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1.1
Real Numbers, Estimation, and Logic

Calculus is based on the real number system and its properties. But what are the
real numbers and what are their properties? To answer, we start with some simpler
number systems.

The Integers and the Rational Numbers The simplest numbers of all

are the natural numbers,
1,2,3,4,5,6,...

With them we can count: our books, our friends, and our money. If we include their
negatives and zero, we obtain the integers

..,—3,-2,-1,0,1,2,3,...

When we measure length, weight, or voltage, the integers are inadequate. They
are spaced too far apart to give sufficient precision. We are led to consider quo-
tients (ratios) of integers (Figure 1), numbers such as

3 =721 19 16 —17

#7805 2 2T

4 A
l |
1 2
3 3
N
| | | | i
1 3 1
4 4
S A
l l l l | 1
Figure 1 Figure 2

Note that we included 176 and _T”’ though we would normally write them as 8
and —17 since they are equal to the latter by the ordinary meaning of division. We
did not include % or %9 since it is impossible to make sense out of these symbols
(see Problem 30). Remember always that division by 0 is never allowed. Numbers
that can be written in the form m/n, where m and n are integers with n # 0, are
called rational numbers.

Do the rational numbers serve to measure all lengths? No. This surprising fact
was discovered by the ancient Greeks in about the fifth century B.c. They showed
that while /2 measures the hypotenuse of a right triangle with legs of length 1
(Figure 2), \/2 cannot be written as a quotient of two integers (see Problem 77).
Thus, \/2 is an irrational (not rational) number. So are \/3, \/g, \3[7, m, and a

host of other numbers.

The Real Numbers Consider all numbers (rational and irrational) that can
measure lengths, together with their negatives and zero. We call these numbers the
real numbers.

The real numbers may be viewed as labels for points along a horizontal line.
There they measure the distance to the right or left (the directed distance) from a

From Chapter 1 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon.
Copyright © 2007 by Pearson Education, Inc. All rights reserved.



2 Chapter 1 Preliminaries

3 fixed point called the origin and labeled 0 (Figure 3). Though we cannot possibly show

: all the labels, each point does have a unique real number label. This number is called

3 o 4 0 1 2 3 4 the coordinate of the point, and the resulting coordinate line is referred to as the real

line. Figure 4 suggests the relationships among the sets of numbers discussed so far.

You may remember that the real number system can be enlarged still more—

to the complex numbers. These are numbers of the form a + bi, where a and b are

real numbers and i = \V/—1. Complex numbers will rarely be used in this book.

In fact, if we say or suggest number without any qualifying adjective, you can

assume that we mean real number. The real numbers are the principal characters
in calculus.

N =
S
W
a

Figure 3
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40 90
Natural 40 88
Numbers 0 20
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Integers 9
Rational Numbers 3 i
==0.375 —==1.181818 ...
Real Numbers g i

Figure 4 Figure 5

Repeating and Nonrepeating Decimals Every rational number can be
written as a decimal, since by definition it can always be expressed as the quotient
of two integers; if we divide the denominator into the numerator, we obtain a dec-
imal (Figure 5). For example,

% =05 % = 0.375 % = 0.428571428571428571 . ..
Irrational numbers, too, can be expressed as decimals. For instance,
V2 = 1.4142135623 .. ., 7 = 3.1415926535 . ..

The decimal representation of a rational number either terminates (as in
% = 0.375) or else repeats in regular cycles forever (as in g = 1.181818...). A lit-
tle experimenting with the long division algorithm will show you why. (Note that
there can be only a finite number of different remainders.) A terminating decimal
can be regarded as a repeating decimal with repeating zeros. For instance,

g = 0.375 = 0.3750000. ..

Thus, every rational number can be written as a repeating decimal. In other words,
if x is a rational number, then x can be written as a repeating decimal. It is a
remarkable fact that the converse is also true; if x can be written as a repeating
decimal, then x is a rational number. This is obvious in the case of a terminating
decimal (for instance, 3.137 = 3137/1000), and it is easy to show for the case of a
nonterminating repeating decimal.

(Repeating decimals are rational.) Show that x =

0.136136136 ... represents a rational number.

SOLUTION We subtract x from 1000x and then solve for x.

1000x = 136.136136...
x=_0.136136...
999x = 136
o= 136 o
999



The Real Numbers

Rational Numbers Irrational Numbers
(the repeating (the nonrepeating
decimals) decimals)
Figure 6
X X3 X
—+— |
a a+b b
2
Figure 7
L i 11
1 \ﬁ
14
1.41
1.414
Figure 8

Many problems in this book are
marked with a special sysmbol.

means use a calculator.

means use a graphing calculator.

means use a computer algebra

system.

means the problem asks you
to explore and go beyond the
explanations given in the book.
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The decimal representations of irrational numbers do not repeat in cycles.
Conversely, a nonrepeating decimal must represent an irrational number. Thus, for
example,

0.101001000100001 . ...

must represent an irrational number (note the pattern of more and more Os
between the 1s). The diagram in Figure 6 summarizes what we have said.

Denseness Between any two different real numbers a and b, no matter
how close together, there is another real number. In particular, the number
x1 = (a + b)/2is a real number that is midway between a and b (Figure 7). Since
there is another real number, x,, between a and x;, and another real number, x3,
between x; and x,, and since this argument can be repeated ad infinitum, we con-
clude that there are infinitely many real numbers between a and b. Thus, there is
no such thing as “the real number just larger than 3.”

Actually, we can say more. Between any two distinct real numbers, there are
both a rational number and an irrational number. (In Problem 57 you are asked to
show that there is a rational number between any two real numbers.) Hence, by
the preceding argument, there are infinitely many of each.

One way that mathematicians describe the situation we have been discussing
is to say that both the rational numbers and the irrational numbers are dense along
the real line. Every number has both rational and irrational neighbors arbitrarily
close to it.

One consequence of the density property is that any irrational number can
be approximated as closely as we please by a rational number—in fact, by a ra-
tional number with a terminating decimal representation. Take V2 asan example.
The sequence of rational numbers 1, 1.4, 1.41, 1.414, 1.4142, 1.41421, 1.414213, . ..
marches steadily and inexorably toward V2 (Figure 8). By going far enough along
in this sequence, we can get as near to V/2 as we wish.

Calculators and Computers Today many calculators are capable of per-
forming numerical, graphical, and symbolic operations. For decades now, calcu-
lators have been able to perform numerical operations such as giving decimal
approximations to V 12.2 and 1.25 sin 22°. By the early 1990s calculators could dis-
play the graph of almost any algebraic, trigonometric, exponential, or logarithmic
function. Recent advances allow calculators to perform many symbolic operations,
such as expanding (x — 3y)'? or solving x> — 2x> + x = 0. Computer software
such as Mathematica or Maple can perform symbolic operations like these, as well
as a great many others.
Our recommendations regarding the use of a calculator are these:

1. Know when your calculator or computer gives you an exact answer and when
it gives you an approximation. For example, if you ask for sin 60°, your calcu-
lator may give the exact answer, \/5/ 2, or it may give you a decimal approxi-
mation, 0.8660254.

2. In most cases, an exact answer is preferred. This is especially true when you
must use the result in further calculations. For example, if you subsequently
need to square the result of sin 60°, it is easier, as well as being more accurate,
to compute (\/g/ 2)2 = 3/4 than it is to compute 0.8660254°.

3. In an applied problem, give an exact answer, if possible, as well as an approxi-
mation. You can often check whether your answer is reasonable, as it relates to
the description of the problem, by looking at your numerical approximation to
the solution.

Estimation Given a complicated arithmetic problem, a careless student might
quickly press a few keys on a calculator and report the answer, not realizing that a
missed parenthesis or a slip of the finger has given an incorrect result. A careful
student with a feeling for numbers will press the same keys, immediately recognize

3
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Figure 9

In Example 3, we have used ~ to
mean “approximately equal.” Use
this symbol in your scratch work
when making an approximation. In
more formal work, never use this
symbol without knowing how large
the error could be.

Many problems are marked with this
symbol.

means make an estimate of the
answer before working the problem;
then check your answer against this
estimate.

that the answer is wrong if it is far too big or far too small, and recalculate it cor-
rectly. It is important to know how to make a mental estimate.

Calculate (V430 + 72 + V/7.5)/2.75.

SOLUTION A wise student approximated this as (20 + 72 + 2)/3 and said that
the answer should be in the neighborhood of 30. Thus, when her calculator gave
93.448 for an answer, she was suspicious (she had actually calculated
V430 + 72 + V/7.5/2.75).

On recalculating, she got the correct answer: 34.434. |

Suppose that the shaded region R shown in Figure 9 is

revolved about the x-axis. Estimate the volume of the resulting solid ring S.

SOLUTION The region R is about 3 units long and 0.9 units high. We estimate its
area as 3(0.9) =~ 3 square units. Imagine the solid ring S to be slit open and laid
out flat, forming a box about 27rr ~ 2(3)(6) = 36 units long. The volume of a box
is its cross-sectional area times its length. Thus, we estimate the volume of the box
tobe 3(36) = 108 cubic units. If you calculate it to be 1000 cubic units, you need to
check your work. |

The process of estimation is just ordinary common sense combined with rea-
sonable numerical approximations. We urge you to use it frequently, especially on
word problems. Before you attempt to get a precise answer, make an estimate. If
your answer is close to your estimate, there is no guarantee that your answer is
correct. On the other hand, if your answer and your estimate are far apart, you
should check your work. There is probably an error in your answer or in your
approximation. Remember that 7 ~ 3, \/2 ~ 1.4,2'° ~ 1000, 1 foot ~ 10 inches,
1 mile =~ 5000 feet, and so on.

A central theme in this text is number sense. By this, we mean the ability to
work through a problem and tell whether your solution is a reasonable one for the
stated problem. A student with good number sense will immediately recognize and
correct an answer that is obviously unreasonable. For many of the examples
worked out in the text, we provide an initial estimate of the solution before pro-
ceeding to find the exact solution.

A Bit of Logic Important results in mathematics are called theorems; you will
find many theorems in this book. The most important ones occur with the label
Theorem and are usually given names (e.g., the Pythagorean Theorem). Others
occur in the problem sets and are introduced with the words show that or prove
that. In contrast to axioms or definitions, which are taken for granted, theorems re-
quire proof.

Many theorems are stated in the form “If P then Q” or they can be restated in
this form. We often abbreviate the statement “If P then Q” by P = Q, which is also
read “P implies Q.” We call P the hypothesis and Q the conclusion of the theorem.
A proof consists of showing that Q must be true whenever P is true.

Beginning students (and some mature ones) may confuse P = Q with
its converse, Q = P. These two statements are not equivalent. “If John is a Mis-
sourian, then John is an American” is a true statement, but its converse “If John is
an American, then John is a Missourian” may not be true.

The negation of the statement P is written ~ P. For example, if P is the state-
ment “It is raining,” then ~ P is the statement “It is not raining.” The statement
~ Q= ~ P is called the contrapositive of the statement P = Q and it is equivalent
to P = Q. By “equivalent” we mean that P = Q and ~ Q = ~ P are either both
true or both false. For our example about John, the contrapositive of “If John is a
Missourian, then John is an American” is “If John is not an American, then John is
not a Missourian.”

Because a statement and its contrapositive are equivalent, we can prove a the-
orem of the form “If P then Q” by proving its contrapositive “If ~ Q then ~P.”



Proof by Contradiction

Proof by contradiction also goes by
the name reductio ad absurdum.
Here is what the great mathemati-

cian G. H. Hardy had to say about it.

“Reductio ad absurdum, which
Euclid loved so much, is one of a
mathematician’s finest weapons.
It is a far finer gambit than any
chess gambit; a chess player may
offer the sacrifice of a pawn or
even a piece, but a mathematician
offers the game.”

Order on the Real Line

To say that x < y means that x is to
the left of y on the real line.

| |
T T
x y

The Order Properties

1. Trichotomy. If x and y are num-
bers, then exactly one of the fol-
lowing holds:

x<y or x=y or x>y

2. Transitivity. x < yand y < z
=>x <z

3. Addition.
x<yeoxt+tz<y+z

4. Multiplication. When z is
positive, x < y & xz < yz.
When z is negative,
x<yexz>yz

Section 1.1 Real Numbers, Estimation, and Logic 5

Thus, to prove P = Q, we can assume ~ ( and try to deduce ~ P. Here is a simple
example.

Prove that if n? is even, then n is even.

Proof The contrapositive of this sentence is “If n is not even, then n~ is not
even,” which is equivalent to “If » is odd, then n? is odd.” We will prove the con-
trapositive. If n is odd, then there exists an integer k such that n = 2k + 1. Then

= 2k + 1) = 4i> + 4k + 1 = 2(2k> + 2k) + 1

2

Therefore, n? is equal to one more than twice an integer. Hence n? is odd. [ |

The Law of the Excluded Middle says: Either R or ~R, but not both. Any
proof that begins by assuming the conclusion of a theorem is false and proceeds to
show this assumption leads to a contradiction is called a proof by contradiction.

Occasionally, we will need another type of proof called mathematical induc-
tion. It would take us too far afield to describe this now, but we have given a com-
plete discussion in Appendix A.1.

Sometimes both the statements P = Q (if P then Q) and Q = P (if QO then
P) are true. In this case we write P < Q, which is read “P if and only if Q.” In Ex-
ample 4 we showed that “If n? is even, then n is even,” but the converse “If n is
even, then n” is even” is also true. Thus, we would say “n is even if and only if n?
is even.”

Order The nonzero real numbers separate nicely into two disjoint sets—the
positive real numbers and the negative real numbers. This fact allows us to intro-
duce the order relation < (read “is less than”) by

x < y& y — xis positive

We agree that x <y and y > x shall mean the same thing. Thus,
3<4,4>3-3<—-2,and -2 > 3.

The order relation = (read “is less than or equal to”) is a first cousin of <. Itis
defined by

X = y &y — xis positive or zero

Order properties 2, 3, and 4 in the margin box hold when the symbols < and > are
replaced by = and =.

Quantifiers Many mathematical statements involve a variable x, and the truth
of the statement depends on the value of x. For example, the statement “\/x is a

rational number” depends on the value of x; it is true for some values of x, such as

4 10,000
x=1,4,9, 9 and 19
ar. Some statements, such as “x* = 0,” are true for all real numbers x, and other
statements, such as “x is an even integer greater than 2 and x is a prime number,”
are always false. We will let P(x) denote a statement whose truth depends on the
value of x.

We say “For all x, P(x)” or “For every x, P(x)” when the statement P(x) is true
for every value of x. When there is at least one value of x for which P(x) is true, we
say “There exists an x such that P(x).” The two important quantifiers are “for all”
and “there exists.”

Which of the following statements are true?

(a) For all x, x> > 0.

(b) Forall x, x < 0= x> > 0.

(c) For every x, there exists a y such that y > x.
(d) There exists a y such that, for all x, y > x.

, and false for other values of x, such as x = 2, 3,77, and
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SOLUTION

(a)
(b)
(©)

(d)

False. If we choose x = 0, then it is not true that x> > 0.

True. If x is negative, then x? will be positive.

True. This statement contains two quantifiers, “for every” and “there exists.”
To read the statement correctly, we must apply them in the right order. The
statement begins “for every,” so if the statement is true, then what follows must
be true for every value of x that we choose. If you are not sure whether the
whole statement is true, try a few values of x and see whether the second part
of the statement is true or false. For example, we might choose x = 100; given
this choice, does there exist a y that is greater than x? In other words, is there a
number greater than 100? Yes, of course. The number 101 would do. Next
choose another value for x, say x = 1,000,000. Does there exist a y that is
greater than this value of x? Again, yes; in this case the number 1,000,001
would do. Now, ask yourself: “If I let x be any real number, will I be able to find
a y that is larger than x?” The answer is yes. Just choose y to be x + 1.

False. This statement says that there is a real number that is larger than every
other real number. In other words, there is a largest real number. This is false;
here is a proof by contradiction. Suppose that there exists a largest real num-
ber y. Let x = y + 1. Then x > y, which is contrary to the assumption that y
is the largest real number. |

The negation of the statement P is the statement “not P.” (The statement “not

P is true provided P is false.) Consider the negation of the statement “for all x,
P(x).” If this negated statement is true, then there must be at least one value of x
for which P(x) is false; in other words, there exists an x such that “not P(x).” Now
consider the negation of the statement “there exists an x such that P(x).” If this
negated statement is true, then there is not a single x for which P(x) is true. This
means that P(x) is false no matter what the value of x. In other words, “for all x, not
P(x).” In summary,

The negation of “for all x, P(x)” is “there exists an x such that not P(x).”

The negation of “there exists an x such that P(x)” is “for every x, not
P(x).”

Concepts Review

1. Numbers that can be written as the ratio of two integers

are called

2. Between any two real numbers, there is another real num-

3. The contrapositive of “If P then Q" is .

4. Axioms and definitions are taken for granted, but
require proof.

ber. This is what it means to say that the real numbers are

Problem Set 1.1

In Problems 1-16, simplify as much as possible. Be sure to remove u_ 1 13,7
all parentheses and reduce all fractions. 11. 171 i; 12. i ; :
ER 2tiTs

1. 4 —2(8—-11) + 6 2. 3[2 — 4(7 - 12)] 1 3
13. 1 - 1 14. 2 + S
3. —4[5(-3+12—-4)+2(13 - 7)] 1+3 143

4. 5[-1(7 + 12 — 16) + 4] + 2

15. (V5 +V3) (V5 -V3) 16 (V5 - V3)

21 % In Problems 17-28, perform the indicated operations and simplify.

17. 3x —4)(x + 1)
19. 3x —9)(2x + 1)
21, (32—t + 1)?

18. (2x — 3)?
20. (4x — 11)(3x — 7)
22. (2t + 3)°



x> —4 X—-x-6
23. 24, ———
x—2 x—3
2 _ _ )

25.t 4t — 21 2. 2x — 2x
1+3 X —=2x*+x
2, 24y 2 2 Y

8. +
x+2 6y —2  9y?—1

29. Find the value of each of the following; if undefined, say

X2 +2x x

SO.
(a) 0-0 (b) 2 ) &
@ 3 (e) 0° ) 17°

30. Show that division by 0 is meaningless as follows: Sup-

pose that a # 0.1f a/0 = b, thena = 0-b = 0, which is a contra-
diction. Now find a reason why 0/0 is also meaningless.

In Problems 31-36, change each rational number to a decimal by
performing long division.

3. 5 322

3 5
3. 5 3. 3
35 4 36. 13

In Problems 37-42, change each repeating decimal to a ratio of
two integers (see Example 1).

37. 0.123123123...
39. 2.56565656. .. 40. 3.929292...
41. 0.199999... 42. 0.399999...

43. Since 0.199999... = 0.200000... and 0.399999... =
0.400000... (see Problems 41 and 42), we see that certain ra-
tional numbers have two different decimal expansions. Which
rational numbers have this property?

38. 0.217171717 ...

44. Show that any rational number p/q, for which the prime
factorization of g consists entirely of 2s and 5s, has a terminating
decimal expansion.

45. Find a positive rational number and a positive irrational
number both smaller than 0.00001.

46. What is the smallest positive integer? The smallest posi-
tive rational number? The smallest positive irrational number?

47. Find a rational number between 3.14159 and 7. Note that
T = 3.141592...

48. Is there a number between 0.9999... (repeating 9s) and
1? How do you resolve this with the statement that between any
two different real numbers there is another real number?

49. Ts 0.1234567891011121314. .. rational or irrational? (You
should see a pattern in the given sequence of digits.)

50. Find two irrational numbers whose sum is rational.

In Problems 51-56, find the best decimal approximation that
your calculator allows. Begin by making a mental estimate.

st (V3 +1) s2. (V2 - V3)
53. V/1.123 — V/1.09 54. (3.1415)7"?
55. V8972 + 1 — 3r 56. V(67 — 2)7

57. Show that between any two different real numbers there is
a rational number. (Hint: If a < b, then b — a > 0, so there is a
natural number n such that 1/n < b — a. Consider the set
{k:k/n > b} and use the fact that a set of integers that is bound-
ed from below contains a least element.) Show that between any

Section 1.1 Real Numbers, Estimation, and Logic 7

two different real numbers there are infinitely many rational
numbers.

58. Estimate the number of cubic inches in your head.

59. Estimate the length of the equator in feet. Assume the
radius of the earth to be 4000 miles.

60. About how many times has your heart beat by your twen-
tieth birthday?

61. The General Sherman tree in California is about 270 feet
tall and averages about 16 feet in diameter. Estimate the num-
ber of board feet (1 board foot equals 1 inch by 12 inches by 12
inches) of lumber that could be made from this tree, assuming no
waste and ignoring the branches.

62. Assume that the General Sherman tree (Problem 61)
produces an annual growth ring of thickness 0.004 foot. Estimate
the resulting increase in the volume of its trunk each year.

63. Write the converse and the contrapositive to the follow-
ing statements.
(a) Ifit rains today, then I will stay home from work.
(b) If the candidate meets all the qualifications, then she will be
hired.
64. Write the converse and the contrapositive to the follow-
ing statements.
(a) IfIgetan A on the final exam, I will pass the course.
(b) If I finish my research paper by Friday, then I will take off
next week.
65. Write the converse and the contrapositive to the follow-
ing statements.

(a) (Let a, b, and ¢ be the lengths of sides of a triangle.) If
a®> + b? = ¢?, then the triangle is a right triangle.
(b) Ifangle ABC s acute, then its measure is greater than 0° and
less than 90°.
66. Write the converse and the contrapositive to the follow-
ing statements.

(a) If the measure of angle ABC is 45°, then angle ABC is an
acute angle.

(b) Ifa < bthen a® < b°.

67. Consider the statements in Problem 65 along with their
converses and contrapositives. Which are true?

68. Consider the statements in Problem 66 along with their
converses and contrapositives. Which are true?

69. Use the rules regarding the negation of statements in-
volving quantifiers to write the negation of the following state-
ments. Which is true, the original statement or its negation?

(a) Every isosceles triangle is equilateral.
(b) There is a real number that is not an integer.
(c) Every natural number is less than or equal to its square.
70. Use the rules regarding the negation of statements

involving quantifiers to write the negation of the following state-
ments. Which is true, the original statement or its negation?

(a) Every natural number is rational.
(b) There is a circle whose area is larger than 9.
(c) Every real number is larger than its square.
71. Which of the following are true? Assume that x and y are
real numbers.
(a) Forevery x,x > 0=x>> 0.
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(b) Forevery x,x > 0 < x% > 0.
(c) Forevery x, x> > x.
(d) For every x, there exists a y such that y > x°.
(e) For every positive number y, there exists another positive
number x such that 0 < x < y.
72. Which of the following are true? Unless it is stated other-
wise, assume that x, y, and ¢ are real numbers.
(a) Foreveryx,x < x + 1.

(b) There exists a natural number N such that all prime numbers
are less than N. (A prime number is a natural number whose
only factors are 1 and itself.)

. 1
(c) Forevery x > 0, there exists a y such that y > =

(d) For every positive x, there exists a natural number n such

1
that — < x.
n

(e) For every positive &, there exists a natural number n such
1
that ? < e.
73. Prove the following statements.

(a) Ifnis odd, then r? is odd. (Hint: If n is odd, then there exists
an integer k such that n = 2k + 1.)

(b) If n? is odd, then n is odd. (Hint: Prove the contrapositive.)

74. Prove that n is odd if and only if #? is odd. (See Problem
73.)

75. According to the Fundamental Theorem of Arithmetic,
every natural number greater than 1 can be written as the prod-
uct of primes in a unique way, except for the order of the factors.
For example, 45 = 3-3-5. Write each of the following as a prod-
uct of primes.

(a) 243 (b) 124 (c) 5100

76. Use the Fundamental Theorem of Arithmetic (Problem
75) to show that the square of any natural number greater than 1
can be written as the product of primes in a unique way, except
for the order of the factors, with each prime occurring an even
number of times. For example, (45)? = 3-3:3:3-5-5.

1.2

77. Show that \/2 is irrational. Hint: Try a proof by contra-
diction. Suppose that V2 = p/q, where p and g are natural num-
bers (necessarily different from 1). Then 2 = p?/¢° and so
24 = p®. Now use Problem 76 to get a contradiction.

78. Show that \/3 is irrational (see Problem 77).
79. Show that the sum of two rational numbers is rational.
80. Show that the product of a rational number (other than

0) and an irrational number is irrational. Hint: Try proof by
contradiction.

81. Which of the following are rational and which are
irrational?
(a) —V9 (b) 0375
© (3V2)(5Vv2) @ (1+ V3)?

82. A number b is called an upper bound for a set S of
numbers if x = b for all x in S. For example 5, 6.5, and 13 are
upper bounds for the set § = {1, 2, 3,4, 5}. The number 5 is the
least upper bound for S (the smallest of all upper bounds). Simi-
larly, 1.6, 2, and 2.5 are upper bounds for the infinite set
T = {14,1.49,1.499,1.4999,...}, whereas 1.5 is its least upper
bound. Find the least upper bound of each of the following sets.
(a) S ={-10,-8,—6, -4, -2}

(b) §={-2,-21,-211, -2.111, -2.1111,... }

(c) S ={24,244,2.444,2.4444, ...}

@ s={1-51-51-41-1L..}

(e) S = {x:x=(-1)"+ 1/n, napositive integer }; that is, S is
the set of all numbers x that have the form
x = (—=1)" + 1/n, where n is a positive integer.

(f) § = {x:x? < 2, x arational number}

83. The Axiom of Completeness for the real numbers says:

Every set of real numbers that has an upper bound has a least

upper bound that is a real number.

(a) Show that the italicized statement is false if the word real is
replaced by rational.

(b) Would the italicized statement be true or false if the word
real were replaced by natural?

Answers to Concepts Review: 1. rational numbers
2.dense 3. “Ifnot Q then not P.” 4. theorems

2

Inequalities and

Absolute Values
———————+——
-2 -1 0 1 2 3 4 5 6 7

-1,6)={x:-1<x<6}
Figure 1

8

Solving equations (for instance,3x — 17 = 6 or x° — x — 6 = 0) is one of the tra-
ditional tasks of mathematics; it will be important in this course and we assume
that you remember how to do it. But of almost equal significance in calculus is the
notion of solving an inequality (e.g.,3x — 17 < 6 or x> — x — 6 = 0).To solve an
inequality is to find the set of all real numbers that make the inequality true. In
contrast to an equation, whose solution set normally consists of one number or
perhaps a finite set of numbers, the solution set of an inequality is usually an entire
interval of numbers or, in some cases, the union of such intervals.

Intervals Several kinds of intervals will arise in our work and we introduce
special terminology and notation for them. The inequality ¢ < x < b, which is ac-
tually two inequalities,a < x and x < b, describes the open interval consisting of
all numbers between a and b, not including the end points a and b. We denote this
interval by the symbol (a, b) (Figure 1). In contrast, the inequality ¢ = x = b de-
scribes the corresponding closed interval, which does include the end points a and
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[-1,5] = {x:

Figure 2

Figure 4

Section 1.2 Inequalities and Absolute Values 9

b.This interval is denoted by [a, b] (Figure 2). The table indicates the wide variety
of possibilities and introduces our notation.

Set Notation Interval Notation Graph
[x:a < x < b} (a, b) E a
a b
{x:a=x=0b} [a, b] [ ]
a b
{x:a=x<b} [a, b) [ a
a b
{x:a < x = b} (a, b] H
a b
{x:x = b} (=00, b]  ——
b
{x:x < b} (—00,b) e —
b

{x:x = a} [a, o0) S p
{x:x > a} (a, ) £

Solving Inequalities As with equations, the procedure for solving an in-
equality consists of transforming the inequality one step at a time until the solution
set is obvious. We may perform certain operations on both sides of an inequality
without changing its solution set. In particular,

1. We may add the same number to both sides of an inequality.
2. We may multiply both sides of an inequality by the same positive number.

3. We may multiply both sides by the same negative number, but then we must
reverse the direction of the inequality sign.

Solve the inequality 2x — 7 < 4x — 2 and show the graph of

its solution set.

SOLUTION
2x — 7 <4x —2
2x < 4x + 5 (adding 7)
—2x <5 (adding —4x)
x > —% (multiplying by — %)
The graph appears in Figure 3. [ |
Solve =5 = 2x + 6 < 4.
SOLUTION
S=2x+6<4
—11 = 2x < -2 (adding —6)
—% = x < -1 (multiplying by 3)
Figure 4 shows the corresponding graph. |
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Sign of

Test Sign of
Point (x —3) (x+2) (x—=3)(x+2)
_3 — —

0 - +

5 + +

+
+

Split points

A

D — 1+

Figure 5

-+o

2
(— o0, —% U (1, oc)

Figure 6

1
S v 4o
o4

-~

+ u - 0 +
AR N I TN NN SR B
T T T 1
) 1
oy
LI B B B B N

(—o0,-2)U[ 1, )

Figure 7
+ 0 - 0 - 0 +
AR TR T T
LI N B B Y B
-1 1 3
[-1,3]
Figure 8
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Before tackling a quadratic inequality, we point out that a linear factor of
the form x — a is positive for x > a and negative for x < a. It follows that a
product (x — a)(x — b) can change from being positive to negative, or vice versa,
only at a or b. These points, where a factor is zero, are called split points. They are
the keys to determining the solution sets of quadratic and other more compli-
cated inequalities.

Solve the quadratic inequality x> — x < 6.

SOLUTION As with quadratic equations, we move all nonzero terms to one side
and factor.

-x<6
¥»—x—-6<0 (adding —6)
(x =3)(x+2)<0 (factoring)

We see that —2 and 3 are the split points; they divide the real line into the
three intervals (—o0, =2),(—2,3), and (3,0). On each of these intervals,
(x — 3)(x + 2)is of one sign; that is, it is either always positive or always negative.
To find this sign in each interval, we use the test points —3, 0, and 5 (any points in
the three intervals would do). Our results are shown in the margin.

The information we have obtained is summarized in the top half of Figure 5.
We conclude that the solution set for (x — 3)(x + 2) < 0 is the interval (-2, 3).
Its graph is shown in the bottom half of Figure 5. |

Solve 3x? — x — 2 > 0.

SOLUTION Since
3x2—x—2=(3x+2)(x—1)=3(x—1)(x+%)

the split points are —% and 1. These points, together with the test points —2, 0, and
2, establish the information shown in the top part of Figure 6. We conclude that the
solution set of the inequality consists of the points in either (—oo, — %) or (1, o).
In set language, the solution set is the union (symbolized by U) of these two

. . 2
intervals; that is, it 1s(—oo, —3) U (1, o0). |

-1
Solve *—— = 0.
x+2

SOLUTION Our inclination to multiply both sides by x + 2 leads to an
immediate dilemma, since x + 2 may be either positive or negative. Should we
reverse the inequality sign or leave it alone? Rather than try to untangle this
problem (which would require breaking it into two cases), we observe that the
quotient (x — 1)/(x + 2) can change sign only at the split points of the numera-
tor and denominator, that is, at 1 and —2. The test points —3, 0, and 2 yield the
information displayed in the top part of Figure 7. The symbol u indicates
that the quotient is undefined at —2. We conclude that the solution set is
(=00, =2) U[1, 00). Note that —2 is not in the solution set because the quotient
is undefined there. On the other hand, 1 is included because the inequality is true
when x = 1. |

Solve (x + 1)(x = 1)(x = 3) = 0.

SOLUTION The split points are —1, 1 and 3, which divide the real line into four
intervals, as shown in Figure 8. After testing these intervals, we conclude that the
solution set is[—1, 1] U [1, 3], which is the interval [—1, 3]. [ |

Solve 2.9 < % <31,
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31 29
H———+—
032" 033 034~ 035
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Figure 9
|-4|=4 |4]=4
e D)
I i I
-4 0 4
[3-(2)|=]-2-3]=5
| | | | | | | |
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-4 3 2 -1 0 1 2 3 4
[x-al=[a-x]
| |
I I
a X
Figure 10
IR R (S WO R N M R S
1 1 AN | | | | | } 1
5 4 3 2 -1 0o 1 2 3 4
‘x‘<3
]
5 4 -}3 2 -1 0 1 2 3\ 4
‘x|>3
Figure 11

Section 1.2 Inequalities and Absolute Values 11

SOLUTION It is tempting to multiply through by x, but this again brings up

the dilemma that x may be positive or negative. In this case, however, < must be

between 2.9 and 3.1, which guarantees that x is positive. It is therefore permissible
to multiply by x and not reverse the inequalities. Thus,

29x <1 < 3.1x

At this point, we must break this compound inequality into two inequalities, which
we solve separately.

29x <1 and 1 <31x

YS9 WME 3T

Any value of x that satisfies the original inequality must satisfy both of these
inequalities. The solution set thus consists of those values of x satisfying
1 1

31 YT 29

This inequality can be written as

10 10
— < x <=
31 29

The interval (m m) is shown in Figure 9. |

31029

Absolute Values The concept of absolute value is extremely useful in calcu-
lus, and the reader should acquire skill in working with it. The absolute value of a
real number x, denoted by |x|, is defined by

|x| = x ifx=0

x| = —x ifx <0

For example, |6] = 6,]0] = 0, and |-5| = —(—5) = 5. This two-pronged defini-
tion merits careful study. Note that it does not say that |[—x| = x (try x = =5 to
see why). It is true that | x| is always nonnegative; it is also true that |—x| = |x|.

One of the best ways to think of the absolute value of a number is as an undi-
rected distance. In particular, |x| is the distance between x and the origin. Similar-
ly, |x — al is the distance between x and a (Figure 10).

Properties Absolute values behave nicely under multiplication and division,
but not so well under addition and subtraction.

Properties of Absolute Values

1. |ab| = |al|b| o CACl

ol

a

b
3. la+ bl = |al + |b| (Triangle Inequality)

4. la — bl = |lal-Ibl|

Inequalities Involving Absolute Values If [x| < 3, then the distance be-
tween x and the origin must be less than 3. In other words, x must be simultane-
ously less than 3 and greater than —3; that is, =3 < x < 3. On the other hand, if
|x| > 3, then the distance between x and the origin must be at least 3. This can
happen when x > 3 or x < —3 (Figure 11). These are special cases of the follow-
ing general statements that hold when a > 0.

(1) x| <aes—a<x<a

x| >ae=x < —a or x>a
1



12 Chapter 1 Preliminaries

[x-4|<2

Figure 12

| |
| |
-1

T T R
L L N
0 1 2 3 4 5 6

(-t of22)

Figure 13

Finding Delta

Note two facts about our solution to
Example 11.

1. The value we find for 6 must
depend on &. Our choice is
& = ¢/6.

2. Any positive § smaller than £/6 is
acceptable. For example § = /7
or 8 = g/(2) are other correct
choices.

12

We can use these facts to solve inequalities involving absolute values, since
they provide a way of removing absolute value signs.

Solve the inequality |x — 4| < 2 and show the solution set on
the real line. Interpret the absolute value as a distance.
SOLUTION From the equations in (1), with x replaced by |x — 4|, we see that

x — 4| <2 -2<x-4<2

When we add 4 to all three members of this latter inequality, we obtain 2 < x < 6.
The graph is shown in Figure 12.

In terms of distance, the symbol |x — 4| represents the distance between x and
4.The inequality says that the distance between x and 4 is less than 2. The numbers
x with this property are the numbers between 2 and 6; thatis,2 < x < 6. |

The statements in the equations just before Example 8 are valid with < and >
replaced by = and =, respectively. We need the second statement in this form in
our next example.

Solve the inequality [3x — 5| = 1 and show its solution set on

the real line.

SOLUTION The given inequality may be written successively as

3x —5=-1 or 3x—-5=1
3x= 4 or 3x =6
x= % or x=2

3
The solution set is the union of two intervals, (—OO, g] U [2, o0), and is shown in
Figure 13. u

In Chapter 1, we will need to make the kind of manipulations illustrated by
the next two examples. Delta (8) and epsilon (&) are the fourth and fifth letters,
respectively, of the Greek alphabet and are traditionally used to stand for small
positive numbers.

i EXAMPLE 10 | Let e (epsilon) be a positive number. Show that

|x—2|<§ o [5x — 10| < &

In terms of distance, this says that the distance between x and 2 is less than ¢/5 if
and only if the distance between 5x and 10 is less than e.

SOLUTION
lx — 2| < g o 5lx —2| <&  (multiplying by 5)
e I5li(x-2)1 <& (5| =5)
o [5(x =2)] <&  (lallb] = |labl)
= [5x — 10| < e |

B EXAMPLE 11/ Let £ be a positive number. Find a positive number & (delta)
such that

[x -3 <6 = |6x — 18| < ¢
SOLUTION
l6x — 18] < ee=|6(x —3)| <&

o 6lx —3|<e (labl = lallbl)

1
o |x-3< % (multiplying by 6>
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Notation for Square Roots

Every positive number has two
square roots. For example, the two
square roots of 9 are 3 and —3.
We sometimes represent these two
numbers as +3. For a = 0, the sym-
bol Va, called the principal square
root of a, denotes the nonnegative
square root of a. Thus, V9 =3and
V121 = 11. It is incorrect to write
V16 = +4 because V16 means the
nonnegative square root of 16, that
is, 4. The number 7 has two square
roots, which are written as :t\/7, but
7 represents a single real number.
Just remember this:

a® =16
has two solutions, a = —4 and
a = 4, but
V16 = 4
+ (I) - (I) +
I I
1-V5 1+V5
T T T T N I N R
I LI | | | I_] I I
2 1 0 1 2 3 4 s
Figure 15
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Therefore, we choose 8 = ¢/6. Following the implications backward, we see that
&

|x—3|<6=>|x—3|<g=>|6x—18|<s |

Here is a practical problem that uses the same type of reasoning.

i EXAMPLE 12 | A %-liter (500 cubic centimeter) glass beaker has an inner
radius of 4 centimeters. How closely must we measure the height / of water in the
beaker to be sure that we have % liter of water with an error of less than 1%, that is,
an error of less than 5 cubic centimeters? See Figure 14.

SOLUTION The volume V of water in the glass is given by the formula
V = 16mh. We want |V — 500| < 5 or, equivalently, [1672 — 500| < 5. Now

500
[16wh — 500 < 5= ‘167T<h — ) <5
167
500
l6m|h — —| <5
< 77’ 167
.
167 167
= |h — 9.947| < 0.09947 ~ 0.1

Thus, we must measure the height to an accuracy of about 0.1 centimeter, or 1
millimeter. |

Quadratic Formula Most students will recall the Quadratic Formula. The
solutions to the quadratic equation ax®> + bx + ¢ = 0 are given by

_ —b + Vb* — dac

x 2a

The number d = b?> — 4ac is called the discriminant of the quadratic equation. The
equation ax?> + bx + ¢ = 0 has two real solutions if d > 0, one real solution if
d = 0, and no real solutions if d < 0. With the Quadratic Formula, we can easily
solve quadratic inequalities even if they do not factor by inspection.

B EXAMPLE 13 | Solve x> — 2x — 4 = 0.

SOLUTION The two solutions of x> — 2x — 4 = 0 are

—(=2) = V4 + 16
X, = (72) —1-V5~-124

and

+ V5 ~ 324
Thus,
x2—2x—4=(x—xl)(x—xz)=(x—1+\/§)(x—1—\£)

The split points 1 — V5 and 1 + V/5 divide the real line into three intervals
(Figure 15). When we test them with the test points —2, 0, and 4, we conclude that

the solution set forx?> — 2x — 4 = 0 is [1 - V5,1 + \6] [

Squares Turning to squares, we notice that

lx|2 = x? and |x| = V¥?

13
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Notation for Roots

If nis even and a = 0 the symbol
Va denotes the nonnegative nth
root of a. When # is odd, there is
only one real nth root of a, denoted

by the symbol \/a. Thus, ¥/16 = 2,

V27 =3,and V-8 = —2.

These follow from the property |a||b| = |ab].

Does the squaring operation preserve inequalities? In general, the answer is
no. For instance, —3 < 2, but (—3)? > 22. On the other hand, 2 < 3 and 2% < 3%
If we are dealing with nonnegative numbers, then a < b < a> < b>. A useful
variant of this (see Problem 63) is

x| < |yl & x* < y?

B EXAMPLE 14 | Solve the inequality |3x + 1| < 2|x — 6.

SOLUTION This inequality is more difficult to solve than our earlier examples,
because there are two sets of absolute value signs. We can remove both of them by
using the last boxed result.

3x + 1| < 2|x — 6l & 3x + 1] < [2x — 12]
= (3x + 1)2 < (2x — 12)?
= Ox? + 6x + 1 < 4x? — 48x + 144

© 5x*+54x - 143 <0
o (x+13)(5x—11) <0
The split points for this quadratic inequality are —13 and %; they divide the real

line into the three intervals: (—o00, —13), (—13, %), and (%, oo), When we use the
test points —14, 0, and 3, we discover that only the points in (—13, %) satisfy the

inequality. |
Concepts Review
1. The set {x: —1 = x < 5} is written in interval notation 3. Which of the following are always true?
as and the set {x: x = —2} is written as ) (a) |-x[=x (b) [x|* = x?
(© lxyl = Ixllyl d) Vi =x
2. If a/b < 0, then either a < 0 and or a >0 and
4. The inequality |x — 2| = 3is equivalent to
=x =
Problem Set 1.2
1. Show each of the following intervals on the real line. In each of Problems 3-26, express the solution set of the given
(a) [-1,1] (b) (—4,1] inequality in interval notation and sketch its graph.
(¢) (=4.1) (d) [1,4] 3.x—-7<2x-5 4. 3x —5<4x -6
(e) [-1,00) () (=00,0] 5. 7x—2=9x+3 6. 5x —3>6x—4
' 2. Use the notation of Problem 1 to describe the following 7 4 <3x+2<5 8 —3<d4r—9<11
intervals.
(a) . N 9. 3<1-6x=4 10. 4 <5-3x<7
| I} I} I} 1} |
A 1L x> +2x —12<0 12. x> = 5x—6>0
® oy 13. 2x* +5x =3 >0 14. 4x* = 5x -6 <0
I I I I I I 1
2 0 12 3 4 s 15.x+:50 16.3x_1220
X = X =
(C) | | | | ! 1 | |
I I I I I J I I 2 7
e e e 17. — <5 18. — =7
b 4x
(d) [T N AN T NN M |
1 1 L I I I J 1 1 4 20 3 - 2
3 2 -1 0 1 2 3 4 19. = .
? 3x =2 x+5



21, (x +2)(x = 1)(x —=3) >0

22, 2x +3)Bx —1)(x —2) <0

23, 2x = 3)(x -1} (x—-3)=0
)

24 2x —3)(x — 1D} (x—3)>0
25. ¥ —5x2 —6x <0 26, ¥ —x2—x+1>0

27. Tell whether each of the following is true or false.

22

(a) -3 < -7 (b) -1 > -17 (c) -3< -
28. Tell whether each of the following is true or false.

34 5 44

5> - - < < -

(a) —5> -\V26 ®) 5<% © —2<-%

29. Assume that a > 0, b > 0. Prove each statement. Hint:

Each part requires two proofs: one for = and one for <.

1 1
b <bs-—>-—-
(b) a <:>a b

Q) a<boad <b
30. Which of the following are true if a = b?
(a) a* =< ab ) a-3=b-3
(c) @ = d’b (d) —a=-b
31. Find all values of x that satisfy both inequalities
simultaneously.

(@) 3x+7>1and2x +1 <3
(b) 3x +7>1and2x +1 > —4
(c) 3x +7>1and2x +1 < —4
32. Find all the values of x that satisfy at least one of the two
inequalities.
(@) 2x —7>1lor2x +1<3
b) 2x—7=lor2x +1<3
(c) 2x —7=1lor2x+1>3
33. Solve for x, expressing your answer in interval notation.
@ (x+D)E*+2x-7)=x2-1
(b) x*—2x*=38
) (X¥®*+1)=7x*+1)+10<0
34. Solve each inequality. Express your solution in interval
notation.

1 1
(a) 1.99 < — <201 (b) 299 < —— < 3.01
X X

+2

In Problems 35-44, find the solution sets of the given inequalities.

35. |[x - 2| =5 36. |x +2] <1

37. |4x + 5] =10 38. 2x — 1] >2
2x x

. |= -5 4. | +1| <1

39 ; ’ 0 f ‘

41. |5x — 6] > 1 2. 2x -7 >3
1

43. ’——3‘>6 44, ‘2+§‘>1
X X

In Problems 45-48, solve the given quadratic inequality using the
Quadratic Formula.

45. > —3x —4=0
47. 3x* +17x — 6> 0

46. x> —4x +4 =0
48. 14x* + 11x —15=0
In Problems 49-52, show that the indicated implication is true.
49. |x — 3] <05=15x — 15| <25
50. |x +2[ <03=]4x + 8] <12
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s1. |x—2|<2=>|6x—12|<s

52. |x+4|<§=>|2x+8|<8

In Problems 53-56, find 6 (depending on €) so that the given
implication is true.

53. [x — 5| <é6=3x — 15| < ¢
54. |[x — 2| <6=4x — 8| <&
55. |[x + 6] <6=|6x + 36| <
56. |x + 5| <6=|5x+25| <e

57. On a lathe, you are to turn out a disk (thin right circular
cylinder) of circumference 10 inches. This is done by continually
measuring the diameter as you make the disk smaller. How
closely must you measure the diameter if you can tolerate an
error of at most 0.02 inch in the circumference?

58. Fahrenheit temperatures and Celsius temperatures are
related by the formula C = g(F — 32). An experiment requires
that a solution be kept at 50°C with an error of at most 3% (or
1.5°). You have only a Fahrenheit thermometer. What error are

you allowed on it?

In Problems 59-62, solve the inequalities.
59, |x — 1] < 2|x — 3| 60. [2x — 1] = |x + 1]
61. 2[2x — 3| < |x + 10| 62. |3x — 1] < 2|x + 6|

63. Prove that |x| < |y| & x?> < y? by giving a reason for
each of these steps:

lxl < |yl=lxllx| = |xllyl and [x[lyl < [yllyl
= |x|> < |yl
=x’ < y2
Conversely,
x2 < y2:> [x|? < |y|2
=[x> - [y*<0

= (lxl = lyD(xl + lyl) <0
lyl <0
= x| < [yl

= |x| -

64. Use the result of Problem 63 to show that
0<a<b=Va< Vb

65. Use the properties of the absolute value to show that
each of the following is true.

(a) la = bl = lal + [b] (b) la = bl = lal —|b]
(€) la+b+cl=lal + bl + Icl
66. Use the Triangle Inequality and the fact that

0 < lal < |b|=1/|b] < 1/]al to establish the following chain of
inequalities.

1 1 ‘ 1 1 1 1

- = + == +=

2+3 xl+2l ¥2+3 |x|+2 3 2

67. Show that (see Problem 66)

x—2‘<|x|+2
x24+9 9
68. Show that
2
x| = 2= X +2x+7‘§15
2 +1

15
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69. Show that

Il =1=*+i3 + 12 +ix+ 4 <2

70. Show each of the following:
(a) x < x*forx <Oorx > 1
(b) ¥* <xfor0<x<1

This is the simplest version of a famous inequality called the
geometric mean—arithmetic mean inequality.

75. Show that, among all rectangles with given perimeter p,
the square has the largest area. Hint: If a and b denote the
lengths of adjacent sides of a rectangle of perimeter p, then the
area is ab, and for the square the area is a®> = [(a + b)/2]>. Now
see Problem 74.

71. Show that a # 0=a®> + 1/a*> = 2. Hint: Consider

(a — 1/a)>

72. The number %(a + b) is called the average, or arithmetic
mean, of a and b. Show that the arithmetic mean of two numbers
is between the two numbers; that is, prove that

73. The number Vab is called the geometric mean of two

a
a<b:>a<T<

+b

positive numbers a and b. Prove that

74. For two positive numbers a and b, prove that

V@S%(a-i—b)

O0<a<b=a< Vab<b

1.3

The Rectangular

Coordinate System

y
3
b
I
1=
——t——t+—1+—
3 2 -l 1 2 3 X
11
nr -2+
-3 4=
Figure 1
Y
3 S —— -9 (a, b)
- I
|
|
|
T |
L [ B B
T T T T I I I I
3 2 - 1 2 3 a X
-1+
i,
Figure 2
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76. Solvel + x + x>+ x> + -+ + x¥ =0.

1 1 1 1
77. The formula R E + Ez + Ea gives the total resist-

ance R in an electric circuit due to three resistances, R;, R,, and
R;, connected in parallel. If 10 = Ry = 20,20 = R, = 30, and
b 30 = R; = 40, find the range of values for R.

78. The radius of a sphere is measured to be about 10 inches.
Determine a tolerance 6 in this measurement that will ensure an
error of less than 0.01 square inch in the calculated value of the
surface area of the sphere.

Answers to Concepts Review 1.[—1,5); (—o0, —2]
2.b>0;b<0 3.(b)and(c) 4 -1=x=5

In the plane, produce two copies of the real line, one horizontal and the other
vertical, so that they intersect at the zero points of the two lines. The two lines are
called coordinate axes; their intersection is labeled O and is called the origin. By
convention, the horizontal line is called the x-axis and the vertical line is called the
y-axis. The positive half of the x-axis is to the right; the positive half of the y-axis is
upward. The coordinate axes divide the plane into four regions, called quadrants,
labeled I, I1, I11, and IV, as shown in Figure 1.

Each point P in the plane can now be assigned a pair of numbers, called its
Cartesian coordinates. If vertical and horizontal lines through P intersect the
x- and y-axes at a and b, respectively, then P has coordinates (a, b) (see Figure 2).
We call (a, b) an ordered pair of numbers because it makes a difference which
number is first. The first number a is the x-coordinate; the second number b is the
y-coordinate.

The Distance Formula With coordinates in hand, we can introduce a simple
formula for the distance between any two points in the plane. It is based on the
Pythagorean Theorem, which says that, if @ and b measure the two legs of a right
triangle and ¢ measures its hypotenuse (Figure 3), then

a> + b>=¢?

Conversely, this relationship between the three sides of a triangle holds only for a
right triangle.

