1 Tpcidoupr Tuv \in Fiourn as $u_{x}-\frac{x}{t} u_{t}=0$.
To Güstupa yia 11) Xupartupiotikes Mamaides,

$$
\begin{aligned}
& \frac{d^{\prime} x}{d s}=1 \\
& \frac{d^{\prime} t}{d^{\prime}}=-\frac{x}{t} \\
& \frac{d^{\prime} z}{d s}=0
\end{aligned} \quad \rightarrow \begin{aligned}
& \text { Twri } \frac{d z}{c^{\prime} s}=u_{x} \frac{d^{\prime} x}{d s}+u_{t} \frac{d^{\prime} t}{d^{\prime} s}=u_{x}-\frac{x}{t} u_{t}=0 \\
& \text { onw } z(s):=u(x(s), t(s))
\end{aligned}
$$

Eival upkric va $t-\min$ ijape $x(s)=S$.
H Jsitren \in Fiowra Jive, $t \frac{d^{\prime t}}{d s}=-s \Rightarrow\left(t^{2}(s)\right)^{\prime}=\left(-s^{2}\right)^{\prime}$

$$
\Rightarrow \quad t^{2}(s)+s^{2}=c \in o x_{4} \theta \theta_{i}
$$

$$
\Gamma_{c}:\left\{\left(s, \sqrt{c-s^{2}}\right): s \in[-\sqrt{c}, \sqrt{c}]\right\} . \quad c \geqslant 0
$$

H z Gival ona Qipy drviptosta Tas.
 (r/a $S=x$) Hul (-niti, y z Eiva, oluOrai, itxafs

$$
u(x, t)=z(x)=z(-\sqrt{c})=z(\sqrt{c})
$$

(a) Er autai 1uv nipimpors,

$$
\begin{aligned}
& z\left(-r_{c}\right)=u(-\sqrt{c}, 0)=\cos (-\sqrt{c})=c o(\sqrt{c}) \\
& z(\sqrt{c})=u(\sqrt{c}, 0)=\cos (\sqrt{c})
\end{aligned}
$$

 $u(x, t)=\cos \left(\sqrt{x^{2}+t^{2}}\right) \quad(x, t) \in \overline{0}$.

(θ) $\Sigma \in$ aunin tur nepintwary, ar nupxs $\lambda_{i c h} \theta$ a opent, $u_{x+1}=Z(-\sqrt{c} 1=2(\sqrt{c})$ na divs, ò $11-\sqrt{c}=\sqrt{c}$ c dukulo ris $(x, t) \neq 10, c)$.

$$
u(x, t)=z\left(r_{c}\right)=\sqrt{c}=\sqrt{x^{2}+t^{2}} \quad \forall(x, t)+\underline{c}
$$

$$
\begin{aligned}
& \frac{d t}{d s}=1 \\
& \frac{d x}{d s}=z(s) \\
& \frac{d z}{d s}=0 \quad \text { ona } \quad z(s)=4(x(s), t(s))
\end{aligned}
$$

(2) $\Delta(s)=c_{2}$
(3) $\left.X(s)=c_{2} s+c_{3} \quad \mu_{2} \quad c_{1}, c_{2}, c_{3} \quad \sigma_{4} O_{3} o_{i}\right)$

H $(x(s), f(s))$ orvalia 100 dijury two x orov $s=-c_{1}$ oto ouprio $\left(c_{3}-c_{1} c_{2}, 0\right)$.
It c_{2} npegnerive inavonolsi tuv

$$
\begin{equation*}
c_{2}=z\left(-c_{1}\right)=u\left(x\left(-c_{1}\right), 0\right)=\varphi\left(c_{3}-c_{1} c_{2}\right) \tag{4}
\end{equation*}
$$

Tla dedupiva $c_{1}, c_{3} \in \mathbb{R}$, av uniexsi c_{2} naveve invoriasi 146 (4)

