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PreliminariesCHAPTER 1
1.1 Real Numbers,

Estimation, and
Logic

1.2 Inequalities and
Absolute Values

1.3 The Rectangular
Coordinate System

1.4 Graphs of
Equations

1.5 Functions and
Their Graphs

1.6 Operations on
Functions

1.7 Exponential and
Logarithmic
Functions

1.8 The Trigonometric
Functions

1.9 The Inverse
Trigonometric
Functions

1.1
Real Numbers, Estimation, and Logic
Calculus is based on the real number system and its properties. But what are the
real numbers and what are their properties? To answer, we start with some simpler
number systems.

The Integers and the Rational Numbers The simplest numbers of all
are the natural numbers,

With them we can count: our books, our friends, and our money. If we include their
negatives and zero, we obtain the integers

When we measure length, weight, or voltage, the integers are inadequate. They
are spaced too far apart to give sufficient precision. We are led to consider quo-
tients (ratios) of integers (Figure 1), numbers such as

3
4

, 
-7
8

, 
21
5

, 
19
-2

, 
16
2

, and 
-17

1

Á , -3, -2, -1, 0, 1, 2, 3, Á

1, 2, 3, 4, 5, 6, Á

1

2
3

1
3

3
4

1
4

Figure 1

2
1

1

�

Figure 2

Note that we included and though we would normally write them as 8
and since they are equal to the latter by the ordinary meaning of division. We
did not include or since it is impossible to make sense out of these symbols
(see Problem 30). Remember always that division by 0 is never allowed. Numbers
that can be written in the form where m and n are integers with are
called rational numbers.

Do the rational numbers serve to measure all lengths? No. This surprising fact
was discovered by the ancient Greeks in about the fifth century B.C. They showed
that while measures the hypotenuse of a right triangle with legs of length 1
(Figure 2), cannot be written as a quotient of two integers (see Problem 77).
Thus, is an irrational (not rational) number. So are and a
host of other numbers.

The Real Numbers Consider all numbers (rational and irrational) that can
measure lengths, together with their negatives and zero. We call these numbers the
real numbers.

The real numbers may be viewed as labels for points along a horizontal line.
There they measure the distance to the right or left (the directed distance) from a

23, 25, 23 7, p,22
22
22

n Z 0,m>n,

- 9
0

5
0

-17

- 17
1 ,16

2
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2 Chapter 1 Preliminaries

fixed point called the origin and labeled 0 (Figure 3).Though we cannot possibly show
all the labels, each point does have a unique real number label. This number is called
the coordinate of the point, and the resulting coordinate line is referred to as the real
line. Figure 4 suggests the relationships among the sets of numbers discussed so far.

You may remember that the real number system can be enlarged still more—
to the complex numbers. These are numbers of the form where a and b are
real numbers and Complex numbers will rarely be used in this book.
In fact, if we say or suggest number without any qualifying adjective, you can
assume that we mean real number. The real numbers are the principal characters
in calculus.

i = 2-1.
a + bi,

3.000 13.0008

= 0.375

60 2 0
56
40 90

8840
0 20

11

11
9

= 1.181818 . . .

1 1

112 4

0.375 1.181

3
8

13
11

Figure 5

Real Numbers

Rational Numbers

Integers

Natural
Numbers

Figure 4

–3 –1–2 3210 4

–3  
2

1
2

7
32� π

Figure 3

Repeating and Nonrepeating Decimals Every rational number can be
written as a decimal, since by definition it can always be expressed as the quotient
of two integers; if we divide the denominator into the numerator, we obtain a dec-
imal (Figure 5). For example,

Irrational numbers, too, can be expressed as decimals. For instance,

The decimal representation of a rational number either terminates (as in
) or else repeats in regular cycles forever (as in ). A lit-

tle experimenting with the long division algorithm will show you why. (Note that
there can be only a finite number of different remainders.) A terminating decimal
can be regarded as a repeating decimal with repeating zeros. For instance,

Thus, every rational number can be written as a repeating decimal. In other words,
if x is a rational number, then x can be written as a repeating decimal. It is a
remarkable fact that the converse is also true; if x can be written as a repeating
decimal, then x is a rational number. This is obvious in the case of a terminating
decimal (for instance, ), and it is easy to show for the case of a
nonterminating repeating decimal.

� EXAMPLE 1 (Repeating decimals are rational.) Show that 
represents a rational number.

SOLUTION We subtract x from 1000x and then solve for x.

� x =

136
999

 999x = 136
 x = 0.136136 Á

 1000x = 136.136136 Á

0.136136136 Á

x =

3.137 = 3137/1000

3
8

= 0.375 = 0.3750000 Á

13
11 = 1.181818 Á

3
8 = 0.375

22 = 1.4142135623 Á , p = 3.1415926535 Á

1
2

= 0.5 3
8

= 0.375 3
7

= 0.428571428571428571 Á

2



Section 1.1 Real Numbers, Estimation, and Logic 3

Rational Numbers
(the repeating
decimals)

The Real Numbers

Irrational Numbers
(the nonrepeating
decimals)

Figure 6

a b

x1x3x2

a + b
2

Figure 7

The decimal representations of irrational numbers do not repeat in cycles.
Conversely, a nonrepeating decimal must represent an irrational number.Thus, for
example,

must represent an irrational number (note the pattern of more and more 0s
between the 1s). The diagram in Figure 6 summarizes what we have said.

Denseness Between any two different real numbers a and b, no matter 
how close together, there is another real number. In particular, the number

is a real number that is midway between a and b (Figure 7). Since
there is another real number, between a and and another real number,
between and and since this argument can be repeated ad infinitum, we con-
clude that there are infinitely many real numbers between a and b. Thus, there is
no such thing as “the real number just larger than 3.”

Actually, we can say more. Between any two distinct real numbers, there are
both a rational number and an irrational number. (In Problem 57 you are asked to
show that there is a rational number between any two real numbers.) Hence, by
the preceding argument, there are infinitely many of each.

One way that mathematicians describe the situation we have been discussing
is to say that both the rational numbers and the irrational numbers are dense along
the real line. Every number has both rational and irrational neighbors arbitrarily
close to it.

One consequence of the density property is that any irrational number can 
be approximated as closely as we please by a rational number—in fact, by a ra-
tional number with a terminating decimal representation.Take as an example.
The sequence of rational numbers 
marches steadily and inexorably toward (Figure 8). By going far enough along
in this sequence, we can get as near to as we wish.

Calculators and Computers Today many calculators are capable of per-
forming numerical, graphical, and symbolic operations. For decades now, calcu-
lators have been able to perform numerical operations such as giving decimal
approximations to and 1.25 sin 22°. By the early 1990s calculators could dis-
play the graph of almost any algebraic, trigonometric, exponential, or logarithmic
function. Recent advances allow calculators to perform many symbolic operations,
such as expanding or solving Computer software
such as Mathematica or Maple can perform symbolic operations like these, as well
as a great many others.

Our recommendations regarding the use of a calculator are these:

1. Know when your calculator or computer gives you an exact answer and when
it gives you an approximation. For example, if you ask for sin 60°, your calcu-
lator may give the exact answer, or it may give you a decimal approxi-
mation, 0.8660254.

2. In most cases, an exact answer is preferred. This is especially true when you
must use the result in further calculations. For example, if you subsequently
need to square the result of sin 60°, it is easier, as well as being more accurate,
to compute than it is to compute 

3. In an applied problem, give an exact answer, if possible, as well as an approxi-
mation.You can often check whether your answer is reasonable, as it relates to
the description of the problem, by looking at your numerical approximation to
the solution.

Estimation Given a complicated arithmetic problem, a careless student might
quickly press a few keys on a calculator and report the answer, not realizing that a
missed parenthesis or a slip of the finger has given an incorrect result. A careful
student with a feeling for numbers will press the same keys, immediately recognize

0.86602542.A23>2 B2 = 3>4

23>2,

x3
- 2x2

+ x = 0.1x - 3y212

212.2

22
22

1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, Á

22

x2,x1

x3,x1,x2,
x1 = 1a + b2>2

0.101001000100001 Á

2�
1.4

1

1.41
1.414

Figure 8

Many problems in this book are
marked with a special sysmbol.

means use a calculator.

means use a graphing calculator.

means use a computer algebra
system.

means the problem asks you
to explore and go beyond the 
explanations given in the book.

EXPL

CAS

GC

C

3



4 Chapter 1 Preliminaries

that the answer is wrong if it is far too big or far too small, and recalculate it cor-
rectly. It is important to know how to make a mental estimate.

� EXAMPLE 2 Calculate 

SOLUTION A wise student approximated this as and said that
the answer should be in the neighborhood of 30. Thus, when her calculator gave
93.448 for an answer, she was suspicious (she had actually calculated

).
On recalculating, she got the correct answer: 34.434. �

� EXAMPLE 3 Suppose that the shaded region R shown in Figure 9 is
revolved about the x-axis. Estimate the volume of the resulting solid ring S.

SOLUTION The region R is about 3 units long and 0.9 units high.We estimate its
area as Imagine the solid ring S to be slit open and laid
out flat, forming a box about units long. The volume of a box
is its cross-sectional area times its length. Thus, we estimate the volume of the box
to be If you calculate it to be 1000 cubic units, you need to
check your work. �

The process of estimation is just ordinary common sense combined with rea-
sonable numerical approximations. We urge you to use it frequently, especially on
word problems. Before you attempt to get a precise answer, make an estimate. If
your answer is close to your estimate, there is no guarantee that your answer is
correct. On the other hand, if your answer and your estimate are far apart, you
should check your work. There is probably an error in your answer or in your
approximation. Remember that 

and so on.
A central theme in this text is number sense. By this, we mean the ability to

work through a problem and tell whether your solution is a reasonable one for the
stated problem.A student with good number sense will immediately recognize and
correct an answer that is obviously unreasonable. For many of the examples
worked out in the text, we provide an initial estimate of the solution before pro-
ceeding to find the exact solution.

A Bit of Logic Important results in mathematics are called theorems; you will
find many theorems in this book. The most important ones occur with the label
Theorem and are usually given names (e.g., the Pythagorean Theorem). Others
occur in the problem sets and are introduced with the words show that or prove
that. In contrast to axioms or definitions, which are taken for granted, theorems re-
quire proof.

Many theorems are stated in the form “If P then Q” or they can be restated in
this form.We often abbreviate the statement “If P then Q” by which is also
read “P implies Q.” We call P the hypothesis and Q the conclusion of the theorem.
A proof consists of showing that Q must be true whenever P is true.

Beginning students (and some mature ones) may confuse with 
its converse, These two statements are not equivalent. “If John is a Mis-
sourian, then John is an American” is a true statement, but its converse “If John is
an American, then John is a Missourian” may not be true.

The negation of the statement P is written For example, if P is the state-
ment “It is raining,” then is the statement “It is not raining.” The statement

is called the contrapositive of the statement and it is equivalent
to By “equivalent” we mean that and are either both
true or both false. For our example about John, the contrapositive of “If John is a
Missourian, then John is an American” is “If John is not an American, then John is
not a Missourian.”

Because a statement and its contrapositive are equivalent, we can prove a the-
orem of the form “If P then Q” by proving its contrapositive “If then ”' P.' Q

' Q Q '  PP Q QP Q Q.
P Q Q' Q Q ' P

' P

' P.

Q Q P.
P Q Q

P Q Q,

1 mile L 5000 feet,
210

L 1000, 1 foot L 10 inches,p L 3, 22 L 1.4,

31362 = 108 cubic units.

2pr L 2132162 = 36
310.92 L 3 square units.

2430 + 72 + 23 7.5>2.75

120 + 72 + 22>3
A2430 + 72 + 23 7.5 B >2.75.

Many problems are marked with this
symbol.

means make an estimate of the
answer before working the problem;
then check your answer against this
estimate.

≈

In Example 3, we have used to
mean “approximately equal.” Use
this symbol in your scratch work
when making an approximation. In
more formal work, never use this
symbol without knowing how large
the error could be.

L

≈

R 0.9

6

3

Figure 9

4



Section 1.1 Real Numbers, Estimation, and Logic 5

Proof by contradiction also goes by
the name reductio ad absurdum.
Here is what the great mathemati-
cian G. H. Hardy had to say about it.

“Reductio ad absurdum, which
Euclid loved so much, is one of a
mathematician’s finest weapons.
It is a far finer gambit than any
chess gambit; a chess player may
offer the sacrifice of a pawn or
even a piece, but a mathematician
offers the game.”

Proof by Contradiction

To say that means that x is to
the left of y on the real line.

x 6 y

Order on the Real Line

yx

Thus, to prove we can assume and try to deduce Here is a simple
example.

� EXAMPLE 4 Prove that if is even, then n is even.

Proof The contrapositive of this sentence is “If n is not even, then is not
even,” which is equivalent to “If n is odd, then is odd.” We will prove the con-
trapositive. If n is odd, then there exists an integer k such that Then

Therefore, is equal to one more than twice an integer. Hence   is odd. �

The Law of the Excluded Middle says: Either R or but not both. Any
proof that begins by assuming the conclusion of a theorem is false and proceeds to
show this assumption leads to a contradiction is called a proof by contradiction.

Occasionally, we will need another type of proof called mathematical induc-
tion. It would take us too far afield to describe this now, but we have given a com-
plete discussion in Appendix A.1.

Sometimes both the statements (if P then Q) and (if Q then
P) are true. In this case we write which is read “P if and only if Q.” In Ex-
ample 4 we showed that “If is even, then n is even,” but the converse “If n is
even, then is even” is also true. Thus, we would say “n is even if and only if 
is even.”

Order The nonzero real numbers separate nicely into two disjoint sets—the
positive real numbers and the negative real numbers. This fact allows us to intro-
duce the order relation (read “is less than”) by

We agree that and shall mean the same thing. Thus,
and 

The order relation (read “is less than or equal to”) is a first cousin of It is
defined by

Order properties 2, 3, and 4 in the margin box hold when the symbols and are
replaced by and 

Quantifiers Many mathematical statements involve a variable x, and the truth
of the statement depends on the value of x. For example, the statement “ is a
rational number” depends on the value of x; it is true for some values of x, such as 

and and false for other values of x, such as and

Some statements, such as are true for all real numbers x, and other
statements, such as “x is an even integer greater than 2 and x is a prime number,”
are always false. We will let P(x) denote a statement whose truth depends on the
value of x.

We say “For all x, P(x)” or “For every x, P(x)” when the statement P(x) is true
for every value of x. When there is at least one value of x for which P(x) is true, we
say “There exists an x such that P(x).” The two important quantifiers are “for all”
and “there exists.”

� EXAMPLE 5 Which of the following statements are true?

(a) For all 
(b) For all 
(c) For every x, there exists a y such that 
(d) There exists a y such that, for all x, y 7 x.

y 7 x.
x, x 6 0 Q x2

7 0.
x, x2

7 0.

“x2
Ú 0,”p.

x = 2, 3, 77,
10,000

49
,x = 1, 4, 9, 

4
9

,

1x

Ú .…

76

x … y 3 y - x is positive or zero

6 .…

-2 7 -3.3 6 4, 4 7 3, -3 6 -2,
y 7 xx 6 y

x 6 y 3 y - x is positive

6

n2n2
n2

P 3 Q,
Q Q PP Q Q

'R,

n2n2

n2
= 12k + 122 = 4k2

+ 4k + 1 = 212k2
+ 2k2 + 1

n = 2k + 1.
n2

n2

n2

' P.' QP Q Q,

1. Trichotomy. If x and y are num-
bers, then exactly one of the fol-
lowing holds:

or or

2. Transitivity.

3. Addition.

4. Multiplication. When z is
positive,
When z is negative,
x 6 y 3 xz 7 yz.

x 6 y 3 xz 6 yz.

x + z 6 y + z.x 6 y 3

Q x 6 z.
y 6 zandx 6 y

x 7 yx = yx 6 y 

The Order Properties

5



6 Chapter 1 Preliminaries

SOLUTION
(a) False. If we choose then it is not true that 
(b) True. If x is negative, then will be positive.
(c) True. This statement contains two quantifiers, “for every” and “there exists.”

To read the statement correctly, we must apply them in the right order. The
statement begins “for every,” so if the statement is true, then what follows must
be true for every value of x that we choose. If you are not sure whether the
whole statement is true, try a few values of x and see whether the second part
of the statement is true or false. For example, we might choose given
this choice, does there exist a y that is greater than x? In other words, is there a
number greater than 100? Yes, of course. The number 101 would do. Next
choose another value for x, say Does there exist a y that is
greater than this value of x? Again, yes; in this case the number 1,000,001
would do. Now, ask yourself:“If I let x be any real number, will I be able to find
a y that is larger than x?” The answer is yes. Just choose y to be 

(d) False. This statement says that there is a real number that is larger than every
other real number. In other words, there is a largest real number. This is false;
here is a proof by contradiction. Suppose that there exists a largest real num-
ber y. Let Then which is contrary to the assumption that y
is the largest real number. �

The negation of the statement P is the statement “not P.” (The statement “not
P” is true provided P is false.) Consider the negation of the statement “for all x,
P(x).” If this negated statement is true, then there must be at least one value of x
for which P(x) is false; in other words, there exists an x such that “not P(x).” Now
consider the negation of the statement “there exists an x such that P(x).” If this
negated statement is true, then there is not a single x for which P(x) is true. This
means that P(x) is false no matter what the value of x. In other words,“for all x, not
P(x).” In summary,

The negation of “for all x, P(x)” is “there exists an x such that not P(x).”

The negation of “there exists an x such that P(x)” is “for every x, not
P(x).”

x 7 y,x = y + 1.

x + 1.

x = 1,000,000.

x = 100;

x2
x2

7 0.x = 0,

Concepts Review
1. Numbers that can be written as the ratio of two integers

are called _____.

2. Between any two real numbers, there is another real num-
ber. This is what it means to say that the real numbers are _____.

3. The contrapositive of “If P then Q” is _____.

4. Axioms and definitions are taken for granted, but _____
require proof.

Problem Set 1.1
In Problems 1–16, simplify as much as possible. Be sure to remove
all parentheses and reduce all fractions.

1. 2.

3.

4.

5. 6.

7. 8.

9. 10. A27 - 5 B > A1 -
1
7 B14

21
 ¢ 2

5 -
1
3

≤2

-
1
3 C25 -

1
2 A13 -

1
5 B D1

3 C12 A14 -
1
3 B +

1
6 D

3
4 - 7 +

3
21 -

1
6

5
7 -

1
13

5[-117 + 12 - 162 + 4] + 2

-4[51-3 + 12 - 42 + 2113 - 72]
3[2 - 417 - 122]4 - 218 - 112 + 6

11. 12.

13. 14.

15. 16.

In Problems 17–28, perform the indicated operations and simplify.

17. 18.

19. 20.

21. 22. 12t + 32313t2
- t + 122

14x - 11213x - 7213x - 9212x + 12
12x - 32213x - 421x + 12

A25 - 23 B2A25 + 23 B A25 -23 B
2 +

3

1 +
5
2

1 -

1

1 +
1
2

1
2 -

3
4 +

7
8

1
2 +

3
4 -

7
8

11
7 -

12
21

11
7 +

12
21

6



Section 1.1 Real Numbers, Estimation, and Logic 7

23. 24.

25. 26.

27. 28.

29. Find the value of each of the following; if undefined, say
so.

(a) (b) (c)

(d) (e) (f)

30. Show that division by 0 is meaningless as follows: Sup-
pose that If then which is a contra-
diction. Now find a reason why is also meaningless.

In Problems 31–36, change each rational number to a decimal by
performing long division.

31. 32.

33. 34.

35. 36.

In Problems 37–42, change each repeating decimal to a ratio of
two integers (see Example 1).

37. 38.

39. 40.

41. 42.

43. Since and 
(see Problems 41 and 42), we see that certain ra-

tional numbers have two different decimal expansions. Which
rational numbers have this property?

44. Show that any rational number , for which the prime
factorization of q consists entirely of 2s and 5s, has a terminating
decimal expansion.

45. Find a positive rational number and a positive irrational
number both smaller than 0.00001.

46. What is the smallest positive integer? The smallest posi-
tive rational number? The smallest positive irrational number?

47. Find a rational number between 3.14159 and Note that

48. Is there a number between (repeating 9s) and
1? How do you resolve this with the statement that between any
two different real numbers there is another real number?

49. Is rational or irrational? (You
should see a pattern in the given sequence of digits.)

50. Find two irrational numbers whose sum is rational.

In Problems 51–56, find the best decimal approximation that
your calculator allows. Begin by making a mental estimate.

51. 52.

53. 54.

55. 56.

57. Show that between any two different real numbers there is
a rational number. (Hint: If then so there is a
natural number n such that Consider the set

and use the fact that a set of integers that is bound-
ed from below contains a least element.) Show that between any
5k:k>n 7 b6

1>n 6 b - a.
b - a 7 0,a 6 b,

24 16p2
- 22p28.9p2

+ 1 - 3p

13.14152-1/224 1.123 - 23 1.09

A22 - 23 B4A23 + 1 B3
≈

0.1234567891011121314 Á

0.9999 Á

p = 3.141592 Á

p.

p>q

0.400000 Á

0.399999 Á =0.199999 Á = 0.200000 Á

0.399999 Á0.199999 Á

3.929292 Á2.56565656 Á

0.217171717 Á0.123123123 Á

11
13

11
3

5
17

3
21

2
7

1
12

0>0
a = 0 # b = 0,a>0 = b,a Z 0.

170053
0

0
17

0
00 # 0

2
6y - 2

+

y

9y2
- 1

12

x2
+ 2x

+

4
x

+

2
x + 2

2x - 2x2

x3
- 2x2

+ x

t2
- 4t - 21
t + 3

x2
- x - 6
x - 3

x2
- 4

x - 2

two different real numbers there are infinitely many rational
numbers.

58. Estimate the number of cubic inches in your head.

59. Estimate the length of the equator in feet. Assume the
radius of the earth to be 4000 miles.

60. About how many times has your heart beat by your twen-
tieth birthday?

61. The General Sherman tree in California is about 270 feet
tall and averages about 16 feet in diameter. Estimate the num-
ber of board feet (1 board foot equals 1 inch by 12 inches by 12
inches) of lumber that could be made from this tree, assuming no
waste and ignoring the branches.

62. Assume that the General Sherman tree (Problem 61)
produces an annual growth ring of thickness 0.004 foot. Estimate
the resulting increase in the volume of its trunk each year.

63. Write the converse and the contrapositive to the follow-
ing statements.
(a) If it rains today, then I will stay home from work.
(b) If the candidate meets all the qualifications, then she will be

hired.

64. Write the converse and the contrapositive to the follow-
ing statements.
(a) If I get an A on the final exam, I will pass the course.
(b) If I finish my research paper by Friday, then I will take off

next week.

65. Write the converse and the contrapositive to the follow-
ing statements.
(a) (Let a, b, and c be the lengths of sides of a triangle.) If

then the triangle is a right triangle.
(b) If angle ABC is acute, then its measure is greater than 0° and

less than 90°.

66. Write the converse and the contrapositive to the follow-
ing statements.
(a) If the measure of angle ABC is 45°, then angle ABC is an

acute angle.
(b) If then 

67. Consider the statements in Problem 65 along with their
converses and contrapositives. Which are true?

68. Consider the statements in Problem 66 along with their
converses and contrapositives. Which are true?

69. Use the rules regarding the negation of statements in-
volving quantifiers to write the negation of the following state-
ments. Which is true, the original statement or its negation?
(a) Every isosceles triangle is equilateral.
(b) There is a real number that is not an integer.
(c) Every natural number is less than or equal to its square.

70. Use the rules regarding the negation of statements
involving quantifiers to write the negation of the following state-
ments. Which is true, the original statement or its negation?

(a) Every natural number is rational.
(b) There is a circle whose area is larger than 
(c) Every real number is larger than its square.

71. Which of the following are true? Assume that x and y are
real numbers.
(a) For every x, x 7 0 Q x2

7 0.

9p.

a2
6 b2.a 6 b

a2
+ b2

= c2,

≈

≈

≈

≈
≈

7



8 Chapter 1 Preliminaries

(b) For every 

(c) For every 

(d) For every x, there exists a y such that 

(e) For every positive number y, there exists another positive
number x such that 

72. Which of the following are true? Unless it is stated other-
wise, assume that x, y, and are real numbers.
(a) For every 
(b) There exists a natural number N such that all prime numbers

are less than N. (A prime number is a natural number whose
only factors are 1 and itself.)

(c) For every there exists a y such that 

(d) For every positive x, there exists a natural number n such

that 

(e) For every positive there exists a natural number n such

that 

73. Prove the following statements.

(a) If n is odd, then is odd. (Hint: If n is odd, then there exists
an integer k such that )

(b) If is odd, then n is odd. (Hint: Prove the contrapositive.)

74. Prove that n is odd if and only if is odd. (See Problem
73.)

75. According to the Fundamental Theorem of Arithmetic,
every natural number greater than 1 can be written as the prod-
uct of primes in a unique way, except for the order of the factors.
For example, Write each of the following as a prod-
uct of primes.

(a) 243 (b) 124 (c) 5100

76. Use the Fundamental Theorem of Arithmetic (Problem
75) to show that the square of any natural number greater than 1
can be written as the product of primes in a unique way, except
for the order of the factors, with each prime occurring an even
number of times. For example, 14522 = 3 # 3 # 3 # 3 # 5 # 5.

45 = 3 # 3 # 5.

n2

n2

n = 2k + 1.
n2

1
2n 6 e.

e,

1
n

6 x.

y 7

1
x

.x 7 0,

x, x 6 x + 1.
e

0 6 x 6 y.

y 7 x2.

x, x2
7 x.

x, x 7 0 3 x2
7 0. 77. Show that is irrational. Hint: Try a proof by contra-

diction. Suppose that where p and q are natural num-
bers (necessarily different from 1). Then and so

Now use Problem 76 to get a contradiction.

78. Show that is irrational (see Problem 77).

79. Show that the sum of two rational numbers is rational.

80. Show that the product of a rational number (other than
0) and an irrational number is irrational. Hint: Try proof by
contradiction.

81. Which of the following are rational and which are
irrational?
(a) (b) 0.375
(c) (d)

82. A number b is called an upper bound for a set S of
numbers if for all x in S. For example 5, 6.5, and 13 are
upper bounds for the set The number 5 is the
least upper bound for S (the smallest of all upper bounds). Simi-
larly, 1.6, 2, and 2.5 are upper bounds for the infinite set

whereas 1.5 is its least upper
bound. Find the least upper bound of each of the following sets.
(a)
(b)
(c)
(d)
(e) that is, S is

the set of all numbers x that have the form
where n is a positive integer.

(f)

83. The Axiom of Completeness for the real numbers says:
Every set of real numbers that has an upper bound has a least
upper bound that is a real number.
(a) Show that the italicized statement is false if the word real is

replaced by rational.
(b) Would the italicized statement be true or false if the word

real were replaced by natural?

Answers to Concepts Review: 1. rational numbers
2. dense 3. “If not Q then not P.” 4. theorems

EXPL

S = 5x: x2
6 2, x a rational number6

x = 1-12n + 1>n,

S = 5x: x = 1-12n + 1>n, n a positive integer6;
S = E1 -

1
2, 1 -

1
3, 1 -

1
4, 1 -

1
5, Á F

S = 52.4, 2.44, 2.444, 2.4444, Á 6
S = 5-2, -2.1, -2.11, -2.111, -2.1111, Á 6
S = 5-10, -8, -6, -4, -26

T = 51.4, 1.49, 1.499, 1.4999, Á 6,

S = 51, 2, 3, 4, 56.
x … b

A1 + 23 B2A322 B A522 B
-29

23

2q2
= p2.

2 = p2>q2,
22 = p>q,

22

Solving equations (for instance, or ) is one of the tra-
ditional tasks of mathematics; it will be important in this course and we assume
that you remember how to do it. But of almost equal significance in calculus is the
notion of solving an inequality (e.g., or ). To solve an
inequality is to find the set of all real numbers that make the inequality true. In
contrast to an equation, whose solution set normally consists of one number or
perhaps a finite set of numbers, the solution set of an inequality is usually an entire
interval of numbers or, in some cases, the union of such intervals.

Intervals Several kinds of intervals will arise in our work and we introduce
special terminology and notation for them. The inequality which is ac-
tually two inequalities, and describes the open interval consisting of
all numbers between a and b, not including the end points a and b. We denote this
interval by the symbol (a, b) (Figure 1). In contrast, the inequality de-
scribes the corresponding closed interval, which does include the end points a and

a … x … b

x 6 b,a 6 x
a 6 x 6 b,

x2
- x - 6 Ú 03x - 17 6 6

x2
- x - 6 = 03x - 17 = 61.2

Inequalities and
Absolute Values

4
(

3 71 2 5 6

(–1, 6) = � x : –1 < x < 6 �

)
–2 –1 0

Figure 1

8



Section 1.2 Inequalities and Absolute Values 9

4
[

3 71 2 5 6

[–1, 5] � � x : –1 � x � 5�

]
–2 –1 0

Figure 2 Set Notation Interval Notation Graph

0
(

–1 3–3 –2 1 2

( 5
2 )= −− � x : x >, �

5
2 �

Figure 3

b. This interval is denoted by [a, b] (Figure 2). The table indicates the wide variety
of possibilities and introduces our notation.

–4
[ )

–5 –1–7 –6 –3 –2 0 1

11
2 )=– 11

2
–� x :, –1 ≤ x < –1�

Figure 4

Solving Inequalities As with equations, the procedure for solving an in-
equality consists of transforming the inequality one step at a time until the solution
set is obvious. We may perform certain operations on both sides of an inequality
without changing its solution set. In particular,

1. We may add the same number to both sides of an inequality.
2. We may multiply both sides of an inequality by the same positive number.
3. We may multiply both sides by the same negative number, but then we must

reverse the direction of the inequality sign.

� EXAMPLE 1 Solve the inequality and show the graph of
its solution set.

SOLUTION

(adding 7)

(adding )

(multiplying by )

The graph appears in Figure 3. �

� EXAMPLE 2 Solve 

SOLUTION

(adding )

(multiplying by )

Figure 4 shows the corresponding graph. �

1
2 - 11

2 … x 6 -1

-6 -11 … 2x 6 -2

 -5 … 2x + 6 6 4

-5 … 2x + 6 6 4.

-
1
2 x 7 -

5
2

-4x -2x 6 5

 2x 6 4x + 5

 2x - 7 6 4x - 2

2x - 7 6 4x - 2

(
b
)

a

[
b
]

a

[
b
)

a

(
b
]

a

b
]

b
)

[
a

(
a

� x : a < x < b�

� x : a ≤ x ≤ b�

� a, b�

� a, b�

� x : a ≤ x < b� � a, b�

� x : a < x ≤ b� � a, b�

� x : x ≤ b�

� x : x < b�

�−�, b�

�−�, b�

� x : x ≥ a� � a, ��

� x : x > a� � a, ��

R � −�, ��� (- q , q )

(a, q ){x : x 7 a}

[a, q ){x : x Ú a}

(- q , b){x : x 6 b}

(- q , b]{x : x … b}

(a, b]{x : a 6 x … b}

[a, b){x : a … x 6 b}

[a, b]{x : a … x … b}

(a, b){x : a 6 x 6 b}

9



10 Chapter 1 Preliminaries

Before tackling a quadratic inequality, we point out that a linear factor of 
the form is positive for and negative for It follows that a
product can change from being positive to negative, or vice versa,
only at a or b. These points, where a factor is zero, are called split points. They are
the keys to determining the solution sets of quadratic and other more compli-
cated inequalities.

� EXAMPLE 3 Solve the quadratic inequality 

SOLUTION As with quadratic equations, we move all nonzero terms to one side
and factor.

(adding )

(factoring)

We see that and 3 are the split points; they divide the real line into the 
three intervals and On each of these intervals,

is of one sign; that is, it is either always positive or always negative.
To find this sign in each interval, we use the test points and 5 (any points in
the three intervals would do). Our results are shown in the margin.

The information we have obtained is summarized in the top half of Figure 5.
We conclude that the solution set for is the interval 
Its graph is shown in the bottom half of Figure 5. �

� EXAMPLE 4 Solve 

SOLUTION Since

the split points are and 1. These points, together with the test points and
2, establish the information shown in the top part of Figure 6.We conclude that the
solution set of the inequality consists of the points in either or 
In set language, the solution set is the union (symbolized by ) of these two
intervals; that is, it is �

� EXAMPLE 5 Solve 

SOLUTION Our inclination to multiply both sides by leads to an
immediate dilemma, since may be either positive or negative. Should we
reverse the inequality sign or leave it alone? Rather than try to untangle this
problem (which would require breaking it into two cases), we observe that the
quotient can change sign only at the split points of the numera-
tor and denominator, that is, at 1 and The test points and 2 yield the
information displayed in the top part of Figure 7. The symbol u indicates 
that the quotient is undefined at We conclude that the solution set is

Note that is not in the solution set because the quotient 
is undefined there. On the other hand, 1 is included because the inequality is true
when �

� EXAMPLE 6 Solve 

SOLUTION The split points are and 3, which divide the real line into four
intervals, as shown in Figure 8. After testing these intervals, we conclude that the
solution set is , which is the interval  �

� EXAMPLE 7 Solve 2.9 6

1
x

6 3.1.

[-1, 3].[-1, 1] ´ [1, 3]

-1, 1

1x + 121x - 1221x - 32 … 0.

x = 1.

-21- q , -22 ´ [1, q2. -2.

-3, 0,-2.
1x - 12>1x + 22

x + 2
x + 2

x - 1
x + 2

Ú 0.

A - q , - 2
3 B ´ 11, q2. ´

11, q2.A - q , - 2
3 B

-2, 0,-
2
3

3x2
- x - 2 = 13x + 221x - 12 = 31x - 12Ax +

2
3 B

3x2
- x - 2 7 0.

1-2, 32.1x - 321x + 22 6 0

-3, 0,
1x - 321x + 22 13, q2.1- q , -22, 1-2, 32,-2

 1x - 321x + 22 6 0

-6 x2
- x - 6 6 0

 x2
- x 6 6

x2
- x 6 6.

1x - a21x - b2 x 6 a.x 7 ax - a

+ 0 – 0 +

1

[ ]
–1 3

0 –

[–1, 3]

Figure 8

+ 0 +

1

0 –

–1
()

–2 1

(– �, )∪ (1, �)
0 2

2
3

–

2
3

–

Figure 6

+ u 0 +

–2 1

–

[)
–2 1

(– �, ) ∪ [ 1, �)–2

Figure 7

Test Sign of Sign of
Point

0
5 +++

-+-

+---3

1x - 321x + 221x + 221x - 32

+ – +

–2 3

( )
–2 3

–3 0 5

(–2, 3)

Split points

Test points

Figure 5
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0.32 0.33 0.34 0.35

10
31

10
29

10
31

10
29( ),

Figure 9

a x

–4 –2 –1 0 2 3–3 1

� x – a � = � a – x �

4

–4 0

� 3 – (–2) � = � –2 –3 � = 5

4

� – 4 � = 4 � 4 � = 4

Figure 10

SOLUTION It is tempting to multiply through by x, but this again brings up 

the dilemma that x may be positive or negative. In this case, however, must be 

between 2.9 and 3.1, which guarantees that x is positive. It is therefore permissible
to multiply by x and not reverse the inequalities. Thus,

At this point, we must break this compound inequality into two inequalities, which
we solve separately.

Any value of x that satisfies the original inequality must satisfy both of these
inequalities. The solution set thus consists of those values of x satisfying

This inequality can be written as

The interval is shown in Figure 9. �

Absolute Values The concept of absolute value is extremely useful in calcu-
lus, and the reader should acquire skill in working with it. The absolute value of a
real number x, denoted by is defined by

For example, and This two-pronged defini-
tion merits careful study. Note that it does not say that (try to
see why). It is true that is always nonnegative; it is also true that 

One of the best ways to think of the absolute value of a number is as an undi-
rected distance. In particular, is the distance between x and the origin. Similar-
ly, is the distance between x and a (Figure 10).

Properties Absolute values behave nicely under multiplication and division,
but not so well under addition and subtraction.

Properties of Absolute Values

1. 2.

3. (Triangle Inequality)

4.

Inequalities Involving Absolute Values If then the distance be-
tween x and the origin must be less than 3. In other words, x must be simultane-
ously less than 3 and greater than that is, On the other hand, if

then the distance between x and the origin must be at least 3. This can
happen when or (Figure 11). These are special cases of the follow-
ing general statements that hold when 

(1)

 ƒ x ƒ 7 a 3 x 6 -a or x 7 a

 ƒ x ƒ 6 a 3 -a 6 x 6 a

a 7 0.
x 6 -3x 7 3

ƒ x ƒ 7 3,
-3 6 x 6 3.-3;

ƒ x ƒ 6 3,

ƒ a - b ƒ Ú ƒ ƒ a ƒ - ƒ b ƒ ƒ

ƒ a + b ƒ … ƒ a ƒ + ƒ b ƒ

` a
b
` =

ƒ a ƒ

ƒ b ƒ

ƒ ab ƒ = ƒ a ƒ ƒ b ƒ

ƒ x - a ƒ

ƒ x ƒ

ƒ -x ƒ = ƒ x ƒ .ƒ x ƒ

x = -5ƒ -x ƒ = x
ƒ -5 ƒ = -1-52 = 5.ƒ 6 ƒ = 6, ƒ 0 ƒ = 0,

 ƒ x ƒ = -x  if x 6 0

 ƒ x ƒ = x     if x Ú 0

ƒ x ƒ ,

A10
31, 10

29 B
10
31

6 x 6

10
29

1
3.1

6 x 6

1
2.9

 x 6

1
2.9

  and   
1

3.1
6 x

 2.9x 6 1 and  1 6 3.1x

2.9x 6 1 6 3.1x

1
x

–4–5 –2 –1 0 2 3–3 1
)(

� x � � 3

4

–4 –2 –1 0 2 3–3 1

� x � � 3

4–5
()

Figure 11
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12 Chapter 1 Preliminaries

We can use these facts to solve inequalities involving absolute values, since
they provide a way of removing absolute value signs.

� EXAMPLE 8 Solve the inequality and show the solution set on
the real line. Interpret the absolute value as a distance.

SOLUTION From the equations in (1), with x replaced by we see that

When we add 4 to all three members of this latter inequality, we obtain 
The graph is shown in Figure 12.

In terms of distance, the symbol represents the distance between x and
4.The inequality says that the distance between x and 4 is less than 2.The numbers
x with this property are the numbers between 2 and 6; that is, �

The statements in the equations just before Example 8 are valid with and 
replaced by and respectively. We need the second statement in this form in
our next example.

� EXAMPLE 9 Solve the inequality and show its solution set on
the real line.

SOLUTION The given inequality may be written successively as

or

or

or

The solution set is the union of two intervals, and is shown in
Figure 13. �

In Chapter 1, we will need to make the kind of manipulations illustrated by
the next two examples. Delta and epsilon are the fourth and fifth letters,
respectively, of the Greek alphabet and are traditionally used to stand for small
positive numbers.

� EXAMPLE 10 Let (epsilon) be a positive number. Show that

In terms of distance, this says that the distance between x and 2 is less than if
and only if the distance between 5x and 10 is less than 

SOLUTION

(multiplying by 5)

�

� EXAMPLE 11 Let be a positive number. Find a positive number (delta)
such that

SOLUTION

amultiplying by  
1
6
b6

e

6
ƒ x - 3 ƒ 3

1 ƒ ab ƒ = ƒ a ƒ ƒ b ƒ 26 e6 ƒ x - 3 ƒ 3

 ƒ 6x - 18 ƒ 6 e3 ƒ 61x - 32 ƒ 6 e

ƒ x - 3 ƒ 6 d  Q  ƒ 6x - 18 ƒ 6 e

de

6 eƒ 5x - 10 ƒ 3

1 ƒ a ƒ ƒ b ƒ = ƒ ab ƒ 26 eƒ 51x - 22 ƒ 3

1 ƒ 5 ƒ = 526 eƒ 5 ƒ ƒ 1x - 22 ƒ 3

6 e5 ƒ x - 2 ƒ3 ƒ x - 2 ƒ 6

e

5

e.
e>5

ƒ x - 2 ƒ 6

e

5
  3  ƒ 5x - 10 ƒ 6 e

e

1e21d2

A - q , 43 D ´ [2, q2,
x Ú 2 x …  4

3

3x Ú 6 3x …   4

3x - 5 Ú 1 3x - 5 … -1

ƒ 3x - 5 ƒ Ú 1

Ú ,…

76

2 6 x 6 6.

ƒ x - 4 ƒ

2 6 x 6 6.

ƒ x - 4 ƒ 6 2 3 -2 6 x - 4 6 2

ƒ x - 4 ƒ ,

ƒ x - 4 ƒ 6 2

Note two facts about our solution to
Example 11.

1. The value we find for must
depend on Our choice is

2. Any positive smaller than is
acceptable. For example 
or are other correct
choices.
d = e>12p2

d = e> 7
e>6d

d = e>6.
e.

d

Finding Delta

0 2 3 4 6 71 5
)(

� x – 4 � � 2

Figure 12

–1 1 2 3 5 60 4
[]

(– �, 4
3

∪  2, �)

Figure 13
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0.4

0.3

0.2

0.1

h

L ITE R
0.5

Figure 14

Every positive number has two
square roots. For example, the two
square roots of 9 are 3 and 
We sometimes represent these two
numbers as For the sym-
bol called the principal square
root of a, denotes the nonnegative
square root of a. Thus, and 

It is incorrect to write 
because means the

nonnegative square root of 16, that
is, 4. The number 7 has two square
roots, which are written as but 

represents a single real number.
Just remember this:

has two solutions, and
but 216 = 4

a = 4,
a = -4

a2
= 16

27
;27,

216216 = ;4
2121 = 11.

29 = 3

1a,
a Ú 0,;3.

-3.

Notation for Square Roots

Therefore, we choose Following the implications backward, we see that

�

Here is a practical problem that uses the same type of reasoning.

� EXAMPLE 12 A (500 cubic centimeter) glass beaker has an inner
radius of 4 centimeters. How closely must we measure the height h of water in the
beaker to be sure that we have liter of water with an error of less than 1%, that is,
an error of less than 5 cubic centimeters? See Figure 14.

SOLUTION The volume V of water in the glass is given by the formula
We want or, equivalently, Now

Thus, we must measure the height to an accuracy of about 0.1 centimeter, or 1
millimeter. �

Quadratic Formula Most students will recall the Quadratic Formula. The
solutions to the quadratic equation are given by

The number is called the discriminant of the quadratic equation.The
equation has two real solutions if one real solution if

and no real solutions if With the Quadratic Formula, we can easily
solve quadratic inequalities even if they do not factor by inspection.

� EXAMPLE 13 Solve 

SOLUTION The two solutions of are

and

Thus,

The split points and divide the real line into three intervals
(Figure 15). When we test them with the test points and 4, we conclude that
the solution set for is  �

Squares Turning to squares, we notice that

ƒ x ƒ
2

= x2 and ƒ x ƒ = 2x2

C1 - 25, 1 + 25 D .x2
- 2x - 4 … 0

-2, 0,
1 + 251 - 25

x2
- 2x - 4 = 1x - x121x - x22 = Ax - 1 + 25 B Ax - 1 - 25 B

x2 =

-1-22 + 24 + 16

2
= 1 + 25 L 3.24

x1 =

-1-22 -  24 + 16

2
= 1 - 25 L -1.24

x2
- 2x - 4 = 0

x2
- 2x - 4 … 0.

d 6 0.d = 0,
d 7 0,ax2

+ bx + c = 0
d = b2

- 4ac

x =

-b ; 2b2
- 4ac

2a

ax2
+ bx + c = 0

ƒ h - 9.947 ƒ 6 0.09947 L 0.1 3

` h -

500
16p
` 6

5
16p

 3

16p ` h -

500
16p
` 6 5 3

 ƒ 16ph - 500 ƒ 6 5 3 ` 16pah -

500
16p
b ` 6 5

ƒ 16ph - 500 ƒ 6 5.ƒ V - 500 ƒ 6 5V = 16ph.

1
2

1
2-liter

ƒ x - 3 ƒ 6 dQ ƒ x - 3 ƒ 6

e

6
Q ƒ 6x - 18 ƒ 6 e

d = e>6.

+ 0 – 0 +

–2 0 1 2 4 5

[ ]
–1 3

5�1 – 5�1 +

Figure 15
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14 Chapter 1 Preliminaries

Problem Set 1.2
1. Show each of the following intervals on the real line.

(a) (b)

(c) (d) [1, 4]

(e) (f)

2. Use the notation of Problem 1 to describe the following
intervals.
(a)

(b)

(c)

(d)

0–1 3–2 1 2 4–3
][

–4–5 –1–6 –3 –2 0–7
]

10 4–1 2 3 5–2–3
)[

43 72 5 6 81
( )

1- q , 0][-1, q2
1-4, 12

1-4, 1][-1, 1]
In each of Problems 3–26, express the solution set of the given
inequality in interval notation and sketch its graph.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.
3

x + 5
7 2

1
3x - 2

… 4

7
4x

… 7
2
x

6 5

3x - 2
x - 1

Ú 0
x + 4
x - 3

… 0

4x2
- 5x - 6 6 02x2

+ 5x - 3 7 0

x2
- 5x - 6 7 0x2

+ 2x - 12 6 0

4 6 5 - 3x 6 7-3 6 1 - 6x … 4

-3 6 4x - 9 6 11-4 6 3x + 2 6 5

5x - 3 7 6x - 47x - 2 … 9x + 3

3x - 5 6 4x - 6x - 7 6 2x - 5

Concepts Review
1. The set is written in interval notation

as _____ and the set is written as _____.

2. If then either and _____ or and
_____.

a 7 0a 6 0a>b 6 0,

5x: x … -26
5x: -1 … x 6 56 3. Which of the following are always true?

(a) (b)
(c) (d)

4. The inequality is equivalent to 

_____ _____.… x …

ƒ x - 2 ƒ … 3

2x2
= xƒ xy ƒ = ƒ x ƒ ƒ y ƒ

ƒ x ƒ
2

= x2
ƒ -x ƒ = x

These follow from the property 
Does the squaring operation preserve inequalities? In general, the answer is

no. For instance, but On the other hand, and 
If we are dealing with nonnegative numbers, then A useful
variant of this (see Problem 63) is

� EXAMPLE 14 Solve the inequality 

SOLUTION This inequality is more difficult to solve than our earlier examples,
because there are two sets of absolute value signs. We can remove both of them by
using the last boxed result.

The split points for this quadratic inequality are and they divide the real

line into the three intervals: and When we use the

test points and 3, we discover that only the points in satisfy the

inequality. �

A -13, 11
5 B-14, 0,

A11
5 , q B .1- q , -132, A -13, 11

5 B ,
11
5 ;-13

 3 1x + 13215x - 112 6 0

 3  5x2
+ 54x - 143 6 0

 3   9x2
+ 6x + 1 6 4x2

- 48x + 144

 3       13x + 122 6 12x - 1222
 ƒ 3x + 1 ƒ 6 2 ƒ x - 6 ƒ 3          ƒ 3x + 1 ƒ 6 ƒ 2x - 12 ƒ

ƒ 3x + 1 ƒ 6 2 ƒ x - 6 ƒ .

ƒ x ƒ 6 ƒ y ƒ  3  x2
6 y2

a 6 b 3 a2
6 b2.

22
6 32.2 6 31-322 7 22.-3 6 2,

ƒ a ƒ ƒ b ƒ = ƒ ab ƒ .

If n is even and the symbol
denotes the nonnegative nth

root of a. When n is odd, there is
only one real nth root of a, denoted 

by the symbol Thus,

and 23 -8 = -2.23 27 = 3,

24 16 = 2,1n a.

1n a
a Ú 0

Notation for Roots

14
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21.

22.

23.

24.

25. 26.

27. Tell whether each of the following is true or false.

(a) (b) (c)

28. Tell whether each of the following is true or false.

(a) (b) (c)

29. Assume that Prove each statement. Hint:
Each part requires two proofs: one for and one for 

(a) (b)

30. Which of the following are true if 

(a) (b)

(c) (d)

31. Find all values of x that satisfy both inequalities
simultaneously.
(a) and 

(b) and 

(c) and 

32. Find all the values of x that satisfy at least one of the two
inequalities.
(a) or 

(b) or 

(c) or 

33. Solve for x, expressing your answer in interval notation.

(a)

(b)

(c)

34. Solve each inequality. Express your solution in interval
notation.

(a) (b)

In Problems 35–44, find the solution sets of the given inequalities.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Problems 45–48, solve the given quadratic inequality using the
Quadratic Formula.

45. 46.

47. 48.

In Problems 49–52, show that the indicated implication is true.

49.

50. ƒ x + 2 ƒ 6 0.3 Q ƒ 4x + 8 ƒ 6 1.2

ƒ x - 3 ƒ 6 0.5 Q ƒ 5x - 15 ƒ 6 2.5

14x2
+ 11x - 15 … 03x2

+ 17x - 6 7 0

x2
- 4x + 4 … 0x2

- 3x - 4 Ú 0

` 2 +

5
x
` 7 1` 1

x
- 3 ` 7 6

ƒ 2x - 7 ƒ 7 3ƒ 5x - 6 ƒ 7 1

` x
4

+ 1 ` 6 1` 2x

7
- 5 ` Ú 7

ƒ 2x - 1 ƒ 7 2ƒ 4x + 5 ƒ … 10

ƒ x + 2 ƒ 6 1ƒ x - 2 ƒ Ú 5

2.99 6

1
x + 2

6 3.011.99 6

1
x

6 2.01

1x2
+ 122 - 71x2

+ 12 + 10 6 0

x4
- 2x2

Ú 8

1x + 121x2
+ 2x - 72 Ú x2

- 1

2x + 1 7 32x - 7 … 1

2x + 1 6 32x - 7 … 1

2x + 1 6 32x - 7 7 1

2x + 1 6 -43x + 7 7 1

2x + 1 7 -43x + 7 7 1

2x + 1 6 33x + 7 7 1

-a … -ba3
… a2b

a - 3 … b - 3a2
… ab

a … b?

a 6 b 3

1
a

7

1
b

a 6 b 3 a2
6 b2

P .Q
a 7 0, b 7 0.

-

5
7

6 -

44
59

6
7

6

34
39

-5 7 -226

-3 6 -

22
7

-1 7 -17-3 6 -7

x3
- x2

- x + 1 7 0x3
- 5x2

- 6x 6 0

12x - 321x - 1221x - 32 7 0

12x - 321x - 1221x - 32 Ú 0

12x + 3213x - 121x - 22 6 0

1x + 221x - 121x - 32 7 0 51.

52.

In Problems 53–56, find (depending on ) so that the given
implication is true.

53.

54.

55.

56.

57. On a lathe, you are to turn out a disk (thin right circular
cylinder) of circumference 10 inches. This is done by continually
measuring the diameter as you make the disk smaller. How
closely must you measure the diameter if you can tolerate an
error of at most 0.02 inch in the circumference?

58. Fahrenheit temperatures and Celsius temperatures are
related by the formula An experiment requires
that a solution be kept at 50°C with an error of at most 3% (or
1.5°). You have only a Fahrenheit thermometer. What error are
you allowed on it?

In Problems 59–62, solve the inequalities.

59. 60.

61. 62.

63. Prove that by giving a reason for
each of these steps:

Conversely,

64. Use the result of Problem 63 to show that

65. Use the properties of the absolute value to show that
each of the following is true.
(a) (b)
(c)

66. Use the Triangle Inequality and the fact that
to establish the following chain of

inequalities.

67. Show that (see Problem 66)

68. Show that

ƒ x ƒ … 2 Q ` x2
+ 2x + 7

x2
+ 1

` … 15

` x - 2

x2
+ 9
` …

ƒ x ƒ + 2
9

` 1

x2
+ 3

-

1
ƒ x ƒ + 2

` …

1

x2
+ 3

+

1
ƒ x ƒ + 2

…

1
3

+

1
2

0 6 ƒ a ƒ 6 ƒ b ƒ Q 1/ ƒ b ƒ 6 1/ ƒ a ƒ

ƒ a + b + c ƒ … ƒ a ƒ + ƒ b ƒ + ƒ c ƒ

ƒ a - b ƒ Ú ƒ a ƒ  -  ƒ b ƒƒ a - b ƒ … ƒ a ƒ + ƒ b ƒ

0 6 a 6 b Q 1a 6 1b

 Q ƒ x ƒ 6 ƒ y ƒ

 Q ƒ x ƒ  -  ƒ y ƒ 6 0

 Q 1 ƒ x ƒ  -  ƒ y ƒ 21 ƒ x ƒ + ƒ y ƒ 2 6 0

 Q ƒ x ƒ
2

- ƒ y ƒ
2

6 0

 x2
6 y2 Q ƒ x ƒ

2
6 ƒ y ƒ

2

 Q x2
6 y2

 Q ƒ x ƒ
2

6 ƒ y ƒ
2

 ƒ x ƒ 6 ƒ y ƒ Q ƒ x ƒ ƒ x ƒ … ƒ x ƒ ƒ y ƒ and ƒ x ƒ ƒ y ƒ 6 ƒ y ƒ ƒ y ƒ

ƒ x ƒ 6 ƒ y ƒ 3 x2
6 y2

ƒ 3x - 1 ƒ 6 2 ƒ x + 6 ƒ2 ƒ 2x - 3 ƒ 6 ƒ x + 10 ƒ

ƒ 2x - 1 ƒ Ú ƒ x + 1 ƒƒ x - 1 ƒ 6 2 ƒ x - 3 ƒ

C =
5
91F - 322.

ƒ x + 5 ƒ 6 dQ ƒ 5x + 25 ƒ 6 e

ƒ x + 6 ƒ 6 dQ ƒ 6x + 36 ƒ 6 e

ƒ x - 2 ƒ 6 dQ ƒ 4x - 8 ƒ 6 e

ƒ x - 5 ƒ 6 dQ ƒ 3x - 15 ƒ 6 e

ed

ƒ x + 4 ƒ 6

e

2
Q ƒ 2x + 8 ƒ 6 e

ƒ x - 2 ƒ 6

e

6
Q ƒ 6x - 12 ƒ 6 e

15
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–1 1

1

2

–2

–1

b

y

2 3 a

(a, b)

x–2–3

Figure 2

In the plane, produce two copies of the real line, one horizontal and the other
vertical, so that they intersect at the zero points of the two lines. The two lines are
called coordinate axes; their intersection is labeled O and is called the origin. By
convention, the horizontal line is called the x-axis and the vertical line is called the
y-axis. The positive half of the x-axis is to the right; the positive half of the y-axis is
upward. The coordinate axes divide the plane into four regions, called quadrants,
labeled I, II, III, and IV, as shown in Figure 1.

Each point P in the plane can now be assigned a pair of numbers, called its
Cartesian coordinates. If vertical and horizontal lines through P intersect the 
x- and y-axes at a and b, respectively, then P has coordinates (a, b) (see Figure 2).
We call (a, b) an ordered pair of numbers because it makes a difference which
number is first. The first number a is the x-coordinate; the second number b is the
y-coordinate.

The Distance Formula With coordinates in hand, we can introduce a simple
formula for the distance between any two points in the plane. It is based on the
Pythagorean Theorem, which says that, if a and b measure the two legs of a right
triangle and c measures its hypotenuse (Figure 3), then

Conversely, this relationship between the three sides of a triangle holds only for a
right triangle.

Now consider any two points P and Q, with coordinates and 
respectively. Together with R, the point with coordinates P and Q are ver-
tices of a right triangle (Figure 4). The lengths of PR and RQ are and

respectively. When we apply the Pythagorean Theorem and take the
principal square root of both sides, we obtain the following expression for the 
Distance Formula

d1P, Q2 = 21x2 - x122 + 1y2 - y122

ƒ y2 - y1 ƒ ,
ƒ x2 - x1 ƒ

1x2, y12,
1x2, y22,1x1, y12

a2
+ b2

= c2

1.3
The Rectangular

Coordinate System

–1–2–3 21
0

3

–3

–2

–1

1

2

3

I

x

II

y

III IV

Figure 1

69. Show that

70. Show each of the following:
(a)

(b)

71. Show that Hint: Consider

72. The number is called the average, or arithmetic
mean, of a and b. Show that the arithmetic mean of two numbers
is between the two numbers; that is, prove that

73. The number is called the geometric mean of two
positive numbers a and b. Prove that

74. For two positive numbers a and b, prove that1ab …
1
21a + b2

0 6 a 6 b Q  a 6 1ab 6 b

1ab

a 6 b Q  a 6

a + b

2
6 b

1
21a + b2

1a - 1>a22.
a Z 0 Q a2

+ 1>a2
Ú 2.

x2
6 x for 0 6 x 6 1

x 6 x2 for x 6 0 or x 7 1

ƒ x ƒ … 1 Q ƒx4
+

1
2 x3

+
1
4 x2

+
1
8 x +

1
16 ƒ 6 2

This is the simplest version of a famous inequality called the
geometric mean–arithmetic mean inequality.

75. Show that, among all rectangles with given perimeter p,
the square has the largest area. Hint: If a and b denote the
lengths of adjacent sides of a rectangle of perimeter p, then the
area is ab, and for the square the area is Now
see Problem 74.

76. Solve 

77. The formula gives the total resist-

ance R in an electric circuit due to three resistances, and
connected in parallel. If and

find the range of values for R.

78. The radius of a sphere is measured to be about 10 inches.
Determine a tolerance in this measurement that will ensure an
error of less than 0.01 square inch in the calculated value of the
surface area of the sphere.

Answers to Concepts Review 1.
2. 3. (b) and (c) 4. -1 … x … 5b 7 0; b 6 0

[-1, 52; 1- q , -2]

d

30 … R3 … 40,
10 … R1 … 20, 20 … R2 … 30,R3,

R1, R2,

1
R

=

1
R1

+

1
R2

+

1
R3

1 + x + x2
+ x3

+
Á

+ x99
… 0.

a2
= [1a + b2>2]2.

16
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a2 + b2 � c2 c b

a

Figure 3

� x2
 – x1 � 

� y2
 – y1 � 

Q (x2, y2)y

P (x1, y1) R (x2, y1)

x

Figure 4

To say that

is the equation of the circle of radius
3 with center means two
things:
1. If a point is on this circle, then its

coordinates (x, y) satisfy the
equation.

2. If x and y are numbers that sat-
isfy the equation, then they are
the coordinates of a point on the
circle.

1-1, 22
1x + 122 + 1y - 222 = 9

Circle Equation4

� EXAMPLE 1 Find the distance between

(a) and (b) and 

SOLUTION

(a)

(b) �

The formula holds even if the two points lie on the same horizontal line or the
same vertical line. Thus, the distance between and Q(6, 2) is

The Equation of a Circle It is a small step from the distance formula to the
equation of a circle. A circle is the set of points that lie at a fixed distance (the
radius) from a fixed point (the center). Consider, for example, the circle of radius 3
with center at (Figure 5). Let (x, y) denote any point on this circle. By the
Distance Formula,

When we square both sides, we obtain

which we call the equation of this circle.
More generally, the circle of radius r and center (h, k) has the equation

(1)

We call this the standard equation of a circle.

� EXAMPLE 2 Find the standard equation of a circle of radius 5 and cen-
ter Also find the y-coordinates of the two points on this circle with 
x-coordinate 2.

SOLUTION The desired equation is

To accomplish the second task, we substitute in the equation and solve 
for y.

�

If we expand the two squares in the boxed equation (1) and combine the
constants, then the equation takes the form

This suggests asking whether every equation of the latter form is the equation of a
circle. The answer is yes, with some obvious exceptions.

x2
+ ax + y2

+ by = c

 y = -5 ; 224 = -5 ; 226

 y + 5 = ;224

 1y + 522 = 24

 12 - 122 + 1y + 522 = 25

x = 2

1x - 122 + 1y + 522 = 25

11, -52.

1x - h22 + 1y - k22 = r2

1x + 122 + 1y - 222 = 9

21x + 122 + 1y - 222 = 3

1-1, 22

216-(-2)22 + 12 - 222 = 264 = 8

P1-2, 22

d1P, Q2 = 3Ap - 22 B2 + Ap - 23 B2 L 24.971 L 2.23

d1P, Q2 = 214 - 1-2222 + 1-1 - 322 = 236 + 16 = 252 L 7.21

Q1p, p2P A22, 23 BQ14, -12P1-2, 32

–1–2–3–4 1 2

1

2

3

4

y

x

3

(x, y)

(–1, 2)

Figure 5

17



18 Chapter 1 Preliminaries

� EXAMPLE 3 Show that the equation

represents a circle, and find its center and radius.

SOLUTION We need to complete the square, a process important in many
contexts. To complete the square of add Thus, we add

to and to and of course we must add the
same numbers to the right side of the equation, to obtain

The last equation is in standard form. It is the equation of a circle with center
and radius 2. If, as a result of this process, we had come up with a negative

number on the right side of the final equation, the equation would not have repre-
sented any curve. If we had come up with zero, the equation would have repre-
sented the single point  �

The Midpoint Formula Consider two points and with
and as in Figure 6. The distance between and is 

When we add half this distance, to we should get the number mid-
way between and 

Thus, the point is midway between and on the x-axis and, conse-
quently, the midpoint M of the segment PQ has as its x-coordinate.
Similarly, we can show that is the y-coordinate of M. Thus, we have the
Midpoint Formula.

The midpoint of the line segment joining and is

� EXAMPLE 4 Find the equation of the circle having the segment from (1, 3)
to (7, 11) as a diameter.

SOLUTION The center of the circle is at the midpoint of the diameter; thus, the
center has coordinates and The length of the
diameter, obtained from the distance formula, is

and so the radius of the circle is 5. The equation of the circle is

�

Lines Consider the line in Figure 7. From point A to point B, there is a rise (ver-
tical change) of 2 units and a run (horizontal change) of 5 units. We say that the
line has a slope of In general (Figure 8), for a line through and

where we define the slope m of that line by

m =

rise
run

=

y2 - y1

x2 - x1

x1 Z x2,B1x2, y22,
A1x1, y122

5.

1x - 422 + 1y - 722 = 25

217 - 122 + 111 - 322 = 236 + 64 = 10

13 + 112>2 = 7.11 + 72>2 = 4

ax1 + x2

2
, 

y1 + y2

2
b

Q1x2, y22P1x1, y12

1y1 + y22>2
1x1 + x22>2

x2x11x1 + x22>2
x1 +

1
2

 1x2 - x12 = x1 +

1
2

 x2 -

1
2

 x1 =

1
2

 x1 +

1
2

 x2 =

x1 + x2

2

x2.x1

x1,
1
21x2 - x12,

x2 - x1.x2x1y1 … y2,x1 … x2

Q1x2, y22P1x1, y12
11, -32.

11, -32

 1x - 122 + 1y + 322 = 4

 x2
- 2x + 1 + y2

+ 6y + 9 = -6 + 1 + 9

y2
+ 6y,16>222 = 9x2

- 2x1-2>222 = 1
1b>222.x2

; bx,

x2
- 2x + y2

+ 6y = -6

Q (x2, y2)

M

x2

y2

y1

x1 x

y

P(x1, y1)

(x1  + x2)1
2

(y1  + y2)1
2

Figure 6
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1 2 3 4 5 6 7 8

1

2

3

4

5

y

x

A (3, 2)

B (8, 4)

Figure 7

y

x

y2– y1

x2– x1

A (x1, y1)

B (x2, y2)

Figure 8

y

x

B (x2, y2)

A (x1, y1)

A' (x'1, y'1)

B' (x'2, y'2)

Figure 9

Does the value we get for the slope depend on which pair of points we use for
A and B? The similar triangles in Figure 9 show us that

Thus, points and would do just as well as A and B. It does not even matter
whether A is to the left or right of B, since

All that matters is that we subtract the coordinates in the same order in the nu-
merator and the denominator.

The slope m is a measure of the steepness of a line, as Figure 10 illustrates.
Notice that a horizontal line has zero slope, a line that rises to the right has pos-
itive slope, and a line that falls to the right has negative slope. The larger the
absolute value of the slope is, the steeper the line. The concept of slope for a verti-
cal line makes no sense, since it would involve division by zero.Therefore, slope for
a vertical line is left undefined.

y1 - y2

x1 - x2
=

y2 - y1

x2 - x1

B¿A¿

y2
œ

- y1
œ

x2
œ

- x1
œ

=

y2 - y1

x2 - x1

The international symbol for the
slope of a road (called the grade) is
shown below. The grade is given as a
percentage. A grade of 10% corre-
sponds to a slope of 

Carpenters use the term pitch. A
9:12 pitch corresponds to a slope 
of 9

12.

;0.10.

Grade and Pitch

10%

12

9

2 4 6 8

2

4
(8, 4)

(3, 2)

(x, y)

y – 2

x – 3

y

x

Figure 11

–4 –3 –2
1

2 3 4
5

6 7 8 9

2

3

4

5

6

7

y

x

(0, 7)

(–2, 3)
(2, 1)

(4, 7)

(4, 4)

(4, 2)
(6, 1)

m = 7–1
0 –2 =  –3

m = 3 –1
–2 – 2 = – 1

2

m = 4 –1
4 –2 = 3

2

m = 7–1
4 –2 = 3

m = 2–1
4–2 = 1

2

m = 1–1
6 –2 = 0

Lines of various slopes

0–5 10

Figure 10

The Point–Slope Form Consider again the line of our opening discussion; it
is reproduced in Figure 11. We know that this line

1. passes through (3, 2) and
2. has slope 25.

19



20 Chapter 1 Preliminaries

Take any other point on this line, such as one with coordinates (x, y). If we use this
point and the point (3, 2) to measure slope, we must get that is,

or, after multiplying by 

Notice that this last equation is satisfied by all points on the line, even by (3, 2).
Moreover, none of the points not on the line can satisfy this equation.

What we have just done in an example can be done in general.The line passing
through the (fixed) point with slope m has equation

We call this the point–slope form of the equation of a line.
Consider once more the line of our example. That line passes through (8, 4) as

well as (3, 2). If we use (8, 4) as we get the equation

which looks quite different from However, both can be simpli-
fied to they are equivalent.

� EXAMPLE 5 Find an equation of the line through and 

SOLUTION The slope is Thus, using as
the fixed point, we obtain the equation

�

The Slope–Intercept Form The equation of a line can be expressed in
various forms. Suppose that we are given the slope m for a line and the y-intercept
b (i.e., the line intersects the y-axis at (0, b)), as shown in Figure 12. Choosing (0, b)
as and applying the point-slope form, we get

which we can rewrite as

The latter is called the slope–intercept form. Any time we see an equation written
this way, we recognize it as a line and can immediately read its slope and 
y-intercept. For example, consider the equation

If we solve for y, we get

It is the equation of a line with slope and y-intercept 2.

Equation of a Vertical Line Vertical lines do not fit within the preceding
discussion since the concept of slope is not defined for them. But they do have
equations, very simple ones. The line in Figure 13 has equation since a point
is on the line if and only if it satisfies this equation. The equation of any vertical
line can be put in the form where k is a constant. It should be noted that the
equation of a horizontal line can be written in the form 

The Form It would be nice to have a form that covered
all lines, including vertical lines. Consider, for example,

Ax + By + C = 0

y = k.
x = k,

x =
5
2,

3
2

y =
3
2 x + 2

3x - 2y + 4 = 0

y = mx + b

y - b = m1x - 02
1x1, y12

y - 2 = -
3
101x + 42

1-4, 22m = 1-1 - 22>16 + 42 = -
3
10.

16, -12.1-4, 22
5y - 2x = 4;

y - 2 =
2
51x - 32.

y - 4 =
2
51x - 82

1x1, y12,

y - y1 = m1x - x12
1x1, y12

y - 2 =
2
51x - 32

x - 3,

y - 2

x - 3
=

2
5

2
5,

y

x

Slope m

y = mx + b

(0, b)

Figure 12

–1 1 2

–1

1

2

3

y

x

( 5
2 , 3)

( 5
2 , 1)

( 5
2 , –1)

5
2x =

Figure 13
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Section 1.3 The Rectangular Coordinate System 21

Vertical line:

Horizontal line:

Point–slope form:

Slope–intercept form:

General linear equation:

Ax + By + C = 0

y = mx + b

y - y1 = m1x - x12

y = k

x = k

Summary: Equations of Lines

1 2 3

2

5

7

y

x

3

3
y = 2x + 5

y = 2x + 2

Figure 14

These can be rewritten (by taking everything to the left-hand side) as follows:

All are of the form

which we call the general linear equation. It takes only a moment’s thought to see
that the equation of any line can be put in this form. Conversely, the graph of the
general linear equation is always a line.

Parallel Lines Two lines that have no points in common are said to be parallel.
For example, the lines whose equations are and are paral-
lel because, for every value of x, the second line is three units above the first (see
Figure 14). Similarly, the lines with equations and

are parallel.To see this, solve each equation for y (i.e., put each in the
slope–intercept form). This gives and respectively.
Again, because the slopes are equal, one line will be a fixed number of units 
above or below the other, so the lines will never intersect. If two lines have the
same slope and the same y-intercept, then the two lines are the same, and they are
not parallel.

We summarize by stating that two nonvertical lines are parallel if and only if
they have the same slope and different y-intercepts. Two vertical lines are parallel
if and only if they are distinct lines.

� EXAMPLE 6 Find the equation of the line through (6, 8) that is parallel to
the line with equation 

SOLUTION When we solve for y, we obtain from
which we read the slope of the line to be The equation of the desired line is

or, equivalently, We know that these lines are distinct because the 
y-intercepts are different. �

Perpendicular Lines Is there a simple slope condition that characterizes
perpendicular lines? Yes; two nonvertical lines are perpendicular if and only if their
slopes are negative reciprocals of each other. To see why this is true, consider 
Figure 15.This picture tells almost the whole story; it is left as an exercise (Problem
57) to construct a geometric proof that the two (nonvertical) lines are perpenicular
if and only if 

� EXAMPLE 7 Find the equation of the line through the point of intersection
of the lines with equations and that is perpendicular to
the first of these two lines (Figure 16).

SOLUTION To find the point of intersection of the two lines, we multiply the
first equation by and add it to the second equation.-2

6x - 10y = 73x + 4y = 8

m2 = -1>m1.

y =
3
5 x +

22
5 .

y - 8 =
3
51x - 62
3
5.

y =
3
5 x -

11
5 ,3x - 5y = 11

3x - 5y = 11.

y =
2
3 x -

5
6,y =

2
3 x - 4

4x - 6y = 5
-2x + 3y + 12 = 0

y = 2x + 5y = 2x + 2

Ax + By + C = 0, A and B not both 0

 x + 0y - 5 = 0

 -5x + y + 3 = 0

 4x + y + 6 = 0

 x = 5

 y = 5x - 3

 y - 2 = -41x + 22

D

A B

m

C

m
E

1

1

x

y
�2

�1

Figure 15

1 2 3

1

–1

2

y

x

6x – 10y = 7

3x + 4y = 8

Figure 16
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Substituting in either of the original equations yields The point of

intersection is When we solve the first equation for y (to put it in slope-

intercept form), we get A line perpendicular to it has slope The
equation of the required line is

�y -
1
2 =

4
31x - 22

4
3.y = -

3
4 x + 2.

A2, 12 B .
x = 2.y =

1
2

 y =

1
2

 - 18y = -9

6x - 10y = 7

-6x - 8y = -16

22 Chapter 1 Preliminaries

Concepts Review
1. The distance between the points and (x, y) is

_____.

2. The equation of the circle of radius 5 and center 
is _____.

1-4, 22
1-2, 32 3. The midpoint of the line segment joining and 

(5, 7) is _____.

4. The line through (a, b) and (c, d) has slope _____
provided a Z c.

m =

1-2, 32

Problem Set 1.3
In Problems 1–4, plot the given points in the coordinate plane and
then find the distance between them.

1. (3, 1), (1, 1) 2.

3. 4.

5. Show that the triangle whose vertices are (5, 3),
and (10, 8) is isosceles.

6. Show that the triangle whose vertices are (4, 0),
and is a right triangle.

7. The points and (3, 3) are two vertices of a square.
Give three other pairs of possible vertices.

8. Find the point on the x-axis that is equidistant from (3, 1)
and (6, 4).

9. Find the distance between and the midpoint of
the segment joining and (4, 3).

10. Find the length of the line segment joining the midpoints
of the segments AB and CD, where 

and 

In Problems 11–16, find the equation of the circle satisfying the
given conditions.

11. Center (1, 1), radius 1

12. Center radius 4

13. Center goes through (5, 3)

14. Center (4, 3), goes through (6, 2)

15. Diameter AB, where and 

16. Center (3, 4) and tangent to x-axis

B = 13, 72A = 11, 32

12, -12,
1-2, 32,

D = 13, 42.C = 14, 72,
B = 12, 62,A = 11, 32,

1-2, -22
1-2, 32

13, -12
18, -22

12, -42,
1-2, 42,

1-1, 52, 16, 3214, 52, 15, -82
1-3, 52, 12, -22

In Problems 17–22, find the center and radius of the circle with the
given equation.

17.

18.

19.

20.

21.

22.

In Problems 23–28, find the slope of the line containing the given
two points.

23. (1, 1) and (2, 2) 24. (3, 5) and (4, 7)

25. (2, 3) and 26. and 

27. (3, 0) and (0, 5) 28. and (0, 6)

In Problems 29–34, find an equation for each line.Then write your
answer in the form 

29. Through (2, 2) with slope 

30. Through (3, 4) with slope 

31. With y-intercept 3 and slope 2

32. With y-intercept 5 and slope 0

33. Through (2, 3) and (4, 8)

34. Through (4, 1) and (8, 2)

In Problems 35–38, find the slope and y-intercept of each line.

35. 36. -4y = 5x - 63y = -2x + 1

-1

-1

Ax + By + C = 0.

1-6, 02
10, -6212, -421-5, -62

x2
+ 16x +

105
16 + 4y2

+ 3y = 0

4x2
+ 16x + 15 + 4y2

+ 6y = 0

x2
+ y2

- 10x + 10y = 0

x2
+ y2

- 12x + 35 = 0

x2
+ y2

- 6y = 16

x2
+ 2x + 10 + y2

- 6y - 10 = 0

22
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d

2

30˚

R

Figure 17 Figure 18

B

A

C

Figure 19

(6, 8)

(8, 0)(0, 0)

Figure 20

37. 38.

39. Write an equation for the line through that is
(a) parallel to the line 
(b) perpendicular to the line 
(c) parallel to the line 
(d) perpendicular to the line 
(e) parallel to the line through and 
(f) parallel to the line 
(g) perpendicular to the line 

40. Find the value of c for which the line 
(a) passes through the point (3, 1);
(b) is parallel to the y-axis;
(c) is parallel to the line 
(d) has equal x- and y-intercepts;
(e) is perpendicular to the line 

41. Write the equation for the line through that is
perpendicular to the line 

42. Find the value of k such that the line 
(a) is parallel to the line 
(b) is perpendicular to the line 
(c) is perpendicular to the line 

43. Does (3, 9) lie above or below the line 

44. Show that the equation of the line with x-intercept 
and y-intercept can be written as

In Problems 45–48, find the coordinates of the point of intersec-
tion.Then write an equation for the line through that point perpen-
dicular to the line given first.

45. 46.

47. 48.

49. The points (2, 3), (6, 3), and are corners of
a square. Find the equations of the inscribed and circumscribed
circles.

50. A belt fits tightly around the two circles, with equations
and 

How long is this belt?

51. Show that the midpoint of the hypotenuse of any right
triangle is equidistant from the three vertices.

52. Find the equation of the circle circumscribed about the
right triangle whose vertices are (0, 0), (8, 0), and (0, 6).

53. Show that the two circles 
and do not intersect. Hint: Find
the distance between their centers.

54. What relationship between a, b, and c must hold if
is the equation of a circle?

55. The ceiling of an attic makes an angle of 30° with the
floor. A pipe of radius 2 inches is placed along the edge of the
attic in such a way that one side of the pipe touches the ceiling
and another side touches the floor (see Figure 17). What is the
distance d from the edge of the attic to where the pipe touches
the floor?

x2
+ ax + y2

+ by + c = 0

x2
+ y2

+ 20x - 12y + 72 = 0
x2

+ y2
- 4x - 2y - 11 = 0

1x + 922 + 1y - 1022 = 16.1x - 122 + 1y + 222 = 16
≈

12, -1216, -12,
 2x + 3y = 6 2x + 3y = 9

 5x - 2y = 5 3x - 4y = 5

 2x + y = -10 -3x + y = 5

 4x - 5y = 8 2x + 3y = 4

x

a
+

y

b
= 1

b Z 0
a Z 0

y = 3x - 1?

2x + 3y = 6.
y = 2x + 4;

y = 2x + 4;
kx - 3y = 10

y + 3 = -
2
31x - 52.

1-2, -12
y - 2 = 31x + 32.

2x + y = -1;

3x + cy = 5

x = 8.
x = 8;

13, -12;1-1, 22
2x + 3y = 6;

2x + 3y = 6;
y = 2x + 5;

y = 2x + 5;
13, -32

4x + 5y = -206 - 2y = 10x - 2

56. A circle of radius R is placed in the first quadrant as
shown in Figure 18. What is the radius r of the largest circle that
can be placed between the original circle and the origin?

57. Construct a geometric proof using Figure 15 that shows
two lines are perpendicular if and only if their slopes are negative
reciprocals of one another.

58. Show that the set of points that are twice as far from (3, 4)
as from (1, 1) form a circle. Find its center and radius.

59. The Pythagorean Theorem says that the areas A, B, and C
of the squares in Figure 19 satisfy Show that semi-
circles and equilateral triangles satisfy the same relation and then
guess what a very general theorem says.

A + B = C.

60. Consider a circle C and a point P exterior to the circle.
Let line segment PT be tangent to C at T, and let the line through
P and the center of C intersect C at M and N. Show that

61. A belt fits around the three circles 
and as shown in

Figure 20. Find the length of this belt.
1x - 622 + 1y - 822 = 4,1x - 822 + y2

= 4,
x2

+ y2
= 4,≈

1PM21PN2 = 1PT22.

23
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62. Study Problems 50 and 61. Consider a set of nonintersect-
ing circles of radius r with centers at the vertices of a convex 
n-sided polygon having sides of lengths How long
is the belt that fits around these circles (in the manner of 
Figure 20)?

It can be shown that the distance d from the point to the
line is

Use this result to find the distance from the given point to the given
line.

63.

64.

65.

66.

In Problems 67 and 68, find the (perpendicular) distance between
the given parallel lines. Hint: First find a point on one of the lines.

67.

68.

69. Find the equation for the line that bisects the line seg-
ment from to and is at right angles to this line
segment.

70. The center of the circumscribed circle of a triangle lies on
the perpendicular bisectors of the sides. Use this fact to find the
center of the circle that circumscribes the triangle with vertices
(0, 4), (2, 0), and (4, 6).

71. Find the radius of the circle that is inscribed in a triangle
with sides of lengths 3, 4, and 5 (see Figure 21).

11, -221-2, 32
7x - 5y = 6, 7x - 5y = -1

2x + 4y = 7, 2x + 4y = 5

13, -12; y = 2x - 5

1-2, -12; 5y = 12x + 1

14, -12; 2x - 2y + 4 = 0

1-3, 22; 3x + 4y = 6

d =

ƒ Ax1 + By1 + C ƒ2A2
+ B2

Ax + By + C = 0
1x1, y12

d1, d2, Á , dn.

72. Suppose that (a, b) is on the circle Show
that the line is tangent to the circle at (a, b).

73. Find the equations of the two tangent lines to the circle
that go through (12, 0). Hint: See Problem 72.

74. Express the perpendicular distance between the parallel
lines and in terms of m, b, and B. Hint:
The required distance is the same as that between and

75. Show that the line through the midpoints of two sides of a
triangle is parallel to the third side. Hint: You may assume that
the triangle has vertices at (0, 0), (a, 0), and (b, c).

76. Show that the line segments joining the midpoints of
adjacent sides of any quadrilateral (four-sided polygon) form a
parallelogram.

77. A wheel whose rim has equation is
rotating rapidly in the counterclockwise direction.A speck of dirt
on the rim came loose at the point (3, 2) and flew toward the wall

About how high up on the wall did it hit? Hint: The speck
of dirt flies off on a tangent so fast that the effects of gravity are
negligible by the time it has hit the wall.

Answers to Concepts Review: 1.
2. 3. (1.5, 5) 4. 1d - b2>1c - a21x + 422 + 1y - 222 = 25

21x + 222 + 1y - 322

x = 11.

x2
+ 1y - 622 = 25≈

y = mx + B - b.
y = mx

y = mx + By = mx + b

x2
+ y2

= 36

ax + by = r2
x2

+ y2
= r2.

3
5

4

r

Figure 21

The use of coordinates for points in the plane allows us to describe a curve (a
geometric object) by an equation (an algebraic object). We saw how this was done
for circles and lines in the previous section. Now we want to consider the reverse
process: graphing an equation. The graph of an equation in x and y consists of
those points in the plane whose coordinates (x, y) satisfy the equation, that is, make
it a true equality.

The Graphing Procedure To graph an equation, for example,
by hand, we can follow a simple three-step procedure:

Step 1: Obtain the coordinates of a few points that satisfy the equation.

Step 2: Plot these points in the plane.

Step 3: Connect the points with a smooth curve.

This simplistic method will have to suffice until Chapter 3 when we use more
advanced methods to graph equations.The best way to do Step 1 is to make a table
of values. Assign values to one of the variables, such as x, and determine the cor-
responding values of the other variable, listing the results in tabular form.

A graphing calculator or a computer algebra system will follow much the same
procedure, although its procedure is transparent to the user. A user simply defines
the function and asks the graphing calculator or computer to plot it.

2x3
- x + 19,

y =

1.4
Graphs of Equations

24
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� EXAMPLE 1 Graph the equation 

SOLUTION The three-step procedure is shown in Figure 1.

y = x2
- 3.

1

2

3

4

5

6

–3 –2 –1 1 2 3
–1

y

x

Step 3
Connect those points with

a smooth curve.

1

2

3

4

5

6

–3 –2 –1 1 2 3
–1

y

x

Step 2
Plot those points.

x

  –3  

  –2  

  –1  

  0

  1

  2

3

 y

6

1

 –2  

 –3  

 –2  

1

6

y = x2 – 3

Step 1
Make a table

of values.

Figure 1

y

x

2 2

x x

(2, 1)(–2, 1)

(–x, y) (x, y)

y = x2 – 3

Symmetry with respect
to the y-axis

Figure 2

�

Of course, you need to use common sense and even a little faith. When you
have a point that seems out of place, check your calculations. When you connect
the points you have plotted with a smooth curve, you are assuming that the curve
behaves nicely between consecutive points, which is faith. This is why you should
plot enough points so that the outline of the curve seems very clear; the more
points you plot, the less faith you will need. Also, you should recognize that you
can seldom display the whole curve. In our example, the curve has infinitely long
arms, opening wider and wider. But our graph does show the essential features.
This is our goal in graphing. Show enough of the graph so that the essential fea-
tures are visible. Later (Section 3.5) we will use the tools of calculus to refine and
improve our understanding of graphs.

Symmetry of a Graph We can sometimes cut our graphing effort in half by
recognizing certain symmetries of the graph as revealed by its equation. Look at
the graph of drawn above and again in Figure 2. If the coordinate
plane is folded along the y-axis, the two branches of the graph will coincide. For ex-
ample, (3, 6) will coincide with will coincide with and, more
generally, (x, y) will coincide with Algebraically, this corresponds to the
fact that replacing x by in the equation results in an equivalent
equation.

Consider an arbitrary graph. It is symmetric with respect to the y-axis if, when-
ever (x, y) is on the graph, is also on the graph (Figure 2). Similarly, it is
symmetric with respect to the x-axis if, whenever (x, y) is on the graph, is
also on the graph (Figure 3). Finally, a graph is symmetric with respect to the origin
if, whenever (x, y) is on the graph, is also on the graph (see Example 2).

In terms of equations, we have three simple tests. The graph of an equation is

1. symmetric with respect to the y-axis if replacing x by gives an equivalent
equation (e.g., );

2. symmetric with respect to the x-axis if replacing y by gives an equivalent
equation (e.g., );

3. symmetric with respect to the origin if replacing x by and y by gives 
an equivalent equation ( is a good example since is equiv-
alent to ).y = x3

-y = 1-x23y = x3
-y-x

x = y2
+ 1

-y

y = x2
-x

1-x, -y2
1x, -y21-x, y2

y = x2
- 3-x

1-x, y2. 1-2, 12,1-3, 62, 12, 12
y = x2

- 3,

y

x

(x, y)

(x, –y)

x = y2 + 1

Symmetry with respect
to the x-axis

Figure 3
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� EXAMPLE 2 Sketch the graph of 

SOLUTION We note, as pointed out above, that the graph will be symmetric with
respect to the origin, so we need only get a table of values for nonnegative x’s; we
can find matching points by symmetry. For example, (2, 8) being on the graph tells
us that is on the graph, (3, 27) being on the graph tells us that 
is on the graph, and so on. See Figure 4. �

In graphing we used a different scale on the y-axis than on the x-axis.
This made it possible to show a larger portion of the graph (it also distorted the
graph by flattening it). When you graph by hand we suggest that before putting
scales on the two axes you should examine your table of values. Choose scales so
that all or most of your points can be plotted and still keep your graph of reason-
able size. A graphing calculator or a CAS will often choose the scale for the y’s
once you have chosen the x’s to be used.The first choice you make, therefore, is the
x values to plot. Most graphing calculators and CASs allow you to override the
automatic y-axis scaling. In some cases you may want to use this option.

Intercepts The points where the graph of an equation crosses the two coordi-
nate axes play a significant role in many problems. Consider, for example,

Notice that when The numbers and 3 are called 
x-intercepts. Similarly, when and so 6 is called the y-intercept.

� EXAMPLE 3 Find all intercepts of the graph of 

SOLUTION Putting in the given equation, we get and so the 
x-intercept is Putting in the equation, we find that or

the y-intercepts are and 2. A check on symmetries
indicates that the graph has none of the three types discussed earlier. The graph is
displayed in Figure 5. �

Since quadratic and cubic equations will often be used as examples in later
work, we display their typical graphs in Figure 6.

The graphs of quadratic equations are cup-shaped curves called parabolas. If
an equation has the form or with its
graph is a parabola. In the first case, the graph opens up if and opens down
if In the second case, the graph opens right if and opens left if 
Note that the equation of Example 3 can be put in the form 

Intersections of Graphs Frequently, we need to know the points of intersec-
tion of two graphs. These points are found by solving the two equations for the
graphs simultaneously, as illustrated in the next example.

�EXAMPLE 4 Find the points of intersection of the line and
the parabola and sketch both graphs on the same coordinate
plane.

SOLUTION We must solve the two equations simultaneously. This is easy to do
by substituting the expression for y from the first equation into the second
equation and then solving the resulting equation for x.

 x = -1, x = 2

 0 = 21x + 121x - 22
 0 = 2x2

- 2x - 4

 -2x + 2 = 2x2
- 4x - 2

y = 2x2
- 4x - 2,

y = -2x + 2

x = y2
+ y - 6.

a 6 0.a 7 0a 6 0.
a 7 0

a Z 0,x = ay2
+ by + cy = ax2

+ bx + c

-31y + 321y - 22 = 0;
y2

+ y - 6 = 0,x = 0-6.
x = -6,y = 0

y2
- x + y - 6 = 0.

x = 0,y = 6
-2, 1,x = -2, 1, 3.y = 0

y = x3
- 2x2

- 5x + 6 = 1x + 221x - 121x - 32

y = x3,

1-3, -2721-2, -82

y = x3.

If you have a graphing calculator,
use it whenever possible to repro-
duce the plots shown in the figures.

Graphing Calculators

–2 1 2

–25
–20
–15
–10
–5

5
10
15
20
25

y

x

Symmetry with respect
to the origin

(–x, –y)

(x, y)

y = x3

x

0

1

2

3

4

y

0

1

8

27

64

y = x3

Figure 4

–4 –2 1 2 3

–2

–1

1

y

x

y2 – x + y – 6 = 0

Figure 5
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By substitution, we find the corresponding values of y to be 4 and the inter-
section points are therefore and The two graphs are shown in
Figure 7.

12, -22.1-1, 42 -2;

BASIC QUADRATIC AND CUBIC GRAPHS
y

x

y = x2

y

x

y = –x2

y

x

y = ax2 + bx + c
a > 0

y = ax2 + bx + c
a < 0

y

x

y

x

y = x3

y

x

y = –x3

y

x

y = ax3 + bx2 + cx + d
a > 0

y = ax3 + bx2 + cx + d
a < 0

y

x

y

x

x = y2 x�

y

x

y =

y

x

x = y3 or y = x�3

Figure 6

4

1

–1

–2

–3

–4

4

0
–2 –1 321

2

3

y

x

(–1, 4)

(2, –2)

y = –2x + 2

y = 2x2 – 4x – 2

Figure 7 �
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Concepts Review
1. If whenever (x, y) is on a graph, is also on the

graph, then the graph is symmetric with respect to the _____.

2. If is on a graph that is symmetric with respect to
the origin, then _____ is also on the graph.

1-4, 22
1-x, y2 3. The graph of has y-intercept

_____ and x-intercepts _____.

4. The graph of is a _____ if and a
_____ if a Z 0.

a = 0y = ax2
+ bx + c

y = 1x + 221x - 121x - 42

Problem Set 1.4
In Problems 1–30, plot the graph of each equation. Begin by
checking for symmetries and be sure to find all x- and y-intercepts.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18. 19.

20. 21.

22.

23.

24.

25.

26.

27.

28.

29. 30.

In Problems 31–38, plot the graphs of both equations on the
same coordinate plane. Find and label the points of intersection of
the two graphs (see Example 4).

31. 32.

33. 34.

35. 36. y = x - 1
2x2

+ 3y2
= 12

y = x

x2
+ y2

= 4

 y = 3x2
- 3x + 12 y = -21x - 422

 y = -2x + 3 y = -2x + 3

 y = -1x - 122 y = 1x + 122
 y = 2x + 3 y = -x + 1

GC

ƒ x ƒ + ƒ y ƒ = 4GC
ƒ x ƒ + ƒ y ƒ = 1GC

y = x41x - 1241x + 124GC

y = x21x - 122GC

y = x21x - 121x - 22GC

y = 1x - 121x - 221x - 32GC

41x - 522 + 91y + 222 = 36GC

2x2
- 4x + 3y2

+ 12y = -2GC

y =

x

x2
+ 1

GC

y =

1

x2
+ 1

GCy = x3
- xGC

x4
+ y4

= 16GCx4
+ y4

= 1GC

x2
+ 91y + 222 = 36

x2
- 4x + 3y2

= -2

41x - 122 + y2
= 36

x2
+ 1y - 122 = 9x2

- y2
= 4

4x2
+ 3y2

= 12y = -x2
- 2x + 2

3x2
+ 4y2

= 12x2
+ y2

= 4

y = 3x2
- 2x + 27x2

+ 3y = 0

y = x2
- 2xx2

+ y = 0

y = 4x2
- 1x = -4y2

- 1

x = -y2
+ 1y = -x2

+ 1

37. 38.

39. Choose the equation that corresponds to each graph in
Figure 8.

(a)
(b)
(c)
(d) y = ax3, with a 7 0

y = ax3
+ bx2

+ cx + d, with a 6 0
y = ax3

+ bx2
+ cx + d, with a 7 0

y = ax2, with a 7 0

y = 4x + 3
x2

+ y2
= 81

y - 3x = 1
x2

+ 2x + y2
= 15

4–2–4

20

10

–10

0

–20

(1)

42–2–4

20

10

–10

0

–20

(2)

42–2–4

20

10

–10

0

–20

(3)

42–2–4

20

10

–10

0

–20

(4)

y

y y

y

x

x x

x2

Figure 8

40. Find the distance between the points on the circle
with the x-coordinates and 2. How many such

distances are there?

41. Find the distance between the points on the circle
with the x-coordinates and 2. How

many such distances are there?

Answers to Concepts Review: 1. y-axis 2.
3. 8; 1, 4 4. line; parabola-2,

14, -22

-2x2
+ 2x + y2

- 2y = 20
≈

-2x2
+ y2

= 13
≈

28



Section 1.5 Functions and Their Graphs 29

Think of a function as a machine that takes as its input a value x and produces
an output f(x). (See Figure 2.) Each input value is matched with a single output
value. It can, however, happen that several different input values give the same
output value.

The concept of function is one of the most basic in all mathematics, and it plays an
indispensable role in calculus.

1.5
Functions and Their

Graphs

f (x)

x

Figure 2

f (x)x

A Function
f

Domain Range

Figure 1

2

1

0

–1

–2

4

3

2

1

0
g(x) = x2

Domain Range

Figure 3

Definition

A function f is a rule of correspondence that associates with each object x in one
set, called the domain, a single value f(x) from a second set.The set of all values
so obtained is called the range of the function. (See Figure 1.)

The definition puts no restriction on the domain and range sets. The domain
might consist of the set of people in your calculus class, the range the set of grades

that will be given, and the rule of correspondence the assignment
of grades. Nearly all functions you encounter in this book will be functions of one
or more real numbers. For example, the function g might take a real number x and
square it, producing the real number In this case we have a formula that gives
the rule of correspondence, that is, A schematic diagram for this func-
tion is shown in Figure 3.

Function Notation A single letter like f (or g or F ) is used to name a func-
tion. Then f (x), read “f of x” or “f at x,” denotes the value that f assigns to x. Thus,
if then

Study the following examples carefully. Although some of these examples may
look odd now, they will play an important role in Chapter 3.

� EXAMPLE 1 For find and simplify

(a) f (4) (b)
(c) (d)

SOLUTION

(a)

(b)

(c)

(d) �
f14 + h2 - f142

h
=

6h + h2

h
=

h16 + h2
h

= 6 + h

f14 + h2 - f142 = 8 + 6h + h2
- 8 = 6h + h2

 = 8 + 6h + h2
f14 + h2 = 14 + h22 - 214 + h2 = 16 + 8h + h2

- 8 - 2h

f142 = 42
- 2 # 4 = 8

[f14 + h2 - f142]>hf14 + h2 - f142
f14 + h2

f1x2 = x2
- 2x,

 f1a + h2 = 1a + h23 - 4 = a3
+ 3a2h + 3ah2

+ h3
- 4

 f1a2 = a3
- 4

 f122 = 23
- 4 = 4

f1x2 = x3
- 4,

g1x2 = x2.
x2.

5A, B, C, D, F6

29



30 Chapter 1 Preliminaries

Remember, use your graphing calcu-
lator to reproduce the figures in this
book. Experiment with various
graphing windows until you are
convinced that you understand all
important aspects of the graph.

Graphing Calculator

x

d

Figure 5

3

2

1

0

–1

10

5

2

1

F(x) = x2 + 1

Domain Range

Figure 4

Domain and Range To specify a function completely, we must state, in
addition to the rule of correspondence, the domain of the function. For example,
if F is the function defined by with domain 
(Figure 4), then the range is The rule of correspondence, together
with the domain, determines the range.

When no domain is specified for a function, we assume that it is the largest set
of real numbers for which the rule for the function makes sense. This is called the
natural domain. Numbers that you should remember to exclude from the natural
domain are those values that would cause division by zero or the square root of a
negative number.

� EXAMPLE 2 Find the natural domains for

(a) (b)

(c)

SOLUTION
(a) We must exclude 3 from the domain because it would require division by zero.

Thus, the natural domain is This may be read “the set of x’s such
that x is not equal to 3.”

(b) To avoid the square root of a negative number, we must choose t so that
Thus, t must satisfy The natural domain is therefore
which we can write using interval notation as 

(c) Now we must avoid division by zero and square roots of negative numbers, so
we must exclude and 3 from the natural domain. The natural domain is
therefore the interval �

When the rule for a function is given by an equation of the form 
we call x the independent variable and y the dependent variable. Any value in the
domain may be substituted for the independent variable. Once selected, this value
of x completely determines the corresponding value of the dependent variable y.

The input for a function need not be a single real number. In many important
applications, a function depends on more than one independent variable. For ex-
ample, the amount A of a monthly car payment depends on the loan’s principal P,
the rate of interest r, and the required number n of monthly payments. We could
write such a function as A(P, r, n). The value of A(16000, 0.07, 48), that is, the re-
quired monthly payment to retire a $16,000 loan in 48 months at an annual interest
rate of 7%, is $383.14. In this situation, there is no simple mathematical formula
that gives the output A in terms of the input variables P, r, and n.

� EXAMPLE 3 Let V(x, d) denote the volume of a cylindrical rod of length x
and diameter d. (See Figure 5.) Find

(a) a formula for V(x, d)
(b) the domain and range of V
(c) V(4, 0.1)

SOLUTION

(a)

(b) Because the length and diameter of the rod must be positive, the domain is the
set of all ordered pairs (x, d) where and Any positive volume is
possible so the range is 

(c) �

Chapters 1 through 11 will deal mostly with functions of a single independent
variable. Beginning in Chapter 12, we will study properties of functions of two or
more independent variables.

V14, 0.12 =

p # 4 # 0.12

4
= 0.01p

(0, q).
d 7 0.x 7 0

V1x, d2 = x # pad

2
b2

=

pxd2

4

y = f1x2,
1-3, 32.-3

[-3, 3].5t: ƒ t ƒ … 36,
ƒ t ƒ … 3.9 - t2

Ú 0.

5x: x Z 36.

h1w2 = 1>29 - w2

g1t2 = 29 - t2f1x2 = 1>1x - 32

51, 2, 5, 106. 5-1, 0, 1, 2, 36F1x2 = x2
+ 1

30



Section 1.5 Functions and Their Graphs 31

Graphs of Functions When both the domain and range of a function are sets
of real numbers, we can picture the function by drawing its graph on a coordinate
plane. The graph of a function f is simply the graph of the equation 

� EXAMPLE 4 Sketch the graphs of

(a) (b)

SOLUTION The natural domains of f and g are, respectively, all real numbers
and all real numbers except 1. Following the procedure described in Section 1.4
(make a table of values, plot the corresponding points, connect these points with a
smooth curve), we obtain the two graphs shown in Figures 6 and 7a. �

g1x2 = 2>1x - 12f1x2 = x2
- 2

y = f1x2.

–3 –2 –1

– 4

– 6

1 2

2

4

6

3

y = f (x) = x2 – 2
y

x

Figure 6

6

y

y = g(x) =

x

4

–6

–4

–2

2

2 43–3–4 –1–2

2
x–1

(a)

–4

y

x

400

–600

–400

–200

200

600

2 43–2–3 –1

(b)

Figure 7

Pay special attention to the graph of g ; it points to an oversimplification that
we have made and now need to correct. When connecting the plotted points 
by a smooth curve, do not do so in a mechanical way that ignores special fea-
tures that may be apparent from the formula for the function. In the case of

something dramatic happens as x nears 1. In fact, the values 
of increase without bound; for example,
and We have indicated this by drawing a dashed vertical line,
called an asymptote, at As x approaches 1, the graph gets closer and closer
to this line, though this line itself is not part of the graph. Rather, it is a guideline.
Notice that the graph of g also has a horizontal asymptote, the x-axis.

Functions like can even cause problems when you graph
them on a CAS. For example, Maple, when asked to plot over
the domain responded with the graph shown in Figure 7b. Computer Alge-
bra Systems use an algorithm much like that described in Section 1.4; they choose
a number of x-values over the stated domain, find the corresponding y-values, and
plot these points with connecting lines.When Maple chose a number near 1, the re-
sulting output was large, leading to the y-axis scaling in the figure. Maple also con-
nected the points right across the break at Always be cautious and careful
when you use a graphing calculator or a CAS to plot functions.

The domains and ranges for the functions f and g are shown in the table below.

x = 1.

[-4, 4]
g1x2 = 2>1x - 12g1x2 = 2>1x - 12

x = 1.
g11.0012 = 2000.

g10.992 = 2>10.99 - 12 = -200ƒ g1x2 ƒ

g1x2 = 2>1x - 12,

Function Domain Range

all real numbers

5y: y Z 065x: x Z 16g1x2 =

2
x - 1

5y: y Ú -26f1x2 = x2
- 2

Even and Odd Functions We can often predict the symmetries of the graph
of a function by inspecting the formula for the function. If for all x,
then the graph is symmetric with respect to the y-axis. Such a function is called an

f1-x2 = f1x2
31



32 Chapter 1 Preliminaries

even function, probably because a function that specifies as a sum of only even
powers of x is even.The function (graphed in Figure 6) is even; so are

and 
If for all x, the graph is symmetric with respect to the origin.

We call such a function an odd function. A function that gives as a sum of only
odd powers of x is odd. Thus, (graphed in Figure 8) is odd. Note
that

Consider the function from Example 4, which we graphed
in Figure 7. It is neither even nor odd. To see this, observe that 

which is not equal to either or Note that the graph of
is neither symmetric with respect to the y-axis nor the origin.

� EXAMPLE 5 Is even, odd, or neither?

SOLUTION Since

f is an odd function. The graph of (Figure 9) is symmetric with respect to
the origin. �

Two Special Functions Among the functions that will often be used as
examples are two very special ones: the absolute value function, and the
greatest integer function, They are defined by

and

Thus, while and We show the
graphs of these two functions in Figures 10 and 11. The absolute value function is
even, since The greatest integer function is neither even nor odd, as
you can see from its graph.

We will often appeal to the following special features of these graphs. The
graph of has a sharp corner at the origin, while the graph of takes a jump at
each integer.

Œx œƒ x ƒ

ƒ -x ƒ = ƒ x ƒ .

Œ3.1 œ = 3.Œ -3.1 œ = -4ƒ -3.1 ƒ = ƒ 3.1 ƒ = 3.1,

Œx œ = the greatest integer less than or equal to x

ƒ x ƒ = e x if x Ú 0
-x if x 6 0

Œ œ .
ƒ ƒ ,

y = f1x2
f1-x2 =

1-x23 + 31-x2
1-x24 - 31-x22 + 4

=

-1x3
+ 3x2

x4
- 3x2

+ 4
= -f1x2

f1x2 =

x3
+ 3x

x4
- 3x2

+ 4

y = g1x2 -g1x2.g(x)2>1-x - 12, g1-x2 =

g1x2 = 2>1x - 12
g1-x2 = 1-x23 - 21-x2 = -x3

+ 2x = -1x3
- 2x2 = -g1x2

g1x2 = x3
- 2x

f(x)
f1-x2 = -f1x2 f1x2 = 1x3

- 2x2>3x.f1x2 = 3x6
- 2x4

+ 11x2
- 5, f1x2 = x2>11 + x42,f1x2 = x2

- 2
f(x)

32

y = g(x) = x3 – 2x
y

x–2
–2

2

– 4

4

– 6

6

–3

Figure 8

y 

x –2
–1

0

1

–2

2

–3

3

–4 42

Figure 9

–1 1

1

–2 2

2

–3 3

3

4

x

y

y = � x �

Figure 10

1–1 2 3

1

2

3

4

–2

–2

–3–4

y

x

y = x

Figure 11
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Section 1.5 Functions and Their Graphs 33

Concepts Review
1. The set of allowable inputs for a function is called the

_____ of the function; the set of outputs that are obtained is
called the _____ of the function.

2. If then _____ and 
_____.

3. If f (x) gets closer and closer to L as increases indefi-
nitely, then the line is a(an) _____ for the graph of f.y = L

ƒ x ƒ

f1x + h2 =f12u2 =f1x2 = 3x2,

4. If for all x in the domain of f, then f is
called a(an) _____ function; if for all x in the
domain of f, then f is called a(an) _____ function. In the first case,
the graph of f is symmetric with respect to the _____; in the
second case, it is symmetric with respect to the _____.

f1-x2 = -f1x2
f1-x2 = f1x2

Problem Set 1.5
1. For find each value.

(a) f(1) (b) (c) f (0)
(d) f (k) (e) (f)
(g) (h)
(i)

2. For find each value.

(a) F (1) (b) (c)

(d) (e)
(f)

3. For find each value.
(a) G(0) (b) G(0.999) (c) G(1.01)

(d) (e) (f)

4. For find each value. ( is the uppercase

Greek letter phi.)
(a) (b) (c)
(d) (e) (f)

5. For

find each value.

(a) f (0.25) (b) (c)

6. For find each value.

(a) f (0.79) (b) f (12.26) (c)

7. Which of the following determine a function f with for-
mula For those that do, find f (x). Hint: Solve for y in
terms of x and note that the definition of a function requires a
single y for each x.

(a) (b)

(c) (d)

8. Which of the graphs in Figure 12 are graphs of functions?

This problem suggests a rule: For a graph to be the graph of a
function, each vertical line must meet the graph in at most one
point.

9. For find and simplify 

10. For find and simplify [F1a + h2 - F1a2]>h.F1t2 = 4t3,

f1a2]>h.
[f1a + h2 -f1x2 = 2x2

- 1,

x =

y

y + 1
x = 22y + 1

xy + y + x = 1, x Z -1x2
+ y2

= 1

y = f1x2?

f A23 B
f1x2 = 2x2

+ 9> Ax - 23 B ,C

f A3 + 22 Bf1p2

f1x2 =

12x - 3

£1x2
+ x2£1x22£1u + 12

£ A12 B£1- t2£112

££1u2 =

u + u21u
,

Ga 1

x2 bG1-x2G1y22

G1y2 = 1>1y - 12,
F12 + h2 - F122

F11 + h2 - F112F11 + h2
F A14 BF A22 B

F1x2 = x3
+ 3x,

f12 + h2 - f122
f11 + h2 - f112f11 + h2

f A14 Bf1-52
f1-22

f1x2 = 1 - x2,

11. For find and simplify 

12. For find and simplify 

13. Find the natural domain for each of the following.

(a) (b)

(c) (d)

14. Find the natural domain in each case.

(a) (b)

(c) (d)

In Problems 15–30, specify whether the given function is even,
odd, or neither, and then sketch its graph.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. G1x2 = Œ2x - 1 œg1x2 = fi x
2
fl

F1t2 = - ƒ t + 3 ƒf1x2 = ƒ 2x ƒ

h1x2 = 2x2
+ 4f1w2 = 2w - 1

f1z2 =

2z + 1
z - 1

g1x2 =

x

x2
- 1

g1u2 =

u3

8
g1x2 = 3x2

+ 2x - 1

F1x2 = 3x - 22F1x2 = 2x + 1

f1x2 = 3xf1x2 = -4

F1t2 = t2>3
- 4f1u2 = ƒ 2u + 3 ƒ

G1y2 = 21y + 12-1f1x2 =

4 - x2

x2
- x - 6

H1y2 = -2625 - y4c1x2 = 2x2
- 9

g1v2 = 1>14v - 12F1z2 = 22z + 3

G1a2]>h.
[G1a + h2 -G1t2 = t>1t + 42,

g1x2]>h.
[g1x + h2 -g1u2 = 3>1u - 22,

y

y y

y

x

x

x

x

Figure 12
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34 Chapter 1 Preliminaries

29.

30.

31. A plant has the capacity to produce from 0 to 100 com-
puters per day. The daily overhead for the plant is $5000, and the
direct cost (labor and materials) of producing one computer is
$805. Write a formula for T(x), the total cost of producing x com-
puters in one day, and also for the unit cost u(x) (average cost per
computer). What are the domains of these functions?

32. It costs the ABC Company dollars to
make toy stoves that sell for $6 each.
(a) Find a formula for P(x), the total profit in making x stoves.
(b) Evaluate P(200) and P(1000).
(c) How many stoves does ABC have to make to just break

even?

33. Find the formula for the amount E(x) by which a number
x exceeds its square. Plot a graph of E(x) for Use the
graph to estimate the positive number less than or equal to 1 that
exceeds its square by the maximum amount.

34. Let p denote the perimeter of an equilateral triangle. Find
a formula for A(p), the area of such a triangle.

35. A right triangle has a fixed hypotenuse of length h and
one leg that has length x. Find a formula for the length L(x) of
the other leg.

36. A right triangle has a fixed hypotenuse of length h and
one leg that has length x. Find a formula for the area A(x) of the
triangle.

37. The Acme Car Rental Agency charges $24 a day for the
rental of a car plus $0.40 per mile.
(a) Write a formula for the total rental expense E(x) for one

day, where x is the number of miles driven.
(b) If you rent a car for one day, how many miles can you drive

for $120?

38. A right circular cylinder of radius r is inscribed in a sphere
of radius 2r. Find a formula for V(r), the volume of the cylinder,
in terms of r.

39. A 1-mile track has parallel sides and equal semicircular
ends. Find a formula for the area enclosed by the track, A(d), in
terms of the diameter d of the semicircles. What is the natural
domain for this function?

40. Let A(c) denote the area of the region bounded from
above by the line from the left by the y-axis, from
below by the x-axis, and from the right by the line Such a
function is called an accumulation function. (See Figure 13.) Find
(a) A(1) (b) A(2)
(c) A(0) (d) A(c)
(e) Sketch the graph of A(c).
(f) What are the domain and range of A?

x = c.
y = x + 1,

0 … x … 1.
C

(x Ú 4)x
400 + 52x1x - 42C

h1x2 = e -x2
+ 4 if x … 1

3x if x 7 1

g1t2 = c 1 if t … 0
t + 1 if 0 6 t 6 2
t2

- 1 if t Ú 2

41. Let B(c) denote the area of the region bounded from
above by the graph of the curve from below by
the x-axis, and from the right by the line The domain of B
is the interval [0, 1]. (See Figure 14.) Given that 

(a) Find B(0) (b) Find 
(c) As best you can, sketch a graph of B(c).

B A12 B
B112 =

1
6,

x = c.
y = x11 - x2,

x

y

1 c

3

2

1

2

Figure 13

x

y

1c

1
4

1
2

Figure 14

42. Which of the following functions satisfies
for all real numbers x and y?

(a) (b)
(c) (d)

43. Let for all x and y. Prove that
there is a number m such that for all rational numbers
t. Hint: First decide what m has to be. Then proceed in steps,
starting with for a natural number p,

and so on.

44. A baseball diamond is a square with sides of 90 feet. A
player, after hitting a home run, loped around the diamond at 10
feet per second. Let s represent the player’s distance from home
plate after t seconds.
(a) Express s as a function of t by means of a four-part formula.
(b) Express s as a function of t by means of a three-part formula.

To use technology effectively, you need to discover its capabil-
ities, its strengths, and its weaknesses. We urge you to practice
graphing functions of various types using your own computer
package or calculator. Problems 45–50 are designed for this
purpose.

45. Let 
(a) Evaluate f (1.38) and f (4.12).
(b) Construct a table of values for this function corresponding

to 

46. Follow the instructions in Problem 45 for 

47. Draw the graph of on the
domain 
(a) Determine the range of f.
(b) Where on this domain is 

48. Superimpose the graph of with
domain on the graph of f (x) of Problem 47.
(a) Estimate the x-values where 
(b) Where on is 
(c) Estimate the largest value of on 

49. Graph on the domain

(a) Determine the x- and y-intercepts.
(b) Determine the range of f for the given domain.
(c) Determine the vertical asymptotes of the graph.

[-6, 6].
f1x2 = 13x - 42>1x2

+ x - 62
[-2, 5].ƒ f1x2 - g1x2 ƒ

f1x2 Ú g1x2?[-2, 5]
f1x2 = g1x2.

[-2, 5]
g1x2 = 2x2

- 8x - 1

f1x2 Ú 0?

[-2, 5].
f1x2 = x3

- 5x2
+ x + 8

1sin2 x - 3 tan x2>cos x.
f1x2 =

x = -4, -3, Á , 3, 4.

f1x2 = 1x3
+ 3x - 52>1x2

+ 42.

GC

f11>p2 = m>p,
f102 = 0, f1p2 = mp

f1t2 = mt
f1x + y2 = f1x2 + f1y2

f1t2 = -3tf1t2 = 2t + 1
f1t2 = t2f1t2 = 2t

f1x + y2 = f1x2 + f1y2
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Section 1.6 Operations on Functions 35

(d) Determine the horizontal asymptote for the graph when the
domain is enlarged to the natural domain.

50. Follow the directions in Problem 49 for the function
13x2

- 42>1x2
+ x - 62g1x2 =

Just as two numbers a and b can be added to produce a new number so two
functions f and g can be added to produce a new function This is just one of
several operations on functions that we will describe in this section.

Sums, Differences, Products, Quotients, and Powers Consider func-
tions f and g with formulas

We can make a new function by having it assign to x the value
that is,

Of course, we must be a little careful about domains. Clearly, x must be a number
on which both f and g can work. In other words, the domain of is the inter-
section (common part) of the domains of f and g (Figure 1).

The functions and are introduced in a completely analogous
way. Assuming that f and g have their natural domains, we have the following:

Formula Domain

We had to exclude 0 from the domain of to avoid division by 0.
We may also raise a function to a power. By we mean the function that

assigns to x the value Thus,

There is one exception to the above agreement on exponents, namely, when
We reserve the symbol for the inverse function, which will be dis-

cussed later in this section. Thus, does not mean 

� EXAMPLE 1 Let and with respective
natural domains and Find formulas for 

and and give their natural domains.F5F # G, F>G,
F - G,F + G,[-3, 3].[-1, q2

G1x2 = 29 - x2,F1x2 = 24 x + 1

1>f.f-1
f-1n = -1.

g31x2 = [g1x2]3
= A1x B3 = x3/2

[f1x2]n.
fn,

f>g

10, q2af

g
b1x2 =

f1x2
g1x2 =

x - 3
21x

[0, q21f # g21x2 = f1x2 # g1x2 =

x - 3
2
1x

[0, q21f - g21x2 = f1x2 - g1x2 =

x - 3
2

- 1x

[0, q21f + g21x2 = f1x2 + g1x2 =

x - 3
2

+ 1x

f>gf - g, f # g,

f + g

1f + g21x2 = f1x2 + g1x2 =

x - 3
2

+ 1x

f1x2 + g1x2 = 1x - 32>2 + 1x;
f + g

f1x2 =

x - 3
2

, g1x2 = 1x

f + g.
a + b,1.6

Operations 
on Functions

Answers to Concepts Review: 1. domain; range
2. 3. asymptote
4. even; odd; y-axis; origin

12u2 ; 31x + h22 = 3x2
+ 6xh + 3h2

Domain
of f + g

Domain
of f

Domain
of g

Figure 1
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36 Chapter 1 Preliminaries

SOLUTION

Formula Domain

�

Composition of Functions Earlier, we asked you to think of a function as 
a machine. It accepts x as input, works on x, and produces f (x) as output. Two
machines may often be put together in tandem to make a more complicated ma-
chine; so may two functions f and g (Figure 2). If f works on x to produce f (x) and g
then works on f (x) to produce g( f (x)), we say that we have composed g with f.The
resulting function, called the composition of g with f, is denoted by Thus,

In our previous examples we had and We may
compose these functions in two ways:

Right away we notice that does not equal Thus, we say that the com-
position of functions is not commutative.

We must be careful in describing the domain of a composite function. The
domain of is equal to the set of those values x that satisfy the following
properties:

1. x is in the domain of f.
2. f (x) is in the domain of g.

In other words, x must be a valid input for f, and f (x) must be a valid input for g. In
our example, the value is in the domain of f, but it is not in the domain of

because this would lead to the square root of a negative number:

The domain for is the interval because f (x) is nonnegative on this in-
terval, and the input to g must be nonnegative.The domain for is the interval

(why?), so we see that the domains of and can be different.
Figure 3 shows how the domain of excludes those values of x for which f (x)
is not in the domain of g.

� EXAMPLE 2 Let and with their natural
domains. First, find then find and give its domain.

SOLUTION

 1f � g21x2 = f1g1x22 = f A23x B =

623x

A23x B2 - 9

 1f � g21122 = f1g11222 = f A236 B = f162 =

6 # 6

62
- 9

=

4
3

1f � g21x21f � g21122; g1x2 = 23x,f1x2 = 6x>1x2
- 92

g � f
f � gg � f[0, q2 f � g

[3, q2g � f

g1f1222 = g112 - 32>22 = ga-  
1
2
b = A -  

1
2

g � f
x = 2

g � f

f � g.g � f

 1f � g21x2 = f1g1x22 = f A1x B =

1x - 3
2

 1g � f21x2 = g1f1x22 = gax - 3
2
b = Ax - 3

2

g1x2 = 1x.f1x2 = 1x - 32>2
1g � f21x2 = g1f1x22

g � f.

[-1, q2F51x2 = [F1x2]5
= A24 x + 1 B5 = 1x + 125/4

[-1, 32aF

G
b1x2 =

F1x2
G1x2 =

24 x + 129 - x2

[-1, 3]1F # G21x2 = F1x2 # G1x2 = 24 x + 129 - x2

[-1, 3]1F - G21x2 = F1x2 - G1x2 = 24 x + 1 - 29 - x2

[-1, 3]1F + G21x2 = F1x2 + G1x2 = 24 x + 1 + 29 - x2

f (x) g(x)

x x

g[f (x)] f [g(x)]

f

fg

g

Figure 2

x

x

f (x )

g(f (x))

f (x)f g

g   f

Not in
domain of g

Domain
of f

Domain
of g   f

Domain
of g

Figure 3
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Section 1.6 Operations on Functions 37

The expression appears in both the numerator and denominator. Any
negative number for x will lead to the square root of a negative number. Thus, all
negative numbers must be excluded from the domain of For we have

allowing us to write

We must also exclude from the domain of because g(3) is not in the
domain of f. (It would cause division by 0.) Thus, the domain of is

�

In calculus, we will often need to take a given function and write it as the com-
position of two simpler functions. Usually, this can be done in a number of ways.
For example, can be written as

or as

(You should check that both of these compositions give with
domain ) The decomposition with and

is regarded as simpler and is usually preferred. We can therefore view
as the square root of a function of x.This way of looking at func-

tions will be important in Chapter 3.

� EXAMPLE 3 Write the function as a composite function

SOLUTION The most obvious way to decompose p is to write

We thus view as the fifth power of a function of x. �

Translations Observing how a function is built up from simpler ones can be a
big aid in graphing. We may ask this question: How are the graphs of

related to each other? Consider as an example.The corresponding four
graphs are displayed in Figure 4.

f1x2 = ƒ x ƒ

y = f1x2 y = f1x - 32 y = f1x2 + 2 y = f1x - 32 + 2

p1x2 = 1x + 225
p1x2 = g1f1x22, where g1x2 = x5 and f1x2 = x + 2

g � f.
p1x2 = 1x + 225

p1x2 = 2x2
+ 4

g1x2 = 1x
f1x2 = x2

+ 4p1x2 = g1f1x221- q , q2.
p1x2 = 2x2

+ 4

p1x2 = g1f1x22, where g1x2 = 2x + 4 and f1x2 = x2

p1x2 = g1f1x22, where g1x2 = 1x and f1x2 = x2
+ 4

p1x2 = 2x2
+ 4

[0, 32 ´ 13, q2. f � g
f � gx = 3

1f � g21x2 =

623x

3x - 9
=

223x

x - 3

A23x B2 = 3x,
x Ú 0,f � g.

23x

y =� x � y = � x – 3 � y = � x � + 2 y = � x – 3 � + 2

1 2 3 4 51 2 3 4 5–1 1 2–2 –1

1

2

3

1

2

3

1

2

3

1

2

3

4 4 44

–11 2–1

y y y y

x x x x

Figure 4

Notice that all four graphs have the same shape; the last three are just transla-
tions of the first. Replacing x by translates the graph 3 units to the right;
adding 2 translates it upward by 2 units.

What happened with is typical. Figure 5 offers an illustration for the
function f1x2 = x3

+ x2.
f1x2 = ƒ x ƒ

x - 3
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38 Chapter 1 Preliminaries

Exactly the same principles apply in the general situation. They are illustrated
in Figure 6 with both h and k positive. If the translation is to the left; if

the translation is downward.k 6 0,
h 6 0,

y

x

1

1–1–1–2 2

2

y = x3 + x2 –2

Translated 2 units
down

y

x1–1–1

–2

2

2

y = (x + 1)3 + (x + 1)2

Translated 1 unit
to the left

y

x1–1

–2

1

2

2

y = x3 + x2

Original
graph

y

x

1

1–1 2

2

y = (x + 1)3 + (x + 1)2 –2

Translated 1 unit
left, 2 units down

Figure 5

y

x

y

x

y

x

y

x

y = f (x) y = f (x – h) y = f (x) + k y = f (x – h) + k
Original

graph
Translated h

units to the right
Translated k

units up
Translated h units

to the right
and k units up

h

{
k{

Figure 6

y

x

y = f (x) = �x3

4

2

1

1 2 3 4 5 6 7 8

Figure 7

1

1–1

2

3

4

2 3–2–3 4 5

y

x

x + 3 + 1�y = g(x) = 

Figure 8

� EXAMPLE 4 Sketch the graph of by first graphing

and then making appropriate translations.

SOLUTION By translating the graph of f (Figure 7) 3 units left and 1 unit up, we
obtain the graph of g (Figure 8). �

The Inverse of a Function A function takes a number x from its domain D
and assigns to it a single value y from its range R. In some cases, like the two func-
tions graphed in Figures 9 and 10, we can reverse f ; that is, for any given y in the
range R, we can unambiguously go back and find the x from which it came. This
new function that takes y and assigns x to it is denoted by Note that its do-
main is R (the range of and its range is D (the domain of ). The function 
is called the inverse of or simply -inverse. Note that we are using the 
superscript in a new way. Earlier in this section, we defined as the functionfn

-1
ff,

f-1ff)
f-1.

f1x2 = 1x

g1x2 = 2x + 3 + 1
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Section 1.6 Operations on Functions 39

y

x

f

f –1

R

D

y =  f (x) = 2x

x =  f –1( y) =     y1
2

y + 1�

y

x

f f –1

R

D

x =  f –1(y) =  3

y =  f (x) = x3 –1

Figure 9

Figure 10

Definition One-to-one Function

A function is said to be one-to-one if distinct values of always lead to dis-
tinct values of that is

x1 Z x2  3   f(x1) Z f(x2)

y = f(x);
xf

defined by as long as To us, the symbol means 
-inverse, not 

Sometimes, we can give a formula for For example, if then
we can readily solve for x to get This gives us a rule for determing what
value of x gave a particular y. Thus, we write If we preferred, we
could write the inverse function with x as the argument and y as the output. In this
case we would have (These two ways of writing namely

and actually define the same function.)
Thus, to find the inverse of a function, we propose the following three-step

procedure:

Step 1: Write and solve for x in terms of y (if this is possible).

Step 2: Use the solution for x (in terms of y) to write 

Step 3: Interchange the roles of x and y to get the formula for 

If the function has the property that every y in the range of is asso-
ciated with one and only one value of x, there is just one such x as suggested in
Step 1. Geometrically, this says that a horizontal line can intersect the graph of

at most once. If a function satisfies this horizontal line test, then it will
have an inverse. Yet another way of saying this is to say that different x’s always
lead to different y’s. This leads to the following definition.

y = f(x)

fy = f(x)

f-11x2.
f-11y2.

y = f1x2

f -1
f-1(x) =

1
2 x,f-1(y) =

1
2 y

f-1,y = f-11x2 =
1
2 x.

x = f-11y2 =
1
2 y.

x =
1
2 y.

y = f1x2 = 2xf-1.

1>f.f
f -1n Z -1.fn(x) = [f(x)]n

xx

No inverse function 
y = f (x) = x2

y

Figure 11

y

x

y = x2

Domain restricted to x ≥ 0

Figure 12

� EXAMPLE 5 Show that has an inverse and find it.

SOLUTION

Step 1: We set  and attempt to solve for (If it is possible to
solve unambiguously for then has an inverse; otherwise it doesn’t.) In this case
we have

Step 2: Thus,

Step 3: Interchanging the roles of x and y gives   �

Not all functions have inverses. Consider, for instance, the function 
If we set and attempt to solve for we get which does not give
us a single solution; does not have an inverse. Figure 11 shows us why. For every
positive there exist two values for that produce 

There is a way of salvaging the notion of inverse for functions that do not have
inverses on their natural domain. We simply restrict the domain to a subset of the 
natural domain. Thus, for we may restrict the domain to 

would work also). With this restriction, if we set we can solve un-
ambiguously for to get Thus, (See Figure 12.)f -1(x) = 2x.x = 2y.x

y = x2,(x … 0
x  Ú  0y = f(x) = x2,

y.xy
f

x = ; 2y,xy = x2
f(x) = x2.

f-11x2 = (x - 6)>2.

f-11y2 = (y - 6)>2.

 x =

y - 6

2

 y - 6 = 2x

 y = 2x + 6

fx,
x.y = f1x2 = 2x + 6

f1x2 = 2x + 6
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40 Chapter 1 Preliminaries

�2 �1 1 2

�30

�20

�10

10

20

30

x

y f(x) � x5 � 2x � 1

Figure 13

y

x

(5, 1)
(b, a)

(a, b)

y = x

(1, 5)

y

( y, x)

(x, y)

y

x

y = x

y = f(x)

y = f –1(x)

Figure 14

We may view a function as a machine
that accepts an input and produces
an output. If the machine and the

machine are hooked together in
tandem, they undo each other.
f-1

f

Undoing Machines

yx

f f –1

f (x) f –1(y)

ff –1

yx

Figure 15

Definition Increasing, Decreasing, Monotonic

Let I be an interval containing the points and A function f is increasing on
I if implies A function f is decreasing on I if im-
plies A function f is monotonic on I if it is either increasing or
decreasing on I.

f(x1) 7 f(x2).
x1 6 x2f(x1) 6 f(x2).x1 6 x2

x2.x1

Theorem A

If f is monotonic on its domain, then f has an inverse.

There are also cases where a function has an inverse, but it is not practical to
find a formula for it. The function is graphed in Figure 13. It
seems evident that for every y, there is just one x satisfying (In other
words, it seems from looking at the graph that is one-to-one.) The next theorem,
which we will apply in Section 3.9, gives a condition that guarantees the existence
of an inverse. First, though, we need to define a few terms.

f
f(x) = y.

f(x) = x5
+ 2x + 1

Proof Let and be distinct numbers in the domain of with Since
is monotonic, or Either way, Thus,

implies which means that is one-to-one and therefore has
an inverse. �

We will show in Section 3.9 that the function graphed in
Figure 13, is increasing and therefore, by Theorem A, has an inverse.

If the function has an inverse then has an inverse, namely, (With a lit-
tle thought, that should appear obvious.) Thus, we may call and a pair of inverse
functions. One function undoes (or reverses) what the other did; in other words

The Graph of If the function has an inverse then

Consequently, and determine the same ordered pairs
and so have identical graphs. However, it is conventional to use x as the argument
for both functions, so we now inquire about the graph of Note that we
have interchanged the roles of x and y here. To interchange the roles of x and y
means that if is on the graph of then is on the graph of

Figure 14 illustrates this concept; the points and are sym-
metric about the line In other words, the graph of is just the re-

flection of the graph of across the line (Figure 15).y = xy = f1x2
y = f-11x2y = x.

(b, a)(a, b)y = f-11x2. (y, x)y = f(x),(x, y)

y = f-11x2.
(x, y)x = f-11y2y = f1x2

y = f1x2    3    x = f-11y2
f-1,fy = f-11x2

 f(f-1(y)) = y  for every y in the range of f

 f-1(f(x)) = x  for every x in the domain of f

f-1f
f.f-1f-1,f

f(x) = x5
+ 2x + 1,

ff(x1) Z f(x2),x1 Z x2

f(x1) Z f(x2).f(x1) 7 f(x2).f(x1) 6 f(x2)f
x1 6 x2.f,x2x1
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Section 1.6 Operations on Functions 41

2 4 6
�6 �4 �2

�6

�4

2

4

6

x

y
f(x) � 1�x

x

f�1(x) � 1�x
x

y � x

Figure 16

The constant
function f (x) = 4

x1

1

2

2

3

4

3 4 5

y

Figure 17

The identity
function f (x) = x 

x

y

1

1

2

2

3

3 4

4

5

Figure 18

� EXAMPLE 6 Find a formula for the inverse of Show
that  for every in the domain of and for every 
in the range of Finally, graph both functions on the same set of axes.

SOLUTION First, find the inverse of 

Step 1: Write and solve for 

Step 2:

Step 3:

Next, consider and Let be in the domain of that is, any
number except 1. Then

Now, let be any number in the domain of that is, any number except  
Then

Figure 16 shows a graph of both and As expected, the graphs
are symmetric about the line �

Partial Catalog of Functions A function of the form where k is
a constant (real number), is called a constant function. Its graph is a horizontal line
(Figure 17).The function is called the identity function. Its graph is a line
through the origin having slope 1 (Figure 18). From these simple functions, we can
build many important functions.

Any function that can be obtained from the constant functions and the iden-
tity function by use of the operations of addition, subtraction, and multiplication is
called a polynomial function. This amounts to saying that f is a polynomial func-
tion if it is of the form

where the are real numbers and n is a nonnegative integer. If n is the
degree of the polynomial function. In particular, is a first-degreef1x2 = ax + b

an Z 0,aj

f1x2 = anxn
+ an - 1x

n - 1
+

Á
+ a1x + a0

f1x2 = x

f1x2 = k,

y = x.
y = f-1(x).y = f(x)

 =

y

(1 + y) - y
= y

 f(f-1(y)) = f a y

1 + y
b =

y

1 + y

1 -

y

1 + y

=

y

1 + y

1 -

y

1 + y

  
(1 + y)

(1 + y)

-1.f-1,y

 =

x

(1 - x) + x
= x

 f-1(f(x)) = f-1a x

1 - x
b =

x

1 - x

1 +

x

1 - x

=

x

1 - x

1 +

x

1 - x

  
(1 - x)

(1 - x)

f,xf(f-1(y)).f-1(f(x))

f-11x2 =

x

1 + x

f-11y2 =

y

1 + y

 x =

y

1 + y

 x11 + y2 = y

 x + yx = y

 y - xy = x

 11 - x2y = x

 y =

x

1 - x

x:y = f(x)

f.

f.
yf(f-1(y)) = yfxf-1(f(x)) = x

f1x2 = x >(1 - x).
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42 Chapter 1 Preliminaries

polynomial function, or linear function, and is a second-
degree polynomial function, or quadratic function.

Quotients of polynomial functions are called rational functions. Thus, f is a
rational function if it is of the form

The domain of a rational function consists of those real numbers for which the
denominator is nonzero.

An explicit algebraic function is one that can be obtained from the constant
functions and the identity function via the five operations of addition, subtraction,
multiplication, division, and root extraction. Examples are

Functions that do not fit into any of these categories are called transcendental
functions. These include the trigonometric, inverse trigonometric, exponential, and
logarithmic functions.

f1x2 = 3x2>5
= 325 x2 g1x2 =

1x + 221x

x3
+ 23 x2

- 1

f1x2 =

an xn
+ an - 1x

n - 1
+

Á
+ a1x + a0

bmxm
+ bm - 1x

m - 1
+

Á
+ b1x + b0

f1x2 = ax2
+ bx + c

Concepts Review
1. If then _____.

2. The value of the composite function at x is given by
_____.1f � g21x2 =

f � g

f31x2 =f1x2 = x2
+ 1, 3. Compared to the graph of the graph of

is translated _____ units to the _____.

4. A rational function is defined as _____.

y = f1x + 22
y = f1x2,

Problem Set 1.6
1. For and find each value.

(a) (b) (c) (3)
(d) (e) (f)

2. For and find each
value.
(a) (b) (1) (c)
(d) (e) (f)

3. For and find each value.
( is the uppercase Greek letter psi.)
(a) (b)
(c) (d)
(e) (f)

4. If and find formulas for
the following and state their domains.
(a) (b)

(c) (d)

5. If and find formulas
for and 

6. If find formulas for and

7. Calculate g(3.141) if 

8. Calculate g(2.03) if g1x2 =

A1x - 23 x B4
1 - x + x2 .C

g1u2 =

2u3
+ 2u

2 + u
.C

1g � g � g21x2.
g31x2g1x2 = x2

+ 1,

1g � f21x2.1f � g21x2
g1w2 = ƒ 1 + w ƒ ,f1s2 = 2s2

- 4

1g � f21x21f � g21x2
f41x2 + g41x21f # g21x2

g1x2 = 2>x,f1x2 = 2x2
- 1

11£ - °2 � °21t21£ - °215t2
£

31z21° � £21r2
1£ � °21r21£ + °21t2

°

°1v2 = 1>v,£1u2 = u3
+ 1

1g � g21321g � f21121f � g2112
g2132(f>g)1f - g2122

g1x2 = 2>1x + 32,f1x2 = x2
+ x

1g � f21-821g � f21121f � g2112
(g>f)1f # g21021f + g2122

g1x2 = x2,f1x2 = x + 3 9. Calculate if 

10. Calculate if 

11. Find f and g so that (See Example 3.)

(a) (b)

12. Find f and g so that 

(a) (b)

13. Write as a composite of three func-
tions in two different ways.

14. Write as a composite of four
functions.

15. Sketch the graph of by first sketch-
ing and then translating. (See Example 4.)

16. Sketch the graph of by first sketch-
ing and then translating.

17. Sketch the graph of using
translations.

18. Sketch the graph of using
translations.

19. Sketch the graphs of and 
using the same coordinate axes. Then sketch by adding 
y-coordinates.

f + g
g1x2 = 1xf1x2 = 1x - 32>2

g1x2 = 1x + 123 - 3

f1x2 = 1x - 222 - 4

h1x2 = ƒ x ƒ

g1x2 = ƒ x + 3 ƒ - 4

g1x2 = 1x
f1x2 = 2x - 2 - 3

p1x2 = 1>2x2
+ 1

p1x2 = 1>2x2
+ 1

p1x2 =

1

x3
+ 3x

p1x2 =

2

1x2
+ x + 123

p = f � g.

F1x2 = 1x2
+ x215F1x2 = 2x + 7

F = g � f.

g1x2 = 6x - 11.[g31p2 - g1p2]1/3C

g1v2 = ƒ 11 - 7v ƒ .[g21p2 - g1p2]1/3C

42



Section 1.6 Operations on Functions 43

20. Follow the directions of Problem 19 for and

21. Sketch the graph of 

22. State whether each of the following is an odd function, an
even function, or neither. Prove your statements.
(a) The sum of two even functions
(b) The sum of two odd functions
(c) The product of two even functions
(d) The product of two odd functions
(e) The product of an even function and an odd function

23. Let F be any function whose domain contains when-
ever it contains x. Prove each of the following.

(a) is an odd function.

(b) is an even function.
(c) F can always be expressed as the sum of an odd and an even

function.

24. Is every polynomial of even degree an even function? Is
every polynomial of odd degree an odd function? Explain.

In Problems 25–30, the graph of is shown. In each case,
decide whether has an inverse and, if so, estimate 

25. 26.

27. 28.

29. 30.

In Problems 31–44, find a formula for and then verify that
and .

31. 32.

33. 34. f1x2 = -21 - xf1x2 = 2x + 1

f1x2 = -

x

3
+ 1f1x2 = x + 1

f1f-11x22 = xf-11f1x22 = x
f-11x2

1 2–1–2–3 3 4

1

2

3

–3

y

x
1 2 3 4

1

–1

–2

2

3

y

x–2 –1

1 2 3 4

1

2

3

y

x–2 –1
–11 2–2 –1 3 4

2

3

–2

–1

y

x

1

1

–1

–2

2 3 4

2

3

y

x1 32–1 4

1

2

3

y

x

f-1122.f
y = f1x2

F1x2 + F1-x2
F1x2 - F1-x2

-x

F1t2 =

ƒ t ƒ - t

t
.

g1x2 = ƒ x ƒ .
f1x2 = x

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. Find the volume V of water in the conical tank of Fig-
ure 19 as a function of the height h. Then find the height h as a
function of volume V.

f1x2 = ax3
+ 2

x3
+ 1
b5

f1x2 =

x3
+ 2

x3
+ 1

f1x2 = ax - 1
x + 1

b3

f1x2 =

x - 1
x + 1

f1x2 = x5>2, x Ú 0f1x2 = 1x - 123
f1x2 = 1x - 322, x Ú 3f1x2 = 4x2, x … 0

f1x2 = A 1
x - 2

f1x2 = -

1
x - 3

46. A ball is thrown vertically upward with velocity Find
the maximum height H of the ball as a function of Then find
the velocity required to achieve a height of H. Hint: The height
of the ball after t seconds is The vertex of the
parabola is at 

In Problems 47 and 48, restrict the domain of so that has an in-
verse, yet keeping its range as large as possible. Then find 
Suggestion: First graph .

47. 48.

49. Classify each of the following as a PF (polynomial func-
tion), RF (rational function but not a polynomial function), or
neither.

(a) (b)

(c) (d)

(e) (f)

50. After being in business for t years, a manufacturer of cars
is producing units per year. The sales price in dol-
lars per unit has risen according to the formula 
Write a formula for the manufacturer’s yearly revenue R(t) after
t years.

51. Starting at noon, airplane A flies due north at 400 miles
per hour. Starting 1 hour later, airplane B flies due east at 300
miles per hour. Neglecting the curvature of the Earth and assum-
ing that they fly at the same altitude, find a formula for D(t), the
distance between the two airplanes t hours after noon. Hint:
There will be two formulas for D(t), one if and the
other if  

52. Find the distance between the airplanes of Problem 51
at 2:30 p.m.

C≈
t Ú 1.

0 6 t 6 1

6000 + 700t.
120 + 2t + 3t2

f1x2 =

x + 12x + 3
f1x2 =

1
x + 1

f1x2 = px3
- 3pf1x2 = 3x2

+ 2x-1

f1x2 = 3f1x2 = 3x1>2
+ 1

f1x2 = x2
- 3x + 1f1x2 = 2x2

+ x - 4

f
f-11x2.

ff

Ab>(2a), b2>(4a) B .y = -ax2
+ bx

h = -16 t2
+ v0 t.

v0

v0.
v0.

h

6 ft

4 ft

Figure 19
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53. Suppose that both and g have inverses and that
Show that h has an inverse given

by 

54. Verify the result of Problem 53 for 

55. Let and assume 

(a) Find the formula for 

(b) Why is the condition needed?

(c) What condition on a, b, c, and d will make 

56. Let Show that provided

57. Let Find and simplify each value.

(a) (b) (c)

58. Let Find and simplify.

(a) (b)

59. Prove that the operation of composition of functions is
associative; that is,

60. Let 
and Note that

that is, In fact, the composition of any two of
these functions is another one in the list. Fill in the composition
table in Figure 20.

Then use this table to find each of the following. From Problem
59, you know that the associative law holds.
(a) (b)

(c) F if (d) G if 

(e) H if f2 � f5 � H = f5

G � f3 � f6 = f1F � f6 = f1

f1 � f2 � f3 � f4 � f5 � f6f3 � f3 � f3 � f3 � f3

f3 � f4 = f6.f61x2;
x>1x - 12 =1 - 1>11 - x2 =f311>11 - x22 =f31f41x22 =

f61x2 = x>1x - 12.f51x2 = 1x - 12>x,1>11 - x2,
f41x2 =f31x2 = 1 - x,f21x2 = 1>x,f11x2 = x,

f1 � 1f2 � f32 = 1f1 � f22 � f3.

f(f(x))fa 1
x
b

f1x2 =

x1x - 1
.

f(1>f(x))f(f(x))f(1>x)

f1x2 =

x

x - 1
.

x Z ;1.

f1f1f1x222 = x,f1x2 =

x - 3
x + 1

.

f = f-1?

bc - ad Z 0

f-11x2.
bc - ad Z 0.f1x2 =

ax + b

cx + d

3x + 2.
f1x2 = 1>x, g1x2 =

h-1
= g-1 � f-1.

h1x2 = 1f � g21x2 = f1g1x22.
f

61. Use the table in Figure 20 to find the inverse of each 

Use a computer or a graphing calculator in Problems 62–65.

62. Let Using the same axes, draw the
graphs of and all
on the domain 

63. Let Using the same axes, draw the graphs of
and all on the domain

64. Let Using the same axes,
draw the graphs of and 

all on the domain [1, 5].

65. Let Using the same axes, draw the
graphs of and all on
the domain 

Answers to Concepts Review: 1. 2.
3. 2; left 4. a quotient of two polynomial functions

f(g(x))1x2
+ 123

[-4, 4].
y = f1x - 22 + 0.6,y = f1x2, y = f12x2,

f1x2 = 1>1x2
+ 12.

f1x - 12 + 0.5,
y =y = f1x2, y = f11.5x2,

f1x2 = 21x - 2x + 0.25x2.

[-3, 3].
y = f131x - 0.822,y = f1x2, y = f13x2,

f1x2 = ƒ x3
ƒ .

[-2, 5].
y = f11.5x2,y = f1x2, y = f1x - 0.52 - 0.6,

f1x2 = x2
- 3x.

GC

i = 1, 2, Á , 6.
fi,

f1 f2 f3 f4 f5 f6

f1

�

f4

f2

f3

f5

f6

f6

Figure 20

1.7
Exponential and

Logarithmic Functions

In algebra, we define exponentiation for successively larger classes of expo-
nents. We begin by defining for positive integers, as in 
Next, is defined to be 1. Then for negative integer exponents, we define

This means, for example, that Next, we use root functions
to define for rational numbers. (Recall that a number is rational if it is the
ratio of two integers.) Our definition was

Thus,
But what does it mean to raise a number to an irrational power, as in
(Recall that is an irrational number, that is a number that cannot be

expressed as where a and b are integers.) One way to approach thisa>bp2p?

21>2
= 22 21

= 22 and 27>3
= 2273

.

2a>b
= 22ab

2n
2-3

= 1>23
= 1>8.

2-n
=

1
2n   if n is a positive integer

20
24

= 2 # 2 # 2 # 2.2n
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question is to look at successive approximations to for example 3, 3.1, 3.14,
3.142, 3.1416, 3.14159, 3.141593, …. These numbers (each of which is rational, for
example are numerical approximations of to succes-
sively more decimal places. To get at we might consider the sequence

Intuitively, we might think that if we take an accurate (rational) approximation to
, and raise 2 to that power we would obtain a close approximation to While

this is true in some sense (we will revisit this issue in Section 2.6), it still does not
give a definition for A precise definition for or in general, for where a is
positive and x is irrational, will have to wait until we cover some calculus. (We will
define to be the limit of the sequence … , but that
must wait until we define “limit” in the next chapter.)

From the above calculations, we suspect that is approximately 8.82498. This
is correct to as many decimal places given. A calculator can always be used to ob-
tain an approximation to numbers such as or For now we will proceed with
defining and working with exponential functions, even though the precise def-
inition comes later.We will call any function of the form or more gen-
erally an exponential function, provided a is a positive constant.

Graphs of Exponential Functions We consider first graphs of functions
of the form or where and then we consider more
complicated cases.

� EXAMPLE 1 Sketch a graph of the functions and

SOLUTION For each, we make a table of values (see the table within each fig-
ure) and then sketch a plot (Figures 1 through 3).

h(x) = 2-x.

f(x) = 2x, g(x) = a1
2
bx

,

a 7 0,f(x) = a-x,f(x) = ax

f(x) = Cag(x),
f(x) = Cax,

522.2p

2p

23, 23.1, 23.14, 23.142, 23.1416,2p

ax2p,2p.

2p.p

 o

 23.141593
L 8.82498

 23.14159
L 8.82496

 23.1416
L 8.82502

 23.142
L 8.82747

 23.14
L 8.81524

 23.1
L 8.57419

 23
= 8

2p,
p3.1416 = 31416>10000)

p,
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3
x

y � f(x) � 2x
8

6

4

21�1�2�3

2

y

f (x)

0
�1
�2
�3

3
2
1

1
1/2
1/4
1/8

8
4
2

x

Figure 1

3
x

8

6

4

21�1�2�3

2

y

g(x)

0
�1
�2
�3

3
2
1

1
1/2
1/4
1/8

8
4
2

x

y � g(x) � 1
2

x

Figure 2

3
x

8

6

4

21�1�2�3

2

y

h(x)

0
�1
�2
�3

3
2
1

1
1/2
1/4
1/8

8
4
2

x

y � h(x) � 2�x

Figure 3

Example 1 suggests that the shape of the graph of can be increasing, as
in Figure 1, or decreasing, as in Figure 2.The special case of leads to a graph y = 1x

y = ax
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that is flat; this is because for all x. Figure 4 illustrates for 1, 2,

3, and 10 what the graphs of the exponential functions can look like.ax

a =

1
10

, 
1
3

, 
1
2

,1x
= 1
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�3 �2 �1 1 2 3

2

3

y � 10x

y � 3x
y � 2x

y � 1x

x

y
y � 1

10

x

y � 1
3

x

y � 1
2

x

Figure 4 �

� EXAMPLE 2 Sketch a graph and determine the domain and range of the

functions and 

SOLUTION Again, with the help of a calculator, we make a table of values and
use them to sketch a plot. The graphs of and are shown in
Figures 5 and 6.

y = g(x)y = f(x)

g(x) = 3-x2>4.f(x) = 32x

1 2 3

2

4

6

8
y � f(x) � 3 x

x

y

f(x)

1.5
1.0
0.5
0.0

3.0
2.5
2.0

3.840
4.729
5.681
6.705

1.000
2.175
3.000

x

Figure 5

�3 �2 �1 1 2 3

1

2

x

y � g(x) � 3�x2/4

g(x)

�1.5

1.5

�2.0

2.0

�2.5

2.5

�3.0

3.0

0.0
�0.5

0.5

�1.0

1.0

0.539

0.539

0.760

0.760

0.934

0.934
1.000

0.084

0.084

0.180

0.180

0.333

0.333

xy

Figure 6

The domain for is the set of all nonnegative real numbers. (We
can’t take the square root of a negative number, so all negative numbers are ex-
cluded from the domain.) The function makes sense for any real number ar-
gument, so the domain for g is the set of all real numbers.

The exponent in is always nonnegative, so is always greater than or 
equal to 1. Also, we can make the exponent as large as we like; consequently,

can be made as large as we like. See Figure 5. Thus, the range for is
the interval The exponent in is always less than or equal to zero, so

is always less than or equal to 1 (it is equal to 1 when The function
can be made as close to zero as we like if we take x to be far enough away

from 0. See Figure 6. Thus, the range for g is the interval (0, 1]. �

While the conclusions about the range for and should seem evident by
looking at the graphs of these functions in Figures 5 and 6, there are some issues
that must be addressed before we can fully justify them.

We begin by looking at properties of exponents.

gf

g(x)
x = 0).g(x)

3-x2>4[1, q).
ff(x) = 32x

2x

32x32x

g(x)

f(x) = 32x
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Properties of Exponents The usual properties of exponents hold even 
for irrational exponents. We will address the proofs of these properties in 
Section 2.6.

Section 1.7 Exponential and Logarithmic Functions 47

Theorem A Properties of Exponents

If and x and y are real numbers, then

(1) (2)

(3) (4)

(5) (6) a a

b
bx

=

ax

bx(ab)x
= axbx

a-x
=

1
ax(ax)y

= axy

ax

ay = ax-yaxay
= ax + y

a 7 0, b 7 0

Note that in Example 1, Figures 2 and 3 look the same. In fact, they are the same;
the functions g and h are identical, since we can use the properties of exponents to
write

� EXAMPLE 3 Simplify and then sketch a graph of the function defined by

SOLUTION We can use the fact that along with Property (ii), to write

We could then make a table and construct the plot shown in Figure 7. �

Logarithmic Functions Figure 4 suggests that the function is in-
creasing when and decreasing when In both cases, a horizontal
line intersects the graph of at most once. Thus, the inverse function
exists.

y = f(x) = ax
0 6 a 6 1.a 7 1

f(x) = ax

F(x) =

2-x2

23 = 2-x2
-3

8 = 23,

F(x) =

2-x2

8

g(x) = a1
2
bx

= (2-1)x
= 2-x

= h(x)

1 2 3�3 �2 �1

0.1

0.2

x

y

y � f(x) � 8
2�x2

Figure 7

Definition

If and we define to be the inverse of the function that is,

y = ax   3   x = loga y

ax;loga xa Z 1,a 7 0

From the properties of inverse functions (Section 1.6), we conclude that

The next theorem states some of the familiar properties of logarithms.

 loga a
x

= x       for every x

 aloga y
= y       for every y 7 0

Theorem B Properties of Logarithms

If a, b, and c are positive numbers, where and if x is any real number, then

(1) (2)

(3) (4) loga b
x

= x loga bloga 
b
c

= loga b - loga c

loga bc = loga b +  loga cloga 1 = 0

a Z 1,

47



Proof We prove (1) and (2) and leave the others as an exercise (see Problem 36).

(1) As long as a is positive and 
(2) By the properties of exponents,

Thus, because the function is one-to-one. �

Recall that the domain of is the range of and the range of is the domain
of The domain for is the set of all real numbers, so the range of is the
set of all real numbers (as long as ). Similarly, the range of is the set of all
positive numbers (again, assuming ), so the domain of is the interval

� EXAMPLE 4 Sketch the graphs of and and deter-
mine the domain and range for each function.

SOLUTION Tables of the function values are shown below. Note that since and
are inverses of one another, the columns in the second table are obtained by

interchanging the columns in the first table. Graphs for the two functions are
shown in Figure 8. The domain for is and the range is For the
domain is and the range is  �(- q, q).(0, q)

g,(0, q).(- q, q)f

g
f

g(x) = log2 x,f(x) = 2x

(0, q).
loga xa Z 1

axa Z 1
loga xaxf-1.

ff-1f

axloga bc = loga b + loga c

aloga b + loga c
= aloga baloga c

= bc = aloga bc

a0
= 1, so loga 1 = 0.a Z 1,
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�2 �1 1 2 3

�2

�1

1

2

3

y � f(x) � 2x

y � g(x) � log2x

y � x

x

y

Figure 8

� EXAMPLE 5 Find the inverse of and graph and on

the same set of axes. Determine the domain and range for each function.

SOLUTION We begin by setting and solving for 

 x =

2y

1 + 2y = f-1(y)

 x(1 + 2y) = 2y

 x + 2yx = 2y

 2y
- x2y

= x

 (1 - x)2y
= x

 2y
=

x

1 - x

 y = log2 
x

1 - x

x:y = f(x)

f-1ff(x) = log2 
x

1 - x
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Therefore, Figure 9 shows both functions.f-1(x) = 2x>(1 + 2x).
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�2 �1 1 2 3

�2

�1

1

2

3

x

y � x

y y � f(x) � log2 1�x
x

y � f�1(x) �
1�2x

2x

Figure 9

Since we can only take the log of a positive number, the argument 
to the logarithmic function must be positive. Thus, we are led to the inequality

The split points are 0 and 1. If then the numerator is neg-
ative and the denominator is positive, so the fraction is negative. If 
then the numerator and the denominator are both positive, hence the fraction is
positive. If then the numerator is positive and the denominator is negative,
so the fraction is negative. Thus, the only values of x that make positive
are those between 0 and 1. The domain for is the interval (0, 1). The domain for

is The range for is the domain for that is
and the range for is the domain for  that is (0, 1). �

Most calculators have a button for the common logarithm, that is, the loga-
rithm to the base 10. Another base that will become important in the next chapter,
and nearly every subsequent chapter as well, is the natural logarithm, that is the
logarithm to the base We will have more to say about the number e and
about natural logarithms in Chapter 2. For now, we will use logarithms, sometimes
common logarithms, to solve equations involving exponential functions.

� EXAMPLE 6 Solve 

(a) (b)

SOLUTION
(a) The base of 2 on the left side and the fact that suggest we take the log

to the base 2 on both sides. This gives

(b) In this part, the base on the left is 3 but since 17 is not a perfect power of 3, tak-
ing log to the base 3 will not lead to a simplification. Anticipating the need for
a calculator, we take the common log (base 10) on both sides.

 (2x + 1)log10 3 = log10 17

 log10 3
2x + 1

= log10 17

 x = ;26

 x2
-1 = 5

 (x2
- 1) log2 2 = 5

 log2 2
x2

-1
= log2 32 = log2 2

5

25
= 32,

32x + 1
= 172x2

-1
= 32

e L 2.718.

f,f-1(- q, q)
f-1,f(- q, q).f-1(x) = 2x>(1 + 2x)

f
x>(1 - x)

x 7 1,

0 6 x 6 1,
x 6 0,x>(1 - x) 7 0.

x>(1 - x)

We will follow the convention of
using log x (without explicitly giving
the base) to mean common loga-
rithms, that is logs to the base 10. We
will use ln x to mean natural logs,
that is, logs to the base e. (We will
have more to say about ln x in the
next chapter.) For all other bases we
will explicitly give the base, e.g.,

or log5 x.log2 x

Notation for Logs
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�

� EXAMPLE 7 Carbon-14, an isotope of carbon, is radioactive and decays
over time with a half life of 5730 years. Thus, if there is 1 gram of carbon-14 at time

then the amount remaining after t years is 

(a) How much carbon-14 will be left after 10,000 years?
(b) How many years must pass until there is one-tenth of a gram remaining?

SOLUTION

(a) After 10,000 years, the amount of carbon-14 remaining is

(b) To find when the amount is reduced to 0.1 gram, we set and solve
for t. Since most calculators have a common log key, we take the common log
of both sides to get

�

(Recall that if we write log without explicitly giving the base, we mean the com-
mon logarithm; that is the logarithm to the base 10.) In this last example, the
amount of carbon is halved every 5730 years, so 1 gram to begin with would be re-
duced to 0.5 grams after 5730 years, to 0.25 gram after years,
0.125 gram after years, and so on. What is not so clear is that the
amount present after years is given by if is not a positive integer. It turns
out that it is; we will return to this problem in Section 4.10.

t2-t>5730t
5730 # 3 = 17,190

5730 # 2 = 11,460

 t =

5730
log 2

 L 19,035 years

 -1 = -

t

5730
 log 2

 log 0.1 = log 2-t>5730

0.1 = 2-t>5730

2-10,000>5730
L 2-1.7452

L 0.29829 gram

2-t>5730.t = 0,

 x =

1
2

 a log10 17

log10 3
- 1b L 0.78945

 2x + 1 =

log10 17

log10 3
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1. If p and q are integers, the expression can be written
in terms of roots and integral powers as _____.

2. For any positive base a except 1, _____.loga 1 =

ap>q 3. _____, and in general, _____.

4. can be written as the logarithm of a single
quantity; namely, _____.log x - log y =

log x - log y

loga a
x

=loga a
7

=

Problem Set 1.7
In Problems 1–6, sketch a graph of the given exponential function.

1. 2.

3. 4.

5. 6.

In Problems 7–10, sketch a graph of the given logarithmic function.

7. 8.

9. 10.

In Problems 11–16, find the inverse of the given function f and ver-
ify that for all x in the domain of and

for all x in the domain of f.f-1 (f(x)) = x
f-1,f(f-1(x)) = x

f(x) = log10 (x + 2)f(x) = log2 (x - 1)

f(x) = log3 xf(x) = log5 x

f(x) =

1
2

 3-2xf(x) = 22x>4
f(x) = 2-3xf(x) = 22x

f(x) =

1
3

 5xf(x) = 3x

11. 12.

13. 14.

15. 16.

In Problems 17–24, solve for x. Hint:

17. 18.

19. 20.

21. 22.

23. log21x + 32 - log2 x = 2

log4a 1
2x
b = 32 log9ax

3
b = 1

logx 64 = 4log4 x =
3
2

log5 x = 2log2 8 = x

log a b = c 3  ac
= b.

f(x) = log2 ax + 1
2x
bf(x) = log10 (3x + 2)

f(x) =

2x

4 + 2xf(x) =

10x

1 + 10x

f(x) = 3 + 10xf(x) =

1
1 + 2x

Concepts Review
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24.

In Problems 25–28, the graph of an exponential function of the
form is given. Use the graph to determine a and C.

25. 26.

27. 28.

In Problems 29 and 30, the graph of a logarithmic function of the
form is given. Use the graph to determine a and c.

29. 30.

�3 1 2 3 4

�3

�2

�1

1

2

x

(0, 1)

�2

y

1 2 3 4

3

2

1

�1

�2

�3

x

(4, 1)

y

y = loga (x - c)

�2 �1 1 2

2

1 (1, 18/25)

(�1, 2)

y

x
�2 �1 1 2

2

1
(1, 1/2)(�1, 9/8)

y

x

�2 �1

1

1 2

2

3

4

5

(1, 3)

y

x
�2 �1 1 2

1

2

3

4

5
(2, 9/2)

y

x

y = Cax

log51x + 32 - log5 x = 1 31. How are and related?

32. Sketch the graphs of and using the same
coordinate axes.

33. The magnitude M of an earthquake on the Richter scale is

where E is the energy of the earthquake in kilowatt-hours. Find
the energy of an earthquake of magnitude 7. Of magnitude 8.

34. The loudness of sound is measured in decibels in honor of
Alexander Graham Bell (1847–1922), inventor of the telephone.
If the variation in pressure is P pounds per square inch, then the
loudness L in decibels is

Find the variation in pressure caused by music at 115 decibels.

35. In the equally tempered scale to which keyed instruments
have been tuned since the days of J.S. Bach (1685–1750), the fre-
quencies of successive notes C, C#, D, D#, E, F, F#, G, G#,A,A#, B,

form a geometric sequence (progression), with having twice
the frequency of C (C# is read C sharp and indicates one octave
above C). What is the ratio r between the frequencies of succes-
sive notes? If the frequency of A is 440, find the frequency of 

36. Prove parts (iii) and (iv) of Theorem B.

Answers to Concepts Review: 1. 2. 0 3. 7; x

4. log 
x

y

2q ap

C.

C
CC

C

L = 20 log101121.3P2

C

M = 0.67 log1010.37E2 + 1.46

C

log3 xlog1>3 x
log2 xlog1>2 x

You have probably seen the definitions of the trigonometric functions based on
right triangles. Figure 1 summarizes the definitions of the sine, cosine, and tangent
functions.You should review Figure 1 carefully, because these concepts are needed
for many applications later in this book.

More generally, we define the trigonometric functions based on the unit circle.
The unit circle, which we denote by C, is the circle with radius 1 and center at the
origin; it has equation Let A be the point (1, 0) and let t be a positive
number. There is a single point P on the circle C such that the distance, measured
in the counterclockwise direction around the arc AP, is equal to t. (See Figure 2.)
Recall that the circumference of a circle with radius r is so the circumference
of C is Thus, if then the point P is exactly halfway around the circle from
the point A; in this case, P is the point If then P is the point

and if then P is the point A. If then it will take more than
one complete circuit of the circle C to trace the arc AP.

When we trace the circle in a clockwise direction. There will be a single
point P on the circle C such that the arc length measured in the clockwise direction
from A is t. Thus, for every real number t, we can associate a unique point P(x, y)
on the unit circle. This allows us to make the key definitions of the sine and cosine
functions. The functions sine and cosine are written as sin and cos, rather than as a
single letter such as f or g. Parentheses around the independent variable are usu-
ally omitted unless there is some ambiguity.

t 6 0,

t 7 2p,t = 2p,10, -12, t = 3p>2,1-1, 02.t = p,2p.
2pr,

x2
+ y2

= 1.

1.8
The Trigonometric 

Functions

hyp
opp

adj
θ

sin θ =
opp
hyp cosθ =

adj
hyp tan θ =

opp
adj

Figure 1

y

y

x

P(x, y)

A(1, 0)

The unit circle

x

C

t

Figure 2

Definition Sine and Cosine Functions

Let t be a real number that determines the point P(x, y) as indicated above.
Then

sin t = y and cos t = x
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Basic Properties of Sine and Cosine A number of facts follow almost
immediately from the definitions given above. First, since t can be any real number,
the domain for both the sine and cosine functions is Second, x and y are
always between and 1. Thus, the range for both the sine and cosine functions is
the interval 

Because the unit circle has circumference the values t and deter-
mine the same point P(x, y). Thus,

(Notice that parentheses are needed to make it clear that we mean 
rather than The expression would be ambiguous.)

The points and that correspond to t and respectively, are symmetric
about the x-axis (Figure 3). Thus, the x-coordinates for and are the same, and
the y-coordinates differ only in sign. Consequently,

In other words, sine is an odd function and cosine is an even function.
The points and corresponding to t and , respectively, are sym-

metric with respect to the line and thus they have their coordinates inter-
changed (Figure 4). This means that

Finally, we mention an important identity connecting the sine and cosine
functions:

for every real number t. This identity follows from the fact that since the point 
(x, y) is on the unit circle, x and y satisfy 

Graphs of Sine and Cosine To graph and we follow our
usual procedure of making a table of values, plotting the corresponding points, and
connecting these points with a smooth curve. So far, however, we know the values of
sine and cosine for only a few values of t. A number of other values can be
determined from geometric arguments. For example, if then t determines
the point half of the way counterclockwise around the unit circle between the points
(1, 0) and (0, 1). By symmetry, x and y will be on the line so and

will be equal. Thus, the two legs of the right triangle OBP are equal, and
the hypotenuse is 1 (Figure 5). The Pythagorean Theorem can be applied to give

From this we conclude that Similarly,
We can determine sin t and cos t for a number of other values of t. Some of

these are shown in the table in the margin. Using these results, along with a num-
ber of results from a calculator (in radian mode), we obtain the graphs shown in
Figure 6.

22>2.
sin1p>42 =cos1p>42 = 1>22 = 22>2.

1 = x2
+ x2

= cos2
 
p

4
+ cos2

 
p

4

x = cos t
y = sin ty = x,

t = p>4,

y = cos t,y = sin t

x2
+ y2

= 1.

sin2 t + cos2 t = 1

sinap
2

- tb = cos t and cosap
2

- tb = sin t

y = x
p>2 - tP4P3

sin1- t2 = -sin t and cos1- t2 = cos t

P2P1

- t,P2P1

sin t + 2p1sin t2 + 2p.
sin1t + 2p2,

sin1t + 2p2 = sin t and cos1t + 2p2 = cos t

t + 2p2p,
[-1, 1].

-1
1- q , q2.

(1, 0)

P2(x, –y)

P1(x, y)

x

y

t

–t

Figure 3

(1, 0)

(0, 1) P4(y, x)

P3(x, y)

y = x

t

t

y

x

Figure 4

y = cos t y = sin t

π

y

t

–1

–2π 2π–π

Figure 6

1

O

x

x
π
4

(0, 1)

1

B A

P

x

x

x

y

Figure 5

t sin t cos t

0 0 1

1/2

1 0

1/2

0 -1p

-23>25p>6
-22>222>23p>4

-1>223>22p>3
p>2

23>2p>3
22>222>2p>4
23>21>2p>6
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Four things are noticeable from these graphs:

1. Both sin t and cos t range from to 1.

2. Both graphs repeat themselves on adjacent intervals of length 

3. The graph of is symmetric about the origin, and is
symmetric about the y-axis. (Thus, the sine function is odd and the cosine
function is even.)

4. The graph of is the same as that of but translated units
to the right.

The next example deals with functions of the form sin(at) or cos(at), which
occur frequently in applications.

� EXAMPLE 1 Sketch the graphs of

(a) (b)

SOLUTION
(a) As t goes from 0 to 1, the argument goes from 0 to Thus, the graph of

this function will repeat itself on adjacent intervals of length 1. From the
entries in the following table, we can sketch a graph of Figure 7
shows a sketch.

t t

0

1

(b) As t goes from 0 to the argument 2 t goes from 0 to Thus, the graph of
will repeat itself on adjacent intervals of length Once we con-

struct a table we can sketch a plot of Figure 8 shows the graph.

t cos(2 t) t cos(2 t)

0

�

cosa2 #
9p
8
b =

22
2

9p
8

cosa2 #
p

2
b = -1

p

2

cos12 # p2 = 1pcosa2 #
3p
8
b = -  

22
2

3p
8

cosa2 #
7p
8
b =

22
2

7p
8

cosa2 #
p

4
b = 0

p

4

cosa2 #
3p
4
b = 0

3p
4

cosa2 #
p

8
b =

22
2

p

8

cosa2 #
5p
8
b = -  

22
2

5p
8

cos12 # 02 = 1

y = cos12 t2. p.y = cos12 t2 2p.p,

sina2p #  
9
8
b =

22
2

9
8

sina2p #  
1
2
b = 0

1
2

sin12p # 12 = 0sina2p #  
3
8
b =

22
2

3
8

sina2p #
7
8
b = -

22
2

7
8

sina2p #  
1
4
b = 1

1
4

sina2p #
3
4
b = -1

3
4

sina2p #  
1
8
b =

22
2

1
8

sina2p #
5
8
b = -  

22
2

5
8

sin12p # 02 = 0

sin12pt2sin12pt2

y = sin12pt2.
2p.2pt

y = cos12t2y = sin12pt2

p>2y = cos t,y = sin t

y = cos ty = sin t

2p.

-1

y

t

–1

–0.5

0.5

1

–�
2

–� ��
2

Figure 8

–1

y

t

–1

–2 21

–0.5

0.5

1

0

Figure 7
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Period and Amplitude of the Trigonometric Functions A function f
is periodic if there is a positive number p such that

for all real numbers x in the domain of f. If f is nonconstant, the smallest such pos-
itive number p is called the period of f. The sine function is periodic because

for all x. It is also true that

for all x. Thus, and are all numbers p with the property
The period is defined to be the smallest such positive number

p. For the sine function, the smallest positive p with the property that
is We therefore say that the sine function is periodic

with period The cosine function is also periodic with period 
The function sin (at) has period since

The period of the function cos(at) is also 

� EXAMPLE 2 What are the periods of the following functions?

(a) (b) cos(2 t) (c)

SOLUTION

(a) Because the function is of the form sin(at) with its period is

(b) The function cos(2t) is of the form cos(at) with Thus, the period of

cos(2 t) is 

(c) The function has period �

If the periodic function f attains a minimum and a maximum, we define the
amplitude A to be half the vertical distance between the highest point and the low-
est point on the graph.

� EXAMPLE 3 Find the amplitude of the following periodic functions.

(a) (b) 3 cos (2t)
(c)

SOLUTION
(a) Since the range of the function is its amplitude is 

(b) The function 3 cos(2t) will take on values from (which occurs when

) to 3 (which occurs when ).The ampli-

tude is therefore 

(c) The function 21 takes on values from to 21. Thus,
takes on values from to

The amplitude is therefore 21. �

In general, for and ,

 have period 
2p
a

 and amplitude A.C + A sin1a1t + b22 and C + A cos1a1t + b22

A 7 0a 7 0

50 + 21 = 71.
50 - 21 = 2950 + 21 sin12pt>12 + 32
-21sin12pt>12 + 32

A = 3.

t = 0, ;p, ;2p, Át = ;  
p

2
, ;  

3p
2

, Á  

-3

A = 1.[-1, 1],sin12pt>122

50 + 21 sin12pt>12 + 32
sin12pt>122

p =

2p
2p>12

= 12.sin12pt>122
p =

2p
2

= p.

a = 2.

p =

2p
2p

= 1.

a = 2p,sin12pt2

sin12pt>122sin12pt2

2p>a.

sin caa t +

2p
a
b d = sin[at + 2p] = sin1at2

2p>a 2p.2p.
p = 2p.sin1x + p2 = sin x

sin1x + p2 = sin x.
12p4p, -2p,

sin1x + 4p2 = sin1x - 2p2 = sin1x + 12p2 = sin x

sin1x + 2p2 = sin x

f1x + p2 = f1x2
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Trigonometric functions can be used to model a number of physical phenom-
ena, including daily tide levels and yearly temperatures.

�EXAMPLE 4 The normal high temperature for St. Louis, Missouri, ranges
from 37°F for January 15 to 89°F for July 15. The normal high temperature follows
roughly a sinusoidal curve.

(a) Find values of C, A, a, and b such that

where t, expressed in months since January 1, is a reasonable model for the
normal high temperature.

(b) Use this model to approximate the normal high temperature for May 15.

SOLUTION

(a) The required function must have period since the seasons repeat every

12 months. Thus, so we have The amplitude is half the

difference between the lowest and highest points; in this case,

The value of C is equal to the midpoint of the low and

high temperatures, so The function T(t) must there-

fore be of the form

The only constant left to find is b. The lowest normal high temperature is 37,
which occurs on January 15, roughly in the middle of January. Thus, our func-
tion must satisfy and the function must reach its minimum of 37
when Figure 9 summarizes the information that we have so far. The
function reaches its minimum when that
is, when We must therefore translate the curve defined by

to the right by the amount In
Section 1.6, we showed that replacing x with translates the graph of

to the right by c units. Thus, in order to translate the graph of
to the right by units, we must replace t with

Thus,

Figure 10 shows a plot of the normal high temperature T as a function of time
t, where t is given in months.

T1t2 = 63 + 26 sina2p
12

 a t -

7
2
b b

t - 7>2.
7>2y = 63 + 26 sin12pt>122

y = f1x2
x - c

1>2 - 1-32 = 7>2.y = 63 + 26 sin12pt>122
t = -3.

2pt>12 = -p>2,63 + 26 sin12pt>122
t = 1>2.

T11>22 = 37,

T1t2 = 63 + 26 sina2p
12

 1t + b2b

C =

1
2

 189 + 372 = 63.

A =

1
2

 189 - 372 = 26.

a =

2p
12

.
2p
a

= 12,

t = 12

T1t2 = C + A sin1a1t + b22
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(b) To estimate the normal high temperature for May 15, we substitute 
(because the middle of May is four and one-half months into the year) and
obtain

The normal high temperature for St. Louis on May 15 is actually 75°F. Thus,
our model overpredicts by 1°, which is remarkably accurate considering how
little information was given. �

Four Other Trigonometric Functions We could get by with just the sine
and cosine functions, but it is convenient to introduce four additional trigonomet-
ric functions: tangent, cotangent, secant, and cosecant.

What we know about sine and cosine will automatically give us knowledge about
these four new functions.

� EXAMPLE 5 Show that tangent is an odd function.

SOLUTION

�

� EXAMPLE 6 Verify that the following are identities.

SOLUTION

�

When we study the tangent function (Figure 11), we are in for two minor sur-
prises. First, we notice that there are vertical asymptotes at We
should have anticipated this since at these values of t, which means that
sin t would involve a division by zero. Second, it appears that the tangent is
periodic (which we expected), but with period (which we might not have expect-
ed). You will see the analytic reason for this in Problem 33.

Relation to Angle Trigonometry Angles are commonly measured either
in degrees or in radians. One radian is by definition the angle corresponding to an
arc of length 1 on the unit circle. See Figure 12. The angle corresponding to a com-
plete revolution measures 360°, but only radians. Equivalently, a straight angle
measures 180° or radians, a fact worth remembering.

This leads to the results

1 radian L 57.29578° 1° L 0.0174533 radian

180° = p radians L 3.1415927 radians

p

2p

p

t>cos
cos t = 0

;p>2, ;3p>2, Á .

 1 + cot2 t = 1 +

cos2 t

sin2 t
=

sin2 t + cos2 t

sin2 t
=

1

sin2 t
= csc2 t

 1 + tan2 t = 1 +

sin2 t

cos2 t
=

cos2 t + sin2 t

cos2 t
=

1

cos2 t
= sec2 t

1 + tan2 t = sec2 t 1 + cot2 t = csc2 t

tan1- t2 =

sin1- t2
cos1- t2 =

-sin t
cos t

= - tan t

 sec t =

1
cos t
  csc t =

1
sin t

 tan t =

sin t
cos t
  cot t =

cos t
sin t

T14.52 = 63 + 26 sin12p14.5 - 3.52>122 = 76

t = 4.5

It is important to keep in mind that
all models such as this are simplifica-
tions of reality. (That is why they are
called models.) Although such mod-
els are inherently simplifications of
reality, many of them are still useful
for prediction.

Models and Modeling

y = tan t

y

tπ
2

π
2 ππ– –

Figure 11

(0, 1)

(1, 0)

1

1 radian

Arc length =1

x

y

Figure 12
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Figure 13 shows some other common conversions between degrees and radians.
The division of a revolution into 360 parts is quite arbitrary (due to the ancient

Babylonians, who liked multiples of 60). The division into parts is more funda-
mental and lies behind the almost universal use of radian measure in calculus.
Notice, in particular, that the length s of the arc cut off on a circle of radius r by a
central angle of t radians satisfies (see Figure 14)

That is, the fraction of the total circumference corresponding to an angle t is
the same as the fraction of the unit circle corresponding to the same angle t. This
implies that 

When this gives This means that the length of the arc on the unit
circle cut off by a central angle of t radians is t. This is correct even if t is negative,
provided that we interpret length to be negative when measured in the clockwise
direction.

� EXAMPLE 7 Find the distance traveled by a bicycle with wheels of radius
30 centimeters when the wheels turn through 100 revolutions.

SOLUTION We use the fact that recognizing that 100 revolutions
correspond to radians.

�

Now we can make the connection between angle trigonometry and unit circle
trigonometry. If is an angle measuring t radians, that is, if is an angle that cuts off
an arc of length t from the unit circle, then

In calculus, when we meet an angle measured in degrees, we almost always change
it to radians before doing any calculations. For example,

List of Important Identities We will not take space to verify all the follow-
ing identities. We simply assert their truth and suggest that most of them will be
needed somewhere in this book.

Trigonometric Identities The following are true for all x and y, provided that
both sides are defined at the chosen x and y.

Odd–even identities Cofunction identities

Pythagorean identities Addition identities

 sin1x + y2 = sin x cos y + cos x sin y sin2 x + cos2 x = 1

 tanap
2

- xb = cot x tan1-x2 = - tan x

 cosap
2

- xb = sin x cos1-x2 = cos x

 sinap
2

- xb = cos x sin1-x2 = -sin x

sin 31.6° = sina31.6 #
p

180
 radianb L sin 0.552

sin u = sin t cos u = cos t

uu

 L 188.5 meters L 18,849.6 centimeters s = 13021100212p2 = 6000p

100 # 12p2 s = rt,

s = t.r = 1,
s = rt.

2pr

s

2pr
=

t

2p

2p

Degrees Radians

0
30
45
60
90

120
135
150
180
360

0
π/6
π/4
π/3
π/2

2π/3
3π/4
5π/6

π
2π

Figure 13

t rad

r

ss = rt

Figure 14

We have based our discussion of
trigonometry on the unit circle. We
could as well have used a circle of
radius r.

Then

 cos u =

x

r

 sin u =

y

r

Another View

(x, y)

x

r

y

θ
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Double-angle identities Half-angle identities

Sum identities

Product identities

 sin x cos y =
1
2[sin1x + y2 + sin1x - y2]

 cos x cos y =
1
2[cos1x + y2 + cos1x - y2]

 sin x sin y = -
1
2[cos1x + y2 - cos1x - y2]

 cos x + cos y = 2 cosax + y

2
b  cosax - y

2
b

 sin x + sin y = 2 sinax + y

2
b  cosax - y

2
b

= 1 - 2 sin2 x

= 2 cos2 x - 1

 cosax

2
b = ;A1 + cos x

2
 cos 2x = cos2 x - sin2 x

 sinax

2
b = ;A1 - cos x

2
 sin 2x = 2 sin x cos x

 tan1x + y2 =

tan x + tan y

1 - tan x tan y
 1 + cot2 x = csc2 x

 cos1x + y2 = cos x cos y - sin x sin y 1 + tan2 x = sec2 x

Concepts Review
1. The natural domain of the sine function is _____; its range

is _____.

2. The period of the cosine function is _____; the period of
the sine function is _____; the period of the tangent function is
_____.

3. Since the sine function is _____, and
since the cosine function is _____.

4. If lies on the terminal side of an angle whose
vertex is at the origin and initial side is along the positive x-axis,
then _____.cos u =

u1-4, 32
cos1-x2 = cos x,

sin1-x2 = -sin x,

Problem Set 1.8
1. Convert the following degree measures to radians (leave

in your answer).
(a) 30° (b) 45° (c)
(d) 240° (e) (f) 10°

2. Convert the following radian measures to degrees.

(a) (b) (c)

(d) (e) (f)

3. Convert the following degree measures to radians

(a) 33.3° (b) 46° (c)
(d) 240.11° (e) (f) 11°

4. Convert the following radian measures to degrees

(a) 3.141 (b) 6.28 (c) 5.00
(d) 0.001 (e) (f) 36.0-0.1

11 radian = 180>p L 57.296 degrees2.
C

-369°
-66.6°

11° = p>180 L  1.7453 * 10-2 radian2.
C

3
18 p-

35
18 p

4
3 p

-
1
3 p

3
4 p

7
6 p

-370°
-60°

p
5. Calculate (be sure that your calculator is in radian or de-

gree mode as needed).

(a) (b)

(c) tan 0.452 (d)

6. Calculate.

(a) (b)

7. Calculate.

(a) (b)

8. Verify the values of sin t and cos t in the table used to con-
struct Figure 6.

9. Evaluate without using a calculator.

(a) (b) (c) sec 
3p
4

sec ptan 
p

6

a sin 35°
sin 26° + cos 26°

b356.3 tan 34.2°
sin 56.1°

C

sin2 2.51 + 2cos 0.51
234.1 sin 1.56

cos 0.34

C

sin1-0.3612
5.34 tan 21.3°

sin 3.1° + cot 23.5°
56.4 tan 34.2°

sin 34.1°

C
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(d) (e) (f)

10. Evaluate without using a calculator.

(a) (b) (c)

(d) (e) (f)

11. Verify that the following are identities (see Example 6).

(a)

(b)

(c)

(d)

12. Verify that the following are identities (see Example 6).

(a)

(b) Hint: Use a double-angle identity.

(c) Hint: Use a double-
angle identity twice.

(d)

13. Verify the following are identities.

(a)

(b)

(c)

(d)

14. Sketch the graphs of the following on 

(a) (b)

(c) (d)

15. Sketch the graphs of the following on 
(a) (b)

(c) (d)

Determine the period, amplitude, and shifts (both horizontal and
vertical) and draw a graph over the interval for the
functions listed in Problems 16–23.

16. 17.

18. 19.

20. 21.

22. 23.

24. Which of the following represent the same graph? Check
your result analytically using trigonometric identities.

(a) (b)

(c) (d) y = cos1x - p2y = -sin1x + p2
y = cosax +

p

2
by = sinax +

p

2
b

y = tana2x -

p

3
by = 3 cosax -

p

2
b - 1

y = 21 + 7 sin12x + 32y = 3 + sec1x - p2
y = 2 +

1
6

 cot 2xy = tan x

y = 2 sin 2xy = 3 cos  
x

2

-5 … x … 5

y = cosa t +

p

3
by = cos 3t

y = 2 cos ty = csc t
[-p, 2p].

y = sec ty = cosax -

p

4
b

y = 2 sin ty = sin 2x

[-p, 2p].

1 - csc2 t

csc2 t
=

-1

sec2 t

sin t1csc t - sin t2 = cos2 t

11 - cos2 x211 + cot2 x2 = 1

sin u
csc u

+

cos u
sec u

= 1

11 + cos u211 - cos u2 = sin2 u

sin 4x = 8 sin x cos3 x - 4 sin x cos x

cos 3t = 4 cos3 t - 3 cos t

sin2 v +

1

sec2 v
= 1

sec2 t - 1

sec2 t
= sin2 t

sec t - sin t tan t = cos t

1sec t - 121sec t + 12 = tan2 t

11 + sin z211 - sin z2 =

1

sec2 z

cos a-  
p

3
btan a-  

p

6
bcsc 

p

4

cot 
p

3
sec 
p

3
tan 
p

3

tan a-  
p

4
bcot 

p

4
csc 
p

2
(e) (f)

(g) (h)

25. Which of the following are odd functions? Even func-
tions? Neither?
(a) t sin t (b) (c) csc t
(d) (e) sin (cos t) (f)

26. Which of the following are odd functions? Even func-
tions? Neither?

(a) (b) (c) sec t

(d) (e) cos (sin t) (f)

Find the exact values in Problems 27–31. Hint: Half-angle identi-
ties may be helpful.

27. 28.

29. 30.

31.

32. Find identities analogous to the addition identities for
each expression.

(a) (b) (c)

33. Use the addition identity for the tangent to show that
for all t in the domain of tan t.

34. Show that for all x.

35. Suppose that a tire on a truck has an outer radius of 2.5
feet. How many revolutions per minute does the tire make when
the truck is traveling 60 miles per hour?

36. How far does a wheel of radius 2 feet roll along level
ground in making 150 revolutions?

37. A belt passes around two wheels, as shown in Figure
15. How many revolutions per second does the small wheel make
when the large wheel makes 21 revolutions per second?

C≈

≈

C≈
cos1x - p2 = -cos x

tan1t + p2 = tan t

tan1x - y2cos1x - y2sin1x - y2

sin2
 
p

8

cos2
 
p

12
sin3

 
p

6

sin2
 
p

6
cos2

 
p

3

x2
+ sin x2sin4 t

sin3 tcot t + sin t

x + sin xƒ sin t ƒ

sin2 t

y = sinax -

p

2
by = -cos1p - x2

y = cosax -

p

2
by = -sin1p - x2

6 in. 8 in.

Figure 15

38. The angle of inclination of a line is the smallest positive
angle from the positive x-axis to the line ( for a horizontal
line). Show that the slope m of the line is equal to 

39. Find the angle of inclination of the following lines (see
Problem 38).

(a) (b)

40. Let and be two nonvertical intersecting lines with
slopes and respectively. If the angle from to is not
a right angle, then

tan u =

m2 - m1

1 + m1m2

/2,/1u,m2,m1

/2/1

23x + 3y = 6y = 23x - 7

tan a.
a = 0

a
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y

x

θ1

θ2

�2

�1

Figure 16

t

r

Figure 17

Show this using the fact that in Figure 16.u = u2 - u1 water level is at 12 feet. Six hours later, a low tide with a water
level of 5 feet occurs, and by midnight another high tide with a
water level of 12 feet occurs. Assuming that the water level is
periodic, use this information to find a formula that gives the
water level as a function of time. Then use this function to ap-
proximate the water level at 5:30 P.M.

49. Circular motion can be modeled by using the para-
metric representations of the form and 
(A parametric representation means that a variable, t in this case,
determines both x(t) and y(t).) This will give the full circle for

If we consider a 4-foot-diameter wheel making one
complete rotation clockwise once every 10 seconds, show that the
motion of a point on the rim of the wheel can be represented by

and 

(a) Find the positions of the point on the rim of the wheel when
6 seconds, and 10 seconds. Where was this

point when the wheel started to rotate at 
(b) How will the formulas giving the motion of the point change

if the wheel is rotating counterclockwise.
(c) At what value of t is the point at (2, 0) for the first time?

50. The circular frequency v of oscillation of a point is

given by What happens when you add two motions

that have the same frequency or period? To investigate, we can
graph the functions and 

and look for similarities. Armed with this information,
we can investigate by graphing the following functions over the
interval 

(a)

(b)

51. We now explore the relationship between 
and 

(a) By expanding using the sum of the angles
formula, show that the two expressions are equivalent if

and 

(b) Consequently, show that and that then

satisfies the equation 

(c) Generalize your result to state a proposition about

(d) Write an essay, in your own words, that expresses the impor-
tance of the identity between and

Be sure to note that 
and that the identity holds only when you are forming a lin-
ear combination (adding and/or subtracting multiples of sin-
gle powers) of sine and cosine of the same frequency.

Trigonometric functions that have high frequencies pose spe-
cial problems for graphing. We now explore how to plot such
functions.

52. Graph the function using the window
given by a y range of and the x range given by

(a) (b) (c)

(d) (e)

Indicate briefly which x-window shows the true behavior of the
function, and discuss reasons why the other x-windows give
results that look different.

[-0.25, 0.25][-1, 1]

[-8, 8][-10, 10][-15, 15]

-1.5 … y … 1.5
f1x2 = sin 50xGC

ƒ C ƒ Ú max1 ƒ A ƒ , ƒ B ƒ 2C sin1v t + f2.
A sin1vt2 + B cos1vt2

A1 sin1vt + f12 + A2 sin1vt + f22 + A3 sin1vt + f32.

tan f =

B

A
.

fA2
+ B 2

= C2

B = C sin f.A = C cos f

sin1vt + f2
C sin1vt + f2.B cos1vt2

A sin1vt2 +EXPL

y1t2 = 3 cos1pt>5 - 22 + cos1pt>52 + cos11pt>52 - 32
y1t2 = 3 sin1pt>52 - 5 cos1pt>52 + 2 sin11pt>52 - 32

[-5, 5]:

cos1pt>52
y1t2 = sin1pt>52 +y1t2 = 2 sin1pt>52

v =

2p
period

.

EXPL

t = 0?
t = 2 seconds,

y1t2 = 2 cos1pt>52.x1t2 = 2 sin1pt>52

0 … t … 2p.

y1t2 = cos t.x1t2 = sin t
EXPL

41. Find the angle (in radians) from the first line to the sec-
ond (see Problem 40).

(a) (b)

(c)

42. Derive the formula for the area of a sector of a
circle. Here r is the radius and t is the radian measure of the
central angle (see Figure 17).

A =
1
2 r2t

2x - 6y = 12, 2x + y = 0

y =

x

2
, y = -xy = 2x, y = 3x

C

43. Find the area of the sector of a circle of radius 5 centime-
ters and central angle 2 radians (see Problem 42).

44. A regular polygon of n sides is inscribed in a circle of ra-
dius r. Find formulas for the perimeter, P, and area, A, of the
polygon in terms of n and r.

45. An isosceles triangle is topped by a semicircle, as shown
in Figure 18. Find a formula for the area A of the whole figure in
terms of the side length r and angle t (radians). (We say that A is
a function of the two independent variables r and t.)

46. From a product identity, we obtain

Find the corresponding sum of cosines for

Do you see a generalization?

47. The normal high temperature for Las Vegas, Nevada, is
55°F for January 15 and 105° for July 15. Assuming that these are
the extreme high and low temperatures for the year, use this
information to approximate the average high temperature for
November 15.

48. Tides are often measured by arbitrary height markings at
some location. Suppose that a high tide occurs at noon when the

cos  
x

2
  cos  

x

4
  cos  

x

8
  cos  

x

16

cos  
x

2
  cos  

x

4
=

1
2

 ccosa3
4

 xb + cosa1
4

 xb d

t

r

Figure 18
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53. Graph the function using the

windows given by the following ranges of x and y.

(a)

(b)

(c)

Indicate briefly which (x, y)-window shows the true behavior of
the function, and discuss reasons why the other (x, y)-windows
give results that look different. In this case, is it true that only one
window gives the important behavior, or do we need more than
one window to graphically communicate the behavior of this
function?

54. Let and 

(a) Use functional composition to form as
well as j1x2 = 1g � f21x2.

h1x2 = 1f � g21x2,
g1x2 =

1
100

 cos1100x2.f1x2 =

3x + 2

x2
+ 1

EXPLGC

-0.1 … x … 0.1, 0.9 … y … 1.1

-1 … x … 1, 0.5 … y … 1.5

-5 … x … 5, -1 … y … 1

f1x2 = cos x +

1
50

 sin 50xGC
(b) Find the appropriate window or windows that give a clear

picture of h(x).
(c) Find the appropriate window or windows that give a clear

picture of j(x).

55. Suppose that a continuous function is periodic with peri-
od 1 and is linear between 0 and 0.25 and linear between 
and 0. In addition, it has the value 1 at 0 and 2 at 0.25. Sketch the
function over the domain and give a piecewise definition
of the function.

56. Suppose that a continuous function is periodic with peri-
od 2 and is quadratic between and 0.25 and linear between

and In addition, it has the value 0 at 0 and 0.0625 at
Sketch the function over the domain and give a

piecewise definition of the function.

Answers to Concepts Review: 1.
2. 3. odd; even 4. -4>52p ; 2p ; p

1- q , q2; [-1, 1]

[-2, 2],;0.25.
-0.25.-1.75

-0.25

[-1, 1],

-0.75

1.9
The Inverse

Trigonometric Functions

y

x x x x x

y = sin x

Figure 1

–1

1

–1 1

y

x

y = sin x

3π
2

π
2

π
2

3π
2

–π π

Restricted
domain

y = sin–1 x

x

π
2

y

π
2

]]

– –

π
2

–

π
2

–

Figure 2

–1

1

–1 1

y

x

y = cos x

2ππ
2

π
2

3π
2

–π π

0 πRestricted
domain

y = cos–1 x
π
2

π
y

x

]]

–

Figure 3

The six basic trigonometric functions (sine, cosine, tangent, cotangent, secant, and
cosecant) were defined in Section 1.8. With respect to the notion of inverse, they
are miserable functions, since for each y in their range there are infinitely many x’s
that correspond to it (Figure 1). Nonetheless, we are going to introduce a notion of
inverse for them.That this is possible rests on a procedure called restricting the do-
main, which was discussed briefly in Section 1.6.

Inverse Sine and Inverse Cosine In the case of sine and cosine, we restrict
the domain, keeping the range as large as possible while insisting that the resulting
function have an inverse.This can be done in many ways, but the agreed procedure
is suggested by Figures 2 and 3. We also show the graph of the corresponding in-
verse function, obtained, as usual, by reflecting across the line y = x.
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62 Chapter 1 Preliminaries

We formalize what we have shown in a definition.

Definition

To obtain inverses for sine and cosine, we restrict their domains to 
and respectively. Thus,

 x = cos-1 y 3   y = cos x, 0 … x … p

 x = sin-1 y 3   y = sin x, -
p

2
… x …

p

2

[0, p],
[-p>2, p>2]

The symbol arcsin is often used for and arccos is similarly used for 
Think of arcsin as meaning “the arc whose sine is” or “the angle whose sine is”
(Figure 4). We will use both forms throughout the rest of this book.

� EXAMPLE 1 Calculate

(a) (b)

(c) (d)

SOLUTION

(a) (b)

(c) (d)

The only one of these that is tricky is (d). Note that it would be wrong to give 
as the answer, since is always in the interval Work the problem
in steps, as follows.

�

� EXAMPLE 2 Use a calculator to find

(a) (b) (c)

SOLUTION Use a calculator in radian mode. It has been programmed to give
answers that are consistent with the definitions that we have given.

(a)

(b) Your calculator should indicate an error, since does not exist.

(c) �

Inverse Tangent and Inverse Secant In Figure 5, we show the graph of
the tangent function, its restricted domain, and the graph of y = tan-1 x.

sin-11sin 4.132 = -0.9884073

sin-111.212
cos-11-0.612 = 2.2268569

sin-11sin 4.132sin-111.212,cos-11-0.612,

sin-1asin 
3p
2
b = sin-11-12 = -p>2

[-p>2, p>2].sin-1 y
3p>2

sin-1asin 
3p
2
b = -

p

2
cos1cos-1 0.62 = 0.6

cos-1a-

1
2
b =

2p
3

sin-1a22
2
b =

p

4

sin-11sin 3p>22cos1cos-1 0.62,
cos-1 A- 1

2 B ,sin-1 A22>2 B ,

cos-1.sin-1,

is the number in the interval
whose sine is y.

is the number in the interval 
whose cosine is y.

is the number in the interval
whose tangent is y.1-p>2, p>22

tan-1 y

[0, p]

cos-1 y

[-p>2, p>2]

sin-1 y

Another Way To Say It

–1

–2

–3

1

2

3

–1–2–3 1 2 3

y

x

y = tan x

3π
2

3π
2

π
2

π
2

y

x

π
2

π
2

y = tan–1 x

))

– –

Restricted
domain

π
2

π
2

–

–

Figure 5

arcsin y
(1, 0)0

(x, y)

y

x

Figure 4
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There is a standard way to restrict the domain of the cotangent function, that
is, to so that it has an inverse. However, this function does not play a signif-
icant role in calculus.

To obtain an inverse for secant, we graph restrict its domain appro-
priately, and then graph (Figure 6).y = sec-1 x

y = sec x,

10, p2,

Section 1.9 The Inverse Trigonometric Functions 63

1

y

x

y = sec x

–1
π
2

3π
2

–π π

0 πRestricted
domain

–1 1 x

y

π
2

π

y = sec–1 x

]]

–2

2

–2 23π
2

π
2

– –

Figure 6

Definition

To obtain inverses for tangent and secant, we restrict their domains to
and respectively. Thus,

 x = sec-1 y 3   y = sec x, 0 … x … p, x Z

p

2

 x = tan-1 y 3   y = tan x, -
p

2
6 x 6

p

2

[0, p>22 ´ 1p>2, p],1-p>2, p>22

Some authors restrict the domain of the secant in a different way. Thus, if you
refer to another book, you must check that author’s definition. We will have no
need to define though this can also be done.

� EXAMPLE 3 Calculate

(a) (b)

(c) (d)

(e) (f)

SOLUTION

(a) (b)

(c)

Most of us have trouble remembering our secants; moreover, most calculators
fail to have a secant button. Therefore, we suggest that you remember that

From this, it follows that

and this allows us to use known facts about the cosine.

(d) sec-11-12 = cos-11-12 = p

sec-1 y = cos-1a 1
y
b

sec x = 1>cos x.

tan-11tan 5.2362 = -1.0471853

tan-1 A -23 B = -

p

3
tan-1112 =

p

4

sec-11-1.322sec-1 122,
sec-11-12,tan-1 1tan 5.2362,
tan-1 A -23 B ,tan-1112,

csc-1,
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(e)

(f)

�

Four Useful Identities Theorem A gives some useful identities. You can re-
call them by reference to the triangles in Figure 7.

 = 2.4303875

 sec-11-1.322 = cos-1a-

1
1.32
b = cos-110.75757582

sec-1122 = cos-1a1
2
b =

p

3

64 Chapter 1 Preliminaries

x

1

sec–1x

�x2 – 1

x

1

tan–1x

�1 + x2

x
1

sin–1x

x

1

cos–1x

�1 – x2

�1 – x2

Figure 7

Theorem A

(1)

(2)

(3)

(4) tan1sec-1 x2 = e2x2
- 1, if x Ú 1

-2x2
- 1, if x … -1

sec1tan-1 x2 = 21 + x2

cos1sin-1 x2 = 21 - x2

sin1cos-1 x2 = 21 - x2

Proof To prove (1), recall that If then

Now apply this with and use the fact that to get

Identity (2) is proved in a completely similar manner.To prove (3) and (4), use
the identity in place of  �

� EXAMPLE 4 Calculate 

SOLUTION Recall the double-angle identity Thus,

�

� EXAMPLE 5 A picture 5 feet in height is hung on a wall so that its bottom is
8 feet from the floor, as shown in Figure 8.A viewer with eye level at 5.4 feet stands
b feet from the wall. Express , the vertical angle subtended by the picture at her
eye, in terms of b, and then find if feet.

SOLUTION The top of the picture is 13 feet above the ground and 7.6 feet
above eye level.The bottom of the picture is 2.6 feet above eye level. Let denote
the angle between the horizontal and the viewer’s line of the sight to the bottom of
the picture (Figure 9). Then

Thus,

 tan u1 =

2.6
b

 tan (u1 + u) =

7.6
b

u1

b = 12.9u

u

 = 2 #A1 - a2
3
b2

#
2
3

=

425
9

 sin c2 cos-1a2
3
b d = 2 sin ccos-1a2

3
b d  cos ccos-1a2

3
b d

sin 2u = 2 sin u cos u.

sin C2 cos-1 A23 B D .
sin2 u + cos2 u = 1.sec2 u = 1 + tan2 u

sin1cos-1 x2 = 21 - cos21cos-1 x2 = 21 - x2

cos1cos-1 x2 = xu = cos-1 x

sin u = 21 - cos2 u

0 … u … p,sin2 u + cos2 u = 1.

θ

b

5 ft

8 ft

5.4 ft

Figure 8

u
u1

b

5 ft

2.6 ft

Figure 9
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Subtracting from both sides of the first equation and making use of the second
equation gives

If then

� u = tan-1 a7.6
10
b - tan-1 a2.6

10
b L 0.3955 radian L 23°

b = 12.9,

 u = tan-1 a7.6
b
b - tan-1 a2.6

b
b

u1

 u1 = tan-1 a2.6
b
b

 u1 + u = tan-1 a7.6
b
b
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Concepts Review
1. To obtain an inverse for the sine function, we restrict its

domain to _____. The resulting inverse function is denoted by
or by _____.

2. To obtain an inverse for the tangent function, we restrict
the domain to _____.The resulting inverse function is denoted by

or by _____.tan-1

sin-1

3. The domain of is _____, and the range is _____.

4. For _____.-1 … x … 1, cos (sin-1x) =

tan-1

Problem Set 1.9
In Problems 1–10, find the exact value without using a calculator.

1. 2.

3. 4.

5. 6. arcsec (2)

7. 8.

9. 10.

In Problems 11–18, use a calculator to approximate each value.

11. 12. arccos (0.6341)

13. cos (arcsec 3.212) 14. sec (arccos 0.5111)

15. 16.

17. 18.

In Problems 19–24, express in terms of x using the inverse
trigonometric functions and 

19. 20.

21. 22.

θ

x

9

θ

x
5

θ

x

6
θ

x
8

sec-1.sin-1, cos-1, tan-1,
u

sin21ln1cos 0.555522cos1sin1tan-1 2.00122
tan-11-60.112sec-11-2.2222

sin-1 10.11132
C

cos1sin-1 0.562sin1sin-1 0.45672
tan-1a-

23
3
barcsin A- 1

2 B
arctan A23 B

sin-1a-

22
2
bsin-1a-

23
2
b

arcsina-

23
2
barccosa22

2
b

23. 24.

In Problems 25–28, find each value without using a calculator (see
Example 4).

25. 26.

27.

28.

In Problems 29–32, show that each equation is an identity.

29.

30.

31.

32.

33. By repeated use of the addition formula

show that
p

4
= 3 tan-1a1

4
b + tan-1a 5

99
b

tan1x + y2 = 1tan x + tan y2>11 - tan x tan y2

tan12 tan-1 x2 =

2x

1 - x2

cos12 sin-1 x2 = 1 - 2x2

sin1tan-1 x2 =

x21 + x2

tan1sin-1 x2 =

x21 - x2

cos Ccos-1 A45 B + sin-1 A12
13 B D

sin Ccos-1 A35 B + cos-1 A 5
13 B D

tan C2 tan-1 A13 B Dcos C2 sin-1 A- 2
3 B D

θ

x 3

2θ
x

2

1
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34. Verify that

a result discovered by John Machin in 1706 and used by him to
calculate the first 100 decimal places of 

35. Find formulas for for each of the following func-
tions , first indicating how you would restrict the domain so that

has an inverse. For example, if and we restrict
the domain to then 

(a) (b)

(c) (d) f1x2 = sin  
1
x

f1x2 =
1
2  tan x

f1x2 = 2 sin 3xf1x2 = 3 cos 2x

f-11x2 =
1
2 sin-11x>32.-p>4 … x … p>4,

f1x2 = 3 sin 2xf
f

f-11x2
p.

p

4
= 4 tan-1a1

5
b - tan-1a 1

239
b
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36. Draw the graphs of

using the same axes. Make a conjecture. Prove it.

37. Draw the graph of Make a conjec-
ture. Prove it.

38. Draw the graph of on Then
draw the graph of on Explain the
differences that you observe.

Answers to Concepts Review: 1. arcsin

2. arctan 3.

4. 21 - x2

1-p>2, p>22(-q, q);1-p>2, p>22;
[-p>2, p>2];

[-2p, 2p].y = arcsin1sin x2
[-1, 1].y = sin1arcsin x2GC

y = p>2 - arcsin x.GC

y = arcsin x and y = arctan Ax>21 - x2 B
GC

1.10 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer. Normally, this means that you
should supply a reason if you answer true and provide a counter-
example if you answer false.

1. Any number that can be written as a fraction is
rational.

2. The difference of any two rational numbers is rational.

3. The difference of any two irrational numbers is irrational.

4. Between two distinct irrational numbers, there is always
another irrational number.

5. (repeating 9s) is less than 1.

6. The operation of exponentiation is commutative; that is,

7. The inequalities and together imply
that 

8. If for every positive number then 

9. If x and y are real numbers, then 

10. If then 

11. It is possible for two closed intervals to have exactly one
point in common.

12. If two open intervals have a point in common, then they
have infinitely many points in common.

13. If then 

14. If then 

15. If then 

16. If x and y are both negative, then 

17. If then 

18. If then 

19. It is always true that ƒ ƒ x ƒ - ƒ y ƒ ƒ … ƒ x + y ƒ .

1
1 - ƒ r ƒ

…

1
1 - r

…

1
1 + ƒ r ƒ

.ƒ r ƒ 7 1,

1
1 + ƒ r ƒ

…

1
1 - r

…

1
1 - ƒ r ƒ

.ƒ r ƒ 6 1,

ƒ x + y ƒ = ƒ x ƒ + ƒ y ƒ .

x4
6 y4.ƒ x ƒ 6 ƒ y ƒ ,

x 6 y.ƒ x ƒ 6 ƒ y ƒ ,

2x2
= -x.x 6 0,

1>a 7 1>b.a 6 b 6 0,

1x - y21y - x2 … 0.

x = 0.e,ƒ x ƒ 6 e

x = y = z.
z … xx … y, y … z,

1am2n = 1an2m.

0.999 Á

p>q

20. For every positive real number y, there exists a real num-
ber x such that 

21. For every real number y, there exists a real number x such
that 

22. It is possible to have an inequality whose solution set con-
sists of exactly one number.

23. The equation represents a circle
for every real number a.

24. The equation represents a circle
for all real numbers a, b, c.

25. If (a, b) is on a line with slope then is
also on that line.

26. If (a, b), (c, d) and (e, f) are on the same line, then

provided all three points are different.

27. If then (a, b) lies in either the first or third
quadrant.

28. For every , there exists a positive number x such
that 

29. If then (a, b) lies on either the x-axis or the y-axis.

30. If then 
and lie on the same horizontal line.

31. The distance between and is 

32. The equation of every line can be written in point–slope
form.

33. The equation of every line can be written in the general
linear form 

34. If two nonvertical lines are parallel, they have the same
slope.

35. It is possible for two lines to have positive slopes and be
perpendicular.

36. If the x- and y-intercepts of a line are rational and non-
zero, then the slope of the line is rational.

37. The lines and are perpendicular.ax - y = cax + y = c

Ax + By + C = 0.

ƒ 2b ƒ .1a - b, a21a + b, a2
1x2, y22

1x1, y1221x2 - x122 + 1y2 - y122 = ƒ x2 - x1 ƒ ,

ab = 0,

x 6 e.
e 7 0

ab 7 0,

a - c

b - d
=

a - e

b - f
=

e - c

f - d

1a + 4, b + 323
4,

x2
+ y2

+ ax + by = c

x2
+ y2

+ ax + y = 0

x3
= y.

x2
= y.
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38. is the equation
of a line for each real number m.

39. The natural domain of

is the interval 

40. is defined for all real x.

41. The graph of an invertible function is intersected exactly
once by every horizontal line.

42.

43.

44. The natural domain of is

45. The range of is the interval 

46. The range of the function is the set

47. The range of the function is the set

48. The sum of two even functions is an even function.

49. The sum of two odd functions is an odd function.

50. The product of two odd functions is an odd function.

51. The product of an even function with an odd function is
an odd function.

52. The composition of an even function with an odd function
is an odd function.

53. The composition of two odd functions is an even function.

54. The function is odd.

55. The function

is even.

56. If the range of a function consists of just one number,
then its domain also consists of just one number.

57. If the domain of a function contains at least two numbers
then the range also contains at least two numbers.

58. If then 

59. If and then 

60. If and then 

61. If f and g have the same domain, then also has that
domain.

62. If the graph of has an x-intercept at then
the graph of has an x-intercept at 

63. The cotangent is an odd function.

64. The natural domain of the tangent function is the set of
all real numbers.

65. If then 

66. The domain for is 

67. The range of is 

68. for all real numbers 

69. for all real numbers x.arcsin (sin x) = x

x.sin (arcsin x) = x

(-p>2, p>2).sin-1 x

(-p>2, p>2).tan-1 x

s = t.cos s = cos t,

x = a - h.y = f1x + h2
x = a,y = f1x2

f>g
f1x2 # g1x2.

1f � g21x2 =g1x2 = x3,f1x2 = x2

f � g = g � f.g1x2 = x3,f1x2 = x2

g1-1.82 = -1.g1x2 = Œx>2 œ ,

f1t2 =

1sin t22 + cos t

tan t csc t

f1x2 = 12x3
+ x2>1x2

+ 12

1- q , -1] ´ [1, q2.
f1x2 = csc x - sec x

1- q , -1] ´ [1, q2.
f1x2 = tan x - sec x

[-6, q2.f1x2 = x2
- 6

(- q , q ).
T1u2 = sec1u2 + cos1u2

(log x)4
= 4 log x

log x>log y = log x - log y

log2 ƒ x ƒ

-3 … x … -1.

f1x2 = 2-1x2
+ 4x + 32

13x - 2y + 42 + m12x + 6y - 22 = 0 Sample Test Problems
1. Calculate each value for and 

(a) (b)

(c)

2. Simplify.

(a)

(b)

(c)

3. Show that the average of two rational numbers is a
rational number.

4. Write the repeating decimal as a ratio of
two integers.

5. Find an irrational number between and 

6. Calculate 

7. Calculate 

8. Calculate 

In Problems 9–18, find the solution set, graph this set on the real
line, and express this set in interval notation.

9. 10.

11.

12. 13.

14.

15.

16.

17.

18.

19. Find a value of x for which 

20. For what values of x does the equation hold?

21. For what values of t does the equation 
hold?

22. For what values of a and t does the equation
hold?

23. Suppose Use properties of absolute values to
show that

24. Write a sentence involving the word distance to express
the following algebraic sentences:
(a) (b) ƒ x + 1 ƒ … 2ƒ x - 5 ƒ = 3

` 2x2
+ 3x + 2

x2
+ 2

` … 8

ƒ x ƒ … 2.

ƒ t - a ƒ = a - t

ƒ t - 5 ƒ = 5 - t

ƒ -x ƒ = x

ƒ -x ƒ Z x.

ƒ 12 - 3x ƒ Ú ƒ x ƒ

3
1 - x

… 2

ƒ 3x - 4 ƒ 6 6

1x + 4212x - 1221x - 32 … 0

2x - 1
x - 2

7 0

21t2
- 44 t + 12 … -32x2

+ 5x - 3 6 0

3 - 2x … 4x + 1 … 2x + 7

6x + 3 7 2x - 51 - 3x 7 0

sin212.452 + cos212.402 - 1.00.C

Ap - 22.0 B2.5
- 23 2.0.C

A23 8.15 * 104
- 1.32 B2>3.24.C

13
25.1

2

4.1282828 Á

t3
- 1

t - 1

2
x + 1

-

x

x2
- x - 2

3
x + 1

-

2
x - 2

a1 +

1
m

+

1
n
b a1 -

1
m

+

1
n
b-1

43/n

1n2
- n + 122an +

1
n
bn

-2.n = 1, 2,
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68 Chapter 1 Preliminaries

(c)

25. Sketch the triangle with vertices and
C(5, 5), and show that it is a right triangle.

26. Find the distance from to the midpoint of the line
segment from (1, 2) to (7, 8).

27. Find the equation of the circle with diameter AB if
and 

28. Find the center and radius of the circle with equation

29. Find the distance between the centers of the circles with
equations

30. Find the equation of the line through the indicated point
that is parallel to the indicated line, and sketch both lines.

(a) (b)

(c) (d)

31. Write the equation of the line through that
(a) goes through (7, 3);

(b) is parallel to 

(c) is perpendicular to 

(d) is perpendicular to 
(e) has y-intercept 3.

32. Show that (5, 3), and (11, 11) are on the same
line.

33. Figure 1 can be represented by which equation?

(a) (b)

(c) (d) x = y2y = x2

x = y3y = x3

12, -12,

y = 4;

3x + 4y = 9;

3x - 2y = 5;

1-2, 12
1-3, 42: x = -215, 92: y = 10

11, -12: y =
2
3 x + 113, 22: 3x + 2y = 6

x2
- 2x + y2

+ 2y = 2 and x2
+ 6x + y2

- 4y = -7

x2
+ y2

- 8x + 6y = 0.

B = 110, 42.A = 12, 02

13, -62
A1-2, 62, B11, 22,

ƒ x - a ƒ 7 b

–4 –2 2 4

–1.5

–1

–0.5

0.5

1

1.5

0 0 x

y

Figure 1

–4 –2 2 4

–40

–30

–20

–10

0 x

y

Figure 2

40. Among all lines perpendicular to find the
equation of the one that, together with the positive x- and y-axes,
forms a triangle of area 8.

41. For find each value (if
possible).

(a) (b) (c)

(d) (e)

42. For find and simplify each value.

(a) g(2) (b)

(c)

43. Describe the natural domain of each function.

(a) (b)

44. Which of the following functions are odd? Even? Neither
even nor odd?

(a) (b)

(c) (d)

45. Sketch the graph of each function.

(a) (b)

(c)

46. Suppose that f is an even function satisfying
for Sketch the graph of f for

47. An open box is made by cutting squares of side x inches
from the four corners of a sheet of cardboard 24 inches by 32
inches and then turning up the sides. Express the volume V(x) in
terms of x. What is the domain for this function?

48. Let and Find each value.

(a) (b) (c)

(d) (e)

(f)

49. Sketch the graph of each of the following, making use of
translations.

(a) (b)

(c)

50. Let and What is the domain
of each of the following?

(a) f (b) (c)

51. Write as the composite of four
functions,

52. Calculate each of the following without using a calculator.

(a) sin 570° (b)

(c) cosa -13p
6
b

cos 
9p
2

f � g � h � k.
F1x2 = 21 + sin2 x

g � ff � g

g1x2 = x4.f1x2 = 216 - x

y = -1 +
1
41x + 222

y =
1
41x + 222y =

1
4 x2

f2122 + g2122
f31-121g � f2122

1f � g21221f # g21221f + g2122
g1x2 = x2

+ 1.f1x2 = x - 1>x

-4 … x … 4.
x Ú 0.f1x2 = -1 + 1x

h1x2 = ex2 if 0 … x … 2
6 - x if x 7 2

g1x2 =

x

x2
+ 1

f1x2 = x2
- 1

k1x2 =

x2
+ 1

ƒ x ƒ + x4h1x2 = x3
+ sin x

g1x2 = ƒ sin x ƒ + cos xf1x2 =

3x

x2
+ 1

g1x2 = 24 - x2f1x2 =

x

x2
- 1

g12 + h2 - g122
h

g A12 B
g1x2 = 1x + 12>x,

fa1
t
bf1t - 12

f1-12f A -1
2 Bf(1)

f1x2 = 1>1x + 12 - 1>x,

4x - y = 2,

34. Figure 2 can be represented by which equation?

(a) with , and 

(b) with , and 

(c) with , and 

(d) with and 

In Problems 35–38, sketch the graph of each equation.

35. 36.

37. 38.

39. Find the points of intersection of the graphs of
and y - x = 4.y = x2

- 2x + 4

GC

x = y2
- 3GCy =

2x

x2
+ 2

GC

x2
- 2x + y2

= 33y - 4x = 6

c 6 0a 7 0, b 7 0,y = ax2
+ bx + c,

c 6 0a 6 0, b 7 0y = ax2
+ bx + c,

c 7 0a 6 0, b 7 0y = ax2
+ bx + c,

c 7 0a 7 0, b 7 0y = ax2
+ bx + c,
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Section 1.10 Chapter Review 69

53. Find the inverse of the given function and verify that
for all in the domain of and 

for all in the domain of 
(a) (b)

54. Find the inverse of the given function and verify that
for all in the domain of and 

for all in the domain of 

(a) (b)

55. If and find each value.

(a) (b) cos t (c) sin 2 t

(d) tan t (e) (f) sin1p + t2cosap
2

- tb
sin1- t2

cos t 6 0,sin t = 0.8

f1x2 = 2 + log(x - 1)f1x2 =

2x

5

f.x
f-1 Af(x) B = xf-1,xf Af-1(x) B = x

f

f1x2 = 2x3
- 1f1x2 = 3x - 7

f.x
f-1 Af(x) B = xf-1,xf Af-1(x) B = x

f 56. Write sin 3t in terms of sin t. Hint:

57. A fly sits on the rim of a wheel spinning at the rate of 20
revolutions per minute. If the radius of the wheel is 9 inches, how
far does the fly travel in 1 second?

58. Find the exact value of the following without using a
calculator.

(a) (b)

(c) (d) arctan(1)arcsina23
2
b

sec-1 (-2)cos-1a-

22
2
b

3t = 2 t + t.
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1. Solve the following inequalities:
(a) (b)

2. Solve the following inequalities:
(a) (b)

3. Solve for x.

4. Solve for x.

5. The distance along the number line between x and 7 is equal to 3. What are the
possible values for x?

6. The distance along the number line between x and 7 is equal to d. What are the
possible values for x?

7. Solve the following inequalities:
(a) (b)
(c) (d)

8. Solve the following inequalities:
(a) (b)
(c) (d)

9. What are the natural domains of the following functions?

(a) (b)

10. What are the natural domains of the following functions?

(a) (b)

11. Evaluate the functions f (x) and g(x) from Problem 9 at the following values of x:
0, 0.9, 0.99, 0.999, 1.001, 1.01, 1.1, 2.

12. Evaluate the functions F(x) and G(x) from Problem 10 at the following values of x:

.

13. The distance between x and 5 is less than 0.1. What are the possible values for x?

14. The distance between x and 5 is less than where is a positive number. What are
the possible values for x?

15. True or false. Assume that a, x, and y are real numbers and n is a natural number.
(a) For every , there exists a y such that 

(b) For every , there exists an n such that 

(c) For every , there exists an n such that 

(d) For every circle C in the plane, there exists an n such that the circle C and its interior
are all within n units of the origin.

16. Use the Addition Identity for the sine function to find in terms of sin c,
sin h, cos c, and cos h.

sin1c + h2

1
n

6 a.a 7 0

1
n

6 a.a Ú 0

y 7 x.x 7 0

ee,

-1, -0.1, -0.01, -0.001, 0.001, 0.01, 0.1, 1

G1x2 =

sin x
x

F1x2 =

ƒ x ƒ

x

g1x2 =

x2
- 2x + 1

2x2
- x - 1

f1x2 =

x2
- 1

x - 1

ƒ x - 2 ƒ 6 0.01ƒ x - 2 ƒ 6 0.1
ƒ x - 2 ƒ Ú 1ƒ x - 2 ƒ 6 1

ƒ x - 7 ƒ 6 0.1ƒ x - 7 ƒ … 1
ƒ x - 7 ƒ … 3ƒ x - 7 ƒ 6 3

ƒ x + 3 ƒ = 2

ƒ x - 7 ƒ = 3

-3 6 1 -

x

2
6 814 6 2x + 1 6 15

-3 6

x

2
6 81 6 2x + 1 6 5

REVIEW &
PREVIEW

PROBLEMS
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LimitsCHAPTER 2
2.1
Introduction to Limits
The topics discussed in the previous chapter are part of what is called precalculus.
They provide the foundation for calculus, but they are not calculus. Now we are
ready for an important new idea, the notion of limit. It is this idea that distin-
guishes calculus from other branches of mathematics. In fact, we define calculus
this way:

Calculus is the study of limits.

Problems Leading to the Limit Concept The concept of limit is central
to many problems in the physical, engineering, and social sciences. Basically the
question is this: what happens to the function f (x) as x gets close to some constant
c? There are variations on this theme, but the basic idea is the same in many
circumstances.

Suppose that as an object steadily moves forward we know its position at any
given time. We denote the position at time t by s(t). How fast is the object moving
at time We can use the formula “distance equals rate times time” to find the
speed (rate of change of position) over any interval of time; in other words

We call this the “average” speed over the interval since, no matter how small the
interval is, we never know whether the speed is constant over this interval. For

example, over the interval [1, 2], the average speed is over the inter-

val [1, 1.2], the average speed is over the interval [1, 1.02], the aver-

age speed is etc. How fast is the object traveling at time To 

give meaning to this “instantaneous” velocity we must talk about the limit of the
average speed over smaller and smaller intervals.

We can find areas of rectangles and triangles using formulas from geometry,
but what about regions with curved boundaries, such as a circle? Archimedes had
this idea over two thousand years ago. Imagine regular polygons inscribed in a cir-
cle as shown in Figure 1.Archimedes was able to find the area of a regular polygon
with n sides, and by taking the regular polygon with more and more sides, he was
able to approximate the area of a circle to any desired level of accuracy. In other
words, the area of the circle is the limit of the areas of the inscribed polygons as n
(the number of sides in the polygon) increases without bound.

Consider the graph of the function for If the graph is a
straight line, the length of the curve is easy to find using the distance formula. But
what if the graph is curved? We can find numerous points along the curve and con-
nect them with line segments as shown in Figure 2. If we add up the lengths of
these line segments we should get a sum that is approximately the length of the
curve. In fact, by “length of the curve” we mean the limit of the sum of the lengths
of these line segments as the number of line segments increases without bound.

The last three paragraphs describe situations that lead to the concept of limit.
There are many others, and we will study them throughout this book. We begin
with an intuitive explanation of limits. The precise definition is given in the next
section.

a … x … b.y = f1x2

t = 1?
s11.022 - s112

1.02 - 1
,

s11.22 - s112
1.2 - 1

;

s122 - s112
2 - 1

;

speed =

distance
time

t = 1?

2.1 Introduction 
to Limits

2.2 Rigorous Study 
of Limits

2.3 Limit Theorems

2.4 Limits at Infinity;
Infinite Limits

2.5 Limits Involving
Trigonometric
Functions

2.6 Natural
Exponential,
Natural Log, and
Hyperbolic
Functions

2.7 Continuity 
of Functions

P3

P2

P1

Figure 1

y

x–2 6

25

42

20

15

10

5

Figure 2

From Chapter  of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
Copyright © 2007 by Pearson Education, Inc. All rights reserved.
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72 Chapter 2 Limits

An Intuitive Understanding Consider the function defined by

Note that it is not defined at since at this point has the form which is
meaningless. We can, however, still ask what is happening to as x approaches
1. More precisely, is approaching some specific number as x approaches 1? To
get at the answer, we can do three things. We can calculate some values of for
x near 1, we can show these values in a schematic diagram, and we can sketch the
graph of All this has been done, and the results are shown in Figure 3.y = f1x2.

f(x)
f(x)

f(x)

0
0,f(x)x = 1

f1x2 =

x3
- 1

x - 1

1

1

2

3

4

x → ← x

y

x

f (x)

f(x)

Graph of y = f (x)  =

x y

3.813

3.310

3.030

3.003

2.997

2.970

2.710

2.313

0.75

0.9
0.99

0.999

1.001

1.01
1.1

1.25

x

1.25

1.1

1.01

1.001

   ↓
1.000

   ↑
0.999

0.99

0.9

0.75

3.813

3.310

3.030

3.003

   ↓
   ?

   ↑
2.997

2.970

2.710

2.313

 y = x
3 – 1

x – 1

x3 – 1
x – 1

Table
of values

Schematic
diagram

Figure 3

All the information we have assembled seems to point to the same conclusion:
f (x) approaches 3 as x approaches 1. In mathematical symbols, we write

This is read “the limit as x approaches 1 of is 3.”
Being good algebraists (thus knowing how to factor the difference of cubes),

we can provide more and better evidence.

Note that as long as This justifies the second step.The
third step should seem reasonable; a rigorous justification will come later.

To be sure that we are on the right track, we need to have a clearly understood
meaning for the word limit. Here is our first attempt at a definition.

x Z 1.1x - 12>1x - 12 = 1

 = lim
x:1
1x2

+ x + 12 = 12
+ 1 + 1 = 3

 lim
x:1

 
x3

- 1
x - 1

= lim
x:1

 

1x - 121x2
+ x + 12

x - 1

1x3
- 12>1x - 12

lim
x:1

 
x3

- 1
x - 1

= 3
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Section 2.1 Introduction to Limits 73

Notice that we do not require anything at c. The function f need not even be
defined at c; it was not in the example just considered.
The notion of limit is associated with the behavior of a function near c, not at c.

A cautious reader is sure to object to our use of the word near.What does near
mean? How near is near? For precise answers, you will have to study the next sec-
tion; however, some further examples will help to clarify the idea.

More Examples Our first example is almost trivial, but nonetheless important.

� EXAMPLE 1 Find 

SOLUTION When x is near 3, is near We write

�

� EXAMPLE 2 Find 

SOLUTION Note that is not defined at but this is
all right. To get an idea of what is happening as x approaches 3, we could use a
calculator to evaluate the given expression, for example, at 3.1, 3.01, 3.001, and so
on. But it is much better to use a little algebra to simplify the problem.

The cancellation of in the second step is legitimate because the definition of

limit ignores the behavior at Remember, as long as x is not equal

to 3. �

� EXAMPLE 3 Find 

SOLUTION No algebraic trick will simplify our task; certainly, we cannot cancel
the x’s.A calculator will help us to get an idea of the limit. Use your own calculator
(radian mode) to check the values in the table of Figure 4. Figure 5 shows a plot of

Our conclusion, though we admit it is a bit shaky, is that

We will give a rigorous demonstration in Section 2.5. �

Some Warning Flags Things are not quite as simple as they may appear. Cal-
culators may mislead us; so may our own intuition. The examples that follow sug-
gest some possible pitfalls.

lim
x:0

 
sin x

x
= 1

y = (sin x)>x.

lim
x:0

 
sin x

x
.

x - 3
x - 3

= 1x = 3.

x - 3

lim
x:3
1x + 22 = 3 + 2 = 5lim

x:3
 
x2

- x - 6
x - 3

= lim
x:3

 

1x - 321x + 22
x - 3

=

x = 3,1x2
- x - 62>1x - 32

lim
x:3

 
x2

- x - 6
x - 3

.

lim
x:3
14x - 52 = 7

4 # 3 - 5 = 7.4x - 5

lim
x:3
14x - 52.

f1x2 = 1x3
- 12>1x - 12

Definition Intuitive Meaning of Limit

To say that means that when x is near but different from c then

f(x) is near L.

lim
x:c

 f1x2 = L

x sin x
x

1.0

0.1

  0.01

0

0.84147

0.99833

0.99998

?

–0.01 0.99998

–0.1  0.99833

–1.0 0.84147

↓

↑

↓

↑

Figure 4

–2.5

y

x7.5

1.0

0
–5–7.5 52.5

0.8

0.6

0.4

0.2

–0.2

Figure 5
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74 Chapter 2 Limits

x x2 cos x
10,000

_

� 1

� 0.5

� 0.1

 0

0.99995

0.24991

0.00990

?

↓ ↓
� 0.01 0.000000005

Figure 6

1 2 3 4

1

2

3

y

x

y = x

Figure 7

x sin
1
x

2/π

2/(2  )π

2/(3  )π

2/(4  )π

2/(5  )π

2/(6  )π

2/(7  )π

2/(8  )π

2/(9  )π

2/(11  )

2/(12  )

2/(10  )

π

π

π

0

0

1

–1

1

0

0

0

–1

1

–1

0

0

?
↓ ↓

Figure 8

y

x–2
2  π

–2
4  π

–2
6  π

2
6  π

2
4  π

2
2  π

2
π

1
xy = sin (   )

–1

1

Figure 9

� EXAMPLE 4 (Your calculator may fool you.) Find 

SOLUTION Following the procedure used in Example 3, we construct the table
of values shown in Figure 6. The conclusion it suggests is that the desired limit is 0.
But this is wrong. If we recall the graph of we realize that cos x
approaches 1 as x approaches 0. Thus,

�

� EXAMPLE 5 (No limit at a jump) Find 

SOLUTION Recall that denotes the greatest integer less than or equal to x
(see Section 1.5). The graph of is shown in Figure 7. For all numbers x less
than 2 but near 2, but for all numbers x greater than 2 but near 2,
Is near a single number L when x is near 2? No. No matter what number we
propose for L, there will be x’s arbitrarily close to 2 on one side or the other, where

differs from L by at least Our conclusion is that does not exist. If you

check back, you will see that we have not claimed that every limit we can write
must exist. �

� EXAMPLE 6 (Too many wiggles) Find 

SOLUTION This example poses the most subtle limit question asked yet. Since
we do not want to make too big a story out of it, we ask you to do two things. First,
pick a sequence of x-values approaching 0. Use your calculator to evaluate 
sin at these x’s. Unless you happen on some very lucky choices, your values
will oscillate wildly.

Second, consider trying to graph No one will ever do this very
well, but the table of values in Figure 8 gives a good clue about what is happening.
In any neighborhood of the origin, the graph wiggles up and down between and
1 infinitely many times (Figure 9). Clearly, sin is not near a single number L
when x is near 0. We conclude that  does not exist. �lim

x:0
 sin11>x2(1>x)

-1

y = sin11>x2.
(1>x)

lim
x:0

 sin11>x2.

lim
x:2
Œx œ1

2.Œx œ
Œx œ

Œx œ = 2.Œx œ = 1,
y = Œx œ

Œx œ
lim
x:2
Œx œ .

lim
x:0

 cx2
-

cos x
10,000

d = 02
-

1
10,000

= -

1
10,000

y = cos x,

lim
x:0

 cx2
-

cos x
10,000

d .

One-Sided Limits When a function takes a jump (as does at each integer
in Example 5), then the limit does not exist at the jump points. Such functions sug-
gest the introduction of one-sided limits. Let the symbol mean that x ap-
proaches c from the right, and let mean that x approaches c from the left.x : c-

x : c+

Œx œ

Definition Right- and Left-Hand Limits

To say that means that when x is near but to the right of c then

is near L. Similarly, to say that means that when x is near

but to the left of c then is near L.f(x)

lim
x:c-

 f1x2 = Lf(x)

lim
x:c+

 f1x2 = L
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Section 2.1 Introduction to Limits 75

Theorem A

if and only if and lim
x:c+

 f1x2 = L.lim
x:c-

 f1x2 = Llim
x:c

 f1x2 = L

–4 –3 –2 –1 1 2 3 4

1

2

3

4

y

x

lim 
x → –3

f (x ) = 2

lim 
x → –1+

f (x ) = 4

lim 
x → –1–

f (x ) = 3

lim 
x → 2–

f (x ) does not exist.lim 
x → –1

f (x ) does not exist.

lim 
x → 2+

f (x ) = 2.5

Figure 10

Thus, while does not exist, it is correct to write (look at the graph in Figure 7)

We believe that you will find the following theorem quite reasonable.

lim
x:2-

Œx œ = 1 and lim
x:2+

Œx œ = 2

lim
x:2
Œx œ

Figure 10 should give additional insight. Two of the limits do not exist, although all
but one of the one-sided limits exist.

Concepts Review
1. means that f (x) gets close to _____ when x

gets sufficiently close to (but is different from) _____.
2. Let and note that f (3) is unde-

fined. Nevertheless, _____.lim
x:3

 f1x2 =

f1x2 = 1x2
- 92>1x - 32

lim
x:c

 f1x2 = L 3. means that f (x) gets near to _____ when x

approaches c from the _____.
4. If both and then _____.lim

x:c +

 f1x2 = M,lim
x:c-

 f1x2 = M

lim
x:c+

 f1x2 = L

Problem Set 2.1
In Problems 1–6, find the indicated limit.

1. 2.

3. 4.

5. 6.

In Problems 7–18, find the indicated limit. In most cases, it will be
wise to do some algebra first (see Example 2).

7. 8.

9. 10.

11. 12.

13. 14. lim
t:7+

 

21t - 723
t - 7

lim
t:2

 

21t + 421t - 224
13t - 622

lim
x:3

 
x2

- 9
x - 3

lim
x: -t

 
x2

- t2

x + t

lim
x:0

 
x4

+ 2x3
- x2

x2lim
x: -1

 
x3

- 4x2
+ x + 6

x + 1

lim
t: -7

 
t2

+ 4t - 21
t + 7

lim
x:2

 
x2

- 4
x - 2

lim
t: -1
1t2

- x22lim
t: -1
1t2

- 12
lim

x: -2
1x2

+ 2t - 12lim
x: -2

1x2
+ 2x - 12

lim
t: -1
11 - 2t2lim

x:3
1x - 52 15. 16.

17. 18.

In Problems 19–28, use a calculator to find the indicated limit.
Use a graphing calculator to plot the function near the limit point.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. lim
u:p>2 

2 - 2 sin u
3u

lim
x:p>4 

1x - p>422
1tan x - 122

lim
t:0

  
1 - cot t

1>tlim
x:p

 

1 + sin1x - 3p>22
x - p

lim
x:3

 

x - sin1x - 32 - 3

x - 3
lim
t:1

  
t2

- 1
sin1t - 12

lim
x:0

 

11 - cos x22
x2lim

x:0
 

(x - sin x)2

x2

lim
t:0

 
1 - cos t

2t
lim
x:0

 
sin x
2x

GC

lim
h:0

 

1x + h22 - x2

h
lim
h:0

 

12 + h22 - 4

h

lim
u:1

 

13u + 4212u - 223
1u - 122lim

x:3
 
x4

- 18x2
+ 81

1x - 322
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76 Chapter 2 Limits

29. For the function f graphed in Figure 11, find the indicated
limit or function value, or state that it does not exist.
(a) (b) (c)

(d) (e) f (1) (f)

(g) (h) (i) lim
x: -1+

 f1x2lim
x:1+

 f1x2lim
x:1-

 f1x2
lim
x:1

 f1x2lim
x: -1

 f1x2
f1-12f1-32lim

x: -3
 f1x2

30. Follow the directions of Problem 29 for the function f
graphed in Figure 12.

31. For the function f graphed in Figure 13, find the indicated
limit or function value, or state that it does not exist.
(a) (b) f (3) (c)

(d) (e) (f) lim
x:3+

 f1x2lim
x: -3

 f1x2lim
x: -3+

 f1x2
lim

x: -3-

 f1x2f1-32

32. For the function f graphed in Figure 14, find the indicated
limit or function value, or state that it does not exist.
(a) (b) (c)

(d) (e) (f) f (1)

33. Sketch the graph of

Then find each of the following or state that it does not exist.
(a) (b)

(c) f (1) (d)

34. Sketch the graph of

Then find each of the following or state that it does not exist.
(a) (b) g(1)

(c) (d)

35. Sketch the graph of then find each of
the following or state that it does not exist.
(a) f (0) (b) lim

x:0
 f1x2

f1x2 = x - Œx œ ;
lim

x:2+

 g1x2lim
x:2

 g1x2
lim
x:1

 g1x2

g1x2 = c -x + 1
x - 1

5 - x2
 

if x 6 1
if 1 6 x 6 2
if x Ú 2

lim
x:1+

 f1x2
lim
x:1

 f1x2lim
x:0

 f1x2

f1x2 = c -x

x

1 + x

 
if x 6 0
if 0 … x 6 1
if x Ú 1

lim
x:1

 f1x2f1-12
lim

x: -1
 f1x2lim

x: -1+

 f1x2lim
x: -1-

 f1x2

(c) (d)

36. Follow the directions of Problem 35 for 

37. Find or state that it does not exist.

38. Evaluate Hint: Rationalize the

numerator by multiplying the numerator and denominator by

39. Let

Find each value, if possible.
(a) (b)

40. Sketch, as best you can, the graph of a function f that
satisfies all the following conditions.
(a) Its domain is the interval [0, 4].
(b)
(c) (d)

(e) (f)

41. Let

For what values of a does exist?

42. The function had been carefully graphed, but
during the night a mysterious visitor changed the values of f at a
million different places. Does this affect the value of at
any a? Explain.

43. Find each of the following limits or state that it does not
exist.

(a) (b)

(c) (d)

44. Find each of the following limits or state that it does not
exist.
(a) (b)

(c) (d)

45. Find each of the following limits or state that it does not
exist.
(a) (b)

(c) (d)

46. Find each of the following limits or state that it does not
exist.
(a) (b)

(c) (d)

Many software packages have programs for calculating lim-
its, although you should be warned that they are not infallible. To
develop confidence in your program, use it to recalculate some of
the limits in Problems 1–28. Then for each of the following, find
the limit or state that it does not exist.

47. 48.

49. 50. lim
x:0

ƒ x ƒ
xlim

x:0
 2 ƒ x ƒ

lim
x:0+

 xxlim
x:0

 1x

CAS

lim
x:1.8

Œx œ >xlim
x:1.8

Œx œ
lim

x:0+

Œx œ >xlim
x:3
Œx œ >x

lim
x:3+

1Œx œ + Œ -x œ2lim
x:3-

1Œx œ + Œ -x œ2
lim

x:0+

 x2 Œ1>x œlim
x:0+

 x Œ1>x œ

lim
x:0+

Œx œ1-12Œ1>xœlim
x:0+

 x1-12Œ1>xœ
lim

x:0+

Œ1>x œlim
x:1+

 2x - Œx œ

lim
x:1-

 c 1
x - 1

-

1
ƒ x - 1 ƒ

dlim
x:1-

 
x2

- ƒ x - 1 ƒ - 1

ƒ x - 1 ƒ

lim
x:1-

 
ƒ x - 1 ƒ

x - 1
lim
x:1

 
ƒ x - 1 ƒ

x - 1

lim
x:a

 f1x2
f1x2 = x2

lim
x:a

 f1x2
f1x2 = ex2 if x is rational

x4 if x is irrational

lim
x:3+

 f1x2 = 1lim
x:3-

 f1x2 = 2

lim
x:2

 f1x2 = 1lim
x:1

 f1x2 = 2
f102 = f112 = f122 = f132 = f142 = 1

lim
x:0

 f1x2lim
x:1

 f1x2

f1x2 = e x if x is rational
-x if x is irrational

2x + 2 + 22.

lim
x:0
A2x + 2 - 22 B >x.

lim
x:1
1x2

- 12> ƒ x - 1 ƒ

f1x2 = x> ƒ x ƒ .

lim
x:1>2 f1x2lim

x:0-

 f1x2

–3 –2 –1 1 2

1

2

3

y

x
–4 –3 –2 –1 1 2

1

2

3

y

x

Figure 11 Figure 12

–4 –3 –2 –1 1 2 4

1

–1
–2
–3
–4

2
3

y

x

4

–4 –3 –2 –1 1 2 3 4 5

1

–1

–2

y

x

Figure 13 Figure 14
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51. 52.

53. 54.

55. 56.

57. 58. lim
x:1+

 
2

1 + 21>1x - 12lim
x:2-

 
x2

- x - 2
ƒ x - 2 ƒ

lim
x:0

  
x sin 2x

sin1x22lim
x:1

 
x3

- 122x + 2 - 2

lim
x:0

 x cos11>x2lim
x:0

 cos11>x2
lim
x:0
1sin 5x2>3xlim

x:0
1sin 2x2>4x 59. Since calculus software packages find by sam-

pling a few values of f (x) for x near a, they can be fooled. Find a
function f for which fails to exist but for which your

software gives a value for the limit.

Answers to Concepts Review: 1. L; c 2. 6 3. L; right
4. lim

x:c
 f1x2 = M

lim
x:0

 f1x2
lim
x:a

 f1x2CAS

If we now asked how close x would have to be to 2 to guarantee that is
within 0.01 of 12, the solution would proceed along the same lines, and we would
find that x would have to be in a smaller interval than we obtained above. If we
wanted to be within 0.001 of 12, we would require an interval that is narrow-
er still. In this example, it seems plausible that no matter how close we want to
be to 12, we can accomplish this by taking x sufficiently close to 2.

We now make the definition of the limit precise.

Making the Definition Precise We follow the tradition in using the Greek
letters (epsilon) and (delta) to stand for (usually small) arbitrary positive
numbers.

To say that is within of L means that or equiv-
alently, This means that lies in the open interval

shown on the graph in Figure 2.1L - e, L + e2 f(x)ƒ f1x2 - L ƒ 6 e.
L - e 6 f1x2 6 L + e,ef(x)

de

f(x)
f(x)

f(x)

We gave an informal definition of limit in the previous section. Here is a slightly

better, but still informal, rewording of that definition. To say that 

means that f (x) can be made to be as close as we like to L provided x is close
enough, but not equal to c. The first example illustrates this point.

� EXAMPLE 1 Use a plot of to determine how close x must
be to 2 to guarantee that f (x) is within 0.05 of 12.

SOLUTION In order for f (x) to be within 0.05 of 12, we must have

The lines and have been drawn in

Figure 1. If we solve for x we get Thus 

and Figure 1 indicates that if 

then f (x) satisfies This interval for x is approximately

Of the two endpoints of this interval, the upper one,

2.00416, is closer to 2 and it is within 0.00416 of 2. Thus, if x is within 0.00416 of 2

then f (x) is within 0.05 of 12. �

1.99583 6 x 6 2.00416.

11.95 6 f1x2 6 12.05.

211.95>3 6 x 6 212.05>3f A212.05>3 B = 12.05.

f A211.95>3 B = 11.95x = 2y>3.y = 3x2

y = 12.05y = 11.9511.95 6 f1x2 6 12.05.

y = f1x2 = 3x2

lim
x:c

 f1x2 = L

2.2
Rigorous Study 

of Limits

Think of two points a and b on a
number line. What is the distance
between them? If then 
is the distance, but if then

is the distance. We can com-
bine these statements into one by
saying that the distance is 
This geometric interpretation of the
absolute value of a difference as the
distance between two points on a
number line is important in under-
standing our definition of the limit.

ƒ b - a ƒ .

a - b
b 6 a

b - aa 6 b,

Absolute Value as Distance

–2 –1 1 2 3

y

x

30

25

20

15

10

5

y = 3x2

1.6 1.8 2 2.42.2

y

x

14

13

12

11

10

y = 3x2

y = 12.05

y = 11.95

1.98 1.99 2 2.032.022.01

y

x

12.15

12.1

12.05

12

11.95

11.85

11.9

y = 3x2

y = 12.05

y = 11.95

11.95
3

12.05
3

Figure 1
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78 Chapter 2 Limits

Next, to say that x is sufficiently close to but different from c is to say that, for
some is in the open interval with c deleted. Perhaps the best
way to say this is to write

Note that would describe the interval while
requires that be excluded.The interval that we are describing is

shown in Figure 3.
We are now ready for what some have called the most important definition in

calculus.

x = c0 6 ƒ x - c ƒ

c - d 6 x 6 c + d,ƒ x - c ƒ 6 d

0 6 ƒ x - c ƒ 6 d

1c - d, c + d2d, x

The pictures in Figure 4 may help you absorb this definition.
We must emphasize that the real number must be given first; the number is

to be produced, and it will usually depend on Suppose that David wishes to
prove to Emily that Emily can challenge David with any particularlim

x:c
 f1x2 = L.

e.
de

she chooses (e.g., ) and demand that David produce a corresponding 
Let’s apply David’s reasoning to the limit By inspection, David 

would conjecture that the limit is 7. Now, can David find a such that
whenever A little algebra shows that

Thus, the answer to the question is yes! David can choose (or any
smaller value) and this will guarantee that whenever

In other words, David can make within 0.01 of 7,
provided that x is within of 3.0.01>2 2x + 10 6 ƒ x - 3 ƒ 6 0.01>2.

ƒ 12x + 12 - 7 ƒ 6 0.01
d = 0.01>2

 3 ƒ x - 3 ƒ 6

0.01
2

 ƒ 12x + 12 - 7 ƒ 6 0.01 3  2 ƒ x - 3 ƒ 6 0.01

0 6 ƒ x - 3 ƒ 6 d?ƒ 12x + 12 - 7 ƒ 6 0.01
d

lim
x:3
12x + 12. d.e = 0.01e

f (x)

x

L + �

�L –

L

� f(x) – L � < �

)

)

Figure 2

f (x)

xδc – c δc + 

0 < � x – c � < δ

))

Figure 3

Definition Precise Meaning of Limit

To say that means that for each given (no matter how

small) there is a corresponding such that provided that 
that is,

0 6 ƒ x - c ƒ 6 d Q  ƒ f1x2 - L ƒ 6 e

0 6 ƒ x - c ƒ 6 d;
ƒ f1x2 - L ƒ 6 e,d 7 0

e 7 0lim
x:c

 f1x2 = L

f (x)

x

�

�

f (x)

xc

L

c

δ δ

f (x)

x

L

δc – c δc + 

f (x)

x

L +

c

�

�L –

L

For each    > 0� there is a     > 0 such thatδ 0 < � x – c � <   δ  � f(x) – L � <      �

L

Figure 4
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Section 2.2 Rigorous Study of Limits 79

Now suppose that Emily challenges David again, but this time she wants
Can David find a for this value of Following the

reasoning used above,

Thus, whenever 
This kind of reasoning, while it may convince some, is not a proof that the limit

is 7. The definition says that we must be able to find a for every (not for
some ). Emily could challenge David repeatedly, but they would never prove
that the limit is 7. David must be able to produce a for every positive (no mat-
ter how small).

David opts to take things into his own hands and proposes to let be any pos-
itive real number. He follows the same reasoning as above, but this time he uses 
instead of 0.000002.

David can choose , and it follows that whenever
In other words, he can make within of 7 provided x is

within of 3. Now David has met the requirements of the definition of the limit
and has therefore verified that the limit is 7, as suspected.

Some Limit Proofs In each of the following examples, we begin with what we
call a preliminary analysis. We include it so that our choice of in each proof does
not seem to suggest incredible insight on our part. It shows the kind of work you
need to do on scratch paper in order to construct the proof. Once you feel that you
grasp an example, take another look at it, but cover up the preliminary analysis
and note how elegant, but mysterious, the proof seems to be.

� EXAMPLE 2 Prove that 

PRELIMINARY ANALYSIS Let be any positive number. We must produce a 
such that

Consider the inequality on the right.

Now we see how to choose that is, Of course, any smaller would work.

FORMAL PROOF Let be given. Choose Then 
implies that

If you read this chain of equalities and an inequality from left to right and use the
transitive properties of and you see that

Now, David knows a rule for choosing the value of given Emily’s challenge.
If Emily were to challenge David with then David would respond with

If Emily said then David would say If he
gave a smaller value for that would be fine, too.d,

d = 0.000001.e = 0.000003,d = 0.01>3.
e = 0.01,

d

ƒ 13x - 72 - 5 ƒ 6 e

6 ,=

3 ƒ x - 4 ƒ 6 3d = eƒ 13x - 72 - 5 ƒ = ƒ 3x - 12 ƒ = ƒ 31x - 42 ƒ =

0 6 ƒ x - 4 ƒ 6 dd = e>3.e 7 0

dd = e>3.d;

ƒ 13x - 72 - 5 ƒ 6 e 3  ƒ 3x - 12 ƒ 6 e

3  ƒ 31x - 42 ƒ 6 e

     3  ƒ 3 ƒ ƒ 1x - 42 ƒ 6 e

3  ƒ x - 4 ƒ 6

e

3

0 6 ƒ x - 4 ƒ 6 d Q ƒ  13x - 72 - 5 ƒ 6 e

d 7 0e

lim
x:4
13x - 72 = 5.

d

e>2 e2x + 1ƒ x - 3 ƒ 6 e>2.
ƒ 12x + 12 - 7 ƒ 6 ed = e>2

 3 ƒ x - 3 ƒ 6

e

2

 ƒ 12x + 12 - 7 ƒ 6 e 3  2 ƒ x - 3 ƒ 6 e

e

e

ed

e 7 0
e 7 0d

ƒ x - 3 ƒ 6 0.000002>2.ƒ 12x + 12 - 7 ƒ 6 0.000002

 3  ƒ x - 3 ƒ 6

0.000002
2

 ƒ 12x + 12 - 7 ƒ 6 0.000002 3  2 ƒ x - 3 ƒ 6 0.000002

e?dƒ 12x + 12 - 7 ƒ 6 0.000002.

A natural question to ask is “Can a
function have two different limits at
c?” The obvious intuitive answer is
no. If a function is getting closer and
closer to L as it cannot also
be getting closer and closer to a dif-
ferent number M. You are asked to
show this rigorously in Problem 23.

x : c,

Two Different Limits?
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80 Chapter 2 Limits

Of course, if you think about the graph of (a line with slope 3, as in
Figure 5), you know that to force to be close to 5 you had better make x
even closer (closer by a factor of one-third) to 4. �

Now look at Figure 6 and convince yourself that would be an appro-
priate choice for in showing that 

� EXAMPLE 3 Prove that 

PRELIMINARY ANALYSIS We are looking for a such that

Now, for 

This indicates that will work (see Figure 7).

FORMAL PROOF Let be given. Choose Then 
implies that

The cancellation of the factor is legitimate because implies that

and  as long as  �

� EXAMPLE 4 Prove that 

PRELIMINARY ANALYSIS We want to find such that

Now

It appears that should do as long as (Note that m could be posi-
tive or negative, so we need to keep the absolute value bars. Recall from Chapter 1
that )

FORMAL PROOF Let be given. Choose Then 
implies that

And in case any will do just fine since

The latter is less than  for all x. �

� EXAMPLE 5 Prove that if then 

PRELIMINARY ANALYSIS Refer to Figure 8. We must find such that

0 6 ƒ x - c ƒ 6 d Q  ƒ1x - 1c ƒ 6 e

d

lim
x:c

 1x = 1c.c 7 0

e

ƒ 10x + b2 - 10c + b2 ƒ = ƒ 0 ƒ = 0

dm = 0,

ƒ 1mx + b2 - 1mc + b2 ƒ = ƒ mx - mc ƒ = ƒ m ƒ ƒ x - c ƒ 6 ƒ m ƒd = e

0 6 ƒ x - c ƒ 6 dd = e> ƒ m ƒ .e 7 0

ƒ ab ƒ = ƒ a ƒ ƒ b ƒ .

m Z 0.d = e> ƒ m ƒ

ƒ 1mx + b2 - 1mc + b2 ƒ = ƒ mx - mc ƒ = ƒ m1x - c2 ƒ = ƒ m ƒ ƒ x - c ƒ

0 6 ƒ x - c ƒ 6 d Q  ƒ 1mx + b2 - 1mc + b2 ƒ 6 e

d

lim
x:c
1mx + b2 = mc + b.

x Z 2.
x - 2
x - 2

= 1x Z 2,

0 6 ƒ x - 2 ƒx - 2

 = ƒ 21x - 22 ƒ = 2 ƒ x - 2 ƒ 6 2d = e

 ` 2x2
- 3x - 2
x - 2

- 5 ` = ` 12x + 121x - 22
x - 2

- 5 ` = ƒ 2x + 1 - 5 ƒ

0 6 ƒ x - 2 ƒ 6 dd = e>2.e 7 0

d = e>2

 

3      ƒ 12x + 12 - 5 ƒ  6 e

3       ƒ 21x - 22 ƒ 6 e

3        ƒ 2 ƒ ƒ x - 2 ƒ 6 e

3        ƒ x - 2 ƒ 6

e

2

 ` 2x2
- 3x - 2
x - 2

- 5 ` 6 e 3   ` 12x + 121x - 22
x - 2

- 5 ` 6 e
x Z 2,

0 6 ƒ x - 2 ƒ 6 d Q  ` 2x2
- 3x - 2
x - 2

- 5 ` 6 e

d

lim
x:2

 
2x2

- 3x - 2
x - 2

= 5.

lim
x:4
A12 x + 3 B = 5.d

d = 2e

3x - 7
y = 3x - 7

1 2 3 4 5

–3

–2

–1

1

2

3

y

x

lim 
x → 4

�

�

(3x – 7) = 5

y = 3x – 7

�/3 �/3

5

Figure 5
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x

lim 
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�

�

1
2 x + 3) = 5(

1
2 x + 3y =

5

Figure 6
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x

lim
x → 2

�

�

y =
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f(x)

lim 
x → c
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�

�c

c

δ δ

�x �c=
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Section 2.2 Rigorous Study of Limits 81

Now

To make the latter less than requires that we have 

FORMAL PROOF Let be given. Choose Then 
implies that

There is one technical point here. We began with but it could happen that c
sits very close to 0 on the x-axis. We should insist that for then 
implies that so that is defined. Thus, for absolute rigor, choose to be
the smaller of c and  �

Our demonstration in Example 5 depended on rationalizing the numerator, a
trick frequently useful in calculus.

� EXAMPLE 6 Prove that 

PRELIMINARY ANALYSIS Our task is to find such that

Now

The factor can be made as small as we wish, and we know that will
be about 7. We therefore seek an upper bound for To do this, we first
agree to make Then implies that

(Triangle Inequality)

(Figure 9 offers an alternative demonstration of this fact.) If we also require that
then the product will be less than 

FORMAL PROOF Let be given. Choose that is, choose to
be the smaller of 1 and Then implies that

�

� EXAMPLE 7 Prove that 

PROOF We mimic the proof in Example 6. Let be given. Choose
Then implies that

(Triangle Inequality)

�

Although appearing incredibly insightful, we did not pull “out of the air” in
Example 7. We simply did not show you the preliminary analysis this time.

d

6 (1 + 2 ƒ c ƒ ) ƒ x - c ƒ  6

11 + 2 ƒ c ƒ 2 # e
1 + 2 ƒ c ƒ

= e

 … 1 ƒ x - c ƒ + 2 ƒ c ƒ 2 ƒ x - c ƒ

 ƒ x2
- c2

ƒ = ƒ x + c ƒ ƒ x - c ƒ = ƒ x - c + 2c ƒ ƒ x - c ƒ

0 6 ƒ x - c ƒ 6 dd = min51, e>11 + 2 ƒ c ƒ 26. e 7 0

lim
x:c

 x2
= c2.

ƒ 1x2
+ x - 52 - 7 ƒ = ƒ x2

+ x - 12 ƒ = ƒ x + 4 ƒ ƒ x - 3 ƒ 6 8 #
e

8
= e

0 6 ƒ x - 3 ƒ 6 de>8.
dd = min51, e>86;e 7 0

e.ƒ x + 4 ƒ ƒ x - 3 ƒd … e>8,

 6 1 + 7 = 8

 … ƒ x - 3 ƒ + ƒ 7 ƒ

 ƒ x + 4 ƒ = ƒ x - 3 + 7 ƒ

ƒ x - 3 ƒ 6 dd … 1.
ƒ x + 4 ƒ .

ƒ x + 4 ƒƒ x - 3 ƒ

ƒ 1x2
+ x - 52 - 7 ƒ = ƒ x2

+ x - 12 ƒ = ƒ x + 4 ƒ ƒ x - 3 ƒ

0 6 ƒ x - 3 ƒ 6 d Q  ƒ 1x2
+ x - 52 - 7 ƒ 6 e

d

lim
x:3
1x2

+ x - 52 = 7.

e1c.
d1xx 7 0

ƒ x - c ƒ 6 dd … c,
c 7 0,

 =

ƒ x - c ƒ1x + 1c
…

ƒ x - c ƒ1c
6

d1c
= e

 ƒ1x - 1c ƒ = ` A1x - 1c B A1x + 1c B1x + 1c
` = ` x - c1x + 1c

`

0 6 ƒ x - c ƒ 6 dd = e1c.e 7 0

ƒ x - c ƒ 6 e1c.e

 =

ƒ x - c ƒ1x + 1c
…

ƒ x - c ƒ1c

 ƒ1x - 1c ƒ = ` A1x - 1c B A1x + 1c B1x + 1c
` = ` x - c1x + 1c

`

� x  – 3 � < 1 ⇒ 2 < x < 4
⇒ 6 < x + 4 < 8
⇒ � x  + 4 � < 8

Figure 9
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82 Chapter 2 Limits

� EXAMPLE 8 Prove that 

PRELIMINARY ANALYSIS Study Figure 10. We must find such that

Now

The factor is troublesome, especially if x is near 0.We can bound this factor if
we can keep x away from 0. To that end, note that

so

Thus, if we choose we succeed in making Finally, if we also
require then

FORMAL PROOF Let be given. Choose Then
implies

�

One-Sided Limits It does not take much imagination to give the defini-
tions of right- and left-hand limits.

e–d

` 1
x

-

1
c
` = ` c - x

xc
` =

1
ƒ x ƒ

#
1
ƒ c ƒ

#
ƒ x - c ƒ 6

1
ƒ c ƒ >2 #

1
ƒ c ƒ

#
ec2

2
= e

0 6 ƒ x - c ƒ 6 d

d = min5 ƒ c ƒ >2, ec2>26.e 7 0

1
ƒ x ƒ

#
1
ƒ c ƒ

#
ƒ x - c ƒ 6

1
ƒ c ƒ >2 #

1
ƒ c ƒ

#
ec2

2
= e

d … ec2>2,
ƒ x ƒ Ú ƒ c ƒ >2.d … ƒ c ƒ >2,

ƒ x ƒ Ú ƒ c ƒ - ƒ x - c ƒ

ƒ c ƒ = ƒ c - x + x ƒ … ƒ c - x ƒ + ƒ x ƒ

1> ƒ x ƒ

` 1
x

-

1
c
` = ` c - x

xc
` =

1
ƒ x ƒ

#
1
ƒ c ƒ

#
ƒ x - c ƒ

0 6 ƒ x - c ƒ 6 dQ ` 1
x

-

1
c
` 6 e

d

lim
x:c

 
1
x

=

1
c

, c Z 0.

We leave the definition for the left-hand limit to the reader. (See Problem 5.)
The concept presented in this section is probably the most intricate and

elusive topic in a calculus course. It may take you some time to grasp this concept,
but it is worth the effort. Calculus is the study of limits, so a clear understanding of
the concept of limit is a worthy goal.

The discovery of calculus is usually attributed to Isaac Newton (1642–1727)
and Gottfried Wilhelm von Leibniz (1646–1716), who worked independently in the
late 1600s.Although Newton and Leibniz, along with their successors, discovered a
number of properties of calculus, and calculus was found to have many applica-
tions in the physical sciences, it was not until the nineteenth century that a precise
definition of a limit was proposed. Augustin Louis Cauchy (1789–1857), a French
engineer and mathematician, gave this definition: “If the successive values attrib-
uted to the same variable approach indefinitely a fixed value, such that they final-
ly differ from it by as little as one wishes, this latter is called the limit of all the
others.” Even Cauchy, a master at rigor, was somewhat vague in his definition of a
limit. What are “successive values,” and what does it mean to “finally differ”? The
phrase “finally differ from it by as little as one wishes” contains the seed of the e–d

e–d
e–d

f(x)

x

f (x) = 1x 

lim
x → c

c

 1x  1c=

 1c 

�

�

δ δ

Figure 10

Definition Right-Hand Limit

To say means that for each there is a corresponding 

such that

0 6 x - c 6 d Q  ƒ f1x2 - L ƒ 6 e

d 7 0e 7 0lim
x:c+

 f1x2 = L
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Section 2.2 Rigorous Study of Limits 83

definition, because for the first time it indicates that the difference between f (x)
and its limit L can be made smaller than any given number, the number we labeled

The German mathematician Karl Weierstrass (1815–1897) first put together the
definition that is equivalent to our definition of a limit.e–d
e.

Concepts Review
1. The inequality is equivalent to 

_____ _____.
2. The precise meaning of is this: Given any

positive number there is a corresponding positive number 
such that _____ implies _____.

de,
lim
x:a

 f1x2 = L

6 f1x2 6

ƒ f1x2 - L ƒ 6 e 3. To be sure that we would require that
_____.

4. _____.lim
x:a
1mx + b2 =

ƒ x - 1 ƒ 6

ƒ 3x - 3 ƒ 6 e,

Problem Set 2.2
In Problems 1–6, give the appropriate definition of each
statement.

1. 2.

3. 4.

5. 6.

In Problems 7–10, plot the function over the interval
Zoom in on the graph of each function to determine how close x
must be to 2 in order that is within 0.002 of 4. Your answer
should be of the form “If x is within _____ of 2, then is within
0.002 of 4.”

7. 8.

9. 10.

In Problems 11–22, give an proof of each limit fact.

11. 12.

13. 14.

15. 16.

17.

18.

19.

20. 21.

22.

23. Prove that if and then

24. Let F and G be functions such that for
all x near c, except possibly at c. Prove that if then

25. Prove that Hint: Use Problems 22
and 24.

26. Prove that lim
x:0+

 1x = 0.

lim
x:0

 x4 sin211>x2 = 0.

lim
x:c

 F1x2 = 0.
lim
x:c

 G1x2 = 0,
0 … F1x2 … G1x2

L = M.
lim
x:c

 f1x2 = M,lim
x:c

 f1x2 = L

lim
x:0

 x4
= 0

lim
x: -1

1x2
- 2x - 12 = 2lim

x:1
12x2

+ 12 = 3

lim
x:1

 
10x3

- 26x2
+ 22x - 6

1x - 122 = 4

lim
x:1

 
14x2

- 20x + 6
x - 1

= 8

lim
x:4

 
22x - 12x - 3

= 27

lim
x:1

 22x = 22lim
x:5

 
2x2

- 11x + 5
x - 5

= 9

lim
x:0

 a2x2
- x

x
b = -1lim

x:5
 
x2

- 25
x - 5

= 10

lim
x: -21

13x - 12 = -64lim
x:0
12x - 12 = -1

e–d

f1x2 =

8
x

f1x2 = 28x

f1x2 = x2f1x2 = 2x

f(x)
f(x)

[1.5, 2.5].f(x)

lim
t:a+

 g1t2 = Dlim
x:c-

 f1x2 = L

lim
y:e 
f1y2 = Blim

z:d
 h1z2 = P

lim
u:b

 g1u2 = Llim
t:a

 f1t2 = M

e–d 27. By considering left- and right-hand limits, prove that

28. Prove that if for and
then 

29. Suppose that and that exists (though

it may be different from L). Prove that f is bounded on some in-

terval containing a; that is, show that there is an interval (c, d)

with and a constant M such that for all x

in (c, d).

30. Prove that if for all x in some deleted inter-
val about a and if and then

31. Which of the following are equivalent to the definition of
limit?
(a) For some and every 

(b) For every there is a corresponding such that

(c) For every positive integer N, there is a corresponding posi-
tive integer M such that 

(d) For every there is a corresponding such that
and for some x.

32. State in language what it means to say 

33. Suppose we wish to give an proof that

We begin by writing in the form

(a) Determine g(x).
(b) Could we choose for some n? Explain.

(c) If we choose what is the smallest integer m
that we could use?

Answers to Concepts Review 1.
2. 3. 4. ma + be>30 6 ƒ x - a ƒ 6 d; ƒ f1x2 - L ƒ 6 e

L - e; L + e

d = min A14, e>m B ,
d = min11, e>n2C

1x - 32g1x2.
x + 6

x4
- 4x3

+ x2
+ x + 6

+ 1

lim
x:3

 
x + 6

x4
- 4x3

+ x2
+ x + 6

= -1

e–dGC

lim
x:c

 f1x2 Z L.e–d

ƒ f1x2 - L ƒ 6 e0 6 ƒ x - c ƒ 6 d

d 7 0e 7 0,
6 1>N.

0 6 ƒ x - c ƒ 6 1>M Q ƒ f1x2 - L ƒ

0 6 ƒ x - c ƒ 6 eQ ƒ f1x2 - L ƒ 6 d

e 7 0d 7 0,
ƒ f1x2 - L ƒ 6 e.

d 7 0, 0 6 ƒ x - c ƒ 6 dQe 7 0

L … M.
lim
x:a

 g1x2 = M,lim
x:a

 f1x2 = L
f1x2 … g1x2

ƒ f1x2 ƒ … Mc 6 a 6 d

f(a)lim
x:a

 f1x2 = L

lim
x:a

 f1x2g1x2 = 0.lim
x:a

 g1x2 = 0,
ƒ x - a ƒ 6 1ƒ f1x2 ƒ 6 B

lim
x:0

ƒ x ƒ = 0.
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84 Chapter 2 Limits

These important results are remembered best if learned in words. For exam-
ple, Statement 4 translates as The limit of a sum is the sum of the limits.

Of course,Theorem A needs to be proved.We postpone that job till the end of
the section, choosing first to show how this multipart theorem is used.

Applications of the Main Limit Theorem In the next examples, the
circled numbers refer to the numbered statements from Theorem A. Each equality
is justified by the indicated statement.

� EXAMPLE 1 Find lim
x:3

 2x4.

Most readers will agree that proving the existence and values of limits using the
definition of the preceding section is both time consuming and difficult. That

is why the theorems of this section are so welcome. Our first theorem is the big
one. With it, we can handle most limit problems that we will face for quite some
time.

e–d
2.3

Limit Theorems

Theorem A Main Limit Theorem

Let n be a positive integer, k be a constant, and f and g be functions that have
limits at c. Then

1.

2.

3.

4.

5.

6.

7. provided 

8.

9. provided when n is even.lim
x:c

 f1x2 7 0lim
x:c

 2n f1x2 = 2n lim
x:c

 f1x2,
lim
x:c

 [f1x2]n
= C lim

x:c
 f1x2 Dn;

lim
x:c

 g1x2 Z 0;lim
x:c

  
f1x2
g1x2 =

lim
x:c

 f1x2
lim
x:c

 g1x2,

lim
x:c

 [f1x2 # g1x2] = lim
x:c

 f1x2 # lim
x:c

 g1x2;
lim
x:c

 [f1x2 - g1x2] = lim
x:c

 f1x2 - lim
x:c

 g1x2;
lim
x:c

 [f1x2 + g1x2] = lim
x:c

 f1x2 + lim
x:c

 g1x2;
lim
x:c

 kf1x2 = k lim
x:c

 f1x2;
lim
x:c

 x = c;

lim
x:c

 k = k;

lim 2x 4 = 2 lim x 4 = 2 lim x = 2[3] 4 = 162[x 3 x 3 x 3 ]
4

3 8 2

Although stated in terms of two-
sided limits, Theorem A remains true
for both left- and right-hand limits.

One-Sided Limits

x 4 x 4

5 3

lim (3x 2 – 2x) = lim 3x 2 – lim 2x = 3 lim x 2 – 2 lim x
x 4 x 4 x 4

x 4

8 2

= 3  lim x   – 2 lim x = 3(4)2 – 2(4)
x 4( ) = 40

2

�

� EXAMPLE 2 Find 

SOLUTION

lim
x:4
13x2

- 2x2.

�
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Section 2.3 Limit Theorems 85

� EXAMPLE 3 Find 

SOLUTION

lim
x:4

 
2x2

+ 9
x

.

�

� EXAMPLE 4 If and find

SOLUTION

lim
x:3
Cf21x2 # 23 g1x2 D

lim
x:3

 g1x2 = 8,lim
x:3

 f1x2 = 4

�

Recall that a polynomial function f has the form

whereas a rational function f is the quotient of two polynomial functions, that is,

f1x2 =

anxn
+ an - 1x

n - 1
+

Á
+ a1x + a0

bmxm
+ bm - 1x

m - 1
+

Á
+ b1x + b0

f1x2 = anxn
+ an - 1x

n - 1
+

Á
+ a1x + a0

7

lim
x 4

x 2 + 9
x

=
x2 + 9lim

x 4

lim x
x 4

=
(x 2 + 9)lim

x 4

4
=

4
1 lim x 2 + lim 9

x 4 x 4

4

=
4
1 lim x

x 4

8,1

9,2

lim x[ ]2

+ 9 =
4
1 4 2 + 9 =

4
5

2

lim [ f 2(x)
x 3

6

g(x)]
3

= lim f 2(x)
x 3

g(x)
3

3

lim
x 3

=
x 3

8,9

lim f (x)[ ]2
g(x)lim

x 3

8
32= [4] = 32

Theorem B Substitution Theorem

If f is a polynomial function or a rational function, then

provided f (c) is defined. In the case of a rational function, this means that the
value of the denominator at c is not zero.

lim
x:c

 f1x2 = f1c2

The proof of Theorem B follows from repeated applications of Theorem A.
Note that Theorem B allows us to find limits for polynomial and rational functions
by simply substituting c for x throughout, provided the denominator of the ration-
al function is not zero at c.

� EXAMPLE 5 Find lim
x:2

 
7x5

- 10x4
- 13x + 6

3x2
- 6x - 8

.

When we apply Theorem B, the
Substitution Theorem, we say we
evaluate the limit by substitution.
Not all limits can be evaluated by 

substitution; consider 

The Substitution Theorem does not
apply here because the denominator
is 0 when but the limit does
exist.

x = 1,

lim
x:1

 
x2

- 1
x - 1

.

Evaluating a Limit 
“by Substitution”
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86 Chapter 2 Limits

SOLUTION

�

� EXAMPLE 6 Find 

SOLUTION Neither Theorem B nor Statement 7 of Theorem A applies, since the
limit of the denominator is 0. However, since the limit of the numerator is 11, we
see that as x nears 1 we are dividing a number near 11 by a positive number near 0.
The result is a large positive number. In fact, the resulting number can be made as
large as you like by letting x get close enough to 1. We say that the limit does not
exist. (Later in this chapter (see Section 2.4) we will allow ourselves to say that the
limit is ) �

In many cases, Theorem B cannot be applied because substitution of c causes
the denominator to be 0. In cases like this, it sometimes happens that the function
can be simplified, for example by factoring. For example, we can write

We have to be careful with this last step. The fraction is equal to
the one on the left side of the equal sign only if x is not equal to 2. If the left
side is undefined (because the denominator is 0), whereas the right side is equal to

This brings up the question about whether the limits

are equal. The answer is contained in the following theorem.

lim
x:2

  
x2

+ 3x - 10

x2
+ x - 6

 and lim
x:2

  
x + 5
x + 3

12 + 52>12 + 32 = 7>5.

x = 2,
1x + 52>1x + 32

x2
+ 3x - 10

x2
+ x - 6

=

1x - 221x + 52
1x - 221x + 32 =

x + 5
x + 3

+ q .

lim
x:1

 
x3

+ 3x + 7

x2
- 2x + 1

= lim
x:1

 
x3

+ 3x + 7

1x - 122 .

lim
x:2

 
7x5

- 10x4
- 13x + 6

3x2
- 6x - 8

=

71225 - 101224 - 13122 + 6

31222 - 6122 - 8
= -  

11
2

Theorem C

If for all x in an open interval containing the number c, except
possibly at the number c itself, and if exists, then exists and
lim
x:c

 f1x2 = lim
x:c

 g1x2.
lim
x:c

 f1x2lim
x:c

 g1x2
f1x2 = g1x2

� EXAMPLE 7 Find 

SOLUTION Theorem B does not apply because the denominator is 0 when
When we substitute in the numerator we also get 0, so the quotient

takes on the meaningless form at When this happens we should look for
some sort of simplification such as factoring.

The second to last equality is justified by Theorem C since 

for all x except Once we apply Theorem C, we can evaluate the limit by sub-
stitution (i.e., by applying Theorem B). �

x = 2.

(x - 2)(x + 5)

(x - 2)(x + 3)
=

x + 5
x + 3

lim
x:2

 
x2

+ 3x - 10

x2
+ x - 6

= lim
x:2

 

1x - 221x + 52
1x - 221x + 32 = lim

x:2
 
x + 5
x + 3

=

7
5

x = 2.0>0x = 2x = 2.

lim
x:2

 
x2

+ 3x - 10

x2
+ x - 6

.
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Section 2.3 Limit Theorems 87

� EXAMPLE 8 Find 

SOLUTION Again, using Theorem C,

�

Proof of Theorem A (Optional) You should not be too surprised when we
say that the proofs of some parts of Theorem A are quite sophisticated. Because of
this, we prove only the first five parts here, deferring the others to the Appendix
(Section A.2, Theorem A). To get your feet wet, you might try Problems 35 and 36.

Proofs of Statements 1 and 2 These statements result from 

(Example 4 of Section 2.2) using first and then 
�

Proof of Statement 3 If the result is trivial, so we suppose that 

Let be given. By hypothesis, exists; call its value L. By definition of

limit, there is a number such that

Someone is sure to complain that we put rather than at the end of the
inequality above.Well, isn’t a positive number? Yes. Doesn’t the definition of
limit require that for any positive number there be a corresponding Yes.

Now, for so determined (again by a preliminary analysis that we have not
shown here), we assert that implies that

This shows that
�

Proof of Statement 4 Refer to Figure 1. Let and 

If is any given positive number, then is positive. Since there is
a positive number such that

Since there is a positive number such that

Choose that is, choose to be the smaller of and Then
implies that

In this chain, the first inequality is the Triangle Inequality (Section 1.2); the second
results from the choice of We have just shown that

Thus,

�lim
x:c

 [f1x2 + g1x2] = L + M = lim
x:c

 f1x2 + lim
x:c

 g1x2
0 6 ƒ x - c ƒ 6 d Q  ƒ f1x2 + g1x2 - 1L + M2 ƒ 6 e

d.

 6

e

2
+

e

2
= e

 … ƒ f1x2 - L ƒ + ƒ g1x2 - M ƒ

 ƒ f1x2 + g1x2 - 1L + M2 ƒ = ƒ [f1x2 - L] + [g1x2 - M] ƒ

0 6 ƒ x - c ƒ 6 d

d2.d1dd = min5d1, d26;
0 6 ƒ x - c ƒ 6 d2 Q  ƒ g1x2 - M ƒ 6

e

2

d2lim
x:c

 g1x2 = M,

0 6 ƒ x - c ƒ 6 d1 Q  ƒ f1x2 - L ƒ 6

e

2

d1

lim
x:c

 f1x2 = L,e>2e

lim
x:c

 g1x2 = M.lim
x:c

 f1x2 = L

lim
x:c

 kf1x2 = kL = k lim
x:c

 f1x2

ƒ kf1x2 - kL ƒ = ƒ k ƒ ƒ f1x2 - L ƒ 6 ƒ k ƒ

e

ƒ k ƒ

= e

0 6 ƒ x - c ƒ 6 d

d

d?
e> ƒ k ƒ

ee> ƒ k ƒ

0 6 ƒ x - c ƒ 6 d Q  ƒ f1x2 - L ƒ 6

e

ƒ k ƒ

d

lim
x:c

 f1x2e 7 0

k Z 0.k = 0,

m = 1, b = 0.m = 0= mc + b

lim
x:c
1mx + b2

lim
x:1

 
x - 11x - 1

= lim
x:1

 

A1x - 1 B A1x + 1 B1x - 1
= lim

x:1
A1x + 1 B = 21 + 1 = 2

lim
x:1

 
x - 11x - 1

.

How much theorem proving should
be done in a first calculus course?
Mathematics teachers argue long
and hard about this and about the
right balance between

� logic and intuition

� proof and explanation

� theory and application

A great scientist of long ago had
some sage advice.

“He who loves practice without
theory is like the sailor who boards
ship without a rudder and compass
and never knows where he may
cast.”

Leonardo da Vinci

Optional?

f + g

g

f

y

x
�2 �1

c� = min (�1,�2)

L
�
�

/2
/2

M
�
�

/2
/2

L + M
�

�

Figure 1
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88 Chapter 2 Limits

Proof of Statement 5

�

The Squeeze Theorem You have likely heard someone say, “I was caught
between a rock and a hard place.” This is what happens to g in the following
theorem (see Figure 2).

 = lim
x:c

 f1x2 - lim
x:c

 g1x2
 = lim

x:c
 f1x2 + 1-12 lim

x:c
 g1x2

 = lim
x:c

 f1x2 + lim
x:c
1-12g1x2

 lim
x:c

 [f1x2 - g1x2] = lim
x:c

 [f1x2 + 1-12g1x2]

Proof (Optional) Let be given. Choose such that

and such that

Choose so that

Let Then

We conclude that �

� EXAMPLE 9 Assume that we have proved for 

all x near but different from 0. What can we conclude about ?

SOLUTION Let and It follows
that and so, by Theorem D,

�lim
x:0

 
sin x

x
= 1

lim
x:0

 f1x2 = 1 = lim
x:0

 h1x2
h1x2 = 1.f1x2 = 1 - x2>6, g1x2 = 1sin x2>x,

lim
x:0

 
sin x

x

1 - x2>6 … 1sin x2>x … 1

lim
x:c

 g1x2 = L.

0 6 ƒ x - c ƒ 6 d Q  L - e 6 f1x2 … g1x2 … h1x2 6 L + e

d = min5d1, d2, d36.
0 6 ƒ x - c ƒ 6 d3 Q  f1x2 … g1x2 … h1x2

d3

0 6 ƒ x - c ƒ 6 d2 Q  L - e 6 h1x2 6 L + e

d2

0 6 ƒ x - c ƒ 6 d1 Q  L - e 6 f1x2 6 L + e

d1e 7 0

y

x

L

c

f

h
g

Figure 2

Concepts Review

Theorem D Squeeze Theorem

Let f, g, and h be functions satisfying for all x near c,
except possibly at c. If then lim

x:c
 g1x2 = L.lim

x:c
 f1x2 = lim

x:c
 h1x2 = L,

f1x2 … g1x2 … h1x2

1. If then _____.

2. If then _____.

3. If and then 

_____ and _____.lim
x:c 
Cg1x22f1x2 + 5x D =

lim
x:c

 

f21x2
g1x2 =lim

x:c
 g1x2 = -2,lim

x:c
 f1x2 = 4

lim
x:2

 2g21x2 + 12 =lim
x:2

 g1x2 = -2,

lim
x:3
1x2

+ 32f1x2 =lim
x:3

 f1x2 = 4, 4. If and then

_____.lim
x:c

 [f1x2 - L]g1x2 =

lim
x:c

 g1x2 = L,lim
x:c

 f1x2 = L

Problem Set 2.3
In Problems 1–12, use Theorem A to find each of the limits.
Justify each step by appealing to a numbered statement, as in
Examples 1–4.

1. 2. lim
x: -1

13x2
- 12lim

x:1
12x + 12

3.

4.

5. 6. lim
x: -3

  
4x3

+ 1

7 - 2x2lim
x:2

  
2x + 1
5 - 3x

lim
x:22

 [12x2
+ 1217x2

+ 132]
lim
x:0

 [12x + 121x - 32]
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7. 8.

9. 10.

11.

12.

In Problems 13–24, find the indicated limit or state that it does not
exist. In many cases, you will want to do some algebra before
trying to evaluate the limit.

13. 14.

15. 16.

17.

18.

19. 20.

21. 22.

23.

24.

In Problems 25–30, find the limits if and
(see Example 4).

25. 26.

27. 28.

29. 30.

In Problems 31–34, find for each
given function f.

31. 32.

33. 34.

35. Prove Statement 6 of Theorem A. Hint:

 … ƒ g1x2 ƒ ƒ f1x2 - L ƒ + ƒ L ƒ ƒ g1x2 - M ƒ

 = ƒ g1x2[f1x2 - L] + L[g1x2 - M] ƒ

 ƒ f1x2g1x2 - LM ƒ = ƒ f1x2g1x2 - Lg1x2 + Lg1x2 - LM ƒ

f1x2 =

3

x2f1x2 =

1
x

f1x2 = 3x2
+ 2x + 1f1x2 = 3x2

lim
x:2

 [f1x2 - f122]>1x - 22
lim
u:a

 Cf1u2 + 3g1u2 D 3lim
t:a

 C ƒ f1t2 ƒ + ƒ 3g1t2 ƒ D
lim
x:a

 Cf1x2 - 3 D 4lim
x:a

 23 g1x2 Cf1x2 + 3 D
lim
x:a

  
2f1x2 - 3g1x2
f1x2 + g1x2lim

x:a
 2f21x2 + g21x2

lim
x:a

 g1x2 = -1
lim
x:a

 f1x2 = 3

lim
w: -2

  
1w + 221w2

- w - 62
w2

+ 4w + 4

lim
x:p

  
2x2

- 6xp + 4p2

x2
- p2

lim
x:1

  
x2

+ ux - x - u

x2
+ 2x - 3

lim
u: -2

  
u2

- ux + 2u - 2x

u2
- u - 6

lim
x: -3

  
x2

- 14x - 51

x2
- 4x - 21

lim
x:1

  
x2

+ x - 2

x2
- 1

lim
x:2

  
x2

+ 7x + 10
x + 2

lim
x: -1

  
x3

- 6x2
+ 11x - 6

x3
+ 4x2

- 19x + 14

lim
x: -1

  
x2

+ x

x2
+ 1

lim
x: -1

  
x2

- 2x - 3
x + 1

lim
x:2

  
x2

- 5x + 6
x - 2

lim
x:2

  
x2

- 4

x2
+ 4

lim
w:5
12w4

- 9w3
+ 192-1>2

lim
y:2

 a 4y3
+ 8y

y + 4
b1>3

lim
w: -2

 2-3w3
+ 7w2lim

t: -2
12t3

+ 15213

lim
x: -3

 25x2
+ 2xlim

x:3
 23x - 5 Now show that if then there is a number such

that

36. Prove Statement 7 of Theorem A by first giving an 
proof that and then applying State-
ment 6.

37. Prove that 

38. Prove that 

39. Prove that 

40. Find examples to show that if

(a) exists, this does not imply that either

or exists;

(b) exists, this does not imply that either

or exists.

In Problems 41–48, find each of the right-hand and left-hand limits
or state that they do not exist.

41. 42.

43. 44.

45. 46.

47. 48.

49. Suppose that for all x and 
Prove that does not exist.

50. Let R be the rectangle joining the midpoints of the sides
of the quadrilateral Q having vertices and 
Calculate

51. Let and consider the points M, N, O, and P with
coordinates (1, 0), (0, 1), (0, 0), and (x, y) on the graph of 
respectively. Calculate

(a) (b)

Answers to Concepts Review: 1. 48 2. 4
3. 4. 0-4 + 5c-8;

lim
x:0+

 
area of ¢NOP

area of ¢MOP
lim

x:0+

 

perimeter of ¢NOP

perimeter of ¢MOP

y = 1x,
y = 1x

lim
x:0+

 

perimeter of R

perimeter of Q

10, ;12.1;x, 02

lim
x:a

 f1x2
lim
x:a

 g1x2 = 0.f1x2g1x2 = 1

lim
x:3+ 

Œx2
+ 2x œlim

x:0-

 
x

ƒ x ƒ

lim
x:3-

1x - Œx œ2lim
x:2+

 

1x2
+ 12Œx œ

13x - 122

lim
x:1-

 
21 + x

4 + 4x
lim

x:3+

 
x - 32x2

- 9

lim
x: -p+

 
2p3

+ x3

x
lim

x: -3+

 
23 + x

x

lim
x:c

 g1x2lim
x:c

 f1x2
lim
x:c

 Cf1x2 # g1x2 D
lim
x:c

 g1x2lim
x:c

 f1x2
lim
x:c

 Cf1x2 + g1x2 D

lim
x:c

ƒ x ƒ = ƒ c ƒ .

lim
x:c

 f1x2 = 0 3  lim
x:c

ƒ f1x2 ƒ = 0.

lim
x:c

 f1x2 = L 3  lim
x:c

 [ f1x2 - L] = 0.

lim
x:c

 [1>g1x2] = 1> C lim
x:c

 g1x2 D
e–d

0 6 ƒ x - c ƒ 6 d1 Q  ƒ g1x2 ƒ 6 ƒ M ƒ + 1

d1lim
x:c

 g1x2 = M,

2.4
Limits at Infinity;

Infinite Limits

The deepest problems and most profound paradoxes of mathematics are often
intertwined with the use of the concept of the infinite. Yet mathematical progress
can in part be measured in terms of our understanding the concept of infinity. We
have already used the symbols and in our notation for certain intervals.
Thus, is our way of denoting the set of all real numbers greater than 3. Note13, q2 - qq
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that we have never referred to as a number. For example, we have never added
it to a number or divided it by a number. We will use the symbols and in a
new way in this section, but they will still not represent numbers.

Limits at Infinity Consider the function whose graph is
shown in Figure 1. We ask this question: What happens to g(x) as x gets larger and
larger? In symbols, we ask for the value of 

When we write we are not implying that somewhere far, far to the
right on the x-axis there is a number—bigger than all other numbers—that x is
approaching. Rather, we use as a shorthand way of saying that x gets larger
and larger without bound.

In the table in Figure 2, we have listed values of for several
values of x. It appears that g(x) gets smaller and smaller as x gets larger and larger.
We write

Experimenting with negative numbers far to the left of zero on the real number
line would lead us to write

Rigorous Definitions of Limits as In analogy with our 
definition for ordinary limits, we make the following definition.

e–dx : ; q

lim
x: -q

 
x

1 + x2 = 0

lim
x: q

 
x

1 + x2 = 0

g1x2 = x>11 + x22
x : q

x : q ,

lim
x: q

 g1x2.
g1x2 = x>11 + x22

- qq

q

90 Chapter 2 Limits

–2 –1 1 2 3

1

y

x

g(x) =
x

1 + x2

Figure 1

x

10

100

1000

10000

x
1 + x2

0.0001

0.001

0.010

0.099

 � ?
↓ ↓

Figure 2

y

x

�

M

y = f (x)

L

Figure 3

Definition Limit as 

Let f be defined on for some number c. We say that if for
each there is a corresponding number M such that

x 7 M Q  ƒ f1x2 - L ƒ 6 e

e 7 0
lim

x: q

 f1x2 = L[c, q2
x : q

Definition Limit as 

Let f be defined on for some number c. We say that if
for each there is a corresponding number M such that

x 6 M Q  ƒ f1x2 - L ƒ 6 e

e 7 0
lim

x: -q

 f1x2 = L1- q , c]

x : - q

You will note that M can, and usually does, depend on In general, the small-
er is, the larger M will have to be. The graph in Figure 3 may help you to under-
stand what we are saying.
e

e.

� EXAMPLE 1 Show that if k is a positive integer, then

SOLUTION Let be given. After a preliminary analysis (as in Section 2.2),
we chose Then implies that

The proof of the second statement is similar. �

Having given the definitions of these new kinds of limits, we must face the
question of whether the Main Limit Theorem (Theorem 2.3A) holds for them.The
answer is yes, and the proof is similar to the original one. Note how we use this
theorem in the following examples.

` 1
xk - 0 ` =

1

xk 6

1

Mk = e

x 7 MM = 2 
k

1>e.
e 7 0

lim
x: q

 
1

xk = 0 and lim
x: -q

 
1

xk = 0
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� EXAMPLE 2 Prove that 

SOLUTION Here we use a standard trick: divide the numerator and denomi-
nator by the highest power of x that appears in the denominator, that is,

�

� EXAMPLE 3 Find 

SOLUTION The graph of is shown in Figure 4. To find the
limit, divide both the numerator and denominator by 

�

Limits of Sequences The domain for some functions is the set of natural
numbers In this situation, we usually write rather than a(n) to de-
note the nth term of the sequence, or to denote the whole sequence. For ex-
ample, we might define the sequence by Let’s consider what
happens as n gets large. A little calculation shows that

It looks as if these values are approaching 1, so it seems reasonable to say that for
this sequence The next definition gives meaning to this idea of the

limit of a sequence.

lim
n: q

 an = 1.

a1 =

1
2

, a2 =

2
3

, a3 =

3
4

, a4 =

4
5

, Á , a100 =

100
101

, Á

an = n>1n + 12.{an}
an51, 2, 3, Á 6.

lim
x: -q

 
2x3

1 + x3 = lim
x: -q

 
2

1>x3
+ 1

=

2
0 + 1

= 2

x3.
f1x2 = 2x3>11 + x32

lim
x: -q

 
2x3

1 + x3.

 =

lim
x: q

 
1
x

lim
x: q

 
1

x2 + lim
x: q

 1
=

0
0 + 1

= 0

 lim
x: q

 
x

1 + x2 = lim
x: q

 

x

x2

1 + x2

x2

= lim
x: q

 

1
x

1

x2 + 1

x2.

lim
x: q

 
x

1 + x2 = 0.
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4

5

0
–2 –1–3

–1

21 3

4

3

2

1

y

x

f (x) = 2x3

1 + x3

Figure 4

Definition Limit of a Sequence

Let be defined for all natural numbers greater than or equal to some number

c. We say that if for each there is a corresponding natural

number M such that

n 7 M Q  ƒ an - L ƒ 6 e

e 7 0lim
n: q

 an = L

an

an

n

1

0.8

0.6

0.4

0.2

10 15 205

Figure 5

Notice that this definition is nearly identical to the definition of The

only difference is that now we are requiring that the argument to the function be a
natural number. As we might expect, the Main Limit Theorem (Theorem 2.3A)
holds for sequences.

� EXAMPLE 4 Find 

SOLUTION Figure 5 shows a graph of . Applying Theorem 2.3A
gives

�lim
n: q

 An + 1
n + 2

= a lim
n: q

 
n + 1
n + 2

b1>2
= a lim

n: q

 

1 + 1>n
1 + 2>n b

1>2
= a1 + 0

1 + 0
b1>2

= 1

An + 1
n + 2

an =

lim
n: q

 An + 1
n + 2

.

lim
x: q

 f1x2.
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We will need the concept of the limit of a sequence in Section 4.7 and in
Chapter 5. Sequences are covered more thoroughly in Chapter 9.

Infinite Limits Consider the function which is graphed in
Figure 6. As x gets close to 2 from the left, the function seems to decrease without
bound. Similarly, as x approaches 2 from the right, the function seems to increase
without bound. It therefore makes no sense to talk about but we
think it is reasonable to write

Here is the precise definition.

lim
x:2-

 
1

x - 2
= - q and lim

x:2+

 
1

x - 2
= q

lim
x:2

 1>1x - 22,

f1x2 = 1>1x - 22,

92 Chapter 2 Limits

Definition Infinite Limit

We say that if for every positive number M, there exists a cor-

responding such that

0 6 x - c 6 d Q  f1x2 7 M

d 7 0

lim
x:c+

  f1x2 = q

1 2 3 4

–2

–1

1

2

y

x

f (x) = 1
x – 2

Figure 6

In other words, f (x) can be made as large as we wish (greater than any M that we
choose) by taking x to be sufficiently close to but to the right of c. There are corre-
sponding definitions of

(See Problems 51 and 52.)

� EXAMPLE 5 Find and 

SOLUTION The graph of is shown in Figure 7. As 
the denominator remains positive but goes to zero, while the numerator is 1 for all
x. Thus, the ratio can be made arbitrarily large by restricting x to be
near, but to the right of, 1. Similarly, as the denominator is positive and can
be made arbitrarily close to 0. Thus can be made arbitrarily large by
restricting x to be near, but to the left of, 1. We therefore conclude that

Since both limits are we could also write

�

� EXAMPLE 6 Find 

SOLUTION

As we see that and thus, the numer-
ator is approaching 3, but the denominator is negative and approaching 0. We
conclude that

�lim
x:2+

 
x + 1

1x - 321x - 22 = - q

x - 2 : 0+;x + 1 : 3, x - 3 : -1,x : 2+

lim
x:2+

 
x + 1

x2
- 5x + 6

= lim
x:2+

 
x + 1

1x - 321x - 22

lim
x:2+

 
x + 1

x2
- 5x + 6

.

lim
x:1

 
1

1x - 122 = q

q ,

lim
x:1+

 
1

1x - 122 = q and lim
x:1-

 
1

1x - 122 = q

1>1x - 122x : 1-,
1>1x - 122

x : 1+,f1x2 = 1>1x - 122

lim
x:1+

 
1

1x - 122.lim
x:1-

 
1

1x - 122

lim
x: -q  

f1x2 = - q lim
x: - q  

f1x2 = q lim
x: q  

f1x2 = - q lim
x: q

 f1x2 = q

 lim
x:c-

   f1x2 = - q lim
x:c-

  f1x2 = q lim
x:c+

  f1x2 = - q

–1 1 2 3

1

2

3

y

x

f (x) = 1
(x – 1)2

Figure 7
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Relation to Asymptotes Asymptotes were discussed briefly in Section 1.5,
but now we can say more about them. The line is a vertical asymptote of the
graph of if any of the following four statements is true.

1. 2.

3. 4.

Thus, in Figure 6, the line is a vertical asymptote. Likewise, the lines 
and although not shown graphically, are vertical asymptotes in Example 6.

In a similar vein, the line is a horizontal asymptote of the graph of
if either

The line is a horizontal asymptote in both Figures 6 and 7.

� EXAMPLE 7 Find the vertical and horizontal asymptotes of the graph of
if

SOLUTION We often have a vertical asymptote at a point where the denomi-
nator is zero, and in this case we do because

On the other hand,

and so is a horizontal asymptote. The graph of is shown in
Figure 8. �

y = 2x>1x - 12y = 2

lim
x: q

 
2x

x - 1
= lim

x: q

 
2

1 - 1>x = 2 and lim
x: -q

 
2x

x - 1
= 2

lim
x:1+

 
2x

x - 1
= q and lim

x:1-

 
2x

x - 1
= - q

f1x2 =

2x

x - 1

y = f1x2

y = 0

lim
x: q

 f1x2 = b or lim
x: -q

 f1x2 = b

y = f1x2 y = b
x = 3,

x = 2x = 2

lim
x:c-

 f1x2 = - qlim
x:c-

 f1x2 = q

lim
x:c+

 f1x2 = - qlim
x:c+

 f1x2 = q

y = f1x2 x = c
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In previous sections we required
that a limit be equal to a real num-
ber. For example, we said that 

does not exist because 

does not approach a real 
number as x approaches 2 from 
the right. Many mathematicians
maintain that this limit does not
exist even though we write 

to say that the 

limit is is to describe the particu-
lar way in which the limit does not
exist. Here we will use the phrase
“exists in the infinite sense” to
describe such limits.

q

lim
x:2+

 
1

x - 2
= q ;

1>1x - 22
lim

x:2+

 
1

x - 2

Do Infinite Limits Exist?

–2 –1 2 3 4

1

3

4

x

y

f (x) =
2x

x – 1

Figure 8

Concepts Review
1. To say that means that _____; to say that

means that _____. Give your answers in informal

language.

2. To say that means that _____; to say that

means that _____. Give your answers in infor-

mal language.

lim
x:c-

 f1x2 = - q

lim
x:c+

 f1x2 = q

lim
x: q

 f1x2 = L
x : q 3. If then the line _____ is a _____ asymp-

tote of the graph of 

4. If then the line _____ is a _____ asymp-

tote of the graph of y = f1x2.
lim

x:6+

 f1x2 = q ,

y = f1x2.
lim

x: q

 f1x2 = 6,

Problem Set 2.4
In Problems 1–42, find the limits.

1. 2.

3. 4.

5. 6.

7. 8. lim
u: -q

  
pu5

u5
- 5u4

lim
x: q

  
x3

2x3
- 100x2

lim
x: q

  
x2

x2
- 8x + 15

lim
x: q

 
x2

1x - 5213 - x2

lim
t: -q

  
t

t - 5
lim

t: -q

  
t2

7 - t2

lim
x: q

  
x2

5 - x3lim
x: q

  
x

x - 5

9. 10.

11. 12.

13. 14.

15. 16. lim
n: q

  
n2

n2
+ 1

lim
n: q

 
n

2n + 1

lim
x: q

 C x2
+ x + 3

1x - 121x + 12lim
x: q

 C3  1 + 8x2

x2
+ 4

lim
x: q

 C3  px3
+ 3x22x3
+ 7x

lim
x: q

 
32x3

+ 3x22x3

lim
u: q

  
sin2 u

u2
- 5

lim
x: q

  
3x3

- x2

px3
- 5x2
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17. 18.

19. Hint: Divide numerator and denominator

by x. Note that, for 

20.

21. Hint: Multiply and

divide by 

22.

23. Hint: Divide numerator and denomi-

nator by 

24. where 

and n is a natural number.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Problems 43–48, find the horizontal and vertical asymp-
totes for the graphs of the indicated functions. Then sketch their
graphs.

43. 44.

45. 46.

47. 48.

49. The line is called an oblique asymptote to

the graph of if either or

Find the oblique asymptote for

f1x2 =

2x4
+ 3x3

- 2x - 4

x3
- 1

lim
x: -q

 [f1x2 - 1ax + b2] = 0.

lim
x: q

 [f1x2 - 1ax + b2] = 0y = f1x2
y = ax + b

g1x2 =

2x2x2
+ 5

g1x2 =

14

2x2
+ 7

F1x2 =

3

9 - x2F1x2 =

2x

x - 3

f1x2 =

3

1x + 122f1x2 =

3
x + 1

GC

lim
x: q

 
sin x

x
lim

x:0-

 
1 + cos x

sin x

lim
x:0+

 
ƒ x ƒ

x
lim

x:0-

 
ƒ x ƒ

x

lim
x:0-

 

Œx œ
x

lim
x:0+

 

Œx œ
x

lim
x:2+

 
x2

+ 2x - 8

x2
- 4

lim
x:3-

 
x2

- x - 6
x - 3

lim
u:1p>22+

 
pu

cos u
lim

x:3-

 
x3

x - 3

lim
u:p+

 
u2

sin u
lim

x:5-

 
x2

1x - 5213 - x2

lim
x:23 5

+

 
x2

5 - x3lim
t:3-

 
t2

9 - t2

lim
t: -3+

 
t2

- 9
t + 3

lim
x:4+

 
x

x - 4

lim
n: q

 
n22n3

+ 2n + 1
lim

n: q

 
n2n2

+ 1

b0 Z 0,

a0 Z 0,lim
x: q

 

a0x
n

+ a1x
n - 1

+
Á

+ an - 1x + an

b0x
n

+ b1x
n - 1

+
Á

+ bn - 1x + bn

,

y2.

lim
y: -q

 

9y3
+ 1

y2
- 2y + 2

.

lim
x: q

A2x2
+ 2x - x B

22x2
- 5.22x2

+ 3 +

lim
x: q

A22x2
+ 3 - 22x2

- 5 B .
lim

x: q

 
22x + 1

x + 4

x 7 0, 2x2
+ 3>x = 21x2

+ 32>x2.

lim
x: q

 
2x + 12x2

+ 3
.

lim
n: q

  
n

n2
+ 1

lim
n: q

  
n2

n + 1

Hint: Begin by dividing the denominator into the numerator.

50. Find the oblique asymptote for

51. Using the symbols M and give precise definitions of
each expression.
(a) (b)

52. Using the symbols M and N, give precise definitions of
each expression.
(a) (b)

53. Give a rigorous proof that if and
then

54. We have given meaning to for 

Moreover, in each case, this limit may be L
(finite), or may fail to exist in any sense. Make a table
illustrating each of the 20 possible cases.

55. Find each of the following limits or indicate that it does
not exist even in the infinite sense.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

56. Einstein’s Special Theory of Relativity says that the mass
of an object is related to its velocity by

Here is the rest mass and c is the velocity of light. What is

Use a computer or a graphing calculator to find the limits in
Problems 57–64. Begin by plotting the function in an appropriate
window.

57. 58.

59.

60. 61.

62. 63.

64.

Find the one-sided limits in Problems 65–71. Begin by plot-
ting the function in an appropriate window. Your computer may
indicate that some of these limits do not exist, but, if so, you should
be able to interpret the answer as either or .

65. 66. lim
x:3-

 
sin ƒ x - 3 ƒ

tan1x - 32lim
x:3-

 
sin ƒ x - 3 ƒ

x - 3

- qq

CAS

lim
x: q

 a1 +

1
x
b sin x

lim
x: q

 a1 +

1
x
bx2

lim
x: q

 a1 +

1
x
bx

lim
x: q

 a1 +

1
x
b10

lim
x: q

 
2x + 123x2

+ 1

lim
x: -q

A22x2
+ 3x - 22x2

- 5 B
lim

x: -q

 C2x2
- 3x

5x2
+ 1

lim
x: q

 
3x2

+ x + 1

2x2
- 1

GC

lim
v:c-

 m1v2?
m0

m1v2 =

m021 - v2>c2

vm(v)

lim
x: q

 csinax +

1
x
b - sin x dlim

x: q

 sinax +

1
x
b

lim
x: q

 sinap
6

+

1
x
blim

x: q

 x-1>2 sin x

lim
x: q

 x3>2 sin 
1
x

lim
x: q

 x sin 
1
x

lim
x: q

 sin 
1
x

lim
x: q

 sin x

- q , q ,
a-, a+, - q , q .

A = a,lim
x:A

 f1x2
lim

x: q

 [f1x2 + g1x2] = A + B

lim
x: q

 g1x2 = B,
lim

x: q

 f1x2 = A

lim
x: -q

 f1x2 = qlim
x: q

 f1x2 = q

lim
x:c-

 f1x2 = qlim
x:c+

 f1x2 = - q

d,

f1x2 =

3x3
+ 4x2

- x + 1

x2
+ 1
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67. 68.

69. 70.

71. lim
x:0+

A1 + 1x Bx
lim

x:0+

A1 + 1x B1>xlim
x:0+

A1 + 1x B1>1x

lim
x:p

2
+

 
cos x

x - p>2lim
x:3-

 

cos1x - 32
x - 3
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Answers to Concepts Review: 1. x increases without
bound; gets close to L as x increases without bound
2. increases without bound as x approaches c from
the right; decreases without bound as x approaches c
from the left 3. horizontal 4. verticalx = 6;y = 6;

f(x)
f(x)

f(x)

Theorem B of Section 2.3 says that limits of polynomial functions can always be
found by substitution, and limits of rational functions can be found by substitution
as long as the denominator is not zero at the limit point. This substitution rule ap-
plies to the trigonometric functions as well. This result is stated next.

2.5
Limits Involving

Trigonometric Functions

Proof of Statement 1 We first establish the special case in which Sup-
pose that and let points A, B, and P be defined as in Figure 1. Then

But and arc so

If then We can thus apply the Squeeze Theorem (Theorem
2.3D) and conclude that To complete the proof, we will also need the

result that This follows by applying a trigonometric identity and

Theorem 2.3A along with the fact that for near 0,

Now, to show that we first let so that as

Then

�

Proof of Statement 2 We use another identity along with Theorem 2.3A. If
then for t near c we have Thus,

On the other hand, if then for t near c we have In
this case,

The case was handled in the proof of Statement 1. �c = 0

 = -2cos2 c = - ƒ cos c ƒ = cos c

 lim
t:c

 cos t = lim
t:c
A -21 - sin2 t B = -21 - A lim

t:c
 sin t B2 = -21 - sin2 c

cos t = -21 - sin2 t.cos c 6 0,

lim
t:c

 cos t = lim
t:c

 21 - sin2 t = 21 - A lim
t:c

 sin t B2 = 21 - sin2 c = cos c

cos t = 21 - sin2 t.cos c 7 0,

 = 1sin c2112 + 1cos c2102 = sin c

 = 1sin c2A lim
h:0

 cos h B + 1cos c2A lim
h:0

 sin h B
 = lim

h:0
1sin c cos h + cos c sin h2 1Addition Identity2

 lim
t:c

 sin t = lim
h:0

 sin1c + h2
t : c.

h : 0h = t - clim
t:c

 sin t = sin c,

lim
t:0

 cos t = lim
t:0

 21 - sin2 t = 21 - A lim
t:0

 sin t B2 = 21 - 02
= 1

cos t = 21 - sin2 t:t

lim
t:0

 cos t = 1.

lim
t:0

 sin t = 0.
t 6 sin t 6 0.t 6 0,

0 6 sin t 6 t

(AP) = t,ƒ BP ƒ = sin t

0 6 ƒ BP ƒ 6 ƒ AP ƒ 6 arc1AP2
t 7 0

c = 0.

O

1

B A(1, 0)

t

P(cos t, sin t)

(0, 1)

y

x

Figure 1

Theorem A Limits of Trigonometric Functions

For every real number c in the function’s domain,

1. 2.

3. 4.

5. 6. lim
t:c

 csc t = csc clim
t:c

 sec t = sec c

lim
t:c

 cot t = cot clim
t:c

 tan t = tan c

lim
t:c

 cos t = cos clim
t:c

 sin t = sin c
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O B A(1, 0)

t

P(cos t, sin t)

(0, 1)

y

x

C

t

Figure 2

Theorem B Special Trigonometric Limits

1. 2. lim
t:0

  
1 - cos t

t
= 0lim

t:0
  
sin t

t
= 1

The proofs for the other statements are left as exercises. (See Problems 21 and
22.) Theorem A can be used along with Theorem 2.3A to evaluate other limits.

� EXAMPLE 1 Find 

SOLUTION

�

Two important limits that we cannot evaluate by substitution are

We met the first of these limits in Section 2.1, where we conjectured that the limit
was 1. Now we prove that 1 is indeed the limit.

lim
t:0

  
sin t

t
 and lim

t:0
  
1 - cos t

t

lim
t:0

  
t2 cos t
t + 1

= a lim
t:0

   
t2

t + 1
b A lim

t:0
 cos t B = 0 # 1 = 0

lim
t:0

  
t2 cos t
t + 1

.

Proof of Statement 1 In the proof of Theorem A of this section, we showed
that

For (remember, it does not matter what happens at 
), draw the vertical line segment BP and the circular arc BC, as shown in

Figure 2. (If then think of the shaded region as being reflected across the 
x-axis.) It is evident from Figure 2 that

The area of a triangle is one-half its base times the height, and the area of a circu-
lar sector with central angle t and radius r is (see Problem 42 of Section 1.8).
Applying these results to the three regions gives

which, after multiplying by 2 and dividing by the positive number yields

Since the expression is positive for we have
Therefore,

Since we are after the limit of the middle function and we know the limit of each
“outside” function, this double inequality begs for the Squeeze Theorem.When we
apply it, we get

�

Proof of Statement 2 The second limit follows easily from the first. Just multi-
ply the numerator and denominator by this gives11 + cos t2;

lim
t:0

  
sin t

t
= 1

cos t …

sin t
t

…

1
cos t

ƒ sin t ƒ > ƒ t ƒ = 1sin t2>t. -p>2 … t … p>2, t Z 0,1sin t2>t
cos t …

ƒ sin t ƒ

ƒ t ƒ

…

1
cos t

ƒ t ƒ cos t,

1
2

 1cos t22 ƒ t ƒ …

1
2

 cos t ƒ sin t ƒ …

1
2

 12
ƒ t ƒ

1
2 r2

ƒ t ƒ

area 1sector OBC2 …  area 1¢OBP2 …  area 1sector OAP2

t 6 0,
t = 0

-p>2 … t … p>2, t Z 0

lim
t:0

 cos t = 1 and lim
t:0

 sin t = 0
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�

We will make explicit use of these two limit statements in Chapter 3. Right
now, we can use them to evaluate other limits.

� EXAMPLE 2 Find each limit.

(a) (b) (c)

SOLUTION

(a)

Here the argument to the sine function is 3x, not simply x as required by Theorem
B. Let Then if and only if so

Thus,

(b)

(c)

�

� EXAMPLE 3 Sketch the graphs of and 
Use these graphs along with the Squeeze Theorem (Theorem D of

Section 2.3) to determine 

SOLUTION Note that cos is always between and 1. Thus,
will always be between and x if x is positive and between x and if 
x is negative. In other words, the graph of is between the 
graphs of and as shown in Figure 3. We know that 

(see Problem 27 of Section 2.2) and since the graph of

is “squeezed” between the graphs of and
both of which go to 0 as we can apply the Squeeze Theorem to

conclude that �lim
x:0

 f1x2 = 0.
x : 0,l1x2 = - ƒ x ƒ ,

u1x2 = ƒ x ƒy = f1x2 = x cos11>x2
lim
x:0

ƒ x ƒ = lim
x:0
1- ƒ x ƒ 2 = 0

y = - ƒ x ƒ ,y = ƒ x ƒ

y = x cos11>x2 -x-x
x cos11>x2-1(1>x)

lim
x:0

 f1x2.
x cos11>x2.

f1x2 =u1x2 = ƒ x ƒ , l1x2 = - ƒ x ƒ ,

 =

4
1 # 1

= 4 =

4lim
x:0

  
sin 4x

4x

a lim
x:0

  
sin x

x
b a lim

x:0
  

1
cos x

b

 lim
x:0

  
sin 4x

tan x
= lim

x:0
  

4 sin 4x

4x

sin x
x cos x

lim
t:0

  
1 - cos t

sin t
= lim

t:0
  

1 - cos t
t

sin t
t

=

lim
t:0

  
1 - cos t

t

lim
t:0

  
sin t

t

=

0
1

= 0

lim
x:0

  
sin 3x

x
= 3lim

x:0
  
sin 3x

3x
= 3

lim
x:0

  
sin 3x

3x
= lim

y:0
  
sin y

y
= 1

x : 0,y : 0y = 3x.

lim
x:0

  
sin 3x

x
= lim

x:0
 3 

sin 3x

3x
= 3lim

x:0
  
sin 3x

3x

lim
x:0 

 
sin 4x

tan x
lim
t:0

  
1 - cos t

sin t
lim
x:0

  
sin 3x

x

 = a lim
t:0

  
sin t

t
b  

lim
t:0

 sin t

lim
t:0
11 + cos t2 = 1 #

0
2

= 0

 = lim
t:0

   
sin2 t

t11 + cos t2

 lim
t:0

  
1 - cos t

t
= lim

t:0
  
1 - cos t

t
#
1 + cos t
1 + cos t

= lim
t:0

   
1 - cos2 t

t11 + cos t2

y

x

1

0.5

–0.5

–1

–1 1–0.5 0.5

y = � x �

y = – � x �

y = x cos(1/x)

Figure 3
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Concepts Review
1. _____.

2. _____.lim
t:p>4 tan t =

lim
t:0

 sin t =

3. The limit cannot be evaluated by substitution

because _____.

4. _____.lim
t:0

  
sin t

t
=

lim
t:0

  
sin t

t

P(cos t, sin t)

BO A(1, 0)

t

Q

y

x

P(cos t, sin t)

O B A (1, 0)

t

y

x

Figure 4 Figure 5

Problem Set 2.5
In Problems 1–14, evaluate each limit.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Problems 15–19, plot the functions Then
use these graphs along with the Squeeze Theorem to determine

15.

16.

17.

18.

19.

20. Prove that using an argument similar to
the one used in the proof that lim

t:c
 sin t = sin c.

lim
t:c

 cos t = cos c

u1x2 = 2, l1x2 = 2 - x2, f1x2 = 1 +

sin x
x

u1x2 = 1, l1x2 = 1 - x2, f1x2 = cos2 x

u1x2 = ƒ x ƒ , l1x2 = - ƒ x ƒ , f1x2 = 11 - cos2 x2>x
u1x2 = ƒ x ƒ , l1x2 = - ƒ x ƒ , f1x2 = x sin11>x22
u1x2 = ƒ x ƒ , l1x2 = - ƒ x ƒ , f1x2 = x sin11>x2

lim
x:0

 f1x2.
u(x), l(x), and f(x).

lim
u:0

  
sin2 u

u2lim
t:0

  
sin 3t + 4t

t sec t

lim
t:0

  
tan 2t

sin 2t - 1
lim
t:0

  
tan2 3t

2t

lim
t:0

  
sin2 3t

2t
lim
u:0

  
cot (pu) sin u

2 sec u

lim
u:0

  
tan 5u
sin 2u

lim
u:0

  
sin 3u
tan u

lim
u:0

  
sin 3u

2u
lim
x:0

  
sin x
2x

lim
x:0

  
3x tan x

sin x
lim
t:0

  
cos2 t

1 + sin t

lim
u:p>2 u cos ulim

x:0
  

cos x
x + 1

21. Prove statements 3 and 4 of Theorem A using Theorem
2.3A.

22. Prove statements 5 and 6 of Theorem A using Theorem
2.3A.

23. From 
in Figure 4, show that

and thus obtain another proof that lim
t:0 +

1sin t2>t = 1.

cos t …

t

sin t
… 2 - cos t

+ area 1ABPQ2
area 1OBP2area 1OBP2 … area 1sector OAP2 …

24. In Figure 5, let D be the area of triangle ABP and E the
area of the shaded region.

(a) Guess the value of by looking at the figure.

(b) Find a formula for in terms of t.

(c) Use a calculator to get an accurate estimate of 

Answers to Concepts Review: 1. 0 2. 1 3. the denomi-
nator is zero when 4. 1t = 0

lim
t:0+

 
D

E
.C

D>E
lim

t:0+

 
D

E

In Section 1.7, we presented an informal discussion of exponential and logarithmic
functions. There were defined for rational values of r and we suggested
that if we take an accurate (rational) approximation to an irrational number x, and
raise a to that power we would obtain a close approximation of We would now
like to make this idea more precise.

ax.

ar (a 7 0)
2.6

Natural Exponential,
Natural Log, and

Hyperbolic Functions

Definition

If is a sequence of rational numbers that converges to the irrational number
x, then is defined to be

ax
= lim

n: q

  arn

ax
rn
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This defintion, which is illustrated in Figure 1, raises two important questions
that we will address informally.

First, for a given irrational number x, is there such a sequence? The answer to
this is yes. We could take as the nth term of the sequence of rational numbers the
decimal expansion through the first n places of the number x. (Recall from Section
1.1 that an irrational number has a nonrepeating decimal expansion.) For example,

is the limit of the sequence

This provides an increasing sequence of rational numbers, that is,
that converges to We could as well have rounded

up in the decimal expansion of producing a decreasing sequence of rational
numbers that converges to

Second, what if two sequences of rational numbers, say and both con-
verge to x? Do we know that The answer is again yes, but this 

is more difficult to prove, and we omit a proof. Intuitively, the result is plausible be-
cause if and both converge to x, then for n sufficiently large, can 
be made arbitrarily small, and so will be small. This last step requires
more justification than we can give it here. Books on advanced calculus or real
analysis will contain a proof.

Another important question is this: does the exponential function described
here have an inverse? In Chapter 1, we assumed that it did and defined the loga-
rithmic function as the inverse of (as long as and ). Graphs of
exponential functions (Figure 2) suggest that every horizontal line of the form

where will intersect the graph of exactly once (as long as
), making the exponential function invertible. While we cannot give a rigor-

ous proof of this, we assert that it is true, and proceed to discuss properties of ex-
ponential and logarithmic functions.

The next theorem restates the results of Theorem A and B of Section 1.7.

a Z 1
y = axy0 7 0,y = y0,

a Z 1a 7 0axloga x

ƒ arn
- asn

ƒ

ƒ rn - sn ƒsnrn

lim
n: q

 arn
= lim

n: q

 asn?
sn,rn

22.
22,

22.6 rn 6 rn+1 6 Á 6 22,
r1 6 r2 6 Á

r1 = 1.4, r2 = 1.41, r3 = 1.414, Á ,  r20 = 1.4142135623730950488, Á

22
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�1 1 2

1

2

3

4

1.39 1.4 1.41 1.42

2.6

2.7

1.414 1.4142

21.4142

21.414

21.41

21.4

y � 2x

y � 2x

x

2

22

y y

x

Figure 1

�1 1 2

1

2

3

y � ax

x � log y0

y � y0

x

y

Figure 2

Theorem A Properties of Exponential and Logarithmic Functions

If and x and y are real numbers, then

(1) 1(2)

(3) 1(4)

(5) 1(6)

(7) 1(8)

(9) (10) logc ax
= x logc alogc 

a

b
= logc a - logc b

logc ab = logc a + logc blogc 1 = 0

a a

b
bx

=

ax

bx(ab)x
= axbx

a-x
=

1
ax(ax)y

= axy

ax

ay = ax-yaxay
= ax+y

a 7 0, b 7 0, c 7 0, (c Z 1)

99



Proof We prove (1) and leave the proofs of parts (2) through (6) as an exercise
(Problem 53). The proofs given in Section 1.7 for (7) through (10) are now valid
once we have proved the results for exponents.

We assume that (1) is true for rational exponents and prove it for the case
where at least one of the exponents is irrational. Let x be irrational and y be
either rational or irrational. Suppose and are sequences of rational numbers
satisfying

and

(Note, if y is rational, then the constant sequence for all n would do.) Then,
since 

�

The first part of the next theorem is a “substitution result,” analogous to
Theorems 2.3B and 2.5A.The proof is rather difficult, but an outline of the proof is
provided in Problem 56.

axay
= a lim

n: q

 arnb  a lim
n: q

 asnb = lim
n: q

 (arnasn) = lim
n: q

 arn+sn
= ax+y

lim
n: q

 (rn + sn) = x + y,
sn = y

lim
n: q

 sn = ylim
n: q

 rn = x

snrn

100 Chapter 2 Limits

Theorem B Limits of Exponential Functions

(1)

(2) If then 

(3) If then lim
x: - q

 ax
= 0a 7 1,

lim
x: q

 ax
= qa 7 1,

lim
x:c

 ax
= ac

Theorem D Limits of Logarithmic Functions

(1) If and then 

(2) If then 

(3) If then lim
x:0 +

 logc x = - q.c 7 1,

lim
x: q

 logc x = q.c 7 1,

lim
x:a

 logc x = logc a.c 7 0, (c Z 1),a 7 0

Theorem C Limits for Inverse Functions

If has an inverse and then lim
x:c

 f-1(x) = f-1(c) = a.lim
x:a

 f(x) = f(a) = c,f

We would like to have an analogous theorem for logarithms, or in general, the
inverse of any given function. The next theorem provides us with the needed
result.

While Figure 3 makes this result plausible, the proof is rather difficult and 
we omit it. Theorem C also holds for one-sided limits, provided we approach a
and c from the correct direction. For example, if is increasing and

then but if is decreasing

and then We will use this result

in Section 2.7.

lim
x:c +

 f-1(x) = f-1(c) = a.lim
x:a-

 f(x) = f(a) = c,

flim
x:c-

 f-1(x) = f-1(c) = a,lim
x:a-

 f(x) = f(a) = c,
f

Proof Part (1) follows directly from Theorems B(1) and C. Parts (2) and (3) fol-
low from Theorem B and symmetry. �

� EXAMPLE 1 Evaluate the limits (a) and (b) lim
x: q

 log2a 1
x
b .lim

x: q

a3
2
bx2

1 2

1

2

y � f (x)

y � f�1(x)

(a, c)

(c, a)

a

a

c

c

x

y

Figure 3
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SOLUTION
(a) As the exponent grows without bound. Since we can apply

Theorem B(2) and conclude

(b) As the expression goes to zero from the right. Thus, by Theorem
D(3), we conclude

�

The Natural Exponential Function and the Natural Logarithm If
you invest $100 at the rate of 6% annual interest, then after one year you would
have If interest is compounded twice per year, then for
the second half of the year, you would receive interest on your interest. You would
earn for the first six months, and another 3% for the second six
months, so you would have If interest were com-
pounded monthly, you would have In general, if
you begin with dollars and compound interest n times per year at an interest
rate of r, then you would have

dollars after one year. A natural question to ask is: what happens to as the
number of compounding periods goes to infinity? Would our return go to infinity?
It is clear that the answer hinges on the quantity Let’s investigate a
special case of this sequence; specifically let’s consider From the table
in the margin, which shows a few calculations, it seems as if this sequence con-
verges to a number near 2.718. This is the number that we call e. Its decimal ex-
pansion is known to thousands of places; the first few digits are

e L 2.718281828459045

(1 + 1>n)n.
(1 + r>n)n.

A(1)

A(1) = A0a1 +

r
n
bn

A0

$100(1 + 0.06>12)12
= 106.17.

$100(1.03)(1.03) = $106.09.
6%>2 = 3%

$100(1 + 0.06) = $106.00.

lim
x: q

 log2a 1
x
b = - q

1>xx : q ,

lim
x: q

a3
2
bx2

= q

3
2 7 1,x2x : q ,
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n

10 2.5937425

100 2.7048138

1000 2.7169239

10,000 2.7181459

100,000 2.7182682

a1 +

1
n
bn

Definition The Number e

e = lim
n: q

a1 +

1
n
bn

The limit in this definition is the same, whether we regard as a natural num-
ber, the limit then being the limit of a sequence, or as a real number; that is,

If we let then if and only if Figure 4 suggests (correctly)
that the limits as h approaches 0 from the left and right are the same. (See Problem
59.) Thus, another way to specify e is to say

The limit of the expression can then be written as

 = c lim
h:0

 (1 + h)1>h d r = er

 lim
n: q

 A1 +

r
n
Bn = lim

n: q

 c A1 +

r
n
Bn>r d r = c lim

n: q

 A1 +

r
n
Bn>r d r

(1 + r>n)n

e = lim
h:0 

(1 + h)1>h.

h : 0+ .x : qh = 1>x,

e = lim
n: q

a1 +

1
n
bn

= lim
x: q

a1 +

1
x
bx

n

y

h

4

3

2

1

–1 1 2

e
y = (1 + h)1/h

Figure 4
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If the number of compounding periods goes to infinity, we say that interest is
compounded continuously. The amount of money after one year is therefore

In general, after the amount of money is

Money compounded continuously grows this way, but so do other quantities that
we will study in Section 4.10.

A(t) = A0e
rt.

tA(1) = A0e
r.
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�3 �2 �1 1 2 3

�3

�2

�1

1

2

3
y � ex

y � x

y � ln x

y

x

Figure 5

Definition Natural Exponential and Natural Logarithm Functions

The function is called the natural exponential function, and its in-
verse, the logarithm to the base is called the natural logarithm function; it is
denoted ln x.

e,
exp(x) = ex

The natural exponential and logarithmic functions play a key role in this and
subsequent chapters. The reason for the name “natural’ will become apparent in
the next chapter. Most calculators are capable of computing, or even graphing,
and The domain for is and the range is For
the natural logarithm function the domain is and the range is

Graphs of these functions are shown in Figure 5.

� EXAMPLE 2 Suppose $2000 is invested at 8% interest compounded
continuously.

(a) How much is this investment worth after 5 years?
(b) How long will it take for the value of the investment to double?

SOLUTION
(a) After 5 years, the value is 

(b) The value of the investment will double at time where satisfies

�

� EXAMPLE 3 Evaluate the following limits:

(a) (b)

SOLUTION
(a) Don’t let the 500 in the exponent fool you. The exponent, while large, is fixed,

so this is just the limit of a polynomial in Thus, the limit can be evaluated by
substitution.

(b) We can write this as

�

� EXAMPLE 4 Let (a) Find and (b) graph this
function.

SOLUTION
(a) As grows large, the exponent on becomes a negative number far to the left

of 0. The exponent on can be made to be to the left of any negative number,
so by Theorem B(2), lim

x: q

 f(x) = 0.
e

ex

lim
x: q

 f(x),f(x) = e-x2>2.

lim
n: q

an - 2
n
b3n

= lim
n: q

B a1 +

-2
n
bn>(-2)R-6

= B lim
h:0
A1 + h B1>hR-6

= e-6

lim
h:0 

(1 + h)500
= (1 + 0)500

= 1500
= 1

h.

lim
n: q

an - 2
n
b3n

.lim
h:0

 (1 + h)500,

 t0 =

ln 2
0.08

L 8.66 years

 ln 2 = ln e0.08t0
= 0.08t0

 2 = e0.08t0

 4000 = 2000e0.08t0

t0t0,

A(5) = 2000e0.08(5)
= $2983.60.

(- q , q ).
(0, q)ln x,

(0, q).(- q , q )exp(x) = exln x.
ex
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(b) We begin by noting that is an odd function, so its graph is sym-
metric about the y-axis. Also, for all and From 

part (a), and so by symmetry This informa-

tion, together with some computations of the function for a few values of 
yields the plot shown in Figure 6. �

Observe that if then which leads to

From this, the change of base formula follows.