Now consider any two points P and Q, with coordinates (xy, y;) and (x,, ¥»),
respectively. Together with R, the point with coordinates (x,, y;), P and Q are ver-
tices of a right triangle (Figure 4). The lengths of PR and RQ are |x, — x;| and
|y, — |, respectively. When we apply the Pythagorean Theorem and take the
principal square root of both sides, we obtain the following expression for the
Distance Formula

d(P,0Q) = \/(xz —x1)>+ (»m =)




D
a+ b= ¢ :

a

Figure 3

y Q (x5, y,)

‘ Yo=Y |

|x,— x|

P(x;,y) R (xy, y))
x

Figure 4

y

Figure 5

Circle <> Equation

To say that
(x + 1)+ (y—-2)?=

is the equation of the circle of radius
3 with center (—1, 2) means two
things:

1. If a point is on this circle, then its
coordinates (x, y) satisfy the
equation.

2. If x and y are numbers that sat-
isfy the equation, then they are
the coordinates of a point on the
circle.
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Find the distance between
(a) P(~2,3)andQ(4, 1) (b) P(V2,V/3)and Q(m, )
SOLUTION
(a) d(P,0) = V(4 — (=2))* + (-1 =32 = V36 + 16 = V52 ~ 721
(®) d(P,0) = V(7 = V2) + (7 - V3P ~ Va971 ~ 223 8

The formula holds even if the two points lie on the same horizontal line or the
same vertical line. Thus, the distance between P(—2,2) and Q(6,2) is

V(6—(-2)) + (2 -2 = V64 =38

The Equation of a Circle It is a small step from the distance formula to the
equation of a circle. A circle is the set of points that lie at a fixed distance (the
radius) from a fixed point (the center). Consider, for example, the circle of radius 3
with center at (—1, 2) (Figure 5). Let (x, y) denote any point on this circle. By the
Distance Formula,

Vx+1)2+ (y-27>=3
When we square both sides, we obtain
(x + 17+ (y—2)?=9

which we call the equation of this circle.
More generally, the circle of radius r and center (h, k) has the equation

(1) (x = b)Y + (y = kP = 72

We call this the standard equation of a circle.

Find the standard equation of a circle of radius 5 and cen-

ter (1, —=5). Also find the y-coordinates of the two points on this circle with
x-coordinate 2.

SOLUTION The desired equation is
(x =12+ (y+5?%*=25

To accomplish the second task, we substitute x = 2 in the equation and solve
for y.

2-172+(y+5?*=25
(y +5)> =24
y+5=:t\/274
y=-5+£V24=-5x£2V6 o

If we expand the two squares in the boxed equation (1) and combine the
constants, then the equation takes the form

x> +ax+y*+by=c

This suggests asking whether every equation of the latter form is the equation of a
circle. The answer is yes, with some obvious exceptions.

17
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Y2
101+

N

0 (x5, ¥,)

Figure 6

18

O

S,

Show that the equation

¥ —2x+y?+6y=-6

represents a circle, and find its center and radius.

SOLUTION We need to complete the square, a process important in many
contexts. To complete the square of x*> + bx, add (b/2)>. Thus, we add
(—2/2)* = 1to x> — 2x and (6/2)> = 9to y* + 6y, and of course we must add the
same numbers to the right side of the equation, to obtain

-2x+1+y’+6y+9=-6+1+9
(x =172+ (y+3)?2=4

The last equation is in standard form. It is the equation of a circle with center
(1, —3) and radius 2. If, as a result of this process, we had come up with a negative
number on the right side of the final equation, the equation would not have repre-
sented any curve. If we had come up with zero, the equation would have repre-
sented the single point (1, —3). [ |

The Midpoint Formula Consider two points P(xy, y;) and Q(x,, y,) with
X1 = x, and y; = y,, as in Figure 6. The distance between x; and x, is x, — x;.
When we add half this distance, %(xz — X1), to x;, we should get the number mid-
way between x; and x,.

1 _1 +1 _x1+x2
1T TN 2

X1 +5()C2_X1) = X1 +*X2_

2

Thus, the point (x; + x,)/2 is midway between x; and x, on the x-axis and, conse-
quently, the midpoint M of the segment PQ has (x; + x,)/2 as its x-coordinate.
Similarly, we can show that (y; + y,)/2 is the y-coordinate of M. Thus, we have the
Midpoint Formula.

The midpoint of the line segment joining P(xy, y;) and Q(x», y,) is

(xl +x y t YZ>
2 2

Find the equation of the circle having the segment from (1, 3)

to (7,11) as a diameter.

SOLUTION The center of the circle is at the midpoint of the diameter; thus, the
center has coordinates (1 + 7)/2 =4 and (3 + 11)/2 = 7. The length of the
diameter, obtained from the distance formula, is

V(7 - 1)+ (11 - 3)2= V36 + 64 = 10
and so the radius of the circle is 5. The equation of the circle is

(x =42+ (y—-77%=25 ]

Lines Consider the line in Figure 7. From point A to point B, there is a rise (ver-
tical change) of 2 units and a run (horizontal change) of 5 units. We say that the
line has a slope of % In general (Figure 8), for a line through A(xy, y;) and
B(x,, y»), where x| # x,, we define the slope m of that line by

_rise _ y»»—n

run Xy — Xq




Section 1.3 The Rectangular Coordinate System 19

B (x5, y,)

A (,\'l, »

Figure 7

Grade and Pitch

The international symbol for the
slope of a road (called the grade) is
shown below. The grade is given as a
percentage. A grade of 10% corre-
sponds to a slope of +0.10.

Carpenters use the term pitch. A
9:12 pitch corresponds to a slope

9
of 3.

Figure 11

Figure 8 Figure 9

Does the value we get for the slope depend on which pair of points we use for
A and B? The similar triangles in Figure 9 show us that

=N
X — X

Y2 =V

Xy~ xq

Thus, points A’ and B’ would do just as well as A and B. It does not even matter
whether A is to the left or right of B, since

Y1—Y2:)’2—Y1

X1 — X2 X — X1

All that matters is that we subtract the coordinates in the same order in the nu-
merator and the denominator.

The slope m is a measure of the steepness of a line, as Figure 10 illustrates.
Notice that a horizontal line has zero slope, a line that rises to the right has pos-
itive slope, and a line that falls to the right has negative slope. The larger the
absolute value of the slope is, the steeper the line. The concept of slope for a verti-
cal line makes no sense, since it would involve division by zero. Therefore, slope for
a vertical line is left undefined.

y m=11-3
7-1 )
m=g—=-3\(.7
0-2 7)(,) @7
4ol _ 3
6 m=343=3
4,4) _2-1 _ 1
m=32=2
2, 1)
“4,2)
6, 1) 1-1
° m=m=0
B e
54 3 2 0 //2\3 4:\6 7 8 9 10 x

Lines of various slopes

Figure 10

The Point-Slope Form Consider again the line of our opening discussion; it
is reproduced in Figure 11. We know that this line

1. passes through (3,2) and
2. has slope %

19
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Take any other point on this line, such as one with coordinates (x, y). If we use this
point and the point (3,2) to measure slope, we must get %, that is,

y—2 2

x—3 5

or, after multiplying by x — 3,

y—2=%x-3)
Notice that this last equation is satisfied by all points on the line, even by (3, 2).
Moreover, none of the points not on the line can satisfy this equation.

What we have just done in an example can be done in general. The line passing
through the (fixed) point (x4, y;) with slope m has equation

y =y =m(x — xp)

We call this the point-slope form of the equation of a line.
Consider once more the line of our example. That line passes through (8, 4) as
well as (3,2). If we use (8,4) as (xy, y;), we get the equation

y—4=5%x-8)

which looks quite different from y — 2 = %(x — 3). However, both can be simpli-
fied to 5y — 2x = 4; they are equivalent.

Find an equation of the line through (—4,2) and (6, —1).

SOLUTION The slope is m = (=1 — 2)/(6 + 4) = —%. Thus, using (—4,2) as
the fixed point, we obtain the equation

y—2=—137)(x+4) u

y The Slope-Intercept Form The equation of a line can be expressed in
various forms. Suppose that we are given the slope m for a line and the y-intercept
Slope m b (i.e., the line intersects the y-axis at (0, b)), as shown in Figure 12. Choosing (0, b)
as (x, y;) and applying the point-slope form, we get

y—b=m(x —0)

y=mx+b

x which we can rewrite as

Figure 12 y=mx+b

The latter is called the slope-intercept form. Any time we see an equation written
this way, we recognize it as a line and can immediately read its slope and
y-intercept. For example, consider the equation

3x—2y+4=0

If we solve for y, we get
y = %x + 2

Equation of a Vertical Line Vertical lines do not fit within the preceding

(s 1) discussion since the concept of slope is not defined for them. But they do have

7 equations, very simple ones. The line in Figure 13 has equation x = %, since a point

| | is on the line if and only if it satisfies this equation. The equation of any vertical

(3.21) line can be put in the form x = k, where k is a constant. It should be noted that the
- equation of a horizontal line can be written in the form y = k.

3 '(: 3) It is the equation of a line with slope % and y-intercept 2.

The Form Ax + By + C = 0 It would be nice to have a form that covered
Figure 13 all lines, including vertical lines. Consider, for example,

20



Summary: Equations of Lines

Vertical line: x = k
Horizontal line: y = k
Point-slope form:
y =y =m(x = x)
Slope-intercept form:
y=mx + b
General linear equation:
Ax + By +C=0

Figure 14

&

Figure 15

1= 6x— 10y =7

Figure 16
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y—2=—-4(x +2)
y=5x—-3
x =15
These can be rewritten (by taking everything to the left-hand side) as follows:
4 +y+6=0
—Sx+y+3=0
x+0y—-5=0
All are of the form

Ax + By + C =0, A and B not both 0

which we call the general linear equation. It takes only a moment’s thought to see
that the equation of any line can be put in this form. Conversely, the graph of the
general linear equation is always a line.

Parallel Lines Two lines that have no points in common are said to be parallel.
For example, the lines whose equations are y = 2x + 2and y = 2x + 5 are paral-
lel because, for every value of x, the second line is three units above the first (see
Figure 14). Similarly, the lines with equations —2x + 3y + 12 =0 and
4x — 6y = 5 are parallel. To see this, solve each equation for y (i.e., put each in the
slope-intercept form). This gives y = %x —4 and y = %x — %, respectively.
Again, because the slopes are equal, one line will be a fixed number of units
above or below the other, so the lines will never intersect. If two lines have the
same slope and the same y-intercept, then the two lines are the same, and they are
not parallel.

We summarize by stating that two nonvertical lines are parallel if and only if
they have the same slope and different y-intercepts. Two vertical lines are parallel
if and only if they are distinct lines.

Find the equation of the line through (6, 8) that is parallel to

the line with equation 3x — 5y = 11.

SOLUTION When we solve 3x — 5y = 11 for y, we obtain y = %x - %, from
which we read the slope of the line to be % The equation of the desired line is

y=8=3(x-6)

or, equivalently, y = %x + 25—2 We know that these lines are distinct because the
y-intercepts are different. u

Perpendicular Lines Is there a simple slope condition that characterizes
perpendicular lines? Yes; two nonvertical lines are perpendicular if and only if their
slopes are negative reciprocals of each other. To see why this is true, consider
Figure 15. This picture tells almost the whole story; it is left as an exercise (Problem
57) to construct a geometric proof that the two (nonvertical) lines are perpenicular
if and only if m, = —1/m;.

Find the equation of the line through the point of intersection

of the lines with equations 3x + 4y = 8 and 6x — 10y = 7 thatis perpendicular to
the first of these two lines (Figure 16).

SOLUTION To find the point of intersection of the two lines, we multiply the
first equation by —2 and add it to the second equation.

21
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—6x — 8y = —16
6x — 10y =7
— 18y = -9

1

)

Substituting y = % in either of the original equations yields x = 2. The point of

intersection is (2, %) When we solve the first equation for y (to put it in slope-

intercept form), we get y = — %x + 2. A line perpendicular to it has slope g. The

equation of the required line is

y—3=3(x-2) u

Concepts Review
1. The distance between the points (—2,3) and (x, y) is

2. The equation of the circle of radius 5 and center (—4, 2)
is

3. The midpoint of the line segment joining (—2,3) and
(5,7)is .

4. The line through (a, b) and (c, d) has slope m =
provided a # c.

Problem Set 1.3

In Problems 1-4, plot the given points in the coordinate plane and
then find the distance between them.

1. 3.1),(1,1) 2. (-3,5),(2,-2)
3. (4,5), (5, —8) 4. (-1,5),(6,3)

5. Show that the triangle whose vertices are (5, 3), (—2,4),
and (10, 8) is isosceles.

6. Show that the triangle whose vertices are (2, —4), (4, 0),
and (8, —2) is a right triangle.

7. The points (3, —1) and (3, 3) are two vertices of a square.
Give three other pairs of possible vertices.

8. Find the point on the x-axis that is equidistant from (3, 1)
and (6, 4).

9. Find the distance between (—2,3) and the midpoint of
the segment joining (=2, —2) and (4, 3).

10. Find the length of the line segment joining the midpoints
of the segments AB and CD, where A = (1,3), B = (2,6),
C =(4,7),and D = (3,4).

In Problems 11-16, find the equation of the circle satisfying the
given conditions.
11. Center (1,1), radius 1
12. Center (-2, 3), radius 4
13. Center (2, —1), goes through (5, 3)
14. Center (4, 3), goes through (6, 2)
15. Diameter AB, where A = (1,3) and B = (3,7)
16. Center (3,4) and tangent to x-axis
22

In Problems 17-22, find the center and radius of the circle with the
given equation.

17. > +2x+ 10+ y> — 6y — 10 =0
18. x> + y> — 6y = 16

19. 2+ 3y —12x +35=0

20. x>+ y?> = 10x + 10y = 0

21. 4x> + 16x + 15 + 4y*> + 6y = 0

22. 2+ 16x + 8+ 492 + 3y =0

In Problems 23-28, find the slope of the line containing the given
two points.
23. (1,1)and (2,2)
25. (2,3)and (-5, —6)
27. (3,0) and (0,5)

24. (3,5)and (4,7)
26. (2,—4)and (0, —6)
28. (—6,0) and (0, 6)
In Problems 29-34, find an equation for each line. Then write your
answer in the form Ax + By + C = 0.

29. Through (2,2) with slope —1

30. Through (3,4) with slope —1

31. With y-intercept 3 and slope 2

32. With y-intercept 5 and slope 0

33. Through (2,3) and (4, 8)

34. Through (4,1) and (8,2)

In Problems 35-38, find the slope and y-intercept of each line.
35. 3y = —2x + 1 36. 4y =5x—-6



37. 6 — 2y = 10x — 2 38. 4x + 5y = =20
39. Write an equation for the line through (3, —3) that is
(a) parallel to the line y = 2x + 5;
(b) perpendicular to the line y = 2x + 5;
(c) parallel to the line 2x + 3y = 6;
(d) perpendicular to the line 2x + 3y = 6;
(e) parallel to the line through (—1,2) and (3, —1);
(f) parallel to the line x = 8;
(g) perpendicular to the line x = 8.

40. Find the value of ¢ for which the line 3x + cy = 5
(a) passes through the point (3, 1);
(b) is parallel to the y-axis;
(c) isparallel to the line 2x + y = —1;
(d) has equal x- and y-intercepts;
(e) is perpendicular to the line y — 2 = 3(x + 3).

41. Write the equation for the line through (-2, —1) that is
perpendicular to the line y + 3 = —%(x - 5).

42. Find the value of k such that the line kx — 3y = 10
(a) is parallel to the line y = 2x + 4;
(b) is perpendicular to the line y = 2x + 4;
(c) is perpendicular to the line 2x + 3y = 6.

43. Does (3,9) lie above or below the line y = 3x — 1?

44. Show that the equation of the line with x-intercept a # 0
and y-intercept b # 0 can be written as

x Y

—+==1
a b

In Problems 45—48, find the coordinates of the point of intersec-
tion. Then write an equation for the line through that point perpen-
dicular to the line given first.

45. 2x+3y=4 46. 4x — 5y =8
=3x+ y=5 2x + y=-10

47. 3x—4y=>5 48. Sx —2y =15
2x +3y =9 2x + 3y =6

49. The points (2,3),(6,3), (6, —1), and (2, —1) are corners of
a square. Find the equations of the inscribed and circumscribed
circles.

50. A belt fits tightly around the two circles, with equations
(x =12+ (y+2)?% =16 and (x+ 9%+ (y—10)* = 16.
How long is this belt?

51. Show that the midpoint of the hypotenuse of any right
triangle is equidistant from the three vertices.

52. Find the equation of the circle circumscribed about the
right triangle whose vertices are (0, 0), (8,0), and (0, 6).

53. Show that the two circles x> + y* — 4x — 2y — 11 =0
and x? + y* 4+ 20x — 12y + 72 = 0 do not intersect. Hint: Find
the distance between their centers.

54. What relationship between a, b, and ¢ must hold if
x? + ax + y* + by + ¢ = 0is the equation of a circle?

55. The ceiling of an attic makes an angle of 30° with the
floor. A pipe of radius 2 inches is placed along the edge of the
attic in such a way that one side of the pipe touches the ceiling
and another side touches the floor (see Figure 17). What is the
distance d from the edge of the attic to where the pipe touches
the floor?
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Figure 17 Figure 18

56. A circle of radius R is placed in the first quadrant as
shown in Figure 18. What is the radius r of the largest circle that
can be placed between the original circle and the origin?

57. Construct a geometric proof using Figure 15 that shows
two lines are perpendicular if and only if their slopes are negative
reciprocals of one another.

58. Show that the set of points that are twice as far from (3, 4)
as from (1, 1) form a circle. Find its center and radius.

59. The Pythagorean Theorem says that the areas A, B, and C
of the squares in Figure 19 satisfy A + B = C. Show that semi-
circles and equilateral triangles satisfy the same relation and then
guess what a very general theorem says.

Figure 19

60. Consider a circle C and a point P exterior to the circle.
Let line segment PT be tangent to C at T, and let the line through
P and the center of C intersect C at M and N. Show that
(PM)(PN) = (PT)~
61. A belt fits around the three circles x* + y? = 4,
(x — 8)? + y* =4, and (x — 6)> + (y — 8)> = 4, as shown in
Figure 20. Find the length of this belt.

Figure 20

23
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62. Study Problems 50 and 61. Consider a set of nonintersect-
ing circles of radius r with centers at the vertices of a convex
n-sided polygon having sides of lengths di, d», ..., d,. How long
is the belt that fits around these circles (in the manner of
Figure 20)?

It can be shown that the distance d from the point (xy, y;) to the
line Ax + By + C = 0is

g |Ax, + By, + C|
VA + B

Use this result to find the distance from the given point to the given
line.

63. (—3,2);3x +4y =6

64. (4,-1);2x =2y +4=0

65. (=2,-1);5y=12x +1

66. (3,-1);y=2x—-15
In Problems 67 and 68, find the (perpendicular) distance between
the given parallel lines. Hint: First find a point on one of the lines.

67. 2x + 4y =7,2x + 4y =5

68. 7x — 5y =6,7x — 5y = —1

69. Find the equation for the line that bisects the line seg-
ment from (—2,3) to (1, —2) and is at right angles to this line
segment.

70. The center of the circumscribed circle of a triangle lies on
the perpendicular bisectors of the sides. Use this fact to find the
center of the circle that circumscribes the triangle with vertices
(0,4),(2,0),and (4,6).

71. Find the radius of the circle that is inscribed in a triangle
with sides of lengths 3,4, and 5 (see Figure 21).

1.4
Graphs of Equations

Figure 21

72. Suppose that (a, b) is on the circle x?> + y*> = r2. Show
that the line ax + by = r?is tangent to the circle at (a, b).

73. Find the equations of the two tangent lines to the circle
x? + y? = 36 that go through (12,0). Hint: See Problem 72.

74. Express the perpendicular distance between the parallel
linesy = mx + band y = mx + Binterms of m, b, and B. Hint:
The required distance is the same as that between y = mx and
y=mx + B —b.

75. Show that the line through the midpoints of two sides of a
triangle is parallel to the third side. Hint: You may assume that
the triangle has vertices at (0, 0), (a, 0), and (b, ¢).

76. Show that the line segments joining the midpoints of
adjacent sides of any quadrilateral (four-sided polygon) form a
parallelogram.

77. A wheel whose rim has equation x> + (y — 6)% = 25 is
rotating rapidly in the counterclockwise direction. A speck of dirt
on the rim came loose at the point (3,2) and flew toward the wall
x = 11. About how high up on the wall did it hit? Hint: The speck
of dirt flies off on a tangent so fast that the effects of gravity are
negligible by the time it has hit the wall.

Answers to Concepts Review: 1. V/(x + 2) + (y — 3)?
2. (x+ 4P+ (y— 22 =25 3.(15,5) 4(d-b)j(c—a)

The use of coordinates for points in the plane allows us to describe a curve (a
geometric object) by an equation (an algebraic object). We saw how this was done
for circles and lines in the previous section. Now we want to consider the reverse

process: graphing an equation. The graph of an equation in x and y consists of
those points in the plane whose coordinates (x, y) satisfy the equation, that is, make

it a true equality.

The Graphing Procedure To graph an equation, for example, y =
2x*> — x + 19, by hand, we can follow a simple three-step procedure:

Step 1: Obtain the coordinates of a few points that satisfy the equation.

Step 2: Plot these points in the plane.

Step 3: Connect the points with a smooth curve.

This simplistic method will have to suffice until Chapter 3 when we use more
advanced methods to graph equations. The best way to do Step 1 is to make a table
of values. Assign values to one of the variables, such as x, and determine the cor-
responding values of the other variable, listing the results in tabular form.

A graphing calculator or a computer algebra system will follow much the same
procedure, although its procedure is transparent to the user. A user simply defines
the function and asks the graphing calculator or computer to plot it.
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Symmetry with respect
to the y-axis

Figure 2
y
(x,y)
|
Px=y2+1
I
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|
|
i
(x, =y)
Symmetry with respect
to the x-axis
Figure 3
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Graph the equation y = x> — 3.

SOLUTION The three-step procedure is shown in Figure 1.

y y
y= x2-3 { 6 L 6
x |y 5 5
36 4 4
3 3
2|1 2 2
-1 =2 o ° 1
013 3 2 -1 12 3 X 1/2 3 x
1|2 -l
2|1 ° °
]
316
Step 1 Step 2 Step 3
Make a table Plot those points. Connect those points with
of values. a smooth curve.
Figure 1 [ |

Of course, you need to use common sense and even a little faith. When you
have a point that seems out of place, check your calculations. When you connect
the points you have plotted with a smooth curve, you are assuming that the curve
behaves nicely between consecutive points, which is faith. This is why you should
plot enough points so that the outline of the curve seems very clear; the more
points you plot, the less faith you will need. Also, you should recognize that you
can seldom display the whole curve. In our example, the curve has infinitely long
arms, opening wider and wider. But our graph does show the essential features.
This is our goal in graphing. Show enough of the graph so that the essential fea-
tures are visible. Later (Section 3.5) we will use the tools of calculus to refine and
improve our understanding of graphs.

Symmetry of a Graph We can sometimes cut our graphing effort in half by
recognizing certain symmetries of the graph as revealed by its equation. Look at
the graph of y = x> — 3, drawn above and again in Figure 2. If the coordinate
plane is folded along the y-axis, the two branches of the graph will coincide. For ex-
ample, (3, 6) will coincide with (=3, 6), (2, 1) will coincide with (=2, 1), and, more
generally, (x, y) will coincide with (—x, y). Algebraically, this corresponds to the
fact that replacing x by —x in the equation y = x> — 3 results in an equivalent
equation.

Consider an arbitrary graph. It is symmetric with respect to the y-axis if, when-
ever (x, y) is on the graph, (—x, y) is also on the graph (Figure 2). Similarly, it is
symmetric with respect to the x-axis if, whenever (x, y) is on the graph, (x, —y) is
also on the graph (Figure 3). Finally, a graph is symmetric with respect to the origin
if, whenever (x, y) is on the graph, (—x, —y) is also on the graph (see Example 2).

In terms of equations, we have three simple tests. The graph of an equation is

1. symmetric with respect to the y-axis if replacing x by —x gives an equivalent
equation (e.g., y = x°);

2. symmetric with respect to the x-axis if replacing y by —y gives an equivalent
equation (e.g.,x = y* + 1);

3. symmetric with respect to the origin if replacing x by —x and y by —y gives
an equivalent equation (y = x° is a good example since —y = (—x)’ is equiv-
alentto y = x°).

25
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(=, -y)

o705
—10 7
—157
—20 7

y=x' Sketch the graph of y = x°.

x|y

010 SOLUTION We note, as pointed out above, that the graph will be symmetric with
11 respect to the origin, so we need only get a table of values for nonnegative x’s; we
218 ] can find matching points by symmetry. For example, (2, 8) being on the graph tells
327 204 us that (=2, —8) is on the graph, (3, 27) being on the graph tells us that (=3, —27)
4 | 64 13_ is on the graph, and so on. See Figure 4. ]

In graphing y = x°, we used a different scale on the y-axis than on the x-axis.

This made it possible to show a larger portion of the graph (it also distorted the
graph by flattening it). When you graph by hand we suggest that before putting

—257

scales on the two axes you should examine your table of values. Choose scales so
that all or most of your points can be plotted and still keep your graph of reason-
able size. A graphing calculator or a CAS will often choose the scale for the y’s
Figure 4 once you have chosen the x’s to be used. The first choice you make, therefore, is the
x values to plot. Most graphing calculators and CASs allow you to override the
automatic y-axis scaling. In some cases you may want to use this option.

Symmetry with respect
to the origin

Intercepts The points where the graph of an equation crosses the two coordi-
nate axes play a significant role in many problems. Consider, for example,

y=x—2x>-5x+6=(x+2)(x — 1)(x — 3)

Graphing Calculators

Notice that y = 0 when x = —2,1,3. The numbers —2,1, and 3 are called
x-intercepts. Similarly, y = 6 when x = 0, and so 6 is called the y-intercept.

Find all intercepts of the graph of y> — x + y — 6 = 0.

SOLUTION Putting y = 0 in the given equation, we get x = —6, and so the
x-intercept is —6. Putting x = 0 in the equation, we find that y> + y — 6 = 0, or
(y +3)(y — 2) = 0; the y-intercepts are —3 and 2. A check on symmetries
indicates that the graph has none of the three types discussed earlier. The graph is
displayed in Figure 5. [ ]

If you have a graphing calculator,
use it whenever possible to repro-
duce the plots shown in the figures.

Since quadratic and cubic equations will often be used as examples in later
work, we display their typical graphs in Figure 6.
! The graphs of quadratic equations are cup-shaped curves called parabolas. If
e e an equation has the form y = ax? + bx + c or x = ay* + by + ¢ with a # 0, its
graph is a parabola. In the first case, the graph opens up if a > 0 and opens down
if a < 0. In the second case, the graph opens right if ¢ > 0 and opens leftif a < 0.
Note that the equation of Example 3 can be put in the form x = y> + y — 6.

Y -x+y-6=0 . . .
Intersections of Graphs Frequently, we need to know the points of intersec-

Figure 5 tion of two graphs. These points are found by solving the two equations for the
graphs simultaneously, as illustrated in the next example.

Find the points of intersection of the line y = —2x + 2 and

the parabola y = 2x?> — 4x — 2, and sketch both graphs on the same coordinate
plane.

SOLUTION We must solve the two equations simultaneously. This is easy to do
by substituting the expression for y from the first equation into the second
equation and then solving the resulting equation for x.

“2x +2=2x* —4x -2
0=2x"—-2x—4
0=2(x+1)(x —2)

x = -1, x =2
26
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BASIC QUADRATIC AND CUBIC GRAPHS

y

y=ax2+bx+c

a>0 a<0
y y
/TN N\
S X N

y=ax*+bx®> +cx+d
a>0

y=ad+bx>+cx+d

y y
X X
y=x y=-x
y y
X X
y=x y=-x
y
X
x=y y=Vx

a<0
y
X
x=y3ory=\3/;

Figure 6

27

By substitution, we find the corresponding values of y to be 4 and —2; the inter-
section points are therefore (—1,4) and (2, —2). The two graphs are shown in

Figure 7.

y=2x>—4x-2

Figure 7

y=-2x+2

27



28 Chapter 1 Preliminaries

Concepts Review

1. If whenever (x, y) is on a graph, (—x, y) is also on the
graph, then the graph is symmetric with respect to the .

3. The graphofy = (x + 2)(x — 1)(x — 4) has y-intercept
and x-intercepts

2. If (—4,2) is on a graph that is symmetric with respect to 4-. The graph of y = ax®> + bx + cisa ifa=0anda
the origin, then is also on the graph. _ ifa#0.
Problem Set 1.4
In Problems 1-30, plot the graph of each equation. Begin by 37. y —3x =1 38. y=4x +3

checking for symmetries and be sure to find all x- and y-intercepts.

1. y=-x*+1 2. x=—y"+1
3.x=—-4 -1 4. y=4x* -1
5 x>+y=0 6. y=x>—2x
7. 7x* + 3y =0 8. y=3x>—-2x+2
9. x>+ > =4 10. 3x> + 4y? =12
. y=—x>—2x+2 12. 4x% +3y? =12
13. x2 — y? = 4 2+ (y—1?=
15. 4(x — 1)2 4+ y* = 36
16. x> — 4x + 3y? = =2
17. x> + 9(y + 2)? = 36
GA18. x* + y* =1 619, x*+ y* =16
Gd20. y = x> — x GC21. y= 21
x“+1
Cd22.y = ——
x°+1

23.2x% —4x + 3y + 12y = -2

24.4(x — 5>+ 9(y + 2)> =36

Gd2s.y = (x = 1)(x — 2)(x — 3)

26.y = x}(x — 1)(x — 2)

27.y = x*(x — 1)?

28.y = x*(x — D*x + 1)*

GA29. (x| + |yl =1 GC30. |x| + |yl =4

In Problems 31-38, plot the graphs of both equations on the
same coordinate plane. Find and label the points of intersection of
the two graphs (see Example 4).

3. y=-—x+1 32. y=2x+3

y=(x+1) y=—(x—1)
3. y=-2x+3 34, y=-2x+3

y = —2(x — 4)? y=3x2-3x + 12
35. y=x 36. y=x—-1

X2+ yr=4 2x% + 3y =12

28

X2+ 2x +y* =15 2+ y? =81

39. Choose the equation that corresponds to each graph in
Figure 8.
(a) y = ax? witha > 0
(b) y =ax’ + bx’> + cx + d, witha > 0
(¢) y=ax’+ bx>+ cx + d, witha < 0
(d) y = ax® witha >0

20 20

10+ -10 -
20 20—
)] )

y y
20 +— 20 -+
10 T 10—

210+ —10-++

20+ 20 -

3) “

Figure 8

40. Find the distance between the points on the circle
x> + y? = 13 with the x-coordinates —2 and 2. How many such
distances are there?

41. Find the distance between the points on the circle
x> + 2x + y?> — 2y = 20 with the x-coordinates —2 and 2. How
many such distances are there?

Answers to Concepts Review:
3.8;-2,1,4 4.line; parabola

1. y-axis 2. (4, —2)




A Function

/

Domain

Figure 1

Range
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1.5 The concept of function is one of the most basic in all mathematics, and it plays an

Functions and Their

indispensable role in calculus.

Definition

A function fis a rule of correspondence that associates with each object x in one
set, called the domain, a single value f(x) from a second set. The set of all values
so obtained is called the range of the function. (See Figure 1.)

Think of a function as a machine that takes as its input a value x and produces
an output f(x). (See Figure 2.) Each input value is matched with a single output
value. It can, however, happen that several different input values give the same
output value.

2 4
X

¢ 1 -3

0 -2

-1 / \ 1

2 ~ 0

g() =x?
fx) Domain Range
Figure 2 Figure 3

The definition puts no restriction on the domain and range sets. The domain
might consist of the set of people in your calculus class, the range the set of grades
{A, B, C, D, F} that will be given, and the rule of correspondence the assignment
of grades. Nearly all functions you encounter in this book will be functions of one
or more real numbers. For example, the function g might take a real number x and
square it, producing the real number x°. In this case we have a formula that gives
the rule of correspondence, that is, g(x) = x°. A schematic diagram for this func-
tion is shown in Figure 3.

Function Notation A single letter like f (or g or F) is used to name a func-
tion. Then f(x), read “f of x” or “f at x,” denotes the value that f assigns to x. Thus,
if f(x) = x> — 4, then
f2)=22-4=4
fla)=a’ -4
fla+h)=(a+h)?—4=0a+3ah +3ak® + 1’ — 4

Study the following examples carefully. Although some of these examples may
look odd now, they will play an important role in Chapter 3.

For f(x) = x* — 2x, find and simplify
() f(4) (b) f(4+h)
(c) f(4+h)—f(4) (d) [f(4+h) = f(D)/h

SOLUTION

(@) f(4) =4 —-2-4=38

(b) f4+h)=@4+h?>—-24+h)=16+8h + > — 8 —2h
8 + 6h + I

(c) f(4+h)—f(4)=8+6h+h —8=06h+I
f(4+h)—f(4) 6h+h h(6+h)
@ T n

=6+h [ |
29
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Fx)=x2+1

w

[

Domain Range

Figure 4

oy
Y x

Figure 5

Graphing Calculator

Remember, use your graphing calcu-
lator to reproduce the figures in this
book. Experiment with various
graphing windows until you are
convinced that you understand all
important aspects of the graph.

30

Domain and Range To specify a function completely, we must state, in
addition to the rule of correspondence, the domain of the function. For example,
if F is the function defined by F(x) = x* + 1 with domain {-1,0,1,2,3}
(Figure 4), then the range is {1, 2,5,10}. The rule of correspondence, together
with the domain, determines the range.

When no domain is specified for a function, we assume that it is the largest set
of real numbers for which the rule for the function makes sense. This is called the
natural domain. Numbers that you should remember to exclude from the natural
domain are those values that would cause division by zero or the square root of a
negative number.

Find the natural domains for

(a) f(x) =1/(x - 3) (b) g(t) = V9 - ¢
(c) h(w) =1/V9 — w?
SOLUTION

(a) We must exclude 3 from the domain because it would require division by zero.
Thus, the natural domain is {x: x # 3}. This may be read “the set of x’s such
that x is not equal to 3.”

(b) To avoid the square root of a negative number, we must choose ¢ so that
9 — ¢ = 0. Thus, ¢ must satisfy |t/ = 3. The natural domain is therefore
{t: |t| = 3}, which we can write using interval notation as [—3, 3].

(¢) Now we must avoid division by zero and square roots of negative numbers, so
we must exclude —3 and 3 from the natural domain. The natural domain is
therefore the interval (=3, 3). [ |

When the rule for a function is given by an equation of the form y = f(x),
we call x the independent variable and y the dependent variable. Any value in the
domain may be substituted for the independent variable. Once selected, this value
of x completely determines the corresponding value of the dependent variable y.

The input for a function need not be a single real number. In many important
applications, a function depends on more than one independent variable. For ex-
ample, the amount A of a monthly car payment depends on the loan’s principal P,
the rate of interest r, and the required number n of monthly payments. We could
write such a function as A(P, r, n). The value of A(16000, 0.07, 48), that is, the re-
quired monthly payment to retire a $16,000 loan in 48 months at an annual interest
rate of 7%, is $383.14. In this situation, there is no simple mathematical formula
that gives the output A in terms of the input variables P, r, and n.

Let V(x, d) denote the volume of a cylindrical rod of length x

and diameter d. (See Figure 5.) Find

(a) aformula for V(x, d)
(b) the domain and range of V
(c) V(4,0.1)

SOLUTION

d\*  mxd*
(a) V(x,d) = x ’7T<2> 1
(b) Because the length and diameter of the rod must be positive, the domain is the
set of all ordered pairs (x, d) where x > 0 and d > 0. Any positive volume is
possible so the range is (0, 00).

-4-0.12
(c) V(4,0.1) = % = 0.01m -

Chapters 1 through 11 will deal mostly with functions of a single independent
variable. Beginning in Chapter 12, we will study properties of functions of two or
more independent variables.
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Graphs of Functions When both the domain and range of a function are sets
of real numbers, we can picture the function by drawing its graph on a coordinate
plane. The graph of a function fis simply the graph of the equation y = f(x).

Sketch the graphs of
(a) f(x) = x> =2 (b) g(x) =2/(x = 1)
SOLUTION The natural domains of f and g are, respectively, all real numbers

and all real numbers except 1. Following the procedure described in Section 1.4
(make a table of values, plot the corresponding points, connect these points with a

smooth curve), we obtain the two graphs shown in Figures 6 and 7a. ]
y o, ¥
I
6+ | 600 +
I
o4 400 ++
y=gx) == 1
y=80 =5 Lo 200
I
| | | | | | 1 ! | | | | !
R B S B i
I > ! 2 3 4 oo
I
S\ —400 -+
I
o |1 ~600
;
(a) (b)
Figure 7

Pay special attention to the graph of g; it points to an oversimplification that
we have made and now need to correct. When connecting the plotted points
by a smooth curve, do not do so in a mechanical way that ignores special fea-
tures that may be apparent from the formula for the function. In the case of
g(x) =2/(x — 1), something dramatic happens as x nears 1. In fact, the values
of |g(x)| increase without bound; for example, g(0.99) = 2/(0.99 — 1) = —200
and g(1.001) = 2000. We have indicated this by drawing a dashed vertical line,
called an asymptote, at x = 1. As x approaches 1, the graph gets closer and closer
to this line, though this line itself is not part of the graph. Rather, it is a guideline.
Notice that the graph of g also has a horizontal asymptote, the x-axis.

Functions like g(x) = 2/(x — 1) can even cause problems when you graph
them on a CAS. For example, Maple, when asked to plot g(x) = 2/(x — 1) over
the domain [—4, 4] responded with the graph shown in Figure 7b. Computer Alge-
bra Systems use an algorithm much like that described in Section 1.4; they choose
a number of x-values over the stated domain, find the corresponding y-values, and
plot these points with connecting lines. When Maple chose a number near 1, the re-
sulting output was large, leading to the y-axis scaling in the figure. Maple also con-
nected the points right across the break at x = 1. Always be cautious and careful
when you use a graphing calculator or a CAS to plot functions.

The domains and ranges for the functions fand g are shown in the table below.

Function Domain Range

flx)=x*-2 all real numbers {y:y = -2}
2

g(x):x—l {x:x #1} {y:y # 0}

Even and Odd Functions We can often predict the symmetries of the graph
of a function by inspecting the formula for the function. If f(—x) = f(x) for all x,
then the graph is symmetric with respect to the y-axis. Such a function is called an

31
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Figure 8

Figure 9

32

even function, probably because a function that specifies f(x) as a sum of only even
powers of x is even. The function f(x) = x> — 2 (graphed in Figure 6) is even;so are
Flx) =3x% — 2x* + 11x% = 5, f(x) = x*/(1 + x*), and f(x) = (x* — 2x)/3x.

If f(—x) = —f(x) for all x, the graph is symmetric with respect to the origin.
We call such a function an odd function. A function that gives f(x) as a sum of only
odd powers of x is odd. Thus, g(x) = x> — 2x (graphed in Figure 8) is odd. Note
that

g(—x) = (—x)3 - 2(=x) = —x3 4+ 2x = —(x3 —2x) = —g(x)

Consider the function g(x) = 2/(x — 1) from Example 4, which we graphed
in Figure 7. It is neither even nor odd. To see this, observe that g(—x) =
2/(—x — 1), which is not equal to either g(x) or —g(x). Note that the graph of
y = g(x) is neither symmetric with respect to the y-axis nor the origin.

x>+ 3x
xt=3x2 + 4

Is f(x) =

SOLUTION Since

even, odd, or neither?

(—x)* + 3(—x) B —(x* + 3x) B
(—x)* = 3(—x)> + 4 -3 4

f(=x) = —f(x)

fis an odd function. The graph of y = f(x) (Figure 9) is symmetric with respect to
the origin. |

Two Special Functions Among the functions that will often be used as

examples are two very special ones: the absolute value function, | |, and the
greatest integer function, [ ]. They are defined by

X
x| =
—X

[x] = the greatest integer less than or equal to x

ifx=0
ifx <0
and

Thus, |[-3.1| = [3.1| = 3.1, while [-3.1] = —4 and [3.1] = 3. We show the
graphs of these two functions in Figures 10 and 11. The absolute value function is
even, since |—x| = |x|. The greatest integer function is neither even nor odd, as
you can see from its graph.

We will often appeal to the following special features of these graphs. The
graph of |x| has a sharp corner at the origin, while the graph of [x] takes a jump at
each integer.

y y
4 4
y=|x y=1[0xI
34 34 —oO
24 2+ —oO
1 1+ —O
| | | | | |
T T T T T 1 X I I I I ¢ I I I
3 2 1 2 3 4 3 2 - 12 3 X
0—0721
Figure 10
Figure 11
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Concepts Review

1. The set of allowable inputs for a function is called the
of the function; the set of outputs that are obtained is
called the of the function.

2. If f(x) = 3x% then f(2u) =

and f(x + h) =

3. If f(x) gets closer and closer to L as |x| increases indefi-
nitely, then the line y = L is a(an) for the graph of f.

4. If f(—x) = f(x) for all x in the domain of f, then fis
called a(an) function; if f(—x) = —f(x) for all x in the
domain of f, then f is called a(an) function. In the first case,
the graph of f is symmetric with respect to the ; in the
second case, it is symmetric with respect to the

Problem Set 1.5

1. For f(x) = 1 — x?, find each value.

(a) f(1) (b) f(=2) (c) f(0)
(d) (k) (e) f(=5) ® £(z)
(g) f(1+h) (h) f(1+h)—f(1)
i) f2+h)-f(2)

2. For F(x) = x* + 3x, find each value.
(a) F(1) () F(V2) © F(3)
(d) F(1+ h) (e) F(1+h)—F(1)
(fy F2+ h) - F(2)

3. For G(y) = 1/(y — 1), find each value.
(a) G(0) (b) G(0.999) (¢) G(1.01)
@ G?) © G(-v) 0 (%)

u+ u?
4. For ®(u) = , find each value. (P is the uppercase
Vu

Greek letter phi.)
(@) ®(1) (b) ®(~1) (© @(3)
(d) ®(u+1) (e) d(x?) ) O(x%+ x)

5. For

F0) ==
x—3

find each value.
(a) £(025) (b) f(m) © f(3+V2)

6. For f(x) = Vx> +9/(x — \/§>,find each value.
(a) f(0.79) (b) f(1226) (©) f(V3)

7. Which of the following determine a function f with for-
mula y = f(x)? For those that do, find f(x). Hint: Solve for y in
terms of x and note that the definition of a function requires a
single y for each x.

(@) x> +y>=1 b)) xy+y+x=1x# -1
y

=V2y +
() x 2y +1 v

8. Which of the graphs in Figure 12 are graphs of functions?

(d) x =

This problem suggests a rule: For a graph to be the graph of a
function, each vertical line must meet the graph in at most one
point.

9. For f(x)=2x*—1, find and simplify [f(a + h) —
f(@)l/h.
10. For F(t) = 47, find and simplify [F(a + h) — F(a)]/h.

y y

/\

-
-

\_
/

(N

A

Figure 12

11. For g(u) = 3/(u — 2), find and simplify [g(x + k) —
g(x))/h.

12. For G(t) = t/(t + 4), find and simplify [G(a + h) —
G(a)l/h.

13. Find the natural domain for each of the following.
(a) F(z) = V2z+3 (b) g(v) =1/(4v — 1)
(© w(x) = Va>—9 (d) H(y) = V625 — '
14. Find the natural domain in each case.

2
(@) f(x) =~ (b) G() =V + 1)

2—x—6
(©) ¢(u) = 2u + 3] (d) F(1) =1 -4

In Problems 15-30, specify whether the given function is even,
odd, or neither, and then sketch its graph.

15. f(x) = —4 16. f(x) = 3x

17. F(x) =2x + 1 18. F(x) =3x — V2

19. g(x) =32 +2x—1 20, g(u) = %

2 g(x) = 5 2. $(z) = Zzzfll

23, f(w) = Vw1 24. h(x) = Va2 + 4
25. f(x) = [2x] 26. F(t) = —|t + 3|
27. g(x) = H‘ 28. G(x) = [2x — 1]
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1 ifr =0
29, g(t) = qt+1 if0o<r<2
-1 ifr=2
2 .
—x-+4 ifx=1
30. h =
() {3x ifx>1

31. A plant has the capacity to produce from 0 to 100 com-
puters per day. The daily overhead for the plant is $5000, and the
direct cost (labor and materials) of producing one computer is
$805. Write a formula for 7(x), the total cost of producing x com-
puters in one day, and also for the unit cost u(x) (average cost per
computer). What are the domains of these functions?

32. It costs the ABC Company 400 + 5V x(x — 4) dollars to

make x (x = 4) toy stoves that sell for $6 each.

(a) Find a formula for P(x), the total profit in making x stoves.

(b) Evaluate P(200) and P(1000).

(c) How many stoves does ABC have to make to just break
even?

33. Find the formula for the amount E(x) by which a number
x exceeds its square. Plot a graph of E(x) for 0 = x = 1. Use the
graph to estimate the positive number less than or equal to 1 that
exceeds its square by the maximum amount.

34. Let p denote the perimeter of an equilateral triangle. Find
a formula for A(p), the area of such a triangle.

35. A right triangle has a fixed hypotenuse of length 4 and
one leg that has length x. Find a formula for the length L(x) of
the other leg.

36. A right triangle has a fixed hypotenuse of length 4 and
one leg that has length x. Find a formula for the area A(x) of the
triangle.

37. The Acme Car Rental Agency charges $24 a day for the
rental of a car plus $0.40 per mile.

(a) Write a formula for the total rental expense E(x) for one
day, where x is the number of miles driven.

(b) If you rent a car for one day, how many miles can you drive
for $120?

38. A right circular cylinder of radius r is inscribed in a sphere
of radius 2r. Find a formula for V(r), the volume of the cylinder,
in terms of r.

39. A 1l-mile track has parallel sides and equal semicircular
ends. Find a formula for the area enclosed by the track, A(d), in
terms of the diameter d of the semicircles. What is the natural
domain for this function?

40. Let A(c) denote the area of the region bounded from
above by the line y = x + 1, from the left by the y-axis, from
below by the x-axis, and from the right by the line x = c. Such a
function is called an accumulation function. (See Figure 13.) Find
(a) A(1) (b) AQ2)

(©) A(0) (d) A(e)
(e) Sketch the graph of A(c).
(f) What are the domain and range of A?

y

Figure 13
34

41. Let B(c) denote the area of the region bounded from
above by the graph of the curve y = x(1 — x), from below by
the x-axis, and from the right by the line x = c. The domain of B
is the interval [0, 1]. (See Figure 14.) Given that B(1) =

=1
(a) Find B(0) (b) Find B(3)
(c) As best you can, sketch a graph of B(c).

-

Y

Figure 14

42. Which of the following functions satisfies

f(x +y) = f(x) + f(y) for all real numbers x and y?
(@) f(t) =2 (b) f(r) =17
() f(ry =2t+1 (d) f(r)=-3t

43. Let f(x + y) = f(x) + f(y) for all x and y. Prove that
there is a number m such that f(¢) = mt for all rational numbers
t. Hint: First decide what m has to be. Then proceed in steps,
starting with f(0) = 0, f(p) = mp for a natural number p,
f(1/p) = m/p, and so on.

44. A baseball diamond is a square with sides of 90 feet. A
player, after hitting a home run, loped around the diamond at 10
feet per second. Let s represent the player’s distance from home
plate after ¢ seconds.

(a) Express s as a function of t by means of a four-part formula.
(b) Express s as a function of by means of a three-part formula.

To use technology effectively, you need to discover its capabil-
ities, its strengths, and its weaknesses. We urge you to practice
graphing functions of various types using your own computer
package or calculator. Problems 45-50 are designed for this
purpose.

45, Let f(x) = (2% 4+ 3x — 5)/(x% + 4).
(a) Evaluate f(1.38) and f(4.12).
(b) Construct a table of values for this function corresponding
tox = —4,-3,...,3,4.
46. Follow the instructions in Problem 45 for f(x) =
(sin® x — 3 tan x)/cos x.
47. Draw the graph of f(x) = x> —5x>+ x + 8 on the
domain [-2, 5].
(a) Determine the range of f.
(b) Where on this domain is f(x) = 0?
48. Superimpose the graph of g(x) = 2x* — 8x — 1 with
domain [—2, 5] on the graph of f(x) of Problem 47.
(a) Estimate the x-values where f(x) = g(x).
(b) Where on [—2,5]is f(x) = g(x)?
(c) Estimate the largest value of [f(x) — g(x)| on [-2, 5].
49. Graph f(x) = (3x — 4)/(x*> + x — 6) on the domain
[-6, 6].
(a) Determine the x- and y-intercepts.
(b) Determine the range of f for the given domain.
(c) Determine the vertical asymptotes of the graph.



(d) Determine the horizontal asymptote for the graph when the
domain is enlarged to the natural domain.

50. Follow the directions in Problem 49 for the function

g(x) = (Bx2 —4)/(x* + x — 6)

1.6

Operations
on Functions

Domain
of f+g

Domain Domain
of f of g
Figure 1
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Answers to Concepts Review: 1. domain; range
2.12u?;3(x + h)? = 3x®> + 6xh + 3h* 3. asymptote
4. even; odd; y-axis; origin

Just as two numbers a and b can be added to produce a new number a + b, so two
functions fand g can be added to produce a new function f + g. This is just one of
several operations on functions that we will describe in this section.

Sums, Differences, Products, Quotients, and Powers Consider func-
tions f and g with formulas

We can make a new function f + g by having it assign to x the value
f(x) + g(x) = (x — 3)/2 + Vax; that is,

x—3

(f +8)(x) = f(x) + g(x) = St Vx

Of course, we must be a little careful about domains. Clearly, x must be a number
on which both fand g can work. In other words, the domain of f + g is the inter-
section (common part) of the domains of fand g (Figure 1).

The functions f — g, f - g, and f/g are introduced in a completely analogous
way. Assuming that fand g have their natural domains, we have the following:

Formula Domain
(F +8)(x) = f(x) +g(0) = 222 + Vi 0. )
(F = 0)() = f(0) — g(0) =52 = V& 0, )
(F8)() = F(x)g0x) = * 2V 0, )
f _fx) _x-3
()=~ v (02

We had to exclude 0 from the domain of f/g to avoid division by 0.
We may also raise a function to a power. By f”, we mean the function that
assigns to x the value [ f(x)]". Thus,

g(x) = [g(F = (Va) =«

There is one exception to the above agreement on exponents, namely, when
n = —1. We reserve the symbol f~! for the inverse function, which will be dis-
cussed later in this section. Thus, f ! does not mean 1/f.