 Scanned by CamScanner

Tiu Jedopivo $x_{0} \in \mathbb{R}$ raipvoupe

$$
c_{1}=0, \quad c_{3}=x_{0}
$$

It (4) Jivsi $c_{2}=\varphi\left(x_{0}\right)$.
$A \rho_{a} u \quad\left\{\left(\varphi\left(x_{0}\right) S+x_{0}, s\right), s \geqslant 0\right\}$ Eival "xapattinporithi na disexetar amo to ($x_{0}, 0$)

$$
\left\{\left(s+x_{0}, s\right): s \geqslant 0\right\}, x_{0}<0 \quad \Delta y \lambda \quad x=x_{0}+t
$$

$$
\left\{\left(s\left(1-x_{0}\right)+x_{0}, s\right): s \geqslant 10\right\} \quad x_{0}+[0,1) \quad \Delta \cup \lambda \quad \begin{aligned}
& x=x_{0}+\left(1-x_{0}\right) t
\end{aligned}
$$

$$
\left\{\left(x_{0}, s\right): s \geqslant 0\right\} \quad x_{0} \geqslant 1
$$

 Gival $t^{*}=1$.
Ensi orverniourtis a xupakrs-

ρ (omitir) nou Titivew uno 1 a $x_{0} \in[0,1]$.

Evin $t<t^{*}=1$

- Av $x \leq t$ anò mu fillovy rue xapampiofithul finix, O11 npinis $u(x, t)=1$

- Av $x \geqslant 1$ opula neponer $u(x, t 1=0$
- Av $\quad t<x<1$, u xupathtoprótitli nea orpucisa hato

$10(x, t)$ fival uvis ms $x_{0}: \quad x=x_{0}+\left(1-x_{0}\right) t$
$\Delta_{1} \lambda_{4} f_{i} \quad x_{0}=\frac{x-t}{1-t}$
Ha, EHzi a r(pin 10) u tival $u\left(x, t 1=1-x_{0}=\frac{1-x}{1-t}\right.$
Apus

$$
u(x, t)=\left\{\begin{array}{cc}
1 & x \leq t \\
\frac{1-x}{1-t} & t<x<1 \\
0 & x>1
\end{array}\right.
$$

$$
Y^{4} \quad(x, t) \in \mathbb{R} \times[0,1)
$$

3 O, xapuktapiotikì) (x(s),t(s)) inauncioiv

$$
\begin{aligned}
& \frac{d^{\prime} x}{d s}=1 \quad \text { Apa } \quad \frac{d x}{d t}=1 \text { onore } x=t+c_{1} \\
& \frac{d t}{i s}=1
\end{aligned}
$$

It $T_{c}: \quad x=c_{0}+t, t \geqslant 0$ fival xaputhTuprotitit $\forall c \in \mathbb{R}$
It $Z(t)=4(c+t, t)$ Havonasi 1ヶレ

$$
\begin{aligned}
& z^{\prime}(t)=u_{x}+u_{t}=-u^{2}|c+t, t|=-z^{2}(t) \\
& A A_{i}^{\prime} \Rightarrow-\frac{z^{\prime}}{z^{2}}=1 \Rightarrow\left(\frac{1}{z}\right)^{\prime}=1 \Rightarrow \frac{1}{z(t)}=t+c_{1} \\
& \Rightarrow z(t)=\frac{1}{t+c_{1}}
\end{aligned}
$$

$\operatorname{tin} \operatorname{la} \frac{1}{c_{1}}=z(0)=u(c, 0)=f(c)$

ләииеэsшeว Кq pәuиеэs
Tiu Jidopive $x \in \mathbb{R}$, too fordejare $c:=x-t$ Tone $u(x, t)=z(t)=\frac{1}{t+c,}=\frac{1}{t+\frac{1}{f(c)}}=$