� EXAMPLE 5 Sketch the graph of 

SOLUTION We know what shape the graph of a logarithmic function will take,
but to graph we need to find several points on the graph. Cal-
culators usually have keys for common logs (base 10) and natural logs (base e), but
usually not other bases. With the change of base formula, we can write

With this formula, we could compute a few points on the curve, or, if we have a
graphing calculator, we sketch the curve like the one in Figure 7. �

Hyperbolic Functions In both mathematics and science, certain combina-
tions of and occur so often that they are given special names.e-xex

y = f(x) = log5 x =

ln x
ln 5

y = f(x) = log5 x

y = f(x) = log5 x.

loga x =

ln x
ln a

ln x = ln ay
= y  ln a = (loga x)(ln a)

x = ay,y = loga x,

x,

lim
x: - q

 f(x) = 0.lim
x: q

 f(x) = 0,

f(x) … e-02
= 1.xf(x) Ú  0

f(x) = e-x2>2
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3
x

y � f(x) � e�x2/2
1

21�1�2�3

y

1
2

3
2

Figure 6

2 4 6 8 10

3

2

1

�1

�2

�3

x

y

y � f(x) � log5x

Figure 7

Definition Hyperbolic Functions

The hyperbolic sine, hyperbolic cosine, and four related functions are defined
by

 sech x =

1
cosh x
  csch x =

1
sinh x

 tanh x =

sinh x
cosh x
  coth x =

cosh x
sinh x

 sinh x =

ex
- e-x

2
  cosh x =

ex
+ e-x

2

The terminology suggests that there must be some connection with the
trigonometric functions; there is. First, the fundamental identity for the hyperbolic
functions (reminiscent of in trigonometry) is

To verify it, we write

Since 

is an odd function. Similarly (see Problem 57) so cosh x
is an even function. Correspondingly, the graph of is symmetric withy = sinh x

cosh1-x2 = cosh x,sinh x

sinh (-x) =

e-x
- ex

2
= -

ex
- e-x

2
= -sinh x

cosh2 x - sinh2 x =

e2x
+ 2 + e-2x

4
-

e2x
- 2 + e-2x

4
= 1

cosh2 x - sinh2 x = 1

cos2 x + sin2 x = 1
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respect to the origin and the graph of is symmetric with respect to the
y-axis. Similarly, tanh x is an odd function and sech x is an even function. The
graphs are shown in Figure 8.

Inverse Hyperbolic Functions The hyperbolic sine and hyperbolic tangent
are increasing functions and automatically have inverses.To obtain inverses for hy-
perbolic cosine and hyperbolic secant, we restrict their domains to Thus,

Since the hyperbolic functions are defined in terms of and it is not too
surprising that the inverse hyperbolic functions can be expressed in terms of the
natural logarithm. For example, consider for that is, consider

Our goal is to solve this equation for x, which will give Multiplying both
sides by we get or

If we solve this quadratic equation in we obtain

The Quadratic Formula gives two solutions, the one given above and
This latter solution is extraneous because it is less than 1,

whereas is greater than 1 for all Thus, so

x = cosh-1 y = ln Ay + 2y2
- 1 B

x = ln Ay + 2y2
- 1 B ,x 7 0.ex

A2y - 212y22 - 4 B >2.

ex
=

2y + 212y22 - 4

2
= y + 2y2

- 1

ex,

1ex22 - 2yex
+ 1 = 0, x Ú 0

2yex
= e2x

+ 1,2ex,
cosh-1 y.

y =

ex
+ e-x

2
, x Ú 0

x Ú 0;y = cosh x

e-x,ex

 x = sech-1 y 3   y = sech x and x Ú 0

 x = tanh-1 y 3   y = tanh x

 x = cosh-1 y 3   y = cosh x and x Ú 0

 x = sinh-1 y 3   y = sinh x

x Ú 0.

y = cosh x

104 Chapter 2 Limits

y = sinh x2

y

3 x–3

–2

21–1–2

–1

1

y = tanh x
1

y

3 x–3 21–1

–1

–2

–0.5

0.5

y = cosh x

5

y

3 x–3

4

3

2

1

–2 –1 21

y = sech x

1

y

3 x–3

0.8

0.6

0.4

–2 –1 21

0.2

Figure 8
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Similar arguments apply to each of the inverse hyperbolic functions.We obtain
the following results (note that the roles of x and y have been interchanged).
Figure 8 suggests the necessary domain restrictions. Graphs of the inverse hyper-
bolic functions are shown in Figure 9.

 sech-1 x = lna1 + 21 - x2

x
b , 0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x

1 - x
,     -1 6 x 6 1

 cosh-1 x = ln Ax + 2x2
- 1 B ,  x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B

y = sinh–1x

y

x–2

–2

–1 1 2

–1

1

2

y = tanh–1x

x–1

–3

0.5 1
–1

1

3

–2

2

y = cosh–1x2

y

x0.5

1.5

1

0.5

1 1.5 2 2.5 3

y = sech–1x

3

y

x1

y

0.80.60.40.2

2.5

2

1.5

1

0.5

Figure 9

Concepts Review
1. If is an irrational number and then we define

_____ where is a sequence of rational numbers that con-
verges to .

2. The inverse of the natural exponential function
is called the _____ and is denoted _____.exp(x) = ex

x
rnax

=

a 7 0,x 3. If interest is compounded continuously at the annual rate
of 6%, then a $1000 investment will be worth _____ after three
years.

4. While the hyperbolic sine function is odd, the hyperbolic
cosine function is _____ and the hyperbolic tangent is _____.

In Problems 1–10, simplify the given expression.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. Match the graph to the right with the functions given
below. The scales are the same on all four graphs.
(a) (b)
(c) (d) f(x) = e-x>4f(x) = ex

f(x) = e-x2
f(x) = ex-1

eln x2
- y ln xeln 3 + 2 ln x

ex - ln xln1x3e-3x2
ln e-2x - 3ln ecos x

e-2 ln xe3 ln x

22 log2 x102 log10 5

y

x
(A)

y

x
(B)

y

x
(C)

y

x
(D)

Problem Set 2.6
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12. Match the graph below with the functions given. The
scales are the same on all four graphs.
(a) (b)

(c) (d) f(x) = ln x4f(x) = ln 
1
x

f(x) = ln (x - 1)f(x) = ln x

26.

27. If $375 is put in the bank today, what will it be worth 
at the end of 2 years if interest is 3.5% and is compounded as
specified?
(a) Annually (b) Monthly
(c) Daily (d) Continuously

28. Do Problem 27 assuming that the interest rate is 4.6%.

29. How long does it take money to double in value for the
specified interest rate?

(a) 6% compounded monthly
(b) 6% compounded continuously

30. Inflation between 1999 and 2004 ran at about 2.5% per
year. On this basis, what would you expect a car that would have
cost $20,000 in 1999 to cost in 2004?

31. Manhattan Island is said to have been bought by Peter
Minuit in 1626 for $24. Suppose that Minuit had instead put the
$24 in the bank at 6% interest compounded continuously. What
would that $24 have been worth in 2000?

32. If Methuselah’s parents had put $100 in the bank for 
him at birth and he left it there, what would Methuselah have
had at his death (969 years later) if interest was 4% compounded
annually?

Use to calculate each of the logarithms
in Problems 33–36.

33. 34.

35. 36.

In Problems 37–40, use natural logarithms to solve each of the
exponential equations. Hint: To solve take ln of both
sides, obtaining then 

37. 38.

39. 40.

In Problems 41–52, verify that the given equations are identities.

41.

42

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53. Assuming the properties of exponents for rational expo-
nents, prove properties (2) through (6) of Theorem A for at least
one irrational exponent.

54. State and prove a “substitution theorem” analogous to
Theorems 2.3B and 2.5A for the inverse trigonometric functions.

cosh 2x = cosh2 x + sinh2 x

sinh 2x = 2 sinh x cosh x

tanh1x - y2 =

tanh x - tanh y

1 - tanh x tanh y

tanh1x + y2 =

tanh x + tanh y

1 + tanh x tanh y

cosh1x - y2 = cosh x cosh y - sinh x sinh y

cosh1x + y2 = cosh x cosh y + sinh x sinh y

sinh1x - y2 = sinh x cosh y - cosh x sinh y

sinh1x + y2 = sinh x cosh y + cosh x sinh y

e-2x
= cosh 2x - sinh 2x

e-x
= cosh x - sinh x

e2x
= cosh 2x + sinh 2x

ex
= cosh x + sinh x

121>1u- 12
= 452s - 3

= 4

5x
= 132x

= 17

x = 1ln 112>1ln 32 L 2.1827.x ln 3 = ln 11;
3x

= 11,

C

log1018.5727log1118.1221>5
log710.112log5 12

loga x = 1ln x2>1ln a2C

ln1x2
- 92 - 2 ln1x - 32 - ln1x + 32

y

x

(A)

y

x

(B)

y

x

(C)

y

x

(D)

In Problems 13–16, make use of the known graph of to
sketch the graphs of the equations.

13. 14.

15. 16.

17. Sketch the graph of on
but think before you begin.

18. Find each of the following limits.

(a) (b)

(c) (d)

19. Use the fact that to find each limit.

(a) Hint:

(b) (c)

(d)

20. Find each of the following limits.

(a) (b)

(c) (d)

21. Use the approximations and 
together with the properties stated in Theorem A to calculate
approximations to each of the following. For example,

(a) ln 6 (b) ln 1.5 (c) ln 81

(d) (e) (f) ln 48

22. Use your calculator to make the computations in Prob-
lem 21 directly.

In Problems 23–26, use Theorem A to write the expressions as the
logarithm of a single quantity.

23. 24.

25. ln1x - 22 - ln1x + 22 + 2 ln x

1
2 ln1x - 92 +

1
2 ln x2 ln1x + 12 - ln x

ln A 1
36 Bln 22

ln 2 + ln 3 L 0.693 + 1.099 = 1.792.ln12 # 32 =

ln 6 =

ln 3 L 1.099ln 2 L 0.693

lim
x:0
11 + x21>xlim

n: q

an + 3
n
bn + 1

lim
n: q 

11.0012nlim
n: q 

a1 +

2
n
b100

lim
n: q

an - 1
n
b2n

lim
n: q

an + 2
n
bn

lim
x:0
11 + 3x21>x

11 - x21>x = [11 - x21>1-x2]-1lim
x:0
11 - x21>x

e = lim
h:0
11 + h21>h

lim
x:0-

11 + e21>x, e 7 0lim
x:0+

11 + e21>x, e 7 0

lim
x:0
1121>xlim

x:0
11 + x21000

1-p>2, p>22,
y = ln cos x + ln sec x

y = ln1x - 22y = lna 1
x
b

y = ln 1xy = ln ƒ x ƒ

y = ln x
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55. State and prove a “substitution theorem” analogous to
Theorems 2.3B and 2.5A for hyperbolic and inverse hyperbolic
functions.

56. Prove Theorem B(1), that is, for by
following these steps.

(a) Begin a proof by contradiction. Write down the negation of
the statement “for every there exists a such that
for all ” Hint: See the dis-
cussion at the end of Section 1.1.

(b) Let be a sequence of rational numbers that converges to 
and reach a contradiction to the statement from part (a).

x,rn

ƒ x - c ƒ 6 dQ ƒ ax
- ac

ƒ 6 P.x,
d 7 0P 7 0

a 7 0,  lim
x:c

 ax
= ac,

57. Show that cosh x is an even function.

58. Prove that Hint: First show that

59. Use the result from Problem 58 to prove that

Answers to Concepts Review: 1. 2. natural

logarithm; ln x 3. 4. even; odd$1000e0.06 #3

lim
n: q

 arn

lim
h:0-

 (1 + h)1>h
= e.

a1 -

1
n
b-n

= a1 +

1
n - 1

bn

= a1 +

1
n - 1

bn - 1

 a1 +

1
n - 1

b

lim
n: q

 a1 -

1
n
b-n

= e.

In mathematics and science, we use the word continuous to describe a process that
goes on without abrupt changes. In fact, our experience leads us to assume that this
is an essential feature of many natural processes. It is this notion as it pertains to
functions that we now want to make precise. In the three graphs shown in Figure 1,
only the third graph exhibits continuity at c. In the first two graphs, either 

does not exist, or it exists but does not equal Only in the third graph does

lim
x:c

 f1x2 = f1c2.
f(c).

lim
x:c

 f1x2

2.7
Continuity 

of Functions

A good example of a discontinuous
machine is the postage machine,
which (in 2006) charged $0.39 for a
1-ounce letter but $0.63 for a letter
the least little bit over 1 ounce.

A Discontinuous Machine y

x

f

c
lim f (x) does not exist.
x → c

y

x

f

c
lim f (x) exists, but
x → c

lim f (x) ≠ f(c).
x → c

y

f

c x

lim f (x) = f (c)
x → c

Figure 1

Definition Continuity at a Point

Let f be defined on an open interval containing c. We say that f is continuous at
c if

lim
x:c

 f1x2 = f1c2

Here is the formal definition.

We mean by this definition to require three things:

1. exists,

2. exists (i.e., c is in the domain of f ), and

3.

If any one of these three fails, then f is discontinuous at c. Thus, the functions rep-
resented by the first and second graphs of Figure 1 are discontinuous at c. They do
appear, however, to be continuous at other points of their domains.

� EXAMPLE 1 Let How should f be defined at 

in order to make it continuous there?

x = 2f1x2 =

x2
- 4

x - 2
, x Z 2.

lim
x:c

 f1x2 = f1c2.
f(c)

lim
x:c

 f1x2
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1 2 3

1

2

3

4

y

x

f (x) =
x2 – 4
x – 2

, x ≠ 2

4, x = 2

Figure 2

Theorem A Continuity of Polynomial and Rational Functions

A polynomial function is continuous at every real number c.A rational function
is continuous at every real number c in its domain, that is, everywhere except
where its denominator is zero.

SOLUTION

Therefore, we define The graph of the resulting function is shown in
Figure 2. In fact, we see that  for all x. �

A point of discontinuity c is called removable if the function can be defined or
redefined at c so as to make the function continuous. Otherwise, a point of discon-
tinuity is called nonremovable. The function f in Example 1 has a removable dis-
continuity at 2 because we could define and the function would be
continuous there.

Continuity of Familiar Functions Most functions that we will meet in
this book are either (1) continuous everywhere or (2) continuous everywhere
except at a few points. In particular, Theorem 2.3B implies the following result.

f122 = 4

f1x2 = x + 2
f122 = 4.

lim
x:2

  
x2

- 4
x - 2

= lim
x:2

  
1x - 221x + 22

x - 2
= lim

x:2
1x + 22 = 4

Recall the absolute value function its graph is shown in Figure 3.
For a polynomial; for another polynomial.
Thus, is continuous at all numbers different from 0 by Theorem A. But

(see Problem 27 of Section 2.2). Therefore, is also continuous at 0; it is continu-
ous everywhere.

By the Main Limit Theorem (Theorem 2.3A)

provided when n is even. This means that is continuous at each
point where it makes sense to talk about continuity. In particular, is
continuous at each real number (Figure 4). We summarize.c 7 0

f1x2 = 1x
f1x2 = 1n xc 7 0

lim
x:c

 1n x = 2n lim
x:c

 x = 1n c

ƒ x ƒ

lim
x:0

ƒ x ƒ = 0 = ƒ 0 ƒ

ƒ x ƒ

x 7 0, f1x2 = x,x 6 0, f1x2 = -x,
f1x2 = ƒ x ƒ ;

Theorem B Continuity of Absolute Value and nth Root Functions

The absolute value function is continuous at every real number c. If n is odd, the
nth root function is continuous at every real number c; if n is even, the nth-root
function is continuous at every positive real number c.

Theorem C Continuity under Function Operations

If f and g are continuous at c, then so are kf, (provided

that ), and (provided that if n is even).f1c2 7 02n ffn,g1c2 Z 0

f>gf # g,f - g,f + g,

Continuity under Function Operations Do the standard function oper-
ations preserve continuity? Yes, according to the next theorem. In it, f and g are
functions, k is a constant, and n is a positive integer.

–2 –1–4 –3 1 2 3 4

1

2

3

4

y

x

f (x) = � x � 

Figure 3

1 2 3 4 5

1

2

3

y

x

f (x) = �x

Figure 4

Proof All these results are easy consequences of the corresponding facts for
limits from Theorem 2.3A. For example, that theorem, combined with the fact that
f and g are continuous at c, gives

lim
x:c

 f1x2g1x2 = lim
x:c

 f1x2 # lim
x:c

 g1x2 = f1c2g1c2
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Theorem D Continuity of Transcendental Functions

The functions

sin cos tan cot sec csc 

sinh cosh tanh coth sech csch 

are continuous at every point in the interior of their domain.

sinh-1x, cosh-1x, tanh-1x, coth-1x, sech-1x, csch-1x

xx,x,x,x,x,

ax, loga x (a 7 0 and a Z 1)

sin-1x, cos-1x, tan-1x, cot-1x, sec-1x, csc-1x

xx,x,x,x,x,

This is precisely what it means to say that  is continuous at c. �

� EXAMPLE 2 At what numbers is 
continuous?

SOLUTION We need not even consider nonpositive numbers, since F is not
defined at such numbers. For any positive number, the functions and

are all continuous (Theorems A and B). It follows from Theorem C that 
and finally,

are continuous at each positive number. �

The continuity of the trigonometric, inverse trigonometric, exponential, loga-
rithmic, hyperbolic, and inverse hyperbolic functions is stated in the next theorem.
Before we state this theorem, we must define the interior of an interval. Basically,
by interor, we mean the interval, excluding the endpoints (if they were included in
the first place). For example the interior of the interval is the open interval
(1, 3); the interior of (2, 4) is the interval (2, 4) itself.This concept is needed because
in order for the limit to exist, we must be able to approach from both 

sides, and this can be done only if is in the interior of the domain of f.c

clim
x:c

 f(x)

[1, 3]

13 ƒ x ƒ - x22
A1x + 13 x B

1x + 13 x,3 ƒ x ƒ - x2,
3 ƒ x ƒ ,x2

ƒ x ƒ ,13 x,1x,

F1x2 = 13 ƒ x ƒ - x22> A1x + 13 x B
f # g

Proof That the trigonometric functions are continuous at every point in the
domain follows from Theorem 2.5A. Applying Theorem 2.6C, we can conclude
that the inverse trigonometric functions are continuous at every point on the inte-
rior of their domain. The continuity of the exponential and logarithmic functions
follows directly from Theorems 2.6B and 2.6D. Hyperbolic functions are defined in
terms of the exponential functions, so their continuity can be established using the
continuity of the exponential functions (see Problem 55 of Section 2.6). Finally,
inverse hyperbolic functions are continuous on the interior of their domain by
Theorem 2.6C. �

Theorem D says, for example, that is continuous at every number c on
the interior of its domain. The domain for the inverse sine is which has in-
terior We conclude that is continuous at every number c in 

� EXAMPLE 3 Determine all points of discontinuity of 

Classify each point of discontinuity as removable or nonremovable.

SOLUTION By Theorem D, the numerator is continuous at every real number.
The denominator is also continuous at every real number, but when orx = 0

x Z 0, 1.

f(x) =

sin x
x(1 - x)

,

(-1, 1).sin-1 x(-1, 1).
[-1, 1],

sin-1 x
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Proof of Theorem E (Optional)

Proof Let be given. Since f is continuous at L, there is a corresponding
such that

and so (see Figure 6)

But because for a given there is a corresponding 

such that

When we put these two facts together, we have

This shows that

The second statement in Theorem E follows from the observation that if g is
continuous at c then �

� EXAMPLE 4 Show that is continuous at each real
number.

SOLUTION Let and Both are continuous at
each real number, and so their composite

is also. �

h1x2 = f1g1x22 = ƒ x2
- 3x + 6 ƒ

g1x2 = x2
- 3x + 6.f1x2 = ƒ x ƒ

h1x2 = ƒ x2
- 3x + 6 ƒ

L = g1c2.

lim
x:c

 f1g1x22 = f1L2

0 6 ƒ x - c ƒ 6 d2 Q  ƒ f1g1x22 - f1L2 ƒ 6 e

0 6 ƒ x - c ƒ 6 d2 Q  ƒ g1x2 - L ƒ 6 d1

d2 7 0d1 7 0lim
x:c

 g1x2 = L,

ƒ g1x2 - L ƒ 6 d1 Q  ƒ f1g1x22 - f1L2 ƒ 6 e

ƒ t - L ƒ 6 d1 Q  ƒ f1t2 - f1L2 ƒ 6 e

d1 7 0
e 7 0

110 Chapter 2 Limits

the denominator is 0. Thus, by Theorem C, f is continuous at every real
number except and Since

we could define and the function would become continuous there. Thus,
is a removable discontinuity. Also, since

there is no way to define to make f continuous at Thus is a non-
removable discontinuity. A graph of is shown in Figure 5. �

There is another functional operation, composition, that will be very impor-
tant in later work. It, too, preserves continuity.

y = f(x)
x = 1x = 1.f(1)

lim
x:1 +

  
sin x

x(1 - x)
= - q    and   lim

x:1 -

   
sin x

x(1 - x)
= q

x = 0
f(0) = 1

lim
x:0

   
sin x

x(1 - x)
= lim

x:0
   

sin x
x

 # lim
x:0

  
1

(1 - x)
= (1)(1) = 1

x = 1.x = 0
x = 1,

Theorem E Composite Limit Theorem

If and if f is continuous at L, then

In particular, if g is continuous at c and f is continuous at g(c), then the com-
posite is continuous at c.f � g

lim
x:c

 f1g1x22 = f A lim
x:c

 g1x2B = f1L2
lim
x:c

 g1x2 = L

x g g(x) f (g(x))

f (L)
L

c

�

f

)

)

)

)

)

)

�1

�2

Figure 6

1

y

x

2

1

–1

–2

π
2

y =
sin x

x(1 – x)

π
2

π–

Figure 5
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� EXAMPLE 5 Show that

is continuous except at 3 and 

SOLUTION Thus, the rational function

is continuous except at 3 and (Theorem A).We know from Theorem D that the
sine function is continuous at every real number. Thus, from Theorem E, we con-
clude that, since h is also continuous except at 3 and   �

Continuity on an Interval So far, we have been discussing continuity at a
point. We now wish to discuss continuity on an interval. Continuity on an interval
ought to mean continuity at each point of that interval. This is exactly what it does
mean for an open interval.

When we consider a closed interval [a, b], we face a problem. It might be that f
is not even defined to the left of a (e.g., this occurs for at ), so,
strictly speaking, does not exist.We choose to get around this problem by

calling f continuous on [a, b] if it is continuous at each point of (a, b) and if

and We summarize in a formal definition.lim
x:b-

 f1x2 = f1b2.lim
x:a+

 f1x2 = f1a2
lim
x:a

 f1x2 a = 0f1x2 = 1x

-2.h1x2 = sin1g1x22,
-2

g1x2 =

x4
- 3x + 1

x2
- x - 6

x2
- x - 6 = 1x - 321x + 22.

-2.

h1x2 = sin  
x4

- 3x + 1

x2
- x - 6

For example, it is correct to say that is continuous on (0, 1) and
that is continuous on [0, 1].

� EXAMPLE 6 Using the definition above, describe the continuity properties
of the function whose graph is sketched in Figure 7.

SOLUTION The function appears to be continuous on the open intervals
(0, 3), and and also on the closed interval [3, 5]. �

� EXAMPLE 7 What is the largest interval over which the function defined by

is continuous?

SOLUTION The domain of g is the interval If c is in the open interval
then g is continuous at c by Theorem E; hence, g is continuous on 

The one-sided limits are

and

This implies that g is right continuous at and left continuous at 2.Thus, g is con-
tinuous on its domain, the closed interval  �[-2, 2].

-2

lim
x:2-

 24 - x2
= 34 - A lim

x:2-

x B2 = 24 - 4 = 0 = g122

lim
x: -2+

 24 - x2
= 34 - A lim

x: -2+

x B2 =  24 - 4 = 0 = g1-22

1-2, 22.1-2, 22, [-2, 2].

g1x2 = 24 - x2

15, q2,1- q , 02

g1x2 = 1x
f1x2 = 1>x

y

x–1 1 2 3 4 5 6

Figure 7

Definition Continuity on an Interval

The function f is right continuous at a if and left continuous at
b if 

We say f is continuous on an open interval if it is continuous at each point of
that interval. It is continuous on the closed interval [a, b] if it is continuous on 
(a, b), right continuous at a, and left continuous at b.

lim
x:b-

 f1x2 = f1b2.
lim

x:a+

 f1x2 = f1a2
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112 Chapter 2 Limits

� EXAMPLE 8 What is the largest interval over which the function defined by
is continuous?

SOLUTION The domain for is the closed interval 
Theorem D says that this function is continuous at every point on the interior of its
domain, that is, on the interval We must now address the continuity of at
the endpoints and 1. By the discussion immediately following Theorem 2.6C,
we can conclude that since is decreasing on 

and

(See Figure 8).Thus is right continuous at and left continu-
ous at Since it is also continuous on the open interval we can con-
clude that is continuous on the closed interval  �[-1, 1].f(x) = cos-1 x

(-1, 1),x = 1.
x = -1f(x) = cos-1 x

lim
x:0+

 cos x = cos 0 = 1 Q lim
x:1-

 cos-1 x = cos-1 1 = 0

lim
x:p-

 cos x = cos p = -1 Q lim
x: -1+

 cos-1 x = cos-1 (-1) = p

[0, p],y = cos x
-1

f(-1, 1).

[-1, 1].f(x) = cos-1 x

f(x) = cos-1 x

y

xa c1 c2 c3 c b

W2

f (b)

f (a)

W1

y = f (x)

Figure 9

y

xa b

W

y = f (x)

Not continuous;
intermediate value

property fails.

Figure 10

Theorem F Intermediate Value Theorem

Let be a function defined on and let W be a number between and
If is continuous on , then there is at least one number c between a

and b such that f1c2 = W.
[a, b]ff(b).

f(a)[a, b]f

−1

−1

1 π

1

y = cos x

y = cos−1 x

(−1, π)

(π, −1)

y = x

π

π/2

π/2

y

x

Figure 8

Intuitively, for to be continuous on means that the graph of on 
should have no jumps, so we should be able to “draw” the graph of from the
point to the point without lifting our pencil from the paper.Thus,
the function should take on every value between and . This property is
stated more precisely in Theorem F.

f(b)f(a)f
(b, f(b))(a, f(a))

f
[a, b]f[a, b]f

Figure 9 shows the graph of a function that is continuous on .The In-
termediate Value Theorem says that for every W in there must be a c
in such that In other words, takes on every value between 
and . Continuity is needed for this theorem, for otherwise it is possible to find
a function and a number W between and such that there is no c in 
that satisfies Figure 10 shows an example of such a function.f1c2 = W.

[a, b]f(b)f(a)f
f(b)

f(a)ff1c2 = W.[a, b]
(f(a), f(b))

[a, b]f(x)
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It seems clear that continuity is sufficient, although a formal proof of this re-
sult turns out to be difficult. We leave the proof to more advanced works.

The converse of this theorem, which is not true in general, says that if takes
on every value between and then is continuous. Figures 9 and 11 show
functions that take on all values between and , but the function in Fig-
ure 11 is not continuous on . Just because a function has the intermediate
value property does not mean that it must be continuous.

The Intermediate Value Theorem can be used to tell us something about the
solutions of equations, as the next example shows.

� EXAMPLE 9 Use the Intermediate Value Theorem to show that the equa-
tion has a solution between and 

SOLUTION Let and let Then 
and Since f is continuous on and

since is between and the Intermediate Value Theorem implies
the existence of a c in the interval with the property that Such a
c is a solution to the equation Figure 12 suggests that there is
exactly one such c.

We can go one step further. The midpoint of the interval is the point
When we evaluate we get

which is greater than 0. Thus, and so another application of
the Intermediate Value Theorem tells us that there exists a c between 0 and 
such that We have thus narrowed down the interval containing the
desired c from to There is nothing stopping us from selecting the
midpoint of and evaluating f at that point, thereby narrowing even further
the interval containing c.This process could be continued indefinitely until we find
that c is in a sufficiently small interval. This method of zeroing in on a solution is
called the bisection method, and we will study it further in Section 4.7. �

The Intermediate Value Theorem can also lead to some surprising results.

� EXAMPLE 10 Use the Intermediate Value Theorem to show that on a cir-
cular wire ring there are always two points opposite from each other with the same
temperature.

SOLUTION Choose coordinates for this problem so that the center of the ring is
the origin, and let r be the radius of the ring. (See Figure 13.) Define T(x, y) to be
the temperature at the point (x, y). Consider a diameter of the circle that makes an
angle with the x-axis, and define to be the temperature difference between
the points that make angles of and that is,

With this definition

Thus, either and are both zero, or one is positive and the other is nega-
tive. If both are zero, then we have found the required two points. Otherwise, we
can apply the Intermediate Value Theorem. Assuming that temperature varies
continuously, we conclude that there exists a c between 0 and such that

Thus, for the two points at the angles c and the temperatures are
the same. �

c + p,f1c2 = 0.
p

f1p2f(0)

 f1p2 = T1-r, 02 - T1r, 02 = - CT1r, 02 - T1-r, 02 D = -f102
 f102 = T1r, 02 - T1-r, 02

f1u2 = T1r cos u, r sin u2 - T1r cos1u + p2, r sin1u + p22
u + p;u

f1u2u

[0, p>4]
[0, p>4].[0, p>2]

f1c2 = 0.
p>4f1p>42 7 0,f102 6 0

f1p>42 =

p

4
- cos 

p

4
=

p

4
-

22
2

L 0.0782914

f1p>42,x = p>4.
[0, p>2]

x - cos x = 0.
f1c2 = 0.10, p>22f1p>22,f(0)W = 0

[0, p>2]f1p>22 = p>2 - cos p>2 = p>2.-1
0 - cos 0 =f102 =W = 0.f1x2 = x - cos x,

x = p>2.x = 0x - cos x = 0

[a, b]
f(b)f(a)

ff(b)f(a)
f

Section 2.7 Continuity of Functions 113

(–r, 0) (r, 0)

(r cos �, r sin �)

(r cos (� + �), r sin (� + �))

� + � �

Figure 13

y

xb

f (b)

y = f (x)

a

f (a)

Not continuous, although
intermediate value property holds

Figure 11

y

x

1.5

1

0.5

0

–0.5

–1

�
2

�
4

Figure 12
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2

4

6

8

10

0 2 4 6 8 10–2–4–6

y

x

2

4

6

8

10

0 2 4 6 8 10–2–4–6

12

y

x

Figure 14 Figure 15

1. A function f is continuous at c if _____

2. The function is discontinuous at _____.

3. A function f is said to be continuous on a closed interval
[a, b] if it is continuous at every point of (a, b) and if _____ and
_____.

f1x2 = Œx œ
= f1c2. 4. The Intermediate Value Theorem says that if a function f

is continuous on [a, b] and W is a number between and 
then there is a number c between _____ and _____ such that
_____.

f(b),f(a)

Problem Set 2.7
In Problems 1–15, state whether the indicated function is continu-
ous at 3. If it is not continuous, tell why.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13.

14.

15.

16. From the graph of g (see Figure 14), indicate the values
where g is discontinuous. For each of these values state whether g
is continuous from the right, left, or neither.

f1x2 = e -3x + 7 if x … 3
-2 if x 7 3

f1t2 = e t2
- 9   if t … 3

13 - t22   if t 7 3

f1t2 = e t - 3        if t … 3
3 - t        if t 7 3

r1t2 = L t3
- 27

t - 3
   if t Z 3

23    if t = 3

r1t2 = L t3
- 27

t - 3
if t Z 3

27 if t = 3

f1x2 =

21 - 7x

x - 3
h1x2 =

x2
- 9

x - 3

g1t2 = ƒ t - 2 ƒf1t2 = ƒ t ƒ

h1t2 =

ƒ21t - 324 ƒ

t - 3
h1t2 =

ƒ t - 3 ƒ

t - 3

g1t2 = 2t - 4h1x2 =

3
x - 3

g1x2 = x2
- 9f1x2 = 1x - 321x - 42

In Problems 18–23, the given function is not defined at a certain
point. How should it be defined in order to make it continuous at
that point? (See Example 1.)

18. 19.

20. 21.

22. 23.

In Problems 24–35, at what points, if any, are the functions
discontinuous?

24.

25.

26. 27.

28. 29.

30. 31.

32.

33.

34. 35.

36. Sketch the graph of a function f that satisfies all the fol-
lowing conditions.

(a) Its domain is 

(b)

(c) It is discontinuous at and 1.
(d) It is right continuous at and left continuous at 1.

37. Sketch the graph of a function that has domain [0, 2] and
is continuous on [0, 2) but not on [0, 2].

38. Sketch the graph of a function that has domain [0, 6] and
is continuous on [0, 2] and (2, 6] but is not continuous on [0, 6].

39. Sketch the graph of a function that has domain [0, 6] and
is continuous on (0, 6) but not on [0, 6].

-1
-1

f1-22 = f1-12 = f112 = f122 = 1.

[-2, 2].

g1t2 = Œ t +
1
2 œf1t2 = Œ t œ

g1x2 = c x2      if x 6 0
-x      if 0 … x … 1
x      if x 7 1

f1x2 = c x if x 6 0
x2 if 0 … x … 1
2 - x if x 7 1

G1x2 =

124 - x2
F1x2 =

124 + x2

g1u2 =

u2
+ ƒ u - 1 ƒ23 u + 1

f1u2 =

2u + 72u + 5

r1u2 = tan uh1u2 = ƒ sin u + cos u ƒ

f1x2 =

33 - x2

xp + 3x - 3p - x2

f1x2 =

3x + 7
1x - 3021x - p2

F1x2 = sin 
x2

- 1
x + 1

f1x2 =

x4
+ 2x2

- 3
x + 1

H1t2 =

1t - 1
t - 1

g1u2 =

sin u
u

f1x2 =

2x2
- 18

3 - x
f1x2 =

x2
- 49

x - 7

Concepts Review

17. From the graph of h given in Figure 15, indicate the inter-
vals on which h is continuous.
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40. Let

Sketch the graph of this function as best you can and decide
where it is continuous.

In Problems 41–48, determine whether the function is continuous
at the given point c. If the function is not continuous, determine
whether the discontinuity is removable or nonremovable.

41. 42.

43. 44.

45. 46.

47. 48.

In Problems 49–54, determine the largest interval over which the
given function is continuous.

49. 50.

51. 52.

53. 54.

55. A cell phone company charges $0.12 for connecting a call
plus $0.08 per minute or any part thereof (e.g., a phone call last-
ing 2 minutes and 5 seconds costs ). Sketch a
graph of the cost of making a call as a function of the length of
time t that the call lasts. Discuss the continuity of this function.

56. A rental car company charges $20 for one day, allowing
up to 200 miles. For each additional 100 miles, or any fraction
thereof, the company charges $18. Sketch a graph of the cost for
renting a car for one day as a function of the miles driven. Discuss
the continuity of this function.

57. A cab company charges $2.50 for the first and $0.20
for each additional Sketch a graph of the cost of a cab ride

as a function of the number of miles driven. Discuss the con-
tinuity of this function.

58. Use the Intermediate Value Theorem to prove that
has a real solution between 0 and 1.

59. Use the Intermediate Value Theorem to prove that
has a real solution between 0 and 

60. Use the Intermediate Value Theorem to show that
has at least one solution in the interval

[0, 5]. Sketch the graph of over [0, 5].
How many solutions does this equation really have?

61. Use the Intermediate Value Theorem to show that
has a solution between 0 and Zoom in on

the graph of to find an interval having length
0.1 that contains this solution.

y = 1x - cos x
p>2.1x - cos x = 0

GC

y = x3
- 7x2

+ 14x - 8
x3

- 7x2
+ 14x - 8 = 0

GC

2p.1cos t2t3
+ 6 sin5 t - 3 = 0

x3
+ 3x - 2 = 0

1
8  mile.

1
4  mile

$0.12 + 3 * $0.08

f1x2 = sech-1 xf1x2 = sec-1  x,   x Ú 0

f1x2 = sech xf1x2 = sin-1  x

f1x2 =

1225 - x2
f1x2 = 225 - x2

f1x2 =

4 - x

2 - 1x
; c = 4f1x2 = sin 

1
x

; c = 0

F1x2 = x sin 
1
x

; c = 0g1x2 = L sin x
x

, x Z 0

0, x = 0

f1x2 =

cos x
x

; c = 0f1x2 =

sin x
x

; c = 0

f1x2 =

x2
- 100

x - 10
; c = 10f1x2 = sin x; c = 0

f1x2 = e x if x is rational
-x if x is irrational

62. Show that the equation has at
least one real solution.

63. Prove that f is continuous at c if and only if

64. Prove that if f is continuous at c and there is an
interval such that on this interval.

65. Prove that if f is continuous on [0, 1] and satisfies
there, then f has a fixed point; that is, there is a

number c in [0, 1] such that Hint: Apply the Intermedi-
ate Value Theorem to 

66. Find the values of a and b so that the following function is
continuous everywhere.

67. A stretched elastic string covers the interval [0, 1]. The
ends are released and the string contracts so that it covers the in-
terval [a, b], Prove that this results in at least one
point of the string  being where it was originally. See Problem 65.

68. Let Then and 

Does the Intermediate Value Theorem imply the existence of a
number c between and 2 such that Explain.

69. Starting at 4 A.M., a hiker slowly climbed to the top of a
mountain, arriving at noon. The next day, he returned along the
same path, starting at 5 A.M. and getting to the bottom at 11 A.M.
Show that at some point along the path his watch showed the
same time on both days.

70. Let D be a bounded, but otherwise arbitrary, region in the
first quadrant. Given an angle can be circum-
scribed by a rectangle whose base makes angle with the x-axis
as shown in Figure 16. Prove that at some angle this rectangle is a
square. (This means that any bounded region can be circum-
scribed by a square.)

u

u, 0 … u … p>2, D

f1c2 = 0?-2

f122 = 1.f1-22 = -

1
3

f1x2 =

1
x - 1

.

a Ú 0, b … 1.

f1x2 = c x + 1 if x 6 1
ax + b if 1 … x 6 2
3x if x Ú 2

g1x2 = x - f1x2.
f1c2 = c.

0 … f1x2 … 1

f1x2 7 01c - d, c + d2
f1c2 7 0

f1c2.lim
t:0

 f1c + t2 =

x5
+ 4x3

- 7x + 14 = 0

y

x

D

θ

Figure 16

71. The gravitational force exerted by the earth on an object
having mass m that is a distance r from the center of the earth is

Here G is the gravitational constant, M is the mass of the earth,
and R is the earth’s radius. Is g a continuous function of r?

g1r2 = d
GMmr

R3 , if r 6 R

GMm

r2 , if r Ú R
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72. Suppose that f is continuous on and it is never zero
there. Is it possible that f changes sign on ? Explain.

73. Let for all x and y and suppose
that f is continuous at 
(a) Prove that f is continuous everywhere.
(b) Prove that there is a constant m such that for all t

(see Problem 43 of Section 1.5).

74. Prove that if is a continuous function on an interval
then so is the function 

75. Show that if is continuous it is not neces-
sarily true that is continuous.

76. Let if x is irrational and let if x is
the rational number in reduced form 

(a) Sketch (as best you can) the graph of f on (0, 1).
(b) Show that f is continuous at each irrational number in (0, 1),

but is discontinuous at each rational number in (0, 1).

77. A thin equilateral triangular block of side length 1 unit
has its face in the vertical xy-plane with a vertex V at the origin.
Under the influence of gravity, it will rotate about V until a side
hits the x-axis floor (Figure 17). Let x denote the initial x-
coordinate of the midpoint M of the side opposite V, and let f(x)

1q 7 02.p>q
f1x2 = 1>qf1x2 = 0

f(x)
g1x2 = ƒ f1x2 ƒ

ƒ f1x2 ƒ = 21f1x222.f(x)

f1t2 = mt

x = 0.
f1x + y2 = f1x2 + f1y2

[a, b]
[a, b] denote the final x-coordinate of this point.Assume that the block

balances when M is directly above V.
(a) Determine the domain and range of f.
(b) Where on this domain is f discontinuous?
(c) Identify any fixed points of f (see Problem 65).

y

x–1 x 0 1

M

V V

y

x–1
f (x)

0 1

M

Initial position Final position

Figure 17

2.8 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. If then 

2. If then 

3. If exists, then exists.

4. If then for every there exists a 

such that implies 

5. If is undefined, then does not exist.

6. The coordinates of the hole in the graph of 
are (5, 10).

7. If is a polynomial, then 

8. does not exist.

9. For every real number c,

10. tan x is continuous at every point of its domain.

11. The function is continuous at
every real number.

12. If is continuous at c, then exists.

13. If is continuous on [0, 4], then exists.

14. The function is
continuous at every point in 

15. If is an invertible function with inverse and if
then lim

x:f(1)
 f-1(x) = 1.lim

x:1
 f(x) = f(1),

f-1,f

(-1, 1).
f(x) = cos-1 x

lim
x:0

 f1x2f

f(c)f

f1x2 = 2 sinh2 x - cosh x

lim
x:c

 tan x = tan c.

lim
x:0

 
sin x

x

lim
x:c

 p1x2 = p1c2.p(x)

y =

x2
- 25

x - 5

lim
x:c

 f1x2f(c)

ƒ f1x2 ƒ 6 e.0 6 ƒ x ƒ 6 d

d 7 0e 7 0lim
x:0

 f1x2 = 0,

f(c)lim
x:c

 f1x2
f1c2 = L.lim

x:c
 f1x2 = L,

lim
x:c

 f1x2 = L.f1c2 = L,

16. If is a sequence of rational numbers that converges to
then 

17. If is a continuous function such that for
all x, then exists and it satisfies 

18. If is continuous on (a, b) then for all c
in (a, b).

19.

20. If the line is a horizontal asymptote of the graph of
then 

21. The graph of has many horizontal asymptotes.

22. The graph of has two vertical asymptotes.

23.

24. If then is continuous at 

25. If then is continuous at 

26. The function is continuous at 

27. If then for all x

in some interval containing 2.

28. If exists, then and 

both exist.

29. If for all x, then 

30. If and then 

31. If for all x, then 

32. If for all x and exists, then
lim
x:2

 f1x2 6 10.
lim
x:2

 f1x2f1x2 6 10

lim
x:c

 f1x2 Z lim
x:c

 g1x2.f1x2 Z g1x2
L = M.lim

x:a
 f1x2 = M,lim

x:a
 f1x2 = L

lim
x:0

 f1x2 = 0.0 … f1x2 … 3x2
+ 2x4

lim
x:c

 g1x2lim
x:c

 f1x2lim
x:c

 [f1x2 + g1x2]

f1x2 6 1.001f122lim
x:2

 f1x2 = f122 7 0,

x = 2.3.f1x2 = Œx>2 œ
x = c.flim

x:c
 f1x2 = f A lim

x:c
 x B ,

x = c.flim
x:c-

 f1x2 = lim
x:c+

 f1x2,
lim

t:1+

 
et

t - 1
= q .

y =

1

x2
- 4

y = tan x

lim
x: q

 f1x2 = 2.y = f1x2,
y = 2

lim
x: q

 tan-1x =

p

2

lim
x:c

 f1x2 = f1c2f

A … lim
x: q

 f1x2 … B.lim
x: q

 f1x2
A … f1x2 … Bf

pp = lim
n: q

 prn.p,
rn

Answers to Concepts Review: 1. 2. every inte-

ger 3.

4. a; b; f1c2 = W

lim
x:a +

 f1x2 = f1a2; lim
x:b-

 f1x2 = f1b2
lim
x:c

 f1x2
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33. If then 

34. If f is continuous and positive on [a, b], then must
assume every value between and 

Sample Test Problems

In Problems 1–22, find the indicated limit or state that it does not
exist.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Prove using an argument that 

24. Let 

Find each value.
(a) (b)

(c) (d)

25. Refer to f of Problem 24.

(a) What are the values of x at which f is discontinuous?

(b) How should f be defined at to make it continuous
there?

x = -1

lim
x: -1

 f1x2lim
x:1-

 f1x2
lim

x:1+

 f1x2f(1)

f1x2 = c x3 if x 6 -1
x if -1 6 x 6 1
1 - x if x Ú 1

lim
x:3
12x + 12 = 7.e–d

lim
x:0+

 ln x2lim
x:p>4-

 tan 2x

lim
x:0+

 
cos x

x
lim

x: q

  ex2

lim
t: q

 
sin t

t
lim

x: q

 
x - 1
x + 2

lim
x:0

  
1 - cos 2x

3x
lim
x:0

  
sin 5x

3x

lim
x:1-

  
ƒ x - 1 ƒ

x - 1
lim

t:2- 
1Œ t œ - t2

lim
x:1>2+ 

Œ4x œlim
x:0- 

 
ƒ x ƒ

x

lim
x:0

  
cos x

x
lim
x:4

  
x - 41x - 2

lim
y:1

  
y3

- 1

y2
- 1

lim
x:0

  
tan x
sin 2x

lim
z:2

  
z2

- 4

z2
+ z - 6

lim
x:2

  
1 - 2>x
x2

- 4

lim
u:1

  
u + 1

u2
- 1

lim
u:1

  
u2

- 1
u - 1

lim
u:1 

 
u2

- 1
u + 1

lim
x:2

  
x - 2
x + 2

1>f(b).1>f(a)
1>f

lim
x:a

ƒ f1x2 ƒ = ƒ b ƒ .lim
x:a

 f1x2 = b, 26. Give the definition in each case.
(a) (b)

27. If and and if g is continuous

at find each value.

(a) (b)

(c) g(3) (d)

(e) (f)

28. Sketch the graph of a function f that satisfies all the fol-
lowing conditions.
(a) Its domain is [0, 6].
(b)

(c) f is continuous except at 

(d) and 

29. Let 

Determine a and b so that f is continuous everywhere.
30. Use the Intermediate Value Theorem to prove that the

equation has at least one solution
between and 

In Problems 31–36, find the equations of all vertical and horizon-
tal asymptotes for the given function.

31. 32.

33. 34.

35. 36.

In Problems 37–38, determine the largest interval over which the
given function is continuous.

37.

38. f1x2 = ln (25 - x2)

f1x2 = cos-1 
x

2

H1x2 = 2 tan -1 xh1x2 = tan 2x

G1x2 =

x3

x2
- 4

F1x2 =

x2

x2
- 1

g1x2 =

x2

x2
+ 1

f1x2 =

x

x2
+ 1

x = 3.x = 2
x5

- 4x3
- 3x + 1 = 0

f1x2 = c -1 if x … 0
ax + b if 0 6 x 6 1
1 if x Ú 1 

lim
x:5+

 f1x2 = 3.lim
x:2-

 f1x2 = 1

x = 2.

f102 = f122 = f142 = f162 = 2.

lim
x:3

 

ƒ g1x2 - g132 ƒ

f1x2lim
x:3

 2f21x2 - 8g1x2
lim
x:3

 g1f1x22
lim
x:3

 g1x2 
x2

- 9
x - 3

lim
x:3

 [2f1x2 - 4g1x2]
x = 3,

lim
x:3

 g1x2 = -2lim
x:3

 f1x2 = 3

lim
x:a-

 f1x2 = Llim
u:a

 g1u2 = M

e–d
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1. Let Find and simplify each of the following.
(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. Repeat (a) through (h) of Problem 1 for the function 

3. Repeat (a) through (h) of Problem 1 for the function 

4. Repeat (a) through (h) of Problem 1 for the function 

5. Write the first two terms in the expansions of the following:
(a) (b)
(c)

6. Based on your results from Problem 5, make a conjecture about the first two terms
in the expansion of for an arbitrary n.

7. Use a trigonometric identity to write in terms of sin x, sin h, cos x, and 
cos h.

8. Use a trigonometric identity to write in terms of cos x, cos h, sin x, and
sin h.

9. A wheel centered at the origin and of radius 10 centimeters is rotating counterclock-
wise at a rate of 4 revolutions per second. A point P on the rim of the wheel is at position
(10, 0) at time 
(a) What are the coordinates of P at times 
(b) At what time does the point P first return to the starting position (10, 0)?

10. Assume that a soap bubble retains its spherical shape as it expands.At time the
soap bubble has radius 2 centimeters. At time the radius has increased to 2.5 cen-
timeters. How much has the volume changed in this 1 second interval?

11. One airplane leaves an airport at noon flying north at 300 miles per hour. Another
leaves the same airport one hour later and flies east at 400 miles per hour.
(a) What are the positions of the airplanes at 2:00 P.M.?
(b) What is the distance between the two planes at 2:00 P.M.?
(c) What is the distance between the two planes at 2:15 P.M.?

12. Write as the logarithm of a single quantity:

In Problems 13–16, evaluate the given limits.

13.

14.

15.

16. lim
h:0

 a1 +

h

x
b1>h

lim
h:0

 a1 +

h

3
b1>h

lim
h:0

 a1 +

h

2
b2>h

lim
n: q

 a1 -

2
n
bn

ln x + 2 ln (x2
+ 4) - 3 ln (x + 1)

t = 1,
t = 0

t = 1, 2, 3?
t = 0.

cos1x + h2
sin1x + h2

1a + b2n
1a + b25

1a + b241a + b23
f1x2 = x3

+ 1.

f1x2 = 1x.

f1x2 = 1>x.

lim
h:0

  
f1a + h2 - f1a2
1a + h2 - a

f1a + h2 - f1a2
1a + h2 - a

f1a + h2 - f1a2f1a + h2
f12.12 - f122

2.1 - 2
f12.12 - f122

f(2.1)f(2)
f1x2 = x2.REVIEW &

PREVIEW
PROBLEMS
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The DerivativeCHAPTER 3
3.1 Two Problems 

with One Theme

3.2 The Derivative

3.3 Rules for Finding
Derivatives

3.4 Derivatives of
Trigonometric
Functions

3.5 The Chain Rule

3.6 Higher-Order
Derivatives

3.7 Implicit
Differentiation

3.8 Related Rates

3.9 Derivatives of
Exponential and
Logarithmic
Functions

3.10 Derivatives of
Hyperbolic and
Inverse
Trigonometric
Functions

3.11 Differentials and
Approximations

3.1
Two Problems with One Theme
Our first problem is very old; it dates back to the great Greek scientist Archimedes
(287–212 B.C.).We refer to the problem of the slope of the tangent line. Our second
problem is newer. It grew out of attempts by Kepler (1571–1630), Galileo
(1564–1642), Newton (1642–1727), and others to describe the speed of a moving
body. It is the problem of instantaneous velocity.

The two problems, one geometric and the other mechanical, appear to be quite
unrelated. In this case, appearances are deceptive. The two problems are identical
twins.

The Tangent Line Euclid’s notion of a tangent as a line touching a curve at
just one point is all right for circles (Figure 1) but completely unsatisfactory for
most other curves (Figure 2). The idea of a tangent to a curve at P as the line that
best approximates the curve near P is better, but is still too vague for mathematical
precision. The concept of limit provides a way of getting the best description.

Let P be a point on a curve and let Q be a nearby movable point on that curve.
Consider the line through P and Q, called a secant line. The tangent line at P is 
the limiting position (if it exists) of the secant line as Q moves toward P along the
curve (Figure 3).

Suppose that the curve is the graph of the equation Then P has
coordinates a nearby point Q has coordinates and the
secant line through P and Q has slope given by (Figure 4):

msec =

f1c + h2 - f1c2
h

msec

1c + h, f1c + h22,(c, f(c)),
y = f1x2.

Using the concept of limit, which we studied in the last chapter, we can now give a
formal definition of the tangent line.

P

Tangent line at P

Figure 1

Tangent line at P

P

Figure 2

Tangent line

m tan = lim m sec

y

(c, f (c)) 

(c + h, f (c + h))

f (c + h) – f (c)

c + h

y = f (x)

f (c + h)

c

P

Q

 h

x

Secant line

→h       0

f (c)

Secant
lines

P

Q

Q

Q

Tangent
line

The tangent line is the limiting
position of the secant line.

Figure 3 Figure 4

Definition Tangent Line

The tangent line to the curve at the point is that line
through P with slope

provided that this limit exists and is not or - q .q

mtan = lim
h:0

 msec = lim
h:0

 

f1c + h2 - f1c2
h

P(c, f(c))y = f1x2

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 3 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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120 Chapter 3 The Derivative

� EXAMPLE 1 Find the slope of the tangent line to the curve 
at the point (2, 4).

SOLUTION The line whose slope we are seeking is shown in Figure 5. Clearly it
has a large positive slope.

�

� EXAMPLE 2 Find the slopes of the tangent lines to the curve
at the points with x-coordinates and 3.

SOLUTION Rather than make four separate calculations, it seems wise to
calculate the slope at the point with x-coordinate c and then obtain the four
desired answers by substitution.

The four desired slopes (obtained by letting ) are 4, 1, and 
These answers do appear to be consistent with the graph in Figure 6. �

� EXAMPLE 3 Find the equation of the tangent line to the curve at

(see Figure 7).

SOLUTION Let 

 = lim
h:0

  
-1

212 + h2 = -

1
4

 = lim
h:0

  
-h

212 + h2h

 = lim
h:0

  
2 - 12 + h2
212 + h2h

 = lim
h:0

  

2
212 + h2 -

2 + h

212 + h2
h

 = lim
h:0

  

1
2 + h

-

1
2

h

 mtan = lim
h:0

  
f12 + h2 - f122

h

f1x2 = 1>x.

A2, 12 B
y = 1>x

-4.-2,c = -1, 12, 2, 3

 = -2c + 2

 = lim
h:0

  
h1-2c - h + 22

h

 = lim
h:0

  
-c2

- 2ch - h2
+ 2c + 2h + 2 + c2

- 2c - 2
h

 = lim
h:0

  
-1c + h22 + 21c + h2 + 2 - 1-c2

+ 2c + 22
h

 mtan = lim
h:0

  
f1c + h2 - f1c2

h

-1, 12, 2,y = f1x2 = -x2
+ 2x + 2

 = 4

 = lim
h:0

  
h14 + h2

h

 = lim
h:0

  
4 + 4h + h2

- 4
h

 = lim
h:0

  
12 + h22 - 22

h

 mtan = lim
h:0

  
f12 + h2 - f122

h

y = f1x2 = x2

3

2

1

1–1 2

4 (2, 4)

y = x2

y

x

Figure 5

–2 1 2

–1

1

x

m = 4

m = 1

m = –4

m = –2

y

y = –x2 + 2x + 2 

Figure 6

1

1

2

2

3

3

x

y  =

y

1
x

Figure 7
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Section 3.1 Two Problems with One Theme 121

Knowing that the slope of the tangent line is and that the point is on it, we
can easily write its equation by using the point-slope form 
The result is or equivalently, �

Average Velocity and Instantaneous Velocity If we drive an automo-
bile from one town to another 80 miles away in 2 hours, our average velocity is 40
miles per hour. Average velocity is the distance from the first position to the second
position divided by the elapsed time.

But during our trip the speedometer reading was often different from 40. At
the start, it registered 0; at times it rose as high as 57; at the end it fell back to 0
again. Just what does the speedometer measure? Certainly, it does not indicate
average velocity.

Consider the more precise example of an object P falling in a vacuum. Ex-
periment shows that if it starts from rest, P falls feet in t seconds. Thus, it falls
16 feet in the first second and 64 feet during the first 2 seconds (Figure 8); clearly,
it falls faster and faster as time goes on. Figure 9 shows the distance traveled (on
the vertical axis) as a function of time (on the horizontal axis).

During the second second (i.e., in the time interval from to ), P fell
feet. Its average velocity was

During the time interval from to it fell Its
average velocity was

Similarly, on the time intervals to and to we calculate
the respective average velocities to be

What we have done is to calculate the average velocity over shorter and short-
er time intervals, each starting at The shorter the time interval is, the better
we should approximate the instantaneous velocity at the instant Looking at
the numbers 48, 40, 33.6, and 32.16, we might guess 32 feet per second to be the
instantaneous velocity.

But let us be more precise. Suppose that an object P moves along a coordinate
line so that its position at time t is given by At time c the object is at 
at the nearby time it is at (see Figure 10). Thus the average veloc-
ity on this interval is

We can now define instantaneous velocity.

vavg =

f1c + h2 - f1c2
h

f1c + h2c + h,
f(c);s = f1t2.

t = 1.
t = 1.

 vavg =

1611.0122 - 16

1.01 - 1
=

0.3216
0.01

= 32.16 feet per second

 vavg =

1611.122 - 16

1.1 - 1
=

3.36
0.1

= 33.6 feet per second

t = 1.01,t = 1t = 1.1t = 1

vavg =

1611.522 - 16

1.5 - 1
=

20
0.5

= 40 feet per second

1611.522 - 16 = 20 feet.t = 1.5,t = 1

vavg =

64 - 16
2 - 1

= 48 feet per second

64 - 16 = 48
t = 2t = 1

16t2

y = 1 -
1
4x.y -

1
2 = -

1
41x - 22,

y - y0 = m1x - x02.
A2, 12 B-

1
4

0

16

s = 16t2

1st second

feet

2nd second

32

48

64

Figure 8

t
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0
4

200
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Figure 9

0
c

c+ h

Change in time

Change in 
position

0

f (c)

f (c+h)

Figure 10

Definition Instantaneous Velocity

If an object moves along a coordinate line with position function then its
instantaneous velocity at time c is

provided that the limit exists and is not or - q .q

v = lim
h:0

 vavg = lim
h:0

 

f1c + h2 - f1c2
h

f(t),
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122 Chapter 3 The Derivative

In the case where the instantaneous velocity at is

This confirms our earlier guess.

� EXAMPLE 4 An object, initially at rest, falls due to gravity. Find its instan-
taneous velocity at seconds and at seconds.

SOLUTION We calculate the instantaneous velocity at seconds. Since

Thus, the instantaneous velocity at 3.8 seconds is per second;
at 5.4 seconds, it is  per second. �

� EXAMPLE 5 How long will it take the falling object of Example 4 to reach
an instantaneous velocity of 112 feet per second?

SOLUTION We learned in Example 4 that the instantaneous velocity after c
seconds is 32c. Thus, we must solve the equation The solution is

�

� EXAMPLE 6 A particle moves along a coordinate line and s, its directed
distance in centimeters from the origin after t seconds, is given by 

Find the instantaneous velocity of the particle after 3 seconds.

SOLUTION Figure 11 shows the distance traveled as a function of time. The
instantaneous velocity at time is equal to the slope of the tangent line at

To evaluate this limit, we rationalize the numerator by multiplying the numerator
and denominator by We obtain216 + 5h + 4.

 = lim
h:0

  
216 + 5h - 4

h

 = lim
h:0

  
2513 + h2 + 1 - 25132 + 1

h

 v = lim
h:0

  
f13 + h2 - f132

h

t = 3.
t = 3

25t + 1.
f1t2 =s =

c =
112
32 = 3.5 seconds.

32c = 112.

3215.42 = 172.8 feet
3213.82 = 121.6 feet

 = lim
h:0 
132c + 16h2 = 32c

 = lim
h:0

  
16c2

+ 32ch + 16h2
- 16c2

h

 = lim
h:0

  
161c + h22 - 16c2

h

 v = lim
h:0

  
f1c + h2 - f1c2

h

f1t2 = 16t2,
t = c

t = 5.4t = 3.8

 = lim
h:0 
132 + 16h2 = 32

 = lim
h:0

  
16 + 32h + 16h2

- 16
h

 = lim
h:0

  
1611 + h22 - 16

h

 v = lim
h:0

  
f11 + h2 - f112

h

t = 1f1t2 = 16t2,

Now you see why we called this
section “Two Problems with One
Theme.” Look at the definitions of
slope of the tangent line and
instantaneous velocity. They give
different names for the same mathe-
matical concept.

Two Problems with One Theme

t

4.5

4321
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4

3.5

3

2.5

2

1.5

1
0

Figure 11
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Section 3.1 Two Problems with One Theme 123

We conclude that the instantaneous velocity after 3 seconds is centimeter per
second. �

Rates of Change Velocity is only one of many rates of change that will be
important in this course; it is the rate of change of distance with respect to time.
Other rates of change that will interest us are density for a wire (the rate of
change of mass with respect to distance), marginal revenue (the rate of change of
revenue with respect to the number of items produced), and current (the rate 
of change of electrical charge with respect to time). These rates and many more
are discussed in the problem set. In each case, we must distinguish between an
average rate of change on an interval and an instantaneous rate of change at a
point.The phrase rate of change without an adjective will mean instantaneous rate
of change.

5
8

 = lim
h:0

  
5216 + 5h + 4

=

5
8

 = lim
h:0

  
16 + 5h - 16

h A216 + 5h + 4 B

 v = lim
h:0
a216 + 5h - 4

h
#
216 + 5h + 4216 + 5h + 4

b

For the time being, we will use the
terms velocity and speed inter-
changeably. Later in this chapter, we
will distinguish between these two
words.

Velocity or Speed

Concepts Review
1. The line that most closely approximates a curve near the

point P is the _____ through that point.

2. More precisely, the tangent line to a curve at P is the lim-
iting position of the _____ line through P and Q as Q approaches
P along the curve.

3. The slope of the tangent line to the curve 
at is given by _____.

4. The instantaneous velocity of a point P (moving along a
line) at time c is the limit of the _____ on the time interval c to

as h approaches zero.c + h

mtan = lim
h:0

(c, f(c))
y = f1x2mtan

Problem Set 3.1
In Problems 1 and 2, a tangent line to a curve is drawn. Estimate its
slope Be careful to note the difference in
scales on the two axes.

1. 2.

In Problems 3–6, draw the tangent line to the curve through the
indicated point and estimate its slope.

3. 4.

1 2–1–2 3 4 5 6 7

1

3
4

6

5

7

y

x

2

1 2–1–2 3 4 5 6 7

1

3

2

4

5

6

7

y

x

1 2–2 –1 3 4 5 6 7

1

3
2

4

6
5

7

y

x
1–1 2 3

1

3
4

5

6

7

y

x

1slope = rise>run2.
5. 6.

7. Consider 

(a) Sketch its graph as carefully as you can.

(b) Draw the tangent line at (1, 2).

(c) Estimate the slope of this tangent line.

(d) Calculate the slope of the secant line through (1, 2) and

(e) Find by the limit process (see Example 1) the slope of the
tangent line at (1, 2).

8. Consider 
(a) Sketch its graph as carefully as you can.

y = x3
- 1.

11.01, 11.0122 + 1.02.
C

≈

y = x2
+ 1.

2 4 6 71–1–2 3 5

1

3

2

y

x

1–1 2 3

1

3

2

4

5

7

8

y

x

6
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(b) Draw the tangent line at (2, 7).
(c) Estimate the slope of this tangent line.
(d) Calculate the slope of the secant line through (2, 7) and

(e) Find by the limit process (see Example 1) the slope of the
tangent line at (2, 7).

9. Find the slopes of the tangent lines to the curve
at the points where (see Exam-

ple 2).

10. Find the slopes of the tangent lines to the curve
at the points where 

11. Sketch the graph of and then find the
equation of the tangent line at (see Example 3).

12. Find the equation of the tangent line to at

13. Experiment suggests that a falling body will fall approx-
imately feet in t seconds.

(a) How far will it fall between and 

(b) How far will it fall between and 

(c) What is its average velocity on the interval 

(d) What is its average velocity on the interval 

(e) Find its instantaneous velocity at (see Example 4).

14. An object travels along a line so that its position s is
meters after t seconds.

(a) What is its average velocity on the interval 

(b) What is its average velocity on the interval 

(c) What is its average velocity on the interval 

(d) Find its instantaneous velocity at 

15. Suppose that an object moves along a coordinate line so
that its directed distance from the origin after t seconds is

feet.

(a) Find its instantaneous velocity at 
(b) When will it reach a velocity of foot per second? (see Ex-

ample 5.)

16. If a particle moves along a coordinate line so that its
directed distance from the origin after t seconds is 
feet, when did the particle come to a momentary stop (i.e., when
did its instantaneous velocity become zero)?

17. A certain bacterial culture is growing so that it has a mass
of grams after t hours.

(a) How much did it grow during the interval 
(b) What was its average growth rate during the interval

(c) What was its instantaneous growth rate at 

18. A business is prospering in such a way that its total (accu-
mulated) profit after t years is dollars.
(a) How much did the business make during the third year (be-

tween and )?
(b) What was its average rate of profit during the first half of the

third year, between and (The rate will be in
dollars per year.)

(c) What was its instantaneous rate of profit at t = 2?

t = 2.5?t = 2

t = 3t = 2

1000t2

t = 2?≈
2 … t … 2.01?

2 … t … 2.01?C

1
2  t2

+ 1

1- t2
+ 4t2

1
2

t = a, a 7 0.

22t + 1

t = 2.≈
2 … t … 2 + h?

2 … t … 2.003?C

2 … t … 3?
s = t2

+ 1

t = 3≈
3 … t … 3.01?C

2 … t … 3?

t = 2?t = 1

t = 1?t = 0

16t2

10, -12.
y = 1>1x - 12

A1, 12 B
y = 1>1x + 12

x = -2, -1, 0, 1, 2.y = x3
- 3x

x = -2, -1, 0, 1, 2y = x2
- 1

12.01, 12.0123 - 1.02.
C

≈

(a) What is the average density of the middle 2-centimeter seg-
ment of this wire? Note: Average density equals mass/length.

(b) What is the actual density at the point 3 centimeters from
the left end?

20. Suppose that the revenue R(n) in dollars from producing
n computers is given by Find the instan-
taneous rates of change of revenue when and 
(The instantaneous rate of change of revenue with respect to the
amount of product produced is called the marginal revenue.)

21. The rate of change of velocity with respect to time is
called acceleration. Suppose that the velocity at time t of a par-
ticle is given by Find the instantaneous acceleration
when second.

22. A city is hit by an Asian flu epidemic. Officials estimate
that t days after the beginning of the epidemic the number of per-
sons sick with the flu is given by when

At what rate is the flu spreading at time

23. The graph in Figure 13 shows the amount of water in a
city water tank during one day when no water was pumped into
the tank. What was the average rate of water usage during the
day? How fast was water being used at 8 A.M.?

t = 10; t = 20; t = 40?
0 … t … 40.

p1t2 = 120t2
- 2t3,

t = 1
v1t2 = 2t2.

n = 100.n = 10
R1n2 = 0.4n - 0.001n2.

24. Passengers board an elevator at the ground floor (i.e., the
zeroth floor) and take it to the seventh floor, which is 84 feet
above the ground floor. The elevator’s position s as a function of
time t (measured in seconds) is shown in Figure 14.

19. A wire of length 8 centimeters is such that the mass be-
tween its left end and a point x centimeters to the right is 
grams (Figure 12).

x3
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(a) What is the average velocity of the elevator from the time
the elevator began moving until the time that it reached the
seventh floor?

(b) What was the elevator’s approximate velocity at time

(c) How many stops did the elevator make between the ground
floor and the seventh floor (excluding the ground and sev-
enth floors)? On which floors do you think the elevator
stopped?

25. Figure 15 shows the normal high temperature for St.
Louis, Missouri, as a function of time (measured in days begin-
ning January 1).

t = 20?

(a) What is the approximate rate of change in the normal high
temperature on March 2 (i.e., on day number 61)? What are
the units of this rate of change?

(b) What is the approximate rate of change in the normal high
temperature on July 10 (i.e., on day number 191)?

(c) In what months is there a moment when the rate of change is
equal to 0?

(d) In what months is the absolute value of the rate of change
the greatest?

26. Figure 16 shows the population in millions of a develop-
ing country for the years 1900 to 1999. What is the approximate
rate of change of the population in 1930? In 1990? The percent-
age growth is often a more appropriate measure of population
growth. This is the rate of growth divided by the population size
at that time. For this population, what was the approximate per-
centage growth in 1930? In 1990?

27. Figures 17a and 17b show the position s as a function of
time t for two particles that are moving along a line. For each par-
ticle, is the velocity increasing or decreasing? Explain.

28. The rate of change of electric charge with respect to time
is called current. Suppose that coulombs of charge flow
through a wire in t seconds. Find the current in amperes
(coulombs per second) after 3 seconds. When will a 20-ampere
fuse in the line blow?

29. The radius of a circular oil spill is growing at a constant
rate of 2 kilometers per day. At what rate is the area of the spill
growing 3 days after it began?

30. The radius of a spherical balloon is increasing at the rate
of 0.25 inch per second. If the radius is 0 at time find the
rate of change in the volume at time 

Use a graphing calculator or a CAS to do Problems 31–34.

31. Draw the graph of Then find
the slope of the tangent line at
(a) (b) 0 (c) 1 (d) 3.2

32. Draw the graph of Then find
the slope of the tangent line at
(a) (b) 2.8 (c) (d) 4.2

33. If a point moves along a line so that its distance s (in feet)
from 0 is given by at time t seconds, find its
instantaneous velocity at 

34. If a point moves along a line so that its distance s (in me-
ters) from 0 is given by at time t minutes,
find its instantaneous velocity at 

Answers to Concepts Review: 1. tangent line 2. secant
3. 4. average velocity[f1c + h2 - f1c2]>h

t = 1.6.
s = 1t + 123>1t + 22
t = 3.

s = t + t cos2 t

pp>3
y = f1x2 = sin x sin2 2x.

-1

y = f1x2 = x3
- 2x2

+ 1.

GC

t = 3.
t = 0,

1
3 t3

+ t
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126 Chapter 3 The Derivative

3.2
The Derivative

Definition Derivative

The derivative of a function f is another function (read “f prime”) whose
value at any number x is

f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h

f¿

We have seen that slope of the tangent line and instantaneous velocity are manifes-
tations of the same basic idea. Rate of growth of an organism (biology), marginal
profit (economics), density of a wire (physics), and dissolution rates (chemistry)
are other versions of the same basic concept. Good mathematical sense suggests
that we study this concept independently of these specialized vocabularies and
diverse applications.We choose the neutral name derivative.Add it to function and
limit as one of the key words in calculus.

If this limit does exist, we say that f is differentiable at x. Finding a derivative is
called differentiation; the part of calculus associated with the derivative is called
differential calculus.

Finding Derivatives We illustrate with several examples.

� EXAMPLE 1 Let Find 

SOLUTION

�

� EXAMPLE 2 If find 

SOLUTION

�

� EXAMPLE 3 If find 

SOLUTION

 = lim
h:0

  
-1

1x + h2x = -

1

x2

 = lim
h:0 
cx - 1x + h2
1x + h2x #

1
h
d = lim

h:0 
c -h

1x + h2x #
1
h
d

 f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h
= lim

h:0
  

1
x + h

-

1
x

h

f¿1x2.f1x2 = 1>x,

 = 3x2
+ 7

 = lim
h:0 
13x2

+ 3xh + h2
+ 72

 = lim
h:0

  
3x2h + 3xh2

+ h3
+ 7h

h

 = lim
h:0

  
C 1x + h23 + 71x + h2 D - Cx3

+ 7x D
h

 f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h

f¿1x2.f1x2 = x3
+ 7x,

 = lim
h:0

  
13h

h
= lim

h:0
 13 = 13

 f¿142 = lim
h:0

  
f14 + h2 - f142

h
= lim

h:0
  
[1314 + h2 - 6] - [13142 - 6]

h

f¿142.f1x2 = 13x - 6.
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f (c + h) – f (c)

(c  + h, f (c+ h))

(c,  f (c))

c + h

h

c

y

x

Figure 1

x – c

(x,  f (x))

f (x) – f (c)

(c, f (c))

xc

y

x

Figure 2

Thus, is the function given by Its domain is all real numbers
except �

� EXAMPLE 4 Find if 

SOLUTION

By this time you will have noticed that finding a derivative always involves taking
the limit of a quotient where both numerator and denominator are approaching
zero. Our task is to simplify this quotient so that we can cancel a factor h from the
numerator and denominator, thereby allowing us to evaluate the limit by sub-
stitution. In the present example, this can be accomplished by rationalizing the
numerator.

Thus, the derivative of F, is given by Its domain is 
�

Equivalent Forms for the Derivative There is nothing sacred about use
of the letter h in defining Notice, for example, that

A more radical change, but still just a change of notation, may be understood
by comparing Figures 1 and 2. Note how x takes the place of and so 
replaces h. Thus,

Note that in all cases the number at which is evaluated is held fixed during
the limit operation.

f¿

f¿1c2 = lim
x:c

  
f1x2 - f1c2

x - c

x - cc + h,

 = lim
s:0

  
f1c + s2 - f1c2

s

 = lim
p:0

  
f1c + p2 - f1c2

p

 f¿1c2 = lim
h:0

  
f1c + h2 - f1c2

h

f¿1c2.

10, q2. F¿1x2 = 1> A21x B .F¿,

 =

11x + 1x
=

1
21x

 = lim
h:0

  
12x + h + 1x

 = lim
h:0

  
h

h A2x + h + 1x B

 = lim
h:0

  
x + h - x

h A2x + h + 1x B

 F¿1x2 = lim
h:0 
c2x + h - 1x

h
#
2x + h + 1x2x + h + 1x

d

 = lim
h:0

  
2x + h - 1x

h

 F¿1x2 = lim
h:0

  
F1x + h2 - F1x2

h

F1x2 = 1x, x 7 0.F¿1x2
x = 0.

f¿1x2 = -1>x2.f¿
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128 Chapter 3 The Derivative

Theorem A Differentiability Implies Continuity

If exists, then f is continuous at c.f¿1c2

f (x) = �x �

x1

1

–1

y

Figure 3

� EXAMPLE 5 Use the last boxed result to find if 

SOLUTION

Here we manipulated the quotient until we could cancel a factor of from the
numerator and denominator. Then we could evaluate the limit. �

� EXAMPLE 6 Each of the following is a derivative, but of what function and
at what point?

(a) (b)

SOLUTION
(a) This is the derivative of at 
(b) This is the derivative of  at  �

Differentiability Implies Continuity If a curve has a tangent line at a
point, then that curve cannot take a jump or wiggle too badly at the point.The pre-
cise formulation of this fact is an important theorem.

x = 3.f1x2 = 2>x
x = 4.f1x2 = x2

lim
x:3

  

2
x

-

2
3

x - 3
lim
h:0

  
14 + h22 - 16

h

x - c

 = lim
x:c

  
-2

1x + 321c + 32 =

-2

1c + 322

 = lim
x:c 
c -21x - c2
1x + 321c + 32 #

1
x - c

d

 = lim
x:c 
c21c + 32 - 21x + 32
1x + 321c + 32 #

1
x - c

d

 g¿1c2 = lim
x:c

  
g1x2 - g1c2

x - c
= lim

x:c
  

2
x + 3

-

2
c + 3

x - c

g1x2 = 2>1x + 32.g¿1c2

Proof We need to show that We begin by writing in a

fancy way.

Therefore,

�

The converse of this theorem is false. If a function f is continuous at c, it does
not follow that f has a derivative at c. This is easily seen by considering 
at the origin (Figure 3). This function is certainly continuous at zero. However, it
does not have a derivative there, as we now show. Note that for f(x) = ƒ x ƒ ,

f1x2 = ƒ x ƒ

 = f1c2
 = f1c2 + f¿1c2 # 0

 = lim
x:c

 f1c2 + lim
x:c

  
f1x2 - f1c2

x - c
# lim

x:c
1x - c2

 lim
x:c

  f1x2 = lim
x:c 
cf1c2 +

f1x2 - f1c2
x - c

# 1x - c2 d

f1x2 = f1c2 +

f1x2 - f1c2
x - c

# 1x - c2, x Z c

f(x)lim
x:c

 f1x2 = f1c2.
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Vertical
tangentCorner

f not continuous,
therefore not
differentiable

f continuous,
but not

differentiable

f continuous
and

differentiable

a b c d
x

y = f(x)

y

Figure 4

Thus,

whereas

Since the right- and left-hand limits are different,

does not exist. Therefore, does not exist.
A similar argument shows that at any point where the graph of a continuous

function has a sharp corner the function is not differentiable.The graph in Figure 4
indicates a number of ways for a function to be nondifferentiable at a point.

f¿102
lim
h:0

 

f10 + h2 - f102
h

lim
h:0-

 

f10 + h2 - f102
h

= lim
h:0-

 
ƒ h ƒ

h
= lim

h:0-

 
-h

h
= -1

lim
h:0+

 

f10 + h2 - f102
h

= lim
h:0+

 
ƒ h ƒ

h
= lim

h:0+

 
h

h
= 1

f10 + h2 - f102
h

=

ƒ 0 + h ƒ - ƒ 0 ƒ

h
=

ƒ h ƒ

h

For the function shown in Figure 4 the derivative does not exist at the point c
where the tangent line is vertical. This is because

This corresponds to the fact that the slope of a vertical line is undefined.

Increments If the value of a variable x changes from to then 
the change in x, is called an increment of x and is commonly denoted by (read
“delta x”). Note that does not mean times x. If and then

If and then

Suppose next that determines a function. If x changes from to 
then y changes from to Thus, corresponding to the incre-
ment in x, there is an increment in y given by

� EXAMPLE 7 Let Find when x changes from 0.4 to
1.3 (see Figure 5).

¢yy = f1x2 = 2 - x2.

¢y = y2 - y1 = f1x22 - f1x12
¢x = x2 - x1

y2 = f1x22.y1 = f1x12
x2,x1y = f1x2

¢x = x2 - x1 = c + h - c = h

x2 = c + h,x1 = c

¢x = x2 - x1 = 5.7 - 4.1 = 1.6

x2 = 5.7,x1 = 4.1¢¢x
¢x
x2 - x1,x2,x1

lim
h:0

  
f1c + h2 - f1c2

h
= q

–1 0.4 1.3

–1

1

y

x

y = 2 – x2
∆ x

∆ y

Figure 5
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130 Chapter 3 The Derivative

y

xx x + ∆ x

f(x + ∆ x)

f(x)

(x + ∆ x, f(x + ∆ x))

(x, f(x)) ∆ x

∆y

Figure 6

y

x1–1

3

2

1

–1

–2 2 3 4

y = f (x) y

x1–1

3

2

1

–1

–2 2 3 4

y = f (x)
Tangent line
has slope 0
when x = 0 and
when x = 2

Tangent line
has slope 3
when x = –2

y

x1–1

3

2

1

–1

–2 2 3 4

y = f ' (x)(–2, 3)

(0, 0)
(2, 0)

Figure 7

SOLUTION

�

Leibniz Notation for the Derivative Suppose now that the independent
variable changes from x to The corresponding change in the dependent
variable, y, will be

and the ratio

represents the slope of a secant line through as shown in Figure 6. As
the slope of this secant line approaches that of the tangent line, and for

this latter slope we use the symbol Thus,

Gottfried Wilhelm Leibniz, a contemporary of Isaac Newton, called a quo-
tient of two infinitesimals. The meaning of the word infinitesimal is vague, and we
will not use it. However, is a standard symbol for the derivative and we will
use it frequently from now on.

The Graph of the Derivative The derivative gives the slope of the
tangent line to the graph of at the value of x. Thus, when the tangent line
is sloping up to the right, the derivative is positive, and when the tangent line is
sloping down to the right, the derivative is negative. We can therefore get a rough
picture of the derivative given just the graph of the function.

� EXAMPLE 8 Given the graph of shown in the first part of 
Figure 7, sketch a graph of the derivative 

SOLUTION For the tangent line to the graph of has positive
slope. A rough calculation from the plot suggests that when the slope is
about 3. As we move from left to right along the curve in Figure 7, we see that the
slope is still positive (for a while) but that the tangent lines become flatter and
flatter. When the tangent line is horizontal, telling us that For x
between 0 and 2, the tangent lines have negative slope, indicating that the
derivative will be negative over this interval. When we are again at a point
where the tangent line is horizontal, so the derivative is equal to zero when 
For the tangent line again has positive slope. The graph of the derivative

is shown in the last part of Figure 7. �f¿1x2x 7 2,
x = 2.

x = 2,

f¿102 = 0.x = 0,

x = -2,
y = f1x2x 6 0,

f¿1x2.y = f1x2

y = f1x2 f¿1x2

dy>dx

dy>dx

dy

dx
= lim

¢x:0
  
¢y

¢x
= lim

¢x:0
  
f1x + ¢x2 - f1x2

¢x
= f¿1x2

dy>dx.
¢x : 0,

(x, f(x)),

¢y

¢x
=

f1x + ¢x2 - f1x2
¢x

¢y = f1x + ¢x2 - f1x2

x + ¢x.

¢y = f11.32 - f10.42 = C2 - 11.322 D - C2 - 10.422 D = -1.53
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Section 3.2 The Derivative 131

Concepts Review
1. The derivative of f at x is given by _____.

Equivalently, _____.

2. The slope of the tangent line to the graph of at
the point is _____.(c, f(c))

y = f1x2
f¿1x2 = lim

t:x

f¿1x2 = lim
h:0

3. If f is differentiable at c, then f is _____ at c. The converse
is false, as is shown by the example _____.

4. If we now have two different symbols for the
derivative of y with respect to x. They are _____ and _____.

y = f1x2,
f1x2 =

Problem Set 3.2
In Problems 1–4, use the definition

to find the indicated derivative.

1. if 2. if 

3. if 4. if 

In Problems 5–22, use to find

the derivative at x.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Problems 23–26, use to find
(see Example 5).

23. 24.

25. 26.

In Problems 27–36, the given limit is a derivative, but of what func-
tion and at what point? (See Example 6.)

27.

28.

29. 30.

31. 32.

33. 34. lim
x:y

  
sin x - sin y

x - y
lim
x: t

  

2
x

-

2
t

x - t

lim
p:x

  
p3

- x3

p - x
lim
t:x

  
t2

- x2

t - x

lim
x:3

  
x3

+ x - 30
x - 3

lim
x:2

  
x2

- 4
x - 2

lim
h:0

  
13 + h22 + 213 + h2 - 15

h

lim
h:0

  
215 + h23 - 21523

h

f1x2 =

x + 3
x

f1x2 =

x

x - 5

f1x2 = x3
+ 5xf1x2 = x2

- 3x

f¿1x2
f¿1x2 = lim

t:x 
[f1t2 - f1x2]>[t - x]

H1x2 = 2x2
+ 4H1x2 =

32x - 2

g1x2 =

123x
g1x2 = 23x

G1x2 =

2x

x2
- x

G1x2 =

2x - 1
x - 4

F1x2 =

x - 1
x + 1

F1x2 =

6

x2
+ 1

S1x2 =

1
x + 1

h1x2 =

2
x

g1x2 = x4
+ x2f1x2 = x3

+ 2x2
+ 1

f1x2 = x4f1x2 = ax2
+ bx + c

f1x2 = x2
+ x + 1r1x2 = 3x2

+ 4

f1x2 = ax + bs1x2 = 2x + 1

f¿1x2 = lim
h:0

[f1x + h2 - f1x2]>h
f1s2 =

1
s - 1

f¿142f1t2 = t2
- tf¿132

f1t2 = 12t22f¿122f1x2 = x2f¿112

f¿1c2 = lim
h:0

  
f1c + h2 - f1c2

h

35. 36.

In Problems 37–44, the graph of a function is given. Use
this graph to sketch the graph of .

37. 38.

39. 40.

41. 42.

43. 44.

In Problems 45–50, find for the given values of and (see
Example 7).

45.

46.

47.

48. y =

2
x + 1

, x1 = 0, x2 = 0.1

y =

1
x

, x1 = 1.0, x2 = 1.2

y = 3x2
+ 2x + 1, x1 = 0.0, x2 = 0.1

y = 3x + 2, x1 = 1, x2 = 1.5

x2x1¢y

y

x1–1

4

3

2

1

–1
–2–3 2 3

y

x1–1

4

3

2

1

–1

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2

–2–3 2 3

y

x1–1

4

3

2

1

–1

–2

–2–3 2 3

y = f¿1x2
y = f1x2

lim
h:0

  
tan1t + h2 - tan t

h
lim
h:0

  
cos1x + h2 - cos x

h
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–1 1 2 3 4 5 6 7

1

2

3

4

x

y = g(x)

y

1–1 2 3 4 5 6 7

2

3

4

5

y

x

y = f (x)

Figure 8 Figure 9

–1 1 2 3 4 5 6 7

1

3

y

x

Figure 10

y

x

25

1

20

15

10

5

0

–5

–10

1 2 3 4

Figure 11

x

y

15

10

5

0

–5

–10

432

1

Figure 12

49.

50.

In Problems 51–56, first find and simplify

Then find by taking the limit of your answer as 

51. 52.

53. 54.

55. 56.

57. From Figure 8, estimate and 

58. From Figure 9, estimate and g¿162.g¿1-12, g¿112, g¿142,
f¿172.f¿102, f¿122, f¿152,

y =

x2
- 1
x

y =

x - 1
x + 1

y = 1 +

1
x

y =

1
x + 1

y = x3
- 3x2y = x2

¢x : 0.dy>dx

¢y

¢x
=

f1x + ¢x2 - f1x2
¢x

y = cos 2x, x1 = 0.571, x2 = 0.573C

y =

3
x + 1

, x1 = 2.34, x2 = 2.31C

59. Sketch the graph of on for the
function f in Figure 8.

60. Sketch the graph of on for the
function g in Figure 9.

61. Consider the function whose graph is sketched
in Figure 10.

y = f1x2,
-1 6 x 6 7y = g¿1x2
-1 6 x 6 7y = f¿1x2

(a) Estimate and 
(b) Estimate the average rate of change in f on the interval

(c) Where on the interval does fail to
exist?

(d) Where on the interval does f fail to be
continuous?

(e) Where on the interval does f fail to have a
derivative?

(f) Where on the interval is f¿1x2 = 0?-1 6 x 6 7

-1 6 x 6 7

-1 6 x 6 7

lim
u:x

 f1u2-1 6 x 6 7
0.5 … x … 2.5.

f¿10.52.f122, f¿122, f10.52,

(g) Where on the interval is 

62. Figure 14 in Section 3.1 shows the position s of an eleva-
tor as a function of time t. At what points does the derivative
exist? Sketch the derivative of s.

63. Figure 15 in Section 3.1 shows the normal high tempera-
ture for St. Louis, Missouri. Sketch the derivative.

64. Figure 11 shows two functions. One is the function f, and
the other is its derivative Which one is which?f¿.

f¿1x2 = 1?-1 6 x 6 7

65. Figure 12 shows three functions. One is the function f ;
another is its derivative which we will call g; and the third is
the derivative of g. Which one is which?

f¿,

66. Suppose that for all x and y.
Show that if exists then exists and 

67. Let 

Determine m and b so that f is differentiable everywhere.

68. The symmetric derivative is defined by

Show that if exists then exists, but that the converse is
false.

69. Let f be differentiable and let Find 
if
(a) f is an odd function.

f¿1-x02f¿1x02 = m.

fs1x2f¿1x2
fs1x2 = lim

h:0
 

f1x + h2 - f1x - h2
2h

fs1x2EXPL

f1x2 = emx + b if x 6 2
x2 if x Ú 2

f¿1a2 = f1a2f¿102.f¿1a2f¿102
f1x + y2 = f1x2f1y2EXPL
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Section 3.3 Rules for Finding Derivatives 133

(b) f is an even function.

70. Prove that the derivative of an odd function is an even
function and that the derivative of an even function is an odd
function.

Use a CAS to do Problems 71 and 72.

71. Draw the graphs of and its deriv-
ative on the interval using the same axes.
(a) Where on this interval is 
(b) Where on this interval is decreasing?
(c) Make a conjecture. Experiment with other intervals and

other functions to support this conjecture.

f(x)
f¿1x2 6 0?

[-2, 5]f¿1x2
f1x2 = x3

- 4x2
+ 3EXPL

CAS

72. Draw the graphs of and its
derivative on the interval [0, 9] using the same axes.

(a) Where on this interval is 

(b) Where on this interval is increasing?
(c) Make a conjecture. Experiment with other intervals and

other functions to support this conjecture.

Answers to Concepts Review: 1.
2. 3. continuous;

4. f¿1x2; dy

dx

ƒ x ƒf¿1c2[f1t2 - f1x2]>1t - x2
[f1x + h2 - f1x2]>h;

f(x)

f¿1x2 7 0?

f¿1x2
f1x2 = cos x - sin1x>22EXPL

The process of finding the derivative of a function directly from the definition of
the derivative, that is, by setting up the difference quotient

and evaluating its limit, can be time consuming and tedious. We are going to devel-
op tools that will allow us to shortcut this lengthy process—that will, in fact, allow
us to find derivatives of the most complicated looking functions.

Recall that the derivative of a function f is another function We saw in Ex-
ample 2 of the previous section that if is the formula for f, then

is the formula for When we take the derivative of f, we say
that we are differentiating f. The derivative operates on f to produce We often
use the symbol to indicate the operation of differentiating (Figure 1). The 
symbol says that we are to take the derivative (with respect to the variable x) of
what follows. Thus, we write or (in the case just mentioned)

This is an example of an operator. As Figure 1 sug-
gests, an operator is a function whose input is a function and whose output is an-
other function.

With Leibniz notation, introduced in the last section, we now have three nota-
tions for the derivative. If we can denote the derivative of f by

We will use the notation to mean the same as the operator 

The Constant and Power Rules The graph of the constant function
is a horizontal line (Figure 2), which therefore has slope zero every-

where. This is one way to understand our first theorem.
f1x2 = k

Dx.
d

dx

f¿1x2 or Dxf1x2 or dy

dx

y = f1x2,

DxDx1x3
+ 7x2 = 3x2

+ 7.
Dxf1x2 = f¿1x2

DxDx

f¿.
f¿.f¿1x2 = 3x2

+ 7
f1x2 = x3

+ 7x
f¿.

f1x + h2 - f1x2
h

3.3
Rules for Finding

Derivatives

(x, k) (x + h, k)

f(x) = k

f(x)

x x + h

y

x

Figure 2

Operation
Dx

An operator

Input Output

f 'f

Figure 1

Theorem A Constant Function Rule

If where k is a constant, then for any x, that is,

Dx1k2 = 0

f¿1x2 = 0;f1x2 = k,

Proof

�f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h
= lim

h:0
  
k - k

h
= lim

h:0
 0 = 0
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134 Chapter 3 The Derivative

Theorem B Identity Function Rule

If then that is,

Dx1x2 = 1

f¿1x2 = 1;f1x2 = x,

Theorem C Power Rule

If where n is a positive integer, then that is,

Dx1xn2 = nxn - 1

f¿1x2 = nxn - 1;f1x2 = xn,

Theorem D Constant Multiple Rule

If k is a constant and f is a differentiable function, then 
that is,

In words, a constant multiplier k can be passed across the operator Dx.

Dx Ck # f1x2 D = k # Dxf1x2
1kf2¿1x2 = k # f¿1x2;

Proof

�

Before stating our next theorem, we recall something from algebra: how to
raise a binomial to a power.

 1a + b2n = an
+ nan - 1b +

n1n - 12
2

 an - 2b2
+

Á
+ nabn - 1

+ bn

 o

 1a + b24 = a4
+ 4a3b + 6a2b2

+ 4ab3
+ b4

 1a + b23 = a3
+ 3a2b + 3ab2

+ b3

 1a + b22 = a2
+ 2ab + b2

f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h
= lim

h:0
  
x + h - x

h
= lim

h:0
  
h

h
= 1

Proof

Within the brackets, all terms except the first have h as a factor, and so for every
value of x, each of these terms has limit zero as h approaches zero. Thus,

�

As illustrations of Theorem C, note that

Dx Is a Linear Operator The operator behaves very well when applied to
constant multiples of functions or to sums of functions.

Dx

Dx1x32 = 3x2 Dx1x92 = 9x8 Dx1x1002 = 100x99

f¿1x2 = nxn - 1

 = lim
h:0

   
h cnxn - 1

+

n1n - 12
2

 xn - 2h +
Á

+ nxhn - 2
+ hn - 1 d

h

 = lim
h:0

  
xn

+ nxn - 1h +

n1n - 12
2

 xn - 2h2
+

Á
+ nxhn - 1

+ hn
- xn

h

 f¿1x2 = lim
h:0

  
f1x + h2 - f1x2

h
= lim

h:0
  
1x + h2n - xn

h

(x, x)

(x + h, x + h)

h

h

f (x) = x

x x + h

f(x)

f(x + h)

y

x

Figure 3

The graph of is a line through the origin with slope 1 (Figure 3); so
we should expect the derivative of this function to be 1 for all x.

f1x2 = x
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Section 3.3 Rules for Finding Derivatives 135

Theorem E Sum Rule

If f and g are differentiable functions, then that
is,

In words, the derivative of a sum is the sum of the derivatives.

Dx Cf1x2 + g1x2 D = Dx f1x2 + Dxg1x2
1f + g2¿1x2 = f¿1x2 + g¿1x2;

Proof Let Then

The next-to-last step was the critical one. We could shift k past the limit sign
because of the Main Limit Theorem Part 3. �

Examples that illustrate this result are

and

Dx A43 x9 B =
4
3 Dx1x92 =

4
3
# 9x8

= 12x8

Dx1-7x32 = -7Dx1x32 = -7 # 3x2
= -21x2

 = k # f¿1x2

 = lim
h:0 

k #
f1x + h2 - f1x2

h
= k # lim

h:0
  
f1x + h2 - f1x2

h

 F¿1x2 = lim
h:0

  
F1x + h2 - F1x2

h
= lim

h:0
  
k # f1x + h2 - k # f1x2

h

F1x2 = k # f1x2.

Proof Let Then

Again, the next-to-last step was the critical one. It is justified by the Main Limit
Theorem Part 4. �

Any operator L with the properties stated in Theorems D and E is called
linear; that is, L is a linear operator if for all functions f and g:

1. for every constant k;
2.

Linear operators will appear again and again in this book; is a particularly
important example. A linear operator always satisfies the difference rule

stated next for Dx.L1f - g2 = L1f2 - L1g2,
Dx

L1f + g2 = L1f2 + L1g2.
L1kf2 = kL1f2,

 = f¿1x2 + g¿1x2
 = lim

h:0
  
f1x + h2 - f1x2

h
+ lim

h:0
  
g1x + h2 - g1x2

h

 = lim
h:0 
cf1x + h2 - f1x2

h
+

g1x + h2 - g1x2
h

d

 F¿1x2 = lim
h:0

  
Cf1x + h2 + g1x + h2 D - Cf1x2 + g1x2 D

h

F1x2 = f1x2 + g1x2.

The fundamental meaning of the
word linear, as used in mathematics,
is that given in this section. An oper-
ator L is linear if it satisfies the two
key conditions:

�

�

Linear operators play a central role
in the linear algebra course, which
many readers of this book will take.

Functions of the form 
are called linear

functions because of their connec-
tions with lines. This terminology can
be confusing because linear func-
tions are not linear in the operator
sense. To see this, note that

whereas

Thus, unless b
happens to be zero.

f1kx2 Z kf1x2
kf1x2 = k1mx + b2

f1kx2 = m1kx2 + b

= mx + bf1x2

L1u + v2 = L1u2 + L1v2
L1ku2 = kL1u2

Linear Operator

Theorem F Difference Rule

If f and g are differentiable functions, then that
is,

The proof of Theorem F is left as an exercise (Problem 54).

Dx Cf1x2 - g1x2 D = Dx f1x2 - Dxg1x2
1f - g2¿1x2 = f¿1x2 - g¿1x2;
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136 Chapter 3 The Derivative

� EXAMPLE 1 Find the derivatives of and 

SOLUTION

(Theorem F)

(Theorem E)

(Theorem D)

(Theorems C, B, A)

To find the next derivative, we note that the theorems on sums and differences
extend to any finite number of terms. Thus,

�

The method of Example 1 allows us to find the derivative of any polynomial. If
you know the Power Rule and do what comes naturally, you are almost sure to get
the right result. Also, with practice, you will find that you can write the derivative
immediately, without having to write any intermediate steps.

Product and Quotient Rules Now we are in for a surprise. So far, we have
seen that the limit of a sum or difference is equal to the sum or difference of 
the limits (Theorem 2.3A, Parts 4 and 5), the limit of a product or quotient is the
product or quotient of the limits (Theorem 2.3A, Parts 6 and 7), and the derivative
of a sum or difference is the sum or difference of the derivatives (Theorems E and
F). So what could be more natural than to have the derivative of a product be the
product of the derivatives?

This may seem natural, but it is wrong. To see why, let’s look at the following
example.

� EXAMPLE 2 Let and 
Find and and show that 

SOLUTION

Notice that

whereas

Thus, �Dxf1x2 Z [Dxg1x2][Dxh1x2].
Dxf1x2 = Dx[g1x2h1x2] = 1 + 4x

Dx1g1x22Dx1h1x22 = 1 # 2 = 2

 Dxh1x2 = Dx11 + 2x2 = 2

 Dxg1x2 = Dxx = 1

 = 1 + 4x

 = Dx1x + 2x22
 Dxf1x2 = Dx[x11 + 2x2]

[Dxg1x2][Dxh1x2].
Dxf1x2 ZDxh1x2,Dxf1x2, Dxg1x2,= x11 + 2x2.

f1x2 = g1x2 # h1x2g1x2 = x, h1x2 = 1 + 2x,

 = 24x5
- 15x4

- 20x + 5

 = 416x52 - 315x42 - 1012x2 + 5112 + 0

 = 4Dx1x62 - 3Dx1x52 - 10Dx1x22 + 5Dx1x2 + Dx1162
 = Dx14x62 - Dx13x52 - Dx110x22 + Dx15x2 + Dx1162

Dx14x6
- 3x5

- 10x2
+ 5x + 162

 = 10x + 7

 = 5 # 2x + 7 # 1 - 0

 = 5Dx1x22 + 7Dx1x2 - Dx162
 = Dx15x22 + Dx17x2 - Dx162

 Dx15x2
+ 7x - 62 = Dx15x2

+ 7x2 - Dx162

10x2
+ 5x + 16.

4x6
- 3x5

-5x2
+ 7x - 6
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Section 3.3 Rules for Finding Derivatives 137

Some people say that memorization
is passé, that only logical reasoning
is important in mathematics. They
are wrong. Some things (including
the rules of this section) must be-
come so much a part of our mental
apparatus that we can use them
without stopping to reflect.

“Civilization advances by extending
the number of important operations
which we can perform without
thinking about them.”

Alfred N. Whitehead

Memorization Theorem G Product Rule

If f and g are differentiable functions, then

That is,

Dx Cf1x2g1x2 D = f1x2Dxg1x2 + g1x2Dxf1x2

1f # g2¿1x2 = f1x2g¿1x2 + g1x2f¿1x2

That the derivative of a product should be the product of the derivatives
seemed so natural that it even fooled Gottfried Wilhelm von Leibniz, one of the
discoverers of calculus. In a manuscript of November 11, 1675, he computed the
derivative of the product of two functions and said (without checking) that it was
equal to the product of the derivatives.Ten days later, he caught the error and gave
the correct product rule, which we present as Theorem G.

This rule should be memorized in words as follows: The derivative of a product
of two functions is the first times the derivative of the second plus the second times
the derivative of the first.

Proof Let Then

The derivation just given relies first on the trick of adding and subtracting the
same thing, that is, Second, at the very end, we use the fact that

This is just an application of Theorem 3.2A (which says that differentiability at a
point implies continuity there) and the definition of continuity at a point. �

� EXAMPLE 3 Find the derivative of by use of the Prod-
uct Rule. Check the answer by doing the problem a different way.

SOLUTION

To check, we first multiply and then take the derivative.

Thus,

13x2
- 5212x4

- x2 = 6x6
- 10x4

- 3x3
+ 5x

 = 36x5
- 40x3

- 9x2
+ 5

 = 24x5
- 3x2

- 40x3
+ 5 + 12x5

- 6x2

 = 13x2
- 5218x3

- 12 + 12x4
- x216x2

 Dx C 13x2
- 5212x4

- x2 D = 13x2
- 52Dx12x4

- x2 + 12x4
- x2Dx13x2

- 52

13x2
- 5212x4

- x2

lim
h:0

 f1x + h2 = f1x2
f1x + h2g1x2.

 = f1x2g¿1x2 + g1x2f¿1x2

 = lim
h:0

 f1x + h2 # lim
h:0

  
g1x + h2 - g1x2

h
+ g1x2 # lim

h:0
  
f1x + h2 - f1x2

h

 = lim
h:0 
cf1x + h2 # g1x + h2 - g1x2

h
+ g1x2 # f1x + h2 - f1x2

h
d

 = lim
h:0

  
f1x + h2g1x + h2 - f1x + h2g1x2 + f1x + h2g1x2 - f1x2g1x2

h

 = lim
h:0

  
f1x + h2g1x + h2 - f1x2g1x2

h

 F¿1x2 = lim
h:0

  
F1x + h2 - F1x2

h

F1x2 = f1x2g1x2.
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138 Chapter 3 The Derivative

Theorem H Quotient Rule

Let f and g be differentiable functions with Then

That is,

Dxaf1x2
g1x2 b =

g1x2Dxf1x2 - f1x2Dxg1x2
g21x2

af

g
b œ1x2 =

g1x2f¿1x2 - f1x2g¿1x2
g21x2

g1x2 Z 0.

� = 36x5
- 40x3

- 9x2
+ 5

 Dx C 13x2
- 5212x4

- x2 D = Dx16x62 - Dx110x42 - Dx13x32 + Dx15x2

We strongly urge you to memorize this in words, as follows: The derivative of a
quotient is equal to the denominator times the derivative of the numerator minus the
numerator times the derivative of the denominator, all divided by the square of the
denominator.

Proof Let Then

�

� EXAMPLE 4 Find 

SOLUTION

� =

-3x2
+ 10x + 21

1x2
+ 722

 =

1x2
+ 72132 - 13x - 5212x2

1x2
+ 722

 
d

dx
 c3x - 5

x2
+ 7
d =

1x2
+ 72 

d

dx
 13x - 52 - 13x - 52 

d

dx
 1x2

+ 72
1x2

+ 722

d

dx
 
13x - 52
1x2

+ 72 .

 = Cg1x2f¿1x2 - f1x2g¿1x2 D  1
g1x2g1x2

 = lim
h:0
e cg1x2 

f1x + h2 - f1x2
h

- f1x2 

g1x + h2 - g1x2
h

d  1
g1x2g1x + h2 f

#  
1

g1x2g1x + h2 d
 = lim

h:0 
cg1x2f1x + h2 - g1x2f1x2 + f1x2g1x2 - f1x2g1x + h2

h

 = lim
h:0

  
g1x2f1x + h2 - f1x2g1x + h2

h
#

1
g1x2g1x + h2

 = lim
h:0

  

f1x + h2
g1x + h2 -

f1x2
g1x2

h

 F¿1x2 = lim
h:0

  
F1x + h2 - F1x2

h

F1x2 = f1x2>g1x2.
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� EXAMPLE 5 Find if 

SOLUTION

�

� EXAMPLE 6 Show that the Power Rule holds for negative integral expo-
nents; that is,

�

We saw as part of Example 5 that Now we have another
way to see the same thing.

Dx13>x2 = -3>x2.

Dx1x-n2 = Dxa 1
xn b =

xn # 0 - 1 # nxn - 1

(xn)2 =

-nxn - 1

x2n = -nx-n - 1

Dx Ax-n B = -nx-n - 1

 =

-8x3

1x4
+ 122 -

3

x2

 =

1x4
+ 12102 - 12214x32
1x4

+ 122 +

1x2102 - 132112
x2

 =

1x4
+ 12Dx122 - 2Dx1x4

+ 12
1x4

+ 122 +

xDx132 - 3Dx1x2
x2

 Dxy = Dxa 2

x4
+ 1
b + Dxa 3

x
b

y =

2

x4
+ 1

+

3
x

.Dxy

Concepts Review
1. The derivative of a product of two functions is the first

times _____ plus the _____ times the derivative of the first. In
symbols, _____.

2. The derivative of a quotient is the _____ times the deriva-
tive of the numerator minus the numerator times the derivative
of the _____, all divided by the _____. In symbols,

_____.Dx Cf1x2>g1x2 D =

Dx Cf1x2g1x2 D =

3. The second term (the term involving h) in the expansion
of is _____. It is this fact that leads to the formula

_____.

4. L is called a linear operator if _____ and
_____. The derivative operator denoted by _____ is

such an operator.
L1f + g2 =

L1kf2 =

Dx Cxn D =

1x + h2n

Problem Set 3.3
In Problems 1–44, find using the rules of this section.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16. y = x12
+ 5x-2

- px-10

y = px7
- 2x5

- 5x-2

y = 3x4
- 2x3

- 5x2
+ px + p2

y = x4
+ x3

+ x2
+ x + 1

y = 3x4
+ x3y = x2

+ 2x

y =

3a

4x5
y =

100

x5

y =

a

x3y =

p

x

y = -3x-4y = 2x-2

y = px3y = px

y = 3x3y = 2x2

Dxy
17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29.

30.

31.

32. y = 13x2
+ 2x21x4

- 3x + 12
y = 15x2

- 7213x2
- 2x + 12

y = 1x4
+ 2x21x3

+ 2x2
+ 12

y = 1x2
+ 1721x3

- 3x + 12
y = 1x4

- 121x2
+ 12y = 1x2

+ 221x3
+ 12

y = 1-3x + 222y = 12x + 122
y = 3x1x3

- 12y = x1x2
+ 12

y =

2
3x

-

2
3

y =

1
2x

+ 2x

y =

3

x3 -

1

x4y =

2
x

-

1

x2

y = 2x-6
+ x-1y =

3

x3 + x-4
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140 Chapter 3 The Derivative

1 2–2 –1 3 4

1

2

3

4

5

6

Spider

Flyy = 7 – x2

y

x

4

5 (2, 5)

1 2 3

1

2

3

y

x

(x0, y0)

y = 4x – x2

Figure 4 Figure 5

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. If and find

(a) (b) (c)

46. If and find

(a) (b) (c)

47. Use the Product Rule to show that 

48. Develop a rule for 

49. Find the equation of the tangent line to 
at the point (1, 1).

50. Find the equation of the tangent line to 
at the point 

51. Find all points on the graph of where the
tangent line is horizontal.

52. Find all points on the graph of where
the tangent line has slope 1.

53. Find all points on the graph of where the tan-
gent line is perpendicular to the line 

54. Prove Theorem F in two ways.

55. The height s in feet of a ball above the ground at t seconds
is given by 
(a) What is its instantaneous velocity at 
(b) When is its instantaneous velocity 0?

56. A ball rolls down a long inclined plane so that its distance
s from its starting point after t seconds is feet.
When will its instantaneous velocity be 30 feet per second?

57. There are two tangent lines to the curve that
go through (2, 5). Find the equations of both of them. Hint: Let

y = 4x - x2≈

s = 4.5t2
+ 2t

t = 2?
s = -16t2

+ 40t + 100.

y = x.
y = 100>x5

y =
1
3 x3

+ x2
- x

y = x3
- x2

(1, 1>5).
y = 1>1x2

+ 42
y = x2

- 2x + 2

Dx Cf1x2g1x2h1x2 D .EXPL

2 # f1x2 # Dx f1x2.
Dx Cf1x2 D 2 =

1g>f2¿1321f # g2¿1321f - g2¿132
g¿132 = -10,f132 = 7, f¿132 = 2, g132 = 6,

1f>g2¿1021f + g2¿1021f # g2¿102
g¿102 = 5,f102 = 4, f¿102 = -1, g102 = -3,

y =

x2
- 2x + 5

x2
+ 2x - 3

y =

x2
- x + 1

x2
+ 1

y =

5x2
+ 2x - 6

3x - 1
y =

2x2
- 3x + 1

2x + 1

y =

5x - 4

3x2
+ 1

y =

2x2
- 1

3x + 5

y =

2x - 1
x - 1

y =

x - 1
x + 1

y =

4

2x3
- 3x

y =

1

4x2
- 3x + 9

y =

2

5x2
- 1

y =

1

3x2
+ 1

be a point of tangency. Find two conditions that 
must satisfy. See Figure 4.

1x0, y021x0, y02

58. A space traveler is moving from left to right along the
curve When she shuts off the engines, she will continue
traveling along the tangent line at the point where she is at that
time. At what point should she shut off the engines in order to
reach the point (4, 15)?

59. A fly is crawling from left to right along the top of the
curve (Figure 5). A spider waits at the point (4, 0).
Find the distance between the two insects when they first see
each other.

60. Let P(a, b) be a point on the first quadrant portion of the
curve and let the tangent line at P intersect the x-axis at
A. Show that triangle AOP is isosceles and determine its area.

61. The radius of a spherical watermelon is growing at a con-
stant rate of 2 centimeters per week. The thickness of the rind is
always one-tenth of the radius. How fast is the volume of the rind
growing at the end of the fifth week? Assume that the radius is
initially 0.

62. Redo Problems 29–44 on a computer and compare your
answers with those you get by hand.

Answers to Concepts Review: 1. the derivative of the sec-
ond; second; 2. denominator;
denominator; square of the denominator;

3.
4. kL1f2; L1f2 + L1g2; Dx

nxn - 1h; nxn - 1f1x2Dxg1x2]>g21x2[g1x2Dxf1x2 -

f1x2Dxg1x2 + g1x2Dxf1x2

CAS

y = 1>x

y = 7 - x2
≈

y = x2.
≈

Figure 1 reminds us of the definition of the sine and cosine functions. In what fol-
lows, t should be thought of as a number measuring the length of an arc on the unit
circle or, equivalently, as the number of radians in the corresponding angle. Thus,

and are functions for which both domain and range are
sets of real numbers. We may consider the problem of finding their derivatives.

The Derivative Formulas We choose to use x rather than t as our basic vari-
able. To find we appeal to the definition of derivative and use the Addi-
tion Identity for sin1x + h2.Dx1sin x2,

g1t2 = cos tf1t2 = sin t

3.4
Derivatives 

of Trigonometric
Functions
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Section 3.4 Derivatives of Trigonometric Functions 141

(cos x, sin x)

(1, 0)

x

x

Figure 1

The solid curve below is the graph of
Note that the slope is 1 at

0, 0 at at and so on. When
we graph the slope function (the de-
rivative), we obtain the dashed
curve. Could you have guessed that

Try plotting these two functions in
the same window on your CAS or
graphing calculator.

Dx sin x = cos x?

p,p>2, -1
y = sin x.

Could You Have Guessed?

–1

1
y

xπ 2π

Notice that the two limits in this last expression are exactly the limits we studied in
Section 2.5. In Theorem 2.5B we proved that

Thus,

Similarly,

We summarize these results in an important theorem.

 = -sin x

 = 1-cos x2 # 0 - 1sin x2 # 1

 = lim
h:0 
a -cos x  

1 - cos h
h

- sin x  
sin h

h
b

 = lim
h:0

  
cos x cos h - sin x sin h - cos x

h

 Dx1cos x2 = lim
h:0

  
cos1x + h2 - cos x

h

Dx1sin x2 = 1-sin x2 # 0 + 1cos x2 # 1 = cos x

lim
h:0

  
sin h

h
= 1 and lim

h:0
  
1 - cos h

h
= 0

 = 1-sin x2c lim
h:0

  
1 - cos h

h
d + 1cos x2c lim

h:0
  
sin h

h
d

 = lim
h:0 
a -sin x  

1 - cos h
h

+ cos x  
sin h

h
b

 = lim
h:0

  
sin x cos h + cos x sin h - sin x

h

 Dx1sin x2 = lim
h:0

  
sin1x + h2 - sin x

h

� EXAMPLE 1 Find 

SOLUTION

�

� EXAMPLE 2 Find the equation of the tangent line to the graph of
at the point (See Figure 2.)

SOLUTION The derivative is so when the slope is

Using the point-slope form for a line we find that the equation of 
the tangent line is
3 cos p = -3.

x = p,
dy

dx
= 3 cos x,

1p, 02.y = 3 sin x

 = 3 cos x + 2 sin x

 Dx13 sin x - 2 cos x2 = 3Dx1sin x2 - 2Dx1cos x2

Dx13 sin x - 2 cos x2.

1

2

3

–3

–2

–1

y

y = 3 sin 2x

π
2

π 3π
2

2π

Figure 2

Theorem A

The functions and are both differentiable and,

Dx1sin x2 = cos x Dx1cos x2 = -sin x

g1x2 = cos xf1x2 = sin x
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142 Chapter 3 The Derivative

Theorem B

For all points x in the function’s domain,

Dx tan x = sec2 x Dx cot x = -csc2 x
Dx sec x = sec x tan x Dx csc x = -csc x cot x

�

The Product and Quotient Rules are useful when evaluating derivatives of
functions involving the trigonometric functions.

� EXAMPLE 3 Find 

SOLUTION The Product Rule is needed here.

�

� EXAMPLE 4 Find 

SOLUTION For this problem, the Quotient Rule is needed.

�

� EXAMPLE 5 At time t seconds, the center of a bobbing cork is 
centimeters above (or below) water level. What is the velocity of the cork at

SOLUTION The velocity is the derivative of position, and Thus,

when when and when

�

Since the tangent, cotangent, secant, and cosecant functions are defined in
terms of the sine and cosine functions, the derivatives of these functions can be ob-
tained from Theorem A by applying the Quotient Rule. The results are summa-
rized in Theorem B; for proofs, see Problems 5–8.

t = p, 
dy

dt
= 2 cos p = -2.

t = p>2,  
dy

dt
= 2 cos 

p

2
= 0,t = 0,  

dy

dt
= 2 cos 0 = 2,

dy

dt
= 2 cos t.

t = 0, p>2, p?

y = 2 sin t

 =

1 + sin x

cos2 x

 =

cos2 x + sin x + sin2 x

cos2 x

 
d

dx
 a1 + sin x

cos x
b =

cos xa d

dx
 11 + sin x2b - 11 + sin x2a d

dx
 cos xb

cos2 x

d

dx
 a1 + sin x

cos x
b .

Dx1x2 sin x2 = x2Dx1sin x2 + sin x1Dxx22 = x2 cos x + 2x sin x

Dx1x2 sin x2.

 y = -3x + 3p

 y - 0 = -31x - p2

� EXAMPLE 6 Find for 

SOLUTION We apply the Product Rule along with Theorem B.

�

� EXAMPLE 7 Find the equation of the tangent line to the graph of 
at the point 1p>4, 12. y = tan x

 = xn sec2 x + nxn - 1 tan x

 Dx1xn tan x2 = xnDx1tan x2 + tan x1Dxxn2

n Ú 1.Dx1xn tan x2
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Section 3.4 Derivatives of Trigonometric Functions 143

SOLUTION The derivative of is When the

derivative is equal to Thus the required line has slope 2 and

passes through Thus

�

� EXAMPLE 8 Find all points on the graph of where the tangent
line is horizontal.

SOLUTION The tangent line is horizontal when the derivative is equal to zero.
To get the derivative of we use the Product Rule.

The product of sin x and cos x is equal to zero when either sin x or cos x is equal to

zero; that is, at  �x = 0, ;
p

2
, ;p, ;

3p
2

, Á .

d

dx
 sin2 x =

d

dx
 1sin x sin x2 = sin x cos x + sin x cos x = 2 sin x cos x

sin2 x,

y = sin2 x

 y = 2x -

p

2
+ 1

 y - 1 = 2ax -

p

4
b

1p>4, 12.
sec2

 
p

4
= a 222

b2

= 2.

x = p>4,
dy

dx
= sec2 x.y = tan x

Concepts Review
1. By definition, _____.

2. To evaluate the limit in the preceding statement, we first
use the Addition Identity for the sine function and then do a little
algebra to obtain

1cos x2a lim
h:0

 
sin h

h
b

Dx1sin x2 = 1-sin x2a lim
h:0

 
1 - cos h

h
b +

Dx1sin x2 = lim
h:0

The two displayed limits have the values _____ and _____,
respectively.

3. The result of the calculation in the preceding statement is
the important derivative formula _____. The corre-
sponding derivative formula _____ is obtained in a
similar manner.

4. At has the value _____. Thus, the
equation of the tangent line to at is _____.x = p>3y = sin x

x = p>3, Dx1sin x2
Dx1cos x2 =

Dx1sin x2 =

Problem Set 3.4
In Problems 1–18, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. y =

x cos x + sin x

x2
+ 1

y = x2 cos x

y =

1 - cos x
x

y =

sin x
x

y = sin x tan xy = sin x cos x

y =

sin x + cos x
tan x

y =

sin x + cos x
cos x

y = cot x =

cos x
sin x

y = tan x =

sin x
cos x

y = csc x = 1>sin xy = sec x = 1>cos x

y = 1 - cos2 xy = sin2 x + cos2 x

y = sin2 xy = 2 sin x + 3 cos x

Dxy. 17. 18.

19. Find the equation of the tangent line to at

20. Find the equation of the tangent line to at

21. Use the trigonometric identity 
along with the Product Rule to find 

22. Use the trigonometric identity 
along with the Product Rule to find 

23. A Ferris wheel of radius 30 feet is rotating counterclock-
wise with an angular velocity of 2 radians per second. How fast is
a seat on the rim rising (in the vertical direction) when it is 15 feet
above the horizontal line through the center of the wheel? Hint:
Use the result of Problem 21.

Dx cos 2x.
cos 2x = 2 cos2 x - 1

Dx sin 2x.
sin 2x = 2 sin x cos x

x =

p

4
.

y = cot x

x = 1.
y = cos xC

y = sec3 xy = tan2 x
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144 Chapter 3 The Derivative

24. A Ferris wheel of radius 20 feet is rotating counterclock-
wise with an angular velocity of 1 radian per second. One seat on
the rim is at (20, 0) at time 

(a) What are its coordinates at 

(b) How fast is it rising (vertically) at ?

(c) How fast is it rising when it is rising at the fastest rate?

25. Find the equation of the tangent line to at

26. Find all points on the graph of where the tan-
gent line is horizontal.

27. Find all points on the graph of where
the tangent line is horizontal.

28. Let Find all points on the graph of
where the tangent line is horizontal. Find all points on

the graph of where the tangent line has slope 2.

29. Show that the curves and in-
tersect at right angles at a certain point with 

30. At time t seconds, the center of a bobbing cork is 3 sin 2t
centimeters above (or below) water level. What is the velocity of
the cork at t = 0, p>2, p?

0 6 x 6 p>2.
y = 22 cos xy = 22 sin x

y = f1x2
y = f1x2

f1x2 = x - sin x.

y = 9 sin x cos x

y = tan2 x

x = 0.
y = tan x

t = p>6
t = p>6?

t = 0.

31. Use the definition of the derivative to show that

32. Use the definition of the derivative to show that

Problems 33 and 34 are computer or graphing calculator
exercises.

33. Let 
(a) Draw the graphs of and on 
(b) How many solutions does have on How

many solutions does have on this interval?
(c) What is wrong with the following conjecture? If f and 

are both continuous and differentiable on [a, b], if
and if has exactly n solutions on

[a, b], then has exactly solutions on [a, b].
(d) Determine the maximum value of on

34. Let Find at
that point in where 

Answers to Concepts Review: 1.

2. 0; 1 3. 4. 1
2; y - 23>2 =

1
21x - p>32cos x; -sin x

[sin1x + h2 - sin x]>h

f1x02 = 0.[p>2, p]x0

f¿1x02f1x2 = cos3 x - 1.25 cos2 x + 0.225.

[p, 6p].
ƒ f1x2 - f¿1x2 ƒ

n - 1f¿1x2 = 0
f1x2 = 0f1a2 = f1b2 = 0,

f¿

f¿1x2 = 0
[p, 6p]?f1x2 = 0

[p, 6p].f¿1x2f(x)
f1x2 = x sin x.

GC

Dx1sin 5x2 = 5 cos 5x.

Dx1sin x22 = 2x cos x2.

Imagine trying to find the derivative of

We could find the derivative, but we would first have to multiply together the 60
quadratic factors of and then differentiate the resulting polynomial.
Or, how about trying to find the derivative of

We might be able to use some trigonometric identities to reduce it to something
that depends on sin x and cos x and then use the rules from the previous section.

Fortunately, there is a better way. After learning the Chain Rule, we will be
able to write the answers

and

The Chain Rule is so important that we will seldom again differentiate any func-
tion without using it.

Differentiating a Composite Function If David can type twice as fast as
Mary and Mary can type three times as fast as Joe, then David can type 
times as fast as Joe.

Consider the composite function If we let we can then
think of f as a function of u. Suppose that changes twice as fast as u, and

changes three times as fast as x. How fast is y changing? The statementsu = g1x2 f(u)
u = g1x2,y = f1g1x22.

2 * 3 = 6

G¿1x2 = 3 cos 3x

F¿1x2 = 6012x2
- 4x + 125914x - 42

G1x2 = sin 3x

2x2
- 4x + 1

F1x2 = 12x2
- 4x + 1260

3.5
The Chain Rule
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Section 3.5 The Chain Rule 145

Theorem A Chain Rule

Let and If g is differentiable at x and f is differentiable at
then the composite function defined by 

is differentiable at x and

That is,

or

dy

dx
=

dy

du
 
du

dx

Dx1f1g1x22 = f¿1g1x22g¿1x2

1f � g2¿1x2 = f¿1g1x22g¿1x2
f1g1x22, 1f � g21x2 =f � g,u = g1x2, u = g1x2.y = f1u2

“ changes twice as fast as u” and “ changes three times as fast as
x” can be restated as

Just as in the previous paragraph, it seems as if the rates should multiply; that is, the
rate of change of y with respect to x should equal the rate of change of y with
respect to u times the rate of change of u with respect to x. In other words,

This is in fact true, and we will sketch the proof at the end of this section.The result
is called the Chain Rule.

dy

dx
=

dy

du
*

du

dx

dy

du
= 2 and 

du

dx
= 3

u = g1x2y = f1u2

You can remember the Chain Rule this way: The derivative of a composite
function is the derivative of the outer function evaluated at the inner function, times
the derivative of the inner function.

Applications of the Chain Rule We begin with the example
introduced at the beginning of this section.

� EXAMPLE 1 If find 

SOLUTION We think of y as the 60th power of a function of x; that is

The outer function is and the inner function is 
Thus,

�

� EXAMPLE 2 If find 
dy

dx
.y = 1>12x5

- 723,

 = 6012x2
- 4x + 125914x - 42

 = 160u59214x - 42
 = f¿1u2g¿1x2

 Dxy = Dxf1g1x22
2x2

- 4x + 1.
u = g1x2 =f1u2 = u60

y = u60 and u = 2x2
- 4x + 1

Dxy.y = 12x2
- 4x + 1260,

12x2
- 4x + 1260
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146 Chapter 3 The Derivative

Here is an informal rule that may
help you in using the derivative rules.

The last step in calculation 
corresponds to the first step in
differentiation.

For example, the last step in calculat-
ing is to cube so
you would first apply the Chain
Rule to the cube function. The last
step in calculating

is to take the quotient, so the first
rule to use in differentiating is the
Quotient Rule.

x2
- 1

x2
+ 1

2x + 1,12x + 123

The Last First

SOLUTION Think of it this way.

Thus,

�

� EXAMPLE 3 Find 

SOLUTION The last step in calculating this expression would be to raise the
expression on the inside to the power 13. Thus, we begin by applying the Chain
Rule to the function where The Chain Rule
followed by the Quotient Rule gives

�

The Chain Rule simplifies computation of many derivatives involving the
trigonometric functions. Although it is possible to differentiate us-
ing trigonometric identities (see Problem 21 of the previous section), it is much
easier to use the Chain Rule.

� EXAMPLE 4 If find 

SOLUTION The last step in calculating this expression would be to take the
sine of the quantity 2x. Thus we use the Chain Rule on the function 
where 

�

� EXAMPLE 5 Find where 

SOLUTION The last step in calculating this expression would be to multiply y
and so we begin by applying the Product Rule. The Chain Rule is needed
when we differentiate 

� = 2y2 cos y2
+ sin y2

 = y1cos y22Dy1y22 + 1sin y22112
 F¿1y2 = yDy[sin y2] + (sin y2)Dy1y2

sin y2.
sin y2,

F1y2 = y sin y2.F¿1y2

dy

dx
= 1cos 2x2a d

dx
  2xb = 2 cos 2x

u = 2x.
y = sin u

dy

dx
.y = sin 2x,

y = sin 2x

 = 13a t3
- 2t + 1

t4
+ 3

b12

 
- t6

+ 6t4
- 4t3

+ 9t2
- 6

1t4
+ 322

 = 13a t3
- 2t + 1

t4
+ 3

b12

 

1t4
+ 3213t2

- 22 - 1t3
- 2t + 1214t32

1t4
+ 322

 Dta t3
- 2t + 1

t4
+ 3

b13

= 13a t3
- 2t + 1

t4
+ 3

b13 - 1

Dta t3
- 2t + 1

t4
+ 3

b

u = 1t3
- 2t + 12>1t4

+ 32.y = u13,

Dta t3
- 2t + 1

t4
+ 3

b13

.

 =

-30x4

12x5
- 724

 =

-3

u4
# 10x4

 = 1-3u-42110x42
 
dy

dx
=

dy

du
   

du

dx

y =

1

u3 = u-3 and u = 2x5
- 7
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Section 3.5 The Chain Rule 147

In this section, we have used all the
various notations for the derivative,
namely,

and

You should by now be familiar with
all of these notations. They will all be
used in the remainder of the book.

Dx f1x2

dy

dx

f¿1x2

Notations for the Derivative

� EXAMPLE 6 Find 

SOLUTION The last step in calculating this expression would be to take the
quotient. Thus, the Quotient Rule is the first to be applied. But notice that when
we take the derivative of the numerator, we must apply the Product Rule and then
the Chain Rule.

�

� EXAMPLE 7 Find 

SOLUTION

�

In this last example we were able to avoid use of the Quotient Rule. If you use
the Quotient Rule, you would notice that the derivative of the numerator is 0,
which simplifies the calculation. (You should check that the Quotient Rule gives
the same answer as above.) As a general rule, if the numerator of a fraction is a
constant, then do not use the Quotient Rule; instead write the quotient as the
product of the constant and the expression in the denominator raised to a negative
power, and then use the Chain Rule.

� EXAMPLE 8 Express the following derivatives in terms of the function
F(x). Assume that F is differentiable.

SOLUTION
(a) The last step in calculating this expression would be to apply the function F.

(Here the inner function is and the outer function is F(u).) Thus

(b) For this expression we would first evaluate F(x) and then cube the result.
(Here the inner function is and the outer function is ) Thus we
apply the Power Rule first, then the Chain Rule.

�

Applying the Chain Rule More than Once Sometimes when we apply
the Chain Rule to a composite function we find that differentiation of the inner
function also requires the Chain Rule. In cases like this, we simply have to use the
Chain Rule a second time.

Dx[1F1x223] = 3[F1x2]2Dx1F1x22 = 3[F1x2]2F¿1x2

u3.u = F1x2
Dx1F1x322 = F¿1x32Dx1x32 = 3x2 F¿1x32

u = x3

1a2 Dx1F1x322 and 1b2 Dx[1F1x223]

d

dx
 

1

12x - 123 =

d

dx
 12x - 12-3

= -312x - 12-3 - 1
 
d

dx
 12x - 12 = -

6

12x - 124

d

dx
 

1

12x - 123.

 =

11 + x211 - x22x12 - 5x2 - x211 - x23
11 + x22

 =

11 + x2[-3x211 - x22 + 2x11 - x23] - x211 - x23
11 + x22

 =

11 + x2[x21311 - x221-122 + 11 - x2312x2] - x211 - x23
11 + x22

 =

11 + x2[x2Dx11 - x23 + 11 - x23Dx1x22] - x211 - x23112
11 + x22

 Dxax211 - x23
1 + x

b =

11 + x2Dx1x211 - x232 - x211 - x23Dx11 + x2
11 + x22

Dxax211 - x23
1 + x

b .
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148 Chapter 3 The Derivative

y

x1

3

2

1

–1

2 3 4

y

x1

3

2

1

2 3 4

y = f (x)

y = g(x)

Figure 1

� EXAMPLE 9 Find 

SOLUTION Remember, so we view this as the cube of a
function of x.Thus, using our rule “derivative of the outer function evaluated at the
inner function times the derivative of the inner function,” we have

Now we apply the Chain Rule once again for the derivative of the inner function.

�

� EXAMPLE 10 Find 

SOLUTION

�

� EXAMPLE 11 Suppose that the graphs of and are as
shown in Figure 1. Use these graphs to approximate (a) and (b)

SOLUTION

(a) By Theorem 3.3F, From Figure 1, we can deter-

mine that and Thus,

.

(b) From Figure 1 we can determine that Thus, by the Chain Rule,

�

A Partial Proof of the Chain Rule We can now give a sketch of the proof
of the Chain Rule.

Proof We suppose that and that g is differentiable at x, and
that f is differentiable at When x is given an increment there are
corresponding increments in u and y given by

Thus,

 = lim
¢x:0

 

¢y

¢u
# lim

¢x:0
 
¢u

¢x

 
dy

dx
= lim

¢x:0
 

¢y

¢x
= lim

¢x:0
 

¢y

¢u
 
¢u

¢x

 = f1u + ¢u2 - f1u2
 ¢y = f1g1x + ¢x22 - f1g1x22
 ¢u = g1x + ¢x2 - g1x2

¢x,u = g1x2. u = g1x2,y = f1u2

1f � g2¿122 = f¿1g122)g¿122 = f¿112g¿122 L

1
2

 a-

1
2
b = -

1
4

f¿(1) L  
1
2

.

1f - g2¿122 L 1 - a-

1
2
b =

3
2

g¿122 L -

1
2

.f¿122 L 1

1f - g2¿122 = f¿122 - g¿122.

1f � g2¿122.
1f - g2¿122

y = g1x2y = f1x2
 = -2x sin1x22 cos[cos1x22]

 Dx sin[cos1x22] = cos[cos1x22] # [-sin1x22] # 2x

Dx sin[cos1x22].
 = 12 cos14x2 sin214x2
 = 3[sin14x2]2 cos14x2(4)

 = 3[sin14x2]2 cos14x2Dx14x2
 Dx sin314x2 = 3[sin14x2]3 - 1Dx sin14x2

Dx sin314x2 = Dx[sin14x2]3
= 3[sin14x2]3 - 1Dx[sin14x2]

sin314x2 = [sin14x2]3,

Dx sin314x2.
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y

x

3

2

1

1 2 3 4 5 6

y = g (x)

y

x

5

4

3

2

1

1 2 3 4 5 6

y = f (x)

Figure 2 Figure 3

Since g is differentiable at x, it is continuous there (Theorem 3.2A), and so 
forces Hence,

This proof was very slick, but unfortunately it contains a subtle flaw. There
are functions that have the property that for some points in
every neighborhood of x (the constant function is a good example).This
means the division by at our first step might not be legal. There is no simple
way to get around this difficulty, though the Chain Rule is valid even in this case.
We give a complete proof of the Chain Rule in the appendix (Section A.2,
Theorem B). �

¢u
g1x2 = k

¢u = 0u = g1x2

dy

dx
= lim

¢u:0
 

¢y

¢u
# lim

¢x:0
 
¢u

¢x
=

dy

du
#
du

dx

¢u : 0.
¢x : 0

Concepts Review
1. If where then _____. In

function notation, _____ _____.

2. If where then 
In function notation 1G � H2¿1s2 =     .

Dsw =   Dsv.v = H1s2,w = G1v2,
1f � g2¿1t2 =

Dty = Duy #u = g1t2,y = f1u2, 3. .

4. If then 

.12x + 123 #  + sin1x22 #  

Dxy =y = 12x + 123 sin1x22,
Dx cos[1f1x222] = -sin1  2 # Dx1  2

Problem Set 3.5
In Problems 1–20, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Problems 21–28, find the indicated derivative.

21. where 22. where 

23. 24.

25. 26.

27. where 

28. where 

In Problems 29–32, evaluate the indicated derivative.

29. if f1x2 = ax2
+ 1

x + 2
b3

f¿132

y = [sin t tan1t2
+ 12]dy

dt
,

y = a sin x
cos 2x

b3dy

dx
,

d

du
 1sin3 u2d

dt
 a 13t - 223

t + 5
b

Dsa s2
- 9

s + 4
bDta 3t - 2

t + 5
b3

y = 1x + sin x22y¿y = 1x2
+ 422y¿

y =

2x - 3

1x2
+ 422y =

1x + 122
3x - 4

y = 12 - 3x2241x7
+ 323y = 13x - 22213 - x222

y = cos3a x2

1 - x
by = cosa 3x2

x + 2
b

y = a x - 2
x - p

b-3

y = ax + 1
x - 1

b3

y = sin413x22y = cos3 x

y = cos13x2
- 2x2y = sin1x2

+ x2
y =

1

13x2
+ x - 329y =

1

1x + 325
y = 1x2

- x + 12-7y = 1x3
- 2x2

+ 3x + 1211

y = 14 + 2x227y = 13 - 2x25
y = 17 + x25y = 11 + x215

Dxy. 30. if 

31. if 

32. if 

In Problems 33–40, apply the Chain Rule more than once to find
the indicated derivative.

33. 34.

35. 36.

37. 38.

39. 40.

In Problems 41–46, use Figures 2 and 3 to approximate the indi-
cated expressions.

d

dt
5cos2[cos1cos t2]6d

dx
5sin[cos1sin 2x2]6

Dx[x sin212x2]Du[cos41sin u22]
Du ccos4au + 1

u - 1
b dDt[sin31cos t2]

Dt[cos514t - 192]Dx[sin41x2
+ 3x2]

g1s2 = cos ps sin2 psg¿ A12 B
F1t2 = sin1t2

+ 3t + 12F¿112C

G1t2 = 1t2
+ 9231t2

- 224G¿112

41. 42.

43. 44.

45. 46.

In Problems 47–58, express the indicated derivative in terms of the
function Assume that F is differentiable.

47. 48. Dx1F1x2
+ 122Dx1F12x22

F(x).

1g � f2¿1321f � g2¿162
1f>g2¿1221fg2¿122
1f - 2g2¿1221f + g2¿142
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y

x(1, 0)

Q

5

P

Figure 4

12

6 in.

8 in.

6

9 3

Figure 5

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. Given that and find where

60. Given that and find where

61. Given that and
find where .

62. Find the equation of the tangent line to the graph of

at Where does this line cross the

x-axis?

63. Find all points on the graph of where the tan-
gent line has slope 1.

64. Find the equation of the tangent line to 
at (1, 32).

65. Find the equation of the tangent line to at

66. Where does the tangent line to at (0, 1)
cross the x-axis?

67. Where does the tangent line to at 
cross the x-axis?

68. A point P is moving in the plane so that its coordinates
after t seconds are (4 cos 2t, 7 sin 2t), measured in feet.

(a) Show that P is following an elliptical path. Hint: Show that
which is an equation of an ellipse.

(b) Obtain an expression for L, the distance of P from the origin
at time t.

(c) How fast is the distance between P and the origin changing
when You will need the fact that 

(see Example 4 of Section 3.2).

69. A wheel centered at the origin and of radius 10 centime-
ters is rotating counterclockwise at a rate of 4 revolutions per
second. A point P on the rim is at (10, 0) at 
(a) What are the coordinates of P at time t seconds?
(b) At what rate is P rising (or falling) at time 

70. Consider the wheel-piston device in Figure 4. The wheel
has radius 1 foot and rotates counterclockwise at 2 radians per
second. The connecting rod is 5 feet long. The point P is at (1, 0)
at time 

(a) Find the coordinates of P at time t.

(b) Find the y-coordinate of Q at time t (the x-coordinate is
always zero).

t = 0.

t = 1?

t = 0.

1> A21u B Du A1u B =t = p>8?

1x>422 + 1y>722 = 1,

A1, 14 By = 1x2
+ 12-2

y = 12x + 123
A1, 14 B .

y = 1x2
+ 12-2

1x2
+ 1231x4

+ 122
y =

y = sin2 x

ap
3

, 1b .y = 1 + x sin 3x

F1x2 = f1x2 cos g1x2F¿112g¿112 = 1,
f112 = 2,  f¿112 = -1,  g112 = 0

G1x2 =

x

1 + sec F12x2.
G¿102F¿102 = -1,F102 = 2

g1x2 = cos f1x2.
g¿102f¿102 = 2,f102 = 1

Dx sec3 F1x2Dx (F1x2 sin2 F1x2)

d

dx
 g1tan 2x2Dx tan F12x2

d

dx
 cos F1x2d

dx
 F1cos x2

d

dy
 ay2

+

1

F1y22 b
d

dz
  11 + 1F12z2222

d

dz
 a 1

1F1z222 bDt11F1t22-22

71. Do Problem 70, assuming that the wheel is rotating at 60
revolutions per minute and t is measured in seconds.

72. The dial of a standard clock has a 10-centimeter radius.
One end of an elastic string is attached to the rim at 12 and the
other to the tip of the 10-centimeter minute hand. At what rate is
the string stretching at 12:15 (assuming that the clock is not
slowed down by this stretching)?

73. The hour and minute hands of a clock are 6 and 8 inches
long, respectively. How fast are the tips of the hands separating at
12:20 (see Figure 5). Hint: Law of Cosines.

C

74. Find the approximate time between 12:00 and 1:00
when the distance s between the tips of the hands of the clock of
Figure 5 is increasing most rapidly, that is, when the derivative

is largest.

75. Let be the smallest positive value of x at which the
curves and intersect. Find and also the
acute angle at which the two curves intersect at (see Problem
40 of Section 1.8).

76. An isosceles triangle is topped by a semicircle, as shown
in Figure 6. Let D be the area of triangle AOB and E be the area
of the shaded region. Find a formula for in terms of t and
then calculate

lim
t:0+

 
D

E
 and lim

t:p-

 
D

E

D>E

x0

x0y = sin 2xy = sin x
x0

ds>dt

GC≈

(c) Find the velocity of Q at time t. You will need the fact that
Du A1u B = 1> A21u B .

150



Section 3.6 Higher-Order Derivatives 151

A B

O

t

Figure 6

77. Show that Hint: Write 
and use the Chain Rule with 

78. Apply the result of Problem 77 to find 

79. Apply the result of Problem 77 to find 

80. Let and Find the derivative of
at 

81. Let and Find the derivative of
at x = 0.f1f1f1f1x2222

f¿102 = 2.f102 = 0

x = 0.f(f(x) - 1)
f¿(0) = 2.f(0) = 1

Dx ƒ sin x ƒ .

Dx ƒ x2
- 1 ƒ .

u = x2.
ƒ x ƒ = 2x2Dx ƒ x ƒ = ƒ x ƒ >x, x Z 0.

82. Suppose that f is a differentiable function.

(a) Find . (b) Find .

(c) Let denote the function defined as follows: and

for Thus 

etc. Based on your results from parts (a) and (b),

make a conjecture regarding Prove your conjecture.

83. Give a second proof of the Quotient Rule. Write

and use the Product Rule and the Chain Rule.

84. Suppose that f is differentiable and that there are real
numbers and such that and Let

Show that 

Answers to Concepts Review: 1.
2. 3.
4. 2x cos1x22; 612x + 122

1f1x222; 1f1x222Dvw; G¿1H1s22H¿1s2
Dtu; f¿1g1t22g¿1t2

g¿1x12 = g¿1x22.g1x2 = f1f1f1f1x2222.
f1x22 = x1.f1x12 = x2x2x1

Dxaf1x2
g1x2 b = Dxaf1x2 

1
g1x2 b

d

dx
 f[n].

f � f � f,

f � f, f[3]
=f[2]

=n Ú 2.f[n]
= f � f[n - 1]

f[1]
= ff[n]

d

dx
 f1f1f1x222d

dx
 f1f1x22

The operation of differentiation takes a function f and produces a new function 
If we now differentiate we produce still another function, denoted by (read
“f double prime”) and called the second derivative of f. It in turn, may be differen-
tiated, thereby producing which is called the third derivative of f, and so on.
The fourth derivative is denoted the fifth derivative is denoted and so on.

If, for example

then

Since the derivative of the zero function is zero, the fourth derivative and all
higher-order derivatives of f will be zero.

We have introduced three notations for the derivative (now also called the
first derivative) of They are

called, respectively, the prime notation, the D notation, and the Leibniz notation.
There is a variation of the prime notation, that we will also use occasionally. All
these notations have extensions for higher-order derivatives, as shown in the accom-
panying table. Note especially the Leibniz notation, which, though complicated,
seemed most appropriate to Leibniz.What, thought he, is more natural than to write

d

dx
 ady

dx
b as 

d2y

dx2

y¿,

f¿1x2 Dxy dy

dx

y = f1x2.

 f1421x2 = 0

 f‡1x2 = 12

 f–1x2 = 12x - 8

 f¿1x2 = 6x2
- 8x + 7

f1x2 = 2x3
- 4x2

+ 7x - 8

f152,f142,
f‡,

f–f¿,
f¿.3.6

Higher-Order 
Derivatives
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152 Chapter 3 The Derivative

Leibniz’s notation for the second derivative is read the second derivative of y with
respect to x.

Notations for Derivatives of 

D Leibniz 
Derivative Notation Notation Notation Notation

First

Second

Third

Fourth

nth

� EXAMPLE 1 If find and 

SOLUTION

�

Velocity and Acceleration In Section 3.1, we used the notion of instanta-
neous velocity to motivate the definition of the derivative. Let’s review this notion
by means of an example. Also, from now on we will use the single word velocity in
place of the more cumbersome phrase instantaneous velocity.

� EXAMPLE 2 An object moves along a coordinate line so that its position s
satisfies where s is measured in centimeters and t in seconds
with Determine the velocity of the object when and when 
When is the velocity 0? When is it positive?

SOLUTION If we use the symbol for the velocity at time t, then

Thus,

 v162 = 4162 - 12 = 12 centimeters per second

 v112 = 4112 - 12 = -8 centimeters per second

v1t2 =

ds

dt
= 4t - 12

v(t)

t = 6.t = 1t Ú 0.
s = 2t2

- 12t + 8,

 
d12y

dx12 = 212 sin 2x

 o

 
d5y

dx5 = 25 cos 2x

 
d4y

dx4 = 24 sin 2x

 
d3y

dx3 = -23 cos 2x

 
d2y

dx2 = -22 sin 2x

 
dy

dx
= 2 cos 2x

d12y>dx12.d3y>dx3, d4y>dx4,y = sin 2x,

dny

dxnDx
nyy1n2f1n21x2

ooooo

d4y

dx4Dx
4yy142f1421x2

d3y

dx3Dx
3yy‡f‡1x2

d2y

dx2Dx
2yy–f–1x2

dy

dx
Dxyy¿f¿1x2

yœf œ

y � f1x2
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s–10 –5 0 5 10

t = 3
s = –10
v = 0

t = 1, s = –2, v = – 8 t = 0, s = 8, v = –12

t = 6, s = 8, v = 12

Figure 1

If corresponds to the present
moment, then corresponds to
the past, and to the future. In
many problems, it will be obvious
that we are concerned only with the
future. However, since the statement
of Example 3 does not specify this, it
seems reasonable to allow t to have
negative as well as positive values.

t 7 0
t 6 0

t = 0

Measuring Time

2 6

v + 0 – 0 +

t

Figure 2

The velocity is 0 when that is, when The velocity is positive
when or when All this is shown schematically in Figure 1.t 7 3.4t - 12 7 0,

t = 3.4t - 12 = 0,

The object is, of course, moving along the s-axis, not on the colored path above
it. But the colored path shows what happens to the object. Between and

the velocity is negative; the object is moving to the left (backing up). By the
time it has “slowed” to a zero velocity. It then starts moving to the right as its
velocity becomes positive. Thus, negative velocity corresponds to moving in the di-
rection of decreasing s; positive velocity corresponds to moving in the direction of
increasing s. A rigorous discussion of these points will be given in Chapter 4. �

There is a technical distinction between the words velocity and speed. Velocity
has a sign associated with it; it may be positive or negative. Speed is defined to be
the absolute value of the velocity. Thus, in the example above, the speed at is

centimeters per second. The meter in most cars is a speedometer; it al-
ways gives nonnegative values.

Now we want to give a physical interpretation of the second derivative
It is, of course, just the first derivative of the velocity. Thus, it measures the

rate of change of velocity with respect to time, which has the name acceleration. If
it is denoted by a, then

In Example 2, Thus,

This means that the velocity is increasing at a constant rate of 4 centimeters per
second every second, which we write as 4 centimeters per second per second, or as

� EXAMPLE 3 An object moves along a horizontal coordinate line in such a
way that its position at time t is specified by

Here s is measured in feet and t in seconds.

(a) When is the velocity 0?
(b) When is the velocity positive?
(c) When is the object moving to the left (that is, in the negative direction)?
(d) When is the acceleration positive?

SOLUTION
(a) Thus, at and at

(b) when We learned how to solve quadratic inequali-
ties in Section 1.2. The solution is or, in interval notation,

see Figure 2.1- q , 22 ´ 16, q2; 5t: t 6 2 or t 7 661t - 221t - 62 7 0.v 7 0
t = 6.

t = 2v = 0v = ds>dt = 3t2
- 24t + 36 = 31t - 221t - 62.

s = t3
- 12t2

+ 36t - 30

4 cm>sec2.

 a =

d2s

dt2 = 4

 v =

ds

dt
= 4t - 12

s = 2t2
- 12t + 8.

a =

dv

dt
=

d2s

dt2

d2s>dt2.

ƒ -8 ƒ = 8
t = 1

t = 3,
t = 3,

t = 0
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–80 –60 –40 –20 0 20 40 60 80

t = –1
t = 6 t = 4

t = 2

t = 9

s

Figure 3

s0

v = v0  at  t = 0

Ground level

Figure 4

(c) The object is moving to the left when that is, when 
This inequality has as its solution the interval (2, 6).

(d) Thus, when The motion of the
object is shown schematically in Figure 3.

t 7 4.a 7 0a = dv>dt = 6t - 24 = 61t - 42.
1t - 221t - 62 6 0.v 6 0;

Falling-Body Problems If an object is thrown straight upward (or down-
ward) from an initial height of feet with an initial velocity of feet per second
and if s is its height above the ground in feet after t seconds, then

This assumes that the experiment takes place near sea level and that air resistance
can be neglected. The diagram in Figure 4 portrays the situation we have in mind.
Notice that positive velocity means that the object is moving upward.

� EXAMPLE 4 From the top of a building 160 feet high, a ball is thrown
upward with an initial velocity of 64 feet per second.

(a) When does it reach its maximum height?
(b) What is its maximum height?
(c) When does it hit the ground?
(d) With what speed does it hit the ground?
(e) What is its acceleration at 

SOLUTION Let correspond to the instant when the ball was thrown.Then
and ( is positive because the ball was thrown upward). Thus,

(a) The ball reached its maximum height at the time its velocity was 0, that is,
when or when seconds.

(b) At 
(c) The ball hit the ground when that is, when

Dividing by yields

The quadratic formula then gives

Only the positive answer makes sense. Thus, the ball hit the ground at
seconds.

(d) At Thus, the ball hit the
ground with a speed of 119.73 feet per second.

t = 2 + 214, v = -32 A2 + 214 B + 64 L -119.73.

t = 2 + 214 L 5.74

t =

4 ; 216 + 40
2

=

4 ; 2214
2

= 2 ; 214

t2
- 4t - 10 = 0

-16

-16t2
+ 64t + 160 = 0

s = 0,
t = 2, s = -161222 + 64122 + 160 = 224 feet.

t = 2-32t + 64 = 0

 a =

dv

dt
= -32

 v =

ds

dt
= -32t + 64

 s = -16t2
+ 64t + 160

v0v0 = 64s0 = 160
t = 0

t = 2?

s = -16t2
+ v0t + s0

v0s0

�
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(e) The acceleration is always feet per second per second. This is the acceler-
ation of gravity near sea level. �

-32

Concepts Review
1. If then the third derivative of y with respect to

x can be denoted by any one of the following four symbols: _____.

2. If denotes the position of a particle on a coordi-
nate line at time t, then its velocity is given by _____, its speed is
given by _____, and its acceleration is given by _____.

s = f1t2
y = f1x2, 3. If denotes the position of an object at time t,

then the object is moving to the right if _____ .

4. Assume that an object is thrown straight upward so that
its height s at time t is given by The object reaches its
maximum height when _____, after which, _____.ds>dtds>dt =

s = f1t2.

s = f1t2

Problem Set 3.6
In Problems 1–8, find 

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–16, find 

9. 10.

11. 12.

13. 14.

15. 16.

17. Let Thus,
and We give n! the name n

factorial. Show that 

18. Find a formula for

19. Without doing any calculating, find each derivative.

(a) (b)

(c)

20. Find a formula for 

21. If find the value of at
each zero of that is, at each point c where 

22. Suppose that and 
and Find a, b, and c.

In Problems 23–28, an object is moving along a horizontal coordi-
nate line according to the formula where s, the directed
distance from the origin, is in feet and t is in seconds. In each case,
answer the following questions (see Examples 2 and 3).

(a) What are and the velocity and acceleration, at 
time t?

(b) When is the object moving to the right?
(c) When is it moving to the left?
(d) When is its acceleration negative?
(e) Draw a schematic diagram that shows the motion of the

object.

a(t),v(t)

s = f1t2,

g–112 = -4.g¿112 = 3,
g112 = 5,g1t2 = at2

+ bt + c

f¿1c2 = 0.f¿,
f–f1x2 = x3

+ 3x2
- 45x - 6,

Dx
n11>x2.

Dx
111x2

- 325
Dx

121100x11
- 79x102Dx

413x3
+ 2x - 192

Dx
n1an - 1x

n - 1
+

Á
+ a1x + a02

Dx
n1xn2 = n!.

5! = 5 # 4 # 3 # 2 # 1.4 # 3 # 2 # 1 = 24
4! =n! = n1n - 121n - 22Á 3 # 2 # 1.

f1x2 =

1x + 122
x - 1

f1s2 = s11 - s223
f1t2 = t sin1p>t2f1u2 = 1cos up2-2

f1u2 =

2u2

5 - u
f1t2 =

2
t

f1x2 = 5x3
+ 2x2

+ xf1x2 = x2
+ 1

f–122.
y =

3x

1 - x
y =

1
x - 1

y = sin1x32y = sin17x2
y = 13 - 5x25y = 13x + 523
y = x5

+ x4y = x3
+ 3x2

+ 6x

d3y>dx3. 23. 24.

25. 26.

27. 28.

29. If find the velocity of the moving
object when its acceleration is zero.

30. If find the velocity of the mov-
ing object when its acceleration is zero.

31. Two objects move along a coordinate line. At the end of t
seconds their directed distances from the origin, in feet, are given
by and respectively.

(a) When do they have the same velocity?
(b) When do they have the same speed?
(c) When do they have the same position?

32. The positions of two objects, and on a coordinate
line at the end of t seconds are given by 

and respectively.When do the two
objects have the same velocity?

33. An object thrown directly upward is at a height of
feet after t seconds (see Example 4).

(a) What is its initial velocity?
(b) When does it reach its maximum height?
(c )What is its maximum height?
(d) When does it hit the ground?
(e) With what speed does it hit the ground?

34. An object thrown directly upward from ground level with
an initial velocity of 48 feet per second is feet high
at the end of t seconds.
(a) What is the maximum height attained?
(b) How fast is the object moving, and in which direction, at the

end of 1 second?
(c) How long does it take to return to its original position?

35. A projectile is fired directly upward from the ground
with an initial velocity of feet per second. Its height in t seconds
is given by feet. What must its initial velocity be
for the projectile to reach a maximum height of 1 mile?

36. An object thrown directly downward from the top of a
cliff with an initial velocity of feet per second falls

feet in t seconds. If it strikes the ocean below in 3
seconds with a speed of 140 feet per second, how high is the cliff?
s = v0 t + 16t2

v0

s = v0t - 16t2
v0

C

s = 48t - 16t2

C

C

s = -16t2
+ 48t + 256

s2 = - t3
+ 9t2

- 12t,18t + 5
s1 = 3t3

- 12t2
+

P2,P1

s2 = t2
- 2t,s1 = 4t - 3t2

s =
1

101t4
- 14t3

+ 60t22,
s =

1
2 t4

- 5t3
+ 12t2,

s = t +

4
t
, t 7 0s = t2

+

16
t

, t 7 0

s = 2t3
- 6t + 5s = t3

- 9t2
+ 24t

s = t3
- 6t2s = 12t - 2t2
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1 2–2 –1

1

–1

2

y

x

(2, 1)

y3 + 7y = x3

Figure 1

37. An object moves along a horizontal coordinate line in
such a way that its position at time t is specified by

Here s is measured in centimeters and t
in seconds. When is the object slowing down; that is, when is its
speed decreasing?

38. Explain why an object moving along a line is slowing
down when its velocity and acceleration have opposite signs (see
Problem 37).

39. Leibniz obtained a general formula for where
u and are both functions of x. See if you can find it. Hint: Begin
by considering the cases and n = 3.n = 1, n = 2,

v
Dx

n1uv2,EXPL

s = t3
- 3t2

- 24t - 6.

40. Use the formula of Problem 39 to find 

41. Let 

(a) Draw the graphs of and on [0, 6]
using the same axes.

(b) Evaluate 

42. Repeat Problem 41 for 

Answers to Concepts Review: 1.
2. 3. 4. 0; 60f¿1t2 7 0ds>dt; ƒ ds>dt ƒ ; d2s>dt2

; y‡f‡1x2; Dx
3y; d3y>dx3

f1x2 = 1x + 12>1x2
+ 22.GC

f‡12.132.
f‡1x2f1x2, f¿1x2, f–1x2,

f1x2 = x[sin x - cos1x>22].GC

Dx
41x4 sin x2.

In the equation

we cannot solve for y in terms of x. It still may be the case, however, that there is
exactly one y corresponding to each x. For example, we may ask what y-values (if
any) correspond to To answer this question, we must solve

Certainly, is one solution, and it turns out that is the only real solu-
tion. Given the equation determines a corresponding y-value.
We say that the equation defines y as an implicit function of x. The graph of this
equation, shown in Figure 1, certainly looks like the graph of a differentiable func-
tion. The new element is that we do not have an equation of the form 
Based on the graph, we assume that y is some unknown function of x. If we denote
this function by we can write the equation as

Even though we do not have a formula for we can nevertheless get a relation
between and by differentiating both sides of the equation with
respect to x. Remembering to apply the Chain Rule, we get

Note that our expression for involves both x and y, a fact that is often a
nuisance. But if we wish only to find a slope at a point where we know both coor-
dinates, no difficulty exists. At (2, 1),

The slope is 
The method just illustrated for finding without first solving the given

equation for y explicitly in terms of x is called implicit differentiation. But is the
method legitimate—does it give the right answer?

dy>dx

6
5.

dy

dx
=

31222
31122 + 7

=

12
10

=

6
5

dy>dx

 
dy

dx
=

3x2

3y2
+ 7

 
dy

dx
 13y2

+ 72 = 3x2

 3y2
 

dy

dx
+ 7 

dy

dx
= 3x2

 
d

dx
 1y32 +

d

dx
 17y2 =

d

dx
 x3

y¿1x2x, y(x),
y(x),

[y1x2]3
+ 7y1x2 = x3

y(x),

y = f1x2.

y3
+ 7y = x3x = 2,

y = 1y = 1

y3
+ 7y = 8

x = 2.

y3
+ 7y = x3

3.7
Implicit Differentiation
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1 2 3 4–4 –3 –2 –1

1

2

3

4
(3, 4)

y

x

(3, –4)

25 – x2f(x) �

1 2 3 4–4 –3

–3

–2

–2

–1
–1

1

2

3

–4

4

y

x

25 – x2g(x) � �

Figure 2

An Example That Can Be Checked To give some evidence for the cor-
rectness of the method, consider the following example, which can be worked two
ways.

� EXAMPLE 1 Find if 

SOLUTION

Method 1 We can solve the given equation explicitly for y as follows:

Thus,

Method 2 Implicit Differentiation We equate the derivatives of the two sides.

We obtain, after using the Product Rule on the first term,

These two answers look different. For one thing, the answer obtained from
Method 1 involves x only, whereas the answer from Method 2 involves both x and
y. Remember, however, that the original equation could be solved for y in terms of
x to give When we substitute 
into the expression just obtained for we get the following:

�

Some Subtle Difficulties If an equation in x and y determines a function
and if this function is differentiable, then the method of implicit differ-

entiation will yield a correct expression for But notice there are two big ifs
in this statement.

Consider the equation

which determines both the function and the function

Their graphs are shown in Figure 2.
Happily, both of these functions are differentiable on Consider f first.

It satisfies

When we differentiate implicitly and solve for we obtainf¿1x2,
x2

+ [f1x2]2
= 25

1-5, 52.
y = g1x2 = -225 - x2.

y = f1x2 = 225 - x2

x2
+ y2

= 25

dy>dx.
y = f1x2

 =

12x4
- 9x2

- 8x4
+ 8x

14x2
- 322 =

4x4
- 9x2

+ 8x

14x2
- 322

 
dy

dx
=

3x2
- 8xy

4x2
- 3

=

3x2
- 8x 

x3
- 1

4x2
- 3

4x2
- 3

dy>dx,
y = 1x3

- 12>14x2
- 32y = 1x3

- 12>14x2
- 32.

 
dy

dx
=

3x2
- 8xy

4x2
- 3

 
dy

dx
 14x2

- 32 = 3x2
- 8xy

 4x2 #
dy

dx
+ y # 8x - 3 

dy

dx
= 3x2

d

dx
 14x2y - 3y2 =

d

dx
 1x3

- 12

dy

dx
=

14x2
- 3213x22 - 1x3

- 1218x2
14x2

- 322 =

4x4
- 9x2

+ 8x

14x2
- 322

 y =

x3
- 1

4x2
- 3

 y14x2
- 32 = x3

- 1

4x2y - 3y = x3
- 1.dy>dx
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1 2 3 4–4
–1

–2

–3

–4

–3 –2 –1

1

2

3

4

y

x

y = h(x)

Figure 3

A similar treatment of yields

For practical purposes, we can obtain both of these results simultaneously by
implicit differentiation of This gives

Naturally, the results are identical with those obtained above.
Note that it is often enough to know that in order to apply our

results. Suppose we want to know the slopes of the tangent lines to the circle
when For the corresponding y-values are 4 and 

The slopes at (3, 4) and obtained by substituting in are and 
respectively (see Figure 2).

To complicate matters, we point out that

determines many other functions. For example, consider the function h defined by

It too satisfies since But it is not even continu-
ous at so it certainly does not have a derivative there (see Figure 3).

While the subject of implicit functions leads to difficult technical ques-
tions (treated in advanced calculus), the problems we study have straightforward
solutions.

More Examples In the examples that follow, we assume that the given
equation determines one or more differentiable functions whose derivatives can
be found by implicit differentiation. Note that in each case we begin by taking the
derivative of each side of the given equation with respect to the appropriate vari-
able. Then we use the Chain Rule as needed.

� EXAMPLE 2 Find if 

SOLUTION

�

� EXAMPLE 3 Find the equation of the tangent line to the curve

y3
- xy2

+ cos xy = 2

 
dy

dx
=

1 - 2x

15y2

 2x + 15y2
 

dy

dx
= 1

 
d

dx
 1x2

+ 5y32 =

d

dx
 1x + 92

x2
+ 5y3

= x + 9.dy>dx

x = 3,
x2

+ [h1x2]2
= 25.x2

+ y2
= 25,

h1x2 = e 225 - x2 if -5 … x … 3
-225 - x2 if 3 6 x … 5

x2
+ y2

= 25

3
4,-

3
4-x>y,13, -42,

-4.x = 3,x = 3.x2
+ y2

= 25

dy>dx = -x>y

 
dy

dx
= -

x
y

= d
-x225 - x2

if y = f1x2
-x

-225 - x2
if y = g1x2

 2x + 2y 

dy

dx
= 0

x2
+ y2

= 25.

g¿1x2 = -

x

g1x2 =

x225 - x2

g(x)

 f¿1x2 = -

x

f1x2 = -

x225 - x2

 2x + 2f1x2f¿1x2 = 0
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Theorem A Power Rule

Let r be any nonzero rational number. Then, for 

If r can be written in lowest terms as where q is odd, then
for all x.Dx(xr) = rxr - 1

r = p>q,

Dx1xr2 = rxr - 1

x 7 0,

at the point (0, 1).

SOLUTION For simplicity, let us use the notation for dy/dx. When we
differentiate both sides and equate the results, we obtain

At Thus, the equation of the tangent line at (0, 1) is

or
�

The Power Rule Again We have learned that where n is
any nonzero integer. We now extend this to the case where n is any nonzero ra-
tional number.

Dx1xn2 = nxn - 1,

y =
1
3 x + 1

y - 1 =
1
31x - 02

10, 12, y¿ =
1
3.

 y¿ =

y2
+ y sin xy

3y2
- 2xy - x sin xy

 y¿13y2
- 2xy - x sin xy2 = y2

+ y sin xy

 3y2y¿ - x12yy¿2 - y2
- 1sin xy21xy¿ + y2 = 0

y¿

Proof Since r is rational, r may be written as where p and q are integers with
Let

Then

and, by implicit differentiation,

Thus,

We have obtained the desired result, but, to be honest, we must point out 
a flaw in our argument. In the implicit differentiation step, we assumed that 

exists, that is, that is differentiable. We can fill this gap, but since 
it is hard work we relegate the complete proof to the appendix (Section A.2,
Theorem C). �

� EXAMPLE 4 If find Dxy.y = 2x5>3
+ 2x2

+ 1,

y = xp>qDxy

 =

p

q
 xp - 1 - p + p>q

=

p

q
 xp>q - 1

= rxr - 1

 Dxy =

pxp - 1

qyq - 1 =

p

q
 

xp - 1

1xp>q2q - 1 =

p

q
 

xp - 1

xp - p>q

qyq - 1Dxy = pxp - 1

yq
= xp

y = xr
= xp>q

q 7 0.
p>q,

159



160 Chapter 3 The Derivative

SOLUTION Using Theorem A and the Chain Rule, we have

� =

10
3

 x2>3
+

x2x2
+ 1

 = 2 #
5
3

 x5>3 - 1
+

1
2

 1x2
+ 121>2 - 1 # 12x2

 Dxy = 2Dxx5>3
+ Dx1x2

+ 121>2

Concepts Review
1. The implicit relation can be solved explic-

itly for y giving _____.

2. Implicit differentiation of with respect to x
gives _____ + 3x2

= 2.
y3

+ x3
= 2x

y =

yx3
- 3y = 9 3. Implicit differentiation of with

respect to x gives _____ _____.

4. The Power Rule with rational exponents says that
_____. This rule, together with the Chain Rule,

implies that _____.Dx[1x2
- 5x25>3] =

Dx1xp>q2 =

=

xy2
+ y3

- y = x3

Problem Set 3.7
Assuming that each equation in Problems 1–12 defines a differen-
tiable function of x, find by implicit differentiation.

1. 2.

3.

4. where is a constant.

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–18, find the equation of the tangent line at the in-
dicated point (see Example 3).

13.

14.

15.

16.

17.

18.

In Problems 19–32, find 

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. y = 24 1 + sin 5xy =

123 x2 sin x

y = 2x2 cos xy = 2x2
+ sin x

y = 13x - 92-5>3y =

1

1x3
+ 2x22>3

y = 1x3
- 2x21>3y = 24 3x2

- 4x

y = 24 2x + 1y = 13 x +

113 x

y = 13 x - 2x7>2y = 3x5>3
+ 1x

dy>dx.

1y + xy2
= 5; 14, 12

x2>3
- y2>3

- 2y = 2; 11, -12
y + cos1xy22 + 3x2

= 4; 11, 02
sin1xy2 = y; 1p>2, 12
x2y2

+ 4xy = 12y; 12, 12
x3y + y3x = 30; 11, 32

cos1xy22 = y2
+ xxy + sin1xy2 = 1

x2y + 1 = xy + 125xy + 2y = y2
+ xy3

x2y = 1 + y2x4x3
+ 7xy2

= 2y3

x2
+ 2x2y + 3xy = 0xy2

= x - 8

ax2
+ a2y2

= 4a2,

xy = 1

9x2
+ 4y2

= 36y2
- x2

= 1

Dxy
31. 32.

33. If find and 

34. If find 

35. Sketch the graph of the circle and
then find equations of the two tangent lines that pass through the
origin.

36. Find the equation of the normal line (line perpendicular
to the tangent line) to the curve at
(3, 1).

37. Suppose that Then implicit differentiation
twice with respect to x yields in turn:

(a)

(b)

Solve (a) for and substitute in (b), and then solve for 

38. Find if (see Problem 37).

39. Find at (2, 1) if (see Problem 37).

40. Use implicit differentiation twice to find at (3, 4) if

41. Show that the normal line to at 
passes through the origin.

42. Show that the hyperbolas and inter-
sect at right angles.

43. Show that the graphs of and inter-
sect at right angles.

44. Suppose that curves and intersect at with
slopes and respectively, as in Figure 4. Then (see Problem
40 of Section 1.8) the positive angle from (i.e., from the tan-
gent line to at ) to satisfies

tan u =

m2 - m1

1 + m1m2

C21x0, y02C1

C1u

m2,m1

1x0, y02C2C1

y2
= 4x2x2

+ y2
= 6

x2
- y2

= 1xy = 1

A32, 32 Bx3
+ y3

= 3xy

x2
+ y2

= 25.
y–

2x2y - 4y3
= 4y–

x3
- 4y2

+ 3 = 0y–

y–.y¿

xy– + y¿ + y¿ + 3y2y– + 6y1y¿22 = 0.

xy¿ + y + 3y2y¿ = 0;

xy + y3
= 2.

81x2
+ y222 = 1001x2

- y22

x2
+ 4x + y2

+ 3 = 0

dx>dy.y = sin1x22 + 2x3,

dt>ds.ds>dts2t + t3
= 1,

y = 2tan2 x + sin2 xy = 24 1 + cos1x2
+ 2x2
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x

y

(x0, y0)

C2

C1

�

Figure 4

s
h

s
h

s
ht = 16

t = 8

t = 4

Figure 1

–2 –1 1

y

x

h

Light bulb

x2 + y2 = 1

(1.25, 0)

Figure 5

Find the angles from the circle to the circle
at the two points of intersection.

45. Find the angle from the line to the curve
at their point of intersection in the first

quadrant (see Problem 44).

46. A particle of mass m moves along the x-axis so that its
position x and velocity satisfy

where and k are constants. Show by implicit differentiation
that

whenever v Z 0.

m 
dv

dt
= -kx

v0, x0,

m1v2
- v0

22 = k1x0
2

- x22
v = dx>dt

x2
- xy + 2y2

= 28
y = 2x

1x - 122 + y2
= 1

x2
+ y2

= 1

47. The curve is an ellipse centered at the
origin and with the line as its major axis. Find the equa-
tions of the tangent lines at the two points where the ellipse in-
tersects the x-axis.

48. Find all points on the curve where the tan-
gent line is vertical, that is, where 

49. How high h must the light bulb in Figure 5 be if the point
(1.25, 0) is on the edge of the illuminated region?
≈

dx>dy = 0.
x2y - xy2

= 2

y = x
x2

- xy + y2
= 16

Answers to Concepts Review: 1.

2. 3.

4.
p

q
 xp>q - 1; 531x2

- 5x22>312x - 52
x # 2y 

dy

dx
+ y2

+ 3y2
 

dy

dx
-

dy

dx
= 3x23y2

 

dy

dx

9>1x3
- 32

If a variable y depends on time t, then its derivative is called a time rate of
change. Of course, if y measures distance, then this time rate of change is also
called velocity. We are interested in a wide variety of time rates: the rate at which
water is flowing into a bucket, the rate at which the area of an oil spill is growing,
the rate at which the value of a piece of real estate is increasing, and so on. If y is
given explicitly in terms of t, the problem is simple; we just differentiate and then
evaluate the derivative at the required time.

It may be that, in place of knowing y explicitly in terms of t, we know a rela-
tionship that connects y and another variable x, and that we also know something
about We may still be able to find since and are related
rates. This will usually require implicit differentiation.

Two Simple Examples In preparation for outlining a systematic procedure
for solving related rate problems, we discuss two examples.

� EXAMPLE 1 A small balloon is released at a point 150 feet away from an
observer, who is on level ground. If the balloon goes straight up at a rate of 8 feet
per second, how fast is the distance from the observer to the balloon increasing
when the balloon is 50 feet high?

SOLUTION Let t denote the number of seconds after the balloon is released.
Let h denote the height of the balloon and s its distance from the observer (see
Figure 1). Both h and s are variables that depend on t; however, the base of the

dx>dtdy>dtdy>dt,dx>dt.

dy>dt3.8
Related Rates
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162 Chapter 3 The Derivative

150

s
h

Figure 2

12

h

r

6

Figure 3

Two triangles are similar if their cor-
responding angles are congruent.

From geometry, we learn that ratios
of corresponding sides of similar
triangles are equal. For example,

This fact, used in Example 2, will be
needed often in the problem set.

b

a
=

B

A

Similar Triangles

c

C B

b

a A

β γ β γ

α

α

triangle (the distance from the observer to the point of release) remains
unchanged as t increases. Figure 2 shows the key quantities in one simple diagram.

Before going farther, we pick up a theme discussed earlier in the book, es-
timating the answer. Note that, initially, s changes hardly at all but
eventually s changes about as fast as h changes An estimate
for when might be about one-third to one-half of or 3. If we
get an answer far from this value, we will know we have made a mistake. For ex-
ample, answers such as 17 and even 7 are clearly wrong.

We continue with the exact solution. For emphasis, we ask and answer three
fundamental questions.

(a) What is given? Answer:
(b) What do we want to know? Answer: We want to know at the instant

when 
(c) How are s and h related? Answer: The variables s and h change with time (they

are implicit functions of t), but they are always related by the Pythagorean
equation

If we differentiate implicitly with respect to t and use the Chain Rule, we
obtain

or

This relationship holds for all 
Now, and not before now, we turn to the specific instant when From

the Pythagorean Theorem, we see that, when 

Substituting in yields

or

At the instant when the distance between the balloon and the observer is
increasing at the rate of 2.53 feet per second. �

� EXAMPLE 2 Water is pouring into a conical tank at the rate of 8 cubic feet
per minute. If the height of the tank is 12 feet and the radius of its circular opening
is 6 feet, how fast is the water level rising when the water is 4 feet deep?

SOLUTION Denote the depth of the water by h and let r be the corresponding
radius of the surface of the water (see Figure 3).

We are given that the volume, V, of water in the tank is increasing at the rate of
8 cubic feet per minute; that is, We want to know how fast the water is
rising (that is, ) at the instant when 

We need to find an equation relating V and h; we will then differentiate it to
get a relationship between and The formula for the volume of water
in the tank, contains the unwanted variable r ; it is unwanted because
we do not know its rate However, by similar triangles (see the marginal
box), we have so Substituting this in givesV =

1
3 pr2hr = h>2.r>h = 6>12,

dr>dt.
V =

1
3 pr2h,

dh>dt.dV>dt

h = 4.dh>dt
dV>dt = 8.

h = 50,

ds

dt
=

8210
L 2.53

50210  
ds

dt
= 50182

s1ds>dt2 = h1dh>dt2
s = 215022 + 115022 = 50210

h = 50,
h = 50.

t 7 0.

s 
ds

dt
= h 

dh

dt

2s 
ds

dt
= 2h 

dh

dt

s2
= h2

+ 115022

h = 50.
ds>dt

dh>dt = 8.

dh>dt,h = 50ds>dt
1ds>dt L dh>dt = 82.1ds>dt L 02,

≈
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Now we differentiate implicitly, keeping in mind that both V and h depend on
t. We obtain

Now that we have a relationship between and and not earlier, we
consider the situation when Substituting and we obtain

from which

When the depth of the water is 4 feet, the water level is rising at 0.637 foot per
minute. �

If you think about Example 2 for a moment, you realize that the water level
will rise more and more slowly as time goes on. For example, when 

so foot per minute.
What we are really saying is that the acceleration is negative. We can

calculate an expression for it. At any time t,

so

If we differentiate implicitly again, we get

from which

This is clearly negative.

A Systematic Procedure Examples 1 and 2 suggest the following method for
solving a related rates problem.

Step 1: Let t denote the elapsed time. Draw a diagram that is valid for all 
Label those quantities whose values do not change as t increases with their given
constant values. Assign letters to the quantities that vary with t, and label the ap-
propriate parts of the figure with these variables.

Step 2: State what is given about the variables and what information is wanted
about them. This information will be in the form of derivatives with respect to t.

t 7 0.

d2h

dt2 =

-2adh

dt
b2

h

0 = h2
 
d2h

dt2 +

dh

dt
 a2h 

dh

dt
b

32
p

= h2
 
dh

dt

8 =

ph2

4
 
dh

dt

d2h>dt2
dh>dt = 32>100p L 0.102

8 =

p11022
4

 
dh

dt

h = 10

dh

dt
=

2
p

L 0.637

8 =

p1422
4

 
dh

dt

dV>dt = 8,h = 4h = 4.
dh>dt,dV>dt

dV

dt
=

3ph2

12
 
dh

dt
=

ph2

4
 
dh

dt

V =

1
3

 pah

2
b2

h =

ph3

12
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s

x

 y + 160

Figure 4

Step 3: Relate the variables by writing an equation that is valid at all times 
not just at some particular instant.

Step 4: Differentiate the equation found in Step 3 implicitly with respect to t. The
resulting equation, containing derivatives with respect to t, is true for all 

Step 5: At this point, and not earlier, substitute in the equation found in Step 4 all
data that are valid at the particular instant for which the answer to the problem is
required. Solve for the desired derivative.

� EXAMPLE 3 An airplane flying north at 640 miles per hour passes over a
certain town at noon. A second airplane going east at 600 miles per hour is direct-
ly over the same town 15 minutes later. If the airplanes are flying at the same alti-
tude, how fast will they be separating at 1:15 P.M.?

SOLUTION

Step 1: Let t denote the number of hours after 12:15 P.M., y the distance in miles
flown by the northbound airplane after 12:15 P.M., x the distance flown by the east-
bound airplane after 12:15 P.M., and s the distance between the airplanes. In the 15
minutes from noon to 12:15 P.M. the northbound airplane will have flown 
miles, so the distance from the town to the northbound airplane at time t will be

(See Figure 4.)

Step 2: We are given that, for all and We want to
know at that is, at 1:15 P.M.

Step 3: By the Pythagorean Theorem,

Step 4: Differentiating implicitly with respect to t and using the Chain Rule, we
have

or

Step 5: For all and while at the particular instant

and When we

substitute these data in the equation of Step 4, we obtain

from which

At 1:15 P.M., the airplanes are separating at 872 miles per hour.

Now let’s see if our answer makes sense. Look at Figure 4 again. Clearly, s is
increasing faster than either x or y is increasing, so exceeds 640. On the other
hand, s is surely increasing more slowly than the sum of x and y; that is,

Our answer, is reasonable. �ds>dt = 872,ds>dt 6 600 + 640 = 1240.

ds>dt
≈

ds

dt
= 872

1000 
ds

dt
= 1600216002 + 1640 + 160216402

s = 2160022 + 1640 + 16022 = 1000.t = 1, x = 600, y = 640,

dy>dt = 640,t 7 0, dx>dt = 600

s 
ds

dt
= x 

dx

dt
+ 1y + 1602 

dy

dt

2s 
ds

dt
= 2x 

dx

dt
+ 21y + 1602 

dy

dt

s2
= x2

+ 1y + 16022

t = 1,ds>dt
dx>dt = 600.t 7 0, dy>dt = 640

y + 160.

640
4 = 160

t 7 0.

t 7 0,
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θ

250

x

Telescope

Boat

Figure 5

�

120

x

Figure 6

� EXAMPLE 4 A woman standing on a cliff is watching a motorboat through
a telescope as the boat approaches the shoreline directly below her. If the tele-
scope is 250 feet above the water level and if the boat is approaching at 20 feet per
second, at what rate is the angle of the telescope changing when the boat is 250 feet
from the shore?

SOLUTION

Step 1: We draw a figure (Figure 5) and introduce variables x and as shown.

Step 2: We are given that the sign is negative because x is decreas-
ing with time. We want to know at the instant when 

Step 3: From trigonometry,

Step 4: We differentiate implicitly using the fact that (Theorem
3.4B). This gives

Step 5: At the instant when is radians and 
Thus,

or

The angle is changing at radian per second.The negative sign shows that is
decreasing with time. �

� EXAMPLE 5 As the sun sets behind a 120-foot building, the building’s shad-
ow grows. How fast is the shadow growing (in feet per second) when the sun’s rays
make an angle of 45° (or radians)?

SOLUTION
Step 1: Let t denote time in seconds since midnight. Let x denote the length of the
shadow in feet, and let denote the angle of the sun’s ray. See Figure 6.

Step 2: Since the earth rotates once every 24 hours, or 86,400 seconds, we know
that (The negative sign is needed because decreases as the
sun sets.) We want to know when 

Step 3: Figure 6 indicates that the quantities x and satisfy so

Step 4: Differentiating both sides of with respect to t gives

Step 5: When we have

Notice that as the sun sets, is decreasing (hence is negative), while the
shadow x is increasing (hence  is positive). �dx>dt

du>dtu

dx

dt
=

p

360
 csc2

 
p

4
=

p

360
 A22 B2 =

p

180
L 0.0175 

ft
sec

u = p>4,

dx

dt
= 1201-csc2 u2 

du

dt
= -1201csc2 u2a-

2p
86,400

b =

p

360
 csc2 u

x = 120 cot u

x = 120 cot u.
cot u = x>120,u

u = p>4.dx>dt
udu>dt = -2p>86,400.

u

p>4

u-0.04

du

dt
=

-1
25

= -0.04

2 
du

dt
=

1
250

 1-202

sec2 u = sec21p>42 = 2.p>4x = 250, u

sec2 u 
du

dt
=

1
250

 
dx

dt

Du tan u = sec2 u

tan u =

x

250

x = 250.du>dt
dx>dt = -20;

u,
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9

6
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Figure 8

2400 ft3/h

2400 – dV
dt

20

h

Figure 7

A Graphical Related Rates Problem Often in a real-life situation, we do
not know a formula for a certain function, but rather have an empirically deter-
mined graph for it. We may still be able to answer questions about rates.

� EXAMPLE 6 Webster City monitors the height of the water in its cylindrical
water tank with an automatic recording device. Water is constantly pumped into
the tank at a rate of 2400 cubic feet per hour, as shown in Figure 7. During a certain
12-hour period (beginning at midnight), the water level rose and fell according to
the graph in Figure 8. If the radius of the tank is 20 feet, at what rate was water
being used at 7:00 A.M.?

SOLUTION Let t denote the number of hours past midnight, h the height of 
the water in the tank at time t, and V the volume of water in the tank at that time
(see Figure 7).Then is the rate in minus the rate out, so is the
rate at which water is being used at any time t. Since the slope of the tangent line at

is approximately (Figure 8), we conclude that at that time.
For a cylinder, and so

from which

At 

Thus Webster City residents were using water at the rate of 
cubic feet per hour at 7:00 A.M. �

2400 + 3770 = 6170

dV

dt
L 400p1-32 L -3770

t = 7,

dV

dt
= 400p 

dh

dt

V = p12022h
V = pr2h,

dh>dt L -3-3t = 7

2400 - dV>dtdV>dt

Concepts Review
1. To ask how fast u is changing with respect to time t after 2

hours is to ask the value of _____ at _____.

2. An airplane with a constant speed of 400 miles per hour
flew directly over an observer. The distance between the observ-
er and plane grew at an increasing rate, eventually approaching a
rate of _____.

3. If is decreasing as time t increases, then is
_____.

4. If water is pouring into a spherical tank at a constant rate,
then the height of the water grows at a variable and positive rate

but is _____ until h reaches half the height of the
tank, after which becomes _____.d2h>dt2

d2h>dt2dh>dt,

d2h>dt2dh>dt

Problem Set 3.8
1. Each edge of a variable cube is increasing at a rate of 3

inches per second. How fast is the volume of the cube increasing
when an edge is 12 inches long?

2. Assuming that a soap bubble retains its spherical shape as
it expands, how fast is its radius increasing when its radius is 3
inches if air is blown into it at a rate of 3 cubic inches per second?

3. An airplane, flying horizontally at an altitude of 1 mile,
passes directly over an observer. If the constant speed of the air-
plane is 400 miles per hour, how fast is its distance from the ob-
server increasing 45 seconds later? Hint: Note that in 45 seconds

the airplane goes 5 miles.

4. A student is using a straw to drink from a conical paper
cup, whose axis is vertical, at a rate of 3 cubic centimeters per sec-
ond. If the height of the cup is 10 centimeters and the diameter of

A34 #  
1
60 =

1
80  hour B ,

≈

its opening is 6 centimeters, how fast is the level of the liquid
falling when the depth of the liquid is 5 centimeters?

5. An airplane flying west at 300 miles per hour goes over
the control tower at noon, and a second airplane at the same alti-
tude, flying north at 400 miles per hour, goes over the tower an
hour later. How fast is the distance between the airplanes chang-
ing at 2:00 P.M.? Hint: See Example 3.

6. A woman on a dock is pulling in a rope fastened to the
bow of a small boat. If the woman’s hands are 10 feet higher than
the point where the rope is attached to the boat and if she is
retrieving the rope at a rate of 2 feet per second, how fast is the
boat approaching the dock when 25 feet of rope is still out?

7. A 20-foot ladder is leaning against a building. If the bot-
tom of the ladder is sliding along the level pavement directly
≈

≈

≈
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r

h

d

Figure 9

40 ft 3 ft

h5 ft

Figure 10

away from the building at 1 foot per second, how fast is the top of
the ladder moving down when the foot of the ladder is 5 feet
from the wall?

8. We assume that an oil spill is being cleaned up by deploy-
ing bacteria that consume the oil at 4 cubic feet per hour. The oil
spill itself is modeled in the form of a very thin cyclinder whose
height is the thickness of the oil slick. When the thickness of 
the slick is 0.001 foot, the cylinder is 500 feet in diameter. If the
height is decreasing at 0.0005 foot per hour, at what rate is the
area of the slick changing?

9. Sand is pouring from a pipe at the rate of 16 cubic feet per
second. If the falling sand forms a conical pile on the ground
whose altitude is always the diameter of the base, how fast is the
altitude increasing when the pile is 4 feet high? Hint: Refer to
Figure 9 and use the fact that V =

1
3 pr2h.

1
4

10. A child is flying a kite. If the kite is 90 feet above the
child’s hand level and the wind is blowing it on a horizontal
course at 5 feet per second, how fast is the child paying out cord
when 150 feet of cord is out? (Assume that the cord remains
straight from hand to kite, actually an unrealistic assumption.)

11. A rectangular swimming pool is 40 feet long, 20 feet wide,
8 feet deep at the deep end, and 3 feet deep at the shallow end
(see Figure 10). If the pool is filled by pumping water into it at the
rate of 40 cubic feet per minute, how fast is the water level rising
when it is 3 feet deep at the deep end?

≈

12. A particle P is moving along the graph of 
so that the x-coordinate of P is increasing

at the rate of 5 units per second. How fast is the y-coordinate of P
increasing when 

13. A metal disk expands during heating. If its radius in-
creases at the rate of 0.02 inch per second, how fast is the area of
one of its faces increasing when its radius is 8.1 inches?

14. Two ships sail from the same island port, one going north
at 24 knots (24 nautical miles per hour) and the other east at 30
knots. The northbound ship departed at 9:00 A.M. and the east-
bound ship left at 11:00 A.M. How fast is the distance between
them increasing at 2:00 P.M.? Hint: Let at 11:00 A.M.

15. A light in a lighthouse 1 kilometer offshore from a
straight shoreline is rotating at 2 revolutions per minute. How
fast is the beam moving along the shoreline when it passes the
point kilometer from the point opposite the lighthouse?

16. An aircraft spotter observes a plane flying at a constant
altitude of 4000 feet toward a point directly above her head. She
notes that when the angle of elevation is radian it is increasing1

2

C

1
2

t = 0

≈

x = 3?

2x2
- 4, x Ú 2,

y =≈

at a rate of radian per second. What is the speed of the air-
plane?

17. Chris, who is 6 feet tall, is walking away from a street light
pole 30 feet high at a rate of 2 feet per second.
(a) How fast is his shadow increasing in length when Chris is 24

feet from the pole? 30 feet?
(b) How fast is the tip of his shadow moving?
(c) To follow the tip of his shadow, at what angular rate must

Chris be lifting his eyes when his shadow is 6 feet long?

18. The vertex angle opposite the base of an isosceles
triangle with equal sides of length 100 centimeters is increasing at 

radian per minute. How fast is the area of the triangle increas-
ing when the vertex angle measures radians? Hint:

19. A long, level highway bridge passes over a railroad track
that is 100 feet below it and at right angles to it. If an automobile
traveling 45 miles per hour (66 feet per second) is directly above
a train engine going 60 miles per hour (88 feet per second), how
fast will they be separating 10 seconds later?

20. Water is pumped at a uniform rate of 2 liters
per minute into a tank shaped

like a frustum of a right circular cone. The tank has altitude 80
centimeters and lower and upper radii of 20 and 40 centimeters,
respectively (Figure 11). How fast is the water level rising when
the depth of the water is 30 centimeters? Note: The volume, V, of
a frustum of a right circular cone of altitude h and lower and
upper radii a and b is V =

1
3 ph # 1a2

+ ab + b22.

11 liter = 1000 cubic centimeters2

≈
A =

1
2 ab sin u.

p>6
1
10

u

1
10

21. Water is leaking out the bottom of a hemispherical tank
of radius 8 feet at a rate of 2 cubic feet per hour.The tank was full
at a certain time. How fast is the water level changing when its
height h is 3 feet? Note: The volume of a segment of height h in a
hemisphere of radius r is (See Figure 12.)ph2[r - 1h>32].

22. The hands on a clock are of length 5 inches (minute hand)
and 4 inches (hour hand). How fast is the distance between the
tips of the hands changing at 3:00?

40

20

h

80

Figure 11

h

8

Figure 12
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80

60

40

20

1 2 3 4 5 6 7 8

P(lb/in2)

t(min)

Figure 13

y

20

5

4
3

Figure 14

23. A steel ball will drop feet in t seconds. Such a ball is
dropped from a height of 64 feet at a horizontal distance 10 feet
from a 48-foot street light. How fast is the ball’s shadow moving
when the ball hits the ground?

24. Rework Example 6 assuming that the water tank is a
sphere of radius 20 feet. (See Problem 21 for the volume of a
spherical segment.)

25. Rework Example 6 assuming that the water tank is in the
shape of an upper hemisphere of radius 20 feet. (See Problem 21
for the volume of a spherical segment.)

26. Refer to Example 6. How much water did Webster City
use during this 12-hour period from midnight to noon? Hint: This
is not a differentiation problem.

27. An 18-foot ladder leans against a 12-foot vertical wall, its
top extending over the wall. The bottom end of the ladder is
pulled along the ground away from the wall at 2 feet per second.
(a) Find the vertical velocity of the top end when the ladder

makes an angle of 60° with the ground.
(b) Find the vertical acceleration at the same instant.

28. A spherical steel ball rests at the bottom of the tank of
Problem 21. Answer the question posed there if the ball has
radius
(a) 6 inches, and (b) 2 feet.

(Assume that the ball does not affect the flow from the tank.)

29. A snowball melts at a rate proportional to its surface
area.
(a) Show that its radius shrinks at a constant rate.
(b) If it melts to its original volume in one hour, how long will

it take to melt completely?

30. A right circular cylinder with a piston at one end is filled
with gas. Its volume is continually changing because of the move-
ment of the piston. If the temperature of the gas is kept constant,

8
27

≈

16t2 then, by Boyle’s Law, where P is the pressure (pounds
per square inch), V is the volume (cubic inches), and k is a
constant. The pressure was monitored by a recording device over
one 10-minute period. The results are shown in Figure 13. Ap-
proximately how fast was the volume changing at if its
volume was 300 cubic inches at that instant? (See Example 6.)

t = 6.5

PV = k,

31. A girl 5 feet tall walks toward a street light 20 feet high at
a rate of 4 feet per second. Her little brother, 3 feet tall, follows at
a constant distance of 4 feet directly behind her (Figure 14).

Determine how fast the tip of the shadow is moving, that is, de-
termine Note: When the girl is far from the light, she con-
trols the tip of the shadow, whereas her brother controls it near
the light.

Answers to Concepts Review: 1. 2. 400 mi/h
3. negative 4. negative; positive

du>dt; t = 2

dy>dt.

Theorem A Monotonicity Theorem

Let be continuous on an interval I and differentiable at every interior point of
I.

(1) If for all x interior to I, then f is increasing on I.
(2) If for all x interior to I, then f is decreasing on I.f¿(x) 6 0

f¿(x) 7 0

f

3.9
Derivatives 

of Exponential and
Logarithmic Functions

Exponential and logarithmic functions are inverses of one another, so to get their
derivatives, as well as the derivatives of the inverse trigonometric functions, we
begin by studying inverse functions more thoroughly. Specifically, we will see how
the derivative of a function is related to the derivative of its inverse.

Inverse Functions We have seen in Theorem 1.6A that a function that is
strictly monotonic (i.e., increasing or decreasing) on its domain must have an in-
verse. We have also seen in this chapter how the derivative gives us the slope
of the tangent line to the graph at Thus, if then the tangent line is ris-
ing to the right, suggesting that is increasing. (See Figure 1.) Similarly, if

then the tangent line is falling to the right, suggesting that is decreas-
ing. Theorem A states this result, which at this point should seem plausible. A rig-
orous proof must wait until Section 4.6.

ff¿(x) 6 0,
f

f¿(x) 7 0,x.
f¿(x)y

y = f (x)

P(x0, y0)

x

Tangent
line

Figure 1
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y

xx
(a, b)

y = x y = x

(b, a)

(d, c) (d, c)

(c, d) (c, d)

y = f(x)

y = f –1(x)

( f –1)'(d) = 

y l2

l2

m2 =

l1

1
f '(c)

c – a
d – b

1
m1

=

l1

Figure 3

Theorem B Inverse Function Theorem

Let be differentiable and strictly monotonic on an interval I. If at a
certain x in I, then (1) is differentiable at the corresponding point 
in the range of and (2)

1f-12¿1y2 =

1
f¿1x2

f
y = f1x2f-1

f¿1x2 Z 0f

In Section 4.2, we will make use of this theorem as we use calculus to help us graph
functions. For now, we will use it, along with the result stated above that a monoto-
nic function has an inverse, to determine whether a given function has an inverse.

� EXAMPLE 1 Show that has an inverse.

SOLUTION for all Thus is increasing on the whole
real line and so it has an inverse there. (See Figure 2.) �

We do not claim that we can always give a formula for In Example 1, this
would require that we be able to solve for every Although we
could use a CAS or a graphing calculator to solve this equation for for a particu-
lar value of there is no simple formula that would give us in terms of for an
arbitrary 

Next, we investigate the relationship between the derivative of a function, and
the derivative of its inverse. Consider what happens to a line when it is reflected
across the line As the left half of Figure 3 makes clear, is reflected into a
line moreover, their respective slopes and are related by 
provided If happens to be the tangent line to the graph of at the point

then is the tangent line to the graph of at the point (see the right
half of Figure 3). We are led to the conclusion that

1f-12¿1d2 = m2 =

1
m1

=

1
f¿1c2

(d, c)f-1l2(c, d),
fl1m1 Z 0.

m2 = 1>m1,m2m1l2;
l1y = x.

l1

y.
yxy,

x
x.y = x5

+ 2x + 1
f-1.

fx.f¿(x) = 5x4
+ 2 7 0

f1x2 = x5
+ 2x + 1

�2 �1 1 2

�30

�20

�10

10

20

30

x

y f(x) � x5 � 2x � 1

Figure 2

Pictures are sometimes deceptive, so we claim only to have made the following
result plausible.

The proof that is differentiable is omitted, but see Problem 59 for a proof of
the second part. The conclusion to Theorem B is often written symbolically as

dx

dy
=

1
dy>dx

f -1
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� EXAMPLE 2 Let as in Example 1. Find

SOLUTION Even though we cannot find a formula for in this case, we note
that corresponds to and since 

�

� EXAMPLE 3 Let Find in two ways.

SOLUTION Method 1: We find the inverse of and then take its derivative.

Then

Method 2: We use the Inverse Function Theorem. Note that and that
so Then

�

Derivatives of Exponential and Logarithmic Functions Armed
with Theorems A and B, we are now ready to find formulas for the derivatives of
the logarithmic and exponential functions. We begin with the natural logarithmic
function and then address its inverse, the natural exponential function

Since these are inverses of one another, we need only find the deriva-
tive of one; then use the result, along with Theorem B, to find the derivative of the
other. These results are given in Theorem C.

g(x) = ex.
f(x) = ln x

(f-1)¿(9) =

1
f¿(2)

=

1

3 # 22 =

1
12

f-1(9) = 2.f(2) = 9,
f¿(x) = 3x2,

 (f-1)¿(9) =

1
3

 (9 - 1)-2>3
=

1
12

 (f-1)¿(x) =

1
3

 (x - 1)-2>3

 f-1(x) = 23x - 1

 x = 23 y - 1

 y = x3
+ 1

f

(f-1)¿(9)f1x2 = x3
+ 1.

1f-12¿142 =

1
f¿112 =

1
5 + 2

=

1
7

f¿1x2 = 5x4
+ 2,x = 1,y = 4

f-1

1f-12¿142.
y = f1x2 = x5

+ 2x + 1,
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Theorem C Derivatives of Natural Logarithmic 
and Exponential Functions

(1) (2) Dx (ex) = exDx (ln x) =

1
x

Proof We begin by proving that To complete the proof, we
must assume the continuity of something we think is plausible, but which we
assumed without proof in Chapter 2. Using the definition of the derivative, and the
properties of logs, we have

This last limit can be written as

 = ln lim
h:0

 B a1 +

h
x
bx>hR1>x

= ln e1>x
=

1
x

 Dx (ln x) = lim
h:0

 ln B a1 +

h
x
bx>hR1>x

Dx (ln x) = lim
h:0

 
ln(x + h) - ln x

h
= lim

h:0
 
1
h

 ln 
x + h

x
= lim

h:0
 ln a1 +

h
x
b1>h

ln x,
Dx (ln x) = 1>x.

170



Here we have used the continuity of the natural log function and the result from
Chapter 2 that

Once the derivative of is obtained, it is a matter of applying Theorem B to find
the derivative of If we let then so Thus,

�

Note the remarkable simplicity in the formulas for the derivatives of 
and In particular, we have shown that is a function that is its own
derivative! When used along with the Chain Rule, the formulas in Theorem C
become

(1) (2)

Once we have Theorem C, we can use it, together with the Product Rule, Quo-
tient Rule, and Chain Rule, to evaluate a number of derivatives.

� EXAMPLE 4 Find the derivatives

(a) (b) (c)

SOLUTION Parts (a) and (b) require just the Chain Rule, whereas part (c)
requires the Quotient Rule.

(a)

(b)

(c)

�

We can now obtain the derivative formulas for the general exponential
function:

If we let then Taking the natural log of both sides gives
so

from which we conclude

� EXAMPLE 5 If and find (a) and (b) 

SOLUTION Both derivatives require the Chain Rule.

(a)

(b) �
dz

dx
= 2-x2

 (ln 2) Dx (-x2) = -2x2-x2
 ln 2 = -x2-x2

+1 ln 2

dy

dx
=

1

(x4
+ 13) ln 10

 Dx (x4
+ 13) =

4x3

(x4
+ 13) ln 10

dz

dx
.

dy

dx
,z = 2-x2

,y = log10 (x4
+ 13)

Dx loga x =

1
x ln a

y =

ln x
ln a

y ln a = ln x,
ay

= x.y = loga x,

Dxax
= Dxex ln a

= ex ln a (ln a) = ax ln a

(1 + ex)>x - ex ln x

(1 + ex)2Dx a ln x
1 + ex b =

(1 + ex)Dx ln x - (ln x) Dx (1 + ex)

(1 + ex)2 =

Dx Ae-x2 B = e-x2
 Dx (-x2) = -2xe-x2

Dx ln(x2
- 1) =

1

x2
- 1

 Dx (x2
- 1) =

2x

x2
- 1

Dx a ln x
1 + ex bDx Ae-x2 BDx ln(x2

- 1),

Dx eu
= eu Dx uDx ln u =

1
u

 Dx u

f(x) = exex.
ln x

dy

dx
=

1
dx>dy

=

1
1>y = y = ex.

dx>dy = 1>y.ln y = x,y = ex,f(x) = ex.
ln x

lim
h:0

 a1 +

h
x
bx>h

= lim
h:0

 (1 + h)1>h
= e
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Logarithmic Differentiation The labor of differentiating expressions in-
volving quotients, products, or powers can often be substantially reduced by first
applying the natural logarithm function and using its properties. This method,
called logarithmic differentiation, is illustrated in Example 6.

� EXAMPLE 6 Differentiate 

SOLUTION First we take natural logarithms; then we differentiate implicitly
with respect to x (recall Section 3.7).

Thus,

�

Example 6 could have been done directly, without first taking logarithms, and
we suggest you try it. You should be able to make the two answers agree.

The Functions and Begin by comparing the three graphs in
Figure 4. More generally, let a be a constant. Do not confuse an
exponential function, with a power function. And do not confuse their
derivatives. We have just learned that

What about For a rational, we proved the Power Rule in Section 3.7,
which says that

Now we assert that this is true even if a is irrational. To see this, write

Finally, we consider a variable to a variable power. There is a for-
mula for but we do not recommend that you memorize it. Rather, we sug-
gest that you learn two methods for finding it, as illustrated below.

� EXAMPLE 7 If find by two different methods.

SOLUTION

Method 1 We may write

Thus, using the Chain Rule and the Product Rule,

Dx y = ex ln x Dx1x ln x2 = xxax #
1
x

+ ln xb = xx11 + ln x2

y = xx
= ex ln x

Dxyy = xx, x 7 0,

Dx1xx2, f1x2 = xx,

 = xa #
a
x

= axa - 1

 Dx1xa2 = Dx1ea ln x2 = ea ln x #
a
x

Dx1xa2 = axa - 1

Dx1xa2?
Dx1ax2 = ax ln a

g1x2 = xa,
f1x2 = ax,

xxax, xa,

 =

-1x + 22
31x + 122>311 - x221>2

 
dy

dx
=

-y1x + 22
311 - x22 =

-21 - x2 1x + 22
31x + 122>311 - x22

 
1
y

  
dy

dx
=

-2x

211 - x22 -

2
31x + 12 =

-1x + 22
311 - x22

 ln y =

1
2

  ln11 - x22 -

2
3

  ln1x + 12

y =

21 - x2

1x + 122>3.

172 Chapter 3 The Derivative

1 2 3 4 5 6

6

12

18

24

30

36

y

x

y = xx

y = 2x

y = x2

(4, 16)

(2, 4)

Figure 4
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Method 2 Apply the logarithmic differentiation technique.

�

� EXAMPLE 8 If find 

SOLUTION

�

� EXAMPLE 9 If find 

SOLUTION We use logarithmic differentiation.

� 
dy

dx
= 1x2

+ 12sin x c2x sin x

x2
+ 1

+ 1cos x2 ln1x2
+ 12 d

 
1
y

 
dy

dx
= 1sin x2 

2x

x2
+ 1

+ 1cos x2 ln1x2
+ 12

 ln y = 1sin x2 ln1x2
+ 12

dy

dx
.y = 1x2

+ 12sin x,

dy

dx
= p1x2

+ 12p- 112x2 + psin x ln p #  cos x

dy>dx.y = 1x2
+ 12p + psin x,

 Dx y = y11 + ln x2 = xx11 + ln x2
 
1
y

 Dx y = x #
1
x

+ ln x

 ln y = x ln x

 y = xx
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Note the increasing complexity of
the functions that we have consid-
ered. The progression to to 
is one chain. A more complex chain
is to to We
now know how to find the deriva-
tives of all these functions. Finding
the derivative of the last of these is
best accomplished by logarithmic
differentiation.

[f1x2]g1x2.[f1x2]aaf1x2
xxxaax

From ax to [f(x)]g(x)

Concepts Review
1. A function that is strictly _____ on its domain has an

inverse.

2. The derivative of the natural logarithmic function is
_____.Dx (ln x) =

3. An example of a function that is its own derivative is
_____.

4. If then the power rule _____, is true for
all real numbers in the interval _____.a

Dx (xa) =x 7 0,

f(x) =

Problem Set 3.9
In Problems 1–6, show that has an inverse by showing that it is
strictly monotonic (see Example 1).

1.

2.

3.

4.

5.

6.

In each of Problems 7–10, the graph of is shown. Sketch
the graph of and estimate 

7. 8.

1 2–2

–2

–1
–1

3 4

1

2

3

y

x
3 41 2

2

4

3

1

−1
−1

−2

−2

−3

y

x

1f-12¿132.y = f-11x2
y = f1x2

f1x2 = x2
+ x - 6, x Ú 2

f1z2 = 1z - 122, z Ú 1

f1x2 = cot x =

cos x
sin x

, 0 6 x 6

p

2

f1u2 = cos u, 0 … u … p

f1x2 = x7
+ x5

+ x3
+ x

f1x2 = -x5
- x3

- x

f 9. 10.

In Problems 11–14, find by using Theorem B (see Ex-
ample 2). Note that you can find the x corresponding to by
inspection.

11. 12.

13.

14.

In Problems 15–52, find the indicated derivative.

15. 16.

17. 18. Dx ln 23x - 2Dx ln1x - 423
Dx ln13x3

+ 2x2Dx ln1x2
+ 3x + p2

f1x2 = 2x + 1

f1x2 = 2 tan x, -
p

2
6 x 6

p

2

f1x2 = x5
+ 5x - 4f1x2 = 3x5

+ x - 2

y = 2
1f-12¿122

1 2 3–3 4

1

–1

2

–2

3

y

x
1 32 4

1

2

3

–1
–1

–2

–2

y

x
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19. if 20. if 

21. if 

22. if 

23. if 

24. if 

25. if 

26 if 

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Hint: Use implicit differentiation.

38.

39. 40.

41. 42.

43. 44.

45. 46. Dx (sin2 x + 2sin x)Dx A101x22
+ 1x2210 B

Du3log1013u2
-u2Dz[3

z ln1z + 52]
Dx log101x3

+ 92Dx log3 e
x

Dx132x2
- 3x2Dx162x2

dy

dx
   if ex + y

= 4 + x + y

dy

dx
  if exy

+ xy = 2

Dx (e1>x2
+ 1>ex2

)Dx A3ex2
+ e2x2 B

Dx ex3 ln xDx x3ex

y¿ if y = ex>ln xy¿ if y = e2 ln x

Dx e-1>x2
Dx e2x + 2

Dx e2x2
- xDx ex + 2

f1x2 = ln1cos x2f¿ ap
4
b

f1x2 = ln 13 xf¿1812
h1x2 = ln Ax + 2x2

- 1 Bh¿1x2
g1x2 = ln Ax + 2x2

+ 1 Bg¿1x2
r =

ln x

x2 ln x2 + a ln 
1
x
b3dr

dx

z = x2 ln x2
+ 1ln x23dz

dx

y = x2 ln x
dy

dx
y = 3 ln x

dy

dx
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47. 48.

49. 50.

51. if 52.

In Problems 53–56, find by logarithmic differentiation (see
Example 6).

53.

54.

55.

56.

57. Find and simplify if

where 

58. Convince yourself that and 
are not the same function.Then find and Note: When
mathematicians write they mean 

59. Prove the second part of Theorem B. Hint: Let
Then Differentiate both sides and

use the Chain Rule.

Answers to Concepts Review: 1. monotonic 2. 3.

4. axa-1; (- q , q)

ex1
x

g(f(x)) = x.g(x) = f-1(x).

x1xx2.xxx

,
g¿1x2.f¿1x2

g1x2 = x1xx2f1x2 = 1xx2x
c =

a2
- b2

2ab
.f1x2 = lnaax - b

ax + b
b c

,

f¿112
y =

1x2
+ 322>313x + 2222x + 1

y =

2x + 13

1x - 4223 2x + 1

y = 1x2
+ 3x21x - 221x2

+ 12
y =

x + 112x3
- 4

dy>dx

Dx x(2x)f1x2 = xsin xf¿112
Dx 1ln x222x + 3Dx 1x2

+ 12ln x

Dx [21ex2
+ 12e2x ]Dx [xp+ 1

+ 1p + 12x ]

3.10
Derivatives of

Hyperbolic and Inverse
Trigonometric Functions

In Section 2.6 we defined the hyperbolic functions. We repeat these definitions for
easy reference.

Definition Hyperbolic Functions

The hyperbolic sine, hyperbolic cosine, and four related functions are defined
by

 sech x =

1
cosh x
  csch x =

1
sinh x

 tanh x =

sinh x
cosh x
  coth x =

cosh x
sinh x

 sinh x =

ex
- e-x

2
  cosh x =

ex
+ e-x

2

Derivatives of Hyperbolic Functions We can find and
directly from the definitions.

and

Dx cosh x = Dxa ex
+ e-x

2
b =

ex
- e-x

2
= sinh x

Dx sinh x = Dxa ex
- e-x

2
b =

ex
+ e-x

2
= cosh x

Dx cosh x
Dx sinh x
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Note that these facts confirm the character of the graphs in Figure 7 of Section 2.6.
For example, since the graph of hyperbolic sine is al-
ways increasing.

The derivatives of the other four hyperbolic functions follow from those for
the first two, combined with the Quotient Rule. The results are summarized in
Theorem A.

Dx1sinh x2 = cosh x 7 0,
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Theorem A Derivatives of Hyperbolic Functions

 Dx sech x = -sech x tanh x  Dx csch x = -csch x coth x 

 Dx tanh x = sech2 x  Dx coth x = -csch2 x

 Dx sinh x = cosh x  Dx cosh x = sinh x

� EXAMPLE 1 Find 

SOLUTION

�

� EXAMPLE 2 Find 

SOLUTION We apply the Chain Rule twice.

�

The inverse hyperbolic functions were also derived in Section 2.6. They are

Graphs of the inverse hyperbolic functions are shown in Figure 1. Each of these
functions is differentiable. In fact,

 Dx sech-1 x = -

1

x21 - x2
,  0 6 x 6 1

 Dx tanh-1 x =

1

1 - x2,  -1 6 x 6 1

 Dx cosh-1 x =

12x2
- 1

,  x 7 1

 Dx sinh-1 x =

12x2
+ 1

 

 sech-1 x = lna1 + 21 - x2

x
b ,  0 6 x … 1

 tanh-1 x =

1
2

 ln 
1 + x

1 - x
,   -1 6 x 6 1

 cosh-1 x = ln Ax + 2x2
- 1 B ,  x Ú 1

 sinh-1 x = ln Ax + 2x2
+ 1 B  

 = 6 cosh13x - 12 sinh13x - 12
 = 2 cosh13x - 12 sinh13x - 12 Dx13x - 12

 Dx cosh213x - 12 = 2 cosh13x - 12 Dx cosh13x - 12

Dx cosh213x - 12.

 = cos x # sech21sin x2
 Dx tanh1sin x2 = sech21sin x2 Dx1sin x2

Dx tanh1sin x2.
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� EXAMPLE 3 Show that by two different methods.

SOLUTION

Method 1 Use implicit differentiation. Let so

Now differentiate both sides with respect to x.

Thus,

Method 2 Use the logarithmic expression for 

�

If a homogeneous flexible cable or chain is suspended between two fixed points at
the same height, it forms a curve called a catenary (Figure 2). Furthermore (see
Problem 38 of Section 4.9), a catenary can be placed in a coordinate system so that
its equation takes the form

The Gateway Arch in St. Louis, Missouri, shown in the photo, is the shape of
an inverted caternary.The arch, designed by Eero Saarinen (1910–1961), is 630 feet
high and 630 feet wide. His original plan, from 1948, was for a 590-foot parabolic
arch.

y = a cosh 
x
a

 =

12x2
+ 1

 =

1

x + 2x2
+ 1

 a1 +

x2x2
+ 1
b

 =

1

x + 2x2
+ 1

 Dx Ax + 2x2
+ 1 B

 Dx1sinh-1 x2 = Dx ln Ax + 2x2
+ 1 B

sinh-1 x.

Dxy = Dx1sinh-1 x2 =

1
cosh y

=

121 + sinh2 y
=

121 + x2

1 = 1cosh y2 Dxy

x = sinh y

y = sinh-1 x,

Dx sinh-1 x = 1>2x2
+ 1
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y = sinh–1x

y

x–2

–2

–1 1 2

–1

1

2

y = tanh–1x

x–1

–3

0.5 1
–1

1

3

–2

2

y = cosh–1x2

y

x0.5

1.5

1

0.5

1 1.5 2 2.5 3

y = sech–1x

3

y

x1

y

0.80.60.40.2

2.5

2

1.5

1

0.5

Figure 1

y

x

(0, a)

y = a cosh x
a

The catenary

Figure 2

An Inverted Catenary
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Inverse Trigonometric Functions From the Inverse Function Theorem
(Theorem 3.9B), we conclude that and are differ-
entiable. Our aim is to find formulas for their derivatives. We state the results and
then show how they can be derived.

sec-1 xsin-1 x, cos-1 x, tan-1 x,
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Here is another way to derive the
formula for the derivative of 

 =

1

ƒ x ƒ2x2
- 1

 =

12x2
- 1

#
ƒ x ƒ

x2

 =

12x2
- 1

#
2x2

x2

 =

-121 - 1>x2
#

-1

x2

 Dx sec-1 x = Dx cos-1a 1
x
b

sec-1 x.

Dx sec-1 x

Theorem B Derivatives of Four Inverse Trigonometric Functions

(1)

(2)

(3)

(4) Dx sec-1 x =

1

ƒ x ƒ2x2
- 1

, ƒ x ƒ 7 1

Dx tan-1 x =

1

1 + x2

Dx cos-1 x = -

121 - x2
,   -1 6 x 6 1

Dx sin-1 x =

121 - x2
,       -1 6 x 6 1

Proof Our proofs follow the same pattern in each case. To prove (1), let
so that

Now differentiate both sides with respect to x, using the Chain Rule on the right-
hand side. Then

At the last step, we used Theorem 1.9A(2). We conclude that 

Results (2), (3), and (4) are proved similarly, but (4) has a little twist. Let
so Differentiating both sides with respect to x and using

Theorem 1.9A(4), we obtain

The desired result follows immediately. �

� EXAMPLE 4 Find 

SOLUTION We use Theorem B(1) and the Chain Rule.

�

� EXAMPLE 5 Find if 

SOLUTION

 
dy

dx
= Dx tan-1 2x =

1

1 + (2x)2 Dx (2x) =

2

1 + 4x2 = 2 (1 + 4x2)-1

y = tan-1 2x.
d2y

dx2

 =

32-9x2
+ 6x

 Dx sin-113x - 12 =

121 - 13x - 122 Dx13x - 12

Dx sin-113x - 12.

 = ƒ x ƒ2x2
- 1 Dx1sec-1 x2

 = ex2x2
- 1 Dx1sec-1x2, if x Ú 1

x A -2x2
- 1 B  Dx1sec-1 x2, if x … -1

 = sec1sec-1 x2 tan1sec-1 x2 Dx1sec-1 x2
 1 = sec y tan y Dxy

x = sec y.y = sec-1 x,

1>21 - x2.
Dx1sin-1 x2 =

 = 21 - x2 Dx1sin-1 x2
 1 = cos y Dxy = cos1sin-1 x2 Dx1sin-1 x2

x = sin y
y = sin-1 x,
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�

� EXAMPLE 6 A woman, whose eye-level is 5 feet from the floor, is looking
at a 6-foot high painting that is hanging 8 feet from the floor as shown in Figure 3.
Suppose that the woman is walking (backwards) away from the wall at the rate of
2 feet per second. How fast is the angle changing when she is 10 feet from the
wall?

SOLUTION Let denote the woman’s distance from the wall.The triangle from
the top of the picture, to the woman’s eye, to the point on the wall that is level with
her eye is a right triangle. Thus, so 
Similarly, and The angle therefore satisfies

Differentiating both sides with respect to time and using the fact that 
we obtain,

The angle is decreasing at the rate of 0.0444 radian per second. �

Summary In this and previous sections, we have seen a number of derivative
formulas. For reference, some of these formulas are listed in the table below.

u

 = -

9

x2
+ 81

 (2) +

3

x2
+ 9

 (2) = -

18

102
+ 81

+

6

102
+ 9

= -0.0444

 
du

dt
=

1

1 + 81>x2 a-

9

x2 b  
dx

dt
-

1

1 + 9>x2 a-

3

x2 b  
dx

dt

dx>dt = 2,t,

u = tan-1 
9
x

- u1 = tan-1 
9
x

- tan-1 
3
x

uu1 = tan-1 (3>x).tan u1 = 3>x u + u1 = tan-1(9>x).tan (u + u1) = 9>x, 

x

u

 
d2y

dx2 = Dx a2 A1 + 4x2 B-1b = -2(1 + 4x2)-2 Dx (1 + 4x2) = -

16x

(1 + 4x2)2
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8

6

3

5

x

x

u

u1

Figure 3

Dx sech-1 x = -

1

x 21 - x2
 ,   0 6 x 6 1Dx cosh-1 x =

12x2
- 1

 ,    x 7 1

Dx tanh-1 x =

1

1 - x2 , -1 6 x 6 1Dx sinh-1 x =

12x2
+ 1

 

Dx csch x =  -csch x coth xDxax
= ax ln a

Dx sech x =  -sech x tanh xDx loga x =

1
x ln a

Dx coth x =  -csch2 xDxex
= ex

Dx tanh x =  sech2 xDx ln x =

1
x

Dx cosh x =  sinh xDx csc x =  -csc x cot x

Dx sinh x =  cosh xDx sec x =  sec x tan x

Dx sec-1 x =

1

ƒ x ƒ2x2
- 1

 ,   ƒ x ƒ 7 1Dx cot x =  -csc2 x

Dx tan-1 x =

1

1 + x2Dx tan x =  sec2 x

Dx cos-1 x = -

121 - x2
 , -1 6 x 6 1Dx cos x =  -sin x

Dx sin-1 x =

121 - x2
 , -1 6 x 6 1Dx sin x =  cos x

Dx 
f(x)

g(x)
=

g(x)f¿(x) - f(x)g¿(x)

[g(x)]2Dx[f(x)g(x)] = f(x)g¿(x) + g(x)f¿(x)

Dx [f(x) ; g(x)] = f¿(x) ; g¿(x)Dxxr
= rxr-1
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In Problems 1–36, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Draw the graphs of 
and using the same axes and scaled so that 
and What does this demonstrate?

38. Call the graph of an inverted cate-
nary and imagine it to be an arch sitting on the x-axis. Show that
if the width of this arch along the x-axis is 2a then each of the fol-
lowing is true.
(a)
(b) The height of the arch is approximately 0.54308a.
(c) The height of an arch of width 48 is approximately 13.

39. Find the equation of the Gateway Arch in St. Louis, Mis-
souri, given that it is an inverted catenary (see Problem 38). As-
sume that it stands on the x-axis, that it is symmetric with respect
to the y-axis, and that it is 630 feet wide at the base and 630 feet
high at the center.

b = a cosh 1 L 1.54308a.

y = b - a cosh1x>a2C

-3 … y … 3.
-3 … x … 3y = x

y = sinh x, y = ln Ax + 2x2
+ 1 B ,GC

y = x arcsec1x2
+ 12y = tan-11ln x22

y = sin-1a 1

x2
+ 4
by = 11 + sin-1 x23

y = 1sec-1 x23y = sec-11x32
y = tan1cos-1 x2y = 1tan-1 x23
y = ex arcsin x2y = x3 tan-11ex2
y = arccos1ex2y = sin-112x22
y = coth-11tanh x2y = tanh1cot x2
y = cosh-11cos x2y = ln1cosh-1 x2
y = x2 sinh-11x52y = x cosh-113x2
y = coth-11x52y = tanh-112x - 32
y = cosh-11x32y = sinh-11x22
y = coth 4x sinh xy = tanh x sinh 2x

y = sinh x cosh 4xy = cosh 3x sinh x

y = x-2 sinh xy = x2 cosh x

y = ln1coth x2y = ln1sinh x2
y = sinh1x2

+ x2y = cosh13x + 12
y = cosh3 xy = 5 sinh2 x

y = cosh2 xy = sinh2 x

Dxy.
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Concepts Review
1. If then _____ and _____.

2. If a cable is suspended between two fixed points at the
same height, then the resulting shape is a _____.

y– =y¿ =y = sinh x, 3. The inverse sine function, is differentiable
on the interval _____.

4. The derivative of the inverse tangent function is
_____, which has domain _____.Dx (arctan x) =

f(x) = sin-1x,

40. Express in terms of and the constants a
and b.
(a) (b)

41. The structural steel work of a new office building is fin-
ished. Across the street, 60 feet from the ground floor of the
freight elevator shaft in the building, a spectator is standing and
watching the freight elevator ascend at a constant rate of 15 feet
per second. How fast is the angle of elevation of the spectator’s
line of sight to the elevator increasing 6 seconds after his line of
sight passes the horizontal?

42. An airplane is flying at a constant altitude of 2 miles and
a constant speed of 600 miles per hour on a straight course that
will take it directly over an observer on the ground. How fast is
the angle of elevation of the observer’s line of sight increasing
when the distance from her to the plane is 3 miles? Give your
result in radians per minute.

43. A revolving beacon light is located on an island and is 2
miles away from the nearest point P of the straight shoreline of
the mainland. The beacon throws a spot of light that moves along
the shoreline as the beacon revolves. If the speed of the spot of
light on the shoreline is miles per minute when the spot is 1
mile from P, how fast is the beacon revolving?

44. A man on a dock is pulling in a rope attached to a row-
boat at a rate of 5 feet per second. If the man’s hands are 8 feet
higher than the point where the rope is attached to the boat, how
fast is the angle of depression of the rope changing when there
are still 17 feet of rope out?

45. A visitor from outer space is approaching the earth
at 2 kilometers per second. How fast

is the angle subtended by the earth at her eye increasing when
she is 3000 kilometers from the surface?

Answers to Concepts Review: 1. cosh ; sinh 2. cate-

nary 3. 4.
1

1 + x2; (- q , q)(-1, 1)

xx

u

1radius = 6376 kilometers2
C

5p

θ

x a

bθ

x

a

b

x, dx>dt,du>dt

Problem Set 3.10
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180 Chapter 3 The Derivative

y y = f (x)

P(x0, y0)

x

dy
∆y

∆x

x0 x0 + ∆x

Figure 2

Definition Differentials

Let be a differentiable function of the independent variable x.

is an arbitrary increment in the independent variable x.

dx, called the differential of the independent variable x, is equal to 

is the actual change in the variable y as x changes from x to that is,

dy, called the differential of the dependent variable y, is defined by
dy = f¿1x2 dx.

¢y = f1x + ¢x2 - f1x2. x + ¢x;¢y

¢x.

¢x

y = f1x2

y
y = f (x)

P(x0, y0)

x

Tangent
line

Figure 1

The Leibniz notation has been used to mean the derivative of y with respect
to x. The notation has been used as an operator to mean the derivative (of
whatever follows ) with respect to x. Thus, and are synonymous. Up
to now, we have treated (or ) as a single symbol and have not tried to
give separate meanings to the symbols dy and dx. In this section we will give mean-
ings to dy and to dx.

Let f be a differentiable function. To motivate our definitions, let be
a point on the graph of as shown in Figure 1. Since f is differentiable,

Thus, if is small, the quotient will be approximately
so

The left side of this expression is called this is the actual change in y as 
x changes from to The right side is called dy, and it serves as an
approximation to As Figure 2 indicates, the quantity dy is equal to the change
in the tangent line to the curve at P as x changes from to When is
small, we expect dy to be a good approximation to and being just a constant
times it is usually easier to calculate.

Differentials Defined Here are the formal definitions of the differentials dx
and dy.

¢x,
¢y,

¢xx0 + ¢x.x0

¢y.
x0 + ¢x.x0

¢y;

f1x0 + ¢x2 - f1x02 L ¢x f¿1x02
f¿1x02,

[f1x0 + ¢x2 - f1x02]>¢x¢x

lim
¢x:0

 

f1x0 + ¢x2 - f1x02
¢x

= f¿1x02
y = f1x2 P1x0, y02

d>dxdy>dx
Dxd>dxd>dx

d>dx
dy>dx3.11

Differentials and
Approximations

� EXAMPLE 1 Find dy if

(a) (b)

(c)

SOLUTION If we know how to calculate derivatives, we know how to calculate
differentials. We simply calculate the derivative and multiply it by dx.

(a)

(b)

(c) �

We ask you to note two things. First, since division of both
sides by dx yields

and we can, if we wish, interpret the derivative as a quotient of two differentials.
Second, corresponding to every derivative rule, there is a differential rule

obtained from the former by “multiplying” through by dx. We illustrate the major
rules in the following table.

f¿1x2 =

dy

dx

dy = f¿1x2 dx,

dy = cos1x4
- 3x2

+ 112 # 14x3
- 6x2 dx

dy =
1
21x2

+ 3x2-1>212x + 32 dx =

2x + 3

22x2
+ 3x

  dx

dy = 13x2
- 32 dx

y = sin1x4
- 3x2

+ 112
y = 2x2

+ 3xy = x3
- 3x + 1
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Derivatives and differentials are not
the same. When you write or

you are using a symbol for
the derivative; when you write dy,
you are denoting a differential. Do
not be sloppy and write dy when you
mean to label a derivative. This will
lead to boundless confusion.

dy>dx,
Dxy

Distinguish between Derivatives
and Differentials

Derivative Rule Differential Rule

1. 1.

2. 2.

3. 3.

4. 4.

5. 5.

6. 6.

Approximations Differentials will play several roles in this book, but for now
their chief use is in providing approximations. We hinted at this earlier.

Suppose that as shown in Figure 3. An increment produces a
corresponding increment in y, which can be approximated by dy. Thus,

is approximated by

This is the basis for the solutions to all the examples that follow.

� EXAMPLE 2 Suppose you need good approximations to and 
but your calculator has died. What might you do?

SOLUTION Consider the graph of sketched in Figure 4. When x
changes from 4 to 4.6, changes from to (approximately) 
Now

which, at and has the value

Thus,

Similarly, at and 

Hence,

Note that both dx and dy were negative in this case.
The approximate values 2.15 and 2.867 may be compared to the true values (to

four decimal places) of 2.1448 and 2.8636. �

� EXAMPLE 3 Use differentials to approximate the increase in the area of a
soap bubble when its radius increases from 3 inches to 3.025 inches.

28.2 L 29 + dy L 3 - 0.133 = 2.867

dy =

1

229
 1-0.82 =

-0.8
6

L -0.133

dx = -0.8,x = 9

24.6 L 24 + dy = 2 + 0.15 = 2.15

dy =

1

224
 10.62 =

0.6
4

= 0.15

dx = 0.6,x = 4

dy =

1
2

 x-1>2 dx =

1
21x

  dx

24 + dy.24 = 21x
y = 1x

28.2,24.6

f1x + ¢x2 L f1x2 + dy = f1x2 + f¿1x2 ¢x

f1x + ¢x2 ¢y
¢xy = f1x2,

d1ur2 = rur - 1 du
d1ur2

dx
= rur - 1

 
du

dx

dau

v
b =

v du - u dv

v2

d1u>v2
dx

=

v1du>dx2 - u1dv>dx2
v2

d1uv2 = u dv + v du
d1uv2

dx
= u 

dv

dx
+ v 

du

dx

d1u + v2 = du + dv
d1u + v2

dx
=

du

dx
+

dv

dx

d1ku2 = k du
d1ku2

dx
= k 

du

dx

dk = 0
dk

dx
= 0

y y = f (x)

x

dy
∆y

x x + ∆x

f(x + ∆ x)

f(x)

f(x + ∆ x) ≈ f(x) + dy

Figure 3

1 2 3 4 5 6

1

2

3

y

x

�4 = 2

dx = 0.6

dy = 0.15

4.6

Figure 4
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182 Chapter 3 The Derivative

SOLUTION The area of a spherical soap bubble is given by We may
approximate the exact change, by the differential dA, where

At and 

�

Estimating Errors Here is a typical problem in science. A researcher meas-
ures a certain variable x to have a value with a possible error of size The
value is then used to calculate a value for y that depends on x. The value is
contaminated by the error in x, but how badly? The standard procedure is to esti-
mate this error by means of differentials.

� EXAMPLE 4 The side of a cube is measured as 11.4 centimeters with a pos-
sible error of centimeter. Evaluate the volume of the cube and give an esti-
mate for the possible error in this value.

SOLUTION The volume V of a cube of side x is Thus, If
and then and

Thus, we might report the volume of the cube as   cubic centimeters. �

The quantity in Example 4 is called the absolute error. Another measure
of error is the relative error, which is found by dividing the absolute error by the
total volume. We can approximate the relative error by In Example
4, the relative error is

The relative error is often expressed in terms of a percentage. Thus, we say that for
the cube in Example 4 the relative error is approximately 1.28%.

� EXAMPLE 5 Poiseuille’s Law for blood flow says that the volume flowing
through an artery is proportional to the fourth power of the radius, that is,

By how much must the radius be increased in order to increase the
blood flow by 50%?

SOLUTION The differentials satisfy The relative change in the
volume is

so for a 50% change in volume,

The relative change in R must be

Thus, just a 12.5% increase in the radius of an artery will increase the blood flow
by about 50%. �

¢R

R
L

dR

R
L

0.5
4

= 0.125

0.5 L

dV

V
= 4 

dR

R

¢V

V
 L  

dV

V
=

4kR3 dR

kR4 = 4 
dR

R

dV = 4kR3 dR.

V = kR4.

¢V

V
L

dV

V
L

19
1482

L 0.0128

dV>V.¢V>V
¢V

1482 ; 19

¢V L dV = 3111.42210.052 L 19

V = 111.423 L 1482dx = 0.05,x = 11.4
dV = 3x2 dx.V = x3.

;0.05

y0y0x0

; ¢x.x0

dA = 8p13210.0252 L 1.885 square inches

dr = ¢r = 0.025,r = 3

dA = 8pr dr

¢A,
A = 4pr2.
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Linear Approximation If f is differentiable at a, then from the point-slope
form of a line, the tangent line to f at is given by 

The function

is called the linear approximation to the function f at a, and it is often a very good
approximation to f when x is close to a.

� EXAMPLE 6 Find and plot the linear approximation to 
at 

SOLUTION: The derivative of f is so the linear
approximation is

Figure 5a shows both the graph of the function f and the linear approximation L
over the interval We can see that the approximation is good near but
not so good as you move away from Figures 5b and c also show plots of the
functions L and f over smaller and smaller intervals. For values of x close to 
we see that the linear approximation is very close to the function f. �

p>2,
p>2.

p>2,[0, p].

 = 1 - 21x - p>22 = 11 + p2 - 2x

 = 11 + sin p2 + 12 cos p21x - p>22
 L1x2 = f1p>22 + f¿1p>221x - p>22

f¿1x2 = 2 cos 2x,

x = p>2.
f1x2 = 1 + sin 2x

L1x2 = f1a2 + f¿1a21x - a2
f1a2 + f¿1a21x - a2. y =(a, f(a))

�

5

4

3

2

1

–1

3�
4

�
2

�
4

y

(a)

x

y

x2

2.5

1.25 1.5 1.75�
2

2

1.5

1

0.5

y

x1.8

1.75

1.2 �
2

1.4

1.5

1.25

1

0.75

0.5

0.25

(b) (c)

Figure 5

Concepts Review
1. Let The differential of y in terms of dx is

defined by _____.

2. Consider the curve and suppose that x is given
an increment The corresponding change in y on the curve is
denoted by _____, whereas the corresponding change in y on the
tangent line is denoted by _____.

¢x.
y = f1x2

dy =

y = f1x2. 3. We can expect dy to be a good approximation to pro-
vided that _____.

4. On the curve we should expect dy to be close to
but always _____ than On the curve we

should expect dy to be _____ than ¢y.
y = x2, x Ú 0,¢y.¢y,

y = 1x,

¢y,

Problem Set 3.11
In Problems 1–8, find dy.

1. 2.

3. 4.

5. 6.

7. 8.

9. If find ds.s = 21t2
- cot t + 223,

y = A1 + sinh3 2x B1>2y = 11 - ex) ln x

y = 1tan x + 123y = 1sin x + cos x23
y = 13x2

+ x + 12-2y = 12x + 32-4

y = 7x3
+ 3x2

+ 1y = x2
+ x - 3

10. Let Find the value of dy in each case.

(a) (b)

11. For the function defined in Problem 10, make a careful
drawing of the graph of f for and the tangents to
the curve at and on this drawing label dy and dx
for each of the given sets of data in parts (a) and (b).

x = -1;x = 0.5
-1.5 … x … 1.5

x = -1, dx = 0.75x = 0.5, dx = 1

y = f1x2 = x3.
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184 Chapter 3 The Derivative

12. Let Find the value of dy in each case.

(a) (b)

13. For the function defined in Problem 12, make a careful
drawing (as in Problem 11) for and 

14. For the data of Problem 10, find the actual changes in y,
that is,

15. For the data of Problem 12, find the actual changes in y,
that is,

16. If find the values of and dy in each case.

(a) and 

(b) and 

17. If find the values of and dy in each case.

(a) and 

(b) and 

In Problems 18–20, use differentials to approximate the given
number (see Example 2). Compare with calculator values.

18. 19.

20.

21. Approximate the volume of material in a spherical shell
of inner radius 5 centimeters and outer radius 5.125 centimeters
(see Example 3).

22. All six sides of a cubical metal box are 0.25 inch thick, and
the volume of the interior of the box is 40 cubic inches. Use dif-
ferentials to find the approximate volume of metal used to make
the box.

23. The outside diameter of a thin spherical shell is 12 feet. If
the shell is 0.3 inch thick, use differentials to approximate the vol-
ume of the region interior to the shell.

24. The interior of an open cylindrical tank is 12 feet in diam-
eter and 8 feet deep.The bottom is copper and the sides are steel.
Use differentials to find approximately how many gallons of
waterproofing paint are needed to apply a 0.05-inch coat to the
steel part of the inside of the tank 

25. Assuming that the equator is a circle whose radius is ap-
proximately 4000 miles, how much longer than the equator would
a concentric, coplanar circle be if each point on it were 2 feet
above the equator? Use differentials.

26. The period of a simple pendulum of length L feet is given
by seconds.We assume that g, the acceleration due
to gravity on (or very near) the surface of the earth, is 32 feet per
second per second. If the pendulum is that of a clock that keeps
good time when how much time will the clock gain in
24 hours if the length of the pendulum is decreased to 3.97 feet?

27. The diameter of a sphere is measured as cen-
timeters. Calculate the volume and estimate the absolute error
and the relative error (see Example 4).

28. A cylindrical roller is exactly 12 inches long and its diam-
eter is measured as Calculate its volume with
an estimate for the absolute error and the relative error.

29. The angle between the two equal sides of an isosceles
triangle measures radian. The two equal sides are
exactly 151 centimeters long. Calculate the length of the third
side with an estimate for the absolute error and the relative error.

0.53 ; 0.005
uC

6 ; 0.005 inches.

20 ; 0.1

L = 4 feet,

T = 2p2L>g

11 gallon L 231 cubic inches2.

C

C

23 26.91

235.92402

dx = ¢x = 0.005x = 2C

dx = ¢x = 1x = 2

¢yy = x4
+ 2x,

dx = ¢x = -0.12x = 3C

dx = ¢x = 0.5x = 2

¢yy = x2
- 3,

¢y.
C

¢y.
C

0 6 x … 3.-3 … x 6 0

x = -2, dx = 0.75x = 1, dx = 0.5

y = 1>x. 30. Calculate the area of the triangle of Problem 29 with an
estimate for the absolute error and the relative error. Hint:

31. It can be shown that if on a closed inter-
val with c and as end points, then

Find, using differentials, the change in when
x increases from 2 to 2.001 and then give a bound for the error
that you have made by using differentials.

32. Suppose that f is a function satisfying and
Use this information to approximate 

33. Suppose f is a function satisfying and
Use this information to approximate 

34. A conical cup, 10 centimeters high and 8 centimeters wide
at the top, is filled with water to a depth of 9 centimeters. An ice
cube 3 centimeters on a side is about to be dropped in. Use dif-
ferentials to decide whether the cup will overflow.

35. A tank has the shape of a cylinder with hemispherical
ends. If the cylindrical part is 100 centimeters long and has an out-
side diameter of 20 centimeters, about how much paint is required
to coat the outside of the tank to a thickness of 1 millimeter?

36. Einstein’s Special Theory of Relativity says that an ob-
ject’s mass m is related to its velocity by the formula

Here is the rest mass and c is the speed of light. Use differen-
tials to determine the percent increase in mass of an object when
its velocity increases from 0.9c to 0.92c.

In Problems 37–44, find the linear approximation to the given
functions at the specified points. Plot the function and its linear
approximation over the indicated interval.

37. at 

38. at 

39. at 

40. at 

41. at 

42. at 

43. at 

44. at 

45. Find the linear approximation to at an
arbitrary a. What is the relationship between and 

46. Show that for every the linear approximation 
to the function at a satisfies for all

47. Show that for every a the linear approximation to
the function at a satisfies for all x.

48. Find a linear approximation to at
where is any number. For various values of plot 

and its linear approximation For what values of does theaL(x).
f(x)a,ax = 0,

f1x2 = 11 + x2aEXPL

L1x2 … f1x2f1x2 = x2
L(x)

x 7 0.
f1x2 … L1x2f1x2 = 1x

L(x)a 7 0

L(x)?f(x)
f1x2 = mx + b

a = p>2, [0, p]G1x2 = x + sin 2x,

a = 0, 1-p>2, p>22h1x2 = x sec x

a = 0, [-1, 1]g1x2 = sin-1 x

a = 0, [-1, 1]f1x2 = 21 - x2

a = 3, [0, 6]F1x2 = 3x + 4

a = 0, [-p, p]h1x2 = sin x

a = p>2, [0, p]g1x2 = x2 cos x

a = 2, [0, 3]f1x2 = x2

m0

m =

m021 - v2>c2
= m0a1 -

v2

c2 b
-1>2

v

C

f(3.05).f¿13.052 =
1
4.

f132 = 8

f(1.02).f¿11.022 = 12.
f112 = 10,

y = 3x2
- 2x + 11

ƒ ¢y - dy ƒ …
1
2 M1¢x22

c + ¢x
ƒ d2y>dx2

ƒ … M

A =
1
2 ab sin u.

C
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3.12 Chapter Review

Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. The tangent line to a curve at a point cannot cross the
curve at that point.

2. The tangent line to a curve can touch the curve at only
one point.

3. The slope of the tangent line to the curve is differ-
ent at every point of the curve.

4. The slope of the tangent line to the curve is dif-
ferent at every point on the curve.

5. It is possible for the velocity of an object to be increasing
while its speed is decreasing.

6. It is possible for the speed of an object to be increasing
while its velocity is decreasing.

7. If the tangent line to the graph of is horizontal
at then 

8. If for all x, then for all x.

9. If and is a differentiable function, then

10. If then 

11. If exists, then f is continuous at c.

12. The graph of has a tangent line at and yet
does not exist there.

13. The derivative of a product is always the product of the
derivatives.

14. If the acceleration of an object is negative, then its veloc-
ity is decreasing.

15. If is a factor of the differentiable function then 
is a factor of its derivative.

16. The equation of the line tangent to the graph of at
(1, 1) is 

17. If then 

18. If then 

19. The derivative of a polynomial is a polynomial.

20. The derivative of a rational function is a rational function.

21. If and then

22. The expression

is the derivative of at x = p>2.f1x2 = sin x

lim
x:p>2 

sin x - 1
x - p>2

h¿1c2 = 0.
h1x2 = f1x2g1x2,f¿1c2 = g¿1c2 = 0

Dx
25y = 0.y = 1x3

+ x28,
Dx

2y = f1x2g–1x2 + g1x2f–1x2.y = f1x2g1x2,
y - 1 = 3x21x - 12.

y = x3

x2f(x),x3

Dxy
x = 0y = 13 x

f¿1c2
Dxy = 5p4.y = p5,

f¿1g1x22 = Dxf1g1x22.
fg1x2 = x,

f1x2 = g1x2f¿1x2 = g¿1x2
f¿1c2 = 0.x = c,

y = f1x2

y = cos x

y = x4

23. The operator is linear.

24. If where both f and g are differentiable,
then implies that 

25. If then 

26. The tangent line to the graph of is

27. If the radius of a sphere is increasing at 3 feet per second,
then its volume is increasing at 27 cubic feet per second.

28. If the radius of a circle is increasing at 4 feet per second,
then its circumference is increasing at feet per second.

29. for every positive integer n.

30. for every positive integer n.

31. is a function that is its own second
derivative.

32. If gives the position of an object on a
horizontal coordinate line at time t, then that object is always
moving to the right (the direction of increasing s).

33. If air is being pumped into a spherical rubber balloon at a
constant rate of 3 cubic inches per second, then the radius will
increase, but at a slower and slower rate.

34. If water is being pumped into a spherical tank of fixed ra-
dius at a rate of 3 gallons per second, the height of the water in
the tank will increase more and more rapidly as the tank nears
being full.

35. If an error is made in measuring the radius of a sphere,
the corresponding error in the calculated volume will be approx-
imately where S is the surface area of the sphere.

36. If then 

37. The linear approximation to the function defined by
at has positive slope.

Sample Test Problems

1. Use to find the deriva-

tive of each of the following.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

2. Use to find in each case.

(a) (b) g1x2 = x3
+ xg1x2 = 2x2

g¿1x2g¿1x2 = lim
t:x

 

g1t2 - g1x2
t - x

f1x2 = cos pxf1x2 = 2x2
+ 5

f1x2 = sin 3xf1x2 = 23x

f1x2 =

1

3x2
+ 2

f1x2 =

1
3x

f1x2 = 2x5
+ 3xf1x2 = 3x3

f¿1x2 = lim
h:0 

[f1x + h2 - f1x2]>h

x = 0f1x2 = cosh x

dy Ú 0.y = tan-1 x,

S #
¢r,

¢r

s = 5t3
+ 6t - 300

h(x) = sinh x

Dx
n + 31cos x2 = -Dx

n1sin x2
Dx

n + 41sin x2 = Dx
n1sin x2

8p

y = x - 1.
y = ln x at (1, 0)

1f � g2¿122 = 4.f¿122 = g¿122 = g122 = 2,

h¿1c2 = 0.g¿1c2 = 0
h1x2 = f1g1x22

D2

linear approximation always overestimate ? For what values

of does the linear approximation always underestimate ?

49. Suppose f is differentiable. If we use the approximation
the error is 

Show that f1x2 - f¿1x2 h.
e1h2 = f1x + h2 -L f1x2 + f¿1x2 hf1x + h2

EXPL

f(x)a

f(x)
(a) and (b) 

Answers to Concepts Review: 1. 2.
3. is small 4. larger; smaller¢x

¢y; dyf¿1x2 dx

lim
h:0

 

e1h2
h

= 0.lim
h:0
e1h2 = 0

185



186 Chapter 3 The Derivative

s

t

6

5

4

3

2

1

1 2 3 4 5 6 7

s = f (t)

Figure 1

(c) (d)

(e) (f)

(g) (h)

3. The given limit is a derivative, but of what function f and
at what point?

(a) (b)

(c) (d)

(e) (f)

(g) (h)

4. Use the sketch of in Figure 1 to approximate
each of the following.
(a) (b)

(c) on [3, 7] (d) at 

(e) at (f) at t = 2
d

dt
 1f1f1t222t = 2

d

dt
  [f21t2]

t = 2
d

dt
 f1t22vavg

f¿162f¿122
s = f1t2

lim
h:0
a 125 + h

-

125
b  

1
h

lim
h:0

 

tan1p>4 + h2 - 1

h

lim
t:x

 
sin 3x - sin 3t

t - x
lim
t:x

 

4>t - 4>x
t - x

lim
¢x:0

 

sin1p + ¢x2
¢x

lim
¢x:0

 

211 + ¢x23 - 1

¢x

lim
h:0

 

412 + h23 - 41223
h

lim
h:0

 

311 + h2 - 3

h

g1x2 = cos 2xg1x2 = 2x3
+ C

g1x2 = sin pxg1x2 = 1x

g1x2 =

1

x2
+ 1

g1x2 =

1
x

In Problems 5–29, find the indicated derivative by using the rules
that we have developed.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24. D4
x cosh xDx tan-1a 1

x
b

d

dx
 Cx ln (x2

+ 4) DDu e
3u

d

dt
 Csin21cos 4t2 Dd

du
 Csin21sin1pu22 D

d

dx
  e4xDu1sin1u222

d

dt
 Csin1t22 - sin21t2 DDu

21sin u + cos3 u2

d

dx
 A x2

- 1

x3
- x

d

dx
 a 12x2

+ 4
b

Dt A t22t + 6 Bd

dx
 a4x2

- 2

x3
+ x
b

Dx
213x + 222>3Dta 4t - 5

6t2
+ 2t

b
Dxa3x - 5

x2
+ 1
bDz1z3

+ 4z2
+ 2z2

Dx1x3
- 3x2

+ x-22Dx13x52

25. 26.

27. if 

28. if 

29. if 

In Problems 30–33, assume that all the functions given are differ-
entiable, and find the indicated derivative.

30. if 

31. if 

32. If and find

33. If and find

34. Find the coordinates of the point on the curve
where there is a tangent line that is perpendicular

to the line 

35. A spherical balloon is expanding from the sun’s heat. Find
the rate of change of the volume of the balloon with respect to its
radius when the radius is 5 meters.

36 If the volume of the balloon of Problem 35 is increasing at
a constant rate of 10 cubic meters per hour, how fast is its radius
increasing when the radius is 5 meters?

37. A trough 12 feet long has a cross section in the form of an
isosceles triangle (with base at the top) 4 feet deep and 6 feet
across. If water is filling the trough at the rate of 9 cubic feet per
minute, how fast is the water level rising when the water is 3 feet
deep?

38. An object is projected directly upward from the ground
with an initial velocity of 128 feet per second. Its height s at the
end of t seconds is 
(a) When does it reach its maximum height and what is this

height?
(b) When does it hit the ground and with what velocity?

39. An object moves on a horizontal coordinate line. Its di-
rected distance s from the origin at the end of t seconds is

(a) When is the object moving to the left?
(b) What is its acceleration when its velocity is zero?
(c) When is its acceleration positive?

40. Find in each case.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

41. Find in each case.

(a) (b)

(c) (d)

(e) (f)

42. Show that the tangent lines to the curves and
at (1, 2) are perpendicular to each other. Hint:

Use implicit differentiation.
2x2

+ 3y2
= 14

y2
= 4x3

exy
= 2 -

x

4
x tan1xy2 = 2

x sin1xy2 = x2
+ 1x3

+ y3
= x3y3

xy2
+ yx2

= 11x - 122 + y2
= 5

dy>dx

y = x19
+ e-xy = cosh x

y = ln xy = sin 2x

y = e2x + 1y = 7x21
+ 3x20

y = x20
+ x19

+ x18y = x19
+ x12

+ x5
+ 10

Dx
20y

s = t3
- 6t2

+ 9t feet.

s = 128t - 16t2 feet.

2x - y + 2 = 0.
y = 1x - 222
F¿1z2.

s1t2 = 3t3,F1z2 = r1s1z22, r1x2 = sin 3x,

F¿1x2.
Q1R2 = R3,F1x2 = Q1R1x22, R1x2 = cos x,

G1x2 = F1r1x2 + s1x22 + s1x2G–1x2
f1t2 = h1g1t22 + g21t2f¿1t2

g1r2 = cos3 5rg‡112
h1t2 = 1sin 2t + cos 3t25h–102
f1x2 = 1x - 1231sin px - x22f¿122

Dta 4t sin t
cos t - sin t

bd

dx
 a cot x

sec x2 b
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43. Let If x changes from 2 to 2.01, ap-
proximately how much does y change?

44. Let 
(a) If x changes from to and approximately

how much does y change?
(b) If x changes from to and approximately

how much does y change?

45. Suppose that 
and Find each value.

(a) at 

(b) at 

(c) at (d) at 

46. A 13-foot ladder is leaning against a vertical wall. If the
bottom of the ladder is being pulled away from the wall at a con-
stant rate of 2 feet per second how fast is the top end of the lad-
der moving down the wall when it is 5 feet above the ground?

≈
x = 2Dx

2 [f21x2]x = 2
d

dx
  [f1g1x22]

x = 2
d

dx
  [f1x2g1x2]

x = 2
d

dx
  [f21x2 + g31x2]

g¿122 = 5.g122 = 2,
f–122 = -1,f¿122 = 4,f122 = 3,

y 6 0,-2.01-2.00

y 7 0,-2.01-2.00
xy2

+ 2y1x + 222 + 2 = 0.

y = sin1px2 + x2. 47. An airplane is climbing at a 15° angle to the horizontal.
How fast is it gaining altitude if its speed is 400 miles per hour?

48. Given that find a formula for

(a) (b)

(c) (d)

49. Given that find a formula for

(a) (b)

(c) (d)

50. Find the linear approximation to the following functions
at the given points.

(a) at (b) x cos x at 

(c) at (d) ln(x + 1) at a = 0a = 0e2x

a = 1a = 32x + 1

Dx ƒ sinh x ƒDu ƒ tan u ƒ

Du ƒ cos u ƒDu ƒ sin u ƒ

Dt ƒ t ƒ =

ƒ t ƒ

t
, t Z 0,

Dx
21 ƒ x ƒ

22Dx
3

ƒ x ƒ

Dx
2

ƒ x ƒDx1 ƒ x ƒ
22

Dx ƒ x ƒ =

ƒ x ƒ

x
, x Z 0,

≈
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In Problems 1–6, solve the given inequalities. (See Section 1.2.)

1. 2.

3. 4.

5. 6.

In Problems 7–14, find the derivative of the given function.

7. 8.

9. 10.

11. 12.

13. 14.

15. Find all points on the graph of where the tangent line is horizontal.

16. Find all points on the graph of where the tangent line is horizontal.

17. Find all points on the graph of where the tangent line is parallel to the
line 

18. A rectangular box is to be made from a piece of cardboard 24 inches long and 
9 inches wide by cutting out identical squares from the four corners and turning up the sides
as in Figure 1. If x is the length of the side of one of the squares that is cut out, what is the
volume of the resulting box?

19. Andy wants to cross a river that is 1 kilometer wide and get to a point 4 kilometers
downstream. (See Figure 2.) He can swim at 4 kilometers per hour and run 10 kilometers
per hour.Assuming that he begins by swimming and that he swims toward a point x kilome-
ters downstream from his initial starting point A, how long will it take him to reach his des-
tination D?

20. Let 
(a) Does the equation have a solution between and How do

you know?
(b) Find the equation of the tangent line at 
(c) Where does the tangent line from part (b) intersect the x-axis?

21. Find a function whose derivative is
(a) 2x (b) sin x (c)

22. Add 1 to each answer from Problem 21. Are these functions also solutions to Prob-
lem 21? Explain.

x2
+ x + 1

x = p>2.

x = p?x = 0x - cos x = 0
f1x2 = x - cos x.

y = 2 + x.
y = x + sin x

y = x + sin x

y = tan2 x

f1x2 = 2sin-1 xf1x2 = (x + 1)e-x 2>2
f1x2 = 21 + sin2 xf1x2 = tan2 3x

f1x2 =

ln x
x

f1x2 = 1x2
- 12 cos 2x

f1x2 = sin pxf1x2 = 12x + 124
f¿1x2

x2
- 9

x2
+ 2

7 0
x1x - 22

x2
- 4

Ú 0

x3
+ 3x2

+ 2x Ú 0x1x - 121x - 22 … 0

x2
- x - 6 7 01x - 221x - 32 6 0

1

A

Dx 4–x

x
x

9

24

Figure 1 Figure 2

REVIEW &
PREVIEW

PROBLEMS
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Applications 
of the DerivativeCHAPTER 4

4.1 Maxima and
Minima

4.2 Monotonicity and
Concavity

4.3 Local Extrema and
Extrema on Open
Intervals

4.4 Practical Problems

4.5 Graphing
Functions Using
Calculus

4.6 The Mean Value
Theorem for
Derivatives

4.7 Solving Equations
Numerically

4.8 Antiderivatives

4.9 Introduction to
Differential
Equations

4.10 Exponential
Growth and Decay

4.1
Maxima and Minima
Often in life, we are faced with the problem of finding the best way to do some-
thing. For example, a farmer wants to choose the mix of crops that is likely to pro-
duce the largest profit. A doctor wishes to select the smallest dosage of a drug that
will cure a certain disease. A manufacturer would like to minimize the cost of dis-
tributing its products. Often such a problem can be formulated so that it involves
maximizing or minimizing a function over a specified set. If so, the methods of cal-
culus provide a powerful tool for solving the problem.

Suppose then that we are given a function and a domain S as in Figure 1.
We now pose three questions:

1. Does have a maximum or minimum value on S?

2. If it does have a maximum or a minimum, where are they attained?

3. If they exist, what are the maximum and minimum values?

Answering these questions is the principal goal of this section. We begin by intro-
ducing a precise vocabulary.

f(x)

f(x)

The Existence Question Does f have a maximum (or minimum) value on S?
The answer depends first of all on the set S. Consider on 
it has neither a maximum value nor a minimum value (Figure 2). On the other
hand, the same function on has the maximum value of and the

minimum value of On has no maximum value and the min-

imum value is 
The answer also depends on the type of function. Consider the discontinuous

function g (Figure 3) defined by

On has no maximum value (it gets arbitrarily close to 2 but never at-
tains it). However, g has the minimum value 

There is a nice theorem that answers the existence question for many of the
problems that come up in practice. Though it is intuitively obvious, a rigorous
proof is quite difficult; we leave that for more advanced textbooks.

g122 = 0.
S = [1, 3], g

g1x2 = ex if 1 … x 6 2
x - 2 if 2 … x … 3

f132 =
1
3.

S = 11, 3], ff132 =
1
3.

f112 = 1S = [1, 3]

S = 10, q2;f1x2 = 1>xy

xS

y = f (x)

Figure 1
y

x1 2 3

1

2

3

y = f (x) = 1
x

1
3

1

On (0, �), no max or min

On [1, 3], max = 1, min =

Figure 2

Definition

Let S, the domain of f, contain the point c. We say that

(i) is the maximum value of f on S if for all x in S;
(ii) is the minimum value of f on S if for all x in S;
(iii) is an extreme value of f on S if it is either the maximum value or the

minimum value;
(iv) the function we want to maximize or minimize is the objective function.

f(c)
f1c2 … f1x2f(c)
f1c2 Ú f1x2f(c)

Theorem A Max–Min Existence Theorem

If f is continuous on a closed interval [a, b], then f attains both a maximum value
and a minimum value there.

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 4 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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190 Chapter 4 Applications of the Derivative

Note the key words in Theorem A; f is required to be continuous and the set S is
required to be a closed interval.

Where Do Extreme Values Occur? Usually, the objective function will
have an interval I as its domain. But this interval may be any of the nine types
discussed in Section 1.2. Some of them contain their end points; some do not. For
instance, contains both its end points; [a, b) contains only its left end
point; (a, b) contains neither end point. Extreme values of functions defined on
closed intervals often occur at end points (see Figure 4).

I = [a, b]

If c is a point at which we call c a stationary point. The name derives
from the fact that at a stationary point the graph of f levels off, since the tangent
line is horizontal. Extreme values often occur at stationary points (see Figure 5).

Finally, if c is an interior point of I where fails to exist, we call c a singular
point. It is a point where the graph of f has a sharp corner, a vertical tangent, or
perhaps takes a jump, or near where the graph wiggles very badly. Extreme values
can occur at singular points (Figure 6), though in practical problems this is quite
rare.

These three kinds of points (end points, stationary points, and singular points)
are the key points of max–min theory. Any point of one of these three types in the
domain of a function f is called a critical point of f.

� EXAMPLE 1 Find the critical points of on 

SOLUTION The end points are and 2. To find the stationary points, we solve
for x, obtaining 0 and 1. There are no singular points.

Thus, the critical points are and 2. �-
1
2, 0, 1,

f¿1x2 = -6x2
+ 6x = 0

-
1
2

C -1
2, 2 D .f1x2 = -2x3

+ 3x2

f¿

f¿1c2 = 0,

Proof Consider first the case where is the maximum value of f on I and sup-
pose that c is neither an end point nor a singular point. We must show that c is a
stationary point.

Now, since is the maximum value, for all x in I; that is,

Thus, if so that then

(1)

whereas if thenx 7 c,

f1x2 - f1c2
x - c

Ú 0

x - c 6 0,x 6 c,

f1x2 - f1c2 … 0

f1x2 … f1c2f(c)

f(c)

Max

Min

End points

y

a b x

Figure 4 Figure 5 Figure 6

Max

Stationary points

Min

y

x

Max

Min

Singular points

y

x

Theorem B Critical Point Theorem

Let f be defined on an interval I containing the point c. If is an extreme
value, then c must be a critical point; that is, either c is

(i) an end point of I;
(ii) a stationary point of that is, a point where or
(iii) a singular point of that is, a point where does not exist.f¿1c2f;

f¿1c2 = 0;f;

f(c)

1 2 3

1

2

y

x

y = g(x)

No max, min = 0

Figure 3
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(2)

But exists because c is not a singular point. Consequently, when we let
in (1) and in (2), we obtain, respectively, and 

We conclude that as desired.
The case where is the minimum value is handled similarly. �

In the proof just given, we used the fact that the inequality is preserved
under the operation of taking limits.

What Are the Extreme Values? In view of  Theorems A and B, we can now
state a very simple procedure for finding the maximum value and minimum value
of a continuous function f on a closed interval I.

Step 1: Find the critical points of f on I.

Step 2: Evaluate f at each of these critical points. The largest of these values is the
maximum value; the smallest is the minimum value.

� EXAMPLE 2 Find the maximum and minimum values of on

SOLUTION The derivative is which is defined on and is
zero only when The critical points are therefore and the end points

and Evaluating f at the critical points yields 
and Thus, the maximum value of f is 8 (attained at ) and the
minimum is (attained at ). �

Notice that in Example 2, but f did not attain a minimum or a max-
imum at This does not contradict Theorem B. Theorem B does not say that
if c is a critical point then is a minimum or maximum; it says that if is a
minimum or a maximum, then c is a critical point.

� EXAMPLE 3 Find the maximum and minimum values of

on 

SOLUTION In Example 1, we identified 0, 1, and 2 as the critical points.

Now and Thus, the maximum value is

1 (attained at both and ), and the minimum value is (attained at

). The graph of f is shown in Figure 7. �

� EXAMPLE 4 The function is continuous everywhere. Find its
maximum and minimum values on 

SOLUTION which is never 0. However, does not exist, so

0 is a critical point, as are the end points and 2. Now and

Thus, the maximum value is the minimum value is 0. The

graph is shown in Figure 8. �

� EXAMPLE 5 Find the maximum and minimum values of 
on 

SOLUTION Figure 9 shows a plot of The derivative is
which is defined on and is zero when 

The only values of x in the interval that satisfy are 
and These two numbers, together with the end points and are
the critical points. Now, evaluate f at each critical point:

2p,-px = 5p>6.
x = p>6sin x = 1>2[-p, 2p]

sin x = 1>2.(-p, 2p)f¿1x2 = 1 - 2 sin x,
y = f1x2.

[-p, 2p].
x + 2 cos xf1x2 =

23 4;F122 = 23 4 L 1.59.

F1-12 = 1, F102 = 0,-1

F¿102F¿1x2 =
2
3 x-1>3,

[-1, 2].
F1x2 = x2>3

x = 2

-4x = 1x = -
1
2

f122 = -4.f A- 1
2 B = 1, f102 = 0, f112 = 1,

-
1
2,

C- 1
2, 2 D .

f1x2 = -2x3
+ 3x2

f(c)f(c)
x = 0.

f¿102 = 0,

x = -2-8
x = 2f122 = 8.

-8, f102 = 0,f1-22 =x = 2.x = -2
x = 0x = 0.

(-2, 2)f¿1x2 = 3x2,

[-2, 2].
f1x2 = x3

…

f(c)
f¿1c2 = 0,

f¿1c2 … 0.f¿1c2 Ú 0x : c+x : c-

f¿1c2

f1x2 - f1c2
x - c

… 0

Notice the way that terms are used
in Example 3. The maximum is 1,
which is equal to and 
We say that the maximum is attained
at and at 1. Similarly, the mini-
mum is which is attained at 2.-4,

-
1
2

f(1).f A- 1
2 B

Terminology

1–1

1

2 3

–1

–2

–3

–4

y

x

y = –2x3 + 3x2

Figure 7

F (x) = x2/3

1

1

2–1

y

x

43�

Figure 8

y

x

6

4

2

–2

–4

8

� 2�–�

f (x) = x + 2cos x

Figure 9 191
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Concepts Review
1. A _____ function on a _____ interval will always have

both a maximum value and a minimum value on that interval.

2. The term _____ value denotes either a maximum or a
minimum value.

3. A function can attain an extreme value only at a critical
point. Critical points are of three types: _____, _____, and _____.

4. A stationary point for f is a number c such that _____; a
singular point for f is a number c such that _____.

Problem Set 4.1
In Problems 1–4, find all critical points and find the minimum and
maximum of the function. Each function has domain 

1. 2.

3. 4.

In Problems 5–26, identify the critical points and find the maxi-
mum value and minimum value on the given interval.

5.

6.

7.

8.

9. Hint: Sketch the graph.

10.

11.

12.

13.

14.

15. Hint: Sketch the graph.

16. f1x2 =

x

1 + x2 ; I = [-1, 4]

g1x2 =

1

1 + x2 ; I = 1- q , q2

f1x2 = x5
-

25
3

 x3
+ 20x - 1; I = [-3, 2]

f1x2 = x4
- 2x2

+ 2; I = [-2, 2]

g1x2 =

1

1 + x2 ; I = [-3, 1]

h1x2 = e-x2
; I = [-1, 3]

f1x2 = x3
- 3x + 1; I = C- 3

2, 3 D
f1x2 = x3

- 3x + 1; I = A- 3
2, 3 B

G1x2 =
1
512x3

+ 3x2
- 12x2; I = [-3, 3]

°1x2 = x2
+ 3x; I = [-2, 1]

h1x2 = x2
+ x; I = [-2, 2]

f1x2 = x2
+ 4x + 4; I = [-4, 0]

y

x

5

4

3

2

1

1 2 3 4–2 –1

y

x

5

4

3

2

1

1 2 3 4–2 –1

y

x

12
10
8
6
4
2

14

1 2 3 4–2 –1
x

12
10
8
6
4
2
0

14

1 2 3 4–2 –1

[-2, 4]. 17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27. Identify the critical points and find the extreme values on
the interval for each function:

(a) (b)

28. Identify the critical points and find the extreme values on
the interval for each function:

(a) (b)

In Problems 29–36, sketch the graph of a function with the given
properties.

29. f is differentiable, has domain [0, 6], reaches a maximum
of 6 (attained when ) and a minimum of 0 (attained when

). Additionally, is a stationary point.

30. f is differentiable, has domain [0, 6], reaches a maximum
of 4 (attained when ) and a minimum of (attained when

). Additionally, are stationary points.

31. f is continuous, but not necessarily differentiable, has
domain [0, 6], reaches a maximum of 6 (attained when ),
and a minimum of 2 (attained when ). Additionally,
and are the only stationary points.

32. f is continuous, but not necessarily differentiable, has
domain [0, 6], reaches a maximum of 4 (attained when ),
and a minimum of 2 (attained when ). Additionally, f has
no stationary points.

x = 2
x = 4

x = 5
x = 1x = 3

x = 5

x = 2, 3, 4, 5x = 1
-2x = 6

x = 5x = 0
x = 3

g1x2 = ƒ f1x2 ƒf1x2 = cos x + x sin x + 2

[-1, 5]
GC

g1x2 = ƒ f1x2 ƒf1x2 = x3
- 6x2

+ x + 2

[-1, 5]
GC

h1t2 =

t5>3
2 + t

 ; I = [-1, 8]

g1u2 = u2 sec u; I = c- p
4

, 
p

4
d

g1x2 =

ln (x + 1)

 x + 1
 ; I = [0, 3]

f1x2 = xe-x2
; I = [-1, 2]

s1t2 = t2>5; I = [-1, 32]

g1x2 = 13 x; I = [-1, 27]

f1s2 = ƒ 3s - 2 ƒ ; I = [-1, 4]

a1x2 = ƒ x - 1 ƒ ; I = [0, 3]

s1t2 = sin t - cos t; I = [0, p]

r1u2 = sin u; I = c- p
4

, 
p

6
d

Thus, is the minimum (attained at ), and the maximum is 
(attained at ). �x = 2p

2 + 2px = -p-2 - p

f1-p2 = -2 - p L -5.14 f1p>62 = 23 +

p

6
L 2.26

f15p>62 = -23 +

5p
6

L 0.89 f12p2 = 2 + 2p L 8.28
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Section 4.2 Monotonicity and Concavity 193

How shall we decide where a function is increasing? We could draw its graph
and look at it, but a graph is usually drawn by plotting a few points and connecting
those points with a smooth curve. Who can be sure that the graph does not wiggle
between the plotted points? Even computer algebra systems and graphing calcula-
tors plot by simply connecting points. We need a better procedure.

The First Derivative and Monotonicity Recall that the first derivative
gives us the slope of the tangent line to the graph of f at the point x. Thus, if

then the tangent line is rising to the right, suggesting that f is increasing.
(See Figure 2.) Similarly, if then the tangent line is falling to the right, sug-
gesting that f is decreasing. We can also look at this in terms of motion along a line.
Suppose an object is at position at time t and that its velocity is always positive,
that is, Then it seems reasonable that the object will continue to
move to the right as long as the derivative stays positive. In other words, will be
an increasing function of t.These observations are stated in Theorem A below, which
we first saw in Section 3.9.We postpone a rigorous proof until Section 4.6.

s(t)
s¿1t2 = ds>dt 7 0.

s(t)

f¿1x2 6 0,
f¿1x2 7 0,
f¿1x2

This theorem usually allows us to determine precisely where a differentiable
function increases and where it decreases. It is a matter of solving two inequalities.

� EXAMPLE 1 If find where f is increasing
and where it is decreasing.

SOLUTION We begin by finding the derivative of f.

f¿1x2 = 6x2
- 6x - 12 = 61x + 121x - 22

f1x2 = 2x3
- 3x2

- 12x + 7,

Consider the graph in Figure 1. No one will be surprised when we say that f is
decreasing to the left of c and increasing to the right of c. These terms were intro-
duced in Section 1.6 in the context of finding the inverse of a function, but for easy
reference, we repeat the definitions here.

4.2
Monotonicity 

and Concavity

Decreasing Increasing

y = f (x)

y

xc

Figure 1

f'(x) > 0 f'(x) < 0

y

x

0
+

+ –

–

Figure 2

Definition

Let f be defined on an interval I (open, closed, or neither). We say that

(i) f is increasing on I if, for every pair of numbers and in I,

(ii) f is decreasing on I if, for every pair of numbers and in I,

(iii) f is strictly monotonic on I if it is either increasing on I or decreasing on I.

x1 6 x2 Q  f1x12 7 f1x22
x2x1

x1 6 x2 Q  f1x12 6 f1x22
x2x1

Theorem A Monotonicity Theorem

Let f be continuous on an interval I and differentiable at every interior point of
I.

(1) If for all x interior to I, then f is increasing on I.
(2) If for all x interior to I, then f is decreasing on I.f¿1x2 6 0

f¿1x2 7 0

33. f is differentiable, has domain [0, 6], reaches a maximum
of 4 (attained at two different values of x, neither of which is an
end point), and a minimum of 1 (attained at three different val-
ues of x, exactly one of which is an end point.)

34. f is continuous but not necessarily differentiable, has do-
main [0, 6], reaches a maximum of 6 (attained when ) and a
minimum of 0 (attained when ). Additionally, f has two sta-
tionary points and two singular points in (0, 6).

x = 6
x = 0

35. f has domain [0, 6], but is not necessarily continuous, and f
does not attain a maximum.

36. f has domain [0, 6], but is not necessarily continuous, and f
attains neither a maximum nor a minimum.

Answers to Concepts Review: 1. continuous; closed
2. extreme 3. end points; stationary points; singular points
4. does not existf¿1c2 = 0; f¿1c2
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194 Chapter 4 Applications of the Derivative

Values of f'

–1 2

++ – 00

Figure 3

y

x–2 –1 1 2 3

15

10

5

–5

–10

f (x) = 2x3 – 3x2 – 12x + 7

Figure 4

0 +

Values of g'

–1

0 ––

1

Figure 5

Increasing but wiggly

Figure 6

Definition

Let f be differentiable on an open interval I. We say that f (as well as its graph)
is concave up on I if is increasing on I, and we say that f is concave down on I
if is decreasing on I.f¿

f¿

f' increasing: Concave up f' decreasing:  Concave down Concave up    Concave down

Figure 7

We need to determine where

and also where

This problem was discussed in great detail in Section 1.2, a section worth reviewing
now. The split points are and 2; they split the x-axis into three intervals:

and Using the test points and 3, we conclude
that on the first and last of these intervals and that on the
middle interval (Figure 3). Thus, by Theorem A, f is increasing on and

it is decreasing on Note that the theorem allows us to include the
end points of these intervals, even though at those points. The graph of f
is shown in Figure 4. �

� EXAMPLE 2 Determine where is increasing and where
it is decreasing.

SOLUTION

Since the denominator is always positive, has the same sign as the numerator
The split points, and 1, determine the three intervals

and When we test them, we find that on the
first and last of these intervals and that on the middle one (Figure 5).
We conclude from Theorem A that g is decreasing on and and
that it is increasing on We postpone graphing g until later, but if you want
to see the graph, turn to Figure 11 and Example 4. �

The Second Derivative and Concavity A function may be increasing
and still have a very wiggly graph (Figure 6). To analyze wiggles, we need to study
how the tangent line turns as we move from left to right along the graph. If the tan-
gent line turns steadily in the counterclockwise direction, we say that the graph is
concave up; if the tangent turns in the clockwise direction, the graph is concave
down. Both definitions are better stated in terms of functions and their derivatives.

[-1, 1].
[1, q21- q , -1]

g¿1x2 7 0
g¿1x2 6 011, q2.1- q , -12, 1-1, 12, -111 - x211 + x2. g¿1x2

g¿1x2 =

11 + x22 - x12x2
11 + x222 =

1 - x2

11 + x222 =

11 - x211 + x2
11 + x222

g1x2 = x>11 + x22

f¿1x2 = 0
[-1, 2].[2, q2; 1- q , -1]

f¿1x2 6 0f¿1x2 7 0
-2, 0,12, q2.1- q , -12, 1-1, 22, -1

1x + 121x - 22 6 0

1x + 121x - 22 7 0

The diagrams in Figure 7 will help to clarify these notions. Note that a curve
that is concave up is shaped like a cup.

194



Section 4.2 Monotonicity and Concavity 195

The conditions regarding the deriva-
tives in Theorems A and B are suffi-
cient to guarantee the conclusions
stated. These conditions are not,
however, necessary. It is possible
that a function is increasing on some
interval even though the derivative
isn’t always positive on that inter-
val. If we consider the function

over the interval 
we note that it is increasing but its
derivative is not always positive on
that interval The func-
tion is concave up on the
interval but the second de-
rivative, is not always
positive on that interval.

g–1x2 = 12x2,
[-4, 4],

g1x2 = x4
1f¿102 = 02.

[-4, 4]f1x2 = x3

Conditions in Theorems A and B

Theorem B Concavity Theorem

Let f be twice differentiable on the open interval I.

(1) If for all x in I, then f is concave up on I.
(2) If for all x in I, then f is concave down on I.f–1x2 6 0

f–1x2 7 0

0 –

–1

0 ++f'

3

0 +–

1

f"

Figure 8

1–1 2 3
–1

–2

–3

–4

–5

1

2

3

4

5

–2

y

x

y = f (x) =    x3 – x2– 3x + 41
3

4 5–3

Figure 9

0 +

–1

0 ––g'

1

0 – ++–

0

g"

3�3– �

Figure 10

In view of Theorem A, we have a simple criterion for deciding where a curve is
concave up and where it is concave down. We simply keep in mind that the second
derivative of f is the first derivative of Thus, is increasing if is positive; it is
decreasing if is negative.f–

f–f¿f¿.

For most functions, this theorem reduces the problem of determining concav-
ity to the problem of solving inequalities. By now we are experts at this.

� EXAMPLE 3 Where is increasing, decreasing,
concave up, and concave down?

SOLUTION

By solving the inequalities and its opposite,
we conclude that f is increasing on and 

and decreasing on (Figure 8). Similarly, solving and
shows that f is concave up on and concave down on

The graph of f is shown in Figure 9. �

� EXAMPLE 4 Where is concave up and where is it con-
cave down? Sketch the graph of g.

SOLUTION We began our study of this function in Example 2. There we
learned that g is decreasing on and and increasing on To
analyze concavity, we calculate 

Since the denominator is always positive, we need only solve and
its opposite. The split points are and These three split points deter-
mine four intervals. After testing them (Figure 10), we conclude that g is concave

up on and and that it is concave down on and

A0, 23 B .
A - q , -23 BA23, q BA -23, 0 B

23.-23, 0,
x1x2

- 32 7 0

 =

2x1x2
- 32

11 + x223

 =

2x3
- 6x

11 + x223

 =

11 + x22[11 + x221-2x2 - 11 - x2214x2]
11 + x224

 g–1x2 =

11 + x2221-2x2 - 11 - x2212211 + x2212x2
11 + x224

 g¿1x2 =

1 - x2

11 + x222

g–.
[-1, 1].[1, q21- q , -1]

g1x2 = x>11 + x22
1- q , 12. 11, q221x - 12 6 0

21x - 12 7 0[-1, 3]
[3, q21- q , -1]1x + 121x - 32 6 0,

1x + 121x - 32 7 0

 f–1x2 = 2x - 2 = 21x - 12
 f¿1x2 = x2

- 2x - 3 = 1x + 121x - 32

f1x2 =
1
3 x3

- x2
- 3x + 4
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196 Chapter 4 Applications of the Derivative

4 in.

2 in.

Figure 12

h

1 in.

r
4 in.

Figure 13

� EXAMPLE 5 Suppose that water is poured into the conical container, as
shown in Figure 12, at the constant rate of cubic inch per second. Determine the
height h of the water as a function of time t and plot from time until the
time that the container is full.

SOLUTION Before we solve this problem, let’s think about what the graph
will look like.At first, the height will increase rapidly, since it takes very little water
to fill the bottom of the cone. As the container fills up, the height will increase less
rapidly. What do these statements say about the function its derivative 
and its second derivative Since the water is steadily pouring in, the height
will always increase, so will be positive. The height will increase more slowly
as the water level rises. Thus, the function is decreasing so is negative.
The graph of is therefore increasing (because is positive) and concave
down (because is negative).

Now, once we have an intuitive idea about what the graph should look like (in-
creasing and concave down), let’s solve the problem analytically. The volume of a
right circular cone is where V, r, and h are all functions of time. The
functions h and r are related; notice the similar triangles in Figure 13. Using prop-
erties of similar triangles, we have

Thus, The volume of the water inside the cone is thus

On the other hand, since water is flowing into the container at the rate of cubic
inch per second, the volume at time t is where t is measured in seconds.
Equating these two expressions for V gives

When we have thus, it takes about 8.4 seconds to fill
the container. Now solve for h in the above equation relating h and t to obtain

h(t) = A3 24
p

 t

t =
2p
48  43

=
8
3 p L 8.4;h = 4,

1
2

 t =

p

48
 h3

V =
1
2 t,

1
2

V =

1
3

 pr2h =

p

3
 ah

4
b2

h =

p

48
 h3

r = h>4.

r

h
=

1
4

V =
1
3 pr2h,

h–1t2 h¿1t2h(t)
h–1t2h¿1t2h¿1t2h–1t2? h¿1t2,h(t),

≈

t = 0h(t)

1
2

decreasing

concave
down

concave
up

concave
up

increasing decreasing

f (x) = 4xe–x2

1–1

–1

–2

2–2 3–3

1

2

y

x

concave
down

6
2

�– 6
2

�2
2

�– 2
2

�

Figure 11

�

To sketch the graph of g, we make use of all the information obtained so far,
plus the fact that g is an odd function whose graph is symmetric with respect to the
origin (Figure 11).
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t

h

8642 7531

1

2

4

3
h(t) = 24t

π
1/3

Figure 14

While a function’s minimum or
maximum is a number, an inflection
point is always an ordered pair,
(c, f(c)).

Terminology

p

t

p = g (t)

Figure 16

u

t

u = f (t)

Figure 15

f (x) = x4y

x

Figure 18

Concave
up

Concave
down

Inflection
points

Inflection
points

Concave
up

Concave
down

Concave
down

Concave
up

Figure 17

The first and second derivatives of h are

which is positive, and

which is negative. The graph of is shown in Figure 14. As expected, the graph
of h is increasing and concave down. �

� EXAMPLE 6 A news agency reported in May 2005 that unemployment in
eastern Asia was continuing to increase at an increasing rate. On the other hand,
the price of food was increasing, but at a slower rate than before. Interpret these
statements in terms of increasing/decreasing functions and concavity.

SOLUTION Let denote the number of people unemployed at time t.
Although u actually jumps by unit amounts, we will follow standard practice in
representing u by a smooth curve as in Figure 15. To say unemployment is
increasing is to say that To say that it is increasing at an increasing rate
is to say that the function is increasing; but this means that the derivative of

must be positive.Thus, In Figure 15, notice that the slope of the
tangent line increases as t increases. Unemployment is increasing and concave up.

Similarly, if represents the price of food (e.g., the typical cost of one
day’s groceries for one person) at time t, then is positive but decreasing.
Thus, the derivative of is negative, so In Figure 16, notice that
the slope of the tangent line decreases as t increases.The price of food is increasing
but concave down. �

Inflection Points Let f be continuous at c. We call an inflection
point of the graph of f if f is concave up on one side of c and concave down on the
other side. The graph in Figure 17 indicates a number of possibilities.

(c, f(c))

d2p>dt2
6 0.dp>dt

dp>dt
p = g1t2

d2u>dt2
7 0.du>dt

du>dt
du>dt 7 0.

u = f1t2

h(t)

h–1t2 = Dt 
223 9pt2

= -  
4

323 9pt5

h¿1t2 = Dt A3 24
p

 t =

8
p

 a24
p

 tb-2>3
=

223 9pt2

As you might guess, points where or where does not exist are
the candidates for points of inflection. We use the word candidate deliberately. Just
as a candidate for political office may fail to be elected, so, for example, may a
point where fail to be a point of inflection. Consider which
has the graph shown in Figure 18. It is true that yet the origin is not a
point of inflection. Therefore, in searching for inflection points, we begin by identi-
fying those points where (and where does not exist). Then we
check to see if they really are inflection points.

Look back at the graph in Example 4. You will see that it has three inflection
points. They are (0, 0), and A23, 23>4 B .A -23, -23>4 B ,

f–1x2f–1x2 = 0

f–102 = 0;
f1x2 = x4,f–1x2 = 0

f–1x2f–1x2 = 0
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198 Chapter 4 Applications of the Derivative

� EXAMPLE 7 Find all points of inflection of 

SOLUTION

The second derivative, is never 0; however, it fails to exist at The
point (0, 2) is an inflection point since for and for

The graph is sketched in Figure 19. �x 7 0.
F–1x2 6 0x 6 0F–1x2 7 0

x = 0.F–1x2,
F¿1x2 =

1

3x2>3, F–1x2 =

-2

9x5>3

F1x2 = x1>3
+ 2.

Inflection
point

F (x) = x1/3 + 2

1–1 2 3

1

2

3

–2–3

y

x

Figure 19

Concepts Review
1. If everywhere, then f is _____ everywhere; if

everywhere, then f is _____ everywhere.

2. If _____ and _____ on an open interval I, then f is both
increasing and concave down on I.

f–1x2 7 0
f¿1x2 7 0 3. A point on the graph of a continuous function where the

concavity changes is called _____.

4. In trying to locate the inflection points for the graph of a
function f, we should look at numbers c, where either _____ or
_____.

Problem Set 4.2
In Problems 1–10, use the Monotonicity Theorem to find where
the given function is increasing and where it is decreasing.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10.

In Problems 11–18, use the Concavity Theorem to determine
where the given function is concave up and where it is concave
down. Also find all inflection points.

11. 12.

13. 14.

15.

16. 17.

18.

In Problems 19–28, determine where the graph of the given func-
tion is increasing, decreasing, concave up, and concave down.Then
sketch the graph (see Example 4).

19.

20.

21. 22.

23. 24.

25. 26. g1x2 = x2x - 2f1x2 = 1sin x on [0, p]

H1x2 =

x2

x2
+ 1

G1x2 = 3x5
- 5x3

+ 1

F1x2 = x6
- 3x4g1x2 = 3x4

- 4x3
+ 2

g1x2 = 4x3
- 3x2

- 6x + 12

f1x2 = x3
- 12x + 1

G1x2 = arcsin 2x

F1x2 = 2x2
+ cos2 xf1x2 = x4

+ 8x3
- 2

q1x2 = x4
- 6x3

- 24x2
+ 3x + 1

f1z2 = z2
-

1

z2T1t2 = 3t3
- 18t

G1w2 = w2
- 1f1x2 = 1x - 122

f1x2 =

e-x

x2

H1t2 = sin t, 0 … t … 2p

f1x2 = e-xh1z2 =

z4

4
-

4z3

6

f1t2 = t3
+ 3t2

- 12G1x2 = 2x3
- 9x2

+ 12x

f1x2 = x3
- 1h1t2 = t2

+ 2t - 3

g1x2 = 1x + 121x - 22f1x2 = 3x + 3

27. 28.

In Problems 29–34, sketch the graph of a continuous function f on
that satisfies all the stated conditions.

29. increasing and concave down on 
(0, 6)

30. decreasing on (0, 6); inflection
point at the ordered pair (2, 3), concave up on (2, 6)

31.

32.

33.

34.

35. Prove that a quadratic function has no point of inflection.
36. Prove that a cubic function has exactly one point of

inflection.
37. Prove that, if exists and is continuous on an interval

I and if at all interior points of I, then either f isf¿1x2 Z 0
f¿1x2

f–1x2 6 0 on 10, 32 ´ 14, 52; f–1x2 7 0 on 13, 42
f¿122 = f¿142 = 0; f¿1x2 = -1 on 15, 62;
f¿1x2 7 0 on 10, 22; f¿1x2 6 0 on 12, 42 ´ 14, 52;
f102 = f132 = 3; f122 = 4; f142 = 2; f162 = 0;

f–1x2 6 0 on 11, 32 ´ 14, 62
f¿122 = f¿142 = 0; f–1x2 7 0 on 10, 12 ´ 13, 42;
f¿1x2 7 0 on 10, 22; f¿1x2 6 0 on 12, 42 ´ 14, 62;
f102 = f142 = 1; f122 = 2; f162 = 0;

f–1x2 6 0 on 10, 12 ´ 12, 62; f–1x2 7 0 on 11, 22
f¿1x2 6 0 on 10, 22 ´ 12, 62; f¿122 = 0;

f102 = 3; f122 = 2; f162 = 0;

f–1x2 7 0 on 10, 52; f–1x2 6 0 on 15, 62
f¿1x2 6 0 on 10, 32; f¿1x2 7 0 on 13, 62;
f102 = 3; f132 = 0; f162 = 4;

f102 = 8; f162 = -2;

f102 = 1; f162 = 3;

[0, 6]

g1x2 =

ln (x + 1)

x + 1
f1x2 = e-x2
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3.5 in.

3 in.

5 in.

h

Figure 20

increasing throughout I or decreasing throughout I. Hint: Use the
Intermediate Value Theorem to show that there cannot be two
points and of I where has opposite signs.

38. Suppose that f is a function whose derivative is
Use Problem 37 to prove that f

is increasing everywhere.

39. Use the Monotonicity Theorem to prove each statement
if 

(a) (b) (c)

40. What conditions on a, b, and c will make 
always increasing?

41. Determine a and b so that has the
point (4, 13) as an inflection point.

42. Suppose that the cubic function has three real zeros,
and Show that its inflection point has x-coordinate

Hint:

43. Suppose that and for all x. What
simple additional conditions (if any) are needed to guarantee
that:
(a) is increasing for all x;
(b) is increasing for all x;
(c) is increasing for all x?

44. Suppose that and for all x. What
simple additional conditions (if any) are needed to guarantee
that
(a) is concave up for all x;
(b) is concave up for all x;
(c) is concave up for all x?

Use a graphing calculator or a computer to do Problems
45–48.

45. Let on the interval 
(a) Draw the graph of f on I.
(b) Use this graph to estimate where on I.
(c) Use this graph to estimate where on I.
(d) Plot the graph of to confirm your answer to part (b).
(e) Plot the graph of to confirm your answer to part (c).

46. Repeat Problem 45 for on (0, 10).

47. Let on Where on I is f
increasing?

48. Let on Where
on I is f concave down?

49. Translate each of the following into the language of deriv-
atives of distance with respect to time. For each part, sketch a plot
of the car’s position s against time t, and indicate the concavity.
(a) The speed of the car is proportional to the distance it has

traveled.
(b) The car is speeding up.
(c) I didn’t say the car was slowing down; I said its rate of in-

crease in speed was slowing down.
(d) The car’s speed is increasing 10 miles per hour every minute.
(e) The car is slowing very gently to a stop.
(f) The car always travels the same distance in equal time

intervals.

I = [-2, 3].f–1x2 = x4
- 5x3

+ 4x2
+ 4

I = [-2, 4].f¿1x2 = x3
- 5x2

+ 2

f1x2 = x cos21x>32
f–

f¿

f–1x2 6 0
f¿1x2 6 0

I = 1-2, 72.f1x2 = sin x + cos1x>22

GC

f(g(x))
f1x2 # g1x2
f1x2 + g1x2

g–1x2 7 0f–1x2 7 0

f(g(x))
f1x2 # g1x2
f1x2 + g1x2

g¿1x2 7 0f¿1x2 7 0

f1x2 = a1x - r121x - r221x - r32.1r1 + r2 + r32>3.
r3.r1, r2,

f(x)

f1x2 = a1x + b>1x

ax3
+ bx2

+ cx + d
f1x2 =

1
x

7

1
y

1x 6 1yx2
6 y2

0 6 x 6 y.

f¿1x2 = 1x2
- x + 12>1x2

+ 12.

f¿x2x1

50. Translate each of the following into the language of deriv-
atives, sketch a plot of the appropriate function and indicate the
concavity.

(a) Water is evaporating from the tank at a constant rate.

(b) Water is being poured into the tank at 3 gallons per minute
but is also leaking out at gallon per minute.

(c) Since water is being poured into the conical tank at a con-
stant rate, the water level is rising at a slower and slower
rate.

(d) Inflation held steady this year but is expected to rise more
and more rapidly in the years ahead.

(e) At present the price of oil is dropping, but this trend is ex-
pected to slow and then reverse direction in 2 years.

(f) David’s temperature is still rising, but the penicillin seems to
be taking effect.

51. Translate each of the following statements into mathe-
matical language, sketch a plot of the appropriate function, and
indicate the concavity.

(a) The cost of a car continues to increase and at a faster and
faster rate.

(b) During the last 2 years, the United States has continued to
cut its consumption of oil, but at a slower and slower rate.

(c) World population continues to grow, but at a slower and
slower rate.

(d) The angle that the Leaning Tower of Pisa makes with the
vertical is increasing more and more rapidly.

(e) Upper Midwest firm’s profit growth slows.

(f) The XYZ Company has been losing money, but will soon
turn this situation around.

52. Translate each statement from the following newspaper
column into a statement about derivatives.

(a) In the United States, the ratio R of government debt to na-
tional income remained unchanged at around 28% up to
1981, but

(b) then it began to increase more and more sharply, reaching
36% during 1983.

53. Coffee is poured into the cup shown in Figure 20 at 
the rate of 2 cubic inches per second. The top diameter is 3.5
inches, the bottom diameter is 3 inches, and the height of the
cup is 5 inches. This cup holds about 23 fluid ounces. Determine
the height h of the coffee as a function of time t, and sketch 
the graph of from time until the time that the cup 
is full.

t = 0h(t)

≈

1
2
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Global
max Local

max

a c b

Figure 1

Global
max

Local
min

Local
max

Local
max

Local
min Global

min

Local
max

Figure 2

Definition

Let S, the domain of f, contain the point c. We say that

(i) is a local maximum value of f if there is an interval (a, b) containing c
such that is the maximum value of f on 

(ii) is a local minimum value of f if there is an interval (a, b) containing c
such that is the minimum value of f on 

(iii) is a local extreme value of f if it is either a local maximum or a local
minimum value.
f(c)

1a, b2 ¨ S;f(c)
f(c)

1a, b2 ¨ S;f(c)
f(c)

55. A liquid is poured into the container shown in Figure 22
at the rate of 3 cubic inches per second. The container holds
about 24 cubic inches. Sketch a graph of the height h of the liq-
uid as a function of time t. In your graph, pay special attention to
the concavity of h.

56. A 20-gallon barrel, as shown in Figure 23, leaks at the con-
stant rate of 0.1 gallon per day. Sketch a plot of the height h of the
water as a function of time t, assuming that the barrel is full at time

In your graph, pay special attention to the concavity of h.t = 0.

57. What are you able to deduce about the shape of a vase
based on each of the following tables, which give measurements
of the volume of the water as a function of the depth.

(a) Depth 1 2 3 4 5 6
Volume 4 8 11 14 20 28

(b) Depth 1 2 3 4 5 6

Volume 4 9 12 14 20 28

Answers to Concepts Review: 1. increasing; concave up
2. 3. an inflection point
4. does not existf–1c2 = 0; f–1c2

f¿1x2 7 0; f–1x2 6 0

We recall from Section 4.1 that the maximum value (if it exists) of a function f on a
set S is the largest value that f attains on the whole set S. It is sometimes referred
to as the global maximum value, or the absolute maximum value of f. Thus, for the
function f with domain whose graph is sketched in Figure 1, is the
global maximum value. But what about It may not be king of the country, but
at least it is chief of its own locality. We call it a local maximum value, or a relative
maximum value. Of course, a global maximum value is automatically a local maxi-
mum value. Figure 2 illustrates a number of possibilities. Note that the global max-
imum value (if it exists) is simply the largest of the local maximum values.
Similarly, the global minimum value is the smallest of the local minimum values.

f(c)?
f(a)S = [a, b]

4.3
Local Extrema 

and Extrema 
on Open Intervals

9.5 ft

3 fth

Figure 21

Figure 22 Figure 23

Here is the formal definition of local maxima and local minima. Recall that the
symbol denotes the intersection (common part) of two sets.¨

54. Water is being pumped into a cylindrical tank at a con-
stant rate of 5 gallons per minute, as shown in Figure 21.The tank
has diameter 3 feet and length 9.5 feet. The volume of the tank is

With-
out doing any calculations, sketch a graph of the height h of the
water as a function of time t (see Example 6). Where is h concave
up? Concave down?

pr2l = p * 1.52
* 9.5 L 67.152 cubic feet L 500 gallons.
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Slope

SlopeSlope

a c

(0)

b x

(+)

(+)

y

No local extreme value

y

x

Slope
(+)

Slope
(0)

Slope
(–)

a bc

Local minimum

Slope
(+)

Slope
(0)

Slope
(–)

y

xa bc

Local maximum

Figure 3

Theorem A First Derivative Test

Let f be continuous on an open interval (a, b) that contains a critical point c.

(1) If for all x in (a, c) and for all x in (c, b), then is
a local maximum value of f.

(2) If for all x in (a, c) and for all x in (c, b), then is
a local minimum value of f.

(3) If has the same sign on both sides of c, then is not a local
extreme value of f.

f(c)f¿1x2
f(c)f¿1x2 7 0f¿1x2 6 0

f(c)f¿1x2 6 0f¿1x2 7 0

Where Do Local Extreme Values Occur? The Critical Point Theorem
(Theorem 4.1B) holds with the phrase extreme value replaced by local extreme
value; the proof is essentially the same. Thus, the critical points (end points, sta-
tionary points, and singular points) are the candidates for points where local ex-
trema may occur. We say candidates because we are not claiming that there must
be a local extremum at every critical point. The left graph in Figure 3 makes this

clear. However, if the derivative is positive on one side of the critical point and
negative on the other (and if the function is continuous), then we have a local ex-
tremum, as shown in the middle and right graphs of Figure 3.

Proof of (1) Since for all x in (a, c), f is increasing on (a, c] by the
Monotonicity Theorem. Again, since for all x in (c, b), f is decreasing on

Thus, for all x in (a, b), except of course at We conclude
that is a local maximum.

The proofs of (2) and (3) are similar. �

� EXAMPLE 1 Find the local extreme values of the function 
on 

SOLUTION The polynomial function f is continuous everywhere, and its
derivative, exists for all x. Thus, the only critical point for f is the
single solution of that is,

Since for f is decreasing on and be-
cause for f is increasing on Therefore, by the First
Derivative Test, is a local minimum value of f. Since 3 is the only criti-
cal point, there are no other extreme values. The graph of f is shown in Figure 4.
Note that is actually the (global) minimum value in this case. �

� EXAMPLE 2 Find the local extreme values of 
on 1- q , q2. f1x2 =

1
3 x3

- x2
- 3x + 4

f(3)

f132 = -4
[3, q2.x 7 3,21x - 32 7 0

1- q , 3];x 6 3,f¿1x2 = 21x - 32 6 0
x = 3.f¿1x2 = 0;

f¿1x2 = 2x - 6,

1- q , q2.x2
- 6x + 5

f1x2 =

f(c)
x = c.f1x2 6 f1c2[c, b).

f¿1x2 6 0
f¿1x2 7 0

Local
min

y

x

f (x) = x2 – 6x + 5

1

–1

2 3

1

2

3

–3

4

–4

4 5

–2

Figure 4 201
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Local
min

f(x) =    x3 – x2 – 3x + 4

Local
max

1

–1

–1 2

–2

–2 3

–3

–3

1

2

3

– 4

4

–5

y

x

1
3

Figure 5

f (x) = (sin x) 2 /3

π

1

y

x
6

π
6

π
3

π
2

2π
3

–

Figure 6

Theorem B Second Derivative Test

Let be a function such that and exist at every point in an open interval
(a, b) containing c, and suppose that 

(1) If then is a local maximum value of f.
(2) If then is a local minimum value of f.f1c2f–1c2 7 0,

f1c2f–1c2 6 0,

f¿1c2 = 0.
f–f¿f

SOLUTION Since the only critical
points of f are and 3. When we use the test points 0, and 4, we learn that

on and and on
By the First Derivative Test, we conclude that is a local

maximum value and that is a local minimum value (Figure 5). �

� EXAMPLE 3 Find the local extreme values of on

SOLUTION

The points 0 and are critical points, since does not exist and
Now on and on while 

on By the First Derivative Test, we conclude that is a local min-
imum value and that is a local maximum value. The graph of is
shown in Figure 6. �

The Second Derivative Test There is another test for local maxima and
minima that is sometimes easier to apply than the First Derivative Test. It involves
evaluating the second derivative at the stationary points. It does not apply to sin-
gular points.

ff1p>22 = 1
f102 = 010, p>22.

f¿1x2 7 01p>2, 2p>32,1-p>6, 02f¿1x2 6 0f¿1p>22 = 0.
f¿102p>2

f¿1x2 =

2 cos x

31sin x21>3, x Z 0

1-p>6, 2p>32. f1x2 = 1sin x22>3
f132 = -5

f1-12 =
17
31-1, 32.

1x + 121x - 32 6 013, q21- q , -121x + 121x - 32 7 0
-2,-1

f¿1x2 = x2
- 2x - 3 = 1x + 121x - 32,

Proof of (1) It is tempting to say that, since f is concave downward
near c and to claim that this proves (1). However, to be sure that f is concave down-
ward in a neighborhood of c, we need in that neighborhood (not just at
c), and nothing in our hypothesis guarantees that. We must be a bit more careful.
By definition and hypothesis,

so we can conclude that there is a (possibly small) interval around c where

But this inequality implies that for and for
Thus, by the First Derivative Test, is a local maximum value.

The proof of (2) is similar. �

� EXAMPLE 4 For use the Second Derivative Test to
identify local extrema.

SOLUTION This is the function of Example 1. Note that

Thus, and Therefore, by the Second Derivative Test, is a
local minimum value. �

f(3)f–132 7 0.f¿132 = 0

 f–1x2 = 2

 f¿1x2 = 2x - 6 = 21x - 32

f1x2 = x2
- 6x + 5,

f(c)c 6 x 6 b.
f¿1x2 6 0a 6 x 6 cf¿1x2 7 0

f¿1x2
x - c

6 0, x Z c

1a, b2
f–1c2 = lim

x:c
 

f¿1x2 - f¿1c2
x - c

= lim
x:c

 

f¿1x2 - 0
x - c

6 0

f–1x2 6 0

f–1c2 6 0,
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f(x) = x3
y

x

f (x) = x 4

y

x

Figure 7

�1 1

1

�2 2�3 3

f(x) � e�x2

x

y

Figure 8

� EXAMPLE 5 For use the Second Derivative
Test to identify local extrema.

SOLUTION This is the function of Example 2.

The critical points are and 3 Since and
we conclude by the Second Derivative Test that is a local maxi-

mum value and that is a local minimum value. �

Unfortunately, the Second Derivative Test sometimes fails, since may be
0 at a stationary point. For both and and

(see Figure 7). The first does not have a local maximum or minimum
value at 0; the second has a local minimum there. This shows that if at a
stationary point we are unable to draw a conclusion about maxima or minima
without more information.

Extrema on Open Intervals The problems that we studied in this section
and in Section 4.1 often assumed that the set on which we wanted to maximize or
minimize a function was a closed interval. However, the intervals that arise in prac-
tice are not always closed; they are sometimes open, or even open on one end and
closed on the other. We can still handle these problems if we correctly apply the
theory developed in this section. Keep in mind that maximum (minimum) with no
qualifying adjective means global maximum (minimum).

� EXAMPLE 6 Find (if any exist) the minimum and maximum values of

on 

SOLUTION The first derivative is

Since is differentiable everywhere and since only when there is
only one critical point, Note that is always positive, so

is positive when is negative, and negative when is positive.
Thus, is increasing on and decreasing on so we conclude that

is the global maximum. Note that these facts imply that cannot have a
minimum. As or approaches, but never attains, the value 0.
A graph of is shown in Figure 8. �

� EXAMPLE 7 Find (if any exist) the maximum and minimum values of

on (0, 1).

SOLUTION

The only critical point is For every value of p in the interval (0, 1) the de-
nominator is positive; thus, the numerator determines the sign. If p is in the inter-
val (0, 1/2), then the numerator is negative; hence, Similarly, if p is in
the interval (1/2, 1), Thus, by the First Derivative Test, is a
local minimum. Since there are no end points or singular points to check, G(1/2) is
a global minimum. There is no maximum. The graph of is shown in
Figure 9. �

y = G1p2
G11>22 = 4G¿1p2 7 0.

G¿1p2 6 0.

p = 1>2.

G¿1p2 =

d

dp
 c 1

p(1 - p)
d =

2p - 1

p211 - p22

G1p2 =

1
p11 - p2 

f
x : q , f(x)x : - q

ff(0) = 1
[0, q),(- q , 0]f

xxf¿(x) = -xe-x2>2
e-x2>2x = 0.

x = 0,f¿(x) = 0f

f¿(x) = e-x2>2a -2x

2
b = -xe-x2>2

(- q , q).f(x) = e-x2>2

f–1x2 = 0
f–102 = 0

f¿102 = 0f1x2 = x4,f1x2 = x3
f–1x2

f(3)
f1-12f–132 = 4,

f–1-12 = -41f¿1-12 = f¿132 = 02.-1

 f–1x2 = 2x - 2

 f¿1x2 = x2
- 2x - 3 = 1x + 121x - 32

f1x2 =
1
3 x3

- x2
- 3x + 4,

y

p

25

20

10

5

15

0.5 1

y = G(p)

Figure 9
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Concepts Review
1. If f is continuous at c, near to c on the left, and

near to c on the right, then is a local _____ value
for f.

2. If then is a local _____
value for f and is a local _____ value for f.f(1)

f1-22f¿1x2 = 1x + 221x - 12,
f(c)f¿1x2 6 0

f¿1x2 7 0 3. If and we expect to find a local
_____ value for f at c.

4. If then is neither a _____ nor a _____,
even though _____.f–102 =

f(0)f1x2 = x3,

f–1c2 6 0,f¿1c2 = 0

Problem Set 4.3
In Problems 1–10, identify the critical points.Then use (a) the First
Derivative Test and (if possible) (b) the Second Derivative Test to
decide which of the critical points give a local maximum and
which give a local minimum.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Problems 11–20, find the critical points and use the test of your
choice to decide which critical points give a local maximum value
and which give a local minimum value. What are these local maxi-
mum and minimum values?

11. 12.

13. 14.

15. 16.

17. 18.

19.

20.

In Problems 21–30, find, if possible, the (global) maximum and
minimum values of the given function on the indicated interval.

21. on [0, 2]

22. on 

23. on 

24. on 

25. on [0, 4]

26. on [0, q2F1x2 = 61x - 4x

F1x) = 61x - 4x

[0, q2h1x2 =

1

x2
+ 4

[0, q2g1x2 =

x2

x3
+ 32

[0, q2f1x2 =

2x

x2
+ 4

f1x2 = sin2 2x

g1u2 = ƒ sin u ƒ , 0 6 u 6 2p

¶1u2 =

cos u
1 + sin u

, 0 6 u 6 2p

f1x2 =

x22x2
+ 4

f1t2 = t -

1
t
, t Z 0

r1s2 = 3s + s2>5g1t2 = p - 1t - 222>3
f1x2 = 1x - 225H1x2 = x4

- 2x3

g1x2 = x4
+ x2

+ 3f1x2 = x3
- 3x

f1x2 =

ln (x + 2)

x + 2

h1y2 = tan-1 y2

g1z2 =

z2

1 + z2

f1x2 =

x

x2
+ 4

r1z2 = z4
+ 4

°1u2 = sin2 u, -p>2 6 u 6 p>2
f1x2 =

1
2 x + sin x, 0 6 x 6 2p

f1u2 = sin 2u, 0 6 u 6

p

4

f1x2 = x3
- 12x + p

f1x2 = x3
- 6x2

+ 4

27. on 

28. on 

29. on 

30. on 

31.

32. on 

In Problems 33–38, the first derivative is given. Find all values
of x that make the function a local minimum and (b) a local
maximum.

33.

34.

35.

36.

37.

38.

In Problems 39–44, sketch a graph of a function with the given
properties. If it is impossible to graph such a function, then indicate
this and justify your answer.

39. f is differentiable, has domain [0, 6], and has two local
maxima and two local minima on (0, 6).

40. f is differentiable, has domain [0, 6], and has three local
maxima and two local minima on (0, 6).

41. f is continuous, but not necessarily differentiable, has do-
main [0, 6], and has one local minimum and one local maximum
on (0, 6).

42. f is continuous, but not necessarily differentiable, has do-
main [0, 6], and has one local minimum and no local maximum on
(0, 6).

43. f has domain [0, 6], but is not necessarily continuous, and
has three local maxima and no local minimum on (0, 6).

44. f has domain [0, 6], but is not necessarily continuous, and
has two local maxima and no local minimum on (0, 6).

45. Consider with Show that
for all x if and only if 

46. Consider with 
Show that f has one local maximum and one local minimum if
and only if 

47. What conclusions can you draw about f from the informa-
tion that and 

Answers to Concepts Review: 1. maximum 2. maximum;
minimum 3. maximum 4. local maximum; local minimum; 0

f‡1c2 7 0?f¿1c2 = f–1c2 = 0

B2
- 3AC 7 0.

A 7 0.f1x2 = Ax3
+ Bx2

+ Cx + D

B2
- 4AC … 0.f1x2 Ú 0

A 7 0.f1x2 = Ax2
+ Bx + C

f¿1x2 = x1x - A21x - B2, 0 6 A 6 B

f¿1x2 = 1x - A221x - B22, A Z B

f¿1x2 = 1x - 1221x - 2221x - 3221x - 422
f¿1x2 = 1x - 1221x - 2221x - 321x - 42
f¿1x2 = -1x - 121x - 221x - 321x - 42
f¿1x2 = x311 - x22

f (a)
f¿

[-2, 2]g1x2 = 2x2

f1x2 = xe-x on [0, q)

[0, p]h1t2 = sin t2

[-2, 2]H1x2 = ƒ x2
- 1 ƒ

18, q2g1x2 = x2
+

16x2

18 - x22

10, p>22f1x2 =

64
sin x

+

27
cos x
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24 –2x 9–2x

x

x
x

9

24

Figure 1

Based on the examples and the theory developed in the first three sections of this
chapter, we suggest the following step-by-step method that can be applied to many
practical optimization problems. Do not follow it slavishly; common sense may
sometimes suggest an alternative approach or omission of some steps.

Step 1: Draw a picture for the problem and assign appropriate variables to the im-
portant quantities.

Step 2: Write a formula for the objective function Q to be maximized or mini-
mized in terms of the variables from step 1.

Step 3: Use the conditions of the problem to eliminate all but one of these vari-
ables, and thereby express Q as a function of a single variable.

Step 4: Find the critical points (end points, stationary points, singular points).

Step 5: Either substitute the critical values into the objective function or use the
theory from the last section (i.e., the First and Second Derivative Tests) to deter-
mine the maximum or minimum.

Throughout, use your intuition to get some idea of what the solution of the
problem should be. For many physical problems you can get a “ballpark” estimate
of the optimal value before you begin to carry out the details.

� EXAMPLE 1 A rectangular box is to be made from a piece of cardboard 24
inches long and 9 inches wide by cutting out identical squares from the four cor-
ners and turning up the sides, as in Figure 1. Find the dimensions of the box of max-
imum volume. What is this volume?

SOLUTION Let x be the width of the square to be cut out and V the volume of
the resulting box. Then

Now x cannot be less than 0 or more than 4.5. Thus, our problem is to maximize V
on [0, 4.5]. The stationary points are found by setting equal to 0 and solving
the resulting equation:

This gives or but 9 is not in the interval [0, 4.5]. We see that there are
only three critical points, 0, 2, and 4.5. At the end points 0 and 4.5, at 2,

We conclude that the box has a maximum volume of 200 cubic inches if
that is, if the box is 20 inches long, 5 inches wide, and 2 inches deep. �

It is often helpful to plot the objective function. Plotting functions can be done
easily with a graphing calculator or a CAS. Figure 2 shows a plot of the function

When is equal to zero. In the context of
folding the box, this means that when the width of the cut-out corner is zero there
is nothing to fold up, so the volume is zero. Also, when the cardboard gets
folded in half, so there is no base to the box; this box will also have zero volume.
Thus, and The greatest volume must be attained for some
value of x between 0 and 4.5. The graph suggests that the maximum volume occurs
when x is about 2; by using calculus, we can determine that the exact value of x that
maximizes the volume of the box is 

� EXAMPLE 2 A farmer has 100 meters of wire fence with which he plans to
build two identical adjacent pens, as shown in Figure 3.What are the dimensions of
the enclosure that has maximum area?

x = 2.

V14.52 = 0.V102 = 0

x = 4.5,

x = 0, V1x2V1x2 = 216x - 66x2
+ 4x3.

x = 2,
V = 200.

V = 0;
x = 9,x = 2

dV

dx
= 216 - 132x + 12x2

= 12118 - 11x + x22 = 1219 - x212 - x2 = 0

dV>dx

V = x19 - 2x2124 - 2x2 = 216x - 66x2
+ 4x3

4.4
Practical Problems

x

y

40 3 521

50

100

150

200

Figure 2

x

y

Figure 3
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a

a – h

b

r

h

Figure 4

SOLUTION Let x be the width and y the length of the total enclosure, both in
meters. Because there are 100 meters of fence, that is,

The total area A is given by

Since there must be three sides of length x, we see that Thus, our
problem is to maximize A on Now

When we set equal to 0 and solve, we get as a stationary point.

Thus, there are three critical points: and The two end points 0 and give

while yields The desired dimensions are

meters and 
Is this answer sensible? Yes. We should expect to use more of the given

fence in the y-direction than the x-direction because the former is fenced only
twice, whereas the latter is fenced three times. �

� EXAMPLE 3 Find the dimensions of the right circular cylinder of greatest
volume that can be inscribed in a given right circular cone.

SOLUTION Let a be the altitude and b the radius of the base of the given cone
(both constants). Denote by h, r, and V the altitude, radius, and volume,
respectively, of an inscribed cylinder (see Figure 4).

Before proceeding, let’s apply some intuition. If the cylinder’s radius is
close to the radius of the cone’s base, then the cylinder’s volume would be close to
zero. Now, imagine inscribed cylinders with increasing height, but decreasing ra-
dius. Initially, the volumes would increase from zero, but then they would decrease
to zero as the cylinders’ heights get close to the cone’s height. Intuitively, the vol-
ume should peak for some cylinder. Since the radius is squared in the volume for-
mula, it counts more than the height and we would expect at the maximum.

The volume of the inscribed cylinder is

From similar triangles,

which gives When we substitute this expression for h in the formula

for V, we obtain

We wish to maximize V for r in the interval [0, b]. Now

This yields the stationary points and giving us three critical points
on [0, b] to consider: 0, and b. As expected, and both give a
volume of 0. Thus, has to give the maximum volume. When we substitute
this value for r in the equation connecting r and h, we find that In other
words, the inscribed cylinder has greatest volume when its radius is two-thirds the
radius of the cone’s base and its height is one-third the altitude of the cone. �

h = a>3.
r = 2b>3 r = br = 02b>3,

r = 2b>3,r = 0

dV

dr
= 2par - 3p 

a

b
 r2

= para2 -

3
b

 rb

V = pr2aa -

a

b
 rb = par2

- p 
a

b
 r3

h = a -

a

b
 r.

a - h
r

=

a

b

V = pr2h

r 7 h

≈

≈
y = 50 -

3
2 A50

3 B = 25 meters.x =
50
3 L 16.67

A L 416.67.x =
50
3A = 0,

100
3

100
3 .0, 50

3 ,

x =
50
350 - 3x

dA

dx
= 50 - 3x

C0, 100
3 D .

0 … x …
100
3 .

A = xy = 50x -
3
2 x2

y = 50 -
3
2 x

3x + 2y = 100;

Whenever possible, try to view a
problem from both a geometric and
an algebraic point of view. Exam-
ple 3 is a good example for which
this kind of thinking lends insight
into the problem.

Algebra and Geometry
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Current

Figure 5

� EXAMPLE 4 Suppose that a fish swims upstream with velocity relative to
the water and that the current of the river has velocity (the negative sign indi-
cates that the current’s velocity is in the direction opposite that of the fish).The en-
ergy expended in traveling a distance d up the river is directly proportional to the
time required to travel the distance d and the cube of the velocity. What velocity 
minimizes the energy expended in swimming this distance?

SOLUTION Figure 5 illustrates the situation. Since the fish’s velocity up the
stream (i.e., relative to the banks of the stream) is we have 
where t is the required time.Thus For a fixed value of , the energy
required for the fish to travel the distance d is therefore

The domain for the function E is the open interval To find the value of 
that minimizes the required energy we set and solve for :

The only critical point in the interval is found by solving 
which leads to The interval is open so there are no end points to check.
The sign of depends entirely on the expression since all the other
expressions are positive. If then so E is decreasing to the

left of If then so E is increasing to the right of 

Thus, by the First Derivative Test, yields a local minimum. Since this is the
only critical point on the interval this must give a global minimum. The
velocity that minimizes the expended energy is therefore one and a half times 
the speed of the current. �

� EXAMPLE 5 A woman, whose eye-level is 5 feet from the floor, is looking
at a 6-foot high painting that is hanging 8 feet from the floor as shown in Figure 6.
How far from the wall should she stand to maximize her viewing angle?

SOLUTION Let denote the woman’s distance from the wall as shown in
Figure 6. In Example 6 of Section 3.10 we saw that the angle is

Differentiating with respect to and setting the result equal to zero gives

The only positive solution to this last equation is To the left of 
is positive, so is increasing. To the right of is negative so 

is decreasing. Thus feet maximizes the viewing angle. �

� EXAMPLE 6 A 6-foot-wide hallway makes a right-angle turn. What is the
length of the longest thin rod that can be carried around the corner assuming you
cannot tilt the rod?

x = 323 L 5.2
u(x)323, u¿(x)u(x)u¿(x)

323,x = 323.

 
-6 (x2

- 27)

(x2
+ 81)(x2

+ 9)
= 0

 -
9

x2
+ 81

+

3

x2
+ 9

= 0

 u¿(x) =

1

1 + 81>x2 a-

9

x2 b -

1

1 + 9>x2 a-

3

x2 b = 0

x,

u(x) = tan-1 
9
x

- u1 = tan-1 
9
x

- tan-1 
3
x

u

x

1v0, q2,
v =

3
2 vc

3
2 vc.2v - 3vc 7 0v 7

3
2 vc,

3
2 vc.

2v - 3vc 6 0v 6
3
2 vc,

2v - 3vc,E¿1v2
v =

3
2 vc.

2v - 3vc = 0,1v0, q2
E¿1v2 = kd 

1v - vc23v2
- v3112

1v - vc22 =

kd

1v - vc22 v212v - 3vc2 = 0

vE¿1v2 = 0
v1vc, q2.

E1v2 = k 
d

v - vc
 v3

= kd 
v3

v - vc

vt = d>1v - vc2.
d = 1v - vc2t,v - vc,

v

-vc

v

8

6

3

5

x

x

u

u1

Figure 6
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π
4

1
y

π
2

y = sinθ

y = cosθ

θ

Figure 8

Unstretched spring

Spring stretched by amount x

x

Figure 10

θ θθ

θ near zero
Very long rod

(won't fit) (barely fits) (won't fit)

θ =
Optimal rod

π
4

θ near
Very long rod

π
2

Figure 9

SOLUTION The rod that barely fits around the corner will touch the outside
walls as well as the inside corner.As suggested in Figure 7, let a and b represent the
lengths of the segments AB and BC, and let denote the angles and

Consider the two similar right triangles, and these have
hypotenuses a and b, respectively. Some trigonometry applied to these angles gives

Note that the angle determines the position of the rod.The total length of the rod
in Figure 7 is thus

The domain for is the open interval The derivative of L is

Thus provided This leads to The 
only angle in for which is the angle (see Figure 8).
We again apply the First Derivative Test. If then (see
Figure 8 again) so Thus, is decreasing on If

then so Thus, is increasing
on By the First Derivative Test, yields a minimum. The prob-
lem, however, asks for the longest rod that fits around the corner. As Figure 9
below indicates, we are actually finding the smallest rod that satisfies the condi-
tions in Figure 7; in other words, we are finding the smallest rod that doesn’t fit
around the corner. Therefore, the longest rod that does fit around the corner is

�L1p>42 = 6 sec p>4 + 6 csc p>4 = 1222 L 16.97 feet.

u = p>41p>4, p>22.
L1u2sin3 u - cos3 u 7 0.sin u 7 cos up>4 6 u 6 p>2

10, p>42.L1u2sin3 u - cos3 u 6 0.
sin u 6 cos u0 6 u 6 p>4,
p>4sin u = cos u10, p>22

sin u = cos u.sin3 u - cos3 u = 0.L¿1u2 = 0

 = 6a sin u

cos2 u
-

cos u

sin2 u
b = 6 

sin3 u - cos3 u

sin2 u cos2 u

 L¿1u2 = 6 sec u tan u - 6 csc u cot u

10, p>22.u

L1u2 = a + b = 6 sec u + 6 csc u

u

a =

6
cos u

= 6 sec u and b =

6
sin u

= 6 csc u

^BFC;^ADB∠FCB.
∠DBAu

Least Squares (Optional) There are a number of physical, economic, and
social phenomena in which one variable is proportional to another. For example,
Newton’s Second Law says that the force F on an object of mass m is proportional
to its acceleration a Hooke’s Law says that the force exerted by a
spring is proportional to the distance it is stretched (Hooke’s Law is
often given as with the negative sign indicating that the force is in the
direction opposite the stretch. For now, we will ignore the sign of the force.) Man-
ufacturing costs are proportional to the number of units produced. The number of
traffic accidents is proportional to the volume of traffic. These are models, and in
an experiment we will rarely find that the observed data fit the model exactly.

Suppose that we observe the force exerted by a spring when it is stretched by
x centimeters (Figure 10). For example, when we stretch the spring by 0.5 centi-
meter (0.005 meter), we observe a force of 8 newtons, when we stretch the spring

F = -kx,
1F = kx2.1F = ma2.

CF

6 ft

6 ft

E

D
B

A

a

b

θ

θ

Figure 7
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Distance Stretched, x
(meters)

0.005
0.010
0.015
0.020
0.025

Force y Exerted by
Spring (newtons)

8
17
22
32
36

Figure 11
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y = bx(xi , yi)

(xi , bxi)

yi  – bxi

Figure 13

by 1.0 centimeter, we observe a force of 17 newtons, and so on. Figure 11 shows
additional observations, and Figure 12 shows a plot of the ordered pairs 
where is the distance stretched and is the force exerted on the spring.A plot of
ordered pairs like this is called a scatter plot.

Let’s generalize the problem to one in which we are given n points
Our goal is to find a line through the origin that best

fits these points. Before proceeding, we must introduce sigma notation.

The symbol means the sum of the numbers For example,

In the second case, we multiply and first and then sum.
To find the line that best fits these n points, we must be specific about how we

measure the fit. Our best-fit line through the origin is defined to be the one that
minimizes the sum of the squared vertical deviations between and the line

If is a point in the data set, then is the point on the line
that is directly above or below The vertical deviation between

and is therefore (See Figure 13.) The squared deviation is
thus The problem is to find the value of b that minimizes the sum of
these squared deviations. If we define

then we must find the value of b that minimizes S. This is a minimization problem
like the ones encountered before. Keep in mind, however, that the ordered pairs

are fixed; the variable in this problem is b.
We proceed as before by finding setting the result equal to 0, and solv-

ing for b. Since the derivative is a linear operator, we have

Setting this result equal to zero and solving yields

To see that this yields a minimum value for S, we note that

which is always positive. There are no end points to check. Thus, by the Second

Derivative Test, we conclude that the line with is theb = a
n

i = 1
xiyina

n

i = 1
x1

2,y = bx,

d2S

db2 = 2a
n

i = 1
xi

2

 b =

a
n

i = 1
xiyi

a
n

i = 1
x2

i

 0 = a
n

i = 1
xiyi - ba

n

i = 1
x2

i

 0 = -2a
n

i = 1
xi1yi - bxi2

 = -2a
n

i = 1
xi1yi - bxi2

 = a
n

i = 1
21yi - bxi2a d

db
 1yi - bxi2b

 
dS

db
=

d

dba
n

i = 1
1yi - bxi22 = a

n

i = 1
 
d

db
 1yi - bxi22

dS>db,
1xi, yi2, i = 1, 2, Á , n

S = a
n

i = 1
1yi - bxi22

1yi - bxi22.
yi - bxi.1xi, bxi21xi, yi2

1xi, yi2.y = bx
1xi, bxi21xi, yi2y = bx.

1xi, yi2

yixi

a
3

i = 1
i2

= 12
+ 22

+ 32
= 14 and a

n

i = 1
xiyi = x1y1 + x2y2 +

Á
+ xnyn

a1, a2, Á , an.a
n

i = 1
ai

1©21x1, y12, 1x2, y22, Á , 1xn, yn2.

yixi

1xi, yi2,

209



210 Chapter 4 Applications of the Derivative

40

y

0.025 x0.0200.0150.0100.005

30

20

10

Fo
rc

e 
(n

ew
to

ns
)

Distance stretched (meters)

y = 1512.7x

Figure 14

y

x2 4 6 8 10

6

4

2

Real
World

Figure 15

y

x2 4 6 8 10

6

4

2

Mathematical
model

Figure 16

200 400 600 800 1000

10

20

30

40

50

60

y

x

$ 
(T

ho
us

an
ds

)

C(x)

C1(x)

Figure 17

best-fit line, in the sense of minimizing S. The line is called the least-
squares line through the origin.

� EXAMPLE 7 Find the least-squares line through the origin for the spring
data in Figure 11.

SOLUTION

The least-squares line through the origin is therefore and is shown in
Figure 14. The estimate of the spring constant is therefore   �

For most line-fitting problems, it is unreasonable to assume that the line pass-
es through the origin. A more reasonable assumption is that y is related to x by

In this case, however, the sum of squares is a function of both a and b
so we are faced with the problem of minimizing a function of two variables, a prob-
lem we address in Chapter 12.

Economic Applications (Optional) Consider a typical company, the
ABC Company. For simplicity, assume that ABC produces and markets a single
product; it might be television sets, car batteries, or bars of soap. If it sells x units of
the product in a fixed period of time (e.g., a year), it will be able to charge a price,

for each unit. In other words, is the price required to attract a demand
for x units. The total revenue that ABC can expect is given by the
number of units times the price per unit.

To produce and market x units, ABC will have a total cost, This is nor-
mally the sum of a fixed cost (office utilities, real estate taxes, and so on) plus a
variable cost, which depends directly on the number of units produced.

The key concept for a company is the total profit, It is just the difference
between revenue and cost; that is,

Generally, a company seeks to maximize its total profit.
There is a feature that tends to distinguish problems in economics from those

in the physical sciences. In most cases, ABC’s product will be in discrete units (you
can’t make or sell 8.23 television sets or car batteries). Thus, the functions 

and are usually defined only for and, consequently, their
graphs consist of discrete points (Figure 15). In order to make the tools of calculus
available, we connect these points with a smooth curve (Figure 16), thereby pre-
tending that R, C, and P are nice differentiable functions. This illustrates an aspect
of mathematical modeling that is almost always necessary, especially in economics.
To model a real-world problem, we must make some simplifying assumptions. This
means that the answers we get are only approximations of the answers that we
seek—one of the reasons economics is a less than perfect science. A well-known
statistician once said: No model is accurate, but many models are useful.

A related problem for an economist is how to obtain formulas for the func-
tions and In a simple case, might have the form

If so, $10,000 is the fixed cost and $50x is the variable cost, based on a $50 direct
cost for each unit produced. Perhaps a more typical situation is

Both cost functions are shown in Figure 17.
The cost function indicates that the cost of making an additional unit is

the same regardless of how many units have been made. On the other hand, the
cost function indicates that the cost of making additional units increases butC11x2

C(x)

C11x2 = 10,000 + 45x + 1001x

C1x2 = 10,000 + 50x

C(x)p(x).C(x)

x = 0, 1, 2, ÁP(x)C(x),
R(x),p

P1x2 = R1x2 - C1x2 = xp1x2 - C1x2
P(x).

C(x).

R1x2 = xp1x2,p(x)p(x),

y = a + bx.

k = 1512.7.
y = 1512.7x

b =

0.005 # 8 + 0.010 # 17 + 0.015 # 22 + 0.020 # 32 + 0.025 # 36

0.0052
+ 0.0102

+ 0.0152
+ 0.0202

+ 0.0252 L 1512.7

y = bx
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at a decreasing rate. Thus, allows for what economists call economies of
scale.

Selecting appropriate functions to model cost and price is a nontrivial task.
Occasionally, they can be inferred from basic assumptions. In other cases, a careful
study of the history of the firm will suggest reasonable choices. Sometimes, we
must simply make intelligent guesses.

Use of the Word Marginal Suppose that ABC knows its cost function 
and that it has tentatively planned to produce 2000 units this year. We would like
to determine the additional cost per unit if ABC increased production slightly.
Would it, for example, be less than the additional revenue per unit? If so, it would
make good economic sense to increase production.

If the cost function is the one shown in Figure 18, we are asking for the value
of when But we expect that this will be very close to the value of

when This limit is called the marginal cost. We mathematicians recog-
nize it as the derivative of C with respect to x. In a similar vein, we define
marginal price as marginal revenue as and marginal profit as

We now illustrate how to solve a wide variety of economic problems.

