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Preface to the second edition 

Life insurance has undergone enormous change in the last two to three decades. 
New and innovative products have been developed at the same time as we have 
seen vast increases in computational power. In addition, the field of finance 
has experienced a revolution in the development of a mathematical theory of 
options and financial guarantees, first pioneered in the work of Black, Scholes 
and Merton, and actuaries have come to realize the importance of that work to 
risk management in actuarial contexts. 

In this book we have adapted the traditional approach to the mathematics of 
life contingent risk to be better adapted to the products, science and technology 
that are relevant to current and future actuaries, taking into consideration both 
demographic and financial uncertainty. The material is presented with a certain 
level of mathematical rigour; we intend for readers to understand the principles 
involved, rather than to memorize methods or formulae. The reason is that a 
rigorous approach will prove more useful in the long run than a short-term util
itarian outlook, as theory can be adapted to changing products and technology 
in ways that techniques, without scientific support, cannot. However, this is a 
very practical text. The models and techniques presented are versions, a lit
tle simplified in parts, of the models and techniques in use by actuaries in the 
forefront of modern actuarial management. 

The first seven chapters set the context for the material, and cover tradi
tional actuarial models and theory of life contingencies, with modern computa
tional techniques integrated throughout, and with an emphasis on the practical 
context for the survival models and valuation methods presented. Through the 
focus on realistic contracts and assumptions, we aim to foster a general busi
ness awareness in the life insurance context, at the same time as we develop 
the mathematical tools for risk management in that context. 

From Chapter 8, we move into more modern theory and methods. 

xvii 
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In Chapter 8 we introduce.multiple state models, which generalize the life
death contingency structure of previous chapters. Using multiple state models 
allows a single framework for a wide range of insurance, including income 
replacement insurance where benefits and premiums depend on the health sta
tus of the policyholder; critical illness insurance, which pays a benefit on diag
nosis of certain serious medical disorders, and some insurance policies which 
pay additional benefits in the case of accidental death. 

In Chapter 9 we apply the models and results from multiple state models 
to insurance involving two lives, typically domestic partners. It is common for 
partners to purchase life insurance cover or annuity income products where the 
benefits depend on both lives, not on a single insured life. 

In Chapter 10 we apply the theory developed in the earlier chapters to prob
lems involving pension benefits. Pension mathematics has some specialized 
concepts, particularly in funding principles, but in general this chapter is an 
application of the theory in the preceding chapters. 

In Chapter 11 we move to a more sophisticated view of interest rate models 
and interest rate risk. In this chapter we explore the crucially important differ
ence between diversifiable and non-diversifiable risk. 

In Chapter 12 we introduce a general algorithm for projecting the emerging 
surplus of insurance policies, by considering the year-to-year net cash flows. 
One of the liberating aspects of the computer revolution for actuaries is that 
we are no longer required to summarize complex benefits in a single actuarial 
value; we can go much further in projecting the cash flows to see how and 
when surplus will emerge. This is much richer information that the actuary can 
use to assess profitability and to better manage portfolio assets and liabilities. 
In life insurance contexts, the emerging cash flow projection is often called 
'profit testing'. 

In Chapter 13 we follow up on the cash flow projections of Chapter 12 to 
show how profit testing can be used to design and assess products for which 
policyholders share profits with the insurer. The first type of policy examined is 
a traditional with-profits policy, where profits are distributed as cash dividends, 
or as additional life insurance benefit. The second type is the Universal Life 
policy, which is very popular in North America. 

In Chapter 14 we use the emerging cash flow approach to assess equity
linked contracts, where a financial guarantee is commonly part of the contin
gent benefit. The real risks for such products can only be assessed taking the 
random variation in potential outcomes into consideration, and we demonstrate 
this with Monte Carlo simulation of the emerging cash flows. 

The products that are explored in Chapter 14 contain financial guarantees 
embedded in the life contingent benefits. Option theory is the mathematics 
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of valuation and risk management of financial guarantees. In Chapter 15 we 
introduce the fundamental assumptions and results of option theory. 

In Chapter 16 we apply option theory to the embedded options of financial 
guarantees in insurance products. The theory can be used for pricing and for 
determining appropriate reserves, as well as for assessing profitability. 

The material 'in this book is designed for undergraduate and graduate pro
grammes in actuarial science, for those self-studying for professional actuarial 
exams, and for practitioners interested in updating their skill set. The content 
has been designed primarily to prepare readers for practical actuarial work in 
life insurance and pension funding and valuation. The text covers all the most 
recent syllabus requirements for the MLC exam of the Society of Actuaries 
and for the CT5 exam of the UK Institute and Faculty of Actuaries. Some of 
the topics in this book are not currently covered by those professional exams, 
and many of the topics that are in the exams are covered in significantly more 
depth in this book, particularly where we believe the content will be valuable 
beyond the exams. 

Students and other readers should have sufficient background in probability 
to be able to calculate moments of functions of one or two random variables, 
and to handle conditional expectations and variances. We assume familiarity 
with the binomial, uniform, exponential, normal and lognormal distributions. 
Some of the more important results are reviewed in Appendix A. We also 
assume that readers have completed an introductory level course in the mathe
matics of finance, and are aware of the actuarial notation for interest, discount 
and annuities-certain. 

Throughout, we have opted to use examples that liberally call on spreadsheet
style software. Spreadsheets are ubiquitous tools in actuarial practice, and it 
is natural to use them throughout, allowing us to use more realistic exam
ples, rather than having to simplify for the sake of mathematical tractability. 
Other software could be used equally effectively, but spreadsheets represent 
a fairly universal language that is easily accessible. To keep the computa
tion requirements reasonable, we have ensured that every example and exer
cise can be completed in Microsoft Excel, without needing any VBA code 
or macros. Readers who have sufficient familiarity to write their own code 
may find more efficient solutions than those that we have presented, but our 
principle was that no reader should need to know more than the basic Excel 
functions and applications. It will be very useful for anyone working through 
the material of this book to construct their own spreadsheet tables as they 
work through the first seven chapters, to generate mortality and actuarial func
tions for a range of mortality models and interest rates. In the worked ex
amples in the text, we have worked with greater accuracy than we record, 
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so there will be some differences from rounding when working with interme

diate figures. 
One of the advantages of spreadsheets is the ease of implementation of 

numerical integration algorithms. We assume that students are aware of the 
principles of numerical integration, and we give some of the most useful algo

rithms in Appendix B. 
The material in this book is appropriate for two one-semester courses. The 

first seven chapters form a fairly traditional basis, and would reasonably con
stitute a first course. Chapters 8-16 introduce more contemporary material. 
Chapter 15 may be omitted by readers who have studied an introductory course 
covering pricing and delta hedging in a Black-Scholes-Merton model. Chap
ter 10, on pension mathematics, is not required for subsequent chapters, and 
could be omitted if a single focus on life insurance is preferred. 

Changes from the first edition 

The major changes are listed here. 

• The material on joint life models has been substantially expanded, and placed 
in a separate chapter. In the first edition, the joint life material was incorpo

rated in Chapter 8. 
• The material on profit sharing and Universal Life, in Chapter 13, is new. 

Some of this has been adapted from the monograph 'Supplementary Notes 
for Actuarial Mathematics for Life Contingent Risks', previously available 

as a free supplement to the first edition. 
• Additional content in Chapter 7 (policy values) covers modified premium 

valuation and its relationship to deferred acquisition costs and net premium 
valuation. This content is relevant for any readers who need to understand 
US valuation methods, and may be omitted by those who do not. 

• More short, examination-style questions, which do not require spreadsheets, 
have been added to the exercises in many of the chapters. The questions are 
designed to help students prepare for exams as well as develop understand
ing. To support these questions, we have included some exam-style tables in 

AppendixD. 
• Other, smaller changes include new sections on mortality reduction fac

tors, discrete time Markov chains, and construction of multiple decrement 

models. 
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Introduction to life insurance 

1.1 Summary 

Actuaries apply scientific principles and techniques from a range of other 
disciplines to problems involving risk, uncertainty and finance. In this chapter 
we set the context for the mathematics of later chapters, by describing some 
of the background to modem actuarial practice in life insurance, followed by a 
brief description of the major types of life insurance products that are sold in 
developed insurance markets. Because pension liabilities are similar in many 
ways to life insurance liabilities, we also describe some common pension ben
efits. We give examples of the actuarial questions arising from the risk manage
ment of these contracts. How to answer such questions, and solve the resulting 
problems, is the subject of the following chapters. 

1.2 Background 

The first actuaries were employed by life insurance companies in the early 
eighteenth century to provide a scientific basis for managing the companies' 
assets and liabilities. The liabilities depended on the number of deaths occur
ring amongst the insured lives each year. The modelling of mmtality became a 
topic of both commercial and general scientific interest, and it attracted many 
significant scientists and mathematicians to actuarial problems, with the result 
that much of the early work in the field of probability was closely connected 
with the development of solutions to actuarial problems. 

The earliest life insurance policies provided that the policyholder would pay 
an amount, called the premium, to the insurer. If the named life insured died 
during the year that the contract was in force, the insurer would pay a predeter
mined lump sum, the sum insured, to the policyholder or his or her estate. So, 
the first life insurance contracts were annual contracts. Each year the premium 
would increase as the probability of death increased. If the insured life became 
very ill at the renewal date, the insurance might not be renewed, in which case 
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no benefit would be paid on the life's subsequent death. Over a large num
ber of contracts, the premium income each year should approximately match 
the claims outgo. This method of matching income and outgo annually, with 
no attempt to smooth or balance the premiums over the years, is called assess
mentism. This method is still used for group life insurance, where an employer 
purchases life insurance cover for its employees on a year-to-year basis. 

The radical development in the later eighteenth century was the level pre
mium contract. The problem with assessmentism was that the annual increases 
in premiums discouraged policyholders from renewing their contracts. The 
level premium policy offered the policyholder the option to lock-in a regu
lar premium, payable perhaps weekly, monthly, quarterly or annually, for a 
number of years. This was much more popular with policyholders, as they 
would not be priced out of the insurance contract just when it might be most 
needed. For the insurer, the attraction of the longer contract was a greater like
lihood of the policyholder paying premiums for a longer period. However, a 
problem for the insurer was that the longer contracts were more complex to 
model, and offered more financial risk. For these contracts actuarial techniques 
had to develop beyond the year-to-year modelling of mortality probabilities. In 
particular, it became necessary to incorporate financial considerations into the 
modelling of income and outgo. Over a one-year contract, the time value of 
money is not a critical aspect. Over, say, a 30-year contract, it becomes a very 
important part of the modelling and management of risk. 

Another development in life insurance in the nineteenth century was the 
concept of insurable interest. This was a requirement in law that the person 
contracting to pay the life insurance premiums should face a financial loss on 
the death of the insured life - an insurance payout should not leave the bene
ficiary financially better off than if the insured life had not died. The insurable 
interest requirement ended the practice where individuals would insure persons 
(often public figures) with no connection to the purchaser, as a form of gam
bling. It also, importantly, removed the incentive for a policyholder to hasten 
the death of the insured life. Subsequently, insurance policies tended to be pur
chased by the insured life, and in the rest of this book we use the convention 
that the policyholder who pays the premiums is also the life insured, whose 
survival or death triggers the payment of the sum insured under the conditions 
of the contract. 

The earliest studies of mortality include life tables constructed by John 
Graunt and Edmund Halley. A life table summarizes a survival model by spec
ifying the proportion of lives that are expected to survive to each age. Using 
London mortality data from the early seventeenth century, Graunt proposed, 
for example, that each new life had a probability of 40% of surviving to age 
16, and a probability of 1 % of surviving to age 76. Edmund Halley, famous for 
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his astronomical calculations, used mortality data from the city of Breslau in 
the late seventeenth century as the basis for his life table, which, like Graunt's, 
was constructed by proposing the average ('medium' in Halley's phrase) pro
portion of survivors to each age from an arbitrary number of births. Halley took 
the work two steps further. First, he used the table to draw inference about the 
conditional survival probabilities at intermediate ages. That is, given the prob
ability that a newborn life survives to each subsequent age, it is possible to 
infer the probability that a life aged, say, 20, will survive to each subsequent 
age, using the condition that a life aged zero survives to age 20. The second 
major innovation was that Halley combined the mortality data with an assump
tion about interest rates to find the value of a whole life annuity at different 
ages. A whole life annuity is a contract paying a level sum at regular intervals 
while the named life (the annuitant) is still alive. The calculations in Halley's 
paper bear a remarkable similarity to some of the work still used by actuaries 
in pensions and life insurance. 

This book continues in the tradition of combining models of mortality with 
models in finance to develop a framework for pricing and risk management of 
long-term policies in life insurance. Many of the same techniques are relevant 
also in pensions mathematics. However, there have been many changes since 
the first long-term policies of the late eighteenth century. 

1.3 Life insurance and annuity contracts 

1.3.1 Introduction 

The life insurance and annuity contracts that were the object of study of the 
early actuaries were very similar to the contracts written up to the 1980s in all 
the developed insurance markets. Recently, however, the design of life insur
ance products has radically changed, and the techniques needed to manage 
these more modern contracts are more complex than ever. The reasons for the 
changes include: 

• Increased interest by the insurers in offering combined savings and insur
ance products. The original life insurance products offered a payment to 
indemnify (or offset) the hardship caused by the death of the policyholder. 
Many modern contracts combine the indemnity concept with an opportunity 
to invest. 

• More powerful computational facilities allow more complex products to be 
modelled. 

• Policyholders have become more sophisticated investors, and require more 
options in their contracts, allowing them to vary premiums or sums insured, 
for example. 
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• More competition has led to insurers creating increasingly complex products 
in order to attract more business. 

• Risk management techniques in financial products have also become 
increasingly complex, and insurers have offered some benefits, particularly 
financial guarantees, that require sophisticated techniques from financial 
engineeling to measure and manage the Iisk. 

In the remainder of this section we describe some of the most important 
modem insurance contracts, which will be used as examples in later chapters. 
Different countries have different names and types of contracts; we have tlied 
to cover the major contract types in North America, the United Kingdom and 
Australia. 

The basic transaction of life insurance is an exchange; the policyholder pays 
premiums in return for a later payment from the insurer which is life contin
gent, by which we mean that it depends on the death or survival or possibly 
the state of health of the policyholder. We usually use the term 'insurance' 
when the benefit is paid as a single lump sum, either on the death of the pol
icyholder or on survival to a predetermined maturity date. (In the UK it is 
common to use the term 'assurance' for insurance contracts involving lives, 
and insurance for contracts involving property.) An annuity is a benefit in the 
form of a regular series of payments, usually conditional on the survival of the 
policyholder. 

1.3.2 Traditional insurance contracts 

Term, whole life and endowment insurance are the traditional products, pro
viding cash benefits on death or matulity, usually with predetermined premium· 
and benefit amounts. We describe each in a little more detail here. 

Term insurance pays a lump sum benefit on the death of the policyholder, 
provided death occurs before the end of a specified term. Term insurance 
allows a policyholder to provide a fixed sum for his or her dependents in 
the event of the policyholder's death. 

Level term insurance indicates a level sum insured and regular, level 
premiums. 

Decreasing term insurance indicates that the sum insured and (usu
ally) premiums decrease over the term of the contract. Decreasing term 
insurance is popular in the UK where it is used in conjunction with a 
home mortgage; if the policyholder dies, the remaining mortgage is paid 
from the term insurance proceeds. 

Renewable term insurance offers the policyholder the option of renew
ing the policy at the end of the original term, without further evidence 
of the policyholder's health status. In North America, Yearly Renewable 
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Term (YRT) insurance is common, under which insurability is guaran
teed for some fixed period, though the contract is written only for one 
year at a time. 

Convertible term insurance offers the policyholder the option to con
vert to a whole life or endowment insurance at the end of the original 
term, without further evidence of the policyholder's health status. 

Whole life insurance pays a lump sum benefit on the death of the policy
holder whenever it occurs. For regular premium contracts, the premium 
is often payable only up to some maximum age, such as 80. This avoids 
the problem that older lives may be less able to pay the premiums. 

Endowment insurance offers a lump sum benefit paid either on the death of 
the policyholder or at the end of a specified term, whichever occurs first. 
This is a mixture of a term insurance benefit and a savings element. If the 
policyholder dies, the sum insured is paid just as under term insurance; 
if the policyholder survives, the sum insured is treated as a maturing 
investment. Endowment insurance is obsolete in many jurisdictions. Tra
ditional endowment insurance policies are not currently sold in the UK, 
but there are large portfolios of policies on the books of UK insurers, 
because until the late 1990s, endowment insurance policies were often 
used to repay home mortgages. The policyholder (who was the home 
owner) paid interest on the mortgage loan, and the principal was paid 
from the proceeds on the endowment insurance, either on the death of 
the policyholder or at the final mortgage repayment date. 

Endowment insurance policies are becoming popular in developing 
nations, particularly for 'micro-insurance' where the amounts involved 
are small. It is hard for small investors to achieve good rates of return on 
investments, because of heavy expense charges. By pooling the death and 
survival benefits under the endowment contract, the policyholder gains 
on the investment side from the resulting economies of scale, and from 
the investment expertise of the insurer. 

Participating insurance 
Also part of the traditional design of insurance is the division of business 
into 'participating' or 'par' business, also known as 'with-profit', and 'non
participating', or 'non-par', also known as 'without profit'. Under participat
ing insurance, the profits earned on the invested premiums are shared with 
the policyholders. In North America, the profit share often takes the form 
of cash dividends or reduced premiums. In the UK and in Australia the tra
ditional approach is to use the profits to increase the sum insured, through 
bonuses called 'reversionary bonuses' and 'terminal bonuses'. Reversion
ary bonuses are awarded during the term of the contract; once a reversionary 
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bonus is awarded it is guaranteed. Terminal bonuses are awarded when the 
policy matures, either through the death of the insured, or when an endowment 
policy reaches the end of the term. Reversionary bonuses may be expressed 
as a percentage of the total of the previous sum insured plus bonus, or as a 
percentage of the original sum insured plus a different percentage of the previ
ously declared bonuses. Reversionary and terminal bonuses are determined by 
the insurer based on the investment performance of the invested premiums. 

Participating insurance is used to offer policyholders a savings element with 
their life insurance. However, the traditional participating contract was 
designed primarily for the life insurance cover, with the savings aspect a sec
ondary feature. 

1.3.3 Modern insurance contracts 

In recent years insurers have provided more flexible products that combine the 
death benefit coverage with a significant investment element, as a way of com
peting for policyholders' savings with other institutions, for example, banks or 
open-ended investment companies (e.g. mutual funds in North America, or unit 
trusts in the UK). Additional flexibility also allows policyholders to purchase 
less insurance when their finances are tight, and then increase the insurance 
coverage when they have more money available. 

In this section we describe some examples of modem, flexible insurance 
contracts. 

• Universal Life insurance combines investment and life insurance. The poli
cyholder determines a premium and a level of life insurance cover. Premiums 
are flexible, as long as the accumulated value of the premiums is sufficient 
to pay for the designated sum insured under the term insurance part of the 
contract. Universal Life is a common insurance contract in North America. 

• Unitized with-profit is a UK insurance contract; it is an evolution from 
the conventional with-profit policy, designed to be more transparent than 
the original. Premiums are used to purchase units (shares) of an investment 
fund, called the with-profit fund. As the fund earns investment return, the 
shares increase in value (or more shares are issued), increasing the benefit 
entitlement as reversionary bonus. The shares will not decrease in value. On 
death or maturity, a further terminal bonus may be payable depending on the 
performance of the with-profit fund. 

After some poor publicity surrounding with-profit business, and, by asso
ciation, unitized with-profit business, these product designs were withdrawn 
from the UK and Australian markets in the early 2000s. However, they 
will remain important for many years as many companies carry very large 
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portfolios of with-profit (traditional and unitized) policies issued during the 
second half of the twentieth century. 

• Equity-linked insurance has a benefit linked to the performance of an 
investment fund. There are two different forms. The first is where the policy
holder's premiums are invested in an open-ended investment company style 
account; at maturity, the benefit is the accumulated value of the premiums. 
There is a guaranteed minimum death benefit payable if the policyholder 
dies before the contract matures. In some cases, there is also a guaranteed 
minimum maturity benefit payable. In the UK and most of Europe, these 
are called unit-linked policies, and they rarely carry a guaranteed maturity 
benefit. In Canada they are known as segregated fund policies and always 
carry a maturity guarantee. In the USA these contracts are called variable 
annuity contracts; maturity guarantees are increasingly common for these 
policies. (The use of the term 'annuity' for these contracts is misleading. 
The benefits are designed with a single lump sum payout, though there will 
be an option to convert the lump sum to an annuity.) 

The second form of equity-linked insurance is the Equity-Indexed 
Annuity (EIA) in the USA. Under an EIA the policyholder is guaranteed 
a minimum return on their premium (minus an initial expense charge). At 
maturity, the policyholder receives a proportion of the return on a specified 
stock index, if that is greater than the guaranteed minimum return. 

EIAs are generally rather shorter in term than unit-linked products, with 
seven-year policies being typical; variable annuity contracts commonly have 
terms of 20 years or more. EIAs are much less popular with consumers than 
variable annuities. 

1.3.4 Distribution methods 

Most people find insurance dauntingly complex. Brokers who connect individ
uals to an appropriate insurance product have, since the earliest times, played 
an important role in the market. There is an old saying amongst actuaries that 
'insurance is sold, not bought', which means that the role of an intermediary 
in persuading potential policyholders to take out an insurance policy is crucial 
in maintaining an adequate volume of new business. 

Brokers, or other financial advisors, are often remunerated through a com
mission system. The commission would be specified as a percentage of the 
premium paid. Typically, there is a higher percentage paid on the first premium 
than on subsequent premiums. This is referred to as a front-end load. Some 
advisors may be remunerated on a fixed-fee basis, or may be employed by one 
or more insurance companies on a salary basis. 
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An alternative to the broker method of selling insurance is direct market
ing. Insurers may use television advertising or other telemarketing methods 
to sell direct to the public. The nature of the business sold by direct market
ing methods tends to differ from the broker-sold business. For example, often 
the sum insured is smaller. The policy may be aimed at a niche market, such 
as older lives concerned with insurance to cover their own funeral expenses 
(called pre-need insurance in the USA). Another mass marketed insurance 
contract is loan or credit insurance, where an insurer might cover loan or credit 
card payments in the event of the borrower's death, disability or 
unemployment. 

1.3.5 Underwriting 

It is important in modelling life insurance liabilities to consider what happens 
when a life insurance policy is purchased. Selling life insurance policies is a 
competitive business and life insurance companies (also known as life offices) 
are constantly considering ways in which to change their procedures so that 
they can improve the service to their customers and gain a commercial advan
tage over their competitors. The account given below of how policies are sold 
covers some essential points but is necessarily a simplified version of what 
actually happens. 

For a given type of policy, say a 10-year term insurance, the life office will 
have a schedule of premium rates. These rates will depend on the size of the 
policy and some other factors known as rating factors. An applicant's risk 
level is assessed by asking them to complete a proposal form giving infor
mation on relevant rating factors, generally including their age, gender (where 
legislation permits), smoking habits, occupation, any dangerous hobbies, and 
personal and family health history. The life insurer may ask for permission to 
contact the applicant's doctor to enquire about their medical history. In some 
cases, particularly for very large sums insured, the life insurer may require that 
the applicant's health be checked by a doctor employed by the insurer. 

The process of collecting and evaluating this information is called under
writing. The purpose of underwriting is, first, to classify potential policyhold
ers into broadly homogeneous risk categories, and secondly to assess what 
additional premium would be appropriate for applicants whose risk factors 
indicate that standard premium rates would be too low. 

On the basis of the application and supporting medical information, poten
tial life insurance policyholders will generally be categorized into one of the 
following groups: 

• Preferred lives have very low mortality risk based on the standard infor
mation. The preferred applicant would have no recent record of smoking; 
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no evidence of drug or alcohol abuse; no high-risk hobbies or occupations; 
no family history of disease known to have a strong genetic component; no 
adverse medical indicators such as high blood pressure or cholesterol level 
or body mass index. 

The preferred life category is common in North America, but has not yet 
caught on elsewhere. In other areas there is no separation of preferred and 
normal lives. 

111 Normal lives may have some higher rated risk factors than preferred lives 
(where this category exists), but are still insurable at standard rates. Most 
applicants fall into this category. 

• Rated lives have one or more risk factors at raised levels and so are not 
acceptable at standard premium rates. However, they can be insured for a 
higher premium. An example might be someone having a family history of 
heart disease. These lives might be individually assessed for the appropriate 
additional premium to be charged. This category would also include lives 
with hazardous jobs or hobbies which put them at increased risk. 

• Uninsurable lives have such significant risk that the insurer will not enter 
an insurance contract at any price. 

Within the first three groups, applicants would be further categorized accord
ing to the relative values of the various risk factors, with the most fundamental 
being age, gender and smoking status. Note, however, that gender-based pre
miums are no longer permitted in some jurisdictions, including the European 
Union countries. Most applicants (around 95% for traditional life insurance) 
will be accepted at preferred or standard rates for the relevant risk category. 
Another 2-3% may be accepted at non-standard rates because of an impair
ment, or a dangerous occupation, leaving around 2-3% who will be refused 
insurance. 

The rigour of the underwriting process will depend on the type of insur
ance being purchased, on the sum insured and on the distribution process of 
the insurance company. Term insurance is generally more strictly underwrit
ten than whole life insurance, as the risk taken by the insurer is greater. Under 
whole life insurance, the payment of the sum insured is certain, the uncer
tainty is in the timing. Under, say, IO-year term insurance, it is assumed that 
the majority of contracts will expire with no death benefit paid. If the under
writing is not strict there is a risk of adverse selection by policyholders - that 
is, that very high-risk individuals will buy insurance in disproportionate num
bers, leading to excessive losses. Since high sum insured contracts carry more 
risk than low sum insured, high sums insured would generally trigger more 
rigorous underwriting. 



10 Introduction to life insurance 

The distribution method also affects the level of underwriting. Often, direct 
marketed contracts are sold with relatively low benefit levels, and with the 
attraction that no medical evidence will be sought beyond a standard 
questionnaire. The insurer may assume relatively heavy mortality for these 
lives to compensate for potential adverse selection. By keeping the under
writing relatively light, the expenses of writing new business can be kept low, 
which is an attraction for high-volume, low sum insured contracts. 

It is interesting to note that with no third party medical evidence the insurer 
is placing a lot of weight on the veracity of the policyholder. Insurers have 
a phrase for this - that both insurer and policyholder may assume 'utmost 
good faith' or 'uberrima fides' on the part of the other side of the contract. 
In practice, in the event of the death of the insured life, the insurer may inves
tigate whether any pertinent information was withheld from the application. If 
it appears that the policyholder held back information, or submitted false or 
misleading information, the insurer may not pay the full sum insured. 

1.3.6 Premiums 

A life insurance policy may involve a single premium, payable at the outset of 
the contract, or a regular series of premiums payable provided the policyholder 
survives, perhaps with a fixed end date. In traditional contracts the regular pre
mium is generally a level amount throughout 1t~e term of the contract; in more 
modem contracts the premium might be variable, at the policyholder's discre
tion for investment products such as equity-linked insurance, or at the insurer's 
discretion for certain types of term insurance. 

Regular premiums may be paid annually, semi-annually, quarterly, monthly 
or weekly. Monthly premiums are common as it is convenient for policyholders 
to have their outgoings payable with approximately the same frequency as their 
mcome. 

An important feature of all premiums is that they are paid at the start of each 
period. Suppose a policyholder contracts to pay annual premiums for a 10-year 
insurance contract. The premiums will be paid at the start of the contract, and 
then at the start of each subsequent year provided the policyholder is alive. 
So, if we count time in years from t = 0 at the start of the contract, the first 
premium is paid at t = 0, the second is paid at t = 1, and so on, to the tenth 
premium paid at t = 9. Similarly, if the premiums are monthly, then the first 
monthly instalment will be paid at t = 0, and the final premium will be paid at 
the start of the final month at t = 9 H years. (Throughout this book we assume 
that all months are equal in length, at b, years.) 
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1.3.7 Life annuities 

Annuity contracts offer a regular series of payments. When an annuity depends 
on the survival of the recipient, it is called a 'life annuity'. The recipient is 
called an annuitant. If the annuity continues until the death of the annuitant, it 
is called a whole life annuity. If the annuity is paid for some maximum period 
it is called a term life annuity. 

Annuities are often purchased by older lives to provide income in retirement. 
Buying a whole life annuity guarantees that the income will not run out before 
the annuitant dies. 

• Single Premium Deferred Annuity (SPDA) Under an SPDA contract, the 
policyholder pays a single premium in return for an annuity which com
mences payment at some future, specified date. The annuity is 'life contin
gent', by which we mean the annuity is paid only if the policyholder survives 
to the payment dates. If the policyholder dies before the annuity commences, 
there may be a death benefit due. If the policyholder dies soon after the 
annuity commences, there may be some minimum payment period, called 
the guarantee period, and the balance would be paid to the policyholder's 
estate. 

• Single Premium Immediate Annuity (SPIA) This contract is the same as 
the SPDA, except that the annuity commences as soon as the contract is 
effected. This might, for example, be used to convert a lump sum retirement 
benefit into a life annuity to supplement a pension. As with the SPDA, there 
may be a guarantee period applying in the event of the early death of the 
annuitant. 

• Regular Premium Deferred Annuity (RPDA) The RPDA offers a deferred 
life annuity with premiums paid through the deferred period. It is otherwise 
the same as the SPDA. 

• Joint life annuity A joint life annuity is issued on two lives, typically a mar
ried couple. The annuity (which may be single premium or regular premium, 
immediate or deferred) continues while both lives survive, and ceases on the 
first death of the couple. 

• Last survivor annuity A last survivor annuity is similar to the joint life 
annuity, except that payment continues while at least one of the lives sur
vives, and ceases on the second death of the couple. 

• Reversionary annuity A reversionary annuity is contingent on two lives, 
usually a couple. One is designated as the annuitant, and one the insured. 
No annuity benefit is paid while the insured life survives. On the death of 
the insured life, if the annuitant is still alive, the annuitant receives an annuity 
for the remainder of his or her life. 
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1.4 Other insurance contracts 

The insurance and annuity contracts described above are all contingent on 
death or survival. There are other life contingent risks, in particular involving 
short-term or long-term disability. These are known as morbidity risks. 

• Income protection insurance When a person becomes sick and cannot 
work, their income will, eventually, be affected. For someone in regular 
employment, the employer may cover salary for a period, but if the sick
ness continues the salary will be decreased, and ultimately will stop being 
paid at all. For someone who is self-employed, the effects of sickness on 
income will be immediate. Income protection policies replace at least some 
income during periods of sickness. They usually cease at retirement age. 

• Critical illness insurance Some serious illnesses can cause significant 
expense at the onset of the illness. The patient may have to leave employ
ment, or alter their home, or may incur severe medical expenses. Critical 
illness insurance pays a benefit on diagnosis of one of a number of severe 
conditions, such as certain cancers or heart disease. The benefit is usually in 
the form of a lump sum. 

• Long-term care insurance This is purchased to cover the costs of care in 
old age, when the insured life is unable to continue living independently. 
The benefit would be in the form of the long-term care costs, so is an annuity 
benefit. 

1.5 Pension benefits 

Many actuaries work in the area of pension plan design, valuation and risk 
management. The pension plan is usually sponsored by an employer. Pension 
plans typically offer employees (also called pension plan members) either lump 
sums or annuity benefits or both on retirement, or deferred lump sum or annu
ity benefits (or both) on earlier withdrawal. Some offer a lump sum benefit if 
the employee dies while still employed. The benefits therefore depend on the 
survival and employment status of the member, and are quite similar in nature 
to life insurance benefits - that is, they involve investment of contributions long 
into the future to pay for future life contingent benefits. 

1.5.J Defined benefit and defined contribution 

Defined Benefit (DB) pensions offer retirement income based on service and 
salary with an employer, using a defined formula to determine the pension. For 
example, suppose an employee reaches retirement age with n years of service 
(i.e. membership of the pension plan), and with pensionable salary averaging 
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S in, say, the final three years of employment. A ·typical final salary plan 
might offer an annual pension at retirement of B = Sna, where a is called 
the accrual rate, and is usually around 1-2%. The formula may be interpreted 
as a pension benefit of, say, 2 % of the final average salary for each year of 
service. 

The defined benefit is funded by contributions paid by the employer and 
(usually) the employee over the working lifetime of the employee. The con
tributions are invested, and the accumulated contributions must be enough, on 
average, to pay the pensions when they become due. 
Defined Contribution (DC) pensions work more like a bank account. The 
employee and employer pay a predetermined contribution (usually a fixed per
centage of salary) into a fund, and the fund earns interest. When the employee 
leaves or retires, the proceeds are available to provide income throughout retire
ment. In the UK most of the proceeds must be converted to an annuity. In the 
USA and Canada there are more options - the pensioner may draw funds to 
live on without necessarily purchasing an annuity from an insurance company. 

1.5.2 De.fined benefit pension design 

The age retirement pension described in the section above defines the pension 
payable from retirement in a standard final salary plan. Career average salary 
plans are also common in some jurisdictions, where the benefit formula is the 
same as the final salary formula above, except that the average salary over the 
employee's entire career is used in place of the final salary. 

Many employees leave their jobs before they retire. A typical withdrawal 
benefit would be a pension based on the same formula as the age retirement 
benefit, but with the start date deferred until the employee reaches the normal 
retirement age. Employees may have the option of taking a lump sum with the 
same value as the deferred pension, which can be invested in the pension plan 
of the new employer. 

Some pension plans also offer death-in-service benefits, for employees who 
die during their period of employment. Such benefits might include a lump 
sum, often based on salary and sometimes service, as well as a pension for the 
employee's spouse. 

1.6 Mutual and proprietary insurers 

A mutual insurance company is one that has no shareholders. The insurer is 
owned by the with-profit policyholders. All profits are distributed to the with
profit policyholders through dividends or bonuses. 
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A proprietary insurance company has shareholders, and usually has with
profit policyholders as well. The participating policyholders are not owners, but 
have a specified right to some of the profits. Thus, in a proprietary insurer, the 
profits must be shared in some predetermined proportion, between the share
holders and the with-profit policyholders. 

Many early life insurance companies were formed as mutual companies. 
More recently, in the UK, Canada and the USA, there has been a trend towards 
demutualization, which means the transition of a mutual company to a 
proprietary company, through issuing shares (or cash) to the with-profit poli
cyholders. Although it would appear that a mutual insurer would have market
ing advantages, as participating policyholders receive all the profits and other 
benefits of ownership, the advantages cited by companies who have demutu
alized include increased ability to raise capital, clearer corporate structure and 
improved efficiency. 

1.7 Typical problems 

We are concerned in this book with developing the mathematical models and 
techniques used by actuaries working in life insurance and pensions. The pri
mary responsibility of the life insurance actuary is to maintain the solvency 
and profitability of the insurer. Premiums must be sufficient to pay benefits; 
the assets held must be sufficient to pay the contingent liabilities; bonuses to 
policyholders should be fair. 

Consider, for example, a whole life insurance contract issued to a life aged 
50. The sum insured may not be paid for 30 years or more. The premiums paid 
over the period will be invested by the insurer to earn significant interest; the 
accumulated premiums must be sufficient to pay the benefits, on average. To 
ensure this, the actuary needs to model the survival probabilities of the poli
cyholder, the investment returns likely to be earned and the expenses likely to 
be incurred in maintaining the policy. The actuary may take into consideration 
the probability that the policyholder decides to terminate the contract early. 
The actuary may also consider the profitability requirements for the contract. 
Then, when all of these factors have been modelled, they must be combined to 
set a premium. 

Each year or so, the actuary must determine how much money the insurer or 
pension plan should hold to ensure that future liabilities will be covered with 
adequately high probability. This is called the valuation process. For with-profit 
insurance, the actuary must determine a suitable level of bonus. 

The problems are rather more complex if the insurance also covers morbidity 
risk, or involves several lives. All of these topics are covered in the following 
chapters. 
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The actuary may also be involved in decisions about how the premiums are 
invested. It is vitally important that the insurer remains solvent, as the con
tracts are very long-term and insurers are responsible for protecting the finan
cial security of the general public. The way the underlying investments are 
selected can increase or mitigate the risk of insolvency. The precise selection 
of investments to manage the risk is particularly important where the contracts 
involve financial guarantees. 

The pensions actuary working with defined benefit pensions must determine 
appropriate contribution rates to meet the benefits promised, using models that 
allow for the working patterns of the employees. Sometimes, the employer 
may want to change the benefit structure, and the actuary is responsible for 
assessing the cost and impact. When one company with a pension plan takes 
over another, the actuary must assist with determining the best way to allocate 
the assets from the two plans, and perhaps how to merge the benefits. 

1.8 Notes and further reading 

A number of essays describing actuarial practice can be found in Renn (ed.) 
(1998). This book also provides both historical and more contemporary con
texts for life contingencies. 

The original papers of Graunt and Halley are available online (and any 
search engine will find them). Anyone interested in the history of probability 
and actuarial science will find these interesting, and remarkably modern. 

1.9 Exercises 

Exercise 1.1 Why do insurers generally require evidence of health from a per
son applying for life insurance but not for an annuity? 

Exercise 1.2 Explain why an insurer might demand more rigorous evidence of 
a prospective policyholder's health status for a term insurance than for a whole 
life insurance. 

Exercise 1.3 Explain why premiums are payable in advance, so that the first 
premium is due now rather than in one year's time. 

Exercise 1.4 Lenders offering mortgages to home owners may require the bor
rower to purchase life insurance to cover the outstanding loan on the death of 
the borrower, even though the mortgaged property is the loan collateral. 
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(a) Explain why the lender might require term insurance in this circumstance. 
(b) Describe how this term insurance might differ from the standard term 

insurance described in Section 1.3.2. 
(c) Can you see any problems with lenders demanding term insurance from 

borrowers? 

Exercise 1.5 Describe the difference between a cash bonus and a reversion
ary bonus for participating whole life insurance. What are the advantages and 
disadvantages of each for (a) the insurer and (b) the policyholder? 

Exercise 1.6 It is common for insurers to design whole life contracts with 
premiums payable only up to age 80. Why? 

Exercise 1.7 Andrew is retired. He has no pension, but has capital of 
$500 000. He is considering the following options for using the money: 

(a) Purchase an annuity from an insurance company that will pay a level 
amount for the rest of his life. 

(b) Purchase an annuity from an insurance company that will pay an amount 
that increases with the cost of living for the rest of his life. 

(c) Purchase a 20-year annuity-certain. 
(d) Invest the capital and live on the interest income. 
( e) Invest the capital and draw $40 000 per year to live on. 

What are the advantages and disadvantages of each option? 
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Survival models 

2.1 Summary 

In this chapter we represent the future lifetime of an individual as a random 
variable, and show how probabilities of death or survival can be calculated 
under this framework. We then define an important quantity known as the force 
of mortality, introduce some actuarial notation, and discuss some properties of 
the distribution of future lifetime. We introduce the curtate future lifetime ran
dom variable. This is a function of the future lifetime random variable which 
represents the number of complete years of future life. We explain why this 
function is useful and derive its probability function. 

2.2 The future lifetime random variable 

In Chapter 1 we saw that many insurance policies provide a benefit on the 
death of the policy holder. When an insurance company issues such a policy, the 
policyholder's date of death is unknown, so the insurer does not know exactly 
when the death benefit will be payable. In order to estimate the time at which 
a death benefit is payable, the insurer needs a model of human mortality, from 
which probabilities of death at particular ages can be calculated, and this is the 
topic of this chapter. 

We start with some notation. Let (x) denote a life aged x, where x '.'.".: 0. The 
death of (x) can occur at any age greater than x, and we model the future 
lifetime of (x) by a continuous random variable which we denote by Tx. This 
means that x + Tx represents the age-at-death random variable for (x). 

Let Fx be the distribution function of Tx, so that 

Fx(t) = Pr[Tx :S t]. 

Then Fx (t) represents the probability that (x) does not survive beyond age 
x + t, and we refer to Fx as the lifetime distribution from age x. In many life 

17 
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insurance problems we are interested in the probability of survival rather than 
death, and so we define Sx as 

Sx(t) = 1- Fx(t) = Pr[Tx > t]. 

Thus, Sx (t) represents the probability that (x) survives for at least t years, and 
Sx is known as the survival function. 

Given our interpretation of the collection of random variables { Tx} x::: o as 
the future lifetimes of individuals, we need a connection between any pair of 
them. To see this, consider To and Tx for an individual who is now aged x. The 
random variable To represented the future lifetime at birth for this individual, 
so that, at birth, the individual's age at death would have been represented by 
To. This individual could have died before reaching age x - the probability of 
this was Pr[ To < x] - but has survived. Now that the individual has survived 
to age x, so that we know that To > x, her future lifetime is represented by Tx 

and her age at death is now x + Tx. If she dies within t years from now, then 
Tx:::; t and To:::; x + t. Loosely speaking, we require the events [Tx:::; t] and 
[To:::; x + t] to be equivalent, given that the individual survives to age x. We 
achieve this by making the following assumption for all x :::: 0 and for all t > 0 

j Pr[Tx :::; t] = Pr[To:::; x +ti To > x].1 
This is an important relationship. 

Now, recall from probability theory that for two events A and B 

Pr[A and B] 
Pr[AIB] = , 

Pr[B] 

(2.1) 

so, interpreting [To :::; x + t] as event A, and [To > x] as event B, we can rear
range the right-hand side of (2.1) to give 

Pr[x < To :::; x + t] 
Pr[Tx :::; t] = Pr[To > x] , 

that is, 

Fo(x + t) - Fo(x) 
Fx(t) = . 

So(x) 
(2.2) 

Also, using Sx(t) = 1- Fx(t), 

S (t) = So(x + t) 
x So(x) ' 

(2.3) 

which can be written as 

I So(x + t) = So(x) Sx(t). I (2.4) 
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This is a very important result. It shows that we can interpret the probability 
of survival from birth to age x + t as the product of 

(1) the probability of survival to age x from birth, and 
(2) the probability, having survived to age x, of further surviving to age x + t. 

Note that Sx (t) can be thought of as the probability that (0) survives to at least 
age x + t given that (0) survives to age x, so this result can be derived from the 
standard probability relationship 

Pr[A and B] = Pr[AIB]Pr[B] 

where the events here are A= [To > x + t] and B =[To> x], so that 

Pr[AjB] = Pr[To > x + tJTo > x], 

which we know from (2.1) is equal to Pr[Tx > t]. 

Similarly, any survival probability for (x), for, say, t + u years can be split 
into the probability of surviving the first t years, and then, given survival to age 
x + t, subsequently surviving another u years. That is, 

So(x + t + u) 
Sx(t + u) = So(x) 

So(x + t) So(x + t + u) 
::::} Sx(t + u) = --------

So(x) So(x+t) 

::::} Sx(t + u) = Sx(t)Sx+1(u). (2.5) 

We have already seen that if we know survival probabilities from birth, then, 
using formula (2.4 ), we also know survival probabilities for our individual from 
any future age x. Formula (2.5) takes this a stage further. It shows that if we 
know survival probabilities from any age x ( ::=: 0), then we also know survival 
probabilities from any future age x + t ( ::=: x). 

Any survival function for a lifetime distribution must satisfy the following 
conditions to be valid. 

Condition 1 Sx(O) = 1; that is, the probability that a life currently aged x 

survives 0 years is 1. 

Condition 2 limt--+oo Sx (t) = O; that is, all lives eventually die. 

Condition 3 The survival function must be a non-increasing function oft; it 
cannot be more likely that (x) survives, say 10.5 years than 10 years, because 
in order to survive 10.5 years, (x) must first survive 10 years. 

These conditions are both necessary and sufficient, so that any function Sx 

which satisfies these three conditions as a function of t ( ::=: 0), for a fixed 
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x ( :=::: 0), defines a lifetime distribution from age x, and, using formula (2.5), 

for all ages greater than x. 
For all the distributions used in this book, we make three additional assump-

tions: 

Assumption 2.1 Sx(t) is differentiable for all t > 0. Note that together with 

Condition 3 above, this means that fr Sx (t) ::::; 0 for all t > 0. 

Assumption 2.2 limr--+oo t Sx (t) = 0. 

Assumption 2.3 limt---+oo t2 Sx (t) = 0. 

These last two assumptions ensure that the mean and variance of the distri
bution of Tx exist. These are not particularly restrictive constraints - we do not 
need to worry about distributions with infinite mean or variance in the context 
of individuals' future lifetimes. These three extra assumptions are valid for all 
distributions that are feasible for human lifetime modelling. 

Example 2.1 Let 

{
1 - (1 - t/120) 116 

Fo(t) = 
1 

Calculate the probability that 

(a) a newborn life survives beyond age 30, 
(b) a life aged 30 dies before age 50, and 
(c) a life aged 40 survives beyond age 65. 

Solution 2.1 (a) The required probability is 

for 0 ::::; t ::::; 120 

fort > 120 

S0(30) = 1 - F0(30) = (1 - 30/120)116 = 0.9532. 

(b) From formula (2.2), the required probability is 

F (20) = F0(50) - Fo(30) = 0.0410. 
30 1 - Fo(30) 

(c) From formula (2.3), the required probability is 

S40(25) = So(
65

) = 0.9395. 
So(40) 0 

We remark that in the above example, So(120) = 0, which means that under 
this model, survival beyond age 120 is not possible. In this case we refer to 120 
as the limiting age of the model. In general, if there is a limiting age, we use 
the Greek letter w to denote it. In models where there is no limiting age, it is 
often practical to introduce a limiting age in calculations, as we will see later 

in this chapter. 
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2.3 The force of mortality 

The force of mortality is an important and fundamental concept in modelling 
future lifetime. We denote the force of mortality at age x by /J.,x and define it as 

1 
/J.,x = lim -Pr[To :::; x + dx I To > x]. 

dx--+O+ dx 

From equation (2.1) we see that an equivalent way of defining /J.,x is 

. 1 
/J.,x = hm -Pr[Tx :::; dx], 

dx--+O+ dx 

which can be written in terms of the survival function Sx as 

. 1 
/J.,x = hm - (1 - Sx(dx)). 

dx--+O+ dx 

(2.6) 

(2.7) 

Note that the force of mortality depends, numerically, on the unit of time; if we 
are measuring time in years, then /J.,x is measured per year. 

The force of mortality is best understood by noting that for very small dx, 

formula (2.6) gives the approximation 

/J.,x dx ~ Pr[To :::; x + dx I To > x]. (2.8) 

Thus, for very small dx, we can interpret /J.,x dx as the probability that a life 
who has attained age x dies before attaining age x + dx. For example, sup
pose we have a life aged exactly 50, and that the force of mortality at age 
50 is 0.0044 per year. A small value of dx might be a single day, or 0.00274 
years. Then the approximate probability that the life dies on his 50th birthday 

is 0.0044 X 0.00274 = 1.2 X 10-5
• 

We can relate the force of mortality to the survival function from birth, 

So. As 

S (dx) = So(x + dx) 
x So(x) ' 

formula (2.7) gives 

1 . So(x) - So(x + dx) 
/J.,x = -- lim 

So(x) dx--+O+ dx 

= -
1 

(-!:__So(x)). 
So(x) dx 

Thus, 

(2.9) 
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From standard results in probability theory, we know that the probability 
density function for the random variable r., which we denote f,, is related 

to the distribution function F,, and the survival function Sx by 

d d 
fx (t) = dt Fx (t) = - dt Sx (t). 

So, it follows from equation (2.9) that 

fo(x) 
f.Lx = So(x) · 

We can also relate the force of mortality function at any age x + t, t > 0, 
to the lifetime distribution of Tx. Assume x is fixed and t is variable. Then 

d(x + t) =dt and so 

1 d 
f.Lx+t = - So(x + t) d(x + t) So(x + t) 

1 d 
=- -So(x+t) 

So(x + t) dt 

1 d 
= - So(x + t) dt (So(x)Sx(t)) 

So(x) d 
= - So(x + t) dt Sx(t) 

-1 d 
= ---Sx(t). 

Sx (t) dt 

Hence 

fx(t) 
f.Lx+t = Sx (t)' (2.10) 

This relationship gives a way of finding f.Lx+t given Sx(t). We can also use 
equation (2.9) to develop a formula for Sx (t) in terms of the force of mortality 
function. We use the fact that for a function h whose derivative exists, 

d 1 d 
-logh(x) = --h(x) 
dx h(x) dx ' 

so from equation (2.9) we have 

d 
f.Lx = -- log So(x), 

dx 

and integrating this identity over (0, y) yields 

lay f.Lxdx = - (log So(y) - log So(O)). 
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As log So (0) = log Pr[To > O] = log 1 = 0, we obtain 

So(Y) =exp {-lay /,lxdx} , 

from which it follows that 

So(x + t) { 1x+t } { lot } Sx (t) = =exp - µ,,.dr = exp - /,lx+sds . 
So(x) x o 

23 

(2.11) 

This means that if we know /,lx for all x :=:: 0, then we can calculate all the sur
vival probabilities Sx (t), for any x and t. In other words, the force of mortality 
function fully describes the lifetime distribution, just as the function So does. 
In fact, it is often more convenient to describe the lifetime distribution using 
the force of mortality function than the smvival function. 

Example 2.2 As in Example 2.1, let 

Fo(x) = 1 - (1 - x/120) 116 

for 0 ~x ~ 120. Derive an expression for /,lx· 

Solution 2.2 As So(x) = (1 - x/120) 116 , it follows that 

:xSo(x) = tO -x/120)-
5
16 (-iio), 

and so 

-1 d 1 1 1 
/,lx = ---So(x) = 720 (1-x/120)- = ---

So(x) dx 720 - 6x 

As an alternative, we could use the relationship 

/,lx =-~log So(x) = -~ (~ log(l - x/120)) = ___ l __ 
dx dx 6 720(1-x/120) 

1 
=---

720- 6x 

D 

Example 2.3 Let /,lx =Bex, x > 0, where B and c are constants such that 
0 < B < 1andc>1. This model is called Gompertz' law of mortality. Derive 
an expression for Sx (t). 

Solution 2.3 From equation (2.11 ), 

Sx (t) =exp {- lx+t Ber dr} . 
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Writing er as exp{r log c}, 

giving 

1~+;,. dr = B lxe-+:.p{r log c }dr 

B lx+t 
= -- exp{r log c} 

loge x 

B = __ (cx+t _ex), 
loge 

Sx(t) =exp { -B cx(ct - 1)}. 
loge 

D 

The force of mortality under Gompertz' law increases exponentially with age. 
At first sight this seems reasonable, but as we will see in the next chapter, the 
force of mortality for most populations is not an increasing function of age 
over the entire age range. Nevertheless, the Gompertz model does provide a 
fairly good fit to mortality data over some age ranges, particularly from middle 
age to early old age. 

Example 2.4 Calculate the survival function and probability density function 
for Tx using Gompertz' law of mortality, with B = 0.0003 and c = 1.07, for 
x = 20, x = 50 and x = 80. Plot the results and comment on the features of the 
graphs. 

Solution 2.4 For x = 20, the force of mortality is µ 20+1 = Bc20+t and the 
survival function is 

S20(t) =exp --c (c - 1) . { 
-B 20 t } 

loge 

The probability density function is found from (2.10): 

f-l20+1 = -- =} ho(t) = f-l20+1 S20(t) = Be exp --c (c - 1) . ho(t) 20+1 { -B 20 t } 
~~) ~c 

Figure 2.1 shows the survival functions for ages 20, 50 and 80, and Figure 2.2 
shows the corresponding probability density functions. These figures illustrate 
some general points about lifetime distributions. 

First, we see an effective limiting age, even though, in principle, there is no 
age to which the survival probability is exactly zero. Looking at Figure 2.1, 
we see that although Sx(t) > 0 for all combinations of x and t, survival beyond 
age 120 is very unlikely. 
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2.3 The force of mortality 
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Figure 2.1 Sx (t) for x = 20 (bold), 50 (solid) and 80 (dotted). 
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Figure 2.2 fx (t) for x = 20 (bold), 50 (solid) and 80 (dotted). 
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Second, we note that the survival functions are ordered according to age, 
with the probability of survival for any given value of t being highest for age 
20 and lowest for age 80. For survival functions that give a more realistic rep
resentation of human mortality, this ordering can be violated, but it usually 
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holds at ages of interest to insurers. An example of the violation of this order

ing is that So(l) may be smaller than Sx(l) for x ~ 1, as a result of perinatal 
mortality. 

Looking at Figure 2.2, we see that the densities for ages 20 and 50 have 
similar shapes, but the density for age 80 has a quite different shape. For ages 
20 and 50, the densities have their respective maximums at (approximately) 

t = 60 and t = 30, indicating that death is most likely to occur around age 80. 
The decreasing form of the density for age 80 also indicates that death is more 
likely to occur at age 80 than at any other age for a life now aged 80. A fur
ther point to note about these density functions is that although each density 

function is defined on (0, oo), the spread of values of fx(t) is much greater for 
x = 20 than for x = 50, which, as we will see in Table 2.1, results in a greater 
variance of future lifetime for x = 20 than for x = 50. D 

2.4 Actuarial notation 

The notation used in the previous sections, Sx(t), F,,(t) and fx(t), is standard 
in statistics. Actuarial science has developed its own notation, International 
Actuarial Notation, that encapsulates the probabilities and functions of great
est interest and usefulness to actuaries. The force of mortality notation, /Lx, 

comes from International Actuarial Notation. We summarize the relevant actu

arial notation in this section, and rewrite the important results developed so 
far in this chapter in terms of actuarial functions. The actuarial notation for 
survival and mortality probabilities is 

It Px = Pr[Tx > t] = Sx(t), I 

/ ultqx = Pr[u < Tx :Su+ t] = Sx(U) - Sx(u + t). j 

That is 

t Px is the probability that (x) survives to at least age x + t, 
tqx is the probability that (x) dies before age x + t, 

(2.12) 

(2.13) 

(2.14) 

u ltqx is the probability that (x) survives u years, and then dies in the sub
sequent t years, that is, between ages x + u and x + u + t. 

We may drop the subscript t if its value is 1, so that Px represents the proba
bility that (x) survives to at least age x + 1. Similarly, qx is the probability that 
(x) dies before age x + 1. In actuarial terminology qx is called the mortality 
rate at age x. We call ultqx a deferred mortality probability, because it is 
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the probability that death occurs in the interval oft years, following a deferred 

period of u years. 
The relationships below follow immediately from the definitions above and 

the previous results in this chapter: 

Similarly, 

tPx +tqx = 1, 

ultqx = uPx - u+t Px• 

t+uPx = t Px u Px+t from (2.5), 

1 d 
/Lx = -- -d xPO from (2.9). 

xPO X 

1 d d 
/Lx+t = -- -d tPx::::} -d tPx = -tPx /Lx+t• 

t Px t t 

fx(t) 
/Lx+t = Sx (t) ::::} fx (t) = t Px /Lx+t from (2.10), 

tPx =exp {-lat fLx+sds} from (2.11). 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

As Fx is a distribution function and f x is its density function, it follows that 

Fx(t) =lat fx(s)ds, 

which can be written in actuarial notation as 

(2.20) 

This is an important formula, which can be interpreted as follows. Consider 
time s, where 0 ~ s < t. The probability that (x) is alive at time s is s Px, 

and the probability that (x) dies between ages x + s and x + s + ds, having 
survived to age x + s, is (loosely) /Lx+sds, provided that ds is very small. Thus 
s Px fLx+sds can be interpreted as the probability that (x) dies between ages 
x + s and x + s + ds. Now, we can sum over all the possible death intervals s 
to s + ds - which requires integrating because these are infinitesimal intervals 

- to obtain the probability of death before age x + t. 
We can illustrate this event sequence using the time-line diagram shown in 

Figure 2.3. 
This type of interpretation is important as it can be applied to more compli

cated situations, and we will employ the time-line again in later chapters. 
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Time 0 s s+ds 

I I I Age x x+s x+s+ds 
Event (x) survives s years (x) 

\_ ~ 
Probability sPx µx +sds 

Figure 2.3 Time-line diagram for 1qx. 

In the special case when t = 1, formula (2.20) becomes 

qx = fo
1 

sPx µx+sds. 

t 

I 
x+t 

When qx is small, it follows that Px is close to 1, and hence s Px is close to 1 
for 0 =:: s < 1. Thus 

qx ~ fo
1 

µx+sds ~ µx+l/2, 

where the second relationship follows by the mid-point rule for numerical inte
gration. 

Example 2.5 As in Examples 2.1 and 2.2, let 

Fo(x) = 1 - (1 - x/120) 116 

for 0 :": x :": 120. Calculate both qx and µx+l/2 for x = 20 and for x = 110, 
and comment on these values. 

Solution 2.5 We have 

So(x + 1) ( 1 ) l/
6 

Px = So(x) = 1 - 120 - x ' 

giving q20 = 0.00167 and quo = 0.01741, and from the solution to Exam
ple 2.2, µ 201=0.00168 and µ 1101 = 0.01754. We see that µx+l/2 is a good 
approximatibn to qx when the mohality rate is small, but is not such a good 
approximation, at least in absolute terms, when the mortality rate is not 
close to 0. 0 

2.5 Mean and standard deviation of Tx 

Next, we consider the expected future lifetime of (x), E[Tx], denoted in actu

arial notation by ~ x. We call this the complete expectation of life. In order to 
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0 evaluate ex, we note from formulae (2.17) and (2.18) that 

d 
fx(t) = tPx /J.,x+t = - dt tPx· 

(2.21) 

From the definition of an expected value, we have 

~x = LXJ t fx(t)dt 

= loot t Px /J.,x+1dt. 

We can now use (2.21) to evaluate this integral using integration by parts as 

~x = - loot (:t tPx) dt 

= -(t1Px\~ - l

00

tPxdt). 

In Section 2.2 we stated the assumption that lim1--+oo t 1 Px = 0, which gives 

(2.22) 

Similarly, for E[T}J, we have 

E[T;] =loo t21Px /J.,x+tdt 

=-l

00

t
2

(:ttPx)dt 

= -(t2 tPx\: - loo tPx 2t dt) 

= 2 loo t1Px dt. (2.23) 

So we have integral expressions for E[Tx] and E[T}J. For some lifetime distri
butions we are able to integrate directly. In other cases we have to use numer
ical integration techniques to evaluate the integrals in (2.22) and (2.23). The 

variance of Tx can then be calculated as 

Example 2.6 As in Example 2.1, let 

Fo(x) = 1 - (1 - x/120)
1
1
6 

for 0 :S x :S 120. Calculate ~x and V[Tx] for (a) x = 30 and (b) x = 80. 
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Solution 2.6 As So(x) = (1 - x/120) 116, we have 

So(x+t) ( t ) 116 

tPx = So(x) = l - 120-x 

Now recall that this formula is valid for 0 :S t :S (120 - x), because, under this 
model, survival beyond age 120 is impossible. Technically, we have 

-I (1 - 126- ) 
116 

for x + t ::::: 120, tPx - x 
0 for x + t > 120. 

So the upper limit of integration in equation (2.22) is 120 - x, and 

0 1120-x ( t ) 1/6 
ex = 1 - dt. 

0 120 - x 

We make the substitution y = 1 - t/(120 - x), so that t = (120 - x)(l - y), 
giving 

~x = (120 - x) fo
1 

y 116dy 

= ~(120 - x). 

0 0 

Then e3o = 77 .143 and eso = 34.286. 

Under this model the expectation of life at any age x is 6/7 of the time to 
age 120. 

For the variance we require E[T}]. Using equation (2.23) we have 

{120-x 
E [r;] = 2 lo ftPxdt 

= 2 {120-x t (1- t )l/6 dt. 
lo 120 - x 

Again, we substitute y = 1 - t/(120 - x) giving 

Then 

E [ r}] = 2(120 - x)2 la1 (yl/6 - y7/6) dy 

= 2(120 - x )
2 

( ~ - 1
6
3) . 

V[Tx] = E[T}] - (~x r = (120 - x) 2 
( 2(6/7 - 6/13) - (6/7) 2) 

= (120 - x)
2 

(0.056515) = ((120 - x) (0.23773)) 2 . 

So V[T30] = 21.3962 and V[T80] = 9.5092. 
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Table 2.1 Values of ~x' SD[Tx] and expected age at death 

for the Gompertz model with B = 0.0003 and c = 1.07. 

0 

SD[Tx] 
0 

x ex x +ex 

0 71.938 18.074 71.938 
10 62.223 17.579 72.223 
20 52.703 16.857 72.703 
30 43.492 15.841 73.492 
40 34.752 14.477 74.752 
50 26.691 12.746 76.691 
60 19.550 10.693 79.550 
70 13.555 8.449 83.555 
80 8.848 6.224 88.848 
90 5.433 4.246 95.433 

100 3.152 2.682 103.152 

Since we know under this model that all lives will die before age 120, it 
makes sense that the uncertainty in the future lifetime should be greater for 
younger lives than for older lives. D 

A feature of the model used in Example 2.6 is that we can obtain formulae for 

quantities of interest such as ~x. but for many models this is not possible. For 
example, when we model mortality using Gompertz' law, there is no explicit 

formula for ~x and we must use numerical integration to calculate moments of 
Tx. In Appendix B we describe in detail how to do this. 

Table 2.1 shows values of ~x and the standard deviation of Tx (denoted 
SD[TxD for a range of values of x using Gompertz' law, f-Lx = BcX, where 
B = 0.0003 and c = 1.07. For this survival model, l30PO = 1.9 x 10-13 , so that 
using 130 as the maximum attainable age in our numerical integration is accu
rate enough for practical purposes. 

We see that ~x is a decreasing function of x, as it was in Example 2.6. In 

that example ~x was a linear function of x, but we see that this is not true in 
Table 2.1. 

We are sometimes interested in the future lifetime random variable subject 
to a cap of n years, which is represented by the random variable min(Tx, n). 

For example, suppose that (x) is entitled to a benefit payable continuously 
for a maximum of n years, conditional on survival. Then min(Tx, n) would 
represent the payment period for the benefit. We derive the mean and variance 
of this random variable, using a similar approach to the derivation of the mean 
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and variance of Tx. The expected value of min(Tx, n) is denoted ~x:ii1' and is 
called the term expectation of life. 

E[min(Tx, n)] = ~x:/il =Ion t tPx µx+t dt + £00 

n tPx µx+t dt 

=font (-:ttPx)dt+nnPx 

= -(ttPxl~ -lantPxdt) +nnPx 

=:} ~x:/il = lantPx dt. 

The iil notation is used to denote a period of n years Gust as in annuity-certain 
notation), and is used extensively in later chapters. 

2.6 Curtate future lifetime 

2.6.1 Kx and ex 

In many insurance applications we are interested not only in the future lifetime 
of an individual, but also in what is known as the individual's curtate future 
lifetime. The curtate future lifetime random variable is defined as the integer 
part of future lifetime, and is denoted by Kx for a life aged x. If we let L j 
denote the floor function, we have 

We can think of the curtate future lifetime as the number of whole years lived 
in the future by an individual. As an illustration of the importance of curtate 
future lifetime, consider the situation where a life aged x at time 0 is entitled 
to payments of 1 at times 1, 2, 3, ... provided that (x) is alive at these times. 
Then the number of payments made equals the number of complete years lived 
after time 0 by (x). This is the curtate future lifetime. 

We can find the probability function of Kx by noting that fork= 0, 1, 2, ... , 
K x = k if and only if (x) dies between the ages of x + k and x + k + 1. Thus 
fork= 0, 1, 2, ... 

Pr[Kx = k] = Pr[k :S Tx < k + 1] 

= klqx 

= kPx - k+IPx 

= kPx - kPx Px+k 

= kPx qx+k· 
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The expected value of Kx is denoted by ex, so that ex= E[Kx], and is referred 
to as the curtate expectation of life (even though it represents the expected 
curtate lifetime). So 

E[Kx] =ex 
00 

= L)Pr[Kx = k] 
k=O 
00 

=I> (kPx - k+lPx) 
k=O 

= (1Px - 2Px) + 2(2Px - 3Px) + 3(3Px - 4Px) + · · · 
00 

= L kPx· 
k=l 

Note that the lower limit of summation is k = 1. 
Similarly, 

00 

E[K;] = Lk2 
( kPx - k+lPx) 

k=O 

(2.24) 

= (1Px - 2Px) + 4(2Px - 3Px) + 9(3Px - 4Px) + l6(4Px - 5Px) + · · · 
00 00 

= 2 L k kPx - L kPx 
k=l k=l 
00 

= 2 Lk kPx - ex. 
k=l 

As with the complete expectation of life, there are a few lifetime distributions 

that allow E[Kx] and E[K~] to be calculated analytically. For more realistic 
models, such as Gompertz', we can calculate the values easily using Excel or 
other suitable software. Although in principle we have to evaluate an infinite 
sum, at some age the survival probability will be sufficiently small that we can 

treat it as an effective limiting age. 
Analogous to the random variable min(Tx, n) we have the random variable 

min(Kx, n ). For example, if a life aged x is entitled to payments of 1 at times 
1, 2, 3, ... , n, where n is an integer, then min(Kx, n) represents the number of 

payments made. An important difference between these two random variables 
is that min(Tx, n) is a mixed random variable (with a density over (0, n) and 
a mass of probability at n), whereas min(Kx, n) is a discrete random variable 
since Kx is a discrete random variable. The expected value of min(Kx, n) is 
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denoted ex:lil• and when n is an integer is given by 

n 

ex:lil = L kPx · 
k=I 

The proof of this result is set as Exercise 2.16. 

2.6.2 The complete and curtate expected future lifetimes, ~x and ex 

As the curtate future lifetime is the integer part of future lifetime, it is natural 

to ask if there is a simple relationship between ~x and ex. We can obtain an 
approximate relationship by writing 

~x = f
00

tPx dt = f ~i+
1

tPx dt. 
lo l=O jl 

If we approximate each integral using the trapezium rule for numerical inte
gration (see Appendix B), we obtain 

{}+! I 
jl tPx dt;::::; z (Jpx + J+lPx), 

and hence 

00 00 

~x;::::; L ~ (Jpx + J+!Px) = ~ + LiPx· 
1=0 l=l 

Thus, we have an approximation that is frequently applied in practice, namely 

(2.25) 

In Chapter 5 we will meet a refined version of this approximation. Table 2.2 

shows values of ~x and ex for a range of values of x when the survival model 
is Gompertz' law, with B = 0.0003 and c = 1.07. Values of ex were calculated 
by applying formula (2.24) with an upper limit of summation of 130 - x, and 

values of ~ x are as in Table 2.1. This table illustrates that formula (2.25) is a 
very good approximation in this particular case for younger ages, but is less 
accurate at very old ages. This observation is true for most realistic survival 
models. 

2.7 Notes and further reading 

Although laws of mortality such as Gompertz' law are appealing due to their 
simplicity, they rarely represent mortality over the whole span of human ages. 
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Table 2.2 Values of ex and ~x 
for Gompertz' law with 

B = 0.0003 and c = 1.07. 

0 

x ex ex 

0 71.438 71.938 
10 61.723 62.223 
20 52.203 52.703 
30 42.992 43.492 
40 34.252 34.752 
50 26.192 26.691 
60 19.052 19.550 
70 13.058 13.555 
80 8.354 8.848 
90 4.944 5.433 

100 2.673 3.152 

A simple extension of Gompertz' law is Makeham's law (Makeham, 1860), 
which models the force of mortality as 

(2.26) 

This is very similar to Gompertz' law, but adds a fixed term that is not age 
related, that allows better for accidental deaths. The extra term tends to improve 
the fit of the model to mortality data at younger ages. See Exercise 2.11. 

In recent times, the Gompertz-Makeham approach has been generalized fur
ther to give the GM(r, s) (Gompertz-Makeham) formula, 

fLx = h;(x) + exp{h;(x)}, 

where h; and h; are polynomials in x of degree r and s, respectively. A dis
cussion of this formula can be found in Forfar et al. (1988). Both Gompertz' 
law and Makeham's law are special cases of the GM formula. 

In Section 2.3, we noted the importance of the force of mortality. A further 
significant point is that when mortality data are analysed, the force of mortality 
is a natural quantity to estimate, whereas the lifetime distribution is not. The 
analysis of mortality data is a huge topic and is beyond the scope of this book. 
An excellent summary article on this topic is Macdonald (1996). For more 
general distributions, the quantity fo(x)/So(x), which actuaries call the force 
of mortality at age x, is known as the hazard rate in survival analysis and 
the failure rate in reliability theory. 
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2.8 Exercises 

Exercise 2.1 Let Fo(t) = 1 - (1 - t /105) 115 for 0 .::: t .::: 105. Calculate 

(a) the probability that a newborn life dies before age 60, 
(b) the probability that a life aged 30 survives to at least age 70, 
(c) the probability that a life aged 20 dies between ages 90 and 100, 
( d) the force of mortality at age 50, 
(e) the median future lifetime at age 50, 
(t) the complete expectation of life at age 50, 
(g) the curtate expectation of life at age 50. 

Exercise 2.2 The function 

18 000 - llOx - x 2 

G(x) = 18 000 

has been proposed as the survival function So(x) for a mortality model. 

(a) What is the implied limiting age w? 

(b) Verify that the function G satisfies the criteria for a survival function. 
( c) Calculate 20 po. 
(d) Determine the survival function for a life aged 20. 
( e) Calculate the probability that a life aged 20 will die between ages 30 

and 40. 
(t) Calculate the force of mortality at age 50. 

Exercise 2.3 Calculate the probability that a life aged 0 will die between ages 
19 and 36, given the survival function 

1 
So(x) = 

10 
.J100 - x, 0.::: x .::: 100 (= w). 