Let F(x) = Vx + 1 and G(x) = V9 — x?, with respective
natural domains [—1,00) and [—3,3]. Find formulas for F + G, F — G,
F -G, F/G, and F? and give their natural domains.
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Figure 2
Domain Not in
of f domain of g
K——m )
X
gof
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x <: ? 27 (x)
7 1»—% )
f@)
Domain Domain
of gof of g
Figure 3

SOLUTION
Formula Domain

(F+G)(x)=F(x) +G(x) = Vx+1+V9-x2 [~1,3]
(F—G)(x) = F(x) = G(x) = Vx +1- V9 - & [~1,3]
(F-G)(x) = F(x):G(x) = Vx + 1V9 — x? [-1,3]

Py = 09 Vo -1.3)

G G(x) Vo -2 ’
Fi(x) = [F)P = (Vx+ 1) = (x + 1) [—1, c0) .

Composition of Functions Earlier, we asked you to think of a function as
a machine. It accepts x as input, works on x, and produces f(x) as output. Two
machines may often be put together in tandem to make a more complicated ma-
chine; so may two functions fand g (Figure 2). If f works on x to produce f(x) and g
then works on f(x) to produce g(f(x)), we say that we have composed g with f. The
resulting function, called the composition of g with f, is denoted by g ° f. Thus,

(g ° fx) = g(f(x))

In our previous examples we had f(x) = (x — 3)/2 and g(x) = Vx. We may
compose these functions in two ways:

(2= N = s = g(52) =5
(F * ) = flex)) = £(va) = Y22

Right away we notice that g o f does not equal f ° g. Thus, we say that the com-
position of functions is not commutative.

We must be careful in describing the domain of a composite function. The
domain of g ° f is equal to the set of those values x that satisfy the following
properties:

1. xisin the domain of f.
2. f(x) is in the domain of g.
In other words, x must be a valid input for f, and f(x) must be a valid input for g. In

our example, the value x = 2 is in the domain of f, but it is not in the domain of
g ° f because this would lead to the square root of a negative number:

g(f(2)) = g((2 - 3)/2) = g(_ ;) - -]

The domain for g ° f is the interval [3, 00) because f(x) is nonnegative on this in-
terval, and the input to g must be nonnegative. The domain for f o g is the interval
[0, 00) (why?), so we see that the domains of g © f and f ° g can be different.
Figure 3 shows how the domain of g ° f excludes those values of x for which f(x)
is not in the domain of g.

Let f(x) = 6x/(x*> — 9) and g(x) = \/3x, with their natural
domains. First, find (f ° g)(12); then find (f ° g)(x) and give its domain.
SOLUTION

(f = £)(12) = f(3(12)) = F(V36) = 1(6) = 7—5 = 3

(f * &)(x) = fg(x)) = F(V3x) = (\/637?_9
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The expression V3x appears in both the numerator and denominator. Any
negative number for x will lead to the square root of a negative number. Thus, all
negative numbers must be excluded from the domain of f o g. For x = 0, we have

( V ?ax)2 = 3x, allowing us to write

_ 6V3x  2V3x

T 3x—-9 x-3

(f = 8)(x)

We must also exclude x = 3 from the domain of f o g because g(3) is not in the
domain of f. (It would cause division by 0.) Thus, the domain of f o g is
[0,3) U (3, o). [ |

In calculus, we will often need to take a given function and write it as the com-
position of two simpler functions. Usually, this can be done in a number of ways.
For example, p(x) = Vx? + 4 can be written as

p(x) = g(f(x)), where g(x) = Vx and f(x) = x>+ 4
or as

p(x) = g(f(x)), where g(x) = Vx +4 and f(x) = x*

(You should check that both of these compositions give p(x) = Vx? + 4 with
domain (—00, 00).) The decomposition p(x) = g(f(x)) with f(x) = x> + 4 and
g(x) = Vxisregarded as simpler and is usually preferred. We can therefore view

p(x) = Vx% + 4 as the square root of a function of x. This way of looking at func-
tions will be important in Chapter 3.

Write the function p(x) = (x + 2)° as a composite function
g-°r

SOLUTION The most obvious way to decompose p is to write

p(x) = g(f(x)), where g(x) = x° and f(x) =x + 2
We thus view p(x) = (x + 2)° as the fifth power of a function of x. [ |

Translations Observing how a function is built up from simpler ones can be a
big aid in graphing. We may ask this question: How are the graphs of

y=fx) y=f(x-3) y=fx)+2 y=flx-3)+2

related to each other? Consider f(x) = |x| as an example. The corresponding four
graphs are displayed in Figure 4.

y y y y
41 41 41 41
31 3 3 3
24 21 2 21+
-+ 1+ 1+ 1+
A R — s
X X X X
2 -l 12 1 1 2 3 4 5 -1 12 -1 1 2 3 4 5
_\‘:‘,\" _\‘:‘x—ﬂ _\‘:‘x‘+2 y=|x-3|+2

Figure 4

Notice that all four graphs have the same shape; the last three are just transla-
tions of the first. Replacing x by x — 3 translates the graph 3 units to the right;
adding 2 translates it upward by 2 units.

What happened with f(x) = |x| is typical. Figure 5 offers an illustration for the
function f(x) = x* + x2.

37
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38

y=x+ 22

y=(x+1P+(x+1)?

2+
1+

i

2 -1/t 2

-

y=x3+x2-2

y=@x+ 1P+ (x+1)2-2

Original Translated 1 unit Translated 2 units Translated 1 unit
graph to the left down left, 2 units down
Figure 5

Exactly the same principles apply in the general situation. They are illustrated
in Figure 6 with both 4 and k positive. If 4 < 0, the translation is to the left; if
k < 0, the translation is downward.

y y y y
/ / K
|\/ x | A x x
y=f(x) y=f(x—h) y=fx)+k y=fx-h)+k
Original Translated i Translated k Translated / units
graph units to the right units up to the right
and k units up
Figure 6
M y
44 4l
3T y=f(x)=Vx 3

2 /3:@44—1
l__

-3 2 -1 r 2 3 4

o ——

Figure 7 Figure 8

Sketch the graph of g(x) = Vx + 3 + 1 by first graphing

f(x) = Vx and then making appropriate translations.

SOLUTION By translating the graph of f (Figure 7) 3 units left and 1 unit up, we
obtain the graph of g (Figure 8). [ |

The Inverse of a Function A function takes a number x from its domain D
and assigns to it a single value y from its range R. In some cases, like the two func-
tions graphed in Figures 9 and 10, we can reverse f; that is, for any given y in the
range R, we can unambiguously go back and find the x from which it came. This
new function that takes y and assigns x to it is denoted by f~'. Note that its do-
main is R (the range of f) and its range is D (the domain of f).The function !
is called the inverse of f, or simply f-inverse. Note that we are using the
superscript —1 in a new way. Earlier in this section, we defined f” as the function



£
f
D
X
y=f)=2x
x=fUy= 1*\
R
Figure 9
! U
D
A
y=fl)=x -1
x= 1y =y+1
R
Figure 10

y=f(x)=x2
No inverse function

Figure 11

Domain restricted to x > 0

Figure 12
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defined by f"(x) = [f(x)]" as long as n # —1. To us, the symbol f ! means
f-inverse, not 1/f.

Sometimes, we can give a formula for f~!. For example,if y = f(x) = 2x then
we can readily solve for x to get x = % y. This gives us a rule for determing what
value of x gave a particular y. Thus, we write x = f!(y) = % y. If we preferred, we
could write the inverse function with x as the argument and y as the output. In this
case we would have y = f!(x) = %x. (These two ways of writing !, namely
iy = % yand f!(x) = %x, actually define the same function.)

Thus, to find the inverse f ! of a function, we propose the following three-step
procedure:

Step 1: Write y = f(x) and solve for x in terms of y (if this is possible).
Step 2: Use the solution for x (in terms of y) to write £~ !(y).

Step 3: Interchange the roles of x and y to get the formula for f~!(x).

If the function y = f(x) has the property that every y in the range of f is asso-
ciated with one and only one value of x, there is just one such x as suggested in
Step 1. Geometrically, this says that a horizontal line can intersect the graph of
y = f(x) at most once. If a function satisfies this horizontal line test, then it will
have an inverse. Yet another way of saying this is to say that different x’s always
lead to different y’s. This leads to the following definition.

Definition One-to-one Function

A function f is said to be one-to-one if distinct values of x always lead to dis-
tinct values of y = f(x); that is

X1 # X e f(x) # f(x)

Show that f(x) = 2x + 6 has an inverse and find it.

SOLUTION

Step 1: Weset y = f(x) = 2x + 6 and attempt to solve for x. (If it is possible to
solve unambiguously for x, then f has an inverse; otherwise it doesn’t.) In this case
we have

y=2x+6
y —6=2x
_y—6
T
Step 2: Thus, f1(y) = (y — 6)/2.
Step 3: Interchanging the roles of x and y gives f'(x) = (x — 6)/2. [ |

Not all functions have inverses. Consider, for instance, the function f(x) = x>
If we set y = x? and attempt to solve for x we get x = + \y, which does not give
us a single solution; f does not have an inverse. Figure 11 shows us why. For every
positive y there exist two values for x that produce y.

There is a way of salvaging the notion of inverse for functions that do not have
inverses on their natural domain. We simply restrict the domain to a subset of the
natural domain. Thus, for y = f(x) = x?, we may restrict the domain to x =0
(x = 0 would work also). With this restriction, if we set y = x?, we can solve un-

ambiguously for x to get x = \/y Thus, f !(x) = V. (See Figure 12.)
39
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y f)= X+ 2x + 1

30

—10 +

—20 +

—30 4+

Figure 13

Undoing Machines

We may view a function as a machine
that accepts an input and produces
an output. If the f machine and the
f~! machine are hooked together in
tandem, they undo each other.

I

'

f() 7o

'
o
L]
i !

There are also cases where a function has an inverse, but it is not practical to
find a formula for it. The function f(x) = x> + 2x + 1 is graphed in Figure 13. It
seems evident that for every y, there is just one x satisfying f(x) = y. (In other
words, it seems from looking at the graph that f is one-to-one.) The next theorem,
which we will apply in Section 3.9, gives a condition that guarantees the existence
of an inverse. First, though, we need to define a few terms.

Definition Increasing, Decreasing, Monotonic

Let / be an interval containing the points x; and x,. A function f'is increasing on
1if x; < x,implies f(x;) < f(x;). A function fis decreasing on / if x; < x, im-
plies f(x1) > f(x;). A function fis monotonic on / if it is either increasing or
decreasing on 1.

If fis monotonic on its domain, then f has an inverse.

Proof Let x; and x, be distinct numbers in the domain of f, with x; < x,. Since
f is monotonic, f(x;) < f(x,) or f(x;) > f(x,). Either way, f(x;) # f(x,). Thus,
x; # xyimplies f(x;) # f(x,), which means that f is one-to-one and therefore has
an inverse. [ ]

We will show in Section 3.9 that the function f(x) = x° + 2x + 1, graphed in
Figure 13, is increasing and therefore, by Theorem A, has an inverse.

If the function f has an inverse f !, then £ ! has an inverse, namely, f. (With a lit-
tle thought, that should appear obvious.) Thus, we may call f and f ! a pair of inverse
functions. One function undoes (or reverses) what the other did; in other words

FH(f(x) =x
o) =y

for every x in the domain of f

for every y in the range of f

The Graph of y = £ (x) If the function f has an inverse f~', then

Consequently, y = f(x) and x = f~!(y) determine the same (x, y) ordered pairs
and so have identical graphs. However, it is conventional to use x as the argument
for both functions, so we now inquire about the graph of y = f~!(x). Note that we
have interchanged the roles of x and y here. To interchange the roles of x and y
means that if (x, y) is on the graph of y = f(x), then (y, x) is on the graph of
y = f~}(x). Figure 14 illustrates this concept; the points (a, b) and (b, a) are sym-
metric about the line y = x. In other words, the graph of y = f~'(x) is just the re-
flection of the graph of y = f(x) across the line y = x (Figure 15).

y y
1,5)
e

Figure 14 Figure 15
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Find a formula for the inverse of f(x) = x/(1 — x). Show
that f71(f(x)) = x for every x in the domain of f and f(f '(y)) = y for every y
in the range of f. Finally, graph both functions on the same set of axes.

SOLUTION First, find the inverse of f.
Step 1: Write y = f(x) and solve for x:

X
Y 1—x
(1-x)y=x
y—Xxy=x
X+t yx=y
x(L+y)=y
X = Y
1+y
Step 2: ffl(y)= y
1+y
X
Step 3: 1 =
ep 3 f(x) = o

Next, consider f~'(f(x)) and f(f '(y)). Let x be in the domain of f, that is, any
number except 1. Then

X x
- _ X _ o 1-x 1-x 1-x)
e = () - S
1—-x 1—-x
X
TAd-x)+x

Now, let y be any number in the domain of £, that is, any number except —1.
Then

y y
Sy y \__t+y _14+y (d+y
FEO) f<1+y) Y Yy (d+y
1+y 1+y
:$:y
1+y -y

Figure 16 shows a graph of both y = f(x) and y = f !(x). As expected, the graphs
are symmetric about the liney = x. |

Partial Catalog of Functions A function of the form f(x) = k, where k is
a constant (real number), is called a constant function. Its graph is a horizontal line
(Figure 17). The function f(x) = x is called the identity function. Its graph is a line
through the origin having slope 1 (Figure 18). From these simple functions, we can
build many important functions.

Any function that can be obtained from the constant functions and the iden-
tity function by use of the operations of addition, subtraction, and multiplication is
called a polynomial function. This amounts to saying that fis a polynomial func-

tion if it is of the form
f(x) = ax" + an_lx"*l + -+ ax + oag

where the a; are real numbers and 7 is a nonnegative integer. If a, # 0, n is the
degree of the polynomial function. In particular, f(x) = ax + b is a first-degreg4
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polynomial function, or linear function, and f(x) = ax®> + bx + c is a second-
degree polynomial function, or quadratic function.

Quotients of polynomial functions are called rational functions. Thus, f is a
rational function if it is of the form

a,x" + a,_ X"+ o+ ax + a
bx™ + by x™ N+ oo + bix + by

flx) =

The domain of a rational function consists of those real numbers for which the
denominator is nonzero.

An explicit algebraic function is one that can be obtained from the constant
functions and the identity function via the five operations of addition, subtraction,
multiplication, division, and root extraction. Examples are

(x + 2)\/}
fla) = 3225 =3Vx2  g(x) = PPl

Functions that do not fit into any of these categories are called transcendental
functions. These include the trigonometric, inverse trigonometric, exponential, and
logarithmic functions.

Concepts Review
1. If f(x) = x* + 1, then f3(x) =

2. The value of the composite function f o g atx is given by

(feglx)=

3. Compared to the graph of y = f(x), the graph of
y = f(x + 2) is translated units to the

4. A rational function is defined as

Problem Set 1.6

1. For f(x) =x + 3and g(x) = x2, find each value. 9. Calculate [g*(w) — g(m)]"if g(v) = |11 — 7v|.
@ e g)(l) () (g * AL AN 11. Find fand gso that F = g o f. (See Example 3.)
2. = = 2/(x + 3), find each ' i S8t '
e For f(x) = x"+ x and g(x) /(x + 3), find eac @ Fx)= Vit (b) F(x) = (o + 5
(@ (f -2 (®) (f/8)(1) © &*3) 12. Find fand gsothatp = f © g.
(d) (f - g)(1) (e) (g°f)(1) ® (g°8)3) (@) p(x) = 2 ®) plx) = 1
3. For ®(u) =u®> + 1 and ¥(v) = 1/v, find each value. (x* + x +1)° X+ 3x
(W is the uppercase Greek letter psi.) 13. Write p(x) = 1/Vx? + 1 as a composite of three func-
(a) (‘D + W)(1) (b) (q; w)(r) tions in two different ways.
(©) (W e @)(r) (d) @°(z) : N2 :
(©) (® — W)(51) ® (- W) o Y1) funiétli.erlte p(x) =1/Vx*+1 as a composite of four

4. If f(x) = Vx* — 1 and g(x) = 2/x, find formulas for

the following and state their domains.

(@) (f-g)(x) (b) fi(x) + g*(x)

15. Sketch the graph of f(x) = Vx — 2 — 3 by first sketch-
ing g(x) = Vx and then translating. (See Example 4.)

© (f°g)x) @ (g f)(x) 16. Sketch the graph of g(x) = |x + 3| — 4 by first sketch-

5. If f(s) = \/s — 4 and g(w) =
for (f = g)(x) and (g © f)(x).

|1 + wl, find formulas

ing h(x) = |x| and then translating,

17. Sketch the graph of f(x) = (x —2)>—4 using

6. If g(x)=x*>+1, find formulas for g’(x) and translations.
(g°ge°g)ix) 18. Sketch the graph of g(x) = (x +1)> —3 using
Vil translations.
7. Calculate g(3.141) if g(u) = L2 24
2+ u 19. Sketch the graphs of f(x) = (x — 3)/2 and g(x) = Vx
(\/} - \3/;)4 using the same coordinate axes. Then sketch f + g by adding
8. Calculate g(2.03) if g(x) = Tt y-coordinates.
—x+x

42



20. Follow the directions of Problem 19 for f(x) = x and
g(x) = Ixl.

) —t
21. Sketch the graph of F(t) = i T

22. State whether each of the following is an odd function, an
even function, or neither. Prove your statements.

(a) The sum of two even functions
(b) The sum of two odd functions
(c) The product of two even functions
(d) The product of two odd functions
(e) The product of an even function and an odd function
23. Let F be any function whose domain contains —x when-
ever it contains x. Prove each of the following.
(a) F(x) — F(—x)is an odd function.
(b) F(x) + F(—x)is an even function.
(c) Fcan always be expressed as the sum of an odd and an even
function.

24. Is every polynomial of even degree an even function? Is
every polynomial of odd degree an odd function? Explain.

In Problems 25-30, the graph of y = f(x) is shown. In each case,
decide whether f has an inverse and, if so, estimate f~(2).
25. y 26. y

- &k

2 23=

14 1+

217. y 28.

29. y 30. y

In Problems 31-44, find a formula for f~'(x) and then verify that
FHF) = xand f(f7(x)) = x.

3L f(x)=x+1 2. f(x)=f§+1

3. f(x)=Vx+1 M. f(x)=-V1-—-x
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35. f(x)=—xi3 36. f(x) = x12
37. f(x) =4x1x =0 38 f(x)=(x—-3%x=3
39. f(x) = (x — 1) 40. f(x)=x"2x=0
-1 -1\
41 f(x) = i - 2. f(x) = (z -
3 2 3 2 5
B () =5 i ; M. f(x) = (; 1 1)

45. Find the volume V of water in the conical tank of Fig-
ure 19 as a function of the height /. Then find the height 4 as a
function of volume V.

Figure 19

46. A ball is thrown vertically upward with velocity v,. Find
the maximum height A of the ball as a function of v,. Then find
the velocity v, required to achieve a height of H. Hint: The height
of the ball after  seconds is 4 = —161> + vyt. The vertex of the
parabola y = —ax? + bx is at (b/(Za), b2/(4a)).

In Problems 47 and 48, restrict the domain of f so that f has an in-
verse, yet keeping its range as large as possible. Then find f'(x).
Suggestion: First graph f.

47. f(x) =2x*+x — 4 48. f(x)=x*—3x+1

49. Classify each of the following as a PF (polynomial func-
tion), RF (rational function but not a polynomial function), or
neither.

(@) f(x) =32+ 1 (b) f(x) =3
(©) f(x) =3x*+2x7"! (d) f(x)=mx’- 37
(©) flx) = — M flo) =2

x+1

50. After being in business for ¢ years, a manufacturer of cars
is producing 120 + 2 + 3% units per year. The sales price in dol-
lars per unit has risen according to the formula 6000 + 700z.
Write a formula for the manufacturer’s yearly revenue R(¢) after
t years.

51. Starting at noon, airplane A flies due north at 400 miles
per hour. Starting 1 hour later, airplane B flies due east at 300
miles per hour. Neglecting the curvature of the Earth and assum-
ing that they fly at the same altitude, find a formula for D(), the
distance between the two airplanes ¢ hours after noon. Hint:
There will be two formulas for D(¢), one if 0 < ¢ < 1 and the
otherif r = 1.

52. Find the distance between the airplanes of Problem 51
at 2:30 p.m.

43
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53. Suppose that both f and g have inverses and that
h(x) = (f o g)(x) = f(g(x)). Show that 4 has an inverse given
byhl=glofl

54. Verify the result of Problem 53 for f(x) = 1/x, g(x) =
3x + 2.

+
55, Let f(x) = X0

cx +d

and assume bc — ad # 0.

(a) Find the formula for f~!(x).

(b) Why is the condition bc — ad # 0 needed?

(c) What condition on a, b, ¢, and d will make f = f '?
x—3
x +1

56. Let f(x) =
x # £1.

. Show that f(f(f(x))) = x, provided

57. Let f(x) = x%l Find and simplify each value.
(a) f(1/x) (®) f(f(x)) (o) fA/f(x)

58. Let f(x) =

@ 7(1) () F(7(x)

59. Prove that the operation of composition of functions is

associative; thatis, fi o (f, © f3) = (fi ° fo) © f.

60. Let fi(x) =x, fo(x) =1/x, fi(x) =1 - x, folx)=
1/(1 = x), fs(x) = (x — 1)/x,and fs(x) = x/(x — 1). Note that
AU) = /(1= x))= 1-1/0 -x) = x/(x—1) =
fo(x); that is, f3 o fy = fe. In fact, the composition of any two of
these functions is another one in the list. Fill in the composition
table in Figure 20.

\/}x_ T Find and simplify.

Then use this table to find each of the following. From Problem
59, you know that the associative law holds.

(@) fsefsefzefzefs (b) fiefrefzefaefsefs
() FifF o fs=f (d) GiftGefs°fo=Hfi
(e) Hiffo fso H =[5

S T I C3N RV I /O I A B
h
h
B T
%
Is
T

Figure 20

61. Use the table in Figure 20 to find the inverse of each f;,
i=1,2,...,6.

Use a computer or a graphing calculator in Problems 62-65.

62. Let f(x) = x> — 3x. Using the same axes, draw the
graphs of y = f(x),y = f(x — 0.5) — 0.6, and y = f(1.5x), all
on the domain [—2, 5].

63. Let f(x) = |x®|. Using the same axes, draw the graphs of
y = f(x),y = f(3x),and y = f(3(x — 0.8)), all on the domain
[-3,3].

64. Let f(x) = 2Vx — 2x + 0.25x>. Using the same axes,

draw the graphs of y = f(x),y = f(1.5x), and y=
f(x = 1) + 0.5, all on the domain [1, 5].

65. Let f(x) = 1/(x* + 1). Using the same axes, draw the
graphs of y = f(x),y = f(2x), and y = f(x — 2) + 0.6, all on
the domain [—4, 4].

Answers to Concepts Review: 1L (x*> + 1)> 2. f(g(x))
3.2;left 4. a quotient of two polynomial functions
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1.7

Exponential and
Logarithmic Functions

In algebra, we define exponentiation for successively larger classes of expo-
nents. We begin by defining 2" for positive integers, as in 2* = 2:2:2-2.
Next, 2" is defined to be 1. Then for negative integer exponents, we define

1 .. . P
27" = on if n is a positive integer

This means, for example, that 273 = 1/23 = 1/8. Next, we use root functions
to define 2" for rational numbers. (Recall that a number is rational if it is the
ratio of two integers.) Our definition was

200 = \/2¢
Thus, 212 = V2! = V2 and 27 = V2.

But what does it mean to raise a number to an irrational power, as in

27?7 (Recall that 77 is an irrational number, that is a number that cannot be
expressed as a/b where a and b are integers.) One way to approach this
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question is to look at successive approximations to m, for example 3, 3.1, 3.14,
3.142,3.1416, 3.14159, 3.141593, .... These numbers (each of which is rational, for
example 3.1416 = 31416/10000) are numerical approximations of 7 to succes-
sively more decimal places. To get at 27, we might consider the sequence

2% =38
231 ~ 8.57419
2314 ~ 8.81524
23192 ~ 8.82747
231416 ~ 882502
2314159 ~ 882496
23141593 ~ 8 82498

Intuitively, we might think that if we take an accurate (rational) approximation to
7, and raise 2 to that power we would obtain a close approximation to 27. While
this is true in some sense (we will revisit this issue in Section 2.6), it still does not
give a definition for 27. A precise definition for 27, or in general, for a* where a is
positive and x is irrational, will have to wait until we cover some calculus. (We will
define 27 to be the limit of the sequence 23 231 9314 93142 731416~ hyt that
must wait until we define “limit” in the next chapter.)

From the above calculations, we suspect that 27 is approximately 8.82498. This
is correct to as many decimal places given. A calculator can always be used to ob-
tain an approximation to numbers such as 27 or 5V2 For now we will proceed with
defining and working with exponential functions, even though the precise def-
inition comes later. We will call any function of the form f(x) = Ca*, or more gen-
erally f(x) = Ca®"™, an exponential function, provided a is a positive constant.

Graphs of Exponential Functions We consider first graphs of functions
of the form f(x) = a* or f(x) = a*, where a > 0, and then we consider more
complicated cases.

1 X
Sketch a graph of the functions f(x) = 2%, g(x) = <2) , and

h(x) = 27,

SOLUTION For each, we make a table of values (see the table within each fig-
ure) and then sketch a plot (Figures 1 through 3).

~

y=h(x) =27

1y
y =g =(3)
L

Figure 1

Figure 2 Figure 3

Example 1 suggests that the shape of the graph of y = a* can be increasing, as
in Figure 1, or decreasing, as in Figure 2. The special case of y = 1¥ leads to a graph

45
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Figure 5

46

111
that is flat; this is because 1* = 1 for all x. Figure 4 illustrates for a = 1037 1,2,
3, and 10 what the graphs of the exponential functions a* can look like.
X
Figure 4 [ |

Sketch a graph and determine the domain and range of the

functions f(x) = 3Y* and g(x) = 37/

SOLUTION Again, with the help of a calculator, we make a table of values and
use them to sketch a plot. The graphs of y = f(x) and y = g(x) are shown in
Figures 5 and 6.

Y L)
. —3.0 | 0.084
-25 | 0.180
-20 | 0333
—-15 | 0539
-1.0 | 0.760
_om |05 0934
y=gx)=3 0.0 | 1.000
1 0.5 | 0934
1.0 | 0.760
1.5 | 0.539
20 | 0333
25| 0.180
30 | 0.084
. I I I I .
e | 1 2 3 F

Figure 6

The domain for f(x) = 3V is the set of all nonnegative real numbers. (We
can’t take the square root of a negative number, so all negative numbers are ex-
cluded from the domain.) The function g(x) makes sense for any real number ar-
gument, so the domain for g is the set of all real numbers.

The exponent in 3V s always nonnegative, so 3Vris always greater than or
equal to 1. Also, we can make the exponent Vx as large as we like; consequently,
f(x) = 3V can be made as large as we like. See Figure 5. Thus, the range for f is
the interval [1, c0). The exponent in 37 s always less than or equal to zero, so
g(x) is always less than or equal to 1 (it is equal to 1 when x = 0). The function
g(x) can be made as close to zero as we like if we take x to be far enough away
from 0. See Figure 6. Thus, the range for g is the interval (0, 1]. |

While the conclusions about the range for f and g should seem evident by
looking at the graphs of these functions in Figures 5 and 6, there are some issues
that must be addressed before we can fully justify them.

We begin by looking at properties of exponents.
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Figure 7
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Properties of Exponents The usual properties of exponents hold even
for irrational exponents. We will address the proofs of these properties in
Section 2.6.

Properties of Exponents

Ifa > 0,b > 0 and x and y are real numbers, then
X _ o xt ix X
(1) a*a? =a*™> (2) ay—ay
1
® @)y =a> @ ar=
(5) (ab)" = a'b® (6) (b) -5

Note that in Example 1, Figures 2 and 3 look the same. In fact, they are the same;
the functions g and / are identical, since we can use the properties of exponents to
write

g(x) = (;) - @Y =27 = A

Simplify and then sketch a graph of the function defined by

27

F(x) =

SOLUTION We can use the fact that 8 = 23 along with Property (ii), to write

P -
F(x) = 5 27T
We could then make a table and construct the plot shown in Figure 7. |

Logarithmic Functions Figure 4 suggests that the function f(x) = a* is in-
creasing when a > 1 and decreasing when 0 < a < 1. In both cases, a horizontal
line intersects the graph of y = f(x) = a* at most once. Thus, the inverse function
exists.

Definition
If a > 0 and a # 1, we define log, x to be the inverse of the function a*; that is,

y=a" & x=1log,y

From the properties of inverse functions (Section 1.6), we conclude that
a%> =y foreveryy > 0
log,a* = x foreveryx

The next theorem states some of the familiar properties of logarithms.

I Eo el Properties of Logarithms

If a, b, and c are positive numbers, where a # 1, and if x is any real number, then

(1) log,1 =0 (2) log,bc = log,b + log,c

b
3) loga; = log, b — log, ¢ (4) log,b* = xlog, b

47
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Proof We prove (1) and (2) and leave the others as an exercise (see Problem 36).

(1) Aslong as ais positive and a # 1,a° = 1,s0log, 1 = 0.
(2) By the properties of exponents,

aloga b+log,c — aloga balogac = bc = aloga bc

Thus, log, bc = log, b + log, ¢ because the functiona® is one-to-one. [ |

Recall that the domain of f is the range of ! and the range of f is the domain
of f~1. The domain for a* is the set of all real numbers, so the range of log, x is the
set of all real numbers (as long as a # 1). Similarly, the range of a” is the set of all
positive numbers (again, assuming a # 1), so the domain of log, x is the interval
(0, ).

Sketch the graphs of f(x) = 2* and g(x) = log, x, and deter-

mine the domain and range for each function.

SOLUTION Tables of the function values are shown below. Note that since f and
g are inverses of one another, the columns in the second table are obtained by
interchanging the columns in the first table. Graphs for the two functions are
shown in Figure 8. The domain for f is (—00, c0) and the range is (0, ©0). For g, the
domain is (0, 00) and the range is (—00, ). [ |

. y = g(x) = log,x
'l' 2T
Figure 8
Find the inverse of f(x) = log, % and graph f and f~! on
—Xx

the same set of axes. Determine the domain and range for each function.

SOLUTION We begin by setting y = f(x) and solving for x:

= log, —>
y gzl—x
X
2y:
1—x
(1 —x2Y=x
2V = x2=x
X+ 2x =2
x(1+2) =2
2y 4
x=T =W



Notation for Logs

We will follow the convention of
using log x (without explicitly giving
the base) to mean common loga-
rithms, that is logs to the base 10. We
will use In x to mean natural logs,
that is, logs to the base e. (We will
have more to say about In x in the
next chapter.) For all other bases we
will explicitly give the base, e.g.,

log, x or logs x.
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Therefore, f!(x) = 2°/(1 + 2%). Figure 9 shows both functions.

X

y v = flx) = logy 1=,

- _2f
y=10= 1

-2 -1, 1 2 3
’
’
’
’ —1 -
, 1
’
’
’
’
’
. -2
’
Figure 9

Since we can only take the log of a positive number, the argument x/(1 — x)
to the logarithmic function must be positive. Thus, we are led to the inequality
x/(1 — x) > 0. The split points are 0 and 1. If x < 0, then the numerator is neg-
ative and the denominator is positive, so the fraction is negative. If 0 < x < 1,
then the numerator and the denominator are both positive, hence the fraction is
positive. If x > 1, then the numerator is positive and the denominator is negative,
so the fraction is negative. Thus, the only values of x that make x/(1 — x) positive
are those between 0 and 1. The domain for f is the interval (0, 1). The domain for
F Y (x) =2%/(1 + 2%) is (—00, 0). The range for f is the domain for £, that is
(=00, 00) and the range for f~! is the domain for f, that is (0, 1). [ |

Most calculators have a button for the common logarithm, that is, the loga-
rithm to the base 10. Another base that will become important in the next chapter,
and nearly every subsequent chapter as well, is the natural logarithm, that is the
logarithm to the base e ~ 2.718. We will have more to say about the number e and
about natural logarithms in Chapter 2. For now, we will use logarithms, sometimes
common logarithms, to solve equations involving exponential functions.

Solve

(a) 271 =32 (b) 3%+ =17

SOLUTION
(a) The base of 2 on the left side and the fact that 2° = 32, suggest we take the log
to the base 2 on both sides. This gives
log, 257! = log, 32 = log, 2
(x> = 1) log2 =5
xX*-1=5
x = :t\/6
(b) In this part, the base on the left is 3 but since 17 is not a perfect power of 3, tak-

ing log to the base 3 will not lead to a simplification. Anticipating the need for
a calculator, we take the common log (base 10) on both sides.

32x+1 —

logo = logyo 17

(2x + Dlogyp 3 = logyy 17
49
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log;o 17
2x + 1 — OgL
logyo 3
log;o 17
M <°g1° . 1) ~ 0.78945 2
2 10g10 3

Carbon-14, an isotope of carbon, is radioactive and decays

over time with a half life of 5730 years. Thus, if there is 1 gram of carbon-14 at time
t = 0, then the amount remaining after ¢ years is 2~/

(a) How much carbon-14 will be left after 10,000 years?
(b) How many years must pass until there is one-tenth of a gram remaining?

SOLUTION

(a) After 10,000 years, the amount of carbon-14 remaining is

2*10,000/5730 ~ 2*1.7452 ~ (.29829 gram

(b) To find when the amount is reduced to 0.1 gram, we set 0.1 = 27373 and solve
for ¢. Since most calculators have a common log key, we take the common log
of both sides to get

log 0.1 = log 27373
t

-1 =~ log 2
5730 &
5730
t = ~ 19,035 years |
log 2

(Recall that if we write log without explicitly giving the base, we mean the com-
mon logarithm; that is the logarithm to the base 10.) In this last example, the
amount of carbon is halved every 5730 years, so 1 gram to begin with would be re-
duced to 0.5 grams after 5730 years, to 0.25 gram after 5730-2 = 11,460 years,
0.125 gram after 5730 -3 = 17,190 years, and so on. What is not so clear is that the
amount present after ¢ years is given by 27373 if ¢ is not a positive integer. It turns
out that it is; we will return to this problem in Section 4.10.

Concepts Review

1. If p and q are integers, the expression a”/¢ can be written 3. log,a’ = ,and in general, log, a* =
in terms of roots and integral powers as

4. log x — log y can be written as the logarithm of a single

2. For any positive base a except 1,1log, 1 = quantity; namely, log x — log y =

Problem Set 1.7

In Problems 1-6, sketch a graph of the given exponential function. 1. f(x) = 1 -: N 2. f(x) =3 + 10°
1
1. f(x) =3" 2. f(x)=35" 10* 2"
&) 1) 3 13. f(x) = T+ 100 14. f(x) = yRY:
3. f(x) = 2% 4. f(x) =2 o
X
. = + . =
5 f(x) = 2\/% 6. f(x) = %37\/; 15. f(x) = log;o(3x + 2) 16. f(x) 10g2< 2 >
In Problems 7-10, sketch a graph of the given logarithmic function. In Problems 17-24, solve for x. Hint:log,b = ¢ < a® = b.
7. f(x) = logsx 8. f(x) =logyx 17. log, 8 = x 18. logsx =2
9. f(x) =logy (x — 1) 10. f(x) = logjo (x + 2) 19. logyx =3 20. log, 64 = 4
In Problems 11-16, find the inverse of the given function f and ver- 21. 2 10g9(£) =1 22. log 4(1) =3
ify that f(f~'(x)) = x for all x in the domain of f', and 3 2x
56_1 (f(x)) = x for all x in the domain of f. 23. logy(x +3) —log, x =



24. logs(x +3) —logsx =1

In Problems 25-28, the graph of an exponential function of the
form y = Ca* is given. Use the graph to determine a and C.

25. y 26. y

1,3)

A wow s ow

27. 28.

(1, 18/25)

In Problems 29 and 30, the graph of a logarithmic function of the
formy = log, (x — c) is given. Use the graph to determine a and c.

2. 30. y

|
1
1
|
1
1
|
1
I ] | !
T
1
|
1

I
1
1
I
1
| [
T T
T T 3 2 12 3 4
2 3 4 x v/
[ =
1, I
1
| -3

1.8

The Trigonometric
Functions
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31. How are log;, x and log, x related?

32. Sketch the graphs of log;;; x and logz x using the same
coordinate axes.

33. The magnitude M of an earthquake on the Richter scale is
M = 0.67 log;((0.37E) + 1.46

where E is the energy of the earthquake in kilowatt-hours. Find
the energy of an earthquake of magnitude 7. Of magnitude 8.

34. The loudness of sound is measured in decibels in honor of
Alexander Graham Bell (1847-1922), inventor of the telephone.
If the variation in pressure is P pounds per square inch, then the
loudness L in decibels is

L = 201log;o(121.3P)

Find the variation in pressure caused by music at 115 decibels.

35. In the equally tempered scale to which keyed instruments
have been tuned since the days of J.S. Bach (1685-1750), the fre-
quencies of successive notes C, C#, D, D#, E, F, F#, G, G#, A, A#, B,
C form a geometric sequence (progression), with C having twice
the frequency of C (C# is read C sharp and C indicates one octave
above C). What is the ratio r between the frequencies of succes-
sive notes? If the frequency of A is 440, find the frequency of C.

36. Prove parts (iii) and (iv) of Theorem B.

Answers to Concepts Review: 1. Var 2.0 3. 7;x

X
4. log—
Yy

You have probably seen the definitions of the trigonometric functions based on
right triangles. Figure 1 summarizes the definitions of the sine, cosine, and tangent
functions. You should review Figure 1 carefully, because these concepts are needed
for many applications later in this book.

More generally, we define the trigonometric functions based on the unit circle.

The unit circle, which we denote by C, is the circle with radius 1 and center at the

origin; it has equation x*> + y? = 1. Let A be the point (1,0) and let ¢ be a positive

number. There is a single point P on the circle C such that the distance, measured

hyp in the counterclockwise direction around the arc AP, is equal to t. (See Figure 2.)
Recall that the circumference of a circle with radius 7 is 27rr, so the circumference

opp

of Cis 27r. Thus,if ¢t = , then the point P is exactly halfway around the circle from

ad] the point A; in this case, P is the point (—1,0). If # = 37/2, then P is the point
, opp adj opp (0, —1),and if r = 2, then P is the point A. If t > 27, then it will take more than
Sin @ =Yy, CosO=goy a6 =g one complete circuit of the circle C to trace the arc AP.

Figure 1

A(1,0)x

When ¢ < 0, we trace the circle in a clockwise direction. There will be a single

point P on the circle C such that the arc length measured in the clockwise direction

y from A is t. Thus, for every real number ¢, we can associate a unique point P(x, y)

on the unit circle. This allows us to make the key definitions of the sine and cosine

functions. The functions sine and cosine are written as sin and cos, rather than as a

single letter such as f or g. Parentheses around the independent variable are usu-
ally omitted unless there is some ambiguity.

Then

The unit circle

Figure 2

Definition Sine and Cosine Functions

Let ¢ be a real number that determines the point P(x, y) as indicated above.

sint =y and cost =x
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Pi(x,y)

(1,0)

X

Figure 4

Figure 5

t sin ¢ cos t

0 0 1
/6 1/2 V32
/4 V22 V2/2
/3 V32 12
/2 1 0
2m/3 V32 -1/2
3m/4 V2/2 -V2/2
5m/6 12 V32

T 0 -1

Basic Properties of Sine and Cosine A number of facts follow almost
immediately from the definitions given above. First, since ¢ can be any real number,
the domain for both the sine and cosine functions is (— 00, 00). Second, x and y are
always between —1 and 1. Thus, the range for both the sine and cosine functions is
the interval [—1, 1].

Because the unit circle has circumference 27, the values ¢ and ¢t + 27 deter-
mine the same point P(x, y). Thus,

sin(t + 27) =sint and cos(t + 27) = cost

(Notice that parentheses are needed to make it clear that we mean sin(t + 27),
rather than (sin ) + 2. The expression sin ¢ + 27 would be ambiguous.)

The points P; and P, that correspond to ¢ and —t¢, respectively, are symmetric
about the x-axis (Figure 3). Thus, the x-coordinates for P; and P, are the same, and
the y-coordinates differ only in sign. Consequently,

sin(—¢) = —sint and cos(—t) = cost

In other words, sine is an odd function and cosine is an even function.

The points P; and P, corresponding to ¢ and 7/2 — t, respectively, are sym-
metric with respect to the line y = x and thus they have their coordinates inter-
changed (Figure 4). This means that

inz—t = t and E—t =sint
S > cost a cos > S

Finally, we mention an important identity connecting the sine and cosine
functions:
sint + cos’t = 1

for every real number t. This identity follows from the fact that since the point
(x, ) is on the unit circle, x and y satisfy x> + y? = 1.

Graphs of Sine and Cosine To graph y = sinzand y = cos ¢, we follow our
usual procedure of making a table of values, plotting the corresponding points, and
connecting these points with a smooth curve. So far, however, we know the values of
sine and cosine for only a few values of . A number of other values can be
determined from geometric arguments. For example, if t = /4, then ¢ determines
the point half of the way counterclockwise around the unit circle between the points
(1,0) and (0, 1). By symmetry, x and y will be on the line y = x, so y = sin ¢ and
x = cos t will be equal. Thus, the two legs of the right triangle OBP are equal, and
the hypotenuse is 1 (Figure 5). The Pythagorean Theorem can be applied to give

o aw
1=x*+x*= coszz + coszz

From this we conclude that cos(w/4) = 1/ V2= \/2/2 Similarly, sin(w/4) =

\6/2. We can determine sin ¢ and cos ¢ for a number of other values of t. Some of
these are shown in the table in the margin. Using these results, along with a num-
ber of results from a calculator (in radian mode), we obtain the graphs shown in
Figure 6.

7<\ y:cV y=sint /-
|
I
o " Wﬂ? t
-1 +

Figure 6




Four things are noticeable from these graphs:

1. Both sin ¢ and cos ¢ range from —1 to 1.
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2. Both graphs repeat themselves on adjacent intervals of length 277.

3. The graph of y = sin¢ is symmetric about the origin, and y = cost is
symmetric about the y-axis. (Thus, the sine function is odd and the cosine
function is even.)

4. The graph of y = sin ¢ is the same as that of y = cos ¢, but translated /2 units

to the right.

The next example deals with functions of the form sin(at) or cos(at), which

occur frequently in

Sketch the graphs of

(b) y = cos(2t)

(a) y = sin(2mt)

SOLUTION

applications.

(a) Astgoes from 0 to 1, the argument 27t goes from 0 to 27r. Thus, the graph of
this function will repeat itself on adjacent intervals of length 1. From the
entries in the following table, we can sketch a graph of y = sin(2t). Figure 7

shows a sketch.

y
1
0.5
T
-2 1 1 2
0.5

Figure 7

t sin(27t) t sin(27t)

2
0 sin(27-0) = 0 % sin<27-r%> = - %
1 . 1\ _ V2 3 . 3\
3 s1n(277 8) = 1 sm(Zﬂ' 4> = -1
1 : 1 7 . 7\ V2
Z s1n(277 4) =1 3 sm<277- 8) = )

2

% sin(277- %) = % 1 sin(2w-1) =0
1 . 1 9 . 9\ V2
5 s1n(277 2) =0 3 sm<277- 8) =7

(b) Ast goes from 0 to 7, the argument 2¢ goes from 0 to 27. Thus, the graph of
y = cos(2t) will repeat itself on adjacent intervals of length 7. Once we con-
struct a table we can sketch a plot of y = cos(2¢). Figure 8 shows the graph.

|
T
-

W

Figure 8

AL/

-0.5—1

14

t cos(21) t cos(21)

0 cos(2-0) =1 5?77 COS(Z'%) - _¥
% 005(2-%) = % 3777 cos(%%r) =0

S I
’%T 005(2-3%) = —% ™ cos(2-m) =1
e I
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Period and Amplitude of the Trigonometric Functions A function f
is periodic if there is a positive number p such that

flx +p) = f(x)

for all real numbers x in the domain of f. If fis nonconstant, the smallest such pos-
itive number p is called the period of f. The sine function is periodic because
sin(x + 27) = sin x for all x. It is also true that

sin(x + 47) = sin(x — 27) = sin(x + 127) = sin x

for all x. Thus, 47, =27, and 127 are all numbers p with the property
sin(x + p) = sin x. The period is defined to be the smallest such positive number
p. For the sine function, the smallest positive p with the property that
sin(x + p) = sin x is p = 27r. We therefore say that the sine function is periodic
with period 27r. The cosine function is also periodic with period 2.

The function sin (af) has period 27/a since

sin[a(t + 2:” = sinf[at + 27| = sin(at)

The period of the function cos(at) is also 27/a.

What are the periods of the following functions?

(a) sin(27t) (b) cos(2¢) (c) sin(27t/12)
SOLUTION
(a) Because the function sin(2¢) is of the form sin(at) with a = 27, its period is
2
p= 2

(b) The function cos(2f) is of the form cos(at) with a = 2. Thus, the period of
2
cos(2t)is p = 777 = .

27
2w /12

(c) The function sin(27¢/12) has periodp = 12. [ |

If the periodic function f attains a minimum and a maximum, we define the
amplitude A to be half the vertical distance between the highest point and the low-
est point on the graph.

Find the amplitude of the following periodic functions.
(a) sin(27t/12) (b) 3cos (2¢)
(c) 50 + 21 sin(27t/12 + 3)

SOLUTION

(a) Since the range of the function sin(27/12) is [—1, 1], its amplitude is A = 1.

(b) The function 3 cos(2f) will take on values from —3 (which occurs when
t =+ E’ + 3£, ... ) to 3 (which occurs when t = 0, 7, +27,...).The ampli-

2 2
tude is therefore A = 3.

(c) The function 21 sin(27t/12 + 3) takes on values from —21 to 21. Thus,
50 + 21sin(27t/12 + 3) takes on values from 50— 21 =29 to
50 + 21 = 71. The amplitude is therefore 21. [ |

In general,fora > Oand A > 0,

2
C + Asin(a(t + b)) and C + A cos(a(t + b)) have period 777 and amplitude A.
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Trigonometric functions can be used to model a number of physical phenom-
ena, including daily tide levels and yearly temperatures.

The normal high temperature for St. Louis, Missouri, ranges

from 37°F for January 15 to 89°F for July 15. The normal high temperature follows
roughly a sinusoidal curve.

(a) Find values of C, A, a, and b such that
T(t) = C + Asin(a(t + b))

where ¢, expressed in months since January 1, is a reasonable model for the
normal high temperature.
(b) Use this model to approximate the normal high temperature for May 15.

SOLUTION

(a) The required function must have period ¢ = 12 since the seasons repeat every
2
12
difference between the lowest and highest points; in this case,

1
A= > (89 — 37) = 26. The value of C is equal to the midpoint of the low and

2
12 months. Thus, 777 = 12, so we have a = The amplitude is half the

1
high temperatures, so C = 5(89 + 37) = 63. The function 7(f) must there-

fore be of the form

T(t) =63 + 26 sin(zlg(t + b))

Temperature The only constant left to find is b. The lowest normal high temperature is 37,
oo Maximum which occurs on January 15, roughly in the middle of January. Thus, our func-
POy tion must satisfy 7(1/2) = 37, and the function must reach its minimum of 37

80 // \\\ when ¢t = 1/2. Figure 9 summarizes the information that we have so far. The
601 / ™ function 63 + 26 sin(27t/12) reaches its minimum when 27¢/12 = —/2, that
ol ._/" \\\--T(t) is, when ¢t = —3. We must therefore translate the curve defined by
Minimum y = 63 + 26 sin(27¢t/12) to the right by the amount 1/2 — (=3) = 7/2. In

07 Section 1.6, we showed that replacing x with x — ¢ translates the graph of

— - y = f(x) to the right by ¢ units. Thus, in order to translate the graph of
oo s e y = 63 + 26sin(27t/12) to the right by 7/2 units, we must replace ¢ with

Figure 9 t — 7/2. Thus,
. (27 7
T(t) =63 + 26 sm< % <t - 2))

Figure 10 shows a plot of the normal high temperature 7 as a function of time
t,where ¢ is given in months.

90
80
70
60
50
40

Normal high temperature

Figure 10
55
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Models and Modeling

It is important to keep in mind that
all models such as this are simplifica-
tions of reality. (That is why they are
called models.) Although such mod-
els are inherently simplifications of
reality, many of them are still useful
for prediction.

D Y
R btttk ST E I e e e

|
y=tant

Figure 11

O, 1)

Arc length =1

{ lradian | (1,0)

Figure 12
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(b) To estimate the normal high temperature for May 15, we substitute ¢t = 4.5
(because the middle of May is four and one-half months into the year) and
obtain

T(4.5) = 63 + 26sin(2m(4.5 — 3.5)/12) = 76

The normal high temperature for St. Louis on May 15 is actually 75°F. Thus,
our model overpredicts by 1°, which is remarkably accurate considering how
little information was given. |

Four Other Trigonometric Functions We could get by with just the sine
and cosine functions, but it is convenient to introduce four additional trigonomet-
ric functions: tangent, cotangent, secant, and cosecant.

sin ¢t cost
tant = cott = —;
cost sin ¢
1 1
sect = —— csct = —
cost sin ¢t

What we know about sine and cosine will automatically give us knowledge about
these four new functions.

Show that tangent is an odd function.
SOLUTION
sin(—7)  —sin¢

tan(—t) = = = —tant |
(=1) cos(—t) cos t

Verify that the following are identities.

1 + tan®7 = sec’¢ 1+ cot?t = csc? ¢

SOLUTION

sint  cos’t + sin’t

1+ tan’t =1+ 5= 5 = ) = sec’t
cos” ¢ cos” t cos~ t
5 cos’t _ sin’t + cos’t 1 )
IT+cott=1+—75—= 3 =5 = csct [
sin” ¢ sin“ ¢ sin” ¢

When we study the tangent function (Figure 11), we are in for two minor sur-
prises. First, we notice that there are vertical asymptotes at +7/2, +37/2,.... We
should have anticipated this since cos t = 0 at these values of ¢, which means that
sin t/cos ¢ would involve a division by zero. Second, it appears that the tangent is
periodic (which we expected), but with period 7 (which we might not have expect-
ed). You will see the analytic reason for this in Problem 33.