� EXAMPLE 8 Suppose that dollars. Find the
average cost per unit and the marginal cost, and then evaluate them when

SOLUTION

At these have the values 11.95 and 3.38, respectively. This means that it
costs, on the average, $11.95 per unit to produce the first 1000 units; to produce one
additional unit beyond 1000 costs only about $3.38. �

� EXAMPLE 9 In manufacturing and selling x units of a certain commodity,
the price function p and the cost function C (in dollars) are given by

Find expressions for the marginal revenue, marginal cost, and marginal profit.
Determine the production level that will produce the maximum total profit.

SOLUTION

Thus, we have the following derivatives:

dP

dx
=

dR

dx
-

dC

dx
= 3.9 - 0.004x Marginal profit:

dC

dx
= 1.1 Marginal cost:

dR

dx
= 5 - 0.004x Marginal revenue:

 P1x2 = R1x2 - C1x2 = -3.00 + 3.90x - 0.002x2

 R1x2 = xp1x2 = 5.00x - 0.002x2

 C1x2 = 3.00 + 1.10x

 p1x2 = 5.00 - 0.002x

x = 1000,

 Marginal cost: dC

dx
= 3.25 +

40
3

 x-2>3

 Average cost: 
C1x2

x
=

8300 + 3.25x + 40x1>3
x

x = 1000.

C1x2 = 8300 + 3.25x + 4013 x

dP>dx.
dR>dx,dp>dx,

dC>dx,
x = 2000.

lim
¢x:0

 
¢C

¢x

¢x = 1.¢C>¢x

C(x)

C11x2C(x)

x

∆x

∆C

2000 2000 + ∆x

Figure 18

Because economics tends to be a
study of discrete phenomena, your
economics professor may define
marginal cost at x as the cost of pro-
ducing one additional unit, that is, as

In the mathematical model, this
number will be very close in value to

and since the latter is a prin-
cipal concept in calculus, we choose
to take it as the definition of margin-
al cost. Similar statements hold for
marginal revenue and marginal
profit.

dC>dx,

C1x + 12 - C1x2

Economic Vocabulary
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Barn

Pen

y

x

Barn

Figure 20

Barn

Pen

y

x

Figure 21

y

x

y

x

Figure 22 Figure 23

To maximize profit, we set and solve. This gives as the
only critical point to consider. It does provide a maximum, as may be checked by
the First Derivative Test. The maximum profit is �

Note that at both the marginal revenue and the marginal cost are
$1.10. In general, a company should expect to be at a maximum profit level when
the cost of producing an additional unit equals the revenue from that unit.

x = 975

P19752 = $1898.25.

x = 975dP>dx = 0

Concepts Review
1. If a rectangle of area 100 has length x and width y, then

the allowable values for x are _____.

2. The perimeter of the rectangle in Question 1, expressed
in terms of x (only), is _____.

3. The least squares line through the origin minimizes

4. In economics, is called _____ and is called _____.
dC

dx

dR

dx

S = a
n

i = 1
1  22

Problem Set 4.4
1. Find two numbers whose product is and the sum of

whose squares is a minimum.

2. For what number does the principal square root exceed
eight times the number by the largest amount?

3. For what number does the principal fourth root exceed
twice the number by the largest amount?

4. Find two numbers whose product is and the sum of
whose squares is a minimum.

5. Find the points on the parabola that are closest 
to the point (0, 5). Hint: Minimize the square of the distance
between (x, y) and (0, 5).

6. Find the points on the parabola that are closest
to the point (10, 0). Hint: Minimize the square of the distance
between (x, y) and (10, 0).

7. What number exceeds its square by the maximum
amount? Begin by convincing yourself that this number is on the
interval [0, 1].

8. Show that for a rectangle of given perimeter K the one
with maximum area is a square.

9. Find the volume of the largest open box that can be
made from a piece of cardboard 24 inches square by cutting
equal squares from the corners and turning up the sides (see
Example 1).

10. A farmer has 80 feet of fence with which he plans to en-
close a rectangular pen along one side of his 100-foot barn, as
shown in Figure 19 (the side along the barn needs no fence).
What are the dimensions of the pen that has maximum area?

≈

x = 2y2

y = x2

-12

-16

11. The farmer of Problem 10 decides to make three identi-
cal pens with his 80 feet of fence, as shown in Figure 20. What
≈

dimensions for the total enclosure make the area of the pens as
large as possible?

12. Suppose that the farmer of Problem 10 has 180 feet of
fence and wants the pen to adjoin to the whole side of the 
100-foot barn, as shown in Figure 21.What should the dimensions
be for maximum area? Note that in this case.0 … x … 40

13. A farmer wishes to fence off two identical adjoining rec-
tangular pens, each with 900 square feet of area, as shown in
Figure 22. What are x and y so that the least amount of fence is
required?

14. A farmer wishes to fence off three identical adjoining rec-
tangular pens (see Figure 23), each with 300 square feet of area.
What should the width and length of each pen be so that the least
amount of fence is required?

15. Suppose that the outer boundary of the pens in Problem 14
requires heavy fence that costs $3 per foot, but that the two

Figure 19
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internal partitions require fence costing only $2 per foot. What
dimensions x and y will produce the least expensive cost for the
pens?

16. Solve Problem 14 assuming that the area of each pen is
900 square feet. Study the solution to this problem and to Prob-
lem 14 and make a conjecture about the ratio of in all prob-
lems of this type. Try to prove your conjecture.

17. Find the points P and Q on the curve 
that are closest to and farthest from the point 

(0, 4). Hint: The algebra is simpler if you consider the square of
the required distance rather than the distance itself.

18. A right circular cone is to be inscribed in another right
circular cone of given volume, with the same axis and with the
vertex of the inner cone touching the base of the outer cone.
What must be the ratio of their altitudes for the inscribed cone to
have maximum volume?

19. A small island is 2 miles from the nearest point P on the
straight shoreline of a large lake. If a woman on the island can
row a boat 3 miles per hour and can walk 4 miles per hour, where
should the boat be landed in order to arrive at a town 10 miles
down the shore from P in the least time?

20. In Problem 19, suppose that the woman will be picked up
by a car that will average 50 miles per hour when she gets to the
shore. Then where should she land?

21. In Problem 19, suppose that the woman uses a motorboat
that goes 20 miles per hour. Then where should she land?

22. A powerhouse is located on one bank of a straight river
that is feet wide. A factory is situated on the opposite bank 
of the river, L feet downstream from the point A directly oppo-
site the powerhouse. What is the most economical path for a
cable connecting the powerhouse to the factory if it costs a dol-
lars per foot to lay the cable under water and b dollars per foot
on land 

23. At 7:00 A.M. one ship was 60 miles due east from a second
ship. If the first ship sailed west at 20 miles per hour and the sec-
ond ship sailed southeast at 30 miles per hour, when were they
closest together?

24. Find the equation of the line that is tangent to the ellipse
in the first quadrant and forms with the coor-

dinate axes the triangle with smallest possible area (a and b are
positive constants).

25. Find the greatest volume that a right circular cylinder can
have if it is inscribed in a sphere of radius r.

26. Show that the rectangle with maximum perimeter that
can be inscribed in a circle is a square.

27. What are the dimensions of the right circular cylinder
with greatest curved surface area that can be inscribed in a
sphere of radius r?

28. The illumination at a point is inversely proportional to
the square of the distance of the point from the light source and
directly proportional to the intensity of the light source. If two
light sources are s feet apart and their intensities are and re-
spectively, at what point between them will the sum of their illu-
minations be a minimum?

29. A wire of length 100 centimeters is cut into two pieces;
one is bent to form a square, and the other is bent to form an
equilateral triangle. Where should the cut be made if (a) the sum
of the two areas is to be a minimum; (b) a maximum? (Allow the
possibility of no cut.)

I2,I1

b2x2
+ a2y2

= a2b2

1a 7 b2?

w

≈

≈

≈

0 … x … 223,
y = x2>4,

x>y

30. A closed box in the form of a rectangular parallelepiped
with a square base is to have a given volume. If the material used
in the bottom costs 20% more per square inch than the material
in the sides, and the material in the top costs 50% more per
square inch than that of the sides, find the most economical pro-
portions for the box.

31. An observatory is to be in the form of a right circular
cylinder surmounted by a hemispherical dome. If the hemispher-
ical dome costs twice as much per square foot as the cylindrical
wall, what are the most economical proportions for a given
volume?

32. A weight connected to a spring moves along the x-axis so
that its x-coordinate at time t is

What is the farthest that the weight gets from the origin?

33. A flower bed will be in the shape of a sector of a circle (a
pie-shaped region) of radius r and vertex angle Find r and if
its area is a constant A and the perimeter is a minimum.

34. A fence h feet high runs parallel to a tall building and 
feet from it (Figure 24). Find the length of the shortest ladder
that will reach from the ground across the top of the fence to the
wall of the building.

w

uu.

x = sin 2t + 23 cos 2t

35. A rectangle has two corners on the x-axis and the other
two on the parabola with (Figure 25). What
are the dimensions of the rectangle of this type with maximum
area?

y Ú 0y = 12 - x2,

36. A rectangle is to be inscribed in a semicircle of radius r, as
shown in Figure 26. What are the dimensions of the rectangle if
its area is to be maximized?

37. Of all right circular cylinders with a given surface area,
find the one with the maximum volume. Note: The ends of the
cylinders are closed.

38. Find the dimensions of the rectangle of greatest area that
can be inscribed in the ellipse 

39. Of all rectangles with a given diagonal, find the one with
the maximum area.

x2>a2
+ y2>b2

= 1.

h
wθ

Figure 24

(x, y)

y

x

y = 12 – x2

–r 0 r

Figure 25 Figure 26
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t h

r

Water

Figure 27

θ θ

Figure 28 Figure 29

yx

z

Figure 30

a
x

a – x

y

B

z

A

Figure 31

aθ

6

39

12

h

m

Lθ

φ

Figure 32 Figure 33

40. A humidifier uses a rotating disk of radius r, which is par-
tially submerged in water. The most evaporation occurs when the
exposed wetted region (shown as the upper shaded region in
Figure 27) is maximized. Show that this happens when h (the dis-

tance from the center to the water) is equal to r>21 + p2.

41. A metal rain gutter is to have 3-inch sides and a 3-inch
horizontal bottom, the sides making an equal angle with the
bottom (Figure 28). What should be in order to maximize the
carrying capacity of the gutter? Note: 0 … u … p>2.

u

u

42. A huge conical tank is to be made from a circular piece of
sheet metal of radius 10 meters by cutting out a sector with vertex
angle and then welding together the straight edges of the re-
maining piece (Figure 29). Find so that the resulting cone has
the largest possible volume.

43. A covered box is to be made from a rectangular sheet of
cardboard measuring 5 feet by 8 feet. This is done by cutting out
the shaded regions of Figure 30 and then folding on the dotted
lines. What are the dimensions x, y, and z that maximize the
volume?

u

u

44. I have enough pure silver to coat 1 square meter of sur-
face area. I plan to coat a sphere and a cube. What dimensions
should they be if the total volume of the silvered solids is to be a
maximum? A minimum? (Allow the possibility of all the silver
going onto one solid.)

45. One corner of a long narrow strip of paper is folded over
so that it just touches the opposite side, as shown in Figure 31.
With parts labeled as indicated, determine x in order to
(a) maximize the area of triangle A;

(b) minimize the area of triangle B;
(c) minimize the length z.

46. Determine so that the area of the symmetric cross
shown in Figure 32 is maximized. Then find this maximum area.

u

47. A clock has hour and minute hands of lengths h and m,
respectively, with We wish to study this clock at times be-
tween 12:00 and 12:30. Let and L be as in Figure 33 and note
that increases at a constant rate. By the Law of Cosines,

and so

(a) For and determine L, and at the instant
when is largest.

(b) Rework part (a) when and 
(c) Based on parts (a) and (b), make conjectures about the val-

ues of L, and at the instant when the tips of the hands
are separating most rapidly.

(d) Try to prove your conjectures.

48. An object thrown from the edge of a 100-foot cliff fol-

lows the path given by An observer stands

2 feet from the bottom of the cliff.

(a) Find the position of the object when it is closest to the
observer.

(b) Find the position of the object when it is farthest from the
observer.

49. The earth’s position in the solar system at time t can
be described approximately by 
where the sun is at the origin and distances are measured in
millions of miles. Suppose that an asteroid has position

When, over
the time period [0, 20] (i.e., over the next 20 years), does the
asteroid come closest to the earth? How close does it come?

Q160 cos[2p11.51t - 12], 120 sin[2p11.51t - 12]2.

P193 cos12pt2, 93 sin12pt22,
CAS≈

y = -

x2

10
+ x + 100.

C≈

fL¿,

m = 13.h = 5
L¿

fL¿,m = 5,h = 3

L¿1u2 = hm1h2
+ m2

- 2hm cos u2-1>2 sin u

L = L1u2 = 1h2
+ m2

- 2hm cos u21>2,
u

u, f,
h … m.

CAS
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50. An advertising flyer is to contain 50 square inches of
printed matter, with 2-inch margins at the top and bottom and 
1-inch margins on each side. What dimensions for the flyer would
use the least paper?

51. One end of a 27-foot ladder rests on the ground and the
other end rests on the top of an 8-foot wall. As the bottom end is
pushed along the ground toward the wall, the top end extends
beyond the wall. Find the maximum horizontal overhang of the
top end.

52. Brass is produced in long rolls of a thin sheet. To monitor
the quality, inspectors select at random a piece of the sheet, meas-
ure its area, and count the number of surface imperfections on
that piece. The area varies from piece to piece. The following
table gives data on the area (in square feet) of the selected piece
and the number of surface imperfections found on that piece.

Area in Number of 
Piece Square Feet Surface Imperfections

1 1.0 3
2 4.0 12
3 3.6 9
4 1.5 5
5 3.0 8

(a) Make a scatter plot with area on the horizontal axis and
number of surface imperfections on the vertical axis.

(b) Does it look like a line through the origin would be a good
model for these data? Explain.

(c) Find the equation of the least-squares line through the
origin.

(d) Use the result of part (c) to predict how many surface im-
perfections there would be on a sheet with area 2.0 square
feet.

53. Suppose that every customer order taken by the XYZ
Company requires exacty 5 hours of labor for handling the
paperwork; this length of time is fixed and does not vary from lot
to lot. The total number of hours y required to manufacture and
sell a lot of size x would then be

Some data on XYZ’s bookcases are given in the following table.

Total Labor 
Order Lot Size x Hours y

1 11 38
2 16 52
3 08 29
4 07 25
5 10 38

(a) From the description of the problem, the least-squares line
should have 5 as its y-intercept. Find a formula for the value
of the slope b that minimizes the sum of squares

(b) Use this formula to estimate the slope b.
(c) Use your least-squares line to predict the total number of

labor hours to produce a lot consisting of 15 bookcases.

S = a
n

i = 1
[yi - 15 + bxi2]2

y = 1number of hours to produce a lot of size x2 + 5

C

C

≈

54. The fixed monthly cost of operating a plant that makes
Zbars is $7000, while the cost of manufacturing each unit is $100.
Write an expression for the total cost of making x Zbars in
a month.

55. The manufacturer of Zbars estimates that 100 units per
month can be sold if the unit price is $250 and that sales will in-
crease by 10 units for each $5 decrease in price. Write an expres-
sion for the price and the revenue if n units are sold in
one month,

56. Use the information in Problems 54 and 55 to write an ex-
pression for the total monthly profit 

57. Sketch the graph of of Problem 56, and from it esti-
mate the value of n that maximizes P. Find this n exactly by the
methods of calculus.

58. The total cost of producing and selling x units of Xbars 
per month is If the produc-
tion level is 1600 units per month, find the average cost,
of each unit and the marginal cost.

59. The total cost of producing and selling n units of a certain
commodity per week is Find the aver-
age cost, of each unit and the marginal cost at a produc-
tion level of 800 units per week.

60. The total cost of producing and selling units of a par-
ticular commodity per week is

Find (a) the level of production at which the marginal cost is a
minimum, and (b) the minimum marginal cost.

61. A price function, p, is defined by

where is the number of units.
(a) Find the total revenue function and the marginal revenue

function.
(b) On what interval is the total revenue increasing?
(c) For what number x is the marginal revenue a maximum?

62. For the price function defined by

find the number of units that makes the total revenue a maxi-
mum and state the maximum possible revenue. What is the mar-
ginal revenue when the optimum number of units, is sold?

63. For the price function given by

find the number of units that makes the total revenue a max-
imum and state the maximum possible revenue. What is the
marginal revenue when the optimum number of units, is
sold?

64. A riverboat company offers a fraternal organization a
Fourth of July excursion with the understanding that there will be
at least 400 passengers.The price of each ticket will be $12.00, and
the company agrees to discount the price by $0.20 for each 10
passengers in excess of 400. Write an expression for the price
function and find the number of passengers that makes
the total revenue a maximum.

x1p(x)

x1,

x1

p1x2 = 800>1x + 32 - 3

x1,

x1

p1x2 = 1182 - x>3621>2
C

x Ú 0

p1x2 = 20 + 4x -

x2

3

C1x2 = 1000 + 33x - 9x2
+ x3

100x

C(n)>n,
C1n2 = 1000 + n2>1200.

C(x)>x,
C1x2 = 100 + 3.002x - 0.0001x2.

C

P(n)

n Ú 100.P(n),

n Ú 100
R(n)p(n)

C(x),

215



216 Chapter 4 Applications of the Derivative

65. The XYZ Company manufactures wicker chairs. With 
its present machines, it has a maximum yearly output of 500 units.
If it makes x chairs, it can set a price of 
dollars each and will have a total yearly cost of

dollars. The company has the
opportunity to buy a new machine for $4000 with which the
company can make up to an additional 250 chairs per year.
The cost function for values of x between 500 and 750 is thus

Basing your analysis on the profit
for the next year, answer the following questions.

(a) Should the company purchase the additional machine?

(b) What should be the level of production?

66. Repeat Problem 65, assuming that the additional machine
costs $3000.

67. The ZEE Company makes zingos, which it markets at 
a price of dollars, where x is the number
produced each month. Its total monthly cost is

At peak production, it can make 
300 units. What is its maximum monthly profit and what level of
production gives this profit?

68. If the company of Problem 67 expands its facilities so
that it can produce up to 450 units each month, its monthly cost
function takes the form for

Find the production level that maximizes
monthly profit and evaluate this profit. Sketch the graph of the
monthly profit function on 0 … x … 450.P(x)

300 6 x … 450.
C1x2 = 800 + 3x - 0.01x2

C

C1x2 = 200 + 4x - 0.01x2.

p1x2 = 10 - 0.001x

C

C1x2 = 9000 + 6x - 0.002x2.

C1x2 = 5000 + 6x - 0.002x2

p1x2 = 200 - 0.15x

69. The arithmetic mean of the numbers a and b is
and the geometric mean of two positive numbers a

and b is Suppose that and 
(a) Show that holds by squaring both sides

and simplifying.
(b) Use calculus to show that Hint: Consider

a to be fixed. Square both sides of the inequality and divide
through by b. Define the function 
Show that F has its minimum at a.

(c) The geometric mean of three positive numbers a, b, and c is
Show that the analogous inequality holds:

Hint: Consider a and c to be fixed and define 
Show that F has a minimum at 

and that this minimum is Then use
the result from (b).

70. Show that of all three-dimensional boxes with a given
surface area, the cube has the greatest volume. Hint: The surface
area is and the volume is Let

and Use the previous problem to show
that When does equality hold?

Answers to Concepts Review: 1.
2. 3. 4. marginal revenue; marginal costyi - bxi2x + 200>x

0 6 x 6 q

1V221>3 … S>6.
c = hw.a = lw, b = lh,

V = lwh.S = 21lw + lh + hw2
EXPL

[1a + c2>2]2.1a + c2>2
b =1a + b + c23>27b.

F1b2 =

1abc21>3 …

a + b + c

3

1abc21>3.

F1b2 = 1a + b22>4b.

1ab … 1a + b2>2.

1ab … 1a + b2>2
b 7 0.a 7 01ab.

1a + b2>2,

EXPL

Our treatment of graphing in Section 1.4 was elementary. We proposed plotting
enough points so that the essential features of the graph were clear.We mentioned
that symmetries of the graph could reduce the effort involved. We suggested that
one should be alert to possible asymptotes. But if the equation to be graphed is
complicated or if we want a very accurate graph, the techniques of that section are
inadequate.

Calculus provides a powerful tool for analyzing the fine structure of a graph,
especially in identifying those points where the character of the graph changes.
We can locate local maximum points, local minimum points, and inflection points;
we can determine precisely where the graph is increasing or where it is concave up.
Inclusion of all these ideas in our graphing procedure is the program for this
section.

Polynomial Functions A polynomial function of degree 1 or 2 is easy to
graph by hand; one of degree 50 could be next to impossible. If the degree is of
modest size, such as 3 to 6, we can use the tools of calculus to great advantage.

� EXAMPLE 1 Sketch the graph of 

SOLUTION Since f is an odd function, and therefore its graph
is symmetric with respect to the origin. Setting we find the x-intercepts
to be 0 and We can go this far without calculus.

When we differentiate f, we obtain

f¿1x2 =

15x4
- 60x2

32
=

15x21x - 221x + 22
32

;220>3 L ;2.6.
f1x2 = 0,

f1-x2 = -f1x2,

f1x2 =

3x5
- 20x3

32
.

4.5
Graphing Functions

Using Calculus
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–2 0 2

0 0 0 ++ – –f'

Figure 1

2� 2�– 0

000 + – +–f"

Figure 2

Thus, the critical points are and 2; we quickly discover (Figure 1) that
on and and that on and (0, 2).

These facts tell us where f is increasing and where it is decreasing; they also con-
firm that is a local maximum value and that is a local mini-
mum value.

Differentiating again, we get

By studying the sign of (Figure 2), we deduce that f is concave up on

and and concave down on and Thus,

there are three points of inflection: (0, 0), and

Much of this information is collected at the top of Figure 3, which we use to
sketch the graph directly below it.

A22, -722>8 B L 11.4, -1.22.
A -22, 722>8 B L 1-1.4, 1.22,

A0, 22 B .A - q , -22 BA22, q BA -22, 0 B
f–1x2

f–1x2 =

60x3
- 120x

32
=

15x Ax - 22 B Ax + 22 B
8

f122 = -2f1-22 = 2

1-2, 02f¿1x2 6 012, q21- q , -22f¿1x2 7 0
-2, 0,

�

Rational Functions A rational function, being the quotient of two polynomi-
al functions, is considerably more complicated to graph than a polynomial. In
particular, we can expect dramatic behavior near where the denominator would be
zero.

� EXAMPLE 2 Sketch the graph of 

SOLUTION This function is neither even nor odd, so we do not have any of 
the usual symmetries. There are no x-intercepts, since the solutions to

are not real numbers. The y-intercept is We anticipate a
vertical asymptote at In fact,

lim
x:2-

 
x2

- 2x + 4
x - 2

= - q  and        lim
x:2+

 
x2

- 2x + 4
x - 2

= q

x = 2.
-2.x2

- 2x + 4 = 0

f1x2 =

x2
- 2x + 4
x - 2

.

–3 –2 –1 1 2 3

–2

–1

1

2

3

y

x

Inflection
points

Local max
(–2, 2)

(–1.4, 1.2)

(1.4, –1.2)

(2, –2)
Local min

–�2 0

f " > 0
concave

up

f " < 0
concave

down �2

f " < 0
concave

down

f " > 0
concave

up

–2 0

f' < 0
decreasing

f' > 0
increasing

f' < 0
decreasing

f' > 0
increasing

2

f (x) = (3x5 – 20x3)/32

Figure 3
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–6 –4 –2 4 6 8

2

4

6

y

x

(0, –2)

Local
max

Local
min

(4, 6)

f (x) = x2 – 2x + 4
x – 2

f' > 0 f' > 0
f' < 0 f' < 0

f " < 0 f " > 0

0 2

2

4

x = 2

y = x

Figure 4

Differentiation twice gives

The stationary points are therefore and 
Thus, on and on (Re-

member, does not exist when ) Also, on and
on Since is never 0, there are no inflection points. On

the other hand, and give local maximum and minimum val-
ues, respectively.

It is a good idea to check on the behavior of for large Since

the graph of gets closer and closer to the line as gets larger and
larger.We call the line an oblique asymptote for the graph of f (see Problem
49 of Section 2.4).

With all this information, we are able to sketch a rather accurate graph
(Figure 4).

y = x
ƒ x ƒy = xy = f1x2

f1x2 =

x2
- 2x + 4
x - 2

= x +

4
x - 2

ƒ x ƒ .f(x)

f142 = 6f102 = -2
f–1x21- q , 22.f–1x2 6 0

12, q2f–1x2 7 0x = 2.f¿1x2
10, 22 ´ 12, 42.f¿1x2 6 01- q , 02 ´ 14, q2f¿1x2 7 0

x = 4.x = 0

f¿1x2 =

x1x - 42
1x - 222 and f–1x2 =

8

1x - 223

�

Functions Involving Roots There is an endless variety of functions involv-
ing roots. Here is one example.

� EXAMPLE 3 Analyze the function

and sketch its graph.

F1x2 =

1x1x - 522
4
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SOLUTION The domain of F is and the range is so the graph of
F is confined to the first quadrant and the positive coordinate axes. The x-
intercepts are 0 and 5; the y-intercept is 0. From

we find the stationary points 1 and 5. Since on (0, 1) and while
on (1, 5), we conclude that is a local maximum value and

is a local minimum value.
So far, it has been clear sailing. But on calculating the second derivative, we

obtain

which is quite complicated. However, has one solution in
namely 

Using the test points 1 and 3, we conclude that on 

and on It then follows that the point 

, which is approximately (2.6, 2.3), is an inflection point.
As x grows large, grows without bound and much faster than any linear

function; there are no asymptotes. The graph is sketched in Figure 5. �

Summary of the Method In graphing functions, there is no substitute for
common sense. However, the following procedure will be helpful in most cases.

Step 1: Precalculus analysis.
(a) Check the domain and range of the function to see if any regions of the plane

are excluded.
(b) Test for symmetry with respect to the y-axis and the origin. (Is the function

even or odd?)
(c) Find the intercepts.

Step 2: Calculus analysis.
(a) Use the first derivative to find the critical points and to find out where the

graph is increasing and decreasing.
(b) Test the critical points for local maxima and minima.
(c) Use the second derivative to find out where the graph is concave up and

concave down and to locate inflection points.
(d) Find the asymptotes.

Step 3: Plot a few points (including all critical points and inflection points).

Step 4: Sketch the graph.

� EXAMPLE 4 For the function 

(a) Find where is increasing and where it is decreasing.
(b) Find where is concave up and where it is concave down.
(c) Find all inflection points of 
(d) Sketch the graph of 

SOLUTION
(a) The Product Rule gives

Since for all the sign of depends on We have

1 - 2x2
7 0    3     ƒ x ƒ 6

22
2

1 - 2x2.f¿(x)x,e-x2
7 0

f¿(x) = 4x A -2xe-x2 B + 4e-x2
= 4(1 - 2x2)e-x2

y = f(x).
f.

f
f

f(x) = 4xe-x2
,

F(x)
F(1 + 226>3) B

A1 + 226>3,(1 + 226>3, q).f–1x2 7 0

(0, 1 + 226>3)f–1x2 6 0

1 + 226>3 L 2.6.10, q2, 3x2
- 6x - 5 = 0

F–1x2 =

513x2
- 6x - 52

16x3>2 , x 7 0

F152 = 0
F112 = 4F¿1x2 6 0

15, q2,F¿1x2 7 0

F¿1x2 =

51x - 121x - 52
81x

, x 7 0

[0, q2,[0, q2

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

11

12

y

x

(1, 4)

(2.6, 2.3)

(5, 0)

F(x) = �x (x – 5)2

4

Figure 5
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220 Chapter 4 Applications of the Derivative

Thus, is increasing on Since on

and on we conclude that is decreasing

on and on 

(b) The Product Rule applied a second time gives

Again, for all so the sign of hinges on the quantity
The split points for the inequality are

and Substitution of some test points indi-
cates that on and so the graph is con-
cave down there, and that on and so the
graph is concave up there.

(c) The concavity changes when so the inflection points
are the ordered pairs and 
which are (approximately for the first and last), and

(d) Much of the work leading to the graphing of the function has been done in
parts (a) through (c). In addition, we make the following observations. The
domain of is The maximum, which occurs at is 

Similarly, the minimum, which occurs at
is Since 

we know that the function is odd, so its graph is symmetric with respect to the
origin. Finally, there are no vertical asymptotes, and since

the line is the only horizontal asymptote. A graph is shown in 
Figure 6. �

y = 0

lim
x: -q

 f(x) = lim
x: q

 f(x) = 0

f(-x) = -f(x),f(-22>2) = -222e-1>2
L -1.716.x = -22>2,

f(22>2) = 222e-1>2
L 1.716.

x = 22>2,(- q , q).f

(1.22, 1.09).
(-1.22, -1.09), (0, 0),

(26>2, f(26>2)),(-26>2, f(-26>2)), (0, f(0)),
x = -26>2, 0, and 26>2,

(26>2, q),(-26>2, 0)f–(x) 7 0
(0, 26>2),(- q , -26>2)f–(x) 6 0

x = 0.x = ; 23>2 = ; 26>2
8x(2x2

- 3) 7 08x(2x2
- 3).

f–(x)x,e-x2
7 0

f–(x) = 4 (1-2x2)(-2x)e-x2
+ 4e-x2

 (-4x) = 8x(2x2
- 3)e-x2

[22>2, q).(- q , -22>2]

f(22>2, q),(- q , -22>2)

1 - 2x2
6 0C -22>2, 22>2 D .f

decreasing

concave
down

concave
up

concave
up

increasing decreasing

f (x) = 4xe–x2

1–1

–1

–2

2–2 3–3

1

2

y

x

concave
down

6
2

�– 6
2

�2
2

�– 2
2

�

Figure 6

� EXAMPLE 5 Sketch the graphs of and and their
derivatives.

SOLUTION The domain for both functions is (Remember, the 
cube root exists for every real number.) The range for is since 
every real number is the cube root of some other number. Writing as

we see that must be nonnegative; it’s range is [0, q2.g(x)g1x2 = x2>3
= 1x1>322,

g(x)
1- q , q2f(x)

1- q , q2.

g1x2 = x2>3f1x2 = x1>3
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Since we see that f is an odd function.
Similarly, since we see that g is
an even function. The first derivatives are

and

and the second derivatives are

and

For both functions the only critical point, in this case a point where the derivative
doesn’t exist, is 

Note that for all x, except Thus, f is increasing on 
and also on but because f is continuous on we can conclude that
f is always increasing. Consequently, f has no local maxima or minima. Since 
is positive when x is negative and negative when x is positive (and undefined when

), we conclude that f is concave up on and concave down on 
The point (0, 0) is an inflection point because that is where the concavity changes.

Now consider Note that is negative when x is negative and positive
when x is positive. Since g is decreasing on and increasing on 

is a local mimimum. Note also that is negative as long as 
Thus g is concave down on and concave down on so (0, 0) is not
an inflection point. The graphs of and are shown in Fig-
ures 7 and 8. �

Note that in the above example both functions had one critical point,
where the derivative was undefined.Yet the graphs of the functions are fundamen-
tally different. The graph of has a tangent line at all points, but it is verti-
cal when (If the tangent line is vertical, then the derivative doesn’t exist at
that point.) The graph of has a sharp point, called a cusp, at 

Using the Derivative’s Graph to Graph a Function Knowing just a
function’s derivative can tell us a lot about the function itself and what its graph
looks like.

� EXAMPLE 6 Figure 9 shows a plot of Find all local extrema and
points of inflection of f on the interval Given that sketch the
graph of y = f1x2. f112 = 0,[-1, 3].

y = f¿1x2.

x = 0.y = g1x2x = 0.
y = f1x2

x = 0,

g¿1x2f1x2, f¿1x2, g1x2 10, q2,1- q , 02 x Z 0.g–1x2g(0) = 0
[0, q2,1- q , 0]

g¿1x2g(x).

10, q2.1- q , 02x = 0

f–1x21- q , q2,[0, q2, 1- q , 0]x = 0.f¿1x2 7 0
x = 0.

 g–1x2 = -  
2
9

 x-4>3
= -  

2

9x4>3

 f–1x2 = -  
2
9

 x-5>3
= -  

2

9x5>3

 g¿1x2 =

2
3

 x-1>3
=

2

3x1>3

 f¿1x2 =

1
3

 x-2>3
=

1

3x2>3

g1-x2 = 1-x22>3 = 11-x2221>3 = 1x221>3 = g1x2,
f1-x2 = 1-x21>3 = -x1>3

= -f1x2,
Section 4.5 Graphing Functions Using Calculus 221

y

x

2

1

3

2

1

–2

–1

1 2 3–3 –2 –1

x10 2 3–3 –2 –1

y = f (x)

y = f '(x)

y

Figure 7

y

x

3

2

1

3

2

1

–3

–1

–2

1 2 3–3 –2 –1

x10 2 3–3 –2 –1

y = g'(x)

y = g (x)

y

Figure 8

1

y

–1

3 x21–1

y = f '(x)

Figure 9 221



SOLUTION The derivative is negative on the intervals and (0, 2), and
positive on the interval (2, 3). Thus, f is decreasing on and on [0, 2] so there
is a local maximum at the left end point Since is positive on (2, 3), f
is increasing on [2, 3] so there is a local maximum at the right end point 
Since f is decreasing on and increasing on [2, 3], there is a local minimum at

Figure 10 summarizes this information.
Inflection points for f occur when the concavity of f changes. Since is in-

creasing on and on (1, 3), f is concave up on and on (1, 3). Since 
is decreasing on (0, 1), f is concave down on (0, 1). Thus, f changes concavity at

and The inflection points are therefore and 
The information given above, together with the fact that can be used

to sketch the graph of (The sketch cannot be too precise because we still
have limited information about f.) A sketch is shown in Figure 11.

y = f1x2. f112 = 0,
(1, f(1)).(0, f(0))x = 1.x = 0

f¿1-1, 021-1, 02 f¿

x = 2.
[-1, 2]

x = 3.
f¿1x2x = -1.

[-1, 0]
1-1, 02
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Local maximum
f(2) Local minimum
f(3) Local maximum
(0, f(0)) Inflection point
(1, f(1)) Inflection point

f1-12

1

y

–1

2 31–1

y = f (x)

x

Figure 11

Concepts Review
1. The graph of f is symmetric with respect to the y-axis if

_____ for every x; the graph is symmetric with respect
to the origin if _____ for every x.

2. If and for all x in an interval I, then
the graph of f is both _____ and _____ on I.

f–1x2 7 0f¿1x2 6 0

f1-x2 =

f1-x2 =

3. The graph of has as
vertical asymptotes the lines _____ and as a horizontal asymptote
the line _____.

4. We call a(n) _____ function, and
we call a(n) _____ function.g1x2 = 13x5

- 2x2
+ 62>1x2

- 42
f1x2 = 3x5

- 2x2
+ 6

f1x2 = x3>[1x + 121x - 221x - 32]

1

y

–1

3 x21–1

y = f '(x)

f '(x) > 0
f is increasing

f '(x) < 0
f is decreasing

f '(x) < 0
f is decreasing

f ' is
increasing

f is
concave up

f ' is increasing
f is concave up

f ' is
decreasing

f is
concave down

Figure 10

�
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Section 4.5 Graphing Functions Using Calculus 223

Problem Set 4.5
In Problems 1–27, make an analysis as suggested in the summary
above and then sketch the graph.

1. 2.

3.

4. 5.

6.

7.

8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18. Hint:

19. 20.

21.

22.

23. 24.

25. 26.

27.

28. Sketch the graph of a function f that has the following
properties:
(a) f is everywhere continuous; (b)
(c) f is an even function; (d) for 
(e) for 

29. Sketch the graph of a function f that has the following
properties:
(a) f is everywhere continuous; (b)
(c) for 
(d) for for 

30. Sketch the graph of a function g that has the following
properties:
(a) g is everywhere smooth (continuous with a continuous first

derivative);
(b) (c) for all x;
(d) for and for 

31. Sketch the graph of a function f that has the following
properties:
(a) f is everywhere continuous;
(b)

(c) for for 
for x Z -3.

x 7 -3, f–1x2 6 0x 6 -3, f¿1x2 7 0f¿1x2 6 0

f1-32 = 1;

x 7 0.g–1x2 7 0x 6 0g–1x2 6 0
g¿1x2 6 0g102 = 0;

x 7 6.2 6 x 6 6, f–1x2 6 0f–162 = 0, f–1x2 7 0
x Z 2, f¿162 = 3;f¿122 = 0, f¿1x2 7 0

f122 = -3, f162 = 1;

x 7 0.f–1x2 7 0
x 7 0;f¿1x2 7 0

f102 = 0, f112 = 2;

f1x2 = (ln x)2C

g1t2 = tan2 th1t2 = cos2 t

f1x2 = 2sin xf1x2 = ƒ sin x ƒ

h1x2 =

ƒ x ƒ - x

2
 1x2

- x + 62
g1x2 =

ƒ x ƒ + x

2
 13x + 22

H1q2 = q2
ƒ q ƒR1z2 = z ƒ z ƒ

d

dx
ƒ x ƒ =

ƒ x ƒ

x
f1x2 = ƒ x ƒ

3

g1x2 =

x2
+ x - 6
x - 1

w1z2 =

z2
+ 1
z

f1x2 =

1x - 121x - 32
1x + 121x - 22

P1x2 = 1 - e-2xh1x2 = tan-1 x

¶1u2 =

u2

u2
+ 1

f1x2 =

x

x2
+ 4

g1s2 = sin-1xg1x2 =

x

x + 1

F1s2 =

4s4
- 8s2

- 12
3

f1x2 = x3
- 3x2

+ 3x + 10

H1t2 = t21t2
- 12

G1x2 = 1x - 124f1x2 = 1x - 123
f1x2 = 2x3

- 3x2
- 12x + 3

f1x2 = 2x3
- 3x - 10f1x2 = x3

- 3x + 5

32. Sketch the graph of a function f that has the following
properties:
(a) f is everywhere continuous;
(b)
(c) for 

for for 
(d) for 

for for 

33. Sketch the graph of a function f that has the following
properties.
(a) has a continuous first derivative;
(b) is decreasing and concave up for 
(c) has an extremum at (3, 1);
(d) is increasing and concave up for 
(e) has an inflection point at (5, 4);
(f) is increasing and concave down for 
(g) has an extremum at (6, 7);
(h) is decreasing and concave down for 

Linear approximations provide particularly good approxima-
tions near points of inflection. Using a graphing calculator, investi-
gate this behavior in Problems 34–36.

34. Graph and its linear approximation 
at 

35. Graph and its linear approximation
at 

36. Find the linear approximation to the curve 
at its point of inflection. Graph both the function

and its linear approximation in the neighborhood of the inflec-
tion point.

37. Suppose and 
Sketch a graph of 

38. Suppose and 
Sketch a graph of 

39. Suppose and 
Sketch a graph of 

40. Consider a general quadratic curve 
Show that such a curve has no inflection points.

41. Show that the curve where
has exactly one inflection point.

42. Consider a general quartic curve 
where What is the maximum number of in-

flection points that such a curve can have?

In Problems 43–47, the graph of depends on
a parameter c. Using a CAS, investigate how the extremum and in-
flection points depend on the value of c. Identify the values of c at
which the basic shape of the curve changes.

43. 44.

45. 46.

47.

48. What conclusions can you draw about f from the informa-
tion that and f‡1c2 7 0?f¿1c2 = f–1c2 = 0

f(x) = c + sin cx

f(x) =

1

x2
+ 4x + c

f(x) =

1

1cx2
- 422 + cx2

f(x) =

cx

4 + 1cx22f(x) = x22x2
- c2

y = f1x2CASEXPL

a Z 0.cx2
+ dx + e,

y = ax4
+ bx3

+

a Z 0,
y = ax3

+ bx2
+ cx + d

y = ax2
+ bx + c.

y = h(x).
h102 = 0.h¿1x2 = x21x - 1221x - 22

y = f(x).
f122 = 0.f¿1x2 = 1x - 321x - 2221x - 12

y = f1x2.
f122 = 2.f¿1x2 = 1x - 221x - 321x - 42

1x - 125 + 3
y =

x = p>2.L1x2 = -x + p>2
y = cos x

x = 0.
L1x2 = xy = sin x

GC

x 7 6.

5 6 x 6 6;

3 6 x 6 5;

x 6 3;

x 7 0.-4 6 x 6 0, f–1x2 6 0
x 6 -4, f–1x2 7 0f–1-42 = 0, f–102 = 0, f–1x2 6 0

x 7 3;-4 6 x 6 3, f¿1x2 6 0
x 6 -4, f¿1x2 7 0f¿1-42 = 0, f¿132 = 0, f¿1x2 7 0

f1-42 = -3, f102 = 0, f132 = 2;
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224 Chapter 4 Applications of the Derivative

49. Let g(x) be a function that has two derivatives and satis-
fies the following properties:
(a)
(b) for all 
(c) g is concave down for all and concave up for all

(d)

Sketch a possible graph of and justify your answer.

50. Let H(x) have three continuous derivatives, and be such
that but Does H(x)
have a local maximum, local minimum, or a point of inflection at

Justify your answer.

51. In each case, is it possible for a function F with two con-
tinuous derivatives to satisfy the following properties? If so
sketch such a function. If not, justify your answer.
(a) while for all x.
(b) while 
(c) while 

52. Use a graphing calculator or a CAS to plot the graphs of
each of the following functions on the indicated interval. Deter-
mine the coordinates of any of the global extrema and any inflec-
tion points. You should be able to give answers that are accurate
to at least one decimal place. Restrict the y-axis window to

(a)

(b)

(c)

(d)

53. Each of the following functions is periodic. Use a graph-
ing calculator or a CAS to plot the graph of each of the follow-
ing functions over one full period with the center of the interval
located at the origin. Determine the coordinates of any of the
global extrema and any inflection points. You should be able to
give answers that are accurate to at least one decimal place.
(a) (b)
(c) (d)
(e)

54. Let f be a continuous function with If
the graph of is as shown in Figure 12, sketch a possible
graph for y = f1x2.

y = f¿1x2
f1-32 = f102 = 2.

f1x2 = sin 2x - cos 3x

f1x2 = sin 3x - sin xf1x2 = cos 2x - 2 cos x
f1x2 = 2 sin x + sin2 xf1x2 = 2 sin x + cos2 x

GC

f1x2 = x -

sin x
2

; [-p, p]

f1x2 = 2x + sin x; [-p, p]

f1x2 = x3 tan x; a-

p

2
, 
p

2
b

f1x2 = x2 tan x; a-

p

2
, 
p

2
b

-5 … y … 5.

GC

F¿1x2 7 0.F–1x2 6 0,
F1x2 7 0.F–1x2 6 0,

F1x2 6 0F¿1x2 7 0, F–1x2 7 0,

x = 1?

H‡112 Z 0.H112 = H¿112 = H–112 = 0,

f(x)

f1x2 = g1x42;
x 7 1;

x 6 1
x Z 1;g¿1x2 7 0

g112 = 1;

(a) Where is f increasing? Decreasing?
(b) Where is f concave up? Concave down?
(c) Where does f attain a local maximum? A local minimum?
(d) Where are there inflection points for f ?

58. Suppose that and
Sketch a graph of f.

59. Use a graphing calculator or a CAS to plot the graph of
each of the following functions on Determine the coordi-
nates of any global extrema and any inflection points.You should
be able to give answers that are accurate to at least one decimal
place.

(a)

(b)

(c)

(d)

60. Repeat Problem 59 for the following functions.

(a)

(b)

(c)

(d)

Answers to Concepts Review: 1.
2. decreasing; concave up 3.
4. polynomial; rational

x = -1, x = 2, x = 3; y = 1
f1x2; -f1x2

f1x2 = 1x3
- 8x2

+ 5x + 42>1x3
+ 12

f1x2 = 1x3
- 8x2

+ 5x + 42>1x - 12
f1x2 = ƒ x3

- 8x2
+ 5x + 4 ƒ

f1x2 = x3
- 8x2

+ 5x + 4

GC

f1x2 = sin[1x2
- 6x + 402>6]

f1x2 = 2x2
- 6x + 40>1x - 22

f1x2 = 2 ƒ x ƒ 1x2
- 6x + 402

f1x2 = x2x2
- 6x + 40

[-1, 7].
GC

f112 = 2.
f¿1x2 = 1x - 321x - 1221x + 22

y

x

1

–4 –3 –2 –1

–1

y = f'(x)

Figure 13

y = f' (x)

1–1 2–3 3–2

y

x

y = f'(x)

1–1 2 3–3 –2

y

x

Figure 14

–1 1 2 3

y

x

y = f'(x)

Figure 15

55. Let f be a continuous function and let have the graph
shown in Figure 13. Sketch a possible graph for f and answer the
following questions.

f¿

Figure 12

56. Repeat Problem 55 for Figure 14.

57. Let f be a continuous function with If
the graph of is as shown in Figure 15, sketch a possible
graph for y = f1x2.

y = f¿1x2
f102 = f122 = 0.
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Section 4.6 The Mean Value Theorem for Derivatives 225

In geometric language, the Mean Value Theorem is easy to state and understand. It
says that, if the graph of a continuous function has a nonvertical tangent line at
every point between A and B, then there is at least one point C on the graph
between A and B at which the tangent line is parallel to the secant line AB. In Fig-
ure 1, there is just one such point C; in Figure 2, there are several. First we state the
theorem in the language of functions; then we prove it.

4.6
The Mean Value

Theorem for Derivatives

C

A

B

Figure 1

C1

C2

C3

A

B

Figure 2

Theorem A Mean Value Theorem for Derivatives

If f is continuous on a closed interval [a, b] and differentiable on its interior 
(a, b), then there is at least one number c in (a, b) where

or, equivalently, where

f1b2 - f1a2 = f¿1c21b - a2

f1b2 - f1a2
b - a

= f¿1c2

y

x

s(x)

a x b

(a, f (a))

y = f (x)

(b, f (b))

y = g(x)

Figure 3

Proof Our proof rests on a careful analysis of the function 
introduced in Figure 3. Here is the equation of the line through 
and Since this line has slope and goes through 

the point-slope form for its equation is

This, in turn, yields a formula for s(x):

Note immediately that and that, for x in (a, b),

Now we make a crucial observation. If we knew that there was a number c in
satisfying we would be all done. For then the last equation would

say that

which is equivalent to the conclusion of the theorem.
To see that for some c in reason as follows. Clearly, s is con-

tinuous on being the difference of two continuous functions. Thus, by the
Max–Min Existence Theorem (Theorem 4.1A), s must attain both a maximum and

[a, b],
(a, b),s¿1c2 = 0

0 = f¿1c2 -

f1b2 - f1a2
b - a

s¿1c2 = 0,(a, b)

s¿1x2 = f¿1x2 -

f1b2 - f1a2
b - a

s1b2 = s1a2 = 0

s1x2 = f1x2 - g1x2 = f1x2 - f1a2 -

f1b2 - f1a2
b - a

 1x - a2

g1x2 - f1a2 =

f1b2 - f1a2
b - a

 1x - a2
(a, f(a)),

[f1b2 - f1a2]>1b - a2(b, f(b)).
(a, f(a))y = g1x2 s1x2 = f1x2 - g1x2,

The key to this proof is that c is the

value at which 

and Many proofs have 
one or two key ideas; if you under-
stand the key, you will understand
the proof.

s¿1c2 = 0.

f¿1c2 =

f1b2 - f1a2
b - a

The Key to a Proof
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226 Chapter 4 Applications of the Derivative

a minimum value on If both of these values happen to be 0, then is iden-
tically 0 on and consequently for all x in much more than
we need.

If either the maximum value or the minimum value is different from 0, then
that value is attained at an interior point c, since Now s has a
derivative at each point of and so, by the Critical Point Theorem (Theo-
rem 4.1B), That is all we needed to know. �

The Theorem Illustrated

� EXAMPLE 1 Find the number c guaranteed by the Mean Value Theorem
for on [1, 4].

SOLUTION

and

Thus, we must solve

The single solution is  (Figure 4). �

� EXAMPLE 2 Let on Find all numbers c
satisfying the conclusion to the Mean Value Theorem.

SOLUTION Figure 5 shows a graph of the function f . From this graph, it appears
that there are two numbers and with the required property. We now find

and

Therefore, we must solve

or, equivalently,

By the Quadratic Formula, there are two solutions, which
correspond to and Both numbers are in the interval

�

� EXAMPLE 3 Let Find all numbers satisfying the conclu-
sion to the Mean Value Theorem on the interval 

SOLUTION Using the result from Theorem 3.10B, we have

h¿(x) =

1

ƒ x ƒ2x2
- 1

=

1

x2x2
- 1

[1, 2].
ch(x) = sec-1 x.

1-1, 22.
c2 L 1.22.c1 L -0.55

A2 ; 24 + 24 B >6,

3c2
- 2c - 2 = 0

3c2
- 2c - 1 = 1

f122 - f1-12
2 - 1-12 =

3 - 0
3

= 1

f¿1x2 = 3x2
- 2x - 1

c2c1

[-1, 2].f1x2 = x3
- x2

- x + 1

c =
9
4

11c
=

2
3

f142 - f112
4 - 1

=

4 - 2
3

=

2
3

f¿1x2 = 2 #
1
2

 x-1>2
=

11x

f1x2 = 21x

s¿1c2 = 0.
(a, b),

s1a2 = s1b2 = 0.

(a, b),s¿1x2 = 0[a, b],
s(x)[a, b].

1 2 3 4 5

1

2

3

4

y

x

f (x) = 2�x

c = 9
4

Figure 4

–1

1

2 3

2

3

y

x

f (x) = x3 – x2 – x + 1

c1 = –.55 c2 = 1.22

Figure 5
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–9 9 18 27

4

8

y

x

f(x) = x2/3

Figure 7

The absolute value in the denominator is not needed since must be in the inter-
val We also have

Therefore we must solve

This last equation is a quadratic in Thus,

The negative sign gives a negative number for so we take the positive sign and
obtain

Figure 6 shows the graph of along with the secant line and tangent line at
�

� EXAMPLE 4 Let on Show that the conclusion to the
Mean Value Theorem fails and figure out why.

SOLUTION

and

We must solve

which gives

But is not in the interval as required. As the graph of 
suggests (Figure 7), fails to exist, so the problem is that is not every-
where differentiable on �

If the function represents the position of an object at time t, then the Mean
Value Theorem states that over any interval of time, there is some time for which
the instantaneous velocity equals the average velocity.

� EXAMPLE 5 Suppose that an object has position function 
Find the average velocity over the interval [3, 6] and find the time at

which the instantaneous velocity equals the average velocity.
t2

- t - 2.
s1t2 =

s(t)

1-8, 272. f(x)f¿102 y = f1x21-8, 272c = 102

c = a14
3
b3

L 102

2
3

 c-1>3
=

1
7

f1272 - f1-82
27 - 1-82 =

9 - 4
35

=

1
7

f¿1x2 =

2
3

 x-1>3, x Z 0

[-8, 27].f1x2 = x2>3
x = 1.2561.

h(x)

c = D1 + 21 + 36>p2

2
L 1.2561

c2,

c2
=

-(-1) ; 21 - 4(1)(-9>p2)

2
=

1 ; 21 + 36>p2

2

c2.

 c4
- c2

-

9

p2 = 0

 c2(c2
- 1) =

9

p2

 c2c2
- 1 =

3
p

 
1

c2c2
- 1

=

p

3

h(2) - h(1)

2 - 1
=

sec-1 2 - sec-1 1
1

=

p

3

[1, 2].
x

1 2

0.5

1

1.5

y

x

y = sec–1x

c = 1.2561

Figure 6
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C

C

C

F

G

Figure 8

As with most topics in this book, you
should try to see things from an
algebraic and a geometrical point of
view. Geometrically, Theorem B says
that if F and G have the same deriv-
ative then the graph of G is a verti-
cal translation of the graph of F.

Geometry and Algebra

Theorem B

If for all x in (a, b), then there is a constant C such that

for all x in (a, b).

F1x2 = G1x2 + C

F¿1x2 = G¿1x2

SOLUTION The average velocity over the interval [3, 6] is equal to
The instantaneous velocity is To find

the point where average velocity equals instantaneous velocity, we equate
and solve to get �

The Theorem Used In Section 4.2, we promised a rigorous proof of the
Monotonicity Theorem (Theorem 4.2A). This is the theorem that relates the sign
of the derivative of a function to whether that function is increasing or decreasing.

Proof of the Monotonicity Theorem We suppose that f is continuous on I
and that at each point x in the interior of I. Consider any two points 
and of I with By the Mean Value Theorem applied to the interval

there is a number c in satisfying

Since we see that that is, This is
what we mean when we say that f is increasing on I.

The case where on I is handled similarly. �

Our next theorem will be used repeatedly in this and the next chapter. In
words, it says that two functions with the same derivative differ by a constant, possi-
bly the zero constant (see Figure 8).

f¿1x2 6 0

f1x22 7 f1x12.f1x22 - f1x12 7 0;f¿1c2 7 0,

f1x22 - f1x12 = f¿1c21x2 - x12
1x1, x22[x1, x2],

x1 6 x2.x2

x1f¿1x2 7 0

t = 9>2.8 = 2t - 1

s¿1t2 = 2t - 1.16 - 32 = 8.1s162 - s1322>

Concepts Review
1. The Mean Value Theorem for Derivatives says that if f is

_____ on [a, b] and differentiable on _____ then there is a point c
in (a, b) such that _____.

2. The function, would satisfy the hypotheses
of the Mean Value Theorem on the interval [0, 1] but would not
satisfy them on the interval because _____.[-1, 1]

f1x2 = ƒ sin x ƒ

3. If two functions F and G have the same derivative on the
interval (a, b), then there is a constant C such that _____.

4. Since it follows that every function F that
satisfies has the form _____.F1x2 =F¿1x2 = 4x3

Dx1x42 = 4x3,

Proof Let Then

for all x in (a, b). Choose as some (fixed) point in (a, b), and let x be any other
point there.The function H satisfies the hypotheses of the Mean Value Theorem on
the closed interval with end points and x. Thus, there is a number c between 
and x such that

But by hypothesis. Therefore, or, equivalently,
for all x in (a, b). Since we conclude that

Now let and we have the conclusion
�F1x2 = G1x2 + C.

C = H1x12,F1x2 - G1x2 = H1x12.
H1x2 = F1x2 - G1x2,H1x2 = H1x12

H1x2 - H1x12 = 0H¿1c2 = 0

H1x2 - H1x12 = H¿1c21x - x12

x1x1,

x1,

H¿1x2 = F¿1x2 - G¿1x2 = 0

H1x2 = F1x2 - G1x2.
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Section 4.6 The Mean Value Theorem for Derivatives 229

Problem Set 4.6
In each of the Problems 1–21, a function is defined and a closed in-
terval is given. Decide whether the Mean Value Theorem applies to
the given function on the given interval. If it does, find all possible
values of c; if not, state the reason. In each problem, sketch the
graph of the given function on the given interval.

1. 2.

3. 4.

5.

6.

7.

8. 9.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20. 21.

22. (Rolle’s Theorem) If f is continuous on [a, b] and differen-
tiable on (a, b), and if then there is at least one num-
ber c in (a, b) such that Show that Rolle’s Theorem is
just a special case of the Mean Value Theorem. (Michel Rolle
(1652–1719) was a French mathematician.)

23. For the function graphed in Figure 9, find (approximate-
ly) all points c that satisfy the conclusion to the Mean Value The-
orem for the interval [0, 8].

f¿1c2 = 0.
f1a2 = f1b2,

f1x2 = ln ƒ x ƒ ; [-1, 1]f1x2 = Œx œ ; [1, 2]

f1x2 = x +

1
x

 ; [1, 2]f1x2 = x +

1
x

 ; C -1, 12 D
T1u2 = tan u; [0, p]C1u2 = csc u; [-p, p]

S1u2 = sin u; [-p, p]g1x2 = x5>3; [-1, 1]

g1x2 = x5>3; [0, 1]h1t2 = t2>3; [-2, 2]

h1t2 = t2>3; [0, 2]f1x2 =

x - 4
x - 3

 ; [0, 4]

h1x2 = e-x; [0, 3]F1t2 =

1
t - 1

 ; [0, 2]

f1z2 =
1
31z3

+ z - 42; [-1, 2]

F1x2 =

x3

3
 ; [-2, 2]

H1s2 = s2
+ 3s - 1; [-3, 1]

g1x2 = 1x + 123; [-1, 1]f1x2 = x2
+ x; [-2, 2]

g1x2 = ƒ x ƒ ; [-2, 2]f1x2 = ƒ x ƒ ; [1, 2]

24. Show that if f is the quadratic function defined by
then the number c of the Mean

Value Theorem is always the midpoint of the given interval [a, b].

25. Prove: If f is continuous on (a, b) and if exists and
satisfies except at one point in (a, b), then f is in-
creasing on (a, b). Hint: Consider f on each of the intervals 
and separately.

26. Use Problem 25 to show that each of the following is in-
creasing on 
(a) (b)

(c) f1x2 = ex3, x … 0
x, x 7 0

f1x2 = x5f1x2 = x3

1- q , q2.
[x0, b2

1a, x0]
x0f¿1x2 7 0

f¿1x2
f1x2 = ax2

+ bx + g, a Z 0,

27. Use the Mean Value Theorem to show that de-
creases on any interval over which it is defined.

28. Use the Mean Value Theorem to show that de-
creases on any interval to the right of the origin.

29. Prove that if for all x in (a, b) then there is a
constant C such that for all x in (a, b). Hint: Let

and apply Theorem B.

30. Suppose that you know that 
and but nothing else about

the sine and cosine functions. Show that 
Hint: Let and use Problem 29.

31. Prove that if for all x in (a, b) then there is a
constant C such that for all x in (a, b). Hint: Let

and apply Theorem B.

32. Suppose that and Find a formula
for F(x). Hint: See Problem 31.

33. Prove: Let f be continuous on [a, b] and differentiable on
(a, b). If and have opposite signs and if for all
x in (a, b), then the equation has one and only one solu-
tion between a and b. Hint: Use the Intermediate Value Theorem
and Rolle’s Theorem (Problem 22).

34. Show that has exactly one
solution on each of the intervals (0, 1), and (4, 5). Hint:
Apply Problem 33.

35. Let f have a derivative on an interval I. Prove that
between successive distinct zeros of there can be at most one
zero of f. Hint: Try a proof by contradiction and use Rolle’s
Theorem (Problem 22).

36. Let g be continuous on [a, b] and suppose that 
exists for all x in (a, b). Prove that if there are three values of x in
[a, b] for which then there is at least one value of x in 
(a, b) such that 

37. Let Prove by using
Problem 36 that there is at least one value in the interval [0, 4]
where and two values in the same interval where

38. Prove that if for all x in (a, b) and if and
are any two points in (a, b) then

Note: A function satisfying the above inequality is said to satisfy
a Lipschitz condition with constant M. (Rudolph Lipschitz
(1832–1903) was a German mathematician.)

39. Show that satisfies a Lipschitz condition
with constant 2 on the interval See Problem 38.

40. A function f is said to be nondecreasing on an interval I if
for and in I. Similarly, f is nonin-

creasing on I if for and in I.
(a) Sketch the graph of a function that is nondecreasing but not

increasing.
(b) Sketch the graph of a function that is nonincreasing but not

decreasing.

41. Prove that, if f is continuous on I and if exists and
satisfies on the interior of I, then f is nondecreasing on
I. Similarly, if then f is nonincreasing on I.f¿1x2 … 0,

f¿1x2 Ú 0
f¿1x2

x2x1x1 6 x2 Q f1x12 Ú f1x22
x2x1x1 6 x2 Q f1x12 … f1x22

1- q , q2.
f1x2 = sin 2x

ƒ f1x22 - f1x12 ƒ … M ƒ x2 - x1 ƒ

x2

x1ƒ f¿1x2 ƒ … M

f¿1x2 = 0.
f–1x2 = 0

f1x2 = 1x - 121x - 221x - 32.
g–1x2 = 0.
g1x2 = 0

g–1x2

f¿

1-1, 02,
f1x2 = 2x3

- 9x2
+ 1 = 0

f1x2 = 0
f¿1x2 Z 0f(b)f(a)

F102 = 4.F¿1x2 = 5

G1x2 = Dx
F1x2 = Dx + C
F¿1x2 = D

F1x2 = cos2 x + sin2 x
cos2 x + sin2 x = 1.

Dx sin x = cos x,Dx cos x = -sin x,
sin102 = 0,cos102 = 1,

G1x2 = 0
F1x2 = C

F¿1x2 = 0

s = 1>t2

s = 1>t

y

x

y = f(x)

1 2 3 4 5 6 7 8

4

3

2

1

Figure 9
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42. Prove that if and on I, then is
nondecreasing on I.

43. Prove that if for all x in (a, b) then

for all and in (a, b). Hint: Apply Problem 41 with

44. Use the Mean Value Theorem to prove that

45. Use the Mean Value Theorem to show that

46. Suppose that in a race, horse A and horse B begin at the
same point and finish in a dead heat. Prove that their speeds were
identical at some instant of the race.

47. In Problem 46, suppose that the two horses crossed the
finish line together at the same speed. Show that they had the
same acceleration at some instant.

48. Use the Mean Value Theorem to show that the graph of a
concave up function f is always above its tangent line; that is,
show that

49. Prove that if for all x and y
then f is a constant function.

ƒ f1y2 - f1x2 ƒ … M1y - x22
f1x2 7 f1c2 + f¿1c21x - c2, x Z c

ƒ sin x - sin y ƒ … ƒ x - y ƒ

lim
x: q

A2x + 2 - 1x B = 0

f1x2 = h1x2 - g1x2.
x2x1

x1 6 x2 Q  g1x22 - g1x12 … h1x22 - h1x12
g¿1x2 … h¿1x2

f2f¿1x2 Ú 0f1x2 Ú 0 50. Give an example of a function f that is continuous on 
[0, 1], differentiable on (0, 1), and not differentiable on [0, 1], and
has a tangent line at every point of [0, 1].

51. John traveled 112 miles in 2 hours and claimed that he
never exceeded 55 miles per hour. Use the Mean Value Theorem
to disprove John’s claim. Hint: Let be the distance traveled in
time t.

52. A car is stationary at a toll booth. Eighteen minutes later
at a point 20 miles down the road the car is clocked at 60 miles
per hour. Sketch a possible graph of versus t. Sketch a pos-
sible graph of the distance traveled s against t. Use the Mean
Value Theorem to show that the car must have exceeded the 
60 mile per hour speed limit at some time after leaving the toll
booth, but before the car was clocked at 60 miles per hour.

53. A car is stationary at a toll booth. Twenty minutes later at
a point 20 miles down the road the car is clocked at 60 miles per
hour. Explain why the car must have exceeded 60 miles per hour
at some time after leaving the toll booth, but before the car was
clocked at 60 miles per hour.

54. Show that if an object’s position function is given by
then the average velocity over the interval

[A, B] is equal to the instantaneous velocity at the midpoint of
[A, B].

Answers to Concepts Review: 1. continuous; (a, b);
2. does not exist

3. 4. x4
+ CF1x2 = G1x2 + C

f¿102f1b2 - f1a2 = f¿1c21b - a2

s1t2 = at2
+ bt + c,

v

f(t)

In mathematics and science, we often need to find the roots (solutions) of 
an equation To be sure, if is a linear or quadratic polynomial, for-
mulas for writing exact solutions exist and are well known. But for other alge-
braic equations, and certainly for equations involving transcendental functions,
formulas for exact solutions are rarely available. What can be done in such
cases?

There is a general method of solving problems known to all resourceful peo-
ple. Given a cup of tea, we add sugar a bit at a time until it tastes just right. Given
a stopper too large for a hole, we whittle it down until it fits. We change the solu-
tion a bit at a time, improving the accuracy, until we are satisfied. Mathemati-
cians call this the method of successive approximations, or the method of
iterations.

In this section, we present three such methods for solving equations: the
Bisection Method, Newton’s Method, and the Fixed-Point Method. All are de-
signed to approximate the real roots of and they all require many com-
putations. You will want to keep your calculator handy.

The Bisection Method In Example 9 of Section 2.7 we saw how to use the
Intermediate Value Theorem to approximate a solution of by succes-
sively bisecting an interval known to contain a solution.This Bisection Method has
two great virtues—simplicity and reliability. It also has a major vice—the large
number of steps needed to achieve the desired accuracy (otherwise known as slow-
ness of convergence).

f1x2 = 0

f1x2 = 0,

f(x)f1x2 = 0.
4.7

Solving Equations
Numerically
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Section 4.7 Solving Equations Numerically 231

Begin the process by sketching the graph of f, which is assumed to be a contin-
uous function (see Figure 1). A real root r of is a point (technically, the 
x-coordinate of a point) where the graph crosses the x-axis. As a first step in pin-
ning down this point, locate two points, at which you are sure that f has
opposite signs; if f has opposite signs at and then the product 
will be negative. (Try choosing and on opposite sides of your best guess at r.)
The Intermediate Value Theorem guarantees the existence of a root between 
and Now evaluate f at the midpoint of The number

is our first approximation to r.
Either in which case we are done, or differs in sign from

or Denote the one of the subintervals or on which the
sign change occurs by the symbol and evaluate f at its midpoint

(Figure 2). The number is our second approximation to r.
Repeat the process, thus determining a sequence of approximations

and subintervals each subinterval con-
taining the root r and each half the length of its predecessor. Stop when r is deter-
mined to the desired accuracy, that is, when is less than the allowable
error, which we will denote by E.

1bn - an2>2
[a1, b1], [a2, b2], [a3, b3], Á ,m1, m2, m3, Á ,

m2m2 = 1a2 + b22>2
[a2, b2],

[m1, b1][a1, m1]f1b12.f1a12
f1m12f1m12 = 0,

m1

[a1, b1].m1 = 1a1 + b12>2b1.
a1

b1a1

f1a12 # f1b12b1,a1

a1 6 b1,

f1x2 = 0

� EXAMPLE 1 Determine the real root of to accu-
racy within 0.0000001.

SOLUTION We first sketch the graph of (Figure 3) and,
noting that it crosses the x-axis between 2 and 3, we begin with and 

Step 1:

Step 2:

Step 3:

Step 4: Since

we set and 

Step 5: The condition is false.

Next we increment n so that it has the value 2 and repeat these steps. We can
continue this process to obtain the entries in the following table:

f1an2 # f1mn2 7 0

b2 = m1 = 2.5.a2 = a1 = 2

f1a12 # f1m12 = f122f12.52 = 1-3213.1252 = -9.375 6 0

h1 = 1b1 - a12>2 = 13 - 22>2 = 0.5

f1m12 = f12.52 = 2.53
- 3 # 2.5 - 5 = 3.125

m1 = 1a1 + b12>2 = 12 + 32>2 = 2.5

b1 = 3.a1 = 2
y = x3

- 3x - 5

f1x2 = x3
- 3x - 5 = 0

y

x

y = f (x)

a1 m1 b1

r

First step

Figure 1

y

x
a2 m2 b2

r

y = f (x)

Second step

Figure 2

1–1 2 3

5

–5

10

y y = x3 – 3x – 5

r

x

Figure 3

Algorithm Bisection Method

Let be a continuous function, and let and be numbers satisfying
and Let E denote the desired bound for the error

Repeat steps 1 to 5 for until 

1. Calculate 

2. Calculate and if then STOP.

3. Calculate 

4. If then set and 

5. If then set and bn + 1 = bn.an + 1 = mnf1an2 # f1mn2 7 0,

bn + 1 = mn.an + 1 = anf1an2 # f1mn2 6 0,

hn = 1bn - an2>2.

f1mn2 = 0,f1mn2,
mn = 1an + bn2>2.

hn 6 E:n = 1, 2, Áƒ r - mn ƒ .
f1a12 # f1b12 6 0.a1 6 b1

b1a1f(x)
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232 Chapter 4 Applications of the Derivative

1.5 2 2.5 3 3.5 4
x3 x2 x1

5

10

15

y

x

Figure 4

n

01 0.5 2.5 3.125

02 0.25 2.25

03 0.125 2.375 1.271

04 0.0625 2.3125 0.429

05 0.03125 2.28125 0.02811

06 0.015625 2.265625

07 0.0078125 2.2734375

08 0.0039063 2.2773438

09 0.0019531 2.2792969 0.00350

10 0.0009766 2.2783203

11 0.0004883 2.2788086

12 0.0002441 2.2790528 0.00043

13 0.0001221 2.2789307

14 0.0000610 2.2789918

15 0.0000305 2.2790224 0.00005

16 0.0000153 2.2790071

17 0.0000076 2.2790148

18 0.0000038 2.2790187

19 0.0000019 2.2790207 0.000024

20 0.0000010 2.2790197 0.000011

21 0.0000005 2.2790192 0.000005

22 0.0000002 2.2790189 0.0000014

23 0.0000001 2.2790187

24 0.0000001 2.2790188 0.0000001

We conclude that with an error of at most 0.0000001. �

Example 1 illustrates the shortcoming of the Bisection Method. The approxi-
mations converge very slowly to the root r. But they do converge;
that is, The method works, and we have at step n a good bound for 

the error namely,

Newton’s Method We are still considering the problem of solving the equa-
tion for a root r. Suppose that f is differentiable, so the graph of 
has a tangent line at each point. If we can find a first approximation to r by
graphing or any other means (see Figure 4), then a better approximation ought
to lie at the intersection of the tangent at with the x-axis. Using as an
approximation, we can then find a still better approximation and so on.

The process can be mechanized so that it is easy to do on a calculator. The
equation of the tangent line at is

and its x-intercept is found by setting and solving for x. The result is

provided More generally, we have the following algorithm, also called
a recursion formula or an iteration scheme.

f¿(x1) Z 0.

x2 = x1 -

f1x12
f¿1x12

y = 0x2

y - f1x12 = f¿1x121x - x12
1x1, f1x122

x3,
x21x1, f1x122

x2

x1

y = f1x2f1x2 = 0

ƒ En ƒ … hn.En = r - mn,

lim
n: q

 mn = r.
m1, m2, m3, Á

r = 2.2790188

-0.0000011

-0.000001

-0.00005

-0.00015

-0.00034

-0.00111

-0.00264

-0.00878

-0.02106

-0.07001

-0.16729

-0.359

f1mn2mnhn
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Section 4.7 Solving Equations Numerically 233

Algorithms have been part of math-
ematics since people first learned to
do long division, but it is computer
science that has given algorithmic
thinking its present popularity. What
is an algorithm? Donald Knuth,
dean of computer scientists,
responds,

“An algorithm is a precisely defined
sequence of rules telling how to
produce specified output informa-
tion from given input information in
a finite number of steps.”

And what is computer science?
According to Knuth,

“It is the study of algorithms.”

Algorithms

Algorithm Newton’s Method

Let be a differentiable function and let be an initial approximation to
the root r of Let E denote a bound for the error 

Repeat the following step for until 

1. xn + 1 = xn -

f1xn2
f¿1xn2

ƒ xn + 1 - xn ƒ 6 E:n = 1, 2, Á

ƒ r - xn ƒ .f1x2 = 0.
x1f(x)

3

2

1

1 2 3 4
–1

–2

–3

y

x

y = 2 – x + sin x

Figure 5

� EXAMPLE 2 Use Newton’s Method to find the real root r of 
to seven decimal places.

SOLUTION This is the same equation considered in Example 1. Let’s use
as our first approximation to r, as we did there. Since 

and the algorithm is

We obtain the following table.

n

1 2.5

2 2.30

3 2.2793

4 2.2790188

5 2.2790188

After just four steps, we get a repetition of the first eight digits. We feel confi-
dent in reporting that with perhaps some question about the last
digit. �

� EXAMPLE 3 Use Newton’s Method to find the positive real root r of

SOLUTION The graph of is shown in Figure 5. We will use
the starting value Since the iteration becomes

which leads to the following table:

n

1 2.0

2 2.6420926

3 2.5552335

4 2.5541961

5 2.5541960

6 2.5541960

After just five steps, we get a repetition of the seven digits after the decimal point.
We conclude that �

� EXAMPLE 4 Use Newton’s Method to find the real root r of 
to seven decimal places.x - e-x

= 0
f(x) =

r L 2.5541960.

xn

xn + 1 = xn -

2 - xn + sin xn

-1 + cos xn

f¿1x2 = -1 + cos x,x1 = 2.
y = 2 - x + sin x

f1x2 = 2 - x + sin x = 0.

r L 2.2790188,

xn

xn + 1 = xn -

xn
3

- 3xn - 5

3xn
2

- 3
=

2xn
3

+ 5

3xn
2

- 3

f¿1x2 = 3x2
- 3,x3

- 3x - 5
f1x2 =x1 = 2.5

x3
- 3x - 5 = 0

f1x2 =
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SOLUTION The graph of is sketched in Figure 6. We use 
and to obtain the fol-
lowing table:

n

1 0.5

2 0.566

3 0.56714

4 0.5671433

5 0.5671433

We conclude that �

Newton’s Method creates a sequence of successive approximations to the root.
(We mentioned sequences briefly in Section 2.4.) It is often the case that Newton’s
Method produces a sequence that converges to the root of that is,

This is not always the case, however. Figure 7 illustrates what can go

wrong (see also Problem 22). For the function in Figure 7, the difficulty is that is
not close enough to r to get a convergent process started. Other difficulties arise if

is zero or undefined at or near r. When Newton’s Method fails to produce
approximations that converge to the solution, then you can retry Newton’s
Method with a different starting point, or use a different method such as the
Bisection Method.

The Fixed-Point Algorithm The Fixed-Point Algorithm is simple and
straightforward, but it often works.

Suppose that an equation can be written in the form To solve this
equation is to find a number r that is unchanged by the function g. We call such a
number a fixed point of g. To find this number, we propose the following algo-
rithm. Make a first guess Then let and so on. If we are
lucky, will converge to the root r as n : q .xn

x2 = g1x12, x3 = g1x22,x1.

x = g1x2.

f¿1x2
x1

lim
n: q

 xn = r.
f1x2 = 0,{xn}

r L 0.5671433.

xn

xn + 1 = xn - (xn - e-xn)>(1 + e-xn) = (xn + 1)>(exn
+ 1)

x1 = 0.5y = x - e-x
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1 2

1

y = x – e–x
y

x

r

Figure 6

y

xx3 x2 x1r

y = f (x)

Figure 7

Algorithm Fixed-Point Algorithm

Let be a continuous function, and let be an initial approximation to the
root r of Let E denote a bound for the error 

Repeat the following step for until 

1. xn + 1 = g1xn2
ƒ xn + 1 - xn ƒ 6 E:n = 1, 2, Á

ƒ r - xn ƒ .x = g1x2. x1g(x)

� EXAMPLE 5 Approximate the solution of using the Fixed-
Point Algorithm.

SOLUTION We write the equation and apply the algorithm
with The results are shown in the accompanying table.

n n n

1 0.5 10 0.5675596 19 0.5671408

2 0.6065307 11 0.5669072 20 0.5671447

3 0.5452392 12 0.5672772 21 0.5671425

4 0.5797031 13 0.5670674 22 0.5671438

5 0.5600646 14 0.5671864 23 0.5671430

6 0.5711722 15 0.5671189 24 0.5671435

7 0.5648630 16 0.5671572 25 0.5671432

8 0.5684381 17 0.5671354 26 0.5671433

9 0.5664095 18 0.5671478 27 0.5671433

xnxnxn

x1 = 0.5.xn + 1 = e-xn

x = e-x

x - e-x
= 0
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Although it took 27 steps to get a repetition of the first seven digits, the process did
produce a sequence that converges and to the right value. Moreover, the process
was very easy to carry out. �

� EXAMPLE 6 Solve using the Fixed-Point Algorithm.

SOLUTION Note first that solving this equation is equivalent to solving the pair
of equations and Thus, to get our initial value, we graph these
two equations (Figure 8) and observe that the two curves cross at approximately

Taking and applying the algorithm we obtain the
results in the following table.

n n

1 1 06 1.4394614

2 1.0806046 07 0.2619155

3 0.9415902 08 1.9317916

4 1.1770062 09

5 0.7673820 10 1.5213931

Quite clearly the process is unstable, even though our initial guess is very close to
the actual root.

Let’s take a different tack. Rewrite the equation as 
and use the algorithm

This process produces a convergent sequence, shown in the following table. (The
oscillation in the last digit is probably due to round-off errors.)

n n n

1 1 07 1.0298054 13 1.0298665

2 1.0403023 08 1.0298883 14 1.0298666

3 1.0261107 09 1.0298588 15 1.0298665

4 1.0312046 10 1.0298693 16 1.0298666

5 1.0293881 11 1.0298655

6 1.0300374 12 1.0298668 �

Now we raise an obvious question. Why did the second algorithm yield a con-
vergent sequence, whereas the first one failed to do so? Whether or not the Fixed-
Point Algorithm works depends on two factors. One is the formulation of the
equation Example 6 demonstrates that an equation such as 
can be rewritten in a form that yields a different sequence of approximations. In
Example 6 the reformulation was In general, there may be
many ways to write the equation and the trick is to find one that works. Another
factor that affects whether the Fixed-Point Algorithm converges is the closeness of
the starting point to the root r. As we suggested for Newton’s Method, if the
Fixed-Point Algorithm fails with one starting point, you can try a different one.

x1

x = 1x + 2 cos x2>2.

x = 2 cos xx = g1x2.

xnxnxn

xn + 1 =

xn + 2 cos xn

2

1x + 2 cos x2>2 x =x = 2 cos x

-0.7064109

xnxn

xn + 1 = 2 cos xn,x1 = 1x = 1.

y = 2 cos x.y = x

x = 2 cos x
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y

y = x

x
4
π

2
π

y = 2 cos x

1

2

Figure 8

Concepts Review
1. The virtues of the Bisection Method are its simplicity and

reliability; its vice is its _____.

2. If f is continuous on [a, b], and and have oppo-
site signs, then there is a _____ of between a and b. This
follows from the _____ Theorem.

f1x2 = 0
f(b)f(a)

3. The Bisection Method, Newton’s Method, and the Fixed-
Point Algorithm are examples of _____ ; that is, they provide a fi-
nite sequence of steps that, if followed, will produce a root of an
equation to desired accuracy.

4. A point x satisfying is called a _____ of g.g1x2 = x 235



236 Chapter 4 Applications of the Derivative

Problem Set 4.7

In Problems 1–4, use the Bisection Method to approximate the
real root of the given equation on the given interval. Each answer
should be accurate to two decimal places.

1. 2.

3.
4.

In Problems 5–14, use Newton’s Method to approximate the
indicated root of the given equation accurate to five decimal
places. Begin by sketching a graph.

5. The largest root of 

6. The real root of 

7. The largest root of (see Problem 4)

8. The smallest positive root of (see Prob-
lem 3)

9. The root of 

10. The root of 

11. All real roots of 

12. All real roots of 

13. The positive root of 

14. The smallest positive root of 

15. Use Newton’s Method to calculate to five decimal
places. Hint: Solve 

16. Use Newton’s Method to calculate to five decimal
places.

In Problems 17–20, approximate the values of x that give
maximum and minimum values of the function on the indicated
intervals.

17.

18.

19.

20.

21. Kepler’s equation is important in as-
tronomy. Use the Fixed-Point Algorithm to solve this equation
for x when and 

22. Sketch the graph of Obviously, its only x-
intercept is zero. Convince yourself that Newton’s Method fails
to converge to the root of Explain this failure.

23. In installment buying, one would like to figure out the
real interest rate (effective rate), but unfortunately this involves
solving a complicated equation. If one buys an item worth $P
today and agrees to pay for it with payments of $R at the end of
each month for k months, then

where i is the interest rate per month. Tom bought a used car for
$2000 and agreed to pay for it with $100 payments at the end of
each of the next 24 months.
(a) Show that i satisfies the equation

20i11 + i224
- 11 + i224

+ 1 = 0

P =

R

i
 c1 -

1

11 + i2k d

x1>3
= 0.

y = x1>3.
E = 0.2.m = 0.8

x = m + E sin xC

f1x2 = x2 sin 
x

2
; [0, 4p]

f1x2 =

sin x
x

; [p, 3p]

f1x2 =

x3
+ 1

x4
+ 1

; [-4, 4]

f1x2 = x4
+ x3

+ x2
+ x; [-1, 1]

GC

24 47C

x3
- 6 = 0.

23 6C

2 cot x = x

2x2
- sin x = 0

x4
+ 6x3

+ 2x2
+ 24x - 8 = 0

x4
- 8x3

+ 22x2
- 24x + 8 = 0

x ln x = 2

cos x = 2x

2 cos x - e-x
= 0

x - 2 + 2 ln x = 0

7x3
+ x - 5 = 0

x3
+ 6x2

+ 9x + 1 = 0

C

x - 2 + 2 ln x = 0; [1, 2]
2 cos x - e-x

= 0; [1, 2]

x4
+ 5x3

+ 1 = 0; [-1, 0]x3
+ 2x - 6 = 0; [1, 2]

C (b) Show that Newton’s Method for this equation reduces to

(c) Find i accurate to five decimal places starting with
and then give the annual rate r as a percent

24. In applying Newton’s Method to solve one can
usually tell by simply looking at the numbers 
whether the sequence is converging. But even if it converges, say
to can we be sure that is a solution? Show that the answer is
yes provided f and are continuous at and 

In Problems 25–28, use the Fixed-Point Algorithm with as
indicated to solve the equations to five decimal places.

25.

26.

27.

28.

29. Consider the equation 

(a) Sketch the graph of and using the same co-
ordinate system, and thereby approximately locate the posi-
tive root of 

(b) Try solving the equation by the Fixed-Point Algorithm start-
ing with 

(c) Solve the equation algebraically.

30. Follow the directions of Problem 29 for 

31. Consider 
(a) Apply the Fixed-Point Algorithm starting with to

find and 

(b) Algebraically solve for x in 

(c) Evaluate 

32. Consider 

(a) Apply the Fixed-Point Algorithm starting with to
find and 

(b) Algebraically solve for x in 

(c) Evaluate 

33. Consider 

(a) Apply the Fixed-Point Algorithm starting with to
find and 

(b) Algebraically solve for x in 

(c) Evaluate the following expression. (An expression like this
is called a continued fraction.)

1 +

1

1 +

1

1 +

1
1 +

Á

x = 1 +

1
x

.

x5.x2, x3, x4,
x1 = 1

x = 1 +

1
x

.C

45 + 35 + 25 +
Á .

x = 25 + x.

x5.x2, x3, x4,
x1 = 0

x = 25 + x.C

41 + 31 + 21 +
Á .

x = 21 + x.

x5.x2, x3, x4,
x1 = 0

x = 21 + x.C

g1x2.
x = 51x - x22 =GC

x1 = 0.7.

x = g1x2.
y = g1x2y = x

x = 21x - x22 = g1x2.GC

x = 23.2 + x; x1 = 47

x = 22.7 + x; x1 = 1

x = 2 - sin x; x1 = 2

x =

3
2

 cos x; x1 = 1

x1C

f¿1x2 Z 0.xf¿

xx,

x1, x2, x3, Á

f1x2 = 0,

1r = 1200i2.
i = 0.012,

C

in + 1 = in - c20in
2

+ 19in - 1 + 11 + in2-23

500in - 4
d
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Section 4.8 Antiderivatives 237

34. Consider the equation and sup-
pose that in an interval [a, b].

(a) Show that if r is in [a, b] then r is a root of the equation
if and only if 

(b) Show that Newton’s Method is a special case of the Fixed-
Point Algorithm, in which 

35. Experiment with the algorithm

using several different values of a.

(a) Make a conjecture about what this algorithm computes.

(b) Prove your conjecture.

After differentiating and setting the result equal to zero, many
practical max–min problems lead to an equation that cannot be
solved exactly. For the following problems, use a numerical
method to approximate the solution to the problem.

36. A rectangle has two corners on the x-axis and the other
two on the curve with What are the
dimensions of the rectangle of this type with maximum area?
(See Figure 25 of Section 4.4.)

37. Two hallways meet in a right angle as shown in Figure 7 of
Section 4.4, except the widths of the hallways are 8.6 feet and 6.2
feet. What is the length of the longest thin rod that can be carried
around the corner?

-p>2 6 x 6 p>2.y = cos x,

C

xn + 1 = 2xn - axn
2

g¿1r2 = 0.

f1r2 = 0.x = x - f(x)>f¿(x)

f¿1x2 Z 0
x = x - f1x2>f¿1x2EXPL

105�
42 ft

Figure 9 Figure 10

38. An 8-foot-wide hallway makes a turn as shown in Fig-
ure 9. What is the length of the longest thin rod that can be car-
ried around the corner?

y

x

F(x) = x4+ 6

In each case
F'(x) = 4x3

15

12

9

3

–3
1

2–2
–1

F(x) = x4

F(x) = x4 – 4

Figure 1

Definition

We call F an antiderivative of f on the interval I if on I, that is, if
for all x in I.F¿1x2 = f1x2 DxF1x2 = f1x2

We said an antiderivative rather than the antiderivative in our definition. You
will soon see why.

� EXAMPLE 1 Find an antiderivative of the function on

SOLUTION We seek a function F satisfying for all real x. From 
our experience with differentiation, we know that is one such 
function. �

A moment’s thought will suggest other solutions to Example 1. The function
also satisfies it too is an antiderivative of

In fact, where C is any constant, is an antiderivative
of on (see Figure 1).

Now we pose an important question. Is every antiderivative of of
the form The answer is yes. This follows from Theorem 4.6B
which says that if two functions have the same derivative, they must differ by a
constant.

F1x2 = x4
+ C?

f1x2 = 4x3
1- q , q24x3

F1x2 = x4
+ C,f1x2 = 4x3.
F¿1x2 = 4x3;F1x2 = x4

+ 6

F1x2 = x4
F¿1x2 = 4x3

1- q , q2. f1x2 = 4x3

Most of the mathematical operations that we work with come in inverse pairs:
addition and subtraction, multiplication and division, and exponentiation and root
taking. In each case, the second operation undoes the first, and vice versa. One rea-
son for our interest in inverse operations is their usefulness in solving equations.
For example, solving involves taking roots.We have been studying differen-
tiation in this chapter and the previous one. If we want to solve equations involving
derivatives we will need its inverse, called antidifferentiation or integration.

x3
= 8

4.8
Antiderivatives

39. An object thrown from the edge of a 42-foot cliff follows

the path given by (Figure 10). An observer 

stands 3 feet from the bottom of the cliff.
(a) Find the position of the object when it is closest to the

observer.
(b) Find the position of the object when it is farthest from the

observer.

Answers to Concepts Review: 1. slowness of convergence
2. root: Intermediate Value 3. algorithms 4. fixed point

y = -

2x2

25
+ x + 42
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238 Chapter 4 Applications of the Derivative

To establish any result of the form

all we have to do is show that

Dx[F1x2 + C] = f1x2

L
f1x2 dx = F1x2 + C

Proving Rules for Antiderivatives Theorem A Power Rule

If r is any real number except then

L
xr dx =

xr + 1

r + 1
+ C

-1,

Our conclusion is this. If a function f has an antiderivative, it will have a whole
family of them, and each member of this family can be obtained from one of them
by the addition of an appropriate constant. We call this family of functions the
general antiderivative of f. After we get used to this notion, we will often omit the
adjective general.

� EXAMPLE 2 Find the general antiderivative of on 

SOLUTION The function will not do since its derivative is But
this suggests which satisfies However, the
general antiderivative is  �

Notation for Antiderivatives Since we used the symbol for the opera-
tion of taking a derivative, it would be natural to use for the operation of find-
ing the antiderivative. Thus,

This is the notation used by several authors and it was, in fact, used in earlier edi-
tions of this book. However, Leibniz’s original notation continues to enjoy over-
whelming popularity, and we therefore choose to follow him. Rather than 
Leibniz used the symbol He wrote

and

Leibniz chose to use the elongated s, and the dx for reasons that will not
become apparent until the next chapter. For the moment, simply think of 
as indicating the antiderivative with respect to x, just as indicates the derivative
with respect to x. Note that

Dx
L

f1x2 dx = f1x2 and 
L

Dx  f1x2 dx = f1x2 + C

Dx

1 Á dx
1 ,

L
4x3 dx = x4

+ C

L
x2 dx =

1
3 x3

+ C

1 Á dx.
Ax,

Ax1x22 =
1
3 x3

+ C

Ax

Dx

1
3 x3

+ C.
F¿1x2 =

1
3
# 3x2

= x2.F1x2 =
1
3 x3,

3x2.F1x2 = x3

1- q , q2.f1x2 = x2

Proof The derivative of the right side is

�

We make two comments about Theorem A. First, it is meant to include the
case that is,

Second, since no interval I is specified, the conclusion is understood to be valid
only on intervals on which is defined. In particular, we must exclude any interval
containing the origin if 

Following Leibniz, we shall often use the term indefinite integral in place of
antiderivative. To antidifferentiate is also to integrate. In the symbol 

is called the integral sign and is called the integrand. Thus, we integrate the
integrand and thereby evaluate the indefinite integral. Perhaps Leibniz used the
adjective indefinite to suggest that the indefinite integral always involves an arbi-
trary constant.

f(x)1
1f1x2 dx,

r 6 0.
xr

L
1 dx = x + C

r = 0;

Dx c xr + 1

r + 1
+ C d =

1
r + 1

 1r + 12xr
= xr
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Section 4.8 Antiderivatives 239

Theorem B Antidifferentiation Formulas

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)
L

1

1 + x2 dx = tan-1 x + C

L

121 - x2
 dx = sin-1 x + C, -1 6 x 6 1

L
cosh x dx = sinh x + C

L
sinh x dx = cosh x + C

L
ax dx = a 1

ln a
bax

+ C

L
ex dx = ex

+ C

L

1
x

 dx = ln x + C, x 7 0

L
cos x dx = sin x + C

L
sin x dx = - cos x + C

Theorem C Indefinite Integral Is a Linear Operator

Let f and g have antiderivatives (indefinite integrals) and let k be a constant.
Then

(1)

(2)

(3)
L

[f1x2 - g1x2] dx =

L
f1x2 dx -

L
g1x2 dx

L
[f1x2 + g1x2] dx =

L
f1x2 dx +

L
g1x2 dx

L
kf1x2 dx = k

L
f1x2 dx

� EXAMPLE 3 Find the general antiderivative of 

SOLUTION

�

Note that to integrate a power of x, we increase the exponent by 1 and divide by the
new exponent.

Other Antiderivative Formulas At the end of Section 3.10, we presented
a table of derivative formulas. For every derivative formula, there is a correspond-
ing antiderivative formula. Theorem B gives a number of the important results.
The proofs are easy; simply differentiate the right side to get the integrand.

L
x4>3 dx =

x7>3
7
3

+ C =
3
7 x7>3

+ C

f1x2 = x4>3.

The Indefinite Integral Is Linear Recall from Chapter 3 that is a linear
operator. This means two things.

1.

2.

From these two properties, a third follows automatically.

3.

It turns out that also has these properties of a linear operator.1 Á dx

Dx[f1x2 - g1x2] = Dxf1x2 - Dxg1x2

Dx[f1x2 + g1x2] = Dxf1x2 + Dxg1x2
Dx[kf1x2] = kDxf1x2

Dx
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240 Chapter 4 Applications of the Derivative

Proof To show (1) and (2), we simply differentiate the right side and observe
that we get the integrand of the left side.

Property (3) follows from (1) and (2). �

� EXAMPLE 4 Using the linearity of evaluate

(a) (b) (c)

SOLUTION

(a)

Two arbitrary constants and appeared, but they were combined into one
constant, C, a practice we consistently follow.

(b) Note the use of the variable u rather than x. This is fine as long as the corre-
sponding differential symbol is du, since we then have a complete change of
notation.

(c)

�

Generalized Power Rule Recall the Chain Rule as applied to a power of a
function. If is a differentiable function and r is a real number 
then

or, in functional notation,

Dxa [g1x2]r + 1

r + 1
b = [g1x2]r # g¿1x2

Dx c ur + 1

r + 1
d = ur # Dxu

1r Z -12,u = g1x2

 =

t-1

-1
+

t3>2
3
2

+ C = -  
1
t

+

2
3

 t3>2
+ C

 
L
a 1

t2 + 1tb  dt =

L
1t-2

+ t1>22 dt =

L
t-2 dt +

L
t1>2 dt

 =
2
5 u5>2

-
3
2 u2

+ 14u + C

 
L
1u3>2

- 3u + 142 du =

L
u3>2 du - 3

L
u du + 14

L
1 du

C2C1

 = x3
+ 2x2

+ C

 = x3
+ 2x2

+ 13C1 + 4C22
 = 3ax3

3
+ C1b + 4ax2

2
+ C2b

 = 3
L

x2 dx + 4
L

x dx

 
L
13x2

+ 4x2 dx =

L
3x2 dx +

L
4x dx

L
A1>t2

+ 1t B  dt
L
1u3>2

- 3u + 142 du
L
13x2

+ 4x2 dx

1,

 = f1x2 + g1x2
 Dx c
L

f1x2 dx +

L
g1x2 dx d = Dx

L
f1x2 dx + Dx

L
g1x2 dx

 Dx ck
L

f1x2 dx d = kDx
L

f1x2 dx = kf1x2
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Theorem D Generalized Power Rule

Let g be a differentiable function and r a real number different from Then

L
[g1x2]rg¿1x2 dx =

[g1x2]r + 1

r + 1
+ C

-1.

To apply Theorem D, we must be able to recognize the functions g and in
the integrand.

� EXAMPLE 5 Evaluate 

(a) (b) 

SOLUTION

(a) Let then Thus, by Theorem D,

(b) Let then Thus,

�

Example 5 shows why Leibniz used the differential dx in his notation 
If we let then and the conclusion of Theorem D is

which is the ordinary power rule with u as the variable. Thus, the generalized
power rule is just the ordinary power rule applied to functions. But, in applying it,
we must always make sure that we have du to go with The following examples
illustrate what we mean.

� EXAMPLE 6 Evaluate

(a) (b)

SOLUTION

(a) Let then Thus,

and so

 =

u6

3
+ 2C =

1x3
+ 6x26
3

+ K

 
L
1x3

+ 6x2516x2
+ 122 dx =

L
u5  2 du = 2 cu6

6
+ C d

213x2
+ 62 dx = 2 du,

16x2
+ 122 dx =du = 13x2

+ 62 dx.u = x3
+ 6x;

L
1x2

+ 4210x dx
L
1x3

+ 6x2516x2
+ 122 dx

ur.

L
ur du =

ur + 1

r + 1
+ C, r Z -1

du = g¿1x2 dxu = g1x2,1 Á dx.

 
L

sin10 x cos x dx =

L
[g1x2]10g¿1x2 dx =

[g1x2]11

11
+ C =

sin11 x
11

+ C

g¿1x2 = cos x.g1x2 = sin x;

 =

1x4
+ 3x231

31
+ C

 
L
1x4

+ 3x23014x3
+ 32 dx =

L
[g1x2]30g¿1x2 dx =

[g1x2]31

31
+ C

g¿1x2 = 4x3
+ 3.g1x2 = x4

+ 3x;

L
sin10 x cos x dx

L
1x4

+ 3x23014x3
+ 32 dx

g¿

From this we obtain an important rule for indefinite integrals.

Two things should be noted about
our solution. First, the fact that

is 2du instead of du
caused no trouble; the constant 2
could be moved in front of the inte-
gral sign by linearity. Second, we
wound up with an arbitrary constant
of 2C. This is still an arbitrary con-
stant; we called it K.

16x2
+ 122 dx

Constants in Example 6
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242 Chapter 4 Applications of the Derivative

(b) Let then Thus,

�

� EXAMPLE 7 Evaluate

(a) (b)

SOLUTION
(a) Here we let so that Thus,

(b) The substitution is less obvious here. What we must look for is a functon of 
raised to a power, times the derivative of that function. Since

this suggests letting so that Thus,

�

The restriction in the antiderivative formula for (part 3 of
Theorem B) is sometimes a nuisance. The next example addresses this issue.

� EXAMPLE 8 Show that

(a) (b)

(c)

SOLUTION

(a) We must consider two cases. For and

For and we apply the Chain Rule.

Figure 2 suggests why this is the case. Since is an even function, the slope at
the point is while the slope at is the negative of that is,

(b) The integral formula follows from part (a) since

(c) Differentiation of the right side, but this time using the Chain Rule, gives

�Dx (ln ƒ x - a ƒ + C) =

1
x - a

 Dx (x - a) =

1
x - a

Dx (ln ƒ x ƒ + C) =

1
x

-1>c.1>c,-c1>c,c (c 7 0)
ln ƒ x ƒ

Dx ln ƒ x ƒ = Dx ln (-x) =

1
(-x)

 Dx (-x) = -

1
x

 (-1) =

1
x

x 6 0, ƒ x ƒ = -x,

Dx ln ƒ x ƒ = Dx ln x =

1
x

x 7 0, ƒ x ƒ = x,

L

1
x - a

 dx = ln ƒ x - a ƒ + C, x Z a

L

1
x

 dx = ln ƒ x ƒ + C, x Z 0Dx ln ƒ x ƒ =

1
x

,  x Z 0

1  1>x dxx 7 0

 =

L
u-4 du =

u-3

-3
+ C = -

1
3

 (1 + ex)-3
+ C

 
L

ex

(1 + ex)4 dx =

L
(1 + ex)-4 (ex dx)

du = ex dx.u = 1 + ex,Dx (1 + ex) = ex,
x

L
(1 + sinh x)4 cosh x dx =

L
u4 du =

u5

5
+ C =

sinh5 x
5

+ C

du = cosh x dx.u = 1 + sinh x,

L

ex

(1 + ex)4  dx
L

(1 + sinh x)4 cosh x dx

 =

1
2

 au11

11
+ Cb =

1x2
+ 4211

22
+ K

 =

1
2L

u10 du

 
L
1x2

+ 4210x dx =

L
1x2

+ 4210 #
1
2

# 2x dx

du = 2x dx.u = x2
+ 4;

Slope = 1/cSlope = –1/c

y

3 4 x–3

–3

–4

4

3

2

1

–2

–2

–1
–1

21–c c

 f (x) = ln �x�

Figure 2
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� EXAMPLE 9 Evaluate 

SOLUTION Let so Then

�

When the integrand is the quotient of two polynomials (that is, a rational func-
tion) and the numerator is of equal or greater degree than the denominator,
always divide the denominator into the numerator first.

� EXAMPLE 10 Find 

SOLUTION By long division (Figure 3),

Hence,

� =

x2

2
- 2x + 2 ln ƒ x + 1 ƒ + C

 =

x2

2
- 2x + 2

L
 

1
x + 1

  dx

 
L

 
x2

- x

x + 1
  dx =

L
1x - 22 dx + 2

L
 

1
x + 1

  dx

x2
- x

x + 1
= x - 2 +

2
x + 1

L
 
x2

- x

x + 1
  dx.

 = -

1
2

  ln ƒ u ƒ + C = -

1
2

  ln ƒ 10 - x2
ƒ + C

 
L

 
x

10 - x2  dx = -

1
2L

 
-2x

10 - x2  dx = -

1
2L

 
1
u

  du

du = -2x dx.u = 10 - x2,

L
 

x

10 - x2  dx.
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Concepts Review
1. The Power Rule for derivatives says that 

_____. The Power Rule for integrals says that _____.

2. The Generalized Power Rule for integrals says that

1   dx = [f1x2]r + 1>1r + 12 + C, r Z -1.

1xr dx =

d1xr2>dx = 3. _____.

4. By linearity, _____.1[c1 f1x2 + c2g1x2] dx =

11x4
+ 3x2

+ 12814x3
+ 6x2 dx =

Problem Set 4.8
Find the general antiderivative for each of the
following.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13.

14.

15. 16.

17. 18.

19. 20. f1x2 = x2
+ exf1x2 = x - cosh x

f1x2 =

x6
- x

x3f1x2 =

4x6
+ 3x4

x3

f1x2 =

22x

x
+

3

x5
f1x2 =

3

x2 -

2

x3

f1x2 = x2 Ax3
+ 5x2

- 3x + 23 B
f1x2 = 27x7

+ 3x5
- 45x3

+ 22x

f1x2 = x100
+ x99f1x2 = 4x5

- x3

f1x2 = 3x2
- pxf1x2 = x2

- x

f1x2 = 7x-3>4f1x2 = 1>23 x2

f1x2 = 3x2>3f1x2 = x5>4
f1x2 = 3x2

+ 23f1x2 = x2
+ p

f1x2 = x - 4f1x2 = 5

F1x2 + C In Problems 21–28, evaluate the indicated indefinite integrals.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29–40, use the methods of Examples 5 and 6 to evalu-
ate the indefinite integrals.

29. 30.

31.

32.
L
15x2

+ 1225x3
+ 3x - 2 dx

L
15x2

+ 1215x3
+ 3x - 826 dx

L
1px3

+ 124 3px2 dx
L
A22x + 1 B322 dx

L
1t2

- 2 cos t2 dt
L
1sin u - cos u2 du

L
 

s1s + 1221s
  ds

L
 

1z2
+ 1221z

  dz

L
Az + 22z B2 dz

L
1x + 122 dx

L
Ax3

+ 1x B  dx
L
1x2

+ x2 dx

x – 2

–2x

–2x – 2

2

x2 – x

x2 + x

x + 1

Figure 3
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244 Chapter 4 Applications of the Derivative

33. 34.

35.

36.

37.

38.

39.

40.

In Problems 41–46, is given. Find by antidifferentiating
twice. Note that in this case your answer should involve two 
arbitrary constants, one from each antidifferentiation. For exam-
ple, if then and 

The constants and cannot be combined
because is not a constant.

41. 42.

43. 44.

45. 46.

47. Prove the formula

Hint: See the box in the margin next to Theorem A.

48. Prove the formula

49. Use the formula from Problem 47 to find

L
c x2

22x - 1
+ 2x2x - 1 d  dx

L
 

g1x2f¿1x2 - f1x2g¿1x2
g21x2   dx =

f1x2
g1x2 + C

L
[f1x2g¿1x2 + g1x2f¿1x2] dx = f1x2g1x2 + C

f–1x2 = 223 x + 1f–1x2 =

x4
+ 1

x3

f–1x2 = x4>3f–1x2 = 1x

f–1x2 = -2x + 3f–1x2 = 3x + 1

C1x
C2C1x3>6 + C1x + C2.

f1x2 =f¿1x2 = x2>2 + C1f–1x2 = x,

f(x)f–1x2
L

 
sinh x

1 + cosh x
 dx

L
 11 + ex22 ex dx

L
 sin x cos x 21 + sin2 x dx

L
 sin x 11 + cos x24 dx

L
1x3

+ x22x4
+ 2x2 dx

L
x22x3

+ 4 dx

L
 

3y22y2
+ 5

  dy
L

3t23 2t2
- 11 dt 50. Use the formula from Problem 47 to find

51. Find if 

52. Prove the formula

53. Prove the formula

54. Evaluate the indefinite integral

Hint: Let 

55. Evaluate 56. Evaluate 

57. Some software packages can evaluate indefinite inte-
grals. Use your software on each of the following.

(a) (b)

(c)

58. Let and 

(a) Determine and 

(b) On the basis of part (a), conjecture the form of 

Answers to Concepts Review: 1.

2.

3. 4. c11f1x2 dx + c21g1x2 dx1x4
+ 3x2

+ 129>9 + C

[f1x2]rf¿1x2xr + 1>1r + 12 + C, r Z -1

rxr - 1;

F161x2.
F41x2.F11x2, F21x2, F31x2,
Fn + 11x2 =

L
Fn1x2 dx.F01x2 = x sin xCASEXPL

L
1x2 cos 2x + x sin 2x2 dx

L
sin31x>62 dx

L
6 sin131x - 222 dx

CAS

L
sin2 x dx.

L
ƒ x ƒ  dx.

u = sin1x2
+ 124.

L
sin3[1x2

+ 124] cos[1x2
+ 124]1x2

+ 123x dx

= fm1x2gn1x2 + C
L

fm - 11x2gn - 11x2[nf1x2g¿1x2 + mg1x2f¿1x2] dx

L
 

2g1x2f¿1x2 - f1x2g¿1x2
2[g1x2]3>2 =

f1x22g1x2 + C

f1x2 = x2x3
+ 1.

L
f–1x2 dx

L
c -x3

12x + 523>2 +

3x222x + 5
d  dx

In the previous section, our task was to antidifferentiate (integrate) a function f to
obtain a new function F. We wrote

and this was correct by definition provided When we evaluate an
antiderivative like this we are, in effect, asking this: what function(s) satisfy
the condition Looking at the problem this way leads us to study
differential equations.

F¿(x) = f(x)?
F(x)

F¿1x2 = f1x2.
L

f1x2 dx = F1x2 + C

4.9
Introduction to

Differential Equations
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Section 4.9 Introduction to Differential Equations 245

What Is a Differential Equation? To motivate our answer, we begin with
a simple example.

� EXAMPLE 1 Find the xy-equation of the curve that passes through 
and whose slope at any point on the curve is equal to twice the x-coordinate of that
point.

SOLUTION The condition that must hold at each point (x, y) on the curve is

We are looking for a function that satisfies this equation and the addi-
tional condition that when We suggest two ways of looking at this
problem.

Method 1 When an equation has the form we observe that y must
be an antiderivative of that is,

In our case,

Method 2 Think of as a quotient of two differentials. When we multiply
both sides of by dx, we get

Next we integrate the differentials on both sides, equate the results, and simplify.

The second method works in a wide variety of problems that are not of the simple
form as we shall see.

The solution represents the family of curves illustrated in Fig-
ure 1. From this family, we must choose the one for which when 
thus, we want

We conclude that  and therefore that  �

The equations and are called differential equations.
Other examples are

 
d2y

dx2 + 3 

dy

dx
- 2xy = 0

 y dy = 1x3
+ 12 dx

 
dy

dx
= 2xy + sin x

dy = 2x dxdy>dx = 2x

y = x2
+ 1.C = 1

2 = 1-122 + C

x = -1;y = 2
y = x2

+ C
dy>dx = g1x2,

 y = x2
+ C

 y = x2
+ C2 - C1

 y + C1 = x2
+ C2

 
L

dy =

L
2x dx

dy = 2x dx

dy>dx = 2x
dy>dx

y =

L
2x dx = x2

+ C

y =

L
g1x2 dx

g(x);
dy>dx = g1x2,

x = -1.y = 2
y = f1x2

dy

dx
= 2x

1-1, 22

1

–1

2

1

3

4

–2

–2

y

x

y = x2+C

(–1, 2)

C= 2, 1, 0, –1, –2

Figure 1
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246 Chapter 4 Applications of the Derivative

Any equation in which the unknown is a function and that involves derivatives (or
differentials) of this unknown function is called a differential equation. A function
that, when substituted in the differential equation yields an equality, is called a sol-
ution of the differential equation.Thus, to solve a differential equation is to find an
unknown function. In general, this is a difficult job and one about which many
thick books have been written. Here we consider only the simplest type, first-order
separable differential equations. These are equations involving just the first deriv-
ative of the unknown function and are such that the variables can be separated,
one on each side of the equation.

Separation of Variables Consider the differential equation

If we multiply both sides by we obtain

In this form, the differential equation has its variables separated; that is, the y
terms are on one side of the equation and the x terms are on the other. In separat-
ed form, we can solve the differential equation using Method 2 (integrate both
sides, equate the results, and simplify), as we now illustrate.

� EXAMPLE 2 Solve the differential equation

Then find that solution for which when 

SOLUTION As noted earlier, the given equation leads to

Thus,

To find the constant C, we use the condition when This gives

Thus,

To check our work we can substitute this result in both sides of the original dif-
ferential equation to see that it gives an equality. We should also check that 
when 

Substituting in the left side, we get

dy

dx
=

1
3

 a3x2

2
+ 3x3

+ 216b-2>313x + 9x22 =

x + 3x2

A32 x2
+ 3x3

+ 216 B2>3

x = 0.
y = 6

y = A3 3x2

2
+ 3x3

+ 216

 216 = C

 6 = 23 C

x = 0.y = 6

 y = A3 3x2

2
+ 3x3

+ C

 y3
=

3x2

2
+ 3x3

+ 13C2 - 3C12 =

3x2

2
+ 3x3

+ C

 
y3

3
+ C1 =

x2

2
+ x3

+ C2

 
L

y2 dy =

L
1x + 3x22 dx

y2 dy = 1x + 3x22 dx

x = 0.y = 6

dy

dx
=

x + 3x2

y2

y2 dy = 1x + 3x22 dx

y2 dx,

dy

dx
=

x + 3x2

y2
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Section 4.9 Introduction to Differential Equations 247

On the right side, we get

As expected, the two expressions are equal. When we have

Thus, when as we expected. �

Motion Problems Recall that if and represent the position,
velocity, and acceleration, respectively, at time t of an object moving along a coor-
dinate line then

In some earlier work (Section 3.6), we assumed that was known, and from this
we calculated and Now we want to consider the reverse process: given the
acceleration find the velocity and the position 

� EXAMPLE 3 Falling-Body Problem

Near the surface of the earth, the acceleration of a falling body due to gravity is 32
feet per second per second, provided that air resistance is neglected. If an object is
thrown upward from an initial height of 1000 feet (Figure 2) with an initial velocity
of 50 feet per second, find its velocity and height 4 seconds later.

SOLUTION Let us assume that the height s is measured positively in the
upward direction. Then is initially positive (s is increasing), but

is negative. (The pull of gravity is downward, thus decreasing ). Hence,
we start our analysis with the differential equation with the
additional conditions that and when Either Method 1
(direct antidifferentiation) or Method 2 (separation of variables) works well.

Since at we find that and so

Now and so we have another differential equation,

When we integrate, we obtain

Since at and

s = -16t2
+ 50t + 1000

t = 0, K = 1000s = 1000

 = -16t2
+ 50t + K

 s =

L
1-32t + 502 dt

ds

dt
= -32t + 50

v = ds>dt,

v = -32t + 50

C = 50,t = 0,v = 50

 v =

L
-32 dt = -32t + C

 
dv

dt
= -32

t = 0.s = 1000v = 50
dv>dt = -32,

va = dv>dt
v = ds>dt

s(t).v(t)a(t),
a(t).v(t)

s(t)

 a1t2 = v¿1t2 =

dv

dt
=

d2s

dt2

 v1t2 = s¿1t2 =

ds

dt

a(t)s(t), v(t),

x = 0,y = 6

y = A3 3 # 02

2
+ 3 # 03

+ 216 = 23 216 = 6

x = 0,

x + 3x2

y2 =

x + 3x2

A32 x2
+ 3x3

+ 216 B2>3

1000

Figure 2
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248 Chapter 4 Applications of the Derivative

R

s

Figure 3

Finally, at 

�

We remark that if and at the procedure of Example 3
leads to the well-known falling-body formulas:

� EXAMPLE 4 The acceleration of an object moving along a coordinate line
is given by in meters per second per second. If the velocity at

is 4 meters per second, find the velocity 2 seconds later.

SOLUTION We begin with the differential equation shown in the first line
below. To perform the integration in the second line, we multiply and divide by 2,
thus preparing the integral for the Generalized Power Rule.

Since at 

which gives Thus,

At 

�

� EXAMPLE 5 Escape Velocity (Optional)

The gravitational attraction F exerted by the earth on an object of mass m at a dis-
tance s from the center of the earth is given by where 
( per second per second) is the acceleration of gravity at the surface of
the earth and R is the radius of the earth (Figure 3). Show that
an object launched outward from the earth with an initial velocity

per second will not fall back to the earth. Neglect air re-
sistance in making this calculation.

SOLUTION According to Newton’s Second Law, that is,

Thus,

mv 
dv

ds
= -mg 

R2

s2

F = m 
dv

dt
= m 

dv

ds
 
ds

dt
= m 

dv

ds
 v

F = ma;

v0 Ú 22gR L 6.93 miles

1R L 3960 miles2g L 32 feet
-gF = -mgR2>s2,

v = -  
1

41492 +

145
36

L 4.023 meters per second

t = 2,

v = -  
1

412t + 322 +

145
36

C =
145
36 .

4 = -  
1

41322 + C

t = 0,v = 4

 =

1
2

 
12t + 32-2

-2
+ C = -  

1

412t + 322 + C

 v =

L
12t + 32-3 dt =

1
2L
12t + 32-3 2 dt

 
dv

dt
= 12t + 32-3

t = 0
a1t2 = 12t + 32-3

 s = -16t2
+ v0t + s0

 v = -32t + v0

 a = -32

t = 0,s = s0v = v0

 s = -161422 + 50142 + 1000 = 944 feet

 v = -32142 + 50 = -78 feet per second
t = 4,
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Separating variables gives

Now when and so Consequently,

Finally, since gets small with increasing s, we see that remains positive if

and only if

miles per second �v0 Ú 22gR L 2(2) A 32

5280
B(3960) L 6.93

v2gR2>s
v2

=

2gR2

s
+ v0

2
- 2gR

C =
1
2 v0

2
- gR.s = R,v = v0

 
v2

2
=

gR2

s
+ C

 
L

v dv = -gR2

L
s-2 ds

 v dv = -gR2s-2 ds

Concepts Review
1. and are examples of

what is called a _____.

2. To solve the differential equation is to
find the _____ that, when substituted for y, yields an equality.

3. To solve the differential equation the first
step would be to _____.

dy>dx = x2y3,

dy>dx = g1x, y2
dy>dx = x>y2dy>dx = 3x2

+ 1 4. To solve a falling-body problem near the surface of the
earth, we start with the experimental fact that the acceleration a
of gravity is feet per second per second; that is,

Solving this differential equation gives
_____, and solving the resulting differential equa-

tion gives _____.s =

v = ds>dt =

a = dv>dt = -32.
-32

Problem Set 4.9
In Problems 1–4, show that the indicated function is a solution of
the given differential equation; that is, substitute the indicated func-
tion for y to see that it produces an equality.

1.

2.

3.

4. and 

In Problems 5–14, first find the general solution (involving a con-
stant C) for the given differential equation.Then find the particular
solution that satisfies the indicated condition. (See Example 2.)

5. at 

6. at x = 1
dy

dx
= x-3

+ 2; y = 3

x = 1
dy

dx
= x2

+ 1; y = 1

y = ;1ady

dx
b2

+ y2
= 1; y = sin1x + C2

d2y

dx2 + y = 0; y = C1 sin x + C2 cos x

-x 

dy

dx
+ y = 0; y = Cx

dy

dx
+

x

y
= 0; y = 21 - x2

7. at 

8. at 

9. at 

10. at 

11. at 

12. at 

13. at 

14. at 

15. Find the xy-equation of the curve through (1, 2) whose
slope at any point is three times its x-coordinate (see Example 1).

x = 0
dy

dx
= -y2x1x2

+ 224; y = 1

x = 0
dy

dx
= 12x + 124; y = 6

t = 0
du

dt
= u31t3

- t2; u = 4

t = 0
ds

dt
= 16t2

+ 4t - 1; s = 100

t = 0
dy

dt
= y4; y = 1

t = 1
dz

dt
= t2z2; z = 1>3

x = 1
dy

dx
= Ax

y
; y = 4

x = 1
dy

dx
=

x

y
; y = 1
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250 Chapter 4 Applications of the Derivative

16

9

Figure 4

16. Find the xy-equation of the curve through (1, 2) whose
slope at any point is three times the square of its y-coordinate.

In Problems 17–20, an object is moving along a coordinate line
subject to the indicated acceleration a (in centimeters per second
per second) with the initial velocity (in centimeters per second)
and directed distance (in centimeters). Find both the velocity 
and directed distance after 2 seconds (see Example 4).

17.

18.

19.

20.

21. A ball is thrown upward from the surface of the earth
with an initial velocity of 96 feet per second. What is the maxi-
mum height that it reaches? (See Example 3.)

22. A ball is thrown upward from the surface of a planet
where the acceleration of gravity is k (a negative constant) feet
per second per second. If the initial velocity is show that the
maximum height is 

23. On the surface of the moon, the acceleration of gravity is
feet per second per second. If an object is thrown upward

from an initial height of 1000 feet with a velocity of 56 feet per
second, find its velocity and height 4.5 seconds later.

24. What is the maximum height that the object of Problem 23
reaches?

25. The rate of change of volume V of a melting snowball is
proportional to the surface area S of the ball; that is,

where k is a positive constant. If the radius of the
ball at is and at is show that

26. From what height must a ball be dropped in order to
strike the ground with a velocity of feet per second?

27. Determine the escape velocity for an object launched from
each of the following celestial bodies (see Example 5). Here

per second per second.

Acceleration 
of Gravity Radius (miles)

Moon 1,080
Venus 3,800
Jupiter 43,000
Sun 432,000

28. If the brakes of a car, when fully applied, produce a
constant deceleration of 11 feet per second per second, what is
the shortest distance in which the car can be braked to a halt
from a speed of 60 miles per hour?

29. What constant acceleration will cause a car to increase its
velocity from 45 to 60 miles per hour in 10 seconds?

30. A block slides down an inclined plane with a constant
acceleration of 8 feet per second per second. If the inclined plane
is 75 feet long and the block reaches the bottom in 3.75 seconds,
what was the initial velocity of the block?

31. A certain rocket, initially at rest, is  shot straight up with
an acceleration of 6t meters per second per second during the
first 10 seconds after blast-off, after which the engine cuts out and
the rocket is subject only to gravitational acceleration of me-
ters per second per second. How high will the rocket go?

-10

-28g
-2.6g
-0.85g
-0.165g

g L 32 feet

C

-136

r = -
3
20 t + 2.

r = 0.5,t = 10r = 2t = 0
dV>dt = -kS,

C

-5.28
C

-v0
2>2k.

v0,

a = 13t + 12-3; v0 = 4, s0 = 0C

a = 23 2t + 1; v0 = 0, s0 = 10C

a = 11 + t2-4; v0 = 0, s0 = 10

a = t; v0 = 3, s0 = 0

s
vs0

v0

32. Starting at station A, a commuter train accelerates at 
3 meters per second per second for 8 seconds, then travels at con-
stant speed for 100 seconds, and finally brakes (decelerates) to
a stop at station B at 4 meters per second per second. Find (a) 
and (b) the distance between A and B.

33. Starting from rest, a bus increases speed at constant accel-
eration then travels at constant speed and finally brakes to
a stop at constant acceleration It took 4 minutes to
travel the 2 miles between stop C and stop D and then 3 minutes
to go the 1.4 miles between stop D and stop E.
(a) Sketch the graph of the velocity as a function of time t,

(b) Find the maximum speed 

(c) If evaluate a.

34. A hot-air balloon left the ground rising at 4 feet per sec-
ond. Sixteen seconds later,Victoria threw a ball straight up to her
friend Colleen in the balloon. At what speed did she throw the
ball if it just made it to Colleen?

35. According to Torricelli’s Law, the time rate of change of
the volume V of water in a draining tank is proportional to the
square root of the water’s depth. A cylindrical tank of radius

centimeters and height 16 centimeters, which was full ini-
tially, took 40 seconds to drain.
(a) Write the differential equation for V at time t and the two

corresponding conditions.
(b) Solve the differential equation.
(c) Find the volume of water after 10 seconds.

36. The wolf population P in a certain state has been growing
at a rate proportional to the cube root of the population size. The
population was estimated at 1000 in 1980 and at 1700 in 1990.

(a) Write the differential equation for P at time t with the two
corresponding conditions.

(b) Solve the differential equation.
(c) When will the wolf population reach 4000?

37. At a ball was dropped from a height of 16 feet. It
hit the floor and rebounded to a height of 9 feet (Figure 4).
(a) Find a two-part formula for the velocity that is valid

until the ball hits the floor a second time.
(b) At what two times was the ball at height 9 feet?

38. To derive the equation of a hanging cable (catenary), we
consider the section AP from the lowest point A to a general
point P(x, y) (see Figure 5) and imagine the rest of the cable to
have been removed.

The forces acting on the cable are
1. tension pulling at A;
2. tension pulling at P;T = tangential

H = horizontal

v(t)

t = 0,

C

10>1p

a1 = -a2 = a,

vm.
0 … t … 7.

v

a2 1a2 6 02.
vm,a1,

vm

vm

y

x

H A

P
T

φ

lb/ftδ

T cos φ

T sin φ

Figure 5250



Section 4.10 Exponential Growth and Decay 251

3. of s feet of cable of density pounds per
foot.

To be in equilibrium, the horizontal and vertical components of T
must just balance H and W, respectively. Thus, and

and so

But since we get and therefore
dy

dx
=

ds

H
tan f = dy>dx,

T sin f

T cos f
= tan f =

ds

H

T sin f = W = ds,
T cos f = H

dW = ds = weight

4.10
Exponential Growth 

and Decay
At the beginning of 2004, the world’s population was about 6.4 billion. It is said
that by the year 2020 it will reach 7.9 billion. How are such predictions made?

To treat the problem mathematically, let denote the size of the popu-
lation at time t, where t is the number of years after 2004. Actually, is an inte-
ger, and its graph “jumps” when someone is born or someone dies. However, for a
large population, these jumps are so small relative to the total population that we
will not go far wrong if we pretend that is a nice differentiable function.

It seems reasonable to suppose that the increase in population (births
minus deaths) during a short time period is proportional to the size of the pop-
ulation at the beginning of the period, and to the length of that period. Thus,

or

In its limiting form, this gives the differential equation

If the population is growing; if it is shrinking. For world population,
history indicates that k is about 0.0132 (assuming that t is measured in years),
though some agencies report a different figure.

Solving the Differential Equation We want to solve subject
to the condition that when Separating variables and integrating, we
obtain

Here we know that the population satisfies so we can write the antideriv-
ative on the left as and not worry about the absolute value. The condition

at gives Thus,

or

ln 

y

y0
= kt

ln y - ln y0 = kt

C = ln y0.t = 0y = y0

ln y
y 7 0y

 ln y = kt + C

 
L

 

dy

y
=

L
k dt

 
dy

y
= k dt

t = 0.y = y0

dy>dt = ky

k 6 0,k 7 0,

dy

dt
= ky

¢y

¢t
= ky

¢y = ky ¢t,

¢t
¢y

f

f(t)
y = f1t2

Now show that satisfies this differential
equation with 

Answers to Concepts Review: 1. differential equation
2. function 3. separate variables
4. -32t + v0; -16t2

+ v0t + s0

a = H>d.
y = a cosh1x>a2 + C

d2y

dx2 =

d

H
 
ds

dx
=

d

HA1 + ady

dx
b2
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Changing to exponential form yields

or, finally,

When this type of growth is called exponential growth, and when it
is called exponential decay.

Returning to the problem of world population, we choose to measure time t in
years after January 1, 2004, and y in billions of people. Thus, and, since

By the year 2020, when we can predict that y will be about

� EXAMPLE 1 How long will it take world population to double under the
assumptions above?

SOLUTION The question is equivalent to asking “In how many years after 2004
will the population reach 12.8 billion?” We need to solve

for t. Taking logarithms of both sides gives

�

If world population will double in the first 53 years after 2004, it will double in
any 53-year period; so, for example, it will quadruple in 106 years. More generally,
if an exponentially growing quantity doubles from to in an initial interval of
length T, it will double in any interval of length T, since

We call the number T the doubling time.

� EXAMPLE 2 The number of bacteria in a rapidly growing culture was esti-
mated to be 10,000 at noon and 40,000 after 2 hours. Predict how many bacteria
there will be at 5 P.M.

SOLUTION We assume that the differential equation is applicable,
so Now we have two conditions ( and at ),
from which we conclude that

or

Taking logarithms yields

or

ln 4 = 2k

4 = e2k

40,000 = 10,000ek122

t = 2y = 40,000y0 = 10,000y = y0 e
kt.

dy>dt = ky

y1t + T2
y1t2 =

y0 e
k1t + T2

y0 e
kt =

y0 e
kT

y0
=

2y0

y0
= 2

2y0y0

 t =

ln 2
0.0132

L 53 years

 ln 2 = 0.0132 t

 2 = e0.0132t

 12.8 = 6.4e0.0132t

y = 6.4e 0.01321162
L 7.9 billion

t = 16,

y = 6.4e 0.0132t

k = 0.0132,
y0 = 6.4

k 6 0,k 7 0,

y = y0 e
kt

y

y0
= ekt
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Thus,

and, at this gives

�

The exponential model for population growth is flawed
since it projects faster and faster growth indefinitely far into the future (Figure 1).
In most cases (including that of world population), the limited amount of space
and resources will eventually force a slowing of the growth rate. This suggests an-
other model for population growth, called the logistic model, in which we assume
that the rate of growth is proportional both to the population size y and to the dif-
ference where L is the maximum population that can be supported. This
leads to the differential equation

Note that for small which suggests exponential-type growth. But
as y nears L, growth is curtailed and gets smaller and smaller, producing a
growth curve like Figure 2.This model is explored in Problems 34, 35, and 47 of this
section and again in Section 7.5.

Radioactive Decay Not everything grows; some things decrease over time.
For example, radioactive elements decay, and they do it at a rate proportional to
the amount present. Thus, their change rates also satisfy the differential equation

but now with k negative. It is still true that is the solution to this equa-
tion. A typical graph appears in Figure 3.

� EXAMPLE 3 Carbon 14, an isotope of carbon, is radioactive and decays at a
rate proportional to the amount present. Its half-life is 5730 years; that is, it takes
5730 years for a given amount of carbon 14 to decay to one-half its original size. If
there were 10 grams present originally, how much would be left after 2000 years?

SOLUTION The half-life of 5730 allows us to determine k, since it implies that

or, after taking logarithms,

Thus,

At this gives

�

In Problem 17, we show how Example 3 may be used to determine the age of
fossils and other once-living things.

Newton’s Law of Cooling Newton’s Law of Cooling states that the rate at
which an object cools (or warms) is proportional to the difference in temperature

y = 10e-0.000121120002
L 7.85 grams

t = 2000,

y = 10e-0.000121t

 k =

- ln 2
5730

L -0.000121

 - ln 2 = 5730k

1
2

= 1e k157302

y = y0 e
kt

dy

dt
= ky

dy>dt
y, dy>dt L kLy,

dy

dt
= ky1L - y2

L - y,

y = y0 e
kt, k 7 0,

y = 10,000e0.693152
L 320,000

t = 5,

y = 10,000e1ln 22t

k =
1
2 ln 4 = ln 24 = ln 2
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between the object and the surrounding medium. To be specific, suppose that an
object initially at temperature is placed in a room where the temperature is 
If represents the temperature of the object at time t, then Newton’s Law of
Cooling says that

This differential equation is separable and can be solved like the growth and decay
problems in this section.

� EXAMPLE 4 An object is taken from an oven at 350°F and left to cool in a
room at 70°F. If the temperature fell to 250°F in one hour, what would its temper-
ature be three hours after it was removed from the oven?

SOLUTION The differential equation can be written as

Since the initial temperature is greater than 70, it seems reasonable that the ob-
ject’s temperature will decrease toward 70; thus will be positive and the ab-
solute value is unnecessary. This leads to

where Now we apply the initial condition, to find 

Thus, the solution of the differential equation is

To find k we apply the condition that at time the temperature was

This gives

See Figure 4. After 3 hours, the temperature is

�T132 = 70 + 280e-0.44183 # 3
L 144.4°F

T1t2 = 70 + 280e-0.44183t

 k = ln 
180
280

L -0.44183

 ek
=

180
280

 280ek
= 180

 250 = T112 = 70 + 280ek #1

T112 = 250.
t = 1

T1t2 = 70 + 280ekt

 280 = C1

 350 = T102 = 70 + C1e
k # 0

C1:T102 = 350C1 = eC.

 T = 70 + C1e
kt

 T - 70 = ekt + C

T - 70

 ln ƒ T - 70 ƒ = kt + C

 
L

 
dT

T - 70
=

L
k dt

 
dT

T - 70
= k dt

 
dT

dt
= k1T - 702

dT

dt
= k1T - T12

T(t)
T1.T0
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Compound Interest We saw in Section 2.6 that if dollars are put into a
bank account that pays an annual rate of interest compounded n times per year,
it will be worth

dollars after t years. If we let we get continuous compounding of interest,
and in this case

Here is another approach to the problem of continuous compounding of inter-
est. Let be the value at time t of dollars invested at the interest rate r. To
say that interest is compounded continuously is to say that the instantaneous rate
of change of A with respect to time is rA; that is,

This differential equation was solved at the beginning of the section; its solution is
A = A0e

rt.

dA

dt
= rA

A0A(t)

 A1t2 = lim
n: q

 A0a1 +

r
n
bnt

= A0 lim
n: q

c a1 +

r
n
bn>r d rt

= A0e
rt

t : q ,

A1t2 = A0a1 +

r
n
bnt

r,
A0
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Concepts Review
1. The rate of change of a quantity y growing expo-

nentially satisfies the differential equation _____. In
contrast, if y is growing logistically toward an upper bound L,

_____.

2. If a quantity growing exponentially doubles after T years,
it will be _____ times as large after 3T years.

dy>dt =

dy>dt =

dy>dt 3. The time for an exponentially decaying quantity y to go
from size to size is called the _____.

4. The number e can be expressed as a limit by 
_____.lim

n: q

e =

y0>2y0

Problem Set 4.10
In Problems 1–4, solve the given differential equation subject to
the given condition. Note that denotes the value of y at 

1. 2.

3.

4.

5. A bacterial population grows at a rate proportional to its
size. Initially, it is 10,000, and after 10 days it is 20,000. What is the
population after 25 days? See Example 2.

6. How long will it take the population of Problem 5 to dou-
ble? See Example 1.

7. How long will it take the population of Problem 5 to
triple? See Example 1.

8. The population of the United States was 3.9 million in
1790 and 178 million in 1960. If the rate of growth is assumed pro-
portional to the number present, what estimate would you give
for the population in 2000? (Compare your answer with the ac-
tual 2000 population, which was 275 million.)

dy

dt
= -0.003y, y1-22 = 3

dy

dt
= 0.005y, y1102 = 2

dy

dt
= 6y, y102 = 1

dy

dt
= -6y, y102 = 4

t = a.y(a)
9. The population of a certain country is growing at 3.2%

per year; that is, if it is A at the beginning of a year, it is 1.032A at
the end of that year. Assuming that it is 4.5 million now, what will
it be at the end of 1 year? 2 years? 10 years? 100 years?

10. Determine the proportionality constant k in 
for Problem 9. Then use to find the population after
100 years.

11. A population is growing at a rate proportional to its size.
After 5 years, the population size was 164,000.After 12 years, the
population size was 235,000. What was the original population
size?

12. The mass of a tumor grows at a rate proportional to its
size. The first measurement of its mass was 4.0 grams. Four
months later its mass was 6.76 grams. How large was the tumor
six months before the first measurement? If the instrument can
detect tumors of mass 1 gram or greater, would the tumor have
been detected at that time?

13. A radioactive substance has a half-life of 700 years. If
there were 10 grams initially, how much would be left after 300
years?

14. If a radioactive substance loses 15% of its radioactivity in
2 days, what is its half-life?

y = 4.5ekt
dy>dt = ky
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15. Cesium-137 and strontium-90 are two radioactive chem-
icals that were released at the Chernobyl nuclear reactor in 
April 1986. The half-life of cesium-137 is 30.22 years, and that of
strontium-90 is 28.8 years. In what year will the amount of
cesium-137 be equal to 1% of what was released? Answer this
question for strontium-90.

16. An unknown amount of a radioactive substance is being
studied. After two days, the mass is 15.231 grams. After eight
days, the mass is 9.086 grams. How much was there initially?
What is the half-life of this substance?

17. (Carbon Dating) All living things contain carbon 12,
which is stable, and carbon 14, which is radioactive. While a plant
or animal is alive, the ratio of these two isotopes of carbon
remains unchanged, since the carbon 14 is constantly renewed;
after death, no more carbon 14 is absorbed. The half-life of car-
bon 14 is 5730 years. If charred logs of an old fort show only 70%
of the carbon 14 expected in living matter, when did the fort burn
down? Assume that the fort burned soon after it was built of
freshly cut logs.

18. Human hair from a grave in Africa proved to have only
51% of the carbon 14 of living tissue.When was the body buried?

19. An object is taken from an oven at 300°F and left to cool
in a room at 75°F. If the temperature fell to 200°F in what 
will it be after 3 hours?

20. A thermometer registered outside and then was
brought into a house where the temperature was 24°C. After 5
minutes it registered 0°C. When will it register 20°C?

21. An object initially at 26°C is placed in water having
temperature 90°C. If the temperature of the object rises to 70°C
in 5 minutes, what will be the temperature after 10 minutes?

22. A batch of brownies is taken from a 350°F oven and
placed in a refrigerator at 40°F and left to cool. After 15 minutes,
the brownies have cooled to 250°F. When will the temperature of
the brownies be 110°F?

23. A dead body is found at 10 P.M. to have temperature 82°F.
One hour later the temperature was 76°F.The temperature of the
room was a constant 70°F. Assuming that the temperature of the
body was 98.6°F when it was alive, estimate the time of death.

24. Solve the differential equation for Newton’s Law of Cool-
ing for an arbitrary and k, assuming that Show
that 

25. If $375 is put in the bank today, what will it be worth 
at the end of 2 years if interest is 3.5% and is compounded as
specified?
(a) Annually (b) Monthly
(c) Daily (d) Continuously

26. Do Problem 25 assuming that the interest rate is 4.6%.

27. How long does it take money to double in value for the
specified interest rate?

(a) 6% compounded monthly
(b) 6% compounded continuously

28. Inflation between 1999 and 2004 ran at about 2.5% per
year. On this basis, what would you expect a car that would have
cost $20,000 in 1999 to cost in 2004?

29. Manhattan Island is said to have been bought by Peter
Minuit in 1626 for $24. Suppose that Minuit had instead put the

lim
t: q

 T1t2 = T1.
T0 7 T1.T0, T1,

-20°C

1
2 hour,
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$24 in the bank at 6% interest compounded continuously. What
would that $24 have been worth in 2000?

30. If Methuselah’s parents had put $100 in the bank for 
him at birth and he left it there, what would Methuselah have
had at his death (969 years later) if interest was 4% compounded
annually?

31. Find the value of $1000 at the end of 1 year when the in-
terest is compounded continuously at 5%. This is called the
future value.

32. Suppose that after 1 year you have $1000 in the bank. If
the interest was compounded continuously at 5%, how much
money did you put in the bank one year ago? This is called the
present value.

33. It will be shown later for small x that Use
this fact to show that the doubling time for money invested at p
percent compounded annually is about years.

34. The equation for logistic growth is

Show that this differential equation has the solution

Hint:

35. Sketch the graph of the solution in Problem 34 when
and (a logistic model for world

population; see the discussion at the beginning of this section).
Note that 

36. Show that the differential equation

has solution

Assume that 

37. Consider a country with a population of 10 million in
1985, a growth rate of 1.2% per year, and immigration from other
countries of 60,000 per year. Use the differential equation of
Problem 36 to model this situation and predict the population in
2010. Take 

38. Important news is said to diffuse through an adult pop-
ulation of fixed size L at a time rate proportional to the num-
ber of people who have not heard the news. Five days after a
scandal in City Hall was reported, a poll showed that half the
people had heard it. How long will it take for 99% of the people
to hear it?

Besides providing an easy way to differentiate products, log-
arithmic differentiation also provides a measure of the relative or
fractional rate of change, defined as We explore this concept
in Problems 39–42.

39. Show that the relative rate of change of as a function
of t is k.

40. Show that the relative rate of change of any polynomial
approaches zero as the independent variable approaches infinity.

ekt

y¿>y.

EXPL

a = 0.012.

a Z 0.

y = ay0 +

b

a
beat

-

b

a

dy

dt
= ay + b, y(0) = y0

lim
t: q

 y = 16.

k = 0.00186y0 = 6.4, L = 16,

1
y1L - y2 =

1
Ly

+

1
L1L - y2.

y =

Ly0

y0 + 1L - y02e-Lkt

dy

dt
= ky1L - y2

70>p
ln 11 + x2 L x.
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41. Prove that if the relative rate of change is a positive con-
stant then the function must represent exponential growth.

42. Prove that if the relative rate of change is a negative con-
stant then the function must represent exponential decay.

43. Assume that (1) world population continues to grow ex-
ponentially with growth constant (2) it takes acre
of land to supply food for one person, and (3) there are
13,500,000 square miles of arable land in the world. How long will
it be before the world reaches the maximum population? Note:
There were 6.4 billion people in 2004 and 1 square mile is 640
acres.

44. The Census Bureau estimates that the growth rate k of
the world population will decrease by roughly 0.0002 per year for
the next few decades. In 2004, k was 0.0132.
(a) Express k as a function of time t, where t is measured in

years since 2004.
(b) Find a differential equation that models the population y for

this problem.
(c) Solve the differential equation with the additional condition

that the population in 2004 was 6.4 billion.
(d) Graph the population y for the next 300 years.

1t = 02

GC

1
2k = 0.0132,
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(e) With this model, when will the population reach a maxi-
mum? When will the population drop below the 2004 level?

45. Repeat Exercise 44 under the assumption that k will de-
crease by 0.0001 per year.

46. Let E be a differentiable function satisfying
for all u and Find a formula for 

Hint: First find 

47. Using the same axes, draw the graphs for of
the following two models for the growth of world population
(both described in this section).

(a) Exponential growth:

(b) Logistic growth:

Compare what the two models predict for world population in
2010, 2040, and 2090. Note: Both models assume that world popu-
lation was 6.4 billion in 2004 

Answers to Concepts Review: 1. ky; 2. 8

3. half-life 4. a1 +

1
n
bn

ky1L - y2

1t = 02.

y = 102.4>16 + 10e-0.030t2
y = 6.4e0.0132t

0 … t … 100GC

E¿1x2.
E(x).v.E1u2E1v2E1u + v2 =

EXPL

GC

4.11 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. A continuous function defined on a closed interval must
attain a maximum value on that interval.

2. If a differentiable function f attains a maximum value at
an interior point c of its domain, then 

3. It is possible for a function to have an infinite number of
critical points.

4. A continuous function that is increasing on 
must be differentiable everywhere.

5. If then the graph of f is concave
up on the whole real line.

6. If f is an increasing differentiable function on an interval
I, then for all x in I.

7. If for all x in I, then f is increasing on I.

8. If then f has an inflection point at 

9. A quadratic function has no inflection points.

10. If for all x in then f attains its maximum
value on at b.

11. The function has no minimum value.

12. The function has no maximum or minimum
values.

13. The function has no maximum or
minimum values.

y = 2x3
+ x + tan x

y = 2x3
+ x

y = tan2 x

[a, b]
[a, b],f¿1x2 7 0

(c, f(c)).f–1c2 = 0,

f¿1x2 7 0,

f¿1x2 7 0

f1x2 = 3x6
+ 4x4

+ 2x2,

1- q , q2

f¿1c2 = 0.

14. The graph of has a

vertical asymptote at 

15. The graph of has a horizontal asymptote of

16. The graph of has an oblique

asymptote of 

17. The function satisfies the hypotheses of the
Mean Value Theorem on [0, 2].

18. The function satisfies the hypotheses of the
Mean Value Theorem on 

19. On the interval there will be just one point where
the tangent line to is parallel to the secant line.

20. If for all x in (a, b), then f is constant on this
interval.

21. If then is neither a maximum nor
minimum value.

22. The graph of has infinitely many points of
inflection.

23. Among rectangles of fixed area K, the one with maximum
perimeter is a square.

24. If the graph of a differentiable function has three x-
intercepts, then it must have at least two points where the tangent
line is horizontal.

y = sin x

f(c)f¿1c2 = f–1c2 = 0,

f¿1x2 = 0

y = x3

[-1, 1],

[-1, 1].
f1x2 = ƒ x ƒ

f1x2 = 1x

y = 3x + 2.

y =

3x2
+ 2x + sin x

x

y = -1.

y =

x2
+ 1

1 - x2

x = 3.

y =

x2
- x - 6
x - 3

=

1x + 221x - 32
x - 3
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25. The sum of two increasing functions is an increasing
function.

26. The product of two increasing functions is an increasing
function.

27. If and for then f is increasing
on 

28. If for all x on the interval [0, 3] and 
then 

29. If f is a differentiable function, then f is nondecreasing on
(a, b) if and only if on (a, b).

30. Two differentiable functions have the same derivative on
(a, b) if and only if they differ by a constant on (a, b).

31. If for all x, then the graph of cannot
have a horizontal asymptote.

32. A global maximum value is always a local maximum
value.

33. A cubic function can
have at most one local maximum value on any open interval.

34. The linear function has no mini-
mum value on any open interval.

35. If f is continuous on and then
has a root between a and b.

36. One of the virtues of the Bisection Method is its rapid
convergence.

37. Newton’s Method will produce a convergent sequence for
the equation 

38. If Newton’s Method fails to converge for one starting
value, then it will fail to converge for every starting value.

39. If g is continuous on and if 
then g has a fixed point between a and b.

40. One of the virtues of the Bisection Method is that it al-
ways converges.

41. The indefinite integral is a linear operator.

42.

43. is a solution to the differential equation

44. All functions that are antiderivatives must have
derivatives.

45. If the second derivatives of two functions are equal, then
the functions differ at most by a constant.

46. for every differentiable function f.

47. If gives the height at time t of a ball
thrown straight up from the surface of the earth, then the ball will
hit the ground with velocity 

48. If y is growing exponentially and if y triples between 
and then y will also triple between and t = 3t1.t = 2t1t = t1,

t = 0

-v0.

s = -16t2
+ v0 t

L
f¿1x2 dx = f1x2

1dy>dx22 = 1 - y2.
y = cos x

L
[f1x2g¿1x2 + g1x2f¿1x2] dx = f1x2g1x2 + C.

a 6 g1a2 6 g1b2 6 b,[a, b]

x1>3
= 0.

f1x2 = 0
f1a2f1b2 6 0,[a, b]

f1x2 = ax + b, a Z 0,

f1x2 = ax3
+ bx2

+ cx + d, a Z 0,

y = f1x2f–1x2 7 0

f¿1x2 Ú 0

f132 6 4.
f102 = 1,f¿1x2 … 2

[0, q2.
x Ú 0,f–1x2 7 0f¿102 = 0

49. The time necessary for to drop to half its

value is 

50. It is to a saver’s advantage to have money invested at 
5% compounded continuously rather than 6% compounded
monthly.

Sample Test Problems

In Problems 1–12, a function f and its domain are given. Deter-
mine the critical points, evaluate f at these points, and find the
(global) maximum and minimum values.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

In Problems 13–19, a function f is given with domain 
Indicate where f is increasing and where it is concave down.

13.

14.

15.

16.

17.

18.

19.

20. Find where the function g, defined by is
increasing and where it is decreasing. Find the local extreme val-
ues of g. Find the point of inflection. Sketch the graph.

21. Find where the function f , defined by 
is increasing and where it is decreasing. Find the local extreme
values of f. Find the point of inflection. Sketch the graph.

f1x2 = x21x - 42,

g1t2 = t3
+ 1>t,

f(x) = ln (1 + x4)

f1x2 = e-ƒx ƒ

f1x2 = x4
- 4x5

f1x2 = -2x3
- 3x2

+ 12x + 1

f1x2 = x3
- 3x + 3

f1x2 = x9

f1x2 = 3x - x2

(- q , q ).

f1u2 = sin2 u - sin u; [0, p]

f1u2 = sin u; [p>4, 4p>3]

f1x2 = 1x - 1231x + 222 ; [-2, 2]

f1x2 = 2x5
- 5x4

+ 7; [-1, 3]

f1u2 = u21u - 221>3; [-1, 3]

f1x2 = 3x4
- 4x3; [-2, 3]

f1s2 = s + ƒ s ƒ ; [-1, 1]

f1x2 = ƒ x ƒ ; C- 1
2, 1 D

f1x2 =

1

x2 ; [-2, 02

f1z2 =

1

z2 ; C -2, - 1
2 D

f1t2 =

1
t
 ; [1, 4]

f1x2 = x2
- 2x; [0, 4]

ln 2
ln k

.

x(t) = Ce-kt
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22. Find the maximum and minimum values, if they exist, of
the function defined by

In Problems 23–30, sketch the graph of the given function f , label-
ing all extrema (local and global) and the inflection points and
showing any asymptotes. Be sure to make use of and 

23.

24.

25.

26.

27.

28.

29.

30.

In Problems 31–36, sketch the graph of the given function f in the
region unless otherwise indicated, labeling all extrema
(local and global) and the inflection points and showing any
asymptotes. Be sure to make use of and 

31.

32.

33.

34.

35.

36.

37. Sketch the graph of a function F that has all of the follow-
ing properties:

(a) F is everywhere continuous;

(b)

(c) for 

(d) for 

38. Sketch the graph of a function F that has all of the follow-
ing properties:

(a) F is everywhere continuous;

(b)

(c) for 

(d) for for 

for x 7 3.F–1x2 7 0

-1 6 x 6 3,x 6 -1, F–1x2 = 0F–1x2 6 0

x 6 -1, F¿1-12 = F¿132 = -2, F¿172 = 0;F¿1x2 6 0

F1-12 = 6, F132 = -2;

x 6 2.F–1x2 6 0

x 7 2;F¿1x2 = 0

F1-22 = 3, F122 = -1;

f1x2 = 2 cos x - 2 sin x

f1x2 = sin x - sin2 x

f1x2 = 2x - cot x ; 10, p2
f1x2 = x tan x; 1-p>2, p>22
f1x2 = sin x - tan x

f1x2 = cos x - sin x

f–.f¿

1-p, p2,

f1x2 = sin-1 x2

f1x2 = e-ƒx ƒ

f1x2 =

x2
- 1
x

f1x2 = 3x4
- 4x3

f1x2 =

x - 2
x - 3

f1x2 = x2x - 3

f1x2 = 1x2
- 122

f1x2 = x4
- 2x

f–.f¿

f1x2 =

4

x2
+ 1

+ 2

39. Sketch the graph of a function F that has all of the follow-
ing properties:

(a) F is everywhere continuous;

(b) F has period 

(c)

(d) for for 

(e) for 

40. A long sheet of metal, 16 inches wide, is to be turned up at
both sides to make a horizontal gutter with vertical sides. How
many inches should be turned up at each side for maximum car-
rying capacity?

41. A fence, 8 feet high, is parallel to the wall of a building and
1 foot from the building. What is the shortest plank that can go
over the fence, from the level ground, to prop the wall?

42. A page of a book is to contain 27 square inches of print. If
the margins at the top, bottom, and one side are 2 inches and the
margin at the other side is 1 inch, what size page would use the
least paper?

43. A metal water trough with equal semicircular ends and
open top is to have a capacity of cubic feet (Figure 1).
Determine its radius r and length h if the trough is to require the
least material for its construction.

128p

0 6 x 6 p.F–1x2 6 0

p

2
6 x 6 p;0 6 x 6

p

2
, F¿1x2 6 0F¿1x2 7 0

0 … F1x2 … 2, F102 = 0, Fap
2
b = 2;

p;

Figure 1

44. Find the maximum and the minimum of the function
defined on the closed interval by

Find where the graph is concave up and where it is concave
down. Sketch the graph.

45. For each of the following functions, decide whether the
Mean Value Theorem applies on the indicated interval I. If so,
find all possible values of c, if not, tell why. Make a sketch.

(a)

(b)

(c)

46. Find the equations of the tangent lines at the inflection
points of the graph of

y = x4
- 6x3

+ 12x2
- 3x + 1

g1x2 =

x + 1
x - 1

 ; I = [2, 3]

F1x2 = x3>5
+ 1; I = [-1, 1]

f1x2 =

x3

3
 ; I = [-3, 3]

f1x2 = e 1
41x2

+ 6x + 82, if -2 … x … 0
-

1
61x2

+ 4x - 122, if 0 … x … 2

[-2, 2]
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58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

In Problems 70–78, solve the differential equation subject to the
indicated condition.

70. at 

71. at 

72. at 

73. at 

74. at 

75. at 

76. at t = 0
dy

dt
= 6 - y; y = 4

t = 0
dy

dt
= 2y; y = 7

t = 1
dy

dt
= t2y4; y = 1

t =
1
2

dy

dt
= 22t - 1; y = -1

x = 0
dy

dx
= csc y; y = p

x = 3
dy

dx
=

12x + 1
 ; y = 18

x = 0
dy

dx
= sin x; y = 2

L
 

1y2
+ y + 1225 2y3
+ 3y2

+ 6y
  dy

L
 

y2
- 1

1y3
- 3y22  dy

L
sin 2u du

L
et dt

L
 

2

(2y - 1)3   dy

L
 

1

(y + 1)2  dy

L
 

x22x3
+ 9

  dx

L
 

x2x2
+ 4

   dx

L
t41t5

+ 522>3 dt

L
 

t32t4
+ 9

  dt

L
1x + 12 tan213x2

+ 6x2 sec213x2
+ 6x2 dx

L
cos4 x sin x dx

–1 1 2 3 4
–5

5

10

–10

x

y

Figure 2

48. Sketch the graph of a function G with all the following
properties:

(a) is continuous and for all x in

(b)

(c)

(d)

49. Use the Bisection Method to solve ac-
curate to six decimal places. Use and 

50. Use Newton’s Method to solve accurate
to six decimal places. Use 

51. Use the Fixed-Point Algorithm to solve 
starting with 

52. Use Newton’s Method to find the solution of
in the interval accurate to four decimal

places. Hint: Sketch graphs of and using the
same axes to get a good initial guess for 

In Problems 53–67, evaluate the indicated antiderivatives.

53.

54.

55.

56.

57.
L

z12z2
- 321>3 dz

L
y2y2

- 4 dy

L
 

y3
- 9y sin y + 26y-1

y
  dy

L
 
2x4

- 3x2
+ 1

x2   dx

L
Ax3

- 3x2
+ 31x B  dx

x1.
y = tan xy = x

1p, 2p2x - tan x = 0

C

x1 = 0.5.
3x - cos 2x = 0,C

x1 = 0.5.
3x - cos 2x = 0C

b1 = 1.a1 = 0
3x - cos 2x = 0C

lim
x:0+

 G1x2 = lim
x:0- 

G1x2 = q .

lim
x: -q

 G1x2 = 2, lim
x: q 

[G1x2 - x] = 0;

G1-22 = G122 = 3;

1- q , 02 ´ 10, q2;
G–1x2 7 0G(x)

47. Let f be a continuous function with 
and If the graph of is as

shown in Figure 2, sketch a possible graph for y = f1x2.
y = f¿1x2f132 = -1>4.f122 = 0,

f112 = -1>4,

260



77. at 

78. at 

79. A ball is thrown directly upward from a tower 448 feet
high with an initial velocity of 48 feet per second. In how many
seconds will it strike the ground and with what velocity?
Assume that feet per second per second and neglect air
resistance.

80. A town grew exponentially from 10,000 in 1990 to 14,000
in 2000. Assuming that the same type of growth continues, what
will the population be in 2010?

g = 32

x = 0
dy

dx
= x sec y; y = p

x = 0
dy

dx
=

6x - x3

2y
; y = 3

Section 4.11 Chapter Review 261

81. Suppose that glucose is infused into the bloodstream of a
patient at the rate of 3 grams per minute, but that the patient’s
body converts and removes glucose from its blood at a rate
proportional to the amount present (with constant of proportion-
ality 0.02). Let be the amount present at time with

(a) Write the differential equation for Q.

(b) Solve this differential equation. Hint: Use the result of Prob-
lem 36 in Section 4.11.

(c) Determine what happens to Q in the long run.

Q(0) = 120.
t,Q(t)
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In Problems 1–12, find the area of the shaded region.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. y

x

5

8

7

6

4

3

2

1

1 2

y = x3y

x

5

4

3

2

1

1 2 3 4 5

x

y

t

y = xt

x

y

t

y = 1 + xt

y

x1 2

1

y = x + 1y

x

y = x+ 1

1

1

2

5.8

3.6

6.0

5.8

3.6

8.5

a a

8.5

17
a a

a a

a

a

a

a

a

a

a

a a

a

REVIEW &
PREVIEW

PROBLEMS
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The Definite IntegralCHAPTER 5
5.1 Introduction to

Area

5.2 The Definite
Integral

5.3 The First
Fundamental
Theorem of
Calculus

5.4 The Second
Fundamental
Theorem of
Calculus and the
Method of
Substitution

5.5 The Mean Value
Theorem for
Integrals and the
Use of Symmetry

5.6 Numerical
Integration

5.1
Introduction to Area
Two problems, both from geometry, motivate the two most important ideas in cal-
culus. The problem of finding the tangent line led us to the derivative. The problem
of finding area will lead us to the definite integral.

For polygons (closed plane regions bounded by line segments), the problem of
finding area is hardly a problem at all. We start by defining the area of a rectangle
to be the familiar length times width, and from this we successively derive the for-
mulas for the area of a parallelogram, a triangle, and any polygon.The sequence of
figures in Figure 1 suggests how this is done.

Even in this simple setting, it is clear that area should satisfy five properties.

1. The area of a plane region is a nonnegative (real) number.
2. The area of a rectangle is the product of its length and width (both measured

in the same units). The result is in square units, for example, square feet or
square centimeters.

3. Congruent regions have equal areas.
4. The area of the union of two regions that overlap only in a line segment is the

sum of the areas of the two regions.
5. If one region is contained in a second region, then the area of the first region is

less than or equal to that of the second.

When we consider a region with a curved boundary, the problem of assigning
area is more difficult. However, over 2000 years ago,Archimedes provided the key
to a solution. Consider a sequence of inscribed polygons that approximate the
curved region with greater and greater accuracy. For example, for the circle of

Rectangle

A = lw
l

w

b
A = bh

Parallelogram

h

b

h

Triangle

A =    bh1
2

Polygon

A = A1 + A2 + A3 + A4 + A5

A1

A2

A3

A4
A5

Figure 1

P1 P2 P3

Figure 2

radius 1, consider regular inscribed polygons with 4 sides, 8 sides, 16
sides, as shown in Figure 2. The area of the circle is the limit as of the
areas of Thus, if A(F) denotes the area of a region F, then

A1circle2 = lim
n: q

 A1Pn2
Pn.

n : qÁ ,
P1, P2, P3, Á

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 5 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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264 Chapter 5 The Definite Integral

Archimedes went further, considering also circumscribed polygons
(Figure 3). He showed that you get the same value for the area of the

circle of radius 1 (what we call ) whether you use inscribed or circumscribed
polygons. It is just a small step from what he did to our modern treatment of area.

p

T1, T2, T3, Á

Sigma Notation Our approach to finding the area of a curved region R will
involve the following steps:

1. Approximate the region R by n rectangles where the n rectangles taken to-
gether either contain R, producing a circumscribed polygon, or are contained
in R, producing an inscribed polygon.

2. Find the area of each rectangle.
3. Sum the areas of the n rectangles.
4. Take the limit as 

If the limit of areas of inscribed and circumscribed polygons is the same, we call
this limit the area of the region R.

Step 3, involving summing the areas of rectangles, requires us to have a nota-
tion for summation, as well as some of its properties. Consider, for example, the
following sums:

and

To indicate these sums in a compact way, we write these sums as

respectively. Here (capital Greek sigma), which corresponds to the English S,
says that we are to sum (add) all numbers of the form indicated as the index i runs
through the positive integers, starting with the integer shown below and ending
with the integer above Thus,

If all the in have the same value, say c, then

a
n

i = 1
ci = c + c + c +

Á
+ c

5

     n terms

a
n

i = 1
cici

 a
4

k = 1
  

k

k2
+ 1

=

1

12
+ 1

+

2

22
+ 1

+

3

32
+ 1

+

4

42
+ 1

 a
n

j = 1
 
1
j

=

1
1

+

1
2

+

1
3

+
Á

+

1
n

 a
4

i = 2
aibi = a2b2 + a3b3 + a4b4

©.
©

©

a
100

i = 1
i2 and a

n

i = 1
ai

a1 + a2 + a3 + a4 +
Á

+ an

12
+ 22

+ 32
+ 42

+
Á

+ 1002

n : q .

T1 T2 T3

Figure 3

Following common usage, we allow
ourselves a certain abuse of
language. The words triangle, rectan-
gle, polygon, and circle will be used
to denote both two-dimensional
regions of the indicated shape and
also their one-dimensional bound-
aries. Note that regions have areas,
whereas curves have lengths. When
we say that a circle has area and
circumference the context
should make clear whether circle
means the region or the boundary.

2pr,
pr2

Use and Abuse of Language
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Section 5.1 Introduction to Area 265

As a result,

In particular,

Properties of Thought of as an operator, operates on sequences, and it

does so in a linear way.

©a

a
5

i = 1
2 = 5122 = 10      and      a

100

i = 1
1-42 = 1001-42 = -400

a
n

i = 1
c = nc

Proof The proofs are easy; we consider only (1).

�

� EXAMPLE 1 Suppose that and Calculate

SOLUTION

�

� EXAMPLE 2 Collapsing Sums

Show that:

(a)

(b) a
n

i = 1
C 1i + 122 - i2 D = 1n + 122 - 1

a
n

i = 1
1ai + 1 - ai2 = an + 1 - a1

 = 21602 - 31112 + 100142 = 487

 = 2a
100

i = 1
ai - 3a

100

i = 1
bi + a

100

i = 1
4

 a
100

i = 1
12ai - 3bi + 42 = a

100

i = 1
2ai - a

100

i = 1
3bi + a

100

i = 1
4

a
100

i = 1
12ai - 3bi + 42

a
100

i = 1
bi = 11.a

100

i = 1
ai = 60

a
n

i = 1
cai = ca1 + ca2 +

Á
+ can = c1a1 + a2 +

Á
+ an2 = ca

n

i = 1
ai

Theorem A Linearity of 

If c is a constant, then

(1)

(2)

(3) a
n

i = 1
1ai - bi2 = a

n

i = 1
ai - a

n

i = 1
bi .

a
n

i = 1
1ai + bi2 = a

n

i = 1
ai + a

n

i = 1
bi ;

a
n

i = 1
cai = ca

n

i = 1
ai ;

a
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266 Chapter 5 The Definite Integral

SOLUTION
(a) Here we should resist our inclination to apply linearity and instead write out

the sum, hoping for some nice cancellations.

(b) This follows immediately from part (a). �

The symbol used for the index does not matter. Thus,

and all of these are equal to For this reason, the index is
sometimes called a dummy index.

Some Special Sum Formulas When finding areas of regions we will often
need to consider the sum of the first n positive integers, as well as the sums of their
squares, cubes, and so on. There are nice formulas for these; proofs are discussed
after Example 4.

1.

2.

3.

4.

� EXAMPLE 3 Find a formula for 

SOLUTION We make use of linearity and Formulas 1 and 2 from above.

�

� EXAMPLE 4 How many oranges are in the pyramid shown in Figure 4?

SOLUTION �

Proofs of Special Sum Formulas To prove Special Sum Formula 1, we
start with the identity sum both sides, apply Example 2 on
the left, and use linearity on the right.

1i + 122 - i2
= 2i + 1,

12
+ 22

+ 32
+

Á
+ 72

= a
7

i = 1
i2

=

71821152
6

= 140

 =

n1n2
- 3n - 342

3

 =

n

6
 [2n2

+ 3n + 1 - 9n - 9 - 60]

 =

n1n + 1212n + 12
6

- 3 

n1n + 12
2

- 10n

 a
n

j = 1
1j + 221j - 52 = a

n

j = 1
1j2

- 3j - 102 = a
n

j = 1
j2

- 3a
n

j = 1
j - a

n

j = 1
10

a
n

j = 1
1j + 221j - 52.

a
n

i = 1
i4

= 14
+ 24

+ 34
+

Á
+ n4

=

n1n + 1212n + 1)(3n2
+ 3n - 12

30

a
n

i = 1
i3

= 13
+ 23

+ 33
+

Á
+ n3

= cn1n + 12
2

d2
a
n

i = 1
i2

= 12
+ 22

+ 32
+

Á
+ n2

=

n1n + 1212n + 12
6

a
n

i = 1
i = 1 + 2 + 3 +

Á
+ n =

n1n + 12
2

a1 + a2 +
Á

+ an.

a
n

i = 1
ai = a

n

j = 1
aj = a

n

k = 1
ak

 = -a1 + an + 1 = an + 1 - a1

 = -a1 + a2 - a2 + a3 - a3 + a4 -
Á

- an + an + 1

 a
n

i = 1
1ai + 1 - ai2 = 1a2 - a12 + 1a3 - a22 + 1a4 - a32 +

Á
+ 1an + 1 - an2

Figure 4
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Section 5.1 Introduction to Area 267

Almost the same technique works to establish Formulas 2, 3, and 4 (Problems
29–31).

Area by Inscribed Polygons Consider the region R bounded by the
parabola the x-axis, and the vertical line (Figure 5).We refer
to R as the region under the curve between and Our aim is to
calculate its area A(R).

Partition (as in Figure 6) the interval [0, 2] into n subintervals, each of length
by means of the points

Thus,

Consider the typical rectangle with base and height 
Its area is (see the upper-left part of Figure 7). The union of all such
rectangles forms the inscribed polygon shown in the lower-right part of Figure 7.

The area can be calculated by summing the areas of these rectangles.

Now

Thus,

 =

8

n3 [12
+ 22

+
Á

+ 1n - 122]

 A1Rn2 = c 8

n3 1022 +

8

n3 1122 +

8

n3 1222 +
Á

+

8

n3 1n - 122 d

f1xi2 ¢x = xi
2 ¢x = a2i

n
b2

#
2
n

= a 8

n3 b i2

A1Rn2 = f1x02 ¢x + f1x12 ¢x + f1x22 ¢x +
Á

+ f1xn - 12 ¢x

A1Rn2
Rnf1xi - 12 ¢x

f1xi - 12 = xi - 1
2 .[xi - 1, xi]

 xn = n #
¢x = na 2

n
b = 2

 xn - 1 = 1n - 12 # ¢x =

1n - 122
n

 o

 xi = i #
¢x =

2i
n

 o

 x2 = 2 #
¢x =

4
n

 x1 = ¢x =

2
n

 x0 = 0

0 = x0 6 x1 6 x2 6
Á

6 xn - 1 6 xn = 2

n + 1¢x = 2>n,

x = 2.x = 0y = x2
x = 2y = f1x2 = x2,

 
n2

+ n

2
= a

n

i = 1
i

 n2
+ 2n = 2a

n

i = 1
i + n

 1n + 122 - 12
= 2a

n

i = 1
i + a

n

i = 1
1

 a
n

i = 1
[1i + 122 - i2] = a

n

i = 1
12i + 12

 1i + 122 - i2
= 2i + 1

1 2

2

1

3

4

y

x0

y = f(x) = x2

R

Figure 5

x0 x1 x2 x3 xn – 1 xn

0 2

Figure 6

Inscribed polygon
xn – 1 xnx2x1

Area =  f (xi–1) ∆ x

∆x
xi–1 xi

x0

y = f (x) = x2

Rn

f (xi–1)

Figure 7
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268 Chapter 5 The Definite Integral

(Special Sum Formula 2,
with replacing n)

We conclude that

The diagrams in Figure 8 should help you to visualize what is happening as n
gets larger and larger.

A1R2 = lim
n: q

 A1Rn2 = lim
n: q

 a8
3

-

4
n

+

4

3n2 b =

8
3

 =

8
3

-

4
n

+

4

3n2

 =

4
3

 a2 -

3
n

+

1

n2 b
 =

8
6

 a2n3
- 3n2

+ n

n3 b
n - 1

 =

8

n3 c 1n - 12n12n - 12
6

d

Area by Circumscribed Polygons Perhaps you are still not convinced 
that We can give more evidence. Consider the rectangle with base

and height (shown at the upper left in Figure 9). Its area is
The union of all such rectangles forms a circumscribed polygon for

the region R, as shown at the lower right in Figure 9.
The area is calculated in analogy with the calculation of 

As before, and so

(Special Sum Formula 2)

 =

8
3

+

4
n

+

4

3n2

 =

8
6

 c2n3
+ 3n2

+ n

n3 d

 =

8

n3 cn1n + 1212n + 12
6

d
 =

8

n3 [12
+ 22

+
Á

+ n2]

 A1Sn2 = c 8

n3 1122 +

8

n3 1222 +
Á

+

8

n3 1n22 d
f1xi2 ¢x = xi

2 ¢x = 18>n32i2,

A1Sn2 = f1x12 ¢x + f1x22 ¢x +
Á

+ f1xn2 ¢x

A1Rn2.A1Sn2
Snf1xi2 ¢x.
f1xi2 = x2

i[xi - 1, xi]
A1R2 =

8
3.

Circumscribed polygon

Area = f(xi)∆ x

f(xi)

xi

x0 x1 x2 xn–1

xi–1

xn

∆ x

y = f(x) = x2

Sn

Figure 9

R7
R14

R28

8
3

A(R7) � – 0.5442 8
3

A(R14) � – 0.2789 8
3

A(R28) � – 0.1412

Figure 8
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Again, we conclude that

Another Problem—Same Theme Suppose that an object is traveling
along the x-axis in such a way that its velocity at time t is given by

feet per second. How far did it travel between and
This problem can be solved by the method of differential equations

(Section 4.9), but we have something else in mind.
Our starting point is the familiar fact that, if an object travels at constant

velocity k over a time interval of length then the distance traveled is 
But this is just the area of a rectangle, the one shown in Figure 10.

Next consider the given problem, where The graph is
shown in the top half of Figure 11. Partition the interval [0, 3] into n subintervals of
length by means of points Then con-
sider the corresponding circumscribed polygon displayed in the bottom half of
Figure 11 (we could as well have considered the inscribed polygon). Its area,

should be a good approximation of the distance traveled, especially if is
small, since on each subinterval the actual velocity is almost equal to a constant
(the value of at the end of the subinterval). Moreover, this approximation should
get better and better as n gets larger. We are led to the conclusion that the exact 
distance traveled is that is, it is the area of the region under the veloc-

ity curve between and 
To calculate note that and so the area of the ith rectangle is

Thus,

(Special Sum Formula 3)

We conclude that

The object traveled about 8.06 feet between and 
What was true in this example is true for any object moving with positive

velocity. The distance traveled is the area of the region under the velocity curve.

t = 3.t = 0

lim
n: q

 A1Sn2 =

81
16

+ 3 =

129
16

L 8.06

 =

81
16

 a1 +

2
n

+

1

n2 b + 3

 =

81
16

 cn2
 

1n2
+ 2n + 12

n4 d + 3

 =

81

4n4 cn1n + 12
2

d2 +

3
n

# n

 =

81

4n4 a
n

i = 1
i3

+ a
n

i = 1
 
3
n

 = a
n

i = 1
 a 81

4n4  i3
+

3
n
b

 = a
n

i = 1
f1ti2 ¢t

 A1Sn2 = f1t12 ¢t + f1t22 ¢t +
Á

+ f1tn2 ¢t

f1ti2 ¢t = c1
4

 a3i
n
b3

+ 1 d  3
n

=

81

4n4  i3
+

3
n

ti = 3i>n,A1Sn2,
t = 3.t = 0

lim
n: q

 A1Sn2;
v

¢tA1Sn2,
Sn,

0 = t0 6 t1 6 t2 6
Á

6 tn = 3.¢t = 3>n
v = f1t2 =

1
4 t3

+ 1.

k ¢t.¢t,

t = 3?
t = 0v = f1t2 =

1
4 t3

+ 1

A1R2 = lim
n: q

 A1Sn2 = lim
n: q

 a8
3

+

4
n

+

4

3n2 b =

8
3

v = k

Distance = k ∆t

∆ t

Figure 10

v = f (t) =     t3 +1

v

t

t

1
4

1

2

2

4

6

8

3

0 = t0 t1 t2 tn –1 tn = 3

v

2

4

6

8

Figure 11
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270 Chapter 5 The Definite Integral

1. The value of is _____, and the value of is _____.

2. If and then the value of

_____ and the value of _____.a
10

i = 1
1ai + 42 =a

10

i = 1
13ai - 2bi2 =

a
10

i = 1
bi = 7,a

10

i = 1
ai = 9

a
5

i = 1
2a

5

i = 1
2i

3. The area of a(n) _____ polygon underestimates the area
of a region, whereas the area of a(n) _____ polygon overesti-
mates this area.

4. The exact area of the region under the curve be-
tween 0 and 4 is _____.

y = Œx œ

Problem Set 5.1
In Problems 1–8, find the value of the indicated sum.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–14, write the indicated sum in sigma notation.

9.

10.

11.

12.

13.

14.

In Problems 15–18, suppose that and Cal-

culate each of the following (see Example 1).

15. 16.

17. 18.

In Problems 19–24, use Special Sum Formulas 1–4 to find each
sum.

19. 20.

21. 22.

23. 24.

25. Add both sides of the two equalities below, solve for S,
and thereby give another proof of Formula 1.

26. Prove the following formula for a geometric sum:

a
n

k = 0
ark

= a + ar + ar2
+

Á
+ arn

=

a - arn + 1

1 - r
 1r Z 12

 S = n + 1n - 12 + 1n - 22 +
Á

+ 3 + 2 + 1

 S = 1 + 2 + 3 +
Á

+ 1n - 22 + 1n - 12 + n

a
n

i = 1
12i - 322a

n

i = 1
12i2

- 3i + 12
a
10

k = 1
5k21k + 42a

10

k = 1
1k3

- k22
a
10

i = 1
[1i - 1214i + 32]a

100

i = 1
13i - 22

a
10

q = 1
1aq - bq - q2a

9

p = 0
1ap + 1 - bp + 12

a
10

n = 1
13an + 2bn2a

10

i = 1
1ai + bi2

a
10

i = 1
bi = 50.a

10

i = 1
ai = 40

f1w12 ¢x + f1w22 ¢x +
Á

+ f1wn2 ¢x

a1 + a3 + a5 + a7 +
Á

+ a99

1 -
1
2 +

1
3 -

1
4 +

Á
-

1
100

1 +
1
2 +

1
3 +

Á
+

1
100

2 + 4 + 6 + 8 +
Á

+ 50

1 + 2 + 3 +
Á

+ 41

a
6

k = -1
k sin1kp>22a

6

n = 1
n cos1np2

a
7

k = 3
  
1-12k 2k

1k + 12a
8

m = 1
1-12m 2m - 2

a
8

l = 3
1l + 122a

7

k = 1
  

1
k + 1

a
6

i = 1
i2

a
6

k = 1
1k - 12

Hint: Let Simplify and solve
for S.

27. Use Problem 26 to calculate each sum.

(a) (b)

28. Use a derivation like that in Problem 25 to obtain a for-
mula for the arithmetic sum:

29. Use the identity to prove
Special Sum Formula 2.

30. Use the identity to
prove Special Sum Formula 3.

31. Use the identity 
to prove Special Sum Formula 4.

32. Use the diagrams in Figure 12 to establish Formulas 1
and 3.

5i + 1
5i4

+ 10 i3
+ 10 i2

+1i + 125 - i5
=

1i + 124 - i4
= 4 i3

+ 6i2
+ 4 i + 1

1i + 123 - i3
= 3i2

+ 3i + 1

a
n

k = 0
1a + kd2 = a + 1a + d2 + 1a + 2d2 +

Á
+ 1a + nd2

a
10

k = 1
2k

a
10

k = 1
A12 Bk

S - rSS = a + ar +
Á

+ arn.

33. In statistics we define the mean and the variance of a
sequence of numbers by

Find and for the sequence of numbers 2, 5, 7, 8, 9, 10, 14.

34. Using the definitions in Problem 33, find and for each
sequence of numbers.
(a) 1, 1, 1, 1, 1 (b) 1001, 1001, 1001, 1001, 1001
(c) 1, 2, 3 (d) 1,000,001; 1,000,002; 1,000,003

35. Use the definitions in Problem 33 to show that each is true.

(a) (b) s2
= a 1

n
 a

n

i = 1
xi

2b - x2
a
n

i = 1
1xi - x2 = 0

s2x

s2x

x =

1
n

 a
n

i = 1
xi, s2

=

1
n

 a
n

i = 1
1xi - x22

x1, x2, Á , xn

s2xC

1 + 2 + . . . +  n = 13 + 23+ . . . +  n3 =

Figure 12

Concepts Review
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Section 5.1 Introduction to Area 271

36. Based on your response to parts (a) and (b) of Problem
34, make a conjecture about the variance of n identical numbers.
Prove your conjecture.

37. Let be any real numbers. Find the value of c

that minimizes 

38. In the song The Twelve Days of Christmas, my true love
gave me 1 gift on the first day, gifts on the second day,

gifts on the third day, and so on for 12 days.

(a) Find the total number of gifts given in 12 days.

(b) Find a simple formula for the total number of gifts given
during a Christmas of n days.

39. A grocer stacks oranges in a pyramidlike pile. If the bot-
tom layer is rectangular with 10 rows of 16 oranges and the top
layer has a single row of oranges, how many oranges are in the
stack?

40. Answer the same question in Problem 39 if the bottom
layer has 50 rows of 60 oranges.

41. Generalize the result of Problems 39 and 40 to the case of
m rows of n oranges.

42. Find a nice formula for the sum

Hint:

In Problems 43–48, find the area of the indicated inscribed or cir-
cumscribed polygon.

43. 44.

45. 46.

47. 48.

1 2

1

1
2y

x

y =    x2 + 1

1 2

1

y

x

y =    x2 + 11
2

y

x

y = x + 1

1

1

21 2

1

y

x

y = x + 1

y

x

y = x +1

1

1

2

y

x

y = x+ 1

1

1

2

1
i1i + 12 =

1
i

-

1
i + 1

.

1
1 # 2

+

1
2 # 3

+

1
3 # 4

+
Á

+

1
n1n + 12

Tn,

1 + 2 + 3
1 + 2

a
n

i = 1
1xi - c22.

x1, x2, Á , xn

In Problems 49–52, sketch the graph of the given function over the
interval then divide into n equal subintervals. Finally,
calculate the area of the corresponding circumscribed polygon.

49.

50.

51.

52.

In Problems 53–58, find the area of the region under the curve
over the interval To do this, divide the interval 

into n equal subintervals, calculate the area of the correspon-
ding circumscribed polygon, and then let (See the exam-
ple for in the text.)

53.

54.

55. Hint:

56.

57.

58.

59. Suppose that an object is traveling along the x-axis in
such a way that its velocity at time t seconds is feet per
second. How far did it travel between and Hint: See
the discussion of the velocity problem at the end of this section
and use the result of Problem 53.

60. Follow the directions of Problem 59 given that
You may use the result of Problem 54.

61. Let denote the area under the curve over the
interval [a, b].
(a) Prove that Hint: so use cir-

cumscribed polygons.
(b) Show that Assume that 

62. Suppose that an object, moving along the x-axis, has ve-
locity meters per second at time t seconds. How far did it
travel between and See Problem 61.

63. Use the results of Problem 61 to calculate the area under
the curve over each of the following intervals.
(a) [0, 5] (b) [1, 4] (c) [2, 5]

64. From Special Sum Formulas 1–4 you might guess that

where is a polynomial in n of degree m. Assume that this is
true (which it is) and, for let be the area under the
curve over the interval [a, b].

(a) Prove that 

(b) Show that .

65. Use the results of Problem 64 to calculate each of the fol-
lowing areas.

(a) (b) (c) (d)

66. Derive the formulas and 
for the areas of the inscribed and circumscribednr2 tan1p>n2

Bn =An =
1
2 nr2 sin12p>n2

A0
21x92A1

21x52A1
21x32A0

21x32

Ab
a1xm2 =

bm + 1

m + 1
-

am + 1

m + 1

A0
b1xm2 =

bm + 1

1m + 12.
y = xm

Aa
b1xm2a Ú 0,

Cn

1m
+ 2m

+ 3m
+

Á
+ nm

=

nm + 1

m + 1
+ Cn

y = x2

t = 5?t = 3
v = t2

a Ú 0.Ab
a = b3>3 - a3>3.

xi = ib>n;¢x = b>n,A0
b

= b3>3.

y = x2Ab
a

v =
1
2 t2

+ 2.

t = 1?t = 0
v = t + 2

y = x3
+ x; a = 0, b = 1≈

y = x3; a = 0, b = 1≈
y = x2 ; a = -2, b = 2

xi = -1 +

2i

n
y = 2x + 2; a = -1, b = 1.

y =
1
2 x2

+ 1; a = 0, b = 1

y = x + 2; a = 0, b = 1

y = x2
n : q .

[a, b]
[a, b].y = f1x2

f1x2 = 3x2
+ x + 1; a = -1, b = 1, n = 10C

f1x2 = x2
- 1; a = 2, b = 3, n = 6C

f1x2 = 3x - 1; a = 1, b = 3, n = 4

f1x2 = x + 1; a = -1, b = 2, n = 3

[a, b][a, b];
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272 Chapter 5 The Definite Integral

regular n-sided polygons for a circle of radius r. Then show that
and are both pr2.lim

n: q

 Bnlim
n: q

 An

Answers to Concepts Review: 1. 30; 10 2. 13; 49
3. inscribed; circumscribed 4. 6

We call the sum

a Riemann sum for f corresponding to the partition P. Its geometric interpretation
is shown in Figure 3.

RP = a
n

i = 1
f1xi2 ¢xi

All the preparations have been made; we are ready to define the definite integral.
Both Newton and Leibniz introduced early versions of this concept. However, it
was Georg Friedrich Bernhard Riemann (1826–1866) who gave us the modern
definition. In formulating this definition, we are guided by the ideas we discussed
in the previous section. The first notion is that of a Riemann sum.

Riemann Sums Consider a function f defined on a closed interval [a, b]. It
may have both positive and negative values on the interval, and it does not even
need to be continuous. Its graph might look something like the one in Figure 1.

Consider a partition P of the interval [a, b] into n subintervals (not necessarily
of equal length) by means of points 
and let On each subinterval pick an arbitrary point 
(which may be an end point); we call it a sample point for the ith subinterval. An
example of these constructions is shown in Figure 2 for n = 6.

xi[xi - 1, xi],¢xi = xi - xi - 1.
a = x0 6 x1 6 x2 6

Á
6 xn - 1 6 xn = b,

5.2
The Definite Integral

y

x
ba

y = f (x)

Figure 1

∆ x1 ∆ x2 ∆ x3 ∆ x4 ∆ x5 ∆ x6

a = x0 x1 x2 x3 x4 x5 x6 = b
Partition

points

x1
– x2

– x3
– x4

– x5
– x6

–Sample points

A Partition of [a, b] with Sample Points xi
–

Figure 2

y

x

a f(xi) ∆ xi = A1 + A2 + A3 + A4 + A5 + A6
_

6
A Riemann sum interpreted as

an algebraic sum of areas

i =1

A4

A5

x5

x5

x4

x4

x3

x3

x2

x2

x1

x1

x6 = b
x6

A6

A3

A2
A1

_ _ _ _ _ _a = x0

y =  f(x)

Figure 3
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Section 5.2 The Definite Integral 273

� EXAMPLE 1 Evaluate the Riemann sum for on the interval
using the equally spaced partition points 
with the sample point being the midpoint of the ith subinterval.

SOLUTION Note the picture in Figure 4.

�

The functions in Figures 3 and 4 were positive. As a consequence of this, the
Riemann sum is simply the sum of the areas of the rectangles. But what if f is neg-
ative? In this case, a sample point with the property that will lead to a
rectangle that is entirely below the x-axis, and the product will be nega-
tive. This means that the contribution of such a rectangle to the Riemann sum is
negative. Figure 5 illustrates this.

f1xi2 ¢xi

f1xi2 6 0xi

 = 5.9375

 = [1.5625 + 1.0625 + 1.0625 + 1.5625 + 2.5625 + 4.0625]10.52
 = Cf1-0.752 + f1-0.252 + f10.252 + f10.752 + f11.252 + f11.752D10.52

 RP = a
6

i = 1
f1xi2 ¢xi

xi1.5 6 2,
-1 6 -0.5 6 0 6 0.5 6 1 6[-1, 2]
f1x2 = x2

+ 1

� EXAMPLE 2 Evaluate the Riemann sum for

on the interval [0, 5] using the partition P with partition points 
and the corresponding sample points 
and 

SOLUTION

The corresponding geometric picture appears in Figure 6. �

 = 23.9698

 = 17.875211.12 + 13.125210.92 + 1-2.625211.22 + 1-2.944210.82 + 18112
 + f13.6214 - 3.22 + f15215 - 42

 = f10.5211.1 - 02 + f11.5212 - 1.12 + f12.5213.2 - 22
 = f1x12 ¢x1 + f1x22 ¢x2 + f1x32 ¢x3 + f1x42 ¢x4 + f1x52 ¢x5

 RP = a
5

i = 1
f1xi2 ¢xi

x5 = 5.2.5, x4 = 3.6,
x1 = 0.5, x2 = 1.5, x3 =3.2 6 4 6 5

0 6 1.1 6 2 6

f1x2 = 1x + 121x - 221x - 42 = x3
- 5x2

+ 2x + 8

RP

y

x

4

2

3

–1 –0.5 0 1 21.50.5

1.25 1.750.750.25–0.25–0.75

f (x) = x2 + 1

Figure 4

y

x

f(x) = x3 – 5x2 + 2x + 8

18

15

12

9

6

3

2 4 5

2.5 3.2 3.6

0 0.5 1.51.1

Figure 6

y

x

a f(xi) ∆ xi = A1 + (–A2) + (–A3) + (–A4) + A5 + A6

_
6

A4

A5

x5x5x4

x4x3x3x2x2

x1

x1 x6 x6

A6

A3

A2

A1
_

_ _ _
_ _

= ba = x0

y = f (x)

A Riemann sum interpreted as
an algebraic sum of areas

i =1

Figure 5
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274 Chapter 5 The Definite Integral

Definition of the Definite Integral Suppose now that P, and have
the meanings discussed above.Also let called the norm of P, denote the length
of the longest of the subintervals of the partition P. For instance, in Example 1,

in Example 2, 7P 7 = 3.2 - 2 = 1.2.7P 7 = 0.5;

7P 7 , xi¢xi,

The heart of the definition is the final line. The concept captured in that equa-
tion grows out of our discussion of area in the previous section. However, we have
considerably modified the notion presented there. For example, we now allow f to
be negative on part or all of [a, b], we use partitions with subintervals that may be
of unequal length, and we allow to be any point on the ith subinterval. Since we
have made these changes, it is important to state precisely how the definite integral

relates to area. In general, gives the signed area of the region trapped

between the curve and the x-axis on the interval [a, b], meaning
that a positive sign is attached to areas of parts above the x-axis, and a negative
sign is attached to areas of parts below the x-axis. In symbols,

where and are as shown in Figure 7.
The meaning of the word limit in the definition of the definite integral is more

general than in earlier usage and should be explained. The equality

means that, corresponding to each there is a such that

for all Riemann sums for f on [a, b] for which the norm of the

associated partition is less than In this case, we say that the indicated limit exists
and has the value L.

That was a mouthful, and we are not going to digest it just now. We simply
assert that the usual limit theorems also hold for this kind of limit.

Returning to the symbol we might call a the lower end point and 

b the upper end point for the integral. However, most authors use the terminology
lower limit of integration and upper limit of integration, which is fine provided we

L

b

a
f1x2 dx,

d.

7P 7a
n

i = 1
f1xi2 ¢xi

` a
n

i = 1
f1xi2 ¢xi - L ` 6 e

d 7 0e 7 0,

lim7P7:0
 a

n

i = 1
f1xi2 ¢xi = L

AdownAup

L

b

a
f1x2 dx = Aup - Adown

y = f1x2L
b

a
f1x2 dx

xi

We have chosen as our symbol for
the definite integral the same elon-
gated “S” as we did for the antidera-
tive in the last chapter. The “S”
stands for “sum” since the definite
integral is the limit of a particular
type of sum, the Riemann sum.

The connection between the anti-
derivative from Chapter 4 and the
definite integral in this section will
become clear in Section 5.4 when we
present the Second Fundamental
Theorem of Calculus.

Notation for Integrals

y

xba

Adown

Aup

Figure 7

Definition Definite Integral

Let f be a function that is defined on the closed interval [a, b]. If

exists, we say f that is integrable on [a, b]. Moreover, called the defi-

nite integral (or Riemann integral) of f from a to b, is then given by

L

b

a
f1x2 dx = lim7P7:0

 a
n

i = 1
f1xi2 ¢xi

L

b

a
f1x2 dx,

lim7P7:0
 a

n

i = 1
f1xi2 ¢xi
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Section 5.2 The Definite Integral 275

y

x

y = f (x) =

1–2 –1

1

2

2

� 1,  x = 0
1/x2,  x ≠ 0

Figure 8

Theorem A Integrability Theorem

If is bounded on [a, b] and if it is continuous there except at a finite number of
points, then is integrable on [a, b]. In particular, if is continuous on the whole
interval [a, b], it is integrable on [a, b].

ff
f

realize that this usage of the word limit has nothing to do with its more technical
meaning.

In our definition of we implicitly assumed that We remove

that restriction with the following definitions.

Thus,

Finally, we point out that x is a dummy variable in the symbol By

this we mean that x can be replaced by any other letter (provided, of course, that it
is replaced in each place where it occurs). Thus,

What Functions Are Integrable? Not every function is integrable on a
closed interval [a, b]. For example, the unbounded function

which is graphed in Figure 8, is not integrable on It can be shown that for
this unbounded function, the Riemann sum can be made arbitrarily large. There-
fore, the limit of the Riemann sum over does not exist.

Even some bounded functions can fail to be integrable, but they have to be
pretty complicated (see Problem 39 for one example). Theorem A (below) is the
most important theorem about integrability. Unfortunately, it is too difficult to
prove here; we leave that for advanced calculus books.

[-2, 2]

[-2, 2].

f1x2 = c 1

x2 if x Z 0

1 if x = 0

L

b

a
f1x2 dx =

L

b

a
f1t2 dt =

L

b

a
f1u2 du

L

b

a
f1x2 dx.

L

2

2
x3 dx = 0, 

L

2

6
x3 dx = -

L

6

2
x3 dx

 
L

b

a
f1x2 dx = -

L

a

b
f1x2 dx, a 7 b

 
L

a

a
f1x2 dx = 0

a 6 b.
L

b

a
f1x2 dx,

As a consequence of this theorem, the following functions are integrable on
every closed interval [a, b].

1. Polynomial functions
2. Sine and cosine functions
3. Rational functions, provided that the interval [a, b] contains no points where

the denominator is 0

Calculating Definite Integrals Knowing that a function is integrable
allows us to calculate its integral by using a regular partition (i.e., a partition with
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276 Chapter 5 The Definite Integral

35
2

y

x

A

y = x+3

(x + 3) dx = A =

6

4

2

1–2 –1 2 3

�3
–2

Figure 9

equal-length subintervals) and by picking the sample points in any way that is
convenient for us. Examples 3 and 4 involve polynomials, which we just learned are
integrable.

� EXAMPLE 3 Evaluate 

SOLUTION Partition the interval into n equal subintervals, each of
length In each subinterval use as the sample point.
Then

Thus, and so

(Special Sum Formula 1)

Since P is a regular partition, is equivalent to We conclude that

We can easily check our answer, since the required integral gives the area of
the trapezoid in Figure 9. The familiar trapezoidal area formula 
gives �

� EXAMPLE 4 Evaluate 
L

3

-1
12x2

- 82 dx.

1
211 + 625 = 35>2.

A =
1
21a + b2h

 =

35
2

 = lim
n: q

 c5 +

25
2

 a1 +

1
n
b d

 
L

3

-2
1x + 32 dx = lim7P7:0

 a
n

i = 1
f1xi2 ¢xi

n : q .7P 7 : 0

 = 5 +

25
2

 a1 +

1
n
b

 =

5
n

 1n2 +

25

n2  cn1n + 12
2

d

 =

5
n

 a
n

i = 1
1 +

25

n2  a
n

i = 1
i

 = a
n

i = 1
 c1 + ia 5

n
b d  5

n

 a
n

i = 1
f1xi2 ¢xi = a

n

i = 1
f1xi2 ¢x

f1xi2 = xi + 3 = 1 + i15>n2,
 xn = -2 + n ¢x = -2 + na 5

n
b = 3

 o

 xi = -2 + i ¢x = -2 + ia 5
n
b

 o

 x2 = -2 + 2 ¢x = -2 + 2a 5
n
b

 x1 = -2 + ¢x = -2 +

5
n

 x0 = -2

xi = xi[xi - 1, xi],¢x = 5>n.
[-2, 3]

L

3

-2
1x + 32 dx.

xi
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y

y = 2x2 – 8

x

A2

A1

–2

– 4

– 6

2

2

4

6

8

10

31

40
3

(2x2 – 8) dx = –A1 + A2 = –�3
–1

Figure 10

Given the graph of a function, we
can always make a rough estimate
for the value of a definite integral by
using the fact that it is the signed
area

Thus, in Example 4, we might esti-
mate the value of the integral by
pretending that the part above the 
x-axis is a triangle and the part
below is a rectangle. Our estimate is

1
21121102 - 132162 = -13

Aup - Adown

Common Sense≈

y

xa b c

R1

R2

y = f (x)

Figure 11

SOLUTION No formulas from elementary geometry will help here. Figure 10
suggests that the integral is equal to where and are the areas of
the regions below and above the x-axis.

Let P be a regular partition of into n equal subintervals, each of length
In each subinterval choose to be the right end point, so

Then

and

Consequently,

We conclude that

That the answer is negative is not surprising, since the region below the x-axis ap-
pears to be larger than the one above the x-axis (Figure 10). Our answer is close to
the estimate given in the margin note COMMON SENSE; this reassures us that our an-
swer is likely to be correct. �

The Interval Additive Property Our definition of the definite integral was
motivated by the problem of area for curved regions. Consider the two curved
regions and in Figure 11 and let It is clear that the areas satisfy

which suggests that

We quickly point out that this does not constitute a proof of this fact about inte-
grals, since, first of all, our discussion of area in Section 5.1 was rather informal

L

c

a
f1x2 dx =

L

b

a
f1x2 dx +

L

c

b
f1x2 dx

A1R2 = A1R1 ´ R22 = A1R12 + A1R22
R = R1 ´ R2.R2R1

 = -24 - 32 +

128
3

= -

40
3

 = lim
n: q

 c -24 - 32a1 +

1
n
b +

128
6

 a2 +

3
n

+

1

n2 b d

 
L

3

-1
12x2

- 82 dx = lim7P7:0
 a

n

i = 1
f1xi2 ¢xi

 = -24 - 32a1 +

1
n
b +

128
6

 a2 +

3
n

+

1

n2 b

 = -

24
n

 1n2 -

64

n2  
n1n + 12

2
+

128

n3  
n1n + 1212n + 12

6

 = -

24
n

  a
n

i = 1
 1 -

64

n2   a
n

i = 1
 i +

128

n3   a
n

i = 1
 i

2

 = a
n

i = 1
 c -6 -

16
n

  i +

32

n2   i2 d  4
n

 a
n

i = 1
f1xi2 ¢xi = a

n

i = 1
f1xi2 ¢x

 = -6 -

16i
n

+

32i2

n2

 f1xi2 = 2xi
2

- 8 = 2 c -1 + ia 4
n
b d2 - 8

xi = -1 + i ¢x = -1 + ia 4
n
b

xi = xi.
xi[xi - 1, xi],¢x = 4>n.

[-1, 3]

A2A1-A1 + A2,
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20 40 60 80 100 120 140 160 180

2

1

–1

–2

v

v(t) =

t

t/20,
2,

5 –t/20,

0 � t � 40
 40 � t � 60

t � 60

Figure 12

Theorem B Interval Additive Property

If is integrable on an interval containing the points a, b, and c, then

no matter what the order of a, b, and c.

L

c

a
f1x2 dx =

L

b

a
f1x2 dx +

L

c

b
f1x2 dx

f

and, second, our diagram supposes that f is positive, which it need not be. Never-
theless, definite integrals do satisfy this interval additive property, and they do it no
matter how the three points a, b, and c are arranged.We leave the rigorous proof to
more advanced works.

For example,

which most people readily believe. But it is also true that

which may seem surprising. If you mistrust the theorem, you might actually evalu-
ate each of the above integrals to see that the equality holds.

Velocity and Position Near the end of Section 5.1 we explained how the
area under the velocity curve is equal to the distance traveled, provided the veloc-
ity function is positive. In general, the position (which could be positive or
negative) is equal to the definite integral of the velocity function (which could be
positive or negative). More specifically, if is the velocity of an object at time t,
where and if the object is at position 0 at time 0, then the position of the ob-
ject at time a is 

� EXAMPLE 5 An object at the origin at time has velocity, measured in
meters per second,

Sketch the velocity curve. Express the object’s position at as a definite in-
tegral and evaluate it using formulas from plane geometry.

SOLUTION Figure 12 shows the velocity curve. The position at time 140 is
equal to the definite integral which we can evaluate using formulas for
the area of a triangle and a rectangle and using the Interval Additive Property
(Theorem B):

� = 40 + 40 + 40 - 40 = 80

 
L

140

0
v1t2 dt =

L

40

0
 

t

20
 dt +

L

60

40
2 dt +

L

140

60
a5 -

t

20
b  dt

1
140

0 v1t2 dt,

t = 140

v1t2 = c t>20, if 0 … t … 40
2, if 40 6 t … 60
5 - t>20 if t 7 60

t = 0

1
a

0 v1t2 dt.
t Ú 0,

v(t)

v(t)

L

2

0
x2 dx =

L

3

0
x2 dx +

L

2

3
x2 dx

L

2

0
x2 dx =

L

1

0
x2 dx +

L

2

1
x2 dx

Concepts Review

1. A sum of the form is called a _____.

2. The limit of the sum above for f defined on [a, b] is called
a _____ and is symbolized by _____.

a
n

i = 1
f1xi2 ¢xi

3. Geometrically, the definite integral corresponds to a

signed area. In terms of and _____.

4. Thus, the value of is _____.
L

4

-1
x dx

Adown, 
L

b

a
f1x2 dx =Aup
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Problem Set 5.2
In Problems 1 and 2, calculate the Riemann sum suggested by each
figure.

1.

2.

In Problems 3–6, calculate the Riemann sum for the

given data.

3.

4.

5. is divided into eight equal
subintervals, is the midpoint.

6. [0, 3] is divided into six equal subinter-
vals, is the right end point.

In Problems 7–10, use the given values of a and b and express the
given limit as a definite integral.

7.

8.

9.

10.

In Problems 11–16, evaluate the definite integrals using the
definition, as in Examples 3 and 4.

11. 12.

Hint: Use 

13. 14.

Hint: Use xi = -2 + 3i>n.
L

1

-2
13x2

+ 22 dx
L

1

-2
12x + p2 dx

xi = 2i>n.

L

2

0
1x2

+ 12 dx
L

2

0
1x + 12 dx

≈

lim7P7:0
 a

n

i = 1
1sin xi22 ¢xi; a = 0, b = p

lim7P7:0
 a

n

i = 1
 

xi
2

1 + xi
 ¢xi; a = -1, b = 1

lim7P7:0
 a

n

i = 1
1xi + 123 ¢xi; a = 0, b = 2

lim7P7:0
 a

n

i = 1
1xi23 ¢xi; a = 1, b = 3

xi

f1x2 = 4x3
+ 1;C

xi

f1x2 = x2>2 + x; [-2, 2]C

x1 = -2, x2 = -0.5, x3 = 0, x4 = 2
f1x2 = -x>2 + 3; P: -3 6 -1.3 6 0 6 0.9 6 2;

x1 = 3, x2 = 4, x3 = 4.75, x4 = 6, x5 = 6.5
f1x2 = x - 1; P : 3 6 3.75 6 4.25 6 5.5 6 6 6 7;

a
n

i = 1
f1xi2 ¢xi

y

x

y =  f (x) = x2 – 4x + 3

2

3

4

1

0

3.50.5

1.5
0.7

2

2.71.7
4

3.5 5

1

–1

2

2.5

–2

3

–3

4

1
2 3

4.5

–4

y

x

y =  f (x) = –x2 + 4x

15. 16.

In Problems 17–22, calculate where a and b are the

left and right end points for which f is defined, by using the Interval
Additive Property and the appropriate area formulas from plane
geometry. Begin by graphing the given function.

17.

18.

19.

20.

21.

22.

In Problems 23–26, the velocity function for an object is given. As-
suming that the object is at the origin at time find the posi-
tion at time 

23. 24.

25.

26.

In Problems 27–30, an object’s velocity function is graphed. Use
this graph to determine the object’s position at times 40, 60,
80, 100, and 120 assuming the object is at the origin at time 

27. 28.

29. 30.

31. Recall that denotes the greatest integer less than or
equal to x. Calculate each of the following integrals. You may use

geometric reasoning and the fact that (The
latter is shown in Problem 34.)

(a) (b)

(c) (d)
L

3

-3
1x - Œx œ22 dx

L

3

-3
1x - Œx œ2 dx

L

3

-3
Œx œ2 dx

L

3

-3
Œx œ  dx

L

b

0
x2 dx = b3>3.

Œx œ

20 40 60 80 100 120

4

2

–2

–4

v

t

20 40 60 80 100 120

2

3

5

4

1

–1

v

t

20 40 60 80 100 120

2

3

4

1

–1

v

t
20 40 60 80 100 120

2

3

4

1

–1

v

t

t = 0.
t = 20,

v1t2 = e24 - t2 if 0 … t … 2
0 if 2 6 t … 4

v1t2 = e t>2 if 0 … t … 2
1 if 2 6 t … 4

v1t2 = 1 + 2tv1t2 = t>60

t = 4.
t = 0,

f1x2 = 4 - ƒ x ƒ , -4 … x … 4

f1x2 = 2A2
- x2; -A … x … A

f1x2 = e -24 - x2 if -2 … x … 0
-2x - 2 if 0 6 x … 2

f1x2 = e21 - x2 if 0 … x … 1
x - 1 if 1 6 x … 2

f1x2 = e3x if 0 … x … 1
21x - 12 + 2 if 1 6 x … 2

f1x2 = c 2x if 0 … x … 1
2 if 1 6 x … 2
x if 2 6 x … 5

L

b

a
f1x2 dx,

L

10

-10
1x2

+ x2 dx
L

5

0
1x + 12 dx
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(e) (f)

(g) (h)

32. Let be an odd function and g be an even function, and

suppose that Use geometric

reasoning to calculate each of the following:

(a) (b)

(c) (d)

(e) (f)

33. Show that by completing the fol-

lowing argument. For the partition 

choose Then 

Now simplify (collapsing sum)

and take a limit.

RP
1
2 a

n

i = 1
1xi + xi - 121xi - xi - 12.

RP = a
n

i = 1
xi ¢xi =xi =

1
21xi - 1 + xi2.xn = b,

a = x0 6 x1 6
Á

6

L

b

a
x dx =

1
21b2

- a22
L

1

-1
f31x2g1x2 dx

L

1

-1
xg1x2 dx

L

1

-1
[-g1x2] dx

L

1

-1
ƒ f1x2 ƒ  dx

L

1

-1
g1x2 dx

L

1

-1
f1x2 dx

L

1

0
ƒ f1x2 ƒ  dx =

L

1

0
g1x2 dx = 3.

f

L

2

-1
x2 Œx œ  dx

L

2

-1
ƒ x ƒ Œx œ  dx

L

3

-3
x ƒ x ƒ  dx

L

3

-3
ƒ x ƒ  dx 34. Show that by an argument like

that in Problem 33, but using 
Assume that 

Many computer algebra systems permit the evaluation of
Riemann sums for left end point, right end point, or midpoint eval-
uations of the function. Using such a system in Problems 35–38,
evaluate the 10-subinterval Riemann sums using left end point,
right end point, and midpoint evaluations.

35. 36.

37. 38.

39. Prove that the function f defined by

is not integrable on [0, 1]. Hint: Show that no matter how small
the norm of the partition, the Riemann sum can be made to
have value either 0 or 1.

Answers to Concepts Review: 1. Riemann sum

2. definite integral; 3. 4. 15
2Aup - Adown

L

b

a
f1x2 dx

7P 7 ,

f1x2 = e1 if x is rational
0 if x is irrational

L

3

1
11>x2 dx

L

1

0
cos x dx

L

1

0
tan x dx

L

2

0
1x3

+ 12 dx

CAS

0 … a 6 b.
xi = C131xi - 1

2
+ xi - 1xi + xi

22 D1>2.L

b

a
x2 dx =

1
31b3

- a32

Calculus is the study of limits, and the two most important limits that you have
studied so far are the derivative and the definite integral. The derivative of a func-
tion is

and the definite integral is

These two kinds of limits appear to have no connection whatsoever. There is, how-
ever, a very close connection, as we shall see in this section.

Newton and Leibniz are usually credited with the simultaneous but independ-
ent discovery of calculus. Yet, the concepts of the slope of a tangent line (which 
led to the derivative) were known earlier, having been studied by Blaise Pascal and
Isaac Barrow years before Newton and Leibniz. And Archimedes had studied
areas of curved regions 1800 years earlier, in the third century B.C. Why then do
Newton and Leibniz get the credit? They understood and exploited the intimate
relationship between antiderivatives and definite integrals. This important rela-
tionship is called the First Fundamental Theorem of Calculus.

The First Fundamental Theorem You have likely met several “funda-
mental theorems” in your mathematical career. The Fundamental Theorem of
Arithmetic says that a whole number factors uniquely into a product of primes.
The Fundamental Theorem of Algebra says that an nth-degree polynomial has n
roots, counting complex roots and multiplicities. Any “fundamental theorem”
should be studied carefully, and then permanently committed to memory.

L

b

a
f1x2 dx = lim7P7:0

 a
n

i = 1
f1xi2 ¢xi

f¿1x2 = lim
h:0

 

f1x + h2 - f1x2
h

f

5.3
The First Fundamental

Theorem of Calculus
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3

y

6 t54321

2

1

x

 f (x) =     t +1
3

2
3

 A(x)

Figure 1

Near the end of Section 5.1, we studied a problem in which the velocity of an
object at time t is given by We found that the distance trav-
eled from time to time is equal to

Using the terminology from Section 5.2, we now see that the distance traveled
from time to time is equal to the definite integral

(Since the velocity is positive for all the distance traveled through time t is
equal to the position of the object at time t, assuming that the object started at the
origin. If the velocity were negative for some value of t, then the object would be
traveling backward at that time t; in such a case, distance traveled would not equal
position.) We could use the same reasoning to find that the distance s traveled
from time to time is

The question we now pose is this: What is the derivative of s?
Since the derivative of distance traveled (as long as the velocity is always pos-

itive) is the velocity, we have

In other words,

Now, define A(x) to be the area under the graph of above the 
t-axis, and between the vertical lines and where (see Figure 1).
A function such as this is called an accumulation function because it accumulates
area under a curve from a fixed value ( in this case) to a variable value (
in this case). What is the derivative of A?

The area A(x) is equal to the definite integral

In this case we can evaluate this definite integral using a geometrical argument;
A(x) is just the area of a trapezoid, so

With this done, we see that the derivative of A is

In other words,

Let’s define another accumulation function B as the area under the curve
above the t-axis, to the right of the origin, and to the left of the line t = x,y = t2,

d

dxL

x

1
 a2

3
+

1
3

 tb  dt =

2
3

 +

1
3

 x

A¿1x2 =

d

dx
 a1

6
 x2

+

2
3

 x -

5
6
b =

1
3

 x +

2
3

A1x2 = 1x - 12 

1 + A23 +
1
3 x B

2
=

1
6

 x2
+

2
3

 x -

5
6

A1x2 =

L

x

1
 a2

3
+

1
3

 tb  dt

t = xt = 1

x Ú 1t = x,t = 1
y =

1
3 t +

2
3,

d

dx
 s1x2 =

d

dxL

x

0
f1t2 dt = f1x2

s¿1x2 = v = f1x2

s1x2 =

L

x

0
f1t2 dt

t = xt = 0

t Ú 0,

lim
n: q

 a
n

i = 1
f1ti2 ¢t =

L

3

0
f1t2 dt

t = 3t = 0

lim
n: q

 a
n

i = 1
f1ti2 ¢t =

129
16

t = 3t = 0
v = f1t2 =

1
4 t3

+ 1.

� The indefinite integral 

is a family of functions of x.

� The definite integral 

is a number, provided that a and 
b are fixed.

� If the upper limit in a definite
integral is a variable x, then the

definite integral [e.g., ]
is a function of x.

� A function of the form

is called an

accumulation function.

F1x2 =

L

x

a
f1t2 dt

L

x

a
f1t2 dt

L

b

a
f1x2 dx

L
f1x2 dx

Terminology

281



282 Chapter 5 The Definite Integral

4

4

3

2

1

321 x

y
y = t 2

t

B(x)

Figure 2

y

tba

y = f (t)

Figure 3

where (see Figure 2). This area is given by the definite integral To

find this area, we first construct a Riemann sum.We use a regular partition of [0, x]
and evaluate the function at the right end point of each subinterval. Then

and the right end point of the ith interval is The
Riemann sum is therefore

The definite integral is the limit of these Riemann sums.

Thus, so the derivative of B is

In other words,

The results of the last three boxed equations suggest that the derivative of an
accumulation function is equal to the function being accumulated. But is this
always the case? And why should this be the case?

Suppose that we are using a “retractable” paintbrush to paint the region under
a curve. (By retractable, we mean that the brush becomes wider or narrower as it
moves left to right so that it just covers the height to be painted. The brush is wide
when the integrand values are large and narrow when the integrand values are
small. See Figure 3.) With this analogy, the accumulated area is the painted area,
and the rate of accumulation is the rate at which the paint is being applied. But the
rate at which paint is being applied is equal to the width of the brush, in effect, the
height of the function. We can restate this result as follows.

The rate of accumulation at is equal to the value of the function being
accumulated at

This, in a nutshell, is the First Fundamental Theorem of Calculus. It is fundamental
because it links the derivative and the definite integral, the most important kinds
of limits you have studied so far.

t = x.
t = x

d

dxL

x

0
t2 dt = x2

B¿1x2 =

d

dx
 
x3

3
= x2

B1x2 = x3>3,

 =

x3

6
# 2 =

x3

3

 =

x3

6
 lim
n: q

 
2n3

+ 3n2
+ n

n3

 = lim
n: q

 
x3

n3  
n1n + 1212n + 12

6

 
L

x

0
t2 dt = lim

n: q
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n

i = 1
 f1ti2 ¢t

 =

x3

n3  
n1n + 1212n + 12
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 =

x3

n3 a
n

i = 1
 i
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x
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 a ix
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n

i = 1
 f1ti2 ¢t = a
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i = 1
 fa ix

n
b  

x
n

ti = 0 + i¢t = ix>n.¢t = x>n

L

x

0
t2 dt.x Ú 0
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y

tx + ha

y = f (t)

f (x)

x

h

Figure 4

Theorem A First Fundamental Theorem of Calculus

Let be continuous on the closed interval [a, b] and let x be a (variable) point
in (a, b). Then

d

dxL

x

a
f1t2 dt = f1x2

f

Sketch of Proof For now, we present a sketch of the proof.This sketch shows the
important features of the proof, but a complete proof must wait until after we have

established a few other results. For x in [a, b], define Then for x
in (a, b)

The last line follows from the Interval Additive Property (Theorem 5.2B) and the

fact that Now, when h is small, does not change much 

over the interval On this interval, is roughly equal to the value
of evaluated at the left end point of the interval (see Figure 4). The area under
the curve from x to is approximately equal to the area of the rec-

tangle with width h and height that is, Therefore,

�

Of course, the flaw in this argument is to claim that f does not change over the
interval We will give a complete proof later in this section.

Comparison Properties Consideration of the areas of the regions and 
in Figure 5 suggests another property of definite integrals.

R2R1

[x, x + h].

d

dxL

x

a
f1t2 dt L lim

h:0
  
1
h

 [hf1x2] = f1x2

L

x + h

x
f1t2 dt L hf1x2.f(x);

x + hy = f1t2f
f(x),f[x, x + h].

f
L

a

x
f(t) dt = -

L

x

a
f(t) dt.

 = lim
h:0

  
1
hL

x + h

x
f1t2 dt

 = lim
h:0

  
1
h

 c
L

x + h

a
f1t2 dt -

L

x

a
f1t2 dt d

 
d

dxL

x

a
f1t2 dt = F¿1x2 = lim

h:0
  
F1x + h2 - F1x2

h

F1x2 =

L

x

a
f1t2 dt.

y

xa b

y = g(x)
y = f(x)

R1

R2

Figure 5

Theorem B Comparison Property

If f and g are integrable on [a, b] and if for all x in [a, b], then

In informal but descriptive language, we say that the definite integral preserves
inequalities.

L

b

a
f1x2 dx …

L

b

a
g1x2 dx

f1x2 … g1x2

Proof Let P: be an arbitrary partition of 
[a, b], and for each i let be any sample point on the ith subinterval We
may conclude successively that

[xi - 1, xi].xi

a = x0 6 x1 6 x2 6
Á

6 xn = b
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y

xa b

M

m

y = f (x)

Figure 6

Theorem C Boundedness Property

If is integrable on [a, b] and for all x in [a, b], then

m1b - a2 …

L

b

a
f1x2 dx … M1b - a2

m … f1x2 … Mf

Theorem D Linearity of the Definite Integral

Suppose that and are integrable on [a, b] and that k is a constant. Then 
and are integrable and

(1)

(2)

(3)
L

b

a
[f1x2 - g1x2] dx =

L

b

a
f1x2 dx -

L

b

a
g1x2 dx

L

b

a
[f1x2 + g1x2] dx =

L

b

a
f1x2 dx +

L

b

a
g1x2 dx

L

b

a
kf1x2 dx = k

L

b

a
f1x2 dx

f + g
kfgf

� 
L

b

a
f1x2 dx …

L

b

a
g1x2 dx

 lim7P7:0
 a

n

i = 1
 f1xi2 ¢xi … lim7P7:0

 a
n

i = 1
 g1xi2 ¢xi

 a
n

i = 1
 f1xi2 ¢xi … a

n

i = 1
 g1xi2 ¢xi

 f1xi2 ¢xi … g1xi2 ¢xi

 f1xi2 … g1xi2

Proof The picture in Figure 6 helps us to understand the theorem. Note that
is the area of the lower, small rectangle, is the area of the

large rectangle, and is the area under the curve.

To prove the right-hand inequality, let for all x in [a, b]. Then, by
Theorem B,

However, is equal to the area of a rectangle with width and

height M. Thus,

The left-hand inequality is handled similarly. �

The Definite Integral Is a Linear Operator Earlier we learned that 

and are linear operators. You can add to the list.
L

b

a

Á dx©1 Á dx,

Dx,

L

b

a
g1x2 dx = M1b - a2

b - a
L

b

a
g1x2 dx

L

b

a
f1x2 dx …

L

b

a
g1x2 dx

g1x2 = M
L

b

a
f1x2 dx

M1b - a2m1b - a2

Proof The proofs of (1) and (2) depend on the linearity of and the properties
of limits. We show (2).

©
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y

tx x + h

M

m

f (x)

y = f (t)

Figure 7

Part (3) follows from (1) and (2) on writing as 
�

Proof of the First Fundamental Theorem of Calculus With these
results in hand, we are now ready to prove the First Fundamental Theorem of
Calculus.

Proof In the sketch of the proof presented earlier, we defined 

and we established the fact that

Assume for the moment that and let m and M be the minimum value
and maximum value, respectively, of f on the interval (Figure 7). By
Theorem C,

or

Dividing by h, we obtain

Now m and M really depend on h. Moreover, since is continuous, both m and M
must approach as Thus, by the Squeeze Theorem,

The case where is handled similarly. �

One theoretical consequence of this theorem is that every continuous function
has an antiderivative F given by the accumulation function

Section 7.6 gives several examples of important functions that are defined as accu-
mulation functions.

F1x2 =

L

x

a
f1t2 dt

f

h 6 0

lim
h:0

  
F1x + h2 - F1x2

h
= f1x2

h : 0.f(x)
f

m …

F1x + h2 - F1x2
h

… M

mh … F1x + h2 - F1x2 … Mh

mh …

L

x + h

x
f1t2 dt … Mh

[x, x + h]
h 7 0

F1x + h2 - F1x2 =

L

x + h

x
f1t2 dt

L

x

a
f1t2 dt,

F1x2 =

f1x2 + 1-12g1x2.f1x2 - g1x2

 =

L

b

a
f1x2 dx +

L

b

a
g1x2 dx

 = lim7P7:0
 a

n

i = 1
f1xi2 ¢xi + lim7P7:0

 a
n

i = 1
g1xi2 ¢xi

 = lim7P7:0
 ca

n

i = 1
f1xi2 ¢xi + a

n

i = 1
g1xi2 ¢xi d

 
L

b

a
[f1x2 + g1x2] dx = lim7P7:0

 a
n

i = 1
[f1xi2 + g1xi2]¢xi
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6

y

3 t

5

4

3

2

1

21

–1

x2

y = 3t – 1

(x2, 3x2 – 1)

(1, 2)

Figure 8

� EXAMPLE 1 Find 

SOLUTION By the First Fundamental Theorem of Calculus,

�

� EXAMPLE 2 Find 

SOLUTION We challenge anyone to do this example by first evaluating the
integral. However, by the First Fundamental Theorem of Calculus, it is a trivial
problem.

�

� EXAMPLE 3 Find 

SOLUTION Use of the dummy variable u rather than t should not bother
anyone. However, the fact that x is the lower limit, rather than the upper limit, is
troublesome. Here is how we handle this difficulty.

The interchange of the upper and lower limits is allowed if we prefix a negative sign.

(Recall that by definition ) �

� EXAMPLE 4 Find in two ways.

SOLUTION One way to find this derivative is to apply the First Fundamental
Theorem of Calculus, although now we have a new complication; the upper limit is

rather than x. This problem is handled by the Chain Rule. We may think of the
expression in brackets as

By the Chain Rule, the derivative with respect to x of this composite function is

Another way to find this derivative is to evaluate the definite integral first, and

then use our rules for derivatives. The definite integral is the area

below the line between and (see Figure 8). Since the area

of this trapezoid is 
x2

- 1
2

 [2 + 13x2
- 12] =

3
2

 x4
- x2

-

1
2

,

t = x2t = 1y = 3t - 1
L

x2

1
13t - 12 dt

Du c
L

u

1
13t - 12 dt d # Dxu = 13u - 1212x2 = 13x2

- 1212x2 = 6x3
- 2x

L

u

1
13t - 12 dt where u = x2

x2

Dx c
L

x2

1
13t - 12 dt d

L

a

b
f1x2 dx = -

L

b

a
f1x2 dx.

 = -

d

dx
 c
L

x

4
tan2 u cos u du d = - tan2 x cos x

 
d

dx
 c
L

4

x
tan2 u cos u du d =

d

dx
 c -
L

x

4
tan2 u cos u du d

d

dx
 c
L

4

x
tan2 u cos u du d , p

2
6 x 6

3p
2

.

d

dx
 c
L

x

2
 

t3>22t2
+ 17

  dt d =

x3>22x2
+ 17

d

dx
 c
L

x

2
 

t3>22t2
+ 17

  dt d .

d

dx
 c
L

x

1
t3 dt d = x3

d

dx
 c
L

x

1
t3 dt d .
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20 40 60 80 100 120 140 160 180

2

1

–1

–2

–3

v

t

a

v(t) =
t/20,
2,
5 –t/20,

0 � t � 40
 40 � t � 60
t � 60

Figure 9

Thus,

�

Position as Accumulated Velocity In the last section we saw how the
position of an object, initially at the origin, is equal to the definite integral of 
the velocity function. This often leads to accumulation functions, as the next exam-
ple illustrates.

� EXAMPLE 5 An object at the origin at time has velocity, measured in
meters per second,

When, if ever, does the object return to the origin?

SOLUTION Let denote the position of the object at time a.
The accumulation is illustrated in Figure 9. If the object returns to the origin at
some time a, then a must satisfy The required value of a is certainly
greater than 100 because the area below the curve between 0 and 100 must exactly
equal the area above the curve and below the x-axis between 100 and a.Therefore,

We must then set The two solutions to this quadratic equation are

Taking the minus sign gives a value less than 100, which cannot

be the solution so, we discard it. The other solution is Let’s

check this solution:

Thus, the object returns to the origin at time seconds.
�

t = 100 + 4023 L 169.3

 = 0

 = 120 +

1
2

 A100 + 4023 - 100 B A5 - A100 + 4023 B >20 B
 =

L

100

0
v1t2 dt +

L

100 + 4023

100
v1t2 dt

 F1a2 =

L

100 + 4023

0
v1t2 dt

100 + 4023 L 169.3.

a = 100 ; 4023.

F1a2 = 0.

 = -130 + 5a -

1
40

 a2

 = 120 +

1
2

 1a - 100215 - a>202

 =

1
2

 40 # 2 + 20 # 2 +

1
2

 40 # 2 +

L

a

100
15 - t>202 dt

 F1a2 =

L

a

0
v1t2 dt =

L

100

0
v1t2 dt +

L

a

100
v1t2 dt

F1a2 = 0.

F1a2 = 1
a

0 v1t2 dt

v1t2 = c t>20 if 0 … t … 40
2 if 40 6 t … 60
5 - t>20 if t 7 60

t = 0

Dx
L

x2

1
13t - 12 dt = Dx a3

2
 x4

- x2
-

1
2
b = 6x3

- 2x

L

x2

1
13t - 12 dt =

3
2

 x4
- x2

-

1
2
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288 Chapter 5 The Definite Integral

A Way to Evaluate Definite Integrals The next example shows a way
(admittedly a rather awkward way) to evaluate a definite integral. If this method
seems long and cumbersome, be patient. The next section deals with efficient ways
to evaluate definite integrals.

� EXAMPLE 6 Let 

(a) Let and show that 
(b) Find the solution of the differential equation that satisfies 

when 

(c) Find 

SOLUTION
(a) By the First Fundamental Theorem of Calculus,

(b) Since the differential equation is separable, we can write

Integrating both sides gives

When we must have Thus, we choose C so
that

Therefore, The solution to the differential equation is thus

(c) Since we have

�
L

4

1
t3 dt = A142 =

44

4
-

1
4

= 64 -

1
4

=

255
4

y = A1x2 = x4>4 - 1>4,

y = x4>4 - 1>4.
C = -1>4.

0 = A112 =

14

4
+ C

y = A112 =

L

1

1
t3 dt = 0.x = 1,

y =

L
x3 dx =

x4

4
+ C

dy = x3 dx

dy>dx = x3

dy

dx
= A¿1x2 = x3

L

4

1
t3 dt.

x = 1.
y = 0dy>dx = x3

dy>dx = x3.y = A1x2,
A1x2 =

L

x

1
t3 dt.

Concepts Review
1. Since for all x in [2, 4], the Boundedness

Property of the definite integral allows us to say that 

_____ _____.

2. _____.
d

dx
 c
L

x

1
sin3 t dt d =

…

L

4

2
x2 dx …

4 … x2
… 16

3. By linearity, _____ and

_____.

4. If and if for all x in [1, 4],

then the Comparison Property allows us to say that

_____.
L

4

1
g1x2 dx …

g1x2 … f1x2
L

4

1
f1x2 dx = 5

L

5

2
x dx +

L

5

2
Ax + 1x B  dx =

L

4

1
cf1x2 dx = c #
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Problem Set 5.3
In Problems 1–8, find a formula for and graph the accumulation
function that is equal to the indicated area.

1. 2.

3. 4.

5. 6.

7. 8.

Suppose that 

and Use properties of definite integrals (linearity,

interval additivity, and so on) to calculate each of the integrals in
Problems 9–16.

9. 10.

11. 12.

13. 14.

15.
L

2

0
[3f1t2 + 2g1t2] dt

L

1

1
[3f1x2 + 2g1x2] dx

L

1

2
[2f1s2 + 5g1s2] ds

L

1

0
[2f1s2 + g1s2] ds

L

2

0
[2f1x2 + g1x2] dx

L

2

0
2f1x2 dx

L

2

1
2f1x2 dx

L

2

0
g1x2 dx = 4.

L

1

0
g1x2 dx = -1,

L

1

0
f1x2 dx = 2, 

L

2

1
f1x2 dx = 3, 

4

y

321
x

1

5

2

t

 A(x)

4

y

t
321

x

1

5

2

 A(x)

y

tx

A(x)

1 2 3 4

3

2

1

–1
x

y

t

A(x)

y = a t

4

y

t

1

321
x

2

−1

 A(x)2

4

y

t

1

−1

321
x

 A(x)

1 2 3 x4 5

a

y

t

A(x)

1 2 3 x 4 5

2

3

4

1

–1

y

t

A(x)

A(x) 16.

In Problems 17–26, find 

17.

18.

19.

20.

21.

22. (Be careful.)

23.

24.

25. Hint:

26.

In Problems 27–32, find the interval(s) on which the graph of
is (a) increasing, and (b) concave up.

27. 28.

29. 30.

31. 32. is the accumulation
function in
Problem 8.

In Problems 33–36, use the Interval Additive Property and linear-

ity to evaluate Begin by drawing a graph of f.

33.

34.

35.

36. f1x2 = 3 + ƒ x - 3 ƒ

f1x2 = ƒ x - 2 ƒ

f1x2 = c 1 if 0 … x 6 1
x if 1 … x 6 2
4 - x if 2 … x … 4

f1x2 = e 2 if 0 … x 6 2
x if 2 … x … 4

L

4

0
f1x2 dx.

A(x)
f(x)f1x2 =

L

x

1
 
1
u

  du, x 7 0

f1x2 =

L

x

0
(t + sin t) dtf1x2 =

L

x

0
 tan-1 u du

f1x2 =

L

x

0
 
1 + t

1 + t2  dtf1x2 =

L

x

0
 

s21 + s2
  ds

y = f1x2, x Ú 0,

G1x2 =

L

sin x

cos x
t5 dt

L

x

-x2
=

L

0

-x2
+

L

x

0
G1x2 =

L

x

-x2
  

t2

1 + t2  dt

G1x2 =

L

x2
+ x

1
22z + sin z dz

G1x2 =

L

x2

1
e-t2

 dt

G1x2 =

L

x

1
xt dt

G1x2 =

L

p>4

x
1s - 22 cot 2s ds; 0 6 x 6 p>2

G1x2 =

L

x

1
cos3 2 t tan t dt; -p>2 6 x 6 p>2

G1x2 =

L

x

0
A2t2

+ 1t B  dt

G1x2 =

L

1

x
2t dt

G1x2 =

L

x

1
2t dt

G¿1x2.
L

2

0
C23f1t2 + 22g1t2 + p D  dt
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10 t
0

–5
8642

5

10

15

y

Figure 11

37. Consider the function where 

oscillates about the line over the interval [0, 10] and is
given by Figure 10.

(a) At what values of x over this region do the local maxima and
minima of occur?

(b) Where does attain its absolute maximum and absolute
minimum?

(c) On what intervals is concave down?
(d) Sketch a graph of G(x).

G(x)

G(x)
G(x)

y = 2

f(t)G1x2 =

L

x

0
f1t2 dt,

38. Perform the same analysis as you did in Problem 37 for

the function given by Figure 11, where 

oscillates about the line for the interval [0, 10].y = 2

f(t)G1x2 =

L

x

0
f1t2 dt

(e) Find all relative extrema and inflection points of G on the in-
terval 

(f) Plot a graph of over the interval 

41. Show that Hint: Explain why

for x in the closed interval [0, 1]; then
use the Comparison Property (Theorem B) and the result of
Problem 39d.

42. Show that (See the hint for

Problem 41.)

In Problems 43–48, use a graphing calculator to graph each
integrand. Then use the Boundedness Property (Theorem C) to
find a lower bound and an upper bound for each definite integral.

43. 44.

45. 46.

47.

48.

49. Find 

50. Find 

51. Find if 

52. Find if 

53. Find if 

54. Does there exist a function f such that 
Explain.

In Problems 55–60, decide whether the given statement is true or
false. Then justify your answer.

55. If is continuous and for all x in [a, b], then

56. If then for all x in [a, b].

57. If then for all x in [a, b].

58. If and then for all x

in [a, b].

59. If then

L

b

a
[ f1x2 - g1x2] dx 7 0

L

b

a
f1x2 dx 7

L

b

a
g1x2 dx,

f1x2 = 0
L

b

a
f1x2 dx = 0,f1x2 Ú 0

f1x2 = 0
L

b

a
f1x2 dx = 0,

f1x2 Ú 0
L

b

a
f1x2 dx Ú 0,

L

b

a
f1x2 dx Ú 0.

f1x2 Ú 0f

x + 1? L

x

0
f1t2 dt =

L

x2

0
f1t2 dt =

1
3 x3.f(x)

L

x

0
f1t2 dt = x2.f(x)

L

x

1
f1t2 dt = 2x - 2.f(x)

lim
x:1

  
1

x - 1L

x

1
 
1 + t

2 + t
  dt.

lim
x:0

  
1
xL

x

0
 
1 + t

2 + t
  dt.

L

0.4

0.2
10.002 + 0.0001 cos2 x2 dx

L

8p

4p
 a5 +

1
20

 sin2 xb  dx

L

20

10
 a1 +

1
x
b5

 dx
L

5

1
 a3 +

2
x
b  dx

L

4

2
1x + 625 dx

L

4

0
15 + x32 dx

GC

2 …

L

1

0
24 + x4

…

21
5

.

1 … 21 + x4
… 1 + x4

1 …

L

1

0
21 + x4 dx …

6
5

.

[0, 4p].y = G1x2
[0, 4p].

10 t

10

y

5

0

–5

–10

8642

Figure 10

39. Let 

(a) Find 

(b) Let Apply the First Fundamental Theorem of
Calculus to obtain Solve the dif-
ferential equation 

(c) Find the solution to this differential equation that satisfies
when 

(d) Show that 

40. Let 

(a) Find and 

(b) Let Apply the First Fundamental Theorem of
Calculus to obtain Solve the differ-
ential equation 

(c) Find the solution to this differential equation that satisfies
when 

(d) Show that 
L

p

0
sin x dx = 2.

x = 0.y = G102
dy>dx = sin x.

dy>dx = G¿1x2 = sin x.
y = G1x2.

G12p2.G(0)

G1x2 =

L

x

0
sin t dt.

L

1

0
1x4

+ 12 dx =

6
5

.

x = 0.y = F102
dy>dx = x4

+ 1.
dy>dx = F¿1x2 = x4

+ 1.
y = F1x2.
F(0).

F1x2 =

L

x

0
1t4

+ 12 dt.
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Section 5.4 The Second Fundamental Theorem of Calculus and the Method of Substitution 291

The Second Fundamental Theorem
of Calculus is important in providing
a powerful tool for evaluating defi-
nite integrals. But its deepest sig-
nificance lies in the link it makes
between differentiation and integra-
tion, between derivatives and inte-
grals. This link appears in sparkling
clarity when we rewrite the conclu-
sion to the theorem with re-
placed by 

L

b

a
g¿1x2 dx = g1b2 - g1a2

g¿1x2.
f(x)

Is It Fundamental?

Theorem A Second Fundamental Theorem of Calculus

Let be continuous (hence integrable) on [a, b], and let F be any antiderivative
of on [a, b]. Then

L

b

a
f1x2 dx = F1b2 - F1a2

f
f

60. If f and g are continuous and for all x in 

[a, b], then 

61. The velocity of an object is Assuming
that the object is at the origin at time 0, find a formula for its po-
sition at time t. (Hint: You will have to consider separately the in-
tervals and ) When, if ever, does the object
return to the origin?

62. The velocity of an object is

(a) Assuming that the object is at the origin at time 0, find a for-
mula for its position at time t (t Ú 0).

v1t2 = c 5 if 0 … t … 100
6 - t>100 if 100 6 t … 700
-1 if t 7 700

t 7 2.0 … t … 2,

v1t2 = 2 - ƒ t - 2 ƒ .

`
L

b

a
f1x2 dx ` 7 `

L

b

a
g1x2 dx ` .

f1x2 7 g1x2 (b) What is the farthest to the right of the origin that this object
ever gets?

(c) When, if ever, does the object return to the origin?

63. Let be continuous on [a, b] and thus integrable there.
Show that

Hint: use Theorem B.

64. Suppose that is integrable and for all x.
Prove that for every a.

Answers to Concepts Review: 1. 8; 32 2.

3. 4. 5
L

4

1
f1x2 dx; 

L

5

2
1x dx

sin3 x

ƒ f1x2 ƒ … ƒ f1a2 ƒ + M ƒ x - a ƒ

ƒ f¿1x2 ƒ … Mf¿

- ƒ f1x2 ƒ … f1x2 … ƒ f1x2 ƒ ;

`
L

b

a
f1x2 dx ` …

L

b

a
ƒ f1x2 ƒ  dx

f

Proof For x in the interval [a, b], define Then, by the First

Fundamental Theorem of Calculus, for all x in (a, b). Thus, G is an
antiderivative of f ; but F is also an antiderivative of f. From Theorem 4.6B, we con-
clude that since the functions F and G differ by a constant. Thus,
for all x in (a, b)

Since the functions F and G are continuous on the closed interval [a, b] (Problem
81), we have and Thus,
on the closed interval [a, b].

Since we have

Therefore,

�F1b2 - F1a2 = [G1b2 + C] - C = G1b2 =

L

b

a
f1t2 dt

F1a2 = G1a2 + C = 0 + C = C

G1a2 =

L

a

a
f1t2 dt = 0,

F1x2 = G1x2 + CF1b2 = G1b2 + C.F1a2 = G1a2 + C

F1x2 = G1x2 + C

F¿1x2 = G¿1x2,
G¿1x2 = f1x2

G1x2 =

L

x

a
f1t2 dt.

The First Fundamental Theorem of Calculus, given in the previous section, gives
the inverse relationship between definite integrals and derivatives. Although it is
not yet apparent, this relationship gives us a powerful tool for evaluating definite
integrals. This tool is called the Second Fundamental Theorem of Calculus, and we
will apply it much more often than the First Fundamental Theorem of Calculus.

5.4
The Second

Fundamental Theorem
of Calculus and the

Method of Substitution
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292 Chapter 5 The Definite Integral

In Section 4.8, we defined the indefinite integral as an antiderivative. In
Section 5.2, we defined the definite integral as the limit of a Riemann sum.We used
the same word (integral) in both cases, although at the time there seemed to be lit-
tle in common between the two. Theorem A is fundamental because it shows how
indefinite integration (antidifferentiation) and definite integration (signed area)
are related. Before going on to examples, ask yourself why we can use the word
any, in the statement of the theorem.

� EXAMPLE 1 Show that where k is a constant.

SOLUTION is an antiderivative of Thus, by the Second
Fundamental Theorem of Calculus,

�

� EXAMPLE 2 Show that 

SOLUTION is an antiderivative of Therefore,

�

� EXAMPLE 3 Show that if r is a real number different from and
then

SOLUTION is an antiderivative of Thus, by
the Second Fundamental Theorem of Calculus,

If then we require that  Why? �

It is convenient to introduce a special symbol for We write

With this notation,

� EXAMPLE 4 Evaluate 

(a) using the Second Fundamental Theorem of Calculus directly, and
(b) using linearity (Theorem 5.3D) first.

SOLUTION

(a)  = 18 - 162 - 12 + 22 = -12 
L

2

-1
14x - 6x22 dx = C2x2

- 2x3 D
-1
2

L

2

-1
14x - 6x22 dx

L

5

2
x2 dx = cx3

3
d

2

5

=

125
3

-

8
3

=

117
3

= 39

F1b2 - F1a2 = CF1x2 Dab
F1b2 - F1a2.

a Z 0.r 6 0,

L

b

a
xr dx = F1b2 - F1a2 =

br + 1

r + 1
-

ar + 1

r + 1

f1x2 = xr.F1x2 = xr + 1>1r + 12
L

b

a
xr dx =

br + 1

r + 1
-

ar + 1

r + 1

0 … a 6 b,
-1

L

b

a
x dx = F1b2 - F1a2 =

b2

2
-

a2

2

f1x2 = x.F1x2 = x2>2
L

b

a
x dx =

b2

2
-

a2

2
.

L

b

a
k dx = F1b2 - F1a2 = kb - ka = k1b - a2

f1x2 = k.F1x2 = kx

L

b

a
k dx = k1b - a2,
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(b) Using linearity first, we have

�

� EXAMPLE 5 Evaluate 

SOLUTION

�

� EXAMPLE 6 Find in two ways.

SOLUTION The easy way is to apply the First Fundamental Theorem of
Calculus.

A second way to do this problem is to apply the Second Fundamental The-
orem of Calculus to evaluate the integral from 0 to x; then apply the rules of
derivatives.

Then

�

In terms of the symbol for the indefinite integral, we may write the conclusion
of the Second Fundamental Theorem of Calculus as

The nontrivial part of applying the theorem is always to find the indefinite integral
One of the most powerful techniques for doing this is the method of

substitution

The Method of Substitution In Section 4.8, we introduced the method of
substitution for the power rule.This rule can be extended to a more general case as
the following theorem shows. An astute reader will see that the substitution rule is
nothing more than the Chain Rule in reverse.

1f1x2 dx.

L

b

a
f1x2 dx = c

L
f1x2 dx d

a

b

Dx
L

x

0
3 sin t dt = Dx1-3 cos x + 32 = 3 sin x

L

x

0
3 sin t dt = [-3 cos t]0

x
= -3 cos x - 1-3 cos 02 = -3 cos x + 3

Dx
L

x

0
3 sin t dt = 3 sin x

Dx
L

x

0
3 sin t dt

 =
45
4 +

381
7 L 65.68

 = A34 # 16 +
3
7
# 128 B - A34 # 1 +

3
7
# 1 B

 
L

8

1
1x1>3

+ x4>32 dx = C34 x4>3
+

3
7 x7>3 D18

L

8

1
1x1>3

+ x4>32 dx.

 = -12

 = 4a4
2

-

1
2
b - 6a8

3
+

1
3
b

 = 4 cx2

2
d

-1

2

- 6 cx3

3
d

-1

2

 
L

2

-1
14x - 6x22 dx = 4

L

2

-1
x dx - 6

L

2

-1
x2 dx
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Proof All we need to do to prove this result is to show that the derivative of the
right side is equal to the integrand of the integral on the left. This is a simple appli-
cation of the Chain Rule.

�

We normally apply Theorem B as follows. In an integral such as
we let so that Thus,

The integral then becomes

Thus, if we can find an antiderivative for we can evaluate 
The trick to applying the method of substitution is to choose the right substitution to
make. In some cases this substitution is obvious; in other cases it is not so obvious.
Proficiency in applying the method of substitution comes from practice.

Theorem 4.8B gave a number of antidifferentiation formulas. Since those re-
sults will be our starting point for most integration problems, that theorem is worth
reviewing now.

� EXAMPLE 7 Evaluate 

SOLUTION The obvious substitution here is so that Thus

Notice how we had to multiply by in order to have the expression 

in the integral. �

� EXAMPLE 8 Evaluate 

SOLUTION The substitution is so that Thus

�

� EXAMPLE 9 Evaluate 
L

x sin x2 dx.

 = -

1
2L

 eu du = -

1
2

  eu
+ C = -

1
2

  e-2x
+ C

 
L

 e-2x dx =

L
a-  

1
2

 b  e-2x (-2 dx) = -

1
2L

exp (-2x) (-2x dx)

du = -2 dx.u = -2x,

L
e-2x dx.

3 dx = du
1
3

# 3

 =

1
3L

 sin u du = -

1
3

  cos u + C = -

1
3

  cos 3x + C

 L
 sin 3x dx =

L
 
1
3

  sin1 3x
3

2 3 dx
3

u du

du = 3 dx.u = 3x,

L
 sin 3x dx.

1f1g1x22g¿1x2 dx.f(x),

L
f1g1x2

3
2g¿1x2 dx
5

=

L
f1u2 du = F1u2 + C = F1g1x22 + C

u du

du = g¿1x2 dx.du>dx = g¿1x2.u = g1x2,1f1g1x22g¿1x2 dx

Dx[F1g1x22 + C] = F¿1g1x22g¿1x2 = f1g1x22g¿1x2

Theorem B Substitution Rule for Indefinite Integrals

Let g be a differentiable function and suppose that F is an antiderivative of f.
Then

L
f1g1x22g¿1x2 dx = F1g1x22 + C

3

du
3

u

The way to use the Second Funda-
mental Theorem of Calculus to
evaluate a definite integral such as

is to

(1) find an antiderivative of
the integrand and

(2) substitute the limits and com-
pute 

This all hinges on being able to find
an antiderivative. It is for this reason
that we return briefly to the evalua-
tion of indefinite integrals.

F(b) - F(a)

f(x),
F(x)

L

b

a
 f(x) dx,

Using the Second Fundamental
Theorem of Calculus
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Note that in Example 11 the deriva-
tive of u is precisely This is
what makes the substition work. If
the expression in parentheses were

rather than the Sub-
stitution Rule would not apply and
we would have a much more difficult
problem.

2x + 1,3x + 1

2x + 1.

What Makes This 
Substitution Work?

SOLUTION Here the appropriate substitution is This gives us
in the integrand, but more importantly, the extra x in the integrand

can be put with the differential, because Thus

�

No law says that you have to write out the u-substitution. If you can do the
substitution mentally, that is fine. Here is an illustration.

� EXAMPLE 10 Evaluate 

SOLUTION Mentally, substitute 

�

� EXAMPLE 11 Evaluate 

SOLUTION Let then Thus,

Therefore, by the Second Fundamental Theorem of Calculus,

�

Note that the C of the indefinite integration cancels out, as it always will, in the
definite integration. That is why in the statement of the Second Fundamental The-
orem we could use the phrase any antiderivative. In particular, we may always
choose in applying the Second Fundamental Theorem.

� EXAMPLE 12 Evaluate 

SOLUTION Let then Thus,

Therefore, by the Second Fundamental Theorem of Calculus,

�
L

p>4

0
sin3 2x cos 2x dx = c sin4 2x

8
d

0

p>4
=

1
8

- 0 =

1
8

 =

1
2

 
u4

4
+ C =

sin4 2x

8
+ C

 
L

sin3 2x cos 2x dx =

1
2L
1sin 2x2312 cos 2x2 dx =

1
2L

u3 du

du = 2 cos 2x dx.u = sin 2x;

L

p>4

0
sin3 2x cos 2x dx.

C = 0

 =
2
312023>2 L 59.63

 = C2312023>2 + C D - [0 + C]

 
L

4

0
2x2

+ x 12x + 12 dx = C231x2
+ x23>2 + C D04

 =
2
31x2

+ x23>2 + C

 
L
2x2

+ x 12x + 12 dx =

L
u1>2 du =

2
3 u3>2

+ C

du = 12x + 12 dx.u = x2
+ x;

L

4

0
2x2

+ x 12x + 12 dx.

 =

1
6

 1x4
+ 1123>2 + C

 
L

x32x4
+ 11 dx =

1
4L
1x4

+ 1121>2 14x3 dx2
u = x4

+ 11.

L
x32x4

+ 11 dx.

 =

1
2L

 sin u du = -

1
2

  cos u + C = -

1
2

  cos x2
+ C

 
L

 x sin x2 dx =

L
 
1
2

  sin1 x2 2 2x dx

du = 2x dx.
sin x2

= sin u
u = x2.

5

du
3

u

3
du

3

u

3

du
3

u
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296 Chapter 5 The Definite Integral

To make a substitution in a definite
integral, three changes are required:

1. Make the substitution in the
integrand.

2. Make the appropriate change in
the differential.

3. Change the limits from a and b
to and g(b).g(a)

Substitution in Definite Integrals Theorem C Substitution Rule for Definite Integrals

Let g have a continuous derivative on [a, b], and let be continuous on the
range of g. Then

where u = g(x).
L

b

a
f1g1x22g¿1x2 dx =

L

g1b2

g1a2
f1u2 du

f

Note that in the two-step procedure illustrated in Examples 11 and 12, we
must be sure to express the indefinite integral in terms of x before we apply the
Second Fundamental Theorem. This is because the limits, 0 and 4 in Example 11,
and 0 and in Example 12, apply to x, not to u. But what if, in making the sub-
stitution in Example 12, we also made the corresponding changes in the
limits of integration to u?

If then 

If then 

Could we then finish the integration with the definite integral in terms of u? The
answer is yes.

Here is the general result, which lets us substitute the limits of integration, thereby
producing a procedure with fewer steps.

L

p>4

0
sin3 2x cos 2x dx = c1

2
 
u4

4
d

0

1

=

1
8

- 0 =

1
8

u = sin 121p>422 = sin 1p>22 = 1.x = p>4,

u = sin 12 # 02 = 0.x = 0,

u = sin 2x
p>4

Proof Let F be an antiderivative of f (the existence of F is guaranteed by Theo-
rem 5.3A). Then, by the Second Fundamental Theorem of Calculus,

On the other hand, by the Substitution Rule for Indefinite Integrals (Theorem B),

and so, again by the Second Fundamental Theorem of Calculus,

�

� EXAMPLE 13 Evaluate 

SOLUTION Let so and
note that when and when Thus,

�

� EXAMPLE 14 Evaluate 

SOLUTION Let so Thus,du = dx> A21x B .u = 1x,

L

p2>4

p2>9
 
cos1x1x

 dx.

 = -

1
18

- a-

1
12
b =

1
36

 =

1
2L

9

6
u-2 du = c- 1

2
  

1
u
d

6

9

 
L

1

0
 

x + 1

1x2
+ 2x + 622  dx =

1
2L

1

0
 

2(x + 1)

1x2
+ 2x + 622  dx

x = 1.u = 9x = 0u = 6
du = 12x + 22 dx = 21x + 12 dx,u = x2

+ 2x + 6,

L

1

0
 

x + 1

1x2
+ 2x + 622  dx.

L

b

a
f1g1x22g¿1x2 dx = CF1g1x22 Dab = F1g1b22 - F1g1a22

L
f1g1x22g¿1x2 dx = F1g1x22 + C

L

g1b2

g1a2
f1u2 du = CF1u2 Dg1a2g1b2

= F1g1b22 - F1g1a22
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5

5

y

x4321

4

3

2

1
(1, 1)

(4, 1) (5, 1)

y = f (x)

Figure 1

The change in the limits of integration occurred at the second equality. When
when �

� EXAMPLE 15 Figure 1 shows the graph of a function f that has a continu-
ous third derivative.The dashed lines are tangent to the graph of at (1, 1)
and (5, 1). Based on what is shown, tell, if possible, whether the following integrals
are positive, negative, or zero.

(a) (b)

(c) (d)

SOLUTION
(a) The function is positive for all x in the interval [1, 5], and the graph indicates 

that there is some area above the x-axis. Thus,

(b) By the Second Fundamental Theorem of Calculus,

(c) Again using the Second Fundamental Theorem of Calculus (this time with 
being an antiderivative of ), we see that

(d) The function is concave up at so and it is concave down at
so Thus,

�

This example illustrates the remarkable property that to evaluate a definite
integral all we need to know are the values of an antiderivative at the end points 

a and b. For example, to evaluate all we needed to know was 

and we did not need to know or at any other points.

Accumulated Rate of Change The Second Fundamental Theorem of Cal-
culus can be restated in this way:

If measures the amount of some quantity at time t, then the Second Fundamen-
tal Theorem of Calculus says that the accumulated rate of change from time to
time is equal to the net change in that quantity over the interval that 
is, the amount present at time minus the amount present at time 

� EXAMPLE 16 Water leaks out of a 55-gallon tank at the rate
where t is measured in hours and V in gallons. (See Figure 2.)V¿1t2 = 11 - 1.1t

t = a.t = b
[a, b],t = b

t = a
F(t)

L

b

a
F¿1t2 dt = F1b2 - F1a2

f–f¿f¿112;
f¿152

L

5

1
f–1x2 dx,

L

5

1
f‡1x2 dx = f–152 - f–112 7 0

f–112 6 0.x = 1,
f–152 7 0,x = 5,f

L

5

1
f–1x2 dx = f¿152 - f¿112 = 0 - 1-12 = 1

f–

f¿

L

5

1
f¿1x2 dx = f152 - f112 = 1 - 1 = 0

L

5

1
f1x2 dx 7 0.

f

L

5

1
f‡1x2 dx

L

5

1
f–1x2 dx

L

5

1
f¿1x2 dx

L

5

1
f1x2 dx

y = f1x2

x = p2>4, u = p>2.x = p2>9, u = 2p2>9 = p>3;

 = C2 sin u D
p>3
p>2

= 2 - 23

 = 2
L

p>2

p>3
cos u du

 
L

p2>4

p2>9
 
cos1x1x

  dx = 2
L

p2>4

p2>9
cos1x #

1
21x

  dx

Figure 2
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298 Chapter 5 The Definite Integral

Initially, the tank is full. (a) How much water leaks out of the tank between 
and hours? (b) How long does it take until there are just 5 gallons remaining
in the tank?

SOLUTION represents the amount of water that has leaked out through
time t.

(a) The amount that has leaked out between and hours is equal to the
area under the curve from 3 to 5 (Figure 3). Thus

Thus, 13.2 gallons leaked in the two hours between time and .
(b) Let denote the time when 5 gallons remain in the tank. Then the amount

that has leaked out is equal to 50, so Since the tank was initially
full (i.e., nothing has leaked out), we have Thus,

The solutions of this last equation are approximately

6.985 and 13.015. Note that since the entire tank is 

drained by time leading us to discard the latter solution.Thus, 5 gallons 
remain after 6.985 hours. �

t = 10,
1

10
0 111 - 1.1t2 dt = 55,

10 A11 ; 211 B >11,

 0 = -50 + 11t1 - 0.55t1
2

 50 - 0 = c11t -

1.1
2

 t2 d t1

0

 V1t12 - V102 =

L

t1

0
111 - 1.1t2 dt

V102 = 0.
V1t12 = 50.

t1

t = 5t = 3

V152 - V132 =

L

5

3
V¿1t2 dt =

L

5

3
111 - 1.1t2 dt = c11t -

1.1
2

 t2 d
3

5

= 13.2

V¿1t2 t = 5t = 3

V(t)

t = 5
t = 3V �(t)

t
3 5 10

10

5

Figure 3

Concepts Review
1. If f is continuous on [a, b] and if F is any _____ of f there,

then _____.

2. The symbol stands for the expression _____.CF1x2 Dab
1

b
a f1x2 dx =

3. By the Second Fundamental Theorem of Calculus,
_____.

4. Under the substitution the definite integral
transforms to the new definite integral _____.1

1
0 x21x3

+ 124 dx

u = x3
+ 1,

1
d

c F¿1x2 dx =

Problem Set 5.4
In Problems 1–14, use the Second Fundamental Theorem of Cal-
culus to evaluate each definite integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
L

1

0
1x4>3

- 2x1>32 dx
L

1

0
12x4

- 3x2
+ 52 dx

L

p>2

p>6
2 sin t dt

L

p>2

0
cos x dx

L

4

1
 
s4

- 8

s2   ds
L

-2

-4
 ay2

+

1

y3 b  dy

L

8

1
13 w dw

L

4

0
1t dt

L

3

1
 
2

t3  dt
L

4

1
 

1

w2  dw

L

2

1
14x3

+ 72 dx
L

2

-1
13x2

- 2x + 32 dx

L

2

-1
x4 dx

L

2

0
x3 dx

In Problems 15–34, use the method of substitution to find each of
the following indefinite integrals.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.
L

 

z cos A23 z2
+ 3 B

A23 z2
+ 3 B2   dz

L
 
x sin 2x2

+ 42x2
+ 4

  dx

L
x2 cos1x3

+ 52 dx
L

x sin1x2
+ 42 dx

L
v A23v2

+ p B7>8 dv
L

x1x2
+ 32-12>7 dx

L
x21x3

+ 529 dx
L

x2x2
+ 4 dx

L
cos Apv - 27 B  dv

L
sin16x - 72 dx

L
sin12x - 42 dx

L
cos13x + 22 dx

L
23 2x - 4 dx

L
23x + 2 dx
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y

xO

3

2

1

1 2 3

(1, 2)

y

x1O

3

2

1

2 3 4

(4, 1)

Figure 4 Figure 5

10

9

8

7

6

5

4

3

2

1

0
0 2 4 6 8 10 12

Time (hours past midnight)

W
at

er
 U

sa
ge

 (
ga

l. 
/h

r)

Figure 6

29.

30.

31.

32.

33.

34.

Hint:

In Problems 35–62, use the Substitution Rule for Definite Integrals
to evaluate each definite integral.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53.

54.

55. 56.

57.

58.

59. 60.

61.

62.
L

3

1
  

ln x
x

  dx   Hint: Let u = ln x

L

5

-5
x sinh  x2 dx

L

1

-1
x2 cosh x3 dx

L

1

0
 

1

1 + x2  dx

L

p>2

-p>2
x2 sin21x32 cos1x32 dx

L

1

0
x cos31x22 sin1x22 dx

L

p>2

-p>2
cos u cos1p sin u2 du

L

p

0
sin x ecos x dx

L

p>2

-p>2
1cos 3x + sin 5x2 dx

L

p>4

0
1cos 2x + sin 2x2 dx

L

p

0
x4 cos12x52 dx

L

1

0
x sin1px22 dx

L

1>2

0
sin12px2 dx

L

1

0
cos13x - 32 dx

L

p>6

0
 
sin u

cos3 u
 du

L

p>6

0
sin3 u cos u du

L

4

1
  
(2x - 1)32x

  dx
L

1

0
x ex2

 dx

L

p>2

0
sin2 3x cos 3x dx

L

p>2

0
cos2 x sin x dx

L

3

1
 

x2
+ 12x3
+ 3x

  dx
L

3

-3
27 + 2t2 18t2 dt

L

7

1
 

122x + 2
  dx

L

8

5
23x + 1 dx

L

10

2

1
y + 4

 dy
L

3

-1
 

1

1t + 222  dt

L

0

-1
2x3

+ 113x22 dx
L

1

0
1x2

+ 121012x2 dx

Dx tan x = sec2x

L
x-4 sec21x-3

+ 1225 tan1x-3
+ 12 dx

L
x2 sin1x3

+ 52 cos91x3
+ 52 dx

L
x6 sin13x7

+ 9223 cos13x7
+ 92 dx

L
x cos1x2

+ 422sin1x2
+ 42 dx

L
x617x7

+ p28 sinh [17x7
+ p29] dx

L
x21x3

+ 528 exp[1x3
+ 529] dx

64. Figure 5 shows the graph of a function f that has a contin-
uous third derivative. The dashed lines are tangent to the graph
of at the points (0, 2) and (4, 1). Based on what is
shown, tell, if possible, whether the following integrals are posi-
tive, negative, or zero.

(a) (b)

(c) (d)

65. Water leaks out of a 200-gallon storage tank (initially full)
at the rate where t is measured in hours and V in
gallons. How much water leaked out between 10 and 20 hours?
How long will it take the tank to drain completely?

66. Oil is leaking at the rate of from a
storage tank that is initially full of 55 gallons. How much leaks
out during the first hour? During the tenth hour? How long until
the entire tank is drained?

67. The water usage in a small town is measured in gallons
per hour. A plot of this rate of usage is shown in Figure 6 for the
hours midnight through noon for a particular day. Estimate the
total amount of water used during this 12-hour period.

V¿1t2 = 1 - t>110

V¿1t2 = 20 - t,

L

4

0
f‡1x2 dx

L

4

0
f–1x2 dx

L

4

0
f¿1x2 dx

L

4

0
f1x2 dx

y = f1x2

63. Figure 4 shows the graph of a function f that has a contin-
uous third derivative. The dashed lines are tangent to the graph
of at the points (0, 2) and (3, 0). Based on what is
shown, tell, if possible, whether the following integrals are posi-
tive, negative, or zero.

(a) (b)

(c) (d)
L

3

0
f‡1x2 dx

L

3

0
f–1x2 dx

L

3

0
f¿1x2 dx

L

3

0
f1x2 dx

y = f1x2
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Figure 8

y

xba

Bn

An

y = xn

Figure 9

68. Figure 7 shows the rate of oil consumption in million bar-
rels per year for the United States from 1973 to 2003. Approxi-
mately how many barrels of oil were consumed between 1990
and 2000?

69. Figure 8 shows the power usage, measured in megawatts,
for a small town for one day (measured from midnight to mid-
night). Estimate the energy usage for the day measured in
megawatt-hours. Hint: Power is the derivative of energy.

(a) Use Figure 9 to justify this by a geometric argument.
(b) Prove the result using the Second Fundamental Theorem of

Calculus.
(c) Show that 

72. Prove the Second Fundamental Theorem of Calculus fol-
lowing the method suggested in Example 6 of Section 5.3.

In Problems 73–76, first recognize the given limit as a definite inte-
gral and then evaluate that integral by the Second Fundamental
Theorem of Calculus.

73.

74.

75.

76.

77. Explain why should be a good approximation

to for large n. Now calculate the summation expression

for and evaluate the integral by the Second Fundamental
Theorem of Calculus. Compare their values.

78. Evaluate 

79. Show that is an antiderivative of , and use this

fact to get a simple formula for 

80. Find a nice formula for 

81. Suppose that f is continuous on [a, b].

(a) Let Show that G is continuous on [a, b].

(b) Let be any antiderivative of f on [a, b]. Show that F is
continuous on [a, b].

82. Give an example to show that the accumulation function

can be continuous even if is not continuous.

Answers to Concepts Review: 1. antiderivative;
2. 3.

4.
L

2

1
 
1
3

 u4 du

F1d2 - F1c2F1b2 - F1a2F1b2 - F1a2

fG1x2 =

L

x

a
f1x2 dx

F(x)

G1x2 =

L

x

a
f1t2 dt.

L

b

0
Œx œ  dx, b 7 0.

L

b

a
ƒ x ƒ  dx.

ƒ x ƒ
1
2 x ƒ x ƒ

L

4

-2
12 Œx œ - 3 ƒ x ƒ 2 dx.

n = 10,
L

1

0
x2 dx

11>n32a
n

i = 1
i2C

lim
n: q

 a
n

i = 1
 c1 +

2i

n
+ a2i

n
b2 d   2

n

lim
n: q

 a
n

i = 1
 csinapi

n
b d   
p

n

lim
n: q

 a
n

i = 1
 a2i

n
b3

 
2
n

lim
n: q

 a
n

i = 1
 a3i

n
b2

 
3
n

An = nBn.
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Figure 7

70. The mass, in kilograms, of a rod measured from the left
endpoint to the point x meters away is What is
the density of the rod, measured in kilograms per meter?
Assuming that the rod is 2 meters long, express the total mass of
the rod in terms of its density.

71. We claim that

L

b

a
xn dx +

L

bn

an
1n y dy = bn + 1

- an + 1

d1x2
m1x2 = x + x2>8.
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y

x
0.5 1 1.5 2

1.5

0.5

1

f (x) = x sin x2

π�

Figure 1

Definition Average Value of a Function

If f is integrable on the interval [a, b], then the average value of f on [a, b] is

1
b - aL

b

a
f1x2 dx

� EXAMPLE 1 Find the average value of the function defined by
on the interval (See Figure 1.)

SOLUTION The average value is

To evaluate this integral, we make the substitution so that 
When and when Thus,

�

� EXAMPLE 2 Suppose the temperature in degrees Fahrenheit of a metal bar
of length 2 feet depends on the position x according to the function 

Find the average temperature in the bar. Is there a point where
the actual temperature equals the average temperature?
40 + 20x12 - x2. T1x2 =

1
21p  122 =

11p11pL1p0
x sin x2 dx =

11pLp0
 
1
2

 sin u du =

1
21p  C -cos u D0p =

x = 1p, u = p.x = 0, u = 0
du = 2x dx.u = x2,

11p - 0L

2p
0

x sin x2 dx

C0, 1p D .f1x2 = x sin x2

We know what is meant by the average of a set of n numbers, we
simply add them up and divide by n

Can we give meaning to the concept of the average of a function f over an interval
Well, suppose we take a regular partition of say 

with The average of the n val-
ues is

This last sum is a Riemann sum for f on [a, b] and therefore

This suggests the following definition.

 =

1
b - aL

b

a
f1x2 dx

 lim
n: q

 

f1x12 + f1x22 +
Á

+ f1xn2
n

=

1
b - a

  lim
n: q

 a
n

i = 1
 f1xi2 ¢x

 =

1
b - a

 a
n

i = 1
 f1xi2 ¢x

 = a
n

i = 1
 f1xi2 

b - a
n

 
1

b - a

 
f1x12 + f1x22 +

Á
+ f1xn2

n
=

1
n

 a
n

i = 1
 f1xi2

f1x12, f1x22, Á , f1xn2
¢x = 1b - a2>n.6 x2 6

Á
6 xn - 1 6 xn = b,

P: a = x0 6 x1[a, b],[a, b]?

y =

y1 + y2 +
Á

+ yn

n

y1, y2, Á , yn;5.5
The Mean Value

Theorem for Integrals
and the Use 

of Symmetry

301



302 Chapter 5 The Definite Integral

The Mean Value Theorem for 
Derivatives says that there is some
point c in the interval [a, b] at which
the average rate of change of f,

equals the
instantaneous rate of change,

The Mean Value Theorem for Inte-
grals says that there is some point c
in the interval [a, b] at which the
average value of a function 

is equal to the

actual value of the function, f(c).

1
b - aL

b

a
f1t2 dt

f¿1c2.
(f1b2 - f1a2)>(b - a),

The Two Mean Value Theorems

y

ta c b

y = f (t)

Figure 3

Theorem A Mean Value Theorem for Integrals

If is continuous on [a, b], then there is a number c between a and b such that

f1c2 =

1
b - aL

b

a
f1t2 dt

f

T

x
1 –

1 2

60

40

20

1 +
�3

3
�3

3

160
3T =

T (x) = 40 + 20x (2 – x)

Figure 2

SOLUTION The average temperature is

Figure 2, which shows the temperature T as a function of x, indicates that we
should expect two points at which the actual temperature equals the average tem-
perature. To find these points, we set equal to and try to solve for x.

The Quadratic Formula gives

Both solutions are between 0 and 2, so there are two points at which the actual
temperature equals the average temperature. �

It seems as if there should always be a value of x with the property that 
equals the average value of the function. This is true provided only that the func-
tion f is continuous.

f(x)

x =

1
3

 A3 - 23 B L 0.42265 and x =

1
3

 A3 + 23 B L 1.5774

 3x2
- 6x + 2 = 0

 40 + 20x12 - x2 =

160
3

160>3T(x)

 = a40 + 40 -

80
3
b =

160
3

 °F

 = c20x + 10x2
-

10
3

 x3 d2
0

 
1
2L

2

0
[40 + 20x12 - x2] dx =

L

2

0
120 + 20x - 10x22 dx

Proof For define By the Mean Value Theorem

for Derivatives (applied to G) there is a c in the interval (a, b) such that

Since and this leads to

�

The Mean Value Theorem for Integrals is often expressed as follows: If f is
integrable on [a, b], then there exists a c in (a, b) such that

When viewed this way, the Mean Value Theorem for Integrals says that there is
some c in the interval [a, b] such that the area of the rectangle with height and
width is equal to the area under the curve. In Figure 3, the area under the
curve is equal to the area of the rectangle.

b - a
f(c)

L

b

a
f1t2 dt = 1b - a2 f1c2

G¿1c2 = f(c) =

1
b - aL

b

a
f1t2 dt

G¿(c) = f(c),G1b2 =

L

b

a
f1t2 dt,G1a2 =

L

a

a
f1t2 dt = 0,

G¿1c2 =

G1b2 - G1a2
b - a

G1x2 =

L

x

a
f1t2 dt.a … x … b
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This version of the Mean Value The-
orem for Integrals with the accom-
panying Figure 3 suggests a good
way to estimate the value of a defi-
nite integral. The area of the region
under a curve is equal to the area of
a rectangle. One can make a good
guess at this rectangle by simply
“eyeballing” the region. In Figure 3,
the area of the shaded part above
the curve should match the area 
of the white part below the curve.

Estimating Integrals≈

y

x
1–1 2–2 3–3

8

6

4

2

y = x2

y = 3

–�3 �3

Figure 4

1 2

1

y

x

1
2

1
3

y =

1
(x+1)2y =

–1 + �3

Figure 5

� EXAMPLE 3 Find all values of c that satisfy the Mean Value Theorem for
Integrals for on the interval 

SOLUTION The graph of shown in Figure 4 indicates that there could be
two values of c that satisfy the Mean Value Theorem for Integrals. The average
value of the function is

To find the values of c, we solve

Both and are in the interval so both values satisfy the Mean
Value Theorem for Integrals. �

[-3, 3],23-23

 c = ;23

 3 = f1c2 = c2

1
3 - 1-32L

3

-3
x2 dx =

1
6

 cx3

3
d

-3

3

=

1
18

 [27 - 1-272] = 3

f(x)

[-3, 3].f1x2 = x2

� EXAMPLE 4 Find all values of c that satisfy the Mean Value Theorem for

Integrals for on the interval [0, 2].

SOLUTION The graph of shown in Figure 5 indicates that there should be
one value of c that satisfies the Mean Value Theorem for Integrals. The average
value of the function is found by making the substitution 
where when and when 

To find the value of c we solve

Note that and The only one of these
two solutions that is in the interval [0, 2] is thus, this is the only
value of c that satisfies the Mean Value Theorem for Integrals. �

The Use of Symmetry in Evaluating Definite Integrals Recall that
an even function is one satisfying whereas an odd function satisfiesf1-x2 = f1x2,

c = -1 + 23;
-1 + 23 L 0.73205.-1 - 23 L -2.7321

 c =

-2 ; 222
- 41121-22

2
= -1 ; 23

 c2
+ 2c + 1 = 3

 
1
3

= f1c2 =

1

1c + 122

1
2 - 0L

2

0
 

1

1x + 122  dx =

1
2L

3

1
 
1

u2  du =

1
2

 C -u-1 D13 =

1
2

 a-

1
3

+ 1b =

1
3

x = 2, u = 3:x = 0, u = 1
u = x + 1, du = dx,

f(x)

f1x2 =

1

1x + 122
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304 Chapter 5 The Definite Integral

–a a

Even function
Left area = right area

Figure 6

–a
a–

+
–

+

Odd function
Left area neutralizes right area

Figure 7

The graph of the former is symmetric with respect to the y-axis;
the graph of the latter is symmetric with respect to the origin. Here is a useful inte-
gration theorem for such functions.

f1-x2 = -f1x2.

Theorem B Symmetry Theorem

If is an even function, then

If is an odd function, then

L

a

-a
f1x2 dx = 0

f

L

a

-a
f1x2 dx = 2

L

a

0
f1x2 dx

f

Proof for Even Functions The geometric interpretation of this theorem is
shown in Figures 6 and 7. To justify the results analytically, we first write

L

a

-a
f1x2 dx =

L

0

-a
f1x2 dx +

L

a

0
f1x2 dx

In the first of the integrals on the right, we make the substitution
If is even, and

Therefore,

The proof for odd functions is left as an exercise (Problem 60). �

� EXAMPLE 5 Evaluate 

SOLUTION Since is an even function.
Thus,

� = 8
L

p>4

0
cos u du = C8 sin u D0p>4 = 422

 
L

p

-p

cosax

4
b  dx = 2

L

p

0
cosax

4
b  dx = 8

L

p

0
cosax

4
b #

1
4

 dx

cos1-x>42 = cos1x>42, f1x2 = cos1x>42
L

p

-p

cosax

4
b  dx.

L

a

-a
f1x2 dx =

L

a

0
f1x2 dx +

L

a

0
f1x2 dx = 2

L

a

0
f1x2 dx

L

0

-a
f1x2 dx = -

L

0

-a
f1-x21-dx2 = -

L

0

a
f1u2 du =

L

a

0
f1u2 du =

L

a

0
f1x2 dx

f(u) = f1-x2 = f1x2fu = -x, du = -dx.

Be sure to note the hypotheses of
the Symmetry Theorem. The inte-
grand must be even or odd and the
interval of integration must be sym-
metric about the origin. These are
restrictive conditions, but it is sur-
prising how often they hold in appli-
cations. When they do hold, they can
greatly simplify integrations.
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y

x

A B

a b a + p b + p

Area (A) = Area (B)

Figure 8

Theorem C

If is periodic with period p, then

L

b + p

a + p
f1x2 dx =

L

b

a
f1x2 dx

f

y

xπ 2π

y = f (x) = � sin x �

Figure 9

� EXAMPLE 6 Evaluate 

SOLUTION is an odd function. Thus, the above integral has the
value 0. �

� EXAMPLE 7 Evaluate 

SOLUTION The first two terms in the integrand are odd, and the last is even.
Thus, we may write the integral as

�

� EXAMPLE 8 Evaluate 

SOLUTION The function sin x is odd and cos x is even. An odd function raised
to an odd power is odd, so is odd. An even function raised to any integer
power is even, so is even. An odd function times an even function is odd.
Thus the integrand in this integral is an odd function and the interval is symmetric
about 0, so the value of this integral is 0. �

Use of Periodicity Recall that a function f is periodic if there is a number p
such that for all x in the domain of f. If f is nonconstant, then the
smallest such positive number p is called the period of f. The trigonometric func-
tions are examples of periodic functions.

f1x + p2 = f1x2

cos5 x
sin3 x

L

p

-p

sin3x cos5x dx.

 = c -2 
x5

5
d

0

2

= -

64
5

 
L

2

-2
1x sin4x + x32 dx -

L

2

-2
x4 dx = 0 - 2

L

2

0
x4 dx

L

2

-2
1x sin4x + x3

- x42 dx.

f1x2 = x5 e-x2

L

5

-5
 x5 e-x2

 dx.

Proof The geometric interpretation can be seen in Figure 8. To prove the result,
let so that and Then

We could replace by  because f has period p. �

� EXAMPLE 9 Evaluate (a) and (b) 

SOLUTION
(a) Note that is periodic with period (Figure 9). The integral in

(a) is thus
pf1x2 = ƒ sin x ƒ

L

100p

0
ƒ sin x ƒ  dx.

L

2p

0
ƒ sin x ƒ  dx

f(u)f1u + p2
L

b + p

a + p
f1x2 dx =

L

b

a
f1u + p2 du =

L

b

a
f1u2 du =

L

b

a
f1x2 dx

du = dx.x = u + pu = x - p
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306 Chapter 5 The Definite Integral

1. The average value of a function f on the interval [a, b] is
_____.

2. The Mean Value Theorem for Integrals says there exists a
c in the interval (a, b) such that the average value of the function
on [a, b] is equal to _____.

3. If f is an odd function, _____ ; if f is an

even function, _____.

4. The function f is periodic if there is a number p such that
_____ for all x in the domain of f.The smallest such positive num-
ber p is called the _____ of the function.

L

2

-2
f1x2 dx =

L

2

-2
f1x2 dx =

Problem Set 5.5
In Problems 1–14, find the average value of the function on the
given interval.

1. 2.

3.

4.

5. 6.

7. 8.

9.

10.

11.

12.

13.

14. G1v2 =

sin v cos v21 + cos2 v
; [0, p>2]

h1z2 =

sin1z1z
 ; [p>4, p>2]

g1x2 = tan x sec2 x; [0, p>4]

F1y2 = y11 + y223; [1, 2]

f1x2 = cosh (2x); [-2, 2]

f1x2 = e-x; [0, 2]

f1x2 = sin x; [0, p]f1x2 = cos x; [0, p]

f1x2 = x + ƒ x ƒ ; [-3, 2]f1x2 = 2 + ƒ x ƒ ; [-2, 1]

f1x2 =

x22x3
+ 16

; [0, 2]

f1x2 =

x2x2
+ 16

; [0, 3]

f1x2 = 5x2; [1, 4]f1x2 = 4x3; [1, 3]

In Problems 15–28, find all values of c that satisfy the Mean Value
Theorem for Integrals on the given interval.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

Use a graphing calculator to plot the graph of the inte-
grand in Problems 29–32. Then estimate the integral as suggested
in the margin note accompanying Theorem B.

29. 30.

31. 32.
L

20

10
 a1 +

1
x
b5

 dx
L

1

-1
 

2

1 + x2  dx

L

2

0
C3 + sin1x22 D  dx

L

2p

0
15 + sin x24 dx

≈GC

q1y2 = ay2; [0, b]f1x2 = ax + b; [A, B]

S1y2 = y2; [0, b]f1x2 = ax + b; [1, 4]

T1x2 = x3; [0, 2]R1v2 = v2
- v; [0, 2]

g1y2 = cos 2y; [0, p]H1z2 = sin z; [-p, p]

f1x2 = ƒ x ƒ ; [-2, 2]f1x2 = ƒ x ƒ ; [0, 2]

f1x2 = x11 - x2; [0, 1]f1x2 = 1 - x2; [-4, 3]

f1x2 = x2; [-1, 1]f1x2 = 2x + 1; [0, 3]

Concepts Review

(b) The integral in (b) is

�

Note that in Example 9, we had to use symmetry because we can’t find an anti-
derivative for over the interval [0, 100p].ƒ sin x ƒ

 = 100
L

p

0
sin x dx = 100 C -cos x D0p = 100122 = 200

 
L

100p

0
ƒ sin x ƒ  dx =

L

p

0
ƒ sin x ƒ  dx +

L

2p

p

ƒ sin x ƒ  dx +
Á

+

L

100p

99p
ƒ sin x ƒ  dx

(''''''''''''')'''''''''''''*

100 integrals each equal to 
L

p

0
sin x dx

 = 2
L

p

0
sin x dx = 2 C -cos x D0p = 2[1 - 1-12] = 4

 =

L

p

0
ƒ sin x ƒ  dx +

L

p

0
ƒ sin x ƒ  dx

 
L

2p

0
ƒ sin x ƒ  dx =

L

p

0
ƒ sin x ƒ  dx +

L

2p

p

ƒ sin x ƒ  dx
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Figure 10 Figure 11

33. Figure 10 shows the relative humidity H as a function of
time t (measured in days since Sunday) for an office building.Ap-
proximate the average relative humidity for the week.

34. Figure 11 shows temperature T as a function of time t
(measured in hours past midnight) for one day in St. Louis, Mis-
souri.
(a) Approximate the average temperature for the day.
(b) Must there be a time when the temperature is equal to the

average temperature for the day? Explain.

50. Use the result in Problem 49 to calculate 

51. Calculate 

52. Prove or disprove that the integral of the average value

equals the integral of the function on the interval:

where is the average value of the function f over

the interval [a, b].

53. Assuming that and can be integrated over the in-
terval [a, b] and that the average values over the interval are
denoted by and prove or disprove that

(a)

(b) where k is any constant;
(c) if then 

54. Household electric current can be modeled by the voltage
where t is measured in seconds, is the

maximum value that V can attain, and is the phase angle. Such
a voltage is usually said to be 60-cycle, since in 1 second the volt-
age goes through 60 oscillations. The root-mean-square voltage,
usually denoted by is defined to be the square root of the
average of Hence

A good measure of how much heat a given voltage can produce is
given by 
(a) Compute the average voltage over 1 second.
(b) Compute the average voltage over of a second.

(c) Show that by computing the integral for 

Hint:

(d) If the for household current is usually 120 volts, what is
the value in this case?

55. Give a proof of the Mean Value Theorem for Integrals
(Theorem A) that does not use the First Fundamental Theorem
of Calculus. Hint: Apply the Max–Min Existence Theorem and
the Intermediate Value Theorem.

56. Integrals that occur frequently in applications are

and 

(a) Using a trigonometric identity, show that

(b) Show from graphical considerations that

(c) Conclude that 
L

2p

0
cos2 x dx =

L

2p

0
sin2 x dx = p.

L

2p

0
cos2 x dx =

L

2p

0
sin2 x dx

L

2p

0
1sin2 x + cos2 x2 dx = 2p

L

2p

0
sin2 x dx.

L

2p

0
cos2 x dx

VN
Vrms

L
sin2 t dt = -

1
2

 cos t sin t +

1
2

 t + C.

Vrms.Vrms =

VN 22

2

1>60

Vrms.

Vrms = CL1 +f

f

1VN  sin1120pt + f222 dt

V2.
Vrms

f

VNV = VN  sin1120pt + f2,
u … v.u … v

ku = ku,

u + v = u + v;

v,u

vuEXPL

f
L

b

a
f1x2 dx,

L

b

a
f dx =

L

1 +p

1
ƒ cos x ƒ  dx.

L

2 +p>2

2
ƒ sin 2x ƒ  dx.

In Problems 35–44, use symmetry to help you evaluate the given
integral.

35. 36.

37. 38.

39. 40.

41.

42.

43.

44.

45. How does compare with when 

is an even function? An odd function?

46. Prove (by a substitution) that

47. Use periodicity to calculate 

48. Calculate 

49. If is periodic with period p, then

Convince yourself that this is true by drawing a picture and then

use the result to calculate 
L

1 +p

1
ƒ sin x ƒ  dx.

L

a + p

a
f1x2 dx =

L

p

0
f1x2 dx

f

L

4p

0
ƒ sin 2x ƒ  dx.

L

4p

0
ƒ cos x ƒ  dx.

L

b

a
f1-x2 dx =

L

-a

-b
f1x2 dx

f
L

b

a
f1x2 dx

L

-a

-b
f1x2 dx

L

p>4

-p>4
1 ƒ x ƒ  sin5 x + ƒ x ƒ

2 tan x2 dx

L

1

-1
x e-4x2

 dx

L

100

-100
1v + sin v + v cos v + sin3 v25 dv

L

1

-1
11 + x + x2

+ x32 dx

L

p>2

-p>2
z sin21z32 cos1z32 dz

L

p

-p

1sin x + cos x22 dx

L

13 p
-13 px2 cos1x32 dx

L

p>2

-p>2
 

sin x
1 + cos x

  dx

L

1

-1
 

x3

11 + x224  dx
L

p

-p

1sin x + cos x2 dx
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308 Chapter 5 The Definite Integral

We know that if is continuous on a closed interval [a, b], then the definite integral

must exist. Existence is one thing; evaluation is a very different matter.

There are many definite integrals that cannot be evaluated by the methods that we
have learned, that is, by use of the Second Fundamental Theorem of Calculus. For
example, the indefinite integrals

cannot be expressed algebraically in terms of elementary functions, that is, in terms
of functions studied in a first calculus course. In Section 5.2 we saw how Riemann
sums can be used to approximate a definite integral. In this section we review these
Riemann sums and we present two additional methods: the Trapezoidal Rule and
the Parabolic Rule.

Riemann Sums In Section 5.2 we introduced the concept of a Riemann sum.
Suppose is defined on [a, b] and we partition the interval [a, b] into n smaller in-
tervals with end points The Riemann sum
is then defined to be

where is some point (possibly even an end point) in the interval , and
For now, we will assume that the partition is regular, that is,
for all i. Riemann sums were introduced in Section 5.2 with the¢xi = 1b - a2>n¢xi = xi - xi - 1.

[xi - 1, xi]xi

a
n

i = 1
f1xi2 ¢xi

a = x0 6 x1 6
Á

6 xn - 1 6 xn = b.
f

L
sin1x22 dx, 

L
21 - x4 dx, 

L
 
sin x

x
  dx, 

L
ex2

 dx

L

b

a
f1x2 dx

f

5.6
Numerical Integration

57. Let 
(a) Is even, odd, or neither?
(b) Note that is periodic. What is its period?

(c) Evaluate the definite integral of for each of the following
intervals:

58. Repeat Problem 57 for 

59. Complete the generalization of the Pythagorean Theo-
rem begun in Problem 59 of Section 1.3 by showing that

in Figure 12, these being the areas of similar regions
built on the two legs and the hypotenuse of a right triangle.
(a) Convince yourself that similarity means

(b) Show that 

60. Prove the Symmetry Theorem for the case of odd
functions.

Answers to Concepts Review: 1.

2. 3. 0; 4. periodf1x + p2 = f1x2;2
L

2

0
f1x2 dxf(c)

1
b - aL

b

a
f1x2 dx

L

a

0
g1x2 dx +

L

b

0
h1x2 dx =

L

c

0
f1x2 dx.

g1x2 =

a

c
 fa c

a
 xb and h1x2 =

b

c
 fa c

b
 xb

A + B = C

f1x2 = sin x ƒ sin1sin x2 ƒ .

[13p>6, 10p>3].[p>6, 4p>3],13p>6],[0, 2p], [p>6,
3p>2],[-3p>2,[0, 3p>2],p>2],[-p>2,[0, p>2],

f

f

f

f1x2 = ƒ sin x ƒ  sin1cos x2.GC

c

b

a
C

B

A

y = g (x)

A

0 a
y = h (x)

0 b

y = f (x)

0 c

B

C

Figure 12
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Section 5.6 Numerical Integration 309

goal of defining the definite integral as the limit of the Riemann sum. Here we
look at the Riemann sum as a way to approximate a definite integral.

We consider the three cases: where the sample point is the left end point, the
right end point, or the midpoint of The left end point, right end point, and
midpoint of the interval are

For a left Riemann sum, we take to be the left end point:

For a right Riemann sum, we take to be the right end point:

For a midpoint Riemann sum, we take to be the midpoint of the
interval 

The figures in the large table on the next page illustrate how these approximations
(and two others we will introduce later in this section) work.

� EXAMPLE 1 Approximate the definite integral using left,
right, and midpoint Riemann sums with 

SOLUTION Let We have and so
The values of and are

Using the left Riemann sum, we have the following approximation:

 L 2.9761

 L 0.511.7321 + 1.5811 + 1.4142 + 1.22472
 = 0.5[f11.02 + f11.52 + f12.02 + f12.52]
 =

b - a
n

 C f1x02 + f1x12 + f1x22 + f1x32 D
 
L

3

1
24 - x dx L Left Riemann Sum

 x4 = 3.0 f1x42 = f13.02 = 24 - 3 = 1.0000

 x3 = 2.5 f1x32 = f12.52 = 24 - 2.5 L 1.2247

 x2 = 2.0 f1x22 = f12.02 = 24 - 2 L 1.4142

 x1 = 1.5 f1x12 = f11.52 = 24 - 1.5 L 1.5811

 x0 = 1.0 f1x02 = f11.02 = 24 - 1 L 1.7321

f1xi2xi1b - a2>n = 0.5.
n = 4,a = 1, b = 3,f1x2 = 24 - x.

n = 4. L

3

1
24 - x dx

Midpoint Riemann Sum = a
n

i = 1
f1xi2 ¢xi =

b - a
n

 a
n

i = 1
faa + A i -

1
2 B  b - a

n
b

[xi - 1, xi]:
1xi - 1 + xi2>2,xi

Right Riemann Sum = a
n

i = 1
f1xi2 ¢xi =

b - a
n

 a
n

i = 1
faa + i  

b - a
n
b

xi,xi

Left Riemann Sum = a
n

i = 1
f1xi2 ¢xi =

b - a
n

 a
n

i = 1
faa + 1i - 12 

b - a
n
b

xi - 1,xi

midpoint =

xi - 1 + xi

2
=

a + 1i - 12 
b - a

n + a + i 
b - a

n

2
= a + A i -

1
2 B  b - a

n

right end point = xi = a + i  
b - a

n

left end point = xi - 1 = a + 1i - 12 
b - a

n

[xi - 1, xi]
[xi - 1, xi].

xi
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310 Chapter 5 The Definite Integral

Methods for Approximating 

1. Left Riemann Sum

Area of ith 

for some c in [a, b]

2. Right Riemann Sum

Area of ith 

for some c in [a, b]

3. Midpoint Riemann Sum

Area of ith 

for some c in [a, b]

4. Trapezoidal Rule

Area of ith 

for some c in [a, b]

5. Parabolic Rule (n must be even)

for some c in [a, b]En = -

1b - a25
180n4   f(4)1c2

=

b - a

3n
 c f1a2 + 4a

n>2
i = 1

faa + 12i - 12 
b - a

n
b + 2 a

n>2 - 1

i = 1
faa + 2i 

b - a

n
b + f1b2 d

+ 4f1xn - 32 + 2f1xn - 22 + 4f1xn - 12 + f1xn2]
L

b

a
f1x2 dx L

b - a

3n
 [f1x02 + 4f1x12 + 2f1x22 + 4f1x32 + 2f1x42 +

Á

En = -

1b - a23
12n2   f–1c2

=

b - a

2n
 cf1a2 + 2a

n - 1

i = 1
faa + i 

b - a

n
b + f1b2 d

L

b

a
f1x2 dx L

b - a

n
 a

n

i = 1
 

f1xi - 12 + f1xi2
2

trapezoid =

b - a

n
 
f1xi - 12 + f1xi2

2

En =

1b - a23
24n2  f–1c2

L

b

a
f1x2 dx L

b - a

n
 a

n

i = 1
faa + a i -

1
2
b  

b - a

n
b

rectangle = faxi - 1 + xi

2
b  ¢xi =

b - a

n
 faa + a i -

1
2
b  

b - a

n
b

En = -

1b - a22
2n

  f¿1c2
L

b

a
f1x2 dx L

b - a

n
 a

n

i = 1
faa + i 

b - a

n
b

rectangle = f1xi2 ¢xi =

b - a

n
 faa + i 

b - a

n
b

En =

1b - a22
2n

 f¿1c2
L

b

a
f1x2 dx L

b - a

n
 a

n

i = 1
faa + 1i - 12 

b - a

n
b

rectangle = f1xi - 12 ¢xi =

b - a

n
 faa + 1i - 12 

b - a

n
b

L

b

a
f1x2 dx

y

xa b

y

xa b

y

xa b

y

xa b

y

xa b

Fit a parabola to these 3
points and find area under
parabola.

Fit a parabola to these 3
points and find area under
parabola.
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Section 5.6 Numerical Integration 311

The right Riemann sum leads to the following approximation:

Finally, the midpoint Riemann sum approximation to the definite integral is

�

In this last example, approximations were not needed because we could have
evaluated this integral using the Second Fundamental Theorem of Calculus:

The midpoint Riemann sum approximation turned out to be the closest. The
figures in the large table on the previous page suggest that this will often be the
case.

The next example is more realistic, in the sense that it is not possible to apply
the Second Fundamental Theorem of Calculus.

� EXAMPLE 2 Approximate the definite integral using a right
Riemann sum with 

SOLUTION Let We have and so 
Using the right Riemann sum, we have the following

approximation:

� L 0.69622

 + sin 1.252
+ sin 1.52

+ sin 1.752
+ sin 222

 = 0.251sin 0.252
+ sin 0.52

+ sin 0.752
+ sin 12

 =

b - a
n

 ca
8

i = 1
faa + i 

b - a
n
b d

 
L

2

0
sin x2 dx L Right Riemann Sum

n = 0.25.1b - a2> n = 8,a = 0, b = 2,f1x2 = sin x2.

n = 8. L

2

0
sin x2 dx

 = 223 -

2
3

L 2.7974

 
L

3

1
24 - x dx = c- 2

3
 14 - x23>2 d

1

3

= -

2
3

 14 - 323>2 +

2
3

 14 - 123>2

 L 2.7996

L 0.511.6583 + 1.5000 + 1.3229 + 1.11802
 = 0.5 C f11.252 + f11.752 + f12.252 + f12.752 D
 =

b - a
n

 cfax0 + x1

2
b + fax1 + x2

2
b + fax2 + x3

2
b + fax3 + x4

2
b d

 
L

3

1
24 - x dx L Midpoint Riemann Sum

 L 2.6100

 L 0.511.5811 + 1.4142 + 1.2247 + 1.00002
 = 0.5 C f11.52 + f12.02 + f12.52 + f13.02 D
 =

b - a
n

 C f1x12 + f1x22 + f1x32 + f1x42 D
 
L

3

1
24 - x dx L Right Riemann Sum
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312 Chapter 5 The Definite Integral

The Trapezoidal Rule Suppose we join the pairs of points 
and by line segments as shown in Figure 1, thus forming n trapezoids.
Then instead of approximating the area under the curve by summing the areas of
rectangles, we approximate it by summing the areas of the trapezoids. This method
is called the Trapezoidal Rule.

Recalling the area formula shown in Figure 2, we can write the area of the ith
trapezoid as

More accurately, we should say signed area, since will be negative for a sub-

interval where f is negative. The definite integral is approximately
equal to that is, to

This simplifies to the Trapezoidal Rule:

Trapezoidal Rule

� EXAMPLE 3 Approximate the definite integral using the
Trapezoidal Rule with 

SOLUTION This is the same integrand and interval as in Example 2.

�

Presumably we could get a better approximation by taking n larger; this would
be easy to do using a computer. However, while taking n larger reduces the error
of the method, it at least potentially increases the error of calculation. It would be
unwise, for example, to take since the potential round-off errors
would more than compensate for the fact that the error of the method would be
minuscule. We will have more to say about errors shortly.

n = 1,000,000,

 L 0.79082

 + sin 1.252
+ sin 1.52

+ sin 1.7522 + sin 22 D
 = 0.125 Csin 02

+ 21sin 0.252
+ sin 0.52

+ sin 0.752
+ sin 12

 
L

2

0
sin x2 dx L

b - a

2n
 cf1a2 + 2a

7

i = 1
faa + i 

b - a
n
b + f1b2 d

n = 8. L

2

0
sin x2 dx

 =

b - a

2n
 cf1a2 + 2a

n - 1

i = 1
 faa + i 

b - a
n
b + f1b2 d

 
L

b

a
f1x2 dx L

h

2
 C f1x02 + 2f1x12 + 2f1x22 +

Á
+ 2f1xn - 12 + f1xn2 D

h

2
 [f1x02 + f1x12] +

h

2
 [f1x12 + f1x22] +

Á
+

h

2
 [f1xn - 12 + f1xn2]

A1 + A2 +
Á

+ An, L

b

a
f1x2 dx

Ai

Ai =

h

2
 [f1xi - 12 + f1xi2]

1xi, f1xi22
1xi - 1, f1xi - 122

hc d

A = h c + d
2

=    (c + d )h
2

Figure 2

y

x

f (x0)

f (x5)

y = f (x)

a = x0 x1 x2 x3 x4 x5 = b

f (x1)

f (x2)
f (x3)

f (x4)

Figure 1
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h h

d

ec

Parabola

h
3A =     (c + 4d + e)

Figure 4

y

x

f (x0) f (xn)

y = f (x)

a = x0 x1 x2 xn – 1 xn = bxn – 2

f (xn – 2)

f (xn – 1)

f (x2)f (x1)

Figure 3

The Parabolic Rule (Simpson’s Rule) In the Trapezoidal Rule, we
approximated the curve by line segments. It seems likely that we could
do better using parabolic segments. Just as before, partition the interval [a, b] into
n subintervals of length but this time with n an even number. Then
fit parabolic segments to neighboring triples of points, as shown in Figure 3.

h = 1b - a2>n,

y = f1x2

Using the area formula in Figure 4 (see Problem 17 for the derivation) leads to
an approximation called the Parabolic Rule. It is also called Simpson’s Rule, after
the English mathematician Thomas Simpson (1710–1761).

Parabolic Rule (n even)

The pattern of coefficients is 

� EXAMPLE 4 Approximate the definite integral using the
Parabolic Rule with 

SOLUTION Let and The are

� L 1.2471

2 # 0.2 + 4 # 0.13793 + 0.12
 L

1
6

 11 + 4 # 0.8 + 2 # 0.5 + 4 # 0.30769 +

4f12.52 + f13.02 D
 
L

3

0
 

1

1 + x2  dx L

3 - 0
3 # 6

  C f102 + 4f10.52 + 2f11.02 + 4f11.52 + 2f12.02 +

x0 = 0, x1 = 0.5, x2 = 1.0, Á , x6 = 3.0
xi’sn = 6.f1x2 = 1>11 + x22, a = 0, b = 3,

n = 6. L

3

0
 

1

1 + x2  dx

1, 4, 2, 4, 2, 4, 2, Á , 2, 4, 1.

2 a
n>2 - 1

i = 1
faa + 2i 

b - a
n
b + f1b2 d

 =

b - a

3n
 cf1a2 + 4a

n>2
i = 1

faa + 12i - 12 
b - a

n
b +

 
L

b

a
f1x2 dx L

h

3
 C f1x02 + 4f1x12 + 2f1x22 +

Á
+ 4f1xn - 12 + f1xn2 D
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314 Chapter 5 The Definite Integral

Error Analysis In any practical use of the approximation methods described
in this section, we need to have some idea of the size of the error involved.
Fortunately, the methods described in this section have fairly simple error formu-
las, provided the integrand possesses sufficiently many derivatives. We call the
error if it satisfies

The error formulas are given in the next theorem. The proofs of these results are
rather difficult and we omit them here.

L

b

a
f1x2 dx = approximation based on n subintervals + En

En

The most important thing to notice about these error formulas is the position
of n, the number of subintervals. In all cases, the n occurs raised to some power in
the denominator. Thus, as n increases, the error decreases. Also, the larger the
exponent on n, the faster the error term will go to zero. For example, the error term
for the Parabolic Rule involves an in the denominator. Since grows much
faster than the error term for the Parabolic Rule will go to zero faster than the
error term for the Trapezoidal Rule or the midpoint Riemann sum rule. Similarly,
the error term for the Trapezoidal Rule will go to zero faster than the error term
for the left or right Riemann sum rules. One other thing to notice about these error
formulas is that they hold “for some c in [a, b].” In most practical situations we can
never tell what the value of c is.All we can hope to do is obtain an upper bound on
how large the error could be. The next example illustrates this.

� EXAMPLE 5 Approximate the definite integral using the

Parabolic Rule with and give a bound for the absolute value of the error.

SOLUTION Let and Then

L 0.9164 L

1
6

  (5.4984)

4f13.52 + f14.02 D
 =

3
3162   C f11.02 + 4f11.52 + 2f12.02 + 4f12.52 + 2f13.02 +

4f1x52 + f1x62 D
 
L

4

1
 

1
1 + x

  dx L

b - a

3n
 C f1x02 + 4f1x12 + 2f1x22 + 4f1x32 + 2f1x42 +

n = 6.f1x2 =

1
1 + x

, a = 1, b = 4,

n = 6
L

4

1
 

1
1 + x

  dx

n2,
n4n4

Theorem A

Assuming that the required derivatives exist on the interval [a, b], the errors for
the left Riemann sum, right Riemann sum, midpoint Riemann sum, Trapezoidal
Rule, and Parabolic Rule are

Left Riemann Sum:

Right Riemann Sum:

Midpoint Riemann Sum:

Trapezoidal Rule:

Parabolic Rule: En = -

1b - a25
180n4   f1421c2 for some c in [a, b]

En = -

1b - a23
12n2   f–1c2 for some c in [a, b]

En =

1b - a23
24n2   f–1c2 for some c in [a, b]

En = -

1b - a22
2n

  f¿1c2 for some c in [a, b]

En =

1b - a22
2n

  f¿1c2 for some c in [a, b]
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Section 5.6 Numerical Integration 315

The error term for the Parabolic Rule involves the fourth derivative of the
integrand:

The question we now face is, how large can be on the interval [1, 4]? It is
clear that is a nonnegative decreasing function on this interval, so its ab-
solute value achieves its largest value at the left endpoint, that is, when The
value of the fourth derivative at is Thus

The error is therefore no larger than 0.00078. �

In the next example, we turn things around. Rather than specifying n and ask-
ing for the error, we give the desired error and ask how large n must be.

� EXAMPLE 6 How large must n be in order to guarantee that the absolute
value of the error is less than 0.00001 when we use (a) the right Riemann sum,

(b) the Trapezoidal Rule, and (c) the Parabolic Rule to estimate 

SOLUTION The derivatives of the integrand are given in the
previous example.

(a) The absolute value of the error term for the right Riemann sum is

We want so we require

(b) For the Trapezoidal Rule we have

We want so n must satisfy

 n Ú 256,250 L 237.17

 n2
Ú

9
16 # 0.00001

= 56,250

 
9

16n2 … 0.00001

ƒ En ƒ … 0.00001,

ƒ En ƒ = ` - 14 - 123
12n2  f–1c2 ` =

33

12n2 ` 2

11 + c23 ` …

54

12n211 + 123 =

9

16n2

 n Ú

9
8 # 0.00001

= 112,500

 
9

8n
… 0.00001

ƒ En ƒ … 0.00001,

ƒ En ƒ = ` - 14 - 122
2n

 f¿1c2 ` =

32

2n
 ` 1

11 + c22 ` …

9
2n

 
1

11 + 122 =

9
8n

f1x2 = 1>11 + x2
L

4

1
 

1
1 + x

  dx?

ƒ E6 ƒ = ` - 1b - a25
180n4  f1421c2 ` =

14 - 125
180 # 64  ƒ f1421c2 ƒ …

14 - 125
180 # 64   

3
4

L 0.00078

f142112 = 24>11 + 125 = 3>4.x = 1
x = 1.

f1421x2
ƒ f1421x2 ƒ

 f1421x2 =

24

11 + x25

 f‡1x2 = -

6

11 + x24

 f–1x2 =

2

11 + x23

 f¿1x2 = -

1

11 + x22
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Figure 5

Thus, should do it.

(c) For the Parabolic Rule,

We want so

We must round up to the next even integer (since n must be even for the Para-
bolic Rule). Thus we require �

Notice how much different the answers were for the three parts in the previ-
ous example. Eighteen subintervals for the Parabolic Rule will give about the same
accuracy as over 100,000 subintervals for the right Riemann sum! The Parabolic
Rule is indeed a powerful method for approximating definite integrals.

Functions Defined by a Table In all the previous examples, the function
we integrated was defined over the whole interval of integration. There are many
situations where this is not the case. For example, speed is measured every minute,
water flow from a tank is measured every 10 seconds, and cross-sectional area is
measured every 0.1 millimeter. In all of these cases, the integral has a clearly de-
fined meaning. Although we cannot obtain the integral exactly, we can use the
methods of this section to approximate the integral.

� EXAMPLE 7 While his father drove from St. Louis to Jefferson City, Chris
noted the speed of the car every 10 minutes, that is, every one-sixth of an hour.The
table to the left shows these speedometer readings. Use the Trapezoidal Rule to
approximate how far they drove.

SOLUTION Let denote the velocity of the car at time t, where t is measured
in hours since the beginning of the trip. If we knew for all t in the interval 

[0, 3.5], we could find the distance traveled by taking . The problem is,

we know only for 22 values of where Figure 5
shows a graph of the information we are given. We partition the interval [0, 3.5]
into 21 intervals of width (since 10 minutes is one-sixth of an hour). The
Trapezoidal Rule then gives

They drove approximately 140 miles. �

 = 140

 + 63 + 65 + 62 + 0 + 0 + 0 + 22 + 38 + 35 + 252 + 0 D
 =

3.5
42

 C0 + 2155 + 57 + 60 + 70 + 70 + 70 + 70 + 19 + 0 + 59

 
L

3.5

0
v1t2 dt L

3.5 - 0
2 # 21

 cv102 + 2a
20

i = 1
va0 + i 

3.5 - 0
21

b + v1212 d

1
6

k = 0, 1, 2, Á , 21.t: tk = k>6,v(t)

 
L

3.5

0
v1t2 dt

v(t)
v(t)

n = 18.

 n Ú 101,2501>4
L 17.8

 n4
Ú

81
80 # 0.00001

L 101,250

 
81

80n4 … 0.00001

ƒ En ƒ … 0.00001,

ƒ En ƒ = ` - 1b - a25
180n4  f1421c2 ` =

35

180n4 ` 24

11 + c25 ` …

35 # 24

180n411 + 125 =

81

80n4

n = 238

Minutes Speed

0 0
10 55
20 57
30 60
40 70
50 70
60 70
70 70
80 19
90 0

100 59
110 63
120 65
130 62
140 0
150 0
160 0
170 22
180 38
190 35
200 25
210 0

316



Section 5.6 Numerical Integration 317

Concepts Review
1. The pattern of coefficients in the Trapezoidal Rule is

_____.

2. The pattern of coefficients in the Parabolic Rule is _____.

3. The error in the Trapezoidal Rule has in the denomi-
nator, whereas the error in the Parabolic Rule has _____ in the

n2

denominator, so we expect the latter to give a better approxima-
tion to a definite integral.

4. If is positive and concave up, then the Trapezoidal Rule

will always give a value for that is too _____.
L

b

a
f1x2 dx

f

Problem Set 5.6

In Problems 1–6, use the methods of (1) left Riemann sum,
(2) right Riemann sum, (3) Trapezoidal Rule, (4) Parabolic Rule
with to approximate the definite integral. Then use the
Second Fundamental Theorem of Calculus to find the exact value
of each integral.

1. 2.

3. 4.

5. 6.

In Problems 7–10, use the methods of (1) left Riemann sum,
(2) right Riemann sum, (3) midpoint Riemann sum, (4) Trape-
zoidal Rule, (5) Parabolic Rule with Present your ap-
proximations in a table like this:

LRS RRS MRS Trap Parabolic

7. 8.

9. 10.

In Problems 11–14, determine an n so that the Trapezoidal
Rule will approximate the integral with an error satisfying

Then, using that n, approximate the integral.

11. 12.

13. 14.

In Problems 15–16, determine an n so that the Parabolic Rule
will approximate the integral with an error satisfying

Then, using that n, approximate the integral.

15. 16.
L

8

4
2x + 1 dx

L

3

1
 
1
x

  dx

ƒ En ƒ … 0.01.
En

C

L

3

1
 ex dx

L

4

1
1x dx

L

3

1
 

1
1 + x

  dx
L

3

1
 
1
x

  dx

ƒ En ƒ … 0.01.
En

C

L

3

1
ln (x2

+ 1) dx
L

2

0
 e-x2>2 dx

L

3

1
 
1
x

  dx
L

3

1
 

1

1 + x2  dx

n = 16

n = 8

n = 4

n = 4, 8, 16.

C

L

4

1
1x + 123>2 dx

L

1

0
x1x2

+ 125 dx

L

3

1
x2x2

+ 1 dx
L

2

0
1x dx

L

3

1
 
1

x3  dx
L

3

1
 
1

x2  dx

n = 8

C 17. Let Show that

both have the value This
establishes the area formula on which the Parabolic Rule is
based.

18. Show that the Parabolic Rule is exact for any cubic poly-
nomial in two different ways.

(a) By direct calculation.

(b) By showing that 

Justify your answers to Problems 19–22 two ways: (1) using the
properties of the graph of the function, and (2) using the error for-
mulas from Theorem A.

19. If a function is increasing on [a, b], will the left Riemann

sum be larger or smaller than 

20. If a function is increasing on [a, b], will the right Rie-

mann sum be larger or smaller than 

21. If a function is concave down on [a, b], will the midpoint

Riemann sum be larger or smaller than 

22. If a function is concave down on [a, b], will the Trape-

zoidal Rule approximation be larger or smaller than 

23. Show that the Parabolic Rule gives the exact value of

provided that k is odd.

24. It is interesting that a modified version of the Trapezoidal
Rule turns out to be in general more accurate than the Parabolic
Rule. This version says that

where T is the standard trapezoidal estimate.

(a) Use this formula with to estimate and note
its remarkable accuracy.

(b) Use this formula with to estimate 
L

p

0
sin x dx.n = 12

L

3

1
x4 dxn = 8

L

b

a
f1x2 dx L T -

[f¿1b2 - f¿1a2]h2

12

L

a

-a
xk dx

L

b

a
f1x2 dx?

f

L

b

a
f1x2 dx?

f

L

b

a
f1x2 dx?

f

L

b

a
f1x2 dx?

f

En = 0.

1h>32[a16m2
+ 2h22 + b16m2 + 6c].

L

m + h

m - h
f1x2 dx   and   

h

3
 [f1m - h2 + 4f1m2 + f1m + h2]

f1x2 = ax2
+ bx + c.
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318 Chapter 5 The Definite Integral

25. Without doing any calculations, rank from smallest to

largest the approximations of for the following

methods: left Riemann sum, right Riemann sum, midpoint Rie-
mann sum, Trapezoidal Rule.

26. Without doing any calculations, rank from smallest to

largest the approximations of for the

following methods: left Riemann sum, right Riemann sum,Trape-
zoidal Rule, Parabolic Rule.

27. Use the Trapezoidal Rule to approximate the area of the
lakeside lot shown in Figure 6. Dimensions are in feet.

L

3

1
1x3

+ x2
+ x + 12 dx

L

1

0
2x2

+ 1 dx

28. Use the Parabolic Rule to approximate the amount of
water required to fill a pool shaped like Figure 7 to a depth of 6
feet. All dimensions are in feet.

29. Figure 8 shows the depth in feet of the water in a river
measured at 20-foot intervals across the width of the river. If the
river flows at 4 miles per hour, how much water (in cubic feet)
flows past the place where these measurements were taken in
one day? Use the Parabolic Rule.

C

30. On her way to work, Teri noted her speed every 3 min-
utes. The results are shown in the table below. How far did she
drive?

Time 
(minutes) 0 3 6 9 12 15 18 21 24

Speed 
(mi/h) 0 31 54 53 52 35 31 28 0

31. Every 12 minutes between 4:00 P.M. and 6:00 P.M., the rate
(in gallons per minute) at which water flowed out of a town’s
water tank was measured. The results are shown in the table
below. How much water was used in this 2-hour span?

Time 4:00 4:12 4:24 4:36 4:48 5:00

Flow (gal/min) 65 71 68 78 105 111

Time 5:12 5:24 5:36 5:48 6:00

Flow (gal/min) 108 144 160 152 148

Answers to Concepts Review: 1.
2. 3. 4. largen41, 4, 2, 4, 2, Á , 4, 1

1, 2, 2, Á , 2, 1

5.7 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. The indefinite integral is a linear operator.

2.

3. All functions that are antiderivatives must have
derivatives.

L
[f1x2g¿1x2 + g1x2f¿1x2] dx = f1x2g1x2 + C.

4. If the second derivatives of two functions are equal, then
the functions differ at most by a constant.

5. for every differentiable function f.

6. If gives the height at time t of a ball
thrown straight up from the surface of the earth with velocity 
at time then the ball will hit the ground with velocity 

7. a
n

i = 1
1ai + ai - 12 = a0 + an + 2a

n - 1

i = 1
ai.

-v0.t = 0,
v0

s = -16t2
+ v0 t

L
f¿1x2 dx = f1x2

75

71

59

10

45

45 52

57
60

60

Lake

Figure 6

24

23

21

18

15

12

11

10

8

3

23

Figure 7

20

10

17

20
20

18

12

7

Figure 8
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Section 5.7 Chapter Review 319

8.

9. If and then 

10. If is bounded on [a, b], then f is integrable there.

11.

12. If then for all x in [a, b].

13. If then for all x in [a, b].

14. If and then 

15. The value of is independent of x.

16. The operator lim is linear.

17.

18.

19. If f is continuous and positive everywhere, then

is positive.

20.

21.

22.

23. The antiderivatives of odd functions are even functions.

24. If is an antiderivative of then is an anti-
derivative of 

25. If is an antiderivative of then is an
antiderivative of 

26. If is an antiderivative of then is an
antiderivative of 

27. If is an antiderivative of then

28. If is an antiderivative of then

29. If is an antiderivative of then

30. If on [0, 3], then every Riemann sum for f on the
given interval has the value 12.

31. If for all x in [a, b], then 

32. If for all x in then 
L

a

-a
f1x2 dx = 0.[-a, a],f1x2 = f1-x2

G1b2 - G1a2.
F1b2 - F1a2 =F¿1x2 = G¿1x2

f1x2 = 4
L

f1x2 

df

dx
 dx =

1
2 F21x2 + C

f(x),F(x)
L

f21x2 dx =
1
3 F31x2 + C

f(x),F(x)
L

f1v1x22 dx = F1v1x22 + C

f(x),F(x)

f1x2 + 1.
F1x2 + 1f(x),F(x)

f12x + 12.
F12x + 12f(x),F(x)

f(5x).
F(5x)f(x),F(x)

L

2p

0
ƒ sin x ƒ  dx = 4

L

p>2

0
sin x dx.

L

2p

0
ƒ sin x ƒ  dx =

L

2p

0
ƒ cos x ƒ  dx.

Dx c
L

x2

0
 

1

1 + t2  dt d =

1

1 + x4.

L

d

c
f1x2 dx

L

5

1
sin2 x dx =

L

7

1
sin2 x dx +

L

5

7
sin2 x dx.

L

p

-p

sin13 x dx = 0.

L

x + 2p

x
1sin t + cos t2 dt

G¿1x2 = -f1x2.G1x2 =

L

x

a
f1z2 dz,a 7 x

f1x2 = 0
L

b

a
[f1x2]2 dx = 0,

f1x2 = 0
L

b

a
f1x2 dx = 0,

L

a

a
f1x2 dx = 0.

f

a
10

i = 1
1ai + 122 = 150.a

10

i = 1
ai = 20,a

10

i = 1
ai

2
= 100

a
100

i = 1
12i - 12 = 10,000. 33. If then is an odd function for

34. If for all x in [0, b], then 

35.

36. If on then 

37. If on then 

38.

39. If f is continuous on then 

40.

41. If then the number of subintervals in the parti-
tion P tends to 

42. We can always express the indefinite integral of an ele-
mentary function in terms of elementary functions.

43. For an increasing function, the left Riemann sum will
always be less than the right Riemann sum.

44. For a linear function the midpoint Riemann sum will

give the exact value of no matter what n is.

45. The Trapezoidal Rule with will give an estimate

for that is smaller than the true value.

46. The Parabolic Rule with will give the exact value

of 

Sample Test Problems

In Problems 1–16, evaluate the indicated integrals.

1. 2.

3. 4.

5. 6.

7.

8. 9.
L

2

1
t41t5

+ 522>3 dt
L

2

0
 

t32t4
+ 9

  dt

L

p

0
1x + 12 tan213x2

+ 6x2 sec213x2
+ 6x2 dx

L

p>2

0
cos4 x sin x dx

L

8

2
z12z2

- 321>3 dz

L

9

4
y2y2

- 4 dy
L

p

1
 

y3
- 9y sin y + 26y-1

y
 dy

L

2

1
 
2x4

- 3x2
+ 1

x2  dx
L

1

0
Ax3

- 3x2
+ 31x B  dx

L

5

0
x3 dx.

n = 10

L

5

0
x3 dx

n = 10

L

b

a
f1x2 dx

f(x),

q .
7P 7 : 0,

lim
n: q

 a
n

i = 1
sina2i

n
b #

2
n

=

L

2

0
sin x dx.

L

b

a
ƒ f1x2 ƒ  dx.

`
L

b

a
f1x2 dx ` …[a, b],

` a
n

i = 1
ai ` … a

n

i = 1
ƒ ai ƒ .

`
L

b

a
g1x2 dx ` .

`
L

b

a
f1x2 dx ` …[a, b],f1x2 … g1x2

L

b

a
ƒ g1x2 ƒ  dx.

L

b

a
ƒ f1x2 ƒ  dx …[a, b],f1x2 … g1x2

L

99

-99
1ax3

+ bx2
+ cx2 dx = 2

L

99

0
bx2 dx.

F1b2. L

b

0
f1x2 dx =F¿1x2 = f1x2

-1 … t … 1.

z1t2 - zz =
1
2L

1

-1
z1t2 dt,
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320 Chapter 5 The Definite Integral

10.

11.

12.

13.

14.

15.

16.

17. Let P be a regular partition of the interval [0, 2] into four
equal subintervals, and let Write out the Rie-
mann sum for f on P, in which is the right end point of each
subinterval of P, 2, 3, 4. Find the value of this Riemann sum
and make a sketch.

18. If find 

19. Evaluate 

20. If find the average value of f on 
[2, 5].

21. Evaluate 

22. Evaluate 

23. Evaluate 

24. Evaluate each sum.

(a) (b) (c)

25. Write in sigma notation.

(a)

(b)

26. Sketch the region under the curve between
and showing the inscribed polygon corresponding

to a regular partition of [0, 3] into n subintervals. Find a formula
for the area of this polygon and then find the area under the
curve by taking a limit.

27. If and 

evaluate each integral.

(a) (b)

(c) (d)
L

2

0
[2g1x2 - 3f1x2] dx

L

2

0
3f1u2 du

L

0

1
f1x2 dx

L

2

1
f1x2 dx

-3,
L

2

0
g1x2 dx =

L

1

0
f1x2 dx = 4, 

L

2

0
f1x2 dx = 2,

x = 3,x = 0
y = 16 - x2

x2
+ 2x4

+ 3x6
+ 4x8

+
Á

+ 50x100

1
2

+

1
3

+

1
4

+
Á

+

1
78

a
4

k = 0
cosakp

4
ba

6

i = 1
12 - i2a

4

m = 2
 a 1

m
b

a
10

i = 1
16i2

- 8i2.

a
n

i = 1
13i

- 3i - 12.
L

4

2
 
5x2

- 1

x2   dx.

f1x2 = 3x22x3
- 4,

L

3

0
A2 - 2x + 1 B2 dx.

f¿172.f1x2 =

L

x

-2
 

1
t + 3

  dt, -2 … x,

i = 1,
xi

f1x2 = x2
- 1.

L

2p>4
0

 x cos x2 esin x2
 dx

L

1

0
 ex sin ex dx

L

2

1
 
cosh 2z2z

 dz

L

1

-1
 x2 e-x3

 dx

L

5

1
 

1y2
+ y + 1225 2y3
+ 3y2

+ 6y
  dy

L
 (x + 1) sin (x2

+ 2x + 3) dx

L

3

2
 

y2
- 1

1y3
- 3y22  dy (e)

28. Evaluate each integral.

(a) (b)

(c)

Hint: In parts (a) and (b), first sketch a graph.

29. Suppose that 

and Evaluate each integral.

(a) (b)

(c) (d)

(e) (f)

30. Evaluate 

31. Find c of the Mean Value Theorem for Integrals for
on 

32. Find for each function G.

(a)

(b)

(c)

33. Find for each function G.

(a)

(b)

(c)

(d)

(e)

(f)

34. Evaluate each of the following limits by recognizing it as a
definite integral.

(a) (b) lim
n: q

 a
n

i = 1
 a1 +

2i

n
b2

 
2
n

lim
n: q

 a
n

i = 1A4i

n
#
4
n

G1x2 =

L

-x

0
f1- t2 dt

G1x2 =

L

g1x2

0
 a d

du
  g(u)b  du

G1x2 =

L

x

0
a
L

u

0
f1t2 dtb  du

G1x2 =

1
xL

x

0
f1z2 dz

G1x2 =

L

x + 1

x
f1z2 dz

G1x2 =

L

x

1
sin2 z dz

G¿1x2
G1x2 =

L

x3

x
 

1

t2
+ 1

  dt

G1x2 =

L

x2

1
 

1

t2
+ 1

  dt

G1x2 =

L

x

1
 

1

t2
+ 1

  dt

G¿1x2
[-4, -1].f1x2 = 3x2

L

100

-100
1x3

+ sin5 x2 dx.

L

0

-2
g1x2 dx

L

2

0
[2g1x2 + 3f1x2] dx

L

2

-2
[f1x2 + f1-x2] dx

L

2

-2
g1x2 dx

L

2

-2
ƒ f1x2 ƒ  dx

L

2

-2
f1x2 dx

L

2

0
g1x2 dx = 5.

L

2

0
f1x2 dx = -4,

g1-x2 = -g1x2,f1x2 … 0,f1x2 = f1-x2,

L

4

0
1x - Œx œ2 dx

L

4

0
Œx œ  dx

L

4

0
ƒ x - 1 ƒ  dx

L

-2

0
f1-x2 dx
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35. Show that if then is a constant func-

tion on 

36. Approximate using left, right, and mid-

point Riemann sums with 

37. Approximate using the Trapezoidal Rule

with and give an upper bound for the absolute value of the
error.

38. Approximate using the Parabolic Rule

with and give an upper bound for the absolute value of the

error.

n = 8,
L

4

0
 

1
1 + 2x

  dx

n = 8,
L

2

1
 

1

1 + x4  dx

n = 8.
L

2

1
 

1

1 + x4  dx

10, q2.
ff1x2 =

L

5x

2x
 
1
t

  dt, 39. How large must n be for the Trapezoidal Rule in order to

approximate with an error no larger then 0.0001?

40. How large must n be for the Parabolic Rule in order to

approximate with an error no larger then 0.0001?

41. Without doing any calculations, rank from smallest to

largest the approximations of for the following meth-

ods: left Riemann sum, midpoint Riemann sum, Trapezoidal rule.
L

6

1
 
1
x

  dx

L

4

0
 

1
1 + 2x

  dx

L

2

1
 

1

1 + x4  dx
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In Problems 1–6, find the length of the solid green line.

1. 2.

3. 4.

5. 6.

For each of the following figures, the volume of the solid is equal to the base area times the
height. Give the volume of each of these solids.

7. 8.

9. 10.

Evaluate each of the following definite integrals.

11. 12.

13. 14.
L

4

1 A1 +

9
4

 x dx
L

2

0
a1 -

x2

2
+

x4

16
b  dx

L

3

0
y2>3 dy

L

2

-1
1x4

- 2x3
+ 22 dx

5
0.5

6

r2

r1 ∆x

4
1

1

2

0.4

x x + h

4

3

2

1

y

x

y = x2

21

4

3

2

1

y

x

y = x2

21

8

6

4
y

2

y

x

y = 4x

y = x3

0 � y � 8

21

8

6

4

2

y

x

y = 4x

y = x3

1x

1

y

x

y = x y = x2

0 � x � 1

1

1

y

x

y = x y = x2

1
2

REVIEW &
PREVIEW

PROBLEMS
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Applications 
of the IntegralCHAPTER 6

6.1 The Area of a
Plane Region

6.2 Volumes of Solids:
Slabs, Disks, 
Washers

6.3 Volumes of Solids 
of Revolution: 
Shells

6.4 Length of a Plane
Curve

6.5 Work and Fluid
Force

6.6 Moments and
Center of Mass

6.7 Probability and
Random Variables

6.1
The Area of a Plane Region
The brief discussion of area in Section 5.1 served to motivate the definition of the
definite integral. With the latter notion now firmly established, we use the definite
integral to calculate areas of regions of more and more complicated shapes. As is
our practice, we begin with simple cases.

A Region above the x-Axis Let determine a curve in the xy-plane
and suppose that f is continuous and nonnegative on the interval (as in
Figure 1). Consider the region R bounded by the graphs of 

and We refer to R as the region under between
and Its area A(R) is given by

� EXAMPLE 1 Find the area of the region R under be-
tween and 

SOLUTION The graph of R is shown in Figure 2. A reasonable estimate for
the area of R is its base times an average height, say The exact value is

The calculated value 5.1 is close enough to our estimate, 6, to give us confidence in
its correctness.

A Region Below the x-Axis Area is a nonnegative number. If the graph of

is below the x-axis, then is a negative number and therefore

cannot be an area. However, it is just the negative of the area of the region bound-
ed by and 

� EXAMPLE 2 Find the area of the region R bounded by the 
x-axis, and 

SOLUTION The region R is shown in Figure 3. Our preliminary estimate for
its area is The exact value is

We are reassured by the nearness of 16.11 to our estimate.

 = c- x3

9
+ 4x d

-2

3

= a-

27
9

+ 12b - a8
9

- 8b =

145
9

L 16.11

 A1R2 = -

L

3

-2
ax2

3
- 4b  dx =

L

3

-2
a-

x2

3
+ 4b  dx

152132 = 15.
≈

x = 3.x = -2,
y = x2>3 - 4,

y = 0.y = f1x2, x = a, x = b,

L

b

a
 f1x2 dxy = f1x2

 = a32
5

-

16
2

+ 4b - a -

1
5

-

1
2

- 2b =

51
10

= 5.1

 A1R2 =

L

2

-1
1x4

- 2x3
+ 22 dx = cx5

5
-

x4

2
+ 2x d

-1

2

132122 = 6.
≈

x = 2.x = -1
y = x4

- 2x3
+ 2

A1R2 =

L

b

a
 f1x2 dx

x = b.x = a
y = f1x2y = 0.x = a, x = b,

y = f1x2,a … x … b
y = f1x2

a b

R

y

x

y = f(x)

Figure 1

1 2–1

1

2

3

4

5

y

x

y = x4 – 2x3 + 2

R

Figure 2

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 6 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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324 Chapter 6 Applications of the Integral

� EXAMPLE 3 Find the area of the region R bounded by 
the segment of the x-axis between and and the line 

SOLUTION The region R is shaded in Figure 4. Note that part of it is above the
x-axis and part is below.The areas of these two parts, and must be calculated
separately. You can check that the curve crosses the x-axis at 1, and 3. Thus,

Notice that we could have written this area as one integral using the absolute
value symbol,

but this is no real simplification since, in order to evaluate this integral, we would
have to split it into two parts, just as we did above. �

A Helpful Way of Thinking For simple regions of the type considered
above, it is quite easy to write down the correct integral. When we consider more
complicated regions (e.g., regions between two curves), the task of selecting the
right integral is more difficult. However, there is a way of thinking that can be very
helpful. It goes back to the definition of area and of the definite integral. Here it is
in five steps.

Step 1: Sketch the region.

Step 2: Slice it into thin pieces (strips); label a typical piece.

Step 3: Approximate the area of this typical piece as if it were a rectangle.

Step 4: Add up the approximations to the areas of the pieces.

Step 5: Take the limit as the width of the pieces approaches zero, thus getting a
definite integral.

To illustrate, we consider yet another simple example.

� EXAMPLE 4 Set up the integral for the area of the region under
between and (Figure 5).x = 4x = 0y = 1 + 1x

A1R2 =

L

2

-1
ƒ x3

- 3x2
- x + 3 ƒ  dx

 = 4 - a-

7
4
b =

23
4

 = cx4

4
- x3

-

x2

2
+ 3x d

-1

1

- cx4

4
- x3

-

x2

2
+ 3x d

1

2

 =

L

1

-1
1x3

- 3x2
- x + 32 dx -

L

2

1
1x3

- 3x2
- x + 32 dx

 A1R2 = A1R12 + A1R22
-1,

R2,R1

x = 2.x = 2,x = -1x + 3,
y = x3

- 3x2
-

1 2 3

1

–1

–1

2

–2

3

–3

y

R1

R2

x

y = x3 – 3x2 – x + 3

0

Figure 4

x�

2 4

1

2

3

y

x

y = 1 +

1. Sketch

xi�

3

2

1

y

xxi

1 +

∆xi

2. Slice 3. Approximate area of typical piece:

 ∆ Ai ≈ (1 + �xi) ∆xi

4. Add up: A ≈ ∑ (1 + �xi) ∆xi

5. Take limit: A = �  (1 + �x) dx
4

0

n

i=1

Figure 5

x2

3

1–1 2–2 3

–1

–2

–3

y

x

y =      – 4

R

Figure 3
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Section 6.1 The Area of a Plane Region 325

SOLUTION Once we understand this five-step procedure, we can abbreviate it
to three: slice, approximate, integrate. Think of the word integrate as incorporating
two steps: (1) add the areas of the pieces and (2) take the limit as the piece width
tends to zero. In this process, transforms into as we take the limit.
Figure 6 gives the abbreviated form for the same problem.