Exercise 2.4 Let 

So(x) =exp {-(Ax+ ~Bx2 + _E_Dx - _!!_)} 
2 log D log D 

where A, B, C and D are all positive. 

(a) Show that the function So is a survival function. 
(b) Derive a formula for Sx (t). 

(c) Derive a formula for /,lx· 

(d) Now suppose that 

A= 0.00005, B = 0.0000005, C = 0.0003, D = 1.07. 

(i) Calculate tP30 fort= 1, 5, 10, 20, 50, 90. 
(ii) Calculate tq40fort=1, 10, 20. 
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(iii) Calculate tl1oq30fort=1, 10, 20. 
(iv) Calculate ex for x =70, 71, 72, 73, 74, 75. 
(v) Calculate e0x for x = 70, 71, 72, 73, 74, 75, using numerical integration. 

Exercise 2.5 Let Fo(t) = 1 - e-M, where J... > 0. 

(a) ShowthatSx(t)=e-AI. 

(b) Show that f.1,x =A. 
(c) Show that ex= (e" - 1)-

1. 
( d) What conclusions do you draw about using this lifetime distribution to 

model human mortality? 

Exercise 2.6 Given Px =0.99, Px+l =0.985, 3Px+l =0.95 and 

qx+3 = 0.02, calculate 

(a) Px+3, 

(b)2Px• 
(c) 2Px+l, 

(d) 3Px, 

(e) 1i2qx. 

Exercise 2. 7 Given 
1 

Fo(x) = 1 - -- for x 2: 0, 
l+x 

find expressions for (a), (b), (c) below, simplifying as far as possible, 

(a) So(x), 
(b) fo(x), 

(c) Sx(t), 

and calculate: 

(d) pzo, and 
( e) 10 isq30. 

Exercise 2.8 Given 

So(x) =e-o.001x2 for x 2: 0, 

find expressions for (a) and (b ), simplifying as far as possible, 

(a) fo(x), and 

(b) f.1,x· 

Exercise 2.9 Show that 
d 
dx tPx =tPx (µ,x - f.1,x+t) · 
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Exercise 2.10 Suppose that Gompertz' law applies with µ,30 = 0.000130 and 

f..lso = 0.000344. Calculate 10P40· 

Exercise 2.11 A survival model follows Mak:eham's law, so that 

for x :=::: 0. 

(a) Show that under Mak:eham's law 

(2.27) 

wheres= e-A andg= exp{-B/logc}. 

(b) Suppose you are given the values of 10Pso, 10P60 and 10P70· Show that 

c = ( log(10P10) - log(10P60)) 0.1 

log(10P60) - log(10Pso) 

Exercise 2.12 (a) Construct a table of Px for Mak:eham's law with parame

ters A= 0.0001, B = 0.00035 and c = 1.075, for integer x from age 0 to 
age 130, using Excel or other appropriate computer software. You should 
set the parameters so that they can be easily changed, and you should 
keep the table, as many exercises and examples in future chapters will use 
Mak:eham's law. 

(b) Use the table to determine the age last birthday at which a life currently 
aged 70 is most likely to die. 

(c) Use the table to calculate e10. 

(d) Using a numerical approach, calculate ~70· 

Exercise 2.13 A life insurer assumes that the force of mortality of smokers at 
all ages is twice the force of mortality of non-smokers. 

(a) Show that, if* represents smokers' mortality, and the 'unstarred' function 
represents non-smokers' mortality, then 

(b) Calculate the difference between the life expectancy of smokers and non

smokers aged 50, assuming that non-smokers mortality follows Gompertz' 
law, with B = 0.0005 and c = 1.07. 

( c) Calculate the variance of the future lifetime for a non-smoker aged 50 and 
for a smoker aged 50 under Gompertz' law. 

Hint: You will need to use numerical integration for parts (b) and (c). 
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Exercise 2.14 (a) Show that 

~x < ~x+l + 1. 

(b) Show that 

(c) Explain (in words) why 

(d) Is ~x always a non-increasing function of x? 

Exercise 2.15 (a) Show that 

~x = -
1-100 

So(t)dt, 
So(x) x 

where So(t) = 1 - Fo(t), and hence, or otherwise, prove that 

d 0 0 

dx ex = /J.,x ex - 1. 

Hint: :x {ix g(t)dt} = g(x). What about :x lia g(t)dt}? 

(b) Deduce that 
0 

x +ex 

is an increasing function of x, and explain this result intuitively. 

Exercise 2.16 Show that for integer n, 

2.1 (a) 0.1559 
(b) 0.8586 

(c) 0.1394 

(d) 0.0036 

(e) 53.28 

(f) 45.83 

(g) 45.18 

n 

ex:iil = L kPx · 
k=l 

Answers to selected exercises 

39 
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2.2 (a) 90 
(c) 0.8556 
(d) 1 - 3x/308 - x 2 /15 400 
(e) 0.1169 
(f) 0.021 

2.3 0.1 

2.4 (d) (i) 0.9976, 0.9862, 0.9672, 0.9064, 0.3812, 3.5 x 10-7 

(ii) 0.0047, 0.0629, 0.1747 
(iii) 0.0349, 0.0608, 0.1082 
(iv) 13.046, 12.517, 12.001, 11.499, 11.009, 10.533 
(v) 13.544, 13.014, 12.498, 11.995, 11.505, 11.029 

2.6 (a) 0.98 
(b) 0.97515 
(c) 0.96939 
(d) 0.95969 
(e) 0.03031 

2.7 (d) 0.95455 
(e) 0.08218 

2.10 0.9973 
2.12 (b) 73 

(c) 9.339 
(d) 9.834 

2.13 (b) 6.432 

(c) 125.89 (non-smokers), 80.11 (smokers) 
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Life tables and selection 

3.1 Summary 

In this chapter we define a life table. For a life table tabulated at integer ages 
only, we show, using fractional age assumptions, how to calculate survival 
probabilities for all ages and durations. 

We discuss some features of national life tables from Australia, England & 
Wales and the United States. 

We then consider life tables appropriate to individuals who have purchased 
particular types of life insurance policy and discuss why the survival proba
bilities differ from those in the corresponding national life table. We consider 
the effect of 'selection' of lives for insurance policies, for example through 
medical underwriting. We define a select survival model and we derive some 
formulae for such a model. 

We discuss briefly how mortality rates change over time, and illustrate one 
way to allow for mortality trends in a survival model. 

3.2 Life tables 

Given a survival model, with survival probabilities 1 Px, we can construct the 
life table for the model from some initial age xo to a maximum age w. 
We define a function {lx} for xo ::; x ::; w as follows. Let lx0 be an arbitrary 
positive number (called the radix of the table) and, for 0 ::; t ::; w - xo, define 

From this definition we see that for xo ::; x ::; x + t ::; w, 

lx+t = lxo x+t-xoPxo 

= lxo x-xoPxo t Px 

=lxtPx, 

41 
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so that 

/ tPx = lx+t/ (,. / (3.1) 

For any x 2: xo, we can interpret lx+t as the expected number of survivors at 
age x + t from lx independent individuals aged x. This interpretation is more 
natural if lx is an integer, and follows because the number of survivors to age 
x +tis a random variable with a binomial distribution with parameters lx and 
tPx· That is, suppose we have lx independent lives aged x, and each life has a 
probability 1 Px of surviving to age x + t. Then the number of survivors to age 
x + t is a binomial random variable, Lt> say, with parameters lx and 1 Px. The 
expected value of the number of survivors is then 

E[LtJ = lx t Px = lx+t. 

We always use the table in the form ly/ lx which is why the radix of the table is 
arbitrary- it would make no difference to the survival model if all the lx values 
were multiplied by 100, for example. 

From (3.1) we can use the lx function to calculate survival probabilities. We 
can also calculate mortality probabilities. For example, 

(3.2) 

and 

155 ( ls5) 155 - ls5 
15l3oq40 = 15P40 3oq55 = -

1 
1 - -

1 
= l · 

40 55 40 
(3.3) 

In principle, a life table is defined for all x from the initial age, x0 , to the 
limiting age, w. In practice, it is very common for a life table to be presented, 
and in some cases even defined, at integer ages only. In this form, the life 
table is a useful way of summarizing a lifetime distribution since, with a single 
column of numbers, it allows us to calculate probabilities of surviving or dying 
over integer numbers of years starting from an integer age. 

It is usual for a life table, tabulated at integer ages, to show the values of dx, 
where 

(3.4) 

in addition to lx, as these are used to compute qx. From (3.4) we have 
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Table 3.1 Extract from 

a life table. 

x lx dx 

30 10000.00 34.78 

31 9965.22 38.10 

32 9 927.12 41.76 

33 9 885.35 45.81 

34 9 839.55 50.26 

35 9789.29 55.17 

36 9 734.12 60.56 

37 9673.56 66.49 

38 9 607.07 72.99 

39 9 534.08 80.11 

We can also arrive at this relationship if we interpret dx as the expected number 
of deaths in the year of age x to x + 1 from a group of lx lives aged exactly x, 

so that, using the binomial distribution again 

Example 3.1 Table 3 .1 gives an extract from a life table. Calculate 

(a) 140, 

(b) 10p30, 

( c) q3s, 

(3.5) 

(d) 5q30, and 
(e) the probability that a life currently aged exactly 30 dies between ages 35 

and 36. 

Solution 3.1 (a) From equation (3.4), 

140=139 - d39 = 9453.97. 

(b) From equation (3.1), 

140 9 453.97 
10P30 = - = = 0.94540. 

130 10 000 

(c) From equation (3.5), 

d3s 55.17 
q3s = - = = 0.00564. 

135 9 789.29 
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(d) Following equation (3.2), 

130 - l35 
5q30 = = 0.02107. 

130 

(e) This probability is 5 I q30· Following equation (3.3), 

l35 -136 d35 
5 I q3o = = - = 0.00552. 

130 130 
D 

3.3 Fractional age assumptions 

A life table Ux }x::: xo provides exactly the same information as the correspond
ing survival distribution, Sx0 • However, a life table tabulated at integer ages 
only does not contain all the information in the corresponding survival model, 
since values of lx at integer ages x are not sufficient to be able to calculate 
probabilities involving non-integer ages, such as o.75 P30.5. Given values of lx 

at integer ages only, we need an additional assumption or some further infor
mation to calculate probabilities for non-integer ages or durations. Specifically, 
we need to make some assumption about the probability distribution for the 
future lifetime random variable between integer ages. 

We use the term fractional age assumption to describe such an assumption. 
It may be specified in terms of the force of mortality function or the survival 
or mortality probabilities. 

In this section we assume that a life table is specified at integer ages only 
and we describe the two most useful fractional age assumptions. 

3.3.1 Uniform distribution of deaths 

The uniform distribution of deaths (UDD) assumption is the most common 
fractional age assumption. It can be formulated in two different, but equivalent, 
ways as follows. 

UDDl 
For integer x, and for 0.::: s < 1, assume that 

(3.6) 

UDD2 
Recall from Chapter 2 that Kx is the integer part of Tx, and define a new 
random variable Rx such that 

The UDD2 assumption is that, for integer x, Rx ~U(O, 1), and Rx is inde
pendent of K x. 
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The equivalence of these two assumptions is demonstrated as follows. First, 
assume that UDD 1 is true. Then for integer x, and for 0 ::: s < 1, 

00 

Pr[Rx :'.: s] = 2...:Pr[Rx :'.:sand Kx = k] 
k=O 
00 

= LPr[k::: Tx :'.: k + s] 
k=O 
00 

= L kPx sqx+k 
k=O 
00 

= L kPx s (qx+k) using UDDl 
k=O 

00 

=SL kPx qx+k 
k=O 
00 

= s L Pr[Kx = k] 
k=O 

=s. 

This proves that Rx~ U(O, 1). To prove the independence of Rx and Kx, note 
that 

Pr[Rx :'.: s and Kx = k] = Pr[k :'.: Tx :'.: k + s] 
= kPx sqx+k 

= S kPx qx+k 

= Pr[Rx :'.: s]Pr[Kx = k] 

since Rx~ U(O, 1). This proves that UDDl implies UDD2. 
To prove the reverse implication, assume that UDD2 is true. Then for inte

ger x, and for 0::: s < 1, 

sqx = Pr[Tx :'.: s] 

= Pr[Kx = 0 and Rx :'.: s] 

= Pr[Rx :'.: s] Pr[Kx = O] 

as Kx and Rx are assumed independent. Thus, 

(3.7) 

Formulation UDD2 explains why this assumption is called the Uniform Distri
bution of Deaths, but in practical applications of this assumption, formulation 
UDDl is the more useful of the two. 
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An immediate consequence is that 

I lx+s = lx - S dx I (3.8) 

for 0 s s < 1. This follows because 

and substituting s qx for sqx gives 

Hence 

lx+s = lx - S dx 

for 0 s s s 1. Thus, we assume that l x+s is a linearly decreasing function of s. 

Differentiating equation (3.6) with respect to s, we obtain 

and we know that the left-hand side is the probability density function for Tx 

at s, because we are differentiating the distribution function. The probability 
density function for Tx at s is s Px f.Lx+s so that under UDD 

I qx = sPx f.Lx+s I (3.9) 

for 0 ss < 1. 
The left-hand side does not depend on s, which means that the density func

tion is a constant for 0 s s < 1, which also follows from the uniform distribu
tion assumption for Rx. 

Since qx is constant with respect to s, and s Px is a decreasing function of 
s, we can see that f.Lx+s is an increasing function of s, which is appropriate 
for ages of interest to insurers. However, if we apply the approximation over 
successive ages, we obtain a discontinuous function for the force of mortality, 
with discontinuities occurring at integer ages, as illustrated in Example 3.4. 
Although this is undesirable, it is not a serious drawback. 

Example 3.2 Given that P4o = 0.999473, calculate o,4q40.2 under the 
assumption of a uniform distribution of deaths. 

Solution 3.2 We note that the fundamental result in equation (3.7), that for 
fractions of a years, sqx = s qx, requires x to be an integer. We can manipulate 
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the required probability o.4q40.2 to involve only probabilities from integer ages 

as follows 
l40,6 

o.4q40.2 = 1 - o.4P40.2 = 1 - -1 -40.2 

= l _ o.6P40 = l _ 1 - 0.6q40 

o.2P40 1 - 0.2q40 

= 2.108 x 10-4. D 

Example 3.3 Use the life table in Example 3.1 above, with the UDD assump

tion, to calculate (a) 1.N33 and (b) 1.N33.5· 

Solution 3.3 (a) We note first that 

1.7q33 = 1 - 1.7 P33 = 1 - (p33) (o.7 p34) · 

We can calculate p33 directly from the life table as [34/ l33 = 0.995367 and 
o.7 p34 = 1 - 0.7 q34 = 0.996424 under UDD, so that 1.N33 = 0.008192. 

(b) To calculate 1.7q33.5 using UDD, we express this as 

1.N33.5 = 1 - 1.7 P33.5 

= 1 - [35,2 

[33,5 
[35 - 0.2d35 

=1----
[33 - 0.5d33 

= 0.008537. D 

Example 3.4 Under the assumption of a uniform distribution of deaths, 

calculate lim /L40+t using P40 = 0.999473, and calculate lim /L41+t using 
t-+1- t-+O+ 

p41 = 0.999429. 

Solution 3.4 From formula (3.9), we have fLx+t = qx / 1 Px for 0 < t < 1. 

Setting x = 40 yields 

lim /L40+t = q40/p40 = 5.273 x 10-
4

, 
t-+I-

while setting x = 41 yields 

lim /L41+t = q41 = 5.71 x 10-
4

. 
t-+O+ 

D 

Example 3.5 Given that q7o = 0.010413 and q71=0.011670, calculate 

o.7q70.6 assuming a uniform distribution of deaths. 

Solution 3.5 As deaths are assumed to be uniformly distributed between ages 

70 and 71 and ages 71 and 72, we first write the probability as 

o.7q7o.6 = oAq?0.6 + (1 - o.4q7o.6) o.3q71. 
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Following the same arguments as in Solution 3.3, we obtain 

1 - q?o -3 
o.4q?o.6 = 1 - = 4.191 x 10 , 

1 - 0.6q70 

and as o,3q71 = 0.3q71 = 3.501x10-3, we obtain o.N70.6 = 7.678 x 10-3. D 

3.3.2 Constant force of mortality 

A second fractional age assumption is that the force of mortality is constant 
between integer ages. Thus, for integer x and 0 ::S s < 1, we assume that /J.,x+s 
does not depend on s, and we denote it µ,";;. We can obtain the value of µ,";; by 
using the fact that 

Px =exp {- fo
1 

/J.,x+sds}. 

Hence the assumption that /J.,x+s = µ,";; for 0 ::S s < 1 gives Px = e-µ,'; or 
µ,";; = - log Px. Further, under the assumption of a constant force of mortality, 
for 0:::; s < 1 we obtain 

- { r * d } - -µ,;s - ( )s sPx - exp - Jo µ,x u - e - Px . 

Similarly, fort, s > 0 and t + s < 1, 

sPx+t =exp {-lasµ,~ du} = (px)s. 

Thus, under the constant force assumption, the probability of surviving for a 
period of s < 1 years from age x + t is independent oft provided thats + t < 1. 

The assumption of a constant force of mortality between integer ages leads 
to a step function for the force of mortality over successive years of age, 
whereas we would expect the force of mortality to increase smoothly. How
ever, if the true force of mortality increases slowly over the year of age, the 
constant force of mortality assumption is reasonable. 

Example 3.6 Given that P4o = 0. 9994 73, calculate o.4q40.2 under the assump
tion of a constant force of mortality. 

Solution 3.6 We have o.4q40.2 = 1 - o.4 P40.2 = 1 - (p40)0.4 = 2.108 x 10-4. 
D 

Example 3.7 Given that q?o = 0.010413 and q71=0.011670, calculate 
o.N70.6 under the assumption of a constant force of mortality. 



3.4 National life tables 

Solution 3.7 As in Solution 3.5 we write 

where o.4q7o.6 = 1 - (p70) 0.4 = 4.178 x 10-3 and o,3q71 = 1 
3.515 x 10-3, giving o.7q7o.6 = 7 .679 x 10-3. 
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Note that in Examples 3.2 and 3.5 and in Examples 3.6 and 3.7 we have used 
two different methods to solve the same problems, and the solutions agree 
to five decimal places. It is generally true that the assumptions of a uniform 
distribution of deaths and a constant force of mortality produce very simi
lar solutions to problems. The reason for this can be seen from the following 
approximations. Under the constant force of mortality assumption 

provided that µ, * is small, and for 0 < t < 1, 

In other words, the approximation to 1qx is t times the approximation to qx, 
which is what we obtain under the uniform distribution of deaths assumption. 

3.4 National life tables 

Life tables based on the mortality experience of the whole population of a 
country are regularly produced for many countries in the world. Separate life 
tables are usually produced for males and for females and possibly for some 
other groups of individuals, for example on the basis of smoking habits. 

Table 3.2 shows values of qx x 105 , where qx is the probability of dying 
within one year, for selected ages x, separately for males and females, for the 
populations of Australia, England & Wales and the United States. These tables 
are constructed using records of deaths in a particular year, or a small number 
of consecutive years, and estimates of the population in the middle of that 
period. The relevant years are indicated in the column headings for each of the 
three life tables in Table 3.2. Data at the oldest ages are notoriously unreliable. 
For this reason, the United States Life Tables do not show values of qx for ages 
100 and higher. 

For all three national life tables and for both males and females, the val
ues of qx follow exactly the same pattern as a function of age, x. Figure 3.1 
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Table 3.2 Values of qx x 105 from some national life tables. 

Australian Life Tables English Life Table 15 US Life Tables 
2000-02 1990-92 2002 

Males Females Males Females Males Females 

567 466 814 632 764 627 
44 43 62 55 53 42 
31 19 38 30 37 28 
13 8 18 13 18 13 
96 36 84 31 139 45 

119 45 91 43 141 63 
159 88 172 107 266 149 
315 202 464 294 570 319 
848 510 1392 830 1210 758 

2337 1308 3930 2190 2922 1899 
6399 4036 9616 5961 7028 4930 

15934 12579 20465 15 550 16 805 13 328 
24479 23 863 38705 32489 

0.1 

0.01 

0.001 

0.0001 -+--~------~-~------~--~-~ 
0 10 20 30 40 50 

Age 
60 70 80 90 100 

Figure 3.1 US 2002 mortality rates, male (dotted) and female (solid). 

shows the US 2002 mortality rates for males and females; the graphs for 
England & Wales and for Australia are similar. (Note that we have plotted these 
on a logarithmic scale in order to highlight the main features. Also, although 
the information plotted consists of values of qx for x = 0, 1, ... , 99, we have 
plotted a continuous line as this gives a clearer representation.) We note the 
following points from Table 3.2 and Figure 3.1. 
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• The value of qo is relatively high. Mortality rates immediately following 
birth, perinatal mortality, are high due to complications arising from the 
later stages of pregnancy and from the birth process itself. The value of qx 
does not reach this level again until about age 55. This can be seen from 
Figure 3.1. 

• The rate of mortality is much lower after the first year, less than 10% of its 
level in the first year, and declines until around age 10. 

• In Figure 3.1 we see that the pattern of male and female mortality in the 
late teenage years diverges significantly, with a steeper incline in male mor
tality. Not only is this feature of mortality for young adult males common 
for different populations around the world, it is also a feature of historical 
populations in countries such as the UK where mortality data have been col
lected for some time. It is sometimes called the accident hump, as many of 
the deaths causing the 'hump' are accidental. 

• Mortality rates increase from age 10, with the accident hump creating a rel
atively large increase between ages 10 and 20 for males, a more modest 
increase from ages 20 to 40, and then steady increases from age 40. 

• For each age, all six values of qx are broadly comparable, with, for each 
country, the rate for a female almost always less than the rate for a male of 
the same age. The one exception is the Australian Life Table, where q100 

is slightly higher for a female than for a male. According to the Australian 
Government Actuary, Australian mortality data indicate that males are sub
ject to lower mortality rates than females at very high ages, although there 
is some uncertainty as to where the cross-over occurs due to small amounts 
of data at very old ages. 

• The Gompertz model introduced in Chapter 2 is relatively simple, in that 
it requires only two parameters and has a force of mortality with a simple 
functional form, /Lx = Bex. We stated in Chapter 2 that this model does not 
provide a good fit across all ages. We can see from Figure 3.1 that the model 
cannot fit the perinatal mortality, nor the accident hump. However, the mor
tality rates at later ages are rather better behaved, and the Gompertz model 
often proves useful over older age ranges. Figure 3.2 shows the older ages 
US 2002 Males mortality rate curve, along with a Gompertz curve fitted to 
the US 2002 Table mortality rates. The Gompertz curve provides a pretty 
close fit - which is a particularly impressive feat, considering that Gompertz 
proposed the model in 1825. 

A final point about Table 3.2 is that we have compared three national life tables 
using values of the probability of dying within one year, qx, rather than the 
force of mortality, J.Lx. This is because values of J.Lx are not published for any 
ages for the US Life Tables. Also, values of J.Lx are not published for age 0 for 
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Figure 3.2 US 2002 male mortality rates (solid), with fitted Gompertz mor
tality rates (dotted). 

100 

the other two life tables - there are technical difficulties in the estimation of 
f-lx within a year in which the force of mortality is changing rapidly, as it does 
between ages 0 and 1. 

3.5 Survival models for life insurance policyholders 

Suppose we have to choose a survival model appropriate for a man, currently 
aged 50 and living in the UK, who has just purchased a 10-year term insurance 
policy. We could use a national life table, such as English Life Table 15, so 
that, for example, we could assume that the probability this man dies before 
age 51 is 0.00464, as shown in Table 3.2. However, in the UK, as in some other 
countries with well-developed life insurance markets, the mortality experience 
of people who purchase life insurance policies tends to be different from the 
population as a whole. The mortality of different types of life insurance policy
holders is investigated separately, and life tables appropriate for these groups 
are published. 

Table 3.3 shows values of the force of mortality ( x 105) at two-year intervals 
from age 50 to age 60 taken from English Life Table 15, Males (ELTM 15), and 
from a life table prepared from data relating to term insurance policyholders 
in the UK in 1999--2002 and which assumes the policyholders purchased their 
policies at age 50. This second set of values comes from Table Al 4 of a 2006 
working paper of the Continuous Mortality Investigation in the UK. Hereafter 
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x 

50 
52 
54 
56 
58 
60 

Table 3.3 Values of the force of 
mortality x 105. 

ELTM 15 

440 
549 
679 
845 

1057 
1323 

CMI A14 

78 
152 
240 
360 
454 
573 

we refer to this working paper as CMI, and further details are given at the end 
of this chapter. The values of the force of mortality for ELTM 15 correspond 
to the values of qx shown in Table 3.2. 

The striking feature of Table 3.3 is the difference between the two sets of 
values. The values from the CMI table are very much lower than those from 
ELTM 15, by a factor of more than 5 at age 50 and by a factor of more than 2 
at age 60. There are at least three reasons for this difference. 

(a) The data on which the two life tables are based relate to different calendar 
years; 1990-92 in the case of ELTM 15 and 1999-2002 in the case of 
CMI. Mortality rates in the UK, as in many other countries, have been 
decreasing for some years so we might expect rates based on more recent 
data to be lower (see Section 3.11 for more discussion of mortality trends). 
However, this explains only a small part of the differences in Table 3.3. 
An interim life table for England & Wales, based on male population data 
from 2002-2004, gives µ50=391x10- 5 and /1,60 = 1008 x 10-5. Clearly, 
mortality in England & Wales has improved over the 12-year period, but 
not to the extent that it matches the CMI values shown in Table 3.3. Other 
explanations for the differences in Table 3.3 are needed. 

(b) A major reason for the difference between the values in Table 3.3 is that 
ELTM 15 is a life table based on the whole male population of England 
& Wales, whereas CMI Table A14 is based on the experience of males 
who are term insurance policyholders. Within any large group, there are 
likely to be variations in mortality rates between subgroups. This is true 
in the case of the population of England and Wales, where social class, 
defined in terms of occupation, has a significant effect on mortality. Put 
simply, the better your job, and hence the wealthier you are likely to be, the 
lower your mortality rates. Given that people who purchase term insurance 
policies are likely to be among the better paid people in the population, 
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we have an explanation for a large part of the difference between the values 
in Table 3.3. 

(c) The third reason, which is the most significant, arises from the selection 
process which policyholders must complete before the insurer will issue 
the insurance policy. The selection, or underwriting process ensures that 
people who purchase life insurance cover are healthy at the time of pur
chase, so the CMI figures apply to lives who were all healthy at age 50, 
when the insurance was purchased. The ELT tables, on the other hand, 
are based on data from both healthy and unhealthy lives. This is an exam
ple of selection, and we discuss it in more detail in the following 
section. 

3.6 Life insurance underwriting 

The values of the force of mortality in Table 3.3 are based on data for males 
who purchased term insurance at age 50. CMI Table A14 gives values for dif
ferent ages at the purchase of the policy ranging from 17 to 90. Values for ages 
at purchase 50, 52, 54 and 56 are shown in Table 3.4. 

There are two significant features of the values in Table 3.4, which can be 
seen by considering the rows of values for ages 56 and 62. 

(a) Consider the row of values for age 56. Each of the four values in this row is 
the force of mortality at age 56 based on data from the UK over the period 
1999-2002 for males who are term insurance policyholders. The only dif
ference is that they purchased their policies at different ages. The more 
recently the policy was purchased, the lower the force of mortality. For 

Table 3.4 Values of the force of mortality x 105 

from CM! Table Al 4. 

Age at purchase of policy 

x 50 52 54 56 

50 78 
52 152 94 
54 240 186 113 
56 360 295 227 136 
58 454 454 364 278 
60 573 573 573 448 
62 725 725 725 725 
64 917 917 917 917 
66 1159 1159 1159 1159 
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example, for a male who purchased his policy at age 56, the value is 
0.00136, whereas for someone of the same age who purchased his policy 
at age 50, the value is 0.00360. 

(b) Now consider the row of values for age 62. These values, all equal to 
0.00725, do not depend on whether the policy was purchased at age 50, 
52, 54 or 56. 

These features are due to life insurance underwriting, which we described in 
Chapter 1. Recall that the life insurance underwriting process evaluates med
ical and lifestyle information to assess whether the policyholder is in normal 
health. 

The important point for this discussion is that the mortality rates in the CMI 
tables are based on individuals accepted for insurance at normal premium rates, 
that is, individuals who have passed the required health checks. This means, for 
example, that a man aged 50 who has just purchased a term insurance at the 
normal premium rate is known to be in good health (assuming the health checks 
are effective) and so is likely to be much healthier, and hence have a lower mor
tality rate, than a man of age 50 picked randomly from the population. When 
this man reaches age 56, we can no longer be certain he is in good health -
all we know is that he was in good health six years ago. Hence, his mortality 
rate at age 56 is higher than that of a man of the same age who has just passed 
the health checks and been permitted to buy a term insurance policy at normal 
rates. This explains the differences between the values of the force of mortality 
at age 56 in Table 3.4. 

The effect of passing the health checks at issue eventually wears off, so that 
at age 62, the force of mortality does not depend on whether the policy was 
purchased at age 50, 52, 54 or 56. This is point (b) above. However, note that 
these rates, 0.00725, are still much lower than /L62 (= 0.01664) from ELTM 
15. This is because people who buy term life insurance in the UK tend to 
have lower mortality than the general population. In fact the population is made 
up of many heterogeneous lives, and the effect of initial selection is only one 
area where actuaries have tried to manage the heterogeneity. In the US, there 
has been a lot of activity recently developing tables for 'preferred lives', who 
are assumed to be even healthier than the standard insured population. These 
preferred lives tend to be from higher socio-economic groups. Mortality and 
wealth are closely linked. 

3.7 Select and ultimate survival models 

A feature of the slirvival models studied in Chapter 2 is that probabilities of 
future survival depend only on the individual's current age. For example, for a 
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given survival model and a given term t, t Px, the probability that an individual 
currently aged x will survive to age x + t, depends only on the current age x. 

Such survival models are called aggregate survival models, because lives are 
all aggregated together. 

The difference between an aggregate survival model and the survival model 
for term insurance policyholders discussed in Section 3.6 is that in the latter 
case, probabilities of future survival depend not only on current age but also 
on how long ago the individual entered the group of policyholders, i.e. when 
the policy was purchased. 

This leads us to the following definition. The mortality of a group of individ
uals is described by a select and ultimate survival model, usually shortened 
to select survival model, if the following statements are true. 

(a) Future survival probabilities for an individual in the group depend on the 
individual's current age and on the age at which the individual joined the 
group. 

(b) There is a positive number (generally an integer), which we denote by d, 
such that if an individual joined the group more than d years ago, future 
survival probabilities depend only on current age. The initial selection 
effect is assumed to have worn off after d years. 

We use the following terminology for a select survival model. An individual 
who enters the group at, say, age x, is said to be selected, or just select, at 
age x. The period d after which the age at selection has no effect on future 
survival probabilities is called the select period for the model. The mortality 
that applies to lives after the select period is complete is called the ultimate 
mortality, so that the complete model comprises a select period followed by 
the ultimate period. 

Going back to the term insurance policyholders in Section 3.6, we can iden
tify the 'group' as male term insurance policyholders in the UK. A select sur
vival model is appropriate in this case because passing the health checks at age 
x indicates that the individual is in good health and so has lower mortality rates 
than someone of the same age who passed these checks some years ago. There 
are indications in Table 3.4 that the select period, d, for this group is less than 
or equal to six years. See point (b) in Section 3.6. In fact, the select period 
is five years for this particular model. Select periods typically range from one 
year to 15 years for life insurance mortality models. 

For the term insurance policyholders in Section 3.6, being selected at age x 

meant that the mortality rate for the individual was lower than that of a term 
insurance policyholder of the same age who had been selected some years 
earlier. Selection can occur in many different ways and does not always lead to 
lower mortality rates, as Example 3.8 shows. 
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Example 3.8 Consider men who need to undergo surgery because they are 
suffering from a particular disease. The surgery is complicated and there is a 
probability of only 50% that they will survive for a year following surgery. If 
they do survive for a year, then they are fully cured and their future mortality 
follows the Australian Life Tables 2000-02, Males, from which you are given 
the following values: 

l6o = 89777, 161 = 89015, ho= 77946. 

Calculate 

(a) the probability that a man aged 60 who is just about to have surgery will 
be alive at age 70, 

(b) the probability that a man aged 60 who had surgery at age 59 will be alive 
at age 70, and 

(c) the probability that a man aged 60 who had surgery at age 58 will be alive 
at age 70. 

Solution 3.8 In this example, the 'group' is all men who have had the opera
tion. Being selected at age x means having surgery at age x. The select period 
of the survival model for this group is one year, since if they survive for one 
year after being 'selected', their future mortality depends only on their current 
age. 

(a) The probability of surviving to age 61 is 0.5. Given that he survives to age 
61, the probability of surviving to age 70 is 

ho/ 161=77946/89015 = 0.8757. 

Hence, the probability that this individual survives from age 60 to age 70 is 

0.5 x 0.8757 = 0.4378. 

(b) Since this individual has already survived for one year following surgery, 
his mortality follows the Australian Life Tables 2000-02, Males. Hence, 
his probability of surviving to age 70 is 

ho/l6o = 77946/89777 = 0.8682. 

(c) Since this individual's surgery was more than one year ago, his future mor
tality is exactly the same, probabilistically, as the individual in part (b). 
Hence, his probability of surviving to age 70 is 0.8682. 0 

Selection is not a feature of national life tables since, ignoring immigration, an 
individual can enter the population only at age zero. It is an important feature 
of many survival models based on data from, and hence appropriate to, life 
insurance policyholders. We can see from Tables 3.3 and 3.4 that its effect on 
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the force of mortality can be considerable. For these reasons, select survival 

models are important in life insurance mathematics. 
The select period may be different for different survival models. For CMI 

Table Al4, which relates to term insurance policyholders, it is five years, as 
noted above; for CMI Table A2, which relates to whole life and endowment 
policyholders, the select period is two years. 

In the next section we introduce notation and develop some formulae for 
select survival models. 

3.8 Notation and formulae for select survival models 

A select survival model represents an extension of the ultimate survival model 

studied in Chapter 2. In Chapter 2, survival probabilities depended only on 
the current age of the individual. For a select survival model, probabilities of 
survival depend on current age and (within the select period) age at selection, 
i.e. age at joining the group. However, the survival model for those individuals 

all selected at the same age, say x, depends only on their current age and so fits 
the assumptions of Chapter 2. This means that, provided we fix and specify the 
age at selection, we can adapt the notation and formulae developed in Chapter 2 
to a select survival model. This leads to the following definitions: 

t P[x]+ s = Pr[a life currently aged x + s who was select at age x survives to 
agex +s +t], 

1q[xl+s = Pr[a life currently aged x + s who was select at age x dies before 

age x +s + t], 
µ[x]+s is the force of mortality at age x + s for an individual who was select 
at age x, . (1- hP[x]+s) 

µ[x]+s = hm . 
h-+O+ h 

From these definitions we can derive the following formula 

t P[xl+s = exp {- fo
1 

µ,[xJ+s+u du} . 
This formula is derived precisely as in Chapter 2. It is only the notation which 
has changed. 

For a select survival model with a select period d and for t 2:: d, that is, for 

durations at or beyond the select period, the values of µ,[x-t]+t, sP[x-t]+t 

and u Jsq[x _ tl+ 1 do not depend on t, they depend only on the current age x. 
So, for t 2:: d we drop the more detailed notation, µ[x _ t] + 1 , s P[x _ t] + 1 and 

uJsq[x-t] +t• and write µ,x, sPx and uJsqx. For values oft< d, we refer to, for 
example, µ[x _ tl+ 1 as being in the select part of the survival model and for 

t 2:: d we refer to µ[x -tl+ 1 (= µ,x) as being in the ultimate part of the survival 
model. 
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3.9 Select life tables 

For an ultimate survival model, as discussed in Chapter 2, the life table {l x} 

is useful since it can be used to calculate probabilities such as 1 \uqx for non
negative values oft, u and x. We can construct a select life table in a similar 
way but we need the table to reflect duration as well as age, during the select 
period. Suppose we wish to construct this table for a select survival model for 
ages at selection from, say, xo (~ 0). Let d denote the select pe1iod, assumed 
to be an integer number of years. 

The construction in this section is for a select life table specified at all ages 
and not just at integer ages. However, select life tables are usually presented at 
integer ages only, as is the case for ultimate life tables. 

First we consider the survival probabilities of those individuals who were 
selected at least d years ago and hence are now subject to the ultimate part 
of the model. The minimum age of these people is xo + d. For these people, 
future survival probabilities depend only on their current age and so, as in 
Chapter 2, we can construct an ultimate life table, {ly}, for them from which 
we can calculate probabilities of surviving to any future age. 

Let lxo+d be an arbitrary positive number. For y ~ xo + d we define 

ly = (y-xo-d)Pxo+d lxo+d · (3.10) 

Note that (y-xo -d)Pxo +d = (y-xo-d)P[xo] +d, because d years after selection 
at age xo, the probability of future survival depends only on the current age, 
xo + d. From this definition we can show that for y > x ~ xo + d 

ly = y-xPx lx. 

This follows because 

ly = (Cy-xo-d)Pxo+d) lxo+d 

(y-x P[xol+x-xo) (cx-xo-d)PlxoJ+d) lxo+d 

(y-x Px) (cx-xo-d)Pxo+d) lxo+d 

= y-xPx lx. 

(3.11) 

This shows that within the ultimate part of the model we can interpret ly as the 
expected number of survivors to age y out of lx lives currently aged x ( < y), 

who were select at least d years ago. 
Formula (3.10) defines the life table within the ultimate part of the model. 

Next, we need to define the life table within the select period. We do this for a 
life select at age x by 'working backwards' from the value of lx +d· For x ~ xo 

and for 0 :S t :S d, we define 

lx+d 
l[x]+t = ----

d-t PlxJ+t 
(3.12) 
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which means that if we had l [x l + 1 lives aged x + t, selected t years ago, then 
the expected number of survivors to age x + d is lx + d. This defines the select 

part of the life table. 

Example 3.9 For y 2:: x + d > x + s > x + t ::::_ x ::::_ xo , show that 

ly 

and 

Solution 3.9 First, 

y-x-t P[x]+t = -
1 

-
[x]+t 

l[x]+s 
s-tP[x]+t = -

1
--. 
[x]+t 

y-x-t P[x]+t = y-x-d P[x]+d xd-t P[x]+t 

= y-x-dPx+dxd-tP[x]+t 

ly lx+d 
=----

lx+d l[x]+t 

ly 
=--, 

l[x]+t 

which proves (3.13). Second, 

which proves (3.14). 

d-tP[xJ+t 
s-tP[x]+t = 

d-sP[x]+s 

lx+d l[x]+s 
=-----

l[x]+t lx+d 

l[x]+s 
=--, 

l[xJ+t 

(3.13) 

(3.14) 

0 

This example, together with formula (3.11), shows that our construction pre
serves the interpretation of the ls as expected numbers of survivors within both 
the ultimate and the select parts of the model. For example, suppose we have 
l[x]+t individuals currently aged x + t who were select at age x. Then, since 
y - x -

1
P[xl+ 1 is the probability that any one of them survives to age y, we can 

see from formula (3.13) that ly is the expected number of survivors to age y. 

For 0::: t::: s::: d, formula (3.14) shows that l[xJ+s can be interpreted as the 
expected number of survivors to age x + s out of l[x] + 1 lives currently aged 

x + t who were select at age x. 

Example 3.10 Write an expression for 2\6q[30J+2 in terms of l[x]+t and ly for 
appropriate x, t and y, assuming a select period of five years. 
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Solution 3.10 Note that 2 l6q[30J + 2 is the probability that a life currently aged 
32, who was select at age 30, will die between ages 34 and 40. We can write 
this probability as the product of the probabilities of the following events: 

• a life aged 32, who was select at age 30, will survive to age 34, and, 
• a life aged 34, who was select at age 30, will die before age 40. 

Hence, 

2 \6q[30l+2 = 2P[30J+2 6q[30J+4 

= l[30J+4 ( 1 _ l[30l+lO) 

l[30l+2 l[30J+4 

l[30J+4 - ho 
l[30l+2 

Note that 1[30]+10 = 140 since 10 years is longer than the select period for this 
survival model. D 

Table 3.5 Extract 

from US Life Tables, 

2002. 

x 

70 
71 
72 
73 
74 
75 

80556 
79026 
77 410 
75666 
73 802 
71800 

Example 3.11 A select survival model has a select period of three years. Its 
ultimate mortality is equivalent to the US Life Tables, 2002, Females. Some lx 

values for this table are shown in Table 3.5. 
You are given that for all ages x 2: 65, 

P[x] = 0.999, P[x-1]+1 = 0.998, Plx-2]+2 = 0.997. 

Calculate the probability that a woman currently aged 70 will survive to age 
7 5 given that 

(a) she was select at age 67, 
(b) she was select at age 68, 
(c) she was select at age 69, and 
(d) she is select at age 70. 
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Solution 3.11 (a) Since the woman was select three years ago and the select 
period for this model is three years, she is now subject to the ultimate 
part of the survival model. Hence the probability she survives to age 75 is 
/75/ l70, where the ls are taken from US Life Tables, 2002, Females. The 
required probability is 

(b) We have 

5P70 = 71800/80556 = 0.8913. 

1[68]+2+5 
5P[68J+2 = l 

[68]+2 

/75 71 800 
= 

1[68]+2 1[68]+2 

We calculate 1[68]+2 by noting that 

l[68l+2 x P[68J+2 = l[68J+3 = Zn = 79 026. 

We are given that P[68J+2 = 0.997. Hence, 1[68]+2 = 79 264 and so 

5P[68J+2 = 0.9058. 

(c) We have 

1[69J+1+5 h5 71 800 
5P[69J+l = l = 

[69]+1 1[69]+1 1[69]+1 

We calculate 1[69]+1 by noting that 

l[69J+l x P[69J+l x P[69J+2 = l[69l+3 =Zn = 77 410. 

We are given that P[69l+ 1 = 0.998 and P[69]+2 = 0.997. Hence, 1[69]+ 1 = 
77799 and so 

5P[69l+l = 0.9229. 

(d) We have 

1[70]+5 /75 71 800 
5P[70J = -- = - = --. 

l [70] l [70] l [70] 

Proceeding as in (b) and (c), 

l[7oJ x P[70J x P[70J+l x P[70J+2 = l[7oJ+3 = l73 = 75 666, 

giving 

1[70] = 75 666/(0.997 x 0.998 x 0.999) = 76122. 

Hence 

5P[70J = 0.9432. 

D 
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Table 3.6 CM! Table AS: male non-smokers who 

have whole life or endowment policies. 

Duration 0 Duration 1 Duration 2+ 
Age,x q[x] q[x-1]+1 qx 

60 0.003469 0.004539 0.004760 
61 0.003856 0.005059 0.005351 
62 0.004291 0.005644 0.006021 
63 0.004779 0.006304 0.006781 

70 0.010519 0.014068 0.015786 
71 0.011858 0.015868 0.017832 
72 0.013401 0.017931 0.020145 
73 0.015184 0.020302 0.022759 
74 0.017253 0.023034 0.025712 
75 0.019664 0.026196 0.029048 

Example 3.12 CMI Table AS is based on UK data from 1999 to 2002 for 
male non-smokers who are whole life or endowment insurance policyholders. 
It has a select period of two years. An extract from this table, showing values of 

q[x-t]+t, is given in Table 3.6. Use this survival model to calculate the following 
probabilities: 

(a) 4Pl70J, 

(b) 3q[60J+ 1, and 

(c) 2lqn 

Solution 3.12 Note that CMI Table AS gives values of q[x-tJ+t for t = 0 and 

t = 1 and also for t:::: 2. Since the select period is two years q[x-tJ+t = qx for 
t:::: 2. Note also that each row of the table relates to a man currently aged x, 

where x is given in the first column. Select life tables, tabulated at integer ages, 
can be set out in different ways - for example, each row could relate to a fixed 
age at selection - so care needs to be taken when using such tables. 

(a) We calculate 4P[70J as 

4P[70J = Pl70J Pl70l+l Pl70l+2 Pl70J+3 

= Pl70J Pl70l+l Pn P73 

= (1 - q[7oJ) (1 - q[70J+1) (1 - qn) (1 - q?3) 

= 0.989481 x 0.984132 x 0.9798SS x 0.977241 

= 0.932447. 
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(b) We calculate 3q[60J+l as 

W[60J+l = q[60J+l + P[60J+l q62 + P[60J+l P62q63 

= q[60]+1 + (1 - q[60]+1) q62 + (1 - q[60]+1) (1 - q62) q63 

= 0.005059 + 0.994941 x 0.006021 

+ 0.994941 x 0.993979 x 0.006781 

= 0.017756. 

(c) We calculate 2lq73 as 

2lq73 = 2p73 q?s 

= (1 - q73) (1 - q74) q?s 

= 0.977241 x 0.974288 x 0.029048 

= 0.027657. 
D 

Example 3.13 A select survival model has a two-year select period and is 
specified as follows. The ultimate part of the model follows Makeham's law, 
so that 

f.Lx =A+ Bex 

where A= 0.00022, B = 2.7 x 10-6 and c = 1.124. The select part of the 
model is such that for 0 ::: s ::: 2, 

0 92-s 
/L[x]+s = · f.Lx+s· 

Starting with ho = 100 000, calculate values of 

(a) lx for x =21, 22, ... , 82, 
(b) l[x]+l for x =20, 21, ... , 80, and, 
(c) l[x] for x = 20, 21, ... , 80. 

Solution 3.13 First, note that 

{ 
B x t } tPx =exp -At - --c (c - 1) 

log c 

and for 0 ::: t ::: 2, 

t P[x] = exp {-lot /L[x]+sds} 

=exp {0.92-t ( 1 - 0.9t A+ ct - 0.9t Bex)}. 
log(0.9) log(0.9/c) 

(a) Values of lx can be calculated recursively from 

lx = Px-llx-1 for x = 21, 22, ... , 82. 

(3.15) 
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Table 3.7 Select life table with a two-year select period, Example 3.13. 

x l[x] l[x]+l lx+2 x+2 x l[x] l[x]+l 1x+2 x+2 

100000.00 20 so 98SS2.S1 984S0.67 98 326.19 S2 
9997S.04 21 Sl 98430.98 98 318.9S 98181.77 S3 

20 99 99S.08 99 973.7S 99 949.71 22 S2 98 297.24 98 173.79 98022.38 S4 
21 99970.04 99 948.40 99 923.98 23 S3 98 149.81 98 013.S6 97 846.20 SS 
22 99944.63 99922.6S 99 897.79 24 S4 97 987.03 97 836.44 97 6Sl.21 S6 

47 98 8S6.38 98778.94 98 684.88 49 79 77 46S.70 7S S31.88 73 186.31 81 
48 98 764.09 98 679.44 98 S76.37 so 80 7S 1S3.97 73 OS0.22 70 S07.19 82 
49 98 663.lS 98 S70.40 984S7.24 Sl 

(b) Values of l[xJ+l can be calculated from 

l[x]+l = lx+2/ P[xJ+l for x = 20, 21, ... , 80. 

(c) Values of l[xJ can be calculated from 

l[x] = lx+2/2P[x] for X = 20, 21, ... , 80. 

Sample values are shown in Table 3.7. The full table up to age 100 is given in 
Table D.l in Appendix D. D 

This model is used extensively throughout this book for examples and exer
cises. We call it the Standard Select Survival Model in future chapters. 

The ultimate part of the model, which is a Makeham model with 
A = 0. 00022, B = 2. 7 x 1 o-6 and c = 1.124, is also used in many examples 
and exercises where a select model is not required. We call this the Standard 
Ultimate Survival Model. 

3.10 Some comments on heterogeneity in mortality 

We noted in Section 3.5 the significant difference between the mortality of the 
population as a whole, and the mortality of insured lives. It is worth noting, 
further, that there is also considerable variability when we look at the mortality 
experience of different groups of insurance company customers and pension 
plan members. Of course, male and female mortality differs significantly, in 
shape and level. Actuaries will generally use separate survival models for men 
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and women when this does not breach discrimination laws. Smoker and non
smoker mortality differences are very important in whole life and term insur
ance; smoker mortality is substantially higher at all ages for both sexes, and 
separate smoker/non-smoker mortality tables are in common use. 

In addition, insurers will generally use product-specific mortality tables for 
different types of contracts. Individuals who purchase immediate or deferred 
annuities may have different mortality from those purchasing term insurance. 
Insurance is sometimes purchased under group contracts, for example by an 
employer to provide death-in-service insurance for employees. The mortality 
experience from these contracts will generally be different from the experience 
of policyholders holding individual contracts. The mortality experience of 
pension plan members may differ from the experience of lives who purchase 
individual pension policies from an insurance company. Interestingly, the dif
ferences in mortality experience between these groups will depend signifi
cantly on country. Studies of mortality have shown, though, that the following 
principles apply quite generally. 

<> Wealthier lives experience lighter mortality overall than less wealthy lives. 

<> There will be some impact on the mortality experience from self-selection; 
an individual will only purchase an annuity if he or she is confident of liv
~ng long enough to benefit. An individual who has some reason to anticipate 
heavier mortality is more likely to purchase term insurance. While under
writing can identify some selective factors, there may be other information 
that cannot be gleaned from the underwriting process (at least not without 
excessive cost). So those buying term insurance might be expected to have 
slightly heavier mortality than those buying whole life insurance, and those 
buying annuities might be expected to have lighter mortality. 

<> The more rigorous the underwriting, the lighter the resulting mortality expe
rience. For group insurance, there will be minimal underwriting. Each per
son hired by the employer will be covered by the insurance policy almost 
immediately; the insurer does not get to accept or reject the additional 
employee, and will rarely be given information sufficient for underwriting 
decisions. However, the employee must be healthy enough to be hired, which 
gives some selection information. 

All of these factors may be confounded by tax or legislative systems that 
encourage or require certain types of contracts. In the UK, it is very common 
for retirement savings proceeds to be converted to life annuities. In other coun
tries, including the USA, this is much less common. Consequently, the type of 
person who buys an annuity in the USA might be quite a different (and more 
self-select) customer than the typical individual buying an annuity in the UK. 
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3.11 Mortality trends 

A challenge in developing and using survival models is that survival probabil
ities are not constant over time. Commonly, mortality experience gets lighter 
over time. In most countries, for the period of reliable records, each generation, 

on average, lives longer than the previous generation. This can be explained by 
advances in health care and by improved standards of living. Of course, there 
are exceptions, such as mortality shocks from war or from disease, or declining 
life expectancy in countries where access to health care worsens, often because 

of civil upheaval. The changes in mortality over time are sometimes separated 
into three components: trend, shock and idiosyncratic. The trend describes the 
gradual reduction in mortality rates over time. The shock describes a short

term jump in mortality rates from war or pandemic disease. The idiosyncratic 
risk describes year to year random variation that does not come from trend or 
shock, though it is often difficult to distinguish these changes. 

While the shock and idiosyncratic risks are inherently unpredictable, we can 

often identify trends in mortality by examining mortality patterns over a num
ber of years. We can then allow for mortality improvement by using a survival 
model which depends on both age and calendar year. A common model for 

projecting mortality is to assume that mortality rates at each age are decreasing 
annually by a constant factor, which depends on the age and sex of the indi
vidual. That is, suppose q (x, Y) denotes the mortality rate for a life aged x in 
year Y, so that q (x, 0) denotes the mortality rate at age x for a baseline year, 

Y = 0. Then, the estimated one-year mortality probability for a life aged x at 
time Y =sis 

q(x,s)=q(x,O)r~ where O<rx::Sl. 

The r x terms are called mortality reduction factors, and typical values are in 
the range 0.95 to 1, where the higher values (implying less reduction) tend 
to apply at older ages. Using rx = 1 for the oldest ages reflects the fact that, 

although many people are living longer than previous generations, there is lit
tle or no increase in the maximum age attained; the change is that a greater 
proportion of lives survive to older ages. In practice, the reduction factors are 
applied for integer values of s. 

Figure 3.3 shows reduction factors for females based on mortality in 
Australia in the 25 years prior to the production of Australian Life Tables 
2000-02. This shows the greatest reduction in mortality rates has occurred at 
the youngest ages, that mortality rates have not fallen greatly from mid-teens 

to late thirties, and that as age increases from around age 60, reduction factors 
are increasing. 
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Given a baseline survival model, with mortality rates q (x, 0) = qx, say, and 
a set of age-based reduction factors, r x, we can calculate survival probabilities 
from the baseline year, tP(X, 0), say, as 

tP(x, 0) = p(x, 0) p(x + 1, 1) ... p(x + t - 1, t -1) 

= (1 - qx) (1 - qx+l rx+l) ( 1 - qx+2 r;+2) · .. ( 1 - qx+t-1 r~~~-1) · 
(3.16) 

Some survival models developed for actuarial applications implicitly contain 
some allowance for mortality improvement. When selecting a survival model 
to use for valuation and risk management, it is important to verify the projec
tion assumptions. 

The use of reduction factors allows for predictable improvements in life 
expectancy. However, if the improvements are underestimated, then mortal
ity experience will be lighter than expected, leading to losses on annuity and 
pension contracts. This risk, called longevity risk, is of great recent interest, 
as mortality rates have declined in many countries at a much faster rate than 
anticipated. As a result, there has been increased interest in stochastic mortal
ity models, where the force of mortality in future years follows a stochastic 
process which incorporates both predictable and random changes in longevity, 
as well as pandemic-type shock effects. 

Table 3.8 shows the effect of reduction factors on the calculation of expec
tation of life. In this table we show values of ex under two scenarios. The 
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Table 3.8 Values of ex without and with reduction factors. 

Scenario 1 Scenario 2 Scenario 1 Scenario 2 
x ex ex x ex ex 
0 82.36 94.97 50 34.01 38.80 

10 72.86 84.18 60 24.94 28.06 
20 63.00 72.84 70 16.57 18.26 
30 53.22 61.47 80 9.48 10.15 
40 43.51 50.06 90 4.83 5.03 

first scenario is that no reduction factors apply to the female mortality rates 
of Australian Life Tables 2000-02, and the second scenario is that the reduc
tion factors shown in Figure 3.3 apply, with survival probabilities calculated 
according to formula (3.16). 

The values in Table 3.8 show that the application of reduction factors to 
mortality rates can have a significant effect on expected future lifetime, partic
ularly at younger ages. However, the values in this table should be treated with 
caution. The key underlying assumption in the calculations is that mortality 
rates will continue to reduce in the future, and this assumption is questionable. 
Nevertheless, the table does illustrate the basic fact that allowing for mortality 
improvement may have a significant effect on expectation of life. 

3.12 Notes and further reading 

The mortality rates in Section 3.4 are drawn from the following sources: 

• Australian Life Tables 2000-02 were produced by the Australian Govern
ment Actuary (2004). 

• English Life Table 15 was prepared by the UK Government Actuary and 
published by the Office for National Statistics (1997). 

• US Life Tables 2002 were prepared in the Division of Vital Statistics of the 
National Center for Health Statistics in the US - see Arias (2004). 

The Continuous Mortality Investigation in the UK has been ongoing for many 
years. Findings on mortality and morbidity experience of UK policyholders are 
published via a series of formal reports and working papers. In this chapter we 
have drawn on CMI (2006). 

In Section 3.5 we noted that there can be considerable variability in the mor
tality experience of different groups in a national population. Coleman and 
Salt (1992) give a very good account of this variability in the UK population. 
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The paper by Gompertz (1825), who was the Actuary of the Alliance Insur
ance Company of London, introduced the force of mortality concept. 

See, for example, Lee and Carter (1992), Li et al. (2010) or Cairns et al. 

(2009) for more detailed information about stochastic mortality models. 

3.13 Exercises 

Exercise 3.1 Sketch the following as functions of age x for a typical (human) 
population, and comment on the major features. 

(a) flx, 

(b) lx, and 

(c) dx. 

Exercise 3.2 You are given the following life table extract. 

Age,x lx 

52 89948 
53 89089 
54 88176 
55 87208 
56 86181 
57 85093 
58 83940 
59 82 719 
60 81429 

Calculate 

(a) o.2qs2.4 assuming UDD (fractional age assumption), 

(b) o.2qs2.4 assuming constant force of mortality (fractional age assumption), 

(c) 5.7P52.4 assuming UDD, 

( d) 5.7 P52.4 assuming constant force of mortality, 

(e) 3.2l2.sqs2.4 assuming UDD, and 

(f) 3.2 l2.sqs2.4 assuming constant force of mortality. 

Exercise 3.3 Table 3.9 is an extract from a (hypothetical) select life table with 
a select period of two years. Note carefully the layout - each row relates to a 
fixed age at selection. 
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Table 3.9 Extract from a (hypothetical) 
select life table. 

x Z[x] Z[xJ+l lx+2 x+2 

75 15 930 15 668 15286 77 
76 15508 15224 14816 78 
77 15050 14 744 14310 79 

80 12576 82 
81 11928 83 
82 11250 84 
83 10542 85 
84 9 812 86 
85 9064 87 

Table 3.10 Mortality rates for female non-smokers with term insurance. 

Age,x Duration 0 Duration 1 Duration 2 Duration 3 Duration4 Duration 5+ 

q[x] q[x-1]+1 q[x-2]+2 q[x-3]+3 q[x-4]+4 qx 

69 0.003974 0.004979 0.005984 0.006989 0.007994 0.009458 
70 0.004285 0.005411 0.006537 0.007663 0.008790 0.010599 
71 0.004704 0.005967 0.007229 0.008491 0.009754 0.011880 
72 0.005236 0.006651 0.008066 0.009481 0.010896 0.013318 
73 0.005870 0.007456 0.009043 0.010629 0.012216 0.014931 
74 0.006582 0.008361 0.010140 0.011919 0.013698 0.016742 
75 0.007381 0.009376 0.011370 0.013365 0.015360 0.018774 
76 0.008277 0.010514 0.012751 0.014988 0.017225 0.021053 
77 0.009281 0.011790 0.014299 0.016807 0.019316 0.023609 

Use this table to calculate 

(a) the probability that a life currently aged 75 who has just been selected will 
survive to age 85, 

(b) the probability that a life currently aged 76 who was selected one year ago 
will die between ages 85 and 87, and 

(c) 4/2q[77J+l. 

Exercise 3.4 CMI Table A23 is based on UK data from 1999 to 2002 for 
female non-smokers who are term insurance policyholders. It has a select 
period of five years. An extract from this table, showing values of q[x-t]+t. 

is given in Table 3.10. 
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Use this survival model to calculate 

(a) 2P[72l, 

(b) 3q[73]+2' 

(c) 1 lq[65J+4, and 

(d) 7 P[70J. 

Table 3.11 Mortality rates for female smokers with term insurance. 

Agex Duration 0 Duration 1 Duration 2 Duration 3 Duration4 Duration 5+ 

q[x] q[x-1]+1 q[x-2]+2 q[x-3]+3 q[x-4]+4 qx 

70 0.010373 0.013099 0.015826 0.018552 0.021279 0.026019 
71 0.011298 0.014330 0.017362 0.020393 0.023425 0.028932 
72 0.012458 0.015825 0.019192 0.022559 0.025926 0.032133 
73 0.013818 0.017553 0.021288 0.025023 0.028758 0.035643 
74 0.015308 0.019446 0.023584 0.027721 0.031859 0.039486 
75 0.016937 0.021514 0.026092 0.030670 0.035248 0.043686 
76 0.018714 0.023772 0.028830 0.033888 0.038946 0.048270 
77 0.020649 0.026230 0.031812 0.037393 0.042974 0.053262 

Exercise 3.5 CMI Table A21 is based on UK data from 1999 to 2002 for 
female smokers who are term insurance policyholders. It has a select period 
of five years. An extract from this table, showing values of q[x-t]+i. is given in 
Table 3 .11. Calculate 

(a) 7P[70J, 

(b) 1 l2q[70J+2, and 
(c) 3.8q[70J+0.2 assuming UDD. 

Exercise 3.6 A select survival model has a select period of three years. 
Calculate 3p53, given that 

q[SOJ = 0.01601, 2P[SOJ = 0.96411, 

2iq[SO] = 0.02410, 2i3q[50]+1 = 0.09272. 

Exercise 3.7 When posted overseas to country A at age x, the employees of a 
large company are subject to a force of mortality such that, at exact duration t 
years after arrival overseas (t = 0, 1, 2, 3, 4), 

qt]+t = (6 - t)qx+t 

where qx+t is on the basis of US Life Tables, 2002, Females. For those who 
have lived in country A for at least five years the force of mortality at each age 
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Table 3.12 An extract 
from the United States 

Life Tables, 2002, 
Females. 

Age,x lx 

30 98424 
31 98362 
32 98296 
33 98225 
34 98148 
35 98064 

40 97500 

is 50% greater than that of US Life Tables, 2002, Females, at the same age. 

Some l x values for this table are shown in Table 3 .12. 
Calculate the probability that an employee posted to country A at age 30 will 

survive to age 40 if she remains in that country. 

Exercise 3.8 A special survival model has a select period of three years. Func
tions for this model are denoted by an asterisk, *. Functions without an asterisk 

are taken from the Canada Life Tables 2000-02, Males. You are given that, for 

all values of x, 

P[x] = 4Px-s; * . P[xl+I = 3Px-J, 

A life table, tabulated at integer ages, is constructed on the basis of the special 

survival model and the value of 1~5 is taken as 98 363 (i.e. h6 for Canada Life 
Tables 2000-02, Males). Some l x values for this table are shown in Table 3 .13. 

(a) Construct the l[xl' l[xl+l' l[xJ+2 , and 1;+3 columns for x = 20, 21, 22. 

(b) Calculate 2l3sq~JJ+l' 4op[22i, 4oP[21J+l' 4oP[20l+2' and 40P~2· 

Exercise 3.9 (a) Show that a constant force of mortality between integer ages 
implies that the distribution of Rx, the fractional part of the future life time, 
conditional on Kx = k, has the following truncated exponential distribution 

for integer x, for 0:::: s < 1 and fork= 0, 1, ... 

l-exp{-11* s} 
Pr[Rx :S s I Kx = k] = f""x*+k 

1 - exp{-µ,x+k} 
(3.17) 

where µ,~+k = - log Px+k· 
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Table 3.13 Canada 
Life Tables 2000-02, 

Males. 

Age,x lx 

15 99 180 
16 99135 
17 99 079 
18 99 014 
19 98 942 
20 98 866 
21 98 785 
22 98 700 
23 98 615 
24 98 529 
25 98 444 
26 98 363 

62 87 503 
63 86 455 
64 85 313 
65 84 074 

(b) Show that if formula (3 .17) holds for k = 0, 1, 2, ... then the force of mor
tality is constant between integer ages. 

Exercise 3.10 Verify formula (3.15). 

3.2 (a) 0.001917 
(b) 0.001917 
(c) 0.935422 
(d) 0.935423 
(e) 0.030957 

(f) 0.030950 
3.3 (a) 0.66177 

(b) 0.09433 
(c) 0.08993 

3.4 (a) 0.987347 
(b) 0.044998 
(c) 0.010514 

(d) 0.920271 
3.5 (a) 0.821929 

Answers to selected exercises 



(b) 0.055008 
(c) 0.065276 

3.6 0.90294 
3.7 0.977497 

3.13 Exercises 

3.8 (a) The values are as follows: 

x 

20 99180 98 942 
21 99 135 98 866 
22 99 079 98 785 

98700 
98615 
98529 

98529 
98444 
98363 

75 

(b) 0.121265, 0.872587, 0.874466, 0.875937' 0.876692. 



4 

Insurance benefits 

4.1 Summary 

In this chapter we develop formulae for the valuation of traditional insurance 
benefits. In particular, we consider whole life, term and endowment insurance. 
For each of these benefits we identify the random variables representing the 
present values of the benefits and we derive expressions for moments of these 
random variables. The functions we develop for traditional benefits will also 
be useful when we move to modern variable contracts. 

We develop valuation functions for benefits based on the continuous future 
lifetime random variable, Tx, and the curtate future lifetime random variable, 
Kx, from Chapter 2. We introduce a new random variable, Klm), which we use 
to value benefits which depend on the number of complete periods of length 
I/m years lived by a life (x). We explore relationships between the expected 
present values of different insurance benefits. 

We also introduce the actuarial notation for the expected values of the present 
value of insurance benefits. 

4.2 Introduction 

In the previous two chapters, we have looked at models for future lifetime. 
The main reason that we need these models is to apply them to the valuation 
of payments which are dependent on the death or survival of a policyholder or 
pension plan member. Because of the dependence on death or survival, the tim
ing and possibly the amount of the benefit are uncertain, so the present value of 
the benefit can be modelled as a random variable. In this chapter we combine 
survival models with time value of money functions to derive the distribution 
of the present value of an uncertain, life contingent future benefit. 

We generally assume in this chapter (and in the following five chapters) that 
the interest rate is constant and fixed. This is appropriate, for example, if the 
premiums for an insurance policy are invested in risk-free bonds, all yielding 

76 
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the same interest rate, so that the term structure is flat. In Chapter 11 we intro
duce more realistic term structures, and consider some models of interest that 
allow for uncertainty. 

For the development of present value functions, it is generally easier, math
ematically, to work in continuous time. In the case of a death benefit, working 
in continuous time means that we assume that the death payment is paid at the 
exact time of death. In the case of an annuity, a continuous benefit of, say, $1 
per year would be paid in infinitesimal units of $d t in every interval (t, t + dt). 

Clearly both assumptions are impractical; it will take time to process a pay
ment after death, and annuities will be paid at most weekly, not every moment 
(though the valuation of weekly payments is usually treated as if the payments 
were continuous, as the difference is very small). In practice, insurers and pen
sion plan actuaries work in discrete time, often with cash flow projections that 
are, perhaps, monthly or quarterly. In addition, when the survival model being 
used is in the form of a life table with annual increments (that is, lx for inte
ger x), it is simplest to use annuity and insurance present value functions that 
assume payments are made at integer durations only. We work in continuous 
time in the first place because the mathematical development is more transpar
ent, more complete and more flexible. It is then straightforward to adapt the 
results from continuous time analysis to discrete time problems. 

4.3 Assumptions 

To perform calculations in this chapter, we require assumptions about mortality 
and interest. We use the term basis to denote a set of assumptions used in life 
insurance or pension calculations, and we will meet further examples of bases 
when we discuss premium calculation in Chapter 6, policy values in Chapter 7 
and pension liability valuation in Chapter 10. 

Throughout this chapter we illustrate the results with examples using the 
following survival model which was introduced in Example 3.13. 

The Standard Ultimate Survival Model 
Makeham's law with A= 0.00022 

B = 2.7 x 10-6 

c = 1.124. 

We call this an ultimate model to differentiate it from the standard select model 
that we will use in later chapters. 

We also assume that interest rates are constant. As discussed above, this 
interest assumption can be criticized as unrealistic. However, it is a convenient 
assumption from a pedagogical point of view, is often accurate enough for 
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practical purposes (but not always) and we relax the assumption in later 
chapters. 

It is convenient to work with interest theory functions that are in common 
actuarial and financial use. We review some of these here. 

Given an effective annual rate of interest i, we use v = 1 / ( 1 + i), so that the 
present value of a payment of S which is to be paid int years' time is Sv 1• The 
force of interest per year is denoted 8 where 

o=log(l+i), l+i=e8, and v=e-8 ; 

8 is also known as the continuously compounded rate of interest. In financial 
mathematics and corporate finance contexts, and in particular if the rate of 
interest is assumed risk free, the common notation for the continuously com
pounded rate of interest is r. 

The nominal rate of interest compounded p times per year is denoted i(P) 
where 

i<Pl = p ( (1 + i) 11P - 1) * 1 + i = ( 1 + i<Pl IP r. 
The effective rate of discount per year is d where 

d = 1 - v = iv = 1 - e - 8, 

and the nominal rate of discount compounded p times per year is d(P) where 

4.4 Valuation of insurance benefits 

4.4.1 Whole life insurance: the continuous case, Ax 
For a whole life insurance policy, the time at which the benefit will be paid is 
unknown until the policyholder actually dies and the policy becomes a claim. 
Since the present value of a future payment depends on the payment date, the 
present value of the benefit payment is a function of the time of death, and 
is therefore modelled as a random variable. Given a survival model and an 
interest rate we can derive the distribution of the present value random variable 
for a life contingent benefit, and can therefore compute quantities such as the 
mean and variance of the present value. 

We start by considering the value of a benefit of amount $1 payable fol
lowing the death of a life currently aged x. Using a benefit of $1 allows us 
to develop valuation functions per unit of sum insured, then we can multiply 
these by the actual sum insured for different benefit amounts. 
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We first assume that the benefit is payable immediately on the death of (x). 
This is known as the continuous case since we work with the continuous future 
lifetime random variable Tx. Although in practice there would normally be 
a short delay between the date of a person's death and the time at which an 
insurance company would actually pay a death benefit (due to notification of 
death to the insurance company and legal formalities) the effect is slight and 
we will ignore that delay here. 

For our life (x), the present value of a benefit of $1 payable immediately on 
death is a random variable, Z, say, where 

We are generally most interested in the expected value of the present value 
random variable for some future payment. We refer to this as the Expected 
Present Value or EPV. It is also commonly referred to as the Actuarial Value or 
Actuarial Present Value. 

The EPV of the whole life insurance benefit payment with sum insured $1 
is E[e-8 1'.•]. In actuarial notation, we denote this expected value by Ax, where 
the bar above A denotes that the benefit is payable immediately on death. 