Relation to Angle Trigonometry Angles are commonly measured either
in degrees or in radians. One radian is by definition the angle corresponding to an
arc of length 1 on the unit circle. See Figure 12. The angle corresponding to a com-
plete revolution measures 360°, but only 27 radians. Equivalently, a straight angle
measures 180° or 7 radians, a fact worth remembering.

180° = 7 radians =~ 3.1415927 radians

This leads to the results

1 radian ~ 57.29578° 1° =~ 0.0174533 radian



Degrees | Radians

0 0

30 /6

45 n/4

60 n/3

90 n/2

120 2n/3

135 3n/4

150 5n/6
180 m
360 2n

Figure 13

Figure 14

Another View

We have based our discussion of
trigonometry on the unit circle. We
could as well have used a circle of

radius r.
y
(x, y)
r \9
Then
sin 0 = Y
r
cosf = X
’
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Figure 13 shows some other common conversions between degrees and radians.

The division of a revolution into 360 parts is quite arbitrary (due to the ancient
Babylonians, who liked multiples of 60). The division into 27 parts is more funda-
mental and lies behind the almost universal use of radian measure in calculus.
Notice, in particular, that the length s of the arc cut off on a circle of radius r by a
central angle of 7 radians satisfies (see Figure 14)

N t

27r :Z

That is, the fraction of the total circumference 27rr corresponding to an angle ¢ is
the same as the fraction of the unit circle corresponding to the same angle ¢. This
implies that s = rt.

When r = 1, this gives s = t. This means that the length of the arc on the unit
circle cut off by a central angle of t radians is t. This is correct even if ¢ is negative,
provided that we interpret length to be negative when measured in the clockwise
direction.

Find the distance traveled by a bicycle with wheels of radius

30 centimeters when the wheels turn through 100 revolutions.

SOLUTION We use the fact that s = rt, recognizing that 100 revolutions
correspond to 100 - (27) radians.

s = (30)(100)(27) = 60007 ~ 18,849.6 centimeters ~ 188.5 meters M

Now we can make the connection between angle trigonometry and unit circle
trigonometry. If 6 is an angle measuring ¢ radians, that is, if 6 is an angle that cuts off
an arc of length ¢ from the unit circle, then

sinf = sin ¢t cosf = cost

In calculus, when we meet an angle measured in degrees, we almost always change
it to radians before doing any calculations. For example,

. o o L ~
sin 31.6 sm<31.6 18Oradlan) sin 0.552

List of Important Identities We will not take space to verify all the follow-
ing identities. We simply assert their truth and suggest that most of them will be
needed somewhere in this book.

Trigonometric Identities The following are true for all x and y, provided that
both sides are defined at the chosen x and y.

Cofunction identities

- <7T >

sinf — — x| =cosx
2

<7T ) .

cos| - — x| =sinx
2

tan( T~ ) = co

an| — — x| = cotx
2

Addition identities

Odd-even identities

sin(—x) = —sin x

cos(—x) = cos x

tan(—x) = —tan x

Pythagorean identities

2

sin®x + cos’x = 1 sin(x + y) = sinx cos y + cos x sin y

57
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1 + tan® x = sec® x

1+ cot? x = csc? x

Double-angle identities

sin 2x = 2 sin x cos x

0082

cos 2x X — sin

=2cos’x — 1

=1-—2sin’x

Sum identities

2

cos(x + y) = cosxcosy — sinxsiny
tanx + tany

tan(x + y) = ———————
an(x + y) 1 —tanxtany

Half-angle identities
X

in() . 1 — cosx

SN 2 VT 2

cos<x) . [T + cos x
2 2

X

o _2.<X+y> (x—y>
sinx + sin y = 2 sin| — cos| —
x + X —
cosx +cosy =2 cos( y) cos( y)
2 2
Product identities
sinxsiny = —%[cos(x + y) — cos(x — y)]

COS X COS y = %[cos(x + y) + cos(x — y)]

sin x cos y = %[sin(x + y) + sin(x — y)]

Concepts Review

1. The natural domain of the sine function is ;its range

is

2. The period of the cosine function is ; the period of
the sine function is ; the period of the tangent function is

3. Since sin(—x) = —sin x, the sine function is
since cos(—x) = cos x, the cosine function is

, and

4. If (—4,3) lies on the terminal side of an angle § whose
vertex is at the origin and initial side is along the positive x-axis,
then cos 6§ =

Problem Set 1.8

1. Convert the following degree measures to radians (leave
a7 in your answer).

(a) 30° (b) 45° (c) —60°
(d) 240° (e) —370° (f) 10°
2. Convert the following radian measures to degrees.
(a) ¢ (b) im (© —5m
(d) $m (&) —2m () &
3. Convert the following degree measures to radians
(1° = 7/180 ~ 1.7453 X 1072 radian).
(a) 33.3° (b) 46° (c) —66.6°
(d) 240.11° (e) —369° ) 11°

4. Convert the following radian measures to degrees
(1 radian = 180/7 =~ 57.296 degrees).
(a) 3.141 (b) 6.28

(d) 0.001 (e) —0.1
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(c) 5.00
(f) 36.0

5. Calculate (be sure that your calculator is in radian or de-
gree mode as needed).

@) 56.4 tan 34.2°
T inz4re
(c) tan 0.452

6. Calculate.
234.1 sin 1.56

(®) 5.34 tan 21.3°
sin 3.1° + cot 23.5°
(d) sin(—0.361)

in22.51 + ]
@ = 5034 (b) sin?251 + Voos 051
7. Calculate.
56.3 tan 34.2° sin 35° 3
A (b) (Sin%o o 260)

8. Verify the values of sin t and cos ¢ in the table used to con-
struct Figure 6.

9. Evaluate without using a calculator.

u (b) secw

6

(c) sec 3

(a) tan 2



(d) csc% (e) cot% (f) tan (— %)
10. Evaluate without using a calculator.

(a) tan % (b) sec % (c) cot %

(d) csc% (e) tan (— %) (f) cos (— %)

11. Verify that the following are identities (see Example 6).
1

sec’ z

(b) (sect — 1)(sect + 1) = tan’¢

(c) sect —sinttant = cost

(a) (1 +sinz)(1 —sinz) =

2
sec’t — 1 .
d) ———= sin? ¢
sec” t

12. Verify that the following are identities (see Example 6).

1
(a) sin®v + =1
sec” v

(b) cos 3t = 4cos’t — 3 cos t Hint: Use a double-angle identity.
(c) sindx = 8sin x cos® x — 4sin x cos x Hint: Use a double-
angle identity twice.
(d) (1 + cosf)(1 — cosh) = sin’@
13. Verify the following are identities.
sinu  cosu

(a) + =1

cscu secu

(b) (1 — cos?>x)(1 + cot?x) =1
(c) sint(csct — sint) = cos®t

1 —ocsc?t -1

(d)

csc? t sec’ t
14. Sketch the graphs of the following on [—r, 277].

(a) y = sin2x (b) y =2sint

(c) y= cos(x - %)

15. Sketch the graphs of the following on [—r, 277].
(b) y =2cost

(d) y= cos(t + g)

Determine the period, amplitude, and shifts (both horizontal and
vertical) and draw a graph over the interval =5 < x =< 5 for the
functions listed in Problems 16-23.

(d) y =sect

(a) y =csct

(¢) y =cos3t

16. yzScosg 17. y = 2sin2x

1
18. y =tanx 19. y=2+gcot2x
20. y =3 + sec(x — )
22, y=3 cos(x - g) -1 23. y= tan(2x - g)

24. Which of the following represent the same graph? Check
your result analytically using trigonometric identities.

(a) y= sin(x + g) (b) y= cos(x + g)
(¢) y= —sin(x + ) (d) y =cos(x — m)

21. y =21 + 7sin(2x + 3)
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(e) y= —sin(7m — x)

) y= cos<x - g)

(h) y= sin(x - g)

25. Which of the following are odd functions? Even func-
tions? Neither?

(a) tsint
(d) Isin ¢|

26. Which of the following are odd functions? Even func-
tions? Neither?
(a) cott + sint

(d) Vsin*t

(g) y= —cos(m — x)

(b) sin®¢
(e) sin (cos f)

(c) csct
(f) x +sinx

(b) sin’t
(e) cos(sin )

(c) sect
(f) x*+sinx

Find the exact values in Problems 27-31. Hint: Half-angle identi-
ties may be helpful.

27. coszg 28. sinZ%

. 3T 2T
29. sin 5 30. cos B
31. sin’~

32. Find identities analogous to the addition identities for
each expression.
(a) sin(x — y) (b) cos(x — y) (¢) tan(x — y)

33. Use the addition identity for the tangent to show that
tan(t + ) = tan¢ for all # in the domain of tan r.

34. Show that cos(x — 7) = —cos x for all x.

35. Suppose that a tire on a truck has an outer radius of 2.5
feet. How many revolutions per minute does the tire make when
the truck is traveling 60 miles per hour?

36. How far does a wheel of radius 2 feet roll along level
ground in making 150 revolutions?

37. A belt passes around two wheels, as shown in Figure
15. How many revolutions per second does the small wheel make
when the large wheel makes 21 revolutions per second?

Figure 15

38. The angle of inclination « of a line is the smallest positive
angle from the positive x-axis to the line (a = 0 for a horizontal
line). Show that the slope m of the line is equal to tan «.

39. Find the angle of inclination of the following lines (see
Problem 38).

(a) y= V3x -7
40. Let ¢; and ¢, be two nonvertical intersecting lines with

slopes m; and m,, respectively. If 6, the angle from ¢, to ¢, is not
a right angle, then

(b) \/3x+3y:6

mp — my
tanf = ———
1+ nniy

59



60 Chapter 1 Preliminaries

Show this using the fact that & = 6, — 6, in Figure 16.

_—

Figure 16

41. Find the angle (in radians) from the first line to the sec-
ond (see Problem 40).
(b) y=

(a) y=2x,y=73x ,y = —x

N | =

(c) 2x —6y=122x + y=0
42. Derive the formula A = %rzz for the area of a sector of a

circle. Here r is the radius and ¢ is the radian measure of the
central angle (see Figure 17).

V

Figure 17 Figure 18
43. Find the area of the sector of a circle of radius 5 centime-
ters and central angle 2 radians (see Problem 42).

44. A regular polygon of n sides is inscribed in a circle of ra-
dius r. Find formulas for the perimeter, P, and area, A, of the
polygon in terms of n and r.

45. An isosceles triangle is topped by a semicircle, as shown
in Figure 18. Find a formula for the area A of the whole figure in
terms of the side length r and angle ¢ (radians). (We say that A is
a function of the two independent variables r and ¢.)

46. From a product identity, we obtain

oo o) o)
C 2CO 4 B 0S 4X 0S 4X

Find the corresponding sum of cosines for

X X X X
COS - COS — COS 5 COS ——
2 4 8 16

Do you see a generalization?

47. The normal high temperature for Las Vegas, Nevada, is
55°F for January 15 and 105° for July 15. Assuming that these are
the extreme high and low temperatures for the year, use this
information to approximate the average high temperature for
November 15.

48. Tides are often measured by arbitrary height markings at
some location. Suppose that a high tide occurs at noon when the
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water level is at 12 feet. Six hours later, a low tide with a water
level of 5 feet occurs, and by midnight another high tide with a
water level of 12 feet occurs. Assuming that the water level is
periodic, use this information to find a formula that gives the
water level as a function of time. Then use this function to ap-
proximate the water level at 5:30 p.M.

49. Circular motion can be modeled by using the para-
metric representations of the form x(¢) = sin ¢ and y(t) = cos?.
(A parametric representation means that a variable, ¢ in this case,
determines both x(¢) and y(¢).) This will give the full circle for
0 = ¢ = 2. If we consider a 4-foot-diameter wheel making one
complete rotation clockwise once every 10 seconds, show that the
motion of a point on the rim of the wheel can be represented by
x(t) = 2sin(7rt/5) and y(¢) = 2 cos(wt/5).
(a) Find the positions of the point on the rim of the wheel when
t = 2 seconds, 6 seconds, and 10 seconds. Where was this
point when the wheel started to rotate at ¢ = 0?

(b) How will the formulas giving the motion of the point change
if the wheel is rotating counterclockwise.

(c) At what value of ¢is the point at (2, 0) for the first time?

50. The circular frequency v of oscillation of a point is

2w
i by v = . What h h ddt ti
given by v period at happens when you add two motions

that have the same frequency or period? To investigate, we can
graph the functions y(z) = 2 sin(#t/5) and y(¢) = sin(wt/5) +

cos(7rt/5) and look for similarities. Armed with this information,
we can investigate by graphing the following functions over the
interval [—5, 5]:

(a) y(t) = 3sin(at/S) — 5cos(wt/5) + 2sin((wt/5) — 3)
(b) y(t) = 3cos(mt/5 — 2) + cos(mt/5) + cos((mt/5) — 3)

51. We now explore the relationship between A sin(wt) +

B cos(wt) and C sin(wt + ¢).

(a) By expanding sin(wt + ¢) using the sum of the angles
formula, show that the two expressions are equivalent if
A = Ccos ¢and B = C sin ¢.

(b) Consequently, show that A> + B? = C? and that ¢ then
satisfies the equation tan ¢ = g

(c) Generalize your result to state a proposition about
Ajsin(ot + ¢1) + Aysin(wt + ¢y) + Azsin(wt + ¢3).

(d) Write an essay, in your own words, that expresses the impor-
tance of the identity between A sin(wt) + B cos(wt) and
Csin(wt + ¢). Be sure to note that [C| = max(|Al, |Bl)
and that the identity holds only when you are forming a lin-
ear combination (adding and/or subtracting multiples of sin-
gle powers) of sine and cosine of the same frequency.

Trigonometric functions that have high frequencies pose spe-
cial problems for graphing. We now explore how to plot such
functions.

IGC152. Graph the function f(x) = sin 50x using the window
given by a y range of —1.5 = y = 1.5 and the x range given by
(a) [—15,15] (b) [—10,10] (c) [-8,8]

(d) [-1,1] (e) [—0.25,0.25]

Indicate briefly which x-window shows the true behavior of the

function, and discuss reasons why the other x-windows give
results that look different.



G 53. Graph the function f(x) = cos x + %sin 50x using the
windows given by the following ranges of x and y.

(a) S=x=5-1=y=1

b)) -1=x=105=y=15

(c) 01 =x=01,09=y=11

I\

Indicate briefly which (x, y)-window shows the true behavior of
the function, and discuss reasons why the other (x, y)-windows
give results that look different. In this case, is it true that only one
window gives the important behavior, or do we need more than
one window to graphically communicate the behavior of this
function?

3x +2 1
54. Let f(x) = =~ ——cos(100x).

241 ~ 100

(a) Use functional composition to form A(x) = (f ° g)(x), as
well as j(x) = (g ° f)(x).

and g(x)

1.9

The Inverse
Trigonometric Functions
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(b) Find the appropriate window or windows that give a clear
picture of A(x).

(c) Find the appropriate window or windows that give a clear
picture of j(x).

55. Suppose that a continuous function is periodic with peri-
od 1 and is linear between 0 and 0.25 and linear between —0.75
and 0. In addition, it has the value 1 at 0 and 2 at 0.25. Sketch the
function over the domain [—1, 1], and give a piecewise definition
of the function.

56. Suppose that a continuous function is periodic with peri-
od 2 and is quadratic between —0.25 and 0.25 and linear between
—1.75 and —0.25. In addition, it has the value 0 at 0 and 0.0625 at
+0.25. Sketch the function over the domain [—2, 2], and give a
piecewise definition of the function.

Answers to Concepts Review: 1. (—o00,00);[—1,1]
2.2m; 2w, 3.odd;even 4.—4/5

The six basic trigonometric functions (sine, cosine, tangent, cotangent, secant, and
cosecant) were defined in Section 1.8. With respect to the notion of inverse, they
are miserable functions, since for each y in their range there are infinitely many x’s
that correspond to it (Figure 1). Nonetheless, we are going to introduce a notion of

inverse for them. That this is possible rests on a procedure called restricting the do-
main, which was discussed briefly in Section 1.6.

Inverse Sine and Inverse Cosine In the case of sine and cosine, we restrict
the domain, keeping the range as large as possible while insisting that the resulting

y=sinx

function have an inverse. This can be done in many ways, but the agreed procedure
4 is suggested by Figures 2 and 3. We also show the graph of the corresponding in-

y
/)lc ;lc\ x )lc\\//)! verse function, obtained, as usual, by reflecting across the line y = x.
: y
Figure 1 » 4
y=sinx 2
=~q 1 ~ el
\\ \\\ y=sin— x
I ~F I I % I I I
_3n R AN 1 n LN x 1 1 x
2 \\ 2 2 N2
- -
R
2
_T  Restricted T
2 . 2
domain
Figure 2
y

y

P y=cosx o
7 4
4 4
Itd | 12 I

T
[SIE]
K
\
\
\,
\
\\
[SEE
©
a
=

y=cos ! x

0 Restricted =

1 Pl
- s n
__///, 2 1_
Figure 3

domain
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(x5 y)

arcsin y
(1,0) x

=

Figure 4

We formalize what we have shown in a definition.

Definition
To obtain inverses for sine and cosine, we restrict their domains to [—7/2, 7/2]
and [0, 7], respectively. Thus,

x=sinly & y=sinx,—

m
2
=

X =

3

cosly & y=cosx,0

X

Another Way To Say It

sinty
is the number in the interval
[=7/2, /2] whose sine is y.
cosy

is the number in the interval [0, 77]
whose cosine is y.

tan!y

is the number in the interval
(—/2, w/2) whose tangent is y.

62

The symbol arcsin is often used for sin"!, and arccos is similarly used for cos ™.

Think of arcsin as meaning “the arc whose sine is” or “the angle whose sine is”
(Figure 4). We will use both forms throughout the rest of this book.

Calculate

(a) sinfl(\/Z/Z), (b) cosfl(—%),
(c) cos(cos ! 0.6), (d) sin"!(sin 37/2)
SOLUTION
(a) sin1<\§§> Z% (b) cos1<— ;) = 2?77

_ . . 3w T
(c) cos(cos 10.6) = 0.6 (d) sin 1<sm2) = —5

The only one of these that is tricky is (d). Note that it would be wrong to give 37/2
as the answer, since sin! y is always in the interval [—7/2, 7/2]. Work the problem
in steps, as follows.

3
sin1<sin277) =sinl(-1) = —7/2 [ |

Use a calculator to find

(a) cos!(—0.61), (b) sin"}(1.21), (c) sin"!(sin 4.13)

SOLUTION Use a calculator in radian mode. It has been programmed to give
answers that are consistent with the definitions that we have given.

(a) cos }(—0.61) = 2.2268569
(b) Your calculator should indicate an error, since sin"!(1.21) does not exist.
(c) sin"!(sin 4.13) = —0.9884073 |

Inverse Tangent and Inverse Secant In Figure 5, we show the graph of
the tangent function, its restricted domain, and the graph of y = tan™" x.

y y
i i
HEEa y =tan x|
I I
ST ) [ 3 E
/I 1= /I : tan~!
y =tan! x
/ e I I I I 1 I
P P T T T I T T
3, _n T 3n X 3 2 - 1 2 3 X
2 2 T 2 2
] / n
/ e T et o
! !
I ST |
I I
_m Restricted T
2 domain 2
Figure 5
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There is a standard way to restrict the domain of the cotangent function, that
is, to (0, 7r), so that it has an inverse. However, this function does not play a signif-
icant role in calculus.

To obtain an inverse for secant, we graph y = sec x, restrict its domain appro-
priately, and then graph y = sec™! x (Figure 6).

| n y | | y
i i \y=secx |
| I | | 4
| 1 | | T
! A i i y=sec!x
1 | \\ : : oo - g ____________
| |
| | 1\_ | | /—’—
| | | |
| | | ] | | I | I
T T T ] T T | I I |
3 - o Fd n 3n X -2 -1 1 2 X
2 —+4
[ |2 - t ~ 7
[ N | A
I / v I v
1y Vo2 | vl
Iy (W | (W
1 | | [
i i | Vi
| | | W
1 N | 1
0 Restricted =
domain
Figure 6
Definition

To obtain inverses for tangent and secant, we restrict their domains to
(—m/2,/2) and [0, 7/2) U (7/2, ], respectively. Thus,

- T T
xztanly = y=tanx,—5<x<5

-1 a
X =sec 'y < y=secx,0SxS7T,x¢E

Some authors restrict the domain of the secant in a different way. Thus, if you
refer to another book, you must check that author’s definition. We will have no
need to define csc™!, though this can also be done.

Calculate

(a) tan"!(1), (b) tan_l(—\/i:’),

(c) tan"! (tan 5.236), (d) sec}(—1),

(e) sec! (2), (f) sec'(—1.32)
SOLUTION

(a) tan"'(1) :% (b) tanfl(—\/§> = —%

(c) tan"!(tan 5.236) = —1.0471853

Most of us have trouble remembering our secants; moreover, most calculators
fail to have a secant button. Therefore, we suggest that you remember that
sec x = 1/cos x. From this, it follows that

)
1, — anel

sec =cos | —
=S

and this allows us to use known facts about the cosine.

(d) sec’!(-1) =cos}(—1) ==
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Figure 7

w
le— & —
=g

Figure 8

5ft

26ftH 6, \

Figure 9
64

1
(f) sec’!(—1.32) = cosl<— 132) = cos 1(0.7575758)

2.4303875 [ |

Four Useful Identities Theorem A gives some useful identities. You can re-
call them by reference to the triangles in Figure 7.

(1) sin(cos'x) = V1 — x?
(2) cos(sinlx) = V1 — x?
V1 + x?

(3) sec(tan'x) =

1
-1

AV

(4) tan(sec'x) =

Proof To prove (1),recall that sin? § + cos’# = 1. If0 =< 6 < 7, then
sinf = V1 — cos® 6

Now apply this with § = cos ! x and use the fact that cos(cos ! x) = x to get

sin(cos ™! x) = V1 - cos’(cos 1 x) = V1 — x?

Identity (2) is proved in a completely similar manner. To prove (3) and (4), use
the identity sec> # = 1 + tan® 6 in place of sin> 6 + cos’> 6 = 1. [

Calculate sin[2 cos_l(%)].

SOLUTION Recall the double-angle identity sin 20 = 2 sin 6 cos 6. Thus,
2 2 2
sin{2 cos_1(3)] =2 sin[cos_l(?))] cos[cosﬂ(‘%)}
. /1_<2)2.2_M .
3/ 3 9

A picture 5 feet in height is hung on a wall so that its bottom is

8 feet from the floor, as shown in Figure 8. A viewer with eye level at 5.4 feet stands
b feet from the wall. Express 6, the vertical angle subtended by the picture at her
eye, in terms of b, and then find 6 if b = 12.9 feet.

SOLUTION The top of the picture is 13 feet above the ground and 7.6 feet
above eye level. The bottom of the picture is 2.6 feet above eye level. Let 6; denote
the angle between the horizontal and the viewer’s line of the sight to the bottom of
the picture (Figure 9). Then

7.6

tan (6; + 6) = e
tan 6, = 26
Yo

Thus,
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Il

-

o

=

L

7N\
~
~__

0, + 0

6, = tan ! <26>
b

Subtracting 6, from both sides of the first equation and making use of the second

equation gives

If b = 12.9, then

7.6 2.6
6 = tan! <b) — tan! (b>

7.6 2.6
6 = tan”! (10) — tan! (10> ~ 0.3955 radian ~ 23° [ |

Concepts Review

1. To obtain an inverse for the sine function, we restrict its
domain to . The resulting inverse function is denoted by
sin”! or by .

2. To obtain an inverse for the tangent function, we restrict
the domain to .The resulting inverse function is denoted by
tan~! or by

3. The domain of tan™" is , and the range is

4. For —1 = x = 1,cos (sin"'x) =

Problem Set 1.9

In Problems 1-10, find the exact value without using a calculator.

1. arccos<\2/2) arcsin (— \gg)

N

3. sin’l(— \gg) 4 sm’1<— ?)
5. arctan(\/g) 6. arcsec (2)

7. arcsin(fl> 8. tan_1<f \3@>

2

9. sin(sin"! 0.4567) 10. cos(sin"' 0.56)
In Problems 11-18, use a calculator to approximate each value.
11. sin™! (0.1113) 12. arccos (0.6341)
13. cos (arcsec 3.212) 14. sec (arccos 0.5111)
15. sec™'(—2.222) 16. tan™!(—60.11)

17. cos(sin(tan"!2.001)) 18. sin’(In(cos 0.5555))

In Problems 19-24, express 0 in terms of x using the inverse
trigonometric functions sin’!, cos!, tan”!, and sec”".

19. 20.

21. 22.

\6

23. 24.

) 1

In Problems 25-28, find each value without using a calculator (see
Example 4).

25. cos[Z sin_l(f %)] 26. tan[Z tan_l(%)]
27. sin[cosfl(%) + cosfl(

28. cos[cos’l(g) + sin”}(
In Problems 29-32, show that each equation is an identity.

x
29. tan(sin”!x) = ——
V1 — x?
o
V1 + x?
31. cos(2sin'x) =1 — 2x°

2x

——

30. sin(tan!x) =

32. tan(2tan"!x) = |

33. By repeated use of the addition formula

tan(x + y) = (tanx + tan y)/(1 — tan x tan y)

T 41 4 5)
—= — )+ =
1 3 tan <4> tan (99

show that

65
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34. Verify that

T 1 1
S —4tan M =) = *1<7)
4 tan (5) tan 739

a result discovered by John Machin in 1706 and used by him to
calculate the first 100 decimal places of .

35. Find formulas for f~'(x) for each of the following func-
tions f, first indicating how you would restrict the domain so that
f has an inverse. For example, if f(x) = 3 sin 2x and we restrict
the domain to —7/4 = x = /4, then f~}(x) = 3sin!(x/3).

(a) f(x) = 3cos2x (b) f(x) = 2sin3x

() f(x)= %tanx (d) f(x)= sin%

36. Draw the graphs of
y = arctan(x/V1 — x?)
using the same axes. Make a conjecture. Prove it.

37. Draw the graph of y = 7/2 — arcsin x. Make a conjec-
ture. Prove it.

38. Draw the graph of y = sin(arcsin x) on [—1, 1]. Then
draw the graph of y = arcsin(sin x) on [—2r, 27r]. Explain the
differences that you observe.

y = arcsin x and

Answers to Concepts Review: 1. [—/2, w/2]; arcsin
2. (=m/2,m/2); arctan 3. (=00, ); (—/2,7/2)

4. V1 — x?

1.10 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer. Normally, this means that you
should supply a reason if you answer true and provide a counter-
example if you answer false.

1. Any number that can be written as a fraction p/q is
rational.

2. The difference of any two rational numbers is rational.
3. The difference of any two irrational numbers is irrational.

4. Between two distinct irrational numbers, there is always
another irrational number.

5. 0.999... (repeating 9s) is less than 1.

6. The operation of exponentiation is commutative; that is,
(am)n — (an)m.

7. The inequalities x =< y, y = z, and z = x together imply
thatx = y = z.

8. If |x| < efor every positive number g, then x = 0.
9. If x and y are real numbers, then (x — y)(y — x) = 0.
10. Ifa < b < 0,then1/a > 1/b.

11. It is possible for two closed intervals to have exactly one
point in common.

12. If two open intervals have a point in common, then they
have infinitely many points in common.

13. If x < 0, then V% = —x.

14. If |x| < |y], then x < y.

15. If |x| < |yl, then x* < y*.

16. If x and y are both negative, then |x + y| = [x| + |y|.

1 1
17. If |r| < 1, then = = :
T+l 1=r 1-1r

1 1 1
18. If |r| > 1, then = = .
1=l 1=7r  1+]r

19. Itis always true that |[x| — [y|| = |x + y|.

66

20. For every positive real number y, there exists a real num-
ber x such that x? = y.

21. For every real number y, there exists a real number x such
that x* = y.

22. Itis possible to have an inequality whose solution set con-
sists of exactly one number.

23. The equation x> + y?> + ax + y = 0 represents a circle
for every real number a.

24. The equation x> + y*> + ax + by = c represents a circle
for all real numbers a, b, c.

25. If (a, b) is on a line with slope %, then (a + 4,b + 3) is
also on that line.

26. If (a, b), (¢, d) and (e, /) are on the same line, then
a—c _a—-e e—c
b—d b-f f-d

27. If ab > 0, then (a, b) lies in either the first or third
quadrant.

provided all three points are different.

28. For every ¢ > 0, there exists a positive number x such
that x < e.

29. If ab = 0, then (a, b) lies on either the x-axis or the y-axis.

30. It V(xy — x)? + (32— »)* = |x, = xil, then (x1,y)
and (x,, »,) lie on the same horizontal line.
31. The distance between (a + b,a) and (a — b, a) is |2b].

32. The equation of every line can be written in point-slope
form.

33. The equation of every line can be written in the general
linear form Ax + By + C = 0.

34. If two nonvertical lines are parallel, they have the same
slope.

35. It is possible for two lines to have positive slopes and be
perpendicular.

36. If the x- and y-intercepts of a line are rational and non-
zero, then the slope of the line is rational.

37. The lines ax + y = c and ax — y = ¢ are perpendicular.



38. (3x — 2y +4) + m(2x + 6y — 2) = 0 is the equation
of a line for each real number m.

39. The natural domain of
) = Vo T dx + 3)
is the interval =3 = x = —1.
40. 10g2|x| is defined for all real x.

41. The graph of an invertible function is intersected exactly
once by every horizontal line.

42. logx/logy = logx — logy
43. (logx)* = 4logx

44. The natural domain of 7(0) = sec(f) + cos(6) is
(00, ).

45. The range of f(x) = x> — 6 is the interval [—6, ).

46. The range of the function f(x) = tan x — sec x is the set
(=00, —1JU[1, o0).

47. The range of the function f(x) = csc x — sec x is the set
(=00, ~1]JU[L, o0).

48. The sum of two even functions is an even function.
49. The sum of two odd functions is an odd function.
50. The product of two odd functions is an odd function.

51. The product of an even function with an odd function is
an odd function.

52. The composition of an even function with an odd function
is an odd function.
53. The composition of two odd functions is an even function.
54. The function f(x) = (2x> + x)/(x?> + 1) is odd.
55. The function
(sint)? + cost
fl) =
) antcsct
is even.

56. If the range of a function consists of just one number,
then its domain also consists of just one number.

57. If the domain of a function contains at least two numbers
then the range also contains at least two numbers.

58. If g(x) = [x/2], then g(—1.8) = —1.

59. If f(x) = x?and g(x) = x’,thenf o g = g o f.

60. If f(x) =x> and g(x)=x then (f° g)(x)=
f(x)-g(x).

61. If f and g have the same domain, then f/g also has that
domain.

62. If the graph of y = f(x) has an x-intercept at x = a, then
the graph of y = f(x + h) has an x-interceptat x = a — h.

63. The cotangent is an odd function.

64. The natural domain of the tangent function is the set of
all real numbers.

65. If coss = cost,thens = t.

66. The domain for tan™! x is (—7/2, 7/2).
67. The range of sin™! x is (—7/2, 7/2).

68. sin (arcsin x) = x for all real numbers x.

69. arcsin (sin x) = x for all real numbers x.

Section 1.10 Chapter Review 67

Sample Test Problems

1. Calculate each value for n =

(a) <n + %)

(C) 43/n

1,2, and —2.

(b) (n* —n+1)?

2. Simplify.

(a) (1 +%+%)(1 —%Jr%)il

2 B X
x+1 x¥—x-2
b
) 5
x+1 x-—-2
£ -1
© T

3. Show that the average of two rational numbers is a
rational number.

4. Write the repeating decimal 4.1282828 ...
two integers.

as a ratio of

5. Find an irrational number between % and %5

6. Caleulate (V/8.15 x 10* — 1.32)%/3.24.
7. Caleulate (7 — V2.0)>5 — V/2.0.
8. Calculate sin?(2.45) + cos?(2.40) — 1.00.

In Problems 9-18, find the solution set, graph this set on the real
line, and express this set in interval notation.

9. 1 -3x>0 10. 6x +3 >2x — 5
11. 3 —2x=4x+1=2x+7
12. 2> +5x =3 <0 13. 2172 — 441 + 12 = =3
2x — 1
x—2
15 (x +4)2x —1)*(x —3) =<0
16. |3x — 4| <6
3
1—x

18. |12 — 3x| = |x|

14. >0

17.

=2

19. Find a value of x for which |—x| # x.
20. For what values of x does the equation |—x| = x hold?

21. For what values of ¢ does the equation [t — 5| =5 — ¢
hold?

22. For what values of a and ¢t does the equation
|t — a|l = a — t hold?

23. Suppose |x| = 2. Use properties of absolute values to
show that
2x% +3x + 2

X2 +2

-

24. Write a sentence involving the word distance to express
the following algebraic sentences:
(a) |x—5/=3 b) lx+1l=2

67
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() lx—al>0»b
25. Sketch the triangle with vertices A(—2,6), B(1,2), and
C(5,5), and show that it is a right triangle.
26. Find the distance from (3, —6) to the midpoint of the line
segment from (1,2) to (7, 8).
27. Find the equation of the circle with diameter AB if
A = (2,0)and B = (10, 4).
28. Find the center and radius of the circle with equation
x>+ y? — 8x + 6y = 0.
29. Find the distance between the centers of the circles with
equations
x> —2x+y*+2y=2 and x*+ 6x + y? —4y = -7
30. Find the equation of the line through the indicated point
that is parallel to the indicated line, and sketch both lines.
(a) (3,2):3x +2y=6 () (L,-1):y=3x+1
() (5,9):y=10 (d) (=3,4):x=-2
31. Write the equation of the line through (-2, 1) that
(a) goes through (7, 3);
(b) is parallel to 3x — 2y = 5;
(c) is perpendicular to 3x + 4y = 9;
(d) is perpendicular to y = 4;
(e) has y-intercept 3.

32. Show that (2, —1), (5, 3), and (11, 11) are on the same
line.

33. Figure 1 can be represented by which equation?
@@ y=x (b) x =y
d) x=y

(© y=x

—40

Figure 1 Figure 2

34. Figure 2 can be represented by which equation?
(a) y =ax®+ bx + ¢,witha > 0,b > 0,andc > 0
(b) y =ax?>+ bx + ¢,witha < 0,b > 0,andc¢ > 0
() y=ax*>+ bx + c,witha < 0,b>0,andc <0
(d) y=ax?>+ bx + c¢,witha > 0,b > 0,andc < 0

In Problems 35-38, sketch the graph of each equation.
35.3y —4x =6 36. x> —2x+y?=3

2
G 37,y = al G 38, x=y>—-3

X +2

39. Find the points of intersection of the graphs of
y=x>—2x+4andy — x = 4.
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40. Among all lines perpendicular to 4x — y = 2, find the
equation of the one that, together with the positive x- and y-axes,
forms a triangle of area 8.

41. For f(x)=1/(x +1) — 1/x, find each value (if

possible).
@ f(1) ®) £(-3) (© f(-1)
@ st -1 @ (1)

42. For g(x) = (x + 1)/x, find and simplify each value.
(@) g() ) g)
@)a2+2—gm

43. Describe the natural domain of each function.
@ f0) =5 (b) g(x) = V4 - &

44. Which of the following functions are odd? Even? Neither
even nor odd?

3
(@) f(x)=— al (b) g(x) = Isin x| + cos x
x-+1 ,
+1
() h(x) = x>+ sinx d) k(x) =
[x| + x
45. Sketch the graph of each function.
=x2-1 b =
(@) f(x)=x (b) g(x) = 57
x? if0=x=2
h(x) =
© Alx) {6—x if x> 2
46. Suppose that f is an even function satisfying

f(x) = =1+ Vx for x =0. Sketch the graph of f for
-4 =x=4.

47. An open box is made by cutting squares of side x inches
from the four corners of a sheet of cardboard 24 inches by 32
inches and then turning up the sides. Express the volume V(x) in
terms of x. What is the domain for this function?

48. Let f(x) = x — 1/x and g(x) = x? + 1. Find each value.
(@ (f +8)2) (®) (f-8)(2) (e) (f°8)2)
(d) (g°)?2) () £ (-1)

0 F(2) + g2

49. Sketch the graph of each of the following, making use of
translations.

(a) y=3x* (b) y = i(x +2)?
(€) y=—1+3(x+2)?

50. Let f(x) = V16 — xand g(x) = x* What is the domain
of each of the following?

(a) f (®) feog (© g°f
51. Write F(x) = V1 + sin>x as the composite of four
functions, f o g ° h ° k.

52. Calculate each of the following without using a calculator.

(a) sin 570° (b) cosgl

2
(c) cos( _16377)




53. Find the inverse of the given function f and verify that
f(f7'(x)) = x for all x in the domain of £ ', and f!(f(x)) = x
for all x in the domain of f.

(a) f(x)=3x—7 (b) flx) =20 =1

54. Find the inverse of the given function f and verify that
f(f7(x)) = x for all x in the domain of f!, and f~}(f(x)) = x
for all x in the domain of f.

(@ f(0) =% (b) f(x) =2+ log(x ~ 1)
55. Ifsint = 0.8 and cos ¢ < 0, find each value.

(a) sin(—t) (b) cost (c) sin2t

(d) tant (e) cos(g - t) (f) sin(7 + t)
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56. Write sin 3¢ in terms of sin ¢. Hint: 3t = 2t + t.

57. A fly sits on the rim of a wheel spinning at the rate of 20
revolutions per minute. If the radius of the wheel is 9 inches, how
far does the fly travel in 1 second?

58. Find the exact value of the following without using a
calculator.

\6) (b) sec’!(-2)

(a) cos™ (— >

(c) arcsin(\gg) (d) arctan(1)
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REVIEW
PREVIEW
PROBLEMS

1. Solve the following inequalities:

(@) 1<2x+1<5 (b) 73<§<8
2. Solve the following inequalities:
() 14<2x+1<15 (b) —3<1—%<8

3. Solve |x — 7| = 3 for x.
4. Solve |x + 3| = 2 for x.

5. The distance along the number line between x and 7 is equal to 3. What are the
possible values for x?

6. The distance along the number line between x and 7 is equal to d. What are the
possible values for x?

7. Solve the following inequalities:

(@ lx—7<3 ®) [x=7=3
© Ix-17=1 @ lx-7l<o01
8. Solve the following inequalities:
(a) lx—2l <1 ®) |x=2/=1
(¢ lx -2l <01 @ |x -2 <o0.01
9. What are the natural domains of the following functions?
x =1 X = 2x + 1
a x) = b X)=—F—"—"
@) f(x) x—1 ®) s() 22 —x—1
10. What are the natural domains of the following functions?
| x| sin x
(a) F(x)=— (d) G(x) =

11. Evaluate the functions f(x) and g(x) from Problem 9 at the following values of x:
0,0.9,0.99,0.999,1.001,1.01,1.1, 2.

12. Evaluate the functions F(x) and G(x) from Problem 10 at the following values of x:
-1, -0.1, —0.01, —0.001, 0.001, 0.01, 0.1, 1.

13. The distance between x and 5 is less than 0.1. What are the possible values for x?

14. The distance between x and 5 is less than &, where ¢ is a positive number. What are
the possible values for x?

15. True or false. Assume that g, x, and y are real numbers and # is a natural number.
(a) Forevery x > 0, there exists a y such that y > x.

. 1
(b) For every a = 0, there exists an n such that — < a.
n

. 1
(c) Forevery a > 0, there exists an n such that — < a.
n

(d) For every circle C in the plane, there exists an # such that the circle C and its interior
are all within » units of the origin.

16. Use the Addition Identity for the sine function to find sin(c + 4) in terms of sin c,
sin A, cos ¢, and cos h.
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2.1

Introduction to Limits

The topics discussed in the previous chapter are part of what is called precalculus.
They provide the foundation for calculus, but they are not calculus. Now we are
ready for an important new idea, the notion of limit. It is this idea that distin-
guishes calculus from other branches of mathematics. In fact, we define calculus
this way:

Calculus is the study of limits.

Problems Leading to the Limit Concept The concept of limit is central
to many problems in the physical, engineering, and social sciences. Basically the
question is this: what happens to the function f(x) as x gets close to some constant
c? There are variations on this theme, but the basic idea is the same in many
circumstances.

Suppose that as an object steadily moves forward we know its position at any
given time. We denote the position at time ¢ by s(¢). How fast is the object moving
at time ¢t = 1? We can use the formula “distance equals rate times time” to find the
speed (rate of change of position) over any interval of time; in other words
distance
speed = ——

time
We call this the “average” speed over the interval since, no matter how small the
interval is, we never know whether the speed is constant over this interval. For
s(2) —s(1)
2-1

; over the interval [1, 1.02], the aver-

example, over the interval [1, 2], the average speed is ; over the inter-
s(1.2) — s(1)
12 -1

, etc. How fast is the object traveling at time ¢t = 1? To

val [1, 1.2], the average speed is
5(1.02) — s(1)

1.02 — 1
give meaning to this “instantaneous” velocity we must talk about the limit of the
average speed over smaller and smaller intervals.

We can find areas of rectangles and triangles using formulas from geometry,
but what about regions with curved boundaries, such as a circle? Archimedes had
this idea over two thousand years ago. Imagine regular polygons inscribed in a cir-
cle as shown in Figure 1. Archimedes was able to find the area of a regular polygon
with # sides, and by taking the regular polygon with more and more sides, he was
able to approximate the area of a circle to any desired level of accuracy. In other
words, the area of the circle is the /imit of the areas of the inscribed polygons as n
(the number of sides in the polygon) increases without bound.

Consider the graph of the function y = f(x) for a = x < b. If the graphis a
straight line, the length of the curve is easy to find using the distance formula. But
what if the graph is curved? We can find numerous points along the curve and con-
nect them with line segments as shown in Figure 2. If we add up the lengths of
these line segments we should get a sum that is approximately the length of the
curve. In fact, by “length of the curve” we mean the limit of the sum of the lengths
of these line segments as the number of line segments increases without bound.

The last three paragraphs describe situations that lead to the concept of limit.
There are many others, and we will study them throughout this book. We begin
with an intuitive explanation of limits. The precise definition is given in the next
section.

age speed is

From Chapter 2 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon.
Copyright © 2007 by Pearson Education, Inc. All rights reserved.

71



72 Chapter 2 Limits

72

An Intuitive Understanding Consider the function defined by

Note that it is not defined at x = 1 since at this point f(x) has the form g, which is
meaningless. We can, however, still ask what is happening to f(x) as x approaches
1. More precisely, is f(x) approaching some specific number as x approaches 1? To
get at the answer, we can do three things. We can calculate some values of f(x) for
x near 1, we can show these values in a schematic diagram, and we can sketch the
graph of y = f(x). All this has been done, and the results are shown in Figure 3.

y
3813
S 4T
51 125
_x—
. r= x—1
3310
1.25 3.813 3+
1.1 3.310 "
1.01 3.030 1.01 ' |30
1.001 3.003 1.001 3.003
J { 0999 —_— — 2.997
1.000 ? 0.99 — 2970 VCONPE 2
0.9
0.999 2.997 2.710
0.99 2.970
0.9 2.710 0.75 /1
0.75 2.313
Table
of values
2313
x> 1 «x ¥
x y .
Schematic Graph of y = f(x) = = 1
diagram *
Figure 3

All the information we have assembled seems to point to the same conclusion:
f(x) approaches 3 as x approaches 1. In mathematical symbols, we write
x -1

li =3
xl—>Inlx_1

This is read “the limit as x approaches 1 of (x* — 1)/(x — 1) is 3.”
Being good algebraists (thus knowing how to factor the difference of cubes),
we can provide more and better evidence.

X -1 L (x—D(xFP+x+ 1)
lim = lim
x—1x — 1 x—1 x—1

=liml(x2+x+1)=12+1+1=3

Note that (x — 1)/(x — 1) = 1 aslongas x # 1. This justifies the second step. The
third step should seem reasonable; a rigorous justification will come later.

To be sure that we are on the right track, we need to have a clearly understood
meaning for the word limit. Here is our first attempt at a definition.



sin x
* X
1.0 0.84147
0.1 0.99833
0.01 0.99998

l \

0 ?

T T
-0.01 0.99998
-0.1 0.99833
-1.0 0.84147

Figure 4
y
/DN

Figure 5
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Definition Intuitive Meaning of Limit

To say that lim f(x) = L means that when x is near but different from ¢ then
X—C
f(x) is near L.

Notice that we do not require anything at c. The function f need not even be
defined at c; it was not in the example f(x) = (x> — 1)/(x — 1) just considered.
The notion of limit is associated with the behavior of a function near c, not at c.

A cautious reader is sure to object to our use of the word near. What does near
mean? How near is near? For precise answers, you will have to study the next sec-
tion; however, some further examples will help to clarify the idea.

More Examples Our first example is almost trivial, but nonetheless important.

Find lim (4x — 5).

SOLUTION When xisnear 3,4x — Sisnear4-3 — 5 = 7. We write

lim3(4x -5 =1 [ |

2 _ 4, —
Find fim *——* %,

x—3

SOLUTION Note that (x> — x — 6)/(x — 3) is not defined at x = 3, but this is
all right. To get an idea of what is happening as x approaches 3, we could use a
calculator to evaluate the given expression, for example, at 3.1, 3.01, 3.001, and so
on. But it is much better to use a little algebra to simplify the problem.

2_x—-6 x—3)(x+2
lim X=X =0, (E 3N )=lim(x+2)=3+2=5
x—3 x—3 x—3 x—3 x—3

The cancellation of x — 3 in the second step is legitimate because the definition of

C . X .
limit ignores the behavior at x = 3. Remember, Y—3 1 as long as x is not equal
X —

to 3. [ |

Find lim >
x—0 X

SOLUTION No algebraic trick will simplify our task; certainly, we cannot cancel

the x’s. A calculator will help us to get an idea of the limit. Use your own calculator

(radian mode) to check the values in the table of Figure 4. Figure 5 shows a plot of

y = (sin x)/x. Our conclusion, though we admit it is a bit shaky, is that

. sinx
lim =1
x—0 X
We will give a rigorous demonstration in Section 2.5. |

Some Warning Flags Things are not quite as simple as they may appear. Cal-
culators may mislead us; so may our own intuition. The examples that follow sug-
gest some possible pitfalls.
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74 Chapter 2 Limits

x 10,000 (Your calculator may fool you.) Find ;11)% X 10,000 |
*1 0.99995
*05 0.24991 SOLUTION Following the procedure used in Example 3, we construct the table
*01 0.00990 of values shown in Figure 6. The conclusion it suggests is that the desired limit is 0.
£ 0.01| 0.000000005 But this is wrong. If we recall the graph of y = cos x, we realize that cos x
= = approaches 1 as x approaches 0. Thus,
0 ?
cos X 1 1
1' 2 — 02 _ — [
Figure 6 0 [x 10,000 } 10,000 10,000
o (No limit at a jump) Find lim[x].
. y=1[x] x—2

SOLUTION Recall that [x] denotes the greatest integer less than or equal to x
2 —o (see Section 1.5). The graph of y = [x] is shown in Figure 7. For all numbers x less
than 2 but near 2, [x] = 1, but for all numbers x greater than 2 but near 2, [x] = 2.
Is [x] near a single number L when x is near 2? No. No matter what number we
propose for L, there will be x’s arbitrarily close to 2 on one side or the other, where
[x] differs from L by at least % Our conclusion is that PLHZ [x] does not exist. If you

— <

check back, you will see that we have not claimed that every limit we can write
Figure 7 must exist. [ |

(Too many wiggles) Find lin}) sin(1/x).

SOLUTION This example poses the most subtle limit question asked yet. Since
we do not want to make too big a story out of it, we ask you to do two things. First,
pick a sequence of x-values approaching 0. Use your calculator to evaluate
sin (1/x) at these x’s. Unless you happen on some very lucky choices, your values

B sin L will oscillate wildly.

: Second, consider trying to graph y = sin(1/x). No one will ever do this very
2Un 1 well, but the table of values in Figure 8 gives a good clue about what is happening.
2/2m) | 0 In any neighborhood of the origin, the graph wiggles up and down between —1 and
2(3r) | -1 1 infinitely many times (Figure 9). Clearly, sin (1/x) is not near a single number L
20(4m) | 0 when x is near 0. We conclude that lim sin(1/x) does not exist. [ |
2/(5m) 1 y 0
2/(6m) 0
2/(Tn) -1
2/(8m) 0
2/(9n) 1
2100 0
2/(11m)| -1
2127 0

\ 1
0 ?
Figure 8 Figure 9

One-Sided Limits When a function takes a jump (as does [x] at each integer
in Example 5), then the limit does not exist at the jump points. Such functions sug-
gest the introduction of one-sided limits. Let the symbol x — ¢* mean that x ap-
proaches c from the right, and let x — ¢~ mean that x approaches c from the left.

Definition Right- and Left-Hand Limits

To say that lim_f(x) = L means that when x is near but to the right of ¢ then
X—C
f(x) is near L. Similarly, to say that lim f(x) = L means that when x is near
X—>cC
but to the left of ¢ then f(x) is near L.
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Thus, while lim2 [x] does not exist, it is correct to write (look at the graph in Figure 7)

X

lim[x] =1 and

x—2"

le1121+ﬂx] =2

We believe that you will find the following theorem quite reasonable.

Theorem A

lim f(x)

X—c

= Lifand onlyif lim f(x) = Land lim_f(x) = L.

Figure 10 should give additional insight. Two of the limits do not exist, although all

but one of the

one-sided limits exist.

lim f(x)=4 AV
x—-1t
lim f(x) does not e}iN_ lim f(x) does not exist.
x—-1 x—2"
) 3
lim f(x)=2
x—-3
N\lim f(x)=25
lim f(x ) =3 2T x—2+
x—-1"
[ J 1T
I I I I I I I I
a 3 ) -1 1 2 3 4 X

Figure 10

Concepts Review

1. lim f(x) = L means that f(x) gets close to

xX—c

gets sufficiently close to (but is different from)

2. Let f(x) = (¥* — 9)/(x — 3) and note that £(3) is unde-
fined. Nevertheless, lir% flx) =
—

when x

approaches c from the

3. lim f(x) = L means that f(x) gets near to
xX—c

when x

4. If both lim f(x) = M and lim_f(x) = M, then .

Problem Set 2.1

In Problems 1-6, find the indicated limit.

