a.e. on A and if for every e > 0 we have

p{z € Allfn(z) = fm(z)| 2 €}) = 0

as n,m — +00.

We make a comment similar to the comment following Definition 9.1. If
we want to be able to write the values p({z € Al|fn(z) — f(x)] > €}) and
p{z € Al|fu(z) — f(x)] > €}), we first extend the functions |f, — f| and
|fn — fm| outside the set B C A, where all f, f,, are finite, as functions defined
on X and Y—measurable. Then, since u(A\ B) = 0, we get that the above
values are equal to the values u({z € B||fn(z) — f(x)| > €}) and, respectively,
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p({z € B||fu(z) — f(z)| > €}). Therefore, the actual extensions play no role
and, hence, we may for simplicity extend all f, f,, as 0 on X \ B.

Thus the replacement of all f, f, by 0 on X \ B makes all functions finite
everywhere on A and does not affect the fact that { f.} converges to f in measure
on A or that {f,} is Cauchy in measure on A.

A useful trick is the inequality

p{z € Al[f(2) +9(@)| 2 a+0}) < p({ze Al|f(z)] = a})
+ p({z e Aflg(2)] = b)),

which is true for every a,b > 0. This is due to the set-inclusion
{z e Al[f(z) +9(z)| Z a+b} C{z € A|[f(x)| = a} U{z € Al|g(z)| = b}.

Proposition 9.4 If {f,} converges to both f and f' in measure on A, then
=7 p-ae on A.

Proof: We may assume that all f, f/, f,, are finite on A.

Applying the above trick we find that p({z € Al|f(z) — f'(z)] > €}) <
w({e € Allfu(z) — F@) > 51+ ul{z € Alfa@) - F(@)] > §1) — 0 as
n — —+oo. This implies u({z € A||f(z) — f'(z)| > €}) = 0 for every € > 0.

We, now, write {z € A| f(z) # f'(¥)} = U2 {z € A[[f(x) = f'(2)| > £}
Since all terms in the union are p-null sets, we get u({x € A| f(z) # f'(z)}) =0
and conclude that f = f’ p-a.e. on A.

8

Proposition 9.5 Suppose {f,} converges to f and {g,} converges to g in mea-
sure on A and A € C. Then

(i) {fn + gn} converges to f + g in measure on A.

(ii) {A\fn} converges to Af in measure on A.

(i) If there is M < +o0o so that |fn| < M p-a.e. on A, then |f| < M p-a.e.
on A.

(iv) If there is M < 400 so that |ful,lgn] < M p-a.e. on A, then {fngn}
converges to fg in measure on A.

Proof: We may assume that all f, f,, are finite on A, since all hypotheses and all
results to be proved are not affected by any change of the functions on a subset
of A of zero py-measure.
(i) We apply the usual trick and pu({z € A||(fn + gn)(x) = (f + 9)(x)| > €}) <
iz € Allfa(@) - f@] > D) + u({e € Alga(z) — g(@)] = 5)) — 0 as
n — +00.
(i) Also u({z € A||M(@) =M (@)] = €}) = ul{a € A||ful@)—F@)] = 5}) =
0 asn — 4o0.
(iti) We write u({z € A[|f(@)] = M +¢}) < u({w € A|[f,(@)]
iz € Allfale) — F@) = 51 = pl{z € A|lfale) - Fl@)] = 1) —
n — +o0o. Hence, u({z € A||f(z)| > M + €}) = 0 for every € > 0.

We have {z € A||f(z)] > M} C U/ {x € A||f(z)] > M + +} and, since
all sets of the union are p-null, we find that p({x € A||f(z)] > M}) = 0.
Hence, |f| < M p-a.e. on A.

\%
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€ Allfa(@)gn(z) — f(2)g(2)] = €})
D +u({z € Al|fa(2)g(x) - f(2)g(x)]
> 26 }) -

(iv) Applying the result of (iil), p({=
p{z € Al[fn(2)gn(2) = fu(2)g(2)| = 5
31) < n{z € Allgn(2) —9(2)| = 357}) + n({z € A[[fu(2) = f(2)]

as n — +o00.

o IVIA

If {f.} converges to f in measure on A, then {f,} is Cauchy in measure

on A. Indeed, taking all f, f,, finite on A, p({x € A||fn(x) — fm(z)] > €}) <
pfz € Allfu(e) = f(@)] =2 §}) + p{z € Allfm(z) = f(@)] = 5}) — 0 as

n,m — —+00.

Theorem 9.2 If {f,} is Cauchy in measure on A, then there is f : X — C
so that {f,} converges to f in measure on A. Moreover, there is a subsequence
{fn.} which converges to f p-a.e. on A.

As a corollary: if { fn} converges to f in measure on A, there is a subsequence
{fn.} which converges to f p-a.e. on A.

Proof: As usual, we assume that all f,, are finite on A.

We have, for all k, p({z € A||fa(z) — fm(z)] > F£}) — 0 as n,m — +oo.
Therefore, there is nj, so that u({z € A||fu(z) — fm(z)| > 5}) < 55 for
every m,m > nj. Since we may assume that each ny is as large as we like, we
may inductively take {ny} so that ny < ngy1 for every k. Hence, {fn,} is a
subsequence of {f,} and, from the construction of nj and from ny < ngy1, we
get that

({2 € Al @) = Fou@)] = 22D) < o

for every k. For simplicity, we write

1
By ={z € Allfara (@) = far(@)] 2 55}
and, hence, u(Ey) < 5 for all k. We also define the subsets of A:
F,=U> By, F =n}>®F, =limsup Fy .

NOW NJ( ) < Zk TYLN( k) < Zk 7”% = 277:,%1 a‘nd, hence’ M(F) S
w(Fy) < Qm,l for every m. This implies

w(F)=0.
If x € A\ F, then there is m so that x € A\ F,,, Which implies that z € A\ B,
for all £ > m. Therefore, \anl( 2) = fn ()] < 5% for all k > m, so that
;iom |fnk+1 ({,C) - fnk( )| < 2m om—1 - ThUS the series Z (fm.+1( ) - fnk(‘r))
converges and we may define f : X — C by

f:{f’fh( )+Z (fnk+1 fnk), on A\F
0 on A°U L.

By f(z) = fn, (#)+limg 1 o Zk 1 (fnk+1( )_fnk (7)) = img oo frgx (z)
for every x € A\ F and, from p(F) = 0, we get that {f,, } converges to f u-a.e.
on A.
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Now, on A\ Fry we have |fu,, = f1 = |fa,, —fur = 2353 (s = Fu)] =
|Zk 1 (fnk+1 fnk) - zzool(f’ﬂk+1 f’ﬂk)| < Z |fnk+1 f’ﬂk| < 2771%1
Therefore, {z € A||fy,.(x) — (@) = 72=<} C Fir and hence,

p{x € Allfn,, (x) — f(2)| > Qm%}) < plFm) < 2”11_1.

Take an arbitrary € > 0 and myg large enough so that mo =t < €. If m > myg,
{z € Al|fn,.(x) = f(2)] = €} € {z € A||fn, (x) — f(x)] > gm=} and, hence,

il € Allfun (@)~ F@)] 2 ) < gy =0

as m — +oo. This means that {f,,} converges to f in measure on A.
Since ni — +o00 as k — 400, we get u({x € A||fu(x) — f(z)| > €}) <
p{z € Allfe(@) = fuo(@)] 2 5}1) + p({z € Allfn(2) = f(2)] = 5}) — 0 as

k — +oo and we conclude that {f,} converges to f in measure on A.

Example
We consider a variation of the example just after Theorem 9.1. Consider the
sequence f1 = X(0,1), f2 = 2X (0,1 1y fs = 2X(1 1) o= 3X 0,4)s fs = 3X(3,3)’f6
3z f7 = 4X(o,i) fs =433 fo = (3.9, fro = 4X<3,1> and so on.

If 0 < € < 1, the sequence of the values p({z € (0,1)||fn(z)| > €}) is
1, %, %, %, %, %, i, i, i, i, ... and, hence, converges to 0. Therefore, {f,} con-
verges to 0 in measure on (0,1). But, as we have already seen, it is not true
that {f,} converges to 0 my-a.e. on (0, 1).

9.4 Almost uniform convergence.

Assume that (X, X, ) is a measure space.

Definition 9.3 Let f,f, : X — R or C be X—measurable for alln € N. We
say that {f,} converges to f almost uniformly on A € X if for every § > 0
there is B € X, B C A, so that u(A\ B) < § and {f,} converges to f uniformly
on B.

We say that {f,} is Cauchy almost uniformly on A € X if for every
0 > 0 there is B € ¥, B C A, so that u(A\ B) < § and {f.} is Cauchy

uniformly on B.

Suppose that some g: X — R or C is E—measurable and that, for every k,
thereis a By € X, By, C A, with u(A\Bk) + so that g is finite on By. Now, it
is clear that g is finite on the set F' = U; > By, and that p(A\F) < pu(A\By) <
for all k. This implies that u(A\ F) = 0 and hence, g is finite p-a.e. on A.

From the statement of Definition 9.3. it is implied by the uniform conver-
gence that all functions f, f,, are finite on sets B € ¥, B C A with u(A\ B) < 0.
Since § is arbitrary, by the discussion in the previous paragraph, we conclude
that, if {fn} converges to f almost uniformly on A or if it is Cauchy almost
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uniformly on A, then all f, f, are finite p-a.e. on A. Now, if F e X, FC A
with p(A\ F) = 0 is the set where all f, f,, are finite, then, if we replace all
fofn by 0 on X \ F, the resulting functions f, f, are all finite on A and the
fact that {f.} converges to f almost uniformly on A or that it is Cauchy almost
uniformly on A is not affected.

Proposition 9.6 If {f,} converges to both f and f’' almost uniformly on A,
then f = f' p-a.e. on A.

Proof: Suppose that pu({x € A|f(z) # f'(x)}) > 0. For simplicity, we set
E={xe Al f(x) # ['(2)}.

We find B € X, BC A, with u(A\ B) < @ so that {f,} converges to f
uniformly on B. We, also, find B’ € &, B’ C A, with u(A\ B’) < @ so that
{fn} converges to f’ uniformly on B’. We, then, set D = BN B’ and have that
w(A\ D) < u(E) and {f,} converges to both f and f’ uniformly on D. This,
of course, implies that f = f’ on D and, hence, that D N E = (.

But, then, E C A\ D and, hence, u(F) < u(A\ D) < u(F) and we arrive
at a contradiction.

Proposition 9.7 Suppose {fn} converges to f and {gn} converges to g almost
uniformly on A. Then

(i) {fn + gn} converges to f + g almost uniformly on A.

(i1) {\fn} converges to Af almost uniformly on A.

(1) If there is M < +o00 so that |f,| < M p-a.e. on A, then |f| < M p-a.e.
on A.

(iv) If there is M < 400 so that |fnl,|gn| < M p-a.e. on A, then {fngn}
converges to fg almost uniformly on A.

Proof: We may assume that all f, f,, are finite on A.
(i) For arbitrary 6 > 0, there is B’ € £, B’ C A, with u(A\B’) < $ so that {f, }
converges to f uniformly on B’ and there is B” € ¥, B” C A, with u(A\B") < g
so that {g,} converges to g uniformly on B”. We take B = B’ N B” and have
that u(A\ B) < ¢ and that {f,} and {g,} converge to f and, respectively, g
uniformly on B. Then {f,, + g,} converges to f + g uniformly on B and, since
d is arbitrary, we conclude that {f,, + gn} converges to f + g almost uniformly
on A.
(ii) This is easier, since, if {f,} converges to f uniformly on B, then {Af,}
converges to Af uniformly on B.
(iii) Suppose p({z € A||f(z)] > M}) > 0and set E = {z € A||f(z)| > M}.
We find B € ¥, BC A, with u(A\ B) < u(E) so that {f,} converges to f
uniformly on B. Then we have |f| < M p-a.e. on B and, hence, u(BNE) = 0.
Now, pu(E) = u(E'\ B) < u(A\ B) < p(E) and we arrive at a contradiction.
(iv) Exactly as in the proof of (i), for every 6 > 0 we find By € 3, By C A,
with u(A\ By) < 6 so that {f,} and {g,} converge to f and, respectively, g
uniformly on B;. By the result of (iii), |f| < M p-a.e. on A and, hence, there
isa By € ¥, By C A with u(A\ By) = 0 so that |f,],|gnl, |f] < M on By. We
set B = By N By, so that u(A\ B) = u(A\ B1) < ¢. Now, on B we have that
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|fngn - fgl S ‘fngn - fgn| + |fgn - fg| S M|fn - f‘ +M|gn _g| anda thus,
{fngn} converges to fg uniformly on B. We conclude that {f,g,} converges to
fg almost uniformly on A.

One should notice the difference between the next result and the correspond-
ing Theorems 9.1 and 9.2 for the other two types of convergence: if a sequence
converges in the mean or in measure, then a.e. convergence holds for some sub-
sequence, while, if it converges almost uniformly, then a.e. convergence holds
for the whole sequence (and, hence, for every subsequence).

Before the next result, let us consider a simple general fact.

Assume that there is a collection of functions g; : B; — C, indexed by the
set I of indices, where B; C X for every i € I, and that {f,} converges to
gi pointwise on B;, for every i € I. If x € B; N B; for any 4,5 € I, then, by
the uniqueness of pointwise limits, we have that g;(z) = g;(x). Therefore, all
limit-functions have the same value at each point of the union B = U;c;B; of
the domains of definition. Hence, we can define a single function f : B — C by

f(x) = gi(x),

where ¢ € T is any index for which x € B;, and it is clear that {f,} converges
to f pointwise on B.

Theorem 9.3 If {f,} is Cauchy almost uniformly on A, then there is an f :
X — C so that {fn} converges to [ almost uniformly on A. Moreover, {fn}
converges to f u-a.e. on A.

As a corollary: if {fn} converges to f almost uniformly on A, then {fn}
converges to f p-a.e. on A.

Proof: For each k, there exists By € X, By, C A, with u(A\ By) < 1 so that
{fn} is Cauchy uniformly on Bj. Therefore, there is a function gy : By — C so
that {f,} converges to g; uniformly and, hence, pointwise on By.

By the general result of the paragraph just before this theorem, there is an
f: B — C, where B = U:;’?Bk, so that {f,} converges to f pointwise on B.
But, u(A\ B) < u(A\ By) < ¢ for every k and, thus, u(4\ B) = 0. If we
extend f : X — C, by defining f = 0 on B¢, we conclude that {f,} converges
to f p-a.e. on A.

By the general construction of f, we have that g = f on By and, hence,
{fn} converges to f uniformly on By. If § > 0 is arbitrary, we just take k large
enough so that ¢ < & and we have that u(A\ By) < 8. Hence, {f,} converges
to f almost uniformly on A.

9.5 Relations between types of convergence.

In this section we shall see three results describing some relations between the
four types of convergence: a.e. convergence, convergence in the mean, con-
vergence in measure and almost uniform convergence. Many other results are
consequences of these.
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Let (X,%, 1) be a measure space.

Theorem 9.4 If {f,} converges to f almost uniformly on A, then {f,} con-
verges to f u-a.e. on A.

The converse is true under the additional assumption that either
(i) (Egoroff) all f, fn, are finite p-a.e. on A and u(A) < +oo
or
(i) there is a g : A — [0, 400] with [, gdu < +00 and |f,| < g p-a.e. on A for
every n.

Proof: The first statement is inluded in Theorem 9.3.
(i) Assume {f,} converges to f u-a.e. on A, all f, f,, are finite y-a.e. on A and
w(A) < +o00. We may assume that all f, f,, are finite on A and, for each k,n,

we define
—+o0

Eak) = | {r € Allfn() ~ f@)| > 1}
If C = {x € A| fu(x) — f(x)}, then it is easy to see that N1 E, (k) C A\ C.
Since u(A\ C) = 0, we get u(N > E,(k)) = 0 for every k. From E,(k) |
N2 En(k), from p(A) < +o00 and from the continuity of x4 from above, we find
that u(FE,(k)) — 0 as n — +oo. Hence, for an arbitrary § > 0, there is ng so
that 5

:LI’(E"k (k)) < 27

We define N
E=|JEn(k), B=A\E
k=1

and have pu(E) < 320° u(E,, (k) < 8. Also, for every 2 € B we have that, for
every k > 1, |fn(z) — f(x)| < & for all m > ny. Equivalently, for every k > 1,

sup [ (@) ~ (@) < 1

r€EB
for every m > ny. This implies, of course, that {f,} converges to f uniformly
on B. Since p(A\ B) = u(E) < 4, we conclude that {f,} converges to f almost
uniformly on A.
(i) If |fn| < g pra.e. on A for all n, then also |f| < g p-a.e. on A and, since
J49dp < +oo, all f, f, are finite p-a.e. on A. Assuming, as we may, that all
f, fn are finite on A, we get | f, — f| < 2g p-a.e. on A for all n. Using the same
notation as in the proof of (i), this implies that E,(k) C {z € A|g(z) > 5
except for a p-null set. Therefore

(k) < u({z € Al g(2) > —

b

for every n, k. It is clear that the assumption f 4 9dp < +oo implies

u({xeA|g(m)>i ) < +oo.
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Therefore, we may, again, apply the continuity of p from above to find that
w(En(k)) — 0 as n — +oo. From this point, we repeat the proof of (i) word for
word.

Example
If fn = X(n,nt1) for every n > 1, then {f,,} converges to 0 everywhere on R, but
{fn} does not converge to 0 almost uniformly on R. In fact, if 0 < § < 1, then
every Lebesgue-measurable B C R with m; (R \ B) < § must have non-empty
intersection with every interval (n,n + 1) and, hence, sup,cp |fn(z)] > 1 for
every n.

In this example, of course, mi(R) = 400 and it is easy to see that there is
no g : R — [0,+0c] with [ g(x)dx < +oo satisfying f, < g mi-a.e. on R for
every n. Otherwise, g > 1 a.e. on (1,+400).

Theorem 9.5 If {f,} converges to f almost uniformly on A, then {f,} con-
verges to f in measure on A.

Conversely, if {fn} converges to f in measure on A, then there is a subse-
quence { fn, } which converges to f almost uniformly on A.

Proof: Suppose that {f,} converges to f almost uniformly on A and take an
arbitrary € > 0. For every § > 0 thereisa B € X, B C A, with u(A\ B) < § so
that {f,} converges to f uniformly on B.

Now, there exists an ng so that |f,(z) — f(z)| < € for all n > ng and
every x € B. Therefore, {x € Al|f.(z) — f(z)] > ¢} C A\ B and, thus,
p{z € A||fu(z) — f(z)| > €}) < § for all n > ny.

This implies that u({z € A||fn(x) — f(z)| > €}) — 0 as n — 400 and {f,}
converges to f in measure on A.

The idea for the converse is already in the proof of Theorem 9.2.

We assume that {f,} converges to f in measure on A and, without loss of
generality, that all f, f,, are finite on A. Then u({z € A||fn(2)—f(z)| = 5 }) —
0 as n — 400 and there is ny so that u({z € A||fn(z) — f(2)| = 55}) < 5 for
all n > ng. We may, inductively, assume that ny < ngy; for all k£ and, hence,
that {f,} is a subsequence of {f,} for which

n({z € Allfn, (@) — f(2)| =

for every k > 1. We set
By ={z € Al|fu(z) — f(2)] =
Then pu(Fy) < 3020 & = 5y for every m.

If 2 € A\ F,,,, then z € A\ E, for every k > m so that |f,, (z) — f(z)] < 5
for every k > m. This implies that

sup  |fon () — F(2)] <

z€EA\F, 2k



9.5. RELATIONS BETWEEN TYPES OF CONVERGENCE. 181

for all k > m and hence sup,c 4\, |fn,,(z) — f(2)| — 0 as k — +oo. Therefore,
{fn,} converges to f uniformly on A\ F,,, and we conclude that { f,, } converges
to f almost uniformly on A.

Example

We consider the example just after Theorem 9.2. The sequence {f,} converges

to 0 in measure on (0, 1) but it does not converge to 0 almost uniformly on (0, 1).

In fact, if we take any § with 0 < 6 < 1, then every B C (0, 1) with m1((0,1) \

B) < ¢ must have non-empty intersection with infinitely many intervals of the
k=1 k

form (%=, =) (at least one for every value of m) and, hence, sup,cp |fn(z)| > 1

for infinitely many n.

The converse in Theorem 9.6 is a variant of the Dominated Convergence
Theorem.

Theorem 9.6 If {f,} converges to f in the mean on A, then {f,} converges
to f in measure on A.

The converse is true under the additional assumption that there exists a
g: X —[0,400] so that [, gdp < +oo and |fn| < g p-a.e. on A.

Proof: 1t is clear that we may assume all f, f,, are finite on A.
Suppose that {f,} converges to f in the mean on A. Then, for every € > 0
we have

it € Allfu@) = f@] = D < ¢ [ 1= fldu—0

as n — +o0o. Therefore, {f,} converges to f in measure on A.
Assume that the converse is not true. Then there is some ¢y > 0 and a
subsequence {f,,} of {fn} so that

/ o — fldp > o
A

for every k > 1. Since {f,,} converges to f in measure, Theorem 9.2 implies
that there is a subsequence { fnkl} which converges to f p-a.e. on A. From
|fnkl| < g p-a.e. on A, we find that |f| < g p-a.e. on A. Now, the Dominated
Convergence Theorem implies that

[ o, = fldu—0

as | — +oo and we arrive at a contradiction.

Example
Let f, = nx( 1) for every n. If 0 < € < 1, then u({z € (0,1)||fu(z)| > €}) =

% — 0 as n — +oo and, hence, {f,} converges to 0 in measure on (0,1). But

fol |fn(x)|dr =1 and {f,} does not converge to 0 in the mean on (0, 1).
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Ifg: (0,1) — [0, +0o0] is such that | f,,| < g my-a.e. on (0, 1) for every n, then

1
g > n my-a.e. in each interval [ﬁ, 1) Hence, fol g(z)dx > Z:ﬁ nondr =

n+1

+ +
Sinla — ) = X

n=1 n=1 nyi — 100
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9.6 Exercises.

Except if specified otherwise, all exercises refer to a measure space (X, 3, u), all
sets belong to ¥ and all functions are ¥ —measurable.

1.

Let ¢ : C — C.

(i) If ¢ is continuous and {f,} converges to f p-a.e. on A, prove that
{¢ o fn} converges to ¢ o f u-a.e. on A.

(ii) If ¢ is uniformly continuous and {f,} converges to f in measure or
almost uniformly on A, prove that {¢ o f,} converges to ¢ o f in measure
or, respectively, almost uniformly on A.

. (i) If {f.} converges to f with respect to any of the four types of con-

vergence (p-a.e. or in the mean or in measure or almost uniformly) on A
and {f,} converges, also, to f’ with respect to any other of the same four
types of convergence, prove that f = f’ u-a.e. on A.

(ii) If {fn} converges to f with respect to any of the four types of conver-
gence on A and |f,| < g p-a.e. on A for all n, prove that |f| < g p-a.e.
on A.

. If E, C Afor every n and {xg, } converges to f in the mean or in measure

or almost uniformly or p-a.e. on A, prove that there exists £ C A so that
f=xg p-ae. on A.

Suppose that E,, C A for every n. Prove that {xg, } is Cauchy in measure
or in the mean or almost uniformly on A if and only if u(E,AE,,) — 0
as n,m — +0o0.

. Let § be the counting measure on (N, P(N)). Prove that {f,} converges

to f uniformly on N if and only if {f,} converges to f in measure on N.

. A wvariant of the Lemma of Fatou.

If f, > 0 prae. on A and {f,} converges to f in measure on A, prove
that [, fdp <liminf, o [, fndp.
The Dominated Convergence Theorem.

Prove the Dominated Convergence Theorem in two ways, using either the
first converse or the second converse of Theorem 9.4.

. A variant of the Dominated Convergence Theorem.

Suppose that |f,| < g p-a.e. on A, that ngd,u < +oo and that {f,}
converges to f in measure on A. Prove that [, fndu— [, fdp.

One can follow three paths. One is to use the result of Exercise 9.6.2.
Another is to reduce to the case of p-a.e. convergence and use the original
version of the theorem. The third path is to use almost uniform conver-
gence.
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10.