As Tx has probability density function fx(t) = 1 Px /Lx+t, we have 

- -8 T, -8 I 1
00 

Ax= E[e ·] = 
0 

e tPx /Lx+1dt. (4.1) 

It is worth looking at the intuition behind this formula. In Figure 4.1 we use 
the time-line format that was introduced in Section 2.4. 

Consider times, where x ::; x + s < w. The probability that (x) is alive 
at time s is s Px, and the probability that (x) dies between ages x + s and 
x + s + ds, having survived to age x + s, is, loosely, /Lx+s ds, provided that ds 
is very small. In this case, the present value of the death benefit of $1 is e-8s. 

Time 0 (x) survives s years s (x) s+ds 

I I 
dies 

I 
Age x x+s x+s+ds (1) 

Probability sPx fLx+s ds 

Present value e-8s 

Figure 4.1 Time-line diagram for continuous whole life insurance. 
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Now we can integrate (that is, sum the infinitesimal components of) the 
product of present value and probability over all the possible death intervals 
s to s + ds to obtain the EPV of the death benefit that will be paid in exactly 
one of these intervals. 

Similarly, the second moment (about zero) of the present value of the death 
benefit is 

where the superscript 2 indicates that the calculation is at force of interest 28, 
or, equivalently, at rate of interest j, where 1 + j = e28 = (1 + i) 2 . 

The variance of the present value of a unit benefit payable immediately on 
death is 

Now, if we introduce a more general sum insured, S, say, then the EPV of the 
death benefit is 

E[SZ] = E[se-oTx] = SAx 

and the variance is 

V[SZ] = V[Se-oTx] = S2 
( 2Ax -X;). 

In fact we can calculate any probabilities associated with the random variable 
Z from the probabilities associated with Tx. Suppose we are interested in the 
probability Pr[Z :S 0.5], for example. We can rearrange this into a probability 

for Tx: 

Pr [ Z :S 0.5] =Pr [ e-8 Tx :S 0.5] 

= Pr [ - 8 Tx :S log(0.5)] 

=Pr[8Tx > -log(0.5)] 

= Pr [ 8 Tx > log(2) J 
=Pr [Tx > log(2)/8] 

= uPx 

where u = log(2)/8. We note that low values of Z are associated with high 
values of Tx. This makes sense because the benefit is more expensive to the 
insurer if it is paid early, as there has been little opportunity to earn interest. It 
is less expensive if it is paid later. 

I 
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4.4.2 Whole life insurance: the annual case, Ax 

Suppose now that the benefit of $1 is payable at the end of the year of death of 
(x), rather than immediately on death. To value this we use the curtate future 
lifetime random variable, K x, introduced in Chapter 2. Recall that Kx measures 
the number of complete years of future life of (x). The time to the end of the 
year of death of (x) is then Kx + 1. For example, if (x) lived for 25.6 years 
from the issue of the insurance policy, the observed value of Kx would be 25, 
and the death benefit payable at the end of the year of death would be payable 
26 years from the policy's issue. 

We again use Z to denote the present value of the whole life insurance ben
efit of $1, so that Z is the random variable 

The EPV of the benefit, E[Z], is denoted by Ax in actuarial notation. 
In Chapter 2 we derived the probability function for Kx, Pr[Kx = k] = k \qx, 

so the EPV of the benefit is 

00 

Ax = E[ vKx+l] = L vk+l k\qx = vqx + v2
1 \qx + v32\qx + · · · . (4.4) 

k=O 

Each term on the right-hand side of this equation represents the EPV of 
a death benefit of $1, payable at time k conditional on the death of (x) in 
(k - 1, k]. 

In fact, we can always express the EPV of a life contingent benefit by con
sidering each time point at which the benefit can be paid, and summing over 
all possible payment times the product of 

( 1) the amount of the benefit, 

(2) the appropriate discount factor, and 

(3) the probability that the benefit will be paid at that time. 

We will justify this more rigorously in Section 4.6. We illustrate the process 
for the whole life insurance example in Figure 4.2. 

The second moment of the present value is 

00 00 

L v2
(k+l) k\qx = L(v2)(k+l) k\qx = (v2)qx + (v2

) 2 1\qx + (v2)
3

2\qx + · · · . 
k=O k=O 

Just as in the continuous case, we can calculate the second moment about zero 
of the present value by an adjustment in the rate of interest from i to (1 +i)2 - l. 
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Time 0 1 2 3 

I 

• 

I I 

Amount $1 $1 $1 

Discount v v2 v3 

Probability qx ilqx 2 lqx 

Figure 4.2 Time-line diagram for discrete whole life insurance. 

We define 
00 

2 Ax = L v2Ck+l) klqx, 
k=O 

(4.5) 

and so the variance of the present value of a benefit of S payable at the end of 
the year of death is 

(4.6) 

4.4.3 Whole life insurance: the 1/ mthly case, A¥n) 

In Chapter 2 we introduced the random variable Kx, representing the curtate 
future lifetime of (x), and we saw in Section 4.4.2 that the present value of an 
insurance benefit payable at the end of the year of death can be expressed in 
terms of Kx. 

We now define the 1/mthly curtate future lifetime random variable K~m>, 
where m > 1 is an integer, to be the future lifetime of (x) in years rounded 
to the lower ~th of a year. The most common values of m are 2, 4 and 12, 

corresponding to half years, quarter years and months. Thus, for example, K~4) 
represents the future lifetime of (x), rounded down to the lower 1/4. 

Symbolically, if we let L J denote the integer part (or floor) function, then 
1 - . 

K~m) = - LmTxJ . 
m 

For example, suppose (x) lives exactly 23.675 years. Then 

- (2) - (4) - (12) - 8 -Kx - 23, Kx - 23.5, Kx - 23.5, and Kx - 2312 - 23.6667. 

(4.7) 

Note that K~m) is a discrete random variable. K~m) = k indicates that the 

life (x) dies in the interval [k, k + 1/m), fork= 0, ~' ~ •... 

The probability function for K~m) can be derived from the associated prob

abilities for Tx. Fork = 0, ~, ~, .. ., 
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Time 0 1/m 2/m 3/m 

I I I I 
Amount $1 $1 $1 

Discount vlfm v2fm v3fm 

Probability J_qx J. l_Hx 1-11.qx 
Ill m m m m 

Figure 4.3 Time-line diagram for 1/mthly whole life insurance. 

Pr[K~m) = k] =Pr [k :'.S Tx < k + i] = kll.qx = kPx - k+l.Px· 
1 m m 

In Figure 4.3 we show the time-line for the 1/mthly benefit. At the end of each 
1/m year period, we show the amount of benefit due, conditional on the death 

of the insured life in the previous 1 / m year interval, the probability that the 
insured life dies in the relevant interval, and the appropriate discount factor. 

Suppose, for example, that m = 12. A whole life insurance benefit payable 

at the end of the month of death has present value random variable Z where 

K(l2)+1/12 z = v x • 

We let A~12) denote the EPV of this benefit, so that 

E[Z] = A (12) = vl/12 J_ qx + v2/12 J_ I J_ qx + v3/12 1- I J_ qx 
x 12 12 12 12 12 

+ v4/12 2 I J_ qx + .... 
12 12 

Similarly, for any m, 

A~n) =vlfm 1.qx+v2fm 1.l1.qx+v3fm 1-l1.qx+v4fm 211.qx+··· (4.8) 
m m n1 m m m m 

00 
~ k+l 

= L..., V 111 fs_ I l qx · 
m m 

k=O 

(4.9) 

As for the continuous and annual cases, we can derive the variance of the 
present value of the 1/mthly whole life benefit by adjusting the interest rate 

for the first term in the variance. We have 

so the variance is 
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4.4.4 Recursions 

In practice, it would be very unusual for an insurance policy to provide the 
death benefit at the end of the year of death. Nevertheless, the annual insurance 
function Ax is still useful. We are often required to work with annual life tables, 
such as those in Chapter 3, in which case we would start by calculating the 
annual function Ax, then adjust for a more appropriate frequency using the 
relationships and assumptions we develop later in this chapter. 

Using the annual life table in a spreadsheet, we can calculate the values of 
Ax using backwards recursion. To do this, we start from the highest age in 
the table, cv. We assume all lives expire by age cv, so that qw-l = 1. If the 
life table does not have a limiting age, we choose a suitably high value for cv 
so that qw-1 is as close to 1 as we like. This means that any life attaining age 
cv - 1 may be treated as certain to die before age cv, in which case we know 
that Kw- l = 0 and so 

Now, working from the summation formula for Ax we have 

w-x-l 
A " k+l x = L., V kPx qx+k 

k=O 

= v qx + v2 Px qx+l + v3 2Px qx+2 + · · · 

= v qx + v Px ( v qx+l + v2 Px+l qx+2 + v3 
2Px+l qx+3 + · · ·) , 

giving the important recursion formula 

IAx=Vqx+VpxAx+l·I (4.10) 

This formula can be used in spreadsheet format to calculate Ax backwards 
from Aw-1 back to Ax0 , where xo is the minimum age in the table. 

The intuition for equation (4.10) is that we separate the EPV of the whole 
life insurance into the value of the benefit due in the first year, followed by 
the value at age x + 1 of all subsequent benefits, multiplied by Px to allow for 
the probability of surviving to age x + 1, and by v to discount the value back 
from age x + 1 to age x. 

We can use the same approach for l/mthly benefits; now the recursion will 
give A~m) in terms of A (m) 1 • Again, we split the benefit into the part payable 

x+m 
in the first period - now of length 1 / m years - followed by the EPV of the 
insurance beginning after 1/m years. We have 

A (m) = vlfm I qx + v2fm I Px I q 1 + v31111 2 Px I q 2 + ... 
x m m m x+m m m x+m 

=vlf1111qx+vlfm iPx(vlfm iq. 1 +v2fm ip I iq 2 +···), m m ~ m x+m Iii x+m Iii x+;n 
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Table 4.1 Sample values of Ax using the Standard Ultimate 

Survival Model, Example 4.1. 

x Ax x Ax x Ax 

30 0.07698 50 0.18931 98 0.85177 
31 0.08054 51 0.19780 99 0.86153 
32 0.08427 52 0.20664 100 0.87068 

giving the recursion formula 

A (m) _ vlfm q + vlfm p A(m) x - 1-x 1-x 1· 
111 m x+m 

Example 4.1 Using the Standard Ultimate Survival Model from Section 4.3, 
and an interest rate of 5% per year effective, construct a spreadsheet of values 
of Ax for x = 20, 21, ... , 100. Assume that A129 = v. 

Solution 4.1 The survival model for the Standard Ultimate Survival Model is 
the ultimate part of the model used in Example 3 .13 and so values of 1 Px can 
be calculated as explained in the solution to that example. The value of q129 is 
0.99996, which is indeed close to 1. We can use the formula 

to calculate recursively A12s, A121, ... , A20, starting from A129 = v. Values 
for x = 20, 21, ... , 80, are given in Appendix D, Table D.3. Some excerpts 
are shown in Table 4.1. D 

Example 4.2 Using the Standard Ultimate Survival Model from Section 4.3, 
and an interest rate of 5% per year effective, develop a spreadsheet of values 
of A,~12) for x starting at age 20, in steps of 1/12. 

Solution 4.2 For this example, we follow exactly the same process as for the 
previous example, except that we let the ages increase by 1/12 year in each 
row. We construct a column of values of 1- Px using 

12 

-tzPx =exp {-A/12 - Bcx(c1112 
- 1)/log(c)}. 

We again use 130 as the limiting age of the table. Then set A <12l11 = v1112 , 
129u: 

and for all the other values of A~12) use the recursion 

A (12) = v 1;12 1- qx + v 1;12 1- Px A (12) . 
x 12 12 x+tz 
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Table 4.2 Sample values of A1
12

) using the Standard 

Ultimate Survival Model, Example 4.2. 

x l..Px .lqx 
A(12) 

x 
12 12 

20 0.999979 0.000021 0.05033 

20tz 0.999979 0.000021 0.05051 

2of2 0.999979 0.000021 0.05070 

20-f2 0.999979 0.000021 0.05089 

50 0.999904 0.000096 0.19357 

50tz 0.999903 0.000097 0.19429 

129.1.Q 
12 0.413955 0.586045 0.99427 

12911 12 0.99594 

The first and last few lines of the spreadsheet are reproduced in Table 4.2. D 

It is worth making a remark about the calculations in Examples 4.1 and 4.2. In 
Example 4.1 we saw that ql29 = 0.99996, which is sufficiently close to 1 to 
justify us starting our recursive calculation by setting A129 = v. In Example 
4.2, our recursive calculation started from A 129.u. = v1112. If we calculate 
.lq129 .u. we find its value is 0.58960, which is ceifainly not close to 1. 
12 12 . . . . . 

What is happenmg m these calculations is that, for Example 4.1, we are 
replacing the exact calculation 

A129 = v (q129 + P129 A13o) 

by A129 = v, which is justifiable because A13o is close to 1, meaning that 
v(q129 + Pl29 A13o) is very close to v. Similarly, for Example 4.2, we replace 
the exact calculation 

Ac12\1 = vl/12 (.lq129l!. + .lP129l!. Ai~~) 
12912 12 12 12 12 

by A (1
2
2
9

).Ll. = v 1112 . As the value of Ai~~ is very close to 1, it follows that 
1 12 

1/12 ( (12)) v .lq129l!. + .lP129l!. A13o 12 12 12 12 

can by approximated by v 1112 . 

Example 4.3 Using the Standard Ultimate Survival Model, and an interest rate 
of 5% per year effective, calculate the mean and standard deviation of the 
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Table 4.3 Mean and standard deviation of the present value of a whole life 
insurance benefit of $100 000,for Example 4.3. 

Continuous (a) Monthly (b) Annual (c) 

Age,x Mean St. Dev. Mean St. Dev. Mean St. Dev. 

20 5043 5954 5033 5942 4922 5 810 
40 12404 9619 12379 9600 12106 9389 
60 29743 15 897 29683 15 865 29028 15 517 
80 60764 17 685 60641 17649 59293 17255 

100 89341 8127 89158 8110 87068 7860 

present value of a benefit of $100000 payable (a) immediately on death, (b) 
at the end of the month of death, and ( c) at the end of the year of death for lives 
aged 20, 40, 60, 80 and 100, and comment on the results. 

Solution 4.3 For part (a), we must calculate 100 OOOAx and 

for x = 20, 40, 60 and 80, where 2 Ax is calculated at effective rate of inter-
- (12) est j = 10.25%. For parts (b) and (c) we replace each Ax by Ax and Ax, 

respectively. The values are shown in Table 4.3. The continuous benefit val
ues in the first column are calculated by numerical integration, and the annual 
and monthly benefit values are calculated using the spreadsheets from Exam
ples 4.1 and 4.2. 

We can make the following observations about these values. First, values for 
the continuous benefit are larger than the monthly benefit, which are larger than 
the annual benefit. This is because the death benefit is payable soonest under 
(a) and latest under (c). Second, as x increases the mean increases for all three 
cases. This occurs because the smaller the value of x, the longer the expected 
time until payment of the death benefit. Third, as x increases, the standard 
deviation decreases relative to the mean, in all three cases. And further, as we 
get to very old ages, the standard deviation decreases in absolute terms, as the 
possible range of payout dates is reduced significantly. 

It is also interesting to note that the continuous and monthly versions of the 
whole life benefit are very close. That is to be expected, as the difference arises 
from the change in the value of money in the period between the moment of 
death and the end of the month of death, a relatively short period. 0 
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4.4.5 Term insurance 
- 1 

The continuous case, Ax:iil 
Under a term insurance policy, the death benefit is payable only if the policy
holder dies within a fixed term of, say, n years. 

In the continuous case, the benefit is payable immediately on death. The 
present value of a benefit of $1, which we again denote by Z, is 

if r~ :::: n, 
if Tx > n. 

The EPV of this benefit is denoted A 1:iil in actuarial notation. The bar above A 
again denotes that the benefit is payable immediately on death, and the 1 above 
x indicates that the life (x) must die before the term of n years expires in order 
for the benefit to be payable. 

Then 

-1 -8t 

Io
n 

Ax:iil= 
0 

e tPxfi,x+rdt (4.11) 

and, similarly, the expected value of the square of the present value is 

which, as with the whole life case, is calculated by a change in the rate of 
interest used. 

The annual case, AI:iil 
Next, we consider the situation when a death benefit of 1 is payable at the end 
of the year of death, provided this occurs within n years. The present value 
random variable for the benefit is now 

if Kx ::Sn-1, 
if Kx 2: n. 

The EPV of the benefit is denoted A1:iil so that 

n-1 

A i ~ k+i I x:iil = L.., V k qx. 
k=O 

(4.12) 

T 
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Table 4.4 EPVs of term insurance benefits. 

x 

20 
40 
60 
80 

Jl 
x:lol 

0.00214 
0.00587 
0.04356 
0.34550 

A (4) 1 
x:lol 

0.00213 
0.00584 
0.04329 
0.34341 

The l/mthly case, A (m) ;:ll\ 

Al 
x:lol 

0.00209 
0.00573 
0.04252 
0.33722 
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We now consider the situation when a death benefit of 1 is payable at the end 
of the 1/mth year of death, provided this occurs within n years. The present 
value random variable for the benefit is 

if K(m) < n - l 
x - m' 

if K~m) 2:: n. 

The EPV of the benefit is denoted A (m~~iil so that 

mn-1 

A(m)i. = " vCk+l)/m !.l1-qx. 
x.lll ~ m m 

k=O 

(4.13) 

Example 4.4 Using the Standard Ultimate Survival Model as specified in 

Section 4.3, with interest at 5% per year effective, calculate A 1-,,;i, A C
4
)i -,,;i 

x:l01 x:l01 
and A 1-,,;i for x = 20, 40, 60 and 80 and comment on the values. 

x:l01 

Solution 4.4 We use formula ( 4.11) with n = 10 to calculate A 1-,,;i (using 
x:l01 

numericalintegration), and formulae (4.13) and (4.12), with m = 4 and n = 10 

to calculate A C
4
)i -,,;i and A 1 

-,,;i· 
x:l01 x:l01 

The values are shown in Table 4.4, and we observe that values in each case 
increase as x increases, reflecting the fact that the probability of death in a 
10-year period increases with age for the survival model we are using. The 
ordering of values at each age is the same as in Example 4.3, for the same 
reason - the ordering reflects the fact that any payment under the continuous 
benefit will be paid earlier than a payment under the quarterly benefit. The 
end year benefit is paid later than the quarterly benefit, except when the death 
occurs in the final quarter of the year, in which case the benefit is paid at the 
same time. 0 
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4.4. 6 Pure endowment 

Pure endowment benefits are conditional on the survival of the policyholder at a 
policy maturity date. For example, a 10-year pure endowment with sum insured 
$10 000, issued to (x), will pay $10 000 in 10 years if (x) is still alive at that 
time, and will pay nothing if (x) dies before age x + 10. Pure endowment ben
efits are not sold as stand-alone policies, but may be sold in conjunction with 
term insurance benefits to create the endowment insurance benefit described in 
the following section. However, pure endowment valuation functions tum out 
to be very useful. 

The pure endowment benefit of $1, issued to a life aged x, with a term of n 
years has present value Z, say, where: 

z = {o vn 
if Tx < n, 
if Tx 2:: n. 

There are two ways to denote the EPV of the pure endowment benefit using 
actuarial notation. It may be denoted Ax:~· The 'l' over the term subscript 
indicates that the term must expire before the life does for the benefit to be 
paid. This notation is consistent with the term insurance notation, but it can 
be cumbersome, considering that this is a function which is used very often 
in actuarial calculations. A more convenient standard actuarial notation for the 
EPV of the pure endowment is 11 Ex. 

If we rewrite the definition of Z above, we have 

z = {o vn 
with probability 1 - 11 Px, 

with probability nPx· 

Then we can see that the EPV is 

(4.14) 

(4.15) 

Note that because the pure endowment will be paid only at time n, assuming the 
life survives, there is no need to specify continuous and discrete time versions; 
there is only a discrete time version. 

We will generally use the more direct notation vn nPx or 11 Ex for the pure 
endowment function, rather than the Ax:~ notation. 

4.4. 7 Endowment insurance 

An endowment insurance provides a combination of a term insurance and a 
pure endowment. The sum insured is payable on the death of (x) should (x) 
die within a fixed term, say n years, but if (x) survives for n years, the sum 
insured is payable at the end of the nth year. 
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Traditional endowment insurance policies were popular in Australia, North 
America and the UK up to the 1990s, but are rarely sold these days in these 

markets. However, as with the pure endowment, the valuation function turns 
out to be quite useful in other contexts. Also, companies operating in these 
territories will be managing the ongoing liabilities under the policies already 
written for some time to come. Furthermore, traditional endowment insurance 

is still relevant and popular in some other insurance markets. 
We first consider the case when the death benefit (of amount 1) is payable 

immediately on death. The present value of the benefit is Z, say, where 

Thus, the EPV of the benefit is 

if Tx < n, 
if Tx '.'.'.: n 

E[Z] = r e-81 tPxfLx+1dt+1
00 

e-
811 

1Px/Lx+1dt 
lo II 

rn -8t d -8n =lo e tPx/Lx+t t+e nPx 

- 1 1 
= Ax:iil + Ax:iil 

and in actuarial notation we write 

(4.16) 

Similarly, the expected value of the squared present value of the benefit is 

l
n 

-281 -2811 

0 
e 1Px/Lx+1dt+e nPx 

2 -
which we denote Ax:iil. 

In the situation when the death benefit is payable at the end of the year of 

death, the present value of the benefit is 

if Kx :'.Sn - 1, 

if Kx '.'.'.: n 

= Vmin(Kx+l,11). 

The EPV of the benefit is then 

n-1 L vk+l k\qx + V11 P[Kx '.'.'.: n] = A_~:iil + V11 
nPx, 

k=O 

(4.17) 
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x 

20 
40 
60 
80 

Insurance benefits 

Table 4.5 EPVs of endowment 

insurance benefits. 

0.61438 
0.61508 
0.62220 
0.68502 

0.61437 
0.61504 
0.62194 
0.68292 

0.61433 
0.61494 
0.62116 
0.67674 

and in actuarial notation we write 

(4.18) 

Similarly, the expected value of the squared present value of the benefit is 

n-l 
2A '°' 2ck+1i I 2n x:iil = ~ V k qx + V n Px · 

k=O 

Finally, when the death benefit is payable at the end of the 1 / mth year of death, 
the present value of the benefit is 

if K(m) < n - 1-
x - m' 

'f K(m) > 1 x _ n 

· (K(m) I ) == vrmn x +m,n . 

The EPV of the benefit is 

mn-1 '°' vCk+l)/m k I 1 q + vn P[K(m) > n] = A (m)1 + vn p 
L__; m m x x - x:ni n x' 
k=O 

and in actuarial notation we write 

A (ml = A Cml1 +A 1 . 
x:iil x:iil x:iil (4.19) 

Example 4.5 Using the Standard Ultimate Survival Model as specified in 
Section 4.3, with interest at 5% per year effective, calculate A ."'110 , A C4~ and 

X.lVI x:l01 
Ax:lol for x = 20, 40, 60 and 80 and comment on the values. 

Solution 4.5 We can obtain values of Ax:lol• A ~4;lol and Ax:lol by adding 
1 10 - 1 (4) 1 1 . A "'1 = v lOPx to the values of A "'1• A "'1• and A "'1 m Example 4.4. 

x:l01 x:l01 x:l01 x:l01 
The values are shown in Table 4.5. 
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The actuarial values of the 10-year endowment insurance functions do not 
vary greatly with x, unlike the values of the 10-year term insurance functions. 
The reason for this is that the probability of surviving 10 years is large (10p20 = 
0.9973, 10P60 = 0.9425) and so for each value of x, the benefit is payable after 
10 years with a high probability. Note that v10 = 0.6139, and as time 10 years 
is the latest possible payment date for the benefit, the values of Ax:I01 • A ;~k 
and Ax:I01 must be greater than this for any age x. 

D 

4.4.8 Deferred insurance benefits 

Deferred insurance refers to insurance which does not begin to offer death 
benefit cover until the end of a deferred period. Suppose a benefit of $1 is 
payable immediately on the death of (x) provided that (x) dies between ages 
x + u and x + u + n. The present value random variable is 

z = {0-8T e x 

if Tx < u or Tx ::'.'.: u + n, 
if u ::S Tx < u + n. 

This random variable describes the present value of a deferred term insurance. 
We can, similarly, develop random variables to value deferred whole life or 
endowment insurance. 

The actuarial notation for the EPV of the deferred term insurance benefit is 
- 1 

ulAx:ni· Thus 

_ 1 f,u+n _81 
ulAx:lil = u e tPx/Lx+idt. 

Changing the integration variable to s = t - u gives 

IA- 1 rn -8(s+u) d 
u x:lil = lo e s+uPx /Lx+s+u S 

-8u rn -8s d 
= e uPx lo e sPx+u /Lx+s+u S 

= e-8u uPx Ax~u:lil =Vu uPx Ax~u:lil = uEx Ax~u:lil' 

A further expression for ulA1:ni is 

\Ai =Ai -A: i u x:lil x:u+n I x:UI 

which follows from formula ( 4.20) since 

(4.20) 

(4.21) 

(4.22) 

lu+n e-8t tPx/Lx+tdt = lau+n e-8t tPx/Lx+idt - !au e-8t tPx/Lx+tdt. 

Thus, the EPV of a deferred term insurance benefit can be found by differenc
ing the EPVs of term insurance benefits for terms u + n and u. 
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Note the role of the pure endowment term uEx = vu uPx in equation (4.21). 
This acts similarly to a discount function. If the life survives u years, to the end 
of the deferred period, then the EPV at that time of the term insurance is 
Ax~u:ni· Multiplying by vu uPx converts this to the EPV at the start of the 
deferred period. 

Our main interest in this EPV is as a building block. We observe, for exam
ple, that an n-year term insurance can be decomposed as the sum of n deferred 
term insurance policies, each with a term of one year, and we can write 

-1 111 -8t Ax·nJ = e tPxMx+1dt 
. 0 

n-1 r+l 

= L f e-8
t tPxMx+tdt 

r=O r 

n-1 

" -1 = ~ rlAx:Tl. 
r=O 

(4.23) 

A similar decomposition applies to a whole life insurance policy and we can 
write 

00 

- " -1 Ax=~ rlAx:Tl · 
r=O 

We can derive simil~ deferred benefit payable at the end of the 
year of death, with EPV denoted u IA1:ni. 

In particular, it is useful to note that 

I Ax= A1:ni + nlAx I 
where n I Ax is the EPV of a benefit of 1 payable at the end of the year of death 
of (x) if death occurs after time n, so that 

A1:ni =Ax - nlAx 

This relationship can be used to calculate A1:ni for integer x and n given a table 
of values of Ax and lx. 

- (m) 4.5 Relating Ax, Ax and Ax 

We mentioned in the introduction to this chapter that, even though insurance 
contracts with death benefits payable at the end of the year of death are very 
unusual, functions like Ax are still useful. The reason for this is that we can 
approximate Ax or AY11

) from Ax, and we might wish to do this if the only 
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4.5 Relating Ax, Ax and Ax 

Table 4.6 Ratios of Ai4) to 

Ax and Ax to Ax, Standard 

Ultimate Survival Model. 

x 

20 
40 
60 
80 

100 
120 

Ai4) /Ax 

1.0184 
1.0184 
1.0184 
1.0186 
1.0198 
1.0296 

1.0246 
1.0246 
1.0246 
1.0248 
1.0261 
1.0368 
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information we had was a life table, with integer age functions only, rather 
than a formula for the force of mortality that could be applied for all ages. 

In Table 4.6 we show values of the ratios of Ai4) to Ax and Ax to Ax, using 
the Standard Ultimate Survival Model from Section 4.3, with interest at 5% 
per year effective. 

We see from Table 4.6 that, over a very wide range of ages, the ratios of 
Ai4) to Ax and Ax to Ax are remarkably stable, giving the appearance of being 
independent of x. In the following section we show how we can approximate 
values of Aim) and Ax using values of Ax. 

4.5.1 Using the uniform distribution of deaths assumption 

The difference between Ax and Ax depends on the lifetime distribution between 
ages y and y + 1 for all y :::: x. If we do not have information about this, for 
example, because we have mortality information only at integer ages, we can 
approximate the relationship between the continuous function Ax and the dis
crete function Ax using the fractional age assumptions that we introduced in 
Section 3.3. The most convenient fractional age assumption for this purpose is 
the uniform distribution of deaths assumption, or UDD. 

Recall, from equation (3.9), that under UDD, we have for 0 ::; s < 1, and 
for integer y, sPy fhy+s = qy. Using this assumption 
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00 lol = L kPx qx+kVk+l e(l-s)o ds using UDD 
k=O O 

e8 - 1 
=Ax--

8 

Because e8 = 1 + i, under the assumption ofUDD we have 

- i 
Ax= 8Ax. (4.24) 

This exact result under the UDD assumption gives rise to the approximation 

~ 
~ 

(4.25) 

The same approximation applies to term insurance and deferred insurance, 
which we can show by changing the limits of integration in the proof above. 

We may also want to derive a 1/mthly death benefit EPV, such as A_~m), from 
the annual function Ax. 

Under the UDD assumption we find that 

A(m) = _i_A 
x i(m) x' (4.26) 

and the right-hand side is used as an approximation to AYn). The proof of 
formula ( 4.26) is left as an exercise for the reader. 

We stress that these approximations apply only to death benefits. The endow
ment insurance combines the death and survival benefits, so we need to split 
off the death benefit before applying one of the approximations. That is, under 
the UDD approach, 

A- ~ 1A1 + 11 x:lil ~ 8 x:lil V 11 Px · (4.27) 

4.5.2 Using the claims acceleration approach 

The claims acceleration approach is a more heuristic way of deriving an approx
imate relationship between the annual death benefit EPV, Ax, and the 1/mthly 
or continuous EPVs, A_~n) and Ax. The only difference between these benefits 
is the timing of the payment. Consider, for example, Ax and A~4). The insured 
life, (x), dies in the year of agex+Kx to x+Kx+ 1. Under the end year of death 
benefit (valued by Ax), the sum insured is paid at time Kx + 1. Under the end of 
quarter-year of death benefit (valued by A~4\ the benefit will be paid either at 
Kx+ 1/4, Kx+2/4, Kx+3/4 or Kx+ 1 depending on the quarter year in which 
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the death occurred. If the deaths occur evenly over the year (the same assump
tion as we use in the UDD approach), then, on average, the benefit is paid at 
time Kx + 5/8, which is 3/8 years earlier than the end of year of death benefit. 

Similarly, suppose the benefit is paid at the end of the month of death. 
Assuming deaths occur uniformly over the year, then on average the benefit 
is paid at Kx + 13 /24, which is 11/24 years earlier than the end year of death 
benefit. 

In general, for an l/mthly death benefit, assuming deaths are uniformly dis
tributed over the year of age, the average time of payment of the death benefit 
is (m + l)/2m in the year of death. 

So we have the resulting approximation 

That is 

(m) m-1 
Ax R:3 (1 + i) 2lil Ax. (4.28) 

For the continuous benefit EPV, Ax, we let m --+ oo in equation (4.28), to give 
the approximation 

I Ax R:3 (1 + i)112 Ax· I (4.29) 

This is explained by the fact that, if the benefit is paid immediately on death, 
and lives die uniformly through the year, then, on average, the benefit is paid 
half-way through the year of death, which is half a year earlier than the benefit 
valued by Ax. 

As with the UDD approach, these approximations apply only to death bene
fits. Hence, for an endowment insurance using the claims acceleration approach 
we have 

A- ~ (l + ') 1;2A 1 + 11 x:iil ~ l x:iil V n Px · (4.30) 

Note that both the UDD and the claims acceleration approaches give values 
for A£11l or Ax such that the ratios A£11l /Ax and Ax/ Ax are independent of 
x. Note also that for i = 5%, i/i<4l = 1.0186 and i/8 = 1.0248, whilst 
(1 + i)318 = 1.0185 and (1 + i)112 = 1.0247. The values in Table 4.6 show 
that both approaches give good approximations"in these cases. 
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4.6 Variable insurance benefits 

For all the insurance benefits studied in this chapter the EPV of the benefit can 
be expressed as the sum over all the possible payment dates of the product of 
three terms: 

• the amount of benefit paid, 
• the appropriate discount factor for the payment date, and 
• the probability that the benefit will be paid at that payment date. 

This approach works for the EPV of any traditional benefit - that is, where 
the future lifetime is the sole source of uncertainty. It will not generate higher 
moments or probability distributions. 

The approach can be justified technically using indicator random vari
ables. Consider a life contingent event E - for example, E is the event that a 
life aged x dies in the interval (k, k + l]. The indicator random variable is 

I(E) = g if Eis true, 
if E is false. 

In this example, Pr[E is True] = klqx, so the expected value of the indicator 
random variable is 

and, in general, the expected value of an indicator random variable is the prob
ability of the indicator event. 

Consider, for example, an insurance that pays $1000 after 10 years if (x) has 
died by that time, and $2000 after 20 years if (x) dies in the second 10-year 
period, with no benefit otherwise. 

We can write the present value random variable as 

1 000 I (Tx ::S 10)v10 + 2000 I (10 < Tx ::S 20)v20 

and the EPV is then 

Indicator random variables can also be used for continuous benefits. Here we 
consider indicators of the form 

I(t < Tx ::St +dt) 

for infinitesimal dt, with associated probability 

E[I (t < Tx ::::; t + dt)] = Pr[t < Tx ::S t + dt] 

= Pr[Tx > t] Pr[Tx < t + dtlTx > t] 

R::! tPx /Lx+t dt. 

I 
I 
I 
! 

t 
& 

J 
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Consider, for example, an increasing insurance policy with a death benefit of 
Tx payable at the moment of death. That is, the benefit is exactly equal to the 
number of years lived by an insured life from age x to his or her death. This is a 
continuous whole life insurance under which the benefit is a linearly increasing 
function. 

To find the EPV of this benefit, we note that the payment may be made at 
any time, so we consider all the infinitesimal intervals (t, t + dt), and we sum 
over all these intervals by integrating from t = 0 tot = oo. 

First, we identify the amount, discount factor and probability for a benefit 
payable in the interval (t, t + dt). The amount is t, the discount factor is e-81 . 

The probability that the benefit is paid in the interval (t, t+dt) is the probability 
that the life survives from x to x + t, and then dies in the infinitesimal interval 

(t, t + dt), which gives an approximate probability of 1 Px f.lx+t dt. 

So, we can write the EPV of this benefit as 

la 00 

t e -8t t Px f.lx+tdt. (4.31) 

In actuarial notation we write this as (i A)x. The I here stands for 'increasing' 
and the bar over the I denotes that the increases are continuous. 

An alternative approach to deriving equation (4.31) is to identify the present 
value random variable for the benefit, denoted by Z, say, in terms of the future 
lifetime random variable, 

Then any moment of Z can be found from 

k {
00 

-8t k 
E[Z] =lo (te ) tPx f.lx+t dt. 

The advantage of the first approach is that it is very flexible and generally 
quick, even for very complex benefits. 

If the policy term ceases after a fixed term of n years, the EPV of the death 
benefit is 

- - 1 rn -8t 
(IA)x:ni= lo te tPxf.lx+1dt. 

There are a number of other increasing or decreasing benefit patterns that are 
fairly common. We present several in the following examples. 

Example 4.6 Consider an n-year term insurance policy issued to (x) under 
which the death benefit is k+ 1 if death occurs between ages x +k and x +k+ 1, 
fork = 0, 1, 2, ... , n - 1. Assume that the benefit is paid at the end of the year 
of death. 
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(a) Derive a formula for the EPV of the benefit using the first approach 
described, that is multiplying together the amount, the discount factor and 
the probability of payment, and summing for each possible payment date. 

(b) Derive a formula for the variance of the present value of the benefit. 

Solution 4.6 (a) If the benefit is paid at time k+ 1, the benefit amount is (k+ 1) 
and the discount factor is vk+ 1. The probability that the benefit is paid at 
that date is the probability that the policyholder died in the year (k, k + 1], 
which is k lqx, so the EPV of the death benefit is 

n-1 

L vk+1(k + 1) klqx. 
k=O 

In actuarial notation the above EPV is denoted (I A);:ill' 

If the term n is infinite, so that this is a whole life version of the increas
ing annual policy, with benefit k + 1 following death in the year k to k + 1, 
the EPV of the death benefit is denoted (I A)x where 

00 

(I A)x = L vk+1(k + 1) klqx. 
k=O 

(b) We must go back to first principles. First, we identify the random vari
able as 

So 

n-1 

if Kx < n, 
if Kx :=::. n. 

E[Z2] = L v2(k+l)(k + 1)2 klqx, 

k=O 

and the variance is 

n-1 

V[Z] = I:v2Ck+ll(k+ 1)2 klqx - (UA);:ill)
2

. 

k=O 

D 

Example 4.7 A \'{hole life insurance policy offers an increasing death benefit 
payable at the end of the quarter year of death. If (x) dies in the first year of 
the contract, then the benefit is 1, in the second year it is 2, and so on. Derive 
an expression for the EPV of the death benefit. 
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Solution 4.7 First, we note that the possible payment dates are 1/4, 2/4, 
3/4, .... Next, if (x) dies in the first year, then the benefit payable is 1, if 
death occurs in the second year the benefit payable is 2, and so on. Third, 
corresponding to the possible payment dates, the discount factors are v114 , 

v2f4, .... 

The probabilities associated with the payment dates are i qx, 1J1 qx, 2 J 1 qx, 
4 , 4 4 4 4 

;\ l1qx, · · · · 4 4 

Hence, the EPV, which is denoted (I A C4))x, can be calculated as 

0 

We now consider the case when the amount of the death benefit increases in 
geometric progression. This is important in practice because compound rever
sionary bonuses will increase the sum insured as a geometric progression. 

Example 4.8 Consider an n-year term insurance issued to (x) under which the 
death benefit is paid at the end of the year of death. The benefit is 1 if death 
occurs between ages x and x + 1, 1 + j if death occurs between ages x + 1 and 
x + 2, (1 + j)2 if death occurs between ages x + 2 and x + 3, and so on. Thus, 
if death occurs between ages x + k and x + k + 1, the death benefit is (1 + j)k 

fork = 0, 1, 2, ... , n - 1. Derive a formula for the EPV of this death benefit. 

Solution 4.8 The amount of benefit is 1 if the benefit is paid at time 1, (1 + j) 
if the benefit is paid at time 2, (1 + j)2 if the benefit is paid at time 3, and so 
on, up to time n. The EPV of the death benefit is then 

V qx + (1 + j)v2
1 lqx + (1 + })2 v3 2Jqx + · · · + (1 + j)n-l V

11
11-1 Jqx 

(4.32) 
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where 

i* = 1 + i - 1 = i - j 
l+J l+J 

D 

The notation A 1 
::i .• indicates that the EPV is calculated using the rate of inter-x:n 11 

est i*, rather than i. In most practical situations, i > j so that i* > 0. 

Example 4.9 Consider an insurance policy issued to (x) under which the death 
benefit is (1 + j)t if death occurs at age x + t, with the death benefit being 
payable immediately on death. 

(a) Derive an expression for the EPV of the death benefit if the policy is an 
n-year term insurance. 

(b) Derive an expression for the EPV of the death benefit if the policy is a 
whole life insurance. 

Solution 4.9 (a) The present value of the death benefit is (1 + j)TxvTx if 
Tx < n, and is zero otherwise, so that the EPV of the death benefit is 

r . t t -1 Jo (1 + J) V tPx/J-x+tdt = Ax:/ili* 

where 

'* 1 + i 
I =---1. 

l+J 

(b) Similarly, if the policy is a whole life insurance rather than a term insur
ance, then the EPV of the death benefit would be 

1
00 

. t t -

0 
(1 + J) V tPx/J-x+tdt = (AxL• 

where 

'* 1 + i 
l =---1. 

l+J 

D 

4. 7 Functions for select lives 

Throughout this chapter we have developed results in terms of lives subject to 
ultimate mortality. We have taken this approach simply for ease of presentation. 
All of the above development equally applies to lives subject to select mortality. 

For example, A[x] denotes the EPV of a benefit of 1 payable immediately 
on the death of a select life (x ). Similarly, A[x]:/il denotes the EPV of a benefit 
of 1 payable at the end of the year of death within n years, of a newly selected 
life age x, or at age x + n if (x) survives. 
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4.8 Notes and further reading 

The Standard Ultimate Survival Model incorporates Makeham's law as its sur
vival model. A feature of Makeham's law is that we can integrate the force of 

mortality analytically and hence we can evaluate, for example, 1 Px analytically, 
as in Exercise 2.11. This in turn means that the EPV of an insurance benefit 
payable iIIlillediately on death, for example Ax, can be written as an integral 
where the integrand can be evaluated directly, as follows 

- -8t 1
00 

Ax= 
0 

e tPx /Lx+t dt. 

This integral cannot be evaluated analytically but can be evaluated numerically. 
In many practical situations, the force of mortality cannot be integrated analyt
ically, for example if /Lx is a GM(r, s) function withs :'.".: 2, from Section 2.7. 
In such cases, 1 Px can be evaluated numerically but not analytically. Functions 

such as Ax can still be evaluated numerically but, since the integrand has to 
be evaluated numerically, the procedure may be a little more complicated. See 
Exercise 4.22 for an example. The survival model in Exercise 4.22 has been 

derived from data for UK whole life and endowment insurance policyholders 
(non-smokers), 1999-2002. See CMI (2006, Table 1). 

4.9 Exercises 

Exercise 4.1 You are given the following table of values for lx and Ax, assum
ing an effective interest rate of 6% per year. 

Calculate 

(a) 5£35, 

(b) A 1 
35:51' 

(c) 5JA35, and 

x 

35 
36 
37 
38 
39 
40 

(d) A35:51 assuming UDD. 

lx Ax 

100000.00 0.151375 
99737.15 0.158245 
99455.91 0.165386 
99154.72 0.172804 
98831.91 0.180505 
98485.68 0.188492 
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Exercise 4.2 Using tables in Appendix D and interest at 5 % per year effective, 
calculate 

(a) A;o:201' 

(b) A4o:201 assuming UDD, 

(c) 10\A2s. 

Exercise 4.3 Assuming a uniform distribution of deaths over each year of age, 
show that A~m) = (i/i(ml)Ax. 

Exercise 4.4 A whole life insurance policy issued to a life aged exactly 30 
has an increasing sum insured. In the tth policy year, t = 1, 2, 3, ... , the sum 
insured is $100 000 (1.031- 1 ). Using the Standard Ultimate Survival Model, 
with interest at 5% per year, calculate the EPV of this benefit. 

Exercise 4.5 (a) Show that 

n-2 
A ""°' k+l I + n x:fil = L__, V k qx V n-lPx· 

k=O 

(b) Compare this formula with formula ( 4.17) and comment on the differ
ences. 

Exercise 4.6 Show that 

(IA(m)) = A(m) + vp A(m) + v2 p A(m) + · · · x x x x+l 2 x x+2 

and explain this result intuitively. 

Exercise 4.7 (a) Derive the following recursion formula for an n-year 
increasing term insurance: 

(b) Give an intuitive explanation of the formula in part (a). 

(c) You are given that (I A)so = 4.99675, A 1 
,-i = 0.00558, As1 = 0.24905 

50:11 
and i = 0.06. Calculate (I A)s1 . 

Exercise 4.8 You are given that Ax = 0.25, Ax+20 = 0.40, Ax:W1 = 0.55 and 

i = 0.03. Calculate 10 000Ax:W1 using 

(a) claims acceleration, and 

(b) UDD. 
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Exercise 4.9 Show that 

n 

(I A)_J:ill = (n + l)A_J:ill - L A;:kl 
k=l 

and explain this result intuitively. 

Exercise 4.10 Assuming a uniform distribution of deaths over each year of 
age, find an expression for (i A)x in terms of Ax and (I A)x. 

Exercise 4.11 Show that Ax is a decreasing function of i, and explain this 
result by general reasoning. 

Exercise 4.12 Calculate A10 given that 

A50:Wl = 0.42247, A
5
1 

::w = 0.14996, 
0:201 

Aso = 0.31266. 

Exercise 4.13 Under an endowment insurance issued to a life aged x, let X 
denote the present value of a unit sum insured, payable at the moment of death 
or at the end of the n-year term. 

Under a term insurance issued to a life aged x, let Y denote the present value 
of a unit sum insured, payable at the moment of death within the n-year term. 

Given that 

V[X] = 0.0052, vn = 0.3, nPx = 0.8, E[Y] = 0.04, 

calculate V[Y]. 

Exercise 4.14 Show that if vy = - log Py for y = x, x + 1, x + 2, ... , then 
under the assumption of a constant force of mortality between integer ages, 

00 

A- """' t Vx+tU - VPx+t) 
x = L._..v tPx · 

t=O 8 + Vx+t 

Exercise 4.15 Let Z1 denote the present value of an n-year term insurance 
benefit, issued to (x). Let z2 denote the present value of a whole of life insur
ance benefit, issued to the same life. 

Express the covariance of Z1 and Z2 in actuarial functions, simplified as far 
as possible. 

Exercise 4.16 You are given the following excerpt from a select life table. 
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[x] l[x] l[x]+l l[x]+2 l[x]+3 lx+4 x+4 

[40] 100000 99899 99724 99520 99288 44 
[41] 99802 99689 99502 99283 99033 45 
[42] 99597 99471 99268 99030 98752 46 
[43] 99365 99225 99007 98747 98435 47 
[44] 99120 98964 98726 98429 98067 48 

Assuming an interest rate of 6% per year, calculate 

(a) A[40J+I:41' 

(b) the standard deviation of the present value of a four-year term insurance, 
deferred one year, issued to a newly selected life aged 40, with sum insured 
$100 000, payable at the end of the year of death, and 

( c) the probability that the present value of the benefit described in (b) is less 

than or equal to $85 000. 

Exercise 4.17 (a) Descdbe in words the insurance benefits with the present 

values given below. 

(i) 

(ii) 

if Tx :S 15, 
if Tx > 15. 

if Tx :S 5, 
if 5 < r~ :s 15, 
if Tx > 15. 

(b) Write down in integral form the formula for the expected value for (i) Z1 

and (ii) Z2. 

( c) Derive expressions in terms of standard actuadal functions for the expected 

values of Z1 and Z2. 

( d) Derive an expression in terms of standard actuadal functions for the covari

ance of Z1 and Z2. 

Exercise 4.18 (a) Describe in words the insurance benefits with present 
value given by 

if T30 :S 25, 

if T30 > 25. 

(b) Write down an expression in terms of standard actuarial functions for E[Z]. 

Exercise 4.19 Using the tables in Appendix D and interest at 5% per year 

effective, calculate the standard deviation of the present value of a payment of 
$100 000 at the end of the year of death of a life now aged 30 who is subject to 
ultimate mortality, if payment is contingent on death occurring 



(a) at any age, and 

(b) before age 50. 
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Exercise 4.20 Suppose that Makeham's law applies with A= 0.0001, 
B = 0.00035 and c = 1.075. Assume also that the effective rate of interest is 

6% per year. 

(a) Use Excel and backward recursion in parts (i) and (ii). 

(i) Construct a table of values of Ax for integer ages, starting at x = 50. 

(ii) Construct a table of values of A~4) for x = 50, 50.25, 50.5, .... (Do 

not use UDD for this.) 

(iii) Hence, write down the values of Aso, A100, A~~ and Ai~o· 
(b) Use your values for Aso and A100 to estimate A~~ and Ai~o using the UDD 

assumption. 

(c) Compare your estimated values for the A C4) functions (from (b)) with your 
accurate values (from (a)). Comment on the differences. 

Exercise 4.21 A life insurance policy issued to a life aged 50 pays $2000 at 
the end of the quarter year of death before age 65 and $1000 at the end of the 
quarter year of death after age 65. Use the Standard Ultimate Survival Model, 
with interest at 5% per year, in the following. 

(a) Calculate the EPV of the benefit. 

(b) Calculate the standard deviation of the present value of the benefit. 

(c) The insurer charges a single premium of $500. Assuming that the insurer 
invests all funds at exactly 5% per year effective, what is the probability 
that the policy benefit has greater value than the accumulation of the single 

premium? 

Exercise 4.22 The force of mortality for a survival model is given by 

where 

2 
/Lx = A + BCx Dx , 

A= 3.5 x 10-4 , B = 5.5 x 10-4 , C = 1.00085, D = 1.0005. 

(a) Calculate tP60 fort= 0, 1/40, 2/40, ... , 2. 
Hint: Use the repeated Simpson's rule. 

(b) Calculate A1 ;;-, using an effective rate of interest of 5% per year. 
60:21 

Hint: Use the repeated Simpson's rule. 
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Answers to selected exercises 

4.1 (a) 0.735942 
(b) 0.012656 
(c) 0.138719 
(d) 0.748974 

4.2 (a) 0.00645 
(b) 0.38163 
(c) 0.05907 

4.4 $33 569.47 
4.7 (c) 5.07307 
4.8 (a) 5 507.44 

(b) 5 507.46 
4.12 0.59704 
4.13 O.Ql 

4.16 (a) 0.79267 
(b) $7519.71 
(c) 0.99825 

4.19 (a) 7186 
(b) 6 226 

4.20 (a) (iii) 0.33587, 0.87508, 0.34330, 0.89647 
(b) 0.34333, 0.89453 

4.21 (a) $218.83 
(b) $239.73 
(c) 0.04054 

4.22 (a) Selected values are 1/4P60 

2P60 = 0.991903 
(b) 0.007725 

0.999031, P60 0.996049 and 
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Annuities 

5.1 Summary 

In this chapter we derive expressions for the valuation and analysis of life 
contingent annuities. We consider benefit valuation for different payment fre
quencies, and we relate the valuation of annuity benefits to the valuation of the 
related insurance benefits. 

We consider how to calculate annuity valuation functions. If full survival 
model information is available, then the calculation can be exact for benefits 
payable at discrete time points, and as exact as required, using numerical inte
gration, for benefits payable continuously. Where we are calculating benefits 
payable more frequently than annual (monthly or weekly, say) using only an 
integer age life table, a very common situation in practice, then some approx
imation is required. We derive several commonly used approximations, using 
the UDD assumption and Woolhouse's formula, and explore their accuracy 
numerically. 

5.2 Introduction 

A life annuity is a series of payments to (or from) an individual as long as 
the individual is alive on the payment date. The payments are normally made 
at regular intervals and the most common situation is that the payments are of 
the same amount. The valuation of annuities is important as annuities appear 
in the calculation of premiums (see Chapter 6), policy values (see Chapter 7) 
and pension benefits (see Chapter 10). The present value of a life annuity is 
a random variable, as it depends on the future lifetime; however, we will use 
some results and notation from the valuation of annuities-certain, where there 
is no uncertainty in the term, so we start with a review of these. 

109 
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5.3 Review of annuities-certain 

Recall that, for integer n, and for i > 0 

1 ~ v11 

aiil = 1 + v + v2 + ... + v11
-

1 ~~ (5.1) 

denotes the present value of an annuity-certain of 1 payable anri~ally in advance 

for n years. Also ' ~'~ , 

aiil = v + v2 + v3 + ... + V 11 = aiil - 1 + vn' 'J:' 

denotes the present value of an annuity-certain of 1 payable annually\i~,arrear 
for n years. Thirdly, for any n > 0, '· , 

111 1- vn 
llfil = V

1 dt = ---
0 8 

(5.2) 

denotes the present value of an annuity-certain payable continuously at rate 1 
per year for n years. 

When payments of 1 per year are made every 1 / m years in advance for n 
years, in instalments of 1/m, the present value is 

ii.!?' =1- l+vm+vm+···+v11
-;;; =---( ) ( 1 2 1 ) 1 - v

11 

111 m d(m) 

and for payments made in arrears 

111 1 ( 1 2 ) 1 - v
11 

.. /11 a( ) = - viii+ viii+ .. ·+ v11 = --- =al)_ l_ (1- v11
). 

ii1 m i~D 111 m 
(5.3) 

In these equations for 1/mthly annuities, we assume that n is an integer 
multiple of 1/m. 

5.4 Annual life annuities 

The annual life annuity is paid once each year, conditional on the survival of a 
life (the annuitant) to the payment date. If the annuity is to be paid throughout 
the annuitant's life, it is called a whole life annuity. If there is to be a specified 
maximum term, it is called a term or temporary annuity. 

Annual annuities are quite rare. We would more commonly see annuities 
payable monthly or even weekly. However, the annual annuity is still important 
in the situation where we do not have full information about mortality between 
integer ages, for example because we are working with an integer age life table. 
Also, the development of the valuation functions for the annual annuity is a 
good starting point before considering more complex payment patterns. 

As with the insurance functions, we are prirtl~ly interested in the EPV of a 
cash flow, and we also identify the present valµ~' random variables in terms of 
the future lifetime random variables from Chapters 2 and 4, specifically, Tx, Kx 

dK (m) 
an x . 
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5.4.1 Whole life annuity-due 

Consider first an annuity of 1 per year payable annually in advance through
out the lifetime of an individual now aged x. The life annuity with payments 
in advance is known as a whole life annuity-due. The first payment occurs 
immediately, the second in one year from now, provided that (x) is alive then, 
and payments follow at annual intervals with each payment conditional on the 
survival of (x) to the payment date. In Figure 5 .1 we show the payments and 
associated probabilities and discount functions in a time-line diagram. 

We note that if (x) were to die between ages x + k and x + k + 1, for some 
positive integer k, then annuity payments would be made at times 0, 1, 2, ... , k, 
for a total of k + 1 payments. We defined Kx such that the death of (x) 

occurs between x + K x and x + K x + 1, so, the number of payments is Kx + 1, 
including the initial payment. This means that, fork= 0, 1, 2, .. ., the present 
value of the annuity is ak+Il if Kx =k. Thus, using equation (5.1), the present 
value random variable for the annuity payment series, Y, say, can be written as 

1 _ vKx+l 

Y=aKx+i/= d 

There are three useful ways to derive formulae for calculating the expected 
value of this present value random variable. 

First, the mean and variance can be found from the mean and variance of 
vKx+1, which were derived in Section4.4.2. For the expected value of Y, which 
is denoted ax, we have 

.. [1-vKx+l] 1-E[vKx+1
] 

ax =E = . 
d d 

Time 0 1 2 3 

I I I I 
Amount 

Discount v v2 v3 

Probability Px 2Px 3Px 

Figure 5.1 Time-line diagram for whole life annuity-due. 
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That is, 

(5.4) 

This is a useful approach, as it also immediately gives us the variance of Y as 

V[f] = V - = - V[vKx+1] 
[

1 vKx+l] 1 

d d2 

zA -Az x x 
d2 = (5.5) 

Secondly, we may use the indicator random variable approach from Section 4.6. 
The condition for the payment at k, say, is that (x) is alive at age x + k, that is, 
that Tx > k. The present value random variable can be expressed as 

Y = I(Tx > 0) + v I(Tx > 1) + v2 I(Tx > 2) + v3 l(Tx > 3) + · · · (5.6) 

and the EPV of the annuity is the sum of the expected values of the individual 
terms. Recall that E[I(Tx > t)] = Pr[Tx > t] = t Px, so that 

i:ix = 1 + v Px + v2 
2Px + v3 

3Px + · · · , 

that is 

00 

.. """' k ax=~ V kPx· (5.7) 
k=O 

This is a very useful equation for i:ix. However, this approach does not lead to 
useful expressions for the variance and higher moments of Y. This is because 
the individual terms in expression (5.6) are dependent random variables. 

Finally, we can work from the probability function for Kx, that is using 

Pr[Kx = k] = klqx, so that 
00 

i:ix = Li:ik+Jlklqx. (5.8) 
k=O 

This is less used in practice than equations (5.4) and (5.7). The difference 
between the formulations for i:ix in equations (5.7) and (5.8) is that in equa
tion (5.7) the summation is taken over the possible payment dates, and in equa
tion (5.8) the summation is taken over the possible years of death. 

Example 5.1 Show that equations (5.7) and (5.8) are equivalent - that is, 
show that 

00 00 

Li:ik+Jlklqx = LVk kPx· 
k=O k=O 
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Solution 5.1 We can show this by using 

and 

Then 

k 

ak+Il = L vt 
t=O 

00 00 

L klqx = L (kPx - k+IPx) = tPx· 
k=t k=t 

00 00 k 

Lak+Ilklqx = LLV1 klqx 
k=O k=Ot=O 

= qx + (1+v)1liqx + (1 + V + v2)2l1qx 
+ (1 + v + v 2 + v 3 )31iqx + · · · . 

113 

Changing the order of summation on the right-hand side (that is, collecting 
together terms in powers of v) gives 

as required. 

ook 0000 

LLV1 klqx = LLV1 klqx 
k=Ot=O t=O k=t 

00 00 

= LVtL klqx 
t=O k=t 
00 

= Lvt tPx 
t=O 

5.4.2 Term annuity-due 

D 

Now suppose we wish to value a term annuity-due of 1 per year. We assume 
the annuity is payable annually to a life now aged x for a maximum of n years. 
Thus, payments are made at times k = 0, 1, 2, ... , n - 1, provided that (x) has 
survived to age x + k. The present value of this annuity is Y, say, where 

{
iiK+ll ifKx=0,1, ... ,n-1, 

y = .. x 

aiil if Kx 2:: n, 

that is 
1 _ vmin(Kx+l,n) 

Y = iimin(Kx+l,n)I = d 

The EPV of this annuity is denoted lix:iil· 
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Time 0 1 2 3 n-l n 

I I I I H 
Amount 

Discount v v2 v3 vn~l 

Probability Px 2Px 3Px n-JPx 

Figure 5.2 Time-line diagram for term life annuity-due. 

We have seen the random variable vmin(Kx+l,l1) before, in Section 4.4.7, 

where the EPV Ax:lil is derived. Thus, the EPV of the annuity can be 

determined as 

1 _ E[vmin(Kx+l,11)] 
lix:lil = E[Y] = d 

that is, 

I lix:lil = 1 - :x:lil · I (5.9) 

The time-line for the term annuity-due cash flow is shown in Figure 5.2. 
Notice that, because the payments are made in advance, there is no payment 

due at time n, the end of the annuity term. 
Using Figure 5.2, and summing the EPVs of the individual payments, we 

have 

.. 1 2 3 + 11-l ax:lil = + V Px + V 2Px + V 3Px + · · · V 11-lPx 

that is 

n-1 

•• """"' t Gx:lil =. ~ V tPx· 
t=O 

Also, we can write the EPV as 

11-l 

lix:/il = LaITTk[qx + 11Px ani 
k=O 

(5.10) 

adapting equation (5.8) above. The second term here arises from the second 
term in the definition of Y - that is, if the annuitant survives for the full term, 

then the payments constitute an n-year annuity. 

I 
I 
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Time 0 1 2 3 

! 

: 

I I 
Amount 

Discount v v2 v3 

Probability Px 2Px 3Px 

Figure 5.3 Time-line diagram for whole life immediate annuity. 

5.4.3 Whole life immediate annuity 

Now consider a whole life annuity of 1 per year payable in arrear, conditional 

on the survival of (x) to the payment dates. We use the term immediate annuity 

to refer to an annuity under which payments are made at the end of the time 

periods, rather than at the beginning. The actuarial notation for the EPV of this 

annuity is ax, and the time-line for the annuity cash flow is shown in Figure 5.3. 

Let Y* denote the present value random variable for the whole life immedi

ate annuity. Using the indicator random variable approach we have 

Y* = v l(Tx > 1) + v2 I(Tx > 2) + v3 I(Tx > 3) + v4 I(Tx > 4) + · · · . 

We can see from this expression and from the time-line, that the difference in 

present value between the annuity-due and the immediate annuity payable in 

arrear is simply the first payment under the annuity-due, which, under 

the annuity-due, is assumed to be paid at time t = 0 with certainty. 

So, if Y is the random variable for the present value of the whole life annuity 

payable in advance, and Y* is the random variable for the present value of 

the whole life annuity payable in arrear, we have Y* = Y - 1, so that E[Y*] = 
E[Y] -1, and hence 

Also, from equation (5.5) and the fact that Y* = Y - 1, we have 

2A -A2 
V[Y*] = V[Y] = x x a2 

5.4.4 Term immediate annuity 

(5.11) 

The EPV of a term immediate annuity of 1 per year is denoted ax:i1\· Under 

this annuity payments of 1 are made at times k = 1, 2, ... , n, conditional on 

the survival of the annuitant. 
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Time 0 1 2 3 11-l 11 

I I I I H 
Amount 

Discount v v2 v3 vn-1 

Probability Px 2px 3px n-lpx 

Figure 5.4 Time-line diagram for term life immediate annuity. 

The random variable for the present value is 

Y = amin(Kx,n)/' 

and the time-line for the annuity cash flow is given in Figure 5.4. 
Summing the EPV s of the individual payments, we have 

11 

Gx:lil = V Px + v2 
2Px + v3 

3Px + · · · + v11 
11 Px = L V

1 
t Px · 

1=1 

vn 

nPx 

(5.12) 

The difference between the annuity-due EPV, lix:lil• and the immediate annuity 
EPV, ax:lil• is found by differencing equations (5.10) and (5.12), to give 

so that 

I Gx:lil = Gx:lil - 1 + Vn nPx· I (5.13) 

The difference comes from the timing of the first payment under the annuity 
due and the last payment under the immediate annuity. 

5.5 Annuities payable continuously 

5.5.1 Whole life continuous annuity 

In practice annuities are payable at discrete time intervals, but if these intervals 
are close together, for example weekly, it is convenient to treat payments as 
being made continuously. Consider now the case when the annuity is payable 
continuously at a rate of 1 per year as long as (x) survives. If the annuity 
is payable weekly (and we assume 52 weeks per year), then each week, the 
annuity payment is 1/52. If payments were daily, for an annuity of 1 per 
year, the daily payment would be 1/365. Similarly, for an infinitesimal interval 
(t, t + dt) the payment under the annuity is dt provided (x) is alive through the 
interval. 
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The EPV is denoted iix. The underlying random variable is Y, say, where 

y = iir.;i. 

Analogous to the annual annuity-due, we can derive formulae for the EPV 
of the annuity in three different ways. 

The first approach is to use the annuity-certain formula 

so that 

and 

That is, 

1 - vn 
iilil = ---

8 

1 - vTx 
Y=---

_ 1 - E[v1'.'] 
ax = E[Y] = ---

8 

(5.14) 

Using this formulation for the random variable Y, we can also directly derive 
the variance for the continuous annuity present value from the variance for the 
continuous insurance benefit 

V[Y] = V = x x [ 
1 - vTx J 2 A - A2 

8 82 

The second approach is to use the sum (here an integral) of the product of the 
amount paid in each infinitesimal interval ( t, t + d t), the discount factor for the 
interval and the probability that the payment is made. For each such interval, 
the amount is dt, the discount factor is e-8t and the probability of payment is 

tPx• giving 

- -8t 1
00 

ax= 
0 

e tPxdt. (5.15) 

We remark that this EPV can also be derived using indicator random variables 
by expressing the present value as 

Y =loo e-81 I(Tx > t)dt. 

The development of formula (5.15) is illustrated in Figure 5.5; we show the 
contribution to the integral from the contingent annuity payment made in an 
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Time 0 t+dt 

I I I 
'\____) 

Amount dt 

Discount e-81 

Probability 1Px 

Figure 5.5 Time-line diagram for continuous whole life annuity. 

infinitesimal interval of time (t, t + dt). The interval is so small that payments 

can be treated as being made exactly at t. 
Finally, we can directly write down the EPV from the distribution of Tx as 

ax= fooo atl iPx f.lx+t dt. 

We can evaluate this using integration by parts, noting that if we differentiate 

equation (5.2) we get 

d - t -8t -a11 = v = e 
dt 

Then 

1
00 

-81 = 
0 

e tPxdt. 

0 

When 8 = 0, we see that ax is equal to ex, the complete expectation of life. 

5.5.2 Term continuous annuity 

The term continuous life annuity present value random variable 

has EPV denoted by ax:nl- Analogous to the term annuity-due, we have three 

expressions for this EPV. 
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Using results for endowment insurance functions from Section 4.4.7, we 
have 

(5.16) 

Using the indicator random variable approach we have 

- -8t 1
n 

ax:ni= O e tPxdt, (5.17) 

and taking the expected value of the present value random variable we obtain 

llx:ni= Ion lit1tPx/.lx+tdt+aninPx· 

One way to understand the difference between the second and third approaches 
is to see that in the second approach we integrate over the possible payment 
dates, and in the third approach we integrate over the possible dates of death. 
The third approach is generally the least useful in practice. 

5.6 Annuities payable 1/mthly 

5.6.1 Introduction 

For premiums, annuities and pension benefits, the annual form of the annuity 
would be unusual. Premiums are more commonly payable monthly, quarterly, 
or sometimes weekly. Pension benefits and purchased annuities are payable 
with similar frequency to salary benefits, which means that weekly and monthly 
annuities are common. 

We can define the present value of an annuity payable m times per year in 
terms of the random variable K~m), which was introduced in Section 4.4.3. 
Recall that K~m) is the complete future lifetime rounded down to the lower 
1/mth of a year. 

We will also use the formula for the present value of a l/mthly annuity
certain. For example, ii~1l is the present value of an annuity of 1 per year, 
payable each year, in m instalments of 1 / m for n years, with the first payment 
at time t = 0 and the final payment at time n - ,h. It is important to remember 

that aifinl is an annual factor, that is, it values a payment of 1 per year, and 

therefore for valuing annuities for other amounts, we need to multiply the~) 
factor by the annual rate of annuity payment. 

Suppose we are interested in valuing an annuity of $12 000 per year, payable 
monthly in advance to a life aged 60. Each monthly payment is $1000. The 
relevant future lifetime random variable is Kg2l. If K~~2) = 0, then ( 60) died 
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in the first month, there was a single payment made at t = 0 of $1000, and the 
present value is 

12 000 x _l = 12 000 ··C12J . 
12 al/12j 

If K~62) = 1/12 then (60) died in the second month, there are two monthly 
annuity payments, each of $1000, and the relevant annuity factor is 

12 ooo ( f2 + Av +z) = 12 ooo a~~~~ 1 . 
Continuing, we see that the present value random variable for this annuity can 
be written as 

5.6.2 Whole life annuities payable 1/ mthly 

Consider first an annuity of total amount 1 per year, payable in advance m 
times per year throughout the lifetime of (x), with each payment being 1/m. 
Figure 5.6 shows the whole life 1/mthly annuity time-line cash flow. 

The present value random variable for this annuity is 

.. (m) 

KJnl+;J; d(m) 

The EPV of this annuity is denoted by a~m) and is given by 

K(ml+l 
1 - E[v x m] 

(i(m) = ------
x d(m) 

Time 0 1/m 2/m 3/m 4/m 

I I I I I 
Amount llm l/111 1/111 1/111 1/111 

Discount vl/m v2/m v3/m v4/m 

Probability l_PX l_Px 3PX !lPX 
Ill Ill m Ill 

Figure 5.6 Time-line diagram for whole life 1/mthly annuity-due. 
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giving 

1 A(m) 
(i(m) _ - x 

x - d(m) 
(5.18) 

Using the indicator random variable approach we find that 

00 1 . 
a(m) = '"" - v1fm LPx· 

x ~m m 
r=O 

(5.19) 

For annuities payable l/mthly in arrear, we can use a comparison with the 
1/ mthly annuity-due. Similar to the annual annuity case, the only difference in 
the whole life case is the first payment, of $1/m, so that the EPV of the l/mthly 
immediate annuity is 

a(m) = a(m) - .l 
x x m' (5.20) 

5.6.3 Term annuities payable 1/mthly 

We can extend the above derivation to cover the term life annuity case, when 

the 1 / mthly annuity payment is limited to a maximum of n years. Consider 
now an annuity of total amount 1 per year, payable in advance m times per year 
throughout the lifetime of (x) for a maximum of n years, with each payment 

being 1 / m. The payments, associated probabilities and discount factors for the 
l/mthly term annuity-due are shown in the time-line diagram in Figure 5.7. 

The present value random variable for this annuity is 

Time 

Amount 

Discount 

Probability 

• ( (111) I ) l _ Vrmn Kx +;;;,n 

d(m) 

0 l/m 2/m 3/m 4/m 

I I I I I 
l!m 1/m 

vlfm 

IPX m 

l/m 

v2fm 

2px 
m 

1/m l/m 

v3fm v4fm 

3Px 4Px m m 

11-1/m II 

H 
1/m 0 

vn-ljm 

11 _-JiPX 

Figure 5.7 Time-line diagram for term life 1/mthly annuity-due. 

i 
1~ 
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The EPV of this annuity is denoted by a~~ and is given by 

. (K(m) 1 ) 1 _ E[vrmn x +,,,,n ] 
a(m) - --------,----

x:iil - d(m) 

so that 

1 - A(m) 
a(m) - x:iil 

x:iil - d(m) 
(5.21) 

Using the indicator random variable approach we find that 

11111-l 

.. (m) - L 1 r/m . a .,,,, - - V .L Px. 
x.n, in m 

r=O 

(5.22) 

For the 1/mthly term immediate annuity, by comparison with the l/mthly 
annuity-due, the difference is the first payment under the annuity-due, with 
EPV l/m, and the final payment under the immediate annuity, with EPV 
1. v11 p so that m n x, 

(m) •• (m) 1 (l n ) a -a -- -v p x:iil - x:iil m n x · (5.23) 

This is analogous to the result in equation (5.3) for the annuity-certain. Further, 
by setting m = 1 in equations (5.19) and (5.22) we obtain equations (5.7) and 
(5.10) for ax and lix:iil· Also, by letting m--* oo in equations (5.19) and (5.22) 
we obtain equations (5.15) and (5.17) for continuous annuities, ax and iix:iil · 

We can derive expressions for the EPV of other types of annuity payable m 
times per year, and indeed we can also find higher moments of present values 
as we did for annuities payable annually. 