1. lim(x —5)
x—3
3. lim (x* +2x — 1)

5. lim (2 - 1)

—-1

In Problems 7-18, find the indicated limit. In most cases, it will be

2. lim (1 - 2r)
4. lim (x* +2r — 1)

6. lim (12 — x?)

—=1

wise to do some algebra first (see Example 2).

2

x°—4
7. 1
x1—>n12x—2

X—4x*+x+6

9. lim

x—-1

x+1

2 2
1. lim =~ !

lim
x—>—t X + 1

Vit + 4)(t —2)*
(3t — 6)?

13. lim
t—2

2+ 4 - 21

8. li
o 7

t——17

x4+ 2x = x?

10. lim =
2 _
12, lim*
=3 x —3
Vit —17)°
14. m —————
=70t — 17

x*—18x% + 81

(x = 3)?
2+ h?r-4
hmi
h—0 h

15. lim

x—3

17.

16. lim

18.

(Bu + 4)(2u — 2)3
(u = 1)?

(x + h)? — x?

u—1

lim
h—0

In Problems 19-28, use a calculator to find the indicated limit.

sin x

19. PE%) 2x
(x — sin x)?

21. .

lim
x—0 X

2 _
23, fim - L
=1 sin(t — 1)

1 + sin(x — 37/2)

25. lim
X—>1r X — T
_ 42
2. lim Y

x—m/4(tan x — 1)?

Use a graphing calculator to plot the function near the limit point.

20. hmw
—0 2t
(1 = cosx)?
22. lim—————
x—0 X
o x—sin(x —3) =3
24. lim
x—3 x—3
26. Tim L— U
t—0 1/t
28, lim > 2sinu
u—m/2 3u
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76 Chapter 2 Limits

29. For the function f graphed in Figure 11, find the indicated
limit or function value, or state that it does not exist.

@ lm f(x)  (b) f(=3) © f(-1)
@ lim f(x) ) () (t) lim £(x)
(@ lim f(x) (h) lim f(x) () lim f(x)
y
31 y

/O/'()‘:_\:/ 34

‘ T MM
T A
Figure 11 Figure 12

30. Follow the directions of Problem 29 for the function f
graphed in Figure 12.

31. For the function f graphed in Figure 13, find the indicated
limit or function value, or state that it does not exist.

(@) f(=3) (b) f(3) (© lim f(x)
(d) tfim f(x) (e) lim f(x) (t lim f(x)
y | y
i I : i+
— %ﬁi\ \ L1 I I |/
s N :
i
Figure 13 Figure 14

32. For the function f graphed in Figure 14, find the indicated
limit or function value, or state that it does not exist.

@ lm f(x) (b)) lim f(x) © lim f(x)

(d) f(=1) (e) lim f(x) ® f1)
33. Sketch the graph of
—x ifx <0
flx) = x if0=x<1
1+x ifx=1

Then find each of the following or state that it does not exist.
(a) lim f(x) (b) lim £(x)

© 1) (@ lim f(x)
34. Sketch the graph of
-x+1 ifx<1
glx) = x—1 ifl<x<2
5—xF ifx=2

Then find each of the following or state that it does not exist.
(a) lim g(x) (b) g(1)
(c) lim g(x) (d) lim g(x)

xX— xX—

35. Sketch the graph of f(x) = x — [x]; then find each of
the following or state that it does not exist.

(@) f(0) (b) lim f(x)
76

© lim f(x) @ Jim f(x)

36. Follow the directions of Problem 35 for f(x) = x/|x|.

37. Find liml(x2 — 1)/lx — 1] or state that it does not exist.
—

38. Evaluate lim0 ( Vx+2— %)/x Hint: Rationalize the

numerator by multiplying the numerator and denominator by

Vx+2+ V2

39. Let
x if x is rational

x if x isirrational

Find each value, if possible.
(a) lim f(x) (b) lim f(x)

40. Sketch, as best you can, the graph of a function f that
satisfies all the following conditions.
(a) TIts domain is the interval [0, 4].
®) f(0)=f1)=f2)=fB)=/f(4) =1
(c) lim1 flx)y=2 (d) lirréf(x) =1
(e) lim f(x)=2 ) lim f(x) =1

x—3 x—3"
41. Let

x?  if x is rational

f(x):{ 4

x* if x is irrational
For what values of a does lim f(x) exist?
X—a
42. The function f(x) = x? had been carefully graphed, but
during the night a mysterious visitor changed the values of f at a
million different places. Does this affect the value of lim f(x) at
any a? Explain. e

43. Find each of the following limits or state that it does not
exist.

e —1] . lx—1]
@ = ®
> —lx-1 -1 1 1
(C) errll’ |_x71| ( ) an’ll’ x—1 |X*1|

44. Find each of the following limits or state that it does not
exist.

(a) lim Vx — [x] (b) li_)rr&[[l/x]]

x—1
(¢) lim x(~1)" (@) lim [x](~1)

45. Find each of the following limits or state that it does not
exist.

() lim x[1/x] (b) lim, x?[1/x]
(¢) lim ([x] + [—x]) (d) lim ([x] + [=x])

46. Find each of the following limits or state that it does not
exist.

(a) lim[x]/x

(¢) lim [x]

(b) lim [x]/x
(@ lim [x]/x

Many software packages have programs for calculating lim-
its, although you should be warned that they are not infallible. To
develop confidence in your program, use it to recalculate some of
the limits in Problems 1-28. Then for each of the following, find
the limit or state that it does not exist.

47. lin}) Vx 48.

49. lin%) Vx|
x>

lim x*

x—0"

50. lim|x|*
x—0
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51 iig%)(sin 2x)/4x 2. iii%(sin 5x)/3x 59. Since calculus software packages find lim f(x) by sam-
x—a

53. lim cos(1/x) 54. lim x cos(1/x) pling'a few Values. of f (x) for x near a, the?f can be foolec.1. Find a

x=0 x—0 function f for which hrr%) f(x) fails to exist but for which your
55, lim -1 56. lim x.sin gx software gives a value for the limit.

=1\/2x +2 -2 ¥=0 sin(x%)

5 Answers to Concepts Review: 1. L;c 2. 6 3. L;right

57, lim Y2 58, 4. lim f(x) = M

=2 |x = 2]

ol Sy

2.2 We gave an informal definition of /imit in the previous section. Here is a slightly

Rigorous Study better, but still informal, rewording of that definition. To say that )161_)mc flx)=L

of Limits means that f(x) can be made to be as close as we like to L provided x is close

enough, but not equal to c. The first example illustrates this point.

Use a plot of y = f(x) = 3x? to determine how close x must

be to 2 to guarantee that f(x) is within 0.05 of 12.

SOLUTION In order for f(x) to be within 0.05 of 12, we must have
11.95 < f(x) < 12.05. The lines y = 11.95 and y = 12.05 have been drawn in
Figure 1. If we solve y = 3x? for x we get x = \/)% Thus f( V 11.95/3) = 11.95
and f(V/12.05/3) = 12.05. Figure 1 indicates that if \/11.95/3 < x < V/12.05/3
then f(x) satisfies 11.95 < f(x) < 12.05. This interval for x is approximately
1.99583 < x < 2.00416. Of the two endpoints of this interval, the upper one,
2.00416, is closer to 2 and it is within 0.00416 of 2. Thus, if x is within 0.00416 of 2

then f(x) is within 0.05 of 12. [ |
y ¥
14 — . 12,15
y=3 2.1 y=3x
13- y=12.05
y=12.05 12.05
12 .
y=11.95 12
1.
e 195
119
10 —
11.85
| | | | | | | | | | | | |
) -1 X 1.6 1.8 2 22 24 x 1.98 1.99 2 2.01 2.02 2.03 X
/1195 /1205
N3 Vo3

Figure 1

Absolute Value as Distance

If we now asked how close x would have to be to 2 to guarantee that f(x) is

Think of two points a and b on a
number line. What is the distance
between them? If a < b,thenb — a
is the distance, but if b < a then

a — b is the distance. We can com-
bine these statements into one by
saying that the distance is |b — a.
This geometric interpretation of the
absolute value of a difference as the
distance between two points on a
number line is important in under-
standing our definition of the limit.

within 0.01 of 12, the solution would proceed along the same lines, and we would
find that x would have to be in a smaller interval than we obtained above. If we
wanted f(x) to be within 0.001 of 12, we would require an interval that is narrow-
er still. In this example, it seems plausible that no matter how close we want f(x) to
be to 12, we can accomplish this by taking x sufficiently close to 2.

We now make the definition of the limit precise.

Making the Definition Precise We follow the tradition in using the Greek
letters & (epsilon) and & (delta) to stand for (usually small) arbitrary positive
numbers.

To say that f(x) is within € of L means that L — ¢ < f(x) < L + &, or equiv-
alently, |f(x) — L| < &. This means that f(x) lies in the open interval

(L — &, L + &) shown on the graph in Figure 2.
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78 Chapter 2 Limits

) Next, to say that x is sufficiently close to but different from c is to say that, for
some &, x is in the open interval (¢ — 8, ¢ + §) with ¢ deleted. Perhaps the best
ANL+e way to say this is to write
. 0<|x—¢c|l <5
Note that |x — ¢|] < & would describe the interval ¢ — 6 < x < ¢ + 8, while
LL_¢ 0<|x—c| requires that x = ¢ be excluded. The interval that we are describing is
shown in Figure 3.
We are now ready for what some have called the most important definition in
|fx)-L|<e calculus.
Figure 2
@ Definition Precise Meaning of Limit
To say that lim f(x) = L means that for each given £ > 0 (no matter how
X—c
small) there is a corresponding & > 0 such that |f(x) — L| < &, provided that
0 < |x — ¢|] < &; that s,
0<|x—cl<é=|f(x) - Ll <e
I4 A . R . .
C Y The pictures in Figure 4 may help you absorb this definition.
o e ks We must emphasize that the real number £ must be given first; the number 8 is
0<|x—c|<é to be produced, and it will usually depend on e. Suppose that David wishes to
Figure 3 prove to Emily that lim f(x) = L. Emily can challenge David with any particular
X—cC
) N f®) . f) . f®) .
o L N L+e \
€ {——L L]n L]D L+ ----- \‘b\
[l i ' L-e |
¢ i
| | o —
c x 55 * c-6 ¢ c+6 * c X
For each € >0 there is a 6 > 0 such that 0<|x-c|<§ j |fx)-L|<e
Figure 4

78

e she chooses (e.g., ¢ = 0.01) and demand that David produce a corresponding §.

Let’s apply David’s reasoning to the limit lirn3 (2x + 1). By inspection, David
X—>

would conjecture that the limit is 7. Now, can David find a 6 such that

|(2x + 1) — 7] < 0.01 whenever 0 < |x — 3| < §? A little algebra shows that

|(2x + 1) — 7] < 0.01 & 2|x — 3| < 0.01

0.01
— 3 < —
< x | 5
Thus, the answer to the question is yes! David can choose 6 = 0.01/2 (or any
smaller value) and this will guarantee that [(2x + 1) — 7| < 0.01 whenever
0<|x—-3 < 0.01/2. In other words, David can make 2x + 1 within 0.01 of 7,
provided that x is within 0.01/2 of 3.



Two Different Limits?

A natural question to ask is “Can a
function have two different limits at
¢?” The obvious intuitive answer is
no. If a function is getting closer and
closer to L as x — ¢, it cannot also
be getting closer and closer to a dif-
ferent number M. You are asked to
show this rigorously in Problem 23.
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Now suppose that Emily challenges David again, but this time she wants
|(2x + 1) — 7| < 0.000002. Can David find a & for this value of &? Following the
reasoning used above,

|(2x + 1) — 7| < 0.000002 < 2|x — 3] < 0.000002

0.000002
2

Thus, [(2x + 1) — 7| < 0.000002 whenever |x — 3| < 0.000002/2.

This kind of reasoning, while it may convince some, is not a proof that the limit
is 7. The definition says that we must be able to find a & for every € > 0 (not for
some ¢ > 0). Emily could challenge David repeatedly, but they would never prove
that the limit is 7. David must be able to produce a & for every positive & (no mat-
ter how small).

David opts to take things into his own hands and proposes to let € be any pos-
itive real number. He follows the same reasoning as above, but this time he uses &
instead of 0.000002.

s |lx -3 <

|(2x+1)—7|<8(:)2|x—3|<8

€
_3 < —
o [x - 3] 5

David can choose & = /2, and it follows that [(2x + 1) — 7| < & whenever
|x — 3] < g/2. In other words, he can make 2x + 1 within & of 7 provided x is
within &/2 of 3. Now David has met the requirements of the definition of the limit
and has therefore verified that the limit is 7, as suspected.

Some Limit Proofs In each of the following examples, we begin with what we
call a preliminary analysis. We include it so that our choice of § in each proof does
not seem to suggest incredible insight on our part. It shows the kind of work you
need to do on scratch paper in order to construct the proof. Once you feel that you
grasp an example, take another look at it, but cover up the preliminary analysis
and note how elegant, but mysterious, the proof seems to be.

Prove that 1111}1(3)6 - 7) =5

PRELIMINARY ANALYSIS Let & be any positive number. We must produce a 6 > 0
such that
0<|x—4<86=[0Bx—-7) -5 <e

Consider the inequality on the right.
[Bx —7)-5Sl<ee [3x-12] <e
o PBx-4)l<e
e Bllix—-4) <e

&
= — 4| < =
lx — 4] 3

Now we see how to choose §; thatis, 8 = &/3. Of course, any smaller § would work.

FORMAL ProOOF Let & > 0 be given. Choose 8 = &/3. Then 0 < [x — 4] < §
implies that
|Bx —7) =5l =1Bx—12| =3(x —4)| =3|x — 4] <36 =¢
If you read this chain of equalities and an inequality from left to right and use the
transitive properties of = and <, you see that
|Bx —7) -5l <e

Now, David knows a rule for choosing the value of § given Emily’s challenge.
If Emily were to challenge David with & = 0.01, then David would respond with
& = 0.01/3. If Emily said ¢ = 0.000003, then David would say § = 0.000001. If he
gave a smaller value for §, that would be fine, too.

79



80 Chapter 2 Limits

A Of course, if you think about the graph of y = 3x — 7 (a line with slope 3, as in
y=3x-7 Figure 5), you know that to force 3x — 7 to be close to 5 you had better make x
ﬂ _______________ L even closer (closer by a factor of one-third) to 4. ]

Now look at Figure 6 and convince yourself that 6 = 2& would be an appro-
priate choice for 6 in showing that lirr}‘ (%x + 3) = 5.

|

|

I

~

ol ____
e

23y —
) Prove that lim =¥ =2 _ s

P 3 3 =2 x—2
T lim, Gx—7) =35 PRELIMINARY ANALYSIS We are looking for a § such that
. 2 - B
Figure 5 0<|x—2|<8:2xw—5’<8
x—2
y y=lxt3 Now, for x # 2, 252 — -9 2x + 1)(x — 2
L5 2 x3x_5‘<8(:) ( I )—5‘<£
x —2 x—2

Sj ______________ . o |2x +1) = 5| <&
N ! o R2(x —2) < e
P ! = 12[]x — 2] < &
1+ | )

| | [ = x =2 <=

o2 3 4 s 6 X | | 2

lim, (3 x+3)=5 This indicates that § = &/2 will work (see Figure 7).
Figure 6 ForMAL PrOOF Let & > 0 be given. Choose 8 = g/2. Then 0 < [x — 2| < §
implies that
o 2x2 — -2 2x + 1)(x — 2
y IR T 3‘33‘_5‘ = ‘( )( )_5 =2x +1 - 5|
x-2 x—2 x—2

2(x —2) =2[x—2| <25 =¢

The cancellation of the factor x — 2 is legitimate because 0 < |x — 2| implies that

[}
I
I
-2
3T | x¢2,andx7=1aslongasx¢2. [ |
1 ! x —2
I
I
i Prove that lim(mx + b) = mc + b,
1 I 1 1 x‘)c
/ 1 /'z 34 x PRELIMINARY ANALYSIS We want to find & such that
5 6
i 2232 0<|x—cl<8=|(mx+b)— (mc+b)| <e

P ) Now

Figure 7 |(mx + b) — (mc + b)| = |mx — mc| = |m(x — c)| = |ml|x — ¢l

It appears that 8 = &/|m/| should do as long as m # 0. (Note that m could be posi-
tive or negative, so we need to keep the absolute value bars. Recall from Chapter 1
that |ab| = |al|b].)

fx) FormAL PrOOF Let & > 0 be given. Choose 8§ = g/|m|. Then 0 < |x — ¢| < &
implies that
E{\ﬁ _____ — 0 = Vi |(mx + b) — (mc + b)| = |mx — mc| = |ml|lx — c| < |m|§ =¢
“l | And in case m = 0, any 6 will do just fine since
|
| |(0x + b) — (0c + b)| = 10| =0
|
¢ ~ The latter is less than & for all x. |
o9 Prove that if ¢ > 0 then lim Vix = V.
mVEsve PrELIMINARY ANALYSIS Refer to Figure 8. We must find 6 such that
Figure 8 0<|x—c|<8=|Vx—Vc|l<e
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|x-3|<1=2<x<4
=S6<x+4<8

=|x+4]<8

Figure 9
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Now
(Vax = Ve)(Va + Ve) ‘-
N;_\[C'_‘ Vx + Ve o Vx + Ve
I R B P d
T Vx+ Ve Ve

To make the latter less than e requires that we have |x — ¢| < eVe.

ForMAL PrOOF Let & > 0 be given. Choose 6 = eVc. Then 0 < |x — ¢| < &
implies that

e VA VAVE VD) |
'x_c“‘ VA + Ve RV
[x — ¢l <|x—c| )

T Va4 Ve Ve e °

There is one technical point here. We began with ¢ > 0, but it could happen that ¢
sits very close to 0 on the x-axis. We should insist that 6 = ¢, for then [x —¢c| <&
implies that x > 0 so that Vx is defined. Thus, for absolute rigor, choose § to be
the smaller of ¢ and e V. [

Our demonstration in Example 5 depended on rationalizing the numerator, a
trick frequently useful in calculus.

Prove that PL%(XZ +x—-5)="17.
PRELIMINARY ANALYSIS  Our task is to find é such that
0<|x—-3l<6=|x*+x-5 -7 <e
Now
(2 +x=5) =7 =[x*+x— 12| = |x + 4||x — 3]
The factor |x — 3| can be made as small as we wish, and we know that |x + 4| will

be about 7. We therefore seek an upper bound for |x + 4|. To do this, we first
agree to make 6 = 1. Then |x — 3| < & implies that

lx +4| =[x -3 +7|
= |x — 3] + |7 (Triangle Inequality)
<1+7=8

(Figure 9 offers an alternative demonstration of this fact.) If we also require that
8 = &/8, then the product |x + 4||x — 3| will be less than &.

FormaL ProoOF Let & > 0 be given. Choose 6 = min{1, &/8}; that is, choose 6 to
be the smaller of 1 and &/8. Then 0 < |x — 3| < & implies that

|(x2+x—5)—7|=|x2+x—12|=|x+4||x—3|<8-§=s n
Prove that lim x? = ¢%
X—C

Proor We mimic the proof in Example 6. Let ¢ > 0 be given. Choose
8 = min{1,&/(1 + 2|c[)}.Then 0 < |x — ¢| < & implies that

[x? =2l =lx+cllx —¢| = |x = ¢ + 2¢|lx = ¢
= (lx — ¢l + 2lehlx — ¢l (Triangle Inequality)
(1 +2lc)-e
<A +2lchlx —¢c]l <———FF—==¢ n
1+ 2|¢|

Although appearing incredibly insightful, we did not pull 6 “out of the air” in
Example 7. We simply did not show you the preliminary analysis this time.
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82 Chapter 2 Limits

1 1
® Prove that lim —- = % ¢ # 0.
x—c X C

e[l PRELIMINARY ANALYSIS  Study Figure 10. We must find 6 such that
6[ PN f=L 1 1
i 0<|x—cl<é=>|—---| <s¢
7\ . x
)
Now
lim =2 1 1 c—Xx 1 1
2o = =y =
x ¢ xc x| el
The factor 1/|x/| is troublesome, especially if x is near 0. We can bound this factor if
Figure 10 we can keep x away from 0. To that end, note that
lel =lc — x + x| = |c — x| + |x]
SO
x| = le| =[x = ¢l

Thus, if we choose 8 = |c|/2, we succeed in making |x| = |c|/2. Finally, if we also
require 8 = &c?/2, then
G Lok

<|x — ¢ — =

<7.
x| el lel/2 le] 2

FOrRMAL PrOOF Let & > 0 be given. Choose & = min{|c|/2,ec?/2}. Then
0 < |x — ¢| < & implies

cC — X

1 1 | < 1 1 e .
e e e B
x| el lel/2 el 2

xXc

One-Sided Limits It does not take much imagination to give the £-§ defini-
tions of right- and left-hand limits.

Definition Right-Hand Limit

Tosay lim f(x) = L means that for each £ > 0 there is a corresponding § > 0
X—>cC
such that

0<x—-c<dé=|f(x)—Ll<e

We leave the -6 definition for the left-hand limit to the reader. (See Problem 5.)

The £-6 concept presented in this section is probably the most intricate and
elusive topic in a calculus course. It may take you some time to grasp this concept,
but it is worth the effort. Calculus is the study of limits, so a clear understanding of
the concept of limit is a worthy goal.

The discovery of calculus is usually attributed to Isaac Newton (1642-1727)
and Gottfried Wilhelm von Leibniz (1646-1716), who worked independently in the
late 1600s. Although Newton and Leibniz, along with their successors, discovered a
number of properties of calculus, and calculus was found to have many applica-
tions in the physical sciences, it was not until the nineteenth century that a precise
definition of a limit was proposed. Augustin Louis Cauchy (1789-1857), a French
engineer and mathematician, gave this definition: “If the successive values attrib-
uted to the same variable approach indefinitely a fixed value, such that they final-
ly differ from it by as little as one wishes, this latter is called the limit of all the
others.” Even Cauchy, a master at rigor, was somewhat vague in his definition of a
limit. What are “successive values,” and what does it mean to “finally differ”? The
phrase “finally differ from it by as little as one wishes” contains the seed of the e—6
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definition, because for the first time it indicates that the difference between f(x)
and its limit L can be made smaller than any given number, the number we labeled
e. The German mathematician Karl Weierstrass (1815-1897) first put together the
definition that is equivalent to our e—& definition of a limit.

Concepts Review
1. The inequality |f(x) — L| < eis equivalent to
<flx)y< ___.
2. The precise meaning of lim f(x) = L is this: Given any
positive number &, there is a cc')xr?élsponding positive number &
such that _ implies

3. To be sure that |3x — 3| < &, we would require that
lx =1 <
4. lim(mx + b) =

X—a

Problem Set 2.2

In Problems 1-6, give the appropriate €—& definition of each
statement.

1. lim f(¢t) = M 2. lin}J glu)=1L
—a u—

3. lim h(z) = P 4. lim¢(y) = B
z—d y—e

5. lim f(x) =L 6. lim g(t) = D
xX—c —a

In Problems 7-10, plot the function f(x) over the interval 1.5, 2.5].
Zoom in on the graph of each function to determine how close x
must be to 2 in order that f(x) is within 0.002 of 4. Your answer

should be of the form “If x is within of 2, then f(x) is within
0.002 of 4.”
7. f(x) =2x 8. f(x)=x?
8

9. f(x) = V8x 10. f(x) =

In Problems 11-22, give an e—6 proof of each limit fact.

1L lim(2x — 1) = -1 12. lim (3x — 1) = —64
x—0 x—-21
2 _ 2 _
Boim 2 Z 10 14. lim (2"7") =1
=5 x — 5 x—0 X

262 —11x + 5
15 im=>——"""2_9 16 limV2x = V2
x—5 x—5 x—1

o V2x —1
17. lim———— = \/7
=i Nx -3
14x% — 20x + 6
18 lim— X TO g
x—1 x — 1
10x> — 26x% + 22x — 6
19. fim— 2 =
x—1 (x—l)
20. liml(2x2+ 1) =3
s

4

21, lim (x? —2x — 1) =2

x——1

22, limx* =0

x—0
23. Prove that if lim f(x) = L and lim f(x) = M, then
L — M. X—cC X—cC

24. Let F and G be functions such that 0 = F(x) = G(x) for
) =0,t

all x near ¢, except possibly at c. Prove that if lim G(x 0, then
lim F(x) = 0. e
X—c

25. Prove that lir% x*sin?(1/x) = 0. Hint: Use Problems 22
and 24. ’
26. Prove that lin&\/fc =0.

27. By considering left- and right-hand limits, prove that
lim|x| = 0.
x—0

28. Prove that if [f(x)| < B for
lim g(x) = 0, then lil)n f(x)g(x) =0.

X—a

29. Suppose that lim f(x) = L and that f(a) exists (though
xX—a

[x —al <1 and

it may be different from L). Prove that fis bounded on some in-
terval containing a; that is, show that there is an interval (¢, d)
with ¢ < a < d and a constant M such that |f(x)| = M for all x
in (¢, d).

30. Prove thatif f(x) = g(x) for all x in some deleted inter-

val about a and if lim f(x) = L and lim g(x) = M, then
L = M. X a X a

31. Which of the following are equivalent to the definition of
limit?
(a) For some & >0 and every § > 0,0 <|x —c| <§=

[f(x) — L| <e.
(b) Forevery 8 > 0, there is a corresponding € > 0 such that
0<|x—cl<e=|f(x) - LI <&

(c) For every positive integer N, there is a corresponding posi-
tive integer M such that 0 < |x — ¢| < 1/M = |f(x) — L|
< 1/N.
(d) For every & > 0, there is a corresponding § > 0 such that
0<|x—c| <éand|f(x) — L| < & for some x.
32. State in ¢-8 language what it means to say lil)n f(x) # L.

33. Suppose we wish to give an e—§ proof that

. x+6
lim — 3 2 ==
x=3xt —4x’ +x*+x+6
x + 6

We begin by writing
(x — 3)g(x).

(a) Determine g(x).
(b) Could we choose 8 = min(1, &/n) for some n? Explain.

(c) If wechoose 6 = min(i, e/ m) what is the smallest integer m
that we could use?

2 3 3 + 1 in the form
x*'=4x’ +x+x+6

Answers to Concepts Review 1. L — g L + ¢
220<|x—al <&lf(x) — Ll <e 3.8/3 4. ma+b
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84 Chapter 2 Limits

2.3
Limit Theorems

One-Sided Limits

Although stated in terms of two-
sided limits, Theorem A remains true
for both left- and right-hand limits.

84

Most readers will agree that proving the existence and values of limits using the
e—0 definition of the preceding section is both time consuming and difficult. That
is why the theorems of this section are so welcome. Our first theorem is the big
one. With it, we can handle most limit problems that we will face for quite some
time.

Main Limit Theorem

Let n be a positive integer, k be a constant, and f and g be functions that have
limits at c. Then

L lim k = k;
2. )161_)mcx = ¢
3. lim kF(x) = K lim £(x):
4 Tim [£(x) + g(x)] = lim £(x) + lim g(x);
5. lim [£(x) — g(x)] = lim £(x) — lim g(x):
6. lim [£(x) g(x)] = lim £(x) - lim g(x):
_ fo fmfe) o
7. lim = , provided lim g(x) # 0;

Ceme g(x) - lim g(x) x>
8 lim [£(x)]" = [lim f(x)]"
9. lim \"/f(x) = \Vlim‘ f(x), provided lim f(x) > 0 when n is even.

X—c

These important results are remembered best if learned in words. For exam-
ple, Statement 4 translates as The limit of a sum is the sum of the limits.

Of course, Theorem A needs to be proved. We postpone that job till the end of
the section, choosing first to show how this multipart theorem is used.

Applications of the Main Limit Theorem In the next examples, the

circled numbers refer to the numbered statements from Theorem A. Each equality
is justified by the indicated statement.

Find lim 2.x*,
x—3
®

4
lim 2x* = 2 lim x* = 2 [lim x] =2[3]" = 162

x—3 x—3 x—3
|
Find lim (3x* — 2x).
X—>
SOLUTION
lim (3x* — 2x) = lim 3x’- lim 2x = 3 lim x*- 2 lim x
x—4 x—4 x—4 x—4 x—4
=3 (lim x)z— 2 lim x = 3(4) - 2(4) = 40
x—4 x—4
|



Evaluating a Limit
“by Substitution”

When we apply Theorem B, the
Substitution Theorem, we say we
evaluate the limit by substitution.

Not all limits can be evaluated by
2

. . . . X
substitution; consider lim .
—1x —1

The Substitution Theorem does not
apply here because the denominator
is 0 when x = 1, but the limit does
exist.
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Vx%+9

¥ .

Find lim

SOLUTION

? ﬁD
e v dmAe a9 g im0y

lim = - = = — [lim x* + lim 9
x—4 X lim x 4 4N\ x—4 x4

x—4
i
11 [limx]2+9 AN ey
44 [x=4 4 4
[ |
If lim f(x) = 4 and lim g(x) = 8, find
lim [ £2(x)+ Vg(x) |
SOLUTION
lim [f00) - Vgl = lim f3(x) - lingvs g(x)
8.9
= [1im f(x)] [ Tim ¢
=[4]- V8 =32
|

Recall that a polynomial function f has the form
f(x) =ax" + a, x" '+ - +ax + ag
whereas a rational function fis the quotient of two polynomial functions, that is,

a,x" + a,_x" '+ -+ ax + aq

+ blx + bO

flx) =

bux™ + by x4 e

Substitution Theorem

If fis a polynomial function or a rational function, then

lim £(x) = f(c)

provided f(c) is defined. In the case of a rational function, this means that the
value of the denominator at c is not zero.

The proof of Theorem B follows from repeated applications of Theorem A.
Note that Theorem B allows us to find limits for polynomial and rational functions
by simply substituting ¢ for x throughout, provided the denominator of the ration-
al function is not zero at c.

5 4
- - +
Find fim 7SS,

3x> — 6x — 8
85
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86

SOLUTION
o 70 10x — 13x 46 72 ~ 102 ~132) 46 1
=2 3x*—6x—8 3(2)? - 6(2) — 8 2

+ 3x + 34+ 3x +
Find fim 52Ty £ 3T

=iy —2x +1 x>l (x —1)

SOLUTION Neither Theorem B nor Statement 7 of Theorem A applies, since the
limit of the denominator is 0. However, since the limit of the numerator is 11, we
see that as x nears 1 we are dividing a number near 11 by a positive number near 0.
The result is a large positive number. In fact, the resulting number can be made as
large as you like by letting x get close enough to 1. We say that the limit does not
exist. (Later in this chapter (see Section 2.4) we will allow ourselves to say that the
limit is +00.) [ |

In many cases, Theorem B cannot be applied because substitution of ¢ causes
the denominator to be 0. In cases like this, it sometimes happens that the function
can be simplified, for example by factoring. For example, we can write

x*+3x—10 (x—=2)(x+5) x+5
Z+x—-6 (x—2)(x+3) x+3

We have to be careful with this last step. The fraction (x + 5)/(x + 3) is equal to
the one on the left side of the equal sign only if x is not equal to 2. If x = 2, the left
side is undefined (because the denominator is 0), whereas the right side is equal to
(2 +5)/(2 + 3) = 7/5. This brings up the question about whether the limits

are equal. The answer is contained in the following theorem.

If f(x) = g(x) for all x in an open interval containing the number ¢, except
possibly at the number c itself, and if hm g(x) exists, then lim f(x) exists and
X—c

lim f(x) = lim g(x).

2
Find lim * "2~ 10,
=2 x4+ x—6
SOLUTION Theorem B does not apply because the denominator is 0 when
x = 2. When we substitute x = 2 in the numerator we also get 0, so the quotient
takes on the meaningless form 0/0 at x = 2. When this happens we should look for
some sort of simplification such as factoring.

hmx +3x_10—im(x_2)(x+5) lim x+5 7
=2 x’4+x—6 =2 (x — 2)(x +3) o2x +3 5

The second to last equality is justified by Theorem C since

(x—2)(x+5)_x+5
(x —2)(x +3) x+3

for all x except x = 2. Once we apply Theorem C, we can evaluate the limit by sub-
stitution (i.e., by applying Theorem B). [ |



Optional?

How much theorem proving should
be done in a first calculus course?
Mathematics teachers argue long
and hard about this and about the
right balance between

m logic and intuition
m proof and explanation
m theory and application

A great scientist of long ago had
some sage advice.

“He who loves practice without
theory is like the sailor who boards
ship without a rudder and compass
and never knows where he may
cast.”

Leonardo da Vinci

y )
f+g
v
€
L+M-f4===—=————~ -
€ ) :
i
! o
i /(
el2 | !
1

Mp 1 '/‘/

1 r

8 =min (5,8, c

Figure 1
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1
Find 11 im \f

SOLUTION Again, using Theorem C,

(Va = 1)(vx +1)
Vx — 1

-1
Iim—— & = lim

—1Vx — x—1

=1i_)ml(\/7c+1)=\/1+1=2 m

Proof of Theorem A (Optional) You should not be too surprised when we
say that the proofs of some parts of Theorem A are quite sophisticated. Because of
this, we prove only the first five parts here, deferring the others to the Appendix
(Section A.2, Theorem A).To get your feet wet, you might try Problems 35 and 36.

Proofs of Statements 1 and 2 These statements result from lim (mx + b)
X—>cC

= mc + b (Example 4 of Section 2.2) using first m = 0 and then m = 1,b = 0.
|

Proof of Statement 3 If k = 0, the result is trivial, so we suppose that k # 0.
Let ¢ > 0 be given. By hypothesis, lim f(x) exists; call its value L. By definition of
X—c

limit, there is a number & such that

0<|x—cl<éd=lf(x) - LI <

&
||

Someone is sure to complain that we put s/|k| rather than ¢ at the end of the
inequality above. Well,isn’t &/| k| a positive number? Yes. Doesn’t the definition of
limit require that for any positive number there be a corresponding 6? Yes.

Now, for 8 so determined (again by a preliminary analysis that we have not
shown here), we assert that 0 < |x — ¢| < & implies that

lkf(x) — kL| = |kllf(x) — LI < Ikllk| e
This shows that
lim. kf(x) = kL =k lim.f(x) [ |

Proof of Statement 4 Refer to Figure 1. Let lim f(x)

If ¢ is any given positive number, then &/2 is posmve Since hm flx ) =
a positive number §; such that

= Land lim g(x) = M.
—C
L, there is

0<|x—c|<81$|f(x)—L|<§

Since lim g(x) = M, there is a positive number &, such that

X—cC

0<|x—c|<62=>|g(x)—M|<§

Choose 8 = min{dy, §,}; that is, choose § to be the smaller of §; and §,. Then
0 < |x — ¢| < &implies that

If(x) + g(x) = (L + M)| = |[f(x) = L] + [g(x) = M]|
= [f(x) = LI + [g(x) — M|
<£+£=s

2 2

In this chain, the first inequality is the Triangle Inequality (Section 1.2); the second
results from the choice of 6. We have just shown that

0<|x—cl<é=|f(x)+gx)—(L+M)]<e
Thus,
L+ M = lim f(x) + lim g(x) [ |

X—C X—c
87
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Proof of Statement 5
lim [£(x) = g(x)] = lim [£(x) + (~1)g(x)]
= lim f(x) + lim(=1)g(x)
- lgl f(x) + (~1)lim g(x)
(x)

= lim f(x) — lim g(x) [ ]

y The Squeeze Theorem You have likely heard someone say, “I was caught

between a rock and a hard place.” This is what happens to g in the following
h
Mg
L f

theorem (see Figure 2).

/)

IE0LE Squeeze Theorem

Let f g, and & be functions satisfying f(x) = g(x) = h(x) for all x near c,
except possibly at c. If lim f(x) = lim h(x) = L, then lim g(x) = L.

Proof (Optional) Let e > 0 be given. Choose §; such that

0<|x—cl<§=2L—-e<f(x)<L-+e
Figure 2 and &, such that
0<|x—c|<&§=L—-e<h(x)<L+e
Choose 85 so that
0<lx—cl <8 = f(x)=gx) =h(x)
Let 8 = min{4§;, 65, 83}. Then

O0<|x—cl<d=L-e<f(x)=gx)=h(x)<L+e
We conclude that lim g(x) = L. [ |
X—>C

Assume that we have proved 1 — x2/6 = (sin x)/x = 1 for

m x

all x near but different from 0. What can we conclude about lim i ?

x—0 X
SOLUTION Let f(x) =1 — x%/6,g(x) = (sinx)/x, and h(x) = 1. It follows
that lin}J f(x)=1= lim0 h(x) and so, by Theorem D,

lim o =1 =
x—0 X
Concepts Review
1. If ling f(x) = 4, then ling(x2 +3)f(x) = ) 4. If ;lcl—>mL f(x) = Land ;lcl—>mc g(x) = L, then
2. 1f lim g(x) = =2, then 1imz\/g2‘(x)7+1 = . lim [f(x) = Llg(x) = .

. _ . _ )
3. If lim f(x) = 4 and lim g(x) = —2, then lim =
x—c x—c x—c g(x)

____and )l(i_)mc[g(x)\/f(x) +5x| =

Problem Set 2.3

In Problems 1-12, use Theorem A to find each of the limits. 3. lin%) [(2x + 1)(x = 3)]
prare

Justify each step by appealing to a numbered statement, as in .
Examples 1-4. 4. xl_l)r\n/i [(2x% + 1)(7x* + 13)]

2 + 1 4x° + 1
i + . i 2 - i - i
1 lim(2x + 1) 2 lim (3 1) s lim S5
88




7. 111113 V3x -5 8. lim V5x% + 2x
x— xX—>—
9. lim2(2t3 +15)8 10. lim_ V-=3w’® + 7w?
t—— wW—>—.
4y% + 8y\1/3
11. lim <u>
y—2 y + 4

12. lim 2w* — 9w?® + 19)71/2

w—5

In Problems 13-24, find the indicated limit or state that it does not
exist. In many cases, you will want to do some algebra before
trying to evaluate the limit.

2 2
—4 ~5x+6
13. lim 4. lim
x—=2 x“+ 4 x—2 x —2
2-2x—-3 2+
15. lim *— 7 16. lim
x—-—1 x+1 x—-1 _xz + 1
3 2
x> —6x"+11lx — 6
17. lim
x=-1 x3 + 4x? — 19x + 14
2470+ 1
24 x -2 2 — 14x — 51
19. lim *— % 20, lim -

x—>=3 x? — 4x — 21

X 4+ux—x-—u

=1 x2—1

w2 — ux + 2u — 2x

21. lim > 22. lim 3
u—-2 uw—u-—=~6 =1 x*+2x —3
2x% — + 47
23, lim 2 0™ £ AT
X—> X — T
w+ 2)(w? - w — 6
24. lim ( 2)( )
w—=2 w” + 4w + 4

In Problems 25-30, find the limits if lim f(x) =3 and
lim g(x) = —1 (see Example 4).
X—a

25. lim Vf*(x) + g*(x)  26. lim M

w—=a f(x) + g(x)
27. lim Vg (x) [f(x) +3] 28 lim [f(x) —3]*
29. tim [[f(0)] + 3g(®)I] 30, lim [£(u) + 3g(u)

In Problems 31-34, find lim [f(x) — f(2)]/(x — 2) for each
given function f. 2

31. f(x) = 3x? 32, f(x) =322 +2x+1
33, f(x) =% 34. f(x) = %

35. Prove Statement 6 of Theorem A. Hint:

If(x)g(x) = LM| = |f(x)g(x) — Lg(x) + Lg(x) — LM|
lg(x)[f(x) = L] + L[g(x) — M]|
lg(x)llf(x) — LI + [Lllg(x) — M|

I\

2.4
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Now show that if lim g(x) = M, then there is a number §; such
xX—c
that
0<l|x—cl <8 =lgx) <Ml +1

36. Prove Statement 7 of Theorem A by first giving an £-8
proof that lim [1/g(x)] = 1/[lim. g(x)} and then applying State-
ment6. e

37. Prove that lim f(x) = L ll_)mc [f(x) = L] =0.

xX—c

38. Prove that lim f(x) = 0 & lim|f(x)| = 0.
X—c

xX—c

39. Prove that lim|x| = |c].

X—c
40. Find examples to show that if
(a) lim [ f(x) + g(x)] exists, this does not imply that either
lim f(x) or lim g(x) exists;
X—c X—c
(b) lim [f(x)-g(x)] exists, this does not imply that either
X—c
lim f(x) or lim g(x) exists.
X—c X—c

In Problems 41-48, find each of the right-hand and left-hand limits
or state that they do not exist.

V3 + 3 + 3
M. tim S 4. lim %
x—>-3" X x>’ x
- V1 o+
B, lim S 44, fim VLT
x—3" )C2 -9 x—1 4 + 4x
. (P + D)[x] .
45, lim —— 5~ 46. lim (x — [x])
=2 (3x — 1)? x—3
47, lim — 48. lim [x? + 2x]
x—0 |x| x—3"

49. Suppose that f(x)g(x) =1 for all x and lim g(x) = 0.
Prove that lim f(x) does not exist. e
xX—a

50. Let R be the rectangle joining the midpoints of the sides
of the quadrilateral Q having vertices (+x,0) and (0, £1).
Calculate

perimeter of R
im
x—0" perimeter of Q

51. Let y = Vx and consider the points M, N, O, and P with
coordinates (1,0),(0,1),(0,0),and (x, y) on the graph of y = V'x,
respectively. Calculate

perimeter of ANOP area of ANOP

(a) lim —; (b) lim ———————

x—0" perimeter of AMOP x—0"area of AMOP
Answers to Concepts Review: 1. 48 2. 4

3. -8 —-4+5 4.0

The deepest problems and most profound paradoxes of mathematics are often
intertwined with the use of the concept of the infinite. Yet mathematical progress
can in part be measured in terms of our understanding the concept of infinity. We
have already used the symbols c© and —o0 in our notation for certain intervals.

Thus, (3, 00) is our way of denoting the set of all real numbers greater than 3. Note

89
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Figure 1
X
* 1+x2
10 | 0.099
100 | 0.010
1000 | 0.001
10000 | 0.0001
\: \:
® ?
Figure 2
y

Figure 3

90

that we have never referred to o0 as a number. For example, we have never added
it to a number or divided it by a number. We will use the symbols 00 and —0 in a
new way in this section, but they will still not represent numbers.

Limits at Infinity Consider the function g(x) = x/(1 + x?) whose graph is
shown in Figure 1. We ask this question: What happens to g(x) as x gets larger and
larger? In symbols, we ask for the value of lingQ g(x).

X—

When we write x — 00, we are not implying that somewhere far, far to the
right on the x-axis there is a number—bigger than all other numbers—that x is
approaching. Rather, we use x — 00 as a shorthand way of saying that x gets larger
and larger without bound.

In the table in Figure 2, we have listed values of g(x) = x/(1 + x?) for several
values of x. It appears that g(x) gets smaller and smaller as x gets larger and larger.
We write

lim —— =0
x—00] + x?

Experimenting with negative numbers far to the left of zero on the real number
line would lead us to write

. X
lim 5 = 0
x—>-00] + x

Rigorous Definitions of Limits as x — +00 In analogy with our -8
definition for ordinary limits, we make the following definition.

Definition Limit as x — oo

Let f'be defined on [c, 00) for some number c. We say that lim f(x) = L if for
each ¢ > 0 there is a corresponding number M such that"

x>M=|f(x) - Ll <e

You will note that M can, and usually does, depend on &. In general, the small-
er ¢ is, the larger M will have to be. The graph in Figure 3 may help you to under-
stand what we are saying.

Definition Limitas x — —o0

Let f'be defined on (—00, c] for some number c. We say that lim f(x) = Lif
for each & > 0 there is a corresponding number M such that"

x<M=|f(x) - Ll <e

Show that if k is a positive integer, then

1
lim7=0 and lim — =0
x—)OOx

SOLUTION Let ¢ > 0 be given. After a preliminary analysis (as in Section 2.2),
we chose M = V 1/e. Then x > M implies that

1 O‘ 1 - 1
- [ — =&
xk Xk Mk
The proof of the second statement is similar. |

Having given the definitions of these new kinds of limits, we must face the
question of whether the Main Limit Theorem (Theorem 2.3A) holds for them. The
answer is yes, and the proof is similar to the original one. Note how we use this
theorem in the following examples.



Figure 4

08f+ "
0.6

04—

.................
.

Figure 5
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Prove that lim —— 5 =0.

x—0] + x

SOLUTION Here we use a standard trick: divide the numerator and denomi-

nator by the highest power of x that appears in the denominator, that is, x°.

X 1
2
X .
lim 5 = lim = lim
x=>00] 4+ x* x—o0] 4 x? x—ml_'_l
x2 x2
1
lim —
xX—00 X 0

= = ||
1 . 0+1 0

lim — + Iim 1

x—)oox x—>00

3

2
Find lim —~—.
x—>—00

1+x

SOLUTION The graph of f(x) = 2x>/(1 + x?) is shown in Figure 4. To find the
limit, divide both the numerator and denominator by x°.

. 2x3 . 2 2
lim =

lim = =2 [ |
x—-0] 4+ x° x—>*°°1/x3 +1 0+1

Limits of Sequences The domain for some functions is the set of natural
numbers {1, 2, 3, ... }. In this situation, we usually write a,, rather than a(n) to de-
note the nth term of the sequence, or {a,} to denote the whole sequence. For ex-
ample, we might define the sequence by a, = n/(n + 1). Let’s consider what
happens as n gets large. A little calculation shows that

12 3 4 _ 100

27 a, = 37 asz = 47 ag = 57 ceey o0 T 101s

It looks as if these values are approaching 1, so it seems reasonable to say that for
this sequence lim a, = 1. The next definition gives meaning to this idea of the

n—>0o0

a; =

limit of a sequence.

Definition Limit of a Sequence

Let a,, be defined for all natural numbers greater than or equal to some number
c. We say that lim a, = L if for each ¢ > 0 there is a corresponding natural

n—0o0

number M such that

n>M=la,— L| <e

Notice that this definition is nearly identical to the definition of lingo f(x).The
X—>

only difference is that now we are requiring that the argument to the function be a
natural number. As we might expect, the Main Limit Theorem (Theorem 2.3A)
holds for sequences.

¥
Find lim /"
n—oo\ n + 2

In+1
SOLUTION Figure 5 shows a graph of a,, = " s Applying Theorem 2.3A
. n
gives

i n+1_<l, n+1>1/2_(1, 1+1/n>1/2_<1+0>1/2_1 .
o\ + 2 \wbxn+2)  \ubxl+2/m) \1+0)

91
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Figure 6

Y

. 1
=5

Figure 7
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We will need the concept of the limit of a sequence in Section 4.7 and in
Chapter 5. Sequences are covered more thoroughly in Chapter 9.

Infinite Limits Consider the function f(x) = 1/(x — 2), which is graphed in
Figure 6. As x gets close to 2 from the left, the function seems to decrease without
bound. Similarly, as x approaches 2 from the right, the function seems to increase
without bound. It therefore makes no sense to talk about hm 1/(x — 2), but we
think it is reasonable to write

lim = —00 and lim = 00
=2 x — 2 x—2"x — 2

Here is the precise definition.

Definition Infinite Limit

We say that lim_ f(x) = oo if for every positive number M, there exists a cor-
X—C

responding 6 > 0 such that
0<x—-—c<é=f(x)>M

In other words, f(x) can be made as large as we wish (greater than any M that we
choose) by taking x to be sufficiently close to but to the right of c. There are corre-
sponding definitions of

lim f(x) = —o0 hm f(x) = o0 lim f(x) = —o0

X—C

x—c

lim f(x) = o© lim f(x) = -0 lim f(x)= o0 lim f(x) = -

x—00 x—00 x— — 00 x——00

(See Problems 51 and 52.)

1
Find lim ———— —1)p and lim

x—>1’( x—1* (_x — 1)

SOLUTION The graph of f(x) = 1/(x — 1)? is shown in Figure 7. As x — 1%,
the denominator remains positive but goes to zero, while the numerator is 1 for all
x. Thus, the ratio 1/(x — 1)? can be made arbitrarily large by restricting x to be
near, but to the right of, 1. Similarly, as x — 17, the denominator is positive and can
be made arbitrarily close to 0. Thus 1/(x — 1)? can be made arbitrarily large by
restricting x to be near, but to the left of, 1. We therefore conclude that

1 . 1

lim ————— = 00 and lim ————5 = 00
x—1" (x — 1) x—1 (x — 1)

Since both limits are oo, we could also write

1
lim———— = oo o
x—1 (x - 1)

+1
Find lim ——

-2 5x + 6

SOLUTION
lim x +1 . x +1

- 1 - O
x—>2*x2 —5x+6 =t (x = 3)(x — 2)

Asx—2"weseethatx + 1—3,x — 3— —1, and x — 2— 0"; thus, the numer-
ator is approaching 3, but the denominator is negative and approaching 0. We
conclude that

x+1

lim — - o
B a-yx-2)



Do Infinite Limits Exist?

In previous sections we required
that a limit be equal to a real num-
ber. For example, we said that

lim does not exist because
x—2"x — 2

1/(x — 2) does not approach a real
number as x approaches 2 from

the right. Many mathematicians
maintain that this limit does not

exist even though we write

2= 00; to say that the

x—=2"x —
limit is 00 is to describe the particu-
lar way in which the limit does not
exist. Here we will use the phrase
“exists in the infinite sense” to
describe such limits.

93
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Relation to Asymptotes Asymptotes were discussed briefly in Section 1.5,
but now we can say more about them. The line x = c is a vertical asymptote of the
graph of y = f(x) if any of the following four statements is true.

1. lim f(x) = oo 2. lim_f(x)
X—cC X—cC

3. lim f(x) 4. lim f(x)
X—c X—c

Thus, in Figure 6, the line x = 2 is a vertical asymptote. Likewise, the lines x = 2

and x = 3, although not shown graphically, are vertical asymptotes in Example 6.

In a similar vein, the line y = b is a horizontal asymptote of the graph of
y = f(x) if either

— 00

= 0 = -0

lim f(x) =b or

x—>00

lim f(x) =»b

The line y = 0 is a horizontal asymptote in both Figures 6 and 7.