11.

12.

13.

14.

15.

16.

CHAPTER 9. CONVERGENCE OF FUNCTIONS

Suppose that A is of o-finite y-measure and { f,,} converges to f p-a.e. on
A. Prove that, for each k, there exists Fy C A so that {f,} converges to
f uniformly on Ej, and u(A\ U2 Ey) = 0.

Suppose that Ey(e) = {z € A||fr(x) — f(x)] > €} for every k and € > 0.
If u(A) < +oo, prove that {f,} converges to f p-a.e. on A if and only if,
for every € > 0, u(U; > Ex(€)) — 0 as n — +oo.

(i) Let {h,} satisfy sup,en |hn(x)| < oo for p-ae. € A. If p(A) < 400,
prove that for every § > 0 there is a B C A with (A \ B) < ¢ so that
SUP,e B neN |in ()] < +00.

(ii) Let {f.} converge to f in measure on A and {g,} converge to g in
measure on A. If u(A) < +oo, prove that {f,g,} converges to fg in
measure on A.

Suppose that u(A) < 400 and every f,, is finite p-a.e. on A.

(i) Prove that there is a sequence {\, } of positive numbers so that {\, f,,}
converges to 0 u-a.e. on A.

(ii) Prove that there exists g : A — [0, +00] and a sequence {r,} in R*
so that |f,| < r,g p-a.e. on A for every n.

Suppose that p(A) < 400 and {f,} converges to 0 u-a.e. on A.

(i) Prove that there exists a sequence {\,} in R™ with \,, T +00 so that
{Anfn} converges to 0 p-a.e. on A.

(i) Prove that there exists g : A — [0, +0o0] and a sequence {e,} in R
with €, — 0 so that |f,| < eng p-a.e. on A for every n.

A characterisation of convergence in measure.

If u(A) < +o0, prove that {f,} converges to f in measure on A if and

onlyiffAlJlrfly}i:ﬂﬂduHOasnﬁ—i—oo.

In general, prove that {f,} converges to f in measure on A if and only if
0 e+u({z € Allfn(z) — f()| > €})
01+ e+ p({z € Al[fa(z) — f(x)| > €})

as n — +00.

— 0

A wariant of Egoroff’s Theorem for continuous parameter.

Let u(X) < +oo and f: X x [0,1] — C has the properties:

(a) f(-,y) : X — C is measurable for every y € [0, 1]

(b) f(z,-):[0,1] — C is continuous for every = € X.

(i) If €,n > 0, prove that {z € X ||f(x,y) — f(z,0)] < eforally < n}
belongs to 3.

(ii) Prove that for every § > 0 there is B C X with pu(X \ B) < ¢ and
f(G,y) — f(-,0) uniformly on B as y — 0+.

Let {f.} converge to f in measure on A. Prove that Ay, (t) — Af(t) for
every ¢ € [0, 400) which is a point of continuity of A;.
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17.

18.

19.

20.

Prove the converse part of Theorem 9.6 using the converse part of Theorem
9.5.

The complete relation between convergence in the mean and convergence
in measure: the Theorem of Vitali.

We say that the indefinite integrals of {f,} are uniformly abso-
lutely continuous over A if for every € > 0 there exists § > 0 so that
| [z fndp| < eforalln>1andall EC A with u(E) < 4.

We say that the indefinite integrals of {f,} are equicontinuous
from above at () over A if for every sequence {Ey} of subsets of A with
E) | 0 and for every € > 0 there exists kg so that |fEk fndp| < e for all
k> ko and all n > 1.

Prove that {f,} converges to f in the mean on A if and only if {f,}
converges to f in measure on A and the indefinite integrals of {f,} are
uniformly absolutely continuous on A and equicontinuous from above at
f on A.

How is Theorem 9.6 related to this result?

The Theorem of Lusin.

If f is Lebesgue-measurable and finite m,,-a.e. on R"™, then for every § > 0
there is a Lebesgue-measurable B C R"™ and a g, continuous on R", so
that m,(B¢) < § and f =g on B.

(i) Use Theorem 7.16 to find a sequence {¢,} of functions continuous on
R™ so that fR" |f — ¢&n|dm, — 0 as n — +00. Theorem 9.1 implies that
there is a subsequence {¢,, } which converges to f my-a.e. on R™.

(ii) Consider the qubes Qm, ....m,, = [M1,m1+1) X -+ X [my, m,, + 1) for
every choice of my,...,m, € Z and enumerate them as @1, Qs,.... Then,
these qubes are pairwise disjoint and they cover R™. Apply Egoroff’s
Theorem to prove that for each @y there is a closed set By C Qi with
My (Qi\Br) < 2 so that {¢y, } converges to f uniformly on By. Conclude
that the restriction fp, of f on By is continuous on By.

(iii) Take B = U; > By, and prove that m,,(B¢) < §, that B is closed and
that the restriction fp of f on B is continuous on B.

(iv) Use the Extension Theorem of Tietze to prove that there is a g,
continuous on R™, so that ¢ = fp on B.

If f: R™ — C is continuous in each variable separately, prove that f is
Lebesgue-measurable.
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Chapter 10

Signed measures and
complex measures

10.1 Signed measures.

Definition 10.1 Let (X,X) be a measurable space. A function v : ¥ — R is
called a signed measure on (X,Y) if

(i) either v(A) # —oo for all A € ¥ or v(A) # +oo for all A € X,

(ii) v(0) = 0,

) Z/(Uj:O?Aj) = Zj_:f v(A;) for all pairwise disjoint A1, As,... € X.

If v is a signed measure on (X,Y) and v(A) € R for every A € 3, then
v is called a real measure. It is obvious that v is a non-negative signed
measure (i.e. with v(A) > 0 for every A € ¥) if and only if v is a measure. If
v(A) <0 for every A € ¥, then v is called a a non-positive signed measure.

It is clear that, if v is a non-negative signed measure, then —v is a non-
positive signed measure and conversely. Also, if v and v/ are signed measures
on (X,X) with either v(A),v'(A) # —oo for all A € ¥ or v(A),V'(A) # +©
for all A € ¥, then v + v/, well-defined by (v + v')(A4) = v(A4) + V'(A) for all
A € X, is a signed measure. Similarly, the kv, defined by (kv)(A) = kv (A) for
all A € ¥, is a signed measure for every x € R.

Examples
1. Let p1,p2 be two measures on (X,X). If us(X) < oo, then ps(A) <
w2 (X) < 400 for every A € ¥. Then, v = uy — ug is well-defined and it is a
signed measure on (X, X)), because v(A) = p1(A) — pa(A4) > —p2(A) > —oo for
all A € ¥. Similarly, if 1 (X) < +oo, then v = p; — po is a signed measure on
(X,%) with v(A) < +oo for all A € X.

Hence, the difference of two measures, at least one of which is finite, is a
stgned measure.
2. Let i be a measure on (X,Y) and f: X — R be a ¥ —measurable function

187
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such that the [ fdpu is defined. Lemma 7.10 says that the [, fdu is defined
for every A € . If we consider the function A : ¥ — R defined by

A(4) = /Afdu

for all A € 3, then Proposition 7.6 and Theorem 7.13 imply that A is a signed
measure on (X, ).

Definition 10.2 The signed measure A which is defined in the previous para-
graph is called the indefinite integral of f with respect to p and it is
denoted by fu. Thus, the defining relation for fu is

()= [ san e

In case f > 0 p-a.e. on X, the signed measure fu is a measure, since
(fu)(A) = [, fdu >0 for every A € . Similarly, if f <0 p-a.e. on X, the fu
is a non-positive signed measure.

Continuing the study of this example, we shall make a few remarks. That
the [y fdu is defined means either [, fdu < 400 or [ f~du < +oo.

Let us consider the case [ fT du < 400 first. Then the signed measure f*p
is a finite measure (because (fp)(X) = [ f*du < +00) and the signed mea-
sure f~u is a measure. Also, for every A € ¥ we have (fTp)(A) — (f~u)(A) =
Joftdu— [ f~du= [, fdu= (fu)(A). Therefore, in the case [, fTdu <
+00, the signed measure fpu is the difference of the measures f+u and f~du, of
which the first is finite:

fu=fTp—fp

Similarly, in the case fx f~dp < +o0, the signed measure fu is the dif-
ference of the measures fTu and f~u, of which the second is finite, since

(F~m)(X) = [y /= dp < +oc.

Property (iii) in the definition of a signed measure v is called the o-additivity
of v. It is trivial to see that a signed measure is also finitely additive.

A signed measure is not, in general, monotone: if A, B € ¥ and A C B, then
B =AU(B\ A) and, hence, v(B) = v(A) +v(B\ A), but v(B\ A) may not be
> 0!

Theorem 10.1 Let v be a signed measure on (X, ).

(i) Let A/B € ¥ and A C B. If v(B) < +o0o, then v(A) < +oco and, if
v(B) > —oo, then v(A) > —co. In particular, if v(B) € R, then v(A) € R.

(1) If A,Be X, AC B and v(A) € R, then v(B\ A) = v(B) — v(A).

(iii) (Continuity from below) If Ay, As,... € ¥ and A,, C A,41 for all n, then
V(U A,) = limy, o v(Ay).

(i) (Continuity from above) If Ay, Ay, ... €3, v(A1) ER and A, 2 Apiq for
all n, then v(NF2A,) = limy, o v(Ay).
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Proof: (i) We have v(B) =v(A) +v(B\ A).

If v(A) = +o0, then v(B\ A) > —oo and, thus, ¥(B) = +oo. Similarly, if
v(A) = —o0, then v(B\ A) < 400 and, thus, v(B) = —o0.

The proofs of (ii), (iii) and (iv) are the same as the proofs of the correspond-
ing parts of Theorem 2.1.

10.2 The Hahn and Jordan decompositions, I.

Definition 10.3 Let v be a signed measure on (X,X).

(i) P € X is called a positive set for v if v(A) >0 for every Aec X, AC P.
(ii) N € X is called a negative set for v if v(A) <0 for every Ac X, ACN.
(iii) Q € X is called a null set for v if v(A) =0 for every A€ X, ACQ.

It is obvious that an element of ¥ which is both a positive and a negative
set for v is a null set for v. It is also obvious that, if x4 is a measure, then every
A € ¥ is a positive set for p.

Proposition 10.1 Let v be a signed measure on (X,3).

(i) If P is a positive set for v, P’ € X3, P' C P, then P’ is a positive set for v.

(ii) If Py, Pa, ... are positive sets for v, then U;:;’?Pk is a positive set for v.
The same results are, also, true for negative sets and for null sets for v.

Proof: (i) For every A € ¥, A C P’ we have A C P and, hence, v(A) > 0.

(ii) Take arbitrary A € ¥, A C U/ P,. We can write A = U2 Ay, where
Ay, Ay, ... € 3 are pairwise disjoint and Ay C Py for every k. Indeed, we may
set Ay = ANP; and A, = AN (Pk.\(PlLJouUPk_l)) for all £ > 2. By the
result of (i), we then have v(A) = 3225 v(4y) > 0.

Theorem 10.2 Let v be a signed measure on (X,X).

(i) There exist a positive set P and a negative set N for v so that PUN = X
and PN N =0.

(it) v(N) < v(A) < v(P) for every A € X.

(i1i) If v(A) < oo for every A € %, then v is bounded from above, while if
—o00 < V(A) for every A € 3, then v is bounded from below.

(iv) If P’ is a positive set for v and N’ is a negative set for v with PPUN' = X
and PPN N’ =0, then PAP' = NAN' is a null set for v.

Proof: (i) We consider the case when v(A4) < +oo for every A € 3.
We define the quantity

k = sup{v(P)| P is a positive set for v}.

This set is non-empty since (@) = 0 is one of its elements. Thus, 0 < k. We
consider a sequence {Py} of positive sets for v so that v(P;) — k and form
the set P = UZ;’OlPk which, by Proposition 10.1, is a positive set for v. This
implies that v(P \ P;) > 0 for every k and, hence, v(P;) < v(P) < k for every
k. Taking the limit, we find that

Kk =v(P) < 4o0.
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This P is a positive set for v of mazximal v-measure and we shall prove that the
set N = X \ P is a negative set for v.

Suppose that N is not a negative set for v. Then there is Ay € X, Ag C N,
with 0 < v(A4p) < 4o0o. The set Ag is not a positive set or, otherwise, the
set P U Ag would be a positive set with v(P U Ag) = v(P) + v(Ag) > v(P),
contradicting the maximality of P. Hence, there is at least one subset of Ag in
Y having negative v-measure. This means that

To = 1nf{1/(B) |B €, BC Ao} < 0.

If 19 < —1, there is By € X, By C Ay with I/(Bl) < -1 If -1 <719« 0,
there is a By € X, By € Ag with v(B1) < 3. We set A} = Ag \ B; and have
v(Ap) = v(41) + v(B1) < ¥(A1) < +00. Observe that we are using Theorem
10.1 to imply v(A;),v(B1) € R from v(A4p) € R.

Suppose that we have constructed sets Ag, A1,..., A, € Zand By,...,B, €
> so that

o A, CA,1C---CACACN, By = An1\An,...,B1 = Ap\ A4,

so that,
o T =inf{v(B)|BeX,BC A;,_1} <0,

1, ifmeg < —1
o v(Br) < { T if 1<, <0

for all k =1,...,n and so that
o 0<v(dp) <v(Ar) < - <v(dn-1) <v(4,) < +oo.

Now, A, is not a positive set for v for the same reason that Ag is not a
positive set for v. Hence, there is at least one subset of A, in ¥ having negative
v-measure. This means that

7, = inf{v(B)|B€X,BC A,} <0.

If 7, < —1, there is By41 € X, Bpt1 C A, with v(B,41) < —1. If -1 <7, <0,
thereisa Bpy1 € ¥, By € Ay with v(Bpy1) < 3. Weset A1 = Ap\ Buyr
and have v(4,) = v(4nt1) + V(Bny1) < v(Ant1) < +oo. This means that
we have, inductively, constructed two sequences {4,}, {B,} satisfying all the
properties <.

Now, the sets Bj, Bs,... and ﬂ:ﬁAn are pairwise disjoint and we have
Ay = (NFXA,) U(USXB,). Therefore, v(Ag) = v(NF2A,) + 7% v(B,),

from which we find N

Z v(By) > —oc.

n=1

This implies that v(B,,) — 0 as n — 400 and, by the third property o,

Thn—1 — 0
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as n — +o00. Now the set A =N7>] A, € ¥, by continuity from above of v, has

v(A) = nEToo v(A,) > 0.
Moreover, A is not a positive set for v for the same reason that Ag is not a
positive set for v. Hence, there is some B € 3, B C A with v(B) < 0. But then
B C A, for all n and, hence, 7,,_1 < v(B) < 0 for all n. We, thus, arrive at
a contradiction with the limit 7,,_; — 0.

In the same way, we can prove that, if —co < v(A) for every A € ¥, then
there is a negative set N for v of minimal v-measure so that the set P = X \ N
is a positive set for v.

Thus, in any case we have a positive set P and a negative set N for v so
that PUN = X and PN N = ().

(ii) If A € %, then v(P\ A) > 0, because P\ A C P. This implies v(P) =
v(PNA)+v(P\A) >v(PNA) and, similarly, v(N) < v(N N A). Therefore,
v(A) =v(PNA)+v(NNA) < v(PNA) <v(P)and v(A) = v(PNA)+v(NNA) >
v(NNA)>v(N).

(iii) This a consequence of the result of (ii).

(iv) Now, let P’ be a positive set and N’ be a negative set for v with PPUN’' = X
and PN N’ = (. Then, since P\P' = N'\N C PNN’, theset P\ P' = N'\N
is both a positive set and a negative set for v and, hence, a null set for v.
Similarly, P\ P = N \ N’ is a null set for v and we conclude that their union
PAP = NAN' is a null set for v.

Definition 10.4 Let v be a signed measure on (X,X). FEvery partition of X
into a positive and a negative set for v is called a Hahn decomposition of X
for v.

It is clear from Theorem 10.2 that if P, N is a Hahn decomposition of X for
v, then

v(P) = max{v(4)| A € X}, v(N) =min{rv(A)| A € I}.

Definition 10.5 Let vq, vy be two signed measures on (X,3). We say that they
are mutually singular (or that vy is singular to vy or that vs is singular to
v1) if there exist Ay € X which is null for v and As € ¥ which is null for vy
so that A1 U Ay = X and Ay N Ag = 0.

We use the symbol v1Llvs to denote that vy, ve are mutually singular.

In other words, two signed measures are mutually singular if there is a set
in X which is null for one of them and its complement is null for the other.

If v1, v9 are mutually singular and A;, A; are as in the Definition 10.5, then
it is clear that

lll(A) = 1/1(A n Al), I/Q(A) = I/Q(A N AQ)

for every A € ¥. Thus, in a free language, we may say that vy is concentrated
on A and vy is concentrated on As.



192  CHAPTER 10. SIGNED MEASURES AND COMPLEX MEASURES

Proposition 10.2 Let v,v1,vs be signed measures on (X,%). If vi,vslv and
v, + vo is defined, then vy + vo Lv.

PT’OOf.' Take Al,Bl,AQ,BQ € Y so that AiUB; = X = A, U BQ, AiNB =
) = Ay N By, Ay is null for vq, Ay is null for v and By, By are both null for v.
Then B; U By is null for v and Ay N Ay is null for both v; and v and, hence,
for 11 + v5. Since (A1 N Ag) U (Bl U Bg) = X and (A1 N AQ) N (Bl U BQ) = @,
we have that 11 + 9 Lv.

Theorem 10.3 Let v be a signed measure on (X,X). There exist two non-
negative signed measures (i.e. measures) vt and v, at least one of which is
finite, so that

+

v=v" —v vtily~

If p1, po are two measures on (X, X)), at least one of which is finite, so that
v =1 — po and p1Lps, then py = v+ and ps = v

Proof: We consider any Hahn decomposition of X for v: P is a positive set and
N a negative set for v so that PUN = X and PN N = (.
We define v+, v~ : ¥ — [0, +00] by

vT(A)=v(ANP), v (A)=—-v(ANN)

for every A € ¥. It is trivial to see that v, v~ are non-negative signed measures
on (X,%). If v(A) < 400 for every A € X, then v (X) = v(P) < 400 and,
hence, v is a finite measure. Similarly, if —oco < v(A) for every A € ¥, then
v~ (X)=—v(N) < 400 and, hence, v~ is a finite measure.

Also, v(A) = v(ANP)+v(ANN) =vt(A)—v (A) for all A € ¥ and, thus,
v=vt—v.

If Ae X and A C N, then v (A) = v(ANP) = v(0) = 0. Therefore, N is a
null set for . Similarly, P is a null set for v~ and, hence, v Ly~

Now, let w1, 12 be two measures on (X, X), at least one of which is finite,
so that v = p; — po and py Lps. Consider A, Ay € X, with A3 U Ay = X and
A; N Ay =0, so that Ay is a null set for u; and A is a null set for us.

If Ae X AC Ay then v(4) = p1(A) — p2(A) = —p2(A) < 0 and, if
A C Ay, then v(A) = pu1(A) — p2(A) = p1(A) > 0. Hence, Ay, Ay is a Hahn
decomposition of X for v. Theorem 10.2 implies that A; AP = A3AN is a null
set for v. Therefore, for every A € X, we have 1 (A) = p1 (ANA1)+p1(ANAg) =
,U,l(AﬂAl) = Ml(AﬂAl) —,U,g(AﬁAl) = V(AﬂAl) = V(AﬂAl ﬁP) +V(Aﬂ
A1NN) =v(ANA; NP), since AN A3 NN C A;AP. On the other hand,
vi(A) =v(ANP)=v(ANA NP)+v(ANAyNP) =v(AN A, N P), since
ANAs NP C A AN. From the two equalities we get py(A) = vt (A) for every
A € ¥ and, thus, 1 = v*. We, similarly, prove ps = ™.

Definition 10.6 Let v be a signed measure on (X,X). We say that the pair of
mutually singular measures v, v~ , whose existence and uniqueness is proved in
Theorem 10.3, constitute the Jordan decomposition of v.

vt is called the positive variation of v and v~ is called the negative
variation of v.
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The measure |v| = v + v~ is called the absolute variation of v, while
the quantity |v|(X) is called the total variation of v.

Observe that the total variation of v is equal to
v|(X) = v (X) + v (X) =v(P) - v(N),

where the sets P, N constitute a Hahn decomposition of X for v. Hence, the
total variation of v is equal to the difference between the largest and the smallest
values of v.

Moreover, the total variation is finite if and only if the absolute variation is
a finite measure if and only if both the positive and the negative variations are
finite measures if and only if the signed measure takes only finite values.

Proposition 10.3 Suppose (X, ¥, u) is a measure space and let f: X — R be
S—measurable and [y fdu be defined. Then the sets P = {x € X | f(x) > 0}
and N = {z € X|f(x) < 0} constitute a Hahn decomposition of X for the
signed measure fu. Also,

(fwt=ftu,  (fu) =fn

constitute the Jordan decomposition of fu and

|ful = 1flp-

Proof: If A € ¥ and A C P, then (fu)(A) = [, fdu > 0, while, if A C N,
then (fu)(A) = [, fdp < 0. Therefore, P is a positive set for fu and N is a
negative set for fu. Since PUN = X and PN N = (), we conclude that P, N
constitute a Hahn decomposition of X for fpu.

Now, (fu)™(A) = (fW(ANP) = [4opfdu = [, fxpdu = [, fTdp =
(f*)(A) and, similarly, (1)~ (A) = (f)(ANN) = [,y fdu= [, fxndp=
Ja f=dp=(f"p)(A) for every A € X.

Therefore, (fu)*™ = ftp and (fu)™ = f~p.

Now, |ful = (f)" + (fu)” = fru+fp=|flp

It is easy to see that another Hahn decomposition of X for fu consists of
the sets P’ = {x € X | f(x) >0} and N' = {z € X | f(x) < 0}.

Proposition 10.4 Suppose (X, %, u) is a measure space and f : X — R is
Y—measurable so that [ fdp is defined. Let E € X.

(i) E is a positive set for fu if and only if f >0 p-a.e. on E.

(ii) E is a negative set for fu if and only if f <0 p-a.e. on E.

(i5i) E is a null set for fu if and only if f =0 p-a.e. on E.

Proof: (i) Let f > 0 p-a.e. on FE and take any A € ¥, A C E. Then f >0
p-a.e. on A and, hence, (fu)(A) = [, fdu > 0. Thus, E is a positive set
for fu. Suppose, conversely, that F is a positive set for fu. If n € N and
A ={z € E|f(x) < —1}, then 0 < (fu)(An) = [, fdu < —Lpu(A,). This
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implies that p(A,) = 0 and, since {z € F| f(z) < 0} = U124, we conclude
that u({z € E| f(z) < 0}) = 0. This means that f > 0 p-a.e. on E.

The proof of (ii) is identical to the proof of (i), and (iii) is a consequence of
the results of (i) and (ii).

We recall that, for every a € R, the positive part of a and the negative part
of a are defined as

at = max(a,0), a” = —min(a,0)

and, hence,
a=at—a, la| =at +a".

It is trivial to prove that
(a+b)t <at+0b", (a+b)” <a” +0b
for every a,b € R for which a + b is defined.

Definition 10.7 Let (X,X) be a measurable space and A € ¥. If Ay,..., A, €
¥ are pairwise disjoint and A = UR_, Ay, then {A1,..., A,} is called a (finite)
measurable partition of A.

Theorem 10.4 Let v be a signed measure on (X,X) and let |v|,v" and v~ be
the absolute, the positive and the negative variation of v, respectively. Then, for
every A € X,

lv|(A) = sup { Z [v(Ak)||n € N,{A1,..., Ay} measurable partition of A},
k=1

v (A) = sup { Z v(Ag)t|n e N, {A41,..., A} measurable partition of A},
k=1

v~ (A) = sup { Z v(Ag)” |n € N,{A,..., A,} measurable partition of A}.

Proof: We let P, N be a Hahn decomposition of X for v. For every pairwise
disjoint Ay,..., A, € ¥ with U}_; Ay = A we have that

n

Z|V(Ak)\ = Z|V+ (Ag) — v (Ap)| < Zy (Ag) + Zu_(Ak)
k=1 =1
v(

k=1 k=1
A)+v=(4) = [v[(A).