5. 7 Comparison of annuities by payment frequency 

In Table 5.1 we show values for ax, a~4l, ax, a~4) and ax for x = 20, 40, 60 
and 80, using the Standard Ultimate Survival Model from Section 4.3, with 
interest of 5% per year. Using equations (5.11), (5.20), (5.15), (5.19) and (5.7), 
we obtain the values shown in Table 5.1. We observe that each set of values 
decreases with age, reflecting the shorter expected life span as age increases. 
We also have, for each age, the ordering 

a < aC4l <a < (iC4l <a X X X X X• 
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Table 5.1 l if (4) - .. (4) d .. Va ues o ax , ax , ax , ax an ax . 

x ax 
(4) 

ax ax 
.. (4) 
ax ax 

20 18.966 19.338 19.462 19.588 19.966 
40 17.458 17.829 17.954 18.079 18.458 
60 13.904 14.275 14.400 14.525 14.904 
80 7.548 7.917 8.042 8.167 8.548 

There are two reasons for this ordering. 

• While the life is alive, the payments in each year sum to 1 under each annu
ity, but on average, the payments under the annuity-due are paid earlier. The 
time value of money means that the value of an annuity with earlier pay
ments will be higher than an annuity with later payments (for interest rates 
greater than zero), so the annuity values are in increasing order from the lat
est average payment date (ax payments are at each year end) to the earliest 
(ax payments are at the start of each year). 

• In the year that (x) dies, the different annuities pay different amounts. Under 
the annual annuity-due the full year's payment of $1 is paid, as the life is 
alive at the payment date at the start of the year. Under the annual imme
diate annuity, in the year of death no payment is made as the life does not 
survive to the payment date at the year end. For the l/mthly and continuous 
annuities, less than the full year's annuity may be paid in the year of death. 

For example, suppose the life dies after seven months. Under the annual 
annuity-due, the full annuity payment is made for that year, at the start of 
the year. Under the quarterly annuity due, three payments are made, each of 
1/4 of the total annual amount, at times 0, 114 and 1/2. The first year's final 
payment, due at time 3/4, is not made, as the life does not survive to that 
date. Under the continuous annuity, the life collects 7/12ths of the annual 
amount. Under the quarterly immediate annuity, the life collects payments 
at times 1/4, 1/2, and misses the two payments due at times 3/4 and 1. Under 
the annual immediate annuity, the life collects no annuity payments at all, as 
the due date is the year end. 

This second point explains why we cannot make a simple interest adjustment 
to relate the annuity-due and the continuous annuity. The situation here is dif
ferent from the insurance benefits; Ax and A~4), for example, both value a 
payment of $1 in the year of death, Ax at the end of the year, and A~4) at the 
end of the quarter year of death. There is no difference in the amount of the 
payment, only in the timing. For the annuities, the difference between lix and 
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Table 5.2 vU if <4l - ·-<4l d .. a ues o ax:IOl' a x:IOl' ax:IOl' ax:IOl an ax:IOl· 

x ax:IOl 
a(4) 

x:IOl ax:IOl a<4J 
x:IOl ax:IOl 

20 7.711 7.855 7.904 7.952 8.099 
40 7.696 7.841 7.889 7.938 8.086 
60 7.534 7.691 7.743 7.796 7.956 
80 6.128 6.373 6.456 6.539 6.789 

a~4) arises from differences in both cashfiow timing and benefit amount in the 
year of death. 

We also note from Table 5.1 that the ax values are close to being half way 
between ax and ax, suggesting the approximation ax~ ax+!· We will see in 
Section 5 .11.3 that there is indeed a way of calculating an approximation to ax 
from ax, but it involves an extra adjustment term to ax. 

Example 5.2 Using the Standard Ultimate Survival Model, with 5% per year 
. al I I f <4l .. ·-<4l d - f 20 40 mterest, c cu ate va ues o a .-;Al10 , a -;Al• a .-;Al10 , a -;Al an a ·Po or x = , , 

X.lVI x:l01 X.lVI x:l01 X.lVI 

60 and 80, and comment. 

Solution 5.2 Using equations (5.10), (5.12), (5.17), (5.23) and (5.22) with 
n = 10 we obtain the values shown in Table 5.2. 

We note that for a given annuity function, the values do not vary greatly with 
age, since the probability of death in a 10-year period is small. That means, 
for example, that the second term in equation (5.10) is much greater than the 
first term. The present value of an annuity certain provides an upper bound 
for each set of values. For example, for any age x, ax:IOl < aIOl = 7.722 and 

a<4J < a<4J = 7.962. 
x:IOl 101 

Due to the differences in timing of payments, and in amounts for lives who 
die during the IO-year annuity term, we have the same ordering of annuity 
values by payment frequency for any age x: 

ax:IOl < a;~k < ax:IOl < a;~k < ax:IOl· 

D 

5.8 Deferred annuities 

A deferred annuity is an annuity under which the first payment occurs at some 
specified future time. Consider an annuity payable to an individual now aged x 
under which annual payments of 1 will commence at age x + u, where u is an 
integer, and will continue until the death of (x ). This is an annuity-due deferred 
u years. In standard actuarial notation, the EPV of this annuity is denoted by 
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Time 0 1 2 u-1 u u+l 

! I I I I I 
Amount 0 0 0 0 

Discount vi vZ vu-1 v" vu+l 

Probability lPx 2Px u-lPx uPx u+lPx 

Figure 5.8 Time-line diagram for deferred annual annuity-due. 

u lax. Note that we have used the format u I ... to indicate deferment before, both 
for mortality probabilities (u I 1qx) and forinsurance benefits (u I Ax). Figure 5 .8 
shows the time-line for au-year deferred annuity-due. 

Combining Figure 5.8 with the time-line for a u-year term annuity, see 
Figure 5.2, we can see that the combination of the payments under au-year 
temporary annuity-due and a u-year deferred annuity-due gives the same 
sequence of payments as under a lifetime annuity in advance, so we obtain 

(5.24) 

or, equivalently, 

(5.25) 

Similarly, the EPV of an annuity payable continuously at rate 1 per year to a 
life now aged x, commencing at age x + u, is denoted by u lax and given by 

Summing the EPV s of the individual payments for the deferred whole life 
annuity-due gives 

I.. u + u+l + u+2 + u ax = V uPx V u+lPx V u+2Px · · · 

= vu u Px ( 1 + v Px+u + v2 
2Px+u + · · · ) 

so that 

(5.26) 

We see again that the pure endowment function acts like a discount function. 
In fact, we can use the uEx function to find the EPV of any deferred benefit. 
For example, for a deferred term immediate annuity, 

and for an annuity-due payable l/mthly, 
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I .. (ml _ E .. (111) 
u ax - u x ax+u · (5.27) 

This result can be helpful when working with tables. Suppose we have 
available a table of whole life annuity-due values, say iix, along with the life 
table function lx, and we need the term annuity value iix:lll· Then, using 
equations (5.24) and (5.26), we have 

•• •• II •• 
ax:ill =ax - V nPx ax+n· (5.28) 

For 1/mthly payments, the corresponding formula is 

•• (m) _ ··(m) _ 11 ··(111) 
ax:ill - ax V 11 Px ax+n · (5.29) 

Example 5.3 Let Y1, Y2 and Y3 denote present value random variables for a 
u-year deferred whole life annuity-due, au-year term annuity-due and a whole 
life annuity-due, respectively. Show that Y3 = Y1 + Y2. Assume annual pay
ments. 

Solution 5.3 The present value random variable for a u-year deferred whole 
life annuity-due, with annual payments is 

Y1 =(Ou·· v a-K.-, +-1--~u I 

= ( ~Kx+ll - iiui 

if Kx s u - 1, 
if Kx 2: u, 

if Kx s u - 1, 
if Kx 2: u. 

From Section 5.4.2 we have 

Hence 

as required. 

(ii~ if Kx :S u - 1, 
Y2 = .. Kx+l1 

aui if Kx 2: u. 

if Kx s u - 1, 

if Kx 2: u, 

(5.30) 

D 

We use deferred annuities as building blocks in later sections, noting that an 
n-year term annuity, with any payment frequency, can be decomposed as the 
sum of n deferred annuities, each with term 1 year. So, for example, 

n-1 

lix:ill = L u lax:ll · (5.31) 
u=O 
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5.9 Guaranteed annuities 

A common feature of pension benefits is that the pension annuity is guaranteed 
to be paid for some period even if the life dies before the end of the period. For 
example, a pension benefit payable to a life aged 65, might be guaranteed for 
5, 10 or even 15 years. 

Suppose an annuity-due of 1 per year is paid annually to (x), and is guaran
teed for a period of n years. Then the payment due at k years is paid whether or 
not (x) is then alive if k = 0, 1, ... , n - 1, but is paid only if (x) is alive at age 
x + k fork = n, n + 1, .... The present value random variable for this benefit 
is 

1
a111 

y = aK,+1) 

ifKx:S:n-l, 

if Kx ~ n 

if Kx :::; n - 1, 

if Kx ~ n 

if Kx :S: n - 1, 
if Kx ~ n 

where Y1 denotes the present value of an n-year deferred annuity-due of 1 per 
year, from equation (5.30), and 

The expected present value of the unit n-year guaranteed annuity-due is denoted 

ax:/il' so 

(5.32) 

Figure 5.9 shows the time-line for an n-year guaranteed unit whole life annuity
due. This time-line looks like the regular whole life annuity-due time-line, 
except that the first n payments, from time t = 0 to time t = n - 1, are certain 
and not life contingent. 

We can derive similar results for guaranteed benefits payable 1/mthly; for 
example, a monthly whole life annuity-due guaranteed for n years has EPV 

.. (12) .. (12) + E .. (12) 
a x:/il = alil n x ax+n · 

Example 5.4 A pension plan member is entitled to a benefit of $1000 per 
month, in advance, for life from age 65, with no guarantee. She can opt to take 
a lower benefit, with a 10-year guarantee. The revised benefit is calculated to 
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Time 0 1 2 n-1 n n+l 

I 
• 

I I 

• 

I 
Amount 

Discount vl v2 vn-l v" v"+1 

Probability nPX n+lPx 

Figure 5.9 Time-line diagram for guaranteed annual annuity-due. 

have equal EPV at age 65 to the original benefit. Calculate the revised benefit 
using the Standard Ultimate Survival Model, with interest at 5% per year. 

Solution 5.4 Let B denote the revised monthly benefit. To determine B we 
must equate the EPV of the original benefit with that of the revised benefit. 
The resulting equation of EPV s is usually called an equation of value. Our 
equation of value is 

12oooa<12l = 12Ba~ 65 
65:101 

.where a~~2) = 13.0870, and 

.. (l2) .. (12) + 1Q .. (l2) 13 3791 
a 65:101 = alO] 10P65V G75 = . . 

Thus, the revised monthly benefit is B = $978.17. So the pension plan member 
can gain the security of the 10-year guarantee at a cost of a reduction of $21.83 
per month in her pension. D 

5.10 Increasing annuities 

In the previous sections we have considered annuities with level payments. 
Some of the annuities which arise in actuarial work are not level. For example, 
annuity payments may increase over time. For these annuities, we are gener
ally interested in determining the EPV, and are rarely concerned with higher 
moments. To calculate higher moments it is generally necessary to use first 
principles, and a computer. 

The best approach for calculating the EPV of non-level annuities is to use 
the indicator random variable, or time-line, approach - that is, sum over all the 
payment dates the product of the amount of the payment, the probability of 
payment (that is, the probability that the life survives to the payment date) and 
the appropriate discount factor. 
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Time 0 1 2 3 4 

I I I I I 
Amount 2 3 4 5 

Discount vl v2 v3 v4 

Probability !PX 2Px 3Px 4Px 

Figure 5.10 Time-line diagram for arithmetically increasing annual annuity-due. 

5.10.1 Arithmetically increasing annuities 

We first consider annuities under which the amount of the annuity payment 
increases arithmetically with time. Consider an increasing annuity-due where 
the amount of the annuity is t + 1 at times t = 0, 1, 2, ... provided that (x) is 
alive at time t. The time-line is shown in Figure 5.10. 

The EPV of the annuity is denoted by (Iii)x in standard actuarial notation. 
From the diagram we see that 

00 

(Ia)x = L v
1
(t + 1) tPx· (5.33) 

t=O 

Similarly, if the annuity is payable for a maximum of n payments rather than 
for the whole life of (x), the EPV, denoted by (Iii)x:/il in standard actuarial 
notation, is given by 

n-1 

(Iii)x:/il = I>1
(t + 1) tPx· (5.34) 

t=O 

If the annuity is payable continuously, with the payments increasing by 1 at 
each year end, so that the rate of payment in the tth year is constant and equal 
tot, fort= 1, 2, ... , n, then we may consider then-year temporary annuity 
as a sum of one-year deferred annuities. By analogy with formula (5.31), the 
EPV of this annuity, denoted in standard actuarial notation by (I a)x:ii), is 

n-1 

ua)x=lil =Lem+ 1) 1111ax:Il. 
m=O 

We also have standard actuarial notation for the continuous annuity under 
which the rate of payment at time t > 0 is t; that is, the rate of payment is 
changing continuously. The notation for the EPV of this annuity is (ia)x if it 
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Time 0 t+dt 

I I I 
\_____) 

Amount 
tdt 

Discount e-St 

Probability 
tPx 

Figure 5.11 Time-line diagram for increasing continuous whole life annuity. 

is a whole life annuity, and (iii)x:nJ if it is a term annuity. For every infinitesi
mal interval, (t, t+dt), the amount of annuity paid, if the life (x) is still alive, is 
t dt, the probability of payment is t Px and the discount function is e-13 t = v1• 

The time-line is shown in Figure 5 .11. 

To determine the EPV we integrate over all the possible intervals (t, t + d t), 
so that 

(5.35) 

5.10.2 Geometrically increasing annuities 

An annuitant may be interested in purchasing an annuity that increases geomet
rically, to offset the effect of inflation on the purchasing power of the income. 
The approach is similar to the geometrically increasing insurance benefit which 
was considered in Examples 4.8 and 4.9. 

Example 5.5 Consider an annuity-due with annual payments where the 
amount of the annuity is (1 + j/ at times t = 0, 1, 2, ... , n - 1 provided that 
(x) is alive at time t. Derive an expression for the EPV of this benefit, and 
simplify as far as possible. 

Solution 5.5 First, consider the time-line diagram in Figure 5.12. 
By summing the product of 

• the amount of the payment at time t, 

• the discount factor for time t, and 

• the probability that the payment is made at time t, 
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Time 0 1 2 3 4 

i 

! 

I I I 
Amount (l+j) (1+})2 (l+j)3 (l+j)4 

Discount vl v2 v3 v4 

Probability 1Px 2Px 3Px 4Px 

Figure 5.12 Time-line diagram for geometrically increasing annual annuity-due. 

over all possible values of t, we obtain the EPV as 

n-1 

2:::(1 + })1 
V

1 
tPx = ax:111i* 

t=O 

where ax:111i* is the EPV of a term annuity-due evaluated at interest rate i* 
where 

'* 1 + i i - j 
l =---1=--

1+} 1+} 

5.11 Evaluating annuity functions 

D 

If we have full information about the survival function for a life, then we can 
use summation or numerical integration to compute the EPV of any annuity. 
Often, though, we have only integer age information, for example when the 
survival function information is derived from a life table with integer age infor
mation only. In this section we consider how to evaluate the EPV of 1/mthly 
and continuous annuities given only the EPV s of annuities at integer ages. For 
example, we may have ax values for integer x. We present two methods that 
are commonly used, and we explore the accuracy of these methods for a fairly 
typical (Makeham) mortality model. First we consider recursive calculation of 
EPVs of annuities. 

5.11.1 Recursions 

In a spreadsheet, with values for 1 Px available, we may calculate ax using a 
backward recursion. We assume that there is an integer limiting age, a>, so that 
qcv-1 = 1. First, we set acv-1 = 1. The backward recursion for x = a> - 2, a> - 3, 
a> - 4, ... is 

I ax = 1 + v Px ax+ 1 I (5.36) 
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lix = 1 + v Px + v2 
2Px + v3 

3Px + · · · 

= 1 + v Px ( 1 + v Px+I + v2 
2Px+I + · · ·) 

= 1 + V Px lix+ I· 

Similarly, for the 1 / mthly annuity due, 

.. (m) _ 1 
aw-1/m - m' 

and the backward recursion for x = w- ~, w- ~, w- ~, ... is 

a(m) = .l + v~ 1 p a(m) . 
x m Iii x x+~ 

(5.37) 

We can calculate EPV s for term annuities and deferred annuities from the 
whole life annuity EPVs, using, for example, equations (5.24) and (5.26). 

To find the EPV of an annuity payable continuously we can use numerical 
integration. Note, however, that Woolhouse's formula, which is described in 
Section 5.11.3, gives an excellent approximation to l/mthly and continuous 
annuity EPVs. 

5.11.2 Applying the UDD assumption 

We consider the evaluation of a;1i under the assumption of a uniform dis
tribution of deaths (UDD). The indication from Table 4.6 is that, in terms 
of EPVs for insurance benefits, UDD offers a reasonable approximation at 
younger ages, but may not be sufficiently accurate at older ages. 

From Section 4.5.1 recall the results from equations (4.26) and (4.25) that, 
under the UDD assumption, 

A(m) = _i_A 
x ;Cm) x and 

We also know, from equations (5.4), (5.18) and (5.14) in this chapter, that for 
any survival model 

.. l -Ax 
a----

x - d ' 

1 ACml 
a(m) = - x 

x d(m) 

Now, putting these equations together we have 

l -A~m) 
a(m) _ ---

x - d(m) 

_ 1 _::.._Ax 
and ax = --

0
-. 

1- tkAx 
d(m) 

using UDD 



where 
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i(m) - iAx 
i(m) d(m) 

i(m) - i(l - diix) 

i(m) d(m) using (5.4) 

id .. i - i(m) 
---a----
i(m) d(m) x i(m) d(m) 

= a(m) iix - f3(m) 

id 
a(m)- --

- i(m)d(m) 

i - i(m) 

and /3(m) = i(m) d(m). 

For continuous annuities we can let m -+ oo, so that 

- id .. i - 8 
ax= [J2 ax - 7. 

For term annuities, starting from equation (5.29) we have, 

•• (m) _ ··(m) n ··(m) 
ax:iil - ax - V nPx ax+n 

= a(m)iix - (3(m) - V
11 nPx (a(m)iix+n - /3(m)) 

= a(m) (iix - V
11
nPx iix+n) - (3(m) (1 - V

11 
nPx) 

= a(m) iix:iil - /3(m) (1 - V
11 nPx) . 
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(5.38) 

using UDD 

Note that the functions a(m) and f3(m) depend only on the frequency of the 
payments, not on the underlying survival model. It can be shown (see Exer
cise 5.15) that a(m) ~ 1 and f3(m) ~ (m - 1)/2m, leading to the 
approximation 

.. (nz) "' •• m - 1 (1 n ) 
ax:iil "' ax:iil - ~ - v nPx . (5.39) 

5.11.3 Woolhouse'sformula 

Woolhouse's formula is a method of calculating the EPV of annuities payable 
more frequently than annually that is not based on a fractional age assumption. 
It is based on the Euler-Maclaurin formula and expresses aJ11

) in terms of 
iix. The Euler-Maclaurin formula is a numerical integration method. It gives 
a series expansion for the integral of a function, assuming that the function is 
differentiable a certain number of times. As discussed in Appendix B, in the 
case of a function g(t), where limHoo g(t) = Q{the.[ormula can be written in 
terms of a constant h > 0 as <i;.r · •·· -

1
00 00 h h2 h4 

g(t)dt = h ~ g(kh) - -g(O) + -g'(O) - - g'"(O) + · · · , (5.40) 
0 L.., 2 12 720 

k=O 
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where we have omitted terms on the right-hand side that involve higher deriva
tives of g. 

To obtain· our approximations we apply this formula twice to the function 
g (t) = v1 

1 Px, in each case ignoring third and higher order derivatives of g, 
which is reasonable as the function is usually quite smooth. Note that g(O) = 1, 

limt--+oo g(t) = 0, and 

g' (t) = 
d t t d 

t Px dt V + V dt t Px 

d -8t t d 
tPx dte +v dt tPx 

0 -8t t =-tPxue -v tPx/J.,x+t• 

so g'(O) = - (8 + /J.,x). 
First, let h = 1. As we are ignoring third and higher order derivatives, the 

right-hand side of (5.40) becomes 

00 
1 1 

00 
1 1 

L g(k) - - + - g' (0) = L Vk kPx - - - - (8 + /J.,x) 
k=O 2 12 k=O 2 12 

.. 1 1 ( 
=ax - 2 -

12 
8 + /J.,x) · (5.41) 

Second, let h = 1/m. Again ignoring third and higher order derivatives, the 
right-hand side of (5.40) becomes 

1 
00 

1 1 
- Lg(k/m)--+-g'(O) 
m k=O 2m 12m2 

1
00

k 1 1 
= - '"""'viii 1£Px - - - --(8 +µ,x) 

m /__, m 2m 12m2 
k=O 

··(m) 1 1 (o ) = a - - - -- u + /J.,x . 
x 2m 12m2 (5.42) 

Since each of (5.41) and (5.42) approximates the same quantity, iix, we can 
obtain an approximation to a~m) by equating them, so that 

··(m) 1 1 .. 1 1 
ax - 2m - 12m2 (8 + /J.,x) ~ax - 2 - 12 (8 + /J.,x) · 

Rearranging, we obtain the important formula 

m -1 m2 -1 
··(m) ~ •. (8 + ) ax ~ ax - ~ - 12n;2 /J.,x . (5.43) 

The right-hand side of equation (5.43) gives the first three terms of Wool
house's formula, and this is the basis of our actuarial approximations. 
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For term annuities, we again start from equation (5.29), 

.. (m) ··(m) n · ··(m) 
ax:iil =ax - V nPx ax+n 

and applying formula (5.43) gives 

.. (m) .. m - 1 m2 
- 1 

ax:iil :::::! ax - 2;;;- - 12m2 (8 + P.,x) 

( 
m - l m2 -1 ) 

- VnnPx lix+n - ~ - 12m2 (8 + /J-x+n) 

.. m-1( /1 ) 
= ax:iil - ~ 1 - V nPx 

m2 -1 
-

12
m2 (8 + /J-x - V

11 
nPx(8 + /J-x+n)) · (5.44) 

For continuous annuities, we can let m-+ oo in equations (5.43) and (5.44) (or 
just apply equation (5.41)), so that 

1 1 
iix :::::!ax - - - -(8+µ,x) 

2 12 
(5.45) 

and 

iix:iil :::::! llx:iil - ~(1 - VnnPx) -
1

1

2 
(8 + /J-x - V

11 
nPx(8 + /J-x+n)) · 

An important difference between the approximation to a~1~ based on Wool
house's formula and the UDD approximation is that we need extra information 
for the Woolhouse approach, specifically values for the force of mortality. In 
practice, the third term in equation (5.44) is often omitted (leading to the same 
approximation as equation (5.39)), but as we shall see in the next section, this 
leads to poor approximations in some cases. 

If the integer age information available does not include values of /J-x, then 
we may still use Woolhouse's formula. As 

2Px-1 =exp {-1~~
1 

P.,s ds} :::::! exp{-2µ,x}, 

we can approximate /J-x as 

(5.46) 

and the results for the illustrations given in the next section are almost identical 
to where the exact value of the force of mortality is used. 

In fact, Woolhouse's formula (with three terms) is so accurate that even if 
the full force of mortality curve is known, it is often a more efficient way to 
calculate annuity values than the more direct formulae with comparable accu
racy. Also, since we have a simple relationship between annuity and insurance 
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functions, we may use Woolhouse's formula for calculating insurance func
tions, for example we have 

A_~m) = 1 - d(m) a~m). 

In Section 2.6.2 we saw an approximate relationship between the complete 
expectation of life and the curtate expectation of life, namely 

0 ~ 1 
ex~ ex+ 2. 

Setting the interest rate to 0 in equation (5.45) gives a refinement of this approx
imation, namely 

5.12 Numerical illustrations 

In this section we give some numerical illustrations of the different methods 
of computing a<~_;,. Table 5.3 shows values of a(l~ for x = 20, 30, ... , 100 

x.n, x:l01 

when i =0.1, while Table 5.4 shows values of a<2~ when i =0.05. The mor
x:251 

tality basis for the calculations is the Standard Ultimate Survival Model, from 
Section 4.3. 

The legend for each table is as follows: 

Exact denotes the true EPV, calculated from formula (5.37); 
UDD denotes the approximation to the EPV based on the uniform distribu

tion of deaths assumption; 
W2 denotes the approximation to the EPV based on Woolhouse's formula, 

using the first two terms only; 
W3 denotes the approximation to the EPV based on Woolhouse's formula, 

using all three terms, including the exact force of mortality; 

Table 5.3 Values of a< 1~ for i = 0.1. 
x:lO 

x Exact UDD W2 W3 W3* 

20 6.4655 6.4655 6.4704 6.4655 6.4655 
30 6.4630 6.4630 6.4679 6.4630 6.4630 
40 6.4550 6.4550 6.4599 6.4550 6.4550 
50 6.4295 6.4294 6.4344 6.4295 6.4295 
60 6.3485 6.3482 6.3535 6.3485 6.3485 
70 6.0991 6.0982 6.1044 6.0990 6.0990 
80 5.4003 5.3989 5.4073 5.4003 5.4003 
90 3.8975 3.8997 3.9117 3.8975 3.8975 

100 2.0497 2.0699 2.0842 2.0497 2.0496 

J 
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Table 5.4 Values of a(2tsi for i = 0.05. 
x:25 

x Exact UDD W2 W3 W3* 

20 14.5770 14.5770 14.5792 14.5770 14.5770 
30 14.5506 14.5505 14.5527 14.5506 14.5506 
40 14.4663 14.4662 14.4684 14.4663 14.4663 
50 14.2028 14.2024 14.2048 14.2028 14.2028 
60 13.4275 13.4265 13.4295 13.4275 13.4275 
70 11.5117 11.5104 11.5144 11.5117 11.5117 
80 8.2889 8.2889 8.2938 8.2889 8.2889 
90 4.9242 4.9281 4.9335 4.9242 4.9242 

100 2.4425 2.4599 2.4656 2.4424 2.4424 

W3* denotes the approximation to the EPV based on Woolhouse's formula, 
using all three terms, but using the approximate force of mortality 

h estimated from integer age values of Px. 
I( 

From these tables we see that approximations based on Woolhouse's formula 
r with all three terms yield excellent approximations, even where we have 
0 approximated the force of mortality from integer age Px values. Also, note that 
the inclusion of the third term is important for accuracy; the two-term Wool
house formula is the worst approximation. We also observe that the approx
imation based on the UDD assumption is good at younger ages, with some 

1 deterioration for older ages. In this case approximations based on Woolhouse's 
formula are superior, provided the three-term version is used. 

a It is also worth noting that calculating the exact value of, for example, ai~2) 
using a spreadsheet approach takes around 1200 rows, one for each month 

a from age 20 to the limiting age w. Using Woolhouse's formula requires only 
the integer age table, of 100 rows, and the accuracy all the way up to age 100 
is excellent, using the exact or approximate values for /Lx· Clearly, there can 
be significant efficiency gains using Woolhouse's formula. 

5.13 Functions for select lives 

Throughout this chapter we have assumed that lives are subject to an ultimate 
survival model, just as we did in deriving insurance functions in Chapter 4. Just 
as in that chapter, all the arguments in this chapter equally apply if we have a 
select survival model. Thus, for example, the EPV of an n-year term annuity 
payable continuously at rate 1 per year to a life who is aged x + k and who was 
select at age x is a[x]+k:li] , with 
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A[x]+k:Jil = 1 - Oll[x]+k:Jil. 

The approximations we have developed also hold for select survival models, 
so that, for example 

•• (m) ~ •• m - 1 m2 
- 1 

a[x]+k ~ G[x]+k - ~ - llm2 (8 + ft[x]+k) 

where 
00 

•• '""' t G[x]+k = £__, V tP[x]+k 

t=O 

and 
00 

··(m) _ 1 '"°' t/m 
a[x]+k - m L.., V f,,P[x]+k · 

t=O 

5.14 Notes and further reading 

Woolhouse (1869) presented the formula which bears his name in a paper 
to the Institute of Actuaries in London. In this paper he also showed that 
his theory applied to joint-life annuities, a topic we discuss in Chapter 9. 

A derivation of Woolhouse's formula from the Euler-Maclaurin formula is 
given in Appendix B. The Euler-Maclaurin formula was derived independently 
(about 130 years before Woolhouse's paper) by the famous Swiss mathemati
cian Leonhard Euler and by the Scottish mathematician Colin Maclaurin. A 
proof of the Euler-Maclaurin formula, and references to the original works, 
can be found in Graham et al. (1994). 

5.15 Exercises 

When a calculation is required in the following exercises, unless otherwise 
stated you should assume that mortality follows the Standard Ultimate Survival 
Model as specified in Section 4.3 and that interest is at 5% per year effective. 
This is the basis underlying the tables in Appendix D. 

Exercise 5.1 Describe in words the benefits with the present values given 
and write down an expression in terms of actuarial functions for the expected 
present value. 

(a) 

(b) 

if Tx :'.S 15, 

if r:~ > 15. 

if 0 < Kx:::; 15, 

if Kx > 15. 
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kxercise 5.2 

~!fa) Describe the annuity with the following present value random variable: 

{

vTx a 
y = O n-Tx) 

if Tx < n, 

if Tx 2:: n. 

This is called a Family Income Benefit. 

fb) Show that E[Y] = aiil - lix:iil· 
(c) Explain the answer in (b) by general reasoning. 

~xercise 5.3 Given a 50:lol = 8.2066, a 50:T6l = 7 .8277 and 10Pso = 0.9195, what 
fs the effective rate of interest per year? 
(;. 

txercise 5.4 Given a6o = 10.996, a61 = 10.756, a62 = 10.509 and 

} = 0.06, calculate 2P60. 

Exercise 5.5 Using the tables in Appendix D, calculate 
/f 

l la) a40:2ol • 
P0 (4) 
thib) a ;v;i using Woolhouse's formula with two terms, 

» 40:201 

r f c) a25 :T6l assuming UDD, 
al 

t
td) a(

12b-, using Woolhouse's formula with two terms, 
n ~ 50:201 

iaf e) 20\ai~2l assuming UDD. 
d 
,rJ:xercise 5.6 Using the tables in Appendix D, calculate the standard deviation 

pf the present value of an annuity of $50 000 per year payable annually in 
~dvance to a select life aged 60. 

J:xercise 5.7 Given 10\lix = 4, lix = 10, 10Ex = 0.375 and v = 0.94, 

Nif alculate A ;.m· 
~~:Fxercise 5.~ You are given the following extract from a select life table. 

ive~ 

ct et [x] l[x] l[x]+l lx+2 x+2 

40 33 519 33 485 33 440 42 
41 33 467 33 428 33 378 43 
42 33 407 33 365 33 309 44 
43 33 340 33 294 33 231 45 
44 33 265 33 213 33 143 46 
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Calculate the following, assuming an interest rate of 6% per year: 

(a) a[40J:4l' 

(b) a[40J+1:4l' 

(c) (I a)[40J:4l' 

(d) (I A)[40J:4l' 
( e) the standard deviation of the present value of a four-year term annuity-due, 

with annual payment $1000, payable to a select life age 41, and 

(f) the probability that the present value of an annuity-due of 1 per year issued 

to a select life aged 40 is less than 3.0. 

Exercise 5.9 The force of mortality for a certain population is exactly half 
the sum of the forces of mortality in two standard mortality tables, denoted A 

and B. Thus 

for all x: A student has suggested the approximation 

ax = (a: + a:) /2. 

Will this approximation overstate or understate the true value of ax? 

Exercise 5.10 Consider a life aged x. Obtain the formula 

(I A)x =ax - d(Ia)x 

by writing down the present value random variables for 

(a) an increasing annuity-due to (x) with payments of t + 1 at times 
t=O, 1,2, ... ,and 

(b) a whole life insurance benefit of amount t at time t, t = 1, 2, 3 ... , if the 
death of (x) occurs between ages x + t - 1 and x + t. 

Hint: use the result 

n ·· n 
(I .. ) " t-1 ani - nv 

a iil = ~ tv = d 
t=l 

Exercise 5.11 Let H = min(Kx, n). 

(a) Show that 
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(b) An alternative form given for this variance in Bowers et al. (1997) is 

(1 + i)2 [2 A1:1il - (A_~:lil) 2 ] - 2(1 + i)A1:1il V 11 
nPx + V 211

nPx0 - nPx) 

i2 

Prove that this is equal to the expression in (a). 

Exercise 5.12 Consider the random variables Y = aT;l and Z = v'I'.'. 

(a) Derive an expression for the covariance, in terms of standard actuarial 
functions. 

(b) Show that the covariance is negative. 

( c) Explain this result in words. 

Exercise 5.13 Find, and simplify where possible: 

( ) d •• d a dxax, an 

(b) f)i-x:lil. 

Exercise 5.14 Consider the following portfolio of annuities-due currently being 
paid from the assets of a pension fund. 

Age Number of 
annuitants 

60 40 
70 30 
80 10 

Each annuity has an annual payment of $10 000 as long as the annuitant sur
vives. The lives are assumed to be independent. Calculate 

(a) the expected present value of the total outgo on annuities, 

(b) the standard deviation of the present value of the total outgo on annu
ities, and 

( c) the 95th percentile of the distribution of the present value of the total outgo 
on annuities using a normal approximation. 

Exercise 5.15 Consider the quantities a(m) and f3(m) in formula (5.38). By 
expressing i, i(m), d and d(m) in terms of 8, show that 

m -1 
and f3(m) ~ --. 

2m 
a(m) ~ 1 

Exercise 5.16 Using a spreadsheet, calculate the mean and variance of the 
present value of 
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(a) an arithmetically increasing term annuity-due payable to a life aged 50 for 
at most 10 years under which the payment at time t is t + 1 for 
t = 0, 1, ... , 9, and 

(b) a geometrically increasing te1m annuity-due payable to a life aged 50 for at 
most 10 years under which the payment at time t is 1.031 for 

t =0, 1, ... ' 9. 

Exercise 5.17 Using a spreadsheet, calculate the mean and variance of the 
present value of 

(a) a whole life annuity-due to a life aged 65, with annual payments of 1, and 
(b) a whole life annuity-due to a life aged 65, with annual payments of 1 and a 

guarantee period of 10 years. 

Explain the ordering of the means and variances. 

Exercise 5.18 Jensen's inequality states that for a function f, whose first deriva
tive is positive and whose second derivative is negative, and a random vari
able X, 

E[f(X)] :S f(E[X]). 

Use Jensen's inequality to show that 

5.3 4.0014% 
5.4 0.98220 
5.5 (a) 12.994 

(b) 12.756 
(c) 7.902 
(d) 12.490 
(e) 4.710 

5.6 161996 
5.7 0.265 
5.8 (a) 3.66643 

(b) 3.45057 
(c) 8.37502 
(d) 3.16305 
(e) 119.14 
(f) 0.00421 

Zix :S aE[Tx l I ' 

Answers to selected exercises 



If 

i-. 

5.14 (a) 10418961 
(b) 311534 
(c) 10931390 

5.16 (a) 40.95, 11.057 
(b) 9.121, 0.32965 

5.17 (a) 13.550, 12.497 
(b) 13.814, 8.380 
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Premium calculation 

6.1 Summary 

In this chapter we discuss principles of premium calculation for insurance poli
cies and annuities. We start by reviewing what we mean by the terms 'pre
mium', 'net premium' and 'gross premium'. We next introduce the present 
value of future loss random variable. We define the equivalence premium prin
ciple and we show how this premium principle can be applied to calculate 
premiums for different types of policy. We look at how we can use the future 
loss random variable to determine when a contract moves from loss to profit 
or vice versa. We introduce a different premium principle, the portfolio per
centile premium principle, and show how, using the mean and variance of the 
future loss random variable, the portfolio percentile premium principle can be 
used to determine a premium. The chapter concludes with a discussion of how 
a premium can be calculated when the insured life is subject to some extra 
level of risk. 

6.2 Preliminaries 

An insurance policy is a financial agreement between the insurance company 
and the policyholder. The insurance company agrees to pay some benefits, for 
example a sum insured on the death of the policyholder within the term of a 
term insurance, and the policyholder agrees to pay premiums to the insurance 
company to secure these benefits. The premiums will also need to reimburse 
the insurance company for the expenses associated with the policy. 

The calculation of the premium may not explicitly allow for the insur
ance company's expenses. In this case we refer to a net premium (also, 
sometimes, a risk premium or benefit premium). If the calculation does 
explicitly allow for expenses, the premium is called a gross premium or office 
premium or expense-loaded premium. 

144 
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The premium may be a single payment by the policyholder - a single 
premium - or it may be a regular series of payments, possibly annually, quar
terly, monthly or weekly. Monthly premiums are very common since many 
employed people receive their salaries monthly and it is convenient to have 
payments made with the same frequency as income is received. 

It is common for regular premiums to be a level amount, but they do not 
have to be. 

A key feature of any life insurance policy is that premiums are payable in 
advance, with the first premium payable when the policy is purchased. To see 
why this is necessary, suppose it were possible to purchase a whole life insur
ance policy with annual premiums where the first premium were payable at the 
end of the year in which the policy was purchased. In this case, a person could 
purchase the policy and then withdraw from the contract at the end of the first 
year before paying the premium then due. This person would have had a year 
of insurance cover without paying anything for it. 

Regular premiums for a policy on a single life cease to be payable on the 
death of the policyholder. The premium paying term for a policy is the max
imum length of time for which premiums are payable. The premium paying 
term may be the same as the term of the policy, but it could be shorter. If we 
consider a whole life insurance policy, it would be usual for the death bene
fit to be secured by regular premiums and it would be common for premium 
payment to cease at a certain age - perhaps at age 65 when the policyholder 
is assumed to retire, or at age 80 when the policyholder's real income may be 
diminishing. 

As we discussed in Chapter 1, premiums are payable to secure annuity 
benefits as well as life insurance benefits. Deferred annuities may be pur
chased using a single premium at the start of the deferred period, or by reg
ular premiums payable throughout the deferred period. Immediate annuities 
are always purchased by a single premium. For example, a person aged 45 
might secure a retirement income by paying regular premiums over a 20-year 
period to secure annuity payments from age 65. Or, a person aged 65 might 
secure a monthly annuity from an insurance company by payment of a single 
premium. 

For traditional policies, the benchmark principle for calculating both gross 
and net premiums is called the equivalence principle, and we discuss its appli
cation in detail in this chapter. However, there are other methods of calculating 
premiums and we discuss one of these, the portfolio percentile principle. 

A more contemporary approach, which is commonly used for non-traditional 
policies, is to consider the cash flows from the contract, and to set the premium 
to satisfy a specified profit criterion. This approach is discussed in Chapter 12. 
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6.3 Assumptions 

As in Chapter 4, unless otherwise stated, we use a standard set of assumptions 
for mortality and interest in the numerical examples in this chapter. We use 
the Standard Select Survival Model with a two-year select period specified in 
Example 3.13 with an interest rate of 5% per year effective. Recall that the 
survival model is specified as follows: 

/Lx =A+ Bex 

where A= 0.00022, B = 2.7 x 10-6 and c = 1.124, and 

0 92-s 
/L[x]+s = · /Lx+s 

for 0 :::; s :::; 2. The select and ultimate life table, at integer ages, for this 
model is shown in Table D.1 and values of annuity and insurance functions at 
an effective rate of interest of 5% per year are shown in Tables D.2 and D.3. 

Example 6.1 Use the Standard Select Survival Model with interest at 5% per 
year, to produce a table showing values of li[x], li[xJ+l and lix+2 for x = 
20, 21, ... , 80. Assume that q131 = 1. 

Solution 6.1 The calculation of survival probabilities P[x], P[xJ+l and Px for 
this survival model was discussed in Example 3.13. Since we are assuming that 
q131 = 1, we have a131 = 1. Annuity values can then be calculated recursively 
using 

lix=l+vpxlix+l, 

li[x]+l = 1 + V P[x]+l lix+2• 

li[x] = 1 + V P[x] li[x]+l· 

Values are shown in Appendix D, Table D.2. 

6.4 The present value of future loss random variable 

D 

The cash flows for a traditional life insurance contract consist of the insurance 
or annuity benefit outgo (and associated expenses) and the premium income. 
Both are generally life contingent, that is, the income and outgo cash flows 
depend on the future lifetime of the policyholder, unless the contract is pur
chased by a single premium, in which case there is no uncertainty regarding the 
premium income. So we can model the future outgo less future income with 
the random variable that represents the present value of the future loss. When 
expenses are excluded we call this the net future loss, which we denote oy Ilb. 
When expenses are included, then the premiums are the gross premiums, and 
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the random variable is referred to as the gross future loss, denoted L~. In other 
words, 

Lo = PV of benefit outgo - PV of net premium income 

L~ = PV of benefit outgo + PV of expenses - PV of gross premium income. 

In cases where the meaning is obvious from the context, we will drop the n or 
g superscript. 

Example 6.2 An insurer issues a whole life insurance to [60], with sum insured 
S payable immediately on death. Premiums are payable annually in advance, 
ceasing at age 80 or on earlier death. The net annual premium is P. 

Write down the net future loss random variable, L0, for this contract in terms 
oflifetime random variables for [60]. 

Solution 6.2 From Chapter 4, we know that the present value random variable 
for the benefit is svTl60J and from Chapter 5 we know that the present value 

random variable for the premium income is Pamin(K[
601

+l,20)I' so 

rn _ S T[60] P" Lo - v - a-1Il1~. n~(K=r-60-1 +-1,--,2""""'0,,..,) 1 · 

Since both terms of the random variable depend on the future lifetime of the 
same life, [60], they are clearly dependent. 

Note that since premiums are payable in advance, premiums payable annu
ally in advance, ceasing at age 80 or on earlier death means that the last pos
sible premium is payable on the policyholder's 79th birthday. No premium is 
payable on reaching age 80. D 

Given an appropriate survival model together with assumptions about future 
interest rates and, for gross premiums, expenses, the insurer can then deter
mine a distribution for the present value of the future loss. This distribution 
can be used to find a suitable premium for a given benefit, or an appropriate 
benefit for a specified premium. To do this, the insurer needs to use a premium 
principle. This is a method of selecting an appropriate premium using a given 
loss distribution. We discuss two premium principles in this chapter. 

6.5 The equivalence principle 

6.5.1 Net premiums 

For net premiums, we take into consideration outgo on benefit payments only. 
Thus, expenses are not a part of net premium calculation. The benefit may be 
a death benefit or a survival benefit or a combination. 
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We start by stating the equivalence principle. Under the equivalence princi
ple, the net premium is set such that the expected value of the future loss is 
zero at the start of the contract. That means that 

E[L0] = 0 

which implies that 

E[PV of benefit outgo - PV of net premium income] = 0. 

That is, under the equivalence premium principle, 

I EPV of benefit outgo = EPV of net premium income. I ( 6.1) 

The equivalence principle is the most common premium principle in traditional 
life insurance, and will be our default principle - that is, if no other principle 
is specified, it is assumed that the equivalence principle is to be used. 

Example 6.3 Consider an endowment insurance with term n years and sum 
insured S payable at the earlier of the end of the year of death or at maturity, 
issued to a select life aged x. Premiums of amount P are payable annually 
throughout the term of the insurance. 

Derive expressions in terms of S, P and standard actuarial functions for 

(a) the net future loss, I!b, 
(b) the mean of I!b, 
( c) the variance of I!b, and, 

( d) the annual net premium for the contract. 

Solution 6.3 (a) The future loss random variable is 

I!1 _ Svnrin(Krxi+l,n) _ Pa-----
o - min(K[xJ+l,n)I' 

(b) The mean of L'Q is 

E[I!1] = SE [vmin(Krxi+l,n)J _ PE [a . J 
0 mm(K[xJ+l,n)I 

= SA[xJ:ni - Pii[xJ:ill· 

( c) Expanding the expression above for I!b gives 

. 1 _ Vmin(K[xJ+l,n) I!b = Svmm(K[xJ+l,11) _ p ______ _ 
d 

= ( S + =) Vmin(K[xJ+l,n) _ =, 
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which isolates the random variable vmin(Krxi+l,11). So the variance is 

v[L'Q] = (s+ ~r v[vmin(Krxi+1,11)] 

= ( S + ~) 2 (2 A[x]:iil - (A[x]:iil)2) . 

( d) Setting the EPV s of the premiums and benefits to be equal gives the net 
premium as 

p = SA[xJ:iil 

li[xJ:iil 

Furthermore, using formula (6.2) and recalling that 

.. l - Ax:iil 
ax:iil = d ' 

we see that the solution can be written as 

P = s(-1 -d) 
a[x]:i!J 

(6.2) 

so that the only actuarial function needed to calculate P for a given value of S 

is G[x]:iil· D 

Example 6.4 An insurer issues a regular premium deferred annuity contract 
to a select life aged x. Premiums are payable monthly throughout the deferred 
period. The annuity benefit of X per year is payable monthly in advance from 
age x + n for the remainder of the life of (x). 

(a) Write down the net future loss random variable in terms oflifetime random 
variables for (x). 

(b) Derive an expression for the monthly net premium. 

( c) Assume now that, in addition, the contract offers a death benefit of S 
payable immediately on death during the deferred period. Write down the 
net future loss random variable for the contract, and derive an expression 
for the monthly net premium. 

Solution 6.4 (a) Let P denote the monthly net premium, so that the total pre-
mium payable in a year is 12P. Then 

1

0 - 12Pa<12l if T[x] :Sn, 
(12) I 

K[xJ +12 
L'Q = 

X Vn a"(1 2) - 12P .. (12) 'f '7' 
K(l2)+1-- llfzi I -' [x] > n. 

[x] 12 11 

I 
I I 

I I 

I, 
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(b) The EPV of the annuity benefit is 

X n .. (12) 
V nP[x] a[x]+n, 

and the EPV of the premium income is 

By equating these EPVs we obtain the premium equation which gives 

(c) We now have 

L'Q= 

X n .. (12) E X ··(12) 
p = _v_n_P_[_x]_a_[_x]_+_n = _n _[x_l _a_[_x]_+_n 

12ac12l 12ac12l 
[x]:iil [x]:iil 

{ 

SvT[x] - 12F'·(12) 
(12) 1 

K[x] +u; 

X vn ··C12l - 12Pa(12) 
K(12)+l- iil 

[x] 12 n 

if T[x] ::; n, 

if T[x] > n. 

The annuity benefit has the same EPV as in part (b); the death benefit dur

ing deferral is a term insurance benefit with EPV SA[!J:iil' so the premium 
equation now becomes 

SA- 1 X n •. (12) 
p = [xJ:iil + v nP[xJ a[xJ+n 

12ac12l 
[x]:iil 

D 

Example 6.4 shows that the future loss random variable can be quite compli
cated to write down. Usually, the premium calculation does not require the 
identification of the future loss random variable. We may go directly to the 
equivalence principle, and equate the EPV of the benefit outgo to the EPV of 
the net premium income to obtain the net premium. 

Example 6.5 Consider an endowment insurance with sum insured $100000 
issued to a select life aged 45 with term 20 years under which the death benefit 
is payable at the end of the year of death. Using the Standard Select Survival 
Model, with interest at 5% per year, calculate the total amount of net pre
mium payable in a year if premiums are payable (a) annually, (b) quarterly, 
and ( c) monthly, and comment on these values. 

Solution 6.5 Let P denote the total amount of premium payable in a year. 
Then the EPV of premium income is Pa(m) ;;-;;i (where m = 1, 4 or 12) and the 

[45]:201 
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Table 6.1 Annuity values and premiums. 

m=4 m = 12 

Method 
.. (4) 
a[45J:201 

p .. (12) 

a[45J:201 

Exact 12.69859 3022.11 12.64512 
UDD 12.69839 3022.16 12.64491 
W3 12.69859 3 022.11 12.64512 

EPV of benefit outgo is 100 OOOA[4SJ:201• giving 

100 OOOA[4SJ:201 
p = .. (m) . 

a[45J:201 

Using tables from Appendix D we have 

p 

3034.89 
3 034.94 
3 034.89 

·· .. l65 20 .. 12 94092 a[45]'2Ql = a[45] - -V a65 = . . 
· Z[45J 

From this we get 

A[4SJ:201 = 1 - da[4SJ:201 = 0.383766. 

Hence, form= 1 the net premium is P = $2965.52. 
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The values of a(m) ;:;ni for m = 4 and 12 can either be calculated exactly 
[45]:201 

or from a[4SJ:201 using one of the approximations in Section 5.11. Notice that 
the approximation labelled W3* in that section is not available since P[x]-1 

is meaningless and so we cannot estimate /.l[45J from the life table tabulated 
at integer ages. Table 6.1 shows values obtained using the UDD assumption 
and Woolhouse's formula with three terms. The ordering of these premiums 
form= 1, 4, 12 reflects the ordering ofEPVs of 1/mthly annuities which we 
observed in Chapter 5. In this example, Woolhouse's formula provides a very 
good approximation, whilst the UDD assumption gives a reasonably accurate 
premium. 0 

6.6 Gross premiums 

When we calculate a gross premium for an insurance policy or an annuity, we 
take account of the expenses the insurer incurs. There are three main types 
of expense associated with policies - initial expenses, renewal expenses and 
termination or claim expenses. 

Initial expenses are incurred by the insurer when a policy is issued. When 
we calculate a gross premium, it is conventional to assume that the insurer 
incurs these expenses at exactly the same time as the first premium is payable, 
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although in practice these expenses are usually incurred slightly ahead of this 
date. There are two major types of initial expenses - commission to agents for 
selling a policy and underwriting expenses. Commission is often paid to an 
agent in the form of a high percentage of the first year's premiums plus a much 
lower percentage of subsequent premiums, payable as the premiums are paid. 
Underwriting expenses may vary according to the amount of the death bene
fit. For example, an insurer is likely to require much more stringent medical 
tests on an individual wanting a $10 million death benefit compared with an 
individual wanting a $10 000 death benefit. 

Renewal or maintenance expenses are normally incurred by the insurer each 
time a premium is payable, and in the case of an annuity, they are normally 
incurred when an annuity payment is made. These costs arise in a variety of 
ways. The processing of renewal and annuity payments involves staff time and 
investment expenses. Renewal expenses also cover the ongoing fixed costs of 
the insurer such as staff salaries and rent for the insurer's premises, as well as 
specific costs such as annual statements to policyholders about their policies. 

Initial and renewal expenses may be proportional to premiums, proportional 
to benefits or may be 'per policy', meaning that the amount is fixed for all 
policies, and is not related to the size of the contract. Often, per policy renewal 
costs are assumed to be increasing at a compound rate over the term of the 
policy, to approximate the effect of inflation. 

Termination or claim expenses occur when a policy expires, typically on 
the death of a policyholder (or annuitant) or on the maturity date of a term 
insurance or endowment insurance. Generally these expenses are small, and 
are largely associated with the paperwork required to finalize and pay a claim. 
In calculating gross premiums, specific allowance is often not made for termi
nation expenses. Where allowance is made, it is usually a fixed sum or propor
tional to the benefit amount. 

In practice, allocating the different expenses involved in running an insur
ance company is a complicated task, and in the examples in this chapter we 
simply assume that all expenses are known. 

The equivalence principle applied to the gross premiums and benefits states 
that the EPV of the gross future loss random variable should be equal to zero. 
That means that 

E[L~] = 0, 

that is 

EPV of benefit outgo + EPV of expenses 

- EPV of gross premium income = 0. 
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In other words, under the equivalence premium principle, 

I EPV of benefits + EPV of expenses = EPV of gross premium income. j 

(6.3) 

We conclude this section with four examples in each of which we apply the 
equivalence principle to calculate gross premiums. 

Example 6.6 An insurer issues a 25-year annual premium endowment insur
ance with sum insured $100000 to a select life aged 30. The insurer incurs 
initial expenses of $2000 plus 50% of the first premium, and renewal expenses 
of 2.5% of each subsequent premium. The death benefit is payable immediately 
on death. 

(a) Write down the gross future loss random variable. 

(b) Calculate the gross premium using the Standard Select Survival Model 
with 5% per year interest. 

Solution 6.6 (a) Let S = 100 000, x = 30, n = 25 and let P denote the 
annual gross premium. Then 

Lg = S vmin(Tcx1,n) + 2000 + 0.475P + 0.025Pa-. --~ 
0 mm(Kcxi+l,n)I 

Pa·~---~ 
- min(Kcxi+l,n)I 

= S vmin(Tcx1,n) + 2000 + 0.475P - 0.975Pa . . 
mm(Kcxi+l,n)I 

Note that the premium related expenses, of 50% of the first premium 
plus 2.5% of the second and subsequent premiums, are more conveniently 
written as 2.5% of all premiums, plus an additional 47.5% of the first 
premium. By expressing the premium expenses this way, we can sim
plify the gross future loss random variable, and the subsequent premium 
calculation. 

(b) We may look separately at the three parts of the gross premium equation 
of value. The EPV of premium income is 

Pa[30J:2sl = 14.73113 P. 

Note that ii.[30J:2sl can be calculated from the tables in Appendix D. 

The EPV of all expenses is 

2000+0.475P+0.025Pii.[301:2sl = 2000 + 0.475P + 0.025 x 14.73113P 

= 2000 + 0.843278P. 
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The EPV of the death benefit can be found using numerical integration or 
using Woolhouse's formula, and we obtain 

100 000Al30J:251 = 100 000 x 0.298732 = 29 873 .2. 

Thus, the equivalence principle gives 

29 873.2 + 2000 4 
p = 14.73113 - 0.843278 = $2295 ·0 . 

D 

Example 6.7 Calculate the monthly gross premium for a 10-year term insur
ance with sum insured $50 000 payable immediately on death, issued to a select 
life aged 55, using the following basis: 

Survival model: Standard Select Survival Model 
Assume UDD for fractional ages 

Interest: 5% per year 
Initial expenses: $500 + 10% of each monthly premium in the first year 
Renewal expenses: 1 % of each monthly premium in the second and 

subsequent policy years 

Solution 6.7 Let P denote the monthly premium. Then the EPV of premium 
income is 12Pa<121 

-;-;;i· To find the EPV of premium related expenses, we can 
[55]:101 

apply the same idea as in the previous example, noting that initial expenses 
apply to each premium in the first year. Thus, we can write the EPV of all 
expenses as 

500 + o.o9 x 12Pa021 + 0.01 x 12Pa02
1 

[55J:ll [55J:lol 

where the expenses for the first year have been split as 9% plus 1 %, so that we 
have 9% in the first year and 1 % every year. The EPV of the insurance benefit 
is 50 OOOA 1 

-;-;;i and so the equivalence principle gives 
[55]:101 

12P (o.99a02
1 - o.o9a<121 

) = 500 + 50000/i 1 
. 

[55J:lol [55J:ll [55J:lol 

We find that a<121 
-;-;;-i = 7.8341, a<121

,, = 0.9773 and A 1 
-;-;;-i = 0.024954, 

[55]:101 [55):11 [55]:101 
giving P = $18.99 per month. 

Calculating all the EPV s exactly gives the same answer for the premium to 
four significant figures. D 
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Example 6.8 A life insurance company issued a with-profits whole life policy 
to a select life aged 40. Under the policy, the basic sum insured of $100000 
and attaching bonuses are payable at the end of the year of death. The company 
declares compound reversionary bonuses at the end of each year, and these 
bonuses do not apply to policies which became claims during the year. Level 
premiums are payable annually in advance under the policy. 

Calculate the annual gross premium on the following basis: 

Survival model: Standard Select Survival Model 
Interest: 5% per year 
Bonus loading: 2.5% compound per year 
Initial expenses: $200 
Renewal expenses: 5% of each premium after the first 

Solution 6.8 The annual gross premium, P, is calculated assuming that the 
death benefit increases by 2.5% each year, with the first bonus applying to 
deaths in the second year, so that the death benefit in the tth policy year, 
t = 1, 2, 3, ... , is 100 000 (1.0251-1 ). 

The EPV of premiums is 

p li[40] = 18.4596 p 

and the EPV of expenses is 

200 + 0.05P(a[40J - 1) = 200 + 0.87298 P. 

The EPV of the death benefit is 

~ k k+l 100000 
100000 6 (1.025 )v kiq[40J = 1.

025 
A[40Ji* =32816.71, 

where i* = liJ~5 - 1 = 2.439%. Hence P = $1877.38. D 

Example 6.9 Calculate the gross single premium for a deferred annuity of 
$80 000 per year payable monthly in advance, issued to a select life now aged 
50 with the first annuity payment on the life's 65th birthday. Allow for initial 
expenses of $1000, and renewal expenses on each anniversary of the issue date, 
provided that the policyholder is alive. Assume that the renewal expense will 
be $20 on the first anniversary of the issue date, and that expenses will increase 
with inflation from that date at the compound rate of 1 % per year. Assume the 
Standard Select Survival Model with interest at 5% per year. 
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Solution 6.9 The single premium is equal to the EPV of the deferred annuity 
plus the EPV of expenses. The renewal expense on the tth policy anniversary 
is 20 (1.011

-
1) fort= 1, 2, 3, ... so that the EPV ofrenewal expenses is 

00 00 

"'tlt 20"' tt 20 ~ 1.01 - v t P[SO] = 1.01 ~ 1.01 v t P[SO] 

t=l t=l 

20 
00 

= 1.0l L vj tP[SO] 

t=l 

20 .. 
= 1.0l (a[SO] j - 1) 

where the subscript j indicates that the calculation is at rate of interest j where 
l.Olv = 1/(1 + j), that is j = 0.0396. The EPV of the deferred annuity is 
80 000 1s !a&6j, so the single premium is 

1000 + ~(G[SO] j -1) + 80000 1s!a&6j. 
1.01 

As G[SOJ j = 19.4550 and 1s la&6j = 6.04129, the single premium is $484 669. 
0 

We end this section with a comment on the premiums calculated in Exam
ples 6.6 and 6.7. In Example 6.6, the annual premium is $2295.04 and the 
expenses at time 0 are $2000 plus 50% of the first premium, a total of$3146.75, 
which exceeds the first premium. Similarly, in Example 6.7 the total premium 
in the first year is $227.88 and the total expenses in the first year are $500 
plus 10% of premiums in the first year. In each case, the premium income in 
the first year is insufficient to cover expenses in the first year. This situation 
is common in practice, especially when initial commission to agents is high, 
and is referred to as new business strain. A consequence of new business 
strain is that an insurer needs to have funds available in order to sell policies. 
From time to time insurers get into financial difficulties through pursuing an 
aggressive growth strategy without sufficient capital to support the new busi
ness strain. Essentially, the insurer borrows from shareholder (or participating 
policyholder) funds in order to write new business. These early expenses are 
gradually paid off by the expense loadings in future premiums. 
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The equivalence principle does not allow explicitly for a loading for profit. 
Since writing business generally involves a loan from shareholder or partic
ipating policyholder funds, it is necessary for the business to be sufficiently 
profitable for the payment of a reasonable rate of return - in other words, to 
make a profit. In traditional insurance, we often load for profit implicitly, by 
margins in the valuation assumptions. For example, if we expect to earn an 
interest rate of 6% per year on assets, we might assume only 5% per year in 
the premium basis. The extra income from the invested premiums will con
tribute to profit. In participating business, much of the profit will be distributed 
to the policyholders in the form of cash dividends or bonuses. Some will be 
paid as dividends to shareholders, if the company is proprietary. 

We may also use margins in the mortality assumptions. For a term insurance, 
we might use a slightly higher overall mortality rate than we expect. For an 
annuity, we might use a slightly lower rate. 

More modern premium setting approaches, which use projected cash flows, 
are presented in Chapter 12, where more explicit allowance for profit is incor
porated in the methodology. 

Each individual policy sold will generate a profit or a loss. Although we 
calculate a premium assuming a given survival model, for each individual pol
icy the experienced mortality rate in any year can take only the values 0 or 
1. So, while the expected outcome under the equivalence principle is zero 
profit (assuming no margins), the actual outcome for each individual policy 
will either be a profit or a loss. For the actual profit from a group of policies 
to be reliably close to the expected profit, we need to sell a large number 
of contracts to individuals whose future lifetimes can be regarded as statisti
cally independent, so that the losses and profits from individual policies are 
combined. 

As a simple illustration of this, consider a life who purchases a one-year 
term insurance with sum insured $1000 payable at the end of the year of death. 
Let us suppose that the life is subject to a mortality of rate of 0.01 over the year, 
that the insurer can earn interest at 5% per year, and that there are no expenses. 
Then, using the equivalence principle, the premium is 

p = 1000 x 0.01/1.05 = 9.52. 

The future loss random variable is 

Ln = {1 OOOv - P = 942.86 
o -P = -9.52 

ifTx:Sl, 
ifTx > 1, 

with probability O.Dl, 
with probability 0.99. 

The expected loss is 0.01 x 942.86 + 0.99 x (-9.52) = 0, as required by the 
equivalence principle, but the probability of profit is 0.99, and the probability 
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of loss is 0.01. The balance arises because the profit, if the policyholder sur
vives the year, is small, and the loss, if the policyholder dies, is large. Using 
the equivalence principle, so that the expected future loss is zero, makes sense 
only if the insurer issues a large number of policies, so that the overall pro
portion of policies becoming claims will be close to the assumed proportion 
of 0.01. 

Now suppose the insurer were to issue 100 such policies to independent 
lives. The insurer would expect to make a (small) profit on 99 of them. If the 
outcome from this portfolio is that all lives survive for the year, then the insurer 
makes a profit. If one life dies, there is no profit or loss. If more than one life 
dies, there will be a loss on the portfolio. Let D denote the number of deaths in 
the portfolio, so that D ~ B(lOO, 0.01). The probability that the profit on the 
whole portfolio is greater than or equal to zero is 

Pr[D :S lJ = 0.73576 

' 
compared with 99% for the individual contract. In fact, as the number of poli-
cies issued increases, the probability of profit will tend, monotonically, to 0.5. 
On the other hand, while the probability of loss is increasing with the portfolio 
size, the probability of very large aggregate losses (relative, say, to total pre
miums) is much smaller for a large portfolio, since there is a balancing effect 
from diversification of the risk amongst the large group of policies. 

Let us now consider a whole life insurance policy with sum insured S payable 
at the end of the year of death, initial expenses of I, and renewal expenses of 
e associated with each premium payment (including the first) issued to a select 
life aged x by annual premiums of P. For this policy 

Lg S K[r]+l J •• p ·· 
0 = V . + + e aK[xJ+l/ - aK[xJ+l/' 

where K[x] denotes the curtate future lifetime of [xJ. 
If death occurs shortly after the policy is issued, so that only a few premiums 

are paid, the insurer will make a loss. Conversely, if the policyholder lives to 
old age, we would expect that the insurer would make a profit as the policy
holder will have paid a large number of premiums, and there will have been 
plenty of time for the premiums to accumulate interest. We can use the future 
loss random variable to find the minimum future lifetime for the policyholder 
in order that the insurer makes a profit on this policy. The probability that the 
insurer makes a profit on the policy, Pr[L~ < OJ, is given by 

Pr(L~ <OJ= Pr [ SvKlxJ+l +I+ e aKlxJ+l/ - P aKlxJ+l/ < 0] · 
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Figure 6.1 Profit at year-end if death occurs in that year for the whole life 
insurance described in Section 6.7. 

90 

Rearranging and replacing aK +ll with (1 - vK[x]+l )/d, gives 
[x] 

Pr[Lg < 0] =Pr vKlxi+l < -d- -
[ 

P-e [] 

O S +Pde 

[ 
1 (P-e+Sd)] =Pr K[x] + 1 > - log d . 8 P-e-1 (6.4) 

Suppose we denote the right-hand side term of the inequality in equation (6.4) 
by r, so that the contract generates a profit for the insurer if K[x] + 1 > r. 
Generally, r is not an integer. Thus, if Lr J denotes the integer part of r, then 
the insurer makes a profit if the life survives at least Lr j years, the probability 

ofwhichis LrJP[xl· 

Let us continue this illustration by assuming that x = 30, S = $100 000, 
I= 1000 ande = 50. Then we find that P = $498.45, and from equation (6.4) 
we find that there is a profit if K[30] + 1 > 52.57. Thus, there is a profit if the 
life survives for 52 years, the probability of which is 52P[30J = 0.70704. 

Figure 6.1 shows the profits that arise should death occur in a given year, 
in terms of values at the end of that year. We see that large losses occur in the 
early years of the policy, and even larger profits occur if the policyholder dies 
at an advanced age. The probability of realizing either a large loss or profit is 
small. For example, if the policyholder dies in the first policy year, the loss 
to the insurer is $100 579, and the probability of this loss is q[30J = 0.00027. 
Similarly, a profit of $308 070 arises if the death benefit is payable at time 80, 
and the probability of this is 79 iq[30J = 0.00023. It is important to appreciate 
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that the premium has been calculated in such a way that the EPV of the profit 

from the policy is zero. 

Example 6.10 A life insurer is about to issue a 25-year endowment insurance 

with a basic sum insured of $250 000 to a select life aged exactly 30. Premi

ums are payable annually throughout the term of the policy. Initial expenses are 

$1200 plus 40% of the first premium and renewal expenses are 1 % of the sec

ond and subsequent premiums. The insurer allows for a compound reversion

ary bonus of 2.5% of the basic sum insured, vesting on each policy anniversary 

(including the last). The death benefit is payable at the end of the year of death. 

Assume the Standard Select Survival Model with interest at 5% per year. 

(a) Derive an expression for the future loss random variable, L~, for this 

policy. 

(b) Calculate the annual premium for this policy. 

(c) Let Lo(k) denote the present value of the loss on the policy given that 

K[30J = k for k ::; 24 and let Lo(25) denote the present value of the 

loss on the policy given that the policyholder survives to age 55. Calculate 

Lo(k) fork = 0, 1, ... , 25. 

(d) Calculate the probability that the insurer makes a profit on this policy. 

(e) Calculate V[L~]. 

Solution 6.10 (a) First, we note that if the policyholder's curtate future life

time, K[30J, is k years where k = 0, 1, 2, ... , 24, then the number of bonus 

additions is k, the death benefit is payable k + 1 years from issue, and hence 
the present value of the death benefit is 250 OOO(l.025)Kl30J vKl30J+1. How

ever, if the policyholder survives for 25 years, then 25 bonuses are applied. 

Thus, if P denotes the annual premium, 

L~ = 250 000(1.025min(K[30J · 25l)vmin(K[3o1+ 1, 25) 

+ 1 200 + 0.39 P - 0.99 P amin(K[30J+ l, 25) 1· 

(b) The EPV of the premiums, less premium expenses, is 

0.99Pa[30J:2sl = 14.5838P. 

As the death benefit is $250 000(1.0251
) if the policyholder dies in the tth 

policy year, the EPV of the death benefit is 

24 ' 

250000 I.>1
+

1 
t!q[3oi (1.025

1
) = 250000 C.~25 A[ioi:2slj) = 3099.37 

t=O 

where 1 + j = (1 + i)/(1.025), so that j = 0.02439. 
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Table 6.2 Values of the future loss 

random variable for Example 6.10. 

Value of K[3Q], PV of loss, 
k Lo(k) 

0 233437 
1 218 561 

23 1737 
24 -4517 

'.::25 -1179 

The EPV of the survival benefit is 

250000v25 25P[30J 1.02525 = 134295.43, 

and the EPV of the remaining expenses is 

1200 + 0.39 p. 
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Hence, equating the EPV of premium income with the EPV of benefits 
plus expenses we find that P = $9764.44. 

(c) Given that K[30J = k, where k = 0, 1, ... , 24, the present value of the 
loss is the present value of the death benefit payable at time k + 1 less the 
present value of k + 1 premiums plus the present value of expenses. Hence 

Lo(k) = 250000(l.025k) vk+1 +1200 + 0.39P - 0.99Pak+Il. 

If the policyholder survives to age 55, there is one extra bonus payment, 
and the present value of the future loss is 

Lo(25) = 250000(1.02525) v25 + 1200 + 0.39P - 0.99Pa251. 

Some values of the present value of the future loss are shown in Table 6.2. 
( d) The full set of values for the present value of the future loss shows that 

there is a profit if and only if the policyholder survives 24 years and pays 
the premium at the start of the 25th policy year. Hence the probability of a 

profit is 24P[30J = 0.98297. 
Note that this probability is based on the assumption that future expenses 

and future interest rates are known and will be as in the premium basis. 
(e) From the full set of values for Lo(k) we can calculate 

24 
E[(L3)2] = L(Lo(k))2 kiq[30J + (Lo(25))2 25P[30J = 12115.552 

k=O 

which is equal to the variance as E[L3] = 0. D 
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Generally speaking, for an insurance policy, the longer a life survives, the 
greater is the profit to the insurer, as illustrated in Figure 6.1. However, the 
converse is true for annuities, as the following example illustrates. 

Example 6.11 An insurance company is about to issue a single premium 
deferred annuity to a select life aged 55. The first annuity payment will take 
place 10 years from issue, and payments will be annual. The first annuity pay
ment will be $50 000, and each subsequent payment will be 3 % greater than the 
previous payment. Ignoring expenses, and using the Standard Select Survival 
Model with interest at 5% per year, calculate 

(a) the single premium, 

(b) the probability the insurance company makes a profit from this policy, and 

(c) the probability that the present value of the loss exceeds $100 000. 