Find the vertical and horizontal asymptotes of the graph of

y = f(x)if

SOLUTION We often have a vertical asymptote at a point where the denomi-
nator is zero, and in this case we do because

. . 2x
T lim =00 and lim = —00
x—1"x — =1 x —1
______________ e
\ On the other hand,
1—+ |
|
. 2x . . 2x
—t— : —t— lim = lim =2 and lim =2
2 : 2 3 4 x x—oox — 1 x—ool — 1/x x——cox — 1
I
)= i’"l and so y = 2 is a horizontal asymptote. The graph of y = 2x/(x — 1) is shown in
: Figure 8. [
Figure 8
Concepts Review
1. To say that x— 0o means that ; to say that 3. If lim f(x) = 6, then the line is a asymp-
. _ . . . xX—00
lerlgO f(x) = L means that . Give your answers in informal tote of the graph of y = f(x).
language. 4. If 1in61+ f(x) = oo, then the line isa asymp-
x—
2. To say that lim_f(x) = oo means that ; to say that tote of the graph of y = f(x).
X—c
lim f(x) = —oo means that . Give your answers in infor-
mal language.
Problem Set 2.4
In Problems 1-42, find the limits. . 3x3 — 2 . sin’ 6
) 9. lim ————— 10. lim —
. . X x=00 qrx° — 5x 6—>00 < — 5
1. lim 5 2. lim S 3
x—00 X — xX—>00 —
o 3V + 3 ] w3k
. 12 . 11. lim ————— 12. lim |———
3. lim 5 4. lim —— X0 2x° =00 N \/2x% 4 7x
(—>=00 ] — ¢ (—>-o0 [ — 5
2 2 [ 1+8x? | X¥*+x+3
. X . X . 3 .
5. lim ————F—— 6. lim ——— 13. lim {[—— 4. lim/—————
% (x = 5)(3 - x) 00 2 — 8x + 15 x=o0 \ x2 4 4 w—o0 \ (x — 1)(x + 1)
3 5 2
X w6 n
7. lim —————— 8 lim ——— 15. lim 16. lim
x—c0 2x% — 100x* 6—-00 97 — 5¢* n—co2n + 1 n—% p? + 1

93
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17. lim 18. lim

n—oo p? 4+ 1

+
19. lim —
x>0\ /x2 1 3

by x. Note that, for x > 0, Vx> + 3/x = V(x> + 3)/x%

. V2x +1
20. lim ——

x—0  x + 4

. Hint: Divide numerator and denominator

21. lim (V2x? +3 — V2x> —5). Hint: Multiply and

xX—00

divide by V2x? + 3 + V242 — 5.

22. 1im (Va? + 2x — x)

. 9y’ + 1 . .
23. lim R P Hint: Divide numerator and denomi-
y=omoyt =2y + 2
nator by y?.

apx" + a;x '+ -+ a,_1x + a,

+ b,,,lx + bn

24. lim
X—00 box" + blx”_] + -

by # 0, and n is a natural number.

, where ay # 0,

n 2
25, lim —F— 26. lim

n=0\/p? 1 =N/ 3 4 2p + 1

-9

27. 28. i
x4 8. Im -3
2 2
t
29. lim —— 30, lim,——
=39 — ¢ w55 — x
2 2
M lim——F 3 him
=5 (x = 5)(3 — x) o—m"sin 0
3
33, lim — M. lim 0
=3 x —3 6—(m/2)" cos 0
2 2
—x—6 +2x — 8
35, lim— > 36. lim —— =~ —°
=3 x—3 x—2" X2 —4
X X
37, 1im 38, 1im L
x—0" x x—0 X
39, 1im ! 4. tim X
x—0 X x—0" X
1+ i
41, lim — % 42. lim 2%
x—0" Sin x x—00 X

In Problems 43—48, find the horizontal and vertical asymp-
totes for the graphs of the indicated functions. Then sketch their
graphs.

3 3
43. f(x) = T+ 1 4. f(x) = 7()( 1y
2x 3
45, F(x) = 46. F(x) = 5=
14 2x
47. = 48. =
8x) =555 80 = o

49. The line y = ax + b is called an oblique asymptote to
the graph of y = f(x) if either lim [f(x) — (ax + b)] =0 or
Emoo [f(x) = (ax + b)] = 0. Fiﬁgﬁle oblique asymptote for
’ St 43 —2x -4

£() o

94

Hint: Begin by dividing the denominator into the numerator.
50. Find the oblique asymptote for
3 +4x2 - x + 1
x =
) x2+1

51. Using the symbols M and &, give precise definitions of
each expression.

(a) lim f(x) = —o0 (b) lim f(x) = o0
52. Using the symbols M and N, give precise definitions of
each expression.

(@) lim f(x) = oo (b) Tim f(x) = o0

53. Give a rigorous proof that if lim f(x) = A and
lim g(x) = B, then e

X—00

lim [f(x) + g(x)]= A+ B

xX—>00
54. We have given meaning to lin/l4 f(x) for A=aq,
x—
a ,a",—00, 00, Moreover, in each case, this limit may be L

(finite), —00, 00, or may fail to exist in any sense. Make a table
illustrating each of the 20 possible cases.

55. Find each of the following limits or indicate that it does
not exist even in the infinite sense.

1
(a) lim sin x (b) lim sin—
x—00 x—00 X

1 1
(¢) lim xsin— (d) lim x*?sin—
xX—>00 X xX—>00 X

1
(e) lLim x 'sin x (f) lim sin(z + 7)
xX—00 xX—>0 6 X

(2) xli_)ngo sin(x + %) (h) xli_)ngo {sin(x + %) — sin x}
56. Einstein’s Special Theory of Relativity says that the mass
m(v) of an object is related to its velocity v by
my
V1 =%/
Here my is the rest mass and c is the velocity of light. What is

lim m(v)?

vV—>C

m(v) =

GClUse a computer or a graphing calculator to find the limits in
Problems 57-64. Begin by plotting the function in an appropriate
window.

2 4 + 2 _
57. fim >t trE1 PR T —
x—00 2y — 1 x——00 \ 5y + 1

59. lim (V2x? + 3x — V2x? - 5)

60. lim —2* ! 61. i (1 + ]>m
. m —F— . 1m -
X—00 A /3x2 + 1 x—00 X
1\ 1\
62. lim (1 + —) 63. lim (1 + —>
xX—>00 x xX—>00 x

1 sin x
64. lim (1 + 7>
x—00 X

[CAS| Find the one-sided limits in Problems 65-71. Begin by plot-
ting the function in an appropriate window. Your computer may
indicate that some of these limits do not exist, but, if so, you should
be able to interpret the answer as either 00 or — 0.

sin|x — 3|

65. lim —— 66.
x—3 x—3

. sin|x — 3|
x—=3 tan(x — 3)



. =3

cos(x — 3)

69. lim (1 + Vax)/Ve

x—0"

71 lim (1 + Va)*
x—0

70. lim (1 + V)~
x—0

0, 1)

2.5

Limits Involving
Trigonometric Functions

P(cos t, sin 1)

t

Figure 1

B

A(L,0) X
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_cosx Answers to Concepts Review: 1. x increases without

3x = /2 bound; f(x) gets close to L as x increases without bound

2. f(x) increases without bound as x approaches c from
the right; f(x) decreases without bound as x approaches ¢
from the left 3. y = 6; horizontal 4. x = 6; vertical

Theorem B of Section 2.3 says that limits of polynomial functions can always be
found by substitution, and limits of rational functions can be found by substitution
as long as the denominator is not zero at the limit point. This substitution rule ap-
plies to the trigonometric functions as well. This result is stated next.

Limits of Trigonometric Functions

For every real number c in the function’s domain,
1. limsint = sinc¢ 2. limcost = cosc
t—c —c
3. limtant = tan ¢ 4. limcott = cotc
t—c —c
5. limsect = secc 6. limcsct = cscc
t—c —c

Proof of Statement 1 We first establish the special case in which ¢ = 0. Sup-
pose that ¢+ > 0 and let points A, B, and P be defined as in Figure 1. Then

0 < |BP| < |AP| < arc(AP)
But |BP| = sint and arc (AP) = t, so
0<sint <t

If + <0, then ¢ < sint < 0. We can thus apply the Squeeze Theorem (Theorem
2.3D) and conclude that lirr(l] sint = (. To complete the proof, we will also need the
t—)

result that liné cost = 1. This follows by applying a trigonometric identity and
[—)

Theorem 2.3A along with the fact that for # near 0,cos t = V1 — sin’ t:

lim cos ¢ = lim V1 — sin?¢ = V1 — (1imsint)2 =V1i-0=1
t—0 t—0 t—0

Now, to show that lim sin ¢ = sin ¢, we first let 4 =t — ¢ so that h—0 as

t—c

t — c¢. Then

limsint = %in%) sin(c + h)

t—c

= }llirr%) (sin ¢ cos h + cos ¢ sin h) (Addition Identity)

= (sin C)(;l,li% cos h) + (cos C)(;lllg}] sin h)
= (sinc¢)(1) + (cosc)(0) = sinc m

Proof of Statement 2 We use another identity along with Theorem 2.3A. If
cos ¢ > 0, then for  near ¢ we have cost = V1 — sin? . Thus,

limcost = im V1 — sin?t = \/1 - (lim sint)2 = \/1 — sin*c¢ = cos ¢

t—c t—c t—c

On the other hand, if cos ¢ < 0, then for ¢ near ¢ we have cos t = —\V1 — sin?¢. In
this case,

limcost = lim(—\/l - sin2t> =-VI1 - (limsint)2 = —V1 —sin’¢
t—c [—c —c
= —Vcos’c = —|cosc| = cosc
The case ¢ = 0 was handled in the proof of Statement 1. [ ]
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0, 1)

t

C

P(cos ¢, sint)

t

Figure 2

96

B |A(1,0) *

The proofs for the other statements are left as exercises. (See Problems 21 and
22.) Theorem A can be used along with Theorem 2.3A to evaluate other limits.

2
. . t“cost
Find lim
[—

r+1°
SOLUTION
t* cos t2
lim — o = (lim >(lim cost) =0+1=0 m
=0 t+1 =0 t+1/%—0

Two important limits that we cannot evaluate by substitution are

. sint .1 —cost
lim — and lim ——
t—0 t t—0 t
We met the first of these limits in Section 2.1, where we conjectured that the limit
was 1. Now we prove that 1 is indeed the limit.

IEwTE Y Special Trigonometric Limits

. sint . 1 —cost
1. im — =1 2. lm——=
t—0 t t—0 t

0

Proof of Statement 1 In the proof of Theorem A of this section, we showed
that

Iimcost =1 and Ilimsint =0
(=0 =0

For —m/2 =t = w/2,t # 0 (remember, it does not matter what happens at
t = 0), draw the vertical line segment BP and the circular arc BC, as shown in
Figure 2. (If ¢t < 0, then think of the shaded region as being reflected across the
x-axis.) It is evident from Figure 2 that

area (sector OBC) = area (AOBP) = area (sector OAP)

The area of a triangle is one-half its base times the height, and the area of a circu-
lar sector with central angle ¢ and radius r is %r2|t| (see Problem 42 of Section 1.8).
Applying these results to the three regions gives

1 1 1
E(COS )] = Scos ! [sinf] < 512|t|

which, after multiplying by 2 and dividing by the positive number |¢|cos ¢, yields

sin ] 1
cost = =
[¢] cos t

Since the expression (sin¢)/t is positive for —7/2 =<t < 7/2,t # 0, we have
|sin ¢|/]t] = (sin t)/t. Therefore,

Since we are after the limit of the middle function and we know the limit of each
“outside” function, this double inequality begs for the Squeeze Theorem. When we
apply it, we get
in t

lim “ = 1 m

t—0
Proof of Statement 2 The second limit follows easily from the first. Just multi-
ply the numerator and denominator by (1 + cos ¢); this gives
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. 1 —cost . 1 —cost 1+ cost . 1 — cos’t
lim = lim . =lim ———
=0 t —0 t 1+ cost =0 t(1 + cost)
. sin” ¢
=lim ———
=0 t(1 + cost)
_ sing) Jmsint 0
= | lim - =1-==0 [ |
=0 f 1111(1)(1 + cost) 2
t—)

We will make explicit use of these two limit statements in Chapter 3. Right
now, we can use them to evaluate other limits.

Find each limit.

in 3 1- t in 4
(a) lim 2% (b) lim ——=* (€) lim
x—0 X t—0 sin ¢ x—0 tan x
SOLUTION
in 3 in 3 in 3
(a) lim sindx _ .o asin3x . sin3x
x—0 X x—0 3x x—0 3x

Here the argument to the sine function is 3x, not simply x as required by Theorem
B.Let y = 3x. Then y — 0 if and only if x — 0, so

sin 3x . siny

im = lim 1
x—0 3x y—=0 y
Thus,
sin 3x . sin 3x
im = 3lim =3
x—0 X x—0 3x
1 — cost .1 —cost
1 — cost t tln(l] t 0
(b) lim ——— = lim - = - =—=0
t—0 sint t—0 sint . osint 1
lim
t t—0 t
4 sin 4x
sin 4x . 4x
(c) im = lim —;
x—0 tan x x—0 SIn x
X COS X
. sin4dx
4lim
x—0 4x 4
= = =4 [ |

)

Sketch the graphs of u(x) = |x|,(x) = —[x|, and f(x) =
x cos(1/x). Use these graphs along with the Squeeze Theorem (Theorem D of
Section 2.3) to determine lin%) f(x).

SOLUTION Note that cos (1/x) is always between —1 and 1. Thus, x cos(1/x)
will always be between —x and x if x is positive and between x and —x if
x is negative. In other words, the graph of y = xcos(1/x) is between the
graphs of y = |x| and y = —|x|, as shown in Figure 3. We know that

lim lx| = lim (—|x|) = 0 (see Problem 27 of Section 2.2) and since the graph of
y = f(x) = xcos(1/x) is “squeezed” between the graphs of u(x) = |x| and
I(x) = —l|x|, both of which go to 0 as x — 0, we can apply the Squeeze Theorem to
conclude that limo f(x) =0. [ |
97
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Concepts Review
1. }m(l) sint =

2. lim tant =

t—>/4

. .. .. sint o
3. The limit lm?) T cannot be evaluated by substitution
—

because
. sint
4, Ilm —=
=0 f

Problem Set 2.5

In Problems 1-14, evaluate each limit.

1 lim =2% 2. lim 6 cos 6
=0 x + 1 0—m/2
2
t 3x t
3. lim —>=1L 4. lim 220X
—0 1 + sin¢ x—0 sin x
sin x sin 30
.l . i
S hm = 6. =g
in 3 tan 5
7. lim sin 30 8. lim 2.1n 0
6—0 tan 6 6—0 sin 20
cot (76) sin 0 in? 3t
o, fim OL(TO) SN0 10. lim -2
6—0 2sect =0 2t
tan? 3¢ tan 2¢
11 lim 22 12. lim — 2L
(—0 2t t—0 sin 2t — 1
in3r + 4t in’
13, lim 22 14, 1im 09
—0 fsect 6—0  §?

In Problems 15-19, plot the functions u(x), [(x), and f(x). Then
use these graphs along with the Squeeze Theorem to determine

tim f(x).
15. u(x) = |x|,{(x) = =lx|, f(x) = xsin(1/x)
16. u(x) = lxl,1(x) = —lal. f(x) = xsin(1/x?)
17. u(x) = Ix|,1(x) = —|x], f(x) = (1 — cos® x)/x
18. u(x) =1,1(x) =1 — x% f(x) = cos® x

19, wu(x)=2,1(x)=2—-x%f(x) =1+

20. Prove that lim cos ¢ = cos ¢ using an argument similar to
t—c¢
the one used in the proof that lim sin ¢ = sin c.
t—c¢

2.6

Natural Exponential,
Natural Log, and
Hyperbolic Functions

21. Prove statements 3 and 4 of Theorem A using Theorem
23A.

22. Prove statements 5 and 6 of Theorem A using Theorem
23A.

23. From area (OBP) = area (sector OAP) = area (OBP)
+ area (ABPQ) in Figure 4, show that

t
cost =-——=2 —cost
sin ¢

and thus obtain another proof that lir51+(sin 1)/t =1.
—

y .
P(cos t, sin 1) y
0 P(cos t, sin t)
t t
o B a0 X 0 B JA(,0)%
Figure 4 Figure 5

24. In Figure 5,let D be the area of triangle ABP and E the
area of the shaded region.

D
(a) Guess the value of lirgf by looking at the figure.
[—
(b) Find a formula for D/FE in terms of 7.

. . D
(c) Use a calculator to get an accurate estimate of 111%)1‘ z
11—

Answers to Concepts Review: 1. 0 2.1 3. the denomi-

natoris zerowhent =0 4.1

In Section 1.7, we presented an informal discussion of exponential and logarithmic
functions. There were defined a” (a > 0) for rational values of r and we suggested
that if we take an accurate (rational) approximation to an irrational number x, and
raise a to that power we would obtain a close approximation of a*. We would now
like to make this idea more precise.

Definition

If r, is a sequence of rational numbers that converges to the irrational number
x, then a”* is defined to be

a* = lim a™

n— oo
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Figure 1

y= a*

Figure 2

=

This defintion, which is illustrated in Figure 1, raises two important questions
that we will address informally.

First, for a given irrational number x, is there such a sequence? The answer to
this is yes. We could take as the nth term of the sequence of rational numbers the
decimal expansion through the first n places of the number x. (Recall from Section
1.1 that an irrational number has a nonrepeating decimal expansion.) For example,
\/2 is the limit of the sequence

rn=14,rn =141, n= 1414, ..., ry= 1.4142135623730950488, ...

This provides an increasing sequence of rational numbers, that is, r; < r, < ...
<r<rpm<..< \/i, that converges to /2. We could as well have rounded
up in the decimal expansion of \/i, producing a decreasing sequence of rational
numbers that converges to V2.
Second, what if two sequences of rational numbers, say r, and s,, both con-
verge to x? Do we know that lim & = lim a*? The answer is again yes, but this

n— o0 n— o0
is more difficult to prove, and we omit a proof. Intuitively, the result is plausible be-

cause if r, and s, both converge to x, then for n sufficiently large, |r, — s,| can
be made arbitrarily small, and so |a"™ — a*| will be small. This last step requires
more justification than we can give it here. Books on advanced calculus or real
analysis will contain a proof.

Another important question is this: does the exponential function described
here have an inverse? In Chapter 1, we assumed that it did and defined the loga-
rithmic function log, x as the inverse of a* (aslongasa > 0 and a # 1). Graphs of
exponential functions (Figure 2) suggest that every horizontal line of the form
y = yp, where y, > 0, will intersect the graph of y = a* exactly once (as long as
a # 1), making the exponential function invertible. While we cannot give a rigor-
ous proof of this, we assert that it is true, and proceed to discuss properties of ex-
ponential and logarithmic functions.

The next theorem restates the results of Theorem A and B of Section 1.7.

Properties of Exponential and Logarithmic Functions
Ifta>0,b > 0,c>0,(c # 1) and x and y are real numbers, then

b

X _ o xt i X
(1) a*a’ =a*™” (2) ay—ay
1
() @) =a” @ ar =L
(5) (ab)" = a'b" (6) (b) o
(7) log.1=0 (8) log.ab = log.a + log.b
9) logcg = log.a — log. b (10) log.a* = xlog.a
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Figure 3

100

Proof We prove (1) and leave the proofs of parts (2) through (6) as an exercise
(Problem 53). The proofs given in Section 1.7 for (7) through (10) are now valid
once we have proved the results for exponents.

We assume that (1) is true for rational exponents and prove it for the case
where at least one of the exponents is irrational. Let x be irrational and y be
either rational or irrational. Suppose r, and s,, are sequences of rational numbers
satisfying

lim r, = x and lim s, =y
n— o0 n— o0

(Note, if y is rational, then the constant sequence s, = y for all n would do.) Then,
since lim (r, +s,) = x + y,
n— oo

a‘a’ = ( lim a’”)( lim a“”) = lim (a™a™) = lim a""™ = a*™ [ ]
n— 00 n— 00 n— 00 n— 0o

The first part of the next theorem is a “substitution result,” analogous to
Theorems 2.3B and 2.5A. The proof is rather difficult, but an outline of the proof is
provided in Problem 56.

Limits of Exponential Functions

(1) lima* =a
X—>cC

(2) Ifa > 1,then lim a* = oo

x—> 00

(3) Ifa > 1,then lir_noo a*=0

We would like to have an analogous theorem for logarithms, or in general, the
inverse of any given function. The next theorem provides us with the needed
result.

Limits for Inverse Functions
If f has an inverse and lim f(x) = f(a) = c, then lim f'(x) = f'(c) = a.
xX—a X—>c

While Figure 3 makes this result plausible, the proof is rather difficult and
we omit it. Theorem C also holds for one-sided limits, provided we approach a
and ¢ from the correct direction. For example, if f is increasing and

lim f(x) = f(a) = ¢, then lim FfU(x)=fYc) =a, but if f is decreasing
and lim f(x) = f(a) = c, then lim FUx) = fXc) = a. We will use this result

in Section 2.7.

Limits of Logarithmic Functions

(1) Ifa>0andc > 0,(c # 1), then lim log, x = log.a.
(2) Ifc > 1,then lim log,x = oo.

(3) Ifc > 1,then lir%)l+ log, x = —o0.
X—>

Proof Part (1) follows directly from Theorems B(1) and C. Parts (2) and (3) fol-
low from Theorem B and symmetry. [ ]

3\ 1
Evaluate the limits (a) lim (2> and (b) lim log2<x).
x— xX—>



Section 2.6 Natural Exponential, Natural Log, and Hyperbolic Functions 101

SOLUTION

(a) As x — 00, the exponent x* grows without bound. Since % > 1, we can apply
Theorem B(2) and conclude

3\*

(b) As x — 0, the expression 1/x goes to zero from the right. Thus, by Theorem
D(3), we conclude

1
lim 1 — == |
Jim togs ) = oo

The Natural Exponential Function and the Natural Logarithm If
you invest $100 at the rate of 6% annual interest, then after one year you would
have $100(1 + 0.06) = $106.00. If interest is compounded twice per year, then for
the second half of the year, you would receive interest on your interest. You would
earn 6%/2 = 3% for the first six months, and another 3% for the second six
months, so you would have $100(1.03)(1.03) = $106.09. If interest were com-
pounded monthly, you would have $100(1 + 0.06/12)!? = 106.17. In general, if
you begin with A, dollars and compound interest n times per year at an interest
rate of r, then you would have

T a0 = a1+

n

dollars after one year. A natural question to ask is: what happens to A(1) as the
10 2.5937425 ; ; v S Fiy )
number of compounding periods goes to infinity? Would our return go to infinity?
100 2.7048138 It is clear that the answer hinges on the quantity (1 + r/n)". Let’s investigate a
1000 2.7169239 special case of this sequence; specifically let’s consider (1 + 1/n)". From the table
10,000 27181459 in the margin, which shows a few calculations, it seems as if this sequence con-
100.000 27182682 verges to a number near 2.718. This is the number that we call e. Its decimal ex-
i pansion is known to thousands of places; the first few digits are

e ~ 2.718281828459045

Definition The Number e
1 n
e = lim (1 + )
n— 00 n

The limit in this definition is the same, whether we regard » as a natural num-
ber, the limit then being the limit of a sequence, or as a real number; that is,

1\" 1\*
e = 1im(1+) = 1im(1+>
n— 00 n x— 00 X

If we let b = 1/x, then x — oo if and only if 4 — 0. Figure 4 suggests (correctly)
that the limits as 4 approaches 0 from the left and right are the same. (See Problem
7 59.) Thus, another way to specify e is to say

_ 1 1/h
1 e %E)rb(l%—h) .

E_W The limit of the expression (1 + r/n)" can then be written as
T lim (1+2)" = lim {(1 + r)"/’}r - [ lim (1 + ’)”/’T
n— 00 n n— 00 n n— 00 n

: l/hr:r
[}lllg})(l+h) } e

Figure 4
101
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If the number of compounding periods goes to infinity, we say that interest is
compounded continuously. The amount of money after one year is therefore
A(1) = Age”. In general, after ¢ the amount of money is

A(f) = Age.

Money compounded continuously grows this way, but so do other quantities that
we will study in Section 4.10.

; Definition Natural Exponential and Natural Logarithm Functions

L, The function exp(x) = e* is called the natural exponential function, and its in-
s verse, the logarithm to the base e, is called the natural logarithm function; it is

_/ /',/ denoted In x.
| ’ I
I

e The natural exponential and logarithmic functions play a key role in this and
e subsequent chapters. The reason for the name “natural’ will become apparent in
L, the next chapter. Most calculators are capable of computing, or even graphing, e*
5 and In x. The domain for exp(x) = e* is (—00, 00) and the range is (0, ©0). For
the natural logarithm function In x, the domain is (0, o) and the range is
Figure 5 (— 00, 00). Graphs of these functions are shown in Figure 5.

Suppose $2000 is invested at 8% interest compounded

continuously.

|
w
|
[N
|
N
A
[S]
w

(a) How much is this investment worth after 5 years?
(b) How long will it take for the value of the investment to double?

SOLUTION
(a) After 5 years, the value is A(5) = 2000e"%®) = $2983.60.

(b) The value of the investment will double at time ¢, where ¢, satisfies

4000 = 2000e"-080

7 = 008
In2 = In %% = 0.08¢
In2
ty = OHW ~ 8.66 years |

Evaluate the following limits:

3n
. 500 . n—2
(a) lim (1 + A7, (b) nlglgo< p )

SOLUTION

(a) Don’t let the 500 in the exponent fool you. The exponent, while large, is fixed,
so this is just the limit of a polynomial in /4. Thus, the limit can be evaluated by
substitution.

;llln%] (1 + h)SOO — (1 + 0)500 — 1500 =1

(b) We can write this as

—2\3" o\ ]6 -6
lim (” ) = lim [(1 + ) = [1im(1+ 1) | =¢¢ =
n— o n n— o n h—0

Let f(x) = e, (a) Find lim f(x), and (b) graph this

function.

SOLUTION

(a) As x grows large, the exponent on e becomes a negative number far to the left
of 0. The exponent on e can be made to be to the left of any negative number,
102 so by Theorem B(2), lim f(x) = 0.
X—
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Y (b) We begin by noting that f(x) = ¢ /2 is an odd function, so its graph is sym-
metric about the y-axis. Also, f(x) =0 for all x and f(x) = ¢® = 1. From

y = flx) = e P part (a), li)ngo f(x) = 0, and so by symmetry EIPOO f(x) = 0. This informa-

tion, together with some computations of the function for a few values of x,

o yields the plot shown in Figure 6. |
b i j J i T Observe that if y = log, x, then x = a”’, which leads to
Figure 6 Inx =Ina” =y Ina = (log, x)(In a)
From this, the change of base formula follows.
log, x = 10X
08t T n g
Sketch the graph of y = f(x) = logs x.
¥
z R SOLUTION We know what shape the graph of a logarithmic function will take,
Y =J = logsx but to graph y = f(x) = logs x we need to find several points on the graph. Cal-
! culators usually have keys for common logs (base 10) and natural logs (base ¢), but
i i i i ]IO % usually not other bases. With the change of base formula, we can write
-1
In
- y = f(x) = logsx =
- With this formula, we could compute a few points on the curve, or, if we have a
Figure 7 graphing calculator, we sketch the curve like the one in Figure 7. u

Hyperbolic Functions In both mathematics and science, certain combina-
tions of e* and e * occur so often that they are given special names.

Definition Hyperbolic Functions
The hyperbolic sine, hyperbolic cosine, and four related functions are defined
by
et —e e +e "
inhx = ——— hx=—F—
sinh x > cosh x 2
inh h
tanh x = — coth x = C9S al
cosh x sinh x
1 1
hx = hx =
SEERE T osh x ST Sinh x

The terminology suggests that there must be some connection with the
trigonometric functions; there is. First, the fundamental identity for the hyperbolic
functions (reminiscent of cos” x + sin’ x = 1 in trigonometry) is

cosh? x — sinh?x = 1

To verify it, we write

2x —2x 2x —2x
. et +2+e et =2 +e¢
cosh? x — sinh? x = n - 4 =1

Since
-X __ X X _ =X
sinh (—x) = ¢ > ¢ ¢ 26 = —sinh x

sinh x is an odd function. Similarly (see Problem 57) cosh(—x) = cosh x, so cosh x
is an even function. Correspondingly, the graph of y = sinh x is symmetric wiiys
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104

y
Y y =cosh x
P y=sinh x
=
o I —+— I
3 2 4 1 2 3 r 3 2 -l 1 2 3 X
1
2+ y
y
1__
y =tanh x
0.5+
. o
3 2 4 1 2 3 X X
205+
1

Figure 8

respect to the origin and the graph of y = cosh x is symmetric with respect to the
y-axis. Similarly, tanh x is an odd function and sech x is an even function. The
graphs are shown in Figure 8.

Inverse Hyperbolic Functions The hyperbolic sine and hyperbolic tangent
are increasing functions and automatically have inverses. To obtain inverses for hy-
perbolic cosine and hyperbolic secant, we restrict their domains to x = 0. Thus,

x=sinh'y < y=sinhx
x=cosh!'ly & y=coshx and x =0
x=tanh'y & y=tanhx
x=sechly & y=sechx and x =0

Since the hyperbolic functions are defined in terms of e* and e™™, it is not too

surprising that the inverse hyperbolic functions can be expressed in terms of the
natural logarithm. For example, consider y = cosh x for x = 0; that is, consider
et +e

=0
> 7

y:

Our goal is to solve this equation for x, which will give cosh™! y. Multiplying both
sides by 2e*, we get 2ye* = e** + 1, or

(e)> — 2ye* + 1 =0, x=0
If we solve this quadratic equation in e*, we obtain

L2y + V(2 -4
B 2

=y + \/y2—1

The Quadratic Formula gives two solutions, the one given above and
(2y - V(2y)? - 4) /2. This latter solution is extraneous because it is less than 1,

whereas e* is greater than 1 for all x > 0. Thus, x = ln(y + Vy? - 1), SO

x =coshly= ln(y + Vy? - 1)
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Similar arguments apply to each of the inverse hyperbolic functions. We obtain
the following results (note that the roles of x and y have been interchanged).
Figure 8 suggests the necessary domain restrictions. Graphs of the inverse hyper-
bolic functions are shown in Figure 9.

sinh™' x = ln(x + VX + 1)
coshtx = ln(x + Vx* - 1), x=1
. 1. 1+x
tanh ™' x = —In , -1<x<1
2 1-—x
4 1+ V1—x?
sech XZInf, 0<x=1
y y
2 y =sinhlx
T v = cosh™'x
4
151
I I I I
-2 -1 1 2 X T
- 05—+
o | | | | |
05 1 15 2 25 3 X
y y
Y — to —14
3L y=tanhlx L
27T 254
1+ P
1 1 1 1 15—
—i I OAIS : x y =sech lx
1 11—+
22—+ 05—
31 = = 1 1 I
h 02 04 06 08 1 X
Figure 9
Concepts Review
1. If x is an irrational number and a > 0, then we define 3. Ifinterestis compounded continuously at the annual rate
a* = where r, is a sequence of rational numbers that con- of 6%, then a $1000 investment will be worth after three
verges to x. years.
2. The inverse of the natural exponential function 4. While the hyperbolic sine function is odd, the hyperbolic
exp(x) = e*is called the and is denoted cosine function is and the hyperbolic tangent is .

Problem Set 2.6

In Problems 1-10, simplify the given expression.

1. 10210ng 2. 22logzx

3. 63 In x 4. (372 In x

5. Ine** 6. Ine >

7. In(x%e73) 8. e ¥

9, eln 3+2Inx 10. eln *=ylnx

11. Match the graph to the right with the functions given

below. The scales are the same on all four graphs.
@ fx)=e" (®) fx)=e™
(©) flx)=e¢ d) flx)=e*

X X
(A) (B)
y y

X X
© D)
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12. Match the graph below with the functions given. The
scales are the same on all four graphs.

(@) f() = Inx () £() =In(x = 1)
© f@) = @ £G) = In?

y y

oL
.

/ x
(B)

©) D)

In Problems 13-16, make use of the known graph of y = In x to
sketch the graphs of the equations.

13. y = In|x| 14. y =1In Vx

15. y = ln(%)

17. Sketch the graph of y =Incosx + Insecx on
(—m/2,a/2), but think before you begin.

16. y = In(x — 2)

18. Find each of the following limits.
(a) lim(1 + x)1000 (b) lim(1)"*
x—

x—0

(©) lim (1 + e)* e >0 (d) lim (1 + g)* e >0
xX— X
19. Use the fact that e = lim (1 + h)Y" to find each limit.

(2) lim (1 — x)"" Hint: (1 = )" = [(1 = )/

+ n
mi(l + 3x C m
b) lim(1 + 3x)!" Jim (22
x—> n—00 n
) n—1 2n
@ jim (")

20. Find each of the following limits.

2 100

li 1+ —

(a) ngrgo( n)
n+ 3\""!

)

(b) lim (1.001)"

(¢) lim (

n— oo

(d) lim(1 + x)¥*
x—0

21. Use the approximations In2 ~ 0.693 and In3 ~ 1.099
together with the properties stated in Theorem A to calculate
approximations to each of the following. For example, In 6 =
In(2:3) =In2 + In3 = 0.693 + 1.099 = 1.792.

(a) In6 (b) In1.5 (c) In81
(d) In V2 (e) In(3) (f) In48

22. Use your calculator to make the computations in Prob-
lem 21 directly.

In Problems 23-26, use Theorem A to write the expressions as the
logarithm of a single quantity.

23. 2In(x + 1) —Inx 24. lln(x — 9) + inx
106 25. In(x —2) = In(x +2) + 2Inx

26. In(x* = 9) — 2In(x — 3) — In(x + 3)

27. If $375 is put in the bank today, what will it be worth
at the end of 2 years if interest is 3.5% and is compounded as
specified?

(a) Annually
(c) Daily
28. Do Problem 27 assuming that the interest rate is 4.6%.

(b) Monthly
(d) Continuously

29. How long does it take money to double in value for the
specified interest rate?
(a) 6% compounded monthly
(b) 6% compounded continuously

30. Inflation between 1999 and 2004 ran at about 2.5% per
year. On this basis, what would you expect a car that would have
cost $20,000 in 1999 to cost in 2004?

31. Manhattan Island is said to have been bought by Peter
Minuit in 1626 for $24. Suppose that Minuit had instead put the
$24 in the bank at 6% interest compounded continuously. What
would that $24 have been worth in 2000?

32. If Methuselah’s parents had put $100 in the bank for
him at birth and he left it there, what would Methuselah have
had at his death (969 years later) if interest was 4% compounded
annually?

Use log, x = (In x)/(In a) to calculate each of the logarithms
in Problems 33-36.
33. logs 12
35. logy(8.12)'3

34. log;(0.11)
36. log;(8.57)7

In Problems 37-40, use natural logarithms to solve each of the
exponential equations. Hint: To solve 3* = 11, take In of both
sides, obtaining x In3 = In 11; then x = (In11)/(In 3) = 2.1827.

37. 20 =17 38. 5 =13
39. 5277 =4 40. 127071 =4

In Problems 41-52, verify that the given equations are identities.
41. ¢* = cosh x + sinh x
42 ¢** = cosh 2x + sinh 2x
43. ¢ * = cosh x — sinh x
44. ¢ ** = cosh 2x — sinh 2x
45. sinh(x + y) = sinh x cosh y + cosh x sinh y
46. sinh(x — y) = sinh x cosh y — cosh x sinh y
47. cosh(x + y) = cosh x cosh y + sinh x sinh y
48. cosh(x — y) = cosh x cosh y — sinh x sinh y
49. tanh(x + y) = tanh x + tanh y
1 + tanh x tanh y
50. tanh(x — y) = tanh x — tanh y
1 — tanh x tanh y

51. sinh 2x = 2 sinh x cosh x
52. cosh 2x = cosh? x + sinh® x

53. Assuming the properties of exponents for rational expo-
nents, prove properties (2) through (6) of Theorem A for at least
one irrational exponent.

54. State and prove a “substitution theorem” analogous to
Theorems 2.3B and 2.5A for the inverse trigonometric functions.
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55. State and prove a “substitution theorem” analogous to 57. Show that cosh x is an even function.
Theorems 2.3B and 2.5A for hyperbolic and inverse hyperbolic 1\™"
functions 58. Prove that lim (1 — — = e. Hint: First show that
. n— 00 n

56. Prove Theorem B(1), that is, for @ > 0, lim a* = a°, by 1\ 1 n 1 n—-1 1
i e 1-=) =(1+ =1+ 1+
following these steps. ( n> ( " 1> ( L 1) ( P 1)
(a) Begin a proof by contradiction. Write down the negation of
the statement “for every € > 0 there exists a § > 0 such that

for all x, |x — ¢| < 6= |a* — a¢| < e.” Hint: See the dis-
cussion at the end of Section 1.1.

59. Use the result from Problem 58 to prove that
Jim_ (1 + ' = e.

(b) Let r, be a sequence of rational numbers that converges to x, Answers to Concepts Review: 1. nll)ngo a™ 2. natural
and reach a contradiction to the statement from part (a). logarithm;In x 3. $1000 063 4. even; odd

2.7  Inmathematics and science, we use the word continuous to describe a process that

Continuity goes on wit}}out abrupt changes. In fact, our experien'ce legds us to assume thgt this

of Functions is an .essentlal feature of many natural processes. It is this notion as it .perFalns to

functions that we now want to make precise. In the three graphs shown in Figure 1,

only the third graph exhibits continuity at c. In the first two graphs, either lim f(x)
X—C

does not exist, or it exists but does not equal f(c). Only in the third graph does

lim £(x) = f(c).

A Discontinuous Machine y y y
A good example of a discontinuous / /
machine is the postage machine, - f
which (in 2006) charged $0.39 for a / / R /
1-ounce letter but $0.63 for a letter

the least little bit over 1 ounce. | I |

c x c X c X
lim f(x) does not exist. lim f(x) exists, but lim f(x) = f(c)
lim f(x) # f(c).

Figure 1

Here is the formal definition.

Definition Continuity at a Point
Let f be defined on an open interval containing c. We say that fis continuous at
cif

lim f(x) = f(c)

X—cC

We mean by this definition to require three things:
1. lim f(x) exists,
X—cC

2. f(c) exists (i.e., ¢ is in the domain of f), and
3. lim f(x) = f(c).

If any one of these three fails, then fis discontinuous at c. Thus, the functions rep-
resented by the first and second graphs of Figure 1 are discontinuous at c¢. They do
appear, however, to be continuous at other points of their domains.

2
-4
Let f(x) = al ,x # 2. How should f be defined at x = 2

x—2
in order to make it continuous there? 107
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y SOLUTION

2_4 x—=2)(x+2
4 lim ~ =lim¢=1im(x+2)=4
=2 X — 2 x-2 x—2 x—2

Therefore, we define f(2) = 4. The graph of the resulting function is shown in
Figure 2. In fact, we see that f(x) = x + 2 for all x. [ |

A point of discontinuity c is called removable if the function can be defined or

redefined at ¢ so as to make the function continuous. Otherwise, a point of discon-

. tinuity is called nonremovable. The function fin Example 1 has a removable dis-
24 continuity at 2 because we could define f(2) = 4 and the function would be

f) = [\2 N continuous there.

| |
1 1
1 2

w

s
\®)

4, x=2
Continuity of Familiar Functions Most functions that we will meet in
this book are either (1) continuous everywhere or (2) continuous everywhere
except at a few points. In particular, Theorem 2.3B implies the following result.

Figure 2

NE0Een i Continuity of Polynomial and Rational Functions

A polynomial function is continuous at every real number c. A rational function
is continuous at every real number c in its domain, that is, everywhere except
where its denominator is zero.

y Recall the absolute value function f(x) = |x|; its graph is shown in Figure 3.
T rw=|x| For x < 0, f(x) = —x, a polynomial; for x > 0, f(x) = x, another polynomial.
- Thus, | x| is continuous at all numbers different from 0 by Theorem A. But

lim|x|] = 0 = |0|
x—0

x (see Problem 27 of Section 2.2). Therefore, |x| is also continuous at 0; it is continu-
ous everywhere.

Figure 3 By the Main Limit Theorem (Theorem 2.3A)

lim Vx = Vlim x = Ve

y x—c x—c

| |
I 1
-4 3 2 - 1 2 3 4

F)=\x provided ¢ > 0 when 7 is even. This means that f(x) = Vx is continuous at each
2 ‘ point where it makes sense to talk about continuity. In particular, f(x) = Vx is
L continuous at each real number ¢ > 0 (Figure 4). We summarize.

e el Continuity of Absolute Value and nth Root Functions

The absolute value function is continuous at every real number c. If n is odd, the
Figure 4 nth root function is continuous at every real number c; if 7 is even, the nth-root
function is continuous at every positive real number c.

Continuity under Function Operations Do the standard function oper-
ations preserve continuity? Yes, according to the next theorem. In it, f and g are
functions, k is a constant, and # is a positive integer.

Continuity under Function Operations

If fand g are continuous at ¢, thenso are kf, f + g, f — g, g, f/g (provided
that g(c) # 0), f", and \/f (provided that f(c) > 0if n is even).

Proof All these results are easy consequences of the corresponding facts for
limits from Theorem 2.3A. For example, that theorem, combined with the fact that
fand g are continuous at c, gives

lim f(x)g(x) = lim f(x)- lim g(x) = f(c)g(c)
108
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This is precisely what it means to say that f - g is continuous at c. [ ]
At what numbers is F(x) = (3]x| — xz)/(\/;c + \3/})
continuous?

SOLUTION We need not even consider nonpositive numbers, since F is not
defined at such numbers. For any positive number, the functions Vx, Vx, |x|, and
x2 are all continuous (Theorems A and B). It follows from Theorem C that 3|x],

3lx| = x%, Vx + Vx, and finally,

(3lx| — x?)
(Vx + Vx)
are continuous at each positive number. |

The continuity of the trigonometric, inverse trigonometric, exponential, loga-
rithmic, hyperbolic, and inverse hyperbolic functions is stated in the next theorem.
Before we state this theorem, we must define the interior of an interval. Basically,
by interor, we mean the interval, excluding the endpoints (if they were included in
the first place). For example the interior of the interval [1, 3] is the open interval
(1,3); the interior of (2,4) is the interval (2, 4) itself. This concept is needed because
in order for the limit lim f(x) to exist, we must be able to approach ¢ from both

X—c

sides, and this can be done only if ¢ is in the interior of the domain of f.

Continuity of Transcendental Functions
The functions

sin x, cos x, tan x, cot x, Sec x, CSC X

1 1

sin_lx, cos_lx, tan “x, cot_lx, sec_lx, csC X

a*,log,x (a>0anda # 1)
sinh x, cosh x, tanh x, coth x, sech x, csch x

sinh'x, cosh 'x, tanh 'x, coth 'x, sech 'x, csch™'x

are continuous at every point in the interior of their domain.

Proof That the trigonometric functions are continuous at every point in the
domain follows from Theorem 2.5A. Applying Theorem 2.6C, we can conclude
that the inverse trigonometric functions are continuous at every point on the inte-
rior of their domain. The continuity of the exponential and logarithmic functions
follows directly from Theorems 2.6B and 2.6D. Hyperbolic functions are defined in
terms of the exponential functions, so their continuity can be established using the
continuity of the exponential functions (see Problem 55 of Section 2.6). Finally,
inverse hyperbolic functions are continuous on the interior of their domain by
Theorem 2.6C. [ |

Theorem D says, for example, that sin~' x is continuous at every number ¢ on
the interior of its domain. The domain for the inverse sine is [—1, 1], which has in-
terior (—1, 1). We conclude that sin"! x is continuous at every number ¢ in (—1, 1).

Determine all points of discontinuity of f(x) = %

x # 0, 1. Classify each point of discontinuity as removable or nonremovable.

SOLUTION By Theorem D, the numerator is continuous at every real number.
The denominator is also continuous at every real number, but when x = 0 or

109
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x =1, the denominator is 0. Thus, by Theorem C, f is continuous at every real
number except x = 0 and x = 1. Since

sin x sin x 1
li —— =1 — 1l = (1)(1) =1
lim =~ Am e clim g = (M)

_ sinx
Y= x(1—x)

we could define f(0) = 1 and the function would become continuous there. Thus,
x = 0is a removable discontinuity. Also, since

ST
a
=

lim sinix_ —oo and lim sinix_
=17 x(1 — x) =1 x(1 = x)

there is no way to define f(1) to make f continuous at x = 1. Thus x = 1 is a non-

Figure 5 removable discontinuity. A graph ofy = f(x) is shown in Figure 5. [ |

There is another functional operation, composition, that will be very impor-
tant in later work. It, too, preserves continuity.

Composite Limit Theorem
If lim g(x) = L and if fis continuous at L, then
lim f(g(x)) = f(lim g(x)) = f(L)

In particular, if g is continuous at ¢ and f is continuous at g(c), then the com-
ST\ posite f ° g is continuous at c.
1

T

Z 2(0) N ZPI0)
~ Proof Let ¢ > 0 be given. Since f is continuous at L, there is a corresponding
6; > 0 such that

Proof of Theorem E (Optional)

lt — LI <& =1f(t) — f(L) <e

Figure 6 and so (see Figure 6)
lg(x) = LI < 8= |f(g(x)) — f(L) <&

But because lim g(x) = L, for a given §; > 0 there is a corresponding 8, > 0
X—c
such that
0<|x—cl <8 =lgx)—- Ll <&

When we put these two facts together, we have
0<|x—cl<8=If(gx) - fFL)] <e
This shows that
lim f(g(x)) = f(L)

X—cC

The second statement in Theorem E follows from the observation that if g is

continuous at ¢ then L = g(c¢). ]
Show that h(x) = |x*> — 3x + 6] is continuous at each real
number.

SOLUTION Let f(x) = |x| and g(x) = x*> — 3x + 6. Both are continuous at
each real number, and so their composite

h(x) = f(g(x)) = [x? — 3x + 6]
is also. [
110
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Show that

4
-3x+1
h(x)=sin¥

X2 —x—6

is continuous except at 3 and —2.

SOLUTION x> — x — 6 = (x — 3)(x + 2). Thus, the rational function

X =3x+1

s(x) = xP—x-6

is continuous except at 3 and —2 (Theorem A). We know from Theorem D that the
sine function is continuous at every real number. Thus, from Theorem E, we con-
clude that, since 4(x) = sin(g(x)), A is also continuous except at 3 and —2. [ |

Continuity on an Interval So far, we have been discussing continuity at a
point. We now wish to discuss continuity on an interval. Continuity on an interval
ought to mean continuity at each point of that interval. This is exactly what it does
mean for an open interval.

When we consider a closed interval [a, b], we face a problem. It might be that f
is not even defined to the left of a (e.g., this occurs for f(x) = Vx at a = 0), so,
strictly speaking, lim f(x) does not exist. We choose to get around this problem by

X—a

calling f continuous on [a, b] if it is continuous at each point of (a, b) and if

lim_f(x) = f(a) and linblf f(x) = f(b). We summarize in a formal definition.

Definition Continuity on an Interval

The function fis right continuous at a if lim_f(x) = f(a) and left continuous at
bif lim f(x) = f(b). e

xX—

We say fis continuous on an open interval if it is continuous at each point of

that interval. It is continuous on the closed interval [q, b] if it is continuous on
(a, b), right continuous at a, and left continuous at b.

For example, it is correct to say that f(x) = 1/x is continuous on (0, 1) and
that g(x) = Vx is continuous on [0, 1].

Using the definition above, describe the continuity properties

of the function whose graph is sketched in Figure 7.

SOLUTION The function appears to be continuous on the open intervals
(—0,0) (0,3),and (5, ), and also on the closed interval [3, 5]. [ |

What is the largest interval over which the function defined by
g(x) = V4 — x?is continuous?

SOLUTION The domain of g is the interval [—2, 2]. If ¢ is in the open interval
(=2, 2), then g is continuous at ¢ by Theorem E; hence, g is continuous on (-2, 2).
The one-sided limits are

lim V4 —x? = V4~ lim x)]" = V4 —4=0=g(-2)
and

lim V4 — > = V4 — (limx)" = V4 —4=0=g(2)

x—2"

This implies that g is right continuous at —2 and left continuous at 2. Thus, g is con-
tinuous on its domain, the closed interval [—2, 2]. [ |
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What is the largest interval over which the function defined by

f(x) = cos! x is continuous?

SOLUTION The domain for f(x) = cos'x is the closed interval [—1,1].
Theorem D says that this function is continuous at every point on the interior of its
domain, that is, on the interval (—1, 1). We must now address the continuity of f at
the endpoints —1 and 1. By the discussion immediately following Theorem 2.6C,
we can conclude that since y = cos x is decreasing on [0, 7],

lim cosx = cosm = —1 = lim cos'x =cos'(-1)=m
x—m x——1"
and
lim cosx = cos0 =1 = lim cos'x =cos!1=0
x—0" x—1
(See Figure 8). Thus f(x) = cos™! x is right continuous at x = —1 and left continu-
ous at x = 1. Since it is also continuous on the open interval (—1, 1), we can con-
clude that f(x) = cos™! x is continuous on the closed interval [—1, 1]. [ |
y=cos!x y
(=1, m T
y=x ’
, fb)&

e I

d y=f@ |

/2 !

L \\ i

|

w, !

|

|

| |

-1 . * W2 :

I' !

Fla)+9 !

T I
-1+ y=C0Sx (m, -1) a ¢ ¢, 3 c b X

Figure 8 Figure 9

y

W —

I I

a b *

Not continuous;
intermediate value
property fails.

Figure 10
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Intuitively, for f to be continuous on [a, b] means that the graph of f on [a, b]
should have no jumps, so we should be able to “draw” the graph of f from the
point (a, f(a)) to the point (b, f(b)) without lifting our pencil from the paper. Thus,
the function f should take on every value between f(a) and f(b). This property is
stated more precisely in Theorem F.

Intermediate Value Theorem

Let f be a function defined on [a, b] and let W be a number between f(a) and
f(b). If f is continuous on [a, b], then there is at least one number ¢ between a
and b such that f(c¢) = W.

Figure 9 shows the graph of a function f(x) that is continuous on [a, b]. The In-
termediate Value Theorem says that for every Win (f(a), f(b)) there must be a ¢
in [a, b] such that f(c¢) = W. In other words, f takes on every value between f(a)
and f(b). Continuity is needed for this theorem, for otherwise it is possible to find
a function f and a number W between f(a) and f(b) such that there is no c in [a, b]
that satisfies f(c) = W. Figure 10 shows an example of such a function.
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I I
a b *
Not continuous, although
intermediate value property holds

re 11

INERS
NIERS

/

Figu

(-r,0)

(r

Figu

re 12

(rcos 0, rsin 0)

m™+0

(r, 0)

cos (0 + ), rsin (0 + 1))

re 13

113

Section 2.7 Continuity of Functions

It seems clear that continuity is sufficient, although a formal proof of this re-
sult turns out to be difficult. We leave the proof to more advanced works.