Therefore, the supremum of the left side is < |v|(A). On the other hand,
{ANP,AN N} is a particular measurable partition of A for which |v(AN P)|+
[V(ANN) =v(ANP)—v(ANN)=v"(A) + v (A) = |v|(A) and, hence, the
supremum is equal to |v|(A).

The proofs of the other two equalities are identical.
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Lemma 10.1 Let v be a signed measure on (X,3) and A € . Then, A is a
null set for v if and only if it is a null set for both v, v~ if and only if it is a
null set for |v|.

Proof Since |v] = vt 4+ v, the second equivalence is trivial.

Let A be null for |v|. For every B € ¥, B C A, we have that |[v(B)| =
v (B) — v~ (B)| < v*(B) + v~ (B) = |v|(B) = 0. Hence, v(B) = 0 and A is
null for v.

Let A be null for v. If {A;,..., A,} is any measurable partition of A, then
v(Ag) = 0 for all k and, hence, Y _, [v(Ax)| = 0. Taking the supremum of the
left side, Theorem 10.4 implies that |v|(A) = 0 and, thus, A is null for |v|.

Proposition 10.5 Let vy and vy be two signed measures on (X,X). Then vy
and vy are mutually singular if and only if each of l/f'7 vy and each of 1/;', vy
are mutually singular if and only if |v1] and |ve| are mutually singular.

Proof: The proof is a trivial consequence of Lemma 10.1.

Proposition 10.6 Let v,v1,vq be signed measures on (X,X) and k € R. If
v, + vo is defined, we have

|1 + o] < |vi] + |12, |kv| = |K||v].

Proof: We take an arbitrary measurable partition {A;,..., A,} of A € ¥ and we
have S0 [(v1+v5) (AR < Sy [ (Ap)|+ Sy s (Ap)] < [or] (A)+ ool (A).
Taking the supremum of the left side, we find |11 + v2|(A4) < |v1|(A) + |v=2|(A).

In the same manner, > »_, |(kv)(Ax)| = |K| > p_; [¥(Ax)|. This equality
implies Y 7_, [(kv)(Ax)|] < |&||v|(A) and, taking supremum of the left side,
|kv|(A) < |k||v|(A). The same equality, also, implies |kv|(A) > |k| > f_; [V(A)]
and, taking supremum of the right side, |xv|(A) > |k||v|(A).

10.3 The Hahn and Jordan decompositions, II.

In this section we shall describe another method of constructing the Hahn and
Jordan decompositions of a signed measure. In the previous section we derived
the Hahn decomposition first and, based on it, we derived the Jordan decom-
position. We shall, now, follow the reverse procedure.

Definition 10.8 Let v be a signed measure on (X,%). For every A € ¥ we
define

[v|(A) = sup { Z [v(Ai)||n € N, {Ay,..., Ay} measurable partition of A},
k=1

v (A) = sup{ Z v(Ap)t|n e N, {A4y,..., A} measurable partition of A},
k=1

v (A) = sup { Z v(Ap)” |n € N,{A1,..., A,} measurable partition of A}.
k=1
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Lemma 10.2 Let v be a signed measure on (X,3). Then,
VH(A) + v (4) = [v|(4)
and
vT(A) =sup{v(B)|BeX,BC A}, v (A)=—inf{v(B)|BeX,BC A}
for every A € X.

Proof: (a) Take any A € ¥ and any measurable partition {Ay,...,A,} of A.
Then,
S AR =D v(A) T+ v(Ar)T < vT(A) + v (A).
k=1 =

k=1 k=1

Taking the supremum of the left side, we get [v|(A) < vT(A) + v~ (A).
Now take arbitrary partitions {4i,...,A,} and {4],..., A’} of A. Then

k=1k'=1
’I’L/ n
l/( %/)7 S V(AkmA//)7
k=1 k'=1k=1
and, adding,

n/
S vt 4+ w4 < > V(A N AL
k=1 k=1 1<k<n,1<k/<n’

Since {Ax N A}, |1 <k <n,1 <k <n'}is ameasurable partition of A, we get
S v(Apt + ZZ::l v(A},))” < |v|(A). Finally, taking the supremum of the
left side, we find v (A) + v~ (A) < |[v|(A).

(b) If B € ¥ and B C A, then {B, A\ B} is a measurable partition of A
and, hence, v(B) < v(B)" < v(B)t +v(A\ B)T < v'(A). This proves that
sup{v(B)|B € X,B C A} <v't(A).

Let {A;,...,A,} be any measurable partition of A. If A4; ,..., A;
actly the sets with non-negative v-measure and if By = U, A;, C A, then
S v(A)t = X v(A,) = v(Bo). This implies that Y p_, v(Ax)T <
sup{v(B)|B € £, B C A} and, hence, v*(A) < sup{v(B)|B € %, B C A}.

We conclude that v+ (A) = sup{v(B)| B € %, B C A} and a similar argu-
ment proves the last equality.

are ex-

Theorem 10.5 Let v be a signed measure on (X,X). Then, the functions
lvl,vT,v™ : ¥ — [0, +00], which were defined in Definition 10.8, are measures
on (X,X%).

At least one of v, v~ is finite and

vt —v =y, v 4+vT =y, vtlv™.
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Proof: (a) We shall first prove that |v| is a measure.

It is obvious that |v|(()) = 0 and take arbitrary pairwise disjoint A, A%,... €
Yand A = U;;OTAj.

If {A1,...,A,} is an arbitrary measurable partition of A, then, for ev-
ery j, {Ay N AJ ... A, N AJ} is a measurable partition of A7. This im-
plies, 323 [v(AR)l = Shoy | 22,57 v(Ae N AY)| < 001 3005 [v(Ap N AY)| =

;r:(xl’ S lv(Agn A7) < Z;F:(Xl’ v|(A7) and, taking the supremum of the left
side, [v](4) < S35 vl ().

Fix arbitrary N € N and for every j = 1,..., N take any measurable par-
tition {A7,..., A7 } of A7. Then {Af,..., A} ..., AY, .. A} ,U% A7}

is a measurable partition of A and, hence, |v|(A) > Z;\;l S V(Ai)| +

|V(Uj:°‘l’v+1Aj)| > Zjvzl S, |1/(A§€)| Taking the supremum of the right side,

we get |v|(4) > Z;\;l |v|(A7) and, taking the limit as N — +oo, we find
](4) = 3275 [v|(47).

Hence, |v|(A) = ;_:(Xl) v|(A%).

The proofs that v+ and v~ are measures are identical to the proof we have
just seen.

(b) In case v(A4) < 400 for every A € 3, we shall prove that v1(X) < +oc.

We claim that for every A € ¥ with v+ (A) = +oo0 and every M > 0, there
exists B€ X, B C A, so that v (B) = 400 and v(B) > M.

Suppose that the claim is not true. Then, there is A € ¥ with v (A) = +oo
and an M > 0 so that, if B € ¥, B C A, has v(B) > M, then v (B) <
+00. Now, by Lemma 10.2, there is By € 3, By C A with v(By) > M and,
hence, vT(B;) < +oco. Suppose that we have constructed pairwise disjoint
By,...,B,, € ¥ subsets of A with v(B;) > M and v*(B;) < +oo for every
j=1,...,m. Since v* is a measure, we have 37", v*(B;) +vF(A\UL, B;) =
vH(A) = 4o0 and, thus, v*(A\ UL, B;j) = +oo. Lemma 10.2 implies that
there is Bp41 € X, Bt C A\ UL, B; with v(Bm+1) = M and, hence,
v (Bpt1) < +00.

We, thus, inductively construct a sequence {B,,} in X of pairwise disjoint
subsets of A with v(B,,) > M. But, then, v(U5> B,,) = 3.7 v(B,,) = +00
and we arrive at a contradiction.

Using the claimed result and assuming that v*(X) = +oo, we find B! € &
with »(B') > 1 and v+ (B') = +00. We, similarly, find B2 € ¥, B2 C B!, with
v(B?) > 2 and v (B?) = +o0. Continuing inductively, a decreasing sequence
{B™} is constructed in ¥ with v(B,,) > m for every m. Then, v(N ¥ B;) =
lim;;,— 4 0o ¥(Bpm) = +00 and we arrive at a contradiction.

Therefore, v (X) < +o00.

If —o0o < v(A) for every A € X, we prove in the same way that v~ (X) < +o0.
(c) Suppose that v(A) < +oo for every A € ¥ and, hence, v (X) < 400, by
the result of (b).

We take any A € ¥ and any B € X, B C A. Then v(4\ B) < vt(4)
and, hence, v(A) < v (A) + v(B). Taking the infimum over B and using the
v (A) < 400, we get v(A) <vt(A) — v (A).
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To prove the opposite inequality, we first assume v~ (A4) < +oo. For every
Be X, BC A, wehave —v~(A) <v(A\ B) and, hence, v(B) —v~(A4) < v(A).
Taking the supremum over B we find v+ (A) — v~ (A) < v(A). If v~ (A) = +oo,
then, since v+ (A4) < +oo, the v+ (A) — v~ (A4) < v(A) is clearly true.

We conclude that v(A) = vt (A) — v~ (A) for every A € ¥ and the same can
be proved if we assume that —oo < v(A) for every A € X.

Therefore, v = v+ — v~
(d) The equality |v| = v+ + v~ is contained in Lemma 10.2.

(e) We, again, assume v(A) < oo for every A € 3 and, hence, v (X) < +o0.

Using Lemma 10.2, we take a sequence {B,} in ¥ so that v(B,) — v1(X)
as n — +o0. Since v(B,,) < vt (B,) < vt (X), we have that v (B,) — v (X)
asn — +oo. From v(B,) =vT(B,)—v~(B,), we get v~ (B,) — 0 as n — +oo.

We find a strictly increasing {n;} so that v=(By,,) < 5% for all k. If we
set Fj, = UCB,,,, then v~ (F},) < 3,05 % v (By,) < 551 for every k and {F}}
is decreasmg Therefore, the set F = ﬁ X Fy, has v~ (F) = 0. We, also, have
that v+ (B,,) < vt (Fr) < v (X) and, hence v (Fy) — vH(X) as k — +oo0.
Therefore, 1/+(F) =vH(X).

We have constructed a set F' € ¥ so that v~ (F) = 0 and v*(F) = v (X).
Since v (X) < 400, we find vT(X \ F) = 0 and we conclude that v Lv~.

The decomposition v = v+ — v~ of the signed measure v on (X, ¥), which is
given in Theorem 10.5, is the same as the Jordan decomposition of v, which was
defined in the previous section 10.2. This is justified both by the uniqueness
of the Jordan decomposition of a signed measure and by the result of Theo-
rem 10.4. Using, now, the Jordan decomposition, we shall produce the Hahn
decomposition of a signed measure.

Theorem 10.6 Let v be a signed measure on (X,X) andv™, v~ be the measures
of Definition 10.8. Then, there exist PN € ¥ so that PUN = X, PN N =),
P is a positive set for v, N is a negative set for v and vt (N) =0,v"(P) = 0.

Proof: Theorem 10.5 implies that v* Ly~ and, hence, there are P, N € X so
that PUN =X, PN N =0 and vT(N) =0=v"(P).

If Ae X, AC P, then v(A) = v (A) — v (A) = v+ (A)
A€eX, ACN, then v(A) =vT(4A) —v (4) = v (4) <
positive set for v and N is a negative set for v.

> 0. Similarly, if
0. Hence, P is a

10.4 Complex measures.

Definition 10.9 Let (X,X) be a measurable space and a function v : ¥ — C
such that
(i) v(0) =0

(ii) V(Uj':o‘fA )= Z] 1 V(A;j) for every pairwise disjoint A1, Ag,... € X.

It is trivial to prove, taking real and imaginary parts, that the functions
R(v),S(v) : ¥ — R, which are defined by R(v)(A) = R(r(4)) and S(v)(A) =
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S(v(A)) for every A € %, are real measures on (X,X) and, hence, they are
bounded. That is, there is an M < +oo so that |[R(v)(4)], |S(v)(A)| < M for
every A € ¥. This implies that [v(A)| < 2M for every A € ¥ and we have
proved the

Proposition 10.7 Let v be a complex measure on (X,X). Then v is bounded,
i.e. there is an M < +o0o so that [v(A)| < M for every A € X.

If 4 and v are complex measures on (X, Y) and k1, ko € C, then k111 +kavs,
defined by (k11 + Kkova)(A) = k11 (A) + Kkora(A) for all A € X, is a complex
measure on (X, ).

The following are straightforward extensions of Definitions 10.3 and 10.5.

Definition 10.10 Let v be a complex measure on (X,X) and A € . We say
that A is a null set for v if v(B) =0 for every B€ X, B C A.

Definition 10.11 Let vy and vo be complex or signed measures on (X,%). We
say that v1 and v are mutually singular, and denote this by v Lvs, if there
are Ay, Ay € 3 so that As is null for vy, Ay is null for vo and A1 U Ay = X,
AL NAy =0.

Proposition 10.8 Let v be a complex measure on (X,X). If for every A € &
we define

[v|(A) = sup { Z [v(Ar)||n € N, {Ay,..., A} measurable partition of A},
k=1

then the function |v| : ¥ — [0, +00] is a finite measure on (X,X).

Proof: The proof that |v| is a measure is exactly the same as in part (a) of the
proof of Theorem 10.5.

We take an arbitrary measurable partition {4;,...,A4,} of X and have
S W A] < Sy [RO)(AR)] + X [S0)(AR)] < [ROI(X) + [S(0)](X).
Taking the supremum of the left side, |v|(X) < |R@)|(X) + |S(¥)|(X) < +oo,
because the signed measures $(v) and 3(v) have finite values.

Definition 10.12 Let v be a complex measure on (X,X). The measure |v|
defined in Proposition 10.8 is called the absolute wvariation of v and the
number |v|(X) is called the total variation of v.

Proposition 10.9 Let v,v1,vs be complex measures on (X,¥) and k € C.
Then

(1) 1+ va| < 1]+ |vaf and |kv| = |||v|

(ii) [R@W)I, [SW)| < [v] < [R@)] + [S(@)]-

Proof: (i) The proof is identical to the proof of Proposition 10.6.
(ii) In the same manner, if {A4;,..., A, } is any measurable partition of A € 3,
wo have S [R(1) (A4)| < Sy, [v(Ax)] < [v](A) and also 7, |S(v)(Ax)] <
Yor_y [v(Ag)| < |v|(A). Taking supremum of the left sides of these two inequal-
ities, we find |R(v)|(A), |S(V)|[(A) < |v|(4).

The last inequality is a consequence of the result of (i).
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Lemma 10.3 Let v be a complex measure on (X,X) and A € £. Then A is
null for v if and only if A is null for both R(v) and S(v) if and only if A is null
for |v|.

Proof: The first equivalence is trivial. The proof that A is null for v if and only
if A is null for |v| is a repetition of the proof of the same result for a signed
measure v. See Lemma 10.1.

Proposition 10.10 Let vy and vo be complex or signed measures on (X,X).
Then, vi Ly if and only if each of R(v1), (1) and each of RN(ve),S(v2) are
mutually singular if and only if |v1|L|val.

Proof: Trivial after Lemma 10.3.

Example

We take a measure x on (X, ) and a ¥—measurable function f : X — C which
is integrable over X with respect to pu. Then, fA fdup is, by Lemma 7.10, a
complex number for every A € 3, and Theorem 7.13 implies that the function
A: ¥ — C, which is defined by

A(4) = /Afdu

for every A € 3, is a complex measure on (X, ).

Definition 10.13 Let (X, 3, 1) be a measure space and f : X — C be integrable
with respect to p. The compler measure A defined in the previous paragraph is
called the indefinite integral of f with respect to p and it is denoted by
fu. Thus,

()= [ fan  aes.

The next result is the analogue of Proposition 10.3.

Proposition 10.11 Let (X, %, 1) be a measure space and f : X — C be inte-
grable with respect to p. Then

| Ful(4) = /A |l du

for every A € . Hence,
\ful = [f]p-

Proof: 1f {Ay,...,A,} is an arbitrary measurable partition of A € X, then
D= |(F) (AR = 352y ‘fAk fapl <37k fAk |fldw= [, |fldp. Therefore,
taking the supremum of the left side, |fu|(A) < [, [f]dp.

Since f is integrable with respect to p, it is finite p-a.e. on X. If N =
{r € X|f(x) # oo}, then u(N°) = 0 and Theorem 6.1 implies that there is
a sequence {¢,,} of ¥—measurable simple functions with ¢, — sign(f) on N
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and |¢m| T |sign(f)] <1 on N. Defining each ¢,, as 0 on N¢, we have that all
these properties hold p-a.e. on X.

If ¢y = > 07y ki X g is the standard representation of ¢y, then |k <1
for all k = 1,...,n, and, hence, | [, fomdu| = |> . K7 fAmE;;LfdM <
e N(f) (AN Ef)| < |ful(A), where the last inequality is true because
{ANnEP,...,ANE } is a measurable partition of A. By the Dominated

Convergence Theorem, we get that [, |f|du = [, fsign(f)dp <|ful|(A).
We conclude that |fu|(A) = [, |f|dup for every A € X.

10.5 Integration.

The next definition covers only the case when both f and v have their values
in R.

Definition 10.14 Let v be a signed measure on (X,¥). If f : X — R is
Y —measurable, we say that the integral fX fdv of f over X with respect
to v is defined if both fX fdvt and fX fdv™ are defined and they are neither
both +o00 nor both —oo. In such a case we write

/del/:/deI/+—/deV7.

We say that [ is integrable over X with respect to v if the fX fdv is
finite.

Proposition 10.12 Let v be a signed measure on (X,%) and f : X — R be
Y—measurable. Then f is integrable with respect to v if and only if f is integrable
with respect to both vt and v~ if and only if f is integrable with respect to |v|.

Proof: fX fdv is finite if and only if both fX fdvt and fX fdv~ are finite
or, equivalently, [, |f|dvT < +oo and [ |fldv™ < 400 or, equivalently,
Jx |fld]v| < +oc if and only if f is integrable with respect to |v|.

Lemma 10.4 Let pi,ps be two measures on (X,3) with uy < po. Then
Jx fdur < [ fdug for every S—measurable f: X — [0,+oc].

Proof: If ¢ = Z;nzl KjXE; is a Y—measurable non-negative simple function
with its standard representation, then we have fX oduy = Z;”:l ki (Ej) <
Yoy kipe(Ey) = [y ¢duz. For the general f we take a sequence {¢,} of
Y—measurable non-negative simple functions with ¢, T f on X. We write
the inequality for each ¢, and the Monotone Convergence Theorem implies

Jx fdpr < [y fdpo.

Now, suppose that v is a signed measure or a complex measure on (X, %)
and the function f : X — R or C is ¥—measurable. If [ |f|d|v] < oo,
then f is finite |v|-a.e. on X and the |v|-a.e. defined functions R(f) and



202  CHAPTER 10. SIGNED MEASURES AND COMPLEX MEASURES

S(f) satisfy [y [R(f)|d|v| < +o0 and [ [S(f)|d|v| < 4oc0. Since, by Proposi-

tion 10.9, \%(V)\ < |v| and | (V)| < |v|, Lemma 10. 4 implies that all integrals

Jx IR(f |d|§R W S [RHTAIS@), [ IS(HIdIR(v) ande|\s |d| ( )|are

finite. Proposition 10.12 implies that all integrals [, ® ), [x R

Jx S(f)dR(v) and [ I(f) dS(v) are defined and they all are complex numbers.
Therefore, the following definition is valid.

Definition 10.15 Let v be a signed measure or a complex measure on (X,X)
and f : X — R or C be X—measurable. We say that f is integrable over X
with respect to v if [ is integrable with respect to |v|. In such a case we say
that the integral fX fdv of f over X with respect to v is defined and it
s given by

/dey:/X%(f)d%(z/)—/XS(f)d%(uﬂ—i/X§R(f)d£‘s(u)+i/xi‘s(f)d%(y).

Of course, when f: X — C and v is signed, we have

/dey:/X%(f)du—i—i/X%(f)du,

and when f: X — R and v is complex, we have

/dev:/xfd%(z/)+i/xfd%(y),

all under the assumption that [, |f|d|v| < +oo0.

We shall not bother to extend all properties of integrals with respect to
measures to properties of integrals with respect to signed measures or complex
measures. The safe thing to do is to reduce everything to positive and negative
variations or to real and imaginary parts.

For completeness, we shall only see a few most necessary properties, like the
linearity properties and the appropriate version of the Dominated Convergence
Theorem.

Proposition 10.13 Let v, vy, vy be signed or complex measures on (X, %) and

f, fi,fo : X — R or C be all integrable with respect to these measures. For
every Ky, ko € C,

/X(Klfl+’<32f2)dv=/€1/Xf1du+n2/xf2dy,

/fd(/ﬁ)ll/l-l-ligl/Q):I{l/ fdl/1+1€2/ fdl/g.
X X X

Proof: The proof is straightforward when we reduce everything to real functions
and signed measures.
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Theorem 10.7 (Dominated Convergence Theorem) Let v be a signed or
complex measure on (X,¥), f,fn : X — R or C and g : X — [0,+00] be
Y—measurable. If f,, — f and |fn] < g on X except on a set which is null for
v and if [y gdlv| < 400, then

/andu—>/xfdy.

Proof: A set which is null for v is, also, null for v+ and v~, if v is signed,
and null for R(r) and S(v), if v is complex. Moreover, by Lemma 10.4,
Jxgdvt, [ gdv™ < 400, if v is signed, and [, gd|R(v)], [ 9d|S(v)| < +o0,
if v is complex.

Therefore, the proof reduces to the usual Dominated Convergence Theorem
for measures.

Theorem 10.8 Let v be a signed or complex measure on (X, %) and f : X — R
or C be such that the fX fdv is defined. Then

| [ s [ isrdp

Proof: We may assume that [, |f|d|v| < 400, or else the inequality is obvious.

If v is a signed measure, | [ fdv|=| [ fdvT — [ fdv™| <| [ fdvT|+
[y £ < Jy f vt + [ 1Fdv = [ fldiv.

If v is complex, we shall see a proof which is valid in all cases anyway.

Let ¢ : X — C be a Y¥—measurable simple function with its standard rep-
resentation ¢ = Y7, kpxg, and so that |v|(Eg) < +oo for all k. Then, we
have | [y bdv] = |3y kev(E)l < S Il (B < Yy ImlIvl(EL) =
T 1ol

Consider a sequence {¢,} of ¥—measurable simple functions so that ¢, —
f on X and |¢,| T |f] on X. The Monotone Convergence Theorem implies
Jx lénldlv] — [y |f|d|v] and Theorem 10.7, together with [ [f|d|v| < +oc,
implies that [ ¢n dv — [ fdv. Taking the limit in | [, ¢ dv| < [ [¢n]|d|v|

we prove the ‘fx fdy‘ < Jx Ifldlv].
A companion to the previous theorem is

Theorem 10.9 Let v be a signed or complex measure on (X,3). Then

[v|(A) = sup{‘ /Afdu) | f is ¥ — measurable, |f| <1 on A},

for every A € X, where the functions f have real values, if v is signed, and
complex values, if v is complez.

Proof: 1f f is ¥—measurable and |f| < 1 on A, then |fxa| < x4 on X and

Theorem 10.8 implies | [, fdv| = | [ fxadv] < [ |fxaldlv] < [y xadly| =
|v|(A). Therefore the supremum of the left side is < |v|(A).
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If v is signed, we take a Hahn decomposition of X for v. There are P, N € X
so that PUN = X, PN N =), P is a positive set and N a negative set for v.
We consider the function f with values f =1 on P and f = —1 on N. Then
| [y fdv]=|v(ANP)—v(ANN)|=v(ANP)—v(ANN)=vT(A)+v (A) =
|v|(A). Therefore, the supremum is equal to |v|(A).

If v is complex, we find a measurable partition {A4,...,4,} of A so that
[V|(A) —e < S p_, |[v(Ak)|. We, then, define the function f = > "}_; krXa,,
where kj, = sign(v(Ag)) for all k. Then, |f| < 1 on A and | [, fdv| =
I >y mev(Ag)| = >k [v(Ag)| > |v|(A) — e. This proves that the supremum
is equal to |v|(4).