1 Á dx© Á ¢x

A Region Between Two Curves Consider curves and 
with on They determine the region shown in Figure 7.We
use the slice, approximate, integrate method to find its area. Be sure to note that

gives the correct height for the thin slice, even when the graph of g
goes below the x-axis. In this case g(x) is negative; so subtracting g(x) is the same
as adding a positive number.You can check that also gives the correct
height, even when both f (x) and g(x) are negative.

f1x2 - g1x2
f1x2 - g1x2

a … x … b.g1x2 … f1x2 y = g1x2y = f1x2

� EXAMPLE 5 Find the area of the region between the curves and

SOLUTION We start by finding where the two curves intersect. To do this, we
need to solve a fourth-degree equation, which would usually be
difficult to solve. However, in this case and are rather obvious
solutions. Our sketch of the region, together with the appropriate approximation
and the corresponding integral, is shown in Figure 8.

x = 1x = 0
2x - x2

= x4,

y = 2x - x2.
y = x4

1

2

3

4

y

x

Integrate

Approximate

x

∆
Slice

x�

x

1 +

∆ A � (1 + �x) ∆ x

4

A = ∫  (1 + �x) dx
0

Figure 6

y

y = g(x)

f (x) g(x)

y = f (x)

xba
x

x∆

A = �  [  f (x) – g (x)] dx

 ∆ A � [ f (x) – g(x)] ∆x
b

  – a

Figure 7

1

1

2

y

2x – x2 – x 4

y = 2x – x2

y = x 4

xx

x

∆ A � (2x – x2 – x 4) ∆x

∆

A = �  (2x – x2 – x 4) dx
1

0

Figure 8

�
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326 Chapter 6 Applications of the Integral

One job remains: to evaluate the integral.

�

� EXAMPLE 6 Horizontal Slicing Find the area of the region between the
parabola and the line 

SOLUTION We will need the points of intersection of these two curves. The 
y-coordinates of these points can be found by writing the second equation as

and then equating the two expressions for 4x.

When and when so we conclude that the points of

intersection are (4, 4) and The region between the curves is shown in
Figure 9.

Now imagine slicing this region vertically. We face a problem, because the
lower boundary consists of two different curves. Slices at the extreme left extend
from the lower branch of the parabola to its upper branch. For the rest of the re-
gion, slices extend from the line to the parabola.To solve the problem with vertical
slices requires that we first split our region into two parts, set up an integral for
each part, and then evaluate both integrals.

A far better approach is to slice the region horizontally as shown in Figure 10,
thus using y rather than x as the integration variable. Note that horizontal slices
always go from the parabola (at the left) to the line (at the right).The length of such
a slice is the larger x-value minus the smaller x-value Ax =

1
4 y2 B .Ax =

1
413y + 42B

A14, -1 B .
y = -1, x =

1
4

,y = 4, x = 4

 y = 4, -1

 1y - 421y + 12 = 0

 y2
- 3y - 4 = 0

 y2
= 3y + 4

4x = 3y + 4

4x - 3y = 4.y2
= 4x

L

1

0
12x - x2

- x42 dx = cx2
-

x3

3
-

x5

5
d

0

1

= 1 -

1
3

-

1
5

=

7
15

 =

125
24

L 5.21

 =

1
4

 c a24 + 16 -

64
3
b - a3

2
- 4 +

1
3
b d

 =

1
4

 c3y2

2
+ 4y -

y3

3
d

-1

4

 A =

L

4

-1
c3y + 4 - y2

4
d  dy =

1
4L

4

-1
13y + 4 - y22 dy

1
4

1

1

2

2

3

3

4

4

y

x

4x – 3y = 4

y2 = 4x

(4, 4)

(    , –1)

Figure 9

1
4

3y + 4
4

3y + 4
4

  y2

4

  y2

4

21

2

3

3

4

4

5

y

y

y

4x – 3y = 4
or

y2 = 4x or

x =

x

∆

A = �  [          ]dy

 ∆ A � [           ] ∆y
4

, –1)(

–

3y + 4
4

y2

4
–

3y + 4
4

y2

4
–

(4, 4)x  =

–1

Figure 10
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Section 6.1 The Area of a Plane Region 327

There are two items to note: (1) The integrand resulting from a horizontal slicing
involves y, not x; and (2) to get the integrand, solve both equations for x and sub-
tract the smaller x-value from the larger. �

Distance and Displacement Consider an object moving along a straight

line with velocity at time t. If then gives the distance

traveled during the time interval However, if is sometimes nega-
tive (which corresponds to the object moving in reverse), then

measures the displacement of the object, that is, the directed distance from its
starting position to its ending position To get the total distance that the 

object traveled during we must calculate the area be-

tween the velocity curve and the t-axis.

� EXAMPLE 7 An object is at position at time Its velocity at
time t is What is the position of the object at time and how
far did it travel during this time?

SOLUTION The object’s displacement, that is, change in position, is

Thus, The object is at position 3 at time The
total distance traveled is

To perform this integration we make use of symmetry (see Figure 11). Thus

�
L

2

0
ƒ v1t2 ƒ  dt = 12

L

2>12

0
5 sin 6pt dt = 60 c- 1

6p
 cos 6pt d

0

1>6
=

20
p

L 6.3662

L

2

0
ƒ v1t2 ƒ  dt =

L

2

0
ƒ 5 sin 6pt ƒ  dt

t = 2.s122 = s102 + 0 = 3 + 0 = 3.

s122 - s102 =

L

2

0
v1t2 dt =

L

2

0
5 sin 6pt dt = c- 5

6p
  cos 6pt d

0

2

= 0

t = 2,v1t2 = 5 sin 6pt.
t = 0.s = 3

L

b

a
ƒ v1t2 ƒ  dt,a … t … b,

s(b).s(a)

L

b

a
v1t2 dt = s1b2 - s1a2

v(t)a … t … b.
L

b

a
 v1t2 dtv1t2 Ú 0,v(t)

5

v
v(t) � 5 sin 6�t

� v(t) �

1 2

–5

5

1 2

–5

v

t

t

Figure 11

Concepts Review
1. Let R be the region between the curve and the

x-axis on the interval [a, b]. If for all x in [a, b], then
_____, but if for all x in [a, b], then 

_____.

2. To find the area of the region between two curves, it is
wise to think of the following three-word motto: _____.

3. Suppose that the curves and bound a
region R on which Then the area of R is given byf1x2 … g1x2.

y = g1x2y = f1x2

A1R2 =f1x2 … 0A1R2 =

f1x2 Ú 0
y = f1x2

_____ dx, where a and b are determined by solving

the equation _____.

4. If for all y in [c, d], then the area A(R) of the
region R bounded by the curves and between

and is given by _____.A1R2 =y = dy = c

x = q1y2x = p1y2
p1y2 … q1y2

A1R2 =

L

b

a
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328 Chapter 6 Applications of the Integral

In Problems 1–10, use the three-step procedure (slice, approxi-
mate, integrate) to set up and evaluate an integral (or integrals) for
the area of the indicated region.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Problems 11–30, sketch the region bounded by the graphs
of the given equations, show a typical slice, approximate its area,
set up an integral, and calculate the area of the region. Make an
estimate of the area to confirm your answer.

11. between and 

12. between and x = 3x = 1y = 5x - x2, y = 0,

x = 3x = 0y = 3 -
1
3 x2, y = 0,

≈

x�

y

x

y =

y = –x + 6

y

x

y = x – 1

x = 3 – y2

y = – x + 2

y = x2

y

x

y

x

y = x3 – x2 – 6x

y

x

y = x + 4

y = x2 – 2

y

x

y = xy = 2 – x2

1–3

y

x

y = x2 + 2x – 3

–1–2 1 2

y

x

y = x2 + 2

y = –x

–1 2

y

x

y = x3 – x + 2

–1 2

y

x

y = x2 + 1

13. between and 

14. between and 

15. between and 

16. between and 

17. between and 

18. between and 

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. between 

30. between 

31. Sketch the region R bounded by and
Then find its area. Hint: Divide R into two pieces.

32. Find the area of the triangle with vertices at 
and (5, 1) by integration.

33. An object moves along a line so that its velocity at time t
is feet per second. Find the displacement
and total distance traveled by the object for 

34. Follow the directions of Problem 33 if 
and the interval is 

35. Starting at when an object moves along a line
so that its velocity at time t is centimeters per sec-
ond. How long will it take to get to To travel a total dis-
tance of 12 centimeters?

36. Consider the curve for 
(a) Calculate the area under this curve.
(b) Determine c so that the line bisects the area of 

part (a).
(c) Determine d so that the line bisects the area of 

part (a).

37. Find the area of the region in the first quadrant below
above 

38. Find the area of the region trapped between 
and Hint: There are two separate regions.

39. Use the Parabolic Rule with to approximate the
area of the region trapped between and 

40. Use the Parabolic Rule with to approximate the
area of the region trapped between and 
Hint: One point of intersection is obvious; the other you must
approximate.

y = x>4.y = ln (x + 1)
n = 8CAS

y = e-x2
.y = 1 - e-x2

n = 8CAS

y = x>4.
y = xe-x2

y =
1
2.y = e-x

y = d

x = c

1 … x … 6.y = 1>x2

s = 12?
v1t2 = 2t - 4
t = 0,s = 0

0 … t … 3p>2.
v1t2 =

1
2 + sin 2t

-1 … t … 9.
v1t2 = 3t2

- 24t + 36

12, -22,
1-1, 42,

2y + x = 0.
y = x + 6, y = x3,

x = 0 and x = 1y = ex, y = e-x,

x = 0 and x = ln 2y = e2x, y = 0,

x = 4y4, x = 8 - 4y4

4y2
- 2x = 0, 4y2

+ 4x - 12 = 0

x = y2
- 2y, x - y - 4 = 0

x = -6y2
+ 4y, x + 3y - 2 = 0

x = 13 - y21y + 12, x = 0

x = 8y - y2, x = 0

y = x2
- 9, y = 12x - 121x + 32

y = x2
- 2x, y = -x2

y = 1x, y = x - 4, x = 0

y = 1x - 321x - 12, y = x

x = 9x = 0y = 1x - 10, y = 0,

x = 2x = -2y = 13 x, y = 0,

x = 3x = -3y = x3, y = 0,

x = 2x = 0y =
1
41x2

- 72, y = 0,

x = 4x = -1y = x2
- 4x - 5, y = 0,

x = 3x = 0y = 1x - 421x + 22, y = 0,

Problem Set 6.1
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Section 6.2 Volumes of Solids: Slabs, Disks, Washers 329

41. Calculate areas A, B, C, and D in Figure 12. Check by cal-
culating in one integration.

42. Prove Cavalieri’s Principle. (Bonaventura Cavalieri
(1598–1647) developed this principle in 1635.) If two regions
have the same height at every x in [a, b], then they have the same
area (see Figure 13).

A + B + C + D

44. Find the area of the region trapped between 
and 

Answers to Concepts Review: 1.

2. slice, approximate, integrate 3.

4.
L

d

c
[q1y2 - p1y2] dy

[g1x2 - f1x2]; f1x2 = g1x2
L

b

a
f1x2 dx; -

L

b

a
f1x2 dx

y =
1
2, 0 … x … 17p>6.

y = sin x

Next consider a solid with the property that cross sections perpendicular to a
given line have known area. In particular, suppose that the line is the x-axis and
that the area of the cross section at x is (Figure 2). We partition
the interval [a, b] by inserting points We then
pass planes through these points perpendicular to the x-axis, thus slicing the solid
into thin slabs (Figure 3). The volume of a slab should be approximately the
volume of a cylinder; that is,

(Recall that called a sample point, is any number in the interval )[xi - 1, xi].xi,

¢Vi L A1xi2 ¢xi

¢Vi

a = x0 6 x1 6 x2 6
Á

6 xn = b.
A1x2, a … x … b

That the definite integral can be used to calculate areas is not surprising; it was
invented for that purpose. But uses of the integral go far beyond that application.
Many quantities can be thought of as a result of slicing something into small
pieces, approximating each piece, adding up, and taking the limit as the pieces
shrink in size. This method of slice, approximate, and integrate can be used to
find the volumes of solids provided that the volume of each slice is easy to
approximate.

What is volume? We start with simple solids called right cylinders, four of
which are shown in Figure 1. In each case, the solid is generated by moving a plane
region (the base) through a distance h in a direction perpendicular to that region.
And in each case, the volume of the solid is defined to be the area A of the base
times the height h; that is,

V = A # h

6.2
Volumes of Solids: Slabs,

Disks, Washers

Consider an ordinary coin, say a
quarter.

A quarter has a radius of about 1
centimeter and a thickness of about
0.2 centimeter. Its volume is the area
of the base, times the
thickness that is,

cubic centimeters.

V = 11p210.22 L 0.63

h = 0.2;
A = p1122,

The Volume of a Coin

y

x

(1, 1)

y

x

y = x2 – 2x + 1

y = x2 – 3x + 1–1

1

1 2

2

1

1 2

2

Figure 14

h h h h

A
A A A

Figure 1

43. Use Cavalieri’s Principle (not integration; see Problem
42) to show that the shaded regions in Figure 14 have the same
area.

y = x2

(3, 9)(–3, 9)

(–2, 4) (2, 4)

A
B

D

y

x

C

Figure 12

a x b

Figure 13
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330 Chapter 6 Applications of the Integral

The “volume” V of the solid should be given approximately by the Riemann
sum

When we let the norm of the partition approach zero, we obtain a definite integral;
this integral is defined to be the volume of the solid.

Rather than routinely applying the boxed formula to obtain volumes, we sug-
gest that in each problem you go through the process that led to it. Just as for areas,
we call this process slice, approximate, integrate. It is illustrated in the examples
that follow.

Solids of Revolution: Method of Disks When a plane region, lying
entirely on one side of a fixed line in its plane, is revolved about that line, it
generates a solid of revolution. The fixed line is called the axis of the solid of
revolution.

As an illustration, if the region bounded by a semicircle and its diameter is re-
volved about that diameter, it sweeps out a spherical solid (Figure 4). If the region
inside a right triangle is revolved about one of its legs, it generates a conical solid
(Figure 5).When a circular region is revolved about a line in its plane that does not
intersect the circle (Figure 6), it sweeps out a torus (doughnut). In each case, it is
possible to represent the volume as a definite integral.

V =

L

b

a
A1x2 dx

V L a
n

i = 1
A1xi2 ¢xi

Axis

Figure 4

Axis

Axis

Figure 6Figure 5

a b
x

A (x)

a b
xi–1

xi

xi

∆xi

A(xi)

Figure 2 Figure 3

330



Section 6.2 Volumes of Solids: Slabs, Disks, Washers 331

� EXAMPLE 1 Find the volume of the solid of revolution obtained by revolv-
ing the plane region R bounded by the x-axis, and the line about
the x-axis.

SOLUTION The region R, with a typical slice, is displayed as the left part of
Figure 7. When revolved about the x-axis, this region generates a solid of
revolution and the slice generates a disk, a thin coin-shaped object.

x = 4y = 1x,

Recalling that the volume of a circular cylinder is we approximate the
volume of this disk with and then integrate.

Is this answer reasonable? The right circular cylinder that contains the solid has
volume Half this number seems reasonable. �

� EXAMPLE 2 Find the volume of the solid generated by revolving the
region bounded by the curve the y-axis, and the line about the y-axis
(Figure 8).

SOLUTION Here we slice horizontally, which makes y the choice for 
the integration variable. Note that is equivalent to and 

The volume is therefore

V = p
L

3

0
y2>3 dy = p c3

5
 y5>3 d

0

3

= p 
923 9

5
L 11.76

¢V L p A13 y B2 ¢y = py2>3 ¢y.
x = 13 yy = x3

y = 3y = x3,

V = p22 # 4 = 16p.
≈

V = p
L

4

0
x dx = p cx2

2
d

0

4

= p 
16
2

= 8p L 25.13

¢V L p A1x B2 ¢x = px ¢x¢V

pr2h,

∆x x�y =

x�
1

4

∆ x

y

xx

x

x

2

x�

∆V ≈ π (�x)2 ∆x

V = ∫  π xdx
4

0

Figure 7

y�

3

1 2

3
x =

y�
3

y�
3

∆y

y

yy

x

∆y

∆V ≈ π(�y)2 ∆y3

V = ∫ πy2/3 dy
3

0

Figure 8 �
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332 Chapter 6 Applications of the Integral

Method of Washers Sometimes, slicing a solid of revolution results in disks
with holes in the middle. We call them washers. See the diagram and accompany-
ing volume formula shown in Figure 9.

� EXAMPLE 3 Find the volume of the solid generated by revolving the
region bounded by the parabolas and about the x-axis.

SOLUTION The key words are still slice, approximate, integrate (see Figure 10).

V = p
L

2

0
18x - x42 dx = p c8x2

2
-

x5

5
d

0

2

=

48p
5

L 30.16

y2
= 8xy = x2

� EXAMPLE 4 The semicircular region bounded by the curve 
and the y-axis is revolved about the line Set up the integral that repre-
sents its volume.

SOLUTION Here the outer radius of the washer is and the inner
radius is 1. Figure 11 exhibits the solution. The integral can be simplified. The part
above the x-axis has the same volume as the part below it (which manifests itself in
an even integrand). Thus, we may integrate from 0 to 2 and double the result.

Now see Problem 37 for a way to evaluate this integral.

 = 2p
L

2

0
C224 - y2

+ 4 - y2 D  dy

 V = p
L

2

-2
C A1 + 24 - y2 B2 - 12 D  dy

1 + 24 - y2

x = -1.
x = 24 - y2

r2

r1

h

V = A • h
π=   (r2

2 – r1
2)h

Figure 9

8x�

8x�
y

xx

x2

y = x2

y =

∆V � π [(�8x)2 – (x2)2] ∆x

V = ∫   π (8x – x4) dx

∆ x

2

1

2

3

4

2

0

Figure 10 �
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Section 6.2 Volumes of Solids: Slabs, Disks, Washers 333

Other Solids with Known Cross Sections So far, our solids have had
circular cross sections. However, the method for finding volume works just as well
for solids whose cross sections are squares or triangles. In fact, all that is really
needed is that the areas of the cross sections can be determined, since, in this case,
we can also approximate the volume of the slice—a slab—with this cross section.
The volume is then found by integrating.

� EXAMPLE 5 Let the base of a solid be the first quadrant plane region
bounded by the x-axis, and the y-axis. Suppose that cross sections
perpendicular to the x-axis are squares. Find the volume of the solid.

SOLUTION When we slice this solid perpendicularly to the x-axis, we get thin
square boxes (Figure 12), like slices of cheese.

 = cx -

x3

6
+

x5

80
d

0

2

= 2 -

8
6

+

32
80

=

16
15

L 1.07

 V =

L

2

0
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x2

4
b

2

 dx =

L

2

0
a1 -

x2
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+

x4

16
b  dx

y = 1 - x2>4,

x = –1x = –1

4 – y2�

1

–1

–2
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x

∆

y

y
y

1+

x = –1 x = –1

4 – y2�
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Figure 11
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334 Chapter 6 Applications of the Integral

� EXAMPLE 6 The base of a solid is the region between one arch of 
and the x-axis. Each cross section perpendicular to the x-axis is an equilateral tri-
angle sitting on this base. Find the volume of the solid.

SOLUTION We need the fact that the area of an equilateral triangle of side u is
(see Figure 13). We proceed as shown in Figure 14.23 u2>4

y = sin x

To perform the indicated integration, we use the half-angle formula

� =

23
8

 cx -

1
2

 sin 2x d
0

p

=

23
8

 p L 0.68

 =

23
8

 c
L

p

0
1 dx -

1
2L

p

0
cos 2x # 2 dx d

 V =

23
4 L

p

0
 
1 - cos 2x

2
 dx =

23
8 L

p

0
11 - cos 2x2 dx

sin2 x = 11 - cos 2x2>2.

1
2

 3
2 u

2

A =    u (     u) =       u2

� u

 3
2

�  3
4

�

u u

Figure 13

Concepts Review
1. The volume of a disk of radius r and thickness h is _____.

2. The volume of a washer of inner radius r, outer radius R,
and thickness h is _____.

3. If the region R bounded by and is
revolved about the x-axis, the disk at x will have volume 
_____.

4. If the region R of Question 3 is revolved about the line
the washer at x will have volume _____.¢V Ly = -2,

¢V L

x = 3y = x2, y = 0,

sin x

∆ x∆ x

xx

y

x

y = sin x

π

∆V � (      sin2 x) ∆x�3

�3
V = ∫  (       sin2 x) dx

0

π

4

4

Figure 14

Problem Set 6.2
In Problems 1–4, find the volume of the solid generated when the
indicated region is revolved about the specified axis; slice, approx-
imate, integrate.

1. x-axis 2. x-axis 

3. (a) x-axis 4. (a) x-axis
(b) y-axis (b) y-axis 

2

y

x

y = x2 + 1

3

y

x

y = –x2 + 4x

2

y

x

y = 4 – x2

y

x

y = 4 – 2x
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In Problems 5–10, sketch the region R bounded by the graphs
of the given equations, and show a typical vertical slice. Then find
the volume of the solid generated by revolving R about the x-axis.

5.

6.

7.

8. between and 

9. between and 

10. between and 

In Problems 11–16, sketch the region R bounded by the graphs
of the given equations and show a typical horizontal slice. Find the
volume of the solid generated by revolving R about the y-axis.

11.

12.

13. 14.

15. 16.

17. Find the volume of the solid generated by revolving about
the x-axis the region bounded by the upper half of the ellipse

and the x-axis, and thus find the volume of a prolate spheroid.
Here a and b are positive constants, with 

18. Find the volume of the solid generated by revolving about
the x-axis the region bounded by the line and the para-
bola 

19. Find the volume of the solid generated by revolving about
the x-axis the region bounded by the line and the
parabola 

20. Find the volume of the solid generated by revolving about
the x-axis the region in the first quadrant bounded by the circle

the x-axis, and the line and
thus find the volume of a spherical segment of height h, of a
sphere of radius r.

21. Find the volume of the solid generated by revolving about
the y-axis the region bounded by the line and the para-
bola 

22. Find the volume of the solid generated by revolving about
the line the region in the first quadrant bounded by the
parabolas and and the
y-axis.

23. The base of a solid is the region inside the circle
Find the volume of the solid if every cross section

by a plane perpendicular to the x-axis is a square. Hint: See Ex-
amples 5 and 6.

24. Do Problem 23 assuming that every cross section by a
plane perpendicular to the x-axis is an isosceles triangle with base
on the xy-plane and altitude 4. Hint: To complete the evaluation,

interpret as the area of a semicircle.
L

2

-2
24 - x2 dx

x2
+ y2

= 4.

x2
- 16y + 80 = 03x2

- 16y + 48 = 0
y = 2

y = 4x2.
y = 4x

x = r - h, 0 6 h 6 r,x2
+ y2

= r2,

y2
= 4x.

x - 2y = 0

y = 6x2.
y = 6x

a 7 b.

x2

a2 +

y2

b2 = 1

x = 24 - y2, x = 0x = y3>2, y = 9, x = 0

x = y2>3, y = 27, x = 0x = 21y, y = 4, x = 0

x =

2
y

, y = 2, y = 6, x = 0

x = y2, x = 0, y = 3

≈

x = 27x = 1y = x2>3, y = 0,

x = 3x = -2y = 29 - x2, y = 0,

x = 3x = 0y = ex, y =

e

x
, y = 0,

y =

1
x

, x = 2, x = 4, y = 0

y = x3, x = 3, y = 0

y =

x2

p
, x = 4, y = 0

≈ 25. The base of a solid is bounded by one arch of
and the x-axis. Each cross sec-

tion perpendicular to the x-axis is a square sitting on this base.
Find the volume of the solid.

26. The base of a solid is the region bounded by 
and Cross sections of the solid that are perpendicu-
lar to the x-axis are squares. Find the volume of the solid.

27. Find the volume of one octant (one-eighth) of the solid
region common to two right circular cylinders of radius 1 whose
axes intersect at right angles. Hint: Horizontal cross sections are
squares. See Figure 15.

y = 1 - x4.
y = 1 - x2

y = 2cos x, -p>2 … x … p>2,

28. Find the volume inside the shown in Figure 16. As-
sume that both cylinders have radius 2 inches and length 12 inch-
es. Hint: The volume is equal to the volume of the first cylinder
plus the volume of the second cylinder minus the volume of the
region common to both. Use the result of Problem 27.

29. Find the volume inside the in Figure 16, assuming
that both cylinders have radius r and length L.

“+”

“+”

Figure 15

L1

L2

Figure 16 Figure 17

30. Find the volume inside the “T” in Figure 17, assuming
that each cylinder has radius and that the lengths
are and 

31. Repeat Problem 30 for arbitrary r, and 

32. The base of a solid is the region R bounded by 
and Each cross section perpendicular to the x-axis is a
semicircle with diameter extending across R. Find the volume of
the solid.

33. Find the volume of the solid generated by revolving the
region bounded by and about the
x-axis.

34. Find the volume of the solid generated when the region in
the first quadrant bounded above by and on the right by

is revolved about the y-axis.

35. Find the volume of the solid generated by revolving the
region in the first quadrant bounded by the curve the
line and the x-axis:
(a) about the line (b) about the line y = 8.x = 4;

x = 4,
y2

= x3,

y = - ln x
y = 2

x = ln 3y = ex, y = 0, x = 0,

y = x2.
y = 1x

L2.L1,

L2 = 8 inches.L1 = 12 inches
r = 2 inches
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336 Chapter 6 Applications of the Integral

39. A wedge is cut from a right circular cylinder of radius r
(Figure 19). The upper surface of the wedge is in a plane through
a diameter of the circular base and makes an angle with the
base. Find the volume of the wedge.

40. (The Water Clock) A water tank is obtained by revolving
the curve about the y-axis.
(a) Find the volume of water in the tank as a function of

its depth y.
(b) Water drains through a small hole according to Torricelli’s

Law Show that the water level falls at a
constant rate.

AdV>dt = -m1y B .

V(y),
y = kx4, k 7 0,

u

42. State the version of Cavalieri’s Principle for volume (see
Problem 42 of Section 6.1).

43. Apply Cavalieri’s Principle for volumes to the two solids
shown in Figure 21. (One is a hemisphere of radius r; the other is
a cylinder of radius r and height r with a right circular cone 
of radius r and height r removed.) Assuming that the volume of 
a right circular cone is find the volume of a hemisphere of
radius r.

1
3 pr2h,

Answers to Concepts Review: 1. 2.
3. 4. p[1x2

+ 222 - 4] ¢xpx4 ¢x
p1R2

- r22hpr2h

Figure 18

θ

r

Figure 19

A

h

Figure 20

r r

r

Figure 21

There is another method for finding the volume of a solid of revolution: the
method of cylindrical shells. For many problems, it is easier to apply than the meth-
ods of disks or washers.

A cylindrical shell is a solid bounded by two concentric right circular cylinders
(Figure 1). If the inner radius is the outer radius is and the height is h, then its
volume is given by

 = 2pa r2 + r1

2
bh1r2 - r12

 = p1r2 + r121r2 - r12h
 = 1pr2

2
- pr1

22h
 V = 1area of base2 # 1height2

r2,r1,

6.3
Volumes of Solids 

of Revolution: Shells

h

r2

r1

Figure 1

41. Show that the volume of a general cone (Figure 20) is
where A is the area of the base and h is the height. Use this

result to give the formula for the volume of
(a) a right circular cone of radius r and height h;
(b) a regular tetrahedron with edge length r.

1
3 Ah,

36. Find the volume of the solid generated by revolving the
region bounded by the curve the line and the 
y-axis:
(a) about the line (b) about the line 

37. Complete the evaluation of the integral in Example 4 by
noting that

Now interpret the first integral as the area of a quarter circle.

38. An open barrel of radius r and height h is initially full of
water. It is tilted and water pours out until the water level coin-
cides with a diameter of the base and just touches the rim of the
top. Find the volume of water left in the barrel. See Figure 18.

 = 2
L

2

0
24 - y2 dy +

L

2

0
14 - y22 dy

 
L

2

0
C224 - y2

+ 4 - y2 D  dy

y = 8.x = 4;

y = 8,y2
= x3,
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Section 6.3 Volumes of Solids of Revolution: Shells 337

The Method of Shells Consider now a region of the type shown in Figure 3.
Slice it vertically and revolve it about the y-axis. It will generate a solid of revolu-
tion, and each slice will generate a piece that is approximately a cylindrical shell.
To get the volume of this solid, we calculate the volume of a typical shell, add,
and take the limit as the thickness of the shells tends to zero. The latter is, of
course, an integral. Again, the strategy is slice, approximate, integrate.

¢V

∆r

∆r

r

V = 2 πrh∆r

2πr

h

Figure 2

y = f (x)

f (x)

∆V � 2πx f (x) ∆x

∆x
b

V = 2π�  x f(x) dx

y y

x

x

a b

a

Figure 3

The expression which we will denote by r, is the average of and 
Thus,

Here is a good way to remember this formula: If the shell were very thin and
flexible (like paper), we could slit it down the side, open it up to form a rectangular
sheet, and then calculate its volume by pretending that this sheet forms a thin box
of length height h, and thickness (Figure 2).¢r2pr,

 = 2prh ¢r

 V = 2p # 1average radius2 # 1height2 # 1thickness2
r2.r11r1 + r22>2,

� EXAMPLE 1 The region bounded by the x-axis, and
is revolved about the y-axis. Find the volume of the resulting solid.

SOLUTION From Figure 3 we see that the volume of the shell generated by the
slice is

which, for becomes

¢V L 2px 
11x

 ¢x

f1x2 = 1>1x,

¢V L 2pxf1x2 ¢x

x = 4
x = 1,y = 1>1x,
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338 Chapter 6 Applications of the Integral

The volume is then found by integrating.

�

� EXAMPLE 2 The region bounded by the line the x-axis, and
is revolved about the x-axis, thereby generating a cone (assume that

). Find its volume by the disk method and by the shell method.

SOLUTION

Disk Method Follow the steps suggested by Figure 4; that is, slice, approximate,
integrate.

V = p 
r2

h2L

h

0
x2 dx = p 

r2

h2 cx3

3
d

0

h

=

pr2h3

3h2 =

1
3

 pr2h

r 7 0, h 7 0
x = h

y = 1r>h2x,

 = 2p c2
3

 x3>2 d
1

4

= 2pa2
3

# 8 -

2
3

# 1b =

28p
3

L 29.32

 V = 2p
L

4

1
x 

11x
  dx = 2p

L

4

1
x1>2 dx

Shell Method Follow the steps suggested by Figure 5. The volume is then

 = 2ph cy2

2
-

y3

3r
d

0

r

= 2ph c r2

2
-

r2

3
d =

1
3

 pr2h

 V =

L

r

0
2pyah -

h
r

yb  dy = 2ph
L

r

0
ay -

1
r

y2b  dy

r
h

y

y =

x
x

h

x

r
h x

∆x

∆V � π (    x) ∆x
r
h

V = ∫  π       x2 dx
r2

h2

h

0

2

Figure 4

As should be expected, both methods yield the well-known formula for the vol-
ume of a right circular cone. �

� EXAMPLE 3 Find the volume of the solid generated by revolving the
region in the first quadrant that is above the parabola and below the
parabola about the y-axis.y = 2 - x2

y = x2

h
r

y

y

y

r

x

x = 

h
r

yh–

h

y

∆

V = ∫  2π y(h–     y) dy 

h
r

∆V � 2π y (h–    y) ∆y

h
r

r

0

Figure 5
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Section 6.3 Volumes of Solids of Revolution: Shells 339

SOLUTION One look at the region (left part of Figure 6) should convince you
that horizontal slices leading to the disk method are not the best choice (because
the right boundary consists of parts of two curves, making it necessary to use two
integrals). However, vertical slices, resulting in cylindrical shells, will work fine.

 = 4p cx2

2
-

x4

4
d1

0
= 4p c1

2
-

1
4
d = p L 3.14

 V =

L

1

0
2px12 - 2x22 dx = 4p

L

1

0
1x - x32 dx

y

x

y = x2

y = 2 – x2

2 – x2 – x2

V = ∫  2πx (2 – 2x2) dx

2

x 1

(1,1)

∆V ≈ 2π x(2 – x2 – x2) ∆ x

0

1

Figure 6

3

y

x

x

x

3 + 2x – x2

∆

∆V � π(3 + 2x – x2)2 ∆x

V = π ∫  (3 + 2x – x2)2 dx

Method of disks

Axis 3

0

Putting It All Together Although most of us can draw a reasonably good
plane figure, some of us do less well at drawing three-dimensional solids. But no
law says that we have to draw a solid in order to calculate its volume. Usually, a
plane figure will do, provided we can visualize the corresponding solid in our
minds. In the next example, we are going to imagine revolving the region R of
Figure 7 about various axes. Our job is to set up and evaluate an integral for the
volume of the resulting solid, and we are going to do it by looking at a plane figure.

� EXAMPLE 4 Set up and evaluate an integral for the volume of the solid
that results when the region R shown in Figure 7 is revolved about

(a) the x-axis, (b) the y-axis,
(c) the line (d) the line 

SOLUTION
(a)

x = 4.y = -1,

V = p
L

3

0
13 + 2x - x222 dx =

153
5

 p L 96.13

1 2 3

1

2

3

y

x

y = 3 + 2x – x2

R

Figure 7

�
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y

x

x∆
Axis

3 

3 + 2x – x2

4 – x x = 4

y

x

x∆

Method of washersx 3

Axis: y = – 1

1 + 3 + 2x – x2

∆V � π[(4 + 2x – x2)2 – 12] ∆x

V = π∫  [(4 + 2x – x2)2 – 1] dx
3

0

3

y

xx

x

3 + 2x – x2
∆V � 2πx (3 + 2x – x2) ∆x

∆

V = 2π ∫  x (3 + 2x – x2) dx

Method of shells

Axis

3

0
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(b)

(c)

V = 2p
L

3

0
x13 + 2x - x22 dx =

45
2

 p L 70.69

(d)

V = p
L

3

0
[14 + 2x - x222 - 1] dx =

243
5

 p L 152.68

Note that in all four cases the limits of integration are the same; it is the original
plane region that determines these limits. �

V = 2p
L

3

0
14 - x213 + 2x - x22 dx =

99
2

 p L 155.51

In all four parts of this example, the
integrand turned out to be a poly-
nomial, but finding the polynomial
involved some messy expansions.
Once the integrals are set up, evalu-
ating them is an ideal task for a
CAS.

Technology

Method of shells
∆V � 2π (4 – x)(3 + 2x – x2) ∆x

V = 2π ∫   (4 – x)(3 + 2x – x2) dx
0

3
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Concepts Review
1. The volume of a thin cylindrical shell of radius x,

height and thickness is given by _____.

2. The triangular region R bounded by and
is revolved about the y-axis, generating a solid.The method

of shells gives the integral _____ as its volume; the method of
washers gives the integral _____ as its volume.

x = 2
y = x, y = 0,

¢V L¢xf(x),
¢V 3. The region R of Question 2 is revolved about the line

generating a solid. The method of shells gives the inte-
gral _____ as its volume.

4. The region R of Question 2 is revolved about the line
generating a solid. The method of shells gives the inte-

gral _____ as its volume.
y = -1,

x = -1,

Problem Set 6.3
In Problems 1–12, find the volume of the solid generated when the
region R bounded by the given curves is revolved about the indi-
cated axis. Do this by performing the following steps.
(a) Sketch the region R.
(b) Show a typical rectangular slice properly labeled.
(c) Write a formula for the approximate volume of the shell gen-

erated by this slice.
(d) Set up the corresponding integral.
(e) Evaluate this integral.

1. about the y-axis

2. about the y-axis

3. about the y-axis

4. about the y-axis

5. about the line 

6. about the line 

7. about the y-axis

8. about the y-axis

9. about the x-axis

10. about the x-axis

11. about the line 

12. about the line 

13. Consider the region R (Figure 8). Set up an integral for
the volume of the solid obtained when R is revolved about the
given line using the indicated method.
(a) The x-axis (washers) (b) The y-axis (shells)
(c) The line (shells) (d) The line (shells)x = bx = a

y = 3x = 22y + 1, y = 2, x = 0, y = 0;

y = 2x = y2, y = 2, x = 0;

x = 1y + 1, y = 4, x = 0, y = 0;

x = y2, y = 1, x = 0;

y = x2, y = 3x;

y =
1
4 x3

+ 1, y = 1 - x, x = 1;

x = 3y = 9 - x2 1x Ú 02, x = 0, y = 0;

x = 5y = 1x, x = 5, y = 0;

y = 9 - x2 1x Ú 02, x = 0, y = 0;

y = 1x, x = 3, y = 0;

y = x2, x = 1, y = 0;

y =

1
x

, x = 1, x = 4, y = 0;

(a) The y-axis (washers) (b) The x-axis (shells)
(c) The line (shells)

15. Sketch the region R bounded by 
and Set up (but do not evaluate) integrals for each of the
following.
(a) Area of R
(b) Volume of the solid obtained when R is revolved about the

y-axis
(c) Volume of the solid obtained when R is revolved about

(d) Volume of the solid obtained when R is revolved about

16. Follow the directions of Problem 15 for the region R
bounded by and and between and

17. Find the volume of the solid generated by revolving the
region R in the first quadrant bounded by and

about the x-axis.

18. Follow the directions of Problem 17, but revolve R about
the line Use the Parabolic Rule with to approxi-
mate the integral.

19. A round hole of radius a is drilled through the center of a
solid sphere of radius b (assume that ). Find the volume of
the solid that remains.

20. Set up the integral (using shells) for the volume of 
the torus obtained by revolving the region inside the circle

about the line where Then evaluate
this integral. Hint: As you simplify, it may help to think of part of
this integral as an area.

21. The region in the first quadrant bounded by
and is revolved about the y-axis.

Find the volume of the resulting solid.

22. The region bounded by and
is revolved about the y-axis. Find the volume that results.

Hint:

23. Let R be the region bounded by and Find
the volume of the solid that results when R is revolved about:
(a) the x-axis; (b) the y-axis; (c) the line 

24. Suppose that we know the formula for the
surface area of a sphere, but do not know the corresponding
formula for its volume V. Obtain this formula by slicing the 
solid sphere into thin concentric spherical shells (Figure 10). Hint:
The volume of a thin spherical shell of outer radius x is
¢V L 4px2 ¢x.

¢V

S = 4pr2

y = x.

y = x.y = x2

L
x sin x dx = sin x - x cos x + C.

x = 2p
y = 2 + sin x, y = 0, x = 0,

y = cos1x22x = 0, y = sin1x22,

b 7 a.x = b,x2
+ y2

= a2

b 7 a

n = 8y = 4.
C

y = 1
y = 1- ln x

x = 2.
x = 0y = 0y = x3

+ 1

x = 4

y = -1

y = 0.
y = 1>x3, x = 1, x = 3,

y = 3

y

x = f (y)x =g (y)

d

3

c

R

x

y = f(x)

y = g(x)

a

R

b

y

x

Figure 8 Figure 9

14. A region R is shown in Figure 9. Set up an integral for the
volume of the solid obtained when R is revolved about each of
the following lines. Use the indicated method.
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342 Chapter 6 Applications of the Integral

25. Consider a region of area S on the surface of a sphere of
radius r. Find the volume of the solid that results when each point
of this region is connected to the center of the sphere by a line
segment (Figure 11). Hint: Use the method of spherical shells
mentioned in Problem 24.

Answers to Concepts Review: 1.

2. 3.

4. 2p
L

2

0
11 + y212 - y2 dy

2p
L

2

0
11 + x2x dx2p

L

2

0
x2 dx; p

L

2

0
14 - y22 dy

2pxf1x2 ¢x
x

∆x S
r

r

r

Figure 10 Figure 11

The circle suggests another way of thinking about curves. Recall from
trigonometry that

describe the circle (Figure 4). Think of t as time and x and y as giving
the position of a particle at time t. The variable t is called a parameter. Both x and
y are expressed in terms of this parameter. We say that 

are parametric equations describing the circle.
If we were to graph the parametric equations 

we would get a curve something like the spiral with which we started.
And we can even think of the sine curve (Figure 2) and the parabola (Figure 3) in
parametric form. For the sine curve, we write

x = t, y = sin t, 0 … t … p

0 … t … 5p,
y = t sin t,x = t cos t,

0 … t … 2p,
y = a sin t,x = a cos t,

x2
+ y2

= a2

x = a cos t, y = a sin t, 0 … t … 2p

How long is the spiral curve shown in Figure 1? If it were a piece of string, most of
us would stretch it taut and measure it with a ruler. But if it is the graph of an equa-
tion, this is a little hard to do.

A little reflection suggests a prior question. What is a plane curve? We have
used the term curve informally until now, often in reference to the graph of a func-
tion. Now it is time to be more precise, even for curves that are not graphs of func-
tions. We begin with several examples.

The graph of is a plane curve (Figure 2). So is the graph
of (Figure 3). In both cases, the curve is the graph of a func-
tion, the first of the form the second of the form However, the
spiral curve does not fit either pattern. Neither does the circle 
though in this case we could think of it as the combined graph of the two functions

and y = g1x2 = -2a2
- x2.y = f1x2 = 2a2

- x2

x2
+ y2

= a2,
x = g1y2.y = f1x2,

x = y2, -2 … y … 2
y = sin x, 0 … x … p,

6.4
Length of a 

Plane Curve

Figure 1

y

x
t

a
(x, y)

x = a cos t,  y = a sin t
0 ≤ t ≤ 2π

Figure 4

1 2 3 4

–2

–1

1

2

y

x

x = y2

1

y

y = sin x

xπ

Figure 2 Figure 3
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2 4 6 8

2

4

6

8

y

x

(1, –1)

(3, 0)

(5, 3)

(7, 8)0

1

2

3

t

1

3

5

7

x

–1

0

3

8

y

x = 2t + 1, y = t2 – 1
0 ≤ t ≤ 3

Figure 5

and for the parabola we write

Thus, for us, a plane curve is determined by a pair of parametric equations
where we assume that f and g are continuous on

the given interval. As t increases from a to b, the point (x, y) traces out a curve in
the plane. Here is another example.

� EXAMPLE 1 Sketch the curve determined by the parametric equations

SOLUTION We make a three-column table of values, then plot the ordered pairs
(x, y), and finally connect these points in the order of increasing t, as shown in
Figure 5. A graphing calculator or a CAS can be used to produce such a graph.
Such software usually produces a graph by creating a table, just as we did, and
connecting the points. �

Actually, the definition we have given is too broad for the purposes we have in
mind, so we immediately restrict it to what is called a smooth curve. The adjective
smooth is chosen to indicate that as an object moves along the curve so that its
position at time t is (x, y) it suffers no sudden changes of direction (continuity of 
and ensures this) and does not stop or double back ( and not simulta-
neously zero ensures this).

g¿1t2f¿1t2g¿

f¿

x = 2t + 1, y = t2
- 1, 0 … t … 3.

x = f1t2, y = g1t2, a … t … b,

x = t2, y = t, -2 … t … 2

Definition

A plane curve is smooth if it is determined by a pair of parametric equations
where and exist and are continuous on 

[a, b], and and are not simultaneously zero on (a, b).g¿1t2f¿1t2
g¿f¿x = f1t2, y = g1t2, a … t … b,

The way a curve is parametrized, that is, the way the functions and 
and the domain for t are chosen, determines a positive direction. For example,
when in Example 1 (Figure 5), the curve is at the point and when

the curve is at (3, 0). As t increases from to the curve traces a
path from to (7, 8). This direction, which is often indicated by an arrow 
on the curve as shown in Figure 5, is called the orientation of the curve. The orien-
tation of a curve is irrelevant as far as determining its length goes, but in problems
that we will encounter later in this book the orientation does matter.

� EXAMPLE 2 Sketch the curve determined by the parametric equations
Indicate the orientation. Is this curve

smooth?

SOLUTION The table, which shows the values of x and y for several values of 
t from 0 to leads to the graph in Figure 6. This curve is not smooth even
though x and y are both differentiable functions of t. The problem is that

and are simultaneously 0 when 
The object slows down to a stop at time  then starts up in a new 
direction. �

The curve described in Example 2 is called the cycloid. It describes the path of
a fixed point on the rim of a wheel of radius 1 as the wheel rolls along the x-axis.
(See Problem 20 for a derivation of this result.)

Arc Length Finally, we are ready for the main question. What is meant by the
length of the smooth curve given parametrically by 
a … t … b?

y = g1t2,x = f1t2,

t = 2p,
t = 2p.dy>dt = sin tdx>dt = 1 - cos t

4p,

x = t - sin t, y = 1 - cos t, 0 … t … 4p.

11, -12 t = 3,t = 0t = 1,
11, -12,t = 0

g(t),f(t)

t

0

π/2

3π/2

5π/2

7π/2

2π

3π

4π

π

x(t)

0.00

0.57

3.14

5.71

6.28

6.85

9.42

10.00

12.57

y(t)

0

1

2

1

0

1

2

1

0

x = t – sin t, y = 1 – cos t
0 � t � 4 π

y

x

2
1

π 2π 3π 4π

Figure 6
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Partition the interval [a, b] into n subintervals by means of points 

This cuts the curve into n pieces with corresponding end points 
as shown in Figure 7.

Our idea is to approximate the curve by the indicated polygonal line segments,
calculate their total length, and then take the limit as the norm of the partition ap-
proaches zero. In particular, we approximate the length of the ith segment (see
Figure 7) by

From the Mean Value Theorem for Derivatives (Theorem 4.6A), we know that
there are points and in such that

where Thus,

and the total length of the polygonal line segments is

The latter expression is almost a Riemann sum, the only difficulty being that 
and are not likely to be the same point. However, it is shown in advanced calcu-
lus books that in the limit (as the norm of the partition goes to 0), this makes no
difference. Thus, we may define the arc length L of the curve to be the limit of the
expression above as the norm of the partition approaches zero; that is,

Two special cases are of great interest. If the curve is given by 
we treat x as the parameter and the boxed result takes the form

Similarly, if the curve is given by we treat y as the param-
eter, obtaining

These formulas yield the familiar results for circles and line segments, as the
following two examples illustrate.

L =

L

d

c A1 + adx

dy
b2

 dy

x = g1y2, c … y … d,

L =

L

b

a A1 + ady

dx
b2

 dx

a … x … b,
y = f1x2,

L =

L

b

a
2[f¿1t2]2

+ [g¿1t2]2 dt =

L

b

a A adx

dt
b2

+ ady

dt
b2

 dt

tNi

ti

a
n

i = 1
¢wi = a

n

i = 1
2[f¿1ti2]2

+ [g¿1tNi2]2 ¢ti

 = 2[f¿1ti2]2
+ [g¿1tNi2]2 ¢ti

 ¢wi = 2[f¿1ti2 ¢ti]
2

+ [g¿1tNi2 ¢ti]
2

¢ti = ti - ti - 1.

 g1ti2 - g1ti - 12 = g¿1tNi2 ¢ti

 f1ti2 - f1ti - 12 = f¿1ti2 ¢ti

1ti - 1, ti2tNiti

 = 2[f1ti2 - f1ti - 12]2
+ [g1ti2 - g1ti - 12]2

 ¢si L ¢wi = 21¢xi22 + 1¢yi22

¢si

Qn - 1, Qn,
Q0, Q1, Q2, Á ,

a = t0 6 t1 6 t2 6
Á

6 tn = b

ti:

y

x

Qi–1

Qi

Qn

Qn –1

Q0

Q1

Q2

Qi–1

Qi
∆si

∆wi
∆yi

∆xi

Figure 7
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� EXAMPLE 3 Find the circumference of the circle 

SOLUTION We write the equation of the circle in parametric form:
Then and, by the first

of our formulas,

�

� EXAMPLE 4 Find the length of the line segment from A(0, 1) to B(5, 13).

SOLUTION The given line segment is shown in Figure 8. Note that the equation
of the corresponding line is so and so, by the second 
of the three length formulas,

This agrees with the result obtained by use of the distance formula. �

� EXAMPLE 5 Find the length of the arc of the curve from the point
(1, 1) to the point (4, 8) (see Figure 9).

SOLUTION We begin by estimating this length by finding the length of the

segment from (1, 1) to (4, 8): The actual
length should be slightly larger.

For the exact calculation, we note that so

Let then Hence,

Therefore,

�

For most arc length problems it is easy to set up the definite integral that gives
the length. This is just a matter of substituting the required derivatives in the for-
mula. However, it is often difficult or impossible to evaluate these integrals using
the Second Fundamental Theorem of Calculus because of the difficulty of finding
antiderivatives. For many problems we must resort to using a numerical technique
such as the Parabolic Rule described in Section 5.6 in order to obtain an approxi-
mation to the definite integral.

� EXAMPLE 6 Sketch the graph of the curve given parametrically by 
Set up a definite integral that gives the arc length of 

the curve and approximate this definite integral using the Parabolic Rule with
n = 8.

y = t3, 0 … t … 1.
x = et,

L

4

1 A1 +

9
4

 x dx = c 8
27

 a1 +

9
4

 xb3>2 d
1

4

=

8
27

 a103>2
-

133>2
8
b L 7.63

 =

8
27

 a1 +

9
4

 xb3>2
+ C

 
LA1 +

9
4

 x dx =

4
9L
1u du =

4
9

 
2
3

 u3>2
+ C

du =
9
4 dx.u = 1 +

9
4 x;

L =

L

4

1 A1 + a3
2

 x1>2b2

 dx =

L

4

1 A1 +

9
4

 x dx

dy>dx =
3
2 x1>2,

214 - 122 + 18 - 122 = 258 L 7.6.

≈

y = x3>2

 = c13
5

 x d
0

5

= 13

 L =

L

5

0 A1 + a12
5
b2

 dx =

L

5

0 A52
+ 122

52  dx =

13
5 L

5

0
1 dx

dy>dx =
12
5 ;y =

12
5  x + 1,

L =

L

2p

0
2a2 sin2 t + a2 cos2 t dt =

L

2p

0
a dt = Cat D

0

2p
= 2pa

dx>dt = -a sin t, dy>dt = a cos t,y = a sin t, 0 … t … 2p.
x = a cos t,

x2
+ y2

= a2.

3 6 9

3

6

9

12

y =     x + 112
5

(0, 1)

(5, 13)

y

x

Figure 8
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3

4
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8

y

x

(1, 1)

(4, 8)

y = x3/2

Figure 9
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SOLUTION The graph (Figure 10) is drawn, as in previous examples, by first
making a three-column table of values. The definite integral that gives the arc
length is

This definite integral cannot be evaluated using the Second Fundamental Theorem
of Calculus. Let The approximation using the Parabolic Rule
with is

Is the answer reasonable? The distance along a straight line from (1, 0) to 
is We would expect our answer to be a little larg-
er, so 2.05763 seems reasonable. �

Differential of Arc Length Let f be continuously differentiable on [a, b].
For each x in (a, b), define s(x) by

Then s(x) gives the arc length of the curve from the point to
(see Figure 11). By the First Fundamental Theorem of Calculus 

(Theorem 5.3A),

Thus, ds, the differential of arc length, can be written as

In fact, depending on how a graph is parametrized, we are led to three formulas 
for ds:

Some people prefer to remember these formulas by writing (see Figure 12)

1ds22 = 1dx22 + 1dy22

ds = A1 + ady

dx
b2

 dx = A1 + adx

dy
b2

 dy = A adx

dt
b2

+ ady

dt
b2

 dt

ds = A1 + ady

dx
b2

 dx

s¿1x2 =

ds

dx
= 21 + [f¿1x2]2

= A1 + ady

dx
b2

(x, f(x))
(a, f(a))y = f1u2

s1x2 =

L

x

a
21 + [f¿1u2]2 du

2(e - 1)2
+ (1 - 0)2

L 1.9881.
(e, 1)≈

 L 2.05763

 L + (4) (2.20536) + (2) (2.70728) + (4) (3.32118) + 4.04834]

 L

1
24

 [1 + (4) (1.13412) + (2) (1.29764) + (4) (1.51492) + (2) (1.81129)

 L + 4f(0.625) + 2f(0.75) + 4f(0.875) + f(1)]

 L

1 - 0
3 # 8

 [ f(0) + 4f(0.125) + 2f(0.25) + 4f(0.375) + 2f(0.5)

 L =

L

1

0
 2e2t

+ 9t4 dt

n = 8
f1t2 = 2e2t

+ 9t4.

 =

L

1

0
2e2t

+ 9t4 dt

 =

L

1

0
21et22 + 13t222 dt

 L =

L

1

0 A adx

dt
b2

+ ady

dt
b2

 dt

1 2 3

0.5

1

x

y

t

0.00
0.25
0.50
0.75
1.00

x(t) = et

1.00000
1.28403
1.64872
2.11700
2.71828
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(e, 1)

y(t) = t3
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The three forms arise by dividing and multiplying the right-hand side by
and respectively. For example,

which gives the first of the three formulas.

Area of a Surface of Revolution If a smooth plane curve is revolved about
an axis in its plane, it generates a surface of revolution as illustrated in Figure 13.
Our aim is to determine the area of such a surface.

To get started, we introduce the formula for the area of the frustum of a cone.
A frustum of a cone is that part of the surface of a cone between two planes per-
pendicular to the axis of the cone (shaded in Figure 14). If a frustum has base radii

and and slant height then its area A is given by

The derivation of this result depends only on the formula for the area of a circle
(see Problem 35).

Let determine a smooth curve in the upper half of the
xy-plane, as shown in Figure 15. Partition the interval [a, b] into n pieces by means
of points thereby also dividing the curve into n
pieces. Let denote the length of the ith piece, and let be the y-coordinate of a
point on this piece. When the curve is revolved about the x-axis, it generates a sur-
face, and the typical piece generates a narrow band. The “area” of this band ought
to be approximately that of a frustum, that is, approximately When we
add the contributions of all the pieces and take the limit as the norm of the parti-
tion approaches zero, we get what we define to be the area of the surface of revo-
lution. All this is indicated in Figure 16. The surface area is thus

� EXAMPLE 7 Find the area of the surface of revolution generated by revolv-
ing the curve about the x-axis (Figure 17).

SOLUTION Here, and Thus,

�

If the curve is given parametrically by then the
surface area formula becomes

A = 2p
L

b

a
y ds = 2p

L

b

a
g1t22[f¿1t2]2

+ [g¿1t2]2 dt

x = f1t2, y = g1t2, a … t … b,

 =

p

6
 1173>2

- 13>22 L 36.18

 = p
L

4

0
24x + 1 dx = cp #

1
4

#
2
3

 14x + 123>2 d
0

4

 A = 2p
L

4

0
1x A1 +

1
4x

 dx = 2p
L

4

0
1x A4x + 1

4x
 dx

f¿1x2 = 1> A21x B .f1x2 = 1x

y = 1x, 0 … x … 4,

 = 2p
L

b

a
f1x221 + [f¿1x2]2 dx

 = 2p
L

b

a
y ds

 A = lim7P7:0 a
n

i = 1
2pyi ¢si

2pyi ¢si.

yi¢si

a = x0 6 x1 6
Á

6 xn = b,

y = f1x2, a … x … b,

A = 2pa r1 + r2

2
b  / = 2p1average radius2 # 1slant height2

/,r2r1

1ds22 = c 1dx22
1dx22 +

1dy22
1dx22 d1dx22 = c1 + ady

dx
b2 d1dx22

1dt22,1dx22, 1dy22,

a b

S

Figure 13
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Concepts Review
1. The graph of the parametric equations 

is a curve called a _____.

2. The curve determined by can be
put in parametric form using x as the parameter by writing 

_____, _____.y =x =

y = x2
+ 1, 0 … x … 4,

y = 4 sin t, 0 … t … 2p,
x = 4 cos t, 3. The formula for the length L of the curve 

is _____.

4. The proof of the formula for the length of a curve de-
pends strongly on an earlier theorem with the name _____.

L =y = g1t2, a … t … b,
x = f1t2,

Problem Set 6.4
In Problems 1–8, find the length of the indicated curve.

1. between and 

2. between and 

3. between and 

4. between and 

5. between and 

Hint: Watch signs; when 

6. between and 

7. between and 

8.

In Problems 9–12, sketch the graph of the given parametric equa-
tion and find its length.

9.

10.

11.

12.

13. Use an x-integration to find the length of the segment of
the line between and Check by using
the distance formula.

14. Use a y-integration to find the length of the segment of
the line between and Check by
using the distance formula.

In Problems 15–18, set up a definite integral that gives the arc
length of the given curve. Approximate the integral using the Para-
bolic Rule with 

15.

16.

17.

18.

19. Sketch the graph of the four-cusped hypocycloid
and find its length. Hint:

By symmetry, you can quadruple the length of the first quadrant
portion.

20. A point P on the rim of a wheel of radius a is initially at
the origin.As the wheel rolls to the right along the x-axis, P traces
out a curve called a cycloid (see Figure 18). Derive parametric
equations for the cycloid as follows. The parameter is 

(a) Show that 
(b) Convince yourself that 

0 … u … p>2.
PQ = a sin u, QC = a cos u,

OT = au.

u.

x = a sin3 t, y = a cos3 t, 0 … t … 2p,

x = t ln t, y = t - 1; 1 … t … 3

x = sin t, y = cos 2t; 0 … t … p>2
x = t2, y = 1t; 1 … t … 4

x = t, y = e-t ; 0 … t … 2

n = 8.

y = 3.y = 12y - 2x + 3 = 0

x = 3.x = 1y = 2x + 3

x = 25 sin 2t - 2, y = 25 cos 2t - 23; 0 … t … p>4
x = 4 sin t, y = 4 cos t - 5; 0 … t … p

x = 3t2
+ 2, y = 2t3

- 1>2; 1 … t … 4

x = t3>3, y = t2>2; 0 … t … 1

x = et cos t, y = et sin t for 0 … t … 1

x = 4x = 0y = cosh x,

y = 3y = 130xy3
- y8

= 15

u 6 0.2u2
= -u

y = -2y = -3x = y4>16 + 1>12y22
x = 3x = 1y = 1x4

+ 32>16x2
x = 8x = 1y = 14 - x2>323>2

x = 2x = 1y =
2
31x2

+ 123>2
x = 5x = 1>3y = 4x3>2

≈

(c) Show that 

21. Find the length of one arch of the cycloid of Problem 20.
Hint: First show that

22. Suppose that the wheel of Problem 20 turns at a constant
rate where t is time. Then 
(a) Show that the speed of P along the cycloid is

(b) When is the speed a maximum and when is it a minimum?
(c) Explain why a bug on a wheel of a car going 60 miles per

hour is itself sometimes traveling at 120 miles per hour.

23. Find the length of each curve.

(a)

(b)

24. Find the length of each curve.

(a)

(b)

In Problems 25–34, find the area of the surface generated by
revolving the given curve about the x-axis.

25.

26.

27.

28.

29. x = t, y = t3, 0 … t … 1

y = 1x6
+ 22>18x22, 1 … x … 3

y = x3>3, 1 … x … 27

y = 225 - x2, -2 … x … 3

y = 6x, 0 … x … 1

x = a cos t + at sin t, y = a sin t - at cos t, -1 … t … 1

y =

L

x

p>6
264 sin2 u cos4 u - 1 du, 

p

6
… x …

p

3

x = t - sin t, y = 1 - cos t, 0 … t … 4p

y =

L

x

1
2u3

- 1 du, 1 … x … 2

ds

dt
= 2av ` sin 

vt

2
`

ds>dt

u = vt.v = du>dt,

adx

du
b2

+ ady

du
b2

= 4a2 sin2a u
2
b

x = a1u - sin u2, y = a11 - cos u2.

y

x

C

Q

O

a

T

P (x, y)

Cycloid

θ

Figure 18
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30.

31.

32.

33. Hint: Make a substitution, then use in-
tegral formula 44 from the table of integrals.

34. Hint: Use the identities
and 

35. If the surface of a cone of slant height and base radius r
is cut along a lateral edge and laid flat, it becomes the sector of a
circle of radius and central angle (see Figure 19).

(a) Show that radians.

(b) Use the formula for the area of a sector of radius and
central angle to show that the lateral surface area of a cone
is 

(c) Use the result of part (b) to obtain the formula
for the lateral area of a frustum of a

cone with base radii and and slant height /.r2r1

A = 2p[1r1 + r22>2]/

pr/.
u

/
1
2 /

2u

u = 2pr>/
u/

/

sinh2 x =
1
2 (cosh 2x - 1).1 + sinh2 xcosh2 x =

y = cosh x, 0 … x … 3

y = ex, 0 … x … 2

x = r cos t, y = r sin t, 0 … t … p

y = 2r2
- x2, -r … x … r

x = 1 - t2, y = 2t, 0 … t … 1

θ

Figure 19

36. Show that the area of the part of the surface of a sphere
of radius a between two parallel planes h units apart 
is Thus, show that if a right circular cylinder is circum-
scribed about a sphere then two planes parallel to the base of 
the cylinder bound regions of the same area on the sphere and
the cylinder.

2pah.
1h 6 2a2

38. The circle is re-
volved about the line thus generating a torus
(doughnut). Find its surface area.

39. Using the same axes, draw the graphs of on [0, 1]
for and 100. Find the length of each of these
curves. Guess at the length when 

Answers to Concepts Review: 1. circle 2.

3. 4. Mean Value Theorem for

Derivatives
L

b

a
2[f¿1t2]2

+ [g¿1t2]2 dt

x ; x2
+ 1

n = 10,000.
n = 1, 2, 4, 10,

y = xnCAS

x = b, 0 6 a 6 b,
x = a cos t, y = a sin t, 0 … t … 2p,

2πaπa

a

2a

y

xπa
2

3πa
2

Figure 20

37. Figure 20 shows one arch of a cycloid. Its parametric
equations (see Problem 20) are given by

(a) Show that the area of the surface generated when this curve
is revolved about the x-axis is

(b) With the help of the half-angle formula 
evaluate A.2 sin21t>22,

1 - cos t =

A = 222pa2

L

2p

0
11 - cos t23>2 dt

x = a1t - sin t2,  y = a11 - cos t2,  0 … t … 2p

In physics, we learn that if an object moves a distance d along a line while subject-
ed to a constant force F in the direction of the motion then the work done by the
force is

That is,

If force is measured in newtons (the force required to give a mass of 1 kilogram an
acceleration of 1 meter per second per second), then work is in newton-meters, also
called joules. If force is measured in pounds and distance in feet, then work is 
in foot-pounds. For example, a person lifting a weight (force) of 3 newtons a dis-
tance of 2 meters does joules of work (Figure 1). (Strictly speaking, a
force slightly greater than 3 newtons is required for a short distance to get the

3 # 2 = 6

W = F # D

Work = 1Force2 # 1Distance2

6.5
Work and Fluid Force

2 meters

Figure 1
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350 Chapter 6 Applications of the Integral

20 ft

Work = (150)(20) = 3000 ft-lb

Force = 150 lb

Figure 2

package moving upward, and as the package nears the height of 2 meters, a force
slightly less than 3 newtons is required for a short distance to get it stopped. Even
in this case, the work is 6 newtons, but this is harder to show.) Similarly, a worker
pushing a cart with a constant force of 150 pounds (in order to overcome friction)
a distance of 20 feet does foot-pounds of work (Figure 2).

In many practical situations, force is not constant, but rather varies as the ob-
ject moves along the line. Suppose that the object is being moved along the x-axis
from a to b subject to a variable force of magnitude F(x) at the point x, where F is
a continuous function. Then how much work is done? Once again, the strategy of
slice, approximate, and integrate leads us to an answer. Here slice means to parti-
tion the interval [a, b] into small pieces. Approximate means to suppose that, on a
typical piece from x to the force is constant with value F(x). If the force is
constant (with value ) over the interval then the work required to
move the object from to is (Figure 3). Integrate means to
add up all the bits of work and then take the limit as the length of the pieces
approaches zero. Thus, the work done in moving the object from a to b is

W = lim
¢x:0a

n

i = 1
F1xi2 ¢x =

L

b

a
F1x2 dx

F1xi21xi - xi - 12xixi - 1

[xi - 1, xi],F1xi2
x + ¢x,

150 # 20 = 3000

0 1 2 3 4

0 1 2 3 4
x

Natural length

Stretched x units

Figure 4

a x1 x2 xi–1 xi xn–1 b

∆W � F(x) ∆x

W = ∫  F(x) dx

∆x

a

b

Figure 3

Application to Springs According to Hooke’s Law in physics, the force
necessary to keep a spring stretched (or compressed) x units beyond (or

short of) its natural length (Figure 4) is given by

Here, the constant k, the spring constant, is positive and depends on the particular
spring under consideration. The stiffer the spring is, the greater the value of k.

� EXAMPLE 1 If the natural length of a spring is 0.2 meter, and if it takes a
force of 12 newtons to keep it extended 0.04 meter, find the work done in stretch-
ing the spring from its natural length to a length of 0.3 meter.

SOLUTION By Hooke’s Law, the force required to keep the spring
stretched x meters is given by To determine the spring constant k for 
this particular spring, we note that Thus, or 
and so

F1x2 = 300x

k = 300,k # 0.04 = 12,F10.042 = 12.
F1x2 = kx.

F(x)

F1x2 = kx

F(x)
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Section 6.5 Work and Fluid Force 351

When the spring is at its natural length of 0.2 meter, when it is 0.3 meter
long, Therefore, the work done in stretching the spring is

�

Application to Pumping a Liquid To pump water out of a tank requires
work, as anyone who has ever tried a hand pump will know (Figure 5). But how
much work? The answer to this question rests on the same basic principles pre-
sented in the previous discussion.

� EXAMPLE 2 A tank in the shape of a right circular cone (Figure 6) is full of
water. If the height of the tank is 10 feet and the radius of its top is 4 feet, find the
work done in (a) pumping the water over the top edge of the tank, and (b) pump-
ing the water to a height 10 feet above the top of the tank.

W =

L

0.1

0
300x dx = C150x2 D

0

0.1
= 1.5 joules

x = 0.1.
x = 0;

Figure 5

y

y

x

10 – y

∆ y

0

y

x

10 – y

y

∆y

0

4
10

y

10
4

xy =

(4, 10)

∆W ≈   π (    )  (10 – y) ∆y
4y
10δ

W =   π ∫    (    )  (10 – y) dy
4y
10δ

10

0

2

2

Figure 6

SOLUTION
(a) Position the tank in a coordinate system, as shown in Figure 6. Both a three-

dimensional view and a two-dimensional cross section are shown. Imagine slic-
ing the water into thin horizontal disks, each of which must be lifted over the
edge of the tank. A disk of thickness at height y has radius (by simi-
lar triangles). Thus, its volume is approximately cubic feet, and
its weight is about where is the (weight) density of
water in pounds per cubic foot. The force necessary to lift this disk of water is
its weight, and the disk must be lifted a distance feet. Thus, the work

done on this disk is approximately

Thus,

(b) Part (b) is just like part (a), except that each disk of water must now be lifted a
distance rather than Thus,

 =

(4p)162.42
25

 c20y3

3
-

y4

4
d

0

10

L 130,690 foot-pounds

 W = dp
L

10

0
a4y

10
b2120 - y2 dy = dp 

4
25L

10

0
120y2

- y32 dy

10 - y.20 - y,

 =

14p2162.42
25

 c10y3

3
-

y4

4
d

0

10

L 26,138 foot-pounds

 W =

L

10

0
dpa4y

10
b2110 - y2 dy = dp 

4
25L

10

0
110y2

- y32 dy

¢W = 1force2 # 1distance2 L dpa4y

10
b2

 ¢y # 110 - y2
¢W

10 - y

d = 62.4dp14y>1022 ¢y,
p14y>1022 ¢y

4y>10¢y
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352 Chapter 6 Applications of the Integral

Note that the limits are still 0 and 10 (not 0 and 20). Why? �

� EXAMPLE 3 Find the work done in pumping the water over the rim of a
tank that is 50 feet long and has a semicircular end of radius 10 feet if the tank is
filled to a depth of 7 feet (Figure 7).

SOLUTION We position the end of the tank in a coordinate system, as shown in
Figure 8. A typical horizontal slice is shown both on this two-dimensional picture
and on the three-dimensional one in Figure 7. This slice is approximately a thin
box, so we calculate its volume by multiplying length, width, and thickness. Its
weight is its density times its volume. Finally, we note that this slice must
be lifted through a distance (the minus sign results from the fact that y is
negative in our diagram).

 =
100
3 19123>2d L 1,805,616 foot-pounds

 = C 150d2A23 B1100 - y223>2 D
-10
-3

 = 50d
L

-3

-10
1100 - y221>21-2y2 dy

 W = d
L

-3

-10
1002100 - y21-y2 dy

-y
d = 62.4

50

7
10

Figure 7

y

x–y –3

–10

∆y

5 10

x2 + y2 = 100

δ∆W ≈   .50 (2�100 – y2) (∆y) (–y)

δW =    ∫–10100�100 – y2 (–y) dy
–3

�100 – y2

Figure 8

h

Figure 9

F =   hA

A

δ

h

Figure 10

Fluid Force Imagine the tank shown in Figure 9 to be filled to a depth h with a
fluid of density Then the force exerted by the fluid on a horizontal rectangle of
area A on the bottom is equal to the weight of the column of fluid that stands
directly over that rectangle (Figure 10), that is, .

It is a fact, first stated by Blaise Pascal (1623–1662), that the pressure (force
per unit area) exerted by a fluid is the same in all directions. Thus, the pressure at
all points on a surface, whether that surface is horizontal, vertical, or at some other
angle, is the same—provided the points are at the same depth. In particular, the
force against each of the three small rectangles in Figure 9 is approximately the

F = dhA

d.

�
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Section 6.5 Work and Fluid Force 353

same (assuming they have the same area). We say “approximately the same,” be-
cause not all points of the two side rectangles are at the same depth—though the
narrower these rectangles are, the closer this is to being true. It is this approxima-
tion that allows us to calculate the total force exerted by the fluid against one end
of the tank.

� EXAMPLE 4 Suppose that the vertical end of the tank in Figure 9 has the
shape shown in Figure 11 and that the tank is filled with water (
per cubic foot) to a depth of 5 feet. Find the total force exerted by the water
against the end of the tank.

SOLUTION Place the end of the tank in the coordinate system as shown in
Figure 12. Note that the right edge has slope 3 and hence has equation

or, equivalently, The force against a narrow
rectangle at depth is approximately dhA = d15 - y2A13 y + 8 B  ¢y.5 - y

x =
1
3 y + 8.y - 0 = 31x - 82

d = 62.4 pounds

5 ft6 ft

10 ft

8 ft

Figure 11

Figure 13

y

x(0, 0) (8, 0)

(10, 6)

5 – y

(5 – y)
y = 3x – 24

y
∆y

∆F ≈
y + 81

3

y + 81
3

y + 81
3

δ

(5 – y)δ

∆y(        ) 

(        ) 

F = ∫            dy
0

5

Figure 12

y

x

(– y) (2�16 – y2) ∆y

∆y

∆F ≈

–y

δ2

2

4
x2 + y2 = 16

�16 – y2

δF = ∫       (– y) (2�16 – y2) dy
–4 

0

Figure 14

�

� EXAMPLE 5 A barrel, half full of oil, is lying on its side (Figure 13). If each
end is circular, 8 feet in diameter, find the total force exerted by the oil against 
one end. Assume the density of oil is pounds per cubic foot.

SOLUTION Place the circular end in the coordinate system, as shown in Fig-
ure 14. Then proceed as in Example 4.

� = 1502A23 B11623>2 L 2133 pounds

 F = d
L

0

-4
116 - y221>21-2y dy2 = d C23116 - y223>2 D

-4
0

d = 50

 = 62.4 A200 -
475
6 -

125
9 B L 6673 pounds

 F = d
L

5

0
A40 -

19
3  y -

1
3 y2 B  dy = d C40y -

19
6  y2

-
1
9 y3 D05

200 ft

60°

100 ft

Figure 15

� EXAMPLE 6 The water side of a dam is a 200 foot by 100 foot rectangle
inclined at 60° from the horizontal, as shown in Figure 15. Find the total force ex-
erted by the water against the dam when the water level is at the top of the dam.
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354 Chapter 6 Applications of the Integral

SOLUTION Place the end of the dam in the coordinate system, as shown in
Figure 16. Note that the vertical height of the dam is feet.

� L 54,100,000 pounds

 L 162.421200211.1552c86.6y -

y2

2
d

0

86.6

 F = 162.42120021csc 60°2
L

86.6

0
186.6 - y2 dy

100 sin 60° L 86.6

y

x

∆y csc 60° = 1.155 ∆y 
∆y

y

86.6 – y

60°

(86.6 – y)(200)(1.155 ∆y)∆F ≈ δ

δF = ∫           (86.6 – y)(200)(1.155) dy
86.6

0

Figure 16

Concepts Review
1. The work done by a force F in moving an object along a

straight line from a to b is _____ if F is constant, but is _____ if
is variable.

2. The work done in lifting an object weighing 30 pounds
from ground level to a height of 10 feet is _____ foot-pounds.

F = F1x2
3. The force exerted on a small part of a given surface by a

fluid depends only on _____.

4. The weight of a column of fluid having density over a
region with area A at a depth of h is _____.

d

Problem Set 6.5
1. A force of 6 pounds is required to keep a spring stretched

foot beyond its normal length. Find the value of the spring con-
stant and the work done in stretching the spring foot beyond its
natural length.

2. For the spring of Problem 1, how much work is done in
stretching the spring 2 feet?

3. A force of 0.6 newton is required to keep a spring with a
natural length of 0.08 meter compressed to a length of 0.07
meter. Find the work done in compressing the spring from its nat-
ural length to a length of 0.06 meter. (Hooke’s Law applies to
compressing as well as stretching.)

4. It requires 0.05 joule (newton-meter) of work to stretch a
spring from a length of 8 centimeters to 9 centimeters and anoth-
er 0.10 joule to stretch it from 9 centimeters to 10 centimeters.
Determine the spring constant and find the natural length of the
spring.

5. For any spring obeying Hooke’s Law, show that the work
done in stretching a spring a distance d is given by 

6. For a certain type of nonlinear spring, the force required
to keep the spring stretched a distance s is given by the formula

If the force required to keep it stretched 8 inches is 
2 pounds, how much work is done in stretching this spring 
27 inches?

7. A spring is such that the force required to keep it
stretched s feet is given by pounds. How much work is
done in stretching it 2 feet?

8. Two similar springs and each 3 feet long, are such
that the force required to keep either of them stretched a dis-
tance of s feet is pounds. One end of one spring is fas-
tened to an end of the other, and the combination is stretched

F = 6s

S2,S1

F = 9s

F = ks4>3.

W =
1
2 kd2.

1
2

1
2

between the walls of a room 10 feet wide (Figure 17). What work
is done in moving the midpoint, P, 1 foot to the right?

In each of Problems 9–12, a vertical cross section of a tank is
shown. Assume that the tank is 10 feet long and full of water, and
that the water is to be pumped to a height 5 feet above the top of the
tank. Find the work done in emptying the tank.

9. 10.

11. 12.
6 ft6 ft

3 ft

4 ft

3 ft

4 ft

5 ft

4 ft

10 ft

P

S1 S2

Figure 17
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Section 6.5 Work and Fluid Force 355

13. Find the work done in pumping all the oil (density 
pounds per cubic foot) over the edge of a cylindrical tank that
stands on one of its bases. Assume that the radius of the base is 4
feet, the height is 10 feet, and the tank is full of oil.

14. Do Problem 13 assuming that the tank has circular cross
sections of radius feet at height x feet above the base.

15. A volume of gas is confined in a cylinder, one end of
which is closed by a movable piston. If A is the area in square
inches of the face of the piston and x is the distance in inches
from the cylinder head to the piston, then The pressure
of the confined gas is a continuous function p of the volume, and

will be denoted by Show that the work done
by the piston in compressing the gas from a volume to
a volume is

Hint: The total force on the face of the piston is 

16. A cylinder and piston, whose cross-sectional area is 
1 square inch, contain 16 cubic inches of gas under a pressure of
40 pounds per square inch. If the pressure and the volume of the
gas are related adiabatically (i.e., without loss of heat) by the law

(a constant), how much work is done by the piston in
compressing the gas to 2 cubic inches?

17. Find the work done by the piston in Problem 16 if the
area of the face of the piston is 2 square inches.

18. One cubic foot of gas under a pressure of 80 pounds per
square inch expands adiabatically to 4 cubic feet according to the
law Find the work done by the gas.

19. A cable weighing 2 pounds per foot is used to haul a 200-
pound load to the top of a shaft that is 500 feet deep. How much
work is done?

20. A 10-pound monkey hangs at the end of a 20-foot chain
that weighs pound per foot. How much work does it do in
climbing the chain to the top? Assume that the end of the chain is
attached to the monkey.

21. A space capsule weighing 5000 pounds is propelled to an
altitude of 200 miles above the surface of the earth. How much
work is done against the force of gravity? Assume that the earth
is a sphere of radius 4000 miles and that the force of gravity is

where x is the distance from the center of the
earth to the capsule (the inverse-square law). Thus, the lifting
force required is and this equals 5000 when 

22. According to Coulomb’s Law, two like electrical charges
repel each other with a force that is inversely proportional to the
square of the distance between them. If the force of repulsion is
10 dynes when they are 2 centimeters
apart, find the work done in bringing the charges from 5 centime-
ters apart to 1 centimeter apart.

23. A bucket weighing 100 pounds is filled with sand weigh-
ing 500 pounds. A crane lifts the bucket from the ground to a
point 80 feet in the air at a rate of 2 feet per second, but sand
simultaneously leaks out through a hole at 3 pounds per second.
Neglecting friction and the weight of the cable, determine how
much work is done. Hint: Begin by estimating the work re-
quired to lift the bucket from y to y + ¢y.

¢W,

11 dyne = 10-5 newton2

x = 4000.k>x2,

f1x2 = -k>x2,

1
2

pv1.4
= c.

C

pv1.4
= c

C

p1Ax2 # A = A # f1x2.
p1v2 # A =

W = A
L

x1

x2

f1x2 dx

v2 = Ax2

v1 = Ax1

f(x).p1v2 = p1Ax2
v = Ax.

v

4 + x

d = 50 24. Center City has just built a new water tower (Figure 18).
Its main elements consist of a spherical tank having an inner ra-
dius of 10 feet, and a 30-foot-long filler pipe. The cylindrical
filler pipe has inner diameter 1 foot. Assume that water is
pumped from ground level up through the pipe into the tank.
How much work is done in filling the pipe and the tank with
water?

C

In Problems 25–30, assume that the shaded region is part of a
vertical side of a tank with water ( per cubic foot)
at the level shown. Find the total force exerted by the water against
this region.

25. 26.

27. 28.

29. 30.

31. Show that if a vertical dam in the shape of a rectangle is
divided in half by means of a diagonal, the total force exerted by
the water on one half of the dam is twice that on the other half.
Assume the top edge of the dam is even with the surface of the
water.

32. Find the total force exerted by the water on all sides of a
cube of edge length 2 feet if its top is horizontal and 100 feet
below the surface of a lake.

2 ft

4 ft

Water level
y

y = x2

x

(1, 1)Water level

5 ft4 ft

3 ft

Water level

3 ft

6 ft

Water level

6 ft 6 ft

6 ft

3 ft

2 ft

Water levelWater level

6 ft

3 ft

d = 62.4 pounds

10

40

Filler pipe

Figure 18
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356 Chapter 6 Applications of the Integral

34. Find the total force exerted by the fluid against the later-
al surface of a right circular cylinder of height 6 feet, which stands
on its circular base of radius 5 feet, if it is filled with oil
( per cubic foot).

35. A conical buoy weighs m pounds and floats with its vertex
V down and h feet below the surface of the water (Figure 20). A
boat crane lifts the buoy to the deck so that V is 15 feet above the
water surface. How much work is done? Hint: Use Archimedes’
Principle, which says that the force required to hold the buoy y
feet above its original position is equal to its weight
minus the weight of the water displaced by the buoy.

36. Initially, the bottom tank in Figure 21 was full of water
and the top tank was empty. Find the work done in pumping all
the water into the top tank. The dimensions are in feet.

10 … y … h2

d = 50 pounds

37. Rather than lifting the buoy of Problem 35 and Figure 20
out of the water, suppose that we attempt to push it down until its
top is even with the water level. Assume that that the top
is originally 2 feet above water level, and that the buoy weighs
300 pounds. How much work is required? Hint: You do not need
to know a (the radius at water level), but it is helpful to know that

Archimedes’ Principle implies that the force
needed to hold the buoy z feet below floating posi-
tion is equal to the weight of the additional water displaced.

Answers to Concepts Review: 1.

2. 300 3. the depth of that part of the surface 4. dhA

F # 1b - a2; 
L

b

a
F1x2 dx

10 … z … 22
d A13 pa2 B182 = 300.

h = 8,

Suppose that two masses of sizes and are placed on a seesaw at respective
distances and from the fulcrum and on opposite sides of it (Figure 1).The see-
saw will balance if and only if 

A good mathematical model for this situation is obtained by replacing the see-
saw with a horizontal coordinate line having its origin at the fulcrum (Figure 2).
Then the coordinate of is that of is and the condition
for balance is

The product of the mass m of a particle and its directed distance from a 
point (its lever arm) is called the moment of the particle with respect to that point
(Figure 3). It measures the tendency of the mass to produce a rotation about that
point.The condition for two masses along a line to balance at a point on that line is
that the sum of their moments with respect to the point be zero.

x1m1 + x2m2 = 0

x2 = d2,m2x1 = -d1,m1x1

d1m1 = d2m2.
d2d1

m2m16.6
Moments and Center 

of Mass

d1 d2

m1

Fulcrum

m2

Figure 1

x

m

Moment = (lever arm) × (mass)

Figure 3

0x1 x2

m1 m2

Figure 2

10 ft

4 ft

20 ft

8 ft

Figure 19

h

a

y

V

V
4

4

10

6

10

Figure 20 Figure 21

The situation just described can be generalized. The total moment M (with re-
spect to the origin) of a system of n masses of sizes located at points

along the x-axis is the sum of the individual moments; that is,

M = x1m1 + x2m2 +
Á

+ xnmn = a
n

i = 1
ximi

x1, x2, Á , xn

m1, m2, Á , mn

33. Find the total force exerted by the water against the bot-
tom of the swimming pool shown in Figure 19, assuming it is full
of water.
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Section 6.6 Moments and Center of Mass 357

The condition for balance at the origin is that Of course, we should not ex-
pect balance at the origin except in special circumstances. But surely any system of
masses will balance somewhere.The question is where.What is the x-coordinate of
the point where the fulcrum should be placed to make the system in Figure 4
balance?

M = 0.

Call the desired coordinate The total moment with respect to it should be
zero; that is,

or

When we solve for we obtain

The point called the center of mass, is the balance point. Notice that it is just the
total moment with respect to the origin divided by the total mass.

� EXAMPLE 1 Masses of 4, 2, 6, and 7 kilograms are located at points 0, 1, 2,
and 4, respectively, along the x-axis (Figure 5). Find the center of mass.

SOLUTION

Your intuition should confirm that is about right for the balance
point. �

Continuous Mass Distribution along a Line Consider now a straight
segment of thin wire of varying density (mass per unit length) for which we desire
to find the balance point. We impose a coordinate line along the wire and follow
our usual procedure of slice, approximate, and integrate. Supposing that the densi-
ty at x is we first obtain the total mass m and then the total moment M with
respect to the origin (Figure 6). This leads to the formula

Two comments are in order. First, remember this formula by analogy with the
formula for point masses:

x =

M
m

=
L

b

a
xd1x2 dx

L

b

a
d1x2 dx

d1x2,

x = 2.21≈

x =

102142 + 112122 + 122162 + 142172
4 + 2 + 6 + 7

=

42
19

L 2.21

x,

x =

M
m

=

a
n

i = 1
ximi

a
n

i = 1
mi

x,

x1m1 + x2m2 +
Á

+ xnmn = xm1 + xm2 +
Á

+ xmn

1x1 - x2m1 + 1x2 - x2m2 +
Á

+ 1xn - x2mn = 0

x.

0 1 2 3 4

4
2

6
7

Figure 5

0

∆x

a b

x

∆m ≈   (x) ∆xδ

m = ∫    (x)dxδ
b

a

∆M ≈ x    (x) ∆xδ

M = ∫  x   (x)dxδ
a

b

Figure 6

m1 m2

0

m3 m4 mn – 1 mn

x1 x2 x3 x4 xn – 1 xn

Figure 4
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358 Chapter 6 Applications of the Integral

Second, note that we have assumed that moments of small pieces of wire add
together to give the total moment, just as was the case for point masses.This should
seem reasonable to you if you imagine the mass of the typical piece of length to
be concentrated at the point x.

� EXAMPLE 2 The density of a wire at the point x centimeters from one
end is given by grams per centimeter. Find the center of mass of the
piece between and 

SOLUTION We expect to be nearer 10 than 0, since the wire is much
heavier (denser) toward the right end (Figure 7).

�

Mass Distributions in the Plane Consider n point masses of sizes
situated at points in the coordinate

plane (Figure 8).Then the total moments and with respect to the y-axis and
x-axis, respectively, are given by

The coordinates of the center of mass (balance point) are

� EXAMPLE 3 Five particles, having masses 1, 4, 2, 3, and 2 units, are located
at points and respectively. Find the center
of mass.

SOLUTION

�

We next consider the problem of finding the center of mass of a lamina (thin
planar sheet). For simplicity, we suppose that it is homogeneous; that is, it has con-
stant mass density For a homogeneous rectangular sheet, the center of mass
(sometimes called the center of gravity) is at the geometric center, as diagrams (a)
and (b) in Figure 9 suggest.

d.

 y =

1-12112 + 132142 + 122122 + 142132 + 1-22122
1 + 4 + 2 + 3 + 2

=

23
12

 x =

162112 + 122142 + 1-42122 + 1-72132 + 122122
1 + 4 + 2 + 3 + 2

= -
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12

12, -22,16, -12, 12, 32, 1-4, 22, 1-7, 42,

x =

My
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a
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i = 1
ximi

a
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i = 1
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m
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a
n

i = 1
yimi

a
n

i = 1
mi

1x, y2

My = a
n

i = 1
ximi Mx = a

n

i = 1
yimi

MxMy

1x1, y12, 1x2, y22, Á , 1xn, yn2m1, m2, Á , mn

x =
L

10

0
x # 3x2 dx

L

10

0
3x2 dx

=

C3x4>4 D
0

10

Cx3 D
0

10 =

7500
1000

= 7.5 cm

x≈

x = 10.x = 0
d1x2 = 3x2

d1x2

¢x

aximi

ami

'

ax ¢m

a¢m

'
L

 x d1x2 dx

L
d1x2 dx

0 10

Figure 7

y

x

mn

(xn, yn)

m4

(x4, y4)
m3

(x3, y3)

m2

(x2, y2)

m1

(x1, y1)

Figure 8

(a)
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Figure 9
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Section 6.6 Moments and Center of Mass 359

Consider the homogeneous lamina bounded by and
with Slice this lamina into narrow strips parallel to the 

y-axis, which are therefore nearly rectangular in shape, and imagine the mass of
each strip to be concentrated at its geometric center. Then approximate and
integrate (Figure 10). From this we can calculate the coordinates of the cen-
ter of mass using the formulas

x =

My

m
,             y =

Mx

m

1x, y2

g1x2 … f1x2.y = g1x2, x = a, x = b, y = f1x2,

When we do, the factor cancels between numerator and denominator, and we
obtain

Sometimes, slicing parallel to the x-axis works better than slicing parallel to
the y-axis. This leads to formulas for and in which y is the variable of inte-
gration. Do not try to memorize all these formulas. It is much better to remember
how they were derived.

The center of mass of a homogeneous lamina does not depend on its density
or its mass, but only on the shape of the corresponding region in the plane. Thus,
our problem becomes a geometric problem rather than a physical one. According-
ly, we often speak of the centroid of a planar region, rather than the center of mass
of a homogeneous lamina.

� EXAMPLE 4 Find the centroid of the region bounded by the curves 
and y = 1x.

y = x3

yx

y =
L

b

a
 

f1x2 + g1x2
2

 [f1x2 - g1x2] dx

L

b

a
[f1x2 - g1x2] dx

=

1
2L

b

a
C 1f1x222 - 1g1x222 D  dx

L

b

a
[f1x2 - g1x2] dx

x =
L

b

a
x[f1x2 - g1x2] dx

L

b

a
[f1x2 - g1x2] dx

d

y

x

∆x

 f(x) + g(x)
2

x

y = g(x)

y = f(x)

a b

∆ m ≈ δ [ f (x) – g(x)] ∆ x ∆ My ≈ x δ [ f (x) – g(x)] ∆ x [( f (x))2 – (g(x))2] ∆ x∆ Mx ≈
δ
2

m = δ ∫  [ f (x) – g(x)] dx
a

b

My = δ ∫  [ f (x) – g(x)] dx
a

b

Mx =     ∫  [ f 2(x) – g2(x)] dx
a

bδ
2

Figure 10
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360 Chapter 6 Applications of the Integral

SOLUTION Note the diagram in Figure 11.

The centroid is shown in Figure 12. �

� EXAMPLE 5 Find the centroid of the region under the curve 
(Figure 13).

SOLUTION This region is symmetric about the line from which we
conclude (without an integration) that In fact, it is both intuitively
obvious and true that if a region has a vertical or horizontal line of symmetry then
the centroid will lie on that line.

Your intuition should also tell you that will be less than since more of the
region is below than above it. But to find this number exactly, we must calculate

The denominator is easy to calculate; it has value 2.To calculate the numerator, we
use the half-angle formula 

Thus,

�

The Theorem of Pappus About A.D. 300, the Greek geometer Pappus
stated a novel result, which connects centroids with volumes of solids of revolution
(Figure 14).
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R

Figure 14

Theorem A Pappus’s Theorem

If a region R, lying on one side of a line in its plane, is revolved about that line,
then the volume of the resulting solid is equal to the area of R multiplied by the
distance traveled by its centroid.
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Section 6.6 Moments and Center of Mass 361

Rather than prove this theorem, which is really quite easy (see Problem 28),
we illustrate it.

� EXAMPLE 6 Verify Pappus’s Theorem for the region under 
when it is revolved about the x-axis (Figure 15).

SOLUTION This is the region of Example 5, for which The area A of
this region is

The volume V of the corresponding solid of revolution is

To verify Pappus’s Theorem, we must show that

But this amounts to showing that

which is clearly true. �

2a2p 
p

8
b =

p2

2

A # 12py2 = V

V = p
L

p

0
sin2 x dx =

p

2 L

p

0
[1 - cos 2x] dx =

p

2
 cx -

1
2

 sin 2x d
0

p

=

p2

2

A =

L

p

0
sin x dx = C -cos x D

0

p
= 2

y = p>8.

0 … x … p,
y = sin x,

y

x
x

π

∆x

y = sin x

Figure 15

Concepts Review
1. An object of mass 4 is at and a second object of

mass 6 is at Simple geometric intuition tells us that the
center of mass will be to the _____ of In fact, it is at 
_____.

2. A homogeneous wire lying along the x-axis between
and will balance at _____. However, if the wire

has density it will balance to the _____ of 2.5. In

fact, it will balance at where _____ _____ dx.dxn
L

5

0
x =

L

5

0
x,

d1x2 = 1 + x,
x =x = 5x = 0

x =x = 2.
x = 3.

x = 1 3. The homogeneous rectangular lamina with corner points
(0, 0), (2, 0), (2, 6), and (0, 6) will balance at _____,
_____.

4. A rectangular lamina with corners at (2, 0), (4, 0), (4, 2),
and (2, 2) is attached to the lamina of Question 3. Assuming both
laminas have the same constant density, the resulting L-shaped
lamina will balance at _____, _____.y =x =

y =x =

Problem Set 6.6
1. Particles of mass and are lo-

cated at and along a line. Where is the
center of mass?

2. John and Mary, weighing 180 and 110 pounds, respective-
ly, sit at opposite ends of a 12-foot teeter board with the fulcrum
in the middle. Where should their 80-pound son Tom sit in order
for the board to balance?

3. A straight wire 7 units long has density at a
point x units from one end. Find the distance from this end to the
center of mass.

4. Do Problem 3 if 

5. The masses and coordinates of a system of particles in the
coordinate plane are given by the following: 2, (1, 1); 3, (7, 1);
4, Find the moments of this system
with respect to the coordinate axes, and find the coordinates of
the center of mass.

1-2, -52; 6, 1-1, 02; 2, 14, 62.

d1x2 = 1 + x3.

d1x2 = 1x

x3 = 1x1 = 2, x2 = -2,
m3 = 9m1 = 5, m2 = 7, 6. The masses and coordinates of a system of particles are

given by the following:
Find the moments of this system with respect to the

coordinate axes, and find the coordinates of the center of mass.

7. Verify the expressions for and in the
box in Figure 10.

In Problems 8–16, find the centroid of the region bounded by the
given curves. Make a sketch and use symmetry where possible.

8. 9.

10. 11.

12. and between and 

13.

14. 15.

16. x = y2
- 3y - 4, x = -y

x = y2, x = 2y = x2, y = x + 3

y = 2x - 4, y = 21x, x = 1

x = 2x = -2y =
1
21x2

- 102, y = 0,

y = x3, y = 0, x = 1y =
1
3 x2, y = 0, x = 4

y = 2 - x2, y = 0y = 2 - x, y = 0, x = 0

Mx¢My, ¢Mx, My,

1, 17, -12.
7, 14, 32;2, 13, 52;6, 1-2, -22;5, 1-3, 22;
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(–1, 0)
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(–1, 2)

y

x

(–2, 1) (2, 1)
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(1, –1)(–2, –1)
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17. For each homogeneous lamina and shown in Fig-
ure 16, find and y.m, My, Mx, x,

R2R1

18. For the homogeneous lamina shown in Figure 17, find
and y.m, My, Mx, x,

19. Consider the homogeneous laminas and shown in
Figure 18 and the homogeneous lamina which is the union of

and For let and denote
the mass, the moment about the y-axis, and the moment about
the x-axis, respectively, of Show that

 Mx1R32 = Mx1R12 + Mx1R22
 My1R32 = My1R12 + My1R22
 m1R32 = m1R12 + m1R22

Ri.

Mx1Ri2m1Ri2, My1Ri2,i = 1, 2, 3,R2.R1

R3,
R2R1 23.

24.

25. Use Pappus’s Theorem to find the volume of the solid ob-
tained when the region bounded by and is
revolved about the y-axis (see Problem 11 for the centroid). Do
the same problem by the method of cylindrical shells to check
your answer.

26. Use Pappus’s Theorem to find the volume of the torus ob-
tained when the region inside the circle is revolved
about the line 

27. Use Pappus’s Theorem together with the known vol-
ume of a sphere to find the centroid of a semicircular region of
radius a.

x = 2a.
x2

+ y2
= a2

x = 1y = 0,y = x3,

y

x
321

1

2

R2R1

Figure 16

y

x
321

1

2

R

Figure 17

R3 = R1 � R2
y

xa cb

y = f(x)

y = g(x)

R1
R2

Figure 18

Figure 19

R3 = R1 � R2y

xa b

y = f(x)

y = h(x)

y = g(x)
R2

R1

y

x

(–3, 4) (1, 4)

(1, –2)

(–2, –1)

(–2, –3)
(–3, –3)

22.

20. Repeat Problem 19 for the laminas and shown in
Figure 19.

R2R1

can be found by adding the corresponding moments of the pieces.
(See Problems 19–20.) Use this to find the centroid of each region.

21.

In Problems 21–24, divide the indicated region into rectangular
pieces and assume that the moments and of the whole regionMyMx
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Section 6.6 Moments and Center of Mass 363

28. Prove Pappus’s Theorem by assuming that the region of
area A in Figure 20 is to be revolved about the y-axis. Hint:

and 

29. The region of Figure 20 is revolved about the line 
generating a solid.
(a) Use cylindrical shells to write a formula for the volume in

terms of 
(b) Show that Pappus’s formula, when simplified, gives the same

result.

w(y).

y = K,

x =

L

b

a
1xh1x2 dx2>A.V = 2p

L

b

a
xh1x2 dx

38. The geographic center of a region (county, state, country)
is defined to be the centroid of that region. Use the map in Fig-
ure 24 to approximate the geographic center of Illinois. All dis-
tances are approximate and are in miles. The given east–west
distances are 20 miles apart. You will also need the distances be-
tween the eastern boundary of the state and the line running
north/south that forms the eastern boundary of the state. Begin-
ning with the northernmost dimensions, the distances are 13 and
10 miles, and beginning with the southernmost dimensions, the
distances are 85 (at the southern tip), 50, 30, 25, 15, and 10 miles.
Assume that all other east/west dimensions are measured from
the easternmost boundary.

C

Answers to Concepts Review: 1. right;

2. 2.5; right;

3. 1; 3 4. 24
16; 40

16

x11 + x2; (1 + x)14 # 1 + 6 # 32>14 + 62 = 2.2

y

x

w(y)

h(x)

K

d
y

c

a x b

Figure 20

y

x

k

b

T

h

Figure 21

6.5

8

9

10

8

5

10.5

10.5

10

40

Figure 22

2.5

4

10

Figure 23

151

184

179

192

209

212

206

191

170

167

155

137

124

95

79

58

380

140

139

132

Figure 24

30. Consider the triangle T of Figure 21.

(a) Show that (and thus that the centroid of a triangle is
at the intersection of the medians).

(b) Find the volume of the solid obtained when T is revolved
around (Pappus’s Theorem).

31. Find the centroid of the region bounded by
and Hint: Use the fact that

32. Find the centroid of the region below the curve 
and above the x-axis for 

33. A regular polygon P of 2n sides is inscribed in a circle of
radius r.

(a) Find the volume of the solid obtained when P is revolved
about one of its sides.

(b) Check your answer by letting 

34. Let be a nonnegative continuous function on [0, 1].

(a) Show that 

(b) Use part (a) to evaluate 

35. Let for all x in [0, 1], and let R and S be
the regions under the graphs of and g, respectively. Prove or
disprove that 

36. Approximate the centroid of the lamina shown in Fig-
ure 22. All measurements are in centimeters, and the horizontal
measurements occur 5 centimeters apart.

37. A hole with radius 2.5 centimeters is drilled in the lamina
described in Problem 34. The location of the hole is shown in
Figure 23. Find the centroid of the resulting lamina.

C

C

yR … yS.
f

0 … f1x2 … g1x2
L

p

0
x sin x cos4 x dx.

L

p

0
xf1sin x2 dx = 1p>22

L

p

0
f1sin x2 dx.

f

n : q .

1 … x … 4.
y = 1>x

L
 xe-x dx = -xe-x

- e-x
+ C.

y = 0.y = e-x, x = 0, x = 2,

y = k

y = h>3
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In many situations, the outcome of an experiment varies from one trial to the next.
For instance, a tossed coin will sometimes land on heads, sometimes tails; a major
league pitcher may pitch 2 innings one game and 7 innings another; one car battery
may last 20 months, another may last 40 months.We say that the outcome of an ex-
periment is random if the outcomes vary from one trial to another, but that in the
long run, that is, after a large number of replications, there is a regular distribution
of outcomes.

Some outcomes occur frequently, such as arriving safely at your destination
after a flight, whereas some events occur infrequently, such as winning the lottery.
We use probability to measure how likely outcomes or events (sets of outcomes)
are. An event that is almost sure to occur has a probability near 1. An event that
will rarely occur has probability near 0. An event that is just as likely to occur as
not, such as getting a head on one toss of a fair coin, will have a probability of  In
general, the probability of an event is the proportion of times in a long sequence of
trials that the event will occur. If A is an event, that is, a set of possible outcomes,
then we denote the probability of A by P(A). Probabilities must satisfy the follow-
ing properties:

1. for every event A.
2. If S is the set of all possible outcomes, called the sample space, then 
3. If events A and B are disjoint, that is, they have no outcomes in common, then

(Actually, a stronger condition is required, but
for now this will do.)

From these statements we can deduce the following: If denotes the complement
of event A, that is, the set of all outcomes in the sample space S that are not in the
event A, then Also, if are disjoint, then

A rule that assigns a numerical value to the outcome of an experiment is called
a random variable. It is customary to use capital letters to denote random variables
and lower case letters to denote possible or actual values for the random variables.
For example, our experiment might be to toss three fair coins. In this case, the sam-
ple space is the set We
could define the random variable X to be the number of heads on the three tosses.
The probability distribution of X, that is, a listing of all possible values of X,
together with their corresponding probabilities, would be displayed in a table 
like the one below.

x 0 1 2 3

An important concept in probability and statistics is that of the expectation of
a random variable. To motivate the definition, which is given below, consider the
following thought experiment. Imagine repeatedly tossing three coins at a time. For
illustration, suppose that the three coins are tossed 10,000 times. By our definition
of probability, we “expect” to see zero heads one-eighth of the time in repeated 
trials, that is times in a sequence of 10,000. Similarly, we would
expect occurrences of one head, occurrences of
two heads, and occurrences of three heads. How many heads
altogether do we expect to see in 10,000 tosses of 3 coins? We expect

zero heads 1250 times, for a total of 0 heads

one head 3750 times, for a total of 3750 heads

two heads 3750 times, for a total of 7500 heads

three heads 1250 times, for a total of 3750 heads

1
8
# 10,000 = 1250

3
8
# 10,000 = 37503

8
# 10,000 = 3750

1
8
# 10,000 = 1250

1
8

3
8

3
8

1
8P1X = x2

 THT, TTH, TTT6.HTH, THH, HTT,5HHH, HHT, 

P1A12 + P1A22 +
Á

+ P1An2.P1A1 or A2 or Á or An2 =

A1, A2, Á , AnP1Ac2 = 1 - P1A2.
Ac

P1A or B2 = P1A2 + P1B2.
P1S2 = 1.

0 … P1A2 … 1

1
2.

6.7
Probability and 

Random Variables
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Section 6.7 Probability and Random Variables 365

All in all, we would expect heads. Thus, we ex-
pect heads per trial (tossing three coins). A little reflection on
the calculations suggests that the 10,000 is arbitrary and that it washes out anyway.
We multiplied each probability by 10,000 to get the expected frequency, but then
we divided by 10,000. That is,

This last line is what we mean by the expectation.

 = 0P1X = 02 + 1P1X = 12 + 2P1X = 22 + 3P1X = 32
+ 2P1X = 22 10,000 + 3P1X = 32 10,000]

 =

1
10,000

 [0P1X = 02 10,000 + 1P1X = 12 10,000

 1.5 =

15,000
10,000

15,000>10,000 = 1.5
0 + 3750 + 7500 + 3750 = 15,000

Since (all probabilities must sum to one), the formula for E(X) is the

same as the formula for the center of mass of a finite set of particles having masses 
located at positions 

� EXAMPLE 1 Plastic parts are made 20 at a time by injecting plastic into a
mold. The twenty parts are inspected for defects such as voids (bubbles inside the
part) and cracks. Suppose that the probability distribution for the number of de-
fective parts out of the 20 is given in the table below.

0 1 2 3

0.90 0.06 0.03 0.01

Find (a) the probability that a batch of 20 parts contains at least one defective part,
and (b) the expected number of defective parts per batch of 20.

SOLUTION

(a)

(b) The expected value for the number of defective parts is

Thus, on average, we would expect 0.15 defective part per batch. �

E1X2 = 0 # 0.90 + 1 # 0.06 + 2 # 0.03 + 3 # 0.01 = 0.15

= 0.06 + 0.03 + 0.01 = 0.10

P1X Ú 12 = P1X = 12 + P1X = 22 + P1X = 3)

pi

xi

Center of Mass =

M
m

=

a
n

i = 1
xipi

a
n

i = 1
pi

=

a
n

i = 1
xipi

1
= a

n

i = 1
xipi = E1X2

x1, x2, Á , xn:p1, p2, Á , pn

a
n

i = 1
pi

Definition Expectation of a Random Variable

If X is a random variable with probability distribution

x

then the expectation of X, denoted E(X), also called the mean of X and denoted
is

m = E1X2 = x1p1 + x2p2 +
Á

+ xnpn = a
n

i = 1
xipi

m,

pn
Áp2p1P1X = x2

xn
Áx2x1
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366 Chapter 6 Applications of the Integral

So far in this section we have dealt with random variables where the number
of possible values is finite; this situation is analogous to having point masses in the
previous section. There are other situations where there are infinitely many possi-
ble outcomes. If the set of possible values of a random variable X is finite, such as

or is infinite, but can be put in a list such as then the
random variable X is said to be discrete. If a random variable X can take on any
value in some interval of real numbers then we say that X is a continuous random
variable. There are many situations where, theoretically at least, the outcome can
be any real number in an interval: for example, waiting time for a stop light, mass
of a plastic molded part, or lifetime of a battery. Of course, in practice, every meas-
urement is rounded, for example to the nearest second, milligram, day, etc. In situ-
ations like this the random variable is actually discrete (with very many possible
outcomes), but a continuous random variable is often a good approximation.

Continuous random variables are studied in a manner analogous to the contin-
uous distribution of mass in the previous section. For a continuous random variable
X, we must specify the probability density function (PDF). A PDF for a random
variable X that takes on values in the interval [A, B] is a function satisfying

1.

2.

3. for all a, b in the interval [A, B]

The third property says that we can find probabilities for a continuous random
variable by finding areas under the PDF (see Figure 1). It is customary to define
the PDF to be zero outside of the interval [A, B].

The expected value, or mean, of a continuous random variable X is

Just as for the case of discrete random variables, this is analogous to the center of
mass of an object with variable density:

� EXAMPLE 2 A continuous random variable X has PDF

Find (a) (b) (c) E(X).

SOLUTION The random variable X takes on values in [0, 10].

(a)

(b)

(c)

Are these answers reasonable? The random variable X is uniformly distributed
on the interval [0, 10], so 80% of the probability should be between 1 and 9, just as
80% of the mass of a uniform rod would be between 1 and 9. By symmetry, we
would expect the mean, or expectation, of X to be 5, just as we would expect the
center of mass of a uniform bar of length 10 to be 5 units from either side. �

≈

E1X2 =

L

10

0
x 

1
10

  dx = c x2

20
d

0

10

= 5

P1X Ú 42 =

L

10

4
 
1
10

  dx =

1
10

# 6 =

3
5

P11 … X … 92 =

L

9

1
 
1
10

  dx =

1
10

# 8 =

4
5

P1X Ú 42P11 … X … 92
f1x2 = e 1

10, if 0 … x … 10
0, otherwise

L

B

A
xf1x2 dx = E1X2Center of Mass =

M
m

=
L

B

A
x f1x2 dx

L

B

A
f1x2 dx

=
L

B

A
x f1x2 dx

1
=

m = E1X2 =

L

B

A
x f1x2 dx

(a … b)P1a … X … b2 =

L

b

a
f1x2 dx

L

B

A
f1x2 dx = 1

f1x2 Ú 0

5x1, x2, Á 6,5x1, x2, Á , xn6,
A famous statistician once said, “No
models are correct, but many are
useful.” Probability models like
those in this section should be
regarded as approximations to 
the real world, not as perfectly ac-
curate representations of the real
world.

Models

a b BA

y

x

P (a � X � b)

y = f (x)

Figure 1
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Section 6.7 Probability and Random Variables 367

A function closely related to the PDF is the cumulative distribution function
(CDF), which, for a random variable X, is the function F defined by

This function is defined for both discrete and continuous random variables. For a
discrete random variable like the one given in Example 1, the CDF is a step func-
tion that takes a jump of at the value (see Problem 33). For a
continuous random variable X that takes on values on the interval [A, B] and hav-
ing PDF the CDF is equal to the definite integral (see Figure 2).

For the CDF is zero, since the probability of being less than or equal
to a value less than A is zero. Similarly, for the CDF is one, since the prob-
ability of being less than or equal to a value that is greater than B is one.

In Chapter 5 we used the term accumulation function to refer to a function de-
fined in this way. The CDF is defined as the accumulated area under the PDF, so it
is an accumulation function.The next theorem gives several properties of the CDF.
The proofs are easy and are left as exercises. (See Problem 19.)

x 7 B,
F(x)x 6 A,

F1x2 =

L

x

A
f1t2 dt, A … x … B

f(x),

xipi = P1X = xi2

F1x2 = P1X … x2

� EXAMPLE 3 In reliability theory, the random variable is often the lifetime
of some item, such as a laptop computer battery. The PDF can be used to find
probabilities and expectations about the lifetime. Suppose then that the lifetime in
hours of a battery is a continuous random variable X having PDF

(a) Verify that this is a valid PDF and sketch its graph.
(b) Find the probability that the battery lasts at least three hours.
(c) Find the expected value of the lifetime.
(d) Find and sketch a graph of the CDF.

SOLUTION A graphing calculator or a CAS may be helpful in evaluating the
integrals for this problem.
(a) For all x, is nonnegative and

A graph of the PDF is given in Figure 3.
(b) The probability is found by integrating:

 =

328
625

= 0.5248

 =

12
625

 c5
3

 x3
-

1
4

 x4 d
3

5

 P1X Ú 32 =

L

5

3
 
12
625

 x215 - x2 dx

 =

12
625

 c5
3

 x3
-

1
4

 x4 d
0

5

= 1

 
L

5

0
 
12
625

 x215 - x2 dx =

12
625L

5

0
15x2

- x32 dx

f(x)

f1x2 = e 12
625 x215 - x2, if 0 … x … 5
0, otherwise

x BA

y

t

F (x)

y = f (t)

Figure 2

3 51

0.5

0.25

y

x
2 4

y =
12
625

x2 (5 – x)

Figure 3

Theorem A

Let X be a continuous random variable taking on values in the interval [A, B]
and having PDF and CDF Then

1.

2. and 

3. P1a … X … b2 = F1b2 - F1a2
F1B2 = 1F1A2 = 0

F¿1x2 = f1x2
F(x).f(x)
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368 Chapter 6 Applications of the Integral

(c) The expected lifetime is

(d) For x between 0 and 5,

For and for A graph is given in Figure 4. �x 7 5, F(x) = 1.x 6 0, F(x) = 0,

 =

4
125

 x3
-

3
625

 x4

 F1x2 =

L

x

0
 
12
625

 t215 - t2 dt

 =

12
625

 c5
4

 x4
-

1
5

 x5 d
0

5

= 3 hours

 =

12
625L

5

0
15x3

- x42 dx

 E1X2 =

L

5

0
x c  12

625
 x215 - x2 d  dx

1 2

0.25

0.5

0.75

1

y

x

y = F (x)

3 4 5

Figure 4

Concepts Review
1. A random variable whose set of possible outcomes is

finite or can be put into an infinite list is called a _____ random
variable. A random variable whose set of possible outcomes
makes up an interval of real numbers is called a _____ random
variable.

2. For discrete random variables, probabilities and expec-
tations are found by evaluating a (an) _____, whereas for

continuous random variables, probabilities and expectations are
found by evaluating a (an) _____.

3. If a continuous random variable X takes on values in
and has PDF then is found by evaluating

_____.

4. The accumulation function which accumu-

lates the probability (area under the PDF), is called the _____.
L

x

A
f1t2 dt,

P1X … 52f(x),[0, 20]

Problem Set 6.7
In Problems 1–8, a discrete probability distribution for a random
variable X is given. Use the given distribution to find (a)

and (b) E(X).

1. 0 1 2 3

0.80 0.10 0.05 0.05

2. 0 1 2 3 4

0.70 0.15 0.05 0.05 0.05

3. 0 1 2

0.2 0.2 0.2 0.2 0.2

4. 0 1 2

0.1 0.2 0.4 0.2 0.1

5. 1 2 3 4

0.4 0.2 0.2 0.2

6. 100 1000

0.980 0.018 0.002

7.

8. pi = 12 - i22>10, xi = i, i = 0, 1, 2, 3, 4

pi = 15 - i2>10, xi = i, i = 1, 2, 3, 4

pi

-0.1xi

pi

xi

pi

-1-2xi

pi

-1-2xi

pi

xi

pi

xi

P1X Ú 22
In Problems 9–18, a PDF for a continuous random variable X is
given. Use the PDF to find (a) (b) E(X), and (c) the
CDF.

9.

10.

11.

12.

13.

14.

15.

16. f1x2 = e p8  cos1px>82, if 0 … x … 4
0, otherwise

f1x2 = e p8  sin1px>42, if 0 … x … 4
0, otherwise

f1x2 = e 18 - x2>32, if 0 … x … 8
0, otherwise

f1x2 = e 3
64 x214 - x2, if 0 … x … 4
0, otherwise

f1x2 = e 3
4000 x120 - x2, if 0 … x … 20
0, otherwise

f1x2 = e 3
256 x18 - x2, if 0 … x … 8
0, otherwise

f1x2 = e 1
40, if -20 … x … 20
0, otherwise

f1x2 = e 1
20, if 0 … x … 20
0, otherwise

P1X Ú 22,
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Section 6.7 Probability and Random Variables 369

17.

18.

19. Prove the three properties of the CDF in Theorem A.

20. A continuous random variable X is said to have a uniform
distribution on the interval if the PDF has the form

(a) Find the probability that the value of X is closer to a than it
is to b.

(b) Find the expected value of X.
(c) Find the CDF of X.

21. The median of a continuous random variable X is a value
such that Find the median of a uniform

random variable on the interval [a, b].

22. Without doing any integration, find the median of the
random variable that has PDF 

Hint: Use symmetry.

23. Find the value of k that makes 
, a valid PDF. Hint: The PDF must integrate to 1.

24. Find the value of k that makes 
, a valid PDF.

25. The time in minutes that it takes a worker to complete a
task is a random variable with PDF 

(a) Find the value of k that makes this a valid PDF.
(b) What is the probability that it takes more than 3 minutes to

complete the task?
(c) Find the expected value of the time to complete the task.
(d) Find the CDF 
(e) Let Y denote the time in seconds required to complete the

task. What is the CDF of Y? Hint:

26. The daily summer air quality index (AQI) in St. Louis is a
random variable whose PDF is 

(a) Find the value of k that makes this a valid PDF.
(b) A day is an “orange alert” day if the AQI is between 100 and

150. What is the probability that a summer day is an orange
alert day?

(c) Find the expected value of the summer AQI.

27. Holes drilled by a machine have a diameter, measured 
in millimeters, that is a random variable with PDF 

(a) Find the value of k that makes this a valid PDF.
(b) Specifications require that the hole’s diameter be between

0.35 and 0.45 mm. Those units not meeting this requirement
are scrapped. What is the probability that a unit is scrapped?

(c) Find the expected value of the hole’s diameter.
(d) Find the CDF 
(e) Let Y denote the hole’s diameter in inches.

What is the CDF of Y?25.4 mm.2
11 inch =

F(x).

0 … x … 0.6.kx610.6 - x28, 
f1x2 =

CAS

0 … x … 180.
f1x2 = kx21180 - x2,

P160X … y2.
P1Y … y2 =

F(x).

0 … x … 4.
f1x2 = k12 - ƒ x - 2 ƒ 2,

0 … x … 5
f1x2 = kx215 - x22,

0 … x … 5
f1x2 = kx15 - x2,

0 … x … 4.
f1x2 =

15
512 x214 - x22,

P1X … x02 = 0.5.x0

f1x2 = c 1
b - a

, if a … x … b

0, otherwise

[a, b]

f1x2 = e
81
40 x-3, if 1 … x … 9
0, otherwise

f1x2 = e
4
3
x-2, if 1 … x … 4

0, otherwise
28. A company monitors the total impurities in incoming

batches of chemicals. The PDF for total impurity X in a batch,
measured in parts per million (PPM), has PDF 

(a) Find the value of k that makes this a valid PDF.
(b) The company does not accept batches whose total impurity

is 100 or above. What is the probability that a batch is not
accepted?

(c) Find the expected value of the total impurity in PPM.
(d) Find the CDF 
(e) Let Y denote the total impurity in percent, rather than in

PPM. What is the CDF of Y?

29. Suppose that X is a random variable that has a uniform
distribution on the interval [0, 1]. (See Problem 20.) The point

is plotted in the plane. Let Y be the distance from to
the origin. Find the CDF and the PDF of the random variable Y.
Hint: Find the CDF first.

30. Suppose that X is a continuous random variable. Explain
why Which of the following probabilities are the
same? Explain.

31. Show that if is the complement of A, that is, the set of
all outcomes in the sample space S that are not in A, then

32. Use the result in Problem 31 to find in Prob-
lems 1, 2, and 5.

33. If X is a discrete random variable then the CDF is a step
function. By considering values of x less than zero, between 0 and
1, etc., find and graph the CDF for the random variable X in
Problem 1.

34. Find and graph the CDF of the random variable X in
Problem 2.

35. Suppose a random variable Y has CDF

Find each of the following:

(a)

(b)

(c) the PDF of Y

(d) Use the Parabolic Rule with to approximate E(Y).

36. Suppose a random variable Z has CDF

Find each of the following:

(a)

(b)

(c) the PDF of Z

(d) E(Z)

P11 6 Z 6 22
P1Z 7 12

F1z2 = c 0, if z 6 0
z2>9, if 0 … z … 3
1, if z 7 3

n = 8

P10.5 6 Y 6 0.62
P1Y 6 22

F1y2 = c 0, if y 6 0
2y>1y + 12, if 0 … y … 1
1, if y 7 1

P1X Ú 12
P1Ac2 = 1 - P1A2.

Ac

P1a … X 6 b2P1a 6 X … b2,
P1a 6 X 6 b2, P1a … X … b2,

P1X = x2 = 0.

(1, X)(1, X)

F(x).

0 … x … 200.kx21200 - x28,
f1x2 =

CAS
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370 Chapter 6 Applications of the Integral

37. The expected value of a function g (X) of a continuous

random variable X having PDF f (x) is defined to be 

If the PDF of X is 

find E(X) and 

38. A continuous random variable X has PDF 
Find and 

39. The variance of a continuous random variable, denoted
V (X) or , is defined to be where ismV1X2 = E[1X - m22],s 2

CAS

E1X32.E1X223
256 x18 - x2, 0 … x … 8.

f1x2 =
CAS

E1X22.0 … x … 4,

f1x2 =
15
512 x214 - x22,1

B
A g1x2f1x2 dx.

E[g1X2] =

CAS the expected value, or mean, of the random variable X. Find the
variance of the random variable in Problem 37.

40. Find the variance of the random variable in Problem 38.

41. Show that the variance of a random variable is equal to
and use this result to find the variance of the ran-

dom variable in Problem 37.

Answers to Concepts Review: 1. discrete; continuous
2. sum; integral 3. 4. cumulative distribu-
tion function

1
5

0 f1x2 dx

E1X22 - m2

CAS

6.8 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. The area of the region bounded by 

and is 

2. The area of a circle of radius a is 

3. The area of the region bounded by 

and is either or its negative.

4. All right cylinders whose bases have the same area and
whose heights are the same have identical volumes.

5. If two solids with bases in the same plane have cross sec-
tions of the same area in all planes parallel to their bases, then
they have the same volume.

6. If the radius of the base of a cone is doubled while the
height is halved, the volume will remain the same.

7. To calculate the volume of the solid obtained by revolving
the region bounded by and about the y-axis,
one should use the method of washers in preference to the
method of shells.

8. The solids obtained by revolving the region of Problem 7
about and have the same volume.

9. Any smooth curve in the plane that lies entirely within the
unit circle will have finite length.

10. The work required to stretch a spring 2 inches beyond its
natural length is twice that required to stretch it 1 inch (assume
Hooke’s Law).

11. It will require the same amount of work to empty a cone-
shaped tank and a cylindrical tank of water by pumping it over
the rim if both tanks have the same height and volume.

12. A boat contains circular windows of radius 6 inches that
are below the surface of the water.The force exerted by the water
on a window is the same regardless of the depth.

13. lf is the center of mass of a system of masses
distributed along a line at points with coordinates

respectively, then a
n

i = 1
1xi - x2mi = 0.x1, x2, Á , xn,

m1, m2, Á , mn

x

x = 1x = 0

y = 0y = -x2
+ x

L

b

a
[f1x2 - g1x2] dxx = bx = a,

y = g1x2,y = f1x2,
4
L

a

0
2a2

- x2 dx.

L

p

0
cos x dx.x = px = 0,

y = 0,y = cos x,

14. The centroid of the region bounded by 
and is at 

15. According to Pappus’s Theorem, the volume of the solid
obtained by revolving the region (of area 2) bounded by

and about the y-axis is

16. The area of the region bounded by and

is 

17. If the density of a wire is proportional to the square of 
the distance from its midpoint, then its center of mass is at the
midpoint.

18. The centroid of a triangle with base on the x-axis has 
y-coordinate equal to one-third the altitude of the triangle.

19. A random variable that can take on only a finite number
of values is a discrete random variable.

20. Consider a wire with density and a ran-
dom variable with PDF If for all x
in [0, a], then the center of mass of the wire will equal the expect-
ed value of the random variable.

21. A random variable that takes on the value 5 with proba-
bility one will have expectation equal to 5.

22. If F(x) is the CDF of a continuous random variable X,
then is equal to the PDF 

23. If X is a continuous random variable, then

Sample Test Problems

Problems 1–7 refer to the plane region R bounded by the curve
and the x-axis (Figure 1).

1. Find the area of R.

y = x - x2

P1X = 12 = 0.

f(x).F¿1x2

d1x2 = f1x2f1x2, 0 … x … a.
d1x2, 0 … x … a

L

3

0
19 - y22 dy.x = 9

y = 1x, y = 0,

212p2ap
2
b = 2p 2.

x = px = 0,y = 0,y = sin x,

1p, 02.x = 2py = 0, x = 0,
y = cos x,

1

y

x

R

1
4

y = x – x2

Figure 1
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Section 6.8 Chapter Review 371

2. Find the volume of the solid generated by revolving the
region R about the x-axis.

3. Use the shell method to find the volume of the solid 
generated by revolving R about the y-axis.

4. Find the volume of the solid generated by revolving R
about the line 

5. Find the volume of the solid generated by revolving R
about the line 

6. Find the coordinates of the centroid of R.

7. Use Pappus’s Theorem and Problems 1 and 6 to find the
volumes of the solids and above.

8. The natural length of a certain spring is 16 inches, and a
force of 8 pounds is required to keep it stretched 8 inches. Find
the work done in each case.
(a) Stretching it from a length of 18 inches to a length of 24

inches.
(b) Compressing it from its natural length to a length of 12

inches.

9. An upright cylindrical tank is 10 feet in diameter and 10
feet high. If water in the tank is 6 feet deep, how much work is
done in pumping all the water over the top edge of the tank?

10. An object weighing 200 pounds is suspended from the top
of a building by a uniform cable. If the cable is 100 feet long and
weighs 120 pounds, how much work is done in pulling the object
and the cable to the top?

11. A region R is bounded by the line and the para-
bola Find the area of R by
(a) taking x as the integration variable, and
(b) taking y as the integration variable.

12. Find the centroid of R in Problem 11.

13. Find the volume of the solid of revolution generated by
revolving the region R of Problem 11 about the x-axis. Check by
using Pappus’s Theorem.

14. Find the total force exerted by the water in a right circular
cylinder with height 3 feet and radius 8 feet
(a) on the lateral surface, and
(b) on the bottom surface.

15. Find the length of the arc of the curve 
from to 

16. Sketch the graph of the parametric equations

Then find the length of the loop of the resulting curve.

x = t2, y =
1
31t3

- 3t2

x = 3.x = 1
y = x3>3 + 1>14x2

y = x2.
y = 4x

S4,S1, S2, S3,

x = 3.
S4

y = -2.
S3

S2

S1 17. A solid with the semicircular base bounded by 
and has cross sections perpendicular to the 

x-axis that are squares. Find the volume of this solid.

In Problems 18–23, write an expression involving integrals that
represents the required concept. Refer to Figure 2.

y = 029 - x2

y =

18. The area of R.

19. The volume of the solid obtained when R is revolved
about the x-axis.

20. The volume of the solid obtained when R is revolved
about 

21. The moments and of a homogeneous lamina with
shape R, assuming that its density is 

22. The total length of the boundary of R.

23. The total surface area of the solid of Problem 19.

24. Let X be a continuous random variable with PDF

(a) Find 
(b) Find the probability that X is closer to 0 than it is to 1.
(c) Find E(X).
(d) Find the CDF of X.

25. A random variable X has CDF

(a) Find 
(b) Find the PDF 
(c) Find E(X).

f(x).
P1X … 32.

F(x) = e
0, if  x 6 0

1 -

(6 - x)2

36
, if  0 … x … 6

1, if  x 7 6

P1X Ú 12.

f1x2 = c 8 - x3

12
, if 0 … x … 2

0, otherwise

d.
MyMx

x = a.

y

x
a b

R

y = f(x)

y = g(x)

Figure 2
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Evaluate the integrals in Problems 1–8.

1. 2.

3. 4.

5. 6.

7. 8.

Find and simplify the derivatives of the functions in Problems 9–12.

9.

10.

11.

12.

13. Use one of the double-angle identities (from Section 1.8) to find an expression for
that involves cos 2x.

14. Use one of the double-angle identities to find an expression for that involves
cos 2x.

15. Use one of the double-angle identities to find an expression for that involves
cos 2x.

16. Use one of the product identities (from Section 1.8) to express sin 3x cos 4x in terms
of the sine function only, in such a way that no two trigonometric functions are multiplied
together.

17. Use one of the product identities to express cos 3x cos 5x in terms of the cosine func-
tion only, in such a way that no two trigonometric functions are multiplied together.

18. Use one of the product identities to express sin 2x sin 3x in terms of the cosine func-
tion only, in such a way that no two trigonometric functions are multiplied together.

19. Evaluate when if 

20. Evaluate when if 

21. Evaluate when if and 

22. Solve for a in the equation 

In Problems 23–26, find a common denominator, add the two fractions, and simplify.

23. 24.

25. 26.
1
y

+

1
2000 - y

-

1
x

-

1>2
x + 1

+

3>2
x - 3

7>5
x + 2

+

8>5
x - 3

1
1 - x

-

1
x

L

a

0
e-x dx =

1
2

.

t Z p>2.0 … t … px = a sec t,2x2
- a2

-p>2 6 t 6 p>2.x = a tan t,2a2
+ x2

-p>2 … t … p>2.x = a sin t,2a2
- x2

cos4 x

cos2 x

sin2 x

f1x2 = ex1sin x - cos x2
f1x2 = -x2 cos x + 2x sin x + 2 cos x

f1x2 = x arcsin x + 21 - x2

f1x2 = x ln x - x

L
 

x

x2
+ 1

  dx
L

x2x2
+ 2 dx

L
sin2 x cos x dx

L
 
sin t
cos t

  dt

L
xe3x2

 dx
L

x sin x2 dx

L
e3t dt

L
sin 2x dx

REVIEW &
PREVIEW

PROBLEMS
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Techniques of Integration
and Differential EquationsCHAPTER 7

7.1 Basic Integration
Rules

7.2 Integration 
by Parts

7.3 Some
Trigonometric
Integrals

7.4 Rationalizing
Substitutions

7.5 Integration of
Rational Functions
Using Partial
Fractions

7.6 Strategies for
Integration

7.7 First-Order Linear
Differential
Equations

7.8 Approximations
for Differential
Equations

Constants, Powers

Exponentials

7.1
Basic Integration Rules
Our repertoire of functions now includes all the elementary functions.These are the
constant functions, the power functions, the algebraic functions, the logarithmic and
exponential functions, the trigonometric and inverse trigonometric functions, and
all functions obtained from them by addition, subtraction, multiplication, division,
and composition. Thus,

are elementary functions.
Differentiation of an elementary function is straightforward, requiring only a

systematic use of the rules that we have learned. And the result is always an ele-
mentary function. Integration (antidifferentiation) is a far different matter. It in-
volves a few techniques and a large bag of tricks; what is worse, it does not always
yield an elementary function. For example, it is known that the antiderivatives of

and are not elementary functions.
The two principal techniques for integration are substitution and integration by

parts.The method of substitution was introduced in Section 5.4; we have used it oc-
casionally in Chapters 5 and 6.

Standard Forms Effective use of the method of substitution and integration
by parts depends on the ready availability of a list of known integrals. One such list
(but too long to memorize) appears inside the back cover of this book. The short
list shown below is so useful that we think that every calculus student should mem-
orize it.

Standard Integral Forms

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.
L

 
du

a2
+ u2 =

1
a

 tan-1au
a
b + C

L
 

du2a2
- u2

= sin-1au
a
b + C

L
cot u du = ln ƒ sin u ƒ + C

L
tan u du = - ln ƒ cos u ƒ + C

L
csc u cot u du = -csc u + C

L
sec u tan u du = sec u + C

L
csc2 u du = -cot u + C

L
sec2 u du = tan u + C

L
cos u du = sin u + C

L
sin u du = -cos u + C

L
au du =

au

ln a
+ C, a Z 1, a 7 0

L
eu du = eu

+ C

L
ur du = c ur + 1

r + 1
+ C r Z -1

ln ƒ u ƒ + C r = -1L
k du = ku + C

(sin x)>xe-x2

 h1x2 =

3x2
- 2x

ln1x2
+ 12 - sin[cos1cosh x2]

 g1x2 = 11 + cos4 x21>2
 f1x2 =

ex
+ e-x

2
= cosh x

Trigonometric Functions

Algebraic Functions

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 7 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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374 Chapter 7 Techniques of Integration and Differential Equations

15.

16. 17.

Substitution in Indefinite Integrals Suppose that you face an indefinite
integral. If it is a standard form, simply write the answer. If not, look for a substitu-
tion that will change it to a standard form. If the first substitution that you try does
not work, try another. Skill at this, like most worthwhile activities, depends on
practice.

The method of substitution was given in Theorem 5.4B and is restated here for
easy reference.

L
cosh u du = sinh u + C

L
sinh u du = cosh u + C

L
 

du

u 2u2
- a2

=

1
a

  sec-1a ƒ u ƒ

a
b + C =

1
a

  cos-1a a

ƒ u ƒ

b + C

� EXAMPLE 1 Find 

SOLUTION Look at this integral for a few moments. Since 
you may be reminded of the standard form Let 
Then

�

� EXAMPLE 2 Find 

SOLUTION Think of Let so Then

�

� EXAMPLE 3 Find 

SOLUTION Think of Let so Then

� = -6eu
+ C = -6e1>x

+ C

 
L

 
6e1>x

x2   dx = -6
L

e1>xa -1

x2   dxb = -6
L

eu du

du = 1-1>x22 dx.u = 1>x,1eu du.

L
 
6e1>x

x2   dx.

 = sin-1a 3x25
b + C

 
L

 
325 - 9x2

  dx =

L
 

125 - u2
  du = sin-1a u25

b + C

du = 3 dx.u = 3x,
L

 
du2a2

- u2
.

L
 

325 - 9x2
  dx.

 =

1
2

 tan u + C =

1
2

 tan1x22 + C

 
L

 
x

cos21x22   dx =

1
2

 

L
 

1

cos21x22 # 2x dx =

1
2

 

L
sec2 u du

u = x2, du = 2x dx.1sec2 u du.
1>cos2 x = sec2 x,

L
 

x

cos21x22   dx.

Hyperbolic Functions

Theorem A Substitution in Indefinite Integrals

Let g be a differentiable function and suppose that F is an antiderivative of f.
Then, if 

L
f1g1x22g¿1x2 dx =

L
f1u2 du = F1u2 + C = F1g1x22 + C

u = g1x2,
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Section 7.1 Basic Integration Rules 375

� EXAMPLE 4 Find 

SOLUTION Think of Let so Then

�

You don’t have to write out the u-substitution. If you can do the substitution
mentally, that is fine. Here are two illustrations.

� EXAMPLE 5 Find 

SOLUTION Mentally substitute 

�

� EXAMPLE 6 Find 

SOLUTION Mentally, substitute 

�

Substitution in Definite Integrals This topic was also covered in Sec-
tion 5.4. It is just like substitution in indefinite integrals, but we must remember to
make the appropriate change in the limits of integration.

� EXAMPLE 7 Find 

SOLUTION Let so note that when and
when Thus,

�

� EXAMPLE 8 Find 

SOLUTION Mentally substitute 

� =

1
6

 [923>2
- 123>2] L 140.144

 = c1
6

 1x4
+ 1123>2 d

1

3

 
L

3

1
x32x4

+ 11 dx =

1
4

 

L

3

1
1x4

+ 1121>214x3 dx2
u = x4

+ 11.

L

3

1
x32x4

+ 11 dx.

 = c1
3

 u3>2 d
0

21

=

1
3

 12123>2 L 32.08

 =

1
2

 

L

21

0
u1>2 du

 
L

5

2
t 2t2

- 4 dt =

1
2

 

L

5

2
1t2

- 421>212t dt2
t = 5, u = 21.

t = 2, u = 0,du = 2t dt;u = t2
- 4,

L

5

2
t 2t2

- 4 dt.

L
 
atan t

cos2 t
  dt =

L
atan t1sec2 t dt2 =

atan t

ln a
+ C

u = tan t.

L
 
atan t

cos2 t
  dt.

L
x cos x2 dx =

1
2L
1cos x22(2x dx) =

1
2

  sin x2
+ C

u = x2.

L
x cos x2 dx

 =

1
3

#
1
2

 tan-1au

2
b + C =

1
6

 tan-1a3ex

2
b + C

 
L

 
ex

4 + 9e2x   dx =

1
3

 

L
 

1

4 + 9e2x  13ex dx2 =

1
3

 

L
 

1

22
+ u2  du

du = 3ex dx.u = 3ex,
L

 
1

a2
+ u2  du.

L
 

ex

4 + 9e2x   dx.
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Trigonometric Integrals Some trigonometric integrals can be evaluated
using the natural log function.

� EXAMPLE 9 Evaluate 

SOLUTION Since we can make the substitution 

to obtain

�

Similarly,

� EXAMPLE 10 Evaluate 

SOLUTION For this one we use the trig identity 
Then

�

Manipulating the Integrand Before you make a substitution, you may
find it helpful to rewrite the integrand in a more convenient form. Integrals with
quadratic expressions in the denominator can often be reduced to standard forms
by completing the square. Recall that becomes a perfect square by the
addition of 

� EXAMPLE 11 Find 

SOLUTION

We made the mental substitution and used Formula 14 at the final
stage. �

u = x - 3

 =

7
4

  tan-1ax - 3
4
b + C

 = 7
L

 
1

1x - 322 + 42  dx

 
L

 
7

x2
- 6x + 25

  dx =

L
 

7

x2
- 6x + 9 + 16

  dx

L
 

7

x2
- 6x + 25

  dx

1b>222.
x2

+ bx

L
sec x csc x dx =

L
1tan x + cot x2 dx = - ln ƒ cos x ƒ + ln ƒ sin x ƒ + C

sec x csc x = tan x + cot x.

L
sec x csc x dx.

L
cot x dx = ln ƒ sin x ƒ + C.

L
tan x dx =

L
 
sin x
cos x

 dx =

L
 

-1
cos x

 1-sin x dx2 = - ln ƒ cos x ƒ + C

du = -sin x dx,

u = cos x,tan x =

sin x
cos x

L
tan x dx.

376 Chapter 7 Techniques of Integration and Differential Equations

Concepts Review
1. Differentiation of an elementary function is straightfor-

ward, but there are cases where the antiderivative of an elemen-
tary function cannot be expressed as a(an) _____.

2. The substitution transforms

to _____.
L

3x211 + x325 dx

u = 1 + x3

3. The substitution _____ transforms

to 

4. The substitution transforms

to _____.
L

p>2

0
11 + sin x23 cos x dx

u = 1 + sin x

L
1>14 + u22 du.

L
ex>14 + e2x2 dx

u =
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Section 7.1 Basic Integration Rules 377

Problem Set 7.1
In Problems 1–54, perform the indicated integrations.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29. Hint: See Problem 56.

30.

31.

32.

33.

34.

35.
L

 

t2 cos21t3
- 22

sin21t3
- 22   dt

L
 
1 + cos 2x

sin2 2x
  dx

L
 

t2 cos1t3
- 22

sin21t3
- 22   dt

L
 

16t - 12 sin23t2
- t - 123t2

- t - 1
  dt

L
 
sec3

 x + esin x

sec x
  dx

L
ex sec21ex2 dx

L
ex sec ex dx

L
 

sin14t - 12
1 - sin214t - 12   dt

L
 
sin x - cos x

sin x
  dx

L

p>6

0
2cos x sin x dx

L

1

0
t 3t2

 dt

L
 

x3

x4
+ 4

  dx
L

 
3e2x21 - e2x

  dx

L
 

x

x4
+ 4

  dx
L

 
6ex21 - e2x

  dx

L
 

sec21ln x2
2x

  dx
L

 

sin1ln 4x22
x

  dx

L
 
x3

+ 7x

x - 1
  dx

L
 
3x2

+ 2x

x + 1
  dx

L

3>4

0
 
sin21 - x21 - x

  dx
L

p>4

0
 

cos x

1 + sin2 x
  dx

L
 

2x dx21 - x4L
 
sin 1t1t

  dt

L

9p>4

-p>4
ecos z sin z dz

L

p>4

0
 
tan z

cos2 z
  dz

L

4

0
 

522t + 1
  dt

L

25

0
6z 24 + z2 dz

L
 

2t2

2t2
+ 1

  dt
L

 
x

x2
+ 4

  dx

L
 

ex

2 + ex   dx
L

 
dx

x2
+ 4

L

1

0
x21 - x2 dx

L

2

0
x1x2

+ 125 dx

L
23x dx

L
1x - 225 dx

36.

37.

38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. Find the length of the curve between 
and 

56. Establish the identity

and then use it to derive the formula

57. Evaluate Hint: Make the substitution

in the definite integral and then use symmetry
properties.

58. Let R be the region bounded by and 
between and Find the volume of the solid
obtained when R is revolved about Hint: Use cylin-
drical shells to write a single integral, make the substitution

and apply symmetry properties.

Answers to Concepts Review: 1. elementary function

2. 3. 4.
L

2

1
u3 duex

L
u5 du

u = x - p>4,

x = -p>4.
x = 3p>4.x = -p>4

y = cos xy = sin x

u = x - p
L

2p

0
 

x ƒ sin x ƒ

1 + cos2 x
  dx.

L
sec x dx = ln ƒ sec x + tan x ƒ + C

sec x =

sin x
cos x

+

cos x
1 + sin x

x = p>4.
x = 0y = ln1cos x2

L
 

tan x2sec2 x - 4
  dx

L
 

dt

t 22t2
- 9

L
 

3 - x216 + 6x - x2
  dx

L
 

x + 1

9x2
+ 18x + 10

  dx

L
 

dx216 + 6x - x2L
 

dx

9x2
+ 18x + 10

L
 

1

x2
- 4x + 9

  dx
L

 
1

x2
+ 2x + 5

  dx

L

1

0
 
e2x

- e-2x

e2x
+ e-2x

  dx
L

p>2

0
 

sin x

16 + cos2 x
  dx

L
 

dt

2t 24t2
- 1L

 
e3t24 - e6t

  dt

L
 

529 - 4x2
  dx

L
x2 sinh x3 dx

L
cosh 3x dx

L
 

y216 - 9y4
  dy

L
1t + 12e-t2

- 2t - 5
 dt

L
 
etan-1 2t

1 + 4t2  dt

L
 

csc2 2t21 + cot 2t
  dt
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378 Chapter 7 Techniques of Integration and Differential Equations

Integration by Parts

u

v

u (a)

u = h (v)
u (b)

v (a) v (b)

�    v duu(a)

u(b)

�    u dvv(a)

v(b)

�    v duu(a)

u(b)�    u dv = u (b)v (b) – u (a)v(a) –v(a)

v(b)

Figure 1

If integration by substitution fails, it may be possible to use a double substitution,
better known as integration by parts.This method is based on the integration of the
formula for the derivative of a product of two functions.

Let and Then

or

By integrating both sides of this equation, we obtain

Since and the preceding equation is usually written
symbolically as follows:

Integration by Parts: Indefinite Integrals

The corresponding formula for definite integrals is

Figure 1 illustrates a geometric interpretation of integration by parts for definite
integrals. We abbreviate this as follows:

Integration by Parts: Definite Integrals

These formulas allow us to shift the problem of integrating u to that of inte-
grating Success depends on the proper choice of u and which comes with
practice.

� EXAMPLE 1 Find 

SOLUTION We wish to write x cos x dx as One possibility is to let 
and Then and (we can omit the
arbitrary constant at this stage). Here is a summary of this double substitution in a
convenient format.

The formula for integration by parts gives

We were successful on our first try. Another substitution would be

 = x sin x + cos x + C
v duvudv u

 
L

x  cos x dx
3

= x   sin x  
3

-

L
sin x

3
 dx

 du = dx      v = sin x

 u = x      dv = cos x dx

v = 1cos x dx = sin xdu = dxdv = cos x dx.
u = xu dv.

L
x cos x dx.

dv,v du.
dv

L

b

a
u dv = Cuv Dab -

L

b

a
v du

L

b

a
u1x2v¿1x2 dx = Cu1x2v1x2 Dab -

L

b

a
v1x2u¿1x2 dx

L
u dv = uv -

L
v du

du = u¿1x2 dx,dv = v¿1x2 dx

L
u1x2v¿1x2 dx = u1x2v1x2 -

L
v1x2u¿1x2 dx

u1x2v¿1x2 = Dx[u1x2v1x2] - v1x2u¿1x2

Dx[u1x2v1x2] = u1x2v¿1x2 + v1x2u¿1x2
v = v1x2.u = u1x2

7.2
Integration by Parts

���
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Section 7.2 Integration by Parts 379

This time the formula for integration by parts gives

which is correct but not helpful. The new integral on the right-hand side is more
complicated than the original one. Thus, we see the importance of a wise choice 
for u and �

� EXAMPLE 2 Find 

SOLUTION We make the following substitutions:

Then

�

� EXAMPLE 3 Find 

SOLUTION We make the substitutions

Then

�

� EXAMPLE 4 Find 
L

2

1
t6 ln t dt.

 = x arcsin x + 21 - x2
+ C

 = x arcsin x +

1
2

# 211 - x221>2 + C

 = x arcsin x +

1
2

 

L
11 - x22-1>21-2x dx2

 
L

arcsin x dx = x arcsin x -

L
 

x21 - x2
  dx

 du =

121 - x2
  dx v = x

 u = arcsin x       dv = dx

L
arcsin x dx.

 = 2 ln 2 - 1 L 0.386

 = 2 ln 2 -

L

2

1
dx

 
L

2

1
ln x dx = [x ln x]1

2
-

L

2

1
x 

1
x

 dx

 du = a 1
x
b  dx  v = x

 u = ln x       dv = dx

L

2

1
ln x dx.

dv.

 du = -sin x dx     v =

x2

2

 u = cos x       dv = x dx

(cos x) x dx = (cos x) –
u dv duu v

(–sin x dx)x2

2
v

x2

23 3
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380 Chapter 7 Techniques of Integration and Differential Equations

SOLUTION We make the following substitutions

Then

�

Repeated Integration by Parts Sometimes it is necessary to apply integra-
tion by parts several times.

� EXAMPLE 5 Find 

SOLUTION Let

Then

We have improved our situation (the exponent on x has gone from 2 to 1), which
suggests reapplying integration by parts to the integral on the right. Actually, we
did this integration in Example 1, so we will make use of the result obtained there.

�

� EXAMPLE 6 Find 

SOLUTION Take and Then and 
Thus,

which does not seem to have improved things—but does not leave us any worse off
either. So, let’s not give up and try integration by parts again. In the integral on the
right, let and so and Then

L
ex cos x dx = ex sin x -

L
ex sin x dx

v = sin x.du = ex dxdv = cos x dx,u = ex

L
ex sin x dx = -ex cos x +

L
ex cos x dx

v = -cos x.du = ex dxdv = sin x dx.u = ex

L
ex sin x dx.

 = -x2 cos x + 2x sin x + 2 cos x + K

 
L

x2 sin x dx = -x2 cos x + 21x sin x + cos x + C2

L
x2 sin x dx = -x2 cos x + 2

L
x cos x dx

 du = 2x dx  v = -cos x

 u = x2     dv = sin x dx

L
x2 sin x dx.

 =

128
7

 ln 2 -

127
49

L 10.083

 =

128
7

 ln 2 -

1
49

 [t7]1
2

 =

1
7

 1128 ln 2 - ln 12 -

1
7

 

L

2

1
t6 dt

 
L

2

1
t6 ln t dt = c1

7
 t7 ln t d

1

2

-

L

2

1
 
1
7

 t7a1
t

 dtb

  u = ln t dv = t6 dt

du =

1
t

 dt   v =

1
7

 t7
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Section 7.2 Integration by Parts 381

When we substitute this in our first result, we get

By moving the last term to the left side and combining terms, we obtain

from which

�

The fact that the integral we wanted to find reappeared on the right side is
what made Example 6 work.

Reduction Formulas A formula of the form

where is called a reduction formula (the exponent on f is reduced). Such
formulas can often be obtained via integration by parts.

� EXAMPLE 7 Derive a reduction formula for 

SOLUTION Let and Then

from which

If we replace by in the last integral, we obtain

After combining the first and last integrals above and solving for we
get the reduction formula (valid for )

�

� EXAMPLE 8 Use the reduction formula above to evaluate 

SOLUTION Note first that

Thus,

 = 0 +

n - 1
n

 

L

p>2

0
sinn - 2 x dx

 
L

p>2

0
sinn x dx = c -sinn - 1

 x cos x
n

d
0

p>2
+

n - 1
n

 

L

p>2

0
sinn - 2 x dx

L

p>2

0
sin8 x dx.

L
sinn x dx =

-sinn - 1
 x cos x

n
+

n - 1
n

 

L
sinn - 2 x dx

n Ú 2
1sinn x dx,

L
sinn x dx = -sinn - 1 x cos x + 1n - 12

L
sinn - 2 x dx - 1n - 12

L
sinn x dx

1 - sin2 xcos2 x

L
sinn x dx = -sinn - 1 x cos x + 1n - 12

L
sinn - 2 x cos2 x dx

du = 1n - 12 sinn - 2 x cos x dx and v = -cos x

dv = sin x dx.u = sinn - 1 x

L
sinn x dx.

k 6 n,

L
fn1x2g1x2 dx = h1x2 +

L
fk1x2 g1x2 dx

L
ex sin x dx =

1
2

 ex1sin x - cos x2 + K

2
L

ex sin x dx = ex1sin x - cos x2 + C

L
ex sin x dx = -ex cos x + ex sin x -

L
ex sin x dx
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382 Chapter 7 Techniques of Integration and Differential Equations

�

The general formula for can be found in a similar way (Formula

113 at the back of the book).
L

p>2

0
sinn x dx

 =

7
8

#
5
6

#
3
4

#
1
2

#
p

2
=

35
256

 p

 =

7
8

#
5
6

#
3
4

#
1
2

 

L

p>2

0
1 dx

 =

7
8

#
5
6

#
3
4

 

L

p>2

0
sin2 x dx

 =

7
8

#
5
6

 

L

p>2

0
sin4 x dx

 
L

p>2

0
sin8 x dx =

7
8

 

L

p>2

0
sin6 x dx

Concepts Review
1. The integration-by-parts formula says that 

_____.

2. To apply this formula to let _____ and
_____.dv =

u =1x sin x dx,

1u dv = 3. Applying the integration-by-parts formula yields the

value _____ for 

4. A formula that expresses in terms of
where is called a _____ formula.k 6 n,1fk1x2 g(x) dx,

1fn1x2 g(x) dx
L

p>2

0
x sin x dx.

Problem Set 7.2
In Problems 1–36, use integration by parts to evaluate each integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.
L

p>4

p>6
x sec2 x dx

L

p>2

p>6
x csc2 x dx

L
t5 ln1t72 dt

L
arctan11>t2 dt

L
t arctan t dt

L
z3 ln z dz

L

5

1
22x ln x3 dx

L

e

1
1t ln t dt

L

3

2
 
ln 2x5

x2   dx
L

 
ln x

x2   dx

L
arctan 5x dx

L
arctan x dx

L
ln17x52 dx

L
ln 3x dx

L
t 23 2t + 7 dt

L
t 2t + 1 dt

L
1x - p2 sin x dx

L
1t - 32 cos1t - 32 dt

L
x sin 2x dx

L
x cos x dx

L
1t + 72e2t + 3 dt

L
te5t +p dt

L
xe3x dx

L
xex dx

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

In Problems 37–48, apply integration by parts twice to evaluate
each integral (see Examples 5 and 6).

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. Hint: Use Problem 39.
L
1ln x23 dx

L
cos1ln x2 dx

L
sin1ln x2 dx

L
r2 sin r dr

L
x2 cos x dx

L
eat sin t dt

L
et cos t dt

L
ln2 x20 dx

L
ln2 z dz

L
x5ex2

 dx
L

x2ex dx

L
z az dz

L
x 2x dx

L

1

0
t1t - 1212 dt

L
x13x + 10249 dx

L
 
ln x1x

   dx
L

x sinh x dx

L
x cosh x dx

L
 

z7

14 - z422  dz

L
x324 - x2 dx

L
 

t7

17 - 3t423>2  dt

L
x132x7

+ 1 dx
L

x52x3
+ 4 dx
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Section 7.2 Integration by Parts 383

π 2π 3π

y

x

First
arch

Second
arch

Figure 2

48. Hint: Use Problems 39 and 47.

In Problems 49–54, use integration by parts to derive the given
formula.

49.

50.

51.

52.

53.

54.

In Problems 55–61, derive the given reduction formula using inte-
gration by parts.

55.

56.

57.

58.

59.

60.

61.

62. Use Problem 55 to derive

63. Use Problems 56 and 57 to derive 

64. Use Problem 61 to derive 

5
16 x + C.+

5
48 sin 3x cos 3x +

5
72 sin 3x cos3 3x1

18 sin 3x cos5 3x +

L
cos6 3x dx =

+ C.+
8

81 sin 3x-
8

27 x cos 3x

1
3 x4 sin 3x +

4
9 x3 cos 3x -

4
9 x2 sin 3x

L
x4 cos 3x dx =

L
x4e3x dx =

1
3 x4e3x

-
4
9 x3e3x

+
4
9 x2e3x

-
8
27 xe3x

+
8

81 e3x
+ C

cosa- 1 bx sin bx

ab
+

a - 1
a

 

L
cosa- 2 bx dx

L
cosa bx dx =

L
cosa x dx =

cosa- 1 x sin x
a

+

a - 1
a

 

L
cosa- 2 x dx

x1a2
- x22a + 2a

L
x21a2

- x22a-1 dx

L
1a2

- x22a dx =

L
1ln x2a dx = x1ln x2a - a

L
1ln x2a-1 dx

L
xa cos bx dx =

xa sin bx

b
-

a

b
 

L
xa-1 sin bx dx

L
xa sin bx dx = -

xa cos bx

b
+

a

b
 

L
xa-1 cos bx dx

L
xaebx dx =

xaebx

b
-

a

b
 

L
xa-1ebx dx

- 2 
xa+ 1

1a + 122 ln x + 2 
xa+ 1

1a + 123 + C, a Z -1

L
xa1ln x22 dx =

xa+ 1

a + 1
 1ln x22

L
xa ln x dx =

xa+ 1

a + 1
 ln x -

xa+ 1

1a + 122 + C, a Z -1

L
eaz cos bz dz =

eaz1a cos bz + b sin bz2
a2

+ b2 + C

L
eaz sin bz dz =

eaz1a sin bz - b cos bz2
a2

+ b2 + C

-
7

24 cos 5x cos 7x -
5
24 sin 5x sin 7x + C

L
 cos 5x sin 7x dx =

-
3
8 sin x cos 3x +

1
8 cos x sin 3x + C

L
sin x sin 3x dx =

L
1ln x24 dx

65. Find the area of the region bounded by the curve
the x-axis, and the line 

66. Find the volume of the solid generated by revolving the
region of Problem 65 about the x-axis.

67. Find the area of the region bounded by the curves
and Make a sketch.

68. Find the volume of the solid generated by revolving the
region described in Problem 67 about the x-axis.

69. Find the area of the region bounded by the graphs of
and from to 

70. Find the volume of the solid obtained by revolving the re-
gion under the graph of from to 
about the y-axis.

71. Find the centroid (see Section 6.6) of the region bounded
by and the x-axis from to 

72. Evaluate the integral by parts in two
different ways:
(a) By differentiating cot x (b) By differentiating csc x
(c) Show that the two results are equivalent up to a constant.

73. If p(x) is a polynomial of degree n and 
are successive antiderivatives of a function g, then, by repeated
integration by parts,

Use this result to find each of the following:

(a) (b)

74. The graph of for is sketched in Figure 2.
(a) Find a formula for the area of the nth arch.
(b) The second arch is revolved about the y-axis. Find the vol-

ume of the resulting solid.

x Ú 0y = x sin x≈
L
1x2

- 3x + 12 sin x dx
L
1x3

- 2x2ex dx

 + 1-12n p1n21x2Gn + 11x2 + C

p1x2G11x2 - p¿1x2G21x2 + p–1x2G31x2 -
Á 

L
p1x2g1x2 dx =

G1, G2, Á , Gn + 1,

L
cot x csc2 x dx

x = e.x = 1y = ln x2
≈

x = 2px = 0y = sin1x>22
≈

x = p>4.x = 0y = x cos xy = x sin x
≈

≈
x = 9.y = 3e-x>3, y = 0, x = 0,

≈

≈
x = e.y = ln x,

≈

75. The quantity plays an impor-

tant role in applied mathematics. Show that if is continuous
on then Hint: Integration by parts.

76. Let Show that
Hint: Consider recognize it as a

Riemann sum, and use Example 2.

77. Find the error in the following “proof” that In
set and Then and

Integration by parts gives

or 0 = 1.
L
11>t2 dt = 1 -

L
1-1>t2 dt

uv = 1.
du = - t-2 dtdv = dt.u = 1>t111>t2 dt,

0 = 1.

ln1Gn>n2,lim
n: q

1Gn>n2 = 4>e.
Gn = 2n 1n + 121n + 22Á 1n + n2.

lim
n: q

an = 0.[-p, p],
f¿1x2

an =

1
p

 

L

p

-p

f1x2 sin nx dx
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384 Chapter 7 Techniques of Integration and Differential Equations

78. Suppose that you want to evaluate the integral

and you know from experience that the result will be of the form
Compute and by differ-

entiating the result and setting it equal to the integrand.

Many surprising theoretical results can be derived through the use
of integration by parts. In all cases, one starts with an integral. We
explore two of these results here.

79. Show that

80. Using Problem 79 and replacing by show that

81. Show that

provided that can be differentiated times.

82. The Beta function, which is important in many branches
of mathematics, is defined as

with the condition that and 
(a) Show by a change of variables that

B1a, b2 =

L

1

0
xb-111 - x2a-1  dx = B1b, a2

b Ú 1.a Ú 1

B1a, b2 =

L

1

0
xa-111 - x2b -1 dx,

n + 1f

f1t2 = f1a2 + a
n

i = 1
 

f1i21a2
i!

 1t - a2i +

L

t

a
 

1t - x2n
n!

 f1n + 121x2 dx,

 = f¿1a21b - a2 -

L

b

a
1x - b2f–1x2 dx

 = f¿1b21b - a2 -

L

b

a
1x - a2f–1x2 dx

 f1b2 - f1a2 =

L

b

a
f¿1x2 dx

f¿,f

 = [1x - a2f1x2] a
b

-

L

b

a
1x - a2f¿1x2 dx

 
L

b

a
f1x2 dx = [xf1x2] a

b
-

L

b

a
xf¿1x2 dx

C2C1e5x1C1 cos 7x + C2 sin 7x2 + C3.

L
e5x14 cos 7x + 6 sin 7x2 dx

(b) Integrate by parts to show that

(c) Assume now that and and that n and m are
positive integers. By using the result in part (b) repeatedly,
show that

This result is valid even in the case where n and m are not
integers, provided that we can give meaning to 

and 

83. Suppose that has the property that 
and that has two continuous derivatives. Use integration by

parts to prove that Hint: Use integration by

parts by differentiating and integrating This result has
many applications in the field of applied mathematics.

84. Derive the formula

using integration by parts.

85. Generalize the formula given in Problem 84 to one for an
n-fold iterated integral

86. If is a polynomial of degree n, show that

87. Use the result from Problem 86 to evaluate

Answers to Concepts Review: 1. 2. x;
sin x dx 3. 1 4. reduction

uv - 1v du

L
13x4

+ 2x22ex dx

L
exPn1x2 dx = ex

a
n

j = 0
1-12j  

djPn1x2
dxj

Pn1x2

1
1n - 12! 

L

x

0
f1t121x - t12n - 1 dt1

L

x

0 L

t1

0

Á

L

tn - 1

0
f1tn2 dtn Á dt1 =

L

x

0
a
L

t

0
f1z2 dzb  dt =

L

x

0
f1t21x - t2 dt

f–1t2.f(t)
L

b

a
f–1t2f1t2 dt … 0.

f(t)
f¿1a2 = f¿1b2 = 0f(t)

1n + m - 12!.(m - 1)!,
(n - 1)!,

B1n, m2 =

(n - 1)! (m - 1)!

1n + m - 12!

b = m,a = n

B1a, b2 =

a - 1
b

 B1a - 1, b + 12 =

b - 1
a

 B1a + 1, b - 12

When we combine the method of substitution with a clever use of trigonometric
identities, we can integrate a wide variety of trigonometric forms. We consider five
commonly encountered types.

1. and 

2.

3.

4.

5.
L

cotm x cscn x dx
L

tanm x secn x dx,

L
cotn x dx

L
tann x dx, 

L
sin mx cos nx dx, 

L
sin mx sin nx dx, 

L
cos mx cos nx dx

L
sinm x cosn x dx

L
cosn x dx

L
sinn x dx

7.3
Some Trigonometric

Integrals

384



Section 7.3 Some Trigonometric Integrals 385

Some trigonometric identities need-
ed in this section are the following.

Pythagorean Identities

Half-Angle Identities

 cos2 x =

1 + cos 2x

2

 sin2 x =

1 - cos 2x

2

 1 + cot2 x = csc2 x

 1 + tan2 x = sec2 x

 sin2 x + cos2 x = 1

Useful Identities Type 1 Consider first the case where n is an odd
positive integer. After taking out either the factor sin x or cos x, use the identity

� EXAMPLE 1 (n Odd) Find 

SOLUTION

�

� EXAMPLE 2 (n Even) Find and 

SOLUTION Here we make use of half-angle identities.

�

Type 2 If either m or n is an odd positive integer and the
other exponent is any number, we factor out sin x or cos x and use the identity

� EXAMPLE 3 (m or n Odd) Find 
L

sin3 x cos-4 x dx.

sin2 x + cos2 x = 1.

A1sinm x cosn x dx B

 =

3
8

 x +

1
4

 sin 2x +

1
32

 sin 4x + C

 =

3
8

 

L
dx +

1
4

 

L
cos 2x12 dx2 +

1
32

 

L
cos 4x14 dx2

 =

1
4

 

L
dx +

1
4

 

L
1cos 2x2122 dx +

1
8

 

L
11 + cos 4x2 dx

 =

1
4

 

L
11 + 2 cos 2x + cos2 2x2 dx

 
L

cos4 x dx =

L
a1 + cos 2x

2
b2

 dx

 =

1
2

 x -

1
4

 sin 2x + C

 =

1
2

 

L
dx -

1
4

 

L
1cos 2x212 dx2

 
L

sin2 x dx =

L
 
1 - cos 2x

2
  dx

L
cos4 x dx.

L
sin2 x dx

 = -cos x +
2
3 cos3 x -

1
5 cos5 x + C

 = -

L
11 - 2 cos2 x + cos4 x21-sin x dx2

 =

L
11 - 2 cos2 x + cos4 x2 sin x dx

 =

L
11 - cos2 x22 sin x dx

 
L

sin5 x dx =

L
sin4 x sin x dx

L
sin5 x dx.

sin2 x + cos2 x = 1.

A1sinn x dx, 1cosn x dx B
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Indefinite integrations may lead to
different looking answers. By one
method,

By a second method,

But two such answers should differ
by at most a constant. Note, how-
ever, that

Now reconcile these answers with a
third answer.

 = -
1
4 cos 2x + C

 
L

sin x cos x dx =
1
2 

L
sin 2x dx

 = -
1
2 cos2 x + A12 + C B

 12 sin2 x + C =
1
211 - cos2 x2 + C

 =
1
2 sin2 x + C

 
L

sin x cos x dx =

L
sin x1cos x2 dx

 = -
1
2 cos2 x + C

 = -

L
cos x1-sin x2 dx

L
sin x cos x dx

Are They Different?

SOLUTION

�

If both m and n are even positive integers, we use half-angle identities to re-
duce the degree of the integrand. Example 4 gives an illustration.

� EXAMPLE 4 (Both m and n Even) Find 

SOLUTION

�

Type 3
Integrals of this type occur in many physics and engineering applications. To han-
dle these integrals, we use the product identities.

1.

2.

3.

� EXAMPLE 5 Find 

SOLUTION Apply product identity 1.

L
sin 2x cos 3x dx.

cos mx cos nx =

1
2

 [cos1m + n2x + cos1m - n2x]

sin mx sin nx = -

1
2

 [cos1m + n2x - cos1m - n2x]

sin mx cos nx =

1
2

 [sin1m + n2x + sin1m - n2x]

A1sin mx cos nx dx, 1sin mx sin nx dx, 1cos mx cos nx dx B

 =

1
8

 c1
2

 x -

1
8

 sin 4x +

1
6

 sin3 2x d + C

 =

1
8

 c
L

 
1
2

 dx -

1
8

 

L
cos 4x14 dx2 +

1
2

 

L
sin2 2x12 cos 2x dx2 d

 =

1
8

 

L
c1
2

-

1
2

 cos 4x + sin2 2x cos 2x d  dx

 =

1
8

 

L
c1 + cos 2x -

1
2

 11 + cos 4x2 - 11 - sin2 2x2 cos 2x d  dx

 =

1
8

 

L
11 + cos 2x - cos2 2x - cos3 2x2 dx

 =

L
a1 - cos 2x

2
b a 1 + cos 2x

2
b2

 dx

L
sin2 x cos4 x dx

L
sin2 x cos4 x dx.

 =

1
3

 sec3 x - sec x + C

 = - c 1cos x2-3

-3
-

1cos x2-1

-1
d + C

 = -

L
1cos-4 x - cos-2 x21-sin x dx2

 
L

sin3 x cos-4 x dx =

L
11 - cos2 x21cos-4 x21sin x2 dx
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Section 7.3 Some Trigonometric Integrals 387

�

� EXAMPLE 6 If m and n are positive integers, show that

SOLUTION Apply product identity 2. If then

If 

�

� EXAMPLE 7 If m and n are positive integers, find

SOLUTION Let If then and if
then Thus,

Here we have used the result of Example 6. �

A number of times in this book we have suggested that you should view things
from both an algebraic and a geometric point of view. So far, this section has been
entirely algebraic, but with definite integrals such as those in Examples 6 and 7, we
have an opportunity to view things geometrically.

 = e 0        if m Z n

L        if m = n

 = d
L
p

# 0 if m Z n

L
p

# p if m = n

 
L

L

-L
sin 

mpx

L
  sin 

npx

L
  dx =

L
p

 

L

p

-p

sin mu sin nu du

u = p.x = L,
u = -p,x = -L,u = px>L, du = pdx>L.

L

L

-L
sin 

mpx

L
  sin 

npx

L
  dx

 = -

1
2

 [-2p] = p

 = -

1
2

 c 1
2m

 sin 2mx - x d
-p

p

 
L

p

-p

sin mx sin nx dx = -

1
2

 

L

p

-p

[cos 2mx - 1] dx

m = n,

 = 0

 = -

1
2

 c 1
m + n

 sin1m + n2x -

1
m - n

 sin1m - n2x d
-p

p

 
L

p

-p

sin mx sin nx dx = -

1
2

 

L

p

-p

[cos1m + n2x - cos1m - n2x] dx

m Z n,

L

p

-p

sin mx sin nx dx = e 0 if m Z n

p if m = n

 = -

1
10

 cos 5x +

1
2

 cos x + C

 =

1
10

 

L
sin 5x15 dx2 -

1
2

 

L
sin x dx

 
L

sin 2x cos 3x dx =

1
2

 

L
[sin 5x + sin1-x2] dx
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y = sin 3x sin 2x
1

y

10 x5–5–10

–0.5

–1

1

y

10 x5–5–10

0.5

–0.5

–1

y = sin 3�x
10 sin 2�x

10

Figure 1

10 x7.552.50–2.5–5–7.5–10

1

y

10 x7.552.50–2.5–5–7.5–10

1

y

y = sin2 2�x
10y = sin2 2x

Figure 2

Figure 1 shows graphs of and 
The graphs suggest that the areas above and below the x-axis are the same, leaving

Examples 6 and 7 confirm this.Aup - Adown = 0.

12px>102.y = sin13px>102 siny = sin 3x sin 2x

Figure 2 shows graphs of and
These two graphs

look the same, except the one on the right has been stretched horizontally by
the factor Does it then make sense that the area will increase by this same
factor? That would make the shaded area in the figure on the right equal to

times the shaded area in the figure on the left; that is, the area on the right
should be which corresponds to the result of Example 7 with
L = 10.

110>p2 # p = 10,
10>p

10>p.

-10 … x … 10.y = sin12px>102 sin12px>102 = sin212px>102, -p … x … p,y = sin 2x sin 2x = sin2 2x,

Type 4 For in the tangent case, factor out

in the cotangent case, factor out 

� EXAMPLE 8 Find 

SOLUTION

�

� EXAMPLE 9 Find 
L

tan5 x dx.

 = -
1
3 cot3 x + cot x + x + C

 = -

L
cot2 x 1-csc2 x dx2 -

L
1csc2 x - 12 dx

 =

L
cot2 x csc2 x dx -

L
cot2 x dx

 
L

cot4 x dx =

L
cot2 x 1csc2 x - 12 dx

L
cot4 x dx.

cot2 x = csc2 x - 1.sec2 x - 1;tan2 x =

n Ú 2,A1tann x dx, 1cotn x dx B
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Section 7.3 Some Trigonometric Integrals 389

SOLUTION

�

Type 5 

� EXAMPLE 10 (n Even, m Any Number) Find 

SOLUTION

�

� EXAMPLE 11 (m Odd, n Any Number) Find 

SOLUTION

� =
2
3 sec3>2 x + 2 sec-1>2 x + C

 =

L
sec1>2 x 1sec x tan x dx2 -

L
sec-3>2 x 1sec x tan x dx2

 =

L
1sec2 x - 12 sec-3>2 x 1sec x tan x dx2

 
L

tan3 x sec-1>2 x dx =

L
1tan2 x21sec-3>2 x21sec x tan x2 dx

L
tan3 x sec-1>2 x dx.

 = -2 tan-1>2 x +
2
3 tan3>2 x + C

 =

L
1tan-3>2 x2 sec2 x dx +

L
1tan1>2 x2 sec2 x dx

 
L

tan-3>2 x sec4 x dx =

L
1tan-3>2 x211 + tan2 x2 sec2 x dx

L
tan-3>2 x sec4 x dx.

A1tanm x secn x dx, 1cotm x cscn x dx B
 =

1
4 tan4 x -

1
2 tan2 x - ln ƒ cos x ƒ + C

 =

L
tan3 x 1sec2 x dx2 -

L
tan x 1sec2 x dx2 +

L
tan x dx

 =

L
tan3 x 1sec2 x dx2 -

L
tan x 1sec2 x - 12 dx

 =

L
tan3 x sec2 x dx -

L
tan3 x dx

 
L

tan5 x dx =

L
tan3 x 1sec2 x - 12 dx

Concepts Review

1. To handle we first rewrite it as _____.

2. To handle we first rewrite it as _____.
L

cos3 x dx,

L
cos2 x dx, 3. To handle we first rewrite it as _____.

4. To handle where we use

the trigonometric identity _____.

m Z n,
L

p

-p

cos mx cos nx dx,

L
sin2 x cos3 x dx,
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π

y

x

y = sin x

y = k

Figure 3

Problem Set 7.3
In Problems 1–28, perform the indicated integrations.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. Hint: Use integration by parts.

18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. Find integers.

30. Find integers.

31. The region bounded by is
revolved about the x-axis. Find the volume of the resulting solid.

32. The region bounded by and
is revolved about the y-axis. Find the volume of the

resulting solid.
x = 2p>2 y = sin21x22, y = 0,≈

y = x + sin x, y = 0, x = p,≈
L

L

-L
cos 

mpx

L
  cos 

npx

L
 dx, m Z n, m, n

L

p

-p

cos mx cos nx dx, m Z n; m, n

L
tan3 x sec-1>2 x dx

L
tan3 x sec2 x dx

L
tan1>2 x sec4 x dx

L
tan-3 x sec4 x dx

L
cot5 2t dt

L
tan5a u

2
b  du

L
cot3 2t dt

L
tan3 x dx

L
cot6 x dx

L
tan4 x dx

L
x sin3 x cos x dx

L
x cos2 x sin x dx

L
sin 3t sin t dt

L
sin4aw

2
b  cos2aw

2
b  dw

L
cos y cos 4y dy

L
sin 4y cos 5y dy

L
cos6 u sin2 u du

L
sin4 3t cos4 3t dt

L
sin1>2 2z cos3 2z dz

L
cos3 3u sin-2 3u du

L
1sin3 2t22cos 2t dt

L
sin5 4x cos2 4x dx

L

p>2

0
sin6 u du

L

p>2

0
cos5 u du

L
cos3 x dx

L
sin3 x dx

L
sin4 6x dx

L
sin2 x dx

33. Let Use Example 6 to show each

of the following for a positive integer m.

(a)

(b)

Note: Integrals of this type occur in a subject called Fourier series,
which has applications to heat, vibrating strings, and other physi-
cal phenomena.

34. Show that

by completing the following steps.

(a)

(See Problem 46 of Section 1.8.)
(b) Recognize a Riemann sum leading to a definite integral.
(c) Evaluate the definite integral.

35. Use the result of Problem 34 to obtain the famous formu-
la of François Viète (1540–1603):

36. The shaded region (Figure 3) between one arch of
and the line is re-

volved about the line generating a solid S. Determine k so
that S has
(a) minimum volume and (b) maximum volume.

y = k,
y = k, 0 … k … 1,y = sin x, 0 … x … p,

2
p

=

22
2

#
22 + 12

2
#
32 + 22 + 12

2
Á

ccos 
1
2n  x + cos 

3
2n  x +

Á
+ cos 

2n
- 1

2n  x d  1

2n - 1

cos 
x

2
  cos 

x

4
Á cos 

x

2n =

lim
n: q

cos 
x

2
  cos 

x

4
  cos 

x

8
Á cos 

x

2n =

sin x
x

1
p

 

L

p

-p

f21x2 dx = a
N

n = 1
an

2

1
p

 

L

p

-p

f1x2 sin1mx2 dx = eam if m … N

0 if m 7 N

f1x2 = a
N

n = 1
an sin1nx2.

Answers to Concepts Review: 1.

2. 3.

4. cos mx cos nx =
1
2[cos1m + n2x + cos1m - n2x]

1sin2 x11 - sin2 x2 cos x dx111 - sin2 x2 cos x dx
1[11 + cos 2x2>2] dx

Radicals in an integrand are often troublesome and we usually try to get rid of
them. Often an appropriate substitution will rationalize the integrand.

7.4
Rationalizing
Substitutions

390



Section 7.4 Rationalizing Substitutions 391

Integrands Involving If appears in an integral, the
substitution will eliminate the radical.

� EXAMPLE 1 Find 

SOLUTION Let so and Then

�

� EXAMPLE 2 Find 

SOLUTION Let so and Then

�

� EXAMPLE 3 Find 

SOLUTION Let so and Then

�

Integrands Involving and To rationalize
these three expressions, we may assume that a is positive and make the following
trigonometric substitutions.

Radical Substitution Restriction on t

1.

2.

3.

Now note the simplifications that these substitutions achieve.

1.

2.

3.

The restrictions on t allowed us to remove the absolute value signs in the first two
cases, but they also achieved something else.These restrictions are exactly the ones
we introduced in Section 1.9 in order to make sine, tangent, and secant invertible
functions. This means that we can solve the substitution equations for t in each
case, and this will allow us to write our final answers in the following examples in
terms of x.

2x2
- a2

= 2a2 sec2 t - a2
= 2a2 tan2 t = ƒ a tan t ƒ = ;a tan t

2a2
+ x2

= 2a2
+ a2 tan2 t = 2a2 sec2 t = ƒ a sec t ƒ = a sec t

2a2
- x2

= 2a2
- a2 sin2 t = 2a2 cos2 t = ƒ a cos t ƒ = a cos t

0 … t … p, t Z p>2x = a sec t2x2
- a2

-p>2 6 t 6 p>2x = a tan t2a2
+ x2

-p>2 … t … p>2x = a sin t2a2
- x2

2x2 � a22a2 � x2, 2a2 � x2

 =
5
121x + 1212>5

-
5
71x + 127>5 + C

 = 5
L
1u11

- u62 du =
5
12 u12

-
5
7 u7

+ C

 
L

x1x + 122>5 dx =

L
1u5

- 12u2 # 5u4 du

5u4 du = dx.u5
= x + 1u = 1x + 121>5,

L
x25 1x + 122 dx.

 = 3 cu7

7
+ u4 d + C =

3
7

 1x - 427>3 + 31x - 424>3 + C

 
L

x23 x - 4 dx =

L
1u3

+ 42u # 13u2 du2 = 3
L
1u6

+ 4u32 du

3u2 du = dx.u3
= x - 4u = 23 x - 4,

L
x23 x - 4 dx.

 = 2 ln ƒ u - 1 ƒ + C = 2 ln ƒ1x - 1 ƒ + C

 
L

 
dx

x - 1x
=

L
 

2u

u2
- u

  du = 2
L

 
1

u - 1
  du

2u du = dx.u2
= xu = 1x,

L
 

dx

x - 1x
.

u = 2n ax + b

2n ax + b2n ax � b
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a
x

t

x = a sin t

a2 – x2�

Figure 1

a2 – x2�

y

x

y =

A

–a a

a2 – x2�
πa2

2–a
A = � dx =

a

Figure 2

x

t

x = 3 tan t

9 + x2�

3

Figure 3

� EXAMPLE 4 Find 

SOLUTION We make the substitution

Then and Thus,

Now, is equivalent to and, since t was restricted to make the
sine function invertible,

Using the right triangle in Figure 1 (as we did in Section 1.9), we see that

Thus,

�

The result in Example 4 allows us to calculate the following definite integral,
which represents the area of a semicircle (Figure 2). Thus, calculus confirms a
result that we already know.

� EXAMPLE 5 Find 

SOLUTION Let Then and

The last step, the integration of sec t, was handled in Problem 56 of Section 7.1.

Now which suggests the triangle in Figure 3, from which we conclude

that Thus,

� = ln ƒ29 + x2
+ x ƒ + K

 = ln ƒ29 + x2
+ x ƒ - ln 3 + C

 
L

 
dx29 + x2

= ln ` 29 + x2
+ x

3
` + C

sec t = 29 + x2>3.

tan t = x>3,

 = ln ƒ sec t + tan t ƒ + C

 
L

 
dx29 + x2

=

L
 
3 sec2 t
3 sec t

  dt =

L
sec t dt

29 + x2
= 3 sec t.

dx = 3 sec2 t dtx = 3 tan t, -p>2 6 t 6 p>2.

L
 

dx29 + x2
.

L

a

-a
2a2

- x2 dx = ca2

2
 sin-1ax

a
b +

x

2
 2a2

- x2 d
-a

a

=

a2

2
 cp

2
+

p

2
d =

pa2

2

L
2a2

- x2 dx =

a2

2
 sin-1ax

a
b +

x

2
 2a2

- x2
+ C

cos t = cos csin-1ax
a
b d = A1 -

x2

a2 =

1
a

 2a2
- x2

t = sin-1ax
a
b

x>a = sin tx = a sin t

 =

a2

2
1t + sin t cos t2 + C

 =

a2

2
 a t +

1
2

 sin 2tb + C

 =

a2

2
 

L
11 + cos 2t2 dt

 
L
2a2

- x2 dx =

L
a cos t # a cos t dt = a2

L
cos2 t dt

2a2
- x2

= a cos t.dx = a cos t dt

x = a sin t, -

p

2
… t …

p

2

L
2a2

- x2 dx.

392



Section 7.4 Rationalizing Substitutions 393

x

2 t10.50

2

4

6

–0.5–1–2

x = 2 sec t

�
2

– �
2

Figure 4

t

5

u

�u2 + 25

u = 5 tan t

Figure 5

� EXAMPLE 6 Calculate 

SOLUTION Let where Note that the restriction of t
to this interval is acceptable, since x is in the interval (see Figure 4).
This is important because it allows us to remove the absolute value sign that
normally appears when we simplify In our case,

We now use the theorem on substitution in a definite integral (which requires
changing the limits of integration) to write

�

Completing the Square When a quadratic expression of the type
appears under a radical, completing the square will prepare it for a

trigonometric substitution.

� EXAMPLE 7 Find (a) and (b) 

SOLUTION
(a) Let and

Then

Next let Then and 

so

(by Figure 5)

(b) To handle the second integral, we write

The first of the integrals on the right is handled by the substitution
the second was just done. We obtain

�22x2
+ 2x + 26 - 2 ln ƒ2x2

+ 2x + 26 + x + 1 ƒ + K

L
 

2x2x2
+ 2x + 26

  dx =

u = x2
+ 2x + 26;

L
 

2x2x2
+ 2x + 26

  dx =

L
 

2x + 22x2
+ 2x + 26

  dx - 2
L

 
12x2

+ 2x + 26
  dx

 = ln ƒ2x2
+ 2x + 26 + x + 1 ƒ + K

 = ln ƒ2u2
+ 25 + u ƒ - ln 5 + C

 = ln ` 2u2
+ 25

5
+

u

5
` + C

 = ln ƒ sec t + tan t ƒ + C

 
L

 
du2u2

+ 25
=

L
 
5 sec2

 t dt

5 sec t
=

L
sec t dt

2251tan2 t + 12 = 5 sec t,

2u2
+ 25 =du = 5 sec2 t dtu = 5 tan t, -p>2 6 t 6 p>2.

L
 

dx2x2
+ 2x + 26

=

L
 

du2u2
+ 25

du = dx.
u = x + 1x2

+ 2x + 26 = x2
+ 2x + 1 + 25 = 1x + 122 + 25.

L
 

2x2x2
+ 2x + 26

  dx.
L

 
dx2x2

+ 2x + 26

x2
+ Bx + C

 = 2 Ctan t - t D
0

p>3
= 223 -

2p
3

L 1.37

 =

L

p>3

0
2 tan2 t dt = 2

L

p>3

0
1sec2 t - 12 dt

 
L

4

2
 
2x2

- 4
x

  dx =

L

p>3

0
 
2 tan t
2 sec t

  2 sec t tan t dt

2x2
- 4 = 24 sec2 t - 4 = 24 tan2 t = 2 ƒ tan t ƒ = 2 tan t

2x2
- a2.

2 … x … 4
0 … t 6 p>2.x = 2 sec t,

L

4

2
 
2x2

- 4
x

  dx.
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y

x–a a

b

Figure 6

2�

C

0
 a

a

Figure 7

C
b

a
0

Figure 8

a2 – x2�

y

x

x

a

a

Figure 9

Concepts Review

Problem Set 7.4
In Problems 1–16, perform the indicated integrations.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–26, use the method of completing the square,
along with a trigonometric substitution if needed, to evaluate each
integral.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. The region bounded by 
and is revolved about the x-axis. Find the volume

of the resulting solid.

28. The region of Problem 27 is revolved about the y-axis.
Find the volume of the resulting solid.

29. Find by

(a) an algebraic substitution and
(b) a trigonometric substitution. Then reconcile your answers.

30. Find by making the substitutions

u = 29 + x2, u2
= 9 + x2, 2u du = 2x dx

L

3

0
 

x3 dx29 + x2

L
 

x dx

x2
+ 9

x = 1,x = 0,
y = 0,y = 1>1x2

+ 2x + 52,
L

 
2x - 1

x2
- 6x + 18

  dx
L

 
2x + 1

x2
+ 2x + 2

  dx

L
 

x24x - x2
  dx

L
 

dx24x - x2

L
 

dx216 + 6x - x2L
 25 - 4x - x2 dx

L
 

2x - 12x2
+ 4x + 5

  dx
L

 
3x2x2
+ 2x + 5

  dx

L
 

dx2x2
+ 4x + 5L

 
dx2x2
+ 2x + 5

L

p

0
 
px - 12x2

+ p2
  dx

L
 

2z - 321 - z2
  dz

L
 

t21 - t2
  dt

L

-3

-2
 
2t2

- 1

t3   dt

L

3

2
 

dt

t2
 2t2

- 1L
 

dx

1x2
+ 423>2

L
 

x2 dx216 - x2L
 
24 - x2

x
  dx

L
x11 - x22>3 dx

L
t13t + 223>2 dt

L

1

0
 
1t

t + 1
  dt

L

2

1
 

dt1t + e

L
 
x2

+ 3x2x + 4
  dx

L
 

t dt23t + 4

L
x23 x + p dx

L
x2x + 1 dx

31. Find by

(a) the substitution and

(b) a trigonometric substitution. Then reconcile your answers.

Hint:

32. Two circles of radius b intersect as shown in Figure 6 with
their centers 2a apart Find the area of the region of
their overlap.

10 … a … b2.
L

csc x dx = ln ƒ csc x - cot x ƒ + C.

u = 24 - x2

L
 
24 - x2

x
  dx

33. Hippocrates of Chios (ca. 430 B.C.) showed that the two
shaded regions in Figure 7 have the same area (he squared the
lune). Note that C is the center of the lower arc of the lune. Show
Hippocrates’ result

(a) using calculus and (b) without calculus.

34. Generalize the idea in Problem 33 by finding a formula
for the area of the shaded lune shown in Figure 8.

35. Starting at (a, 0), an object is pulled along by a string 
of length a with the pulling end moving along the positive 
y-axis (Figure 9).The path of the object is a curve called a tractrix

1. To handle make the substitution 

_____.

2. To handle an integral involving make the sub-
stitution _____.x =

24 - x2,

u =

L
x2x - 3 dx, 3. To handle an integral involving make the sub-

stitution _____.

4. To handle an integral involving make the sub-
stitution _____.x =

2x2
- 4,

x =

24 + x2,
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x3 + 5x
x5  +  5x3

–  3x3    –     x

14x + 1

x2  –  3
x5  +  2x3    –     x + 1

–  3x3   – 15x

Figure 1

and has the property that the string is always tangent to 
the curve. Set up a differential equation for the curve and solve
it.

Answers to Concepts Review: 1. 2. 2 sin t
3. 2 tan t 4. 2 sec t

2x - 3

A rational function is by definition the quotient of two polynomial functions.
Examples are

Of these, f and g are proper rational functions, meaning that the degree of the
numerator is less than that of the denominator. An improper (not proper) rational
function can always be written as a sum of a polynomial function and a proper ra-
tional function. Thus, for example,

a result obtained by long division (Figure 1). Since polynomials are easy to inte-
grate, the problem of integrating rational functions is really that of integrating
proper rational functions. But can we always integrate proper rational functions?
In theory, the answer is yes, though the practical details may be messy. Consider
first the integrals of f and g above.

� EXAMPLE 1 Find 

SOLUTION Think of the substitution 

�

� EXAMPLE 2 Find 

SOLUTION Think first of the substitution for which
Then write the given integral as a sum of two integrals.

In the second integral, complete the square.

We conclude that

�
L

 
2x + 2

x2
- 4x + 8

  dx = ln ƒ x2
- 4x + 8 ƒ + 3 tan-1ax - 2

2
b + K

 =

L
 

1

1x - 222 + 4
  dx =

1
2

  tan-1ax - 2
2
b + C

 
L

 
1

x2
- 4x + 8

  dx =

L
 

1

x2
- 4x + 4 + 4

  dx =

L
 

1

1x - 222 + 4
  dx

 = ln ƒ x2
- 4x + 8 ƒ + 6

L
 

1

x2
- 4x + 8

  dx

 
L

 
2x + 2

x2
- 4x + 8

  dx =

L
 

2x - 4

x2
- 4x + 8

  dx +

L
 

6

x2
- 4x + 8

  dx

du = 12x - 42 dx.
u = x2

- 4x + 8

L
 

2x + 2

x2
- 4x + 8

  dx.

 = -

1

1x + 122 + C

 
L

 
2

1x + 123  dx = 2
L
1x + 12-3 dx =

21x + 12-2

-2
+ C

u = x + 1.

L
 

2

1x + 123  dx.

h1x2 =

x5
+ 2x3

- x + 1

x3
+ 5x

= x2
- 3 +

14x + 1

x3
+ 5x

f1x2 =

2

1x + 123, g1x2 =

2x + 2

x2
- 4x + 8

, h1x2 =

x5
+ 2x3

- x + 1

x3
+ 5x

7.5
Integration of Rational

Functions Using 
Partial Fractions
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396 Chapter 7 Techniques of Integration and Differential Equations

“Often, there is little resemblance
between a differential equation and
its solution. Who would suppose that
an expression as simple as

could be transformed into

This resembles the transformation of
a chrysalis into a butterfly.”

Silvanus P. Thompson

The method of partial fractions
makes this an easy transformation.
Do you see how it is done?

y =

1
2a

  lnaa + x

a - x
b + C

dy

dx
=

1

a2
- x2

Solve This D.E.

It is a remarkable fact that any proper rational function can be written as a
sum of simple proper rational functions like those illustrated in Examples 1 and 2.

Partial Fraction Decomposition (Linear Factors) To add fractions is a
standard algebraic exercise: find a common denominator and add. For example,

It is the reverse process of decomposing a fraction into a sum of simpler fractions
that interests us now. We focus on the denominator and consider cases.

� EXAMPLE 3 Distinct Linear Factors Decompose 
and then find its indefinite integral.

SOLUTION Since the denominator factors as it seems
reasonable to hope for a decomposition of the following form:

(1)

Our job is, of course, to determine A and B so that (1) is an identity, a task that we
find easier after we have multiplied both sides by We obtain

(2)

or, equivalently,

(3)

However, (3) is an identity if and only if coefficients of like powers of x on both
sides are equal; that is,

By solving this pair of equations for A and B, we obtain 
Consequently,

and

�

If there was anything difficult about this process, it was the determination of A
and B. We found their values by “brute force,” but there is an easier way. In (2),
which we wish to be an identity (that is, true for every value of x), substitute the
convenient values and obtaining

This immediately gives and 
You have just witnessed an odd, but correct, mathematical maneuver. Equa-

tion (1) turns out to be an identity (true for all x except and 3) if and only if the
essentially equivalent equation (2) is true precisely at and 3. Ask yourself why-2

-2

A =
7
5.B =

8
5

 -7 = A # 1-52 + B # 0

 8 = A # 0 + B # 5

x = -2,x = 3

 =

7
5

 ln ƒ x + 2 ƒ +

8
5

 ln ƒ x - 3 ƒ + C

 
L

 
3x - 1

x2
- x - 6

  dx =

7
5

 

L
 

1
x + 2

  dx +

8
5

 

L
 

1
x - 3

  dx

3x - 1

x2
- x - 6

=

3x - 1
1x + 221x - 32 =

7
5

x + 2
+

8
5

x - 3

A =
7
5, B =

8
5.

 -3A + 2B = -1

 A + B = 3

3x - 1 = 1A + B2x + 1-3A + 2B2

3x - 1 = A1x - 32 + B1x + 22
1x + 221x - 32.

3x - 1
1x + 221x - 32 =

A

x + 2
+

B

x - 3

1x + 221x - 32,

13x - 12>1x2
- x - 62

2
x - 1

+

3
x + 1

=

21x + 12 + 31x - 12
1x - 121x + 12 =

5x - 1
1x - 121x + 12 =

5x - 1

x2
- 1
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Section 7.5 Integration of Rational Functions Using Partial Fractions 397

this is so. Ultimately it depends on the fact that the two sides of equation (2), both
linear polynomials, are identical if they have the same values at any two points.

� EXAMPLE 4 Distinct Linear Factors Find 

SOLUTION Since the denominator factors as we write

and seek to determine A, B, and C. Clearing the fractions gives

Substitution of the values and results in

or Thus,

�

� EXAMPLE 5 Repeated Linear Factors Find 

SOLUTION Now the decomposition takes the form

with A and B to be determined. After clearing the fractions, we get

If we now substitute the convenient value and any other value, such as
we obtain and Thus,

�

� EXAMPLE 6 Some Distinct, Some Repeated Linear Factors Find

SOLUTION We decompose the integrand in the following way:

Clearing the fractions changes this to

3x2
- 8x + 13 = A1x - 122 + B1x + 321x - 12 + C1x + 32

3x2
- 8x + 13

1x + 321x - 122 =

A

x + 3
+

B

x - 1
+

C

1x - 122

L
 

3x2
- 8x + 13

1x + 321x - 122  dx

 = ln ƒ x - 3 ƒ -

3
x - 3

+ C

 
L

 
x

1x - 322  dx =

L
 

1
x - 3

  dx + 3
L

 
1

1x - 322  dx

A = 1.B = 3x = 0,
x = 3

x = A1x - 32 + B

x

1x - 322 =

A

x - 3
+

B

1x - 322

L
 

x

1x - 322  dx.

 = - ln ƒ x ƒ -

1
2

 ln ƒ x + 1 ƒ +

3
2

 ln ƒ x - 3 ƒ + C

 
L

 
5x + 3

x3
- 2x2

- 3x
  dx = -

L
 
1
x

  dx -

1
2

 

L
 

1
x + 1

  dx +

3
2

 

L
 

1
x - 3

  dx

A = -1, B = -
1
2, C =

3
2.

 18 = C1122
 -2 = B142

 3 = A1-32
x = 3x = 0, x = -1,

5x + 3 = A1x + 121x - 32 + Bx1x - 32 + Cx1x + 12

5x + 3
x1x + 121x - 32 =

A
x

+

B

x + 1
+

C

x - 3

x1x + 121x - 32,
L

 
5x + 3

x3
- 2x2

- 3x
  dx.
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398 Chapter 7 Techniques of Integration and Differential Equations

Substitution of and yields and Thus,

�

Be sure to note the inclusion of the two fractions and 
in the decomposition above. The general rule for decomposing fractions with re-
peated linear factors in the denominator is this: for each factor of the
denominator, there are k terms in the partial fraction decomposition:

Partial Fraction Decomposition (Quadratic Factors) In factoring 
the denominator of a fraction, we may well get some quadratic factors, such as

that cannot be factored into linear factors without introducing complex
numbers.

� EXAMPLE 7 A Single Quadratic Factor Decompose 
and then find its indefinite integral.

SOLUTION The best we can hope for is a decomposition of the form

To determine the constants A, B, and C, we multiply both sides by
and obtain

Substitution of and yields

Thus,

�

� EXAMPLE 8 A Repeated Quadratic Factor Find 

SOLUTION Here the appropriate decomposition is

After considerable work, we discover that and
Thus,E = 0.

A = 1, B = -1, C = 3, D = -5,

6x2
- 15x + 22

1x + 321x2
+ 222 =

A

x + 3
+

Bx + C

x2
+ 2

+

Dx + E

1x2
+ 222

L
 
6x2

- 15x + 22

1x + 321x2
+ 222 dx.

 =

1
2

 ln ƒ 4x + 1 ƒ +

1
2

 ln1x2
+ 12 - tan-1 x + C

 =

1
2

 

L
 

4 dx

4x + 1
+

1
2

 

L
 
2x dx

x2
+ 1

-

L
 

dx

x2
+ 1

 
L

 
6x2

- 3x + 1

14x + 121x2
+ 12   dx =

L
 

2
4x + 1

  dx +

L
 
x - 1

x2
+ 1

  dx

 4 = 4 + 1B - 125   Q B  = 1

 1 = 2 + C   Q C  = -1

 616 +
3
4 + 1 = A A17

16 B   Q A = 2

x = 1x = -
1
4, x = 0,

6x2
- 3x + 1 = A1x2

+ 12 + 1Bx + C214x + 12
14x + 121x2

+ 12

6x2
- 3x + 1

14x + 121x2
+ 12 =

A

4x + 1
+

Bx + C

x2
+ 1

6x2
- 3x + 1

14x + 121x2
+ 12

x2
+ 1,

A1

ax + b
+

A2

1ax + b22 +

A3

1ax + b23 +
Á

+

Ak

1ax + b2k

1ax + b2k
C>1x - 122B>1x - 12

 = 4 ln ƒ x + 3 ƒ - ln ƒ x - 1 ƒ -

2
x - 1

+ C

 
L

 
3x2

- 8x + 13

1x + 321x - 122  dx = 4
L

 
dx

x + 3
-

L
 

dx

x - 1
+ 2
L

 
dx

1x - 122
B = -1.C = 2, A = 4,x = 0x = 1, x = -3,
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Section 7.5 Integration of Rational Functions Using Partial Fractions 399

The initial population size is 800, and
the rate of change in population size,

is positive, so the population
grows. As it nears 2000, the rate 
of change gets close to zero, so as

we have The
population at time should be
somewhere between 800 and 2000.

t = 2
y : 2000.t : q ,

y¿,

A Bound for the Answer≈

�

Summary To decompose a rational function into partial
fractions, proceed as follows:

Step 1: If is improper, that is, if is of degree at least that of divide
by obtaining

Step 2: Factor D(x) into a product of linear and irreducible quadratic factors with
real coefficients. By a theorem of algebra, this is always (theoretically) possible.

Step 3: For each factor of the form expect the decomposition to have
the terms

Step 4: For each factor of the form expect the decomposition to
have the terms

Step 5: Set equal to the sum of all the terms found in Steps 3 and 4.
The number of constants to be determined should equal the degree of the denom-
inator, D(x).

Step 6: Multiply both sides of the equation found in Step 5 by D(x) and solve for
the unknown constants. This can be done by either of two methods: (1) Equate co-
efficients of like-degree terms or (2) assign convenient values to the variable x.

The Logistic Differential Equation In Section 4.10, we saw that the
assumption that the rate of growth of a population is proportional to its size, that
is, leads to exponential growth. This assumption may be realistic until the
available resources in the system are unable to sustain the population. In such a
case, more reasonable assumptions are that there is a maximum capacity L that 
the system can sustain, and that the rate of growth is proportional to the product 
of the population size y and the “available room” These assumptions lead
to the differential equation

This is called the logistic differential equation. It is separable and now that we
have covered the method of partial fractions, we can perform the necessary inte-
gration to solve it.

� EXAMPLE 9 A population grows according to the logistic differential
equation The initial population size is 800. Solve this dif-
ferential equation and use the solution to predict the population size at time t = 2.

y¿ = 0.0003y12000 - y2.

y¿ = ky1L - y2

L - y.

y¿ = ky,

N(x)>D(x)

B1 x + C1

ax2
+ bx + c

+

B2 x + C2

1ax2
+ bx + c22 +

Á
+

Bm x + Cm

1ax2
+ bx + c2m

1ax2
+ bx + c2m,

A1

1ax + b2 +

A2

1ax + b22 +
Á

+

Ak

1ax + b2k

1ax + b2k,

f1x2 = a polynomial +

N1x2
D1x2

q(x),p(x)
q(x),p(x)f(x)

f1x2 = p1x2>q1x2

 = ln ƒ x + 3 ƒ -

1
2

 ln1x2
+ 22 +

322
  tan-1a x22

b +

5

21x2
+ 22 + C

 =

L
 

dx

x + 3
-

1
2

 

L
 

2x

x2
+ 2

  dx + 3
L

 
dx

x2
+ 2

-

5
2

 

L
 

2x dx

1x2
+ 222

 =

L
 

dx

x + 3
-

L
 
x - 3

x2
+ 2

  dx - 5
L

 
x

1x2
+ 222  dx

L
 
6x2

- 15x + 22

1x + 321x2
+ 222  dx
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400 Chapter 7 Techniques of Integration and Differential Equations

SOLUTION Writing as we see that the differential equation can be
written as

The integral on the left can be evaluated using the method of partial fractions. We
write

which leads to

Substituting and yields

Thus, leading to

Here, At this point we can use the initial condition to
determine 

Thus

 y =

14000>32e0.6t

1 + 12>32e0.6t =

4000>3
2>3 + e-0.6t

 y +

2
3

 ye0.6t
=

4000
3

 e0.6t

 y =

2
3

 12000 - y2e0.6t

 
y

2000 - y
=

2
3

 e0.6t

 C1 =

800
1200

=

2
3

 
800

2000 - 800
= C1e

0.6 #0

C1.
y102 = 800C1 = e2000C.

 
y

2000 - y
= C1e

0.6t

 
y

2000 - y
= e0.6t + 2000C

 ln 

y

2000 - y
= 0.6t + 2000C

 
1

2000
 ln y -

1
2000

 ln12000 - y2 = 0.0003t + C

 
L
a 1

2000y
+

1
200012000 - y2 b  dy = 0.0003t + C

A =

1
2000

  and B =

1
2000

,

 1 = 2000B

 1 = 2000A

y = 2000y = 0

1 = A12000 - y2 + By

1
y12000 - y2 =

A
y

+

B

2000 - y

 
L

 

dy

y12000 - y2 =

L
0.0003 dt

 
dy

y12000 - y2 = 0.0003 dt

 
dy

dt
= 0.0003y12000 - y2

dy>dt,y¿
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500

2000

1500

1000

2 4 6 8 t

y
y = 2000

y =
2/3 + e –0.6t

4000/3

Figure 2

The population at time is thus

A sketch of the population size as a function of t is given in Figure 2. �

y =

4000>3
2>3 + e-0.6 #2 L 1378

t = 2

Concepts Review
1. If the degree of the polynomial is less than the de-

gree of then is called a _____ rational
function.

2. To integrate the improper rational function
we first rewrite it as _____.f1x2 =f1x2 = 1x2

+ 42>1x + 12,

f1x2 = p1x2>q1x2q(x),
p(x) 3. If then

_____, _____, and _____.

4. can be decomposed in the
form _____.

13x + 12>[1x - 1221x2
+ 12]

c =b =a =

1x - 121x + 12 + 3x + x2
= ax2

+ bx + c,

Problem Set 7.5
In Problems 1–40, use the method of partial fraction decomposi-
tion to perform the required integration.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13.

14.

15.

16.

17. 18.

19. 20.

21. 22.
L

 
5x + 7

x2
+ 4x + 4

  dx
L

 
x + 1

1x - 322  dx

L
 
x6

+ 4x3
+ 4

x3
- 4x2   dx

L
 
x4

+ 8x2
+ 8

x3
- 4x

  dx

L
 

x3
+ x2

x2
+ 5x + 6

  dx
L

 
x3

x2
+ x - 2

  dx

L
 

x3
- 6x2

+ 11x - 6

4x3
- 28x2

+ 56x - 32
  dx

L
 

6x2
+ 22x - 23

12x - 121x2
+ x - 62   dx

L
 

7x2
+ 2x - 3

12x - 1213x + 221x - 32   dx

L
 
2x2

+ x - 4

x3
- x2

- 2x
  dx

L
 

5 - x

x2
- x1p + 42 + 4p

  dx

L
 

17x - 3

3x2
+ x - 2

  dx

L
 
2x2

- x - 20

x2
+ x - 6

  dx
L

 
2x + 21

2x2
+ 9x - 5

  dx

L
 

x + p

x2
- 3px + 2p2  dx

L
 

3x - 13

x2
+ 3x - 10

  dx

L
 

x - 7

x2
- x - 12

  dx
L

 
x - 11

x2
+ 3x - 4

  dx

L
 

5x

2x3
+ 6x2  dx

L
 

3

x2
- 1

  dx

L
 

2

x2
+ 3x

  dx
L

 
1

x1x + 12   dx

23.

24.

25. 26.

27.

28.

29. 30.

31.

32.

33.

34. 35.

36.

37. 38.

39.

40.
L

5

1
 

3x + 13

x2
+ 4x + 3

  dx

L

p>4

0
 

cos u

11 - sin2 u21sin2 u + 122  du

L

6

4
 

x - 17

x2
+ x - 12

  dx
L

 
2x3

+ 5x2
+ 16x

x5
+ 8x3

+ 16x
  dx

L
 

1sin t214 cos2 t - 12
1cos t211 + 2 cos2 t + cos4 t2   dt

L
 

x3
- 4x

1x2
+ 122  dx

L
 

cos t

sin4 t - 16
  dt

L
 

1sin3 t - 8 sin2 t - 12 cos t

1sin t + 321sin2 t - 4 sin t + 52   dt

L
 

x3
- 8x2

- 1

1x + 321x2
- 4x + 52   dx

L
 

1

1x - 1221x + 422  dx

L
 

1

x4
- 16

  dx
L

 
2x2

- 3x - 36

12x - 121x2
+ 92   dx

L
 

3x + 2

x1x + 222 + 16x
  dx

L
 
2x2

+ x - 8

x3
+ 4x

  dx

L
 
x2

+ 19x + 10

2x4
+ 5x3   dx

L
 
3x2

- 21x + 32

x3
- 8x2

+ 16x
  dx

L
 

x6

1x - 22211 - x25  dx

L
 

3x + 2

x3
+ 3x2

+ 3x + 1
  dx
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In Problems 41–44, solve the logistic differential equation repre-
senting population growth with the given initial condition. Then
use the solution to predict the population size at time 

41.

42.

43.

44.

45. Solve the logistic differential equation for an arbitrary
constant of proportionality k, capacity L, and initial condition

46. Explain what happens to the solution of the logistic dif-
ferential equation if the initial population size is larger than the
maximum capacity.

47. Without solving the logistic equation or referring to its
solution, explain how you know that if then the popula-
tion size is increasing.

48. Consider the logistic equation with initial condition
Assuming for what values of t is the graph of

the population size y(t) concave up?

49. Suppose that the earth will not support a population of
more than 16 billion and that there were 2 billion people in 1925
and 4 billion people in 1975. Then, if y is the population t years
after 1925, an appropriate model is the logistic differential
equation

(a) Solve this differential equation.
(b) Predict the population in 2015.
(c) When will the population be 9 billion?

50. Do Problem 49 assuming that the upper limit for the pop-
ulation is 10 billion.

dy

dt
= ky116 - y2

y0 6 L,y(0) = y0.

y0 6 L,

y102 = y0.

y¿ = 0.001y 14000 - y2, y102 = 100

y¿ = 0.0003y 18000 - y2, y102 = 1000

y¿ =

1
10

 y112 - y2, y102 = 2

y¿ = y11 - y2, y102 = 0.5

t = 3.

51. The Law of Mass Action in chemistry results in the differ-
ential equation

where x is the amount of a substance at time t resulting from the
reaction of two others. Assume that when 
(a) Solve this differential equation in the case 
(b) Show that as (if ).
(c) Suppose that and and that 1 gram of the sub-

stance is formed in 20 minutes. How much will be present in
1 hour?

(d) Solve the differential equation if 

52. The differential equation

with and is used to model some growth
problems. Solve the equation and find 

53. As a model for the production of trypsin from trypsino-
gen in digestion, biochemists have proposed the model

where A is the initial amount of trypsinogen, and B is the
original amount of trypsin. Solve this differential equation.

54. Evaluate

Answers to Concepts Review: 1. proper

2. 3. 2; 3;

4.
A

x - 1
+

B

1x - 122 +

Cx + D

x2
+ 1

-1x - 1 +

5
x + 1

L

p>2

p>6
 

cos x

sin x1sin2 x + 122  dx

k 7 0,

dy

dt
= k1A - y21B + y2

lim
t: q

 y.
0 … m 6 y0 6 Mk 7 0

dy

dt
= k1y - m21M - y2, y(0) = y0

a = b.

b = 4,a = 2
b 7 at : qx : a

b 7 a.
t = 0.x = 0

dx

dt
= k1a - x21b - x2,  k 7 0, a 7 0, b 7 0

Throughout this chapter we have presented a number of techniques for finding an
antiderivative (or indefinite integral) of a given function. By now it should be
clear that while differentiation is a straightforward process, antidifferentiation is
not. The Sum Rule, Product Rule, Quotient Rule, and Chain Rule can be used to
find the derivative of almost any function, but there is no sure-fire method for
finding antiderivatives. There is only a set of techniques that one might apply.
Thus, to a large extent, antidifferentiation is a trial and error process; when one
method fails, look for another. This being said, however, we can give the following
strategies for finding antiderivatives.

1. Look for a substitution that makes the integral look like one of the basic
integration formulas from the first section of this chapter. For example,

can be evaluated using simple substitutions.

2. Look for situations where you have the product of two functions, where the
derivative of one of them times the antiderivative of the other is one of the
basic integration formulas from Section 7.1. Integration by parts can be used 

L
sin 2x dx, 

L
xe-x2

 dx, 
L

x2x2
- 1 dx

7.6
Strategies for Integration

402



Section 7.6 Strategies for Integration 403

for these integrals. For example and can both be eval-

uated using integration by parts.

3. Trigonometric Substitutions

If the integrand contains consider the substitution 

If the integrand contains consider the substitution 

If the integrand contains consider the substitution 

4. If the integrand is a proper rational function, that is, the degree of the numer-
ator is less than that of the denominator, then decompose the integrand using
the method of partial fractions. Often the terms in the resulting sum can be in-
tegrated one at a time. If the integrand is an improper rational function, apply
long division to write it as the sum of a polynomial and a proper rational func-
tion.Then apply the method of partial fractions to the proper rational function.

These suggestions, along with a bit of ingenuity, will go a long way in evaluat-
ing antiderivatives.

Tables of Integrals The inside back cover of the book contains 110 (indefi-
nite) integration formulas. There are larger tables, such as those found in the CRC
Standard Mathematical Tables and Formulae (published by CRC Press) and
Handbook of Mathematical Functions (edited by Abramowitz and Stegun, pub-
lished by Dover), but the list of 110 will suffice for our purposes. The important
thing to keep in mind is that you must often use these formulas along with the
method of substitution to evaluate an indefinite integral. This is why many tables
of integrals, including those at the end of this book, use u for the variable of in-
tegration, rather than x. You should think of u as being some function of x (maybe
just x itself). The next example shows how one formula can be used to evaluate
several integrals using the method of substitution.

� EXAMPLE 1 Use Formula (54) from the inside back cover

(54)

to evaluate the following integrals:

(a) (b)

(c) (d)

SOLUTION
(a) In this integral we have and so

For part (b), we have to recognize as so the appropriate substitution is
and Thus

 =

y

2
 216 - 4y2

+ 4 sin-1
 

y

2
+ C

 =

1
2

 a2y

2
 242

- 12y22 +

42

2
 sin-1

 

2y

4
b + C

 
L
216 - 4y2 dy =

1
2

 

L
242

- 12y22 12 dy2
du = 2 dy.u = 2y

12y22,4y2

L
29 - x2 dx =

x

2
 29 - x2

+

9
2

 sin-1
 
x

3
+ C

u = x,a = 3

L
et2100 - e2t dt

L
y 21 - 4y4 dy

L
216 - 4y2 dy

L
29 - x2 dx

L
2a2

- u2 du =

u

2
 2a2

- u2
+

a2

2
 sin-1

  
u
a

+ C

x = a sec t.2x2
- a2,

x = a tan t.2x2
+ a2,

x = a sin t.2a2
- x2,

L
x sinh x dx

L
xex dx
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In Example 1 we were able to evalu-
ate four seemingly unrelated inte-
grals using the same formula from
the table of integrals. Each required
a different substitution. When you
use a table of integrals to help you
evaluate an integral, keep in the
back of your mind the method of
substitution.

Tables and Substitution

Part (c) requires a little foresight. We might be tempted to make the substitution
but then The presence of in the expression du is

troubling because we have just y in the remainder of the integrand. For this part we
must see the radical as making Formula (54) applicable with the sub-
stitution and Thus

For part (d) we recognize that the radical can be written as and that
we should make the substitution and Thus

�

Computer Algebra Systems and Calculators Today a computer algebra
system such as Maple, Mathematica, or Derive, can be used to evaluate indefinite
or definite integrals. Many calculators are also capable of evaluating integrals. If
such systems are used to evaluate definite integrals, it is important to distinguish
whether the system is giving you an exact answer, usually obtained by applying the
Second Fundamental Theorem of Calculus, or whether it is giving an approxi-
mation (using something similar to, but probably a little more sophisticated than,
the Parabolic Method of Section 5.6). It might seem like the two are equally good
in practical situations, and if we were presented with just one integral to evaluate,
this may well be correct. However, in many cases, the result of the definite integral
will be used in subsequent calculations. In a case like this it is more accurate, and
often easier, to find the exact answer and then use the exact answer in further cal-

culuations. For example, if is needed in subsequent calculations, it 

would be better to find an antiderivative and use the Second Fundamental Theo-
rem of Calculus to obtain

Using in subsequent calculations would be preferable to 0.785398, which is
what Mathematica gives for a numerical approximation to the integral.

In some cases, however, it is not possible to evaluate a definite integral by ap-
plying the Second Fundamental Theorem of Calculus, because some functions do
not have antiderivatives that can be expressed in terms of elementary functions.
Our inability to find a simple formula for an antiderivative does not absolve us of
the task of finding the value of the definite integral. It just means that we must use
a numerical method to approximate the definite integral. Many practical problems
lead to just this situation, where the necessary integral is intractable and we must
resort to a numerical method. We discussed numerical integration in Section 5.6.

p>4
L

1

0
 

1

1 + x2  dx = [tan-1 x]0
1

= tan-1 1 - tan-1 0 =

p

4

L

1

0
 

1

1 + x2  dx

 =

et

2
 2100 - e2t

+ 50 sin-1
 
et

10
+ C

 =

et

2
 2102

- 1et22 +

102

2
 sin-1

 
et

10
+ C

 
L

et2100 - e2t dt =

L
2102

- 1et22 1et dt2
du = et dt.u = et

2100 - 1et22
 =

y2

4
 21 - 4y4

+

1
8

 sin-1 2y2
+ C

 =

1
4

 a2y2

2
 21 - 12y222 +

1
2

 sin-1
 

2y2

1
b + C

 
L

y 21 - 4y4 dy =

1
4

 

L
21 - 12y222 14y dy2

du = 4y dy.u = 2y2
21 - 12y222

y3du = -16y3 dy.u = 1 - 4y4,
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1

0.5

1 x

y

y = sin x2

π�

Figure 1

The mass is the integral of the densi-
ty, so the mass can be thought of as
the area under the density curve. At
position the density is 1, and
it decreases slowly as x increases. In
order to make the area under the
density curve equal to 1, we would
expect to have to choose the cut-off
point to be slightly larger than 1.

x = 0,

An Approximate Answer≈

y =   (x) = e–x/41

0.5

1 2 x

y

Area = 1

�

� EXAMPLE 2 Find the center of mass of the homogeneous lamina shown in
Figure 1.

SOLUTION Using the formulas from Section 6.6, we have

Among these integrals, only the second can be evaluated using the Second Funda-
mental Theorem of Calculus. For the first and the third, there is no antiderivative
that can be expressed in terms of elementary functions. We must therefore resort
to an approximation for the integrals. A CAS gives the following values for these
integrals

Notice that the CAS was able to give an exact value for the second integral and
approximations for the first and third. From these results we can calculate

�

There are also situations where the upper limit of an integral is an unknown. If
this is the case, then use of the Second Fundamental Theorem of Calculus is pre-
ferred over the use of a numerical approximation.The next two examples illustrate
this.The two problems are in principle the same, but the methods of solution are, of
necessity, different.

� EXAMPLE 3 A rod has density equal to for 
Where should the rod be cut off so that the mass from 0 to the cut is equal to one?

SOLUTION Let a denote the cut-off point. We then require

Solving for a gives

Here we obtained the exact answer, which we could approximate
as 1.1507. �

a = -4 ln13>42,
 a = -4 ln 

3
4

L 1.1507

 4e-a>4
= 3

 1 = 4 - 4e-a>4

1 =

L

a

0
d1x2 dx =

L

a

0
exp1-x>42 dx = 4 - 4e-a>4

x 7 0.d1x2 = exp1-x>42

 y =

Mx

m
L

0.33494 d
0.89483 d

L 0.3743

 x =

My

m
L

d

0.89483 d
L 1.1175

 Mx =

d

2
 

L

2p
0

sin2 x2 dx L 0.33494 d

 My = d
L

2p
0

x sin x2 dx = d c- 1
2

 cos x2 d
0

2p
= d

 m = d
L

2p
0

sin x2 dx L 0.89483 d

 Mx =

d

2
 

L

2p
0

sin2 x2 dx

 My = d
L

2p
0

x sin x2 dx

 m = d
L

2p
0

sin x2 dx
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406 Chapter 7 Techniques of Integration and Differential Equations

Using the fact that mass is area
under the density curve, we see from
the figure below that the cut-off
should be somewhere between 0.5
and 1. This give us a starting point to
approximate the answer.

Another Approximation≈

3

1

2

0.5 1 1.5 x

y

Area = 1

y =   (x) = e
1
2

x3/2

�

� EXAMPLE 4 A rod has density equal to for 

Where should the rod be cut off so that the mass from 0 to the cut is equal to one?
Use the Bisection Method to approximate the cut-off point accurate to two signif-
icant places.

SOLUTION Again, let a denote the position of the cut. We then require that

The antiderivative of cannot be expressed in terms of elementary
functions, so we cannot use the Second Fundamental Theorem of Calculus to eval-
uate the definite integral. We are forced to approximate the integral using numeri-
cal methods.The problem is that we must have fixed upper and lower limits for the
integral in order to approximate it, but in this case the upper limit is the variable a.
A little trial and error, along with a program to approximate definite integrals,
leads to the following:

is too large

is too small

At this point we know that the desired value of a is between 0.5 and 1.0. The mid-
point of [0.5, 1.0] is 0.75, so we try 0.75:

is too small

Continuing in this manner,

is too large

is too small

is too small

is too 
large

is too 
large

is too 
small

At this point, we have trapped a between 0.84765625 and 0.8515625, so correct to
two places, the cut-off point should be  �

� EXAMPLE 5 Use Newton’s Method to approximate the solution of the
equation in Example 4.

a = 0.85.

a = 0.84765625
L

0.84765625

0
expa1

2
 x3>2b  dx L 0.99775a = 0.84765625;

a = 0.8515625
L

0.8515625

0
expa1

2
 x3>2b  dx L 1.0035a = 0.8515625;

a = 0.859375
L

0.859375

0
expa1

2
 x3>2b  dx L 1.0151a = 0.859375;

a = 0.84375
L

0.84375

0
expa1

2
 x3>2b  dx L 0.99198a = 0.84375;

a = 0.8125
L

0.8125

0
expa1

2
 x3>2b  dx L 0.94643a = 0.8125;

a = 0.875
L

0.875

0
expa1

2
 x3>2b  dx L 1.0385a = 0.875;

a = 0.75
L

0.75

0
expa1

2
 x3>2b  dx L 0.85815a = 0.75;

a = 0.5
L

0.5

0
expa1

2
 x3>2b  dx L 0.5374a = 0.5;

a = 1
L

1

0
expa1

2
 x3>2b  dx L 1.2354a = 1;

exp A12 x3>2 B
1 =

L

a

0
d1x2 dx =

L

a

0
expa1

2
 x3>2b  dx

x 7 0.d1x2 = expa1
2

 x3>2b
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SOLUTION The equation to be solved can be written as

Let denote the left side of this equation. We are then asking for an approxi-
mation to the solution of Recall that Newton’s Method is an iterative
method defined by

In this case we can use the First Fundamental Theorem of Calculus to obtain

We begin with as our initial guess (which we know from the solution of Ex-
ample 4 is on the high side). Then

Our approximation for the cut-off point is 0.849181. Notice that Newton’s Method
required less work and gave a more accurate answer. �

Functions Defined by Tables It is now common to have computers collect
data from a system at periodic points in time, often very frequently, such as once
per second. When the data collected represent a function which must be in-
tegrated, we really cannot use the Second Fundamental Theorem of Calculus.
Instead, we must apply a numerical method that uses just the sampled points.

� EXAMPLE 6 Cars are often equipped with devices that monitor instanta-
neous fuel consumption (measured in miles per gallon). Suppose a computer is
hooked up to the car so that it collects the instantaneous fuel consumption as well
as the instantaneous speed. A graph showing both speed (in miles per hour) and
fuel consumption (in miles per gallon) are shown in Figure 2 for a two-hour trip.
The top (black) curve shows speed, and the bottom curve shows fuel consumption.
The fuel consumption varies quite a lot, depending mainly on whether the car is
going up or down a hill. Part of the data are shown in the table below. How far did
the car travel in this two-hour trip, and how much fuel was consumed?

 a5 = 0.849181 -
L

0.849181

0
expa1

2
 x3>2b  dx - 1

expa1
2

 0.8491813>2b
L 0.849181

 a4 = 0.849203 -
L

0.849203

0
expa1

2
 x3>2b  dx - 1

expa1
2

 0.8492033>2b
L 0.849181

 a3 = 0.857197 -
L

0.857197

0
expa1

2
 x3>2b  dx - 1

expa1
2

 0.8571973>2b
L 0.849203

 a2 = 1 -
L

1

0
expa1

2
 x3>2b  dx - 1

expa1
2

 13>2b
L 0.857197

a1 = 1

F¿1a2 = expa1
2

 a3>2b

an + 1 = an -

F1an2
F¿1an2

F1a2 = 0.
F(a)

L

a

0
expa1

2
 x3>2b  dx - 1 = 0
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408 Chapter 7 Techniques of Integration and Differential Equations

The figure suggests that the average
fuel consumption is about 20 miles
per gallon and that the average
velocity is about 50 miles per hour.
After 2 hours (120 minutes) the car
would have traveled about 100
miles, and, at roughly 20 miles per
gallon, the fuel consumed would be 

We 

expect our answer to be near 5
gallons.

100 miles
20 miles per gallon

= 5 gallons.

A Rough Approximation≈

60

70

10

0

20

30

40

50

200 40 60 80 100 120
t

miles/hr.
miles/gal.

(minutes)

Time Speed Fuel Consumption Speed/ 
(Minutes) (miles/hr) (miles/gal) Fuel Cons.

0 36 20.00 1.80

1 37 22.35 1.66

2 36 23.67 1.52

3 36 28.75 1.25

118 42 24.30 1.73

119 40 24.83 1.61

120 41 26.19 1.57

oooo

Figure 2

SOLUTION We will use the Trapezoidal Rule to approximate the integrals. The
distance traveled is the definite integral of instantaneous speed, so

The total amount of fuel consumed is the integral of where is the

amount of fuel in the car’s tank at time t. Notice that fuel consumption is given in
miles per gallon, which is The last column in the above table is the speed

divided by which, by the Chain Rule, equals The fuel consumed
is therefore

�

Special Functions Many definite integrals that cannot be evaluated using the
Second Fundamental Theorem of Calculus arise so often in applied mathematics
that they are given special names. Here are some of these accumulation functions,
along with their common names and abbreviations:

the error function

the sine integral

the Fresnel sine integral

the Fresnel cosine integral

There are numerous others; see Handbook of Mathematical Functions for
many more. Algorithms, often involving infinite series (a topic we will take up in
Chapter 9), have been developed to approximate these functions.These algorithms
are usually accurate and efficient. In fact, it is no more difficult (for a computer,
anyway) to approximate the Fresnel integral S(1) than it is to approximate the sine
of 1. Since many practical problems work out to involve such functions, it is impor-
tant to know that they exist and how to find approximations for them.

� EXAMPLE 7 Express the mass of the lamina from Example 2 in terms of
the Fresnel sine integral.

C1x2 =

L

x

0
cosapt2

2
b  dt

S1x2 =

L

x

0
sinapt2

2
b  dt

Si1x2 =

L

x

0
 
sin t

t
  dt

erf1x2 =

22pLx

0
e-t2

 dt

 L 5.30 gallons

 L

2 - 0
2 # 120

  [1.80 + 211.66 + 1.52 +
Á

+ 1.612 + 1.57]

 
L

2

0
 

df

dt
  dt =

L

2

0
 

ds>dt

ds>df
  dt

df>dt.ds>dfds>dt
ds>df.

f(t)
df

dt
,

D =

L

2

0
 
ds

dt
 dt L

2 - 0
2 # 120

  [36 + 2137 + 36 +
Á

+ 402 + 41] = 109.4 miles
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SOLUTION The mass was found to be

If we make the substitution then and 
The limits on the definite integral must also be transformed

Thus,

� = dAp2  S A22 B L 0.895 d

 = dAp2 L22

0
sinapt2

2
b  dt

 m = d
L

22

0
sina t2p

2
bAp2  dt

 x = 1p Q  t = 22

 x = 0 Q  t = 0

dx = 2p>2 dt.x2
= t2p>2x = t 2p>2,

m = d
L

1p
0

sin x2 dx

Concepts Review
1. Tables of Integrals are most helpful when used in con-

junction with the method of _____.

2. Both and can
be evaluated using Formula Number _____.

11sin2 x + 123>2 cos x dx11x2
+ 923>2 dx

3. When using a CAS to evaluate a definite integral it is
important to know whether the system is giving us an exact
answer or a(n) _____.

4. The sine integral evaluated at is _____.S102 =t = 0

Problem Set 7.6
In Problems 1–12, evaluate the given integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–30, use the table of integrals on the inside back
cover, perhaps combined with a substitution, to evaluate the given
integrals.

13. (a) (b)

14. (a) (b)

15. (a) (b)
L

 
ex

9 - 16e2x
  dx

L
 

dx

9 - 16x2

L
cos t 23 - 4 cos t sin t dt

L
2t 23 - 4t dt

L
ex23ex

+ 1 ex dx
L

x23x + 1 dx

L

2p

0
ƒ sin 2x ƒ  dx

L

p>2

-p>2
cos2 x sin x dx

L

4

3
 

1

t - 22t
  dt

L

5

0
x2x + 2 dx

L

1>2

0
 

1

1 - t2  dt
L

2

1
 

1

x2
+ 6x + 8

  dx

L
sin3 x cos x dx

L
cos4 2x dx

L
 

x

x2
- 5x + 6

  dx
L

2

1
 
ln x

x
  dx

L
 

x

x2
+ 9

  dx
L

xe-5x dx

16. (a) (b)

17. (a)

(b)

18. (a) (b)

19. (a) (b)

20. (a) (b)

21. (a) (b)

22. (a) (b)

23. (a) (b)

24. (a) (b)

25. 26.
L

 
sech 1x1x

  dx
L

sinh2 3t dt

L
 

sin x

cos x25 - 4 cos x
  dx

L
 

dz

z 25 - 4z

L
 

sin t cos t23 sin t + 5
  dt

L
 

y23y + 5
  dy

L
 
2x2

- 4x

x - 2
  dx

L
 
2x2

+ 2x - 3
x + 1

  dx

L
 

dt2t2
+ 3t - 5L

 
dt2t2

+ 2t - 3

L
t823 + 5t6 dt

L
t223 + 5t2 dt

L
 

x25 + 3x4
  dx

L
 

dx25 + 3x2

L
 
216 - 3t6

t
  dt

L
 
216 - 3t2

t
  dt

L
sin2 x cos x29 - 2 sin2 x dx

L
x229 - 2x2 dx

L
 

x

5x4
- 11

  dx
L

 
dx

5x2
- 11
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410 Chapter 7 Techniques of Integration and Differential Equations

27.

28.

29. 30.

Use a CAS to evaluate the definite integrals in Problems
31–40. If the CAS does not give an exact answer in terms of ele-
mentary functions, then give a numerical approximation.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

In Problems 41–48, the density of a rod is given. Find c so that the
mass from 0 to c is equal to 1. Whenever possible find an exact
solution. If this is not possible, find an approximation for c. (See
Examples 4 and 5).

41. 42.

43. 44.

45. 46.

47. 48.

49. Find c so that 

50. Find c so that Hint: Use

symmetry.
L

c

-c
 

122p
 e-x2>2 dx = 0.95.

L

c

0
 

1

322p
 x3>2e-x>2 dx = 0.90.

d1x2 = 4 
sin x

x
d1x2 = 6 cosax2

2
b

d1x2 = ln1x3
+ 12d1x2 = 2e-x 3>2

d1x2 =

x

x2
+ 1

d1x2 = ln1x + 12
d1x2 =

2

x2
+ 1

d1x2 =

1
x + 1

L

3

1
 

du

u 22u - 1L

3

2
 
x2

+ 2x - 1

x2
- 2x + 1

  dx

L

p>4

-p>4
  

x3

4 + tan x
  dx

L

p>2

0
 

1

1 + 2 cos5 x
  dx

L

3

0
x4e-x>2 dx

L

4

1
 
1t

1 + t8  dt

L

p

0
cos4

  
x

2
  dx

L

p>2

0
sin12 x dx

L

1

0
sech23 x dx

L

p

0
 

cos2 x
1 + sin x

  dx

CAS

L
 

1

19 + x223  dx
L

 
cos2 t sin t2cos t + 1

  dt

L
cos t sin t 24 cos t - 1 dt

L
 

cos t sin t22 cos t + 1
  dt

7.7
First-Order Linear

Differential Equations

We first solved differential equations in Section 4.9. There we developed the
method of separation of variables for finding a solution. In Section 4.10 we used
the method of separation of variables to solve differential equations involving
growth and decay.

Not all differential equations are separable. For example, in the differential
equation

dy

dx
= 2x - 3y

In Problems 51–54, the graph of is given along with the
graph of a line. Find c so that the x component of the center of
mass of the shaded homogeneous lamina is equal to 2.

51. 52.

53. 54.

55. Find the following derivatives.

(a) (b)

56. Find the derivatives of the Fresnel functions

(a) (b)

57. Over what intervals (on the nonnegative side of the num-
ber line) is the error function increasing? Concave up?

58. Over what subintervals of is the Fresnel function
S(x) increasing? Concave up?

59. Over what subintervals of is the Fresnel function
C(x) increasing? Concave up?

60. Find the coordinates of the first inflection point of the
Fresnel function S(x) that is to the right of the origin.

Answers to Concepts Review: 1. substitution 2. 53
3. approximation 4. 0

C0, 2 D
C0, 2 D

d

dx
 C1x2d

dx
 S1x2

d

dx
 Si1x2d

dx
 erf1x2

7

1

2

3

4

5

6

1 2 5 63 4 7 x

y
y = x

y = c sin πx
2c

7

1

2

3

4

5

6

1 2 5 63 4 7 x

y

y = 6 e–x/3

x = c

7

1

2

3

4

5

6

1 2 5 63 4 7 x

y
y = x

y = c

8

2

4

6

1 2 5 63 4 7 x

y

y = 8 – x

y = cx

y = f1x2
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Section 7.7 First-Order Linear Differential Equations 411

there is no way to separate the variables in such a way as to have dy and all ex-
pressions involving y on one side, and dx and all expressions involving x on the
other side. This equation can, however, be put in the form

where P(x) and Q(x) are functions of x only. A differential equation of this form is
said to be a first-order linear differential equation. irst-order refers to the fact
that the only derivative is a first derivative. Linear refers to fact that the equation
can be written in the form where is the derivative op-
erator, and I is the identity operator (that is ). Both and I are linear
operators.

The family of all solutions of a differential equation is called the general solu-
tion. Many problems require that the solution satisfy the condition when

where a and b are given. Such a condition is called an initial condition, and
a function that satisfies the differential equation and the initial condition is called
a particular solution.

Solving First-Order Linear Equations To solve the first-order linear dif-
ferential equation, we first multiply both sides by the integrating factor

(The reason for this step will become clear shortly.) The differential equation is then

The left side is the derivative of the product so the equation takes the
form

Integration of both sides yields

The general solution is thus

It is not worth memorizing this final result; the process of getting there is easily re-
called and that is what we illustrate.

� EXAMPLE 1 Solve

SOLUTION Our integrating factor is

(We have taken the arbitrary constant from the integration to be 0. The
choice for the constant does not affect the answer as long as you use the same ex-
pression in both occurrences of See Problems 27 and 28.) Multiplying
both sides of the original equation by we obtain

x2
 

dy

dx
+ 2xy = sin 3x

x2,
1P(x) dx.

1P1x2 dx

e1P1x2 dx
= e112>x2 dx

= e2 ln ƒx ƒ

= eln x2
= x2

dy

dx
+

2
x

 y =

sin 3x

x2

y = e-1P1x2 dx

L
1Q1x2e1P1x2 dx2 dx

ye1P1x2 dx
=

L
1Q1x2e1P1x2 dx2 dx

d

dx
 1y # e1P1x2 dx2 = e1P1x2 dxQ1x2

y # e1P1x2 dx,

e1P1x2 dx
 

dy

dx
+ e1P1x2 dxP1x2y = e1P1x2 dxQ1x2

e1P1x2 dx

x = a,
y = b

DxIy = y
DxDxy + P1x2Iy = Q1x2,

F

dy

dx
+ P1x2y = Q1x2
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The left side of this equation is the derivative of the product Thus,

Integration of both sides yields

or

�

� EXAMPLE 2 Find the particular solution of

that satisfies when 

SOLUTION The appropriate integrating factor is

Upon multiplication by this factor, our equation takes the form

or

Thus, the general solution is

Substitution of when makes The desired particular solution is

�

Applications We begin with a mixture problem, typical of many problems that
arise in chemistry.

� EXAMPLE 3 A tank initially contains 120 gallons of brine, holding 75
pounds of dissolved salt in solution. Salt water containing 1.2 pounds of salt per
gallon is entering the tank at the rate of 2 gallons per minute and brine flows out at
the same rate (Figure 1). If the mixture is kept uniform by constant stirring, find
the amount of salt in the tank at the end of 1 hour.

SOLUTION Let y be the number of pounds of salt in the tank at the end of t
minutes. From the brine flowing in, the tank gains 2.4 pounds of salt per minute;
from that flowing out, it loses pounds per minute. Thus,

subject to the condition when The equivalent equation

dy

dt
+

1
60

 y = 2.4

t = 0.y = 75

dy

dt
= 2.4 -

1
60

 y

2
120 y

y =

1
2

 x2e3x
+ 4e3x

C = 4.x = 0y = 4

y =

1
2

 x2e3x
+ Ce3x

e-3xy =

L
x dx =

1
2

 x2
+ C

d

dx
 1e-3xy2 = x

e11-32 dx
= e-3x

x = 0.y = 4

dy

dx
- 3y = xe3x

y = A- 1
3 cos 3x + C Bx-2

x2y =

L
 sin 3x dx = -

1
3 cos 3x + C

d

dx
 1x2y2 = sin 3x

x2y.
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Figure 1

In flow problems such as Example 3,
we apply a general principle. Let y
measure the quantity of interest that
is in the tank at time t. Then the rate
of change of y with respect to time is
the input rate minus the output rate;
that is

dy

dt
= rate in - rate out

A General Principle
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has the integrating factor and so

We conclude that

Substituting when yields and so

At the end of 1 hour 

Note that the limiting value for y as is 144. This corresponds to the fact
that the tank will ultimately take on the complexion of the brine entering the tank.
One hundred twenty gallons of brine with a concentration of 1.2 pounds of salt per
gallon will contain 144 pounds of salt. �

We turn next to an example from electricity. According to Kirchhoff’s Law, a
simple electrical circuit (Figure 2) containing a resistor with a resistance of R ohms
and an inductor with an inductance of L henrys in series with a source of electro-
motive force (a battery or generator) that supplies a voltage of volts at time t
satisfies

where I is the current measured in amperes. This is a linear equation, easily solved
by the method of this section.

� EXAMPLE 4 Consider a circuit (Figure 2) with henrys, ohms,
and a battery supplying a constant voltage of 12 volts. If at (when the
switch S is closed), find I at time t.

SOLUTION The differential equation is

Following our standard procedure (multiply by the integrating factor integrate,
and multiply by ), we obtain

The initial condition, at gives hence

As t increases, the current tends toward a current of 2 amps. �

I = 2 - 2e-3t

C = -2;t = 0,I = 0

I = e-3t12e3t
+ C2 = 2 + Ce-3t

e-3t
e3t,

2 
dI

dt
+ 6I = 12 or 

dI

dt
+ 3I = 6

t = 0I = 0
R = 6L = 2

L 
dI

dt
+ RI = E1t2

E(t)

t : q

y = 144 - 69e-1
L 118.62 pounds

1t = 602,
y = e-t>60[144e t>60

- 69] = 144 - 69e-t>60

C = -69,t = 0y = 75

ye t>60
=

L
2.4e t>60 dt = 160212.42e t>60

+ C

d

dt
 [ye t>60] = 2.4e t>60

et>60,
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L

R

S

E

Figure 2

Concepts Review
1. The general first-order linear differential equation has

the form An integrating factor for this
equation is _____.

2. Multiplying both sides of the first-order linear differen-
tial equation in Question 1 by its integrating factor makes the left

side (_____).
d

dx

dy>dx + P1x2y = Q1x2. 3. The integrating factor for where
is _____. When we multiply both sides by this factor, the

equation takes the form _____. The general solution to this equa-
tion is _____.

4. The solution to the differential equation in Question 1
satisfying is called a _____ solution.y1a2 = b

y =

x 7 0,
dy>dx - 11>x2y = x,

Before you compute the integrating
factor it is important that you put
the differential equation in the stan-
dard form

where the coefficient of is 1.dy>dx

dy

dx
+ P(x)y = Q(x)

Before Computing 
the Integrating Factor
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Problem Set 7.7
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In Problems 1–14, solve each differential equation.

1.

2.

3.

4. 5.

6. 7.

8. 9.

10.

11. when 

12. when 

13. when 

14. when 

15. A tank contains 20 gallons of a solution, with 10 pounds
of chemical A in the solution.At a certain instant, we begin pour-
ing in a solution containing the same chemical in a concentration
of 2 pounds per gallon. We pour at a rate of 3 gallons per minute
while simultaneously draining off the resulting (well-stirred) so-
lution at the same rate. Find the amount of chemical A in the tank
after 20 minutes.

16. A tank initially contains 200 gallons of brine, with 50
pounds of salt in solution. Brine containing 2 pounds of salt per
gallon is entering the tank at the rate of 4 gallons per minute and
is flowing out at the same rate. If the mixture in the tank is kept
uniform by constant stirring, find the amount of salt in the tank at
the end of 40 minutes.

17. A tank initially contains 120 gallons of pure water. Brine
with 1 pound of salt per gallon flows into the tank at 4 gallons per
minute, and the well-stirred solution runs out at 6 gallons per
minute. How much salt is in the tank after t minutes,

18. A tank initially contains 50 gallons of brine, with 30
pounds of salt in solution. Water runs into the tank at 3 gallons
per minute and the well-stirred solution runs out at 2 gallons per
minute. How long will it be until there are 25 pounds of salt in the
tank?

19. Find the current I as a function of time for the circuit of
Figure 3 if the switch S is closed and at t = 0.I = 0

0 … t … 60?

x =

p

6
.sin x  

dy

dx
+ 2y cos x = sin 2x; y = 2

x = 1.xy¿ + 11 + x2y = e-x; y = 0

x = 0.y¿ = e2x
- 3y; y = 1

x = 1.
dy

dx
-

y

x
= 3x3; y = 3

dy

dx
+ 2y = x

y¿ + yf1x2 = f1x2y¿ +

2y

x + 1
= 1x + 123

dy

dx
+

y

x
=

1
x

y¿ - ay = f1x2

dy

dx
-

y

x
= xexy¿ + y tan x = sec x

11 - x22 

dy

dx
+ xy = ax, ƒ x ƒ 6 1

1x + 12 

dy

dx
+ y = x2

- 1

dy

dx
+ y = e-x

20. Find I as a function of time for the circuit of Figure 4, as-
suming that the switch is closed and at t = 0.I = 0

L = 1 H

E = 1 V

R = 106 Ω

S

Figure 3

E = 120
sin 377t

L = 3.5 H
S

Figure 4

E = 120
sin 377t

S
R = 1000 Ω

Figure 5

21. Find I as a function of time for the circuit of Figure 5, as-
suming that the switch is closed and at 

22. Suppose that tank 1 initially contains 100 gallons of solu-
tion, with 50 pounds of dissolved salt, and tank 2 contains 200 gal-
lons, with 150 pounds of dissolved salt. Pure water flows into tank
1 at 2 gallons per minute, the well-mixed solution flows out and
into tank 2 at the same rate, and finally, the solution in tank 2
drains away also at the same rate. Let x(t) and y(t) denote the
amounts of salt in tanks 1 and 2, respectively, at time t. Find y(t).
Hint: First find x(t) and use it in setting up the differential equa-
tion for tank 2.

23. A tank of capacity 100 gallons is initially full of pure alco-
hol. The flow rate of the drain pipe is 5 gallons per minute; the
flow rate of the filler pipe can be adjusted to c gallons per minute.
An unlimited amount of 25% alcohol solution can be brought in
through the filler pipe. Our goal is to reduce the amount of alco-
hol in the tank so that it will contain 100 gallons of 50% solution.
Let T be the number of minutes required to accomplish the de-
sired change.

(a) Evaluate T if and both pipes are opened.
(b) Evaluate T if and we first drain away a sufficient

amount of the pure alcohol and then close the drain and
open the filler pipe.

(c) For what values of c (if any) would strategy (b) give a faster
time than (a)?

(d) Suppose that Determine the equation for T if we ini-
tially open both pipes and then close the drain.

24. The differential equation for a falling body near the
earth’s surface with air resistance proportional to the velocity is

where feet per second per second is
the acceleration of gravity and is the drag coefficient. Show
each of the following:
(a) where and

is the so-called terminal velocity.
(b) If y(t) denotes the altitude, then

25. A ball is thrown straight up from ground level with an ini-
tial velocity per second. Assuming a drag coeffi-
cient of determine each of the following:
(a) the maximum altitude
(b) an equation for T, the time when the ball hits the ground

26. Mary bailed out of her plane at an altitude of 8000 feet,
fell freely for 15 seconds, and then opened her parachute.Assume

a = 0.05,
v0 = 120 feet

y1t2 = y0 + tvq + 11>a21v0 - vq211 - e-at2

vq = -g>a = lim
t: q

v1t2
v0 = v102,v1t2 = 1v0 - vq2e-at

+ vq,

a 7 0
g = 32dv>dt = -g - av,

v

EXPL

c = 4.

c = 5
c = 5

t = 0.I = 0
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that the drag coefficients are for free fall and 
with the parachute. When did she land?

27. For the differential equation the

integrating factor is The general antiderivative

is equal to 

(a) Multiply both sides of the differential equation by

and show that

is an integrating factor for every value of C.

(b) Solve the resulting equation for y, and show that the solution
agrees with the solution obtained when we assumed that

in the integrating factor.C = 0

exp1- ln x + C2
expa

L
a-

1
x
b  dxb = exp1- ln x + C2,

- ln x + C.
L
a-

1
x
b  dx

e11-1>x2 dx.

dy

dx
-

y

x
= x2, x 7 0,

a = 1.6a = 0.10
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28. Multiply both sides of the equation 

by the factor 

(a) Show that is an integrating factor for every value
of C.

(b) Solve the resulting equation for y, and show that it agrees
with the general solution given before Example 1.

Answers to Concepts Review: 1.

2. 3.

4. particular

1>x; 
d

dx
 ay

x
b = 1; x2

+ Cxy exp A1P1x2 dx B
exp A1P1x2 dx B

e1P1x2 dx + C

e1P1x2 dx + C.

dy

dx
+ P1x2y = Q1x2

7.8
Approximations for

Differential Equations

In the previous section we studied a number of differential equations that arise
from physical applications. For each equation, we were always able to find an
analytic solution; that is, we found an explicit function that satisfies the equation.
Many differential equations do not have such analytic solutions, so for these equa-
tions we must settle for approximations. In this section, we will study two ways to
approximate a solution to a differential equation; one method is graphical and the
other is numerical.

Slope Fields Consider a first-order differential equation of the form

This equation says that at the point (x, y) the slope of a solution is given by 
For example, the differential equation says that the slope of the curve pass-
ing through the point (x, y) is equal to y.

For the differential equation at the point (5, 3) the slope of the solu-
tion is at the point (1, 4) the slope is We can in-
dicate graphically this latter result by drawing a small line segment through the
point (1, 4) having slope (see Figure 1).

If we repeat this process for a number of ordered pairs (x, y), we obtain a slope
field. Since plotting a slope field is a tedious job if done by hand, the task is best
suited for computers; Mathematica and Maple are capable of plotting slope fields.
Figure 2 shows a slope field for the differential equation Given an initial
condition, we can follow the slopes to get at least a rough approximation to the
particular solution. We can often see from the slope field the behavior of all solu-
tions to the differential equation.

y¿ =
1
5 xy.

4
5

y¿ =
1
5
# 1 # 4 =

4
5.y¿ =

1
5
# 5 # 3 = 3;

y¿ =
1
5 xy,

y¿ = y
f(x, y).

y¿ = f1x, y2

The function depends on two vari-
ables. Since the
slope of a solution depends on both
the x- and y-coordinates. Functions
of two or more variables were intro-
duced in Section 1.5. We will study
them further in Chapter 12.

y¿1x2 = f1x, y2,
f

A Function of Two Variables

y

x10

1

2

3

4

5

2 3 4 5

Slope =

Slope = 3

4
5

Figure 1

–2

–1

1

2

3

4

5

x

y

1 2 3 4 5 6 7 8 9

Figure 2
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x

y

5

10

15

20

25

30

0.5 1 1.5 2

Figure 3

y

xx0

y0

Tangent line to
solution at (x0, y0)
Slope = f (x0, y0)
Equation: 
y = y0 + y'(x0)(x – x0)

(x0, y0)

Figure 4

y

xx0

h

x1

y0

y1

y(x1)
y = y0 + y'(x0)(x – x0)

y(x)

(x0, y0)

Figure 5

� EXAMPLE 1 Suppose that the size y of a population satisfies the differen-
tial equation The slope field for this differential equation is
shown in Figure 3.

(a) Sketch the solution that satisfies the initial condition 

Describe the behavior of solutions when

(b) and (c) 0 6 y102 6 16.y102 7 16,

y102 = 3.

y¿ = 0.2y116 - y2.

SOLUTION
(a) The solution that satisfies the initial condition contains the point 

(0, 3). From that point to the right, the solution follows the slope lines. The
curve in Figure 3 shows a graph of the solution.

(b) If then the solution decreases toward the horizontal asymptote

(c) If then the solution increases toward the horizontal asymp-
tote 

Parts (b) and (c) indicate that the size of the population will converge toward
the value 16 for any initial population size. �

Euler’s Method We again consider differential equations of the form
with initial condition Keep in mind that y is a function of

x, whether we write it explicitly or not.The initial condition tells us that
the ordered pair is a point on the graph of the solution. We also know just
a bit more about the unknown solution: the slope of the tangent line to the solution
at is This information is summarized in Figure 4.

If h is positive, but small, we would expect the tangent line, which has equation

to be close to the solution y(x) over the interval Let 
Then, at we have

Setting we now have an approximation for the solution at 
Figure 5 illustrates the method we have just described.

Since we know that the slope of the solution when 
is At this point, we do not know but we do have the approx-
imation for it. Thus, we repeat the process to obtain the estimate

for the solution at the point This process, when
continued in this fashion, is called Euler’s Method, named after the Swiss mathe-
matician Leonhard Euler (1707–1783). (Euler is pronounced “oiler.”) The parame-
ter h is often called the step size.

x2 = x1 + h.y2 = y1 + hf1x1, y12
y1

y1x12,f1x1, y1x122.
x = x1y¿ = f1x, y2,

x1.y1 = y0 + hf1x0, y02,
P11x12 = y0 + hy¿1x02 = y0 + hf1x0, y02

x1,
x1 = x0 + h.[x0, x0 + h].

P11x2 = y0 + y¿1x021x - x02 = y0 + f1x0, y021x - x02

f1x0, y02.x0

1x0, y02
y1x02 = y0

y1x02 = y0.y¿ = f1x, y2

y = 16.
0 6 y102 6 16,

y = 16.
y102 7 16,

y102 = 3
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n

0 0.0 1.0 1.00000

1 0.2 1.2 1.22140

2 0.4 1.44 1.49182

3 0.6 1.728 1.82212

4 0.8 2.0736 2.22554

5 1.0 2.48832 2.71828

exnynxn

Algorithm Euler’s Method

To approximate the solution of the differential equation with ini-
tial condition choose a step size h and repeat the following steps for

1. Set 

2. Set yn = yn - 1 + hf1xn - 1, yn - 12.
xn = xn - 1 + h.

n = 1, 2, Á .
y1x02 = y0,

y¿ = f1x, y2

Remember, the solution to a differential equation is a function. Euler’s
Method, however, does not yield a function; rather, it gives a set of ordered pairs

that approximates the solution y. Often, this set of ordered pairs is enough
to describe the solution to the differential equation.

Notice the difference between and (usually unknown) is the
value of the exact solution at and is our approximation to the exact solution
at In other words, is our approximation to 

� EXAMPLE 2 Use Euler’s Method with to approximate the solu-
tion to

over the interval [0, 1].

SOLUTION For this problem, Beginning with and 
we have

�

The differential equation says that y is its own derivative. Thus, we
know that a solution is and in fact is the solution, since 
we are told that y(0) must be 1. In this case, we can compare the five estimated 
y-values from Euler’s Method with the exact y-values as shown in the table in the
margin. Figure 6a shows the five approximations 2, 3, 4, 5, to the
solution y; Figure 6 also shows the exact solution Choosing a smaller h
will usually result in a more accurate approximation. Of course, a smaller h means
that it will take more steps to get to x = 1.

y1x2 = ex.
1xi, yi2, i = 1,

y1x2 = exy1x2 = ex,
y¿ = y

 y5 = 2.0736 + 0.2 # 2.0736 = 2.48832

 y4 = 1.728 + 0.2 # 1.728 = 2.0736

 y3 = 1.44 + 0.2 # 1.44 = 1.728

 y2 = 1.2 + 0.2 # 1.2 = 1.44

 y1 = y0 + hf1x0, y02 = 1 + 0.2 # 1 = 1.2

y0 = 1,x0 = 0f1x, y2 = y.

y¿ = y, y102 = 1

h = 0.2

y1xn2.ynxn.
ynxn,

yn; y1xn2y1xn2
1xi, yi2

0.2 0.4 0.6
(a)

0.8 1

0.5

1

1.5

2

2.5

3
y

x

Figure 6

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3
y

x

(b)
0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3
y

x

(c)
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� EXAMPLE 3 Use Euler’s Method with and to approxi-
mate the solution to

over the interval [0, 1].

SOLUTION We proceed as in Example 1, but shrink the step size h to 0.05 and
get the following table:

y¿ = y, y102 = 1

h = 0.01h = 0.05

418 Chapter 7 Techniques of Integration and Differential Equations

n

0 0.00 1.000000

1 0.01 1.010000

2 0.02 1.020100

3 0.03 1.030301

99 0.99 2.678033

100 1.00 2.704814

ooo

ynxn

n n

0 0.00 1.000000 11 0.55 1.710339

1 0.05 1.050000 12 0.60 1.795856

2 0.10 1.102500 13 0.65 1.885649

3 0.15 1.157625 14 0.70 1.979932

4 0.20 1.215506 15 0.75 2.078928

5 0.25 1.276282 16 0.80 2.182875

6 0.30 1.340096 17 0.85 2.292018

7 0.35 1.407100 18 0.90 2.406619

8 0.40 1.477455 19 0.95 2.526950

9 0.45 1.551328 20 1.00 2.653298

10 0.50 1.628895

ynxnynxn

h Euler Approximation of y(1)

0.2 2.488320 0.229962

0.1 2.593742 0.124540

0.05 2.653298 0.064984

0.01 2.704814 0.013468

0.005 2.711517 0.006765

Error � Exact � Estimate

Figure 6b shows the approximation to the solution when Euler’s Method with
is used.

Computations proceed similarly for the case when The results are
summarized in the table in the margin and in Figure 6c. �

Notice in Example 3 that as the step size h decreases, the approximation to
y(1) (which in this case is ) improves. When the error is ap-
proximately Approximations to the
error for other step sizes are shown in the following table:

e - y5 = 2.718282 - 2.488320 = 0.229962.
h = 0.2,e1

L 2.718282

h = 0.01.
h = 0.05

Note in the table that as the step size h is halved the error is approximately
halved. The error at a given point is therefore roughly proportional to the step size
h.We found a similar result with numerical integration in Section 5.6.There we saw
that the error for the left or right Riemann Sum Rule is proportional to 
and that the error for the Trapezoidal Rule is proportional to The Para-
bolic Rule is even better, having an error proportional to This raises the
question of whether there are better methods for approximating the solution of

In fact, there are a number of methods that are better
then Euler’s Method, in the sense that the error is proportional to a higher power of
y¿ = f1x, y2, y1x02 = y0.

h4
= 1>n4.

h2
= 1>n2.

h = 1>n
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Concepts Review
1. For the differential equation a plot of line

segments whose slopes equal (x, y) is called a _____.

2. The basis for Euler’s Method is that the _____ to the
solution at will be a good approximation to the solution over
the interval [x0, x0 + h].

x0

f
y¿ = f1x, y2, 3. The recursive formula for the approximation to the solu-

tion of a differential equation using Euler’s Method is 
_____.

4. If the solution of a differential equation is concave up,
then Euler’s Method will _____ (underestimate or overestimate)
the solution.

yn =

Problem Set 7.8
In Problems 1–4, a slope field is given for a differential equation of
the form Use the slope field to sketch the solution
that satisfies the given initial condition. In each case, find 
and approximate 

1. y102 = 5

y(2).
lim

x: q

 y1x2
y¿ = f1x, y2.

4. y112 = 3
2

4

6

8

10

12

14

16

18

20

1 2 3 x

y

2

4

6

8

10

12

14

16

18

20

1 2 3 x

y

2

4

6

8

10

12

14

16

18

20

1 2 3 x

y

2

4

6

8

10

12

14

16

18

20

1 2 3 x

y

2. y102 = 6

3. y102 = 16

In Problems 5 and 6, a slope field is given for a differential equa-
tion of the form In both cases, every solution has the
same oblique asymptote (see Section 4.5). Sketch the solution that

y¿ = f1x, y2.

h. These methods are conceptually similar to Euler’s Method: they are “step meth-
ods,” that is, they begin with the initial condition and successively approximate the
solution at each of a number of steps to the right. One method, the Fourth-Order
Runge-Kutta Method, has an error that is proportional to h4

= 1>n4.
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satisfies the given initial condition, and find the equation of the
oblique asymptote.

5. y102 = 6

420 Chapter 7 Techniques of Integration and Differential Equations

–2

2

4

6

8

–1 1 2 3 4 5 6 x

y

2

4

6

8

10

–1 1 2 3 4 5 6 7 8
x

y

(a) Derive the relationship 
(b) Explain why is an approximation to e.

18. Suppose that the function depends only on x. The
differential equation can then be written as

Explain how to apply Euler’s Method to this differential
equation if 

19. Consider the differential equation 
of Problem 18. For this problem, let and

(a) Integrate both sides of the equation from to 
To approximate the integral, use a Riemann sum with a sin-
gle interval, evaluating the integrand at the left end point.

(b) Integrate both sides of from to 
Again, to approximate the integral use a left end point Rie-
mann sum, but with two intervals.

(c) Continue the process described in parts (a) and (b) until
Use a left end point Riemann sum with ten intervals

to approximate the integral.
(d) Describe how this method is related to Euler’s Method.

20. Repeat parts (a) through (c) of Problem 19 for the differ-
ential equation 

21. (Improved Euler Method) Consider the change in
the solution of between and One approxima-
tion is obtained from Euler’s Method:

(Here we have used to indicate Euler’s approximation to the
solution at ) Another approximation is obtained by finding an
approximation to the slope of the solution at 

(a) Average these two solutions to get a single approximation
for 

(b) Solve for to obtain

(c) This is the first step in the Improved Euler Method. Addi-
tional steps follow the same pattern. Fill in the blanks for the
following three-step algorithm that yields the Improved
Euler Method:

1. Set _________________

2. Set _____________________

3. Set _________________________

For Problems 22–27, use the Improved Euler Method with
on the equations in Problems 11–16. Compare your an-

swer with those obtained using Euler’s Method.

28. Apply the Improved Euler Method to the equation
with to approxi-

mate the solution on the interval [0, 1]. (Note that the exact solu-
tion is so ) Compute the error in approximating
y(1) (see Example 3 and the subsequent discussion) and fill in the
following table. For the Improved Euler Method, is the error pro-
portional to h, or some other power of h?h2,

y112 = e.y = ex,

h = 0.2, 0.1, 0.05, 0.01, 0.005y¿ = y, y102 = 1,

CAS

h = 0.2
C

yn =

yNn =

xn =

y1 = y0 +

h

2
 [f1x0, y02 + f1x1, yN12]

y1 = y(x1)

¢y>¢x.

y1x12 - y0

h
L f1x1, y12 L f1x1, yN12¢y

¢x
=

x1:
x1.

yN1

¢y

¢x
=

y1x12 - y0

h
L

yN1 - y0

h
= f1x0, y02

x1.x0y¿ = f(x, y)
¢yEXPL

y¿ = 2x + 1, y102 = 0.

xn = 1.

x2 = x0 + 2h.x0y¿ = f(x)

x1 = x0 + h.x0

h = 0.1.
f1x2 = sin x2, x0 = 0,

y¿ = f1x2, y1x02 = 0

y0 = 0.

y¿ = f1x2, y1x02 = 0

y¿ = f1x, y2
f(x, y)

yN

yn = 11 + h2n.

6. y102 = 8

In Problems 7–10, plot a slope field for each differential
equation. Use the method of separation of variables (Section 4.9)
or an integrating factor (Section 7.7) to find a particular solution
of the differential equation that satisfies the given initial condition,
and plot the particular solution.

7.

8.

9.

10.

In Problems 11–16, use Euler’s Method with to ap-
proximate the solution over the indicated interval.

11. [0, 1]

12. [0, 1]

13. [0, 1]

14. [0, 1]

15. [1, 2]

16. [1, 2]

17. Apply Euler’s Method to the equation 
with an arbitrary step size where N is a positive integer.h = 1>N

y¿ = y, y102 = 1

y¿ = -2xy, y112 = 2,

y¿ = xy, y112 = 1,

y¿ = x2, y102 = 0,

y¿ = x, y102 = 0,

y¿ = -y, y102 = 2,

y¿ = 2y, y102 = 3,

h = 0.2C

y¿ = 2x - y +

3
2

; y102 = 3

y¿ = x - y + 2; y102 = 4

y¿ = -y; y102 = 4

y¿ =

1
2

 y; y102 =

1
2

CAS
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Error from Error from 
h Euler’s Method Improved Euler Method

0.2 0.229962 0.015574
0.1 0.124540
0.05 0.064984 0.001091
0.01 0.013468 0.000045
0.005 0.006765

Section 7.9 Chapter Review 421

Answers to Concepts Review: 1. slope field 2. tangent
line 3. 4. underestimateyn - 1 + hf1xn - 1, yn - 12

7.9 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. To evaluate make the substitution

2. To evaluate make the substitution 

3. To evaluate make the substitution 

4. To evaluate begin by completing the

square of the denominator.

5. To evaluate begin by completing the

square of the denominator.

6. To evaluate make the substitution

7. To evaluate use partial fractions.

8. To evaluate use integration by parts.

9. To evaluate use half-angle formulas.

10. To evaluate use integration by parts.

11. To evaluate use a trigonometric

substitution.

12. To evaluate let 

13. To evaluate rewrite the integrand as

14. To evaluate make a trigonometric

substitution.
L

 
1

x2
 29 - x2

  dx,

sin2 x11 - sin2 x22 cos x.
L

sin2 x cos5 x dx,

u = 23 3 - 2x.
L

x223 3 - 2x dx,

L
 

x + 22-x2
- 4x

  dx,

L
 

ex

1 + ex   dx,

L
sin6 x cos2 x dx,

L
 

t4

t2
- 1

  dt,

L
 

t + 2

t3
- 9t

  dt,

u = 25x.
L

 
124 - 5x2

  dx,

L
 

3

x2
- 3x + 5

  dx,

L
 

2x - 3

x2
- 3x + 5

  dx,

u = x2.
L

 
x3

9 + x4  dx,

u = x2.
L

 
x

9 + x4  dx,

u = x2.
L

x sin1x22 dx,

15. To evaluate use integration by parts.

16. To evaluate use half-angle formulas.

17. can be expressed in the form 

18. can be expressed in the form 

19. can be expressed in the form 

20. can be expressed in the form 

21. To complete the square of add 

22. Any polynomial with real coefficients can be factored into
a product of linear polynomials with real coefficients.

23. Two polynomials in x have the same values for all x if and
only if the coefficients of like-degree terms are identical.

24. The integral can be evaluated using
Formula 57 from the table of integrals along with an appropriate
substitution.

25. The integral can be evaluated using
Formula 57 from the table of integrals along with an appropriate
substitution.

26.

27. If then 

28. The sine integral is an increasing

function on the interval 

29. An integrating factor for is 

30. The solution to the differential equation that
passes through the point (2, 1) has slope 2 at that point.

y¿ = 2y

x4.y¿ +

4
x

 y = ex

[0, q2.
Si1x2 =

L

x

0
 
sin t

t
  dt

C¿1x2 = cosapx2

2
b .C1x2 =

L

x

0
cosapt2

2
b  dt,

erf102 6 erf112

1x225 - 4x2 dx

1x2225 - 4x2 dx

1b>222.ax2
+ bx,

C

x + 1
B

x - 1
+

A

x2 +

x + 2

x21x2
- 12

A

x
+

Bx + C

x2
+ 1

.
x2

+ 2

x1x2
+ 12

C

x + 1
B

x - 1
+

A

x
+

x2
+ 2

x1x2
- 12

A

x - 1
+

B

x + 1
.

x2

x2
- 1

L
sin 2x cos 4x dx,

L
x2 ln x dx,

421



422 Chapter 7 Techniques of Integration and Differential Equations

31. Euler’s Method will always overestimate the solution of
the differential equation with initial condition 

Sample Test Problems

In Problems 1–42, evaluate each integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.
L

 
dx

116 + x223>2L
 
4x2

+ 3x + 6

x21x2
+ 32   dx

L
 

dx21 - 6x - x2L
 

sin y cos y

9 + cos4 y
  dy

L
 

sin t dt21 + cos tL
 

w2w + 5
  dw

L
 
3x2

+ a2

x4   dx
L

 
e4x

1 + e8x
  dx

L
 

29 - y2

y
  dy

L
eln13 cos x2 dx

L
cos5 x2sin x dx

L
 

e2y dy29 - e2y

L
 

dt

t1t1>6
+ 12L

tan3>2 x sec4 x dx

L
 
1x

1 + 1x
  dx

L
tan3 2x sec 2x dx

L
cos4ax

2
b  dx

L
sin 

3x

2
  cos 

x

2
  dx

L
 

t + 9

t3
+ 9t

  dt
L

et>3 sin 3t dt

L
ln1y2

+ 92 dy
L

 
ln t2

t
  dt

L
 
sin 1x1x

  dx
L

x cot2 x dx

L
 

1ln y25
y

  dy
L

sinh x dx

L
 

3 dt

t3
- 1L

 
tan x

ln ƒ cos x ƒ

  dx

L
 

w3

1 - w2  dw
L

 

dy22 + 3y2

L
x2ex dx

L
 

dx216 + 4x - 2x2

L
 
sin x + cos x

tan x
  dx

L
 

e2t

et
- 2

  dt

L

3>2

0
 

dy22y + 1L
 

y - 2

y2
- 4y + 2

  dy

L
sin312t2 dt

L
 

y3
+ y

y + 1
  dy

L

p>4

0
x sin 2x dx

L

p>2

0
ecos x sin x dx

L
cot212u2 du

L

4

0
 

t29 + t2
  dt

y102 = 1.y¿ = 2y
43. Express the partial fraction decomposition of each

rational function without computing the exact coefficients. For
example,

(a) (b)

(c) (d)

(e) (f)

44. Find the volume of the solid generated by revolving the
region under the graph of

from to about
(a) the x-axis; (b) the y-axis.

45. Find the length of the curve from to

46. The region under the curve

from to is rotated about the x-axis. Compute the vol-
ume of the solid that is generated.

47. If the region given in Problem 46 is rotated about the 
y-axis, find the volume of the solid.

48. Find the volume of the solid created by revolving the re-
gion bounded by the x-axis and the curve about
the y-axis.

49. Find the volume when the region created by the x-axis,
y-axis, the curve and the curve is re-
volved about the line 

50. Find the area of the region bounded by the x-axis, the
curve and the lines and 

51. Find the area of the region bounded by the curve
and 

52. Find the volume of the solid generated by revolving the
region

about the x-axis. Make a sketch.

53. Find the length of the segment of the curve 
from to 

54. Use the table of integrals to evaluate the following
integrals:

(a) (b)

55. Use the table of integrals to evaluate the following
integrals:

L
ex19 - e2x23>2 dx

L
 
281 - 4x2

x
  dx

x = p>3.x = p>6
y = ln1sin x2≈

e 1x, y2: -3 … x … -1, 
6

x2x + 4
… y … 0 f

≈
t = 0.s = t>1t - 122, s = 0, t = -6,

x = 323.

x = 23y = 18> Ax22x2
+ 9 B ,

x = ln 3.
x = ln 3y = 21ex

- 12

y = 4x22 - x

x = 3x = 0

y =

1

x2
+ 5x + 6

x = 4.
x = 0y = x2>16

x = 2x = 1

y =

123x - x2

13x2
+ 2x - 122

12x2
+ x + 1023

x5

1x + 3241x2
+ 2x + 1022

1x + 122
1x2

- x + 102211 - x222
3x + 1

1x2
+ x + 1022

7x - 41

1x - 12212 - x23
3 - 4x2

12x + 123

3x + 1

1x - 122 =

A

1x - 12 +

B

1x - 122
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(a) (b)

56. Evaluate the first two derivatives of the sine integral 

57. Evaluate the first two derivatives of 

58. A rod has density Use Newton’s method

to find the value of c so that the mass of the rod from 0 to c is 0.5.

In Problems 59–63, solve each differential equation.

59. 60.
dy

dx
-

x2
- 2y

x
= 0

dy

dx
+

y

x
= 0

d1x2 =

1

1 + x3.

G(x) =

L

x2

0
cos2t  dt

Si1x2 =

L

x

0
 
sin t

t
  dt

L
 

1

1 - 4x2  dx
L

cos x2sin2 x + 4 dx 61. when 

62. 63.

64. Suppose that glucose is infused into the bloodstream of a
patient at the rate of 3 grams per minute, but that the patient’s
body converts and removes glucose from its blood at a rate
proportional to the amount present (with constant of propor-
tionality 0.02). Let Q(t) be the amount present at time t, with

(a) Write the differential equation for Q.

(b) Solve this differential equation.

(c) Determine what happens to Q in the long run.

65. Use Euler’s Method to approximate the solution of
with over the interval [0, 1].h = 0.2y¿ = xy3

+ 1, y(0) = -1,

Q102 = 120.

dy

dx
- 2y = ex

dy

dx
- ay = eax

x = 0
dy

dx
+ 2x1y - 12 = 0; y = 3
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Evaluate the limits in Problems 1–14.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

Plot the functions given in Problems 15–18 on the domain and make a conjec-
ture about 

15. 16.

17. 18.

19. Plot a graph of over some domain that allows you to make a conjecture
about 

20. Experiment with several positive integers n and make a conjecture about 

Evaluate the integrals in Problems 21–28 for the indicated values of a.

21.

22.

23.

24.

25.

26.

27.

28.
L

4

a
 
1
x

  dx; a = 1, 
1
2

, 
1
4

, 
1
8

, 
1
16

L

4

a
 

11x
  dx; a = 1, 

1
2

, 
1
4

, 
1
8

, 
1
16

L

a

1
 
1

x3  dx; a = 2, 4, 8, 16

L

a

1
 
1

x2  dx; a = 2, 4, 8, 16

L

a

0
 

1
1 + x

  dx; a = 1, 2, 4, 8, 16

L

a

0
 

x

1 + x2  dx; a = 1, 2, 4, 8, 16

L

a

0
xe-x2

 dx; a = 1, 2, 4, 8, 16

L

a

0
e-x dx; a = 1, 2, 4, 8, 16

lim
x: q

 xne-x.

lim
x: q

 x10e-x.
y = x10e-x

f1x2 = x4e-xf1x2 = x3e-x

f1x2 = x2e-xf1x2 = xe-x

lim
x: q

 f1x2.
0 … x … 10

lim
x: q

 sec-1 xlim
x: q

 tan-1 x

lim
x: -q

 e-2xlim
x: q

 e2x

lim
x: q

 e-x2
lim

x: q

 e-x

lim
x: q

 
2x + 1
x + 5

lim
x: q

 
x2

+ 1

x2
- 1

lim
x:0

 
tan 3x

x
lim
x:0

 
sin 2x

x

lim
x:2

 
x2

- 5x + 6
x - 2

lim
x:3

 
x2

- 9
x - 3

lim
x:3

 
2x + 1
x + 5

lim
x:2

 
x2

+ 1

x2
- 1

REVIEW &
PREVIEW

PROBLEMS
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Indeterminate Forms
and Improper IntegralsCHAPTER 8

8.1 Indeterminate
Forms of Type 0/0

8.2 Other
Indeterminate
Forms

8.3 Improper Integrals:
Infinite Limits of
Integration

8.4 Improper Integrals:
Infinite Integrands

8.1
Indeterminate Forms of Type 0/0
Here are three familiar limit problems:

The first was treated at length in Section 1.4, and the third actually defines the de-
rivative The three limits have a common feature. In each case, a quotient is
involved and, in each case, both numerator and denominator have 0 as their limits.
An attempt to apply part 7 of the Main Limit Theorem (Theorem 2.3A), which
says that the limit of a quotient is equal to the quotient of the limits, leads to the
nonsensical result In fact, the theorem does not apply, since it requires that the
limit of the denominator be different from 0.We are not saying that these limits do
not exist, only that the Main Limit Theorem will not determine them.

You may recall that an intricate geometric argument led us to the conclusion 
(Theorem 2.5B). On the other hand, the algebraic technique of

factoring yields

Would it not be nice to have a standard procedure for handling all problems for
which the limits of the numerator and denominator are both 0? That is too much to
hope for. However, there is a simple rule that works beautifully on a wide variety
of such problems.

L’Hôpital’s Rule In 1696, Guillaume François Antoine de l’Hôpital published
the first textbook on differential calculus; it included the following rule, which he
had learned from his teacher Johann Bernoulli.

lim
x:3

 
x2

- 9

x2
- x - 6

= lim
x:3

 
1x - 321x + 32
1x - 321x + 22 = lim

x:3
 
x + 3
x + 2

=

6
5

lim
x:0
1sin x2>x = 1

0>0.

f¿1a2.

lim
x:0

 
sin x

x
, lim

x:3
 

x2
- 9

x2
- x - 6

, lim
x:a

 
f1x2 - f1a2

x - a

Before attempting to prove this theorem, we illustrate it. Note that l’Hôpital’s
Rule allows us to replace one limit by another, which may be simpler and, in par-
ticular, may not have the form.

� EXAMPLE 1 Use l’Hôpital’s Rule to show that

lim
x:0

 
sin x

x
= 1 and lim

x:0
 
1 - cos x

x
= 0

0>0

Study the diagrams below. They
should make l’Hôpital’s Rule 
seem quite reasonable. (See Prob-
lems 38–42.)

Geometric Interpretation 
of l’Hôpital’s Rule

x

y
f(x) = px

g(x) = qx

lim
x→0

lim
x→0

lim
x→0

f(x)
g(x)

=
px
qx

=
p
q

=
f '(x)
g'(x)

x

y

f

g

lim
x→0

lim
x→0

f(x)
g(x)

=
f '(x)
g'(x)

Theorem A L’Hôpital’s Rule for forms of type 0/0

Suppose that If exists in either the

finite or infinite sense (i.e., if this limit is a finite number or or ), then

lim
x:u

  
f1x2
g1x2 = lim

x:u
  

f¿1x2
g¿1x2

+ q- q

lim
x:u

[f¿1x2>g¿1x2]lim
x:u

 f1x2 = lim
x:u

 g1x2 = 0.

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 8 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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426 Chapter 8 Indeterminate Forms and Improper Integrals

SOLUTION We worked pretty hard to demonstrate these two facts in Section
2.5. After noting that trying to evaluate both limits by substitution leads to the
form we can now establish the desired results in two lines (but see Problem
25). By l’Hôpital’s Rule,

�

� EXAMPLE 2 Find and 

SOLUTION Both limits have the form, so, by l’Hôpital’s Rule,

The first of these limits was handled at the beginning of this section by factoring
and simplifying. Of course, we get the same answer either way. �

� EXAMPLE 3 Find 

SOLUTION Both numerator and denominator have limit 0. Hence,

�

Sometimes also has the indeterminate form Then we may
apply l’Hôpital’s Rule again, as we now illustrate. Each application of l’Hôpital’s

Rule is flagged with the symbol .

� EXAMPLE 4 Find 

SOLUTION By l’Hôpital’s Rule applied three times in succession,

lim
x:0

 
sin x - x

x3 .

L

0>0.lim f¿1x2>g¿1x2
lim
x:0

 
tan 2x

ln11 + x2 = lim
x:0

 
2 sec2 2x

1>11 + x2 =

2
1

= 2

lim
x:0

 
tan 2x

ln11 + x2.

 lim
x:2+

 
x2

+ 3x - 10

x2
- 4x + 4

= lim
x:2+

 
2x + 3
2x - 4

= q

 lim
x:3

 
x2

- 9

x2
- x - 6

= lim
x:3

 
2x

2x - 1
=

6
5

0>0
lim

x:2+

 
x2

+ 3x - 10

x2
- 4x + 4

.lim
x:3

 
x2

- 9

x2
- x - 6

 lim
x:0

 
1 - cos x

x
= lim

x:0
 
Dx11 - cos x2

Dxx
= lim

x:0
 
sin x

1
= 0

 lim
x:0

 
sin x

x
= lim

x:0
 
Dx sin x

Dxx
= lim

x:0
 
cos x

1
= 1

0>0,

�

Just because we have an elegant rule does not mean that we should use it
indiscriminately. In particular, we must always make sure that it applies; that is, we
must make sure that the limit has the indeterminate form Otherwise, we will
be led into all kinds of errors, as we now illustrate.

0>0.

=sin x – x
x3

cos x – 1
3x2

lim
x → 0

lim
x → 0

lim
x → 0

lim
x → 0

L

=

L

=

L

– sin x
6x

– cos x
6

= 1
6

 –
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Section 8.1 Indeterminate Forms of Type 4270>0

� EXAMPLE 5 Find 

SOLUTION We might be tempted to write

lim
x:0

 
1 - cos x

x2
+ 3x

.

The first application of l’Hôpital’s Rule was correct; the second was not, since at
that stage, the limit did not have the form. Here is what we should have done.0>0

We stop differentiating as soon as either the numerator or denominator has a
nonzero limit. �

Even if the conditions of l’Hôpital’s Rule hold, an application of l’Hôpital’s
Rule may not help us; witness the following example.

� EXAMPLE 6 Find 

SOLUTION Since the numerator and denominator both tend to 0, the limit is
indeterminate of the form Thus, the conditions of Theorem A hold. We may
apply l’Hôpital’s Rule indefinitely.

0>0.

lim
x: q

 
e-x

x-1.

Clearly, we are only complicating the problem. A better approach is to do a bit of
algebra first.

Written this way, the limit is indeterminate of the form the subject of the
next section. However, you should be able to guess that the limit is 0 by consider-
ing how much faster grows than x (see Figure 1). A rigorous demonstration will
come later (Example 1 of Section 8.2). �

Cauchy’s Mean Value Theorem The proof of l’Hôpital’s Rule depends on
an extension of the Mean Value Theorem for Derivatives due to Augustin Louis
Cauchy (1789–1857).

ex

q>q ,

lim
x: q

 
e-x

x-1 = lim
x: q

 
x

ex

y = ex y = x

x

Figure 1

1 – cos x
x2 + 3x

sin x
2x + 3

cos x
2

1
2

WRONG==

L

=

L

lim
x → 0

lim
x → 0

lim
x → 0

0 RIGHT
1 – cos x
x2 + 3x

sin x
2x + 3

=

L

=lim
x → 0

lim
x → 0

e–x

x–1
e–x

x–2
e–x

2x–3
==

L

=

L

lim
x → �

lim
x → �

lim
x → �

Theorem B Cauchy’s Mean Value Theorem

Let the functions f and g be differentiable on (a, b) and continuous on [a, b]. If
for all x in (a, b), then there exists a number c in (a, b) such that

Note that this theorem reduces to the ordinary Mean Value Theorem for Deriv-
atives (Theorem 4.6A) when g1x2 = x.

f1b2 - f1a2
g1b2 - g1a2 =

f¿1c2
g¿1c2

g¿1x2 Z 0
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428 Chapter 8 Indeterminate Forms and Improper Integrals

Proof It is tempting to apply the ordinary Mean Value Theorem to both numer-
ator and denominator of the left side of the conclusion. If we do this, we obtain

(1)

and

(2)

for appropriate choices of and If only and were equal, we could divide
the first equality by the second and be done; but there is no reason to hope for such
a coincidence. However, this attempt is not a complete failure since (2) yields the
valuable information that a fact we will need later (this follows
from the hypothesis that for all x in (a, b)).

Recall that the proof of the Mean Value Theorem for Derivatives (Theorem
4.6A) rested on the introduction of an auxiliary function s. If we try to mimic that
proof, we are led to the following choice for Let

No division by zero is involved since we earlier established that 
Note further that Also, s is continuous on [a, b] and differen-
tiable on (a, b), this following from the corresponding facts for f and g.Thus, by the
Mean Value Theorem for Derivatives, there is a number c in (a, b) such that

But

so

which is what we wished to prove. �

Proof of L’Hôpital’s Rule

Proof Refer back to Theorem A, which actually states several theorems at once.
We will prove only the case where L is finite and the limit is the one-sided limit

The hypotheses for Theorem A imply more than they say explicitly. In particu-
lar, the existence of implies that both and exist in at

least a small interval (a, b] and that there. At a, we do not even know
that f and g are defined, but we do know that and 

Thus, we may define (or redefine if necessary) both and to be zero, there-
by making both f and g (right) continuous at a. All this is to say that f and g satisfy
the hypotheses of Cauchy’s Mean Value Theorem on [a, b]. Consequently, there is
a number c in (a, b) such that

or, since 
f1b2
g1b2 =

f¿1c2
g¿1c2

f1a2 = 0 = g1a2,

f1b2 - f1a2
g1b2 - g1a2 =

f¿1c2
g¿1c2

g(a)f(a)

lim
x:a+

 g1x2 = 0.lim
x:a+

 f1x2 = 0
g¿1x2 Z 0

g¿1x2f¿1x2lim
x:a+

[f¿1x2>g¿1x2]
lim

x:a+

.

f¿1c2
g¿1c2 =

f1b2 - f1a2
g1b2 - g1a2

s¿1c2 = f¿1c2 -

f1b2 - f1a2
g1b2 - g1a2  g¿1c2 = 0

s¿1c2 =

s1b2 - s1a2
b - a

=

0 - 0
b - a

= 0

s1a2 = 0 = s1b2. g1b2 - g1a2 Z 0.

s1x2 = f1x2 - f1a2 -

f1b2 - f1a2
g1b2 - g1a2  [g1x2 - g1a2]

s(x).

g¿1x2 Z 0
g1b2 - g1a2 Z 0,

c2c1c2.c1

g1b2 - g1a2 = g¿1c221b - a2

f1b2 - f1a2 = f¿1c121b - a2
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When we let thereby forcing we obtain

which is equivalent to what we wanted to prove.
A very similar proof works for the case of left-hand limits and thus for two-

sided limits. The proofs for limits at infinity and infinite limits are harder, and we
omit them. �

lim
b:a+

 
f1b2
g1b2 = lim

c:a+

 
f¿1c2
g¿1c2

c : a+,b : a+,

Concepts Review
1. L’Hôpital’s Rule is useful in finding 

where both _____ and _____ are zero.

2. L’Hôpital’s Rule says that under appropriate conditions
_____.lim

x:a
 f1x2>g1x2 = lim

x:a

lim
x:a

[f1x2>g1x2], 3. From l’Hôpital’s Rule, we can conclude that

but l’Hôpital’s Rule gives

us no information about because _____.

4. The proof of l’Hôpital’s Rule depends on _____ Theorem.

lim
x:0
1cos x2>x

lim
x:0
1tan x2>x = lim

x:0
   =  ,

Problem Set 8.1
In Problems 1–24, find the indicated limit. Make sure that you
have an indeterminate form before you apply l’Hôpital’s Rule.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18.

19. 20.

21.

22. lim
x:0-

 
sin x + tan x
ex

+ e-x
- 2

lim
x:0+

 
1 - cos x - x sin x

2 - 2 cos x - sin2 x

lim
x:0

 
cosh x - 1

x2lim
x:0

 
tan-1 x - x

8x3

lim
x:0

 
ex

- ln11 + x2 - 1

x2

lim
x:0+

 
x2

sin x - x

lim
x:0

 
sin x - tan x

x2 sin x
lim
x:0

 
tan x - x

sin 2x - 2x

lim
x:0-

 
3 sin x2-x

lim
x:0

 
ln cos 2x

7x2

lim
x:0+

 
71x

- 1

21x
- 1

lim
t:1

 
1t - t2

ln t

lim
x:0

 
ex

- e-x

2 sin x
lim

x:p>2 
ln1sin x23

1
2p - x

lim
x:1

 
ln x2

x2
- 1

lim
x:1-

 
x2

- 2x + 2

x2
- 1

lim
x:0

 
x3

- 3x2
+ x

x3
- 2x

lim
x: -2 

 
x2

+ 6x + 8

x2
- 3x - 10

lim
x:0

 
tan-1 3x

sin-1 x
lim
x:0

 
x - sin 2x

tan x

lim
x:p>2  

cos x
1
2p - x

lim
x:0

 
2x - sin x

x

23. 24.

25. In Section 2.5, we worked very hard to prove that
l’Hôpital’s Rule allows us to show this in one

line. However, even if we had l’Hôpital’s Rule, say at the end of
Section 2.4, it would not have helped us. Explain why. (We really 

did need to establish the way we did in Section 2.5.)

26. Find 

Hint: Begin by deciding why l’Hôpital’s Rule is not applicable.
Then find the limit by other means.

27. For Figure 2, compute the following limits.

(a)

(b) lim
t:0+

 
area of curved region BCD

area of curved region ABC

lim
t:0+

 
area of triangle ABC

area of curved region ABC

lim
x:0

 
x2 sin11>x2

tan x
.

lim
x:0

 
sin x

x 
= 1

lim
x:0
1sin x2>x = 1;

lim
x:0+

 
L

x

0
1t cos t dt

x2lim
x:0

 
L

x

0
21 + sin t dt

x

B

C

D

O A(1, 0)
t

Figure 2
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430 Chapter 8 Indeterminate Forms and Improper Integrals

8.2
Other Indeterminate

Forms

f-car

g-car

f (t)

g(t)

0

0

Figure 1

29. Let

What value of c makes continuous at 

30. Let

What value of c makes continuous at 

31. Using the concepts of Section 6.4, you can show that the
surface area of the prolate spheroid gotten by rotating the ellipse

about the x-axis is

What should A approach as Use l’Hôpital’s Rule to
show that this does happen.

a : b+?

A = 2pb2
+ 2pab c a2a2

- b2
  arcsin 

2a2
- b2

a
d

x2>a2
+ y2>b2

= 1 1a 7 b2

x = 1?f(x)

f1x2 = c ln x
x - 1

, if x Z 1

c, if x = 1

x = 0?f(x)

f1x2 = c ex
- 1
x

, if x Z 0

c, if x = 0

32. Determine constants a, b, and c so that

33. L’Hôpital’s Rule in its 1696 form said this: If
then 

provided that and both exist and Prove
this result without recourse to Cauchy’s Mean Value Theorem.

Use a CAS to evaluate the limits in Problems 34–37.

34.

35.

36. 37.

For Problems 38–41, plot the numerator and the denom-
inator in the same graph window for each of these domains:

and From the
plot, estimate the values of and and use these to ap-
proximate the given limit.

38. 39.

40. 41.

42. Use the concept of the linear approximation to a func-
tion (Section 3.11) to explain the geometric interpretation of
l’Hôpital’s Rule in the marginal box next to Theorem A.

Answers to Concepts Review: 1.

2. 3. 1; 4. Cauchy’s Mean

Value

lim
x:0

 cos x Z 0sec2 x;f¿1x2>g¿1x2
lim
x:a

 f1x2; lim
x:a

 g1x2

EXPL

lim
x:0

  
ex

- 1
e-x

- 1
lim
x:0

  
x

e2x
- 1

lim
x:0

 
sin x>2

x
lim
x:0

 
3x - sin x

x

g¿1x2f¿1x2
-0.01 … x … 0.01.-1 … x … 1, -0.1 … x … 0.1,

g(x)
f(x)GC

lim
x:0

  
tan x - x

arcsin x - x
lim
x:0

 
1 - cos1x22

x3 sin x

lim
x:0

 
ex

- 1 - x - x2>2 - x3>6
x4

lim
x:0

 
cos x - 1 + x2>2

x4

CAS

g¿1a2 Z 0.g¿1a2f¿1a2
lim
x:a

 f1x2>g1x2 = f¿1a2>g¿1a2,lim
x:a

 f1x2 = lim
x:a

 g1x2 = 0,

lim
x:1

 
ax4

+ bx3
+ 1

1x - 12 sin px
= c

In the solution to Example 6 of the previous section, we faced the following limit
problem.

This is typical of a class of problems of the form where both nu-

merator and denominator are growing indefinitely large; we call it an indetermi-
nate form of type It turns out that l’Hôpital’s Rule also applies in this situ-
ation; that is,

A rigorous proof is quite difficult, but there is an intuitive way of seeing that
the result has to be true. Imagine that and represent the positions of two
cars on the t-axis at time t (Figure 1). These two cars, the f-car and the g-car, are on
endless journeys with respective velocities and Now, if

lim
t: q

 
f¿1t2
g¿1t2 = L

g¿1t2.f¿1t2
g(t)f(t)

lim
x: q

 
f1x2
g1x2 = lim

x: q

 
f¿1x2
g¿1x2

q>q .

lim
x: q

 f1x2>g1x2,
lim

x: q

 
x

ex

B (0, y)

D(1, 0)A(x, 0)

F

y

x

E

C
0 t

t

Figure 3

28. In Figure 3, Find each limit.

(a) (b) lim
t:0+

 xlim
t:0+

 y

CD = DE = DF = t.
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Section 8.2 Other Indeterminate Forms 431

Theorem A L’Hôpital’s Rule for Forms of Type 

Suppose that If exists in either

the finite or infinite sense, then

Here u may stand for any of the symbols or q .a, a-, a+, - q ,

lim
x:u

 
f1x2
g1x2 = lim

x:u
 
f¿1x2
g¿1x2

lim
x:u

[f¿1x2>g¿1x2]lim
x:u

ƒ f1x2 ƒ = lim
x:u

ƒ g1x2 ƒ = q .

q>q

x2.5

ex

2.5x1.5

ex

(2.5)(1.5)x0.5

ex

(2.5)(1.5)(0.5)
x0.5ex

= 0=

L

=

L

=

L

lim
x → �

lim
x → �

lim
x → �

lim
x → �

xa

ex

axa–1

ex

a(a – 1)xa–2

ex = 0
a(a – 1)     (a – m)

xm + 1 – aex=

L

=

L

=

L

=

L

lim
x → �

lim
x → �

lim
x → �

lim
x → �

then ultimately the f-car travels about L times as fast as the g-car. It is therefore
reasonable to say that, in the long run, it will travel about L times as far; that is,

We do not call this a proof, but it does lend plausibility to a result that we now state
formally.

lim
t: q

 
f1t2
g1t2 = L

The Indeterminate Form We use Theorem A to finish Example 6 of
the previous section.

� EXAMPLE 1 Find 

SOLUTION Both x and tend to as Hence, by l’Hôpital’s Rule,

�

Here is a general result of the same type.

� EXAMPLE 2 Show that, if a is any positive real number,

SOLUTION Suppose as a special case that Then three applications of
l’Hôpital’s Rule give

a = 2.5.

lim
x: q

 
xa

ex = 0.

lim
x: q

 
x

ex = lim
x: q

 
Dxx

Dxex = lim
x: q

 
1
ex = 0

x : q .qex

lim
x: q

 
x

ex.

ˆ>ˆ

A similar argument works for any Let m denote the greatest integer less
than a. Then applications of l’Hôpital’s Rule givem + 1

a 7 0.

�

� EXAMPLE 3 Show that, if a is any positive real number, lim
x: q

 
ln x
xa = 0.
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432 Chapter 8 Indeterminate Forms and Improper Integrals

x�

y

x

y =

y = x

y = x ln x

y = ln x

y = x2
y = ex

40

40

30

30

20

20

10

10

Figure 2

L

=
ln x
xa

1/x
axa–1

1
axa 0= =lim

x → �
lim

x → �
lim

x → �

L

=
ln x
cot x

1/x
–csc2x

lim
x → 0+

lim
x → 0+

L

=
– csc2x

ln sin x
cot x

1
sin x

=

lim
x → �/2

lim
x → �/2

lim
x → �/2

lim
x → �/2

(tan x   ln sin x) =

(–cos x   sin x) = 0

cos x

SOLUTION Both ln x and tend to as Hence, by one application of
l’Hôpital’s Rule,

x : q .qxa

�

Examples 2 and 3 say something that is worth remembering: for sufficiently
large x, grows faster as x increases than any constant power of x, whereas ln x
grows more slowly than any constant power of x. For example, when x is sufficient-
ly large, grows faster than and ln x grows more slowly than The chart
in the margin and Figure 2 offer additional illustration.

� EXAMPLE 4 Find 

SOLUTION As and so l’Hôpital’s Rule
applies.

cot x : q ,x : 0+, ln x : - q

lim
x:0+

 
ln x
cot x

.

2100 x.x100ex

ex
≈

This is still indeterminate as it stands, but rather than apply l’Hôpital’s Rule again
(which only makes things worse), we rewrite the expression in brackets as

Thus,

�

The Indeterminate Forms and Suppose that 
but What is going to happen to the product Two competing
forces are at work, tending to pull the product in opposite directions. Which will
win this battle, A or B or neither? It depends on whether one is stronger (i.e., doing
its job at a faster rate) or whether they are evenly matched. L’Hôpital’s Rule will
help us to decide, but only after we have transformed the problem to a or

form.

� EXAMPLE 5 Find 

SOLUTION Since and this is a 

indeterminate form. We can rewrite it as a form by the simple device of
changing tan x to Thus,1>cot x.

0>0
0 # qlim

x:p>2 ƒ tan x ƒ = q ,lim
x:p>2 ln sin x = 0

lim
x:p>21tan x #  ln sin x2.

q>q 0>0

A(x)B(x)?B1x2: q .
A1x2: 0,ˆ - ˆ0 # ˆ

lim
x:0+

 
ln x
cot x

= lim
x:0+

c -sin x 
sin x

x
d = 0 # 1 = 0

1>x
-csc2 x

= -

sin2 x
x

= -sin x 
sin x

x

�

In computer science, one pays care-
ful attention to the amount of time
needed to perform a task. For exam-
ple, to sort x items using the “bubble
sort” algorithm takes time propor-
tional to whereas the “quick
sort” algorithm does the same task
in time proportional to x ln x, a
major improvement. Here is a chart
illustrating how some common func-
tions grow as x increases from 10 to
100 to 1000.

ln x 2.3 4.6 6.9
3.2 10 31.6

x 10 100 1000

x ln x 23 461 6908
100 10000

104342.7 * 10432.2 * 104ex
106x2

1x

x2,

See How They Grow
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Section 8.2 Other Indeterminate Forms 433

L

x
x – 1

1
ln x

x ln x – x + 1
(x – 1)ln x

=–

=

x   1/x + ln x – 1
(x – 1)(1/x) + ln x

=

L

x ln x
x – 1 + x ln x

1 + ln x
2 + ln x

= 1
2

=

lim
x → 1+

lim
x → 1+

lim
x → 1+

lim
x → 1+

lim
x → 1+

1n(x + 1)
tan x

1n y = x + 1
sec2x

1

= 1

L

=lim
x → 0+

lim
x → 0+

lim
x → 0+

� EXAMPLE 6 Find 

SOLUTION The first term is growing without bound; so is the second. We say
that the limit is an indeterminate form. L’Hôpital’s Rule will determine
the result, but only after we rewrite the problem in a form for which the rule
applies. In this case, the two fractions must be combined, a procedure that changes
the problem to a form. Two applications of l’Hôpital’s Rule yield0>0

q - q

lim
x:1+

a x

x - 1
-

1
ln x
b .

�

The Indeterminate Forms We turn now to three indeterminate
forms of exponential type. Here the trick is to consider not the original expression,
but rather its logarithm. Usually, l’Hôpital’s Rule will apply to the logarithm.

� EXAMPLE 7 Find 

SOLUTION This takes the indeterminate form Let so

Using l’Hôpital’s Rule for forms, we obtain0>0
ln y = cot x ln1x + 12 =

ln1x + 12
tan x

y = 1x + 12cot x,1q.

lim
x:0+ 

1x + 12cot x.

1q

q
0,00,

Now and since the exponential function is continuous,

�

� EXAMPLE 8 Find 

SOLUTION This has the indeterminate form Let so

Then

ln y = cos x #  ln tan x =

ln tan x
sec x

y = 1tan x2cos x,q
0.

lim
x:p>2- 

1tan x2cos x.

lim
x:0+

 y = lim
x:0+

 exp1ln y2 = exp A lim
x:0+

 ln y B = exp 1 = e

f1x2 = exy = eln y,

L

ln tan x
sec x

=ln y = tan x
sec x tan x

1 sec2x

sec x
tan2x

= 0cos x
sin2x

lim
x → �/2–

lim
x → �/2–

lim
x → �/2–

lim
x → �/2–

lim
x → �/2–

= =
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434 Chapter 8 Indeterminate Forms and Improper Integrals

Therefore,

�

Summary We have classified certain limit problems as indeterminate forms,
using the seven symbols and Each involves
a competition of opposing forces, which means that the result is not obvious. How-
ever, with the help of l’Hôpital’s Rule, which applies directly only to the and

forms, we can usually determine the limit.
There are many other possibilities symbolized by, for example,

and Why don’t we call these indeterminate forms? Be-
cause, in each of these cases, the forces work together, not in competition.

� EXAMPLE 9 Find 

SOLUTION We might call this a form, but it is not indeterminate. Note that
sin x is approaching zero, and raising it to the exponent cot x, an increasingly large
number, serves only to make it approach zero faster. Thus,

�lim
x:0+

1sin x2cot x
= 0

0q

lim
x:0+

1sin x2cot x.

q
q.q + q , q # q , 0q,

q>0,0>q ,
q>q 0>0

1q.q>q , 0 # q , q - q , 00, q0,0>0,

lim
x:p>2-

 y = e0
= 1

Concepts Review
1. If then l’Hôpital’s Rule says

that _____.

2. If and then is

an indeterminate form.To apply l’Hôpital’s Rule, we may rewrite

this latter limit as _____.

lim
x:a

 f1x2g1x2lim
x:a

 g1x2 = q ,lim
x:a

 f1x2 = 0

lim
x:a

 f1x2>g1x2 = lim
x:a

lim
x:a

 f1x2 = lim
x:a

 g1x2 = q , 3. Seven indeterminate forms are discussed in this book.
They are symbolized by and _____.

4. grows faster than any power of x, but _____ grows
more slowly than any power of x.

ex

q>q , 0 # q ,0>0,

Problem Set 8.2
Find each limit in Problems 1–40. Be sure you have an indetermi-
nate form before applying l’Hôpital’s Rule.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. lim
x: q

 xxlim
x:p>21sin x2cos x

lim
x:1p>22-

1cos 2x2x -p>2lim
x:0
1x + ex>323>x

lim
x:0
acsc2 x -

1

x2 b
2

lim
x:1p>22-

15 cos x2tan x

lim
x:0
1cos x2csc xlim

x:0+

13x2x2

lim
x:p>21tan x - sec x2lim

x:0
1csc2 x - cot2 x2

lim
x:0

 3x2 csc2 xlim
x:0
1x ln x10002

lim
x:0

 
2 csc2 x

cot2 x
lim

x:0+

 
cot x2- ln x

lim
x:11>22-

 
ln14 - 8x22

tan px
lim

x: q

 
ln1ln x10002

ln x

lim
x:0+

 
ln sin2 x

3 ln tan x
lim

x:p>2 
3 sec x + 5

tan x

lim
x: q

 
3x

ln1100x + ex2lim
x: q

 
x10000

ex

lim
x: q

 
1ln x22

2xlim
x: q

 
ln x10000

x

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36.

37. 38.

39. 40.

41. Find each limit. Hint: Transform to problems involving a
continuous variable x. Assume that 

(a) (b)

(c) (d) lim
n: q

 n A1n n - 1 Blim
n: q

 n A1n a - 1 B
lim

n: q

1n nlim
n: q

1n a

a 7 0.

lim
x:1+

 
L

x

1
sin t dt

x - 1
lim

x: q

 
L

x

1
21 + e-t dt

x

lim
x:0+

1ln x cot x2lim
x:0+

 
x

ln x

lim
x: q

[ln1x + 12 - ln1x - 12]
lim

x: q

ecos x

lim
x:0+

1x1>2 ln x2lim
x:0
1cos x21>x

lim
x:1
a 1

x - 1
-

x

ln x
blim

x:0+

11 + 2ex21>x
lim

x: q

a1 +

1
x
bx

lim
x:0
acsc x -

1
x
b

lim
x:0
1cos x - sin x21>xlim

x:0+

1sin x2x
lim

x: -q

1e-x
- x2lim

x:0+

1tan x22>x
lim
x:0
1cos x21>x2

lim
x: q

 x1>x
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42. Find each limit.
(a) (b)

(c) (d)

(e)

43. Graph for Show what happens for very
small x and very large x. Indicate the maximum value.

44. Find each limit.

(a) (b)

(c) (d)

45. For find

Hint: Though this has the form, l’Hôpital’s Rule is not
helpful. Think of a Riemann sum.

46. Let be positive constants with and 

let be positive numbers. Take natural logarithms
and then use l’Hôpital’s Rule to show that

lim
t:0+

aa
n

i = 1
cix

t
ib

1>t
= x1

c1 x2
c2 Á xn

cn
= q

n

i = 1
xi

ci

x1, x2, Á , xn

a
n

i = 1
ci = 1,c1, c2, Á , cn

q>q

lim
n: q

 
1k

+ 2k
+

Á
+ nk

nk + 1

k Ú 0,

lim
x: -q

11x
+ 2x21>xlim

x: q

11x
+ 2x21>x

lim
x:0-

11x
+ 2x21>xlim

x:0+

11x
+ 2x21>x

x 7 0.y = x1>x
lim

x:0+

 x1x1x
x22

lim
x:0+

11xx2x2xlim
x:0+

 x1xx2
lim

x:0+

1xx2xlim
x:0+

 xx Here means product; that is, means In

particular, if a, b, x, and y are positive and then

47. Verify the last statement in Problem 46 by calculating
each of the following.

(a) (b)

(c)

48. Consider 
(a) Graph for 2, 3, 4, 5, 6 on [0, 1] in the same graph

window.
(b) For find 

(c) Evaluate for 2, 3, 4, 5, 6.

(d) Guess at Then justify your answer rigorously.

49. Find the absolute maximum and minimum points (if
they exist) for on 

Answers to Concepts Review: 1.
2. or 

3. 4. ln xq - q , 00, q0, 1q

lim
x:a

 g1x2>[1>f1x2]lim
x:a

 f1x2>[1>g1x2]
f¿1x2>g¿1x2

[0, q2.f1x2 = 1x25
+ x3

+ 2x2e-x

CAS

lim
n: qL

1

0
f1x2 dx.

n = 1,
L

1

0
f1x2 dx

lim
n: q

 f1x2.x 7 0,

n = 1,f(x)
f1x2 = n2xe-nx.

lim
t:0+

A 1
10 2t

+
9

10 5t B1>t
lim

t:0+

A15 2t
+

4
5 5t B1>tlim

t:0+

A12 2t
+

1
2 5t B1>t

lim
t:0+

1axt
+ byt21>t = xayb

a + b = 1,

a1
# a2

# Á # an.q
n

i = 1
aiq

In the definition of it was assumed that the interval was finite.

However, in many applications in physics, economics, and probability we wish to
allow a or b (or both) to be or We must therefore find a way to give mean-
ing to symbols like

These integrals are called improper integrals with infinite limits.

One Infinite Limit Consider the function It makes perfectly
good sense to ask for or or indeed for where b is 
any positive number. As the table on the next page indicates, as we increase the
upper limit in the definite integral the value of the integral (the area under the
curve) increases, but apparently not without bound (in this example, at least). To 
give meaning to we begin by integrating from 0 to an arbitrary upper
limit, say b, which using integration by parts gives

Now, imagine that the value of b marches off to infinity. (See the accompanying
table.) As the above calculation shows, if we let the value of the definite
integral converges to 1. Thus, it seems natural to define

L

q

0
xe-x dx = lim

b: qL

b

0
xe-x dx = lim

b: q

11 - e-b
- be-b2 = 1

b : q ,

L

b

0
xe-x dx = [-xe-x]

b

0 -
L

b

0
(-e-x) dx = 1 - e-b

- be-b

1
q

0 xe-x dx

1
b

0 xe-x dx,1
2

0 xe-x dx,1
1

0 xe-x dx

f1x2 = xe-x.

L

q

0
 

1

1 + x2  dx, 
L

-1

-q

xe-x2
 dx, 

L

q

-q

 x2e-x2
 dx

- q .q

[a, b]
L

b

a
f1x2 dx,8.3

Improper Integrals:
Infinite Limits of

Integration
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Definition

If the limits on the right exist and have finite values, then we say that the corre-
sponding improper integrals converge and have those values. Otherwise, the in-
tegrals are said to diverge.

 
L

q

a
f1x2 dx = lim

b: qL

b

a
f1x2 dx

 
L

b

-q

 f1x2 dx = lim
a: -qL

b

a
f1x2 dx

Exact Numerical 
Integral Picture Value Approximation

0.2642

0.5940

0.8009

Here is the general definition.

lim
b: q 

C1 - e-b
- be - b D = 1

L

q

0
xe-x dx

1 - e-b
- be-b

L

b

0
xe-x dx

1 - e-3
- 3e-3

L

3

0
xe-x dx

1 - e-2
- 2e-2

L

2

0
xe-x dx

1 - e-1
- 1e-1

L

1

0
xe-x dx

� EXAMPLE 1 Find, if possible,

SOLUTION

Thus,

We say the integral converges and has value  �-1>2e.

L

-1

-q

xe-x2
 dx = lim

a: -q

c- 1
2

 e-1
+

1
2

 e-a2 d = -

1
2e

 = -

1
2

 e-1
+

1
2

 e-a2

 
L

-1

a
xe-x2

 dx = -

1
2L

-1

a
e-x21-2x dx2 = c- 1

2
 e-x2 d

a

-1

L

-1

-q

xe-x2
 dx.

x

y
0.4

0.2

1 2 3 4 5 6

x3 5 6

x

y
0.4

0.2

1 2 3 4 5 6

x

y
0.4

0.2

1 2 3 4 5 6

x

y
0.4

0.2

1 2 3 4 5 6

For an
arbitrary b

b

x

y
0.4

0.2

1 2 3 4 5 6

Let
b → �
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y

x

y = sin x

Figure 1

x

Figure 2

� EXAMPLE 2 Find, if possible,

SOLUTION

The latter limit does not exist; we conclude that the given integral diverges. Think

about the geometric meaning of to support this result (Figure 1). �

� EXAMPLE 3 According to Newton’s Inverse Square Law, the force exerted
by the earth on a space capsule is where x is the distance (in miles, for in-
stance) from the capsule to the center of the earth (Figure 2). The force re-
quired to lift the capsule is therefore How much work is done in
propelling a 1000-pound capsule out of the earth’s gravitational field?

SOLUTION We can evaluate k by noting that at miles (the radius of
the earth) pounds. This yields The
work done in mile-pounds is therefore

�

Both Limits Infinite We can now give a definition for 
L

q

-q

f1x2 dx.

 =

1.568 * 1010

3960
L 3.96 * 106

 = lim
b: q

 1.568 * 1010 c- 1
b

+

1
3960

d

 1.568 * 1010

L

q

3960
 
1

x2  dx = lim
b: q

 1.568 * 1010 c- 1
x
d

3960

b

k = 10001396022 L 1.568 * 1010.F = 1000
x = 3960

F1x2 = k>x2.
F(x)

-k>x2,

L

q

0
sin x dx

 = lim
b: q

[1 - cos b]

 
L

q

0
sin x dx = lim

b: qL

b

0
sin x dx = lim

b: q

[-cos x]0
b

L

q

0
sin x dx.

� EXAMPLE 4 Evaluate or state that it diverges.

SOLUTION

 = lim
b: q

[tan-1 b - tan-1 0] =

p

2

 = lim
b: q

[tan-1 x]0
b

 
L

q

0
 

1

1 + x2  dx = lim
b: qL

b

0
 

1

1 + x2  dx

L

q

-q

 
1

1 + x2  dx

Definition

If both and converge, then is said to con-

verge and have value

Otherwise, diverges.
L

q

-q

f1x2 dx

L

q

-q

f1x2 dx =

L

0

-q

f1x2 dx +

L

q

0
f1x2 dx

L

q

-q

f1x2 dx
L

q

0
f1x2 dx

L

0

-q

 f1x2 dx
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y

x2
0

0.05

PDF of X

0.1

0.15

0.2

0.25

4 6 8

y = f (x)

Figure 3

Since the integrand is an even function,

Therefore,

�

We will use the notation to mean Similar defini-

tions apply to and to Note that in none of these cases are we
“substituting” infinity. Each is defined as a limit, which agrees with our approach to
determining improper integrals.

Probability Density Functions When we first introduced random vari-
ables and probability density functions back in Section 6.7 we had to restrict at-
tention to cases where the set of possible outcomes was bounded. In many
situations, there is no upper (or lower) limit for the set of possible outcomes. For
example, there is no upper bound on how long a battery will last, or how strong a
mix of concrete is. Now that we have covered improper integrals, we can dispense
with this restriction.

If the PDF of a continuous random variable X is defined to be 0 outside
the set of possible outcomes, then the requirements for a PDF are

1.

2.

The PDF of a random variable allows us to find probabilities by integration; for
example, Figure 3 illustrates the probability that X is between 4 and 6.

The mean and variance of a random variable are then defined by

The variance of a random variable is a measure of the dispersion, or “spread-
out-ness” of the probability, and it can be computed from (see Problem 41 of
Section 6.7)

When is small, the distribution of probability is, roughly speaking, clustered
very closely around the mean; when is large, the probability is more spread out.

The next two examples, and some of the exercises, introduce several useful
families of probability distributions.

� EXAMPLE 5 The exponential distribution, which is sometimes used to
model the lifetimes of electrical or mechanical components, has PDF

where is some positive constant.

(a) Show that this is a valid PDF.
(b) Find the mean and the variance 
(c) Find the cumulative distribution function (CDF) F(x).
(d) If a component’s lifetime X measured in hours is a random variable having an

exponential distribution with what is the probability that the com-
ponent works for at least 20 hours?

l = 0.01,

s2.m

l

f1x2 = ele-lx, if 0 … x

0, otherwise

s2
s2

s2
= E1X22 - m2

s2

 s2
= V1X2 =

L

q

-q

1x - m22 f1x2 dx

 m = E1X2 =

L

q

-q

x f1x2 dx

L

q

-q

 f1x2 dx = 1

f1x2 Ú 0

f(x)

[F1x2]
-q

q .[F1x2]
-q

a

lim
b: q

 F1b2 - F1a2.[F1x2]a
q

L

q

-q

  
1

1 + x2  dx =

L

0

-q

  
1

1 + x2  dx +

L

q

0
 

1

1 + x2  dx =

p

2
+

p

2
= p

L

0

-q

  
1

1 + x2  dx =

L

q

0
 

1

1 + x2  dx =

p

2
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SOLUTION
(a) The function is always nonnegative and

so is a valid PDF.
(b)

We apply integration by parts in the second integral: so
that Thus

The variance is

(c) For the CDF is For 

A graph of the CDF is shown in Figure 4.

 = 1 - e-lx

 = 0 + [-e-lt]0
x

 =

L

0

-q

0 dx +

L

x

0
le-lt dt

 F1x2 =

L

x

-q

f1t2 dt

x Ú 0,F1x2 = P1X … x2 = 0.x 6 0,

 = 2 
1

l2 -

1

l2 =

1

l2

 = 1-0 + 02 + 2
L

q

0
xe-lx dx -

1

l2

 = [-x2e-lx]0
q

-

L

q

0
1-e-lx2 2x dx -

1

l2

 =

L

0

-q

x2 # 0 dx +

L

q

0
x2le-lx dx -

1

l2

 =

L

q

-q

x2f1x2 dx - a 1
l
b2

 s2
= E1X22 - m2

 =

1
l

 = 1-0 + 02 + c- 1
l

 e-lx d
0

q

 E1X2 = [-xle-lx]0
q

-

L

q

0
1-e-lx2 dx

du = dx, v = -e-lx.
u = x, dv = le-lx dx,

 =

L

0

-q

x # 0 dx +

L

q

0
xle-lx dx

 E1X2 =

L

q

-q

xf1x2 dx

f(x)

 = 1

 = 0 + [-e-lx]0
q

 
L

q

-q

f1x2 dx =

L

0

-q

0 dx +

L

q

0
le-lx dx

f

x

y

1

F(x) =
1 – e–λx,

0,

x � 0

x � 0

Figure 4
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2� π

y

x

f(x) =          e–x2/21

–2 –1 1 2

Figure 5

(d) Set The probability that the component works for at least 20 hours is
the probability that the lifetime is 20 hours or greater:

�

The normal distribution is the familiar bell-shaped curve. It is really a family
of distributions since the mean can be any number and the variance can be 
any positive number The normal distribution with parameters and has
PDF

(The parameters and turn out to be equal to the mean and variance, respec-
tively, thus justifying the use of the Greek letters and ) Figure 5 shows a plot of
the PDF for the normal distribution with mean and variance It is
surprisingly difficult to show that

although we will do so later (Section 13.4). Other properties of the normal distri-
bution include the following:

(a) its graph is symmetric about the line 

(b) it has a maximum at 

(c) it has inflection points when 

(d) the mean is 

(e) the variance is 

Problem 33 involves some other properties of the normal PDF. The normal distri-
bution with and is called the standard normal distribution.This is the
normal distribution that is graphed in Figure 5.

� EXAMPLE 6 Show that

(a)

(b)

SOLUTION

(a)  
122pL

q

0
xe-x2>2 dx = lim

b: q

c- 122pL

b

0
e-x2>21-x dx2 d

122pL

q

-q

x2e-x2>2 dx = 1

122pL

q

-q

xe-x2>2 dx = 0

s2
= 1m = 0

s2.

m;

x = m ; s;

x = m;

x = m;

L

q

-q

 
122p s

  exp[-1x - m22>2s2] dx = 1

s2
= 1.m = 0

s.m

s2m

f1x2 =

122p s
  exp[-1x - m22>2s2]

s2ms2.
m

 L 0.819

 = e-0.2

 = 0 - 1-e-0.01 #202
 = [-e-0.01x]20

q

 P1X 7 202 =

L

q

20
0.01e-0.01x dx

l = 0.01.
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Since is an odd function,

Thus,

(b) Since is an even function and since 

We then apply integration by parts and l’Hôpital’s Rule.

Since is an even function, we get the same contribution to the left of
zero, and so

�

The Paradox of Gabriel’s Horn Let the curve on be
revolved about the x-axis, thereby generating a surface called Gabriel’s horn
(Figure 6). We claim that

1. the volume V of this horn is finite;

2. the surface area A of the horn is infinite.

To put the results in practical terms, they seem to say that the horn can be filled
with a finite amount of paint, and yet there is not enough to paint its inside surface.
Before we try to unravel this paradox, let us establish (1) and (2). We use results
for volume from Section 6.2 and for surface area from Section 6.4.

[1, q2y = 1>x

122pL

q

-q

x2e-x2>2 dx =

1
2

+

1
2

= 1

x2e-x2>2

 =

122p
 a0 +

L

q

0
e-x2>2 dxb =

1
2

 = lim
b: q

 
122p

 a C -xe-x2>2 Db
0

+

L

b

0
e-x2>2 dxb

 
122pL

q

0
x2e-x2>2 dx = lim

b: q

 
122pL

b

0
1x21e-x2>2x2 dx

122pL

q

0
e-x2>2 dx =

1
2

L

q

-q

 
122p

 e-x2>2 dx = 1,e-x2>2

 = -

122p
+

122p
= 0

 
122pL

q

-q

xe-x2>2 dx =

122pL

0

-q

xe-x2>2 dx +

122pL

q

0
xe-x2>2 dx

122pL

0

-q

xe-x2>2 dx = -

122pL

q

0
xe-x2>2 dx = -

122p

xe-x2>2

 =

122p

 = lim
b: q

c- 122p
 e-x2>2 d

0

b

1
x

y

y =

x1

Figure 6
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Hans Memling (1425/40–1494). Last
Judgement, detail of right panel: angel
blowing a trumpet and the damned
falling into Hell. Pomorskie Museum,
Gdansk, Poland. Scala/Art Resource,
N.Y.

When told to pave the infinite street
with pure

gold, Gabriel obeyed but made the
thickness h of the gold at x satisfy

How much gold did it take?

Just 1 cubic unit.

 = lim
b: q

[-e-x]
0
b

= 1

 V =

L

q

0
e-x dx = lim

b: qL

b

0
e-x dx

h = e-x

0 … x 6 q , 0 … y … 1

Gabriel Paves a Street

Now,

Thus,

and since as we conclude that A is infinite.
Is something wrong with our mathematics? No. Imagine the horn to be slit

along the side, opened up, and laid flat. Given a finite amount of paint, we could
not possibly paint this surface with a paint coat of uniform thickness. However, we
could do it if we allow the paint coat to get thinner and thinner as we move farther
and farther from the horn’s fat end. And, of course, that is exactly what happens
when we fill the unslit horn with cubic units of paint. (Imaginary paint can be
spread to arbitrary thinness.)

This problem involved the study of two integrals of the form For
later reference, we now analyze this integral for all values of p.

� EXAMPLE 7 Show that diverges for and converges for

SOLUTION We showed in our solution to Gabriel’s horn that the integral
diverges for If 

The conclusion follows. �

 
= lim

b: q

c 1
1 - p

d c 1

bp - 1 - 1 d = c q if p 6 1
1

p - 1
if p 7 1

 
L

q

1
 

1
xp   dx = lim

b: qL

b

1
x-p dx = lim

b: q

c x-p + 1

-p + 1
d

1

b

p Z 1,p = 1.

p 7 1.

p … 1
L

q

1
1>xp dx

L

q

1
1>xp dx.

p

b : q ,ln b : q

L

b

1
 
2x4

+ 1

x3   dx 7

L

b

1
 
1
x

  dx = ln b

2x4
+ 1

x3 7

2x4

x3 =

1
x

 = lim
b: q

 2p
L

b

1
 
2x4

+ 1

x3   dx

 = 2p
L

q

1
 
1
xA1 + a -1

x2 b
2

 dx

 A =

L

q

1
2py ds =

L

q

1
2pyA1 + ady

dx
b2

 dx

 = lim
b: q

c- p
x
db

1
= p

 V =

L

q

1
pa 1

x
b2

 dx = lim
b: q

p
L

b

1
x-2 dx

Concepts Review

1. is said to _____ if exists and

is finite.

2. does not converge because _____ does not

exist.
L

q

0
cos x dx

lim
b: qL

b

a
f1x2 dx

L

q

a
f1x2 dx 3. is said to diverge if either _____ or _____

diverges.

4. converges if and only if _____.
L

q

1
11>xp2 dx

L

q

-q

f1x2 dx
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Problem Set 8.3
In Problems 1–24, evaluate each improper integral or show that it
diverges.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. Hint: Use a table of integrals or a CAS.

22.

23. Hint: Use table of integrals or a CAS.

24.

25. Find the area of the region under the curve 
to the right of Hint: Use partial fractions.

26. Find the area of the region under the curve 
to the right of 

27. Suppose that Newton’s law for the force of gravity had
the form rather than (see Example 3). Show that it
would then be impossible to send anything out of the earth’s
gravitational field.

28. If a 1000-pound capsule weighs only 165 pounds on the
moon (radius 1080 miles), how much work is done in propelling
this capsule out of the moon’s gravitational field (see Example 3)?

29. Suppose that a company expects its annual profits t years
from now to be dollars and that interest is considered to be
compounded continuously at an annual rate r. Then the present
value of all future profits can be shown to be

Find FP if and f1t2 = 100,000.r = 0.08

FP =

L

q

0
e-rtf1t2 dt

f(t)

-k>x2
-k>x

x = 1.1>1x2
+ x2

y =

x = 1.2>14x2
- 12

y =

L

q

0
e-x sin x dx

L

q

0
e-x cos x dx

L

q

1
csch x dx

L

q

-q

sech x dx

L

q

-q

 
x

e2 ƒx ƒ

  dx
L

q

-q

 
1

x2
+ 2x + 10

  dx

L

q

-q

 
dx

1x2
+ 1622L

q

-q

 
x2x2

+ 9
  dx

L

q

4
 

dx

1p - x22>3L

1

-q

 
dx

12x - 323
L

q

1
xe-x dx

L

q

2
 
ln x

x2   dx

L

q

e
 
ln x

x
  dx

L

q

e
 

1
x ln x

  dx

L

q

1
 

x

11 + x222  dx
L

q

1
 

dx

x0.99999

L

q

10
 

x

1 + x2  dx
L

q

1
 

dx

x1.00001

L

q

1
 

dx2pxL

q

9
 

x dx21 + x2

L

1

-q

e4x dx
L

q

1
2xe-x2

 dx

L

-5

-q

 
dx

x4L

q

100
ex dx

30. Do Problem 29 assuming that 

31. A continuous random variable X has a uniform distribu-
tion if it has a probability density function of the form

(a) Show that 

(b) Find the mean and variance of the uniform distribution.
(c) If and find the probability that X is less than 2.

32. A random variable X has a Weibull distribution if it has
probability density function

(a) Show that (Assume )

(b) If and find the mean and the variance 

(c) If the lifetime of a computer monitor is a random variable X
that has a Weibull distribution with and (where
age is measured in years) find the probability that a monitor
fails before two years.

33. Sketch the graph of the normal probability density
function

and show, using calculus, that is the distance from the mean 
to the x-coordinate of one of the inflection points.

34. The Pareto probability density function has the form

where k and M are positive constants.

(a) Find the value of C that makes a probability density
function.

(b) For the value of C found in part (a), find the value of the
mean Is the mean finite for all positive k? If not, how does
the mean depend on k?

(c) For the value of C found in part (a), find the variance 
How does the variance depend on k?

35. The Pareto distribution is often used to model income
distribution. Suppose that in some economy the income distribu-
tion does follow a Pareto distribution with Suppose that
the mean income is $20,000.
(a) Find M and C.
(b) Find the variance 
(c) Find the fraction of income earners who earn more than

$100,000. (Note: This is the same as asking what is the prob-
ability that a randomly chosen person has an income of
more than $100,000.)

s2.

k = 3.

s2.

m.

f(x)

f1x2 = c CMk

xk + 1 if x Ú M,

0 if x 6 M

CAS

ms

f1x2 =

1

s22p
  e-1x -m22>2s2

b = 2u = 3

s2.mb = 2,u = 3

b 7 1.
L

q

-q

f1x2 dx = 1.

f1x2 = c bu  ax

u
bb- 1

e-1x>u2b if x 7 0

0 if x … 0

b = 10,a = 0
s2m

L

q

-q

f1x2 dx = 1.

f1x2 = c 1
b - a

if a 6 x 6 b

0 if x … a or x Ú b

f1t2 = 100,000 + 1000t.
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y =
1
x2

1–1–2

y

x

Figure 1

Definition

Let f be continuous on the half-open interval [a, b) and suppose that
Then

provided that this limit exists and is finite, in which case we say that the integral
converges. Otherwise, we say that the integral diverges.

L

b

a
f1x2 dx = lim

t:b-L

t

a
f1x2 dx

lim
x:b-

ƒ f1x2 ƒ = q .

36. In electromagnetic theory, the magnetic potential u at a
point on the axis of a circular coil is given by

where A, r, and a are constants. Evaluate u.

37. There is a subtlety in the definition of that is
illustrated by the following: Show that

(a) diverges and

(b)

38. Consider an infinitely long wire coinciding with the posi-
tive x-axis and having mass density 

(a) Calculate the total mass of the wire.
(b) Show that this wire does not have a center of mass.

39. Give an example of a region in the first quadrant that
gives a solid of finite volume when revolved about the x-axis, but
gives a solid of infinite volume when revolved about the y-axis.

40. Let f be a nonnegative continuous function defined on 

with Show that
L

q

0
f1x2 dx 6 q .0 … x 6 q

0 … x 6 q .
d1x2 = 11 + x22-1,

lim
a: qL

a

-a
 sin x dx = 0.

L

q

-q

sin x dx

L

q

-q

f1x2 dx

u = Ar
L

q

a
 

dx

1r2
+ x223>2

(a) if exists it must be 0;

(b) it is possible that does not exist.

41. We can use a computer to approximate by

taking b very large in provided we know that the first

integral converges. Calculate for 1.1, 1.01,

1, and 0.99. Note that this gives no hint that the integral

converges for and diverges for 

42. Approximate for 50, and

100.

43. Approximate for 2, 3,

and 4.

Answers to Concepts Review: 1. converge

2. 3. 4. p 7 1
L

0

-q

f1x2 dx; 
L

q

0
f1x2 dxlim

b: qL

b

0
cos x dx

a = 1,
L

a

-a
 

122p
  exp1-x2>22 dxCAS

a = 10,
L

a

0
 
1
p

 11 + x22-1
 
 dxCAS

p … 1.p 7 1
L

q

1
11>xp2 dx

p = 2,
L

100

1
11>xp2 dx

L

b

1
f1x2 dx

L

q

1
f1x2 dxCAS

lim
x: q

 f1x2
lim

x: q

 f1x2

Considering the many complicated integrations that we have done, here is one that
looks simple enough but is incorrect.

Wrong

One glance at Figure 1 tells us that something is terribly wrong.The value of the in-
tegral (if there is one) has to be a positive number. (Why?)

Where is our mistake? To answer, we refer back to Section 5.2. Recall that for
a function to be integrable in the standard (or proper) sense it must be bounded.
Our function, is not bounded, so it is not integrable in the proper

sense. We say that is an improper integral with an infinite integrand

(unbounded integrand is a more accurate but less colorful term).
Until now, we have carefully avoided infinite integrands in all our examples

and problems.We could continue to do this, but this would be to avoid a kind of in-
tegral that has important applications. Our task for this section is to define and an-
alyze this new kind of integral.

Integrands That Are Infinite at an End Point We give the defini-
tion for the case where f tends to infinity at the right end point of the interval of
integration. There is a completely analogous definition for the case where f tends
to infinity at the left end point.

L

1

-2
x-2 dx

f1x2 = 1>x2,

L

1

-2
  

1

x2  dx = c- 1
x
d

-2

1

= -1 -

1
2

= -

3
2

8.4
Improper Integrals:
Infinite Integrands
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y

xa

y = f (x)

t b

�  f(x) dx
a

t

Figure 2

From Example 7 of Section 8.3, we
learned that

converges if and only if From
Example 4 of the present section, we
learn that

converges if and only if The
first has an infinite limit of integra-
tion; the second has an infinite inte-
grand. If you feel at home with these
two integrals, you should also be at
ease with any other improper inte-
grals that you may meet.

p 6 1.