The converse of this theorem, which is not true in general, says that if f takes
on every value between f(a) and f(b) then f is continuous. Figures 9 and 11 show
functions that take on all values between f(a) and f(b), but the function in Fig-
ure 11 is not continuous on [a, b]. Just because a function has the intermediate
value property does not mean that it must be continuous.

The Intermediate Value Theorem can be used to tell us something about the
solutions of equations, as the next example shows.

Use the Intermediate Value Theorem to show that the equa-

tion x — cos x = 0 has a solution between x = 0 and x = /2.

SOLUTION Let f(x) = x — cosx, and let W = 0. Then f(0) =0 — cos0 =
—1 and f(w/2) = w/2 — cos w/2 = /2. Since f is continuous on [0, 7/2] and
since W = 0is between f(0) and f(7/2), the Intermediate Value Theorem implies
the existence of a c in the interval (0, 7/2) with the property that f(c) = 0. Such a
¢ is a solution to the equation x — cos x = 0. Figure 12 suggests that there is
exactly one such c.

We can go one step further. The midpoint of the interval [0, 77/2] is the point
x = a/4. When we evaluate f(7/4), we get

K an o \/i
f(m/4) 1 s 5 = 0.0782914
which is greater than 0. Thus, f(0) < 0 and f(7/4) > 0, so another application of
the Intermediate Value Theorem tells us that there exists a ¢ between 0 and 7/4
such that f(¢) = 0. We have thus narrowed down the interval containing the
desired ¢ from [0, 7/2] to [0, 77/4]. There is nothing stopping us from selecting the
midpoint of [0, 77/4] and evaluating f at that point, thereby narrowing even further
the interval containing c. This process could be continued indefinitely until we find
that c is in a sufficiently small interval. This method of zeroing in on a solution is
called the bisection method, and we will study it further in Section 4.7. |

The Intermediate Value Theorem can also lead to some surprising results.

Z EXAMPLE 10| Use the Intermediate Value Theorem to show that on a cir-
cular wire ring there are always two points opposite from each other with the same
temperature.

SOLUTION Choose coordinates for this problem so that the center of the ring is
the origin, and let r be the radius of the ring. (See Figure 13.) Define T(x, y) to be
the temperature at the point (x, y). Consider a diameter of the circle that makes an
angle 0 with the x-axis, and define f(0) to be the temperature difference between
the points that make angles of 6 and 6 + 7r; that is,

f(8) =T(rcosf,rsin®) — T(rcos(6 + ), rsin(0 + m))

With this definition

f(0) =T(r,0) = T(-r,0)

f(m) = T(=r,0) = T(r,0) = =[T(r,0) = T(-r,0)] = —£(0)
Thus, either f(0) and f(7) are both zero, or one is positive and the other is nega-
tive. If both are zero, then we have found the required two points. Otherwise, we
can apply the Intermediate Value Theorem. Assuming that temperature varies
continuously, we conclude that there exists a ¢ between 0 and = such that

f(c) = 0. Thus, for the two points at the angles ¢ and ¢ + 7, the temperatures are
the same. |
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Concepts Review
1. A function fis continuous at ¢ if = f(c).
2. The function f(x) = [x] is discontinuous at

3. A function fis said to be continuous on a closed interval
[a, b] if it is continuous at every point of (a, b) and if and

4. The Intermediate Value Theorem says that if a function f
is continuous on [a, b] and W is a number between f(a) and f(b),
then there is a number ¢ between and such that

Problem Set 2.7

In Problems 1-15, state whether the indicated function is continu-
ous at 3. If it is not continuous, tell why.

L f(x) = (x=3)(x = 4)
3. h(x) = 3 4. g(t) = Vi — 4

x—3

2. g(x)=x>-9

5 h(t)—|l73| 6 h(t)—ﬂ
) t—3 ) t—3
7. f(t) =l 8. g(1) = |t -2
¥ -9 21 — 7x
9. h(x)—x_3 10. f(x)—ﬁ
B3 -27 .
1L r(t) =4 t—3 ite#3
27 ift =3
£ —27
ift #3
12 r/()=% -3
23 ifr =3
t—3 ifr =3
13'f(t)_{3—t ifr >3
14 f(t)_{t2—9 ifr =3
) (3-1)? ift>3
—3x+7 ifx=3
15. =
5 f(x) {72 ifx >3

16. From the graph of g (see Figure 14), indicate the values
where g is discontinuous. For each of these values state whether g
is continuous from the right, left, or neither.

Figure 14 Figure 15

17. From the graph of 4 given in Figure 15, indicate the inter-
vals on which £ is continuous.
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In Problems 18-23, the given function is not defined at a certain
point. How should it be defined in order to make it continuous at
that point? (See Example 1.)

x* — 49 2x? — 18
18. f(x) = Y —7 19. f(x) = ﬁ

sin 0 Vi-1
20. g(0) = =, 2L H(1) = ——

xt+2x? -3 Cxr -1
22. q,’)(x) = ? 23. F(x) = S Y+ 1

In Problems 24-35, at what points, if any, are the functions
discontinuous?

3x +7
W) = T —
_ 2
25 f(x) = SE. -

xm+3x =37 — x
26. h(0) = |sin® + cos8|  27. r(f) = tan @

2u+ 7 W+ |lu—1]
28. f(u) = —F— 29. g(u) =
Vu +5 Vu + 1
1 1
30. F(x) = —F——— 31. G(x) =
4+x2 4—x2
X ifx <0
32. f(x) =4 «* ifo=x=<1
2—x ifx>1
x? if x <0
33. g(x) =4 —x fo=x=1
X ifx>1

M. f(0) =[] 35. g(r) = [1 +3]
36. Sketch the graph of a function f that satisfies all the fol-
lowing conditions.
(a) TIts domainis [—2,2].
(®) f(=2)=f(-1)=f(1) =f(2) =1
(c) Ttis discontinuous at —1 and 1.

(d) Ttis right continuous at —1 and left continuous at 1.

37. Sketch the graph of a function that has domain [0, 2] and
is continuous on [0, 2) but not on [0, 2].

38. Sketch the graph of a function that has domain [0, 6] and
is continuous on [0, 2] and (2, 6] but is not continuous on [0, 6].

39. Sketch the graph of a function that has domain [0, 6] and
is continuous on (0, 6) but not on [0, 6].



40. Let

x if x is rational
x if x is irrational

Sketch the graph of this function as best you can and decide
where it is continuous.

In Problems 41-48, determine whether the function is continuous
at the given point c. If the function is not continuous, determine
whether the discontinuity is removable or nonremovable.

x* — 100
41. =sinx;c = 4. S
f(x) =sinx;c=0 f(x) T —10°°¢ 0
3. fx) =Y =0 4. f(x) =220
X x
sin x
, #0 1
45. g(x) = x * 46. F(x) = xsin_sc = 0
0, x=0
47. f(x) =sin— ¢ = 48. f(x) —u'c—4
’ ) 2 - VX

In Problems 49-54, determine the largest interval over which the
given function is continuous.

49. f(x) = V25 — x? 50. f(x) = %
- X

51. f(x) =sin' x 52. f(x) = sechx

53. f(x) =seclx, x=0 54. f(x)=sech'x

55. A cell phone company charges $0.12 for connecting a call
plus $0.08 per minute or any part thereof (e.g., a phone call last-
ing 2 minutes and 5 seconds costs $0.12 + 3 X $0.08). Sketch a
graph of the cost of making a call as a function of the length of
time ¢ that the call lasts. Discuss the continuity of this function.

56. A rental car company charges $20 for one day, allowing
up to 200 miles. For each additional 100 miles, or any fraction
thereof, the company charges $18. Sketch a graph of the cost for
renting a car for one day as a function of the miles driven. Discuss
the continuity of this function.

57. A cab company charges $2.50 for the ﬁrst% mile and $0.20
for each additionalé mile. Sketch a graph of the cost of a cab ride

as a function of the number of miles driven. Discuss the con-
tinuity of this function.

58. Use the Intermediate Value Theorem to prove that
x* 4+ 3x — 2 = 0 has a real solution between 0 and 1.

59. Use the Intermediate Value Theorem to prove that
(cost)t? + 6sin’t — 3 = 0 has a real solution between 0 and 27r.

60. Use the Intermediate Value Theorem to show that
x> — 7x* + 14x — 8 = 0 has at least one solution in the interval
[0, 5]. Sketch the graph of y = x> — 7x? + 14x — 8 over [0, 5].
How many solutions does this equation really have?

61. Use the Intermediate Value Theorem to show that
Vx — cos x = 0 has a solution between 0 and 7/2. Zoom in on
the graph of y = Vx — cos x to find an interval having length
0.1 that contains this solution.
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62. Show that the equation x> + 4x> — 7x + 14 = 0 has at
least one real solution.

63. Prove that f is continuous at ¢ if and only if

lim f(c + 1) = f(c).

64. Prove that if fis continuous at ¢ and f(c¢) > 0 there is an
interval (¢ — 8, ¢ + &) such that f(x) > 0 on this interval.

65. Prove that if f is continuous on [0, 1] and satisfies
0 = f(x) =1 there, then f has a fixed point; that is, there is a
number cin [0, 1] such that f(c) = c. Hint: Apply the Intermedi-
ate Value Theorem to g(x) = x — f(x).

66. Find the values of a and b so that the following function is
continuous everywhere.

x+1 ifx<1
fx)=qax+b ifl=x<2
3x ifx=2

67. A stretched elastic string covers the interval [0, 1]. The
ends are released and the string contracts so that it covers the in-
terval [a, b],a = 0,b = 1. Prove that this results in at least one
point of the string being where it was originally. See Problem 65.

68. Let f(x) =ﬁ. Then f(-2) = —% and f(2) = 1.

Does the Intermediate Value Theorem imply the existence of a
number ¢ between —2 and 2 such that f(c¢) = 0? Explain.

69. Starting at 4 A.M., a hiker slowly climbed to the top of a
mountain, arriving at noon. The next day, he returned along the
same path, starting at 5 A.M. and getting to the bottom at 11 A.M.
Show that at some point along the path his watch showed the
same time on both days.

70. Let D be a bounded, but otherwise arbitrary, region in the
first quadrant. Given an angle 6,0 = 6 = /2, D can be circum-
scribed by a rectangle whose base makes angle 6 with the x-axis
as shown in Figure 16. Prove that at some angle this rectangle is a
square. (This means that any bounded region can be circum-
scribed by a square.)

Figure 16

71. The gravitational force exerted by the earth on an object
having mass m that is a distance r from the center of the earth is

M
GMmr e, < R
(r) R
g(r) =
M
GMm 4, = R

P
r2

Here G is the gravitational constant, M is the mass of the earth,
and R is the earth’s radius. Is g a continuous function of r?
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116 Chapter 2 Limits

72. Suppose that fis continuous on [a, b] and it is never zero
there. Is it possible that f changes sign on [a, b]? Explain.

73. Let f(x + y) = f(x) + f(y) for all x and y and suppose
that fis continuous at x = 0.
(a) Prove that fis continuous everywhere.
(b) Prove that there is a constant m such that f(¢) = mt for all ¢
(see Problem 43 of Section 1.5).
74. Prove that if f(x) is a continuous function on an interval

then so is the function |f(x)| = V(f(x))%

75. Show that if g(x) = |f(x)| is continuous it is not neces-
sarily true that f(x) is continuous.

76. Let f(x) = 0 if x is irrational and let f(x) = 1/q if x is
the rational number p/q in reduced form (g > 0).
(a) Sketch (as best you can) the graph of fon (0, 1).
(b) Show that fis continuous at each irrational number in (0, 1),
but is discontinuous at each rational number in (0, 1).

77. A thin equilateral triangular block of side length 1 unit
has its face in the vertical xy-plane with a vertex V at the origin.
Under the influence of gravity, it will rotate about V until a side
hits the x-axis floor (Figure 17). Let x denote the initial x-
coordinate of the midpoint M of the side opposite V, and let f(x)

denote the final x-coordinate of this point. Assume that the block
balances when M is directly above V.

(a) Determine the domain and range of f.

(b) Where on this domain is f discontinuous?

(c) Identify any fixed points of f (see Problem 65).

y y
M
! M
|
I
| v - . |
-1 x 0 I 0 1 X
S
Initial position Final position
Figure 17
Answers to Concepts Review: 1. lim f(x) 2. every inte-
xX—c

ger 3. lim f(x) = f(a); lim f(x) = f(b)
4. a;b; f(c) =W

2.8 Chapter Review
Concepts Test

Respond with true or false to each of the following assertions. Be
prepared to justify your answer.

1. If f(c) = L, then lim f(x) = L.

2. If lim f(x) = L, then f(c) = L.

xX—c

3. If lim f(x) exists, then f(c) exists.

4. If lin}) f(x) = 0, then for every € > 0 there existsa 6 > 0
X—>
such that 0 < |x| < & implies |f(x)| < e.
5. If f(c) is undefined, then lim f(x) does not exist.

x2 - 25
x—35

6. The coordinates of the hole in the graph of y =
are (5,10).
7. If p(x) is a polynomial, then lim p(x) = p(c).

X—c

sin x

8. lim does not exist.

x—0 X

9. For every real number c, lim tan x = tanc.
X—c

10. tan x is continuous at every point of its domain.

11. The function f(x) = 2sinh?> x — cosh x is continuous at
every real number.

12. If f is continuous at ¢, then f(c) exists.
13. If f is continuous on [0, 4], then lin%) f(x) exists.
¥

14. The function f(x) = cos™' x is
continuous at every point in (=1, 1).

15. If f is an invertible function with inverse f!, and if
lim £(x) = £(1), then 11%) flix)=1.
116

16. If r, is a sequence of rational numbers that converges to

m,then 77 = lim 7.
n— 0o

17. If f is a continuous function such that A = f(x) = B for
all x, then lim f(x) exists and it satisfies A = lim f(x) = B.
X—00 xX—>00

18. If f is continuous on (a, b) then lim f(x) = f(c) for all ¢
in (a, b). e
1, -7

19. Xango tan x = 2

20. If the line y = 2 is a horizontal asymptote of the graph of
y = f(x), then lim f(x) = 2.
21. The graph of y = tan x has many horizontal asymptotes.

22. The graphof y =

2 has two vertical asymptotes.

t

23. lim % = oo,
=1t — 1

24. If lim f(x) = lim _f(x), then f is continuous at x = c.
X—C X—c
25, If lim f(x) = f(lim x), then f is continuous at x = c.
X—C X—C
26. The function f(x) = [x/2] is continuous at x = 2.3.
27. If limzf(x) = f(2) > 0, then f(x) < 1.001f(2) for all x
in some interval containing 2.
28. If lim [f(x) + g(x)] exists, then lim f(x) and lim g(x)
both exist. '
29. If 0 < f(x) = 3x% + 2x* for all x, then lim f(x) = 0.
x—
30. If lim f(x) = L and lim f(x) = M, then L = M.
xX—a Xx—a

31. If f(x) # g(x) for all x, then lim f(x) # lim g(x).
XxX—c xX—c

32. If f(x) <10 for all x and lin12f(x) exists, then
lim f(x) < 10. *



33. If lim f(x) = b, then lim|f(x)| = |b].

34. If f is continuous and positive on [a, b], then 1/f must
assume every value between 1/f(a) and 1/f(b).

Sample Test Problems

In Problems 1-22, find the indicated limit or state that it does not
exist.

-2 2 1
1L lim > 2. lim %
=2 x + 2 u—1 u + 1
-1 +1
3. lim © 4. lim
u—1 u — 1 u—1 % — 1
1-2/x 2_ 4
5. tim 6. lim —°
=2 x° — 4 =2 724+ 7—6
3
¢ -1
7. lim —o 8. lim >
x—0 sin 2x y—1 v = 1
—4
9. lim — 10. lim <&
x—4 x — 2 x—0 X
E .
11. lim — 12. lim [4x]
x—0" X x—1/2*
13. lim ([¢] - 1) 14, fim X1
—2" -1 x—1
ins 1 — cos2
15. lim S2>% 16. lim — 2<%
x—0 3x x—0 3x
ox—1 . sint
17. lim 18. lim -2t
x—00 X + 2 t—oo f
19. lim ¢ 20. lim &7
x— 00 x—0" X
21. lim tan2x 22. lim In x?
x—>/4 x—0"

23. Prove using an -8 argument that lin% 2x+1)="17.
x—

x ifx < —1
24, Let f(x) = x f—-1<x<1
1—x ifx=1

Find each value.
(a) f(1)
© lim f(x)
25. Refer to fof Problem 24.

(b) lim f(x)
(@ lim f(x)

(a) What are the values of x at which fis discontinuous?

(b) How should f be defined at x = —1 to make it continuous
there?
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26. Give the -6 definition in each case.
(a) lim g(u) = M (b) lim f(x) =1L

27. If 11_% f(x) = 3 and }1_)m3 g(x) = —2 and if g is continuous
at x = 3,'find each value. ,
(@) lim () —4g(0)] () lim g(x)
© £0) (@) lim g(f(x))
() lim V/2(x) = 8g(x) ) lg'g()‘)ﬂ_f“)'

28. Sketch the graph of a function f that satisfies all the fol-
lowing conditions.

(a) TIts domain is [0, 6].

(®) f(0) =f(2) =f(4) = f(6) = 2.
(c) fis continuous except at x = 2.
(d) li_)n217 f(x) =1and xli_)nig f(x) = 3.

-1 ifx =0
29. Letf(x) =qax +b if0<x<1
1 ifx=1

Determine a and b so that f'is continuous everywhere.

30. Use the Intermediate Value Theorem to prove that the
equation x> — 4x> —3x + 1 =10 has at least one solution
between x = 2 and x = 3.

In Problems 31-36, find the equations of all vertical and horizon-
tal asymptotes for the given function.

X X
31. = 32. =
1) 2 +1 8(x) 2 +1
x? x°
33. F = 34. G =
() -1 () X2 -4

35. h(x) = tan 2x 36. H(x) =2tan 'x

In Problems 37-38, determine the largest interval over which the
given function is continuous.

37. f(x) = cos’lg

38. f(x) =In(25 — x?)
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REVIEW 1. Let f(x) = x° Find and simplify each of the following.
PREVIEW (a) f(2) (b) f(2.1)

f21) = f(2)
PROBLEMS © 71 -f@) @ =51
(e) fla+h) (f) fla+ h)— f(a)
fla+ h) — f(a) . fla+h)—f(a)
® i m-a O e —a

2. Repeat (a) through (h) of Problem 1 for the function f(x) = 1/x.

3. Repeat (a) through (h) of Problem 1 for the function f(x) = Vx.

4. Repeat (a) through (h) of Problem 1 for the function f(x) = x* + 1.

5. Write the first two terms in the expansions of the following:
(@) (a+b) (b) (a+b)°
© (a+0b)y

6. Based on your results from Problem 5, make a conjecture about the first two terms
in the expansion of (a + b)" for an arbitrary n.

7. Use a trigonometric identity to write sin(x + /) in terms of sin x, sin 4, cos x, and
cos h.

8. Use a trigonometric identity to write cos(x + /) in terms of cos x, cos A, sin x, and
sin /.

9. A wheel centered at the origin and of radius 10 centimeters is rotating counterclock-
wise at a rate of 4 revolutions per second. A point P on the rim of the wheel is at position
(10,0) at time ¢ = 0.

(a) What are the coordinates of P at times ¢ = 1,2, 3?
(b) At what time does the point P first return to the starting position (10, 0)?
10. Assume that a soap bubble retains its spherical shape as it expands. At time ¢t = 0 the

soap bubble has radius 2 centimeters. At time ¢ = 1, the radius has increased to 2.5 cen-
timeters. How much has the volume changed in this 1 second interval?

11. One airplane leaves an airport at noon flying north at 300 miles per hour. Another
leaves the same airport one hour later and flies east at 400 miles per hour.

(a) What are the positions of the airplanes at 2:00 p.M.?
(b) What is the distance between the two planes at 2:00 p.M.?
(c) What is the distance between the two planes at 2:15 p.M.?

12. Write as the logarithm of a single quantity:
Inx +2In(x*> +4) —3In(x + 1)

In Problems 13-16, evaluate the given limits.

13. lim (1 — %)
n— o0 n

h 2/h
14. lim <1 + 7)
h—0 2

15. lim <1 +
h—0

3
1/h
16. lim <1 + ﬁ)
h—0 X
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Tangent line at P

Figure 1

Tangent line at P

Figure 2

3.1
Two Problems with One Theme

Our first problem is very old; it dates back to the great Greek scientist Archimedes
(287-212 B.C.). We refer to the problem of the slope of the tangent line. Our second
problem is newer. It grew out of attempts by Kepler (1571-1630), Galileo
(1564-1642), Newton (1642-1727), and others to describe the speed of a moving
body. It is the problem of instantaneous velocity.

The two problems, one geometric and the other mechanical, appear to be quite
unrelated. In this case, appearances are deceptive. The two problems are identical
twins.

The Tangent Line Euclid’s notion of a tangent as a line touching a curve at
just one point is all right for circles (Figure 1) but completely unsatisfactory for
most other curves (Figure 2). The idea of a tangent to a curve at P as the line that
best approximates the curve near P is better, but is still too vague for mathematical
precision. The concept of limit provides a way of getting the best description.

Let P be a point on a curve and let Q be a nearby movable point on that curve.
Consider the line through P and Q, called a secant line. The tangent line at P is
the limiting position (if it exists) of the secant line as Q moves toward P along the
curve (Figure 3).

Suppose that the curve is the graph of the equation y = f(x). Then P has
coordinates (c, f(c)), a nearby point Q has coordinates (¢ + h, f(c¢ + h)), and the
secant line through P and Q has slope mg given by (Figure 4):

fle+h) — f(c)

Mgee =

h
Y y=fx)
Secant Secant line
lines
fle+m—+ c+h,fle+h)
0
Tangent Tangent line
line
Q
fle+h) =f(c)
o
. fO—+ e
Il Il
71 T -
The tangent line is the limiting c c+h
position of the secant line. Mgy = 1im m
h— 0
Figure 3 Figure 4

Using the concept of limit, which we studied in the last chapter, we can now give a
formal definition of the tangent line.

Definition Tangent Line

The tangent line to the curve y = f(x) at the point P(c, f(c)) is that line
through P with slope

. _ o flet h) = fle)
Man = %li%msec - }llm h

—0

provided that this limit exists and is not 00 or —o0.

From Chapter 3 of Calculus Early Transcendentals, First Edition. Dale Varberg, Edwin J. Purcell, Steve E. Rigdon.
Copyright © 2007 by Pearson Education, Inc. All rights reserved.
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Figure 5

y=—x+2x+2

Figure 6

Figure 7

120

Find the slope of the tangent line to the curve y = f(x) = x>

at the point (2, 4).

SOLUTION The line whose slope we are seeking is shown in Figure 5. Clearly it
has a large positive slope.

f@2+h) - f2)

mtan = }11112) I’l
. (2+h)? -2
= lim ——
h—0 h
. A+ 4h+ P-4
= lim
h—0 h
o K4+ h)
R
=4 |

Find the slopes of the tangent lines to the curve

y = f(x) = —x? + 2x + 2 at the points with x-coordinates —1, %, 2, and 3.

SOLUTION Rather than make four separate calculations, it seems wise to
calculate the slope at the point with x-coordinate ¢ and then obtain the four
desired answers by substitution.

fle+h)—f(c)
h

My = ilzl—rﬂ)

o —(c+h)?+2c+h) +2— (- +2c+2)
= lim
h—0 h
. =t —2ch— MW +2c+2h+2+*—2c-2
= lim
h—0 h
g H(—2c — h +2)
_hl—rﬂ) K
= -2c+2

The four desired slopes (obtained by letting ¢ = —1, %, 2,3) are 4,1, =2, and —4.
These answers do appear to be consistent with the graph in Figure 6. [ |

Find the equation of the tangent line to the curve y = 1/x at

(2, %) (see Figure 7).
SOLUTION Let f(x) = 1/x.

Myan = }llll)r})

f2+h) - 12
h

L1
2+h 2
h

= lim
h—0

2 2+ h

. 22+ h) 22+ h)
= lim
h—0 h
2—-2+h)

=M 20 1 mh

= lim _7}1

=0 2(2 + h)h
-1 1

lim ——
022 + h) 4
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1st second {
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Figure 8
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Distance traveled
8
|

%3
S
|

Figure 9

Change in time

(oY

ct+h

Change in
position

Figure 10
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Knowing that the slope of the tangent line is — % and that the point (2, %) is onit,we
can easily write its equation by using the point-slope form y — y, = m(x — x).

The resultis y — % = —1(x = 2), or equivalently, y = 1 — %x. [ |

4

Average Velocity and Instantaneous Velocity If we drive an automo-
bile from one town to another 80 miles away in 2 hours, our average velocity is 40
miles per hour. Average velocity is the distance from the first position to the second
position divided by the elapsed time.

But during our trip the speedometer reading was often different from 40. At
the start, it registered 0; at times it rose as high as 57; at the end it fell back to 0
again. Just what does the speedometer measure? Certainly, it does not indicate
average velocity.

Consider the more precise example of an object P falling in a vacuum. Ex-
periment shows that if it starts from rest, P falls 16¢2 feet in ¢ seconds. Thus, it falls
16 feet in the first second and 64 feet during the first 2 seconds (Figure 8); clearly,
it falls faster and faster as time goes on. Figure 9 shows the distance traveled (on
the vertical axis) as a function of time (on the horizontal axis).

During the second second (i.e., in the time interval from ¢t = 1 to ¢ = 2), P fell
64 — 16 = 48 feet. Its average velocity was

64 — 16

o1 48 feet per second

Vavg =

During the time interval from ¢ = 1 to ¢t = 1.5, it fell 16(1.5)> — 16 = 20 feet. Its
average velocity was
16(1.5)* — 16

20
5-1 ~05- 40 feet per second

Vavg =

Similarly, on the time intervalst = 1tot = 1.1 andt = 1 tot = 1.01, we calculate
the respective average velocities to be

16(1.1)> = 16 3.36

Vavg = 111 o1 33.6 feet per second
16(1.01)* = 16 03216
Vavg = (1.01 )_ T " ool 32.16 feet per second

What we have done is to calculate the average velocity over shorter and short-
er time intervals, each starting at t = 1. The shorter the time interval is, the better
we should approximate the instantaneous velocity at the instant t = 1. Looking at
the numbers 48, 40, 33.6, and 32.16, we might guess 32 feet per second to be the
instantaneous velocity.

But let us be more precise. Suppose that an object P moves along a coordinate
line so that its position at time ¢ is given by s = f(¢). At time c the object is at f(c);
at the nearby time ¢ + A, itis at f(c¢ + h) (see Figure 10). Thus the average veloc-
ity on this interval is

fle + ) = £(0)

Vavg = h

We can now define instantaneous velocity.

Definition Instantaneous Velocity

If an object moves along a coordinate line with position function f(¢), then its
instantaneous velocity at time c is

L Fe )~ £

v = limv,, =
h—0 Y& p50 h

provided that the limit exists and is not 00 or —oo.
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Two Problems with One Theme

In the case where f(¢) = 16¢2, the instantaneous velocity at t = 1 is

fA+h)— 1)

v h
_16(1 + h)> - 16
= lim
h—0 h
B 16 + 32h + 16K* — 16
= h
= lim (32 + 16h) = 32

This confirms our earlier guess.

Now you see why we called this
section “Two Problems with One
Theme.” Look at the definitions of
slope of the tangent line and
instantaneous velocity. They give
different names for the same mathe-
matical concept.

Distance traveled
N w I
wn w W & wn
T R A |
L

S}
|
1

Figure 11
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I EXAMPLE 4] An object, initially at rest, falls due to gravity. Find its instan-
taneous velocity at t = 3.8 seconds and at ¢ = 5.4 seconds.

SOLUTION We calculate the instantaneous velocity at t = ¢ seconds. Since

f(t) = 1612,
. fle+h) = f(c)
v = lim
h—0 h
_16(c + h)? — 16¢?
= lim
h—0 h
. 16¢2 + 32¢h + 16H* — 1662
= lim
h—0 h
= %in})(32c + 16h) = 32¢

Thus, the instantaneous velocity at 3.8 seconds is 32(3.8) = 121.6 feet per second;
at 5.4 seconds, it is 32(5.4) = 172.8 feet per second. [ |

How long will it take the falling object of Example 4 to reach

an instantaneous velocity of 112 feet per second?

SOLUTION We learned in Example 4 that the instantaneous velocity after ¢
secorllgs is 32c. Thus, we must solve the equation 32¢ = 112. The solution is

5 = 3.5 seconds. [

A particle moves along a coordinate line and s, its directed

distance in centimeters from the origin after ¢ seconds, is given by s = f(t) =
V5t + 1. Find the instantaneous velocity of the particle after 3 seconds.

SOLUTION Figure 11 shows the distance traveled as a function of time. The

instantaneous velocity at time ¢ = 3 is equal to the slope of the tangent line at
t =3

fB3+h) - fB3)

v = Jim h
V5B +h) +1-V53) +1
= lim
h—0 h
. V16 + Sh — 4
=0 h

To evaluate this limit, we rationalize the numerator by multiplying the numerator
and denominator by V16 + 54 + 4. We obtain
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<
|
=
3

(\/16+5h—4.\/16+5h+4>

h V16 + 5h + 4
. 16 + 5h — 16

= lim

=0 p(\/16 + Sh + 4)

5 5
lim ——— = =
h=0\/16 + 5h + 4 8

We conclude that the instantaneous velocity after 3 seconds is % centimeter per
second. |

Rates of Change Velocity is only one of many rates of change that will be
: : : important in this course; it is the rate of change of distance with respect to time.
For the time being, we will use the Other rates of change that will interest us are density for a wire (the rate of
terms velocity and speed inter- change of mass with respect to distance), marginal revenue (the rate of change of
changeably. Later in this chapter, we . :
oy o revenue with respect to the number of items produced), and current (the rate
will distinguish between these two . . :
words. of change of electrical charge with respect to time). These rates and many more
are discussed in the problem set. In each case, we must distinguish between an
average rate of change on an interval and an instantaneous rate of change at a
point. The phrase rate of change without an adjective will mean instantaneous rate

Velocity or Speed

of change.
Concepts Review
1. The line that most closely approximates a curve near the 3. The slope my,, of the tangent line to the curve y = f(x)
point P is the through that point. at (c, f(c)) is given by my,, = %in%)
2. More precisely, the tangent line to a curve at P is the lim- 4. The instantaneous velocity of a point P (moving along a
iting position of the line through P and Q as Q approaches line) at time c is the limit of the on the time interval c to
P along the curve. ¢ + has h approaches zero.

Problem Set 3.1

In Problems 1 and 2, a tangent line to a curve is drawn. Estimate its 5.
slope (slope = rise/run). Be careful to note the difference in
scales on the two axes.

1. y 2.
1 2 3 x

In Problems 3-6, draw the tangent line to the curve through the
indicated point and estimate its slope.

3.

_ka\qm

1 2 3 X

L /4@4

2o r2sase T 7. Consider y = x> + 1.
(a) Sketch its graph as carefully as you can.
(b) Draw the tangent line at (1,2).
(c) Estimate the slope of this tangent line.
(d) Calculate the slope of the secant line through (1, 2) and

y 4.
(1.01, (1.01)% + 1.0).
(e) Find by the limit process (see Example 1) the slope of the
tangent line at (1, 2).
! 8. Consider y = x* — 1.

Praes et 2o rrsaes e T X (a) Sketch its graph as carefully as you can.

[ S ]

s
L
A A

123



124 Chapter 3 The Derivative

(b) Draw the tangent line at (2, 7).
(c) Estimate the slope of this tangent line.

(d) Calculate the slope of the secant line through (2, 7) and
(2.01, (2.01)* — 1.0).

(e) Find by the limit process (see Example 1) the slope of the
tangent line at (2, 7).

9. Find the slopes of the tangent lines to the curve
y = x? — 1 at the points where x = —2, —1,0, 1,2 (see Exam-
ple 2).

10. Find the slopes of the tangent lines to the curve
y = x> — 3x at the points where x = —2, 1,0, 1, 2.

11. Sketch the graph of y = 1/(x + 1) and then find the
equation of the tangent line at (1, %) (see Example 3).

12. Find the equation of the tangent lineto y = 1/(x — 1) at
(0, —1).

13. Experiment suggests that a falling body will fall approx-
imately 16¢° feet in ¢ seconds.

(a) How far will it fall between t = 0 and ¢ = 1?

(b) How far will it fall between t = 1 and ¢t = 2?

(c) What is its average velocity on the interval 2 < ¢ =< 3?
(d) What is its average velocity on the interval 3 = ¢ = 3.01?
(e) Find its instantaneous velocity at t = 3 (see Example 4).

14. An object travels along a line so that its position s is
s = 1> + 1 meters after ¢ seconds.

(a) What is its average velocity on the interval 2 < ¢ < 3?
(b) What is its average velocity on the interval 2 = ¢ = 2.003?

(c) What is its average velocity on the interval 2 = ¢t =< 2 + h?
(d) Find its instantaneous velocity at t = 2.

15. Suppose that an object moves along a coordinate line so
that its directed distance from the origin after ¢ seconds is
V2t + 1 feet.

(a) Find its instantaneous velocity att = a, « > 0.

(b) When will it reach a velocity of% foot per second? (see Ex-
ample 5.)

16. If a particle moves along a coordinate line so that its
directed distance from the origin after ¢ seconds is (—t> + 4¢)
feet, when did the particle come to a momentary stop (i.e., when
did its instantaneous velocity become zero)?

17. A certain bacterial culture is growing so that it has a mass
of % 1> 4+ 1 grams after ¢ hours.
(a) How much did it grow during the interval 2 = ¢ =< 2.01?

(b) What was its average growth rate during the interval
2=1=201?

(c) What was its instantaneous growth rate at t = 2?
18. A business is prospering in such a way that its total (accu-
mulated) profit after ¢ years is 1000¢> dollars.

(a) How much did the business make during the third year (be-
tweent = 2 and ¢ = 3)?

(b) What was its average rate of profit during the first half of the
third year, between ¢ = 2 and t = 2.5? (The rate will be in
dollars per year.)

(c) What was its instantaneous rate of profit at t = 2?
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19. A wire of length 8 centimeters is such that the mass be-
tween its left end and a point x centimeters to the right is x°
grams (Figure 12).

f xcm |
\ _
N J
Y
Mass is x> g

Figure 12

(a) What is the average density of the middle 2-centimeter seg-
ment of this wire? Note: Average density equals mass/length.

(b) What is the actual density at the point 3 centimeters from
the left end?

20. Suppose that the revenue R(n) in dollars from producing
n computers is given by R(n) = 0.4n — 0.0017%. Find the instan-
taneous rates of change of revenue when n = 10 and n = 100.
(The instantaneous rate of change of revenue with respect to the
amount of product produced is called the marginal revenue.)

21. The rate of change of velocity with respect to time is
called acceleration. Suppose that the velocity at time 7 of a par-
ticle is given by v(¢) = 2¢%. Find the instantaneous acceleration
when ¢t = 1 second.

22. A city is hit by an Asian flu epidemic. Officials estimate
that ¢ days after the beginning of the epidemic the number of per-
sons sick with the flu is given by p(¢) = 12062 — 2¢°, when
0 =t =40. At what rate is the flu spreading at time
t =105t = 20;¢t = 40?

23. The graph in Figure 13 shows the amount of water in a
city water tank during one day when no water was pumped into
the tank. What was the average rate of water usage during the
day? How fast was water being used at 8 A.M.?

800
600
400

200

Thousands of gallons

4 8 12 16 20 24

Time in hours

Figure 13

24. Passengers board an elevator at the ground floor (i.e., the
zeroth floor) and take it to the seventh floor, which is 84 feet
above the ground floor. The elevator’s position s as a function of
time ¢ (measured in seconds) is shown in Figure 14.

80

10 20 30 40 50 60 70 80 90
t (seconds)

Figure 14



(a) What is the average velocity of the elevator from the time
the elevator began moving until the time that it reached the
seventh floor?

(b) What was the elevator’s approximate velocity at time
t =207

(c) How many stops did the elevator make between the ground
floor and the seventh floor (excluding the ground and sev-
enth floors)? On which floors do you think the elevator
stopped?

25. Figure 15 shows the normal high temperature for St.
Louis, Missouri, as a function of time (measured in days begin-
ning January 1).

100

90

n 80

70

60

Normal high temperature
for St. Louis

1 31 61 91 121 151 181 211 241 271 301 331 361
Day of the year

Figure 15

(a) What is the approximate rate of change in the normal high
temperature on March 2 (i.e., on day number 61)? What are
the units of this rate of change?

(b) What is the approximate rate of change in the normal high
temperature on July 10 (i.e., on day number 191)?

(c) Inwhat months is there a moment when the rate of change is
equal to 0?7

(d) In what months is the absolute value of the rate of change
the greatest?

26. Figure 16 shows the population in millions of a develop-
ing country for the years 1900 to 1999. What is the approximate
rate of change of the population in 1930? In 1990? The percent-
age growth is often a more appropriate measure of population
growth. This is the rate of growth divided by the population size
at that time. For this population, what was the approximate per-
centage growth in 1930? In 1990?

24

20

Population (millions)

1910 1930 1950 1970 1990
Year

Figure 16
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27. Figures 17a and 17b show the position s as a function of
time ¢ for two particles that are moving along a line. For each par-
ticle, is the velocity increasing or decreasing? Explain.

N N

(a) (b)
Figure 17

28. The rate of change of electric charge with respect to time
is called current. Suppose that %13 + ¢ coulombs of charge flow
through a wire in ¢ seconds. Find the current in amperes
(coulombs per second) after 3 seconds. When will a 20-ampere
fuse in the line blow?

29. The radius of a circular oil spill is growing at a constant
rate of 2 kilometers per day. At what rate is the area of the spill
growing 3 days after it began?

30. The radius of a spherical balloon is increasing at the rate
of 0.25 inch per second. If the radius is 0 at time ¢ = 0, find the
rate of change in the volume at time ¢t = 3.

Use a graphing calculator or a CAS to do Problems 31-34.
31. Draw the graph of y = f(x) = x* — 2x? + 1. Then find
the slope of the tangent line at
(a) —1 (b) 0 (c) 1 (d) 3.2
32. Draw the graph of y = f(x) = sin x sin? 2x. Then find
the slope of the tangent line at
(a) 7/3 (b) 2.8 (c) = (d) 42
33. If a point moves along a line so that its distance s (in feet)

from 0 is given by s = ¢ + tcos’ ¢ at time ¢ seconds, find its
instantaneous velocity at r = 3.

34. If a point moves along a line so that its distance s (in me-
ters) from 0 is given by s = (¢ + 1)3/(¢ + 2) at time ¢ minutes,
find its instantaneous velocity at t = 1.6.

Answers to Concepts Review: 1. tangentline 2. secant
3. [f(c + h) — f(c)]/h 4. average velocity
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3.2
The Derivative

We have seen that slope of the tangent line and instantaneous velocity are manifes-
tations of the same basic idea. Rate of growth of an organism (biology), marginal
profit (economics), density of a wire (physics), and dissolution rates (chemistry)
are other versions of the same basic concept. Good mathematical sense suggests
that we study this concept independently of these specialized vocabularies and
diverse applications. We choose the neutral name derivative. Add it to function and
limit as one of the key words in calculus.

Definition Derivative

The derivative of a function f is another function f' (read “f prime”) whose
value at any number x is

) — tim TEE R =IO

h—0 h

If this limit does exist, we say that fis differentiable at x. Finding a derivative is
called differentiation; the part of calculus associated with the derivative is called
differential calculus.

Finding Derivatives We illustrate with several examples.

Let f(x) = 13x — 6. Find f'(4).

SOLUTION
(4 = I ftd+h)—f(4) ’ [13(4 + h) — 6] — [13(4) — 6]
F'4) = b h s h
=lim@=liml3=13 [ |
h—0 h h—0
If f(x) = x> + 7x, find f'(x).
SOLUTION
o fx+h) = f(x)
f'(x) = lim P’
[(x + h)? + 7(x + h)] - [x3 + 7x]
= lim
h—0 h
3x°h + 3xk* + K + Th
= l1m
h—0 h

= ;11111%(3x2 + 3xh + K* +7)

=3x2+7 n
If f(x) = 1/x, find f'(x).
SOLUTION

1
o fx+h)—f(x) . x+h x
L S

:limx_(Hh)-l}:%ig}){( —h 1]

o0l (x + h)x  h X+ hx h
Tl S
TS x| 22



(c +h, fc+ h))

L fle+ ) —f()

Figure 1

L f)—f©)
© f©) |

Figure 2
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Thus, f' is the function given by f'(x) = —1/x% Its domain is all real numbers
exceptx = 0. |
Find F'(x) if F(x) = Va,x > 0.
SOLUTION
F(x +h) — F(x
F'(x) = lim ( ) )
h—0
. Vx+h—Vx
B A A

By this time you will have noticed that finding a derivative always involves taking
the limit of a quotient where both numerator and denominator are approaching
zero. Our task is to simplify this quotient so that we can cancel a factor /4 from the
numerator and denominator, thereby allowing us to evaluate the limit by sub-
stitution. In the present example, this can be accomplished by rationalizing the
numerator.

Fx) = Hm[\/er - Vx Vx+h+ \/}}
h=0 h Vx + h+ Vx

. x+h—x
= lim

W h(Vx b+ V)

= lim

h
=0 p(Vx + b+ Vi)
lim L
= 1 _—
=0 \/x + h + Vx

1 1
T Vx+ Vx 2V

Thus, F’, the derivative of F, is given by F'(x) = 1/(2\/)?). Its domain is
(0, 00). |

Equivalent Forms for the Derivative There is nothing sacred about use
of the letter £ in defining f'(c). Notice, for example, that

h) —
f,(c):%g%]f(c—’— })l f(C)
o fletp) - (o)
= lim
p—0 p
I ICEDENIO
= l1m
s—0 N

A more radical change, but still just a change of notation, may be understood
by comparing Figures 1 and 2. Note how x takes the place of ¢ + A, and so x — ¢
replaces h. Thus,

f(x) = f(e)

X —C

f'(c) = lim

X—C

Note that in all cases the number at which f' is evaluated is held fixed during
the limit operation.
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-1 1

Figure 3
128

Use the last boxed result to find g'(c) if g(x) = 2/(x + 3).

SOLUTION

22
. g(x) —gle) . x+3 c+3
g'(c) =lim ———— = lim ————

x—c X —C x—c X —C

o [2(e+3) =2(x+3) 1
_xac[ (x +3)(c +3) .x—c}

- i |
-2 -2

Gt t3) (et

Here we manipulated the quotient until we could cancel a factor of x — ¢ from the
numerator and denominator. Then we could evaluate the limit. |

Each of the following is a derivative, but of what function and

at what point?
2

i (4 + h)> — 16 o) L
@ lim —— (6) lim ~—

SOLUTION
(a) This is the derivative of f(x) = x?at x = 4.
(b) This is the derivative of f(x) = 2/x atx = 3. [ |

W|wN

Differentiability Implies Continuity If a curve has a tangent line at a
point, then that curve cannot take a jump or wiggle too badly at the point. The pre-
cise formulation of this fact is an important theorem.

1w iY] Differentiability Implies Continuity

If f'(c) exists, then fis continuous at c.

Proof We need to show that lim f(x) = f(c). We begin by writing f(x) in a

fancy way. e
£(x) = fle) + w“ —c), x#c
Therefore,
tim £(x) = tim | (e + 2T
=t o)+ iy e -0
=f(e) +f(c):0
= f(c) ]

The converse of this theorem is false. If a function fis continuous at c, it does
not follow that f has a derivative at c. This is easily seen by considering f(x) = |x|
at the origin (Figure 3). This function is certainly continuous at zero. However, it
does not have a derivative there, as we now show. Note that for f(x) = x|,
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FO+h) = £(0) 10+ nl—lol _ |nl

h h h
Thus,
fim 2O SO WAl
h—0" h h—0" h h—0*h
whereas
A Cl) Bt G T e
h—0" h h—0" h h—0" h

Since the right- and left-hand limits are different,

L F(0+R) = f(0)
im
h—0 h

does not exist. Therefore, f'(0) does not exist.

A similar argument shows that at any point where the graph of a continuous
function has a sharp corner the function is not differentiable. The graph in Figure 4
indicates a number of ways for a function to be nondifferentiable at a point.

| y =flx)
Vertical

Corner tangent

I I ! I

T T T I X

a b\ /c d
f not continuous, fcontinuous, f continuous
therefore not but not and
differentiable differentiable differentiable

Figure 4

For the function shown in Figure 4 the derivative does not exist at the point ¢
where the tangent line is vertical. This is because

fle+h) = fle) _
m

h—0 h B

This corresponds to the fact that the slope of a vertical line is undefined.

Increments If the value of a variable x changes from x; to x,, then x, — x,
the change in x, is called an increment of x and is commonly denoted by Ax (read
“delta x”). Note that Ax does not mean A times x. If x; = 4.1 and x, = 5.7, then

Ax=x,—x1=57—-41=16
If x; = cand x, = ¢ + h, then
Ax=xy—xy=c+h—-—c=h

Ay Suppose next that y = f(x) determines a function. If x changes from x; to x,,
then y changes from y; = f(x;) to y, = f(x,). Thus, corresponding to the incre-
ment Ax = x, — xyin x, there is an increment in y given by

Ay =y, =y = f(x2) = f(x1)

Let y = f(x) = 2 — x% Find Ay when x changes from 0.4 to

Figure 5 1.3 (see Figure 5).
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130 Chapter 3 The Derivative

SOLUTION
Ay = f(13) = f(0.4) = [2 = (13)*] = [2 = (0.4)?] = —1.53 -
Leibniz Notation for the Derivative Suppose now that the independent

variable changes from x to x + Ax. The corresponding change in the dependent
variable, y, will be

Ay = f(x + Ax) = f(x)
and the ratio

Ay flx+ Ax) - f(x)
Ax Ax

y (x + Ax, f(x + Ax))
fix+ Ax) T+
Ay
o1 & f(x) #-----5-------
! !
T T
X X+ Ax
Figure 6

Figure 7
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x  represents the slope of a secant line through (x, f(x)), as shown in Figure 6. As
Ax — 0, the slope of this secant line approaches that of the tangent line, and for
this latter slope we use the symbol dy/dx. Thus,

dy _ i Ay _ lim flx + Ax) = f(x) _ F(x)
dx Ax—0 Ax  Ax—0 Ax

Gottfried Wilhelm Leibniz, a contemporary of Isaac Newton, called dy/dx a quo-
tient of two infinitesimals. The meaning of the word infinitesimal is vague, and we
will not use it. However, dy/dx is a standard symbol for the derivative and we will
use it frequently from now on.

The Graph of the Derivative The derivative f’(x) gives the slope of the
tangent line to the graph of y = f(x) at the value of x. Thus, when the tangent line
is sloping up to the right, the derivative is positive, and when the tangent line is
sloping down to the right, the derivative is negative. We can therefore get a rough
picture of the derivative given just the graph of the function.

Given the graph of y = f(x) shown in the first part of

Figure 7, sketch a graph of the derivative f'(x).

SOLUTION For x < 0, the tangent line to the graph of y = f(x) has positive
slope. A rough calculation from the plot suggests that when x = —2, the slope is
about 3. As we move from left to right along the curve in Figure 7, we see that the
slope is still positive (for a while) but that the tangent lines become flatter and
flatter. When x = 0, the tangent line is horizontal, telling us that f'(0) = 0. For x
between 0 and 2, the tangent lines have negative slope, indicating that the
derivative will be negative over this interval. When x = 2, we are again at a point
where the tangent line is horizontal, so the derivative is equal to zero when x = 2.
For x > 2, the tangent line again has positive slope. The graph of the derivative
f'(x) is shown in the last part of Figure 7. [ |

Tangent line )
has slope 0 =/(0)
3r  whenx=0and

when x =2

Tangent line
has slope 3
when x = -2

b 2,0)
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Concepts Review

1. The derivative of f at x is given by f'(x) = }lim
Equivalently, f'(x) = lim -0
t—x

2. The slope of the tangent line to the graph of y = f(x) at
the point (c, f(c)) is .

3. If fis differentiable at c, then fis at c¢. The converse
is false, as is shown by the example f(x) =

4. If y = f(x), we now have two different symbols for the
derivative of y with respect to x. They are and

Problem Set 3.2

In Problems 1-4, use the definition
) = g €121
to find the indicated derivative.
1 f'(1)if f(x) = x? 2. f'(2)if f(r) = (21)°
3. f'R)iff(t) =1 —t 4. f'(4)if f(s) !

In Problems 5-22, use f'(x) = Ilig})[f(x + h) — f(x)]/h to find

Ts—1
the derivative at x.

5 s(x)=2x+1 f(x) =ax + B
7. r(x) =3x> + 4 8 f(x)=x>+x+1
9. f(x)=ax*+bx+c 10. f(x) = x*
1. f(x) =x>+2x> + 1 120 g(x) = x*+ x?
2 1
13. h(x) = T 14. S(x) = T 1
6 x—1
15. F = 16. F =
5. F(x) 241 6. F(x) 1
2x — 1 2x
17. G(x) = Pa— 18. G(x) = 2
1
19. g(x) = V3x 20. g(x) =
;3 V3x
21. H(x) = —— 22. H(x) =Vx*+4
x—2

In Problems 23-26, use f'(x) = Gim [f(t) — f(x)]/[t — x] to find
f'(x) (see Example 5). (—x

23, f(x) = x* — 3x 24, f(x) = x* + 5x

2. f(x) = 2. flx) =73

In Problems 27-36, the given limit is a derivative, but of what func-
tion and at what point? (See Example 6.)