Finally, we prove a result about integration with respect to an indefinite
integral. This is important because, as we shall see in the next section, indefinite
integrals are special measures which play an important role among signed or
complex measures.

Theorem 10.10 Let y be a measure on (X,%) and f : X — R or C be
Y—measurable so that fX fdu is defined. Consider the signed measure or com-
plex measure fu, the indefinite integral of f with respect to p.

A S—measurable function g : X — R or C is integrable over X with respect
to fu if and only if gf is integrable over X with respect to p. In such a case,

/ng(fu)=/ngdu-

This equality is true, without any restriction, if f,g : X — [0,+00] are
Y —measurable.

Proof: We consider first the case when g, f : X — [0, 4+00].

If g = xa for some A € X, then [, xad(fp) = (fu)(A) = [, fdu =
Jx xaf dp. Hence, the equality [y gd(fu) = [y gf dp is true for characteristic
functions. This extends, by linearity, to X —measurable non-negative simple
functions g = ¢ and, by the Monotone Convergence Theorem, to the general g.

This implies that, in general, [ |g|d(|f|i) = [y |gf|dp. From this we see
that g is integrable over X with respect to fu if and only if, by definition, g is
integrable over X with respect to |fu| = |f|w if and only if, by the equality we
just proved, gf is integrable over X with respect to p.

The equality [ v 9d(fu) = / + 9f du can, now, be established by reducing all
functions to non-negative functions and using the special case we proved.

10.6 Lebesgue decomposition, Radon-Nikodym
derivative.

Definition 10.16 Let p be a measure and v a signed or complexr measure on
(X,X). We say that v is absolutely continuous with respect to p when
v(A) =0 for every A € 3 with u(A) =0 and we denote by

v M.
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Example

Let f : X — R or C be Y—measurable so that the fX fdp is defined (recall
that, in the case of C, this means that f is integrable). Then the indefinite
integral fu is absolutely continuous with respect to p.

This is obvious: if A € ¥ has u(A) =0, then (fu)(A) = [, fdu=0.

Proposition 10.14 Let p be a measure and v,v1,vs signed or complex mea-
sures on (X,%).

(i) If v is complex, then v < p if and only if R(v) < p and S(v) < p if and
only if [v] < .

(i1) If v is signed, then v < p if and only if vT < p and v~ < p if and only if
lv] < p.

(i1i) If v < p and vy, then v =0.

(iv) If v1,va < 1 and v + v is defined, then vy + v < p.

Proof: (i) Since v(A) = 0 is equivalent to R(v)(A4) = S(v)(A4) = 0, the first
equivalence is obvious.

Let v <« p and take any A € ¥ with u(A) = 0. If {Ay,..., Ay} is any
measurable partition of A, then p(A4y) = 0 for all k and, thus, Y ,_, [v(Ag)| = 0.
Taking the supremum of the left side we get |v|(A) = 0. Hence, |v| < p.

If |v| < p and we take any A € 3 with p(A) = 0, then |v(A)] < |v|(4) = 0.
Therefore, v(A) =0 and v < p.

(ii) The argument of part (i) applies without change to prove that v < p if and
only if |v| < p. Since |v| = vT + v, it is obvious that v+ < p and v~ < p if
and only if |v| < p.

(iii) Take sets M, N € ¥ so that MUN = X, M NN = (), M is a null set for
v and N is a null set for p. Then, u(N) = 0 and v < g imply that N is a null
set for v. But, then, X = M U N is a null set for v and, hence, v = 0.

(iv) If A € ¥ has u(A) = 0, then v1(A) = 12(A) = 0 and, hence, (v1+12)(A) = 0.

The next result justifies the term absolutely continuous at least in the special
case of a finite v.

Proposition 10.15 Let p be a measure and v a real signed measure or a com-
plex measure on (X,X). Then v < u if and only if for every e > 0 there is a
d > 0 so that [v(A)| < € for every A € ¥ with u(A) < 4.

Proof: Suppose that for every € > 0 there is a § > 0 so that |v(A)| < € for every
A € X with p(A) < 6. If u(A) =0, then p(A) < § for every § > 0 and, hence,
|v(A)| < e for every € > 0. Therefore, v(A) =0 and v < p.

Suppose that v < p but there is some €y > 0 so that, for every § > 0, there
is A € ¥ with u(A) < ¢ and [v(A)| > €o. Then, for every k, there is A;, € 3 with
1(Ar) < 5 and [v[(Ag) > [v(Ag)| = €. We define By = UF'A; and, then,
1(Br) < gi=r and |v|(By) > |[v|(Ax) > € for every k. If we set B = N} By,
then By | B and, by the continuity of |v| from above, we get u(B) = 0 and
|v|(B) > €. This says that |v| is not absolutely continuous with respect to u
and, by Proposition 10.14, we arrive at a contradiction.
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Theorem 10.11 Let u be a measure on (X, ).

(i) If \, N, p, p’ are signed or complex measures on (X, X)) so that \, N < p and
pp Ly and X+p=XN+p, then X=X and p=p.

(ii) If f, f' : X — R or C are integrable over X with respect to u and fu = f'pu,
then f = f' p-a.e. on X.

(iii) If f, f' : X — R are S—measurable and [y fdpu, [ [ dp are defined and
fu = f'u, then f = [ p-a.e. on X, provided that p, restricted to the set
{x e X | f(x) # f'(z)}, is semifinite.

Proof: (i) There exist sets M, M’ N,N' € ¥ with MUN = X = M’ UN/,
MNON=0=M NN'so that N, N’ are null for u, M is null for p and M’ is
null for p’. If we set K = NUN’, then K is null for y and K¢ = M N M’ is null
for both p and p’. Since A\, A’ < u, we have that K is null for both A and X.

If Ae X, AC K, then p(A) = p(4) + MA) = p'(A) + N(A) = p'(4). If
AeX, ACK® then p(A) = 0 = p/(A). Therefore, for every A € ¥ we have
p(A) = p(ANK)+p(ANK®) = p(ANK) + p'(ANK°) = p'(A) and, hence,
p=r"

A symmetric argument implies that A = \'.
(i) We have [,(f — ')y = [, fdu— o £/ du = (Fu)(A) — (/'6)(A) = 0 for
all A € 3. Theorem 7.5 implies f = f’ p-a.e. on X.
(i) Let t,s € R with ¢t < s and 4y, = {2 € X|f(z) < t,s < f'(x)}. If
0 < p(Ass) < o0, we define B = A; . If pu(A;s) = 400, we take B € 3 so
that B C Ay s and 0 < p(B) < +oo. In any case, (fu)(B) = [z fdu < tu(B)
and (f'u)(B) = [z f'dp > su(B) and, thus, su(B) < tu(B). This implies
p(B) = 0, which is false. The only remaining case is u(A¢s) = 0.

Now, we observe that {z € X | f(z) < f'(z)} = Ut seq,t<sAt,s, which implies
p{z € X|f(z) < f'(x)}) = 0. Similarly, u({z € X | f(z) > f'(z)}) = 0 and
we conclude that f = f/ p-a.e. on X.

Lemma 10.5 Let u,v be finite measures on (X,%). If p and v are not mutually
singular, then there exists an €9 > 0 and an Ay € X with p(Ag) > 0 so that

v(A) <
€
p(d) =
for every A€ X, AC Ay with u(A) > 0.

Proof: We consider, for every n, a Hahn decomposition of the signed measure
v — %N. There are sets P,, N, € ¥ so that P, UN,, = X, P, NN, = 0 and P,
is a positive set and N,, is a negative set for v — %,u.

We set N = N> N, and, since N C N, for all n, we get (v — 2u)(N) <0
for all n. Then v(N) < L4(N) for all n and, since pu(N) < +o0, v(N) = 0. We
set P = U P, and have PUN = X and PN N = (. If u(P) = 0, then p and
v are mutually singular. Therefore, ©(P) > 0 and this implies that u(Px) > 0
for at least one N. We define Ag = Py for such an N and we set ¢y = % for
the same N.

Now, u(A4p) > 0 and, if A € X, A C Ay, then, since Ay is a positive set for

v — €opt, we get v(A) — eou(A) > 0. If also pu(A) > 0, then ZE’:; > €.
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Theorem 10.12 (Lebesgue-Radon-Nikodym Theorem. Signed case.)
Let v be a o-finite signed measure and i be a o-finite measure on (X,X). Then
there exist unique o-finite signed measures X and p on (X, %) so that

v=A+p, A< p, pLp.

Moreover, there exists a X—measurable f : X — R so that the fX fdu is defined
and

A= fpu.

If f' is another such function, then f' = f p-a.e. on X.
If v is non-negative, then X\ and p are non-negative and f > 0 p-a.e. on X.
If v is real, then A and p are real and f is integrable over X with respect to u.

Proof: The uniqueness part of the statement is a consequence of Theorem 10.11.
Observe that p is o-finite and, hence, semifinite.

Therefore, we need to prove the existence of A, p and f.
A. We first consider the special case when both u,r are finite measures on
(X, %).

We define C to be the collection of all ¥—measurable f : X — [0, +o0] with
the property

/fdugl/(A), AeX.
A

The function 0, obviously, belongs to C and, if fi, fo belong to C, then the
function f = max(f1, f2) also belongs to C. Indeed, if A € ¥ we consider
Ay ={z € A| fa(x) < fi(x)} and Ay = {z € A| fi(z) < f2(z)} and we have
fAde: fAl fdﬂ+fA2de = fA1 fld,u"‘fAz fadp < v(Ar) +v(Az) = v(A).

We define
K = sup du|fecCy.

Since 0 € C and [ fdu < v(X) for all f € C, we have 0 < k < v(X) < +oc.
We take a sequence {f,} in C so that fX frndu — K and define g; = f; and,

inductively, g, = max(gn—1, fn) for all n. Then all g, belong to C. If we set

f=1lim, 1 gn, then g, T f and, by the Monotone Convergence Theorem,

[ ran<vin,  aes
A

and
/ fdu =k < +oco.
X

Since (v — fu)(A) = v(A) — [, fdu > 0 for all A € 3, the signed measure
v — fu is a finite measure. If v — fu and p are not mutually singular, then, by
Lemma 10.5, there is Ag € ¥ and ¢g > 0 so that

WA 1 i)
(A) ﬂ<A>/Af =y 2
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forall A e X, A C A with p(A) > 0. From this we get [, (f+e€oxa,) dp < v(A)
for all A € ¥, A C Ay. Now for any A € ¥ we have [,(f + eoxa,)dp =
fAon(f+€0XAo) du+fA\A0(f+€0XAo) dp < V(AQAO)‘FIA\AO(JC"'%XAO) dp =
v(AnN Ay) + fA\AO fdu < v(AN Ap) +v(A\ Ag) = v(A). This implies that
[+ €oxa, belongs to C and hence k +eou(Ag) = [ (f +€oxa,)dp < k. This is
false and we arrived at a contradiction. Therefore, v — fu L p.

We set p = v — fu and A = fu and we have the decomposition v = X + p
with A < p, pLu. Both A and p are finite measures and f : X — [0, 4o0] is
integrable with respect to p, because A(X) = [, fdu = k < 400 and p(X) =
V(X)— [y fdu=v(X)—k < +oo.

B. We, now, suppose that both u,v are o-finite measures on (X, ).

Then, there are pairwise disjoint Fi, Fh,... € X so that X = UZ‘;";F;C and
p(Fy) < +oo for all k and pairwise disjoint Gy, Ga,... € ¥ so that X = ULTG,
and v(G;) < +oo for all . The sets Fj, N G, are pairwise disjoint, they cover X
and pu(Fr NGy, v(FxNG;) < +oo for all k,I. We enumerate them as F1, Eo, ...
and have X = U2 E, and u(E,),v(E,) < +oo for all n.

We define p,, and v,, by

pn(A) = (AN Ey), vn(A) =v(ANEy)

for all A € ¥ and all n and we see that all p,, v, are finite measures on (X, X).
We also have

+oo too
() =3 pal4), (A =S va(4)

for all A € X.
Applying the results of part A, we see that there exist finite measures \,, pp,
on (X,Y¥) and f, : X — [0, +00] integrable with respect to p, so that

Vp = Ap + Prns An K Hn,  PnLpin, )\n(A) = / fn d,un
A

for all n and all A € 3. From v, (ES) = 0 we get that A\, (E%) = p,(ES) = 0.
Now, since pn,(A) = A (A) =0 for every A € &, A C E¢, the relation A, (A) =

f 4 fn dpin remains true for all A € ¥ if we change f,, and make it 0 on Ej;. We,
therefore, assume that

fn=0 on ES, An(A) = / Jndpin
ANE,

for all n and all A € 3.
We define A\, p: ¥ — [0,+00] and f: X — [0, +o0] by

+oo +oo +oo
AMA) =D Ma(A), p(A) =) palA), (@)= fula)

for every A € ¥ and every z € X. It is trivial to see that A and p are measures
on (X,Y) and that f is ¥—measurable.
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The equality v = A + p is obvious.

If A€ ¥ has pu(A) =0, then pu,(A) = p(ANE,) =0 and, hence, A\, (4) =0
for all n. Thus, \(A) = 0 and, thus, A < u.

Since pn L, there is R, € X so that R, is null for u, and RS is null for
pn. But, then R = R, N E,, is also null for u, and R = RS U ES is null for
pn. Since R), is obviously null for all ,,, m # n, we have that R/ is null for p.
Then R = U > R/, is null for p and R® = N> R!¢ is null for all p,, and, hence,
for p. We conclude that pL .

The A and p are o-finite, because A(E,) = A\, (E,) < 400 and p(E,) =
pn(Er) < 400 for all n.

Finally, for every A € %, \(4) = /XA (4) = 35 Jang, fndun =

oo Jang, fdun = oo Jang, fdiw = [, fdu. The fourth equality is true
because fEn fdu, = fEn fdu for all ¥—measurable f : X — [0,+00]. This
is justified as follows: if f = x4, then the equality becomes p,(A N E,) =
w(AN E,) which is true. Then the equality holds, by linearity, for non-negative
Y —measurable simple functions and, by the Monotone Convergence Theorem,
it holds for all X —measurable f : X — [0, 400]. Now, from A(A) = [, fdu, we
conclude that A = fu and that A < pu.

C. In the general case we write v = v™ — v~ and both v™,v~ are o-finite
measures on (X,3). We apply the result of part B and get o-finite measures
A1, A2, p1, p2 S0 that v = Ay 4+ p1, v~ = Ao+ p2 and Ay, Ao < p, p1, p2Llp
Since either v+ or v~ is a finite measure, we have that either \i, p; are finite
or \g, po are finite. We then write A = A\; — Ay and p = p; — p2 and have that
v=A+pand A <y, pLu.

We also have ¥—measurable fi, fo : X — [0,400] so that Ay = fip and
A2 = fap. Then, either [, fidp = A\ (X) < 400 or [y fadu = Az(X) < 400
and, hence, either f; < 400 p-a.e. on X or fy < 400 p-a.e. on X. The function
f = fi— f2is defined p-a.e. on X and the [, fdu = [ fidp— [y fodp exists.
Now, AM(A) = M\ (A) = Xo(A) = [, frdu— [, fadp = [, fdp for all A€ ¥ and,
thus, A = fu.

Theorem 10.13 (Lebesgue-Radon-Nikodym Theorem. Complez case.)
Let v be a complex measure and p be a o-finite measure on (X,3). Then there
exist unique complex measures A and p on (X,X) so that

v=>A+p, A< p, pLp.

Moreover, there exists a Y—measurable f : X — C so that f is integrable over
X with respect to p and

A= fpu.

If f' is another such function, then f' = f p-a.e. on X.
If v is non-negative, then \ and p are non-negative and f > 0 p-a.e. on X.
If v is real, then A and p are real and f is extended-real valued.

Proof: The measures R(v) and S(v) are real measures and, by Theorem 10.12,
there exist real measures A1, Az, p1, p2 on (X, X) so that R(v) = A1 +p1, S(v) =
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A2+ p2 and A\, Ao < pand p1, polpu. Weset A = A +4)2 and p = p; +1p2 and,
then, ¥ = XA + p and, clearly, A < p and pLu. There are, also, f1, fo: X — R,
which are integrable over X with respect to u, so that Ay = fiu and Ay = fopu.
The function f = f1 +ifs : X — C is p-a.e. defined, it is integrable over X
with respect to p and we have (fu)(A) = [, fdu = [, frdp+i [, fadp =
AM(A) +ix2(A) = A(A) for all A € E. Hence, A = fpu.

The uniqueness is an easy consequence of Theorem 10.11.

Definition 10.17 Let v be a signed measure or a complex measure and p a
measure on (X,3). If there exist, necessarily unique, signed or complexr mea-
sures \ and p, so that

v=A+tp, ALp, plp,

we say that A\ and p constitute the Lebesgue decomposition of v with
respect to L.

A s called the absolutely continuous part and p is called the singular
part of v with respect to u.

Let v be a signed or complex measure and p a measure on (X,X) so that
v < . If there exists a X—measurable f : X — R or C so that fX fdu is
defined and

v=fu,

then f is called a Radon-Nikodym derivative of v with respect to . Any

Radon-Nikodym derivative of v with respect to u is denoted by g—;.

Theorems 10.12 and 10.13 say that, if v and u are o-finite, then v has a
unique Lebesgue decomposition with respect to u. Moreover, if v and u are o-
finite and v < p, then there exists a Radon-Nikodym derivative of v with respect
to p, which is unique if we disregard p-null sets. This is true because v = v +0
is, necessarily, the Lebesgue decomposition of v with respect to pu.

We should make some remarks about Radon-Nikodym derivatives.
1. The symbol Z—Z appears as a fraction of two quantities but it is not. It is like

the well known symbol j—g of the derivative in elementary calculus.
2. Definition 10.17 allows all Radon-Nikodym derivatives of v with respect to
to be denoted by the same symbol g—z. This is not absolutely strict and it would

be more correct to say that g—” is the collection (or class) of all Radon-Nikodym
derivatives of v with respect to u. It is simpler to follow the tradition and use
the same symbol for all derivatives. Actually, there is no danger for confusion
in doing this, because the equality f = Z—Z, or its equivalent ¥ = fu, acquires
its real meaning through the v(A) = [, fdu, A e X.

3. As we just observed, the real meaning of the symbol 4%

d is through

dv
v(A)= | —du, AeX,
(4) e
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which, after formally simplifying the fraction (!), changes into the true equality
v(A) = [, dv.
4. Theorem 10.11 implies that the Radon-Nikodym of v <« u with respect to
W, if it exists, is unique when p is a semifinite measure, provided we disregard
sets of zero pu-measure.

The following propositions give some properties of Radon-Nikodym deriva-
tives of calculus type.

Proposition 10.16 Let vq1,v5 be complex or o-finite signed measures and p a
o-finite measure on (X, X). If vy, ve < pu and v1+vs is defined, then vi+vy <

and
d(Vl + VQ) o dVl + dl/2

= — 4+ — —a.e. X.
a it W —a.e. on
Proof: We have (11 +12)(A) = [, % dp+ [, % dp= [, (% + %) dp for all
A € ¥ and, hence, d(”ji:”"‘) = ‘Z—’ﬁ + % p-a.e. on X.

Proposition 10.17 Let v be a complex or a o-finite signed measure and i a
o-finite measure on (X,X). If v < p and k € C or R, then kv < u and

d(wv) = Kd—y , M—a.e onX.
du du
Proof: We have (kv)(A) =& [, Z—Z dp= [, (Hg—;) du for all A € ¥ and, hence,
dwv) _ pdv 06 on X
o o pa.e. .

Proposition 10.18 (Chain rule.) Let v be a complex or o-finite signed measure
and i, i be o-finite measures on (X,%). If v < ¢/ and p/ < p, then v < p
and

av _ v iyl

dp  dp' dp’

Proof: If A € ¥ has u(A) =0, then u/(A) = 0 and, hence, v¥(A) = 0. Therefore,
v . )

Theorem 10.10 implies that v(A) = [, j/’;, dp' = [, &4 gy for every

dp’ dp
dv _ dv dy/
A € ¥ and, hence, Gp = 4 dp H-a-e. on X.

w—a.e. on X.

Proposition 10.19 Let u and p' be two o-finite measures on (X, 2). If p’ < p
and p < ', then
dp dy!
SR _ 1, p—ae onX.
du' dp

Proof: We have p(A) = fA dp for every A € ¥ and, hence, Z—Z =1 p-a.e. on X.

The result of this proposition is a trivial consequence of Proposition 10.18.
Proposition 10.20 Let v be a o-finite measure on (X,3). Then v < |v| and

dv

m =1, v-—a.e. onX.
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Proof: Proposition 10.11 implies that ‘% lv| = ’%M‘ = |v| and, hence,
‘% =1 |v|-a.e. on X.

10.7 Differentiation of indefinite integrals in R".

Let f : [a,b] — R be a Riemann-integrable function. The Fundamental Theorem
of Calculus says that, for every x € [a,b] which is a continuity point of f, we
have - [* f(y)dy = f(z). This, of course, means that
x+r xT rT—T xT
dy — d dy — d
i da SWdy— [ fWdy L W) dy— [y f)dy

r—0+ r r—0+ —r

f(@).

Adding the two limits, we find

lim

r—0+ 2r

In this (and the next) section we shall prove a far reaching generalisation of

this result: a fundamental theorem of calculus for indefinite Lebesgue-integrals
and, more generally, for locally finite Borel measures in R".

Lemma 10.6 (N. Wiener) Let By,..., By be open balls in R™. There exist
pairwise disjoint By, ..., B;, so that

Mp(Biy) + -+ +mp(By,) > SL" mu(BrU---UBp).
Proof: From By,..., B, we choose a ball B;, with largest radius. (There may
be more than one balls with the same largest radius and we choose any one of
them.) Together with B;, we collect all other balls, its satellites, which intersect
it and call their union (B;, included) Cy. Since each of these balls has radius
not larger than the radius of B;,, we see that Cy C B;, where B} is the ball
with the same center as B;, and radius three times the radius of B;,. Therefore,

my(C1) < mp(B;)) = 3"man(Bi,).

The remaining balls have empty intersection with B;, and from them we
choose a ball B;, with largest radius. Of course, B;, does not intersect B;,.
Together with B;, we collect all other balls (from the remaining ones), its satel-
lites, which intersect it and call their union (B;, included) Cs. Since each of
these balls has radius not larger than the radius of B;,, we have Cy C B/, where
B; is the ball with the same center as B;, and radius three times the radius of
B;,. Therefore,

mp(C2) < mp(Bj,) = 3"mn(Bi,).

We continue this procedure and, since at every step at least one ball is
collected (B;, at the first step, B;, at the second step and so on), after at most
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m steps, say at the kth step, the procedure will stop. Namely, after the first
k —1 steps, the remaining balls have empty intersection with B;,,...,B;,_, and
from them we choose a ball B;, with largest radius. This B;, does not intersect
Bi,,...,Bj,_,. All remaining balls intersect B;,, they are its satellites, (since
this is the step where the procedure stops) and form their union (B;, included)
C. Since each of these balls has radius not larger than the radius of B;, , we
have Cy C B} , where B}, is the ball with the same center as B;, and radius
three times the radius of B;,. Therefore,

mn(Cr) < mn(Bj) = 3"mn(Bi,)-

It is clear that each of the original balls By, ..., B,, is either chosen as one
of By,,...,DB;, oris asatellite of one of B;,, ..., B;,. Therefore, BjU---UB,, =
Cy U---UCy and, hence,

mp(BiU---UBy) = mu(CiU---UC) < mu(Ch)+ -+ mu(C)
< 3" (ma(Biy) + -+ ma(Bi,)).

Definition 10.18 Let f : R® — R or C be Lebesgue-measurable. We say
that f is locally Lebesgue-integrable if for every x € R™ there is an open
neighborhood U, of x so that fUz- |f(y)|dm,(y) < +o0.

Lemma 10.7 Let f : R® — R or C be Lebesque-measurable. Then f is locally
Lebesgue-integrable if and only if [,, |f(y)| dmy,(y) < +oo for every bounded set
MeL,.