L

1

0
 

1
xp   dx

p 7 1.

L

q

1
 

1
xp   dx

Two Key Examples

Note the geometric interpretation shown in Figure 2.

� EXAMPLE 1 Evaluate, if possible, the improper integral 

SOLUTION Note that the integrand tends to infinity at 2.

�

� EXAMPLE 2 Evaluate, if possible,

SOLUTION

�

� EXAMPLE 3 Evaluate, if possible,

SOLUTION

We conclude that the integral diverges. �

� EXAMPLE 4 Show that converges if but diverges if

SOLUTION Example 3 took care of the case If 

�

� EXAMPLE 5 Sketch the graph of the hypocycloid of four cusps,

and find its perimeter.

SOLUTION The graph is shown in Figure 3. To find the perimeter, it is
enough to find the length L of the first quadrant portion and quadruple it. We
estimate L to be a bit more than Its exact value (see Section 6.4) is

L =

L

1

0
21 + 1y¿22 dx

22 L 1.4.

≈

x2>3
+ y2>3

= 1,

 
= lim

t:0+ 
c 1
1 - p

-

1
1 - p

#
1

tp - 1 d = c 1
1 - p

if p 6 1

q if p 7 1

 
L

1

0
 

1
xp   dx = lim

t:0+L

1

t
x-p dx = lim

t:0+ 
c x-p + 1

-p + 1
d

t

1

p Z 1,p = 1.

p Ú 1.

p 6 1,
L

1

0
 

1
xp   dx

 = lim
t:0+ 

[- ln t] = q

 
L

1

0
 
1
x

  dx = lim
t:0+L

1

t
 
1
x

  dx = lim
t:0+

[ln x]
t
1

L

1

0
 
1
x

  dx.

 = lim
t:0+ 

c32
3

-

4
3

 t3>4 d =

32
3

 
L

16

0
x-1>4 dx = lim

t:0+L

16

t
x-1>4 dx = lim

t:0+ 
c4
3

 x3>4 d
t

16

L

16

0
 

114 x
  dx.

 = lim
t:2- 

csin-1
 a t

2
b - sin-1

 a0
2
b d =

p

2

 
L

2

0
 

dx24 - x2
= lim

t:2-L

t

0
 

dx24 - x2
= lim

t:2- 
csin-1

 ax

2
b d

0

t

L

2

0
 

dx24 - x2
.

y

x

–1

–1 1

1

x2/3 + y2/3 = 1

Figure 3 445



446 Chapter 8 Indeterminate Forms and Improper Integrals

y

x

f (x) = 1/(x – 1)2/3

1

1

2

2

3

3

4

Figure 4

Definition

Let be continuous on [a, b] except at a number c, where and sup-
pose that Then we define

provided both integrals on the right converge. Otherwise, we say that

diverges.
L

b

a
f1x2 dx

L

b

a
f1x2 dx =

L

c

a
f1x2 dx +

L

b

c
f1x2 dx

lim
x:c

ƒ f1x2 ƒ = q .
a 6 c 6 b,f

By implicit differentiation of we obtain

or

Thus,

and so

The value of this improper integral can be read from the solution to Example 4; it
is We conclude that the hypocycloid has perimeter  �

Integrands That Are Infinite at an Interior Point The integral

of our introduction has an integrand that tends to infinity at an

interior point of the interval Here is the appropriate definition to give
meaning to such an integral.

[-2, 1].

x = 0,
L

1

-2
1>x2 dx

4L = 6.L = 1> A1 -
1
3 B =

3
2.

L =

L

1

0
21 + 1y¿22 dx =

L

1

0
 

1

x1>3  dx

1 + 1y¿22 = 1 +

y2>3
x2>3 = 1 +

1 - x2>3
x2>3 =

1

x2>3

y¿ = -

y1>3
x1>3

2
3

 x-1>3
+

2
3

 y-1>3y¿ = 0

x2>3
+ y2>3

= 1,

� EXAMPLE 6 Show that diverges.

SOLUTION

The second of the integrals on the right diverges by Example 4. This is enough to
give the conclusion. �

� EXAMPLE 7 Evaluate, if possible, the improper integral 

SOLUTION The integrand tends to infinity at (see Figure 4). Thus,

� = 3 + 3121>32 L 6.78

 = 3 lim
t:1- 

[1t - 121>3 + 1] + 3 lim
s:1+ 

[21>3
- 1s - 121>3]

 = lim
t:1- 

[31x - 121>3]0
t

+ lim
s:1+ 

[31x - 121>3]
s
3

 = lim
t:1-L

t

0
 

dx

1x - 122>3 + lim
s:1+L

3

s
 

dx

1x - 122>3

 
L

3

0
 

dx

1x - 122>3 =

L

1

0
 

dx

1x - 122>3 +

L

3

1
 

dx

1x - 122>3

x = 1

L

3

0
 

dx

1x - 122>3.

L

1

-2
 
1

x2  dx =

L

0

-2
 
1

x2  dx +

L

1

0
 
1

x2  dx

L

1

-2
1>x2 dx
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Concepts Review

1. The integral does not exist in the proper

sense because the function is _____ on the interval
(0, 1].

2. Considered as an improper integral,

_____.lim
a:0+L

1

a
x-1>2 dx =

L

1

0
11>1x2 dx =

f1x2 = 1>1x
L

1

0
11>1x2 dx 3. The improper integral is defined by

_____.

4. The improper integral converges if and
only if _____. L

1

0
11>xp2 dx

L

4

0
A1>24 - x B  dx

Problem Set 8.4
In Problems 1–32, evaluate each improper integral or show that it
diverges.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.
L

2c

c
 

x dx2x2
+ xc - 2c2

, c 7 0

L

4c

2c
 

dx2x2
- 4c2

L

10

1
 

dx

x ln100 xL

e

1
 

dx

x ln x

L

4

2
 

dx24x - x2L

 ln 3

0
 

ex dx2ex
- 1

L

-1

-3
 

dx

x2ln1-x2L

p

0
 

dx

cos x - 1

L

p>4

0
 

sec2 x

1tan x - 122  dx
L

p>2

0
tan2 x sec2 x dx

L

p>2

0
 

cos x23 sin x
  dx

L

p>2

0
 

sin x
1 - cos x

  dx

L

p>2

0
csc x dx

L

p>4

0
tan 2x dx

L

27

0
 

x1>3
x2>3

- 9
  dx

L

3

0
 

dx

x3
- x2

- x + 1

L

3

0
 

dx

x2
+ x - 2L

-1

-2
 

dx

1x + 124>3
L

3

0
 

x29 - x2
  dx

L

-4

0
 

x

16 - 2x2   dx

L

2825
 

x

116 - 2x222>3  dx
L

4

0
 

dx

12 - 3x21>3

L

1

0
 

x23 1 - x2
   dx

L

128

-1
x-5>7 dx

L

-5

5
 

1

x2>3  dx
L

3

-1
 
1

x3  dx

L

q

100
 

x21 + x2
  dx

L

1

0
 

dx21 - x2

L

9

0
 

dx29 - xL

10

3
 

dx2x - 3

L

3

1
 

dx

1x - 124>3L

3

1
 

dx

1x - 121>3

33. It is often possible to change an improper integral into 
a proper one by using integration by parts. Consider

Use integration by parts on the interval 

[c, 1] where to show that

and thus conclude that upon taking the limit as an improp-
er integral can be turned into a proper integral.

34. Use integration by parts and the technique of Problem 33

to transform the improper integral into a proper
integral.

35. If tends to infinity at both a and b, then we define

where c is any point between a and b, provided of course that
both the latter integrals converge. Otherwise, we say that the 

given integral diverges. Use this to evaluate or
show that it diverges.

36. Evaluate or show that it diverges. See

Problem 35.

37. Evaluate or show that it diverges. See

Problem 35.

38. Evaluate or show that it diverges.

39. If we define

provided both limits exist. Otherwise, we say that 

diverges. Show that diverges for all p.

40. Suppose that f is continuous on except at 

where How would you define 
L

q

0
f1x2 dx?lim

x:1
ƒ f1x2 ƒ = q .

x = 1,[0, q2
L

q

0
 

1
xp   dx

L

q

0
f1x2 dx

L

q

0
f1x2 dx = lim

c:0+L

1

c
f1x2 dx + lim

b: qL

b

1
f1x2 dx

lim
x:0+ 

f1x2 = q ,

L

1

-1
 

1

x2- ln ƒ x ƒ

  dx

L

4

-4
 

1

16 - x2  dx

L

3

-3
 

x

9 - x2  dx

L

3

-3
 

x29 - x2
  dx

L

b

a
f1x2 dx =

L

c

a
f1x2 dx +

L

b

c
f1x2 dx,

f(x)

L

1

0
 

dx2x11 + x2

c : 0

L

1

c
 

dx1x11 + x2 = 1 -

21c

c + 1
+ 2
L

1

c
 
1x dx

11 + x22

0 6 c 6 1

lim
c:0+L

1

c
 

dx1x11 + x2.
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41. Find the area of the region between the curves
and for 

42. Find the area of the region between the curves 
and for 

43. Let R be the region in the first quadrant below the curve
and to the left of 

(a) Show that the area of R is finite by finding its value.
(b) Show that the volume of the solid generated by revolving R

about the x-axis is infinite.

44. Find b so that 

45. Is an improper integral? Explain.

46. (Comparison Test) If on it

can be shown that the convergence of implies the

convergence of and the divergence of 

implies the divergence of Use this to show that

converges.

Hint: On 

47. Use the Comparison Test of Problem 46 to show that

converges. Hint: on 

48. Use the Comparison Test of Problem 46 to show that

diverges.

49. Use the Comparison Test of Problem 46 to determine

whether converges or diverges.

50. Formulate a comparison test for improper integrals with
infinite integrands.

51. (a) Use Example 2 of Section 8.2 to show that for any
positive number n there is a number M such that

(b) Use part (a) and Problem 46 to show that 
converges.

52. Using Problem 50, prove that converges
for n 7 0. L

1

0
xn - 1e-x dx

L

q

1
xn - 1e-x dx

0 6

xn - 1

ex …

1

x2 for x Ú M

L

q

1
 

1

x2 ln1x + 12   dx

L

q

2
 

12x + 2 - 1
  dx

[1, q2.e-x2
… e-x

L

q

1
e-x2

 dx

1>[x411 + x42] … 1>x4.[1, q2,
L

q

1
 

1

x411 + x42   dx

L

q

a
g1x2 dx.

L

q

a
f1x2 dx

L

q

a
f1x2 dx,

L

q

a
g1x2 dx

[a, q2,0 … f1x2 … g1x2EXPL

L

1

0
 
sin x

x
  dx

L

b

0
ln x dx = 0.

x = 1.y = x-2>3

0 6 x … 1.y = 1>1x3
+ x2

y = 1>x
0 … x 6 8.y = 0y = 1x - 82-2>3 53. (Gamma Function) Let 

This integral converges by Problems 51 and 52. Show each of the
following (note that the gamma function is defined for every pos-
itive real number n):
(a) (b)
(c) if n is a positive integer.

54. Evaluate for 2, 3, 4, and 5, thereby

confirming Problem 53(c).

55. The gamma probability density function is

where and are positive constants. (Both the gamma and the
Weibull distributions are used to model lifetimes of people, ani-
mals, and equipment.)
(a) Find the value of C, depending on both and that makes

a probability density function.
(b) For the value of C found in part (a), find the value of the

mean 
(c) For the value of C found in part (a), find the variance 

56. The Laplace transform, named after the French math-
ematician Pierre-Simon de Laplace (1749–1827), of a func- 

tion is given by Laplace

transforms are useful for solving differential equations.
(a) Show that the Laplace transform of is given by

and is defined for 
(b) Show that the Laplace transform of is given by 

and is defined for 
(c) Show that the Laplace transform of is given by

and is defined for 

57. By interpreting each of the following integrals as an area
and then calculating this area by a y-integration, evaluate:

(a) (b)

58. Suppose that and con-

verges. What can you say about p and q?

Answers to Concepts Review: 1. unbounded 2. 2

3. 4. p 6 1lim
b:4-L

b

0
A1>24 - x B  dx

L

q

0
 

1
xp

+ xq   dx0 6 p 6 qEXPL

L

1

-1A1 + x

1 - x
  dx

L

1

0 A1 - x

x
  dx

s 7 0.a>1s2
+ a22

sin1at2
s 7 a.

1>1s - a2eat

s 7 0.≠1a + 12>sa+ 1
ta

L5f1t261s2 =

L

q

0
f1t2e-st dt.f(x)

EXPL

s2.
m.

f(x)
b,a

ba

f1x2 = eCxa- 1e-bx, if x 7 0
0, if x … 0

n = 1,
L

q

0
xn - 1e-x dxCAS

≠1n + 12 = n!,
≠1n + 12 = n≠1n2≠112 = 1

≠1n2 =

L

q

0
xn - 1e-x dx, n 7 0.EXPL

8.5 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. 2.

3. 4. lim
x: q

 xe-1>x
= 0lim

x: q

 
1000x4

+ 1000

0.001x4
+ 1

= q

lim
x: q

 
x1>10

ln x
= qlim

x: q

 
x100

ex = 0

5. If then 

6. If and then

7. If then lim
n: q

E lim
x:a

[f1x2]nF = 1.lim
x:a

 f1x2 = 1,

lim
x:a 

[f1x2]g1x2
= 1.

lim
x:a

 g1x2 = q ,lim
x:a

 f1x2 = 1

lim
x:a

  
f1x2
g1x2 = 1.lim

x:a
 f1x2 = lim

x:a
 g1x2 = q ,
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8. If and then

(Assume for )

9. If and then

10. If and then

11. If then 

12. If and then 

(Assume for )

13. If then 

14. If for and then

15. If is a polynomial, then 

16. If is a polynomial, then 

17. If and are both differentiable and

then 

18. converges.

19. diverges for all 

20. If f is continuous on and then

converges.

21. If f is an even function and converges, then

converges.

22. If exists and is finite, then 

converges.

23. If is continuous on and then

converges.

24. If on then 
converges.

25. is an improper integral.

Sample Test Problems

Find each limit in Problems 1–18.

1. 2.

3. 4.

5. 6. lim
x:1-

 
ln11 - x2

cot px
lim
x:0

 2x cot x

lim
x:0

 
cos x

x2lim
x:0

 
sin x - tan x

1
3x2

lim
x:0

 
tan 2x

sin 3x
lim
x:0

 
4x

tan x

L

p>4

0
 
tan x

x
  dx

L

q

0
f1x2 dx[0, q2,0 … f1x2 … e-x

L

q

0
f¿1x2 dx

lim
x: q

f1x2 = 0,[0, q2f¿

L

q

-q

f1x2 dxlim
b: qL

b

-b
f1x2 dx

L

q

-q

f1x2 dx
L

q

0
f1x2 dx

L

q

0
f1x2 dx

lim
x: q

f1x2 = 0,[0, q2
p 7 0.

L

q

0
 

1
xp   dx

L

1

0
 

1

x1.001  dx

lim
x:0

 
f1x2
g1x2 = L.lim

x:0
  

f¿1x2
g¿1x2 = L,

g(x)f(x)

lim
x:0

 
p1x2

ex = p102.p(x)

lim
x: q

 
p1x2

ex = 0.p(x)

lim
x:a 

[1 + f1x2]1>f1x2
= e.

lim
x:a 

f1x2 = 0,x Z af1x2 Z 0

lim
x: q 

f1x2 = e2.lim
x: q

ln f1x2 = 2,

x Z a.g1x2 Z 0

lim
x:a

 
f1x2
ƒ g1x2 ƒ

= q .lim
x:a

g1x2 = 0,lim
x:a

f1x2 = 2

lim
x: q

[f1x2 - 3g1x2] = 0.lim
x: q

 
f1x2
g1x2 = 3,

lim
x:a 

[f1x2g1x2] = 0.

lim
x:a

 g1x2 = q ,lim
x:a

 f1x2 = 0

lim
x:a 

[f1x2g1x2] = - q .

lim
x:a

 g1x2 = q ,lim
x:a

 f1x2 = -1

x Z a.f1x2 Ú 0lim
x:a 

[f1x2]g1x2
= 0.

lim
x:a

 g1x2 = q ,lim
x:a

 f1x2 = 0
7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18 .

In Problems 19–38, evaluate the given improper integral or show
that it diverges.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. For what values of p does the integral con-
verge and for what values does it diverge?

40. For what values of p does the integral converge
and for what values does it diverge?

In Problems 41–44, use a comparison test (see Problem 46 of
Section 8.4) to decide whether each integral converges or diverges.

41. 42.

43. 44.
L

q

1
 
ln x

x3   dx
L

q

3
 
ln x

x
  dx

L

q

1
 
ln x

e2x
  dx

L

q

1
 

dx2x6
+ x

L

1

0
 

1
xp   dx

L

q

1
 

1
xp   dx

L

p>2

p>3
 

tan x

1ln cos x22  dx
L

3

-3
 

x29 - x2
  dx

L

q

-q

x2e-x3
 dx

L

q

0
 

ex

e2x
+ 1

  dx

L

q

-q

 
x

1 + x4  dx
L

q

-q

 
x

x2
+ 1

  dx

L

q

2
xe-x2

 dx
L

5

3
 

dx

14 - x22>3
L

q

0
 
dx

ex>2L

q

2
 

dx

x1ln x22
L

4

1
 

dx2x - 1L

0

-2
 

dx

2x + 3

L

1

-q

  
dx

12 - x22L

q

1
 

dx

x2
+ x4

L

2

1>2
  

dx

x1ln x21>5L

q

0
 

dx

x + 1

L

1

-1
 

dx

1 - xL

1

-q

e2x dx

L

q

0
 

dx

1 + x2L

q

0
 

dx

1x + 122

lim
x:p>2 ax tan x -

p

2
 sec xblim

x:p>21sin x2tan x

lim
x:p>2 

tan 3x

tan x
lim

x:0+

 a 1
sin x

-

1
x
b

lim
t: q

 t1>tlim
x:0+

1x ln x

lim
x:0
11 + sin x22>xlim

x:0+

 xx

lim
x:0+

 x ln xlim
x:0+

1sin x21>x
lim

x: q

 
2x3

ln x
lim

t: q

 
ln t

t2
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REVIEW &
PREVIEW

PROBLEMS

Recall from Section 1.1 that the converse of an implication is and the con-
trapositive is not In Problems 1–8, give the converse and the contrapositive of
the given statement. Which, among the original statement, its converse, and its contrapositive,
are always true?

1. If then 

2. If then 

3. If f is differentiable at c, then f is continuous at c.

4. If f is continuous at c, then f is differentiable at c.

5. If f is right continuous at c, then f is continuous at c.

6. If the derivative of f is always zero, then f is a constant function. [Assume that f is dif-
ferentiable for all x.]

7. If then 

8. If then 

In Problems 9–12, evaluate the given sum.

9. 10.

11. 12.

Evaluate the following limits.

13. 14.

15. 16.

Which of the improper integrals converge?

17. 18.

19. 20.

21. 22.
L

q

2
 

1

x1ln x22  dx
L

q

2
 

1
x ln x

  dx

L

q

1
 

x

x2
+ 1

  dx
L

q

1
 

1

x1.001  dx

L

q

1
 
1

x2  dx
L

q

1
 
1
x

  dx

lim
n: q

  
n2

enlim
x: q

  
x2

ex

lim
n: q

  
n2

2n2
+ 1

lim
x: q

  
x

2x + 1

a
4

k = 1
 
1-12k

2ka
4

i = 1
 
1
i

1 +

1
2

+

1
4

+

1
8

+

1
16

+

1
32

1 +

1
2

+

1
4

a2
6 b2.a 6 b,

f¿1x2 = 2x.f1x2 = x2,

x 7 0.x2
7 0,

x2
7 0.x 7 0,

Q Q  not P.
Q Q  P,P Q  Q
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Infinite SeriesCHAPTER 9
9.1
Infinite Sequences
In simple language, a sequence

is an ordered arrangement of real numbers, one for each positive integer. More
formally, an infinite sequence is a function whose domain is the set of positive in-
tegers and whose range is a set of real numbers. We may denote a sequence by

by or simply by Occasionally, we will extend the no-
tion slightly by allowing the domain to consist of all integers greater than or equal
to a specified integer, as in and which are also denoted
by and respectively.

A sequence may be specified by giving enough initial terms to establish a pat-
tern, as in

by an explicit formula for the nth term, as in

or by a recursion formula

Note that each of our three illustrations describes the same sequence. Here are
four more explicit formulas and the first few terms of the sequences that they
generate.

(1)

(2)

(3)

(4)

Convergence Consider the four sequences just defined. Each has values that
pile up near 1 (see the diagrams in Figure 1). But do they all converge to 1? The
correct response is that sequences and converge to 1, but and 
do not.

For a sequence to converge to 1 means first that values of the sequence should
get close to 1. But they must do more than get close; they must remain close for all
n beyond a certain value.This rules out sequence And close means arbitrarily
close, that is, within any specified nonzero distance from 1, which rules out se-
quence While sequence does not converge to 1, it is correct to say that it
converges to 0.999. Sequence does not converge at all; we say it diverges.

Here is the formal definition, which we first introduced in Section 2.4.
5cn6
5dn65dn6.

5cn6.

5dn65cn65bn65an6

n Ú 1: 0.999, 0.999, 0.999, 0.999, Ádn = 0.999,

n Ú 1: 0, 
3
2

, -
2
3

, 
5
4

, -
4
5

, 
7
6

, -
6
7

, Ácn = 1-12n +

1
n

,

n Ú 1: 0, 
3
2

, 
2
3

, 
5
4

, 
4
5

, 
7
6

, 
6
7

, Ábn = 1 + 1-12n 
1
n

,

n Ú 1: 0, 
1
2

, 
2
3

, 
3
4

, 
4
5

, Áan = 1 -

1
n

,

a1 = 1, an = an - 1 + 3, n Ú 2

an = 3n - 2, n Ú 1

1, 4, 7, 10, 13, Á

5cn6n = 8
q ,5bn6n = 0

q

c8, c9, c10, Á ,b0, b1, b2, Á

5an6.5an6n = 1
q ,a1, a2, a3, Á ,

a1, a2, a3, a4, Á

Someone is sure to argue that there
are many different sequences that
begin

1, 4, 7, 10, 13

and we agree. For example, the
formula

generates those five numbers. Who
but an expert would think of this
formula? When we ask you to look
for a pattern, we mean a simple and
obvious pattern.

1n - 52
3n - 2 + 1n - 12 # 1n - 22Á

10–1

10–1

10–1

10–1

a1

b1

c1

a2a3

b3

c3 c6 c4 c2

d1
d2 d3

b5

c5

b4 b2

Figure 1

9.1 Infinite Sequences

9.2 Infinite Series

9.3 Positive Series: 
The Integral Test

9.4 Positive Series:
Other Tests

9.5 Alternating Series,
Absolute
Convergence, 
and Conditional
Convergence

9.6 Power Series

9.7 Operations 
on Power Series

9.8 Taylor and
Maclaurin Series

9.9 The Taylor
Approximation 
to a Function

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 9 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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452 Chapter 9 Infinite Series

To see a relationship with limits at infinity (Section 2.4), consider graphing
and The only difference is that in the sequence

case the domain is restricted to the positive integers. In the first case, we write
in the second, Note the interpretations of and N in

the diagrams in Figure 2.

elim
x: q

 a1x2 = 1.lim
n: q

 an = 1;

a1x2 = 1 - 1>x.an = 1 - 1>n

� EXAMPLE 1 Show that if p is a positive integer, then

SOLUTION This is almost obvious from earlier work, but we can give a formal
demonstration. Let an arbitrary be given. Choose N to be any number
greater than Then implies that

�

All the familiar limit theorems hold for convergent sequences. We state them
without proof.

ƒ an - L ƒ = ` 1
np - 0 ` =

1
np …

1
Np 6

1

A2p 1>e Bp = e

n Ú N2p 1>e. e 7 0

lim
n: q

 
1
np = 0

Definition

The sequence is said to converge to L, and we write

if for each positive number there is a corresponding positive number N such
that

A sequence that fails to converge to any finite number L is said to diverge, or to
be divergent.

n Ú N Q  ƒ an - L ƒ 6 e

e

lim
n: q

 an = L

5an6

1 2 3 4

y y

x x
N

an = 1 – 1
n a(x) = 1 – 1

x

1 + �

1 – �
1

1 + �

1 – �
1

n � N ⇒ � an – 1� < � x � N ⇒ �a(x) – 1� < �

1 2 3 4 N

Figure 2

Theorem A Properties of Limits of Sequences

Let and be convergent sequences and k a constant. Then

(i)

(ii)

(iii)

(iv)

(v) provided that lim
n: q

 bn Z 0.lim
n: q

  
an

bn
=

lim
n: q

 an

lim
n: q

 bn
,

lim
n: q

1an
# bn2 = lim

n: q

 an
# lim

n: q

 bn;

lim
n: q

1an ; bn2 = lim
n: q

 an ; lim
n: q

 bn;

lim
n: q

 kan = k lim
n: q

 an;

lim
n: q

 k = k;

5bn65an6
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Section 9.1 Infinite Sequences 453

� EXAMPLE 2 Find 

SOLUTION To decide what is happening to a quotient of two polynomials in n
as n gets large, it is wise to divide the numerator and denominator by the largest
power of n that occurs in the denominator. This justifies our first step below; the
others are justified by appealing to statements from Theorem A as indicated by the
circled numbers.

lim
n: q

 
3n2

7n2
+ 1

.

By this time, the limit theorems are so familiar that we will normally jump directly
from the first step to the final result. �

� EXAMPLE 3 Does the sequence converge and, if so, to what
number?

SOLUTION Here, and in many sequence problems, it is convenient to use the
following almost obvious fact (see Figure 2).

This is convenient because we can apply l’Hôpital’s Rule to the continuous vari-
able problem. In particular, by l’Hôpital’s Rule,

Thus,

That is, converges to 0. �

Here is another theorem that we have seen before in a slightly different guise
(Theorem 2.3D).

51ln n2>en6
lim

n: q

 
ln n
en = 0

lim
x: q

 
ln x
ex = lim

x: q

 
1>x
ex = 0

If lim
x: q

 f1x2 = L, then lim
n: q

 f1n2 = L.

51ln n2>en6

[7 + (1/n2)]

5

=

=3n2

n2 + 1

lim 3
n → �

3
7 + (1/n2)

lim 7 + lim 1/n2

3

=

7 + lim 1/n2
3

1

=

n → �

n → � n → �

lim 3
n → �

7 + 0
3= 3

7
=

lim
n → �

lim
n → �

lim
n → �

Theorem B Squeeze Theorem

Suppose that and both converge to L and that for
(K a fixed integer). Then also converges to L.5bn6n Ú K

an … bn … cn5cn65an6

� EXAMPLE 4 Show that 

SOLUTION For Since and

the result follows by the Squeeze Theorem. �lim
n: q

11>n2 = 0,

lim
n: q

1-1>n2 = 0n Ú 1, -1>n … 1sin3 n2>n … 1>n.

lim
n: q

 
sin3 n

n
= 0.

In Chapter 8, we showed using
L’Hôpital’s Rule that grows faster
than any power of x and ln x grows
slower than any power of x. Thus we
would expect that and

both go to 0.ln n>en
ln x>ex

ex

As Expected≈
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454 Chapter 9 Infinite Series

Theorem C

If then lim
n: q

 an = 0.lim
n: q

ƒ an ƒ = 0,

1 2 3 4 5

y

n

U

A

y = an

lim an = A
n → �

Figure 3

Theorem D Monotonic Sequence Theorem

If U is an upper bound for a nondecreasing sequence then the sequence
converges to a limit A that is less than or equal to U. Similarly, if L is a lower
bound for a nonincreasing sequence then the sequence converges to
a limit B that is greater than or equal to L.

5bn65bn6,
5an6,

For sequences of variable sign, it is helpful to have the following result.

Proof Since the result follows from the Squeeze Theorem. �

What happens to the numbers in the sequence as We sug-
gest that you calculate for 100, 1000, and 10,000 on your calculator
to make a good guess. Then note the following example.

� EXAMPLE 5 Show that if then 

SOLUTION If the result is trivial, so suppose otherwise. Then 
and so for some number By the Binomial Formula,

Thus,

Since it follows from the Squeeze Theorem

that or, equivalently, By Theorem C, �

What if for example, Then will march off toward In this
case, we write

However, we say that the sequence diverges. To converge, a sequence must
approach a finite limit. The sequence also diverges when 

Monotonic Sequences Consider now an arbitrary nondecreasing sequence
by which we mean One example is the sequence 

another is If you think about it a little, you may convince yourself
that such a sequence can do one of only two things. Either it marches off to infinity
or, if it cannot do that because it is bounded above, then it must approach a lid (see
Figure 3). Here is the formal statement of this very important result.

an = 1 - 1>n.
an = n2;an … an + 1, n Ú 1.5an6,

r … -1.5rn6
5rn6

lim
n: q

 rn
= q ,  r 7 1

q .rnr = 1.5?r 7 1;

lim
n: q

 rn
= 0.lim

n: q

ƒ rn
ƒ = 0.lim

n: q

ƒ r ƒ
n

= 0

lim
n: q

11>pn2 = 11>p2 lim
n: q

11>n2 = 0,

0 … ƒ r ƒ
n

…

1
pn

1
ƒ r ƒ

n = 11 + p2n = 1 + pn + 1positive terms2 Ú pn

p 7 0.1> ƒ r ƒ = 1 + p
1> ƒ r ƒ 7 1,r = 0,

lim
n: q

 rn
= 0.-1 6 r 6 1

n = 10,0.999n
n : q?50.999n6

- ƒ an ƒ … an … ƒ an ƒ ,

The expression monotonic sequence is used to describe either a nondecreasing
or nonincreasing sequence; hence the name for this theorem.

Theorem D describes a very deep property of the real number system. It is
equivalent to the completeness property of the real numbers, which in simple lan-
guage says that the real line has no “holes” in it (see Problems 47 and 48). It is this
property that distinguishes the real number line from the rational number line
(which is full of holes). A great deal more could be said about this topic; we hope
Theorem D appeals to your intuition and that you will accept it on faith until you
take a more advanced course.
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Section 9.1 Infinite Sequences 455

We make one more comment about Theorem D. It is not necessary that the
sequences and be monotonic initially, only that they be monotonic from
some point on, that is, for In fact, the convergence or divergence of a se-
quence does not depend on the character of the initial terms, but rather on what is
true for large n.

� EXAMPLE 6 Show that the sequence converges by using
Theorem D.

SOLUTION The first few terms of this sequence are

For the sequence appears to be decreasing a fact that we now
establish. Each of the following inequalities is equivalent to the others.

The last inequality is clearly true for Since the sequence is decreasing (a
stronger condition than nonincreasing) and is bounded below by zero, the Mono-
tonic Sequence Theorem guarantees that it has a limit.

It would be easy using l’Hôpital’s Rule to show that the limit is zero. �

n Ú 3.

 n1n - 22 7 1

 n2
- 2n 7 1

 2n2
7 n2

+ 2n + 1

 n2
7

1n + 122
2

 
n2

2n 7

1n + 122
2n + 1

1bn 7 bn + 12,n Ú 3

1
2

, 1, 
9
8

, 1, 
25
32

, 
9
16

, 
49
128

, Á

bn = n2>2n

n Ú K.
5bn65an6

Concepts Review
1. An arrangement of numbers is called _____.

2. We say the sequence converges if _____.5an6
a1, a2, a3, Á 3. An increasing sequence that is also _____ must converge.

4. The sequence converges if and only if 

_____ _____.6 r …

5rn6

Problem Set 9.1
In Problems 1–20, an explicit formula for is given.Write the first
five terms of determine whether the sequence converges or
diverges, and, if it converges, find 

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14. an = A14 Bn + 3n>2an =

1-p2n
5n

an =

e2n

4nan =

e2n

n2
+ 3n - 1

an = e-n sin nan =

cos1np2
n

an =

n cos1np2
2n - 1

an = 1-12n 
n

n + 2

an =

23n2
+ 2

2n + 1
an =

n3
+ 3n2

+ 3n

1n + 123

an =

3n2
+ 2

2n - 1
an =

4n2
+ 2

n2
+ 3n - 1

an =

3n + 2
n + 1

an =

n

3n - 1

lim
n: q

 an.
5an6,

an
15. 16.

17. 18.

19. 20.

Hint: See Example 3 of Section 2.6.

In Problems 21–30, find an explicit formula _____ for each
sequence, determine whether the sequence converges or diverges,
and, if it converges, find 

21. 22.

23.

24.

25. 1, 
2

22
- 12, 

3

32
- 22, 

4

42
- 32, Á

1, 
1

1 -
1
2

, 
1

1 -
2
3

, 
1

1 -
3
4

, Á

-1, 23, - 3
5, 47, - 5

9, Á

1

22, 
2

23, 
3

24, 
4

25
, Á

1
2, 23, 34, 45, Á

lim
n: q

 an.

an =

an = 12n21>2nan = a1 +

2
n
bn>2

an =

ln11>n222n
an =

ln n1n

an =

n100

enan = 2 + 10.992n
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456 Chapter 9 Infinite Series

Figure 4

26.

27.

28. 29.

30.

In Problems 31–36, write the first four terms of the sequence 
Then use Theorem D to show that the sequence converges.

31. 32.

33.

34.

35.

36.

37. Assuming that and determine
a convergent sequence, find to four decimal places.

38. Show that of Problem 37 is bounded above and in-
creasing. Conclude from Theorem D that converges. Hint:
Use mathematical induction.

39. Find of Problem 37 algebraically. Hint: Let

Then, since Now

square both sides and solve for u.

40. Use the technique of Problem 39 to find of Prob-
lem 36.

41. Assuming that and determine a con-
vergent sequence, find to four decimal places.

42. Show that of Problem 41 is increasing and bounded
above by 2.

43. Find

Hint: Write an equivalent definite integral.

44. Show that

45. Using the definition of limit, prove that 

that is, for a given find N such that

46. As in Problem 45, prove that 

47. Let Convince yourself
that S does not have a least upper bound in the rational numbers,
but does have such a bound in the real numbers. In other words,
the sequence of rational numbers has no
limit within the rational numbers.

48. The completeness property of the real numbers says
that for every set of real numbers that is bounded above, there
exists a real number that is a least upper bound for the set. This

EXPL

1, 1.4, 1.41, 1.414, Á ,

S = 5x: x is rational and x2
6 26.

lim
n: q

 n>1n2
+ 12 = 0.

n Ú N Q ƒ n>1n + 12 - 1 ƒ 6 e.

e 7 0,= 1;

lim
n: q

 n>1n + 12

lim
n: q  a

n

k = 1
c 1

1 + 1k>n22 d  
1
n

=

p

4

lim
n: q  a

n

k = 1
asin 

k

n
b  

1
n

5un6
lim

n: q

 un

un + 1 = 1.1unu1 = 0C

lim
n: q

 an

un + 1 = 23 + un, u = 23 + u.u = lim
n: q

 un.

lim
n: q

 un

5un6
5un6

lim
n: q

 un

un + 1 = 23 + unu1 = 23C

a1 = 2, an + 1 =

1
2

 aan +

2
an
b

a1 = 1, an + 1 = 1 +
1
2 an

an = 1 +

1
2!

+

1
3!

+
Á

+

1
n!

an = a1 -

1
4
b a1 -

1
9
b Á a1 -

1

n2 b , n Ú 2

an =

n

n + 1
 a2 -

1

n2 ban =

4n - 3
2n

5an6.
1 -

1
2, 12 -

1
3, 13 -

1
4, 14 -

1
5, Á

2, 1, 
23

32, 
24

42, 
25

52, Á-
1
3, 49, - 9

27, 16
81, Á

sin 1, 2 sin 
1
2, 3 sin 

1
3, 4 sin 

1
4, Á

1

2 -
1
2

, 
2

3 -
1
3

, 
3

4 -
1
4

, 
4

5 -
1
5

, Á

property is usually taken as an axiom for the real numbers. Prove
Theorem D using this property.

49. Prove that if and is bounded then

50. Prove that if converges and diverges then
diverges.

51. If and both diverge, does it follow that
diverges?

52. A famous sequence called the Fibonacci Se-
quence after Leonardo Fibonacci, who introduced it around A.D.
1200, is defined by the recursion formula

(a) Find through 
(b) Let The Greeks called this

number the golden ratio, claiming that a rectangle whose
dimensions were in this ratio was “perfect.” It can be shown
that

Check that this gives the right result for and 
The general result can be proved by induction (it is a nice
challenge). More in line with this section, use this explicit
formula to prove that 

(c) Using the limit just proved, show that satisfies the equa-
tion Then, in another interesting twist, use
the Quadratic Formula to show that the two roots of this
equation are and two numbers that occur in the ex-
plicit formula for 

53. Consider an equilateral triangle containing 
circles, each of diameter 1 and

stacked as indicated in Figure 4 for the case Find
where is the total area of the circles, and is the

area of the triangle.

BnAnlim
n: q

 An>Bn,
n = 4.

3 +
Á

+ n = n1n + 12>2
1 + 2 +

fn.
-1>f,f

x2
- x - 1 = 0.

f

lim
n: q

 fn + 1>fn = f.

n = 2.n = 1

 =

125
 [fn

- 1-12n f-n]

 fn =

125
 c a 1 + 25

2
bn

- a1 - 25
2

bn d

f =
1
2 A1 + 25 B L 1.618034.

f10.f3

f1 = f2 = 1, fn + 2 = fn + 1 + fn

5fn6,EXPL

5an + bn6
5bn65an6

5an + bn6
5bn65an6

lim
n: q

 anbn = 0.

5bn6lim
n: q

 an = 0

In Problems 54–59, use the fact that 

to find the limits.

54. 55.

56. 57. lim
n: q

an - 1
n + 1

bn

lim
n: q

a1 +

1

n2 b
n

lim
n: q

a1 +

1
2n
bn

lim
n: q

a1 +

1
n
bn

lim
x: q

 f1x2 = lim
x:0+

 fa 1
x
bC
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58. 59. lim
n: q

a2 + n2

3 + n2 b
n2

lim
n: q

a 2 + n2

3 + n2 b
n Answers to Concepts Review: 1. a sequence 2.

exists (finite sense) 3. bounded above 4. 1-1;
lim

n: q

 an

When you ask a computer or a calculator for the sine of an angle, or e to some
power, it is using an algorithm to make this approximation. Many such algorithms
are based on infinite series, the topic of this and subsequent sections in this chap-
ter. We will see in Section 9.8 that

The topic of the last section of this chapter is the use of such series (actually, using
just a finite number of terms in the series) to approximate a given function to a de-
sired accuracy. But there is some work to do before reaching that point. We must
give meaning to an “infinite” series like one of those above. We begin with the
issue of an infinite series of numbers, as opposed to an infinite series of powers of
x, called a power series (which we will address in Section 9.6). Consider for illus-
tration the series

If we include just the first term, we have a “sum” of If we include the first two
terms, we have a sum of if we include the first three terms, we have a
sum of  and so on.This is the idea of a partial sum, that is the sum of
a finite number of terms at the beginning of the series. We denote the nth partial
sum, that is, the sum of the first n terms, by For this series the partial sums are

Clearly, these partial sums get increasingly close to 1. In fact,

The infinite sum is then defined to be the limit of the partial sum 
More generally, consider the infinite series

which is also denoted by or Then the nth partial sum, is given by

Sn = a1 + a2 + a3 +
Á

+ an = a
n

k = 1
ak

Sn,aak.a

q

k = 1
ak

a1 + a2 + a3 + a4 +
Á

Sn.

lim
n: q

 Sn = lim
n: q

a1 -

1
2n b = 1

 Sn =

1
2

+

1
4

+

1
8

+
Á

+

1
2n = 1 -

1
2n

 o

 S3 =

1
2

+

1
4

+

1
8

=

7
8

 S2 =

1
2

+

1
4

=

3
4

 S1 =

1
2

Sn.

1
2 +

1
4 +

1
8 =

7
8;

1
2 +

1
4 =

3
4;

1
2.

1
2

+

1
4

+

1
8

+
Á

 ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á

 sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

Á

9.2
Infinite Series
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458 Chapter 9 Infinite Series

Definition

The infinite series converges and has sum S if the sequence of partial sums

converges to S. If diverges, then the series diverges. A divergent

series has no sum.

5Sn65Sn6
a

q

k = 1
ak

Figure 1

We make the following formal definition.

Geometric Series A series of the form

where is called a geometric series.

� EXAMPLE 1 Show that a geometric series converges, and has sum
if but diverges if 

SOLUTION Let If which
grows without bound, and so diverges. If we may write

and so

If then (Section 9.1, Example 5), and thus

If or the sequence diverges, and consequently so does  �

� EXAMPLE 2 Use the result of Example 1 to find the sum of the following
two geometric series.

(a)

(b)

SOLUTION

(a) (b)

Incidently, the procedure in part (b) suggests how to show that any repeating deci-
mal represents a rational number. �

� EXAMPLE 3 The diagram in Figure 1 represents an equilateral triangle
containing infinitely many circles, tangent to the triangle and to neighboring
circles, and reaching into the corners. What fraction of the area of the triangle is
occupied by the circles?

SOLUTION Suppose for convenience that the large circle has radius 1, which
makes the triangle have sides of length Concentrate attention on the vertical
stack of circles. With a bit of geometric reasoning (the center of the large circle is

223.

S =

51
100

1 -
1

100

=

51
100
99
100

=

51
99

=

17
33

S =

a

1 - r
=

4
3

1 -
1
3

=

4
3
2
3

= 2

0.515151 Á =

51
100

+

51
10,000

+

51
1,000,000

+
Á

4
3

+

4
9

+

4
27

+

4
81

+
Á

5Sn6.5rn6r = -1,ƒ r ƒ 7 1

S = lim
n: q

 Sn =

a

1 - r

lim
n: q

 rn
= 0ƒ r ƒ 6 1,

Sn =

a - arn

1 - r
=

a

1 - r
-

a

1 - r
 rn

Sn - rSn = 1a + ar +
Á

+ arn - 12 - 1ar + ar2
+

Á
+ arn2 = a - arn

r Z 1,5Sn6
Sn = na,r = 1,Sn = a + ar + ar2

+
Á

+ arn - 1.

ƒ r ƒ Ú 1.ƒ r ƒ 6 1,S = a>11 - r2

a Z 0,

a

q

k = 1
ark - 1

= a + ar + ar2
+ ar3

+
Á
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Section 9.2 Infinite Series 459

two-thirds of the way from the upper vertex to the base), we see that the radii of
these circles are 1, and conclude that the vertical stack has area

The total area of all the circles is three times this number minus twice the area of
the big circle, that is, or Since the triangle has area the
fraction of this area occupied by the circles is

�

� EXAMPLE 4 Suppose that Peter and Paul take turns tossing a fair coin until
one of them tosses a head. If Peter goes first, what is the probability that he wins?

SOLUTION Peter can win by tossing a head on the first toss, which happens
with probability Or he can win if these three events occur in succession: Peter
tosses a tail, Paul tosses a tail, and Peter tosses a head. Each of these events has
probability so they all occur with probability Another way Peter
can win is for the first four tosses to be all tails, while Peter’s third toss (the fifth
overall) is a head. This occurs with probability This
process continues, so that the probability that Peter wins is the sum of the
geometric series

Paul therefore wins with probability Peter has the greater chance of
winning because he goes first. �

A General Test for Divergence Consider the geometric series
once more. Its nth term is given by

Example 1 shows that a geometric series converges if and only if

Could this possibly be true of all series? The answer is no, although half of the
statement (the “only-if” half) is correct. This leads to an important divergence test
for series.

lim
n: q

 an = 0.
an = arn - 1.

ana + ar + ar2
+

Á
+ arn - 1

+
Á

1 -
2
3 =

1
3.

1
2

+

1
8

+

1
32

+

1
128

+
Á

=

1>2
1 - 1>4 =

2
3

1
2 *

1
2 *

1
2 *

1
2 *

1
2 =

1
32.

1
2 *

1
2 *

1
2 =

1
8.1

2,

1
2.

11p

2423
L 0.83

323,11p>8.27p>8 - 2p,

= p c1 +

1
9

+

1
81

+

1
729

+
Á d = p c 1

1 -
1
9

d =

9p
8

p c12
+ a1

3
b2

+ a1
9
b2

+ a 1
27
b2

+
Á d

1
3, 19, Á

Proof Let be the nth partial sum and Note that 

Since it follows that

�

� EXAMPLE 5 Show that diverges.a

q

n = 1
  

n3

3n3
+ 2n2

lim
n: q

 an = lim
n: q

 Sn - lim
n: q

 Sn - 1 = S - S = 0

lim
n: q

 Sn - 1 = lim
n: q

 Sn = S,

an = Sn - Sn - 1.S = lim
n: q

 Sn.Sn

Consider these two statements:

1. If converges, then

2. If then 

converges.

The first statement is true for any se-
quence the second is not. This
provides another example of a true
statement (the first) whose converse
is false.

Recall that the contrapositive of a
statement is true whenever the state-
ment is true. The contrapositive of
the first statement is

3. If then 

diverges.

a

q

n = 1
anlim

n: q

 an Z 0,

5an6;

a

q

n = 1
anlim

n: q

 an = 0,

lim
n: q

 an = 0.

a

q

k = 1
an

Logic

Theorem A nth-Term Test for Divergence

If the series converges, then Equivalently, if or if

does not exist, then the series diverges.lim
n: q

 an

lim
n: q

 an Z 0lim
n: q

 an = 0.a

q

n = 1
an
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460 Chapter 9 Infinite Series

SOLUTION

Thus, by the nth-Term Test, the series diverges. �

The Harmonic Series Students invariably want to turn Theorem A around
and make it say that implies convergence of The harmonic series

shows that this is false. Clearly, However, the series
diverges, as we now show.

� EXAMPLE 6 Show that the harmonic series diverges.

SOLUTION We show that grows without bound. Imagine n to be large and
write

It is clear that by taking n sufficiently large we can introduce as many into 
the last expression as we wish.Thus, grows without bound, and so diverges.
Hence, the harmonic series diverges. �

Collapsing Series A geometric series is one of the few series where we 
can actually give an explicit formula for a collapsing series is another (see Ex-
ample 2 of Section 5.1).

� EXAMPLE 7 Show that the following series converges and find its sum.

SOLUTION Use a partial fraction decomposition to write

Then

Therefore,

The series converges and has sum  �
1
3.

lim
n: q

 Sn =
1
3

 =

1
3

-

1
n + 3

 Sn =a
n

k = 1
a 1

k + 2
-

1
k + 3

b = a1
3

-

1
4
b + a1

4
-

1
5
b +

Á
+ a 1

n + 2
-

1
n + 3

b

1
1k + 221k + 32 =

1
k + 2

-

1
k + 3

a

q

k = 1
 

1
1k + 221k + 32

Sn;

5Sn6Sn

1
2’s

 = 1 +

1
2

+

1
2

+

1
2

+

1
2

+
Á

+

1
n

 7 1 +

1
2

+

2
4

+

4
8

+

8
16

+
Á

+

1
n

 = 1 +

1
2

+ a1
3

+

1
4
b + a1

5
+

1
6

+

1
7

+

1
8
b + a1

9
+

Á
+

1
16
b +

Á
+

1
n

 Sn = 1 +

1
2

+

1
3

+

1
4

+

1
5

+
Á

+

1
n

Sn

lim
n: q

 an = lim
n: q

11>n2 = 0.

a

q

n = 1
  

1
n

= 1 +

1
2

+

1
3

+
Á

+

1
n

+
Á

©an.an : 0

lim
n: q

 an = lim
n: q

  
n3

3n3
+ 2n2 = lim

n: q

  
1

3 + 2>n =

1
3
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Section 9.2 Infinite Series 461

This theorem introduces a subtle
shift in terminology. The symbol 

is now being used both for the 

infinite series and for
the sum of this series, which is a
number.

a1 + a2 +
Á

a

q

k = 1
ak

A Note on Terminology

Theorem B Linearity of Convergent Series

If and both converge, and if c is a constant, then and

also converge, and

(i)

(ii) a

q

k = 1
1ak + bk2 = a

q

k = 1
ak + a

q

k = 1
bk.

a

q

k = 1
cak = ca

q

k = 1
ak;

a

q

k = 1
1ak + bk2

a

q

k = 1
caka

q

k = 1
bka

q

k = 1
ak

Properties of Convergent Series Convergent series behave much like
finite sums; what you expect to be true often is true.

Proof By hypothesis, and both exist. Thus, use the proper-

ties of sums with finitely many terms and the properties of limits of sequences.

(i)

(ii)

�

� EXAMPLE 8 Calculate 

SOLUTION By Theorem B and Example 1,

� = 3 

1
8

1 -
1
8

- 5 

1
3

1 -
1
3

=

3
7

-

5
2

= -

29
14

 a

q

k = 1
c3a1

8
bk

- 5a1
3
bk d = 3a

q

k = 1
a1

8
bk

- 5a

q

k = 1
a1

3
bk

a

q

k = 1
C3 A18 Bk - 5 A13 Bk D .

 = lim
n: q a

n

k = 1
ak + lim

n: q

 a
n

k = 1
bk = a

q

k = 1
ak + a

q

k = 1
bk

 a

q

k = 1
1ak + bk2 = lim

n: q

 a
n

k = 1
1ak + bk2 = lim

n: q

ca
n

k = 1
ak + a

n

k = 1
bk d

 = c lim
n: q

 a
n

k = 1
ak = ca

q

k = 1
ak

 a

q

k = 1
cak = lim

n: q

 a
n

k = 1
cak = lim

n: q

ca
n

k = 1
ak

lim
n: q

a
n

k = 1
bklim

n: q
a
n

k = 1
ak

We leave the proof of this theorem to you (Problem 41). It implies, for exam-
ple, that

diverges, since we know that the harmonic series diverges.

a

q

k = 1
  

1
3k

= a

q

k = 1
  
1
3

#
1
k

Theorem C

If diverges and then diverges.a

q

k = 1
cakc Z 0,a

q

k = 1
ak

461



462 Chapter 9 Infinite Series

Theorem D Grouping Terms in an Infinite Series

The terms of a convergent series can be grouped in any way (provided that the
order of the terms is maintained), and the new series will converge with the
same sum as the original series.

The associative law of addition allows us to group terms in a finite sum in any
way that we please. For example,

But sometimes we lose sight of the definition of an infinite series as the limit of a
sequence of partial sums, and we let our intuition guide us into a paradox. For ex-
ample, the series

has partial sums

The sequence of partial sums, diverges; thus the series 
diverges. We might, however, view the series as

and claim that the sum is 0. Alternatively, we might view the series as

and claim that the sum is 1. The sum of the series cannot be equal to both 0 and 1.
It turns out that grouping of terms in a series is acceptable provided that the series
is convergent; in such a case we can group terms in any way that we wish.

1 - 11 - 12 - 11 - 12 -
Á

11 - 12 + 11 - 12 +
Á

1 - 1 +
Á

1 - 1 +1, 0, 1, 0, 1, Á ,

S1 = 1
S2 = 1 - 1 = 0
S3 = 1 - 1 + 1 = 1
S4 = 1 - 1 + 1 - 1 = 0

o

1 - 1 + 1 - 1 +
Á

+ 1-12n + 1
+

Á

2 + 7 + 3 + 4 + 5 = 12 + 72 + 13 + 42 + 5 = 2 + 17 + 32 + 14 + 52

Proof Let be the original convergent series and let be its sequence of
partial sums. If is a series formed by grouping the terms of and if is
its sequence of partial sums, then each is one of the For example, might
be

in which case Thus, is a “subsequence” of A moment’s thought
should convince you that if then  �Tm : S.Sn : S

5Sn6.5Tm6T4 = S8.

T4 = a1 + 1a2 + a32 + 1a4 + a5 + a62 + 1a7 + a82

T4Sn’s.Tm

5Tm6©an©bm

5Sn6©an

Concepts Review
1. An expression of the form is called

_____.

2. A series is said to converge if the sequence
converges, where _____.Sn =5Sn6

a1 + a2 +
Á

a1 + a2 + a3 +
Á 3. The geometric series converges if

_____; in this case the sum of the series is _____.

4. If we can be sure that the series _____.a

q

n = 1
anlim

n: q

 an Z 0,

a + ar + ar2
+

Á
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Section 9.2 Infinite Series 463

In Problems 1–14, indicate whether the given series converges or
diverges. If it converges, find its sum. Hint: It may help you to write
out the first few terms of the series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Problems 15–20, write the given decimal as an infinite series,
then find the sum of the series, and finally, use the result to write the
decimal as a ratio of two integers (see Example 2).

15. 16.

17. 18.

19. 20.

21. Evaluate 

22. Evaluate 

23. Show that diverges. Hint: Obtain a formula

for 

24. Show that 

25. A ball is dropped from a height of 100 feet. Each time it
hits the floor, it rebounds to its previous height. Find the total
distance it travels before coming to rest.

26. Three people,A, B, and C, divide an apple as follows. First
they divide it into fourths, each taking a quarter.Then they divide
the leftover quarter into fourths, each taking a quarter, and so on.
Show that each gets a third of the apple.

27. Suppose that the government pumps an extra $1 billion
into the economy. Assume that each business and individual
saves 25% of its income and spends the rest, so of the initial 
$1 billion, 75% is respent by individuals and businesses. Of that
amount, 75% is spent, and so forth. What is the total increase in
spending due to the government action? (This is called the
multiplier effect in economics.)

28. Do Problem 27 assuming that only 10% of the income is
saved at each stage.

29. Assume that square ABCD (Figure 2) has sides of 
length 1 and that E, F, G, and H are the midpoints of the sides. If
the indicated pattern is continued indefinitely, what will be the
area of the painted region?

≈

2
3

a

q

k = 2
lna1 -

1

k2 b = - ln 2.

Sn.

a

q

k = 1
ln 

k

k + 1

a

q

k = 0
1-12kxk, -1 6 x 6 1.

a

q

k = 0
r11 - r2k, 0 6 r 6 2.

0.36717171 Á0.49999 Á

0.125125125 Á0.013013013 Á

0.21212121 Á0.22222 Á

a

q

k = 6
  

2
k - 5a

q

k = 2
a 3

1k - 122 -

3

k2 b
a

q

k = 1
  

4k + 1

7k - 1a

q

k = 1
a e
p
bk + 1

a

q

k = 1
  

2
1k + 22ka

q

k = 1
  

k!

100k

a

q

k = 1
  

3
ka

q

k = 2
a 1

k
-

1
k - 1

b
a

q

k = 1
A98 Bka

q

k = 1
  
k - 5
k + 2

a

q

k = 1
C5 A12 Bk - 3 A17 Bk + 1 Da

q

k = 0
C2 A14 Bk + 3 A- 1

5 Bk D
a

q

k = 1
A- 1

4 B-k - 2

a

q

k = 1
A17 Bk

30. If the pattern shown in Figure 3 is continued indefinitely,
what fraction of the original square will eventually be painted?
≈

31. Each triangle in the descending chain (Figure 4) has its
vertices at the midpoints of the sides of the next larger one. If the
indicated pattern of painting is continued indefinitely, what frac-
tion of the original triangle will be painted? Does the original tri-
angle need to be equilateral for this to be true?

≈

D G C

FH

A E B

Figure 2

Figure 3

Figure 4 Figure 5

32. Circles are inscribed in the triangles of Problem 31 as in-
dicated in Figure 5. If the original triangle is equilateral, what
fraction of the area is eventually painted?

≈

Problem Set 9.2
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Figure 6

A4

B4 B3 B2 B1
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A1

θ

Figure 7

1
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1
8

1
2

1
6

1
4

Figure 8

33. The Koch snowflake is formed as follows. Begin with an
equilateral triangle, which we’ll assume has sides of length 9. On
each side, replace the middle third with two sides of an equi-
lateral triangle having sides of length 3. Then on each of these 12
sides replace the middle third with two sides of an equilateral tri-
angle having sides of length 1.The Koch snowflake is the result of
continuing this process indefinitely. The first four stages are
shown in Figure 6.
(a) Find the perimeter of the Koch snowflake or show that it is

infinite.
(b) Find the area of the Koch snowflake or show that it is

infinite.

34. Consider the right triangle ABC as shown in Figure 7.
Point is determined by drawing a perpendicular to line AB
through C; is formed by drawing a line parallel to AC through

This process is continued to produce and
Find a series for the areas of the triangles formed in

this way and show that the series sums to the area of ¢ABC.
B2, B3, Á .

A2, A3, Á ,A1.
B1

A1

35. In one version of Zeno’s paradox, Achilles can run ten
times as fast as the tortoise, but the tortoise has a 100-yard head-
start. Achilles cannot catch the tortoise, says Zeno, because when
Achilles runs 100 yards the tortoise will have moved 10 yards
ahead, when Achilles runs another 10 yards, the tortoise will have
moved 1 yard ahead, and so on. Convince Zeno that Achilles will
catch the tortoise and tell him exactly how many yards Achilles
will have to run to do it.

36. Tom and Joel are good runners, both able to run at a con-
stant speed of 10 miles per hour. Their amazing dog Trot can do
even better; he runs at 20 miles per hour. Starting from towns 60
miles apart, Tom and Joel run toward each other while Trot runs
back and forth between them. How far does Trot run by the time
the boys meet? Assume that Trot started with Tom running to-
ward Joel and that he is able to make instant turnarounds. Solve
the problem two ways.
(a) Use a geometric series.
(b) Find a shorter way to do the problem.

37. Suppose that Peter and Paul alternate tossing a coin for
which the probability of a head is and the probability of a tail is

If they toss until someone gets a head, and Peter goes first,
what is the probability that Peter wins?

38. Repeat Problem 37 for the case where the probability of a
head is p and the probability of a tail is 

39. Suppose that Mary rolls a fair die until a “6” occurs. Let X
denote the random variable that is the number of tosses needed
for this “6” to occur. Find the probability distribution for X and
verify that all the probabilities sum to 1.

40. Use the fact that

(which we will derive in Section 9.7) to find the expected value of
the random variable X in Problem 39.

41. Prove: If diverges, so does for 

42. Use Problem 41 to conclude that 
diverges.

43. Suppose that one has an unlimited supply of identical
blocks each 1 unit long.
(a) Show that they may be stacked as in Figure 8 without top-

pling. Hint: Consider centers of mass.
(b) How far can one make the top block protrude to the right of

the bottom block using this method of stacking?

1
2 +

1
4 +

1
6 +

1
8 +

Á

c Z 0.a

q

k = 1
caka

q

k = 1
ak

a

q

x = 1
xpx

=

p

11 - p22

1 - p.

2
3.

1
3

44. How large must N be in order for just to

exceed 4? Note: Computer calculations show that for to
exceed 20, and for to exceed 100,

45. Prove that if diverges and converges, then
diverges.

46. Show that it is possible for and both to diverge
and yet for to converge.©1an + bn2

©bn©an

©1an + bn2
©bn©an

N L 1.5 * 1043.
SNN = 272,400,600,

SN

SN = a
N

k = 1
11>k2
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1

0 1 2 3 4
x

Figure 9

47. By looking at the region in Figure 9 first vertically and
then horizontally, conclude that

and use this fact to calculate:

(a)

(b) the horizontal coordinate of the centroid of the region.x,

a

q

k = 1
 
k

2k

1 +
1
2 +

1
4 +

1
8 +

Á
=

1
2 +

2
4 +

3
8 +

4
16 +

Á

48. Let r be a fixed number with Then it can be

shown that converges, say with sum S. Use the properties

of to show that

and then obtain a formula for S, thus generalizing Problem 47a.

49. Many drugs are eliminated from the body in an exponen-
tial manner. Thus, if a drug is given in dosages of size C at time

11 - r2S = a

q

k = 1
rk

©

a

q

k = 1
krk

ƒ r ƒ 6 1.

intervals of length t, the amount of the drug in the body just
after the st dose is

where k is a positive constant that depends on the type of drug.
(a) Derive a formula for A, the amount of drug in the body just

after a dose, if a person has been on the drug for a very long
time (assume an infinitely long time).

(b) Evaluate A if it is known that one-half of a dose is elimi-
nated from the body in 6 hours and doses of size 2 milligrams
are given every 12 hours.

50. Find the sum of the series

51. Evaluate where is the Fibonacci sequence

introduced in Problem 52 of Section 9.1. Hint: First show that

Answers to Concepts Review: 1. an infinite series
2. 3.
4. diverges

a>11 - r2ƒ r ƒ 6 1;a1 + a2 + a3 +
Á

+ an

1
fk fk + 2

=

1
fk fk + 1

-

1
fk + 1 fk + 2

5fk6a

q

k = 1
  

1
fk fk + 2

a

q

k = 1
 

2k

12k + 1
- 1212k

- 12

An = C + Ce-kt
+ Ce-2kt

+
Á

+ Ce-nkt

1n + 12
An

We introduced some important ideas in Section 9.2, but we illustrated them mainly
for two very special types of series: geometric series and collapsing series. For these
series we can give exact formulas for the partial sums something that we can
rarely do for most other types of series. Our task now is to begin a study of very
general infinite series.

There are always two important questions to ask about a series.

1. Does the series converge?
2. If it converges, what is its sum?

How shall we answer these questions? Someone may suggest that we use a
computer. To answer the first question, simply add up more and more terms of the
series, watching the numbers you get as partial sums. If these numbers seem to
settle down on a fixed number S, the series converges.And in this case, S is the sum
of the series, answering the second question.This response is plain wrong for ques-
tion 1 and only partially adequate for question 2. Let us see why.

Consider the harmonic series

introduced in Section 9.2 and discussed in Example 6 and Problem 44 of that
section. We know that this series diverges, but a computer would not help us to
discover this fact. The partial sums of this series grow without bound, but they
grow so slowly that it takes over 272 million terms for to reach 20 and over 

terms for to reach 100. Because of the inherent limitation in the number of
digits that it can handle, a computer would eventually give repeated values for 
suggesting wrongly that the were converging. What is true for the harmonic
series is true for any slowly diverging series. We state it emphatically: A computer
is no substitute for mathematical tests of convergence and divergence, a subject to
which we now turn.

Sn’s
Sn,

Sn1043
Sn

Sn

1 +
1
2 +

1
3 +

1
4 +

Á

Sn,

9.3
Positive Series: 

The Integral Test

is a sequence.

is a series.

is the nth partial sum of the series.

is the sequence of partial sums of the
series. The series converges if and
only if

exists and is finite, in which case S is
called the sum of the series.

S = lim
n: q

 Sn

S1, S2, S3, Á

Sn = a1 + a2 + a3 +
Á

+ an

a1 + a2 + a3 +
Á

a1, a2, a3, Á

Important Reminders
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466 Chapter 9 Infinite Series

Theorem A Bounded Sum Test

A series of nonnegative terms converges if and only if its partial sums are
bounded above.

©ak

Theorem B Integral Test

Let f be a continuous, positive, nonincreasing function on the interval 
and suppose that for all positive integers k. Then the infinite series

converges if and only if the improper integral

converges.
L

q

1
f1x2 dx

a

q

k = 1
ak

ak = f1k2 [1, q2

In this and the next section, we restrict our attention to series with positive (or
at least nonnegative) terms. With this restriction, we will be able to give some
remarkably simple convergence tests. Tests for series with terms of arbitrary sign
are presented in Section 9.5.

Bounded Partial Sums Our first result flows directly from the Monotonic
Sequence Theorem (Theorem 9.1D).

Proof As usual, let Since that is,
is a nondecreasing sequence. Thus, by Theorem 9.1D, the sequence will

converge provided that there is a number U such that for all n. Otherwise,
the will grow without bound, in which case  diverges. �

� EXAMPLE 1 Show that the series converges.

SOLUTION We aim to show that the partial sums are bounded above. Note
first that

and so Thus,

These latter terms come from a geometric series with They can be added by
a formula in the solution of Example 1 of Section 9.2. We obtain

Thus, by the Bounded Sum Test, the given series converges. The argument also
shows that its sum S is at most 2. Later we will show that   �

Series and Improper Integrals The behavior of and 

with respect to convergence is similar and gives a very powerful test.
L

q

1
f1x2 dxa

q

k = 1
f1k2

S = e - 1 L 1.71828.

Sn …

1 - A12 Bn
1 -

1
2

= 2 c1 - a1
2
bn d 6 2

r =
1
2.

 … 1 +

1
2

+

1
4

+
Á

+

1

2n - 1

 Sn =

1
1!

+

1
2!

+

1
3!

+
Á

+

1
n!

1>n! … 1>2n - 1.

n! = 1 # 2 # 3 Á n Ú 1 # 2 # 2 Á 2 = 2n - 1

Sn

1
1!

+

1
2!

+

1
3!

+
Á

5Sn6Sn’s
Sn … U

5Sn65Sn6
ak Ú 0, Sn + 1 Ú Sn ;Sn = a1 + a2 +

Á
+ an.

We remark that the integer 1 may be replaced by any positive integer M
throughout this theorem (see Example 4).
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y

y

x

xn

n

y = f (x)

y = f (x)

a2 a3 a4 a5

a1 a2 a3 a4

an

1 2 3 4 5

1 2 3 4 5 an –1 

Figure 1

Proof The diagrams in Figure 1 indicate how we may interpret the partial sums
of the series as areas and thereby relate the series to a corresponding integral.
Note that the area of each rectangle is equal to its height, since the width is 1 in
each case. From these diagrams, we easily see that

Now suppose that converges. Then, by the left inequality above,

Therefore, by the Bounded Sum Test, converges.

On the other hand, suppose that converges. Then, by the right inequality

above, if 

Since increases with t and is bounded above, must

exist; that is, converges. �

The conclusion to Theorem B is often stated this way. The series and

the improper integral converge or diverge together.You should see that

this is equivalent to our statement.

� EXAMPLE 2 (p-Series Test) The series

where p is a constant, is called a p-series. Show each of the following:

(a) The p-series converges if 
(b) The p-series diverges if 

SOLUTION If the function is continuous, positive, and
nonincreasing on and Thus, by the Integral Test,

converges if and only if exists (as a finite number).

If 

If 

Since if and if and since 

we conclude that the p-series converges if and diverges if 0 … p … 1.p 7 1

lim
t: q

 ln t = q ,p 6 1,lim
t: q

 t1 - p
= qp 7 1lim

t: q

 t1 - p
= 0

L

t

1
x-1 dx = [ln x]1

t
= ln t

p = 1,

L

t

1
x-p dx = c x1 - p

1 - p
d

1

t

=

t1 - p
- 1

1 - p

p Z 1,

lim
t: qL

t

1
x-p dx

©11>kp2f1k2 = 1>kp.[1, q2
f1x2 = 1>xpp Ú 0,

p … 1.
p 7 1.

a

q

k = 1
 

1
kp = 1 +

1
2p +

1
3p +

1
4p +

Á

L

q

1
f1x2 dx

a

q

k = 1
f1k2

L

q

1
f1x2 dx

lim
t: qL

t

1
f1x2 dx

L

t

1
f1x2 dx

L

t

1
f1x2 dx …

L

n

1
f1x2 dx … a

n - 1

k = 1
ak … a

q

k = 1
ak

t … n,

a

q

k = 1
ak

a

q

k = 1
ak

Sn = a1 + a
n

k = 2
ak … a1 +

L

n

1
f1x2 dx … a1 +

L

q

1
f1x2 dx

L

q

1
f1x2 dx

a
n

k = 2
ak …

L

n

1
f1x2 dx … a

n - 1

k = 1
ak

©ak
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468 Chapter 9 Infinite Series

The beginning of a series plays no
role in its convergence or diver-
gence. Only the tail is important (the
tail really does wag the dog). By the
tail of a series, we mean

where N denotes an arbitrarily large
number. Hence, in testing for con-
vergence or divergence of a series,
we can ignore the beginning terms
or even change them. Clearly, how-
ever, the sum of a series does de-
pend on all its terms, including the
initial ones.

aN + aN + 1 + aN + 2 +
Á

The Tail of a Series

y

xn

y = f (x)

an+1

n+1 n+2 n+3 n+4

an+2 an+3 an+4

Figure 2

We still have the case to consider. In this case, the nth term of 
that is, does not even tend toward 0. Thus, by the nth-Term Test, the series
diverges.

Note that the case gives the harmonic series, which was treated in
Section 9.2. Our results here and there are consistent. The harmonic series
diverges. �

� EXAMPLE 3 Does converge or diverge?

SOLUTION By the p-Series Test, converges. The insertion or

removal of a finite number of terms in a series cannot affect its convergence or
divergence (though it may affect the sum). Thus, the given series converges. �

� EXAMPLE 4 Determine whether converges or diverges.

SOLUTION The hypotheses of the Integral Test are satisfied for 
on That the interval is rather than is inconse-

quential, as we noted right after Theorem B. Now,

Thus, diverges. �

Approximating the Sum of a Series So far we have been concerned with
whether a series converges or diverges. Except for a few special cases, such as the
geometric series, or a collapsing series, we have not addressed the question of what
a series converges to, if it converges. This is, in general, a difficult question, but at
this point we can use the method suggested by the integral test to approximate the
sum of a series.

If we use the nth partial sum to approximate the sum of the series

then the error we make is

Let be a function with the properties that and f is positive, contin-
uous, and nonincreasing on these are the conditions of Theorem B. Under
these conditions

(see Figure 2). We can use this result to find an upper bound on the error involved
in using the first n terms to approximate the sum S of the series, and we can use it
to determine how large n must be to approximate S to a desired accuracy.

� EXAMPLE 5 Find an upper bound for the error in using the sum of the first

twenty terms to approximate the sum of the convergent series 

SOLUTION The obvious choice for is this function is
positive, continuous, and nonincreasing on The error satisfies

Even with twenty terms, the error is somewhat large. �

E20 = a

q

k = 20 + 1
 

1

k3>2 6

L

q

20
 

1

x3>2  dx = lim
A: q 

c -2x-1>2 d
20

A

=

2220
L 0.44721

[1, q2.f1x2 = 1>x3>2;f(x)

S = a

q

k = 1
 

1

k3>2.

En = an + 1 + an + 2 +
Á

6

L

q

n
f1x2 dx

[1, q2; an = f1n2,f(x)

En = S - Sn = an + 1 + an + 2 +
Á

S = a1 + a2 + a3 +
Á

Sn

©1>1k ln k2
L

q

2
 

1
x ln x

  dx = lim
t: qL

t

2
 

1
ln x

 a 1
x

  dxb = lim
t: q

[ln ln x]2
t

= q

[1, q2[2, q2[2, q2.1>1x ln x2 f1x2 =

a

q

k = 2
 

1
k ln k

a

q

k = 1
11>k1.0012

a

q

k = 4
  

1

k1.001

p = 1

1>np,
©11>kp2,p 6 0
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� EXAMPLE 6 How large must n be so that the partial sum approximates
the sum of the series in Example 5 with an error of no more than 0.005?

SOLUTION The error satisfies

Thus, in order to guarantee that the error is less than 0.005, we need to have

� n 7 a 2
0.005

b2

= 4002
= 160,000

 1n 7

2
0.005

 
21n

6 0.005

En = a

q

k = n + 1
  

1

k3>2 6

L

q

n
 

1

x3>2  dx = lim
A: q 

c -2x-1>2 d
n

A

=

21n

Sn

Concepts Review

Problem Set 9.3
Use the Integral Test to determine the convergence or divergence of
each of the following series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

In Problems 13–22, use any test developed so far, including any
from Section 9.2, to decide about the convergence or divergence of
the series. Give a reason for your conclusion.

13. 14.

15. 16.

17. 18. a

q

k = 1
k sin 

1
ka

q

k = 1
sinakp

2
b

a

q

k = 1
a 1

k2 +

1

2k
ba

q

k = 1
c a 1

2
bk

+

k - 1
2k + 1

d
a

q

k = 1
a 3
p
bk

a

q

k = 1
  
k2

+ 1

k2
+ 5

a

q

k = 5
  

1000

k1ln k22a

q

k = 1
 ke-3k2

a

q

k = 1
  

1000k2

1 + k3a

q

k = 1
  

3

14 + 3k27>6

a

q

k = 1
  

k2

eka

q

k = 2
  

7
4k + 2

a

q

k = 100
  

3

1k + 222a

q

k = 1
  

-22k + 2

a

q

k = 1
  

3

2k2
+ 1a

q

k = 0
  

k

k2
+ 3

a

q

k = 1
  

3
2k - 3a

q

k = 0
  

1
k + 3

19. 20.

21. 22.

In Problems 23–26, estimate the error that is made by approximat-
ing the sum of the given series by the sum of the first five terms (see
Example 5).

23. 24.

25.

26.

For the series given in Problems 27–32, determine how large n
must be so that using the nth partial sum to approximate the series
gives an error of no more than 0.0002.

27. 28.

29. 30.

31. 32. a

q

k = 1
  

1
k1k + 12a

q

k = 1
  

k

1 + k4

a

q

k = 1
  

k

ek2a

q

k = 1
  

1

1 + k2

a

q

k = 1
  

1

k3a

q

k = 1
  

1

k2

a

q

k = 1
  

1
k1k + 12 = a

q

k = 1
a 1

k
-

1
k + 1

b
a

q

k = 1
  

1

1 + k2

a

q

k = 1
  

1
k1ka

q

k = 1
  

k

ek

a

q

k = 1
  

1

1 + 4k2a

q

k = 1
  

tan-1 k

1 + k2

a

q

k = 1
a 1

k
-

1
k + 1

ba

q

k = 1
k2e-k3

1. A series of nonnegative terms converges if and only if its
partial sums are _____.

2. The Integral Test relates the convergence of and 

assuming _____ and f is _____, _____, and

_____ on [1, q2.
ak =

L

q

1
f1x2 dx,

a

q

k = 1
ak

3. The insertion or removal of a finite number of terms in a
series does not affect its _____, although it may affect its sum.

4. The p-series converges if and only if _____.a

q

k = 1
11>kp2
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470 Chapter 9 Infinite Series

�
�1 2 3 4 n n + 1

y = f (x)
y

x

Figure 3

y

x

y = f (x)

� �
n – 1 n1 2 3

Figure 4

33. For what values of p does converge?
Explain.

34. Does converge or diverge?

Explain.

35. Use diagrams, as in Figure 1, to show that

Hint:

36. Using Problem 35, show that the sequence

is increasing and bounded above by 1.

37. Use the result of Problem 35 to prove that in 

Problem 36 exists. (The limit, denoted is called Euler’s con-
stant and is approximately 0.5772. It is currently not known
whether is rational or irrational. It is known, however, that if

is rational then the denominator in its reduced fraction is at
least )

38. Use Problem 35 to get good upper and lower bounds for
the sum of the first 10 million terms of the harmonic series.

39. From Problem 37, we infer that

Use this to estimate the number of terms of the harmonic series
that are needed to get a sum greater than 20 and compare with
the result reported in Problem 44 of Section 9.2.

40. Now that we have shown the existence of Euler’s con-
stant the hard way (Problems 35–37), we will solve a much more
general problem the easy way and watch appear out of thin air,
so to speak. Let f be continuous and decreasing on and let

Note that is the area of the shaded region in Figure 3.
(a) Why is it obvious that increases with n?
(b) Show that Hint: Simply shift all the little shaded

pieces leftward into the first rectangle.
(c) Conclude that exists.

(d) How do we get out of this?g

lim
n: q

 Bn

Bn … f112.
Bn

Bn

Bn = f112 + f122 +
Á

+ f1n2 -

L

n + 1

1
f1x2 dx

[1, q2
g

1 +

1
2

+

1
3

+
Á

+

1
n

L g + ln1n + 12

10244,663.
g

g

g,

lim
n: q

 Bn

Bn = 1 +

1
2

+

1
3

+
Á

+

1
n

- ln1n + 12

L

n

1
11>x2 dx = ln n.

ln1n + 12 6 1 +

1
2

+

1
3

+
Á

+

1
n

6 1 + ln n

a

q

n = 3
1>[n #  ln n # ln1ln n2]

a

q

n = 2
1>[n1ln n2p]

41. Let f be continuous, increasing, and concave down on
as in Figure 4. Furthermore, let be the area of the shad-

ed region. Show that is increasing with n, that where
T is the area of the outlined triangle, and thus that exists.lim

n: q

 An

An … TAn

An[1, q2

42. Specialize f of Problem 41 to 
(a) Show that

(b) Conclude from part (a) and Problem 41 that

exists. It can be shown that 
(c) This means that which is called Stirling’s

Formula. Use it to approximate 15! and compare it with the
value that your calculator gives for 15!

43. Show that the error used in approximating S by satisfies

where the notation is the same as in the discussion preceding
Example 5.

Answers to Concepts Review: 1. bounded above
2. continuous; positive; nonincreasing 3. convergence or
divergence 4. p 7 1

f(k);

En Ú

L

q

n + 1
f1x2 dx

Sn

n! L 22pn1n>e2n,
k = 22p.

k = lim
n: q

 
n!

1n>e2n1n

 = 1 + ln 
1n>e2n1n

n!

 = n ln n - n + 1 - ln n! + ln1n

 An =

L

n

1
ln x dx - c ln 1 + ln 2

2
+

Á
+

ln1n - 12 + ln n

2
d

f1x2 = ln x.

We have completely analyzed the convergence and divergence of two series, the
geometric series and the p-series.

a

q

n = 1
rn converges if -1 6 r 6 1, diverges otherwise

9.4
Positive Series: 

Other Tests
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Section 9.4 Positive Series: Other Tests 471

Theorem A Ordinary Comparison Test

Suppose that for 

(i) If converges, so does 

(ii) If diverges, so does ©bn.©an

©an.©bn

n Ú N.0 … an … bn

In the first we have found what the series converges to, provided that it converges;
in the second, we have not. These series provide standards, or models, against
which we can measure other series. Keep in mind that we are still considering se-
ries whose terms are positive (or at least nonnegative).

Comparing One Series with Another A series with terms less than the
corresponding terms of a convergent series ought to converge; a series with terms
greater than the corresponding terms of a divergent series ought to diverge. What
ought to be true is true.

a

q

n = 1
 

1
np converges if p 7 1, diverges otherwise

Proof We suppose that the case is only slightly harder. To prove
(i), let and note that is a nondecreasing sequence.
If converges, for instance, with sum B, then

By the Bounded Sum Test (Theorem 9.3A), converges.
Property (ii) follows from (i); for if converged, then would have to

converge. �

� EXAMPLE 1 Does converge or diverge?

SOLUTION A good guess would be that it diverges, since the nth term behaves
like for large n. In fact,

We know that diverges since it is one-fifth of the harmonic series 

(Theorem 9.2C). Thus, by the Ordinary Comparison Test, the given series also
diverges. �

� EXAMPLE 2 Does converge or diverge?

SOLUTION A good guess would be that it converges, since the nth term
behaves like for large n. To substantiate our guess, we note that

Since converges (it is a geometric series with ), we conclude that the
given series converges. �

If there is a problem in applying the Ordinary Comparison Test, it is in finding
exactly the right known series with which to compare the series to be tested. Sup-
pose that we wish to determine the convergence or divergence of

a

q

n = 3
  

1

1n - 222 = a

q

n = 3
  

1

n2
- 4n + 4

r =
1
2© A12 Bn

n

2n1n + 12 = a1
2
bn

 
n

n + 1
6 a1

2
bn

11>22n

a

q

n = 1
  

n

2n1n + 12

a

q

n = 1
 
1
5

#
1
n

n

5n2
- 4

7

n

5n2 =

1
5

#
1
n

1>5n

a

q

n = 1
 

n

5n2
- 4

©an©bn

©an

Sn … b1 + b2 +
Á

+ bn … a

q

n = 1
bn = B

©bn

5Sn6Sn = a1 + a2 +
Á

+ an

N 7 1N = 1;
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472 Chapter 9 Infinite Series

Theorem B Limit Comparison Test

Suppose that and

If then and converge or diverge together. If and
converges, then converges.©an©bn

L = 0©bn©an0 6 L 6 q ,

lim
n: q

 
an

bn
= L

an Ú 0, bn 7 0,

We suspect convergence, so our inclination is to compare with 
but, unfortunately,

which gives no test at all (the inequality goes the wrong way for what we want).
After some experimenting, we discover that

for since converges, so does 
Can we avoid these contortions with inequalities? Our intuition tells us that
and converge or diverge together, provided that and are approxi-

mately the same size for large n (give or take a multiplicative constant). This is the
essential content of our next theorem.

bnan©bn©an

©1>1n - 222.©9>n2n Ú 3;

1

1n - 222 …

9

n2

1

1n - 222 7

1

n2

1>n2,1>1n - 222

Proof Begin by taking in the definition of limit of a sequence (Sec-
tion 9.1). There is a number N such that that is,

This inequality is equivalent (by adding L throughout) to

Hence, for 

These two inequalities, together with the Ordinary Comparison Test, show that
and converge or diverge together. We leave the proof of the final state-

ment of the theorem to the reader (Problem 37). �

� EXAMPLE 3 Determine the convergence or divergence of each series.

(a) (b)

SOLUTION We apply the Limit Comparison Test, but we still must decide to
what we should compare the nth term. We see what the nth term is like for large n
by looking at the largest-degree terms in the numerator and denominator. In the
first case, the nth term is like in the second, it is like 

(a)

(b)

Since converges and diverges, we conclude that the series in (a) con-
verges and the series in (b) diverges. �

©1>n©3>n2

lim
n: q 

 
an

bn
= lim

n: q

  
1>2n2

+ 19n

1>n = lim
n: qB n2

n2
+ 19n

= 1

lim
n: q

  
an

bn
= lim

n: q

  
13n - 22>1n3

- 2n2
+ 112

3>n2 = lim
n: q

   
3n3

- 2n2

3n3
- 6n2

+ 33
= 1

1>n.3>n2 ;

a

q

n = 1
  

12n2
+ 19n

a

q

n = 1
  

3n - 2

n3
- 2n2

+ 11

©bn©an

bn 6

2
L

 an and an 6

3L

2
 bn

n Ú N,

L

2
6

an

bn
6

3L

2

-

L

2
6

an

bn
- L 6

L

2

n Ú N Q ƒ 1an>bn2 - L ƒ 6 L>2;
e = L>2
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Theorem C Ratio Test

Let be a series of positive terms and suppose that

(i) If the series converges.

(ii) If or if the series diverges.

(iii) If the test is inconclusive.r = 1,

lim
n: q

 an + 1>an = q ,r 7 1

r 6 1,

lim
n: q

 
an + 1

an
= r

©an

� EXAMPLE 4 Does converge or diverge?

SOLUTION To what shall we compare If we try we get

The test fails because its conditions are not satisfied. On the other hand, if we use
we get

Again, the test fails. Possibly something between and will work, such as

(The last equality follows from l’Hôpital’s Rule.) We conclude from the second
part of the Limit Comparison Test that converges (since 
converges by the p-Series Test). �

Comparing a Series with Itself Getting useful results from the compari-
son tests requires insight or perseverance. We must choose wisely among known
series to find one that is just right for comparison with the series that we wish to
test. Wouldn’t it be nice if we could somehow compare a series with itself and
thereby determine convergence or divergence? Roughly speaking, this is what we
do in the Ratio Test.

©1>n3>2
©1ln n2>n2

lim
n: q

 
an

bn
= lim

n: q

 
ln n

n2 ,

1

n3>2 = lim
n: q

 
ln n1n

= 0

1>n3>2.
1>n1>n2

lim
n: q

 
an

bn
= lim

n: q

 
ln n

n2 ,

1
n

= lim
n: q

 
ln n

n
= 0

1>n,

lim
n: q

 
an

bn
= lim

n: q

 
ln n

n2 ,

1

n2 = lim
n: q

 ln n = q

1>n2,1ln n2>n2?

a

q

n = 1
  
ln n

n2

Proof Here is what is behind the Ratio Test. Since 

that is, the series behaves like a geometric series with ratio A geometric series
converges when its ratio is less than 1, and diverges when its ratio is greater than 1.
Tying down this argument is the task before us.

(i) Since we may choose a number r such that for example,
Next choose N so large that implies that 

(This can be done since 

Then

 o

 aN + 3 6 raN + 2 6 r3aN

 aN + 2 6 raN + 1 6 r2aN

 aN + 1 6 raN

lim
n: q

 an + 1>an = r 6 r.)
an + 1>an 6 r.n Ú Nr = 1r + 12>2.

r 6 r 6 1,r 6 1,

r.

lim
n: q

 an + 1>an = r, an + 1 L ran;
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474 Chapter 9 Infinite Series

Since is a geometric series with it con-

verges. By the Ordinary Comparison Test, converges, and hence so

does 

(ii) Since there is a number N such that for all Thus,

Hence, for all which means that cannot be zero.
By the nth-Term Test for Divergence, diverges.

(iii) We know that diverges, whereas converges. For the first series,

For the second series,

Thus, the Ratio Test does not distinguish between convergence and diver-
gence when �

The Ratio Test will always be inconclusive for any series whose nth term is a
rational expression in n, since in this case (the cases and 
were treated above). However, for a series whose nth term involves n! or the
Ratio Test usually works beautifully.

� EXAMPLE 5 Test for convergence or divergence:

SOLUTION

We conclude by the Ratio Test that the series converges. �

� EXAMPLE 6 Test for convergence or divergence:

SOLUTION

We conclude that the given series diverges. �

� EXAMPLE 7 Test for convergence or divergence: a

q

n = 1
  

n!
nn.

 = lim
n: q

a n

n + 1
b20

# 2 = 2

 r = lim
n: q

 
an + 1

an
= lim

n: q

 
2n + 1

1n + 1220 
n20

2n

a

q

n = 1
  

2n

n20.

r = lim
n: q

 
an + 1

an
= lim

n: q

 
2n + 1

1n + 12! 
n!
2n = lim

n: q

 
2

n + 1
= 0

a

q

n = 1
  

2n

n!
.

rn,
an = 1>n2an = 1>nr = 1

r = 1.

lim
n: q

 
an + 1

an
= lim

n: q

 
1

1n + 122 ,

1

n2 = lim
n: q

 
n2

1n + 122 = 1

lim
n: q

 
an + 1

an
= lim

n: q

 
1

n + 1
,

1
n

= lim
n: q

 
n

n + 1
= 1

©1>n2
©1>n

©an

lim
n: q

 ann 7 N,an 7 aN 7 0

 o

 aN + 2 7 aN + 1 7 aN

 aN + 1 7 aN

n Ú N.an + 1>an 7 1r 7 1,

a

q

n = 1
an.

a

q

n = N + 1
an

0 6 r 6 1,raN + r2aN + r3aN +
Á
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Section 9.4 Positive Series: Other Tests 475

SOLUTION We will need the fact that

which is our definition of the number e. Taking this as known, we may write

Therefore, the given series converges. �

Summary To test a series of positive terms for convergence or divergence,
look carefully at 

1. If conclude from the nth-Term Test that the series diverges.

2. If involves n!, or try the Ratio Test.
3. If involves only constant powers of n, try the Limit Comparison Test. In par-

ticular, if is a rational expression in n, use this test with as the quotient of
the leading terms from the numerator and denominator.

4. If the tests above do not work, try the Ordinary Comparison Test, the Integral
Test, or the Bounded Sum Test.

5. Some series require a clever manipulation or a neat trick to determine conver-
gence or divergence.

bnan

an

nn,rn,an

lim
n: q

 an Z 0,

an.
©an

 = lim
n: q

 
1

11n + 12>n2n = lim
n: q

 
1

11 + 1>n2n =

1
e

6 1

 r = lim
n: q

 
an + 1

an
= lim

n: q

 
1n + 12!
1n + 12n + 1 

nn

n!
= lim

n: q

a n

n + 1
bn

lim
n: q

a1 +

1
n
bn

= lim
h:0
11 + h21>h = e

Concepts Review
1. The Ordinary Comparison Test says that if _____ and if
converges, then also converges.

2. Assume that and The Limit Comparison
Test says that if _____ then and converge or
diverge together.

©bk©ak6 q0 6

bk 7 0.ak Ú 0

©ak©bk

3. Let The Ratio Test says that a series 

of positive terms converges if _____, diverges if _____, and may
do either if _____.

4. is an obvious candidate for the _____ Test,
whereas is an obvious candidate for the _____
Test.

©k>1k3
- k - 12

©13k>k!2

©akr = lim
n: q

 
an + 1

an
.

Problem Set 9.4
In Problems 1–4, use the Limit Comparison Test to determine con-
vergence or divergence.

1. 2.

3. 4.

In Problems 5–10, use the Ratio Test to determine convergence or
divergence.

5. 6.

7. 8. a

q

n = 1
n A13 Bna

q

n = 1
  

n!

n100

a

q

n = 1
  

5n

n5a

q

n = 1
  

8n

n!

a

q

n = 1
  
22n + 1

n2a

q

n = 1
  

1

n2n + 1

a

q

n = 1
  

3n + 1

n3
- 4a

q

n = 1
  

n

n2
+ 2n + 3

9. 10.

In Problems 11–34, determine convergence or divergence for each
of the series. Indicate the test you use.

11. 12.

13. 14.

15. 16.

17. 18. a

q

n = 1
  
n2

+ 1
3na

q

n = 1
  

4n3
+ 3n

n5
- 4n2

+ 1

a

q

n = 1
  
ln n
2na

q

n = 1
  

n2

n!

a

q

n = 1
  
2n + 1

n2
+ 1a

q

n = 1
  

n + 3

n21n

a

q

n = 1
  

n!
5 + na

q

n = 1
  

n

n + 200

a

q

k = 1
  
3k

+ k

k!a

q

n = 1
  

n3

12n2!
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476 Chapter 9 Infinite Series

19.

Hint:

20.

21.

22.

23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. Let and suppose that converges. Prove that
converges.

36. Prove that by considering the series

Hint: Example 7, followed by nth-Term Test.

37. Prove that if and 
converges then converges.

38. Prove that if and 

diverges then diverges.

39. Suppose that Prove that diverges.©anlim
n: q

 nan = 1.

©an

©bnan Ú 0, bn 7 0, lim
n: q

 an>bn = q ,

©an

©bnan Ú 0, bn 7 0, lim
n: q

 an>bn = 0,

©n!>nn.

lim
n: q

1n!>nn2 = 0

©an
2

©anan 7 0

a

q

n = 1
  

n

2 + n5na

q

n = 1
  
4n

+ n

n!

a

q

n = 2
a1 -

1
n
bn

a

q

n = 1
  

nn

12n2!

a

q

n = 1
  
52n

n!a

q

n = 1
  
4 + cos n

n3

a

q

n = 1
  

5
3n

+ 1a

q

n = 1
  

1

2 + sin2 n

ln 2

22 +

ln 3

32 +

ln 4

42 +

ln 5

52 +
Á

1 +

1

222
+

1

323
+

1

424
+

Á

3 +

32

2!
+

33

3!
+

34

4!
+

Á
1
3

+

2

32 +

3

33 +

4

34 +
Á

1

12
+ 1

+

2

22
+ 1

+

3

32
+ 1

+

4

42
+ 1

+
Á

2
1 # 3 # 4

+

3
2 # 4 # 5

+

4
3 # 5 # 6

+

5
4 # 6 # 7

+
Á

1

22 +

2

32 +

3

42 +

4

52 +
Á

an =

1
n1n + 12.

1
1 # 2

+

1
2 # 3

+

1
3 # 4

+

1
4 # 5

+
Á

40. Prove that if is a convergent series of positive terms
then converges.

41. Root Test Prove that if and then

converges if and diverges if 

42. Test for convergence or divergence using the Root Test.

(a) (b)

(c)

43. Test for convergence or divergence. In some cases, a
clever manipulation using the properties of logarithms will sim-
plify the problem.

(a) (b)

(c) (d)

(e) (f)

44. Let and be polynomials in n with nonnega-
tive coefficients. Give simple conditions that determine the con-

vergence or divergence of 

45. Give conditions on p that determine the convergence

or divergence of 

46. Test for convergence or divergence.

(a) (b)

(c)

Answers to Concepts Review: 1.

2. 3. 4. Ratio: Limit

Comparison

r 6 1; r 7 1; r = 1lim
k: q

1ak>bk2
0 … ak … bk

a

q

n = 1
1n c1 - cosa 1

n
b d

a

q

n = 1
tana 1

n
ba

q

n = 1
sin2a 1

n
b

a

q

n = 1
 

1
np  a1 +

1
2p +

1
3p +

Á
+

1
np b .

EXPL

a

q

n = 1
 
p1n2
q1n2 .

q(n)p(n)EXPL

a

q

n = 1
 c ln n

n
d 2

a

q

n = 2
  

1

1ln n24

a

q

n = 3
  

1

[ln1ln n2]ln na

q

n = 2
  

1

1ln n2ln n

a

q

n = 1
ln c 1n + 122

n1n + 22 da

q

n = 1
lna1 +

1
n
b

a

q

n = 1
a1

2
+

1
n
bn

a

q

n = 1
a n

3n + 2
bn

a

q

n = 2
a 1

ln n
bn

R 7 1.R 6 1©an

lim
n: q

1an21>n = Ran 7 0

©ln11 + an2
©an

In the last two sections, we considered series of nonnegative terms. Now we re-
move that restriction, allowing some terms to be negative. In particular, we study
alternating series, that is, series of the form

where for all n. An important example is the alternating harmonic series

We have seen that the harmonic series diverges; we shall soon see that the
alternating harmonic series converges.

1 -
1
2 +

1
3 -

1
4 +

Á

an 7 0

a1 - a2 + a3 - a4 +
Á

9.5
Alternating Series,

Absolute Convergence,
and Conditional

Convergence
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S4 S' S" S3

a4

S4

a3

S3

a2

S2

S1

Figure 1

Sn + 1 S' S" Sn

n odd

Sn S' S" Sn + 1

n even

Figure 2

Theorem A Alternating Series Test

Let

be an alternating series with If then the series con-

verges. Moreover, the error made by using the sum of the first n terms to ap-

proximate the sum S of the series is not more than an + 1.

Sn

lim
n: q

 an = 0,an 7 an + 1 7 0.

a1 - a2 + a3 - a4 +
Á

A Convergence Test Let us suppose that the sequence is decreasing;
that is, for all n. Also, let have its usual meaning. Thus, for the alter-
nating series we have

and so on. A geometric interpretation of these partial sums is shown in Figure 1.
Note that the even-numbered terms are increasing and bounded
above and hence must converge to a limit, call it Similarly, the odd-numbered
terms are decreasing and bounded below. They also converge, say to

Both and are between and for all n (see Figure 2), and so

Thus, the condition as will guarantee that and, conse-
quently, the convergence of the series to their common value, which we call S. Fi-
nally, we note that, since S is between and 

That is, the error made by using as an approximation to the sum S of the whole
series is not more than the magnitude of the first neglected term. We have proved
the following theorem.

Sn

ƒ S - Sn ƒ … ƒ Sn + 1 - Sn ƒ = an + 1

Sn + 1,Sn

S¿ = S–n : qan + 1 : 0

ƒ S– - S¿ ƒ … ƒ Sn + 1 - Sn ƒ = an + 1

Sn + 1SnS–S¿

S–.
S1, S3, S5, Á

S¿.
S2, S4, S6, Á

 S4 = a1 - a2 + a3 - a4 = S3 - a4

 S3 = a1 - a2 + a3 = S2 + a3

 S2 = a1 - a2 = S1 - a2

 S1 = a1

a1 - a2 + a3 - a4 +
Á ,
Snan + 1 6 an

5an6

� EXAMPLE 1 Show that the alternating harmonic series

converges. How many terms of this series would we need to take in order to get a
partial sum within 0.01 of the sum S of the whole series?

SOLUTION The alternating harmonic series satisfies the hypotheses of
Theorem A and so converges. We want and this will hold if

Since we require which is
satisfied if Thus, we need to take 99 terms to make sure that we have the
desired accuracy. This gives you an idea of how slowly the alternating harmonic
series converges. (See Problem 45 for a clever way to find the exact sum of this
series.) �

� EXAMPLE 2 Show that

converges. Calculate and estimate the error made by using this as a value for the
sum of the whole series.

S5

1
1!

-

1
2!

+

1
3!

-

1
4!

+
Á

n Ú 99.
1>1n + 12 … 0.01,an + 1 = 1>1n + 12,an + 1 … 0.01.

ƒ S - Sn ƒ … 0.01,

Sn

1 -
1
2 +

1
3 -

1
4 +

Á
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478 Chapter 9 Infinite Series

Theorem B Absolute Convergence Test

If converges, then converges.©un© ƒ un ƒ

SOLUTION The Alternating Series Test (Theorem A) applies and guarantees
convergence.

�

� EXAMPLE 3 Show that converges.

SOLUTION To get a feeling for this series, we write the first few terms:

The series is alternating and (l’Hôpital’s Rule), but unfortunately

the terms are not decreasing initially. However, they do appear to be decreasing
after the first two terms; this is good enough, since what happens at the beginning
of a series never affects convergence or divergence. To show that the sequence

is decreasing from the third term on, consider the function

Note that if the derivative

Thus, f is decreasing on and so is decreasing for For a dif-
ferent demonstration of this last fact, see Example 6 of Section 9.1. �

Absolute Convergence Does a series such as

in which there is a pattern of two positive terms followed by one negative term,
converge or diverge? The Alternating Series Test does not apply. However, since
the corresponding series of all positive terms

converges (p-series with ), it seems plausible to think that the same series
with some terms negative should converge (even better). This is the content of our
next theorem.

p = 2

1 +
1
4 +

1
9 +

1
16 +

1
25 +

1
36 +

Á

1 +
1
4 -

1
9 +

1
16 +

1
25 -

1
36 +

Á

n Ú 3.5n2>2n6[3, q2,
 L

x12 - 0.69x2
2x 6 0

 f¿1x2 =

2x # 2x
- x22x ln 2

22x =

x2x12 - x ln 22
22x

x Ú 3

f1x2 =

x2

2x

5n2>2n6

lim
n: q

 n2>2n
= 0

1
2 - 1 +

9
8 - 1 +

25
32 -

36
64 +

Á

a

q

n = 1
1-12n - 1 

n2

2n

ƒ S - S5 ƒ … a6 =

1
6!

L 0.0014

S5 = 1 -

1
2

+

1
6

-

1
24

+

1
120

L 0.6333

Proof We use a trick. Let so

Now and so converges by the Ordinary Comparison Test. It
follows from the Linearity Theorem (Theorem 9.2B) that 
converges. �

©un = ©1vn - ƒ un ƒ 2©vn0 … vn … 2 ƒ un ƒ ,

un = vn - ƒ un ƒ

vn = un + ƒ un ƒ ,
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Section 9.5 Alternating Series, Absolute Convergence, and Conditional Convergence 479

Theorem C Absolute Ratio Test

Let be a series of nonzero terms and suppose that

(i) If the series converges absolutely (hence converges).
(ii) If the series diverges.
(iii) If the test is inconclusive.r = 1,

r 7 1,
r 6 1,

lim
n: q

 
ƒ un + 1 ƒ

ƒ un ƒ

= r

©un

A series is said to converge absolutely if converges. Theorem B as-
serts that absolute convergence implies convergence.All our tests for convergence
of series of positive terms are automatically tests for the absolute convergence of a
series in which some terms are negative. In particular, this is true of the Ratio Test,
which we now restate.

© ƒ un ƒ©un

Proof Proofs of (i) and (iii) are direct results of the Ratio Test. For (ii), we could
conclude from the original Ratio Test that diverges, but here we are claiming
more, that diverges. Since

it follows that for n sufficiently large, say This, in turn, im-
plies that for all and so cannot be 0. We conclude

by the nth-Term Test that diverges. �

� EXAMPLE 4 Show that converges absolutely.

SOLUTION

We conclude from the Absolute Ratio Test that the series converges absolutely
(and therefore converges). �

� EXAMPLE 5 Test for the convergence or divergence of 

SOLUTION If you write out the first 100 terms of this series, you will discover
that the signs of the terms vary in a rather random way. The series is in fact a
difficult one to analyze directly. However,

and so the series converges absolutely by the Ordinary Comparison Test. We
conclude from the Absolute Convergence Test (Theorem B) that the series
converges. �

Conditional Convergence A common error is to try to turn Theorem B
around. It does not say that convergence implies absolute convergence. That is
clearly false; witness the alternating harmonic series. We know that

1 -
1
2 +

1
3 -

1
4 +

Á

` cos1n!2
n2 ` …

1

n2

a

q

n = 1
  
cos1n!2

n2 .

 = lim
n: q

  
3

n + 1
= 0

 r = lim
n: q

 
ƒ un + 1 ƒ

ƒ un ƒ

= lim
n: q

  
3n + 1

1n + 12! ,

3n

n!

a

q

n = 1
1-12n + 1 

3n

n!

©un

lim
n: q

 unn Ú N,ƒ un ƒ 7 ƒ uN ƒ 7 0
n Ú N, ƒ un + 1 ƒ 7 ƒ un ƒ .

lim
n: q

 
ƒ un + 1 ƒ

ƒ un ƒ

7 1

©un

© ƒ un ƒ
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480 Chapter 9 Infinite Series

Theorem D Rearrangement Theorem

The terms of an absolutely convergent series can be rearranged without affect-
ing either the convergence or the sum of the series.

converges, but that

diverges. A series is called conditionally convergent if converges but
diverges. The alternating harmonic series is the premier example of a condi-

tionally convergent series, but there are many others.

� EXAMPLE 6 Show that is conditionally convergent.

SOLUTION converges by the Alternating Series Test.

However, diverges, since it is a p-series with  �

Absolutely convergent series behave much better than do conditionally con-
vergent ones. Here is a nice theorem about absolutely convergent series. It is spec-
tacularly false for conditionally convergent series (see Problems 35–38). The proof
is difficult, so we do not include it here.

p =
1
2.a

q

n = 1
1>1n

a

q

n = 1
1-12n + 1[1>1n ]

a

q

n = 1
1-12n + 1 

11n

© ƒ un ƒ

©un©un

1 +
1
2 +

1
3 +

1
4 +

Á

For example, the series

converges absolutely. The rearrangement

converges and has the same sum as the original series.

1 +
1
4 +

1
16 -

1
9 +

1
25 +

1
49 +

1
64 -

1
36 +

Á

1 +
1
4 -

1
9 +

1
16 +

1
25 -

1
36 +

1
49 +

1
64 -

1
81 +

Á

Concepts Review
1. If for all n, the alternating series

will converge provided that the terms are
decreasing in size and _____.

2. If converges, we say that the series converges
_____; if converges, but diverges, we say that 
converges _____.

©uk© ƒ uk ƒ©uk

©uk© ƒ uk ƒ

a1 - a2 + a3 -
Á

an Ú 0 3. The premier example of a conditionally convergent series
is _____.

4. The terms of an absolutely convergent series may be
_____ at will without affecting its convergence or its sum.

Problem Set 9.5
In Problems 1–6, show that each alternating series converges, and
then estimate the error made by using the partial sum as an ap-
proximation to the sum S of the series (see Examples 1–3).

1. 2.

3. 4.

5. 6. a

q

n = 1
1-12n + 1 

ln n1na

q

n = 1
1-12n + 1 

ln n
n

a

q

n = 1
1-12n + 1 

n

n2
+ 1a

q

n = 1
1-12n + 1 

1
ln1n + 12

a

q

n = 1
1-12n + 1 

11na

q

n = 1
1-12n + 1 

2
3n + 1

S9

In Problems 7–12, show that each series converges absolutely.

7. 8.

9. 10.

11. 12.

In Problems 13–30, classify each series as absolutely convergent,
conditionally convergent, or divergent.

a

q

n = 1
1-12n + 1 

2n

n!a

q

n = 1
1-12n + 1 

1
n1n + 12

a

q

n = 1
1-12n + 1 

n2

ena

q

n = 1
1-12n + 1 

n

2n

a

q

n = 1
1-12n 

1
n1na

q

n = 1
A- 3

4 Bn
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13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Prove that if diverges, so does 

32. Give an example of two series and both conver-
gent, such that diverges.

33. Show that the positive terms of the alternating harmonic
series form a divergent series. Show the same for the negative
terms.

34. Show that the results in Problem 33 hold for any condi-
tionally convergent series.

35. Show that the alternating harmonic series

(whose sum is actually ) can be rearranged to con-
verge to 1.3 by using the following steps.
(a) Take enough of the positive terms to just

exceed 1.3.
(b) Now add enough of the negative terms so

that the partial sum falls just below 1.3.
(c) Add just enough more positive terms to again exceed 1.3,

and so on.

36. Use your calculator to help you find the first 20 terms of
the series described in Problem 35. Calculate S20.
C

Sn

-
1
2 -

1
4 -

1
6 -

Á

1 +
1
3 +

1
5 +

Á

ln 2 L 0.69

1 -
1
2 +

1
3 -

1
4 +

1
5 -

1
6 +

Á

©anbn

©bn,©an

© ƒ an ƒ .©an

a

q

n = 1
1-12n + 1 sin 

p

na

q

n = 1
  
1-32n + 1

n2

a

q

n = 1
 
1-12n + 12n + 1 + 1n

a

q

n = 1
1-12n + 1 

12n1n + 12

a

q

n = 1
n sina 1

n
ba

q

n = 1
1-12n 

sin n
n1n

a

q

n = 1
  

sin1np>22
n2a

q

n = 1
  
cos np

n

a

q

n = 1
1-12n + 1 

n - 1
na

q

n = 1
1-12n + 1 

n

n2
+ 1

a

q

n = 2
1-12n 

12n2
- 1

a

q

n = 1
1-12n + 1 

n4

2n

a

q

n = 1
1-12n + 1 

1
n11 + 1n2a

q

n = 2
1-12n 

1
n ln n

a

q

n = 1
1-12n + 1 

n

10n1.1
+ 1a

q

n = 1
1-12n + 1 

n

10n + 1

a

q

n = 1
1-12n + 1 

1

5n1.1a

q

n = 1
1-12n + 1 

1
5n

37. Explain why a conditionally convergent series can be
rearranged to converge to any given number.

38. Show that a conditionally convergent series can be
rearranged so as to diverge.

39. Show that is not sufficient to guarantee the

convergence of the alternating series Hint: Alter-

nate the terms of and 

40. Discuss the convergence or divergence of

41. Prove that if and both converge then 

converges absolutely. Hint: First show that 

42. Sketch the graph of and then show that

converges.

43. Show that diverges.

44. Show that the graph of on (0, 1] has infinite
length.

45. Note that

Recognize the latter expression as a Riemann sum and use it to
find the sum of the alternating harmonic series.

Answers to Concepts Review: 1.

2. absolutely; conditionally 3. the alternating harmonic series

4. rearranged

lim
n: q

 an = 0

 =

1
n + 1

+

1
n + 2

+
Á

+

1
2n

 = 1 +

1
2

+

1
3

+
Á

+

1
2n

- a1 +

1
2

+

1
3

+
Á

+

1
n
b

 1 -

1
2

+

1
3

-

1
4

+
Á

-

1
2n

y = x sin 
p

x

L

q

0
ƒ sin x ƒ >x dx

L

q

0
1sin x2>x dx

y = 1sin x2>x
2 ƒ akbk ƒ … ak

2
+ bk

2.

a

q

k = 1
akbka

q

k = 1
b2

ka

q

k = 1
ak

2

124 - 1
-

124 + 1
+

Á

122 - 1
-

122 + 1
+

123 - 1
-

123 + 1
+

©(-1>n2).©1>n
©1-12n + 1an.

lim
n: q

 an = 0

So far we have been studying what might be called series of constants, that is, series
of the form where each is a number. Now we consider series of functions,
series of the form A typical example of such a series is

Of course, as soon as we substitute a value for x (such as ), we are back to
familiar territory; we have a series of constants.

There are two important questions to ask about a series of functions.

1. For what x’s does the series converge?
2. To what function does it converge; that is, what is the sum S(x) of the series?

x = 2.1

a

q

n = 1
 
sin nx

n2 =

sin x
1

+

sin 2x

4
+

sin 3x

9
+

Á

©un1x2.
un©un,

9.6
Power Series
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482 Chapter 9 Infinite Series

The series of sine functions men-
tioned in the introduction is an
example of a Fourier series, named
after Jean Baptiste Joseph Fourier
(1768–1830). Fourier series are of
immense importance in the study of
wave phenomena, since they allow
us to represent a complicated wave
as a sum of its fundamental compo-
nents (called the pure tones in the
case of sound waves). It is a large
field, which we leave to other au-
thors and other books.

Fourier Series

( )
–1 1

Convergence set

Figure 1

[ )
–2 2

Convergence set

Figure 2

Convergence set

Figure 3

The general situation is a proper subject for an advanced calculus course.
However, even in elementary calculus, we can learn a good deal about the special
case of a power series. A power series in x has the form

(Here we interpret to be even if ) We can immediately answer our
two questions for one such power series.

� EXAMPLE 1 For what x’s does the power series

converge and what is its sum? Assume that 

SOLUTION We actually studied this series in Section 9.2 (with r in place of x)
and called it a geometric series. It converges for and has sum S(x)
given by

�

The Convergence Set We call the set on which a power series converges its
convergence set. What kind of set can be a convergence set? Example 1 suggests
that it can be an open interval (see Figure 1). Are there other possibilities?

� EXAMPLE 2 What is the convergence set for

SOLUTION Note that some of the terms may be negative (if x is negative).
Let’s test for absolute convergence using the Absolute Ratio Test (Theorem 9.5C).

The series converges absolutely (hence converges) when and di-
verges when Consequently, it converges when and diverges
when 

If or the Ratio Test fails. However, when the series is the
harmonic series, which diverges; and when it is the alternating harmonic
series, which converges. We conclude that the convergence set for the given series
is the interval (Figure 2). �

� EXAMPLE 3 Find the convergence set for 

SOLUTION

We conclude from the Absolute Ratio Test that the series converges for all x
(Figure 3). �

� EXAMPLE 4 Find the convergence set for a

q

n = 0
n!xn.

r = lim
n: q

` xn + 1

1n + 12! ,

xn

n!
` = lim

n: q

 
ƒ x ƒ

n + 1
= 0

a

q

n = 0
 
xn

n!
.

-2 … x 6 2

x = -2,
x = 2,x = -2,x = 2

ƒ x ƒ 7 2.
ƒ x ƒ 6 2ƒ x ƒ >2 7 1.
r = ƒ x ƒ >2 6 1

r = lim
n: q

` xn + 1

1n + 222n + 1 ,

xn

1n + 122n ` = lim
n: q

 
ƒ x ƒ

2
#
n + 1
n + 2

=

ƒ x ƒ

2

a

q

n = 0
 

xn

1n + 122n = 1 +

1
2

 
x

2
+

1
3

 
x2

22 +

1
4

 
x3

23 +
Á

S1x2 =

a

1 - x
, -1 6 x 6 1

-1 6 x 6 1

a Z 0.

a

q

n = 0
axn

= a + ax + ax2
+ ax3

+
Á

x = 0.a0a0x
0

a

q

n = 0
anxn

= a0 + a1x + a2x
2

+
Á
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Section 9.6 Power Series 483

0

Convergence set

Figure 4

Theorem A

The convergence set for a power series is always an interval of one of the
following three types:

(i) The single point 
(ii) An interval plus possibly one or both end points.
(iii) The whole real line.

In (i), (ii), and (iii), the series is said to have radius of convergence 0, R, and 
respectively.

q ,

1-R, R2,
x = 0.

©anxn

Theorem B

A power series converges absolutely on the interior of its interval of
convergence.

©anxn

SOLUTION

We conclude that the series converges only at  (Figure 4). �

In each of our examples, the convergence set was an interval (a degenerate in-
terval in the last example). This will always be the case. For example, it is impossi-
ble for a power series to have a convergence set consisting of two disconnected
parts (like ). Our next theorem tells the whole story.[0, 1] ´ [2, 3]

x = 0

r = lim
n: q

` 1n + 12!xn + 1

n!xn ` = lim
n: q

1n + 12 ƒ x ƒ = e0 if x = 0
q if x Z 0

Proof Suppose that the series converges at Then and

so there is certainly a number N such that for Then, for any x

for which 

this holding for Now converges, since it is a geometric series with
ratio less than 1. Thus, by the Ordinary Comparison Test (Theorem 9.4A),
converges. We have shown that if a power series converges at it converges (ab-
solutely) for all x such that 

On the other hand, suppose that a power series diverges at Then it must
diverge for all x for which For if it converged at such that

then, by what we have already shown, it would converge at 
contrary to hypothesis.

These two paragraphs together eliminate all possible types of convergence
sets except the three types mentioned in the theorem. �

Actually we have proved slightly more than we have claimed in Theorem A,
and it is worth stating this as another theorem.

x2,ƒ x1 ƒ 7 ƒ x2 ƒ ,
x1ƒ x ƒ 7 ƒ x2 ƒ .

x2.
ƒ x ƒ 6 ƒ x1 ƒ .

x1

© ƒ anxn
ƒ

© ƒ x>x1 ƒ
nn Ú N.

ƒ anxn
ƒ = ƒ anx1

n
ƒ ` x

x1
` n 6 ` x

x1
` n

ƒ x ƒ 6 ƒ x1 ƒ ,

n Ú N.ƒ anx1
n

ƒ 6 1

lim
n: q

 anx1
n

= 0,x = x1 Z 0.

Of course, it might even converge absolutely at the end points of the interval
of convergence, but of that we cannot be sure; witness Example 2.

Power Series in A series of the form

is called a power series in All that we have said about power series in x ap-
plies equally well for series in In particular, its convergence set is always
one of the following kinds of intervals:

x - a.
x � a.

aan1x - a2n = a0 + a11x - a2 + a21x - a22 +
Á

x - a
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484 Chapter 9 Infinite Series

a – R a a + R

Convergence set

Figure 5

[ ]
0 1 2

Convergence set

Figure 6

1. The single point 
2. An interval plus possibly one or both end points (Figure 5).
3. The whole real line.

� EXAMPLE 5 Find the convergence set for 

SOLUTION We apply the Absolute Ratio Test.

Thus, the series converges if that is, if it diverges if
It also converges (even absolutely) at both of the end points 0 and 2,

as we see by substitution of these values. The convergence set is the closed interval
[0, 2] (Figure 6). �

� EXAMPLE 6 Determine the convergence set for

SOLUTION The nth term is Thus,

We know that the series converges when that is, when or,
equivalently, but we must check the end points and 1.

At 

and converges by the Alternating Series Test.
At and diverges by comparison with the har-

monic series.
We conclude that the given series converges on the interval  �-5 … x 6 1.

©1ln n2>nx = 1, un = 1ln n2>n
©1-12n1ln n2>n

un =

1-32n ln n

n3n = 1-12n 
ln n

n

x = -5,
-5-5 6 x 6 1,

ƒ x + 2 ƒ 6 3r 6 1,

 =

ƒ x + 2 ƒ

3
lim

n: q

 
n

n + 1
 
ln1n + 12

ln n
=

ƒ x + 2 ƒ

3

 r = lim
n: q

` 1x + 22n + 1 ln1n + 12
1n + 123n + 1

#
n3n

1x + 22n ln n
`

un =

1x + 22n ln n

n # 3n , n Ú 2.

1x + 222 ln 2

2 # 9
+

1x + 223 ln 3

3 # 27
+

1x + 224 ln 4

4 # 81
+

Á

ƒ x - 1 ƒ 7 1.
0 6 x 6 2;ƒ x - 1 ƒ 6 1,

 = ƒ x - 1 ƒ

 r = lim
n: q

` 1x - 12n + 1

1n + 222 ,

1x - 12n
1n + 122 ` = lim

n: q

ƒ x - 1 ƒ

1n + 122
1n + 222

a

q

n = 0
  
1x - 12n
1n + 122.

1a - R, a + R2,
x = a.

Concepts Review
1. A series of the form is called a

_____.

2. Rather than asking whether a power series converges, we
should ask _____.

a0 + a1x + a2x
2

+
Á 3. A power series always converges on a(n) _____, which

may or may not include its _____.

4. The series converges on the in-
terval _____.

5 + x + x2
+ x3

+
Á
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Section 9.6 Power Series 485

Problem Set 9.6
In Problems 1–8, find the convergence set for the given power
series.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–28, find the convergence set for the given power
series. Hint: First find a formula for the nth term; then use the
Absolute Ratio Test.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24. 1 + 1x + 22 +

1x + 222
2!

+

1x + 223
3!

+
Á

x - 1
1

+

1x - 122
2

+

1x - 123
3

+

1x - 124
4

+
Á

x

2
+

2x2

3
+

3x3

4
+

4x4

5
+

5x5

6
+

Á

1 + 2x +

22x2

2!
+

23x3

3!
+

24x4

4!
+

Á

1 + 2x + 22x2
+ 23x3

+ 24x4
+

Á

1 -

x

2
+

x2

22 -

x3

23 +

x4

24 -
Á

x

22
- 1

+

x2

32
- 1

+

x3

42
- 1

+

x4

52
- 1

+
Á

1 -

x

1 # 3
+

x2

2 # 4
-

x3

3 # 5
+

x4

4 # 6
-

Á

1 + x +

x222
+

x323
+

x424
+

x525
+

Á

1 - x +

x2

2
-

x3

3
+

x4

4
-

Á

x + 22x2
+ 32x3

+ 42x4
+

Á

x + 2x2
+ 3x3

+ 4x4
+

Á

1 -

x2

2!
+

x4

4!
-

x6

6!
+

x8

8!
-

x10

10!
+

Á

x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

Á

1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á

x

1 # 2
-

x2

2 # 3
+

x3

3 # 4
-

x4

4 # 5
+

x5

5 # 6
-

Á

a

q

n = 1
  
1x + 12n

n!a

q

n = 1
1-12n 

1x - 22n
n

a

q

n = 1
1-12n 

xn

na

q

n = 1
1-12n + 1 

xn

n2

a

q

n = 1
nxn

a

q

n = 1
  
xn

n2

a

q

n = 1
  

xn

3na

q

n = 1
  

xn

1n - 12!

25.

26.

27.

28.

29. From Example 3, we know that converges for all
x. Why can we conclude that for all x?

30. Let k be an arbitrary number and Prove
that

Hint: See Problem 29.

31. Find the radius of convergence of

32. Find the radius of convergence of

where p is a positive integer.

33. Find the sum S (x) of What is the conver-
gence set?

34. Suppose that converges at Why

can you conclude that it converges at Can you be sure
that it converges at Explain.

35. Find the convergence set for each series.

(a) (b)

36. Refer to Problem 52 of Section 9.1, where the Fibonacci
sequence was defined. Find the radius of conver-

gence of 

37. Suppose that and let Show

that the series converges for and give a formula for S(x).

38. Follow the directions of Problem 37 for the case where
for some fixed positive integer p.

Answers to Concepts Review: 1. power series 2. where
it converges 3. interval; end points 4. 1-1, 12

an + p = an

ƒ x ƒ 6 1

S1x2 = a

q

n = 0
anxn.an + 3 = an

a

q

n = 1
fnxn.

f1, f2, f3, Á

a

q

n = 1
1-12n 

12x - 32n
4n1na

q

n = 1
 
13x + 12n

n # 2n

x = 7?
x = 6?

x = -1.a

q

n = 0
an1x - 32n

a

q

n = 0
1x - 32n.

a

q

n = 0
  
1pn2!
1n!2p   xn

a

q

n = 1
  

1 # 2 # 3 Á n

1 # 3 # 5 Á 12n - 12   x2n + 1

lim
n: q

 
k1k - 121k - 22Á 1k - n2

n!
 xn

= 0

-1 6 x 6 1.

lim
n: q

 xn>n! = 0
©xn>n!

1x + 32 - 21x + 322 + 31x + 323 - 41x + 324 +
Á

x + 5
1 # 2

+

1x + 522
2 # 3

+

1x + 523
3 # 4

+

1x + 524
4 # 5

+
Á

x - 2

12 +

1x - 222
22 +

1x - 223
32 +

1x - 224
42 +

Á

1 +

x + 1
2

+

1x + 122
22 +

1x + 123
23 +

Á
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486 Chapter 9 Infinite Series

Theorem A

Suppose that S(x) is the sum of a power series on an interval I; that is,

Then, if x is interior to I,

(i)

(ii)

 = a0x +

1
2

 a1x
2

+

1
3

 a2x
3

+

1
4

 a3x
4

+
Á

 
L

x

0
S1t2 dt = a

q

n = 0L

x

0
antn dt = a

q

n = 0
 

an

n + 1
 xn + 1

 = a1 + 2a2x + 3a3x
2

+
Á

 S¿1x2 = a

q

n = 0
 Dx1anxn2 = a

q

n = 1
nanxn - 1

S1x2 = a

q

n = 0
anxn

= a0 + a1x + a2x
2

+ a3x
3

+
Á

The theorem entails several things. It asserts that S is both differentiable and
integrable, it shows how the derivative and integral may be calculated, and it im-
plies that the radius of convergence of both the differentiated and integrated series
is the same as for the original series (though it says nothing about the end points of
the interval of convergence). The theorem is hard to prove. We leave the proof to
more advanced books.

A nice consequence of Theorem A is that we can apply it to a power series
with a known sum formula to obtain sum formulas for other series.

� EXAMPLE 1 Apply Theorem A to the geometric series

to obtain formulas for two new series.

SOLUTION Differentiating term by term yields

1

11 - x22 = 1 + 2x + 3x2
+ 4x3

+
Á , -1 6 x 6 1

1
1 - x

= 1 + x + x2
+ x3

+
Á , -1 6 x 6 1

We know from the previous section that the convergence set of a power series
is an interval I.This interval is the domain for a new function the sum

of the series. The most obvious question to ask about S(x) is whether we can give a
simple formula for it. We have done this for one series, a geometric series.

Actually, there is little reason to hope that the sum of an arbitrarily given power
series will be one of the elementary functions studied earlier in this book, though
we will make a little progress in that direction in this section and more in Sec-
tion 9.8.

A better question to ask now is whether we can say anything about the prop-
erties of S(x). For example, is it differentiable? Is it integrable? The answer to both
questions is yes.

Term-by-Term Differentiation and Integration Think of a power se-
ries as a polynomial with infinitely many terms. It behaves like a polynomial under
both differentiation and integration; these operations can be performed term by
term, as follows.

a

q

n = 0
axn

=

a

1 - x
, -1 6 x 6 1

S(x), ©anxn

9.7
Operations on 

Power Series
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Section 9.7 Operations on Power Series 487

The question of what is true at an
end point of the interval of conver-
gence of a power series is tricky. One
result is due to Norway’s greatest
mathematician, Niels Henrik Abel
(1802–1829). Suppose that

for If f is continuous at an
end point (R or ) and if the series
converges there, then the formula
also holds at that end point.

-R
ƒ x ƒ 6 R.

f1x2 = a

q

n = 0
anxn

An End Point Result Integrating term by term gives

That is,

If we replace x by in the latter and multiply both sides by we obtain

From Problem 45 of Section 9.5, we learn that this result is valid at the end point
(also see the note in the margin). �

� EXAMPLE 2 Find the power series representation for 

SOLUTION Recall that

From the geometric series for with x replaced by we get

Thus,

That is,

(By the note in the margin, this also holds at  ) �

� EXAMPLE 3 Find a formula for the sum of the series

SOLUTION We saw earlier (Section 9.6, Example 3) that this series converges
for all x. Differentiating term by term, we obtain

That is, for all x. Furthermore, This differential equation
has the unique solution (see Section 4.10). Thus,

�

� EXAMPLE 4 Obtain the power series representation for e-x2
.

ex
= 1 + x +

x2

2!
+

x3

3!
+

Á

S1x2 = ex
S102 = 1.S¿1x2 = S1x2

S¿1x2 = 1 + x +

x2

2!
+

x3

3!
+

Á

S1x2 = 1 + x +

x2

2!
+

x3

3!
+

Á

x = ;1.

tan-1 x = x -

x3

3
+

x5

5
-

x7

7
+

Á , -1 6 x 6 1

tan-1 x =

L

x

0
11 - t2

+ t4
- t6

+
Á 2 dt

1

1 + t2 = 1 - t2
+ t4

- t6
+

Á , -1 6 t 6 1

- t2,1>11 - x2,
tan-1 x =

L

x

0
 

1

1 + t2  dt

tan-1 x.

x = 1

ln11 + x2 = x -

x2

2
+

x3

3
-

x4

4
+

Á , -1 6 x 6 1

-1,-x

- ln11 - x2 = x +

x2

2
+

x3

3
+

Á , -1 6 x 6 1

L

x

0
 

1
1 - t

  dt =

L

x

0
1 dt +

L

x

0
t dt +

L

x

0
t2 dt +

Á
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488 Chapter 9 Infinite Series

Theorem B

Let and with both of these series converging at
least for If the operations of addition, subtraction, and multiplication
are performed on these series as if they were polynomials, the resulting series
will converge for and represent and

respectively. If the corresponding result holds for division,
but we can guarantee its validity only for sufficiently small.ƒ x ƒ

b0 Z 0,f1x2 # g1x2, f1x2 + g1x2, f1x2 - g1x2,ƒ x ƒ 6 r

ƒ x ƒ 6 r.
g1x2 = ©bnxn,f1x2 = ©anxn

SOLUTION Simply substitute for x in the series for 

�

Algebraic Operations Convergent power series can be added and sub-
tracted term by term (Theorem 9.2B). In that sense they behave like polynomials.
Convergent power series can also be multiplied and divided in a manner suggested
by the multiplication and “long” division of polynomials.

� EXAMPLE 5 Multiply and divide the power series for by that 
for 

SOLUTION We refer to Examples 1 and 3 for the required series. The key to
multiplication is to first find the constant term, then the x-term, then the 
and so on. We arrange our work as follows.

Here is how division is done.

�

The real question relative to Example 5 is whether the two series that we have
obtained converge to and respectively. Our next the-
orem, stated without proof, answers this question.

[ln11 + x2]>ex,[ln11 + x2]ex

 -x4
+

Á

 4
3 x3

+
4
3 x4

+
Á

 4
3 x3

+
1
3 x4

+
Á

 -
3
2 x2

-
3
2 x3

-
3
4 x4

+
Á

 -
3
2 x2

-
1
6 x3

-  
5
12 x4

+
Á

 x +   x2
+

1
2 x3

+
1
6 x4

+
Á

 1 + x +
1
2 x2

+
1
6 x3

+
Á �   x -

1
2 x2

+
1
3 x3

-
1
4 x4

+
Á

 x -
3
2 x2

+
4
3 x3

- x4
+

Á

= 0 + x +

1
2

 x2
+

1
3

 x3
+ 0 # x4

+
Á

+ a0 +

1
3!

-

1
2!2

+

1
3

-

1
4
bx4

+
Á

0 + 10 + 12x + a0 + 1 -

1
2
bx2

+ a0 +

1
2!

-

1
2

+

1
3
bx3

 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á

 0 + x -

x2

2
+

x3

3
-

x4

4
+

Á

x2-term,

ex.
ln11 + x2

e-x2
= 1 - x2

+

x4

2!
-

x6

3!
+

Á

ex.-x2

We mention that the operation of substituting one power series into another is
also legitimate for sufficiently small, provided that the constant term of the
substituted series is zero. Here is an illustration.

ƒ x ƒ
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Section 9.7 Operations on Power Series 489

One of the most remarkable people
of the early 20th century was the
Indian mathematician Srinivasa
Ramanujan. Largely self-educated,
Ramanujan left at his death a num-
ber of notebooks in which he had
recorded his discoveries. These note-
books are only now being thor-
oughly studied. In them are many
strange and wonderful formulas,
some for the sums of infinite series.
Here is one.

Formulas like this were used in 1989
to calculate the decimal expansion
of to over 1 billion places. (See
Problem 35.)
p

1
p

=

28
9801a

q

n = 0
 
14n2![1103 + 26,390n]

1n!24139624n

S. Ramanujan (1887–1920) � EXAMPLE 6 Find the power series for through terms of degree 4.

SOLUTION Since

Now substitute the series for from Example 2 and combine like terms.

�

Power Series in We have stated the theorems of this section for power
series in x, but with obvious modifications they are equally valid for power series in
x - a.

x � a

 = 1 + x +

x2

2
-

x3

6
-

7x4

24
+

Á

  +

1x4
+

Á 2
24

+
Á

 = 1 + ax -

x3

3
+

Á b +

Ax2
-

2
3 x4

+
Á B

2
+

1x3
+

Á 2
6

  +

ax -

x3

3
+

Á b4

4!
+

Á

 etan-1 x
= 1 + ax -

x3

3
+

Á b +

ax -

x3

3
+

Á b2

2!
+

ax -

x3

3
+

Á b3

3!

tan-1 x

 etan-1 x
= 1 + tan-1 x +

1tan-1 x22
2!

+

1tan-1 x23
3!

+

1tan-1 x24
4!

+
Á

 eu
= 1 + u +

u2

2!
+

u3

3!
+

u4

4!
+

Á

etan-1 x

Concepts Review
1. A power series may be differentiated or _____ term by

term on the _____ of its interval of convergence.

2. The first five terms in the power series expansion for
are _____.ln11 - x2

3. The first four terms in the power series expansion for
are _____.

4. The first five terms in the power series expansion for
are _____.exp1x22 - ln11 - x2

exp1x22

Problem Set 9.7
In Problems 1–10, find the power series representation for 
and specify the radius of convergence. Each is somehow related to
a geometric series (see Examples 1 and 2).

1.

2. Hint: Differentiate Problem 1.

3. 4.

5. 6.

7. 8.

9. 10. f1x2 =

L

x

0
tan-1 t dtf1x2 =

L

x

0
ln11 + t2 dt

f1x2 =

x3

2 - x3f1x2 =

x2

1 - x4

f1x2 =

1
3 + 2x

f1x2 =

1
2 - 3x

=

1
2

1 -
3
2 x

f1x2 =

x

11 + x22f1x2 =

1

11 - x23

f1x2 =

1

11 + x22

f1x2 =

1
1 + x

f(x) 11. Obtain the power series in x for and
specify its radius of convergence. Hint:

12. Show that any positive number M can be represented by
where x lies within the interval of convergence

of the series of Problem 11. Hence conclude that the natural log-
arithm of any positive number can be found by means of this
series. Find ln 8 this way to three decimal places.

In Problems 13–16, use the result of Example 3 to find the power
series in x for the given functions.

13. 14.

15. 16. f1x2 = e2x
- 1 - 2xf1x2 = ex

+ e-x

f1x2 = xex2
f1x2 = e-x

11 + x2>11 - x2,

ln[11 + x2>11 - x2] = ln11 + x2 - ln11 - x2

ln[11 + x2>11 - x2]
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490 Chapter 9 Infinite Series

In Problems 17–24, use the methods of Example 5 to find power
series in x for each function f.

17.

18.

19.

20.

21.

22.

23.

24.

25. Find the sum of each of the following series by recogniz-
ing how it is related to something familiar.

(a)

(b)

(c)

26. Follow the directions of Problem 25.

(a)

(b)

(c)

27. Find the sum of 

28. Find the sum of 

29. Use the method of substitution (Example 6) to find
power series through terms of degree 3.

(a)

(b)

30. Suppose that for 

Show that for all n. Hint: Let then differentiate

and let again. Continue.

31. Find the power series representation of 
Hint: Use partial fractions.

32. Let Show that y

satisfies the differential equation with the conditions

and From this, guess a simple formula for y.

33. Let be the Fibonacci sequence defined by

f0 = 0, f1 = 1, fn + 2 = fn + 1 + fn

5fn6
y¿102 = 1.y102 = 0

y– + y = 0

y = y1x2 = x -

x3

3!
+

x5

5!
-

x7

7!
+

Á .

x>1x2
- 3x + 22.

x = 0

x = 0;an = bn

ƒ x ƒ 6 R.f1x2 = a

q

n = 0
anxn

= a

q

n = 0
bnxn

eex
- 1

tan-11ex
- 12

a

q

n = 1
n1n + 12xn.

a

q

n = 1
nxn.

x2

2
+

x4

4
+

x6

6
+

x8

8
+

Á

cos x + cos2 x + cos3 x + cos4 x +
Á

1 + x2
+ x4

+ x6
+ x8

+
Á

2x +

4x2

2
+

8x3

3
+

16x4

4
+

Á

1
2!

+

x

3!
+

x2

4!
+

x3

5!
+

Á

x - x2
+ x3

- x4
+ x5

-
Á

f1x2 =

L

x

0
 
tan-1 t

t
  dt

f1x2 =

L

x

0
 

et

1 + t
  dt

f1x2 =

tan-1 x

1 + x2
+ x4

f1x2 = 1tan-1 x211 + x2
+ x42

f1x2 =

ex

1 + ln11 + x2

f1x2 =

tan-1 x
ex

f1x2 = ex tan-1 x

f1x2 = e-x #
1

1 - x

(See Problem 52 of Section 9.1 and Problem 36 of Section 9.6.) If

show that

and then use this fact to obtain a simple formula for 

34. Let where is as in Problem 33.

Show that y satisfies the differential equation 

35. Did you ever wonder how people find the decimal expan-
sion of to a large number of places? One method depends on
the following identity (see Problem 34 of Section 1.9).

Find the first 6 digits of using this identity and the series for
(You will need terms through for but only

the first term for ) In 1706, John Machin used this
method to calculate the first 100 digits of while in 1973, Jean
Guilloud and Martine Bouyer found the first 1 million digits
using the related identity

In 1983, was calculated to over 16 million digits by a somewhat
different method. Of course, computers were used in these recent
calculations.

36. The number e is readily calculated to as many digits as de-
sired using the rapidly converging series

This series can also be used to show that e is irrational. Do so by
completing the following argument. Suppose that where
p and q are positive integers. Choose and let

Now M is a positive integer. (Why?) Also,

which gives a contradiction (to what?).

Answers to Concepts Review: 1. integrated; interior

2. 3.

4. 1 + x +
3
2 x2

+
1
3 x3

+
3
4 x4

1 + x2
+

1
2 x4

+
1
6 x6

-x -
1
2 x2

-
1
3 x3

-
1
4 x4

-
1
5 x5

 =

1
n

 6

1
n + 1

+

1

1n + 122 +

1

1n + 123 +
Á

 =

1
n + 1

+

1
1n + 121n + 22 +

1
1n + 121n + 221n + 32 +

Á

 M = n! c 1
1n + 12! +

1
1n + 22! +

1
1n + 32! +

Á d

M = n!ae - 1 - 1 -

1
2!

-

1
3!

-
Á

-

1
n!
b

n 7 q
e = p>q,

e = 1 + 1 +

1
2!

+

1
3!

+

1
4!

+
Á

p

p = 48 tan-1a 1
18
b + 32 tan-1a 1

57
b - 20 tan-1a 1

239
b

p,
tan-111>2392.

tan-1 A15 B ,x9>9tan-1 x.
p

p = 16 tan-1a1
5
b - 4 tan-1a 1

239
b

p

C

y– - y¿ - y = 0.

fny = y1x2 = a

q

n = 0
 
fn

n!
xn,

F(x).

F1x2 - xF1x2 - x2F1x2 = x

F1x2 = a

q

n = 0
fnxn,
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Section 9.8 Taylor and Maclaurin Series 491

Theorem A Uniqueness Theorem

Suppose that f satisfies

for all x in some interval around a. Then

cn =

f1n21a2
n!

f1x2 = c0 + c11x - a2 + c21x - a22 + c31x - a23 +
Á

The major question still dangling is this: Given a function f (e.g., sin x or
can we represent it as a power series in x, or more generally, in 

More precisely, can we find numbers such that

for x belonging to some interval around a?
Suppose that such a representation exists. Then, by the theorem on differenti-

ating series (Theorem 9.7A),

When we substitute and solve for we get

and, more generally,

(To make this valid for we define to mean and 0! to be 1.) Thus,
the coefficients are determined by the function f.This also shows that a function
f cannot be represented by two different power series in an important point
that we have glossed over until now. We summarize in the following theorem.

x - a,
cn

f(a)f1021a2n = 0,

cn =

f1n21a2
n!

 c3 =

f‡1a2
3!

 c2 =

f–1a2
2!

 c1 = f¿1a2
 c0 = f1a2

cn,x = a

 o

 f‡1x2 = 3!c3 + 4!c41x - a2 + 5 # 4 # 3c51x - a22 +
Á

 f–1x2 = 2!c2 + 3!c31x - a2 + 4 # 3c41x - a22 +
Á

 f¿1x2 = c1 + 2c21x - a2 + 3c31x - a22 + 4c41x - a23 +
Á

f1x2 = c0 + c11x - a2 + c21x - a22 + c31x - a23 +
Á

c0, c1, c2, c3, Á

x - a?ln1cos2 x2),

Thus, a function cannot be represented by more than one power series in
The power series representation of a function in is called its Taylor

series after the English mathematician Brook Taylor (1685–1731). If the
corresponding series is called the Maclaurin series after the Scottish mathemati-
cian Colin Maclaurin (1698–1746).

Convergence of Taylor Series But the existence question remains. Given a
function f, can we represent it in a power series in (which must necessarily
be the Taylor series)? The next two theorems give the answer.

x - a

a = 0,
x - ax - a.

9.8
Taylor and Maclaurin

Series
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492 Chapter 9 Infinite Series

Theorem B Taylor’s Formula with Remainder

Let f be a function whose derivative exists for each x in an
open interval I containing a. Then, for each x in I,

where the remainder (or error) is given by the formula

and c is some point between x and a.

Rn1x2 =

f1n + 121c2
1n + 12!  1x - a2n + 1

Rn1x2

+

f1n21a2
n!

 1x - a2n + Rn1x2

f1x2 = f1a2 + f¿1a21x - a2 +

f–1a2
2!

 1x - a22 +
Á

f1n + 121x21n + 12st

Proof We will prove the theorem for the special case of the proof for an
arbitrary n follows the same structure and is left as an exercise. (See Problem 37.)
First define the function on I by

Now think of x and a as constants, and define a new function g on I by

Clearly, (remember, x is considered fixed) and

Since a and x are points in I with the property that we can apply
the Mean Value Theorem for Derivatives. There exists, therefore, a real number c
between a and x such that To obtain the derivative of g, we must re-
peatedly apply the product rule.

 = -

1
4!

 1x - t24f1521t2 + 5R41x2 1x - t24
1x - a25

  -

1
4!

  [f1421t241x - t231-12 + 1x - t24f1521t2] - R41x2 51x - t241-12
1x - a25

  -

1
3!

  [f‡1t231x - t221-12 + 1x - t23f1421t2]

1
2!

  [f–1t221x - t21-12 + 1x - t22f‡1t2]
g¿1t2 = 0 - f¿1t2 - [f¿1t21-12 + 1x - t2f–1t2] -

g¿1c2 = 0.

g1a2 = g1x2 = 0,

 = 0

 = R41x2 - R41x2
  -

f1421a21x - a24
4!

- R41x2 1x - a25
1x - a25

 g1a2 = f1x2 - f1a2 - f¿1a21x - a2 -

f–1a21x - a22
2!

-

f‡1a21x - a23
3!

g1x2 = 0

-

f1421t21x - t24
4!

- R41x2 1x - t25
1x - a25

g1t2 = f1x2 - f1t2 - f¿1t21x - t2 -

f–1t21x - t22
2!

-

f‡1t21x - t23
3!

-

f‡1a2
3!

 1x - a23 -

f1421a2
4!

 1x - a24
R41x2 = f1x2 - f1a2 - f¿1a21x - a2 -

f–1a2
2!

 1x - a22
R41x2

n = 4;
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Section 9.8 Taylor and Maclaurin Series 493

Theorem C Taylor’s Theorem

Let be a function with derivatives of all orders in some interval 
The Taylor series

represents the function f on the interval if and only if

where is the remainder in Taylor’s Formula,

and c is some point in 1a - r, a + r2.
Rn1x2 =

f1n + 121c2
1n + 12!  1x - a2n + 1

Rn1x2
lim

n: q

 Rn1x2 = 0

1a - r, a + r2
f1a2 + f¿1a21x - a2 +

f–1a2
2!

 1x - a22 +

f‡1a2
3!

 1x - a23 +
Á

1a - r, a + r2.f

Here is a fact that surprises many
students. It is possible that the Taylor
series for converges on an in-
terval but does not represent 
there. This is shown by example in
Problem 40. Of course,

in this example.

lim
n: q

 Rn1x2 Z 0

f(x)
f(x)

Warning

Thus, by the Mean Value Theorem for Derivatives, there is some c between x and a
such that,

This leads to

�

This theorem tells us what the error can be when we approximate a function with
a finite number of terms of its Taylor series. In the next section, we will further ex-
ploit the relationship given in Theorem B.

We now—finally—answer the question about whether a function f can be rep-
resented by a power series in x - a.

 R41x2 =

f1521c2
5!

 1x - a25

 
1
4!

 1x - c24f1521c2 = 5R41x2 1x - c24
1x - a25

0 = g¿1c2 = -

1
4!

 1x - c24f1521c2 + 5R41x2 1x - c24
1x - a25

Proof We need only recall Taylor’s Formula with Remainder (Theorem B),

and the result follows. �

Note that if we get the Maclaurin series

� EXAMPLE 1 Find the Maclaurin series for sin x and prove that it represents
sin x for all x.

SOLUTION

o o

f142102 = 0 f1421x2 = sin x

f‡102 = -1 f‡1x2 = -cos x

f–102 = 0 f–1x2 = -sin x

f¿102 = 1 f¿1x2 = cos x

f102 = 0 f1x2 = sin x

f102 + f¿102x +

f–102
2!

 x2
+

f‡102
3!

 x3
+

Á

a = 0,

f1x2 = f1a2 + f¿1a21x - a2 +
Á

+

f1n21a2
n!

 1x - a2n + Rn1x2
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494 Chapter 9 Infinite Series

Thus,

and this is valid for all x, provided we can show that

Now, or and so

But for all x, since is the nth term of a convergent series (see

Example 3 and Problem 29 of Section 9.6). As a consequence, we see that

�

� EXAMPLE 2 Find the Maclaurin series for cos x and show that it represents
cos x for all x.

SOLUTION We could proceed as in Example 1. However, it is easier to get the
result by differentiating the series of that example (a valid procedure according to
Theorem 9.7A). We obtain

�

� EXAMPLE 3 Find the Maclaurin series for in two different
ways, and show that it represents cosh x for all x.

SOLUTION

Method 1. This is the direct method.

Thus,

provided we can show that for all x.

Now let B be an arbitrary number and suppose that Then

ƒ cosh x ƒ = ` ex
+ e-x

2
` …

ex

2
+

e-x

2
…

eB

2
+

eB

2
= eB

ƒ x ƒ … B.

lim
n: q

 Rn1x2 = 0

cosh x = 1 +

x2

2!
+

x4

4!
+

x6

6!
+

Á

 o o

f‡102 = 0 f‡1x2 = sinh x

f–102 = 1 f–1x2 = cosh x

f¿102 = 0 f¿1x2 = sinh x

f102 = 1 f1x2 = cosh x

f1x2 = cosh x

cos x = 1 -

x2

2!
+

x4

4!
-

x6

6!
+

Á

lim
n: q

 Rn1x2 = 0.

xn>n!lim
n: q

 xn>n! = 0

ƒ Rn1x2 ƒ …

ƒ x ƒ
n + 1

1n + 12!

ƒ f1n + 121x2 ƒ = ƒ sin x ƒ ,ƒ f1n + 121x2 ƒ = ƒ cos x ƒ

lim
n: q

 Rn1x2 = lim
n: q

 
f1n + 121c2
1n + 12!  xn + 1

= 0

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

Á
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Section 9.8 Taylor and Maclaurin Series 495

By similar reasoning, Since is either cosh x or sinh x, we
conclude that

The latter expression tends to zero as just as in Example 1.

Method 2. We use the fact that cosh From Example 3 of
Section 9.7,

The previously obtained result follows by adding these two series and dividing 
by 2. �

� EXAMPLE 4 Find the Maclaurin series for sinh x and show that it repre-
sents sinh x for all x.

SOLUTION We do both jobs at once when we differentiate the series for cosh x
(Example 3) term by term and use Theorem 9.7A.

�

The Binomial Series We are all familiar with the Binomial Formula. For a
positive integer p,

where

Note that if we redefine to be

then makes sense for any real number p, provided that k is a positive integer.

Of course, if p is a positive integer, then our new definition reduces to

p!>[k!1p - k2!].

ap

k
b

ap

k
b =

p1p - 121p - 22Á 1p - k + 12
k!

ap

k
b

ap

k
b =

p!
k!1p - k2! =

p1p - 121p - 22Á 1p - k + 12
k!

11 + x2p = 1 + ap

1
bx + ap

2
bx2

+
Á

+ ap

p
bxp

sinh x = x +

x3

3!
+

x5

5!
+

x7

7!
+

Á

 e-x
= 1 - x +

x2

2!
-

x3

3!
+

x4

4!
-

Á

 ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á

x = 1ex
+ e-x2>2.

n : q ,

ƒ Rn1x2 ƒ = ` f1n + 121c2xn + 1

1n + 12! ` …

eB
ƒ x ƒ

n + 1

1n + 12!

f1n + 121x2ƒ sinh x ƒ … eB.

Theorem D Binomial Series

For any real number p and for 

11 + x2p = 1 + ap

1
bx + ap

2
bx2

+ ap

3
bx3

+
Á

ƒ x ƒ 6 1,
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496 Chapter 9 Infinite Series

Partial Proof Let Then

Thus, the Maclaurin series for is as indicated in the theorem.To show that

it represents we need to show that This unfortunately, is

difficult, and we leave it for more advanced courses. (See Problem 38 for a com-
pletely different way to prove Theorem D.) �

If p is a positive integer, for and so the Binomial Series col-

lapses to a series with finitely many terms, the usual Binomial Formula.

� EXAMPLE 5 Represent in a Maclaurin series for 

SOLUTION By Theorem D,

Thus,

Naturally, this agrees with a result we obtained by a different method in Exam-
ple 1 of Section 9.7. �

� EXAMPLE 6 Represent in a Maclaurin series and use it to approx-

imate to five decimal places.

SOLUTION For we have from Theorem D,

Since we conclude that

�

� EXAMPLE 7 Compute to five decimal places.
L

0.4

0
21 + x4 dx

 L 1.04881

 21.1 = 11 + 0.121>2 = 1 +

0.1
2

-

0.01
8

+

0.001
16

-

510.00012
128

+
Á

ƒ 0.1 ƒ 6 1,

 = 1 +

1
2

 x -

1
8

 x2
+

1
16

 x3
-

5
128

 x4
+

Á

  +

A12 B A- 1
2 B A- 3

2 B1- 5
22

4!
 x4

+
Á

 11 + x21>2 = 1 +

1
2

 x +

A12 B A- 1
2 B

2!
 x2

+

A12 B A- 1
2 B A- 3

2 B
3!

 x3

ƒ x ƒ 6 1

21.1

21 + x

11 - x2-2
= 1 + 2x + 3x2

+ 4x3
+

Á

 = 1 - 2x + 3x2
- 4x3

+
Á

 11 + x2-2
= 1 + 1-22x +

1-221-32
2!

 x2
+

1-221-321-42
3!

 x3
+

Á

-1 6 x 6 1.11 - x2-2

k 7 p,ap

k
b = 0

lim
n: q

 Rn1x2 = 0.11 + x2p,

11 + x2p
 o o

 f‡102 = p1p - 121p - 22 f‡1x2 = p1p - 121p - 2211 + x2p - 3

 f–102 = p1p - 12 f–1x2 = p1p - 1211 + x2p - 2

 f¿102 = p f¿1x2 = p11 + x2p - 1

 f102 = 1 f1x2 = 11 + x2p
f1x2 = 11 + x2p.
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Section 9.8 Taylor and Maclaurin Series 497

SOLUTION From Example 6,

Thus,

�

Summary We conclude our discussion of series with a list of the important
Maclaurin series we have found. These series will be useful in doing the problem
set, but, what is more significant, they find application throughout mathematics
and science.

Important Maclaurin Series

1.

2.

3.

4.

5.

6.

7.

8.

9. -1 6 x 6 111 + x2p = 1 + ap

1
bx + ap

2
bx2

+ ap

3
bx3

+ ap

4
bx4

+
Á

cosh x = 1 +

x2

2!
+

x4

4!
+

x6

6!
+

x8

8!
+

Á

sinh x = x +

x3

3!
+

x5

5!
+

x7

7!
+

x9

9!
+

Á

cos x = 1 -

x2

2!
+

x4

4!
-

x6

6!
+

x8

8!
-

Á

sin x = x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!
-

Á

ex
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+

Á

-1 … x … 1tan-1 x = x -

x3

3
+

x5

5
-

x7

7
+

x9

9
+

Á

-1 6 x … 1ln11 + x2 = x -

x2

2
+

x3

3
-

x4

4
+

x5

5
-

Á

-1 6 x 6 1
1

1 - x
= 1 + x + x2

+ x3
+ x4

+
Á

L

0.4

0
21 + x4 dx = cx +

x5

10
-

x9

72
+

x13

208
+

Á d
0

0.4

L 0.40102

21 + x4
= 1 +

1
2

 x4
-

1
8

 x8
+

1
16

 x12
-

5
128

 x16
+

Á

Concepts Review
1. If a function is represented by the power series

then _____.

2. The Taylor series for a function will represent the func-
tion for those x for which the remainder in Taylor’s For-
mula satisfies _____.

Rn1x2
ck =©ckxk,

f(x) 3. The Maclaurin series for sin x represents sin x for _____
_____.

4. The first four terms in the Maclaurin series for 
are _____.

11 + x21>3
6 x 6

Problem Set 9.8
In Problems 1–18, find the terms through in the Maclaurin
series for Hint: It may be easiest to use known Maclaurin
series and then perform multiplications, divisions, and so on. For
example,

1. 2.

3. 4.

5. 6. f1x2 = 1sin x221 + xf1x2 = 1cos x2 ln11 + x2
f1x2 = e-x cos xf1x2 = ex sin x

f1x2 = tanh xf1x2 = tan x

tan x = 1sin x2>1cos x2.
f(x).

x5 7.

8. 9.

10.

11. 12. f1x2 =

1
1 - sin x

f1x2 =

1

1 + x + x2

f1x2 =

1
1 + x

 lna 1
1 + x

b =

- ln11 + x2
1 + x

f1x2 =

1
1 - x

 cosh xf1x2 =

cos x - 1 + x2>2
x4

f1x2 = ex
+ x + sin x
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498 Chapter 9 Infinite Series

13.

14.

15. 16.

17. 18.

In Problems 19–24, find the Taylor series in through the
term 

19. 20.

21. 22.

23.

24.

25. Let be an even function 
for x in Prove that if n is odd. Hint: Use the
Uniqueness Theorem.

26. State and prove a theorem analogous to that in Problem
25 for odd functions.

27. Recall that

Find the first four nonzero terms in the Maclaurin series for

28. Given that

find the first four nonzero terms in the Maclaurin series for

29. Calculate, accurate to four decimal places,

30. Calculate, accurate to five decimal places,

31. By writing and using the known
expansion of find the Taylor series for in powers
of 

32. Let Find the Maclaurin
series for f and use it to find and 

33. In each case, find the Maclaurin series for by use of
known series and then use it to calculate 

(a)

(b)

(c)

(d)

(e)

34. One can sometimes find a Maclaurin series by the method
of equating coefficients. For example, let

tan x =

sin x
cos x

= a0 + a1x + a2x
2

+
Á

f1x2 = ln1cos2 x2
f1x2 = ecos x

= e # ecos x - 1

f1x2 =

L

x

0
 
et2

- 1

t2   dt

f1x2 = esin x

f1x2 = ex + x2

f142102.
f(x)

f1512102.f142102
f1x2 = 11 + x21>2 + 11 - x21>2.

x - 1.
1>x1>11 - x2,

1>x = 1>[1 - 11 - x2]
L

0.5

0
sin1x dx

C

L

1

0
cos1x22 dx

C

sinh-1 x.

sinh-1 x =

L

x

0
 

121 + t2
  dt

sin-1 x.

sin-1 x =

L

x

0
 

121 - t2
  dt

an = 01-R, R2.
1f1-x2 = f1x22f1x2 = ©anxn

2 - x + 3x2
- x3, a = -1

1 + x2
+ x3, a = 1

tan x, a =

p

4
cos x, a =

p

3

sin x, a =

p

6
ex, a = 1

1x - a23.
x - a

f1x2 = 11 - x222>3f1x2 = 11 + x23>2
f1x2 =

cos x21 + x
f1x2 = x sec1x22 + sin x

f1x2 = x1sin 2x + sin 3x2
f1x2 = sin3 x Then multiply by cos x and replace sin x and cos x by their series

to obtain

Thus,

so

and therefore

which agrees with Problem 1. Use this method to find the terms
through in the series for sec x.

35. Use the method of Problem 34 to find the terms through
in the Maclaurin series for tanh x.

36. Use the method of Problem 34 to find the terms through
in the series for sech x.

37. Prove Theorem B for
(a) the special case of and
(b) an arbitrary n.

38. Prove Theorem D as follows: Let

(a) Show that the series converges for 

(b) Show that and 

(c) Solve this differential equation to get 

39. Let

Explain why cannot be represented by a Maclaurin series.
Also show that, if gives the distance traveled by a car that is
stationary for and moving ahead for cannot be
represented by a Maclaurin series.

40. Let

(a) Show that by using the definition of the
derivative.

(b) Show that 

(c) Assuming the known fact that for all n, find the
Maclaurin series for 

(d) Does the Maclaurin series represent 

(e) When the formula in Theorem B is called
Maclaurin’s Formula. What is the remainder in Maclau-
rin’s Formula for 

This shows that a Maclaurin series may exist and yet not repre-
sent the given function (the remainder does not tend to 0 as

).n : q

f(x)?

a = 0,

f(x)?

f(x).
f1n2102 = 0

f–102 = 0.

f¿102 = 0

f1x2 = e e-1>x2
if x Z 0

0 if x = 0

g(t)t Ú 0,t 6 0
g(t)

f(t)

f1t2 = e0 if  t 6 0
t4 if  t Ú 0

f1x2 = 11 + x2p.

f102 = 1.11 + x2f¿1x2 = pf1x2
ƒ x ƒ 6 1.

f1x2 = 1 + a

q

n = 1
ap

n
bxn

n = 3,

x4

x5

x4

tan x = 0 + x + 0 +
1
3 x3

+
Á

a0 = 0, a1 = 1, a2 = 0, a3 =
1
3, Á

a0 = 0, a1 = 1, a2 -

a0

2
= 0, a3 -

a1

2
= -

1
6

, Á

 = a0 + a1x + aa2 -

a0

2
bx2

+ aa3 -

a1

2
bx3

+
Á

 x -

x3

6
+

Á
= 1a0 + a1x + a2x

2
+

Á 2a1 -

x2

2
+

Á b
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y

x

y = P1(x) = x – 1

y = ln x1

–1

1 2 3

Figure 2

y

xa x

y = P1(x) = f (a) + f '(a) (x – a)

y = f (x)

(a, f (a))

Figure 1

The Taylor and Maclaurin series introduced in the previous section cannot be used
directly to approximate a function such as or tan x. However, truncating a Tay-
lor or Maclaurin series, that is, cutting off the series after a finite number of terms,
leads to a polynomial that we can use to approximate a function. Such polynomials
are called Taylor or Maclaurin polynomials.

The Taylor Polynomial of Order 1 In Section 3.11 we emphasized that a
function f can be approximated near a point a by its tangent line through the point

(see Figure 1). We called such a line the linear approximation to f near a
and we found it to be

After studying Taylor series in Section 9.8, you should recognize that is com-
posed of the first two terms, that is, the terms of order 0 and 1, of the Taylor series
of f expanded about a.We therefore call the Taylor polynomial of order 1 based
at a. As Figure 1 suggests, we can expect to be a good approximation to 
only near 

� EXAMPLE 1 Find based at for and use it to ap-
proximate ln 0.9 and ln 1.5.

SOLUTION Since thus, and 
Therefore,

Consequently (see Figure 2), for x near 1,

and

The correct four-place values of ln 0.9 and ln 1.5 are and 0.4055. As
expected, the approximation is much better for ln 0.9 than for ln 1.5, since 0.9 is
closer to 1 than is 1.5. �

The Taylor Polynomial of Order n The linear approximation 
works well when x is near a, but less so when x is not close to a. As you might ex-
pect, summing to higher-order terms in the Taylor series will usually give a better
approximation. Thus, the quadratic polynomial

P21x2 = f1a2 + f¿1a21x - a2 +

f–1a2
2

 1x - a22

P11x2

-0.1054

 ln 1.5 L 1.5 - 1 = 0.5

 ln 0.9 L 0.9 - 1 = -0.1

ln x L x - 1

P11x2 = 0 + 11x - 12 = x - 1

f¿112 = 1.f112 = 0f1x2 = ln x, f¿1x2 = 1>x;

f1x2 = ln xa = 1P11x2
x = a.

f(x)P11x2
P1

P11x2
P11x2 = f1a2 + f¿1a21x - a2

(a, f(a))

ex
9.9

The Taylor
Approximation 

to a Function

Use a CAS to find the first four nonzero terms in the Maclau-
rin series for each of the following. Check Problems 43–48 to see
that you get the same answers using the methods of Section 9.7.

41. sin x 42. exp x

43. 44. exp1x223 sin x - 2 exp x

CAS 45. 46. exp (sin x)

47. (sin x)(exp x) 48.

Answers to Concepts Review: 1.

2. 3. 4. 1 +
1
3 x -

1
9 x2

+
5

81 x3
- q ; qlim

n: q

 Rn1x2 = 0

f1k2102>k!

(sin x)>(exp x)

sin1exp x - 12
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y = ln x

y = P2 (x)
–1

1

1 2 3

y

x

Figure 3

We have chosen the terminology
Taylor (and Maclaurin) polynomial
of order n because the highest-order
derivative involved in its construc-
tion is of order n. Note that this
polynomial can have degree less than
n if If n is odd in Exam-
ple 3, then the Maclaurin polynomial
of order n for cos x will be of degree

For example, the Maclaurin
polynomial of order 5 for cos x is

a polynomial of degree 4.

1 -
1
2 x2

+
1
24 x4

n - 1.

f1n21a2 = 0.

Order versus Degree

which is composed of the first three terms of the Taylor series for f, will give a bet-
ter approximation to f than the linear approximation The Taylor polynomial
of order n based at a is

� EXAMPLE 2 Find based at for and use it to ap-
proximate ln 0.9 and ln 1.5.

SOLUTION Here and so 
and Therefore,

Consequently, for x near 1,

and

As expected, these are better approximations than we got using the linear approx-
imation (Example 1). Figure 3 shows the graph of and the approxi-
mation �

Maclaurin Polynomials When the Taylor polynomial of order n sim-
plifies to the Maclaurin polynomial of order n, which gives a particularly useful
approximation near 

� EXAMPLE 3 Find the Maclaurin polynomials of order n for and cos x.
Then approximate and cos(0.2) using 

SOLUTION The calculation of the required derivatives is shown in the table.

n At At 

0 1 cos x 1

1 1 0

2 1

3 1 sin x 0

4 1 cos x 1

5 1 0

oooooo

-sin xexf1521x2
exf1421x2
exf1321x2

-1-cos xexf–1x2
-sin xexf¿1x2

exf(x)

x � 0x � 0

n = 4.e0.2
ex

f1x2 L Pn(x) = f102 + f¿102x +

f–102
2!

 x2
+

Á
+

f1n2102
n!

 xn

x = 0:

a = 0,

P21x2.
y = ln xP11x2

 ln 1.5 L 11.5 - 12 -

1
2

 11.5 - 122 = 0.3750

 ln 0.9 L 10.9 - 12 -

1
2

 10.9 - 122 = -0.1050

ln x L 1x - 12 -

1
2

 1x - 122

P21x2 = 0 + 11x - 12 -

1
2

 1x - 122
f–112 = -1.f¿112 = 1,

f112 = 0,f1x2 = ln x, f¿1x2 = 1>x, f–1x2 = -1>x2,

f1x2 = ln xa = 1P21x2

Pn1x2 = f1a2 + f¿1a21x - a2 +

f–1a2
2!

 1x - a22 +
Á

+

f1n21a2
n!

 1x - a2n

P11x2.
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Maclaurin approximations to f (x) = cos x

P2(x) = P3(x) = 1–    x2

P4(x) = P5(x) = 1–    x2 +     x4
P8(x) 

P1(x) = 1 

y

x

1
2

1
24

f (x) = cos x

1

–1

–1

1
2

Figure 4

cos (0.2) (0.2)2 + 1–� 1
2!

(0.2)4 
1
4!

first
error

0.9800667�

second
error

It follows that

Thus, using and we obtain

Compare these results with the correct seven-place values of 1.2214028 and
0.9800666. �

For a visual idea of how the Maclaurin polynomials provide approximations to
cos x, we have sketched the graphs of through and along with
the graph of cos x, in Figure 4.

P81x2,P51x2P11x2

 cos10.22 L 1 -

10.222
2

+

10.224
24

= 0.9800667

 e0.2
L 1 + 0.2 +

10.222
2

+

10.223
6

+

10.224
24

= 1.2214000

x = 0.2,n = 4

 cos x L 1 -

1
2!

 x2
+

1
4!

 x4
-

Á
+ 1-12n>2 

1
n!

 xn 1n even2
 ex

L 1 + x +

1
2!

 x2
+

1
3!

 x3
+

1
4!

 x4
+

Á
+

1
n!

 xn

In Example 3 we used the Maclaurin polynomial of order 4 to approximate
cos(0.2) as follows:

This example illustrates the two kinds of errors that occur in approximation
processes. First, there is the error of the method. In this case, we approximated 
cos x by a fourth-degree polynomial instead of evaluating the exact sum of the
series. Second, there is the error of calculation. This includes errors due to round-
ing, as when we replaced the unending decimal 0.9800666 by 0.9800667 in the
last term above.

Now notice a sad fact of the numerical analyst’s life. We can reduce the error
of the method by using Maclaurin polynomials of higher order. But using polyno-
mials of higher order means more calculations, which potentially increases the
error of calculation.To be a good numerical analyst is to know how to compromise
between these two types of error. Unfortunately, this is more of an art than a
science. However, we can say something definite about the first type of error, the
subject to which we now turn.

Á
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502 Chapter 9 Infinite Series

The Error in the Method In Section 9.8 we gave a formula for the error of
approximating a function by its Taylor polynomial. Taylor’s Formula with Remain-
der is

The error, or remainder, is given by

where c is some real number between a and x. This formula for the error is due to
the French–Italian mathematician Joseph Louis Lagrange (1736–1813) and is
often called the Lagrange error bound for Taylor polynomials. When Tay-
lor’s Formula is called Maclaurin’s Formula.

One problem that you might foresee at this point is that we do not know what
c is; all we know is that it is some real number between a and x. For most problems
we must settle for a bound on the remainder using the known bounds on c. The
next example illustrates this point.

� EXAMPLE 4 Approximate with an error of less than 0.001.

SOLUTION For Maclaurin’s Formula gives the remainder

and so

where Our goal is to choose n large enough so that 
Now, and and so

It is easy to check that when and so we can obtain the
desired accuracy by using the Maclaurin polynomial of order 6:

Our calculator gives 2.2254948 for this sum.
Can we be sure that this value is within 0.001 of the true result? Certainly the

error of the method is less than 0.001. But could the error of calculation have dis-
torted our answer? Possibly so; however, so few calculations are involved that we
feel confident in reporting an answer of 2.2255 accurate within 0.001. �

Useful Tools for Bounding The precise value of is almost never
obtainable, since we do not know c, only that c lies on a certain interval. Our task is
therefore to find the maximum possible value of for c in the given interval. To
do this exactly is often difficult, so we usually content ourselves with getting a
“good” upper bound for This involves a sensible use of inequalities. Our chief
tools are the triangle inequality, and the fact that a fraction
gets larger when we make its numerator larger or its denominator smaller.

ƒ a ; b ƒ … ƒ a ƒ + ƒ b ƒ ,
ƒ Rn ƒ .

ƒ Rn ƒ

Rnƒ Rn ƒ

e0.8
L 1 + 10.82 +

10.822
2!

+

10.823
3!

+

10.824
4!

+

10.825
5!

+

10.826
6!

n Ú 6,3>1n + 12! 6 0.001

ƒ Rn10.82 ƒ 6

3112n + 1

1n + 12! =

3
1n + 12!

10.82n + 1
6 112n + 1,ec

6 e0.8
6 3

ƒ Rn10.82 ƒ 6 0.001.0 6 c 6 0.8.

Rn10.82 =

ec

1n + 12! 10.82n + 1

Rn1x2 =

f1n + 121c2
1n + 12!  xn + 1

=

ec

1n + 12! xn + 1

f1x2 = ex,

e0.8

a = 0,

Rn1x2 =

f1n + 121c2
1n + 12!  1x - a2n + 1

Rn1x2
 = Pn1x2 + Rn1x2
  +

f1n21a2
n!

 1x - a2n + Rn1x2

 f1x2 = f1a2 + f¿1a21x - a2 +

f–1a2
2!

 1x - a22 +
Á
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Section 9.9 The Taylor Approximation to a Function 503

� EXAMPLE 5 If c is known to be in [2, 4], give a good bound for the maxi-
mum value of

SOLUTION

A different and better bound is obtained as follows:

�

� EXAMPLE 6 Use a Taylor polynomial of order 2 to approximate cos 62°
and then give a bound for the error of the approximation.

SOLUTION Since 62° is near 60° (whose cosine and sine are known), we use
radian measure and the Taylor polynomial based at 

Now

Thus,

and

and

Again the number of calculations is small, so we feel safe in reporting
with an error of less than 0.0000071. �

The Error of Calculation In all our examples so far, we have assumed that
the error of calculation is small enough so that it can be ignored. We will ordinari-
ly make that assumption in this book, since our problems will always involve a
small number of calculations. We feel obligated, however, to warn you that when
computers are used to do thousands or millions of operations, these errors of cal-
culation may well accumulate and distort an answer.

cos 62° = 0.4694654

ƒ R2 ƒ = ` sin c
3!

 a p
90
b3 ` 6

1
6

 a p
90
b3

L 0.0000071

 L 0.4694654 + R2

 cosap
3

+

p

90
b =

1
2

-

23
2

 a p
90
b -

1
4

 a p
90
b2

+ R2ap3 +

p

90
b

cos x =

1
2

-

23
2

 ax -

p

3
b -

1
4

 ax -

p

3
b2

+ R21x2

62° =

p

3
+

p

90
  radians

f‡1c2 = sin c f‡1x2 = sin x

 f– ap
3
b = -

1
2

 f–1x2 = -cos x

 f¿ ap
3
b = -

23
2

 f¿1x2 = -sin x

 fap
3
b =

1
2

 f1x2 = cos x

a = p>3.

` c2
- sin c

c
` = ` c -

sin c
c
` … ƒ c ƒ + ` sin c

c
` … 4 +

1
2

= 4.5

` c2
- sin c

c
` =

ƒ c2
- sin c ƒ

ƒ c ƒ

…

ƒ c2
ƒ + ƒ sin c ƒ

ƒ c ƒ

…

42
+ 1
2

= 8.5

` c2
- sin c

c
`
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504 Chapter 9 Infinite Series

There are two sources of calculation errors that may be significant even in
using a calculator. Consider calculating

where a is very much larger than any of the b’s; for example, and
If we use eight-digit floating-point arithmetic and pro-

ceed from left to right, first adding to a, then adding to the result, and so on,
we will simply get 10,000,000 at each stage. Yet a sum of just 25 of the b’s ought
to affect the seventh digit of the overall sum. The moral here is that in adding a
large number of small terms to one or more large ones, it is wise to find the sum
of the small terms first. Whenever possible, add the numbers from smallest to
largest.

A more likely source of calculation error is due to the loss of significant digits
in a subtraction of nearly equal numbers. For example, subtracting 0.823421 from
0.823445, each with six significant digits, results in 0.000024, which has only two sig-
nificant digits. That this can cause trouble is easily illustrated by calculating a nu-
merical approximation to a derivative.

Consider calculating for by using the difference quotient

Theoretically, as n increases (and correspondingly decreases) the result
should get closer and closer to the correct value, 32. But note what happens on one
eight-digit calculator when n gets too large. Problems like this arise even if we use
16-digit or 32-digit floating-point arithmetic. Regardless of the number of signifi-
cant digits used in the calculations, the difference quotient in the following table
will be 0 for sufficiently large n.

n

2 0.32240801 32.240801

3 0.03202401 32.024010

4 0.00320024 32.002400

5 0.00032000 32.000000

6 0.00003200 32.000000

7 0.00000320 32.000000

8 0.00000032 32.000000

9 0.00000003 30.000000

10 0.00000000 0.000000

ooo

[12 + 10�n24 - 24]>10-n12 + 10�n24 - 24

h = 10-n

f¿122 L

f12 + h2 - f122
h

=

12 + 10-n24 - 24

10-n

f1x2 = x4f¿122

b2b1

bi = 0.4, i = 1, 2, Á , m.
a = 10,000,000

a + b1 + b2 + b3 +
Á

+ bm

Concepts Review
1. If is the Taylor polynomial of order 2 based at 1 for

then _____, _____, and _____.

2. The coefficient of in the Maclaurin polynomial of
order 9 for is _____.f(x)

x6

P2
fl112 =P2

œ112 =P2112 =f(x),
P21x2 3. The two types of errors that arise in approximation

theory are called _____ and _____.

4. Calculation errors in using Taylor’s Formula tend to
_____ as n increases, whereas errors of the method tend to _____
as n increases.
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Problem Set 9.9

In Problems 1–8, find the Maclaurin polynomial of order 4 for
and use it to approximate 

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–14, find the Taylor polynomial of order 3 based
at a for the given function.

9. 10.

11. 12.

13. 14.

15. Find the Taylor polynomial of order 3 based at 1 for
and show that it is an exact represen-

tation of 

16. Find the Taylor polynomial of order 4 based at 2 for
and show that it represents exactly.

17. Find the Maclaurin polynomial of order n for
Then use it with to approximate each

of the following.

(a) (b) (c) (d)

18. Find the Maclaurin polynomial of order n (n odd) for 
sin x. Then use it with to approximate each of the fol-
lowing. (This example should convince you that the Maclaurin
approximation can be exceedingly poor if x is far from zero.)
Compare your answers with those given by your calculator.What
conclusion do you draw?

(a) sin(0.1) (b) sin(0.5) (c) sin(1) (d) sin(10)

In Problems 19–28, plot on the same axes the given function
along with the Maclaurin polynomials of orders 1, 2, 3, and 4.

19. cos 2x 20. sin x

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29–36, find a good bound for the maximum value of
the given expression, given that c is in the stated interval. Answers
may vary depending on the technique used. (See Example 5.)

29. [0, 3] 30.

31. 32. [0, 1]

33. 34.

35. [2, 4] 36. ` c2
- c

cos c
` ; c0, 

p

4
d` c2

+ sin c
10 ln c

` ;

` cos c
c + 2

` ; c0, 
p

4
d` ec

c + 5
` ; [-2, 4]

` 4c

c + 4
` ;` 4c

sin c
` ; cp

4
, 
p

2
d

ƒ tan c + sec c ƒ ; c0, 
p

4
dƒ e2c

+ e-2c
ƒ ;

1

1 + x2

sin x
2 + sin x

sin1ln11 + x22sin ex

esin xe-x2

cos1x - p2sin x2

CAS

n = 5
C

f(2)f(0.9)f(0.5)f(0.1)

n = 4f1x2 = 1>11 - x2.
f(x)f1x2 = x4

f(x).
f1x2 = x3

- 2x2
+ 3x + 5

1x; a = 2cot-1 x; a = 1

sec x; a =

p

4
tan x; a =

p

6

sin x; a =

p

4
ex; a = 1

C

f1x2 = sinh xf1x2 = tan-1 x

f1x2 = 21 + xf1x2 = ln11 + x2
f1x2 = tan xf1x2 = sin 2x

f1x2 = e-3xf1x2 = e2x

f(0.12).f(x)
C In Problems 37–42, find a formula for the remainder for

the Taylor polynomial of order 6 based at a. Then obtain a good
bound for See Examples 4 and 6.

37. 38.

39. 40.

41. 42.

43. Determine the order n of the Maclaurin polynomial for 
that is required to approximate e to five decimal places, that is, so
that (see Example 4).

44. Determine the order n of the Maclaurin polynomial for
that is required to approximate to five

decimal places, that is, so that 

45. Find the third-order Maclaurin polynomial for 
and bound the error for 

46. Find the third-order Maclaurin polynomial for 
and bound the error if 

47. Find the third-order Maclaurin polynomial for

and bound the error if 

48. Find the fourth-order Maclaurin polynomial for 

and bound the error for 

49. Note that the fourth-order Maclaurin polynomial for sin x
is really of third degree since the coefficient of is 0. Thus,

Show that if Use this result

to approximate and give a bound for the error.

50. In analogy with Problem 49,

If give a good bound for Then use your re-

sult to approximate and give a bound for the error.

51. Problem 49 suggests that if n is odd, then the nth order
Maclaurin polynomial for sin x is also the order poly-
nomial, so the error can be calculated using Use this result
to find how large n must be so that is less than 0.00005
for all x in the interval (Note, n must be odd.)

52. Problem 50 suggests that if n is even, then the nth order
Maclaurin polynomial for cos x is also the order poly-
nomial, so the error can be calculated using Use this result
to find how large n must be so that is less than 0.00005
for all x in the interval (Note, n must be even.)0 … x … p>2.

ƒ Rn + 11x2 ƒ

Rn + 1.
1n + 12st

0 … x … p>2.
ƒ Rn + 11x2 ƒ

Rn + 1.
1n + 12st

L

1

0
cos x dx

ƒ R51x2 ƒ .0 … x … 1,

cos x = 1 -

x2

2
+

x4

24
+ R51x2

L

0.5

0
sin x dx

0 … x … 0.5, ƒ R41x2 ƒ … 0.0002605.

sin x = x -

x3

6
+ R41x2

x4

-0.5 … x … 0.5.R41x2
ln[11 + x2>11 - x2]

-0.05 … x … 0.05.R31x2
11 + x2-1>2

-0.1 … x … 0.R31x2
11 + x23>2

-0.5 … x … 0.5.R31x2
11 + x21>2

ƒ Rn112 ƒ … 0.000005.
p = 4 tan-1 14 tan-1 x

ƒ Rn112 ƒ … 0.000005

ex

1

x2; a = 1
1
x

; a = 1

1
x - 3

; a = 1sin x; a = p>4
e-x; a = 1ln12 + x2; a = 0

ƒ R610.52 ƒ .

R61x2,
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r
t

Figure 5

0.05

0.10

0.15

0.20

r
n

(Exact)
n

(Approximation)
n

(Rule of 72)

53. Use a Maclaurin polynomial to obtain the approximation
for the area of the shaded region in Figure 5. First

express A exactly, then approximate.

54. If an object of rest mass has velocity then (accord-
ing to the theory of relativity) its mass m is given by 

where c is the velocity of light. Explain how
physicists get the approximation

55. If money is invested at an interest rate of r compounded
monthly, it will double in n years, where n satisfies

(a) Show that

(b) Use the Maclaurin polynomial of order 2 for 
and a partial fraction decomposition to obtain the
approximation

(c) Some people use the Rule of 72, to ap-
proximate n. Fill in the table to compare the values ob-
tained from these three formulas.

n L 72>1100r2,C

n L

0.693
r

+ 0.029

ln11 + x2
n = ln 2 c 1

12 ln11 + r>122 d

a1 +

r

12
b12n

= 2

m L m0 +

m0

2
 av

c
b2

m0>21 - v2>c2,

m =

v,m0

A L r2t3>12

provided k is very small. Show how she reached this conclusion
and check it for 

57. Expand in a Taylor polynomial
of order 4 based at 1 and show that for all x.

58. Let be a function that possesses at least n derivatives
at and let be the Taylor polynomial of order n based
at a. Show that

59. Calculate by using the Taylor
polynomial of order 3 based at for sin x. Then obtain a good
bound for the error made. See Example 6.

60. Calculate cos 63° by the method illustrated in Example 6.
Choose n large enough so that 

61. Show that if x is in the error in using

is less than and therefore, that this formula is good
enough to build a four-place sine table.

62. Use Maclaurin’s Formula, rather than l’Hôpital’s Rule, to
find

(a)

(b)

63. Let where is a polyno-
mial of degree at most n and f has derivatives through order n.
Show that is the Maclaurin polynomial of order n for g.

64. Recall that the Second Derivative Test for Local Ex-
trema (Section 4.3) does not apply when Prove the
following generalization, which may help determine a maximum
or a minimum when Suppose that

where n is odd and is continuous near c.

1. If is a local maximum value.

2. If is a local minimum value.

Test this result on 

Answers to Concepts Review: 1.
2. 3. error of the method; error of calculation
4. increase; decrease

f162102>6!
f112; f¿112; f–112

f1x2 = x4.

f1n + 121c2 7 0, then f1c2
f1n + 121c2 6 0, then f1c2

f1n + 121x2
f¿1c2 = f–1c2 = f‡1c2 =

Á
= f1n21c2 = 0

f–1c2 = 0.

f–1c2 = 0.
EXPL

p(x)

p(x)g1x2 = p1x2 + xn + 1f1x2,EXPL

lim
x:0

 
cos x - 1 + x2>2 - x4>24

x6

lim
x:0

 
sin x - x + x3>6

x5

5 * 10-5

sin x L x -

x3

3!
+

x5

5!
-

x7

7!
+

x9

9!

[0, p>2]C

ƒ Rn ƒ … 0.0005.
C

p>4
sin 43° = sin (43p>180)C

Á , Pn
1n21a2 = f1n21a2

Pn1a2 = f1a2, Pn
œ 1a2 = f¿1a2, Pn

fl1a2 = f–1a2,
Pn1x2x = a

f(x)

R41x2 = 0
x4

- 3x3
+ 2x2

+ x - 2

k = 0.01.

9.10 Chapter Review

Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. If for all natural numbers n and ex-
ists, then exists.

2. For every positive integer n, n! … nn
… 12n - 12!.

lim
n: q

 an

lim
n: q

 bn0 … an … bn

3. If then 

4. If and then 

5. If for every positive integer then

6. If and then lim
n: q

 an = L.lim
n: q

 a2n + 1 = L,lim
n: q

 a2n = L

lim
n: q

 an = L.

m Ú 2,lim
n: q

 amn = L

lim
n: q

 an = L.lim
n: q

 a3n = L,lim
n: q

 a2n = L

lim
n: q

 a3n + 4 = L.lim
n: q

 an = L,

56. The author of a biology text claimed that the smallest
positive solution to is approximately x = 2k,x = 1 - e-11 + k2x
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7. If then exists and is finite.

8. If and both diverge, then diverges.

9. If converges, then converges to 0.

10. If converges, so does 

11. If for all natural numbers n, and if

then converges and has sum S satisfy-

ing 

12. converges and has sum S satisfying 

13. If a series diverges, then its sequence of partial sums
is unbounded.

14. If for all natural numbers n, and if di-

verges, then diverges.

15. The Ratio Test will not help in determining the conver-

gence or divergence of 

16. If for all natural numbers n and converges,

then 

17. converges.

18. converges.

19. converges.

20. converges.

21. If for all natural numbers n and if 

converges, then converges.

22. If, for some for all natural numbers n,

then diverges.

23.

24. If converges, then converges.

25. If for all natural numbers n, and if con-

verges, then converges.

26. If for all natural numbers n, and if con-

verges, then converges.a

q

n = 1
1-12nan

a

q

n = 1
an0 … an

a

q

n = 1
an

a

q

n = 1
bnbn … an … 0

a

q

n = 1
1-12nana

q

n = 1
an

1
3 + A13 B2 + A13 B3 +

Á
+ A13 B1000

6
1
2.

a

q

n = 1
an

c 7 0, can Ú 1>n
a

q

n = 1
an

a

q

n = 1
bn0 … an + 100 … bn

a

q

n = 1
 
sin21np>22

n

a

q

n = 2
 

n + 1

1n ln n22

a

q

n = 1
 

1

ln1n4
+ 12

a

q

n = 1
a1 -

1
n
bn

lim
n: q

1an + 1>an2 6 1.

a

q

n = 1
anan 7 0

a

q

n = 1
 

2n + 3

3n4
+ 2n3

+ 3n + 1
.

a

q

n = 1
an

a

q

n = 1
bn0 … an … bn

aan

1 6 S 6 2.a

q

n = 1
a 1

n
bn

0 6 S 6 a1.

a

q

n = 1
1-12n + 1anlim

n: q

 an = 0,

0 6 an + 1 6 an

a

q

n = 1
an

2.a

q

n = 1
an

5an>n65an6
5an + bn65bn65an6

lim
n: q

 anlim
n: q

1an - an + 12 = 0,
27.

28. If diverges, then diverges.

29. If the power series converges at 

then it also converges at 

30. If converges at then it also converges at

31. If and if the series converges at 

then 

32. Every power series converges for at least two values of
the variable.

33. If all exist, then the Maclaurin se-
ries for converges to in a neighborhood of 

34. The function satisfies the
differential equation on the interval 

35. The function satisfies the differen-

tial equation on the whole real line.

36. If is the Maclaurin polynomial of order 2 for 
then and 

37. The Taylor polynomial of order n based at a for is
unique; that is, has only one such polynomial.

38. has a second-order Maclaurin polynomial.

39. The Maclaurin polynomial of order 3 for 
is an exact representation of 

40. The Maclaurin polynomial of order 16 for cos x involves
only even powers of x.

41. If exists for an even function, then 

42. Taylor’s Formula with Remainder contains the Mean
Value Theorem for Derivatives as a special case.

Sample Test Problems

In Problems 1–8, determine whether the given sequence converges
or diverges and, if it converges, find 

1. 2.

3. 4.

5. 6.

7. 8. an = cosanp

6
ban =

sin2 n1n

an =

113 n
+

11n 3
an = 1n n

an =

n!
3nan = a1 +

4
n
bn

an =

ln n1n
an =

9n29n2
+ 1

lim
n: q

 an.

f¿102 = 0.f¿102

f(x).2x3
- x2

+ 7x - 11
f1x2 =

f1x2 = x5>2
f(x)

f(x)

P–102 = f–102.P102 = f102, P¿102 = f¿102,
f(x),P(x)

y¿ + y = 0

f1x2 = a

q

n = 0
1-12nxn>n!

1-1, 12.y¿ = y2
f1x2 = 1 + x + x2

+ x3
+

Á

x = 0.f(x)f(x)
f¿102, f–102, Áf(0),

L

1

0
f1x2 dx = a

q

n = 0
an>1n + 12.

x = 1.5,f1x2 = a

q

n = 0
anxn

x = 2.

x = -2,a

q

n = 0
anxn

x = 7.

x = -1.1,a

q

n = 0
an1x - 32n
a

q

n = 1
ƒ an ƒa

q

n = 1
an

` a
q

n = 1
1-12n + 1 

1
n

- a
99

n = 1
1-12n + 1 

1
n
` 6 0.01.
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508 Chapter 9 Infinite Series

In Problems 9–18, determine whether the given series converges or
diverges and, if it converges, find its sum.

9. 10.

11. 12.

13. 14.

15.

16. 17.

18.

In Problems 19–32, indicate whether the given series converges or
diverges and give a reason for your conclusion.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Problems 33–36, state whether the given series is absolutely con-
vergent, conditionally convergent, or divergent.

33. 34.

35. 36.

In Problems 37–42, find the convergence set for the power series.

37. 38.

39. 40.

41. 42. a

q

n = 0
  
n!1x + 12n

3na

q

n = 0
  
1x - 32n
2n

+ 1

a

q

n = 0
  

3nx3n

13n2!a

q

n = 0
  
1-12n1x - 42n

n + 1

a

q

n = 0
  
1-22n + 1xn

2n + 3a

q

n = 0
  

xn

n3
+ 1

a

q

n = 2
  
1-12n1n n

ln na

q

n = 1
1-12n 

3n

2n + 8

a

q

n = 1
  
1-12nn3

2na

q

n = 1
1-12n 

1
3n - 1

a

q

n = 1
  
1-12n

1 + ln na

q

n = 1
n2 A23 Bn

a

q

n = 2
a1 -

1
n
bn

a

q

n = 1
  

2nn!
1n + 22!

a

q

n = 1
  

n3 3n

1n + 12!a

q

n = 1
  
n2

n!

a

q

n = 1
  
1n

n2
+ 7a

q

n = 1
1-12n + 1 

n + 1
10n + 12

a

q

n = 1
  

n

en2a

q

n = 1
  
2n

+ 3n

4n

a

q

n = 1
1-12n + 1 

12n 3
a

q

n = 1
1-12n + 1 

113 n

a

q

n = 1
  

n + 5

1 + n3a

q

n = 1
  

n

1 + n2

1 -

1
1!

+

1
2!

-

1
3!

+

1
4!

-
Á

1 -

22

2!
+

24

4!
-

26

6!
+

Áa

q

k = 1
a 1

ln 2
bk

0.91919191 Á = a

q

k = 1
91a 1

100
bk

a

q

k = 0
a 3

2k
+

4

3k
ba

q

k = 0
e-2k

a

q

k = 0
 cos kpln 

1
2 + ln 

2
3 + ln 

3
4 +

Á

a

q

k = 1
a 1

k
-

1
k + 2

ba

q

k = 1
a 11k

-

12k + 1
b

43. By differentiating the geometric series

find a power series that represents What is its inter-
val of convergence?

44. Find a power series that represents on the in-
terval 

45. Find the Maclaurin series for For what values of x
does the series represent the function?

46. Find the first five terms of the Taylor series for based at
the point 

47. Write the Maclaurin series for For
what values of x does it represent f ?

48. Determine how large n must be so that using the nth par-

tial sum to approximate the series gives an error of no
more than 0.00005.

49. Determine how large n must be so that using the nth par-

tial sum to approximate the series gives an error of no
more than 0.000005.

50. How many terms do we have to take in the convergent
series

to be sure that we have approximated its sum to within 0.001?

51. Use the simplest method you can think of to find the first
three nonzero terms of the Maclaurin series for each of the
following:

(a) (b)

(c) (d) x sec x

(e) (f)

52. Find the Maclaurin polynomial of order 2 for 
and use it to approximate cos 0.1.

53. Find the Maclaurin polynomial of order 1 for 
and use it to approximate 

54. Find the Maclaurin polynomial of order 4 for and
use it to approximate 

(a)

(b)

55. Find the Taylor polynomial of order 3 based at 2 for
and show that it is an exact repre-

sentation of 

56. Use the result of Problem 55 to calculate 

57. Find the Taylor polynomial of order 4 based at 1 for

58. Obtain an expression for the error term in Problem
57, and find a bound for it if x = 1.2.

R41x2
f1x2 = 1>1x + 12.

g(2.1).

g(x).
g1x2 = x3

- 2x2
+ 5x - 7,

f1x2 = cosh x

f1x2 = xex

f(0.1).
f(x),C

f(0.2).x cos x2
f1x2 =C

cos x
f1x2 =

1
1 + sin x

e-x sin x

e-x
- 1 + x

21 + x21

1 - x3

1 -

122
+

123
-

124
+

125
-

126
+

Á

a

q

k = 1
 

k

ek2

a

q

k = 1
 

1

9 + k2

f1x2 = sin x + cos x.

x = 2.
ex

sin2 x.

1-1, 12.
1>11 + x23

1>11 + x22.

1
1 + x

= 1 - x + x2
- x3

+ x4
-

Á , ƒ x ƒ 6 1,
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59. Find the Maclaurin polynomial of order 4 for

and find a bound for the error

if Note: A better bound is obtained if you ob-

serve that and then bound 

60. If then 
Thus, the Taylor polynomial of order n based at 1 for ln x is

+

1-12n - 1

n
 1x - 12n + Rn1x2

ln x = 1x - 12 -

1
2

 1x - 122 +

1
3

 1x - 123 +
Á

f1n21x2 = 1-12n - 11n - 12!>xn.f1x2 = ln x,C

R51x2.R41x2 = R51x2
ƒ x ƒ … 0.2.R41x2

f1x2 = sin2 x =
1
211 - cos 2x2,

How large would n have to be for us to know that
if 

61. Refer to Problem 60. Use the Taylor polynomial of order
5 based at 1 to approximate

and give a good bound for the error that is made.
L

1.2

0.8
ln x dx

C

0.8 … x … 1.2?ƒ Rn1x2 ƒ … 0.00005
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1. For the graph of find the equation of the tangent line and the normal line
(i.e., the line perpendicular to the tangent line) that pass through the point (2, 1).

2. Find all points on the graph of (a) where the tangent line is parallel to the
line and (b) where the normal line is parallel to the line 

3. Find all points of intersection of  and 

4. Find all points of intersection of  and 

5. Use implicit differentiation to find the equation of the tangent line to the curve

at the point 

6. Use implicit differentiation to find the equation of the tangent line to the curve

at the point 

7. Find all points of intersection of and For the point of

intersection that is in the first quadrant, use implicit differentiation to find the equations of

the tangent lines to both curves. Find all angles between these two tangent lines.

8. Suppose that and Fill in the table below and plot the ordered
pairs (x, y).

t

0

In Problems 9–10, determine the values of r and 

9. 10.

In Problems 11–12, determine the values of x and y.

11. 12.

x

y
12

π/6
x

y8

π/4

r
2

5

θ

r
3

4

θ

u.

2p

3p>2
p

p>2
p>3
p>4
p>6

y = 2 sin tx = 2 cos t

y = 2 sin t.x = 2 cos t

x2

9
-

y2

27
= 1.

x2

100
+

y2

64
= 1

A9, 822 B .x2

9
-

y2

16
= 1

a -

23
2

, 1b .x2
+ y2>4 = 1

x2
+ y2

= 9.
x2

16
+

y2

9
= 1

x2

9
+

y2

16
= 1.

x2

16
+

y2

9
= 1

y = x.y = x
y = x2>4

y = x2>4,REVIEW &
PREVIEW

PROBLEMS
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Conics and Polar
CoordinatesCHAPTER10

10.1 The Parabola

10.2 Ellipses and
Hyperbolas

10.3 Translation and
Rotation of Axes

10.4 Parametric
Representation 
of Curves in 
the Plane

10.5 The Polar
Coordinate System

10.6 Graphs of Polar
Equations

10.7 Calculus in Polar
Coordinates

10.1
The Parabola
Take a right circular cone with two nappes and pass planes through it at various
angles, as shown in Figure 1.As sections, you will obtain curves called, respectively,
an ellipse, a parabola, and a hyperbola. (You may also obtain various limiting
forms: a circle, a point, a pair of intersecting lines, and one line.) These curves are
called conic sections, or simply conics. This definition, which is due to the Greeks,
is cumbersome and we shall immediately adopt a different one. It can be shown
that the two notions are consistent.

In the plane let be a fixed line (the directrix) and F be a fixed point (the
focus) not on the line, as in Figure 2. The set of points P for which the ratio of the
distance from the focus to the distance from the line is a positive con-
stant e (the eccentricity), that is, the set of points P that satisfy

is called a conic. If the conic is an ellipse; if it is a parabola; if
it is a hyperbola.

When we draw the curves corresponding to and we get
the three curves shown in Figure 3.

e = 2,e =
1
2, e = 1,

e 7 1,
e = 1,0 6 e 6 1,

ƒ PF ƒ = e ƒ PL ƒ

ƒ PL ƒƒ PF ƒ

/

In each case, the curves are symmetric with respect to the line through the
focus perpendicular to the directrix. We call this line the major axis (or simply the

L
P

F

Figure 2

Ellipse HyperbolaParabola

Figure 1

Parabola (e = 1)

F FF

Hyperbola (e = 2 )Ellipse (e =     )
1
2

Figure 3

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 10 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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512 Chapter 10 Conics and Polar Coordinates

axis) of the conic. A point where the conic crosses the axis is called a vertex. The
parabola has one vertex, while the ellipse and hyperbola have two vertices.

The Parabola A parabola is the set of points P that are equidistant
from the directrix and the focus F, that is, points that satisfy

From this definition, we wish to derive the xy-equation, and we want it to be as
simple as possible. The position of the coordinate axes has no effect on the curve,
but it does affect the simplicity of the curve’s equation. Since a parabola is sym-
metric with respect to its axis, it is natural to place one of the coordinate axes, for
instance, the x-axis, along the axis. Let the focus F be to the right of the origin, say
at (p, 0), and the directrix to the left with equation Then the vertex is at
the origin. All this is shown in Figure 4.

From the condition and the distance formula, we get

After squaring both sides and simplifying, we obtain

This is called the standard equation of a horizontal parabola (horizontal axis)
opening to the right. Note that and that p is the distance from the focus to
the vertex.

� EXAMPLE 1 Find the focus and directrix of the parabola with equation

SOLUTION Since we see that The focus is at (3, 0); the
directrix is the line �

There are three variants of the standard equation. If we interchange the roles
of x and y, we obtain the equation It is the equation of a vertical para-
bola with focus at (0, p) and directrix Finally, introducing a minus sign on
one side of the equation causes the parabola to open in the opposite direction. All
four cases are shown in Figure 5.

� EXAMPLE 2 Determine the focus and directrix of the parabola 
and sketch the graph.

SOLUTION We write from which we conclude that The

form of the equation tells us that the parabola is vertical and opens down.The focus

is at the directrix is the line  The graph is shown in Figure 6. �

� EXAMPLE 3 Find the equation of the parabola with vertex at the origin and
focus at (0, 5).

SOLUTION The parabola opens up and The equation is 
that is, �

� EXAMPLE 4 Find the equation of the parabola with vertex at the origin
that goes through and opens left. Sketch the graph.

SOLUTION The equation has the form Because is on the
graph, from which The desired equation is and
its graph is sketched in Figure 7. �

y2
= -8xp = 2.1422 = -4p1-22, 1-2, 42y2

= -4px.

1-2, 42

x2
= 20y.

x2
= 4152y,p = 5.

y =
1
4.A0, - 1

4 B ;
p =

1
4.x2

= -4 A14 By,

x2
= -y

y = -p.
x2

= 4py.

x = -3.
p = 3.y2

= 4132x,

y2
= 12x.

p 7 0

y2
= 4px

21x - p22 + 1y - 022 = 21x + p22 + 1y - y22
ƒ PF ƒ = ƒ PL ƒ

x = -p.

ƒ PF ƒ = ƒ PL ƒ

/

1e = 12L (–p, y) P (x, y)

F(p, 0)

x = –p

y

x

Figure 4

x2 = 4py

x2 = – 4py

y2 = 4px

y2 = – 4px

F (0,–p)

x = p

x = –p

y = p

y = –p

F(0, p)

F(–p, 0)

F( p, 0)

y

y

y

y

x

x

x

x

Figure 5

x2 = –y

y

x
1

1

–1

Figure 6

(–2, 4)

y2 = –8x

 4

 3

–1 1

y

x

Figure 7
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Section 10.1 The Parabola 513

The Optical Property A simple geometric property of a parabola is the basis
of many important applications. If F is the focus and P is any point on the para-
bola, the tangent line at P makes equal angles with FP and the line GP, which is
parallel to the axis of the parabola (see Figure 8). A principle from physics says
that when a light ray strikes a reflecting surface the angle of incidence is equal to
the angle of reflection. It follows that, if a parabola is revolved about its axis to
form a hollow reflecting shell, all light rays from the focus after hitting the shell are
reflected outward parallel to the axis. This property of the parabola is used in de-
signing searchlights, with the light source placed at the focus. Conversely, it is used
in certain telescopes and satellite dishes in which incoming parallel rays from a dis-
tant star or satellite are focused at a single point.

� EXAMPLE 5 Prove the optical property of the parabola.

SOLUTION In Figure 9, let QP be the tangent line at P and let GP be the line
through P parallel to the x-axis. We must show that After noting that

we reduce the problem to showing that triangle FQP is isosceles.
First, we obtain the x-coordinate of Q. Differentiating implicitly

gives from which we conclude that the slope of the tangent line at
is The equation of this line is

Setting and solving for x gives or 
Now which gives that is, Q has

coordinates 
To show that the segments FP and FQ have equal length, we use the distance

formula

�

Sound obeys the same laws of reflection as light, and parabolic microphones
are used to pick up and concentrate sounds from, for example, a distant part 
of a football stadium. Radar and radio telescopes are also based on the same
principle.

There are many other applications of parabolas. For example, the path of a
projectile is a parabola if air resistance and other minor factors are neglected. The
cable of an evenly loaded suspension bridge takes the form of a parabola. Arches
are often parabolic. The paths of some comets are parabolic.

 = 2x0
2

+ 2x0p + p2
= x0 + p = ƒ FQ ƒ

 ƒ FP ƒ = 21x0 - p22 + y0
2

= 2x0
2

- 2x0p + p2
+ 4px0

1-x0, 02.
x = -x0;x - x0 = -2x0,y0

2
= 4px0,-y0

2>2p.
x - x0 =-y0 = 12p>y021x - x02,y = 0

y - y0 =

2p

y0
 1x - x02

2p>y0.P1x0, y02
2y¿y = 4p,

y2
= 4px

∠FQP = b,
a = b.

F(p, 0)

P(x0, y0)

Q (?, 0)

y

G

x

�

b

b

Figure 9

F

Figure 8

P G

F

�

b
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514 Chapter 10 Conics and Polar Coordinates

1. The set of points P satisfying (i.e., distance
to the focus equals e times distance to the directrix) is an ellipse if
_____, a parabola if _____, and a hyperbola if _____.

2. The standard equation of a parabola, vertex at the origin
and opening right, is _____.

ƒ PF ƒ = e ƒ PL ƒ 3. The parabola has focus _____ and directrix
_____.

4. The rays from a light source at the focus of a parabolic
mirror will be reflected in a direction _____.

y =
1
4 x2

Problem Set 10.1
In Problems 1–8, find the coordinates of the focus and the equa-
tion of the directrix for each parabola. Make a sketch showing the
parabola, its focus, and its directrix.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–14, find the standard equation of each parabola
from the given information. Assume that the vertex is at the origin.

9. Focus is at (2, 0) 10. Directrix is 

11. Directrix is 12. Focus is 

13. Focus is 14. Directrix is 

15. Find the equation of the parabola with vertex at the ori-
gin and axis along the x-axis if the parabola passes through the
point Make a sketch.

16. Find the equation of the parabola through the point
if its vertex is at the origin and its axis is along the x-axis.

Make a sketch.

17. Find the equation of the parabola through the point
if its vertex is at the origin and its axis is along the y-axis.

Make a sketch.

18. Find the equation of the parabola whose vertex is the ori-
gin and whose axis is the y-axis if the parabola passes through the
point Make a sketch.

In Problems 19–26, find the equations of the tangent and the nor-
mal lines to the given parabola at the given point. Sketch the
parabola, the tangent line, and the normal line.

19. 20.

21. 22.

23. 24.

25. 26.

27. The slope of the tangent line to the parabola at a
certain point on the parabola is Find the coordinates of
that point. Make a sketch.

28. The slope of the tangent line to the parabola 
at a certain point on the parabola is Find the coordi-
nates of that point.

29. Find the equation of the tangent line to the parabola
that is parallel to the line 

30. Any line segment through the focus of a parabola, with
end points on the parabola, is a focal chord. Prove that the tan-
gent lines to a parabola at the end points of any focal chord
intersect on the directrix.

3x - 2y + 4 = 0.y2
= -18x

-227>7.
x2

= -14y

25>4.
y2

= 5x

y2
= 20x, A2, -2210 Bx2

= -6y, A322, -3 B
x2

= 4y, 14, 42y2
= -15x, A -3, -325 B

y2
= -9x, 1-1, -32x2

= 2y, 14, 82
x2

= -10y, A225, -2 By2
= 16x, 11, -42

1-3, 52.

16, -52

1-2, 42
13, -12.

y =
7
21-4, 02

A0, - 1
9 By - 2 = 0

x = 3

3x2
- 9y = 06y - 2x2

= 0

y2
+ 3x = 0y2

= x

x2
= -16yx2

= -12y

y2
= -12xy2

= 4x

31. Prove that the tangents to a parabola at the extremities of
any focal chord are perpendicular to each other (see Problem 30).

32. A chord of a parabola that is perpendicular to the axis
and 1 unit from the vertex has length 1 unit. How far is it from the
vertex to the focus?

33. Prove that the vertex is the point on a parabola closest to
the focus.

34. An asteroid from deep space is sighted from the earth
moving on a parabolic path with the earth at the focus. When the
line from the earth to the asteroid first makes an angle of 90° with
the axis of the parabola, the asteroid is measured to be 40 million
miles away. How close will the asteroid come to the earth (see
Problem 33)? Treat the earth as a point.

35. Work Problem 34, assuming that the angle is 75° rather
than 90°.

36. The cables for the central span of a suspension bridge
take the shape of a parabola (see Problem 41). If the towers are
800 meters apart and the cables are attached to them at points
400 meters above the floor of the bridge, how long must the ver-
tical strut be that is 100 meters from the tower? Assume that the
cable touches the bridge deck at the midpoint of the bridge
(Figure 10).

C

37. The focal chord that is perpendicular to the axis of a
parabola is called the latus rectum. For the parabola in
Figure 11, let F be the focus, R be any point on the parabola to the
left of the latus rectum, and G be the intersection of the latus rec-
tum with the line through R parallel to the axis. Find

and note that it is a constant.ƒ FR ƒ + ƒ RG ƒ

y2
= 4px

Strut

Figure 10

R
G

F

Figure 11

y

A B

P

x

Figure 12

Concepts Review

514



Section 10.2 Ellipses and Hyperbolas 515

38. For the parabola in Figure 12, P is any of its
points except the vertex, PB is the normal line at P, PA is per-
pendicular to the axis of the parabola, and A and B are on the
axis. Find and note that it is a constant.

39. Show that the focal chord of the parabola with
end points and has length Special-
ize to find the length L of the latus rectum.

40. Show that the set of points equidistant from a circle and a
line outside the circle is a parabola.

41. Consider a bridge deck weighing pounds per linear
foot and supported by a cable, which is assumed to be of negligi-
ble weight compared to the bridge deck. The cable section OP
from the lowest point (the origin) to a general point is
shown in Figure 13.

The forces acting on this section of cable are

For equilibrium, the horizontal and vertical components of T
must balance H and W, respectively. Thus,

That is,

Solve this differential equation to show that the cable hangs in
the shape of a parabola. (Compare this result with that for the
unloaded hanging cable of Problem 38 of Section 4.9.)

dy

dx
=

dx

H
, y102 = 0

T sin f

T cos f
= tan f =

dx

H

 W = dx = weight of x feet of bridge deck

 T = tangential tension pulling at P

 H = horizontal tension pulling at O

P(x, y)

dEXPL

x1 + x2 + 2p.1x2, y221x1, y12
y2

= 4px

ƒ AB ƒ

y2
= 4px

42. Consider the parabola over the interval 
and let be the midpoint of [a, b], d be the midpointc = 1a + b2>2

[a, b],y = x2EXPL

of and e be the midpoint of Let be the triangle
with vertices on the parabola at a, c, and b, and let be the union
of the two triangles with vertices on the parabola at a, d, c and c,
e, b, respectively (Figure 14). Continue to build triangles on trian-
gles in this manner, thus obtaining sets T3, T4, Á .

T2

T1[c, b].[a, c],

(a) Show that 
(b) Show that 
(c) Let S be the parabolic segment cut off by the chord PQ.

Show that the area of S satisfies

This is a famous result of Archimedes, which he obtained
without coordinates.

(d) Use these results to show that the area under be-
tween a and b is 

43. Illustrate Problems 30 and 31 for the parabola
by plotting (in the same graph window) the parabo-

la, its directrix, its focal chord parallel to the x-axis, and the tan-
gent lines at the ends of the focal chord.

44. In Problem 39 of Section 3.10 you were asked to find the
equation of the Gateway Arch in St. Louis, Missouri.
(a) Find the equation of a parabola with the properties that its

vertex is at (0, 630) and it intersects the x-axis at 
(b) In the same graphing window, plot the catenary which is the

Gateway Arch and the parabola you found in (a).
(c) Approximate (to the nearest foot) the largest vertical dis-

tance between the catenary and the parabola.

Answers to Concepts Review: 1.
2. 3. (0, 1); 4. parallel to the axisy = -1y2

= 4px
e 6 1; e = 1; e 7 1

;315.

CAS

y =
1
4 x2

+ 2
CAS

b3>3 - a3>3.
y = x2

A1S2 = A1T12 + A1T22 + A1T32 +
Á

=

4
3

 A1T12

A1T22 = A1T12>4.
A1T12 = 1b - a23>8.

Recall that the conic determined by the condition is an ellipse if
and a hyperbola if (see the introduction to Section 10.1). In

either case, the conic has two vertices, which we label and A. Call the point on
the major axis midway between and A the center of the conic. Ellipses and hy-
perbolas are symmetric with respect to their centers (as we shall demonstrate
soon) and are, therefore, called central conics.

To derive the equation of a central conic, place the x-axis along the major axis
with the origin at the center. We may suppose the focus to be the directrix

and the vertices and with c, k, and a all positive. It isA(a, 0),A¿1-a, 02x = k,
F(c, 0),

A¿

A¿

e 7 10 6 e 6 1
ƒ PF ƒ = e ƒ PL ƒ

10.2
Ellipses and Hyperbolas

y

T

O

H O x

T cos

T sin
P(x, y)

O

O

Figure 13

Q Q

T1
P P

c ba

y

x da ec b

y

x

T1

T2

Figure 14
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516 Chapter 10 Conics and Polar Coordinates

a
e

a
e

y

x

x =

F (ae, 0)

P (x, y)
L(   , y)

Figure 4

Ellipse (0 < e < 1) 

y

x

A'(–a, 0)

x  = k

F (c,0)

A (a,0 )

Hyperbola (e >1)

y

x

A' (–a,0)

A (a, 0)

F (c, 0)

x = k

Figure 2 Figure 3

O

O

c

c

a

a

k

k

x = k

x = k

F (c, 0)

F (c, 0)

A (a, 0)

A (a, 0)

Figure 1

clear that A must lie between F and the line The two possible arrangements
are shown in Figure 1. In the first case, applying to the point 
gives

(1)

In the second case, applying to the point gives

which, when both sides are multiplied by is seen to be equivalent to (1). Next,
apply the relationship to the points and and the
line This leads to

(2)

When equations (1) and (2) are solved for c and k, we get

If then and Thus for the case of an el-
lipse, the focus F lies to the left of the vertex A and the directrix lies to the
right of A. On the other hand, if then and For the
case of a hyperbola, the directrix lies to the left of A, and the focus F lies to
the right of A. The two situations are shown in Figures 2 and 3.

x = k
k = a>e 6 a.c = ea 7 ae 7 1,

x = k
k = a>e 7 a.c = ea 6 a0 6 e 6 1

c = ea and k =

a
e

a + c = e1k + a2 = ek + ea

x = k.
F1c, 02,A¿1-a, 02ƒ PF ƒ = e ƒ PL ƒ

-1,

c - a = e1a - k2 = ea - ek

P = Aƒ PF ƒ = e ƒ PL ƒ

a - c = e1k - a2 = ek - ea

P = Aƒ PF ƒ = e ƒ PL ƒ

x = k.

Now let be any point on the ellipse (or hyperbola).Then is its
projection on the directrix (see Figure 4 for the case of the ellipse). The condition

becomes

Squaring both members and collecting terms, we obtain the equivalent equation

or

or

Because this last equation contains x and y only to even powers, it corresponds
to a curve that is symmetric with respect to both the x- and y-axes and the origin.

x2

a2 +

y2

a211 - e22 = 1

11 - e22x2
+ y2

= a211 - e22

x2
- 2aex + a2e2

+ y2
= e2ax2

-

2a
e

 x +

a2

e2 b

21x - ae22 + y2
= eB ax -

a
e
b2

ƒ PF ƒ = e ƒ PL ƒ

L(a>e, y)P(x, y)
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Section 10.2 Ellipses and Hyperbolas 517

e near 1

e near 0

Figure 6

1–1–1–2–3–4 2 3 4

1

x2

36
y2

4

y

x

+ = 1

–5 5

Figure 7

x2

a2

c
a

y2

b2

y

x

ab

c F(c, 0)

B (0, b)

A (a, 0)A'(–a, 0)

B '(0, –b)

F '(–c, 0)

The Ellipse (0 < e< 1)

= 1+ 

b2 + c2 = a2

e =

Figure 5

Also, because of this symmetry, there must be a second focus at and a sec-
ond directrix at The axis containing the two vertices (and the two foci)
is the major axis, and the axis perpendicular to it (through the center) is the minor
axis.

Standard Equation of the Ellipse For the ellipse, and so
is positive. To simplify notation, let Then the equation

derived above takes the form

which is called the standard equation of an ellipse. Since the numbers a, b,
and c satisfy the Pythagorean relationship In Figure 5, the shaded
right triangle captures the condition Thus, the number 2a is the
major diameter, whereas 2b is the minor diameter.

a2
= b2

+ c2.
a2

= b2
+ c2.

c = ae,

x2

a2 +

y2

b2 = 1

b = a21 - e2.11 - e22
0 6 e 6 1,

x = -a>e.
1-ae, 02

Consider now the effect of changing the value of e. If e is near 1, then
is small relative to a; the ellipse is thin and very eccentric. On the

other hand, if e is near 0 (near zero eccentricity), b is almost as large as a; the el-
lipse is fat and well rounded (Figure 6). In the limiting case where the equa-
tion takes the form

which is equivalent to This is the equation of a circle of radius a cen-
tered at the origin.

� EXAMPLE 1 Sketch the graph of

and determine its foci and eccentricity.

SOLUTION Since and we calculate

The foci are at and The graph is sketched
in Figure 7. �

e = c>a L 0.94.1;c, 02 = A ;422, 0 B ,
c = 2a2

- b2
= 236 - 4 = 422 L 5.66

b = 2,a = 6

x2

36
+

y2

4
= 1

x2
+ y2

= a2.

x2

a2 +

y2

a2 = 1

b = a,

b = a21 - e2
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518 Chapter 10 Conics and Polar Coordinates

1 2 3–3 –2 –1
–1

–2

–4

1

2

4

y

x

F '

F

x2

16
y2

25
+ = 1

Figure 8

b
ay

c
b

a x

The Hyperbola (e > 1)
y = x

b
a

y = – x

F '(–c, 0)

A'(–a, 0)

x2

a2

y2

b2 = 1–

c2 = a2 + b2

c
a

e =

F(c, 0)

A(a, 0)

Figure 9

We call the ellipses sketched so far horizontal ellipses because the major axis is
the x-axis. If we interchange the roles of x and y, we have the equation of a vertical
ellipse:

� EXAMPLE 2 Sketch the graph of

and determine its foci and eccentricity.

SOLUTION The larger square is now under which tells us that the major
axis is vertical. Noting that and we conclude that 
Thus, the foci are and  (Figure 8). �

Standard Equation of the Hyperbola For the hyperbola, and so
is positive. If we let then the equation

which was derived earlier, takes the form

This is called the standard equation of a hyperbola. Since we now obtain
(Note how this differs from the corresponding relationship for an

ellipse.)
To interpret b, observe that if we solve for y in terms of x we get

For large x, behaves like x (i.e., as see
Problem 70) and hence y behaves like

More precisely, the graph of the given hyperbola has these two lines as asymptotes.
The important facts for the hyperbola are summarized in Figure 9. As with the

ellipse, there is an important right triangle (shaded in the diagram) that has legs a
and b. This fundamental triangle determines the rectangle centered at the origin
having sides of length 2a and 2b. The extended diagonals of this rectangle are the
asymptotes mentioned above.

y =

b
a

 x or y = -

b
a

 x

x : q ;A2x2
- a2

- x B : 02x2
- a2

y = ;

b
a

 2x2
- a2

c2
= a2

+ b2.
c = ae,

x2

a2 -

y2

b2 = 1

x2>a2
+ y2>11 - e22a2

= 1,
b = a2e2

- 1,e2
- 1

e 7 1

e = c>a =
3
5 = 0.610, ;32,

c = 225 - 16 = 3.b = 4,a = 5
y2,

x2

16
+

y2

25
= 1

y2

a2 +

x2

b2 = 1 or 
x2

b2 +

y2

a2 = 1
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1–1–1

–2

–3

–2 2

1

2

3

x2

9
y2

16

y

x

– = 1

F F '

Figure 10

–1 1

–2

–1

1

2

y

x

F

F '

x2

4
y2

9
+ = 1–

Figure 11

Sun

a c

Figure 12

� EXAMPLE 3 Sketch the graph of

showing the asymptotes. What are the equations of the asymptotes? What are the
foci?

SOLUTION We begin by determining the fundamental triangle; it has
horizontal leg 3 and vertical leg 4.After drawing it, we can indicate the asymptotes
and sketch the graph (Figure 10). The asymptotes are and Since

the foci are at �

Again, we should consider the effect of interchanging the roles of x and y. The
equation takes the form

This is the equation of a vertical hyperbola (vertical major axis). Its vertices are at
its foci are at 

For both the ellipse and the hyperbola, a is always the distance from the center
to a vertex. For the ellipse, for the hyperbola, there is no such requirement.

� EXAMPLE 4 Determine the foci of

and sketch its graph.

SOLUTION We note immediately that this is a vertical hyperbola, which is
determined by the fact that the plus sign is associated with the term. Thus,

and The foci are at (Fig-
ure 11). �

� EXAMPLE 5 According to Johannes Kepler (1571–1630), the planets re-
volve around the sun in elliptical orbits, with the sun at one focus.The earth’s max-
imum distance from the sun is 94.56 million miles, and its minimum distance is
91.45 million miles. What is the eccentricity of the orbit, and what are the major
and minor diameters?

SOLUTION Using the notation in Figure 12, we see that

When we solve these equations for a and c, we obtain and 
Thus,

and the major diameter and minor diameter (in millions of miles) are, respectively,

�

String Properties of the Ellipse and Hyperbola We have chosen to de-
fine conic sections in terms of the condition where the figure is an
ellipse if and a hyperbola if This approach allows us to treat all
conics in a unified way. Many authors prefer to define the ellipse and hyperbola via
the following definitions.

e 7 1.0 6 e 6 1
ƒ PF ƒ = e ƒ PL ƒ ,

2a L 186.02 2b = 22a2
- c2

L 185.99

e =

c
a

=

1.56
93.01

L 0.017

c = 1.56.a = 93.01

a + c = 94.56 a - c = 91.45

A0, ;213 Bc = 29 + 4 = 213 L 3.61.a = 3, b = 2,
y2

-

x2

4
+

y2

9
= 1

a 7 b;

10, ;c2.10, ;a2;

y2

a2 -

x2

b2 = 1

1;5, 02.c = 2a2
+ b2

= 29 + 16 = 5,

y = -
4
3 x.y =

4
3 x

x2

9
-

y2

16
= 1
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0 < e <1 e > 1

y y

x x

F(ae, 0)

F(ae, 0)

P(x,  y) P(x,  y)

F '(– ae, 0)

F '(– ae, 0)

a
e

x = – a
ex = –a

e
x = a

ex =

Figure 15

An ellipse is the set of points in the plane, the sum of whose distances from
two fixed points (the foci) is a given constant 2a.A hyperbola is the set of points in
the plane, the difference of whose distances from two fixed points (the foci) is a
given positive constant 2a. (Here difference is taken to mean the larger minus the
smaller distance.)

These definitions are illustrated in Figure 13 and 14. For the ellipse, imagine a
string of length 2a tacked down at its two endpoints. If a pencil is used to stretch
the string at point P, then the ellipse can be traced by moving the pencil around.
These properties, called the string properties, should be consequences of our
eccentricity definitions. We derive them now.

Suppose a and e are given. We know that the foci are and the direc-
trices are The situations for the ellipse and hyperbola are illustrated in
Figure 15.

x = ;a>e.
1;ae, 02

If we take an arbitrary point on the ellipse, then, from the condition
applied first to the left focus and directrix and then to the right

ones, we get

and so

Next consider the hyperbola with on its right branch, as shown in the right
part of Figure 15. Then

and so If had been on the left branch, we would have
gotten in place of 2a. In either case,

� EXAMPLE 6 Find the equation of the set of points the sum of whose dis-
tances from is equal to 10.

SOLUTION This is a horizontal ellipse with and Thus,
and the equation is

�
x2

25
+

y2

16
= 1

b = 2a2
- c2

= 4,
c = 3.a = 5

1;3, 02

ƒ ƒ PF¿ ƒ - ƒ PF ƒ ƒ = 2a

-2a
P(x, y)ƒ PF¿ ƒ - ƒ PF ƒ = 2a.

ƒ PF¿ ƒ = eax +

a
e
b = ex + a ƒ PF ƒ = eax -

a
e
b = ex - a

P(x, y)

ƒ PF¿ ƒ + ƒ PF ƒ = 2a

ƒ PF¿ ƒ = eax +

a
e
b = ex + a ƒ PF ƒ = eaa

e
- xb = a - ex

ƒ PF ƒ = e ƒ PL ƒ

P(x, y)

F' F

P

� P F' � Ellipse :           + � P F � = 2a 

Figure 13

P
P

F ' F

Hyperbola: ��P F'� – � P F�� = 2a

Figure 14
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Section 10.2 Ellipses and Hyperbolas 521

The optical properties of the conics
have been used in the grinding of
lenses for hundreds of years. A re-
cent innovation is the introduction
of variable lenses to replace bifocal
lenses in eyeglasses. Starting from
the top, these lenses are ground so
that the eccentricity varies continu-
ously from to to 
thus producing horizontal cross sec-
tions from ellipses to parabolas to
hyperbolas and presumably allowing
perfect viewing of objects at any dis-
tance by an appropriate tilt of the
head.

e 7 1,e = 1e 6 1

Lenses

� �

� = b � = b

Tangent
line

Tangent
line

F(c, 0) F(c, 0)F '(– c, 0) F '(– c, 0)

P(x0, y0)

P(x0, y0)
b

b

Figure 16

� EXAMPLE 7 Find the equation of the set of points the difference of whose
distances from is equal to 4.

SOLUTION This is a vertical hyperbola with and Thus,
and the equation is

�

Optical Properties Consider two mirrors, one with the shape of an ellipse
and the other with the shape of a hyperbola. If a light ray emanating from one
focus strikes the mirror, it will be reflected back to the other focus in the case of
the ellipse and directly away from the other focus in the case of the hyperbola.
These facts are shown in Figure 16.

-

x2

32
+

y2

4
= 1

b = 2c2
- a2

= 232 = 422,
c = 6.a = 2

10, ;62

To demonstrate these optical properties (i.e., to show that in both parts
of Figure 16), we suppose the curves to be in standard position so that their equa-
tions are and respectively. For the ellipse,
we differentiate implicitly to find the slope of the tangent line.

The slope of the tangent line at is Thus, the equation of
the tangent line may be written successively as

To calculate for the ellipse, we recall (Problem 40 of Section 1.8) a for-
mula for the tangent of the counterclockwise angle from one line to another in
terms of their respective slopes and m:

tan a =

m - m1

1 + mm1

m1

//1

tan a

 
x0x

a2 +

y0y

b2 =

x0
2

a2 +

y0
2

b2 = 1

 
x0

a2 1x - x02 +

y0

b2 1y - y02 = 0

 y - y0 = -

b2x0

a2y0
 1x - x02

m = -b2x0>1a2y02.1x0, y02

 y¿ = -

b2

a2 
x
y

 
2x

a2 +

2yy¿

b2 = 0

x2>a2
- y2>b2

= 1,x2>a2
+ y2>b2

= 1

a = b
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Common focus
of parabola

and hyperbola

Hyper-
bolic

mirror

Other focus
of hyperbola

Parabolic
mirror

F

F '

Reflecting telescope

Figure 17

F ' F

Ship

F'

G'

GF

Figure 18 Figure 19

Now refer to Figure 16 and let be the line FP and be the tangent line at P.Then

The same calculation with c replaced by gives

and so We conclude that and consequently 
A similar derivation establishes the corresponding result for the hyperbola.

Applications The reflecting property of the ellipse is the basis of the
whispering gallery effect that can be observed, for example, in the U.S. Capitol, the
Mormon Tabernacle, and many science museums. A speaker standing at one focus
can be heard whispering by a listener at the other focus, even though his or her
voice is inaudible in other parts of the room.

The optical properties of the parabola and hyperbola are combined in one de-
sign for a reflecting telescope (Figure 17). The parallel rays from a star are finally
focused at the eyepiece at 

The string property of the hyperbola is used in navigation. A ship at sea can
determine the difference 2a in its distance from two fixed transmitters by measur-
ing the difference in reception times of synchronized radio signals. This puts its
path on a hyperbola, with the two transmitters F and as foci (see Figure 18). If
another pair of transmitters G and are used, the ship must lie at the intersection
of the two corresponding hyperbolas (see Figure 19). LORAN, a system of long-
range navigation, is based on this principle.

G¿

F¿

F¿.

a = b.tan a = tan b,tan b = b2>cy0.

tan1-b2 =

b2

-cy0

-c

 =

b21cx0 - a22
cy01cx0 - a22 =

b2

cy0

 =

b2cx0 - 1b2x2
0 + a2y2

02
1a2

- b22x0y0 - a2cy0
=

b2cx0 - a2b2

c2x0y0 - a2cy0

 tan a =

-b2x0

a2y0
-

y0 - 0
x0 - c

1 + a -b2x0

a2y0
b a y0 - 0

x0 - c
b

=

-b2x01x0 - c2 - a2y2
0

a2y01x0 - c2 - b2x0y0

//1
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Section 10.2 Ellipses and Hyperbolas 523

Concepts Review
1. The standard equation of the horizontal ellipse centered

at (0, 0) is _____.

2. The xy-equation of the vertical ellipse centered at (0, 0)
that has major diameter 8 and minor diameter 6 is _____.

3. An ellipse is the set of points P satisfying
where F and are fixed points called the

_____ of the ellipse.

4. A ray from a light source at one focus of an elliptical mir-
ror will be reflected _____ whereas a ray from a light source at
one focus of a hyperbolic mirror will be reflected _____.

F¿ƒ PF ƒ + ƒ PF¿ ƒ = 2a,

Problem Set 10.2
In Problems 1–8, name the conic (horizontal ellipse, vertical hy-
perbola, and so on) corresponding to the given equation.

1. 2.

3. 4.

5. 6.

7. 8.

In Problems 9–16, sketch the graph of the given equation, indicat-
ing vertices, foci, and asymptotes (if it is a hyperbola).

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–30, find the equation of the given central conic.

17. Ellipse with a focus at and a vertex at (6, 0)

18. Ellipse with a focus at (6, 0) and eccentricity 

19. Ellipse with a focus at and eccentricity 

20. Ellipse with a focus at (0, 3) and minor diameter 8

21. Ellipse with a vertex at (5, 0) and passing through (2, 3)

22. Hyperbola with a focus at (5, 0) and a vertex at (4, 0)

23. Hyperbola with a vertex at and a focus at 

24. Hyperbola with a vertex at and eccentricity 

25. Hyperbola with asymptotes and a vertex at
(8, 0)

26. Vertical hyperbola with eccentricity that passes
through (2, 4)

27. Ellipse with foci and directrices 

28. Hyperbola with foci and directrices 

29. Hyperbola whose asymptotes are and that
goes through the point (4, 3)

30. Horizontal ellipse that goes through and 

In Problems 31–34, find the equation of the set of points P satisfy-
ing the given conditions.

31. The sum of the distances of P from is 26.10, ;92

1-4, -221-5, 12
x ; 2y = 0

x = ;11;4, 02
x = ;81;2, 02
26>2

2x ; 4y = 0

3
210, -32
10, -5210, -42

1
310, -52

2
3

1-3, 02

x2
- 4y2

= 810x2
- 25y2

= 100

4x2
+ 25y2

= 10016x2
+ 4y2

= 32

x2

7
+

y2

4
= 1

-x2

9
+

y2

4
= 1

x2

16
-

y2

4
= 1

x2

16
+

y2

4
= 1

x2
- 4y2

= 49x2
+ 4y2

= 9

-x2

9
=

y

4
-x2

9
+

y

4
= 0

-x2

9
+

y2

4
= -1

-x2

9
+

y2

4
= 1

x2

9
-

y2

4
= 1

x2

9
+

y2

4
= 1

32. The sum of the distances of P from is 14.

33. The difference of the distances of P from is 12.

34. The difference of the distances of P from is 10.

In Problems 35–42, find the equation of the tangent line to the
given curve at the given point.

35. at 

36. at 

37. at 

38. at 

39. at (5, 12)

40. at 

41. The curve of Problem 31 at (0, 13)

42. The curve of Problem 32 at (7, 0)

43. A doorway in the shape of an elliptical arch (a half-
ellipse) is 10 feet wide and 4 feet high at the center. A box 2 feet
high is to be pushed through the doorway. How wide can the 
box be?

44. How high is the arch of Problem 43 at a distance 2 feet to
the right of the center?

45. How long is the latus rectum (chord through the focus per-
pendicular to the major axis) for the ellipse 

46. Determine the length of the latus rectum (see Problem
45) of the hyperbola 

47. Halley’s comet has an elliptical orbit with major and
minor diameters of 36.18 AU and 9.12 AU, respectively (1 AU is
1 astronomical unit, the earth’s mean distance from the sun).
What is its minimum distance from the sun (assuming the sun is
at a focus)?

48. The orbit of the comet Kahoutek is an ellipse with eccen-
tricity with the sun at a focus. If its minimum dis-
tance to the sun is 0.13 AU, what is its maximum distance from
the sun? See Problem 47.

49. In 1957, Russia launched Sputnik I. Its elliptical orbit
around the earth reached maximum and minimum distances
from the earth of 583 miles and 132 miles, respectively. Assuming
that the center of the earth is one focus and that the earth is a
sphere of radius 4000 miles, find the eccentricity of the orbit.

C

e = 0.999925
C

C

x2>a2
- y2>b2

= 1.

x2>a2
+ y2>b2

= 1?

A22, 23 Bx2
- y2

= -1

x2
+ y2

= 169

A23, 22 Bx2

2
-

y2

4
= 1

A3, -26 Bx2

27
+

y2

9
= 1

A322, -2 Bx2

24
+

y2

16
= 1

A3, 26 Bx2

27
+

y2

9
= 1

10, ;62
1;7, 02

1;4, 02
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y

x
a

b t
R

Q

P

Figure 20

50. The orbit of the planet Pluto has an eccentricity 0.249.
The closest that Pluto comes to the sun is 29.65 AU, and the far-
thest is 49.31 AU. Find the major and minor diameters.

51. If two tangent lines to the ellipse inter-
sect the y-axis at (0, 6), find the points of tangency.

52. If the tangent lines to the hyperbola inter-
sect the y-axis at (0, 6), find the points of tangency.

53. The slope of the tangent line to the hyperbola

at two points on the hyperbola is What are the coordinates of
the points of tangency?

54. Find the equations of the tangent lines to the ellipse
that are parallel to the line

55. Find the area of the ellipse 

56. Find the volume of the solid obtained by revolving the el-
lipse about the y-axis.

57. The region bounded by the hyperbola

and a vertical line through a focus is revolved about the x-axis.
Find the volume of the resulting solid.

58. If the ellipse of Problem 56 is revolved about the x-axis,
find the volume of the resulting solid.

59. Find the dimensions of the rectangle having the greatest
possible area that can be inscribed in the ellipse

Assume that the sides of the rectangle are
parallel to the axes of the ellipse.

60. Show that the point of contact of any tangent line to a
hyperbola is midway between the points in which the tangent
intersects the asymptotes.

61. Find the point in the first quadrant where the two hyper-
bolas and intersect.

62. Find the points of intersection of and

63. Sketch a design for a reflecting telescope that uses a
parabola and an ellipse rather than a parabola and a hyperbola as
described in the text and shown in Figure 17.

64. A ball placed at a focus of an elliptical billiard table is
shot with tremendous force so that it continues to bounce off the
cushions indefinitely. Describe its ultimate path? Hint: Draw a
picture.

65. If the ball of Problem 64 is initially on the major axis be-
tween a focus and the neighboring vertex, what can you say about
its path?

66. Show that an ellipse and a hyperbola with the same foci
intersect at right angles. Hint: Draw a picture and use the optical
properties.

67. Describe a string apparatus for constructing a hyperbola.
(There are several possibilities.)

68. Sound travels at u feet per second and a rifle bullet at
feet per second. The sound of the firing of a rifle and thev 7 u

x + 2y = 6.
x2

+ 4y2
= 20

-25x2
+ 18y2

= 45025x2
- 9y2

= 225

b2x2
+ a2y2

= a2b2.

b2x2
- a2y2

= a2b2

b2x2
+ a2y2

= a2b2

b2x2
+ a2y2

= a2b2.

3x - 322y - 7 = 0

x2
+ 2y2

- 2 = 0

-
2
3.

2x2
- 7y2

- 35 = 0

9x2
- y2

= 36

9x2
+ 4y2

= 36

impact of the bullet hitting the target were heard simultaneously.
If the rifle was at the target was at and the lis-
tener was at find the equation of the curve on which P
lies (in terms of and c).

69. Listeners B(8, 0), and C(8, 10) recorded the
exact times at which they heard an explosion. If B and C heard
the explosion at the same time and A heard it 12 seconds later,
where was the explosion? Assume that distances are in kilome-
ters and that sound travels kilometer per second.

70. Show that as Hint: Ratio-
nalize the numerator.

71. For an ellipse, let p and q be the distances from a focus to
the two vertices. Show that with 2b being the minor
diameter.

72. The wheel in Figure 20 is rotating at 1 radian per second
so that Q has coordinates (a cos t, a sin t). Find the coordinates

of R at time t and show that it is traveling in an elliptical
path. Note: PQR is a right triangle when and R Z Q.P Z R
(x, y)

b = 1pq,

x : q .A2x2
- a2

- x B : 0

1
3

A1-8, 02,
u, v,

P(x, y),
B(c, 0),A1-c, 02,

73. Let P be a point on a ladder of length P being a
units from the top end. As the ladder slides with its top end on
the y-axis and its bottom end on the x-axis, P traces out a curve.
Find the equation of this curve.

74. Show that a line through a focus of a hyperbola and per-
pendicular to an asymptote intersects that asymptote on the di-
rectrix nearest the focus.

75. If a horizontal hyperbola and a vertical hyperbola have
the same asymptotes, show that their eccentricities e and E satis-
fy 

76. Let C be the curve of intersection of a right circular cylin-
der and a plane making an angle with the axis
of the cylinder. Show that C is an ellipse.

77. Using the same axes, draw the conics 
for and using 

0, 0.1, 0.6, 1. Make a conjecture about how
the shape of the figure depends on a.

Answers to Concepts Review: 1.
2. 3. foci 4. to the other focus; directly
away from the other focus

x2>9 + y2>16 = 1
x2>a2

+ y2>b2
= 1

-2, -1, -0.5, -0.1,
a =-2 … y … 2-2 … x … 2;1ax2

+ 121>2
y =

EXPLGC

f 10 6 f 6 p>22
e-2

+ E-2
= 1.

a + b,
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Section 10.3 Translation and Rotation of Axes 525

1 3 4 5

1

2

4

5

y v

x

u

(x – 2)2 + (y – 3)2 = 25
or

u2 + v2 = 25

Figure 1

vy

x

u

P(x, y)
P(u, v)

(h, k)

Figure 2

So far we have placed the conics in the coordinate system in very special ways—
always with the major axis along one of the coordinate axes and either the vertex
(in the case of a parabola) or the center (in the case of an ellipse or hyperbola) at
the origin. Now we place our conics in a more general position, though we still re-
quire that the major axis be parallel to one of the coordinate axes. Even this re-
striction will be removed later in this section.

The case of a circle is instructive. The circle of radius 5 centered at (2, 3) has
equation

or, in equivalent expanded form,

The same circle with its center at the origin of the uv-coordinate system (Figure 1)
has the simple equation

The introduction of new axes does not change the shape or size of a curve, but it
may greatly simplify its equation. It is this translation of axes and the correspon-
ding change of variables in an equation that we wish to investigate.

Translations If new axes are chosen in the plane, every point will have two
sets of coordinates, the old ones, relative to the old axes and the new ones,

relative to the new axes. The original coordinates are said to undergo a
transformation. If the new axes are parallel, respectively, to the original axes and
have the same directions and scales, then the transformation is called a translation
of axes.

From Figure 2, it is easy to see how the new coordinates relate to the old
ones Let (h, k) be the old coordinates of the new origin. Then

or, equivalently,

� EXAMPLE 1 Find the new coordinates of after a translation of
axes to a new origin at 

SOLUTION Since and it follows that

The new coordinates are �

� EXAMPLE 2 Given the equation find the
equation of its graph after a translation with new origin 

SOLUTION In the equation, we replace x by and y by
We obtain

or

This simplifies to

or

4u2
+ v2

= 4

4u2
- 40u + 100 + v2

+ 2v + 1 + 40u - 200 - 2v - 2 + 97 = 0

41u - 522 + 1v + 122 + 401u - 52 - 21v + 12 + 97 = 0

v + k = v + 1.
u + h = u - 5

1-5, 12.4x2
+ y2

+ 40x - 2y + 97 = 0,

1-8, 92.
u = x - h = -6 - 2 = -8 v = y - k = 5 - 1-42 = 9

k = -4,h = 2

12, -42. P1-6, 52
x = u + h, y = v + k

u = x - h, v = y - k

(x, y).
(u, v)

(u, v),
(x, y),

u2
+ v2

= 25

x2
+ y2

- 4x - 6y = 12

1x - 222 + 1y - 322 = 25

10.3
Translation and Rotation

of Axes
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–3–4 –2 –1 1 2

1

2

6

4
(–1, 5)

v y

u

x

5

(x – 1)2

9

u2

9
= 1

= 1

v2

4
+

+
(y – 5)2

4

Figure 3

–1–3 1 2

1

2

3

4

5

7

yv

x

u(–2, 6)

v2 = 4u
(y – 6)2 = 4(x + 2)

Figure 4

which we recognize as the equation of an ellipse. �

Completing the Square Given a complicated second-degree equation, how
do we know what translation will simplify the equation and bring it to a recogniza-
ble form? We can complete the square to eliminate the first-degree terms of any
expression of the form

� EXAMPLE 3 Make a translation that will eliminate the first-degree terms of

and use this information to sketch the graph of the given equation.

SOLUTION Recall that to complete the square of we must add 
(the square of half the coefficient of x). Using this, we rewrite the given equation
by adding the same numbers to both sides.

The translation and transforms this to

which is the standard form of a horizontal ellipse.The graph is shown in Figure 3. �

� EXAMPLE 4 Use a translation to simplify

Then determine which conic it represents, list the important characteristics of this
conic, and sketch its graph.

SOLUTION We complete the square.

The translation transforms this to which we recog-
nize as a horizontal parabola opening right with  (Figure 4). �

General Second-Degree Equations Now we ask an important question. Is
the graph of an equation of the form

always a conic? The answer is no, unless we admit certain limiting forms. The fol-
lowing table indicates the possibilities with a sample equation for each.

Thus, the graphs of the general quadratic equation above fall into three gener-
al categories, but yield nine different possibilities, including limiting forms.

Ax2
+ Cy2

+ Dx + Ey + F = 0

p = 1
v2

= 4u,u = x + 2, v = y - 6

 1y - 622 = 41x + 22
 y2

- 12y + 36 = 4x - 28 + 36

 y2
- 12y = 4x - 28

y2
- 4x - 12y + 28 = 0

u2

9
+

v2

4
= 1

v = y - 5u = x + 1

 
1x + 122

9
+

1y - 522
4

= 1

 41x + 122 + 91y - 522 = 36

 41x2
+ 2x + 12 + 91y2

- 10y + 252 = -193 + 4 + 225

 41x2
+ 2x 2 + 91y2

- 10y 2 = -193

a2>4x2
+ ax

4x2
+ 9y2

+ 8x - 90y + 193 = 0

Ax2
+ Cy2

+ Dx + Ey + F = 0, A Z 0, C Z 0

u2
+

v2

4
= 1
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–2 –1 2 3

–2

–1

1

2

y v

x

u

2u – v = 0

2u + v = 0

Figure 5

Conics Limiting Forms

1. Parabola: Parallel lines:

Single line:

Empty set:

2. Ellipse: Circle:

Point:

Empty set:

3. Hyperbola: Intersecting lines:

x2
- y2

= 0

x2

9
-

y2

4
= 11AC 6 02

2x2
+ y2

= -1

2x2
+ y2

= 0

x2
+ y2

= 4
x2

9
+

y2

4
= 11AC 7 02

y2
= -1

y2
= 0

y2
= 4y2

= 4x1AC = 02

� EXAMPLE 5 Use a translation to simplify

and sketch its graph.

SOLUTION We rewrite the equation as follows:

Let and which results in

or

This is the equation of two intersecting lines (Figure 5). �

� EXAMPLE 6 Write the equation of a hyperbola with foci at (1, 1) and 
(1, 11) and vertices at (1, 3) and (1, 9).

SOLUTION The center is (1, 6), midway between the vertices on a vertical
major axis. Thus, and and so The equation is

�

The General Equation of a Conic Section Consider the equation

If both A and C are zero, we have the equation of a line (provided, of course, that
D and E are not both zero). If at least one of A and C is different from zero, we
may apply the process of completing the square. We obtain one of several forms,
the most typical being

(1)

(2)

(3)  
1x - h22

a2 -

1y - k22
b2 = 1

 
1x - h22

a2 +

1y - k22
b2 = 1

 1y - k22 = ;4p1x - h2

Ax2
+ Cy2

+ Dx + Ey + F = 0

1y - 622
9

-

1x - 122
16

= 1

b = 2c2
- a2

= 4.c = 5,a = 3

12u - v212u + v2 = 0

4u2
- v2

= 0

v = y + 3,u = x - 1

 41x - 122 - 1y + 322 = 0

 41x2
- 2x + 12 - 1y2

+ 6y + 92 = 5 + 4 - 9

 41x2
- 2x 2 - 1y2

+ 6y 2 = 5

4x2
- y2

- 8x - 6y - 5 = 0
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v

x

u

xy = 1
or

v2

2
u2

2
= 1–

Figure 7

These can be recognized even in this form as the equations of a horizontal para-
bola with vertex at (h, k), a horizontal ellipse (if ) with center at (h, k), and
a horizontal hyperbola with center at (h, k).

In all of these cases we get a figure whose major and minor axes are parallel to
the x- and y-axes. If we include the cross-product term Bxy, as in

we still get a conic section (or a limiting form of one), but one where the major and
minor axes are parallel to a rotation of the x- and y-axes.

Rotations Introduce a new pair of coordinate axes, the u- and -axes, with the
same origin as the x- and y-axes but rotated through an angle as shown in Figure 6.
A point P then has two sets of coordinates: (x, y) and How are they related?

Let r denote the length of OP, and let denote the angle from the positive 
u-axis to OP. Then x, y, u, and have the geometric interpretations shown in the
diagram.

Looking at the right triangle OPM, we see that

so

Consideration of triangle OPN shows that and Thus,

Similar reasoning leads to

These formulas determine a transformation called a rotation of axes.

� EXAMPLE 7 Find the new equation that results from after a rota-
tion of axes through Sketch the graph.

SOLUTION The required substitutions are

The equation takes the form

which simplifies to

This we recognize as the equation of a hyperbola with Note that 
the cross-product term has disappeared as a result of the rotation. The choice 
of the angle was just right to make this happen. The graph is shown in
Figure 7. �

u = p>4
a = b = 22.

u2

2
-

v2

2
= 1

22
2

 1u - v2 22
2

 1u + v2 = 1

xy = 1

 y = u sin 
p

4
+ v cos 

p

4
=

22
2

 1u + v2

 x = u cos 
p

4
- v sin 

p

4
=

22
2

 1u - v2

u = p>4.
xy = 1

y = u sin u + v cos u

x = u cos u - v sin u

v = r sin f.u = r cos f

 = 1r cos f2 cos u - 1r sin f2 sin u

 x = r cos1f + u2 = r1cos f cos u - sin f sin u2

cos1f + u2 =

x
r

v
f

(u, v).
u,

v

Ax2
+ Bxy + Cx2

+ Dx + Ey + F = 0

a2
7 b2
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Determining the Angle How do we know what rotation to make in order
to eliminate the cross-product term? Consider the equation

If we make the substitutions

this equation takes the form

where a, b, c, d, e, and f are numbers that depend on We could find expressions
for all of them, but we really care only about b. When we do the necessary algebra,
we find that

To make we require that

or

This formula answers our question. To eliminate the cross-product term,
choose so that it satisfies this formula. In the equation of Example 7,

and so we choose satisfying One angle that
works is We could also use or but it is customary
to choose a first-quadrant angle; that is, we choose satisfying so
that 

� EXAMPLE 8 Make a rotation of axes to eliminate the cross-product term in

Then sketch the graph.

SOLUTION

which means that and The appropriate substitutions are

Our equation transforms first to

+ 2 
Au + 23v B2

4
+ 1023 

23u - v

2
+ 10 

u + 23v

2
= 5

4 
A23u - v B2

4
+ 223 

A23u - v B Au + 23v B
4

 y = u 
1
2

+ v 
23
2

=

u + 23v

2

 x = u 
23
2

- v 
1
2

=

23u - v

2

u = p>6.2u = p>3
cot 2u =

A - C

B
=

4 - 2

223
=

123

4x2
+ 223xy + 2y2

+ 1023x + 10y = 5

0 … u 6 p>2.
0 … 2u 6 p2u

u = -5p>4,u = 3p>4u = p>4.
cot 2u = 0.uC = 0,A = 0, B = 1,

xy = 1u

cot 2u =

A - C

B

B cos 2u = 1A - C2 sin 2u

b = 0,

 = B cos 2u - 1A - C2 sin 2u

 b = B1cos2 u - sin2 u2 - 21A - C2 sin u cos u

u.

au2
+ buv + cv2

+ du + ev + f = 0

 y = u sin u + v cos u

 x = u cos u - v sin u

Ax2
+ Bxy + Cy2

+ Dx + Ey + F = 0

u
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1 2 3

1

2

3

4

y

v

x

u

4x2 + 2     3xy + 2y2 + 10     3x + 10y = 5� �

or               +       = 1
(u + 2)2

5
 v2

25

6
πθ =

Figure 8

and, after simplifying, to

To put this equation in recognizable form, we complete the square.

We identify the last equation as that of a vertical ellipse with center at 
and and with and This allows us to draw the graph shown 
in Figure 8. If we wanted to carry the simplifying process further, we would 
make the translation which results in the standard equation

�r2>5 + s2>25 = 1.
r = u + 2, s = v,

b = 25.a = 5v = 0
u = -2

 
1u + 222

5
+

v2

25
= 1

 51u2
+ 4u + 42 + v2

= 5 + 20

5u2
+ v2

+ 20u = 5

Concepts Review
1. The quadratic form is made a square by adding

_____.

2. is (after completing the
squares) equivalent to _____, which is
the equation of a(n) _____.

1x + 322 + 21y - 122 =

x2
+ 6x + 21y2

- 2y2 = 3

x2
+ ax 3. The cross-product term (the xy-term) can be eliminated

by a rotation of axes through an angle satisfying 
_____.

4. To put a general second-degree equation in standard
form, we first make a _____ of axes and then a _____ of axes.

cot 2u =u

Problem Set 10.3
In Problems 1–14, name the conic or limiting form represented by
the given equation. Usually you will need to use the process of
completing the square (see Examples 3–5).

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

In Problems 15–28, sketch the graph of the given equation.

15.

16. 1x + 322 + 1y - 422 = 25

1x + 322
4

+

1y + 222
16

= 1

4x2
- 24x + 35 = 0

4x2
- 24x + 36 = 0

4x2
- 4y2

+ 8x + 12y - 6 = 0

4x2
- 4y2

+ 8x + 12y - 5 = 0

4x2
- 4y2

- 2x + 2y + 1 = 0

3x2
+ 3y2

- 6x + 12y + 60 = 0

4x2
+ 4y2

+ 8x - 28y - 11 = 0

y2
- 5x - 4y - 6 = 0

16x2
+ 9y2

+ 192x + 90y + 1000 = 0

9x2
+ 4y2

+ 72x - 16y + 160 = 0

16x2
- 9y2

+ 192x + 90y - 495 = 0

9x2
+ 4y2

+ 72x - 16y + 124 = 0

x2
+ y2

+ 6x - 2y + 6 = 0

x2
+ y2

- 2x + 2y + 1 = 0

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29. Find the focus and directrix of the parabola

30. Determine the distance between the vertices of

31. Find the foci of the ellipse

161x - 122 + 251y + 222 = 400

-9x2
+ 18x + 4y2

+ 24y = 9

2y2
- 4y - 10x = 0

x2
- 4x + 8y = 0

4x2
+ 16x - 16y + 32 = 0

x2
- 4y2

- 14x - 32y - 11 = 0

9x2
- 16y2

+ 54x + 64y - 127 = 0

25x2
+ 9y2

+ 150x - 18y + 9 = 0

x2
+ 4y2

- 2x + 16y + 1 = 0

1x + 322
4

+

1y - 222
8

= 0

1y - 122 = 16

1x + 222 = 4

1x + 222 = 81y - 12
41x + 32 = 1y + 222
1x + 322

4
-

1y + 222
16

= 1
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Section 10.3 Translation and Rotation of Axes 531

32. Find the focus and directrix of the parabola

In Problems 33–42, find the equation of the given conic.

33. Horizontal ellipse with center (5, 1), major diameter 10,
minor diameter 8

34. Hyperbola with center vertex at and
focus at 

35. Parabola with vertex (2, 3) and focus (2, 5)

36. Ellipse with center (2, 3) passing through (6, 3) and (2, 5)

37. Hyperbola with vertices at (0, 0) and (0, 6) and a focus at
(0, 8)

38. Ellipse with foci at (2, 0) and (2, 12) and a vertex at (2, 14)

39. Parabola with focus (2, 5) and directrix 

40. Parabola with focus (2, 5) and vertex (2, 6)

41. Ellipse with foci that passes through the origin

42. Hyperbola with foci (0, 0) and (0, 4) that passes through
(12, 9)

In Problems 43–48, eliminate the cross-product term by a suitable
rotation of axes and then, if necessary, translate axes (complete the
squares) to put the equation in standard form. Finally, graph the
equation showing the rotated axes.

43.

44.

45.

46.

47.

48.

In Problems 49–52, continue the directions for Problems 43–48.

After finding you will need to use one of the identities

or in

order to determine 

49.

50.

51.

52.

53. A curve C goes through the three points, (0, 0),
and (3, 6). Find an equation for C if C is
(a) a vertical parabola;
(b) a horizontal parabola;
(c) a circle.

54. The ends of an elastic string with a knot at are at-
tached to a fixed point and a point P on the rim of a
wheel of radius r centered at (0, 0). As the wheel turns, K traces a
curve C. Find the equation for C. Assume that the string stays
taut and stretches uniformly (i.e., is constant).

55. Name the conic according to the value of
K and then show that in every case is the length of the latus
rectum of the conic. Assume that L Z 0.

ƒ L ƒ

y2
= Lx + Kx2

a = ƒ KP ƒ > ƒ AP ƒ

A(a, b)
K(x, y)

1-1, 22,
16x2

+ 24xy + 9y2
- 20x - 15y - 150 = 0

34x2
+ 24xy + 41y2

+ 250y = -325

11x2
+ 96xy + 39y2

+ 240x + 570y + 875 = 0

4x2
- 3xy = 18

u.
cos u = ;211 + cos 2u2>2sin u = ;211 - cos 2u2>2

cot 2u,

3
2 x2

+ xy +
3
2 y2

+ 22x + 22y = 13

-
1
2 x2

+ 7xy -
1
2 y2

- 622x - 622y = 0

4xy - 3y2
= 64

4x2
+ xy + 4y2

= 56

3x2
+ 10xy + 3y2

+ 10 = 0

x2
+ xy + y2

= 6

1;2, 22

x = 10

15, -12
14, -12,12, -12,

x2
- 6x + 4y + 3 = 0

56. Show that the equations of the parabola and hyperbola
with vertex (a, 0) and focus (c, 0), can be written as

and respectively.
Then use these expressions for to show that the parabola is al-
ways “inside” the right branch of the hyperbola.

57. The graph of is a line. Show that
the perpendicular distance from the origin to this line is by
making a rotation of axes through the angle 

58. Transform the equation by a rotation
of axes through 45° and then square twice to eliminate radicals
on variables. Identify the corresponding curve.

59. Solve the rotation formulas for u and in terms of x
and y.

60. Use the results of Problem 59 to find the -coordinates
corresponding to after a rotation of axes
through 60°.

61. Find the points of that are clos-
est to the origin.

62. Recall that 
transforms to under a ro-
tation of axes. Find formulas for a and c, and show that

63. Show that (see Problem 62).

64. Use the result of Problem 63 to convince yourself that the
graph of the general second-degree equation will be
(a) a parabola if 
(b) an ellipse if 
(c) a hyperbola if 

or limiting forms of the above conics.

65. Let be transformed into
by a rotation of axes, and suppose that

Use Problems 62 and 63 to show that
(a)
(b)
(c) and are the two values of

66. Show that, if and are both posi-
tive, then the graph of is an ellipse (or
circle) with area (Recall from Problem 55 of Section
10.2 that the area of the ellipse is )

67. For what values of B is the graph of 
(a) an ellipse
(b) a circle
(c) a hyperbola
(d) two parallel lines

68. Use the results of Problems 65 and 66 to find the distance
between the foci and the area of the ellipse

69. Refer to Figure 6 and show that 

Answers to Concepts Review: 1. 2. 14; ellipse
3. 4. rotation; translation1A - C2>B

a2>4
y = u sin u + v cos u.

25x2
+ 8xy + y2

= 1

x2
+ Bxy + y2

= 1

ppq.x2>p2
+ y2>q2

= 1
2p>2¢.

Ax2
+ Bxy + Cy2

= 1
¢ = 4AC - B2A + C

12>¢2AA + C ; 21A - C22 + B2 B
1>c1>a

1>a + 1>c = 41A + C2>¢,
1>ac = 4>¢,

¢ = 4AC - B2
Z 0.

au2
+ cv2

= 1
Ax2

+ Bxy + Cy2
= 1

B2
- 4AC 7 0,

B2
- 4AC 6 0,

B2
- 4AC = 0.

b2
- 4ac = B2

- 4AC

a + c = A + C.

au2
+ buv + cv2

+ du + ev + f = 0
Ax2

+ Bxy + Cy2
+ Dx + Ey + F = 0

x2
+ 14xy + 49y2

= 100

1x, y2 = 15, -32
uv

v

x1>2
+ y1>2

= a1>2
a.

ƒ d ƒ

x cos a + y sin a = d

y2
y2

= 1b2>a221x2
- a22,y2

= 41c - a21x - a2
c 7 a 7 0,
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Simple and closed

Not simple, closed

Simple, not closed

Not simple, not closed

P = Q

P = Q

P

P

Q

Q

Figure 1

x = t 2 +  2t, y  =  t – 3
–2 � t � 3

–2

–1

0

1

2

3

0

–1

0

3

8

15

–5

–4

–3

–2

–1

0

t x y

y

x3 6 9
–2

–6

–1

1

Figure 2

π

y

x

x = a  cos  t, y = b  sin  
0 � t � 2

y

x
a

b

Ellipse

Figure 3

We gave the general definition of a plane curve in Section 6.4 in connection with
our derivation of the arc length formula. A plane curve is determined by a pair of
parametric equations

with f and g continuous on the interval I. Usually I is a closed interval [a, b]. Think
of t, called the parameter, as measuring time. As t advances from a to b, the point
(x, y) traces out the curve in the xy-plane. When I is the closed interval [a, b], the
points and are called the initial and final end
points. If the curve has end points that coincide, then we say that the curve is
closed. If distinct values of t yield distinct points in the plane (except possibly for

and ), we say the curve is a simple curve (Figure 1). The pair of rela-
tionships together with the interval I is called the paramet-
rization of the curve.

Eliminating the Parameter To recognize a curve given by parametric
equations, it may be desirable to eliminate the parameter. Sometimes this can 
be accomplished by solving one equation for t and substituting in the other (Ex-
ample 1). Often we can make use of a familiar identity, as in Example 2.

� EXAMPLE 1 Eliminate the parameter in

Then identify the corresponding curve and sketch its graph.

SOLUTION From the second equation, Substituting this expression
for t in the first equation gives

or

This we recognize as a parabola with vertex at and opening to the right.
In graphing the given equation, we must be careful to display only that part of

the parabola corresponding to A table of values and the graph are
shown in Figure 2. The arrowhead indicates the curve’s orientation, that is, the di-
rection of increasing t. �

� EXAMPLE 2 Show that

represents the ellipse shown in Figure 3.

SOLUTION We solve the equations for cos t and sin t, then square, and add.

A quick check of a few values for t convinces us that we do get the complete el-
lipse. In particular, and give the same point, namely, (a, 0).

If we get the circle  �

Different pairs of parametric equations may have the same graph. In other
words, a given curve can have more than one parametrization.

x2
+ y2

= a2.a = b,
t = 2pt = 0

 
x2

a2 +

y2

b2 = 1

 ax
a
b2

+ ay

b
b2

= cos2 t + sin2 t = 1

x = a cos t, y = b sin t, 0 … t … 2p

-2 … t … 3.

1-1, -42
x + 1 = 1y + 422

x = 1y + 322 + 21y + 32 = y2
+ 8y + 15

t = y + 3.

x = t2
+ 2t, y = t - 3, -2 … t … 3

x = f1t2, y = g1t2,t = bt = a

Q = 1x1b2, y1b22P = 1x1a2, y1a22

x = f1t2, y = g1t2, t in I

10.4
Parametric

Representation of Curves
in the Plane
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1

Semicircle

1

y

x

Figure 4

Hyperbola
(one branch)

yy

x
a

Figure 5

� EXAMPLE 3 Show that each of the following pairs of parametric equations
has the same graph, namely, the semicircle shown in Figure 4.

(a)

(b)

(c)

SOLUTION In each case, we discover that

It is then just a matter of checking a few values of t to make sure that the given in-
tervals for t yield the same section of the circle. �

� EXAMPLE 4 Show that each of the following pairs of parametric equations
yields one branch of a hyperbola. Assume in both cases that and 

(a)

(b)

SOLUTION
(a) In the first case,

(b) In the second case,

Checking a few t-values shows that, in both cases, we obtain the branch of the hy-
perbola shown in Figure 5. �

Notice that in Example 4 we have in part (a) a parametric curve defined on the
open interval and in part (b) we have a curve defined on the infinite
interval Since the curve does not contain end points, it is not closed.

The Cycloid A cycloid is the curve traced by a point P on the rim of a wheel as
the wheel rolls along a straight line without slipping (Figure 6). The Cartesian
equation of a cycloid is quite complicated, but simple parametric equations are
readily found, as shown in the next example.

1- q , q2.1-p>2, p>22,

x2>a2
- y2>b2

= 1

 = a et
+ e-t

2
b2

- a et
- e-t

2
b2

= 1

 ax
a
b2

- ay

b
b2

= cosh2 t - sinh2 t

ax
a
b2

- ay

b
b2

= sec2 t - tan2 t = 1

x = a cosh t, y = b sinh t, - q 6 t 6 q

x = a sec t, y = b tan t, -
p

2
6 t 6

p

2

b 7 0.a 7 0

x2
+ y2

= 1

x =

1 - t2

1 + t2, y =

2t

1 + t2, -1 … t … 1

x = cos t, y = sin t, -
p

2
… t …

p

2

x = 21 - t2, y = t, -1 … t … 1

πa π

y

x
M N

a

2a

C

R

P(x, y)

2  a

Cycloid

t

Figure 6
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A

B

Figure 7

L

P1

P2

P3

Figure 8

Cycloid

CycloidCycloid

Figure 9

Theorem A

Let f and g be continuously differentiable with on Then
the parametric equations

define y as a differentiable function of x and

dy

dx
=

dy>dt

dx>dt

x = f1t2, y = g1t2
a 6 t 6 b.f¿1t2 Z 0

� EXAMPLE 5 Find parametric equations for the cycloid.

SOLUTION Let the wheel roll along the x-axis with P initially at the origin.
Denote the center of the wheel by C, and let a be its radius. Choose for a
parameter the radian measure t of the clockwise angle through which the line
segment CP has turned from its vertical position when P was at the origin. All of
this is shown in Figure 6.

Since 

and

Thus, the parametric equations for the cycloid are

�

The cycloid has a number of interesting applications, especially in mechanics.
It is the “curve of fastest descent.” If a particle, acted on only by gravity, is allowed
to slide down some curve from a point A to a lower point B not on the same verti-
cal line, it completes its journey in the shortest time when the curve is an inverted
cycloid (Figure 7). Of course, the shortest distance is along the straight line seg-
ment AB, but the least time is used when the path is along a cycloid; this is because
the acceleration when it is released depends on the steepness of descent, and along
a cycloid it builds up velocity much more quickly than it does along a straight line.

Another interesting property is this: If L is the lowest point on an arch of an
inverted cycloid, the time that it takes a particle P to slide down the cycloid to L is
the same no matter where P starts from on the inverted arch; thus, if several parti-
cles, and in different positions on the cycloid (Figure 8), start to slide at
the same instant, all will reach the low point L at the same time.

In 1673, the Dutch astronomer Christian Huygens (1629–1695) published a de-
scription of an ideal pendulum clock. Because the bob swings between cycloidal
“cheeks,” the path of the bob is a cycloid (Figure 9). This means that the period of
the swing is independent of the amplitude, and so the period does not change as
the clock’s spring unwinds.

Calculus for Curves Defined Parametrically Can we find the slope of
the tangent line to a curve given parametrically without first eliminating the pa-
rameter? The answer is yes, according to the following theorem.

P3,P1, P2,

x = a1t - sin t2, y = a11 - cos t2, t 7 0

y = ƒ MP ƒ = ƒ NR ƒ = ƒ NC ƒ + ƒ CR ƒ = a - a cos t = a11 - cos t2

x = ƒ OM ƒ = ƒ ON ƒ - ƒ MN ƒ = at - a sin t = a1t - sin t2
ƒ ON ƒ = arc PN = at,

Proof Since for f is strictly monotonic and so has a differ-
entiable inverse (see the Inverse Function Theorem (Theorem 3.9B)). Define
F by so that

Then, by the Chain Rule,

dy

dt
= F¿1f1t22 # f¿1t2 =

dy

dx
#
dx

dt

y = g1t2 = g1f-11x22 = F1x2 = F1f1t22
F = g � f-1

f-1
a 6 t 6 b,f¿1t2 Z 0
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Since we have

�

� EXAMPLE 6 Find the first two derivatives and for the func-
tion determined by

and evaluate them at (see Example 2).

SOLUTION Let denote Then

At 

The first value is the slope of the tangent line to the ellipse at
the point You can check that this is so by implicit differentiation. �

Sometimes a definite integral involves two variables, such as x and y, in the in-
tegrand and differential, and y may be defined as a function of x by equations that
give x and y in terms of a parameter such as t. In such cases, it is often convenient
to evaluate the definite integral by expressing the integrand and the differential in
terms of t and dt, and adjusting the limits of integration before integrating with re-
spect to t.

� EXAMPLE 7 Evaluate (a) and (b) where 

and 

SOLUTION From we have When and
when 

(a)

(b)

�

� EXAMPLE 8 Find the area A under one arch of a cycloid (Figure 10) and
the length L of this arch.

SOLUTION From Example 5, we know that we may represent one arch of the
cycloid by

x = a1t - sin t2, y = a11 - cos t2, 0 … t … 2p

 = 2
L

2

1
12t5

- t4
+ 8t3

- 4t2
+ 8t - 42 dt = 86 

14
15

 
L

3

1
xy2 dx =

L

2

1
12t - 121t2

+ 222 2 dt

L

3

1
y dx =

L

2

1
1t2

+ 222 dt = 2 c t3

3
+ 2t d

1

2

=

26
3

x = 3, t = 2.
x = 1, t = 1dx = 2 dt.x = 2t - 1,

y = t2
+ 2.

x = 2t - 1
L

3

1
xy2 dx,

L

3

1
y dx

A523>2, 2 B .
x2>25 + y2>16 = 1

dy

dx
=

-423
5

, d2y

dx2 =

-4
25

 182 = -

32
25

t = p>6,

 
d2y

dx2 =

dy¿

dx
=

dy¿>dt

dx>dt
=

4
5 csc2 t

-5 sin t
= -

4
25

 csc3 t

 
dy

dx
=

dy>dt

dx>dt
=

4 cos t
-5 sin t

= -

4
5

 cot t

dy

dx
.y¿

t = p>6
x = 5 cos t, y = 4 sin t, 0 6 t 6 3

d2y>dx2dy>dx

dy

dx
=

dy>dt

dx>dt

dx>dt Z 0,

Cycloid (one arch)

y

x2πa

2a

Figure 10
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Two fleas are arguing about who will
get the longest ride when Jenny ped-
als her tricycle home from the park.
Flea A will ride between the treads
of the front tire; flea B will ride be-
tween the treads of one of the rear
tires. Settle the argument by showing
that their paths will have equal
lengths. Example 8 should help.

Two Fleas on a Trike

Thus, The area A is therefore

To calculate L, we recall the arc-length formula from Section 6.4:

In our case, this reduces to

� = c -4a cos 
t

2
d

0

2p

= 8a

 = 2a
L

2p

0
sin 

t

2
  dt

 = a
L

2p

0 A4 sin2 
t

2
  dt

 = a
L

2p

0
2211 - cos t2 dt

 L =

L

2p

0
2a211 - cos t22 + a21sin2 t2 dt

L =

L

b

a B adx

dt
b2

+ ady

dt
b2

 dt

 = a2 C32 t - 2 sin t +
1
4 sin 2t D02p = 3pa2

 = a2

L

2p

0
11 - 2 cos t +

1
2 +

1
2 cos 2t2 dt

 = a2

L

2p

0
11 - 2 cos t + cos2 t2 dt

 = a2

L

2p

0
11 - cos t211 - cos t2 dt

 A =

L

2pa

0
y dx

dx = a11 - cos t2 dt.

Concepts Review
1. A circle is a premier example of a curve that is both _____

and _____; a figure eight is an example of a closed curve that is
not _____.

2. We call two equations and a _____
representation of a curve, and t is called a _____.

y = g1t2x = f1t2

3. The path of a point on the rim of a rolling wheel is called
a _____.

4. The formula for given the representation
and is _____.dy>dx =y = g1t2,x = f1t2

dy>dx,

Problem Set 10.4
In each of Problems 1–20, a parametric representation of a curve
is given.
(a) Graph the curve.
(b) Is the curve closed? Is it simple?
(c) Obtain the Cartesian equation of the curve by eliminating the
parameter (see Examples 1–4).

1.

2.

3.

4. x = 4t - 2, y = 2t; 0 … t … 3

x = 3t - 1, y = t; 0 … t … 4

x = 2t, y = 3t; - q 6 t 6 q

x = 3t, y = 2t; - q 6 t 6 q

5.

6.

7.

8.

9.

10.

11. x = 22t - 2, y = 324 - t; 2 … t … 4

x = t3
- 2t, y = t2

- 2t; -3 … t … 3

x = t3
- 4t, y = t2

- 4; -3 … t … 3

x = s, y =

1
s

; 1 … s … 10

x =

1
s

, y = s; 1 … s 6 10

x = t - 3, y = 22t; 0 … t … 8

x = 4 - t, y = 1t; 0 … t … 4
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12.

13.

14.

15.

16.

17.

18.

19.

20.

In Problems 21–30, find and without eliminating
the parameter.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Problems 31–34, find the equation of the tangent line to the
given curve at the given value of t without eliminating the parame-
ter. Make a sketch.

31.

32.

33.

34.

In Problems 35–46, find the length of the parametric curve defined
over the given interval.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44. x = tanh t, y = ln1cosh2 t2; -3 … t … 3

x = 41t, y = t2
+

1
2t

 ; 
1
4

… t … 1

x = 21 - t2, y = 1 - t; 0 … t …

1
4

x = 2et, y = 3e3t>2; ln 3 … t … 2 ln 3

x = t +

1
t
, y = ln t2; 1 … t … 4

x = 3t2, y = t3; 0 … t … 2

x = 2 sin t, y = 2 cos t; 0 … t … p

x = t, y = t3>2; 0 … t … 3

x = 2 - t, y = 2t - 3; -3 … t … 3

x = 2t - 1, y = 3t - 4; 0 … t … 3

x = 2et, y =
1
3 e-t; t = 0

x = 2 sec t, y = 2 tan t; t = -

p

6

x = 3t, y = 8t3; t = -
1
2

x = t2, y = t3; t = 2

x =

2

1 + t2, y =

2

t11 + t22; t Z 0

x =

1

1 + t2, y =

1
t11 - t2; 0 6 t 6 1

x = cot t - 2, y = -2 csc t + 5; 0 6 t 6 p

x = 3 tan t - 1, y = 5 sec t + 2; t Z

12n + 12p
2

x = 3 - 2 cos t, y = -1 + 5 sin t; t Z np

x = 1 - cos t, y = 1 + sin t; t Z np

x = 23u2, y = -23u3; u Z 0

x = 2u2, y = 25u3; u Z 0

x = 6s2, y = -2s3; s Z 0

x = 3t2, y = 4t3; t Z 0

d2y>dx2dy>dx

x = sin u, y = 2 cos2 2u; - q 6 u 6 q

x = cos u, y = -2 sin2 2u; - q 6 u 6 q

x = 9 cos2 u, y = 9 sin2 u; 0 … u … p

x = 9 sin2 u, y = 9 cos2 u; 0 … u … p

x = 2 cos2 r, y = 3 sin2 r; 0 … r … 2p

x = -2 sin r, y = -3 cos r; 0 … r … 4p

x = 3 sin r, y = -2 cos r; 0 … r … 2p

x = 2 sin t, y = 3 cos t; 0 … t … 2p

x = 32t - 3, y = 224 - t; 3 … t … 4 45.

46.

47. Find the length of the curve with the given parametric
equations
(a) for 
(b) for 
(c) Explain why the lengths in parts (a) and (b) are not equal.

You can generate surfaces by revolving smooth curves, given para-
metrically, about a coordinate axis. As t increases from a to b, a
smooth curve and is traced out exactly once.
Revolving this curve about the x-axis for gives the surface of
revolution with surface area

See Section 6.4. Problems 48–54 relate to such surfaces.

48. Derive a formula for the surface area generated by the
rotation of the curve for about
the y-axis for and show that the result is given by

49. A parametrization of a circle of radius 1 centered at (1, 0)
in the xy-plane is given by for

Find the surface area when this curve is revolved
about the y-axis.

50. Find the area of the surface generated by revolving the
curve for about the x-axis.

51. Find the area of the surface generated by revolving the
curve for about the 
x-axis.

52. Find the area of the surface generated by revolving the
curve for about the y-axis.

53. Find the area of the surface generated by revolving the
curve for 
about the y-axis.

54. Find the area of the surface generated by revolving the
curve for about the
x-axis.

Evaluate the integrals in Problems 55 and 56.

55. where 

56. where 

57. Find the area of the region between the curve
and the x-axis from to Make a

sketch.

58. The path of a projectile fired from level ground with a
speed of feet per second at an angle with the ground is given
by the parametric equations

(a) Show that the path is a parabola.

x = 1v0 cos a2t, y = -16t2
+ 1v0 sin a2t

av0

t = ln 5.t = 0x = e2t, y = e-t,

x = sec t, y = tan t.
L

23

1
 xy dy,

x = t + 1, y = t3
+ 4.

L

1

0
1x2

- 4y2 dx,

-1a … t … 1ax = t2>2 + at, y = t + a,

-27 … t … 27x = t + 27, y = t2>2 + 27t,

0 … t … 223x = 12>32t3>2, y = 21t,

0 … t … 2px = 2 + cos t, y = 1 + sin t,

0 … t … 2px = cos t, y = 3 + sin t,

0 … t … 2p.
x = 1 + cos t, y = sin t,

S =

L

b

a
2pxB adx

dt
b2

+ ady

dt
b2

 dt

x Ú 0,
a … t … bx = F1t2, y = G1t2

S =

L

b

a
2pyB adx

dt
b2

+ ady

dt
b2

 dt

y Ú 0
y = G1t2x = F1t2

0 … u … 2px = sin 3u, y = cos 3u
0 … u … 2px = sin u, y = cos u

x = sin t - t cos t, y = cos t + t sin t; 
p

4
… t …

p

2

x = cos t, y = ln1sec t + tan t2 - sin t; 0 … t …

p

4
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y

xP

t

O

B

A (a, 0)

Figure 11

(b) Find the time of flight.
(c) Show that the range (horizontal distance traveled) is

(d) For a given what value of gives the largest possible
range?

59. Modify the text discussion of the cycloid (and its accom-
panying diagram) to handle the case where the point P is 
units from the center of the wheel. Show that the corresponding
parametric equations are

Sketch the graph of these equations (called a curtate cycloid)
when and 

60. Follow the instructions of Problem 59 for the case 
(a flanged wheel, as on a train), showing that you get the same
parametric equations. Sketch the graph of these equations (called
a prolate cycloid) when and 

61. Let a circle of radius b roll, without slipping, inside a fixed
circle of radius a, A point P on the rolling circle traces out
a curve called a hypocycloid. Find parametric equations of the
hypocycloid. Hint: Place the origin O of Cartesian coordinates at
the center of the fixed, larger circle, and let the point be
one position of the tracing point P. Denote by B the moving
point of tangency of the two circles, and let t, the radian measure
of the angle AOB, be the parameter (see Figure 11).

A(a, 0)

a 7 b.

b = 8.a = 6

b 7 a

b = 4.a = 8

x = at - b sin t, y = a - b cos t

b 6 a

av0,
1v0

2>322 sin 2a.

Find a Cartesian equation of the epicycloid by eliminating the pa-
rameter t between the equations.

65. If in Problem 61, we obtain a hypocycloid of
three cusps, called a deltoid, with parametric equations

Find the length of the deltoid.

66. Consider the ellipse 

(a) Show that its perimeter is

where e is the eccentricity.

(b) The integral in part (a) is called an elliptic integral. It has
been studied at great length, and it is known that the inte-
grand does not have an elementary antiderivative, so we
must turn to approximate methods to evaluate P. Do so
when and using the Parabolic Rule with

(Your answer should be near Why?)

(c) Repeat part (b) using 

67. The parametric curve given by and 
is known as a Lissajous figure.The x-coordinate oscillates a times
between 1 and as t goes from 0 to while the y-coordinate
oscillates b times over the same t interval. This behavior is re-
peated over every interval of length The entire motion takes
place in a unit square. Plot the following Lissajous figures for a
range of t that ensures that the resulting figure is a closed curve.
In each case, count the number of times that the curve touches
the horizontal and vertical borders of the unit square.

(a) (b)

(c) (d)

68. Plot the Lissajous figure defined by 
Explain why this is a closed curve even

though its graph does not look closed.

69. Plot Lissajous figures for the following combinations of
a and b for 

(a) (b)

(c) (d)

(e) (f)

70. Use the results from Problems 67–69 (and additional
ones if necessary) to explain how the number of times the curve
touches the sides or corners of the square for is re-
lated to the ratio Hint: If a curve touches a corner of a
square, it counts as one-half a contact.

71. Plot the following parametric curves. Describe in words
how the point moves around the curve in each case.

(a)

(b)

(c)

(d)

72. Using a computer algebra system, plot the following
parametric curves for Describe the shape of the curve
in each case and the similarities and differences among all the
curves.

0 … t … 2.
CAS

x = cos1sin t2, y = sin1sin t2
x = cos1-2 ln t2, y = sin1-2 ln t2
x = cos12t2

+ 3t + 12, y = sin12t2
+ 3t + 12

x = cos1t2
- t2, y = sin1t2

- t2

CAS

a>b.
0 … t 6 2p

CAS

a = 12, b = 18a = 6, b = 9

a = 2, b = 3a = 5, b = 10

a = 4, b = 8a = 1, b = 2

0 … t … 2p:
CAS

y = sin 7t, 0 … t … 2p.
x = cos 2t,CAS

x = sin 2t, y = cos 9tx = cos 5t, y = sin 15t

x = sin 3t, y = cos 5tx = sin t, y = cos t

2p.

2p,-1

y = sin btx = cos atCAS

n = 20.CAS

2p.n = 4.
e =

1
4a = 1

C

P = 4a
L

p>2

0
21 - e2 cos2 t dt,

x2>a2
+ y2>b2

= 1.

x = aa

3
b12 cos t + cos 2t2, y = aa

3
b12 sin t - sin 2t2

b = a>3

62. Show that if in Problem 61, the parametric equa-
tions of the hypocycloid may be simplified to

This is called a hypocycloid of four cusps. Sketch it carefully and
show that its Cartesian equation is 

63. The curve traced by a point on a circle of radius b as it
rolls without slipping on the outside of a fixed circle of radius a is
called an epicycloid. Show that it has parametric equations

(See the hint in Problem 61.)

64. If the equations in Problem 63 are

 y = 2a sin t - a sin 2t

 x = 2a cos t - a cos 2t

b = a,

 y = 1a + b2 sin t - b sin 
a + b

b
 t

 x = 1a + b2 cos t - b cos 
a + b

b
 t

x2>3
+ y2>3

= a2>3.

x = a cos3 t, y = a sin3 t

b = a>4
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P(x,y)

y

O

Cartesian Coordinates

x

Figure 1

(a) (b)
(c) (d)

73. Plot the graph of the hypocycloid (see Problem 61)

for appropriate values of t in each of the following cases:
(a) (b)

(c) (d)

Experiment with other positive integer values of a and b and
then make conjectures about the length of the t-interval required
for the curve to return to its starting point and about the number
of cusps. What can you say if is irrational?a>b

a = 7, b = 4a = 5, b = 2

a = 3, b = 1a = 4, b = 1

 y = 1a - b2 sin t - b sin 
a - b

b
 t

 x = 1a - b2 cos t + b cos 
a - b

b
 t, 

EXPLCAS

x = t5, y = t10x = - t4, y = - t8

x = t3, y = t6x = t, y = t2 74. Draw the graph of the epicycloid (see Problem 63)

for various values of a and b. What conjectures can you make
(see Problem 73)?

75. Draw the Folium of Descartes
Then determine the values of t for which this

graph is in each of the four quadrants.

Answers to Concepts Review: 1. simple; closed; simple
2. parametric; parameter 3. cycloid 4. (dy>dt)>(dx>dt)

y = 3t2>1t3
+ 12.

x = 3t>1t3
+ 12,

 y = 1a + b2 sin t - b sin 
a + b

b
 t

 x = 1a + b2 cos t - b cos 
a + b

b
 t, 

EXPLCAS

Two Frenchmen, Pierre de Fermat (1601–1665) and René Descartes (1596–1650),
introduced what we now call the Cartesian, or rectangular, coordinate system.
Their idea was to specify each point P in the plane by giving two numbers 
the directed distances from a pair of perpendicular axes (Figure 1). This notion is
by now so familiar that we use it almost without thinking. Yet it is the fundamental
idea in analytic geometry and makes possible the development of calculus as we
have given it so far.

Giving the directed distances from a pair of perpendicular axes is not the only
way to specify a point. Another way to do this is by giving the polar coordinates.

Polar Coordinates We start with a fixed half-line, called the polar axis, em-
anating from a fixed point O, called the pole or origin (see Figure 2). By custom,
the polar axis is chosen to be horizontal and pointing to the right and may there-
fore be identified with the positive x-axis in the rectangular coordinate system.
Any point P (other than the pole) is the intersection of a unique circle with cen-
ter at O and a unique ray emanating from O. If r is the radius of the circle and 
is one of the angles that the ray makes with the polar axis, then is a pair of
polar coordinates for P (Figure 2). Figure 3 shows several points plotted on a
polar grid.

1r, u2 u

(x, y)

10.5
The Polar Coordinate

System

Polar  Coordinates

Polar
axis

O

r

θ

θP(r,  )

Figure 2

(2,   )

11π
6

π
3

(4,     )7π
6(4,    )

π
2(4,   )

(3.5, .25)
5π
6(3,     )

1 2 3

Figure 3
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(–3,    )

1 2 3

π
6

π
6

Figure 4

2 4 6 8

θ r

  0

  4

  6.93

  8

  6.93

  4

  0

–4

–6.93

–8

–6.93

– 4

0

π/6

π/3

π/2

2π/3

5π/6

π
7π/6

4π/3

3π/2

5π/3

11π/6

(6.93,   )π
3

(–6.93,    )4π
3(–6.93,    )5π

3

7π
6

(6.93,    )2π
3

(– 4,      )

π
2(8,   )
3π
2(–8,   )

(0, 0)
(0,π)

π
6(4,   )

5π
6

11π
6(– 4,       )

(4,    )

r = 8 sin θ

Figure 5

θ r

0

π/4

π/2

3π/4

π
5π/4

3π/2

7π/4

2π

–

6.8

2   

1.2

1   

1.2

2   

6.8

–

7π
4(6.8,       )

π
4(6.8,      )

π
2(2,    )

3π
4(1.2,    )

(1.2,    )

(1, π)

5π
4

(2,    )3π
2

2 4 6 8

r =
θ1 – cos

2

Figure 6

Notice a phenomenon that did not occur with Cartesian coordinates. Each
point has infinitely many sets of polar coordinates, due to the fact that the angles

have the same terminal side. For example, the point
with polar coordinates also has coordinates 

and so on. Additional representations occur because we allow r to be
negative. In this case, is on the ray oppositely directed from the terminal side
of and units from the origin. Thus, the point with polar coordinates 
is as shown in Figure 4, and is another set of coordinates for 
The origin has coordinates where is any angle.

Polar Equations Examples of polar equations are

Polar equations, like rectangular ones, are best visualized from their graphs. The
graph of a polar equation is the set of points each of which has at least one pair of
polar coordinates that satisfies the equation. The most basic way to sketch a graph
is to construct a table of values, plot the corresponding points, and then connect
these points. This is just what a graphing calculator or a CAS does to plot a polar
equation.

� EXAMPLE 1 Graph the polar equation 

SOLUTION We substitute multiples of for and calculate the correspon-
ding r-values. See the table in Figure 5. Note that as increases from 0 to the
graph in Figure 5 is traced twice. �

� EXAMPLE 2 Graph 

SOLUTION See Figure 6. �

Note a phenomenon that does not occur with rectangular coordinates. The co-
ordinates do not satisfy the equation in Example 2. Yet the point

is on the graph, due to the fact that specifies the same point
and does satisfy the equation. We conclude that a set of coordinates having its cor-
responding point on the graph of an equation is no guarantee that these coordinates
satisfy the equation. This fact causes many difficulties; we must learn to live with
them.

12, p>22P1-2, 3p>221-2, 3p>22

r =

2
1 - cos u

.

2pu

up>6
r = 8 sin u.

r = 8 sin u and r =

2
1 - cos u

u10, u2, 14, p>22.1-4, 3p>22 1-3, p>62ƒ r ƒu

1r, u214, -3p>22, 14, 5p>22, 14, 9p>22,14, p>22u + 2pn, n = 0, ;1, ;2, Á ,
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x

y

θ

y

x

r

P

Figure 7

3�

θ

y

x

r

(–3,       )

Figure 8

Relation to Cartesian Coordinates We suppose that the polar axis coin-
cides with the positive x-axis of the Cartesian system. Then the polar coordinates

of a point P and the Cartesian coordinates (x, y) of the same point are relat-
ed by the equations

Polar to Cartesian Cartesian to Polar

That this is true for a point P in the first quadrant is clear from Figure 7 and is easy
to show for points in the other quadrants.

� EXAMPLE 3 Find the Cartesian coordinates corresponding to and
polar coordinates corresponding to 

SOLUTION If then

If then (see Figure 8)

One value of is Another is �

Sometimes we can identify the graph of a polar equation by finding its equiva-
lent Cartesian form. Here is an illustration.

� EXAMPLE 4 Show that the graph of (Example 1) is a circle and
that the graph of (Example 2) is a parabola by changing to
Cartesian coordinates.

SOLUTION If we multiply by r, we get

which, in Cartesian coordinates, is

and may be written successively as

The latter is the equation of a circle of radius 4 centered at (0, 4).
The second equation is handled by the following steps.

 y2
= 41x + 12

 x2
+ y2

= x2
+ 4x + 4

 r2
= x2

+ 4x + 4
 r = x + 2

 r - x = 2

 r - r cos u = 2

 r =

2
1 - cos u

 x2
+ 1y - 422 = 16

 x2
+ y2

- 8y + 16 = 16

 x2
+ y2

- 8y = 0

x2
+ y2

= 8y

r2
= 8r sin u

r = 8 sin u

r = 2>11 - cos u2 r = 8 sin u

A -223, -p>6 B .A223, 5p>6 B .1r, u2
 tan u =

23
-3

 r2
= 1-322 + A23 B2 = 12

1x, y2 = A -3, 23 B ,
 y = 4 sin 

p

6
= 4 #

1
2

= 2

 x = 4 cos 
p

6
= 4 #

23
2

= 223

1r, u2 = 14, p>62,
A -3, 23 B . 14, p>62

tan u = y>xy = r sin u
r2

= x2
+ y2x = r cos u

1r, u2

Since r can be 0, there is a potential
danger in multiplying both sides of a
polar equation by r or in dividing
both sides by r. In the first case, we
might add the pole to the graph; in
the second, we might delete the pole
from the graph. In Example 4, we
multiplied both sides of 
by r, but no harm was done since the
pole was already on the graph as the
point with 0.u-coordinate

r = 8 sin u

Caution
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θ
θ

θ

r

d

O

Line

P(r,   )

0

θ0–

Figure 9

θ

θ

θ
O

0

P(r,   )

(a,    0)

Circle

Figure 10

L

r

d

F = 0

P(r,   )θ

Conic

0θ

Figure 11

We recognize the last equation as that of a parabola with vertex at and
focus at the origin. �

Polar Equations for Lines, Circles, and Conics If a line passes through
the pole, it has the simple equation If the line does not go through the pole,
it is some distance from it. Let be the angle from the polar axis to the per-
pendicular from the pole to the given line (Figure 9). Then, if is any point
on the line, or

If a circle of radius a is centered at the pole, its equation is simply If it is
centered at its equation is quite complicated unless we choose as in
Figure 10. Then, by the Law of Cosines, which
simplifies to

The cases and are particularly nice. The first gives 
the second gives that is, The latter should be
compared with Example 1.

Finally, if a conic (ellipse, parabola, or hyperbola) is placed so that its focus is
at the pole and its directrix is d units away, as in Figure 11, then the familiar defin-
ing equation takes the form

or, equivalently,

Again, there is special interest in the cases and Note in par-
ticular that if and we have the equation of Example 2.

Our results are summarized in the chart on the following page.

� EXAMPLE 5 Find the equation of the horizontal ellipse with eccentricity 
focus at the pole, and vertical directrix 10 units to the right of the pole.

SOLUTION

�

� EXAMPLE 6 Identify and sketch the graph of 

SOLUTION The equation suggests a conic with vertical major axis. Putting it
into the form shown in the polar equations chart gives

which we recognize as the polar equation of a hyperbola with focus at the
pole, and horizontal directrix  units above the polar axis (Figure 12). �

7
4

e = 2,

r =

7
2 + 4 sin u

=

7
2

1 + 2 sin u
=

2 A74 B
1 + 2 sin u

r =

7
2 + 4 sin u

.

r =

1
2
# 10

1 +
1
2 cos u

=

10
2 + cos u

1
2,

u0 = 0e = 1, d = 2,
u0 = p>2.u0 = 0

Conic: r =

ed

1 + e cos1u - u02

r = e[d - r cos1u - u02]
ƒ PF ƒ = e ƒ PL ƒ

r = 2a sin u.r = 2a cos1u - p>22; r = 2a cos u;u0 = p>2u0 = 0

Circle: r = 2a cos1u - u02

a2
= r2

+ a2
- 2ra cos1u - u02,

r0 = a,1r0, u02,
r = a.

Line: r =

d

cos1u - u02

cos1u - u02 = d>r,
P1r, u2u0d 7 0

u = u0.

1-1, 02

–1–2–3–4–5 1 2 3 4 5
–1

1

2

3

4

5

Figure 12
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Summary of Polar Equations

Type of Figure General Case

Line

Circle

Ellipse

Parabola

Hyperbola 1e>12
1e � 12
10<e<12

u0 = p>2u0 = 0

d
θ0

0

r = d
cos (   –    )θ0θ

0

d

r = d
cosθ

d

0

r = d
sin θ

a θ0

0

r = 2a cos (   –    )θ0θ

a
0

r = 2a cosθ

0

d

θ0

r = ed
1 + e cos (   –    )θ0θ

d

0

r = ed
1 + e cosθ

0

d

r = ed
1 + e sinθ

a

0

r = 2a sinθ

Concepts Review
1. Every point in the plane has a unique pair (x, y) of Carte-

sian coordinates, but _____ pairs of polar coordinates.

2. The relations _____ and _____ connect Carte-
sian and polar coordinates; also _____ = x2

+ y2.
y =x =

1r, u2
3. The graph of the polar equation is a(n) _____; the

graph of is a(n) _____.

4. The graph of the polar equation is
a(n) _____.

r = ed>11 + e cos u2
u = 5

r = 5

Problem Set 10.5
1. Plot the points whose polar coordinates are 

and (4, 0).

2. Plot the points whose polar coordinates are 

and

3. Plot the points whose polar coordinates are 

and 

4. Plot the points whose polar coordinates are 

and A3, - 33
2  p B .A -2, - 1

2 p B ,
A -3, - 1

6 p B ,11, -7p2,1-1, -12,A -2, - 1
3 p B ,A -2, 12 p B ,

A3, 94 p B ,
A -1, - 1

2 p B .
A -2, 14 p B ,1-1, 12, 11, -4p2, A23, - 7

6 p B ,A -2, - 1
4 p B ,A -2, 13 p B ,

13, 2p2,
A3, - 3

2 p B .
A1, 12 p B ,A3, - 1

6 p B ,10, 02, 11, 54p2,A4, - 1
3 p B ,A2, 12 p B ,

13, 2p2,
A53, 12 p B ,A3, 11

7  p B ,10, p2, 11, 4p2,A4, 13 p B ,A1, 12 p B ,
A3, 13 p B , 5. Plot the points whose polar coordinates follow. For each

point, give four other pairs of polar coordinates, two with positive
r and two with negative r.

(a) (b)

(c) (d)

6. Plot the points whose polar coordinates follow. For each
point, give four other pairs of polar coordinates, two with positive
r and two with negative r.

(a) (b)

(c) (d)

7. Find the Cartesian coordinates of the points in Problem 5.

8. Find the Cartesian coordinates of the points in Problem 6.

A -222, 29
2  p BA -22, - 2

3 p B
A -1, 15

4  p BA322, 72 p B

A -22, 52 p BA22, - 1
3 p B

A -1, 14 p BA1, 12 p B
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544 Chapter 10 Conics and Polar Coordinates

The polar equations considered in the previous section led to familiar graphs,
mainly lines, circles, and conics. Now we turn our attention to more exotic
graphs—cardioids, limaçons, lemniscates, roses, and spirals. The polar equations
for these curves are still rather simple; the corresponding Cartesian equations are
quite complicated. Thus, we see one of the advantages of having available more
than one coordinate system. Some curves have simple equations in one system;
other curves have simple equations in the other system. We will exploit this later
in the book when we often begin the solution of a problem by choosing a conven-
ient coordinate system.

Symmetry can help us to understand a graph. Here are some sufficient tests for
symmetry in polar coordinates. The diagrams in the margin will help you to estab-
lish their validity.

10.6
Graphs of Polar

Equations

9. Find polar coordinates of the points whose Cartesian co-
ordinates are given.
(a) (b)

(c) (d) (0, 0)

10. Find polar coordinates of the points whose Cartesian co-
ordinates are given.
(a) (b)
(c) (d)

In each of Problems 11–16, sketch the graph of the given Cartesian
equation, and then find the polar equation for it.

11. 12.

13. 14.

15. 16.

In Problems 17–22, find the Cartesian equations of the graphs of
the given polar equations.

17. 18.

19. 20.

21.

22.

In Problems 23–36, name the curve with the given polar equation.
If it is a conic, give its eccentricity. Sketch the graph.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. Show that the polar equation of the circle with center
and radius a is 

38. Prove that represents a circle and
find its center and radius.

r = a sin u + b cos u

r2
+ c2

- 2rc cos1u - a2 = a2.1c, a2

r =

4
3 cos1u - p>32r =

4
1
2 + cos1u - p2

r =

4
2 + 2 cos1u - p>32r =

4
2 + 2 cos u

r =

6
4 - cos u

r =

6
2 + sin u

r =

4
1 + 2 sin u

r =

4
1 + cos u

r = -4 cos ur = 4 sin u

r =

-4
cos u

r =

3
sin u

u =

2p
3

r = 6

r2
- 6r cos u - 4r sin u + 9 = 0

r sin u - 1 = 0

r - 5 cos u = 0r cos u + 3 = 0

r = 3u =
1
2 p

x2
= 4pyx2

+ y2
= 4

x - y = 0y = -2

x = 0x - 3y + 2 = 0

13, -4210, -22
A -23>2, 23>2 BA -3>23, 1>23 B

A -22, -22 B
A -223, 2 BA323, 3 B

39. Find the length of the latus rectum for the general conic
in terms of e and d.

40. Let and be the minimum and maximum distances
(perihelion and aphelion, respectively) of the ellipse 

from a focus. Show that

(a)

(b) and minor 

41. The perihelion and aphelion for the orbit of the asteroid
Icarus are 17 and 183 million miles, respectively. What is the ec-
centricity of its elliptical orbit?

42. Earth’s orbit around the sun is an ellipse of eccentric-
ity 0.0167 and major diameter 185.8 million miles. Find its
perihelion.

43. The path of a certain comet is a parabola with the sun at
the focus. The angle between the axis of the parabola and a ray
from the sun to the comet is 120° (measured from the point of the
perihelion to the sun to the comet) when the comet is 100 million
miles from the sun. How close does the comet get to the sun?

44. The position of a comet with a highly eccentric elliptical
orbit (e very near 1) is measured with respect to a fixed polar axis
(sun is at a focus but the polar axis is not an axis of the ellipse) at
two times, giving the two points and of the
orbit. Here distances are measured in astronomical units

For the part of the orbit near the sun,
assume that so the orbit is given by

(a) The two points give two conditions for d and Use them to
show that 

(b) Solve for using Newton’s Method.
(c) How close does the comet get to the sun?

45. In order to graph a polar equation such as using
a parametric equation grapher, you must replace this equation by

and These equations can be ob-
tained by multiplying by cos t and sin t, respectively.
Confirm the discussions of conics in the text by graphing

for 0.5, 0.9, 1, 1.1 and 1.3 on

Answers to Concepts Review: 1. infinitely many
2. 3. circle; line 4. conicr cos u; r sin u; r2

[-p, p].
e = 0.1,r = 4e>11 + e cos t2

r = f1t2
y = f1t2 sin t.x = f1t2 cos t

r = f1t2CAS

u0

4.24 cos u0 - 3.76 sin u0 - 2 = 0.
u0.

r =

d

1 + cos1u - u02
e = 1,

11 AU L 93 million miles2.
13, p>4214, p>22

2ed>21 - e2.

diameter =major diameter = 2ed>11 - e22
r1 = ed>11 + e2, r2 = ed>11 - e2,

ed>[1 + e cos1u - u02]
r =

r2r1

r = ed>[1 + e cos1u - u02]
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θ

θ
θ

θ

–

(r,   )

θ(r, –  )
 π(–r,    –   )

Figure 1

π θ

θ θ

(r,    –  )
θ θ(–r, –  ) (r,   )

Figure 2

θ

(r,   )θ

(–r,   )
(r, π +    )

θ
θ

Figure 3

1. The graph of a polar equation is symmetric about the x-axis (the polar axis) if
replacing by (or by ) produces an equivalent equa-
tion (Figure 1).

2. The graph of a polar equation is symmetric about the y-axis (the line )
if replacing by (or by ) produces an equivalent equa-
tion (Figure 2).

3. The graph of a polar equation is symmetric about the origin (pole) if replacing
by (or by ) produces an equivalent equation (Fig-

ure 3).

Because of the multiple representation of points in polar coordinates, symmetries
may exist that are not identified by these three tests (see Problem 39).

Cardioids and Limaçons We consider equations of the form

with a and b positive. Their graphs are called limaçons, with the special cases in
which referred to as cardioids. Typical graphs are shown in Figure 4.

� EXAMPLE 1 Analyze the equation for symmetry and
sketch its graph.

SOLUTION Since cosine is an even function the graph is
symmetric with respect to the x-axis. The other symmetry tests fail. A table of
values and the graph appear in Figure 5. �

(cos1-u2 = cos u),

r = 2 + 4 cos u

a = b

r = a ; b cos u r = a ; b sin u

1r, p + u21-r, u21r, u2

1r, p - u21-r, -u21r, u2 u = p>2
1-r, p - u21r, -u21r, u2

a > b a = b a < b

0

π/6

π/3

π/2

7π/12

2π/3

3π/4

5π/6

π

6    

5.5

4   

2    

    1.0    

0    

 –0.8   

 –1.5   

–2      

rθ

r = 2 + 4 cos 

3 4 5

θ

Figure 4 Figure 5

Lemniscates The graphs of

are figure-eight-shaped curves called lemniscates.

� EXAMPLE 2 Analyze the equation for symmetry and sketch
its graph.

SOLUTION Since and

the graph is symmetric with respect to both axes. Clearly, it is also symmetric with
respect to the origin. A table of values and the graph are shown in Figure 6. �

Roses Polar equations of the form

represent flower-shaped curves called roses. The rose has n leaves if n is odd and
2n leaves if n is even.

r = a cos nu r = a sin nu

cos[21p - u2] = cos12p - 2u2 = cos1-2u2 = cos 2u

cos1-2u2 = cos 2u

r2
= 8 cos 2u

r2
= ;a cos 2u r2

= ;a sin 2u

0

π/12

π/6

π/4

±2.8

±2.6

 ±2   

0

rθ

θr2 = 8 cos 2

1 2 3

Figure 6 545
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π

θr = 

–4π –2π 3π 5π

Figure 8

π
π
3

θ

θ

r = 4 cos

(2,   /3)

1 2 3

=

Figure 9

1

2�1
2

3
4 π(1 –          ,       )

7
42�1

2 π(1+          ,       )

Figure 10

0

π/12

π/8

π/6

π/4

π/3

3π/8

5π/12

π/2

0

2

2.8

3.5

4

3.5 

2.8

2

0  

rθ

2π/3

5π/6

π
7π/6

4π/3

3π/2

5π/3

11π/6

2π

θ r

–3.5

–3.5

  0

  3.5

  3.5 

  0

–3.5

–3.5

  0  

3 4

θr = 4 sin 2 

Figure 7

� EXAMPLE 3 Analyze for symmetry and sketch its graph.

SOLUTION You can check that satisfies all three symmetry tests.
For example, it meets Test 1 since

and so replacing by produces an equivalent equation.
A rather extensive table of values for a somewhat briefer one for

and the corresponding graph are shown in Figure 7. The arrows on
the curve indicate the direction moves as   increases from 0 to   �2p.uP1r, u2p>2 … u … 2p,

0 … u … p>2,
1-r, p - u21r, u2

sin 21p - u2 = sin12p - 2u2 = -sin 2u

r = 4 sin 2u

r = 4 sin 2u

Spirals The graph of is called a spiral of Archimedes; the graph of
is called a logarithmic spiral.

� EXAMPLE 4 Sketch the graph of for 

SOLUTION We omit a table of values, but note that the graph crosses the polar
axis at (0, 0), and crosses its extension to the left at

as in Figure 8. �

Intersection of Curves in Polar Coordinates In Cartesian coordinates,
all points of intersection of two curves can be found by solving the equations of the
curves simultaneously. But in polar coordinates, this is not always the case. This is
because a point P has many pairs of polar coordinates, and one pair may satisfy the
polar equation of one curve and a different pair may satisfy the polar equation of
the other curve. For instance (see Figure 9), the circle intersects the line

in two points, the pole and and yet only the latter is a common
solution of the two equations. This happens because the coordinates of the pole
that satisfy the equation of the line are and those that satisfy the equation
of the circle are 

Our conclusion is this. In order to find all intersections of two curves whose
polar equations are given, solve the equations simultaneously; then graph the two
equations carefully to discover other possible points of intersection.

� EXAMPLE 5 Find the points of intersection of the two cardioids
and 

SOLUTION If we eliminate r between the two equations, we get
Thus, or We conclude that

or which yields the two intersection points and

The graphs in Figure 10 show, however, that we have missed a
third intersection point, the pole. The reason we missed it is that in

when but  in  when  �u = p>2.r = 1 - sin ur = 0u = p,r = 1 + cos u
r = 0

A1 +
1
2 22, 74 p B .

A1 -
1
2 22, 34 p Bu =

7
4 p,u =

3
4 p

tan u = -1.cos u = -sin u,1 + cos u = 1 - sin u.

r = 1 - sin u.r = 1 + cos u

10, p>2 + np2. 10, p>32
12, p>32u = p>3 r = 4 cos u

1p, p2, 13p, 3p2, 15p, 5p2, Á ,
12p, 2p2, 14p, 4p2, Á

u Ú 0.r = u

r = aebu
r = au
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Concepts Review
1. The graph of is a(n) _____.

2. The graph of is a(n) _____.r = 2 + 2 cos u

r = 3 + 2 cos u 3. The graph of is a(n) _____ with n leaves if n
is _____ and 2n leaves if n is _____.

4. The graph of is a(n) _____.r = u>3
r = 4 sin nu

Problem Set 10.6
In Problems 1–32, sketch the graph of the given polar equation
and verify its symmetry (see Examples 1–3).

1. 2.

3. 4.

5. 6.

7. 8.

9. (cardioid)

10. (cardioid)

11. (cardioid)

12. (cardioid)

13. (limaçon)

14. (limaçon)

15. (limaçon)

16. (limaçon)

17. (lemniscate)

18. (lemniscate)

19. (lemniscate)

20. (lemniscate)

21. (three-leaved rose)

22. (three-leaved rose)

23. (four-leaved rose)

24. (four-leaved rose)

25. (five-leaved rose)

26. (five-leaved rose)

27. (spiral of Archimedes)

28. (spiral of Archimedes)

29. (logarithmic spiral)

30. (logarithmic spiral)

31. (reciprocal spiral)

32. (reciprocal spiral)

In Problems 33–38, sketch the given curves and find their points of
intersection.

r = -

1
u

, u 7 0

r =

2
u

, u 7 0

r = eu>2, u Ú 0

r = eu, u Ú 0

r = 2u, u Ú 0

r =
1
2 u, u Ú 0

r = 3 sin 5u

r = 7 cos 5u

r = 4 cos 2u

r = 6 sin 2u

r = 3 sin 3u

r = 5 cos 3u

r2
= -16 cos 2u

r2
= -9 cos 2u

r2
= 9 sin 2u

r2
= 4 cos 2u

r = 5 - 3 cos u

r = 2 - 3 sin u

r = 4 - 3 cos u

r = 1 - 2 sin u

r = 22 - 22 sin u

r = 1 - sin u

r = 5 - 5 sin u

r = 3 - 3 cos u

r =

4
1 + sin u

r =

2
1 - cos u

r = 4 sin ur = 2 cos u

r = -4 sec ur sin u + 4 = 0

1r - 32Au -
p

4 B = 0u2
- p2>16 = 0

33.

34.

35.

36.

37.

38.

39. The conditions for symmetry given in the text are suffi-
cient conditions, not necessary conditions. Give an example of a
polar equation whose graph is symmetric with respect
to the y-axis, even though replacing by either or

fails to yield an equivalent equation.

40. Let a and b be fixed positive numbers and suppose that
AP is part of the line that passes through (0, 0), with A on the line

and Find both the polar equation and the rec-
tangular equation for the set of points P (called a conchoid) and
sketch its graph.

41. Let F and be fixed points with polar coordinates (a, 0)
and respectively. Show that the set of points P satisfying

is a lemniscate by finding its polar equation.

42. A line segment L of length 2a has its two end points on
the x- and y-axes, respectively.The point P is on L and is such that
OP is perpendicular to L. Show that the set of points P satisfying
this condition is a four-leaved rose by finding its polar equation.

43. Find the polar equation for the curve described by the fol-
lowing Cartesian equations.

(a) (b)

(c) (d)

(e) (f)

(g)

Computers and graphing calculators offer a wonderful opportu-
nity to experiment with the graphing of polar equations of the
form In some cases these aids require that the equations
be recast in a parametric form. Since and

you can use the parametric graphing
capabilities to graph and as a set of
parametric equations.

44. Graph the curve using the parametric
graphing facility of a graphing calculator or computer. Notice
that it is necessary to determine the proper domain for Assum-
ing that you start at you have to determine the value of 
that makes the curve start to repeat itself. Explain why the cor-
rect domain is 0 … u … 10p.

uu = 0,
u.

r = cos18u>52GC

y = f1t2 sin tx = f1t2 cos t
y = r sin u = f1u2 sin u,

x = r cos u = f1u2 cos u
r = f1u2.

x2
+ 2x + y2

- 4y - 25 = 0

3x2
+ 4y = 2y = 3x + 2

4xy = 1x2
- y2

= 1

x2
+ y2

= 36y = 45

ƒ PF ƒ ƒ PF¿ ƒ = a2
1-a, 02,

F¿

ƒ AP ƒ = b.x = a

1r, p - u2
1-r, -u21r, u2

r = f1u2

r2
= 4 cos 2u, r = 222 sin u

r = 6 sin u, r =

6
1 + 2 sin u

r = 5, r =

5
1 - 2 cos u

r = 323 cos u, r = 3 sin u

r = 1 - cos u, r = 1 + cos u

r = 6, r = 4 + 4 cos u
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Figure 11
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In Problems 46–49, use a computer or graphing calculator to
graph the given equation. Make sure that you choose a sufficiently
large interval for the parameter so that the entire curve is drawn.

46. 47.

48. 49.

50. In many cases, polar graphs are related to each
other by rotation. We explore that concept here.
(a) How are the graphs of and 

related to the graph of 
(b) How is the graph of related to the graph of

(c) How is the graph of related to the graph of

(d) How is the graph of related to the graph of

51. Investigate the family of curves given by
where a, b, and are real numbers andfr = a + b cos1n1u + f22

EXPLGC

r = f1u - a2?
r = f1u2

r = 1 + cos u?
r = 1 + sin u

r = 1 - sin u?
r = 1 + sin u

r = 1 + sin u?1 + sin1u + p>32
r =r = 1 + sin1u - p>32

EXPLGC

r = 1 + 3 cos1u>32r = sin15u>72
r = cos113u>52r = 21 - 0.5 sin2 u

GC

n is a positive integer. As you answer the following questions, be
sure that you graph a sufficient number of examples to justify
your conclusions.
(a) How are the graphs for related to those for which

(b) How does the graph change as n increases?
(c) How do the relative magnitude and sign of a and b change

the nature of the graph?

52. Investigate the family of curves defined by the polar
equations where n is some positive integer. How do
the number of leaves depend on n?

53. Polar graphs can be used to represent different spirals.
The spirals can unwind clockwise or counterclockwise. Find the
condition on c to make the spiral of Archimedes, unwind
clockwise and counterclockwise.

54. Sketch the reciprocal spiral given by For 
does it unwind in the clockwise direction?

55. The following polar equations are represented by six
graphs in Figure 12. Match each graph with its equation.

(a) (b)

(c) (d)

(e) (f) r = sin 4u + sin2 4ur = cos 4u + cos2 4u

r = cos 2u + cos2 3ur = sin 4u + sin2 5u

r = cos 2u + cos2 4ur = sin 3u + sin2 2u

c 7 0,r = c>u.
r = cu,

r = ƒ cos nu ƒ ,

f Z 0?
f = 0

Answers to Concepts Review: 1. limaçon 2. cardioid
3. rose; odd; even 4. spiral

45. Match the polar equations to the graphs labeled I–VIII in
Figure 11, giving reasons for your choices.
(a) (b)
(c) (d)
(e) (f)
(g) (h) r = 2 cos 3ur = 1>u3>2

r = u cos ur = 3 + 2 cos u
r = 1 - 2 sin15u2r = 2 - 3 sin15u2
r = sec13u2r = cos1u>22
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Section 10.7 Calculus in Polar Coordinates 549

The two most basic problems in calculus are the determinations of the slope of a
tangent line and the area of a curved region. Here we consider both problems, but
in the context of polar coordinates. The area problem plays a larger role in the rest
of the book, so we consider it first.

In Cartesian coordinates, the fundamental building block in area problems
was the rectangle. In polar coordinates, it is the sector of a circle (a pie-shaped re-
gion like that in Figure 1). From the fact that the area of a circle is we infer
that the area of a sector with central angle radians is that is,

Area in Polar Coordinates To begin, let determine a curve in the
plane, where f is a continuous, nonnegative function for and

The curves and bound a region R (the one
shown at the left in Figure 2), whose area we wish to determine.A(R)

u = br = f1u2, u = a,b - a … 2p.
a … u … b

r = f1u2

Area of a sector: A =

1
2

 ur2

1u>2p2 pr2;u

pr2,

10.7
Calculus in Polar

Coordinates

1
2

r

θ

θA =      r2

Figure 1

R3

Rn

R2

R1
R

θ θ
θ

θ

θ

θ

θ

θ

θ

�

�

n

n – 1

3
2

0

1

=

=

r = f (  )

Figure 2

Partition the interval into n subintervals by means of numbers
thereby slicing R into n smaller pie-shaped

regions as shown in the right half of Figure 2. Clearly,

We approximate the area of the ith slice; in fact, we do it in two ways.
On the ith interval f achieves its minimum value and maximum value, for
instance, at and respectively (Figure 3). Thus, if 

and so

The first and third members of this inequality are Riemann sums for the same in-

tegral: When we let the norm of the partition tend toward zero, we

obtain (using the Squeeze Theorem) the area formula

A =
1
2 

L

b

a

[f1u2]2 du

L

b

a

 
1
2 [f1u2]2 du.

a
n

i = 1
 
1
2 [f1ui2]2 ¢ui … a

n

i = 1
A1Ri2 … a

n

i = 1
 
1
2 [f1vi2]2 ¢ui

1
2 [f1ui2]2 ¢ui … A1Ri2 …

1
2 [f1vi2]2 ¢ui

¢ui = ui - ui - 1,vi,ui

[ui - 1, ui],
A1Ri2

A1R2 = A1R12 + A1R22 +
Á

+ A1Rn2.
R1, R2, Á , Rn,

a = u0 6 u1 6 u2 6
Á

6 un = b,
[a, b]θ

Ri

i

θ i

θ i – 1

viui

∆

Figure 3
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550 Chapter 10 Conics and Polar Coordinates

Limaçons share with circles the
property of having an equichordal
point (a point through which all
chords have the same length). For
the limaçon of Exam-
ple 1, all chords through the pole
have length 4. Note that this limaçon
has area whereas the corre-
sponding circle of diameter 4 has
area Thus, having equal chords
in all directions through a point is
not enough to determine area.

Here is a famous unsolved
problem first posed in 1916. Can a
plane region have two equichordal
points? A correct answer to this
question (either an example of such
a region or a proof that no such re-
gion exists) would make you in-
stantly famous. Still, we suggest you
work on the problems at the end of
the section before you tackle this
challenge.

4p.

9p>2,

r = 2 + cos u

Equichordal Points

θθ∆A �    [ f (   )]2 ∆1
2

�    (4 sin 2  )2dθ θ1
2A =

0

π�2

1 2 3 4

θ

θ

θ

θ ∆
f(  

) =
 4 sin

 2

Figure 5

θθ

θ

θ

θ

θ

θθ

∆

f (  ) = 2 + cos 

∆ A �    [ f (  )]2 ∆1
2

1
2A =  �

 

  (2 + cos   )2d
0

2π

1 2

1

Figure 4

This formula can, of course, be memorized. We prefer that you remember how it
was derived. In fact, you will note that the three familiar words slice, approximate,
and integrate are also the key to area problems in polar coordinates. We illustrate
what we mean.

� EXAMPLE 1 Find the area of the region inside the limaçon 

SOLUTION The graph is sketched in Figure 4; note that varies from 0 to 

For a rough approximation, we might observe that the region looks much
like a circle of radius 2. We therefore expect the answer to be approximately

To find the exact area, we slice, approximate, and integrate.p22
= 4p.

≈
2p.u

r = 2 + cos u.

By symmetry, we can double the integral from 0 to Thus,

�

� EXAMPLE 2 Find the area of one leaf of the four-leaved rose 

SOLUTION The complete rose was sketched in Example 3 of the previous
section. Here we show only the first-quadrant leaf (Figure 5). This leaf is 4 units
long and averages about 1.5 units in width, giving 6 as an estimate for its area. The
exact area A is given by

� = [4u]0
p>2

- [sin 4u]0
p>2

= 2p

 = 4
L

p>2

0
 du -

L

p>2

0
 cos 4u # 4 du

 A =

1
2

 

L

p>2

0
16 sin2 2u du = 8

L

p>2

0
 
1 - cos 4u

2
  du

≈

r = 4 sin 2u.

 =

9p
2

 = c9
2

  u d
0

p

+ [4 sin u]0
p

+ c1
4

 sin 2u d
0

p

 =

L

p

0
 
9
2

  du + 4
L

p

0
cos u du +

1
4

 

L

p

0
cos 2u # 2 du

 =

L

p

0
4 du + 4

L

p

0
cos u du +

1
2

 

L

p

0
11 + cos 2u2 du

 A =

L

p

0
12 + cos u22 du =

L

p

0
14 + 4 cos u + cos2 u2 du

p.
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� EXAMPLE 3 Find the area of the region outside the cardioid 
and inside the circle 

SOLUTION The graphs of the two curves are sketched in Figure 6.We will need
the of the points of intersection. Let’s try solving the two equations
simultaneously.

Now slice, approximate, and integrate.

�

Tangents in Polar Coordinates In Cartesian coordinates, the slope m of
the tangent line to a curve is given by We quickly reject as the
corresponding slope formula in polar coordinates. Rather, if determines
the curve, we write

Thus,

That is,

The formula just derived simplifies when the graph of passes through
the pole. For example, suppose for some angle that and 
Then (at the pole) our formula for m is

m =

f¿1a2 sin a

f¿1a2 cos a
= tan a

f¿1a2 Z 0.r = f1a2 = 0a

r = f1u2
m =

f1u2 cos u + f¿1u2 sin u

-f1u2 sin u + f¿1u2 cos u

dy

dx
= lim

¢x:0
 
¢y

¢x
= lim

¢u:0
 
¢y>¢u
¢x>¢u =

dy>du
dx>du

 x = r cos u = f1u2 cos u

 y = r sin u = f1u2 sin u

r = f1u2dr>dum = dy>dx.

 =

1
2

 c2 
23
2

+

23
2
d =

323
4

L 1.299

 =

1
2

 [-2 sin u - sin 2u]p>3
p

 =

1
2

 

L

p

p>3
[-2 cos u - 2 cos 2u] du

 =

1
2

 

L

p

p>3
c3
2

 11 - cos 2u2 - 1 - 2 cos u -

1
2

 11 + cos 2u2 d  du

 =

1
2

 

L

p

p>3
[3 sin2 u - 1 - 2 cos u - cos2 u] du

 A =

1
2

 

L

p

p>3
[3 sin2 u - 11 + cos u22] du

 u =

p

3
 or u = p

 cos u =

1
2
 or cos u = -1

 12 cos u - 121cos u + 12 = 0

 2 cos2 u + cos u - 1 = 0

 4 cos2 u + 2 cos u - 2 = 0

 1 + 2 cos u + cos2 u = 311 - cos2 u2
 1 + 2 cos u + cos2 u = 3 sin2 u

 1 + cos u = 23 sin u

u-coordinates

r = 23 sin u.
r = 1 + cos u

1

3�

∆ A �    [3 sin2   – (1+ cos   )2] ∆1
2 θ θθ

θ

θ

θθ r =        sin ∆

r = 1+ cos

1
2 θθ θA =    �    [3 sin2   – (1 + cos   )2]d

π

π/3

Figure 6
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2π
3

θ =

5π
3

θ =4π
3

θ =

π
3

θ

θ

=

1 2 3 4

r = 4 sin 3

0
π/12
π/6
π/4
π/3

5π/12
π/2

0
2.8
4   
2.8
0   

–2.8
–4  

rθ

Figure 7

Since the line also has slope we conclude that this line is tangent to
the curve at the pole. We infer the useful fact that tangent lines at the pole can be
found by solving the equation We illustrate this next.

� EXAMPLE 4 Consider the polar equation 

(a) Find the slope of the tangent line at and 
(b) Find the tangent lines at the pole.
(c) Sketch the graph.
(d) Find the area of one leaf.

SOLUTION

(a)

At 

At 

(b) We set and solve. This yields 
and 

(c) After noting that

which implies symmetry with respect to the y-axis, we obtain a table of values
and sketch the graph shown in Figure 7.

(d)

� = c4u -

2
3

 sin 6u d
0

p>3
=

4p
3

 = 4
L

p>3

0
11 - cos 6u2 du = 4

L

p>3

0
 du -

4
6

 

L

p>3

0
cos 6u # 6 du

 A =

1
2

 

L

p>3

0
14 sin 3u22 du = 8

L

p>3

0
 sin2 3u du

 = sin 3u sin 31p - u2 = sin13p - 3u2 = sin 3p cos 3u - cos 3p sin 3u

u = 5p>3.u = p, u = 4p>3,
u = 2p>3,u = p>3,u = 0,f1u2 = 4 sin 3u = 0

m =

4 #
22
2

#
22
2

- 12 #
22
2

#
22
2

-4 #
22
2

#
22
2

- 12 #
22
2

#
22
2

=

2 - 6
-2 - 6

=

1
2

u = p>4,

m =

4 # 1 #
23
2

+ 12 # 0 #
1
2

-4 # 1 #
1
2

+ 12 # 0 #
23
2

= -23

u = p>6,

m =

f1u2 cos u + f¿1u2 sin u

-f1u2 sin u + f¿1u2 cos u
=

4 sin 3u cos u + 12 cos 3u sin u
-4 sin 3u sin u + 12 cos 3u cos u

u = p>4.u = p>6
r = 4 sin 3u.

f1u2 = 0.

tan a,u = a

Concepts Review
1. The formula for the area A of a sector of a circle of radius

r and angle (in radians) is _____.

2. The formula in Question 1 leads to the formula for the
area A of the region bounded by the curve between

and that is, _____.A =u = b,u = a

r = f1u2
A =u

3. From the formula of Question 2, we conclude that the
area A of the region inside the cardioid can be
expressed as _____.

4. The tangent lines to the polar curve at the pole
can be found by solving the equation _____.

r = f1u2
A =

r = 2 + 2 cos u

Problem Set 10.7
In Problems 1–10, sketch the graph of the given equation and find
the area of the region bounded by it.

1. 2. r = 2a cos u, a 7 0r = a, a 7 0

3. 4.

5. 6.

7. 8. r2
= 6 cos 2ur = a11 + cos u2, a 7 0

r = 3 + 3 sin ur = 3 - 3 sin u

r = 5 + 4 cos ur = 2 + cos u
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ka

a

Figure 9

ka

A A∆

∆
T

a

P

φ

φ

Figure 8

9. 10.

11. Sketch the limaçon and find the area of
the region inside its small loop.

12. Sketch the limaçon and find the area of
the region inside its small loop.

13. Sketch the limaçon and find the area of
the region inside its large loop.

14. Sketch one leaf of the four-leaved rose and
find the area of the region enclosed by it.

15. Sketch the three-leaved rose and find the
area of the total region enclosed by it.

16. Sketch the three-leaved rose and find the
area of the region bounded by it.

17. Find the area of the region between the two concentric
circles and 

18. Sketch the region that is inside the circle and
outside the cardioid and find its area.

19. Sketch the region that is outside the circle and in-
side the lemniscate and find its area.

20. Sketch the limaçon and find the area of
the region that is inside its large loop, but outside its small loop.

21. Sketch the region in the first quadrant that is inside the
cardioid and outside the cardioid

and find its area.

22. Sketch the region in the second quadrant that is inside the
cardioid and outside the cardioid

and find its area.

23. Find the slope of the tangent line to each of the following
curves at 
(a) (b)
(c) (d)

24. Find all points on the cardioid where
the tangent line is
(a) horizontal, and (b) vertical.

25. Find all points on the limaçon where the
tangent line is horizontal.

26. Let where f is continuous on the closed interval
Derive the following formula for the length L of the cor-

responding polar curve from to 

27. Use the formula of Problem 26 to find the perimeter of
the cardioid 

28. Find the length of the logarithmic spiral from
to 

29. Find the total area of the rose where n is a
positive integer.

30. Sketch the graph of the strophoid
and find the area of its loop.

31. Consider the two circles and 
with a and b positive.

(a) Find the area of the region inside both circles.

(b) Show that the two circles intersect at right angles.

r = 2b cos u,r = 2a sin u

r = sec u - 2 cos u,

r = a cos nu,

u = 2p.u = 0
r = eu>2

r = a11 + cos u2.

L =

L

b

a

2[f1u2]2
+ [f¿1u2]2 du

u = b.u = a

[a, b].
r = f1u2,

r = 1 - 2 sin u

r = a11 + cos u2
r = 4 - 3 cos ur = sin 2u
r = 1 + sin ur = 2 cos u

u = p>3.

r = 2 + 2 cos u,
r = 2 + 2 sin u

r = 3 + 3 sin u,
r = 3 + 3 cos u

r = 3 - 6 sin u,

r2
= 8 cos 2u,

r = 2

r = 1 + sin u,
r = 3 sin u

r = 10.r = 7

r = 2 sin 3u,

r = 4 cos 3u,

r = 3 cos 2u,

r = 2 - 3 cos u,

r = 2 - 4 cos u,

r = 3 - 4 sin u,

r2
= a cos 2u, a 7 0r2

= 9 sin 2u 32. Assume that a planet of mass m is revolving around the
sun (located at the pole) with constant angular momentum

Deduce Kepler’s Second Law: The line from the sun
to the planet sweeps out equal areas in equal times.

33. First Old Goat Problem A goat is tethered to the edge of
a circular pond of radius a by a rope of length 
Use the method of this section to find its grazing area (the shaded
area in Figure 8).

ka 10 6 k … 22.

mr2 du>dt.

34. Second Old Goat Problem Do Problem 33 again, but as-
sume that the pond has a fence around it so that, in forming the
wedge A, the rope wraps around the fence (Figure 9). Hint: If you
are exceedingly ambitious, try the method of this section. Better,
note that in the wedge A,

which leads to a Riemann sum for an integral. The final answer is
a result needed in Problem 35.

35. Third Old Goat Problem An untethered goat grazes
inside a yard enclosed by a circular fence of radius a; an-
other grazes outside the fence tethered as in Problem 34. Find
the length of the rope if the two goats have the same grazing
area.

Use a computer to do Problems 36–39. In each case be sure 
to make a mental estimate first. Note the length formula in Prob-
lem 26.

36. Find the lengths of the limaçons and
(see Example 1 of this section and Example 1 of

Section 10.6).

37. Find the area and length of the three-leaved rose
(see Example 4).

38. Find the area and length of the lemniscate 
(see Example 2 of Section 10.6).

39. Plot the curve and then
find its length.

Answers to Concepts Review: 1.

2. 3.