2(5 + h)®> = 2(5)°

27, Jim, h
B+ R*P+23+h) —15
28. lim
h—0 h
2 3
J— + —
29, fim *— 4 30, lim ~ X~ 30
x—2 x — 2 x—3 x—3
2 _ .2 3 _ .3
3. lim 3. lim 2
t—>x [ — X p=>x P — X
2_2
sin x — sin
33. lim ' 34, fim 0 Y
x—=t X — x—y X -y

. cos(x + h) — cos x . tan(t + h) — tant
35. lim 36. lim

h—0 h h=0 h

In Problems 3744, the graph of a function y = f(x) is given. Use
this graph to sketch the graph of y = f'(x).

37. y 38.

y
2 2
- 1\
1 1 1 1 1 Il Il Il 1 L 1

-3-2_1/1 ; 3 2 -l 1 N3 X
-1 -1

[N}
w
=

41. y 42,

2
1+
| | | | |
2 3

-3 2 -1 1

43. y 4. y

In Problems 45-50, find Ay for the given values of x; and x, (see
Example 7).
45. y=3x+2,x=1,x, =15
46. y =3x> + 2x + 1,x, = 0.0, x, = 0.1
47. y = %, x; =10,x, =12
2

48.y=x_’_1

, X1 :O,XZ:().l
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3
(Clg9. y = Pt 234, x, = 2.31

[C]50. y = cos2x,x, = 0.571, x, = 0.573
In Problems 51-56, first find and simplify
Ay flx+ Ax) - f(x)

Ax Ax
Then find dy/dx by taking the limit of your answer as Ax — 0.
51 y = x° 52. y = x> — 3x?
1 1
.y = 4 y=1+—
53. x +1 4.y X
-1 2 -1
55 y =2 56 y =

x+1 X
57. From Figure 8, estimate f'(0), f'(2), f'(5), and f'(7).
58. From Figure 9, estimate g'(—1), g'(1), g’(4), and g'(6).

y y
5 »\':_/'(,\‘) /
4
4
3
3
2
N | y=20
-1 123 456 7x
=] 1 2 3 4 5 6 7 x
Figure 8 Figure 9

59. Sketch the graph of y = f'(x) on —1 < x < 7 for the
function fin Figure 8.

60. Sketch the graph of y = g’(x) on —1 < x < 7 for the
function g in Figure 9.

61. Consider the function y = f(x), whose graph is sketched
in Figure 10.

Figure 10

(a) Estimate f(2), f'(2), £(0.5), and f'(0.5).
(b) Estimate the average rate of change in f on the interval

05 =x =25

(c) Where on the interval —1 < x < 7 does lim f(u) fail to
exist? v

(d) Where on the interval —1 < x <7 does f fail to be
continuous?

(e) Where on the interval —1 < x < 7 does f fail to have a
derivative?

(f) Where on the interval —1 < x < 71is f'(x) = 0?
132

(g) Where on the interval =1 < x < 7is f'(x) = 1?

62. Figure 14 in Section 3.1 shows the position s of an eleva-
tor as a function of time . At what points does the derivative
exist? Sketch the derivative of s.

63. Figure 15 in Section 3.1 shows the normal high tempera-
ture for St. Louis, Missouri. Sketch the derivative.

64. Figure 11 shows two functions. One is the function f, and
the other is its derivative f'. Which one is which?

y

25 1

20 +

. I
1 4 X
5+

_10

Figure 11

65. Figure 12 shows three functions. One is the function f;
another is its derivative f’, which we will call g; and the third is
the derivative of g. Which one is which?

y

—10L

Figure 12

66. Suppose that f(x + y) = f(x)f(y) for all x and y.
Show that if f'(0) exists then f’(a) exists and f'(a) = f(a)f’(0).

mx +b ifx <2
67. Let f(x) = {xz fy =2
Determine m and b so that fis differentiable everywhere.
68. The symmetric derivative f,(x) is defined by
_ o Jxt+h) — fx — k)
fS(x) - }lli)r}] Zh

Show that if f'(x) exists then f(x) exists, but that the converse is
false.

69. Let fbe differentiable and let f'(xy) = m. Find f'(—x)
if
(a) fis an odd function.



(b) fis an even function.

70. Prove that the derivative of an odd function is an even
function and that the derivative of an even function is an odd
function.

Use a CAS to do Problems 71 and 72.

71. Draw the graphs of f(x) = x*> — 4x? + 3 and its deriv-
ative f'(x) on the interval [—2, 5] using the same axes.

(a) Where on this interval is f'(x) < 0?

(b) Where on this interval is f(x) decreasing?

(c) Make a conjecture. Experiment with other intervals and
other functions to support this conjecture.

3.3
Rules for Finding
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72. Draw the graphs of f(x) = cos x — sin(x/2) and its
derivative f'(x) on the interval [0, 9] using the same axes.

(a) Where on this interval is f'(x) > 0?

(b) Where on this interval is f(x) increasing?

(c) Make a conjecture. Experiment with other intervals and
other functions to support this conjecture.

Answers to Concepts Review: 1. [f(x + h) — f(x)]/h;

[f(t) — f(x)]/(t — x) 2. f'(c) 3. continuous; |x|
dy
4. f'(x)§a

The process of finding the derivative of a function directly from the definition of
the derivative, that is, by setting up the difference quotient

flx +h) = f(x)
h

and evaluating its limit, can be time consuming and tedious. We are going to devel-
op tools that will allow us to shortcut this lengthy process—that will, in fact, allow
us to find derivatives of the most complicated looking functions.

Recall that the derivative of a function f'is another function f’. We saw in Ex-
ample 2 of the previous section that if f(x) = x> + 7x is the formula for f, then

Derivatives
S Operation A
D
[nput x Output
An operator
Figure 1

f'(x) = 3x* + 7 is the formula for f’. When we take the derivative of f, we say
that we are differentiating f. The derivative operates on f to produce f'. We often
use the symbol D, to indicate the operation of differentiating (Figure 1). The D,
symbol says that we are to take the derivative (with respect to the variable x) of
what follows. Thus, we write D,f(x) = f'(x) or (in the case just mentioned)
D.(x* 4+ 7x) = 3x* + 7. This D, is an example of an operator. As Figure 1 sug-

gests, an operator is a function whose input is a function and whose output is an-

other function.

With Leibniz notation, introduced in the last section, we now have three nota-
tions for the derivative. If y = f(x), we can denote the derivative of f by

. y (.\‘,.k) (x +_/1, k)
f(l) o - /
fx) =k
I |
X x+h o

fr(x)  or

dy

D,.f(x) or I

. . d
We will use the notation dx to mean the same as the operator D,.
X

, The Constant and Power Rules The graph of the constant function
f(x) = k is a horizontal line (Figure 2), which therefore has slope zero every-

where. This is one way to understand our first theorem.

Figure 2

If f(x) = k, where k is a constant, then for any x, f'(x) = 0; that is,

100 =S Constant Function Rule

D.(k) =0

Proof

£'(x) = lim — Jim K~ im0 = 0 m

h—0 h h—0 h h—0
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y fx) =x
foxr+ b+ (x+hx+h) :
L
fo) =+ X)) g i
| |
T T x
X xX+h
Figure 3
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The graph of f(x) = x is a line through the origin with slope 1 (Figure 3); so
we should expect the derivative of this function to be 1 for all x.

Theorem B
If f(x) = x,then f'(x) = 1; that is,

Identity Function Rule

Dy(x) =1
Proof
v St h) —f(x) . x+h—x . h_
F'(x) = Jim h Shm T Ty, T "

Before stating our next theorem, we recall something from algebra: how to
raise a binomial to a power.

(a + b)* = a® + 2ab + b*
(a + b)® =d® + 3a°b + 3ab® + b°
(a + b)* = a* + 4a°b + 6a°b> + 4ab® + b*

n(n —1

+ nab™ ' + p"
2 na

(a+b)"=a"+ na" b + )a"fzbz + -

Power Rule

If f(x) = x", where n is a positive integer, then f'(x) = nx""; that is,

Dy(x") = nx""!

Proof
x+h)— f(x x + h)" = x"
P = g I (B
X"+ nx"'h + n(n2— 1)x"*zhz + o xR - X
= h
Honx" 1+ 7’2(”2_ 1)x"*zh + -+ xh P+ B!
= i

Within the brackets, all terms except the first have 4 as a factor, and so for every
value of x, each of these terms has limit zero as 4 approaches zero. Thus,

f(x) = nx"! [ |
As illustrations of Theorem C, note that
Di(x*) =3x*  Du(x’) =9%*  D(x'?) = 100x*

D, Is a Linear Operator The operator D, behaves very well when applied to
constant multiples of functions or to sums of functions.

Constant Multiple Rule

If k is a constant and f is a differentiable function, then (kf)'(x) = k- f'(x);
that is,

D[k f(x)] = k- Df(x)

In words, a constant multiplier k can be passed across the operator D.,.




Linear Operator

The fundamental meaning of the
word linear, as used in mathematics,
is that given in this section. An oper-
ator L is linear if it satisfies the two
key conditions:

m L(ku) = kL(u)
m L(u+v)=L(u) + L(v)

Linear operators play a central role
in the linear algebra course, which
many readers of this book will take.

Functions of the form

f(x) = mx + b are called linear
functions because of their connec-
tions with lines. This terminology can
be confusing because linear func-
tions are not linear in the operator
sense. To see this, note that

flkx) = m(kx) + b
whereas
kf(x) = k(mx + b)

Thus, f(kx) # kf(x) unless b
happens to be zero.
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Proof Let F(x) = k- f(x).Then

F(x + h) — F(x) k-f(x +h) —k-f(x)

= lim

F'(x) = lim

h—0 h h—0 h
o St h) - f) L frth) — f(x)
= lim k- = k- lim
h—0 h h—0 h
=k-f'(x)
The next-to-last step was the critical one. We could shift k past the limit sign
because of the Main Limit Theorem Part 3. [ |

Examples that illustrate this result are
D (=7x%) = =TDy(x%) = =7-3x> = —21x?

and

N0 is Sum Rule

If f and g are differentiable functions, then (f + g)'(x) = f'(x) + g'(x); that
s,

D[f(x) + g(x)] = D f(x) + Dg(x)

In words, the derivative of a sum is the sum of the derivatives.

Proof Let F(x) = f(x) + g(x). Then

P = i [+ k) + g(x + :)] — [£(0) + g()]

| {forh)—f(X) g(X+h)—g(X)}
= lim +
h h
 fle+h) = f(x) o g(x + ) —g(x)
= lim + lim
h—0 h h—0
= f1(0) +g'()
Again, the next-to-last step was the critical one. It is justified by the Main Limit
Theorem Part 4. [ |

Any operator L with the properties stated in Theorems D and E is called
linear; that is, L is a linear operator if for all functions f and g:
1. L(kf) = kL(f), for every constant k;
2. L(f + g) = L(f) + L(g)-
Linear operators will appear again and again in this book; D, is a particularly

important example. A linear operator always satisfies the difference rule
L(f —g) = L(f) — L(g), stated next for D,.

Difference Rule

If fand g are differentiable functions, then (f — g)'(x) = f'(x) — g'(x); that
1S,

D[f(x) — g(x)] = D, f(x) — Dg(x)

The proof of Theorem F is left as an exercise (Problem 54).

135
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Find the derivatives of 5x> + 7x — 6 and 4x°® — 3x° —

10x% + 5x + 16.

SOLUTION

D.(5x* + 7Tx — 6) = D,(5x> + 7x) — D,(6)
= D(5x?) + D(7x) — D,(6)
= 5D(x*) + TDy(x) — Dy(6)
=52x+7-1-0

(Theorem F)
(Theorem E)
(Theorem D)
(Theorems C, B, A)

= 10x + 7

To find the next derivative, we note that the theorems on sums and differences
extend to any finite number of terms. Thus,

D, (4x% — 3x% — 10x% + 5x + 16)
= D,(4x%) — D,(3x°) — D,(10x?) + D,(5x) + D,(16)
= 4D, (x% — 3D,(x°) — 10D,(x?) + 5D,(x) + D,(16)
= 4(6x°) — 3(5x*) — 10(2x) + 5(1) + 0
= 24x% — 15x* = 20x + 5 |

The method of Example 1 allows us to find the derivative of any polynomial. If
you know the Power Rule and do what comes naturally, you are almost sure to get
the right result. Also, with practice, you will find that you can write the derivative
immediately, without having to write any intermediate steps.

Product and Quotient Rules Now we are in for a surprise. So far, we have
seen that the limit of a sum or difference is equal to the sum or difference of
the limits (Theorem 2.3A, Parts 4 and 5), the limit of a product or quotient is the
product or quotient of the limits (Theorem 2.3A, Parts 6 and 7), and the derivative
of a sum or difference is the sum or difference of the derivatives (Theorems E and
F). So what could be more natural than to have the derivative of a product be the
product of the derivatives?

This may seem natural, but it is wrong. To see why, let’s look at the following
example.

W EXAMPLE 2| Let  g(x) = x,h(x) =1 +2x, and f(x) = g(x)-h(x)

) = x,
= x(1 + 2x). Find D,f(x), D,g(x), and D.h(x), and show that D f(x) #
[Dxg (X)][Dih(x)]-

SOLUTION

Notice that
Dy(g(x))Dy(h(x)) = 1-2 =2
whereas
D,f(x) = D,Jg(x)h(x)] = 1 + 4x
Thus, D, f(x) # [Deg(x)][Deh(x)]. o



Memorization

Some people say that memorization
is passé, that only logical reasoning
is important in mathematics. They
are wrong. Some things (including
the rules of this section) must be-
come so much a part of our mental
apparatus that we can use them
without stopping to reflect.

“Civilization advances by extending
the number of important operations
which we can perform without
thinking about them.”

Alfred N. Whitehead
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That the derivative of a product should be the product of the derivatives
seemed so natural that it even fooled Gottfried Wilhelm von Leibniz, one of the
discoverers of calculus. In a manuscript of November 11, 1675, he computed the
derivative of the product of two functions and said (without checking) that it was
equal to the product of the derivatives. Ten days later, he caught the error and gave
the correct product rule, which we present as Theorem G.

Product Rule

If fand g are differentiable functions, then

(f-8)'(x) = f(x)g'(x) + g(x)f'(x)

That is,
D[f(x)g(x)] = f(x)Dyg(x) + g(x)D,f(x)

This rule should be memorized in words as follows: The derivative of a product
of two functions is the first times the derivative of the second plus the second times
the derivative of the first.

Proof Let F(x) = f(x)g(x). Then

P = fim =
i f(x + h)g(x + h) — f(x)g(x)
= lim
h—0 h
_ o FE Mg+ ) = fx+ Wg(x) + fx+ Wg(x) — f(x)g(x)
h—0 h

fx +h) = f(x)

glx+ ) — g(x)

= lim | £(x + ) + g(x)-

th) —glx)

. .8 .
=%1_r)r%)f(x+h)-£1ir%) + g(x) - lim
= f(x)g'(x) + g(x)f'(x)

The derivation just given relies first on the trick of adding and subtracting the
same thing, that is, f(x + /)g(x). Second, at the very end, we use the fact that

lim f(x + ) = f(x)
This is just an application of Theorem 3.2A (which says that differentiability at a
point implies continuity there) and the definition of continuity at a point. [ |

Find the derivative of (3x*> — 5)(2x* — x) by use of the Prod-
uct Rule. Check the answer by doing the problem a different way.
SOLUTION
D[(3x* = 5)(2x* — x)| = (3x? = 5)D,(2x* — x) + (2x* — x)D,(3x> - 5)

= (3x* = 5)(8x* — 1) + (2x* — x)(6x)

= 24x° — 3x* — 40x° + 5 + 12x° — 6x7

=36x° — 40x° — 9x* + 5

To check, we first multiply and then take the derivative.
(3x% = 5)(2x* — x) = 6x° — 10x* — 3x° + 5x
Thus,
137
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D[(3x* = 5)(2x* — x)| = D,(6x°) — D,(10x*) — D,(3x%) + D,(5x)

= 36x° — 40x> — 9x%2 + 5 u

Quotient Rule

Let fand g be differentiable functions with g(x) # 0. Then

(f)’(x) _ 8()f'(x) — f(x)g"(x)
g g%(x)

That is,

D)((f(X)) _ g(X)Dxf(x;z(—x;‘(X)ng(X)

We strongly urge you to memorize this in words, as follows: The derivative of a
quotient is equal to the denominator times the derivative of the numerator minus the
numerator times the derivative of the denominator, all divided by the square of the
denominator.

Proof Let F(x) = f(x)/g(x).Then

F(x +h) — F(x
R

fx+h)  [f(x)
glx+h) g(x)

= lim

h—0 h
i SO+ ) = f()g(x + h) 1

h=0 h g(x)g(x + h)
(s f(x + h) = g(0)f(x) + f(x)g(x) — f(x)g(x + h)
- h

: 1]
g(x)g(x + h)

. flx + k) — f(x) 1
‘%‘i“o{[g(x’ i AR n L( )g(x + h>}
, S
= [0 &) ~ F08' 0] =
Find - f‘";jﬁ
SOLUTION

(x* + 7)dix(3x -5 — (3x — 5)%()62 +7)

d{3x—5}_
dx|x*+7

()c2 + 7)2
(P +7)(3) — (3x — 5)(2x)
- (x2 + 7)>

_ —3x2 +10x + 21
(x2 + 7)2




2
Find D,y if y =

SOLUTION
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L3
X+ x

2 3
Dy=D|———]+DJ[>
= 0(757)+ o)

(x* + 1)D,(2) — 2D, (x* + 1)

xD,(3) — 3D,(x)

(x4 + 1)2 x?
_ (x* + 1)(0) = (2)(4x%)  (x)(0) — (3)(1)
()c4 + 1)2 x?
—8x* 3

(x* +1)2 2

Show that the Power Rule holds for negative integral expo-

nents; that is,

Dx<x_") = —px "1

1 o) —1- n—1 _ n—1
D, (x™) = Dx<> =z nr = = —px "1 [ |

X" (xn)z x2n

We saw as part of Example 5 that D,(3/x) = —3/x>. Now we have another
way to see the same thing.

Concepts Review

1. The derivative of a product of two functions is the first
times plus the times the derivative of the first. In

symbols, Dx[f(x)g(x)] = __ .

2. The derivative of a quotient is the times the deriva-
tive of the numerator minus the numerator times the derivative
of the __ , all divided by the ___ . In symbols,

D[f(x)/g(x)] = .

3. The second term (the term involving /) in the expansion
of (x + h)" is . It is this fact that leads to the formula

Dx[x”] = _
4. L is called a linear operator if L(kf) = and
L(f+g)= . The derivative operator denoted by is

such an operator.

Problem Set 3.3

In Problems 1-44, find D.y using the rules of this section.

1. y=2x° 2.y =3x°
3. y=mx 4. y =mx’
5. y=2x" 6. y=—-3x"*
T a
7. y=— 8 y=—
Y= y 3
100 3a
9. y=—5 10. y = -—
Y x° Y 4x>
1. y = x>+ 2x 12. y =3x*+ x°

B.y=x*+P+x+x+1
14. y=3x* -2 = sx* + wx + #°
15. y = 7x’ — 2x° — 5x72

16. y = x2+ 5y 2 — gx 10

3
17. y=f3+x_4 18. y = 2x% + x|
X
2 1 3 1
19. y=—-— 20 y=— ——;
YT x? Y ¥ oxt
1 2 2
Ly=+ L y===
21. y o 2x 22, y 3
23, y = x(x* + 1) 24, y =3x(x*— 1)
25. y = (2x + 1)? 26. y = (—3x + 2)?
27 y= (P +2)(x*+1) 28 y=(x*-1*+1)

(
29. y = ( )
30 y = (x* + 2x0) (x> + 222 + 1)
3. y= (522 - 7)Bx* —2x + 1)
32. y=(3x% +2x)(x* — 3x + 1)
139
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33‘y:3x2%1 34'y:5x2%1
35 y:4x2—13x+9 36- y=2x34—3x
37.y=i;1 38.y=2;__11
30, y=2;;2_:51 40. y=35;‘2_+41
41.y:% 42.y:5xz3:#

45. If £(0) = 4,f'(0) = —1,g(0) = —3, and g’(0) = 5, find

(a) (f-8)'(0) (®) (f +8)(0) () (f/8)'(0)
d6. If f( ) =7,f'(3) =2,8(3) = 6, and g'(3) = —10, find
(@) (f —8)'(3) (d) (f-8)'(3) () (g/f)(3)

47. Use the Product Rule to show that D, [ f ()c)]2 =
2+ f(x)* Def (x).
[EXPL] 48. Develop a rule for D, [ f(x)g(x)h(x )]

49. Find the equation of the tangent line to y = x> — 2x + 2
at the point (1, 1).

50. Find the equation of the tangent line to y = 1/(x> + 4)
at the point (1, 1/5).

51. Find all points on the graph of y = x> — x? where the
tangent line is horizontal.

52. Find all points on the graph of y = $x> + x? — x where
the tangent line has slope 1.

53. Find all points on the graph of y = 100/x> where the tan-
gent line is perpendicular to the line y = x.

54. Prove Theorem F in two ways.

55. The height s in feet of a ball above the ground at ¢ seconds
is given by s = —16¢2 + 40t + 100.
(a) What is its instantaneous velocity at ¢ = 2?
(b) When is its instantaneous velocity 0?

56. A ball rolls down a long inclined plane so that its distance

s from its starting point after ¢ seconds is s = 4.5¢> + 2t feet.
When will its instantaneous velocity be 30 feet per second?

57. There are two tangent lines to the curve y = 4x — x? that
go through (2, 5). Find the equations of both of them. Hint: Let

3.4

Derivatives
of Trigonometric
Functions

(xg, yo) be a point of tangency. Find two conditions that (x, y;)
must satisfy. See Figure 4.

ST 2,5)

3+ (X0, o)

Figure 4 Figure 5

58. A space traveler is moving from left to right along the
curve y = x%. When she shuts off the engines, she will continue
traveling along the tangent line at the point where she is at that
time. At what point should she shut off the engines in order to
reach the point (4, 15)?

59. A fly is crawling from left to right along the top of the
curve y = 7 — x? (Figure 5). A spider waits at the point (4, 0).
Find the distance between the two insects when they first see
each other.

60. Let P(a,b) be a point on the first quadrant portion of the
curve y = 1/x and let the tangent line at P intersect the x-axis at
A. Show that triangle AOP is isosceles and determine its area.

61. The radius of a spherical watermelon is growing at a con-
stant rate of 2 centimeters per week. The thickness of the rind is
always one-tenth of the radius. How fast is the volume of the rind
growing at the end of the fifth week? Assume that the radius is
initially 0.

62. Redo Problems 29-44 on a computer and compare your
answers with those you get by hand.

Answers to Concepts Review: 1. the derivative of the sec-
ond;second; f(x)D,g(x) + g(x)D,f(x) 2. denominator;
denominator; square of the denominator;

[8(x)Dif (x) = f(x)Dyg(x)]/g*(x) 3. nx" h;nx""!

4. kL(f); L(f) + L(g); Dx

Figure 1 reminds us of the definition of the sine and cosine functions. In what fol-
lows, ¢ should be thought of as a number measuring the length of an arc on the unit
circle or, equivalently, as the number of radians in the corresponding angle. Thus,
f(t) = sint and g(¢) = cos ¢t are functions for which both domain and range are
sets of real numbers. We may consider the problem of finding their derivatives.

The Derivative Formulas We choose to use x rather than 7 as our basic vari-
able. To find D,(sin x), we appeal to the definition of derivative and use the Addi-
tion Identity for sin(x + h).
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(cos x, sin x)

(1,0)

Figure 1

Could You Have Guessed?

The solid curve below is the graph of
y = sin x. Note that the slope is 1 at
0,0 at 77/2, —1 at 7, and so on. When
we graph the slope function (the de-
rivative), we obtain the dashed
curve. Could you have guessed that
D, sin x = cos x?

y

L o==s

+

Try plotting these two functions in
the same window on your CAS or
graphing calculator.
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N 4 |
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sin(x + h) — sinx

D, (sinx) = }llin%) Y

sin x cos & + cos x sin A — sin x

h—0 h
= lim ( —sin m + cos sin /1
=0 . h o h

1—cosh} sinh]

—sin x)| lim + (cos x)| lim
( ){ lim ( ){ lim
Notice that the two limits in this last expression are exactly the limits we studied in
Section 2.5. In Theorem 2.5B we proved that

}lliil%smhzl and %i_)mom=0
Thus,
D,(sinx) = (—=sinx)-0 + (cos x)+1 = cos x
Similarly,

cos(x + h) — cos x

D,(cos x) = lim

h—0 h
. cosxcosh —sinxsinh — cos x
= lim
h—0 h

) ( 1 —cosh
= lim —cosxT— sin x

sin h)
h—0 h
= (—cosx)-0 — (sinx)-1
= —sinx

We summarize these results in an important theorem.

Theorem A

The functions f(x) = sin x and g(x) = cos x are both differentiable and,

D, (sin x) = cos x D, (cos x) = —sin x

wla—+—
Aa
g
3

ST y=3sin2x

Figure 2

Find D (3 sin x — 2 cos x).

SOLUTION
D,(3sinx — 2cos x) = 3D,(sin x) — 2D,(cos x)

=3cosx + 2sinx [ |

Find the equation of the tangent line to the graph of

y = 3sin x at the point (7, 0). (See Figure 2.)

d
SOLUTION The derivative is dfy =3 cosx, so when x = 7, the slope is

X
3 cos m = —3. Using the point-slope form for a line we find that the equation of
the tangent line is
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y—0=-3(x —m)
y = —3x + 37w |

The Product and Quotient Rules are useful when evaluating derivatives of
functions involving the trigonometric functions.

Find D, (x sin x).
SOLUTION The Product Rule is needed here.

D, (x*sin x) = x*D,(sin x) + sin x(D,x?) = x*cos x + 2x sin x [ |
Fing L (1250)
dx \ cosx
SOLUTION For this problem, the Quotient Rule is needed.

d . . d
—(1+ -1+ —
J <1 N sinx> cos x(dx(l sin x)) (1 + sin x)(dxcos x)

dx cos? x

COS x

cos? x + sin x + sin® x

COS2 X

1+ sinx
COS” x

At time ¢ seconds, the center of a bobbing cork is y = 2 sin ¢

centimeters above (or below) water level. What is the velocity of the cork at
t=0,7/2,m?

d
SOLUTION The velocity is the derivative of position, and o 2 cos t. Thus,

dt
dy dy T
when ¢t =0, — =2cos0 =2, when ¢t =7/2, — = 2cos— =0, and when
dt dt 2
dy
t=m,— =2cosm = —2. [ |
dt

Since the tangent, cotangent, secant, and cosecant functions are defined in
terms of the sine and cosine functions, the derivatives of these functions can be ob-
tained from Theorem A by applying the Quotient Rule. The results are summa-
rized in Theorem B; for proofs, see Problems 5-8.

Theorem B

For all points x in the function’s domain,

D, tan x = sec’ x D, cot x = —csc x

D, sec x = sec x tan x D, csc x = —csc x cot x

Find D,(x" tan x) for n = 1.

SOLUTION We apply the Product Rule along with Theorem B.
D.(x"tan x) = x"D,(tan x) + tan x(Dx")

= x"sec? x + nx" !tan x [ |

Find the equation of the tangent line to the graph of y = tan x

at the point (7/4,1).
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d
SOLUTION The derivative of y = tan x is ﬁ = sec’ x. When x = /4, the
2 2
derivative is equal to seczg = <\/§) = 2. Thus the required line has slope 2 and

passes through (7/4, 1). Thus

a
—1=2 _ 4
Y (x 4)

y=2x——+1 [ |

m
2

Find all points on the graph of y = sin? x where the tangent
line is horizontal.

SOLUTION The tangent line is horizontal when the derivative is equal to zero.
To get the derivative of sin® x, we use the Product Rule.

. d . . . . .
dfsm2x = df(smxsmx) = sin x cos x + sin x cos x = 2sin x cos x
X X

The product of sin x and cos x is equal to zero when either sin x or cos x is equal to

. T 3
zero; that is,at x = 0, :tg, +, :t7, [ |
Concepts Review
1. By definition, D,(sin x) = ;llin%) The two displayed limits have the values and ,

s . . respectively.
2. To evaluate the limit in the preceding statement, we first P ¥

use the Addition Identity for the sine function and then do a little
algebra to obtain

3. The result of the calculation in the preceding statement is
the important derivative formula D,(sin x) = . The corre-
sponding derivative formula D,(cos x) = is obtained in a

. . . 1 —cosh s
D,(sin x) = (—sin x)(}lllmo) + similar manner.
sin h 4. At x = 7/3, D,(sin x) has the value . Thus, the
(cos x)(}llin}) Y ) equation of the tangent line to y = sin x at x = /3 is
Problem Set 3.4
In Problems 1-18, find D, y. 17. y = tan’x 18. y = sec’ x
1. y=2sinx + 3cosx 2. y =sin’x [C]19. Find the equation of the tangent line to y = cos x at

2 x =1

2 y=1-—rcos" x

3. y =sin’x + cos’ x

=

20. Find the equation of the tangent line to y = cot x at

5. y=secx = 1/cos x 6. y=cscx = 1/sinx =7
_ _sinx _ __cosx 4
7.y =tanx = J— 8. y=cotx = sin x 21. Use the trigonometric identity sin2x = 2 sin x cos x
along with the Product Rule to find D, sin 2x.
sinx + cos x sin x + cos x ) o )
9. y= T cosx 10. y = T tanx 22. Use the trigonometric identity cos2x = 2cos’x — 1
along with the Product Rule to find D, cos 2x.
11. y =sin xcos x 12. y =sinxtanx . . . .
Y ¥ 23. A Ferris wheel of radius 30 feet is rotating counterclock-
By = sin x 14, v = 1 — cosx wise with an angular velocity of 2 radians per second. How fast is
- Y= - Y= X a seat on the rim rising (in the vertical direction) when it is 15 feet
. above the horizontal line through the center of the wheel? Hint:
5 X COs X + sin x
15. y = x“cosx 16. y=—7F5—" Use the result of Problem 21.

X2+ 1
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24. A Ferris wheel of radius 20 feet is rotating counterclock-
wise with an angular velocity of 1 radian per second. One seat on
the rim is at (20, 0) at time ¢ = 0.

(a) What are its coordinates at t = 7/6?
(b) How fast is it rising (vertically) at ¢ = 7/6?
(c) How fast is it rising when it is rising at the fastest rate?

25. Find the equation of the tangent line to y = tan x at
x=0.

26. Find all points on the graph of y = tan? x where the tan-
gent line is horizontal.

27. Find all points on the graph of y = 9 sin x cos x where
the tangent line is horizontal.

28. Let f(x) = x — sin x. Find all points on the graph of
y = f(x) where the tangent line is horizontal. Find all points on
the graph of y = f(x) where the tangent line has slope 2.

29. Show that the curves y = \/2 sin x and y = V2 cos x in-
tersect at right angles at a certain point with 0 < x < /2.

30. At time ¢ seconds, the center of a bobbing cork is 3 sin 2¢
centimeters above (or below) water level. What is the velocity of
the cork att = 0, 7/2, 7?

31. Use the definition of the derivative to show that
D, (sin x?) = 2x cos x%

32. Use the definition of the derivative to show that
D,(sin 5x) = 5 cos 5x.

Problems 33 and 34 are computer or graphing calculator

exercises.

33. Let f(x) = xsin x.

(a) Draw the graphs of f(x) and f’(x) on [, 67].

(b) How many solutions does f(x) = 0 have on [, 67]? How
many solutions does f'(x) = 0 have on this interval?

(c) What is wrong with the following conjecture? If f and f’
are both continuous and differentiable on [a, b], if
f(a) = f(b) = 0,and if f(x) = 0 has exactly n solutions on
[a, b], then f'(x) = 0 has exactly n — 1 solutions on [a, b].

(d) Determine the maximum value of [f(x) — f'(x)| on
[, 67].

34. Let f(x) = cos® x — 1.25 cos’> x + 0.225. Find f'(x,) at

that point x, in [7/2, ] where f(xy) = 0.

Answers to Concepts Review: 1. [sin(x + &) — sin x]|/h
2. 0;1 3. cosx;—sinx 4. %;y - \/§/2 = %(x — a/3)

3.5 Imagine trying to find the derivative of

The Chain Rule

F(x) = (2x* — 4x + 1)®

We could find the derivative, but we would first have to multiply together the 60
quadratic factors of 2x?> — 4x + 1 and then differentiate the resulting polynomial.
Or, how about trying to find the derivative of

G(x) = sin3x

We might be able to use some trigonometric identities to reduce it to something
that depends on sin x and cos x and then use the rules from the previous section.

Fortunately, there is a better way. After learning the Chain Rule, we will be
able to write the answers

and

F'(x) = 60(2x* — 4x + 1)*(4x — 4)

G'(x) = 3cos3x

144

The Chain Rule is so important that we will seldom again differentiate any func-
tion without using it.

Differentiating a Composite Function If David can type twice as fast as
Mary and Mary can type three times as fast as Joe, then David can type 2 X 3 = 6
times as fast as Joe.

Consider the composite function y = f(g(x)). If weletu = g(x), we can then
think of f as a function of u. Suppose that f(u) changes twice as fast as u, and
u = g(x) changes three times as fast as x. How fast is y changing? The statements
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“y = f(u) changes twice as fast as u” and “u = g(x) changes three times as fast as
x” can be restated as

4y _

d
=2 and _3

dx=

Just as in the previous paragraph, it seems as if the rates should multiply; that is, the
rate of change of y with respect to x should equal the rate of change of y with
respect to u times the rate of change of u with respect to x. In other words,

dy_ﬂxdu

dx du’ dx

This is in fact true, and we will sketch the proof at the end of this section. The result
is called the Chain Rule.

Chain Rule

Let y = f(u) and u = g(x). If g is differentiable at x and fis differentiable at
u = g(x), then the composite function f o g, defined by (f o g)(x) =
f(g(x)), is differentiable at x and

(f 2 8)'(x) = f'(g(x))g'(x)

That is,
Dy(f(g(x)) = f'(g(x))g'(x)
or
dy _ dydu
dx  dudx

You can remember the Chain Rule this way: The derivative of a composite
function is the derivative of the outer function evaluated at the inner function, times
the derivative of the inner function.

Applications of the Chain Rule We begin with the example
(2x? — 4x + 1) introduced at the beginning of this section.

Ify = (20% = 4x + 1)¥. find Dy.

SOLUTION We think of y as the 60th power of a function of x; that is

y=u" and u=2x>—4x+1

The outer function is f(u) = u®

and the inner function is u = g(x) =
2x> — 4x + 1. Thus,

Dy = D.f(g(x))

= f'(u)g'(x)
= (60u™)(4x — 4)
= 60(2x% — 4x + 1)¥(4x — 4) |

d
Iy = 1/(2¢° = 7)% find 2.
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146 Chapter 3 The Derivative

The Last First

Here is an informal rule that may
help you in using the derivative rules.

The last step in calculation
corresponds to the first step in
differentiation.

For example, the last step in calculat-
ing (2x + 1)%is to cube 2x + 1, so
you would first apply the Chain
Rule to the cube function. The last
step in calculating

x> -1

x2+1

is to take the quotient, so the first
rule to use in differentiating is the
Quotient Rule.

146

SOLUTION Think of it this way.
L5 — 9,5
y—; u’ and u=2x" -7
Thus,
dy _dy du
dx du dx
= (=3u*)(10x*)
= 1_73- 10x*
_ —30x u
(2x° = 7)*

B =2t +1\3
Find D,() .

+3

SOLUTION The last step in calculating this expression would be to raise the
expression on the inside to the power 13. Thus, we begin by applying the Chain
Rule to the function y = u'®, where u = (> — 2t + 1)/(¢* + 3). The Chain Rule
followed by the Quotient Rule gives

£ =2t +1\P B=—2+1\B 1 /P -2+
p(P Y (7 p(fo 2t
*+3 *+3 *+3

4 2 _ _ 3 _ 3
3(z3 -2t + 1)12(t +3)(32 —2) — (£ — 2t + 1)(4)

*+3 (t* + 3)?
<t3 -2t + 1)12—16 + 6t — 48 + 92 - 6
= n
t+3 (t* + 3)?

The Chain Rule simplifies computation of many derivatives involving the
trigonometric functions. Although it is possible to differentiate y = sin 2x us-
ing trigonometric identities (see Problem 21 of the previous section), it is much
easier to use the Chain Rule.

B EXAMPLE 4] If y = sin 2x, find 2
y—SlIl X, TN dx'

SOLUTION The last step in calculating this expression would be to take the
sine of the quantity 2x. Thus we use the Chain Rule on the function y = sinu
where u = 2x.

dy d
== = (cos 2x)( ~— 2x | = 2 cos 2 -
I (cos x><dx x) cos 2x

Find F'(y) where F(y) = ysin y*.

SOLUTION The last step in calculating this expression would be to multiply y
and sin y%, so we begin by applying the Product Rule. The Chain Rule is needed
when we differentiate sin y?.

F'(y) = yD[sin y’] + (sin y*)D,(y)

= y(cos y*)Dy(y?) + (sin y*)(1)

= 2y% cos y* + sin y? [ ]



Notations for the Derivative

In this section, we have used all the
various notations for the derivative,
namely,

f'(x)
dy
dx

and

D, f(x)

You should by now be familiar with
all of these notations. They will all be
used in the remainder of the book.
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. (1 - x)’
pina p,( 1)

1+ x

SOLUTION The last step in calculating this expression would be to take the
quotient. Thus, the Quotient Rule is the first to be applied. But notice that when
we take the derivative of the numerator, we must apply the Product Rule and then
the Chain Rule.

Dx<x2(1 - x)3) _ (1 + x)Dy(x*(1 — x)) — x*(1 — x)*D,(1 + x)

1+ x (1 + x)?
(1 + x)[x*Dy(1 — x)*> + (1 — x)*Dy(x*)] — x*(1 — x)3(1)
- (1+ x)?
_ A+ PG — x)*(-1)) + (1 — x)°(2x)] — 2*(1 — x)°
- (1 + x)?
(1 + x)[3x3(1 — x)* + 2x(1 — x)’] — x*(1 — x)?
- (1 + x)?
(T +x)(1 - x)2x(2 — 5x) — x*(1 — x)? .
- (1 + x)?
nd §o s
Find dx (2% — 17
SOLUTION
¢ 1 d S 3131 L oy &
Em = E(Zx — 1) 3= 3(2x 1) 3 ldx (2x 1) = (2x — 1)4 |

In this last example we were able to avoid use of the Quotient Rule. If you use
the Quotient Rule, you would notice that the derivative of the numerator is 0,
which simplifies the calculation. (You should check that the Quotient Rule gives
the same answer as above.) As a general rule, if the numerator of a fraction is a
constant, then do not use the Quotient Rule; instead write the quotient as the
product of the constant and the expression in the denominator raised to a negative
power, and then use the Chain Rule.

Express the following derivatives in terms of the function

F(x). Assume that Fis differentiable.
(a) D(F(x*)) and (b) DJ(F(x))’]

SOLUTION

a) The last step in calculating this expression would be to apply the function F.
p g p pply
(Here the inner function is u = x> and the outer function is F(u).) Thus

D(F(x%)) = F'(x°)Dy(x*) = 3x* F'(x%)

(b) For this expression we would first evaluate F(x) and then cube the result.
(Here the inner function is u = F(x) and the outer function is «°.) Thus we
apply the Power Rule first, then the Chain Rule.

D[(F(x))’] = 3[F(x)’Dy(F(x)) = 3[F(x)’F'(x) -

Applying the Chain Rule More than Once Sometimes when we apply
the Chain Rule to a composite function we find that differentiation of the inner
function also requires the Chain Rule. In cases like this, we simply have to use the
Chain Rule a second time.
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148 Chapter 3 The Derivative

Figure 1

148

Find D, sin®(4x).

SOLUTION Remember, sin’(4x) = [sin(4x)]’, so we view this as the cube of a
function of x. Thus, using our rule “derivative of the outer function evaluated at the
inner function times the derivative of the inner function,” we have

D, sin’(4x) = D,[sin(4x)]> = 3[sin(4x)]> "' D,[sin(4x)]
Now we apply the Chain Rule once again for the derivative of the inner function.
D, sin’(4x) = 3[sin(4x)]* D, sin(4x)
= 3[sin(4x)]* cos(4x) D, (4x)
= 3[sin(4x)]* cos(4x)(4)
= 12 cos(4x) sin’(4x) [ |

B EXAMPLE 10 | Find D, sin[cos(x?)].

SOLUTION

D, sin[cos(x?)] = cos[cos(x?)] - [—sin(x?)]+2x

= —2x sin(x?) cos[cos(x?)] [ |

Il EXAMPLE 11 | Suppose that the graphs of y = f(x) and y = g(x) are as
shown in Figure 1. Use these graphs to approximate (a) (f — g)’(2) and (b)

(f = 8)(2).

SOLUTION

(a) By Theorem 3.3F, (f — g)'(2) = f'(2) — g'(2). From Figure 1, we can deter-
mine that f'(2) = 1and g’'(2) = —%. Thus,

(- =1-(-1)-3

1
(b) From Figure 1 we can determine that f'(1) =~ > Thus, by the Chain Rule,

(8@ = @) = Fg@ = 3(-3)=—; =

A Partial Proof of the Chain Rule We can now give a sketch of the proof
of the Chain Rule.

Proof We suppose that y = f(u) and u = g(x), that g is differentiable at x, and
that f is differentiable at u = g(x). When x is given an increment Ax, there are
corresponding increments in # and y given by

Au = g(x + Ax) — g(x)
Ay = f(g(x + Ax)) — f(g(x))
= flu + Au) = f(u)
Thus,
dy _ lim 2 Ay lim 2 Ay Au
dx Ax—0Ax Ar—0Au Ax

— i lim 2%
T aSoAu Au "o Ax
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Since g is differentiable at x, it is continuous there (Theorem 3.2A), and so Ax — 0
forces Au— 0. Hence,

ﬂ_ ) Ay. . Au_dy du

= lim —- lim
dx M—0Au Ax—0Ax du dx

This proof was very slick, but unfortunately it contains a subtle flaw. There
are functions u = g(x) that have the property that Au = 0 for some points in
every neighborhood of x (the constant function g(x) = k is a good example). This
means the division by Au at our first step might not be legal. There is no simple
way to get around this difficulty, though the Chain Rule is valid even in this case.
We give a complete proof of the Chain Rule in the appendix (Section A.2,
Theorem B). |

Concepts Review

1. If y = f(u), where u = g(¢), then D,y = D,y .In 3. D, cos[(f(x))?] = —sin( )« Dy( ).
function notation, (f ° g)'(t) = 5.
4. Ify = (2x + 1)’sin(x”), then D,y =

2. If w = G(v), where v = H(s), then Daw = Dyv. 5 .,
In function notation (G o H)'(s) = . (2x +1)7- 4 sin(x7)-

Problem Set 3.5

In Problems 1-20, find D,y. 30. G'(1)ifG(t) = (2 + 9)°(¢* - 2)*
Ly=(1+x)P 2. y=(7+x) [CI31. F'(1)if F(¢) = sin(® + 3t + 1)
3.y=03-2x) 4. y= (4 +2x%) 32. g’(%) if g(s) = cos s sin® s
S y=( -2 43+ D16 y= (¥ —x+1)7 In Problems 33-40, apply the Chain Rule more than once to find
7.y = % 8. y= %9 the indicated derivative.

(x+3) (3x" + x = 3) 33, D[sin*(x? + 3%)] 34. Djcos’ (41 — 19)]

9. y =sin(x? + x) 10. y = cos(3x* — 2x) -
11. y = cos® x 12. y = sin*(3x?) 35. Dj[sin’(cos t)] 36. Du{cos“(u — 1)}

x+1)? x =2\ 37. Dy[cos*(sin 6?)] 38. D,[xsin?(2x)]
13. y = 14. y =

x—1 x - d . ) d

5 5 39. ——{sin[cos(sin 2x)]} 40. —{cos*[cos(cos t)]}
15. y = cos( 3 ) 16. y = cos3( * ) dx a
- x+2 Y 1-x

In Problems 41-46, use Figures 2 and 3 to approximate the indi-
17. y = 3x — 2)2(3 — x»)? 18. y = (2 — 3x2)*x" + 3)} cated expressions.

(x +1)? 2x — 3

19. y=——- 20, y=——— y Y
YT a4 YT ay
5
In Problems 21-28, find the indicated derivative. 4
21. y' wherey = (x*> + 4)>  22. y'wherey = (x + sin x)? z
_ 3 2 _
23. D,(3t 2) 24. DS(S 9) —
l+5 s+ 4 1 2 3 4 5 6  x 1 2 3 4 5 6  x
d /3t —2 d . .
25. E(%) 26. %(sin3 6) Figure 2 Figure 3
d i 3
27. Y where y = (20 ) A (f+ )W) 2. (f-2)0)
dx cos 2x , .
dy 43. (fg)'(2) (f/g) (2)
28. 0 where y = [sin ¢ tan(¢*> + 1)] 45. (f  g)'(6) . (g° ) 3)

In Problems 47-58, express the indicated derivative in terms of the
function F(x). Assume that F is differentiable.

29. £'(3)if f(x) = (xz i 1)3 47. D(F(2x)) 48. D(F(* + 1))

x +2

In Problems 29-32, evaluate the indicated derivative.
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150 Chapter 3 The Derivative

0. jz((F(lz))z)

49. D((F(1)))

d d 1

51. — (1 + (F(22)))? 52.—(2+ )
dz( (F(22))) ay\” FO?)
d d

53. EF(COS Xx) 54. 2508 F(x)

55. D, tan F(2x) 56. %g(tan 2x)

57. D,(F(x)sin® F(x)) 58. D, sec® F(x)

59. Given that f(0) =1 and f'(0) = 2, find g'(0) where
8(x) = cos f(x).

60. Given that F(0) = 2 and F'(0) = —1, find G'(0) where

X
Glx) = 1 + sec F(2x)

61. Given that f(1)=2, f'(1) = -1, g(1) =0 and
g'(1) = 1,find F'(1) where F(x) = f(x) cos g(x).

62. Find the equation of the tangent line to the graph of

y =1+ xsin3x at (E 1 ). Where does this line cross the

3 b
x-axis?

63. Find all points on the graph of y = sin? x where the tan-
gent line has slope 1.

64. Find the equation of the tangent
(x? + 1)3(x* + 1)%at (1,32).

line to y=

65. Find the equation of the tangent line to y = (x> + 1) at
(1.3):
66. Where does the tangent line to y = (2x + 1)* at (0, 1)
cross the x-axis?
ot (1)

68. A point P is moving in the plane so that its coordinates
after ¢ seconds are (4 cos 2t,7 sin 2¢), measured in feet.

(a) Show that P is following an elliptical path. Hint: Show that

67. Where does the tangent line to y = (x? + 1)72
cross the x-axis?

(x/4)? + (¥/7)* = 1, which is an equation of an ellipse.
(b) Obtain an expression for L, the distance of P from the origin
at time 7.

(c) How fast is the distance between P and the origin changing
when ¢ = 7/8? You will need the fact that D,(Vu) =
1/(2\/17) (see Example 4 of Section 3.2).

69. A wheel centered at the origin and of radius 10 centime-
ters is rotating counterclockwise at a rate of 4 revolutions per
second. A point P on the rim is at (10,0) atz = 0.

(a) What are the coordinates of P at time ¢ seconds?
(b) At what rate is P rising (or falling) at time r = 1?

70. Consider the wheel-piston device in Figure 4. The wheel
has radius 1 foot and rotates counterclockwise at 2 radians per
second. The connecting rod is 5 feet long. The point P is at (1, 0)
attime t = 0.

(a) Find the coordinates of P at time ¢.

(b) Find the y-coordinate of Q at time ¢ (the x-coordinate is
always zero).
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(c) Find the velocity of Q at time ¢. You will need the fact that
D,(Vu) = 1/(2Vau).

Figure 4

71. Do Problem 70, assuming that the wheel is rotating at 60
revolutions per minute and ¢ is measured in seconds.

72. The dial of a standard clock has a 10-centimeter radius.
One end of an elastic string is attached to the rim at 12 and the
other to the tip of the 10-centimeter minute hand. At what rate is
the string stretching at 12:15 (assuming that the clock is not
slowed down by this stretching)?

73. The hour and minute hands of a clock are 6 and 8 inches
long, respectively. How fast are the tips of the hands separating at
12:20 (see Figure 5). Hint: Law of Cosines.

Figure 5

IGC74. Find the approximate time between 12:00 and 1:00
when the distance s between the tips of the hands of the clock of
Figure 5 is increasing most rapidly, that is, when the derivative
ds/dt is largest.

75. Let x, be the smallest positive value of x at which the
curves y = sin x and y = sin 2x intersect. Find x, and also the
acute angle at which the two curves intersect at x, (see Problem
40 of Section 1.8).

76. An isosceles triangle is topped by a semicircle, as shown
in Figure 6. Let D be the area of triangle AOB and E be the area
of the shaded region. Find a formula for D/E in terms of ¢ and
then calculate

.. D
lim —

t—

. D
tlg{)l*E and



V

o
Figure 6

77. Show that D|x| = |x|/x, x # 0. Hint: Write |x| = Vx2
and use the Chain Rule with u = x%.

78. Apply the result of Problem 77 to find D,|x* — 1].
79. Apply the result of Problem 77 to find D,|sin x|.

80. Let f(0) =1 and f'(0) = 2. Find the derivative of
f(f(x) —1atx =0.

81. Let f(0) =0 and f’(0) = 2. Find the derivative of
FUf(f(f(x)))) atx = 0.
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82. Suppose that fis a differentiable function.
d d
(a) Find = f(f(x)). (b) Find -/ (f(f(x))).

(c) Let f"l denote the function defined as follows: fII = f and
flil = fo fn=l for n=2. Thus fPl=fof B =
f o f o f, etc. Based on your results from parts (a) and (b),

make a conjecture regarding ic f1"1. Prove your conjecture.
X

83. Give a second proof of the Quotient Rule. Write

2(e) =2l gtn)

and use the Product Rule and the Chain Rule.

84. Suppose that f is differentiable and that there are real
numbers x; and x, such that f(x;) = x, and f(x;) = x;. Let

8(x) = f(f(f(f(x)))). Show that g'(x;) = g'(x2).

Answers to Concepts Review: 1. Du; f'(g(1))g' (1)
2. Dw; G'(H(s))H'(s) 3. (f(x))% (f(x))?
4. 2x cos(x?); 6(2x + 1)2

3.6 The operation of differentiation takes a function f and produces a new function f'.

Higher-Or