Proof: Let f be locally Lebesgue-integrable and M C R™ be bounded. We
consider a compact set K O M. (Such a K is the closure of M or just
a closed ball or a closed cube including M.) For each z € K we take an
open neighborhood U, of = so that fUr |f(y)| dmy(y) < +oo. We, then, take
finitely many x1,...,2m so that M C K C U,, U---UU,,_ . This implies
S lF@)dma(y) < [y, 1f @) dma(y) + -+ [y, |f(y)ldmn(y) < +oo.

If, conversely, [,,[f(y)|dmn(y) < 4oo for every bounded set M € L,,
then fB(m,l) |f(y)| dm,(y) < +oo for every x and, hence, f is locally Lebesgue-
integrable.

Proposition 10.21 Let f, f1, fo : R® — R or C be locally Lebesgue-integrable
and k € C. Then

(i) f is finite my-a.e. on R™,

(ii) f1 + fo is defined my-a.e. on R"™ and any Lebesgue-measurable definition
of f1 + f2 is locally Lebesgue-integrable,

(11i) kf is locally Lebesgue-integrable.

Proof: (i) Lemma 10.7 implies fB(O-k) |f(y)| dmy(y) < +oo and, hence, f is
finite my,-a.e. in B(0; k) for every k. Since R" = U2 B(0; k), we find that f is
finite my,-a.e. in R"™.

(ii) By the result of (i), both fi, fo are finite and, hence, f; + f> is defined
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ma-ae. on RY. We have [y [fi(y) + f2(0) dma(y) < [y 11 ()] dmay) +
Jas 1 f2(y) dmy(y) < 400 for every bounded M C R" and by Lemma 10.7,
f1 + f2 is locally Lebesgue-integrable.

(iil) Similarly, [, |£f ()| dmn(y) = |&| [, |f(y)] dm,(y) < +oo for all bounded
M C R"™ and, hence, xf is locally Lebesgue-integrable.

The need for local Lebesgue-integrability (or for local finiteness of measures)
is for definitions like the following one to make sense. Of course, we may restrict
to Lebesgue-integrability if we like.

Definition 10.19 Let f : R® — R or C be locally Lebesque-integrable. The
function M(f): R™ — [0,4+o00], defined by

M(f))=  sup % /B )] dmn(y)

B open ball, Box

for every x € R™, is called the Hardy-Littlewood maximal function of f.

Proposition 10.22 Let f, fi, fo : R® — R or C be locally Lebesque-integrable
and k € C. Then

(i) M(f1+ fo) < M(f1) + M(f2),
(1) M(kf) = |k|M(f).

Proof' (i) For all z and all open balls B > z, ﬁ@ [5 1f1(y) + f2(y)| dma(y) <

5 I 101 dno) b o) ) < MUY+ M (). T

kmg supremum of the left side, we get M (f1 + f2)(x) < M(f1)(z) + M (f2)(x).
|

() Alsor e e ) oy el T ol dmata) < NP )
and, taking the bupremum of the left side, M (kf)(x) < |k|M(f)(x). Conversely,

("ff)( ) > mn(B) fB |k f(y) dmn(y) = |’f‘mn1(3) fB |f(y)|dmy,(y) and, taking
the supremum of the right side, M (xf)(x) > |c|M(f)(z).

Lemma 10.8 Let f : R® — R or C be locally Lebesque-integrable. Then, for
every t > 0, the set {x € R™ |t < M(f)(x)} is open in R™.

Proof: Let U ={z € R"|t < M(f)(z)} and x € U. Then t < M(f)(z) and,
hence, there exists an open ball B 3 x so that t < ﬁ(B) I [ f ()| dmay(y). If we

take an arbitrary ' € B, then ﬁ(B) I 1f W) dmn(y) < M(f)(2") and, thus,
t < M(f)(z'). Therefore, B C U and U is open in R".

Since {x € R™ |t < M(f)(x)} is open, it is also Lebesgue-measurable.

Theorem 10.14 (Hardy, Littlewood) Let f : R® — R or C be Lebesgue-
integrable. Then, for every t > 0, we have

mo({o € Rt < M@ <2 [ 17wl dma (o)
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Proof: We take arbitrary compact K C U = {z € R" \t < M(f )(:v)} and for
each ¢ € K we find an open ball B, 3 x with t < B )fB |f )| dm,(y).
Since K is compact, there exist xy,...,Z,, so that K g B, U---UB,, . By
Lemma 10.6, there exist pairwise disjoint By, ..., Bxik so that

My (Bz, U+~ UB,, ) < 3”(mn(Bmi1) 4. ern(Bmik))'

Then
mn(K) < my(By, U---UB,y,,)
3"1
< =(/ Il dm) /| | Vwldm )
< T [ 1fldm.w.

t

By the regularity of my, mp(U) = sup{m,(K)| K is compact C U} and
we conclude that m, (U) < ‘3 Jrn [ f )] dmy (y).

Observe that the quantity m, ({x € R™ |t < M(f)(x)}) is nothing but the
value at t of the distribution function Ayss) of M(f). Therefore, another way
to state the result of Theorem 10.14 is

n

Miin® <5 [ 1) dmao).

Definition 10.20 Let (X,X, 1) be a measure space and g : X — R or C be
Y—measurable. We say that g is weakly integrable over X with respect to
p if there is a ¢ < +00 so that \jg|(t) < § for every t > 0.

Another way to state Theorem 10.14 is: if f is Lebesgue-integrable, then
M(f) is weakly Lebesgue-integrable.

Proposition 10.23 Let (X, %, 1) be a measure space, g,91,92 : X — R or C
be weakly integrable over X with respect to p and k € C. Then

(i) g is finite u-a.e. on X,

(ii) g1 + g2 is defined p-a.e. on X and any X—measurable definition of g1 + g2
18 weakly integrable over X with respect to u,

(i1i) kg is weakly integrable over X with respect to (.

Proof: (i) \jg(t) < § for all ¢ > 0 implies that u({z € X |g(z) is infinite}) <
p{zre X|n < |g(z )\}) < £ forall n and, thus, u({z € X [g(z) is infinite}) = 0.
(ii) By (i) both g; and go are finite u-a.e. on X and, hence, g1 + go is defined p-
ae. on X. If u({z € X[t <|gi(z)[}) < & and p({r € X |t < |ga2(2)[}) < % for
all ¢ > 0, then any >—measurable definition of ¢g; + g» satisfies, for every ¢t > 0,
the estimate: u({z € X|t < |91(z) + g2(@)[}) < p({z € X |} < |g1 (2)]}) +
ul{z € X|§ < |gp(@)]}) < 22

(iii) If p({z € X[t <|g(z)[}) < ¢ for all t > 0, then pu({z € X |t < |rg(z)|}) =

p{w € X | i <|g(a)]}) < 4 for all £ > 0.



216 ~ CHAPTER 10. SIGNED MEASURES AND COMPLEX MEASURES

Proposition 10.24 Let (X, %, 1) be a measure space and g : X — R or C be
integrable over X with respect to p. Then g is also weakly integrable over X
with respect to w.

Proof: We have Ay (t) = p({z € X[t < [g(z)]}) < lf{xexqu(m)l} lgldp <
2 [y lgl dp for all t > 0. Therefore, A 4(t) < ¢ for all t > 0, where ¢ = [, |g| dp.

Example
The converse of Proposition 10.24 is not true. Consider, for example, the func-
tion g(z) = \z|"7x e R™

By Proposition 8.12, [g. [g(z)|dmp(z) = on_1(S"1) [, oo Lpn—l gy =
Tue1(S™Y) 579 Ldr = 4oo. But, {z € R*|t < [g(x)|} = B(0;¢~#) and,
hence, Ajy((t) = v, - (t==)" = 2o for every t > 0, where v, = my,(B(0;1)).

The next result says that the Hardy-Littlewood maximal function is never
(except if the function is zero) Lebesgue-integrable.

Proposition 10.25 Let f: R™ — R or C be Lebesque-integrable. Then M(f)
is locally Lebesgue-integrable. If M(f) is Lebesgue-integrable, then f =0 p-a.e.
on R™.

Proof: Let A = {x € R"| f(z) # 0} and assume that m,(A) > 0. Since
A =U{S(ANB(0;k)), we get that m,, (AN B(0;k)) > 0 for at least one k > 1.
We set M = AN B(0; k) and we have got a bounded set M so that m,, (M) > 0
and |z| < k for every x € M. Since f(z) # 0 for every x € M, we have that
fM | f(y) dmn(y) > 0.

We take any x with |z| > k and observe that there is an open ball B of
diameter |x\ + k; + 1 containing = and including M. If v, = mn(B(O 1)), then
M(f)(x) fB |f(y)| dmy(y) > WIMU ) dmn(y) = o=,
with ¢ = 2o fM|f )l dmy(y) > 0. This implies [g,, [M(f)(z)|dm,(z) >

n— + n— J—
Cf{xeR" >k} ﬁ dmp(z) = copn_1(S"") [, o L hdr = +o0.

The next result is a direct generalization of the fundamental theorem of
calculus and the proofs are identical.

Lemma 10.9 Let g : R" — C be continuous on R™. Then

1
lm ———— —g(x)|dm,(y) =0
/B . 18(0) — )] dma)

r—0+ my, (B(x;r))
for every x € R”™.

Proof: Let € > 0 and take § > 0 so that |g(y) — g(z)| < € for every y € R™ with
|y — x| < 6. Then, for every r < 4, WIB(%M lg(y) — g(x)| dm,(y) <

1 _
(B B €dma(y) =€
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Theorem 10.15 (Lebesgue) Let f: R™ — R or C be locally Lebesgue-integra-
ble. Then,

1
lim ———— — f(x)| dm,, =0
/B ) = @)

r—0+ my, (B(z;71))
for my-a.e. x € R™.

Proof: We first assume that f is integrable.
We take an arbitrary € > 0 and, through Theorem 7.16, we find g : R™ — C,
continuous on R™, so that fR,,L g— fldm, <e. Forallz € R" and r > 0 we get

s oo @)= F @] dmay) € oo fon L)~ () dma(y) +
m fB(x ) |g( )—g(x)| dmqy(y)+ m fB(x;r) lg(x)— f(x)] dmn(y) <
M(f = 9)(@) + 5By Jo@n 190) — 9(@) dma(y) +|g(z) — f(2)].

We set A(f)(z;r) = m fB(w;r) |f(y) — f(z)| dmy(y) and the last in-
equality, together with Lemma 10.9, implies

lirrr_lzlipA(f)(x;T) < M(f = g)(x) +0+[g(x) — f(2)].

Now, for every t > 0, we get m},({x € R" [t < limsup,_,q, A(f)(z;7)}) <
ma({z € R"[§5 < M(f = g)(2)}) + ma({z € R"[5 < g(2) = f(x)]}) <
235 [an [f—gldmn+2 [q. |f—gldm, < 23£2 ¢ where the second inequality
is a consequence of Theorem 10.14. Since € is arbitrary, we find, for all ¢ > 0,

my ({x € R" |t < limsup A(f)(z;r)}) = 0.
r—0+

By the subadditivity of my, my({x € R"|limsup,_o, A(f)(x;r) # 0}) <

n’

Zk: 1 my, ({I‘ eR" | & < lim Supr—)O-‘r A(f)(LU, T)}) =0 and, hencea
my ({x € R™| limsup A(f)(x;r) # 0}) = 0.
r—0+

This implies that limsup, o, A(f)(z;r) =0 for my-a.e. x € R" and, since

liminf, o4 A(f)(z;7) > 0 for every z € R", we conclude that
Tim A() () =0
for my,-a.e. x € R".

Now, let f be locally Lebesgue-integrable. We fix an arbitrary & > 2 and
consider the function h = fxpo;x)- Then h is Lebesgue-integrable and, for every
x € B(0;k — 1) and every r < 1, we have A(f)(z;r) = A(h)(z;7). By what
we have already proved, this implies that lim,_o+ A(f)(z;r) = 0 for m,-a.e.
x € B(0;k —1). Since k is arbitrary, we conclude that lim, o+ A(f)(x;7) =0
for my,-a.e. x € R".

Definition 10.21 Let f : R™ — R or C be locally Lebesque-integrable. The set
Ly of all z € R™ for which lim, o+ m fB(m;T) If(y) — f(z)]dm,(y) =0
is called the Lebesgue set of f.
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Example
If z is a continuity point of f, then x belongs to the Lebesgue set of f. The
proof of this fact is, actually, the proof of Lemma 10.9.

Theorem 10.16 Let f : R® — R or C be locally Lebesque-integrable. Then,
for every x in the Lebesque set of f, we have

1
lm ———— dmy,(y) = f(x).
/B W dm() = 1@

r—0+ my, (B(x; 7))

Proof: Indeed, for all x € Ly we have |m fB(ﬂr) fy)dmn(y) — f(z)] <
m fB(w) |f(y) - f($)| dmy,(y) — 0.

Definition 10.22 Let x € R"™ and & be a collection of sets in L™ with the
property that there is a ¢ > 0 so that for every E € £ there is a ball B(x;7)
with E C B(x;r) and my(E) > em,(B(x;r)). Then the collection & is called a
thick family of sets at x.

Examples

1. Any collection of qubes containing x and any collection of balls containing x
is a thick family of sets at x.

2. Consider any collection £ all elements of which are intervals S containing x.
Let Ag be the length of the largest side and ag be the length of the smallest
side of S. If there is a constant ¢ > 0 so that j—i > ¢ for every S € &, then & is
a thick family of sets at x.

Theorem 10.17 Let f : R* — R or C be locally Lebesque-integrable. Then,
for every x in the Lebesgue set of f and for every thick family € of sets at x,

we have
1

I
Ees,mi%)—m-s- my(E)

) 1
Eeg}%}f&ﬂ)_‘oﬁ_ m /E f(y) dmn(y) = f(x).

Proof: There is a ¢ > 0 so that for every E € £ there is a ball B(x;rg) with
E C B(z;rg) and m,(E) > emyn(B(x;rg)). If © € Ly, then for every € > 0
thereis a ¢ > 0so that r < ¢ implies m fB(x;T) If(y)—f(z)| dmy(y) < ce.

If mp(F) < cv,d™, where v, = m,(B(0;1)), then rg < § and, hence,
ﬁ(};) Jelf ) = f(@)ldma(y) < m fB(W.E) [f(y) = (@) dma(y) <e.
This means that limgeg o, (£)—0+ #(E) S 1 f(y) = f(2)] dmy,(y) = 0.

By | oy Je FW) dma(y) — f(@)] < 5y Je |f(y) — f(2)] dmy(y) and by
the first limit, we prove the second.

[ 156 = f@) dmate) =0
E

10.8 Differentiation of Borel measures in R".

Definition 10.23 Any signed or complex measure on (R"™ Brn) is called a
Borel signed or complex measure on R".
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Definition 10.24 Let v be a Borel signed measure in R"™. We say that v is
locally finite if for every x € R™ there is an open neighborhood U, of x so that
v(Uy,) is finite.

This definition is indifferent for complex measures, since complex measures
take only finite values.

Proposition 10.26 Let v be a Borel signed measure in R™. Then, v is locally
finite if and only if vt and v~ are both locally finite if and only if |v| is locally
finite.

Proof: Since |v| = v 4+ v, the second equivalence is trivial to prove. It is also
trivial to prove that v is locally finite if |v| is locally finite.

Let v be locally finite. For an arbitrary x € R"™ we take an open neigh-
borhood U, of = so that v(U,) is finite. Since v(U,) = v*(U,) — v~ (U,), both
v (U,) and v~ (U, ) and, hence, |v|(U,) are finite. Therefore, || is locally finite.

Proposition 10.27 Let v be a Borel signed measure in R™. Then, v is locally
finite if and only if v(M) is finite for all bounded Borel sets M C R".

Proof: One direction is easy, since every open ball is a bounded set. For the
other direction, we suppose that v is locally finite and, by Proposition 10.26,
that |v] is also locally finite. Lemma 5.7 implies that |v(M)| < |[v|(M) < 400
for all bounded Borel sets M C R™.

Theorem 10.18 Let p be a locally finite Borel signed measure or a complex
measure on R™ with pLlm,,. Then,

i P Blair))

r—0+ my, (B(x;r)) =0

for my-a.e. € R™.

Proof: If p is complex, then |p| is a finite Borel measure on R™. Proposition
10.26 implies that, if p is signed, then |p| is a locally finite Borel measure on
R"™. Moreover, Proposition 10.10 implies that |p| Lm,,. Hence, there exist sets
R, M € Bgr» with MUR =R", MN R = 0 so that R is null for m,, and M is
null for |p|.

We define A(|p])(x;r) = %, take an arbitrary ¢ > 0 and consider the
set My = {x € M|t <limsup,_q, A(|p|)(z;r)}.
Since |p| is a regular measure and |p|(M) = 0, there is an open set U so that

M, C M CU and |p|(U) < e. For each x € My, there is a small enough r, > 0

so that t < A(|p|)(z;7) = % and B(z;r;) CU.

We form the open set V' = U,ens, B(x; ;) and take an arbitrary compact
set K C V. Now, there exist finitely many z1,...,z,, € M; so that K C
B(z1;74,) U+ U B(Zm;rz,, ). Lemma 10.6 implies that there exist pairwise
disjoint B(i,374, ), - - B(Tiyi7a,, ) 80 that my, (B(z1;75, )V - UB(Tmi7s,,)) <
3" (M (B(wiy57a,,)) + -+ Mo (B (24,72, ))). All these imply that

377/ n

ma(K) < 2 (1ol (Blaaira, )+ -+ ol (Blaiira, ) < 2 Jol(@) < 2
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By the regularity of m, and since K is an arbitrary compact subset of
V, we find that m, (V) < BTne. Since M; C V, we have that m}(M;) <
% € and, since € is arbitrary, we conclude that M; is Lebesgue-measurable and
mp (M) = 0. Finally, since {x € M | limsup, o, A(|p|)(z;r) # 0} = U:;“{M%,
we get that limsup,_ . A(|p|)(z;r) = 0 for my-a.e. = € R". Now, from
0 < liminf, o4 A(|p|)(x;7), we conclude that lim, oy A(|p|)(z;7) = 0 for m,,-
a.e. z € R™

Lemma 10.10 Let v be a locally finite Borel signed measure on R™. Then v
is o-finite and let v = X\ + p be the Lebesque decomposition of v with respect
to my, where A < m,, and pLlm,. Then both X\ and p are locally finite Borel
signed measures.

Moreover, if f is any Radon-Nikodym derivative of \ with respect to my,
then f is locally Lebesgue-integrable.

Proof: Since R™ = U} > B(0;k) and v(B(0;k)) is finite for every k, we find
that v is o-finite and Theorem 10.12 implies the existence of the Lebesgue
decomposition of v.

Since pLm,, there exist Borel sets R, N with RUN = X, RN N = () so
that R is null for m,, and N is null for p. From A < m,,, we see that R is null
for A, as well.

Now, take any bounded Borel set M. Since v(M) is finite, Theorem 10.1
implies that ¥(M N N) is finite. Now, we have A(M) = A(MNR)+ A MNN) =
AMNON)=AXMNN)+p(MNN)=v(MnNN) and, hence, A(M) is finite.
From v(M) = A(M) + p(M) we get that p(M) is also finite. We conclude that
A and p are locally finite.

Take, again, any bounded Borel set M. Then [, f(x)dmy(z) = \M)
is finite and, hence, [y |f(z)|dm,(x) < +oc. This implies that f is locally
Lebesgue-integrable.

Theorem 10.19 Let v be a locally finite Borel signed measure or a Borel com-
plex measure on R™. If f is any Radon-Nikodym derivative of the absolutely
continuous part of v with respect to my, then

L (Bl
r—0+ my, (B(x;r))

= f(x)

for my-a.e. € R™.

Proof: Let v = A+ p be the Lebesgue decomposition of v with respect to m,,,
where A < my,, pLm, and A = fm,,. If v is signed, Lemma 10.10 implies that
p is a locally finite Borel signed measure and f is locally Lebesgue-integrable. If
v is complex, then p is complex and f is Lebesgue-integrable. Theorems 10.16
and 10.18 imply

b BT .
T1—1>161+ m,(B(z;7)) rL0+ my (B(z;7)) /B(m;r) 1(y) dmn(y)
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¢
= fl@)

for my,-a.e. z € R".

Theorem 10.20 Let v be a locally finite Borel signed measure or a Borel com-
plex measure on R™. If f is any Radon-Nikodym derivative of the absolutely
continuous part of v with respect to m,,, then, for my-a.e. x € R",

lim v(E) = f(z)

E€&,m,(B)—0+ My, (E)

for every thick family £ of sets at x.

Proof: 1If p is the singular part of v with respect to m,,, then |p|Lm, and, by
Theorem 10.18, lim, o+ % =0 for m,-a.e. x € R".

We, now, take any « for which lim,_,q % = 0 and any thick family
& of sets at z. This means that there is a ¢ > 0 so that for every £ € & there
is a ball B(z;rg) with E C B(x;rg) and m,(E) > cm,(B(z;rg)). For every
€ > 0 there is a 4 > 0 so that r < ¢ implies Lol(Blzim) . Therefore, if

M (B(x;r))
my(E) < cv, 6™, where v, = m,(B(0;1)), then rp < § and, hence, | LB | <

mn(E) -
lpl(E) 1 lel(B(zire))
mn(E) = ¢ my,(B(z;rg))

< e. This means that, for m,-a.e. z € R",

i p(E)
11m
E€E,m,(E)—0+ My (E)

=0

for every thick family &£ of sets at x.
We combine this with Theorem 10.17 to complete the proof.
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10.9 Exercises.

1.

Let v be a signed measure on (X,3) and let uy, us be two measures on
(X,Y) at least one of which is finite. If v = puy — pg, prove that v < py
and v~ < puo.

Let # be the counting measure on (IN,P(N)) and g be the point-mass
distribution on N induced by the function a, = 2%, n € N. Prove that
there is an €g > 0 and a sequence {E} } of subsets of N, so that p(Ey) — 0
and #§(Fx) > ¢o for all k. On the other hand, prove that § < p.

Let v1, p1 be o-finite measures on (X1, ¥1) and v, 1o be o-finite measures
on (X2,3s). If 1 < py and ve < g, prove that 11 ® v < 1 ® pz and
that

dVQ

d(r1 @ v9) dvy
dpz

d(p1 ® p2)
for (u1 ® pe)-a.e. (z1,z2) € X1 X Xo.

dVl
(x17x2) = TM

(z1) 57— (22)

Let £ be the counting measure on (R, Br).
(i) Prove that my < §. Is there any f so that m; = ff ?
(ii) Is there any Lebesgue decomposition of § with respect to my ?

Generalization of the Radon-Nikodym Theorem.

Let v be a signed measure and y be a o-finite measure on (X, ) so that
v < p. Prove that there is a X —measurable f : X — R, so that fX fdu
exists and v = fpu.

Generalization of the Lebesgue Decomposition Theorem.

Let v be a o-finite signed measure and p a measure on (X, X). Prove that
there are unique o-finite signed measures A, p on (X,X) so that A < p,
pLpand v =X+ p.

Let v, u be two measures on (X,X) with v < p. If A = p + v, prove that
v If f:X — [0,+00] is X—measurable and v = f\, prove that
0< f<1pae. onXandV:%ﬂ.

Conditional Expectation.

Let 1 be a o-finite measure on (X, X), ¥y be a o-algebra with ¥y C ¥ and
p be the restriction of the measure on (X, ¥).
(i) If f: X - R or C is ¥—measurable and fX f du exists, prove that

there is a ©gp—measurable f; : X — R or, respectively, C so that J v Jodu

exists and
[ odu= [ gau.  aes,.
A A

If f) has the same properties as fo, prove that f} = fo p-a.e. on X.
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10.

11.

12.

Any fo with the above properies is called a conditional expectation of
f with respect to X( and it is denoted by

E(f]%0).
(ii) Prove that

(a) E(f|X) = f p-a.e. on X,

(b) E(f+glX0) = E(f[X0) + E(9|%0) pra.e. on X,

(©) E(sf]%0) = 5E(fIS0) p-ae. on X,
)
)

—

(d) if g is Xg—measurable, then E(gf|Zo) = gE(f|X0) p-a.e. on X,
(e) if X1 C X C X, then E(f|X1) = E(E(f]20)|%1) p-a.e. on X.