$$
=\frac{f(c)}{1+t f(c)}=\frac{f(x-t)}{1+t f(x-t)}
$$

$$
\begin{equation*}
u(x, t)=\frac{f(x-t)}{1+t f(x-t)} \tag{}
\end{equation*}
$$

ria oina $\mathrm{ra}_{4}(x, t)+1 t$ re $1+t f(x-t 1 \neq 0$. Aund tiva, evers averxio viveno ha, this prodocopion
 $u_{\lambda}+u_{t}+u^{2}=0$ गa, lilam tiva, c^{1}. neodavi, fis $t=0$ txcupl $u(x, 0)=f_{(x)}$,
(a) Av trio, o napounpeoti) ontur $(*$ aro sime tiva, niviok $\neq 0$ orion $u \otimes$ ceijs, dien oiono to H.
(a) Av $f\left(x_{0}\right)<0$ 1ons o macuvpramin) ofthe \oplus tival $=0$

Δy,

$$
t=-\frac{1}{f\left(x_{0}\right)}>0 \quad x=x_{0}-\frac{1}{f\left(x_{0}\right)}
$$

Ha1 Toik $\lim _{t \rightarrow t_{0}^{-}} u(x, t)=\frac{f\left(x_{0}\right)}{0^{+}}=-\infty \quad$ a $\omega f\left(x_{0}\right)<0$
((0) Evin $m=\inf _{x \in R} f(x)>-\infty$.
Av $M \geqslant 10$, uno 10 (a) trape $011 \tau=\infty$
Av $m<0$ フivin f ruspusi apusilizi) गriri).

$t=-\frac{1}{f(x)}$ Haioix, nepilep, (rs bios xu (al).
Alu, $\tau=\operatorname{iuf}_{\substack{x \in \mathbb{R} \\ \mu \in f(x)<0}}\left\{-\frac{1}{f(x)}\right\}=-\sup _{\substack{x \in \mathbb{R}<0 \\: f(x)<0}} \frac{1}{f(x)}=-\frac{1}{\substack{i n t \\ x+\mathbb{R} \\: f(x)<0}}$

$$
=-\frac{1}{m}
$$

$4 \mid H \in$ Biduch fiva, $\left(\partial_{x}^{2}-4 \partial_{\lambda} \partial_{t}+6 \partial_{t}^{2} 14=0\right.$

$$
\partial_{x}^{2}-4 \partial_{x} \partial_{t}+6 \partial_{t}^{2}=\left(\partial_{x}-2 \partial_{t}\right)^{2}+2 \partial_{t}^{2}
$$

Өíларе $\quad \partial_{\zeta}=\partial_{x}-2 \partial_{t}$

$$
\begin{equation*}
\partial_{n}=V_{2} \partial_{t} \tag{1}
\end{equation*}
$$

Av $x(\xi, n), t(\xi, y)$ fivy, curpitiover lowe ξ, n hal

$$
U(\xi, \eta)=u(x(\xi, \eta 1, t(\xi, \eta)) \quad 1 \hat{\partial}\{
$$

$$
\begin{aligned}
& \partial_{\xi} U=u_{x} \partial_{\xi} x+u_{t} \partial_{\xi} t \\
& \partial_{\eta} U=u_{x} \partial_{\eta} x+u_{t} \partial_{\xi} t
\end{aligned}
$$

Autés) ravijurtar μ (1) (1) ar Exaf(

$$
\begin{array}{ll}
\partial_{\xi} x=1, & \partial_{\xi} t=-2 \\
\partial_{\eta} x=0, & \partial_{n} t=\sqrt{2}
\end{array}
$$

Aphsi $x=3$

$$
t=\sqrt{2} n-2 \xi
$$

[lachis 21) $x(5, \eta 1, t(5, \eta)$ Exaps

$$
\begin{aligned}
& u_{\xi \xi}+u_{\eta \eta}=u_{x x}(x(\xi, \eta), t(\xi, \eta)) \\
& -4 u_{x x}(x(\xi, \eta), t(\xi, \eta))+6 u_{t t}(x(\xi, \eta), t(\xi, \eta))=0
\end{aligned}
$$