4. f1u2 = 0

1
2

 

L

2p

0
12 + 2 cos u22 du1

2
 

L

b

a

[f1u2]2 du

1
2 r2u

r = 4 sin13u>22, 0 … u … 4p,

r2
= 8 cos 2u

r = 4 sin 3u

r = 2 + 4 cos u
r = 2 + cos u

CAS

C

a21pk2>2 + k3>32,

¢A L

1
2

 ƒ PT ƒ
2 ¢f
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554 Chapter 10 Conics and Polar Coordinates

10.8 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. The graph of is a parabola for all
choices of a, b, and c.

2. The vertex of a parabola is midway between the focus and
the directrix.

3. A vertex of an ellipse is closer to a directrix than to a focus.

4. The point on a parabola closest to its focus is the vertex.

5. The hyperbolas and 
have the same asymptotes.

6. The circumference C of the ellipse 
with satisfies 

7. The smaller the eccentricity e of an ellipse, the more near-
ly circular the ellipse is.

8. The ellipse has its foci on the x-axis.

9. The equation represents a hyperbola.

10. The equation represents a parabola.

11. If is an equation of a hyperbola.

12. If is an equation of an ellipse.

13. The distance between the foci of the graph of
is 

14. The graph of does not intersect the 
x-axis.

15. Light emanating from a point between a focus and the
nearest vertex of an elliptical mirror will be reflected beyond the
other focus.

16. An ellipse that is drawn using a string of length 8 units at-
tached to foci 2 units apart will have minor diameter of length

units.

17. The graph of is either a
circle, a point, or the empty set.

18. The graph of cannot be a
single point.

19. The graph of 
is the intersection of a plane with a cone of two nappes for all
choices of A, B, C, D, E, and F.

20. In an appropriate coordinate system, the intersection of a
plane with a cone of two nappes will have an equation of the
form 

21. The graph of a hyperbola must enter all four quadrants.

22. If one of the conic sections passes through the four points
(1, 0), (0, 1) and it must be a circle.

23. The parametric representation of a curve is unique.

24. The graph of is a line.

25. If and then we can find a function h
such that 

26. The curve with parametric representation and
passes through the origin.

27. If and and if both and exist, then
wherever f–1t2 Z 0.d2y>dx2

= g–1t2>f–1t2
g–f–y = g1t2x = f1t2

y = t2
- 1

x = ln t

y = h1x2.
y = g1t2,x = f1t2

x = 2t3, y = t3

10, -12,1-1, 02,

Ax2
+ Cy2

+ Dx + Ey + F = 0.

Ax2
+ Bxy + Cy2

+ Dyx + Ey + F = 0

2x2
+ y2

+ Cx + Dy + F = 0

x2
+ y2

+ Cx + Dy + F = 0

260

x2>9 - y2>8 = -2

22a2
- b2.x2>a2

+ y2>b2
= 1

k Z 0, x2>a2
+ y2>b2

= k

k Z 0, x2>a2
- y2>b2

= k

1y2
- 4x + 122 = 0

x2
- y2

= 0

6x2
+ 4y2

= 24

2pb 6 C 6 2pa.b 6 a,
x2>a2

+ y2>b2
= 1,

y2>b2
- x2>a2

= 1x2>a2
- y2>b2

= 1

y = ax2
+ bx + c

28. A curve may have more than one tangent line at a point
on the curve.

29. The graph of the polar equation is a
circle.

30. Every point in the plane has infinitely many sets of polar
coordinates.

31. All points of intersection of the graphs of the polar equa-
tions and can be found by solving these two
equations simultaneously.

32. If f is an odd function, then the graph of is sym-
metric with respect to the y-axis (the line ).

33. If f is an even function, then the graph of is sym-
metric with respect to the x-axis (the line ).

34. The graph of is a rose of three leaves whose
area is less than half that of the circle 

Sample Test Problems
1. From the numbered list, pick the correct response to put

in each blank that follows.
(1) no graph 0(2) a single point
(3) a single line 0(4) two parallel lines
(5) two intersecting lines 0(6) a circle
(7) a parabola 0(8) an ellipse
(9) a hyperbola (10) none of the above

(a) _____ (b) _____

(c) _____ (d) _____

(e) _____ (f) _____

(g) _____ (h) _____

(i) _____

(j) _____

In each of Problems 2–10, name the conic that has the given equa-
tion. Find its vertices and foci, and sketch its graph.

2. 3.

4. 5.

6. 7.

8. 9.

10.

In each of Problems 11–18, find the Cartesian equation of the
conic with the given properties.

11. Vertices and eccentricity 

12. Eccentricity 1, focus and vertex (0, 0)

13. Eccentricity 1, vertex (0, 0), symmetric with respect to the
x-axis, and passing through the point 

14. Eccentricity and vertices 

15. Vertices and asymptotes 

16. Parabola with focus (3, 2) and vertex (3, 3)

17. Ellipse with center (1, 2), and focus (4, 2), and major di-
ameter 10

18. Hyperbola with vertices (2, 0) and (2, 6) and eccentricity 10
3

x ; 2y = 01;2, 02
10, ;325

3

1-1, 32
10, -32,

1
21;4, 02

r12 + cos u2 = 3

r =

5
2 + 2 sin u

9x2
+ 9y2

- 225 = 0

9x2
+ 25y2

- 225 = 0x2
- 4y2

- 16 = 0

x2
+ 9y = 025x2

- 36y2
+ 900 = 0

9x2
+ 4y2

- 36 = 0y2
- 6x = 0

3x2
+ 4y2

= -x2
+ 1

1x2
+ 4y - 122 = 0

x2
+ 4y2

= -1x2
+ 4y2

= -x

x2
+ 4y2

= xx2
+ 4y2

= 0

x2
- 4x + 4 = 0x2

- 4 = 0

x2
- 4y2

= 0.01x2
- 4y2

= 0

r = 4.
r = 4 cos 3u

u = 0
r = f1u2

u = p>2
r = f1u2

r = g1u2r = f1u2

r = 4 cos1u - p>32
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–3 –2 –1 1 2

–1.5

–1
–0.5

0.5

1

1.5

3 –3 –2 –1 1 2 3

–1

1

–0.5

0.5

–3 –2 –1 1 2 3

–2.5

–2

–1.5

–1

–3

–0.5

–3 –2 –1 1 2 3

0.5

1

1.5

–0.5

I II

III IV

I II

III IV

In Problems 19–22, use the process of completing the square to
transform the given equation to a standard form. Then name the
corresponding curve and sketch its graph.

19.

20.

21.

22.

23. A rotation of axes through transforms
into Determine r and s,

name the corresponding conic, and find the distance between its
foci.

24. Determine the rotation angle needed to eliminate the
cross-product term in Then obtain the cor-
responding uv-equation and identify the conic that it represents.

In Problems 25–28, a parametric representation of a curve is given.
Eliminate the parameter to obtain the corresponding Cartesian
equation. Sketch the given curve.

25.

26.

27.

28.

In Problems 29 and 30, find the equations of the tangent line at

29.

30.

31. Find the length of the curve 
from to 

32. Find the length of the curve 
from 0 to Make a sketch.

In Problems 33–44, analyze the given polar equation and sketch its
graph.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. Find a Cartesian equation of the graph of

and then sketch the graph.

46. Find a Cartesian equation of the graph of 
and then sketch the graph.

47. Find the slope of the tangent line to the graph of
at the point on the graph where 

48. Sketch the graphs of and and
find their points of intersection.

49. Find the area of the region bounded by the graph of
r = 5 - 5 cos u.

r = 2 + sin ur = 5 sin u

u =
1
6 p.r = 3 + 3 cos u

r2cos 2u = 9

r2
- 6r1cos u + sin u2 + 9 = 0

r = -u, u Ú 0r2
= 16 sin 2u

r = 4 sin 3uu =
2
3 p

r = 2 - 3 cos ur = 4 - 3 cos u

r = 5 - 5 cos ur = 4

r =

3
cos u

r = cos 2u

r =

5
sin u

r = 6 cos u

2p.y = sin t - t cos t
x = cos t + t sin t,

t = 9.t = 0
x = 1 + t3>2, y = 2 + t3>2,

x = 3e-t, y =
1
2 et

x = 2t3
- 4t + 7, y = t + ln1t + 12

t = 0.

x = 2 sec t, y = tan t; -
p

2
6 t 6

p

2

x = 4 sin t - 2, y = 3 cos t + 1; 0 … t … 2p

x = 4t2, y = 4t; -1 … t … 2

x = 6t + 2, y = 2t; - q 6 t 6 q

7x2
+ 8xy + y2

= 9.
u

ru2
+ sv2

= 10.x2
+ 3xy + y2

= 10
u = 45°

3x2
- 10y2

+ 36x - 20y + 68 = 0

x2
+ 8x + 6y + 28 = 0

4x2
+ 9y2

- 24x - 36y + 36 = 0

4x2
+ 4y2

- 24x + 36y + 81 = 0

50. Find the area of the region that is outside the limaçon
and inside the circle 

51. A racing car driving on the elliptical race track
went out of control at the point (16, 6) and

thereafter continued on the tangent line until it hit a tree at 
(14, k). Determine k.

52. Match each polar equation with its graph.

(a) (b)

(c) (d) r = 1 +

cos u
2

r = 1 + 2 cos u

r = 1 +

sin u
2

r = 1 - 2 sin u

x2>400 + y2>100 = 1

r = 5 sin u.r = 2 + sin u

53. Match each polar equation with its graph.
(a) (b)
(c) (d) r = 3 sin 2ur = 5 cos 5u

r = 3 cos 3ur = 4 cos 2u
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REVIEW &
PREVIEW

PROBLEMS

In Problems 1–6, plot the curve whose parametric equation is given.

1.

2.

3.

4.

5.

6.

In Problems 7–8, find expressions for x and y in terms of h and 

7. 8.

In Problems 9–12, find the length of the given curve.

9.

10.

11.

12.

13. Find the point on the line that is closest to the point (0, 3). What is the
minimum distance between the point and the line?

14. Find parametric equations of the form and for the line
through points and (3, 3).

15. An object moving along the x-axis has position 
(a) Find the velocity and acceleration.
(b) When is the object moving forward?

16. An object initially at rest at position has acceleration 
(a) Find the velocity and position.
(b) When will the object reach position 100?

In Problems 17–20, sketch a plot of the given conic section.

17. 18.

19. 20.

In Problems 21–24, sketch a graph of the given polar equation.

21. 22.

23. 24. r =

1

1 +

1
2

 cos u
r = 4 sin u

u = p>6r = 2

x2
- y2

= 4x2
- 4y2

= 0

x2

4
+

y2

9
= 18x = y2

a = 2.x = 20

s1t2 = t2
- 6t + 8.

11, -12
y = a2t + b2x = a1t + b1

y = 2x + 1

x = tanh t, y = sech t; 0 … t … 4

x = a cos 2t, y = a sin 2t; 0 … t … p>2
x = t + 2, y = 2t - 3; 1 … t … 5

x = t, y = 3t3>2; 0 … t … 4

h
y

x

θ

h
y

x

θ

u.

x = cosh t, y = sinh t; -4 … t … 4

x = t, y = tan 2t; -p>4 6 t 6 p>4
x = 2 sin t, y = -2 cos t; 0 … t … 2p

x = 2 cos t, y = 2 sin t; 0 … t … 2p

x = t>2, y = t2; -1 … t … 2

x = 2t, y = t - 3; 1 … t … 4
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Geometry in Space 
and VectorsCHAPTER 11

11.1 Cartesian
Coordinates in
Three-Space

11.2 Vectors

11.3 The Dot Product

11.4 The Cross Product

11.5 Vector-Valued
Functions and
Curvilinear
Motion

11.6 Lines and Tangent
Lines in 
Three-Space

11.7 Curvature and
Components 
of Acceleration

11.8 Surfaces in 
Three-Space

11.9 Cylindrical and
Spherical
Coordinates

11.1
Cartesian Coordinates in Three-Space
We have reached an important transition point in our study of calculus. Until now,
we have been traveling across that broad flat expanse known as the Euclidean
plane, or two-space. The concepts of calculus have been applied to functions of a
single variable, functions whose graphs can be drawn in the plane. We are now
going to study calculus in three dimensions.All the familiar ideas (such as limit, de-
rivative, integral) are to be explored again from a loftier perspective.

To begin, consider three mutually perpendicular coordinate lines (the x-, y-,
and z-axes) with their zero points at a common point O, called the origin. Al-
though these lines can be oriented in any way one pleases, we follow a custom in
thinking of the y- and z-axes as lying in the plane of the paper with their positive
directions to the right and upward, respectively.The x-axis is then perpendicular to
the paper, and we suppose its positive end to point toward us, thus forming a right-
handed system. We call it right-handed because, if the fingers of the right hand are
curled so that they curve from the positive x-axis toward the positive y-axis, the
thumb points in the direction of the positive z-axis (Figure 1).

The three axes determine three planes, the yz-, xz-, and xy-planes, which divide
space into eight octants (Figure 2). To each point P in space corresponds an or-
dered triple of numbers (x, y, z), its Cartesian coordinates, which measure its di-
rected distances from the three planes (Figure 3).

Plotting points in the first octant (the octant where all three coordinates are
positive) is relatively easy. In Figures 4 and 5, we illustrate something more diffi-
cult by plotting two points from other octants, the points and
Q1-3, 2, -52. P12, -3, 42

x

O

O

y

z

z

x

y

Left-handed system

Right-handed system 

Figure 1

z

x
y

xy plane

xz plane
yz plane

First
octant

x

x

z

z

y

y

P(x,y,z)

z

y

x

P(2, –3, 4)

z

x

y

Q(–3, 2, –5)

Figure 2 Figure 3

Figure 5Figure 4
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The Distance Formula Consider two points and 
in three-space They determine a parallelepided (i.e., a
rectangular box) with and as opposite vertices and with edges parallel to the
coordinate axes (Figure 6). The triangles and are right triangles and,
by the Pythagorean Theorem,

and

Thus,

This gives us the Distance Formula in three-space, which applies even if some co-
ordinates are identical.

� EXAMPLE 1 Find the distance between the points and
which were plotted in Figures 4 and 5.

SOLUTION

�

Spheres and Their Equations It is a small step from the Distance Formula
to the equation of a sphere. By a sphere, we mean the set of all points in three-
dimensional space that are a constant distance (the radius) from a fixed point (the
center). (Recall that a circle is defined as the set of points in a plane that are a con-
stant distance from a fixed point.) In fact, if (x, y, z) is a point on the sphere of ra-
dius r centered at (h, k, l), then (see Figure 7)

1x - h22 + 1y - k22 + 1z - l22 = r2

ƒ PQ ƒ = 21-3 - 222 + 12 + 322 + 1-5 - 422 = 2131 L 11.45

Q1-3, 2, -52,
P12, -3, 42

ƒ P1P2 ƒ = 21x2 - x122 + 1y2 - y122 + 1z2 - z122

 = 1x2 - x122 + 1y2 - y122 + 1z2 - z122
 ƒ P1P2 ƒ

2
= ƒ P1R ƒ

2
+ ƒ RQ ƒ

2
+ ƒ QP2 ƒ

2

ƒ P1Q ƒ
2

= ƒ P1R ƒ
2

+ ƒ RQ ƒ
2

ƒ P1P2 ƒ
2

= ƒ P1Q ƒ
2

+ ƒ QP2 ƒ
2

P1RQP1QP2

P2P1

1x1 Z x2, y1 Z y2, z1 Z z22.
P21x2, y2, z22P11x1, y1, z12

We call this the standard equation of a sphere.
In expanded form, the boxed equation may be written as

Conversely, the graph of any equation of this form is either a sphere, a point (a de-
generate sphere), or the empty set. To see why, consider the following example.

x2
+ y2

+ z2
+ Gx + Hy + Iz + J = 0

z

x

y

P2(x2, y2, z2)

P1(x1, y1, z1)

Q(x2, y2, z1)R(x2, y1, z1)

Figure 6

We have defined a sphere to be the
set of points a given distance away
from some point, that is, those points
(x, y, z) satisfying 

Just as by
“circle” we sometimes mean the
points on and inside the circle’s
boundary (e.g., when we talk about
the “area” of a circle being ),
there are times when by “sphere” we
mean the boundary together with
the interior. (This is sometimes
called a ball or a solid sphere.) In
other words, we sometimes mean the
set of points satisfying 

When we
say that the volume of a sphere is 

we of course mean this latter 

interpretation. The context of a
problem will usually dictate which
“sphere” we are talking about.

4
3

  pr3,

1z - l22 … r2.1y - k22 +

1x - h22 +

pr2

1z - l22 = r2.1y - k22 +

1x - h22 +

What Is a Sphere?

z

x

y

(h, k, l )

(x, y, z)

r

z

x

y

(5, 4, 6)

3

Figure 7 Figure 8
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Section 11.1 Cartesian Coordinates in Three-Space 559

� EXAMPLE 2 Find the center and radius of the sphere with equation

and sketch its graph.

SOLUTION We use the process of completing the square.

Thus, the equation represents a sphere with center at (5, 4, 6) and radius 3. Its
graph is shown in Figure 8. �

If, after completing the square in Example 2, the equation had been

then the graph would be the single point (5, 4, 6); if the right side were negative, the
graph would be the empty set.

Another simple result that follows from the Distance Formula is the Midpoint
Formula. If and are end points of a line segment, then
the midpoint has coordinates

In other words, to find the coordinates of the midpoint of a segment, simply take
the average of corresponding coordinates of the end points.

� EXAMPLE 3 Find the equation of the sphere that has the line segment join-
ing and as a diameter (Figure 9).

SOLUTION The center of this sphere is at the midpoint of the segment, that is,
at (2, 0, 5); the radius r satisfies

We conclude that the equation of the sphere is

�

Graphs in Three-Space It was natural to consider a quadratic equation first
because of its relation to the Distance Formula. But, presumably, a linear equation
in x, y, and z, that is, an equation of the form

should be even easier to analyze. (Note that is a compact way
of saying that A, B, and C are not all zero.) As a matter of fact, we will show in Sec-
tion 11.3 that the graph of a linear equation is a plane. Taking this for granted for
now, let’s consider how we might graph such an equation.

If, as will often be the case, the plane intersects the three axes, we begin by find-
ing these intersection points; that is, we find the x-, y-, and z-intercepts. These three
points determine the plane and allow us to draw the (coordinate-plane) traces,
which are the lines of intersection of that plane with the coordinate planes. Then,
with just a bit of artistry, we can shade in the plane.

A2
+ B2

+ C2
Z 0

Ax + By + Cz = D,  A2
+ B2

+ C2
Z 0

1x - 222 + y2
+ 1z - 522 = 17

r2
= 15 - 222 + 1-2 - 022 + 17 - 522 = 17

15, -2, 721-1, 2, 32

m1 =

x1 + x2

2
,  m2 =

y1 + y2

2
,  m3 =

z1 + z2

2

M1m1, m2, m32
P21x2, y2, z22P11x1, y1, z12

1x - 522 + 1y - 422 + 1z - 622 = 0

 1x - 522 + 1y - 422 + 1z - 622 = 9

 1x2
- 10x + 252 + 1y2

- 8y + 162 + 1z2
- 12z + 362 = -68 + 25 + 16 + 36

 1x2
- 10x +   2 + 1y2

- 8y +   2 + 1z2
- 12z +   2 = -68

x2
+ y2

+ z2
- 10x - 8y - 12z + 68 = 0

(–1, 2, 3)

(5, –2, 7)

Figure 9
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560 Chapter 11 Geometry in Space and Vectors

� EXAMPLE 4 Sketch the graph of 

SOLUTION To find the x-intercept, set y and z equal to zero and solve for x,
obtaining The corresponding point is (4, 0, 0). Similarly, the y- and z-
intercepts are (0, 3, 0) and (0, 0, 6). Next, connect these points by line segments to
get the traces. Then shade in (the first octant part of) the plane, thereby obtaining
the result shown in Figure 10. �

What if the plane does not intersect all three axes? This will happen, for exam-
ple, if one of the variables in the equation of the plane is missing (i.e., has a zero
coefficient).

� EXAMPLE 5 Sketch the graph of the linear equation

in three-space.

SOLUTION The x- and y-intercepts are (3, 0, 0) and (0, 2, 0), respectively, and
these points determine the trace in the xy-plane.The plane never crosses the z-axis
(x and y cannot both be 0), and so the plane is parallel to the z-axis. We have
sketched the graph in Figure 11. �

Notice that in each of our examples the graph of an equation in three-space
was a surface. This contrasts with the two-space case, where the graph of an equa-
tion was usually a curve. We will have a good deal more to say about graphing
equations and the corresponding surfaces in Section 11.8.

Curves in Three-Space We saw parametrized curves in the plane in Section
6.4 and again in Section 10.4. This concept generalizes easily to three dimensions.
A curve in three-space is determined by the parametric equations

We say that a curve is smooth if and exist and are not simultane-
ously zero.

The concept of arc length also generalizes easily to curves in three-space. For
the parametric curve defined above, the arc length is

� EXAMPLE 6 An object’s position at time t is given by the parametrically
defined curve for Sketch this curve and
find its arc length.

SOLUTION We begin by making a table of values of t, x, y, and z; then we
connect the dots in three-space; the curve is shown in Figure 12. The arc length is

� = 2p21 + 1>p2

 =

L

2p

0
21 + 1>p2 dt

 =

L

2p

0
2sin2 t + cos2 t + 1>p2 dt

 L =

L

2p

0
21-sin t22 + 1cos t22 + 11>p22 dt

0 … t … 2p.x = cos t, y = sin t, z = t>p

L =

L

b

a
2[f¿1t2]2

+ [g¿1t2]2
+ [h¿1t2]2 dt

h¿1t2f¿1t2, g¿1t2,
x = f1t2,  y = g1t2,  z = h1t2;  a … t … b

2x + 3y = 6

x = 4.

3x + 4y + 2z = 12.

z

y

x

(0, 2, 0)

(3, 0, 0)

trace

tr
ac

e

tr
ac

e

Figure 11

z

y

x

tr
ac

e

trace

trace

(0, 0, 6)

(4, 0, 0)

(0, 3, 0)

The plane
3x + 4y + 2z = 12

Figure 10
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xt y z
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The curve in Example 6 is called a helix. Notice that if we ignore (for a mo-
ment) the motion in the z-dimension, the object is in uniform circular motion. In-
troducing back the motion in the z-dimension, which is up with constant speed, we
see that the object is going around and around as it moves upward, much like a spi-
ral staircase.

Here is another way to obtain the length of this curve. The helix lies en-
tirely on the surface of a right circular cylinder as shown in Figure 13. Now imag-
ine that the cylinder is cut as indicated and that the cylinder is “peeled” back to
make a rectangle. The helix will become a diagonal of the rectangle, so it will

have length 24 + 4p2
= 24p211 + 1>p22 = 2p21 + 1>p2.

≈

2π

2
�4 + 4π2

Figure 13

Concepts Review
1. The numbers x, y, and z in (x, y, z) are called the _____ of

a point in three-space.

2. The distance between the points and (x, y, z) is
_____.

1-1, 3, 52
3. The equation de-

termines a sphere with center _____ and radius _____.

4. The graph of is a _____ with x-
intercept _____, y-intercept _____, and z-intercept _____.

3x - 2y + 4z = 12

1x + 122 + 1y - 322 + 1z - 522 = 16

Problem Set 11.1
1. Plot the points whose coordinates are (1, 2, 3), (2, 0, 1),

(0, 3, 0), and If appropriate, show the
“box” as in Figures 4 and 5.

2. Follow the directions of Problem 1 for 
and (0, 0, e).

3. What is peculiar to the coordinates of all points in the 
yz-plane? On the z-axis?

4. What is peculiar to the coordinates of all points in the 
xz-plane? On the y-axis?

5. Find the distance between the following pairs of points.
(a) and (1, 2, 3)16, -1, 02

10, p, -32, A -2, 13, 2 B , A23, -3, 3 B ,
1-1, -2, -32.1-2, 4, 52, (b) and 

(c) and 

6. Show that (4, 5, 3), (1, 7, 4), and (2, 4, 6) are vertices of an
equilateral triangle.

7. Show that (2, 1, 6), (4, 7, 9), and are vertices of a
right triangle. Hint: Only right triangles satisfy the Pythagorean
Theorem.

8. Find the distance from to

(a) the xy-plane, (b) the y-axis, and
(c) the origin.

12, 3, -12

18, 5, -62

A -p, -4, 23 B1e, p, 02
12, -2, -321-2, -2, 02

z

x
y

1

11

2

Figure 12

z

x
y
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562 Chapter 11 Geometry in Space and Vectors

9. A rectangular box has its faces parallel to the coordinate
planes and has (2, 3, 4) and as the end points of a main
diagonal. Sketch the box and find the coordinates of all eight
vertices.

10. is on a line through that is parallel
to one of the coordinate axes. Which axis must it be and what are
x and z?

11. Write the equation of the sphere with the given center
and radius.
(a) (1, 2, 3); 5 (b)

(c)

12. Find the equation of the sphere whose center is (2, 4, 5)
and that is tangent to the xy-plane.

In Problems 13–16, complete the squares to find the center and ra-
dius of the sphere whose equation is given (see Example 2).

13.

14.

15.

16.

In Problems 17–24, sketch the graphs of the given equations. Begin
by sketching the traces in the coordinate planes (see Examples 4
and 5).

17. 18.

19. 20.

21. 22.

23. 24.

In Problems 25–32, find the arc length of the given curve.

25.

26.

27.

28.

29.

30.

31.

32.

In Problems 33–36, set up a definite integral for the arc length
of the given curve. Use the Parabolic Rule with or a CAS to
approximate the integral.

n = 10

CAS

x = 2 cos t, y = 2 sin t, z = t>20; 0 … t … 8p

x = 2 cos t, y = 2 sin t, z = 3t; -p … t … p

x = t2, y =

423
3

 t3>2, z = 3t; 1 … t … 4

x = t2, y = 14>32t3>2, z = t; 0 … t … 8

x = t3>2, y = t3>2, z = t; 2 … t … 4

x = t3>2, y = 3t, z = 4t; 1 … t … 4

x = t>4, y = t>3, z = t>2; 1 … t … 3

x = t, y = t, z = 2t; 0 … t … 2

1x - 222 + y2
+ z2

= 4x2
+ y2

+ z2
= 9

3x + 4z = 12x + 3y = 8

-3x + 2y + z = 6x + 3y - z = 6

3x - 4y + 2z = 242x + 6y + 3z = 12

x2
+ y2

+ z2
+ 8x - 4y - 22z + 77 = 0

4x2
+ 4y2

+ 4z2
- 4x + 8y + 16z - 13 = 0

x2
+ y2

+ z2
+ 2x - 6y - 10z + 34 = 0

x2
+ y2

+ z2
- 12x + 14y - 8z + 1 = 0

Ap, e, 22 B ; 1p 1-2, -3, -62; 25

Q12, -4, 32P(x, 5, z)

16, -1, 02 33.

34.

35.

36.

37. Find the equation of the sphere that has the line segment
joining and as a diameter (see Example 3).

38. Find the equations of the tangent spheres of equal radii
whose centers are and 

39. Find the equation of the sphere that is tangent to the
three coordinate planes if its radius is 6 and its center is in the
first octant.

40. Find the equation of the sphere with center (1, 1, 4) that is
tangent to the plane 

41. Describe the graph in three-space of each equation.
(a) (b)
(c) (d)

(e) (f)

42. The sphere in-
tersects the plane in a circle. Find the circle’s center and
radius.

43. An object’s position P changes so that its distance from
is always twice its distance from (1, 2, 3). Show that P is

on a sphere and find its center and radius.

44. An object’s position P changes so that its distance from
always equals its distance from (2, 3, 2). Find the equa-

tion of the plane on which P lies.

45. The solid spheres 
and intersect in a solid.
Find its volume.

46. Do Problem 45 assuming that the second solid sphere is

47. The curve defined by is a
helix. Hold a fixed and use a CAS to obtain a parmetric plot of
the helix for various values of c. What effect does c have on the
curve?

48. For the helix described in Problem 47, hold c fixed and
use a CAS to obtain a parametric plot for various values of a.
What effect does a have on the curve?

Answers to Concepts Review: 1. coordinates
2. 3.
4. plane; 4; -6; 3

1-1, 3, 52; 421x + 122 + 1y - 322 + 1z - 522

CAS

x = a cos t, y = a sin t, z = ctCAS

1x - 222 + 1y - 422 + 1z - 322 … 9.

1x - 222 + 1y - 422 + 1z - 322 … 4
1x - 122 + 1y - 222 + 1z - 122 … 4

11, 2, -32

11, 2, -32

z = 2
1x - 122 + 1y + 222 + 1z + 122 = 10

z = 29 - x2
- y2x2

+ y2
= 4

xyz = 0xy = 0
x = yz = 2

x + y = 12.

15, -3, 62.1-3, 1, 22
14, -1, 521-2, 3, 62

x = sin t, y = cos t, z = sin t; 0 … t … 2p

x = 2 cos t, y = sin t, z = t; 0 … t … 6p

x = t, y = t2, z = t3; 1 … t … 2

x = 1t, y = t, z = t; 1 … t … 6

Many quantities that occur in science (e.g., length, mass, volume, and electric
charge) can be specified by giving a single number.These quantities (and the num-
bers that measure them) are called scalars. Other quantities, such as velocity, force,
torque, and displacement, require both a magnitude and a direction for complete
specification. We call such quantities vectors and represent them by arrows (di-
rected line segments).The length of the arrow represents the magnitude, or length,
of the vector; its direction is the direction of the vector. The vector in Figure 1 has
length 2.3 units and direction 30° north of east (or 30° from the positive x-axis).

Arrows that we draw, like those shot from a bow, have two ends. There is the
feather end (the initial point), called the tail, and the pointed end (the terminal

11.2
Vectors

30�

1 unit

Figure 1562



Section 11.2 Vectors 563

Tail Head

Figure 2

point), called the head, or tip (Figure 2). Two vectors are considered to be
equivalent if they have the same magnitude and direction (Figure 3).We shall sym-
bolize vectors by boldface letters, such as u and v. Since this is hard to accomplish
in normal writing, you might use and The magnitude, or length, of a vector u is
symbolized by 

In general, we think of vectors as being three-dimensional; that is, their initial
and terminal points are points in three-space. There are many applications, how-
ever, where the vectors lie entirely in the xy-plane. The context of a problem
should indicate whether the vectors are two- or three-dimensional.

Operations on Vectors To find the sum, or resultant, of u and v, move v
without changing its magnitude or direction until its tail coincides with the head of
u. Then is the vector connecting the tail of u to the head of v. This method
(called the Triangle Law) is illustrated in the left half of Figure 4.

u + v

7u 7 . v
!

.u
!

As an alternative way to find move v so that its tail coincides with that
of u. Then is the vector with this common tail and coinciding with the diago-
nal of the parallelogram that has u and v as sides. This method (called the
Parallelogram Law) is illustrated on the right in Figure 4.

These two methods are equivalent ways to define what we mean by the sum of
two vectors.You should convince yourself that vector addition is commutative and
associative; that is,

If u is a vector, then 3u is the vector with the same direction as u but three
times as long; is twice as long but oppositely directed (Figure 5). In general,
cu, called a scalar multiple of u, has magnitude times that of u and is similarly or
oppositely directed, depending on whether c is positive or negative. In particular,

(usually written ) has the same length as u, but opposite direction. It is
called the negative of u because, when we add it to u, the result is a vector that is
nothing more than a point. This latter vector (the only vector without a well-
defined direction) is called the zero vector and is denoted by 0. It is the identity
element for addition; that is, Finally, subtraction is defined by

� EXAMPLE 1 In Figure 6, express w in terms of u and v.

SOLUTION Since it follows that

�

If P and Q are points in the plane, then denotes the vector with tail at P
and head at Q.

� EXAMPLE 2 In Figure 7, Express m in terms of u and v.AB
!

=
2
3 AC

!

.

PQ
!

w = v - u

u + w = v,

u - v = u + 1-v2
u + 0 = 0 + u = u.

-u1-12u
ƒ c ƒ

-2u

 1u + v2 + w = u + 1v + w2
 u + v = v + u

u + v
u + v,

Equivalent
vectors

Figure 3

3u

–2u

u

Figure 5

w

u
v

Figure 6

A

B

C

v
m

u

Figure 7

u + v u + v

v

v

v

v

u u

Two equivalent ways of adding vectors

Figure 4
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564 Chapter 11 Geometry in Space and Vectors

SOLUTION

More generally, if where then

�

The expression just obtained for m can also be written as

If we allow t to range over all scalars, we obtain the set of all vectors with tails at
the same point as the tail of u and heads on the line (see Figure 8). This fact will
be important to us later in describing lines using vector language.

An Application A force has both a magnitude and a direction. If two forces u
and v act at a point, the resultant force at the point is the vector sum of the two forces.

� EXAMPLE 3 A weight of 200 newtons is supported by two wires, as shown
in Figure 9. Find the magnitude of the tension in each wire.

SOLUTION All forces are in one plane, so the vectors in this problem are two-
dimensional. The weight w and the two tensions u and v are forces that behave as
vectors (Figure 10). Each of these vectors can be expressed as a sum of a horizontal
and a vertical component.The weight is in equilibrium, so (1) the magnitude of the
leftward force must equal the magnitude of the rightward force, and (2) the
magnitude of the upward force must equal the magnitude of the downward force.
In other words, the net force is zero. Thus,

(1)

(2)

When we solve (1) for and substitute in (2), we get

or

Then

�

Algebraic Approach to Vectors For a given vector u in the plane we
choose as its representative the arrow that has its tail at the origin (Figure 11).This
arrow is uniquely determined by the coordinates and of its head; that is, the
vector u is completely described by the ordered pair The numbers and

are called the components of the vector u. We write rather than 
to distinguish the vector originating at the origin and terminating at the point with
coordinates and from the point having coordinates and 

For vectors in three-space, the generalization is straightforward. We represent
the vector by an arrow starting at the origin and terminating at the point with co-
ordinates and and we denote this vector by (Figure 12). In the
remainder of this section, we develop the properties of vectors in three dimen-
sions; the results for vectors in two dimensions should be obvious.

The vectors and are equal if and only if the cor-
responding components are equal; that is, and To multi-
ply a vector u by a scalar c, we multiply each component by c; that is,

cu = uc = 8cu1, cu2, cu39
u3 = v3.u1 = v1, u2 = v2,

v = 8v1, v2, v39u = 8u1, u2, u39

8u1, u2, u39u3,u1, u2,

u2.u1u2,u1

1u1, u228u1, u29u2

u18u1, u29.
u2u1

7v 7 =

7u 7cos 33°
cos 50°

L

129.52 cos 33°
cos 50°

L 168.99 newtons

7u 7 =

200
sin 33° + cos 33° tan 50°

L 129.52 newtons

7u 7sin 33° +

7u 7cos 33°
cos 50°

 sin 50° = 200

7v 7
 7u 7sin 33° + 7v 7sin 50° = 7w 7 = 200

 7u 7cos 33° = 7v 7cos 50°

/

u + t1v - u2

m = 11 - t2u + tv

0 6 t 6 1,AB
!

= tAC
!

,

m = u + AB
!

= u +
2
3 AC

!

= u +
2
31v - u2 =

1
3 u +

2
3 v

u + t (v – u)

v – u

v

u

Figure 8

33� 50�

200

Figure 9

33�

w

u
v

50�

Figure 10

Identify u with the 
ordered pair �u1, u2�

 �u1, u2�
y

x

Figure 11

z

y

x Identify u with the
ordered triple <u1, u2, u3>

<u1, u2, u3>

Figure 12
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Section 11.2 Vectors 565

The notation indicates the vector The vector with
all components equal to zero is called the zero vector; that is The sum
of the two vectors u and v is

The vector is defined to be

Figure 13 indicates that these definitions are equivalent to the geometric ones
given earlier in this section.

u - v = u + 1-12v = 8u1 - v1, u2 - v2, u3 - v39
u - v

u + v = 8u1 + v1, u2 + v2, u3 + v39

0 = 80, 0, 09.1-12u = 8-u1, -u2, -u39.-u

Three special vectors in three-space are and
These are called the standard unit vectors, or basis vectors. Every

vector can be written in terms of i, j, and k as follows:

The magnitude of a vector is just the length of the arrow that represents it. If
the arrow begins at the origin and ends at then its length can be readi-
ly determined from the distance formula:

Just as gives the distance from the origin to a point c on the number line,
gives the distance from the origin to the point in space whose ordered triple is

(Figure 14). Using this algebraic interpretation of vectors, the fol-
lowing rules for operating with vectors can be be easily established.
u = 8u1, u2, u39

7u 7ƒ c ƒ

7u 7 = 21u1 - 022 + 1u2 - 022 + 1u3 - 022 = 2u1
2

+ u2
2

+ u3
2

1u1, u2, u32,
u = 8u1, u2, u39 = u1i + u2 j + u3k

u = 8u1, u2, u39
k = 80, 0, 19. j = 80, 1, 09,i = 81, 0, 09,

Here are the definitions for vectors
in two-space. If 

and c is a scalar, then

7u 7 = 2u1
2

+ u2
2

i = 81, 09;  j = 80, 19
 u - v = 8u1 - v1, u2 - v29
 u + v = 8u1 + v1, u2 + v29
cu = 8cu1, cu29

v = 8v1, v29,
u = 8u1, u29,

Vectors in Two-Space

y

x

x

z

�c�

0 c

��u�� � �u1
2 + u2

2 + u3
2

Figure 14

z

y

x

z

y

x Vector Addition

u = <u1, u2, u3>

u + v = <u1+v1, u2+v2, u3+v3>

z

y

x Scalar Multiplication

2u = <2u1, 2u2, 2u3>

–u = <–u1, –u2, –u3>

v = <v1, v2, v3>

u = <u1, u2, u3>

Figure 13

Theorem A

For any vectors u, v, and w, and any scalars a and b, the following relationships
hold.

1. 2.

3. 4.

5. 6.

7. 8.

9. 7au 7 = ƒ a ƒ 7u 7
1u = u1a + b2u = au + bu

a1u + v2 = au + ava1bu2 = 1ab2u
u + 1-u2 = 0u + 0 = 0 + u = u

1u + v2 + w = u + 1v + w2u + v = v + u
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566 Chapter 11 Geometry in Space and Vectors

Proof We illustrate the proof by demonstrating Rules 6 and 9 for the case of
three-dimensional vectors.

This proves Rule 6. Now, for Rule 9,

�

� EXAMPLE 4 Let and Find (a) and 
(b) and express them in terms of i, j, and k. Find (c) and (d) 

SOLUTION

(a)

(b)

(c)

(d) �7 -3u 7 = ƒ -3 ƒ 7u 7 = 326

7u 7 = 212
+ 12

+ 22
= 26

 = 81, 3, -29 = i + 3j - 2k
 u - 2v = 81, 1, 29 - 280, -1, 29 = 81 - 0, 1 - 1-22, 2 - 49

 = 81, 0, 49 = 1i + 0j + 4k = i + 4k

 u + v = 81, 1, 29 + 80, -1, 29 = 81 + 0, 1 + 1-12, 2 + 29

7 -3u 7 .7u 7 ,u - 2v,
u + v,v = 80, -1, 29.u = 81, 1, 29

 = 2a22u1
2

+ u2
2

+ u3
2

= ƒ a ƒ  7u 7
 = 2a21u1

2
+ u2

2
+ u3

22
 = 21au122 + 1au222 + 1au322

 7au 7 = 7 8au1, au2, au39 7

 = au + av

 = a8u1, u2, u39 + a8v1, v2, v39
 = 8au1, au2, au39 + 8av1, av2, av39
 = 8au1 + av1, au2 + av2, au3 + av39
 = 8a1u1 + v12, a1u2 + v22, a1u3 + v329
 = a8u1 + v1, u2 + v2, u3 + v39

 a1u + v2 = a18u1, u2, u39 + 8v1, v2, v392

� EXAMPLE 5 Let Find and find a unit vector u with the
same direction as v.

SOLUTION In this problem, all vectors are two-dimensional. The length, or
magnitude, of v is To find u, we divide v by its length 
that is,

The length of u is then

�7u 7 = " v
7v 7 " = " 1

7v 7  v " = 2 1
7v 7 2 7v 7 =

1
7v 7 7v 7 = 1

u =

v
7v 7 =

84, -39242
+ 1-322 =

84, -39
5

=

1
5

 84, -39 = h 4
5

, -
3
5
i

7v 7 ;7v 7 = 242
+ 1-322 = 5.

7v 7 ,v = 84, -39.
We will often talk of “dividing” a
vector v by a scalar c. By this we
mean we multiply the vector by the
reciprocal of c. That is,

provided, of course, that The
expression on the right is simply a
scalar times a vector, which we de-
fined earlier in this section. Dividing
one vector by another is, of course,
nonsense.

c Z 0.

v
c

=

1
c

 v

Dividing a Vector by a Scalar

Concepts Review
1. Vectors are distinguished from scalars in that vectors

have both _____ and _____.

2. Two vectors are considered to be equivalent if _____.

3. If the tail of v coincides with the head of u, then is
the vector with tail at _____ and head at _____.

4. The vector has length _____ times that of
the vector u = 82, 1, 19.

u = 86, 3, 39
u + v

Definition Unit Vector

A vector having length one is called a unit vector.
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Section 11.2 Vectors 567

Problem Set 11.2
In Problems 1–4, draw the vector w.

1. 2. w = 2u - 3vw = u +
3
2 v

3. 4. w = u1 + u2 + u3w = u1 + u2 + u3

5. Figure 15 is a parallelogram. Express w in terms of u
and v.

6. In the large triangle of Figure 16, m is a median (it bi-
sects the side to which it is drawn). Express m and n in terms of 
u and v.

7. In Figure 17, and Find 

8. Do Problem 7 if the top angle is 90° and the two side an-
gles are each 135°.

For the two-dimensional vectors u and v in Problems 9–12, find
the sum the difference and the magnitudes and

9.

10.

11.

12.

For the three-dimensional vectors u and v in Problems 13–16, find
the sum the difference and the magnitudes and

13.

14.

15.

16. u = 80.3, 0.3, 0.59, v = 82.2, 1.3, -0.99
u = 81, 0, 19, v = 8-5, 0, 09
u = 80, 0, 09, v = 8-3, 3, 19
u = 8-1, 0, 09, v = 83, 4, 09

7v 7 .
7u 7u - v,u + v,

u = 8-0.2, 0.89, v = 8-2.1, 1.39
u = 812, 129, v = 8-2, 29
u = 80, 09, v = 8-3, 49
u = 8-1, 09, v = 83, 49

7v 7 .
7u 7u - v,u + v,

7w 7 .7u 7 = 7v 7 = 1.w = -1u + v2

17. In Figure 18, forces u and v each have magnitude 50
pounds. Find the magnitude and direction of the force w needed
to counterbalance u and v.

C

18. Mark pushes on a post in the direction S 30° E (30° east of
south) with a force of 60 pounds. Dan pushes on the same post in
the direction S 60° W with a force of 80 pounds. What are the
magnitude and direction of the resultant force?

19. A 300-newton weight rests on a smooth (friction negligi-
ble) inclined plane that makes an angle of 30° with the horizon-
tal.What force parallel to the plane will just keep the weight from
sliding down the plane? Hint: Consider the downward force of
300 newtons to be the sum of two forces, one parallel to the plane
and one perpendicular to it.

20. An object weighing 258.5 pounds is held in equilibrium by
two ropes that make angles of 27.34° and 39.22°, respectively,
with the vertical. Find the magnitude of the force exerted on the
object by each rope.

21. A wind with velocity 45 miles per hour is blowing in the
direction N 20° W. An airplane that flies at 425 miles per hour in
still air is supposed to fly straight north. How should the airplane
be headed and how fast will it then be flying with respect to the
ground?

22. A ship is sailing due south at 20 miles per hour. A man
walks west (i.e., at right angles to the side of the ship) across the
deck at 3 miles per hour.What are the magnitude and direction of
his velocity relative to the surface of the water?

23. Julie, flying in a wind blowing 40 miles per hour due
south, discovers that she is heading due east when she points her
airplane in the direction N 60° E. Find the airspeed (speed in still
air) of the plane.

24. What heading and airspeed are required for an airplane to
fly 837 miles per hour due north if a wind of 63 miles per hour is
blowing in the direction S 11.5° E?

25. Prove all parts of Theorem A for the case of two-
dimensional vectors.

26. Prove parts 1–5 and 7–8 of Theorem A for the case of
three-dimensional vectors.

27. Prove, using vector methods, that the line segment joining
the midpoints of two sides of a triangle is parallel to the third
side.

28. Prove that the midpoints of the four sides of an arbitrary
quadrilateral are the vertices of a parallelogram.

C

C

C

≈

≈

u
v u

v

u1

u2

u3

u1 u2

u3

u w

v

Figure 15

m

n

vu
120�

120�

120�

u v

w

Figure 16 Figure 17

S

N

u v45�

30�

Figure 18
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568 Chapter 11 Geometry in Space and Vectors

29. Let be the edges of a polygon arranged in
cyclic order as shown for the case in Figure 19. Show that

v1 + v2 +
Á

+ vn = 0

n = 7
v1, v2, Á , vn

30. Let n points be equally spaced on a circle, and let
be the vectors from the center of the circle to these

n points. Show that 

31. Consider a horizontal triangular table with each vertex
angle less than 120°. At the vertices are frictionless pulleys over
which pass strings knotted at P, each with a weight W attached as
shown in Figure 20. Show that at equilibrium the three angles at
P are equal; that is, show that a + b = a + g = b + g = 120°.

v1 + v2 +
Á

+ vn = 0.
v1, v2, Á , vn

32. Show that the point P of the triangle of Problem 31 that
minimizes is the point where the three an-
gles at P are equal. Hint: Let and be the points where
the weights are attached. The center of gravity is then located

units below the plane of the triangle.
The system is in equilibrium when the center of gravity of the
three weights is lowest.

33. Let the weights at A, B, and C of Problem 31 be 3w, 4w,
and 5w, respectively. Determine the three angles at P at equilib-
rium. What geometric quantity (as in Problem 32) is now
minimized?

34. A company will build a plant to manufacture refrigera-
tors to be sold in cities A, B, and C in quantities a, b, and c,
respectively, each year. Where is the best location for the plant,
that is, the location that will minimize delivery costs (see Prob-
lem 33)?

35. A 100-pound chandelier is held in place by four wires at-
tached to the ceiling at the four corners of a square. Each wire
makes an angle of 45° with the horizontal. Find the magnitude of
the tension in each wire.

36. Repeat Problem 35 for the case where there are three
wires attached to the ceiling at the three corners of an equilateral
triangle.

Answers to Concepts Review: 1. magnitude; direction
2. they have the same magnitude and direction 3. the tail of u;
the head of v 4. 3

1
31 ƒ AA¿ ƒ + ƒ BB¿ ƒ + ƒ CC¿ ƒ 2

C¿A¿, B¿,
ƒ AP ƒ + ƒ BP ƒ + ƒ CP ƒ

We have discussed scalar multiplication, that is, the multiplication of a vector u by
a scalar c. The result cu is always a vector. Now we introduce a multiplication for
two vectors u and v. It is called the dot product, or scalar product, and is symbol-
ized by We define it for two-dimensional vectors as

and for three-dimensional vectors as

� EXAMPLE 1 Let and Com-
pute each of the following if they are defined: (a) (b) (c) (d) 
and (e) 

SOLUTION
(a)
(b)
(c)
(d)
(e) is not defined. The quantity is a scalar. A scalar dotted with a

vector doesn’t make sense. �

u # v1u # v2 # w
u # u = 80, 1, 19 # 80, 1, 19 = 02

+ 12
+ 12

= 2
v # w = 82, -1, 19 # 86, -3, 39 = (2)(6) + 1-121-32 + (1)(3) = 18
v # u = 82, -1, 19 # 80, 1, 19 = (2)(0) + 1-12(1) + (1)(1) = 0
u # v = 80, 1, 19 # 82, -1, 19 = (0)(2) + (1)1-12 + (1)(1) = 0

1u # v2 # w.
u # u,v # w,v # u,u # v,

w = 86, -3, 39.u = 80, 1, 19, v = 82, -1, 19,
u # v = 8u1, u2, u39 # 8v1, v2, v39 = u1v1 + u2v2 + u3v3

u # v = 8u1, u29 # 8v1, v29 = u1v1 + u2v2

u # v.

11.3
The Dot Product

v6

v7

v1

v2

v3

v4

v5

Figure 19

W

W

B BA A

CC

P

W

�
�

�

� �

�

Figure 20
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Section 11.3 The Dot Product 569

The properties of the dot product are easy to establish. (See Problems 46–50.)
Note that this theorem, as well as all others in this section, applies to both two- and
three-dimensional vectors.

To emphasize the significance of the dot product we offer the following alter-
native formula for it that involves the geometric properties of the vectors u and v.

Proof To prove this result, apply the Law of Cosines to the triangle in Figure 1.

On the other hand, from the properties of the dot product stated in Theorem A,

Equating the two expressions for gives

�

� EXAMPLE 2 Find the angle between and (see Fig-
ure 2).

SOLUTION Solving for in Theorem B gives

Then

�

An important consequence of Theorem B is the following.

u L cos-110.8622 L 0.532 1or 30.5°2

cos u =

u # v
7u 7 7v 7 =

182152 + 1621122
11021132 =

112
130

L 0.862

cos u

v = 85, 129u = 88, 69
 u # v = 7u 7 7v 7cos u

 -2 7u 7 7v 7cos u = -2u # v

 7u 72 + 7v 72 - 2 7u 7 7v 7cos u = 7u 72 + 7v 72 - 2u # v

7u - v 72
 = 7u 72 + 7v 72 - 2u # v

 = u # u - u # v - v # u + v # v

 = u # 1u - v2 - v # 1u - v2
 7u - v 72 = 1u - v2 # 1u - v2

7u - v 72 = 7u 72 + 7v 72 - 2 7u 7 7v 7cos u

θ

u – v

uv

Figure 1

θ

y

x

�8, 6�

�5, 12�

Figure 2

Theorem A Properties of the Dot Product

If u, v, and w are vectors, and c is a scalar, then

1. 2.

3. 4.

5. u # u = 7u 72
0 # u = 0c1u # v2 = 1cu2 # v

u # 1v + w2 = u # v + u # wu # v = v # u

Theorem B

If is the smallest nonnegative angle between the nonzero vectors u and v,
then

u # v = 7u 7 7v 7cos u

u

Theorem C Perpendicularity Criterion

Two vectors u and v are perpendicular if and only if their dot product,
is 0.

u # v,
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570 Chapter 11 Geometry in Space and Vectors

Proof Two nonzero vectors are perpendicular if and only if the smallest nonneg-
ative angle between them is that is, if and only if But if
and only if (This result is valid for zero vectors, provided that we agree
that a zero vector is perpendicular to every other vector.) �

u # v = 0.
cos u = 0cos u = 0.p>2;u

� EXAMPLE 3 Find the angles between each of the three pairs of vectors
from Example 1. Which pairs are orthogonal?

SOLUTION For the vectors u and v, we have

For the vectors u and w, we have

Finally, for the vectors v and w, we have

Thus the pair u and v and the pair u and w are orthogonal, so Note
that for the pair v and w, the cosine of the angle between them is 1, indicating that

that is, the vectors point the same direction. �

Recall that every vector u in the plane can be written as where
and and that every vector v in three space can be written as

where, in this case, and 

� EXAMPLE 4 Find the measure of the angle ABC, where the three points
are A(4, 3), and as in Figure 3.

SOLUTION

�

� EXAMPLE 5 Find the measure of angle ABC if the points are 
and (Figure 4).

SOLUTION First we determine vectors u and v (emanating from the origin)
equivalent to and This is done by subtracting the coordinates of the initial
points from those of the terminal points, that is,

 v = BC
!

= 85 - 2, -3 - 4, 2 + 69 = 83, -7, 89
 u = BA

!

= 81 - 2, -2 - 4, 3 + 69 = 8-1, -6, 99
BC

!

.BA
!

C15, -3, 22B12, 4, -62, A11, -2, 32,
 u L 1.468 1about 84.09°2

 cos u =

u # v
7u 7 7v 7 =

3

5234
L 0.1029

 u # v = 132152 + 1421-32 = 3

 7v 7 = 252
+ 1-322 = 234

 7u 7 = 232
+ 42

= 5

 v = BC
!

= 16 - 12i + 1-4 + 12j = 5i - 3j = 85, -39
 u = BA

!

= 14 - 12i + 13 + 12j = 3i + 4j = 83, 49

C16, -42B11, -12,

k = 80, 0, 19.i = 81, 0, 09, j = 80, 1, 09,v = v1i + v2 j + v3k
j = 80, 19,i = 81, 09 u = u1i + u 2 j,

u3 = 0;

u1 = u2 = p>2.

cos u3 =

v # w
7v 7 7w 7 =

(2)(6) + (-1)1-32 + 112(3)
7 82, -1, 19 7 7 86, -3, 39 7 =

1826 A326 B = 1

cos u2 =

u # w
7u 7 7w 7 =

(0)(6) + (1)1-32 + (1)(3)
7 80, 1, 19 7 7 86, -3, 39 7 =

022 A326 B = 0

cos u1 =

u # v
7u 7 7v 7 =

(0)(2) + (1)1-12 + (1)(1)
7 80, 1, 19 7 7 82, -1, 19 7 =

022 26
= 0

y

x

v

u
A (4, 3)

C (6, –4)

B (1, –1)

θ

Figure 3

Definition Orthogonal

Vectors that are perpendicular are said to be orthogonal.

θ

A(1, –2, 3)

C(5, –3, 2)B(2, 4, –6)

Figure 4
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Section 11.3 The Dot Product 571

Thus,

�

Direction Angles and Cosines The smallest nonnegative angles between a
nonzero three-dimensional vector a and the basis vectors i, j, and k are called the 
direction angles of a; they are denoted and respectively, as shown in Fig-
ure 5. It is often more convenient to work with the direction cosines:
and If then

Notice that

The vector is a unit vector having the same direction as a.

� EXAMPLE 6 Find the direction angles for the vector 

SOLUTION Since 

and

�

Projections Let u and v be vectors, and let be the angle between them. For
now, we assume that Let w be the vector in the direction of v that
has magnitude (see Figure 6). Since w has the same direction as v, we
know that for some nonnegative scalar c. On the other hand, the
magnitude of w must be Thus,

The constant c is therefore

Thus,

For we define w to be the vector in the line determined by v, but
pointing in the direction opposite v (see Figure 7). The magnitude of this vector is

for some positive scalar c. Thus,
Since w points in the direction opposite v, we have 
Thus, in both cases we have The vector w is calledw = 1u # v> 7v 722v.1u # v> 7v 722v.

w = -cv =-u # v> 7v 72. c = 1- 7u 7cos u2>1 7v 7 2 =7w 7 = - 7u 7cos u = c 7v 7
p>2 6 u … p,

w = au # v
7v 72 bv

c =

7u 7
7v 7  cos u =

7u 7
7v 7  

u # v
7u 7 7v 7 =

u # v
7v 72

7u 7cos u = 7w 7 = 7cv 7 = c 7v 7
7u 7cos u.

w = cv
7u 7cos u

0 … u … p>2.
u

a L 55.55°, b = 135°, g L 64.90°

cos a =

4

522
=

222
5

,    cos b = -

5

522
= -

22
2

,    cos g =

3

522
=

322
10

7a 7 = 242
+ 1-522 + 32

= 522,

a = 4i - 5j + 3k.

8cos a, cos b, cos g9
cos2 a + cos2 b + cos2 g =

a1
2

7a 72 +

a2
2

7a 72 +

a3
2

7a 72 = 1

 cos g =

a # k
7a 7 7k 7 =

a3

7a 7

 cos b =

a # j
7a 7 7 j 7 =

a27a 7 , 

 cos a =

a # i
7a 7 7 i 7 =

a17a 7 , 
a = a1i + a2 j + a3k,cos g.

cos a, cos b,
g,a, b

 u = 0.3894 1about 22.31°2
 cos u =

u # v
7u 7 7v 7 =

1-12132 + 1-621-72 + 19218221 + 36 + 8129 + 49 + 64
L 0.9251

z

O
y

a

x

k

i
j

�

�

�

Figure 5

θ

θ

vw

u

��u�� cos 

Figure 6

θ

θ

vw

u

��u�� cos

Figure 7
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the vector projection of u on v, or sometimes just the projection of u on v, and is
denoted 

The scalar projection of u on v is defined to be It is positive, zero, or neg-
ative, depending on whether is acute, right, or obtuse. When the
scalar projection is equal to the magnitude of and when the
scalar projection is equal to the opposite of the magnitude of 

� EXAMPLE 7 Let and Find the vector projection of
u on v and the scalar projection of u on v.

SOLUTION Figure 8 shows the two vectors. The vector projection is

and the scalar projection is

�

The work done by a constant force F in moving an object along the line from P
to Q is the magnitude of the force in the direction of the motion, times the distance
moved. Thus, if D is the vector from P to Q, the work done is

That is,

� EXAMPLE 8 A force in newtons moves an object from (1, 0) to
(7, 1), where distance is measured in meters (Figure 9). How much work is done?

SOLUTION Let D be the vector from (1, 0) to (7, 1); that is, let 
Then

�

Planes One fruitful way to describe a plane is by using vector language. Let
be a fixed nonzero vector and be a fixed point. The set

of points P(x, y, z) satisfying is the plane through perpendicular to n.
Since every plane contains a point and is perpendicular to some vector, a plane can
be characterized in this way.

To get the Cartesian equation of the plane, write the vector in component
form; that is,

Then is equivalent to

This equation (in which at least one of A, B, and C is different from zero) is called
the standard form for the equation of a plane.

If we remove the parentheses and simplify, the boxed equation takes the form
of the general linear equation

Ax + By + Cz = D, A2
+ B2

+ C2
Z 0

A1x - x12 + B1y - y12 + C1z - z12 = 0

P1P
!

# n = 0

P1P
!

= 8x - x1, y - y1, z - z19
P1P

!

P1P1P
!

# n = 0
P11x1, y1, z12n = 8A, B, C9

Work = F # D = 182162 + 152112 = 53 newton-meters = 53 joules

D = 6i + j.

F = 8i + 5j

Work = F # D

1Scalar projection of F on D2 7D 7 = A 7F 7cos u B 7D 7

7u 7cos u = 7 8-1, 59 7 8-1, 59 # 83, 39
78-1, 59 7 7 83, 39 7 =

-3 + 15232
+ 32

= 222

pr83, 398-1, 59 = a 8-1, 59 # 83, 39
783, 39 72 b83, 39 =

-3 + 15

32
+ 32  83, 39 = 82, 29 = 2i + 2j

v = 83, 39.u = 8-1, 59
prv u.
p>2 6 u … p,prv u,
0 … u … p>2,u

7u 7cos u.

prv u = au # v
7v 72 bv

prv u:

v

prvu

u

1

3

4

–1–2 2 3 4 x

y

(3, 3)

(–1, 5)

Figure 8

y

x

F = 8i + 5j

D = 6i + j

Work = F    D

(7, 1)

(1, 0)

Figure 9
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Section 11.3 The Dot Product 573

Thus, every plane has a linear equation. Conversely, the graph of a linear equa-
tion in three-space is always a plane. To see the latter, let satisfy the
equation; that is,

When we subtract this equation from the one above, we have the boxed equation,
which we know represents a plane.

� EXAMPLE 9 Find the equation of the plane through perpendicu-
lar to Then find the angle between this plane and the one with equa-
tion 

SOLUTION To perform the first task, simply apply the standard form for the
equation of a plane to the problem at hand, which gives

or, equivalently,

A vector m perpendicular, or normal, to the second plane is The
angle between two planes is the angle between their normals (Figure 10). Thus,

Actually, there are two angles between two planes, but they are
supplementary.The process just described will lead to one of them.The other, if de-
sired, is obtained by subtracting the first value from 180°. In our case, it would be
103.74°. �

� EXAMPLE 10 Show that the distance L from the point to the
plane is given by the formula

SOLUTION Let be a point on the plane, and let 
be the vector from to as in 

Figure 11. Now is a vector perpendicular to the given plane, though
it might point in the opposite direction of that in our figure. The number L that we
seek is the length of the projection of m on n. Thus,

But is on the plane, and so

Substitution of this result in the expression for L yields the desired formula. �

Ax1 + By1 + Cz1 = D

1x1, y1, z12
 =

ƒ Ax0 + By0 + Cz0 - 1Ax1 + By1 + Cz12 ƒ2A2
+ B2

+ C2

 =

ƒ A1x0 - x12 + B1y0 - y12 + C1z0 - z12 ƒ2A2
+ B2

+ C2

 L = ƒ 7m 7cos u ƒ =

ƒ m # n ƒ

7n 7

n = 8A, B, C9
1x0, y0, z02,1x1, y1, z128x0 - x1, y0 - y1, z0 - z19

m =1x1, y1, z12

L =

ƒ Ax0 + By0 + Cz0 - D ƒ2A2
+ B2

+ C2

Ax + By + Cz = D
1x0, y0, z02

 u L 76.26°

 cos u =

m # n
7m 7 7n 7 =

132122 + 1-42142 + 17213229 + 16 + 4924 + 16 + 9
L 0.2375

u

m = 83, -4, 79.
2x + 4y + 3z = 8

21x - 52 + 41y - 12 + 31z + 22 = 0

3x - 4y + 7z = 5.
n = 82, 4, 39. 15, 1, -22

Ax1 + By1 + Cz1 = D

1x1, y1, z12

θ

θ

Figure 10

θ
L m

(x1, y1, z1)

(x0, y0, z0)

n = 〈A,B,C 〉

Figure 11
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574 Chapter 11 Geometry in Space and Vectors

� EXAMPLE 11 Find the distance between the parallel planes
and 

SOLUTION The planes are parallel, since the vector is perpendicular
to both of them (Figure 12).The point (1, 1, 2) is easily seen to be on the first plane.
We find the distance L from (1, 1, 2) to the second plane using the formula of
Example 10.

�L =

ƒ 3112 - 4112 + 5122 - 4 ƒ29 + 16 + 25
=

5

522
L 0.7071

83, -4, 59
3x - 4y + 5z = 4.3x - 4y + 5z = 9

Figure 12

Concepts Review
1. The dot product of and is

defined by _____. The corresponding geometric formulation for
is _____ where is the angle between u and v.

2. Two vectors u and v are orthogonal if and only if their dot
product is _____.

uu # v

v = 8v1, v2, v39u = 8u1, u2, u39 3. The work done by a constant force F in moving an object
along the vector D is given by _____.

4. A normal vector to the plane is
_____.

Ax + By + Cz = D

Problem Set 11.3
1. Let and Find each

of the following:
(a) (b)
(c) (d)
(e) (f)

2. Let and Find each
of the following:
(a) (b)
(c) (d)

(e) (f)

3. Find the cosine of the angle between a and b and make a
sketch.
(a) (b)
(c)
(d)

4. Find the angle between a and b and make a sketch.
(a)
(b)
(c)

(d)

5. Let and 
Find each of the following:
(a) (b)
(c) (d)

(e) (f)

6. Let and 
Find each of the following:
(a) (b) 1a - c2 # ba # c

c = 8-2, 2, 19.a = H22, 22, 0 I , b = 81, -1, 19,
b # b - 7b 72a # b

7a 7 7b 7
1b - c2 # aa> 7a 7
1a + c2 # ba # b

c = - i + j + 2k.a = i + 2j - k, b = j + k,

a = 23i + j, b = 3i + 23j

a = - i + 3j, b = 2i - 6j
a = 4i + 3j, b = -8i - 6j
a = 12i, b = -5i

a = 84, -79, b = 8-8, 109
a = 82, -19, b = 8-2, -49

a = 8-1, -29, b = 86, 09a = 81, -39, b = 8-1, 29

7c 72 - c # c7b 7b # a

2c # 13a + 4b21a + b2 # c
b # c-4a + 3b

c = 80, 59.a = 83, -19, b = 81, -19,
b # b - 7b 77a 7c # a
1-2a + 3b2 # 5ca # 1b + c2
a # b2a - 4b

c = -5j.a = -2i + 3j, b = 2i - 3j, (c) (d)

(e) (f)

7. For the vectors a, b, and c from Problem 6, find the angle
between each pair of vectors.

8. Let and
Find the angle between each pair of vectors.

9. For the vectors a, b, and c from Problem 6, find the direc-
tion cosines and the direction angles.

10. For the vectors a, b, and c from Problem 8, find the direc-
tion cosines and the direction angles.

11. Show that the vectors and are orthogonal.

12. Show that the vectors and
are mutually orthogonal, that is, each pair of vec-

tors is orthogonal.

13. Show that the vectors and 
are mutually orthogonal, that is, each pair of vectors is

orthogonal.

14. If is orthogonal to what can you say about
the relative magnitudes of u and v?

15. Find two vectors of length 10, each of which is perpendi-
cular to both and 

16. Find all vectors perpendicular to both and

17. Find the angle ABC if the points are A(1, 2, 3),
and C(1, 0, 1).

18. Show that the triangle ABC is a right triangle if the ver-
tices are A(6, 3, 3), and Hint: Check
the angle at B.

C1-1, 10, -2.52.B13, 1, -12,
B1-4, 5, 62,
8-3, 2, 09.

81, -2, -39
4i + j.-4i + 5j + k

u - v,u + v

c = 2k
a = i - j, b = i + j,

c = 8-1, -1, 29
a = 81, 1, 19, b = 81, -1, 09,

8-1, 2986, 39

c = 8-2, -2, 19.
a = H23>3, 23>3, 23>3 I , b = 81, -1, 09,

a # a - 7a 72b # c
7b 7 7c 7

1b - c2 # aa> 7a 7
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Section 11.3 The Dot Product 575

19. For what numbers c are and orthogonal?

20. For what numbers c are and orthogonal?

21. For what numbers c and d are and
orthogonal?

22. For what values of a, b, and c are the three vectors
and mutually orthogonal.

In Problems 23–28, find each of the given projections if
and 

23. 24.

25. 26.

27. 28.

In Problems 29–34, find each of the given projections if
and 

29. 30.

31. 32.

33. 34.

35. Find a simple expression for each of the following for an
arbitrary vector u.
(a) (b)

36. Find a simple expression for each of the following for an
arbitrary vector u.
(a) (b)

37. Find the scalar projection of on

38. Find the scalar projection of on

39. A vector emanating from the origin
points into the first octant (i.e., that part of three-space where all
components are positive). If find z.

40. If and are direction angles for a vector
u, find two possible values for the third angle.

41. Find two perpendicular vectors u and v such that each is
also perpendicular to 

42. Find the vector emanating from the origin whose terminal
point is the midpoint of the segment joining and

43. Which of the following do not make sense?
(a) (b)
(c) (d)

44. Which of the following do not make sense?
(a) (b)
(c) (d)

In Problems 45–50, give a proof of the indicated property for 
two-dimensional vectors. Use and

45.

46.

47.

48.

49.

50. u # u = 7u 72
0 # u = 0

u # 1v + w2 = u # v + u # w

c1u # v2 = 1cu2 # v

u # v = v # u

1a + b2u = au + bu

w = 8w1, w29.
u = 8u1, u29, v = 8v1, v29,

1u + v2w7u 7 # 1v + w2
1u # w2 7w 7u # 1v + w2

1u # v2w7u 7 1v # w2
1u # w2 + wu # 1v # w2

15, -7, 22.
13, 2, -12

w = 8-4, 2, 59.

b = 108°a = 46°

7u 7 = 5,

u = 2i + 3j + zk

v = -25i + 25j + k.
u = 5i + 5j + 2k

v = - i + j - k.
u = - i + 5j + 3k

proj
-u1-u2proju1-u2

proj
-u uproju u

proji uprojk u

proju1w + v2proju w

proju vprojv u

w = i + 5j - 3k.u = 3i + 2j + k, v = 2i - k,

proji uprojj u

proju1w - v2proju w

proju vprojv u

w = i + 5j.u = i + 2j, v = 2i - j,

81, c, 198a, 0, 19, 80, 2, b9,
v = 2j + dk

u = ci + j + k

3i + cj2ci - 8j

8c, -498c, 69 51. Given the two nonparallel vectors and
and another vector find scalars k and

m such that 

52. Given the two nonparallel vectors and
and another vector find scalars k and m

such that 

53. Show that the vector is perpendicular to the
line with equation Hint: Let and

be two points on the line and show that 

54. Prove that 

55. Prove that 

56. Find the angle between a main diagonal of a cube and one
of its faces.

57. Find the smallest angle between the main diagonals of a
rectangular box 4 feet by 6 feet by 10 feet.

58. Find the angles formed by the diagonals of a cube.

59. Find the work done by the force newtons in
moving an object 10 meters north (i.e., in the j direction).

60. Find the work done by a force of 100 newtons acting in
the direction S 70° E in moving an object 30 meters east.

61. Find the work done by the force pounds in
moving an object from (1, 0) to (6, 8), where distance is in feet.

62. Find the work done by a force newtons in
moving an object 12 meters north.

63. Find the work done by a force newtons in mov-
ing an object from (0, 0, 8) to (4, 4, 0), where distance is in meters.

64. Find the work done by a force pounds
in moving an object from (2, 1, 3) to (9, 4, 6), where distance is in
feet.

In Problems 65–68, find the equation of the plane having the given
normal vector n and passing through the given point P.

65.

66.

67.

68.

69. Find the smaller of the angles between the two planes
from Problems 65 and 66.

70. Find the equation of the plane through and
parallel to the plane 

71. Find the equation of the plane passing through
and parallel to

(a) the xy-plane
(b) the plane 

72. Find the equation of the plane passing through the origin
and parallel to
(a) the xy-plane
(b) the plane 

73. Find the distance from to the plane

74. Find the distance from (2, 6, 3) to the plane
-3x + 2y + z = 9.

x + 3y + z = 7.
11, -1, 22

x + y + z = 1

2x - 3y - 4z = 0

1-4, -1, 22
2x + 4y - z = 6.

1-1, 2, -32

n = 80, 0, 19; P11, 2, -32
n = 81, 4, 49; P11, 2, 12
n = 3i - 2j - 1k; P1-2, -3, 42
n = 2i - 4j + 3k; P11, 2, -32

F = 3i - 6j + 7k

F = -4k

F = -5i + 8j

F = 6i + 8j

F = 3i + 10j

u # v =

1
4

 7u + v 72 -

1
4

 7u - v 72.
7u + v 72 + 7u - v 72 = 2 7u 72 + 2 7v 72.

n # P1P2

!

= 0.P21x2, y22
P11x1, y12ax + by = c.

n = ai + bj

r = ka + mb.
r = 6i - 7j,b = 2i - j

a = -4i + 3j

r = ka + mb.
r = 7i - 8j,b = -3i + 4j

a = 3i - 2j
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576 Chapter 11 Geometry in Space and Vectors

75. Find the distance between the parallel planes
and 

76. Find the distance between the parallel planes
and 

77. Find the distance from the sphere 
to the plane 

78. Find the equation of the plane each of whose points is
equidistant from and 

79. Prove the Cauchy-Schwarz Inequality for two-dimensional
vectors:

80. Prove the Triangle Inequality (see Figure 13) for two-
dimensional vectors:

Hint: Use the dot product to compute then use the
Cauchy-Schwarz Inequality from Problem 79.

7u + v 7 ;
7u + v 7 … 7u 7 + 7v 7

ƒ u # v ƒ … 7u 7 7v 7

16, 1, -22.1-2, 1, 42
3x + 4y + z = 15.6y - 8z = 0

x2
+ y2

+ z2
+ 2x +

-5x + 3y + 2z = 7.5x - 3y - 2z = 5

6x - 4y - 2z = 19.-3x + 2y + z = 9

81. A weight of 30 pounds is suspended by three wires 
with resulting tensions and

Determine a, b, and c so that the net force is
straight up.
ai + bj + ck.

3i + 4j + 15k, -8i - 2j + 10k,

82. Show that the work done by a constant force F on an ob-
ject that moves completely around a closed polygonal path is 0.

83. Let and be fixed vectors.
Show that is the equation of a sphere, and
find its center and radius.

84. Refine the method of Example 10 by showing that the
distance L between the parallel planes and

is

85. The medians of a triangle meet at a point P (the centroid
by Problem 30 of Section 6.6) that is two-thirds of the way from a
vertex to the midpoint of the opposite edge. Show that P is the
head of the position vector where a, b, and c
are the position vectors of the vertices, and use this to find P if
the vertices are (2, 6, 5), and (6, 1, 2).

86. Let a, b, c, and d be the position vectors of the vertices of
a tetrahedron. Show that the lines joining the vertices to the
centroids of the opposite faces meet in a point P, and give a nice
vector formula for it, thus generalizing Problem 85.

87. Suppose that the three coordinate planes bounding the
first octant are mirrors. A light ray with direction is
reflected successively from the xy-plane, the xz-plane, and the 
yz-plane. Determine the direction of the ray after each reflection,
and state a nice conclusion concerning the final reflected ray.

Answers to Concepts Review: 1.
2. 0 3. 4. 8A, B, C9F # D7u 7 7v 7  cos u

u1v1 + u2v2 + u3v3;

ai + bj + ck

14, -1, 22,
1a + b + c2>3,

L =

ƒ D - E ƒ2A2
+ B2

+ C2

Ax + By + Cz = E
Ax + By + Cz = D

1x - a2 # 1x - b2 = 0
b = 8b1, b2, b39a = 8a1, a2, a39

The dot product of two vectors is a scalar.We have explored some of its uses in the
previous section. Now we introduce the cross product (or vector product); it will
also have many uses. The cross product of and

is defined by

In this form, the formula is hard to remember and its significance is not obvious.
Note the one thing that is obvious. The cross product of two vectors is a vector.

To help us remember the formula for the cross product, we recall a subject
from an earlier mathematics course, namely, determinants. First, the value of a

determinant is

Then the value of a determinant is (expanding along to the top row)

 = a1 ` b2 b3

c2 c3
`  -  a2 ` b1 b3

c1 c3
` + a3 ` b1 b2

c1 c2
`

 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 = a1 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3  -  a2 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 + a3 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3
3 * 3

` a b

c d
` = ad - bc

2 * 2

u : v = 8u2v3 - u3v2, u3v1 - u1v3, u1v2 - u2v19
v = 8v1, v2, v39

u = 8u1, u2, u39u : v

11.4
The Cross Product

u

vu + v

Figure 13
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Section 11.4 The Cross Product 577

Using determinants, we can write the definition of as

Note that the components of the left vector u go in the second row, and those of
the right vector v go in the third row. This is important, because if we interchange
the positions of u and v, we interchange the second and third rows of the deter-
minant, and this changes the sign of the determinant’s value, as you may check.
Thus,

which is sometimes called the anticommutative law.

� EXAMPLE 1 Let and Calculate and
using the determinant definition.

SOLUTION

�

Geometric Interpretation of Like the dot product, the cross prod-
uct gains significance from its geometric interpretation.

u : v

 = -2i - j + 0k

 v : u = 3 i j k
-2 4 1

1 -2 -1

3 = ` 4 1
-2 -1

` i - ` -2 1
1 -1

` j + ` -2 4
1 -2

` k

 = 2i + j + 0k

 u : v = 3 i j k
1 -2 -1

-2 4 1

3 = ` -2 -1
4 1

` i - ` 1 -1
-2 1

` j + ` 1 -2
-2 4

` k

v : u
u : vv = 8-2, 4, 19.u = 81, -2, -19

u : v = -1v : u2

u : v = 3 i j k
u1 u2 u3

v1 v2 v3

3 = ` u2 u3

v2 v3
` i - ` u1 u3

v1 v3
` j + ` u1 u2

v1 v2
` k

u : v

Proof Let and 

(i) When
we remove parentheses, the six terms cancel in pairs, leaving a sum of 0. A
similar event occur’s when we expand 

(ii) The meaning of right-handedness for the triple u, v, is illustrated in
Figure 1. There is the angle between u and v, and the fingers of the right
hand are curled in the direction of the rotation through that makes u coin-
cide with v. It is difficult to establish analytically that the indicated triple is
right-handed, but you might check it with a few examples. Note in particular
that and by definition we know that the triple i, j, k is right-handed.

(iii) We need Lagrange’s Identity,

7u : v 72 = 7u 72 7v 72 - 1u # v22
i : j = k,

u

u

u : v
v # 1u : v2.

u # 1u : v2 = u11u2v3 - u3v22 + u21u3v1 - u1v32 + u31u1v2 - u2v12.
v = 8v1, v2, v39.u = 8u1, u2, u39

The cross product plays an impor-
tant role in mechanics. Let O be a
fixed point in a body, and suppose
that a force F is applied at another
point P of the body. Then F tends to
rotate the body about an axis
through O and perpendicular to the
plane of OP and F. The vector

is called the torque. It points in the
direction of the axis and has magni-
tude which is just the
moment of force about the axis due
to F.

7OP
! 7 7  F 7  sin u,

t = OP
!

* F

Torque

θ
P

F

O

�

Theorem A

Let u and v be vectors in three-space and be the angle between them. Then

1. that is, is perpendicular to both u and
v;

2. u, v, and form a right-handed triple;

3. 7u : v 7 = 7u 7 7v 7  sin u.

u : v

u : vu # 1u : v2 = 0 = v # 1u : v2,
u

θu
v

u ×  v

Figure 1
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578 Chapter 11 Geometry in Space and Vectors

whose proof is a simple algebraic exercise (Problem 31). Using this identity, we
may write

Since Taking the principal square root yields

�

It is important that we have geometric interpretations of both and 
While both products were originally defined in terms of components that depend
on a choice of coordinate system, they are actually independent of coordinate sys-
tems. They are intrinsic geometric quantities, and you will get the same results for

and no matter how you introduce the coordinates used to compute
them.

Here is a simple consequence of Theorem A (part 3) and the fact that vectors
are parallel if and only if the angle between them is either 0° or 180°.u

u : vu # v

u : v.u # v

7u : v 7 = 7u 7 7v 7  sin u

0 … u … p, sin u Ú 0.

 = 7u 72 7v 72 sin2 u

 = 7u 72 7v 7211 - cos2 u2
 7u : v 72 = 7u 72 7v 72 - 1 7u 7 7v 7cos u22

Applications Our first application is to find the equation of the plane through
three noncollinear points.

� EXAMPLE 2 Find the equation of the plane (Figure 2) through the three
points and 

SOLUTION Let and From
the first part of Theorem A we know that

is perpendicular to both u and v and thus to the plane containing them. The plane
through with normal has equation (see Section 11.3)

or
�

� EXAMPLE 3 Show that the area of a parallelogram with a and b as adjacent
sides is 

SOLUTION Recall that the area of a parallelogram is the product of the 
base times the height. Now look at Figure 3 and use the fact that 

�

� EXAMPLE 4 Show that the volume of the parallelepiped determined by the
vectors a, b, and c is

V = ƒ a # 1b : c2 ƒ = 3 3 a1 a2 a3

b1 b2 b3

c1 c2 c3

3 3

7a 7 7b 7  sin u.
7a : b 7 =

7a : b 7 .

14x - 24y - 6z = 44

141x - 42 - 241y - 12 - 61z + 22 = 0

14i - 24j - 6k14, 1, -22

u : v = 3 i j k
-3 -3 5
-6 -4 2

3 = 14i - 24j - 6k

v = P2P3

!

= 8-6, -4, 29.u = P2P1

!

= 8-3, -3, 59
P31-2, -3, 02.P111, -2, 32, P214, 1, -22,

u × v

v

P2

P1
P3

u

Figure 2

Theorem B

Two vectors u and v in three-space are parallel if and only if u : v = 0.

θ

θ

a

b �� b �� sin

Figure 3
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Section 11.4 The Cross Product 579

SOLUTION Refer to Figure 4 and regard the parallelogram determined by 
b and c as the base of the parallelepiped. The area of this base is by
Example 3; the height h of the parallelepiped is the absolute value of the scalar
projection of a on Thus,

and

�

Suppose that the vectors a, b, and c from the previous example are in the same
plane. In this case, the parallelepiped has height zero, so the volume should be
zero. Does the formula for the volume yield If a is in the plane determined
by b and c, then any vector perpendicular to b and c will be perpendicular to a as
well.The vector is perpendicular to both b and c; hence is perpendicu-
lar to a. Thus,

Algebraic Properties The rules for calculating with cross products are sum-
marized in the following theorem. Proving this theorem is a matter of writing
everything out in terms of components and will be left as an exercise.

a # 1b : c2 = 0.
b : cb : c

V = 0?

V = h 7b : c 7 = ƒ a # 1b : c2 ƒ

h = 7a 7 ƒ cos u ƒ =

7a 7 ƒ a # 1b : c2 ƒ

7a 7 7b : c 7 =

ƒ a # 1b : c2 ƒ

7b : c 7

b : c.

7b : c 7

Once the rules in Theorem C are mastered, complicated calculations with vec-
tors can be done with ease. We illustrate by calculating a cross product in a new
way. We will need the following simple but important products.

These results have a cyclic order, which can be remembered by appealing to Figure 5.

� EXAMPLE 5 Calculate if and 

SOLUTION We appeal to Theorem C, especially the distributive law and the
anticommutative law.

Experts would do most of this in their heads; novices might find the determinant
method easier. �

 = 4i + 13j + 14k

 + 61i2 + 41j2 + 21- i2 - 3102
 = 12102 + 61k2 - 91- j2 - 81-k2 - 4102

 + 61j : k2 + 41k : i2 + 21k : j2 - 31k : k2
 = 121i : i2 + 61i : j2 - 91i : k2 - 81j : i2 - 41j : j2

 u : v = 13i - 2j + k2 : 14i + 2j - 3k2

v = 4i + 2j - 3k.u = 3i - 2j + ku : v

i : j = k, j : k = i, k : i = j

θ

b � c

b

h c

a

Figure 4

Never read a mathematics book
passively; rather, ask questions as
you go. In particular, you should
look at extreme cases whenever
possible. Here we look at the case
where the vectors a, b, and c are in
the same plane. The volume of the
parallelepiped should be zero, and
indeed the formula does give zero.
What happens in Example 3 if the
vectors b and c are parallel?

≈
Check Extreme Cases

i � j = k

j � k = i

ij

k

k � i =j

Figure 5

Theorem C

If u, v, and w are vectors in three-space and k is a scalar, then

1. (anticommutative law);
2. (left distributive law);
3.
4.
5.
6. u : 1v : w2 = 1u # w2v - 1u # v2w.
1u : v2 # w = u # 1v : w2;
u : 0 = 0 : u = 0, u : u = 0;
k1u : v2 = 1ku2 : v = u : 1kv2;
u : 1v + w2 = 1u : v2 + 1u : w2
u : v = -1v : u2
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580 Chapter 11 Geometry in Space and Vectors

Concepts Review
1. The cross product of and is

given by a specific determinant; evaluation of this determinant
gives _____.

2. Geometrically, is a vector perpendicular to the
plane of u and v and has length _____.7u : v 7 =

u : v

u : v =

v = 83, 1, -19u = 8-1, 2, 19 3. The cross product is anticommutative; that is,
_____.

4. Two vectors are _____ if and only if their cross product 
is 0.

u : v =

Problem Set 11.4
1. Let and

Find each of the following:
(a) (b)
(c) (d)

2. If and 
find each of the following:
(a) (b)
(c) (d)

3. Find all vectors perpendicular to both of the vectors
and 

4. Find all vectors perpendicular to both of the vectors
and 

5. Find the unit vectors perpendicular to the plane deter-
mined by the three points (1, 3, 5), and (4, 0, 1).

6. Find the unit vectors perpendicular to the plane deter-
mined by the three points (5, 1, 2), and 

7. Find the area of the parallelogram with 
and as the adjacent sides.

8. Find the area of the parallelogram with 
and as the adjacent sides.

9. Find the area of the triangle with (3, 2, 1), (2, 4, 6), and
as vertices.

10. Find the area of the triangle with (1, 2, 3), (3, 1, 5), and 
(4, 5, 6) as vertices.

In Problems 11–14, find the equation of the plane through the
given points.

11. (1, 3, 2), (0, 3, 0), and (2, 4, 3)

12. (1, 1, 2), (0, 0, 1), and 

13. (7, 0, 0), (0, 3, 0), and (0, 0, 5)

14. (a, 0, 0), (0, b, 0), and (0, 0, c), (None of a, b, and c is zero.)

15. Find the equation of the plane through (2, 5, 1) that is
parallel to the plane 

16. Find the equation of the plane through (0, 0, 2) that is par-
allel to the plane 

17. Find the equation of the plane through and
perpendicular to both the planes and

18. Find the equation of the plane through that is
perpendicular to both the planes and

19. Find the equation of the plane through and
parallel to the plane of the vectors and 2i - 5j + 6k.4i + 3j - k

12, -3, 22
x - y - z = 4.

x + y + z = 2
12, -1, 42

2x - 2y - z = -3.
x - 3y + 2z = 7

1-1, -2, 32
x + y + z = 1.

x - y + 2z = 4.

1-2, -3, 02

1-1, 2, 52
b = - i + j - 4k

a = 2i + 2j - k

b = 4i + 2j - 4k
a = - i + j - 3k

14, -3, -12.1-1, 3, 02,
13, -1, 22,

b = 3i - 2j + 4k.a = -2i + 5j - 2k

b = -2i + 2j - 4k.a = i + 2j + 3k

a : 1b : c2a # 1b : c2
a : 1b + c2a : b

c = 8-2, -3, -19,a = 83, 3, 19, b = 8-2, -1, 09,
a : 1b : c2a # 1b + c2
a : 1b + c2a : b

c = 7i + 3j - 4k.
a = -3i + 2j - 2k,     b = - i + 2j - 4k, 20. Find the equation of the plane through the origin that is

perpendicular to the xy-plane and the plane 

21. Find the equation of the plane through and
perpendicular to the line of intersection of the planes

and 

22. Let a and b be nonparallel vectors, and let c be any nonze-
ro vector. Show that is a vector in the plane of a and
b.

23. Find the volume of the parallelepiped with edges
and (see Example 4).

24. Find the volume of the parallelepiped with edges
and 

25. Let K be the parallelepiped determined by
and 

(a) Find the volume of K.
(b) Find the area of the face determined by u and v.
(c) Find the angle between u and the plane containing the face

determined by v and w.

26. The formula for the volume of a parallelepiped derived in
Example 4 should not depend on the choice of which one of the
three vectors we call a, which one we call b, and which one we
call c. Use this result to explain why 

27. Which of the following do not make sense?
(a) (b)
(c) (d)
(e) (f)
(g) (h)

28. Show that if a, b, c, and d all lie in the same plane then

29. The volume of a tetrahedron is known to be
From this, show that the volume of the

tetrahedron with edges a, b, and c is 

30. Find the volume of the tetrahedron with vertices
(5, 6, 3), and (see Problem 29).

31. Prove Lagrange’s Identity,

without using Theorem A.

32. Prove the left distributive law,

33. Use Problem 32 and the anticommutative law to prove
the right distributive law.

u : 1v + w2 = 1u : v2 + 1u : w2

7u : v 72 = 7u 72 7v 72 - 1u # v22
11, 1, -2214, -1, 22,1-1, 2, 32,

1
6 ƒ a # 1b : c2 ƒ .

1
31area of base21height2.

1a : b2 : 1c : d2 = 0

1ku2 : v1u : v2 : w
1a + b2 : 1c + d21a # b2 + k

1a : b2 + k1a # b2 : c
u + 1v : w2u # 1v : w2

ƒ c # 1a : b2 ƒ .ƒ b # 1a : c2 ƒ =

ƒ a # 1b : c2 ƒ =

w = 81, 3, 39.u = 83, 2, 19, v = 81, 1, 29,
3i - 2j + 5k.3i - 4j + 2k, - i + 2j + k,

85, 1, 3982, 3, 49, 80, 4, -19,

1a : b2 : c

3x + 2y - z + 11 = 0.4x - 3y + 2z + 5 = 0

16, 2, -12
3x - 2y + z = 4.
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34. If both and what can you conclude
about u or v?

35. Use Example 3 to develop a formula for the area of the
triangle with vertices P(a, 0, 0), Q(0, b, 0), and R(0, 0, c) shown in
the left half of Figure 6.

36. Show that the triangle in the plane with vertices
and has area equal to one-half the ab-

solute value of the determinant

3 x1 y1 1
x2 y2 1
x3 y3 1

3
1x3, y321x1, y12, 1x2, y22,

u # v = 0,u : v � 0 37. A Pythagorean Theorem in Three-Space As in Figure 6,
let P, Q, R, and O be the vertices of a (right-angled) tetrahedron,
and let A, B, C, and D be the areas of the opposite faces, respec-
tively. Show that 

38. Let vectors a, b, and c with common initial point deter-
mine a tetrahedron, and let m, n, p, and q be vectors perpen-
dicular to the four faces, pointing outward, and having length
equal to the area of the corresponding face. Show that

39. Let a, b, and denote the three edges of a triangle
with lengths a, b, and c, respectively. Use Lagrange’s Identity
together with to prove Heron’s
Formula for the area A of a triangle,

where s is the semiperimeter 

40. Use the method of Example 5 to show directly that, if
and then

Answers to Concepts Review: 1. or
2. 3. 4. parallel-1v : u27u 7 7v 7  sin u-3i + 2j - 7k

8-3, 2, -79

u : v = 1u2v3 - u3v22i + 1u3v1 - u1v32j + 1u1v2 - u2v12k
v = v1i + v2 j + v3k,u = u1i + u2 j + u3k

1a + b + c2>2.

A = 2s1s - a21s - b21s - c2

2a # b = 7a 72 + 7b 72 - 7a - b 72
a - b

m + n + p + q = 0.

A2
+ B2

+ C2
= D2.

Recall that a function f is a rule that associates with each member t of one set (the
domain) a unique value from a second set (Figure 1). The set of values so ob-
tained is the range of the function. So far in this book, our functions have been
real-valued functions (scalar-valued functions) of a real variable; that is, both the
domain and range have been sets of real numbers. A typical example is 
which associates with each real number t the real number 

Now we offer the first of many generalizations (Figure 2). A vector-valued
function F of a real variable t associates with each real number t a vector F(t).Thus,

where f, g, and h are ordinary real-valued functions. A typical example is

Note our use of a boldface letter; this helps us to distinguish between vector func-
tions and scalar functions.

Calculus for Vector Functions The most fundamental notion in calculus is
that of limit. Intuitively, means that the vector tends toward the 

vector L as t tends toward c. Alternatively, it means that the vector ap-
proaches 0 as (Figure 3). The precise definition is nearly identical with
that given for real-valued functions in Section 2.2.

e-dt : c
F1t2 - L

F(t)lim
t:c

 F1t2 = L

F1t2 = t2i + etj + 2k = 8t2, et, 29

F1t2 = f1t2i + g1t2j + h1t2k = 8f1t2, g1t2, h1t29

t2.
f1t2 = t2,

f(t)

11.5
Vector-Valued Functions
and Curvilinear Motion

f

f (t)t

Domain Range

Figure 1

R (0, 0, c)

Q (0, b, 0)O O

P (a, 0, 0)

R

D

A
B

C

Q

P

Figure 6

F

F(t)

t

Domain Range

Figure 2

L
F(t)

F(t) 
– L

Figure 3

Definition Limit of a Vector-Valued Function

To say that means that, for each given (no matter how

small), there is a corresponding such that provided that

that is,

0 6 ƒ t - c ƒ 6 d Q  7F1t2 - L 7 6 e

0 6 ƒ t - c ƒ 6 d;

7F1t2 - L 7 6 e,d 7 0

e 7 0lim
t:c

 F1t2 = L
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582 Chapter 11 Geometry in Space and Vectors

The definition of is nearly the same as our definition of the limit from

Chapter 2, once we interpret as the length of the vector Our
definition says that we can make as close as we like (within ) to L (here
distance is measured in three-dimensional space), as long as we take t to be close
enough (within ) of c. The next theorem, which is proved for two-dimensional
vectors in Appendix A.2, Theorem D, gives the relationship between the limit of

and the limits of the components of .F(t)F(t)

d

eF(t)
F1t2 - L.7F1t2 - L 7

lim
t:c

 F1t2

As you would expect, all the standard limit theorems hold.Also, continuity has
its usual meaning; that is, F is continuous at c if From Theorem A,

it is clear that F is continuous at c if and only if f, g, and h are all continuous there.
Finally, the derivative is defined just as for real-valued functions by

This can also be written in terms of components.

In summary, if then

� EXAMPLE 1 If find and the angle
between and 

SOLUTION and Thus,
and

�

Here are the rules for differentiation.

 u L 0.3218 1about 18.43°2
 cos u =

F¿102 # F–102
7F¿102 7 7F–102 7 =

112122 + 112112 + 102102212
+ 12

+ 02 222
+ 12

+ 02
=

32225

F–102 = 2i + j,
F¿102 = i + j,F–1t2 = 2i + etj.F¿1t2 = 12t + 12i + etj

F–102.F¿102u

F–1t2,F¿1t2,F1t2 = 1t2
+ t2i + etj + 2k,

F¿1t2 = f¿1t2i + g¿1t2j + h¿1t2k = 8f¿1t2, g¿1t2, h¿1t29
F1t2 = f1t2i + g1t2j + h1t2k,

 = f¿1t2i + g¿1t2j + h¿1t2k
+ lim

¢t:0
 
h1t + ¢t2 - h1t2

¢t
 k

 = lim
¢t:0

 
f1t + ¢t2 - f1t2

¢t
 i + lim

¢t:0
 
g1t + ¢t2 - g1t2

¢t
 j

lim
¢ t:0

 
[ f1t + ¢t2i + g1t + ¢t2j + h1t + ¢t2k] - [f1t2i + g1t2j + h1t2k]

¢t

 F¿1t2 =

F¿1t2 = lim
¢t:0

 
F1t + ¢t2 - F1t2

¢t

F¿1t2
lim
t:c

 F1t2 = F1c2.

The definitions and theorems in this
section are given for three-
dimensional vectors. The results for
two-dimensional vectors should be
obvious. For example, if 

then
Theorem A says

lim
t:c

 F1t2 = C lim
t:c

 f1t2 D i + C lim
t:c

 g1t2 D j
8f1t2, g1t29 = f1t2i + g1t2j,

F1t2 =

Vectors in Two Dimensions
Theorem A

Let Then F has a limit at c if and only if f, g, and
h have limits at c. In this case,

lim
t:c

 F1t2 = C lim
t:c

 f1t2 D i + C lim
t:c

 g1t2 D j + C lim
t:c

 h1t2 Dk
F1t2 = f1t2i + g1t2j + h1t2k.
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Section 11.5 Vector-Valued Functions and Curvilinear Motion 583

Proof We prove formula 4 and leave the other parts to the reader. Let

Then

�

Since derivatives of vector-valued functions are found by differentiating com-
ponents, it is natural to define integration in terms of components; that is, if

� EXAMPLE 2 If find

(a) (b)

SOLUTION
(a)

(b)

�

Curvilinear Motion We are going to use the theory developed above for
vector-valued functions to study the motion of a point in space. Let t measure time,
and suppose that the coordinates of a moving point P are given by the parametric
equations Then the vector

r1t2 = f1t2i + g1t2j + h1t2k
x = f1t2, y = g1t2, z = h(t).

 =
1
3 i + 11 - e-12j - 2k

 
L

1

0
F1t2 dt = a

L

1

0
t2 dtb i + a

L

1

0
e-t dtb j + a

L

1

0
1-22 dtbk

 = 5t4i + 13t2
- t32e-tj - 6 t2k

 Dt C t3F1t2 D = t312ti - e-tj2 + 3t21t2i + e-tj - 2k2
L

1

0
F1t2 dt.Dt C t3F1t2 D

F1t2 = t2i + e-tj - 2k,

 
L

b

a
F1t2 dt = c

L

b

a
f1t2 dt d i + c

L

b

a
g1t2 dt d j + c

L

b

a
h1t2 dt dk

 
L

F1t2 dt = c
L

f1t2 dt d i + c
L

g1t2 dt d j + c
L

h1t2 dt dk
F1t2 = f1t2i + g1t2j + h1t2k,

 = F1t2 # G¿1t2 + G1t2 # F¿1t2
+ Cg11t2fœ

11t2 + g21t2fœ

21t2 + g31t2fœ

31t2 D
 = C f11t2gœ

11t2 + f21t2gœ

21t2 + f31t2gœ

31t2 D
+ f31t2gœ

31t2 + g31t2fœ

31t2
 = f11t2gœ

11t2 + g11t2fœ

11t2 + f21t2gœ

21t2 + g21t2fœ

21t2
 Dt[F1t2 # G1t2] = Dt C f11t2g11t2 + f21t2g21t2 + f31t2g31t2 D

 G1t2 = g11t2i + g21t2j + g31t2k
 F1t2 = f11t2i + f21t2j + f31t2k,

Theorem B Differentiation Formulas

Let F and G be differentiable, vector-valued functions, p a differentiable, real-
valued function, and c a scalar. Then

1.

2.

3.

4.

5.

6. (Chain Rule)Dt[F1p1t22] = F¿1p1t22p¿1t2
Dt[F1t2 : G1t2] = F1t2 : G¿1t2 + F¿1t2 : G1t2
Dt[F1t2 # G1t2] = F1t2 # G¿1t2 + G1t2 # F¿1t2
Dt[p1t2F1t2] = p1t2F¿1t2 + p¿1t2F1t2
Dt[cF1t2] = cF¿1t2
Dt[F1t2 + G1t2] = F¿1t2 + G¿1t2
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584 Chapter 11 Geometry in Space and Vectors

assumed to emanate from the origin, is called the position vector of the point. As t
varies, the head of r(t) traces the path of the moving point P (Figure 4). This is a
curve, and we call the corresponding motion curvilinear motion.

In analogy with linear (straight line) motion, we define the velocity v(t) and
the acceleration a(t) of the moving point P by

Since

it is clear (from Figure 5) that v(t) has the direction of the tangent line. The accel-
eration vector a(t) points to the concave side of the curve (i.e., the side toward
which the curve is bending).

v1t2 = lim
¢t:0

 
r1t + ¢t2 - r1t2

¢t

 a1t2 = r–1t2 = f–1t2i + g–1t2j + h–1t2k
 v1t2 = r¿1t2 = f¿1t2i + g¿1t2j + h¿1t2k

If r(t) is the position vector of an object, then the arc length of the path that it
traces from time to time is

The accumulated arc length from time to an arbitrary time t is thus

By the First Fundamental Theorem of Calculus, the derivative of the accumulated
arc length, is

But the derivative (i.e., rate of change) of accumulated arc length is what we think
of as speed. Thus, the speed of an object is

Note that the speed of an object is a scalar quantity, whereas its velocity is a vector.

One of the most important applications of curvilinear motion, uniform circular
motion, occurs in two dimensions. Suppose that an object moves in the xy-plane

speed =

ds

dt
= 7r¿1t2 7 = 7v1t2 7

ds

dt
= 2[f¿1t2]2

+ [g¿1t2]2
+ [h¿1t2]2

= 7r¿1t2 7
ds>dt,

s =

L

t

a
2[f¿1u2]2

+ [g¿1u2]2
+ [h¿1u2]2 du =

L

t

a
7r¿1u2 7  du

t = a

L =

L

b

a
2[f¿1t2]2

+ [g¿1t2]2
+ [h¿1t2]2 dt =

L

b

a
7r¿1t2 7  dt

t = bt = a

z

x

y

r(t
)

P

Figure 4

z

y

r(t + h) – r(t)

r(t
 + h)

r(t)

z

y

r(t + h) – r(t)

r(t
 + h)

r(t)

h

z

y

v(t)

r(t)

a(t)

x x x

Figure 5
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y

x
(r, 0)

a

t

v

P

� 

Figure 6

counterclockwise around a circle with center (0,0) and radius a at a constant angu-
lar speed of radians per second. If its initial position is (a, 0), then its position
vector is

� EXAMPLE 3 Find the velocity, acceleration, and speed for uniform circular
motion.

SOLUTION We differentiate the position vector 
to get v(t) and a(t).

The speed is

Note that if we think of a as being based at the object’s location at point P, then 
a points directly toward the origin and is perpendicular to the velocity vector v
(Figure 6). �

We saw a particular case of a helix in Example 6 of Section 11.1. Here we gen-
eralize that concept a bit and say that the path traced out by an object whose posi-
tion vector is given by

is a helix. If we look at just the x- and y-components of motion, we see uniform cir-
cular motion, and if we look at just the z-component of motion, we see uniform
straight line motion.When we put these two together, we see that the object spirals
around and around as it moves higher and higher (assuming ).

� EXAMPLE 4 Find the velocity, acceleration, and speed for motion along a
helix.

SOLUTION The velocity and acceleration vectors are

The speed is

�

� EXAMPLE 5 Parametric equations for an object moving in the plane are
and where t represents time and Let P denote

the object’s position.

(a) Graph the path of P.
(b) Find expressions for the velocity v(t), speed and acceleration a(t).
(c) Find the maximum and minimum values of the speed and where they occur.
(d) Show that the acceleration vector based at P always points to the origin.

SOLUTION
(a) Since the path is the ellipse shown in Figure 7.
(b) The position vector is

and so

r1t2 = 3 cos t i + 2 sin t j

x2>9 + y2>4 = 1,

7v1t2 7 ,

0 … t … 2p.y = 2 sin t,x = 3 cos t

ds

dt
= 7v1t2 7 = 21-av sin vt22 + 1av cos vt22 + c2

= 2a2v2
+ c2

 a1t2 = v¿1t2 = -av2 cos vt i - av2 sin vt j

 v1t2 = r¿1t2 = -av sin vt i + av cos vt j + c k

c 7 0

r1t2 = a cos vt i + a sin vt j + ct k

 = 2a2v21sin2 vt + cos2 vt2 = av

 
ds

dt
= 7v1t2 7 = 21-av sin vt22 + 1av cos vt22

 a1t2 = v¿1t2 = -av2 cos vt i - av2 sin vt j

 v1t2 = r¿1t2 = -av sin vt i + av cos vt j

r1t2 = a cos vt i + a sin vt j

r1t2 = a cos vt i + a sin vt j

v

y

x

1

1 2

a

v 

P

r (t) = 3 cos t i + 2 sin t j

Figure 7
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θ

y

x

Figure 8

(c) Since the speed is given by the maximum speed of 3 occurs
when that is, when or This corresponds to the points

on the ellipse. Similarly, the minimum speed of 2 occurs when
which corresponds to the points 

(d) Note that Thus, if we base a(t) at P, this vector will point to and
exactly reach the origin. We conclude that is largest at and
smallest at �

� EXAMPLE 6 A projectile is shot from the origin at an angle from the pos-
itive x-axis with an initial speed of feet per second (Figure 8). Neglecting fric-
tion, find expressions for the velocity v(t) and position r(t), and show that the path
is a parabola.

SOLUTION The acceleration due to gravity is feet per second per
second. The initial conditions are and 
Starting with we integrate twice.

The condition allows us to evaluate and gives
Thus,

and

The condition implies that so

To find the equation of the path, we eliminate the parameter t in the equations

Specifically, we solve the first equation for t and substitute in the second, giving

This is the equation of a parabola. �

� EXAMPLE 7 A baseball is thrown with an initial velocity of 75 miles per
hour (110 feet per second) 1 degree above horizontal in the direction of the posi-
tive x-axis from an initial height of 8 feet. The initial position is In addi-
tion to acceleration due to gravity, the spin on the ball causes an acceleration of 
2 feet per second per second in the positive y direction. What is the position of the
ball when its x-component is 60.5 feet?

SOLUTION The initial position vector is and the initial velocity
vector is The acceleration vector is 

Proceeding as in the previous example, we have

Since we have

v1t2 = 110 cos 1°i + 2t j + 1110 sin 1° - 32t2k
110 cos 1°i + 110 sin 1°k = v102 = C1,

v1t2 =

L
a1t2 dt =

L
12j - 32k2 dt = 2t j - 32t k + C1

2j - 32k.
a1t2 =v102 = 110 cos 1°i + 110 sin 1°k.

r102 = 8k,

r(0) = 8k.

y = 1tan u2x - a 4
v0 cos u

b2

x2

x = 1v0 cos u2t, y = 1v0 sin u2t - 16t2

r1t2 = 1tv0 cos u2i + 1tv0 sin u - 16t22j
C2 = 0,r102 = 0

r1t2 =

L
v1t2 dt = 1tv0 cos u2i + 1tv0 sin u - 16t22j + C2

v1t2 = 1v0 cos u2i + 1v0 sin u - 32t2j
C1 = v0 cos u i + v0 sin u j.

C1v102 = v0 cos u i + v0 sin u j

v1t2 =

L
a1t2 dt =

L
 (-32) dt j = -32t j + C1

a1t2 = -32j,
v102 = v0 cos u i + v0 sin u j.r102 = 0

a1t2 = -32j

v0

u

10, ;22. 1;3, 027a1t2 7a1t2 = - r1t2. 1;3, 02.sin t = 0,
10, ;22 3p>2.t = p>2sin t = ;1,

25 sin2 t + 4,

 a1t2 = -3 cos t i - 2 sin t j

 7v1t2 7 = 29 sin2 t + 4 cos2 t = 25 sin2 t + 4

 v1t2 = -3 sin t i + 2 cos t j
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Integrating the velocity vector gives the position:

The initial position implies that Thus

Next, we must find the value of t for which the x-component is 60.5 feet. Setting
yields The position

of the ball at this time is

If this pitch were thrown by a major league pitcher to a major league batter, the
ball would be just above the waist (4.21 feet off the ground) and about 4 inches
(0.303 feet) from the center of home plate. �

Kepler’s Laws of Planetary Motion (Optional) In the early part of the
17th century, Johannes Kepler inherited a collection of planetary data from the
Danish nobleman Tycho Brahe. Kepler spent years studying the data and through
trial and error, and a little luck, he formulated his three laws of planetary motion:

1. Planets move in elliptical orbits with the sun at one focus.
2. A line from the sun to the planet sweeps out equal areas in equal times.
3. The square of a planet’s orbital period is proportional to the cube of its mean

distance from the sun.

Only later was it discovered that Kepler’s Laws of Planetary Motion are a conse-
quence of Newton’s Laws of Motion. Kepler’s First Law can be stated as

which is the polar equation of an ellipse. Here is the planet’s distance from the
sun for the angle and e is the eccentricity of the ellipse. Problem 48, which guides
the reader through the derivation of Kepler’s First Law, shows that

where M is the sun’s mass, G is the gravitational constant, is the shortest distance
from the sun to the planet, is the planet’s speed when it is closest to the sun, and

is the rate of change in the area swept out by a line segment joining the sun
and planet (a constant by Kepler’s Second Law).We will assume Kepler’s First Law.

� EXAMPLE 8 Derive Kepler’s Second Law.

SOLUTION Let r(t) denote the position vector of a planet at time t, and let
be its position time units later (Figure 9). The area swept out in

time is approximately half the area of the parallelogram formed by r(t) and
Using the fact from the previous section that the area of a

triangle formed by two vectors is half the magnitude of the cross product of the
vectors, we have

Thus

¢A

¢t
L

1
2

 " r1t2 :

¢r
¢t
"

¢A L

1
2

 7r1t2 : ¢r 7

¢r = r1t + ¢t2 - r1t2.¢t
¢A¢tr1t + ¢t2

dA>dt
v0

r0

e =

r0v0
2

GM
- 1 =

1
r0GM

 a2 
dA

dt
b2

- 1

u,
r1u2

r1u2 =

r0(1 + e)

1 + e cos u

 L 60.5i + 0.303j + 4.21k

 + C8 + 1101sin 1°20.55008 - 1610.5500822 Dk
 r10.550082 = 1101cos 1°20.55008i + 10.5500822j

t = 60.5>(110 cos 1°) L 0.55008 second.1101cos 1°2t = 60.5

r1t2 = 1101cos 1°2ti + t2j + C8 + 1101sin 1°2t - 16t2 Dk
C2 = 8k.r102 = 8k

 = 1101cos 1°2ti + t2j + C1101sin 1°2t - 16t2 Dk + C2

 r1t2 =

L
v1t2 dt =

L
C110 cos 1°i + 2t j + 1110 sin 1° - 32t2k D  dt

y

x

∆r

∆r

r (t + ∆t)

r (t)

r (t)

Figure 9 587
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so, letting we get

The only force acting on the planet is the gravitational attraction of the sun which
acts along the line from the sun to the planet and has magnitude 
where m is the planet’s mass. Newton’s Second Law implies

Dividing both sides by m gives 
In light of this, consider the vector in the above expression for

Differentiating this vector using Property 5 of Theorem B gives

This tells us that the vector is a constant and as a result, its magnitude
is constant. Thus, is a constant. �

� EXAMPLE 9 Derive Kepler’s Third Law.

SOLUTION Place the sun at the origin, and the x-axis so that the planet’s
perihelion (point on the orbit closest to the sun) lies along the x-axis.The perihelion
occurs at point A in Figure 10. Let C denote the point on the orbit that lies on the
minor axis, and let B denote the point on the orbit that lies on a line perpendicular
to the major axis at the origin as shown in Figure 10. Let a and b denote half the
lengths of the major and minor axes of the ellipse, respectively, and let c denote the
distance from the center of the two foci to a focus. The string property for ellipses
says that the sum of the distances from the foci to any point on the ellipse is 2a.Thus

and since we conclude that Another
application of the string property to point B gives 

Using the Pythagorean Theorem we conclude and
(see Figure 11). From above,

Putting these results together gives 

so we conclude that hence Since we
conclude that

Thus,
The point B also occurs when the angle is Using Kepler’s First Law,

Let T denote the planet’s period. Over one orbit about the sun, the area is
swept out. The average rate at which area is swept out is thus but since

is constant (Kepler’s Second Law), Thus

Now it all comes together. Using the relationships and 
from above, we have

h = a2 
dA

dt
b2>GMb2

= ah

T =

pab

dA>dt

dA>dt = pab>T.dA>dt
pab>T pab

h = r1p>22 =

r011 + e2
1 + e cos (p>2)

=

1
GM

 a2 
dA

dt
b2

p>2.u

b2
= ah.

a2
- b2

= c2
= a2

- ah

a2
= b2

+ c2,c2
= a2

- ah.4c2
= 4a2

- 4ah,

4a2
- 4ah + h212a - h22 =1F¿B22 =h2

+ 12c22 =

F¿B = 2a - BF = 2a - h.1F¿B22 = h2
+ 12c22

a2
= b2

+ c2
F¿B + BF = 2a.

F¿C = CF = a.F¿C = CF,F¿C + CF = 2a,

dA>dt7r1t2 : r¿1t2 7 r1t2 : r¿1t2
 = a-

GM

7r1t2 73 br1t2 : r1t2 = 0

 = r1t2 : a-

GM

7r1t2 73 r1t2b + 0

 
d

dt
 1r1t2 : r¿1t22 = r1t2 : r–1t2 + r¿1t2 : r¿1t2

dA>dt.
r1t2 : r¿1t2

r–1t2 = -1GM> 7r1t2 732r1t2.
-

GMm

7r1t2 73  r1t2 = ma1t2 = mr–1t2
1F = ma2 GMm> 7r1t2 72,

dA

dt
=

1
2

 7r1t2 * r¿1t2 7
¢t : 0,
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The closest the planet gets to the sun is and the farthest is Kepler
called the average of these two values, the mean distance
from the sun. The last formula thus implies that the square of the period is propor-
tional to the cube of the mean distance from the sun. �

1a - c + a + c2>2 = a,
a + c.a - c

T2
= a pab

dA>dt
b2

=

p2a2

1dA>dt22 ah =

p2a3

1dA>dt22 
12 dA>dt22

GM
=

4p2

GM
 a3

Concepts Review
1. A function that associates with each real number a single

vector is called a(n) _____.

2. The function is continuous at 
if and only if _____. The derivative of F is given in terms of f and
g by _____.F¿1t2 =

t = cF1t2 = f1t2i + g1t2j
3. If a point moves along a curve so that it is at point P at

time t, then the vector r(t) from the origin to P is called the _____
vector of P.

4. In terms of r(t), the velocity is _____ and the acceleration
is _____.The velocity vector at t is _____ to the curve, whereas the
acceleration vector points to the _____ side of the curve.

Problem Set 11.5
In Problems 1–8, find the required limit or indicate that it does not
exist.

1. 2.

3.

4.

5.

6.

7.

8.

9. When no domain is given in the definition of a vector-
valued function, it is to be understood that the domain is the set
of all (real) scalars for which the rule for the function makes
sense and gives real vectors (i.e., vectors with real components).
Find the domain of each of the following vector-valued functions:

(a)

(b) ( denotes the greatest
integer function.)

(c)

10. State the domain of each of the following vector-valued
functions:

(a)

(b)

(c)

11. For what values of t is each function in Problem 9
continuous?

r1t2 =

121 - t2
  j +

129 - t2
  k

r1t2 = ln1t-12i + tan-1 t j + t k

r1t2 = ln1t - 12i + 220 - t j

r1t2 = cos t i + sin t j + 29 - t2 k

Œ  œr1t2 = Œ t2 œ  i - 220 - t j + 3k

r1t2 =

2
t - 4

  i + 23 - t j + ln ƒ 4 - t ƒ k

lim
t:0-

h e-1>t2
, 

t

ƒ t ƒ

, ƒ t ƒ i
lim

t:0 +

8ln1t32, t2 ln t, t9
lim

t: q 
c t sin t

t2   i -

7t3

t3
- 3t

  j -

sin t
t

  k d

lim
t:0 
c sin t cos t

t
  i -

7t3

et   j +

t

t + 1
  k d

lim
t: -2 

c2t2
- 10t - 28
t + 2

  i -

7t3

t - 3
  j d

lim
t:1 
c t - 1

t2
- 1

  i -

t2
+ 2t - 3
t - 1

  j d
lim
t:3 

[21t - 322i - 7t3j]lim
t:1 

[2t i - t2j]

12. For what values of t is each function in Problem 10
continuous?

13. Find and for each of the following:

(a)

(b)

14. Find and for each of the following:

(a)

(b)

15. If find 

16. If find 

17. If and find

18. If and find

In Problems 19–30, find the velocity v, acceleration a, and speed s
at the indicated time 

19.

20.

21.

22.

23.

24.

25.

26.

27.

28. r1t2 = a
L

1

t
ex dxb i + a

L

p

t
 sin pu dub j + t2>3k; t1 = 2

r1t2 = tan t i + 3et j + cos 4t k; t1 =

p

4

r1t2 = sin 2t i + cos 3t j + cos 4t k; t1 =

p

2

r1t2 = cos t i + sin t j + t k; t1 = p

r1t2 =

L

t

1
[x2i + 51x - 123j + 1sin px2k] dx; t1 = 2

r1t2 = i + a
L

t

0
x2 dxb j + t2>3k; t1 = 2

r1t2 = t6i + 16t2
- 526j + tk; t1 = 1

r1t2 = 11>t2i + 1t2
- 12-1j + t5k; t1 = 2

r1t2 = ti + 1t - 122j + 1t - 323k; t1 = 0

r1t2 = 4ti + 51t2
- 12j + 2tk; t1 = 1

t = t1 .

Dt[h1t2r1t2].
h1t2 = ln13t - 22,r1t2 = sin 2t i + cosh t j

Dt[h1t2r1t2].
h1t2 = e-3t,r1t2 = 2t - 1 i + ln12t22j

Dt[r1t2 # r¿1t2].r1t2 = sin 3t i - cos 3t j,

Dt[r1t2 # r–1t2].r1t2 = e-t i - ln1t22j,
r1t2 = tan 2t i + arctan t j

r1t2 = 1et
+ e-t22i + 2t j + t k

r–1t2r¿1t2
r1t2 = sin2 t i + cos 3t j + t2k

r1t2 = 13t + 423i + et2
j + k

Dt
2 r1t2Dt r1t2
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29.

30.

31. Show that if the speed of a moving particle is constant its
acceleration vector is always perpendicular to its velocity vector.

32. Prove that is constant if and only if 

In Problems 33–38, find the length of the curve with the given vec-
tor equation.

33.

34.

35.

36.

37.

38.

In Problems 39 and 40, Find in terms of t.

39. and 

40. and 

Evaluate the integrals in Problems 41 and 42.

41.

42.

43. A point moves around the circle at con-
stant angular speed of 6 radians per second starting at (5, 0). Find
expressions for r(t), v(t), and a(t) (see Example 3).

44. Consider the motion of a particle along a helix given by
where the k component

measures the height in meters above the ground and 
(a) Does the particle ever move downward?
(b) Does the particle ever stop moving?
(c) At what times does it reach a position 12 meters above the

ground?
(d) What is the velocity of the particle when it is 12 meters

above the ground?

45. In many places in the solar system, a moon orbits a
planet, which in turn orbits the sun. In some cases the orbits are
very close to circular.We will assume that these orbits are circular
with the sun at the center of the planet’s orbit and the planet at
the center of the moon’s orbit. We will further assume that all
motion is in a single xy-plane. Suppose that in the time the planet
orbits the sun once the moon orbits the planet ten times.
(a) If the radius of the moon’s orbit is and the radius of the

planet’s orbit about the sun is show that the motion of the
moon with respect to the sun at the origin could be given by

(b) For and plot the path traced by the
moon as the planet makes one revolution around the sun.

(c) Find one set of values for and t so that at time t the
moon is motionless with respect to the sun.

46. Assuming that the orbits of the earth about the sun and
the moon about the earth lie in the same plane and are circular,
we can represent the motion of the moon by

+ [93 sin12pt2 + 0.24 sin126pt2]j
r1t2 = [93 cos12pt2 + 0.24 cos126pt2]i

Rp, Rm

Rm = 0.1,Rp = 1CAS

x = Rp cos t + Rm cos 10t, y = Rp sin t + Rm sin 10t

Rp,
Rm

EXPL

t Ú 0.
r1t2 = sin t i + cos t j + 1t2

- 3t + 22k,

7v1t2 7 ,
x2

+ y2
= 25

L

1

-1
[11 + t23>2i + 11 - t23>2j] dt

L

1

0
1eti + e-tj2 dt

u1t2 = tan tf1u2 = u2 i + sin2 u j

u1t2 = 3t2
- 4f1u2 = cos u i + e3u j

F¿1t2F1t2 = f1u1t22.
r1t2 = 27t7i - 22t7j + 6t7k; 0 … t … 1

r1t2 = t3i - 2t3j + 6t3k; 0 … t … 1

r1t2 = t2i - 2t3j + 6t3k; 0 … t … 1

r1t2 = 26t2i +
2
3 t3j + 6tk; 3 … t … 6

r1t2 = t cos t i + t sin t j + 22t k; 0 … t … 2

r1t2 = t i + sin t j + cos t k; 0 … t … 2

r1t2 # r¿1t2 = 0.7r1t2 7

r1t2 = ln t i + ln t2 j + ln t3 k; t1 = 2

r1t2 = t sin pt i + t cos pt j + e-t k; t1 = 2 where r(t) is measured in millions of miles.
(a) What are the proper units for t?

(b) Plot the path traced by the moon as the earth makes one
revolution around the sun.

(c) What is the period of each of the two motions?
(d) What is the maximum distance that the moon is from the

sun?
(e) What is the minimum distance that the moon is from the

sun?
(f) Is there ever a time that the moon is stationary with respect

to the sun?
(g) What are the velocity, speed, and acceleration of the moon

when 

47. Describe in general terms the following “helical” type
motions:
(a)

(b)

(c)

(d)

(e)

(f) r1t2 = t2 sin1ln t2 i + ln t j + t2 cos1ln t2 k, t 7 1

r1t2 = t-2 sin t i + t-2 cos t j + t k, t 7 0

r1t2 = t sin t i + t cos t j + t k

r1t2 = sin1t3
+ p2 i + t3 j + cos1t3

+ p2 k
r1t2 = sin t3 i + cos t3 j + t3 k

r1t2 = sin t i + cos t j + t k

t = 1>2?

CAS

48. In this exercise you will derive Kepler’s First Law, that
planets travel in elliptical orbits. We begin with the notation.
Place the coordinate system so that the sun is at the origin and
the planet’s closest approach to the sun (the perihelion) is on the
positive x-axis and occurs at time Let r(t) denote the po-
sition vector and let denote the distance from the
sun at time t. Also, let denote the angle that the vector r(t)
makes with the positive x-axis at time t. Thus, is the
polar coordinate representation of the planet’s position. Let

and 
Vectors and are orthogonal unit vectors pointing in the di-
rections of increasing r and increasing respectively. Figure 12
summarizes this notation. We will often omit the argument t, but
keep in mind that and are all functions of t.A prime in-
dicates differentiation with respect to time t.
(a) Show that and 
(b) Show that the velocity and acceleration vectors satisfy

(c) Use the fact that the only force acting on the planet is the
gravity of the sun to express a as a multiple of then ex-
plain how we can conclude that

u1,

 a = 1r– - r1u¿222u1 + 12r¿u¿ + ru–2u2

 v = r¿u1 + ru¿u2

u2
œ

= -u¿u1.u1
œ

= u¿u2

u2r, u, u1,

u,
u2u1

u2 = 1-sin u2i + 1cos u2j.1cos u2i + 1sin u2ju1 = r>r =

1r1t2, u1t22
u1t2

r1t2 = 7r1t2 7
t = 0.

EXPL
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(d) Consider which we showed  in Example 8 was a con-
stant vector, say D. Use the result from (b) to show that

(e) Substitute to get where and
Then argue that for all t.

(f) Make the substitution and use the result from (e) to
obtain the first-order (nonlinear) differential equation in q:

(g) Integrate with respect to r on both sides of the above equa-
tion and use an initial condition to obtain

(h) Substitute into the above equation to obtain

r0
2v0

2

1u¿22 adp

dt
b2

= 2GM1p - p02 + v0
2a1 -

p2

p0
2 b

p = 1>r
q2

= 2GMa1
r

-

1
r0
b + v0

2a1 -

r0
2

r2 b

q 
dq

dr
=

r0
2v0

2

r3 -

GM

r2

q = r¿

r2u¿ = r0v0v0 = 7v102 7 .
r0 = r102D = r0v0k,t = 0

D = r2u¿k.

r : r¿,

 2r¿u¿ + ru– = 0

 r– - r1u¿22 =

-GM

r2

(i) Show that

(j) From part (i) we can immediately conclude that

Explain why the minus sign is the correct sign in this case.
(k) Separate variables and integrate to obtain

(l) Finally, obtain r as a function of 

where is the eccentricity.

Answers to Concepts Review: 1. vector-valued function of
a real variable 2. f and g are continuous at c;
3. position 4. tangent; concaver¿1t2; r–1t2;

f¿1t2i + g¿1t2j

e =

r0v0
2

GM
- 1

r =

r011 + e2
1 + e cos u

u:

cos-1a p - p0
2GM>v0

2

p0 - p0
2GM>v0

2 b = u

dp

du
= ;Cap0 -

p0
2GM

v0
2 b2

- ap -

p0
2GM

v0
2 b2

adp

du
b2

= ap0 -

p0
2GM

v0
2 b2

- ap -

p0
2GM

v0
2 b2

The simplest of all curves is a line. A line is determined by a fixed point and a
fixed vector called the direction vector for the line. It is the set of 
all points P such that is parallel to v, that is, that satisfy

for some real number t (Figure 1). If and are the position vectors
of P and respectively, then and the equation of the line can thus
be written

If we write and and equate components in the
last equation above, we obtain

These are parametric equations of the line through and parallel to
The numbers a, b, and c are called direction numbers for the line.

They are not unique; any nonzero constant multiples ka, kb, and kc are also direc-
tion numbers.

� EXAMPLE 1 Find parametric equations for the line through and
(see Figure 2).

SOLUTION A vector parallel to the given line is

If we choose as we obtain the parametric equations

Note that determines the point whereas gives In
fact, corresponds to the segment joining these two points. �0 … t … 1

15, 6, -22.t = 113, -2, 42,t = 0

x = 3 + 2t, y = -2 + 8t, z = 4 - 6t

13, -2, 42,1x0, y0, z02
v = 85 - 3, 6 + 2, -2 - 49 = 82, 8, -69

15, 6, -22 13, -2, 42

v = 8a, b, c9. 1x0, y0, z02
x = x0 + at, y = y0 + bt, z = z0 + ct

r0 = 8x0, y0, z09r = 8x, y, z9
r = r0 + tv

P0P
!

= r - r0,P0,
r0 = OP

!

0r = OP
!

P0P
!

= tv

P0P
!

v = ai + bj + ck
P011.6

Lines and Tangent Lines
in Three-Space

y

z

x

P

P0

r0

r

v

Figure 1

(3, –2, 4)

(5, 6, –2)

z

x

y

Figure 2 591
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x – x0

a
y – y0

b

z

y

x
=

y – y0

b
z – z0

c
=

Figure 3

z

y

x

(3, 0, 4) (0, 4, 2)

Figure 4

If we solve each of the parametric equations for t (assuming that a, b, and c are
all different from zero) and equate the results, we obtain the symmetric equations
for the line through with direction numbers a, b, c; that is,

This is the conjunction of the two equations

both of which are the equations of planes (Figure 3); and, of course, the intersec-
tion of two planes is a line.

� EXAMPLE 2 Find the symmetric equations of the line that is parallel to the
vector and goes through 

SOLUTION

�

� EXAMPLE 3 Find the symmetric equations of the line of intersection of the
planes

SOLUTION We begin by finding two points on the line. Any two points would
do, but we choose to find the points where the line pierces the yz-plane and the xz-
plane (Figure 4). The former is obtained by setting and solving the resulting
equations and simultaneously.This yields the point
(0, 4, 2). A similar procedure with gives the point (3, 0, 4). Consequently, a
vector parallel to the required line is

Using (3, 0, 4) for we get

An alternative solution is based on the fact that the line of intersection of two
planes is perpendicular to both of their normals.The vector is nor-
mal to the first plane; is normal to the second. Since

the vector is parallel to the required line. This implies that
also has this property. Next, find any point on the line of intersec-

tion, for example, (3, 0, 4), and proceed as in the earlier solution. �

� EXAMPLE 4 Find parametric equations of the line through that
is perpendicular to both the x-axis and the line

x - 4
2

=

y - 3

-1
=

z

5

11, -2, 32

1
7 w = 83, -4, 29

w = 821, -28, 149

u : v = 3 i j k
2 -1 -5
4 5 4

3 = 21i - 28j + 14k

v = 84, 5, 49 u = 82, -1, -59

x - 3
3

=

y - 0

-4
=

z - 4
2

1x0, y0, z02,
83 - 0, 0 - 4, 4 - 29 = 83, -4, 29

y = 0
5y + 4z = 28-y - 5z = -14

x = 0

2x - y - 5z = -14 and 4x + 5y + 4z = 28

x - 2
4

=

y - 5

-3
=

z + 1
2

12, 5, -12.84, -3, 29

x - x0

a
=

y - y0

b
 and 

y - y0

b
=

z - z0

c

x - x0

a
=

y - y0

b
=

z - z0

c

1x0, y0, z02
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z

x

y

Tangent Line

r (t + h) – r (t)

 r (t)

r'(t)
r (t + h) 

Figure 5

SOLUTION The x-axis and the given line have directions and
respectively. A vector perpendicular to both u and v is

The required line is parallel to and so also to Since the first di-
rection number is zero, the line does not have symmetric equations. Its parametric
equations are

�

Tangent Line to a Curve Let

be the position vector determining a curve in three-space (Figure 5). The tangent
line to the curve has direction vector

� EXAMPLE 5 Find the parametric equations and symmetric equations for
the tangent line to the curve determined by

at 

SOLUTION

and

so the tangent line has direction vector Its symmetric equations are

The parametric equations are

�

There is exactly one plane perpendicular to a smooth curve at a given point P.
If we have a direction vector for the tangent line to the curve at P, then it is a nor-
mal vector for the plane (Figure 6).This, together with the given point, is enough to
obtain the equation of the desired plane.

� EXAMPLE 6 Find the equation of the plane perpendicular to the curve
at P (2, 0, 8).

SOLUTION The first issue to address is the value of t that yields the given point.
Equating the z components gives leading to A quick check verifies
that also yields the x- and y-components of P. Since 

we see that the direction vector for the tangent
line at P, which is also a normal vector for the desired plane, is 

The equation of the plane is therefore

To determine D, we substitute and 

The equation of the desired plane is  �py + 12z = 96.

D = 0122 + p102 + 12182 = 96

z = 8:x = 2, y = 0,

0x + py + 12z = D

pj + 12k = 80, p, 129. r¿122 =

-2p sin pt i + p cos pt j + 3t2 k,
r¿1t2 =t = 2

t = 2.t3
= 8,

r1t2 = 2 cos pt i + sin pt j + t3 k

x = 2 + t, y = 2 + 2t, z =

8
3

+ 4t

x - 2
1

=

y - 2

2
=

z -
8
3

4

81, 2, 49.
r¿122 = i + 2j + 4k

r¿1t2 = i + t j + t2 k

P122 = A2, 2, 83 B .
r1t2 = t i +

1
2 t2 j +

1
3 t3 k

r¿1t2 = f¿1t2i + g¿1t2j + h¿1t2k = 8f¿1t2, g¿1t2, h¿1t29

r = r1t2 = f1t2i + g1t2j + h1t2k = 8f(t), g(t), h(t)9

x = 1, y = -2 + 5t, z = 3 + t

80, 5, 19.80, -5, -19

u : v = 3 i j k
1 0 0
2 -1 5

3 = 0i - 5j - k

v = 82, -1, 59, u = 81, 0, 09

z

y

x

P

r'(t)

Figure 6
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Concepts Review
1. The parametric equations for a line through 

parallel to the vector are _____, _____,
_____.

2. The symmetric equations for the line of Question 1 are
_____.

z =

y =x =84, -2, -19
11, -3, 22 3. If then _____.

4. A vector parallel to the tangent line at of the curve
determined by the position vector r(t) of Question 3 is _____.This
tangent line has symmetric equations _____.

t = 1

r¿1t2 =r1t2 = t2i - 3tj + t3k,

Problem Set 11.6
In Problems 1–4, find the parametric equations of the line through
the given pair of points.

1. (4, 5, 6) 2.

3. (4, 2, 3), 4. (5, 4, 2)

In Problems 5–8, write both the parametric equations and the sym-
metric equations for the line through the given point parallel to the
given vector.

5. (4, 5, 6), 6.

7. (1, 1, 1), 8.

In Problems 9–12, find the symmetric equations of the line of
intersection of the given pair of planes.

9.

10.

11.

12.

13. Find the symmetric equations of the line through (4, 0, 6)
and perpendicular to the plane 

14. Find the symmetric equations of the line through
and perpendicular to both and 

15. Find the parametric equations of the line through
that intersects the z-axis at a right angle.

16. Find the symmetric equations of the line through
that is parallel to the plane and per-

pendicular to the line

17. Find the equation of the plane that contains the parallel
lines

18. Show that the lines

and

intersect, and find the equation of the plane that they determine.

19. Find the equation of the plane containing the line
and the point 11, -1, 52.x = 1 + 2t, y = -1 + 3t, z = 4 + t

x - 2
-1

=

y - 1

1
=

z + 2
6

x - 1
-4

=

y - 2

3
=

z - 4
-2

c x = -2 + 2t

y = 1 + 4t

z = 2 - t

 and c x = 2 - 2t

y = 3 - 4t

z = 1 + t

x + 8
2

=

y - 5

3
=

z - 1
-1

3x + y - 2z = 512, -4, 52
15, -3, 42

85, 4, -19.82, 1, -391-5, 7, -22
x - 5y + 2z = 10.

x - 3y + z = -1, 6x - 5y + 4z = 9

x + 4y - 2z = 13, 2x - y - 2z = 5

x + y - z = 2, 3x - 2y + z = 3

4x + 3y - 7z = 1, 10x + 6y - 5z = 10

1-2, 2, -22, 87, -6, 398-10, -100, -10009
1-1, 3, -62, 8-2, 0, 5983, 2, 19

15, -3, -32,16, 2, -12
12, -1, -52, 17, -2, 3211, -2, 32,

20. Find the equation of the plane containing the line
and parallel to the intersection of the

planes and 

21. Find the distance between the skew (nonintersecting and
nonparallel) lines and 

by using the following steps.

(a) Note by setting that (2, 3, 0) is on the first line.
(b) Find the equation of the plane through (2, 3, 0) parallel to

both given lines (i.e., with normal perpendicular to both).
(c) Find a point Q on the second line.
(d) Find the distance from Q to the plane (See Example 10 of

Section 11.3.)

See Problem 32 for another way to do this problem.

22. Find the distance between the skew lines 
and 

(see Problem 21).

23. Find the symmetric equations of the tangent line to the
curve with equation

at 

24. Find the parametric equations of the tangent line to the
curve at 

25. Find the equation of the plane perpendicular to the curve
at 

26. Find the equation of the plane perpendicular to the curve

at 

27. Consider the curve

(a) Show that the curve lies on a sphere centered at the origin.

(b) Where does the tangent line at intersect the xz-plane?

28. Consider the curve 

(a) Show that the curve lies on a sphere centered at the origin.
(b) Where does the tangent line at intersect the 

xy-plane?

29. Consider the curve 
(a) Show that this curve lies on a plane and find the equation of

this plane.
(b) Where does the tangent line at intersect the xy-plane?

30. Let P be a point on a plane with normal vector n and Q be
a point off the plane. Show that the result of Example 10 of

t = 2

r1t2 = 2t i + t2j + 11 - t22k
t = p>6

0 … t … 2p.
r1t2 = sin t cos t i + sin2 t j + cos t k,

t =

1
4

0 … t …
1
2.29 - 7t - 4t2 k,r1t2 = 2t i + 27t j +

t = p>2.

r1t2 = t sin t i + 3t j + 2t cos t k

t = -1.x = 3t, y = 2t2, z = t5

t = 1.x = 2t2, y = 4t, z = t3

t = p>3.

r1t2 = 2 cos t i + 6 sin t j + t k

z = 2ty = 1 + 3t,x = 4 - 2t,y = -3 + 4t, z = -1 - t
x = 1 + 2t,

p.

p

t = 0

y = 2, z = -1 + 2t
x = -1 + t,x = 2 - t, y = 3 + 4t, z = 2t

y + z + 1 = 0.2x - y + z = 0
x = 3t, y = 1 + t, z = 2t
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Q

d

n

P
P

d

Q

n2

n

n1

Figure 7 Figure 8

Section 11.3, the distance d between the point Q and the plane,
can be expressed as

and use this result to find the distance from to the
plane 

31. Point to Line Let P be a point on a line with direction n
and Q a point off the line (Figure 7). Show that the distance d
from Q to the line is given by

and use this result to find each distance in parts (a) and (b).

(a) From to the line 

(b) From to the line 
z = -6t

y = -1 + 3t,x = 1 + 2t,Q12, -1, 32
x - 3

2
=

y + 2

-2
=

z - 1
1

Q11, 0, -42

d =

7PQ
!

: n 7
7n 7

4x - 4y + 2z = 2.
14, -2, 32

d =

ƒ PQ
!

# n ƒ

7n 7

32. Line to Line Let P and Q be points on nonintersect-
ing skew lines with directions and and let 
(Figure 8). Show that the distance d between these lines is given
by

and use this result to find the distance between each pair of lines
in parts (a) and (b).

(a) and 

(b) and 

Answers to Concepts Review: 1.

2. 3.

4. 82, -3, 39; x - 1
2

=

y + 3

-3
=

z - 1
3

2ti - 3j + 3t2k
x - 1

4
=

y + 3

-2
=

z - 2
-1

1 + 4t; -3 - 2t; 2 - t

z = -5t
y = 1 + t,x = 3t,x = 1 + 2t, y = -2 + 3t, z = -4t

x + 4
3

=

y + 5

4
=

z

5
x - 3

1
=

y + 2

1
=

z - 1
2

d =

ƒ PQ
!

# n ƒ

7n 7

n = n1 * n2n2,n1

We want to introduce a number, called the curvature, that measures how sharply a
curve bends at a given point. A line should have curvature zero, and a curve that is
turning sharply should have a large curvature (Figure 1).

Let denote the position of an object at time t.We
will assume that is continuous and that is never equal to the zero vector.
This last condition assures that the accumulated arc length s(t) increases as t in-
creases. Our measure of curvature is going to involve how fast the tangent vector is
changing. Rather than working with the tangent vector we choose to work
with the unit tangent vector (Figure 2)

To accomplish the task of defining curvature, we consider the rate of change in
the unit tangent vector. Figures 3 and 4 illustrate this concept for a given curve. As
the object moves from points A to B (Figure 3) in time the unit tangent vector¢t,

T1t2 =

r¿1t2
7r¿1t2 7 =

v1t2
7v1t2 7

r¿1t2

r¿1t2r¿1t2r1t2 = f1t2i + g1t2j + h1t2k

11.7
Curvature and

Components of
Acceleration

Zero
curvature

Small
curvature

Large
curvature

Figure 1

y

x
The unit tangent vector T (t)

Figure 2

T (t)

T (t)

T (t + ∆ t)

T (t + ∆ t)

T (t + ∆ t) – T (t)

B

A

Figure 3

T (t)

T (t)

T (t + ∆ t)

T (t + ∆ t) T (t + ∆ t) – T (t)

D

C

Figure 4
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596 Chapter 11 Geometry in Space and Vectors

Curvature is a relatively simple con-
cept. However, the computations
required for computing the curva-
ture are often long and messy.

Curvature

changed very little; in other words, the magnitude of is small.
On the other hand, as the object moves from points C to D (Figure 4), also in 
time the unit tangent vector changed quite a bit; in other words, the magni-
tude of is large. Our definition of curvature is therefore the
magnitude of the rate of change of the unit tangent vector with respect to arc
length s; that is,

We differentiate with respect to arc length s rather than with respect to t because
we want the curvature to be an intrinsic property of the curve, not how fast the ob-
ject moves along the curve. (Imagine circular motion; the curvature of the circle
should not depend on how fast the object travels around the curve.)

The definition of curvature given above does not help us to actually evaluate
the curvature of a particular curve. To find a workable formula, we proceed as fol-
lows. In Section 11.5 we saw that the speed of an object could be expressed as

Since s increases as t increases we can apply the Inverse Function Theorem 
(Theorem 3.9B) to conclude that the inverse of exists and

This allows us to write

Some Important Examples To convince you that our definition of curva-
ture is sensible, we illustrate with some familiar curves.

� EXAMPLE 1 Show that the curvature of a line is identically zero.

SOLUTION For a line, the unit tangent vector is a constant, so its derivative is 0.
But to illustrate vector methods, we give an algebraic demonstration. If motion is
along the line whose parametric equation is given by

then the position vector can be written as

Thus

�

� EXAMPLE 2 Find the curvature of a circle of radius a.

SOLUTION We assume that the circle lies in the xy-plane and is centered at the
origin so that the position vector is

r1t2 = a cos t i + a sin t j

 k =

7T¿1t2 7
7v1t2 7 =

70 72a2
+ b2

+ c2
= 0

 T1t2 =

8a, b, c92a2
+ b2

+ c2

 v1t2 = r¿1t2 = 8a, b, c9

r1t2 = 8x0, y0, z09 + t8a, b, c9

 z = z0 + ct

 y = y0 + bt

 x = x0 + at

k = " dT
ds
" = " dT

dt
 
dt

ds
 " = ` dt

ds
` " dT

dt
" =

1
7v1t2 7  7T¿1t2 7 =

7T¿1t2 7
7r¿1t2 7

dt

ds
=

1
ds>dt

=

1
7v1t2 7

s(t)

speed = 7v1t2 7 =

ds

dt

k = " dT
ds
"

kT1t + ¢t2 - T1t2¢t,

T1t + ¢t2 - T1t2
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a

=
1
a

Circle

κ

Figure 5

Once again, it is instructive to check
extreme cases. If then motion
is in a circle with radius a and the
curvature is 
which is the curvature of a circle
with radius a. If then we are
stretching our helix vertically into a
line and

which is the curvature of a line. Both
results are as expected.

lim
c: q

 
a

a2
+ c2 = 0

c : q ,

a>1a2
+ 022 = 1>a,

c = 0,

Checking Extreme Cases≈

The concepts of radius of curvature
and circle of curvature apply more
generally to curves in three-space.
The radius of curvature is still

but the circle of curvature
is a more involved concept. The
circle of curvature lies entirely in 
the osculating plane (defined near
the end of this section). For a plane
curve, the osculating plane is the
plane containing the curve.

R = 1>k,

Circle of Curvature for Curves 
in Three-Space

Thus,

Since is the reciprocal of the radius, small circles have large curvature, and large
circles have small curvature. See Figure 5. �

� EXAMPLE 3 Find the curvature for the helix 

SOLUTION

�

For the three curves discussed so far, the line, circle, and helix, the curvature is
a constant. This phenomenon occurs only for special curves. Normally the curva-
ture is a function of t.

Radius and Center of Curvature for a Plane Curve Let P be a point
on a plane curve (i.e., a curve lying entirely in the xy-plane) where the curvature is
nonzero. Consider the circle that is tangent to the curve at P which has the same
curvature there. Its center will lie on the concave side of the curve. This circle is
called the circle of curvature or osculating circle. Its radius is called the
radius of curvature and its center is the center of curvature. (See Figure 6.) These
notions are illustrated in the next example.

� EXAMPLE 4 Find the curvature and the radius of curvature of the curve
traced by the position vector

at the points (0, 0) and (2, 1).

SOLUTION

 k1t2 =

7T¿1t2 7
7v1t2 7 =

B t2

11 + t223 +

1

11 + t223
221 + t2

=

1

211 + t223>2

 T¿1t2 = -

t

11 + t223>2  i +

1

11 + t223>2  j

 T1t2 =

v1t2
7v1t2 7 =

2i + 2t j

221 + t2
=

121 + t2
  i +

t21 + t2
  j

 7v1t2 7 = 222
+ 12t22 = 221 + t2

 v1t2 = r¿1t2 = 2 i + 2t j

r1t2 = 2t i + t2 j

R = 1>k

 k =

7T¿1t2 7
7v1t2 7 =

7 1-a cos t i - a sin t j2>2a2
+ c2 72a2

+ c2
=

a

a2
+ c2

 T¿1t2 =

-a cos t i - a sin t j2a2
+ c2

 T1t2 =

v1t2
7v1t2 7 =

-a sin t i + a cos t j + c k2a2
+ c2

 7v1t2 7 = 2a2 sin2 t + a2 cos2 t + c2
= 2a2

+ c2

 v1t2 = r¿1t2 = -a sin t i + a cos t j + c k

ct k.
r1t2 = a cos t i + a sin t j +

k

 k =

7T¿1t2 7
7v1t2 7 =

7 -cos t i - sin t j 7
a

=

1
a

 T1t2 =

v1t2
7v1t2 7 =

-a sin t i + a cos t j
a

= -sin t i + cos t j

 7v1t2 7 = 2a2 sin2 t + a2 cos2 t = a

 v1t2 = r¿1t2 = -a sin t i + a cos t j

Circle of curvature

Center of
curvatureP

Curve
1
κ

Normal
Line

Tangent
Line

Figure 6
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y

x2 4 6–6

–2

2

4

6

8

10

–4 –2

Figure 7

y

x

i

T

φ
dT
d   φ

Figure 8

Theorem A

Consider a curve with vector equation that is, with para-
metric equations and Then

In particular, if the curve is the graph of then

Primes indicate differentiation with respect to t in the first formula and with re-
spect to x in the second formula.

k =

ƒ y– ƒ

C1 + 1y¿22 D3>2
y = g1x2,

k =

ƒ x¿y– - y¿x– ƒ

C 1x¿22 + 1y¿22 D3>2
y = g1t2.x = f1t2 r1t2 = f1t2i + g1t2j,

The points (0, 0) and (2, 1) occur when and respectively. Thus, the val-
ues of the curvature at these points are

The two values for the radius of curvature are thus and
The circles of curvature are shown in Figure 7. �

Other Formulas for Curvature of a Plane Curve Let denote the
angle measured counterclockwise from i to T (Figure 8). Then,

and so

Now is a unit vector (length 1) and Moreover,

This formula for helps our intuitive understanding of curvature (it measures the
rate of change of with respect to s), and it also allows us to give a fairly simple
proof of the following important theorem.

f

k

k = " dT
ds
" = " dT

df
 
df

ds
" = " dT

df
" ` df

ds
` = ` df

ds
`

T # dT>df = 0.dT>df

dT
df

= -sin f i + cos f j

cos f i + sin f jT =

f

1>k112 = 8>22 = 422.
1>k102 = 2

 k112 =

1

211 + 1223>2 =

22
8

 k102 =

1

211 + 0223>2 =

1
2

t = 1,t = 0

Proof We might calculate directly from the formula a task
we propose in Problem 78. It is a good (but painful) exercise in differentiation and
algebraic manipulation. Rather, we choose to use the formula derived
above. Refer to Figure 8, from which we see that

Differentiate both sides of this equation with respect to t to obtain

Then

sec2 f  
df

dt
=

x¿y– - y¿x–

1x¿22

tan f =

dy

dx
=

dy>dt

dx>dt
=

y¿

x¿

k = ƒ df>ds ƒ

k = 7T¿1t2 7> 7r¿1t2 7 ,k
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Section 11.7 Curvature and Components of Acceleration 599

But

When we put these two results together, we obtain

which is the first assertion of the theorem.
To obtain the second assertion, simply regard as corresponding to

the parametric equations so that and The conclu-
sion follows. �

� EXAMPLE 5 Find the curvature of the ellipse

at the points corresponding to and that is, at (3, 0) and (0, 2). Sketch
the ellipse showing the corresponding circles of curvature.

SOLUTION From the given equations,

Thus,

Consequently,

Note that is larger than as it should be. Figure 9 shows the circle of cur-

vature at (3, 0), which has radius  and the one at (0, 2), which has radius    �

� EXAMPLE 6 Find the curvature of at 

SOLUTION We employ the second formula of Theorem A, noting that the
primes now indicate differentiation with respect to x. Since and

At �x = p>3, k =
1
2.

k =

ƒ -sec2 x ƒ

11 + tan2 x23>2 =

sec2 x

1sec2 x23>2 = ƒ cos x ƒ

y– = -sec2 x,
y¿ = -tan x

x = p>3.y = ln ƒ cos x ƒ

9
2.4

3,

k1p>22,k102
 kap

2
b =

6

93>2 =

2
9

 k102 =

6

43>2 =

3
4

 =

6

C5 sin2 t + 4 D3>2

 k = k1t2 =

ƒ x¿y– - y¿x– ƒ

C 1x¿22 + 1y¿22 D3>2 =

6 sin2 t + 6 cos2 t

C9 sin2 t + 4 cos2 t D3>2

 x– = -3 cos t y– = -2 sin t

 x¿ = -3 sin t, y¿ = 2 cos t

t = p>2,t = 0

x = 3 cos t, y = 2 sin t

x– = 0.x¿ = 1x = t, y = g1t2 y = g1x2

k =

ƒ x¿y– - y¿x– ƒ

C 1x¿22 + 1y¿22 D3>2

k = ` df
ds
` = ` df

dt
 
dt

ds
` = ` df>dt

ds>dt
` =

ƒ df>dt ƒ

C 1x¿22 + 1y¿22 D1>2

 =

x¿y– - y¿x–

1x¿2211 + 1y¿22>1x¿222 =

x¿y– - y¿x–

1x¿22 + 1y¿22

 
df

dt
=

x¿y– - y¿x–

1x¿22 sec2 f
=

x¿y– - y¿x–

1x¿2211 + tan2 f2

y

x

(0, 2)

(3, 0)

1

–1
1 2

Figure 9
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600 Chapter 11 Geometry in Space and Vectors

Components of Acceleration For motion along the curve with position
vector r(t), the unit tangent vector is This vector satisfies

for all t. Differentiating both sides with respect to t, and using the Product Rule on
the left side, gives

This reduces to telling us that T(t) and are perpendicular for
all t. In general, is not a unit vector, so we define the principal unit normal vec-
tor to be

Now, imagine that you are riding in a car on a winding road. As the car accel-
erates you feel pushed in the opposite direction. If the car speeds up, you feel a
push backwards, and when you are turning left, you feel a push to the right. These
two kinds of acceleration are called the tangential and normal components of
acceleration, respectively. What we would like to do is to express the acceleration
vector in terms of these two components, that is, in terms of the unit
tangent vector T(t) and the unit normal vector N(t). Specifically, we would like to
find scalars and so that

To accomplish this we note that

so

Differentiating both sides with respect to t, and using the Product Rule, gives

Using the facts that and we have

The tangential and normal components of acceleration are

and

These results make sense from a physical point of view. If you are speeding up

on a straight road, then and so Thus, in this case you

would feel a push backward and no push to either side. On the other hand, if you
are going around a curve at a constant speed (i.e., is constant) thends>dt

aN = 0.k = 0aT =

d2s

dt2 7 0,

aN = ads

dt
b2

k

aT =

d2s

dt2

a =

d2s

dt2  T +

ds

dt
 7T¿ 7N =

d2s

dt2  T + ads

dt
b2

kN

7T¿ 7 = k 
ds

dt
T¿ = 7T¿ 7N,a = v¿,

v¿ =

ds

dt
 T¿ + T 

d2s

dt2

v =

ds

dt
 T

T =

v
7v 7 =

v
ds>dt

a = aTT + aNN

aNaT

a1t2 = r–1t2

N1t2 =

T¿1t2
7T¿1t2 7

T¿

T¿1t2T1t2 # T¿1t2 = 0

T1t2 # T¿1t2 + T1t2 # T¿1t2 = 0

T1t2 # T1t2 = 1

T1t2 = r¿1t2> 7r¿1t2 7 .
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ds
dt d2 s

dt2T

N

a

2
κ

Figure 10

and making positive. Finally, imagine going around a

curve while speeding up. In this case both and will be positive, and a will
point inward and forward as shown in Figure 10. You would feel thrown back and
to the right.

To calculate it appears that we must calculate the curvature However,
this can be avoided by noting that since T and N are orthogonal,

so we can compute

The vector N can be computed indirectly from

Vector Forms for the Components of Acceleration We can write the
formulas for the components of acceleration in terms of the position vector r. We
begin with

and dot both sides by T to get

Here we have used the facts that T is a unit vector and that T and N are orthogo-
nal. Thus,

We can find a similar formula for by crossing both sides by T:

Taking the magnitude of both sides gives

Notice that so the absolute value bars are not needed for 
Thus,

Finally, we can find a formula for the curvature 

Binormal at P (Optional) Given a curve C and the unit tangent vector T
at P, there are, of course, infinitely many unit vectors perpendicular to T at P
(Figure 11). We picked one of them, and called it the principal nor-
mal. The vector

B = T : N

N = T¿> 7T¿ 7 ,

k =

aN

1ds>dt22 =

7r¿ : r– 7 > 7r¿ 7
7r¿ 72 =

7r¿ : r– 7
7r¿ 73

k:

aN = 7T : a 7 = " r¿

7r¿ 7 : r– " =

7r¿ : r– 7
7r¿ 7

aN.aN = 1ds>dt22k 7 0,

7T : a 7 = ƒ aN ƒ 7T : N 7 = aN 7T 7 7N 7  sin 
p

2
= aN112112112 = aN

T : a = aTT : T + aNT : N = aT0 + aN1T : N2 = aN1T : N2
aN

aT = T # a =

r¿

7r¿ 7 # r– =

r¿
# r–

7r¿ 7

T # a = T # 1aTT + aNN2 = aTT # T + aNT # N = aT112 + aN102 = aT

a = aTT + aNN

N =

a - aTT
aN

aN = 2 7a 72 - aT
2

7a 72 = aT
2

+ aN
2

k.aN,

aNaT

aNk 7 0,aT =

d2s

dt2 = 0

P C

T

Figure 11
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z

y

x

The moving trihedral

N

B
T

P

Figure 12

z

y

x

N

B

T

Figure 13

is called the binormal. It, too, is a unit vector and it is perpendicular to both T and
N. (Why?)

If the unit tangent vector T, the principal normal N, and the binormal B have
their initial points at P, they form a right-handed, mutually perpendicular triple of
unit vectors known as the trihedral at P (Figure 12). This moving trihedral plays a
crucial role in a subject called differential geometry. The plane of T and N is called
the osculating plane at P.

� EXAMPLE 7 Find T, N, and B, and the normal and tangential components
of acceleration for uniform circular motion 

SOLUTION

The tangential component of acceleration is 0 since the object is moving at uni-
form speed. The normal component of acceleration is equal to the magnitude of
the acceleration vector. Figure 13 shows the vectors T, N, and B. �

� EXAMPLE 8 At the point find T, N, B, and for the curvi-
linear motion

SOLUTION

At which gives the point we have

 aT =

r¿
# r–

7r¿ 7 =

626

 T =

r¿

7r¿ 7 =

i + 2j + k26

 r– = 2j + 2k

 r¿ = i + 2j + k

A1, 1, 13 B ,t = 1,

 r–1t2 = 2 j + 2t k

 r¿1t2 = i + 2t j + t2 k

r1t2 = t i + t2 j +
1
3 t3 k

kaT, aN,A1, 1, 13 B ,

 aN =

7r¿ : r– 7
7r¿ 7 =

a2v3

av
= av2

 r¿ : r– = 3 i j k
-av sin vt av cos vt 0

-av2 cos vt -av2 sin vt 0

3 = a2v3k

 aT =

r¿
# r–

7r¿ 7 =

1-av sin vt i + av cos vtj2 # 1-av2 cos vti - av2 sin vtj2
av

= 0

 B = T : N = 3 i j k
-sin vt cos vt 0
-cos vt -sin vt 0

3 = k

 N =

T¿

7T¿ 7 =

-v cos vt i - v sin vt j
7 -v cos vt i - v sin vt j 7 = -cos vt i - sin vt j

 T =

r¿

7r¿ 7 =

-av sin vt i + av cos vt j
7 -av sin vt i + av cos vt j 7 = -sin vt i + cos vt j

r1t2 = a cos vt i + a sin vt j.
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� k =

7r¿ : r– 7
7r¿ 73 =

aN

7r¿ 72 =

22
6

 =

123
  i -

123
  j +

123
  k

 = 3 i j k
1>26 2>26 1>26

-1>22 0 1>22

3
 B = T : N

 N =

a - aTT
aN

=

12j + 2k2 - 1i + 2j + k222
=

- i + k22

 aN =

7r¿ : r– 7
7r¿ 7 =

126
 # 3 i j k

1 2 1
0 2 2

3 # =

126
 72i - 2j + 2k 7 = 22

Concepts Review
1. Curvature is defined to be the magnitude of the vector

_____.

2. The curvature of a circle of radius a is constant and has
value _____; the curvature of a line is _____.k =

3. The acceleration vector a can be expressed as 
_____ _____ N.

4. For uniform circular motion in the plane, the tangential
component of acceleration is _____.

T +a =

Problem Set 11.7
In Problems 1–6, sketch the curve over the indicated domain for t.
Find v, a, T, and at the point where 

1.

2.

3.

4.

5.

6.

In Problems 7–14, find the unit tangent vector and the curva-
ture at the point where For calculating we suggest
using Theorem A, as in Example 5.

7.

8.

9.

10.

11.

12.

13.

14.

In Problems 15–26, sketch the curve in the xy-plane. Then, for the
given point, find the curvature and the radius of curvature. Finally,

r1t2 = t cos t i + t sin t j; t1 = 1

x1t2 = e-t cos t, y1t2 = e-t sin t; t1 = 0

x1t2 = sinh t, y1t2 = cosh t; t1 = ln 3

x1t2 = 1 - t2, y1t2 = 1 - t3; t1 = 1

r1t2 = et i + et j; t1 = ln 2

z1t2 = 3 cos t i + 4 sin t j; t1 = p>4
r1t2 =

1
3 t3 i +

1
2 t2 j; t1 = 1

u1t2 = 4t2 i + 4t j; t1 =
1
2

k,t = t1.k1t2
T(t)

r1t2 =

t2

4
  i + 2 cos t j + 2 sin t k; 0 … t … 4p; t1 = p

r1t2 =

t2

8
  i + 5 cos t j + 5 sin t k; 0 … t … 4p; t1 = p

r1t2 = 5 cos t i + 2t j + 5 sin t k; 0 … t … 4p; t1 = p

r1t2 = t i + 2 cos t j + 2 sin t k; 0 … t … 4p; t1 = p

r1t2 = t2 i + 12t + 12j; 0 … t … 2; t1 = 1

r1t2 = t i + t2 j; 0 … t … 2; t1 = 1

t = t1.k

draw the circle of curvature at the point. Hint: For the curvature,
you will use the second formula in Theorem A, as in Example 6.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

In Problems 27–34, find the curvature the unit tangent vector T,
the unit normal vector N, and the binormal vector B at 

27.

28.

29.

30.

31.

32.

33.

34.

In Problems 35–40, find the point of the curve at which the curva-
ture is a maximum.

35. 36.

37. 38. y = sinh xy = cosh x

y = sin x; -p … x … py = ln x

x = ln t, y = 3t, z = t2; t1 = 2

r1t2 = e-2t i + e2t j + 222t k; t1 = 0

r1t2 = e7t cos 2t i + e7t sin 2t j + e7t k; t1 = p>3
r1t2 = 3 cosh1t>32 i + t j; t1 = 1

r1t2 = cos3 t i + sin3 t k; t1 = p>2
x = 7 sin 3t, y = 7 cos 3t, z = 14t, t1 = p>3
x = sin 3t, y = cos 3t, z = t, t1 = p>9
r1t2 =

1
2 t2 i + t j +

1
3 t3 k; t1 = 2

t = t1.
k,

y = tanh x, A ln 2, 35 By = 13 x, 11, 12
y = 1x, 11, 12y = tan x, 1p>4, 12
y = e-x2

, A1, 1>e By = cos 2x, A16 p, 12 B
y2

- 4x2
= 20, 12, -62y2

- 4x2
= 20, 12, 62

y2
= x - 1, 11, 02y = sin x, ap

4
, 
22
2
b

y = x1x - 422, 14, 02y = 2x2, 11, 22
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θ

θ

F : Force exerted
      by road

Centrifugal
force Road

mg: Weight of car

mvR
2/R:

Figure 14

39.

40. for 

In Problems 41–52, find the tangential and normal components
( and ) of the acceleration vector at t. Then evaluate at 
See Examples 7 and 8.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53. Sketch the path for a particle if its position vector is
(you should get a figure eight).

Where is the acceleration zero? Where does the acceleration vec-
tor point to the origin?

54. The position vector of a particle at time is

(a) Show that the speed 
(b) Show that and 

55. If, for a particle, for all t, what can you conclude
about its speed? If for all t, what can you conclude about
its curvature?

56. Find N for the ellipse

57. Consider the motion of a particle along a helix given by
where the k component

measures the height in meters above the ground and If 
the particle leaves the helix and moves along the line tangent to
the helix when it is 12 meters above the ground, give the direction
vector for the line.

58. An object moves along the curve Without
doing any calculating, decide where 

59. A dog is running counterclockwise around the circle
(distances in feet). At the point it is

running at 10 feet per second and is speeding up at 5 feet per sec-
ond per second. Express its acceleration a at the point first in
terms of T and N, and then in terms of i and j.

60. An object moves along the parabola with constant
speed of 4. Express a at the point in terms of T and N.

61. A car traveling at constant speed rounds a level curve,
which we take to be a circle of radius R. If the car is to avoid slid-
ing outward, the horizontal frictional force F exerted by the road
on the tires must at least balance the centrifugal force pulling
outward. The force F satisfies where is themF = mmg,

v

1x, x22
y = x2

1-12, 162,x2
+ y2

= 400

aN = 0.
y = sin 2x.

t Ú 0.
r1t2 = sin t i + cos t j + 1t2

- 3t + 22k,

r1t2 = a cos vt i + b sin vt j

aN = 0
aT = 0

aN = t.aT = 1
ds>dt = t.

r1t2 = 1cos t + t sin t2i + 1sin t - t cos t2j
t Ú 0

r = sin t i + sin 2t j, 0 … t … 2p

r1t2 = t i +
1
3 t3 j + t-1 k, t 7 0; t1 = 1

r1t2 = A t -
1
3 t3 B i - A t +

1
3 t3 B j + t k; t1 = 3

r1t2 = 1t - 222 i - t2 j + t k; t1 = 2

x = e-t, y = 2t, z = et; t1 = 0

x = t, y = t2, z = t3; t1 = 2

r1t2 = 1t + 12i + 3t j + t2 k; t1 = 1

x1t2 = 1 + 3t, y1t2 = 2 - 6t; t1 = 2

r1t2 = a cosh t i + a sinh t j; t1 = ln 3

r1t2 = a cos t i + a sin t j ; t1 = p>6
r1t2 = 12t + 12i + 1t2

- 22j; t1 = -1

r1t2 = t2 i + t j; t1 = 1

r1t2 = 3t i + 3t2 j; t1 =
1
3

t = t1.aNaT

-p>2 6 x 6 p>2y = ln cos x

y = ex coefficient of friction, m is the mass of the car, and g is the accel-
eration of gravity. Thus, Show that the speed
beyond which skidding will occur, satisfies

and use this to determine for a curve with feet and
Use feet per second per second.

62. Consider again the car of Problem 61. Suppose that the
curve is icy at its worst spot but is banked at angle 
from the horizontal (Figure 14). Let F be the force exerted by the
road on the car.Then, at the critical speed and

(a) Show that 

(b) Find for a curve with feet and u = 10°.R = 400vR

vR = 2Rg tan u.

mv2
R>R = 7F 7  sin u.

vR, mg = 7F 7  cos u

u1m = 02,
g = 32m = 0.4.

R = 400vR

vR = 2mgR

vR,mmg Ú mv2>R.

63. Demonstrate that the second formula in Theorem A can
also be written as where is the angle of inclina-
tion of the tangent line to the graph of 

64. Show that for a plane curve N points to the concave side
of the curve. Hint: One method is to show that

Then consider the cases (curve bends to the left) and
(curve bends to the right).

65. Prove that Derive a similar result for T in
terms of N and B.

66. Show that the curve

has continuous first derivatives and curvature at all points.

67. Find a curve given by a polynominal that pro-
vides a smooth transition between two horizontal lines. That is,
assume a function of the form 

which provides a smooth transition between
for and for in such a way that the func-

tion, its derivative, and curvature are all continuous for all values
of x.

Hint: must satisfy the six conditions 
and Use thesePfl

5112 = 0.0, Pfl

5102 = 0, P5112 = 1, Pœ

5112 = 0,
P5102 = 0, Pœ

5102 =P51x2

y = c 0 if x … 0
P51x2 if 0 6 x 6 1
1 if x Ú 1

x Ú 1y = 1x … 0y = 0
a3x

3
+ a4x

4
+ a5x

5,
P51x2 = a0 + a1x + a2x

2
+

P51x2EXPL

y = e 0 if x … 0
x3 if x 7 0

N = B : T.

df>ds 6 0
df>ds 7 0

N = 1-sin f i + cos f j2 df>ds

ƒ df>ds ƒ

y = f1x2.
fk = ƒ y– cos3 f ƒ ,
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Section 11.8 Surfaces in Three-Space 605

six conditions to determine uniquely and thus find

68. Find a curve given by a polynomial that provides a
smooth transition between for and for 

69. Derive the polar coordinate curvature formula

where the derivatives are with respect to 

In Problems 70–75, use the formula in Problem 69 to find the cur-
vature of the following:

70. Circle:

71. Cardioid: at 

72. at 

73. at 

74. at 

75. at 

76. Show that the curvature of the polar curve is pro-
portional to 

77. Show that the curvature of the polar curve is
directly proportional to r for 

78. Derive the first curvature formula in Theorem A by work-
ing directly with 

79. Draw the graph of 
Estimate its maximum and minimum curvature by

looking at the graph (curvature is the reciprocal of the radius of
curvature). Then use a graphing calculator or a CAS to approxi-
mate these two numbers to four decimal places.

0 … t … 2p.
x = 4 cos t, y = 3 sin1t + 0.52,GC

k = 7T¿1t2 7> 7r¿1t2 7 .
r 7 0.

r2
= cos 2u

1>r.
r = e6u

u = p>2r = 411 + sin u2
u = 1r = e3u

u = p>2r = 411 + cos u2
u = 1r = u

u = 0r = 1 + cos u

r = 4 cos u

k

u.

k =

ƒ r2
+ 21r¿22 - rr– ƒ

1r2
+ 1r¿2223>2

EXPL

x Ú 1.y = xx … 0y = 0
P51x2

P51x2.
a0, Á , a5 80. Show that the unit binormal vector has the

property that is perpendicular to B.

81. Show that the unit binormal vector has the

property that is perpendicular to T.

82. Using the results obtained in Problems 80 and 81, show

that must be parallel to N and, consequently, there must be a

number depending on s such that The function

is called the torsion of the curve and measures the twist of
the curve from the plane determined by T and N.

83. Show that for a plane curve the torsion is 

84. Show that for a straight line 
both and are zero.

85. A fly is crawling along a wire helix so that its position vec-
tor is At what point
will the fly hit the sphere and how far did it
travel in getting there (assuming that it started when )?

86. The DNA molecule in humans is a double helix, each with
about complete turns. Each helix has radius about 
10 angstroms and rises about 34 angstroms on each complete
turn (an angstrom is centimeter). What is the total length of
such a helix?

Answers to Concepts Review: 1. 2. 0

3. 4. 0
d2s

dt2 ; ads

dt
b2

k

1>a;
dT
ds

10-8

2.9 * 108
C

t = 0
x2

+ y2
+ z2

= 100,
r1t2 = 6 cos pt i + 6 sin pt j + 2t k, t Ú 0.

C

tkb0t j + c0t k
r1t2 = r0 + a0ti +

t1s2 = 0.

t1s2
dB
ds

= -t1s2N.t

dB
ds

dB
ds

B = T : N

dB
ds

B = T : N

A cross section

Figure 1

The graph of an equation in three variables is normally a surface.We have met two
examples already. The graph of is a plane; the graph of

is a sphere. Graphing surfaces is best ac-
complished by finding the intersections of the surface with well-chosen planes.
These intersections are called cross sections (Figure 1); those with the coordinate
planes are also called traces.

� EXAMPLE 1 Sketch the graph of

SOLUTION To find the trace in the xy-plane, we set in the given
equation. The graph of the resulting equation

x2

16
+

y2

25
= 1

z = 0

x2

16
+

y2

25
+

z2

9
= 1

1x - h22 + 1y - k22 + 1z - l22 = r2
Ax + By + Cz = D

11.8
Surfaces in Three-Space
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606 Chapter 11 Geometry in Space and Vectors

z

x y

z = x3 – 3xy2

Figure 3

z

x

y

l

Generating
curve C

Cylinder

Figure 4

x2

16
y2

25
z2

9

xz–trace

Ellipsoid:

xy–trace

yz–trace

z

x

y

+ + = 1

Figure 2

y2

a2

x2

b2

Hyperbolic
cylinder

z

x

y

– = 1

Figure 5

z = sin y
z

x

y

Figure 6

If the surface is very complicated, it may be useful to show the cross sections
with many planes parallel to the coordinate planes. Here a computer with graphics
capability can be very helpful. In Figure 3 we show a typical computer-generated
graph, the graph of the “monkey saddle” We will have more to say
about computer-generated graphs in the next chapter.

Cylinders You should be familiar with right circular cylinders from high school
geometry. Here the word cylinder will denote a much more extensive class of
surfaces.

Let C be a plane curve, and let l be a line intersecting C that is not in the plane
of C.The set of all points on lines that are parallel to l and that intersect C is called
a cylinder (Figure 4).

Cylinders occur naturally when we graph an equation in three-space that in-
volves just two variables. Consider as a first example

in which the variable z is missing. This equation determines a curve C in the xy-
plane, a hyperbola. Moreover, if satisfies the equation, so does 
As z runs through all real values, the point traces out a line parallel to
the z-axis. We conclude that the graph of the given equation is a cylinder, a hyper-
bolic cylinder (Figure 5).

A second example is the graph of (Figure 6).z = sin y

1x1, y1, z2
1x1, y1, z2.1x1, y1, 02

y2

a2 -

x2

b2 = 1

z = x3
- 3xy2.

is an ellipse.The traces in the xz-plane and the yz-plane (obtained by setting 
and respectively) are also ellipses. These three traces are shown in Figure 2
and help to provide a good visual image of the required surface (called an
ellipsoid). �

x = 0,
y = 0
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Section 11.8 Surfaces in Three-Space 607

QUADRIC SURFACES

ELLIPSOID:

Plane Cross Section

xy-plane Ellipse

xz-plane Ellipse

yz-plane Ellipse

Parallel to xy-plane Ellipse, point, or empty set

Parallel to xz-plane Ellipse, point, or empty set

Parallel to yz-plane Ellipse, point, or empty set

x2

a2 +

y2

b2 +

z2

c2 = 1

z

x

y

Figure 7

HYPERBOLOID OF ONE SHEET:

Plane Cross Section

xy-plane Ellipse

xz-plane Hyperbola

yz-plane Hyperbola

Parallel to xy-plane Ellipse

Parallel to xz-plane Hyperbola

Parallel to yz-plane Hyperbola

x2

a2 +

y2

b2 -

z2

c2 = 1
z

x

y

Figure 8

Quadric Surfaces If a surface is the graph in three-space of an equation of
second degree, it is called a quadric surface. Plane sections of a quadric surface are
conics.

The general second-degree equation has the form

It can be shown that any such equation can be reduced, by rotation and translation
of coordinate axes, to one of the two forms

or

The quadric surfaces represented by the first of these equations are symmetric
with respect to the coordinate planes and the origin. They are called central
quadrics.

In Figures 7 through 12, we show six general types of quadric surfaces. Study
them carefully. The graphs were drawn by a technical artist; we do not expect that
most of our readers will be able to duplicate them in doing the problems. A more
reasonable drawing for most people to make is like the one that is shown in 
Figure 13 with our next example.

Ax2
+ By2

+ Iz = 0

Ax2
+ By2

+ Cz2
+ J = 0

Ax2
+ By2

+ Cz2
+ Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0
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608 Chapter 11 Geometry in Space and Vectors

HYPERBOLOID OF TWO SHEETS:

Plane Cross Section

xy-plane Hyperbola

xz-plane Hyperbola

yz-plane Empty set

Parallel to xy-plane Hyperbola

Parallel to xz-plane Hyperbola

Parallel to yz-plane Ellipse, point, or empty set

x2

a2 -

y2

b2 -

z2

c2 = 1
z

x

y

Figure 9

ELLIPTIC PARABOLOID:

Plane Cross Section

xy-plane Point

xz-plane Parabola

yz-plane Parabola

Parallel to xy-plane Ellipse, point, or empty set

Parallel to xz-plane Parabola

Parallel to yz-plane Parabola

z =

x2

a2 +

y2

b2

z

x

y

Figure 10

HYPERBOLIC PARABOLOID:

Plane Cross Section

xy-plane Intersecting straight lines

xz-plane Parabola

yz-plane Parabola

Parallel to xy-plane Hyperbola or intersecting 
straight lines

Parallel to xz-plane Parabola

Parallel to yz-plane Parabola

z =

y2

b2 -

x2

a2
z

x

y

Figure 11

ELLIPTIC CONE:

Plane Cross Section

xy-plane Point

xz-plane Intersecting straight lines

yz-plane Intersecting straight lines

Parallel to xy-plane Ellipse or point

Parallel to xz-plane Hyperbola or intersecting 
straight lines

Parallel to yz-plane Hyperbola or intersecting 
straight lines

x2

a2 +

y2

b2 -

z2

c2 = 0
z

x

y

Figure 12

QUADRIC SURFACES (continued)
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z

y

x

Figure 13

� EXAMPLE 2 Analyze the equation

and sketch its graph.

SOLUTION The traces in the three coordinate planes are obtained by setting
and respectively.

These traces are graphed in Figure 13.We have also shown the cross sections in the
planes and Note that when we substitute in the original
equation we get

which is equivalent to

an ellipse. �

� EXAMPLE 3 Name the graph of each of the following equations:

(a) (b)

(c) (d)

SOLUTION
(a) Dividing both sides of this equation by gives the form

Its graph is a hyperboloid of two sheets. It does not intersect the xy-plane, but
cross sections in planes parallel to this plane (and at least 2 units away) are
circles.

(b) The variable x does not appear, so the graph is a cylinder parallel to the x-axis.
Since the equation can be written in the form its graph is
a circular cylinder.

(c) Since the variable y is missing, the graph is a cylinder. The given equation can
be written so its graph consists of the two planes 
and 

(d) The equation can be rewritten as

which has an elliptic paraboloid as its graph. It is symmetric with respect to the
y-axis. �

x2

4
+

z2

9
= y

x = -z.
x = z1x - z21x + z2 = 0;

1y - 622 + z2
= 36,

-

x2

25
-

y2

25
+

z2

4
= 1

-100

9x2
+ 4z2

- 36y = 0x2
- z2

= 0

y2
+ z2

- 12y = 04x2
+ 4y2

- 25z2
+ 100 = 0

x2

8
+

y2

18
= 1

x2

4
+

y2

9
-

16
16

= 1

z = ;4z = -4.z = 4

 yz-plane: 
y2

9
-

z2

16
= 1, a hyperbola

 xz-plane:  
x2

4
-

z2

16
= 1, a hyperbola

 xy-plane:  
x2

4
+

y2

9
= 1, an ellipse

x = 0,z = 0, y = 0,

x2

4
+

y2

9
-

z2

16
= 1
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610 Chapter 11 Geometry in Space and Vectors

Concepts Review
1. The intersections of a surface with the coordinate planes

are called _____. More generally, intersections with any plane are
called _____.

2. Equations involving just two variables when graphed in
three-space generate surfaces called _____. In particular, the

graph of is an ordinary right circular cylinder whose
axis is the _____.

3. The graph of is a surface called
a(n) _____.

4. The graph of is a surface called a(n)
_____.

4z = x2
+ 2y2

3x2
+ 2y2

+ 4z2
= 12

x2
+ y2

= 1

Problem Set 11.8
In Problems 1–20, name and sketch the graph of each of the fol-
lowing equations in three-space.

1. 2.

3. 4.

5.

6.

7.

8.

9. 10.

11. 12.

13. 14.

15.

16.

17. 18.

19. 20.

21. The graph of an equation in x, y, and z is symmetric with
respect to the xy-plane if replacing z by results in an equiva-
lent equation. What condition leads to a graph that is symmetric
with respect to each of the following?
(a) yz-plane (b) z-axis (c) origin

22. What condition leads to a graph that is symmetric with re-
spect to the following?
(a) xz-plane (b) y-axis (c) x-axis

23. Find the general equation of a central ellipsoid that is
symmetric with respect to the following:
(a) origin (b) x-axis (c) xy-plane

24. Find the general equation of a central hyperboloid of one
sheet that is symmetric with respect to the following:
(a) origin (b) y-axis (c) xy-plane

25. Find the general equation of a central hyperboloid of two
sheets that is symmetric with respect to the following:
(a) origin (b) z-axis (c) yz-plane

26. Which of the equations in Problems 1–20 has a graph that
is symmetric with respect to each of the following?
(a) xy-plane (b) z-axis

27. If the curve in the -plane is revolved about the
z-axis, the resulting surface has equation obtainedz = x2

+ y2,
xzz = x2

-z

z = 2x2
+ y2

+ 1z = 216 - x2
- y2

y = cos x5x + 8y - 2z = 10

9x2
+ 25y2

+ 9z2
= 225

9x2
+ 4z2

- 36y = 0

x2
+ y2

- 4z2
+ 4 = 0x2

- z2
+ y = 0

6x - 3y = py = e2z

-x2
+ y2

+ z2
= 04x2

+ 16y2
- 32z = 0

9x2
- y2

+ 9z2
- 9 = 0

4x2
+ 9y2

+ 49z2
= 1764

2x2
- 16z2

= 0

x2
+ y2

- 8x + 4y + 13 = 0

z2
= 3y3x + 2z = 10

y2
+ z2

= 154x2
+ 36y2

= 144

as a result of replacing x by If in the -plane
is revolved about the y-axis, what is the equation of the resulting
surface?

28. Find the equation of the surface that results when the
curve in the -plane is revolved about the z-axis.

29. Find the equation of the surface that results when the
curve in the -plane is revolved about the 
y-axis.

30. Find the equation of the surface that results when the
curve in the -plane is revolved about the 
x-axis.

31. Find the coordinates of the foci of the ellipse that is the
intersection of with the plane 

32. Find the coordinates of the focus of the parabola that is
the intersection of with 

33. Find the area of the elliptical cross section cut from 
the surface by the plane 

Recall: The area of the ellipse
is 

34. Show that the volume of the solid bounded by the
elliptic paraboloid and the xy-
plane is that is, the volume is one-half the area of the
base times the height. Hint: Use the method of slabs of Sec-
tion 6.2.

35. Show that the projection in the xz-plane of the curve that
is the intersection of the surfaces and is
an ellipse, and find its major and minor diameters.

36. Sketch the triangle in the plane that is above the
plane below the plane and inside the cylinder

Then find the area of this triangle.

37. Show that the spiral lies on
the circular cone On what surface does the
spiral lie?

38. Show that the curve determined by is
a parabola, and find the coordinates of its focus.

Answers to Concepts Review: 1. traces; cross sections
2. cylinders; z-axis 3. ellipsoid 4. elliptic paraboloid

r = t i + t j + t2 k

r = 3t cos t i + t sin t j + t k
x2

+ y2
- z2

= 0.
r = t cos t i + t sin t j + t k

x2
+ y2

= 8.
z = 2y,z = y>2,

y = x

y = x2
+ z2y = 4 - x2

pabh2>2,
x2>a2

+ y2>b2
= h - z, h 7 0,

pAB.x2>A2
+ y2>B2

= 1
h, -c 6 h 6 c.

z =x2>a2
+ y2>b2

+ z2>c2
= 1

x = 4.z = x2>4 + y2>9

z = 4.z = x2>4 + y2>9

xy4x2
- 3y2

= 12

xy4x2
+ 3y2

= 12

yzz = 2y

xyy = 2x22x2
+ y2.
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1

Figure 2
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4
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z

y

x

z

y
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P(x, y, z)

y

z

x
r

z

P(r,   , z)θ

θ

P(  ,   ,  )

φ
ρ

θ

θ φ

Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates

�

Figure 1

A point P has spherical coordinates if (rho) is the distance 
from the origin to P, is the polar angle associated with the projection of P
onto the xy-plane, and is the angle between the positive z-axis and the line seg-
ment OP. We require that

Cylindrical Coordinates If a solid or a surface has an axis of symmetry, it is
often wise to orient it so that this axis is the z-axis and then use cylindrical coordi-
nates. Note in particular the simplicity of the equation of a circular cylinder with 
z-axis symmetry (Figure 2) and also of a plane containing the z-axis (Figure 3). In
Figure 3, we have allowed 

Cylindrical and Cartesian coordinates are related by the following equations:

Cylindrical to Cartesian Cartesian to Cylindrical

With these relationships, we can go back and forth between the two coordinate
systems.

� EXAMPLE 1 Find

(a) the Cartesian coordinates of the point with cylindrical coordinates 
(b) the cylindrical coordinates of the point with Cartesian coordinates

SOLUTION

(a)

 z = 5

 y = 4 sin 
2p
3

= 4 # a23
2
b = 223

 x = 4 cos 
2p
3

= 4 # a-

1
2
b = -2

1-5, -5, 22.
14, 2p>3, 52

z = zz = z

tan u = y>xy = r sin u

r = 2x2
+ y2x = r cos u

r 6 0.

r Ú 0, 0 … u 6 2p, 0 … f … p

f

P¿u

ƒ OP ƒr1r, u, f2

Giving the Cartesian (rectangular) coordinates (x, y, z) is just one of many ways of
specifying the position of a point in three-space. Two other kinds of coordinates
that play a significant role in calculus are cylindrical coordinates and
spherical coordinates The meaning of the three kinds of coordinates is
illustrated for the same point P in Figure 1.

The cylindrical coordinate system uses the polar coordinates r and (Sec-
tion 10.5) in place of Cartesian coordinates x and y in the plane. The z-coordinate
is the same as in Cartesian coordinates. We will usually require that and we
will restrict so that 0 … u 6 2p.u

r Ú 0,

u

1r, u, f2. 1r, u, z2
11.9

Cylindrical and
Spherical Coordinates
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x

P(–5, –5, 2)

5π
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1

2

4
2
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Figure 4

z

y

x

ρ0

ρ = ρ0

Figure 5

z

y

x

φ = φ0

φ0

Figure 6

Thus, the Cartesian coordinates of are 

(b)

Figure 4 indicates that is between and Since we must have

The cylindrical coordinates of  are  �

� EXAMPLE 2 Find the equations in cylindrical coordinates of the parabo-
loid and cylinder whose Cartesian equations are and

SOLUTION

Division of an equation by a variable creates the potential for losing a solution. For
example, dividing by x gives and loses the solution Similarly,
dividing by r gives and appears to lose the solution 
(the origin). However, the origin satisfies the equation with coordi-
nates Thus, and have identical polar graphs (see
CAUTION in the margin of Section 10.5). �

� EXAMPLE 3 Find the Cartesian equations of the surfaces whose equations
in cylindrical coordinates are and 

SOLUTION Since the surface has the Cartesian
equation or Its graph is an
ellipsoid.

Since the second equation can be written
In Cartesian coordinates it becomes the

graph of which is a hyperbolic paraboloid. �

Spherical Coordinates When a solid or a surface is symmetric with respect
to a point, spherical coordinates are likely to play a simplifying role. In particular,
a sphere centered at the origin (Figure 5) has the simple equation Also
note that the equation of a cone with axis along the z-axis and vertex at the origin
(Figure 6) is 

It is easy to determine the relationships between spherical and cylindrical co-
ordinates and between spherical and Cartesian coordinates. The following table
shows some of these relationships.

Spherical to Cartesian Cartesian to Spherical

� EXAMPLE 4 Find the Cartesian coordinates of the point P with spherical
coordinates 18, p>3, 2p>32.

cos f =

z2x2
+ y2

+ z2
z = r cos f

tan u = y>xy = r sin f sin u

r = 2x2
+ y2

+ z2x = r sin f cos u

f = f0.

r = r0.

x2
- y2

= z,r2 cos2 u - r2 sin2 u = z.
cos 2u = cos2 u - sin2 u,

x2>16 + y2>16 + z2>4 = 1.x2
+ y2

+ 4z2
= 16

r2
+ 4z2

= 16r2
= x2

+ y2,

r2 cos 2u = z.r2
+ 4z2

= 16

r = 2 cos ur2
= 2r cos u10, p>22. r = 2 cos u

r = 0r = 2 cos ur2
= 2r cos u

x = 0.x = 1x2
= x

r2
= 2r cos u or 1equivalently2 r = 2 cos uCylinder:

r2
= 4 - zParaboloid:

x2
+ y2

= 2x.
x2

+ y2
= 4 - z

5p>4, 2 B .A522,1-5, -5, 22u = 5p>4.

tan u = 1,p.p>2u

 z = 2

 tan u =

-5
-5

= 1

 r = 21-522 + 1-522 = 522

A -2, 223, 5 B .14, 2p>3, 52
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z

y

x
8

P

2π
3

π
3

Figure 7

SOLUTION We have plotted the point P in Figure 7.

Thus, P has Cartesian coordinates  �

� EXAMPLE 5 Describe the graph of 

SOLUTION We change to Cartesian coordinates. Multiply both sides by to
obtain

The graph is a sphere of radius 1 centered at the point with Cartesian coordinates
(0, 0, 1). �

� EXAMPLE 6 Find the equation of the paraboloid in spherical
coordinates.

SOLUTION Substituting for x, y, and z yields

Note that yields which shows that we did not lose the origin when
we canceled at the fourth step. �

Spherical Coordinates in Geography Geographers and navigators use a
coordinate system very closely related to spherical coordinates, the longitude–
latitude system. Suppose that the earth is a sphere with center at the origin, that the
positive z-axis passes through the North Pole, and that the positive x-axis passes
through the prime meridian (Figure 8). By convention, longitudes are specified in
degrees east or west of the prime meridian and latitudes in degrees north or south of
the equator. It is a simple matter to determine spherical coordinates from such data.

� EXAMPLE 7 Assuming the earth to be a sphere of radius 3960 miles, find
the great-circle distance from Paris (longitude 2.2° E, latitude 48.4° N) to Calcutta
(longitude 88.2° E, latitude 22.3° N).

SOLUTION We first calculate the spherical angles and for the two cities.

Paris:

Calcutta:

 f = 90° - 22.3° = 67.7° L 1.1816 radians

u = 88.2° L 1.5394 radians

 f = 90° - 48.4° = 41.6° L 0.7261 radian

u = 2.2° L 0.0384 radian

fu

r

r = 0,f = p>2
 r = cos f csc2 f

 cos f = r sin2 f

 r cos f = r2 sin2 f

 r cos f = r2 sin2 f1cos2 u + sin2 u2
 r cos f = r2 sin2 f cos2 u + r2 sin2 f sin2 u

z = x2
+ y2

 x2
+ y2

+ 1z - 122 = 1

 x2
+ y2

+ z2
= 2z

 r2
= 2r cos f

r

r = 2 cos f.

A223, 6, -4 B .
 z = 8 cos 

2p
3

= 8a-

1
2
b = -4

 y = 8 sin 
2p
3

  sin 
p

3
= 8 
23
2

 
23
2

= 6

 x = 8 sin 
2p
3

  cos 
p

3
= 8 
23
2

 
1
2

= 223

z

y

x

Prime
meridian

Paris Calcutta

Equator

Figure 8
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Paris Calcutta
d

P1 P2

O

γ

Figure 9

From these data and we determine the Cartesian coordinates, as
illustrated in Example 4.

Paris:

Calcutta:

Next, referring to Figure 9, we determine the angle between and 

Thus, radians and the great-circle distance d is

�d = rg L 13960211.23812 L 4903 miles

g L 1.2381

 L 0.3266

 cos g =

OP
!

1
# OP

!

2

7OP
!

1 7 7OP
!

2 7 L

12627.221115.12 + 1100.92136622 + 12961.3211502.62
139602139602

OP
!

2.OP
!

1g,

P2(115.1, 3662.0, 1502.6)

P1(2627.2, 100.9, 2961.3)

r = 3960 miles,

Concepts Review
1. In cylindrical coordinates, the graph of is a(n)

_____; in spherical coordinates, the graph of is a(n) _____.

2. In cylindrical coordinates, the graph of is a(n)
_____; in spherical coordinates, the graph of is a(n)
_____.

f = p>6
u = p>6

r = 6
r = 6 3. The equation _____ connects with r and z.

4. The equation in spherical coordinates be-
comes the equation _____ when written in rectangular coordi-
nates.

r2
= 4r cos f

r

Problem Set 11.9
1. Make a table, like the one just before Example 4, that

gives the relationships between cylindrical and spherical
coordinates.

2. Change the following from cylindrical to spherical
coordinates.
(a) (b)

3. Change the following from cylindrical to Cartesian (rec-
tangular) coordinates.
(a) (b)

4. Change the following from spherical to Cartesian
coordinates.
(a) (b)

5. Change the following from Cartesian to spherical
coordinates.

(a) (b)

6. Change the following from Cartesian to cylindrical
coordinates.
(a) (2, 2, 3) (b)

In Problems 7–16, sketch the graph of the given cylindrical or
spherical equation.

7. 8.

9. 10.

11. 12. r = 2 sin 2ur = 3 cos u

u = p>6f = p>6
r = 5r = 5

A423, -4, 6 B

A -22, 22, 223 BA2, -223, 4 B

14, p>3, 3p>4218, p>4, p>62

14, 4p>3, -8216, p>6, -22

1-2, p>4, 2211, p>2, 12

13. 14.

15. 16.

In Problems 17–30, make the required change in the given
equation.

17. to cylindrical coordinates

18. to cylindrical coordinates

19. to cylindrical coordinates

20. to spherical coordinates

21. to spherical coordinates

22. to spherical coordinates

23. to spherical coordinates

24. to cylindrical coordinates

25. to cylindrical coordinates

26. to spherical coordinates

27. to spherical coordinates

28. to Cartesian coordinates

29. to Cartesian coordinates

30. to Cartesian coordinates

31. The parabola in the -plane is revolved about
the z-axis. Write the equation of the resulting surface in cylindri-
cal coordinates.

xzz = 2x2

r sin f = 1

r2 cos 2u = z

r = 2 sin u

x2
+ y2

= 9

x + y + z = 1

x + y = 4

r = 2 cos f

r2
+ 2z2

= 4

x2
- y2

- z2
= 1

2x2
+ 2y2

- 4z2
= 0

x2
+ y2

+ 4z2
= 10

x2
+ y2

+ 4z2
= 10

x2
- y2

= 25

x2
+ y2

= 9

r2 cos2 u + z2
= 4r2

+ z2
= 9

r = sec fr = 3 cos f
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32. The hyperbola in the -plane is revolved
about the z-axis. Write the equation of the resulting surface in
cylindrical coordinates.

33. Find the great-circle distance from St. Paul (longitude
93.1° W, latitude 45° N) to Oslo (longitude 10.5° E, latitude 59.6°
N). See Example 7.

34. Find the great-circle distance from New York (longitude
74° W, latitude 40.4° N) to Greenwich (longitude 0°, latitude 
51.3° N).

35. Find the great-circle distance from St. Paul (longitude
93.1° W, latitude 45° N) to Turin, Italy (longitude 7.4° E, latitude
45° N).

36. What is the distance along the 45° parallel between 
St. Paul and Turin? See Problem 35.

37. How close does the great-circle route from St. Paul to
Turin get to the North Pole? See Problem 35.

38. Let and be the spherical coordi-
nates of two points, and let d be the straight-line distance be-
tween them. Show that

39. Let and be two points on the sphere
Show (using Problem 38) that the great-circle distance be-

tween these points is where and

cos g = cos1u1 - u22 sin f1 sin f2 + cos f1 cos f2

0 … g … pag,
r = a.

1a, u2, f221a, u1, f12
- cos f1 cos f2]61>2

 d = 51r1 - r222 + 2r1r2[1 - cos1u1 - u22 sin f1 sin f2

1r2, u2, f221r1, u1, f12

C

C

C

C

C

xz2x2
- z2

= 2 40. As you may have guessed, there is a simple formula for
expressing great-circle distance directly in terms of longitude and
latitude. Let and be the longitude–latitude coor-
dinates of two points on the surface of the earth, where we inter-
pret N and E as positive and S and W as negative. Show that the
great-circle distance between these points is miles, where

and

41. Use Problem 40 to find the great-circle distance between
each pair of places.
(a) New York and Greenwich (see Problem 34)
(b) St. Paul and Turin (see Problem 35)
(c) Turin and the South Pole (use )
(d) New York and Cape Town (18.4° E, 33.9° S)
(e) Two points on the equator with longitudes 100° E and 80° W,

respectively

42. It is easy to see that the graph of is a sphere
of radius a sitting on the xy-plane at the origin. But what is the
graph of 

Answers to Concepts Review: 1. circular cylinder; sphere

2. plane; cone 3.

4. x2
+ y2

+ 1z - 222 = 4
r2

= r2
+ z2

r = 2a sin f?

r = 2a cos f

a1 = a2

C

cos g = cos1a1 - a22 cos b1 cos b2 + sin b1 sin b2

0 … g … p

3960g

1a2, b221a1, b12

11.10 Chapter Review

Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. Each point in three-space has a unique set of Cartesian
coordinates.

2. The equation represents a
sphere.

3. The linear equation represents a
plane in three-space provided that A, B, and C are not all zero.

4. In three-space, the equation represents a
line.

5. The planes and 
are parallel and 24 units apart.

6. The vector is parallel to the plane

7. The line goes
through the point 

8. If is a unit vector, then a, b, and c are
direction cosines for u.

9. The vectors and are perpendicular.

10. If u and v are unit vectors, then the angle between them
satisfies 

11. The dot product for vectors satisfies the associative law.

cos u = u # v.
u

6i + 4j2i - 3j

u = ai + bj + ck

10, 4, -22.
x = 2t - 1, y = 4t + 2, z = 6t - 5

2x - 4y + 6z = 5.
81, -2, 39

3x - 2y + 4z = -123x - 2y + 4z = 12

Ax + By = C

Ax + By + Cz = D

x2
+ y2

+ z2
- 4x + 9 = 0

12. If u and v are any two vectors, then 

13. for nonzero vectors u and v if and only if u
is a scalar multiple of v.

14. If then 

15. If and are perpendicular, then 

16. For any two vectors u and v,

17. The vector-valued function is continuous
at if and only if f, g, and h are continuous at 

18.

19. For every vector u,

20. For every vector u,

21. For all vectors u and v,

22. If u is a scalar multiple of v, then 

23. The cross product of two unit vectors is a unit vector.

24. Multiplying each component of a vector v by the scalar a
multiplies the length of v by a.

25. For any nonzero and nonperpendicular vectors u and v
with angle between them,

26. If and then u or v is 0.

27. The volume of the parallelepiped determined by 2i, 2j,
and is 4.j : i

u : v = 0,u # v = 0

7u : v 7 >1u # v2 = tan u.u

u : v = 0.

7u : v 7 = 7v : u 7 .
7u 7 # u = u # 7u 7 .
7  7u 7u 7 = 7u 72.

Dt[F1t2 # F1t2] = 2F1t2 # F¿1t2.
t = a.t = a

8f1t2, g1t2, h1t29
7u 72 + 7v 72 + 2u # v.7u + v 72 =

7u 7 = 7v 7 .u - vu + v

u = v = 0.7u 7 = 7v 7 = 7u + v 7 ,
7u # v 7 = 7u 7 7v 7

7u # v 7 … 7u 7 7v 7 .
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616 Chapter 11 Geometry in Space and Vectors

28. For all vectors u, v, and w,

29. If is a vector in the plane
then 

30. Any line can be represented by both parametric equa-
tions and symmetric equations.

31. When for all t, the path is a straight line.

32. An ellipse has its maximum curvature at points on the
major axis.

33. The curvature depends on the shape of the curve and the
speed with which you move along the curve.

34. The curvature of the curve determined by and
is zero for all t.

35. The curvature of the curve determined by and
is 2 for all t.

36. If is a unit vector tangent to a smooth curve,
then T(t) and are perpendicular.

37. If is the speed of a particle moving along a
smooth curve, then is the magnitude of the acceleration.

38. If and everywhere, then the curvature of
this curve is zero.

39. If and is a constant, then the curvature of this
curve is a constant.

40. If then either or or both u and v
are 0.

41. If for all t, then 

42. If then 

43. For motion along a helix, N always points toward the 
z-axis.

44. If the velocity of the motion along the curve is of constant
magnitude, then there can be no acceleration.

45. T, N, and B depend only on the shape of the curve and not
on the speed of motion along the curve.

46. If v is perpendicular to a, then the speed of motion along
the curve must be a constant.

47. If v is perpendicular to a, then the path of motion must be
a circle.

48. The only curves with constant curvature are straight lines
and circles.

49. The curves given by and
for are identical.

50. The motions along the curves given by 
and for

are identical.

51. The length of a given curve is independent of the parame-
trization used to describe the curve.

52. If a curve lies in a plane, then the binormal vector B must
be a constant.

53. If then 

54. The curve that is the intersection of the sphere
and the plane has constant

curvature 1.
ax + by + cz = 0x2

+ y2
+ z2

= 1

r¿1t2 = 0.7r1t2 7 = constant,

0 … t … 1
r21t2 = sin t3 i + cos t3 j + t9 ksin t i + cos t j + t3 k

r11t2 =

0 … t … 1r21t2 = sin t3 i + cos t3 j + t9 k
r11t2 = sin t i + cos t j + t3 k

v(t) # v¿(t) = 0.v(t) # v(t) = constant,

7r¿1t2 7 = constant.7r1t2 7 = 1

v = 0,u = 0u # v = 0,

y–y = f1x2
y– = 0y = f1x2

ƒ dv>dt ƒ

v = 7v 7
T¿1t2

T = T1t2
y = 2 sin t

x = 2 cos t

y = 2t - 1
x = 3t + 4

k1t2 = 0

a1b1 + a2b2 + a3b3 = 0.b1x + b2y + b3z = 0,
a1i + a2j + a3k

u : 1v : w2 = 1u : v2 : w

55. The graph of the equation is the z-axis (here is a
spherical coordinate).

56. The graph of in three-space is a paraboloid.

57. If we restrict and by and
then each point in three-space has a unique set of

spherical coordinates.

Sample Test Problems
1. Find the equation of the sphere that has and 

(4, 1, 5) as end points of a diameter.

2. Find the center and radius of the sphere with equation

3. Let and Find each of
the following:
(a) (b)

(c) (d)

(e) (f)

4. Find the cosine of the angle between a and b and make a
sketch.
(a)
(b)
(c)

5. Let and 
Find each of the following if they are defined.
(a) (b)
(c) (d)
(e) (f)

6. Find the angle between each pair of vectors.
(a)
(b)

7. Sketch the two position vectors and
Then find each of the following:

(a) their lengths
(b) their direction cosines
(c) the unit vector with the same direction as a
(d) the angle between a and b

8. Let and 
Find each of the following:

(a) (b)
(c) (d)

9. Find all vectors that are perpendicular to both of the vec-
tors and 

10. Find the unit vectors that are perpendicular to the plane
determined by the three points (2, 1, 1), and 

11. Write the equation of the plane through the point
that satisfies each condition.

(a) Parallel to the xz-plane
(b) Perpendicular to the x-axis
(c) Parallel to both the x- and y-axes
(d) Parallel to the plane 

12. A plane through the point is perpendicular to
the line joining the points and (4, 1, 1).
(a) Write a vector equation of the plane.

1-1, 5, -72
12, -4, -52

3x - 4y + z = 7

1-5, 7, -22
15, 0, -22.13, -6, 42,

- i - 2j + 4k.3i + 3j - k

a : 1b : c2a # 1b : c2
a : 1b + c2a : b

i + 2j - k.
c =a = 2i - j + k, b = - i + 3j + 2k,

u

b = 5i + j - 3k.
a = 2i - j + 2k

a = - i + 2k, b = i - j + 3k
a = 81, 5, -19, b = 80, 1, 39

7b : c 77a - b 7
a : 1b # c2a # 1b : c2
b # ca + b + c

c = 3i - j + 4k.a = - i + j + 2k, b = j - 2k,

a = 87, 09, b = 85, 19
a = -5i - 3j, b = 2i - j
a = 3i + 2j, b = - i + 4j

c # c - 7c 77c 7c # b

14a + 5b2 # 3ca # 1b + c2
a # b3a - 2b

c = 8-6, 09.a = 82, -59, b = 81, 19,
x2

+ y2
+ z2

- 6x + 2y - 8z = 0.

1-2, 3, 32

0 … f … p,
r Ú 0, 0 … u 6 2p,fr, u,

y = x2

ff = 0
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(b) Find a Cartesian equation of the plane.
(c) Sketch the plane by drawing its traces.

13. Find the value of C if the plane is
perpendicular to the plane 

14. Find a Cartesian equation of the plane through the three
points and 

15. Find parametric equations for the line through 
and 

16. Find the points where the line of intersection of the planes
and pierces the

yz- and xz-planes.

17. Write the equation of the line in Problem 16 in parametric
form.

18. Find symmetric equations of the line through (4, 5, 8) and
perpendicular to the plane Sketch the plane
and the line.

19. Write a vector equation of the line through and

20. Sketch the curve whose vector equation is 

21. Find the symmetric equations for the tangent line to the
curve of Problem 20 at the point where Also find the equa-
tion of the normal plane at this point.

22. Find and if

23. Find the length of the curve

24. Two forces and are applied at
a point. What force F must be applied at the point to counteract
the resultant of these two forces?

25. What heading and airspeed are required for an airplane to
fly 450 miles per hour due north if a wind of 100 miles per hour is
blowing in the direction N 60° E?

26. If find each of the following:

(a) (b)

(c) (d)

(e) (f) Dt[r1t2 # r¿1t2]Dt[r13t + 102]
Dt[tr1t2]

L

 ln 2

0
r1t2 dt

lim
h:0

 
r10 + h2 - r102

h
lim
t:0

 r1t2
r1t2 = 8e2t, e-t9

F2 = 3i + 12jF1 = 2i - 3j

r1t2 = et sin t i + et cos t j + et k, 1 … t … 5

r1t2 = 8t cos t, t sin t, 2t9
r–1p>22r¿1p>22, T1p>22,

t = 2.

t i +
1
2 t2 j +

1
3 t3 k, -2 … t … 3.

r1t2 =

1-3, 2, 42.
12, -2, 12

3x + 5y + 2z = 30.

-x + 2y - 5z + 30 = 0x - 2y + 4z - 14 = 0

16, 2, -32.
1-2, 1, 52

1-4, -2, 22.12, 3, -12, 1-1, 5, 22,
4x - y + z - 17 = 0.

x + 5y + Cz + 6 = 0

27. Find and for each of the following:
(a) (b)
(c)

28. Suppose that an object is moving so that its position vec-
tor at time t is

Find v(t), a(t), and at 

29. If is the position vector for a mov-
ing particle at time t, find the tangential and normal components,

and of the acceleration vector at 

For each equation in Problems 30–38, name and sketch the graph
in three-space.

30. 31.

32. 33.

34. 35.

36.

37.

38.

39. Write the following Cartesian equations in cylindrical co-
ordinate form.
(a) (b)
(c) (d)

40. Find the Cartesian equation corresponding to each of the
following cylindrical coordinate equations.
(a) (b)
(c)

41. Write the following equations in spherical coordinate
form.
(a) (b)
(c) (d)

42. Find the (straight-line) distance between the points whose
spherical coordinates are and 

43. Find the distance between the parallel planes
and 

44. Find the acute angle between the planes 
and 

45. Show that if the speed of a moving particle is constant
then its velocity and acceleration vectors are orthogonal.

3x + 2y - 5z = 9.
2x - 4y + z = 7

2x - 3y + 23z = 9.2x - 3y + 23z = 4

14, p>3, 3p>42.18, p>4, p>62
x2

+ y2
= zx2

- y2
- z2

= 1
2x2

+ 2y2
- 2z2

= 0x2
+ y2

+ z2
= 4

r2 cos 2u + z2
= 1

r2 cos2 u + z2
= 4r2

+ z2
= 9

x2
+ y2

+ 4z2
= 10x2

+ y2
= 9z

x2
+ 4y2

= 16x2
+ y2

= 9

3x2
+ 4y2

+ 9z2
+ 36 = 0

3x2
+ 4y2

+ 9z2
- 36 = 0

x2
+ y2

- z2
- 1 = 0

3x + 3y - 6z - 12 = 03y - 6z - 12 = 0

x2
+ z2

= 4yz2
= 4y

x2
+ y2

+ z2
= 81x2

+ y2
= 81

t = 1.aN,aT

r1t2 = t i + t2 j + t3 k

t = ln 2.k1t2
r1t2 = et i + e-t j + 2t k

r1t2 = tan t i - t4 j
r1t2 = sin t i + cos 2t jr1t2 = 1ln t2i - 3t2 j

r–1t2r¿1t2
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In Problems 1–4, sketch a graph of the cylinder or quadric surface.

1. 2.

3. 4.

In Problems 5–8, find the indicated derivative.

5. (a) (b)

(c) (d)

6. (a) (b)

(c) (d)

7. (a) (b)

(c) (d)

8. (a) (b)

(c) (d)

In Problems 9–12, say whether the function is continuous and whether it is differentiable at
the given point.

9. at 

10. at 

11. at 

12.

In Problems 13–14, find the maximum and minimum value of the function on the given inter-
val. Use the Second Derivative Test to determine whether each stationary point is a maximum
or a minimum.

13. on [0, 4]

14. on [2, 6]

15. A storage can is to be made in the shape of a right circular cylinder of height h and
radius r. Find the surface area of the container (including the circular top and bottom) as a
function of r only, if the volume is to be 8 cubic feet.

16. A three-dimensional box without a lid is to be made of a material that costs $1 per
square foot for the sides and $3 per square foot for the bottom. The box is to contain 27
cubic feet. Let l, w, and h denote, respectively, the length, width, and height of the box. Since
the box must contain 27 cubic feet, we must have or, equivalently,
Use this expression for h to find a formula for the cost of a box having length l and width w.

h = 27>1lw2.lwh = 27,

f1x2 = x4
- 18x3

+ 113x2
- 288x + 252

f1x2 = 3x - 1x - 123

f1x2 = c sin 
1
x

, if x Z 0

0, if x = 0
   

at x = 0

x = 4f1x2 = ƒ x - 4 ƒ

x = p>2f1x2 = tan x

x = 2f1x2 =

1

x2
- 1

d

dx
 etx + sd

dx
 eax + b

d

dx
 e-7x + 4d

dt
 e4t + 1

d

da
 sin sa

d

da
 sin ta

d

da
 sin 17a

d

da
 sin 2a

d

dt
 sin bt

d

dt
 sin at

d

dt
 sin 17t

d

dx
 sin 2x

d

dx
 ax3d

dx
 kx3

d

dx
 5x3d

dx
 2x3

z = x2
- y2z = x2

+ 4y2

x2
+ z2

= 4x2
+ y2

+ z2
= 64

REVIEW &
PREVIEW

PROBLEMS
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Derivatives for Functions
of Two or More VariablesCHAPTER 12

12.1 Functions of Two
or More Variables

12.2 Partial Derivatives

12.3 Limits and
Continuity

12.4 Differentiability

12.5 Directional
Derivatives and
Gradients

12.6 The Chain Rule

12.7 Tangent Planes
and
Approximations

12.8 Maxima and
Minima

12.9 The Method of
Lagrange
Multipliers

12.1
Functions of Two or More Variables
Two kinds of functions have been emphasized so far. The first, typified by

associates with the real number x another real number We call it
a real-valued function of a real variable.The second type of function, illustrated by

associates with the real number x a vector f(x). We call it a vector-
valued function of a real variable.

Our interest shifts now to a real-valued function of two real variables, that is, a
function f (Figure 1) that assigns to each ordered pair (x, y) in some set D of the
plane a (unique) real number Examples are

(1)

(2)

Note that and 
The set D is called the domain of the function. If it is not specified, we take 

D to be the natural domain, that is, the set of all points (x, y) in the plane for 
which the function rule makes sense and gives a real number value. For

the natural domain is the whole plane; for 
it is The range of a function is its set of values.
If we call x and y the independent variables and z the dependent
variable.

All that we have said extends in a natural way to real-valued functions of three
real variables (or even n real variables). We will feel free to use such functions
without further comment.

� EXAMPLE 1 In the xy-plane, sketch the natural domain for

SOLUTION For this rule to make sense, we must exclude and
the point (0, 1). The resulting domain is shown in Figure 2. �

Graphs By the graph of a function f of two variables, we mean the graph of the
equation This graph will normally be a surface (Figure 3) and, since to
each (x, y) in the domain there corresponds just one value z, each line perpendicu-
lar to the xy-plane intersects the surface in at most one point.

z = f1x, y2.

51x, y2: y 6 x26
f1x, y2 =

2y - x2

x2
+ 1y - 122

z = f1x, y2,51x, y2: - q 6 x 6 q , y Ú 06. g1x, y2 = 2x1y,f1x, y2 = x2
+ 3y2,

g1-1, 42 = 21-1224 = -4.f1-1, 42 = 1-122 + 31422 = 49

 g1x, y2 = 2x1y

 f1x, y2 = x2
+ 3y2

f(x, y).

f1x2 = 8x3, ex9,
f(x).f1x2 = x2,

(x, y)

(x, y)z = f

f

Domain Range

Figure 1

y

x

Domain

Figure 2

z

x

y

z = f (x, y)

Domain

Figure 3

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 12 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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620 Chapter 12 Derivatives for Functions of Two or More Variables

� EXAMPLE 2 Sketch the graph of 

SOLUTION Let and note that If we square
both sides and simplify, we obtain the equation

which we recognize as the equation of an ellipsoid (see Section 11.8). The graph of
the given function is the upper half of this ellipsoid; it is shown in Figure 4. �

� EXAMPLE 3 Sketch the graph of 

SOLUTION The graph is a hyperbolic paraboloid (see Section 11.8); it is
graphed in Figure 5. �

Computer Graphs A number of software packages, including Maple and
Mathematica, can produce complicated three-dimensional graphs with ease. In Fig-
ures 6 through 9, we show four such graphs. Often, as in these four examples, we
choose to show the graph with the y-axis pointing partially toward the viewer,
rather than keeping it in the plane of the paper. Also, we often show the axes in a
frame around the outside of the graph, rather than in the usual position, which
could interfere with our view of the graph. The variable (x or y) indicating the axis
is placed near the center of the axis that it represents.

z = f1x, y2 = y2
- x2.

9x2
+ 4y2

+ 9z2
= 36

z Ú 0.z =
1
3 236 - 9x2

- 4y2

f1x, y2 =
1
3 236 - 9x2

- 4y2.

44

y
2

0

–2

–4

2

0

–2

–4

–10

0

10

x

z

z = y2 – x2

Figure 5

–1

–0.5

0

0.5

–1

–0.5

0

0.5

–4

–2

0

2

4

11

y x

z

z = –4x3y2

Figure 6

–4

–2

0

2

0

2

4

–5

0

4

–4

–2

y x

z

z = x – 1
8

1
3x3 –    y2

Figure 7

–2

0 x

2

–2

0y

2

–0.2

–0.1

0

0.1

0.2

z

z = xy exp(–x2 –y2)

Figure 8

–4

–2
0

2

4

–4

–2

0y x
2

4

–1

–0.5

0

0.5

1
z

z = e–�x� cos    x2 + y2�

Figure 9

36 – 9x2 – 4y2�

1

2
1

1

2

2

3

–2

–2–3 –1

–1

z

x

y

z = 1
3

Figure 4
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Plane
z = c

z

x

y

Surface
z = f (x, y)

Level curve
f (x, y) = c

Figure 10

Surface

Contour map
with level curves

8000 ft 7000 ft
6000 ft

5000 ft

Figure 11

Level Curves To sketch the surface corresponding to the graph of a function
of two variables is often very difficult. Map makers have given us

another and usually simpler way to picture a surface: the contour map. Each hori-
zontal plane intersects the surface in a curve. The projection of this curve on
the xy-plane is called a level curve (Figure 10), and a collection of such curves is a
contour plot or a contour map. We show a contour map for a hill-shaped surface in
Figure 11.

We will often show contours on the three-dimensional graph itself, as is done
in the top diagram in Figure 11. When this is done, we will usually make the y-axis
go away from the viewer and the x-axis go to the right. This will help us to see the
connection between the three-dimensional plot and the contour plot.

� EXAMPLE 4 Draw contour maps for the surfaces corresponding to

and (see Examples 2 and 3, and Figures 4
and 5).

SOLUTION The level curves of corresponding to
1, 1.5, 1.75, 2 are shown in Figure 12. They are ellipses. Similarly, in Fig-

ure 13, we show the level curves of for 
These curves are hyperbolas unless The level curve for is a pair of
intersecting lines. �

z = 0z = 0.
z = -5, -4, -3, Á , 2, 3, 4.z = y2

- x2
z = 0,

z =
1
3 236 - 9x2

- 4y2

z = y2
- x21

3 236 - 9x2
- 4y2z =

z = c

z = f1x, y2

� EXAMPLE 5 Sketch a contour map for 

SOLUTION The level curves corresponding to are shown 
in Figure 14. It can be shown that they are hyperbolas. Comparing the contour 
map of Figure 14 with that of Figure 13 suggests that the graph of might be
a hyperbolic paraboloid but with axes rotated through 45°. The suggestion is
correct. �

Computer Graphs and Level Curves In Figures 15 through 19, we have
drawn five more surfaces, but we now also show the corresponding level curves. A
third plot is a three-dimensional plot with level curves on the surface. Note that we
have rotated the xy-plane so that the x-axis points to the right, making it easier to
relate the surface and the level curves.

z = xy

z = -4, -1, 0, 1, 4

z = f1x, y2 = xy.y

x
0

0 1

1

–1

–1

–4

–44

4

Contour Map  z = xy

Figure 14

y

x1 2

–1

1.75
2

1.5

0

Contour Map  z =        36 – 9x2 – 4y2�1
3

1

y

x

–5
.0

–4
.0

4.0

–3
.0

3.0

–2
.0

2.0

–1
.0

1.0

1.0

–1.0

2.0

–2
.0

3.0

–3
.0

4.0

–4
.0

–5
.0

0

0

Contour Map  z = y2 – x2

1

1 2

Figure 13Figure 12
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–4
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Section 12.1 Functions of Two or More Variables 623

Applications of Contour Plots Contour maps are frequently used to show
weather or other conditions at various points on a map. Temperature, for example,
varies from place to place. We can envision T(x, y) as being equal to the tempera-
ture at the location (x, y). Level curves for equal temperatures are called isotherms
or isothermal curves. Figure 20 shows an isothermal map for the United States.

On April 9, 1917, a strong earthquake centered near the Mississippi river just
south of St. Louis was felt as far north as Iowa and as far south as Mississippi. The
intensity of an earthquake is measured from I to XII, with higher numbers corre-
sponding to a more severe earthquake. A magnitude VI earthquake will cause
physical damage to structures. Figure 21 shows an example of another type of con-
tour map. If we envision the intensity I as a function of the location (x, y), then we
can illustrate the earthquake’s intensity using a map with level curves correspon-
ding to equal intensity. Curves with constant intensity are called isoseismic curves.
Figure 21 shows that the regions that experienced an intensity of VI include the St.
Louis area and a strip in southeastern Missouri. Much of eastern Missouri and
southwestern Illinois experienced an intensity between V and VI. Since Kansas
City and Memphis are near the same isoseismic curve, the intensity was about the
same in Kansas City and Memphis.
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–4 –2 0 2 4 x

z = e–(x2 + y2)/4 sin(x�|y|)
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624 Chapter 12 Derivatives for Functions of Two or More Variables

Functions of Three or More Variables A number of quantities depend
on three or more variables. For example, the temperature in a large auditorium
may depend on the location (x, y, z); this leads to the function T(x, y, z). The ve-
locity of a fluid may depend on the location (x, y, z), as well as on time t; this leads
to the function V(x, y, z, t). Finally, the average exam score in a class of 50 students
depends on the 50 exam scores this leads to the function

We can visualize functions of three variables by plotting level surfaces, that is,
surfaces in three-dimensional space that lead to a constant value for the function.
Functions of four or more variables are much more difficult to visualize. The natu-
ral domain of a function of three or more variables is the set of all ordered triples
(or quadruples, etc.) for which the function makes sense and gives a real number.

� EXAMPLE 6 Find the domain of each function and describe the level sur-
faces for f.

(a)

(b)

SOLUTION
(a) To avoid roots of negative numbers, the ordered triple (x, y, z) must satisfy

Thus, the domain for f consists of all points (x, y, z)
that are on or outside the unit sphere. Level surfaces for f are surfaces in three-
space where As long as this re-
lationship leads to a sphere centered at the origin.
Level surfaces are therefore concentric spheres centered at (0, 0, 0).

(b) The ordered quadruple (w, x, y, z) must satisfy 
since we must avoid roots of negative numbers and division by 0. �

� EXAMPLE 7 Let Describe the level surfaces for
F and plot level surfaces for and 2.

SOLUTION The relationship leads to 
This is a paraboloid opening upward having vertex at (0, 0, c). The

level surfaces are shown in Figure 22. �

c + x2
+ y2.

z =F1x, y, z2 = z - x2
- y2

= c

-1, 0, 1,
F1x, y, z2 = z - x2

- y2.

w2
+ x2

+ y2
+ z2

- 1 7 0,

x2
+ y2

+ z2
= c + 1,

c Ú 0,f1x, y, z2 = 2x2
+ y2

+ z2
- 1 = c.

x2
+ y2

+ z2
- 1 Ú 0.

g1w, x, y, z2 =

12w2
+ x2

+ y2
+ z2

- 1

f1x, y, z2 = 2x2
+ y2

+ z2
- 1

A1x1, x2, Á , x502.
x1, x2, Á , x50;

–1
–0.5

0
0.5

1 –1

–0.5

0

0.5

1

–1

0

1

2

3 F(x, y, z) = 2

F(x, y, z) = 1

F(x, y, z) = 0

F(x, y, z) = –1

x

y

z

Figure 22

Concepts Review
1. A function f determined by is called a(n)

_____.

2. The projection of the curve to the 
xy-plane is called a(n) _____, and a collection of such curves is
called a(n) _____.

z = f1x, y2 = c

z = f1x, y2 3. The contour map for consists of _____.

4. The contour map for consists of _____.z = x2

z = x2
+ y2

Problem Set 12.1
1. Let Find each value.

(a) (b)

(c) (d)

(e) (f)

What is the natural domain for this function?

2. Let Find each value.f1x, y2 = y>x + xy.

f12, -42f11>x, x42
f1a, a42f(1, 4)

f(3, 0)f(2, 1)

f1x, y2 = x2y + 1y. (a) (b)

(c) (d)

(e) (f)

What is the natural domain for this function?

3. Let Find each value.
(a) (b) g12, 1, p>62g11, p, 22

g1x, y, z2 = x2 sin yz.

f(0, 0)f11>x, x22
f(a, a)f A4, 14 B
f A14, 4 Bf(1, 2)
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Section 12.1 Functions of Two or More Variables 625

(c) (d)

4. Let Find each value.
(a) g(4, 0, 2) (b)
(c) (d) g(3, 6, 1.2)

5. Find if and 

6. Find if and 

In Problems 7–16, sketch the graph of f.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

In Problems 17–22, sketch the level curve for the indicated
values of k.

17.

18.

19.

20.

21.

22.

23. Let T(x, y) be the temperature at a point (x, y) in the
plane. Draw the isothermal curves corresponding to 
if

24. If V(x, y) is the voltage at a point (x, y) in the plane, the
level curves of V are called equipotential curves. Draw the
equipotential curves corresponding to 1, 2, 4 for

25. Figure 20 shows isotherms for the United States.
(a) Which of San Francisco, Denver, and New York had approx-

imately the same temperature as St. Louis?
(b) If you were in Kansas City and wanted to drive toward cool-

er weather as quickly as possible, in which direction would
you travel? What if you wanted to drive toward warmer
weather?

(c) If you were leaving Kansas City, in which directions could
you go and stay at approximately the same temperature?

26. Figure 23 shows a contour map for barometric pressure in
millibars. Level curves for barometric pressure are called isobars.
(a) What part of the country had the lowest barometric pres-

sure? The highest?
(b) If you were in St. Louis, in which direction would you have to

travel to move as fast as possible toward lower barometric
pressure? Higher barometric pressure?

V1x, y2 =

421x - 222 + 1y + 322
V =

1
2,

T1x, y2 =

x2

x2
+ y2

T =
1

10 , 15, 12, 0

z = y - sin x, k = -2, -1, 0, 1, 2

z =

x2
+ 1

x2
+ y2, k = 1, 2, 4

z = x2
+ y, k = -4, -1, 0, 1, 4

z =

x2

y
, k = -4, -1, 0, 1, 4

z =

x

y
, k = -2, -1, 0, 1, 2

z =
1
21x2

+ y22, k = 0, 2, 4, 6, 8

z = k

f1x, y2 = x2>y, y 7 0f1x, y2 = e-1x2
+ y22

f1x, y2 = 2 - x - y2f1x, y2 = 3 - x2
- y2

f1x, y2 = 216 - 4x2
- y2

f1x, y2 = 216 - x2
- y2

f1x, y2 = 6 - x2f1x, y2 = 6 - x - 2y

f1x, y2 = 6 - xf1x, y2 = 6

g1t2 = et>2.
f1t2 = ln t2,F1x, y2 = ex

+ y2F(f(t), g(t))

g1t2 = sec2 t.
f1t2 = t cos t,F1x, y2 = x2yF(f(t), g(t))

Cg12, p>3, -12
g1-9, p, 32

g1x, y, z2 = 1x cos y + z2.

g1p, p, p2Cg14, 2, p>42 (c) If you were leaving St. Louis, in which directions could you
go in order to remain at approximately the same barometric
pressure?

In Problems 27–32, describe geometrically the domain of each of
the indicated functions of three variables.

27.

28.

29.

30.

31.

32.

Describe geometrically the level surfaces for the functions defined
in Problems 33–38.

33.

34.

35.

36.

37.

38.

39. Find the domain of each function.

(a)

(b)

(c)

40. Sketch (as best you can) the graph of the monkey saddle
Begin by noting where 

41. The contour map in Figure 24 shows level curves for a
mountain 3000 feet high.
(a) What is special about the path to the top labeled AC? What

is special about BC?
(b) Make good estimates of the total lengths of path AC and

path BC.

z = 0.z = x1x2
- 3y22.

h1x1, x2, Á , xn2 = 21 - 1x1
2

+ x2
2

+
Á

+ xn
22

g1x1, x2, Á , xn2 = exp1-x1
2

- x2
2

-
Á

- xn
22

f1w, x, y, z2 =

12w2
+ x2

+ y2
+ z2

f1x, y, z2 = ex2
+ y2

+ z2
, k 7 0

f1x, y, z2 = 4x2
- 9y2

f1x, y, z2 = 9x2
- 4y2

- z2

f1x, y, z2 = 16x2
+ 16y2

- 9z2

f1x, y, z2 = 100x2
+ 16y2

+ 25z2; k 7 0

f1x, y, z2 = x2
+ y2

+ z2; k 7 0

f1x, y, z2 = z ln1xy2
f1x, y, z2 = ln1x2

+ y2
+ z22

f1x, y, z2 =

1144 - 16x2
- 16y2

+ 9z223>2
xyz

f1x, y, z2 = 2144 - 16x2
- 9y2

- 144z2

f1x, y, z2 = 2x2
+ y2

- z2
- 9

f1x, y, z2 = 2x2
+ y2

+ z2
- 16

1020
1015

1015
10201010 1010

1005
1005

1000

1025

1020

1020

1015

1015

St. Louis

Figure 23
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626 Chapter 12 Derivatives for Functions of Two or More Variables

For each of the functions in Problems 43–46, draw the graph
and the corresponding contour plot.

43.

44.

45.

46.

Answers to Concepts Review: 1. real-valued function of
two real variables 2. level curve; contour map 3. concentric
circles 4. parallel lines

-2 … y … 2
-2 … x … 2,f1x, y2 = 1sin x sin y2>11 + x2

+ y22;
-2 … y … 2

-2 … x … 2,f1x, y2 = 12x - y22 exp1-x2
- y22;

-2 … y … 2-2 … x … 2,
f1x, y2 = sin1x2

+ y22>1x2
+ y22, f10, 02 = 1;

f1x, y2 = sin22x2
+ y2; -2 … x … 2, -2 … y … 2

CAS

Suppose that f is a function of two variables x and y. If y is held constant, say
then is a function of the single variable x. Its derivative at is

called the partial derivative of f with respect to x at and is denoted by
Thus,

Similarly, the partial derivative of f with respect to y at is denoted by
and is given by

Rather than calculate and directly from the boxed defini-
tions, we typically find and using the standard rules for deriva-
tives; then we substitute and The key point here is that the rules for
differentiating a function of one variable (Chapter 3) work for finding partial de-
rivatives, as long as we hold one variable fixed.

� EXAMPLE 1 Find and if 

SOLUTION To find we treat y as a constant and differentiate with
respect to x, obtaining

Thus,

Similarly, we treat x as a constant and differentiate with respect to y, obtaining

and so

�fy11, 22 = 12
+ 9 # 22

= 37

fy1x, y2 = x2
+ 9y2

fx11, 22 = 2 # 1 # 2 = 4

fx1x, y2 = 2xy + 0

fx1x, y2,
f1x, y2 = x2y + 3y3.fy11, 22fx11, 22

y = y0.x = x0

fy1x, y2fx1x, y2
fy1x0, y02fx1x0, y02

fy1x0, y02 = lim
¢y:0

 
f1x0, y0 + ¢y2 - f1x0, y02

¢y

fy1x0, y02
1x0, y02

fx1x0, y02 = lim
¢x:0

 
f1x0 + ¢x, y02 - f1x0, y02

¢x

fx1x0, y02.
1x0, y02

x = x0f1x, y02y = y0,
12.2

Partial Derivatives

3000 feet

A

B
C

0
500

1000

1500

Figure 24

42. Identify the graph of 
state where it attains its minimum value, and find this

minimum value.
12y - 13,

x2
- x + 3y2

+f1x, y2 =
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Section 12.2 Partial Derivatives 627

If we use the following alternative notations:

The symbol is special to mathematics and is called the partial derivative sign.The 

symbols and represent linear operators, much like the linear operators 

and that we encountered in Chapter 3.

� EXAMPLE 2 If find and 

SOLUTION

�

Geometric and Physical Interpretations Consider the surface whose
equation is The plane intersects this surface in the plane curve
QPR (Figure 1), and the value of is the slope of the tangent line to this
curve at Similarly, the plane intersects the surface in
the plane curve LPM (Figure 2), and is the slope of the tangent line to
this curve at P.

Partial derivatives may also be interpreted as (instantaneous) rates of change.
Suppose that a violin string is fixed at points A and B and vibrates in the xz-plane.
Figure 3 shows the position of the string at a typical time t. If denotes
the height of the string at the point P with x-coordinate x at time t, then is the
slope of the string at P, and is the time rate of change of height of P along the
indicated vertical line. In other words, is the vertical velocity of P.

� EXAMPLE 3 The surface and the plane
intersect in a curve as in Figure 1. Find parametric equations for the tangent

line at 

SOLUTION

and so This number is the slope of the tangent line to the

curve at that is, is the ratio of rise to run along the tangent line.

It follows that this line has direction vector and, since it goes through

provide the required parametric equations. �

x = 22 + t, y = 1, z = 2 - 22t

A22, 1, 2 B , H1, 0, -22 I
-22>1A22, 1, 2 B ;

fx A22, 1 B = -22.

fx1x, y2 =
1
219 - 2x2

- y22-1>21-4x2

A22, 1, 2 B .
y = 1

z = f1x, y2 = 29 - 2x2
- y2

0z>0t
0z>0t

0z>0x
z = f1x, t2

fy1x0, y02
x = x0P1x0, y0, f1x0, y022.

fx1x0, y02
y = y0z = f1x, y2.

 
0z

0y
= x2 cos1xy22 # 2xy = 2x3y cos1xy22

 = x2y2 cos1xy22 + 2x sin1xy22
 = x2 cos1xy22 # y2

+ 2x sin1xy22
 = x2 cos1xy22 0

0x
 1xy22 + sin1xy22 # 2x

 
0z

0x
= x2 

0

0x
 [sin1xy22] + sin1xy22 0

0x
 1x22

0z>0y.0z>0xz = x2 sin1xy22,

d

dx

Dx
0

0y

0

0x

0

 fx1x0, y02 =

0z

0x
 `
1x0,y02
  fy1x0, y02 =

0z

0y
 `
1x0,y02

 fx1x, y2 =

0z

0x
=

0f1x, y2
0x
  fy1x, y2 =

0z

0y
=

0f1x, y2
0y

z = f1x, y2,

z

x

y

R

P

Q

fx(x0, y0) = slope of �

(x0, y0)

�

Figure 1

z

x

y

L

PM

(x0, y0)

fy(x0, y0) = slope of �

�

Figure 2

Position of 
string at time t

z

xx

P = (x, f (x, t))

BA

Figure 3
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628 Chapter 12 Derivatives for Functions of Two or More Variables

� EXAMPLE 4 The volume of a certain gas is related to its temperature T and
its pressure P by the gas law where V is measured in cubic inches, P in
pounds per square inch, and T in degrees Kelvin. If V is kept constant at 50, what is
the rate of change of pressure with respect to temperature when 

SOLUTION Since 

Thus,

Thus, the pressure is increasing at the rate of  pound per square inch per degree
Kelvin. �

Higher Partial Derivatives Since a partial derivative of a function of x and
y is, in general, another function of these same two variables, it may be differenti-
ated partially with respect to either x or y, resulting in four second partial deriva-
tives of f.

� EXAMPLE 5 Find the four second partial derivatives of

SOLUTION

�

Notice that in Example 5, which is usually the case for the functions
of two variables encountered in a first course. A criterion for this equality will be
given in Section 12.3 (Theorem C).

Partial derivatives of the third and higher orders are defined analogously, and
the notation for them is similar. Thus, if f is a function of the two variables x and y,
the third partial derivative of f obtained by differentiating f partially, first with re-
spect to x and then twice with respect to y, will be indicated by

Altogether, there are eight third partial derivatives.

0

0y
 c 0

0y
 a 0f

0x
b d =

0

0y
 a 0

2f

0y 0x
b =

0
3f

0y2 0x
= fxyy

fxy = fyx,

 fyx1x, y2 = ey
-

x

y3 sinax
y
b +

1

y2 cosax
y
b + 6x2y

 fxy1x, y2 = ey
-

x

y3 sinax
y
b +

1

y2 cosax
y
b + 6x2y

 fyy1x, y2 = xey
+

x2

y4 sinax
y
b -

2x

y3  cosax
y
b + 2x3

 fxx1x, y2 =

1

y2 sinax
y
b + 6xy2

 fy1x, y2 = xey
+

x

y2 cosax
y
b + 2x3y

 fx1x, y2 = ey
-

1
y

 cosax
y
b + 3x2y2

f1x, y2 = xey
- sin1x>y2 + x3y2

 fyx = 1fy2x =

0

0x
 a 0f

0y
b =

0
2f

0x 0y
 fxy = 1fx2y =

0

0y
 a 0f

0x
b =

0
2f

0y 0x

 fyy =

0

0y
 a 0f

0y
b =

0
2f

0y2 fxx =

0

0x
 a 0f

0x
b =

0
2f

0x2

1
5

0P

0T
 `

T = 200, V = 50
=

10
50

=

1
5

0P

0T
=

10
V

P = 10T>V,

T = 200?

PV = 10T,
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Section 12.2 Partial Derivatives 629

More Than Two Variables Let f be a function of three variables, x, y, and z.
The partial derivative of f with respect to x at is denoted by or

and is defined by

Thus, may be obtained by treating y and z as constants and differentiat-
ing with respect to x.

The partial derivatives with respect to y and z are defined in an analogous way.
Partial derivatives of functions of four or more variables are defined similarly (see
Problem 49). Partial derivatives, such as and that involve differentiation
with respect to more than one variable are called mixed partial derivatives.

� EXAMPLE 6 If find and 

SOLUTION To get we think of y and z as constants and differentiate with
respect to the variable x. Thus,

To find we treat x and z as constants and differentiate with respect to y:

Similarly,
�

� EXAMPLE 7 If find all first partial derivatives

and and 

SOLUTION The four first partials are

The other partial derivatives are

� 
0

2T

0z2 =

0
2

0z2 1zew2
+ x2

+ y22 =

0

0z
 1ew2

+ x2
+ y22 = 0

 
0

2T

0x 0w
=

0
2

0x 0w
 1zew2

+ x2
+ y22 =

0

0x
 12wzew2

+ x2
+ y22 = 4wxzew2

+ x2
+ y2

 
0

2T

0w 0x
=

0
2

0w 0x
 1zew2

+ x2
+ y22 =

0

0w
 12xzew2

+ x2
+ y22 = 4wxzew2

+ x2
+ y2

 
0T

0z
=

0

0z
 1zew2

+ x2
+ y22 = ew2

+ x2
+ y2

 
0T

0y
=

0

0y
 1zew2

+ x2
+ y22 = 2yzew2

+ x2
+ y2

 
0T

0x
=

0

0x
 1zew2

+ x2
+ y22 = 2xzew2

+ x2
+ y2

 
0T

0w
=

0

0w
 1zew2

+ x2
+ y22 = 2wzew2

+ x2
+ y2

0
2T

0z2 .
0

2T

0w 0x
, 

0
2T

0x 0w
,

T1w, x, y, z2 = zew2
+ x2

+ y2
,

fz1x, y, z2 = 2y + 3x

fy1x, y, z2 = x + 2z

fy,

fx1x, y, z2 = y + 3z

fx,

fz.fx, fy,f1x, y, z2 = xy + 2yz + 3zx,

fxyz,fxy

fx1x, y, z2
fx1x, y, z2 = lim

¢x:0
 
f1x + ¢x, y, z2 - f1x, y, z2

¢x

0f1x, y, z2>0x
fx1x, y, z2(x, y, z)

Concepts Review
1. As a limit, is defined by _____ and is called the

_____ at 

2. If then _____ and
_____.fy11, 22 =

fx11, 22 =f1x, y2 = x3
+ xy,

1x0, y02.
fx1x0, y02 3. Another notation for is _____.

4. If then _____.fxy1x, y2 =f1x, y2 = g1x2 + h1y2,
fxy1x, y2
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630 Chapter 12 Derivatives for Functions of Two or More Variables

Problem Set 12.2
In Problems 1–16, find all first partial derivatives of each function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

13. 14.

15. 16.

In Problems 17–20, verify that

17. 18.

19. 20.

21. If find and 

22. If find and

23. If find and

24. If find and 

25. Find the slope of the tangent to the curve of intersection
of the surface and the plane at the point
(3, 2, 2).

26. Find the slope of the tangent to the curve of intersection
of the surface and the plane at the
point 

27. Find the slope of the tangent to the curve of intersection
of the surface and the plane at the
point 

28. Find the slope of the tangent to the curve of intersection
of the cylinder and the plane at the point

29. The volume V of a right circular cylinder is given by
where r is the radius and h is the height. If h is held

fixed at inches, find the rate of change of V with respect to
r when inches.

30. The temperature in degrees Celsius on a metal plate in the
xy-plane is given by What is the rate of
change of temperature with respect to distance (measured in feet)
if we start moving from (3, 2) in the direction of the positive y-axis?

31. According to the ideal gas law, the pressure, temperature,
and volume of a gas are related by where k is aPV = kT,

T1x, y2 = 4 + 2x2
+ y3.

r = 6
h = 10

V = pr2h,

A2, 3, 523>2 B . y = 34z = 5216 - x2

A2, 1, 32 B .
y = 12z = 29x2

+ 9y2
- 36

A1, -2, 211>3 B .
x = 13z = 236 - 9x2

- 4y2

x = 336z = 4x2
+ 9y2

fy1-1, 12.fx1-1, 12f1x, y2 = ey cosh x,

fy A25, -2 B .
fx A25, -2 Bf1x, y2 = tan-11y2>x2,

Fy1-1, 42.
Fx1-1, 42F1x, y2 = ln1x2

+ xy + y22,
Fy13, -22.Fx13, -22F1x, y2 =

2x - y

xy
,

f1x, y2 = tan-1 xyf1x, y2 = 3e2x cos y

f1x, y2 = 1x3
+ y225f1x, y2 = 2x2y3

- x3y5

0
2f

0y 0x
=

0
2f

0x 0y

f1r, u2 = 3r3 cos 2uF1x, y2 = 2 sin x cos y

f1s, t2 = et2
- s2

f1x, y2 = y cos1x2
+ y22

F1w, z2 = w sin-1
 aw

z
b

f1x, y2 = tan-114x - 7y2
f1s, t2 = ln1s2

- t22g1x, y2 = e-xy

f1u, v2 = euvf1x, y2 = 2x2
- y2

f1x, y2 = 13x2
+ y22-1>3f1x, y2 = ey sin x

f1x, y2 = ex cos yf1x, y2 =

x2
- y2

xy

f1x, y2 = 14x - y223>2f1x, y2 = 12x - y24
constant. Find the rate of change of pressure (pounds per square
inch) with respect to temperature when the temperature is 300°K
if the volume is kept fixed at 100 cubic inches.

32. Show that, for the gas law of Problem 31,

A function of two variables that satisfies Laplace’s Equation,

is said to be harmonic. Show that the functions defined in Prob-
lems 33 and 34 are harmonic functions.

33.

34.

35. If find 

36. If find 

37. Express the following in notation.
(a) (b) (c)

38. Express the following in subscript notation.

(a) (b) (c)

39. If find each of the
following:

(a) (b) (c)

40. If find each of the
following:

(a) (b) (c)

41. If find 

42. If find 

43. A bee was flying upward along the curve that is the inter-
section of with the plane At the point

it went off on the tangent line. Where did the bee hit
the xz-plane? (See Example 3.)

44. Let be the area of a nondegenerate rectangle of
dimensions x and y, the rectangle being inside a circle of radius
10. Determine the domain and range for this function.

45. The interval [0, 1] is to be separated into three pieces by
making cuts at x and y. Let be the area of any nondegen-
erate triangle that can be formed from these three pieces. Deter-
mine the domain and range for this function.

46. The wave equation and the heat
equation are two of the most important equa-
tions in physics (c is a constant). These are called partial differen-
tial equations. Show each of the following:

(a) and satisfy the wave
equation.

(b) and satisfy the heat equation.u = t-1>2e-x2>14ct2u = e-ct sin x

u = ex cosh ctu = cos x cos ct

c 02u>0x2
= 0u>0t

c2 02u>0x2
= 0

2u>0t2

A(x, y)

A(x, y)

11, -2, 52,
x = 1.z = x4

+ xy3
+ 12

fx1-2, -1, 82.f1x, y, z2 = 1xy>z21>2,
fx1x, y, z2.f1x, y, z2 = e-xyz

- ln1xy - z22,
fzz1x, y, z2fy10, 1, 12fx1x, y, z2

f1x, y, z2 = 1x3
+ y2

+ z24,
fxy1x, y, z2fy10, 1, 22fx1x, y, z2

f1x, y, z2 = 3x2y - xyz + y2z2,

0
5f

0x3 0y2

0
4f

0x2 0y2

0
3f

0x2 0y

fxyyyfxxyfyyy

0

0
3f1x, y2>0y 0x2.f1x, y2 = cos12x2

- y22,
0

3F1x, y2>0y3.F1x, y2 = 3x4y5
- 2x2y3,

f1x, y2 = ln14x2
+ 4y22

f1x, y2 = x3y - xy3

0
2f

0x2 +

0
2f

0y2 = 0

V 
0P

0V
+ T 

0P

0T
= 0 and 

0P

0V
 
0V

0T
 
0T

0P
= -1
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Section 12.3 Limits and Continuity 631

47. For the contour map for shown in Figure 4,
estimate each value.
(a) (b)
(c) (d) fy10, -22fx1-5, -22

fx1-4, 22fy11, 12
z = f1x, y2

48. A CAS can be used to calculate and graph partial deriv-
atives. Draw the graphs of each of the following:
CAS

(a) (b)

(c) (d)

49. Give definitions in terms of limits for the following partial
derivatives:
(a) (b)

(c) (d)

(e)

50. Find each partial derivative.

(a) (b)

(c) where 

Answers to Concepts Review:
1. partial derivative of f

with respect to x 2. 5; 1 3. 4. 00
2f>0y 0x

lim
¢x:0

[f1x0 + ¢x, y02 - f1x0, y02]>¢x;

l1x, y, z, t2 =

t cos x
1 + xyzt

lt1x, y, z, t2,

0

0x
 [x ln1wxyz2]0

0w
 1sin w sin x cos y cos z2

0

0b2
 S1b0, b1, b2, Á , bn2

0

0z
 l1x, y, z, t2Gx1w, x, y, z2

fz1x, y, z2fy1x, y, z2

Dx1Dy sin1x + y222Dy sin1x + y22
Dx sin1x + y22sin1x + y22

To interpret think of (x, y) and (a, b) as vectors. Then

and the points satisfying are those points inside a circle
of radius excluding the center (a, b) (see Figure 2). The essence of the definition
is this: We can make as close as we like to L (within , where distance is
measured by ) as long as we take (x, y) sufficiently close to (a, b)ƒ f1x, y2 - L ƒ

ef(x, y)
d,

0 6 7 1x, y2 - 1a, b2 7 6 d

7 1x, y2 - 1a, b2 7 = 21x - a22 + 1y - b22
7 1x, y2 - 1a, b2 7 ,

Our aim in this section is to give meaning to the statement

It may seem odd that we covered partial derivatives before limits for functions 
of two or more variables. After all, we covered limits in Chapter 2 and derivatives 
in Chapter 3. However, partial differentiation is actually a simpler idea because all
variables but one are held fixed. The only concept necessary for defining the partial
derivative is that of the limit of a function of one variable, which goes back to Chap-
ter 2. On the other hand, the limit of a function of two (or more) variables is a deep-
er concept because we must account for all ways that (x, y) approaches (a, b). This
cannot be reduced to treating “one variable at a time” like partial differentiation.

The limit of a function of two variables has the usual intuitive meaning: The
values of get closer and closer to the number L as (x, y) approaches (a, b).
The problem is that (x, y) can approach (a, b) in infinitely many ways (Figure 1).
We want a definition that gives the same L no matter what path (x, y) takes in
approaching (a, b). Fortunately, the formal definition given first for real-valued
functions of one variable (Section 2.1) and then for vector-valued functions (Sec-
tion 11.5) are similar to what we need here.

f(x, y)

lim1x,y2:1a,b2 f1x, y2 = L

12.3
Limits and Continuity

y

xa

b

Figure 1

1

1

–1

6 5
4

3
2
1

0

y

x

Figure 4

Definition Limit of a Function of Two Variables

To say that means that for each (no matter how

small) there is a corresponding such that provided

that 0 6 7 1x, y2 - 1a, b2 7 6 d.

ƒ f1x, y2 - L ƒ 6 e,d 7 0

e 7 0lim1x,y2:1a,b2 f1x, y2 = L
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632 Chapter 12 Derivatives for Functions of Two or More Variables

(within with distance being measured by ). Compare this defini-
tion to the definition of limit given in Chapter 2 and the definition of a vector-
valued function given in Chapter 11; the similarities will be obvious.

7 1x, y2 - 1a, b2 7d,

Note several aspects of this definition.

1. The path of approach to (a, b) is irrelevant. This means that if different paths
of approach lead to different L-values then the limit does not exist.

2. The behavior of at (a, b) is irrelevant; the function does not even have
to be defined at (a, b). This follows from the restriction 

3. The definition is phrased so that it immediately extends to functions of three
(or more) variables. Simply replace (x, y) and (a, b) by (x, y, z) and (a, b, c)
wherever they occur.

We might expect that limits for many functions can be obtained by substitu-
tion. This was true for many (but certainly not all) functions of one variable. Be-
fore we state a theorem that justifies evaluating limits by substitution, we give a
few definitions. A polynomial in the variables x and y is a function of the form

and a rational function in the variables x and y is a function of the form

where p and q are polynomials in x and y, assuming q is not identically zero. The
following theorem is analogous to Theorem 2.3B.

f1x, y2 =

p1x, y2
q1x, y2

f1x, y2 = a
n

i = 1
a
m

j = 1
cijx

iyj

0 6 7 1x, y2 - 1a, b2 7 .f(x, y)

2
4

0
2

4

6x
y

2
4

0
2

4

6 y 1 2 3 4 5

1

2

3

4

5
(a, b)

L

For all (x, y) within
δ of (a, b), except
possibly at (a, b) itself,
f (x, y) is within ε of L.

yz z

x x(a, b)

z = f (x, y)

f (x, y) is between 
L–ε and L+ε
for all (x, y) inside
this circle.

δ
L + ε

L – ε
L

Figure 2

Theorem A

If is a polynomial, then

and if where p and q are polynomials, then

provided Furthermore, if

then

does not exist.

lim1x,y2:1a,b2 
p1x, y2
q1x, y2

lim1x,y2:1a,b2 p1x, y2 = L Z 0 and lim1x,y2:1a,b2 q1x, y2 = 0

q1a, b2 Z 0.

lim1x,y2:1a,b2 f1x, y2 =

p1a, b2
q1a, b2

f1x, y2 = p1x, y2>q1x, y2,
lim1x,y2:1a,b2 f1x, y2 = f1a, b2

f(x, y)
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Section 12.3 Limits and Continuity 633

� EXAMPLE 1 Evaluate the following limits if they exist:

(a) and (b)

SOLUTION
(a) The function whose limit we seek is a polynomial, so by Theorem A

(b) The second function is a rational function, but the limit of the denominator is
equal to 0, while the limit of the numerator is 1. Thus, by Theorem A, this limit
does not exist. �

� EXAMPLE 2 Show that the function f defined by

has no limit at the origin (Figure 3).

f1x, y2 =

x2
- y2

x2
+ y2

lim1x,y2:11,221x2y + 3y2 = 12 # 2 + 3 # 2 = 8

lim1x,y2:10,02 
x2

+ y2
+ 1

x2
- y2lim1x,y2:11,221x2y + 3y2

SOLUTION The function f is defined everywhere in the xy-plane except at the
origin. At all points on the x-axis different from the origin, the value of f is

Thus, the limit of as (x, y) approaches (0, 0) along the x-axis is

Similarly, the limit of as (x, y) approaches (0, 0) along the y-axis is

Thus, we get different values depending on how In fact, there are
points arbitrarily close to (0, 0) at which the value of f is 1 and other points equally
close at which the value of f is  Therefore, the limit cannot exist at (0, 0). �

It is often easier to analyze limits of functions of two variables, especially lim-
its at the origin, by changing to polar coordinates. The important point is that

if and only if Thus, limits for functions of two
variables can sometimes be expressed as limits involving just one variable, r.

� EXAMPLE 3 Evaluate the following limits if they exist:

(a) and (b) lim1x,y2:10,02 
xy

x2
+ y2lim1x,y2:10,02 

sin1x2
+ y22

3x2
+ 3y2

r = 2x2
+ y2 : 0.1x, y2: 10, 02

-1.

1x, y2: 10, 02.
lim10,y2:10,02 f10, y2 = lim10,y2:10,02 

0 - y2

0 + y2 = -1

f(x, y)

lim1x,02:10,02 f1x, 02 = lim1x,02:10,02 
x2

- 0

x2
+ 0

= +1

f(x, y)

f1x, 02 =

x2
- 0

x2
+ 0

= 1

We can use polar coordinates to
show that the limit in Example 2
doesn’t exist.

which takes on all values between
and 1 in every neighborhood of

(0, 0). We conclude that the limit
does not exist.

-1

 = cos 2u

 = lim
r:0

 cos 2u

 = lim
r:0

 
r2 cos2 u - r2 sin2 u

r2

lim1x,y2:10,02 
x2

- y2

x2
+ y2

Polar Coordinates for Example 2

z

x

y
f (0, y) = –1

f (x, 0) = 1 f (x, 0) = 1 

–2

–1

0

1

2

y

–2 –1 0 1 2 x

z = – 1 z = 0

z = 1

–2
–1

0
1

2
x

y
f (0, y) = –1

–2
–1

0
1

2–2

–1

0

1

2
–1

–0.5

0

0.5

1
z

–2

–1

0

1

2
–1

–0.5

0

0.5

1

Figure 3
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634 Chapter 12 Derivatives for Functions of Two or More Variables

SOLUTION
(a) Changing to polar coordinates and using L’Hôpital’s Rule, we have

(b) Again, changing to polar coordinates gives

Since this limit depends on straight line paths to the origin will lead to dif-
ferent limits. Thus, this limit does not exist. �

Continuity at a Point To say that is continuous at the point (a, b), we
require the following: (1) has a value at (a, b), (2) f has a limit at (a, b), and 
(3) the value of at (a, b) is equal to the limit there. In summary, we require that

This is essentially the same requirement for continuity of a function of one vari-
able. Intuitively, this again means that has no jumps, wild fluctuations, or un-
bounded behavior at (a, b).

Theorem A can be used to say that polynomial functions are continuous for all
(x, y) and that rational functions are continuous everywhere except where the de-
nominator is equal to 0. Furthermore, sums, differences, products, and quotients of
continuous functions are continuous (provided, in the latter case that we avoid di-
vision by 0). These results, along with the next theorem, can be used to establish
the continuity of many functions of two variables.

f

lim1x,y2:1a,b2 f1x, y2 = f1a, b2
f

f
f(x, y)

u,

lim1x,y2:10,02 
xy

x2
+ y2 = lim

r:0
 
r cos u r sin u

r2 = cos u sin u

lim1x,y2:10,02 
sin1x2

+ y22
3x2

+ 3y2 = lim
r:0

 
sin r2

3r2 =

1
3

 lim
r:0

 
2r cos r2

2r
=

1
3

The proof of this theorem is similar to the proof of Theorem 2.7E.

� EXAMPLE 4 Describe the points (x, y) for which the following functions
are continuous.

(a) (b)

SOLUTION
(a) is a rational function, so it is continuous at every point where the de-

nominator is not 0. The denominator, is equal to zero along the
parabola Thus, is continuous for all (x, y) except those along
the parabola 

(b) The function being a polynomial, is continuous for
all (x, y).Also, is continuous for every real number t.We conclude
from Theorem B that  is continuous for all (x, y). �

Continuity on a Set To say that is continuous on a set S ought to
mean that is continuous at every point of the set. It does mean that, but
there are some subtleties connected with this statement that need to be cleared up.

First we need to introduce some language relative to sets in the plane (and
higher-dimensional spaces). By a neighborhood of radius of a point P, we mean
the set of all points Q satisfying In two-space, a neighborhood is the
“inside” of a circle; in three-space, it is the inside of a sphere (Figure 4). A point P

7Q - P 7 6 d.
d

f(x, y)
f(x, y)

F(x, y)
f1t2 = cos t

g1x, y2 = x3
- 4xy + y2,

y = 4x2.
H(x, y)y = 4x2.

y - 4x2
H(x, y)

F1x, y2 = cos1x3
- 4xy + y22H1x, y2 =

2x + 3y

y - 4x2 ,
P δ

A neighborhood in two-space

P δ

A neighborhood in three-space

Figure 4

Theorem B Composition of Functions

If a function g of two variables is continuous at (a, b) and a function f of one
variable is continuous at then the composite function defined by

is continuous at (a, b).1f � g21x, y2 = f1g1x, y22,
f � g,g(a, b),
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Section 12.3 Limits and Continuity 635

is an interior point of a set S if there is a neighborhood of P contained in S. The set
of all interior points of S is the interior of S. On the other hand, P is a boundary
point of S if every neighborhood of P contains points that are in S and points that
are not in S. The set of all boundary points of S is called the boundary of S. In
Figure 5, A is an interior point and B is a boundary point of S.A set is open if all its
points are interior points, and it is closed if it contains all its boundary points. It is
possible for a set to be neither open nor closed. This, incidentally, explains the use
of “open intervals” and “closed intervals” in one-dimensional space. Finally, a set S
is bounded if there exists an such that all ordered pairs in S are inside a cir-
cle of radius R centered at the origin.

If S is an open set, to say that f is continuous on S means precisely that f is
continuous at every point of S. On the other hand, if S contains some or all of its
boundary points, we must be careful to give the right interpretation of continuity
at such points (recall that in one-space we had to talk about left and right conti-
nuity at the end points of an interval). To say that f is continuous at a boundary
point P of S means that must approach as Q approaches P through
points of S.

Here is an example that will help to clarify what we have said (see Figure 6).
Let

If S is the set it is correct to say that is continuous on
S. On the other hand, it would be incorrect to say that is continuous on the
whole plane.

We said in Section 12.2 that for most functions of two variables studied in a
first course that is, the order of differentiation in mixed partial deriva-
tives is immaterial. Now that continuity is defined, conditions for this to be true
can be simply stated.

fxy = fyx;

f(x, y)
f(x, y)51x, y2: x2

+ y2
… 16,

f1x, y2 = e0 if x2
+ y2

… 1
4 otherwise

f(P)f(Q)

R 7 0

A proof of this theorem is given in books on advanced calculus.A counterexample
for which continuity of is lacking is given in Problem 42.

Our discussion of continuity has dealt mainly with functions of two variables.
We believe you can make the simple changes that are required to describe conti-
nuity for functions of three or more variables.

fxy

A
B

S

Figure 5

If you are standing on the boundary
(i.e., the border) between the United
States and Canada, then you can
reach into both countries, no matter
how short your reach is. This is the
essence of our definition of a bound-
ary point. Any neighborhood (your
reach) of a boundary point will in-
clude points in S and points outside
of S, no matter how small the neigh-
borhood is.

The boundary of a set will play an
important role later in this chapter
when we consider optimization of
functions, and in Chapter 13 and 14
when we study multiple integrals.

The Boundary of a Set

z

x

y

Figure 6

Concepts Review
1. In intuitive language, to say that 

means that gets close to _____ when _____.

2. For to be continuous at (1, 2) means that _____.f(x, y)

f(x, y)

lim1x,y2:11,22 f1x, y2 = 3 3. The point P is an interior point of set S if there is a neigh-
borhood of P that is _____.

4. The set S is open if every point of S is _____; S is closed if
S contains all its _____.

Theorem C Equality of Mixed Partials

If and are continuous on an open set S, then at each point of S.fxy = fyxfyxfxy
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636 Chapter 12 Derivatives for Functions of Two or More Variables

In Problems 1–16, find the indicated limit or state that it does not
exist.

1.

2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–26, describe the largest set S on which it is correct
to say that f is continuous.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

In Problems 27–32, sketch the indicated set. Describe the boundary
of the set. Finally, state whether the set is open, closed, or neither.

27.

28.

29.

30.

31.

32. 51x, y2: x = 0, y = 1>n, n a positive integer6
51x, y2: x 7 0, y 6 sin11>x26
51x, y2: 1 6 x … 46
51x, y2: 0 6 x2

+ y2
… 16

51x, y2: x2
+ y2

6 46
51x, y2: 2 … x … 4, 1 … y … 56

f1x, y, z2 = ln14 - x2
- y2

- z22
f1x, y, z2 =

1 + x2

x2
+ y2

+ z2

f1x, y2 = 14 - x2
- y22-1>2

f1x, y2 = 2x - y + 1

f1x, y2 = c sin1xy2
xy

, if xy Z 0

1, if xy = 0

f1x, y2 =

x2
+ 3xy + y2

y - x2

f1x, y2 =

121 + x + y

f1x, y2 = ln11 - x2
- y22

f1x, y2 = ln11 + x2
+ y22

f1x, y2 =

x2
+ xy - 5

x2
+ y2

+ 1

lim1x,y2:10,02 
xy2

x2
+ y4lim1x,y2:10,02 

x2y2

x2
+ y4

lim1x,y2:10,02 xy 
x2

- y2

x2
+ y2lim1x,y2:10,02 

x7>3
x2

+ y2

lim1x,y2:10,02 
xy

1x2
+ y222lim1x,y2:10,02 

xy2x2
+ y2

lim1x,y2:10,02 
x4

- y4

x2
+ y2lim1x,y2:10,02 

x2
+ y2

x4
- y4

lim1x,y2:10,02 
tan1x2

+ y22
x2

+ y2lim1x,y2:10,02 
sin1x2

+ y22
x2

+ y2

lim1x,y2:10,02 
xy + cos x

xy - cos x
lim1x,y2:1-1,22 

xy - y3

1x + y + 122

lim1x,y2:11,22 
x3

- 3x2y + 3xy2
- y3

y - 2x2

lim1x,y2:12,p2[x cos21xy2 - sin1xy>32]
lim1x, y2:1-2, 121xy3

- xy + 3y22
lim1x,y2:11,3213x2y - xy32

33. Let

If f is continuous in the whole plane, find a formula for 

34. Prove that

provided that the latter two limits exist.

35. Show that

does not exist by considering one path to the origin along the 
x-axis and another path along the line 

36. Show that

does not exist.

37. Let 
(a) Show that as along any straight

line 

(b) Show that as along the parabola

(c) What conclusion do you draw?

38. Let be the shortest distance that a raindrop land-
ing at latitude x and longitude y in the state of Colorado must
travel to reach an ocean. Where in Colorado is this function dis-
continuous?

39. Let H be the hemispherical shell 
shown in Figure 7, and let 

For each function defined below, determine its set
of discontinuities within D.
(a) is the time required for a particle dropped from 

(x, y, z) to reach the level 
(b) is the area of the inside of H (assumed opaque)

that can be seen from (x, y, z).
(c) is the area of the shadow of H on the xy-plane due

to a point light source at (x, y, z).
(d) is the distance along the shortest path from (x, y, z)

to (0, 0, 0) that does not penetrate H.
f(x, y, z)

f(x, y, z)

f(x, y, z)
z = 0.

f(x, y, z)

1 … z … 26.
D = 51x, y, z2: 1, 0 … z 6 1,

x2
+ y2

+ 1z - 122 =

f(x, y)

y = x2.
1x, y2: 10, 02f1x, y2: 1

2

y = mx.
1x, y2: 10, 02f1x, y2: 0

f1x, y2 = x2y>1x4
+ y22.

lim1x,y2:10,02 
xy + y3

x2
+ y2

y = x.

lim1x,y2:10,02 
xy

x2
+ y2

= lim1x,y2:1a,b2 f1x, y2 + lim1x,y2:1a,b2 g1x, y2
lim1x,y2:1a,b2[f1x, y2 + g1x, y2]

g(x).

f1x, y2 = c x2
- 4y2

x - 2y
, if x Z 2y

g1x2, if x = 2y

z

x

y

H

Figure 7

Problem Set 12.3
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Section 12.4 Differentiability 637

40. Let f, a function of n variables, be continuous on an open
set D, and suppose that is in D with Prove that
there is a such that in a neighborhood of with
radius 

41. The French Railroad Suppose that Paris is located at the
origin of the xy-plane. Rail lines emanate from Paris along all
rays, and these are the only rail lines. Determine the set of dis-
continuities of the following functions.
(a) is the distance from (x, y) to (1, 0) on the French

railroad.
(b) is the distance from to (x, y) on the French

railroad.

42. Let if and

Show that by completing the following
steps:

(a) Show that for
all y.

(b) Similarly, show that for all x.

(c) Show that 

(d) Similarly, show that 

43. Plot the graph of the function mentioned in Problem 42.
Do you see why this surface is sometimes called the dog saddle?
CAS

fxy10, 02 = -1.

fyx10, 02 = lim
h:0

 
fy10 + h, 02 - fy10, 02

h
= 1.

fy1x, 02 = x

fx10, y2 = lim
h:0

 
f10 + h, y2 - f10, y2

h
= -y

fxy10, 02 Z fyx10, 02
f10, 02 = 0.

1x, y2 Z (0, 0)f1x, y2 = xy 
x2

- y2

x2
+ y2

(u, v)g(u, v, x, y)

f(x, y)

d.
P0f1P2 7 0d 7 0

f1P02 7 0.P0

44. Plot the graphs of each of the following functions on
and determine where on this set they

are discontinuous.

(a)

(b)

45. Plot the graph of in an orienta-
tion that illustrates its unusual characteristics (see Problem 37).

46. Give definitions of continuity at a point and continuity on
a set for a function of three variables.

47. Show that the function defined by

and is not continuous at (0, 0, 0).

48. Show that the function defined by

and is not continuous at (0, 0, 0).

Answers to Concepts Review: 1. 3; (x, y) approaches (1, 2)
2. 3. contained in S 4. an interior

point of S; boundary points

lim1x,y2:11,22 f1x, y2 = f11, 22

f10, 0, 02 = 0

f1x, y, z2 = 1y + 12 x2
- z2

x2
+ z2 for 1x, y, z2 Z 10, 0, 02

f10, 0, 02 = 0

f1x, y, z2 =

xyz

x3
+ y3

+ z3 for 1x, y, z2 Z 10, 0, 02

f1x, y2 = x2y>1x4
+ y22CAS

f1x, y2 = tan1x2
+ y22>1x2

+ y22, f10, 02 = 0

f1x, y2 = x2>1x2
+ y22, f10, 02 = 0

-2 … x … 2, -2 … y … 2,
CAS

For a function of a single variable, differentiability of f at x meant the existence of
the derivative This, in turn, was equivalent to the graph of f having a non-
vertical tangent line at x.

Now we ask: What is the right concept of differentiability for a function of two
variables? Surely it must correspond in a natural way to the existence of a tangent
plane, and clearly this requires more than the mere existence of the partial deriva-
tives of f, for they reflect the behavior of f in only two directions.To emphasize this
point, consider

which is shown in Figure 1. Note that and both exist and equal 0;
yet no one would claim that the graph has a tangent plane at the origin.The reason
is, of course, that the graph of f is not well approximated there by any plane (in par-
ticular, the xy-plane) except in two directions. A tangent plane ought to approxi-
mate the graph very well in all directions.

fy10, 02fx10, 02
f1x, y2 = -102 ƒ xy ƒ

f¿1x2.12.4
Differentiability

y
x

z

–2
–1

0

1

2 –2

–1

0

1

2
–20

–15

–10

–5

0

–2
–1

0

1

2

y
x

z

–2

–1

0

1

2
–20

–15

–10

–5

0

z = –10     � xy ��Figure 1
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638 Chapter 12 Derivatives for Functions of Two or More Variables

To be more precise, we say that a function f is locally linear at a if there is a
constant m such that

where is a function satisfying Solving for gives

The function is the difference between the slope of the secant line through
the points and and the slope of the tangent line
through If f is locally linear at a, then

which means that

lim
h:0

 
f1a + h2 - f1a2

h
= m

lim
h:0

 e1h2 = lim
h:0

 cf1a + h2 - f1a2
h

- m d = 0

(a, f(a)).
1a + h, f1a + h22(a, f(a))

e1h2
e1h2 =

f1a + h2 - f1a2
h

- m

e1h2lim
h:0

 e1h2 = 0.e1h2
f1a + h2 = f1a2 + hm + he1h2

–2

2

y

–2 2 4 6
x

5

2

2.2

2.4

2.6

2.6 2.8 3 3.2 3.4

2.24

2.22

2.26

2.28

2.3

2.96 2.98 3 3.02 3.04
x x

y
y

Figure 2

Consider a second question. What plays the role of the derivative for a func-
tion of two variables? Again the partial derivatives fall short, if for no other reason
than because there are two of them.

To answer these two questions, we start by downplaying the distinction be-
tween the point (x, y) and the vector Thus, we write and

Recall that

(1)

The analog would seem to be

(2)

but, unfortunately, the division by a vector makes no sense.
But let us not give up too quickly. Another way to look at differentiability of a

function of a single variable is as follows. If f is differentiable at a, then there exists
a tangent line through that approximates the function for values of x
near a. In other words, f is almost linear near a. Figure 2 illustrates this for a func-
tion of a single variable; as we zoom in on the graph of we see that the
tangent line and the function become almost indistinguishable.

y = f1x2,
(a, f(a))

f¿1p02 = lim
p:p0

 
f1p2 - f1p02

p - p0
= lim

h:0
 
f1p0 + h2 - f1p02

h

f¿1a2 = lim
x:a

 
f1x2 - f1a2

x - a
= lim

h:0
 
f1a + h2 - f1a2

h

f1p2 = f1x, y2. p = 1x, y2 = 8x, y98x, y9.
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Section 12.4 Differentiability 639

Just as h was a small increment in x for the one-variable case, we can think of 
and as small increments in x and y, respectively, for the two-variable case.h2

h1

Figure 3 shows what can happen when we zoom in on the graph of a function
of two variables. (In Figure 3 we zoom in on the graph at the point 
If we zoom in far enough, the surface resembles a plane, and the contour plot ap-
pears to consist of parallel lines. We can simplify the above definition by defining

and (The function is
a vector-valued function of a vector variable.) Thus,

This formulation easily carries over to the case where f is a function of three (or
more) variables. We now define differentiability to be synonymous with local
linearity.

f1p0 + h2 = f1p02 + 1fx1p02, fy1p022 # h + e1h2 # h

e1h2e1h2 = 1e11h1, h22, e21h1, h222.p0 = 1a, b2, h = 1h1, h22,

1x, y2 = 11, 12.)

Definition Local Linearity for a Function of Two Variables

We say that f is locally linear at (a, b) if

where as and as 1h1, h22: 0.e21h1, h22: 01h1, h22: 0e11h1, h22: 0

= f1a, b2 + h1fx1a, b2 + h2fy1a, b2 + h1e11h1, h22 + h2e21h1, h22
f1a + h1, b + h22
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We conclude that f must be differentiable at a and that m must equal 

Conversely, if f is differentiable at a, then 

hence, f is locally linear. Therefore, in the one-variable case, f is locally linear at a if
and only if f is differentiable at a.

This concept of local linearity does carry over to the situation in which f is a
function of two variables, and we will use this characteristic to define differentia-
bility of a function of two variables. First, we define local linearity.

lim
h:0

 
f1a + h2 - f1a2

h
= f¿1a2 = m;

f¿1a2.
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640 Chapter 12 Derivatives for Functions of Two or More Variables

The vector is denoted and is called the
gradient of f. Thus, f is differentiable at p if and only if

where as The operator is read “del” and is often called the del
operator.

In the sense described above, the gradient becomes the analog of the derivative.
We point out several aspects of our definitions.

1. The derivative is a number, whereas the gradient is a vector.

2. The products and are dot products.

3. The definitions of differentiability and gradient are easily extended to any
number of dimensions.

The following theorem gives a condition that guarantees the differentiability
of a function at a point.

e1h2 # h§f1p2 # h

§f1p2f¿1x2

§h : 0.e1h2: 0

f1p + h2 = f1p2 + §f1p2 # h + e1h2 # h

§f1p21fx1p2, fy1p22 = fx1p2i + fy1p2j

Definition Differentiability for a Function of Two or More Variables

The function f is differentiable at p if it is locally linear at p.The function f is dif-
ferentiable on an open set R if it is differentiable at every point in R.

Theorem A

If has continuous partial derivatives and on a disk D
whose interior contains (a, b), then is differentiable at (a, b).f(x, y)

fy1x, y2fx1x, y2f(x, y)

The interval notation used in the
proof, such as would sug-
gest that This need not be
the case, as and can be nega-
tive. In this proof, we must interpret
intervals to mean all those points
between the two end points (regard-
less of which is the larger). The in-
terval includes the endpoints in 
the case of a closed interval and
excludes the endpoints in the case of
an open interval.

h2h1

h1 7 0.
[a, a + h1],

Interval Notation in the Proof Proof Let and be increments in x and y, respectively, that are so small that
is in the interior of the disk D. (That such values and exist is

a consequence of the fact that the interior of the disk D is an open set.) The differ-
ence between and is

(3)

We now apply the Mean Value Theorem for Derivatives (Theorem 4.6A) twice:
once to the difference and once to the difference

In the first case, we define for
x in the interval and from the Mean Value Theorem for Derivatives we
conclude that there exists a value in such that

For the second case, we define for y in the interval
There exists a in the interval such that

This gives

 = h2g2
œ1c22 = h2fy1a + h1, c22

 g21b + h22 - g21b2 = f1a + h1, b + h22 - f1a + h1, b2

g21b + h22 - g21b2 = h2g2
œ1c22

1b, b + h22c2[b, b + h2].
g21y2 = f1a + h1, y2

g11a + h12 - g11a2 = f1a + h1, b2 - f1a, b2 = h1g1
œ1c12 = h1fx1c1, b2

1a, a + h12c1

[a, a + h1],
g11x2 = f1x, b2f1a + h1, b + h22 - f1a + h1, b2.

f1a + h1, b2 - f1a, b2,

= [f1a + h1, b2 - f1a, b2] + [f1a + h1, b + h22 - f1a + h1, b2]
f1a + h1, b + h22 - f1a, b2

f(a, b)f1a + h1, b + h22
h2h11a + h1, b + h22

h2h1
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Equation (3) becomes

Now, let and 
Since and we conclude that and

as Thus,

where and as Therefore, f is locally
linear and hence differentiable at (a, b). �

If the function f is differentiable at then, when h has small magnitude

Letting we find that the function T defined by

should be a good approximation to f(p) if p is close to The equation 
defines a plane that approximates f near Naturally, this plane is called the
tangent plane. See Figure 4.

� EXAMPLE 1 Show that is differentiable everywhere
and calculate its gradient. Then find the equation of the tangent plane at (2, 0).

SOLUTION We note first that

Both of these functions are continuous everywhere and so, by Theorem A, f is dif-
ferentiable everywhere. The gradient is

Thus,

and the equation of the tangent plane is

�

� EXAMPLE 2 For find 

SOLUTION The partial derivatives are

At (1, 2, 0), these partials have the values 4, 1, and 1, respectively. Thus,

�§f11, 2, 02 = 4i + j + k

0f

0x
= sin z + 2xy, 0f

0y
= x2, 0f

0z
= x cos z

§f11, 2, 02.f1x, y, z2 = x sin z + x2y,

 = 2 + x - 2 + 6y = x + 6y

 = 2 + 81, 69 # 8x - 2, y9
 z = f12, 02 + §f12, 02 # 8x - 2, y9

§f12, 02 = i + 6j = 81, 69
§f1x, y2 = 1ey

+ 2xy2i + 1xey
+ x22j = 8ey

+ 2xy, xey
+ x29

0f

0x
= ey

+ 2xy     and   0f

0y
= xey

+ x2

f1x, y2 = xey
+ x2y

p0.
z = T1p2p0.

T1p2 = f1p02 + §f1p02 # 1p - p02
p = p0 + h,

f1p0 + h2 L f1p02 + §f1p02 # h

p0,

1h1, h22: 10, 02.e21h1, h22: 0e11h1, h22: 0

 + h1e11h1, h22 + h2e21h1, h22
 f1a + h1, b + h22 - f1a, b2 = h1fx1a, b2 + h2fy1a, b2

h1, h2 : 0.c2 : b
c1 : ac2 H 1b, b + h22,c1 H 1a, a + h12fy1a, b2.

fy1a + h1, c22 -e21h1, h22 =e11h1, h22 = fx1c1, b2 - fx1a, b2
 + h2 C fy1a + h1, c22 - fy1a, b2 D
 + h1 C fx1c1, b2 - fx1a, b2 D

 = h1fx1a, b2 + h2fy1a, b2
 + h2 C fy1a + h1, c22 + fy1a, b2 - fy1a, b2 D

 = h1 C fx1c1, b2 + fx1a, b2 - fx1a, b2 D
 f1a + h1, b + h22 - f1a, b2 = h1fx1c1, b2 + h2fy1a + h1, c22
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642 Chapter 12 Derivatives for Functions of Two or More Variables

Rules for Gradients In many respects, gradients behave like derivatives. Re-
call that D, considered as an operator, is linear. The operator is also linear.§

Proof All three results follow from the corresponding facts for partial deriva-
tives. We prove (3) in the two-variable case, suppressing the point p for brevity.

�

Continuity versus Differentiability Recall that for functions of one vari-
able, differentiability implies continuity, but not vice versa. The same is true here.

 = f§g + g§f

 = fa 0g

0x
 i +

0g

0y
 jb + ga 0f

0x
 i +

0f

0y
 jb

 = af 
0g

0x
+ g 

0f

0x
b i + af 

0g

0y
+ g 

0f

0y
b j

 §fg =

01fg2
0x

 i +

01fg2
0y

 j

Proof Since f is differentiable at p,

Thus,

Both of the latter terms approach 0 as and so

This last equality is one way of formulating the continuity of f at p. �

The Gradient Field The gradient associates with each point p in the do-
main of f a vector The set of all these vectors is called the gradient field for
f. In Figures 5 and 6, we show graphs of the surface and the corre-
sponding gradient field. Do these figures suggest something about the direction in
which the gradient vectors point? We explore this subject in the next section.

z = x2
- y2

§f1p2. §f

lim
h:0

 f1p + h2 = f1p2
h : 0,

 = 7§f1p2 7 7h 7 ƒ cos u ƒ + ƒE1h2 # h ƒ

 ƒ f1p + h2 - f1p2 ƒ … ƒ §f1p2 # h ƒ + ƒE1h2 # h ƒ

f1p + h2 - f1p2 = §f1p2 # h + E1h2 # h
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Figure 6

Concepts Review
1. The analog of the derivative for a function of more

than one variable is the _____, denoted by 

2. The function is differentiable at (a, b) if and only
if f is _____ at (a, b).

f(x, y)

§f1p2.
f¿1x2 3. For a function f of two variables, the gradient is 

_____. Thus, if _____.

4. being differentiable at is equivalent to the
existence of a _____ to the graph at this point.

1x0, y02f(x, y)

f1x, y2 = xy2, §f1x, y2 =

§f1p2 =

Theorem B Properties of 

The gradient operator satisfies

1.
2.
3. §[f1p2g1p2] = f1p2 §g1p2 + g1p2§f1p2

§[af1p2] = a§f1p2
§[f1p2 + g1p2] = §f1p2 + §g1p2

§

§

Theorem C

If f is differentiable at p, then f is continuous at p.
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Section 12.5 Directional Derivatives and Gradients 643

Problem Set 12.4
In Problems 1–10, find the gradient 

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

In Problems 11–14, find the gradient vector of the given function at
the given point p. Then find the equation of the tangent plane at p
(see Example 1).

11.

12.

13.

14.

In Problems 15 and 16, find the equation of the
tangent “hyperplane” at p.

15.

16.

17. Show that

18. Show that

19. Find all points (x, y) at which the tangent plane to the
graph of is horizontal.

20. Find all points (x, y) at which the tangent plane to the
graph of is horizontal.

21. Find parametric equations of the line tangent to the sur-
face at the point (2, 1, 9) whose projection on the
xy-plane is

(a) parallel to the x-axis; (b) parallel to the y-axis;
(c) parallel to the line x = y.

z = y2
+ x3y

z = x3

z = x2
- 6x + 2y2

- 10y + 2xy

§1fr2 = rfr - 1
§f

§af

g
b =

g§f - f§g

g2

f1x, y, z2 = xyz + x2, p = 12, 0, -32
f1x, y, z2 = 3x2

- 2y2
+ xz2, p = 11, 2, -12

w = T1x, y, z2

f1x, y2 =

x2

y
, p = 12, -12

f1x, y2 = cos px sin py + sin 2py, p = 1-1, 122
f1x, y2 = x3y + 3xy2, p = 12, -22
f1x, y2 = x2y - xy2, p = 1-2, 32

f1x, y, z2 = xz ln1x + y + z2
f1x, y, z2 = x2yex - z

f1x, y, z2 = x2y + y2z + z2x

f1x, y, z2 = 2x2
+ y2

+ z2

f1x, y2 = sin31x2y2f1x, y2 = x2y>1x + y2
f1x, y2 = x2y cos yf1x, y2 = xexy

f1x, y2 = x3y - y3f1x, y2 = x2y + 3xy

§f. 22. Find parametric equations of the line tangent to the sur-
face at the point (3, 2, 72) whose projection on the 
xy-plane is
(a) parallel to the x-axis; (b) parallel to the y-axis;
(c) parallel to the line 

23. Refer to Figure 1. Find the equation of the tangent plane
to at Recall: for 

24. Mean Value Theorem for Several Variables If f is differ-
entiable at each point of the line segment from a to b, then there
exists on that line segment a point c between a and b such that

Assuming that this result is true, show that, if f is differentiable on
a convex set S and if on S, then f is constant on S.
Note: A set S is convex if each pair of points in S can be con-
nected by a line segment in S.

25. Find all values of c that satisfy the Mean Value Theorem
for Several Variables (see Problem 24) for the function

where and 

26. Find all values of c that satisfy the Mean Value Theorem
for Several Variables (see Problem 24) for the function

where and 

27. Use the result of Problem 24 to show that if
for all p in a convex set S then f and g differ by a

constant on S.

28. Find the most general function f(p) satisfying 

29. Plot the graph of together with its gra-
dient field.
(a) Based on this and Figures 5 and 6, make a conjecture about

the direction in which a gradient vector points.
(b) Is f differentiable at the origin? Justify your answer.

30. Plot the graph of 
on Also draw the gradient field to see
if your conjecture in Problem 29 (a) holds up.

31. Prove Theorem B for
(a) the three-variable case and
(b) the n-variable case. Hint: Denote the standard unit vectors

by 

Answers to Concepts Review: 1. gradient 2. locally

linear 3. 4. tangent plane
0f1p2

0x
  i +

0f1p2
0y

  j; y2 i + 2xy j

i1, i2, Á , in.

0 … x … 2p, 0 … y … 2p.
f1x, y2 = sin x + sin y - sin1x + y2CAS

f1x, y2 = - ƒ xy ƒCAS

§f1p2 = p.

§f1p2 = §g1p2
b = 82, 69.a = 80, 09f1x, y2 = 24 - x2

b = 82, 19.a = 80, 09f1x, y2 = 9 - x2
- y2

§f1p2 = 0

f1b2 - f1a2 = §f1c2 # 1b - a2

x Z 0.d ƒ x ƒ >dx = ƒ x ƒ >x11, -12.z = -102 ƒ xy ƒ

x = -y.

z = x2y3

Consider again a function of two variables. The partial derivatives 
and measure the rate of change (and the slope of the tangent line) in di-
rections parallel to the x- and y-axes. Our goal now is to study the rate of change of
f in an arbitrary direction. This leads to the concept of the directional derivative,
which in turn is related to the gradient.

fy1x, y2 fx1x, y2f(x, y)12.5
Directional Derivatives

and Gradients
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644 Chapter 12 Derivatives for Functions of Two or More Variables

It will be convenient to use vector notation. Let and let i and j be
the unit vectors in the positive x- and y-directions. Then the two partial derivatives
at p may be written as follows:

To get the concept we are after, all we have to do is replace i or j by an arbitrary
unit vector u.

 fy1p2 = lim
h:0

 
f1p + hj2 - f1p2

h

 fx1p2 = lim
h:0

 
f1p + hi2 - f1p2

h

p = 1x, y2,

Thus, and Since we also use the
notation Figure 1 gives the geometric interpretation of The
vector u determines a line L in the xy-plane through The plane through L
perpendicular to the xy-plane intersects the surface in a curve C. Its
tangent at the point has slope Another useful inter-
pretation is that measures the rate of change of f with respect to dis-
tance in the direction u.

Connection with the Gradient Recall from Section 12.4 that is

§f1p2 = fx1p2i + fy1p2j
§f1p2

Duf1x0, y02
Duf1x0, y02.1x0, y0, f1x0, y022

z = f1x, y21x0, y02.
Duf1x0, y02.Duf1x, y2. p = 1x, y2,Djf1p2 = fy1p2.Dif1p2 = fx1p2

Proof Since f is differentiable at p,

where as Thus,

The conclusion follows by taking limits as  �

� EXAMPLE 1 If find the directional derivative
of f at in the direction of the vector 

SOLUTION The unit vector u in the direction of a is Also,
and thus, and

Consequently, by Theorem A,

�Duf12, -12 = H45, 35 I # H17, -8 I =
4
51172 +

3
51-82 =

44
5

fy12, -12 = -8.
fx12, -12 = 17fy1x, y2 = -x + 6y;fx1x, y2 = 8x - y
A45 B i + A35 B j.

a = 4i + 3j.12, -12 f1x, y2 = 4x2
- xy + 3y2,

h : 0.

f1p + hu2 - f1p2
h

= §f1p2 # u + E1hu2 # u

h : 0.E1hu2: 0

f1p + hu2 - f1p2 = §f1p2 # 1hu2 + E1hu2 # 1hu2

z
Slope = Du f (x0, y0) = tan

x

y

C

z = f (x, y)

(x0, y0)

(x0, y0,  f (x0, y0))

φ

φ u
L

Figure 1

Definition

For any unit vector u, let

This limit, if it exists, is called the directional derivative of f at p in the direction
u.

Duf1p2 = lim
h:0

 
f1p + hu2 - f1p2

h

Theorem A

Let f be differentiable at p. Then f has a directional derivative at p in the direc-
tion of the unit vector and

That is,

Duf1x, y2 = u1fx1x, y2 + u2fy1x, y2
Duf1p2 = u #

§f1p2
u = u1i + u2 j
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Theorem B

A function increases most rapidly at p in the direction of the gradient (with rate
) and decreases most rapidly in the opposite direction (with rate

).- 7§f1p2 7
7§f1p2 7

Although we will not go through the details, we assert that what we have done
is valid for functions of three or more variables, with obvious modifications.

� EXAMPLE 2 Find the directional derivative of the function 
at the point in the direction of the vector 

SOLUTION The unit vector u in the direction of a is Also,
and and so

and We conclude that

�

Maximum Rate of Change For a given function f at a given point p, it is
natural to ask in what direction the function is changing most rapidly, that is, in
what direction is the largest? From the geometric formula for the dot
product (Section 11.3), we may write

where is the angle between u and Thus, is maximized when 
and minimized when We summarize as follows.u = p.

u = 0Duf1p2§f1p2.u

Duf1p2 = u #
§f1p2 = 7u 7 7§f1p2 7  cos u = 7§f1p2 7  cos u

Duf1p2

Dufa1, 2, 
p

2
b =

1
3

 122 +

2
3

 112 +

2
3

 102 =

4
3

fz11, 2, p>22 = 0.fx11, 2, p>22 = 2, fy11, 2, p>22 = 1,
fz1x, y, z2 = xy cos z,fy1x, y, z2 = x sin z,fx1x, y, z2 = y sin z,

1
3 i +

2
3 j +

2
3 k.

a = i + 2j + 2k.11, 2, p>22xy sin z
f1x, y, z2 =

� EXAMPLE 3 Suppose that a bug is located on the hyperbolic paraboloid
at the point (1, 1, 0), as in Figure 2. In what direction should it move

for the steepest climb and what is the slope as it starts out?

SOLUTION Let Since and 

Thus, the bug should move from (1, 1, 0) in the direction where the slope 
will be �

Level Curves and Gradients Recall from Section 12.1 that the level curves
of a surface are the projections onto the xy-plane of the curves of in-
tersection of the surface with planes that are parallel to the xy-plane. The
value of the function at all points on the same level curve is constant (Figure 3).

Denote by L the level curve of that passes through an arbitrarily cho-
sen point in the domain of f, and let the unit vector u be tangent to L at
P. Since the value of f is the same at all points on the level curve L, its directional
derivative which is the rate of change of in the direction u, is
zero when u is tangent to L. (This statement, which seems very clear intuitively, re-
quires justification, which we omit since the result we want also follows from an ar-
gument to be given in Section 12.7.) Since

we conclude that and u are perpendicular, a result worthy of theorem status.§f

0 = Duf1x0, y02 = §f1x0, y02 # u

f(x, y)Duf1x0, y02,
P1x0, y02

f(x, y)

z = k
z = f1x, y2

7 -2i + 2j 7 = 28 = 222.
-2i + 2j,

§f11, 12 = fx11, 12i + fy11, 12j = -2i + 2j

fy1x, y2 = 2y,fx1x, y2 = -2xf1x, y2 = y2
- x2.

z = y2
- x2

Theorem C

The gradient of f at a point P is perpendicular to the level curve of f that goes
through P.
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1 2
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2
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� EXAMPLE 4 For the paraboloid find the equation of its
level curve that passes through the point P(2, 1) and sketch it. Find the gradient
vector of the paraboloid at P, and draw the gradient with its initial point at P.

SOLUTION The level curve of the paraboloid that corresponds to the plane
has the equation To find the value of k belonging to the level

curve through P, we substitute (2, 1) for (x, y) and obtain Thus, the equation
of the level curve that goes through P is that of the ellipse

Next let Since and the gradi-
ent of the paraboloid at P(2, 1) is

The level curve and the gradient at P are shown in Figure 4. �

To provide additional illustration of Theorems B and C, we asked our com-
puter to draw the surface together with its contour map and gradient
field. The results are shown in Figure 5. Note that the gradient vectors are per-
pendicular to the level curves and that they do point in the direction of greatest
increase of z.

z = ƒ xy ƒ ,

§f12, 12 = fx12, 12i + fy12, 12j = i + 2j

fy1x, y2 = 2y,fx1x, y2 = x>2f1x, y2 = x2>4 + y2.

x2

8
+

y2

2
= 1

k = 2.
x2>4 + y2

= k.z = k

z = x2>4 + y2,

Higher Dimensions The concept of level curves for functions of two vari-
ables generalizes to level surfaces for functions of three variables. If f is a function
of three variables, the surface where k is a constant, is a level sur-
face for f. At all points on a level surface, the value of the function is the same, and
the gradient vector of at a point in its domain is normal to the
level surface of f that goes through P.

In problems of heat conduction in a homogeneous body, where 
gives the temperature at the point (x, y, z), the level surface is called
an isothermal surface because all points on it have the same temperature k. At any
given point of the body, heat flows in the direction opposite to the gradient (i.e., in
the direction of the greatest decrease in temperature) and therefore perpendi-
cular to the isothermal surface through the point. If gives the elec-
trostatic potential (voltage) at any point in an electric potential field, the level
surfaces of the function are called equipotential surfaces. All points on an equipo-
tential surface have the same electrostatic potential, and the direction of flow of

w = f1x, y, z2

f1x, y, z2 = k
w = f1x, y, z2

P(x, y, z)f(x, y, z)

f1x, y, z2 = k,
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Section 12.5 Directional Derivatives and Gradients 647

From 2 to 3 Variables

z = f(x, y) w = f (x, y, z)

The graph is a surface.
We cannot draw the graph since it would 
require four-dimensional space.

f (x, y, z) = k determines a level surface in
xyz-space.

�f is a vector normal to the level surface.

�f 

± �f 

�f is a vector normal to the level curve.

f(x, y) = k determines a level curve 
in the xy-plane.
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�f 

electricity is along the negative gradient, that is, in the direction of greatest drop
in potential.

� EXAMPLE 5 If the temperature at any point in a homogeneous body is
given by what is the direction of the greatest drop in tem-
perature at the point 

SOLUTION The greatest decrease in temperature at is in the
direction of the negative gradient at that point.

Since we
find that at is

�1e-1
- 32i - e-1j - k

11, -1, 22- §T
§T = 1yexy

- y2
- 2xyz2i + 1xexy

- 2xy - x2z2j + 1-x2y2k,

11, -1, 22
11, -1, 22?T = exy

- xy2
- x2yz,
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648 Chapter 12 Derivatives for Functions of Two or More Variables

Concepts Review
1. The directional derivative of f at p in the direction of the

unit vector u is denoted by and is defined as _____.

2. If is a unit vector, then we may calculate
from the formula _____.Du f1x, y2 =Du f1x, y2
u = u1i + u2 j

lim
h:0

Du f1p2
3. The gradient vector always points in the direction of

_____ of f.

4. The gradient vector of f at P is always perpendicular to
the _____ of f through P.

§f

Problem Set 12.5
In Problems 1–8, find the directional derivative of f at the point p
in the direction of a.

1.

2.

3.

4.

5.

6.

7.

8.

In Problems 9–12, find a unit vector in the direction in which f
increases most rapidly at p. What is the rate of change in this
direction?

9.

10.

11.

12.

13. In what direction u does decrease
most rapidly at 

14. In what direction u does decrease
most rapidly at 

15. Sketch the level curve of that goes
through Calculate the gradient vector and
draw this vector, placing its initial point at p. What should be true
about 

16. Follow the instructions of Problem 15 for 
and 

17. Find the directional derivative of at
(1, 1, 1) in the direction toward 

18. Find the directional derivative of at
in the direction toward the origin.

19. The temperature at (x, y, z) of a solid sphere centered at
the origin is given by

(a) By inspection, decide where the solid sphere is hottest.
(b) Find a vector pointing in the direction of greatest increase of

temperature at 
(c) Does the vector of part (b) point toward the origin?

20. The temperature at (x, y, z) of a solid sphere centered at
the origin is Note that it is hottest at T1x, y, z2 = 100e-1x2

+ y2
+ z22.

11, -1, 12.

T1x, y, z2 =

200

5 + x2
+ y2

+ z2

10, p>32
f1x, y2 = e-x cos y

15, -3, 32.
f1x, y, z2 = xy + z2

p = 12, 12.x2
+ 4y2

f1x, y2 =

§f1p2?
§f1p2p = 11, 22.

f1x, y2 = y>x2

p = 1p>6, p>42?
f1x, y2 = sin13x - y2

p = 1-1, 22?
f1x, y2 = 1 - x2

- y2

f1x, y, z2 = xeyz; p = 12, 0, -42
f1x, y, z2 = x2yz; p = 11, -1, 22
f1x, y2 = ey sin x; p = 15p>6, 02
f1x, y2 = x3

- y5; p = 12, -12

a = 22i - j - k

f1x, y, z2 = x2
+ y2

+ z2; p = 11, -1, 22; 
f1x, y, z2 = x3y - y2z2; p = 1-2, 1, 32; a = i - 2j + 2k

f1x, y2 = e-xy; p = 11, -12; a = - i + 23j

f1x, y2 = ex sin y; p = 10, p>42; a = i + 23j

f1x, y2 = x2
- 3xy + 2y2; p = 1-1, 22; a = 2i - j

f1x, y2 = 2x2
+ xy - y2; p = 13, -22; a = i - j

f1x, y2 = y2 ln x; p = 11, 42; a = i - j

f1x, y2 = x2y; p = 11, 22; a = 3i - 4j

the origin. Show that the direction of greatest decrease in tem-
perature is always a vector pointing away from the origin.

21. Find the gradient of 
Show that the gradient always points directly toward the origin
or directly away from the origin.

22. Suppose that the temperature T at the point (x, y, z) de-
pends only on the distance from the origin. Show that the direc-
tion of greatest increase in T is either directly toward the origin
or directly away from the origin.

23. The elevation of a mountain above sea level at the point
(x, y) is A mountain climber at p notes that the slope in 
the easterly direction is and the slope in the northerly direc-
tion is In what direction should he move for fastest descent?

24. Given that and find the direc-
tional derivative of f at (2, 4) in the direction toward (5, 0).

25. The elevation of a mountain above sea level at (x, y) is
meters. The positive x-axis points east and the

positive y-axis points north.A climber is directly above (10, 10). If
the climber moves northwest, will she ascend or descend and at
what slope?

26. If the temperature of a plate at the point (x, y) is
find the path a heat-seeking particle

(which always moves in the direction of greatest increase in tem-
perature) would follow if it starts at Hint: The particle
moves in the direction of the gradient

We may write the path in parametric form as

and we want and To move in the required
direction means that should be parallel to This will be
satisfied if

together with the conditions and Now solve
this differential equation and evaluate the arbitrary constant of
integration.

27. Do Problem 26 assuming that 

28. The point is on the surface 
(see Figure 1 of Section 12.4). Starting at P, in what direction

should one move in each case?

(a) To climb most rapidly.
(b) To stay at the same level.
(c) To climb at slope 1.

u = u1i + u2 j

z = -102 ƒ xy ƒP11, -1, -102
T1x, y2 = 20 - 2x2

- y2.

y102 = 1.x102 = -2

x¿1t2
2x1t2 = -

y¿1t2
2y1t2

§T.r¿1t2
y102 = 1.x102 = -2

r1t2 = x1t2i + y1t2j

§T = 2xi - 2yj

1-2, 12.
T1x, y2 = 10 + x2

- y2,

3000e-1x2
+ 2y22>100

fy12, 42 = 8,fx12, 42 = -3

-
1
4.

-
1
2

f(x, y).

f1x, y, z2 = sin2x2
+ y2

+ z2.
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Section 12.6 The Chain Rule 649

Does the general analog of the one
variable Chain Rule (Theorem A,
Section 3.5) hold? Yes, and here is a
particularly elegant statement of it.
Let denote the real numbers and

denote Euclidean n-space, let g
be a function from to and let f
be a function from to If g is
differentiable at t and if f is differen-
tiable at then the composite
function is differentiable at 
and

1f � g2¿1t2 = §f1g1t22 # g¿1t2

tf � g
g(t),

�.�n
�n,�

�n
�

Beauty and Generality

y

x

D
E

A
B

C

0 10 20 30

50 100 150 200 250

50

100

Figure 6

Theorem A Chain Rule

Let and be differentiable at t, and let be differ-
entiable at Then is differentiable at t and

dz

dt
=

0z

0x
 
dx

dt
+

0z

0y
 
dy

dt

z = f1x1t2, y1t22(x(t), y(t)).
z = f1x, y2y = y1t2x = x1t2

29. The temperature T in degrees Celsius at (x, y, z) is given
by where distances are in meters. A 
bee is flying away from the hot spot at the origin on a spiral 
path so that its position vector at time t seconds is 

Determine the rate of change of T in
each case.
(a) With respect to distance traveled at 
(b) With respect to time at (Think of two ways to do this.)

30. Let and and suppose
that at some point P, and 
(a) Find at P.
(b) Note that in part (a). Show that

this relation always holds if u and v are perpendicular.

31. Figure 6 shows the contour map for a hill 60 feet high,
which we assume has equation 
(a) A raindrop landing on the hill above point A will reach the

xy-plane at by following the path of steepest descent
from A. Draw this path and use it to estimate 

(b) Do the same for point B.

(c) Estimate at C, at D, and at E, where 

1i + j2>22.

u =Duffyfx

A¿.
A¿

z = f1x, y2.

7§f 72 = 1Duf22 + 1Dvf22
§f

Dvf = 17.Duf = -6
v = 14i + 3j2>5u = 13i - 4j2>5

t = 1.
t = 1.

t cos pt i + t sin pt j + t k.
r(t) =

T = 10>1x2
+ y2

+ z22,
32. According to Theorem A, the differentiability of f at p im-

plies the existence of in all directions. Show that the con-
verse is false by considering

at the origin.

33. Plot the graph of

on also plot its contour map and gra-
dient field, thus illustrating Theorems B and C. Then estimate the
xy-coordinates of the point where a raindrop landing above the
point will leave this surface.

34. Follow the directions of Problem 33 for

35. For the monkey saddle

on estimate the xy-coordinates of the
point where a raindrop landing above the point will
leave the surface.

36. Where will a raindrop landing above the point (4, 1) 
on the surface

come to rest?

Answers to Concepts Review: 1.
2. 3. greatest increase 4. level curveu1fx1x, y2 + u2 fy1x, y2

[f1p + hu2 - f1p2]>h

0 … y … 2p,0 … x … 2p,

z = sin x + sin y - sin1x + y2

CAS

15, -0.22
-5 … x … 5, -5 … y … 5,

z = x3
- 3xy2

CAS

z = x - x3>9 - y2

CAS

1-5, -0.12

-5 … y … 5;-5 … x … 5,

z = x2
- y2

CAS

f1x, y2 = e1 if 0 6 y 6 x2

0 otherwise

Du f1p2

Proof We mimic the one-variable proof of Appendix A.2,Theorem B.To simpli-
fy notation, let and Then,
since f is differentiable,

¢z = f1p + ¢p2 - f1p2.p = 1x, y2, ¢p = 1¢x, ¢y2,

The Chain Rule for composite functions of one variable is by now familiar to all
our readers. If where both f and x are differentiable functions, then

Our goal is to obtain generalizations for functions of several variables.

First Version If where x and y are functions of t, then it makes
sense to ask for and there ought to be a formula for it.dz>dt,

z = f1x, y2,

dy

dt
=

dy

dx
 
dx

dt

y = f1x1t22,12.6
The Chain Rule
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650 Chapter 12 Derivatives for Functions of Two or More Variables

Here is a device that may help you
to remember the Chain Rule.

The Chain Rule: 
Two-Variable Case

z = f(x, y) Dependent
variable

Middle
variables

Independent
variable

y

t

x

∂z
∂x

∂z
∂y

dx
dt

dy
dt

dz
dt

= ∂z
∂x

dx
dt

+ ∂z
∂y

dy
dt

h

r

Figure 1

with as 
When we divide both sides by we obtain

(1)

Now, approaches as Also, when both 

and approach 0 (remember that and are continuous, being differen-
tiable). It follows that and hence as Consequently,
when we let in (1), we get

a result equivalent to the claimed assertion. �

� EXAMPLE 1 Suppose that where and Find 

SOLUTION

�

We could have done Example 1 without use of the Chain Rule. By direct
substitution,

and so However, the direct substitution method is often not avail-
able or not convenient—witness the next example.

� EXAMPLE 2 As a solid right circular cylinder is heated, its radius r and
height h increase; hence, so does its surface area S. Suppose that at the instant
when centimeters and centimeters, r is increasing at 0.2 centimeter
per hour and h is increasing at 0.5 centimeter per hour. How fast is S increasing at
this instant?

SOLUTION The formula for the total surface area of a cylinder (Figure 1) is

Thus,

At and 

�

The result in Theorem A extends readily to a function of three variables, as we
now illustrate.

 = 58p square centimeters per hour

 
dS

dt
= 12p # 100 + 4p # 10210.22 + 12p # 10210.52

h = 100,r = 10

 = 12ph + 4pr210.22 + 12pr210.52
 
dS

dt
=

0S

0r
 
dr

dt
+

0S

0h
 
dh

dt

S = 2prh + 2pr2

h = 100r = 10

dz>dt = 40t4.

z = x3y = 12t23t2
= 8t5

 = 40t4

 = 612t221t22 + 212t231t2
 = 13x2y2122 + 1x3212t2

 
dz

dt
=

0z

0x
 
dx

dt
+

0z

0y
 
dy

dt

dz>dt.y = t2.x = 2tz = x3y,

dz

dt
= fx1p2 dx

dt
+ fy1p2 dy

dt

¢t : 0
¢t : 0.E1¢p2: 0¢p : 0,

y(t)x(t)¢y

¢x¢t : 0,¢t : 0.h dx

dt
, 

dy

dt
ih ¢x

¢t
, 

¢y

¢t
i

¢z

¢t
= fx1p2 ¢x

¢t
+ fy1p2 ¢y

¢t
+ E1¢p2 # h ¢x

¢t
, 

¢y

¢t
i

¢t,
¢p : 0.E1¢p2: 0

 = fx1p2 ¢x + fy1p2 ¢y + E1¢p2 # ¢p

 ¢z = f1p + ¢p2 - f1p2 = §f1p2 # ¢p + E1¢p2 # ¢p
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Section 12.6 The Chain Rule 651

The Chain Rule: 
Three-Variable Case

∂w
∂x

∂w
∂z

dx
d

dw
d

= ∂w
∂x

dx
d

+ ∂w
∂y

dy
d

∂w
∂y

w = f (x, y, z)

zx

θ

dz
d

dy
d

+ ∂w
∂z

dz
d

y

θ

θ

θ

θ θ θ θ

Theorem B Chain Rule

Let and have first partial derivatives at (s, t), and let
be differentiable at Then has

first partial derivatives given by

1. 2.
0z

0t
=

0z

0x
 
0x

0t
+

0z

0y
 
0y

0t
.

0z

0s
=

0z

0x
 
0x

0s
+

0z

0y
 
0y

0s
;

z = f1x1s, t2, y1s, t22(x(s, t), y(s, t)).z = f1x, y2 y = y1s, t2x = x1s, t2

� EXAMPLE 3 Suppose that where 
and Find and evaluate it at 

SOLUTION

At 

�

Second Version Suppose next that where and
Then it makes sense to ask for and 0z>0t.0z>0sy = y1s, t2. x = x1s, t2z = f1x, y2,

 = -

1
8

-

p2
 23
18

+

p

3

 
dw

du
= -2 #

1
2

#
3
4

-

p2

9
#
23
2

+ a1
4

+ 1b  
1
2

+

2p
3

#
1
2

u = p>3,

 = -2 cos u sin2 u - u2 sin u + cos3 u + cos u + 2u cos u

 = 12xy + z21-sin u2 + 1x2
+ 121cos u2 + 1x212u2

 
dw

du
=

0w

0x
 
dx

du
+

0w

0y
 
dy

du
+

0w

0z
 
dz

du

u = p>3.dw>duz = u2.
x = cos u, y = sin u,w = x2y + y + xz,

Proof If s is held fixed, then and become functions of t alone, which
means that Theorem A applies. When we use this theorem with replacing d to in-
dicate that s is fixed, we obtain the formula in (2) for The formula for is
obtained in a similar way by holding t fixed. �

� EXAMPLE 4 If where and find 
and express it in terms of s and t.

SOLUTION

Of course, if we substitute the expressions for x and y into the formula for z and
then take the partial derivative with respect to t, we get the same answer:

�

Here is the corresponding result for three intermediate variables illustrated in
an example.

 = 84s + 294t - 50s2t

 =

0

0t
 [12s2

+ 84st + 147t2
- 25s2t2]

 
0z

0t
=

0

0t
 [312s + 7t22 -15st22]

 = 84s + 294t - 50s2t

 = 4212s + 7t2 - 10st15s2
 = 16x2172 + 1-2y215s2

 
0z

0t
=

0z

0x
 
0x

0t
+

0z

0y
 
0y

0t

0z>0ty = 5st,x = 2s + 7tz = 3x2
- y2,

0z>0s0z>0t.
0

y(s, t)x(s, t)
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652 Chapter 12 Derivatives for Functions of Two or More Variables

� EXAMPLE 5 If where and
find 

SOLUTION

�

Implicit Functions Suppose that defines y implicitly as a func-
tion of x, for example, but that the function g is difficult or impossible to
determine. We can still find One method for doing this, implicit differentia-
tion, was discussed in Section 3.7. Here is another method.

Let’s differentiate both sides of with respect to x using the Chain
Rule. We obtain

Solving for yields the formula

� EXAMPLE 6 Find if using

(a) the Chain Rule, and (b) implicit differentiation.

SOLUTION

(a) Let Then

(b) Differentiate both sides with respect to x to obtain

Solving for gives the same result as we obtained with the Chain Rule.�

If z is an implicit function of x and y defined by the equation 
then differentiation of both sides with respect to x, holding y fixed, yields

If we solve for and note that we get the first of the formulas
below. A similar calculation holding x fixed and differentiating with respect to y
produces the second formula.

0z

0x
= -

0F>0x

0F>0z
, 0z

0y
= -

0F>0y

0F>0z

0y>0x = 0,0z>0x

0F

0x
 
0x

0x
+

0F

0y
 
0y

0x
+

0F

0z
 
0z

0x
= 0

F1x, y, z2 = 0,

dy>dx

3x2
+ x2 

dy

dx
+ 2xy - 40y3 

dy

dx
= 0

dy

dx
= -

0F>0x

0F>0y
= -

3x2
+ 2xy

x2
- 40y3

F1x, y2 = x3
+ x2y - 10y4.

x3
+ x2y - 10y4

= 0dy>dx

dy

dx
= -

0F>0x

0F>0y

dy>dx

0F

0x
 
dx

dx
+

0F

0y
 
dy

dx
= 0

F1x, y2 = 0

dy>dx.
y = g1x2, F1x, y2 = 0

 = 2s2t + s2
- 2st + 2s + 10t

 = 12st + s - t21s2 + 12s - 2t + st21-12 + 12s + 4t22
 = 12x + y21s2 + 12y + x21-12 + 12z2122

 
0w

0t
=

0w

0x
 
0x

0t
+

0w

0y
 
0y

0t
+

0w

0z
 
0z

0t

0w>0t.z = s + 2t,
x = st, y = s - t,w = x2

+ y2
+ z2

+ xy,
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Section 12.6 The Chain Rule 653

� EXAMPLE 7 If defines z implicitly
as a function of x and y, find 

SOLUTION

�
0z

0x
= -

0F>0x

0F>0z
= -

3x2ey + z
- y cos1x - z2

x3ey + z
+ y cos1x - z2

0z>0x.
F1x, y, z2 = x3ey + z

- y sin1x - z2 = 0

Concepts Review
1. If where and then the

Chain Rule says that _____.

2. Thus, if where and then
_____.dz>dt =

y = cos t,x = sin tz = xy2,

dz>dt =

y = h1t2,x = g1t2z = f1x, y2, 3. If where and then
the Chain Rule says that _____.

4. Thus, if where and then
at and has the value _____.t = 1s = 10z>0t

y = s2
+ t2,x = stz = xy2,

0z>0t =

y = h1s, t2,x = g1s, t2z = f1x, y2,

Problem Set 12.6
In Problems 1–6, find by using the Chain Rule. Express
your final answer in terms of t.

1.

2.

3.

4.

5.

6.

In Problems 7–12, find by using the Chain Rule. Express
your final answer in terms of s and t.

7.

8.

9.

10.

11.

12.

13. If and find

14. If and find

15. If and find

16. If and
find

0w
0u

 `
r= 2, u=p, f=p>2

z = r cos f,
w = x2y + z2, x = r cos u sin f, y = r sin u sin f,

dw

dx
 `

x = 1>4

v = px,w = u2
- u tan v, u = x,

0z

0s
 `

r = 1, s = -1, t = 2

y = rst,z = xy + x + y, x = r + s + t,

0z

0t
 `

s = 1, t = -2

y = 1 - st2,z = x2y, x = 2t + s,

w = exy + z; x = s + t, y = s - t, z = t2

w = 2x2
+ y2

+ z2; x = cos st, y = sin st, z = s2t

w = ln1x + y2 - ln1x - y2; x = tes, y = est

w = ex2
+ y2

; x = s sin t, y = t sin s

w = x2
- y ln x; x = s>t, y = s2t

w = x2y; x = st, y = s - t

0w>0t

w = xy + yz + xz; x = t2, y = 1 - t2, z = 1 - t

w = sin1xyz22; x = t3, y = t2, z = t

w = ln1x>y2; x = tan t, y = sec2 t

w = ex sin y + ey sin x; x = 3t, y = 2t

w = x2y - y2x; x = cos t, y = sin t

w = x2y3; x = t3, y = t2

dw>dt 17. The part of a tree normally sawed into lumber is the
trunk, a solid shaped approximately like a right circular cylinder.
If the radius of the trunk of a certain tree is growing inch per
year and the height is increasing 8 inches per year, how fast is the
volume increasing when the radius is 20 inches and the height is
400 inches? Express your answer in board feet per year (1 board

inch by 12 inches by 12 inches).

18. The temperature of a metal plate at (x, y) is de-
grees. A bug is walking northeast at a rate of feet per minute 
(i.e., ). From the bug’s point of view, how is
the temperature changing with time as it crosses the origin?

19. A boy’s toy boat slips from his grasp at the edge of a
straight river. The stream carries it along at 5 feet per second. A
crosswind blows it toward the opposite bank at 4 feet per sec-
ond. If the boy runs along the shore at 3 feet per second follow-
ing his boat, how fast is the boat moving away from him when

seconds?

20. Sand is pouring onto a conical pile in such a way that at a
certain instant the height is 100 inches and increasing at 3 inches
per minute and the base radius is 40 inches and increasing at 
2 inches per minute. How fast is the volume increasing at that
instant?

In Problems 21–24, use the method of Example 6a to find dy/dx.

21.

22.

23.

24.

25. If find (Example 7).

26. If find (Example 7).

27. If and x, y, z, and w are each functions
of s and t, write a chain rule for 

28. Let where and Show
that

a 0z

0x
b2

+ a 0z

0y
b2

= a 0z

0r
b2

+

1

r2 a 0z

0u
b2

y = r sin u.x = r cos uz = f1x, y2,
0T>0s.

T = f1x, y, z, w2
0x>0zye-x

+ z sin x = 0,

0z>0x3x2z + y3
- xyz3

= 0,

x2 cos y - y2 sin x = 0

x sin y + y cos x = 0

ye-x
+ 5x - 17 = 0

x3
+ 2x2y - y3

= 0

t = 3

dx>dt = dy>dt = 2
28

e-x - 3y

foot = 1

1
2
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z

x

y

Tangent plane

z = f (x, y)(x0, y0, z0)

Figure 1

29. The wave equation of physics is the partial differential
equation

where c is a constant. Show that if f is any twice differentiable
function then

satisfies this equation.

30. Show that if then

31. Let where f is continuous and g

and h are differentiable. Show that

and use this result to find where

32. Call a function homogeneous of degree 1 if
for all For example,

satisfies this criterion. Prove Euler’s Theorem that such
a function satisfies

f1x, y2 = x 
0f

0x
+ y 

0f

0y

x + yey>x
f1x, y2 =t 7 0.f1tx, ty2 = tf1x, y2

f(x, y)

F1t2 =

L

t2

sin22 pt
29 + u4 du

F¿ A22 B ,
F¿1t2 = f1h1t22h¿1t2 - f1g1t22g¿1t2

F1t2 =

L

h1t2

g1t2
f1u2 du,

0w

0r
+

0w

0s
+

0w

0t
= 0

w = f1r - s, s - t, t - r2

y1x, t2 =
1
2 [f1x - ct2 + f1x + ct2]

0
2y

0t2 = c2 
0

2y

0x2

Note: Let denote the value of production from x units of
capital and y units of labor. Then f is a homogeneous function
(e.g., doubling capital and labor doubles production). Euler’s
Theorem then asserts an important law of economics that may be
phrased as follows: The value of production equals the
cost of capital plus the cost of labor provided that they are paid
for at their respective marginal rates and 

33. Leaving from the same point P, airplane A flies due east
while airplane B flies N 50° E. At a certain instant, A is 200 miles
from P flying at 450 miles per hour, and B is 150 miles from P
flying at 400 miles per hour. How fast are they separating at that
instant?

34. Recall Newton’s Law of Gravitation, which asserts that
the magnitude F of the force of attraction between objects of
masses M and m is where r is the distance be-
tween them and G is a universal constant. Let an object of mass
M be located at the origin, and suppose that a second object of
changing mass m (say from fuel consumption) is moving away
from the origin so that its position vector is 
Obtain a formula for in terms of the time derivatives of m,
x, y, and z.

Answers to Concepts Review: 1.

2.

3. 4. 12
0z

0x
 
0x

0t
+

0z

0y
 
0y

0t

y2 cos t + 2xy1-sin t2 = cos3 t - 2 sin2 t cos t

0z

0x
 
dx

dt
+

0z

0y
 
dy

dt

dF>dt
r = xi + yj + zk.

F = GMm>r2,

C

0f>0y.0f>0x

f(x, y)

f(x, y)

We introduced the notion of a tangent plane to a surface in Section 12.4, but dealt
only with surfaces determined by equations of the form (Figure 1).
Now we want to consider the more general situation of a surface determined by

(Note that can be written as 
) Consider a curve on this surface passing through the point

If and are parametric equations for this
curve, then for all t,

By the Chain Rule,

We can express this in terms of the gradient of F and the derivative of the vector
expression for the curve as

As we learned earlier (Section 11.5), is tangent to the curve. In summary, the
gradient at is perpendicular to the tangent line at this point.1x0, y0, z02

dr>dt

§F #
dr
dt

= 0

r1t2 = x1t2i + y1t2j + z1t2k

dF

dt
=

0F

0x
 
dx

dt
+

0F

0y
 
dy

dt
+

0F

0z
 
dz

dt
=

d

dt
 (k) = 0

F1x1t2, y1t2, z1t22 = k

z = z1t2x = x1t2, y = y1t2,1x0, y0, z02.
f1x, y2 - z = 0.

F1x, y, z2 =z = f1x, y2F1x, y, z2 = k.

z = f1x, y212.7
Tangent Planes and

Approximations
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Tangent
planeF (x, y, z) = k

(x0, y0, z0)

�F(x0, y0, z0)

Figure 2

Definition

Let determine a surface, and suppose that F is differentiable at a
point of this surface, with Then the plane
through P perpendicular to is called the tangent plane to the sur-
face at P.

§F1x0, y0, z02
§F1x0, y0, z02 Z 0.P1x0, y0, z02

F1x, y, z2 = k

–2

–1

0

1

2

–2
–1

0
1

2

0

1

2

3

4

(1, 1, 2)

z = x2 + y2

x

y

z

Tangent Plane
2x + 2y – z = 2

Figure 3

Theorem A Tangent Planes

For the surface the equation of the tangent plane at 
is that is,

In particular, for the surface the equation of the tangent plane at
is

z - z0 = fx1x0, y021x - x02 + fy1x0, y021y - y02
1x0, y0, f1x0, y022

z = f1x, y2,
Fx1x0, y0, z021x - x02 + Fy1x0, y0, z021y - y02 + Fz1x0, y0, z021z - z02 = 0

§F1x0, y0, z02 # 8x - x0, y - y0, z - z09 = 0;
1x0, y0, z02F1x, y, z2 = k,

The argument just given is valid for any curve through that lies 
in the surface (Figure 2). This suggests the following general
definition.

F1x, y, z2 = k
1x0, y0, z02

As a consequence of this definition and Section 11.3, we can write the equa-
tion of the tangent plane.

Proof The first statement is immediate, and the second follows from it by con-
sidering �

If z is a function of x and y, say then from the second part of The-
orem A, we can write the equation of the tangent plane as

Letting and we see that the equation of the tangent plane
is

Thus, our definition in this section agrees with the definition of a tangent plane
given in Section 12.4.

� EXAMPLE 1 Find the equation of the tangent plane (Figure 3) to
at the point (1, 1, 2).

SOLUTION Let and note that Thus,
, and from Theorem A, the required equation is

or

�

� EXAMPLE 2 Find the equation of the tangent plane and the normal line to
the surface at (1, 2, 3).x2

+ y2
+ 2z2

= 23

2x + 2y - z = 2

z - 2 = 21x - 12 + 21y - 12
§f11, 12 = 2i + 2j

§f1x, y2 = 2xi + 2yj.f1x, y2 = x2
+ y2,

z = x2
+ y2

 = f1p02 + §f1p02 # 1p - p02
 z = f1x0, y02 + Hfx1x0, y02, fy1x0, y02I # Hx - x0, y - y0 I

p0 = 1x0, y02,p = 1x, y2
z - f1x0, y02 = fx1x0, y021x - x02 + fy1x0, y021y - y02

z = f1x, y2,
F1x, y, z2 = f1x, y2 - z.
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656 Chapter 12 Derivatives for Functions of Two or More Variables

z

x
y

dy

dz

dx

P

x0 y0

Figure 4
Definition

Let where f is a differentiable function, and let dx and dy (called
the differentials of x and y) be variables. The differential of the dependent vari-
able, dz, also called the total differential of f and written is defined by

dz = df1x, y2 = fx1x, y2 dx + fy1x, y2 dy = §f # 8dx, dy9
df(x, y),

z = f1x, y2,

Tangent plane

dz = fx(x0, y0)∆x + fy(x0, y0) ∆y

∆x

∆y

∆z = f (x0 + ∆ x, y0 + ∆y) – f (x0, y0)

(x0 + ∆ x, y0 + ∆y,  f (x0 + ∆ x, y0 + ∆y))

(x0 + ∆x, y0 + ∆y) 

(x0, y0)

z = f (x,y)

z

x

y

(x0, y0, f (x0, y0))

Figure 5

SOLUTION Let so that 
and According to Theorem A,

the equation of the tangent plane at (1, 2, 3) is

Similarly, the symmetric equations of the normal line through (1, 2, 3) are

�

Differentials and Approximations We suggest that you review Sec-
tion 3.11, where the topics of differentials and approximations are treated for func-
tions of one variable.

Let and let be a fixed point on the corresponding
surface. Introduce new coordinate axes (the dx-, dy-, and dz-axes) parallel to the
old axes, with P as origin (Figure 4). In the old system, the tangent plane at P has
equation

but in the new system this takes the simple form

This suggests a definition.

dz = fx1x0, y02 dx + fy1x0, y02 dy

z - z0 = fx1x0, y021x - x02 + fy1x0, y021y - y02

P1x0, y0, z02z = f1x, y2,

x - 1
2

=

y - 2

4
=

z - 3
12

21x - 12 + 41y - 22 + 121z - 32 = 0

§F11, 2, 32 = 2i + 4j + 12k.2x i + 2y j + 4z k
§F1x, y, z2 =F1x, y, z2 = x2

+ y2
+ 2z2

- 23

The significance of dz arises from the fact that if and rep-
resent small changes in x and y, respectively, then dz will be a good approximation
to the corresponding change in z. This is illustrated in Figure 5 and, while dz
does not appear to be a very good approximation to you can see that it will get
better and better as and get smaller.¢y¢x

¢z,
¢z,

dy = ¢ydx = ¢x

� EXAMPLE 3 Let Compute and dz as 
(x, y) changes from (2, 1) to (2.03, 0.98).

¢zz = f1x, y2 = 2x3
+ xy - y3.
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Section 12.7 Tangent Planes and Approximations 657

SOLUTION

At (2, 1) with and 

�

� EXAMPLE 4 The formula where k is a constant, gives the
pressure P of a confined gas of volume V and temperature T. Find, approximately,
the maximum percentage error in P introduced by an error of in measuring
the temperature and an error of in measuring the volume.

SOLUTION The error in P is which we will approximate by dP. Thus,

The maximum relative error, is approximately 0.013, and the maximum
percentage error is approximately 1.3%. �

Taylor Polynomials for Functions of Two or More Variables Recall
that for functions of one variable we could approximate the function using 
a Taylor polynomial The Taylor polynomials of order one and two are

The first is the tangent line at the point The analogous quantities for a
function of two variables are

which is, of course, the tangent plane at and

These results generalize to nth-order Taylor polynomials and to functions of more
than two variables.

� EXAMPLE 5 Find the first- and second-order Taylor polynomials to the
function at (0, 0), and use them to approximate
f10.05, -0.062.f1x, y2 = 1 - e-x2

- 2y2

+

1
2

 [fxx1x0, y021x - x022 + 2fxy1x0, y021x - x021y - y02 + fyy1x0, y021y - y022]
P21x, y2 = f1x0, y02 + [fx1x0, y021x - x02 + fy1x0, y021y - y02]

1x0, y0, f1x0, y022,
P11x, y2 = f1x0, y02 + [fx1x0, y021x - x02 + fy1x0, y021y - y02]
f(x, y)

1x0, f1x022.
 P21x2 = f1x02 + f¿1x021x - x02 +

1
2

 f–1x021x - x022
 P11x2 = f1x02 + f¿1x021x - x02

Pn1x2.
f(x)

ƒ ¢P ƒ >P,

 =

kT

V
 10.004 + 0.0092 = 0.013 

kT

V
= 0.013P

 … ` k
V

 1;0.004T2 ` + ` - kT

V2  1;0.009V2 `

 ƒ ¢P ƒ L ƒ dP ƒ = ` 0P

0T
 ¢T +

0P

0V
 ¢V `

¢P,

;0.9%
;0.4%

P = k1T>V2,

dz = 125210.032 + 1-121-0.022 = 0.77

¢y = -0.02,¢x = 0.03

 = 16x2
+ y2 ¢x + 1x - 3y22 ¢y

 dz = fx1x, y2 ¢x + fy1x, y2 ¢y

 = 0.779062

 = 212.0323 + 12.03210.982 - 10.9823 - [21223 + 2112 - 13]

 ¢z = f12.03, 0.982 - f12, 12
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–2

–1 0

1

0

1

2

0

1

2

z = 1 – exp( – x2 – 2y2)

z =  x2 + 2y2

x

y

z

–1

Figure 6

SOLUTION

Thus,

and

The first-order approximation to is

and the second-order approximation is

Figure 6 shows the second-order polynomial (the first-order polynomial is simply
) along with the function The true value for is

�f10.05, -0.062 = 1 - e-0.052
- 210.0622

= 1 - e-0.0097
L 0.00965

f10.05, -0.062f(x, y).P11x, y2 = 0

f10.05, -0.062 L P210.05, -0.062 = 0.052
+ 21-0.0622 = 0.00970

f10.05, -0.062 L P110.05, -0.062 = 0

f10.05, -0.062,
 = x2

+ 2y2

 = 11 - e02 + 10x + 0y2 +

1
2

 [2x2
+ 2 # 0xy + 4y2]

+

1
2

 [fxx10, 021x - 022 + 2fxy10, 021x - 021y - 02 + fyy10, 021y - 022]
P21x, y2 = f10, 02 + [fx10, 021x - 02 + fy10, 021y - 02]

 = 11 - e02 + 10x + 0y2 = 0

 P11x, y2 = f10, 02 + [fx10, 021x - 02 + fy10, 021y - 02]

 fxy1x, y2 = -8xye-x2
- 2y2

 fyy1x, y2 = 14 - 16y22e-x2
- 2y2

 fxx1x, y2 = 12 - 4x22e-x2
- 2y2

 fy1x, y2 = 4ye-x2
- 2y2

 fx1x, y2 = 2xe-x2
- 2y2

Concepts Review
1. Let determine a surface. The direction of

the gradient vector is _____ to the surface.