. Let v be a real or complex measure on (X,X). If v(X) = |v|(X), prove

that v = |v|.

Let v be a signed or complex measure on (X, X). We say that {47, As, ...}
is a (countable) measurable partition of A € X, if Ay € ¥ for all k,
the sets Aq, A, ... are pairwise disjoint and A = A; U Ay U ---. Prove
that

“+oo
|v|(A) = sup { Z [v(Ak)|| {41, As, ...} is a measurable partition of A}
k=1

for every A € X.

A wvariant of the Hardy-Littlewood mazimal function.

Let f: R™ — R or C be locally Lebesgue-integrable. We define

T =5 B

[ lwlam)

B(x;r)

for every z € R".

(i) Prove that the set {z € R™ |t < H(f)(z)} is open for every ¢ > 0.
(ii) Prove that 5= M (f)(x) < H(f)(z) < M(f)(z) for every z € R™.

One may define other variants of the Hardy-Littlewood maximal function
by taking the supremum of the mean values of |f| over open cubes con-
taining the point x or open cubes centered at the point x. The results are
similar.

The Vitali Covering Theorem.

Let £ C R™ and let C be a collection of open balls with the property that
for every z € E and every € > 0 there is a B € C so that x € B and
my,(B) < e. Prove that there are pairwise disjoint By, Ba,... € C so that

mi(B\ U{% By) = 0.
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13.

14.

15.

16.

17.

CHAPTER 10. SIGNED MEASURES AND COMPLEX MEASURES

Points of density.
Let F e L,. If x € R", we set

B my,(E N B(x;r))
D) = rli%l+ my(B(x;r))

whenever the limit exists. If Dg(z) = 1, we say that x is a density point
of E.

(i) If x is an interior point of F, prove that it is a density point of E.

(ii) Prove that my,-a.e. « € E is a density point of E.

(iii) For any o € (0,1) find 2 € R and E € £; so that Dg(z) = a. Also,
find x € R and E € £y so that Dg(z) does not exist.

Let v be a signed or a complex measure on (X,¥) and A € ¥. Prove that
|v|(A) =0 if and only if ¥(B) =0 for all B€ X, B C A.

Let f be the Cantor’s function on [0, 1] (see Exercise 4.6.7) extended as
0 on (—00,0) and as 1 on (1,400) and let uy be the Lebesgue-Stieltjes
measure on (R, Br) induced by f. Prove that ppLm;.

Let v be a signed measure on (X,X). Prove that v, v~ < |v| and find
formulas for Radon-Nikodym derivatives % and %.

Let u be a finite measure on (X, ¥). We define
d(A, B) = u(AAB), A BeX.

(i) Prove that (X,d) is a complete metric space.

(ii) If v is a real or a complex measure on (X, ¥), prove that v is continuous
on X (with respect to d) if and only if v is continuous at (§ (with respect
to d) if and only if v < p.



Chapter 11

The classical Banach spaces

11.1 Normed spaces.

Definition 11.1 Let Z be a linear space over the field F = R or over the field
F=Candlet|- | :Z — R have the properties:
(i) llu+ ol < lull + o], for all w,v € Z,
(i1) ||kull = |k|||ull, for allu € Z and Kk € F,
(i) ||ul| = 0 implies u = o, where o is the zero element of Z.
Then, || - | is called @ norm on Z and (Z,|| -||) is called a normed space.

If || - || is understood, we may say that Z is a normed space.

Proposition 11.1 If || - || is a norm on the linear space Z, then
(i) |lo]| = 0, where o is the zero element of Z,

(it) || — ul| = |Jull, for allu € Z,

(1i1) ||u]| > 0, for allu € Z.

Proof: (i) [lol| = 0 o] = [0]lo]] = 0.
(i) || = wll = I (~Dyul = | = 1] [ul) = ]
(i) 0 = flo = [lu+ (=)l < [Jull + | = ull = 2lul] and, hence, 0 < [u].

Proposition 11.2 Let (Z,]-||) be a normed space. If we defined: ZxZ — R
by
d(u,v) = [[u— ||

for all u,v € Z, then d is a metric on Z.

Proof: Using Proposition 11.1, we have

a. d(u,v) = |lu—v|| >0 for all u,v € Z and, if d(u,v) = 0, then ||lu —v|| =0
and, hence, u — v = o or, equivalently, u = v.

b. d(u,v) = lu=v] = [[(u=w)+(w=0)| < [lu—w|+[w=v] = d(u, w)+d(w,v).

Definition 11.2 Let (Z,] - ||) be a normed space. If d is the metric defined in
Proposition 11.2, then d is called the metric induced on Z by | - ||.

225
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Therefore, if (Z, ||-]|) is a normed space, then (Z, d) is a metric space and we
can study all notions related to the notion of a metric space, like convergence
of sequences, open and closed sets and so on.

Open balls have the form B(u;r) ={v € Z|||jv—u| < r}.

A sequence {u,} in Z converges to u € Z if ||u, —ul| — 0 as n — +00. We
denote this by: u,, — v in Z.

A set U C Z is open in Z if for every u € U there is an r > 0 so that
B(u;r) CU. Any union of open sets in Z is open in Z and any finite intersection
of open sets in Z is open in Z. The sets ) and Z are open in Z.

A set K C Z is closed in Z if its complement Z \ K is open in Z or,
equivalently, if the limit of every sequence in K (which has a limit) belongs to
K. Any intersection of closed sets in Z is closed in Z and any finite union of
closed sets in Z is closed in Z. The sets () and Z are closed in Z.

A set K C Z is compact if every open cover of K has a finite subcover of K.
Equivalently, K is compact if every sequence in K has a convergent subsequence
with limit in K.

A sequence {u,} in Z is a Cauchy sequence if ||u, — uy| — 0 as n,m —
+o00. Every convergent sequence is Cauchy. If every Cauchy sequence in Z is
convergent, then Z is a complete metric space.

Definition 11.3 If the normed space (Z,|| - ||) is complete as a metric space
(with the metric induced by the norm), then it is called a Banach space.

If there is no danger of confusion, we say that Z is a Banach space.
There are some special results based on the combination of the linear and
the metric structure of a normed space. We first define, as in any linear space,

u+A={u+v|veA} kA ={kv|ve A}

for all A C Z,u € Z and k € F. We also define, for every u € Z and every
k € F'\ {0}, the translation 7, : Z — Z and the dilation [, : Z — Z, by

Tu(V) = v + u, le(v) = Ko

for all v € Z. Tt is trivial to prove that translations and dilations are one-to-one
transformations of Z onto Z and that 7, ' = 7_, and [;! = 1. It is obvious
that u+ A = 7, (A) and kA = [,,(A).

Proposition 11.3 Let (Z, ] - ||) be a normed space.

(i) u+ B(v;r) = B(u +wv;r) for allu,v € Z and r > 0.

(ii) kB(v;r) = B(kv; |k|r) for allv e Z, kK € F\ {0} and r > 0.

(i) If u,, — uw and v, — v in Z, then u, +v, - u+v in Z.

() If kp, — K in F and up, — w in Z, then kpu, — Ku in Z.

(v) Translations and dilations are homeomorphisms. This means that they,
together with their inverses, are continuous on Z.

(vi) If A is open or closed in Z and u € Z, then u+ A is open or, respectively,
closed in Z.

(vii) If A is open or closed in Z and k € F\{0}, then kA is open or, respectively,
closed in Z.
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Proof: (i) w € u+B(v;r) if and only if w—u € B(v;r) if and only if |[w—u—v| <
r if and only if w € B(u + v;r).

(ii) w € kB(v;r) if and only if + w € B(v;r) if and only if ||+ w — v|| < r if and
only if ||w — kv|| < |&|r if and only if w € B(kv; |&|r).

(1) [|(tn + 00) — (w+ D)) < i — ] + o — 0] = 0 a5 . — +oc.

(iv) [|[knun — ku|| < |Knll|tn —ul| + |Kn — &]||u]] — 0 as n — +o00, because {k,}
is bounded in F.

(v) f v, — v in Z, then 7, (v,) = u+ v, — u+v = 7,(v), by (iii). Also,
lo(vn) = kv, — KU = I (v), by (iv). Therefore, 7, and [, are continuous on Z.
Their inverses are also continuous, because they are also a translation, 7_,,, and
a dilation, [ 1, respectively.

(vi) u+ A =771 (A) is the inverse image of A under the continuous 7_,,.

(vii) kA = 17"(A) is the inverse image of A under the continuous Ly

As in any linear space, we define a linear functional on Z to be a function
l: Z — F which satisfies

Hu+v)=1u)+1(v), l(ku) = kl(u)
for every u,v € Z and k € F. If | is a linear functional on Z, then (o) = [(00) =

0l(0) = 0 and I(—u) = I((-1)u) = (=1)l(u) = —l(u) for all w € Z. We define
the sum [y + Iy : Z — F of two linear functionals l1,ls on Z by

(lh+ lg)(u) = ll(u) + lz(u)7 u €z
and the product kl : Z — F of a linear functional [ on Z and a k € F' by
(k1) (u) = Kl(u), u€Z

It is trivial to prove that I + 5 and kl are linear functionals on Z and that
the set Z’ whose elements are all the linear functionals on Z,

Z' = {l|1 is a linear functional on Z},

becomes a linear space under this sum and product. Z’ is called the algebraic
dual of Z. The zero element of Z’ is the linear functional o : Z — F with
o(u) = 0 for every u € Z and the opposite of a linear functional [ on Z is the
linear functional — : Z — F with (=1)(u) = —I(u) for every u € Z.

Definition 11.4 Let (Z,]-||) be a normed space andl € Z' a linear functional
on Z. Then | is called a bounded linear functional on Z if there is an
M < +00 so that

[1(u)] < MJull

for every u € Z.

Theorem 11.1 Let (Z, ] - ||) be a normed space and | € Z'. The following are
equivalent.

(i) 1 is bounded.

(i) l: Z — F is continuous on Z.

(i4i) 1 : Z — F is continuous at o € Z.
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Proof: Suppose that [ is bounded and, hence, there is an M < +o0o0 so that
[l(w)| < M|u|| for every u € Z. If u, — win Z, then |l(u,)—1(w)| = |l(un—u)| <
M]|uy, — ul| — 0 as n — 400 and, thus, I(u,) — l(u) in F as n — 4o0o0. This
says that [ is continuous on Z.

If [ is continuous on Z, then it is certainly continuous at o € Z.

Suppose that [ is continuous at o € Z. Then, for € = 1 there exists a § > 0
so that |[(u)| = |l(u) — l(0)| < 1 for every u € Z with |lul]| = |ju — o] < §.
We take an arbitrary u € Z \ {0} and have that Hﬁ ul| = ¢ < 4. Therefore,

‘l(ﬁ u)| < 1, implying that |I(u)| < 2 ||u|. This is trivially true also for u = o
and we conclude that [I(u)| < M||ul| for every u € Z, where M = 2. This says

that [ is bounded.

Definition 11.5 Let (Z,||-||) be a normed space. The set of all bounded linear
functionals on Z or, equivalently, of all continuous linear functionals on Z,

Z* ={l|l is a bounded linear functional on Z},
is called the topological dual of Z or the norm-dual of Z.

Proposition 11.4 Let (Z,]|-||) be a normed space and | a bounded linear func-
tional on Z. Then there is a smallest M with the property: |l(u)| < M|ul| for
every u € Z. This My is characterized by the two properties:

(1) |l(u)| < My||u| for every u € Z,

(i) for every m < My there is a uw € Z so that |l(u)| > m/||u].

Proof: We consider
My = inf{M | |l(u)] < M||u|| for every u € Z}.

The set L = {M | |l(u)| < M||u|| for every u € Z} is non-empty by assump-
tion and included in [0,4+o00). Therefore My exists and My > 0. We take a
sequence {M,} in L so that M,, — My and, from |l(u)| < M,|u|| for every
u € Z, we find |l(u)| < My||ul| for every u € Z.

If m < My, then m ¢ L and, hence, there is a u € Z so that |l(u)| > m/||u.

Definition 11.6 Let (Z,] - ||) be a normed space and I a bounded linear func-
tional on Z. The smallest M with the property that |l(u)| < M|ul|| for every
u € Z is called the norm of | and it is denoted by ||I]]..

Proposition 11.4, which proves the existence of ||I||., states also its charac-
terizing properties:

1. |l(w)] < ||U]«||u|| for every u € Z,
2. for every m < ||l||. there is a u € Z so that |l(u)| > m/||u].

The zero linear functional o : Z — F is bounded and, since |o(u)| = 0 < 0O||u||
for every u € Z, we have that
[lofl« = 0.
On the other hand, if I € Z* has ||l||« = 0, then |I(u)| < O]ju|| = 0 for every
u € Z and, hence, [ = o is the zero linear functional on Z.
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Proposition 11.5 Let (Z,] - ||) be a normed space and l € Z*. Then

|(w)|

12l = sup = sup  |l(u)|= sup [l(u)|
uEZ, u#o ||u|| wEZ,||ul|=1 uw€Z,||ul|<1

Proof: Every u with |lul| = 1 satisfies [|u| < 1. Therefore, sup, ¢z =1 [{(u)] <
SUPye 7, |juf <1 1L (w)]-
Writing v = i for every u € Z \ {0}, we have that ||v|| = 1. Therefore,

l
SUDye 7wt alll = SUPuez,uro L) | < SUDue s ju =1 [1(w)]-

For every u with ||u]] < 1, we have |l(u)] < ||l|l«|lu]l < |li]|« and, thus,
SUPye 7, |juf <1 | L(W)] < [|7]«

If we set M = Sup,cz 4o IlH(;tl)‘l’ then ”H(;Lﬁl < M and, hence, |I(u)] < M|ul|
for all u # o. Since this is obviously true for u = o, we have that ||I||. < M and
this finishes the proof.

Proposition 11.6 Let (Z,| - ||) be a normed space, 1,11,ls be bounded linear
functionals on Z and k € F. Then Iy + 1y and Kl are bounded linear functionals
on Z and

1+ lalle < llalle + 2l NIstlle = [l -

Proof: We have that [(Iy + lo)(u)| < [L(w)] + [la(w)] < Ll [Jull + [l [lu]l =
(1]l + 2]l )||u|| for every w € Z. This implies that iy + l2 is bounded and
that ||y + lofl« < [|la[[« + [[l2]]s-

Similarly, |(kl)(w)] = |&||l(w)] < |&|||l]|«||u|| for every w € Z. This implies
that xl is bounded and that |||« < |&|||l||«. If & = 0, then the equality is
obvious. If k # 0, to get the opposite inequality, we write |k||l(u)| = |(xl)(u)| <
I« [[u]l. This implies that [(u)] < L=

2], < Il

\
l#]

u|| for every u € Z and, hence, that

Proposition 11.6 together with the remarks about the norm of the zero func-
tional imply that Z* is a linear subspace of Z’ and that || - ||« : Z* — R is a
norm on Z*.

Theorem 11.2 If (Z,|| - ||) is a normed space, then (Z*,| - ||«) is a Banach
space.

Proof: Let {l,} be a Cauchy sequence in Z*. For all u € Z, |l,,(u) — L, (u)| =
[(ln = L) (W)] < ||l = U || ]|l — O as nym — +o00. Thus, {I,(u)} is a Cauchy
sequence in F' and, hence, converges to some element of F'. We definel: Z — F
by

for every u € Z.

For every u,v € Z and k € F we have l(u 4+ v) = limy, 100 ln(u +v) =
Hmy,— oo (1) 4 limy, o0 I (v) = I(u) + 1(v) and I(ku) = limy,— 4 oo ln(Ku) =
Klimy, 1o In(u) = Kl(u). Therefore, | € Z'.
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There is N so that ||l, — l|l« < 1 for all n,m > N. This implies that
[Ln(uw) = I (u)] < |Iln = Lnllellel] < JJu|| for all w € Z and all n,m > N and,
taking the limit as n — 400 and, taking m = N, we find |I(u) — I (u)| < |Ju|
for all w € Z. Therefore, |I(u)| < [In(u)|+|ull < (|In ||« +1)||ul| for every u € Z
and, hence, [ € Z*.

For an arbitrary € > 0 there is N so that |1, — ||« < € for all n,m > N.
This implies |1, (u) — Ln(w)] < ln — Lnll<llu|| < €lu]l for all v € Z and all
n,m > N and, taking the limit as m — +oo, we find |, (u) — l(u)| < €||ul| for
all u € Z and all n > N. Therefore, ||, — ||« < € for all n > N and, hence,
l, — lin Z*.

Definition 11.7 Let Z and W be two linear spaces over the same F and a
function T : Z — W. T is called a linear transformation or a linear
operator from Z to W if

T(u+v)=T(u) +T(v), T(ku) = kT (u)
for allu,v € Z and all k € F.

Definition 11.8 Let (Z,|| - |lz) and (W, | - |lw) be two normed spaces and a
linear transformation T : Z — W. We say that T is a bounded linear trans-
formation from Z to W if there exists an M < 400 so that

1T (u)llw < Mlullz
forallu e Z.

Theorem 11.3 Let (Z,]|-||z) and (W, || |lw) be two normed spaces and a linear
transformation T : Z — W . The following are equivalent.

(i) T is bounded.

(1)) T : Z — W is continuous on Z.

(1)) T : Z — W is continuous at o € Z.

Proof: Suppose that T is bounded and, hence, there is an M < 400 so that
1T (w)|lw < M|u|z for every w € Z. If u,, — w in Z, then || T (u,) — T(u)||lw =
1T (upn, — w)||lw < M|un, —ul|z — 0 as n — +oo and, thus, T'(u,) — T(u) in W
as n — —+o0o. This says that T is continuous on Z.

If T is continuous on Z, then it is certainly continuous at o € Z.

Suppose that T is continuous at 0 € Z. Then, for € = 1 there exists a d > 0 so
that ||T(uw)|lw = ||T(u)=T(0)||lw < 1for every u € Z with ||u|lz = |Ju—o||z < é.
We take an arbitrary u € Z\ {o} and have that Hm uHZ = £ <. Therefore,

HT(% u)HW < 1, implying that |T'(u)||w < 2|jul|z. This is trivially true
also for u = o0 and we conclude that ||T'(u)||w < M||u||z for every u € Z, where

M = %. This says that T' is bounded.

Proposition 11.7 Let (Z,| - ||z) and (W, || - [lw) be two normed spaces and a
bounded linear transformation T : Z — W. Then there is a smallest M with
the property: |T(u)|lw < M||ul|z for every w € Z. This My is characterized by
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the two properties:
(i) ||T(w)||lw < Myl|ul|z for every u € Z,
(1) for every m < My there is a uw € Z so that | T (u)|lw > m|u| z.

Proof: We consider
My = inf{M | |T(u)||lw < M||u| z for every u € Z}.

The set L = {M | ||T(uw)||w < M||u||z for every u € Z} is non-empty by
assumption and included in [0, +00). Therefore M, exists and My > 0. We take
a sequence {M,} in L so that M,, — My and, from ||T(u)||lw < My||u||z for
every u € Z, we find ||T(u)||lw < Mpl|ul|z for every u € Z.

If m < My, then m ¢ L and, hence, there is a v € Z so that || T(u)||w >
7.

Definition 11.9 Let (Z,] - ||z) and (W,| - |lw) be two normed spaces and a
bounded linear transformation T : Z — W . The smallest M with the property
that |T(u)|lw < M||ullz for every w € Z is called the norm of T and it is
denoted by ||T||.

By Proposition 11.7, which proves the existence of ||T'||, we have:
L ITW)|lw < IT|||u||z for every u € Z,
2. for every m < ||T|| there is a u € Z so that ||T(u)||lw > m|u| z.

The zero linear transformation o : Z — W is bounded and, since |o(u)||w =
0 < 0||u||z for every u € Z, we have that

[lol| = 0.

On the other hand, if T is a bounded linear transformation with ||T'|| = 0,
then ||T(u)|lw < 0||ullz = 0 for every u € Z and, hence, T' = o is the zero linear
transformation.

Proposition 11.8 Let (Z,| - ||z) and (W, || - [lw) be two normed spaces and a
bounded linear transformation T : Z — W. Then
17 (w) lw

IT|= sup ——————= sup [T(u)lw= sup [[T(uw)|w.
wezuto ||Ullz weZ,|lull z=1 weZ,|ullz<1

Proof: Every u with |ju||z = 1 satisfies ||u||z < 1. This, clearly, implies that
SUPyez,||ul|z=1 1T (uw)l[w < SUPyez,||ull z<1 1T (w)[w-
Writing v = i for every u € Z \ {0}, we have that ||v]|z = 1. Therefore,

T
SUDye 7 k0 LTt = $UDye z.ut0 | T (1) I < SWuezul)z—1 1T ()]lw

For every u with |lul|z < 1, we have ||T(u)||w < ||T|||lullz < ||T| and, thus,
SUPyez, ull <1 I T(W)lw < [T

If we set M = sup,cyz ..o ”TII(;LH)!W’ then HTH(:H)!W < M and this implies
| T (u)|lw < M||ul|z for all u # o. Since this is obviously true for u = o, we have
that || T|| < M and this finishes the proof.
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Definition 11.10 Let (Z,| - |lz) and (W, || - |lw) be two normed spaces and a
bounded linear transformation T : Z — W.

If T is onto W and | T (u)||lw = ||ul|z for every u € Z, then we say that T
is an tsometry from Z onto W or an isometry between Z and W.

If ||T(w)|lw = ||ullz for every u € Z, we say that T is an isometry from
Z into W.

Proposition 11.9 Let (Z,] - ||z) and (W,| - |lw) be two normed spaces.

(i) If T is an isometry from Z into W, then T is one-to-one.

(ii) If T is an isometry from Z onto W, then T~! is also an isometry from W
onto Z.

Proof: (1) If T(u) = T(v), then 0 = [|T'(u) = T'(v)[lw = [T(u—v)[lw = [u—v[lz
and, hence, u = v.
(ii) From (i) we have that T is one-to-one and, thus, the inverse mapping 7! :
W — Z exists. If w, w1, w2 € W and k € F, we take the (unique) w,us,us € Z
so that T(u) = w,T(u1) = wy and T(uz) = wy. Then T(uy + uz) = T(uq) +
T(uz) = wy + we and, hence, T~ (wy + wa) = uy +us = T Hwy) + T~ Hws).
Also, T'(ku) = kT (u) = kw and, hence, T~ !(kw) = ku = kKT~ (w). These
imply that 7-! : W — Z is a linear transformation.

Moreover, |T~Yw)||z = ||lullz = ||T(uw)||lw = ||w|lw. Therefore, T~ is an
isometry from W onto Z.

11.2 The spaces LP(X, %, ).

In this whole section and the next, (X, X, u) will be a fixed measure space.
Definition 11.11 If 0 < p < 400, we define the space LV(X,%, 1) to be the
set of all X—measurable functions f : X — R with

/ |fIP dp < +oo.
X

The space LP(X, %, ) is the set of all S—measurable f : X — C under the
same finiteness condition.

If R or C are understood, we write LP(X,%, u) for either LP(X, X, ) or
£2(X, 3, ).

Observe that the space £1(X,X, u) is the set of all functions which are
integrable over X with respect to p.

Proposition 11.10 The spaces LE(X, %, 1) are linear spaces over R and the
spaces L2(X, %, 1) are linear spaces over C.

Proof: We shall use the trivial inequality

(a+b)P <2P(aP + bP), 0<a,b.
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This can be proved by (a + b)? < [2max(a, b)]P? = 2P max(aP,bP) < 2P(aP + bP).

Suppose that f1, fo € LP(X, %, ). Then both f; and f5 are finite y-a.e. on
X and, hence, f; + f5 is defined p-a.e. on X. If f; + f5 is any Y—measurable
definition of f1+ f2, then, using the above elementary inequality, | (f1+f2)(z)[P <
20(|f1(z)|P + | f2(x)[P) for pra.e. x € X and, hence,

/|f1+f2|pduﬁ2p/ |f1|pdu+2”/ |f2|P dp < +o0.
X X X

Therefore f1 + fo € LP(X, X, p).
If felP(X,X,n)and k€ Rorif f e LB(X,X, u) and k € C, then

/ W fIP dp = |l / 1P dy < +oo.
X X

Therefore, kf € LP(X, 3, u).