$5(a) f(x) \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left\{a_{k} \cos (k \pi x)+b_{k} \sin (k n x)\right.$

$$
[\Delta s\{3.1 .5, p=2]
$$

$x \cdot \cos (k n x)$ nipertiy'
「lu $H \in N, \quad a_{k}=\int_{-1}^{1}(x+1) \cos (k n x) d x \stackrel{\downarrow}{=} \int_{-1}^{1} \cos (k n x) d x$
Aey $a_{0}=2$ Evio jin $\notin \in \mathbb{N}^{t}$

$$
a_{k}=\left.\frac{\sin (k n x)}{k n}\right|_{-1} ^{1}=0
$$

Opul4, \quad ia $\quad u \in V^{+}, \quad b_{k}=\int_{-1}^{1}(x+1) \sin \left(k n x \mid d x=\int_{-1}^{1} x \sin (k n x) d x\right.$

$$
=2 \int_{0}^{1} x \sin (k n x) d x=2 \int_{0}^{1} x\left(\frac{-\cos (k n x)}{k n}\right)^{\prime} d x=
$$

$x \sin (k n x)$

$$
\begin{aligned}
& =-\frac{2 \cos (k n x)}{k n}+\frac{2}{k n} \int_{0}^{1} \cos (k n x) d x=\frac{-2(-1)^{k}}{k n} \\
& +\left.\frac{2}{k n} \frac{\sin k n x}{k n}\right|_{0} ^{1}=2 \frac{(-1)^{k+1}}{k n}
\end{aligned}
$$

Apan $\quad x+1 \sim 1+2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k n} \sin (k n x)$
 7a $\partial_{2} x_{4} \partial_{i}$ r(4 10 dicionots $[-1,1]$.

$$
\lim _{x \rightarrow \infty} S_{Y} f(x)=\frac{f(x-)+f(x+)}{2}
$$

Fiu $x=\frac{1}{2}$ ano tives $=f\left(\frac{1}{2}\right)=\frac{3}{2}$
Fin $x=-1 \quad$ " $"=\frac{f(-1)+f(1)}{2}=1$
Elov zuno noo nike, $f(1-1)-)$ (ivul 10 f(1)

$u(x, t)=X(x) T H 1$.

$$
X(x) T^{\prime \prime}(t)=4 X^{\prime \prime}(x) T H 1 \Rightarrow \frac{X^{\prime \prime}(x)}{X(x)}=\frac{T^{\prime \prime}(t)}{4 T(t)} \Rightarrow-\lambda \in \sigma \pi \theta_{1} p_{m}
$$

Apu

$$
\begin{align*}
& X^{\prime \prime}(x)+\lambda X(x)=0 \tag{1}\\
& T^{\prime \prime}(H)+4 \lambda T(H)=0 \tag{2}
\end{align*}
$$

 nulua $X^{\prime}(0)=X^{\prime}(17)=0$.
apenar $x \geqslant 0$ rimi

$$
\begin{aligned}
& \text { (1) } \Rightarrow \lambda \int_{0}^{n} X(x) X(x) d x=-\int_{0}^{n} X^{\prime \prime}(x) X(x) d x= \\
& =-\left.X^{\prime}(x) X(x)\right|_{0} ^{0}+\int_{0}^{n}\left(X^{\prime}(x)\right)^{2} d x=\int_{0}^{n}\left(X^{\prime}(x)\right)^{2} d x \geq 0
\end{aligned}
$$

Av $\lambda<0$, nón tristai $\int_{0}^{n} x^{2}(x) d x>0$ (andici, $X \equiv 0$

$$
\int_{0}^{n}\left(x^{\prime}(x)\right)^{?} d x<0, \text { ílono. }
$$

Novig Hi $\lambda=0$

$$
X^{\prime \prime}(x)=0 \Rightarrow \quad X(x)=A x+B .
$$

 $\mu\left(A \in \mathbb{R}\right.$ olu $\theta_{i} p_{a}$

$$
T^{\prime \prime} H=0 \Rightarrow T H=\Gamma t+\Delta \quad \text { H } \Gamma_{1} \Delta t \mathbb{R}
$$