Solution 6.11 (a) Let P denote the single premium. Then 

00 

P = 50000 L vt(l.03t-lO) tP[55] = $546812. 
t=lO 

(b) Let Lo(k) denote the present value of the loss given that K[55J 

k = 0, 1, .... Then 
k, 

1
-P fork=0,1, ... ,9, 

Lo(k) = -P + 50000v 10 ak=9Ji fork= 10, 11, ... , (6.5) 

where j = 1.05/1.03 - 1=0.019417. 

Since ak=§lJ is an increasing function of k, formula (6.5) shows that 
Lo(k) is an increasing function of k fork 2: 10. The present value of the 
profit will be positive if Lo(k) < 0. Using formula (6.5), this condition can 
be expressed as 

-P +5oooov10ak=911 < o, 

or, equivalently, 

ak=911 < (1.05) 10 P /50 ooo. 

Writing ak=911 = (1 - vk-9) / d1 where d1 = i / (1 + J), this condition 
becomes 

vJ-9 > l-d1 (1.05) 10 P/50000, 

and as vi = exp{-8 i} where 8 i = log(l + j) this gives 

k - 9 <-log ( 1 - d1 (1.05) 10 P /50000) /81. 
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Figure 6.2 Present value of loss from Example 6.11. 

Hence we find that Lo(k) < 0 if k < 30.55, and so there will be a 
profit if the policyholder dies before age 86. The probability of this is 

1 - 31P[55J = 0.41051. 

( c) The present value of the loss will exceed 100 000 if 

-P + 50000v10ak=9Jj > 100000, 

and following through exactly the same arguments as in part (b) we find 
that Lo(k) > 100000 if k > 35.68. 

Hence the present value of the loss will be greater than $100 000 
if the policyholder survives to age 91, and the probability of this is 

36P[55J = 0.38462. 
Figure 6.2 shows Lo(k) fork= 1, 2, ... , 50. We can see that the loss is con
stant for the first 10 years at - P and then increases due to annuity payments. 
In contrast to Figure 6.1, longevity results in large losses to the insurer. We can 
also clearly see from this figure that the loss is negative if k takes a value less 
than 31, confirming our answer to part (b). D 

6.8 The portfolio percentile premium principle 

The portfolio percentile premium principle is an alternative to the equivalence 
premium principle. We assume a large portfolio of identical and independent 
policies. By 'identical' we mean that the policies have the same premium, ben
efits, term, and so on, and that the policyholders are all subject to the same 
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survival model. By 'independent' we mean that the policyholders are indepen
dent of each other with respect to mortality. 

Suppose we know the sum insured for these policies, and wish to find an 

appropriate premium. As the policies are identical, each policy has the same 
future loss random variable. Let N denote the number of policies in the port
folio and let Lo,i represent the future loss random variable for the ith policy 
in the portfolio, i = 1, 2, 3, ... , N. The total future loss in the portfolio is L, 
say, where 

N 

L = LLo,i; 
i=l 

N 

E[L] = LE[Lo,iJ = NE[Lo,iJ; 
i=l 

N 

V[L] = LV[Lo,i] = NV[Lo,i]. 
i=l 

(Note that as {Lo,i }~1 are identically distributed, the mean and variance of 

each Lo,i are equal to the mean and variance of Lo, 1.) 
The portfolio percentile premium principle sets a premium so that there is a 

specified probability, say a, that the total future loss is negative. That is, P is 

set such that 

Pr[L < 0] =a. 

Now, if N is sufficiently large (say, greater than around 30), the central limit 
theorem tells us that L is approximately normally distributed, with mean 

E[L] = NE[Lo,1] and variance V[L] = NV[Lo,1]. In this case, the portfo
lio percentile principle premium can be calculated from 

(
L - E[L] -E[L]) (-E[L]) 

Pr[L < O] =Pr y'V[L] < ,JVrrf = <l> ,JVrrf =a, 

which implies that 

where <l> is the cumulative distribution function of the standard normal distri
bution. 

Our aim is to calculate P, but P does not appear explicitly in either of the 
last two equations. However, as illustrated in the next example, both the mean 
and the variance of L are functions of P. 

Example 6.12 An insurer issues whole life insurance policies to select lives 
aged 30. The sum insured of $100 000 is paid at the end of the month of death 
and level monthly premiums are payable throughout the term of the policy. 
Initial expenses, incurred at the issue of the policy, are 15% of the total of the 
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first year's premiums. Renewal expenses are 4% of every premium, including 
those in the first year. 

Assume the Standard Select Survival Model with interest at 5% per year. 

(a) Calculate the monthly premium using the equivalence principle. 

(b) Calculate the monthly premium using the portfolio percentile principle, 
such that the probability that the future loss on the portfolio is negative is 
95%. Assume a portfolio of 10 000 identical, independent policies. 

Solution 6.12 (a) Let P be the monthly premium. Then the EPV of premi
ums is 

l2P aggj = 227.065P. 

The EPV of benefits is 

(12) 
100 OOOA[301 = 7 866.18, 

and the EPV of expenses is 

0.15 x 12P + 0.04 x 12P ag5j = 10.8826P. 

Equating the EPV of premiums with the EPV s of benefits and expenses 
gives the equivalence principle premium as $36.39 per month. 

(b) The future loss random variable for the ith policy is 

(12) 1 ( 
Loi = 100 000vKl3oJ +rr + 0.15 x 12P - 0.96 x 12P a 12

) , 
, (12) 1 

K[30J +rr 

and its expected value can be calculated using the solution to part (a) as 

E[Lo,i] = 7 866.14 - 216.18P. 

To find V[Lo,il we can rewrite Lo,i as 

( 
0.96 x 12P) K02l+J... 0.96 x 12P 

Lo,i = 100 000 + dC1 2) v l30J 12 + 0.15 x 12P - dC1 2) 

so that 

0.96 x 12P 2 (12) (12) 2 

( )

2 

V[Lo,il = 100 000 + d(l2) ( A[301 - (A[301 ) ) 

= (100 000 + 236.59 P)2 (0.0053515) 

giving 

.jV[Lo,il = (100000 + 236.59P) (0.073154). 

') 

J 
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Table 6.3 Premiums 
according to portfolio size. 

n p 

1000 38.31 
2000 37.74 
5000 37.24 

10000 36.99 
20000 36.81 

The future loss random variable for the portfolio of policies is 
"'10000 L = L.,,i=l Lo,i, so 

E[L] = 10000(7866.18 - 216.18P) 

and 

V[L] = 10000 (100000 + 236.59P)2 (0.0053515). 

Using the normal approximation to the distribution of L, we set P such 
that 

(
-E[L]) ( 10000(216.18P-7866.18) ) 

Pr[L <OJ= <P ,JVrr1 = <P 100 (100000 + 236.59P) (0.073154) 

= 0.95. 

For the standard normal distribution, <P (l.645) = 0.95, so we set 

100(216.18P - 7 866.18) 
----------- = 1.645 
(100000 + 236.59P) (0.073154) 

which gives P = $36.99. D 

Note that the solution to part (b) above depends on the number of policies in 
the portfolio (10 000) and the level of probability we set for the future loss 
being negative (0.95). If the portfolio had n policies instead of 10 000, then the 
equation we would have to solve for the premium, P, is 

,J/1(216.18P - 7 866.18) 
6 

(100000 + 236.59P) (0.073154) = 1. 
45

· 
(6.6) 

Table 6.3 shows some values of P for different values of n. We note that P 
decreases as n increases. In fact, as n--+ oo, P--+ $36.39, which is the equiva
lence principle premium. The reason for this is that as n --+ oo the insurer diver
sifies the mortality risk. We discuss diversification of risk further in Chapter 11. 
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6.9 Extra risks 

As we discussed in Section 1.3.5, when an individual wishes to effect a life 
insurance policy, underwriting takes place. If underwriting determines that an 
individual should not be offered insurance at standard rates, the individual 
might still be offered insurance, but above standard rates. There are different 
ways in which we can model the extra mortality risk in a premium calculation. 

6.9.1 Age rating 

One reason why an individual might not be offered insurance at standard rates 
is that the individual suffers from a medical condition. In such circumstances 
we refer to the individual as an impaired life, and the insurer may compensate 
for this extra risk by treating the individual as being older. For example, an 
impaired life aged 40 might be asked to pay the same premium paid by a non
impaired life aged 45. This approach to modelling extra risk involves no new 
ideas in premium calculation - for example, we could apply the equivalence 
principle in our calculation, and we would simply change the policyholder's 
age. This is referred to as age rating. 

6.9.2 Constant addition to /Lx 

Individuals can also be deemed to be ineligible for standard rates if they regu
larly participate in hazardous pursuits, for example parachuting. For such indi
viduals the extra risk is largely independent of age, and so we could model this 
extra risk by adding a constant to the force of mortality - just as Makeham 
extended Gompertz' law of mortality. The application of this approach leads to 
some computational shortcuts for the following reason. We are modelling the 
force of mortality as 

f-ltx]+s = /.l[x]+s + ¢ 

where functions with the superscript ' relate to the impaired life, functions 
without this superscript relate to a standard survival model and¢ is the constant 
addition to the force of mortality. Then 

t P[x] = exp {-lot f-ltxl+sds} = exp {-lat (!-l[x]+s + ¢) ds} = e-<Pt t P[x]. 

This formula is useful for computing the EPV of a survival benefit since 

e-8t p' _ e-(8+¢)t p 
t [x] - t [x], 
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so that, for example, 

n-1 n-1 
••/ "' -8t I "' -(8+</>)1 " 
a[x]:iil = ~ e t P[x] = ~ e t P[x] = a[x]:iil j, (6.7) 

t=O t=O 

where j denotes calculation at interest rate j = e<f>+8 - 1. Note that li[x]:iil j is 
calculated using rate of interest j and the Standard Select Survival Model. 

Now suppose that the impaired life has curtate future lifetime K[xJ· We 
know that 

So 

1 - E[vmin(K{x1+l,11)] 

d 

A l 1 d .. , 1 d .. 
[x]:iil = - a[x]:lil = - a[x]:iilj • 

1-A' 
[x]:ii] 

d 

(6.8) 

It is important to note here that for the insurance benefit we cannot just change 
the interest rate. In formula (6.8), the annuity is evaluated at rate j, but the 
function d uses the original rate of interest, that is d = i / (1 + i). Generally, 
when using the constant ,addition to the force of mortality, it is simplest to 
calculate the annuity function first, using a simple adjustment of interest, then 
use formula (6.8) for any insurance factors. Note that the standard discount 
function 11 Ex = v 11 nPx is a survival benefit value, and so can be calculated for 
the extra risk by an interest adjustment, so that 

E l 11 
11 x = Vj 11Px· 

Example 6.13 Calculate the annual premium for a 20-year endowment insur
ance with sum insured $200 000 issued to a life aged 30 whose force of mortal
ity at age 30+s is given by /L[30J+s +0.01. Allow for initial expenses of$2000 
plus 40% of the first premium, and renewal expenses of 2% of the second and 
subsequent premiums. Use the Standard Select Survival Model with interest at 
5% per year. 

Solution 6.13 Let P denote the annual premium. Then by applying formula 
(6.7), the EPV of premium income is 

19 

P "' t I P" ~ v t P[30J = a[30J:2o]j 
t=O 

where j = 1.05e0.Dl - 1 = 0.06055. Similarly, the EPV of expenses is 

2000 + 0.38P + 0.02Pa[30J:2olr 
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The EPV of the benefit is 200 OOOA' =' where the dash denotes extra mor
[30]:201 

tality and the interest rate is i = 0.05. Using formula (6.8) 

A~30J:201 = 1 - d a[30J:2olj' 

As a[30J:2olj = 12.072 and d = 0.05/1.05, we find that A~30J:2ol = 0.425158 

and hence we find that P = $7600.84. D 

6.9.3 Constant multiple of mortality rates 

A third method of allowing for extra mortality is to assume that lives are sub
ject to mortality rates that are higher than the standard lives' mortality rates. For 
example, we might set q[xl+t = l. lq[xl+t where the superscript' again denotes 
extra mortality risk. With such an approach we can calculate the probability of 
surviving one year from any integer age, and hence we can calculate the prob
ability of surviving an integer number of years. A computational disadvantage 
of this approach is that we have to apply approximations in calculating EPV s 
if payments are at other than annual intervals. Generally, this form of extra risk 
would be handled by recalculating the required functions in a spreadsheet. 

Example 6.14 Calculate the monthly premium for a 10-year term insurance 
with sum insured $100 000 payable immediately on death, issued to a life aged 
50. Assume that each year throughout the 10-year term the life is subject to 
mortality rates that are 10% higher than for a standard life of the same age. 
Allow for initial expenses of $1000 plus 50% of the first monthly premium and 
renewal expenses of 3% of the second and subsequent monthly premiums. Use 
the UDD assumption where appropriate, and use the Standard Select Survival 
Model with interest at 5% per year. 

Solution 6.14 Let P denote the total premium per year. Then the EPV of pre-
. . . p .. (12) I d . UDD .. (12) I rmum mcome 1s a -,ni an , assurmng , we compute a -,ni as 

50:101 50:101 

a(l2) 
/ = a(l2)"1 

- R(l2) (1 - VlO / ) 
50:101 a5o:I01 ,., 10P50 ' 

where 

id 
a(l2) = iCl2)d(l2) = 1.0002 

and 

i - iCl2) 

/3(12) = iC12)d(12) = 0.4665. 
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As the initial expenses are 1000 plus 50% of the first premium, which is .t,_ P, 
we can write the EPV of expenses as 

1000+ 0.47P +0.03Pa(12)'. 
12 50:lol 

Finally, the EPV of the death benefit is 100 OOO(A 1 -;-ni)' and, using UDD, we 
50:101 

can compute this as 

(A 1 )' - ~(A 1 )' 
5o:lol - 0 50:101 

The formula for a' -;-ni is 
50:101 

where 

= ~ ( (A5o:lol)' - v
10 lOP~o) 

i (i d"/ 10 I ) = 8 - a5o:T01- v 10P50 . 

9 
••/ "\' t I 
a5o:lol = L.., v t P50 

t=O 

t-1 

t P~o = Tl (1 - l.lq[50]+r). 

r=O 

(6.9) 

(We have written q[50J+r in formula (6.9) as standard lives are subject to select 
mortality.) Hence a' "'1 = 8.0516, c;C 12~ = 7.8669 and (A 1 -;-ni)' = 0.01621, 

50:101 50:101 50:101 
which give P = $345.18 and so the monthly premium is $28.76. 

Table 6.4 shows how we could set out a spreadsheet to perform calculations. 
Column (2) was created from the original mortality rates using formula (6.9), 
with column (3) being calculated as 

t \q~o = t P~o (1 - 1.1 q50+1). 

The total in column (6) gives a I "'1 while the total in column (7) gives the value 
50:101 -

for (A 1 -;-ni) 1
• Note that this must then by multiplied by i / 8 to get (A 1 -;-ni)1

• 
50:101 50:101 

D 

6.10 Notes and further reading 

The equivalence principle is the traditional approach to premium calculation, 
and we apply it again in Chapter 7 when we consider the possibility that a 
policy may terminate for reasons other than death. However, other approaches 
to premium calculation are possible. We have seen one in Section 6.8, where 
we computed premiums by the portfolio percentile principle. 

J 
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Table 6.4 Spreadsheet calculations for Example 6.14. 

(1) (2) (3) (4) (5) (6) (7) 

tP~o i/q~o vt vt+l (2) x (4) (3) x (5) 

0 1.0000 0.0011 1.0000 0.9524 1.0000 0.0011 
1 0.9989 0.0014 0.9524 0.9070 0.9513 0.0013 
2 0.9975 0.0016 0.9070 0.8638 0.9047 0.0014 
3 0.9959 0.0018 0.8638 0.8227 0.8603 0.0015 
4 0.9941 0.0020 0.8227 0.7835 0.8178 0.0015 
5 0.9921 0.0022 0.7835 0.7462 0.7774 0.0016 
6 0.9899 0.0024 0.7462 0.7107 0.7387 0.0017 
7 0.9875 0.0027 0.7107 0.6768 0.7018 0.0018 
8 0.9849 0.0030 0.6768 0.6446 0.6666 0.0019 
9 0.9819 0.0033 0.6446 0.6139 0.6329 0.0020 

Total 8.0516 0.0158 

A modification of the equivalence principle which builds an element of profit 
into a premium calculation is to select a profit target amount for each policy, 
IT, say, and set the premium to be the smallest possible such that E[Lo] :::; IT. 
Under this method of calculation we effectively set a level for the expected 
present value of future profit from the policy and calculate the premium by 
treating this amount as an additional cost at the issue date which will be met 
by future premium income. 

Besides the premium principles discussed in this chapter, there is one further 
important method of calculating premiums. This is profit testing, which is the 
subject of Chapter 12. 

The international actuarial notation for premiums may be found in Bowers 
et al. (1997). We have omitted it in this book because we find it has no partic
ular benefit in practice. 

6.11 Exercises 

When a calculation is required in the following exercises, unless otherwise 
stated you should assume that mortality follows the Standard Select Survival 
Model as specified in Section 6.3, that interest is at 5% per year effective, and 
that the equivalence principle is used for the calculation of premiums. 

Some annuity and insurance functions for the Standard Select and Ulti
mate Survival Models, with interest at 5% per year effective, are given in 
Appendix D. 

Exercise 6.1 Consider a whole life insurance with annual premiums and a 
20-year premium paying term issued to a select life aged 30, with sum insured 
$200 000 payable at the end of the year of death. 
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(a) Write down an expression for the net future loss random variable. 
(b) Calculate the net annual premium. 
(c) Calculate the probability that the contract makes a profit. 

Exercise 6.2 Consider a five-year term insurance issued to a select life aged 
40 by a single premium, with sum insured $1 million payable immediately on 
death. 

(a) Write down an expression for the net future loss random variable. 
(b) Calculate the net single premium, assuming UDD. 
(c) Calculate the probability that the contract makes a profit. 

Exercise 6.3 You are given the following extract from a select life table with 
a four-year select period. A select individual aged 41 purchased a three-year 
term insurance with a net premium of $350 payable annually. The sum insured 
is paid at the end of the year of death. 

[x] 

[40] 
[41] 
[42] 

l[x] 

100 000 
99 802 
99 597 

99 899 
99 689 
99 471 

99 724 
99 502 
99 268 

99 520 
99 283 
99 030 

lx+4 x +4 

99 288 44 
99 033 45 
98 752 46 

Use an effective rate of interest of 6% per year to calculate 

(a) the sum insured, assuming the equivalence principle, 

(b) the standard deviation of Lo, and 
(c) Pr[Lo > O]. 

Exercise 6.4 Consider a 10-year annual premium term insurance issued to a 
select life aged 50, with sum insured $100 000 payable at the end of the year 
of death. 

(a) Write down an expression for the net future loss random variable. 
(b) Calculate the net annual premium. 

Exercise 6.5 Consider a 20-year annual premium endowment insurance with 
sum insured $100 000 issued to a select life aged 3 5. Assume initial expenses 
of 3% of the basic sum insured and 20% of the first premium, and renewal 
expenses of 3% of the second and subsequent premiums. Assume that the death 
benefit is payable at the end of the year of death. 

(a) Write down an expression for the gross future loss random variable. 
(b) Calculate the gross annual premium. 
( c) Calculate the standard deviation of the gross future loss random variable. 
(d) Calculate the probability that the contract makes a profit. 



6.11 Exercises 173 

Exercise 6.6 A select life aged 45 effects a 20-year endowment insurance with 
level annual premiums payable throughout the policy term, with sum insured 
$100 000 payable at the end of the year of death, or at maturity. Calculate the 
annual premium allowing for expenses of 10% of the first annual premium 
and 2% of each subsequent premium, with further initial expenses of $50 and 
renewal expenses (at the time of payment of the second and each subsequent 
premium) of $8. 

Exercise 6.7 A select life aged 45 effects by a single premium a policy which 
provides an annuity of $40 000 per year, payable annually in advance from age 
65. In the event of death before age 65, the premium is returned at the end of 
the year of death. 

(a) Write down an expression for the net future loss random variable. 

(b) Calculate the single premium. 

(c) Now suppose that the annuity is guaranteed to be paid for at least 5 years 
if the life survives to age 65. Calculate the revised single premium. 

Exercise 6.8 Consider an annual premium with-profit whole life insurance 
issued to a select life aged exactly 40. The basic sum insured is $200 000 
payable at the end of the month of death, and the premium term is 25 years. 
Assume a compound reversionary bonus of 1.5% per year, vesting on each 
policy anniversary, initial expenses of 60% of the annual premium, renewal 
expenses of 2.5% of all premiums after the first, plus per policy expenses 
(incurred when a premium is payable) of $5 at the beginning of the first year, 
increasing by 6% per year compound at the beginning of each subsequent year. 

Calculate the annual premium. 

Exercise 6.9 A select life aged exactly 40 has purchased a deferred annuity 
policy. Under the terms of the policy, the annuity payments will commence 20 
years from the issue date and will be payable at annual intervals thereafter. The 
initial annuity payment will be $50 000, and each subsequent payment will be 
2% greater than the previous one. The policy has monthly premiums, payable 
for at most 20 years. Calculate the gross monthly premium allowing for initial 
expenses of 2.5% of the first annuity payment and 20% of the first premium, 
renewal expenses of 5% of the second and subsequent premiums, and terminal 
expenses, incurred at the end of the year of death, of $20 inflated from the issue 
date assuming an inflation rate of 3% per year. 

Exercise 6.10 Find the annual premium for a 20-year term insurance with sum 
insured $100 000 payable at the end of the year of death, issued to a select life 
aged 40 with premiums payable for at most 10 years, with expenses, which are 
incurred at the beginning of each policy year, as follows: 
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Year 1 Years 2+ 

% of premium Constant % of premium Constant 

Taxes 4% 0 4% 0 
Sales commission 25% 0 5% 0 
Policy maintenance 0% 10 0% 5 

Exercise 6.11 A life insurer is about to issue a 30-year deferred annuity-due 
with annual payments of $20 000 to a select life aged 35. The policy has a 
single premium which is refunded without interest at the end of the year of 
death if death occurs during the deferred period. 

(a) Calculate the single premium for this annuity. 
(b) The insurer offers an option that if the policyholder dies before the total 

annuity payments exceed the single premium, then the balance will be paid 
as a death benefit, at the end of the year of death. Calculate the revised 
premium. 

This is called a Cash Refund Payout Option. 

Exercise 6.12 A whole life insurance with unit sum insured payable at the 
end of the year of death with a level annual premium is issued to (x). Let 
Lo be the net future loss random variable with the premium determined by 
the equivalence principle. Let L0 be the net future loss random variable if the 
premium is determined such that E[L0] = -0.5. 

Given V[Lo] = 0.75, calculate V[qJ. 

Exercise 6.13 Calculate both the net and gross premiums for a whole life 
insurance issued to a select life aged 40. The sum insured is $100 000 on death 
during the first 20 years, and $20 000 thereafter, and is payable immediately on 
death. Premiums are payable annually in advance for a maximum of 20 years. 

Use the following basis: 

Survival model: 
ultimate rates Makeham's law with A= 0.0001, B = 0.00035, 

c = 1.075 
select rates 

Interest: 
Two year select period, q[x] = 0.75qx, q[x]+l = 0.9qx+l 
6% per year effective 

Premium expenses: 

Other expenses: 

30% of the first year's premium 
plus 3% of all premiums after the first year 
On each premium date an additional expense 
starting at $10 and increasing at a compound rate 
of 3% per year 
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Exercise 6.14 A life insurance company issues a 10-year term insurance pol
icy to a life aged 50, with sum insured $100 000. Level premiums are paid 
monthly in advance throughout the term. Calculate the gross premium allow
ing for initial expenses of $100 plus 20% of each premium payment in the first 
year, renewal expenses of 5% of all premiums after the first year, and claim 
expenses of $250. Assume the sum insured and claim expenses are paid one 
month after the date of death, and use claims acceleration. 

Exercise 6.15 For a special whole life insurance on (55), you are given: 

• initial annual premiums are level for 10 years; thereafter annual premiums 
equal one-half of initial annual premiums, 

• the death benefit is $100 000 during the first 10 years of the contract, is 
$50 000 thereafter, and is payable at the end of the year of death, and 

• expenses are 25% of the first year's premium plus 3% of all subsequent 
premiums. 

Calculate the initial annual gross premium. 

Exercise 6.16 For a whole life insurance with sum insured $150000 paid at 
the end of the year of death, issued to (x), you are given: 

(i) 2 Ax = 0.0143, 
(ii) Ax = 0.0653, and 

(iii) the annual premium is determined using the equivalence principle. 

Calculate the standard deviation of L 0. 
Exercise 6.17 A life insurance company sells annuities to men aged exactly 
60. Each policyholder pays a single net premium, P, and then receives an annu
ity of $30000 a year in arrear (so that the first annuity payment is on the 6lst 
birthday). 

(a) Calculate P. 
(b) Calculate the probability that the present value of profit on a single policy 

is positive. 
(c) Calculate the standard deviation of the present value of profit on a single 

policy. 
(d) Now suppose that the office sells 1000 such annuities simultaneously to 

independent lives. Calculate the value of P such that the probability that 
the present value of the profit to the insurance company is positive is 95%. 

Exercise 6.18 A life is subject to extra risk that is modelled by a constant 
addition to the force of mortality, so that, if the extra risk functions are denoted 
by ', µ,~ = f.Lx + ¢. Show that at rate of interest i, 
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where j is a rate of interest that you should specify. 

Exercise 6.19 A life insurer is about to issue a 25-year annual premium endow
ment insurance with a basic sum insured of $250 000 to a life aged exactly 30. 
Initial expenses are $1200 plus 40% of the first premium and renewal expenses 
are 1 % of the second and subsequent premiums. The office allows for a com
pound reversionary bonus of 2.5% of the basic sum insured, vesting on each 
policy anniversary (including the last). The death benefit is payable at the end 
of the year of death. 

(a) Let Lo denote the gross future loss random variable for this policy. Show 
that 

0.99P P 
Lo= 250000Z1+-d-Z2+1200 + 0.39P - 0.99d 

where P is the gross annual premium, 

and 

{

VK[30J+l 

Z2 = 25 v 

if K[30J :::; 24, 
if K [30J 2:: 25, 

if K[30J :::; 24, 
if K[30J 2:: 25. 

(b) Using the equivalence principle, calculate P. 
(c) Calculate E[Z1], E[Zf], E[Z2], E[Z~] and Cov[Z1, Z2]. Hence calculate 

V[Lo] using the value of P from part (b). 
( d) Find the probability that the insurer makes a profit on this policy. 

Hint: recall the standard results from probability theory, that for random vari
ables X and Y and constants a, band c, V[X + c] = V[X], and 

V[aX + bY] = a2V[X] + b2V[Y] + 2abCov[X, Y], 

with Cov[X, Y] = E[XY] - E[X]E[Y]. 

Exercise 6.20 An insurer issues a 20-year endowment insurance policy to ( 40) 
with a sum insured of $250 000, payable at the end of the year of death. Pre
miums are payable annually in advance throughout the term of the contract. 

(a) Calculate the premium using the equivalence principle. 
(b) Find the mean and standard deviation of the net future loss random variable 

using the premium in (a). 
( c) Assuming 10 000 identical, independent contracts, estimate the 99th per

centile of the net future loss random variable using the premium in (a). 
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Answers to selected exercises 

6.1 (b) $1179.73 
(c) 0.67804 

6.2 (b) $2597.95 
(c) 0.99704 

6.3 (a) $216 326.38 
(b) $13731.03 
(c) 0.0052 

6.4 (b) $178.57 
6.5 (b) $3287.57 

(c) $4981.10 
(d) 0.98466 

6.6 $3056.80 
6.7 (b) $199 864.74 

(c) $200706.50 

6.8 $3262.60 
6.9 $2377.75 

6.10 $212.81 
6.11 (a) $60694.00 

(b) $60 77 4.30 
6.12 1.6875 
6.13 $1341.40 (net), $1431.08 (gross) 

6.14 $214.38 
6.15 $1131.13 
6.16 $16076.72 
6.17 (a) $417 401.93 

(b) 0.36641 
(c) $97 201.23 
(d) $422457.83 

6.19 (b) $9764.44 
(c) $0.54958, 0.30251, $0.29852, 0.09020, 0.00071, 

146 786 651. 
(d) 0.98297 

6.20 (a) $7333.84 
(b) 0, $14 485 
(c) $3369 626 

177 
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Policy values 

7.1 Summary 

In this chapter we introduce the concept of a policy value for a life insurance 
policy. Policy values are a fundamental tool in insurance risk management, as 
they are used to determine the economic or regulatory capital needed to remain 
solvent, and also to determine the profit or loss for the company over any time 
period. 

We start by considering the case where all cash flows take place at the start 
or end of a year. We define the policy value as the expected value of future net 
cash flows for a policy in force, and distinguish gross premium policy values, 
which explicitly allow for expenses and for the full gross premium, from net 
premium policy values, where expenses are excluded from the outgoing cash 
flows, and only the net premium is counted as income. 

We show how to calculate policy values recursively from year to year. We 
also show how to calculate the profit from a policy in each policy year and we 
introduce the asset share for a policy. 

We extend the analysis to policies where the cash flows are continuous and 
we derive Thiele's differential equation for policy values - the continuous time 
equivalent of the recursions for policies with annual cash flows. 

We consider how policy values can be used to evaluate policy alterations, 
where a policyholder chooses to withdraw, or stop paying premiums, for 
example. 

We show how a retrospective valuation has connections both with asset 
shares and with the policy values determined looking at future cash flows. 
Finally, we consider how a simple adjustment to the net premium policy value, 
through modifying the net premium assumed, can be used to approximate the 
gross premium policy value, and we discuss why this might be useful when 
acquisition expenses are high. 

178 
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7.2 Assumptions 

In many of the examples and exercises in this chapter, we use the Standard 
Select Survival Model, as we did in Chapter 6, and which is described in 
Appendix D. We assume, generally, that lives are select at the time they pur
chase their policies. 

The default rate of interest is 5% per year, though different rates are used in 
some examples. This means that the tables in Appendix D may be useful for 
some of the examples and exercises. 

Note that the answers given in the text are calculated directly, not from 
tables, and may differ slightly from those derived from the tables. 

7.3 Policies with annual cash flows 

7.3.l The future loss random variable 

In Chapter 6 we introduced the future loss random variable, Lo. In this chapter 
we are concerned with the estimation of future losses at intermediate times 
during the term of a policy, not just at inception. We therefore extend the future 
loss random variable definition, in net and gross versions. Consider a policy 
which is still in force t years after it was issued. The present value of future net 
loss random variable is denoted L;1 and the present value of gross future loss 
random variable is denoted Lf, where 

and 

L;1 = Present value, at time t, of future benefits 
- Present value, at time t, of future net premiums 

Lf = Present value, at time t, of future benefits 
+Present value, at time t, of future expenses 
- Present value, at time t, of future gross premiums. 

We drop then or g superscript where it is clear from the context which is meant. 
Note that the future loss random variable L 1 is defined only if the contract is 
still in force t years after issue. 

The example below will help establish some ideas. The important features of 
this example for our present purposes are that premiums are payable annually 
and the sum insured is payable at the end of the year of death, so that all cash 
flows are at the start or end of each year. 

Example 7.1 Consider a 20-year endowment policy purchased by a life aged 
50. Level premiums are payable annually throughout the term of the policy and 
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the sum insured, $500 000, is payable at the end of the year of death or at the 
end of the term, whichever is sooner. 

The basis used by the insurance company for all calculations is the Standard 

Select Survival Model, 5% per year interest and no allowance for expenses. 

(a) Show that the annual net premium, P, calculated using the equivalence 
principle, is $15 114.33. 

(b) Calculate E[L~] fort= 10 and t = 11, in both cases just before the pre
mium due at time t is paid. 

Solution 7.1 (a) You should check that the following values are correct for 
this survival model at 5% per year interest: 

a[SO]: 201 = 12.8456 and A[SO]: 201 = 0.38830. 

The equation of value for P is 

Pa[SOJ:201- 500000A[SOJ:201=0, (7.1) 

giving 

500000A = 
p = .. [SOJ: 201 = $15114.33. 

a[SO]: 201 

(b) L'io is the present value of the future net loss 10 years after the policy 
was purchased, assuming the policyholder is still alive at that time. The 
policyholder will then be aged 60 and the select period for the survival 
model, two years, will have expired eight years ago. The present value at 
that time of the future benefits is 500 000 vmin(K6o+ 1 · lO) and the present 

value of the future premiums is P amin(K60+l,10)j· Hence, the formulae for 

L70 and L71 are 

Ln = 500000vmin(K6o+l,10) - Pa-.---~ 
10 mm(K6o+l,10)j 

and 

L n = 500 000vmin(K61+1,9) - pa . . 
11 mm(K61+1,9)j 

Taking expectations and using the annuity values 

a60:101=7.9555 and a61:91=7.3282 

we have 

E[L7oJ = 500000A60:101- Pa60:Wl = $190339. 

and 

E[L!iJ = 500000A61 :91- Pa61:91=$214757. 

D 
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We are now going to look at Example 7.1 in a little more detail. At the time 
when the policy is issued, at t = 0, the future loss random variable, L3, is 
given by 

L 11 = 500 000 vmin(K[soJ+1•20) - Pa . . 
0 nun(K[so]+ 1,20) I 

Since the premium is calculated using the equivalence principle, we know that 
E[L3] = 0, which is equivalent to equation (7.1). That is, at the time the policy 
is issued, the expected value of the present value of the loss on the contract 
is zero, so that, in expectation, the future premiums (from time 0) are exactly 
sufficient to provide the future benefits. 

Consider the financial position of the insurer at time 10 with respect to this 
policy. The policyholder may have died before time 10. If so, the sum insured 
will have been paid and no more premiums will be received. In this case the 
insurer no longer has any liability with respect to this policy. Now suppose 
the policyholder is still alive at time 10. In this case the calculation in part 
(b) shows that the future loss random variable, L'{0 , has a positive expected 
value ($190 339) so that future premiums (from time 10) are not expected to 
be sufficient to provide the future benefits. For the insurer to be in a financially 
sound position at time 10, it should hold an amount of at least $190 339 in its 
assets so that, together with future premiums from time 10, it can expect to 

provide the future benefits. 
Speaking generally, when a policy is issued the future premiums should be 

expected to be sufficient to pay for the future benefits and expenses. (If not, 
the premium should be increased!) However, it is usually the case that for a 
policy which is still in force t years after being issued, the future premiums 
(from time t) are not expected to be sufficient to pay for the future benefits and 
expenses. The amount needed to cover this shortfall is called the policy value 
for the policy at time t. 

The insurer should be able to build up assets during the course of the pol
icy because, with a regular level premium and an increasing level of risk, the 
premium in each of the early years is more than sufficient to pay the expected 
benefits in that year, given that.the life has survived to the start of the year. For 
example, in the first year the premium of $15 114.33 is greater than the EPV 
of the benefit the insurer will pay in that year, 500 000 v qrso] = $492.04. In 
fact, for the endowment insurance policy studied in Example 7.1, for each year 
except the last the premium exceeds the EPV of the benefits, that is 

P > 500 000 V q[SO]+t fort= 0, 1, ... , 18. 

The final year is different because 

p = 15114.33 < 500000 v = 476190. 
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Figure 7.1 EPV at issue of premiums minus claims for each year of a 20-year 
endowment insurance, sum insured $500 000, issued to (50). 

Note that if the policyholder is alive at the start of the final year, the sum insured 
will be paid at the end of the year whether or not the policyholder survives 
the year. 

Figure 7.1 shows the excess of the premium over the EPV of the benefit 
payable at the end of the year for each year of this policy. 

Figure 7.2 shows the corresponding values for a 20-year term insurance 
issued to (50). The sum insured is $500 000, level annual premiums are payable 
throughout the term and all calculations use the same basis as in Example 7 .1. 
The pattern is similar in that there is a positive surplus in the early years 
which can be used to build up the insurer's assets. These assets are needed 
in the later years when the premium is not sufficient to pay for the expected 
benefits. 

The insurer will then, for a large portfolio, hold back some of the excess 
cash flow from the early years of the contract in order to meet the shortfall in 
the later years. This explains the concept of a policy value - we need to hold 
capital during the term of a policy to meet the liabilities in the period when 
outgo on benefits exceeds income from premiums. We give a formal definition 
of a policy value later in this section. 

Before doing so, we return to Example 7 .1. Suppose the insurer issues a large 
number, say. N, of policies identical to the one in Example 7.1, to independent 
lives all aged 50. Suppose also that the experience of this group of policyhold
ers is precisely as assumed in the basis used by the insurer in its calculations. In 
other words, interest is earned on investments at 5% every year, the mortality 
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Figure 7.2 EPV at issue of premiums minus claims for each year of a 20-year 
term insurance, sum insured $500 000, issued to (50). 
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of the group of policyholders follows precisely the Standard Select Survival 
Model and there are no expenses. 

Consider the financial situation of the insurer after these policies have been 
in force for 10 years. Some policyholders will have died, so that their sum 
insured of $500 000 will have been paid at the end of the year in which they 
died, and some policyholders will still be alive. With our assumptions about 
the experience, precisely 10P[50]N policyholders will still be alive, qrso]N will 
have died in the first year, 1lqrso]N will have died in the second year, and 
so on, until the lOth year, when 9lqrso]N policyholders will have died. The 
accumulation to time 10 at 5% interest of all premiums received (not includ
ing the premiums due at time 10) minus all sums insured which have been 
paid is 

N P ( 1.05
10 + Prso]l.059 + · · · + 9 Prso]l.05) 

- 500 OOON ( qrsoJ1.059 + 1lqrso]l.058 + · · · + 9lqrso1) 

= 1.0510 NP (1 + Prso]l.05-1 + · · · + 9P[5o]l.05-9) 

- 1.0510 500 OOON ( qrso]l.05-1 + 1lqrso]l.05-2 + · · · + 9lqrsoJ1.05-10
) 

= 1.05
10 

N (Pa[SOJ:Wl- 500000A[;OJ:Wl) 

= 186634N. 

'I 
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Note that, using the values in part (a) of Example 7.1, we have 

a[SO]:lol = a[SO]:W]- v
10 

IOP[50] a 6o:lol = 8.0566 

A[;OJ:lol = 1- da[SOJ:lol- v
10 

IOP[50] = 0.01439. 

So, if the experience over the first 10 years follows precisely the assumptions 
set out in Example 7.1, the insurer will have built up a fund of $186 634 N after 
10 years. The number of policyholders still alive at that time will be IOP[SO]N 

and so the share of this fund for each surviving policyholder is 
186 634N /(IOP[SOJN) = $190 339. This is precisely the amount the insurer 
needs. This is not a coincidence! This happens in this example because the 
premium was calculated using the equivalence principle, so that the EPV of 
the profit was zero when the policies were issued, and we have assumed the 
experience up to time 10 was exactly as in the calculation of the premium. 
Given these assumptions, it should not be surprising that the insurer is in a 
'break even' position at time 10. 

We can prove that this is true in this case by manipulating the equation of 
value, equation (7.1), as follows: 

Pa[SOJ:Wl = 5oooooA50:W1 

=} p ( a[SO]: lol + viO IOP[50] a60: lol) =500000 ( A[;O]: lol + viO IOP[50] A60: lol) 

=} Pa[SO]: lol- 500000A[;OJ:lol = v
10 

!OP[SO] (500000A60: lol- Pa60: lol) 

1.0510 ( .. I ) .. 
=? IOP[SO] Pa[SOJ:lol- 500000A[SOJ:lol = 500000A60:lol- Pa60:lol' 

(7.2) 

The left-hand side of equation (7.2) is the share of the fund built up at time 
10 for each surviving policyholder; the right-hand side is the expected value 
of the future net loss random variable at time 10, E[L70], and so is the amount 
needed by the insurer at time 10 for each policy still in force. 

For this example, the proof that the total amount needed by the insurer at 
time 10 for all policies still in force is precisely equal to the amount of the fund 
built up, works because 

(a) the premium was calculated using the equivalence principle, 

(b) the expected value of the future loss random variable was calculated using 
the premium basis, and 

(c) we assumed the experience followed precisely the assumptions in the 
premium basis. 
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In practice, (a) and (b) may or may not apply; assumption (c) is extremely 

unlikely to hold. 

7.3.2 Policy values for policies with annual cash flows 

In general terms, the policy value for a policy in force at duration t (2: 0) 
years after it was purchased is the expected value at that time of the future loss 

random variable. At this stage we do not need to specify whether this is the 
gross or net future loss random variable - we will be more precise later in this 

section. 
The general notation for a policy value t years after a policy was issued is 

tV (the V comes from 'Policy Value') and we use this notation in this book. 
There is a standard actuarial notation associated with policy values for certain 
traditional contracts. This notation is not particularly useful, and so we do not 

use it. (Interested readers can consult the references in Section 7.10.) 
Intuitively, for a policy in force at time t, the policy value at t represents the 

amount the insurer should have in its assets at that time, so that, in terms of 
expected present values at t, the policy value together with future premiums 

will exactly fund the future benefits and expenses. In general terms, we have 
the equation 

tV + EPV at t of future premiums = EPV at t of future benefits + expenses. 

An important element in the financial control of ~m insurance company is the 
calculation at regular intervals, usually at least annually, of the sum of the pol
icy values for all policies in force at that time and also the value of all the 

company's investments. For the company to be financially sound, the invest
ments should have a greater value than the total policy value. This process is 
called a valuation of the company. In most countries, valuations are required 
annually by the insurance supervisory authority. 

In the literature, the terms reserve, prospective reserve and prospective 
policy value are sometimes used in place of policy value. We use policy value 

to mean the expected value of the future loss random variable, and restrict 
reserve to mean the actual capital held in respect of a policy, which may be 
greater than ()r less than the policy value. We return to this topic in Chapter 12. 

The precise definitions of policy value are as follows. 

Definition 7.1 The gross premium policy value for a policy in force at dura

tion t (2: 0) years after it was purchased is the expected value at that time of 

the gross future loss random variable on a specified basis. The premiums used 

in the calculation are the actual premiums payable under the contract. 
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Definition 7.2 The net premium policy value for a policy in force at duration 

t (::0: 0) years after it was purchased is the expected value at that time of the net 
future loss random variable on a specified basis (which makes no allowance 
for expenses). The premiums used in the calculation are the net premiums 
calculated on the policy value basis using the equivalence principle, not the 
actual premiums payable. 

We make the following comments about these definitions. 

(1) Throughout Section 7.3 we restrict ourselves to policies where the cash 
flows occur only at the start or end of a year since these policies have some 
simplifying features in relation to policy values. However, Definitions 7.1 
and 7.2 apply to more general types of policy, as we show in later sections. 

(2) The numerical value of a gross or net premium policy value depends on the 
assumptions - survival model, interest, expenses, future bonuses - used 
in its calculation. These assumptions, called the policy value basis, may 
differ from the assumptions used to calculate the premium, that is, the 
premium basis. 

(3) A net premium policy value can be regarded as a special case of a gross 
premium policy value. Suppose the gross premium is calculated assum
ing no expenses. Then at issue, the gross and net premiums are the same. 
However, t years later, the gross premium policy value and the net pre
mium policy value will be the same only if the policy value basis is the 
same as the original premium basis, which is unlikely to be the case. It is 
important to understand that the net premium policy value will use a net 
premium based on the policy value basis, not the original premium basis. 
The gross premium policy value uses the actual contract premium, with no 
recalculation. 

(4) So, when the policy value basis changes, the net premium policy value 
requires the recalculation of the premium. See Example 7.2 below. This 
is a vestige of a time before modern computers, when easy calculation 
was a key issue - setting reserves based on a net premium policy value 
allowed the use of computational shortcuts. The net premium policy value 
is becoming obsolete, but is still widely used in the USA, so it is helpful 
to understand the concept. Where it is clear from the context whether the 
policy value is gross or net we refer simply to a policy value. 

(5) If we are calculating a policy value at an integer duration, that is at the 
start/end of a year, there may be premiums and/or expenses and/or benefits 
payable at precisely that time and we need to be careful about which cash 
flows are included in our future loss random variable. It is the usual prac
tice to regard a premium and any premium-related expenses due at that 
time as future payments and any insurance benefits (i.e. death or maturity 
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claims) and related expenses as past payments. Under annuity contracts, 
the annuity payments and related expenses may be treated either as future 
payments or as past payments, so we need to be particularly careful to 
specify which it is in such cases. 

(6) If an insurance policy has a finite term, n years, for example for an endow
ment insurance or a term insurance, then at the maturity date there are no 
future cash flows due, and we say n V = 0 (though, technically, it is unde
fined, as the policy is no longer in force). Note also that, if the premium is 
calculated using the equivalence principle and the policy value basis is the 
same as the premium basis, then o V = E[Lo] = 0. 

(7) For an endowment insurance which is still in force at the maturity date, the 
policy value at that time must be sufficient to pay the sum insured, S, say, 
so in this case n- V = S and n V = 0, where n- denotes the moment before 
time n. 

(8) In the discussion following Example 7.1 in Section 7.3.1 we saw how 
the insurer built up the reserve for policies still in force by accumulat
ing past premiums minus claims for a group of similar policies. Broadly 
speaking, this is what would happen in practice, though not with the artifi
cial precision we saw in Section 7.3.1, where the accumulated funds were 
precisely the amount required by the insurer. In practice, the amount of 
reserve required for a policy is usually set by calculating a policy value on 
a specified basis; the funds for the reserve will come from accumulating 
past premiums, net of past benefit and expense costs. If the past experi
ence of a portfolio of policies is better than the basis assumptions (from 
the insurer's perspective), for example, higher interest rates and (for death 
benefits) lower mortality, then the accumulated cash flows will be more 
than needed to fund the reserve, and some profit can be taken. When the 
experience is worse than the basis, then the insurer will need to find extra 
capital to fund the reserves required. 

Example 7.2 An insurer issues a whole life insurance policy to a life aged 50. 
The sum insured of $100 000 is payable at the end of the year of death. Level 
premiums of $1300 are payable annually in advance throughout the term of the 
contract. 

(a) Calculate the gross premium policy value five years after the inception of 
the contract, assuming that the policy is still in force, using the following 
basis: 

Survival model: Standard Select Survival Model 
Interest: 5% per year effective 
Expenses: 12.5% of each premium 

,, 
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(b) Calculate the net premium policy value five years after the issue of the 
contract, assuming that the policy is still in force, using the following basis: 

Survival model: Standard Select Survival Model 
Interest: 4% per year 

Solution 7.2 We assume that the life is select at age 50, when the policy is 
purchased. At duration 5, the life is aged 55 and is no longer select since the 
select period for the Standard Select Survival Model is only two years. Note 
that a premium due at age 55 is regarded as a future premium in the calculation 
of a policy value. 

(a) The gross future loss random variable at time 5 is 

L~ = 100000vKss+I- 0.875 x 1300aKss+II' 

so 

5Vg = E[L~] = 100000Ass- 0.875 x 1300ass = $5256.35. 

(b) For net premium policy values we always recalculate the (hypothetical) net 
premium for the contract on the policy value basis. 
Let P denote the net premium for the policy value. At 4% per year, 

p = 100000~[SO] = $1321.31. 
arso] 

So, at 4% per year, 

L'1 = 100000vKss+I- 1321.3la~ 
5 Kss+I 1 

and hence 

5vn = 100000A55 - 1321.31a55 = $6704.75. 

Notice in this example that the net premium calculation ignores expenses, 
but uses a lower interest rate, which provides a margin, implicitly allowing 
for expenses and other contingencies. However, the net premium used in 
the policy value is greater than the gross premium of the contract. This 
would generally not be permitted under regulations on valuation, as it is 
not prudent to allow for a hypothetical net premium greater than the actual 
premium. 0 

Example 7.3 A woman aged 60 purchases a 20-year endowment insurance 
with a sum insured of $100 000 payable at the end of the year of death or 
on survival to age 80, whichever occurs first. An annual premium of $5200 
is payable for at most 10 years. The insurer uses the following basis for the 
calculation of policy values: 
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Survival model: Standard Select Survival Model 
Interest: 5% per year effective 
Expenses: 10% of the first premium, 5% of subsequent premiums, 

plus $200 on payment of the sum insured 

Calculate o V, 5 V, 6 V and 10 V, that is, the gross premium policy values for 

this policy at times t = 0, 5, 6 and 10. 

Solution 7.3 You should check the following values, which will be needed for 
the calculation of the policy values: 

a[601:101 = 7.9601, 

A[60J:Wl = 0.41004, 

a 65:51 = 4.4889, 

A65:i5l = 0.51140, 

A70: 101 = 0.63576. 

a66:4l = 3.6851, 

A66: 141 = 0.53422, 

At time 0, when the policy is issued, the future loss random variable, allowing 

for the expenses specified in the policy value basis, is 

Lo = 100 200vmin(K[60l+ 1·20) + 0.05 P - 0.95 P a:--;-. -:-:-:-----:---;---:--,.,-, mm(K[60J+ 1, 10) I 
where P = $5200. Hence 

oV = E[Lo] = l00200A[60J:Wl- (0.95a[60J:101- 0.05)P = $2023. 

Similarly, 

L5 = 100200v!pin(K6s+1,15)- 0.95 p amin(K6s+1,5)[ 

:::} 5 V = E[L5] = 100 200A65: i5]- 0.95 P a 65:5l = $29 068, 

L6 = 100 200vmin(K66+1, 14) - 0.95 p a-ffil;-,n7:(K::-66-+--:1-:,471)[ 

:::} 6 V = E[L6] = 100 200A66: 141 - 0.95 P a 66: 4l = $35 324. 

Finally, as no premiums are payable after time 9, 

L10 = 100200vmin(K?o+1,10) 

:::} 10 V = E[L10] = 100 200A70: 101 = $63 703. 

0 

In Example 7.3, the initial policy value, o V, is greater than zero. This means 
that from the outset the insurer expects to make a loss on this policy. This 
sounds uncomfortable but is not uncommon in practice. The explanation is 
that the policy value basis may be more conservative than the premium basis. 
For example, the insurer may assume an interest rate of 6% in the premium 

calculation, but, for policy value calculations, assumes investments will eam 
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only 5%. At 6% per year interest, and with a premium of $5200, this policy 
generates an EPV of profit at issue of $2869. 

Example 7.4 A man aged 50 purchases a deferred annuity policy. The annu
ity will be paid annually for life, with the first payment on his 60th birthday. 
Each annuity payment will be $10 000. Level premiums of $11 900 are payable 
annually for at most 10 years. On death before age 60, all premiums paid will 
be returned, without interest, at the end of the year of death. The insurer uses 
the following basis for the calculation of policy values: 

Survival model: Standard Select Survival Model 
Interest: 5% per year 
Expenses: 10% of the first premium, 5% of subsequent premiums, 

$25 each time an annuity payment is paid, and 
$100 when a death claim is paid. 

Calculate the gross premium policy values for this policy at the start of the 
policy, at the end of the fifth year, and at the end of the 15th year, just before 

and just after the annuity payment and expense due at that time. 

Solution 7.4 We are going to need the following values, all of which you 
should check: 

a[SOJ:IOl = 8.0566, ass:Sl = 4.5268, a6o = 14.9041, a6s = 13.5498, 

vs sPSS = 0.77382, v10 IOP[SOJ = 0.60196, 

A[S~J:IOl = 0.01439, (I A)[SIOJ:IOl = 0.08639, As;:Sl = 0.01062, 

(I A) s;: 5l = 0.03302. 

Then, using the notation IS- V, and IS+ V to denote the policy values at duration 
I 

15 years just before and just after the annuity payment and expense due at 
that time, respectively, and noting that P = 11 900, we can calculate the policy 
value at any time t as 

EPV at t of future benefits +expenses - EPV at t of future premiums. 

At the inception of the contract, the EPV of the death benefit is 

p (I A)[SIO]: IOl' 

the EPV of the death claim expenses is 

100A[SIOJ: IOl' 

the EPV of the annuity benefit and associated expenses is 

10025 v10 IOP[SO] a6o, 
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and the EPV of future premiums less associated expenses is 

so that 

0.95Pa[50J: 161 - 0.05P, 

o V = P(I A)[5
1
0l: 161 + 100A[5

1
0J: 161 + 10 025v

10 
10P[50J a6o 

- (0.95 a[5oJ: 161 - o.o5) P 

= $485. 
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At the fifth anniversary of the inception of the contract, assuming it is still in 
force, the future death benefit is 6P, 7 P, ... , lOP depending on whether the 
life dies in the 6th, 7th, ... ,lOth years, respectively. We can write this benefit 
as a level benefit of 5P plus an increasing benefit of P, 2P, ... , 5P. 

So at time 5, the EPV of the death benefit is 

P((IA\~:5l+5A5~:5l), 
the EPV of the death claim expenses is 1 OOA 1 ;;-]• 

55:51 

the EPV of the annuity benefit and associated expenses is 10025 v5 5P55 a6o, 
and the EPV of future premiums less associated expenses is 0.95Pa55: 161• so 
that 

5V = P(I A)5~:5l + 5 PA5~:5l + 100A5~:5l + 10025 v5 
5P55 a6o- 0.95P a55:5l 

= $65470. 

Once the premium payment period of 10 years is completed there are no future 
premiums to value, so the policy value is the EPV of the future annuity pay
ments and associated expenses. That is 

15- V = 10 025 a65 = $135 837, 

and 

15+ V = 10 025 a65 = 15-V- 10 025 = $125 812. 

D 

We make two comments about Example 7 .4. 

(1) As in Example 7.3, o V > 0, which implies that the valuation basis is more 
conservative than the premium basis. 

(2) In Example 7.4 we saw that 15+ V = 15- V- 10025. This makes sense 
if we regard the policy value at any time as the amount of assets being 
held at that time in respect of a policy still in force. The policy value 

\ 
1-
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Figure 7.3 Policy values for each year of a 20-year endowment insurance, 
sum insured $500 000, issued to (50). 

20 

15- V ( = $135 837) represents the assets required at time 15 just before the 
payment of the annuity, $10 000, and the associated expense, $25. Imme
diately after making these payments, the insurer's required assets will have 
reduced by $10 025, and the new policy value is 15+ V. 

We conclude this section by plotting policy values for the endowment insur
ance discussed in Example 7.1 and for the term insurance with the same sum 
insured and term. For these policies Figures 7.1 and 7 .2, respectively, show the 
EPV at issue of premiums minus claims for each year of the policy. Figures 7.3 
and 7.4, respectively, show the policy values. In Figure 7.3 we see that the pol
icy values build up over time to provide the sum insured on maturity. By con
trast, in Figure 7.4 the policy values increase then decrease. A further contrast 
between these figures is the level of the policy values. In Figure 7.4 the largest 
policy value occurs at time 13, with 13 V = $9563.00, which is a small amount 
compared with the sum insured of $500 000. The reason why small policy 
values occur for the term insurance policy is simply that there is a small prob
ability of the death benefit being paid. 

7.3.3 Recursive formulae for policy values 

In this section we show how to derive recursive formulae for policy values for 
policies with discrete cash flows. These formulae can be useful in the calcu
lation of policy values in some cases - we give an example at the end of this 
section to illustrate this point - and they also provide an understanding of how 
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Figure 7.4 Policy values for each year of a 20-year term insurance, sum 
insured $500000, issued to (50). 
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20 

the policy value builds up and how profit emerges while the policy is in force. 
We ~se Examples 7.1 and 7.4 to demonstrate the principles involved. 

Example 7.5 For Example 7.1 and fort= 0, 1, ... , 19, show that 

(tv + P) (1 + i) = 500 000 q[SO]+t + P[SO]+t t+ 1 v (7 .3) 

where P =$15114.33, i = 5% and the policy value is calculated on the basis 
specified in Example 7 .1. 

Solution 7.5 From the solution to Example 7.1 we know that for 
t=0,1, ... ,19, 

1 v = 5oo ooo A[so]+r: 20-rl- P a[so]+r: 20-11· 

Splitting off the terms for the first year for both the endowment and the annuity 
functions, we have 

tv = 500 000 ( Vq[SO]+t + VP[SO]+t A[50]+t+1: 19-tl) 

- P ( 1 + vp[so]+t a[soJ+t+I: 19-tl) 

= v (5oooooq[sOJ+t + P[sOJ+t (5oo oooA[soJ+t+1: 19-tl- Pa[soJ+t+I: 19-tl)) 

-P. 
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Rearranging, multiplying both sides by (1 + i) and recognizing that 

t+1 v = 5oo ooo ArsoJ+t+1: 19-tl- P arsoJ+t+1: 19-tl 

gives equation (7.3). 

We comment on Example 7.5 after the next example. 

Example 7.6 For Example 7.4 and fort= 1, 2, ... , 9 show that 

0 

(, V + 0.95P)(1 + i) = ((t + 1)P + 100) q[SO]+t + P[50J+t t+1V (7.4) 

where P = $11900, i = 5% and the policy value is calculated on the basis 
specified in Example 7.4. 

Solution 7.6 For Example 7.4 and fort = 1, 2, ... , 9, 1 V has the same form 

as 5 V, that is 

1 V = P(I A\s~J+t: 10-tl + (t p + 100)A[5~J+t:10-tl 
+ 10025v

10
-t 10-tP[SOJ+t a60- 0.95Pa[50J+t:10-tl' 

Recall that recurrence relations for insurance and annuity functions can be 
derived by separating out the EPV of the first year's payments, so that 

a[x]+t:n=t] = 1 + VP[x]+t a[xl+t+1:n-t-11' 

A 1 - vq + vp A 1 
[x]+t:n=t]- [x]+t [x]+t [x]+t+1:n-t-11 

(I A)[x]
1
+t:n=t] = vq[xJ+t + VP[x]+t (u A)[x]

1
+t+l:n-t-11 + A[xJ

1
+t+1:n-t-11). 

Using these relations to split off the terms for the year t tot + 1 in the policy 
value equation, we have, fort = 1, 2, ... , 9, 

tV= p (vq[50J+t +vp[SOJ+t ((JA)[5~J+t+l:l0-t-1I+A[5~J+t+1:10-t-11)) 
+ (t p + 100) ( Vq[SO]+t + VP[50]+t A[5~l+t+1: 10-t-11) 

+ 10025 VP[SOJ+t (v10-t-l 10-t-1P[50J+t+l a6o) 

- o.95P ( 1 + vprso]+t arsoJ+t+1: 10-1-ll) 

~ tV = Vq[SO]+t ((t + l)P + 100) - 0.95P 

+ VP[SOJ+t {P(l A\s~J+t+l: 10-t-11 + ((t + l)P + 100) A[5~J+t+1: 10-t+11 

+ 1002510-t-1P[50J+t+1 V!O-t-
1 

ii6Q- 0.95Pii[50J+t+1:10-t-11}· 
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Notice that the expression in curly braces, { }, is t+l V, so, substituting and 

rearranging, 

( 1 V + 0.95P) (1 + i) = ((t + l)P + 100) q[50l+t + P[50J+t t+IV, (7.5) 

as required. 0 

Equations (7 .3) and (7 .4) are recursive formulae for policy values since they 

express 1 V in terms of r+l V. Such formulae always exist but the precise form 

they take depends on the details of the policy being considered. The method we 

used to derive formulae (7.3) and (7.4) can be used for other policies: first write 

down a formula for 1 V and then break up the EPV s into EPV s of payments in 

the coming year, t to t + 1, and EPV s of payments from t + 1 onwards. We can 
demonstrate this in a more general setting as follows. 

Consider a policy issued to a life (x) where cash flows - that is, premiums, 

expenses and claims - can occur only at the start or end of a year. Suppose this 

policy has been in force for t years, where t is a non-negative integer. Consider 

the (t + l)st year, and let 

P1 denote the premium payable at time t, 
e1 denote the premium-related expense payable at time t, 

Sr+l denote the sum insured payable at time t + 1 if the policyholder dies 
in the year, 

E r+ 1 denote the expense of paying the sum insured at time t + 1, 

1 V denote the gross premium policy value for a policy in force at time t, 
and 

t+ 1 V denote the gross premium policy value for a policy in force at time 

t + 1. 

Let q[x]+t denote the probability that the policyholder, alive at time t, dies in 

the year and let it denote the rate of interest assumed earned in the year. The 

quantities e1, E1, q[x]+t and i1 are all as assumed in the policy value basis. 

Let L1 and Lt+l denote the gross future loss random variables at times t and 

t + 1, respectively, in both cases assuming the policyholder is alive at that time. 

Note that L 1 involves present values at timet whereas Lt+l involves present 

values at time t + 1. Then, by considering what can happen in the year, we have 

Taking expected values, we have 

if K[x]+t = 0, with probability q[xl+t, 

if K[x]+t :=:: 1, with probability P[xl+t. 

tV= E[Lr] = q[x]+t(l + ir)-1(Sr+l + Er+l)- (q[x]+t + P[x]+r)(Pr- er) 

+ P[x]+r(l + ir)-1E[Lr+d, 
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which, after a little rearranging and recognizing that t+l V = E[Lt+d, gives 
the important equation 

/ Ct V + Pt- et)(1 +it)= %J+t(St+l + Et+l) + PlxJ+t t+lV.J (7.6) 

Equation (7.6) includes equations (7.3) and (7.4) as special cases and it is a 
little more general than either of them since it allows the premium, the sum 
insured, the expenses and the rate of interest all to be functions of t or oft + 1, 
so that they can vary from year to year. 

For policies with cash flows only at the start/end of each year, the recursive 
formulae always have the same general form. This form can be explained by 
examining equation (7.6). 

<> Assume that at time t the insurer has assets of amount tV in respect of this 
policy. Recall that tV is the expected value on the policy value basis of the 
future loss random variable, assuming the policyholder is alive at time t. 
Hence we can interpret tV as the value of the assets the insurer should have 
at time t (in respect of a policy still in force) in order to expect to break even 
over the future course of the policy. 

<> Now add to tV the net cash flow received by the insurer at timet as assumed 
in the policy value basis. In equation (7.6) this is Pt - et; in Example 7.5 
this was just the premium, P = $15 114.33; in Example 7.6 this was the 
premium, P = $11900, less the expense assumed in the policy value basis, 
0.05P. The new amount is the amount of the insurer's assets at time t 
just after these cash flows. There are no further cash flows until the end 
of the year. 

<> These assets are rolled up to the end of the year with interest at the rate 
assumed in the policy value basis, it (= 5% in the two examples). This gives 
the amount of the insurer's assets at the end of the year before any further 
cash flows (assuming everything is as specified in the policy value basis). 
This gives the left-hand sides of equations (7.6), (7.3) and (7.4). 

<> We assumed the policyholder was alive at the start of the year, time t; we do 
not know whether the policyholder will be alive at the end of the year. With 
probability P[x]+t the policyholder will be alive, and with probability q[x]+t 
the policyholder will die in the year (where these probabilities are calculated 
on the policy value basis). 

<> If the policyholder is alive at time t + 1 the insurer needs to have assets 
of amount t+l V at that time; if the policyholder has died during the year, 
the insurer must pay any death benefit and related expenses. The expected 
amount the insurer needs for the policy being considered above is given by 
the right-hand side of equation (7.6) (equations (7.3) and (7.4) for Exam
ples 7.5 and 7.6). For the general policy, and for both examples, this is 
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precisely the amount the insurer will have (given our assumptions). This 
happens because the policy value is defined as the expected value of the 
future loss random variable and because we assume cash flows from t to 
t + 1 are as specified in the policy value basis. We assumed that at time t 
the insurer had sufficient assets to expect (on the policy value basis) to break 
even over the future course of the policy. Since we have assumed that from 
t to t + 1 all cash flows are as specified in the policy value basis, it is not 
surprising that at time t + 1 the insurer still has sufficient assets to expect to 
break even. 

One further point needs to be made about equations (7.6), (7.3) and (7.4). We 
can rewrite these three formulae as follows: 

(tV+ Pt- et)(l +it)= t+1 V + q[xJ+t(St+1 + Et+1- t+1 V), (7.7) 

(tV+ P)(1 + i) = t+1 V + q[xJ+t(500000- t+1 V), 

( 1 V + 0.95P)(1 + i) = t+1 V + q[xJ+t((t + 1)P qso+t- t+1 V). 

The left-hand side of each of these formulae are unchanged- they still rep
resent the amount of assets the insurer is assumed to have at time t + 1 in 
respect of a policy which was in force at timet. The right-hand sides can now 
be interpreted slightly differently. 

• For each policy in force at time t the insurer needs to provide the policy 
value, t+1 V, at timet+ 1, whether the life died during the year or not. 

• In addition, if the policyholder has died in the year (the probability of which 
is q[xJ+t ), the insurer must also provide the extra amount to increase the 
policy value to the death benefit payable plus any related expense: 
St+ 1 + E1+ 1 - t+ 1 V for the general policy, 500 000- t+ 1 V in Example 7.5-
and (t + 1)P- t+1 V in Example 7.6. 

The extra amount required to increase the policy value to the death benefit 
is called the Death Strain At Risk (DSAR), or the Sum at Risk or the Net 
Amount at Risk, at time t + 1. Generally (ignoring claim expenses) given 
that the death benefit payable in the tth year is S1, then the tth year DSAR is 
S1 - 1 V. This is an important measure of the insurer's risk if mortality exceeds 
the basis assumption, and is useful in determining risk management strategy, 
including reinsurance - which is the insurance that an insurer buys to protect 
itself against adverse experience. 

In all the examples so far in this section it has been possible to calculate 
the policy value directly, as the EPV on the given basis of future benefits plus 
future expenses minus future premiums. In more complicated examples, in par
ticular where the benefits are defined in terms of the policy value, this may 
not be possible. In these cases the recursive formula for policy values, equa
tion (7.6), can be very useful, as the following example shows. 
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Example 7.7 Consider a 20-year endowment policy purchased by a life aged 
50. Level premiums of $23 500 per year are payable annually throughout the 
term of the policy. A sum insured of $700 000 is payable at the end of the term 
if the life survives to age 70. On death before age 70 a sum insured is payable 
at the end of the year of death equal to the policy value at the start of the year 
in which the policyholder dies. 

The policy value basis used by the insurance company is as follows: 

Survival model: Standard Select Survival Model 
Interest: 3.5% per year 
Expenses: nil 

Calculate 15 V, the policy value for a policy in force at the start of the 16th year. 

Solution 7.7 For this example, formula (7.6) becomes 

(tV+ P) X 1.035 = q[50J+t St+1 + P[50J+t t+1 V fort = 0, 1, ... , 19, 

where P = $23 500. For the final year of this policy, the death benefit payable 
at the end of the year is 19 V and the survival benefit is the sum insured, 
$700 000. Putting t = 19 in the above equation gives: 

( 19 V + P) X 1.035 = q6919 V + P69 X 700000. 

Tidying this up and noting that St+1 = 1 V, we can work backwards as follows: 

19V = (P69 x 7ooooo-l.035P)/(l.035 -q69) = 652401, 

1sV = (P6s x 19V -l.035P)/(l.035 -q6s) = 606471, 

17 v = (P67 X 18 v- 1.035P)/(l.035- q67) = 562145, 

16V = (P66 x nV -l.035P)/(l.035- q66) = 519362, 

15 V = (P65 x 16 V- 1.035P)/(l.035- q65) = 478 063. 

Hence, the answer is $478 063. 

7.3.4 Annual profit by source 

D 

Consider a group of identical policies issued at the same time. The recursive 
formulae for policy values show that if all cash flows between t and t + 1 are 
as specified in the policy value basis, then the insurer will be in a break-even 
position at time t + 1, given that it was in a break-even position at timet. 
These cash flows depend on mortality, interest, expenses and, for participating 
policies, bonus rates. In practice, it is very unlikely that all the assumptions 
will be met in any one year. If the assumptions are not met, then the value of 
the insurer's assets at time t + 1 may be more than sufficient to pay any benefits 
due at that time and to provide a policy value of t+ 1 V for those policies still in 
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force. In this case, the insurer will have made a profit in the year. If the insurer's 
assets at time t + 1 are not sufficient to pay any benefits due at that time and to 
provide a policy value of t+I V for those policies still in force, the insurer will 
have made a loss in the year. 

In general terms: 

• Actual expenses less than the expenses assumed in the policy value basis 
will be a source of profit. 

• Actual interest earned on investments less than the interest assumed in the 
policy value basis will be a source of loss. 

• Actual mortality less than the mortality assumed in the policy value basis 
can be a source of either profit or loss. For whole life, term and endowment 
policies it will be a source of profit; for annuity policies it will be a source 
of loss. 

• Actual bonus or dividend rates less than the rates assumed in the policy value 
basis will be a source of profit. 

The following example demonstrates how to calculate annual profit by source 
from a non-participating life insurance policy. 

Example 7.8 An insurer issued a large number of policies identical to the pol
icy in Example 7.3 to women aged 60. Five years after they were issued, a total 
of 100 of these policies were still in force. In the following year, 

• expenses of 6% of each premium paid were incurred, 
• interest was earned at 6.5% on all assets, 
• one policyholder died, and 
• expenses of $250 were incurred on the payment of the sum insured for the 

policyholder who died. 

(a) Calculate the profit or loss on this group of policies for this year. 
(b) Determine how much of this profit/loss is attributable to profit/loss from 

mortality, from interest and from expenses. 

Solution 7.8 (a) At duration t = 5 we assume the insurer held assets for the 
portfolio with value exactly equal to the total of the policy values at that 
time for all the policies still in force. From Example 7.3 we know the 
value of 5 V and so we assume the insurer's assets at time 5, in respect 
of these policies, amounted to 100 5 V. If the insurer's assets were worth 
less (resp. more) than this, then losses (resp. profits) have been made in 
previous years. These do not concern us - we are concerned only with 
what happens in the 6th year. 