Definition 11.12 Let f : X — R or C be S—measurable. We say that f is
essentially bounded over X with respect to u if there is M < 400 so that
|| < M p-a.e. on X.

Proposition 11.11 Let f : X — R or C be X—measurable. If f is essentially
bounded over X with respect to u, then there is a smallest M with the property:
|fIl <M p-a.e. on X. This smallest My is characterized by:

(i) If] < Mo p-a.e. on X,

(i) u({z € X ||f(z)] > m}) > 0 for every m < M.

Proof: We consider the set A ={M ||f| < M pu—a.e. on X} and the
My=inf{M||f| <M p—ae. on X}.

The set A is non-empty by assumption and is included in [0, +00) and, hence,
My exists.

We take a sequence {M,} in A with M,, — My. From M, € A, we find
p{z € X||f(z)| > My}) = 0 for every n and, since {z € X ||f(z)| > Mo} =
Utei{z € X||f(z)| > M,}, we conclude that pu({x € X||f(z)| > Mo}) = 0.
Therefore, |f| < My p-a.e. on X.

If m < My, then m ¢ A and, hence, u({z € X ||f(z)| > m}) > 0.

Definition 11.13 Let f : X — R or C be Y —measurable. If f is essentially
bounded, then the smallest M with the property that |f| < M p-a.e. on X is
called the essential supremum of f over X with respect to p and it is
denoted by ess-supx . (f).

The ess-supx ,(f) is characterized by the properties:
1. |f] < ess-supx,,(f) p-a.e. on X,

2. for every m <ess-supx,,(f), we have u({x € X ||f(x)| > m}) > 0.
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Definition 11.14 We define L£3°(X, %, ) to be the set of all E—measurable
functions f : X — R which are essentially bounded over X with respect to fi.
The space LZ(X, %, 1) is the set of all X—measurable f : X — C which are
essentially bounded over X with respect to p.
If R or C are understood, we write L>(X, X, n) for either L2(X, X, u) or
£2(X, %, ).

Proposition 11.12 The space L°(X, %, 1) is a linear space over R and the
space L (X, X, 1) is a linear space over C.

Proof: It f1, fo € L>®(X, X, i), then there are sets A1, A; € ¥ so that u(A§) =
1(As) = 0 and |f1] < ess-supx,,(f1) on Ay and [f2| < ess-supx,,(f2) on As.
If we set A = A; N Ag, then we have p(A°) = 0 and |f1 + fa| < |f1] + |f2] <
ess-supx . (fi)+ess-supx,,(f2) on A. Hence fi1 + f2 is essentially bounded over
X with respect to u and

ess-supy ,(f1 + f2) < ess-supy ,(f1) +ess-supx ,(f2).

If felP(X,%,p)and k € Ror f e L2°(X, %, u) and k € C, then there
is A € ¥ with u(A°) = 0 so that |f| < ess-supx,,(f) on A. We, now, have
|kf| < |k|ess-supx ,(f) on A. Hence kf is essentially bounded over X with
respect to g and ess-supx,,(kf) < |kless-supx . (f). If £ = 0, this inequality,
obviously, becomes equality. If k # 0, we apply the same inequality to % and
rf and get ess-supx,,(f) = ess-supx . (L (kf)) < \Tlﬁl ess-supx,,(kf). Therefore

ess—supX!H(fif) = |n|ess-supxﬁu(f).
Definition 11.15 Let 1 < p < +oo. We define

Lo ifl<p < +oo

oo, ifp=1
; if p= +o0.

3
I
— s

We say that p’ is the conjugate of p or the dual of p.

The definition in the cases p = 1 and p = 400 is justified by lim,_,14 1% =
+o0 and by limy 4o ;27 = 1.

It is easy to see that, if p’ is the conjugate of p, then 1 < p’ < +oo and p is
the conjugate of p’. Moreover, p,p’ are related by the symmetric equality

Lemma 11.1 Let 0 <t < 1. For every a,b > 0 we have

a'b' =t <ta+ (1 —t)b.
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Proof: If b = 0 the inequality is obviously true: 0 < ta.

Ifb > 0, the 1nequahty is equivalent to (¢)" <t% +1—t and, setting z =
it is equivalent to ' <tz +1—t, 0 < z. To prove it we form the functlon
f(z) = ' — tz on [0,4+00) and we easily see that it is increasing in [0,1] and
decreasing in [1, +00). Therefore, f(z) < f(1) =1 —t for all z € [0, +00).

Theorem 11.4 (Hélder’s inequalities) Let 1 < p,p’ <
conjugate to each other. If f € LP(X, X, u) and g € EPI(X,
LY(X, %, 1) and

+oo and p,p’ be
X, ), then fg €

Jovrstaiw= ([ uran)” ([ 1aran)” 1 <pal <.
X X

/ |fg|dM§/ |fldp - ess-supx ,(9) , p=1,p = +oo,
X X

/ |fgldp < ess—SﬂPX,M(f)/ lgldw, — p=+oo,p' =1.
X X

Proof: (a) We start with the case 1 < p,p’ < +o0.

If [ [fIPdp=0orif [, l9|P" dp = 0, then either f =0 p-a.c. on X or g = 0
p-a.e. on X and the inequality is trivially true. It becomes equality: 0 = 0.

So we assume that A = [, [f[Pdp > 0and B = [ lg|P" dp > 0. Applying

Lemma, 11.1 with t = %, 1—t=1- % = i and a = |f(fl)|p,b = |g(%)|p , we have
that

LIflP 1 gl
Ilfg\l <7ﬂ+7|g|
AsBy P A p B

p-a.e. on X. Integrating, we find

1

p/

and this implies the inequality we wanted to prove.

(b) Now, let p = 1, p’ = +o00. Since |g| < ess-supx,,(g) p-a.e. on X, we have
that |fg| < |f| ess-supx,.(g) p-a.e. on X. Integrating, we find the inequality
we want to prove.

(¢) The proof in the case p = 400, p’ =1 is the same as in (b).

Theorem 11.5 (Minkowski’s inequalities) Let 1 < p < 4o0. If f1,f2 €
LP(X, %, 1), then

1

/Lﬁ+b@@t /Nﬁwmt” /IhPM . 1<p<+o,

ess-supx,u(fl + f2) < ess-5Upx (f1)+ ess-supX’M(fg) , p = +o0.
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Proof: The case p = 400 is included in the proof of Proposition 11.12. Also,
the case p = 1 is trivial and the result is already known. Hence, we assume
1 <p<4o0.

We write

1fr 4 L2IP < (fil+ 1Dl + P = 1AlA + P+ 1 fllfo+ flP7!

p-a.e. on X and, applying Holder’s inequality, we find

4
o7

Jisrspan < ([1nran) ([ 1+ e )

+(/X|lepdu)fl’</xf1+f2|(p—1)p/ d#>p

.
7

- (LUM@Q%[Qﬁ+thY
([ 1mpan) ([ 10+ pra)”.

Simplifying, we get the inequality we want to prove.

Definition 11.16 Let {f,} be a sequence in LP(X, X, u) and f € LP(X, X, u).
We say that {f,} converges to f in the p-mean if

/Ih—fﬁ@rﬁa 1 < p< 4o,
X

ess-supx ,(fn — f) =0, p = +00

as n — +o0o. We say that {f,} is Cauchy in the p-mean if
[ a0, 1<p<toc,
X

ess-supx ,(fn — fm) — 0, p = +00

as n,m — +00.

The notion of convergence in the 1-mean coincides with the notion of con-
vergence in the mean on X. The following result is an extension of the result of
Theorem 9.1.

Theorem 11.6 If {f,} is Cauchy in the p-mean, then there is f € LP(X, %, u)
so that {f,} converges to f in the p-mean. Moreover, there is a subsequence
{fn.} which converges to [ p-a.e. on X.

As a corollary: if {fn} converges to f in the p-mean, there is a subsequence
{fn.} which converges to f p-a.e. on X.
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Proof: (a) We consider first the case 1 < p < 4o0.
First proof. Since each f, is finite u-a.e. on X, there is A € ¥ so that u(A°) =0
and all f,, are finite on A.

We have that, for every k, there is ny so that [ [fn — fm[Pdp < 2% for
every n,m > ng. Since we may assume that each ny is as large as we like,
we inductively take {ny} so that ny < ngy; for every k. Therefore, {f,,} is a
subsequence of {f,}.

From the construction of nj and from ny < ngy1, we get that

1
/X |f7lk-+l - fnklpd:u < ZTP
for every k. We define the ¥ —measurable function G : X — [0, +00] by

G:{ ;:;.ol|f”k+1_fnk|7 on A
0,

on A¢

If

K-1
Gg = k=1 |fnk+1 - fnk|, on A ,
" {Oa on A°

then ([ G% du)% <SS (S fanss — Fl? du)% < 1, by Minkowski’s in-
equality. Since G T G on X, we find that fX GPdp < 1 and, thus, G < +00
p-a.e. on X. This implies that the series ZZ:;(fnkH(x) — fn, () converges
for p-a.e. © € A. Therefore, there is a B € £, B C A so that u(A\ B) =0
and 3725 (frgsr () = fny(z)) converges for every x € B. We define the ¥—
measurable f : X — C by

o {fm + 72 faes = fan); on B
0,

on BF¢.

On B we have that f = f,,, +limg 400 ZkK:*ll(fnk+1 —fon) =lmgioo frg

and, hence, {f,,} converges to f p-a.e. on X.
We, a1307 have on B that ‘an - f| = |an - fn1 - :;xl)(fnk+1 - fnk)‘ =

K-1 + +
|Zk:1 (f’ﬂk+1 - fmc) - ]g;.ol(fnk+1 - fnk)| < Zkio[( |fn;c+1 - fnk| < G for every
K and, hence, |f,, — f|? < GP p-a.e. on X for every K. Since we have

fX GP dp < 400 and that |f,, — f| = 0 p-a.e. on X, we apply the Dominated
Convergence Theorem and we find that

/ Fn — fIPdp—0
X

as K — +o0. )
1 1
From n; — oo, we get ([ [fe — fIPdw)? < ([x [fe = fuulPdp)” +
([ |fox = fIPdp)” — 0 as k — +oo and we conclude that {f,} converges

to f in the p-mean.
Second proof. For every € > 0 we have that u({z € X ||fn(z) — fin(2)] > €}) <
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%(fX | fn — fmlP du)% and, hence, {f,} is Cauchy in measure on X. Theorem
9.2 implies that there is a subsequence {f,, } which converges to some f p-a.e.
on X.

Now, for every e > 0 there is an N so that [ [fn — fim|?dp < € for all
n,m > N. Since ny — 400 as k — 400, we use m = ny, for large k and apply
the Lemma of Fatou to get

/ |fn—f|Pdu§liminf/ |fro = frn|Pdp < €

for all n > N. This, of course, says that {f,} converges to f in the p-mean.
(b) Now, let p = +o0.

For each n,m we have a set A, ,, € X with u(Aj ) =0 and |f, — fim| <
ess-supx . (fn — fm) o0 Ay, . We form the set A = Ni<p mAn,m and have that
pu(A¢) = 0 and |f, — fm| < ess-supx ,(fn — fm) on A for every n,m. This
says that {f,} is Cauchy uniformly on A and, hence, there is an f so that {f,}
converges to f uniformly on A. Now,

ess-supy ,(fn — f) < Slelg |fn(x) — f(2)] — 0
as n — +00.

If, for every f € LP(X, X, 1), we set

No(f) = 4 Ul di)? s i 1< p < 4o
p ess—SupX’M(f)7 if p = +o0,

then, Propositions 11.10 and 11.12 and Theorem 11.5 imply that the function
N, : LP(X, %, 1) — R satisfies

L Np(fi+ f2) < Np(f1) + Np(f2),
2. Ny(kf) = |K|IN,(f)

for every f, f1, fa € L2(X, %, u) or L2(X, 3, u) and k € R or C, respectively.

The function N, has the two properties of a norm but not the third. Indeed,
N,(f) = 01if and only if f = 0 p-a.e. on X. The usual practice is to identify
every two functions which are equal p-a.e. on X so that IV, becomes, informally,
a norm. The precise way to do this is the following.

Definition 11.17 We define the relation ~ on LP(X, X, 1) as follows: we write
1~ foif f1 = f2 p-a.e. on X.

Proposition 11.13 The relation ~ on LP(X, 3, u) is an equivalence relation.

Proof: It is obvious that f ~ f and that, if f; ~ f5, then fo ~ f;. Now, if
f1 ~ fo and fo ~ f3, then there are A, B € ¥ with u(A¢) = u(B¢) = 0 so that
fi=faon Aand fy = f3 on B. This implies that u((ANB)¢) =0 and f1 = f3
on AN B and, hence, f; ~ f3.
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As with any equivalence relation, the relation ~ defines equivalence classes.
The equivalence class [f] of any f € LP(X, %, u) is the set of all f/ € LP(X, X, )
which are equivalent to f:

I =A{f" e LP(X, 5, p) [ f' ~ f}

Proposition 11.14 Let f1, fo € LP(X, X, u). Then
(1) [f1] = [f2] if and only if f1 ~ fa if and only if f1 = fo p-a.e. on X.
(ii) If [f1] N [fo] # 0, then [fi] = [f2].

Moreover, LP(X, %, 1) = Uyerrx s, f]-

Proof: (i) Assume fi; ~ fo. If f € [f1], then f ~ f;. Therefore, f ~ f5 and,
hence, f € [f2]. Symmetrically, if f € [f2], then f € [f1] and, thus, [f1] = [fe].
If [f1] = [f2], then f1 € [f1] and, hence, fi € [fa]. Therefore, fi ~ fo.
(ii) If f € [f1] and f € [f2], then f ~ f1 and f ~ fo and, hence, f; ~ fo. This,
by the result of (i), implies [f1] = [f2].
For the last statement, we observe that every f € LP(X, X, 1) belongs to [f].

Proposition 11.14 says that any two different equivalence classes have empty
intersection and that £P(X, ¥, 1) is the union of all equivalence classes. In other
words, the collection of all equivalence classes is a partition of £P(X, X, ).

Definition 11.18 We define
LP(X, 5, p) = L2(X, 5, )/ ={If] | f € LP(X, 5, )}

The first task is to carry addition and multiplication from £P(X, ¥, i) over
to LP(X, %, ).

Proposition 11.15 Let f, f1, fo, [/, f1, f4 € LP(X, 2, p).

(i) If fr ~ f1 and fo ~ f3, then fi + f2 ~ fi + f.

(i) If f ~ [, then kf ~ Kf'.

Proof: (i) There are A, Ao € ¥ with p(A§) = p(AS) = 0 so that f1 = f{ on
Ay and both f1, f{ are finite on A; and, also, fo = f} on Ay and both f3, f4 are
finite on As. Then p((A4; N A3)¢) =0and fi; + fo = f{ + f4 on A1 N Ay. Hence,

fit+ for~ [+ f5
(ii) There is A € ¥ with u(A¢) =0 so that f = f" on A. Then, xf = kf' on A
and, hence kf ~ K f’.

Because of Proposition 11.14, another way to state the results of Proposition
11.15 is:

L [A] = [fi] and [fo] = [f3] imply [f1 + fi] = [f2 + f2],
2. [f] = [f'] implies [rf] = [£[’].

These allow the following definition.
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Definition 11.19 We define addition and multiplication in LP(X, %, 1) as fol-
lows:

[f1] + [f2] = [f1 + fol, [f] = [kf].

It is a matter of routine to prove, now, that the set LP(X,3, u) becomes
a linear space under this addition and multiplication. If we want to be more
precise, we denote this space LE(X, X, u), if it comes from L£2(X, X, i), and we
denote it L2(X, X, u), if it comes from £P(X, 3, u). Then LP2(X, X, pu) is a linear
space over R and LP(X, X, 1) is a linear space over C.

The zero element of LP(X, X, i) is the equivalence class [o] of the function o
which is identically 0 on X. The opposite of an [f] is the equivalence class [— f].

The next task is to define a norm on LP(X, ¥, u).

Proposition 11.16 Let f1, fo € LP(X, X, u). If f1 ~ fa, then Np(f1) = Np(f2)
or equivalently

/Ifl\”du=/ PlPde,  1<p< o,
X X

ess—supX,H(fl) = ess-supX,H(fg), p = +oo.

Proof: 1t is well known that f; = fo p-a.e. on X implies the first equal-
ity. Regarding the second equality, we have sets B, Ay, Ay € 3 with u(B¢) =
p(Af) = p(AS) = 0 so that fi = fo on B, |fi| < ess-supx,,(f1) on A; and
|f2] < ess-supx,,(f2) on Ay. Then, the set A = BN A; N Ay has pu(A°) = 0.
Moreover, |fi| = |f2| < ess-supx ,(f2) on A and, hence, ess-supx ,(f1) < ess-
supx,u(f2). Also, |f2| = |f1| < ess-supx ,(f1) on A and, hence, ess-supx ,(f2) <
ess-supx . (f1)-

An equivalent way to state the result of Proposition 11.16 is
L. [fi] = [fo] implies [y [f1[P dp = [y [fol? dp, if 1 < p < +o0,
2. [f1] = [f2] implies ess-supx ,(f1) = ess-supx,,(f2), if p = +o0.
These allow the
Definition 11.20 We define, for every [f] € LP(X, X, 1),
) ifl
P ) <
1Al = Ny(f) = { Ux 7)™, if 1< p < oo
esssupx (), if p = +oo.

Proposition 11.17 The function | - ||, is a norm on LP(X,%, ).

Proof: We have |[[f1]+[f2]llp = [I[f1 + falllp = Np(f1+ f2) < Np(f1) +Np(f2) =

If1lllp + Lf2lllp- Also [[&[f]llp = s/l = Np(kf) = &N (f) = |&[ILf]]]p-
If |[f1ll, = 0, then N,(f) = 0. This implies f = 0 p-a.e. on X and, hence,
f ~ o or, equivalently, [f] is the zero element of LP(X, X, u).
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In order to simplify things and not have to carry the bracket-notation [f] for
the elements of LP(X,3, u), we shall follow the traditional practice and write
f instead of [f]. When we do this we must have in mind that the element f of
LP(X, %, 1) (and not the element f of LP(X, %, 1)) is not the single function f,
but the whole collection of functions each of which is equal to f p-a.e. on X.

For example:

1. when we write f; = f2 for the elements f1, fo of LP(X,%, 1), we mean the
more correct [fi] = [f2] or, equivalently, that fi = f2 p-a.e. on X,

2. when we write [, fgdpu for the element f € LP(X, 3, 1), we mean the integral
fX fgdu for the element-function f € LP(X,X, u) and, at the same time, all
integrals fX f'gdp (equal to each other) for all functions f’ € LP(X, X, u) such
that f' = f p-a.e. on X,

3. when we write || f||, for the element f € LP(X, X, ) we mean the more correct

1

[[f]ll» or, equivalently, the expression ( [y [f|Pdu)?, when 1 < p < +oo, and
ess-supx ,(f), when p = +oo, for the element-function f € LP(X, %, ) and
at the same time all similar expressions (equal to each other) for all functions
f' € LP(X, %, u) such that f' = f p-a.e. on X.

The inequality of Minkowski takes the form

11+ Fallp < [lfrllo + 1 2]l

for every f1, fo € LP(X, %, p).

Holder’s inequality takes the form

1fglls < [1flIpllgllp
for every f € LP(X,%, ) and g € L”,(X,Z,u).
Theorem 11.7 All L?(X,X, u) are Banach spaces.

Proof: Let { f,,} be a Cauchy sequence in LP(X, %, ). Then || f,— fm ||, — 0 and,
hence, [y [fn — fmlPdp — 0, if 1 < p < +o0, and ess-supx . (fn — fm) — 0, if
p = +oo. Theorem 11.6 implies that the sequence {f,} in £P(X, X, 1) converges
to some f € LP(X,%,p) in the p-mean. Therefore, [y [fn — f|Pdu — 0, if
1 < p < 400, and ess-supx ,(fn — f) — 0, if p = +oo. This means that
Il fr — fllp — 0 and {f,} converges to the element f of LP(X, %, p).

Definition 11.21 Let I be a non-empty index set and § be the counting measure
on (I,P(I)). We denote

P(I) = LP(I,P(I),1).
In particular, if I = N, we denote [P = [P(N).

If 1 < p < 400, then, the function b = {b;};e; : I — R or C belongs to [P([)
if, by definition, [, [b|? df < 400 or, equivalently,

> bl < +oo.
el

If |b;| = 400 for at least one i € I, then ., [b;|P = 4-o0.
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Definition 11.22 Let I be an index set andb: 1 — R or C. If1 < p < +o0,
we say that b = {b;}icr is p-summable if Y, [b;|P < +oo.

Hence, b = {b; };cs is p-summable if and only if it belongs to ?(I). We also

have
loll, = (D 10al?) 7

el

=

When 1 < p < +00, Minkowski’s inequality becomes
1 1 1
(D Ibi +67P)7 < (D Ibil”) " + (D bEP)
i€l il i€l
for all b* = {b}}ic; and b? = {b?};c; which are p-summable. Similarly, when
1 < p,p’ < +oo, Holder’s inequality becomes
1 fL
Z bici| < (Z |bs[P) (Z leil”) 7
iel i€l i€l

for all p-summable b = {b;},c; and all p’-summable ¢ = {¢; }ier-

Since the only subset of I with zero f-measure is the ), we easily see that
b = {b; }icr is essentially bounded over I with respect to f if and only if there
is an M < +oo so that |b;| < M for all ¢ € I. It is obvious that the smallest M
with the property that |b;| < M for all i € I is the My = sup;¢; |b;].

Definition 11.23 Let I be an index set and b : I — R or C. We say that
b= {b;}icr is bounded if sup,; |b;| < +o0.

Therefore, b is essentially bounded over I with respect to £ or, equivalently,
b e 1°°(I) if and only if b is bounded. Also,

[b]] oo = ess-sup; 4(b) = sup [by].
el

The inequality of Minkowski takes the form

sup |b21 + bf| < sup |b11| + sup |b12|
il iel el

for all b = {bl}ic; and bv? = {b?};c; which are bounded. When p = 1 and
p' = +o0o, Holder’s inequality takes the form

D lbici < [bi] - sup el
el el el

for all summable b = {b;};cr and all bounded ¢ = {¢; }ier.
The spaces [P(I) are all Banach spaces.
As we have already mentioned, a particular case is when I = N. Then

+oo
#={o= (@, Yl <400}, 1<p< oo,
k=1
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lw:{x:(xl,x27...)| sup |z | <—|—oo}, p = +oo.
k>1
The corresponding norms are
+oo 1
lzllp = (D lexl?)”, 1< p<+oo,
k=1
[€]loo = suplax|,  p=+oo,
k>1
for every © = (21, 29,...) € IP.
Another very special case is when I = {1,...,n}. In this case we have
[P(I) =R™ and [?(I) = C™. The norms are
n 1
lolly = (Y leal?)”, 1<p<+o0,
k=1
Hx”OO = 121]?%(” |l'k|7 p= +OO,

for every © = (z1,...,z,) € R" or C".

11.3 The dual of LP(X, %, u).

Theorem 11.8 Let g € L¥ (X, %, n). If 1 <p<+o0, then

lolly =sup{| [ fodu|I £ e X211, <1}

If 1 is semifinite, the same is true when p = 1.

Proof: (a) Let 1 < p < 400 and, hence, 1 < p’ < 4o0.

For any f € LP(X,%, ) with ||f]|, < 1, we have, by Holder’s inequality,
that | [y fdul < /1, lglly < gl Therefore,

sup{] [ fodu[| 1 € 27X 5. 11 < 1} < gl

If ||lg|l,» = O, then the inequality between the sup and the ||g||,/, obviously,
becomes equality. Anyway, we have fX |g\p/ dp = 0 and, hence, g = 0 p-a.e. on
X. This implies that [, fgdu = 0 for every f € LP(X, 3, ).

Now, let ||g||,» > 0. We consider the function f, defined by

0,

if g(x) is infinite or g(x) = 0.
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Then,

lg(@)[”
fo(x)g(x) =< llallz, ="’
0, if g(x) is infinite

if g(x) is finite,

and, hence, [ fogdp = i [y lgI”" du = llglly-
pl
If 1 < p,p’ <400, then, since p(p/ — 1) = p/,
lg()|”"

[fo(z)P = a2
0, if g(x) is infinite

if g(z) is finite,

3 =

and, hence, | foll, = ([ [folP dp)? = 1.