Nüssis ms $\lambda>0$

$$
\begin{aligned}
& X^{\prime \prime}(x)+\lambda X(x)=0 \Rightarrow X(x)=A \cos (\sqrt{\lambda} x)+B \sin (\sqrt{\lambda} x) \\
& X^{\prime}(x)=\sqrt{\lambda}(-A \sin (\sqrt{\lambda} x)+B \cos (\sqrt{\lambda} x)) \\
& X^{\prime}(0)=0 \Rightarrow \sqrt{\lambda} B=0 \stackrel{\lambda>0}{\Rightarrow} B=0
\end{aligned}
$$

$$
X^{\prime}(n)=0 \Rightarrow-\sqrt{\lambda} A \sin (\sqrt{\lambda} n)=0 \quad \begin{aligned}
& A_{1} \lambda \neq 0 \\
& \Rightarrow \\
& \sqrt{x} n=k n
\end{aligned}
$$

Apa (uqii $\lambda>0$) $\quad \lambda=H^{2}$ mer $r+\Delta y t$ $\mu \mathrm{k} \in \boldsymbol{Z}$

$$
T^{\prime \prime}(x)+4 x T 41=0 \Rightarrow T 1+1=\Gamma \cos (2 \sqrt{x} t)+\Delta \sin (2 \sqrt{\lambda} t)
$$

Buiqu 3

$$
u(x, 0)=\Delta_{0}+\sum_{k=1}^{\infty} \Gamma_{k} \cos (k x)
$$

Qinape uno va 1000141μ ? $\sin ^{2} x-\cos (3 x)+1=$

$$
=\frac{1-\cos (2 x)}{2}-\cos (3 x)+1=\frac{3}{2}-\frac{1}{2} \cos (2 x)-\cos (3 x)
$$

$$
\begin{aligned}
& \left\{\begin{array}{l}
X_{0}(x)=A \\
\Gamma_{0}(H)=\Gamma t+D
\end{array} \quad A_{1} \Gamma, D \in \mathbb{R}\right. \\
& \left\{\begin{array}{l}
X_{k}(x)=A \cos (K x) \\
\left.T_{k}(H)=\Gamma \cos (2 H t)+\Delta \sin / 2 k t\right) \quad H_{1} \Gamma_{1} \Delta \in \mathbb{R}, H \in N N+
\end{array}\right.
\end{aligned}
$$

Apu $\quad \Delta_{0}=\frac{3}{2}, \quad \Gamma_{2}=-\frac{1}{2}, \Gamma_{3}=-1$
Ha, $\quad T_{i}=0 \quad$ riu $i=1$ ни, $i \geqslant 4$
 1y) Gu(pai) Opo neus opo, Exapk

$$
u_{t}(x, 0)=T_{0}+\sum_{k=1}^{\infty} 2 k \Delta_{k} \cos (k x)
$$

Qixatz ani vu (ocital fe - 2cos/7x) tJ
opioni $\quad \Gamma_{0}=5, \Delta_{7}=-\frac{1}{7}, \Delta_{i}=0$ rimit $\mathbb{N}^{x}(i+1$
Apu $u(x, t)=5 t+\frac{3}{2}+\left(-\frac{1}{2} \cos (4 t)\right) \cos (2 x)$

$$
\begin{equation*}
-\cos (6 t) \cos (3 x)-\frac{1}{7} \sin (14 t) \cos (7 x) \tag{*}
\end{equation*}
$$