Now consider the cash flows in the 6th year. For each of the 100 policies 
still in force at time 5 the insurer received a premium P ( = $5200) and 
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paid an expense of 0.06P at time 5. Hence, the total assets at time 5 after 
receiving premiums and paying premium-related expenses were 

100 5 V + 100 X 0.94 p = $3 395 551. 

There were no further cash flows until the end of the year, so this amount 
grew for one year at the rate of interest actually earned, 6.5%, giving the 
value of the insurer's assets at time 6, before paying any death claims and 
expenses and setting up policy values, as 

(100 5 V + 100 X 0.94 P) X 1.065 = $3 616 262. 

The death claim plus related expenses at the end of the year was $100 250. 
A policy value equal to 6 V (calculated in Example 7.3) is required at the 
end of the year for each of the 99 policies still in force. Hence, the total 
amount the insurer requires at the end of the year is 

100 250 + 99 6 v = $3 597 342. 

Hence the insurer has made a profit in the sixth year of 

(100 5 V + 100 X 0.94 P) X 1.065- (100 250 + 99 6 V) = $18 919. 

(b) In this example the sources of profit and loss in the sixth year are as fol
lows. 

(i) Interest: This is a source of profit since the actual rate of interest 
earned, 6.5%, is higher than the rate assumed in, the policy value basis. 

(ii) Expenses: These are a source of loss since the actual expenses, both 
premium related (6% of premiums) and claim related ($250), are 
higher than assumed in the policy value basis (5% of premiums and 
$200). 

(iii) Mortality: The probability of dying in the year for any of these 
policyholders is q65 (= 0.0059). Hence, out of 100 policyholders 
alive at the start of the year, the insurer expects 100 q65 ( = 0.59) to 
die. In fact, one died. Each death reduces the profit since the amount 
required for a death, $100 250, is greater than the amount required 
on survival, 6 V (= $35 324), and so more than the expected deaths 
increases the insurer's loss. 

Since the overall profit is positive, (i) has had a greater effect than (ii) and (iii) 
combined in this year. 

We can attribute the total profit to the three sources as follows. 

Interest: If expenses at the start of the year had been as assumed in the 
policy value basis, 0.05 Pper policy still in force, and interest had been . 
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earned at 5%, the total interest received in the year would have been 

0.05 X (100 5 V + 100 X 0.95 P) = $170 038. 

The actual interest earned, before allowing for actual expenses, was 

0.065 X (100 5 V + 100 X 0.95 P) = $221 049. 

Hence, there was a profit of $51 011 attributable to interest. 

Expenses: Now, we allow for the actual interest rate earned during the year 
(because the difference between actual and expected interest has already 
been accounted for in the interest profit above) but use the expected mor
tality. That is, we look at the loss arising from the expense experience 
given that the interest rate earned is 6.5%, but on the hypothesis that the 
number of deaths is 100 q65. 

The expected expenses on this basis, valued at the year end, are 

100 X 0.05P X 1.065 + 100q65 X 200 = $27 808. 

The actual expenses, if deaths were as expected, are 

100 X 0.06P X 1.065 + 100 q65 X 250 = $33 376. 

The loss from expenses, allowing for the actual interest rate earned in 
the year but allowing for the expected, rather than actual, mortality, was 

33 376 - 27 808 = $5568. 

Mdrtality: Now, we use actual interest (6.5%) and actual expenses, and look 
/at the difference between the expected cost from mortality and the actual 
cost. For each death, the cost to the insurer is the death strain at risk, in 
this case 100 000 + 250 - 6 V, so the mortality profit is 

(100q65 -1) X (100000+250- 6V) = -$26524. 

This gives a total profit of 

51 011 - 5568- 26 524 = $18 919 

which is the amount calculated earlier. D 
We have calculated the profit from the three sources in the order: interest, 

expenses, mortality. At each step we assume that factors not yet considered are 
as specified in the policy value basis, whereas factors already considered are 
as actually occurred. This avoids 'double counting' and gives the correct total. 

However, we could follow the same principle, building from expected to 
actual, one basis element at a time, but change the order of the calculation as 
follows. 
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Expenses: The loss from expenses, allowing for the assumed interest rate 
earned in the year and allowing for the expected mortality, was 

100 X (0.06 - 0.05) p X 1.05 + 100 q65 X (250 - 200) = $5490. 

Interest: Allowing for the actual expenses at the start of the year, the profit 
from interest was 

(0.065 - 0.05) X (100 5 V + 100 X 0.94 P) = $50 933. 

Mortality: The profit from mortality, allowing for the actual expenses, was 

(100q65 - 1) X (100 000 + 250- 6 V) = -$26 524. 

This gives a total profit of 

-5490 +50 933 - 26 524 = $18 919 

which is the same total as before, but with (slightly) different amounts of profit 
attributable to interest and to expenses. 

This exercise of breaking down the profit or loss into its component parts is 
called analysis of surplus, and it is an important exercise after any valuation. 
The analysis of surplus will indicate if any parts of the valuation basis are too 
conservative or too weak; it will assist in assessing the performance of the 
various managers involved in the business, and in determining the allocation 
of resources, and, for participating business it will help to determine how much 
surplus should be distributed. 

7.3.5 Asset shares 

In Section 7.3.1 we showed, using Example 7.1, that if the three conditions, (a), 
(b) and (c), at the end of the section were fulfilled, then the accumulation of 
the premiums received minus the claims paid for a group of identical policies 
issued simultaneously would be precisely sufficient to provide the policy value 
required for the surviving policyholders at each future duration. We noted that 
condition (c) in particular would be extremely unlikely to hold in practice; that 
is, it is virtually impossible for the experience of a policy or a portfolio of 
policies to follow exactly the assumptions in the premium basis. In practice, 
the invested premiums may have earned a greater or smaller rate of return than 
that used in the premium basis, the expenses and mortality experience will 
differ from the premium basis. Each policy contributes to the total assets of the 
insurer through the actual investment, expense and mortality experience. 

It is of practical importance to calculate the share of the insurer's assets 
attributable to' each policy in force at any given time. This amount is known 
as the asset share of the policy at that time and it is calculated by assuming 
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the policy being considered is one of a large group of identical policies issued 
simultaneously. The premiums minus claims and expenses for this notional 
group of policies are then accumulated using values for expenses, interest, 
mortality and bonus rates based on the insurer's experience for similar poli
cies over the peliod. At any given time, the accumulated fund divided by the 
(notional) number of survivors gives the asset share at that time for each sur
viving policyholder. If the insurer's experience is close to the assumptions in 
the policy value basis, then we would expect the asset share to be close to the 
policy value. 

The policy value at duration t represents the amount the insurer needs to 
have at that time in respect of each surviving policyholder; the asset share 
represents (an estimate of) the amount the insurer actually does have. 

Example 7.9 Consider a policy identical to the policy studied in Example 7.4 
and suppose that this policy has now been in force for five years. Suppose that 
over the past five years the insurer's experience in respect of similar policies 
has been as follows. 

• Annual interest earned on investments has been as shown in the following 
table. 

Year 1 
Interest % 4.8 

2 3 4 5 
5.6 5.2 4.9 4.7 

• Expenses at the start of the year in which a policy was issued were 15% of 
the premium. 

• Expenses at the start of each year after the year in which a policy was issued 
were 6% of the premium. 

• The expense of paying a death claim was, on average, $120. 

• The mortality rate, q[50]+t, for t = 0, 1, ... , 4, has been approximately 
0.0015. 

Calculate the asset share for the policy at the start of each of the first six years. 

Solution 7.9 We assume that the policy we are considering is one of a large 
number, N, of identical policies issued simultaneously. As we will see, the 
value of N does not affect our final answers. 

Let ASt denote the asset share per policy surviving at timet = 0, 1, ... , 5. 
We calculate ASt by accumulating to time t the premiums received minus the 
claims and expenses paid in respect of this notional group of policies using our 
estimates of the insurer's actual experience over this period and then dividing 
by the number of surviving policies. We adopt the convention that ASt does not 
include the premium and related expense due at timet. With this convention, 
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ASo is always 0 for any policy since no premiums will have been received and 
no claims and expenses will have been paid before time 0. Note that for our 
policy, using the policy value basis specified in Example 7.4, o V = $490. 

The premiums minus expenses received at time 0 are 

0.85 X 11900 N = 10115 N. 

This amount accumulates to the end ofthe year with interest at 4.8%, giving 

10601 N. 

A notional 0.0015 N policyholders die in the first year so that death claims plus 
expenses at the end of the year are 

0.0015 x (11900 + 120) N = 18 N 

which leaves 

10601N -18N = 10582N 

at the end of the year. Since 0.9985 N policyholders are still surviving at the 
start of the second year, AS1, the asset share for a policy surviving at the start 
of the second year, is given by 

AS1 = 10582N /(0.9985 N) = 10598. 

These calculations, and the calculations for the next four years, are summarized 
in Table 7.1. You should check all the entries in this table. For example, the 
death claims and expenses in year 5 are calculated as 

0.99854 
X 0.0015 X (5 X 11 900 + 120) N = 89 N 

since 0.99854 N policyholders are alive at the start of the fifth year, a fraction 
0.0015 of these die in the coming year, the death benefit is a return of the five 
premiums paid and the expense is $120. 

Note that the figures in Table 7.1, except the Survivors' column, have been 
rounded to the nearest integer for presentation; the underlying calculations 
have been carried out usingfar greater accuracy. 0 

We make the following comments about Example 7.9. 

(1) As predicted, the value of N does not affect the values of the asset shares, 
AS1• The only purpose of this notional group of N identical policies issued 
simultaneously is to simplify the presentation. 

(2) The experience of the insurer over the five years has been close to the 
assumptions in the policy value basis specified in Example 7.4. The actual 
interest rate has been between 4.7% and 5.6%; the rate assumed in the 
policy value basis is 5%. The actual expenses, both premium-related 
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Table 7.1 Asset share calculation for Example 7.9. 

Fund at Cash flow Fund at end Fund at 
start of at start of year before Death claims end of 

Year, t year of year death claims and expenses year Survivors AS1 

2 
3 
4 
5 

0 10 115N 10601 N 18N 10582N 0.9985N 10598 
10582N 11169 N 22970N 36N 22934N 0.99852 N 23003 
22934N 11152N 35 859N 54N 35805 N 0.99853 N 35967 
35805N 11136N 49241 N 7lN 49170N 0.99854 N 49466 
49170N 11119N 63123 N 89N 63034N 0.99855 N 63509 

(15% initially and 6% thereafter) and claim-related ($120), are a lit
tle higher than the expenses assumed in the policy value basis (10%, 
5% and $100, respectively). The actual mortality rate is comparable to 
the rate in the policy value basis, e.g. 0.99855 = 0.99252 is close to 

5P[50] = 0.99283. 
As a result of this, the asset share, ASs (= $63 509), is reasonably 

close to the policy value, s V (= $65 470) in this exal)lple. 

7.4 Policy values for policies with cash flows at 1/mthly intervals 

Throughout Section 7.3 we assumed all cash flows for a policy occurred at the 
start or epd of each ~ear. This simplified the presentation and the calculations 
in the examples. In practice, this assumption does not often hold; for example, 
premiums are often payable monthly and death benefits are usually payable 
immediately following, or, more realistically, soon after, death. The definition 
of a policy value from Definitions 7.1 and 7.2 can be directly applied to poli
cies with more frequent cash flows. The policy value at duration t is still the 
expected value of the future loss random variable, assuming the policyholder is 
still alive at that time - and our interpretation of a policy value is unchanged -
it is still the amount the insurer needs so that, with future premiums, it can 
expect (on the policy value basis) to pay future benefits and expenses. 

The following example illustrates these points. 

Example 7.10 A life aged 50 purchases a 10-year term insurance with sum 
insured $500 000 payable at the end of the month of death. Level quarterly 
premiums, each of amount P = $460, are payable for at most five years. 

Calculate the (gross premium) policy values at durations 2.75, 3 and 6.5 
years using the following basis. 

Survival model: Standard Select Survival Model 
Interest: 5% per year 
Expenses: 10% of each gross premium 
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Solution 7.10 To calculate 2.75 V we need the EPV of future benefits and the 
EPV of premiums less expenses at that time, assuming the policyholder is still 
alive. Note that the premium and related expense due at time t = 2.75 are 
regarded as future cash flows. Note also that from duration 2.75 years the pol
icyholder will be subject to the ultimate part of the survival model since the 
select period is only two years. 

Hence 

2.75 v = 5oooool12
) 1 - o.9 x 4 x P ac4

) 
52.75:7.251 52.75:2.251 

= $3091.02, 

where 

l 12
) 1 = 0.01327 and a(4) = 2.14052. 

52.75:7.251 52.75:2.251 

Similarly 

v = 5oo oool12
) 1 - o.9 x 4 x P ac4) 3 53:71 53:21 

= $3357.94, 

where 

l 12
) 1 = 0.013057 and a(4) = 1.91446 
53:71 53:21 ' 

and 

V = 500000AC12
) 1 

6·5 56.5:3.51 

= 500000 X 0.008532 = $4265.63. 
D 

I 

7.4.1 Recursions 

We can derive recursive formulae for policy values for policies with cash flows 
at discrete times other than annually. Consider 2.75 V and 3 V in Example 7.10. 
We need to be careful here because the premiums and benefits are paid with 
different frequency. We can use a recurrence relationship to generate the policy 
value at each month end, allowing for premiums only every third month. So, 
for example, 

(2.75 V + 460- 0.1 X 460) (1.05)0·
083 

= 500 000 o.o83q52.75 + o.o83P52.75 2.833 V. 

We proceed similarly for the following two months, but adjusting because there 
are no premiums paid 
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2.833 V (1.05)0
·
083 = 500 000 o.083q52.833 + o.083P52.833 2.917 V 

2.917 V (1.05)0
·
083 = 500 000 o.083q52.917 + o.083P52.917 3 V. 

7.4.2 Valuation between premium dates 

207 

All of the calculations in the sections above considered policy values at a pre
mium date, or after premiums have ceased. We often need to calculate policy 
values between premium dates; typically, we will value all policies on the same 
calendar date each year as part of the insurer's liability valuation process. The 
principle when valuing between premium dates is the same as when valuing 
on premium dates, that is, the policy value is the EPV of future benefits plus 
expenses minus premiums. The calculation may be a little more awkward. We 
demonstrate this in the following example, which uses the same contract as 
Example 7.10 above. 

Example 7.11 For the contract described in Example 7 .10, calculate the policy 
value after (a) 2 years and 10 months and (b) 2 years and 9.5 months, assuming 
the policy is still in force at that time in each case. 

Solution 7.11 (a) The EPV of future benefits is 

SA (12
) 

1 ~ = S x 0.0132012 = 6600.58. 
52.833:7.1671 

Note that the functions im ~~ iil and ii (n;; iil are defined only if n is an 
1 A(12) 1 integer multiple of m' so that is well defined, but 

52.833:7.1671 
ii(4) is not. 

52.833:7.1671 
The EPV of future premiums less premium expenses is 

0.9 X 4P v0
.1

67 
0.167 P52.833 a~~~ 2l = 0.9 X 4P X 1.898466 = 3143.86. 

So the policy value is 2.833 V = $3456.72. 

(b) Now, the valuation is at neither a benefit nor a premium date. We know that 
the EPV of benefits minus premiums at 2 years and 10 months is 2.833 V. 
One-half of a month earlier, we know that the life must either survive the 
time to the month end, in which case the EPV of future benefits less premi
ums is 2.833 V v0·042 , or the life will die, in which case the EPV of benefits 
less premiums is S v0·042 . Allowing for the appropriate probabilities of 
survival or death, the policy value at timet = 2.792 is 

2.792 V = 0.042q52.792 S V0
'
042 + 0.042P52.792 v0

·
042 

2.833 V = $3480.99. 

D 
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Figure 7.5 Policy values for the limited premium term insurance contract, 
Example 7.11. 

The principle here is that we have split the EPV into the part relating to cash 
flows up to the next premium date, plus the EPV of the policy value at the next 
premium date. 

It is interesting to note here that it would not be appropriate to apply sim
ple interpolation to the two policy values corresponding to the premium dates 
before and after the valuation date, as we have, for example, 

2.75 V = $3091.02, 2.792 V = $3480.99 and 3 V = $3357.94. 

The reason is that the function tV is not smooth if premiums are paid at 
discrete intervals, since the policy value will jump immediately after each pre
mium payment by the amount of that payment. Before the premium payment, 
the premium immediately due is included in the EPV of future premiums, 
which is deducted from the EPV of future benefits to give the policy value. 
Immediately after the premium payment, it is no longer included, so the policy 
value increases by the amount of the premium. 

In Figure 7.5 we show the policy values at all durations for the policy in 
Examples 7.10 and 7 .11. The curve jumps at each premium date, and has an 
increasing trend until the premiums cease. In the second half of the contract, 
after the premium payment term, the policy value is run down. Other types 
of policy will have different patterns for policy values as we have seen in 
Figures 7.1 and 7.2. 

A reasonable approximation to the policy value between premium dates can 
usually be achieved by interpolating between the policy value just after the 
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previous premium and the policy value just before the next premium. That 
is, suppose the premium dates are k years apart, then for s < k, we approxi

mate t+k+s V by interpolating between t+k V + Pt+k - Et+k and t+2k V; more 
specifically, 

t+k+s V ~ (t+k V + Pt+k - Et+k) ( 1 - ~) + t+2k V ~. 

In the example above, this would give approximate values for 2.792 V and 2.833 V 
of $3480.51 and $3455.99, respectively, compared with the accurate values of 
$3480.99 and $3456.72, respectively. 

7.5 Policy values with continuous cash flows 

7.5.1 Thiele's differential equation 

In the previous sections, we have defined policy values for policies with cash 
flows at discrete intervals and derived recursive formulae linking policy values 
at successive cash flow time points for these policies. These ideas extend to 
contracts where regular payments - premiums and/or annuities - are payable 
continuously and sums insured are payable immediately on death. In this case 
we can derive a differential equation, known as Thiele's differential equation. 

This is a continuous time version of the recursion equation, which we derived 
in Section 7.3.3. Recall that for discrete life insurance 

(tV+ Pt- et)(l +it)= t+l V + %J+t(St+l + Et+l- t+I V). (7.7) 

Our derivation of Thiele's differential equation is somewhat different from the 
derivation of equation (7.7). However, once we have completed the derivation, 
we explain the link with this equation. 

Consider a policy issued to a select life aged x under which premiums 
and premium-related expenses are payable continuously and the sum insured, 
together with any related expenses, is payable immediately on death. Suppose 
this policy has been in force for t years, where t ;:: 0. Let 

denote the annual rate of premium payable at time t, 

denote the annual rate of premium-related expense payable at time t, 

denote the sum insured payable at time t if the policyholder dies at 
exact time t, 

denote the expense of paying the sum insured at time t, 

denote the force of mortality at age [x] + t, 
denote the force of interest per year assumed earned at time t, and, 

denote the policy value for a policy in force at time t. 
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We assume that Pt. et, St, f-L[xJ+t and lit are all continuous functions oft and 
that et, Et, /-L[xJ+t and 81 are all as assumed in the policy value basis. 

Just as we allowed the rate of interest to vary from year to year in Sec
tion 7.3.3, we are here letting the force of interest be a continuous function of 
time. Thus, if v(t) denotes the present value of a payment of 1 at timet, we 
have 

v(t) = exp {-fat 8sds} . (7.8) 

Now, 1 V represents the difference between the EPV of benefits plus benefit
related expenses and the EPV of premiums less premium-related expenses, so 
we have 

rXJ v(t + s) 
tV= Jo v(t) (St+s + Et+s) sP[x]+t /-L[x]+t+s ds 

{
00 v(t + s) 

- Jo v(t) (Pt+s- et+s) sP[xJ+t ds. 

Note that we are measuring time, represented by s in the integrals, from time 
t, so that if, for example, the sum insured is payable at time s, the amount of 
the sum insured is St+s and as we are discounting back to time t, the discount 
factor is v(t + s)jv(t). Changing the variable of integration tor= t + s gives 

[

oo v(r) 
tV = 

1 
v(t) (Sr + Er) r-t P[x]+t /-L[x]+r dr 

[

oo v(r) 
-

1 
v(t) (Pr - er) r-t P[x]+t dr. (7.9) 

We could use formula (7.9) to calculate tV by numerical integration. However, 
we are instead going to turn this identity into a differential equation. There are 
two main reasons why we do this: 

(1) There exist numerical techniques to solve differential equations, one of 
which is discussed in the next section. As we will see, an advantage of 
such an approach over numerical integration is that we can easily calculate 
policy values at multiple durations. 

(2) In Chapter 8 we consider more general types of insurance policy than we 
have so far. For such policies it is usually the case that we are unable to 
calculate policy values using numerical integration, and we must calculate 
policy values using a set of differential equations. The following develop
ment of Thiele's differential equation sets the scene for the next chapter. 

In order to turn equation (7.9) into a differential equation, we note that 

rP[x] 
r-tP[x]+t = --

tP[x] 
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I (f
00

v(r)(S,.+E,.) rP[x]/-L[xJ+rdr-f
00

v(r)(P,.-e,.) rP[x]dr), 
v(t) t P[x] t t 

which we can write as 

v(t) t P[x] tV= [
00

v(r) (S,. + E,.) rP[x]/-L[x]+r dr 

-[

00

v(r) (P,.- e,.) rP[x] dr. (7.10) 

Differentiation of equation (7.10) with respect tot leads to Thiele's differential 

equation. First, differentiation of the right-hand side yields 

- v(t) (St + Et) tP[x]/-L[xJ+t + v(t) (Pt- et) tP[x] 

= v(t) tP[x] (Pt- et- (St + Et) /-L[xJ+t). (7.11) 

Differentiation of the left-hand side is most easily done in two stages, applying 

the product rule for differentiation at each stage. Treating v(t) 1 P[x] as a single 

function of t we obtain 

d d d 
dt (v(t) tP[x] tV)= v(t) tP[xl dt tV+ tV dt (v(t) tP[xJ). 

Next, 

d d d 
dt (v(t) tP[xJ) = v(t) dt tP[x] + tP[x] dt v(t). 

From Chapter 2 we know that 

d 
dt tP[x] = -tP[x]/-L[x]+t 

and from formula (7.8) 

:t v(t) = -Ot exp {-lot Osds} = -81 v(t). 

Thus, the derivative of the left-hand side of equation (7 .10) is 

d d 
dt ( v(t) t P[x] tV) = v(t) t P[x] dt tV- tV ( v(t) t P[xJ/-L[xJ+t + t P[x] Ot v(t)) 

= v(t) t P[x] ( :t tV - tV (~-t[x]+t + Ot)). 

Equating this to (7.11) yields Thiele's differential equation, namely 

I~ tV= Ott V + Pt- et- (St + Et- tV) /-L[x]+t ·I (7.12) 
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Formula (7.12) can be interpreted as follows. The left-hand side of the formula, 
d 1 V jdt, is the rate of increase in the policy value at timet. We can derive a 
formula for this rate of increase by considering the individual factors affecting 
the value of 1 V: 

• Interest is being earned on the current amount of the policy value. The 
amount of interest earned in the time interval t to t + h is 81 1 V h ( +o (h)), 
so that the rate of increase at time t is 81 1 V. 

• Premium income, minus premium-related expenses, is increasing the pol
icy value at rate P1 - e1• If there were annuity payments at time t, this 
would decrease the policy value at the rate of the annuity payment (plus 
any annuity-related expenses). 

e Claims, plus claim-related expenses, decrease the amount of the policy value. 
The expected extra amount payable in the time interval t to t + h is 
f-L[x]+th (S1 + E1 - 1 V) and so the rate of decrease at time t is P,[x]+t 

(St + Et - tV). 

Hence the total rate of increase of the policy value at time t is 

8t tV+ Pt - et - 11-[xJ+t(St + Et - tV). 

We can also relate formula (7.12) to equation (7.7) assuming that for some very 
small value h, 

d 1 
dt tV R:! h ( t+h V - tV) , (7.13) 

leading to the relationship 

(1 +8th) tV+ CPt- er)h R:! t+h V + hf-L[xJ+tCSt + Et- tV). 

Remembering that h is very small, the interpretation of the left-hand side is that 
it is the accumulation from time t to time t + h of the policy value at time t plus 
the accumulation at time t + h of the premium income less premium-related 
expenses over the interval (t, t +h). (Note that for very small h, 57il R:! h.) This 
total accumulation must provide the policy value at time t + h, and, if death 
occurs in the interval (t, t +h), it must also provide the excess S1 + E1 - 1 V 

over the policy value. The probability of death in the interval (t, t + h) is 

approximately hP,[xJ+t· 

7.5.2 Numerical solution of Thiele's differential equation 

In this section we show how we can evaluate policy values by solving Thiele's 
differential equation numerically. The key to this is to apply equation (7.13) 
as an identity rather than an approximation, assuming that h is very small. 
This leads to 
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t+h V- tV= h(8t tV+ Pt- et- /L[xJ+t(St + Et- tV)). (7.14) 

The smaller the value of h, the better this approximation is likely to be. The 
values of 81, P1, e1, /L[x]+t, S1 and E1 are assumed to be known, so this equa
tion allows us to calculate 1 V provided we know the value of t+h V, or t+h V if 
we know the value of 1 V. But we always know the value of 1 V as t approaches 
the end of the policy term since, in the limit, it is the amount that should be held 
in respect of a policyholder who is still alive. For an endowment policy with 
term n years and sum insured S, the policy value builds up so that just before 
the maturity date it is exactly sufficient to pay the maturity benefit, that is 

lim 1 V = S, 
t---7-n-

for a term insurance with term n years and sum insured S, we have 

lim 1 V = 0, 
t---7-n-

and for a whole life insurance with sum insuredS, we have 

lim 1V = S, 
(---7-(J)-

where w is either the upper limit of the survival model, or a practical upper 
limit. 

Using the endowment policy with term n years and sum insured S as an 
example, formula (7 .14) with t = n - h gives us 

S- n-h V = h (on-h n-h V + Pn-h - en-h - /L[x]+n-h 

x (Sn-h + En-h - n-h V)), 

from which we can calculate n-h V. Another application of formula (7.14) with 
t = n- 2h gives the value of n-2h V, and so on. 

This method for the numerical solution of a differential equation is known as 
Euler's method. It is the continuous time version of the discrete time recursive 
method for calculating reserves illustrated in Example 7.7. 

Example 7.12 Consider a 20-year endowment insurance issued to a life aged 
30. The sum insured, $100000, is payable immediately on death, or on sur
vival to the end of the term, whichever occurs sooner. Premiums are payable 
continuously at a constant rate of $2500 per year throughout the term of the 
policy. The policy value basis uses a constant force of interest, 8, and makes 
no allowance for expenses. 

(a) Evaluate 10 V. 

(b) Use Euler's method with h = 0.05 years to calculate 10 V. 
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Perform the calculations on the following basis: 

Survival model: Standard Select Survival Model 
Interest: 8 = 0.04 per year 

Solution 7.12 (a) We have 

10 V = 100 OOOA40:10l - 2500a4o:!Ol' 

and as 

we can calculate 10 V as 

10 v = 10oooo- oooooo8 + 2500)a4o:!Ol· 

Using numerical integration or the three-term Woolhouse formula, we get 

a40:10l = 8.2167, 

and hence 10 V = 46 591. 

(b) For this example, 8t = 0.04, et = 0 = Et, Pt = 2500 and 
/L49.95 = 0.0011471. Hence 

100 ooo- V19.9s = (0.05)((0.04)V19.9s + 2 5oo 

- (0.003204)(100000- V19.95)) 

=* v19.9s = 99 676. 

Calculating recursively V19.9, V19.85, ... , we arrive at 10 V = 46 635. 

We note that the answer here is close to $46 591, the value calculated in 
part (a). Using a value of h = 0.01 gives the closer answer of $46 600. D 

We remarked earlier that a useful feature of setting up and numerically solv
ing a differential equation for policy values is that the numerical solution gives 
policy values at a variety of durations. We can see this in the above example. 
In part (a) we wrote down an expression for 10 V and evaluated it using numer
ical integration. By contrast, in part (b) with h = 0.05, as a by-product of 
our backwards recursive calculation of 10 V we also obtained values of 10+h V, 

10+211 V, ...• 20-h V. 
Other major advantages of Thiele's equation arise from its versatility and 

flexibility. We can easily accommodate variable premiums, benefits and inter
est rates. We can also use the equation to solve numerically for the premium 
given the benefits, interest model and boundary values for the policy values. 
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7.6 Policy alterations 

A life insurance policy is a contract between an individual, the policyholder, 
and the insurance company. This contract places obligations on both parties; 
for example, the policyholder agrees to pay regular premiums while he or she 
remains alive and the insurance company agrees to pay a sum insured, plus 
bonuses for a participating policy, on the death of the policyholder. So far in 
this book we have assumed that the terms of the contract are never broken or 
altered in any way. In practice, it is not uncommon, after the policy has been 
in force for some time, for the policyholder to request a change in the terms of 
the policy. Typical changes might be: 

(1) The policyholder wishes to cancel the policy with immediate effect. In this 
case, it may be appropriate for the insurance company to pay a lump sum 
immediately to the policyholder. This will be the case if the policy has 
a significant investment component - such as an endowment insurance, 
or a whole life insurance. Term insurance contracts generally do not have 
an investment objective. A policy which is cancelled at the request of the 
policyholder before the end of its originally agreed term, is said to lapse or 
to be surrendered, and any lump sum payable by the insurance company 
for such a policy is called a surrender value or a cash value. 

We tend to use the term lapse to indicate a voluntary cessation when no 
surrender value is paid, and surrender when there is a return of assets 
of some amount to the policyholder, but the words may be used inter
changeably. 

In the USA and some other countries, insurers are required to offer 
cash surrender values on certain contract types once they have been in 
force for one or two years. The stipulation is known as the non-forfeiture 
law. Allowing zero cash values for early surrenders reflects the need of 
the insurers to recover the new business strain associated with issuing the 
policy. 

(2) The policyholder wishes to pay no more premiums but does not want to 
cancel the policy, so that, in the case of an endowment insurance for exam
ple, a (reduced) sum insured is still payable on death or on survival to the 
end of the original term, whichever occurs sooner. Any policy for which no 
further premiums are payable is said to be paid-up, and the reduced sum 
insured for a policy which becomes paid-up before the end of its original 
premium paying term is called a paid-up sum insured. 

(3) A whole life policy may be converted to a paid-up term insurance policy 
for the original sum insured. 

(4) Many other types of alteration can be requested: reducing or increasing 
premiums; changing the amount of the benefits; converting a whole life 
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insurance to an endowment insurance; converting a non-participating 
policy to a with-profit policy; and so on. The common feature of these 
changes is that they are requested by the policyholder and were not part of 
the original terms of the policy. 

If the change was not part of the original terms of the policy, and if it has been 
requested by the policyholder, it could be argued that the insurance company 
is under no obligation to agree to it. However, when the insurer has issued 
a contract with a substantive investment objective, rather than solely offering 
protection against untimely death, then at least part of the funds should be 
considered to be the policyholder's, under the stewardship of the insurer. In the 

I 
USA the non-forfeiture law states that, for investment-type policies, each of 
(1), (2) and (3) would generally be available on pre-specified minimum terms. 
In particular, fixed or minimum cash surrender values, as a percentage of the 
sum insured, are specified in advance in the contract terms for such policies. 

For policies with pre-specified cash surrender values, let C V1 denote the cash 
surrender value at duration t. Where surrender values are not set in advance, the 
actuary would determine an appropriate value for C V1 at the time of alteration. 

Starting points for the calculation of C V1 could be the policy value at t, 1 V, 
. if it is to be calculated in advance, or the policy's asset shl!Te, ASr. when the 
surrender value is not pre-specified. Recall that AS1 represents (approximately) 
the cash the insurer actually has and 1 V represents the amount the insurer 
should have at time t in respect of the original policy. Recall also that if the 
policy value basis is close to the actual experience, then 1 V will be numerically 
close to ASt. 

Setting CV1 equal to either AS1 or 1 V could be regarded as over:generous 
to the policyholder for several reasons, including: 

(1) It is the policyholder who has requested that the contract be changed. The 
insurer will be concerned to ensure that surrendering policyholders do not 
benefit at the expense of the continuing policyholders- most insurers pre
fer the balance to go the other way, so that policyholders who maintain 
their contracts through to maturity achieve greater value than those who 
surrender early or change the contract. Another implication of the fact that 
the policyholder has called for alteration is that the policyholder may be 
acting on know ledge that is not available to the insurer. For example, a pol
icyholder may alter a whole life policy to a term insurance (with lower pre
miums or a higher sum insured) if he or she becomes aware that their health 
is failing. This is called anti-selection or selection against the insurer. 

(2) The insurance company will incur some expenses in making the alterations 
to the policy, and even in calculating and informing the policyholder of the 
revised values, which the policyholder may not agree to accept. 
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(3) The alteration may, at least in principle, cause the insurance company to 
realize assets it would otherwise have held, especially if the alteration is 
a surrender. This liquidity risk may lead to reduced investment returns 
for the company. Under non-forfeiture law in the USA, the insurer has six 
months to pay the cash surrender value, so that it is not forced to sell assets 
at short notice. 

For these reasons, CV1 is usually less than 100% of either AS1 or 1 V and may 
include an explicit allowance for the expense of making the alteration. 

For alterations other than cash surrenders, we can apply C V1 as if it were a 
single premium, or an extra preliminary premium, for the future benefits. That 
is, we construct the equation of value for the altered benefits, 

CV1 + EPV at t of future premiums, altered contract 

= EPV at t of future benefits plus expenses, altered contract. (7.15) 

The numerical value of the revised benefits and/or premiums calculated using 
equation (7 .15) depends on the basis used for the calculation, that is, the 
assumptions concerning the survival model, interest rate, expenses and future 
bonuses (for a with-profits policy). This basis may be the same as the premium 
basis, or the same as the policy value basis, but in practice usually differs from 
both of them. 

The rationale behind equation (7.15) is the same as that which leads to the 
equivalence principle for calculating premiums: together with the cash cur
rently available ( C V1), the future premiums are expected to provide the future 
benefits and pay for the future expenses. 

Example 7.13 Consider the policy discussed in Examples 7.4 and 7.9. You are 
given that the insurer's experience in the five years following the issue of this 
policy is as in Example 7.9. At the start of the sixth year, before paying the 
premium then due, the policyholder requests that the policy be altered in one 
of the following three ways. 

(a) The policy is surrendered immediately. 

(b) No more premiums are paid and a reduced annuity is payable from age 60. 
In this case, all premiums paid are refunded at the end of the year of death 
if the policyholder dies before age 60. 

(c) Premiums continue to be paid, but the benefit is altered from an annuity 
to a lump sum (pure endowment) payable on reaching age 60. Expenses 
and benefits on death before age 60 follow the original policy terms. There 
is an expense of $100 associated with paying the sum insured at the new 
maturity date. 
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Calculate (a) the surrender value, (b) the reduced annuity and (c) the sum 
insured assuming the insurer uses 

(i) 90% of the asset share less a charge of $200, or 
(ii) 85% of the policy value less a charge of $200 

together with the assumptions in the policy value basis when calculating revised 
benefits and premiums. 

Solution 7.13 We already know from Examples 7.4 and 7.9 that 

s V = 65 470 and ASs= 63 509. 

Hence, the amount CVs to be used in equation (7.15) is 

(i) 0.9 x ASs - 200 = 56 958, 
(ii) 0.9 X S V- 200 =58 723. 

(a) The surrender values are the cash values CVs, so we have 

(i) $56 958, 
(ii) $58 723. 

(b) Let X denote the revised annuity amount. In this case, equation (7.15) 
gives 

CVs = 5 X 11 900AS~:51 + 100AS~:51 +(X+ 25)vs SPSS a60· 

Using values calculated for the solution to Example 7.4, we can solve this 
equation for the two different values for C Vs to give 

(i) X = $4859, 
(ii) X = $5012. 

(c) LetS denote the new sum insured. Equation (7.15) now gives 

CVs + 0.95 x 11 900ass: 51 = 11 900 ((I A) s!: 51 + 5As;: ~) 
+ lOOAs;: 51 + vs sPss (S + 100) 

which we solve using the two different values for CVs to give 

(i) s = $138 314, 
(ii) s = $140 594. D 

Example 7.14 Ten years ago a man now aged 40 purchased a with-profit whole 
) 

life insurance. The basic sum insured, payable at the end of the year of death, 
was $200000. Premiums of $1500 were payable annually for life. 

The policyholder now requests that the policy be changed to a with-profit 
endowment insurance with a remaining term of 20 years, with the same pre
mium payable annually, but now for a maximum of 20 further years. 
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The insurer uses the following basis for the calculation of policy values and 
policy alterations. 

Survival model: Standard Select Survival Model 
Interest: 5% per year 
Expenses: None 
Bonuses: Compound reversionary bonuses at rate 1.2% per year 

at the start of each policy year, including the first. 

The insurer uses the full policy value less an expense of $1000 when calculat
ing revised benefits. You are given that the actual bonus rate declared in each 
of the past 10 years has been 1.6%. 

(a) Calculate the revised sum insured, to which future bonuses will be added, 
assuming the premium now due has not been paid and the bonus now due 
has not been declared. 

(b) Calculate the revised sum insured, to which future bonuses will be added, 
assuming the premium now due has been paid and the bonus now due has 
been declared to be 1.6%. 

Solution 7.14 (a) Before the declaration of the bonus now due, the sum insured 
for the original policy is 

200 000 X 1.01610 = 234 405. 

Hence, the policy value for the original policy, 10 V, is given by 

10 V = 234 405A4o j - P i:i4o 

where P = 1500 and the subscript j indicates that the rate of interest to 
be used is 3.75494% since 

1.05/1.012 = 1.0375494. 

LetS denote the revised sum insured. Then, using equation (7.15) 

10 V- 1000 = S A4o:20Jj- Pi:i4o:201· (7.16) 

A point to note here is that the life was select at the time the policy was 
purchased, ten years ago. No further health checks are carried out at the 
time of a policy alteration and so the policyholder is now assumed to be 
subject to the ultimate part of the survival model. 

You should check the following values 

A4oj = 0.19569, i:i4o = 18.4578, 

A4o:20]j = 0.48233, i:i40: 201 = 12.9935. 
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Hence 

s = $76039. 

(b) Let 10+ V denote the policy value just after the premium has been paid 
and the bonus has been declared at time 10. The term A4o i used in the 
calculation of 10 V assumed the bonus to be declared at time 10 would be 
1.2%, so that the sum insured in the 11th year would be 234 405 x 1.012, in 
the 12th year would be 234405 x 1.0122, and so on. Given that the bonus 
declared at time 10 is 1.6%, these sums insured are now 234405 x 1.016 
(this value is known) and 234405 x 1.016 x 1.012 (this is an assumed 
value since it assumes the bonus declared at the start of the 12th year will 
be 1.2%). Hence 

10+ V = (1.016/1.012) x 234405A4o} - Pa4o 

= (1.016/1.012) x 234405A4oj - Pa4o + P. 

Let S' denote the revised sum insured for the endowment policy in this 
case. Equation (7.15) now gives 

10+ V- 1000 = (S' /1.012) A 40:2olJ - Pa40: 191 

= (S' /1.012) A 40:2olJ - P(a40: 261 - 1), 

and hence· 

S' = $77 331. 
D 

Note that, in Example 7.14, the su:rn insured payable in the 11th year is 
S x 1.016 = $149295 in part (a) and $149381 in part (b). The difference 
between these values is not due to rounding - the timing of the request for 
the alteration has made a (small) difference to the sum insured offered by the 
insurer for the endowment insurance. This is caused partly by the charge of 
$1000 for making the alteration and partly by the fact that the bonus rate in 
the 11th year is not as assumed in the policy value basis. In Example 7.14 we 
would have S' = S x 1.012 if there were no charge for making the alteration 
and the bonus rate declared in the 11th year were the same as the rate assumed 
in the reserve basis (and the full policy value is still used in the calculation of 
the revised benefit). 

7. 7 Retrospective policy values 

7.7.1 Prospective and retrospective valuation 

Our definition of a policy value is based on the future loss random variable. 
As noted in Section 7.3.2, what we have called a policy value is called by 
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some authors a prospective policy value. Since prospective means looking to 
the future, this name has some merit. We may also define the retrospective 
policy value at duration t, which is, loosely, the accumulated value of past 
premiums received, less the value of the past insurance, for a large group of 
identical policies, assuming the experience follows precisely the assumptions 
in the policy value basis, divided by the expected number of survivors. This is 
precisely the calculation detailed in the final part of Section 7 .3.1 in respect of 
the policy studied in Example 7.1, so that the left-hand side of formula (7 .2) is 
a formula for the retrospective policy value (at duration 10) for this particular 
policy. 

The main purpose of policy values is to determine the liability value for 
policies that are in force. That is, the policy value is used to determine the cap
ital that the insurer needs to hold such that, together with the expected future 
premiums, the insurer will have sufficient assets to meet the expected future 
liabilities. This fund is what actuaries call the reserve at time t for the policy. 
Since the purpose of the policy value is to assess future needs, it is natural to 
take the prospective approach. 

The r~trospective policy value will be defined more formally below; loosely, 
it measures the value at time t of all the cash flows from time 0 to time t, 
expressed per surviving policyholder. It is connected to the asset share, which 
tracks the accumulated contribution of each surviving policy to the insurer's 
funds. The difference between the retrospective policy value and the asset share 
is that, by definition, the asset share at time t uses the actual experience up to 
time t. The asset share at time t cannot be calculated until time t. The retro
spective policy value can use any basis, and can be calculated at any time. If 
the retrospective policy value basis exactly matches the experience, then it will 
be equal to the asset share. 

Intuitively, we interpret the prospective policy value as a measure of the 
funds needed at time t, and the retrospective policy value as a measure of the 
funds expected to be acquired at time t. The reserve must be prospective to 
meet natural requirements that assets should be sufficient to meet future liabil
ities. At time t, also, we have an exact measure of the asset share at that time. 
It is not clear why the retrospective reserve is necessary, and it is not com
monly used in any country which uses gross premium policy values for setting 
reserves. 

However, there is one way in which retrospective policy values may be use
ful, and it arises from the fact that, under very specific conditions, the prospec
tive and retrospective policy values are equal. That is, let 1 vR denote the 
retrospective policy value and let 1 V P denote the prospective policy value of 
an n-year insurance policy. There are two conditions for 1 V P to be equal to 

1 V R, in general, namely: 
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(1) the premiums for the contract are determined using the equivalence prin
ciple, and 

(2) the same basis is used for tV R, tV P and the equivalence principle pre
mium. 

Now, in most cases, these conditions are very unlikely to be satisfied. Poli
cies are very long term, and the basis used to determine the premiums will be 
updated regularly to reflect more up-to-date information about interest rates, 
expenses and mortality. The valuation assumptions might be quite different 
from the premium basis, as the former are likely to be more regulated to man
age solvency risk. 

However, there is one circumstance when the conditions may be satisfied, 
and the equality of the prospective and retrospective policy values may be use
ful. This is the case when the insurer uses the net premium policy value for 
determination of the reserves. Recall from Definition 7.2 that under the net 
premium policy value calculation, the premium used is always calvulated using 
the valuation basis (regardless of the true or original premium): If, as is cus
tomary, the premium is calculated using the equivalence principle, then the 
retrospective and prospective net premium policy values will be the same. This 
can be useful if the premium or benefit structure is complicated, so that it may 
be simpler to take the accumulated value of past premiums less accumulated 
value of benefits, per surviving policyholder (the retrospective policy value), 
than to use the prospective policy value. It is worth noting that many policies 
in the USA are still valued using net premium policy values, often using a 
retrospective formula. In all other major developed insurance markets, regula
tors require some form of gross premium policy value calculation, and in these 
countries the retrospective approach would be inappropriate. 

7. 7.2 Defining the retrospective net premium policy value 

Consider an insurance sold to (x) at timet = 0 with term n (which may be 
oo for a whole life contract)! For a policy in force at time t, let Lt denote 
the present value at time t of all the future benefits less net premiums, under 
the terms of the contract. The prospective policy value, tV P, was defined for 
policies in force at time t < n as 

If (x) does not survive to time t then Lt is undefined. 
The value at issue of all future benefits less premiums payable from time 

t < n onwards .is the random variable 

where I is the indicator function. 
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Further, we define Lo,t, fort :::; n, as 

Lo, 1 = Present value, at issue, of future benefits payable up to time t 

- Present value, at issue, of future net premiums payable up to time t. 

If premiums and benefits are paid at discrete intervals, and t is a premium or 
benefit payment date, then the convention is that Lo, 1 would include benefits 
payable at time t, but not premiums. At issue (time 0) the future net loss ran
dom variable Lo comprises the value of benefits less premiums up to time t, 
Lo,1, plus the value of benefits less premiums payable after timet, that is 

Lo = Lo,t + I(Tx > t)v1L1• 

We now define the retrospective net premium policy value as 

R -E[Lo,t](l+i)1 

tV =----~-----
tPx 

and this formula corresponds to the calculation in Section 7.2 for the policy 
from Example 7.1. The term -E[Lo,1](1 + i) 1 is the expected value of premi
ums less benefits in the first t years, accumulated to time t. Dividing by 1 Px 
expresses the expected accumulation per expected surviving policyholder. 

Recall the conditions listed for equality of the retrospective and prospective 
values: 

(1) the premium is calculated using the equivalence principle, and 

(2) the same basis is used for prospective policy values, retrospective policy 
values and the equivalence principle premium. 

By the equivalence principle, 

E[Lo] = E [Lo,t + I(Tx > t) v1 L 1] = 0, 

=} -E[Lo,t] = E [I(Tx > t) v1 L 1] 

=} -E[Lo,tJ = tPx V
1 tVP 

=}tVR=tVP. 

The same result could easily be derived for gross premium policy values, 
but the assumptions listed are very unlikely to hold when expenses and gross 
premiums are taken into consideration. 

Example 7.15 An insurer issues a whole life insurance policy to a life aged 40. 
The death benefit in the first five years of the contract is $5000. In subsequent 
years, the death benefit is $100 000. The death benefit is payable at the end 
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of the year of death. Premiums are paid annually for a maximum of 20 years. 
Premiums are level for the first five years, then increase by 50%. 

(a) Write down the equation of value for calculating the net premium, using 
standard actuarial functions. 

(b) Write down equations for the net premium policy value at timet = 4 using 
(i) the retrospective policy value approach, and (ii) the prospective policy 
value approach. 

(c) Write down equations for the net premium policy value at time t = 20 
using (i) the retrospective policy value approach, and (ii) the prospective 
policy value approach. 

Solution 7.15 For convenience, we work in units of $1000. 

(a) The equivalence principle premium is P for the first 5 years, and 1.5 P 
thereafter, where 

(7.17) 

(b) The retrospective and prospective policy value equations at time t = 4 are 

(7.18) 

and 

4VP = 5A~:Tl + l001E44A45- P (a44:!l + l.S1E44a45:15l). (7.19) 

(c) The retrospective and prospective policy value equations at time t = 20 

are 

and 

0 

From these equations, we see that for this contract, the retrospective policy 
value offers an efficient calculation method at the start of the contract, when 
the premium and benefit changes are ahead, and the prospective approach is 
more efficient at later durations, when the changes are in the past. 
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Example 7.16 For Example 7.15 above, show that the prospective and retro
spective policy values at timet = 4, given in equations (7.18) and (7.19), are 
equal under the standard assumptions (premium and policy values all use the 
same basis, and the equivalence principle premium). 

Solution 7.16 Note that, assuming all calculations use the same basis, 

A 4~: 51 = A4~: 41 + 4E4o A 4~: ll' 
ii 40: 51 = ii 40: 41 + 4E4o ii 44: 11 

sE4o = 4E4o 1£44. 

Now we use these to rewrite the equivalence principle premium equation (7 .17), 

P ( ii40: 51+ 1.5 sE4o ii45: 151) = 5Ai0:51 + 100 sE4o A4s 

=} P ( ii4o:41 + 4E4o ii44: 11 + 1.5 4E4o 1£44 ii45: 151) 

= 5 (A 4~: 41 + 4E4o A 4~: 11) + 100 4E4o 1£44 A4s. 

Rearranging gives 

P ii40: 41 - 5A 4~: 41 = 4E4o ( 5 A }4: 1l + 100 1£44 A4s 

- P (a44:1l + 1.51E44ii45 :151)). 

Dividing both sides by 4E4o gives 4 V R = 4 V P as required. 0 

7.8 Negative policy values 

In all our examples in this chapter, the policy value was either zero or positive. 
It can happen that a policy value is negative. In fact, negative gross premium 
policy values are not unusual in the first few months of a contract, after the 
initial expenses have been incurred, and before sufficient premium is collected 
to defray these expenses. However, it would be unusual for policy values to be 
negative after the early period of the contract. If we consider the policy value 
equation 

tV = EPV at t of future benefits +Expenses - EPV at t of future premiums, 

then we can see that, since the future benefits and premiums must both have 
non-negative EPVs, the only way for a negative policy value to arise is if the 
future benefits are worth less than the future premiums. 

In practice, negative policy values would generally be set to zero when car
rying out a valuation of the insurance company. Allowing them to be entered 
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as assets (negative liabilities) ignores the policyholder's option to lapse the 
contract, in which case the excess premium will not be received. 

Negative policy values arise when a contract is poorly designed, so that the 
value of benefits in early years exceeds the value of premiums, followed by a 
period when the order is reversed. If the policyholder lapses then the policy
holder will have benefitted from the higher benefits in the early years without 
waiting around to pay for the benefit in the later years. In fact, the policyholder 
may be able to achieve the same benefit at a cheaper price by lapsing and buy
ing a new policy - called the lapse and re-entry option. 

7.9 Deferred acquisition expenses and modified premium reserves 

The principles of reserve calculation, such as whether to use a gross or net pre
mium policy value, and how to determine the appropriate basis, are established 
by insurance regulators. While most jurisdictions use a gross premium policy 
value approach, as mentioned above, the net premium policy value is still used 
in the USA. 

The use of the net premium approach can offer some advantages, in compu
tation, and perhaps in smoothing results, but it can be quite a severe standard 
when there are large initial expenses (called acquisition expenses) incurred by 
the insurer. To reduce the impact, the reserve is not calculated directly as the net 
premium policy value, but can be modified, to approximate a gross premium 
policy value approach, whilst maintaining the advantages of the net premium 
approach. In this section we explain why this approach is used, by considering 
the impact of acquisition expenses on the policy value calculations. 

Let 1 vn denote the net premium policy value for a contract which is in force 
t years after issue, and let 1 V g denote the gross premium policy value for the 
same contract, using the equivalence premium principle and using the original 
premium interest and mortality basis. Then we have 

1 vn = EPV future benefits - EPV future net premiums 

1 Vg = EPV future benefits+ EPV future expenses 

- EPV future gross premiums 

oVn = oVg = 0. 

So we have 

1 Vg = EPV future benefits+ EPV future expenses 

- (EPV future net premiums+ EPV future expense loadings) 

= 1 vn + EPV future expenses - EPV future expense loadings. 
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That is tV g = 1 vn + 1 ve, say, where t ve is the expense policy value, 

t ye = EPV future expenses - EPV future expense loadings. 

What is important about this relationship is that, generally, 1 ye is negative, 
meaning that, for t > 0, the net premium policy value is greater than the gross 
premium policy value, assuming the same interest and mortality assumptions 
for both. This may appear counterintuitive - the reserve which takes expenses 
into consideration is smaller than the reserve which does not - but remember 
that the gross premium approach offsets the higher future outgo with higher 
future premiums. If expenses were incurred as a level annual amount, and 
assuming premiums are level and payable throughout the policy term, then 
the net premium and gross premium policy values would be the same, as the 
extra expenses valued in the gross premium case would be exactly offset by the 
extra premium. In practice though, expenses are not incurred at a flat rate. The 
acquisition expenses (commission, underwriting and administrative) are large 
relative to the renewal and claims expenses. This results in negative values for 
t ve' in general. 

Suppose the gross premium for a level premium contract is pg, and the net 
premium is pn. The difference, pe, say, is the expense loading (or expense 
premium) for the contract. This is the level annual amount paid by the policy
holder to cover the policy expenses. If expenses were incurred as a level sum 
at each premium date, then pe would equal those incurred expenses (assuming 
premiums are paid throughout the policy term). If expenses are weighted to 
the start of the contract, as is normally the case, then pe will be greater than 
the renewal expense as it must fund both the renewal and initial expenses. We 
illustrate these ideas with an example. 

Example 7.17 An insurer issues a whole life insurance policy to a life aged 
50. The sum insured of $100 000 is payable at the end of the year of death. 
Level premiums are payable annually in advance throughout the term of the 
contract. All premiums and policy values are calculated using the Standard 
Select Survival Model, and an interest rate of 4% per year effective. Initial 
expenses are 50% of the gross premium plus $250. Renewal expenses are 3% 
of the gross premium plus $25 at each premium date after the first. 

Calculate 

(a) the expense loading, pe, and 

(b) 10 ve, 10 yn and 10 vg. 



228 Policy values 

Solution 7.17 (a) The expense loading, pe, depends on the gross premium, 
pg, which we calculate first as 

g 100 ooo A[so1 + 25 a[so1 + 225 $ 
4 p = . = 1 35.89. 

0.97 G[SOJ - 0.47 

Now pe can be calculated by finding the EPV of future expenses, and 
calculating the level premium to fund those expenses - that is 

pe a[SOJ = 25 a[sOJ + 225 + 0.03Pg a[sOJ + 0.47 Pg. 

Alternatively, we can calculate the net premium, pn = 100 OOOA[so]/a[SOJ 
= 1321.31, and use pe = pg- P11

• Either method gives pe = $114.58. 
Compare the expense premium with the incurred expenses. The annual 

renewal expenses, payable at each premium date after the first, are $68.08. 
The rest of the expense loading, $46.50 at each premium date, reimburses 
the acquisition expenses, which total $967.94 at inception. Thus, at any 
premium date after the first, the value of the future expenses will be smaller 
than the value of the future expense loadings. 

(b) The expense reserve at timet = 10 for an in-force contract is 

10 ve = 25 a6o + 0.03 pg a6o - pe a6o = -46.50 a6o = -770.14, 

the net premium policy value is 

wV11 = 100000A6o- P11 a6o = 14416.12, 

and the gross premium policy value is 

10 Vg = 100 000 A6o + 25 a6o- 0.97 Pg a6o = 13 645.98. 

We note that, as expected, the expense reserve is negative, and that 

10Vg = 10V11 + 10Ve. 

D 

The negative expense reserve is referred to as the deferred acquisition cost, 
or DAC. The use of the net premium reserve can be viewed as being overly 
conservative, as it does not allow for the DAC reimbursement. The idea is that 
an insurer should not be required to hold the full net premium policy value as a 
reserve, when the true future liability value is smaller because of the DAC. One 
solution would be to use a gross premium reserve, but to do so would lose some 
of the numerical advantage offered by the net premium approach, including 
simple formulae for standard contracts, and including the ability to use either 
a retrospective or prospective formula to perform the valuation. An alternative 
method, which maintains most of the numerical simplicity of the net premium 
approach, is to modify the net premium method to allow for the DAC, in a way 
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that is at least approximately correct. Modified premium reserves use a net 
premium policy value approach to reserve calculation, but instead of assuming 
a level annual premium, we assume a lower initial premium to allow implicitly 
fortheDAC. 

The most common method of adjusting the net premium policy value is 
the Full Preliminary Term (FPT) approach. We describe this approach for a 
simple contract, to illustrate the principles, but the method can be quite easily 
generalized to more complex products. 

Consider a whole life insurance with level annual premiums payable 
throughout the term. Let P[x]+s denote the net premium for a contract issued 
to a life aged [x] + s, who was select at age x. Let 1P[x] denote the single 
premium to fund the benefits payable during the first year of the contract (this 
is called the first year Cost oflnsurance). Then the FPT reserve for a contract 
issued to a select life aged x is the net premium policy value assuming that 
the net premium in the first year is 1 P[x l and in all subsequent years is P[x l+ 1· 

This is equivalent to considering the policy as two policies, a one-year term 
insurance, and a separate contract issued to the same life one year later, if the 
life survives. 

Example 7.18 (a) Calculate the premiums 1P[SO] and P[50]+1 for the policy in 
Example 7.17. 

(b) Compare the net premium policy value, the gross premium policy value 
and the FPT reserve for the policy in Example 7.17 at durations 0, 1, 2 and 
10. 

Solution 7.18 (a) The modified net premium assumed at timet = 0 is 

1P[SO] = lOOOOOA[;OJ:ll = 100000vq[50] = 99.36. 

The modified net premium assumed paid at all subsequent premium 
dates is 

100 000 Arso]+1 
P[50]+1 = .. = 1387.89. 

arso]+I 

(b) Let pg denote the gross premium for the policy. This is the gross pre
mium calculated in Example 7.17, payable annually throughout the term. 
At time 0, 
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o V 11 = 100 000 A[so] - P[50J G[50J = 0, 

o Vg = 100000 A[so1 + 225 + 25 G[50J + 0.47 Pg- 0.97 Pg a[50J = 0, 

o V F PT = 100 000 A[50] - 1 P[50] - P[50J+ 1 v P[50] G[50J+ 1 

= 100 000 ( A[;OJ: II + v P[50J A[50J+ 1) - 100 OOOA[;OJ: II 

(
100000A[50J+1) .. 

- .. v P[50] a[ 50]+ 1 
a[50J+1 

=0. 

At time 1, 

1V11 = 100000A[sOJ+1- P[50JG[50J+1 = 1272.15, 

1 Vg = 100000 A[50J+1 + 25 G[50J+1- 0.97 Pg G[50J+1 = 383.73, 

1 VFPT = 100000 A[50J+1 - P[50J+1 G[50J+1 = 0. 

At time 2, 

2 V 11 = 100000 As2- P[50l as2 = 2574.01, 

2 vg = 10oooo As2 + 25 as2- 0.97 Pg as2 = 1697.30, 

2 vFPT = 100000 As2- P[sOJ+l as2 = 1318.63. 

At time 10, we know from Example 7.17 that 

1,0 V 11 = 14416.12 and 10 vg = 13 645.98, 

and we have 

10 VFPT = 100000A60 - P[50J+1 a6o = 13313.34. 

The FPT reserve is intended to approximate the gross premium policy 
value, particularly in the first few years of the contract. We see in this 
example that the insurer would benefit significantly in the first year from 
using the FPT approach rather than the net premium policy value. As the 
policy matures, all the policy values converge (though perhaps not until 
extremely advanced ages). 

The FPTmethod implicitly assumes that the whole first year premium 
is spent on the cost of insurance and the acquisition expenses. In this case, 
that assumption overstates the acquisition expenses slightly, with the result 
that the FPT reserve is actually a little lower than the gross premium policy 
value. Modifications of the method (partial preliminary term) would allow 
for a net premium after the first year that lies somewhere between the FPT 
premium and the level net premium. 

D 
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For more complicated policies, the FPT approach may still be applicable. 
For example, if the premium term is limited, say, to a maximum of k years, 
then the FPT modified policy value would assume that the first year's premium 
covers the cost of insurance (as above), and that subsequent premiums would 
be the net premium payable for a policy issued one year later, with a premium 
term of k - I years, that is, one year less. 

7.10 Notes and further reading 

Thiele's differential equation is named after the Danish actuary Thorvald N. 
Thiele (1838-1910). For information about Thiele, see Hoem (1983). 

Euler's method for the numerical solution of a differential equation has the 
advantages that it is relatively simple to implement and it relates to the recur
sive formulae for policy values for policies with annual cash flows. In practice, 
there are· better methods for solving such equations, for example the Runge
Kutta method. See Burden and Faires (2010). 

Texts such as Neill (1977) and Bowers et al. (1997) contain standard actuar
ial notation for policy values. 

7.11 Exercises 

When a calculation is required in the following exercises, unless otherwise 
stated you should assume that mortality follows the Standard Select Survival 
Model, as specified in Appendix D, and that the equivalence principle is used 
for the calculation of premiums. 

Exercise 7.1 You are given the following extract from a select life table with 
four-year select period. A select individual aged 41 purchased a three-year term 
insurance with a sum insured of $200 000, with premiums payable annually 
throughout the term. 

[x] 

[40] 
[41] 
[42] 

100000 
99802 
99597 

99899 
99689 
99471 

99724 
99502 
99268 

99520 
99283 
99030 

99288 
99033 
98752 

44 
45 
46 

The basis for all calculations is an effective rate of interest of 6% per year, and 
no expenses. 

(a) Show that the premium for the term insurance is P = $323.59. 

(b) Calculate the mean and Stitndard deviation of the present value of future 
loss random variable, L 1, for the term insurance. 
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(c) Calculate the sum insured for a three-year endowment insurance for a 
select life age 41, with the same premium as for the term insurance, 
p = $323.59. 

(d) Calculate the mean and standard deviation of the present value of future 
loss random variable, Lt, for the endowment insurance. 

(e) Comment on the differences between the values for the term insurance and 
the endowment insurance. 

Exercise 7.2 For a whole life insurance issued to (40), you are given: 

(i) The death benefit, which is payable at the end of the year of death, is 
$50 000 in the first 20 years, and $100 000 thereafter. 

(ii) Level annual premiums are payable for 20 years or until earlier death. 

(iii) The mortality basis for policy values is the Standard Ultimate Survival 
Model. 

(iv) The interest basis for policy values is 5% per year. 

Calculate the net premium policy value, 10 V. 
(Based on SOA, Fall 2012.) 

Exercise 7.3 A whole life insurance with sum insured $100 000 is issued to 
a select life aged 35. Premiums are paid annually in advance and the death 
benefit is paid at the end of the year of death. 

The premium is calculated using the Standard Select Survival Model, and 
assuming 

Interest: 
Initial Expenses: 
Renewal expenses: 

6% per year effective 
40% of the gross premium plus $125 
5% of gross premiums plus $40, due at the start of each 
policy year from the second onwards 

(a) Calculate the gross premium. 

(b) Calculate the net premium policy value at t = 1 using the premium basis. 

(c) Calculate the gross premium policy value at t = 1 using the premium 
basis. 

(d) Explain why the gross premium policy value is less than the net premium 
policy value. 

(e) Calculate the gross premium policy value at t = 1 assuming interest of 
5.5% per year. All other assumptions follow the premium basis. 

(f) Calculate the asset share per policy at the end of the first year of the 
contract if experience exactly follows the premium basis. 
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(g) Calculate the asset share per policy at the end of the first year of the con
tract if the experienced mortality rate is given by q(35J = 0.0012, the inter
est rate earned on assets was 10%, and expenses followed the premium 
basis, except that there was an additional initial expense of $25 per policy. 

(h) Calculate the surplus at the end of the first year per policy issued given 
that the experience follows (g) and assuming the policy value used is as 
calculated in (c) above. 

(i) Analyse the surplus in (h) into components for interest, mortality and 
expenses. 

Exercise 7.4 A whole life insurance with reduced early sum insured is issued 
to a life age 50. The sum insured payable at the end of the year of death in 
the first two years is equal to $1000 plus the end year policy value in the year 
of death (that is, the policy value that would have been required if the life had 
survived). 

The benefit payable at the end of the year of death in any subsequent year is 
$20 000. The annual premium P is calculated using the equivalence principle. 
The insurer calculates premiums and policy values using the standard select 
survival model, with interest at 6% per year and no expenses. 

(a) (i) Write down the equations for the recursive relationship between suc
cessive policy values for the policy values in the first two years of the 
contract, and simplify as far as possible. 

(ii) Write down an expression for the policy value at time 2, 2 V, in terms 
of the premium P and standard actuarial functions. 

(iii) Using (i) and (ii) above, or otherwise, calculate the annual premium 

and2 V. 

(b) Calculate 2.25 V, the policy value for the contract after 2i years. 

Exercise 7.5 A special deferred annuity issued to (30) provides the following 
benefits: 

A whole life annuity of $10000 per year, deferred for 30 years, payable 
monthly in advance. 

The return of all premiums paid, without interest, at the moment of death, in 
the eVent of death within the first 30 years. 

Premiums are payable continuously for a maximum of 10 years. 

(a) Write down expressions for 

(i) the present value random variable for the benefits, and 

(ii) Lo, the future loss random variable for the contract. 
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(b) Write down an expression in terms of annuity and insurance functions for 
the net annual premium rate, P, for this contract. 

(c) Write down an expression for Ls, the net present value of future loss ran
dom variable for a policy in force at duration 5. 

(d) Write down an expression for s V, the net premium policy value at time 5 
for the contract, in terms of annuity and insurance functions, and the net 
annual premium rate, P. 

Exercise 7.6 An insurer issues a 20-year term insurance policy to (35). The 
sum insured of $100 000 is payable at the end of the year of death, and pre
miums are paid annually throughout the term of the contract. The basis for 
calculating premiums and policy values is: 

Survival model: Standard Select Survival Model ' 
Interest: 5% per year effective 
Expenses: Initial: $200 plus 15% of the first premium 

Renewal: 4% of each premium after the first 

(a) Show that the premium is $91.37 per year. 

(b) Show that the policy value immediately after the first premium payment is 

o+ V = -$122.33. 

(c) Explain briefly why the policy value in (b) is negative. 

(d) Calculate the policy values at each year end for the contract, just before 
and just after the premium and related expenses incurred at that time, and 
plot them on a graph. At what duration does the policy value first become 
strictly positive? 

(e) Suppose now that the insurer issues a large number, N say, of identi
cal contracts to independent lives, all aged 35 and all with sum insured 
$100 000. Show that if the experience exactly matches the premium/policy 
value basis, then the accumulated value at (integer) time k of all premiums 
less claims and expenses paid out up to time k, expressed per surviving 
policyholder, is exactly equal to the policy value at time k. 

Exercise 7.7 Recalculate the analysis of surplus in Example 7.8 in the order: 
mortality, interest, expenses. Check that the total profit is as before and note 
the small differences from each source. 

Exercise 7.8 Consider a 20-year endowment policy issued to (40), with pre
miums, P per year payable continuously, and sum insured of $200 000 payable 
immediately on death. Premiums and policy values are calculated assuming: 
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Survival model: Standard Select Survival Model 
Interest: 5% per year effective 
Expenses: None 

(a) Show that the premium, P, is $6020.40 per year. 

(b) Show that the policy value at duration t = 4, 4 V, is $26131.42. 

(c) Assume that the insurer decides to change the valuation basis at t = 4 
to Makeham's mortality with A = 0.0004, with B = 2.7 x w-6 and 
c = 1.124 as before. Calculate the revised policy value at t = 4 (using the 
premium calculated in part (a)). 

(d) Explain why the policy value does not change very much. 

(e) Now assume again that A = 0.00022 but that the interest assumption 
changes from 5% per year to 4% per year. Calculate the revised value 
of4V. 

(f) Explain why the policy value has changed considerably. 

(g) A colleague has proposed that policyholders wishing to alter their contracts 
to paid-up status should be offered a sum insured reduced in proportion to 
the number of premiums paid. That is, the paid-up sum insured after k 
years of premiums have been paid, out of the original total of 20 years, 
should be S x k j20, where S is the original sum insured. This is called the 
proportionate paid-up sum insured. 

Calculate the EPV of the proportionate paid-up sum insured at each year 
end, and compare these graphically with the policy values at each year 
end, assuming the original basis above is used for each. Explain briefly 
whether you would recommend the proportionate paid-up sum insured for 
this contract. 

Exercise 7.9 Consider a whole life insurance policy issued to a select life aged 
x. Premiums of $P per year are payable continuously throughout the policy 
term, and the sum insured of $S is paid immediately on death. 

(a) Show that 

(b) Assume the life is aged 55 at issue, and that premiums are $1200 per year. 
Show that the sum insured on the basis below is $77 566.44. 

Mortality: Standard Select Survival Model 
Interest: 5% per year effective 
Expenses: None 

j' 
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(c) Calculate the standard deviation of L0, L5 and L~0 . Comment briefly on 
the results. 

Exercise 7.10 For ann-year endowment policy, level monthly premiums are 
payable throughout the term of the contract, and the sum insured is payable at 
the end of the month of death. 

Derive the following formula for the net premium policy value at time t 
years, where t is a premium date: 

( 

.. (12) ) 
V = S 1 - a[x]+t:n=t] 

t .. (12) • 
'·" a[x]:lil 

Exercise 7.11 A life aged 50 buys a participating whole life insurance policy 
with sum insured $10 000. The sum insured is payable at the end of the year 
of death. The premium is payable annually in advance. Profits are distributed 
through cash dividends paid at each year end to policies in force at that time. 

The premium basis is: 

Initial expenses: 
Renewal expenses: 
Interest: 
Survival model: 

22% of the annual gross premium plus $100 
5% of the gross premium plus $10 
4.5% 
Standard Select Survival Model 

(a) Show that the annual premium, calculated with no allowance for future 
bonuses, is $144.63 per year. 

(b) Calculate the policy value at each year end for this contract using the pre
mium basis. 

(c) Assume the insurer earns interest of 5 .5% each year. Calculate the dividend 
payable each year assuming 

(i) the policy is still in force at the end of the year, 

(ii) experience other than interest exactly follows the premium basis, and 

(iii) that 90% of the profit is distributed as cash dividends to policyholders. 

(d) Calculate the expected present value of the profit to the insurer per policy 
issued, usingthe same assumptions as in (c). 

(e) What would be a reasonable surrender benefit for lives surrendering their 
contracts at the end of the first year? 