If p = +oo,p’ =1, then

| fol(a)] = 1, if g(z) is finite and # 0,
o= 0, if g(z) is infinite or = 0

and, hence, || fol|cc = ess-supx ,(fo) = 1.
We conclude that

lolly = max{| [ fodu| 11 € 22200, 11, < 1},

(b) Let p=1,p" = +o0.
For any f € LY(X,%, ) with ||f|l1 <1, we have | [ fgdu| < | fll1llgllec <
l9llsc- Therefore,

sup{| [ fodul| £ € D'OCE 0171 < 1) < gl

If lgllc = 0, then g = 0 p-a.e. on X. This implies that [, fgdu = 0 for
every f € LP(X, X, i) and, thus, the inequality between the sup and the ||g||~
becomes equality.

Let ||g]looc > 0. We consider an arbitrary € with 0 < € < ||g||cc and, then
p{z € X||lglloo —€ < |g(z)] < |lglloc}) > 0. If p is semifinite, there exists a
B e XY sothat BC {x € X||g|lec —€ < |9(x)] < |lgllec} and 0 < p(B) < 4o0.
We define the function fy by

folz) = { 2ion(alexn () - if g(x) is finite,

0, if g(z) is infinite.
Then,
ls@xp(@) - : .
fo(z)g(x) = { w(B) if g(z) is finite,
0, if g(x) is infinite

and, hence, fX fogdu = ﬁ fB lgldp > [|glloc — €.
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Also,

|fo(z)| = { ﬁf(;)) , if g(z) is finite,
0, if g(z) is infinite

and, hence, || foll1 = [y |fol dp = ﬁ Jp dp=1.
These imply

sup{| [ fodul| £ € DR 1A <1} > gl — e

for every e with 0 < € < ||g||oc and, taking the limit as ¢ — 0+, we conclude
that

lolle =sup {| [ fodu]| £ € 21X S 1 < 1)

Definition 11.24 Let 1 < p < +oo. For every g € LF (X, %, ) or L? (X, %, 1)
we define lg : LP(X, %, u) — R or, respectively, 1y : LP(X, %, u) — C by

:/ngdu, f e LP(X,5. ).

Proposition 11.18 Let 1 < p < +oo. For every g € LP' (X, X, 1), the function
ly of Definition 11.2/ belongs to (LP(X, %, u))*.

Moreover, if 1 < p < +oo, then ||l4l|« = |lgllpy and, if p =1, then ||l4]|+« <
lglloc- If p=1 and p is semifinite, then ||yl = ||gllco-

Proof: We have l,(f1 + f2 = [x(fi + f2)gdu = [ figdp + [y fogdp =
Ly(f1) +15(f2). Also ly(f) = [x(kf)gdp =k [ fgdp = kly(f). These imply
that [, is a linear functlonal

Theorem 11.8 together with Proposition 11.5 imply that, if 1 < p < 400,
then [|i4]l« = |lgllpr- If p is semifinite, the same is true, also, for p = 1.

1tp= 1, for every f € L'(X, %, ) we have [L,(/)] = | [y fgdu| < lgllooll /11
Therefore, ||lg]]+ < ||9lco-

Definition 11.25 Let1 < p < 4+00. We define the mapping J : L?’ (X, %, u) —
(LP(X, %, )" by

forall g e LPI(X,E,M).

Proposition 11.19 The function J of Definition 11.21 is a bounded linear
transformation. If 1 < p < 400, J is an isometry from LP (X, %, u) into
(LP(X, %2, n))*. This is true, also, when p =1, if u is semifinite.

Proof: For every f € LP(X,X,u) we have Iy, 4q,(f fX (91 + g2)dp =
fX fa1 d/l"’fx fozdp =1, (f)+1g.(f) = (g, +1g.)(f) and hence, J(g1+g2) =
lgitg, = lgs +1g, = J(gl) + J(g2)

Moreover, l,(f) = [y f(kg)dp = & [ fgdu = kly(f) = (klg)(f) and,
hence, J(kg) = lﬁg =klyg =rJ(9).

Now, ||J(9)|« = ng||* < |lg|l, and J is bounded. That J is an isometry is
a consequence of Proposition 11.18.
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Lemma 11.2 Let ] € (LP(X,X,u))*. IfE€ X, Xg={A € X|AC E} is the
restriction of X on E and p is the restricted measure on (E,Xg), we define lg
by

lE(h) = l(h)7 h € Lp(EaEEyu)a

where h is the extension of h as0 on X \ E.
Then, lg € (LP(E,Xg,1))* and ||lg|| < ||l]|. Moreover,

l(fXE’):lE(fE)v fELp(X,Z7/J,),

where fg is the restriction of f on E.

Proof For all h,hq,hy € LP(E, X Y B ) we consider the corresponding extensions
h hl,hg € LP(X,%, n). Since h1 + h2 and kh are the extensions of h1 + ho
and kh, respectively, we have lg(h1 + ho) = U(hy + ha) = U(h1) + l(ha) =
Ig(h) + Ip(hs) and lg(kh) = I(kh) = kl(h) = klg(h). This proves that g is
linear and |lg(h)| = |I(h)| < ||l||\|h||p = ||l||||h]l, proves that g is bounded and
that [l1s]] < I, - B

If f e LP(X,%,u), then fr = fxg on X and, hence, Ig(fg) = I(fr) =
U(fxe)-

Definition 11.26 The lg defined in Lemma 11.2 is called the restriction of
le(LP(X,2,u)* on LP(E, Xg, 1).

Theorem 11.9 If1 < p < +o0, the function J of Definition 11.21 is an isom-
etry from LP (X,%,p) onto (LP(X, X, u))*. If u is o-finite, then this is true
also when p = 1.

Proof: A. We consider first the case when p is a finite measure: u(X) < +oo.
Let [ € (LP(X,%, )" and 1 < p < +o0.
Since [, [xal? du = p(A) < 400, we have that x4 € LP(X, %, 1) for every
A € ¥. We define the function v : ¥ — R, if I € (L2(X, X, u))*, or v : ¥ — C,
ifl € (L2(X, 3, u))*, by

v(A) =1(xa), AcT.

We have v()) = l(xp) = l(o) = 0. If A1, Ag,... € ¥ are pairwise disjoint
and A = UJ20A;, then x4 = Z;roi Xa,- Therefore, || 327, xa;, — xallb =
S 1202 xa, P dp = [y I ) IP i = (U125 11 A) — p(®) = 0, by the
continuity of u from above. T he hnearlty and the continuity of [ imply, now, that
Do v(Ay) = 20 Uxa,) = 125 xa,) — Uxa) = v(A) or, equivalently,
that EJ 1V(A;) =v(A).

Hence, v is a real measure, if | € (LP(X, 3, 1))
(X, %), if I € (L2(X, 2, )"

We observe that, if A € ¥ has u(A) = 0, then v(A) = I(xa) = l(0) = 0,
because the function y 4 is the zero element o of LP(X, 3, u). Therefore, v <
and, by Theorems 10.12 and 10.13, there exists a function g : X — R or C (if

* or a complex measure on
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v is real or complex, respectively), which is integrable over X with respect to
1, so that

l(xA)=V(A)=/Agdu=/XXAQdu

for every A € X. By the linearity of [ and of the integral, this, clearly, implies

l(¢) = /X bg dp

for every Y —measurable simple function ¢ on X.

This extends to all ¥—measurable functions which are bounded on X. In-
deed, let f € LP(X,%,u) be such that |f| < M on X for some M < +oo.
We take any sequence {¢,} of Y—measurable simple functions with ¢, —

f and |¢u| T |f| on X. Then, ¢,g — fg and [png| < [fg| < Mlg| on
X. Since [y |g|dpu < +o0, the Dominated Convergence Theorem implies that
Jx ¢ngdp — [y fgdp. On the other hand, |¢, — f|P — 0 on X and |¢, — f|P <
(|én| + |f1)P < 2P|f|P on X. The Dominated Convergence Theorem, again, im-
plies that [ |¢, — f|?du — 0 as n — +oo and, hence, ¢, — f in LP(X, %, ).
By the continuity of [, we get [ ¢ngdp = I(¢n) — I(f) and, hence,

° l(f)=/ngdu

for every f € LP(X, X, u) which is bounded on X.

Our first task, now, is to prove that g € Lp/(X, NN

If 1 < p,p’ < 400, we consider a sequence {¢,} of ¥—measurable non-
negative simple functions on X so that ¢, 1 [g|” ! on X. We define

ou(z) = { Un(@)sign(g(@), if g() is finite
" 0, if g(x) is infinite.
Then, 0 < ¢png = Pulg| T |g|? p-ae. on X and each ¢, is bounded on X.

Hence, |[nll} = [ hdpn < [x ¥nlgldpn = [ dngdp = 1(dn) < [llllll¢nlly <
|l|[[4n]lp, Where the last equality is justified by o. This implies [, ¢! dy =

lnllh < []|P" and, by the Monotone Convergence Theorem, we get Ix gl dp =
lim,— oo [ %5 dp < ||I|[P". Therefore, g € L” (X, ¥, ;1) and
lgllp < [121]-
If p =1 and p’ = 400, we consider any possible ¢ > 0 such that the set
A={ze X|t<|g(x)|} has u(A) > 0. We define the function
flz) = xa(x)sign(g(z)), if g(x) is finite
0, if g(x) is infinite.

Then tu(A) < [, lgldp = [ fgdp =1(f) < Il f]lx < ||I[|2(A), where the last
equality is justified by ¢. This implies that ¢ < ||I|| and, hence, |g] < ||| p-a.e.
on X. Therefore, g is essentially bounded on X with respect to p and

lgllee < 121l
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We have proved that, in all cases, g € LP (X, %, ) and || g[l,» < ||I]-

Now, consider an arbitrary f € LP(X,X,u) and take a sequence {¢,} of
Y —measurable simple functions on X so that ¢, — f and |¢,| 1 |f| on X. We
have already shown, by the Dominated Convergence Theorem, that ¢, — f
in LP(X, %, ) and, hence, I(¢n) — I(f). Moreover, | [y ¢ngdp — [y fgdu| <
T 16n — Fllgldp < 6w — flpllglly — 0, since gl < +oo. From I(¢n) =
Jx ®ng dp, we conclude that

l(f):/xfgd,ua fELp<X,Z,M).

This implies, of course, that I(f) = l4(f) for every f € LP(X,%, ) and,
hence,
l=1y=J(g).

The uniqueness part of Proposition 11.19 implies that, if ¢’ € L¥’ (X,%, )
also satisfies | = [y, then ¢’ = g p-a.e. on X.

B. We suppose, now, that p is o-finite and consider an increasing sequence {Ey }
in ¥ so that E T X and p(Ey) < +oo for all k.

Let I € (LP (X, %, u))*.

For each k, we consider the restriction lg, of [ on LP(Ey, X, , 1), which is
defined in Lemma 11.2. Since lg, € (LP(Ek,Xg,,p))* and ||lg, || < ||I|| and
since u(Ey) < 400, part A implies that there is a unique gx € Lp/(Ek, YE,, )
so that [lgelly < s, | < 1]l and

U(fxm) = ln, (f,) = /E fign dp

for every f € LP(X, X, p).
For an arbitrary h € LP(Ey, X, , i) we consider its extension b’ on Ej41 as
0 on Ej11\ F and, observing that h = h’ on X, we have fEk hgr du =g, (h) =

I(h) =U(W) =g, (B) = fEkH Wgis1dp = [ hgrir dp. By the uniqueness
result of part A, we have that gi+1 = gx p-a.e. on Fr. We may clearly suppose
that gx+1 = g on Ej for every k, by inductively changing gr4+1 on a subset of
E}, of zero p-measure.

We define the ¥ —measurable function g on X as equal to g on each Ej.
Therefore, [(fxg,) = fEk fE,9du and, thus,

l(fxEk)=/E fgdu,  feLP(X,3,u).

If 1 < p’ < 400, then, since |gr| T |g| on X, the Monotone Convergence Theo-
rem implies that [y [g[" dp = limp—4o0 [ [gr[" dp = limp 1 oo fEk lgr|P dp <
limsupy, o [Lk[|” < [I1]]” < +oo. Hence, g € LP (X, %, p) and [|g][y < [[I]].

If p" = 400, we have that, for every k, |g| = |gk| < |9k |loo < ||lk]] < ||| p-a-e.
on Ej. This implies that |g| < ||| p-a.e. on X and, thus, g € L>°(X, %, 1) and
glloe < NII-
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Hence, in all cases, g € LP (X, %, u) and ||g||,» < ||I]|.
For an arbitrary f € LP(X, ¥, u), we have || fxg, — |2 = [ [fxE,—fIP dp =
Jee 1fPdp = [ xEe| fIP diw — 0, by the Dominated Convergence Theorem. By
k
the continuity of I, we get I(f) = limp— 100 I(fXxE,) = limp—too fEk fodu =
Jx fgdp. The last equality holds since |fEk fgdp— [ fgdul = [y fgdu| <
¢ k

1
(fE’j |17 di) " ||gll,r — 0. We have proved that

I(f) = /X fodu,  feIP(X,Sp)

and, hence, | = [,;. Again, the uniqueness part of Proposition 11.19 implies that,
if also ¢/ € L¥ (X, X, n) satisfies [ = Iy, then ¢’ = g p-a.e. on X.
C. Now, let 1 < p,p’ < +oo and u be arbitrary.

Let I € (LP(X, %, u))*.

We consider any E € ¥ of o-finite p-measure and the restriction [ of
l on LP(E,Xg, 1), defined in Lemma 11.2. Since lg € (LP(F,Xg,p))* and
lig]l < |l1]l, part B implies that there is a unique gz € LP (E,Yg, 1) so that
lgzlly < (|1l and

Ufxe) =1le(fe) = /EngE dp

for every f € LP(X, X, p).

Now, let FF C E be two sets of o-finite y-measure with F C E. For an
arbitrary h € LP(F,Xp, ) we consider its extension A’ on E as 0 on E \ F'
and, observing that h = &/ on X, we have Jphgrdp = 1p(h) = I(h) = I(I) =
lp(h') = [, W gedu= [, hgedu. By the uniqueness result of part B, we have
that gr = g p-a.e. on F.

We define

M = sup {/ |gE|p/ du | E of o-finite u—measure}
E

and, obviously, M < [|I|[’" < 4+00. We take a sequence {E,} in ¥, where each
E, has o-finite y-measure, so that [, |gg, [P du — M. We define E = U/ E,

and observe that £ has o-finite y-measure and, hence, [ | ge|P dp < M. Since
E, C E, by the result of the previous paragraph, gg, = gr p-a.e. on E, and,
thus, [, 95, P dp < [, |g|” dp < M. Taking the limit as n — +oo, this
implies that

/ lge|P du =M.
E

We set g = gg and have that

/ 9" du = / lgx P du= M < ||,
X E

Now consider an arbitrary f € LP(X, %, u). The set
F=FEU{ze X|f(z)+#0}
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has o-finite p-measure. From gp = gp p-a.e. on E, we get M = fE \gE|p/ dp =
Jelorl” dw < [ lgrl” dp + [ g lor” dp = [4lgr[” dp < M. Therefore,
fF\E lgr|? dp = 0 and, hence, gp = 0 p-a.e. on F\ E. If fp is the restriction of

fon F, we have that I(f) = (fxr) = [ fropdp = [; frogrdp = [, fop du =
Ix fgdp.

Thus, I(f) = l4(f) for every f € LP(X,%, i) and, hence, [ =1, = J(g).

We conclude that J is onto and, combining with the result of Proposition
11.19, we finish the proof.

11.4 The space M(X,X).

Definition 11.27 Let (X,X) be a measurable space. The set of all real mea-
sures on (X,¥) is denoted by M, (X,X) and the set of all complex measures on
(X,%) is denoted by M.(X,%).

If there is no danger of confusion, we shall use the symbol M (X, ¥) for both
M, (X,¥) and M.(X, ).

We recall addition and multiplication on these spaces. If vy, 15 € M(X,3),
we define v1 +v2 € M(X,3) by (11 +12)(A) = v1(A)+1v2(A) for all A € 3. We,
also, define kv by (kv)(A) = kv(A) for all Ae ¥, If v € M, (X,X) and k € R,
then kv € M, (X,X) and, if v € M (X,¥) and k € C, then kv € M (X, ¥).

It is easy to show that M, (X,Y) is a linear space over R and M.(X,Y) is a
linear space over C. The zero element of both spaces is the measure o defined by
o(A) =0 for all A € . The opposite to v is —v defined by (—v)(A) = —v(A4)
for all A € 3.

Definition 11.28 For every v € M(X,X) we define
]l = [vI(X).

Thus, ||v|| is just the total variation of v.
Proposition 11.20 || - || is a norm on M(X,Y).

Proof: Proposition 10.9 implies that |[v1 + va|| = |11 + 1.|(X) < |n|(X) +
val (X) = vl + [lv2]| and [|sv]| = |xv|(X) = |s||v|(X) = |x[[|v].

If ||¥|| = 0, then |v|(X) = 0. This implies that |v(A)| < |v|(4A) = 0 for all
A € ¥ and, hence, v = o is the zero measure.

Theorem 11.10 M (X,Y) is a Banach space.

Proof: Let {v,,} be a Cauchy sequence in M (X, ). This means |v, — vy, |(X) =
lVn — V|l — 0 as n,m — 400 and, hence, |V, (A) — v (A)] = [(Vn — vm)(A)] <
[Vn — Um|(A) < |vp — vp|(X) — 0 as n,m — +oo. This implies that the
sequence {v,(A)} of numbers is a Cauchy sequence for every A € . Therefore,
it converges to a finite number and we define

v(A)= lim v,(A)

n—-+oo
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for all A € .
It is clear that v(0) = lim,_, 4 o0 v, (@) = 0.
Now, let Ay, Az, ... € ¥ be pairwise disjoint and A = U;:OTA]-. We take an
arbitrary € > 0 and find N so that ||v, — vi|| < € for all n,m > N. Since
jr:f lvn|(4;) = |vn|(A) < 400, there is some J so that

+oo

Y lwl(4y) <e

j=J+1

From |v,| < v, — vn| + |vn| we get that, for every n > N,

+o0 +00 400
Dol < D I —unl(A) + D Ivwl(4))
j=J+1 j=J+1 j=J+1

< |1/n71/N|( p J+1Aj)+e

< v —wonl(X)+€ = [vn—vn| +e

< 2e.

This implies that, for arbitrary K > J 4+ 1 and every n > N, we have
S vn(A4y)] < Zg 711 lvnl (A7) < 26 and, taking the limit as n — +oo,

Zf:JH |v(A;)| < 2e. Finally, taking the limit as K — 400, we find

“+oo

S (4] < 2.

j=J+1
We have [v,(A) = Yo7 va(A))] = | 3272500 va(A5)] < 30254 va(4))] <
jg}ﬂ lvn|(A4;) < 2¢ for all n > N and, taking the limit as n — +o0,

J

(A) = 3 (4] < 2.

j=1
Altogether, we have
+oo J +oo
(A) =D w(A)] < (A) =Y v(A))+ > [v(4)] < 4e.
7j=1 j=1 j=J+1

Since € is arbitrary, we get v(A) = Zj 1 v(A;) and we conclude that v €
M(X,%).

Consider an arbitrary measurable partition {A;,...,A,} of X. We have
that D7 _; [(vn — vm)(Ak)| < ||vn — vim|| < € for every n,m > N. Taking the
limit as m — 400, we find > ¥ _, |(vn —v)(Ay)| < € for every n > N and, taking
the supremum of the left side, we get

1 = vl = I — ](X) < e.

This means that ||v, — v| — 0 as n — +o0.
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11.5 Exercises.

1.

Approzimation

(i) Let f € LP(X,X, u) and € > 0. Using Theorem 6.1, prove that there
exists a ¥ —measurable simple function ¢ on X so that ||f — ¢||, < e. If
p < 400, then ¢ = 0 outside a set of finite u-measure.

(ii) Let f € LP(R™, L, my,) and € > 0. If p < 400, prove that there exists
a function g continuous on R™ and equal to 0 outside some bounded set
so that ||f —g]l, <e.

Let I be any index set and 0 < p < ¢ < 4o00. Prove that {?(I) C 19(])
and that
1ollg < 1121l

for every b € IP(I).

Let u(X) < 400 and 0 < p < ¢ < +oo. Prove that LY(X,%, u) C
LP(X, ¥, u) and that

1fllp < w(X)> 77 [ fllq
for every f € LY(X, X, p).

Let 0<p<g<r<+ooand f e LP(X,% pu)NL(X,%,u). Prove that
feLyX,%, u) and, if % = % + =L, then

£l < IFIRIAI

Letl1<p<r<4oo Weset Z=LP(X,%, p)NL"(X, %, u) and we define

L = [1£llp + | fll- for every f € Z.
(i) Prove that || - || is a norm on Z and that (Z,] - ||) is a Banach space.

(ii) If p < g < r, consider the linear transformation T : Z — LI(X, %, u)
with T(f) = f for every f € Z (see Exercise 11.5.4). Prove that T is
bounded.

LLet 0 < p<g<r<+4ooand fe LIX,E p). If t >0 is arbitrary,

consider the functions

_ [ f), it [f(a) > ¢ o, if|f(x)] >t
g(m){& if |f(a)] <t h(x){f(x), if [fz)) <t

Prove that g € LP(X, %, ) and h € L™ (X, %, ) and that f =g+ h on X.

Let 1 < p <r < 4oo. We define W = LP(X, X, u) + L"(X,Z,u) =

{g+h|ge LP(X, S p),h € L"(X, 5, u)} and
17 = inf {lglly + [l | g € LP(X, 5, 1), h € L(X, ), f = g + h}

for every f e W.

(i) Prove that || - || is a norm on W and that (W, || - ||) is a Banach space.
(ii) If p < g < r, consider the linear transformation T': LY(X, X, u) — W
with T'(f) = f for every f € LYU(X, %, 1) (see Exercise 11.5.6). Prove that
T is bounded.
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10.

11.

12.

13.

. Let 0 < p < ¢ < +o0. Prove that LP(X,%,u) € LU(X,3, u) if and

only if X includes sets of arbitrarily small positive py-measure and that
LUX, %, p) € LP(X, %, ) if and only if X includes sets of arbitrarily
large finite y-measure.

. Let 1 < p < 400 and {f,} be a sequence in LP(X, %, 1) so that |f,| < g

p-a.e. on X for every n for some g € LP(X, 3, ). If {f,} converges to f
p-a.e. on X or in measure, prove that || f, — f||, — 0.

Let 1 <p < +4ocoand f, f, € LP(X, %, pu) for all n. If f,, — f p-a.e. on X,
prove that || f, — fll, — 0 if and only if || fnll, — || f]l,-

Let 1 < p < 400 and g € L®(X,%, ). We define the linear trans-
formation T : LP(X,3,pn) — LP(X,%,p) with T(f) = gf for every
f € LP(X, %, n). Prove that T is bounded, that |T|| < ||g]lcc and that
IT]] = |lg]loo if g is semifinite.

The inequality of Chebychev.

If0<p<+ocoand f € LP(X, 3, u), prove that

1715
tp

/\‘f|(t)§ , 0 <t < +4o0.

The general Minkowski’s Inequality.

Let (X1,%1,u1) and (X2, Xo, u2) be two o-finite measure spaces and 1 <
p < +o00.
(i) If f: X1 x Xo — [0,+00] is X1 ® Xg—measurable, prove that

(L ([ sermfon)? < [ ([, v

(ii) If f(-,22) € LP(Xy, %1, p1) for ps-a.e. x5 € Xo and the function o +—
[ f(-;22)lp is in L' (X2, X, p2), prove that f(x1,-) € L'(Xa, Xa, pig) for pus-
a.e. r1 € X1, that the function z, +— fX2 flx1,)dps is in LP (X7, 31, p1)

and
(/X1 ('a')dﬂ2‘pd/ﬂ)% S/X2 (/X1 |f(-,-)\pdu1)%du2.

X2