2. Let determine a surface. A vector at (1, 1, 2)
perpendicular to this surface is _____.

z = x2
+ xy

§F
F1x, y, z2 = k 3. Let determine a surface. An equation for the

tangent plane at (2, 1, 1) is _____.

4. We define the total differential of by 
_____.

df1x, y2 =f(x, y)

xy2z3
= 2

Problem Set 12.7
In Problems 1–8, find the equation of the tangent plane to the
given surface at the indicated point.

1.

2.

3.

4.

5. (2, 2, 2)

6. (1, 0, 1)z = xe-2y;

z =

x2

4
+

y2

4
;

x2
+ y2

- z2
= 4; 12, 1, 12

x2
- y2

+ z2
+ 1 = 0; A1, 3, 27 B

8x2
+ y2

+ 8z2
= 16; A1, 2, 22>2 B

x2
+ y2

+ z2
= 16; A2, 3, 23 B

7.

8.

In Problems 9–12, use the total differential dz to approximate
the change in z as moves from P to Q. Then use a calculator
to find the corresponding exact change (to the accuracy of your
calculator). See Example 3.

9. P(1, 1), Q(0.99, 1.02)

10.

11. z = ln1x2y2; P1-2, 42, Q1-1.98, 3.962
z = x2

- 5xy + y; P12, 32, Q12.03, 2.982
z = 2x2y3;

¢z
(x, y)

C

z = x1>2
+ y1>2; 11, 4, 32

z = 2e3y cos 2x; 1p>3, 0, -12
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Section 12.8 Maxima and Minima 659

12.

13. Find all points on the surface

where the tangent plane is horizontal.

14. Find a point on the surface where the tan-
gent plane is parallel to the plane 

15. Show that the surfaces and
are tangent to each other at

that is, show that they have the same tangent plane at

16. Show that the surfaces and intersect
at (1, 1, 1) and have perpendicular tangent planes there.

17. Find a point on the surface where
the tangent plane is perpendicular to the line with parametric
equations:

18. Show that the equation of the tangent plane to the
ellipsoid

at can be written in the form

19. Find the parametric equations of the line that is tangent
to the curve of intersection of the surfaces

and

at the point (1, 2, 2). Hint: This line is perpendicular to 
and 

20. Find the parametric equations of the line that is tangent
to the curve of intersection of the surfaces and at
(1, 1, 1) (see Problem 19).

21. In determining the specific gravity of an object, its weight
in air is found to be pounds and its weight in water is

pounds, with a possible error in each measurement of
0.02 pound. Find, approximately, the maximum possible error in
calculating its specific gravity S, where 

22. Use differentials to find the approximate amount of cop-
per in the four sides and bottom of a rectangular copper tank that
is 6 feet long, 4 feet wide, and 3 feet deep inside, if the sheet cop-
per is inch thick. Hint: Make a sketch.1

4

S = A>1A - W2.
W = 20

A = 36

y = z3x = z2

§g11, 2, 22.
§f11, 2, 22

g1x, y, z2 = 2x2
- y2

+ 3z2
- 10 = 0

f1x, y, z2 = 9x2
+ 4y2

+ 4z2
- 41 = 0

x0x

a2 +

y0y

b2 +

z0z

c2 = 1

1x0, y0, z02

x2

a2 +

y2

b2 +

z2

c2 = 1

x = 1 + 2t, y = 3 + 8t, z = 2 - 6t.

x2
+ 2y2

+ 3z2
= 12

y =
1
4 x2

+
3
4z = x2y

10, -1, 22.
10, -1, 22;
x2

+ y2
+ z2

- 6z + 7 = 0
x2

+ 4y + z2
= 0

8x - 3y - z = 0.
z = 2x2

+ 3y2

x2
- 2xy - y2

- 8x + 4yz =

z = tan-1 xy; P1-2, -0.52, Q1-2.03, -0.512 23. The radius and height of a right circular cone are meas-
ured with errors of at most 2% and 3%, respectively. Use differ-
entials to estimate the maximum percentage error in the
calculated volume (see Example 4).

24. The period T of a pendulum of length L is given by

where g is the acceleration of gravity. Show that

and use this result to estimate the
maximum percentage error in T due to an error of 0.5% in meas-
uring L and 0.3% in measuring g.

25. The formula determines the com-
bined resistance R when resistors of resistance and are con-
nected in parallel. Suppose that and were measured at 25
and 100 ohms, respectively, with possible errors in each measure-
ment of 0.5 ohm. Calculate R and give an estimate for the maxi-
mum error in this value.

26. A bee sat at the point (1, 2, 1) on the ellipsoid
(distances in feet). At it took off along

the normal line at a speed of 4 feet per second. Where and when
did it hit the plane 

27. Show that a plane tangent at any point of the surface
forms with the coordinate planes a tetrahedron of fixed

volume and find this volume.

28. Find and simplify the equation of the tangent plane at
to the surface Then show that

the sum of the intercepts of this plane with the coordinate axes 
is 

29. For the function find the second-
order Taylor approximation based at Then esti-
mate f(3.1, 3.9) using
(a) the first-order approximation,
(b) the second-order approximation, and
(c) your calculator directly.

30. For the function find the
second-order Taylor approximation based at 
Then estimate using
(a) the first-order approximation,
(b) the second-order approximation, and
(c) your calculator directly.

Answers to Concepts Review: 1. perpendicular
2. 3.

4.
0f

0x
 dx +

0f

0y
 dy

(x - 2) + 41y - 12 + 61z - 12 = 083, 1, -19

f10.2, -0.32
1x0, y02 = 10, 02.

f1x, y2 = tan11x2
+ y22>642,C

1x0, y02 = 13, 42.
f1x, y2 = 2x2

+ y2,C

a2.

1x + 1y + 1z = a.1x0, y0, z02

xyz = k

2x + 3y + z = 49?

t = 0,x2
+ y2

+ 2z2
= 6

R2R1

R2R1

1>R = 1>R1 + 1>R2

dT>T =
1
2 [dL>L - dg>g],

T = 2p2L>g,

Our goal is to extend the notions of Chapter 4 to functions of several variables;
a quick review of that chapter, especially Sections 4.1 and 4.3, will be helpful. The
definitions given there extend almost without change, but for clarity we repeat
them. In what follows, let and be a variable point and 
a fixed point, respectively, in two-space (they could just as well be points in 
n-space).

p0 = 1x0, y02p = 1x, y2

12.8
Maxima and Minima
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SS

Global max

Global min

Local max

Local min

Figure 1

Theorem A Max–Min Existence Theorem

If f is continuous on a closed bounded set S, then f attains both a (global) maxi-
mum value and a (global) minimum value there.

Figure 1 gives a geometric interpretation of the concepts we have defined.
Note that a global maximum (or minimum) is automatically a local maximum (or
minimum).

Our first theorem is a big one—difficult to prove, but intuitively clear.

The proof may be found in most books on advanced calculus.

Where Do Extreme Values Occur? The situation is analogous to the one-
variable case. The critical points of f on S are of three types.

1. Boundary points. See Section 12.3.

2. Stationary points. We call a stationary point if is an interior point of S
where f is differentiable and At such a point, the tangent plane is
horizontal.

3. Singular points. We call a singular point if is an interior point of S where
f is not differentiable, for example, a point where the graph of f has a sharp
corner.

Now we can state another big theorem; we can actually prove this one.

p0p0

§f1p02 = 0.
p0p0

Definition

Let f be a function with domain S, and let be a point in S.

(i) is a global maximum value of f on S if for all p in S.

(ii) is a global minimum value of f on S if for all p in S.

(iii) is a global extreme value of f on S if is either a global maxi-
mum value or a global minimum value.

We obtain definitions for local maximum value and local minimum value if in
(i) and (ii) we require only that the inequalities hold on where N is some
neighborhood of is a local extreme value of f on S if is either a
local maximum value or a local minimum value.

f1p02f1p02p0.
N ¨ S,

f1p02f1p02
f1p02 … f1p2f1p02

f1p02 Ú f1p2f1p02
p0
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Section 12.8 Maxima and Minima 661

Theorem B Critical Point Theorem

Let f be defined on a set S containing If is an extreme value, then 
must be a critical point; that is, either is

1. a boundary point of S; or
2. a stationary point of f ; or
3. a singular point of f.

p0

p0f1p02p0.

z

x

y

y2

b2
x2

a2
–  = z

Figure 2

Proof Suppose that is neither a boundary point nor a singular point (so that
is an interior point where exists). We will be done if we can show that

For simplicity, set the higher-dimensional cases will fol-
low in a similar fashion.

Since f has an extreme value at the function has an
extreme value at Moreover, g is differentiable at since f is differentiable at

and therefore, by the Critical Point Theorem for functions of one variable
(Theorem 4.1B),

Similarly, the function has an extreme value at and satisfies

The gradient is 0 since both partials are 0. �

The theorem and its proof are valid whether the extreme values are global or
local extreme values.

� EXAMPLE 1 Find the local maximum or minimum values of 

SOLUTION The given function is differentiable throughout its domain, the 
xy-plane. Thus, the only possible critical points are the stationary points obtained
by setting and equal to zero. But and

are zero only when and It remains to decide whether
(1, 0) gives a maximum or a minimum or neither. We will develop a simple tool for
this soon, but for now we must use a little ingenuity. Note that and

Thus, is actually a global minimum for f. There are no local maximum val-
ues. �

� EXAMPLE 2 Find the local minimum or maximum values of

SOLUTION The only critical points are obtained by setting 
and equal to zero. This yields the point (0, 0), which gives neither
a maximum nor minimum (see Figure 2). It is called a saddle point. The given
function has no local extrema. �

Example 2 illustrates the troublesome fact that does not guar-
antee that there is a local extremum at Fortunately, there is a nice criteri-
on for deciding what is happening at a stationary point—our next topic.

1x0, y02.
§f1x0, y02 = 0

fy1x, y2 = 2y>b2
fx1x, y2 = -2x>a2

f1x, y2 = -x2>a2
+ y2>b2.

f(1, 0)

 = 1x - 122 +

y2

4
- 1 Ú -1

 f1x, y2 = x2
- 2x +

y2

4
= x2

- 2x + 1 +

y2

4
- 1

f11, 02 = -1

y = 0.x = 1fy1x, y2 = y>2 fx1x, y2 = 2x - 2fy1x, y2fx1x, y2

x2
- 2x + y2>4.

f1x, y2 =

h¿1y02 = fy1x0, y02 = 0

y0h1y2 = f1x0, y2
g¿1x02 = fx1x0, y02 = 0

1x0, y02
x0x0.

g1x2 = f1x, y021x0, y02,
p0 = 1x0, y02;§f1p02 = 0.
§fp0

p0
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Sufficient Conditions for Extrema The next theorem is analogous to the
Second Derivative Test for functions of one variable (Theorem 4.3B). A rigorous
proof is beyond the scope of this book, but we provide a sketch of the proof that
uses the Taylor polynomial for functions of two variables introduced in the previ-
ous section.

Sketch of Proof We will assume that and that (If
these conditions do not hold, we can translate the graph, without altering its shape,
to make these conditions true and then translate back.) For (x, y) near (0, 0), the
function f behaves much like the second-order Taylor polynomial about (0, 0)

(A rigorous proof would take into account the remainder in using to ap-
proximate Under the condition that 
and the condition the second-order Taylor polynomial reduces to

Let and This gives

Completing the square on x gives

The expression is positive for all except (0, 0). If 

that is, if then the expression
in brackets will be positive for all If, in addition, then

for in which case is a local minimum.
Similarly, if and then for in which case
f(0, 0) is a local maximum. When then the graph of is a (rotated)
paraboloid with vertex at (0, 0) opening upward if and downward if 

When the graph of is a rotated hyperbolic paraboloid with a
saddle point at (0, 0). (See Figure 11 in Section 11.8.)

P21x, y2D 6 0,
A 6 0.A 7 0

P21x, y2D 7 0,
1x, y2 Z 10, 02,P21x, y2 6 0A 6 0D 7 0

f10, 02 = 01x, y2 Z 10, 02,P21x, y2 7 0
A 7 0,1x, y2 Z 10, 02.

fxx10, 02fyy10, 02 - fxy
2 10, 02 = D 7 0,AC - B2

=

C

A
-

B2

A2 7 0,(x, y)ax +

B

A
 yb2

 =

A

2
 c ax +

B

A
 yb2

+ aC

A
-

B2

A2 by2 d

 P21x, y2 =

A

2
 cx2

+ 2 
By

A
 x + aBy

A
b2

+

C

A
 y2

- aBy

A
b2 d

P21x, y2 =

1
2

 [Ax2
+ 2Bxy + Cy2]

C = fyy10, 02.A = fxx10, 02, B = fxy10, 02,
P21x, y2 =

1
2

 [ fxx10, 02x2
+ 2fxy10, 02xy + fyy10, 02y2]

f10, 02 = 0,
§f10, 02 = 8fx10, 02, fy10, 029 = 0,f(x, y).)

P21x, y2
f10, 02 + fx10, 02x + fy10, 02y +

1
2

 [ fxx10, 02x2
+ 2fxy10, 02xy + fyy10, 02y2]

P21x, y2 =

x0 = y0 = 0.f10, 02 = 0

Theorem C Second Partials Test

Suppose that has continuous second partial derivatives in a neighbor-
hood of and that Let

Then

1. if and is a local maximum value;
2. if and is a local minimum value;
3. if is not an extreme value ( is a saddle point);
4. if then the test is inconclusive.D = 0,

1x0, y02D 6 0, then f1x0, y02
fxx1x0, y02 7 0, then f1x0, y02D 7 0
fxx1x0, y02 6 0, then f1x0, y02D 7 0

D = D1x0, y02 = fxx1x0, y02fyy1x0, y02 - fxy
2 1x0, y02

§f1x0, y02 = 0.1x0, y02
f(x, y)
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Section 12.8 Maxima and Minima 663

Finally, when then all terms in are zero, and so In
this case, higher order terms would be required to determine the behavior of

near (0, 0). Since the theorem makes no assumptions about these higher-
order terms, we can draw no conclusion about whether is a local minimum
or maximum. �

� EXAMPLE 3 Find the extrema, if any, of the function F defined by

SOLUTION Since and the critical
points, obtained by solving the simultaneous equations 
are and 

Now and Thus, at the critical point

Furthermore, and so, by Theorem C(2), is a
local minimum value of F.

In testing the given function at the other critical point, we find that
and which makes

Thus, by Theorem C(3), is a saddle point and 
is not an extremum. �

� EXAMPLE 4 Find the minimum distance between the origin and the sur-
face 

SOLUTION Let be any point on the surface. The square of the
distance between the origin and P is We seek the coordinates
of P that make (and hence d) a minimum.

Since P is on the surface, its coordinates satisfy the equation of the surface.
Substituting in we obtain as a function of two
variables x and y.

To find the critical points, we set and obtaining

By eliminating y between these equations, we get

Thus, or Substituting these values in the second of the equations,
we obtain and Therefore, the critical points are (0, 0),

and (There are no boundary points.)
To test each of these, we need 

and

Since neither nor yields an ex-
tremum. However, and so (0, 0) yields the
minimum distance. Substituting and in the expression for we find

The minimum distance between the origin and the given surface is 2. �

It is easy to check the boundary points when we are maximizing (or minimiz-
ing) a function of one variable, because the boundary usually consists of just the
two endpoints. For functions of two or more variables, it is a more difficult

d2
= 4.

d2,y = 0x = 0
fxx10, 02 = 2 7 0;D10, 02 = 4 7 0

A -22, -1 BA22, -1 BD A ;22, -1 B = -8 6 0,

D1x, y2 = fxxfyy - fxy
2

= 4 + 4y - 4x2

fxy1x, y2 = 2x,
fxx1x, y2 = 2 + 2y, fyy1x, y2 = 2,

A -22, -1 B .
A22, -1 B ,y = -1.y = 0

x = ;22.x = 0

2x - x3
= 0

2x + 2xy = 0 and 2y + x2
= 0

fy1x, y2 = 0,fx1x, y2 = 0

d2
= f1x, y2 = x2

+ y2
+ x2y + 4

d2d2
= x2

+ y2
+ z2,z2

= x2y + 4

d2
d2

= x2
+ y2

+ z2.
P(x, y, z)

z2
= x2y + 4.

F1-1, -221-1, -22D = -36 6 0.
Fxy1-1, -22 = 0,Fxx1-1, -22 = -18, Fyy1-1, -22 = 2,

1-1, -22,
F11, -22 = -10Fxx11, -22 = 18 7 0

D = Fxx11, -22 # Fyy11, -22 - Fxy
2 11, -22 = 18122 - 0 = 36 7 0

11, -22, Fxy = 0.Fxx1x, y2 = 18x, Fyy1x, y2 = 2,
1-1, -22.11, -22 Fx1x, y2 = Fy1x, y2 = 0,

Fy1x, y2 = 2y + 4,Fx1x, y2 = 9x2
- 9

F1x, y2 = 3x3
+ y2

- 9x + 4y.

f(0, 0)
f(x, y)

P21x, y2 = 0.P21x, y2D = 0,
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y

Q

R

P

F

x

50

100

200 – (x + y)

Figure 4

problem. In some cases, such as the next example, the entire boundary can be pa-
rameterized and then the methods of Chapter 4 can be used to find the maximum
and minimum. In other cases, such as Example 6, pieces of the boundary can be pa-
rameterized and then the function can be maximized or minimized on each piece.
We will see another method, Lagrange multipliers, in the next section.

� EXAMPLE 5 Find the maximum and minimum values of 

on the closed and bounded set 

SOLUTION Figure 3 shows the surface along with the set S, shown
in the xy-plane. The first partial derivatives are and 
Thus, the only interior critical point is (0, 0). Since

and we know that is a minimum.
The global maximum must then occur on the boundary of S. Figure 3 also

shows the boundary of S projected upward to the surface somewhere
along this curve, f should achieve a maximum. We can describe parametrically the
boundary of S by

The optimization problem then reduces to one of optimizing the function of one
variable

By the Chain Rule (Theorem 12.6A),

Setting yields and Thus, g has five critical points on 

These five values for t determine the five critical points (1, 0), (0, 2),
and (1, 0) for the last point is the same as the first because an

angle of yields the same point as an angle of 0. The corresponding values of f
are

At the critical point interior to S, we have Therefore, we conclude that
the minimum value of f on S is 2, and the maximum value is 6. �

� EXAMPLE 6 A power cable must be laid from a power plant to a new fac-
tory located across a shallow river. The river is 50 feet wide and the factory is 200
feet down stream and 100 feet from the bank as shown in Figure 4. The cable costs
$600 per foot to lay under water, $100 per foot to lay along the bank, and $200 per
foot to lay from the bank to the factory.What path should be taken to minimize the
cost and what is the minimum cost?

SOLUTION Let P, Q, R, and F denote the points as shown in Figure 4. Let x
denote the distance from the point directly across from the power plant to Q, and

f10, 02 = 2.

 f10, -22 = 6 f1-1, 02 = 3

 f10, 22 = 6 f11, 02 = 3

2p
f;1-1, 02, 10, -22,[0, 2p].

2p.t = 0, 
p

2
, p, 

3p
2

,g¿1t2 = 0

 = 6 sin t cos t = 3 sin 2t

 = -2 sin t cos t + 8 sin t cos t

 = 2x1-sin t2 + 2y12 cos t2
 g¿1t2 =

0f

0x
 
dx

dt
+

0f

0y
 
dy

dt

g1t2 = f1cos t, 2 sin t2, 0 … t … 2p

x = cos t, y = 2 sin t, 0 … t … 2p

z = f1x, y2;
f10, 02 = 2fxx10, 02 = 2 7 0,

D10, 02 = fxx10, 02fyy10, 02 - fxy
2 10, 02 = 2 # 2 - 0 = 4 7 0

fy1x, y2 = 2y.fx1x, y2 = 2x
z = f1x, y2

S = e 1x, y2: x2
+

1
4

 y2
… 1 f .2 + x2

+ y2

f1x, y2 =

S

y

x

–2
–1

0
1

2

z

–2

–1
0

1
2

0

2

4

6

8

10

Figure 3
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y

x100 200

100

200

C1(y)
C3(x)

C2(x)

C(x, y)

Figure 5

let y denote the distance from R to the point on the bank nearest the factory. The
lengths and costs of the cable are shown in the table below.

Type of Cable Length Cost

Underwater $600/foot

Along Bank $100/foot

Across Land $200/foot

The total cost is therefore

The values of (x, y) must satisfy (see Figure 5). Taking
partial derivatives and setting them equal to 0 gives

The solution to this system of equations is

We now apply the second partials test:

Evaluating D at and gives

Thus, and yields a local minimum, which is

We must also check the boundary. When the cost function is

(The function agrees with on the left boundary of the triangular do-
main for Similarly, and defined below, agree with on
the lower and upper boundaries, respectively. See Figure 5.) Using the methods
from Chapter 4 (details are left to the reader), we find that achieves a minimumC1

C(x, y)C31x2,C21x2C(x, y).
C(x, y)C11y2

C11y2 = C10, y2 = 30,000 + 1001200 - y2 + 2002y2
+ 1002

x = 0,

36,000A5
7

+ 100 A200 -
10
7  235 -

100
3  23 B +

40,00023
L $66,901

C A10
7  235, 100

3  23 B =

y =
100
3  23x =

10
7  235

 =

35
24

 2105 7 0

 =

35235
18

 
323

4
- 02

 D = Cxx A10
7  235, 100

3  23 BCyy A10
7  235, 100

3  23 B - CCxy A10
7  235, 100

3  23 B D2
y =

100
3  23,x =

10
7  235

 Cxy1x, y2 = 0

 Cyy1x, y2 =

2002y2
+ 1002

- 200y2>2y2
+ 1002

y2
+ 1002

 Cxx1x, y2 =

6002x2
+ 502

- 600x2>2x2
+ 502

x2
+ 502

 y =

100
3
23 L 57.735

 x =

10
7
235 L 8.4515

 Cy1x, y2 = 1001y2
+ 10022-1>212y2 - 100 =

200y2y2
+ 1002

- 100 = 0

 Cx1x, y2 = 3001x2
+ 5022-1>212x2 - 100 =

600x2x2
+ 502

- 100 = 0

x Ú 0, y Ú 0, x + y … 200

C1x, y2 = 6002x2
+ 502

+ 1001200 - x - y2 + 2002y2
+ 1002

2y2
+ 1002

200 - 1x + y2
2x2

+ 502
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666 Chapter 12 Derivatives for Functions of Two or More Variables

of approximately $67,321 when On the boundary where the
cost function is

Again, using the methods of Chapter 4, we find that reaches a minimum of ap-
proximately $69,580 when Finally, we must address the boundary
where We can substitute for y to get the cost in terms of x
alone:

This function reaches a minimum of approximately $73,380 when 

Therefore, the minimum cost path is the path where and

which yields a cost of $66,901. �y =
100
3  23 L 57.735,

x =
10
7  235 L 8.4515

x L 15.3292.

 = 6002x2
+ 502

+ 20021200 - x22 + 1002

 C31x2 = C1x, 200 - x2
200 - xx + y = 200.

x = 1025>7.
C2

C21x2 = C1x, 02 = 20,000 + 6002x2
+ 502

+ 1001200 - x2
y = 0,y = 100>23.

Concepts Review
1. If is continuous on a(n) _____ set S, then f attains

both a maximum value and a minimum value on S.

2. If attains a maximum value at a point 
then is either a(n) _____ point or a(n) _____ point or a(n)
_____ point.

1x0, y02
1x0, y02,f(x, y)

f(x, y) 3. If is a stationary point for f, then f is differentiable
there and _____.

4. In the Second Partials Test for a function f of two vari-
ables, the number _____ plays a crucial role.D =

1x0, y02

Problem Set 12.8
In Problems 1–10, find all critical points. Indicate whether each
such point gives a local maximum or a local minimum, or whether
it is a saddle point. Hint: Use Theorem C.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Problems 11–14, find the global maximum value and global
minimum value of f on S and indicate where each occurs.

11.

12.

13.
(See Example 5.)

14.
S = 51x, y2: x2

+ y2
… 16

f1x, y2 = x2
- 6x + y2

- 8y + 7;

S = 51x, y2: x2
+ y2

… 16
f1x, y2 = x2

- y2
+ 1;

S = 51x, y2: -1 … x … 3, -1 … y … 46
f1x, y2 = x2

+ y2;

S = 51x, y2: 0 … x … 1, -1 … y … 16
f1x, y2 = 3x + 4y;

f1x, y2 = x2
+ a2

- 2ax cos y; -p 6 y 6 p

0 6 x 6 p>2, 0 6 y 6 p>2
f1x, y2 = cos x + cos y + cos1x + y2;
f1x, y2 = e-1x2

+ y2
- 4y2

f1x, y2 = xy +

2
x

+

4
y

f1x, y2 = x3
+ y3

- 6xy

f1x, y2 = xy

f1x, y2 = xy2
- 6x2

- 3y2

f1x, y2 = 2x4
- x2

+ 3y2

f1x, y2 = x2
+ 4y2

- 2x + 8y - 1

f1x, y2 = x2
+ 4y2

- 4x

15. Express a positive number N as a sum of three posi-
tive numbers such that the product of these three numbers is a
maximum.

16. Use the methods of this section to find the shortest dis-
tance from the origin to the plane 

17. Find the dimensions of the closed rectangular box of vol-
ume with minimum surface area.

18. Find the dimensions of the rectangular box of volume 
for which the sum of the edge lengths is least.

19. A rectangular metal tank with open top is to hold 256
cubic feet of liquid. What are the dimensions of the tank that re-
quire the least material to build?

20. A rectangular box, whose edges are parallel to the coordi-
nate axes, is inscribed in the ellipsoid 
What is the greatest possible volume for such a box?

21. Find the three-dimensional vector with length 9, the sum
of whose components is a maximum.

22. Find the point on the plane that is
closest to the origin. What is the minimum distance?

23. Find the point on the paraboloid that is
closest to (1, 2, 0). What is the minimum distance?

24. Find the minimum distance between the point (1, 2, 0)
and the quadric cone 

25. An open gutter with cross section in the form of a trape-
zoid with equal base angles is to be made by bending up equal
strips along both sides of a long piece of metal 12 inches wide.
Find the base angles and the width of the sides for maximum
carrying capacity.

z2
= x2

+ y2.

z = x2
+ y2CAS

2x + 4y + 3z = 12

96x2
+ 4y2

+ 4z2
= 36.

V0

V0

x + 2y + 3z = 12.
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10 2

2

xi3 4

4

5

6

yi
(xi, yi)

yi�mxi�b

mxi � b

b

Figure 6

26. Find the minimum distance between the lines having
parametric equations and 

27. Convince yourself that the maximum and minimum val-
ues of a linear function over a closed
polygonal set (i.e., a polygon and its interior) will always occur at
a vertex of the polygon. Then use this fact to find each of the
following:

(a) maximum value of on the closed polygon with
vertices (0, 1), (1, 0), and 

(b) minimum value of on the closed polygon
with vertices (0, 5), (2, 3), (4, 0), and 

28. Use the result of Problem 27 to maximize subject
to the constraints and 
Hint: Begin by graphing the set determined by the constraints.

29. Find the maximum and minimum values of 
(Figure 2) on the closed triangle with vertices (0, 0), (1, 2), and

30. Least Squares Given n points 
in the xy-plane, we wish to find the line such

that the sum of the squares of the vertical distances from the
points to the line is a minimum; that is, we wish to minimize

(See Figure 6. Also, remember that the and the are fixed.)yi’sxi’s

f1m, b2 = a
n

i = 1
1yi - mxi - b22

y = mx + b1xn, yn2
1x1, y12, 1x2, y22, Á ,

12, -22.
z = y2

- x2

y Ú 0.4x + y … 8, 2x + 3y … 14, x Ú 0,
2x + y

11, -421-3, 02,
-3x + 2y + 1

10, -421-3, 02,1-1, 22,
2x + 3y + 4

f1x, y2 = ax + by + c

y = s + 2, z = 2s - 1.
x = 3s,x = t - 1, y = 2t, z = t + 3

(a) Find and and set these results equal to zero.
Show that this leads to the system of equations

(b) Solve this system for m and b.
(c) Use the Second Partials Test (Theorem C) to show that f is

minimized for this choice of m and b.

31. Find the least-squares line (Problem 30) for the data 
(3, 2), (4, 3), (5, 4), (6, 4), and (7, 5).

32. Find the maximum and minimum values of
(Figure 3) on the set bounded by

the closed triangle with vertices (0, 0), (4, 0), and (0, 1).
z = 2x2

+ y2
- 4x - 2y + 5

 ma
n

i = 1
xi + nb = a

n

i = 1
yi

 ma
n

i = 1
x2

i + ba
n

i = 1
xi = a

n

i = 1
xiyi

0f>0b,0f>0m

33. Suppose that in Example 6, the costs were as follows: un-
derwater $400/foot; along the bank $200/foot; and across land
$300/foot. What path should be taken to minimize the cost and
what is the minimum cost?

34. Suppose that in Example 6, the costs were as follows: un-
derwater $500/foot; along the bank $200/foot; and across land
$100/foot. What path should be taken to minimize the cost and
what is the minimum cost?

35. Find the maximum and minimum values of
on the disk Hint: Parame-

trize the boundary by 

36. Find the maximum and minimum values of
on the ellipse with interior 

where Hint: Parametrize the boundary by 

37. A box is to be made where the material for the sides and
the lid cost $0.25 per square foot and the cost for the bottom is
$0.40 per square foot. Find the dimensions of a box with volume
2 cubic feet that has minimum cost.

38. A steel box without a lid having volume 60 cubic feet is
to be made from material that costs $4 per square foot for the
bottom and $1 per square foot for the sides. Welding the sides to
the bottom costs $3 per linear foot and welding the sides togeth-
er costs $1 per linear foot. Find the dimensions of the box that has
minimum cost and find the minimum cost. Hint: Use symmetry to
obtain one equation in one unknown and use a CAS or Newton’s
Method to approximate the solution.

39. Suppose that the temperature T on the circular plate
is given by Find the

hottest and coldest spots on the plate.

40. A wire of length k is to be cut into (at most) three pieces
to form a circle and two squares, any of which may be degenerate.
How should this be done to maximize and minimize the area thus
enclosed? Hint: Reduce the problem to that of optimizing

on the part of the plane in
the first octant. Then reason geometrically.

41. Find the shape of the triangle of largest area that can be
inscribed in a circle of radius r. Hint: Let and be the
central angles that subtend the three sides of the triangle. Show
that the area of the triangle is 
Maximize.

42. Let be a fixed point in the first octant. Find the
plane through this point that cuts off from the first octant the
tetrahedron of minimum volume, and determine the resulting
volume.

Sometimes finding the extrema for a function of two vari-
ables can best be handled by commonsense methods using a com-
puter. To illustrate, look at the pictures of the surfaces and the
corresponding contour maps for the five functions graphed in Fig-
ures 15–19 of Section 12.1. Note that these graphs suggest that we
can locate the extrema visually. With the additional ability to eval-
uate the function at points, we can experimentally approximate
maxima and minima with good accuracy. In Problems 43–53, use
your technology to find the point where the indicated maximum or
minimum occurs and give the functional value at this point. Note
that Problems 43–47 refer to the five functions from Section 12.1.

43.
local maximum point near (2, 0); also global maximum.

Check using calculus.
… 3.8;

-3.8 … yf1x, y2 = x - x3>9 - y2>2; -3.8 … x … 3.8,

CAS

(a, b, c)

1
2 r2[sin a + sin b - sin1a + b2].

ga, b,

21px + 4y + 4z = kx2
+ y2

+ z2

T = 2x2
+ y2

- y.51x, y2: x2
+ y2

… 16

CAS

y = b sin t, 0 … t … 2p.
x = a cos t,a 7 b.

x2>a2
+ y2>b2

… 1,f1x, y2 = x2
+ y2

x = 3 cos t, y = 3 sin t, 0 … t … 2p.
x2

+ y2
… 9.f1x, y2 = 10 + x + y
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B
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Figure 7

44.
global maximum point and global minimum. Check using
calculus.

45.
global minimum.

46.
global maximum and global minimum. Check

using calculus.

47.
global maximum and global minimum.

48.
global maximum and global minimum. Be careful.

49.
global maximum and global minimum.

50.
global maximum and global minimum.

51.
global maximum and global

minimum.

52.
global maximum and global

minimum.

53.
global maximum and global

minimum.
0 … x … 2p, 0 … y … 2p;

f1x, y2 = 2 sin x + sin y - sin1x + y2;
-6 … x … 6, -6 … y … 6;

f1x, y2 = 1x2
- x - 5211 - 9y2 sin x sin y;

-2 … y … 2;-2 … x … 2,
f1x, y2 = cos1 ƒ x ƒ + y22 + 10x exp1-x2

- y22;
-3 … y … 3;

-3 … x … 3,f1x, y2 = 1sin x2>16 + x + ƒ y ƒ 2;
-3 … y … 3;

-3 … x … 3,f1x, y2 = 8 cos1xy + 2x2 + x2y2;

-1 … y … 1;
-1 … x … 1,f10, 02 = 0;f1x, y2 = -x>1x2

+ y22,
-5 … y … 5;

f1x, y2 = exp1-1x2
+ y22>42 sin Ax2 ƒ y ƒ B ; - 5 … x … 5,

-2 … y … 2;
-2 … x … 2,f1x, y2 = exp1-x2

- y2
+ xy>42;

-3.8 … y … 3.8;
-3.8 … x … 3.8,f1x, y2 = -1 + cos1y>11 + x2

+ y222;

f1x, y2 = y>11 + x2
+ y22; -5 … x … 5, -5 … y … 5; 54. Let three arms of lengths 6, 8, and 10 emanate from N, as

shown in Figure 7. Let and denote the area and
perimeter, respectively, of the triangle ABC determined by these
arms.
(a) Find formulas for and 
(b) Determine in 

that maximizes 
(c) Determine in D that maximizes L1a, b21a, b2

K1a, b2.
D = 51a, b2: 0 … a … p, 0 … b … p61a, b2

L1a, b2.K1a, b2

L1a, b2K1a, b2

Answers to Concepts Review: 1. closed and bounded
2. boundary; stationary; singular 3.
4. fxx1x0, y02fyy1x0, y02 - fxy

2 1x0, y02
§f1x0, y02 = 0

We begin by distinguishing between two kinds of problems. To find the minimum
value of is a free extremum problem. To find the minimum of

subject to the condition that is a constrained
extremum problem. Many of the problems of the real world, especially those in
economics, are of the latter type. For example, a manufacturer may wish to maxi-
mize profits, but is likely to be constrained by the amount of raw materials avail-
able, the size of its labor force, and so on.

Example 4 of the previous section was a constrained extremum problem. We
were asked to find the minimum distance from the surface to the
origin. We formulated the problem as that of minimizing sub-
ject to the constraint We handled this problem by substituting the
value for from the constraint in the expression for and then solving the
resulting free (i.e., the unconstrained) extremum problem. Example 5 of the previ-
ous section was also a constrained optimization problem. We knew that the maxi-
mum had to occur on the boundary of the region S, so we were led to the problem
of maximizing subject to the constraint that This
problem was solved by finding a parametrization for the constraint and then max-
imizing a function of one variable (the variable being the parameter in the con-
straint). It often happens, however, that the constraint equation is not easily solved
for one of the variables or that the constraint cannot be parametrized in terms of
one variable. Even when one of these techniques can be applied, another method
may be simpler; this is the method of Lagrange multipliers.

Geometric Interpretation of the Method Part of the problem in Ex-
ample 5 of the previous section was to maximize the objective function 

subject to the constraint where 

Figure 1 shows the surface along with the constraint.z = f1x, y2x2
+

1
4 y2

- 1.

g1x, y2 =g1x, y2 = 0,f1x, y2 = 2 + x2
+ y2

x2
+

1
4 y2

= 1.z = 2 + x2
+ y2

d2z2
z2

= x2y + 4.
d2

= x2
+ y2

+ z2,
z2

= x2y + 4

x + 3y - z = 7x2
+ 2y2

+ z4
+ 4

x2
+ 2y2

+ z4
+ 4

12.9
The Method of 

Lagrange Multipliers
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Theorem A Lagrange’s Method

To maximize or minimize subject to the constraint solve the sys-
tem of equations

for p and Each such point p is a critical point for the constrained extremum
problem, and the corresponding is called a Lagrange multiplier.l

l.

§f1p2 = l §g1p2 and g1p2 = 0

g1p2 = 0,f(p)

Here, the elliptical cylinder represents the constraint. The second part of Figure 1
shows the intersection of the constraint and the surface The optimiza-
tion problem is to find where, along this curve of intersection, the function is a
maximum and where it is a minimum. Both the second and third parts of Figure 1
suggest that the maximum and minimum will occur when a level curve of the ob-
jective function f is tangent to the constraint curve. This is the key idea behind the
method of Lagrange multipliers.

z = f1x, y2.

Next we consider the general problem of optimizing subject to the con-
straint The level curves of f are the curves where k is a
constant.They are shown as black curves in Figure 2 for The
graph of the constraint is also a curve; it is shown in color in Figure 2.
To maximize f subject to the constraint means to find the level curve
with the greatest possible k that intersects the constraint curve. It is evident from
Figure 2 that such a level curve is tangent to the constraint curve at a point

and therefore that the maximum value of f subject to the constraint
is The other point of tangency, gives the mini-

mum value of f subject to the constraint 
Lagrange’s method provides an algebraic procedure for finding the points 

and Since, at such a point, the level curve and the constraint curve are tangent
(i.e., have a common tangent line), the two curves have a common perpendicular
line. But at any point of a level curve the gradient vector is perpendicular to the
level curve (Section 12.5), and similarly, is perpendicular to the constraint
curve. Thus, and are parallel at and also at that is,

for some nonzero numbers and 
The argument just given is admittedly an intuitive one, but it can be made

completely rigorous under appropriate hypotheses. Moreover, this argument
works just as well for the problem of maximizing or minimizing subject
to the constraint We simply consider level surfaces rather than level
curves. In fact, the result is valid in any number of variables.

All this suggests the following formulation of the method of Lagrange multipliers.

g1x, y, z2 = 0.
f(x, y, z)

l1.l0

§f1p02 = l0 §g1p02 and §f1p12 = l1 §g1p12
p1;p0§g§f

§g
§f

p1.
p0

g1x, y2 = 0.f1x1, y12
p1 = 1x1, y12,f1x0, y02.g1x, y2 = 0

p0 = 1x0, y02

g1x, y2 = 0
g1x, y2 = 0

k = 200, 300, Á , 700.
f1x, y2 = k,g1x, y2 = 0.
f(x, y)
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Applications We illustrate the method with several examples.

� EXAMPLE 1 What is the greatest area that a rectangle can have if the
length of its diagonal is 2?

SOLUTION Place the rectangle in the first quadrant with two of its sides along
the coordinate axes; then the vertex opposite the origin has coordinates (x, y), with
x and y positive (Figure 3).The length of its diagonal is and its area
is xy.

Thus, we may formulate the problem to be that of maximizing 
subject to the constraint The corresponding gradients
are

Lagrange’s equations thus become

(1)

(2)

(3)

which we must solve simultaneously. If we multiply the first equation by y and the
second by x, we get and from which

(4)

From (3) and (4), we find that and and by substituting these val-

ues in (1), we obtain Thus, the solution to equations (1) through (3), keeping

x and y positive, is and 
We conclude that the rectangle of greatest area with diagonal 2 is the square

having sides of length Its area is 2.A geometric interpretation of this problem
is shown in Figure 4. �

� EXAMPLE 2 Use Lagrange’s method to find the maximum and minimum
values of

on the ellipse 

SOLUTION Refer to Figure 2 of Section 12.8 for a graph of the hyperbolic
paraboloid From this figure, we would certainly guess that
the minimum value occurs at and the maximum value at But let us
justify this conjecture.

We may write the constraint as Now

and

The Lagrange equations are

(1)

(2)

(3)  x2
+ 4y2

= 4

 2y = l8y

 -2x = l2x

§g(x, y) = 2x i + 8y j

§f(x, y) = -2x i + 2y j

g1x, y2 = x2
+ 4y2

- 4 = 0.

10, ;12.1;2, 02z = f1x, y2 = y2
- x2.

x2>4 + y2
= 1.

f1x, y2 = y2
- x2

22.

l =
1
2.x = 22, y = 22,

l =
1
2.

y = 22;x = 22

y2
= x2

x2
= 2lxy,y2

= 2lxy

 x2
+ y2

= 4

 x = l12y2
 y = l12x2

 §g1x, y2 = gx1x, y2i + gy1x, y2j = 2x i + 2y j

 §f1x, y2 = fx1x, y2i + fy1x, y2j = y i + x j

g1x, y2 = x2
+ y2

- 4 = 0.
f1x, y2 = xy

2x2
+ y2

= 2,
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Note from the third equation that x and y cannot both be 0. If the first equa-
tion implies that and the second equation then requires that We
conclude from the third equation that We have thus obtained the critical
points 

Exactly the same argument with yields from the second equation,
then from the first equation, and finally from the third equation.We
conclude that are also critical points.

Now, for 

The minimum value of on the given ellipse is the maximum value 
is 1. �

� EXAMPLE 3 Find the minimum of subject
to the constraint 

SOLUTION The gradients of f and g are and
To find the critical points, we solve the equations

for in which is a Lagrange multiplier.This is equivalent, in the present
problem, to solving the following system of four simultaneous equations in the
four variables x, y, z, and 

(1)

(2)

(3)

(4)

From (3), Substituting this result in equations (1) and (2), we get 

and By putting these values for x and y in equation (4), we obtain 

Thus, the solution of the foregoing system of four simultaneous equations is

and the only critical point is Therefore, the minimum

of subject to the constraint is (How do

we know that this value is a minimum rather than a maximum?) �

Two or More Constraints When more than one constraint is imposed on
the variables of a function that is to be maximized or minimized, additional La-
grange multipliers are used (one for each constraint). For example, if we seek the
extrema of a function f of three variables subject to the two constraints

and we solve the equations

for x, y, z, and where and are Lagrange multipliers. This is equivalent to
finding the solutions of the system of five simultaneous equations in the variables
x, y, z, and 

(1)  fx1x, y, z2 = lgx1x, y, z2 + mhx1x, y, z2
m.l,

mlm,l,

§f1x, y, z2 = l §g1x, y, z2 + m §h1x, y, z2, g1x, y, z2 = 0, h1x, y, z2 = 0

h1x, y, z2 = 0,g1x, y, z2 = 0

f A- 1
6, - 1

4, 12 B =  
9
2.g1x, y, z2 = 0,f(x, y, z),

A- 1
6, - 1

4, 12 B .A- 1
6, - 1

4, 12, -1 B ,
z =

1
2.y = -

1
4.

x = -
1
6l = -1.

 9x2
+ 4y2

- z = 0

 1 = -l

 2 = 8yl

 3 = 18xl

l.

l1x, y, z, l2,
§f1x, y, z2 = l§g1x, y, z2 and g1x, y, z2 = 0

§g1x, y, z2 = 18xi + 8yj - k.
§f1x, y, z2 = 3i + 2j + k

g1x, y, z2 = 9x2
+ 4y2

- z = 0.
f1x, y, z2 = 3x + 2y + z + 5

-4;f(x, y)

 f10, -12 = 1

 f10, 12 = 1

 f1-2, 02 = -4

 f12, 02 = -4

f1x, y2 = y2
- x2,

10, ;12 y = ;1x = 0
l =

1
4y Z 0

1;2, 02. x = ;2.
y = 0.l = -1,

x Z 0,
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Figure 6 suggests that four of the
points to check will be symmetric
about the origin. This turned out to
be the case.

Thinking of Symmetry≈

(2)

(3)

(4)

(5)

From the solutions of this system, we obtain the critical points.

� EXAMPLE 4 Find the maximum and minimum values of 
on the ellipse that is the intersection of the cylinder and

the plane (see Figure 5).

SOLUTION We want to maximize and minimize subject to
and The correspond-

ing Lagrange equations are

(1)

(2)

(3)

(4)

(5)

From (1), from (2) and (3), Thus, from (4),
which implies that The solution yields

the critical point and yields the critical point
We conclude that is the maximum value and

is the minimum value. �

Optimizing a Function over a Closed and Bounded Set We can find
the maximum or minimum of a function over a closed and bounded set S
using the following steps. First, use the methods of Section 12.8 to find the maxi-
mum or minimum on the interior of S. Second, use Lagrange multipliers to find the
points along the boundary that give a local maximum or minimum. Finally, evalu-
ate the function at these points to find the maximum and minimum over S.

� EXAMPLE 5 Find the maximum and minimum for the function
over the set 

SOLUTION Figure 6 shows the graph of The set S is the
circle with interior centered at the origin having radius 1. Thus, we are to find the
maximum and minimum of over that region that is on or inside the curve drawn
on the top of Figure 6. We begin by finding all critical points on the interior of S:

The only solution, and thus the only interior critical point, is (0, 0). Next we apply
the method of Lagrange multipliers to find points along the boundary where the

 
0f

0y
= x - 2y = 0

 
0f

0x
= y - 2x = 0

f

z = 4 + xy - x2
- y2.

S = 51x, y2: x2
+ y2

… 16f1x, y2 = 4 + xy - x2
- y2

f(x, y)

f1-1, 1, 02 = 1
f11, -1, 22 = 51x, y, z2 = 1-1, 1, 02.

l = -
1
21x, y, z2 = 11, -1, 22,

l =
1
2l = ;

1
2.11>(2l)22 + 1-1>(2l)22 = 2,

y = -1>(2l).x = 1>(2l);

 y + z - 1 = 0

 x2
+ y2

- 2 = 0

 3 = m

 2 = 2ly + m

 1 = 2lx

h1x, y, z2 = y + z - 1 = 0.x2
+ y2

- 2 = 0g1x, y, z2 =

f(x, y, z)

y + z = 1
x2

+ y2
= 2x + 2y + 3z

f1x, y, z2 =

 h1x, y, z2 = 0

 g1x, y, z2 = 0

 fz1x, y, z2 = lgz1x, y, z2 + mhz1x, y, z2
 fy1x, y, z2 = lgy1x, y, z2 + mhy1x, y, z2
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function is a maximum or minimum. A point on the boundary will satisfy the con-
straint so we let Then

Setting leads to

Solving these two equations for gives

which leads to This, together with the constraint leads

to We must therefore evaluate f at the five points (0, 0),

and 

The maximum that f attains over S is 4, and this occurs at The min-

imum that f attains over S is , and this occurs at the two points and 

�A22
2 , - 22

2 B .
A- 22

2 , 22
2 B5

2

1x, y2 = 10, 02.

f10, 02 = 4 f A22
2 , 22

2 B =

7
2

f A- 22
2 , 22

2 B =

5
2

f A22
2 , - 22

2 B =

5
2

f A- 22
2 , - 22

2 B =

7
2

A- 22
2 , - 22

2 B :A22
2 , 22

2 B , A- 22
2 , 22

2 B , A22
2 , - 22

2 B ,
x = ;22>2, y = ;22>2.

x2
+ y2

- 1 = 0,x = ; y.

y

2x
- 1 = l =

x

2y
- 1

l

 x - 2y = l2y

 y - 2x = l2x

§f1x, y2 = l §g1x, y2
 §g1x, y2 = 2x i + 2y j

 §f1x, y2 = 1y - 2x2i + 1x - 2y2j
g1x, y2 = x2

+ y2
- 1.x2

+ y2
- 1 = 0,

Concepts Review
1. To maximize is a(n) _____ extremum problem; to

maximize subject to is a(n) _____ extremum
problem.

2. The method of Lagrange multipliers depends on the fact
that at an extreme value the vectors and are _____.§g§f

g1x, y2 = 0f(x, y)
f(x, y) 3. Thus, to use the method of Lagrange multipliers, we

attempt to solve the equations and _____
simultaneously.

4. Sometimes simple geometric reasoning yields a solution.
The maximum value of on the circle

clearly occurs at _____.1x - 122 + 1y - 122 = 2
f1x, y2 = x4

+ y4

§f1x, y2 = l §g1x, y2

Problem Set 12.9
1. Find the minimum of subject to the

constraint 

2. Find the maximum of subject to the con-
straint 

3. Find the maximum of subject
to the constraint 

4. Find the minimum of subject to
the constraint 

5. Find the minimum of subject
to the constraint 

6. Find the minimum of subject
to the constraint 

7. What are the dimensions of the rectangular box, open at
the top, that has maximum volume when the surface area is 48?

2x2
+ y2

- 3z = 0.
f1x, y, z2 = 4x - 2y + 3z

x + 3y - 2z = 12.
f1x, y, z2 = x2

+ y2
+ z2

x - y - 6 = 0.
f1x, y2 = x2

+ 4xy + y2

x2
+ y2

= 1.
f1x, y2 = 4x2

- 4xy + y2

g1x, y2 = 4x2
+ 9y2

- 36 = 0.
f1x, y2 = xy

g1x, y2 = xy - 3 = 0.
f1x, y2 = x2

+ y2 8. Find the minimum distance between the origin and the
plane 

9. The material for the bottom of a rectangular box costs
three times as much per square foot as the material for the sides
and top. Find the greatest volume that such a box can have if the
total amount of money available for material is $12 and the ma-
terial for the bottom costs $0.60 per square foot.

10. Find the minimum distance between the origin and the
surface 

11. Find the maximum volume of a closed rectangular box with
faces parallel to the coordinate planes inscribed in the ellipsoid

x2

a2 +

y2

b2 +

z2

c2 = 1

x2y - z2
+ 9 = 0.

x + 3y - 2z = 4.
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β
α γ

Figure 7

12. Find the maximum volume of the first-octant rectangular
box with faces parallel to the coordinate planes, one vertex at 
(0, 0, 0), and diagonally opposite vertex on the plane

In Problems 13–20, use the method of Lagrange multipliers to
solve these problems from Section 12.8.

13. Problem 21 14. Problem 22

15. Problem 23 16. Problem 24

17. Problem 37 18. Problem 38

19. Problem 40 (minimum only)

20. Problem 42; Hint: Let the plane be 

In Problems 21–25, find the maximum and minimum of the func-
tion f over the closed and bounded set S. Use the methods of
Section 12.8 to find the maximum and minimum on the the interi-
or of S; then use Lagrange multipliers to find the maximum and
minimum over the boundary of S.

21.

22.

23.

24.

25.

26. Find the shape of the triangle of maximum perimeter that
can be inscribed in a circle of radius r. Hint: Let and be as
in Figure 7 and reduce the problem to maximizing 

subject to a + b + g = 2p.2r1sin a>2 + sin b>2 + sin g>22
P =

ga, b,

S = e 1x, y2: x2

4
+

y2

16
… 1 ff1x, y2 = 11 + x + y22;

f1x, y2 =

x

1 + y2; S = e 1x, y2: x2

4
+

y2

9
… 1 f

x2
+ y2

… 9651x, y2:S =

f1x, y2 = x2
+ y2

+ 3x - xy;

f1x, y2 = x + y - xy; S = 51x, y2: x2
+ y2

… 96
f1x, y2 = 10 + x + y; S = 51x, y2: x2

+ y2
… 16

x

A
+

y

B
+

z

C
= 1.

x

a
+

y

b
+

z

c
= 1

12.10 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. The level curves of are ellipses.

2. If then is continuous at the
origin.

3. If exists, then is continuous at

4. If then lim
y:0

 f1y, y2 = L.lim1x,y2:10,02 f1x, y2 = L,

x = 0.
g1x2 = f1x, 02fx10, 02

f(x, y)fx10, 02 = fy10, 02,
z = 2x2

+ 3y2

5. If where g and h are continuous for
all x and y, respectively, then f is continuous on the whole 
xy-plane.

6. If where both g and h are twice dif-
ferentiable, then

7. If and have the same gradient, then they
are identical functions.

8. The gradient of f is perpendicular to the graph of
z = f1x, y2.

g(x, y)f(x, y)

0
2f

0x2 +

0
2f

0y2 = g–1x2h1y2 + g1x2h–1y2

f1x, y2 = g1x2h1y2,

f1x, y2 = g1x2h1y2,

27. Consider the Cobb–Douglas production model for a
manufacturing process depending on three inputs x, y, and z with
unit costs a, b, and c, respectively, given by

subject to the cost constraint Determine x, y,
and z to maximize the production P.

28. Find the minimum distance from the origin to the line of
intersection of the two planes

29. Find the maximum and minimum of 
on the ellipse (see Ex-

ample 4).

30. Let 
(a) Maximize w subject to and all

(b) Use part (a) to deduce the famous Geometric Mean–
Arithmetic Mean Inequality for positive numbers

that is,

31. Maximize all 
subject to 

Drawing surfaces and level curves, plus using a little common
sense, can allow us to solve some constrained extremum problems.
Solve the following, which are based on the functions of Figures 6
through 9 of Section 12.1.

32. Maximize subject to 

33. Minimize subject to

34. Maximize subject to 

35. Minimize subject to

Answers to Concepts Review: 1. free; constrained
2. parallel 3. 4. (2, 2)g1x, y2 = 0

x2
+ y2>9 = 1.

z = exp1- ƒ x ƒ 2 cos2x2
+ y2

xy = 2.z = xy exp1-x2
- y22

x2>16 + y2
= 1.

z = x - x3>8 - y2>3
x2

+ y2
= 1.z = -4x3y2

CAS

x1
2

+ x2
2

+
Á

+ xn
2

= 1.
ai 7 0,w = a1x1 + a2x2 +

Á
+ anxn,

1n a1a2
Á an …

a1 + a2 +
Á

+ an

n

a1, a2, Á , an;

xi 7 0.
x1 + x2 +

Á
+ xn = 1

w = x1x2
Á xn.

x2
+ y2

= 2, y + 2z = 1-x + 2y + 2z
f1x, y, z2 =

x + y + z = 8 and 2x - y + 3z = 28

ax + by + cz = d.

P = kxaybzg, a 7 0, b 7 0, g 7 0, a + b + g = 1
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9. If f is differentiable and then the graph of
has a horizontal tangent plane at 

10. If then f has an extreme value at 

11. If gives the temperature at a point in
the plane, then a heat-seeking object would move away from the
origin in the direction i.

12. The function has a global minimum
value at the origin.

13. The function has neither a global
minimum nor a global maximum value.

14. If then 

15. If exists, then 

16. The set is a closed set in the
plane.

17. If is continuous on a closed bounded set S, then f
attains a maximum value on S.

18. If attains its maximum value at an interior point
of S, then 

19. The function does not attain a maxi-
mum value on the set 

20. If and both exist, then f is differen-
tiable at 

Sample Test Problems
1. Find and sketch the domain of each indicated function of

two variables, showing clearly any points on the boundary of the
domain that belong to the domain.

(a) (b)

2. Sketch the level curves of for

In Problems 3–6, find and 

3. 4 .

5. 6.

7. If find 

8. If f is the function of three variables defined by
find and

9. Find the slope of the tangent to the curve of intersection
of the surface and the plane at the point 
(2, 2, 5).

10. For what points is the function defined by
continuous?

11. Does exist? Explain.

12. In each case, find the indicated limit or state that it does
not exist.

(a) (b)

(c)

13. Find 

(a) (b) f1x, y, z2 = y2 sin xzf1x, y, z2 = x2yz3

§f11, 2, -12.
lim1x,y2:10,02 

x4
- 4y4

x2
+ 2y2

lim1x,y2:12,22 
x2

+ 2y

x2
- 2y

lim1x,y2:12,22 
x2

- 2y

x2
+ 2y

lim1x,y2:10,02 
x - y

x + y

f1x, y2 = xy>1x2
- y2

x = 2z = x2
+ y2>4

fz12, -1, 12.
fx12, -1, 12, fy12, -1, 12,xy3

- 5x2yz4,f1x, y, z2 =

0
3F1x, y2>0x 0y2.F1x, y2 = 5x3y6

- xy7,

f1x, y2 = e-x sin yf1x, y2 = e-y tan x

f1x, y2 = cos2 x - sin2 yf1x, y2 = 3x4y2
+ 7x2y7

0
2f>0y 0x.0f>0x, 02f>0x2,

k = 0, 1, 2, 4.
f1x, y2 = 1x + y22

z = -22x - y - 1z = 2x2
+ 4y2

- 100

1x0, y02.
fy1x0, y02fx1x0, y02

51x, y2: x2
+ y2

6 46.
f1x, y2 = sin1xy2

§f1x0, y02 = 0.1x0, y02
f(x, y)

f(x, y)

51x, y2: y = x, 0 … x … 16
D

-u f1x, y2 = -Du f1x, y2.Du f1x, y2
ƒ Du f1x, y2 ƒ … 4.f1x, y2 = 4x + 4y,

f1x, y2 = 23 x + y4

f1x, y2 = 23 x2
+ y4

(x, y)T = ey sin x

p0.§f1p02 = 0,

(a, b).z = f1x, y2
§f1a, b2 = 0, 14. Find the directional derivative of 

What is its value at the point (4, 2) in the direction

15. Find the slope of the tangent line to the curve of intersec-
tion of the vertical plane and the sur-
face at the point (1, 2, 5).

16. In what direction is increasing most
rapidly at (1, 2)?

17. For 
(a) find the equation of its level curve that goes through the

point (4, 1) in its domain;
(b) find the gradient vector at (4, 1);
(c) draw the level curve and draw the gradient vector with its

initial point at (4, 1).

18. If and 
find and in terms of and y.

19. If and find
and in terms of x, y, and z.

20. If and 
find at 

21. If and
find in terms of x, y, z, and t.

22. A triangle has vertices A, B, and C. The length of the side
is increasing at the rate of 3 inches per second, the side
is decreasing at 1 inch per second, and the included

angle is increasing at 0.1 radian per second. If inches
and inches when how fast is the area changing?

23. Find the gradient vector of 
at the point Write the equa-

tion of the tangent plane to the surface at P.

24. A right circular cylinder is measured to have a radius of
inches and a height of inches. Calculate its

volume and use differentials to give an estimate of the possible
error.

25. If use differentials to estimate
f (1.01, 1.98, 2.03).

26. Find the extrema of 

27. A rectangular box whose edges are parallel to the coordi-
nate axes is inscribed in the ellipsoid 
What is the greatest possible volume for such a box?

28. Use Lagrange multipliers to find the maximum and the
minimum of subject to the constraint 

29. Use Lagrange multipliers to find the dimensions of the
right circular cylinder with maximum volume if its surface area is
24p.

x2
+ y2

= 1.f1x, y2 = xy

36x2
+ 4y2

+ 9z2
= 36.

f1x, y2 = x2y - 6y2
- 3x2.

f1x, y, z2 = xy2>11 + z22,

6 ; 0.0110 ; 0.02

F1x, y, z2 = 0
P11, 2, -12.9x2

+ 4y2
+ 9z2

- 34
F1x, y, z2 =

a = p>6,b = 8
c = 10a

b = AC
c = AB

dF>dtz = e3t,
F1x, y, z2 = 15x2y>z32, x = t3>2

+ 2, y = ln 4t,

t = 0.dF>dt
y = 3 sin t,F1x, y2 = x3

- xy2
- y4, x = 2 cos 3t,

fzfx, fy,
v = xyz,f1u, v2 = u>v, u = x2

- 3y + 4z,

u, v, x,0F>0y0F>0x
v = 1x - 1y,F1u, v2 = tan-11uv2, u = 1xy,

§f

f1x, y2 = x2>2 + y2,

f1x, y2 = 9x4
+ 4y2

z = x2
+ y2

x - 23y + 223 - 1 = 0

u = A23>2 B i - 11>22j?
f1x, y2 = tan-113xy2.
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In Problems 1–6, sketch a graph of the given function.

1. 2.

3. 4.

5. 6.

In Problems 7–14, sketch the graph of the given cylindrical or spherical equation.

7. 8.

9. 10.

11. 12.

13. 14.

Evaluate the integrals in Problems 15–26.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. Without using the Second Fundamental Theorem of Calculus, evaluate

28. Find the area of that part of the plane that is in the first octant.

In Problems 29–34, find the volume of the indicated solid in three-space using basic proper-
ties of geometry or the methods of Chapter 6.

29. The solid bounded above by below by the xy-plane, and laterally by
the planes and 

30. The solid in three-space consisting of those points whose spherical coordinates satis-
fy 

31. The solid obtained when the graph of is revolved about the 
x-axis.

32. The solid in three-space consisting of those points whose cylindrical coordinates sat-
isfy and 

33. The solid in three-space bounded above by and below by the 
xy-plane. Hint: Interpret this as a solid of revolution.

34. The solid in three-space consisting of those points whose spherical coordinates satis-
fy and 0 … f … p>2.1 … r … 4

z = 9 - x2
- y2

0 … z … 100.r … 7

y = sin x, 0 … x … p

r … 7.

x = 8.x = 0
z = 29 - y2,

x + y + z = 1

L

2p

0
 c2a2

- b2
- 2a2

- c2 d  du

L

p>2

0
 cos4 u du

L

p>2

0
 cos2 u du

L

a>2

0
 

a r2a2
- r2

 dr
L

3

0
 r24r2

+ 1 dr

L

4

0
 

ex

1 + e2x
  dx

L

1

0
 

x

1 + x2  dx

L

3>4

1>4
 

1

1 - x2  dx
L

p

0
sin2 x dx

L

2

0
1a + bx + c2x22 dx

L

a>2

-a>2
cosapx

a
b  dx

L
xe-2x dx

L
e-2x dx

z = 9 - r2r = 2 sin u

r = cos ur2
+ z2

= 9

u = p>4f = p>4
r = 2r = 2

f1x, y2 = 29 - y2f1x, y2 = x2

f1x, y2 = x2
- y2f1x, y2 = x2

+ 4y2

f1x, y2 = 9 - x2
- y2f1x, y2 = 264 - x2

- y2
REVIEW &

PREVIEW
PROBLEMS
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Multiple IntegralsCHAPTER 13
13.1 Double Integrals

over Rectangles

13.2 Iterated Integrals

13.3 Double Integrals
over
Nonrectangular
Regions

13.4 Double Integrals in
Polar Coordinates

13.5 Applications of
Double Integrals

13.6 Surface Area

13.7 Triple Integrals in
Cartesian
Coordinates

13.8 Triple Integrals in
Cylindrical and
Spherical
Coordinates

13.9 Change of
Variables in
Multiple Integrals

13.1
Double Integrals over Rectangles
Differentiation and integration are the major processes of calculus. We have stud-
ied differentiation in two- and three-dimensional space (Chapter 12); it is time to
consider integration in two- and three-dimensional space. The theory and the ap-
plications of single (Riemann) integrals are to be generalized to multiple integrals.
In Chapter 6 we used single integrals to calculate the area of curved planar regions,
to find the length of planar curves, and to determine the center of mass of straight
wires of variable density. In this chapter we use multiple integrals to find the vol-
ume of general solids, the area of general surfaces, and the center of mass of lami-
nas and solids of variable density.

The intimate connection between integration and differentiation was enunci-
ated in the Fundamental Theorems of Calculus; these theorems provided the prin-
cipal theoretical tools for evaluating single integrals. Here we reduce multiple
integration to a succession of single integrations where again the Second Funda-
mental Theorem will play a central role. The integration skills that you learned in
Chapters 5 through 7 will be tested.

The Riemann integral for a function of one variable was defined in Sec-
tion 5.2, a section worth reviewing. Recall that we formed a partition P of the in-
terval [a, b] into subintervals of length picked a sample point

from the kth subinterval, and then wrote

We proceed in a very similar fashion to define the integral for a function of two
variables.

Let R be a rectangle with sides parallel to the coordinate axes; that is, let

Form a partition P of R by means of lines parallel to the x- and y-axes, as in Figure 1.
This divides R into subrectangles, say n of them, which we denote by 

Let and be the lengths of the sides of and let 
be its area. In pick a sample point and form the Riemann sum

a
n

k = 1
f1xk, yk2 ¢Ak

1xk, yk2Rk,¢xk¢yk

¢Ak =Rk,¢yk¢xk1, 2, Á , n.
Rk, k =

R = 51x, y2: a … x … b, c … y … d6

L

b

a
f1x2 dx = lim7P7:0

 a
n

k = 1
f1xk2 ¢xk

xk

¢xk, k = 1, 2, Á , n,

z

x

b

a

c d
y

Rk R

(xk, yk)

k

Figure 1

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 13 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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678 Chapter 13 Multiple Integrals

z

x

y

RRk

Volume
= f (xk, yk)∆ Ak

z = f (x, y)

z

x

y

Figure 2 Figure 3

Definition The Double Integral

Let be a function of two variables that is defined on a closed rectangle R. If

exists, we say that f is integrable on R. Moreover, called the
double integral of f over R, is then given by

O
R 

f1x, y2 dA = lim7P7:0
 a

n

k = 1
f1xk, yk2 ¢Ak

O
R 

f1x, y2 dA,

lim7P7:0
 a

n

k = 1
f1xk, yk2 ¢Ak

f

z

x

y

Volume = ��f (x, y)dA
R

R

z = f (x, y)

Figure 4

which corresponds (if ) to the sum of the volumes of n boxes (Fig-
ures 2 and 3). Letting the partition get finer and finer in such a way that all the 
get smaller will lead to the concept that we want.

Rk’s
f1x, y2 Ú 0

We are ready for a formal definition. We use the notation introduced above,
with the additional proviso that the norm of the partition P, denoted by is the
length of the longest diagonal of any subrectangle in the partition.

7P 7 ,

This definition of the double integral contains the limit as This is not
a limit in the sense of Chapter 2, so we should clarify what this really means.We say 

that if for every there exists a such that,

for every partition P of the rectangle R by lines parallel to the x- and y-axes that
satisfies and for any choice of the sample points in the kth rectan-

gle, we have 

Recall that if represents the area of the region under

the curve between a and b. In a similar manner, if 

represents the volume of the solid under the surface 

and above the rectangle R (Figure 4). In fact, we take this integral as the definition 
of the volume of such a solid.

z = f1x, y2
O
R 

f1x, y2 dA

f1x, y2 Ú 0,y = f1x2
f1x2 Ú 0, 

L

b

a
f1x2 dx

` a
n

k = 1
f1xk, yk2 ¢Ak - L ` 6 e.

1xk, yk27P 7 6 d

d 7 0e 7 0lim7P7:0
 a

n

k = 1
f1xk, yk2 ¢Ak = L

7P 7 : 0.

678



Section 13.1 Double Integrals over Rectangles 679

Staircase function

R

z

x

y

Figure 5

R

R2R1

Figure 6

Theorem A Integrability Theorem

If f is bounded on the closed rectangle R and if it is continuous there except on
a finite number of smooth curves, then f is integrable on R. In particular, if f is
continuous on all of R, then f is integrable there.

The Existence Question Not every function of two variables is integrable
on a given rectangle R. The reasons are the same as in the one-variable case
(Section 5.2). In particular, a function that is unbounded on R will always fail to 
be integrable. Fortunately, there is a natural generalization of Theorem 5.2A,
although its proof is beyond the level of a first course.

As a consequence, most of the common functions (provided they are bound-
ed) are integrable on every rectangle. For example,

is integrable on every rectangle. On the other hand,

would fail to be integrable on any rectangle that intersected the parabola 
The staircase function of Figure 5 is integrable on R because its discontinuities
occur along two line segments.

Properties of the Double Integral The double integral inherits most of
the properties of the single integral.

1. The double integral is linear; that is,

a.

b.

2. The double integral is additive on rectangles (Figure 6) that overlap only on a
line segment.

3. The comparison property holds. If for all (x, y) in R, then

All of these properties hold on more general sets than rectangles, but that is a
matter we take up in Section 13.3.

Evaluation of Double Integrals This topic will receive major attention in
the next section, where we will develop a powerful tool for evaluating double inte-
grals. However, we can already evaluate a few integrals, and we can approximate
others.

Note first that if on R then the double integral is the area of R, and
from this it follows that

O
R 

k dA = k
O
R 

1 dA = kA1R2

f1x, y2 = 1

O
R 

f1x, y2 dA …

O
R 

g1x, y2 dA

f1x, y2 … g1x, y2
O
R 

f1x, y2 dA =

O
R1 

f1x, y2 dA +

O
R2 

f1x, y2 dA

O
R 

[f1x, y2 + g1x, y2] dA =

O
R 

f1x, y2 dA +

O
R 

g1x, y2 dA.

O
R 

kf1x, y2 dA = k
O
R 

f1x, y2 dA;

y = x2.

g1x, y2 =

x2y - 2x

y - x2

f1x, y2 = esin1xy2
- y3 cos1x2y2
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680 Chapter 13 Multiple Integrals

z

x

y
(1) (2) (3) (4)

(8)(7)(6)(5)

1
16

(4, 0, 2)

(0, 0, 4)

(0, 8, 8)

(4, 8, 6)

8

4

f (x, y) =    (64 – 8x + y2)

Figure 7

� EXAMPLE 1 Let f be the staircase function of Figure 5; that is, let

Calculate where 

SOLUTION Introduce rectangles and as follows:

Then, using the additivity property of the double integral, we obtain

In this derivation, we also used the fact that the value of f on the boundary of a rec-
tangle does not affect the value of the integral. �

Example 1 was a minor accomplishment, and to be honest we cannot do much
more without more tools. However, we can always approximate a double integral
by calculating a Riemann sum. In general, we can expect the approximation to be
better the finer the partition we use.

� EXAMPLE 2 Approximate where

and

Do this by calculating the Riemann sum obtained by dividing R into eight equal
squares and using the center of each square as the sample point (Figure 7).

SOLUTION The values of the function at the required sample points are as
follows:

(1) (5)

(2) (6)

(3) (7)

(4) (8)  f1x8, y82 = f13, 72 =

89
16

 f1x4, y42 = f11, 72 =

105
16

 ; 

 f1x7, y72 = f13, 52 =

65
16

 f1x3, y32 = f11, 52 =

81
16

 ; 

 f1x6, y62 = f13, 32 =

49
16

 f1x2, y22 = f11, 32 =

65
16

 ; 

 f1x5, y52 = f13, 12 =

41
16

 f1x1, y12 = f11, 12 =

57
16

 ; 

R = 51x, y2: 0 … x … 4, 0 … y … 86

f1x, y2 =

64 - 8x + y2

16

O
R 

f1x, y2 dA,

 = 1 # 3 + 2 # 3 + 3 # 3 = 18

 = 1A1R12 + 2A1R22 + 3A1R32

 
O
R 

f1x, y2 dA =

O
R1 

f1x, y2 dA +

O
R2 

f1x, y2 dA +

O
R3 

f1x, y2 dA

 R3 = 51x, y2: 0 … x … 3, 2 … y … 36
 R2 = 51x, y2: 0 … x … 3, 1 … y … 26
 R1 = 51x, y2: 0 … x … 3, 0 … y … 16

R3R1, R2,

R = 51x, y2: 0 … x … 3, 0 … y … 36.
O
R 

f1x, y2 dA,

f1x, y2 = c 1, if 0 … x … 3, 0 … y … 1
2, if 0 … x … 3, 1 6 y … 2
3, if 0 … x … 3, 2 6 y … 3
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Section 13.1 Double Integrals over Rectangles 681

Thus, since 

In Section 13.2, we shall learn how to find the exact value of this integral. It 
is �138 

2
3.

 =

4157 + 65 + 81 + 105 + 41 + 49 + 65 + 892
16

= 138

 = 4a
8

k = 1
f1xk, yk2

 
O
R 

f1x, y2 dA L a
8

k = 1
f1xk, yk2 ¢Ak

¢Ak = 4,

Concepts Review
1. Assume that the rectangle R has been partitioned into n

subrectangles of area with sample points 

Then _____.

2. If on R, then can be interpret-
ed geometrically as _____. O

R 

f1x, y2 dAf1x, y2 Ú 0

O
R 

f1x, y2 dA = lim7P7:0
1, 2, Á , n.

1xk, yk2, k =¢Ak

3. If is _____ on R, then is integrable there.

4. If on the rectangle 

then has the value _____.
O
R 

f1x, y2 dA0 … y … 26,
R = 51x, y2: 1 … x … 2,f1x, y2 = 6

ff

Problem Set 13.1
In Problems 1–4, let Eval-

uate where f is the given function (see Example 1).

1.

2.

3.

4.

Suppose that 

and

Suppose, in addition, that 

and 

Use the properties of integrals to evaluate the integrals in Prob-
lems 5–8

5.

6.

7. 8.
O
R1 

[2g1x, y2 + 3] dA
O
R2 

g1x, y2 dA

O
R 

[2f1x, y2 + 5g1x, y2] dA

O
R 

[3f1x, y2 - g1x, y2] dA

O
R1 

g1x, y2 dA = 2.
O
R 

f1x, y2 dA = 3, 
O
R 

g1x, y2 dA = 5,

R2 = 51x, y2: 0 … x … 2, 1 … y … 26.
0 … y … 16,0 … x … 2,R1 = 51x, y2:

0 … y … 26,R = 51x, y2: 0 … x … 2,

f1x, y2 = c 2 1 … x … 4, 0 … y 6 1
3 1 … x 6 3, 1 … y … 2
1 3 … x … 4, 1 … y … 2

f1x, y2 = c 2 1 … x 6 3, 0 … y 6 1
1 1 … x 6 3, 1 … y … 2
3 3 … x … 4, 0 … y … 2

f1x, y2 = e -1 1 … x … 4, 0 … y 6 1
 2 1 … x … 4, 1 … y … 2

f1x, y2 = e2 1 … x 6 3, 0 … y … 2
3 3 … x … 4, 0 … y … 2

O
R 

f1x, y2 dA,

R = 51x, y2: 1 … x … 4, 0 … y … 26. In Problems 9–14, and P is

the partition of R into six equal squares by the lines 

and Approximate by calculating the corre-

sponding Riemann sum assuming that 

are the centers of the six squares (see Example 2).

9. 10.

11.

12.

13.

14.

In Problems 15–20, sketch the solid whose volume is given by the
following double integrals over the rectangle 

15. 16.

17. 18.

19. 20.

21. Calculate where 

Hint: This integral represents the volume of a cer-
tain solid. Sketch this solid and calculate its volume from elemen-
tary principles.

0 … y … 16.
0 … x … 1,R = 51x, y2:

O
R 

16 - y2 dA,

O
R 

125 - x2
- y22 dA

O
R 

1x2
+ y22 dA

O
R 

1x - y + 42 dA
O
R 

1y + 12 dA

O
R 

1x + 12 dA
O
R 

3 dA

0 … y … 36.0 … x … 2,
R = 51x, y2:

f1x, y2 = exyC

f1x, y2 = 2x + yC

f1x, y2 =
1
6148 - 4x - 3y2

f1x, y2 = x2
+ 2y2

f1x, y2 = 10 - y2f1x, y2 = 12 - x - y

1xk, yk2a
6

k = 1
f1xk, yk2 ¢Ak,

O
R 

f1x, y2 dAy = 2.

x = 2, x = 4,
R = 51x, y2: 0 … x … 6, 0 … y … 46
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1

1–1–2

2

2

R

y

x

Figure 8

0 1
2
x

z

y

3

24 28

32
36

40

44

4

1
2

3
4

20

30

40

45

25

35

1

20 22 24 26 28 30
32

34

36

38
40
42
44
46

2

3

4

1 2
x

y

3 4

20

Figure 9

z

x

y

z = f (x, y)

c d

a

b

R

Figure 1

22. Calculate where 

See the hint in Problem 21.

23. Use the comparison property of double integrals to show

that if on R then 

24. Suppose that on R. Show that

25. Let R be the rectangle shown in Figure 8. For the indicat-
ed partition into 12 equal squares, calculate the smallest and 

largest Riemann sums for and thereby obtain

numbers c and C such that

c …

O
R 

2x2
+ y2 dA … C

O
R 

2x2
+ y2 dA

C

mA1R2 …

O
R 

f1x, y2 dA … MA1R2
m … f1x, y2 … M

O
R 

f1x, y2 dA Ú 0.f1x, y2 Ú 0

0 … y … 16.
0 … x … 2,R = 51x, y2:

O
R 

11 + x2 dA,

26. Evaluate where R is the rectangle of 

Figure 8. Hint: Does the graph of the integrand have any kind of
symmetry?

O
R 

x cos21xy2 dA,

27. Recall that is the greatest integer function. For R of
Figure 8, evaluate:

(a) (b)

28. Suppose that the rectangle of Figure 8 represents a thin
plate (lamina) whose mass density at (x, y) is say in

grams per square centimeter.What does represent?

29. Colorado is a rectangular state (if we ignore the curvature
of the earth). Let be the number of inches of rainfall
during 2005 at the point (x, y) in that state. What does

represent? What does this number divided by 

the area of Colorado represent?

30. Let if both x and y are rational numbers, and
let otherwise. Show that is not integrable
over the rectangle R in Figure 8.

31. Use the two graphs in Figure 9 to approximate

 R = 51x, y2: 0 … x … 4, 0 … y … 46
O
R 

f1x, y2 dA;

f(x, y)f1x, y2 = 0
f1x, y2 = 1

O
Colorado 

f1x, y2 dA

f(x, y)

O
R 

d1x, y2 dA

d1x, y2,
O
R 

1Œx œ + Œy œ2 dA
O
R 

Œx œ Œy œ  dA

Œx œ

Answers to Concepts Review: 1. 2. the

volume of the solid under and above R 3. continu-
ous 4. 12

z = f1x, y2
a
n

k = 1
f1xk, yk2 ¢Ak

Now we face in earnest the problem of evaluating where R is the
rectangle

Suppose for the time being that on R so that we may interpret the
double integral as the volume V of the solid under the surface of Figure 1.

(1)

There is another way to calculate the volume of this solid, which at least intu-
itively seems just as valid. Slice the solid into thin slabs by means of planes parallel
to the xz-plane. A typical such slab is shown in Figure 2a. The area of the face of
this slab depends on how far it is from the xz-plane; that is, it depends on y. There-
fore, we denote this area by (see Figure 2b).

The volume of the slab is given approximately by

¢V L A1y2 ¢y

¢V
A(y)

V =

O
R 

f1x, y2 dA

f1x, y2 Ú 0

R = 51x, y2: a … x … b, c … y … d6
O
R 

f1x, y2 dA,13.2
Iterated Integrals
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If is negative on part of R,

then gives the signed

volume of the solid between the sur-
face and the rectangle R
of the xy-plane.

The actual volume of this solid is

O
R 

ƒ f1x, y2 ƒ  dA

z = f1x, y2
O
R 

f1x, y2 dA

f(x, y)

What if f is Negative?

z

x

y
+

–

z

x

y

y
b

a

d

Slice by planes y = constant
(a)

The corresponding slab
of volume  � A(y) ∆y

∆y

(b)

area A(y)

Figure 2

and, recalling our old motto (slice, approximate, integrate), we may write

On the other hand, for fixed y we may calculate by means of an ordinary
single integral; in fact,

Thus, we have a solid whose cross sectional areas are known to be The prob-
lem of finding the volume of a region whose cross sections are known was treated
in Section 6.2. We conclude that

(2)

The last expression is called an iterated integral.
When we equate the expressions for V from (1) and (2), we obtain the result

that we want.

If we had begun the process above by slicing the solid with planes parallel to
the yz-plane, we would have obtained another iterated integral, with the integra-
tions occurring in the opposite order.

Two remarks are in order. First, while the two boxed results were derived
under the assumption that f was nonnegative, they are valid in general. Second, the
whole exercise would be rather pointless unless iterated integrals can be evaluated.
Fortunately, iterated integrals are often easy to evaluate, as we demonstrate next.

Evaluating Iterated Integrals We begin with a simple example.

� EXAMPLE 1 Evaluate 
L

3

0
 c
L

2

1
12x + 3y2 dx d  dy.

O
R 

f1x, y2 dA =

L

b

a
 c
L

d

c
f1x, y2 dy d  dx

O
R 

f1x, y2 dA =

L

d

c
 c
L

b

a
f1x, y2 dx d  dy

V =

L

d

c
A1y2 dy =

L

d

c
 c
L

b

a
f1x, y2 dx d  dy

A(y).

A1y2 =

L

b

a
f1x, y2 dx

A(y)

V =

L

d

c
A1y2 dy
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684 Chapter 13 Multiple Integrals

The order of dx and dy is important
because it specifies which integra-
tion is to be done first. The first inte-
gration involves the integrand, the
integral symbol closest to it on the
left, and the first dx or dy symbol on
its right. We will sometimes refer to
this integral as the inner integral and
its value as the inner integration.

A Note on Notation

z

x

y

z = 4 – x2 – y

R

(1, 2, 0)

4

1

2

Figure 3

SOLUTION In the inner integration, y is a constant, so

Consequently,

�

� EXAMPLE 2 Evaluate 

SOLUTION Note that we have simply reversed the order of integration from
Example 1; we expect the same answer as in that example.

Thus,

From now on, we shall usually omit the brackets in the iterated integral. �

� EXAMPLE 3 Evaluate 

SOLUTION Note that this iterated integral corresponds to the double integral
of Example 2 of Section 13.1 for which we claimed the answer We will often
omit a separate consideration of the inner integral; instead, we will work our way
from the inside out.

�

Calculating Volumes Now we can calculate volumes for a wide variety of
solids.

� EXAMPLE 4 Find the volume V of the solid under the surface
and over the rectangle (see

Figure 3).
R = 51x, y2: 0 … x … 1, 0 … y … 26z = 4 - x2

- y

 = 96 +

512
12

= 138 
2
3

 = c12y +

y3

12
d

0

8

 =

L

8

0
 a12 +

1
4

 y2b  dy

 =

1
16L

8

0
C256 - 64 + 4y2 D  dy

 
L

8

0 L

4

0
 
1
16

 C64 - 8x + y2 D  dx dy =

1
16L

8

0
C64x - 4x2

+ xy2 D04 dy

138 
2
3.

L

8

0 L

4

0
 
1
16

 [64 - 8x + y2] dx dy.

 = 12 + 27 - a3 +

27
2
b =

45
2

 
L

2

1
 c
L

3

0
12x + 3y2 dy d  dx =

L

2

1
 c6x +

27
2
d  dx = c3x2

+

27
2

 x d
1

2

 = 6x +

27
2

 
L

3

0
12x + 3y2 dy = c2xy +

3
2

 y2 d
0

3

L

2

1
 c
L

3

0
12x + 3y2 dy d  dx.

 = 9 +

27
2

=

45
2

 
L

3

0
 c
L

2

1
12x + 3y2 dx d  dy =

L

3

0
[3 + 3y] dy = c3y +

3
2

 y2 d
0

3

L

2

1
12x + 3y2 dx = Cx2

+ 3yx D12 = 4 + 6y - 11 + 3y2 = 3 + 3y
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Section 13.2 Iterated Integrals 685

SOLUTION Let’s estimate this volume by assuming that the solid has
constant height 2.5, giving it a volume of If the following calculation
gives an answer that is not close to 5, we will know we have made a mistake.

� = c11
3

 y -

1
2

 y2 d
0

2

=

22
3

- 2 =

16
3

 =

L

2

0
 c4x -

x3

3
- yx d

0

1

 dy =

L

2

0
 c4 -

1
3

- y d  dy

 V =

O
R 

14 - x2
- y2 dA =

L

2

0 L

1

0
14 - x2

- y2 dx dy

12.52122 = 5.
≈

Concepts Review

1. The expression is called a(n)
_____ integral.

2. Let Then

can be expressed as an iterated integral either as

_____ or as _____.

O
R 

f1x, y2 dA

R = 51x, y2: -1 … x … 2, 0 … y … 26.
L

b

a
 c
L

d

c
f1x, y2 dy d  dx 3. For a general function f defined on R, can

be interpreted as the _____ volume of the solid between the sur-
face and the xy-plane; the part above this plane gets
a _____ sign; the part below, a _____ sign.

4. Thus, if a double integral turns out to have a negative
value, we know that more than half of the solid _____.

z = f1x, y2
O
R 

f1x, y2 dA

Problem Set 13.2
In Problems 1–16, evaluate each of the iterated integrals.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

In Problems 17–20, evaluate the indicated double integral over R.

17.

18.
O
R 

1x2
+ y22 dA; R = 51x, y2: -1 … x … 1, 0 … y … 26

O
R 

xy3 dA; R = 51x, y2: 0 … x … 1, -1 … y … 16

L

1

-1L

1

0
xex2

 dx dy
L

p

0 L

3

0
y cos2 x dy dx

L

1

0 L

2

0
 

y

1 + x2  dy dx
L

ln 3

0 L

1

0
xy exy2

 dy dx

L

1

0 L

1

0
 

y

1xy + 122  dx dy
L

3

0 L

1

0
2x2x2

+ y dx dy

L

1

0 L

1

0
xexy dy dx

L

p>2

0 L

1

0
x sin xy dy dx

L

ln 3

0 L

ln 2

0
ex + y dy dx

L

p

0 L

1

0
x sin y dx dy

L

1

-1L

2

1
1x2

+ y22 dx dy
L

2

1 L

3

0
1xy + y22 dx dy

L

4

-1L

2

1
1x + y22 dy dx

L

2

0 L

3

1
x2y dy dx

L

2

-2L

1

0
19 - x22 dy dx

L

2

0 L

3

0
19 - x2 dy dx

19.

20.

In Problems 21–24, find the volume under the surface in each figure.

21. 22.

23. 24.

0

1

2

3

2
4
6

x

y

z

z = 5 x y exp (– x2)0

1

3

4

3

0

10

20

x

y

z

z = 1 + x2 + y2

2

3

20
30

z = 25 – x2 – y2

x

y

z

2

3

20 z = 20 – x – y

x

y

z

R = E1x, y2: 0 … x … 23, 1 … y … 2F
O
R 

xy21 + x2 dA;

R = 51x, y2: 0 … x … p>2, 0 … y … p>26
O
R 

sin1x + y2 dA;
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S

R

Figure 1

In Problems 25–28, sketch the solid whose volume is the indicated
iterated integral.

25. 26.

27. 28.

In Problems 29–32, find the volume of the given solid. First,
sketch the solid; then estimate its volume; finally, determine its
exact volume.

29. Solid under the plane over 

30. Solid under the plane and over 

31. Solid between and and lying
above 

32. Solid in the first octant enclosed by and 

33. Show that if then

34. Use Problem 33 to evaluate

35. Evaluate

36. Find the volume of the solid trapped between the surface
and the xy-plane, where 

-p … y … p.
-p … x … p,z = cos x cos y

L

1

0 L

1

0
xyex2

+ y2
 dy dx

L

2ln 2

0 L

1

0
 

xyex2

1 + y2  dy dx

L

b

a L

d

c
f1x, y2 dy dx = c

L

b

a
g1x2 dx d c

L

d

c
h1y2 dy d

f1x, y2 = g1x2h1y2
y = 2z = 4 - x2

R = 51x, y2: -1 … x … 1, 0 … y … 16
z = 1z = x2

+ y2
+ 2

1 … x … 2, 0 … y … 46
R = 51x, y2:z = 2x + 3y

0 … x … 1, 1 … y … 36
R = 51x, y2:z = x + y + 1

≈
L

2

0 L

2

0
14 - y22 dy dx

L

2

0 L

2

0
1x2

+ y22 dy dx

L

1

0 L

1

0
12 - x - y2 dy dx

L

1

0 L

2

0
 
x

2
  dx dy

In Problems 37–39, evaluate each iterated integral.

37. 38.

39.

40. Evaluate Hint: Reverse

the order of integration.

41. Prove the Cauchy–Schwarz Inequality for Integrals:

Hint: Consider the double integral of

over the rectangle 

42. Suppose that f is increasing on [a, b] and 

Prove that

and give a physical interpretation of this result. Hint: Let
and use the hint of Problem 41.

Answers to Concepts Review: 1. iterated

2. 3. signed;

plus; minus 4. is below the xy-plane
L

2

-1
c
L

2

0
f1x, y2 dy d  dx; 

L

2

0
c
L

2

-1
f1x, y2 dx d  dy

F1x, y2 = [y - x][f1y2 - f1x2]

L

b

a
xf1x2 dx

L

b

a
f1x2 dx

7

a + b

2

L

b

a
f1x2 dx 7 0.

R = 51x, y2: a … x … b, a … y … b6.
F1x, y2 = [f1x2g1y2 - f1y2g1x2]2

c
L

b

a
f1x2g1x2 dx d 2

…

L

b

a
f21x2 dx

L

b

a
g21x2 dx

L

23

0 L

1

0
 

8x

1x2
+ y2

+ 122  dy dx.

L

2

-2L

1

-1
Œx2 œ ƒ y3

ƒ  dy dx

L

2

-2L

1

-1
Œx2 œy3 dy dx

L

2

-2L

1

-1
ƒ x2y3

ƒ  dy dx

Consider an arbitrary closed bounded set S in the plane. Surround S by a rectangle
R with sides parallel to the coordinate axes (Figure 1). Suppose that is de-
fined on S, and define (or redefine, if necessary) on the part of R out-
side of S (Figure 2).We say that f is integrable on S if it is integrable on R and write

We assert that the double integral on a general set S is (1) linear, (2) additive
on sets that overlap only on smooth curves, and (3) satisfies the comparison prop-
erty (see Section 13.1).

Evaluation of Double Integrals over General Sets Sets with curved
boundaries can be very complicated. For our purposes, it will be sufficient to con-
sider x-simple sets and y-simple sets (and finite unions of such sets). A set S is 
y-simple if it is simple in the y-direction, meaning that a line in this direction inter-
sects S in a single interval (or point or not at all).Thus, a set S is y-simple (Figure 3)
if there are functions and on [a, b] such that

S = 51x, y2: f11x2 … y … f21x2, a … x … b6
f2f1

O
S 

f1x, y2 dA =

O
R 

f1x, y2 dA

f1x, y2 = 0
f(x, y)

13.3
Double Integrals 

over Nonrectangular
Regions
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z = f (x, y)

f (x, y) = 0

S

Figure 2

A y-simple set

y =   2(x)

a b

y

x

φ

y =   1(x)φ

S

An x-simple set

S

y

x

c

d

x = �1(y) x = �2(y)

Figure 3 Figure 4

y

x

Neither x-simple nor
y-simple set

S

y

x

y =   1(x)

y =   2(x)

x ba

c

d

R

S

φ

φ

Figure 5 Figure 6

A set S is x-simple (Figure 4) if there are functions ( is the Greek letter
psi) and on [c, d] such that

S = 51x, y2: c11y2 … x … c21y2, c … y … d6
c2

cc1

Figure 5 exhibits a set that is neither x-simple nor y-simple.

Now suppose that we wish to evaluate the double integral of a function 
over a y-simple set S. We enclose S in a rectangle R (Figure 6) and make

outside S. Then

In summary,

In the inner integration, x is held fixed; thus, this integration is along the heavy
vertical line of Figure 6. This integration yields the area of the cross section
shown in Figure 7. Finally, is integrated from a to b.

If the set S is x-simple (Figure 4), similar reasoning leads to the formula
A(x)

A(x)

O
S 

f1x, y2 dA =

L

b

a L

f21x2

f11x2
f1x, y2 dy dx

 =

L

b

a
c
L

f21x2

f11x2
f1x, y2 dy d  dx

 
O
S 

f1x, y2 dA =

O
R 

f1x, y2 dA =

L

b

a
c
L

d

c
f1x, y2 dy d  dx

f1x, y2 = 0

f(x, y)
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z

y

x

z = f (x, y)

A(x)

S

a

x

b
y =   1(x) y =   2(x)φφ

S2

S1

Figure 7 Figure 8

y

x

30

25

20

15

10

5

1 2 3 4 5

–5

(x, x2)

(x, –x)

y = x2

y = –x

Figure 9

y

x

1.5

1

0.5

1 2y2

x = y2

y = �xy

Figure 10

If the set S is neither x-simple nor y-simple (Figure 5), it can usually be consid-
ered as a union of pieces that have one or the other of these properties. For exam-
ple, the annulus of Figure 8 is not simple in either direction, but it is the union of
the two y-simple sets and The integrals on these pieces can be calculated and
added together to obtain the integral over S.

S2.S1

O
S 

f1x, y2 dA =

L

d

c L

c21y2

c11y2
f1x, y2 dx dy

Some Examples For some preliminary practice, we evaluate two iterated in-
tegrals, where the limits on the inner integral sign are variables.

� EXAMPLE 1 Evaluate the iterated integral

SOLUTION We first perform the inner integration with respect to y,
temporarily thinking of x as constant (see Figure 9), and obtain

�

Notice that for iterated integrals, the outer integral cannot have limits that de-
pend on either variable of integration.

� EXAMPLE 2 Evaluate the iterated integral

SOLUTION The region of integration is shown in Figure 10.

L

1

0 L

y2

0
2yex dx dy

 =

10,180
3

 = 3393 
1
3

 =

L

5

3
15x4

+ 4x3
- x22 dx = cx5

+ x4
-

x3

3
d

3

5

 =

L

5

3
C 14x3

+ 5x42 - 1-4x2
+ 5x22 D  dx

 
L

5

3 L

x2

-x
14x + 10y2 dy dx =

L

5

3
C4xy + 5y2 D

-x
x2

 dx

L

5

3 L

x2

-x
14x + 10y2 dy dx
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x
2

z

x

y

y = 2 –

2

4

3

S

Figure 11

x
2

y

x

y = 2 –

(x, 2 – x/2)x
2

2 –

1

2

x 3 4

S

Figure 12

�

We turn to the problem of calculating volumes by means of iterated integrals.

� EXAMPLE 3 Use double integration to find the volume of the tetrahedron
bounded by the coordinate planes and the plane 

SOLUTION Denote by S the triangular region in the xy-plane that forms the
base of the tetrahedron (Figures 11 and 12).We seek the volume of the solid under
the surface and above the region S.

The given plane intersects the xy-plane in the line a segment
of which belongs to the boundary of S. Since this equation can be written

and S can be thought of as the y-simple set

or as the x-simple set

We will treat S as a y-simple set; the final result would be the same either way, as
you should verify.

The volume V of the solid is

In writing this as an iterated integral, we fix x and integrate along a line (Figure 11
and 12) from to and then integrate the result from to

Thus,

You may recall that the volume of a tetrahedron is one-third the area of the
base times the height. In the case at hand, This confirms our
answer. �

� EXAMPLE 4 Find the volume of the solid in the first octant
bounded by the circular paraboloid the cylin-

der and the coordinate planes (Figure 13).x2
+ y2

= 4,
z = x2

+ y2,1x Ú 0, y Ú 0, z Ú 02

V =
1
3142132 = 4.

 =

3
16

 c16x - 4x2
+

x3

3
d

0

4

= 4

 =

3
16L

4

0
116 - 8x + x22 dx

 =

L

4

0
 
3
4

 C4y - xy - y2 D02 - x>2
 dx

 =

L

4

0
 c3

4L

2 - x>2

0
14 - x - 2y2 dy d  dx

 V =

L

4

0 L

2 - x>2

0
 
3
4

 14 - x - 2y2 dy dx

x = 4.
x = 0y = 2 - x>2,y = 0

V =

O
S 

 
3
4

 14 - x - 2y2 dA

S = 51x, y2: 0 … x … 4 - 2y, 0 … y … 26

S = e 1x, y2: 0 … x … 4, 0 … y … 2 -

x

2
f

x = 4 - 2y,y = 2 - x>2
x + 2y - 4 = 0,

z =
3
414 - x - 2y2

3x + 6y + 4z - 12 = 0.

 = Cey2 D
0

1
- 2 cy2

2
d

0

1

= e - 1 - 2a1
2
b = e - 2

 =

L

1

0
ey212y dy2 - 2

L

1

0
y dy

 =

L

1

0
C2yex D0y2

 dy =

L

1

0
12yey2

- 2ye02 dy

 
L

1

0 L

y2

0
2yex dx dy =

L

1

0
c
L

y2

0
2yex dx d  dy

2

4

z

x y
0

1

2

3

2
10

1
0

Paraboloid
z = x2 + y2

Cylinder
x2 + y2 = 4

x  = �4 – y2

�4 – y2

S

y

Figure 13
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y

x

x2 + y2 = 4

(    4 – y2, y)

1 2

2
y

1

�

4 – y2�

Figure 14

SOLUTION The region S in the first quadrant of the xy-plane is bounded by a
quarter of the circle and the lines and Although S can be
thought of as either a y-simple or an x-simple region, we shall treat S as the latter

and write its boundary curves as and Thus,

Figure 14 shows the region S in the xy-plane. Now our goal is to calculate

by means of an iterated integral. This time we first fix y and integrate along a line
(Figure 14) from to and then integrate the result from 
to 

By the trigonometric substitution the latter integral can be rewritten
as 

Is this answer reasonable? Note that the volume of the complete quarter-
cylinder in Figure 13 is One-half this number is certain-
ly a reasonable value for the required volume. �

� EXAMPLE 5 By changing the order of integration, evaluate

SOLUTION The inner integral cannot be evaluated as it stands because does
not have an antiderivative in terms of elementary functions. However, we
recognize that the given iterated integral is equal to

O
S 

ey2
 dA

ey2

L

4

0 L

2

x>2
ey2

 dy dx

1
4 pr2h =

1
4 p1222142 = 4p.

≈

 =

16
3 L

p>2

0
 a1 + cos 2u

2
+

1 - cos 4u
4

b  du = 2p

 =

16
3 L

p>2

0
1cos2 u +

1
2

 sin2 2u2 du

 =

16
3 L

p>2

0
1cos2 u + 2 sin2 u cos2 u2 du

 =

16
3 L

p>2

0
cos2 u 11 - sin2 u + 3 sin2 u2 du

 =

L

p>2

0
 c16

3
  cos4 u + 16 sin2 u cos2 u d  du

L

p>2

0
 c8

3
  cos3 u + 8 sin2 u cos u d  2 cos u du

y = 2 sin u,

 =

L

2

0
 c1

3
 14 - y223>2 + y224 - y2 d  dy

 V =

O
S 

1x2
+ y22 dA =

L

2

0 L

24 - y2

0
1x2

+ y22 dx dy

y = 2.
y = 0x = 24 - y2x = 0

V =

O
S 

1x2
+ y22 dA

S = E1x, y2: 0 … x … 24 - y2, 0 … y … 2F
y = 0.x = 24 - y2, x = 0,

y = 0.x = 0x2
+ y2

= 4
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1 22y 3 4

1
y

2

y

x

S

x = 2y

Figure 15

where 
(see Figure 15). If we write this double integral as an iterated integral with the x-
integration performed first, we get

� =

L

2

0
2yey2

 dy = Cey2 D
0

2
= e4

- 1

 
L

2

0 L

2y

0
ey2

 dx dy =

L

2

0
Cxey2 D

0

2y
 dy

0 … y … 2651x, y2: 0 … x … 2y,S = 51x, y2: x>2 … y … 2, 0 … x … 46 =

Concepts Review

1. For an arbitrary set S, we define as

where R is _____ and _____ outside of 

the set S.

2. A set S is called y-simple if there are functions and 
on [a, b] such that _____, a … x … b6.S = 51x, y2:

f2f1

f1x, y2 =

O
R 

f1x, y2 dA,

O
S 

f1x, y2 dA
3. If S is a y-simple set, as in Question 2, then the double

integral over S can be written as the iterated integral

_____.

4. If S is the triangle in the first quadrant bounded by

then can be written as the iterated integral 

_____, which has value _____.

O
S 

2x dAx + y = 1,

O
S 

f1x, y2 dA =

Problem Set 13.3
Evaluate the iterated integrals in Problems 1–14.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Problems 15–20, evaluate the given double integral by changing
it to an iterated integral.

15. is the region bounded by and 

16. is the triangular region with vertices 

(0, 0), (0, 4), and (1, 4).

17. is the region between and

y = 1x.

y = x2

O
S 

1x2
+ 2y2 dA; S

O
S 

1x + y2 dA; S

y = 1.y = x2

O
S 

xy dA; S

L

p>2

p>6 L

sin u

0
6r cos u dr du

L

2

0 L

24 - x2

0
1x + y2 dy dx

L

2

1 L

x2

0
 
y2

x
  dy dx

L

p>2

0 L

sin y

0
ex cos y dx dy

L

2

0 L

x

-x
e-x2

 dy dx
L

p>9

0 L

3r

p>4
sec2 u du dr

L

p>4

0 L

22 cos u22
r dr du

L

1

1>2L

2x

0
cos1px22 dy dx

L

5

1 L

x

0
 

3

x2
+ y2 dy dx

L

3

1 L

2y

-y
xey3

 dx dy

L

1

-3L

x

0
1x2

- y32 dy dx
L

3

-1L

3y

0
1x2

+ y22 dx dy

L

2

1 L

x - 1

0
y dy dx

L

1

0 L

3x

0
x2 dy dx

18. is the region between and

19. is the triangular region with vertices at 

(0, 0), (2, 2), and (0, 2).

20. is the region between and 

(Note that S has two parts.)

In Problems 21–32, sketch the indicated solid.Then find its vol-
ume by an iterated integration.

21. Tetrahedron bounded by the coordinate planes and the
plane 

22. Tetrahedron bounded by the coordinate planes and the
plane 

23. Wedge bounded by the coordinate planes and the planes
and 

24. Solid in the first octant bounded by the coordinate planes
and the planes and 

25. Solid in the first octant bounded by the surface
and the plane 

26. Solid in the first octant bounded by the surface
and the coordinate planes

27. Solid in the first octant bounded by the cylinder 
and the planes and y + z = 1x = 0, z = 0,

y = x2

z = 9 - x2
- y2

9x + 4y - 6z = 09x2
+ 4y2

= 36

8x + y - 4z = 02x + y - 4 = 0

y + 2z - 4 = 0x = 5

3x + 4y + z - 12 = 0

z = 6 - 2x - 3y

≈

y = x3.y = x
O
S 

x dA; S

O
S 

 
2

1 + x2  dA; S

y = 3x - x2.

y = x
O
S 

1x2
- xy2 dA;   S
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y =

y = x2

y = –x + 2

1
2

y

x

S

y

x

S

1

1

2

2

3

4 (2, 4)

Figure 16 Figure 17

S2

S1

Figure 18

40 ft 30 ft

20 ft

10 ft

Dam

Bridge

10 ft

1100 ft

Figure 19

28. Solid bounded by the parabolic cylinder and the
planes and 

29. Solid in the first octant bounded by the cylinder
and the planes and 

30. Solid in the first octant bounded by the surface 
the plane and the coordinate planes

31. Solid in the first octant bounded by the surface
and the coordinate planes

32. Solid in the first octant bounded by the circular cylinders
and and the coordinate planes

In Problems 33–38, write the given iterated integral as an iterated
integral with the order of integration interchanged. Hint: Begin 
by sketching a region S and representing it in two ways, as in
Example 5.

33. 34.

35. 36.

37. 38.

39. Evaluate where S is the region shown in 

Figure 16.
O
S 

xy2 dA,

L

0

-1L

2y + 1

-2y + 1
 f1x, y2 dx dy

L

1

0 L

y

-y
f1x, y2 dx dy

L

1

1>2L

x

x3
f1x, y2 dy dx

L

1

0 L

x1>4

x2
f1x, y2 dy dx

L

2

0 L

2y

y2
f1x, y2 dx dy

L

1

0 L

x

0
f1x, y2 dy dx

y2
+ z2

= 16x2
+ z2

= 16

9z = 36 - 9x2
- 4y2

x + y = 1,
z = ex - y,

y = 0x = y, x = 1,z = tan x2

5y + 9z - 45 = 0z = 0
x2

= 4y

40. Evaluate where S is the region in Figure 17.

41. Evaluate where 

Hint: Use symmetry to reduce the problem to evaluat-

ing where and are as in Figure 18.S2S14 c
O
S1 

x2 dA +

O
S2 

x2 dA d ,
y2

… 46.
1 … x2

+S = 51x, y2:
O
S 

1x2
+ x4y2 dA,

O
S 

xy dA,

42. Evaluate where S is the annulus 

Hint: Done without thinking, this
problem is hard; using symmetry, it is trivial.

43. Evaluate where S is the region bounded 

by and Hint: If one order of integration
does not work, try the other.

44. Evaluate where S is the region between the 

ellipse and the circle 

45. Figure 19 shows a contour map for the depth of a river
between a dam and a bridge. Approximate the volume of water
between the dam and the bridge. Hint: Slice the river into eleven
100-feet sections parallel to the bridge and assume that cross-
sections are isosceles triangles. The river is approximately 300
feet wide by the dam and 175 feet wide by the bridge.

x2
+ y2

= 4.x2
+ 2y2

= 4

O
S 

x2 dA,

x = 0.y = 1x, y = 2,

O
S 

sin1y32 dA,

51x, y2: 1 … x2
+ y2

… 46.
O
S 

sin1xy22 dA,

46. Suppose that is a continuous function defined on a
region R that is closed and bounded. Show that there is an or-
dered pair (a, b) in R such that

This result is called the Mean Value Theorem for Double
Integrals. Hint: You will need the Intermediate Value Theorem
(Theorem 2.7F).

Answers to Concepts Review: 1. a rectangle containing S;

0 2. 3.

4.
L

1

0 L

1 - x

0
2x dy dx; 13

L

b

a L

f21x2

f11x2
f1x, y2 dy dxf11x2 … y … f21x2

O
R 

f1x, y2 dA = f1a, b2 A (R2

f(x, y)

692



Section 13.4 Double Integrals in Polar Coordinates 693

Polar axis

r = a

r = b

R

=

=

�

�

θ

θ

Figure 1

θ

z

x

y

z = f (x, y) = F (r,   )

Pola
r a

xis R

Figure 2

Certain curves in the plane, such as circles, cardioids, and roses, are easier to de-
scribe in terms of polar coordinates than in Cartesian (rectangular) coordinates.
Thus, we can expect that double integrals over regions enclosed by such curves are
more easily evaluated using polar coordinates. In Section 13.9, we will see how to
make more general transformations. For now, we study in depth just one particular
transformation, from rectangular to polar coordinates, because this technique is so
useful.

Let R have the shape shown in Figure 1, which we call a polar rectangle and
will describe analytically in a moment. Let determine a surface over R
and suppose that f is continuous and nonnegative. Then the volume V of the solid
under this surface and above R (Figure 2) is given by

(1)

In polar coordinates, a polar rectangle R has the form

where and Also, the equation of the surface can be written as

We are going to calculate the volume V in a new way using polar coordinates.
Partition R into smaller polar rectangles by means of a polar

grid and let and denote the dimensions of the typical piece as shown in
Figure 3. The area is given by (see Problem 38)

where is the average radius of Thus,

When we take the limit as the norm of the partition approaches zero, we ought to
get the actual volume. This limit is a double integral.

(2)

Now we have two expressions for V, that is, (1) and (2). Equating them yields

The boxed result was derived under the assumption that f was nonnegative, but it
is valid for very general functions, in particular for continuous functions of arbi-
trary sign.

Iterated Integrals The result announced above becomes useful when we
write the polar double integral as an iterated integral, a statement we now
illustrate.

� EXAMPLE 1 Find the volume V of the solid above the polar rectangle
(Figure 4) and under the surface

z = ex2
+ y2

.
R = 51r, u2: 1 … r … 3, 0 … u … p>46

O
R 

f1x, y2 dA =

O
R 

f1r cos u, r sin u2 r dr du

V =

O
R 

F1r, u2 r dr du =

O
R 

f1r cos u, r sin u2 r dr du

V L a
n

k = 1
F1rk, uk2rk ¢rk ¢uk

Rk.rk

A1Rk2 = rk ¢rk ¢uk

A1Rk2
Rk,¢uk¢rk

R1, R2, Á , Rn

z = f1x, y2 = f1r cos u, r sin u2 = F1r, u2
b - a … 2p.a Ú 0

R = 51r, u2: a … r … b, a … u … b6

V =

O
R 

f1x, y2 dA

z = f1x, y2

13.4
Double Integrals 

in Polar Coordinates

θ∆  k
∆rk

R
Rk

Figure 3

1 2 3

R

= π
4θ

Figure 4
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r = 2 (1 + cos   )

r = 2

= 0

= π
2

θ

θ

θ

Figure 7

r = a r = bO

 = �1(r)θ

θ

 = �2(r)θ

A   -simple set

S

An r-simple set

 =
r =   2

θ
θ

θ �=

(  )

θ(  )r =   1

S

φ

φ
�

Figure 5 Figure 6

SOLUTION Since 

Without the help of polar coordinates, we could not have done this problem.
Note how the extra factor of r was just what we needed in order to antidiffer-
entiate �

General Regions Recall how we extended the double integral over an ordi-
nary rectangle R to the integral over a general set S.We simply enclosed S in a rec-
tangle and gave the function to be integrated the value zero outside S. We can do
the same thing for double integrals in polar coordinates, except that we use polar
rectangles rather than ordinary rectangles. Omitting the details, we simply assert
that the boxed result stated earlier holds for general sets S.

er2
.

 =

L

p>4

0
 
1
2

 1e9
- e2 du =

p

8
 1e9

- e2 L 3181

 =

L

p>4

0
 c1

2
 er2 d3

1
 du

 =

L

p>4

0
 c
L

3

1
er2

r dr d  du

 V =

O
R 

ex2
+ y2

 dA

x2
+ y2

= r2,

Of special interest for polar integration are what we shall call r-simple and
sets. Call a set S an r-simple set if it has the form (Figure 5)

and call it if it has the form (Figure 6)

� EXAMPLE 2 Evaluate

where S is the region in the first quadrant that is outside the circle and inside
the cardioid (see Figure 7).

SOLUTION Since S is an r-simple set, we write the given integral as an iterated
polar integral, with r as the inner variable of integration. In this inner integration,
is held fixed; the integration is along the heavy line of Figure 7 from to
r = 211 + cos u2. r = 2

u

r = 211 + cos u2 r = 2

O
S 

y dA

S = 51r, u2: a … r … b, c11r2 … u … c21r26
U-simple

S = 51r, u2: f11u2 … r … f21u2, a … u … b6
u-simple
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x2 + y2 = 2y

z = x2 + y2

(z = r2)

(r = 2 sin   )θ

z

x

y

Figure 8

�

� EXAMPLE 3 Find the volume of the solid under the surface 
above the xy-plane, and inside the cylinder (Figure 8).

SOLUTION From symmetry, we can double the volume in the first octant. When
we use and the equation of the surface becomes 
and that of the cylinder, Let S denote the region shown in Figure 9.The
required volume V is given by

The last integral was evaluated by means of Formula 113 in the table of integrals at
the end of the book. �

A Probability Integral In Chapter 8 we discussed the standard normal prob-
ability density function

At that time, we claimed, but were unable to prove, that In the
next two examples, we will prove this result.

� EXAMPLE 4 Show that 

SOLUTION We are going to sneak up on this problem in a roundabout, but
decidedly ingenious, way. First recall that

Now let be the volume of the solid (Figure 10) that lies under the surface
and above the square with vertices Then

 =

L

b

-b
e-x2

 dx
L

b

-b
e-y2

 dy = c
L

b

-b
e-x2

 dx d2 = 4 c
L

b

0
e-x2

 dx d2
 Vb =

L

b

-bL

b

-b
e-x2

- y2
 dy dx =

L

b

-b
e-x2

 c
L

b

-b
e-y2

 dy d  dx

1;b, ;b2.z = e-x2
- y2

Vb

I =

L

q

0
e-x2

 dx = lim
b: qL

b

0
e-x2

 dx

I =

L

q

0
e-x2

 dx =

1p
2

.

L

q

-q

f1x2 dx = 1.

f1x2 =

122p
 e-x2>2

 = 8a3
8

#
p

2
b =

3p
2

 = 2
L

p>2

0
 c r4

4
d

0

2 sin u

 du = 8
L

p>2

0
sin4 u du

 V = 2
O
S 

1x2
+ y22 dA = 2

L

p>2

0 L

2 sin u

0
r2r dr du

r = 2 sin u.
z = r2y = r sin u,x = r cos u

x2
+ y2

= 2y
z = x2

+ y2,

 =

8
3

 c- 1
4

+ 0 - 1-4 + 12 d =

22
3

 =

8
3

 c- 1
4

 11 + cos u24 + cos u d
0

p>2
 =

8
3L

p>2

0
C 11 + cos u23 sin u - sin u D  du

 =

L

p>2

0
 c r3

3
 sin u d

2

211 + cos u2
 du

 
O
S 

y dA =

L

p>2

0 L

211 + cos u2

2
1r sin u2r dr du

y

x

S

1 2

2

1

= 0

r = 2sin θ

θ

=θ π
2

Figure 9

To estimate the volume in Exam-
ple 3, note that the height of the
cylinder displayed in Figure 8
is 4 (let and in

Thus, the desired vol-
ume is somewhat less than half the
volume of a cylinder of radius 1 
and height 4, that is, less than 

The answer we got,
is reasonable.3p>2,

A12 Bp11224 = 2p.

z = x2
+ y2).

y = 2x = 0

Common Sense≈

0

0

–b

–bb

b

x

y

z = e–x2–y2

Figure 10
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It follows that the volume of the region under above the whole xy-
plane is

(1)

On the other hand, we can also calculate V using polar coordinates. Here V is
the limit as of the volume of the solid under the surface 

above the circular region of radius a centered at the origin
(Figure 11).

(2)

Equating the two values obtained for V in (1) and (2) yields or 
as desired. �

� EXAMPLE 5 Show that 

SOLUTION By symmetry,

Now we make the substitution so The limits on the inte-
gral remain the same, so we have

To get the last line, we used the result of Example 4. �

 =

22222p
 
1p
2

= 1

 =

22222pL

q

0
e-u2

 du

 
L

q

-q

 
122p

 e-x2>2 dx = 2
L

q

0
 

122p
 e-u222 du

dx = 22 du.u = x>22,

L

q

-q

 
122p

 e-x2>2 dx = 2
L

q

0
 

122p
 e-x2>2 dx

L

q

-q

 
122p

 e-x2>2 dx = 1.

I =
1
2 1p,4I2

= p,

 = lim
a: q

 
1
2L

2p

0
C1 - e-a2 D  du = lim

a: q

p C1 - e-a2 D = p

 V = lim
a: q

Va = lim
a: qL

2p

0 L

a

0
e-r2

r dr du = lim
a: qL

2p

0
 c- 1

2
 e-r2 d

0

a

 du

z = e-x2
- y2

= e-r2
Va,a : q

V = lim
b: q

 Vb = lim
b: q

 4 c
L

b

0
e-x2

 dx d2 = 4 c
L

q

0
e-x2

 dx d2 = 4I2

z = e-x2
- y2

Concepts Review
1. A polar rectangle R has the form _____

2. The dy dx of integrals in Cartesian (rectangular) coordi-
nates transforms to _____ for integrals in polar coordinates.

6.R = 51r, u2:
3. The integral where S is the semicircle

bounded by and becomes the iterated inte-
gral _____ in polar coordinates.

4. The value of the integral in Question 3 is _____.

y = 0,y = 24 - x2

O
S 

1x2
+ y22 dA,

Problem Set 13.4
In Problems 1–6, evaluate the iterated integrals.

1. 2.

3. 4.

5. 6.
L

2p

0 L

u

0
r dr du

L

p

0 L

2

0
r cos 

u

4
  dr du

L

p

0 L

1 - cos u

0
r sin u dr du

L

p

0 L

sin u

0
r2 dr du

L

p>2

0 L

sin u

0
r dr du

L

p>2

0 L

cos u

0
r2 sin u dr du

In Problems 7–12, find the area of the given region S by calculat-

ing Be sure to make a sketch of the region first.

7. S is the region inside the circle and outside the
circle 

8. S is the smaller region bounded by and
r = 4 sin u.

u = p>6
r = 2.

r = 4 cos u

O
S 

r dr du.

0

0

–a

a –a

a

x

y

z = e–x2–y2

Figure 11
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Section 13.4 Double Integrals in Polar Coordinates 697

9. S is one leaf of the four-leaved rose 

10. S is the region inside the cardioid 

11. S is the region inside the larger loop of the limaçon

12. S is the region outside the circle and inside the lem-
niscate 

In Problems 13–18, an iterated integral in polar coordinates is
given. Sketch the region whose area is given by the iterated integral
and evaluate the integral, thereby finding the area of the region.

13. 14.

15. 16.

17. 18.

In Problems 19–26, evaluate by using polar coordinates. Sketch the
region of integration first.

19. where S is the region enclosed by 

20. where S is the first quadrant sec-

tor of the circle between and 

21. where S is as in Problem 20

22. where S is the first quadrant polar rectangle in-

side and outside 

23.

24.

25.

26.

27. Find the volume of the solid in the first octant under the
paraboloid and inside the cylinder by
using polar coordinates.

28. Using polar coordinates, find the volume of the solid
bounded above by below by and
laterally by 

29. Switch to rectangular coordinates and then evaluate

30. Let and 

where S is the region inside the circle

x2
+ y2

= 4p2.

O
S 

ƒ sin2x2
+ y2

ƒ  dA,

W =V =

O
S 

sin2x2
+ y2 dA

L

4p>3

3p>4 L

-5 sec u

0
r3 sin2 u dr du

x2
+ y2

= 4.
z = 0,2x2

+ 2y2
+ z2

= 18,
≈

x2
+ y2

= 9z = x2
+ y2

≈
L

2

1 L

22x - x2

0
1x2

+ y22-1>2 dy dx

L

1

0 L

1

x
x2 dy dx

L

1

0 L

21 - y2

0
 sin1x2

+ y22 dx dy

L

1

0 L

21 - x2

0
14 - x2

- y22-1>2 dy dx

x2
+ y2

= 1x2
+ y2

= 4

O
S 

y dA,

O
S 

 
1

4 + x2
+ y2  dA,

y = xy = 0x2
+ y2

= 4

O
S 

24 - x2
- y2 dA,

x2
+ y2

= 4

O
S 

ex2
+ y2

 dA,

L

3p>2

0 L

u2

0
r dr du

L

p

0 L

sin u

0
r dr du

L

p>2

0 L

cos u

0
r dr du

L

p>2

0 L

u

0
r dr du

L

2p

0 L

3

1
r dr du

L

p>4

0 L

2

0
r dr du

r2
= 9 cos 2u.

r = 2

r = 2 - 4 sin u.

r = 6 - 6 sin u.

r = a sin 2u. (a) Without calculation, determine the sign of V.
(b) Evaluate V. (c) Evaluate W.

31. The centers of two spheres of radius a are 2b units apart
with Find the volume of their intersection in terms of

32. The depth (in feet) of water distributed by a rotating lawn
sprinkler in an hour is where r is the distance
from the sprinkler and k is a constant. Determine k if 100 cubic
feet of water is distributed in 1 hour.

33. Find the volume of the solid cut from the sphere
by the cylinder 

34. Find the volume of the wedge cut from a tall right circular
cylinder of radius a by a plane through a diameter of its base and
making an angle with the base (compare Prob-
lem 39, Section 6.2).

35. Consider the ring A of height 2b obtained from a sphere of
radius a when a hole of radius is bored through the cen-
ter of the sphere (Figure 12). Show that the volume of A is 
which is remarkable for two reasons. It is independent of the ra-
dius a, and it is the same as the volume of a sphere of radius b.

4pb3>3,
c1c 6 a2

a 10 6 a 6 p>22

r = a sin u.r2
+ z2

… a2

ke-r>10, 0 … r … 10,

d = a - b.
b … a.

a

c

2b 2b

Figure 12

36. There is a simple explanation for the remarkable result in
Problem 35. Show that a horizontal plane that intersects the re-
gion in Figure 12 and a sphere of radius b next to it will intersect
in equal areas. Then apply Cavalieri’s Principle for volume. (See
Problem 42 in Section 6.2.)

37. Show that

38. Recall the formula for the area of the sector of
a circle of radius r and central angle radians (Section 10.7). Use
this to obtain the formula

for the area of the polar rectangle 

39. Show that

for all and for all Hint: Use the result of Example 5.

Answers to Concepts Review: 1.

2. 3. 4. 4p
L

p

0 L

2

0
r3 dr dur dr du

a … r … b; a … u … b

s 7 0.m

L

q

-q

 
1

s22p
  e-1x -m22>2s2

 dx = 1

u1 … u … u26.
u2: r1 … r … r2,51r,

A =

r1 + r2

2
 1r2 - r121u2 - u12

u

A =
1
2 r2u

L

q

0 L

q

0
 

1

11 + x2
+ y222  dy dx =

p

4
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Nonhomogeneous material

y

x

S

Figure 1

y

x

S

(xk, yk)

Rk

Figure 2

y = x2/3

S

y

x1 2 3 4 5 6 7 8

1

2

3

4

(x, y)

Figure 3

The most obvious application of double integrals is in calculating volumes of
solids. This use of double integrals has been amply illustrated, so now we turn 
to other applications (mass, center of mass, moment of inertia, and radius of
gyration).

Consider a flat sheet that is so thin that we may consider it to be two-
dimensional. In Section 6.6, we called such a sheet a lamina, but there we consid-
ered only laminas of constant density. Here we wish to study laminas of variable
density, that is, laminas made of nonhomogeneous material (Figure 1).

Suppose that a lamina covers a region S in the xy-plane, and let the density
(mass per unit area) at (x, y) be denoted by Partition S into small rec-
tangles as shown in Figure 2. Pick a point in Then the
mass of is approximately and the total mass of the lamina is
approximately

The actual mass m is obtained by taking the limit of the above expression as the
norm of the partition approaches zero, which is, of course, a double integral.

� EXAMPLE 1 A lamina with density is bounded by the x-axis,
the line and the curve (Figure 3). Find its total mass.

SOLUTION

�

Center of Mass We suggest that you review the concept of center of mass
from Section 6.6. There we learned that if is a collection of point
masses situated at respectively, then the total mo-
ments with respect to the y-axis and the x-axis are given by

Moreover, the coordinates of the center of mass (balance point) are

Consider now a lamina of variable density covering a region S in the
xy-plane, as in Figure 1. Partition this lamina as in Figure 2 and assume as an ap-
proximation that the mass of each is concentrated at 
Finally, take the limit as the norm of the partition tends to zero. This leads to the
formulas

1xk, yk2, k = 1, 2, Á , n.Rk

d1x, y2

x =

My

m
=

a
n

k = 1
xkmk

a
n

k = 1
mk

 y =

Mx

m
=

a
n

k = 1
ykmk

a
n

k = 1
mk

1x, y2
My = a

n

k = 1
xkmk Mx = a

n

k = 1
ykmk

1x1, y12, 1x2, y22, Á , 1xn, yn2,
m1, m2, Á , mn

 =

1
2

 c 3
10

 x10>3 d8
0

=

768
5

= 153.6

 =

L

8

0
 cxy2

2
dx

2>3

0
 dx =

1
2L

8

0
x7>3 dx

 m =

O
S 

xy dA =

L

8

0 L

x2>3

0
xy dy dx

y = x2>3x = 8,
d1x, y2 = xy

m =

O
S 

d1x, y2 dA

m L a
n

k = 1
d1xk, yk2A1Rk2

d1xk, yk2A1Rk2,Rk

Rk.1xk, yk2R1, R2, Á , Rk,
d1x, y2.

13.5
Applications of 

Double Integrals
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� EXAMPLE 2 Find the center of mass of the lamina of Example 1.

SOLUTION In Example 1, we showed that the mass m of this lamina is The
moments and with respect to the y-axis and x-axis are

We conclude that

Notice in Figure 3 that the center of mass is in the upper-right portion of
S; but this is to be expected since a lamina with density gets heavier
as the distance from the x- and y-axes increases. �

� EXAMPLE 3 Find the center of mass of a lamina in the shape of a quarter-
circle of radius a whose density is proportional to the distance from the center of
the circle (Figure 4).

SOLUTION By hypothesis, where k is a constant. The
shape of S suggests the use of polar coordinates.

Also,

We conclude that

Because of the symmetry of the lamina, we recognize that so no further cal-
culation is needed. �

y = x,

x =

My

m
=

ka4>4
kpa3>6 =

3a

2p

 = k
L

p>2

0
 
a4

4
  cos u du = cka4

4
  sin u dp>2

0
=

ka4

4

 My =

O
S 

xk2x2
+ y2

 dA = k
L

p>2

0 L

a

0
1r cos u2r2 dr du

 = k
L

p>2

0
 
a3

3
  du =

kpa3

6

 m =

O
S 

k2x2
+ y2 dA = k

L

p>2

0 L

a

0
rr dr du

d1x, y2 = k2x2
+ y2,

d1x, y2 = xy
1x, y2≈

x =

My

m
=  

80
13

L 6.15, y =

Mx

m
=  

20
9

L 2.22

 =

1
3L

8

0
x3 dx =

1024
3

L 341.33

 Mx =

O
S 

yd1x, y2 dA =

L

8

0 L

x2>3

0
xy2 dy dx

 =

1
2L

8

0
x10>3 dx =

12,288
13

L 945.23

 My =

O
S 

xd1x, y2 dA =

L

8

0 L

x2>3

0
x2y dy dx

MxMy
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.

x =

My

m
=

O
S 

xd1x, y2 dA

O
S 

d1x, y2 dA

 y =

Mx

m
=

O
S 

yd1x, y2 dA

O
S 

d1x, y2 dA
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S
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Figure 4
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y

x

y =   2(x)

ba

S

y =   1(x)φ

φ

Figure 5

A perceptive reader might well ask a question at this point.What if a lamina is
homogeneous; that is, what if a constant? Will the formulas derived in
this section, which involve double integrals, agree with those of Section 6.6, which
involved only single integrals? The answer is yes.To give a partial justification, con-
sider calculating for a y-simple region S (Figure 5).

The single integral on the right is the one given in Section 6.6.

Moment of Inertia From physics, we learn that the kinetic energy, KE, of a
particle of mass m and velocity moving in a straight line, is

(1)

If, instead of moving in a straight line, the particle rotates about an axis with an
angular velocity of radians per unit of time, its linear velocity is where r
is the radius of its circular path. When we substitute this in (1), we obtain

The expression is called the moment of inertia of the particle and is denoted
by I. Thus, for a rotating particle,

(2)

We conclude from (1) and (2) that the moment of inertia of a body in circular mo-
tion plays a role similar to the mass of a body in linear motion.

For a system of n particles in a plane with masses and at dis-
tances from a line L, the moment of inertia of the system about L is de-
fined to be

In other words, we add the moments of inertia of the individual particles.
Now consider a lamina with density covering a region S of the xy-plane

(Figure 1). If we partition S as in Figure 2, approximate the moments of inertia of
each piece add, and take the limit, we are led to the following formulas. The
moments of inertia (also called the second moments) of the lamina about the x-, y-,
and z-axes are given by

� EXAMPLE 4 Find the moments of inertia about the x-, y-, and z-axes of the
lamina of Example 1.

SOLUTION

 Iz = Ix + Iy =

49,152
7

L 7021.71

 Iy =

O
S 

x3y dA =

L

8

0 L

x2>3

0
x3y dy dx =

1
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0
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O
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1x2
+ y22 d1x, y2 dA = Ix + Iy
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O
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y2d1x, y2 dA Iy =

O
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Rk,

d1x, y2
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2
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2
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Á

+ mnrn
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n

k = 1
mkrk

2
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KE =
1
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r2m

KE =
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21r2m2v2

v = rv,v

KE =
1
2 mv2

v,

My =

O
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xk dA = k
L

b

a L

f21x2

f11x2
x dy dx = k

L

b

a
x[f21x2 - f11x2] dx

My

d1x, y2 = k,
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m
r

L

3

Figure 6

Consider the problem of replacing a general mass system of total mass m by a
single point mass m with the same moment of inertia I with respect to a line L
(Figure 6). How far should this point be from L? The answer is where 
The number

is called the radius of gyration of the system.Thus, the kinetic energy of the system
rotating about L with angular velocity is

�KE =
1
2 mr2v2

v

r = A I
m

mr2
= I.r,

Concepts Review
1. If the density at (x, y) is then the mass m of the lam-

ina S is given by _____.

2. The y-coordinate of the center of mass of the lamina of
Question 1 is given by _____.y =

m =

x2y4, 3. The moment of inertia with respect to the y-axis of the
lamina S of Question 1 is given by _____.

4. If then geometric
reasoning says that if then both and are _____
than 12.

yxd(x, y) = x2y4,
S = 51x, y2: 0 … x … 1, 0 … y … 16,

Iy =

Problem Set 13.5
In Problems 1–10, find the mass m and center of mass of the
lamina bounded by the given curves and with the indicated density.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Problems 11–14, find the moments of inertia and for
the lamina bounded by the given curves and with the indicated
density 

11.

12.

13. Square with vertices (0, 0), (0, a), (a, a), (a, 0);

14. Triangle with vertices (0, 0), (0, a), (a, 0);

In Problems 15–20, an iterated integral is given either in rectangu-
lar or polar coordinates. The double integral gives the mass of
some lamina R. Sketch the lamina R and determine the density 
Then find the mass and center of mass.

15. 16.

17. 18.

19. 20.
L

p>2

0 L

u

0
kr dr du

L

p

0 L

3

1
kr2 dr du

L

p>2

-p>2L

cos x

0
k dy dx

L

3

-3L

9 - x2

0
k1x2

+ y22 dy dx

L

1

0 L

1

x
ky dy dx

L

2

0 L

x

0
k dy dx

d.

x2
+ y2

d1x, y2 =

x + y
d1x, y2 =

y = x2, y = 4; d1x, y2 = y

y = 1x, x = 9, y = 0; d1x, y2 = x + y

d.

IzIx, Iy,

r = 2 + 2 cos u; d1r, u2 = r

r = 1, r = 2, u = 0, u = p, 10 … u … p2; d1r, u2 = 1>r
r = 1 + cos u; d1r, u2 = r

r = 2 sin u; d1r, u2 = r

y = ex, y = 0, x = 0, x = 1; d1x, y2 = 2 - x + y

y = e-x, y = 0, x = 0, x = 1; d1x, y2 = y2

y = 1>x, y = x, y = 0, x = 2; d1x, y2 = x

y = 0, y = sin x, 0 … x … p; d1x, y2 = y

y = 0, y = 24 - x2; d1x, y2 = y

x = 0, x = 4, y = 0, y = 3; d1x, y2 = y + 1

1x, y2 21. Find the radius of gyration of the lamina of Problem 13
with respect to the x-axis.

22. Find the radius of gyration of the lamina of Problem 14
with respect to the y-axis.

23. Find the moment of inertia and radius of gyration of a
homogeneous ( a constant) circular lamina of radius a with re-
spect to a diameter.

24. Show that the moment of inertia of a homogeneous rec-
tangular lamina with sides of length a and b about a perpendicu-
lar axis through its center of mass is

Here k is the constant density.

25. Find the moment of inertia of the lamina of Problem 23
about a line tangent to its boundary. Hint: Let the circle be

then the tangent line is the x-axis. Formula 113 at
the back of the book may help with the integration.

26. Consider the lamina S of constant density k bounded by
the cardioid as shown in Figure 7. Find its cen-
ter of mass and moment of inertia with respect to the x-axis. Hint:
Problem 7 of Section 10.7 suggests the useful fact that S has area

also, Formula 113 at the back of the book may prove
helpful.
3pa2>2;

r = a11 + sin u2,

r = 2a sin u;

I =
1

121a3b + ab32

d

θ

y

x

r = a(1 + sin   )

a–a

Figure 7
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y

x

a

a a

a

Figure 8

Figure 1

z

y

x ∆ym

∆xm fx(xm, ym)

∆ym fy(xm, ym)

∆xmRm

P(xm, ym, zm)
vm

um

(xm, ym, 0)

z

y

S
x

∆ym

Rm

Gm

TmPm(xm, ym, zm)

∆xm

Figure 2

27. Find the center of mass of that part of the cardioid of
Problem 26 that is outside the circle 

28. Parallel Axis Theorem Consider a lamina S of mass m to-
gether with parallel lines L and in the plane of S, the line L
passing through the center of mass of S. Show that if I and are
the moments of inertia of S about L and respectively, then

where d is the distance between L and Hint:
Assume that S lies in the xy-plane, L is the y-axis, and is the
line 

29. Refer to the lamina of Problem 13, for which we found
Find

(a) m (b) (c)
where L is a line through parallel to the y-axis (see Prob-
lem 28).

30. Use the Parallel Axis Theorem together with Problem 23
to solve Problem 25 another way.

31. Find and for the two-piece lamina of constant
density k shown in Figure 8 (see Problems 23 and 28).

IzIx, Iy,

1x, y2
ILx

Iy = 5a5>12.

x = -d.
L¿

L¿.I¿ = I + d2m,
L¿,

I¿

L¿

r = a.
inertia of the rectangular lamina of Problem 24 about an axis per-
pendicular to the lamina and through a corner.

33. Let and be disjoint laminas in the xy-plane of mass
and with centers of mass and Show that

the center of mass of the combined lamina satisfies

with a similar formula for Conclude that in finding the
two laminas can be treated as if they were point masses at 
and 

34. Let and be the homogeneous circular laminas of ra-
dius a and ta centered at and (ta, 0), respectively.
Use Problem 17 to find the center of mass of 

35. Let S be a lamina in the xy-plane with center of mass at
the origin, and let L be the line which goes through
the origin. Show that the (signed) distance d of a point (x, y) from
L is and use this to conclude that the
moment of S with respect to L is 0. Note: This shows that a lam-
ina will balance on any line through its center of mass.

36. For the lamina of Example 3, find the equation of the bal-
ance line that makes an angle of 135° with the positive x-axis (see
Problem 35). Write your answer in the form 

Answers to Concepts Review: 1.

2. 3. 4. greater
O
S 

x4y4 dA
O
S 

x2y5 dA>m
O
S 

x2y4 dA

Ax + By = C.

d = 1ax + by2>2a2
+ b2,

ax + by = 0,

S1 ´ S2.
1-a, a21t 7 02

S2S1

1x2, y22.
1x1, y12

1x, y2y.

x = x1 
m1

m1 + m2
+ x2 

m2

m1 + m2

S1 ´ S21x, y2
1x2, y22.1x1, y12m2m1

S2S1

We have seen some special cases of surface area. For example, in Example 3 of
Section 11.4 we found the area of a parallelogram in space. We have also seen
(Problems 29 and 30 of Section 6.4) that the surface area of a sphere is In this
section, we develop a formula for the area of a surface defined by over
a specified region.

Suppose that G is such a surface over the closed and bounded region S in the xy-
plane. Assume that f has continuous first partial derivatives and We begin by
creating a partition P of the region S with lines parallel to the x- and y-axes (see
Figure 1). Let denote the resulting rectangles that lie complete-
ly within S. For each m, let be that part of the surface that projects onto andRm,Gm

Rm, m = 1, 2, Á , n,

fy.fx

z = f1x, y24pr2.

13.6
Surface Area

32. The Parallel Axis Theorem also holds for lines that are
perpendicular to a lamina. Use this fact to find the moment of
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Section 13.6 Surface Area 703

let be the point of that projects onto the corner of with the smallest x- and
y-coordinates. Finally, let denote the parallelogram from the tangent plane at 
that projects onto as shown in Figure 1, and then in more detail in Figure 2.

We next find the area of the parallelogram whose projection is Let 
and denote the vectors that form the sides of Then

From Section 11.4, we know that the area of the parallelogram is 
where

The area of is therefore

We then add the areas of these tangent parallelograms and
take the limit to arrive at the surface area of G.

or, more concisely,

Figure 1 is drawn as if the region S in the xy-plane were a rectangle; this need
not be the case. Figure 3 shows what happens when S is not a rectangle.

Some Examples We illustrate the boxed formula for surface area with four
examples.

� EXAMPLE 1 If S is the rectangular region in the xy-plane that is bounded
by the lines and find the area of the part of the cylin-

drical surface that projects onto S (Figure 4).

SOLUTION Let Then and

� =

L

1

0 L

2

0
 

224 - x2
  dy dx = 4

L

1

0
 

124 - x2
  dx = 4 csin-1 

x

2
d

0

1
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2p
3

 A1G2 =

O
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2fx
2

+ fy
2

+ 1 dA =

O
S 
A x2

4 - x2 + 1 dA =

O
S 

 
224 - x2

  dA

fx = -x>24 - x2, fy = 0,f1x, y2 = 24 - x2.

z = 24 - x2

y = 2,x = 0, x = 1, y = 0,

A1G2 =

O
S 

2fx
2

+ fy
2

+ 1 dA

 =

O
S 

2[fx1x, y2]2
+ [fy1x, y2]2

+ 1 dA

 = lim7P7:0
 a

n

m = 1
2[fx1xm, ym2]2

+ [fy1xm, ym2]2
+ 1 A1Rm2

 A1G2 = lim7P7:0
 a

n

m = 1
A1Tm2

Tm, m = 1, 2, Á , n,

A1Tm2 = 7um * vm 7 = A1Rm22[fx1xm, ym2]2
+ [fy1xm, ym2]2

+ 1

Tm

 = A1Rm2[-fx1xm, ym2i - fy1xm, ym2j + k]

 = ¢xm ¢ym[-fx1xm, ym2i - fy1xm, ym2j + k]

 + 1¢xm ¢ym - 02k
 = 10 - fx1xm, ym2 ¢xm ¢ym2i - 1fy1xm, ym2 ¢xm ¢ym - 02j

 um * vm = 3 i j k
¢xm 0 fx1xm, ym2 ¢xm

0 ¢ym fy1xm, ym2 ¢ym

3
7um * vm 7 ,Tm

 vm = ¢ym  j + fy1xm, ym2 ¢ym k

 um = ¢xm i + fx1xm, ym2 ¢xm k

Tm.vm

umRm.Tm

Rm,
PmTm

RmGmPm

S
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y

x

Figure 3
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Figure 5

h2

h

a

h1

a

Figure 6

� EXAMPLE 2 Find the area of the surface below the plane

SOLUTION The designated part G of the surface projects onto the circular
region S inside the circle (Figure 5). Let Then

and

The shape of S suggests use of polar coordinates.

�

A right circular cylinder (with height equal to diameter) and an inscribed
sphere have the remarkable property that the surfaces between two parallel planes
(perpendicular to the axis of the cylinder) have equal area. Our next example
demonstrates this property for a hemisphere, showing that the two surfaces in
Figure 6 have equal area. The steps easily extend to show that the property holds
for a sphere.

 =

L

2p

0
 
1
12

 1373>2
- 12 du =

p

6
 1373>2

- 12 L 117.32

 =

L

2p

0
 
1
8

 c2
3

 14r2
+ 123>2 d

0

3

 du

 A1G2 =

L

2p

0 L

3

0
24r2

+ 1 r dr du

A1G2 =

O
S 

24x2
+ 4y2

+ 1 dA

fx = 2x, fy = 2y,
f1x, y2 = x2

+ y2.x2
+ y2

= 9

z = 9.
z = x2

+ y2

� EXAMPLE 3 Show that the area of the surface G cut from the hemisphere
by the planes and is

Show that this is also the surface area on the right circular cylinder 
between the planes and 

SOLUTION Let The surface of the hemisphere is defined by

and its projection S in the xy-plane is the annulus where
and (see Figure 7). The surface area of the hemi-

sphere between the two horizontal planes is

 =

O
S 

 
a2a2

- x2
- y2

  dA

 =

O
S 
B x2

a2
- x2

- y2 +

y2

a2
- x2

- y2 + 1 dA

 A1G2 =

O
S 
B c 0

0x
2a2

- x2
- y2 d2 + c 0

0y
2a2

- x2
- y2 d2 + 1 dA

c = 2a2
- h1

2b = 2a2
- h2

2
b … x2

+ y2
… c,

z = 2a2
- x2

- y2

h = h2 - h1.

z = h2.z = h1

x2
+ y2

= a2

A1G2 = 2pa1h2 - h12
h2 … a2z = h2 10 … h1 …z = h1x2

+ y2
+ z2

= a2, z Ú 0,
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Section 13.6 Surface Area 705

This integral is most easily evaluated using polar coordinates.

Because the surface area for the cylinder is the circumference of the circle
times the height h, the surface area for that part of the cylinder between the two
planes is which, of course, agrees with the surface area for the hemisphere. �

� EXAMPLE 4 Find the surface area of the hyperbolic paraboloid
over the triangle with vertices (0, 0), (2, 0), and (0, 2).

SOLUTION Let Then, and 
The area is given by the iterated integral

[Use Formula 44 from the
table of integrals]
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0 By2
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0
212x22 + 1-2y22 + 1 dy dx
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0
2fx

2
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2
+ 1 dy dx

fy1x, y2 = -2y.fx1x, y2 = 2xf1x, y2 = x2
- y2.
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2pah,

12pa2
 = 2pa C2a2

- b2
- 2a2

- c2 D = 2pa1h2 - h12 = 2pah

 A1G2 =

L

2p

0 L
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0
a C -2a2
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h
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a

c

y

x
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Figure 7

For most surface area problems it is
easy to set up the double integral.
This is just a matter of substituting
the required derivatives in the for-
mula. However, it is often difficult 
or impossible to evaluate these inte-
grals using the Second Fundamental
Theorem of Calculus because of the
difficulty of finding antiderivatives.

Surface Area Problems
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Figure 8

This last integral is too complicated to evaluate using the Second Fundamental
Theorem of Calculus, so we rely on a numerical method. The Parabolic Rule with

gives an approximation of 4.8363 to this last integral. (Larger values of n
give virtually the same approximation.) �

In this last example, we were able to evaluate the inner integral by finding an
antiderivative and applying the Second Fundamental Theorem of Calculus. Then
at the end, a numerical approximation was needed to evaluate the integral. Al-
though there exist numerical methods for approximating double integrals, they are
rather cumbersome to use and require evaluation of the function at a large num-
ber of points. It is always advantageous to evaluate the inner integral, if this is pos-
sible, in order to leave a single integral to be approximated.

n = 10

Concepts Review
1. The area of a parallelogram with sides equal to the vec-

tors u and v is _____.

2. More generally, if determines a surface G
that projects onto the region S in the xy-plane, then the area of G
is given by the formula _____.

3. Applying the result of Question 2 with
leads to the integral formula _____A =z = 1a2

- x2
- y221>2

A1G2 =

z = f1x, y2
for the area of a hemisphere of radius a. When this integral is
evaluated, we obtain the familiar formula _____.

4. Consider a sphere inscribed in a cylindrical can of radius
a. Two planes, both perpendicular to the axis of the cylinder and
separated by distance h, will cut off regions on both the cylinder
and the sphere that have area _____.

A =

Problem Set 13.6
In Problems 1–17, find the area of the indicated surface. Make a
sketch in each case.

1. The part of the plane that is above
the rectangle in the xy-plane with vertices (0, 0), (2, 0), (2, 1), and
(0, 1)

2. The part of the plane that is bounded
by the planes and 

3. The part of the surface that is directly
above the square in the xy-plane with vertices (1, 0), (2, 0), (2, 1),
and (1, 1)

4. The part of the surface in the first octant
that is directly above the circle in the xy-plane

5. The part of the cylinder that is directly over
the rectangle in the xy-plane with vertices (0, 0), (2, 0), (2, 3), and
(0, 3)

6. The part of the paraboloid that is cut off by
the plane 

7. The part of the conical surface that is direct-
ly over the triangle in the xy-plane with vertices (0, 0), (4, 0), and
(0, 4)

8. The part of the surface that is cut off by the
planes and 

9. The part of the sphere inside the cir-
cular cylinder where 

10. The part of the sphere inside the ellip-
tic cylinder where 

11. The part of the sphere inside the cir-
cular cylinder ( in polar coordinates),
a 7 0

r = a sin ux2
+ y2

= ay
x2

+ y2
+ z2

= a2

0 6 b … ab2x2
+ a2y2

= a2b2,
x2

+ y2
+ z2

= a2

0 6 b … ax2
+ y2

= b2,
x2

+ y2
+ z2

= a2

y = 2x = 0, x = 1, y = 0,
z = x2>4 + 4

x2
+ y2

= z2

z = 4
z = x2

+ y2

x2
+ z2

= 9

x2
+ y2

= 4
z = 24 - y2

z = 24 - y2

3x + 2y = 12x = 0, y = 0,
3x - 2y + 6z = 12

3x + 4y + 6z = 12

12. The part of the cylinder inside the sphere
Hint: Project to the yz-plane to get

the region of integration.

13. The part of the saddle inside the cylinder

14. The surface of the solid that is the intersection of the 
two solid cylinders and Hint: You
may need the integration formula 

15. The part of above the plane 

16. The part of above the xy-plane with

17. The part of the plane (where A, B,
C, and D are all positive) that lies in the first octant.

18. Figure 8 shows the Engineering Building at Southern Illi-
nois University Edwardsville. The spiral staircase, visible in the

Ax + By + Cz = D

0 … x … 20
z = 9 - x2

z = 5.z = 9 - x2
- y2

- tan[1p - 2u2>4] + C.
111 + sin u2-1 du =

x2
+ y2

… a2.x2
+ z2

… a2

x2
+ y2

= a2, a 7 0
az = x2

- y2

x2
+ y2

+ z2
= a2, a 7 0.

x2
+ y2

= ay
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Section 13.6 Surface Area 707

middle of the photo, is in the shape of a right circular cylinder
with diameter 36 feet. The roof is slanted at a 45-degree angle.
What is the surface area of the roof?

Problems 19–21 are related to Example 3.

19. Consider that part of the sphere be-
tween the planes and where 
Find that value of such that the plane cuts the surface
area in half.

20. Show that the polar cap (Figure 9) on a sphere of radius a
determined by the spherical angle has area 2pa211 - cos f2.f

z = hh
0 … h1 6 h2 … a.z = h2,z = h1

x2
+ y2

+ z2
= a2

21. Another Old Goat Problem (see Problem Set 10.7) Four
goats have grazing areas A, B, C, and D, respectively. The first
three goats are each tethered by ropes of length b, the first on a
flat plane, the second on the outside of a sphere of radius a, and
the third on the inside of a sphere of radius a. The fourth goat
must stay inside a ring of radius b that has been dropped over a
sphere of radius a. Determine formulas for A, B, C, and D and
arrange them in order of size. Assume that 

22. Let S be a planar region in three-space, and let 
and be the projections on the three coordinate planes (Fig-
ure 10). Show that

23. Assume that the region S of Figure 10 lies in the plane
and that S is above the xy-plane.

Show that the volume of the solid cylinder under S is
where is the centroid of Sxy.1x, y2A1Sxy2f1x, y2,

z = f1x, y2 = ax + by + c

[A1S2]2
= [A1Sxy2]2

+ [A1Sxz2]2
+ [A1Syz2]2

Syz

Sxy, Sxz,

b 6 a.

24. Joe’s house has a rectangular base with a gable roof, and
Alex’s house has the same base with a pyramid-type roof (see
Figure 11). The slopes of all parts of both roofs are the same.
Whose roof has the smaller area?

25. Show that the surface area of a nonvertical plane over a
region S in the xy-plane is sec where is the acute angle
between a normal vector to the plane and the positive z-axis.

26. Let be the acute angle between the
z-axis and a normal vector to the surface at the point

on the surface. Show that sec 
(Note that this gives another formula for surface area:

)

In Problems 27–28, find the surface area of the given surface. If an
integral cannot be evaluated using the Second Fundamental
Theorem of Calculus, then use the Parabolic Rule with 

27. The paraboloid over the region

(a) in the first quadrant and inside the circle 

(b) inside the triangle with vertices (0, 0), (3, 0), (0, 3)

28. The hyperbolic paraboloid over the region

(a) in the first quadrant and inside the circle 

(b) inside the triangle with vertices (0, 0), (3, 0), (0, 3)

29. Six surfaces are given below. Without performing any in-
tegration, rank the surfaces in order of their surface area from
smallest to largest. Hint: There may be some “ties.”

(a) The paraboloid over the region in the first
quadrant and inside the circle 

(b) The hyperbolic paraboloid over the region in
the first quadrant and inside the circle 

(c) The paraboloid over the region inside the rec-
tangle with vertices (0, 0), (1, 0), (1, 1), and (0, 1)

(d) The hyperbolic paraboloid over the region in-
side the rectangle with vertices (0, 0), (1, 0), (1, 1), and (0, 1)

(e) The paraboloid over the region inside the trian-
gle with vertices (0, 0), (1, 0), and (0, 1)

(f) The hyperbolic paraboloid over the region in-
side the triangle with vertices (0, 0), (1, 0), and (0, 1)

Answers to Concepts Review: 1.

2.

3.

4. 2pah
L

2p

0 L

a

0
Aar>2a2

- r2 B  dr du; 2pa2

L

a

-aL

2a2
- x2

-2a2
- x2
Aa>2a2

- x2
- y2 B  dy dx =

O
S 

2fx
2

+ fy
2

+ 1 dA

7u : v 7

z = x2
- y2

z = x2
+ y2

z = x2
- y2

z = x2
+ y2

x2
+ y2

= 1
z = x2

- y2

x2
+ y2

= 1
z = x2

+ y2

x2
+ y2

= 9

z = y2
- x2

x2
+ y2

= 9

z = x2
+ y2

n = 10.

O
S 

sec g dA.

A(G) =

g = 2fx
2

+ fy
2

+ 1.(x, y, f(x, y))

z = f1x, y2
g = g1x, y, f1x, y22

ggA(S)

φ

Figure 9

z

x

y

Syz

Sxy

Sxz
S

Figure 10 Figure 11
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z

x

y

�xk

� zk

�yk

Bk 

B

(xk, yk, zk)

Figure 1

The concept embodied in single and double integrals extends in a natural way to
triple and even n-dimensional integrals.

Consider a function f of three variables defined over a box-shaped region B
with faces parallel to the coordinate planes. We can no longer graph f (four dimen-
sions would be required), but we can picture B (Figure 1). Form a partition P of B
by passing planes through B parallel to the coordinate planes, thus cutting B into
small subboxes a typical subbox, is shown in Figure 1. On 
pick a sample point and consider the Riemann sum

a
n

k = 1
f1xk, yk, zk2 ¢Vk

1xk, yk, zk2
Bk,Bk,B1, B2, Á , Bn;

where is the volume of Let the norm of the partition 
be the length of the longest diagonal of all the subboxes. Then we define the triple
integral by

provided that this limit exists.
The question of what kind of functions are integrable arises here, as it did for

single and double integrals. It is certainly sufficient that f be continuous on B.Actu-
ally, we can allow some discontinuities, for example, on a finite number of smooth
surfaces. We do not prove this (a very difficult task), but we assert that it is true.

As you would expect, the triple integral has the standard properties: linearity,
additivity on sets that overlap only on a boundary surface, and the comparison
property. Finally, triple integrals can be written as triple iterated integrals, as we now
illustrate.

� EXAMPLE 1 Evaluate where B is the box

SOLUTION

 =

L

2

0 L

1

0
 c1

3
 x3yz d2

1
 dy dz =

L

2

0 L

1

0
 
7
3

 yz dy dz

 
l
B 

x2yz dV =

L

2

0 L

1

0 L

2

1
x2yz dx dy dz

B = 51x, y, z2: 1 … x … 2, 0 … y … 1, 0 … z … 26
l
B 

x2yz dV,

l
B 

f1x, y, z2 dV = lim7P7:0
 a

n

k = 1
f1xk, yk, zk2 ¢Vk

7P 7Bk.¢Vk = ¢xk ¢yy ¢zk

13.7
Triple Integrals in

Cartesian Coordinates
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Section 13.7 Triple Integrals in Cartesian Coordinates 709

There are six possible orders of integration. Every one of them will yield the
answer �

General Regions Consider a closed bounded set S in three-space and enclose
it in a box B, as shown in Figure 2. Let be defined on S, and give f the
value zero outside S. Then we define

The integral on the right was defined in our opening remarks, but that does not
mean that it is easy to evaluate. In fact, if the set S is sufficiently complicated, we
may not be able to make the evaluation.

Let S be a z-simple set (vertical lines intersect S in a single line segment), and
let be its projection in the xy-plane (Figure 3). Then

If, in addition, is a y-simple set (as shown in Figure 3), we can rewrite the outer
double integral as an iterated integral.

Other orders of integration may be possible, depending on the shape of S, but
in each case we should expect the limits on the inner integral to be functions of two
variables, those on the middle integral to be functions of one variable, and those on
the outer integral to be constants.

We give several examples. The first simply illustrates evaluation of a triple it-
erated integral.

� EXAMPLE 2 Evaluate the iterated integral

SOLUTION

� =

L

5

-2
1-6x2

+ 24x2 dx = -14

 =

L

5

-2
[4xy - 2y2

+ 8y]0
3x

 dx

 =

L

5

-2L

3x

0
14x - 4y + 82 dy dx

 =

L

5

-2L

3x

0
[4z]y

x + 2 dy dx

 
L

5

-2L

3x

0 L

x + 2

y
4 dz dy dx =

L

5

-2L

3x

0
 a
L

x + 2

y
4 dzb  dy dx

L

5

-2L

3x

0 L

x + 2

y
4 dz dy dx

l
S 

f1x, y, z2 dV =

L

a2

a1 L

f21x2

f11x2 L

c21x, y2

c11x, y2
f1x, y, z2 dz dy dx

Sxy

l
S 

f1x, y, z2 dV =

O
Sxy 

 c
L

c21x, y2

c11x, y2
f1x, y, z2 dz d  dA

Sxy

l
S 

f1x, y, z2 dV =

l
B 

f1x, y, z2 dV

f(x, y, z)

7
3.

 =

7
6

 c z2

2
d2

0
=

7
3

 =

7
3L

2

0
 c1

2
 y2z d1

0
 dz =

7
3L

2

0
 
1
2

 z dz
z

x

y

S

B

Figure 2

z

x

y

Sxy

S

x = a1

x = a2

y =   1(x)

z = c2(x, y) z = c1(x, y)

y =   2(x)φ φ

Figure 3

The limits of integration on the in-
nermost integral may depend on
both of the other variables of inte-
gration. The limits of integration on
the middle integral may depend only
on the outermost variable of integra-
tion. Finally, the limits of integration
for the outermost integral may not
depend on any of the variables of
integration.

Limits of Integration
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710 Chapter 13 Multiple Integrals

The plane
y = 0

The plane
y = x

z = 2 –   

The solid
region S

x2

2

z = 2 –   x
2

2

z

x

y

z

x

y

y = x
z = 0

x = 2

2

2

2

Sxy

The plane region Sxy

2

2

The surface

Figure 4

� EXAMPLE 3 Evaluate the triple integral of over the solid
region S in the first octant that is bounded by the parabolic cylinder 
and the planes and y = 0.z = 0, y = x,

z = 2 -
1
2 x2

f1x, y, z2 = 2xyz

SOLUTION The solid region S is shown in Figure 4. The triple integral

can be evaluated by an iterated integral.
Note first that S is a z-simple set and that its projection in the xy-plane is 

y-simple (also x-simple). In the first integration, x and y are fixed; we integrate
along a vertical line from to The result is then integrated over
the set 

�

Many different orders of integration are possible in Example 3. We illustrate
another way to do this problem.

� EXAMPLE 4 Evaluate the integral of Example 3 by doing the integration in
the order dy dx dz.

 =

L

2

0
 a2x3

- x5
+

1
8

 x7b  dx =

4
3

 =

L

2

0 L

x

0
 a4xy - 2x3y +

1
4

 x5yb  dy dx

 =

L

2

0 L

x

0
[xyz2]0

2 - x2>2
 dy dx

 
l
S 

2xyz dV =

L

2

0 L

x

0 L

2 - x2>2

0
2xyz dz dy dx

Sxy.
z = 2 - x2>2.z = 0

Sxy

l
S 

2xyz dV
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Section 13.7 Triple Integrals in Cartesian Coordinates 711

SOLUTION Note that the solid S is y-simple and that it projects onto the plane
set shown in Figure 5. We first integrate along a horizontal line from to

then we integrate the result over 

�

Mass and Center of Mass The concepts of mass and center of mass general-
ize easily to solid regions. By now, the process that leads to the correct formula is
very familiar and can be summarized in our motto: slice, approximate, integrate.
Figure 6 gives away the whole idea. The symbol denotes the density
(mass per unit volume) at (x, y, z).

d1x, y, z2

 =

1
4L

2

0
116z - 16z2

+ 4z32 dz =

4
3

 =

L

2

0 L

24 - 2z

0
x3z dx dz =

1
4L

2

0
A24 - 2z B4z dz

 
l
S 

2xyz dV =

L

2

0 L

24 - 2z

0 L

x

0
2xyz dy dx dz

Sxz.y = x;
y = 0Sxz

The corresponding integral formulas for the mass m of the solid S, moment
of S with respect to the xy-plane, and z-coordinate of the center of mass

are

There are similar formulas for and 

� EXAMPLE 5 Find the mass and center of mass of the solid S of Example 3,
assuming that its density is proportional to the distance from its base in the 
xy-plane.

y.Myz, Mxz, x,

 z =

Mxy

m

 Mxy =

l
S 

zd1x, y, z2 dV

 m =

l
S 

d1x, y, z2 dV

zMxy

z

x

2

2
y

y = x

y = xy = 0

2

Sxz

4 – 2z�x =

The plane region Sxz

Figure 5

z

x

y

S z

x

y

S

SxySxy

(xk, yk, zk)

zk

Bk

Mass of Bk � �(xk, yk, zk) ∆Vk

Moment of  Bk

about xy-plane � zk �(xk, yk, zk) ∆Vk

Figure 6
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712 Chapter 13 Multiple Integrals

SOLUTION By hypothesis, where k is a constant. Thus,

�

Multiple Random Variables We saw in Section 6.7 how probabilities for
random variables can be computed as areas under the probability density function
and how expectations can be computed like moments. These concepts are easily
generalized to the case of a pair (or triple, etc.) of random variables. A function

is a joint probability density function (PDF) for the random variables
if for all in S and

where S is the region of all possible values for A probability involving
can then be computed as the triple integral over the appropriate region.

The expected value of some function is defined to be

E1g1X, Y, Z22 =

l
S 

g1x, y, z2 f(x, y, z) dz dy dx

g(X, Y, Z)
(X, Y, Z)

(X, Y, Z).

l
S 

f1x, y, z2 dz dy dx = 1

(x, y, z)f1x, y, z2 Ú 0(X, Y, Z)
f(x, y, z)

 x =

Myz

m
=

128k>105

4k>3 =

32
35

 y =

Mxz

m
=

64k>105

4k>3 =

16
35

 z =

Mxy

m
=

4k>3
4k>3 = 1

 Myz =

l
S 

kxz dV =

L

2

0 L

x

0 L

2 - x2>2

0
kxz dz dy dx =

128
105

 k

 = k
L

2

0
 ax2

-

1
2

 x4
+

1
16

 x6b  dx =

64
105

 k

 = k
L

2

0 L

x

0
 
1
2

 ya2 -

x2

2
b2

 dy dx = k
L

2

0
 
1
4

 x2
 a2 -

x2

2
b2

 dx

 Mxz =

l
S 

kyz dV =

L

2

0 L

x

0 L

2 - x2>2

0
kyz dz dy dx

 =

k

3
 c4x2

-

3
2

 x4
+

1
4

 x6
-

1
64

 x8 d
0

2

=

4
3

 k

 =

k

3L

2

0
 a8x - 6x3

+

3
2

 x5
-

1
8

 x7b  dx

 =

k

3L

2

0 L

x

0
 a8 - 6x2

+

3
2

 x4
-

1
8

 x6b  dy dx

 =

k

3L

2

0 L

x

0
 a2 -

x2

2
b3

 dy dx

 Mxy =

l
S 

kz2 dV =

L

2

0 L

x

0 L

2 - x2>2

0
kz2 dz dy dx

 = k
L

2

0
 a2x - x3

+

1
8

 x5b  dx = k cx2
-

x4

4
+

x6

48
d2

0
=

4
3

 k

 = k
L

2

0 L

x

0
 
1
2

 a2 -

x2

2
b2

 dy dx = k
L

2

0 L

x

0
 a2 - x2

+

1
8

 x4b  dy dx

 m =

l
S 

kz dV =

L

2

0 L

x

0 L

2 - x2>2

0
kz dz dy dx

d1x, y, z2 = kz,
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Section 13.7 Triple Integrals in Cartesian Coordinates 713

With obvious modifications, this discussion applies to pairs (or n-tuples) of random
variables.

� EXAMPLE 6 The joint PDF for the random variables is of the
form

Find (a) and (b) 

SOLUTION
(a) We notice that if and only if is in the shaded region R of

Figure 7 and Thus,

(b) The expectation of Y is

� =

L

2

0

x2

4
 dx = c x3

12
d

0

2

=

2
3

 =

L

2

0
 

L

x

0
 

y

2
 dy dx =

L

2

0
 cy2

4
dx

0
 dx

 E1Y2 =

l
S 

y f1x, y, z2 dz dy dx =

L

2

0 L

x

0 L

1

0
 
y

2
 dz dy dx

cx2

8
d

0

2

=

1
2

PaY …

X

2
b =

L

2

0 L

x>2

0 L

1

0
 
1
2

 dz dy dx =

L

2

0 L

x>2

0
 
1
2

 dy dx =

L

2

0
 
x

4
 dx =

0 … Z … 1.
(X, Y)Y … X>2

E(Y).P1Y … X>22,

f1x, y, z2 = c 1
2

, if 0 … x … 2; 0 … y … x; 0 … z … 1

0, otherwise

(X, Y, Z)

y

x

2

1

1 2

R

Figure 7

Concepts Review

1. gives the _____ of the solid S.

2. If the density at is then the mass of S is
_____.

ƒ xyz ƒ ,(x, y, z)

l
S 

1 dV 3.

where _____ and

_____.

4. Let S be the solid unit sphere centered at the origin.Then,

from symmetry, we conclude that _____.
l
S 

1x + y + z2 dV =

h1y2 =

g1y2 =

L

1

0 L

1

0 L

h1y2

g1y2
f1x, y, z2 dx dy dz,

L

1

0 L

1

0 L

x

x2
f1x, y, z2 dy dx dz =

Problem Set 13.7
In Problems 1–10, evaluate the iterated integrals.

1.

2.

3.

4.

5.

6.
L

5

0 L

3

0 L

9

z2
xyz dx dz dy

L

24

4 L

24 - x

0 L

24 - x - y

0
 
y + z

x
 dz dy dx

L

5

0 L

4

-2L

2

1
6xy2z3 dx dy dz

L

4

1 L

2z

z - 1L

y + 2z

0
 dx dy dz

L

2

0 L

4

-1L

3y + x

0
 dz dy dx

L

7

-3L

2x

0 L

x - 1

y
 dz dy dx

7.

8.

9.

10.

In Problems 11–20, sketch the solid S. Then write an iterated inte-
gral for

l
S 

f1x, y, z2 dV

L

p>2

0 L

0

sin 2zL

2yz

0
sinax

y
b  dx dy dz

L

4

-2L

x + 1

x - 1 L

22y>x

0
3xyz dz dy dx

L

p>2

0 L

z

0 L

y

0
sin1x + y + z2 dx dy dz

L

2

0 L

z

1 L

2x>z

0
2xyz dy dx dz
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z

x

y

z = 1

x = 1

2x + y + 2z = 6

Figure 8

x

z

yx = 1

y = 1

x + y + z = 4

Figure 9

11.

12.

13.

14.

15.

16.

17. S is the tetrahedron with vertices (0, 0, 0), (3, 2, 0), (0, 3, 0),
and (0, 0, 2).

18. S is the region in the first octant bounded by the surface
and the coordinate planes.

19. S is the region in the first octant bounded by the cylinder
and the planes and 

20. S is the smaller region bounded by the cylinder
and the planes and 

In Problems 21–28, use triple iterated integrals to find the indicated
quantities.

21. Volume of the solid in the first octant bounded by
and 

22. Volume of the solid in the first octant bounded by the el-
liptic cylinder and the plane 

23. Volume of the solid bounded by the cylinders and
and the plane 

24. Volume of the solid bounded by the cylinder 
and the planes and 

25. Center of mass of the tetrahedron bounded by the planes
and if the density is propor-

tional to the sum of the coordinates of the point

26. Center of mass of the solid bounded by the cylinder
and the planes and if the density is pro-

portional to the square of the distance from the origin

27. Center of mass of that part of the solid sphere 
that lies in the first octant, assuming that it

has constant density

28. Moment of inertia about the x-axis of the solid bound-
ed by the cylinder and the planes 
and if the density Hint: You will need to de-
velop your own formula; slice, approximate, integrate.

In Problems 29–32, write the given iterated integral as an iterated
integral with the indicated order of integration.

29.

30.

31.

32.

33. Consider the solid (Figure 8) in the first octant cut off
from the square cylinder with sides andx = 0, x = 1, z = 0,

L

2

0 L

9 - x2

0 L

2 - x

0
f1x, y, z2 dz dy dx; dz dx dy

L

2

0 L

9 - x2

0 L

2 - x

0
f1x, y, z2 dz dy dx; dy dx dz

L

2

0 L

4 - 2y

0 L

4 - 2y - z

0
f1x, y, z2 dx dz dy; dz dy dx

L

1

0 L

21 - y2

0 L

21 - y2
- z2

0
f1x, y, z2 dx dz dy; dz dy dx

d1x, y, z2 = z.z = 0
x - y = 0, x = 0,y2

+ z2
= 4
Ix

x2
+ y2

+ z2
… a26

51x, y, z2:
z = 4z = 0x2

+ y2
= 9

z = 0x + y + z = 1, x = 0, y = 0,

3y - 4z = 0y = 4, z = 0,
y = x2

+ 2

y = 1z2
= y

x2
= y

y = xy2
+ 64z2

= 4

y + 4z = 8y = 2x2

z = 3.x - y = 0, z = 0,x2
+ y2

- 2y = 0

x = 4.x = 1y2
+ z2

= 1

z = 9 - x2
- y2

S = 51x, y, z2: 0 … x … y2, 0 … y … 1z, 0 … z … 16
 0 … y … 4 - x - 2z, 0 … z … 26

S = 51x, y, z2: 0 … x … 3z, 

S = 51x, y, z2: 0 … x … 1y, 0 … y … 4, 0 … z …
3
2 x6

S = 51x, y, z2: 0 … x …
1
2 y, 0 … y … 4, 0 … z … 26

 0 … y … 2, 0 … z … 36
 S = 51x, y, z2: 0 … x … 24 - y2, 

 0 … z …
1
6112 - 3x - 2y26

 S = 51x, y, z2: 0 … x … 1, 0 … y … 3, by the plane Find its volume in three
ways.
(a) Hard way: by a dz dy dx integration
(b) Easier way: by a dy dx dz integration
(c) Easiest way: by Problem 23 of Section 13.6

2x + y + 2z = 6.z = 1

34. Assuming that the density of the solid of Figure 8 is a con-
stant k, find the moment of inertia of the solid with respect to the
y-axis.

35. If the temperature at (x, y, z) is de-
grees, find the average temperature of the solid of Figure 8.

36. Assuming that the temperature of the solid in Figure 8 is
find all points in the solid where the actual

temperature equals the average temperature.

37. Find the center of mass of the homogeneous solid in
Figure 8.

38. Consider the solid (Figure 9) in the first octant cut off
from the square cylinder with sides and

by the plane Find its volume in three ways.
(a) Hard way: by a dx dz dy integration
(b) Easier way: by a dz dy dx integration
(c) Easiest way: by Problem 23 of Section 13.6

x + y + z = 4.y = 1
x = 0, x = 1, y = 0,

T1x, y, z2 = 30 - z,

T1x, y, z2 = 30 - z

39. Find the center of mass of the homogeneous solid in
Figure 9.

40. Suppose the temperature of the solid in Figure 9 begins at
40° at the bottom (the xy-plane) and increases (continuously) 5°
for each unit above the xy-plane. Find the average temperature in
the solid.

41. Soda Can Problem A full soda can of height h stands on
the xy-plane. Punch a hole in the base and watch (the z-
coordinate of the center of mass) as the soda leaks away. Starting
at gradually drops to a minimum and then rises back to 
when the can is empty. Show that is least when it coincides with
the height of the soda. (Do not neglect the mass of the can itself.)

z
h>2zh>2,

z
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Section 13.8 Triple Integrals in Cylindrical and Spherical Coordinates 715

Would the same conclusion hold for a soda bottle? Hint: Don’t
calculate; think geometrically.

42. Let Evalu-

ate 

43. Suppose that the random variables have joint PDF

Find each of the following:
(a) k (b) (c) E(X)

44. Suppose that the random variables have joint
PDF

Find each of the following:
(a) k (b) (c) E(X)

45. Suppose that the random variables have joint PDF

f1x, y2 = c 3
256

 1x2
+ y22, if 0 … x … y; 0 … y … 4

0, otherwise

(X, Y)

P1X 7 22

f1x, y, z2 = ekxy, if 0 … x … y; 0 … y … 4; 0 … z … 2
0, otherwise

(X, Y, Z)

P1Y 7 42

f1x, y2 = eky, if 0 … x … 12; 0 … y … x

0, otherwise

(X, Y)

l
S 

1xy + xz + yz2 dV.

S = 51x, y, z2: x2>a2
+ y2>b2

+ z2>c2
… 16.CAS

Find each of the following:
(a) (b) (c)

46. Suppose that the random variables have joint
probability density function The marginal probability
density function of X is defined to be

where and are the smallest and largest possible values,
respectively, that y can be for the given x. Show that

(a)

(b)

47. Find the marginal PDF for the random variable X in
Problem 43 and use it to calculate 

48. Give a reasonable definition for the marginal PDF for Y
and use it to calculate the marginal PDF for Y in Problem 44.

Answers to Concepts Review: 1. volume 2.

3. y; 4. 01y

l
S 

ƒ xyz ƒ  dV

E(X).

E1X2 =

L

b

a
x fX1x2 dx

P1a 6 X 6 b2 =

L

b

a
fX1x2 dx

b(x)a(x)

fX1x2 =

L

b1x2

a1x2
f1x, y2 dy

f(x, y).
(X, Y)

E1X + Y2P1X + Y … 42P1X 7 22

When a solid region S in three-space has an axis of symmetry, the evaluation of
triple integrals over S is often facilitated by using cylindrical coordinates. Similarly
if S is symmetric with respect to a point, spherical coordinates may be helpful.
Cylindrical and spherical coordinates were introduced in Section 11.9, a section
you may wish to review before going on. Both of these are special cases of trans-
formations of variables for multiple integrals, the topic of Section 13.9.

Cylindrical Coordinates Figure 1 serves to remind us of the meaning 
of cylindrical coordinates and displays the symbols that we use. Cylindrical and
Cartesian (rectangular) coordinates are related by the equations

As a result, the function transforms to

when written in cylindrical coordinates.

Suppose now that we wish to evaluate where S is a solid 

region. Consider partitioning S by means of a cylindrical grid, where the typical
volume element has the shape shown in Figure 2. Since this piece (called a
cylindrical wedge) has volume the sum that approximates
the integral has the form

Taking the limit as the norm of the partition tends to zero leads to a new integral
and suggests an important formula for changing from Cartesian to cylindrical co-
ordinates in a triple integral.

a
n

k = 1
F1rk, uk, zk2rk ¢zk ¢rk ¢uk

¢Vk = rk ¢rk ¢uk ¢zk,

l
S 

f1x, y, z2 dV,

f1x, y, z2 = f1r cos u, r sin u, z2 = F1r, u, z2
f(x, y, z)

x = r cos u, y = r sin u, x2
+ y2

= r2

13.8
Triple Integrals in

Cylindrical and
Spherical Coordinates

θ

θ

z

z

x

y

Cylindrical
Coordinates

P(r,   , z)

r

Figure 1
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716 Chapter 13 Multiple Integrals

The transformation from Cartesian
coordinates (in 2-space) to polar co-
ordinates is

whereas the transformation from
Cartesian coordinates (in 3-space) 
to cylindrical coordinates is

In other words, to identify a point in
three-space using cylindrical coor-
dinates, we specify the polar coordi-
nates for the ordered pair and
then “tack on” the z component.
Since

we shouldn’t be surprised that

dx dy dz = r dz dr du

dx dy = r dr du

(x, y)

x = r cos u y = r sin u z = z

x = r cos u y = r sin u

Cylindrical Coordinates 
and Polar Coordinates

θ

θ

z

x

y

∆rk

∆zk

∆   k
(rk,   k)

θ(rk,   k, zk)

θ

θ

θ

z

x

y

z = g2(r,   )

θz = g1(r,   )

r = r2(   )

θr = r1(   )

Sxy

S

2

θ
1

Figure 2 Figure 3

z

x

y

h S

Sxy

a

Figure 4

Let S be a z-simple solid and suppose that its projection in the xy-plane is
r-simple, as shown in Figure 3. If f is continuous on S, then

The key fact to note is that the dz dy dx of Cartesian coordinates becomes
in cylindrical coordinates.

� EXAMPLE 1 Find the mass and center of mass of a solid right circular cylin-
der S, assuming that the density is proportional to the distance from the base.

SOLUTION With S oriented as shown in Figure 4, we can write the density
function as where k is a constant. Then

By symmetry, �x = y = 0.

 z =

Mxy

m
=

1
3 kh3pa2

1
2 kh2pa2

=

2
3

 h

 =

1
3

 kh3pa2

 = k
L

2p

0 L

a

0
 
1
3

 h3r dr du =

1
3

 kh3

L

2p

0 L

a

0
r dr du

 Mxy =

l
S 

zd1x, y, z2 dV = k
L

2p

0 L

a

0 L

h

0
z2r dz dr du

 =

1
2

 kh2

L

2p

0
 
1
2

 a2 du =

1
2

 kh2pa2

 = k
L

2p

0 L

a

0
 
1
2

 h2r dr du =

1
2

 kh2

L

2p

0 L

a

0
r dr du

 m =

l
S 

d1x, y, z2 dV = k
L

2p

0 L

a

0 L

h

0
zr dz dr du

d1x, y, z2 = kz,

r dz dr du

l
S 

f1x, y, z2 dV =

L

u2

u1 L

r21u2

r11u2 L

g21r,u2

g11r,u2
f1r cos u, r sin u, z2r dz dr du

Sxy
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� EXAMPLE 2 Find the volume of the solid region S in the first octant bound-
ed above by the paraboloid and laterally by the cylinder

as shown in Figure 5.

SOLUTION In cylindrical coordinates, the paraboloid is and the
cylinder is The z-variable runs from the xy-plane up to the paraboloid,
that is, from 0 to Figure 6 shows the “footprint” of the solid in the xy-plane;
this figure suggests that for a fixed r goes from 0 to Finally, goes from 
0 to Thus,

We used Formula 113 from the table of integrals at the end of the book to make
the last calculation. �

Spherical Coordinates Figure 7 serves to remind us of the meaning of
spherical coordinates, which were introduced in Section 11.9. There we learned
that the equations

relate spherical coordinates and Cartesian coordinates. Figure 8 exhibits the vol-
ume element in spherical coordinates (called a spherical wedge). Though we omit
the details, it can be shown that the volume of the indicated spherical wedge is

where is an appropriately chosen point in the wedge.
Partitioning a solid S by means of a spherical grid, forming the appropriate

sum, and taking the limit leads to an iterated integral in which dz dy dx is replaced
by r2 sin f dr du df.

1r, u, f2
¢V = r2 sin f ¢r ¢u ¢f

x = r sin f cos u, y = r sin f sin u, z = r cos f

 = 8 #
1
2

#
p

2
- 4 #

3
8

#
p

2
=

5p
4

 =

L

p>2

0
18 cos2 u - 4 cos4 u2 du

 =

L

p>2

0 L

2 cos u

0
r14 - r22 dr du =

L

p>2

0
 c2r2

-

1
4

 r4 d
0

2 cos u

 du

 V =

l
S 

1 dV =

L

p>2

0 L

2 cos u

0 L

4 - r2

0
r dz dr du

p>2.
u2 cos u.u,

4 - r2.
r = 2 cos u.

z = 4 - r2

x2
+ y2

= 2x,
z = 4 - x2

- y2,

x

y

z

z = 4 – x2 – y2

x2 + y2 = 2x

y = 0

Figure 5

1 2

–1

1

y

x

r = 2 cosθ

θ

2 cos θ

Figure 6

π

θ

θ

z

x

y

P(  ,   ,   )

(0 �   �   )

Spherical Coordinates

φ φ

φ

ρ

ρ

Figure 7

θ

θ
θ

z

x

y

A Spherical Wedge

= b1

= b2
 = a2

 = a1

= c2

ρ

ρ

ρ

∆

∆

∆

= c1

φ

φ

φ

Figure 8
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a

x

y

z

α

Figure 9

� EXAMPLE 3 Find the mass of a solid sphere S if its density is proportion-
al to the distance from the center.

SOLUTION Center the sphere at the origin and let its radius be a.The density 

is given by Thus, the mass m is given by

�

� EXAMPLE 4 Find the volume and center of mass of the homogeneous solid
S that is bounded above by the sphere and below by the cone where
a and are constants (Figure 9).

SOLUTION The volume V is given by

It follows that the mass m of the solid is

where k is the constant density.
From symmetry, the center of mass is on the z-axis; that is, To find

we first calculate 

Thus,

� =

3
8

 a11 + cos a2

 z =

1
4 pa4k sin2 a

2
3 pa3k11 - cos a2 =

3a sin2 a
811 - cos a2

 =

L

a

0
 
1
2

 pka4 sin f cos f df =

1
4

 pa4k sin2 a

 =

L

a

0 L

2p

0
 
1
4

 ka4 sin f cos f du df

 =

L

a

0 L

2p

0 L

a

0
kr3 sin f cos f dr du df

 Mxy =

l
S 

kz dV =

L

a

0 L

2p

0 L

a

0
k1r cos f2r2 sin f dr du df

Mxy.z,
x = y = 0.

m = kV =

2pa3k

3
 11 - cos a2

 =

2pa3

3 L

a

0
sin f df =

2pa3

3
 11 - cos a2

 =

L

a

0 L

2p

0
 aa3

3
bsin f du df

 V =

L

a

0 L

2p

0 L

a

0
r2 sin f dr du df

a

f = a,r = a

 = kpa4

 = k 
a4

4 L

p

0 L

2p

0
sin f du df =

1
2

 kpa4

L

p

0
sin f df

 m =

l
S 

 d dV = k
L

p

0 L

2p

0 L

a

0
rr2 sin f dr du df

d = k2x2
+ y2

+ z2
= kr.

d

d

l
appropriate

limits

f1r sin f cos u, r sin f sin u, r cos f2r2 sin f dr du df
l
S 

f1x, y, z2 dV =
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Concepts Review
1. dz dy dx takes the form _____ in cylindrical coordinates

and the form _____ in spherical coordinates.

2. becomes _____ in cylindrical

coordinates.
L

1

0 L

21 - x2

0 L

3

0
xy dz dy dx

3. If S is the unit sphere centered at the origin, then

when written as an iterated integral in spherical coor-

dinates, becomes _____.

4. The value of the integral in Question 3 is _____.

l
S 

z2 dV,

Problem Set 13.8

In Problems 1–6, evaluate the integral which is given in cylindrical
or spherical coordinates, and describe the region R of integration.

1. 2.

3. 4.

5.

6.

In Problems 7–14, use cylindrical coordinates to find the indicated
quantity.

7. Volume of the solid bounded by the paraboloid
and the plane 

8. Volume of the solid bounded above by the sphere
below by the plane and laterally by the

cylinder 

9. Volume of the solid bounded above by the sphere cen-
tered at the origin having radius 5 and below by the plane 

10. Volume of the solid bounded above by the plane
below by the xy-plane, and laterally by the right circu-

lar cylinder having radius 4 and whose axis is the z-axis.

11. Volume of the solid bounded above by the sphere
and below by the paraboloid 

12. Volume of the solid under the surface above the
xy-plane, and within the cylinder 

13. Center of mass of the homogeneous solid bounded above
by and below by 

14. Center of mass of the homogeneous solid inside
outside below and

above 

In Problems 15–22, use spherical coordinates to find the indicated
quantity.

15. Mass of the solid inside the sphere and outside the
sphere if the density is proportional to the dis-
tance from the origin

16. Mass of a solid inside a sphere of radius 2a and outside a
circular cylinder of radius a whose axis is a diameter of the

r = a 1a 6 b2
r = b

z = 0
z = 12 - x2

- y2,x2
+ y2

= 1,x2
+ y2

= 4,

z = x2
+ y2z = 12 - 2x2

- 2y2

x2
+ y2

= 2x
z = xy,

r2
= 4zr2

+ z2
= 5

z = y + 4,

z = 4.

x2
+ y2

= 4
z = 0,x2

+ y2
+ z2

= 9,

z = 4z = x2
+ y2

L

p>2

0 L

p>2

0 L

a

0
r2 cos2 f sin f dr du df

L

p

0 L

2p

0 L

a

0
r2 sin f dr du df

L

p

0 L

sin u

0 L

2

0
r dz dr du

L

p>4

0 L

3

0 L

9 - r2

0
zr dz dr du

L

2p

0 L

3

1 L

12

0
r dz dr du

L

2p

0 L

3

0 L

12

0
r dz dr du

sphere, if the density is proportional to the square of the distance
from the center of the sphere

17. Center of mass of a solid hemisphere of radius a, if the
density is proportional to the distance from the center of the
sphere

18. Center of mass of a solid hemisphere of radius a, if the
density is proportional to the distance from the axis of symmetry

19. Moment of inertia of the solid of Problem 18 with respect
to its axis of symmetry

20. Volume of the solid within the sphere 
outside the cone and above the xy-plane

21. Volume of the smaller wedge cut from the unit sphere by
two planes that meet at a diameter at an angle of 30°

22.

23. Find the volume of the solid bounded above by the plane
and below by the paraboloid Hint: In cylin-

drical coordinates the plane has equation and the
paraboloid has equation Solve simultaneously to get the
projection in the xy-plane.

24. Find the volume of the solid inside both of the spheres
and 

25. For a solid sphere of radius a, find each average distance.
(a) From its center
(b) From a diameter
(c) From a point on its boundary (consider )

26. For any homogeneous solid S, show that the average
value of the linear function on S
is where is the center of mass.

27. A homogeneous solid sphere of radius a is centered at the
origin. For the section S bounded by the half-planes and

(like a section of an orange), find each value.
(a) x-coordinate of the center of mass
(b) Average distance from the z-axis

28. All spheres in this problem have radius a, constant densi-
ty k, and mass m. Find in terms of a and m the moment of inertia
of each of the following:
(a) A solid sphere about a diameter
(b) A solid sphere about a tangent line to its boundary (the Par-

allel Axis Theorem holds also for solids; see Problem 28 of
Section 13.5)

u = a

u = -a

1x, y, z2f1x, y, z2,
f1x, y, z2 = ax + by + cz + d

r = 2a cos f

r = 2.r = 222 cos f

z = r2.
z = r sin u

z = x2
+ y2.z = y

L

3

-3L

29 - x2

-29 - x2L

29 - x2
- z2

-29 - x2
- z2
1x2

+ y2
+ z223>2 dy dz dx

z = 2x2
+ y2,

x2
+ y2

+ z2
= 16,
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720 Chapter 13 Multiple Integrals

A function f from a set A to a set B
is said to be one-to-one if distinct
elements x and y in A get mapped to
distinct elements and in B.
The function f is onto if its range
consists of the set B. A function f
that is one-to-one and onto is guar-
anteed to have an inverse 
denotes the set of all ordered pairs
of real numbers.

�2f-1.

f(y)f(x)

Terminology and Notation

z

x

y

aa b b

Figure 10

(c) The two-sphere solid of Figure 10 about the z-axis

29. Suppose that the left sphere in Figure 10 has density k
and the right sphere density ck. Find the y-coordinate of the
center of mass of this two-sphere solid (convince yourself that
the analogue of Problem 33 of Section 13.5 is valid).

Answers to Concepts Review: 1.

2.

3. 4. 4p>15
L

p

0 L

2p

0 L

1

0
r4 cos2 f sin f dr du df

L

p>2

0 L

1

0 L

3

0
r3 cos u sin u dz dr dur2 sin f dr du df

r dz dr du;

The formulas

are specific cases of a change of variable formula. They illustrate a general result
that we discuss in this section. Before presenting the result for multiple integrals,
we review the concept of change of variables, or substitutions, for single integrals.

If g is a one-to-one function of a single variable, then g has an inverse and
we know from Chapter 5 that

Interchanging the roles of x and u allows us to write this as

This last formula can be seen as the result of making the substitution 
This function, or mapping, is illustrated in Figure 1. In this section we will develop
an analogous formula for change of variables in multiple integrals. We begin by
studying transformations from to �2.�2

x = g1u2.
L

b

a
f1x2 dx =

L

g-11b2

g-11a2
f1g1u22 g¿1u2 du

L

b

a
f1g1x22 g¿1x2 dx =

L

g1b2

g1a2
f1u2 du

g-1

 dx dy dz = r2 sin f dr du df

 dx dy dz = r dz dr du

 dx dy = r dr du

13.9
Change of Variables 

in Multiple Integrals

g–1(a)

g–1

g

g–1(b) x = g(u)u a b
u x

Figure 1

Transformations from the uv-Plane to the xy-Plane Let

and let

G1u, v2 = 1x1u, v2, y1u, v22

x = x1u, v2 and y = y1u, v2

720



Section 13.9 Change of Variables in Multiple Integrals 721

The function G is a vector-valued function with a vector input. Such a function is
called a transformation from to The ordered pair is called
the image of under the transformation G, and is called the preimage of

The image of a set S in the -plane is equal to that set of points in the
xy-plane satisfying where is in S. The function G cannot 
be graphed in the ordinary way because it would require four dimensions. Instead,
we illustrate the function as a mapping from points in the -plane to points in 
the xy-plane. The situation is illustrated in Figure 2. This figure shows a grid in the 

-plane with lines parallel to the u- and -axes, and its image in the xy-plane. The
images of vertical lines in the -plane are called u-curves of G (vertical lines in
the -plane are of the form ). Analogously, the images of horizontal
lines are called v-curves of G.

u = constantuv
uv

vuv

uv

(u, v)1x, y2 = G1u, v2, (x, y)uv(x, y).
(u, v)(u, v)

1x, y2 = G1u, v2�2.�2

� EXAMPLE 1 Let

and Find and graph the u-curves and -curves for G
for the grid and or and

SOLUTION If we solve the system

for u and , we obtain

The u-curves are determined by

This leads to the curves

These are parallel lines, each having a slope of Similarly, the -curves are ob-
tained by solving the equations

C =

1
2

 x -

1
2

 y, C = 1, 2, 3, 4

v-1.

y = 2C - x, C = 3, 4, 5

C =

1
2

 x +

1
2

 y, C = 3, 4, 5

 v =

1
2

 x -

1
2

 y

 u =

1
2

 x +

1
2

 y

v

 y = u - v

 x = u + v

3 … u … 526. 1v = 1, 2, 3, 41 … v … 4251u, v2: 1u = 3, 4, 5
vG1u, v2 = 1x1u, v2, y1u, v22.

 y = y1u, v2 = u - v

 x = x1u, v2 = u + v

2 31 4

1

2

3

4

v

u
4 62

2

4

y

x

G–1

G

Figure 2
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2 3 541

2

3

1

4

v

2

3

1

–1

4

y

u 2 3 5 6 7 841 x

G–1

G

S

Rv = 2

u = 3

v-curve for v = 2

u-curve for u = 3

Figure 3

for y when and 4. The solution is

These are also parallel lines, each having slope Figure 3 shows these curves.
The u-curve for and the  -curve for  are dashed. �v = 2vu = 3

+1.

y = -2C + x, C = 1, 2, 3, 4

C = 1, 2, 3,

� EXAMPLE 2 For and let

and

Find and graph the u-curves and -curves for G for the grid 
and or and and

identify the u-curve for 

SOLUTION In order to solve the system

for u and , we solve the second equation for (in terms of u), getting 
Substituting this result into the first equation gives

which is equivalent to

This is a quadratic equation in so we can apply the quadratic formula to obtain

(We must take the positive sign in the quadratic formula, otherwise the expression
on the right side will be negative.) Thus,

 v =

y

u
=

yA1
2

 ax + 2x2
+ 4y2b

 u = B1
2

 ax + 2x2
+ 4y2b

u2
=

x + 2x2
+ 4y2

2

u2,

u4
- xu2

- y2
= 0

x = u2
- y2>u2

v = y>u.vv

 y = uv

 x = u2
- v2

u = 4.
0 … u … 5)},(v = 0, 1, 2, 3, 4, 50 … v … 5)(u = 0, 1, 2, 3, 4, 5

{(u, v):v

G1u, v2 = 1x1u, v2, y1u, v22
 y = y1u, v2 = uv
 x = x1u, v2 = u2

- v2

v 7 0,u 7 0
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Section 13.9 Change of Variables in Multiple Integrals 723

These formulas apply so long as we leave it as an exercise to show
that if and only if The u-curves are determined by

Which simplifies as follows:

for These are horizontal parabolas opening to the left. Similar-
ly, the -curves are determined by

These are horizontal parabolas opening to the right.The - and -curves are shown
in Figure 4.

The u-curve corresponding to is

This u-curve is the dashed curve in Figure 4. �

The Change of Variable Formula for Double Integrals When mak-

ing a change of variable in a single integral, such as we must take into

account

1. the integrand 

2. the differential dx, and

3. the limits of integration.

For double integrals, such as the procedure is similar: We
must take into account

1. the integrand 

2. the differential dx dy, and

3. the region of integration.

The main result is given in the next theorem.

f(x, y),

O
R 

f1x, y2 dx dy,

f(x),

L

b

a
f1x2 dx,

x = -

y2
- 44

42 = -

1
16

 y2
+ 16, 0 … y … 20

u = 4 10 … v … 52
vu

 x =

y2
- C4

C2

 x2
+ 4y2

=

4y4

C4 -

4xy2

C2 + x2

 C2
 Ax + 2x2

+ 4y2 B = 2y2

 C =

y3Ax + 2x2
+ 4y2 B >2

v
C = 0, 1, 2, 3, 4, 5.

 x = -

y2
- C4

C2

 4C4
- 4C2x + x2

= x2
+ 4y2

 2C2
= x + 2x2

+ 4y2

C = Cx + 2x2
+ 4y2

2
, C = 0, 1, 2, 3, 4, 5

1u, v2 = 10, 02.1x, y2 = 10, 02
1x, y2 Z 10, 02;

2 3 5 641

2

3

1

4

5

6

v

20

10

y

u

–10 20–20 10 x

G

Figure 4
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tv ∆v tv ∆v

tu ∆u
tu ∆u

(xk, yk)
(xk+1, yk+1)

G

Rk
∆v

∆u
(uk, vk) (uk+1, vk+1)

Sk

Area � �� tu ∆u × tv ∆v �� Area � �� tu ∆u × tv ∆v ��

Figure 5

Sketch of Proof We begin in the -plane by taking a regular partition (i.e., a
partition with a constant and ) of a rectangle containing S. The image of this
partition will be a partition of the region R in the xy-plane, although in general the
u-curves and -curves are not parallel to the x- and y-axes. (In fact, the u-curves
and the -curves are usually not lines.) Let be the lower left
corner of the ith rectangle, and let be the image of under the trans-
formation G. Let denote the kth rectangle in the partition of the region S, and
let be its image in the xy-plane. See Figure 5. The double integral of f over the
region R is then

O
R 

f1x, y2 dx dy L a
n

k = 1
f1xk, yk2 ¢Ak

Rk

Sk

1ui, vi21xi, yi2
1ui, vi2, i = 1, 2, Á , n,v

v

¢v¢u
uv

where is the area of Although the region is not a rectangle, it closely
resembles a parallelogram, so its area is roughly that of a parallelogram. In Sec-
tion 11.4 we showed how to get the area of a parallelogram using the cross product
of the two vectors that make up two sides. We must therefore find the two vectors
that are tangent to the u-curve and the -curve at We will show how the
tangent vector to the u-curve is obtained; the tangent to the -curve is obtained
similarly. Suppose that is the image of as shown in Fig-
ure 5. The vector from to is then

 = ¢ua 0x

0u
 1uk, vk2 i +

0y

0u
 1uk, vk2 jb

 L ¢u 
0x

0u
 1uk, vk2 i + ¢u 

0y

0u
 1uk, vk2 j

 + [y1uk + 1, vk2 - y1uk, vk2] j
 1xk + 1 - xk2 i + 1yk + 1 - yk2 j = [x1uk + 1, vk2 - x1uk, vk2] i

1xk + 1, yk + 121xk, yk2
1uk + 1, vk + 121xk + 1, yk + 12

v
1xk, yk2.v

RkRk.¢Ak

Theorem A Change of Variables for Double Integrals

Suppose G is a one-to-one transformation from to which maps the
bounded region S in the -plane onto the bounded region R in the xy-plane. If
G is of the form then

where called the Jacobian, is equal to the determinant

J1u, v2 = 4
0x

0u

0x

0v
0y

0u

0y

0v

4 =

0x

0u
  

0y

0v
-

0x

0v
  

0y

0u

J(u, v),

O
R 

f1x, y2 dx dy =

O
S 

f1x1u, v2, y1u, v22 ƒ J1u, v2 ƒ  du dv

G1u, v2 = 1x1u, v2, y1u, v22,uv
�2�2
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Section 13.9 Change of Variables in Multiple Integrals 725

The vector in parentheses, which we will call is tangent to the u-curve through
Similarly, the vector

is tangent to the -curve through The area of the region is
therefore

Thus, we have

This completes the sketch of the proof. �

� EXAMPLE 3 Evaluate where R is the trian-

gle with vertices (0, 0), and 

SOLUTION Let and Solving for x and y gives
and The region R can be specified as

Substituting u and gives

 0 …

1
2

 1u + v2 … p

 -
1
2

 1u + v2 …

1
2

 1v - u2 …

1
2

 1u + v2
v

 0 … x … p

 -x … y … x

y =
1
21v - u2.x =

1
21u + v2

v = x + y.u = x - y

1p, p2.1p, -p2,OR
cos1x - y2 sin1x + y2 dA,

 L

O
S 

f1x1u, v2, y1u, v22 ƒ J1u, v2 ƒ  du dv

 L a
n

k = 1
f1x1uk, vk2, y1uk, vk22 ƒ J1uk, vk2 ƒ ¢u ¢v

 
O
R 

f1x, y2 dx dy L a
n

k = 1
f1xk, yk2 ¢Ak

 = ƒ J1uk, vk2 ƒ ¢u ¢v

 = ¢u ¢v 3 c 0x

0u
  
0y

0v
 -

0y

0u
  
0x

0v
d

(uk, vk)

3  7k 7

 = ¢u ¢v $ 4
0x

0u

0y

0u

0x

0v

0y

0v

4
1uk,vk2

 k $

 = & 6
i j k

¢u 
0x

0u
 1uk, vk2 ¢u 

0y

0u
 1uk, vk2 0

¢v 
0x

0v
 1uk, vk2 ¢v 

0y

0v
 1uk, vk2 0

6 &

 ¢Ak L 7¢u tu * ¢v tv 7

Rk¢Ak1xk, yk2.v

tv =

0x

0v
 1uk, vk2 i +

0y

0v
 1uk, vk2 j

1xk, yk2.
tu,
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v

u

2π

2π

S

y

x

π

–π

π

R

Figure 6

which reduces to

This is the region S in the -plane (see Figure 6). The Jacobian for this transfor-
mation is

Thus

�

The region of integration often suggests a transformation, as the next example
illustrates.

� EXAMPLE 4 Find the center of mass of the region R in the first quadrant
bounded by

if the density is proportional to the square of the distance from the origin.

SOLUTION The mass is Although the integrand is 

simple, this is a difficult integral to evaluate because the limits are complicated.
However, the substitutions and transform the region R
to the region S, which, in the -plane, is the rectangle

(See Figure 7.) Solving for x and y in the system and 
gives

v = y2
- x2u = x2

+ y2

9 … u … 16 and 1 … v … 9

uv
v = y2

- x2u = x2
+ y2

OR
k1x2

+ y22 dx dy.

x2
+ y2

= 9 y2
- x2

= 1
x2

+ y2
= 16 y2

- x2
= 9

 =

1
2

 csin u -

1
2

 u -

1
4

 sin 2u d
0

2p

= -

1
2

 p

 =

1
2L

2p

0
 acos u -

1
2

-

1
2

 cos 2ub  du

 =

1
2L

2p

0
 acos u -

1 + cos 2u

2
b  du

 =

1
2L

2p

0
1cos u - cos2 u2 du

 =

1
2L

2p

0
cos u 11 - cos u2 du

 =

1
2L

2p

0
cos u 11 - cos12p - u22 du

 =

1
2L

2p

0 L

2p- u

0
cos u sin v dv du

 
O
R 

cos1x - y2 sin1x + y2 dA =

O
S 

cos u sin v ` 1
2
` dv du

J = 4
0x

0u

0x

0v
0y

0u

0y

0v

4 = 4
1
2

1
2

-

1
2

1
2

4 =

1
2

uv

 0 … u + v … 2p

 u Ú 0, v Ú 0

726



Section 13.9 Change of Variables in Multiple Integrals 727

The Jacobian for this transformation is therefore

The mass is then

The integral on the third last line could be evaluated using Formula 54 from the
table of integrals at the back of the book, or with a CAS. The moments are

and

 =

k22
4

 a100215 -

308
5
27 -

928
15
22b L 48.376k

 =

k

222L

16

9
Au2u - 1 - u2u - 9 B  du

 =

k

422L

16

9 L

9

1
 

u2u - v
  dv du

 =

k

422L

16

9 L

9

1
 
u2u + v2u2

- v2
  dv du

 Mx =

O
R 

yk1x2
+ y22 dx dy = k

O
S 
Au + v

2
 u ƒ J1u, v2 ƒ  du dv

 =

k22
4

 a500 -

1564
15
217 -

324
5
22 +

100
3
210b L 29.651k

 =

k

222L

16

9
Au2u + 9 - u2u + 1 B  du

 =

k

422L

16

9 L

9

1
 

u2u + v
  dv du

 =

k

422L

16

9 L

9

1
 
u2u - v2u2

- v2
  dv du

 My =

O
R 

xk1x2
+ y22 dx dy = k

O
S 
Au - v

2
 u ƒ J1u, v2 ƒ  du dv

 - 128 arcsin 
1
16

+ 225 +

81
2

 arcsin 
1
9
b L 16.343k

 =

k

4
 a45

2
27 + 128 arcsin 

9
16

-

81
4

 p -

1
2

 2255

 =

k

4L

9

1
A2256 - v2

- 281 - v2 B  dv

 =

k

4L

9

1
 C2u2

- v2 D
u = 9

u = 16
 dv

 = k
L

9

1 L

16

9
 

u

42u2
- v2

  du dv

 m =

O
R 

k1x2
+ y22 dx dy = k

O
S 

u ƒ J1u, v2 ƒ  du dv

 J1u, v2 = 4
0x

0u

0x

0v
0y

0u

0y

0v

4 = 4
1

222
 1u - v2-1>2

-

1

222
 1u - v2-1>2

1

222
 1u + v2-1>2 1

222
 1u + v2-1>2

4 =

1

42u2
- v2

 y = Au + v

2
=

122
 1u + v21>2

 x = Au - v

2
=

122
 1u - v21>2

5 10 15 20

2

4

6

8

10

v

u

G–1G

S

1 2 3 4

1

2

3

4

y

x

R

Figure 7
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1 2 3 4

1

2

3

4

y

x

R

Figure 8

The integrals on the third last lines can be evaluated using Formula 96 from the
table of integrals, or by using a CAS.The coordinates of the center of mass are thus

The point is shown in Figure 8. �

The Change of Variable Formula for Triple Integrals Theorem A
generalizes to triple (and even higher-dimensional) integrals. If G is a one-to-one
transformation from to which maps the bounded region S in -space onto
the bounded region R in the xyz-plane, and if G is of the form 

then

where is the determinant

� EXAMPLE 5 Derive the change of variable formula 
for the transformation to cylindrical coordinates.

SOLUTION Since the change of variables is and 
the Jacobian is

Thus,

�

We leave it as an exercise (Problem 21) to derive the relationship 
for spherical coordinates.r2 sin f dr du df

dx dy dz =

dx dy dz = ƒ J1r, u, z2 ƒ  dr du dz = r dr du dz

 = r cos2 u + r sin2 u = r

 = 0 ` -r sin u 0
r cos u 0

` - 0 ` cos u 0
sin u 0

` + 1 ` cos u -r sin u
sin u r cos u

`

 J1r, u, z2 = 6
0x

0r

0x

0u

0x

0z
0y

0r

0y

0u

0y

0z

0z

0r

0z

0u

0z

0z

6 = 3 cos u -r sin u 0
sin u r cos u 0

0 0 1

3

z = z,x = r cos u, y = r sin u

dx dy dz = r dr du dz

J1u, v, w2 = 6
0x

0u

0x

0v

0x

0w
0y

0u

0y

0v

0y

0w

0z

0u

0z

0v

0z

0w

6 .

J(u, v, w)

 * ƒ J1u, v, w2 ƒ  du dv dw

 
l
R 

f1x, y, z2 dx dy dz =

l
S 

f1x1u, v, w2, y1u, v, w2, z1u, v, w22

y1u, v, w2, z1u, v, w22,1x1u, v, w2, G1u, v2 =

uvw�3�3

1x, y2 = 11.814, 2.9602
 y =

Mx

m
L

48.376k

16.343k
L 2.960

 x =

My

m
L

29.651k

16.343k
L 1.814
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Section 13.9 Change of Variables in Multiple Integrals 729

Concepts Review
1. Under a transformation from the -plane to the 

xy-plane, the image of a vertical line is called a _____ and the
image of a horizontal line is called a _____.

2. A change of variable for a double integral must take into
account _____, _____, and _____.

uv

3. The determinant is called the _____.

4. The formula for a change of variable in a double integral
is _____ du dv.4S  f1x1u, v2, y1u, v224R f1x, y2 dx dy =

4 0x

0u

0x

0v
0y

0u

0y

0v

4

Problem Set 13.9
1. For the transformation sketch the

u-curves and -curves for the grid and
or and

2. For the transformation sketch
the u-curves and -curves for the grid and

or and

3. For the transformation sketch
the u-curves and -curves for the grid and

or and

4. For the transformation sketch
the u-curves and -curves for the grid and

or and

5. For the transformation 
sketch the u-curves and -curves for the grid

and or and

6. For the transformation 
sketch the u-curves and -curves for the

grid and or
and

In Problems 7–10, find the image of the rectangle with the given
corners and find the Jacobian of the transformation.

7. (0, 0), (2, 0), (2, 1), (0, 1)

8. (0, 0), (3, 0), (3, 1), (0, 1)

9. (0, 0), (1, 0), (1, 1), (0, 1)

10. (0, 0), (3, 0), (3, 1), (0, 1)

In Problems 11–16, find the transformation from the -plane to
the xy-plane and find the Jacobian. Assume that and 

11.

12.

13.

14.

15.

16.

In Problems 17–20, use a transformation to evaluate the given
double integral over the region R which is the triangle with vertices
(1, 0), (4, 0), and (4, 3).

17.
O
R 

ln 
x + y

x - y
  dA

u = x2, v = xy

u = xy, v = x

u = x2
- y2, v = x + y

u = x2
+ y2, v = x

u = 2x - 3y, v = 3x - 2y

u = x + 2y, v = x - 2y

y Ú 0.x Ú 0
uv

x = u, y = u2
- v2;

x = u2
+ v2, y = v;

x = 2u + 3v, y = u - v;

x = u + 2v, y = u - 2v;

-2 … u … 226.
1v = 1, 2, 31 … v … 3251u, v2: 1u = -2, -1, 0, 1, 2

vy = v - v>1u2
+ v22,

x = u + u>1u2
+ v22,

0 … u … 326.
1v = 1, 2, 31 … v … 3251u, v2: 1u = 0, 1, 2, 3

v- v>1u2
+ v22,

y =x = u>1u2
+ v22,

0 … u … 326.1v = 0, p, 2p0 … v … 2p2
51u, v2: 1u = 0, 1, 2, 3v

x = u cos v, y = u sin v,

0 … u … 326.1v = 0, p>2, p0 … v … p2
51u, v2: 1u = 0, 1, 2, 3v

x = u sin v, y = u cos v,

2 … u … 526.1v = 1, 2, 31 … v … 32
51u, v2: 1u = 2, 3, 4, 5v

x = 2u + v, y = v - u,

2 … u … 526.1v = 1, 2, 3 1 … v … 32
51u, v2: 1u = 2, 3, 4, 5v

x = u + v, y = v - u,
18.

19.

20.

21. Find the Jacobian for the transformation from rectangu-
lar coordinates to spherical coordinates.

22. Find the volume of the ellipsoid 
by making the change of variables and

Also, find the moment of inertia of this solid about the 
z-axis assuming that it has constant density k.

23. Suppose X and Y are continuous random variables with
joint PDF and suppose U and V are random variables that
are functions of X and Y such that the transformation

is one-to-one. Show that the joint PDF of U and V is

Hint: Let R be a region in the xy-plane and let S be its preimage.
Show that and get a double inte-
gral for each of these.

24. Suppose that the random variables X and Y have joint
PDF

that is, X and Y are uniformly distributed over the square
Find

(a) the joint PDF of  and and
(b) the marginal PDF of U.

25. Suppose X and Y have joint PDF

Find
(a) the joint PDF of and 
(b) the marginal PDF of U.

Answers to Concepts Review: 1. u-curve; -curve 2. the
integrand; the differential dx dy; the region of integration
3. Jacobian 4. ƒ J1u, v2 ƒ

v

V = XU = X + Y

f1x, y2 = e e-x - y, if x Ú 0, y Ú 0
0, otherwise

V = X - Y,U = X + Y

0 … x … 2, 0 … y … 2.

f1x, y2 = c 1
4

, if 0 … x … 2, 0 … y … 2

0, otherwise

P11X, Y2 H R2 = P11U, V2 H S2

g1u, v2 = f1x1u, v2, y1u, v22 ƒ J1u, v2 ƒ

X = x1U, V2 and Y = y1U, V2

f(x, y)

z = cw.
x = ua, y = vb,z2>c2

= 1
y2>b2

+x2>a2
+

O
R 

12x - y2 cos1y - 2x2 dA

O
R 

sin1p12x - y22 cos1p1y - 2x22 dA

O
R 
Ax + y

x - y
  dA
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13.10 Chapter Review

Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to defend your answer.

1.

2.

3.

4.

5.

6. If f is continuous and nonnegative on R and 

where is an interior point of R, then 

7. If then 

on R.

8. If on R and then

for all in R.

9. If gives the density of a lamina at 
the coordinates of the center of mass of the lamina do not in-
volve k.

10. If gives the density of the lamina
we know without calculating

that and 

11. If then 

12. If the top of a right circular cylinder of radius 1 is sliced off
by a plane that makes an angle of 30° with the base of the cylin-
der, the area of the resulting slanted top is 

13. There are eight possible orders of integration for a triple
iterated integral.

14. represents the volume of a right cir-

cular cylinder of radius 1 and height 2.

15. If and then the surface G determined
by has area at most 3.

16. For the transformation from Cartesian to polar coordi-
nates, the Jacobian is 

17. For the transformation, the Jacobian is
J1u, v2 = 2.

x = 2u, y = 2v,

J1r, u2 = r.

z = f1x, y2, 0 … x … 1, 0 … y … 1,
ƒ fy ƒ … 2,ƒ fx ƒ … 2

L

2

0 L

2p

0 L

1

0
 dr du dz

223p>3.

l
S 

 dV = 84p

S = 51x, y, z2: 1 … x2
+ y2

+ z2
… 166,

y 7
1
2.x 6

1
2

51x, y2: 0 … x … 1, 0 … y … 16,
d1x, y2 = y2>11 + x22

(x, y),d1x, y2 = k

(x, y)f1x, y2 = 0
O
R 

f1x, y2 dA = 0,f1x, y2 Ú 0

f1x, y2 … g1x, y2
O
R 

f1x, y2 dA …

O
R 

g1x, y2 dA,

O
R 

f1x, y2 dA 7 0.1x0, y02
f1x0, y02 7 0,

L

2

1 L

2

0
sin21x>y2 dx dy … 2

L

1

-1L

1

-1
ex2

+ 2y2
 dy dx = 4

L

1

0 L

1

0
ex2

+ 2y2
 dy dx

L

2

0 L

1

-1
sin1x3y32 dx dy = 0

L

1

0 L

x

0
f1x, y2 dy dx =

L

1

0 L

y

0
f1x, y2 dx dy

L

b

a L

b

a
f1x2f1y2 dy dx = c

L

b

a
f1x2 dx d2

Sample Test Problems

In Problems 1–4, evaluate each integral.

1. 2.

3.

4.

In Problems 5–8, rewrite the iterated integral with the indicated
order of integration. Make a sketch first.

5.

6.

7.

8.

9. Write the triple iterated integrals for the volume of a
sphere of radius a in each case.
(a) Cartesian coordinates (b) Cylindrical coordinates
(c) Spherical coordinates

10. Evaluate where S is the region bounded

by and between and 

11. Evaluate where S is the region bounded by

and and the xy-plane.

12. Evaluate where S is the region between

the circles and 

13. Find the center of mass of the rectangular lamina bound-
ed by and if the density is

14. Find the moment of inertia of the lamina of Problem 13
with respect to the x-axis.

15. Find the area of the surface of the cylinder 
lying in the first octant between the planes and 

16. Evaluate by changing to cylindrical or spherical
coordinates.

(a)
L

3

0 L

29 - x2

0 L

2

0
2x2

+ y2 dz dy dx

y = 3x.y = x
z2

+ y2
= 9

d1x, y2 = xy2.
y = 2x = 1, x = 3, y = 0,

x2
+ y2

= 9.x2
+ y2

= 4

O
S 

 
1

x2
+ y2  dA,

y2
+ z = 1x2

+ z = 1

l
S 

z2 dV,

x = p.x = 0y = 0y = sin x

O
S 

1x + y2 dA,

L

2

0 L

4

x2 L

4 - y

0
f1x, y, z2 dz dy dx; dx dy dz

L

1

0 L

11 - x2>2

0 L

1 - x - 2y

0
f1x, y, z2 dz dy dx; dx dz dy

L

1

0 L

cos-1 y

0
f1x, y2 dx dy; dy dx

L

1

0 L

1

x
f1x, y2 dy dx; dx dy

L

2

1 L

x

3
 

L

23y

0
 

y

y2
+ z2  dz dy dx

L

p>2

0 L

2 sin u

0
r cos u dr du

L

2

-2L

24 - y2

-24 - y2
2xy2 dx dy

L

1

0 L

1x

x
xy dy dx
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(b)

17. Find the mass of the solid between the spheres
and if the density is propor-

tional to the distance from the origin.

18. Find the center of mass of the homogeneous lamina
bounded by the cardioid 

19. Find the mass of the solid in the first octant under the
plane (a, b, c positive) if the density is
d1x, y, z2 = kx.

x>a + y>b + z>c = 1

r = 411 + sin u2.

x2
+ y2

+ z2
= 9x2

+ y2
+ z2

= 1

L

2

0 L

24 - x2

0 L

24 - x2
- y2

0
z24 - x2

- y2 dz dy dx
20. Compute the volume of the solid bounded by

and 

21. Use a transformation to evaluate the integral 

where R is the rectangle with vertices (0, 0),

and 1p>2, p>22.
1p>2, -p>22, 1p, 02,

O
R 

sin1x - y2 cos1x + y2 dA

x2
+ 1y - 122 = 1.z = x2

+ y2, z = 0,
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In Problems 1–9, find parametric equations for the given curve. (Be sure to give the domain
for the parameter t.)

1. The circle centered at the origin having radius 3

2. The circle centered at (2, 1) having radius 1

3. The semicircle with 

4. The semicircle with having a clockwise orientation

5. That part of the line between the points and (3, 2)

6. That part of the line that is in the first quadrant with an orientation that
is down and to the right

7. That part of the line that is in the first quadrant with an orientation that
is up and to the left

8. That part of the parabola that is above the x-axis having an orientation
that is left to right

9. That part of the parabola that is above the x-axis having an orientation
that is right to left

10. Use the arc length formula to find the length of the curve in Problem 6.

In Problems 11–16, find the gradient of the given function.

11.

12.

13.

14.

15.

16.

Evaluate the integrals in Problems 17–22.

17. 18.

19. 20.

21. 22.

23. The integral in Problem 22 represents the volume of some region in three-space.
What is this region?

24. Find the surface area of that part of the paraboloid that lies
above the plane 

25. Find a unit normal vector to the graph of at the point (3, 4, 12).x2
+ y2

+ z2
= 169

z = 36.
z = 144 - x2

- y2

L

2p

0 L

p

0 L

2

1
r2 sin f dr df du

L

2p

0 L

2

1
r2 dr du

L

1

-1L

4

1
1x2

+ 2y2 dy dx
L

1

0 L

2

1
xy dy dx

L

p

0
sin t cos t dt

L

p

0
sin2 t dt

f1x, y, z2 =

12x2
+ y2

+ z2

f1x, y, z2 = xy + xz + yz

f1x, y, z2 =

1

x2
+ y2

+ z2

f1x, y, z2 = x2
+ y2

+ z2

f1x, y2 = xe-xy
+ yexy

f1x, y2 = x sin x + y cos y

y = 9 - x2

y = 9 - x2

y = 9 - x

y = 9 - x

1-2, 22y = 2

y … 0x2
+ y2

= a2

y 7 0x2
+ y2

= 4

REVIEW &
PREVIEW

PROBLEMS

732



Vector CalculusCHAPTER 14
14.1 Vector Fields

14.2 Line Integrals

14.3 Independence 
of Path

14.4 Green’s Theorem
in the Plane

14.5 Surface Integrals

14.6 Gauss’s Divergence
Theorem

14.7 Stokes’s Theorem

14.1
Vector Fields
The concept of a function has played a central role in calculus. This concept, and
the associated calculus, has been steadily generalized. Most of the first two-thirds
of this book deals with functions where the input is a real number and the output
is a real number. In Chapter 11 we introduced vector-valued functions, that is, func-
tions whose input is a real number and whose output is a vector. Then in Chap-
ter 12 we introduced real-valued functions of several variables, that is, functions
whose input is a pair or triple (or n-tuple) of real numbers and whose output is a
real number.The natural next step is to study functions whose input is a vector and
whose output is a vector. This is the final step in the usual calculus sequence.

Consider then a function F that associates with each point p in n-space a vec-
tor F(p). A typical example in two-space is

For historical reasons, we refer to such a function as a vector field, a name arising
from a visual image that we now describe. Imagine that to each point p in a region
of space is attached a vector F(p) emanating from p. We cannot draw all these vec-
tors, but a representative sample can give us a good intuitive picture of a field.
Figure 1 is just such a picture for the vector field mentioned
earlier. It is the velocity field of a wheel spinning at a constant rate of radian per
unit of time (see Example 2). Figure 2 might represent the velocity field for water
flowing in a curved pipe.

Other vector fields that arise naturally in science are electric fields, magnetic
fields, force fields, and gravitational fields.We consider only the case in which these
fields are independent of time, which we call steady vector fields. In contrast to a
vector field, a function F that attaches a number to each point in space is called a
scalar field. The function that gives the temperature at each point would be a good
physical example of a scalar field.

� EXAMPLE 1 Sketch a representative sample of vectors from the vector
field

SOLUTION F(x, y) is a unit vector pointing in the same direction as 
that is, away from the origin. Several such vectors are shown in Figure 3. �

xi + yj,

F1x, y2 =

xi + yj2x2
+ y2

1
2

F1x, y2 = -
1
2 yi +

1
2 x j

F1p2 = F1x, y2 = -
1
2 y i +

1
2 x j

Figure 1

y

x

Figure 3Figure 2

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Chapter 14 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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734 Chapter 14 Vector Calculus

� EXAMPLE 2 Sketch a representative sample of vectors from the vector field

and show that each vector is tangent to a circle centered at the origin and has
length equal to one-half the radius of that circle (see Figure 1).

SOLUTION Figure 4 shows a plot of the vector field. If is the
position vector of the point (x, y), then

Thus, F(x, y) is perpendicular to r and is therefore tangent to the circle of radius
Finally,

�

According to Isaac Newton, the magnitude of the force of attraction between
objects of mass M and m, respectively, is given by where d is the distance
between the objects and G is a universal constant.This is the famous Inverse Square
Law of Gravitational Attraction. It supplies us with an important example of a vec-
tor field. Since the vectors represent forces, we will call such a field a force field.

� EXAMPLE 3 Suppose that a spherical object of mass M (e.g., the earth) is
centered at the origin. Derive the formula for the gravitational field of force 
F(x, y, z) exerted by this mass on an object of mass m located at a point (x, y, z) in
space. Then sketch this field.

SOLUTION We assume that we may treat the object of mass M as a point mass
located at the origin. Let Then F has magnitude

The direction of F is toward the origin; that is, F has the direction of the unit vector
We conclude that

This field is sketched in Figure 5. �

The Gradient of a Scalar Field Let determine a scalar field and
suppose that f is differentiable. Then the gradient of f, denoted by is the vector
field given by

We first met gradient fields in Sections 12.4 and 12.5. There we learned that
points in the direction of greatest increase of A vector field F

that is the gradient of a scalar field f is called a conservative vector field, and f is its
potential function (the origin of these names will be clarified in Section 14.3). Such
fields and their potential functions are important in physics. In particular, fields
that obey the inverse square law (e.g., electric fields and gravitational fields) are
conservative, as we now show.

� EXAMPLE 4 Let F be the force resulting from an inverse square law; that is,
let

F1x, y, z2 = -c 
r
7r 73 = -c 

xi + yj + zk

1x2
+ y2

+ z223>2

f(x, y, z).§f1x, y, z2

F1x, y, z2 = §f1x, y, z2 =

0f

0x
  i +

0f

0y
  j +

0f

0z
  k

§f,
f(x, y, z)

F1x, y, z2 =

GMm

7r 72  a -r
7r 7 b = -GMm 

r
7r 73

-r> 7r 7 .

7F 7 =

GMm

7r 72
r = xi + yj + zk.

GMm>d2,

7F1x, y2 7 = 2 A- 1
2 y B2 + A12 x B2 =

1
2 7r 7

7r 7 .
r # F1x, y2 = -

1
2 xy +

1
2 xy = 0

r = xi + yj

F1x, y2 = -
1
2 yi +

1
2 x j

−3

−2 −1

1 2 3

−3

−2

−1

1

2

3

y

x

Figure 4

z

x

y

Figure 5
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Section 14.1 Vector Fields 735

where c is a constant (see Example 3). Show that

is a potential function for F and therefore that F is conservative (for ).

SOLUTION

�

Example 4 was really too easy since we gave the function f.A much harder and
more significant problem is this. Given a vector field F, decide whether it is conser-
vative, and, if so, find its potential function.We discuss this problem in Section 14.3.

The Divergence and Curl of a Vector Field With a given vector field

are associated two other important fields. The first, called the divergence of F, is a
scalar field; the second, called the curl of F, is a vector field.

F1x, y, z2 = M1x, y, z2 i + N1x, y, z2 j + P1x, y, z2 k

 = F1x, y, z2
 = -

c

2
 1x2

+ y2
+ z22-3>212xi + 2yj + 2zk2

 §f1x, y, z2 =

0f

0x
  i +

0f

0y
  j +

0f

0z
  k

r Z 0

f1x, y, z2 =

c2x2
+ y2

+ z2
= c1x2

+ y2
+ z22-1>2

At this point it is hard to see the significance of these fields; this will be appar-
ent later. Our interest now is in learning to calculate divergence and curl easily and
in relating them to the gradient operator Recall that is the operator

When operates on a function f, it produces the gradient which we will also
write as grad f. By a slight (but very helpful) abuse of notation, we can write

Thus, grad f, div F, and curl F can all be written in terms of the operator this is
the way to remember how these fields are defined.

§;

 = a 0P

0y
-

0N

0z
b  i - a 0P

0x
-

0M

0z
b  j + a 0N

0x
-

0M

0y
b  k = curl F

 § * F = 4
i j k
0

0x

0

0y

0

0z

M N P

4
 =

0M

0x
+

0N

0y
+

0P

0z
= div F

 § # F = a 0

0x
  i +

0

0y
  j +

0

0z
  kb # 1Mi + Nj + Pk2

§f,§

§ =

0

0x
  i +

0

0y
  j +

0

0z
  k

§§.To help you visualize the divergence
and curl, we offer this physical inter-
pretation. If F denotes the velocity
field for a fluid, then div F at a point
p measures the tendency of that
fluid to diverge away from p

or accumulate toward
On the other hand,

curl F picks out the direction of the
axis about which the fluid rotates
(curls) most rapidly, and is a
measure of the speed of this rota-
tion. The direction of rotation is ac-
cording to the right-hand rule. We
will expand on this discussion later
in the chapter.

7curl F 7

p 1div F 6 02.
1div F 7 02

What Do They Mean?

Definition div and curl

Let be a vector field for which the first partial derivatives
of M, N, and P exist. Then

 curl F = a 0P

0y
-

0N

0z
b i + a 0M

0z
-

0P

0x
b j + a 0N

0x
-

0M

0y
b k

 div F =

0M

0x
+

0N

0y
+

0P

0z

F = Mi + Nj + Pk
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736 Chapter 14 Vector Calculus

� EXAMPLE 5 Let

Find div F and curl F.

SOLUTION

� = -19xyz22i - 12x - x2y2j + 13yz3
- x2z2k

 curl F = § * F = 4
i j k
0

0x

0

0y

0

0z

x2yz 3xyz3 x2
- z2

4
 div F = §

# F = 2xyz + 3xz3
- 2z

F1x, y, z2 = x2yz i + 3xyz3 j + 1x2
- z22 k

Concepts Review
1. A function that associates with each point in

space a vector is called a _____.

2. In particular, the function that associates with the scalar
function the vector is called a _____.§f1x, y, z2f(x, y, z)

F(x, y, z)
(x, y, z) 3. Two important examples of vector fields in physics that

arise as gradients of scalar fields are _____ and _____.

4. Given a vector field we introduce a
corresponding scalar field div F and a vector field curl F. They
can be defined symbolically by div _____ and curl 
_____.

F =F =

F = Mi + Nj + Pk,

Problem Set 14.1
In Problems 1–6, sketch a sample of vectors for the given vector
field F.

1. 2.

3. 4.

5.

6.

In Problems 7–12, find 

7.

8. 9.

10.

11.

12.

In Problems 13–18, find div F and curl F.

13.

14.

15.

16.

17.

18.

19. Let f be a scalar field and F a vector field. Indicate which
of the following are scalar fields, vector fields, or meaningless.

(a) div f (b) grad f
(c) curl F (d) div (grad f)
(e) curl (grad f) (f) grad (div F)
(g) curl (curl F) (h) div (div F)

F1x, y, z2 = 1y + z2i + 1x + z2j + 1x + y2k
F1x, y, z2 = ex cos y i + ex sin y j + zk

F1x, y, z2 = cos x i + sin y j + 3k

F1x, y, z2 = yzi + xzj + xyk

F1x, y, z2 = x2i + y2j + z2k

F1x, y, z2 = x2i - 2xyj + yz2k

f1x, y, z2 = y2e-2z

f1x, y, z2 = xey cos z

f1x, y, z2 =
1
21x2

+ y2
+ z22

f1x, y, z2 = ln ƒ xyz ƒf1x, y, z2 = sin1xyz2
f1x, y, z2 = x2

- 3xy + 2z

§f.

F1x, y, z2 = -zk

F1x, y, z2 = xi + 0j + k

F1x, y2 = 3xi + yjF1x, y2 = -xi + 2yj

F1x, y2 = xi - yjF1x, y2 = xi + yj

(i) grad (grad f ) (j) div (curl (grad f ))
(k) curl (div(grad f ))

20. Assuming that the required partial derivatives exist and
are continuous, show that

(a) (b)

(c)

(d)

21. Let be an inverse square law field
(see Examples 3 and 4). Show that curl and div 
Hint: Use Problem 20 with 

22. Let Show in contrast
to Problem 21 that div though curl 

23. Let where 
and f is a differentiable scalar function (except possibly at ).
Show that curl (except at ). Hint: First show that 
grad and then apply Problem 20d.

24. Let F(x, y, z) be as in Problem 23. Show that if div 
then where c is a constant.

25. This problem relates to the interpretation of div and curl
given in the margin box just after their definition. Consider the
four velocity fields F, G, H, and L, which have for every z the con-
figuration illustrated in Figure 6. Determine each of the following
by geometric reasoning.

(a) Is the divergence at p positive, negative, or zero?
(b) Will a paddle wheel with vertical axis at p (Figure 4, Sec-

tion 14.7) rotate clockwise, counterclockwise, or not at all?

(c) Now suppose and 
which might be modeled as in 1xi + yj2>2x2

+ y2,
L =F = cj, G = e-y2

j, H = e-x2
j,

f1r2 = cr-3,
F = 0

f = f¿1r2r>r
r = 0F = 0

r = 0
r = 7r 7 = 2x2

+ y2
+ z2F1x, y, z2 = f1r2r,

F = 0.F Z 0,
F1x, y, z2 = cr> 7r 7m, c Z 0, m Z 3.

f = -c> 7r 73.
F = 0.F = 0

F1x, y, z2 = cr> 7r 73
curl 1fF2 = 1f21curl F2 + 1grad f2 * F.

div1fF2 = 1f21div F2 + 1grad f2 # F;

curl1grad f2 = 0;div1curl F2 = 0;
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Section 14.2 Line Integrals 737

Figure 6. Calculate the divergence and curl for each of these
fields and thereby confirm your answers in parts (a) and (b).

26. Sketch a plot of the vector field for (x, y) in the
rectangle From the plot, use the marginal
box that describes the interpretation of div and curl to determine
whether div is positive, negative, or zero at the point (1, 1), and
whether a paddle wheel placed at (1, 1) would rotate clockwise,
counterclockwise, or not at all.

27. Sketch a plot of the vector field

for (x, y) in the rectangle From the
plot, use the marginal box that describes the interpretation of div
and curl to determine whether div is positive, negative, or zero at
the origin, and whether a paddle wheel placed at the origin would
rotate clockwise, counterclockwise, or not at all. (For the curl,
think of F as being a vector field in 3-space with z-component
equal to 0.)

-1 … x … 1, -1 … y … 1.

F = -

x

11 + x2
+ y223>2  i -

y

11 + x2
+ y223>2  j

CAS

1 … x … 2, 0 … y … 2.
F = yiCAS

28. Consider the velocity field 
(see Example 2 and Figure 1). Note that v is perpendicular 

to and that Thus, v describes a fluid
that is rotating (like a solid) about the z-axis with constant angu-
lar velocity Show that div and curl 

29. An object of mass m, which is revolving in a circular orbit
with constant angular velocity is subject to the centrifugal
force given by

Show that is a potential func-
tion for F.

30. The scalar function (also written
) is called the Laplacian, and a function f satisfying is

said to be harmonic, concepts important in physics. Show that
Then find for each of the following

functions and decide which are harmonic.

(a)

(b)

(c)

(d)

31. Show that

(a)

(b)

32. By analogy with earlier definitions, define each of the fol-
lowing:
(a)

(b) is continuous at (a, b, c)

Answers to Concepts Review: 1. vector-valued function of
three real variables; or a vector field 2. gradient field
3. gravitational fields; electric fields 4. §

# F; § * F

F(x, y, z)

lim1x, y, z2:1a, b, c2F1x, y, z2 = L

div1§f * §g2 = 0

div1F : G2 = G # curl F - F # curl G

f1x, y, z2 = 1x2
+ y2

+ z22-1>2
f1x, y, z2 = x3

- 3xy2
+ 3z

f1x, y, z2 = xyz

f1x, y, z2 = 2x2
- y2

- z2

§
2f§

2f = fxx + fyy + fzz.

§
2f = 0§

2f
div1grad f2 = §

#
§f

f1x, y, z2 =
1
2 mv21x2

+ y2
+ z22

F1x, y, z2 = mv2r = mv21xi + yj + zk2

v,

v = 2vk.v = 0v.

7v 7 = v2x2
+ y2.xi + yj

v 7 0
-vyi + vxj,v1x, y, z2 =

One kind of generalization of the definite integral is obtained by 

replacing the set [a, b] over which we integrate by two- and three-dimensional sets.
This led us to the double and triple integrals of Chapter 13.A very different gener-
alization is obtained by replacing [a, b] with a curve C in the xy-plane. The result-

ing integral is called a line integral, but would more properly be

called a curve integral.
Let C be a smooth plane curve; that is, let C be given parametrically by

where and are continuous and not simultaneously zero on (a, b). We say that
C is positively oriented if its direction corresponds to increasing values of t. We
suppose that C is positively oriented and that C is traced only once as t varies from
a to b. Thus, C has initial point and terminal point 

Consider the partition P of the parameter interval [a, b] obtained by
inserting the points

a = t0 6 t1 6 t2 6
Á

6 tn = b

1x1b2, y1b22. B =A = 1x1a2, y1a22

y¿x¿

x = x1t2, y = y1t2, a … t … b

LC
f1x, y2 ds

L

b

a
f1x2 dx14.2

Line Integrals

y

x

p

F

y

x

p

G

y

x

p

H

y

x

p

L

Figure 6
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738 Chapter 14 Vector Calculus

This partition of [a, b] results in a division of the curve C into n subarcs in
which the point corresponds to Let denote the length of the arc and
let be the norm of the partition P; that is, let be the largest 
Finally, choose a sample point on the subarc (see Figure 1).

Now consider the Riemann sum

If f is nonnegative, this sum approximates the area of the curved vertical curtain
shown in Figure 2. If f is continuous on a region D containing the curve C, then this
Riemann sum has a limit as This limit is called the line integral of f along
C from A to B with respect to arc length; that is,

LC
f1x, y2 ds = lim7P7:0

 a
n

i = 1
f1xi, yi2 ¢si

7P 7 : 0.

a
n

i = 1
f1xi, yi2 ¢si

Pi - 1PiQi1xi, yi2
¢ti = ti - ti - 1.7P 77P 7

Pi - 1Pi,¢siti.Pi

Pi - 1Pi

It represents, for the exact area of the curved curtain of Figure 2.

The definition does not provide a very good way of evaluating 

That is best accomplished by expressing everything in terms of the parameter t and 

leads to an ordinary definite integral. Using (see
Section 6.4) gives

Of course, a curve can be parametrized in many different ways; fortunately, it can

be proved that any parametrization results in the same value for 

The definition of a line integral can be extended to the case where C, though
not smooth itself, is piecewise smooth, that is, consists of several smooth curves

joined together, as shown in Figure 3. We simply define the integral
over C to be the sum of the integrals over the individual curves.

Examples and Applications We begin with two examples where C is part
of a circle.

C1, C2, Á , Ck

LC
f1x, y2 ds.

LC
f1x, y2 ds =

L

b

a
f1x1t2, y1t222[x¿1t2]2

+ [y¿1t2]2 dt

ds = 2[x¿1t2]2
+ [y¿1t2]2 dt

LC
f1x, y2 ds.

f1x, y2 Ú 0,

y

x

P1

P2

Pi – 1

Pi

Pn = B

A = P0

Qi

D

Figure 1

C1 C2

C3

Ck
B

A

Figure 3

z

x

y

P1 P2
Pi – 1

Pi

Pn = B
A = P0 Qi

z = f(x, y)

D

Figure 2
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Section 14.2 Line Integrals 739

� EXAMPLE 1 Evaluate where C is determined by the parametric

equations Also show that the parametriza-

tion gives the same value.

SOLUTION Using the first parametrization, we obtain

For the second parametrization, we use another formula for ds as given in
Section 6.4. This gives

and

�

� EXAMPLE 2 A thin wire is bent in the shape of the semicircle

If the density of the wire at a point is proportional to its distance from the x-axis,
find the mass and center of mass of the wire.

SOLUTION Our old motto, slice, approximate, integrate, is still appropriate. The
mass of a small piece of wire of length (Figure 4) is approximately 
where is the density at (x, y) (k is a constant).Thus, the mass m of the
whole wire is

The moment of the wire with respect to the x-axis is given by

 =

ka3

2
 c t -

1
2

 sin 2t d
0

p

=

ka3p

2

 =

ka3

2
 

L

p

0
11 - cos 2t2 dt

 Mx =

LC
y ky ds =

L

p

0
ka3 sin2 t dt

 = [-ka2 cos t]0
p

= 2ka2

 = ka2

L

p

0
 sin t dt

 m =

LC
ky ds =

L

p

0
ka sin t2a2 sin2 t + a2 cos2 t dt

d1x, y2 = ky
d1x, y2 ¢s,¢s

x = a cos t, y = a sin t, 0 … t … p, a 7 0

 = - C 19 - y223>2 D03 = 27

 
LC

x2y ds =

L

3

0
19 - y22y 

329 - y2
  dy = 3

L

3

0
29 - y2y dy

ds = B1 + adx

dy
b2

 dy = B1 +

y2

9 - y2  dy =

329 - y2
  dy

 = c- 81
3

 cos3 t d
0

p>2
= 27

 = 81
L

p>2

0
 cos2 t sin t dt

 
LC

x2y ds =

L

p>2

0
13 cos t2213 sin t221-3 sin t22 + 13 cos t22 dt

x = 29 - y2, y = y, 0 … y … 3,

x = 3 cos t, y = 3 sin t, 0 … t … p>2.
LC

x2y ds,

y

x

y

a

a

∆s

(x, y)

Figure 4
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740 Chapter 14 Vector Calculus

Thus,

From symmetry, so the center of mass is at  �

All that we have done extends easily to a smooth curve C in three-space. In
particular, if C is given parametrically by

then

� EXAMPLE 3 Find the mass of a wire of density if it has the
shape of the helix C with parametrization

SOLUTION

The units for m depend on those for length and density. �

Work Suppose that the force acting at a point in space is given by the
vector field

where M, N, and P are continuous. We want to find the work W done by F in mov-
ing a particle along a smooth oriented curve C. Let be the posi-
tion vector for a point on the curve (Figure 5). If T is the unit tangent
vector at Q, then is the tangential component of F at Q. The work done by F
in moving the particle from Q a short distance along the curve is approximate-
ly and consequently the work done in moving the particle from A to 

B along C is defined to be Work is a scalar quantity, but it can be posi-

tive or negative. It is positive when the component of force along the curve is in the
direction of the object’s motion, and it is negative when the component of force
along the curve is in the direction opposite the object’s motion. From Section 11.7,
we know that and so we have the following alterna-
tive formulas for work.

To interpret the last expression, think of as representing the work done by F
in moving a particle along the “infinitesimal” tangent vector dr, a formulation pre-
ferred by many physicists and applied mathematicians.

There is still another expression for work that is often useful in calculations. If
we agree to write then

and

F # dr = 1Mi + Nj + Pk2 # 1dx i + dy j + dz k2 = M dx + N dy + P dz

dr = dx i + dy j + dz k,

F # dr

W =

LC
F # T ds =

LC
F #

dr
dt

  dt =

LC
F # dr

T = 1dr>dt21dt>ds2 = dr>ds,

LC
F # T ds.

F # T ¢s,
¢s

F # T
Q(x, y, z)

r = xi + yj + zk

F1x, y, z2 = M1x, y, z2 i + N1x, y, z2 j + P1x, y, z2 k
(x, y, z)

 = 20k
L

p

0
t dt = c20k 

t2

2
d

0

p

= 10kp2

 m =

LC
kz ds = k

L

p

0
14t229 sin2 t + 9 cos2 t + 16 dt

x = 3 cos t, y = 3 sin t, z = 4t, 0 … t … p

d1x, y, z2 = kz

LC
f1x, y, z2 ds =

L

b

a
f1x1t2, y1t2, z1t222[x¿1t2]2

+ [y¿1t2]2
+ [z¿1t2]2 dt

x = x1t2, y = y1t2, z = z1t2, a … t … b

10, pa>42.x = 0,

y =

Mx

m
=

1
2 ka3p

2ka2 =

1
4

  pa

z

x

y

F
T

A

C
Q

r B

Figure 5

740



Section 14.2 Line Integrals 741

The integrals and are a special kind of line integral.

They are defined just as was defined at the beginning of the section, ex- 

cept that is replaced by and respectively. However, we point out
that, while is always taken to be positive, and may well be neg-
ative on a path C. The result of this is that a change in the orientation of C switches 

the sign of and while leaving that of unchanged

(see Problem 33).

� EXAMPLE 4 Find the work done by the inverse square law force field

in moving a particle along the straight-line curve C from (0, 3, 0) to (4, 3, 0) shown
in Figure 6.

SOLUTION Along C, and so Using x as the
parameter, we obtain

Of course, appropriate units must be assigned, depending on those for length and
force. If then the work done by the force field F is negative. Does this make
sense? In this problem, the force always points toward the origin, so the compo-
nent of force along the curve is always in the direction opposite the path of the par-
ticle’s motion (see Figure 7). When this happens, the work is negative. �

Here is a planar version of this type of line integral.

� EXAMPLE 5 Evaluate the line integral

along the curve C whose parametric equations are 

SOLUTION Since and 

�

� EXAMPLE 6 Evaluate along the path 

shown in Figure 8. Also evaluate this integral along the straight path from (0, 2)
to (3, 5).

C3

C = C1 ´ C2
LC

xy2 dx + xy2 dy

 =

L

3>2

0
12t5

+ 4t72 dt =

8505
512

L 16.61

 
LC
1x2

- y22 dx + 2xy dy =

L

3>2

0
C 1t4

- t622t + 2t513t22 D  dt

dy = 3t2 dt,dx = 2t dt

x = t2, y = t3, 0 … t …
3
2.

LC
1x2

- y22 dx + 2xy dy

c 7 0,

 = -c
L

4

0
 

x

1x2
+ 923>2 dx = c c

1x2
+ 921>2 d0

4

= -

2c

15

 W =

LC
M dx + N dy + P dz = -c

LC
 
x dx + y dy + z dz

1x2
+ y2

+ z223>2

dy = dz = 0.z = 0,y = 3

F1x, y, z2 = - c 
r
7r 73 =

-c1x i + y j + z k2
1x2

+ y2
+ z223>2 = Mi + Nj + Pk

LC
f ds

LC
P dz

LC
M dx, 

LC
N dy,

¢zi¢xi, ¢yi,¢si

¢zi,¢xi, ¢yi,¢si

LC
f ds

LC
P dz

LC
M dx, 

LC
N dy,

W =

LC
F # dr =

LC
M dx + N dy + P dz

z

x

y

(0, 3, 0)

(4, 3, 0)

C

Figure 6

z

x

y

(0, 3, 0)

(4, 3, 0)

C
F

T

Figure 7

y

x

(0, 2) (3, 2)

(3, 5)

C3 C2

C1

Figure 8
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742 Chapter 14 Vector Calculus

SOLUTION On and

On and

We conclude that

On and so

Note that the two paths from (0, 2) to (3, 5) give different values for the
integral. �

 = 2 cx4

4
+

4x3

3
+ 2x2 d

0

3

=

297
2

 = 2
L

3

0
1x3

+ 4x2
+ 4x2 dx

 
LC3

xy2 dx + xy2 dy = 2
L

3

0
x1x + 222 dx

C3, y = x + 2, dy = dx,

LC
xy2 dx + xy2 dy = 18 + 117 = 135

LC2

xy2 dx + xy2 dy =

L

5

2
3y2 dy = [y3]2

5
= 117

C2, x = 3, dx = 0,

LC1

xy2 dx + xy2 dy =

L

3

0
4x dx = [2x2]0

3
= 18

C1, y = 2, dy = 0,

Concepts Review
1. A curve C given parametrically by 

is said to be positively oriented if its positive direction
corresponds to _____.

2. The line integral where C is the positively

oriented curve of Question 1, is defined as _____.lim7P7:0

LC
f1x, y2 ds,

a … t … b,
y = y1t2,x = x1t2, 3. The line integral in Question 2 transforms to the ordinary

integral _____ dt.

4. If is the position vector of a point on
the curve C of Question 1 and if is a
force field in the plane, then the work W done by F in moving an 

object along C is given by _____ dt.
LC

F = M1x, y2i + N1x, y2j
r = x1t2i + y1t2j
L

b

a

Problem Set 14.2
In Problems 1–16, evaluate each line integral.

1. C is the curve 

2. C is the curve 

3. C is the line segment from (0, 0) to

4. C is the line segment from to (1, 1).

5. C is the curve 

0 … t … 1.

z = t3,y = t2,x = t,
LC
12x + 9z2 ds;

1-1, 22
LC

xey ds;

1p, 2p2.LC
1sin x + cos y2 ds;

x =
1
2 t, y = t5>2, 0 … t … 1.

LC
xy2>5 ds;

x = 3t, y = t3, 0 … t … 1.
LC
1x3

+ y2 ds;

6. C is the curve 

7. C is the curve 

8. C is the right-angle curve from 

to to (4, 3).

9. C is the right-angle curve from 

to to 12, -22.1-4, -22
1-4, 12

LC
y3 dx + x3 dy;

14, -12
10, -12

LC
y dx + x2 dy;

0 … t … 2.

y = t2
- 1,x = 2t,

LC
y dx + x2 dy;

z = 3t, 0 … t … 2p.y = 4 sin t,

x = 4 cos t,
LC
1x2

+ y2
+ z22 ds;
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Section 14.2 Line Integrals 743

10. C is the curve 

11. C is the line segment

from (1, 1) to 

12. C is the curve 

13. C is the line segment

from (1, 2, 1) to (2, 1, 0).

14. C is the curve 

15.

C is the line-segment path from (0, 0, 0) to 
(2, 0, 0) to (2, 3, 0) to (2, 3, 4).

16. Same integral as in Problem 15; C is the line segment
from (0, 0, 0) to (2, 3, 4).

17. Find the mass of a wire with the shape of the curve 
between and (2, 4) if the density is given by 

18. A wire of constant density has the shape of the helix
Find its mass and

center of mass.

In Problems 19–24, find the work done by the force field F in mov-
ing a particle along the curve C.

19. C is the curve 

20. C is the curve 

21. C is the quarter-ellipse,

22. C is the line
segment from (0, 0, 0) to (1, 1, 1).

23. Same F as in Problem 22; C is the curve 

24. C is the curve 

25. Figure 9 shows a plot of a vector field F along with three
curves, and Determine whether each line integral 

is positive, negative, or zero, and justify your

answers.

26. Figure 10 shows a plot of a vector field F along with three
curves, and Determine whether each line integral 

is positive, negative, or zero, and justify your

answers.
LCi

F # dr, i = 1, 2, 3,

C3.C1, C2,

LCi

F # dr, i = 1, 2, 3,

C3.C1, C2,

z = t3, 0 … t … 2.
x = t, y = t2,F1x, y, z2 = yi + zj + xk;

y = sin1pt>22, z = t, 0 … t … 1.
x = sin1pt>22,

F1x, y, z2 = 12x - y2i + 2z j + 1y - z2k;

x = a cos t, y = b sin t, 0 … t … p>2.
F1x, y2 = 1x + y2i + 1x - y2j;

1 … t … 5.
y = ln 2t,x = 3 ln t,F1x, y2 = exi - e-yj;

-1 … t … 0.y = t3,
x = t2,F1x, y2 = 1x3

- y32i + xy2j;

0 … t … 3p.z = bt,y = a sin t,x = a cos t,

k ƒ x ƒ .
d1x, y2 =1-2, 42

y = x2

dz;12x + y - z2LC
1x + y + z2 dx + 1x - 2y + 3z2 dy +

z = e2t, 0 … t … 1.y = e-t,

x = et,
LC

xz dx + 1y + z2 dy + x dz;

LC
1x + y + z2 dx + x dy - yz dz;

y = x2, 0 … x … 1.
LC

y dx + x dy;

13, -12.LC
1x + 2y2 dx + 1x - 2y2 dy;

-2 … t … 1.

y = t2
- 3,x = 2t,

LC
y3 dx + x3 dy;

27. Christy plans to paint both sides of a fence whose base 
is in the xy-plane with shape 

and whose height at (x, y) is all measured
in feet. Sketch a picture of the fence and decide how much paint
she will need if a gallon covers 200 square feet.

28. A squirrel weighing 1.2 pounds climbed a cylindrical tree
by following the helical path 

(distance measured in feet). How much work did it
do? Use a line integral, but then think of a trivial way to answer
this question.

29. Use a line integral to find the area of the part cut out of
the vertical square cylinder by the sphere

Check your answer by finding a trivial way to
do this problem.

30. A wire of constant density k has the shape 
Find its moment of inertia with respect to the y-axis and with re-
spect to the z-axis.

31. Use a line integral to find the area of that part of the
cylinder inside the sphere 
(compare with Problem 12, Section 13.6). Hint: Use polar coordi-
nates where 

32. Two circular cylinders of radius a intersect so that their
axes meet at right angles. Use a line integral to find the area of
the part from one cut off by the other (compare with Problem 14,
Section 13.6). See Figure11.

ds = [r2
+ 1dr>du22]1>2 du.

x2
+ y2

+ z2
= a2x2

+ y2
= ay

ƒ x ƒ + ƒ y ƒ = a.

x2
+ y2

+ z2
= a2.

ƒ x ƒ + ƒ y ƒ = a

0 … t … 8p
z = 4t,y = sin t,x = cos t,

1 +
1
3 y,0 … t … p>2,

y = 30 sin3 t,x = 30 cos3 t,

33. Evaluate

(a) using the parametrization 

which reverses the orientation of C in Exam-
ple 1, and
0 … t … p>2,

y = 3 cos t,x = 3 sin t,
LC

x2y ds

y

x

C1

C3

C2

Figure 9

y

x

C1

C3

C2

Figure 10

Figure 11
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744 Chapter 14 Vector Calculus

(b) using the parametrization 

and note that has the reverse ori-
entation of in Example 6.

Orientation-reversing parametrizations do not change the sign of

but do change the sign of the other types of line integrals

considered in this section.
LC

f ds,

C3

C4y = 5 - t, 0 … t … 3,

x = 3 - t,
LC4

xy2 dx + xy2 dy Answers to Concepts Review: 1. increasing values of t

2. 3.

4. F # dr>dt

f1x1t2, y1t222[x¿1t2]2
+ [y¿1t2]2

a
n

i = 1
f1xi, yi2 ¢si

Proof We suppose first that C is smooth. Then

Note how we first wrote the line integral as an ordinary definite integral, then ap-
plied the Chain Rule, and finally used the Second Fundamental Theorem of
Calculus.

If C is not smooth but only piecewise smooth, we simply apply the above result
to the individual pieces. We leave the details to you. �

� EXAMPLE 1 Recall from Example 4 of Section 14.1 that

f1x, y, z2 = f1r2 =

c
7r 7 =

c2x2
+ y2

+ z2

 = f1b2 - f1a2
 =

L

b

a
 
d

dt
 f1r1t22 dt = f1r1b22 - f1r1a22

 
LC

§f1r2 # dr =

L

b

a
[§f1r1t22 # r¿1t2] dt

The basic tool in evaluating ordinary definite integrals is the Second Fundamental
Theorem of Calculus. In symbols, it says that

Now we ask the question: Is there an analogous theorem for line integrals? The an-
swer is yes.

In what follows, interpret as if the context is two-space and
as if it is three-space. Correspondingly, will mean

in the first case and in the second.f(x, y, z)f(x, y)
f(r)x1t2i + y1t2j + z1t2k x1t2i + y1t2jr(t)

L

b

a
f¿1x2 dx = f1b2 - f1a2

14.3
Independence of Path

Theorem A Fundamental Theorem for Line Integrals

Let C be a piecewise smooth curve given parametrically by 
which begins at and ends at If f is continuously differen-
tiable on an open set containing C, then

LC
§f1r2 # dr = f1b2 - f1a2

b = r1b2.a = r1a2 a … t … b,r = r1t2,
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Section 14.3 Independence of Path 745

is a potential function for the inverse square law field Calculate

where C is any simple piecewise smooth curve from (0, 3, 0) to (4, 3, 0)

that misses the origin.

SOLUTION Since 

�

Now compare Example 1 with Example 4 of the previous section. There we
calculated the same integral, but for a specific curve C, the line segment from 
(0, 3, 0) to (4, 3, 0). Surprisingly, we will get the same answer no matter what curve
we take from (0, 3, 0) to (4, 3, 0). We say that the given line integral is independent
of path.

Criteria for Independence of Path Call a set D connected if any two
points in D can be joined by a piecewise smooth curve lying entirely in D (Fig-

ure 1). Then call independent of path in D if for any two points A and 

B in D the line integral has the same value for every path C in D that is positively
oriented from A to B.

One consequence of Theorem A is that if F is the gradient of another function

f then is independent of path. The converse is also true.
LC

F1r2 # dr

LC
F1r2 # dr

 =

c216 + 9
-

c29
= -

2c

15

 
LC

F1r2 # dr =

LC
§f1r2 # dr = f14, 3, 02 - f10, 3, 02

F1r2 = §f1r2,

LC
F1r2 # dr,

F1r2 = -cr> 7r 73.

Proof Theorem A takes care of the “if” statement. Suppose then that 

is independent of path in D. Our task is to construct a function f satisfying 
that is, we must find a potential function for the vector field F. For simplicity, we
restrict ourselves to the two-dimensional case, where D is a plane set and 

Let be a fixed point of D, and let be any other point of D.
Choose a third point in D and slightly to the left of and join it to

by a horizontal segment in D. Then join to by a curve in D.
(All this is possible because D is both open and connected; see Figure 2a). Finally,
let C denote the path from to composed of these two pieces, and de-
fine f by

That we get a unique value is clear from the assumed independence of path.

f1x, y2 =

LC
F1r2 # dr =

L

1x1,y2

1x0,y02
F1r2 # dr +

L

1x,y2

1x1,y2
F1r2 # dr

(x, y)1x0, y02
1x1, y21x0, y02(x, y)

(x, y),1x1, y2
(x, y)1x0, y02

M1x, y2i + N1x, y2j. F1r2 =

§f = F;
LC

F1r2 # dr

A Connected Set

A Disconnected Set

D

D

D

Figure 1

(x0, y0)

(x0, y0)

(x, y1)

(x1, y) (x, y)

(x, y)

D

D

(a)

(b)

Figure 2

Theorem B Independence of Path Theorem

Let F(r) be continuous on an open connected set D. Then the line integral

is independent of path in D if and only if for some

scalar function f ; that is, if and only if F is a conservative vector field on D.

F1r2 = §f1r2
LC

F1r2 # dr
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746 Chapter 14 Vector Calculus

The first integral on the right above does not depend on x; the second, which
has y fixed, can be written as an ordinary definite integral using, for example, t as a
parameter. It follows that

The last equality is a consequence of the First Fundamental Theorem of Calculus
(Theorem 5.3A).

A similar argument using Figure 2b shows that We conclude
that as desired. �

The results of this section culminate in the next theorem, which draws a con-
nection between the ideas of a conservative vector field, path independence of a
line integral, and the line integral over all closed paths being zero.

§f = M1x, y2i + N1x, y2j = F,
0f>0y = N1x, y2.

0f

0x
= 0 +

0

0x
 

L

x

x1

M1t, y2 dt = M1x, y2

Proof Theorem B establishes that (1) and (2) are equivalent. We must then

show that (2) and (3) are equivalent. Suppose that is path independent.

We must show that for every closed path in D. Let C be a closed 

path in D and let A and B be distinct points on C as shown in the first part of
Figure 3. Suppose C is composed of two curves, going from A to B, and going
from B to A. Let denote the curve with opposite orientation, as shown in
the second part of Figure 3. Since and have the same initial and terminal
points, namely A and B, the independence of path implies that

This shows that (2) implies (3). The argument that (3) implies (2) is essentially the
reverse of that given above. We leave the details to the reader (Problem 31). �

There is an interesting physical interpretation of Condition 3 of Theorem C.
The work done by a conservative force field as it moves a particle around a closed
path is zero. In particular, this is true of both gravitational fields and electric fields,
since they are conservative.

While Conditions 2 and 3 each imply that F is the gradient of a scalar function
f, they are not particularly useful in this connection. A more useful criterion is
given in the following theorem. We need, however, to impose the additional condi-
tion on D, that it is simply connected. In two-space, this means that D has no

 =

LC1

F1r2 # dr -

LC1

F1r2 # dr = 0

 =

LC1

F1r2 # dr -

L-C2

F1r2 # dr

 
LC

F1r2 # dr =

LC1

F1r2 # dr +

LC2

F1r2 # dr

-C2C1

C2-C2

C2C1,

LC
F1r2 # dr = 0

LC
F1r2 # dr

C2

B B

A AC

C1

–C2

C1

Figure 3

Theorem C Equivalent Conditions for Line Integrals

Let F(r) be continuous on an open connected set D. Then the following condi-
tions are equivalent:

(1) for some function f. (F is conservative on D.)

(2) is independent of path in D.

(3) for every closed path in D.
LC

F1r2 # dr = 0

LC
F1r2 # dr

F = §f
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Section 14.3 Independence of Path 747

“holes” and in three-space that it has no “tunnels” all the way through D. (For the
technical definition, see any advanced calculus book.)

The “only if” statement is easy to prove (Problem 21). The “if” statement fol-
lows from Green’s Theorem (Theorem 14.4A) in the two-variable case and from
Stokes’s Theorem in the three-variable case (see Example 4 of Section 14.7). Prob-
lem 29 shows the need for simple connectedness.

Recovering a Function from Its Gradient Suppose that we are given a
vector field F satisfying the conditions of Theorem D. Then we know there is a
function f satisfying But how can we find f ? We illustrate the answer first
for a two-dimensional vector field.

� EXAMPLE 2 Determine whether is
conservative, and if so, find the function f of which it is the gradient.

SOLUTION and In this, the
two-variable case, the conditions of Theorem D reduce to showing that

Now

so the condition is satisfied and f must exist.
To find f, we first note that

Thus,

(1)

If we antidifferentiate the left equation with respect to x, we obtain

(2)

in which the “constant” of integration may depend on y. But the partial with re-
spect to y of the expression in (2) must equal thus

0f

0y
= 6x3y + Cœ

11y2 = 6x3y + 6y5

6x3y + 6y5;
C1

f1x, y2 = x4
+ 3x3y2

+ C11y2

0f

0x
= 4x3

+ 9x2y2, 0f

0y
= 6x3y + 6y5

§f =

0f

0x
  i +

0f

0y
  j = Mi + Nj

0M

0y
= 18x2y, 0N

0x
= 18x2y

0M

0y
=

0N

0x

N1x, y2 = 6x3y + 6y5.M1x, y2 = 4x3
+ 9x2y2

F = 14x3
+ 9x2y22i + 16x3y + 6y52j

§f = F.

Theorem D

Let where M, N, and P are continuous together with their
first-order partial derivatives in an open connected set D, which is also simply
connected. Then F is conservative if and only if curl that is, if
and only if

In the two-variable case, where F is conservative if and only if

0M

0y
=

0N

0x

F = Mi + Nj,

0M

0y
=

0N

0x
, 0M

0z
=

0P

0x
, 0N

0z
=

0P

0y

F = 0,1F = §f2
F = Mi + Nj + Pk,
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748 Chapter 14 Vector Calculus

We conclude that Another antidifferentiation gives

where C is a constant (independent of both x and y). Substitution of this result in
(1) yields

�

Next we use the result of Example 2 to calculate a line integral.

� EXAMPLE 3 Let Cal-

culate where C is any path

from (0, 0) to (1, 2).

SOLUTION Example 1 shows that where

and thus the given line integral is independent of path. In fact, by Theorem A,

�

� EXAMPLE 4 Show that is
conservative, and find f such that 

SOLUTION

and so

which are the conditions of Theorem D. Now

(3)

When we antidifferentiate the first of these with respect to x, we get

(4)

Now differentiate (4) with respect to y and set the result equal to the second
expression in (3).

or
0C11y, z2

0y
= 0

-ex sin y + xz +

0C1

0y
= xz - ex sin y

f1x, y, z2 = ex cos y + xyz + C11y, z2

 
0f

0z
= xy

 
0f

0y
= xz - ex sin y

 
0f

0x
= ex cos y + yz

0M

0y
= -ex sin y + z =

0N

0x
, 0M

0z
= y =

0P

0x
, 0N

0z
= x =

0P

0y

M = ex cos y + yz, N = xz - ex sin y, P = xy

F = §f.
F = 1ex cos y + yz2i + 1xz - ex sin y2j + xy k

 = Cx4
+ 3x3y2

+ y6
+ C D 10,02

11,22
= 1 + 12 + 64 = 77

 
LC

F1r2 # dr =

L

(1, 2)

(0, 0)
14x3

+ 9x2y22 dx + 16x3y + 6y52 dy

f1x, y2 = x4
+ 3x3y2

+ y6
+ C

F = §f,

LC
F1r2 # dr =

LC
(4x3

+ 9x2y2) dx + (6x 3y + 6y 5) dy,

F1r2 = F1x, y2 = 14x3
+ 9x2y22i + 16x3y + 6y52j.

f1x, y2 = x4
+ 3x3y2

+ y6
+ C

C11y2 = y6
+ C

Cœ

11y2 = 6y5.

If a line integral

is independent of path, then we will
often write it as

indicating only the initial point (a, b)
and the terminal point (c, d) for the
path C.

Similarly, we will write

to mean
f(c, d) - f(a, b)

C f(x, y) D (c, d)

(a, b)

L

1c,d2

1a,b2
P1x, y2 dx + Q1x, y2 dy

LC
P1x, y2 dx + Q1x, y2 dy

Notation for Line Integrals That
Are Independent of Path
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Section 14.3 Independence of Path 749

Antidifferentiating the latter with respect to y gives

which we in turn substitute into (4).

(5)

When we differentiate (5) with respect to z and equate the result to the third ex-
pression in (3), we get

or and We conclude that

�

Conservation of Energy Let us make an application to physics and at the
same time offer a reason for the name conservative force field. We will establish
the Law of Conservation of Energy, which says that the sum of the kinetic energy
and the potential energy of an object due to a conservative force is constant.

Suppose that an object of mass m is moving along a smooth curve C given by

under the influence of a conservative force From physics, we learn
three facts about the object at time t.

1. (Newton’s Second Law)

2.

3.

Thus,

We conclude that is constant.KE + PE

 = [F1r2 - F1r2] # r¿1t2 = 0

 = [mr–1t2 - §f1r2] # r¿1t2
 = mr–1t2 # r¿1t2 - §f1r2 # r¿1t2
 =

m

2
 
d

dt
 [r¿1t2 # r¿1t2] - c 0f

0x
 
dx

dt
+

0f

0y
 
dy

dt
+

0f

0z
 
dz

dt
d

 
d

dt
 1KE + PE2 =

d

dt
 c1

2
 m 7r¿1t2 72 - f1r2 d

1PE = potential energy2PE = -f1r2
1KE = kinetic energy2KE =

1
2 m 7r¿1t2 72

F1r1t22 = ma1t2 = mr–1t2
F1r2 = §f1r2.

r = r1t2 = x1t2i + y1t2j + z1t2k, a … t … b

f1x, y, z2 = ex cos y + xyz + C

C21z2 = C.C2
œ1z2 = 0

0f

0z
= xy + C2

œ1z2 = xy

f1x, y, z2 = ex cos y + xyz + C21z2

C11y, z2 = C21z2

Concepts Review
1. Let C be determined by and let

and Then, by the Fundamental Theorem for 

Line Integrals, _____.

2. is independent of path if and only if F is a 

_____ vector field, that is, if and only if _____ for some
scalar function f.

F1r2 =

LC
F1r2 # dr

LC
§f1r2 # dr =

b = r1b2.a = r1a2
r = r1t2, a … t … b, 3. If curl _____ in an open connected and simply con-

nected set D, then for some f defined on D. Conversely,
_____.

4. Let be a two-dimensional vector
field. If  we conclude that _____.0f>0y = 0g>0x,

F = f1x2i + g1y2j
curl 1§f2 =

F = §f
F =

Problem Set 14.3
In Problems 1–12, determine whether the given field F is conserva-
tive. If so, find f so that if not, state that F is not conserva-
tive. See Examples 2 and 4.

F = §f;
1.

2. F1x, y2 = 112x2
+ 3y2

+ 5y2i + 16xy - 3y2
+ 5x2j

F1x, y2 = 110x - 7y2i - 17x - 2y2j
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750 Chapter 14 Vector Calculus

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

In Problems 13–20, show that the given line integral is independent
of path (use Theorem C) and then evaluate the integral (either by
choosing a convenient path or, if you prefer, by finding a potential
function f and applying Theorem A).

13.

14.

15.

16.

17.

Hint: Try the path consisting of line segments from (0, 0, 0) to 
(1, 0, 0) to (1, 1, 0) to (1, 1, 1).

18.

19.

20.

21. Suppose that 
where M, N, and P have continuous first-order par-

tial derivatives in an open set D. Prove that

in D. Hint: Use Theorem 12.3C on f.

22. For each let be a vector pointed to-
ward the origin with magnitude inversely proportional to the dis-
tance from the origin; that is, let

Show that F is conservative by finding a potential function for F.
Hint: If this looks like hard work, see Problem 24.

F1x, y, z2 =

-k1xi + yi + zk2
x2

+ y2
+ z2

F(x, y, z)(x, y, z),

0M

0y
=

0N

0x
, 0M

0z
=

0P

0x
, 0N

0z
=

0P

0y

P1x, y, z2k,
§f1x, y, z2 = M1x, y, z2i + N1x, y, z2j +

+ 1z + 2xy2 dz
L

1p,p,02

10,0,02
1cos x + 2yz2 dx + 1sin y + 2xz2 dy

L

1-1,0,p2

10,0,02
1y + z2 dx + 1x + z2 dy + 1x + y2 dz

L

11,1,12

10,1,02
1yz + 12 dx + 1xz + 12 dy + 1xy + 12 dz

L

11,1,12

10,0,02
16xy3

+ 2z22 dx + 9x2y2 dy + 14xz + 12 dz

L

14,22

1-1,12
ay -

1

x2 b   dx + ax -

1

y2 b  dy

L

16,32

12,12
 

x3

1x4
+ y422  dx +

y3

1x4
+ y422  dy

L

11,p>22

10,02
ex sin y dx + ex cos y dy

L

13,12

1-1,22
1y2

+ 2xy2 dx + 1x2
+ 2xy2 dy

F1x, y, z2 = 11 + 2yz22j + 11 + 2y2z2k
F1x, y, z2 =

-2x

x2
+ z2  i +

-2z

x2
+ z2  k

F1x, y, z2 = 12xy + z22i + x2j + 12xz + p cos pz2k
F1x, y, z2 = 3x2 i + 6y2 j + 9z2 k

F1x, y2 = -e-x ln y i + e-xy-1j

F1x, y2 = 12ey
- yex2i + 12xey

- ex2j
F1x, y2 = 4y2 cos1xy22i + 8x cos1xy22j
F1x, y2 = a 6x2

5y2 b i - a4x3

5y3 b j

F1x, y2 = 135x4
- 3x2y4

+ y92i - 14x3y3
- 9xy82j

F1x, y2 = 145x4y2
- 6y6

+ 32i + 118x5y - 12xy5
+ 72j 23. Follow the directions of Problem 22 for directed

away from the origin with magnitude that is proportional to the
distance from the origin.

24. Generalize Problems 22 and 23 by showing that if

where g is a continuous function of one variable, then F is conser-
vative. Hint: Show that where 

and 

25. Suppose that an object of mass m is moved along a
smooth curve C described by

while subject only to the continuous force F. Show that the work
done is equal to the change in the kinetic energy of the object;
that is, show that

Hint:

26. Matt moved a heavy object along the ground from A to B.
The object was at rest at the beginning and at the end. Does
Problem 25 imply that Matt did no work? Explain.

27. We normally consider the gravitational force of the earth
on an object of mass m to be given by the constant 
but, of course, this is valid only in regions near the earth’s surface.
Find the potential function f for F and use it to show that the
work done by F when an object is moved from to a
nearby point is mg

28. The distance from the earth (mass m) to the sun (mass M)
varies from a maximum (aphelion) of 152.1 million kilometers to
a minimum (perihelion) of 147.1 million kilometers. Assume that
Newton’s Inverse Square Law holds, with

kilograms, and kilograms. How much work does
F do in moving the earth in each case?
(a) From aphelion to perihelion
(b) Around a complete orbit

29. This problem shows the need for simple connectedness in
the “if” statement of Theorem C. Let 
on the set Show each of the following.

(a) The condition holds on D.

(b) F is not conservative on D.

Hint: To establish part (b), show that where C is 

the circle with parametric equations 

30. Let Show that 
which is the vector function of Problem 29.

Why doesn’t the hint to that problem violate Theorem A?

31. Prove that in Theorem C, Condition (3) implies Condi-
tion (2).

Answers to Concepts Review: 1.
2. gradient or conservative; 3. 0; 0 4. F is conservative§f1r2

f1b2 - f1a2

1yi - xj2>1x2
+ y22,

§f =f1x, y2 = tan-11y>x2.
0 … t … 2p.

y = sin t,x = cos t,
LC

F # dr = -2p

0M>0y = 0N>0x

D = 51x, y2: x2
+ y2

Z 06.
F = 1yi - xj2>1x2

+ y22

m = 5.97 * 1024
G = 6.67 * 10-11  newton-meter2> kilogram2,   M = 1.99 * 1030

F = -GMmr> 7r 73

C

1z1 - z22.1x2, y2, z22
1x1, y1, z12

F = -gmk,

F1r1t22 = mr–1t2.
LC

F # dr =

m

2
 [ 7r¿1b2 72 - 7r¿1a2 72]

r = r1t2 = x1t2i + y1t2j + z1t2k, a …  t … b

h1u2 = 1g1u2 du.1
2 h1x2

+ y2
+ z22

f1x, y, z2 =F = §f,

F1x, y, z2 = [g1x2
+ y2

+ z22]1xi + yj + zk2

F(x, y, z)
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Section 14.4 Green’s Theorem in the Plane 751

Proof We prove the theorem for the case where S is both an x-simple and a y-
simple set and then discuss extensions to the general case.

Since S is y-simple, it has the shape of Figure 1a; that is,

Its boundary C consists of four arcs and (although or could be
degenerate) and

The integrals over and are zero, since on these curves x is constant, so
Thus,

 = -

O
S 

 
0M

0y
 dA

 = -

L

b

a L

f1x2

g1x2
 
0M1x, y2

0y
  dy dx

 = -

L

b

a
[M1x, f1x22 - M1x, g1x22] dx

 
FC

M dx =

L

b

a
M1x, g1x22 dx +

L

a

b
M1x, f1x22 dx

dx = 0.
C4C2

FC
M dx =

LC1

M dx +

LC2

M dx +

LC3

M dx +

LC4

M dx

C4C2C4C1, C2, C3,

S = 51x, y2: g1x2 … y … f1x2, a … x … b6

We begin with another look at the Second Fundamental Theorem of Calculus,

It says that the integral of a function over a set is equal to a related func-
tion (the antiderivative) evaluated in a certain way on the boundary of S, which in
this case consists of just the two points a and b. In the remainder of this chapter, we
are going to give three generalizations of this result: the theorems of Green, Gauss,
and Stokes.These are generalizations of the Second Fundamental Theorem of Cal-
culus in the sense that some integral (double or triple integral, or surface integral,
defined in the next section) is expressed as some quantity evaluated on the bound-
ary of the region of integration. These theorems are applied in physics, particularly
in the study of heat, electricity, magnetism, and fluid flow. The first of these theo-
rems is due to George Green (1793–1841), a self-taught English mathematical
physicist.

We suppose that C is a simple closed curve (Section 10.4) that forms the
boundary of a region S in the xy-plane. Let C be oriented so that traversing C in its
positive direction keeps S to the left (the counterclockwise orientation). The cor-
responding line integral of around C is denoted by

FC
M dx + N dy

F1x, y2 = M1x, y2i + N1x, y2j

S = [a, b]

L

b

a
f¿1x2 dx = f1b2 - f1a2

14.4
Green’s Theorem 

in the Plane

y

x

y = f (x)

y = g (x)

C4

C1

C3

C2

a

(a)
b

S

y

x

y = h(y)

y = k(y)

C4

C1

C3

C2

c

(b)

d

S

Figure 1

Suppose that Then
Green’s Theorem tells us that

This in turn implies that the field
is conservative. This 

is part of what we claimed in
Theorem 14.3D for the two-variable
case

F = Mi + Nj

FC
M dx + N dy = 0

0N>0x = 0M>0y.

A Promised Result

Theorem A Green’s Theorem

Let C be a piecewise smooth, simple closed curve that forms the boundary of a
region S in the xy-plane. If M(x, y) and N(x, y) are continuous and have contin-
uous partial derivatives on S and its boundary C, then

O
S 

a 0N

0x
-

0M

0y
b  dA =

FC
M dx + N dy
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752 Chapter 14 Vector Calculus

Similarly, by treating S as an x-simple set, we obtain

although the curves must be redefined as in Figure 1b. We
conclude that Green’s Theorem holds on a set that is both x-simple and 
y-simple.

The result extends easily to a region S that decomposes into a union of regions
which are both x- and y-simple (Figure 2). We simply apply the theo-

rem in the form that we have proved to each of these sets and then add the results.
Note that the contributions of the line integrals cancel on boundaries shared by
adjoining regions, since these boundaries are traversed twice, but in opposite di-
rections. �

Green’s Theorem even holds for a region S with one or more holes (Figure 3),
provided that each part of the boundary is oriented so that S is always on the left
as one traverses the curve in its positive direction.We simply decompose it into or-
dinary regions in the manner shown in Figure 4.

Examples and Applications Sometimes, Green’s Theorem provides the
simplest way of evaluating a line integral.

� EXAMPLE 1 Let C be the boundary of the triangle with vertices (0, 0),
(1, 2), and (0, 2) (Figure 5). Calculate

(a) by the direct method, and (b) by Green’s Theorem.

SOLUTION
(a) On and so

Also,

Thus,

(b) By Green’s Theorem,

� = c -8x3

3
+ 2x4 d

0

1

= -

2
3

 =

L

1

0
[-4x2y]2x

2
 dx =

L

1

0
1-8x2

+ 8x32 dx

 
FC

4x2y dx + 2y dy =

L

1

0 L

2

2x
10 - 4x22 dy dx

FC
4x2y dx + 2y dy = 6 -

8
3

- 4 = -

2
3

 
LC3

4x2y dx + 2y dy =

L

0

2
2y dy = [y2]2

0
= -4

 
LC2

4x2y dx + 2y dy =

L

0

1
8x2 dx = c8x3

3
d

1

0

= -

8
3

LC1

4x2y dx + 2y dy =

L

1

0
8x3 dx + 8x dx = [2x4

+ 4x2]0
1

= 6

dy = 2 dx,C1, y = 2x

FC
4x2y dx + 2y dy

S1, S2, Á , Sk,

C1, C2, C3, and C4

FC
N dy =

O
S 

 
0N

0x
 dA

S1

S2

S3

Figure 2

Figure 3

Figure 4

(0, 2) (1, 2)

(0, 0)

C2

C1

C3

y

x

Figure 5
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Section 14.4 Green’s Theorem in the Plane 753

� EXAMPLE 2 Show that if a region S in the plane has boundary C, where C
is a piecewise smooth, simple closed curve, then the area of S is given by

SOLUTION Let and and apply Green’s
Theorem.

�

� EXAMPLE 3 Use the result of Example 2 to find the area enclosed by the

ellipse 

SOLUTION The given ellipse has parametric equations

Thus,

�

� EXAMPLE 4 Use Green’s Theorem to evaluate the line integral

where C is the ellipse 

SOLUTION Let and so that
and By Green’s Theorem and Example 3,

�

Vector Forms of Green’s Theorem Our next goal is to restate Green’s
Theorem for the plane in its vector form in two different ways. It is these forms
that we will generalize later to two important theorems in three-space.

We suppose that C is a smooth, simple closed curve in the xy-plane and that it
has been given a counterclockwise orientation by means of its arc length parame-
trization and Then

is a unit tangent vector and

n =

dy

ds
  i -

dx

ds
  j

T =

dx

ds
  i +

dy

ds
  j

y = y1s2.x = x1s2

FC
1x3

+ 2y2 dx + 14x - 3y22 dy =

O
S 

14 - 22 dA = 2A1S2 = 2pab

0N>0x = 4.0M>0y = 2
N1x, y2 = 4x - 3y2M1x, y2 = x3

+ 2y

x2

a2 +

y2

b2 = 1.

FC
1x3

+ 2y2 dx + 14x - 3y22 dy

 =

1
2

 ab
L

2p

0
dt = pab

 =

1
2

 

L

2p

0
ab1sin2 t + cos2 t2 dt

 =

1
2

 

L

2p

0
1-1b sin t21-a sin t dt2 + 1a cos t21b cos t dt22

 A1S2 =

1
2

 

FC
1-y dx + x dy2

x = a cos t, y = b sin t, 0 … t … 2p

x2

a2 +

y2

b2 = 1.

FC
a-

y

2
  dx +

x

2
  dyb =

O
S 

a1
2

+

1
2
b  dA = A1S2

N1x, y2 = x>2,M1x, y2 = -y>2

A1S2 =

1
2

 

FC
1-y dx + x dy2
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754 Chapter 14 Vector Calculus

is a unit normal vector pointing out of the region S bounded by C (Figure 6). (Note
that ) If is a vector field, then

The last equality comes from Green’s Theorem. On the other hand,

We conclude that

a result sometimes called Gauss’s Divergence Theorem in the plane.
We give a physical interpretation to this last formula and thereby also under-

stand the origin of the term divergence. Imagine a uniform layer of a fluid of con-
stant density moving across the xy-plane, a layer so thin that we may consider it to
be two-dimensional. We wish to compute the rate at which the fluid in a region S
crosses its boundary curve C (Figure 7).

Let denote the velocity vector of the fluid at and let
be the length of a short segment of the curve with initial point The

amount of fluid crossing this segment per unit of time is approximately the area of
the parallelogram of Figure 7, that is The (net) amount of fluid leaving S
per unit of time, called the flux of the vector field F across the curve C in the out-
ward direction, is therefore

Now consider a fixed point in S and a small circle of radius r around
it. On the circular region with boundary div F will be approximately equal to
its value div at the center (we are assuming that div F is continuous); so,
by Green’s Theorem,

We conclude that div measures the rate at which the fluid is “diverging
away” from If div there is a source of fluid at if 
div there is a sink for the fluid at If the flux across the
boundary of a region is zero, then the sources and sinks in the region must balance
each other. On the other hand, if there are no sources or sinks in a region S, then 
div and, by Green’s Theorem, there is a net flow of zero across the boundary
of S.

There is another vector form for Green’s Theorem. We redraw Figure 6, but
now as a subset of three-space (Figure 8). If then Green’s
Theorem says that

FC
F # T ds =

FC
M dx + N dy =

O
S 

a 0N

0x
-

0M

0y
b  dA

F = Mi + Nj + 0k,

F = 0

1x0, y02.F1x0, y02 6 0,
1x0, y02;F1x0, y02 7 0,1x0, y02.

F1x0, y02

flux of F across Cr =

FC
F # n ds =

O
Sr 

div F dA L div F1x0, y021pr22

F1x0, y02
Cr,Sr,

Cr1x0, y02

flux of F across C =

FC
F # n ds

v # n ¢s.

(x, y).¢s
(x, y),F1x, y2 = v1x, y2

FC
F # n ds =

O
S 

div F dA =

O
S 

§
# F dA

div F = §
# F =

0M

0x
+

0N

0y

 =

O
S 

a 0M

0x
+

0N

0y
b  dA

 
FC

F # n ds =

FC
1Mi + Nj2 # ady

ds
  i -

dx

ds
  jb  ds =

FC
1-N dx + M dy2

F1x, y2 = M1x, y2i + N1x, y2jT # n = 0.

C

S

T n

Figure 6

(x, y)

S

C

v

n

∆s

Figure 7

z

x

y

T
k

n

C

S

Figure 8
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Section 14.4 Green’s Theorem in the Plane 755

On the other hand,

so that

Green’s Theorem thus takes the form

which is sometimes called Stokes’s Theorem in the plane.
If we apply this result to a small circle centered at we obtain

This says that the flow in the direction of the tangent to (the circulation of F
around ) is measured by the curl of F. In other words, curl F measures the ten-
dency of the fluid to rotate about If curl in a region S, the corre-
sponding fluid flow is said to be irrotational.

� EXAMPLE 5 The vector field is the ve-
locity field of a steady counterclockwise rotation of a wheel about the z-axis (see 

Example 2 of Section 14.1). Calculate and for any closed
curve C in the xy-plane.

SOLUTION If S is the region enclosed by C,

� =

O
S 

a1
2

+

1
2
b  dA = A1S2

 
FC

F # T ds =

O
S 

1curl F2 # k dA =

O
S 

a 0N

0x
-

0M

0y
b  dA

 
FC

F # n ds =

O
S 

div F dA =

O
S 

a 0M

0x
+

0N

0y
b  dA = 0

FC
F # T ds

FC
F # n ds

F1x, y2 = -
1
2 y i +

1
2 x j = M i + Nj

F = 01x0, y02.
Cr

Cr

FCr

F # T ds L 1curl F1x0, y022 # k1pr22
1x0, y02,Cr

FC
F # T ds =

O
S 

1curl F2 # k dA

1curl F2 # k = a 0N

0x
-

0M

0y
b

curl F = § * F = 4
i j k
0

0x

0

0y

0

0z

M N 0

4 = a 0N

0x
-

0M

0y
bk

Concepts Review
1. Let C be a simple closed curve bounding a region S in the

xy-plane. Then, by Green’s Theorem,

_____ dA.

2. Thus, if C is the boundary of the square 

_____

_____.

dA =0 … y … 16, 
FC

y dx - x dy =

O
S 

0 … x … 1,

S = 51x, y2:
O
S 

FC
M dx + N dy =

3. The div measures the rate at which a homoge-
neous fluid flow with velocity field F diverges away from 
If div there is a(n) _____ of fluid at if 
div there is a(n) _____ at 

4. On the other hand, curl measures the tendency of
the fluid to _____ about If curl in a region, the
flow is _____.

F1x, y2 = 0(x, y).
F1x, y2

(x, y).F1x, y2 6 0,
(x, y):F1x, y2 7 0,

(x, y).
F1x, y2
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756 Chapter 14 Vector Calculus

In Problems 1–6, use Green’s Theorem to evaluate the given line
integral. Begin by sketching the region S.

1. where C is the closed curve formed by

and between (0, 0) and (4, 2)

2. where C is the closed curve formed

by and 

3. where C is the closed

curve formed by and 

4. where C is the triangle with ver-

tices (0, 0), (2, 0), and (0, 1)

5. where C is the el-

lipse 

6. where C is the rec-

tangle with vertices (2, 1), (6, 1), (6, 4), and (2, 4).

In Problems 7 and 8, use the result of Example 2 to find the area of
the indicated region S. Make a sketch.

7. S is bounded by the curves and 

8. S is bounded by the curves and 

In Problems 9–12, use the vector forms of Green’s Theorem to cal-

culate (a) and (b) 

9. C is the boundary of unit square with ver-
tices (0, 0), (1, 0), (1, 1), and (0, 1).

10. C as in Problem 9.

11. C is the unit circle.

12. C is the unit circle.

13. Suppose that the integrals taken counter-

clockwise around the circles and are

30 and respectively. Calculate where S is

the region between the circles.

14. If find the flux of F across the
boundary C of the unit square with vertices (0, 0), (1, 0), (1, 1),

and (0, 1); that is, calculate 

15. Find the work done by in moving
a body counterclockwise around the curve C of Problem 14.

16. If calculate the circulation of F

around C of Problem 14; that is, calculate 
FC

F # T ds.

F = 1x2
+ y22i + 2xy j,

F = 1x2
+ y22i - 2xy j

FC
F # n ds.

F = 1x2
+ y22i + 2xy j,

O
S 

1curl F2 # k dA,-20,

x2
+ y2

= 1x2
+ y2

= 36
C

F # T ds

F = xi + yj;

F = y3i + x3j;

F = ayi + bxj;

F = y2i + x2j;

FC
F # T ds.

FC
F # n ds

y = x2.y =
1
2 x3

y = 2x2.y = 4x

FC
1e3x

+ 2y2 dx + 1x2
+ sin y2 dy,

9x2
+ 16y2

= 144
FC
1x2

+ 4xy2 dx + 12x2
+ 3y2 dy,

FC
xy dx + 1x + y2 dy,

y = x3>4y = 0, x = 2,
FC
12x + y22 dx + 1x2

+ 2y2 dy,

y = x2>2y = 0, x = 2,
FC
1y dx + 1x dy,

y = 1xy = x>2FC
2xy dx + y2 dy,

17. Show that the work done by a constant force F in moving
a body around a simple closed curve is 0.

18. Use Green’s Theorem to prove the plane case of Theo-
rem 14.3D; that is, show that implies that 

which implies that is

conservative.

19. Let

(a) Show that 

(b) Show, by using the parametrization that

where C is the unit circle.

(c) Why doesn’t this contradict Green’s Theorem?

20. Let F be as in Problem 19. Calculate 
where

(a) C is the ellipse 
(b) C is the square with vertices (1, 1), and

(c) C is the triangle with vertices (1, 0), (2, 0), and (1, 1).

21. Let the piecewise smooth, simple closed curve C be the
boundary of a region S in the xy-plane. Modify the argument in
Example 2 to show that

22. Let S and C be as in Problem 21. Show that the moments
and about the x- and y-axes are given by

23. Calculate the area of the asteroid Hint:
Parametrize by 

24. Calculate the work done by in moving an
object around the asteroid of Problem 23.

25. Let 

(a) Show that where C is the circle centered at

the origin of radius a and is the 
exterior unit normal to C.

(b) Show that div 
(c) Explain why the results of parts (a) and (b) do not contradict

the vector form of Green’s Theorem.

(d) Show that if C is a smooth simple closed curve then

equals or 0 accordingly as the origin is inside

or outside C.

26. Area of a Polygon Let 
be the vertices of a simple polygon P, labeled counter-

clockwise and with Show each of the following:V0 = Vn.
yn2,Vn1xn,

y12, Á ,V11x1,V01x0, y02,

2p
LC

F # n ds

F = 0.

n = 1x i + y j2>2x2
+ y2

LC
F # n ds = 2p,

F1r2 = r> 7r 72 = 1x i + y j2>1x2
+ y22.

F = 2yi - 3xj

x = a cos3 t, y = a sin3 t, 0 … t … 2p.
x2>3

+ y2>3
= a2>3.

Mx = -

1
2

 

FC
y2 dx, My =

1
2

 

FC
x2 dy

MyMx

A1S2 =

FC
1-y2 dx =

FC
x dy

1-1, -12
1-1, 12,11, -12,

x2>9 + y2>4 = 1

FC
M dx + N dy,

FC
M dx + N dy = -2p,

x = cos t, y = sin t,

0N>0x = 0M>0y.

F =

y

x2
+ y2  i -

x

x2
+ y2  j = M i + Nj

F = Mi + Nj
FC

M dx + N dy = 0,

0N>0x = 0M>0y

Problem Set 14.4
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Section 14.5 Surface Integrals 757

(a) where C is the edge 

(b) Area 

(c) The area of a polygon with vertices having integral coordi-
nates is always a multiple of 

(d) The formula in part (b) gives the correct answer for the poly-
gon with vertices (2, 0), (6, 0), (10, 4), and

In each of the following problems, plot the graph of 
and the corresponding gradient field on 

Note that, in each case, curl
(Theorem 14.3D), and so there is no tendency for rotation around
any point.

27. Let 
(a) By visually examining the field F, convince yourself that 

div on S. Then calculate div F.
(b) Calculate the flux of F across the boundary of S.

F 7 0

f1x, y2 = x2
+ y2.

F = 0-3 … x … 3, -3 … y … 36.
S = 51x, y2:F = §f

f(x, y)CAS

1-2, 42.
12, -22, 16, -22,

1
2.

1P2 = a
n

i = 1
 
xi + xi - 1

2
 1yi - yi - 12

V0V1
LC

x dy =
1
21x1 + x021y1 + y02, 28. Let 

(a) Guess whether div F is positive or negative at a few points
and then calculate div F to check on your guesses.

(b) Calculate the flux of F across the boundary of S.

29. Let 
(a) By visually examining the field F, guess where div F is posi-

tive and where it is negative. Then calculate div F to check
on your guesses.

(b) Calculate the flux of F across the boundary of S; then calcu-
late it across the boundary of 

30. Let Guess where div F
is positive and where it is negative. Then determine this
analytically.

Answers to Concepts Review: 1. 2.

3. source; sink 4. rotate; irrotational

-2; -2
0N

0x
-

0M

0y

f1x, y2 = exp1-1x2
+ y22>42.

0 … y … 36.
T = 51x, y2: 0 … x … 3,

f1x, y2 = sin x sin y.

f1x, y2 = ln1cos1x>322 - ln1cos1y>322.

A line integral generalizes the ordinary definite integral; in a similar way, a surface
integral generalizes a double integral.

Let the surface G be the graph of where ranges over a rec-
tangle R in the xy-plane. Let P be a partition of R into n subrectangles this re-
sults in a corresponding partition of the surface G into n pieces (Figure 1).
Choose a sample point in and let be the
corresponding point on Then define the surface integral of g over G by

where is the area of Finally, extend the definition to the case where R is a
general closed, bounded set in the xy-plane in the usual way (by giving g the value
0 outside R).

Gi.¢Si

O
G 

g1x, y, z2 dS = lim7P7:0
 a

n

i = 1
g1xi, yi, zi2 ¢Si

Gi.
1xi, yi, zi2 = 1xi, yi, f1xi, yi22Ri,1xi, yi2

Gi

Ri;
(x, y)z = f1x, y2,

14.5
Surface Integrals

z

x

y

R

Ri

Ri

G

Gi

z = f(x, y)

(xi, yi, zi)

(xi, yi)

Figure 1
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758 Chapter 14 Vector Calculus

z

x

y

z = f (x, y)

Gi

i

G

v

iu

R∆xi
∆yi

Figure 2

Evaluating Surface Integrals A definition is not enough; we need a practi-
cal way to evaluate a surface integral. The development in Section 13.6 suggests
the correct result.There we showed that under appropriate hypotheses, the area of
a small patch (Figure 2) of the surface is approximately where and

are sides of a parallelogram that is tangent to the surface. Thus,

This leads to the following theorem.

A1Gi2 L 7ui * vj 7 L 21fx1xi, yi222 + 1fy1xi, yi222 + 1 ¢yi ¢xi

vi

ui7ui * vi 7 ,Gi

Note that when Theorem A gives the formula for surface area given
in Section 13.6.

� EXAMPLE 1 Evaluate where G is the part of the plane

above the triangle R sketched in Figure 3.

SOLUTION In this case, and
Thus,

�

� EXAMPLE 2 Evaluate where G is the portion of the cone

between the planes and (Figure 4).

SOLUTION We may write

from which

Thus,

O
G 

xyz dS =

O
R 

xy2x2
+ y222 dy dx

fx
2

+ fy
2

+ 1 =

x2

x2
+ y2 +

y2

x2
+ y2 + 1 = 2

z = 1x2
+ y221>2 = f1x, y2

z = 4z = 1z2
= x2

+ y2

O
G 

xyz dS,

 = 26
L

1

0
cx3

2
+ 3x -

3x2

2
d  dx =

926
8

 = 26
L

1

0
cxy2

2
+ 3y +

y2

2
- 2xy d

0

x

 dx

 
O
G 

1xy + z2 dS =

L

1

0 L

x

0
1xy + 3 + y - 2x221-222 + 12

+ 1 dy dx

xy + 3 + y - 2x.g1x, y, z2 =

z = 3 + y - 2x = f1x, y2, fx = -2, fy = 1,

2x - y + z = 3
O
G 

1xy + z2 dS,

g1x, y, z2 = 1

y

x

(1, 1)

(1, 0)

R

Figure 3

Theorem A

Let G be a surface given by where is in R. If f has continuous
first-order partial derivatives and is continuous on
R, then

O
G 

g1x, y, z2 dS =

O
R 

g1x, y, f1x, y222fx
2

+ fy
2

+ 1 dy dx

g1x, y, z2 = g1x, y, f1x, y22
(x, y)z = f1x, y2,

z2 = x2 + y2

R

G

z

x

y

Figure 4
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Section 14.5 Surface Integrals 759

After a change to polar coordinates, this becomes

�

� EXAMPLE 3 The portion of the spherical surface G with equation

where x and y satisfy has a thin metal covering whose density at
is Find the mass of this covering.

SOLUTION Let R be the projection of G in the xy-plane; that is, let
Then

�

Let the surface G be given by an equation of the form and let R
be its projection in the xz-plane. Then the appropriate formula for the surface in-
tegral is

There is a corresponding formula when the surface G is given by 

� EXAMPLE 4 Evaluate where G is the part of the para-

boloid  that projects onto 

SOLUTION

If we use polar coordinates, this becomes

In the inner integral, let so and We
obtain

�
1
16

 

L

2p

0 L

25

1
1u2

- 12u2 du du =

A2525 + 1 Bp
60

L 2.979

u du = 4r dr.u2
= 4r2

+ 1u = 24r2
+ 1,

L

2p

0 L

1

0
r224r2

+ 1 r dr du

O
G 

1x2
+ z22 dS =

O
R 

1x2
+ z2224x2

+ 4z2
+ 1 dA

R = 51x, z2: x2
+ z2

… 16.y = 1 - x2
- z2

O
G 

1x2
+ z22 dS,

x = k1y, z2.
O
G 

g1x, y, z2 dS =

O
R 

g1x, h1x, z2, z22hx
2

+ hz
2

+ 1 dx dz

y = h1x, z2,

 =

O
R 

z 
3
z

  dA = 31p222 = 12p

 =

O
R 

zB x2

9 - x2
- y2 +

y2

9 - x2
- y2 + 1 dA

 m =

O
G 

d1x, y, z2 dS =

O
R 

z2fx
2

+ fy
2

+ 1 dA

R = 51x, y2: x2
+ y2

… 46.

d1x, y, z2 = z.(x, y, z)
x2

+ y2
… 4

z = f1x, y2 = 29 - x2
- y2

 =

102322
5

 c sin2 u
2
d

0

2p

= 0

 22
L

2p

0 L

4

1
1r cos u21r sin u2r2 dr du = 22

L

2p

0
csin u cos u 

r5

5
d

1

4

 du
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760 Chapter 14 Vector Calculus

The Flux of a Vector Field Through a Surface For what we discuss now
and for later applications, we need to limit further the kinds of surfaces that we
consider. Most surfaces that arise in practice have two sides. However, it is surpris-
ingly easy to construct a surface with just one side. Take a paper band (Figure 5),
slit it at the dotted line, give one end a half twist, and paste it back together (Fig-
ure 6). You obtain a one-sided surface, called a Möbius band.

From now on, we consider only two-sided surfaces, so it will make sense to talk
about a fluid flowing through the surface from one side to the other as if the sur-
face were a screen. We also suppose that the surface is smooth, meaning that it has
a continuously varying unit normal n. Let G be such a smooth, two-sided surface,
and assume that it is submerged in a fluid with a continuous velocity field

If is the area of a small piece of G, then F is almost constant there,
and the volume of fluid crossing this piece in the direction of the unit normal n
(Figure 7) is

We conclude that

� EXAMPLE 5 Find the upward flux of across the part
of the spherical surface G determined by

SOLUTION Note that the field F is a rotating stream flowing in the direction of
the positive z-axis.

The equation of the surface may be written as

and thus

is a unit vector normal to the surface. The vector is also normal to the surface,
but, since we desire the normal unit vector that points upward, n is the right choice.
A straightforward computation using the fact that gives

(A simple geometric argument will also give this result; the normal must point di-
rectly away from the origin.)

The flux of F across G is given by

 =

O
G 

3z dS

 =

O
G 

1-y i + x j + 9 k2 # ax

3
  i +

y

3
  j +

z

3
  kb  dS

 flux =

O
G 

F # n dS

n =

1x>z2i + 1y>z2j + k

3>z =

x

3
  i +

y

3
  j +

z

3
  k

x2
+ y2

+ z2
= 9

-n

n =

§H
7§H 7 =

-fx i - fy j + k2fx
2

+ fy
2

+ 1
=

1x>z2i + 1y>z2j + k21x>z22 + 1y>z22 + 1

H1x, y, z2 = z - 29 - x2
- y2

= z - f1x, y2 = 0

z = f1x, y2 = 29 - x2
- y2, 0 … x2

+ y2
… 4

F = -y i + x j + 9 k

flux of F across G =

O
G 

F # n dS

¢V L F # n ¢S

¢V
¢SF(x, y, z).

n n

Figure 5

n

n

Figure 6

z

x

y

n
F

G

∆ S

Figure 7
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Section 14.5 Surface Integrals 761

Finally, we write this surface integral as a double integral, using the fact that R is a

circle of radius 2 and that 

The total flux across G in one unit of time is   �

An observant reader, after noting the cancellation that occurred in Example 5,
will suspect that a theorem is lurking near.

36p cubic units.

flux =

O
G 

3z dS =

O
R 

3z 
3
z

  dA = 91p # 222 = 36p

2fx
2

+ fy
2

+ 1 = 3>29 - x2
- y2

= 3>z.

Proof If we write we obtain

It follows from Theorem A that

�

You might try reworking Example 5 using Theorem B. We offer a different
example.

� EXAMPLE 6 Evaluate the flux for the vector field 
across the part G of the paraboloid that lies above the xy-plane,
taking n to be the upward normal.

SOLUTION

�

Parametrized Surfaces We have seen that curves in space can be expressed
as where What if r is a function of two pa-
rameters, say u and It shouldn’t be too surprising that a relationship like

r1u, v2 = x1u, v2i + y1u, v2j + z1u, v2k, 1u, v2 H R

v?
a … t … b.r1t2 = x1t2i + y1t2j + z1t2k

 
O
G 

F # n dS =

O
R 

11 + x2
+ y22 dx dy =

L

2p

0 L

1

0
11 + r22r dr du =

3
2

 p

 = 2x2
+ 2y2

+ 1 - x2
- y2

= 1 + x2
+ y2

 -Mfx - Nfy + P = 2x2
+ 2y2

+ z

f1x, y2 = 1 - x2
- y2, fx = -2x, fy = -2y

z = 1 - x2
- y2

F = x i + y j + z k

 =

O
R 

1-Mfx - Nfy + P2 dx dy

 
O
G 

F # n dS =

O
R 

1M i + N j + P k2 # -fx i - fy j + k2fx
2

+ fy
2

+ 1
 2fx

2
+ fy

2
+ 1 dx dy

n =

§H
7§H 7 =

-fx i - fy j + k2f2
x + f2

y + 1

H1x, y, z2 = z - f1x, y2,

Theorem B

Let G be a smooth, two-sided surface given by where is in R,
and let n denote the upward unit normal on G. If f has continuous first-order
partial derivatives and is a continuous vector field, then
the flux of F across G is given by

flux F =

O
G 

F # n dS =

O
R 

[-Mfx - Nfy + P] dx dy

F = Mi + Nj + Pk

(x, y)z = f1x, y2,
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762 Chapter 14 Vector Calculus

yields a surface. For each in the set R, we obtain a vector r in three-space.The
set of points that are the terminal points of the vectors (emanating from the
origin) is called a parametrized surface.

� EXAMPLE 7 Describe and sketch the surfaces defined parametrically by

(a)

(b)

(c)

SOLUTION
(a) For this r we see that the x and y components are simply u and and that z is

This is just the graph of the function over
the disk The graph, a paraboloid with vertex at (0, 0, 9) opening
downward, is shown in Figure 8.

(b) The x and y components look like the formulas for polar coordinates, except
that u and are substituted for r and respectively. Since 

this surface is the same as part (a).
(c) We recognize the components of as the spherical coordinates of the

points on a sphere of radius 3 centered at the origin. As u ranges from 0 to 
and ranges from 0 to  we obtain the full sphere, shown in Figure 9. �

There are many situations where we must describe a known surface as a para-
meterized surface.There is often more than one way to do this, as the next example
suggests.

� EXAMPLE 8 Find parametric equations for the surfaces (a) the right circu-
lar cylinder of radius 2 with axis along the y-axis for and (b) the
hemisphere of radius 2 centered at the origin lying above the xy-plane.

SOLUTION
(a) If we think of polar coordinates in the xz-plane, we have and

The other parameter, u, is the distance from the yz-plane. The
parametric equation is thus and the do-
main for is 

(b) For a hemisphere, we can use cylindrical coordinates and

in which case the hemisphere becomes

The parametric equation is thus 

with domain Al-
ternatively, we could think in terms of spherical coordinates and allow the angle
measured from the positive z-axis (usually called ) to range from 0 to 
(rather than from 0 to as we would to get the full sphere). The parametric
equation would then be 

�

Surface Area for a Parametrized Surface Figure 10 shows the mapping
from the rectangle R to the surface G. (In general, the domain needn’t be a rectan-
gle, but to simplify the derivation we assume that it is a rectangle.) If we partition
the rectangle R, we see that the ith rectangle, gets mapped to a curved patch 
and that the sides of the rectangles in the partition of R get mapped to a curved
part of the surface. However, if and are small, the patch will closely resem-
ble a parallelogram having as sides the vectors and 
where is the lower left corner of the ith rectangle, and and denote the 

partial derivatives and respectively.
0r
0v

,
0r
0u

rvru1ui, vi2
¢virv1ui, vi2,¢uiru1ui, vi2

¢vi¢ui

Gi,Ri,

0 … v … p>2.0 … u … 2p,
r1u, v2 = 2 cos u sin v i + 2 sin u sin v j + 2 cos v k,
p

p>2f

0 … u … 2, 0 … v … 2p.u cos v i + u sin v j + 24 - u2 k

r1u, v2 =z = 24 - x2
- y2

= 24 - u2.

x2
+ y2

+ z2
= 4, z Ú 0,y = u sin v,

x = u cos v

-4 … u … 4, 0 … v … 2p.(u, v)
r1u, v2 = 2 cos v i + u j + 2 sin v j

z = 2 sin v.
x = 2 cos v

-4 … y … 4,

p,v
2p

r(u, v)
9 - x2

- y2,
z = 9 - u2

=u,v

x2
+ y2

… 9.
f1x, y2 = 9 - x2

- y29 - u2
- v2.

v,

r1u, v2 = 3 cos u sin v i + 3 sin u sin v j + 3 cos v k, 0 … u … 2p, 0 … v … p.

r1u, v2 = u cos v i + u sin v j + 19 - u22k, 0 … u … 3, 0 … v … 2p

r1u, v2 = u i + v j + 19 - u2
- v22k, u2

+ v2
… 9

r(u, v)
(u, v)

z

x

y3
3

Figure 8

3

z

x

y

Figure 9
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Section 14.5 Surface Integrals 763

The surface area of the patch is approximately

The surface area of the parametrized surface is therefore

The differential of surface area is

A surface integral for a parametrized surface is then

� EXAMPLE 9 A thin spherical shell of radius 5 centered at the origin has a
hole of radius 3 removed from the top (Figure 11). Find the surface area, mass, and
center of mass of this shell assuming that the density is proportional to the square
of the distance from the z-axis.

SOLUTION We can parametrize the surface as

for The required derivatives are

 = 3 i j k
-5 sin u sin v 5 cos u sin v 0
5 cos u cos v 5 sin u cos v -5 sin v

3

 ru1u, v2 * rv1u, v2 = 5
i j k

0x

0u

0y

0u

0z

0u

0x

0v

0y

0v

0z

0v

5
 rv1u, v2 = 5 cos u cos v i + 5 sin u cos v j - 5 sin v k

 ru1u, v2 = -5 sin u sin v i + 5 cos u sin v j + 0k

0 … u … 2p, sin-1 
3
5 … v … p.

5 sin u sin v j + 5 cos v k5 cos u sin v i +r1u, v2 =

O
G 

f1x, y, z2 dS =

O
R 

f1r1u, v22 7ru1u, v2 * rv1u, v2 7  dA

dS = 7ru1u, v2 * rv1u, v2 7  dA

SA =

O
R 

7ru1u, v2 * rv1u, v2 7  dA

¢Si L 7 1¢uiru1ui, vi22 * 1¢virv1ui, vi22 7 = 7ru1ui, vi2 * rv1ui, vi2 7  ¢ui ¢vi

Gi

5

3

Figure 11

v

u

R

(ui, vi)

Ri

∆vi

∆ui r

z

x

y

∆ri rv

∆u
i  r

u

Si

G

Figure 10
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The magnitude of this cross product is found to be (see Problem 27)

The surface area is

The mass is equal to the value of the surface integral

By symmetry The moment about the xy-plane is

 = -

81 # 3125k

2500
 2p = -

405
2

 kp

 = 3125k
L

2p

0
c- 81

2500
d  du

 = 3125k
L

2p

0
c1
4

 sin4 v dp
sin-1(3>5)

 du

 = 5 # 252k
L

2p

0 L

p

sin-113>52
 cos v sin3 v dv du

 =

O
R 

15 cos v2125k sin2 v2 7ru1u, v2 * rv1u, v2 7  dA

 Mxy =

O
G 

zd1x, y, z2 dS

x = y = 0.

 = 1620pk L 5089.4k

 = 625k
L

2p

0
 
162
125

  du

 = 625k
L

2p

0
c- 1

3
 sin2 v cos v -

2
3

 cos v dp
sin-113>52

 du

 = 625k
L

2p

0 L

p

sin-113>52
 sin3 v dv du

 = 252k
L

2p

0 L

p

sin-113>52
 sin2 v ƒ sin v ƒ  dv du

 =

O
R 

125k sin2 v2 7ru1u, v2 * rv1u, v2 7  dA

 m =

O
G 

d1x, y, z2 dS =

O
G 

k1x2
+ y22 dS

 = 2512p2 9
5

= 90p L 282.74

 = 25
L

2p

0
[-cos v]sin-113>52

p
 du

 = 25
L

2p

0 L

p

sin-113>52
 sin v dv du

S A =

O
R 

7ru1u, v2 * rv1u, v2 7  dA =

O
R 

25 ƒ sin v ƒ  dv du

7ru1u, v2 * rv1u, v2 7 = 25 ƒ sin v ƒ

 = -25 cos u sin2 v i - 25 sin u sin2 v j - 25 sin v cos v k

  -25 sin v cos v1sin2 u + cos2 u2 k
 = -25 cos u sin2 v i - 25 sin u sin2 v j
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Section 14.5 Surface Integrals 765

The z-component of the center of mass is

Thus, the center of mass is We would expect the z-component of the 

center of mass to be negative because some material is removed from the top of
the sphere but not the bottom. �

a0, 0, -
1
8
b .

z =

Mxy

m
=

-

405
2

 kp

1620pk
= -

1
8

Concepts Review
1. A _____ generalizes the ordinary double integral similar

to the way a line integral generalizes the definite integral.

2. If G is a surface, _____.

3. Let G be a surface given by where (x, y) is in

R. Then _____ dy dx.
O
G 

g1x, y, z2 dS =

O
R 

g1x, y, f1x, y22
z = f1x, y2,

O
G 

g1x, y, z2 dS = lim7P7:0

4. Consider the cone with axis along the z-axis, with vertex at
the origin, and making an angle of 30° with the z-axis. If G is the
portion of this cone above the set 

then _____ _____.dy dx =

O
G 

 dS =

O
R 

R = 51x, y2: x2
+ y2

… 96,

Problem Set 14.5

In Problems 1–8, evaluate 

1.

2.

3.

4.

5. G is the part of
below 

6.

7. G is the surface of the cube

8. G is the tetrahedron bounded by the coor-
dinate planes and the plane 

In Problems 9–12, use Theorem B to calculate the flux of F
across G.

9. G is the part of the plane
above the triangle with vertices (0, 0, 0),

(0, 1, 0), and (1, 0, 0).

10. G is the part of the plane
in the first octant.

11. G is the surface determined

by z = 21 - y2, 0 … x … 5.

F1x, y, z2 = y i - x j + 2 k;

2x + 3y + 6z = 6
F1x, y, z2 = 19 - x22j;

z = 8x - 4y - 5
F1x, y, z2 = -y i + x j;

4x + 8y + 2z = 16.
g1x, y, z2 = z;

0 … y … 1, 0 … z … 1.0 … x … 1,
g1x, y, z2 = x + y;

g1x, y, z2 = y; G: z = 4 - y2, 0 … x … 3, 0 … y … 2

y = zz = x2
+ y2
g1x, y, z2 = 24x2

+ 4y2
+ 1;

g1x, y, z2 = 2y2
+ z; G: z = x2

- y2, 0 … x2
+ y2

… 1

0 … y … 1
0 … x … 23,g1x, y, z2 = x + y; G: z = 24 - x2,

0 … y … 1
0 … x … 1,g1x, y, z2 = x; G: x + y + 2z = 4,

0 … y … 1
0 … x … 1,g1x, y, z2 = x2

+ y2
+ z; G: z = x + y + 1,

O
G 

g1x, y, z2 dS.
12. G is the part of the cone

that is inside the cylinder 

13. Find the mass of the triangle with vertices (a, 0, 0),
(0, a, 0), and (0, 0, a) if its density satisfies 

14. Find the mass of the surface over
if 

15. Find the center of mass of the homogeneous triangle with
vertices (a, 0, 0), (0, a, 0), and (0, 0, a).

16. Find the center of mass of the homogeneous triangle with
vertices (a, 0, 0), (0, b, 0), and (0, 0, c), where a, b, and c are all
positive.

In Problems 17–20, plot the parametric surface over the indicated
domain.

17.

18.

19.

20.

In Problems 21–24, use a CAS to plot the parametric surface
over the indicated domain and find the surface area of the resulting
surface.

21.
0 … v … p

r1u, v2 = u sin v i + u cos v j + v k; -6 … u … 6,

CAS

0 … v … 2p
r1u, v2 = u i + 3 sin v j + 5 cos v k; -6 … u … 6,

0 … v … 2p
r1u, v2 = 2 cos v i + 3 sin v j + uk; -6 … u … 6,

-2 … v … 2
r1u, v2 = 2u i + 3v j + 1u2

+ v22k; -1 … u … 1,

0 … v … 1
r1u, v2 = u i + 3v j + 14 - u2

- v22k; 0 … u … 2,

d1x, y, z2 = kxy.0 … x … 1, 0 … y … 1,
z = 1 - 1x2

+ y22>2
d1x, y, z2 = kx2.d

x2
+ y2

= 1.z = 1x2
+ y221>2

F1x, y, z2 = 2i + 5j + 3k;
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766 Chapter 14 Vector Calculus

22.

23.

24.

25. Find the mass of the surface in Problem 23 if the density is
proportional to the distance from the xy-plane.

26. Find the mass of the surface in Problem 24 if the density is
proportional to (a) the distance from the z-axis, and (b) the dis-
tance from the xy-plane.

27. Show that the magnitude of the cross product
in Example 9 is equal to 

28. Refer to Example 3. The hemispherical surface
has a thin metal covering with

density Find the mass of this covering. Note that
Theorem A does not apply directly, since and are undefined
on the boundary of R. Therefore, proceed by letting

be the region make the calculation,
and then let Discover that you get the same answer as you
would if you ignored this subtle point.

29. Let G be the sphere Evaluate each of
the following:

(a) (b)
O
G 

 
x + y3

+ sin z

1 + z4   dS
O
G 

z dS

x2
+ y2

+ z2
= a2.

e: 0.
0 … x2

+ y2
… 13 - e22,Re

x2
+ y2

= 9
fyfx

d1x, y, z2 = z.
z = f1x, y2 = 29 - x2

- y2

25 ƒ sin v ƒ .7ru1u, v2 * rv1u, v2 7

0 … u … p>2, 0 … v … 2p
r1u, v2 = cos u cos v i + cos u sin v j + cos u k;

0 … v … 2p
r1u, v2 = u2 cos v i + u2 sin v j + 5u k; 0 … u … 2p,

0 … v … 2p0 … u … 2p,
r1u, v2 = sin u sin v i + cos u sin v j + sin v k;

(c) (d)

(e)

Hint: Use symmetry properties to make this a trivial problem.

30. The sphere has constant area density
k. Find each moment of inertia.
(a) About a diameter
(b) About a tangent line (assume the Parallel Axis Theorem

from Problem 28 of Section 13.5).

31. Find the total force against the surface of a tank full of a
liquid of weight density k for each tank shape.
(a) Sphere of radius a
(b) Hemisphere of radius a with a flat base
(c) Vertical cylinder of radius a and height h

Hint: The force against a small patch of area is approximately
where d is the depth of the water at the patch.

32. Find the center of mass of that part of the sphere
between the planes and where
Do this by the methods of this section and

then compare with Problem 19 of Section 13.6.

Answers to Concepts Review: 1. surface integral

2. 3. 4. 2; 18p2fx
2

+ fy
2

+ 1a
n

i = 1
g1xi, yi, zi2 ¢Si

0 … h1 … h2 … a.
z = h2,z = h1x2

+ y2
+ z2

= a2

kd ¢G,
¢G

x2
+ y2

+ z2
= a2

O
G 

1x2
+ y22 dS

O
G 

x2 dS
O
G 

1x2
+ y2

+ z22 dS

The theorems of Green, Gauss, and Stokes all relate an integral over a set S to an-
other integral over the boundary of S. To emphasize the similarity in these theo-
rems, we introduce the notation to stand for the boundary of S. Thus, one form
of Green’s Theorem (Section 14.4) can be written as

It says that the flux of F across the boundary of a closed bounded plane region
S is equal to the double integral of div F over that region. Gauss’s Theorem (also
called the Divergence Theorem) lifts this result up one dimension.

Gauss’s Theorem Let S be a closed bounded solid in three-space that is com-
pletely enclosed by a piecewise smooth surface (Figure 1).0S

0S

F0S
F # n ds =

O
S 

div F dA

0S

14.6
Gauss’s Divergence

Theorem

Recall from Section 12.3 that a point
P is a boundary point for a set S if
every neighborhood of P contains
points that are in S and points that
are not in S. The boundary of a set is
the set of all its boundary points.

The Boundary of a Set

z

x

y

S

n

6S

Figure 1

Theorem A Gauss’s Theorem

Let be a vector field such that M, N, and P have continu-
ous first-order partial derivatives on a solid S with boundary If n denotes the
outer unit normal to then

In other words, the flux of F across the boundary of a closed region in three-
space is the triple integral of its divergence over that region.

O
0S 

F # n dS =

l
S 

div F dV

0S,
0S.

F = Mi + Nj + Pk
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Section 14.6 Gauss’s Divergence Theorem 767

It is useful both for some applications and for the proof to state the conclusion
to Gauss’s Theorem in its Cartesian (nonvector) form. We may write

where and are the direction angles for n. Thus

and so Gauss’s formula becomes

Proof of Gauss’s Theorem We first consider the case where the region S is 
x-simple, y-simple, and z-simple. It will be sufficient to show that

Since these demonstrations are similar, we show only the third.
Since S is z-simple, it can be described by the inequalities 

As in Figure 2, consists of three parts: corresponding to
corresponding to and the lateral surface which

may be empty. On so we can ignore its contribution. Also,
from Problem 26 of Section 13.6 and Theorem 14.5A,

The result to which we just referred assumes that the normal n points upward.
Hence, when we apply it to where n is a lower normal (Figure 2), we must re-
verse the sign.

It follows that

The result just proved extends easily to regions that are finite unions of the type
considered. We omit the details. �

 =

l
S 

 
0P

0z
  dV

 =

O
R 

c
L

f21x, y2

f11x, y2
 
0P

0z
  dz d  dx dy

 
O
0S 

P cos g dS =

O
R 

CP1x, y, f21x, y22 - P1x, y, f11x, y22 D  dx dy

O
S1 

P cos g dS = -

O
R 

P1x, y, f11x, y22 dx dy

S1,

O
S2 

P cos g dS =

O
R 

P1x, y, f21x, y22 dx dy

S3, cos g = cos 90° = 0,
S3,z = f21x, y2;z = f11x, y2; S2,

S1,0Sf21x, y2. f11x, y2 … z …

 
O
0S 

P cos g dS =

l
S 

 
0P

0z
  dV

 
O
0S 

N cos b dS =

l
S 

 
0N

0y
  dV

 
O
0S 

M cos a dS =

l
S 

 
0M

0x
  dV

O
0S 

1M cos a + N cos b + P cos g2 dS =

l
S 

a 0M

0x
+

0N

0y
+

0P

0z
b  dV

F # n = M cos a + N cos b + P cos g

ga, b,

n = cos a i + cos b j + cos g k

z

x

y

R

S1

S3

S2

n

n

n

z = f1(x, y)

z = f2(x, y)

Figure 2
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768 Chapter 14 Vector Calculus

� EXAMPLE 1 Verify Gauss’s Theorem for and

by independently calculating (a) 

and (b) 

SOLUTION
(a) On and so Thus,

(b) Since div 

�

� EXAMPLE 2 Compute the flux of the vector field 
across the surface of the rectangular solid S determined by (Figure 3)

(a) by a direct method and (b) by Gauss’s Theorem.

SOLUTION

(a) To calculate directly, we calculate this integral over the six faces

and add the results. On the face and so 

By similar calculations, we can construct

the following table:

Face n

i y 6

0 0

j 2xz

k 27y 54

0 0

Thus,

(b) By Gauss’s Theorem,

� =

L

1

0
112x + 542 dx = [6x2

+ 54x]
1
0 = 60

 =

L

1

0 L

2

0 L

3

0
12xy + 3yz22 dz dy dx =

L

1

0 L

2

0
16xy + 27y2 dy dx

 
O
0S 

F # n dS =

l
S 

12xy + 0 + 3yz22 dV

O
0S 

F # n dS = 6 + 0 +

9
2

-

9
2

+ 54 + 0 = 60

�kz = 0

z = 3

-9>2-2xz� jy = 0

9>2y = 2

� ix = 0

x = 1

O
face 

F # n dSF # n

O
x = 1 

F # n dS =

L

3

0 L

2

0
y dy dz = 6.

F # n = x2y = 12y = y,x = 1, n = i,

O
0S 

F # n dS

0 … x … 1, 0 … y … 2, 0 … z … 3

F = x2y i + 2xz j + yz3 k

l
S 

div F dV = 3
l
S 

dV = 3 
4pa3

3
= 4pa3

F = 3,

O
0S 

F # n dS = a
O
0S 

 dS = a14pa22 = 4pa3

F # n = 1x2
+ y2

+ z22>a = a.n = 1x i + y j + z k2>a,0S,

l
S 

 div F dV.
O
0S 

F # n dSS = 51x, y, z2: x2
+ y2

+ z2
… a26

F = x i + y j + z k

z

x

y

(0, 2, 3)

(1, 2, 0)

(1, 0, 3)

Figure 3
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Section 14.6 Gauss’s Divergence Theorem 769

� EXAMPLE 3 Let S be the solid cylinder bounded by 
and and let n be the outer unit normal to the boundary (Figure 4). If

find the flux of F across 

SOLUTION Imagine the difficulty in trying to evaluate directly.

However,

and so, by Gauss’s Theorem and a shift to cylindrical coordinates,

�

Extensions and Applications So far we have implicitly assumed that the
solid S has no holes in its interior and that its boundary consists of one con-
nected surface. In fact, Gauss’s Theorem holds for a solid with holes, like a chunk
of Swiss cheese, provided that we always require n to point away from the interior
of the solid. For example, let S be the solid shell between two concentric spheres
centered at the origin. Gauss’s Theorem applies, provided that we recognize that

now consists of two surfaces (an outer surface where n points away from the
origin and an inner surface where n points toward the origin).

� EXAMPLE 4 Let S be the solid determined by

and let Evaluate

SOLUTION

�

Recall from Section 14.1 that the gravitational field F due to a point mass M at
the origin has the form

where and c is a constant.r = x i + y j + z k

F1x, y, z2 = -cM 
r
7r 73

 = 4 c4
3

 p1232 -

4
3

 p1132 d =

112p
3

 =

l
S 

11 + 2 + 12 dV

 
O
0S 

F # n dS =

l
S 

div F dV

O
0S 

F # n dS

F = x i + 12y + z2j + 1z + x22k.

1 … x2
+ y2

+ z2
… 4

0S

0S

 = 9
L

2p

0
6 du = 108p

 = 9
L

2p

0 L

2

0
1r3

+ r2 dr du

 = 3
L

2p

0 L

2

0 L

3

0
1r2

+ 12r dz dr du

 
O
0S 

F # n dS = 3
l
S 

1x2
+ y2

+ 12 dV

div F = 3x2
+ 3y2

+ 3 = 31x2
+ y2

+ 12
O
0S 

F # n dS

0S.F = 1x3
+ tan yz2i + 1y3

- exz2j + 13z + x32k,
0Sz = 3,

x2
+ y2

= 4, z = 0,

z = 3

x2 + y2 = 4

z

n

x

y

S

Figure 4
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� EXAMPLE 5 Let S be a solid region containing a point mass M at the origin
in its interior and with the corresponding field Show that the flux
of F across is regardless of the shape of S.

SOLUTION Since F is discontinuous at the origin, Gauss’s Theorem does not
apply directly. However, let us imagine that a small solid sphere centered at the
origin and of radius a has been removed from S, leaving a solid W with outer
boundary and inner boundary (Figure 5). When we apply Gauss’s Theorem
to W, we get

But div which is easy to check (Problem 21 of Section 14.1), and so

On the surface and Consequently,

�

We can extend the result of Example 5 to the case where a solid S contains k
point masses in its interior. The result, known as Gauss’s Law,
gives the flux of F across as

Finally, Gauss’s Law can be extended to a body B with a continuously distrib-
uted mass of size M by subdividing it into small pieces and approximating these
pieces by point masses. The result for any region S containing B is

O
0S 

F # n dS = -4pcM

O
0S 

F # n dS = -4pc1M1 + M2 +
Á

+ Mk2
0S

M1, M2, Á , Mk

 =

-cM

a2  14pa22 = -4pcM

 = -cM
O
0Sa 

 
1

a2  dS

 = -cM
O
0Sa 

 
r # r
a4   dS

 -
O
0Sa 

F # n dS = -

O
0Sa 

a -cM 
r
7r 73 b # a-

r
7r 7 b  dS

7r 7 = a.0Sa, n = -r> 7r 7
O
0S 

F # n dS = -

O
0Sa 

F # n dS

F = 0,

O
0S 

F # n dS +

O
0Sa 

F # n dS =

O
0W 

F # n dS =

l
W 

div F dV

0Sa0S

Sa

-4pcM,0S
F = -cMr> 7r 73.

z

x

y

Point mass
M

Surface

Unit outward
normals

6

6

S

Sa

n

n

Figure 5

Concepts Review
1. The theorems of Green, Gauss, and Stokes all relate an

integral over S to another integral over the _____ of S, which is
denoted by _____.

2. In particular, the theorem of Gauss says that

_____ dS.
l
S 

div F dV =

O
0S 

3. Another way to state Gauss’s Theorem is to say that the

flux of F across the boundary of S equals _____ dV.

4. A consequence of Gauss’s Theorem is that the _____
of the gravitational field due to a mass M across the boundary of
any solid S containing M is that is, it is independent of
_____ of S.

-4pcM;

l
S 
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Section 14.6 Gauss’s Divergence Theorem 771

Problem Set 14.6
In Problems 1–14, use Gauss’s Divergence Theorem to calculate

1. S is the hemisphere

2. S is the cube

3. S is the cube

4. S is the hemisphere

5. S is the box

6. S is the solid sphere

7. S is the parabolic solid

8. S
is the solid bounded by 

9. S is the solid

10. S is the solid enclosed by

11. S is the solid spherical
shell 

12. S is the solid cylindrical
shell 

13. S is the cylindrical region
Hint: Make the transformation

(similar to cylindrical coordi-
nates) and use the methods of Section 13.9 to get the Jacobian.