Exercise 7.12 A 10-year endowment insurance is issued to a life aged 40. The 
sum insured is payable at the end of the year of death or on survival to the 
maturity date. The sum insured is $20 000 on death, $10 000 on survival to age 
50. Premiums are paid annually in advance. 
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(a) The premium basis is: 

Expenses: 
Interest: 

5% of each gross premium including the first 
5% 

Survival model: Standard Select Survival Model 
Show that the gross premium is $807.71. 
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(b) Calculate the policy value on the premium basis just before the fifth pre
mium is due. 

(c) Just before the fifth premium is due the policyholder requests that all future 
premiums, including the fifth, be reduced to one-half their original amount. 
The insurer calculates the revised sum insured- the maturity benefit still 
being half of the death benefit - using the policy value in part (b) with no 
extra charge for making the change. 

Calculate the revised death benefit. 

Exercise 7.13 An insurer issues a whole life insurance policy to a life aged 40. 
The death benefit in the first three years of the contract is $1000. In subsequent 
years the death benefit is $50 000. The death benefit is payable at the end of 
the year of death and level premiums are payable annually throughout the term 
of the contract. 

Basis for premiums and policy values: 

Survival model: Standard Select Survival Model 
Interest: 6% per year effective 
Expenses: None 

(a) Calculate the premium for the contract. 

(b) Write down the policy value formula for any integer duration t :::: 3. 

(c) Calculate the policy value at t = 3. 

(d) Use the recurrence relation to determine the policy value after two years. 

(e) The insurer issued 1000 of these contracts to identical, independent lives 
aged 40. After two years there are 985 still in force. In the following year 
there were four further deaths in the cohort, and the rate of interest earned 
on assets was 5.5%. Calculate the profit or loss from mortality and interest 
in the year. 

Exercise 7.14 A 20-year endowment insurance issued to a life aged 40 has 
level premiums payable continuously throughout the term. The sum insured on 
survival is $60 000. The sum insured payable immediately on death within the 
term is $20 000 if death occurs within the first 10 years and tV if death occurs 
after t years, 10 ::=: t < 20, where 1 V is the policy value calculated on the 
premium basis. 
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Premium basis: 

Survival model: Standard Select Survival Model 
Interest: 81 = 0.06- 0.001t per year 
Expenses: None 

(a) Write down Thiele's differential equation for 1 V, separately for 0 < t < 10 
and 10 < t < 20, and give any relevant boundary conditions. 

(b) Determine the premium rate P by solving Thiele's differential equation 
using Euler's method, with a time step h = 0.05. 

(c) Plot the graph of 1 V for 0 < t < 20. 

Exercise 7.15 On 1 June 2008 an insurer issued a 20-year level term insurance 
to a life then aged exactly 60. The single premium was paid on 1 June 2008. 
The benefit is $1. 

Let 1 V denote the policy value after t years. 

(a) Suppose the death benefit is paid at the year end. Write down and explain 
a recurrence relation between 1 V and t+l V fort= 0, 1, ... , 19. 

(b) Suppose the benefit is payable at the end of every h years, where h < 1. 
Write down a recurrence relation between 1 V and t+h V for 

t = 0, h, 2h, ... '20- h. 

(c) By considering the limit ash --+ 0, show that Thiele's differential equation 
for the policy value for a benefit payable continuously is 

dtV 
-- = (/L[60J+t + 8)t V- /L[60J+t for 0 < t < 20 
dt 

where 8 is the force of interest, and state any boundary conditions. 
(d) Show that 

v- A 1 
t - [60]+t:20-tl 

is the solution to the differential equation in (c). 

Exercise 7.16 An insurer issues identical deferred annuity policies to 100 
independent lives aged 60 at issue. The deferred period is 10 years, after which 
the annuity of $10 000 per year is paid annually in advance. Level premiums 
are payable annually throughout the deferred period. The death benefit during 
deferment is $50 000, payable at the end of the year of death. 

The basis for premiums and policy values is: 

Survival model: Standard Select Survival Model 
Interest: 6% per year 
Expenses: None 
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(a) Calculate the premium for each contract. 
(b) Write down the recursive relationship for the policy values, during and 

after the deferred period. 

(c) Calculate the death strain at risk in the third year of the contract, for each 
contract still in force at the start of the third year. 

(d) Calculate the death strain at risk in the 13th year of the contract, per con
tract in force at the start of the year. 

(e) Two years after the issue date, 97 policies remain in force. In the third year, 
three lives die. Calculate the total mortality profit in the third year, assum
ing all other experience follows the assumptions in the premium basis. 

(f) Twelve years after the issue date 80 lives survive; in the 13th year there are 
four deaths. Calculate the total mortality profit in the 13th year. 

Exercise 7.17 Consider Example 7 .1. Calculate the policy values at intervals 
of h = 0.1 years from t = 0 to t = 2. 

Exercise 7.18 An insurer issues a deferred annuity with a single premium 
to (x). The annuity is payable continuously at a level rate of $50 000 per year 
after the 20-year deferred period, if the policyholder survives. On death during 
the deferred period, the single premium is returned at the time of death with 
interest at rate i per year effective. 

(a) Write down an equation for the prospective net premium policy value (i) 
during the deferred period and (ii) after the deferred period, using standard 
actuarial functions. Assume an interest rate of i per year effective, the same 
as the accumulation rate for the return of premium benefit. 

(b) Repeat (a) for the retrospective net premium policy value. 

(c) Show that the retrospective and prospective policy values are equal. 

Exercise 7.19 An insurer issues a 20-year term insurance benefit to (40). The 
sum insured is $600 000 for the first five years, and $300 000 for the remainder 
of the term. The gross premium is level for five years, and then reduces to 50% 
of the original value for the remainder of the term. Premiums are paid annually 
in advance and death benefits are paid at the end of the year of death. 

The insurer calculates premiums and policy values using the following basis 
for mortality and expenses: 

Initial expenses: 50% of the first premium plus $200 
Renewal expenses:lO% of all premiums after the first 
Mortality: Standard Select Mortality Model 

Gross premiums are calculated using an interest rate of 5% per year. 
All policy values are calculated using an interest rate of 4.5% per year. 
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(a) Calculate the gross premium in the first year. 

(b) Calculate the gross premium, net premium and Full Preliminary Term, 
(FPT) policy values at times t = 0, 1, 2. 

(c) Explain briefly the rationale for the FPT approach. Does this example sup
port the use of the FPT policy value? Justify your answer. 

Exercise 7.20 Repeat Example 7.18, assuming now that the premium term is 
limited to a maximum of 20 years. 

Answers to selected exercises 

7.1 (a) $323.59 

(b) $116.68, $11663.78 
(c) $1090.26 

(d) $342.15, $15.73 
7.2 $11149.02 
7.3 (a) $469.81 

(b) $381.39 
(c) $132.91 
(e) $1125.54 
(f) $132.91 
(g) $25.10 
(h) -$107.67 

(i) $6.28, -$86.45, -$27.50 
7.4 (a) (iii) $185.08, $401.78 

(b) $588.91 
7.6 (a) $91.37 

(b) -$122.33 

(d) Selected values: 4 V = -$32.53, 4+ V = $55.18, 
13 v = $238.95, 13+ v = $326.67 
The policy value first becomes positive at duration 3+. 

7.7 -$26504.04, $51011.26, -$5588.00 
7.8 (a) $6020.40 

(b) $26131.42 
(c) $26 348.41 
(e) $36 575.95 

(g) t = 10 : $61678.46, $76 070.54 
7.9 (c) $14 540.32, $16 240.72, $17 619.98 

7.11 (b) Selected values: sV = $509.93, wV = $1241.77 
(c) Selected values: Bonus at t = 5: $4.55 

Bonus at t = 10: $10.96 



(d) $263.37/9 = $29.26 
(e) $0 

7.12 (b) $3429.68 
(c) $14565.95 

7.13 (a) $256.07 
(c) $863.45 
(d) $558.58 
(e) -$4476.57 

7.14 (b) $1810.73 
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(c) Selected values: 5 V = $10400.92, 10 V = $23 821.21, 
15V = $40387.35 

7.16 (a) $7909.25 
(c) $23 671.76 
(d) -$102 752.83 
(e) -$61294.26 
(f) $303 485.21 

7.17 Selected values: o.5 V = $15 255.56, 1 V = $15 369.28, 
1.5V = $30962.03, 2V = $31415.28 

7.19 (a) $710.33 
(b) Gross: $96.93, -$6.95, $338.85; Net: $0, $353.08, $670.50; 

FPT $0, $0, $345.25 
7.20 (a) $99.36, $1980.39 

(b) Gross: $0, $685.01, $2595.64, $20338.41; Net: $0, $1817.02, 
$3686.39, $21 037.88; FPT: $0, $0, $1935.61, $19 915.15 
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Multiple state models 

8.1 Summary 

In this chapter we reformulate the survival model introduced in Chapter 2 as 
an example of a multiple state model. We then introduce several other multiple 
state models which are useful for different types of life insurance policies, for 
example when benefits depend on the policyholder's health as well as survival, 
or when extra benefits are payable where death is accidental. 

A general definition of a multiple state model, together with assumptions 
and notation, is given in Section 8.3. In Section 8.4 we discuss the derivation 
of formulae for probabilities and in Section 8.5 the numerical evaluation of 
these probabilities. This is extended in Section 8.6 to premium calculation and 
in Section 8.7 to the numerical evaluation of policy values. In Section 8.9 we 
describe multiple decrement models and tables, and in Section 8.12 we demon
strate how the results can be adapted when one of the underlying assumptions 
is relaxed. 

The general results in this chapter are derived for continuous-time transi
tions, for example, from healthy to disabled. In Section 8.13 we consider the 
discrete time model, where the states are observed at discrete intervals. 

8.2 Examples of multiple state models 

Multiple state models are one of the most exciting developments in actuarial 
science in recent years. They are a natural tool for many important areas of 
practical interest to actuaries. They are intuitive, and easy to work with using 
some straightforward but powerful numerical techniques: They also simplify 
and provide a sound foundation for pricing and valuing some complex insur
ance contracts. In this section we illustrate some of the uses of multiple state 
models using a number of examples which are common in current actuarial 
practice. 

242 



8.2 Examples of multiple state models 243 
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Figure 8.1 The alive-dead model. 

8.2.1 The alive-dead model 

So far, we have modelled the uncertainty over the duration of an individual's 
future lifetime by regarding the future lifetime as a random variable, Tx, for 
an individual currently aged x, with a given cumulative distribution function, 
Fx(t) (= Pr[Tx::; t]), and survival function, Sx(t) = 1- Fx(t). This is a prob· 
abilistic model in the sense that for an individual aged x we have a single ran
dom variable, Tx, whose distribution, and hence all associated probabilities, is 
assumed to be known. 

We can represent this model diagrammatically as shown in Figure 8.1. Our 
individual is, at any time, in one of two states, 'Alive' and 'Dead'. For conve
nience we label these states '0' and '1', respectively. Transition from state 0 
to state 1 is allowed, as indicated by the direction of the arrow, but transitions 
in the opposite direction cannot occur. This is an example of a multiple state 
model with two states. 

We can use this multiple state model to reformulate our survival model as 
follows. Suppose we have a life aged x 2: 0 at time t = 0. For each t 2: 0 we 
define a random variable Y (t) which takes one of the two values 0 and 1. The 
event 'Y ( t) = 0' means that our individual is alive at age x + t, and 'Y (t) = I ' 
means that our individual died before age x + t. The set of random variables 
{Y(t)Jt::::O is an example of a continuous time stochastic process. A contin
uous time stochastic process is a collection of random variables indexed by a 
continuous time variable. For all t, Y (t) is either 0 or 1, and Tx is connected to 
this model as the time at which Y(t) jumps from 0 to 1, that is 

Tx = max{t: Y(t) =0}. 

The alive-dead model represented by Figure 8.1 captures all the life contingent 
information that is necessary for calculating insurance premiums and policy 
values for policies where payments (premiums, benefits and expenses) depend 
only on whether the individual is alive or dead at any given age. We have 
seen examples of these contracts, such as term insurance or. deferred annu
ities, in previous chapters. But there are more complicated forms of insurance 
which require more sophisticated models. We introduce more examples of such 
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Figure 8.2 The accidental death model. 

models in the remainder of this section, before giving a formal definition of a 
multiple state model in Section 8.3. All these models consist of a finite set 
of states with arrows indicating possible movements between some, but not 
necessarily all, pairs of states. Each state represents the status of an individ
ual or a set of individuals. Loosely speaking, each model is appropriate for 
a given insurance policy, in the sense that the condition for a payment relat
ing to the policy, for example a premium, an annuity or a sum insured, is 
either that the individual is in a specified state at that time or that the individ
ual makes an instantaneous transfer between a specified pair of states at that 
time. 

8.2.2 Term insurance with increased benefit on accidental death 

Suppose we are interested in a term insurance policy under which the death 
benefit is $100000 if death is due to an accident during the policy term and 
$50 000 if it is due to any other cause. The alive-dead model in Figure 8.1 is 
not sufficient for this policy since, when the individual dies - that is, transfers 
from state 0 to state 1 -we do not know whether death was due to an accident, 
and so we do not know the amount of the death benefit to be paid. 

An appropriate model for this policy is shown in Figure 8.2. This model has 
three states, and we can define a continuous time stochastic process, {Y (t) }t:::o, 
where each random variable Y(t) takes one of the values 0, 1 and 2. Hence, 
for example, the event 'Y (t) = 1' indicates that the individual, who is aged x 
at time t = 0, has died from an accident before age x + t. 

The model in Figure 8.2 is an extension of the model in Figure 8.1. In both 
cases an individual starts by being alive, that is, starts in state 0, and, at some 
future time, dies. The difference is·that we now distinguish between deaths due 
to accident and deaths due to other causes. Notice that it is the benefits provided 
by the insurance policy which determine the nature of the model. Because the 
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Figure 8.3 The permanent disability model. 

benefit is contingent on the cause of death, the model must specify the cause 
of death appropriately. 

8.2.3 The permanent disability model 

Figure 8.3 shows a model appropriate for a policy which provides some or all 
of the following benefits: 

(i) an annuity while permanently disabled, 

(ii) a lump sum on becoming permanently disabled, and, 

(iii) a lump sum on death, 

with premiums payable while healthy. An important feature of this model 
is that disablement is permanent - there is no arrow from state 1 back to 
state 0. 

8.2.4 The disability income insurimce model 

Disability income insurance pays a benefit during periods of sickness; the ben
efit ceases on recovery. Figure 8.4 shows a model suitable for a policy which 
provides an annuity while the person is sick, with premiums payable while the 
person is healthy. It could also be used for valuing lump sum payments con
tingent on becoming sick or on dying. The model represented by Figure 8.4 
differs from that in Figure 8.3 in only one respect: it is possible to transfer 
from state 1 to state 0, that is, to recover from an illness. 

This model illustrates an important general feature of multiple state models 
which was not present for the models in Figures 8.1, 8.2 and 8.3. This feature 
is the possibility of entering one or more states many times. In terms of our 
interpretation of the model, this means that several periods of sickness could 
occur before death, with healthy (premium paying) periods in between. 



246 Multiple state models 

Healthy Sick 

0 1 

~ / 
' Dead 

2 

Figure 8.4 The disability income insurance model. 

8.3 Assumptions and notation 

The multiple state models introduced above are all extremely useful in an insur
ance context. We study several of these models in detail later in this chapter. 
Before doing so, we need to introduce some assumptions and some notation. 

In this section we consider a general multiple state model. We have a finite 
set of n + 1 states labelled 0, 1, ... , n, with instantaneous transitions being 
possible between selected pairs of states. These states represent different con
ditions for an individual. For each t 2: 0, the random variable Y(t) takes one 
of the values 0, 1, ... , n, and we interpret the event Y (t) = i to mean that the 
individual is in state i at age x + t. The set of random variables {Y (t) lt:::o is 
then a continuous time stochastic process. 

The multiple state model will be an appropriate model for an insurance pol
icy if the payment of benefits or premiums is dependent on the life being in a 
given state or moving between a given pair of states at a given time, as illus
trated in the examples in the previous section. Note that in these examples there 
is a natural starting state for the policy, which we always label state 0. This is 
the case for all examples based on multiple state models. For example, a policy 
providing an annuity during periods of sickness in.return for premiums payable 
while healthy, as described in Section 8.2.4 and illustrated in Figure 8.4, would 
be issued only to a person who was healthy at that time. 

Assumption 8.1 We assume that for any states i and j and any times t and 
t + s, where s 2: 0, the conditional probability Pr[Y(t + s) = j I Y(t) = i] is 
well defined in the sense that its value does not depend on any information 
about the process before timet. 

Intuitively, this means that the probabilities of future events for the process 
are completely determined by knowing the current state of the process. In par
ticular, these probabilities do not depend on how the process arrived at the 
current state or how long it has been in the current state. This property, that 
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probabilities of future events depend on the present but not on the past, is 
known as the Markov property. Using the language of probability theory, 
we are assuming that { Y ( t) k::O is a Markov process. 

Assumption 8.1 was not made explicitly for the models represented by Fig
ures 8.1 and 8.2 since it was unnecessary, given our interpretation of these 
models. In each of these two cases, if we know that the process is in state 0 
at timex (so that the individual is alive at age x) then we know the past of 
the process (the individual was alive at all ages before x ). Assumption 8.1 is 
more interesting in relation to the models in Figures 8.3 and 8.4. Suppose, 
for example, in the disability income insurance model (Figure 8.4) we know 
that Y(t) = 1, which means that the individual is sick at timet. Then Assump
tion 8.1 says that the probability of any future move after timet, either recovery 
or death, does not depend on any further information, such as how long the life 
has been sick up to time t, or how many different periods of sickness the life 
has experienced up to time t. In practice, we might believe that the probabil
ity of recovery in, say, the next week would depend on how long the current 
sickness has already lasted. If the current sickness has already lasted for, say, 
six months then it is likely to be a very serious illness and recovery within 
the next week is possible but not likely; if the current sickness has lasted only 
one day so far, then it may well be a trivial illness and recovery within a week 
could be very likely. It is important to understand the limitations of any model 
and also to bear in mind that no model is a perfect representation of reality. 
Assumption 8.1 can be relaxed to allow for some dependency on the process 
history, but these more general (non-Markov) models are beyond the scope of 
this book. 

Assumption 8.2 We assume that for any positive interval of time h, 

Pr[1Wo or more transitions within a time period of length h] = o(h). 

Recall that any function of h, say g(h ), is said to be o(h) if 

lim g(h) = 0. 
h--+0 h 

Intuitively, a function is o(h) if, ash converges to 0, the function converges to 
zero faster than h. 

Assumption 8.2 tells us that for a small time interval oflength h, the probability 
of two or more transitions in that interval is so small that it can be ignored. This 
assumption is unnecessary for the models in Figures 8.1 and 8.2 since in both 
cases only one transition can ever take place. However, it is an assumption 
we need to make for technical reasons for the models in Figures 8.3 and 8.4. 
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In these cases, given our interpretation of the models, it is not an unreasonable 
assumption. 

In Chapter 2 we introduced the standard actuarial notation for what we 
are now calling the alive-dead model, as shown in Figure 8.1; specifically, 
tPx, 1qx and ftx. For multiple state models with more than two states, or more 
than one possible transition, we need a more flexible notation. We introduce 
the following notation for a general multiple state model to be used throughout 
this chapter and in later chapters. 

Notation For states i and j in a multiple state model and for x, t > 0, we 
define 

tP1 = Pr[Y(x + t) = j I Y(x) = i], (8.1) 

1p~i = Pr [Y(x + s) = i for all s E [0, t] I Y(x) = i], (8.2) 

so that 1p1 is the probability that a life aged x in state i is in state j at age 
x + t, where j may be equal to i, while 1p!f is the probability that a life aged x 
in state i stays in state i throughout the period from age x to age x + t. 

For i f. j we define 

ij 
ij 

1
. hPx 

ftx = Im -
h-+0+ h 

fori f. j. (8.3) 

Assumption 8.3 For all states i and j and all ages x 2: 0, we assume that 1p1 
is a differentiable function oft. 

Assumption 8.3 is a technical assumption needed to ensure that the mathe
matics proceeds smoothly. Consequences of this assumption are that the limit 
in the definition of tt1 always exists and that the probability of a transition 
taking place in a time interval of length t converges to 0 as t converges to 
0. We also assume that tt1 is a bounded and integrable function of x. These 
assumptions are not too restrictive in practice. However, there are some circum
stances where we need to put aside Assumption 8.3 and these are discussed in 
Section 8.12. 

In terms of the alive-dead model represented by Figure 8.1, we can make 
the following observations: 

1p~0 is the same as tPx in the notation of Chapter 2, and 1p~1 is the same as 

tqx. 

1pi0 = 0 since backward transitions, 'Dead' to 'Alive', are not permitted in 
this model. 

oP1 equals 1 if i = j and zero otherwise. 

p.,~ 1 is the same as ftx, the force of mortality at age x. 
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In the general case, with states 0, 1, 2, ... , n, we refer to f-L~ as the force of 
transition or transition intensity between states i and j at age x. 

Another way of expressing formula (8.3) is to write for h > 0 

ij ij 
hPx =hf-Lx +o(h). 

From this formulation we can say that for small positive values of h 

hP~ ~ h J-L~. 

(8.4) 

(8.5) 

This is equivalent to formula (2.8) in Chapter 2 for the alive-dead model and 
will be very useful to us. 

Example 8.1 Explain why, for a general multiple state model, tP~ is not equiv
alent to tP~. Write down an inequality linking these two probabilities and 
explain why 

ii ii+ () tPx = tPx 0 t . (8.6) 

Solution 8.1 From formulae (8.1) and (8.2) we can see that tP~ is the prob
ability that the process/individual does not leave state i between ages x and 
x + t, whereas tP~i is the probability that the process/individual is in state i 

at age x, + t, in both cases given that the process was in state i at age x. The 
important distinction is that tP~ includes the possibility that the process leaves 
state i between ages x and x + t, provided it is back in state i at age x + t. 
For any individual state which either (a) can never be left or (b) can never be 
re-entered once. it has been left, these two probabilities are equivalent. This 
applies to all the states in the models illustrated in Figures 8.1, 8 .2, 8.3 and 8.4 
except states 0 and 1 in Figure 8.4. 

The following inequality is always true since the left-hand side is the proba
bility of a set of events which is included in the set of events whose probability 
is on the right-hand side 

Pii < pii 
t X - t X • 

The difference between these two probabilities is the probability of those paths 
where the process makes two or more transitions between ages x and x + t so 
that it is back in state i at age x + t. From Assumption 8.2 we know that this 
probability is o(t). This gives us formula (8.6). 0 

Example 8.2 Show that, for a general multiple state model and for h > 0, 

n 

IT " iJ hPx = 1- h ~ f-Lx +o(h). (8.7) 
j=O,jf=i 
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Solution 8.2 First note that 1 - hP~ is the probability that the process does 
leave state i at some time between ages x and x + h, possibly returning to state 
i before age x +h. If the process leaves state i between ages x and x + h then 
at age x + h it must be in some state j (# i) or be in state i having made at 
least two transitions in the time interval of length h. Using formula (8.4) and 
Assumption 8.2, the sum of these probabilities is 

11 

h L f-L~ + o(h), 
j=O,}#i 

which proves (8.7). D 

8.4 Formulae for probabilities 

In this section we show how to derive formulae for all probabilities in terms 
of the transition intensities, which we assume to be known. This is the same 
approach as we adopted in Chapter 2, where we assumed the force of mortality, 

f-Lx, was known and derived formula (2.19) for tPx in terms of f-Lx+t· 
The fact that all probabilities can be expressed in terms of the transition 

intensities is important. It tells us that the transition intensities {/L~; x :=:: 0; 
i, j = 0, ... , n, i f: j} are fundamental quantities which determine everything 
we need to know about a multiple state model. 

The first result generalizes formula (2.19) fro~ Chapter 2, and is valid for 
any multiple state model. It gives a formula for 1p~ in terms of all the transition 

intensities out of state i, f-L~. 
For any state i in a multiple state model with n + 1 states, satisfying Assump

tions 8.1-8.3, 

{ 

i 11 } IT U 
tPx = exp - Ia . ~ . f-Lx+s ds . 

]=0; r/=1 
(8.8) 

We can derive this as follows. For any h > 0, consider the probability t+hP~. 
This is the probability that the process (or individual) stays in state i throughout 
the time period [0, t + h], given that the process was in state i at age x. We can 
split this event into two sub-events: 

e the process stays in state i from age x until (at least) age x + t, given that it 
was in state i at age x, and then 

• the process stays in state i from age x + t until (at least) age x + t + h, given 
thar'it was in state i at age x + t (note the different conditioning). 
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The probabilities of these two sub-events are 1p~ and h p~i+t, respectively, and, 
using the rules for conditional probabilities, we have 

ii ii ii 
t+hPx = tPx hPx+t· 

Using the result in Example 8.2, this can be rewritten as 

( 

n ) ii IT iJ 
t+hPx = tPx 1 - h L fLx+t + o(h) · 

}=0,}=/=i 

Rearranging this equation, we get 

ii ii 
t+hPx - tPx = _ tP.~; 

h 

11 

" iJ o(h) 
L... fLx+t + h' 

}=0,}=/=i 

and letting h -+ 0 we have 

11 

d ii ii " ij 
dt tPx = - tPx L... fLx+t• 

J=OJI=i 

so that 
11 :t log ( tPI!) = - L IL~+t · 

}=0,}=/=i 

Integration over (0, t) gives 

( IT) ( IT) ( ~ iJ log tPx -log OPx = - Jo . L... . fLx+rdr. 
J=O,Jf=z 

So, by exponentiating both sides, we see that the solution to the differential 
equation is 

( 

t n ) IT IT iJ 
tPx = OPx exp -1 L fLx+s ds · 

0 }=0,}=/=i 

Since op~ = 1, this proves (8.8). 
We comment on this result after the next example. 

Example 8.3 Consider the model for permanent disability illustrated in 
Figure 8.3. Explain why, for x 2: 0 and t, h > 0, 

01 01 11 00 h 01 (h) t+hPx = tPx hPx+t + tPx fLx+t + 0 · (8.9) 

Hence show that 

d ( 01 { t 12 }) 00 01 { t 12 } dt tPx exp Jo fLx+s ds = tPx fLx+t exp Jo fLx+s ds ' (8.10) 
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and hence that for u > 0 

01 r oo 01 rr d 
uPx = Jo tPx f-Lx+t u-t Px+t t · (8.11) 

Give a direct intuitive derivation of formula (8.11). 

Solution 8.3 To derive (8.9), consider a life who is healthy at age x. The left
hand side of (8.9) is the probability that this life is alive and disabled at age 
x + t +h. We can write down a formula for this probability by conditioning on 
which state the life was in at age x + t. Either: 

• the life was disabled at age x + t (probability tP~ 1 ) and remained disabled 

between ages x + t and x + t + h (probability hPl~t), or, 

• the life was healthy at age x + t (probability 1p~0) and then became disabled 

between ages x + t and x + t + h (probability h p.,~~~ + o(h)). 

Combining the probabilities of these events gives (8.9). (Note that the prob
ability of the life being healthy at age x + t, becoming disabled before age 
x + t + h and then dying before age x + t +his o(h) since this involves two 
transitions in a time interval of length h.) 

Using Example 8.2, formula (8.9) can be rewritten as 

01 01 (1 h 12 ) 00 h 01 (h) t+hPx = tPx - f-Lx+t + tPx f-Lx+t + 0 · (8.12) 

Rearranging, dividing by h and letting h ---+ 0 gives 

d 01 01 12 00 01 
dt tPx + tPx f-Lx+t = tPx f-Lx+t· 

Multiplying all terms in this equation by exp { J~ JLl~s ds}, we have 

:t cp~1 
exp {lot p.,~~s ds}) = 1p~0 p.,~~~ exp {lot JL!~s ds} . 

Integrating both sides of this equation from t = 0 to t = u, and noting that 

op~1 = 0, we have 

uP~1 exp {lou JL~~s ds} =lou tP~0 f.L~~t exp {lot f.L~~s ds} dt. 

Finally, dividing both sides by exp {J; ~Ll~s ds} and noting that, using 
formula (8.8), 

u-t Pl~t = exp { -111 

f.L~~s ds} , 

we have formula (8.11). 
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The intuitive derivation of (8.11) is as follows: for the life to move from state 
0 to state 1 between ages x and x + u, the life must stay in state 0 until some 
age x + t, transfer to state 1 between ages x + t and x + t + dt, where dt is 
small, and then stay in state 1 from age x + t + dt to age x + u. We illustrate 
this event sequence using the time-line in Figure 8.5. 

The infinitesimal probability of this path is 

oo 01 IT dt 
tPx fLx+t u-t Px+t 

h h . IT . d f IT . h w ere we ave wntten u-t Px+t mstea o u-t-dt Px+t smce t e two are approx-
imately equal if dt is small. Since the age at transfer, x + t, can be anywhere 
between x and x + u, the t_otal probability, uP~l, is the 'sum' (i.e. integral) of 
these probabilities from t = 0 to t = u. 0 

We can make the following comments about formula (8.8) and Example 8.3. 

(1) As we have already noted, formula (8.8) is an extension of formula (2.19) 

in Chapter 2 for tPx· 

(2) Throughout Example 8.3 we could have replaced tP~i by tP~i fori= 0, 1, 
since, for the disability insurance model, neither state 0 nor state 1 can be 
re-entered once it has been left. See the solution to Example 8.1. 

(3) Perhaps the most important point to note about formula (8.8) and Exam
ple 8.3 is how similar the derivations are in their basic approach. In par
ticular, in both cases we wrote down an expression for the probability of 
being in the required state at age x + t + h by conditioning on the state 
occupied at age x +t. This led to a formula for the dedvative of the required 
probability which we were then able to solve. An obvious question for us 
is, 'Can this method be applied to a general multiple state model to derive 
formulae for probabilities?' The answer is, 'Yes'. This is demonstrated in 
Section 8.4.1. 
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8.4.1 Kolmogorov'sforward equations 

Let i and j be any two, not necessarily distinct, states in a multiple state model 
which has a total of n + 1 states. For x, t, h 2: 0, we derive the formula 

11 

ij ij "\' ( ij jk ik kj ) 
t+hPx = tPx - h 0 tPx fLx+t- tPx fLx+t + o(h), (8.13) 

k=O,koftj 

and hence show the main result, that 

11 

d ij "\' ( ik kj ij jk ) 
dt tPx = 0 tPx fLx+t - tPx fLx+t · 

k=O,koftj 

(8.14) 

Formula (8.14) gives a set of equations for a Markov process known as Kol
mogorov's forward equations. 

To derive Kolmogorov's forward equations, we proceed as we did in formula 
(8.8) and in Example 8.3. We consider the probability of being in the required 
state, j, at age x + t + h, and condition on the state of the process at age x + t: 
either it is already in state j, or it is in some other state, say k, and a transition 
to. j is required before age x + t +h. Thus; we have 

11 

ij ij jj "\' ik kj 
t+hPx = tPx hPx+t + 0 tPx hPx+t· 

k=O,koftj 

Using formulae (8.6), (8.7) and (8.4), this can be rewritten as 

ij ij ( h ~ jk ) ~ ik kj 
t+hPx = tPx 1 - 0 Px+t - o(h) + h 0 . tPx fLx+t + o(h). 

k=O,k#J k=O,koftJ 

Rearranging the right-hand side of this expression gives (8.13). Further rear
ranging, dividing by hand letting h---* 0 gives (8.14). 

In the following section we give several examples of the application of the 
Kolmogorov forward equations as we use them to calculate probabilities for 
some of the models described in Section 8.2. 

8.5 Numerical evaluation of probabilities 

In this section we discuss methods for the numerical evaluation of probabilities 
for a multiple state model given that all the transition intensities are known. In 
some cases, the probabilities can be calculated directly from formulae in terms 
of integrals, as the following example shows. 

Example 8.4 Consider the permanent disability model illustrated in 
Figure 8.3. 
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(a) Suppose the transition intensities for this model are all constants, as 
follows 

p.,~ 1 = 0.0279, p.,~2 = 0.0229, //12 = //02 
~""X ~""X ' 

Calculate wp~g and 10P~6· 
(b) Now suppose the transition intensities for this model are as follows 

where 

p.,~ 1 = a1 + b1 exp{qx}, 

p.,~2 = a2 + b exp{c2x }, 

//12 = //02 
~-"'X ~""'X ' 

a1 = 4 X 10-4
, b1 = 3.4674 X 10-6

, C} = 0.138155, 

a2 = 5 X 10-4
, b2 = 7.5858 X 10-5

, C2 = 0.087498. 

Calculate wp~g and lOP~J. 

Solution 8.4 For this model, neither state 0 nor state 1 can be re-entered once 
it has been left, so that 

Pii- pii 
t X = f X 

for i = 0, 1 and any x, t ~ 0. See the solution to Example 8.1. 

(a) Using formula (8.8) we have 

tP~g = tP~g = exp {-fa' (0.0279 + 0.0229) ds} = exp{ -0.0508t }, 

(8.15) 

giving 

10P~g = exp{ -0.508} = 0.60170. 

Similarly 

lO-t P~6+t = exp{ -0.0229(10- t)}, 

and we can calculate lOP~6 using formula (8.11) as 

01 00 01 11 1
10 

10P6o = 
0 

tP6o IL60+t 10-t P60+t dt 

{10 
= Jo exp{ -0.0508t} x 0.0279 x exp{ -0.0229(10- t)} dt 

= 0.19363. 
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(b) In this case 

tP~g = exp {-lot (tL~6+r + fL~6+r) dr} 

= exp {- ( (a1 + az)t + ~~ e60
CI (eC! 1

- 1) + ~~ e60
cz(eczt- I))} 

and 

tPM = exp {-lot fL~6+r dr} 

= exp { _ ( az t + ~~ e60 cz ( ecz t _ 1)) } . 
Hence 

lOPgg = 0.58395. 

Substituting the expressions for 1pgg and lO-tP~6+t and the formula for 
fL~6+t into formula (8.11) and integrating numerically, we obtain 

D 

Probabilities of the form 1p~i can be evaluated analytically provided the sum 
of the relevant intensities can be integrated analytically. In other cases numer
ical integration can be used. However, the approach used in Example 8.4 part 
(b) to calculate a more complicated probability, 10Pg6 -deriving an integral 
formula for the probability which can then be integrated numerically - is not 
tractable except in the simplest cases. Broadly speaking, this approach works if 
the model has relatively few states and if none of these states can be re-entered 
once it has been left. These conditions are met by the permanent disability 
model, illustrated in Figure 8.3 and used in Example 8.4, but are not met, for 
example, by the disability income insurance model illustrated in Figure 8.4 
since states 0 and 1 can both be re-entered. This means, for example, that 1p~ 1 

is the sum of the probabilities of exactly one transition (0 to 1 ), plus three tran
sitions (0 to 1, then 1 to 0, then 0 to 1 again), plus five transitions, and so on. 
A probability involving k transitions involves multiple integration with k nested 
integrals. 

Euler's method, introduced in Chapter 7, can be used to evaluate probabili
ties for all models in which we are interested. The key to using this method is 
formula (8.13) and we illustrate it by applying it in the following example. 
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Example 8.5 Consider the disability income insurance model illustrated in 
Figure 8.4. Suppose the transition intensities for this model are as follows 

f.L~ 1 
= a1 + b1 exp{qx}, 

10 0 1 01 
fLx = · fLx ' 

f.L~2 = a2 + b2 exp{ c2x}, 

//12 = //02 
rvx rx ' 

where a1, b1, c1, a2, b2 and c2 are as in Example 8.4, part (b) (though this is 
a different model). 

Calculate 10P~g and 10P~J using formula (8.13) with a step size of h = 1/12 
years (we use a monthly time step, because this generates values of 1p~g and 
tP~J for t = 0, 1, 2, ... , 120 months, which we use in Example 8.6). 

Solution 8.5 For this particular model, formula (8.13) gives us the two formu
lae 

00 00 J 00 ( . 01 02 ) h 01 10 (h) t+h P6o = tP6o - 1 tP6o IL60+t + IL60+t + tP6o IL60+t + o 

and 

01 01 h 01 ( 12 10 ) h 00 01 (h) t+hP6o = tP6o - tP6o IL60+t + IL60+t + tP6o IL60+t + o · 

As in Chapter 6, we choose a small step size h, ignore the o(h) terms and 
regard the resulting approximations as exact formulae. This procedure changes 
the above formulae into 

00 00 h 00 ( 01 02 ) h 01 10 
t+hP6o = tP6o - tP6o IL60+t + IL60+t + tP6o IL60+t 

and 

. 01 01 h 01 ( 12 10 ) h 00 01 
t+h P6o = tP6o - tP6o IL60+t + IL60+t + tP6o IL60+t · 

By choosing successively t = 0, h, 2h, ... , 10- h, we can use these formulae, 

together with the initial values op~g = 1 and op~J = 0, to calculate hP~g, hP~J, 
2hP~g, 2hP~J, and so on until we have a value for lOP~g, as required. These 
calculations are very well suited to a spreadsheet. For a step size of h = 1/12 
years, selected values are shown in Table 8.1. Note that the calculations have 
been carried out using more significant figures than are shown in this table. 0 

The implementation of Euler's method in this example differs in two respects 
from the implementation in Example 7.10: 
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Table 8.1 Calculation of rop~g and roP~6 using a step size h = 1/12 years. 

01 
JL60+t 

02 
JL60+t 

10 
JL60+t 

12 
JL60+t 

00 
tP6o 

01 
tP6o 

0 0.01420 0.01495 0.00142 0.01495 1.00000 0.00000 
1 0.01436 0.01506 0.00144 0.01506 0.99757 0.00118 12 
2 0.01453 0.01517 0.00145 0.01517 0.99512 0.00238 12 
3 0.01469 0.01527 0.00147 0.01527 0.99266 0.00358 12 

0.01625 0.01628 0.00162 0.01628 0.96977 0.01479 

911 12 0.05473 0.03492 0.00547 0.03492 0.59189 0.20061 

10 0.05535 0.03517 0.00554 0.03517 0.58756 0.20263 

(1) We work forward recursively from initial values for the probabilities rather 
than backwards from the final value of the policy value. This is determined 
by the boundary conditions for the differential equations. 

(2) We have two equations to solve simul~aneously rather than a single equa
tion. This is a typical feature of applying Euler's method to the calculation 
of probabilities for multiple state models. In general, the number of equa
tions increases with the number of states in the model. 

8.6 Premiums 

So far in this chapter we have shown that multiple state models are a natural 
way of modelling cash flows for insurance policies and we have also shown 
how to evaluate probabilities for such models given only the transition intensi
ties between pairs of states. The next stage in our study of multiple state models 
is to calculate premiums and policy values for a policy represented by such a 
model and to show how we can evaluate them. 

To do this we can generalize our definitions of insurance and annuity func
tions to a multiple state framework. We implicitly use the indicator function 
approach, which leads directly to intuitive formulae for the expected present 
values, but does not give higher moments. There is no standard notation for 
annuity and insurance functions in the multiple state model framework. The 
notation used in this chapter generalizes the notation introduced in Chapters 4 
and5. 

Suppose we have a life aged x currently in state i of a multiple state model. 
We wish to value an annuity of 1 per year payable continuously while the life 
is in some state j (which may be equal to i). 
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The EPV of the annuity, at force of interest 8 per year, is 

aY = E [1oo e-8t I(Y(t) = jiY(O) = i)dt] 

= 100 

e-8tE[I(Y(t) = jiY(O) = i)] dt 

= 1oo e-8t tPY dt, 

where I is the indicator function. 
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Similarly, if the annuity is payable at the start of each year, from the current 
time, conditional on the life being in state j, given that the life is currently in 
state i, the EPV is 

00 

.. ij " k ij 
ax = ~ V kPx · 

k=O 

Annuity benefits payable more frequently can be valued similarly. 
For insurance benefits, the payment is usually conditional on making a tran

sition. A death benefit is payable on transition into the dead state; a critical 
illness insurance policy might pay a sum insured on death or earlier diagnosis 
of one of a specified group of illnesses. 

Suppose a unit benefit is payable immediately on each future transfer into 
state k, given that the life is currently in state i (which may be equal to k). Then 
the EPV of the benefit is 

-ik looo "- -8t ij jk 
Ax = ~ e tPx ILx+tdt. 

0 }# 
(8.16) 

To derive this, we consider payment in the interval (t, t + dt); 

• the amount of the payment is 1, 

• the discount factor (for sufficiently small dt) is e-8t, and 

• the probability that the benefit is paid is the probability that the life transfers 
into state kin (t, t + dt), given that the life is in state i at time 0. In order to 
transfer into state kin (t, t + dt), the life must be in some state j that is not 
k immediately before (the probability of two transitions in infinitesimal time 
being negligible), with probability tPY, then transfer from j to k during the 
interval (t, t +dt), with probability (loosely) p.,~~~ dt. 

Summing (that is, integrating) over all the possible time intervals gives equa
tion (8.16). 

Other benefits and annuity designs are feasible; for example, a lump sum 
benefit might be paid on the first transition from healthy to sick, or premiums 
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may be paid only during the first sojourn in state 0. Most practical cases can be 
managed from first principles using the indicator function approach. 

In general, premiums are calculated using the equivalence principle and we 
assume that lives are in state 0 at the policy inception date. 

Example 8.6 An insurer issues a 10-year disability income insurance policy 
to a healthy life aged 60. Calculate the premiums for the following two policy 
designs using the model and parameters from Example 8.5. Assume an interest 
rate of 5% per year effective, and that there are no expenses. 

(a) Premiums are payable continuously while in the healthy state. A benefit 
of $20 000 per year is payable continuously while in the disabled state. 
A death benefit of $50 000 is payable immediately on death. 

(b) Premiums are payable monthly in advance conditional on the life being 
in the healthy state at the premium date. The sickness benefit of $20 000 
per year is payable monthly in arrear, if the life is in the sick state at the 
payment date. A death benefit of $50 000 is payable immediately on death. 

Solution 8.6 (a) We equate the EPV of the premiums with the EPV of the 
benefits. 

The computation of the EPV of the benefits requires numerical integra
tion. All values below have been calculated using the repeated Simpson's 
rule, with h = 1/12 (where his as in Section B.l.2 in Appendix B), using 
Table 8.1. 

Let P denote the annual rate of premium. Then the EPV of the premium 
income is 

Paoo = p {
10 

e-8t Poo dt 
60:101 lo t 60 

and numerical integration gives a00 .,-;:;-] = 6.5714. 
60:101 

Next, the EPV of the sickness benefit is 

20000a01 =20000 e-at p 01 dt 110 

60:101 0 t 60 , 

and numerical integration gives a 01 .,-;;-] = 0.66359. 
60:101 

Last, the EPV of the death benefit is 

50 000 A~~:101 = 50 000 110 

e-o t ( tP~g t-t~6+t + tP~6 t-t~6+t) dt. 

Using numerical integration, we find A:02 .,-;:;-] = 0.16231. 
60:101 
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Hence, the annual premium rate is 

20 ooo a01 + so ooo A:02 

p = 60:~00 60:101 = $3254.65. 

a60:101 

(b) We now need to find the EPV of annuities payable monthly, and we can 
calculate these from Table 8.1. First, to find the EPV of premium income 
we calculate 

.. (12)00 1 ( 00 .l 00 2 00 ]_ 00 g!l) 
a60:1Q1 = 12 1+ fiP6oVl2 + izP6ovl2 + izP6ovi2 + .. ·+ 9HP6ov 12 

= 6.5980, 

and to find the EPV of the sickness benefit we require 

(12)01 1 ( 01 12 01 2 01 ]_ 01 10) 
a60:1Q1 = 12 fiP6oV + lzP6oVl2 + izP6oVl2 + .. ·+ lOP6oV 

= 0.66877. 

Note that the premiums are payable in advance, so that the final premium 
payment date is at time 9 g. However, the disability benefit is payable in 
arrear so that a payment will be made at time 10 if the policyholder is 
disabled at that time. 

The death benefit is unchanged from part (a), so the premium is $3257.20 
per year, or $271.43 per month. D 

8.7 Policy values and Thiele's differential equation 

The definition of the time t policy value for a policy modelled using a multiple 
state model is exactly as in Chapter 7 - it is the expected value at that time of 
the future loss random variable - with one additional requirement. For a policy 
described by a multiple state model, the future loss random variable, and hence 
the policy value at duration t years may depend on which state the policyholder 
is in at that time. We can express this formally as follows: a policy value is the 
expected value at that time of the future loss random variable conditional on 
the policy being in a given state at that time. We use the following notation for 
policy values. 

Notation 1 yCil denotes the policy value at duration t for a policy which is 
in state i at that time. 

This additional feature was not necessary in Chapter 7 since all policies 
discussed in that, and earlier, chapters were based on the 'alive-dead' model 
illustrated in Figure 8.1, and for that model the policyholder was either dead at 
timet, in which case no policy value was required, or was in state 0. 
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As in Chapter 7, a policy value depends numerically on the basis used in its 
calculation, that is 

(a) the transition intensities between pairs of states, as functions of the indi
vidual's age, 

(b) the force of interest, 

(c) the assumed expenses. 

The key to calculating policy values is Thiele's differential equation, which can 
be solved numerically using Euler's method, or more sophisticated techniques. 
To establish some ideas we start by considering a particular example repre
sented by the disability income insurance model, Figure 8.4. We then consider 
the general case. 

8.7.1 The disability income insurance model 

Consider a policy with a term of n years issued to a life aged x. Premiums 
are payable continuously throughout the term at rate P per year while the life 
is healthy, an annuity benefit is payable continuously at rate B per year while 
the life is sick, and a lump sum, S, is payable immediately on death within 
the term. Recovery from sick to healthy is possible and the disability income 
insurance model, Figure 8.4, is appropriate. 

We are interested in calculating policy values for this policy and also in 
calculating the premium using the equivalence principle. For simplicity we 
ignore expenses in this section, but these could be included as extra 'benefits' 
or negative 'premiums' provided only that they are payable continuously at 
a constant rate while the life is in a given state and/or are payable as lump 
sums immediately on transition between pairs of states. Also for simplicity, we 
assume that the premium, the benefits and the force of interest, 8 per year, are 
constants rather than functions of time. 

Example 8.7 (a) Show that, for 0 < t < n, 

v<o) = BaOl + sA:oz _ Paoo 
t x+t:n=fl x+t:n=tl x+t:n=fl 

and derive a similar expression for 1 y(l). 

(b) Show that, for 0 < t < n, 

(8.17) 

!:_ y(O) _ o y(O) + p _ 11 01 ( y(l) _ y(O)) _ 1102 (s _ y(O)) 
dt t - 0 t r--x+t t t r--x+t t 

(8.18) 
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and 

!:_ y(l) _ 8 y(l) _ B _ 11 10 ( y(O) _ yCll) _ 11 12 (s _ y(l)) 
dt t - t ~""x+t t t ~""x+t t · 

(c) Suppose that 

x = 40, n = 20, 8 = 0.04, B = $100000, S = $500000 

and 

tt~ 1 = a1 + b1 exp{c1x}, 

10 0 1 01 
Mx = · Mx ' 

tt ~2 = a2 + b2 exp{ c2x}, 

/112 = 1102 
~'"""X fA'X ' 

where a1, h), q, a2, b2 and c2 are as in Example 8.4. 

(8.19) 

(i) Calculate 10 y(O), 10 y(ll and o y(O) for n = 20 using Euler's method 

with a step size of 1/12 years given that 

(1) P = $5500, and 

(2) p = $6000. 

(ii) Calculate P using the equivalence principle. 

Solution 8.7 (a) The policy value 1 y(O) equals 

EPV of future benefits - EPV of future premiums 

conditional on being in state 0 at time t 

= EPV of future disability income benefit+ EPV of future death benefit 

- EPV of future premiums 

conditional on being in state 0 at time t. 

This leads directly to formula (8.17). 

The policy value for a life in state 1 is similar, but conditioning on being 
in state 1 at time t, so that 

yCll =Ban + sJI2 _ Pa1o 
t x+t:n=fl x+t:n=fl x+t:n=tl 

(8.20) 

where the annuity and insurance functions are defined as in Section 8.6. 

(b) It is helpful to think of t y(O) as the amount of cash the insurer is holding 
at time t, given that the policyholder is in state 0 and that, in terms of 
expected values, the accumulation of this amount and future premiums is 
exactly sufficient to provide for future losses. 
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Let h be such that t < t + h < n and let h be small. Consider what hap
pens between times t and t +h. Premiums received and interest earned 
will increase the insurer's cash to 

t y(O)ih + Pshl. 

Recall that e8h = 1 + 8 h + o(h) and~= (e8h- 1)/8 = h + o(h), so that 

t y(O)ih + PshJ = t y(0)(1 + 8h) +Ph+ o(h). 

This amount must be sufficient to provide the amount the insurer expects 
to need at time t+h. This amount is a policy value of t+h y(O) and possible 
extra amounts of 

(i) S - t+h y(O) if the policyholder dies, the probability of which is 

h IL~~~ + o(h), and 
(ii) t+h y(l) - t+h y(O) if the policyholder falls sick, the probability of 

which ish fL~~~ + o(h). 

Hence 

r v<0)(1 + 8h) +Ph= t+h v<o) + h {~t~~~ (s- r+h v<o)) 

+~t~~~ ( t+h y(l) - t+h y(O))} + o(h). 

Rearranging, dividing by hand letting h--+ 0 gives formula (8.18). 

Formula (8.19) is derived similarly. 

(c) (i) Euler's method for the numerical evaluation of 1 y(O) and 1 y(l) is 
based on replacing the differentials on the left-hand sides of formu
lae (8.18) and (8.19) by discrete time approximations based on a step 
size h, which are correct up to o(h). We could write, for example, 

~ t y(O) = (r+h y(O)- t y(O))/ h + o(h)/ h. 
dt 

Putting this into formula (8.18) would give a formula for t+h y(O) in 
terms of 1 y(O) and 1 y(l). This is not ideal since the starting values 
for using Euler's method are 11 y(O) = 0 = n y(l) and so we will be 
working backwards, calculating successively policy values at dura
tions n- h, n- 2h, ... , h, 0. For this reason, it is more convenient to 
have formulae for t-h y(O) and t-h y(l) in terms of 1 y(O) and 1 y(l). 

We can achieve this by writing 

~ t y(O) = (t y(O)- t-h y(O))/ h + o(h)/ h 
dt 
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:!___ t v 0 l = Ct vClJ- t-h v 0 l)/ h + o(h)/ h. 
dt 

Putting these expressions into formulae (8.18) and (8.19), multiplying 
through by h, rearranging and ignoring terms which are o(h), gives 
the following two (approximate) equations 

t-h V(O) = t V(O)(l- oh)- Ph+ hp,~~1 (t V(l)- t V(O)) 

+ hp,~~1 (S- t V(O)) (8.21) 

and 

1-h v0 l = 1 vcll(l- oh) + Bh + hp,!~1 Ct vcoJ- 1 vc1J) 

+ hp,!~1 (S- t vOl). (8.22) 

These equations, together with the starting values at time n and given 
values of the step size, h, and premium rate, P, can be used to calculate 
successively 

n-h V(O), n-h V(l), n-2h V(O), n-2h V(l), ... , 10 V(O), 

wvcll, ... , ovcoJ. 

(1) For n = 20, h = 1/12 and P = $5500, we get 

10 V(O) = $18084, wV(I) = $829731, oV(O) = $3815. 

(2) For n = 20, h = 1/12 and P = $6000, we get 

wV(O) = $14226, wV(l) = $829721, oV(O) = -$2617. 

(ii) Let P* be the premium calculated using the equivalence principle. 
Then, for this premium we have (by definition) o V(O) = 0. Using the 
results in part (i) and assuming o vcoJ is (approximately) a linear func
tion of P, we have 

P*- 5500 0-3815 
R::!-----

6000- 5500 -2617-3815 

so that P* R> $5797. 
Using Solver in Excel, setting o vCOJ to be equal to zero, by varying 

P gives the equivalence principle premium P = $5796.59. 
Using the techniques of Example 8.6 gives 

a~g201 = 12.8535, a~~:W1 = 0.31593, A~~:W1 = o.o8521, 

and hence an equivalence principle premium of $5772.56. The differ
ence arises because we are using two different approximation 
methods. D 



I 
I! 

266 Multiple state models 

The above example illustrates why the policy value at duration t depends on 
the state the individual is in at that time. If, in this example, the individual is in 
state 0 at time 10, then it is quite likely that no benefits will ever be paid and 
so only a modest policy value is required. On the other hand, if the individual 
is in state 1, it is very likely that benefits at the rate of $100000 per year will 
be paid for the next 10 years and no future premiums will be received. In this 
case, a substantial policy value is required. The difference between the values 
of vl~) and vl~) in part (c), and the fact that the latter are not much affected 
by the value of the premium, demonstrate this point. 

8.7.2 Thiele's differential equation- the general case 

Consider an insurance policy issued at age x and with term n years described 
by a multiple state model with n + 1 states, labelled 0, 1, 2, ... , n. Let 

fJ.-1 denote the transition intensity between states i and j at age y, 

81 denote the force of interest per year at time t, 
B?) denote the rate of payment of benefit at time t while the policyholder is 

in state i , and 
s,UJ) denote the lump sum benefit payable instantaneously at time t on tran-

sition from state i to state j. 

We assume that 81 , Br(i) and s/iJ) are continuous functions oft. Note that pre
miums are included within this model as negative benefits and expenses can be 
included as additions to the benefits. 

For this very general model, Thiele's differential equation is as follows. 
Fori= 0, 1, ... , nand 0 < t < n, 

:!__ t vU) = or t V(i) - B(i) -
dt t 

11 

~ "iJ (sCiJ) + vCJ)- vCi)) 
~ ~""x+t t t t · 

}=0, J-l=i 

(8.23) 

Formula (8.23) can be interpreted in exactly the same way as formula (7.12). 
· At timet the policy value for a policy in state i, t vCi), is changing as a result of 

<> interest being earned at rate 81 t V(i), and 
<> benefits being paid at rate Br(i). 

The policy value will also change if the policyholder jumps from state i to any 
other state j at this time. The intensity of such a jump is fk~+t and the effect 
on the policy value will be 

<> a decrease of s,UJ) as the insurer has to pay any lump sum benefit contingent 
on jumping from state i to state j, 
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o a decrease of 1 yCJ) as the insurer has to set up the appropriate policy value 
in the new state, and 

o an increase of 1 y(i) as this amount is no longer needed. 

Formula (8.23) can be derived more formally by writing down an integral equa
tion for 1 y(i) and differentiating it. See Exercise 8.8. 

We can use formula (8.23) to calculate policy values exactly as we did in 
Example 8.7. We choose a small step size hand replace the left-hand side by 

Multiplying through by h, rearranging and ignoring terms which are o(h), we 
have a formula for v/!!h, i = 0, ... 'n, in terms of the policy values at dura

tion t. We can then use Euler's method, starting with Vn(i) = 0, to calculate the 
policy values at durations n- h, n- 2h, ... , h, 0. 

8.8 Multiple decrement models 

Multiple decrement models are special types of multiple state models which 
occur frequently in actuarial applications. A multiple decrement model is char
acterized by having a single starting state and several exit states with a possible 
transition from the starting state to any of the exit states, but no further transi
tions. Figure 8.6 illustrates a general multiple decrement model. The accidental 
death model, illustrated in Figure 8.2, is an example of a multiple decrement 
model with two exit states. 

Calculating probabilities for a multiple decrement model is relatively easy 
since only one transition can ever take place. For such a model we have for 
i = I , 2, ... , n and j = 0, 1 , ... , n (j =!= i), 

Alive 

0 

Exit 

1 

Exit 

2 

Exit 

n 

Figure 8.6 A general multiple decrement model. 
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1p~0 = tP~0 = exp ! -fo' ~ 1-L~~s ds} , 

Oi ( 00 Oi 
tPx = Jo sPx f-Lx+s ds, 

ii 1 OPx = ' 

op~ = 0. 

Assuming we know the transition intensities as functions of x, we can calculate 

1p~0 and 1p~i using numerical or,· in some cases, analytic integration. 
The following example illustrates a feature which commonly occurs when a 

multiple decrement model is used. We discuss the general point after complet
ing the example. 

Example 8.8 A 10-year term insurance policy is issued to a life aged 50. 
The sum insured, payable immediately on death, is $200 000 and premiums 
are payable continuously at a constant rate throughout the term. No benefit 
is payable if the policyholder lapses, that is, cancels the policy during the 
term. 

Calculate the annual premium rate using the following two sets of 

assumptions. 

(a) The force of interest is 2.5% per year. 
The force of mortality is given by f-Lx = 0.002 + 0.0005 (x -50). 
No allowance is made for lapses. 
No allowance is made for expenses. 

(b) The force of interest is 2.5% per year. 
The force of mortality is given by f-Lx = 0.002 + 0.0005(x- 50). 
The transition intensity for lapses is a constant equal to 0.05. 
No allowance is made for expenses. 

Solution 8.8 (a) Since lapses are being ignored, an appropriate model for this 
policy is the 'alive-dead' model shown in Figure 8.1. 

The annual premium rate, P, calculated using the equivalence principle, 
is given by 

fi:Ol 

p = 200 000 SO:lOl 
-00 
aso:TOl 



where 

and 
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Dead 

1 

Active 

L____o___J~~------. 
~ Lapsed 

2 

Figure 8.7 The insurance-with-lapses model. 

-01 -ot oo 01 1
10 

Aso:101 = 
0 

e tPso 1-Lso+t dt, 

1
10 

aoo = e-ot poo dt 
50:101 0 t 50 

tP~g = exp{ -0.002t- 0.00025t2}. 

Using numerical integration to calculate the integrals, we find 

p = 200000 X 0.03807/8.6961 = $875.49. 
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(b) To allow for lapses, the model should be as in Figure 8.7. Note that this has 
the same structure as the accidental death model illustrated in Figure 8.2-
a single starting state and two exit states - but with different labels 
for the states. Using this model, the formula for the premium, P, is, 
again, 

but now 

which gives 

AOl 

p = 200 000 so:101 
-00 
aso:101 

tP~g = exp{ -0.052t - 0.00025t2}, 

p = 200000 X 0.02890/6.9269 = $834.54. 

We make the following observations about Example 8.8. 

D 

(1) The premium allowing for lapses is a little lower than the premium which 
does not allow for lapses. This was to be expected. The insurer will make a 
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profit from any lapses in this example because, without allowing for lapses, 
the policy value at any duration is positive and a lapse (with no benefit 
payable) releases this amount as profit to the insurer. If the insurer allows 
for lapses, these profits can be used to reduce the premium. 

(2) In practice, the insurer may prefer not to allow for lapses when pricing 
policies if, as in this example, this leads to a higher premium. The deci
sion to lapse is totally at the discretion of the policyholder and depends 
on many factors, both personal and economic, beyond the control of the 
insurer. When lapses are used to reduce the premium, the business is called 
lapse supported. Because lapses are unpredictable, lapse supported pric
ing is considered somewhat risky and has proved to be a controversial 
technique. 

(3) Note that two different models were used in the example to calculate a 
premium for the policy. The choice of model depends on the terms of the 
policy and on the assumptions made by the insurer. 

(4) The two models used in this example are clearly different, but they are 
connected. The difference is that the model in Figure 8.7 has more exit 
states; the connections between the models are that the single exit state in 
Figure 8.1, 'Dead', is one of the exit states in Figure 8.7 and the transition 
intensity into this state, f.L~l, is the same in the two models. 

(5) The probability that the policyholder, starting at age 50, 'dies', that is 
enters state 1, before age 50+ t is different for the two models. For the 
model in Figure 8.1 this is 

lot exp{ -0.002r - 0.00025r2} (0.002 + 0.0005r)dr, 

whereas for the model in Figure 8.7 it is 

lot exp{ -0.052r - 0.00025r2} (0.002 + 0.0005r )dr. 

The explanation for this is that for the model in Figure 8.7, we interpret 
'dies' as dying before lapsing. The probability of this is affected by the 
intensity of lapsing. If we increase this intensity, the probability of dying 
(before lapsing) decreases, as more lives lapse before they die. 

Points (4) and (5) illustrate common features in the application of multiple 
decrement models. When working with a multiple decrement model we are 
often interested in a simpler model with only one of the exit states and with 
the same transition intensity into this state. For exit state j, the reduced model, 
represented in Figure 8.8, is called the associated single decrement model 
for decrement j. 
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L_ __ A_c_g_v_e __ ~~L ____ E_JI_·t--~ 
Figure 8.8 Independent single decrement model, exit j. 

For the multiple decrement model in Figure 8.6, starting in state 0 at age x, 
the probability of being in state j =/= 0 at age x + t is 

~ w ~ 1t { 1s n l 
tPx = 

0 
exp -

0 
t; f-Lx+u du f-Lx+s ds 

and 

00 _ Oi { 1t n l 
tPx - exp - 0 t; f-Lx+u du . 

For the related (reduced) single decrement model in Figure 8.8, where we have 
only two states (0 and j), we use the methods and results of Chapter 2 to derive 

survival and transition probabilities, denoted by 1p;(j) and 1q;(J), respectively, 
of 

*()) Oj { 1t } 
tPx = exp - 0 f-Lx+u du 

and 

q*()) = 1t p*(J) u OJ ds 
t x s x ~""x+s 

0 

for j =!= 0. 
The probabilities 1p~0 and 1p~J are called the dependent probabilities of 

survival or exit by decrement j, because the values depend on the values of 

the other transition intensities, f.L~~s for 0 .:::; s .:::; t and k =/= j; the probabilities 

from the reduced, two-state model, tP;(J) and 1q;(j), are called the indepen
dent probabilities of surviving and exiting for decrement j, because the values 
are independent of the effect of other transitions. The purpose of identifying 
the independent probabilities is usually associated with changing assumptions, 
which we explore in Section 8.10 below. 

8.9 Mnltiple decrement tables 

It is sometimes convenient to express a multiple decrement model in tabular 
form, similar to the use of the life table functions lx and dx for the alive
dead model. The multiple dcrement table can be used to calculate survival 
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Table 8.2 Excerpt from a critical illness multiple 

decrement table. 

X lx d~l) d~2) d~3) 

40 100 000 51 4784 44 
41 95 121 52 4 526 47 
42 90 496 53 4 268 50 
43 86 125 54 4010 53 
44 82 008 55 3 753 56 
45 78 144 56 3 496 59 
46 74 533 57 3 239 62 
47 71175 57 2 983 65 
48 68 070 58 2 729 67 
49 65 216 58 2 476 69 
50 62 613 58 2 226 70 

probabilities and exit probabilities, by mode of exit, for integer ages and dura
tions. With a fractional age assumption for decrements between integer ages, 
the multiple decrement table can be used to estimate all survival and exit prob
abilities for ages within the range of the table. We expand the life table notation 
of Section 3.2 as follows. 

Let lxo be the radix of the table (an arbitrary positive number) at the initial 
age xo. Define 

and for j = 1, 2, ... , n, and x ::0:: xo, 

(j) - Oj 
dx -lx X Px . 

Given integer age values for lx and for dy), all integer age and duration proba
bilities can be calculated. We may interpret lx, x > xo, as the expected number 
of survivors in the starting state 0 at age x out of lx0 in state 0 at age xo :::; x, 
although as lx0 is an arbitrary starting value, it does not need to be an integer. 

Similarly, dy) may be interpreted as the expected number of lives exiting by 
mode of decrement j in the year of age x to x + 1, out of l xo lives in the starting 
state at age xo. 

Example 8.9 Table 8.2 is an excerpt from a multiple decrement table for an 
insurance policy offering benefits on death or diagnosis of critical illness. The 
insurance expires on the earliest event of death (j = 1), surrender (j = 2) and 
critical illness diagnosis (j = 3). 
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(a) Calculate (i) 3P~2 (ii) P~6 (iii) sP~i. 
(b) Calculate the probability that a policy issued to a life aged 45 generates a 

claim for death or critical illness before age 47. 
(c) Calculate the P\obability that a policy issued to a life aged 40 is surrendered 

between ages 45 and 47. 

Solution 8.9 (a) (i) JP~2 = l4s/l45 = 0.87108. 

(ii) P~6 = d~b) jl4o = 0.00051. 

(iii) sP~i = (d~il + d~~) + · · · + d~~l)/141 =0.00279. 

(b) zp~J +zp~~=(d~~) +d~~) +d~~) +d~~))/l4s=0.00299. 
(c) sp~gzp~~=(d~;) +di~l)/l4o=0.06735. 

8.9.1 Fractional age assumptions for decrements 

D 

Suppose the only information that we have about a multiple decrement model 
are the integer age values of lx and dij). To calculate non-integer age or dura
tion probabilities, we need to make an assumption about the decrement proba
bilities or forces between integer ages. 

UDD in the multiple decrement table 
Here UDD stands for uniform distribution of decrements. For 0 ::::; t ::::; 1, and 
integer x, and for each exit mode j, assume that 

0. 0. 
tP/ =tp/. (8.24) 

The assumption of UDD in the multiple decrement model can be interpreted 
as assuming that, for each decrement, the exits from the starting state are uni
formly spread over each year. 

Constant transition forces 
For 0 ::::; t < 1, and integer x, assume that for each exit mode j, f.J,~~t is a 
constant for each age x, equal to fl,OJ (x), say. Let 

n 

fl,O•(x) = L fl,Ok(x) 

k=l 

so that f1, 0• (x) represents the total force of transition out of state 0 at age x + t 
for 0 ::::; t < 1. It is convenient also to denote the total exit probability from 
state 0 for the yea.r of age x to x + 1 as p~•. That is 

n 

p~· = 1 - p~o = L p~k = 1 - e-pP"(x)' 

k=l 
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so that p~0 = e-IL
0
"(x). Assuming constant transition forces between integer 

ages for all decrements, 

tP~1 = ~~~ ( 1- (P~0Y). (8.25) 

We prove this as follows: 

Oj ( 00 Oj d 
tPx = Jo rPx fLx+r r (8.26) 

= lot e-r !Lo"(x) fLO} (x )dr by the constant force assumption 

= fLO} (x) (1 - e-t !Lo"(x)), 

fLO•(x) 

= fLOJ (x) (1- (Poo)t). 
{LO•(x) X 

Now lett -+ 1, and rearrange, giving 

(8.27) 

(8.28) 

where the left-hand side is the ratio of the mode j force of exit to the total force 
of exit, and the right-hand side is the ratio of the mode j probability of exit to 
the total probability of exit. Substitute from equation (8.28) back into (8.27) to 
complete the proof. 

The intuition here is that the term 1 - (p~0) 1 
represents the total probability 

of exit under the constant transition force assumption, and the term p~J / p~· 
divides this exit probability into the ditfurent decrements in ~proportion to the 
full one-year exit probabilities. 

Example 8.10 Calculate o.2P~~ for j = 1, 2, 3 using the model summarized in 
Table 8.2, and assuming (a) UDDin all the decrements between integer ages, 
and (b) constant transition forces in all decrements between integer ages. 

Solution 8.10 (a) o.2P~~ = 0.2 p~~ which gives 

o.2P~5 = 0.000185, o.2P~5 = 0.007110, o.2P~6 = 0.000224. 

(b) 

Oj 

POJ = P5o ( 1 _ (poo)o.2) 
0.2 50 o. 50 

P5o 

which gives 

o.2P~l = 0.000188, o.2P~5 = 0.007220, o.2P~6 = 0.000227. D 
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8.10 Constructing a multiple decrement table 

The multiple decrement table may be constructed from underlying transition 
intensities, but when the underlying transition rates are not known, tables may 
be constructed by combining independent decrement rates to construct a table 
of dependent rates. 

For example, suppose an insurer is using a double decrement table for deaths 
and lapses to model the liabilities for a lapse-supported product. When a new 
mortality table is issued, the insurer may want to adjust the dependent rates to 

allow for the more up-to-date mortality probabilities. However, the mortality 
table is an independent table- the probabilities are the pure mortality probabil
ities. In the double decrement table, what we are interested in is the probability 
that death occurs from the 'in-force' state- so deaths after lapsation do not 
count here. 

The relationship between dependent and independent rates depends on exit 
patterns between integer ages, for each decrement in the model. For example, 
suppose we have dependent rates of mortality and withdrawal for some age x 
in a double decrement table, of p~1 =0.01 and p~2 =0.10, respectively. This 
means that, given 100 lives in force at age x, we expect one to die, before 
withdrawing, and 10 to withdraw. Suppose we know that withdrawals all hap

pen right at the end of the year. Then from 100 lives in force, we expect one 
person to die from 100 lives observed for one year, which gives an indepen
dent mortality rate q;(l) = 1/100. We expect 10 lives to withdraw, from 99 
expected to survive to the year end, so the independent withdrawal rate would 
be q;(2

) = l0/99. If, instead, all the withdrawals occur right at the beginning 

of the year, then we have one expected death from 90 lives observed for one 
year, so the independent mortality rate is q;(l) = 1/90, and the independent 
withdrawal rate is q;(2

) = 10/100. 

If we do not have such specific information, we use the fractional age assump
tions of the previous section to derive the relationships between the dependent 
and independent probabilities. 

8.10.1 Deriving independent rates from dependent rates 

1. UDD in the multiple decrement table 
Assume that each decrement is uniformly distributed in the multiple decrement 
model. Then we know that for integer x, and for 0:::; t < 1, 

POk = t pOk 
t X X ' 

00 1 0• 00 OJ OJ 
tPx = - t Px and tPx /Jvx+t = Px (8.29) 

where the last equation is derived exactly analogously to equation (3.9). Notice 
that the right-hand side of the last equation does not depend on t. Then from 
(8.29) above 
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o· 
o· p/ 

fJ, J - --=--------,,-
x+t- 1- t p~· 

and integrating both sides gives 

1 OJ OJ 
Ia /k~~~ dt = ;~. ( -log(l - p~·)) = ;~. (-log p~o) . 

Note that the decrement j independent survival probability is 

( ') ri Oj 
p~ J = e- Jo lkx+tdt 

and substituting for the exponent, we have 

( 
Oj/ 0•) 

*Ci) ( 00) Px Px 
Px = Px · (8.30) 

So, given the table of dependent rates of exit, p~J, we can use equation (8.30) 
to calculate the associated independent rates, under the assumption of UDDin 
the multiple decrement table. 