Bypu 4 H 4 na osioups 57a \oplus avitts, 010

$$
C^{2}((0, n) \times(0, \infty)) \cap C([0,0] \times[0, \infty))
$$

 opo topo sipo.
A dat

 ofunce now epitsi new 4 inavonasi aution oxtion

- $u(x, d)=\sin ^{2} x-(c)(3 x)+1$
- $u_{f}(x, 0)=-2 \cos (7 x)+5$

 (tyooon apioups in 4 kier r) (
Afen 4 प rúvse to nopobirpes.
7

$$
\begin{aligned}
& \quad k \int_{\underline{O}} u^{2}(x) d x=\int_{\underline{0}} u(x) \Delta u(x) d x= \\
& =\int_{d \underline{O}} u(x) \frac{\partial u(x)}{\partial u} d s-\int_{\underline{0}} \nabla u(x) \cdot \nabla u(x) d x=-\int_{\underline{0}}|\nabla u(x)|^{2} d x
\end{aligned}
$$

(a) Au $k=0$, nuipucupi $\int_{\underline{c}}|\nabla u(x)|^{2} d x=0$.
unon: $\nabla u(x)=0 \quad \forall x \neq$
 quarem
(e) Av $k<0$, $\in \sin \left(1, \quad \pi \int_{0} u^{2}(x) d x=-\int_{\underline{0}}|\nabla u(x)|^{2}(x \leq 0\right.$ npinsi $\quad \int_{\underline{c}} u^{2}(x) d x=0$, ups $u \equiv 0$ ouc (a qui (fvar cunxuj...)

8
(a) $u(x, t)=e^{-r t} v(x, t) \Rightarrow$

$$
u_{t}=-r e^{-r t} V+e^{-r t} V_{t}
$$

$$
u_{x x}=e^{-r t} v_{x x}
$$

$$
A \operatorname{cus}^{4} \quad u_{t}=2 u_{x x}-3 u \Rightarrow-r u+e^{-r t} V_{t}=2 e^{-r t} v_{x x}
$$

$-3 u$.

$$
v_{t}=2 v_{x x}
$$

(tivis) $\quad v(x, 0)=e^{3 \cdot 0} u(x, 0)=\sin x$
(e)

$$
v(x, t)=\frac{1}{\sqrt{4 \pi \cdot 2 t}} \int_{\mathbb{R}} \sin y \cdot e^{-\frac{(x-y)^{2}}{4 \cdot 2 t}} d y
$$

$$
|v(x, t)| \leq \frac{1}{\sqrt{8 \pi t}} \int_{\mathbb{R}} e^{-\frac{(x-x)^{2}}{8 t}} d y=1
$$

rimii $|\sin y| \leq 1$
nuAvolutu pins

$$
N(x, 4 t)
$$

d f fortu u_{1}, u_{2} tuo $\lambda \dot{v} r$ is.

$$
\begin{array}{ll}
u_{t}=2 u_{x x}+u_{x} & \\
u_{x}(0, t)=0 & t x \\
u(1, t)=0 & +x 0 \\
u(x, 0)=0 & x \in[0,1]
\end{array}
$$

opiJapr $\quad E(t)=\int_{0}^{1} u^{2}(x, t) d x \quad \forall t>0$

$$
\begin{aligned}
& E(0)=0 \\
& \left.E^{\prime} \mid t\right)=2 \int_{0}^{1} u(x, t) u_{t}(x, t) d x= \\
= & 4 \int_{0}^{1} u\left(x,+1 u_{x x}\left(x,+1 d x+2 \int_{0}^{1} u\left(x,+1 u_{x}(x, t) d x\right.\right.\right. \\
= & \left.4 u(x,+) u_{x}(x, t)\right|_{x=0} ^{x=1}-4 \int_{0}^{1}\left(u_{x}(x, t)\right)^{2} d x \\
+ & \left.u^{2}(x, t)\right|_{x=0} ^{x=1}=0-0-4 \int_{0}^{1} u_{x}^{2} d x \\
+ & \frac{u^{2}\left(1,+1-u^{2}(0, t) \leq 0\right.}{=0}
\end{aligned}
$$

Apu $E \downarrow n_{n}, a \varphi \dot{C} E(0)=0$ na, $E H 1 \geqslant 0$, Excosre $E H=0 \quad \forall t \geqslant 0$. Enina, $u(x, t)=0 \quad \forall x, t$.