14. S is the
region Hint: Make a 
transformation similar to spherical coordinates and use the meth-
ods of Section 13.9 to get the Jacobian.

15. Let and let S be a solid for
which Gauss’s Divergence Theorem applies. Show that the vol-
ume of S is given by

16. Use the result of Problem 15 to verify the formula for the
volume of a right circular cylinder of height h and radius a.

17. Consider the plane where a, b, c, and
d are all positive. Use Problem 15 to show that the volume of the
tetrahedron cut from the first octant by this plane is

where D is the area of that part of the
plane in the first octant.
dD> A32a2

+ b2
+ c2 B ,

ax + by + cz = d,

V1S2 =

1
3

 

O
0S 

F # n dS

F1x, y, z2 = x i + y j + z k,

x2
+ z2

… y2, x2
+ y2

+ z2
… 1, y Ú 0.

F1x, y, z2 = 1x3
+ y2i + 1y3

+ z2j + 1x + z32k;

x = r cos u, z = r sin u, y = y
x2

+ z2
… 1, 0 … y … 10.

F1x, y, z2 = z2 i + y2 j + x2 k;

1 … x2
+ y2

… 4, 0 … z … 2.
F1x, y, z2 = 2z i + x j + z2 k;

9 … x2
+ y2

+ z2
… 25.

F1x, y, z2 = 2x i + 3y j + 4z k;

x + y + z = 4, x = 0, y = 0, z = 0.
F1x, y, z2 = x2 i + y2 j + z2 k;

0 … y2
+ z2

… 1, 0 … x … 2.
F1x, y, z2 = 1x + z22i + 1y - z22j + x k;

x2
+ y2

= 4, x + z = 2, z = 0.
F1x, y, z2 = 1x2

+ cos yz2i + 1y - ez2j + 1z2
+ x22k;

0 … z … 4 - x2
- y2.

F1x, y, z2 = x2 i + y2 j + z2 k;

x2
+ y2

+ z2
… 9.

F1x, y, z2 = 3x i - 2y j + 4z k;

0 … x … a, 0 … y … b, 0 … z … c.
F1x, y, z2 = x2yz i + xy2z j + xyz2 k;

0 … z … 2a2
- x2

- y2.

F1x, y, z2 = x3 i + y3 j + z3 k;

-1 … x … 1, -1 … y … 1, -1 … z … 1.
F1x, y, z2 = cos z2 i + y j + cos x2 k;

0 … x … 1, 0 … y … 1, 0 … z … 1.
F1x, y, z2 = x i + 2y j + 3z k;

0 … z … 29 - x2
- y2.

F1x, y, z2 = z i + x j + y k;

O
0S 

F # n dS.

18. Let F be a constant vector field. Show that

for any “nice” solid S. What should we mean by “nice”?

19. Calculate for each of the following. Looked at

the right way, all are quite easy and some are even trivial.

(a)
S is the solid sphere 

(b) S as in part (a).

(c)
S is the solid sphere 

(d) S is the cube 

(e) S is the tetrahedron
cut from the first octant by the plane 

(f) S as in part (a).

(g)
S is the solid cylinder 

20. Calculate In each case,

(a) S is the solid sphere 
(b) S is the solid sphere 
(c) S as in part (b).
(d) f any scalar function; S as in part (b).
(e) S is the solid sphere 

( in spherical coordinates).

21. We have defined the Laplacian of a scalar field by

Show that if is the directional derivative in the direction of
the unit normal vector n, then

22. Suppose that is identically zero in a region S. Show
that

23. Establish Green’s First Identity

by applying Gauss’s Divergence Theorem to 

24. Establish Green’s Second Identity:

Answers to Concepts Review: 1. boundary; 2.
3. div F 4. flux; the shape

F # n0S

O
0S 

1fDng - gDn f2 dS =

l
S 

1f §2g - g §2f2 dV

F = f §g.

O
0S 

fDng dS =

l
S 

1f §2g + §f #
§g2 dV

O
0S 

fDn f dS =

l
S 

7§f 72 dV

§
2f

O
0S 

Dn f dS =

l
S 

§
2f dV

Dnf

§
2f =

0
2f

0x2 +

0
2f

0y2 +

0
2f

0z2

r … a cos f
x2

+ y2
+ z2

… azF = 7r 7nr, n Ú 0;
F = f1 7r 7 2r,
F = r> 7r 72;

x2
+ y2

+ z2
… a2.F = r> 7r 73;

1x - 222 + y2
+ z2

… 1.F = r> 7r 73;
r = x i + y j + z k.

O
0S 

F # n dS.

x2
+ y2

… 4, 0 … z … 2.
F = 1x i + y j2 ln1x2

+ y22;
F = x3 i + y3 j + z3 k;

3x + 4y + 2z = 12.
F = 1x + z2i + 1y + x2j + 1z + y2k;

0 … x … 1, 0 … y … 1, 0 … z … 1.F = x2 i;

1x - 222 + y2
+ z2

… 1.
F = x2 i + y2 j + z2 k;

F = 1x2
+ y2

+ z225>31x i + y j + z k2;
x2

+ y2
+ z2

… 1.
F = 12x + yz2i + 3y j + z2 k;

O
0S 

F # n dS

O
0S 

F # n dS = 0
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Examples and Applications The proof of Stokes’s Theorem is more ap-
propriate for a course in advanced calculus. However, we can at least verify the
theorem in an example.

� EXAMPLE 1 Verify Stokes’s Theorem for if S is the
paraboloid with the circle as its boundary (Fig-
ure 2).

SOLUTION We may describe by the parametric equations

Then and (see Section 14.2)

On the other hand, to calculate we first obtain

curl F = § * F = 4
i j k
0

0x

0

0y

0

0z

y -x yz

4 = z i + 0 j - 2 k

O
S 

1curl F2 # n dS

 = -

L

2p

0
[sin2 t + cos2 t] dt = -2p

 
F0S

F # T ds =

F0S
y dx - x dy =

L

2p

0
[sin t1-sin t2 dt - cos t cos t dt]

dz = 0

x = cos t, y = sin t, z = 1

0S

x2
+ y2

= 1, z = 1z = x2
+ y2

F = y i - x j + yz k

We showed in Section 14.4 that the conclusion to Green’s Theorem could be writ-
ten as

As stated, it was a theorem for a plane set S bounded by a simple closed curve 
We are going to generalize this result to the case where S is a curved surface in
three-space. In this form, the theorem is due to the Irish scientist George Gabriel
Stokes (1819–1903).

We will need to put some restrictions on the surface S. First, we suppose that S
is two-sided with a continuously varying unit normal n (the one-sided Möbius
band of Section 14.5 is thereby eliminated from our discussion). Second, we re-
quire that the boundary be a piecewise smooth, simple closed curve, oriented
consistently with n. This means that, if you stand near the edge of the surface with
your head in the direction n and your eyes looking in the direction of the curve, the
surface is to your left (Figure 1).

0S

0S.

F0S
F # T ds =

O
S 

1curl F2 # k dA

14.7
Stokes’s Theorem

S6

n
S

Figure 1

z

x

y
R

S

n

S6

Figure 2

Theorem A Stokes’s Theorem

Let S, and n be as indicated above, and suppose that is
a vector field, with M, N, and P having continuous first-order partial derivatives
on S and its boundary If T denotes the unit tangent vector to then

F0S
F # T ds =

O
S 

1curl F2 # n dS

0S,0S.

F = Mi + Nj + Pk0S,
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Section 14.7 Stokes’s Theorem 773

Then, by Theorem 14.5B,

�

� EXAMPLE 2 Let S be that part of the spherical surface
below the plane and let 

Use Stokes’s Theorem to calculate

where n is the upward unit normal.

SOLUTION Note that the field F is the same as that of Example 1 and also that
S has the same circle as its boundary curve. We conclude that

In fact, we conclude that the flux of curl F is for all surfaces S that have the
circle of Figure 2 as their oriented boundary. �

� EXAMPLE 3 Use Stokes’s Theorem to evaluate where

and C is the triangular curve of Figure 3.

SOLUTION We could let S be any surface with C as its oriented boundary, but
it is to our advantage to choose the simplest such surface, the flat planar triangle T.
To determine n for this surface, we note that the vectors

lie on this surface and hence

is perpendicular to it. The upward unit normal n is therefore

n =

2i + 2j + k24 + 4 + 1
=

2
3

  i +

2
3

  j +

1
3

  k

N = A : B = 3 i j k
-1 0 2
-1 1 0

3 = -2i - 2j - k

 B = 10 - 12i + 11 - 02j + 10 - 02k = - i + j

 A = 10 - 12i + 10 - 02j + 12 - 02k = - i + 2k

F = 2z i + 18x - 3y2j + 13x + y2k FC
F # T ds,

0S
-2p

O
S 

1curl F2 # n dS =

F0S
F # n ds = -2p

O
S 

1curl F2 # n dS

F = y i - x j + yz k.z = 1,x2
+ y2

+ 1z - 422 = 10

 = -2
L

2p

0
c1
5

 cos u +

1
2
d  du = -2p

 = -2
L

2p

0 L

1

0
[r3 cos u + 1]r dr du

 = -2
O
R 

[x1x2
+ y22 + 1] dx dy

 = -2
O
R 

[xz + 1] dx dy

 
O
S 

1curl F2 # n dS =

O
R 

[-z12x2 - 012y2 - 2] dx dy

z

x

y

(1, 0, 0)

(0, 1, 0)

(0, 0, 2)

C
T

Figure 3

773



774 Chapter 14 Vector Calculus

Also,

and curl We conclude that

�

� EXAMPLE 4 Let the vector field F and the region D satisfy the hypotheses
of Theorem 14.3D. Show that if curl in D then F is conservative there.

SOLUTION From the discussion in Section 14.3, we conclude that it is enough

to show that for any simple closed path C in D. Let S be a surface 

having C as its boundary and oriented consistently with C (the simple
connectedness of D can be shown to guarantee the existence of such a surface).
Then, from Stokes’s Theorem,

�

Physical Interpretation of the Curl We offered an interpretation of the
curl in Section 14.4. Now we can amplify that discussion. Let C be a circle of radius
a centered at the point P. Then

is called the circulation of F around C and measures the tendency of a fluid with
velocity field F to circulate around C. Now, if F is continuous and C is very small,
Stokes’s Theorem gives

The expression on the right will have the largest magnitude if n has the same di-
rection as curl F(P).

Suppose that a small paddle wheel is placed in the fluid with center at P and
axis having direction n (Figure 4). This wheel will rotate most rapidly if n has the
direction of curl F. The direction of rotation will be that determined by the right-
hand rule.

FC
F # T ds =

O
S 

1curl F2 # n dS L [curl F1P2] # n 1pa22

FC
F # T ds

FC
F # dr =

FC
F # T ds =

O
S 

1curl F2 # n dS = 0

FC
F # dr = 0

F = 0

FC
F # T ds =

O
T 

1curl F2 # n dS =

8
3

 1area of T2 =

8
3

 a3
2
b = 4

F # n =
8
3.

curl F = 4
i j k
0

0x

0

0y

0

0z

2z 8x - 3y 3x + y

4 = i - j + 8k

n

Figure 4

Concepts Review
1. Stokes’s Theorem in three-space says that under appro-

priate hypotheses _____ dS. Here S is a surface

and is its boundary.

2. One of these hypotheses is that S be two-sided. An im-
portant example of a one-sided surface is the _____, obtained by

0S

L0S
F # T dS =

O
S 

cutting an ordinary cylindrical band, giving it a half twist, and
pasting it back together.

3. It follows from Stokes’s Theorem that all two-sided sur-
faces with the same boundary give the same value for _____.

4. A paddle wheel centered at P and immersed in a fluid
with velocity field F will rotate most rapidly about P if n has the
direction of _____.

0S
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Section 14.8 Chapter Review 775

Problem Set 14.7
In Problems 1–6, use Stokes’s Theorem to calculate

1. S is the hemisphere 

and n is the upper normal.

2. S is the triangular surface with
vertices (0, 0, 0), (1, 0, 0), and (0, 2, 1) and n is the upper normal.

3. S is the half-cylinder

between and and n is the upper

normal.

4. S is the part of the ellipsoid
below the xy-plane and n is the lower normal.

5. S is the part of the sphere
below the plane and n is the outward

normal.

6. S is the part of the
paraboloid above the xy-plane and n is the up-
ward normal.

In Problems 7–12, use Stokes’s Theorem to calculate 

7. C is the ellipse that is the intersec-
tion of the plane and the cylinder oriented
clockwise as viewed from above.

8. C is the triangular curve with ver-
tices (0, 0, 0), (2, 0, 0), and (0, 2, 2), oriented counterclockwise as
viewed from above.

9. C is the boundary
of the plane in the first octant, oriented clock-
wise as viewed from above.

10. C is the rectangular
path from (0, 0, 0) to (1, 0, 0) to (1, 1, 1) to (0, 1, 1) to (0, 0, 0).

11. C is the intersection of the
cylinder with the sphere oriented
counterclockwise as viewed from above.

12. C is the ellipse
which is the intersection of the plane and the cylinder

oriented clockwise as viewed from above.

13. Suppose that the surface S is determined by the formula
Show that the surface integral in Stokes’s Theorem

can be written as a double integral in the following way:
z = g1x, y2.
x2

+ y2
= 1,

x + z = 1
F = 1y - z2i + 1z - x2j + 1x - y2k;

x2
+ y2

+ z2
= 1,x2

+ y2
= x

F = 1z - y2i + y j + x k;

F = y1x2
+ y22i - x1x2

+ y22j;
x + 2y + z = 2

F = 1y - x2i + 1x - z2j + 1x - y2k;

F = y i + z j + x k;

x2
+ y2

= 4,z = x
F = 2z i + x j + 3y k;

FC
F # T ds.

z = 1 - x2
- y2

F = 1z - y2i + 1z + x2j - 1x + y2k;

z = 2x2
+ y2

+ z2
= 16

F = yz i + 3xz j + z2 k;

x2
+ y2

+ 3z2
= 1

F = xz2 i + x3 j + cos xz k;

y = 1y = 0z = 21 - x2

F = 1y + z2i + 1x2
+ z22j + y k;

F = xy i + yz j + xz k;

21 - x2
- y2

z =F = x2 i + y2 j + z2 k;

O
S 

1curl F2 # n dS
where n is the upward normal to S and is the projection of S
in the xy-plane.

14. Let and be the boundary of
the surface oriented counter-
clockwise as viewed from above. Use Stokes’s Theorem and 

Problem 13 to evaluate 

15. Let and be the boundary of the
surface oriented counterclock-

wise as viewed from above. Evaluate 

16. Let and be the boundary of the
surface oriented counterclockwise as 

viewed from above. Evaluate 

17. Let and let be the intersection of the
cylinder with the hemisphere 

Assuming distances in meters and force in newtons, find
the work done by the force F in moving an object around in
the counterclockwise direction as viewed from above.

18. A central force is one of the form where f
has a continuous derivative (except possibly at ). Show
that the work done by such a force in moving an object around a
closed path that misses the origin is 0.

19. Let S be a solid sphere (or any solid enclosed by a “nice”
surface ). Show that

(a) By using Stokes’s Theorem.
(b) By using Gauss’s Theorem. Hint: Show 

20. Show that

Answers to Concept Review: 1. 2. Möbius

band 3. 4. curl F
O
S 

1curl F2 # n dS

curl F # n

F0S
1f §g2 # T ds =

O
S 

1§f * §g2 # n dS

div1curl F2 = 0.

O
0S 

1curl F2 # n dS = 0

0S

7r 7 = 0
F = f1 7r 7 2r,

0S
a 7 0.

z = 2a2
- x2

- y2,x2
+ y2

= ay
0SF = 2z i + 2y k,

F0S
F # T ds.

z = x2y2, x2
+ y2

… a2,
0SF = 2 i + xz j + z3 k
F0S

F # T ds.

z = xy2, 0 … x … 1, 0 … y … 1,
0SF = 2 i + xz j + z3 k

F0S
F # T ds.

z = xy, 0 … x … 1, 0 … y … 1,
0SF = x2 i - 2xy j + yz2 k

Sxy

O
S 

1curl F2 # n dS =

O
Sxy 

1curl F2 # 1-gx i - gy j + k2 dA

14.8 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. Inverse square law fields are conservative.

2. The divergence of a vector field is another vector field.

3. A physicist might be interested in both curl and
grad (curl F).

4. If f has continuous second-order partial derivatives, then
curl 

5. The work done by a conservative force field as it moves an
object around a closed path is zero.

1grad f2 = 0.

(grad f)
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776 Chapter 14 Vector Calculus

6. If for every closed path in an open con-

nected set D, then there is a function f such that in D.

7. The field is
conservative.

8. Green’s Theorem holds for a region S with a hole provid-
ed that the complete boundary of S is oriented correctly.

9. The double integral is a special case of a surface integral.

10. A surface always has two sides.

11. If there are no sources or sinks in a region, then the net
flow across the boundary of the region is zero.

12. If S is a sphere with outward normal n and F is a constant
vector field, then

Sample Test Problems
1. Sketch a sample of vectors from the vector field

2. Find div F, curl F, grad(div F), and div(curl F) if

3. We showed in Problem 20, Section 14.1, that

and in Problem 21, Section 14.3, that

Use these facts to show that

4. Find a function f satisfying
(a)
(b)

5. Evaluate:

(a) C is the quarter circle from to (1, 0),

centered at the origin.

(b) C is the curve 

6. Show that is independent of path, and

use this to calculate the integral on any path from (0, 0) to (1, 2).
LC

y2 dx + 2xy dy

z = sin t, 0 … t … p>2.y = cos t,

x = t,
LC

xy dx + z cos x dy + z dz;

10, -12
LC
11 - y22 ds;

§f = 1yz - e-x2i + 1xz + ey2j + xy k.
§f = 12xy + y2i + 1x2

+ x + cos y2j;

curl1f §f2 = 0

curl1§f2 = 0

curl1fF2 = f1curl F2 + §f * F

F1x, y, z2 = 2xyz i - 3y2 j + 2y2z k.

F1x, y2 = x i + 2y j.

O
S 

1F # n2 dS = 0

F1x, y, z2 = 12x + 2y2i + 2x j + yz2 k

§f = F
LC

F1r2 # dr = 0
7. Find the work done by in moving an ob-

ject from (1, 1) to (3, 4) (see Problem 6).

8. Evaluate (see Problem 4b).

9. Evaluate if

(a) C is the square path (0, 0) to (1, 0) to (1, 1) to (0, 1) to (0, 0);
(b) C is the triangular path (0, 0) to (2, 0) to (2, 1) to (0, 0);
(c) C is the circle traversed in the clockwise

direction.

10. Calculate the flux of across the square curve
C with vertices (1, 1), and that is, cal-

culate 

11. Calculate the flux of across the
sphere 

12. Evaluate where G is the part of the plane 

above the triangular region with vertices (0, 0, 0),
(1, 0, 0), and (0, 2, 0).

13. Evaluate where

and G is the part of the sphere above the plane
and n is the upward unit normal.

14. Evaluate where

and G is the closed surface bounded by and
with outward unit normal n.

15. Let C be the circle that is the intersection of the plane
and the sphere

For evaluate

Hint: Use Stokes’s Theorem.

FC
F # T ds

F = y i - x j + 3y k,x2
+ y2

+ z2
= 9.

ax + by + z = 0 1a Ú 0, b Ú 02

z = 0
z = 29 - x2

- y2,

F = sin x i + 11 - cos x2y j + 4z k

O
G 

F # n dS,

z = 1
x2

+ y2
+ z2

= 2

F = x3y i + ey j + z tanaxyz

4
bk

O
G 

1curl F2 # n dS,

z = x + y

O
G 

xyz dS,

x2
+ y2

+ z2
= 1.

F = x i + y j + 3 k
FC

F # n ds.

11, -12;1-1, 12, 1-1, -12,
F = x i + y j

x2
+ y2

= 1

FC
xy dx + 1x2

+ y22 dy

L

11,1,42

10,0,02
1yz - e-x2 dx + 1xy + ey2 dy + xy dz

F = y2 i + 2xy j
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Appendix
A.1 Mathematical

Induction

A.2 Proofs of Several
Theorems

Theorem A
Main Limit Theorem

Theorem B
Chain Rule

Theorem C
Power Rule

Theorem D
Vector Limits

A.1
Mathematical Induction
Often in mathematics we are faced with the task of wanting to establish that a cer-
tain proposition is true for every integer (or perhaps every integer

). Here are three examples:

1.

2.

3. is prime

Proposition is true for every positive integer, and is true for every integer
greater than or equal to 5 (as we will show soon). The third proposition, is
interesting. Note that for the values of are

(prime numbers so far). In fact, we will get a prime number
for all n’s through 40; but at the formula yields the composite number

Showing the truth of a proposition for 40 (or 40 million) individ-
ual cases may make a proposition plausible, but it most certainly does not prove it
is true for all n. The chasm between any finite number of cases and all cases is infi-
nitely wide.

What is to be done? Is there a procedure for establishing that a proposition 
is true for all n? An affirmative answer is provided by the Principle of Mathemati-
cal Induction.

Pn

1681 = 14121412. n = 41,
41, 43, 47, 53, 61, Á

n2
- n + 41n = 1, 2, 3, Á ,

Rn,
QnPn

Rn: n2
- n + 41

Qn: 2n
7 n + 20

Pn: 12
+ 22

+ 32
+

Á
+ n2

=

n1n + 1212n + 12
6

n Ú N
n Ú 1Pn

We do not prove this principle; it is often taken as an axiom, and we hope it
seems obvious. After all, if the first domino falls and if each domino knocks over
the next one, then the whole row of dominoes will fall. Our efforts will be directed
toward illustrating how we use mathematical induction.

� EXAMPLE 1 Prove that

is true for all 

SOLUTION First, we note that

is a true statement.
Second, we demonstrate implication (ii). We begin by writing the statements 

and 

Pi + 1: 12
+ 22

+
Á

+ i2
+ 1i + 122 =

1i + 121i + 2212i + 32
6

Pi: 12
+ 22

+
Á

+ i2
=

i1i + 1212i + 12
6

Pi + 1.Pi

P1: 12
=

111 + 1212 + 12
6

n Ú 1.

Pn: 12
+ 22

+ 32
+

Á
+ n2

=

n1n + 1212n + 12
6

Principle of Mathematical Induction

Let be a sequence of propositions (statements) satisfying these two
conditions:

(i) is true (usually N will be 1).
(ii) The truth of implies the truth of 

Then, is true for every integer n Ú N.Pn

Pi + 1, i Ú N.Pi

PN

5Pn6

Copyright © 2007 by Pearson Education, Inc. All rights reserved.
From Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon. 
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A-2 Appendix

We must show that implies so we assume that is true.Then the left side of
can be written as follows (* indicates where is used):

This chain of equalities leads to the statement Thus, the truth of does imply
the truth of By the Principle of Mathematical Induction, is true for each
positive integer n. �

� EXAMPLE 2 Prove that is true for each integer 

SOLUTION First, we note that is true. Second, we suppose
that is true and attempt to deduce from this that

is true. But

Read from left to right, this is proposition Thus, is true for    �

� EXAMPLE 3 Prove that

is true for each integer 

SOLUTION Trivially, is a factor of so is true. Suppose that
is a factor of that is,

for some polynomial Q(x, y). Then

Thus, the truth of does imply the truth of We conclude by the Principle of
Mathematical Induction that is true for all  �n Ú 1.Pn

Pi + 1.Pi

 = [xi
+ yQ1x, y2]1x - y2

 =
* xi1x - y2 + y Q1x, y21x - y2

 = xi1x - y2 + y1xi
- yi2

 xi + 1
- yi + 1

= xi + 1
- xiy + xiy - yi + 1

xi
- yi

= Q1x, y21x - y2
xi

- yi;x - y
P1x - y,x - y

n Ú 1.

Pn: x - y is a factor of xn
- yn

n Ú 5.PnPi + 1.

2i + 1
= 2 # 2i

7

…
21i + 202 = 2i + 40 7 i + 21

Pi + 1: 2i + 1
7 i + 1 + 20

Pi: 2i
7 i + 20

P5: 25
7 5 + 20

n Ú 5.Pn: 2n
7 n + 20

PnPi + 1.
PiPi + 1.

 =

1i + 121i + 2212i + 32
6

 = 1i + 12 
2i2

+ i + 6i + 6
6

 [12
+ 22

+
Á

+ i2] + 1i + 122 =
*  

i1i + 1212i + 12
6

+ 1i + 122
PiPi + 1

PiPi + 1,Pi

Problem Set A.1
In Problems 1–8, use the Principle of Mathematical Induction to
prove that the given proposition is true for each integer 

1.

2.

3.

n1n + 121n + 22
3

1 # 2 + 2 # 3 + 3 # 4 +
Á

+ n1n + 12 =

1 + 3 + 5 +
Á

+ 12n - 12 = n2

1 + 2 + 3 +
Á

+ n =

n1n + 12
2

n Ú 1. 4.

5.

6.

7. is divisible by 6.

8. is divisible by 9.n3
+ 1n + 123 + 1n + 223

n3
- n

n1n + 1216n3
+ 9n2

+ n - 12
30

14
+ 24

+ 34
+

Á
+ n4

=

13
+ 23

+ 33
+

Á
+ n3

= cn1n + 12
2

d 2

12
+ 32

+ 52
+

Á
+ 12n - 122 =

n12n - 1212n + 12
3
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Appendix A-3

In Problems 9–12, make a conjecture about the first integer N for
which the proposition is true for all and then prove the
proposition for all 

9.

10.

11.

12. for all x

In Problems 13–20, indicate what conclusion about can be
drawn from the given information.

13. is true, and true implies true.

14. and are true, and true implies true.

15. is true, and true implies true.

16. is true, and true implies both and true.

17. is true, and true implies both and true.

18. is true, and true implies true.

19. and are true, and and true imply true.

20. is true, and true for implies true.

In Problems 21–27, decide for what n’s the given proposition is
true and then use mathematical induction (perhaps in one of 
the alternative forms that you may have discovered in Prob-
lems 13–20) to prove each of the following.

21. is a factor of 

22. The sum of the measures of the interior angles of an 
n-sided convex (no holes or dents) polygon is 1n - 22p.

xn
+ yn.x + y

Pi + 1j … iPjP1

Pi + 2Pi + 1PiP2P1

P2i + 1P2iP1

Pi - 1P4iPiP1

Pi - 1Pi + 1PiP30

Pi - 1PiP30

Pi + 2PiP2P1

Pi + 2PiP5

Pn

ƒ sin nx ƒ … n ƒ sin x ƒ

n2
… 2n

n - 100 7 log10 n

3n + 25 6 3n

n Ú N.
n Ú N,

23. The number of diagonals of an n-sided convex polygon is

24.

25.

26. Let and for (this
is the Fibonacci sequence). Then

27. Let and for 
Then

28. What is wrong with the following argument, which pur-
ports to show that all people in any set of n people are the same
age? The statement is certainly true for a set consisting of one
person. Suppose that it is true for any set of i people, and consider
a set W of people.We may think of W as the union of sets X
and Y, each consisting of i people (draw a picture, for example,
when W has 6 people). By supposition, each of these sets consists
of identically aged people. But X and Y overlap (in ), and
so all members of also are the same age.W = X ´ Y

X ¨ Y

i + 1

an =

2
3

 c1 - a-

1
2
bn d

n Ú 0.an + 2 = 1an + 1 + an2>2a0 = 0, a1 = 1,

fn =

125
 c a 1 + 25

2
bn

- a1 - 25
2

bn d

n Ú 0fn + 2 = fn + 1 + fnf0 = 0, f1 = 1,

a1 -

1
4
b a1 -

1
9
b a1 -

1
16
b Á a1 -

1

n2 b =

n + 1
2n

1
n + 1

+

1
n + 2

+

1
n + 3

+
Á

+

1
2n

7

3
5

n1n - 32
2

.

A.2
Proofs of Several

Theorems

Theorem A Main Limit Theorem

Let n be a positive integer, k be a constant, and f and g be functions that have
limits at c. Then

1. 2.

3. 4.

5.

6.

7. provided 

8.

9. provided when n is evenlim
x:c

 f1x2 7 0lim
x:c
2n f1x2 = 2n lim

x:c
 f1x2,

lim
x:c

[f1x2]n
= C lim

x:c
 f1x2 Dn

lim
x:c

 g1x2 Z 0lim
x:c

 

f1x2
g1x2 =

lim
x:c

 f1x2
lim
x:c

 g1x2,

lim
x:c

[f1x2 # g1x2] = lim
x:c

 f1x2 # lim
x:c

 g1x2
lim
x:c

[f1x2 - g1x2] = lim
x:c

 f1x2 - lim
x:c

 g1x2
lim
x:c

[f1x2 + g1x2] = lim
x:c

 f1x2 + lim
x:c

 g1x2lim
x:c

 kf1x2 = k lim
x:c

 f1x2
lim
x:c

 x = clim
x:c

 k = k

Proof We proved parts 1 through 5 near the end of Section 2.3, so we should
start with part 6. However, we choose first to prove a special case of part 8:

To see this, recall that we have proved that (Example 7 of Section 2.2),

and so is continuous everywhere. Thus, by the Composite Limit Theo-
rem (Theorem 2.7E),

f1x2 = x2

lim
x:c

 x2
= c2

lim
x:c

[g1x2]2
= C lim

x:c
 g1x2 D2

779



A-4 Appendix

Next, write

and apply parts 3, 4, and 5, plus what we have just proved. Part 6 is proved.
To prove part 7, apply the Composite Limit Theorem with and use

Example 8 of Section 2.2. Then

Finally, by part 6,

from which the result follows.
Part 8 follows from repeated use of part 6 (technically, by mathematical

induction).
We prove part 9 only for square roots. Let which is continuous for

positive numbers by Example 5 of Section 2.2. By the Composite Limit Theorem,

which is equivalent to the desired result. �

lim
x:c
1g1x2 = lim

x:c
 f1g1x22 = f A lim

x:c
 g1x2B = 2 lim

x:c
 g1x2

f1x2 = 1x,

lim
x:c

  
f1x2
g1x2 = lim

x:c 
cf1x2 # 1

g1x2 d = lim
x:c

 f1x2 # lim
x:c

  
1

g1x2

lim
x:c

  
1

g1x2 = lim
x:c

 f1g1x22 = f A lim
x:c

 g1x2B =

1
lim
x:c

 g1x2

f1x2 = 1>x

f1x2g1x2 =

1
4

 E[f1x2 + g1x2]2
- [f1x2 - g1x2]2F

lim
x:c

[g1x2]2
= lim

x:c
 f1g1x22 = f C lim

x:c
 g1x2 D = C lim

x:c
 g1x2 D2

Proof We offer a proof that generalizes easily to higher dimensions (see Sec-
tion 12.6). By hypothesis, f is differentiable at that is, there is a number

such that

(1)

Define a function depending on by

and multiply both sides by to obtain

(2)

The existence of the limit in (1) is equivalent to as in (2). If, in
(2), we replace by and b by g(a), we get

or, upon dividing both sides by 

(3)

 +

g1a + ¢x2 - g1a2
¢x

 e1¢u2
 
f1g1a + ¢x22 - f1g1a22

¢x
= f¿1g1a22 

g1a + ¢x2 - g1a2
¢x

¢x,

 = + [g1a + ¢x2 - g1a2]e1¢u2
 f1g1a + ¢x22 - f1g1a22 = f¿1g1a22[g1a + ¢x2 - g1a2]

g1a + ¢x2 - g1a2¢u
¢u : 0e1¢u2: 0

f1b + ¢u2 - f1b2 = f¿1b2 ¢u + ¢u e1¢u2
¢u

e1¢u2 =

f1b + ¢u2 - f1b2
¢u

- f¿1b2
¢ue

lim
¢u:0

 

f1b + ¢u2 - f1b2
¢u

= f¿1b2
f¿1b2 b = g1a2;

Theorem B Chain Rule

If g is differentiable at a and f is differentiable at then is differen-
tiable at a and

1f � g2¿1a2 = f¿1g1a22g¿1a2
f � gg(a),
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In (3), let Since g is differentiable at a, it is continuous there, so 
forces this, in turn, makes We conclude that

That is, is differentiable at a and

�1f � g2¿1a2 = f¿1g1a22g¿1a2
f � g

lim
¢x:0

 

f1g1a + ¢x22 - f1g1a22
¢x

= f¿1g1a22 lim
¢x:0

 

g1a + ¢x2 - g1a2
¢x

+ 0

e1¢u2: 0.¢u : 0;
¢x : 0¢x : 0.

Proof Consider first the case where q a positive integer. Recall that
factors as

so

Thus, if 

Now, by the Chain Rule, and with p an integer,

�Dx1xp>q2 = Dx[1x1>q2p] = p1x1>q2p - 1 Dx1x1>q2 = pxp>q - 1>q
 
1
q

 x1>q - 1
=

p

q
 xp>q - 1

 =

1

qx1q - 12>q =

1
q

 x1>q - 1

 = lim
t:x

 
1

t1q - 12>q
+ t1q - 22>q

 x1>q
+

Á
+ x1q - 12>q

 f¿1x2 = lim
t:x

 
t1>q

- x1>q
t - x

= lim
t:x

 
t1>q

- x1>q
1t1>q2q - 1x1>q2q

f1t2 = t1>q,

a - b

aq
- bq =

1

aq - 1
+ aq - 2

 b +
Á

+ abq - 2
+ bq - 1

aq
- bq

= 1a - b21aq - 1
+ aq - 2b +

Á
+ abq - 2

+ bq - 12
aq

- bq
r = 1>q,

Proof First, note that for any vector 

This fact is readily seen from Figure 1.

Now suppose that This means that for any 

there is a corresponding such that

0 6 ƒ t - c ƒ 6 d  Q  7F1t2 - L 7 6 e

d 7 0

e 7 0lim
t:c

 F1t2 = L = a i + b j.

ƒ u1 ƒ … 7u 7 … ƒ u1 ƒ + ƒ u2 ƒ

u = u1 i + u2 j,

u u2 j

u1i

Figure 1

Theorem C Power Rule

If r is rational, then is differentiable at any x that is in an open interval on
which is real and

Dx1xr2 = rxr - 1

xr - 1
xr

Theorem D Vector Limits

Let Then F has a limit at c if and only if f and g have lim-
its at c. In that case,

lim
t:c

 F1t2 = C lim
t:c

 f1t2 D  i + C lim
t:c

 g1t2 D  j
F1t2 = f1t2i + g1t2j.
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A-6 Appendix

But, by the left part of the boxed inequality,

and so

This shows that A similar argument establishes that 

The first half of our theorem is complete.

Conversely, suppose that

and let For any given there is a corresponding such
that implies that both

Hence, by the right part of the boxed inequality,

Thus,

�lim
t:c

 F1t2 = L = a i + b j = lim
t:c

 f1t2 i + lim
t:c

 g1t2 j

0 6 ƒ t - c ƒ 6 d  Q  7F1t2 - L 7 …

e

2
+

e

2
= e

ƒ f1t2 - a ƒ 6

e

2
 and ƒ g1t2 - b ƒ 6

e

2

0 6 ƒ t - c ƒ 6 d

d 7 0e 7 0,L = a i + b j.

lim
t:c

 f1t2 = a and lim
t:c

 g1t2 = b

lim
t:c

 g1t2 = b.lim
t:c

 f1t2 = a.

0 6 ƒ t - c ƒ 6 d  Q  ƒ f1t2 - a ƒ 6 e

ƒ f1t2 - a ƒ … 7F1t2 - L 7
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(d)

(c)

Problem Set 1.1
1. 16 3. 5. 7. 9. 11.

13. 15. 2 17. 19.

21. 23.

25. 27.

29. (a) 0; (b) Undefined; (c) 0; (d) Undefined; (e) 0;
(f) 1
31. 33. 35.
37. 39. 41.
43. Those rational numbers that can be expressed by a terminat-
ing decimal followed by zeros
49. Irrational 51. 20.39230485 53. 0.00028307388
55. 0.000691744752 59. 132,700,874 ft
61. 651,441 board ft
63. (a) If I stay home from work today then it rains.
If I do not stay home from work, then it does not rain.
(b) If the candidate will be hired then she meets all the 
qualifications. If the candidate will not be hired then she does
not meet all the qualifications.
65. (a) If a triangle is a right triangle, then If a 
triangle is not a right triangle, then 
(b) If the measure of angle ABC is greater than 0° and less 
than 90°, it is acute. If the measure of angle ABC is less than 
0° or greater than 90°, then it is not acute.
67. (a) The statement, converse, and contrapositive are all true.
(b) The statement, converse, and contrapositive are all true.
69. (a) Some isosceles triangles are not equilateral. The nega-
tion is true.
(b) All real numbers are integers. The original statement is true.
(c) Some natural number is larger than its square. The original
statement is true.
71. (a) True; (b) False; (c) False; (d) True; (e) True
75. (a) or (b)
(c) or 
81. (a) Rational; (b) Rational; (c) Rational;
(d) Irrational

Problem Set 1.2
1. (a)

22 # 3 # 52 # 172 # 2 # 3 # 5 # 5 # 17
2 # 2 # 31 or 22 # 3135;3 # 3 # 3 # 3 # 3

a2 + b2 Z c2.
a2 + b2 = c2.

1
5

254
99

41
333

3.6666 Á0.142857 Á0.08333 Á

213x + 102
x1x + 22t - 7, t Z -3

x + 2, x Z 29t4 - 6t3 + 7t2 - 2t + 1

6x2 - 15x - 93x2 - x - 41
3

7
15

6
49

1
24

58
91-148

43210–1–2–3–4

43210–1–2–3–4

43210–1–2–3–4

(b)

43210–1–2–3–4

(e)
43210–1–2–3–4

(f)

3. 1-2, q2;
5. C -5

2, q B ;

43210–1–2–3–4

43210–1–2–3–4

43210–1–2–3–4

43210–1–2–3–4

3210–2–3–4–5 –1

43210–1–2–3–4

7. 1-2, 12;

11. A -1 - 213, -1 + 213 B ;
13. 1- q , -32 ´ A12, q B ;
15. [-4, 32;

17. 1- q , 02 ´ A25, q B ;
19. A - q , 23 B ´ C34, q B ;
21. 1-2, 12 ´ 13, q2;
23. A - q , 32 D ´ [3, q2;
25. 1- q , -12 ´ 10, 62;

43210–1–2–3–4

1
5

2
5

3
5

4
5

4
5

3
5

1
5

2
5

0– – ––

7
6

5
6

1
6

1
2

1
3

2
3

1
6

10–

43210–1–2–3–4

43210–1–2–3–4

65430–1–2 21

27. (a) False; (b) True; (c) False
31. (a) (b) (c) No values
33. (a) (b)
(c)

35. 37.

39. 41.

43. 45.

47. 53. 55. 57. 0.0064 in.

59. 61. 77.

Problem Set 1.3
1. 2 3. 2170

60
11

… R …
120
13

A -  
4
5, 16

3 BA - q , 73 B ´ 15, q2
e

6
e

31- q , -62 ´ A13, q B
1- q , -1] ´ [4, q2¢ -  

1
3

, 0≤ ´ ¢0, 
1
9
≤ 1- q , 12 ´ ¢ 7

5
, q ≤1- q , -7] ´ [42, q2

B -  
15
4

, 
5
4
R1- q , -3] ´ [7, q2

1-2, -12 ´ 11, 22
1- q , -2] ´ [2, q2;[-3, -1] ´ [2, q2;

1-2, q2;1-2, 12;

5

–5

5–5

y

x

(1, 1) (3, 1)

10

–10

10–10

y

x

(4, 5)

(5, –8)

7.

9. 11. 1x - 122 + 1y - 122 = 1
261

2

1-1, 32, 1-1, -12; 17, 32, 17, -12; 11, 12, 15, 12

10–1 1
3

2
3

4
3

4
3

1
3

2
3

– – –9. c- 1
2

,  
2
3
b ;

Answers to Odd-
Numbered Problems
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10

–10

10–10

y

x

y

x

5

5

–5

–5

5

–5

5–5

y

x

5

–5

5–5

y

x

5

–5

5–5

y

x

33.

¢9
2

+
1
2

 211, -6 - 211≤¢9
2

-
1
2

 211, -6 + 211≤ ,

A-8 Answers to Odd-Numbered Problems

5

–5

–5

y

x

5

–5

–5 5

y

x

5

–5

–5 5

y

x

5

–5

5–5

y

x

10

–10

–10 10

y

x

13. 15.
17.
19.

21.

23. 1 25. 27. 29.
31.
33.
35.
37.
39. (a) (b) (c)

(d) (e) (f) (g)

41. 43. It lies above the line.

45. 47.
49. Inscribed:

55. 61.

63. 65. 67. 69. 71.

73. 77. 8

Problem Set 1.4
1. 3.

x + 23y = 12 and x - 23y = 12

r = 1y = 3
5 x + 4

5

25
5

18
13

7
5

18 + 2217 + 4p L 38.8d = 223 + 4

circumscribed: 1x - 422 + 1y - 122 = 8
1x - 422 + 1y - 122 = 4; 

13, 12; y = -  
4
3 x + 51-1, 22; y = 3

2 x + 7
2

y = 3
2 x + 2

y = -3x = 3;y = -  
3
4 x - 3

4;y = 3
2 x - 15

2 ;

y = -  
2
3 x - 1;y = -  

1
2 x - 3

2;y = 2x - 9;
Slope = -5; y-intercept = 4
Slope = -  

2
3; y-intercept = 1

3

y = 5
2 x - 2; 5x - 2y - 4 = 0

y = 2x + 3; 2x - y + 3 = 0
y = -x + 4; x + y - 4 = 0-  

5
3

9
7

Center = A -2, -  
3
4 B ; radius =

213
4

Center = 16, 02; radius = 1
Center = 1-1, 32; radius = 210

1x - 222 + 1y - 522 = 51x - 222 + 1y + 122 = 25

13. 15.

17. 19.

21. 23.

25. 27.

10

–10

–10 10

y

x

5

–5

5–5

y

x

2

–2

2–2

y

x

5

–5

5–5

y

x

5

–5

5–5

y

x

(�2, �2 ),

(–�2, –�2 )

5

–5

–5 5

y

x

5

–5

–5 5

y

x

5

–5

–5 5

y

x

35. 37. 5

–5

5–5

y

x

39. (a) (2) (b) (1) (c) (3) (d) (4)
41. Four distinct distances

Problem Set 1.5
1. (a) 0; (b) (c) 1; (d) (e) (f)
(g) (h) (i)

3. (a) (b) (c) 100; (d) (e)

(f)
x2

1 - x2

-  
1

x + 1
;

1

y2 - 1
;-1000;-1;

-  4h - h2-2h - h2;-2h - h2;

15
16;-24;1 - k2;-3;

10.85, 3.552
1-1.65, -3.952,

10, 12, 1-3, 42
5. 7.

9. 11.

29. 31.
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Answers to Odd-Numbered Problems A-9

5

–5

5–5

y

x

5

–5

5–5 x

y

5

–5

5–5

y

x

5

–5

5–5

y

x

5

–5

5–5

y

w

5

–5

5–5 x

y

5

–5

5–5 x

y
5

–5

5–5

y

t

0.5

–0.5

10

E(x)

x

x = 1
2

5. (a) Undefined; (b) 2.658; (c) 0.841

7. (a) Not a function; (b)

(c) (d)

9. 11.

13. (a) (b)

(c) (d)

15. Even 17. Neither

Ey H reals: ƒ y ƒ … 5FEx H reals: ƒ x ƒ Ú 3F ;
Ev H reals: v Z 1

4 F ;Ez H reals: z Ú -3
2 F ;

-  
3

x2 - 4x + hx - 2h + 4
4a + 2h

f1x2 =
x

1 - x
f1x2 = 1

21x2 - 12;
f1x2 =

1 - x

x + 1
;

19. Neither 21. Odd

23. Neither 25. Even

27. Neither 29. Neither

31.

33. E1x2 = x - x2

u1x2 = 5000
x + 805, 5x H integers: 0 6 x … 1006

T1x2 = 5000 + 805x, 5x H integers: 0 … x … 1006; 

35.
37. (a) (b) 240 miles

39.

41. (a) (b)

(c)

B A12 B = 1
2 B112 = 1

2
# 1

6 = 1
12B102 = 0

A1d2 =
2d - pd2

4
, bd H reals: 0 6 d 6

1
p
rE1x2 = 24 + 0.40x;

L1x2 = 2h2 - x2

c

y=B(c)

1.00.50.0

y
0.20

0.15

0.10

0.05

0.00

45. (a)

(b)
x f(x)

0
1
2 1.125
3 2.3846
4 3.55

-  0.2
-1.25
-1.8-1
-2.375-2
-3.1538-3
-  4.05-  4

f11.382 L 0.2994, f14.122 L 3.6852

25

–25

7–3

y

x

6

–6

6–6 x

y

47. (a)
(b) [-1.1, 1.7] ´ [4.3, 5]
5y H reals: -22 … y … 136;

49. (a) x-intercept y-intercept 

(b) all reals:
(c) (d) y = 0x = -3, x = 2;

2
3

;
4
3

,

Problem Set 1.6
1. (a) 9; (b) 0; (c) (d) 4; (e) 16; (f) 25

3. (a) (b) (c) (d)

(e) (f)

5.
7. 1.188 9. 4.789
11. (a)
(b)
13. if 

if f1x2 = 1/1x, g1x2 = x + 1, h1x2 = x2p = f � g � h
f1x2 = 1/x, g1x2 = 1x, h1x2 = x2 + 1; p = f � g � h

g1x2 = x15, f1x2 = x2 + x
g1x2 = 1x, f1x2 = x + 7;

1f � g21x2 = 2x2 + 2x - 3; 1g � f21x2 = 1 + 2x2 - 4

1

t3 + 1 - t125t3 + 1 -
1
5t

;

1z3 + 123;1

r3 + 1
;

1

r3 + 1;t3 + 1 +
1
t
;

3
2;
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15. 17. Problem Set 1.7
1.

A-10 Answers to Odd-Numbered Problems

5

–5

–2

f (x)

x8

y
5

–5

5–5 x

y

5

–5

5–5 x

y

( f + g)(x)

g(x)
f (x)

5

–5

5–5 t

y19. 21.

25. 27. No inverse 29.

31. 33.

35. 37.

39. 41.

43. 45.

47. or then

or 
49. (a) neither (b) PF (c) RF (d) PF
(e) RF (f) neither

51.

55. (a) (b) f(x) would be a constant 

function or undefined. (c) or f is the identity function.

57. (a) (b) x; (c)

61. f-1
1 = f1,  f

-1
2 = f2,  f

-1
3 = f3,  f

-1
4 = f5,  f

-1
5 = f4,  f

-1
6 = f6

1 - x
1

1 - x
;

a = -d

f-11x2 = -
  dx - b

cx - a

D1t2 = b400t if 0 … t … 12250,000t2 - 180,000t + 90,000 if t 7 1

f-11x2 = 1
4 A -1 + 28x + 33 Bf-11x2 = 1

4 A -1 - 28x + 33 B
[-0.25, q2;1- q , -0.25]

V =
4ph3

27
; h = 3A3  

V

4p
f-11x2 = a2 - x

x - 1
b1>3

f-11x2 =
1 + x

1 - x
f-11x2 = 1 + 23 x

f-11x2 = -  
1x

2
f-11x2 = 3 -

1
x

f-11x2 = x2 - 1, x Ú 0f-11x2 = x - 1

f-1122 L -1.3f-1122 = 4

10

20

30

40

50

1−1 3−3 2−2

y

x

1

2

1−1 4−4 −3 2 3−2

y

x

63.

65.

−2 −1 1 2

3

6

9

y

x

3.

−2 −1 1 2

2
4

8

16

y

x

5.

1 2 3 4

2

1

y

x

7.

21 4 6 8

2

−2

1

−1

y

x

9.

1 2 4 6 8

−2

−1

1

2

y

x

11. 13.

15. 17. 3 19. 8 21. 9

23. 1 25. 27.

29. 31.

33.

35. frequency of C = 44024 2 L 523.25r = 21>12 L 1.0595;
 E L 1.560 * 1010 kW-h for magnitude 8

 E L 5.017 * 108 kW-h for magnitude 7;

log1>2 x = - log2 xc = 1,  a = 3

C =
3
4

,  a =
2
3

C =
1
2

,  a = 3

f-11x2 =
10x - 2

3

f-11x2 = log 10 a x

1 - x
bf-11x2 = log 2 a 1

x
- 1b
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Answers to Odd-Numbered Problems A-11

5

–5

2p

y

t
–p

5

–5

2p

y

t–p

5

–5

2p

y

t–p

5

–5

2p

y

t–p

5

–5

5–5

y

x

x42–2–4

0.5

1.5
1

2

2.5
3

y

Problem Set 1.8
1. (a) (b) (c) (d) (e) (f)
3. (a) 0.5812; (b) 0.8029; (c) (d) 4.1907;
(e) (f) 0.1920;
5. (a) 68.37; (b) 0.8845; (c) 0.4855; (d)
7. (a) 46.097; (b) 0.0789

9. (a) (b) (c) (d) 1; (e) 1; (f) -1-22;-1;
23
3

;

-0.3532;
-6.4403;

-1.1624;

p

18;-  
37p
18 ;4p

3 ;-  
p

3 ;p

4 ;p

6 ;

(c) (d)

17. Period = p; Amplitude = 2

19. shift: 2 units upPeriod = p

2 ;

15. (a) (b)

x42–2–4

25

20

15

10

5

y

21. shift: 21 units up, units left 3
2Period = p; amplitude = 7;

5

–5

5–5

y

x

x42–2–4

–1
–0.75
–0.5

–0.25

0.25
0.5

0.75
1

y

x–0.5–1 10.5

1.2

1.4

0.8

0.6

y

23. shift: units rightp

6Period = p

2 ;

x–0.05–0.1 0.10.05

1.05

1.1

0.95

0.9

y

25. (a) Even; (b) Even; (c) Odd; (d) Even; (e) Even;
(f) Odd
27. 29. 31.
35. 336 rev/min 37. 28 rev/sec
39. (a) (b)
41. (a) 0.1419; (b) 1.8925; (c) 1.7127

43. 45. 47. 67.5°F

49. As t increases, the point on the rim of the wheel will move
around the circle of radius 2.
(a)

(b)
(c) The point is at (2, 0) when that is, when 
51. (c)

+ 1A1 sin f1 + A2 sin f2 + A3 sin f32 cos vt
= 1A1 cos f1 + A2 cos f2 + A3 cos f32 sin vt
A1 sin1vt + f12 + A2 sin1vt + f22 + A3 sin1vt + f32

t = 5
2.p

5  t = p

2 ;
x1t2 = -2 sin Ap5  t B , y1t2 = 2 cos Ap5  t B

y162 L -1.618; x1102 = 0; y1102 = 2; x102 = 0; y102 = 2
x122 L 1.902; y122 L 0.618; x162 L -1.176; 

r2 sin 
t

2
 cos 

t

2
+
pr2

2
 sin2

 
t

2
25 cm2

5p
6

p

3 ;

2 - 22
4

1
8

1
4

53. (a) (b)

(c)

Problem Set 1.9
1. 3. 5. 7. 9. 0.4567 11. 0.1115
13. 0.3113 15. 2.038 17. 0.6259 19.

21. 23. 25. 27.

35. (a)

(b)

(c)

(d) f-11x2 =
1

arcsin x
,  x 6 -

2
p

  or x 7
2
p

f-11x2 = arctan  2x,  -
p

2
6 x 6

p

2

f-11x2 =
1
3

  arcsin 
x

2
,  -

p

6
… x …

p

6

f-11x2 =
1
2

  arccos 
x

3
,  0 … x …

p

2

56
65

1
9u = tan-1

 
3
x - tan-1

 
1
xu = sin-1

 
5
x

u = sin-1
 
x
8

-  
p

6
p

3-  
p

3
p

4

55. f1x2 = d
     

4(x - Œx œ ) + 1, x H cn, n + 1
4
b

-
4
3

 (x - Œx œ ) +
7
3

,  x H cn +
1
4

, n + 1b

1−1

2

1

y

x

where n is an integer
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A-12 Answers to Odd-Numbered Problems

Chapter Review 1.10
Concepts Test
1. False 3. False 5. False 7. True 9. True
11. True 13. True 15. True 17. True 19. True
21. True 23. True 25. True 27. True 29. True
31. True 33. True 35. False 37. False 39. True
41. False 43. False 45. True 47. False 49. True
51. True 53. False 55. True 57. False 59. True
61. False 63. True 65. False 67. False 69. False

19. Any negative number 21. t … 5

27. 29. 5
31. (a) (b) (c)
(d) (e)
33. (b)

y = x + 3x = -2;
y = 4

3 x + 11
3 ;y = 3

2 x + 4;y = 2
9 x + 13

9 ;
1x - 622 + 1y - 222 = 20

39. (0, 4) and (3, 7)
41. (a) (b) 4; (c) Does not exist; (d)

(e)

43. (a) (b) 5x H reals: ƒ x ƒ … 26;5x H reals: x Z -1, 16;
t

1 + t
- t

1
t

-
1

t - 1
;-  

1
2;

9. Ex: x 6 1
3 F ; A - q ; 13 B ; 4

3
1
3

2
3

4
3

1
3

2
3

10–1– – –

43210–1–2–3–4

5
3

4
3

2
3

1
3

1
3

2
3

0– 21–

43210–1–2–3–4

43210–1–2–3–4

11. Ex: 13 … x … 3F ; C13, 3 D ;
13. E t: 37 … t … 5

3 F ; C37, 53 D ;

15. 5x: -4 … x … 36; [-4, 3];

17. Ex: x … -  
1
2 or x 7 1F ; A - q , -  

1
2 D ´ 11, q2;

25.
8

–2

5–5

y

x

A (–2, 6)

B (1, 2)

C (5, 5)

10

–10

10–10

y

x

35. 37.
5

–5

5

y

x–5

45. (a) (b)
5

–5

5–5

y

x

5

–5

5–5 x

y

5

–5

8–2

y

x

(c)

5

–5

5–5

y

x

5

–5

5–5

y

x

5

–5

5–5

y

x

(c)

51.

53. (a) (b)

55. (a) (b) (c) (d)
(e) 0.8; (f)
57. 18.85 in.

-0.8
-1.333;-0.96;-0.6;-0.8;

f-11x2 = A3  
x + 1

2
 f-11x2 =

x + 7
3

f1x2 = 1x, g1x2 = 1 + x, h1x2 = x2, k1x2 = sin x

49. (a) (b)

Sample Test Problems

1. (a) (b) 1, 9, 49; (c) 64, 8,
7. 2.66

1
8;2, 25

4 , 4
25;

47. V1x2 = x132 - 2x2124 - 2x2, 5x H reals: 0 … x … 126

Chapter 2 Review and Preview Problems
1. (a) (b)
3. 4,10 5. 4,10
7. (a) (b) (c)
(d)
9. (a) (b)
11. 1, 1.9, 1.99, 1.999, 2.001, 2.01, 2.1, 3;

13.
15. (a) True; (b) False; (c) True; (d) True

Problem Set 2.1
1. 3. 5. 0 7. 4 9. 12 11.

13. 15. 36 17. 4 19. 0.5 21. 0 23. 2

25. 0 27. 0.25
29. (a) 2; (b) 1; (c) Does not exist; (d) (e) 2;
(f) Does not exist; (g) 2; (h) 1; (i) 2.5
31. (a) 2; (b) undefined; (c) 2; (d) 4; (e) does not exist;
(f) does not exist

5
2;

26
9

-2t-1-2

4.9 6 x 6 5.1
0.03125,  0.2
- 0.0033557, -   0.000333556, 0.000333111, 0.00331126, 

-1, -0.0357143, 
x Z 1, -0.5x Z 1;

6.9 6 x 6 7.1
6 … x … 8;4 … x … 10;4 6 x 6 10;

-6 6 x 6 160 6 x 6 2;
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25. 1 27. 29. 31. 33. 35. 5
37. 0 39. 41. - q-1

- qqqq

Answers to Odd-Numbered Problems A-13

7

–3

5–5

y

x

5

–5

5–5 x

y35. (a) 0; (b) Does not exist; (c) 1;
(d) 1

2

33. (a) 0; (b) Does not exist;
(c) 2; (d) 2

37. Does not exist
39. (a) Does not exist; (b) 0
41.
43. (a) Does not exist; (b) (c) (d) Does not exist
45. (a) 1; (b) 0; (c) (d)
47. Does not exist 49. 0 51. 53. Does not exist
55. 6 57.

Problem Set 2.2
1.
3.
5. 0 6 c - x 6 dQ ƒ f1x2 - L ƒ 6 e

0 6 ƒ z - d ƒ 6 dQ ƒ h1z2 - P ƒ 6 e
0 6 ƒ t - a ƒ 6 dQ ƒ f1t2 - M ƒ 6 e

-3

1
2

-1-1;
-3;-1;

a = -1, 0, 1

9. 0.0019

31. (b), (c)

33. (a) (b) No; (c) 3

Problem Set 2.3
1. 3 3. 5. 7. 2 9. 11. 2 13. 0

15. 17. 19. 21. 23.

25. 27. 29. 6 31. 12 33. 41. 0
43. 0 45. 47. 51. (a) 1; (b) 0-12

5

-  
1
4-6210

-1
x + 2

5
3
2-  

2
3-4

-1-5-3

x3 - x2 - 2x - 4

x4 - 4x3 + x2 + x + 6
;

7. 0.001

1.998 1.999 2.001 2.002

3.996

3.998

4.002

4.004

x

y

1.998

1.999

2.001 2.002

3.996

3.998

4.002

4.004

x

y

Problem Set 2.4
1. 1 3. 5. 7. 9. 11.

13. 2 15. 17. 19. 2 21. 0 23. - qq1
2

322

3
p

1
2-1-1

y

x10–10

10

–10

y

x14–6

14

–6

y

x5–5

5

–5

45. Horizontal asymptote 
Vertical asymptote x = 3

y = 2

47. Horizontal asymptote 
No vertical asymptotes

y = 0

43. Horizontal asymptote 
Vertical asymptote x = -1

y = 0

49. The oblique asymptote is 
51. (a) We say that if for each negative 

number M there corresponds a such that

(b) We say that if for each positive number M

there corresponds a such that

55. (a) Does not exist. (b) 0 (c) 1 (d) (e) 0

(f) (g) Does not exist. (h) 0

57. 59. 61. 1 63. 65.

67. 69. e 71. 1- q

-1q-  
3

222
3
2

1
2

q
0 6 c - x 6 dQ f1x2 7 M.

d 7 0

lim
x:c-

 f1x2 = q
0 6 x - c 6 dQ f1x2 6 M.

d 7 0

lim
x:c+

 f1x2 = - q
y = 2x + 3.

–2

–2

1–1

–1

2

1

2
y

x

1

2

2

2

1

1–1–2

y

x

Problem Set 2.5
1. 1 3. 1 5. 7. 3 9. 11. 0 13. 71

2p
1
2

15. 0 17. 0
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1 2

1

2
y

x

1 2

1

2

y

x3 4 5 6

1 2 3 4 56 7 8

0.5

1

Cost

Length of call in minutes

37. 39.

41. Continuous.
43. Discontinuous: removable, define 
45. Discontinuous, removable, redefine 
47. Discontinuous: nonremovable.
49. 51. 53. [1, q][ - 1,  1][ - 5,  5]

g102 = 1
f102 = 1

57. The function is continuous on the intervals 
(0, 0.25], (0.25, 0.375], (0.375, 0.5], Á

0.25 0.5 0.75 1

1

2

3

4

Miles Driven

Cost

55. The function is continuous on the intervals 
(0, 1], (1, 2], (2, 3], Á

0.6 0.65 0.7

–0.2

0.2

x

y

61. The interval [0.6, 0.7] contains the solution.

71. Yes, g is continuous.

77. (a) Domain Range 

(b) Discontinuous at (c) -  
3
4

, 0, 
3
4

x = 0

5-3/4, 0, 3/46B-  
3
4

, 
3
4
R ,

A-14 Answers to Odd-Numbered Problems

1

–1 1–2 2

2
y

x

19. 2

Problem Set 2.7
1. Continuous

3. Not continuous; and h(3) do not exist.

5. Not continuous; and h(3) do not exist.

7. Continuous 9. Not continuous; h(3) does not exist.
11. Continuous 13. Continuous 15. Continuous
17.

19. Define 21. Define 
23. Define 25.
27. Every where n is any integer. 29.
31. 33. 1

35. Every where n is any integer.t = n + 1
2

1- q , -2] ´ [2, q2
-1u = np + p

2

3, pF1-12 = -sin 2.
H112 = 1

2.f132 = -12.

1- q , -52, [-5, 4], 14, 62, [6, 8], 18, q2

lim
t:3

 
ƒ t - 3 ƒ
t - 3

lim
x:3

 
3

x - 3

Problem Set 2.6
1. 25 3. 5. cos x 7. 9.
11. (a) D (b) B (c) C (d) A

3x23 ln x - 3xx3

13. 15.

17.

5

−5

5−5

y

x

5

−5

5−5

y

x

1

−1

y

x− 2
π

2
π

19. (a) (b) (c) (d)

21. (a) 1.792; (b) 0.406; (c) 4.396; (d) 0.3465;
(e) (f) 3.871

23. 25.

27. (a) $401.71 (b) $402.15 (c) $402.19 (d) $402.19
29. (a) 11.58 yrs. (b) 11.55 yrs.
31. $133.6 billion 33. 1.544 35. 0.1747
37. 4.08746 39. 1.9307

ln 

x21x - 22
x + 2

ln 

1x + 122
x

-3.584;

1

e2e2;e3;
1
e

;
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Answers to Odd-Numbered Problems A-15

Chapter Review 2.8
Concepts Test
1. False 3. False 5. False 7. True 9. False
11. True 13. False 15. True 17. False 19. False
21. False 23. True 25. True 27. True 29. True
31. False 33. True

Sample Test Problems

1. 0 3. 2 5. 7. 9. 4 11. 13.

15. 17. 1 19. 21.

25. (a) (b)
27. (a) 14 (b) (c) (d) (e) 5 (f) 0
29. 31. Vertical: none, Horizontal 
33. Vertical: Horizontal:
35. Vertical: Horizontal: none
37. [ - 2,  2 ]

x = ;p/4, ;3p/4, ;5p/4, Á ,
y = 1x = -1, 1,

y = 0a = 2, b = -1
-2-2-12

f1-12 = -1x = -1, 1

qq5
3

-1-1
1
2

1
8

7

–3

5–5

y

x

Chapter 3 Review and Preview Problems
1. (a) 4 (b) 4.41 (c) 0.41 (d) 4.1 (e)
(f) (g) (h) 2a

3. (a) (b) (c) 0.035 (d) 0.35

(e) (f) (g)

(h)

5. (a) (b) (c)
7.
9. (a) (b)
11. (a) North plane has traveled 600 miles. East plane has 
traveled 400 miles. (b) 721 miles (c) 840 miles
13. 15. e1/3e- 2

t = 1/4110, 02, 110, 02, 110, 02
sin1x + h2 = sin x cos h + cos x sin h

a5 + 5a4ba4 + 4a3ba3 + 3a2b

1

22a

A2a + h - 1a B � h2a + h - 1a2a + h

22.1 L 1.4522 L 1.41

2a + h2ah + h2

a2 + 2ah + h2

7. (a), (b) (c) 2; (d) 2.01; (e) 2

8

–2

8–2

y

x

9

–1 4–1

y

x

9. -4, -2, 0, 2, 4

5

–5

5–5

y

x

3. 5.
5
2

-2

11.

y -
1
2

= -  
1
4

 1x - 12

Problem Set 3.1
1. 4

13. (a) 16 ft; (b) 48 ft; (c) 80 ft/s; (d) 96.16 ft/s;
(e) 96 ft/s

15. (a) (b) 1.5 sec

17. (a) 0.02005 g; (b) 2.005 g/h; (c) 2 g/h
19. (a) 49 g/cm; (b) 27 g/cm
21. 4 23. 29,167 gal/h; 75,000 gal/h
25. (a) 0.5 °F/day (b) 0.067 °F/day (c) January and July
(d) March and November
27. (a) Increasing (b) Decreasing
29.
31. (a) 7; (b) 0;

(c) (d) 17.92-1;

24p km2>day

122a + 1
 ft>s;

33. 2.818

Problem Set 3.2
1. 2 3. 5 5. 2 7. 6x 9.

11. 13. 15.

17. 19. 21.

23. 25. 27. at 

29. at 31. at x

33. at t 35. at xf1x2 = cos xf1t2 =
2
t

f1x2 = x2x = 2f1x2 = x2

x = 5f1x2 = 2x3-  
5

1x - 5222x - 3

-  
3

21x - 223/2

3

223x
-  

7

1x - 422

-  
12x

1x2 + 122-  
2

x23x2 + 4x

2ax + b

–4 –2 2 4

–4

–2

2

4

–3 –2 –1 1 2 3

–2

–1

1

2

3

4

y

x

–3 –2 –1 1 2 3

–2

–1

1

2

3

4

y

x

37.

39.
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A-16 Answers to Odd-Numbered Problems

41.

–2 –1 1 2 3

–2

–1

1

2

3

y

x

–3 –2 –1 1 2 3

–2

–1

1

2

3

y

x

5

–5

8–2 x

f '(x)

y

t182

365

1

–1

T'

–2 –1 1 2 3 4 5

–20
–15
–10
–5

5
10
15

43.

45. 1.5 47. 49. 0.0081 51. 2x

53. 55. 57. -  
1
2, 1, 23, -32/1x + 122-1/1x + 122

-0.1667

61. (a) (b) 0.5; (c) 5; (d) 3, 5; (e) 1, 3, 5;
(f) 0; (g) -0.7, 1.5, 15, 72

5
2, 32, 1.8, -0.6;

65. f is short-dashed; is solid; is long-dashed
67.
69. (a) m; (b) -m

m = 4, b = -4
g¿g = f¿

59.

63.

71. (a) (b)

(c) f(x) decreases as x

increases when f¿1x2 6 0.

C0, 83 D ;A0, 83 B ;

Problem Set 3.3
1. 4x 3. 5. 7. 9.

11. 13.

15. 17.

19. 21. 23.

25. 27.
29. 31.

33. 35. 37.
2

1x + 122
-8x + 3

14x2 - 3x + 922-  
6x

13x2 + 122
60x3 - 30x2 - 32x + 145x4 + 42x2 + 2x - 51

5x4 + 6x2 + 2x8x + 4

3x2 + 1-  
1

2x2 + 2-  
2

x2 +
2

x3

-  
9

x4 - 4x-57px6 - 10x4 + 10x-3

4x3 + 3x2 + 2x + 12x + 2

-  
500

x6-  
p

x2-4x-3p

39. 41. 43.

45. (a) 23; (b) 4; (c)

49. 51. (0, 0) and 

53. (2.817, 0.563) and 
55. (a) (b) 1.25 s
57. 59.
61. per week681 cm3

325y = 2x + 1, y = -2x + 9
-24 ft>s;

1-2.817, -0.5632
A23, -  

4
27 By = 1

-  
17
9

x2 - 1

1x2 + 122
4x2 + 4x - 5

12x + 122
6x2 + 20x + 3

13x + 522

2.5 5 7.5 10 12.5 15 17.5

–15
–10
–5

5
10
15

Problem Set 3.4
1. 3. 0 5. sec x tan x 7.

9. 11. 13.

15. 17.

19. 21.
23. 25.
27. where k is an integer.x = p

4 + k 
p

2

y = x3023 ft/sec
-2 sin2 x + 2 cos2 xy - 0.5403 =  -0.84151x - 12

2 tan x sec2 x-x2 sin x + 2x cos x

x cos x - sin x

x2cos2 x - sin2 xsec2 x

sec2 x2 cos x - 3 sin x

33. (a) (b) 6; 5;
(c) with 

and is a 
counterexample;
(d) 24.93

b = pa = 0
f1x2 = x sin x

Problem Set 3.5
1. 3.

5.

7. 9.

11. 13.

15.

17.

19. 21.

23. 25.

27. 29. 9.6

31. 1.4183 33.
35.

37.
39.
41. 2 43. 1 45. 47.
49. 51.
53. 55.
57.
59. 61. 63.

65. 67.

69. (a) (b) 80p cm>s110 cos 8pt, 10 sin 8pt2;
x = 3/2y = -  

1
2

 x +
3
4

x = p/4 + kp, k = 0, ;1, ;2, Á-1-2 sin 1
2F1x2F¿1x2 sin F1x2 cos F1x2 + F¿1x2 sin2 F1x2

2F¿12x2 sec21F12x22-sin xF¿1cos x2
411 + F12z22F¿12z2-21F1t22-3F¿1t2

2F¿12x2-1
-2 cos[cos1sin 2x2] sin1sin 2x21cos 2x2
-8u cos31sin u22 sin1sin u221cos u22
-3 sin t sin21cos t2 cos1cos t2

412x + 32 sin31x2 + 3x2 cos1x2 + 3x2

3 sin2 x1cos x cos 2x + 2 sin x sin 2x2
cos4 2x

16t + 47213t - 222
1t + 522

5113t - 222
1t + 524

4x1x2 + 421x + 1213x - 112
13x - 422

213x - 2213 - x2219 + 4x - 9x22
-  

3x2 + 12x

1x + 222  sina 3x2

x + 2
b

-  

61x + 122
1x - 124-3 sin x cos2 x

12x + 12 cos1x2 + x2-  
5

1x + 326
1113x2 - 4x + 321x3 - 2x2 + 3x + 1210

-1013 - 2x241511 + x214
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Answers to Odd-Numbered Problems A-17

71. (a) (b)

(c)

73. 0.38 in/min 75.
79. 81. 16

Problem Set 3.6
1. 6 3. 162 5. 7.

9. 2 11. 13. 15. -9002p21
2

-  
6

1x - 124-343 cos17x2

cot x ƒ sin x ƒ
x0 = p>3; u = 1.25 rad.

2p cos 2pta1 +
sin 2pt225 - cos2 2pt

b
sin 2pt + 225 - cos2 2pt;1cos 2pt, sin 2pt2;

180
s

t = 0

t = 3
v = 0

20160
s

t = 0

t = 4
v = 0 t = 2

v = 0

12
s

t = 2
v = 0

1 2 3 4 5 6

–6

–4

–2

2

4

6

19. (a) 0; (b) 0; (c) 0
21.
23. (a) (b) (c)
(d) All t; (e)

13, q2;1- q , 32;v1t2 = 12 - 4t; a1t2 = -4
f–1-52 = -24; f–132 = 24

25. (a)
(b) (c) (2, 4); (d)

(e)

1- q , 32;1- q , 22 ´ 14, q2;
v1t2 = 3t2 - 18t + 24; a1t2 = 6t - 18;

27. (a) (b)

(c) (0, 2); (d) No t;

(e)

12, q2;v1t2 = 2t -
16

t2 ; a1t2 = 2 +
32

t3 ;

29.

31. (a) (b) (c)

33. (a) 48 ft/s; (b) (c) 292 ft; (d) 5.77 s; (e) 137 ft/s

35. 581 ft/s 37.

39. where is the binomial

coefficient 
n!

1n - k2!k!
.

an

k
bDx

n1uv2 = a
n

k = 0
an

k
bDx

n - k1u2Dx
k1v2

1- q , -22 ´ 11, 42
3
2 s;

0 s, 32 s1
2 s, 34 s;3

4 s;

v112 = 11; v142 = -16

41. (a) (b) -1.2826

Problem Set 3.7

1. 3. 5. 7.

9. 11.

13. 15. y = 1y - 3 =  -9
71x - 12

-  

y

x

y3 -
5y

225xy

5x

225xy
+ 2 - 2y - 3xy2

12x2 + 7y2

6y2 - 14xy

1 - y2

2xy
-  

y

x

x

y

17. 19.

21. 23.

25. 27.

29. 31.

33.

35.

37. (a) (b)

39. 45.

47. 49.

Problem Set 3.8
1. 3. 392 mi/h 5. 471 mi/h 7. 0.258 ft/s

9. 0.0796 ft/s 11. 13.

15. 15.71 km/min

17. (a) (b) (c)

19. 110 ft/s 21. 23. 13.33 ft/s
25.
27. (a) (b)
29. (b) 3 hours
31. when the girl is at least 30 ft from the light pole and 

when she is less than 30 ft from the pole.80
17 ft>s

16
3  ft>s

-0.08 ft>s2-1.125 ft>s;
4049 ft3>hr

-0.016 ft>h
1

24 rad>s5
2 ft>s1

2 ft>s;

1.018 in.2>s1
12 ft>min

1296 in.3>s

13
3y = 21x + 42; y = 21x - 42

u L 2.0344 rad-15;

y– =
2xy

1x + 3y223y¿ = -  

y

x + 3y2;

23y + x = 0, 23y - x = 0

ds

dt
= -  

s2 + 3t2

2st
; 

dt

ds
= -  

2st

s2 + 3t2

-  

1x + 12 sin1x2 + 2x2
224 [1 + cos1x2 + 2x2]3

-  
x2 cos x + 2x sin x

323 1x2 sin x24

2x + cos x

22x2 + sin x
-  

6x2 + 4

323 1x3 + 2x25

3x - 2

224 13x2 - 4x23
1

323 x2
-

1

323 x4

5x2/3 +
1

21x
y + 1 = 1

21x - 12

Problem Set 3.9

7. 9. 1f-12¿132 L -  
1
31f-12¿132 L 1

3

432

2

3

4

5

1

1

−1

−1

−2

−2

y

x

5

−5

5−5

y

x

11. 13. 15. 17. 19.

21. 23. 25.

27. 29. 31. 2x 33.

35. 37. 39.

41. 43.

45. 10x2
2x ln 10 + 20x19

3z c 1
z + 5

+ ln1z + 52 ln 3 d1
ln 3

2 # 62x ln 6-  

y

x
x3ex2

+
x

ƒ x ƒ
 e2x2

x2ex1x + 32e2x + 2

22x + 2
ex + 2

1
243

12x2 + 1
2x + 4x ln x + 3

x1ln x22

3
x

3
x - 4

2x + 3

x2 + 3x + p
1
4

1
16
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A-18 Answers to Odd-Numbered Problems

47.

49. 51. sin 1

53. 55.

57. 1

Problem Set 3.10
1.
3. 5.
7. coth x 9.
11.
13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33. 35.
2

x[1 + 1ln x222]
311 + sin-1 x2221 - x2

3

ƒ x ƒ2x6 - 1

31tan-1 x22
1 + x2x2 c xex

1 + e2x
+ 3 tan-11ex2 d

4x21 - 4x4
-csc2 x sech21cot x2

12x2 - 1 cosh-1 x

3x29x2 - 1
+ cosh-1 3x

-  
1

21x2 - 3x + 22
2x2x4 + 1

2 tanh x cosh 2x + sinh 2x sech2 x
cosh 3x cosh x + 3 sinh 3x sinh x

x2 sinh x + 2x cosh x
3 sinh13x + 1210 sinh x cosh x = 5 sinh 2x

2 sinh x cosh x = sinh 2x

-  
10x2 + 219x - 118

61x - 4221x + 1321>212x + 124>3-  
x3 + 33x2 + 8

21x3 - 423>2

1x2 + 12ln xa ln1x2 + 12
x

+
2x ln x

x2 + 1
b

1p + 12xp + 1p + 12x ln1p + 12

32

2

3

1

1

−1

−1

−2−3

−2

−3

x

y37.

are inverse functions.
 y = ln Ax + 2x2 + 1 B
 y = sinh x and

39. 41. 43. 1 rev/min

45.

Problem Set 3.11
1. 3.

5.

7.

9. ds = 3
212t + csc2 t22t2 - cot t + 2 dt

dy = c1 - ex

x 
- ex ln x d  dx

dy = 31sin x + cos x221cos x - sin x2 dx

dy = -812x + 32-5 dxdy = 12x + 12 dx

3.96 * 10-4 rad>s
1

13 rad>sy = 758 - 128 cosh 
x

128

4

–4

1.5–1.5

y

x

dx

dy dy
dx

x

−3 −2 −1

−1
−2
−3
−4

1 2 3

1
2
3
4

dx dy

dx
dy

y

–1 1 2 3–1

1
2
3
4
5
6
7
8

y

x

π

–1

1

–π/2–π π/2

y

x

–1 1

–1

1

2
y

x

–π π

–1

1

–π/2 π/2

y

x

11. 13.

15. (a) (b)
17. (a) (b)
19. 5.9917 21. 23. 25. 12.6 ft
27. relative error L 0.0154189 ; 62.8 cm3;

893 ft339.27 cm3

¢y L 0.1706 dy = 0.17¢y = 67 dy = 34
¢y = -0.3¢y = -  

1
3

29. relative 
31. 33. 8.0125
35. 754 cm3

dy = 0.01; ƒ ¢y - dy ƒ … 0.000003
error L 0.009279.097 ; 0.729 cm;

37. 39. L1x2 = xL1x2 = 4x - 4

41. 43. L1x2 = xL1x2 = 1

Chapter Review 3.12

Concepts Test
1. False 3. True 5. True 7. True 9. True
11. True 13. False 15. True 17. False 19. True
21. True 23. True 25. True 27. False 29. True
31. True 33. True 35. True 37. False

Sample Test Problems

1. (a) (b) (c) (d)

(e) (f) 3 cos 3x; (g) (h)

3. (a) at (b) at 

(c) at (d) at 

(e) at x; (f) at x;

(g) at (h) at 

5. 7. 9.

11. 13.

15. 17.

19. 21.

23. 25.

27. 29. 458.8
31.

33.

35. per meter increase in the radius. 37. 0.167 ft/min

39. (a) (1, 3) (b) (c) 12, q2a112 = -6, a132 = 6;

314 m3

27z2 cos19z32
+ 1r¿1x2 + s¿1x222F–1r1x2 + s1x22 + s–1x2
F¿1r1x2 + s1x221r–1x2 + s–1x22
16 - 4p

-csc2 x - 2x cot x tan x2

sec x2-
1

1 + x2

3e3u 2p sin1sin1pu22 cos1sin1pu22 cos1pu2
2u cos1u22-sin u + 6 sin2 u cos u - 3 cos3 u

-  
x21x2 + 423

-4x4 + 10x2 + 2

1x3 + x22

-24t2 + 60t + 10

16t2 + 2t223z2 + 8z + 215x4

x = 5f1x2 =
11x

x =
p

4
;f1x2 = tan x

f1x2 = -sin 3xf1x2 =
4
x

x = p;f1x2 = sin xx = 1;f1x2 = 2x3

x = 2;f1x2 = 4x3x = 1;f1x2 = 3x

-p sin px
x2x2 + 5

;
3

223x
;

-  
6x

13x2 + 222;-  
1

3x2;10x4 + 3;9x2;

45. L1x2 = f1x2
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Answers to Odd-Numbered Problems A-19

41. (a) (b) (c)

(d) (e)

(f)

43. 0.0714

45. (a) 84; (b) 23; (c) 20; (d) 26
47. 104 mi/h
49. (a) (b)

(c) (d)
|sinh x|

tanh x

|tan u|

sin u cos u

-tan u ƒ cos u ƒcot u ƒ sin u ƒ ;

-  
1

2x
 e- xy -

y

x

-  

tan1xy2 + xy sec21xy2
x2 sec21xy2

2x - sin1xy2 - xy cos1xy2
x2 cos1xy2 ;

x2y3 - x2

y2 - x3y2;-  

y2 + 2xy

x2 + 2xy
;

1 - x

y
;

Chapter 4 Review and Preview Problems
1. (2, 3) 3.
5.

7. 9.

11. 13.
15. where k is an integer
17. where k is an integer

19.

21. (a) is one such function
(b) is one such function

(c) is one such function

Problem Set 4.1
1. Critical points: maximum value 10; minimum
value 1
3. Critical points: maximum value 3;
minimum value 1
5. Critical points: maximum value 4, minimum 
value 0
7. Critical points: maximum value 4, minimum
value 
9. Critical points: no maximum value, minimum value 
11. Critical points: maximum value 1, minimum 
value
13. Critical points: maximum value 10; minimum
value 1
15. Critical point: 0; maximum value 1, no minimum value

17. Critical points: maximum value minimum 

value 

19. Critical points: 0, 1, 3; maximum value 2, minimum value 0
21. Critical points: maximum value 3, minimum
value 

23. Critical points: maximum value 

; minimum value 

25. Critical points: maximum value minimum

value: 0

p222
16

;-  
p

4
, 0, 
p

4
;

-  
22
2

 e- 1/2
 
22
2

 e- 1/2

-1, -  
22
2

,  
22
2

,  2;

-1
-1, 0, 27;

-  
122

1
2,-  

p

4 , p6 ;

-2, -1, 0, 1, 2;
e- 9

-1, 0, 3;
-1-1, 1;

-  
9
4

-2, -  
3
2, 1;

-4, -2, 0;

-2, -1, 0, 1, 2, 3, 4;

-2, 0, 2, 4;

1
3

 x3 +
1
2

 x2 + x + 2

-cos x + 8
x2 + 3

2x2 + 1
4

+
4 - x

10

x = 12k + 12p>2,
x = kp,

(-x2 - x + 12 e- x2/261sec2 3x21tan 3x2
-21x2 - 12 sin 2x + 2x cos 2x812x + 123

1- q , -22 ´ [0, 22 ´ 12, q2
1- q , 0] ´ [1, 2]

27. (a) Critical points: maximum 

minimum 

(b) Critical points:

maximum minimum value = 0value L 26.04;

-1, -0.4836, 2 -
233

3
, 0.7172, 2 +

233
3

, 5;

value L -26.04value L 2.04;

-1, 2 -
233

3
, 2 +

233
3

, 5;

5

–5

5–5

y

x

29. Answers will vary. One possibility:

5 x

5

–5

y

31. Answers will vary. One possibility:

5 x

5

–5

y

5 x

5

–5

y

33. Answers will vary. One possibility:

35. Answers will vary. One possibility:
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A-20 Answers to Odd-Numbered Problems

20

–20

5–5

y

x

Problem Set 4.2
1. Increasing on 
3. Increasing on decreasing on 
5. Increasing on decreasing on [1, 2]
7. Increasing on decreasing on 

9. Increasing on decreasing on 

11. Concave up for all x; no inflection points
13. Concave up on concave down on 
inflection point (0, 0)
15. Concave up on concave down on

inflection points and 
17. Concave up for all x; no inflection points

14, -49921-1, -1921-1, 42;
1- q , -12 ´ 14, q2,

1- q , 02;10, q2,
Cp2 , 3p2 DC0, p2 D ´ C3p2 , 2p D ,

1- q , 2][2, q2,
1- q , 1] ´ [2, q2,

1- q , -1][-1, q2,
1- q , q2

19. Increasing on decreasing on 
concave up on concave down on 1- q , 0210, q2,

[-2, 2];1- q , -2] ´ [2, q2,

20

0 3–3

y

x

21. Increasing on decreasing on concave up on

concave down on A0, 23 B1- q , 02 ´ A23, q B ,
1- q , 1];[1, q2,

5

–5

3–3

y

x

1

0

–1

π

y

x

23. Increasing on decreasing on 

concave up on concave down on 

a - q , -  
122
b ´ a0, 

122
b .

a -  
122

, 0b ´ a 122
, q b ,

[-1, 1];1- q , -1] ´ [1, q2,

25. Increasing on decreasing on concave down on
10, p2. Cp2 , p D ;C0, p2 D ,

f(x)

x654321

4

3

2

1

5

−5

8−2

y

x

5

−5

8−2

y

x

27. Increasing on decreasing on concave up 

on and on concave down on 

a -  
22
2

,  
22
2
b

a22
2

, q b ,a - q , -  
22
2

 b
[0, q);(- q ,  0],

29. 31.

33.

−3 −2 −1 1 2 3

−1

1

2

y

x

–2 2 4 6

–1.5

–1

–0.5

0.5

1

1.5

41.
43. (a) No conditions needed;

(b) for all x;

(c) No conditions needed

f1x2 7 -  

f¿1x2
g¿1x2  g1x2

a = 39
8 , b = 13

2

(b) (1.3, 5); (c) 1-0.25, 3.12 ´ 16.5, 7]

–2 2 4 6

–1.5

–1

–0.5

0.5

1

–2 2 4 6

–1

–0.5

0.5

1

45. (a)

(e)

(d)

796



Answers to Odd-Numbered Problems A-21

47.

49. (a) k a constant; (b)

(c) (d)

(e) and are approaching zero. (f) is constant.

51. (a) where C is the car’s cost. Concave up.

(b) f(t) is oil consumption at time t.

Concave up.

(c) where P is world population. Concave

down.

(d) where is the angle that the tower makes

with the vertical. Concave up.

(e) is profit at time t. Concave

down.
(f) R is revenue at time t. Could be either 

concave up or down.

R 6 0, 
dR

dt
7 0.

dP

dt
7 0, 

d2P

dt2 6 0.P = f1t2

u
du

dt
7 0, 

d2u

dt2 7 0,

dP

dt
7 0, 

d2P

dt2 6 0,

df

dt
6 0, 

d2f

dt2 7 0.

dC

dt
7 0, 

d2C

dt2 7 0,

ds

dt

d2s

dt2

ds

dt

d2s

dt2 = 10 mph>min
d3s

dt3 6 0, 
d2s

dt2 7 0

d2s

dt2 7 0
ds

dt
= ks,

[-0.598, 0.680]

53. 55.h1t2 = A3  
2400
p

 t + 27000 - 30

h(t)

t5 10 15 20

5
4
3
2
1

h(t)

t

57. (a)
Depth V

1 4 4 1.13
2 8 4 1.13
3 11 3 0.98
4 14 3 0.98
5 20 6 1.38
6 28 8 1.60

(b)
Depth V

1 4 4 1.13
2 9 5 1.26
3 12 3 0.98
4 14 2 0.80
5 20 6 1.38
6 28 8 1.60

Problem Set 4.3
1. Critical points: 0, 4; local minimum at local maximum
at 
3. No critical points; no local minima or maxima on 
5. Critical point: 0; local minimum at 
7. Critical points local minimum at local 
maximum at 
9. Critical point 0; local minimum at 0
11. Critical points: local minimum value local
maximum value f1-12 = 2

f112 = -2;-1, 1;

x = 2
x = -2,-2, 2;

u = 0
A0, p4 B

x = 0
x = 4;

r L 2≤V>PA « ≤V

r L 2≤V>PA « ≤V

13. Critical points local minimum value 
no local maximum
15. Critical point: 2; no local minimum values; local maximum
value 
17. No critical points
No local minimum or maximum values
19. No critical points
No local minimum or maximum values
21. Maximum value minimum value

23. Maximum value minimum value 

25. Maximum value minimum value 
27. Minimum value no maximum value

29. Maximum value minimum value

31. Maximum value minimum value 
33. Local minimum at 
35. Local minimum at local maximum at 
37. No local extrema

x = 3x = 4;
x = 0

f102 = 0f112 = e- 1 ;

H1-12 = H112 = 0
H1-22 = H122 = 3;

f1tan-114>322 = 125;
F142 = -4F19>162 = 9>4;

g102 = 0g142 =
1
6

;

f102 = f1p>22 = 0
f1p>42 = 1;

g122 = p

H A32 B = -  
27
16;0, 32;

5

−5

6

y

x3

39. Answers will vary. One possibility:

5

–5

6

y

x3

5

–5

6

y

x3

41. Answers will vary. One possibility:

43. Answers will vary. One possibility:

47. f has an inflection point at c.

797



x

10

–5

–5
–2 2 4

–10

y

A-22 Answers to Odd-Numbered Problems

Problem Set 4.4

1. and 4 3. 5. 7.

9. 11.

13.

15. 17.

19. miles down the shore from P 21. At the town

23. about 8:09 A.M. 25.

27. where of the cylinder,

of the cylinder, of the sphere

29. (a) 43.50 cm from one end; shorter length bent to form
square
(b) No cut, wire bent to form square

31.

33. 35. 4 by 8

37.
39. Maximum area is for a square. 41.
43.

45. (a) maximizes area of A.
(b) minimizes area of B.
(c) minimizes length z.
47. (a) (b)

(c)
49.

51.

53. (a) (b)

(c) 50.179 hours

55.

57. n = 200

p1n2 = 300 -
n

2
; R1n2 = 300n -

n2

2

b L 3.0119b = aa
n

i = 1
xiyi - 5a

n

i = 1
xibna

n

i = 1
x2

i

525 ft

t L 13.8279, distance L 0.047851 million miles
f = 90°, L = 2m2 - h2, L¿ = h

L¿ = 5, L = 12, f = 90°;L¿ = 3, L = 4, f = 90°;
x = 3a>4
x = 2a>3

x = 2a>3
x = 1, y = 3, z = 3

p>3
r = 2A>16p2,  h = 2r

r = 2A, u = 2

height = a 3V
p
b1>3

, radius = 1
2a3V
p
b1>3

r = radiusx = radius

h = heighth = 22r, x =
r22

4p23
9

 r3

627

P A222, 2 B , Q10, 02x =
102523

 ft, y = 6215 ft

x = 1523 ft, y = 2023 ft

x = 10 ft, y = 40 ft1024 in3

1
2

a -  
322

, 
9
2
b , a 322

, 
9
2
b1

16-4

15,000

0
400100

P(n)

n

y

59. $1.92 per unit; $1.33

61. (a)

(b) (c) 4

63. at 

65. (a) No.
(b)
67. P13002 = $2410

x = 500.

x1x1 = 25, 
dR

dx
= 0

0 … x … 10

R1x2 = 20x + 4x2 -
x3

3
; 

dR

dx
= 20 + 8x - x2

Problem Set 4.5
1. 3.10

–10

5–5 x

y
20

–20

5–5 x

y

40

5–5 x

y
18

3–3 –2
x

y

5

5–5 x

y

–5

1

–1

10

–10

x

y

−6 −4 −2 2 4 6

−2

−1

1

2

y

x

5

–5

6–6

y

x

5. 7.

9. 11.

13.

15. 17.

20

–20

5–5 z

y
80

–20

5–5

y

x

1

–1

2π–2π x

y

19. 21.

23. 25.

t

0.2

0.4

0.6

0.8

1

–3 –2 –1 1 2 3

h(t)
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Answers to Odd-Numbered Problems A-23

27.

−3 −2 −1 1 2 3 4 5

−1

1

2

3

4

y

x

5

–5

100

y

x

5

2–8

y

x

10

10

y

x 2
π

π

2
π y

x

–

29. 31.

33. 35.

y

1 2 3 4 5

1
2
3
4
5
6

x

y

x−1 1 2 3

−3
−2
−1

1
2
3

37. 39.

x

y

c ≠ 0

−|c| |c| x

y

c = 0

9

3−3 −1

43.

1
8

0

y

x

c = 0

1
8

0

y

x

c < 0

5
16

7
2c

0

y

x

c > 0

7
2c

−

45.

−3π −2π −π π 2π 3π

y

x

c = −1
c

–3π –2π –π π 2π 3π

y

x

c = 0

–3π –2π –π π 2π 3π

y

x

c = 1
c

47.

4

2−2

y

x

49.

3

−3

3−3

y

x

51. (a) Not possible; (b) Not possible;

(c)
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A-24 Answers to Odd-Numbered Problems

−3 −2 −1 1 2 3

−2

−1

1

253. (a)

Global minimum:

Global maximum:

Inflection points: A -  
p

6 , -  
1
4 B , A -  

5p
6 , -  

1
4 B

f Ap2 B = 2

f A -  
p

2 B = -2

−3 −2 −1 1 2 3

−1

1

2

3

−3 −2 −1 1 2 3

−1

1

2

3

−3 −2 −1 1 2 3

−2

−1

1

2

Global minimum:

Global maximum:

Inflection points: Ap6 , 54 B , A5p6 , 54 B
f Ap2 B = 3

f A -  
p

2 B = -1

Global minimum:

Global maximum:

Inflection points:
(2.206, 0.890)10.568, -1.2652,
L1-2.206, 0.8902, 1-  0.568, -1.2652, 
f1-p2 = f1p2 = 3

f A -  
p

3 B = f Ap3 B = -1.5

(b)

(c)

(d)

Global minimum:

Global maximum:

Inflection points:
11.016, -  0.7552, 12.126, -  0.7552

10, 02, L 1-2.126, 0.7552, 1-1.016, 0.7552, 
f A -  

p

2 B = 2

f Ap2 B = -2

(e)

Global minimum:
Global maximum:

Inflection points:

 10.413, 0.4082, 12.729, -  0.40821-  0.673, -  0.5422,
A-  
p

2 , 0 B , Ap2 , 0 B , L1-2.469, 0.5422, 
f10.972 L 1.9
f12.172 L -1.9

−3 −2 −1 1 2 3

−2

−1

1

2

57.

59. (a)

Global minimum:
Global maximum:
Inflection point: L12.02, 11.42

f172 L 48.0
f1-12 L -6.9

5

–5

5–5

y

x

5

−5

5−5

y

x

2 4 6

10

20

30

40

55. (a) Increasing on decreasing on

(b) Concave up on concave down on

(c) Local maximum at local minimum at 
(d) x = -2, 2

x = -1;x = -3;
1- q , -22 ´ 12, q2;

1-2, 02 ´ 10, 22;
[-3, -1] ´ [ 0, q2;

1- q , -3] ´ [-1, 0]:

(b)

2 4 6

20

40

60

80

100

120

Global minimum:
Global maximum:
Inflection point: L12.34, 48.092

f172 L 124.4
f102 = 0

(c)

No global minimum or maximum.
No inflections points.

2 4 6

−100

−50

50

100

800



Answers to Odd-Numbered Problems A-25

Global minimum:
Global maximum:
Inflection points: L10.05, 0.32, 15.9, 0.32

f1-12 = f172 L 1.0
f132 L -0.9

2 4 6

−0.75

−0.5

−0.25

0.25

0.5

0.75

1

2

2

y

x

8

−2

2−2

y

x

5

−5

1−3

y

s

2

−2

2−1

y

z

1 2 3

1

y

x

2

20

y

t

1

10

y

x

1

–1

p–p

y

u

(d)

Problem Set 4.6
1. 3. c = 01 6 c 6 2

5. 7. c = 1c = -1

9. c = - lna 1 - e- 3

3
b L 1.15

11. 13. c = A35 B3>2 L 0.46c = 16
27 L 0.59

15. c = ;  
p

2

17. Does not apply,
not continuous at u = p

2

T1u2

5

–5

p0

y

u

3

30

y

x

19. c = 22 L 1.41

21. Does not apply, f(x) is not differentiable at x = 0

1−2

1

−1

2

y

x

23.

Problem Set 4.7
1. 1.46 3. 1.45 5. 7. 1.37015
9. 0.45018 11. 2, 0.58579, 3.41421 13. 0.48095
15. 1.81712
17. Minimum ; Maximum 
19. Minimum 
Maximum 
21. 0.9643 23. (c)
25. 0.91486 27. 2.21756

i = 0.0151308; r = 18.157%
f17.7252522 L 0.128375

f14.4934092 L -0.21723
f112 = 4f1-0.605832 L -0.32645

-0.12061

L1.5, 3.75, 7

29. (a) (b) 0.5; (c) 1
2;

2

–2

2–2

y

x

31. (a)

(b)
(c)
33. (a)

(b) (c)

35. (a) The algorithm computes the root of for 
close to 37. 20.84 ft.

39. (a) (28.0279, 7.1828) (b) (6.7728, 45.1031)

1
a.

x1
1
x - a = 0

1 + 25
2

L 1.618034.x =
1 + 25

2
L 1.618034.

x1 = 1, x2 = 2, x3 = 1.5, x4 L 1.6666667, x5 = 1.6
x = 1.618034

x = 1
2 A1 + 25 B L 1.618034x5 = 1.5980532;

x1 = 0, x2 = 1, x3 = 1.4142136, x4 = 1.553774, 
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A-26 Answers to Odd-Numbered Problems

Problem Set 4.8
1. 3. 5.

7. 9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. 35.

37. 39.

41. 43.

45. 49.

51.

55. if if 

57. (a) (b)

(c)

Problem Set 4.9
5.

7. 9.

11.

13.

15. 17.

19. 21. 144 ft
23.
27.

29. 31. 5500 m2.2 ft>s2

 Jupiter: L36.812 mi>s; Sun: L382.908 mi>s
Moon: L1.470 mi>s; Venus: L6.257 mi>s
v = 32.24 ft>s; s = 1198.54 ft
v L 2.83 cm>s; s L 12.6 cm

v = 5 cm>s; s = 22
3  cmy = 3

2 x2 + 1
2

y = 1
10 A2x + 125 + C;  y = 1

1012x + 1 B5 + 59
10

s = 16
3  t3 + 2t2 - t + C;  s = 16

3  t3 + 2t2 - t + 100

z =
3

C - t3; z =
3

10 - t3y = ;2x2 + C; y = 2x2

y = 1
3 x3 + x + C; y = 1

3 x3 + x - 1
3

1
2

 x2 sin 2x + C

1
2

 cos 
x

2
-

9
2

 cos 
x

6
+ C-2 cos131x - 222 + C

x 6 0x Ú 0, -1
2 x2 + C1

2 x2 + C

5x3 + 2

22x3 + 1
+ C

x22x - 1 + C1
6 x3 + 1

2x + C1x + C2

4
15 x5>2 + C1x + C2

1
2 x3 + 1

2 x2 + C1x + C2

1
3 (1 + ex)2 + C-  

1
511 + cos x25 + C

2
91x3 + 423>2 + C9

1623 12t2 - 1124 + C

1
2115x3 + 3x - 827 + C1

4 A22x + 1 B4 + C

-cos u - sin u + C2
9 z9>2 + 4

5 z5>2 + 2z1>2 + C

1
31x + 123 + C1

3 x3 + 1
2 x2 + C

1
2 x2 - sinh x +  Cx4 + 3

2 x2 + C

-  
3
x

+
1

x2 + C
27
8

 x8 +
1
2

 x6 -
45
4

 x4 +
22
2

 x2 + C

2
3 x6 - 1

4 x4 + C1
3 x3 - 1

2 x2 + C323 x + C

4
9 x9>4 + C1

3 x3 + px + C5x + C

40

30

20

10

7654321

y

x
min

m
i/h

r.

33. (a) (b) 36 mi/h;
(c) 0.9 mi>min2

35. (a)

(b) (c)

37. (a)

(b) t L 0.66, 1.75 s

v1t2 = e -32t for 0 … t 6 1
-321t - 12 + 24 for 1 6 t … 2.5

900 cm3V = 1
4001-20t + 80022;

dV

dt
= C1 

2V

10
, V102 = 1600, V1402 = 0;

Problem Set 4.10
1. 3. 5. 56,569
7. 15.8 days 9. 4.64 million; 4.79 million; 6.17 million;
105 million
11. 126,839 13. 7.43 g
15.
17. 2950 years ago 19. 81.6ºF 21. 83.7ºC 23. 8:45 pm
25. (a) $401.71 (b) $402.15 (c) $402.19 (d) $402.19
27. (a) 11.58 yrs. (b) 11.55 yrs.
29. $133.6 billion 31. $1051.27 33. t =

100 ln 2
p

 ts L 191 yrs121772 tc L 201 yrs121872

y = 2e0.0051t - 102y = 4e-6t

35.
20

150–50

y

t

100 200 300

y

t

5

10

50 100

y

t

5

10

15

Exponential
Growth

Logistic
Growth

37. 15.25 million 43. 75.25 years from 2004
45. (a) (b)
(c) y = 6.40.0132t - 0.00005t2

y¿ = 10.0132 - 0.0001t2yk = 0.0132 - 0.0001t

(d)

(e) The maximum population will occur when which is
year 2136. The model predicts that the population will return to
the 2004 level in year 2268.

t = 132,

47.

Chapter Review 4.11
Concepts Test
1. True 3. True 5. True 7. True 9. True
11. False 13. True 15. True 17. True 19. False
21. False 23. False 25. True 27. True 29. True
31. False 33. True 35. True 37. False 39. True
41. True 43. True 45. False 47. True 49. False

Sample Test Problems
1. Critical points: 0, 1, 4; minimum value maximum
value 
3. Critical points: minimum value maximum
value f A -  

1
2 B = 4

f1-22 = 1
4;-2, -  

1
2;

f142 = 8
f112 = -1;

Exponential growth: 6.93 billion in 2010; 10.29 billion in 2040;
19.92 billion in 2090:
Logistic growth: 7.13 billion in 2010; 10.90 billion in 2040;
15.15 billion in 2090
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Answers to Odd-Numbered Problems A-27

5. Critical points: 0, 1; minimum value maximum
value 
7. Critical points: 0, 1, 3; minimum value 
maximum value 
9. Critical points: 0, 2, 3; minimum value 
maximum value 
11. Critical points: minimum value 

maximum value 

13. Increasing: concave down:
15. Increasing: concave down:

17. Increasing: concave down:

19. Increasing: concave down:

21. Increasing: decreasing:

Local minimum value 

Local maximum value 

Inflection point: A43, -  
128
27 B
f102 = 0

f A83 B = -  
256
27

C0, 83 D ;A - q ,  0 D ´ C83, q B ;
1- q , -31/42 and (31/4, q)[0, q);

A 3
20, q BC0,  

1
5 D ;

1- q , 021- q , -1] ´ [1, q2;
1- q , q2A - q , 32 D ;

f Ap2 B = 1

f A4p3 B L -0.87;p

4 , p2 , 4p3 ;
f132 = 88

f122 = -9;-1,
f132 = 135

f112 = -1;-2,
f112 = 1

f102 = 0;-  
1
2,

5–5 x

–10

10
y

15

–5

5–5

y

x
global

minimum

30

10

y

x
global 

minimum

inflection point

18

3−3
−2

y

x
inflection

points

global
minimum

−4 −3 −2 −1 1 2 3 4

1

2

global
maximum

horizontal
asymptote y = 0

y

x

2

–2

π–π

y

x

global
maximum

global
minimum

inflection
points

2
π

y

x
2
π–

5

−5

global
minimum

23. 25.

27.

31. 33.

29.

2

–2

π–π

y

x

global
maxima

global
minimum

local
minimum

inflection
points

inflection
points

5

–5

5–5

y

x

35. 37.

5

–5

4–1

y

x

39.

41. 11.18 ft 43.

45. (a) (b) Does not apply,
does not exist.

F¿102c = ;23

r = 423 2, h = 823 2

(c) c = 1 + 22

47.

49. 0.281785 51. 0.281785 53.

55. 57.

59. 61. 3
251t5 + 525>3 + C1

18 tan313x2 + 6x2 + C

3
1612z2 - 324>3 + C1

3 y3 + 9 cos y - 26
y + C

1
4 x4 - x3 + 2x3>2 + C

5

π−π x

y

10

–10

5–5

y

x

3

−3

3−3

y

x

3

30

y

x
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A-28 Answers to Odd-Numbered Problems

Chapter 5 Review and Preview Problems

1. 3. 5.

7. 3.5 9. 11. 6

Problem Set 5.1

1. 15 3. 5. 7. 3 9. 11.

13. 15. 90 17. 19. 14,950

21. 2640 23.

27. (a) (b)

33. 37. 39. 715

41. 43. 45. 47. 23
8

9
2

7
2S =

m1m + 1213n - m + 12
6

c = xx = 55/7 L 7.86; s2 L 12.41

211 - 21 - A12 B10;

4n3 - 3n2 - n

6

-10a
50

i = 1
a2i - 1

a
100

i = 1
 
1
ia

41

i = 1
i85

2
481
280

1
2

 x2 + x

3.6 # 5.8 +
1
2

 p11.822 L 25.97
5
4

 a2 cot 36°
23
4

 a2

49. 51. A = 1243
216A = 6

4

–1

3–2

y

x

8

4

y

x

53. 55. 4 57. 59.

63. (a) (b) 21; (c) 39

65. (a) 4; (b) (c) 10.5; (d) 102.4

Problem Set 5.2

1. 5.625 3. 15.6875 5. 2.625 7.

9. 11. 4 13. 15.

17. 19. 21. 23. 25. 3

27. 40, 80, 120, 160, 200, 240 29. 20, 80, 160, 240, 320, 400
31. (a) (b) 19; (c) 3; (d) 2; (e) 9; (f) 0;
(g) 1; (h) 2
35. Left: 5.24; Right: 6.84; Midpoint: 5.98
37. Left: 0.8638; Right: 0.8178; Midpoint: 0.8418

-3;

2
15

1
2 pA21

2 + p

4
27
2

35
23p - 3L

1

-1
 

x2

1 + x
 dx

L
3

1
x3 dx

15
4 ;

125
3 ;

2 
1
2 ft1

4
5
2

y

x

1

–1 1 2 3 40

2

3

4

y

x

y = ax2/2

3. A1x2 = 1
21x - 122, x 7 1

5. A1x2 = ax2/2

63. 65.

67. 69.

71. 73.

75. 77. 79. 7 s;

81. (a) (b)

(c) Q(t) : 150 grams  as  t : q
Q(t) = 150 - 30e - 0.02tQ¿(t) = 3 - 0.02 Q

-176 ft>sy = 23x2 - 1
4 x4 + 9y = 7e2t

y = 1
312t - 123>2 - 1y = 22x + 1 + 14

5
2412y3 + 3y2 + 6y24>5 + C

1
2

  cos2u + C

-  
1

212y - 122 + C2
32x3 + 9 + C Problem Set 5.3

1. A1x2 = 2x

1 2 3 4 5

2

4

6

8

y

x

y

x1 2 3 4

2

4

6

7. A1x2 = e 2x if 0 … x … 1
2 + 1x - 12 if 1 6 x … 2
3 + 21x - 22 if 2 6 x … 3
5 + 1x - 32 if 3 6 x … 4
etc.

9. 6 11. 14 13. 15. 23 17. 2x
19. 21. 23.

25.

27. f(x) is increasing on and concave up on 
29. f(x) is increasing on and concave up on 

31. f(x) is increasing on and never concave up.10, q2
10, q2.[0, q2
10, q2.[0, q2

2x5

1 + x4 +
x2

1 + x2

2x e- x4
-1x - 22 cot 2x2x2 + 1x
-31

33. 10; 35. 4;
y

x
1 2 3 4

2

4

y

x
1 2 3 4

1
2
3
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Answers to Odd-Numbered Problems A-29

47. Lower bound upper bound 101
5  p20p;

37. (a) Local minima at 
local maxima at 
(b) is global minimum, is global maximum
(c) G is concave down on 

(d)

16.5, 7.52, 18.5, 9.52
L10.7, 1.52, 12.5, 3.52, 14.5, 5.52, 

G192G102 = 0
L3.1, L5.0, L7.1, L9.0, 10

0, L3.8, L5.8, L7.9, L9.9; 

2 4 6 8 10

5

10

15

20

y

x

39. (a) 0 (b) (c) (d) 6
5

1
5 x5 + x1

5 x5 + x + C

43. Lower bound 20;
upper bound 276

y

x
2 4

20

40

60

80
y

x1 2 3 4

2

4

6

45. Lower bound 
upper bound 20

68
5 ;

y

x

1
2
3
4
5

2π 4π 6π 8π

49. 51. 2 53. 55. True 57. False

59. True

61.

Problem Set 5.4

1. 4 3. 15 5. 7. 9. 11. 1 13.

15. 17.

19. 21.

23. 25.

27. 29.

31. 33.

35. 37. 39. 41. 0 43.

45. 47. 49. 51. 53. 1

55. 57. 59. 61. 0

63. (a) positive, (b) negative, (c) negative, (d) positive
65. 50 gallons; 20 hours 67. 84.8 gallons 69. 145.2
73. 9 75. 2

p

4

1 - cos41
8

e - e- 1

1
p

sin 3
3

1
64

1
2(e - 1)

1
3

122
9

4
5

2047
11

-  
1
30 cos101x3 + 52 + C1

3[sin1x2 + 42]3/2 + C

1
27 exp[1x3 + 52] + C-cos2x2 + 4 + C

-1
2 cos1x2 + 42 + C-  

7
101x2 + 32-5/7 + C

1
31x2 + 423/2 + C-  

1
6 cos16x - 72 + C

1
3 sin13x + 22 + C2

913x + 223/2 + C

22
5

1783
96

16
3

3
4

t = 4 + 222 L 6.83

s1t2 = e t2/2, 0 … t … 2
-4 + 4t - t2/2, t 7 2

1x/21
2

Problem Set 5.5

1. 40 3. 5. 7. 0 9. 11.

13. 15. 17.

19. 21. 23. 25.
27. 1A + B2/2

c = 5
2c = 221 + 3

6c = 0c = 1

239
3

115
81

8
p
a- cos 2p2 + cos 2p4 b 609

8
1
2(1 - e- 2)17

6
1
3

y

xπ 2π

500

1000

y

x1–1

1

2

33. 35. 0 37. 0 39. 41. 43. 0

45. Even:

Odd:

47. 8 49. 2 51. 2
57. (a) Even; (b)

(c)
Interval Value of Integral

0.46

0.92

0

0

-0.44C13p
6 , 10p

3 D
-0.44Cp6 , 4p3 D

Cp6 , 13p
6 D

[0, 2p]
-0.92C -  

3p
2 , 3p2 D

-0.46C0, 3p2 D
C -  
p

2 , p2 D
C0, p2 D

2p

L
-a

-b
f1x2 dx = -L

b

a
f1x2 dx

L
-a

-b
f1x2 dx = L

b

a
f1x2 dx;

8
32pL25

29. 31. L3.2L1250p

Problem Set 5.6
1. 0.7877, 0.5654, 0.6766, 0.6671,

3. 1.6847, 2.0382, 1.8615, 1.8755,

5. 3.4966, 7.4966, 5.4966, 5.2580, 5.25

7.
LRS RRS MRS Trap Parabolic

0.5728 0.3728 0.4590 0.4728 0.4637
0.5159 0.4159 0.4625 0.4659 0.4636
0.4892 0.4392 0.4634 0.4642 0.4636

9.
LRS RRS MRS Trap Parabolic

1.4068 0.9745 1.1991 1.1907 1.1962
1.3030 1.0868 1.1970 1.1949 1.1963
1.2500 1.1419 1.1965 1.1959 1.1963

11. 12, 1.1007 13. 8, 4.6637 15. 6, 1.0989 19. smaller
21. larger 25.
27. 29.
31. Using a right Riemann sum L13,740 gallons

1,074,585,600 ft34570 ft2

LRS 6 Trap 6 MRS 6 RRS

n = 16
n = 8
n = 4

n = 16
n = 8
n = 4

422
3

2
3
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A-30 Answers to Odd-Numbered Problems

17. 7
4

19. 21. 23. 1870

25. (a) (b)

27. (a) (b) (c) 6; (d) (e)
29. (a) (b) 8; (c) 0; (d) (e) (f)
31.
33. (a) (b)

(c) (d)

(e) (f)
37. 0.2043 39. 372 41. MRS 6 Trap 6 LRS

-f1x2g¿1g1x22g¿1x2;
L

x

0
f1t2 dt;-  

1

x2 L
x

0
f1z2 dz +

1
x

 f1x2;
f1x + 12 - f1x2sin2 x;

c = -27
-5-2-16;-8;

-2-12;-4;-2;

a
50

n = 1
nx2na

78

n = 2
 
1
n

;

39
4

5
6

5

–5

4321–1

y

x

Chapter 6 Review and Preview Problems

1. 3. 5. 7.

9. 11. 13.

Problem Set 6.1

1. 6 3. 5. 7. 9. 9
2

253
12

9
2

40
3

16
15

51
10

[p1r2 

2 - r1 

22] ¢x

1.6p21023 4 - 1
1
4

11. 6 13. 24

4

−1

4−1

y

x

∆x

3 − 1
3

x2

1

−9

5−5

y

x

∆x

−(x − 4)(x + 2)

2

−2

3−1

y

x

∆x

− 1
4 (x2 − 7)

2

−2

2−2
−

y

x

∆x

∆x

x3

3

�

x�

8

−2

7−3

y

x

∆x

x − (x − 3)(x − 1)

3

−2

3−2

y

x

∆x

−x2 − (x2 − 2x)

15. 17. 323 217
6

19. 21. 1
3

13213
6

23. 25. 1
216

256
3

9

18−2−1

y

x

∆y

8y − y2 1

10

y

x

∆y

(−6y2 + 4y) − (2 − 3y)

5

5

−5

−5

y

x
∆y

(3 − y2) − 2y2

10

−10

5−5

y

x

27. 4 29. 3
2

33. 130 ft; 194 ft 35. 6 s;
37. 39.

41. Area 
Area1A + B + C + D2 = 36

1A2 = 9; A1B2 = 37
6 ; A1C2 = 37

6 ; A1D2 = 44
3 ; 

1.032571
2 (1 - ln 2)

2 + 222 s

Chapter Review 5.7
Concepts Test
1. True 3. True 5. False 7. True 9. True
11. True 13. False 15. True 17. True 19. False
21. True 23. True 25. False 27. False 29. False
31. True 33. False 35. True 37. False 39. True
41. True 43. True 45. False

Sample Test Problems

1. 3.

5. 7.

9. 46.9 11.

13. 15. cos 1 - cos e1
3(e - e- 1)

-  
1
2 cos1x2 + 2x + 32 + C

1
18 tan313p2 + 6p21

16
 C -15 A -125 + 23 5 B D

50
3

-
26
p

+
p3

3
- 9 cos 15

4

31. 22

−1 1

2

4

6

8

∆x

e2x

ln 2

y

x
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Answers to Odd-Numbered Problems A-31

9

−1 7−3

y

x

∆x

x2

π

2

5

y

x

∆x 1
x

8

−2

5−5

y

x

∆x

9 − x2�

5

−5

9−1

y
y2

x

∆y

5

5

y

x

∆y

2�y

10

30

y

x

∆y

y3/2

2

5

y

x

∆x

x

1
x

4

4

y

x

∆x

x

 x�

Problem Set 6.2
1.

3. (a) (b) 8p256p
15 ;

206p
15

9. 11. 243p
5

100p
3

13. 15. 6561p
432p

17. 19. 21. 23. 25. 2 27.

29. 31. 33.

35. (a) (b)

37. 39.

41. (a) (b)

43.

Problem Set 6.3
1. (a), (b) (c)

(d) (e) 6p2pL
4

1
 dx;

¢V L 2p¢x;

2
3 pr3

22
12

 r31
3 pr2h;

2
3 r3 tan u2p + 16

3

704p
5

1024p
35 ;

4ppr21L1 + L22 - 8
3 r32pr2L - 16

3  r3

2
3

128
3

2p
3

512p
3

4
3 ab2p

3. (a), (b) (c)

(d)

(e)
3623

5
 p

2pL
3

0
x3>2 dx;

¢V L 2px3>2¢x;

5. 7. p4
1024
5p

5. (a), (b) (c)

(d)

(e)
4025

3
 p

2pL
5

0
15x1>2 - x3>22 dx

¢V L 2p15x1>2 - x3>22¢x

7. (a), (b) (c)

(d)

(e) 23p
30

2pL
1

0
A14 x4 + x2 B  dx

¢V L 2p A14 x4 + x2 B¢x;

3

–3

60

y

x

∆x

5 − x

 x�

9. (a), (b) (c)

(d)

(e) p2

2pL
1

0
y3 dy

¢V L 2py3¢y;

13. (a)

(b)

(c)

(d) 2pL
b

a
1b - x2[f1x2 - g1x2] dx

2pL
b

a
1x - a2[f1x2 - g1x2] dx;

2pL
b

a
x[f1x2 - g1x2] dx;

pL
b

a
[f1x22 - g1x22] dx;

17. 19. 21. p A22 - 1 B4p
3 1b2 - a223>2p (1 - e- 1)

2

2

y

x

∆x

1
4x3 + x

x

2

2

y

x

∆y

y2

y

5

5

y

x

∆y

y2

2 − y

15. (a)

(b)

(c)

(d) 2pL
3

1
a 4

x3 -
1

x2 b  dx

pL
3

1
a 1

x6 +
2

x3 b  dx;

2pL
3

1
 
1

x2 dx;

L
3

1
 
1

x3 dx;1

5

y

x

11. (a), (b) (c)

(d)

(e) 8p
3

2pL
2

0
12y2 - y32 dy;

¢V L 2p12y2 - y32¢y
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A-32 Answers to Odd-Numbered Problems

23. (a) (b) (c)

25. 1
3 rS

p

60
p

6 ;2p
15 ;

1

1

y

x –10

5–5

y

x

a

–a

a–a

y

x

9. 11. 4p1
3 A222 - 1 B

13. 15.

17. L
p>2

0
2cos2 t + 4 sin2 2t dt L 2.3241

L
2

0
21 + e- 2t dt L 2.22144225

19. 6a

21. 8a

23. (a) (b) 16

25. 27. 29.
31.

33.

37. (b) 64
3  pa2

-   ln (22 + 1)b
p ae221 + e4 + ln (e2 + 21 + e4

 ) - 22

4pr2

p

27 A10210 - 1 B24822p>96237p

2
5 A422 - 1 B ;

39.
n = 10: L L 1.75; n = 100: L L 1.95; n = 10,000: L L 2

n = 1: L L 1.41; n = 2: L L 1.48; n = 4: L L 1.60

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Problem Set 6.5
1. 1.5 ft-lb 3. 0.012 Joules 7. 18 ft-lb 9. 52,000 ft-lb
11. 76,128 ft-lb 13. 125,664 ft-lb 17. 2075.83 in.-lb
19. 350,000 ft-lb 21. 952,381 mi-lb 23. 43,200 ft-lb
25. 1684.8 pounds 27. 1684.8 pounds 29. 16.64 pounds

33. 76,363 pounds 35. 37.
8475

32
 ft-lb3mh

4 + 15m

9. 11. x = 4
5, y = 2

7x = 0, y = 4
5

3

–1

2–2

y

x

2

1

21

y

x

5

–5

50

y

x

2

–2

3–1

y

x

13. 15. x = 6
5, y = 0x = 192

95 , y = 27
19

17.

21. 23. 25.

27. The centroid is units perpendicular from the center of the

diameter.

29. (a)

31.

33. (a)

37. cm above the center of the hole; cm to 
the right of the center of the hole

Problem Set 6.7
1. (a) 0.1 (b) 0.35
3. (a) 0.2 (b) 0
5. (a) 0.6 (b) 2.2
7. (a) 0.6 (b) 2

9. (a) 0.9 (b) 10 (c)

11. (a) (b) 4

(c)

13. (a) 0.6875 (b) 2.4

(c) F1x2 = d 0, x 6 0
1
16

 x3 -
3

256
 x4, 0 … x … 4

1, x 7 4

F1x2 = d 0, x 6 0
3

64
 x2 -

1
256

 x3, 0 … x … 8

1, x 7 8

27
32

F1x2 = c 0, x 6 0
x>20, 0 … x … 20
1, x 7 20

y L 0.669x L 7.00

4pr3n sin 
p

2n cos2
 
p

2n

-x =
e2 - 3

e2 - 1
, 

-y =
1
4

  (1 + e- 2)

V = 2pL
d

c
1K - y2w1y2 dy

Ay = 4a
3p, x = 0 B

4a
3p

2p
5x = 9

16, y = 31
16x = -  

3
14, y = 1

14

m1R22 = 2d, x2 = 2, y2 = 1
2, My1R22 = 4d, Mx1R22 = d.

m1R12 = 1
2 d, x1 = 2

3, y = 1
3, My1R12 = 1

3 d, Mx1R12 = 1
6 d; 

Problem Set 6.4
1. 3. 9 5. 7. sinh 4595

144
1

54 A1812181 - 13213 B

Problem Set 6.6
1. 3. 5. My = 17, Mx = -3; x = 1, y = -  

3
17

21
5

5
21
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Answers to Odd-Numbered Problems A-33

15. (a) (b) 2

(c)

17. (a) (b) (c)

21. 23.

25. (a) (b) (c) 2

(d)

(e)

27. (a) (b) (c)

(d) For 

(e) F(25.4y) where F is as in (d)

29.

33. F1x2 = e 0, x 6 0
0.8, 0 … x 6 1
0.9, 1 … x 6 2
0.95, 2 … x 6 3
1, x Ú 3

0 … y … 22.g1y2 = y>2y2 - 1,

G1y2 = c 0, y 6 02y2 - 1, 0 … y … 22
1, y 7 22

+ 2.2987 * 105x7- 2.6819 * 106x8
+ 1.3906 * 107x9- 4.1718 * 107x10+ 7.9011 * 107x11

+ 7.4284 * 107x13 - 9.6569 * 107x12- 3.2847 * 107x14

0 … x … 0.6, F1x2 L 6.3868 * 106x15

0.2625L0.884L95,802,719

F1y2 = d 0, if y 6 0
y2>28800, if 0 … y … 120
-y2>28800 + y>60 - 1, if 120 6 y … 240
1, if y 7 240

F1x2 = d 0, if x 6 0
x2>8, if 0 … x … 2
-x2>8 + x - 1, if 2 6 x … 4
1, if x 7 4

1
8

1
4

k =
6

125
a + b

2

F1x2 = d 0, x 6 1
4x - 4

3x
, 1 … x … 4

1, x 7 4

4
3

 ln 4
1
3

F1x2 = d 0, x 6 0
1
2

-
1
2

 cos 
px

4
, 0 … x … 4

1, x 7 4

1
2

Chapter Review 6.8
Concepts Test
1. False 3. False 5. True 7. False 9. False
11. False 13. True 15. True 17. True 19. True
21. True 23. True

Sample Test

1. 3. 5.

7.

9. 205,837 ft-lb 11. (a), (b) 13.

15. 17. 36 19.

21.

23.

25. (a) (b) (c) 2
6 - x

18
  for  0 … x … 6

3
4

 + p[f21a2 - g21a2] + p[f21b2 - g21b2]
 + 2pL

b

a
g1x221 + [g¿1x2]2 dx

2pL
b

a
f1x221 + [f¿1x2]2 dx

 Mx = d

2 L
b

a
[f21x2 - g21x2] dx

 My = dL
b

a
x[f1x2 - g1x2] dx

pL
b

a
[f21x2 - g21x2] dx

53
6

2048p
15

32
3

V1S12 = p

30; V1S22 = p

6 ; V1S32 = 7p
10 ; V1S42 = 5p

6

5p
6

p

6
1
6

0.2

0.4

0.6

0.8

3210
x

F(x)

1.0

35. (a) 1 (b) (c) (d) 0.38629

37. 39.
4
7

2, 
32
7

2

1y + 122  for  0 … y … 1
1

12

Chapter 7 Review and Preview Problems
1. 3. 5.

7. 9. ln x 11.

13. 15.

17. 19.

21. 23. 25.

Problem Set 7.1
1. 3. 1302 5.

7. 9. 11. 13.

15. 17.

19. 21.

23. 25. 1/ln 3 27.

29. 31.

33. 35.

37. 39.

41. 43. 45.

47. 49.

51. 53.

55. 57. p2ln122 + 12
1
3 sec-1a ƒ22t ƒ

3
b + C1

18 ln ƒ 9x2 + 18x + 10 ƒ + C

1
3 tan-113x + 32 + C1

2 tan-1ax + 1
2
b + C

1
4 tan-1 A14 B1

3 sin-1a e3t

2
b + C1

3 cosh x3 + C

1
6 sin-1a3y2

4
b + C1

2 etan-12t + C

-  
1
3 [cot1t3 - 22 + t3] + C-  

1

3 sin1t3 - 22 + C

tan x + esin x + Cln ƒ sec ex + tan ex ƒ + C

x - ln ƒ sin x ƒ + C-321 - e2x + C

6 sin-11ex2 + C-  
1
2 cos1ln 4x22 + C

3
2 x2 - x + ln ƒ x + 1 ƒ + Ctan-1

 
22
2

-2 cos1t + C1
2 381

2 ln1x2 + 42 + C

1
2 tan-1 Ax2 B + C1

61x - 226 + C

5x + 3
x1x + 121x - 32

2x - 1
x11 - x2ƒ a ƒ # ƒ tan t ƒ

ƒ a ƒ cos tcos 3x cos 5x =
cos 8x + cos 2x

2

cos4 x = a1 + cos 2x

2
b2

sin2 x =
1 - cos 2x

2

x2 sin x1
31x2 + 223>2 + C

ln ƒ sec t ƒ + C- 1
2 cos x2 + C-    

1
2 cos 2x + C
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A-34 Answers to Odd-Numbered Problems

Problem Set 7.2
1. 3.
5.
7.

9. 11.

13. 15.

17. 19.

21. 23.

25.

27.

29.

31.

33.

35. 37.

39. 41.

43.
45.

47. 65. 1x ln3 x - 3x ln2 x + 6x ln x - 6x + C

x
2 [sin1ln x2 - cos1ln x2] + C
x2 sin x + 2x cos x - 2 sin x + C

1
2 et1sin t + cos t2 + Cz ln2 z - 2z ln z + 2z + C

x2ex - 2xex + 2ex + C
x

ln 2
 2x -

1

1ln 222 2x + C

x

150
 13x + 10250 -

1
22950

 13x + 10251 + C

x cosh x - sinh x + C

z4

414 - z42 +
1
4

 ln ƒ 4 - z4 ƒ + C

t4

617 - 3t421>2 + 1
917 - 3t421>2 + C

2
9 x31x3 + 423>2 - 4

451x3 + 425>2 + C

p

223
+ ln 2t arctan A1t B + 1

2 ln11 + t22 + C

1
4 z4 ln z - 1

16 z4 + C2
91e3>2 + 22

-  
ln x

x - 1
x + Cx arctan x - 1

2 ln11 + x22 + C

x ln 3x - x + C2
3 t1t + 123>2 - 4

151t + 125>2 + C

1t - 32 sin1t - 32 + cos1t - 32 + C
x sin x + cos x + C

1
5 te5t +p - 1

25 e5t +p + Cxex - ex + C

5

10

y

x

67. 9 -
9

e3 L 8.552

69. 71.

73. (a)
(b)
87.

Problem Set 7.3
1. 3. 5.

7.

9.

11.

13.

15.

17.

19. 21.

23.

25. 27.

29. 0 for since for all integers k.

31.
p4

3
+

5p2

2

sin kp = 0m Z n,

1
4 tan4 x + C-  

1
2 tan-2 x + ln ƒ tan x ƒ + C

1
2 tan4 A u2 B - tan2 A u2 B - 2 ln ƒ cos 

u

2 ƒ + C

1
2 tan2 x + ln ƒ cos x ƒ + C1

3 tan3 x - tan x + x + C

1
3 C -x cos3 x + sin x - 1

3 sin3 x D + C

1
16 w - 1

32 sin 2w - 1
24 sin3 w + C

1
2 cos y - 1

18 cos 9y + C

3
128 t - 1

384 sin 12t + 1
3072 sin 24t + C

-  
1
3 csc 3u - 1

3 sin 3u + C

-  
1
12 cos3 4x + 1

10 cos5 4x - 1
28 cos7 4x + C

8
15-cos x + 1

3 cos3 x + C1
2 x - 1

4 sin 2x + C

ex13x4 - 12x3 + 38x2 - 76x + 762
1x2 - 3x + 121-cos x2 - 12x - 321-sin x2 + 2 cos x + C

1x3 - 2x2ex - 13x2 - 22ex + 6xex - 6ex + C

x =
e2 + 1

4
, y =

e - 2
4

22p
4

- 1

Problem Set 7.4
1.

3.

5.

7.

9.

11. 13.

15.

17.

19.

21.

23.

25.

27. 29.

31.

35.

Problem Set 7.5
1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

-  
41
26 ln ƒ sin2 t - 4 sin t + 5 ƒ + C

sin t - 50
13 ln ƒ sin t + 3 ƒ - 68

13 tan-11sin t - 22
+

2
125

 ln ƒ x + 4 ƒ -
1

251x + 42 + C

-  
2

125
 ln ƒ x - 1 ƒ -

1
251x - 12

-2 ln ƒ 2x - 1 ƒ + 3
2 ln ƒ x2 + 9 ƒ + C

-2 ln ƒ x ƒ + 1
2 tan-1 Ax2 B + 2 ln ƒ x2 + 4 ƒ + C

2 ln ƒ x ƒ + ln ƒ x - 4 ƒ +
1

x - 4
+ C

-  
3

x + 1
+

1

21x + 122 + C

ln ƒ x - 3 ƒ -
4

x - 3
+ C

1
2 x2 - 2 ln ƒ x ƒ + 7 ln ƒ x + 2 ƒ + 7 ln ƒ x - 2 ƒ + C

1
2 x2 - x + 8

3 ln ƒ x + 2 ƒ + 1
3 ln ƒ x - 1 ƒ + C

ln ƒ 2x - 1 ƒ - ln ƒ x + 3 ƒ + 3 ln ƒ x - 2 ƒ + C

2 ln ƒ x ƒ - ln ƒ x + 1 ƒ + ln ƒ x - 2 ƒ + C

5
3 ln ƒ 3x - 2 ƒ + 4 ln ƒ x + 1 ƒ + C

2 ln ƒ 2x - 1 ƒ - ln ƒ x + 5 ƒ + C

4 ln ƒ x + 5 ƒ - ln ƒ x - 2 ƒ + C

3 ln ƒ x + 4 ƒ - 2 ln ƒ x - 1 ƒ + C

-  
3
2 ln ƒ x + 1 ƒ + 3

2 ln ƒ x - 1 ƒ + C

ln ƒ x ƒ - ln ƒ x + 1 ƒ + C

y = -2a2 - x2 - a ln ` a - 2a2 - x2

x
`dy

dx
= -

2a2 - x2

x
 ,

2 ln ` 2 - 24 - x2

x
` + 24 - x2 + C

1
2 ln(x2 + 9) + Cp

16 A 1
10 + p

4 - tan-1
 
1
2 B

ln ƒ x2 + 2x + 2 ƒ - tan-11x + 12 + C

sin-1ax - 2
2
b + C

9
2 sin-1ax + 2

3
b +

x + 2
2

 25 - 4x - x2 + C

32x2 + 2x + 5 - 3 ln ƒ2x2 + 2x + 5 + x + 1 ƒ + C

ln ƒ2x2 + 2x + 5 + x + 1 ƒ + C

-221 - z2 - 3 sin-1 z + C

-  
22
9

-
1
2

 sec-11-32 +
23
8

+
p

3
x

42x2 + 4
+ C

2 ln ` 2 - 24 - x2

x
` + 24 - x2 + C

2
63 13t + 227>2 - 4

45 13t + 225>2 + C

222 - 2 - 2e lna22 + e

1 + e
b

2
2713t + 423>2 - 8

913t + 421>2 + C

2
51x + 125>2 - 2

31x + 123>2 + C
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35.

37.

39.

41.

43.

45.

47. If then and the 
population is increasing initially.

49. (a) (b)

(c) The population will be 9 billion in 2055.

51. (a) (c) 1.65 grams

(d)

53.

Problem Set 7.6
1. 3.

5.

7. 9.

11. 0
13. (a)

(b)

15. (a) (b)

17. (a)

(b)

19. (a)

(b)

21. (a)

(b)

23. (a)

(b)

25.

27. 1
3 11 - cos t222 cos t + 1 + C

1
12 1sinh 6t - 6t2 + C

2
27 13 sin t - 10223 sin t + 5 + C

2
27 13y - 10223y + 5 + C

ln ` a t +
3
2
b + 2t2 + 3t - 5 ` + C

ln ƒ 1t + 12 + 2t2 + 2t - 3 ƒ + C

23
6

 ln ƒ23x2 + 25 + 3x4 ƒ + C

23
3

 ln ƒ23x + 25 + 3x2 ƒ + C

+
8122

 sin-1a22 sin x
3

b d + C

1
16

 csin x14 sin2 x - 9229 - 2 sin2 x

1
16

 cx14x2 - 9229 - 2x2 +
8122

 sin-1a22x

3
b d + C

1
24

 ln ` 4ex + 3
4ex - 3

` + C
1
24

 ln ` 4x + 3
4x - 3

` + C

2
135 19ex - 2213ex + 123�2 + C

2
135 19x - 2213x + 123�2 + C

2
15 C7727 + 822 D L 28.671

2 A ln 
2
3 - ln 

3
5 B L 0.0527

1
64 [24x + 8 sin 4x + sin 8x] + C

1
2[ln 2]2-   

1
5 e-5x115 + x2 + C

y1t2 =
ACe1A + B2kt - B

1 + Ce1A + B2kt

x1t2 = aa akt

akt + 1
b

x1t2 =
ab11 - e1a - b2kt2

b - ae1a - b2kt

y1902 L 6.34 billiony =
16

1 + 7e-A 150 ln7
3Bt

y¿102 = ky01L - y02 7 0y0 6 L,

y1t2 =
LekLt

aL - y0

y0
b + ekLt

y132 L 7958.4y1t2 =
8000e2.4t

7 + e2.4t
;

y132 L 0.953y1t2 =
et

1 + et  ;

1
8 lna22 + 122 - 1

b + 1
2 tan-1

 
122

+
1

622

3
2 tan-1

 
x

2
+

2x - 5

21x2 + 42 + C

1
2 ln ƒ x2 + 1 ƒ +

5

21x2 + 12 + C 29.

31. 33.

35. 0.11083 37. 1.10577 39.
41. 43.
45. 47. 49.

51.

53. where 

55. (a) (b)

57. (a) erf(x) is increasing on 
(b) erf(x) is not concave up on 
59. (a) C(x) is increasing on 

(b) C(x) is concave up on 

Problem Set 7.7
1. 3.
5. 7.
9. 11. goes through (1, 3).
13. goes through (1, 0). 15. 38.506 lb.

17.

19.
21.
23. (a) 21.97 min (b) 26.67 min (c)
(d)
25. (a) 200.32 ft (b)

Problem Set 7.8
1. lim

t: q
 y1t2 = 12 and y122 L 10.5

95 - 4T - 95e-0.05T = 0
400e-0.04T + T = 150.

c 7 7.7170
I1t2 = 0.12 sin 377t

I1t2 = 10-611 - exp1-106t22
y1t2 = 2160 - t2 - a 1

1800
b160 - t23

y = e-x11 - x-12
y = x4 + 2xy = 1 + Ce-1f1x2 dx

y = 1 + Cx-1y = xex + Cx
y = a + C11 - x221>2y = e-x1x + C2

122, 22.
10, 12 ´ 123, 22.
10, q2.
10, q2.

sin x
x

22p  e-x2

c L 5.7114u = -18e-c>3;x =
cu

u + 18
+ 3

x =
8

31c + 12; c =
1
3

c L 9.2365c L 0.16668c L 0.59601
e - 1 L 1.71828e - 1 L 1.71828

4 ln 2 + 2 L 4.77259

231p
2048

L 0.35435p - 2 L 1.14159

-  
2
5

 2cos t + 1 ccos2 t -
4
3

 1cos t - 22 d + C

Answers to Odd-Numbered Problems A-35

15

20

10

5

1 32

y (x)

x

3. lim
t: q

 y1t2 = 0 and y122 L 6

15

20

10

5

1 32

y (x)

x

811



5. The oblique asymptote is y = x.

A-36 Answers to Odd-Numbered Problems

7. y =
1
2

 ex>2

3

5

4

2

1

1 32

y (x)

x

3

5

4

2

1

1 32

y (x)

x

6

8

4

2

−2

2 64

y (x)

x

9. y = x + 1 + 3e-x.

11.
Euler’s Method 

0.0 3.0
0.2 4.2
0.4 5.88
0.6 8.232
0.8 11.5248
1.0 16.1347

13.
Euler’s Method 

0.0 0.0
0.2 0.0
0.4 0.04
0.6 0.12
0.8 0.24
1.0 0.40

15.
Euler’s Method 

1.0 1.0
1.2 1.2
1.4 1.488
1.6 1.90464
1.8 2.51412
2.0 3.41921

ynxn

ynxn

ynxn

19. (a) (b)
(c)

21. (a)

(c)

23.

0.0 2.0
0.2 1.64
0.4 1.3448
0.6 1.10274
0.8 0.90424
1.0 0.74148

25.

0.0 0.0
0.2 0.004
0.4 0.024
0.6 0.076
0.8 0.176
1.0 0.340

27.

1.0 2.0
1.2 1.312
1.4 0.80609
1.6 0.46689
1.8 0.25698
2.0 0.13568

Chapter Review 7.9
Concepts Test
1. True 3. False 5. True 7. True 9. True
11. False 13. True 15. True 17. False 19. True
21. False 23. True 25. False 27. True 29. True
31. False

Sample Test Problems

1. 2 3. 5.

7. 9.

11. 13.

15. 17.

19. 21.

23.

25. 27.

29. 31.

33. 35.

37.

39.

41. ln ƒ x ƒ -
2
x

-
1
2

 ln ƒ x2 + 3 ƒ +
223

 tan-1a x23
b + C

-  
1
6 tan-1a cos2 y

3
b + C

2
31w + 523>2 - 101w + 521>2 + C

1
4 tan-11e4x2 + C3 sin x + C

-29 - e2y + C2
5 tan5>2 x + 2

9 tan9>2 x + C

1
6 sec312x2 - 1

2 sec12x2 + C-  
1
2 cos x - 1

4 cos 2x + C

-  
3
82 et>319 cos 3t - sin 3t2 + C

1
4 [ln1t22]2 + C-x cot x - 1

2 x2 + ln ƒ sin x ƒ + C

cosh x + C- ln ƒ ln ƒ cos x ƒ ƒ + C

123
 ln `Ay2 +

2
3

+ y ` + C
122

 sin-1ax - 1
3
b + C

et + 2 ln ƒ et - 2 ƒ + C1
2 ln ƒ y2 - 4y + 2 ƒ + C

1
3 y3 - 1

2 y2 + 2y - 2 ln ƒ 1 + y ƒ + Ce - 1

ynxn

ynxn

ynxn

 yn = yn - 1 +
h

2
 [f1xn - 1, yn - 12 + f1xn, yN n2]

 yN n = yn - 1 + h # f1xn - 1, yn - 12
 xn = xn - 1 + h

¢y

¢x
=

1
2

 [f1x0, y02 + f1x1, yN12]
y1x102 L 0.269097

y1x22 L 0.00099998y1x12 L 0

812



43. (a)

(b)

(c)

(d)

(e)

(f)

45.

47. 49. 51.

53.

55. (a)

(b)

57.

59. 61. 63. y = -ex + Ce2xy = 1 + 2e-x2
y = Cx-1

G¿ ¿(x) = -2x  sin x + 2cos xG¿(x) = 2x  cos x,

1
4

 ln ` 1 + 2x

1 - 2x
` + C

sin x
2

 2sin2 x + 4 + 2 ln ƒ sin x + 2sin2 x + 4 ƒ + C

lna223 + 3
3

b
ln 7 - 6

74p[2 - ln 3 - 1
21ln 322]2p ln 32

25

25 + 4 lna 1 + 25
2

b

Ax + B

2x2 + x + 10
+

Cx + D

12x2 + x + 1022 +
Ex + F

12x2 + x + 1023

+
Ex + F

x2 + 2x + 10
+

Gx + H

1x2 + 2x + 1022

A

x + 3
+

B

1x + 322 +
C

1x + 323 +
D

1x + 324

+
Ex + F

x2 - x + 10
+

Gx + H

1x2 - x + 1022

A

1 - x
+

B

11 - x22 +
C

1 + x
+

D

11 + x22

Ax + B

x2 + x + 10
+

Cx + D

1x2 + x + 1022

A

x - 1
+

B

1x - 122 +
C

2 - x
+

D

12 - x22 +
E

12 - x23

A

2x + 1
+

B

12x + 122 +
C

12x + 123

Answers to Odd-Numbered Problems A-37

Chapter 8 Review and Preview Problems

1. 3. 6 5. 2 7. 1 9. 0 11. 13.

15. lim
x: q

xe-x = 0.

p

2
q5

3

2 4 6 8 10

0.2

0.4

0.6

y

x

17. lim
x: q

x3e-x = 0.

2 4 6 8 10

0.5

1.0

1.5

y

x

19. lim
x: q

x10e-x = 0.

5 10 15 20 25

200,000

400,000

600,000

y

x

1

−1

y

x−1 1−0.5 0.5

0.1

−0.1

y

x−0.1 −0.05

−0.005

0.10.05

0.01

−0.01

y

x−0.01 0.010.005

21. a 1 2 4 8 16

0.632 0.865 0.982 0.99966

23. a 1 2 4 8 16

0.3466 0.8047 1.4166 2.0872 2.7745

25. a 2 4 8 16

0.5 0.75 0.875 0.9375

27. a 1 1/2 1/4 1/8 1/16

2 2.58579 3 3.29289 3.5

Problem Set 8.1
1. 1 3. 5. 7. 9. 0

11. 13. 15. 17. 19.

21. 23. 1
27. (a) (b)

29. 31. 35. 37. 21
244pb2c = 1

1
2

3
4;

- q
-  

1
24- q-  

1
4-  

2
7-  

3
2

- q-  
2
7-1

4 - 21a

1 -
1
a

ln A21 + a2 B

0.9999998871 - e-a

39. The ratio of the slopes is 1/2, indicating that the limit 
of the ratio should be about 1/2.

41. The ratio of the slopes is indicating that the
limit of the ratio should be about -1.

-1>1 =  -1,

1

−1

y

x−1 1−0.5 0.5

0.1

−0.1

y

x−0.1 0.10.05

0.01

−0.01

y

x−0.01 0.010.005

813



A-38 Answers to Odd-Numbered Problems

43. As As 
Maximum value at x = e.e1>e

x : q , y : 1.x : 0+, y : 0.

55. (a) (b) (c)
57. (a) (b)

Chapter Review 8.5
Concepts Test
1. True 3. False 5. False 7. True 9. True
11. False 13. True 15. True 17. False 19. True
21. True 23. True 25. False

Sample Test Problems
1. 4 3. 0 5. 2 7. 0 9. 0 11. 1 13. 0
15. 0 17. 1 19. 1 21. 23. Diverges

25. 27. Diverges 29. 31. 6
33. Diverges 35. 37. 0
39. Converges: diverges:
41. Converges 43. Diverges

p … 1p 7 1;

p

4

1
ln 21 - p

4

1
2 e2

p
p

2 ;
s2 = a>b2m = a>b;C = ba>≠1a2;Problem Set 8.2

1. 0 3. 0 5. 3 7. 0 9. 11. 0 13. 1
15. 1 17. 0 19. 21. 1 23. 1 25. 0
27. 1 29. 0 31. 33. 1
35. Limit does not exist. 37. 0 39. 1
41. (a) 1; (b) 1; (c) ln a; (d) q

q
e4

q

Chapter 9 Review and Preview Problems
1. Original: If then (AT)
Converse: If then 
Contrapositive: If then (AT)
3. Original: f differentiable at continuous at c (AT)
Converse: f continuous at differentiable at c
Contrapositive: f discontinuous at non-differentiable 
at c (AT)
5. Original: f right continuous at continuous at c
Converse: f continuous at right continuous at c (AT)
Contrapositive: f discontinuous at not right 
continuous at c
7. Original: (AT)
Converse:
Contrapositive: (AT)

9. 11. 13. 15. 0 17. diverges

19. converges 21. diverges

Problem Set 9.1
1. 3. 4 5. 1 7. Diverges 9. 0 11. Diverges

13. 0 15. 2 17. 0 19. e 21.

23. diverges 25.

27. 29. diverges 31.

33. 35. 37. 2.3028 39.

41. 1.1118 43. 51. No 53.
55. 57. 59.

Problem Set 9.2
1. 3. 5. Diverges 7. 9. Diverges

11. 13. 3 15. 17. 19.

21. 1 25. 500 ft 27. $4 billion 29. 31. No

33. (a) Perimeter is infinite. (b)

35. 37. 39. Pr1X = n2 = a5
6
bn - 1a1

6
b3

5
111 

1
9 yd

A =
8
5

 a8123
4
b

4
5;1

4

1
2

13
999

2
9

e2

p1p - e2

-131
6

1
6

e-1e-2e1>2
p

223
1 - cos 1

1
2 A1 + 213 B1, 32, 74, 15

8
3
4, 23, 58, 35

1
2, 54, 98, 13

16an =
2n

n2;an = n sin 
1
n

; 1

an =
n

2n - 1
; 

1
2

an = 1-12n 
n

2n - 1
;

an =
n

n + 1
; 1

1
3

1
2

25
12

7
4

f¿1x2 Z 2x Q f1x2 Z x2
f¿1x2 = 2x Q f1x2 = x2

f1x2 = x2 Q f¿1x2 = 2x

c Q f
c Q f

c Q f

c Q f
c Q f

c Q f
x … 0.x2 … 0,

x 7 0.x2 7 0,
x2 7 0.x 7 0,

2.0

1.5

1.0

0.5

10080604020

y

x

45.
47. (a) 3.162; (b) 4.163; (c) 4.562
49. No absolute minimum; absolute maximum at 

Problem Set 8.3
1. Diverges 3. 5. Diverges 7. 100,000
9. Diverges 11. Diverges 13. 15.
17. Diverges 19. 21. 23. 25.
29. $1,250,000

31. (b) (c)

35. (a) and (b)

(c) of one percent earn over $100,000.

41.

43.

Problem Set 8.4

1. 3. 5. 7. Diverges 9.

11. 13. Diverges 15. Diverges

17. Diverges 19. Diverges 21. Diverges

23. Diverges 25. Diverges 27. 29. Diverges

31. 35. 0 37. Diverges 41. 6
43. (a) 3 45. No 49. Converges

ln A2 + 23 B
222

1
2122>3 - 102>32

21
2

p

2227
323 2

 L
4

-4
 

122p
 exp 1-0.5x22 dx L 0.9999

 L
3

-3
 

122p
 exp 1-0.5x22 dx L 0.9973; 

 L
2

-2
 

122p
 exp 1-0.5x22 dx L 0.9545; 

 L
1

-1
 

122p
 exp 1-0.5x22 dx L 0.6827; 

 L
100

1
 

1

x0.99 dx L 4.71

 L
100

1
 

1

x1.01 dx L 4.50; L
100

1
 
1
x

 dx = ln 100 L 4.61; 

 L
100

1
 
1

x2 dx = 0.99; L
100

1
 

1

x1.1 dx L 3.69

6�25

s2 =
4 * 108

3
M =

4 * 104

3
;C = 3

1
5

m =
a + b

2
; s2 =

1b - a22
12

;

1
2 ln 31

2p
p

3

-  
1
4

1
21ln 2 + 12

1
e

x L 25

1/1k + 12

814



Answers to Odd-Numbered Problems A-39

43. (b) Indefinitely
47. (a) 2; (b) 1

49. (a) (b)

51. 1

Problem Set 9.3
1. Diverges 3. Diverges 5. Diverges 7. Diverges
9. Converges 11. Converges 13. Diverges
15. Diverges 17. Diverges 19. Converges
21. Converges 23. 0.0404 25. 0.1974 27.
29. 31. 33.
39. 272,404,866

Problem Set 9.4
1. Diverges 3. Converges 5. Converges
7. Diverges 9. Converges 11. Diverges; nth-Term Test
13. Converges; Limit Comparison Test
15. Converges; Ratio Test
17. Converges; Limit Comparison Test
19. Converges; Limit Comparison Test
21. Converges; Limit Comparison Test
23. Converges; Ratio Test
25. Converges; Integral Test
27. Diverges; nth Term Test
29. Converges; Comparison Test
31. Converges; Ratio Test
33. Converges; Ratio Test
43. (a) Diverges; (b) Converges; (c) Converges;
(d) Converges; (e) Diverges (f) Converges
45. Converges for diverges for 

Problem Set 9.5
1. 3.
5. 13. Conditionally convergent
15. Divergent 17. Conditionally convergent
19. Absolutely convergent 21. Conditionally convergent
23. Conditionally convergent 25. Absolutely convergent
27. Conditionally convergent 29. Divergent
35. (a) (b)
45. ln 2

Problem Set 9.6
1. All x 3. 5.
7. 9. 11. All x
13. 15. 17.
19. 21. All x 23.
25. 27.

29. If then will not converge.

31. 33.

35. (a) (b)

37.

Problem Set 9.7
1.
3.

5.
1
2

+
3x

4
+

9x2

8
+

27x3

16
+ Á ; 

2
3

1 + 3x + 6x2 + 10x3 + Á ; 1
1 - x + x2 - x3 + x4 - x5 + Á ; 1

S1x2 =
a0 + a1x + a2x

2

1 - x3 , ƒ x ƒ 6 1

-1
2 6 x … 7

2-1 … x 6 1
3;

1
4 - x

; 2 6 x 6 422

a  

x0
n

n!
lim

n: q
 

x0
n

n!
Z 0,

-6 … x … -4-3 6 x 6 1
0 … x 6 2-2 6 x 6 2

-1 … x … 1-1 6 x … 1-1 6 x 6 1
-1 … x … 11 6 x … 3

-1 … x … 1-1 … x … 1

1 + 1
3 - 1

2 L 0.8331 + 1
3 L 1.33;

ƒ S - S9 ƒ … 0.230
ƒ S - S9 ƒ … 0.417ƒ S - S9 ƒ … 0.065

p … 1.p 7 1,

p 7 1n 7 50n 7 5000
n 7 5000

8
3 mg

Cekt

ekt - 1
;

7.

9.

11.

13.

15.

17.

19.

21.

23.

25. (a) (b) (c)

27.

29. (a) (b)

31. 33. 35. 3.14159

Problem Set 9.8

1. 3.

5. 7.

9. 11.

13. 15.

17.

19.

21.

23.

27. 29. 0.9045

31.
33. (a) 25; (b) (c) 0; (d) 4e; (e)

35. 41.

43. 45.

47.

Problem Set 9.9
1. 1.2712 3. 0.2377

5. 0.1133 7. 0.1194x - 1
3 x3;x - 1

2 x2 + 1
3 x3 - 1

4 x4;

2x - 4
3 x3;1 + 2x + 2x2 + 4

3 x3 + 2
3 x4;

x + x2 +
x3

3
-

x5

30

x +
x2

2
-

5x4

24
-

23x5

120
-2 + x - x2 -

5x3

6

x -
x3

6
+

x5

120
-

x7

5040
x -

x3

3
+

2x5

15

-4-3;
1 - 1x - 12 + 1x - 122 - 1x - 123 + Á
x +

x3

6
+

3x5

40
+

5x7

112

3 + 51x - 12 + 41x - 122 + 1x - 123
1
2

-
23
2

 ax -
p

3
b -

1
4

 ax -
p

3
b2

+
23
12

 ax -
p

3
b3

e + e1x - 12 +
e

2
 1x - 122 +

e

6
 1x - 123

1 +
3x

2
+

3x2

8
-

x3

16
+

3x4

128
-

3x5

256

2x -
x3

6
+

61x5

120
x3 -

x5

2

1 - x + x3 - x41 + x +
3x2

2
+

3x3

2
+

37x4

24
+

37x5

24

1 + 3x +
x2

2
+

x4

24
+

x5

60
x -

x2

2
-

x3

6
+

3x5

40

x + x2 +
x3

3
-

x5

30
x +

x3

3
+

2x5

15

x

1 - x - x2

x

2
+

3x2

4
+

7x3

8
+ Á

1 + x + x2 +
5x3

6
+ Áx +

x2

2
-

x3

6
- Á ;

x

11 - x22, -1 6 x 6 1

- ln11 - 2x2ex - 11 + x2
x2 ;

x

1 + x
;

x +
x3

6
-

x4

12
+

3x5

40
- Á

x +
2x3

3
+

13x5

15
-

29x7

105
+ Á

x - x2 +
x3

6
+

x4

6
+

3x5

40
+ Á

1 +
x2

2
+

x3

3
+

3x4

8
+

11x5

30
+ Á

2 +
2x2

2!
+

2x4

4!
+

2x6

6!
+ Á

1 - x +
x2

2!
-

x3

3!
+

x4

4!
-

x5

5!
+ Á

2x +
2x3

3
+

2x5

5
+ Á ; 1

x2

2
-

x3

6
+

x4

12
-

x5

20
+ Á ; 1

x2 + x6 + x10 + x14 + Á ; 1
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A-40 Answers to Odd-Numbered Problems

9.

11.

13.

15.

17.
(a) 1.1111; (b) 1.9375; (c) 4.0951; (d) 31

f1x2 L 1 + x + x2 + x3 + x4

7 + 21x - 12 + 1x - 122 + 1x - 123
p

4 - 1
21x - 12 + 1

41x - 122 - 1
121x - 123

23
3

+
4
3

 ax -
p

6
b +

423
9

 ax -
p

6
b2

+
8
9

 ax -
p

6
b3

e + e1x - 12 + e
21x - 122 + e

61x - 123
29. 31. 33. 35.

37.

39.

41. 2 43.

45.

47.

49. 0.1224; 51.

53.

55. (c)
n n n

r (exact) (approx.) (rule 72)

0.05 13.892 13.889 14.4
0.10 6.960 6.959 7.2
0.15 4.650 4.649 4.8
0.20 3.495 3.494 3.6

57.
59. 0.681998;

Chapter Review 9.10
Concepts Test
1. False 3. True 5. False 7. False 9. True
11. True 13. False 15. True 17. False 19. True
21. True 23. True 25. True 27. True 29. True
31. True 33. False 35. True 37. True 39. True
41. True

Sample Test Problems

1. 3 3. 5. 1 7. 0 9. 1 11. Diverges

13. 15. 17. cos 2 19. Diverges

21. Converges 23. Converges 25. Diverges
27. Converges 29. Diverges 31. Converges
33. Conditionally convergent 35. Diverges
37. 39. 41.
43.

45. all x

47. all x 49.

51. (a) (b) (c)

(d) (e) (f)

53. 0.2
55.

57.

59.

61. -0.00269867; Error 6 1.63 * 10-5

sin2 x L x2 -
1
3

 x4; ƒ R41x2 ƒ 6 2.85 * 10-6

+
1

32
 1x - 124

f1x2 L
1
2

-
1
4

 1x - 12 +
1
8

 1x - 122 -
1

16
 1x - 123

P41x2 = 3 + 91x - 22 + 41x - 222 + 1x - 223
P1x2 = x;

1 - x + x2x - x2 +
x3

3
x +

x3

2
+

5x5

4!

x2

2!
-

x3

3!
+

x4

4!
1 +

1
2

 x2 -
1
8

 x41 + x3 + x6

n 7 31 + x -
x2

2!
-

x3

3!
+

x4

4!
+

x5

5!
- Á ;

x2 -
x4

3
+

2x6

45
-

x8

315
+ Á ;

1 - 2x + 3x2 - 4x3 + Á ; -1 6 x 6 1
1 6 x 6 53 6 x … 5-1 … x … 1

91
99

e2

e2 - 1

e4

ƒ R3 ƒ … 6.19 * 10-8

-1 - 1x - 122 + 1x - 123 + 1x - 124

A =
1
2

 tr2 -
1
2

 r2 sin t; A L
1

12
 r2t3

n 7 42ƒ Error ƒ … 0.00013025

1 - 1
2 x + 3

8 x2 - 5
16 x3; ƒ R31x2 ƒ … 2.15 * 10-6

1 +
x

2
-

x2

8
+

x3

16
; ƒ R31x2 ƒ … 0.0276

n Ú 9R61x2 =
-1x - 127

c8 ;

R61x2 = -
cos c
5040

 ax -
p

4
b7

; 2.685 * 10-8

R61x2 =
x7

712 + c27; 8.719 * 10-6

17
10 ln 2

e4

3
222pe6 + 1

π/4 π/2

−2

−1

1

y

x

y = f (x)

P1(x)

P2(x) = P3(x)

P4(x)

π/4 π/2

−1

1

2

y

x

y = f (x)

P1(x)

P2(x) = P3(x) = P4(x)

−2 −1 1 2

−1

1

2

y

x

y = f (x)

P1(x)

P2(x) = P3(x)

P4(x)

19.

21.

23.

y

x

1

2

−1 y = f (x)

P1(x)

P3(x)

P4(x)

P2(x)

π/4

π/2

π/4 π/2 π

−1

1

y

x

y = f (x)

P1(x)

P3(x)

P4(x)

P2(x)

25.

27.
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Answers to Odd-Numbered Problems A-41

19.

y = 1
2 x - 9

2

y = -2x - 2; 

Chapter 10 Review and Preview Problems
1. (a) (b)
3. (2.4, 2.4),

5.

7.

9. 11.

Problem Set 10.1
1. Focus at (1, 0):
directrix x = -1

x = y = 422r = 5; u = sin-110.62
T1: 423x + 15y = 8023; T2: 523x - 4y = 923; a = 90°

A5, 423 B , A -5, 423 B , A5, -423 B , A -5, -423 B ; 
y = 223x + 4

1-2.4, 2.42, 12.4, -2.42, 1-2.4, -2.42
y = -x + 3y = x - 1

3. Focus at 
directrix y = 3

10, -32;

5. Focus at 

directrix x = -  
1
4

A14, 0 B ; 7. Focus at 

directrix y = -  
3
4

A0, 34 B ;

9. 11. 13. y2 = -16xx2 = -8yy2 = 8x

15. 17. x2 = -  
36
5  yy2 = 1

3 x

21.

y = -  
1
4 x + 9

y = 4x - 8; 

23.

y = -  
225

5
 x -

2125
5

y =
25
2

 x -
325

2
 ; 25.

y =
22
2

 x - 6

y = -22x + 3; 

5

−5

8−2

F

y

x

6

−14

10−10

y

x
F

2

−2

3−1 F

y

x

4

−2

3−3

F

y

x

3

−3

4

(3, −1)

−2

y

x

4

−16

10−10

y

x

(6, −5)

10

−10

10−10

y

x

16

−4
10−10

y

x

10

−10

10−10

y

x

10

−10

10−10

y

x

5

−5

8−2

y

x

5

−5

5−5

y

x

5

−5

5−5

y

x
AA′

F ′ F

5

−5

5−5

y

x

F ′

A′

A

F

5

A

F

−5

5−5

y

x
A

A′

F ′

10

−10

10−10

y

xA′F ′ FA

27. A4, 225 B

29. 35. 14.8 million mi 37. 2p

39. 41. y =
dx2

2H
L = 4p

y = 3
2 x - 3

43.

Problem Set 10.2
1. Horizontal ellipse 3. Vertical hyperbola
5. Vertical parabola (opens up) 7. Vertical ellipse

13. 15.

17. 19. 21.
x2

25
+

y2

225
21

= 1
x2

200
+

y2

225
= 1

x2

36
+

y2

27
= 1

9. 11.

817



A-42 Answers to Odd-Numbered Problems

23. 25. 27.

29. 31. 33.

35. 37.

39. 41. 43. 8.66 ft 45.

47. 0.58 AU 49. 0.05175 51.

53. 55.

57.

59. by 61. A6, 523 Bb22a22

pb2

3a2  C 1a2 + b223>2 - 3a22a2 + b2 + 2a3 D
pab1-7, 32, 17, -32

A -23, 32 B , A23, 32 B
2b2

a
y = 135x + 12y = 169

x - 26y = 9x + 26y = 9

x2

36
-

y2

13
= 1

x2

88
+

y2

169
= 1

y2

5
-

x2

20
= 1

x2

16
+

y2

12
= 1

x2

64
-

y2

16
= 1

y2

16
-

x2

9
= 1

Problem Set 10.3
1. Circle 3. Ellipse 5. Point 7. Parabola
9. Empty set 11. Intersecting lines 13. Line

43. 45.
u2

112
9

+
v2

16
= 1

u2

4
+

v2

12
= 1

F Common focus of parabola
and ellipse

F ′

Elliptical mirror

Other focus
of ellipse

Parabolic
mirror

69. 73.
x2

a2 +
y2

b2 = 1A217
3 , 5 B

2
1.5

1
0.5

−0.5
−2 −1.5 −1 −0.5 0.5 1 1.5 2

−1
−1.5

−2

3

−7

2−8

y

x 2−8

−7

3
y

x

−5

3−7

5
y

x

6

−4

5−5

y

x

19. 21.

3

−7

6−4

y

x

12

−8

8

y

x−12

8

−2
3

y

x−7

27.

29. Focus at directrix 31.

33. 35.

37. 39.

41.
x2

8
+
1y - 222

4
= 1

1y - 522 = -161x - 621y - 322
9

-
x2

16
= 1

1x - 222 = 81y - 321x - 522
25

+
1y - 122

16
= 1

1-2, 22, 14, -22x = -  
29
20A21

20, 1 B ;

5

−5

5−5

y

x

u
v

63.

77.

23. 25.

15. 17.

5

−5

5−5

y

x

u
v

47. 49.
v2

4
-

u2

36
= 1

1u - 222
4

-
v2

3
= 1

51.
1u + 222

2
+
1v + 322

4
= 1

6

−4

6−4

y

x

uv

10

−10

10−10

y

x

u

v

3

−7

5−5

y

x

uv

818



Answers to Odd-Numbered Problems A-43

53. (a) (b)

(c)

55. If the conic is a vertical ellipse. If the
conic is a circle. If the conic is a horizontal ellipse.
If the conic is a horizontal parabola. If the conic
is a horizontal hyperbola.
59.

61.

67. (a) (b) (c) or 
(d) B = ;2

B 7 2;B 6 -2B = 0;-2 6 B 6 2;

A -  
1
5, -  

7
5 B , A15, 75 B

u = x cos u + y sin u, v = -x sin u + y cos u

K 7 0,K = 0,
-1 6 K 6 0,

K = -1,K 6 -1,

Ax - 5
2 B2 + Ay - 5

2 B2 = 25
2

x = 1
4 y2 - y;y = x2 - x;

Problem Set 10.4
1. (a) (b) Simple; not closed

(c) y = 2
3 x

10

−10

10−10

y

x

16

−4

16−4

y

x

5

5

y

x

10

10

y

x

10

−10

20−20

y

x

5

8

y

x

5

−5

5−5

y

x

5

−5

5−5

y

x

10

10

y

x

11. (a) (b) Simple; not closed

(c)
x2

8
+

y2

18
= 1

15. (a) (b) Not simple; closed

(c)
x2

4
+

y2

9
= 1

17. (a) (b) Not simple; closed
(c) x + y = 9

1

−3

2−2

y

x

21. 23.

25.

27.

29.

 
d2y

dx2 =
13t5 + 7t4 - 6t3 + 10t2 - 9t + 3211 + t222

4t511 - t23

 
dy

dx
=
11 - 2t211 + t222

2t311 - t22 ; 

dy

dx
=

5
3

 sin t; 
d2y

dx2 =
5
9

 cos3 t

dy

dx
= cot t; 

d2y

dx2 = -csc3 t

dy

dx
=

325
4

 u; 
d2y

dx2 =
325
16u

dy

dx
= 2t; 

d2y

dx2 =
1
3t

9. (a) (b) Not simple; not closed
(c) x2 = y3 + 4y2

7. (a) (b) Simple; not closed

(c) y = 1
x

5. (a) (b) Simple; not closed

(c) y = 24 - x

3. (a) (b) Simple, not closed

(c) y = 1
31x + 12

13. (a) (b) Simple; closed

(c)
x2

4
+

y2

9
= 1

19. (a) (b) Not simple; not closed
(c) y = -8x211 - x22
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A-44 Answers to Odd-Numbered Problems

33. y +
223

= -2ax -
423
b

35. 37. 39.

41. 43. 45.

47. (a) (b)
(c) The curve in part (a) goes around the unit circle once.
The curve in part (b) goes around the unit circle three times.

49. 51. 53. 55. -  
44
3

2p
3 A29229 - 1 B4p24p2

6p;2p;

1
2 ln 239

16

7132713 - 2272227
243

1622 - 81
27 A31231 - 8 B3213

61.

65. L =
16a

3

 y = 1a - b2 sin t - b sinaa - b

a
 tb

 x = 1a - b2 cos t + b cosaa - b

b
 tb , 

67. (a)

(b)

(c)

(d)

10
t = 2

−10

8−2

y

x

5

−5

5−5

y

x

t = − π
6

1

27−3

y

x

1

0.5

−1

10.5−0.5−1

−0.5

1

0.5

−1

10.5−0.5−1

−0.5

1

0.5

−1

10.5−0.5−1

−0.5

1

0.5

−1

10.5−0.5−1

−0.5

31. y - 8 = 31x - 42

57. 8 59.
16

−4

18π−2π

y

x

1

.5
.25

.75

−1

1.5 .75.25−.5 −.25−.75−1

−.5

−.75

−.25

−1 −0.5 0.5 1

−1

−0.5

0.5

1

−1 −0.5 0.5 1

−1

−0.5

0.5

1

1

.5
.25

.75

−1

1.5 .75.25−.5 −.25−.75−1

−.5

−.75

−.25

69. a, b, c

d, e, f

(c) (d) 0 … t … 2p0.25 … t … 2

71. (a) (b) 0 … t … 10 … t … 2

1

.5
.25

.75

−1

1.5 .75.25−.5 −.25−.75−1

−.5

−.75

−.25

1

.5
.25

.75

−1

1.5 .75.25−.5 −.25−.75−1

−.5

−.75

−.25

4

2

−4

42−2−4

−2

2

1

−2

321−1

−1

(b)

73. (a)
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Answers to Odd-Numbered Problems A-45

4

2

−4

42−2−4

−2

6

4

2

−6

642−2−6 −4

−4

−2

5

−5

5−5

y

x

5

1
2(1, π)

(4, 0)

(1, 4π)

(0, π)

1
3(4, π)

1
3(3, π)

11
7(3, π)

,
1
2

5
3( π)

5

1
2

(−1,− π)1
4(−2,− π)

1
3(−2, π)

7
6

(√3, π)

1
4(−2, π)

(1, −4π)

(3, 2π)
(−1, 1)

21

(a)

(b)

(d)

(c)

5

−5

5−5

y

x

5

−5

5−5

y

x

3

−3

3−3

y

x

(c)

(d)

75. Quadrant I for quadrant II for 
quadrant III for no t, quadrant IV for t 6 -1.

-1 6 t 6 0,t 7 0,

Problem Set 10.5
1.

3.

5.

(c)

(d)

7. (a) (0, 1); (b) (c)

(d)

9. (a) (b) (c) (d) (0, 0)A2, 54 p B ;A4, 56 p B ;A6, 16 p B ;
A0, -22 B

a22
2

, -  
26
2
b ;a -  

22
2

, -  
22
2
b ;

A22, -  
1
2 p B , A22, 32 p B , A -22, -  

3
2 p B , A -22, 12 p B

A22, -  
7
3 p B , A22, 53 p B , A -22, -  

4
3 p B , A -22, 23 p B

15. r = 2

17. 19. 21. y = 1x = -3x = 0

23. Circle 25. Line

5

−5

5−5

y

x

3

−7

y

5−5 x

(a)

(b) A1, -  
3
4 p B , A1, 54 p B , A -1, -  

7
4 p B , A -1, 94 p B

A1, -  
3
2 p B , A1, 52 p B , A -1, -  

1
2 p B , A -1, 32 p B

11. 13. r = -2 csc ur =
2

3 sin u - cos u

10

−10

10−10

y

x

5

−5

5−5

y

x

5

−5

5−5

y

x

27. Circle 29. Parabola; e = 1

31. Ellipse; 33. Parabola; e = 1e = 1
2

5

−5

5−5

y

x
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A-46 Answers to Odd-Numbered Problems

35. Hyperbola; e = 2

39. 2ed 41. 0.83 43. 25 million mi

45. e = 0.1

e = 0.5

e = 0.9

e = 1

e = 1.1

e = 1.3

Problem Set 10.6
1. 3.

10

−10

5−15

y

x

0.2

−0.2

−0.4

0.4

−0.2 0.2−0.4 x

y

1

−1

−2

2

−2−3−4 −1 1

y

x

2.5

5

−2.5

−5

−7.5

7.5

−10−15−20−25−30−35 −5 x

y

5

−5

−10

10

−10−20−30 x

y

30

20

10

−10

−20

10050−50

y

x

20

10

−10

40302010−20 −10

y

x

5

−5

5−5

y

x

5

−5

5−5

y

x

2

−2

3−1

y

x

5

−5

5−5

y

x

5

−5

2−8

1

−3

2−2

5. 7.

9. 11.

2

−4

3−3

3

−7

5−5

13. 15.

3

−3

3−3

5

−5

5−5

17. 19.
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Answers to Odd-Numbered Problems A-47

5

−5

6−4

5

−5

5−5

y

x

10

−10

10−10

5

−5

5−5

21. 23.

33. 35. 10, 02, a323
2

, 
p

3
bA6, p3 B , A6, 5p3 B

47.

10

−10

10−10

5

7

−5

−3

8

−2

5−5

25. 27.

29. 31.20

−180

160−40

−2

−2

2

2

37. A3, p6 B , A3, 5p6 B , A6, p2 B

49.

0.5

0.5−0.5−1

−0.5

1

−1

1

1−1
−1

1

2

2−2

−2

3

−3

3

4

2a

2a

a

a

5

−5

5−5

51. (a) The graph for is the graph for rotated by 
counterclockwise about the pole.
(b) As n increases, the number of “leaves” increases.
53. The spiral will unwind clockwise for The spiral will
unwind counterclockwise for 
55. (a) III; (b) IV; (c) I; (d) II; (e) VI; (f) V

c 7 0.
c 6 0.

ff Z 0f = 0

Problem Set 10.7
1. 3. 9

2 ppa2

5. 7. 3
2 pa227

2  p

2

−8

5−5

3a

2a

−2a

a

5

−5

5−5

y

x

2

−8

5−5

y

x

9. 9 11.
17
2

 p - 17 sin-1
 
3
4

-
927

2
43. (a) (b) (c)

(d) (e)

(f)

(g)

45. (a) VII (b) I (c) VIII (d) III (e) V (f) II
(g) VI (h) IV

r = -cos u + 2 sin u ; 21cos u - 2 sin u22 + 25;

r =
-2 sin u ; 24 sin2 u + 6 cos2 u

3 cos2 u
;

r =
2

sin u - 3 cos u
;r = ;  

122 sin 2u
;

r = ;  
12cos 2u

r = 6;r =
45

sin u
;
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A-48 Answers to Odd-Numbered Problems

7. Ellipse
Foci at 
Vertices at 1;5, 02

1;4, 02

5

−5

3−7

y

x

5

−5

5−5

y

x

13. 15. 4p17
2  p - 17

2  cos-1
 
2
3 + 325

17. 51p

23. (a) (b) (c) (d)

25. 27. 8a

29. if n is even. if n is odd.

31. (a)

33.

35. 1.26a 37. 4p; 26.73

a2 c1k2 - 12p + 12 - k22 cos-1ak

2
b +

k24 - k2

2
d

a2 tan-1
 
b
a + b2 Ap2 - tan-1

 
b
a B - ab

1
4 pa21

2 pa2

A -1, p2 B , A3, 3p2 B , A12, sin-1
 
1
4 B , A12, p - sin-1

 
1
4 B

-  
723

23
5

-1
123

;

Chapter Review 10.8

Concepts Test
1. False 3. False 5. True 7. True 9. False
11. True 13. False 15. True 17. True 19. False
21. False 23. False 25. False 27. False 29. True
31. False 33. True

Sample Test Problems
1. (a) (5); (b) (9); (c) (4); (d) (3); (e) (2); (f) (8);
(g) (8); (h) (1); (i) (7); (j) (6)

3. Ellipse

Foci at 
Vertices at 10, ;32

A0, ;25 B
5. Parabola
Focus at 

Vertex at (0, 0)

A0, -  
9
4 B

9. Parabola
Focus at (0, 0)

Vertex at A0, 54 B5

−5

5−5

y

x

10
y

10 x

3

2

1

−3

−2

−1
42−4 −2

y

x

5

−5

5−5

y

x

10

−10

10−10

y

x

5

−5

5−5

y

x

5

−5

5−5

y

x

19. 21. 922 - 27
4423 - 4

3 p

39. 63.46

11. 13. 15.

17.
1x - 122

25
+
1y - 222

16
= 1

x2

4
- y2 = 1y2 = -9x

x2

16
+

y2

12
= 1

19. Circle 21. Parabola

2

−8

8−2

y

x

y

x

4

−14

−16

6

23. hyperbola; 426r = 5
2; s = -  

1
2;

25. 27.
1x + 222

16
+
1y - 122

9
= 1y = 1

31x - 22

5

−5

5−5

y

x

5

−5

3−7

y

x

29. 31. 2722y = -  
1
21x - 72
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Answers to Odd-Numbered Problems A-49

45. 1x - 322 + 1y - 322 = 9

5

−5

5−5

5

−5

2−8

5

−5

5−5

y

x

5

−5

5−5

y

x

8

−2

8−2

y

x

5

−5

8−2

2

−2

2−2

y

x

47. 49. 51.

53. (a) I; (b) IV; (c) III; (d) II; (e) V

22
3

75
2  p-1

37. 39.

33. 35.

41. 43.

7.

9.

11. 13. (0.8, 2.6), distance is 
15. (a) (b) t 7 3v1t2 = 2t - 6; a1t2 = 2

20.8p ƒ a ƒ

1
243

 C 132823/2 - 8 D L 24.4129

y = h # sin u
 x = h # cos u

9

3

y

x

−3

−3

−3 3

y

x

−3

3

−3 3

y

x

−6

6

−6 6

y

x

−6

6

−6 6

y

x

−12

12

17.

3.

Chapter 11 Review and Preview Problems
1. 19.

5.
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A-50 Answers to Odd-Numbered Problems

−3 3

y

x

−3

3

−3 3

y

x

−1

5

Problem Set 11.1
1. E1-1, -2, -32A11, 2, 32, B12, 0, 12, C1-2, 4, 52, D10, 3, 02, 

z

y

x

D

C

B

E

A

23.

21.

3.

5. (a) (b) 5; (c) 21e + p22 + 1p + 422 + 3243;

x = 0; x = 0, y = 0

(2, 3, 4)

(2, 3, 0)

(6, 3, 4)

(6, 3, 0)

(2, –1, 4)

(6, –1, 0)

(6, –1, 4)

(2, –1, 0)

z

y

x

z

y

x

2

4

6

z

y

x

2

6

–6

11. (a)
(b)

(c)

13. 15. A12, -1, -2 B ; 217
216, -7, 42; 10

1x - p22 + 1y - e22 + Az - 22 B2 = p
1x + 222 + 1y + 322 + 1z + 622 = 5;
1x - 122 + 1y - 222 + 1z - 322 = 25;

17. 19.

9.

21. 23.
z

y

x

8
8
3

z

y

x

3

3

25. 27. 16.59 29. 72 31.
33. 7.2273 35. 34.8394

37.

39.
41. (a) Plane parallel to and 2 units above the xy-plane;
(b) Plane perpendicular to the xy-plane, whose trace in the 
xy-plane is the line 
(c) Union of the yz-plane and the xz-plane 
(d) Union of the three coordinate planes;
(e) Cylinder of radius 2, parallel to the z-axis;
(f) Top half of the sphere with center (0, 0, 0) and radius 3

43. Center (1, 2, 5), radius 4 45.
11p
12

1y = 02;1x = 02
x = y;

1x - 622 + 1y - 622 + 1z - 622 = 36

1x - 122 + 1y - 122 + Az - 11
2 B2 = 53

4

2p213226

Problem Set 11.2
1. 3.

u
v

w
u1

u3

u2

u2 + u3

w

5. 7. 1
9.

11.

13.

15.

17. 19. 150 N
21. N 2.08° E; 467 mi/h 23. 80 mi/h
33.

35.

Problem Set 11.3
1. (a) (b) (c) (d) 375;

(e) (f) 13 - 213-15213

-28;-13;-12i + 18j;

50>22 lbs.

a + b = 143.13°, b + g = 126.87°, a + g = 90°

7w 7 L 79.34; S 7.5°W
7v 7 = 5

u + v = 8-4, 0, 19; u - v = 86, 0, 19; 7u 7 = 22;

7v 7 = 5
u + v = 82, 4, 09; u - v = 8-4, -4, 09; 7u 7 = 1;

7v 7 = 222

u + v = 810, 149; u - v = 814, 109; 7u 7 = 1222;

u + v = 82, 49; u - v = 8-  4, -  49; 7u 7 = 1; 7v 7 = 5

1
2 u + 1

2 v

3. (a) (b) -  
125

-  
7

522

y

x3

3

–3

–3

a

b

u

y

xu ba 8

5

–2

–5

826



Answers to Odd-Numbered Problems A-51

(c) 0 (d) -  
5122665

5. (a) 1; (b) 4; (c) (d) 2;

(e) (f) 0
7.
9. (a)
(b)
(c)

15.

17. 19. 21. c is any number;

23. 0 25. 27. 29.

31. 33.

35. (a) u; (b)
37. 39.
41. infinitely many answers; one is 

43. a, b 51. 57. 37.86°

59. 100 joules 61. 94 ft-lb 63. 32 joules
65. 67.
69. 56.91°
71. (a) (b) 73.
75. 77. 0 81.
85. (4, 2, 3)
87. the opposite
of the original direction.

Problem Set 11.4
1. (a) (b) (c) 8;
(d)

3. 5.

7. 9. 11.
13. 15.
17. 19.
21. 23. 69

25. (a) 9: (b) (c) 40.01°

27. (c),(d) 35.

Problem Set 11.5
1. 3. 5. i 7. Does not exist
9. (a) (b)
(c) 5t H  �: -3 … t … 36

5t H  �: t … 2065t H  �: t … 36;
1
2 i - 4j2i - j

1
2 2a2b2 + a2c2 + b2c2

235:

-x + 10y + 17z = -3
x - 2y - 2z = 47x + 5y + 4z = -5

x - y + 2z = -115x + 35y + 21z = 105
2x - y - z = -34262274

;  h 7286
, -

1286
, 

6286
ic1-14i - 2j + 6k2, c in �

-98i - 59j + 88k
-6i - 36j - 27k;-4i - 10j - 4k;

ai + bj - ck; ai - bj - ck; -ai - bj - ck,

a = 5, b = -2, c = 537>256
7>2112x - 3y - 4z = -13z = 2;

x + 4y + 4z = 132x - 4y + 3z = -15

k =
2
3

, m = -
5
3

u = 81, 2, 09, v = 8-2, 1, -29
22323
u

80, 0, 19h 15
7

, 
10
7

, 
5
7
i

82, 0, -1980, 29h 11
5

, 
22
5
i

d = -2

;  226cos-1
 

112129

-  
102593

 i +
402593

 j -
2402593

 k

102593
 i -

402593
 j +

2402593
 k;

ac L 131.81°, bc L 48.19°, gc L 70.53°
ab L 54.74°, bb L 125.26°, gb L 54.74°
aa = 45°, ba = 45°, ga = 90°;

ua,b = 90°; ua,c = 90°; ub,c = 125.26°
23>6;

26
6

 i +
26
3

 j -
26
6

 k;

11. (a) (b)
(c)

13. (a)
(b)

15.

17.

19.

21.

23.

25.

27.

29.

33. 35. 144 37.

39.

41.
43.

45. (b)

47. (a) Winding upward around the right circular cylinder
as t increases.

(b) Same as part (a), but winding much faster by a factor of 
(c) With standard orientation of the axes, the motion is winding
to the right around the right circular cylinder 
(d) Spiraling upward, with increasing radius, along the spiral

(e) Spiraling upward, with decreasing radius, along the spiral 

(f) Spiraling to the right, with increasing radius along the spiral 

Problem Set 11.6
1.
3.

5.

7.

9. 11.

13. 15. x = 5t, y = -3t, z = 4
x - 4

1
=

y

-5
=

z - 6
2

x + 8
10

=
y

2
=

z + 21
2

9
x - 4

27
=

y + 5

-50
=

z

-6

x - 1
1

=
y - 1

10
=

z - 1
100

x = 1 + t, y = 1 + 10t, z = 1 + 100t; 

x = 4 + 3t, y = 5 + 2t, z = 6 + t; 
x - 4

3
=

y - 5

2
=

z - 6
1

x = 4 + t, y = 2, z = 3 - 2t
x = 1 + 3t, y = -2 + 7t, z = 3 + 3t

x = t2 sin1ln t2, z = t2 cos1ln t2.

x =
1

t2 sin t, y =
1

t2 cos t.

x = t sin t, y = t cos t.

x = sin t, z = cos t.

3t2.
x = sin t, y = cos t,

Rp = 10Rm; t = p

9

 7v1t2 7 = 30; a1t2 = -180 cos16t2i - 180 sin16t2j
 v1t2 = -30 sin16t2i + 30 cos16t2j;

 r1t2 = 5 cos16t2i + 5 sin16t2j;
1e - 12i + 11 - e-12j
-6t sin13t2 - 42i + 18te9t2 - 12j

241222

 s122 = 24p2 + 1 + e-4

 v122 = 2pi + j - e-2k; a122 = 2pi - 2p2j + e-2k;

 s Ap4 B = 24 + 9ep>2
 v Ap4 B = 2i + 3ep>4j; a Ap4 B = 4i + 3ep>4j + 16k;

v1p2 = -j + k; a1p2 = i, s1p2 = 22

 s122 = B16 +
24>3
9

 v122 = 4j +
22>3
3

 k; a122 = 4j -
1

923 2
 k;

 s122 =
28,294,737

36

 v122 = -1
4 i - 4

9 j + 80k; a122 = 1
4 i + 26

27 j + 160k;

v112 = 4i + 10j + 2k; a112 = 10j; s112 = 2230

-   
e-3t

2
 a 6t - 72t - 1

b i + e-3t a2
t

- 3 ln12t22b j

-  2e-2t -
4

t3 +
4

t3 
 ln t2

sin 2ti - 3 sin 3tj + 2tk; 2 cos 2ti - 9 cos 3tj + 2k
913t + 422i + 2tet2

j; 5413t + 42i + 212t2 + 12 et2
j;

5t H  �: -3 … t … 36
5t H  �: t 6 20, t2 not an integer65t H  �: t … 36;

y

x3

1

–3

–5

u

b

a

y

x10

10

–10

–10

u

b

a
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A-52 Answers to Odd-Numbered Problems

17. 19.
21. (b) (c) (d)

23. 25.

27. 29.

31. (a) (b)

Problem Set 11.7
1.

 T112 = h 125
, 

225
i ; k =

2

53>2

 v112 = 81, 29; a112 = 80, 29

3226
7

822
3

;

a5
2

, 1, 0ba -  
1
2

, 0, 
37

427
b

3x - 4y + 5z = -22
x - 1

-23
=

y - 323

3
=

z - p

3

1

261-1, 2, -12;2x + y - z = 7;
3x - 2y = 5x + y + 6z = 11

3.

 T1p2 = h 125
, 0, -

225
i ; k =

2
5

 v1p2 = 81, 0, -29; a1p2 = 80, 2, 09

5.

 T1p2 = h p2400 + p2
, 0, -

202400 + p2
i ; k L 0.195422

 v1p2 = hp
4

, 0, -5i ; a1p2 = h 1
4

, 5, 0i

7. 9.

11. 13. -  
122

 i +
122

 j; 
122

-  
2213

 i -
3213

 j; 
6

13213

-  
3
5

 i +
4
5

 j; 
2422

125
122

 i +
122

 j; 
1

422

4

1 2

1

2

3

y

x

0

4p

3p

2p

p

–2
–1

0
1

2

–2

–1

0

1

2

y x

z

0

7p
6p

5p
4p

3p
2p

p
–6–4–2 0 2

4 6

–4

–2

0

2

4

6

–6

y x

z

15. 17. k =
2

323
; R =

323
2

k =
4

17217
; R =

17217
4

−36 4

(1, 2)

y

x

−12

28

−1 5

y

x

−4

2 p

4
2
2

,

y

x20

28

(2, 6)

–20

–12

19. 21. k = 1
4; R = 4k = 2

25; R = 25
2

y

x2

4

–8

–6

p

6
1
2

,

23. 25. k =
3

5210
; R =

5210
3

k =
4

525
; R =

525
4

y

x3

7

–7

–3

p

4
, 1

y
4

(1, 1)

–12

–4 12 x

27.

29.

31.

33.

35. 37. (0, 1) 39.

41. 43. aT = -22, aN = 22aT =
12213

, aN =
18213

a -  
1
2

 ln 2, 
122
ba 122

, -  
ln 2

2
b

 N =
122

 i +
122

 j; B = -  
1
2

 i +
1
2

 j -
122

 k

 k =
1

222
; T = -  

1
2

 i +
1
2

 j +
122

 k;

 N = sech 
1
3 i - tanh 

1
3 j; B = -k

 k = 1
3 sech2

 
1
3; T = tanh 

1
3 i + sech 

1
3 j;

 B = h -  
2213

, 0, -  
3213
i

 k = 9
91; T = h -  

3213
, 0, 

2213
i ; N = 80, 1, 09;

 B =
4233

 i -
4233

 j -
1233

 k

 N = -  
5277

 i -
6277

 j +
4277

 k;

211

2127
; T =

2221
 i +

1221
 j +

4221
 k;
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Answers to Odd-Numbered Problems A-53

y
2

2 x–2

–2

45.

47.

49.

51. aT132 = 36A 3
55

; aN132 = 6A 2
55

aT102 = 0; aN102 = 22

aT112 =
4214

; aN112 = 2A5
7

aT =
40a

3241
, aN =

3a241

55. The speed is constant; the curvature is zero.
57. 59.

61. 72 ft/s 67. 71.

73. 75. 3
16

3

822

3
4P51x2 = 10x3 - 15x4 + 6x5

5T + 5N; - i - 7j1cos 52i - 1sin 52j + 7k

85. (6, 0, 8);

Problem Set 11.8
1. Elliptic cylinder 3. Plane

829p2 + 1

5. Circular cylinder 7. Ellipsoid

9. Elliptic paraboloid 11. Cylinder

13. Hyperbolic paraboloid 15. Elliptic paraboloid

17. Plane 19. Hemisphere

21. (a) Replacing x by results in an equivalent equation.
(b) Replacing x by and y by results in an equivalent
equation.
(c) Replacing x by by and z by results in an equiv-
alent equation.
23. All central ellipsoids are symmetric with respect to 
(a) the origin, (b) the x-axis, and the (c) xy-plane.
25. All central hyperboloids of two sheets are symmetric with
respect to (a) the origin, (b) the z-axis, and (c) the yz-plane.

27. 29.

31. 33.

35. Major diameter 4; minor diameter 
37.

Problem Set 11.9

1. Cylindrical to Spherical:

Spherical to Cylindrical:

3. (a) (b)

5. (a) (b) A4, 3p4 , p6 BA422, 5p3 , p4 B ;
A -2, -223, -8 BA323, 3, -2 B ;

r = r sin f, z = r cos f, u = u
u = u

r = 2r2 + z2, cos f =
z2r2 + z2

, 

x2 + 9y2 - 9z2 = 0
222

pab1c2 - h22 
c2A0, ;225, 4 B

4x2 + 3y2 + 4z2 = 12y = 2x2 + 2z2

-z-y,-x, y

-y-x
-x

3

4

2

1

–1

–2

–3

2–2–4

z

y

x

2
6

z

y

x

6

6

6

z

y

x

z

y

x

6

21

14

z

y

x

z

x

y

z

x

y

z

y

x

z

y

x

5
4

2

–5

z

y

x

4

4

4

53. (0, 0); (1, 0), 1-1, 02

79. max L 0.7606; min L 0.1248
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A-54 Answers to Odd-Numbered Problems

(d)
13. 1 15.
17.
19.

21. Tangent line:

Normal Plane:

23. 25. N 12.22°W; 409.27 mi/h

27. (a)

(b)
(c)

29. aT =
22214

; aN =
2219214

8sec2 t, -4t39; 82 sec2 t tan t, -12t29;
8cos t, -2 sin 2t9; 8-  sin t, -4 cos 2t9;
h 1

t
, -6ti ; h -  

1

t2, -6i ;

231e5 - e2
3x + 6y + 12z = 50

x - 2
1

=
y - 2

2
=

z - 8
3

4

r (t) = 82, -2, 19 + t85, -4, -39
x = 2t, y = 25 + t, z = 16

x = -2 + 8t, y = 1 + t, z = 5 - 8t

3x - 4y + z = -45

31. Sphere 33. Circular paraboloid

35. Plane 37. Ellipsoid

39. (a) (b) (c)

(d)
41. (a) (b) (Other forms are possible.);

(c) (d)

43. 1.25

r = cot f csc fr2 =
1

2 sin2 f cos2 u - 1
;

cos2 f = 1
2r = 2;

r2 + 4z2 = 10

r2 = 9z;r2 =
16

1 + 3 sin2 u
;r = 3;

z

y

x

5

5

z

y

x

p

3

z

y

x

3

z

y

x

3

3

3

z

y

x

3

3

3

17. 19. 21.

23. 25.

27. 29. 31.
33. 4029 mi 35. 4552 mi 37. 2252 mi
41. (a) 3485 mi; (b) 4552 mi; (c) 9331 mi; (d) 7798 mi;
(e) 12,441 mi

Chapter Review 11.10
Concepts Test
1. True 3. True 5. False 7. True 9. True
11. False 13. True 15. True 17. True 19. True
21. True 23. False 25. True 27. True 29. True
31. True 33. False 35. False 37. False 39. False
41. False 43. True 45. True 47. False 49. True
51. True 53. False 55. False 57. False

Sample Test Problems

1.
3. (a) (b) (c) (d) (e)
(f) 30
5. (a) (b) (c) (d) does not exist;

(e) (f) 7217;

-14;-9;2i + j + 4k;

-36-234-15-384, -179
1x - 122 + 1y - 222 + 1z - 422 = 11

z = 2r2x2 - y2 = zr sin f = 3

r =
4

sin u + cos u
r2 =

4

1 + cos2 f

cos2 f = 1
3r2 + 4z2 = 10r = 3

z

y

x
b

a

(a) (b)

(c) (d)

9. c in 
11. (a) (b) (c) z = -2;x = -5;y = 7;

�c810, -11, -39,
cos-1

 
1235

2
3 i - 1

3 j + 2
3 k;

2
3

, -  
1
3

, 
2
3

; 
5235

, 
1235

, -  
3235

;3; 235;

z

y

x

9

9

9

z

y

x

z

y

x

4
4

−2

z

y

x

2

3

2�3

7. 9.

15.

11. 13.

7.

Chapter 12 Review and Preview Problems
1. 3. z = x2 + 4y2x2 + y2 + z2 = 64

0

−8

0

8

0

8

−8

x

y

z

8

−3

0

3 −3

0

3

0
10
20
30
40

z

x

y

5. (a) (b) (c) (d)
7. (a) 2 cos 2a; (b) 17 cos 17a; (c) t cos ta; (d) s cos sa
9. Continuous and differentiable at 
11. Continuous at not differentiable at x = 4x = 4;

x = 2

3ax23kx2;15x2;6x2;

830



Answers to Odd-Numbered Problems A-55

13. maximum value of f on [0, 4] is 5; minimum value is 

15.

Problem Set 12.1
1. (a) 5; (b) 0; (c) 6; (d) (e)
(f) is not in the domain of f. Domain is set of all (x, y)
such that 
3. (a) 0; (b) 2; (c) 16; (d)
5. t2

-4.2469;
y 7 0.

12, -42
2x2;a6 + a2;

S1r2 = 2pr2 +
16
r

-15

1 21
2

1
2

z

y

x

1 21
2

1
2

z

y

x

1 21
2

1
2

z

y

x

z

y

x

−2
−1

0
1

2
−2

−1
0

1
2

0

1
z

x

y

−5 5

−5

5

y

x

2
4

6
8

y

x

1

4

−4

−1

−2 −1 1 2

−1

1

y

x

y

x

0

2
1

5
1

10
1

10
1

2
1

5
1

−2

−2

−1
−1

0
0

y
x

1

1

0.5

0

1

2

2

1

0

−1

−2
−2 −1 0 1 2

−2

−2

−1
−1

0
0

y
x

1

1

0.5

0

1

2

11. 13.

15.

17.

25. (a) San Francisco (b) northwest: southeast
(c) southwest or northeast
27. The set of all points on and outside the sphere 

29. The set of all points on and inside the ellipsoid 

31. All points in except the origin (0, 0, 0).
33. The set of all spheres with centers at the origin.
35. A set of hyperboloids of revolution about the z-axis when

When the level surface is an elliptic cone.
37. A set of hyperbolic cylinders parallel to the z-axis when

When the level surface is a pair of planes.
39. (a) All points in except the origin (0, 0, 0, 0).
(b) All points in 
(c) All points in that satisfy 
41. (a) gentle climb, steep climb; (b) 6490 ft, 3060 ft

x1 

2 + x2 

2 + Á + xn 

2 … 1.�n
�n.

�4
k = 0,k Z 0.

k Z 0,k = 0.

�3

x2>9 + y2>16 + z2>1 = 1.

x2 + y2 + z2 = 16.

43.

45.

23.

7. 9.

21.

19.
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A-56 Answers to Odd-Numbered Problems

Problem Set 12.2
1.

3.
5.

7.
9.

11.

13.

15.

17.

19.

21.

23.
25. 1 27. 3 29. 31. k/100
33.
35.
37. (a) (b) (c)
39. (a) (b) 8; (c)
41. 43. (1, 0, 29)

45.

47. (a) (b) (c) (d)

49. (a)

(b)

(c)

(d)

(e)

Problem Set 12.3

1. 3. 5. 7. 1;

9. Does not exist; 11. 0 13. 0 15. 0
17. Entire plane 19.
21. 23. 51x, y2: y … x + 1651x, y2: y Z x26

51x, y2: x2 + y2 6 16
-  

5
2

;2 - 1
2 23-18

= lim
¢b2 :0

aS1b0, b1, b2 + ¢b2, Á , bn2 - S1b0, b1, b2, Á , bn2
¢b2

b

0
0b2

 S1b0, b1, b2, Á , bn2

0
0z

 l1x, y, z, t2 = lim
¢z:0

 

l1x, y, z + ¢z, t2 - l1x, y, z, t2
¢z

Gx1w, x, y, z2 = lim
¢x:0

 

G1w, x + ¢x, y, z2 - G1w, x, y, z2
¢x

fz1x, y, z2 = lim
¢z:0

 

f1x, y, z + ¢z2 - f1x, y, z2
¢z

fy1x, y, z2 = lim
¢y:0

 

f1x, y + ¢y, z2 - f1x, y, z2
¢y

8
3

2
5;2

3;-4;

´ E1x, y2: x 7 1
2, y 6 1

2, x 6 y + 1
2 F , Ez: 0 6 z … 23>36F

E1x, y2: x 6 1
2, y 7 1

2, y 6 x + 1
2 F

-yze-xyz - y1xy - z22-1

6x - z6xy - yz;
04f>0y3 0x03f>0y 0x2;03f>0y3;

180x4y2 - 12x2

02f>0x2 = 6xy; 02f>0y2 = -6xy
120p

fx A25, -2 B = - 4
21; fy A25, -2 B = -425>21

Fx13, -22 = 1
9; Fy13, -22 = -1

2

fxy1x, y2 = -6e2x sin y = fyx1x, y2
fxy1x, y2 = 12xy2 - 15x2y4 = fyx1x, y2
Fx1x, y2 = 2 cos x cos y; Fy1x, y2 = -2 sin x sin y

 fy1x, y2 = -2y2 sin1x2 + y22 + cos1x2 + y22
 fx1x, y2 = -2xy sin1x2 + y22; 

 fy1x, y2 = -7>[1 + 14x - 7y22]
 fx1x, y2 = 4>[1 + 14x - 7y22]; 

gx1x, y2 = -ye-xy; gy1x, y2 = -xe-xy

fx1x, y2 = x1x2 - y22-1>2; fy1x, y2 = -y1x2 - y22-1>2
fx1x, y2 = ey cos x; fy1x, y2 = ey sin x
fx1x, y2 = 1x2 + y22>1x2y2; fy1x, y2 = -1x2 + y22>1xy22
fx1x, y2 = 812x - y23; fy1x, y2 = -412x - y23

25. All (x, y, z), except (0, 0, 0).
27. The boundary consists of the line segments that form the
outer edges of the given rectangle; the set is closed.
29. Boundary: the set is 
neither open nor closed.
31. Boundary:

the set is open.
33.
35.

37. (a)

(b)

(c) does not exist.

39. (a)

(b) (c)
(d) empty set.
41. (a)
(b) 51u, v, x, y2: 8x, y9 = k8u, v9, k 7 0, 8u, v9 Z 80, 096

51x, y2: x 7 0, y = 06;
51x, y, z2: z = 16;51x, y, z2: x2 + y2 = 1, z = 16;

51x, y, z2: x2 + y2 = 1, 1 … z … 26;
lim1x, y2:10, 02 f1x, y2

lim
x:0

 f1x, x22 = lim
x:0

 x4>1x4 + x42 = 1
2;

= lim
x:0

 mx>1x2 + m22 = 0;

lim
x:0

 f1x, mx2 = lim
x:0

 mx3>1x4 + m2x22
 lim
x:0

 f1x, x2 = lim
x:0

[x2>1x2 + x22] = 1
2

 lim
x:0

 f1x, 02 = lim
x:0

[0>1x2 + 02] = 0; 
g1x2 = 2x

y … 16;
51x, y2: y = sin11>x2, x 7 06 ´ 51x, y2: x = 0, 

51x, y2: x2 + y2 = 16 ´ 510, 026;

45.

−2
−1

−0.5

−2

−1
−10

0

y

x

1

1
0.5

0 1

2

2

43.

Problem Set 12.4
1. 3.
5.

7.
9.
11.
13.
15. 19. (1, 2)
21. (a)
(b)
(c)

23. 25. c = 81, 129z = -5x + 5y

x = 2 - t, y = 1 - t, z = 9 - 22t
x = 2, y = 1 + 10t, z = 9 + 10t

x = 2 + t, y = 1, z = 9 + 12t
w = 7x - 8y - 2z + 3
80, -2p9, z = -2py + p - 1
8-21, 169, z = -21x + 16y - 60

xex - z[1yx + 2y2i + xj - xyk]
1x2 + y2 + z22-1>21xi + yj + zk2
1x + y2-2[1x2y + 2xy22i + x3j]

exy11 + xy2i + x2exyj12xy + 3y2i + 1x2 + 3x2j

2

1

0

−1

−2
−2 −1 0 1 2

−2
−1

−0.5

−2

−1 −1
0

0

y

x

1

1
0.5

0 1

2

2
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Answers to Odd-Numbered Problems A-57

5. 7.
9. 0.08; 0.08017992 11.
13.
15. is normal to both surfaces at 
17. and 
19. 21. 0.004375 lb
23. 7% 25. 27.
29. (a) 4.98; (b) 4.98196; (c) 4.9819675

Problem Set 12.8
1. (2, 0); local minimum point.

3. (0, 0); saddle point; local minimum points.
5. (0, 0); saddle point.
7. (1, 2); local minimum point. 9. No critical points.
11. Global maximum of 7 at (1, 1); global minimum of 
at 
13. Global maximum of 2 at global minimum of 0 
at 
15. Each of the three numbers is N/3. 17. A cube.

19. Base 8 ft by 8 ft; depth 4 ft. 21.
23. (0.393, 0.786, 0.772); 1.56
25. Width of turned-up sides is base angle 
27. (a) maximum value of 8 occurs at 
(b) minimum value of occurs at (4, 0)
29. Maximum of 3 at (1, 2); minimum of at 

31. 33. $79,681

35. Maximum of at Minimum of 

at 

37. Length 1.1544 ft, Width 1.1544 ft, Height 1.501 ft

39. where (0, 1/2), where 

41. Equilateral triangle.
43. Local maximum: global maximum:

45. Global minimum:
47. Global maximum 
global minimum 
49. Global maximum 
global minimum 
51. Global maximum: global minimum:

53. Global maximum: global minimum:

Problem Set 12.9

1.

3.

5. 7. Base is 4 by 4; depth is 2.

9. 11.

13. Maximum is when 
15. Minimum distance is 1.5616 at pt (0.393, 0.786, 0.772)
17.

19.

is a minimum value.A1c0, p0, q02 =
k

4(8 + p)
L 0.224k2

c0 =
pk

8 + p
; p0 =

4k

8 + p
; q0 =

4k

8 + p
; 

Length = Width = 1.1544 ft, Height = 1.501 ft

8x, y, z9 = 8323, 323, 3239.923

8abc> A323 B1025 ft3

f A67, 18
7 , -  

12
7 B = 72

7

f A2>25, -1>25 B = f A -2>25, 1>25 B = 5

f A23, 23 B = f A -23, -23 B = 6

f14.2, 4.22 = -3.5.
f12.1, 2.12 = 3.5;

f1-0.75, 02 = -3.54.
f10.67, 02 = 5.06;

f11.5708, 02 = f1-1.5708, 02 = -8.
f13, 32 = f1-3, 32 L 74.9225

f1-1.13, 0.792 = f1-1.13, -0.792 = -0.53.
f11.13, 0.792 = f11.13, -0.792 = 0.53
f10, 12 = f10, -12 = -0.12.

f1-3.8, 02 = 2.30
f11.75, 02 = 1.15;

T = -1>4T = 9>4;A ;23>2, -  
1
2 B
A -3>22, -3>22 B10 - 322

A3>22, 3>22 B ;10 + 322

x = 50>23, y = 100>21.25;y = 7
10 x + 1

10

A85, -  
2
5 B .-  

12
5

-11
1-1, 22

2p�34–;

3231i + j + k2
10, ;12.

1;1, 02;
10, -12.

-4

A ;1
2, 0 B ;

V = 9 ƒ k ƒ >220 ; 0.34
x = 1 + 32t; y = 2 - 19t; z = 2 - 17t

1-1, -2, 1211, 2, -12
10, -1, 2280, 1, 19

13, -1, -142
-0.03; -0.03015101

z + 1 =  -223 Ax - 1
3 p B - 3yx + y - z = 2

(a) The gradient points in the direction of greatest increase 
of the function.
(b) No.

Problem Set 12.5
1. 3. 5. 7.

9. 13 11.

13.

15. is perpendicular to the tangent line at p.

17.

19. (a) (0, 0, 0); (b) (c) yes.

21.

23. N 63.43°E 25. Descend: 27.

29. (a) (b)

31. (a) (100, 120); (b) (190, 25); (c)
33. Leave at about 35. Leave at about (3, 5).

Problem Set 12.6
1. 3.
5. 7.
9.

11. 13. 72 15.

17. 244.35 board ft per year 19.
21.
23.
25.
27.

31. 33. 288 mi/h

Problem Set 12.7
1.

3. 1x - 12 - 31y - 32 + 27 Az - 27 B = 0

21x - 22 + 31y - 32 + 23 Az - 23 B = 0

1022 - 3p22

+ 10T>0z210z>0s2 + 10T>0w210w>0s2
0T>0s = 10T>0x210x>0s2 + 10T>0y210y>0s2
1yz3 - 6xz2>13x2 - 3xyz22
1y sin x - sin y2>1x cos y + cos x2
13x2 + 4xy2>13y2 - 2x22

220 ft>s
-  

1
21p + 12s4t11 + s4t22-1>2

21s2 sin t cos t + t sin2 s2 exp1s2 sin2 t + t2 sin2 s2
2s3t - 3s2t27t6 cos1t72

e3t13 sin 2t + 2 cos 2t2 + e2t13 cos 3t + 2 sin 3t212t11

1-0.1, -52.
-  

1
3, 0, 25

-10 deg>s-10>22 + p2 deg>m;

x = -2y2-30022e-3

1x2 + y2 + z22-1>2 cos2x2 + y2 + z2 8x, y, z9
- i + j - k;

2
3

§f1p2 = -4i + j

A1>25 B1- i + 2j2
221-

4221
 i +

2221
 j -

1221
 k;

12
13

 i -
5

13
 j;

52
3A22 + 26 B >4322>28

5

−2
−1

−0.5

−2

−1 −1
0

0

y

x

1

1
0.5

0 1

2

2

29.
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A-58 Answers to Odd-Numbered Problems

y

x

−10

−10

10

10

21. is the maximum value;

is the minimum value

23. is the maximum value;

is the minimum value

25. is the maximum value;

is the minimum value

27.
29.

31. is the maximum value of w, where

33. 35.

Chapter Review 12.10

Concepts Test
1. True 3. True 5. True 7. False 9. True
11. True 13. True 15. True 17. True 19. False

f10, 32 = f10, -32 = -0.99f14, 02 = -4
A = a1 

2 + a2 

2 + Á + an 

2
2A

f1-1, 1, 02 = 3, f11, -1, 12 = -1
x = ad>a, y = bd>b, z = gd>c

f1x, -1-x2 = 0  for -  
1
5

-
2
5

 219 … x … -  
1
5

+
2
5
219 

fa 225
, 

825
b L 29.9443

f1-2, -12 = -3

fa323
2

, -
3
2
b L 20.6913

fa -  
122

, -  
122
b = 10 - 22

fa 122
, 

122
b = 10 + 22

y

x

−5

−5

5

5

3.
5.
7. 9. 1 11. Does not exist.
13. (a) (b)

15.
17. (a) (b) 4i + 2j;x2 + 2y2 = 18;
23 + 2

-41cos 1i + sin 1j - cos 1k2-4i - j + 6k;
450x2y4 - 42y5

e-y sec2 x; 2e-y sec2 x tan x; -e-y sec2 x
12x3y2 + 14xy7; 36x2y2 + 14y7; 24x3y + 98xy6

19.

21.
23. 25. 0.7728

27. 29. Radius 2; height 4.1623>3
18i + 16j - 18k; 9x + 8y - 9z = 34
15xy2t>z3 + 5x2>tz3 - 45x2ye3t>z4

1x2 + 3y - 4z2>x2yz; 1-x2 - 4x2>xy2z; 13y - x22>xyz2

−8

0

8
−8

0

8

0

8

x

y

z

−3

0

3 −3

0

3

0
10
20
30
40

z

x

y

−3

0

3
−3

0

3

0
5

10

z

x

y

4

0

0

0
y

x

z

2

2
−4
−2

−2

−2
−1

0
1

2
−2

−1
0

1
2

0

1

2

z

x

y

Chapter 13 Review and Preview Problems

1.

3.

5.

7.

9.
−4 −3 −2 −1 1 2 3 4

−3

−2

−1

1

2

3
y

x5 6

Sample Test Problems

1. (a) (b) 51x, y2: 2x - y Ú 1651x, y2: x2 + 4y2 Ú 1006
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Answers to Odd-Numbered Problems A-59

0

1

2 0

1

2

3
3

z

x

y

0

1

0

1

2

3

1
2
3
4

2

z

x

y

0

1

2 0

1

2

3

0
4
8

12

z

x

y

z

y

x

1

1 2

z

y

x

1

3

0
1 0

1

2

0

1

2

3

−1

z

x

y

11.

13.

15. 17. 19. 21.

23. 25. 27.

29. 31. 33.

Problem Set 13.1
1. 14 3. 12 5. 4 7. 3 9. 168 11. 520
13. 52.57

81p
2

p2

2
36p

2p A2a2 - b2 - 2a2 - c2 Bp

4
-1 + 373/2

12

1
2

 ln 2
p

2
2a
p

-  
1
2

 e-2x + C

17.

19.

21. 5.5 25.
27. (a) (b) 6
29. Number of cubic inches of rain that fell on all Colorado in
1999; average rainfall in Colorado during 1999.
31. Approximately 458.

Problem Set 13.2
1. 48 3. 5. 7. 1 9.

11. 13.

15. 17. 0 19. 2 21. 105 23. 112
9p
4

1 - 1
2 ln 3 L 0.45074

15 C31 - 923 D L 4.110

p>2 - 155
4

32
3

-6;
c = 15.30, C = 30.97

29. 7 31. 35.

37. (a) 39.

Problem Set 13.3

1. 3. 240 5. 7.

9. 11. 13. 15. 0 17.

19. 21. 6 23. 20 25. 10 27.

29. 31. 33.

35.

37. 39.

41. 43.

45. approximately 

Problem Set 13.4
1. 3. 5. 7.

9. 11. 13. 15.

17. 19. 21.

23. 25. 27.

29. 31.

33.

Problem Set 13.5
1.
3.
5.

7. 9.

11.

13. Ix = Iy = 5a5>12; Iz L 5a5>6
Ix L 269; Iy L 5194; Iz L 5463

m = p; x = 0; y =
3
p

m = 32>9; x = 0; y = 6>5
m L 0.1056; x L 0.281; y L 0.581
m = p>4; x = p>2; y = 16>19p2
m = 30; x = 2; y = 1.8

2
9 a313p - 42

2
3 pd213a - d2625 A323 + 1 B >12 L 322.716

81p>8 L 31.8091
12p A2 - 23 B >2 L 0.421

1p ln 22>8 L 0.272p1e4 - 12 L 168.384
p

4

p3

48
p

2
8p + 623 L 35.525pa2>8

223 + 4
3 p L 7.6534224

9
1
12

4,133,000 ft3

1
3

 11 - cos 8215p>4

256
15L

0

-1L
1

-x
f1x, y2 dy dx + L

1

0 L
1

x
f1x, y2 dy dx

L
1

0 L
1y

y4
f1x, y2 dx dy

L
1

0 L
1

y
f1x, y2 dx dy3p-  

1
2 ln1cos 12

4
154 tan-1 2 - ln 5

27
70

16
3e - 213 ln 2 - p2>9

-22>12p21
21e27 - e23

4

5 - 23 - 228
3

1
41e - 12210

3

15.

−3

0

3 −3

0

3

0

3
z

x

y

25. 27.
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A-60 Answers to Odd-Numbered Problems

15. k; 2k; a4
3

, 
2
3
b

13. L
2

0 L
4

0 L
y>2

0
f1x, y, z2 dx dy dz

x

y

z

1
2

15. L
12>5

0 L
14 - x2>2

x>3 L
4 - x - 2z

0
f1x, y, z2 dy dz dx

17. L
3

0 L
19 - x2>3

2x>3 L
118 - 2x - 6y2>9

0
f1x, y, z2 dz dy dx

19. L
4

1 L
1

0 L
21 - z2

0
f1x, y, z2 dy dz dx

21. 23.

25. 27. x = y = z = 3a>8x = y = z = 4
15

4L
1

0 L
1

x2 L
1y

0
 dz dy dx = 2128

15

x

y

z

z

x

y

(0, 0, 2)

(0, 3, 0)

(3, 2, 0)

1
2

z

y

x

1 2

1 2

1

2

x

y

17. The density is proportional to the squared distance from the 

origin;
25596k

35
; a0, 

450
79
b

x−3 −2 −1 1 2 3

3

6

9

y

19. The density is proportional to the distance from the

origin;
26kp

3
; a0, 

60
13p
b

−3 −2 −1 1 2 3

3

1

21. 23.

25. 27.

29. (a) (b) 7a/12; (c)

31.

Problem Set 13.6
1. 3. 5. 7.

9. 11.

13. 15.

17.

19.

21.

27. (a) 29.3297 (b) 15.4233
29. E/F (tie), A/B (tie), C/D (tie)

 D = pb2 C2a> Aa + 2a2 - b2 B D , B 6 A = C 6 D

 A = pb2, B = 2pa2[1 - cos1b>a2], C = pb2, 

1h1 + h22>2
D23A2 + B2 + C2

2ABC

117
3/2

- 12p
6

1
6 pa2 A525 - 1 B

2a21p - 224pa Aa - 2a2 - b2 B
8229 sin-1 A23 Bp>3261>3

Ix = pka4>2, Iy = 17kpa4>2, Iz = 9pka4

11a5>144a3;

x = 0, y = 115p + 322a>16p + 4825pda4>4
Ix = pda4>4; r = a>2r = 25>12a L 0.6455a

x

y

z

2

Problem Set 13.7
1. 3. 5. 1927.54 7. 9. 156

11. L
1

0 L
3

0 L
11>62112 - 3x - 2y2

0
f1x, y, z2 dz dy dx

2
3

189
2-40
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1

−1

1

1 2 3 4 5 6

−1

1

3

4

2

5

u

v

x

y

−1 1 2 3 4 5

−3

−2

−1

1

2

3

4

−1 1 2 3 4 5

−1

1

2

3

4

5

u

v

x

y3.

1 2 3 4 5 6 7 8

−5

−4

−3

−2

−1

1

2

3

1 2 3 4 5 6

−1

1

2

3

4

5

u

x

yv

5.

7. Image is the square with corners (0, 0), (2, 2), (4, 0), and

9. Image is the set of (x, y) that satisfy 

11.

13.

15. 17. 3.15669 19. 0

21.

25. (a)

(b)

Chapter Review 13.10
Concepts Test
1. True 3. True 5. True 7. False 9. True
11. True 13. False 15. True 17. False

Sample Test Problems

1. 3. 5.

7.

9. (a)

(b)

(c)

11. 0.8857 13. 15. 6 17.

19. 21. 0ka2bc>24

80pkx = 13
6 ; y = 3

2

8L
p>2

0 L
p>2

0 L
a

0
r2 sin f dr df du

8L
p>2

0 L
a

0 L
2a2 - r2

0
r dz dr du;

8L
a

0 L
2a2 - x2

0 L
2a2 - x2 - y2

0
 dz dy dx;

L
1>2

0 L
1 - 2y

0 L
1 - 2y - z

0
f1x, y, z2 dx dz dy

L
1

0 L
y

0
f1x, y2 dx dy2

3
1
24

gU1u2 = eue-u, if 0 … u

0, otherwise

g1u, v2 = e e-u, if 0 … v … u

0, otherwise

-r2 sin f

x = v; y = u>v; J = -  
1
v

x = v; y = 2u - v2; J = -  
1

22u - v2

x = u>2 + v>2; y = u>4 - v>4; J = -  
1
4

y2 … x … y2 + 1, 0 … y … 1; J = 2u.

12, -22; J = -4.

Chapter 14 Review and Preview Problems
1. is one possibility.
3. is one possibility.
5. is one possibility.
7. is one possibility.
9. is one possibility.x = - t, y = 9 - t2, -3 … t … 3

x = 9 - t, y = t, 0 6 t 6 9
x = -2 + 5t, y = 2, 0 … t … 1
x = 2 cos t, y = 2 sin t, 0 6 t 6 p
x = 3 cos t, y = 3 sin t, 0 … t 6 2p

29.

31. 33. 4

35. Ave 37.

39.

43. (a) (b) (c) 9

45. (a) (b) (c) 5

47.

Problem Set 13.8
1. Right circular cylinder about the z-axis with radius 3 and
height 12;
3. Region under the paraboloid above the xy-plane 

in that part of the first quadrant satisfying 

5. Sphere centered at the origin with radius a;

7. 9. 11.

13. 15.

17. 19. 21.
23.
25. (a) 3a/4; (b) (c) 6a/5
27. (a) (b)
29. 1a + b21c - 12>1c + 12

3pa>163pa sin a>16a;
3pa>16;

p>32
p>9kp2a6>16x = y = 0; z = 2a>5

kp1b4 - a42x = y = 0; z = 16
3

2p A525 - 4 B >3 L 15.03814p>38p

V =
4
3

 pa3

0 … u …
p

4
; V =

243p
16

z = 9 - r2

V = 108p

x2>576, 0 … x … 12, 9

1
4

7
16

26
27

k =
1

288

1x, y, z2 = A17
36, 17

36, 55
36 B

1x, y, z2 = A11
24, 25

12, 11
24 BT = 29.54

L
2

0 L
2 - z

0 L
9 - x2

0
f1x, y, z2 dy dx dz

L
1

0 L
21 - x2

0 L
21 - x2 - y2

0
f1x, y, z2 dz dy dx

Problem Set 13.9
1.
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y

x

5.

y

x

z

y

x

7. 9.

11. 13.
15. 0;0 17.
19. (a) Meaningless; (b) vector field; (c) vector field;
(d) scalar field; (e) vector field; (f) vector field;
(g) vector field; (h) meangingless; (i) meangingless;
(j) scalar field; (k) meangingless.
25. (a)
(b) clockwise for H, not at all for others.
(c) curl curl 

curl 
curl L = 0

div L = 1>2x2 + y2,H = -2xe-x2
k.div H = 0,

G = 0,F = 0, div G = -2ye-y2
,div F = 0,

div F = 0, div G 6 0, div H = 0, div L 7 0;

2ex cos y + 1; 2ex sin yk
2yz; z2i - 2ykey cos zi + xey cos zj - xey sin zk

x-1i + y-1j + z-1k12x - 3y2i - 3xj + 2k

11.
13.
15.

17. 19. 21.

23. The volume in problem 22 is that of a spherical shell 
centered at (0, 0, 0) with outer and inner 

25. h 3
13

, 
4
13

, 
12
13
i

radius = 1.radius = 2

14p
3

3
4

p

2

§f1x, y, z2 = 1y + z2i + 1x + z2j + 1x + y2k
§f1x, y, z2 = 2xi + 2yj + 2zk
§f1x, y2 = 1x cos x + sin x2i + 1cos y - y sin y2j Problem Set 14.2

1. 3. 5. 7.

9. 144 11. 0 13. 15. 19 17.

19. 21. 23.

25. Work along is positive; work along is negative; work
along is zero.
27. 2.25 gal 29. 31.
33. (a) 27; (b)

Problem Set 14.3

1. 3. Not conservative.

5. 7.

9. 11.

13. 14 15. 17. 6 19.

23.

25.

27.

Problem Set 14.4

1. 3. 5. 0 7.

9. (a) 0; (b) 0
11. (a) 0; (b) 0
13. 50 15.
19. (c) M and N have a discontinuity at (0, 0).
23.
27. (a) (b) 144
29. (a) in quadrants I and III;

in quadrants II and IV;
(b)

Problem Set 14.5

1. 3. 5. 7. 6 9. 2

11. 20 13. 15. x = y = z = a>323ka4>12

5p>82 + p>3823>3

0; -211 - cos 322
div F 7 0

div F 6 0
div F = 4;

3pa2>8
-2

8
3

72
35-  

64
15

f1x, y, z2 = -gmz

 = C12 m ƒ r¿1t2 ƒ 2 Dab = 1
2 m[ ƒ r¿1b2 ƒ 2 - ƒ r¿1a2 ƒ 2]

 = 1
2 mL

b

a
1d>dt2[r¿1t2 # r¿1t2] dt = 1

2 mL
b

a
1d>dt2 ƒ r¿1t2 ƒ 2 dt

LC
F # dr = L

b

a
mr–1t2 # r¿1t2 dt

f1x, y, z2 = 1
2 k1x2 + y2 + z22

-p
20

1377

lna 1

x2 + z2 b + Cf1x, y, z2 = x3 + 2y3 + 3z3 + C

f1x, y2 = 2xey - yex + Cf1x, y2 = 2
5 x3y-2 + C

f1x, y2 = 5x2 - 7xy + y2 + C

-297>2
4a22pa2

C3

C2C1

2 - 2>p-  
1
21a2 + b22-  

7
44

k A17217 - 1 B >617
6

100
3

1
6 A14214 - 1 B22514 A222 - 1 B

17. 19.

Problem Set 14.1
1. 3.

−1 1

−1

1
y

x

0
1

2 0

1

2

3

−1

0

1

2

3

4

z

y

x

−2 −1 0 1 2
−2

0

2

−6

−4

−2

0

2

4

6

z

y

x

A paddle wheel at the origin will not rotate.div F 7 0.

27.
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Answers to Odd-Numbered Problems A-63

25.

29. (a) 0; (b) 0; (c) (d) (e)

31. (a) (b) (c)

Problem Set 14.6

1. 0 3. 8 5. 7. 9.
11. 13.

15. and so 

19. (a) (b) (c) (d) 1; (e) 36;
(f) (g)

Problem Set 14.7
1. 0 3. 5. 7. 9. 2 11.

15. 1/3 17. joules

Chapter Review 14.8

Concepts Test
1. True 3. False 5. True 7. False 9. True
11. True.

Sample Test Problems
3.

5. (a) (b) 13p - 52>6p>4;

curl1f §f2 = f curl1§f2 + §f * §f = 0 + 0 = 0

4
3 a2

p>48p-48p-2

32p ln 212p>5;
16p>3;4p;20p>3;

O
 

0S 

F # n dS = l
 

S 

3 dV = 3V1S2.§ # F = 3

100p1176p
4p64p>33a2b2c2>4

hkpa1a + h22kpa3;4kpa3;

8pa4>34pa4>3;4pa4;

702965k

32

−40 −30
−20

−10
0

10
20

30
40

−40
−30

−20
−10

0
10

20
30

0

10
20

30

z

y

x

21. p c6237 + lnB 137 + 6237 - 6
d

23.

-
625
8

 ln ` 4p + 216p2 + 25 ` +
625
8

 ln 5 d

p

4
 cp

2
 132p2 + 252216p2 + 25

−6
−4

−2
0

2
4

6 −6

−4

−2

0

2
4

6

0

2

z

y

x

7. 47
9. (a) (b) (c) 0

11. 13. 0 15.

Problem Set 15.1

1. 3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

27.

29.

Problem Set 15.2

1.

3.

5.

7.

9.

11.

13.

15. 17.

19.

21.

Problem Set 15.3

1. 3.

5. 7. 14.4 s

9.

11. (a)

(b)

13. 17.

Chapter Review 15.4
Concepts Test

1. False 3. True 5. True 7. True 9. False

Sample Test Problems

1. 3.

5. 7.

9. y = e-3x (C1 cos 4x + C2 sin 4x)

y = AC1 + C2x + 1
2 x2 Be-2xy = C1e

x + C2e
-x - 1

y = 3e2x - 3exy = 1
4 ex + C1e

-3x + C2

d2u>dt2 = –(g>L) sin uI L 12 * 10-2 sin 377t

I = 9.05 * 10-2 cos 377t

Q = 2.4 * 10-4 sin 377t;

Q = 10-6(1 - e-t)

y L e-0.16t(cos 8t + 0.02 sin 8t)

0.5 m>sy = 0.1 cos 5t; 2p>5

y = D1e
x + D2e

2x + (ex + e2x) ln (1 + e-x)

y = C2 sin x + C3 cos x - x sin x - cos x ln ƒ sin x ƒ

y = C1e
2x + C2e

x + 5
2 x + 19

4y = e2x - e3x + ex

y = C1 cos 3x + C2 sin 3x + 1
8 sin x + 1

13 e2x

y = C1 cos 2x + C2 sin 2x + 1
2x sin 2x

y = C1e
2x + C2e

-x - 3
5 sin x + 1

5 cos x

y = C1e
-3x + C2e

-x - 1
2xe-3x

y = C1e
2x + C2e

3x + 1
2 ex

y = (C1 + C2x)ex + x2 + 5x + 8

y = C1e
3x + C2e

-3x - 1
9 x

y = 1.29099e-0.25x sin (0.968246x)

y = 0.5e5.16228x + 0.5e-1.162278x

y = (C1 + C2 ln x)x-2

+(C3 + C4x) sin(23>2)x D
y = e-x>2 C(C1 + C2x) cos(23>2)x

y = D1 cosh 2x + D2 sinh 2x

y = C1e
x + C2e

-x + C3 cos 2x + C4 sin 2x

y = C1 + C2x + C3e
-4x + C4e

x

y = e-x (C1 cos x + C2 sin x)

y = 3 sin 2x + 2 cos 2x

y = e2x AC1e
23x + C2e

-23x B
y = (C1 + C2 x)e2x

y = 1
2 ex - 1

2 e-7xy = C1e
2x + C2e

3x

9p13a - 22>2a2 + b2 + 16p

4
3;1

2;
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A-64 Answers to Odd-Numbered Problems

11.

13.

15. 17.

Problem Set A.1

9. 11. 13. are true

15. are true 17. is true for all i Ú 1PiP30, P29, P28, Á
P5, P7, P9, ÁN = 5N = 4

I = e-t sin ty = -cos 4t; 1;p>2
y = (C1 + C2x)e22x + (C3 + C4x)e-22x

y = C1 + C2e
-4x + C3e

2x 19. is true for all 

21. True for Proof is by induction.

23. True for all Proof is by induction.

25. True for all Proof is by induction.

27. True for all Proof is by induction.n Ú 0.

n Ú 2.

n Ú 3.

n = 1, 3, 5, Á .

i Ú 1Pi
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Index

Index

A
Absolute value, 11-12, 14-15, 19, 32, 77, 80, 108, 125,

153, 227, 251, 254, 314-315, 321, 324, 391,
393, 579, 581, 601

defined, 11, 32, 108, 153
functions, 32, 108, 391, 581
inequalities, 11-12, 14-15, 153
properties of, 11, 15
real numbers, 581

Acceleration, 124, 152-156, 163, 168, 184-186, 208,
230, 247-250, 349, 414, 534, 556, 557,
584-586, 589-590, 595, 597, 599-604,
616-617, 659

Accuracy, 13, 71, 230-231, 235, 263, 316-317, 457,
468, 477, 502, 658, 667

Addition, 5, 11, 30, 41-42, 57, 59, 61, 65, 70, 140, 143,
220, 237-238, 373, 376, 462, 488, 563, 565,
586, 662, 681, 709

mental, 376
Algebra, 3, 24, 31, 44, 73, 75, 78, 89, 134-135, 143,

193, 206, 213, 228, 280, 399, 404, 427, 529,
538

Algebraic equations, 230
Algebraic functions, 373
Algorithms, 233, 237, 408, 457

approximate, 237, 408, 457
efficient, 408
graph, 233

Alternating harmonic series, 476-477, 479-482
Angle of depression, 179
Angle of elevation, 167, 179
Angles, 24, 56, 60, 113, 144, 160-162, 167, 208, 335,

510, 511, 513, 524, 539-540, 553, 567-568,
570-571, 573-575, 613, 666-667, 743, 767,
779

adjacent, 24
congruent, 162
corresponding, 24, 56, 60, 162, 511, 540, 553, 574,

667, 767
right, 24, 144, 160, 167, 208, 335, 511, 524, 539,

553, 567, 574, 743
sides of, 24, 162, 167, 524, 567, 666-667, 743
straight, 56, 161, 167, 567
supplementary, 573
vertex of, 667
vertical, 56, 161, 335, 524, 553, 567, 667, 743

Angular velocity, 143-144, 700-701, 737
defined, 700

Antiderivatives, 189, 237-239, 241, 243, 258, 260,
280, 318-319, 345, 373, 383, 402-404, 705

applications of, 189, 238, 258, 260
Antidifferentiation, 237, 239, 244, 247, 292, 294, 373,

402, 748
properties of, 239

Approximately equal to, 283, 312, 754
Approximation, 3-4, 7, 45, 98, 180, 183-185, 187, 223,

231-234, 269, 300, 309, 311-314, 317, 325,
345-346, 353, 366, 404-408, 410, 415-420,
430, 436, 451, 457, 477, 480, 499-501,
503-506, 550, 641, 656, 658-659, 680, 698,
706

Arc length, 51, 56, 343-346, 348, 532, 560, 562, 584,
595-596, 732, 738, 753

finding, 345
Arcs, 751
Area, 4, 7, 16, 34, 60, 68, 71, 89, 96, 98, 125, 140,

150, 161, 167-168, 181-182, 184-185,
205-206, 212-216, 237, 250, 257, 262,
263-265, 267-271, 274, 276-279, 281-284,
286-287, 289, 292, 297-298, 302-305, 310,
312-313, 316-318, 320, 322, 323-329,
334-336, 341-342, 347-349, 352-355,
360-361, 363, 367-368, 370-371, 383, 388,
392, 394, 405-406, 422, 429-430, 435, 441,
443, 448, 456, 458-459, 463-464, 467, 470,
506, 515, 524, 531, 535-537, 549-555, 558,

578-581, 587-588, 610, 618, 623, 630, 636,
650, 666-668, 670, 673, 675-676, 677-679,
681-683, 687, 689, 693, 696-698, 701-707,
724-725, 730, 732, 738, 743, 753-754,
756-758, 760, 762-766, 771, 798, 806

of a circle, 60, 71, 185, 213, 347, 349, 370, 537,
549, 552, 558, 697, 738

of a parallelogram, 263, 578, 702, 706, 724, 758
of a rectangle, 16, 263, 269, 284, 303, 355, 724
of a trapezoid, 281, 666
of a triangle, 7, 16, 96, 278, 363, 370, 581, 587

Areas, 23, 71, 213, 263-264, 266-267, 271-274, 277,
280, 283, 308, 312, 323-325, 329-330, 333,
366, 388, 464, 467, 553, 581, 587, 683, 697,
703, 707, 712

Argument, 3, 39-40, 46, 49, 53, 91, 97-98, 117, 129,
159, 280-281, 283, 300, 425, 431, 466, 473,
490, 536, 590, 645, 655, 669, 671, 746, 756,
760, 779, 782

Arithmetic, 3, 8, 16, 216, 270, 280, 504, 674
Arithmetic mean, 16, 216, 674
Asymptotes, 34, 56, 93-94, 116-117, 216, 219-220,

222, 259, 518-519, 523-524, 554, 789
oblique, 94, 789

Average, 16, 34, 60, 67, 71, 121, 123-125, 132, 211,
213, 215, 227-228, 230, 301-303, 306-307,
320, 323, 337, 365, 408, 420, 559, 588-589,
624, 693, 714, 719, 835

Average cost, 34, 211, 215
Average growth rate, 124
Average rate of change, 123, 132, 302

defined, 132
Average value, 301-303, 306-307, 320, 719
Average velocity, 121, 124-125, 227-228, 230, 408
Averages, 7, 550
Axes, 16, 26, 41-42, 44, 48, 51, 66, 68, 123, 133, 156,

179, 213, 219, 257, 260, 335, 339, 349, 361,
505, 511-512, 516, 524-525, 527-531, 539,
545, 547, 555, 557-560, 562, 588, 607, 616,
620-621, 643, 656, 659, 666, 670, 675,
677-678, 686, 699-700, 702, 721, 724, 743,
756, 827

Axis, 4, 16, 18, 20, 22-23, 25-26, 28, 31-32, 34-35,
52-53, 58-59, 66, 81, 90, 96, 103-104, 113,
115-116, 121, 140, 150, 153, 161, 166, 179,
188, 194, 213, 215, 219, 222, 224, 231-232,
237, 267, 269, 271, 273-274, 277, 281, 287,
297, 304, 323-325, 327, 329-341, 343,
347-350, 356-359, 361-363, 370-371, 383,
388, 390, 394, 422, 430, 441, 444, 448,
511-515, 517-519, 523-525, 527-528, 534,
537, 539, 541-542, 544-547, 552, 554, 556,
557, 560-562, 577, 586, 588, 590, 592-594,
606, 609-616, 620-621, 630, 633, 636, 643,
648, 676, 693, 698-702, 704, 706-707,
714-715, 718-720, 729-730, 732, 735-737,
739, 743, 755, 760, 762-763, 765-766, 774,
826, 829, 831, 837

ellipse, 150, 161, 213, 335, 430, 511-512, 514-515,
517-519, 523-525, 527-528, 542, 544,
554, 586, 588, 606, 609-610, 616, 743

B
Base, 49-50, 96, 102-103, 115, 161, 167, 179, 186,

205-206, 213, 267-268, 322, 323, 329,
333-336, 347, 349, 355-356, 370-371, 459,
578-579, 586, 610, 653, 666, 689, 697, 707,
711, 714, 716, 730, 743, 766, 833

logarithmic, 49-50, 102-103
Bits, 350

C
Calculators, 3, 26, 49-50, 63, 73, 102-103, 193, 404,

547
Calculus, 1-2, 8, 11, 25, 29, 37, 45, 57, 63, 71, 77-78,

81-82, 87, 99, 119, 126, 137, 158, 169, 189,
205, 210-211, 215-217, 219, 221, 223, 263,

274-275, 280-283, 285-300, 307-308, 311,
317, 323, 344-346, 373, 392, 394, 404-408,
425, 443, 451, 482, 511, 534, 539, 549, 551,
553, 557, 581, 584, 611, 619, 635, 660,
667-668, 676, 677, 705-707, 733-734, 736,
738, 740, 742, 744, 746-748, 750-752, 754,
756, 758, 760, 762, 764, 766, 768, 770, 772,
774, 776, 777, 783, 841

defined, 11, 57, 81, 99, 158, 189, 210, 215, 274,
280, 285, 292, 307-308, 407, 451, 534,
635, 660, 677, 736, 740, 742, 751, 762

limits, 71, 77-78, 81-82, 280, 282, 286, 294,
296-297, 406, 425, 443, 619, 635, 777

power functions, 373
tangent line to, 119, 158, 169, 534, 551, 553

Candidates, 197, 201
Capacity, 34, 214, 259, 399, 402, 414, 666
Cardioid, 547-548, 551-553, 605, 694, 697, 701-702,

731
Carrying, 214, 259, 666
Cartesian equations, 544, 547, 612, 617
Categories, 42, 526
Census, 257
Center, 17-18, 22-24, 51, 68, 113, 115, 142-144, 179,

214, 224, 248, 323, 341-342, 355-359, 361,
363, 365-366, 370, 394, 405, 410, 437, 444,
458, 515, 517, 519, 523, 525, 527-528,
530-531, 534, 538-539, 544, 554, 558-559,
561-562, 568, 576, 585, 587-588, 590, 597,
613, 616, 620, 631, 677, 680, 697-699,
701-702, 711, 714, 716, 718-720, 726, 728,
730-731, 739-740, 743, 754, 763, 765-766,
774, 784, 808, 826, 841

Central angle, 57, 60, 96, 349, 549, 697
defined, 57
finding, 697

Chain Rule, 119, 144-149, 151, 156, 158, 160, 162,
164, 171-172, 174-175, 177, 240, 242, 286,
293-294, 402, 408, 534, 583, 619, 649-654,
664, 744, 777, 780-781

Change of variable, 720, 723, 728-729
Circles, 23-24, 68, 119, 344, 394, 456, 458-459, 463,

538, 542, 544, 550, 553, 597-599, 609, 616,
626, 693, 730, 756

area of, 394, 456, 458-459, 463, 550, 553, 730,
756

center, 23-24, 68, 394, 458, 538, 544, 597, 616,
730

completing the square, 394
defined, 456, 538, 597, 616
equation of, 23, 68, 538, 542, 544, 616, 693
finding, 119, 394, 626
graphing, 24, 544
radius, 23-24, 68, 394, 458, 538, 542, 544, 550,

553, 597-599, 616, 693, 730, 756
Circular cylinders, 213, 335-336, 606, 692, 743

volume of, 335-336, 692
Circumference, 15, 51-52, 57, 185, 264, 345, 554, 705
Circumference of a circle, 51
Clearing, 397
Closed and bounded region, 702
Closed interval, 8, 111-112, 114, 184, 189-191, 203,

225, 228-229, 257, 259, 272, 274-275, 283,
290-291, 308, 484, 532, 553, 640

Closed intervals, 66, 190, 635
Coefficient, 413-414, 504-505, 526, 560, 604, 793

binomial, 793
Coefficients, 313, 317, 396, 399, 415, 421-422, 476,

491, 498
Cofunction, 57
Combinations, 103, 538
Common logarithm, 49-50
Common logarithms, 49
Complement, 364, 369
Completing the square, 376, 393-394, 421, 526-527,

530, 555, 559, 662
circles, 394
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Complex numbers, 2, 398
Composition of functions, 36, 44, 634
Compound interest, 101, 255

continuous compounding, 255
Concavity, 189, 193-195, 197-200, 220-222
Conic sections, 511, 519, 554

circle, 511, 554
ellipse, 511, 519, 554
hyperbola, 511, 519, 554
parabola, 511, 554

Constant, 20, 41-42, 45, 55, 71, 83-84, 100, 108,
115-116, 125, 133-135, 140, 147, 149, 153,
160, 163, 166-168, 172, 179-180, 185-187,
196, 199-200, 210, 213-214, 228-230,
237-241, 244, 246, 249-250, 255-258, 261,
265, 269, 284, 291-292, 307, 318, 321, 336,
348-350, 354-355, 358, 361, 373, 378, 383,
386, 402, 411-414, 423, 432, 438, 450, 452,
461, 464-465, 467, 470, 472, 475, 488, 511,
514-515, 520, 531, 553, 558, 561, 571-572,
574, 576, 585, 587-588, 590-591, 596-597,
600, 603-604, 616-617, 623-624, 626, 628,
630, 638, 643, 645-646, 648, 654, 657, 669,
683-685, 688, 697-702, 712, 714, 716,
718-719, 724, 729, 733-737, 739, 743,
747-751, 754, 756, 760, 766, 769, 771, 776,
779, 786, 797, 829

Constant functions, 41-42, 373
Constant of integration, 648
Constant of proportionality, 261, 402, 423
Constant term, 488
Constrained optimization, 668
Constraint, 668-671, 673-675
Constraints, 667, 671

graphing, 667
Continuity, 71, 107-113, 115, 128, 137, 170-171, 343,

582, 619, 631, 633-635, 637, 642
Continuous compounding, 255
Continuous function, 61, 115-116, 129, 191, 198,

224-225, 231, 234, 257, 260, 285, 350, 355,
363, 444, 692, 750

Continuous random variable, 366-371, 438, 443
uniformly distributed, 366

Continuous random variables, 366-368, 729
Contour plots, 623
Contours, 621
Convergence, 230, 237, 258, 448, 451, 455, 460,

465-466, 468-487, 489, 491, 507-508
Coordinate plane, 22, 25-26, 28, 31, 358, 361
Coordinate systems, 578, 611

Cartesian, 611
cylindrical, 611
polar, 611

Coordinates, 16-20, 23-24, 28, 42, 52, 89, 113, 116,
118, 119-120, 144, 150, 156, 186, 224, 326,
358-359, 361, 370-371, 410, 415, 511-516,
518, 520, 522, 524-526, 528, 530-532, 534,
536, 538-554, 557-559, 561-562, 564, 570,
578, 583, 610-617, 633-634, 649, 663, 670,
676, 677, 693-699, 701, 703-706, 708-709,
711, 713-717, 719, 728-730, 743, 757, 759,
762, 769, 771

Corresponding angles, 162
Cosecant, 56, 61, 142

defined, 61, 142
Cosine, 51-54, 56, 58, 60-63, 103-105, 140, 142, 174,

229, 275, 372, 408, 503, 545, 570, 574, 616
inverse, 61-63, 104-105, 174

Cosines, 60, 150, 214, 542, 569, 571, 574, 615-616
defined, 574, 616
law of, 150, 214, 542, 569
proof, 569
theorem, 569

Costs, 34, 115, 208, 211-213, 216, 568, 618, 664-665,
667, 673-674

average, 34, 211, 213
fixed, 34, 115, 216, 667
marginal, 211-212, 216
total, 34, 208, 211-212, 216, 665, 673

Cotangent, 56, 61, 63, 67, 142, 388
Counting, 280
Critical point, 190-192, 201, 203, 207, 212, 221, 226,

661, 663-664, 669, 671-672, 795, 797
Critical values, 205
Cross products, 579
Cubes, 72, 266
Cubic units, 4, 442, 761
Cumulative distribution function, 367, 370, 438
Cycloid, 343, 348-349, 533-535, 538-539

D
Data, 164, 183-184, 208-210, 215, 279, 407, 587,

613-614, 667
collection, 587

Days, 51, 115, 124-125, 137, 255-256, 271, 307, 802
Decay, 189, 251-255, 257, 410

exponential, 189, 251-253, 255, 257
radioactive, 253, 255

Decimal point, 233
Decimals, 2-3
Decreasing function, 315
Defects, 365
Definite integral, 263-264, 266, 268, 270, 272-284,

286-288, 290, 292, 294, 296-300, 302-304,
306, 308-314, 316-318, 320, 323-324,
329-330, 345-346, 348, 367, 377, 390,
392-393, 404, 406, 408-409, 435, 456, 535,
562, 737-738, 744, 746, 757, 765

approximating, 310, 312, 316, 329
Degree, 41, 43, 58, 216, 243, 271, 280, 325, 383-384,

386, 395, 399, 401, 403, 421, 472, 489-490,
500-501, 505-506, 526, 530-531, 586, 607,
628, 654, 707

Degrees, 56-58, 301, 613, 628, 630, 649, 653, 714
Denominator, 2, 10, 19, 37, 42, 49, 76, 85-86, 91-96,

98, 108-110, 122, 127-128, 138, 140, 147,
194-195, 203, 217, 227, 243, 275, 314, 317,
359-360, 372, 376, 395-399, 403, 421,
425-428, 430, 453, 470, 472, 475, 502,
633-634

rationalizing, 127, 395
Density function, 366, 443, 448, 695, 712, 715-716
Dependent variable, 30, 130, 180, 619, 650, 656
Derivatives, 119, 126, 133, 135-137, 139-143,

146-147, 151-153, 155, 157-158, 163-164,
168-175, 177, 179-181, 185, 189, 194-195,
197, 199, 211, 220-221, 224-225, 227-229,
237, 243, 246, 258, 286, 291, 293, 302,
314-315, 318, 344-345, 349, 372, 384, 410,
423, 427-428, 492-493, 500, 506-507, 535,
583, 604-605, 619-620, 622, 624, 626-632,
634-638, 640-648, 650-652, 654, 656, 658,
660, 662, 664-666, 668, 670, 672, 674, 702,
705, 735-736, 747, 750-751, 758, 761-763,
766, 772, 775

and concavity, 189, 194-195, 197, 199
calculating, 146-147, 155, 604
Chain Rule and, 172
first, 119, 133, 137, 139-140, 143, 146-147,

151-153, 157, 172, 175, 180, 189,
194-195, 197, 211, 220-221, 225, 237,
243, 246, 286, 291, 293, 345, 410, 423,
427-428, 492, 500, 506, 535, 604-605,
619, 628-631, 634-635, 640-641,
651-652, 658, 660, 664, 670, 672, 674,
702, 735-736, 747, 750-751, 758, 761,
766, 772, 775

higher-order, 119, 151, 153, 155
partial, 506-507, 619, 626-631, 635, 637-638,

640-644, 651, 654, 662, 664-665, 702,
735-736, 747, 750-751, 758, 761-762,
766, 772, 775

second, 119, 137, 139-140, 143, 147, 151-153,
155, 164, 168-169, 174, 179-180, 185,
194-195, 197, 199, 220-221, 237, 258,
291, 293, 318, 345, 349, 427-428,
506-507, 604, 619, 628, 638, 640,
651-652, 654, 658, 662, 665-666, 670,
672, 705, 735, 751, 772, 775

Determinants, 576-577
defined, 576

Diagrams, 194, 268, 270, 358, 425, 451-452, 467,
470, 544

Difference, 16, 55, 66, 72, 77, 83, 91, 113, 123, 133,
135-136, 210, 225, 253, 344, 417, 452, 504,
520-523, 567, 638, 640

function, 55, 72, 77, 83, 91, 113, 133, 210, 225,
417, 638, 640

real numbers, 66
Difference quotient, 133, 504
Difference Rule, 135
Differentiability, 128, 137, 619, 637-642, 649
Differentiable function, 134, 151, 156, 160, 180, 185,

193, 233, 240-241, 251, 257-258, 294, 318,
374, 534, 654, 656

Differential equations, 189, 244-247, 249, 269,
373-374, 376, 378, 380, 382, 384, 386, 388,
390, 392, 394, 396, 398, 400, 402, 404, 406,

408, 410-420, 422, 448, 630
exact, 269, 404, 410, 417-418, 420, 422
separable, 246, 410
solving, 189, 249, 396, 402, 411, 448

Differentials, 119, 180-184, 245-246, 656, 659, 675
Differentiation, 119, 126, 146-147, 151, 156-161, 168,

172-174, 176, 186, 218, 237, 242, 256, 291,
373, 376, 402, 446, 486, 510, 535, 582-583,
590, 598-599, 629, 631, 635, 652, 677

implicit, 119, 156-161, 174, 176, 186, 446, 510,
535, 652

order of, 635
Digits, 7, 101, 233, 235, 465, 490, 504
Directed line segments, 562
Discrete random variable, 367, 369-370
Discrete random variables, 366, 368
Discriminant, 13

quadratic formula, 13
Dispersion, 438
Distance, 1, 11-12, 16-18, 22-24, 28, 34, 43, 51, 54,

57, 66-68, 70, 71, 77, 115, 118, 121-125,
140, 150, 155, 161-162, 164, 166-168,
178-179, 186, 199, 207-210, 212-214, 230,
248, 250, 269, 278, 281, 316, 327-329,
345-346, 348-352, 354-356, 360-361,
369-370, 408, 437, 443, 451, 463, 498,
511-515, 519-523, 530-531, 534, 538, 542,
554-556, 558-559, 561-562, 565, 572-576,
582, 587-590, 594-595, 611, 613-615, 617,
630-632, 636-637, 644, 648-649, 654,
663-668, 673-674, 697, 699, 702, 706, 711,
714, 716, 718-719, 726, 731, 734, 739-740,
743, 750, 762-763, 766, 798, 825, 833, 836

angle of elevation, 167, 179
formula, 16-18, 34, 43, 71, 150, 155, 162, 166, 250,

269, 345, 348-349, 354, 360, 451, 463,
498, 512-513, 521, 558-559, 565,
573-574, 576, 589, 615, 636, 648-649,
654, 697, 702, 706, 711, 714, 734, 739

minimizing, 210, 663, 668
Distribution, 357, 364-370, 438, 440, 443, 464
Distribution function, 367, 370, 438
Distributions, 358, 438, 440, 448

gamma, 448
geometric, 358
normal, 440
rectangular, 358
standard normal, 440

Distributive law, 579-580
Division, 1-2, 7, 11, 19, 30, 35, 37, 42, 56-57, 149,

180, 233, 237, 243, 373, 395, 403, 428, 488,
612, 624, 634, 638, 738

long, 2, 7, 233, 243, 373, 395, 403, 488, 624
of integers, 1, 7

Domain, 29-31, 33-44, 46, 48-50, 52, 54, 58-59,
61-63, 65-69, 76, 91, 95, 102, 105, 107-109,
111-112, 114, 116-117, 127, 140, 142, 168,
173, 179, 189-190, 192-193, 200, 204,
207-208, 219-220, 257-258, 305-306, 343,
424, 451-452, 486, 547, 581, 589, 603, 619,
624-625, 630, 642, 645-646, 660-661, 665,
675, 732, 762, 765, 790, 831

defined, 30, 38-39, 42, 44, 54, 61, 67, 91, 95,
107-109, 111-112, 114, 117, 142,
189-190, 193, 257-258, 451, 603, 625,
630, 660-661, 665, 675, 762

determining, 343
exponential functions, 46, 49, 109
rational functions, 42, 95, 108

Dot product, 557, 568-569, 571, 573-577, 615, 645
Double integral, 678-680, 682, 684-687, 691, 693-694,

698, 701, 705, 709, 724, 729, 757, 761,
765-766, 775-776

Double-angle identities, 58, 372
Doubling time, 252, 256
Dummy variable, 275, 286

E
Eccentricity, 511, 517-521, 523-524, 538, 542, 544,

554, 587, 591
ellipse, 511, 517-521, 523-524, 538, 542, 544, 554,

587
hyperbola, 511, 518-521, 523-524, 542, 554

Ellipse, 150, 161, 213, 335, 430, 511-512, 514-528,
530-532, 535, 538, 542-544, 554, 585-588,
599, 604, 606-610, 616, 646, 667, 670-672,
674, 692, 743, 753, 756, 775, 817-819, 821,
824

defined, 535, 538, 616, 672, 692
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equation of, 150, 213, 512, 514-515, 517-521,
523-528, 530-531, 538, 542, 544, 554,
586-587, 607, 610, 616, 646

graphing, 515, 532, 544, 667
rotation of axes, 511, 525, 527-528, 530-531

Elliptic paraboloid, 608-610, 829
Empty set, 527, 554, 558-559, 607-608, 818, 832
Endpoints, 77, 109, 112, 520, 640, 663
Equality, 24, 84, 86, 216, 246, 249, 274, 278, 297,

428, 473, 628, 635, 642, 746, 754
Equations, 1, 8-10, 12, 20-28, 49, 68, 106, 113, 117,

140, 160-161, 189, 230-231, 233, 235-237,
244-247, 249, 259, 269, 282, 327-328, 335,
342-343, 348-349, 371, 373-374, 376, 378,
380, 382, 384, 386, 388, 390-392, 394, 396,
398, 400, 402, 404, 406, 408, 410-420, 422,
448, 510, 511, 514, 516, 519, 521, 524, 526,
528, 531-538, 540-548, 551, 554-556, 558,
560, 562, 583, 585-586, 591-594, 598-599,
607, 609-612, 616-617, 627, 630, 643, 654,
656, 659, 663, 665, 667, 669-673, 715, 717,
721, 732, 739, 741, 750, 753, 762, 772

exponential, 1, 49, 106, 189, 373
logarithmic, 1, 49, 373, 546-547
logistic, 402
point-slope, 20-21
polynomial, 230, 384
rational, 1, 8, 106, 160, 373, 396, 422
slope-intercept, 20-21

Equilateral triangle, 34, 213, 334, 456, 458, 464, 561,
568, 833

Equilateral triangles, 23
Error, 4, 13, 15-16, 62, 137, 182, 184-185, 231-234,

312, 314-315, 317, 321, 383, 402, 406, 408,
410, 418-421, 468-470, 477, 479-480,
492-493, 501-506, 508-509, 587, 657, 659,
675, 794, 816

relative, 182, 184, 657, 794
standard, 182, 317

Estimate, 4, 7, 34, 43, 56, 98, 123-124, 132, 162, 173,
182, 184, 199, 205, 210, 215, 255-256, 277,
299-300, 303, 306, 315, 317, 319, 323, 328,
416, 418, 430, 445, 469-470, 477, 480, 550,
553, 605, 631, 649, 659, 675, 685-686, 695

Estimation, 1, 3-5, 7
Euler Leonhard, 416
Euler, Leonhard, 416
Even functions, 43, 59, 67, 304, 319
Events, 364, 459

complement of, 364
Existence question, 189, 491, 679
Expanded form, 525, 558
Expectation, 364-366, 370, 713
Expected value, 365-367, 369-370, 464, 712
Experiment, 15, 30, 121, 124, 133, 154, 208, 237, 364,

424, 539, 547
Explicit formula, 451, 455-456, 460
Exponential decay, 252-253, 257
Exponential distribution, 438
Exponential equations, 106
Exponential functions, 45-46, 49, 99-100, 109, 170,

373
defined, 99, 109
domain of, 109
inverse of, 99-100, 170

Exponential growth, 189, 251-253, 255, 257, 399, 802
Exponential model, 253
Exponents, 35, 44, 46-48, 100, 106, 139, 160

integral, 139
irrational, 44, 47, 100, 106
negative integral, 139
rational, 44, 100, 106, 160
rules of, 139
zero, 46

Extrema, 189, 200-203, 221, 224, 259, 290, 506,
661-663, 667, 671, 675, 797

absolute, 200, 290
relative, 200, 290

F
Factoring, 10, 86, 398, 425-426
Factors, 8, 144, 235, 280, 396-399, 513, 781

defined, 280
Family of functions, 238, 281
Feet, 4, 7, 34, 59-60, 64, 87, 121-122, 124-125, 140,

143-144, 150, 153-155, 161-163, 165-168,
176, 178-179, 184-187, 200, 207-208,
212-215, 237, 247-251, 259, 261, 263, 269,
271, 301, 318, 328, 349-356, 371, 414, 463,

515, 523-524, 537, 575, 586-587, 604, 618,
625-626, 630, 649, 653, 659, 664, 666-667,
692, 697, 707, 743

Fibonacci Leonardo, 456
Fibonacci sequence, 456, 465, 485, 490, 779
Fifth derivative, 151
Finite sequence, 235
First derivative, 151, 153, 193, 195, 201-204, 207-208,

212, 219, 223, 246, 411
First quadrant, 23, 115, 140, 161, 213, 219, 328, 333,

335, 338, 341, 348, 444-445, 448, 510, 524,
541, 553, 670, 690-691, 694, 697, 707, 726,
732, 837

First-order linear differential equation, 411, 413
Fixed points, 116, 176, 179, 520, 523, 547
Focus of a parabola, 514
Formulas, 35, 42-43, 60, 66, 71, 140, 170-171,

177-178, 210, 230, 239, 248, 263, 266-267,
270-271, 277-279, 294, 314, 317, 344-347,
359, 378, 381, 402-403, 405, 421, 451, 465,
486, 489, 506, 528, 531, 583, 598, 601, 652,
668, 698, 700, 707, 711, 720, 723, 740, 762

Fourth derivative, 151, 315
Fractions, 6, 372, 373, 395-401, 403, 421, 433, 443,

490
clearing, 397
equivalent, 396
improper, 395, 399, 401, 403, 443
like, 396, 399, 421
powers of, 396
proper, 395-396, 403

Frequency, 51, 60, 365, 786
Function notation, 29, 149
Functions, 1, 29-49, 51-57, 59-61, 63, 65-68, 70, 71,

74, 83-85, 88, 91, 94-95, 97-109, 111,
113-115, 119, 132-135, 137-143, 146, 149,
156-158, 162, 168-175, 177, 179, 183-184,
186-188, 189-190, 194-197, 205, 210-211,
216-221, 223-225, 228-230, 237-238, 241,
258-259, 273, 275, 281, 285, 287, 291,
304-305, 308, 316, 318-319, 342-343, 372,
373-374, 378, 391, 395-397, 399, 401-408,
410-411, 415, 424, 427, 432, 438, 481-482,
486, 489, 498, 557, 581-583, 585, 587,
589-590, 619-626, 628-638, 640-642,
644-646, 648-654, 656-664, 666-668, 670,
672, 674, 679, 686-687, 690-691, 693,
708-709, 729, 733-734, 737, 779, 794

algebraic, 42, 67, 228, 230, 273, 373, 396
average rate of change, 132
constant, 41-42, 45, 55, 71, 83-84, 100, 108, 115,

133-135, 140, 149, 168, 172, 179,
186-187, 196, 210, 228-230, 237-238,
241, 258, 291, 318, 373, 378, 402, 411,
432, 438, 585, 587, 590, 623-624, 626,
628, 630, 638, 645-646, 648, 654, 657,
729, 733-734, 737, 779

cube, 146, 184, 216, 220, 587, 589
defined, 30, 32, 38-39, 42, 44, 47, 54-55, 57, 61,

67, 85, 91, 95, 98-99, 103-104, 107-109,
111, 114, 132, 142, 158, 174, 183-184,
189-190, 210, 229, 238, 258-259, 285,
308, 316, 407, 438, 582, 625, 628-630,
632-637, 641, 648, 652, 656, 660-661,
663, 672, 686, 708-709

difference, 55, 66, 83, 91, 113, 133, 135, 210, 225,
638, 640

domain and range, 29-31, 34, 46, 48, 140, 219,
581, 630

evaluating, 85, 113, 133, 142, 291, 403-404, 632,
679

even, 31-35, 43, 45, 47, 52-53, 57, 59, 61, 67-68,
84, 94, 102-104, 107-109, 111, 113, 133,
137, 149, 156, 158, 162, 170, 172,
194-195, 217, 219, 221, 223, 275,
304-305, 308, 316, 319, 342-343, 427,
438, 482, 498, 619, 632, 668, 708

exponential, 1, 42, 44-47, 49, 51, 71, 98-103,
105-106, 109, 119, 168-173, 189, 373,
399, 438

family of, 238, 281, 411
function notation, 29, 149
graphs of, 1, 31-33, 37, 42, 44-46, 48, 51-53, 59,

66, 68, 94, 97, 99, 102, 105-107, 133,
156, 175, 179, 220-221, 224, 342, 631,
637, 642

greatest integer, 32, 74, 589
identity, 41-42, 52, 59-60, 65, 70, 95, 103, 134,

140, 143, 396, 411, 581

inverse, 1, 35, 38-44, 47-48, 61, 63, 65-66, 99-100,
102, 104-107, 109, 119, 168-170,
173-175, 177, 179, 237, 291, 373, 734,
794

linear, 42, 60-61, 66, 134-135, 139, 183-184, 187,
219, 223, 230, 258, 318-319, 373,
396-397, 399, 410-411, 638, 640-642,
667, 679, 686

logarithmic, 1, 42, 44-45, 47, 49, 51, 98-100,
102-103, 109, 119, 168-174, 373

maximum value, 189-190, 217, 219, 258, 285, 660,
662, 664, 666-667, 670, 672

minimum value, 189, 217, 219, 258, 285, 626, 660,
662-664, 666-668, 670, 672

notation, 29-30, 49, 67, 133, 149, 238, 241, 438,
590, 628-630, 640, 644, 649

odd, 29, 31-33, 35, 43, 52-53, 56-57, 59, 61, 67-68,
103-105, 107-108, 132-133, 196,
216-217, 219-221, 304-305, 308, 319,
396, 498, 631, 794

one-to-one, 39-40, 48, 729
piecewise, 61
polynomial, 41-44, 85, 95, 102, 108, 216-217, 224,

230, 275, 395, 399, 401, 403, 486,
632-634, 657-658, 662

product, 43, 60, 67, 137, 139-140, 142-143, 146,
157, 171-172, 210, 219-220, 258, 273,
372, 378, 399, 402, 411, 432, 557, 587,
645, 666

quadratic, 42, 61, 104, 223, 229-230, 287, 399
quotient, 1, 44, 85, 133, 138-139, 142, 146, 171,

175, 217, 395, 402
rational, 1, 34, 42-45, 66-67, 85, 95, 98-100,

105-108, 111, 115, 172, 217, 224, 275,
373, 395-397, 399, 401, 403, 632-634

square, 29-30, 34, 36-37, 46, 51, 115, 138, 140,
168, 205, 216, 259, 395, 587, 589, 620,
628, 630, 650, 662-663, 667, 670, 729,
734

sum, 32, 43, 60, 67, 71, 84, 135, 210, 258, 273,
275, 308, 316, 318-319, 395-396, 399,
402-403, 481-482, 486, 659, 666-667,
708, 779

transcendental, 42, 109, 230
translations, 37-38, 42, 68
trigonometric, 1, 42, 51, 53-57, 59-61, 63, 65, 71,

95, 97, 103, 106, 109, 119, 140-143, 146,
168, 174-175, 177, 179, 305, 372, 373,
391, 403, 690

Fundamental identity, 103
Fundamental theorem of algebra, 280
Future value, 256

G
Gallons, 184-185, 199-200, 297-299, 318, 408,

412-414, 805
Gamma function, 448
General solution, 249, 411-413, 415
Geometric interpretation, 77, 272, 304-305, 378, 425,

430, 445, 477, 577, 644, 660, 668, 670
Geometric mean, 16, 216, 674
Geometric series, 458-460, 462, 464-466, 468,

470-471, 473-474, 482-483, 486-487, 489,
508

infinite, 458-460, 462, 464-466, 468, 470, 474, 482,
486, 489, 508

Geometry, 71, 162, 206, 228, 263, 277-279, 539,
557-558, 560, 562, 564, 566, 568, 570, 572,
574, 576, 578, 580, 582, 584, 586, 588, 590,
592, 594, 596, 598, 600, 602, 604, 606, 608,
610, 612, 614, 616, 676

Golden ratio, 456
definition of, 456

Grams, 50, 124, 253, 255-256, 261, 358, 423, 682,
804, 811

Graphing calculator, 3, 24, 26, 30-31, 44, 75, 94, 103,
125, 141, 144, 169, 199, 205, 223-224, 290,
306, 343, 367, 540, 547-548, 605

and vertical asymptotes, 94
Graphs, 1, 24-29, 31-33, 37, 40-42, 44-46, 48, 51-53,

59, 66, 68, 94, 97-99, 102, 104-107, 133,
144, 148, 156-157, 160, 172, 175, 179, 201,
210, 220-221, 224, 257, 260, 323, 328, 335,
342, 349, 363, 383, 388, 501, 511, 526, 540,
544-548, 551, 554-555, 557, 559, 562,
606-607, 612, 619-621, 631, 637, 642, 667,
682

of inverse functions, 40
Greater than, 5-8, 11, 46, 74, 89, 91-92, 104, 113, 254,
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287, 349, 367, 451-452, 454, 470-471, 473,
777, 783

Growth, 7, 124-126, 189, 199, 251-257, 261, 399, 402,
410, 802

exponential, 189, 251-253, 255, 257, 399, 802
limited, 253

Growth rate, 124, 253, 256-257

H
Half-angle identities, 58-59, 385-386

using, 58-59
Half-life, 253, 255-257
Half-open interval, 444
Hemisphere, 167-168, 336, 704-706, 719, 762, 766,

771, 775, 829
Higher-order derivatives, 119, 151, 153, 155
Horizontal asymptotes, 93, 116-117

defined, 117
Horizontal axis, 121, 215, 512
Horizontal line, 1, 16-17, 19-21, 39, 41, 47, 59, 66-67,

99, 133, 143, 360, 711, 729
graph of, 21, 39, 41, 47, 66-67, 99, 133, 143
slope of, 19, 21, 66

Horizontal lines, 16, 604, 721
Hours, 43, 51, 60, 121, 124, 164-166, 184, 215, 230,

252, 254, 256, 297-300, 307, 316, 367-368,
408, 438, 440, 465, 793, 798, 805

Hyperbola, 511-512, 514-516, 518-525, 527-528, 531,
533, 542-543, 554, 606-609, 615, 817, 819,
822, 824

defined, 533
eccentricity, 511, 518-521, 523-524, 542, 554
equation of, 512, 514-515, 518-521, 523-525,

527-528, 531, 533, 542, 554, 607, 615
finding, 531
graphing, 515
rotation of axes, 511, 525, 527-528, 531

Hypotenuse, 1, 16, 23, 34, 52, 308

I
Identity, 41-42, 52, 59-60, 64-65, 70, 95, 103, 118,

134, 140, 143, 266, 270, 307, 376-377,
385-387, 389, 396, 411, 490, 532, 563,
577-578, 580-581, 771, 786

defined, 42, 95, 103, 307, 490, 563, 578, 771
linear equations, 411

Image, 606, 721, 724, 729, 733, 837
Implicit differentiation, 119, 156-161, 174, 176, 186,

446, 510, 535, 652
Improper integrals, 425-426, 428, 430, 432, 434-448,

450, 466
Inches, 4, 7, 15-16, 23, 68-69, 150, 166-168, 181-182,

184-185, 188, 199-200, 205, 212, 215, 259,
335, 354-355, 369-371, 587, 628, 630, 653,
666, 675, 682, 835

Increasing function, 193, 258, 319, 421
derivative and, 193

Indefinite integral, 238-239, 244, 258, 281, 292-293,
296, 318-319, 374, 396, 398, 402-403

Independence, 733, 744-747, 749
Independent variable, 30, 51, 130, 180, 256, 650
Independent variables, 30, 60, 619
Indeterminate forms, 425-434, 436, 438, 440, 442,

444, 446, 448
Indicated sum, 270
Inequalities, 1, 8-15, 66, 70, 153, 188, 193, 195, 283,

455, 472, 502, 660, 767
absolute value, 11-12, 14-15, 153
compound, 11
defined, 11, 153, 193, 660
interval notation, 9, 14-15, 153
linear, 10, 66
polynomial, 502
properties of, 11, 15
quadratic, 10, 13-15, 153
rational, 1, 8, 66

Infinite, 8, 71, 89, 91-94, 257, 366, 368, 408, 425, 429,
431, 435, 437, 439, 441-448, 451-466, 468,
470, 472, 474, 476, 478, 480-482, 484, 486,
488-490, 492, 494, 496, 498, 500, 502, 504,
506, 508, 533, 814

geometric series, 458-460, 462, 464-466, 468, 470,
474, 482, 486, 489, 508

sequences, 91-92, 451-455, 461
series, 408, 451-452, 454, 456-466, 468, 470, 472,

474, 476, 478, 480-482, 484, 486,
488-490, 492, 494, 496, 498, 500, 502,
504, 506, 508

Infinite sequence, 451
Infinity, 71, 89-91, 93, 101-102, 256, 429, 435, 438,

444-447, 452, 454
limits involving, 71

Inflection point of, 197, 410
Inflection points, 197-198, 216-220, 222-224, 257,

259, 290, 440, 443, 796, 800-801, 803
Initial condition, 254, 400, 402, 411, 413, 415-417,

419-420, 422, 591
Initial point, 562, 581, 646, 648, 675, 737, 748, 754
Inputs, 33, 674
Instantaneous rate of change, 123-124, 255, 302
Integers, 1-2, 6-7, 44, 50, 67, 159, 264, 266, 384,

386-387, 390, 424, 451-452, 463, 466, 490,
783, 785, 810

graphs of, 1, 44
Integral exponents, 139

negative, 139
rules for, 139

Integral sign, 238, 241, 688
Integrals, 239, 241, 243-244, 263, 274-275, 277-280,

283, 288-289, 291, 294, 296-299, 301-308,
316, 319-320, 322, 326, 328, 339-341, 345,
349, 367, 371-372, 373-376, 378, 381,
384-387, 389-390, 393, 395, 403-406,
408-410, 421-422, 424, 425-426, 428, 430,
432, 434-448, 450, 466, 537, 590, 635, 676,
677-702, 704-706, 708-730, 732, 733,
737-739, 741, 743-744, 746, 748-749,
751-752, 756-759, 761, 763, 765

definite, 263, 274-275, 277-280, 283, 288-289, 291,
294, 296-299, 302-304, 306, 308, 316,
320, 322, 345, 367, 375, 378, 387, 390,
393, 404, 406, 408-410, 435, 737-738,
744, 746, 757, 765

evaluating, 291, 303, 340, 367, 403-404, 677, 679,
682-683, 692, 738, 744, 752, 758

improper, 395, 403, 425-426, 428, 430, 432,
434-448, 450, 466

indefinite, 239, 241, 243-244, 294, 296, 298, 308,
319, 374-375, 378, 386, 403-404

Integrand, 238-241, 243, 282, 290, 294-296, 304-306,
312, 314-315, 327, 332, 340, 376, 384, 386,
390, 397, 403-404, 420-421, 438, 444-446,
535, 538, 682, 684, 723, 726, 729

Integration, 237, 248, 263, 274, 291-292, 294-297,
304, 308-309, 311, 313, 315-317, 326-329,
331, 334, 340, 348, 359-360, 369, 371,
373-384, 386, 388, 390, 392-412, 414, 416,
418, 420-422, 425, 435, 437-439, 441,
443-445, 447-448, 486, 535, 583, 648, 677,
684, 686-692, 694, 697, 701, 706-707,
709-710, 714, 719, 723, 726, 729-730, 747,
751

by substitution, 378
constant of, 402, 648
factor, 359, 388, 398-399, 411-412, 420-421, 694
formulas for, 263, 359, 486, 707
limits of, 296-297, 340, 375, 393, 425, 435, 437,

439, 441, 443, 535, 709, 723
numerical, 237, 263, 308-309, 311, 313, 315, 317,

404-407, 410, 418, 706
region of, 383, 394, 688, 697, 706, 723, 726, 729,

751
Integration by parts, 373, 378-384, 390, 402-403, 421,

435, 439, 441, 447
repeated, 380, 383

Integration-by-Parts Formula, 382
Intercepts, 21, 23, 26, 28, 34, 66, 216-217, 219,

559-560, 659
slope-intercept form, 21

Interest, 30, 101-102, 105-106, 123, 236-237,
255-256, 344, 412, 443, 506, 542, 619, 694,
735

compound, 101, 255
simple, 30, 542, 694

Interest rate, 30, 101, 106, 236, 255-256, 506
annual, 30, 101, 236, 255

Intermediate value theorem, 112-115, 117, 199,
229-231, 307, 692

Intersecting lines, 59, 511, 527, 554, 621, 818
Interval notation, 9, 14-15, 30, 67, 153, 640

defined, 30, 67, 153
Intervals, 8, 10, 12-14, 53, 66, 71, 89, 111, 114, 121,

133, 183, 189-190, 194-195, 199-201, 203,
222, 229, 236, 238, 271, 290-291, 308, 316,
318, 410, 420, 465, 483, 533, 635, 640, 790

of convergence, 465, 483
Inverse, 1, 35, 38-44, 47-48, 50, 61-63, 65-66, 69,

99-100, 102, 104-107, 109, 116, 119,
168-170, 173-175, 177, 179, 193, 237, 291,
355, 373, 437, 534, 596, 720, 734, 736, 741,
745, 750, 775, 786, 794

functions, 1, 35, 38-44, 47-48, 61, 63, 65-66,
99-100, 102, 104-107, 109, 119, 168-170,
173-175, 177, 179, 237, 291, 373, 734,
794

Inverse functions, 40, 47, 100, 168, 794
defined, 47
one-to-one, 40
trigonometric, 168

Irrational exponents, 47
Irrational number, 3, 7-8, 44, 66-67, 98-99, 105, 116
Irrational numbers, 2-3, 7, 66
Isosceles triangles, 692, 783
Iterated integration, 691

J
Joint probability density function, 712, 715

K
Kepler, Johannes, 519, 587
Koch snowflake, 464

area, 464
perimeter, 464

L
Lagrange multipliers, 619, 664, 668-669, 671-675
Least squares, 208, 212, 667
Leibniz notation, 130, 133, 151, 180
Length, 1, 4, 7, 18, 22-23, 30, 34, 51, 53, 56-57, 60,

71, 115-116, 124, 140, 165, 167, 184, 188,
200, 206-208, 212-215, 231, 237, 251-252,
259, 263, 267, 269, 272, 274, 276-277, 301,
313, 322, 323, 326, 335-337, 342-352,
354-355, 357-358, 366, 370-371, 377, 394,
422, 425, 445, 458, 463-465, 481, 513-515,
518, 520, 523-524, 528, 531-532, 535-539,
544, 547, 550, 553-556, 560-563, 565-566,
573-574, 580-582, 584, 590, 595-596, 598,
605, 615-618, 659, 665-667, 670, 675,
677-678, 701, 707-708, 732, 734, 738-741,
753-754, 790, 798, 833

Like terms, 489
Limiting value, 413
Limits, 71-86, 88-98, 100-102, 104, 106, 108, 110-112,

114, 116, 118, 129, 136, 141, 143, 191, 280,
282, 284, 286, 294, 296-297, 320, 340, 352,
375, 393, 406, 409, 424, 425-426, 429-430,
435-437, 439, 441, 443, 447, 450, 452, 456,
461, 535, 582, 619, 631-636, 644, 688, 696,
709, 718, 723, 726, 777, 779, 781

algebraic, 73, 425
and improper integrals, 426, 430, 436
at infinity, 71, 89-91, 93, 429, 452
existence of, 296
of integration, 296-297, 340, 375, 393, 406, 425,

435, 437, 439, 441, 443, 535, 688, 709,
723, 726

of rational functions, 95
properties of, 79, 82, 106, 111, 284, 452, 461

Line, 1-3, 5, 10, 12-14, 16-24, 26, 28, 31, 33-34,
39-41, 47, 52, 59-61, 64, 66-68, 70, 71, 77,
80, 90, 93-94, 96, 99, 116, 119-126,
128-131, 133-134, 140-144, 150, 152-153,
155-156, 158-161, 166, 168-169, 179-180,
183, 185-186, 188, 190, 193-194, 197,
209-210, 212-213, 215, 218, 220-222, 225,
227, 230, 232, 247-248, 250, 257, 263, 267,
274, 280-281, 283, 286, 290, 312-313, 322,
324, 326-332, 334-336, 338-339, 341-342,
344-346, 348-350, 354, 356-357, 360-363,
365, 370-371, 383, 390, 410, 415-416, 419,
421-422, 429, 440, 454, 456, 464, 483-484,
499, 507, 510, 511-516, 521-524, 527, 531,
533-535, 537, 539, 542-547, 549, 551-556,
559-560, 562, 564-565, 567, 571-572, 575,
580, 584-585, 587-588, 591-597, 603-606,
611, 615-617, 619, 627, 630, 634, 636-638,
643-644, 654-657, 659, 667, 669, 674-675,
679, 686-687, 689-690, 694, 696, 698,
700-702, 709-711, 719, 727, 729, 732, 733,
737-739, 741-746, 748-753, 756-757, 760,
765-766, 784, 818, 821, 826, 830, 832-833

horizontal, 1, 16-21, 31, 39, 41, 47, 59, 64, 66-67,
93-94, 99, 116, 121, 130, 133, 140,
143-144, 153, 155-156, 168, 179,
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185-186, 188, 190, 215, 220, 222, 250,
257, 326-327, 335, 339, 356, 360, 363,
416, 512, 515, 521, 523-524, 531, 539,
542, 553, 564, 567, 604, 643, 659, 675,
711, 729, 745

of symmetry, 263, 327, 360, 611, 719
secant, 61, 119, 123-125, 130, 142, 225, 227, 257,

638
slope of, 18-19, 21-22, 66, 119-126, 129-131, 166,

168, 185, 193, 197, 280, 415-416,
513-514, 521, 524, 534-535, 549,
552-553, 555, 627, 630, 638, 643, 675

tangent, 22-24, 59, 61, 67, 119-126, 128-131,
140-144, 150, 158-161, 166, 168-169,
179-180, 183, 185-186, 188, 190,
193-194, 197, 213, 221, 225, 227, 230,
232, 257, 263, 280, 416, 421, 499, 510,
513-515, 521-524, 534-535, 537, 549,
551-555, 562, 584, 591, 593-597,
603-604, 616-617, 619, 627, 630,
637-638, 643-644, 654-657, 659, 669,
675, 701, 719, 753, 766, 830, 833

Line segments, 24, 71, 263, 312-313, 344, 419, 560,
562, 679, 750, 832

Linear combination, 60
Linear equations, 411
Linear functions, 135

finding, 135
Linear polynomials, 397, 421
Linear velocity, 700

defined, 700
Lines, 16, 18-21, 23-24, 31, 59, 66, 68, 77, 93,

119-120, 124, 130, 135, 140, 158, 160-161,
186, 214, 222, 259, 281, 297, 299, 341, 416,
422, 426, 510, 511, 514-515, 518, 524, 527,
531, 542, 544, 552, 554, 557, 559, 564, 576,
591, 593-595, 604, 606, 608, 616, 621, 626,
637, 639, 667, 677-678, 681, 690, 702-703,
709, 721-722, 724, 728, 818

graphing, 24, 31, 515, 544, 667
parallel, 16, 21, 23-24, 66, 68, 259, 510, 514-515,

524, 527, 531, 554, 576, 591, 593-594,
606, 608, 616, 626, 639, 677-678, 702,
721-722, 724

perpendicular, 21, 23-24, 66, 68, 140, 160, 186,
510, 511, 514-515, 524, 531, 542, 557,
593-594, 616, 702

slope of, 18-19, 21, 66, 119-120, 124, 130, 416,
514, 524, 552, 721

Liters, 167
Local maximum or minimum, 203, 661, 672
Location, 60, 363, 568, 585, 623-624
LOG key, 50
Logarithmic functions, 1, 42, 44-45, 47, 49, 98-100,

102, 109, 119, 168-171, 173
common, 49
defined, 42, 44, 47, 98-99, 109
graphing, 44, 102, 169
natural, 1, 49, 98-99, 102, 170-171, 173

Logarithms, 47, 49, 100, 106, 172, 252-253, 435, 476
defined, 47
power rule, 172

Logistic equation, 402
Logistic model, 253, 256
Long division, 2, 7, 233, 243, 395, 403
Lower bound, 290, 454, 805
Lowest terms, 159

M
Maclaurin series, 451, 491, 493-499, 507-508
Magnitude, 51, 350, 477, 548, 562-568, 571-572, 577,

587-588, 596, 601-603, 616, 623, 641, 654,
734, 750, 764, 766, 774, 786

Marginal cost, 211-212, 215
Marginal profit, 126, 211
Marginal revenue, 123-124, 211-212, 215-216
Mass, 94, 115, 123-124, 161, 184, 208, 248, 255-256,

300, 323, 349, 356-359, 361-363, 365-366,
370, 402, 405-406, 408-410, 423, 444, 464,
506, 553, 562, 587-588, 604, 654, 677, 682,
698-702, 711, 713-714, 716, 718-720,
726-728, 730-731, 734, 737, 739-740, 743,
749-750, 759, 763-766, 769-770

Mathematical induction, 5, 456, 777-780
defined, 5, 456
proof by, 5

Maxima, 189, 191, 200, 202-204, 219, 221, 290, 619,
659, 661, 663, 665, 667, 797, 803, 805

absolute, 200, 290

Maximum, 34, 43, 54-55, 144, 154-155, 186, 189-193,
197, 200-206, 211-220, 222-226, 236-237,
250, 253, 257-259, 285, 290, 307, 348, 390,
399, 402, 414, 435, 440, 502-503, 505-506,
519, 523, 544, 549, 585-586, 590, 603, 605,
616, 618, 645, 657, 659-664, 666-675, 750,
795, 797-798, 800-803, 805, 814, 831,
833-834

Maximum profit, 212
Mean, 2, 4-5, 16, 35, 44, 49-50, 52, 71, 73-74, 82,

107, 109, 111, 113, 123, 129, 133, 174,
180-181, 189, 216, 225-230, 241, 257, 259,
263, 270, 275, 282, 301-303, 305-307, 320,
344, 349, 365-366, 370, 426-428, 430, 438,
440, 443, 448, 451, 454, 468, 491-493, 507,
520, 523, 550, 558, 563, 566, 587, 589, 619,
634, 640, 643, 674, 692, 709, 735, 744, 748,
771

defined, 5, 44, 73, 107, 109, 111, 174, 180, 189,
229, 257, 259, 301, 307, 370, 428, 438,
448, 451, 558, 563, 566, 634, 692, 709,
735, 771

finding, 133, 189, 263, 366, 448
geometric, 16, 52, 216, 225, 270, 305, 430, 468,

674
harmonic, 468
quadratic, 226-227, 229-230, 257, 302

Means, 3-6, 13, 17, 34, 39-40, 44, 52, 56-57, 60, 66,
73-75, 77-78, 82-83, 85, 93, 108-109, 112,
115, 149, 152-154, 182, 197, 203, 205,
209-211, 232, 239, 264, 267, 269, 272-274,
308, 344, 347, 350, 355, 391, 404, 417, 429,
434-435, 451, 470, 474, 489, 501, 529, 534,
549, 581, 631-632, 634-635, 638, 648, 651,
669, 677-678, 682-683, 689-690, 693, 695,
715, 717, 746, 753, 772, 781

Measures, 1, 16, 56, 58, 153, 161, 167, 182, 184, 297,
327, 356, 590, 595, 598, 604-605, 644, 735,
754-755, 774, 779

Median, 369, 567
Meters, 124-125, 186, 205-206, 209-210, 214, 248,

250, 271, 278, 287, 300, 349-350, 514, 572,
575, 590, 604, 648-649, 775

Midpoint, 18, 22-23, 55, 68, 113, 116, 229-231, 273,
279-280, 309-311, 314, 317-319, 321, 354,
370, 406, 514-515, 559, 575-576, 804

Midpoint formula, 18, 559
Minima, 189, 191, 200, 202-204, 219, 221, 290, 619,

659, 661, 663, 665, 667, 797, 805
absolute, 200, 290

Minimum, 54-55, 189, 191-193, 197, 200-205,
207-209, 212-220, 222, 224, 226, 236,
257-259, 285, 290, 348, 390, 435, 506, 519,
523, 544, 549, 556, 585-586, 590, 605, 618,
626, 660-675, 714, 750, 795, 797, 800-803,
805, 814, 831, 833-834

Minutes, 115, 125, 164, 230, 250, 256, 316, 318, 369,
402, 408, 412, 414, 790

Mode, 52, 58, 62, 73
Models, 56, 208, 210, 257, 366, 471

defined, 210, 257
Multiples, 57, 60, 134, 540, 591

common, 57
Multiplication, 5, 11, 41-42, 237, 373, 412, 488, 565,

568

N
n factorial, 155
Natural logarithms, 49, 106, 172, 435
Natural numbers, 1-2, 8, 91, 506-507
Negative integral exponents, 139
Negative numbers, 30, 37, 46, 90, 624
Newton, Isaac, 82, 130, 734
nonlinear, 354, 591
Normal distribution, 440
Notation, 8-9, 13-15, 29-30, 49, 67, 89, 127, 130, 133,

149, 151-153, 159, 180, 209, 238, 240-241,
264, 270, 274, 292, 320, 438, 470, 517, 519,
565, 590, 628-630, 640, 644, 649, 678, 684,
720, 735, 748, 766

exponential, 49, 438
interval, 8-9, 14-15, 30, 49, 67, 130, 133, 153, 238,

274, 320, 630, 640
Leibniz, 130, 133, 151-152, 180, 238, 241
limit, 89, 127, 133, 264, 274, 292, 320, 438, 470,

629, 644, 678
set, 8-9, 13-14, 29-30, 67, 89, 149, 209, 270, 438,

590, 630, 640, 720, 748, 766
sigma, 209, 264, 270, 320

summation, 264
nth partial sum, 457, 459, 465, 468-469, 508
nth root, 14, 108

defined, 108
nth term, 91, 99, 451, 459, 468, 471-472, 474,

484-485, 494, 815
Number line, 70, 77, 90, 410, 454, 565
Numbers, 1-3, 5-8, 12-14, 16-18, 26, 29-31, 34-35, 37,

40-42, 44-48, 54, 66-67, 70, 74, 77, 84,
89-91, 98-100, 105, 107-109, 116, 121, 127,
140, 151, 173, 191, 193, 198, 209, 212,
216-217, 226, 231, 236, 264, 270-271, 301,
366, 368, 398, 435, 451, 453-457, 465, 491,
504, 506-507, 517, 526, 529, 539, 547-549,
557, 561-562, 564, 575, 581, 591-592, 605,
623-624, 649, 666, 669, 674, 682, 720, 733,
777, 780, 783, 833

composite, 37, 42, 649, 777, 780
irrational, 1-3, 7-8, 44-45, 47, 66-67, 98-100, 105,

116, 539, 783
positive, 5-8, 12-13, 16, 30, 34, 44-45, 47-48, 54,

66, 70, 77, 84, 90, 108-109, 193, 209,
216, 236, 264, 435, 451, 465, 506, 517,
539, 547-548, 557, 562, 575, 666, 674,
777, 780

prime, 5, 7-8, 151, 777
rational, 1-3, 5, 7-8, 34, 42, 44-45, 66-67, 98-100,

105, 107-108, 116, 217, 454, 456, 682,
783

real, 1-3, 5-8, 12-14, 16, 29-31, 34, 41-42, 46-48,
54, 66-67, 70, 89-90, 99, 108-109, 116,
127, 140, 151, 173, 217, 231, 236, 271,
366, 368, 451, 454, 456, 507, 548, 581,
591, 624, 649, 720, 733, 783

whole, 6, 91, 212, 507, 674, 777

O
Objective function, 189-190, 205, 668-669
Oblique asymptote, 94, 218, 257, 419-420, 789, 812
Odd functions, 31, 43, 59, 67, 304, 308, 319, 498
Open interval, 8, 77-78, 86, 107, 109, 111-112,

194-195, 198, 201-202, 207-208, 258, 444,
482, 492, 533, 640, 781

Open intervals, 66, 111, 189, 200-201, 203, 635
Optimal, 205, 208
Optimization problems, 205
Ordered pair, 16, 197-198, 416, 564, 619, 692, 716,

721
Ordered pairs, 30, 40, 209, 220, 343, 415, 417, 510,

635, 720
Ordered triple, 557, 564-565, 624
Origin, 2, 11, 16, 23, 25-26, 28, 32, 35, 41, 51, 53, 58,

70, 74, 104, 113, 116, 118, 122, 124, 128,
134, 150, 155, 160-161, 186, 196-197,
209-210, 212-216, 219-220, 222, 224, 229,
238, 278-279, 281, 287, 291, 304, 348,
356-357, 369, 410, 512, 514-518, 525, 528,
531, 534, 538-540, 542, 545, 554, 557, 561,
564-565, 570, 575, 580, 584-586, 588-590,
594, 596, 604, 607, 610-613, 615, 624,
633-637, 643, 648-649, 653-654, 656, 663,
666, 668, 670, 672-675, 696, 702, 713-714,
718-719, 726, 731-732, 733-734, 737, 741,
745, 750, 754, 756, 760, 762-763, 765,
769-770, 775-776, 829, 831, 836-838

coordinate system, 16, 23, 525, 539, 554, 590, 611,
613

symmetry, 25-26, 219, 304, 348, 369, 410, 517,
545, 611, 672, 696, 713, 718-719

Orthogonal vectors, 570
Ounces, 199
Outputs, 33

P
Parabola, 26, 28, 43, 212-213, 267, 310, 313, 326,

335, 338, 342-343, 371, 511-515, 522,
524-528, 530-532, 537, 541-544, 554, 586,
604, 608, 610, 614, 634, 636, 679, 732,
817-819, 821, 824

defined, 537, 634, 636
equation of, 26, 213, 512-515, 524-528, 530-531,

537, 541-542, 544, 554, 586, 610, 614
graphing, 26, 343, 515, 532, 544
intercepts, 26, 28
vertex, 43, 213, 512, 514-515, 524-525, 528,

531-532, 542, 554, 824
Parallel lines, 21, 24, 527, 531, 554, 594, 626, 639,

702, 721-722
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defined, 702
vectors, 594

Parallelogram law, 563
Parallelograms, 703

area of, 703
Parameters, 440, 761
Parametric curves, 538
Parametric equations, 342-343, 348-349, 371,

532-534, 537-538, 547, 556, 560, 583, 585,
591-594, 598-599, 616-617, 627, 643, 654,
659, 667, 732, 739, 741, 750, 753, 762, 772

defined, 533-534, 537-538, 560, 616, 741, 762
writing, 348

Partial derivatives, 619, 626-631, 635, 637-638,
640-644, 651, 662, 664-665, 702, 735-736,
747, 750-751, 758, 761-762, 766, 772, 775

finding, 626, 702, 750
geometric interpretation of, 644

Partial fractions, 373, 395-397, 399-401, 403, 421,
443, 490

decomposition, 396-397, 399, 401
defined, 490

Pascal, Blaise, 280, 352
Paths, 513, 536, 632, 634, 742, 746

definition of, 632
Percent increase, 184
Perfect square, 376
Perimeter, 16, 34, 60, 89, 212-213, 257, 445-446, 464,

538, 553, 668, 674, 814
Periodic function, 54

defined, 54
Periods, 54, 101-102
Perpendicular lines, 21
Plane, 16, 22, 24-26, 28, 31, 70, 116, 140, 150,

166-167, 179, 219, 250, 263, 278-279, 323,
325, 327, 329-331, 333, 335-336, 339-340,
342-343, 345, 347, 358-361, 369-370, 414,
511, 520, 524-525, 532-533, 535, 537, 539,
543, 549-550, 554, 557-564, 567-568, 570,
572-581, 584-585, 590, 592-598, 602-611,
614-617, 619-621, 624-625, 627, 630,
633-637, 639, 641, 643-647, 649, 654-661,
664, 666-667, 672-676, 682-683, 685-686,
689-693, 695, 697-698, 700, 702-704,
706-707, 709-711, 714, 716-717, 719-721,
724, 726, 728-732, 733, 737, 742-743, 745,
751, 753-759, 761-762, 764-766, 771-773,
775-776, 791, 826, 829-830, 832, 837

Plane geometry, 278-279
Plots, 26, 183, 623

contour, 623
Plotting, 52, 94, 141, 193, 205, 216, 415, 515, 557,

624
Plotting points, 557
Point, 2, 10-11, 16-25, 33, 51-52, 54, 60, 66, 68, 72,

75, 77, 81, 93, 95, 107-109, 111-116, 118,
119-121, 123-125, 128-131, 137, 140-142,
144, 150, 155-156, 158-162, 164, 166-169,
178-180, 183-186, 188, 189-193, 197-203,
206-207, 209, 212-213, 219, 221-226,
228-237, 242, 245, 249-250, 257-258, 260,
269, 272-277, 279-280, 282-283, 294,
300-302, 308-309, 320, 328-329, 342-348,
350, 355-358, 361, 366, 369, 387, 400,
405-407, 410, 415-416, 418, 420-421, 444,
446-447, 455, 457, 464, 468, 483-484, 487,
491-493, 499, 502, 504, 508, 510, 511-516,
520, 523-525, 527-528, 531-536, 538-544,
546-547, 550, 554-556, 557-565, 568, 570,
572-577, 581, 583-586, 588-595, 597,
600-608, 611-613, 615-618, 619, 625-627,
630, 633-640, 642-649, 653-669, 671-673,
675, 677, 680, 682, 686, 698, 700-703,
707-708, 714-717, 719, 728, 730, 732,
733-742, 745, 748, 750, 754, 757, 760, 766,
769-770, 774, 787, 795-797, 800, 803, 818,
833

critical, 190-192, 201-203, 206-207, 212, 219, 221,
226, 257-258, 604, 660-661, 663-664,
666, 669, 671-672, 795, 797, 803, 833

equilibrium, 515, 564, 568
of discontinuity, 108-109
of inflection, 197-198, 221, 223-224, 257-258

Points, 1, 8, 10, 13-14, 16-28, 31, 40, 49, 52, 55, 66,
68, 71, 74, 77, 89, 95, 103, 107-109,
113-114, 116, 120, 124, 132, 140, 142-144,
149-150, 153, 161, 176, 179, 184, 187-188,
190-195, 197-199, 201-207, 209-210,
212-213, 216-224, 228-229, 231, 257-259,

267, 269, 272-273, 275-276, 278-279, 290,
297, 299, 302, 308, 310, 312-313, 326, 329,
343-344, 347, 352-353, 356-358, 361, 370,
397, 407, 435, 440, 443, 483-486, 492, 510,
511-512, 514-516, 520-521, 523-524,
531-533, 539-541, 543-547, 550-551,
553-556, 557-563, 567-568, 570-572,
574-578, 580, 584-586, 589, 591-592,
594-599, 602, 604, 606, 615-617, 619, 621,
623-624, 627, 631, 633-635, 637-638, 640,
643, 645-646, 648, 659-661, 663-664,
666-667, 669, 671-673, 675-676, 678,
680-681, 706, 714, 721, 732, 734, 737, 741,
745-746, 751, 757, 760, 762, 766-767, 769,
795-797, 800-803, 831, 833

Point-slope form, 19-21, 66, 121, 141, 183, 225
Polar coordinate system, 511, 539, 541, 543

polar axis, 539, 541
pole, 539, 541

Polar equations, 511, 540, 542-548, 554
graphing, 540, 544, 547-548

Polygons, 71, 263-264, 267-268, 271-272
regular, 71, 263, 272

Polynomial, 41-44, 85, 95, 102, 108, 116, 136, 144,
185, 201, 216-217, 224, 230, 256, 271, 275,
280, 317, 340, 383-384, 395, 399, 401, 403,
421, 449, 486, 499-509, 605, 632-634,
657-658, 662, 778

Polynomial functions, 42, 44, 85, 95, 216-217, 275,
395, 634

graphs of, 42, 44
Polynomials, 243, 276, 395, 397, 421, 453, 476, 488,

499-502, 505, 632, 657
defined, 632
degree of, 395
quadratic, 499

Population, 125, 199, 250-253, 255-257, 261, 399,
401-402, 416, 797, 802, 811

census, 257
Population growth, 125, 253, 402
Position vector, 576, 584-587, 590, 593-594, 596-597,

600-601, 604-605, 617, 649, 654, 734, 740,
742

Positive integers, 44, 264, 266, 384, 386-387, 424,
451-452, 466, 490

Positive numbers, 12, 16, 47-48, 77, 216, 435, 547,
666, 674, 780

Pounds, 51, 168, 251, 349-356, 361, 371, 412-414,
437, 443, 515, 567, 575-576, 628, 630, 659,
743, 808

Power, 35, 37, 44-45, 49, 91, 98, 133-134, 136, 139,
145-147, 159-160, 172-173, 182, 238-243,
248, 293, 300, 305, 314, 373, 418, 420, 432,
434, 451, 453, 457, 481-491, 493, 497,
507-508, 664, 777, 781

defined, 44, 91, 98, 145, 238, 451, 457, 485, 490
logarithms, 49, 172

Power functions, 373
Power Rule, 134, 136, 139, 147, 159-160, 172-173,

238, 240-241, 243, 248, 293, 777, 781
extended, 293

Power series, 451, 457, 481-491, 493, 497, 507-508
Powers, 32, 35, 50, 60, 172, 373, 396, 457, 475, 498,

507, 516
Prediction, 56
Present value, 256, 443
Price, 43, 197, 199, 210-211, 215-216

total, 210-211, 215-216
Prime factorization, 7
Prime notation, 151
Prime numbers, 8, 777
Principal, 2, 13, 16, 30, 189, 211-212, 373, 578,

600-602, 677
Principal square root, 13, 16, 212, 578
Probabilities, 364-369, 438, 464, 712
Probability, 323, 364-371, 435, 438, 440, 443, 448,

459, 464, 695, 712, 715
Probability density function, 366, 443, 448, 695, 712,

715
Probability density functions, 438
Probability distributions, 438
Probability of an event, 364
Product, 8, 10, 43, 58, 60, 67, 81, 124, 136-137,

139-140, 142-143, 146-147, 151, 157,
171-172, 185, 210, 212, 219-220, 231, 258,
263, 273, 280, 356, 372, 378, 386-387, 399,
402, 411-412, 421, 432, 435, 492, 528-531,
555, 557, 568-569, 571, 573-580, 587, 600,
615, 645, 666, 724, 764, 766

Product Rule, 137, 140, 142-143, 146-147, 151, 157,
171-172, 219-220, 402, 492, 600

Profit, 34, 124, 126, 189, 199, 210-212, 215-216, 797
average, 34, 124, 211, 215
total, 34, 124, 210-212, 215-216

Projectile, 155, 513, 537, 586
Proportionality, 255, 261, 402, 423

constant of, 261, 402, 423
Proportionality constant, 255
Proportions, 213
Pyramid, 266, 707

surface area of, 707
volume of, 707

Pythagorean identities, 57, 385
Pythagorean theorem, 4, 16, 23, 52, 162, 164, 308,

558, 561, 581, 588
defined, 308, 558

Q
Quadrants, 16, 539, 541, 554, 838
Quadratic, 10, 13-15, 26-27, 42, 61, 104, 144,

153-154, 198, 223, 226-227, 229-230, 257,
287, 302, 376, 393, 398-399, 456, 499, 526,
530, 559, 722

Quadratic equations, 10, 26
Quadratic formula, 13, 15, 104, 154, 226, 302, 456,

722
discriminant, 13
using, 15, 226, 456

Quadratic inequalities, 13, 153
defined, 153

Quotient, 1-2, 10, 44, 85-86, 127-128, 130, 133, 136,
138-139, 142, 146-147, 151, 171, 175, 180,
217, 243, 245, 395, 402, 425, 453, 475, 504

functions, 1, 44, 85, 133, 138-139, 142, 146, 171,
175, 217, 395, 402

real numbers, 1-2, 127, 151, 217
Quotient Rule, 138, 142, 146-147, 151, 171, 175, 402
Quotients, 1, 35, 42, 172, 634

R
Radian measure, 57, 60, 503, 534, 538
Radicals, 390, 531
Radioactive decay, 253
Radius of a circle, 185
Random variable, 364-371, 438, 443, 464, 715
Random variables, 323, 364-369, 438, 712-713, 715,

729
continuous, 323, 366-369, 438, 729
defined, 367, 438, 712, 715
discrete, 366-369

Range, 16, 29-31, 34-35, 38-41, 43, 46, 48-49, 52-54,
58, 60-61, 65, 67, 102, 116, 140, 169,
219-220, 296, 451, 538, 564, 581, 619, 630,
720, 762, 790

defined, 30, 38-39, 54, 61, 67, 451, 538, 630, 762
Rates, 119, 123-124, 126, 145, 161, 163, 165-167,

253, 627, 654
Rates of change, 123-124, 627

average, 123-124
instantaneous, 123-124, 627

Ratio, 6-7, 44, 51, 67, 92, 130, 199, 213, 256, 456,
463, 473-476, 479, 482-485, 507, 511, 538,
627, 813, 815

common, 479
golden, 456

Ratio test, 473-475, 479, 482, 484-485, 507, 815
Rational exponents, 100, 106, 160
Rational expression, 474-475
Rational functions, 42, 85, 95, 108, 217, 275, 373,

395-397, 399, 401, 634
defined, 42, 85, 95, 108, 634
domain, 42, 95, 108
graphing, 217

Rational numbers, 1-3, 7-8, 34, 44, 66-67, 98-100,
105, 107, 116, 456, 682, 783

Ratios, 1, 162
Ray, 165, 513, 521, 523, 539-540, 544, 576

defined, 576
Rays, 165, 513-514, 522, 637
Real numbers, 1-3, 5-8, 29-31, 34, 41-42, 46-48, 54,

66-67, 70, 89, 99, 127, 140, 151, 173, 217,
271, 366, 368, 451, 454, 456, 548, 581, 649,
720, 733, 783

absolute value, 581
complex, 2, 173
defined, 5, 30, 42, 47, 54, 67, 99, 151, 451, 456,

548
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in calculus, 2, 8, 29, 581, 733
inequalities, 1, 8, 66, 70
integers, 1-2, 6-7, 67, 451, 783
irrational, 1-3, 7-8, 47, 66-67, 99, 783
properties of, 30, 46-48, 67, 99
rational, 1-3, 5, 7-8, 34, 42, 66-67, 99, 217, 454,

456, 783
real, 1-3, 5-8, 29-31, 34, 41-42, 46-48, 54, 66-67,

70, 89, 99, 127, 140, 151, 173, 217, 271,
366, 368, 451, 454, 456, 548, 581, 649,
720, 733, 783

Reciprocals, 21, 23
Rectangle, 16, 89, 115, 212-213, 237, 263-264,

267-269, 273, 277-278, 283-284, 302-303,
310, 324, 352-353, 355, 456, 467, 470, 518,
524, 549, 561, 630, 670, 677-684, 686-687,
692-694, 696-697, 703, 706-707, 724, 726,
729, 731, 737, 756-757, 762, 832

fundamental, 263, 283, 518, 549, 677, 706-707
Rectangles, 16, 71, 213, 257, 264, 267-268, 273, 312,

352-353, 677, 679-681, 693-694, 698, 702,
762

similar, 677, 702
Rectangular coordinate system, 1, 16-17, 19, 21, 23,

539
Reduction formula, 381, 383
Reflection, 40, 342, 365, 513, 576

defined, 576
parabola, 342, 513

Regular polygons, 71
Related rates, 119, 161, 163, 165-167
Relations, 543
Relative error, 182, 184, 657, 794
Relative extrema, 290
Remainder, 147, 404, 492-493, 497-498, 502, 505,

507, 564, 662, 751
Resultant, 563-564, 567, 617
Revenue, 43, 123-124, 210-212, 215-216, 797

average, 123-124, 211, 215
total, 124, 210-212, 215-216

Riemann sums, 272, 274, 280, 282, 308-309, 321,
549, 682

Right angles, 24, 144, 160, 167, 335, 524, 553, 567,
743

Right triangles, 51, 208, 558, 561
Pythagorean theorem, 558, 561

Rise, 18, 123, 163, 199, 627
Roots, 13-14, 30, 50, 218, 230, 236-237, 280, 456,

624, 780
nth root, 14
of the equation, 237

Rotations, 528
of triangle, 528

Rounding, 501
Run, 18, 34, 188, 261, 364, 423, 431, 464, 627

S
Saddle point, 661-663, 666, 833
Sample, 67, 117, 185, 258, 272-273, 276, 283, 309,

319, 329, 364, 369-370, 422, 449, 507, 526,
554, 616, 675, 677-678, 680-681, 708, 730,
733-734, 736, 738, 757, 776, 788, 791, 794,
802, 806, 809, 812, 814, 816, 824, 830, 834,
837, 839

Sample space, 364, 369
Sampling, 77
Scalar multiplication, 565, 568

scalar product, 568
vectors, 565, 568

Scalars, 562, 564-566, 575, 589, 600
Scatter plot, 209, 215
Scores, 624
Secant, 56, 61-63, 104, 119, 123-125, 130, 142, 225,

227, 257, 391, 638
defined, 61, 104, 142, 257

Secant line, 119, 123-124, 130, 225, 227, 257, 638
Second derivatives, 197, 221, 258, 318
Second quadrant, 553
Second-order partial derivatives, 775
Seconds, 34, 43, 60, 115, 121-125, 140, 142, 144,

150, 152-156, 161, 165-168, 179, 184, 186,
196, 247-248, 250, 261, 271, 287, 307, 316,
369, 414, 524, 649, 653

Semicircle, 60, 150, 213, 330, 335, 392, 533, 696,
732, 739

Separable differential equations, 246
Separation of variables, 246-247, 410, 420
Sequences, 91-92, 99-100, 234, 265, 451-455, 461

finite, 452, 454, 461

infinite, 91-92, 451-455, 461
limits of, 91, 100, 452, 461
nth term, 91, 99, 451

Series, 390, 408, 413, 451-452, 454, 456-502, 504,
506-508

arithmetic, 504
defined, 451, 456-457, 485, 490
geometric, 458-460, 462, 464-466, 468, 470-471,

473-474, 477, 482-483, 486-487, 489,
508

mean, 451, 454, 468, 491-493, 507
Set notation, 9
Sets, 2, 4-5, 8, 10, 14-15, 29, 31, 140, 165, 183, 200,

210, 364, 483, 515, 525, 528, 540, 554, 581,
634, 679, 686, 688, 694, 708, 737, 752, 779

empty, 554
intersection, 200, 554
solution, 2, 4, 8, 10, 14-15, 29, 31, 165, 183, 210,

483, 525, 528, 540, 634, 688, 694, 708,
752

union, 8, 10, 515, 688, 752, 779
Sides, 7, 9-10, 16-17, 24, 34, 49-50, 57, 60, 65, 68,

71, 89, 104, 106, 109, 156-157, 159, 162,
165, 167, 171, 174, 176-178, 180, 184, 188,
201, 205-206, 212-214, 216, 231, 245-246,
252, 259, 263, 266, 270, 288, 355-356, 363,
378, 396-399, 411-413, 415, 420, 456, 458,
463-464, 487, 512, 516, 518, 524, 526, 538,
541, 563, 567, 578, 580, 588, 591, 598,
600-601, 609, 613, 618, 620, 650, 652, 659,
666-667, 670, 673, 677, 686, 701, 703, 706,
714, 724, 743, 758, 760, 762, 776, 780, 833

Sigma notation, 209, 264, 270, 320
Significant digits, 504
Signs, 12, 14, 156, 199, 229, 231, 235, 348, 391, 479
Simplification, 49, 86, 324
Simplify, 6, 29, 33, 44, 47, 67-68, 73, 105, 118, 127,

132, 174, 245-246, 270, 280, 304, 341, 372,
393, 476, 517, 525-527, 572, 620, 639, 649,
659, 762

defined, 44, 47, 67, 73, 132, 174, 280, 572, 762
Sine, 51-54, 56, 58, 60-62, 65, 70, 97, 103-105, 109,

111, 140, 142-143, 146, 174-175, 179, 229,
275, 342, 372, 391-392, 408-409, 421, 423,
457, 482, 503, 506

inverse, 61-62, 65, 104-105, 109, 174-175, 179
Slope, 18-22, 41, 59, 66, 80, 119-126, 129-131,

133-134, 140-141, 143-144, 150, 156, 166,
168, 183, 185, 193, 197, 201, 215, 225, 242,
245, 249-250, 280, 353, 415-416, 419-421,
513-514, 521, 524, 534-535, 549, 551-553,
555, 627, 630, 638, 643-645, 648, 675,
721-722, 784

applications of, 242, 250, 513
undefined, 19, 129

Slope fields, 415
Solid of revolution, 330-332, 336-337, 361, 371, 676
Solution set, 8-14, 66-67
Solutions, 13, 104, 113, 115, 144, 158, 181, 188, 217,

226, 230, 237, 287, 298, 302-303, 325, 411,
415-416, 420, 671-672

of an equation, 230
Solving equations, 8, 189, 230-231, 233, 235, 237

numerically, 189, 230-231, 233, 235
Speed, 71, 119, 123, 153-156, 166-167, 179, 184-185,

187, 199, 207, 230, 250, 316, 318, 348,
407-408, 464, 537, 561, 567, 584-587,
589-590, 596, 600, 602, 604, 616-617, 659,
735, 829

Spheres, 558, 562, 624, 697, 719, 731, 769, 831
volume of, 558, 697, 719, 731

Spiral of Archimedes, 546-548
Spirals, 544, 546, 548, 585

logarithmic, 546
Square, 3-4, 7-8, 13, 16-18, 22-23, 29-30, 34, 36-37,

46, 51, 115, 138, 140, 168, 182, 205,
212-216, 250, 257, 259, 263, 307, 333, 335,
355, 370, 376, 393-395, 421, 437, 456, 463,
518, 526-527, 530-532, 538, 555, 559, 568,
578, 587, 589, 618, 620, 628, 630, 650,
662-663, 667, 670, 673, 680, 682, 695, 701,
706, 714, 719, 726, 729, 734, 736, 741, 743,
745, 750, 755-756, 763, 775-776, 780, 783,
798, 837

Square roots, 13, 30, 780
defined, 30
functions, 30
negative numbers, 30
principal square root, 13

Square units, 4, 263
Squared deviations, 209
Squares, 13, 17, 23, 68, 188, 205, 208, 210, 212, 215,

266, 333, 335, 371, 530-531, 562, 667,
680-682

area of, 212, 335, 371, 531, 667, 682
perfect, 210

Squaring, 14, 216, 512, 516
Standard form, 18, 374, 413, 526, 530-531, 555,

572-573
Standard normal distribution, 440
Statements, 4-5, 7-8, 11-12, 43, 77, 84, 87, 93, 96-98,

196-197, 199, 211, 364, 453, 459, 777
defined, 5, 11, 98

Stationary point, 190, 192, 203, 206, 618, 660-661,
666

Statistics, 270, 364
Subset, 39, 754
Substitution, 27, 85-86, 95-96, 98, 100, 102, 106-107,

120, 127, 220, 242, 263, 291, 293-299, 301,
303-304, 307, 349, 373-378, 384, 390-395,
397-398, 402-404, 409-410, 412, 421, 426,
484, 490, 573, 591, 632, 650, 690, 696, 720,
748

Substitution method, 650
Subtraction, 11, 41-42, 237, 373, 488, 504, 563
Sum, 7-8, 32, 43, 58, 60, 67, 71, 84, 135-136, 164,

209-210, 212-213, 215, 258, 263-264, 266,
268-276, 278-280, 282, 292, 301, 308-311,
314-321, 330, 344, 356, 365, 370, 383, 390,
395-396, 399, 402-403, 418, 420, 435, 450,
457-471, 475, 477, 480-482, 485-487, 490,
501-502, 504, 507-508, 520, 523, 553,
563-565, 567, 577, 588, 659, 666-667,
677-678, 680-681, 708, 714-715, 717, 738,
749, 779, 805

antiderivative of, 292, 319, 402
Sums, 35, 134, 136, 264-266, 272, 274, 280, 282,

308-309, 321, 457-458, 461-462, 464-467,
469, 477, 489, 507, 549, 634, 682

Surface area, 16, 168, 185, 213-214, 216, 250, 341,
347, 349, 371, 430, 441, 537, 618, 650, 666,
673, 675, 677, 702-705, 707, 732, 758,
762-765

of a cone, 347, 349
of a sphere, 16, 185, 341, 349, 702, 707

Surface of revolution, 347, 537
Symbols, 1, 5, 72, 89-90, 94, 131, 139, 155, 180, 274,

431, 434-435, 627, 715, 744
Symmetry, 25-26, 52, 100, 103, 219, 263, 301,

303-308, 327, 348, 360-361, 366, 369, 377,
410, 517, 544-547, 550, 552, 611, 667, 672,
682, 692, 695-696, 699, 713, 715-716,
718-719, 740, 764, 766

line of, 360

T
Tables, 48, 200, 403-404, 407, 409
Tangent, 22-24, 51, 56, 58-59, 61-63, 65, 67, 104-105,

119-126, 128-131, 140-144, 150, 158-161,
166, 168-169, 179-180, 183, 185-186, 188,
190, 193-194, 197, 213, 221, 225, 227, 230,
232, 257, 259, 263, 280, 297, 299, 388, 391,
395, 416, 421, 458, 499, 510, 513-515,
521-524, 534-535, 537, 549, 551-555, 557,
562, 584, 591, 593-597, 600-604, 616-617,
619, 627, 630, 637-638, 641, 643-645,
654-660, 669, 675, 701, 703, 719, 724-725,
734, 740, 753, 755, 758, 766, 772, 830, 833

defined, 61, 67, 104, 142, 158, 180, 183, 185, 190,
193, 257, 259, 280, 534-535, 537, 562,
597, 603, 616, 630, 637, 641, 656, 660,
675, 740

graphs of, 24, 51, 59, 105, 144, 160, 179, 221, 388,
551, 554-555, 562, 637

inverse of, 105, 193, 596
Tangent lines, 24, 120, 124, 130, 140, 158, 160-161,

186, 259, 510, 514-515, 524, 552, 557, 591,
593

finding, 140
slope of, 120, 124, 130, 514, 524, 552

Taylor polynomials, 502, 657
Taylor series, 491, 493, 497-500, 508
Temperature, 55-56, 60, 113, 125, 132, 168, 199,

253-254, 256, 301-302, 307, 623-625, 628,
630, 646-649, 653, 657, 667, 675, 714, 733

Terminal, 58, 414, 540, 562-563, 570, 575, 737, 746,
748, 762

Third derivative, 151, 155, 297, 299
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Third quadrant, 66
Total cost, 34, 210, 215, 665
Total profit, 34, 210-211
Total revenue, 210, 215
Transcendental functions, 42, 109, 230

defined, 42, 109
Transformations, 693, 715, 720

multiple, 715, 720
Translations, 37-38, 42, 68, 525

defined, 38, 42
Trapezoidal Rule, 308, 310, 312-319, 321, 408, 418
Trapezoids, 312

area of, 312
Triangles, 19, 23, 51, 64, 71, 162, 196, 206, 208, 333,

351, 463-464, 515, 558, 561, 692, 783
acute, 783
area of, 71, 463-464, 515
congruent, 162
equilateral, 23, 463-464, 561, 783
isosceles, 692, 783
right, 19, 23, 51, 196, 206, 208, 351, 464, 558, 561,

783
theorem, 23, 51, 64, 162, 558, 561, 692

Trigonometric functions, 1, 51, 53-57, 59-61, 63, 65,
71, 95, 97, 103, 106, 109, 119, 140-143, 146,
168, 174-175, 177, 179, 305, 372, 373

cosecant, 56, 61, 142
cotangent, 56, 61, 63, 142
domain and range, 140
evaluating, 142
inverse functions, 168
secant, 56, 61, 63, 119, 142
sine and cosine, 51, 56, 60-61, 140, 142
tangent, 51, 56, 59, 61, 63, 65, 119, 140-143, 168,

179
transcendental, 109

Trigonometric identities, 57, 59, 144, 146, 384-385
cofunction, 57
double-angle, 59
fundamental, 57
half-angle, 59, 385
Pythagorean, 57, 385

Trigonometry, 56-57, 103, 165, 208, 342
functions, 56-57, 103, 342
identities, 56-57
parametric equations, 342
right triangles, 208

Triple iterated integral, 709, 730

U
Uniform distribution, 369, 443
Union of sets, 779
Unit circle, 51-52, 56-57, 140, 370, 756, 820

defined, 57, 370
Unit vectors, 565, 580, 590, 601-602, 615-616,

643-644
Upper bound, 8, 81, 255, 290, 314, 321, 438, 454,

456, 468, 502, 805

V
Variables, 24, 30, 60, 161-165, 205, 210, 246-247,

249, 251, 323, 364-369, 384, 410-411, 415,
420, 438, 525, 531, 535, 560, 591, 605-606,
610, 619-626, 628-640, 642-652, 654,
656-660, 662-664, 666-672, 674-675,
677-679, 688, 708-709, 712-713, 715,
720-721, 723-725, 727-729, 733, 737

functions, 30, 60, 162, 205, 210, 410-411, 415,
438, 619-626, 628-638, 640, 642,
644-646, 648-652, 654, 656-660,
662-664, 666-668, 670, 672, 674, 679,
708-709, 729, 733, 737

Variance, 270-271, 370, 438-440, 443, 448
Variation, 51, 151
Variations, 71
Vectors, 557-558, 560, 562-572, 574-582, 584-592,

594, 596, 598, 600-602, 604, 606, 608, 610,
612, 614-617, 631, 642-644, 646, 673, 703,
706, 724, 733-734, 736, 762, 773, 776

addition, 563, 565, 586
component form, 572
defined, 558, 560, 562-563, 565-566, 568, 572,

574, 576, 578, 582, 616, 736, 762
direction of, 557, 562, 567, 571-572, 576-577, 584,

586, 644, 646, 734
dot product, 557, 568-569, 571, 574-577, 615
equality, 642
initial and terminal points, 563

orthogonal, 570, 574-575, 590, 601, 617
parallel, 558, 560, 562, 567, 574-576, 578-581,

591-592, 594, 606, 608, 615-617, 643,
673, 724

perpendicular, 557, 567, 569-570, 572, 574-575,
577-581, 585, 588, 590, 592, 594,
600-602, 615-617, 644, 646, 706, 734,
773

position vector, 576, 584-587, 590, 594, 596,
600-601, 604, 617, 734

scalar multiplication, 565, 568
scalar product, 568
unit, 562, 565-566, 571, 580, 590, 596, 598,

600-602, 615-616, 643-644, 733-734,
773, 776

zero, 557, 560, 563-565, 570, 572, 579-580, 592,
596, 604, 615-616, 736, 776

Velocity, 43, 71, 94, 119, 121-126, 140, 142-144, 150,
152-156, 161, 168, 184-186, 193, 207,
227-228, 230, 247-248, 250, 258, 261, 269,
271, 278-279, 281, 287, 291, 316, 318,
327-328, 408, 414, 506, 534, 556, 562, 567,
584-587, 589-590, 616-617, 624, 627,
700-701, 733, 735-737, 754-755, 760, 774

angular, 143-144, 585, 590, 700-701, 737
linear, 184-185, 230, 258, 318, 584, 627, 700

Vertex, 43, 58, 116, 167, 213-214, 356, 459, 512,
514-516, 519, 523-525, 528, 531-532, 542,
554, 568, 576, 612, 624, 662, 667, 670, 674,
762, 765, 824

even, 43, 356, 516, 525, 528, 554, 824
odd, 43, 554, 824

Vertical, 16-21, 31, 33-34, 54, 56, 59, 64, 93-94, 96,
116-117, 121, 129, 143, 161, 166, 168, 187,
190, 199, 209, 215, 217, 220-222, 228, 251,
257, 259, 267, 281, 326, 335, 339, 352-355,
360, 458-459, 512, 514-515, 518-519, 521,
523-524, 527, 530-531, 534, 538, 542, 553,
564, 567, 627, 667, 675, 687, 709-710, 721,
729, 736, 738, 743, 766, 789, 791, 797, 817,
819

Vertical asymptotes, 34, 56, 93-94, 116, 220, 222, 789
graphing, 34, 94, 220

Vertical axis, 121, 215, 736
Vertical line, 16-17, 19-21, 31, 33, 96, 129, 267, 524,

534, 627, 687, 710, 729
graph of, 21, 31, 33, 129
slope of, 19, 21, 129, 524, 534, 627

Vertical lines, 20-21, 281, 709, 721
Vertical tangent, 190
Viewing, 207, 521
Volume, 4, 7, 13, 30, 34, 43, 68, 118, 125, 140, 162,

166-168, 182, 184-186, 188, 196, 200,
205-206, 208, 212-214, 216, 250, 322,
329-339, 341-342, 351-352, 355, 360-363,
370-371, 377, 383, 390, 394, 422, 441, 444,
448, 524, 558, 562, 578-580, 610, 615, 618,
628, 630, 653, 657, 659, 666-667, 673-676,
677-678, 681-686, 689-693, 695-697,
707-708, 711, 714-715, 717-719, 729-732,
760, 771, 838

of a circular cylinder, 331
of a cone, 370
of a cube, 182, 355
of a sphere, 184-185, 335, 341-342, 362, 558, 697,

707, 730

W
Weibull distribution, 443
Weight, 1, 213, 251, 349, 351-352, 354-356, 515, 564,

567-568, 576, 604, 659, 766

X
x-axis, 4, 16, 18, 22, 25-26, 31, 34, 52, 58-59, 66, 81,

90, 96, 113, 115-116, 140, 150, 161, 179,
188, 194, 213, 231-232, 237, 267, 269, 271,
273-274, 277, 287, 297, 323-325, 327, 329,
331-335, 337-339, 341, 343, 347-350,
356-359, 361-363, 370-371, 383, 388, 390,
394, 422, 430, 441, 444, 448, 512-515, 518,
524, 534, 537, 539, 541, 545, 554, 556, 557,
562, 586, 588, 590, 592-593, 609-610, 613,
616, 621, 633, 636, 643, 648, 676, 698-699,
701-702, 714, 730, 732, 739, 829

x-coordinate, 16-18, 116, 120, 150, 167, 199, 213,
231, 245, 249, 357, 443, 513, 538, 627, 719

x-intercept, 23, 26, 67, 232, 560, 785
defined, 67, 560

parabola, 26
x-value, 326-327
xy-plane, 116, 323, 335, 347, 532, 537, 560-563,

575-576, 580, 584, 590, 594, 596-597, 603,
605, 607-611, 615, 619, 621, 624, 630, 633,
636-637, 643-645, 647, 649, 661, 664, 667,
674, 676, 683, 685-686, 689-690, 695, 698,
700, 702-704, 706-707, 709-711, 714,
716-717, 719-721, 724, 729-730, 737, 743,
751, 753-757, 759, 761-762, 764, 766, 775,
826, 829, 837

Y
Yards, 464
y-axis, 16, 20, 23, 25-26, 28, 31-32, 34-35, 53, 66,

103-104, 179, 219, 222, 224, 304, 331-339,
341, 358-359, 362-363, 370-371, 383, 390,
394, 422, 444, 514, 524, 537, 545, 547, 552,
554, 557, 561, 609-610, 620-621, 630, 633,
643, 648, 698-699, 701-702, 714, 743, 762

symmetry, 25-26, 103, 219, 304, 545, 547, 552,
699

y-coordinate, 16, 18, 150, 167, 250, 347, 370, 538,
701, 720

Years, 43, 50, 71, 102, 105-106, 124-125, 199, 214,
251-253, 255-257, 263, 280, 402, 443, 506,
521, 587, 802

y-intercept, 20-23, 26, 28, 68, 215, 217, 219, 561,
784-785

defined, 20, 215
parabola, 26, 28

Z
z-axis, 557, 560-561, 594, 606, 610-616, 707,

718-720, 729, 737, 743, 755, 760, 762-763,
765-766, 826, 829, 831, 837

Zero, 1, 5, 10, 16, 18-19, 30, 46, 56, 85, 90, 92-93, 95,
98, 101, 108, 113, 116, 123-124, 127-128,
130, 133-135, 143, 150-151, 153, 155, 186,
191, 205-209, 217, 228-229, 234, 236-237,
256, 297, 299, 314, 324-325, 330, 337,
343-344, 347, 350, 356-357, 364, 366-367,
369, 399, 428-429, 434, 441, 450, 455, 474,
488, 495, 505, 517, 527, 549, 557, 559-560,
563-565, 570, 572, 579-580, 592-593,
595-596, 604-605, 615-616, 632, 634, 645,
661, 663, 667, 693-694, 698, 709, 715,
736-737, 743, 746, 751, 754, 771, 775-776,
797, 829, 838

exponent, 46, 101, 314, 434
Zero slope, 19

850
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