2. Constant forces of transition in the multiple decrement table 
Interestingly, the relationship between dependent and independent rates under 
the constant force fractional age assumption is exactly that in equation (8.30). 
From equation (8.28) we have 

OJ 
o· o Px 

fk 1 (x) = fk ·ex) o.• 
Px 

so 

( Ojj Oo) ( Ojj 0•) 
*(}) _ _J.LOj (x) _ ( _ 1.LO•(x)) Px Px _ ( OO) Px Px 

Px - e - e - Px · 

Example 8.11 Calculate the independent one-year exit probabilities for each 
decrement for ages 40 to 50, using Table 8.2 above. Assume a uniform distri
bution of decrements in the multiple decrement model. 

Solution 8.11 The results are given in Table 8.3. D 

You might notice in this example that the independent rates are greater than the 
dependent rates. This will always be true, as the effect of exposure to multi
ple forces of decrement must reduce the probability of exit by each individual 
mode, compared with the probability when only a single force of exit is present. 

Now suppose we lmow the independent rates, and wish to construct the table 
of dependent rates. We consider this next. 



8.10 Constructing a multiple decrement table 

Table 8.3 Independent rates of exit for the multiple decrement 

model, Table 8.2, assuming UDD in the multiple decrement table. 

X 

40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

0.000523 
0.000560 
0.000600 
0.000642 
0.000687 
0.000733 
0.000782 
0.000819 
0.000870 
0.000907 
O.otl0944 

0.047863 
0.047607 
0.047190 
0.046590 
0.045795 
0.044771 
0.043493 
0.041947 
0.040128 
0.038004 
0.035589 

0.000451 
0.000506 
0.000566 
0.000630 
0.000699 
0.000773 

. 0.000851 
0.000933 
0.001005 
0.001079 
0.001139 

8.1 0.2 Deriving dependent rates from independent rates 

277 

1. UDD in the multiple decrement table or constant forces of transition 
We can rearrange equation (8.30), which applies to both fractional age assump
tions, to give 

1 *Ul 
Oj ogpx O• 

Px = l 00 Px (8.31) 
ogpx 

In order to apply this, we use the fact that the product of the independent sur
vival probabilities gives the dependent survival probability as 

*(j) ~ ~ n n ( lot ) ( t n ) J] tPx = J] exp -
0 

11-x+rdr = exp - fo t; 11-x+rdr 

2. UDDin the independent models 

00 
= tPx · 

If we assume a uniform distribution of decrements in each of the independent 
models, the result will be slightly different from the assumption of UDD in 
the multiple decrement table. That is, if we assume UDD in the independent 
models, then the transitions in the multiple decrement model will not be UDD. 

The UDD assumption in the independent models means that for each decre
ment j, and for integer x, 0 ::::; t < 1, 

q
*(j) - t q*(j) ____.._ p*(j) II Oj - q*(j) t X - X -r t X rvx+t - X 

Then 

11 11 Oj _ 00 Oj _ *(!) *(2) *(n) Oj 
Px - tPx 11-x+tdt- tPx tPx · · · tPx 11-x+t dt. 

" 0 0 
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OJ *(}) { 1 Iln *Ci)dt 
Px = qx Jo tPx 

0 k=1,ki) 

=q;(j) lo1 fi (1-tq;(k)))dt. 
0 k=l,kf.j 

The integrand here is just a polynomial in t, so for example, if there are two 
decrements, we have 

and similarly for p~2 . 

p~1 = q;<l) Ia 1 ( 1 - t q;(2))) dt 

= q;<l) ( 1 - ~q;(2)) 

It is simple to show that, with three decrements, under the assumption of 
UDD in each of the single decrement models, we have 

and similarly for p~2 and p~3 . The proof is left as an exercise. 
Generally it will make little difference whether the assumption used is UDD 

in the multiple decrement model or UDDin the single decrement models. The 
differences may be noticeable though when the transition forces are changing 
rapidly between integer ages. 

Example 8.12 The insurer using Table 8.2 wishes to revise the underlying 
assumptions. The independent annual surrender prob~bilities are to be 
decreased by 10% and the independent annual critical illness diagnosis prob
abilities are to be increased by 30%. The independent mortality probabilities 
are unchanged. 

Construct the revised multiple decrement table for ages 40 to 50 assum
ing UDD in the multiple decrement model and comment on the impact of the 
changes on the dependent mortality probabilities. 

"" 
Solution 8.12 This is a straightforward application of equation (8.31). The 
results are given in Table 8.4. We note the increase in the mortality (j = 1) 
probabilities, even though the underlying (independent) mortality rates were 
not changed. This arises because fewer lives are withdrawing, so more lives 
are expected to die before withdrawal. 0 



8.12 Transitions at exact ages 279 

Table 8.4 Revised multiple decrement table for 
Example 8.12. 

X lx d(l) 
X 

d~2) d(3) 
X 

40 100 000.00 51.12 4 305.31 57.34 
41 95 586.22 52.38 4 093.01 61.55 
42 91 379.28 53.64 3 878.36 65.80 
43 87 381.48 54.92 3 661.31 70.07 
44 83 595.18 56.19 3 442.71 74.39 
45 80 021.90 57.47 3 221.64 78.73 
46 76 664.06 58.75 2 998.07 83.09 
47 73 524.15 59.00 2 772.92 87.48 
48 70 604.74 60.28 2547.17 90.53 
49 67 906.76 60.50 2 319.97 93.58 
50 65 432.71 60.71 2 093.26 95.27 

8.11 Comments on multiple decrement notation 

Multiple decrement models have been used by actuaries for many years, but 
the associated notation is not in the set of standardized international actuarial 
notation. We have retained the more general multiple state notation for multi
ple decrement (dependent) probabilities, although it is unnecessarily unwieldy, 
perhaps, since every probability will be in the form p~J. 

The introduction of the reduced single decrement, or independent, models 
associated with the multiple decrement model is not easily incorporated into 
our multiple state model notation, which is why we have fallen back on the p 

and q notation from the alive-dead model. 
In the table below we have summarized the multiple decrement notation 

that has evolved in North America and in the UK and Australia. In the first 
column we show the equivalent probabilities in the multiple state notation, 
which is mainly what we use in this text. We will also use the North American 
notation where it is more convenient (in particular, in double decrement death 
and surrender models). 

8.12 Transitions at exact ages 

A feature of all the multiple state models considered so far in this chapter is 
that transitions take place in continuous time, and the probability of a transi
tion taking place in a time interval of length h converges to 0 as h converges 
to 0. This follows from Assumption 8.3 in Section 8.3. In practice, there are 
situations where this assumption is not realistic. One common example arises 
in pension plans, when there is a minimum retirement age, leading to a mass 
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of retirements at that age. For example, if employees can retire with an imme
diate pension at any age above 60, there may be a significant probability that 
an individual retires at exact age 60, breaching Assumption 8.3, which requires 
(loosely) that the probability of exit at any specified instant must be infinitesi
mal. The situation also arises in relation to sunenders in life insurance, where 
policyholders might sunender immediately before a premium payment date. 

Exact age or duration transitions can be managed by separating the analy
sis into periods of continuous transition, where Assumption 8.3 applies, and 
periods of discrete transition, where there are bulk exits from the starting state. 

In this section, we demonstrate this with an example, in the context of a 
pension plan. 

Example 8.13 Exits from employment are modelled using a three decrement 
model, as shown in Figure 8.9. You are given the following information on 
exits between integer ages: 

01 
{ 

0.05 X < 60, 
Mx = 0.00 X:::: 60, 

/).02 _ { 0.00 X < 60, 
X - 0.10 60 <X < 62, 

I 0.003 59 < X < 60, 
/).~3 = 0.004 60 ::5 X < 61, 

0.005 61 ::5 X < 62. 

In addition to the continuous time exits modelled using the transition intensities 
above, there are retirements at exact age 60, when 20% of all employees still 
working retire immediately, and at exact age 62, when all remaining employees 
retire immediately. 
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Figure 8.9 Multiple decrement model for Example 8.13. 

(a) Construct the multiple decrement table for this model, for integer ages 
from 59 to 62, using a radix of ls9 = 100 000. 

(b) Calculate the probability that an employee aged 59 will retire before 
age 62. 

(c) Calculate the EPV of a death in service benefit of $100 000, paid imme
diately on death, for an employee aged 59. Assume an interest rate of 4% 
per year, and use (i) exact calculation and (ii) the multiple decrement table 
from (a), with claims acceleration- that is, assume all payments between 
integer dUrations occur exactly half-way through the year. 

(d) Calculate the EPV of a lump sum benefit of $100000, paid immediately 
on retirement, for an employee aged 59. Assume an interest rate of 4% per 
year, and use claims acceleration as in part (c). 

l 

Solution 8.13 (a) We will calculate the transition probabilities and build up 
the multiple decrement table, starting from age 59. The probability of sur
vival to age 59+ t, for 0 < t < 1, is 

P
oo _ e- J; o.o53dt _ e-0.053t 

t 59- - . 

So the probabilities of exit for the year are 

01 t 00 01 d 
Ps9 = lo tPsg tJ,s9+t t 

= e-0·053t 0.05 dt = 0.05 = 0.04870, 1
1 1 _ e-0.053 

0 0.053 
02 0 Ps9 = , 

p~~ = 11 
e-

0
·
053

t 0.003 dt = 0.00292, 

which give the first row of the multiple decrement table: 
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59 100 000 4 869.8 0 292.2 

So, from ls9 = 100000 employees aged 59, we expect 4869.1 +292.2 to 
exit before age 60, leaving 94 838 in employment at exact age 60. Of these, 
20% are expected to retire immediately, leaving the remainder to continue 
working beyond age 60. We will identify the exact age exits with a special 
row in the multiple decrement table. Exits between ages 60 and 61, after 
the exact age transitions, will be denoted as applying to age 60+. The table 
becomes: 

Age lx d~1) d?) d~3) 

59 100000.0 4 869.8 0.0 292.2 
60 exact 94838.0 0.0 18 967.6 0.0 
60+ 75 870.4 

Once the exact age transitions are accounted for, transitions between ages 
60+ and 61 follow using the standard multiple state model formulae. We 
have p 00 = e-0·1041 for 0 < t < 1 and t 60+ - - , 

01 0 P6o+ = , 

p~~+ =for e-0
·
1041 0.1 dt = 0.09498, 

p~6+ = fo 1 

e-0
·
1041 0.004dt = 0.00380, 

and multiplying these by l6o+ gives the d~~~ values required: 

Age lx dy) 

59 100000.0 4869.8 
60 exact 94838.0 0.0 
60+ 75 870.4 0.0 
61 68376.3 

We then repeat the process for age 61: 

01 0 
P61 = , 

d~2) dP) 

0.0 292.2 
18 967.6 0.0 

7205.8 288.2 
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P~I = 11 

e-0·105t 0.1 dt = 0.09493, 

P~i = 11 

e-0
·
105

t 0.005dt = 0.00475, 

which give the full table up to exact age 62, when all remaining employees 
are assumed to retire immediately: 

Age Zx d~1) d?) dP) 

59 100000.0 4869.8 0.0 292.2 
60 exact 94838.0 0.0 18 967.6 0.0 
60+ 75 870.4 0.0 7205.8 288.2 
61 68 376.3 0.0 6490.9 324.5 
62 exact 61560.9 0.0 61560.9 0.0 

(b) To distinguish between probabilities before exact age exits and after exact 
age exits, we use superscripts t- and t+, for the age or term, as appropriate. 
So, using the table, the probability that an employee aged 59 retires before 
age 62- is 

. 02 18 967.6 + 7 205.8 + 6490.9 
3-P59 = 

100000 
= 0.32664. 

(c) (i) The death in service benefit may be valued in three parts, correspond
ing to the three possible years of service. We then have the EPV as 
100 OOOA03 

01 where 8 = log 1.04 and 
59:31 

J03 = [ 1 e -0.053t 0.003 e-at dt 
59:31 } 0 

+ 1 + pgg e -a Ia 1 e o-o.104t 0.004 e-at dt 

+ 2Pgg e-2811 e-O.l05t 0.005 e-at dt 

= 0.0085281 

giving the EPV for the death in service benefit as $852.81. 

(ii) With the claims acceleration approach (which is very common in pen
sion calculations), we can use the table to determine the probability of 
death in service over each year, and assume that the benefits are paid, 
on average, midway through the year of age, giving the EPV as 
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292.2v0·5 + 288.2vl.5 + 324.5v2·5 

100000 100000 = $852.51. 

We notice that the claims acceleration approach is simpler to calculate 
and quite accurate, compared with the exact calculation, in this case. 

(d) The continuous time retirement benefits are discounted from the mid-year 
of payment, and the exact age retirements at ages 60 and 62 are discounted 
from the exact dates, giving the EPV of the retirement lump sum as 

100000 
( 18967.6v + 7205.8 v1.

5 + 6490.9 v2
·
5 + 61560.9v3) 

100000 

= $85 644.28. 

8.13 Markov multiple state models in discrete time 

0 

In the multiple decrement table, we summarize information about probabilities 
of transition for integer ages and integer terms. For some analysis, that is suf-

'-ficient information, and, as we saw in Example 8.13, even when cash flows do 
not correspond to the integer ages and durations, the discrete time model can 
be quite efficient in calculation in the multiple decrement case. 

For a more general multiple state model, it is not common to use tables of 
lx and dy) values, as the possibility of multiple transitions makes such a table 
unwieldy even in quite simple cases. However, we do sometimes work with 
discrete time models, rather than continuous time transitions. In this section, 
we derive some methods for working with more general multiple state models 
in discrete time. Markov models in discrete time are called Markov chains. 
To be more precise, given a set of states labelled (say) { 0, 1 , ... , n}, a discrete 
time stochastic process {Y(t), t =0, 1, 2, ... } is a Markov chain if for any 
non-negative integers t and k, and for any states, 

Pr [Y(t + k) = siY(O), Y(1), ... , Y(t)] = Pr [Y(t + k) = siY(t)]. 

This means that (as in the continuous time case), the probability that the pro
cess is in any given state at some future date depends only on the current state, 
not on the history of the process before the current date. 

We now illustrate the principles with an example. 

Example 8.14 An insurer uses the disability income model, illustrated in Fig
ure 8.4, to evaluate policies with sickness and death contingent benefits. In this 
example we refer to state 0 as 'healthy', state 1 as 'sick' and state 2 as 'dead'. 

The insurer has calculated a table of annual probabilities for the model. An 
excerpt is given in Table 8.5. 
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Table 8.5 Annual probabilities for the three state model, Example 8.14. 

X P~o p~l p~2 Plo Pl1 PF 
50 0.981176 0.012036 0.006788 0.038658 0.951752 0.009590 
51 0.978813 0.013822 0.007365 0.038593 0.950916 0.010491 
52 0.976009 0.015996 0.007995 0.038517 0.950003 0.011480 
53 0.972673 0.018643 0.008684 0.038429 0.949005 0.012566 
54 0.968702 0.021862 0.009436 0.038325 0.947915 0.013760 
55 0.963966 0.025773 0.010261 0.038204 0.946726 0.015070 

(a) Calculate the probability that a healthy life aged 50 is healthy at age 52. 
(b) Calculate the probability that a healthy life aged 50 is sick·at age 52. 
(c) Calculate the probability that a healthy life aged 50 is healthy at age 53. 
(d) A healthy life aged 50 purchases a policy with premiums of $10 000 

payable annually in advance for up to five years. The insurer waives pre
miums for policyholders who are sick at the premium payment date. Cal
culate the reduction in the EPV of the premium income resulting from 
the waiver, compared with a policy where payments are contingent only 
on the policyholder being alive. Assume an interest rate of 4% per year 
effective. 

(e) At the end of the fifth year, the policyholder receives a level life annuity 
if she survives, payable annually in advance. There is a benefit of $50 000 
payable at the end of the year of death if the policyholder dies before age 
55. The premium is $10000 per year, payable in advance for five years, 
and is waived on sickness (as in part (d)). You are given that, at 4% per 

year, the EPV at age 55 of a life annuity of 1 per year for a life who is 
healthy at that time is 13.2~5, and the EPV at age 55 of an annuity of 1 per 
year to a life who is sick at that time is 12.350. 

Calculate the level annual benefit payable under the deferred annuity. 
Ignore expenses. 

Solution 8.14 (a) The probability is 2P~g. We calculate this by considering 
the two possible states at age 51, that could lead to the event that (50) 
is healthy at age 52, given that she is healthy at age 50. Either (i) she is 
healthy at age 51, and healthy at age 52, or (ii) she is sick at age 51, and 
healthy at age 52. So, the states at ages 50, 51 and 52 are either 0 --+ 0 --+ 0 
or 0--+ 1--+ 0. 

Constructing the probabilities for these events, we have 

2P~g = p~g P~? + P~a PJ? = 0.960852. 

It is worth noting here that we have no information from the one-year p~0 

probabilities about whether the life transitioned out and back into state 0 
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between integer dates. The table tells us only probabilities associated with 
end-year states, and should not be interpreted as offering any information 
about paths between states within each year. 

(b) Similarly to (a), given that the life is healthy at age 50, to be sick at age 
52 the life must, subsequently, either be healthy at age 51, and transition 
to sick by age 52, or must be sick at age 51, and sick also at age 52. The 
probabilities combine for the two year transition probability 

OI 00 OI OI 11 0 025007 2Pso = Pso Psi + Pso Psi = · · 

(c) The probability required is 3P~g. We can follow the argument from (a), 
and work out all the possible states for the life at ages 51 and 52. It is 
convenient to work backwards from age 53; if she is to be healthy at age 
53, at age 52, she could be either healthy or sick. So, we can break down 
the three-year probability as 

00 00 00 OI IO 
3Pso = 2Pso Ps2 + 2Pso Ps2 

and since we calculated the two-year probabilities in parts (a) and (b), we 
have 

3P~g = 0.960852 X 0.976009 + 0.025007 X 0.038517 = 0.938764. 

(d) The EPV of premiums with no sickness waiver is 
,I 

1 (1 ( 00 OI) ( 00 OI) 2 ( 00 OI) 3 000 + Pso + Pso v + 2Pso + 2Pso v + 3Pso + 3Pso v 

( 00 OI) 4) + 4Pso + 4Pso v , 

and with sickness waiver is 

1000 ( 
00 00 2 00 3 00 4) 

1 + Pso v + 2Pso v + 3Pso v + 4Pso v · 

Generalizing the approach in part (c), we see that the values for tP~g, 
tP~5 and tP~6, can be calculated recursively as 

00 00 00 OI IO 
t+IPso = tPso Pso+t + tPso Pso+t' 

OI 00 OI OI II 
t+IPso = tPso Pso+t + tPso Pso+t> 

02 00 02 OI I2 02 
t+lPso = tPso Pso+t + tPso Pso+t + tPso 

1 00 01 = - t+IPso - t+IPso 

which give the values shown in Table 8.6. 



8.13 Markov multiple state models in discrete time 287 

Table 8.6 Probabilities for Example 8.14. 

00 
tPso 

01 
tPso 

02 
tPso 

0 1.000000 0.000000 0.000000 
1 0.981176 0.012036 0.006788 
2 0.960852 0.025007 0.014141 
3 0.938764 0.039127 0.022110 
4 0.914614 0.054633 0.030754 
5 0.888082 0.071782 0.040136 

Note that these recursions are specific to this model. The intuition for the 
t+1P~6 recursion, for j = 0, 1, 2, is that we consider all the possible states 
for (50) at age 50+ t, and then consider what transition is required for (50) 
to be in state j at age 50 + t + 1. So for the first recursion above, where 
j = 0, (50) must either be in state 0 at age 50+ t (with probability 1p~g) 
and then go from state 0 to 0 in the final year (with probability p~g+1 ), or 
be in state 1 at age 50+ t (with probability 1p~J) and then go from state 1 to 
0 in the final year (with probability pJg+1). Combining these two possible 
routes gives the first recursion. 

Similarly, for t+1P~J, (50) must either be in state 0 at age 50+ t (with 
probability 1p~g) and then go from state 0 to 1 in the final year (with prob
ability p~J+1 ) or be in state 1 at age 50+ t (with probability tP~J) and then 
go from state 1 to 1 in the final year (with probability p§5+

1
). Combining 

these two possible routes gives the second recursion. 

For t+1P~5, there are three possibilities for (50) at age 50+ t; she could 
already be in state 2 (with probability 1p~5) or she could be in state 0 at 
age 50+ t (with probability 1p~g) and then go from state 0 to 2 in the final 
year (with probability P~5+t), or be in state 1 at age 50+ t (with probability 
tP~B) and then go from state 1 to 2 in the final year (with probability pJ5+t). 
Combining these three possible routes gives the third recursion. 

Using the probabilities in Table 8.6, we find that the EPV of the annual 
premium of $1000 is $4564.35 without the waiver of premiums on sick
ness, and $4448.17 with the waiver, so the EPV of the waiver is 
$116.18. 

(e) The probability t+ 1 p~5 is the probability that 50 dies before age 50+ t + 1, 
given that she is healthy at age 50. To value the death benefit, we need 
the probability that the life dies in the year t to t + 1, which can be 
written as 

02 02 
t+lPso - t Pso 
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or 

00 02 01 12 
tPso Pso+t + tPso Pso+t· 

In the first expression, we take the probability of death by age 50 + t away 
from the probability of death by age 50 + t + 1, and what remains is the 
probability of death in the year t to t + I. In the second expression, we 
consider the two possible ways that the life can transition to state 2 in the 
year t to t + 1; at the start of the year, the life must either be in state 0 or 
in state 1, and then transition in the final year to state 2. 

Using the first version, and the probabilities from part (d), we calculate 
the EPV of the death benefit as 

50000 (Pg5 v + (2Pg5- Pg5) v
2 + · · · + (sPg5- 4Pg5) v5

) = 1775.48. 

The EPV at age 50 of an annuity of X per year, payable from age 55 whilst 
alive (healthy or sick) can be broken down into 

(i) the EPV of an annuity that is payable if healthy at age 55, multiplied 
by the probability that (50) is healthy at age 55, discounted for interest, 
plus 

(ii) the EPV of an annuity that is payable if sick at age 55, multiplied by the 
probability that (50) is sick at age 55, discounted for interest. 

That is, the EPV at age 50 in state 0 of a lifetime annuity-due of X per year 
payable from age 55 is 

X ( poo v5 (aoo + aOl) + POl v5 5 50 55 55 5 50 

Note that the question tells us that 

··OO + ··Ol - 13 285 ass ass - · d ··lO ··ll 12 350 an ass + ass = . , 

so we have EPV for the annuity of 10.42588 X. 

Using the equivalence principle, we have 

4481.74 = 1775.48 + 10.42588 X:::} X= $256.35. 

8.13.1 The Chapman-Kolmogorov equations 

D 

In the example above, we used recursions developed from the specific Markov 
chain of the question to calculate transition probabilities for the process. In 
this section we generalize the recursions for application to any Markov chain 
process. The re{ults are known as the Chapman-Kolmogorov equations for the 
Markov chain. 
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Consider a general Markov chain with n + 1 states, that is, with state space 
S = {0, 1, ... , n}. For any non-negative integers t and r, and for any states 
i, j E S (i, j could be the same state), we have 

ll 

ij ~ ik kj 
t+rPx = ~tPx rPx+t· (8.32) 

k=O 

The intuition for these equations is exactly as explained in part (c) of the 
example above. Any transition probability over t + r years (and we use the 
term transition probability even when the starting and end state are the same) 
can be broken down into the probability for the first t years, followed by the 
remaining r years. That is, if Y(t) denotes the state that (x) is in at timet, then 
the event 

Y (t + r) = j I Y (0) = i 

can be broken down into then+ 1 mutually exclusive and exhaustive sub-events 

[Y(t) = OIY(O) = i] n [Y(t + r) = JIY(t) =OJ 

[Y(t) = 11Y(O) = i] n [Y(t + r) = JIY(t) = 1] 

[Y(t) = niY(O) = i] n [Y(t + r) = JIY(t) = n] 

which means that the event probability 

t+rP~ = Pr[Y(t + r) = JIY(O) = i] 

can be similarly bro~en down as 

iO Oj i 1 lj in nj 
tPx rPx+t + tPx rPx+t + · · · + tPx rPx+t· 

In most examples of Markov chains in life contingent applications, many of 
the transitions will not be possible, so that the transition probabilities will be 
zero. Examples would include ,. p~~t in Example 8.14. 

8.13.2 Transition matrices 

It is often convenient to express the transition probabilities tP~, for integer 
t :::_ 1 and for a given age x, in matrix form. Consider a multiple state model 
with n + 1 states. The one-year transition matrix Px, say, is an (n + 1) x (n + 1) 
matrix 
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This is a stochastic matrix, meaning that all entries are non-negative, and the 
sum of entries in each row is 1. 

In the three-state model of Example 8.14, the transition matrix of one-year 
probabilities for (x) (noting, again, that there are no transitions out of state 2) is 

p~2) 
P1:2 

· 

1 

The reason that this is a useful representation comes from the fact that mul
tiplying matrices generates Chapman-Kolmogorov equations for the system. 
For example, consider the three-state model from Example 8.14. We have 

Px X Px+l = 

(p

oo Poo +pOl P1o 
x x+l x x+l 

P lo Poo +pll P1o 
x x+l x x+l 

0 

Poo pOl +pOl pll 
x x+l x x+l 

P lO pOl +pll pll 
x x+l x x+l 

0 

Poo Po2 +pol Pl2 +po2) 
X x+l X x+l X 

PIO p02 +pll p12 +pl2 . 
X x+l X x+l X 

1 

Comparing the individual terms with the Chapman-Kolmogorov equations, 
with t = r = 1, we see that each element in the matrix product is a two-year 
transition probability. That is, the product of one-year transition matrices at 
successive ages is a two-year transition matrix: 

P02) 2 X 
12 

2Px · 
2i}? 

.1 

Continuing the matrix multiplication through subsequent ages, we can deter
mine the t-year transition matrix for any integer t, and this can be used for 
projecting expected numbers of claims or for valuing state contingent benefits. 

A special case of the transition matrices and Chapman-Kolmogorov equa
tions arises when probabilities for each successive time period are the same. 
In most examples for life insurance this will not be the case, as probabilities 
depend on age, which changes each time unit. There are cases, however, where 
the overall time-scale is sufficiently short that it may be possible to simplify the 
process such that probabilities do not depend on age. In this case, the transition 
matrix does not change over successive time units, and the process is said to 
be time-homogeneous. 

Example 8.15 Employees in Company OHB transition at the end of every six 
months between the three states 

State 0 -junior management 
State 1 - senior management 
State 2 - terminated 
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The probability of moving from junior to senior management is 0.1; the prob
ability of being terminated from junior management is 0.04. 

No senior managers are demoted to junior management. The probability of 
termination for senior managers is 0.08 every six months. 

At 1 January 2013 Olivia is a senior manager and Harriet is a junior manager. 
Calculate the probability that both are terminated by the end of 2014. Assume 
transitions are independent, and ignore mortality or any other mode of exit. 

Solution 8.15 We work in time units of six-months, which means that there 
are four time periods between 1 January 2013 and 31 December 2014. 

The transition matrix for each time unit is 

(

0.86 0.10 0.04) 
p = 0.00 0.92 0.08 . 

0.00 0.00 1.00 

As this process is time-homogeneous, the four-period transition matrix is 

(

0.5470 0.2823 0.1707) 
P4 = 0.0000 0.7164 0.2836 . 

0.0000 0.0000 1.0000 

The probability that Olivia is terminated within two years is 4p12 = 0.2836. 
The probability that Harriet is terminated within two years is 4p02 = 0.1707. 
So, the probability that both are terminated (given independence) is 0.2836 x 
0.1707 = 0.0484. 0 

8.14 Notes and further reading 

The general, continuous time multiple state models of this chapter are known 
to probabilists as Markov processes with discrete states in continuous time. 
The processes of interest to actuaries are usually time-inhomogeneous since 
the transition intensities are functions of time/age. Good references for such 
processes are Cox and Miller (1965) and Ross (1995). Rolski et al. (1999) 
provide a brief treatment of such models within an insurance context. 

Andrei Andreyevich Markov (1865-1922) was a Russian mathematician 
best known for his work in probability theory. Andrei Nikolaevich Kolmogorov 
(1903-1987) was also a Russian mathematician, who made many fundamen
tal contributions to probability theory and is generally credited with putting 
probability theory on a sound mathematical basis. 

The application of multiple state models to problems in actuarial science 
goes back at least to Sverdrup (1965). Hoem (1988) provides a very compre
hensive treatment of the mathematics of such models. Multiple state models 
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are not only a natural framework for modelling conventional life and health 
insurance policies, they are also a valuable research tool in actuarial science. 
See, for example, Macdonald et al. (2003a, b). 

Norberg (1995) shows how to calculate the kth moment, k = 1, 2, 3, ... , 
for the present value of future cash flows from a very general multiple state 
model. He also reports that the transition intensities used in part (b) of Example 
8.4, and subsequent examples, are those used at that time by Danish insurance 
companies. 

In Section 8.4 we remarked that the transition intensities are fundamental 
quantities which determine everything we need to know about a multiple state 
model. They are also in many insurance-related contexts the natural quantities 
to estimate from data. See, for example, Sverdrup (1965) or Waters (1984). 

We can extend multiple state models in various ways. One way is to allow 
the transition intensities out of a state to depend not only on the individual's 
current age but also on how long they have been in the current state. This breaks 
the Markov assumption and the new process is known as a semi-Markov pro
cess. This could be appropriate for the disability income insurance process 
(Figure 8.4) where the intensities of recovery and death from the sick state 
could be assumed to depend on how long the individual had been sick, as well 
as on current age. Precisely this model has been applied to UK insured lives 
data. See CMI (1991). 

As noted at the end of Chapter 7, there are more sophisticated ways of solv
ing systems of differential equations than Euler's method. Waters and Wilkie 
(1988) present a method specifically designed for use with multiple state mod
els. For a discussion on how to use mathematical software to tackle the prob
lems discussed in this chapter see Dickson (2006). 

8.15 Exercises 
': 

Exercise 8.1 An insurer prices disability income insurance using the, model 
in Figure 8.4. A certain policy provides an income while disabled, a death 
benefit of $100 000 immediately on death (from either live state), and includes 
a 'bonus' of $10 000 at the end of the policy term should the policyholder not 
make any claim during the policy term. For a policy with a 10-year term issued 
to a life aged 50, write down expressions involving transition intensities and 
probabilities for the EPV at force of interest 8 per year of the death and bonus 
benefits. 

Exercise 8.2 An insurer calculates premiums for permanent disability insur
ance using the model in Figure 8.3. A life aged 60 purchases a policy with a 
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five- year term which provides a benefit of $100 000 on exit from the healthy 
state. 

(a) Write down an expression in terms of transition intensities, probabilities 
and 8 for the EPV of this benefit at force of interest 8 per year. 

(b) Calculate the EPV of the benefit when tt~ 1 = O.Dl and tt~2 = 0.015 for 
60:::; x:::; 65 and 8 =0.05. 

Exercise 8.3 An insurer prices disability income insurance using the model in 
Figure 8.4. The following probabilities apply at age 50: 

2 1 poo = -e-0.0151 + -e-0.011 
I 50 3 3 

P
02 _ 1 _ e-0.011 

I 50- . 

Policyholders pay premiums continuously throughout the policy term while 
they are healthy, and receive benefits while they are disabled. Policyholders 
are assumed to be healthy at the issue date. Using a force of interest of 5% 

' per year, calculate the total premium per year for a policy with term two 
years for a life aged 50 that provides a disability benefit at the rate of $60 000 
per year. 

Exercise 8.4 An insurer issues a whole life disability income insurance policy 
to a healthy life aged 50. The policy provides a disability income of $50 000 
per year payable continuously while the life is disabled. In addition the policy 
pays a death benefit of $200 000 at the moment of death. The policyholder pays 
premiums continuously, at a rate of P per year, while in the healthy state. The 
insurer calculates premiums using the model in Figure 8.4. 

(a) Assuming no expenses and a constant force of interest 8 per year, write 
down Thiele's differential equation for the policy value in state 1 at timet. 

(h) Use the table below to determine the premium for the policy issued to (50). 
Assume interest of 5% per year effective, and ignore expenses. 

(c) Ten years after the policy was issued, the policyholder is in the disabled 
state. Calculate the policy value, using the factors from the table below 
and interest at 5% per year effective. 

X 

50 11.9520 1.3292 8.9808 3.2382 0.34980 0.39971 

60 8.6097 1.7424 7.1596 1.7922 0.49511 0.56316 
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Exercise 8.5 A disability income insurance policy pays B per year, continu
ously, while the policyholder is sick, and pays a lump sum death benefit of 
S. The policyholder pays a premium of P per year, continuously, when in the 
healthy state. The policy is issued to a healthy life aged 40, and ceases at age 
60. The insurer prices policies using the model in Figure 8.4. 

(a) Write down the Kolmogorov forward equations for 1p~0 , 1p~1 and 1p~2 • 

(b) Explain, in words, the meaning of a~~ and .A~~iil' and write down the inte-
gral formulae to calculate them. · · 

(c) Write down a formula in terms of a~iil and .A~:iil functions f~ the net pre
mium policy value for this disability income insurance policy at duration 
t < 20, given that the life is sick at that time. 

(d) You are given the following transition intensities for this model. 

01 
IL40+t 

02 
IL40+t 

10 
IL40+t 

12 
IL40+t 

0 0.01074 0.00328 0.09012 0.00712 
0.1 0.01094 0.00330 0.09003 0.00719 
0.2 0.01116 0.00333 0.08994 0.00726 

19.8 0.54261 0.01700 0.07663 0.05813 
19.9 0.55356 0.01714 0.07658 0.05876 
20.0 0.56474 0.01730 0.07653 0.05941 

(i) Using a time step of h =0.1, estimate o.2Pgg and o.2Pg5. 
(ii) Write down Thiele's differential equations for t v<0l and 1 vOl, 

0 < t < 20, for this policy. 

(iii) You are given that B = 20 000, S = 100 000, P = 6 000 and 8 = 0.05. 
· Use the table above to estimate 19.9 V(l) and 19.9 v<O). 

Exercise 8.6 Consider the accidental death model illustrated in Figure 8.2. Let 

p,~ 1 = 10-5 and p,~2 =A+ Bcx for all x 

andassumeA=5 X 10-4 , B=7.6 X 10-5 andc=1.09. 

(a) Calculate 

(1') 00 1DP3o' 
(1.1') 01 d 1DP3o' an 

(1.1'1') 02 
10P3o· 
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(b) An insurance company uses the model to calculate premiums for a spe
cial10-year term life insurance policy. The basic sum insured is $100 000, 
but the death benefit doubles to $200 000 if death occurs as a result of an 
accident. The death benefit is payable immediately on death. Premiums 
are payable continuously throughout the term. Using an effective rate of 
interest of 5% per year and ignoring expenses, for a policy issued to a life 
aged 30 

(i) calculate the annual premium for this policy, and 
(ii) calculate the policy value at time 5. 

Exercise 8.7 Consider the following model for an insurance policy combining 
disability income insurance benefits and critical illness benefits. 

Healthy Sick 

0 1 

Dead Critically ill 

2 3 

The transition intensities are as follows: 

where 

//12 = //02 
rvx f-"Vx ' 

JL;o = O.lJL~l, 

JL~2 = az + b2exp{c2x}, 

JL~2 = 1.2JL~2' 

JL~3 = 0.05JL~ 1 ' 

Gl = 4 X 10-4
, b1 = 3.5 X 10-6

, Cl = 0.14, 

a2 = 5 X 10-4
, b2 = 7.6 X 10-5

, C2 = 0.09. 

(a) Using Euler's method with a step size of A, calculate values of 1pgg for 
t=O, f2 ,-f1, ... ,35. 

(b) An insurance company issues a policy with term 35 years to a life aged 30 
which provides a death benefit, a disability income benefit, and a critical 
illness benefit as follows: 

• a lump sum payment of $100 000 is payable immediately on the life 
becoming critically ill, 
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• a lump sum payment of $100 000 is payable immediately on death, pro
vided that the life has not already been paid a critical illness benefit, 

• a disability income annuity of $75 000 per year payable whilst the life 
is disabled payable continuously. 

Premiums are payable monthly in advance provided that the policy
holder is healthy. 

(i) Calculate the monthly premium for this policy on the following basis: 

Transition intensities: As in (a) 
Interest: 5% per year effective 
Expenses: Nil 

Use the repeated Simpson's rule with h = lz. 
(ii) Suppose that the premium is payable continuously rather than monthly. 

Use Thiele's differential equation to solve for the total premium per 
year, using Euler's method with a step si:z:e of h = lz. 

(iii) Using your answer to part (ii), find the policy value at time 10 for a 
healthy life. 

Exercise 8.8 In Section 8.7.2 Thiele's differential equation for a general mul
tiple state model was stated as 

d (i) (i) (i) 
- tV = 8t tV - B -
dt t 

11 

"" /Iii (s(ijl + vul - vul) 
~ ~""x+t t t t · 

j=O, Jf=i 

(a) Let v(t) = exp{- J~ 8sds}. Explain why 

(i) v t + s (ij) (j) ii ij 11 100 ( ) -
tV = . ~ . 

0 
v(t) (st+s + t+s V . ) sPx+t fLx+t+s ds 

]=0, Jf-l 

{00 v(t + s) (i) IT 
+ Jo v(t) Bt+s sPx+t ds. 

(b) Using the techniques introduced in Section 7.5.1, differentiate the above 
expression to obtain Thiele's differential equation. 

Exercise 8.9 Consider the permanent disability model in Figure 8.3, and sup
pose that fL~2 = fL~2 for all x. 

(a) Deduce that 
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(b) Hence show that 

nP~1 
= exp {-!on {L~~s ds} ( 1 - exp {-!on {L~~s ds}) . 

Exercise 8.10 Consider the insurance-with-lapses model illustrated in Fig
ure 8.7. Suppose that this model is adjusted to include death after withdrawal, 
i.e. the transition intensity {L;1 is introduced into the model. 

(a) Show that if withdrawal does not affect the transition intensity to state 1 

(i.e. that {L;1 = {L~1 ), then the probability that an individual aged x is dead 
by age x + t is the same as that under the 'alive-dead' model with the 
transition intensity ft~ 1 . 

(b) Why is this intuitively obvious? 

Exercise 8.11 An insurer prices critical illness insurance policies on the basis 
of a double decrement model, in which there are two modes of decrement -
death (state 1) and becoming critically ill (state 2). For all x 2: 0, ft~ 1 =A + 
Bcx where A= 0.0001, B = 0.00035 and c = 1.075, and {L~2 = 0.05{L~ 1 . On 
the basis of interest at 4% per year effective, calculate the monthly premium, 
payable for at most 20 years, for a life aged exactly 30 at the issue date of a 
policy which provides $50 000 immediately on death, provided that the critical 
illness benefit has not already been paid, and $75 000 immediately on becom
ing critically ill, should either event occur within 20 years of the policy's issue 
date. Ignore expenses. 

Exercise 8.12 In a certain country, members of its regular armed forces can 
leave active service (state 0) by transfer (state 1), by resignation (state 2) or by 
death (state 3). The transition intensities are 

ft~ 1 = 0.001x, 

{L~2 = 0.01, 

ft~3 = A + BcX, 

where A= 0.001, B = 0.0004 and c = 1.07. New recruits join only at exact 
age 25. 

(a) Calculate the probability that a new recruit 

(i) is transferred before age 27, 
(ii) dies aged 27 last birthday, and 

(iii) is in active service at age 28. 

(b) New recruits who are transferred within three years of joining receive a 
lump sum payment of $10000 immediately on transfer. This sum is pro
vided by a levy on all recruits in active service on the first and second 
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anniversary of joining. On the basis of interest at 6% per year effective, 
calculate the levy payable by a new recruit. 

(c) Those who are transferred enter an elite force. Members of this elite force 
are subject to a force of mortality at age x equal to 1.5p,~3 , but are sub
ject to no other decrements. Calculate the probability that a new recruit 
into the regular armed forces dies before age 28 as a member of the elite 
force. 

Exercise 8.13 A university offers a four-year degree course. Semesters are 
half a year in length and the probability that a student progresses from one 
semester of study to the next is 0.85 in the first year of study, 0.9 in the second 
year, 0.95 in the third, and 0.98 in the fourth. All students entering the final 
semester obtain a degree. Students who fail in any semester may not continue 
in the degree. 

Students pay tuition fees at the start of each semester. For the first semester 
the tuition fee is $10000. Allowing for an increase in fees of2% each semester, 
and assuming interest at 5% per year effective, calculate the EPV of fee income 
to the university for a new student aged 19. Assume that the student is subject 
to a constant force of mortality between integer ages x and x + 1 of 5x x 10-5 

for x = 19, 20, 21 and 22, and that there are no means of leaving the course 
other than by death or failure. 

Exercise 8.14 An insurance company sells 10-year term insurance policies 
with sum insured $100000 payable immediately on death to lives aged 50. 
Calculate the monthly premium for this policy on the following basis. 

Survival: Makeham's law, with A =0.0001, B =0.0004 and 
C= 1.075 

Lapses: 2% of policyholders lapse their policy on each of the 
first two policy anniversaries 

Interest: 5% per year effective 
Initial expenses: $200 
Renewal expenses: 2.5% of each premium (including the first) 

Value the death benefit using the UDD assumption. 

Exercise 8.15 You are given the following three-decrement service table for 
modelling employment. 

60 10 000 350 150 25 
61 9 475 360 125 45 
62 8 945 380 110 70 



(a) Calculate 3P~6· 
(b) Calculate 2P~~. 

8.15 Exercises 299 

(c) Calculate the EPV of a benefit of $10 000 payable at the end of the year of 
exit, if a life aged 60 leaves by decrement 3 before age 63. Use an effective 
rate of interest of 5% per year. 

(d) Calculate the EPV of an annuity of $1000 per year payable at the start of 
each of the next three years if a life currently aged 60 remains in service. 
Use an effective rate of interest of 5% per year. 

(e) Show that q;i0 = 0.04292, assuming a constant force of decrement for 

each decrement. \ 
(f) Calculate the revised service table for age 62 if q;il) is increased to 0.1, 

with the other independent rates remaining unchanged. Use (i) the con
stant force assumption, and (iVthe UDD in the single decrement models 
assumption. 

Exercise 8.16 Employees of a certain company enter service at exact age 20, 
and, after a period in Canada, may be transferred to an overseas office. While 
in Canada, the only causes of decrement, apart from transfer to the overseas 
office, are death and resignation from the company. 

(a) Using a radix of 100 000 at exact age 39, constmct a multiple decrement 
table covering service in Canada for ages 39,40 and 41last birthday, given 
the following information about (independent) probabilities: 

Mortality (j = 1): Standard Ultimate Survival Model 

Transfer (J = 2): q;~2J = 0.09, q:a2
J = 0.10, q;i2J = 0.11 

Resignation (j = 3): 20% of those reaching age 40 resign on their 40th 
birthday. No other resignations take place. 

Assume a uniform distribution of deaths and transfers between integer 
ages in the single decrement models. 

(b) Calculate the probability that an employee in service in Canada at exact 
age 39 will still be in service in Canada at exact age 42. 

(c) Calculate the probability that an employee in service in Canada at exact 
age 39 will transfer to the overseas office between exact ages 41 and 42. 

(d) The company has decided to set up a scheme to give each employee trans
ferring to the overseas office between exact ages 39 and 42 a grant of 
$10 000 at the date of transfer. To pay for these grants the company will 
deposit a fixed sum in a special account on the 39th, 40th and 41st birthday 
of each employee still working in Canada (excluding resignations on the 
40th birthday). The special account is invested to produce interest of 8% 
per year. 

Calculate the annual deposit required. 
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Retired 

I 1 ~ 
Employee Dead 

0 3 

I Withdrawn i 
2 

Figure 8.10 A withdrawal/retirement model. 

Exercise 8.17 The following table is an extract from a multiple decrement 
table modelling withdrawals from life insurance contracts. Decrement (1) rep
resents withdrawal, and decrement (2) represents death. 

40 15490 2400 51 
41 13 039 2102 58 
42 10 879 1 507 60 

(a) Stating clearly any assumptions, calculate qX62l. 

(b) What difference would it make to your calculation in part (a) if you were 
given the additional information that all withdrawals occurred on the poli
cyholders' birthdays? 

Exercise 8.18 The employees of a large corporation can leave the corporation 
in three ways: they can withdraw from the corporation, they can retire or they 
can die while they are still employees. Figure 8.10 illustrates this model. 

You are given: 

• The force of mortality depends on the individual's age but not on whether the 
individual is an employee, has withdrawn or is retired, so that for all ages x 

1103 = 11 13 = 1123 = n say 
fA'X - t""X -~-""X FX' ' 

• Withdrawal can take place at any age up to age 60 and the intensity of with
drawal is a constant denoted f1,02 • Hence 

IL02 = {/L02 for x < 60, 
x 0 for x > 60. 

• Retirem~t can take place only on an empl:yee's 60th, 61st, 62nd, 63rd, 
64th or 65th birthday. It is assumed that 40% of employees reaching exact 
age 60, 61, 62, 63 and 64 retire at that age and 100% of employees who 
reach age 65 retire immediately. 
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The corporation offers the following benefits to the employees: 

e For those employees who die while still employed, a lump sum of $200 000 
is payable immediately on death. 

• For those employees who retire, a lump sum of $150000 is payable imme
diately on death after retirement. 

Show that the EPV s of these benefits to an employee currently aged 40 can 
be written as follows, where A6s and 25 E4o are standard single life functions 
based on the force of mortality ftx, and assuming a constant force of interest 8 
per year. 

Death in service benefit 

200000 (Aio:W1 + zoE4oe-
20

iL
02 (Eo.6k k-liA~o:ll)). 

Death after retirement benefit 

Exercise 8.19 Consider the previous exercise, and suppose that 

ftx =A+ Bcx and tt02 = 0.02, 

where A= 0.0001, B = 0.0004 and c = 1.07. 
A corporation contributes $10 000 to a pension fund when an employee joins 

the corporation and on each anniversary of that person joining the corporation, 
provided the person is still an employee. On the basis of interest at 5% per year 
effective, calculate the EPV of contributions to the pension fund in respect of 
a new employee aged 30. 

Exercise 8.20 Consider the permanent disability model illustrated in 
Figure 8.3. An insurer uses this model to price an insurance policy with term 
two years issued to a life aged 58. The policy provides a benefit of $100000 
if death occurs from the healthy state, $75 000 if the policyholder becomes 
permanently disabled, and $25 000 if death occurs after permanent disability. 
Benefits are payable at the end of the year in which a transition takes place, 
and premiums are payable at the start of each policy year. 

Annual transition probabilities are as follows: 

58 0.995 0.002 0.003 0.992 0.008 
59 0.993 0.003 0.004 0.990 0.010 
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Calculate the annual premium assuming an effective rate of interest of 5% 
per year. 

8.2 (b) $10423.69 
8.3 $195.99 
8.4 (b) $11413.99 

(c) $450 155.85 

Answers to selected exercises 

8.5 (d) (i) 0.99719, 0.00216 

(ii) -$427' $2594 
8.6 (a) (i) 0.979122 

(ii) 0.020779 
(iii) 0.000099 

(b) (i) $206.28 
(ii) $167.15 

8.7 (a) 35P~g = 0.581884 
(b) (i) $206.56 

(ii) $2498.07 
(iii) $16 925.88 

8.11 $28.01 
8.12 (a) (i) 0.050002 

(ii) 0.003234 
(iii) 0.887168 

(b) $397.24 
(c) 0.000586 

8.13 $53 285.18 
8.14 $225.95 
8.15 (a) 0.109 

(b) 0.8850 
(c) $125.09 
(d) $2738.74 
(f) (i) 885.4, 106.7, 67.9 

(ii) 885.3, 106.8, 68.0 
8.16 (a) 0.58220 

(b) 0.07198 
(c) $943.11 

8.17 (a) 0.00367 (UDD) 
0.00358 (Constant force) 

8.19 $125 489.33 
8.20 $509.90 
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Joint life and last survivor benefits 

9.1 Summary 

Insurance benefits which are dependent on the joint mortality of two lives, 
typically a married couple, form an important part of the insurance portfolio. 
In this chapter we develop the concepts and models from previous chapters 
to examine joint life insurance policies. There are also important applications 
in pension design and valuation, as spousal benefits are a common part of a 

pension benefit package. 
In Section 9.2 we describe the typical benefits offered by such policies and 

introduce standard notation used for probabilities and expected present value 
functions for annuity and insurance benefits. In Section 9.4 we develop an 
approach for pricing and valuing these policies, based on the future lifetime 
random variables, and making the strong assumption that the two lives are 

independent with respect to mortality. 
In Section 9.5 we show how joint life mortality can be analysed using mul

tiple state models. This creates a flexible framework to introduce dependence 
between lives, and we can apply the methods of Chapter 8 to calculate proba

bilities and value benefits. 

9.2 Joint life and last survivor benefits 

All the development up to and including Chapter 7, and all the applications of 
multiple state models in Chapter 8, relate to a life insurance policy on a single 
insured life. In practice, policies based on two lives are common. The two 
lives are typically a couple who are jointly organizing their financial security, 
but other situations are also feasible, for example, annuities dependent on the 
lives of a parent and their child, or insurance on the lives of business partners. 
Policies based on more than two lives are also available, but are less common. 

In this chapter we consider policies based on two lives, whom we label, for 
convenience, (x) and (y). Throughout, we assume that at some inception time 

303 
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t = 0, (x) and (y) are alive, are aged x andy, respectively, at t = 0, and are 
partners in some joint life contingent benefit context. 

The most common types of benefit which are contingent on two lives are 
described briefly below. 

A joint life annuity is an annuity payable until the first death of (x) and (y). 
A last survivor annuity is an annuity payable until the second death of (x) 

and (y). 
A common benefit design is an annuity payable at a higher rate while both 

partners are alive and at a lower rate following the first death. The annuity 
ceases on the second death. This could be viewed as a last survivor annuity for 
the lower amount, plus a joint life annuity for the difference. 

A reversionary annuity is a life annuity that starts payment on the death of 
a specified life, say (x), if (y) is alive at that time, and continues through the 
lifetime of (y). A pension plan may offer a reversionary annuity benefit as part 
of the pension package, where (x) would be the pension plan member, and (y) 
would be a partner eligible for spousal benefits. 

A joint life insurance pays a death benefit on the first death of (x) and (y). 
A last survivor insurance pays a death benefit on the second death of (x) 

and (y). 
A contingent insurance pays a death benefit contingent on multiple events. 

The most common is a benefit paid on the death of (x), say, but only if (y) is 
still living at that time. 

9.3 Joint life notation 

Following the same approach as in Chapters 4 and 5, we express the present 
values of the joint life benefits in terms of random variables, so that we can 
value them as the expected value of the present value. 

Throughout this chapter, we assume that at the inception point for a contract, 
the lives (x) and (y) are alive. From Chapter 2, we recall that the future life
times of (x) and (y) are represented by Tx and Ty. At this stage we make 
no assumption about the independence, or otherwise, of these two random 
variables. 

Given Tx and Ty, we define two more random variables, representing the 
times until the first and second to die of (x) and (y). 

Time to first death Txy = min(Tx, Ty). 
Time to last death Txy = max(T:~, Ty). 

We refer to the subscript, xy or xy, as a status; xy (also written as {xy}) is 
the joint life status and xy is the last survivor status. Hence, Txy and T-xy are 
random variables representing the time until the failure of the joint life status 
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and the last survivor status, respectively. It is implicit throughout that the def

initions of joint life and last survivor random variables for the couple (x) and 
(y) are conditional on both lives being alive, and a couple (at least, in the sense 
of being connected for the purpose of the insurance contract) at some starting 

point. 
It is very useful to observe that, with only two lives involved, either 

( 1) (x) dies first so that the realized values of Tx and Txy are the same, and 
consequently the realized values of Ty and Txy are the same, or 

(2) (y) dies first so that the realized values of Ty and Txy are the same, and 

consequently the realized values of Tx and T:-.y are the same. 

Thus, regardless of the order of deaths, the realized value of Tx matches one of 

Txy and Txy, and the realized value of Ty matches the other. 
Important consequences of these observations include the following rela

tionships: 

Tx + Ty = Txy + Txy; 

vi:" + vTY = vTxy + vTr.v; 

(9.1) 

(9.2) 

(9.3) 

Policies on multiple lives have their own standard notation for probabilities 
and for annuity and insurance functions. The notation is an extension of the 
notation introduced in Chapters 2, 4 and 5. The list below shows the new nota
tion for probabilities, in each case followed by the definition in words, and in 

terms of the Txy or Txy random variables. 

tPxy = Pr[(x) and (y) are both alive in t years]= Pr[Txy > t]. 

1qxy = Pr[(x) and (y) are not both alive in t years]= Pr[Txy ::::; t]. 

u l1qxy = Pr[(x) and (y) are both alive in u years, but not in u + t years] 

= Pr[u < Txy ::::; u + t]. 

1q]:y = Pr[(x) dies before (y) and within t years]= Pr[Tx ::::; t and Tx < Ty]. 

1q};y = Pr[(x) dies after (y) and within t years]= Pr[Ty < Tx::::; t]. 

tPxy = Pr[at least one of (x) and (y) is alive in t years] = Pr[Txy > t]. 

1qxy = Pr[(x) and (y) are both dead in t years]= Pr[Txy ::::; t]. 

The '1' over x in 1q]:y indicates that we are interested in the probability of (x) 

dying first. We have already used this notation, in A~: lil' where the benefit is 
paid only if x dies first, before the term, n years, expires. 

In cases where it makes the notation clearer, we put a colon between the ages 
in the right subscript. For example, we write 1p 30:4o rather than 1p3040 . 
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For each of the standard joint life benefits, we list here the notation for the 
EPV, as a function of the joint life random variables Txy or Txy· We assume a 
constant force of interest 8 per year. 

axy Joint life annuity: a continuous payment at unit rate per year while both 
(x) and (y) are still alive: 

axy = E [ aYx;1] . 

If there is a maximum period, n years, for the annuity, then we refer to a 
'temporary' or 'term' joint life annuity. The notation for the EPV is axy: li1 

and the formula for this is 

llxy:lil = E [amin(Txy.n)l]. 

Axy Joint life insurance: a unit payment immediately on the death of the first 
to die of (x) and (y): 

Axy = E [ v:Z:'y]. 

axy Last survivor annuity: a continuous payment at unit rate per year while 
at least one of (x) and (y) is still alive: 

axy = E [ a7zy1] . 
Axy ··Last survivor insurance: a unit payment immediately on the death of 

the second to die of (x) and (y): 

Axy = E [vhf] . 
axly Reversionary annuity: a continuous payment at unit rate per year, start

ing on the death of (x) if (y) is still alive then, and continuing until the 
death of (y): 

llxly = E [ ( vTx aTy-Tx I) I (Tx < Ty)] 0 

Aiy Contingent insurance: a unit payment immediately on the death of (x) 

provided (x) dies before (y): 

Ab = E [ vTx I (Tx < Ty)] ' 

where I is the indicator function. 
If there is a time limit on this payment, say n years, then it is called a 

'temporary' or 'term' contingent insurance. The notation for the EPV is 

A~:y:lil and the formula is 

A~:y:lil = E [ vTx I (Tx < Ty) I (Tx < n)]. 
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Although we have defined these functions in terms of continuous benefits, the 
annuity and insurance functions can easily be adapted for payments made at 
discrete points in time. For example, the EPV of a monthly joint life annuity
due would be denoted a~~2), and would represent the EPV of an annuity of 
$1/12 per month payable contingent on both (x) and (y) surviving to the 
payment date. 

We can write down the following important relationships: 

I Axy = A~ + Ay - Axy, I 

I axly = ay - ay I 

(9.4) 

(9.5) 

(9.6) 

Formula (9.4) follows by taking expectatio11s in formula (9.3), and formula 
(9.5) follows by taking expectations in formula (9,2). 

Formula (9.6) is most easily derived by noting that axy + axiy is the EPV 
of an annuity of 1 per year payable continuously to (y) while (x) is alive, and 
after (x) has died. So 

The notation for the EPV of the reversionary annuity uses the status xjy; 
the vertical line indicates deferral in standard actuarial notation. In this case, 
the status is deferred until the death of x, and then continues as long as (y) 

is alive. 
Equations (9.4), (9.5) and (9.6) can be derived, alternatively, by consider

ing the cash flows involved. This is a useful trick for verifying joint life EPV 
formulae more generally. For example, in formula (9.6) for the reversionary 
annuity, the right-hand side values an annuity of 1 per year payable continu
ously while (y) is alive, minus an annuity of 1 per year payable continuously 
while both (x) and (y) are alive. What remains is an annuity of 1 per year 
payable continuously after the death of (x) while (y) is alive. 

Similarly, in formula (9.5) for the last survivor insurance, the right-hand side 
values a payment of 1 when (x) dies, plus 1 when (y) dies, minus 1 on the first 
death; what remains is 1 paid on the second death, which is the last survivor 
insurance benefit. 

Recall formula ( 5.14 ), linking whole life annuity and insurance functions for 
a single life: 

_ 1- Ax 
ax= --

8
-. 
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The following corresponding relationships are derived in exactly the same way: 

1 - Axy d _ 1 - Axy 
axy = 

8 
an axy = 

8 

All the expressions and relationships in this section are true for any model 

of dependence between Tx and Ty. Our objective now is to specify appropriate 
joint models for the future lifetimes of (x) and (y) and derive expressions for 
EPV s of future payments. We can then calculate premium rates and policy val
ues for benefits and premiums which are dependent on two lives, analogously 

to the premiums and policy values derived for single lives in Chapters 6 and 7. 
In the remainder of this chapter we introduce and discuss different ways of 
modelling the future lifetimes of two possibly dependent lives. 

9.4 Independent future lifetimes 

Our first approach to modelling the survival of two lives assumes that the future 
lifetime for each individual is not affected in any way by the other life. This 
is a very strong assumption, and in later sections we relax it somewhat. How
ever, it is a simple assumption which gives practical formulae that are easily 
implemented. It is still commonly used in practice, though models incorporat

ing dependence are also becoming popular, especially if the dependence could 
have a material impact on the valuation. 

To be precise, throughout this section, including all the examples, we make 

the following very important assumption. 

Independence Assumption 1. The random variables Tx and Ty are inde

pendent. 

We also assume throughout this section that we know all about the survival 

models for these two random variables, so that we know the survival functions, 

tPx and 1py, and the forces of mortality fJ.x+t and fJ.y+t· Note that we do not 
assume that these survival functions come from the same survival model. If the 
two lives are indeed husband and wife, then, since mortality rates for females 

are generally lower than those for males, the survival models are likely to be 
different. 

From our assumption of independence, we can write for t 2:: 0 

and 

tPxy = Pr[Tx > t and Ty > t] = tPx tPy, 

tPxy = Pr[Tx > t or Ty > t] = 1 - tqx tqy 

= tPx + tPy- tPx tPy· 

(9.7) 

(9.8) 
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The probability on the left-hand side of formula (9.7) relates to the survival 
model for the joint lives, whereas the probabilities on the right-hand side relate 
to two, possibly different, survival models for the individual lives. When we 
use labels, such as x and y, for the lives, we assume the context makes it clear 
what we mean by tPx and tPy· We often have notational confusion though if 
we use numbers for x andy; for example, if (x) is a male aged 40, and (y) is 
a female aged 40, then we have two probabilities on the right-hand side, both 
labelled tP4o, but which are actually based on different survival models. When 
we need to be more specific about the probabilities we might write the joint 
probability relationship more carefully as 1p';f = tP': 1p{, so, for example, 

tP:s:fo = tP4s tP{0, which indicates that the two single life survival probabili
ties are from different distributions. 

Using the joint life and last survivor probabilities, we can develop annuity 
and insurance functions for the EPV of benefits contingent on two lives, by 
summing over all the possible payment dates the EPVs of the individual pay
ments. For example, 

n-1 
" ~ k axy:iil = ~ V kPxy. 

k=O 
00 

iixy = L vk kPxy = iix + iiy - iixy' 
k=O 

00 

Axy = L vk+l kiqxy, 
k=O 

where kiqxy = kPxy(l- Px+k:y+k) = kPxy- k+lPxy• and 

00 

Ax)' = L vk+l kiqxy =Ax + Ay - Axy· 
k=O 

Example 9.1 The table below shows extracts from two life tables appropriate 
for a husband and wife, who are assumed independent with respect to mortality. 

Husband Wife 

X lx y ly 

65 43302 60 47260 
66 42854 61 47040 
67 42081 62 46755 
68 41351 63 46500 
69 40050 64 46227 



310 Joint life and last survivor benefits 

(a) Calculate 3Pxy for a husband aged x = 66 and a wife aged y = 60. 
(b) Calculate 2Pxy for a husband aged x = 65 and a wife aged y = 62. 
(c) Calculate the probability that a husband, currently aged 65, dies within two 

years and that his wife, currently aged 61, survives at least two years. 
,(d) Explain the meaning o~ the symbol iixy:iil· 

(e) Explain the meaning of the symbol iixy: iil· 

(f) Calculate iixy: 51 and iixy: 51 for a husband aged x = 65 and a wife aged 
y = 60 at a rate of interest 5% per year. 

Solution 9.1 (a) Using formula (9.7) 

40050 46500 
3Pxy = 3Px3Py = 

42 854 
X 

47 260 
= 0.9195. 

(b) Using formula (9.8) 

42081 46227 42081 46227 
2Pxy = 43302 + 46755- 43302 X 46755 = 0·9997 · 

(c) Since the two lives are assumed to be independent with respect to mortality, 
the required probability is 

1 - -- X -- = 0.0279. ( 
42081) 46500 
43302 47040 

(d) The symbol iixy: iil represents the EPV, at a given constant rate of interest, 
of a series of at most n annual paymentS", each of unit amount with the first 
payment due now, with each payment being made only if the lives (x) and 
(y) are both alive at the time the payment is due. 

(e) The symbol iixy: iil represents the EPV, at a given constant rate of interest, 
of a series of at most n annual payments, each of unit amount with the first 
payment due now, with each payment being made only if at least one of 
(x) and (y) is alive at the time the payment is due. 

(f) From the definitions in parts (d) and (e), we can write down the following 
formulae 

4 

ii -" vt p xy:51-~ t X)'• 

t=O 

4 

iixy: 51 = L vt tPxy' 
t=O 

where v = 1/1.05, x = 65 andy = 60. These are derived in exactly the 
same way as formula (5.10). The numerical values of the annuities are 

axy:51 = 4.3661 and iixy:51 = 4.5437. 

Note that axy: 51 :S axy: 51 since Txy :S Txy. 0 
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For the following example, we use the 1/mthly joint life and last survivor 
annuities 

a~n) = !_ (1 + l.Pxy vi+ 2Pxy v~ + · · ·) 
y m 111 m 

and 

and the joint life term insurance 

n-1 

A 1 ""' k+1 I ~ = L....v k qxy· 
xy :ill k=O 

Note that we use 'XY' here to denote that it is the failure of the joint life status, 
before n years, that triggers the death benefit payment. Without the ~, the 
symbol could be confused with the EPV of a contingent term insurance payable 
on the death of (x) before (y), and before n years. 

Example 9.2 A husband, currently aged 55, and his wife, currently aged 50, 
have just purchased a deferred annuity policy. Level premiums are payable 
monthly for at most 10 years but only if both are alive. If either dies within 10 
years, a sum insured of $200 000 is payable at the end of the year of death. If 
both lives survive 10 years, an annuity of $50 000 per year is payable monthly 
in advance while both are alive, reducing to $30 000 per year, still payable 
monthly, while only one is alive. The annuity ceases on the death of the last 
SUrViVOr. 

Calculate the monthly premium on the following basis: 

Survival model: Standard Select Survival Model for both lives 
(55) and (50) are independent with respect to mortality 
(55)· and (50) are select at the time the policy is purchased 

Interest: 5% per year effective 
Expenses: None 

Solution 9.2 Since the two lives are independent with respect to mortality, we 
can write the probability that they both survive t years as 

tP[55] tP[50] 

where each single life probability is calculated using the Standard Select Sur
vival Model. 

Let P denote the annual amount of the premium. Then the EPV of the pre
miums is 

P ac12
) = 7.7786 P. 

[55]:[50]: 10] 



312 Joint life and last survivor benefits 

The EPV of the death benefit is 

200000A~ = 7660. 
[55]:[50]: IOl 

To find the EPV of the annuities we note that if both lives are alive at time 
10 years, the EPV of the payments is 

30 ooo a ~~~~o + 20 ooo ag ~~o 
= 3ooooa~~2) + 3ooooa~~2)- woooa~~~~o· (9.9) 

For the EPV at issue, we discount for survival for the 10-year defened period, 
and for interest, giving the EPV as 

v10 
lOP[55JlOP[50J (30000a~~2) + 30000a~~2) -10000a~~~~o) = 411396. 

Hence the monthly premium, $P /12, is given by 

p j12 = (7 660 + 411396)/(12 X 7.7786) = $4489.41. 
0 

In this solution we calculated the monthly premium values exactly, by sum
ming the monthly terms. However, we have noted in earlier chapters that it 
is sometimes the case in practice that the only information available to us to 
calculate the EPV of an annuity payable more frequently than annually is a 
life table specified at integer ages only. In Section 5.11 we illustrated methods 
of approximating the EPV of an annuity payable m times per year, and these 
methods can also be applied to joint life annuities. To illustrate, consider the 
annuity EPVs in equation (9.9). These can be approximated from the cone
sponding annual values using UDD as 

a~~2) ~ a(12) a6s - ,8(12) 

= 1.000197 X 13.5498- 0.466508 

= 13.0860, 

a~~2) ~ a(l2) a6o- ,8(12) 

= 1.000197 X 14.9041 - 0.466508 

= 14.4405, 

a~~~~o ~ a(12) a65:6o- ,8(12) 

= 1.000197 X 12.3738 - 0.466508 

= 11.9097, 
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ag;;:[SOJ:Ti51 R:j a(l2) ii[SSJ:[SOJ: m- ,8(12)(1 - 10P[55JlOP[SOJ v
10

) 

= 1.000197 X 7.9716-0.466508 X 0.41790 

= 7.7782. 

The approximate value of the monthly premium is then 
> 
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p jll R:j 32715 +0.54923 x(30000(13.0860+ 14.4405)-10000 x 11.9097) 
12 X 7.7782 

= $4489.33. 

An important point to appreciate here is that, under UDD for individual lives, 
we have 

aJn) = a(m)iix - ,B(m) 

but for a joint life status, under the assumption of UDD for each life, we do 
not get a simple exact relationship between, for example a~;> and iixy· It is, 
however, true that 

"(m) ~ ( )" R( ) axy ~ a m axy - fJ m . (9.10) 

Our calculations above illustrate the general point that this approximation is 
usually very accurate. See Exercise 9.12. In Exercise 9.13 we illustrate how 
Woolhouse's formula can be applied to find the EPV of a joint life annuity 
payable m times per year. 

Example 9.3 Derive integral expressions in terms of survival probabilities and 
a constant force of interest 8 for iixy and iixy. 

Solution 9.3 Integral expressions are as follows: 

- -8t 1
00 

axy = 
0 

e tPxy dt, (9.11) 

- -8t 1
00 

axy = 
0 

e tPxy dt. (9.12) 

These expressions can be derived in the same way that Figure 5.5 was used 
to derive formula (5.15) for a single life annuity. Consider formula (9.11): the 
amount paid between times t and t + dt is dt, provided both lives survive to 
that time, and its present value now is e-8t dt; the probability of this amount 
being paid is tPxy; hence the EPV of this possible payment is e-ot tPxy dt and 
the total EPV is the sum (integral) of this expression over all values oft. D 
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We can derive integral expressions for insurance functions using arguments 
similar to those used in Section 4.4.1 for a single life based on Figure 4.1. For 
example, 1\l y can be written 

A-1 roo -8t d 
xy = Jo e tPxy f-Lx+t t (9.13) 

and this can be justified as follows. Consider the possible payment between 
times t and t + dt, where dt is small. This has unit amount and present value 
e-8t. For this payment to be made, both lives must be alive at time t (prob
ability tPxy) and x must die before time t + dt (probability f-Lx+t dt) - the 
probability that both die before time t + dt is negligible if dt is small. Hence 
the EPV of this payment is e-ot tPxy f-Lx+t dt and the total EPV is the integral 
over all possible values oft. The following integral expressions can be justified 
in similar ways: 

- roo -8t 
Axy = Jo e tPxy(/tx+t + fty+t)dt, 

- 100 -8t Axy = e (tPx f-Lx+t(1- tPy) + tPy /ty+t(1- tPx)) dt. 
0 . 

Similar arguments can be used to construct integral expressions for many 
annuity and insurance functions based on two lives, but the approach has draw
backs. When benefits are complex, it is easy to mis-state probabilities. In the 
following section we present another approach to deriving these equations, 
using a multiple state model, that gives the insurance and annuity EPV for
mulae more directly, and that also proves fruitful in terms of ge~eralizing the 
model to incorporate dependence. 

9.5 A multiple state model for independent future lifetimes 

In Section 8.2, we described how the single life future lifetime random vari
able, Tx, is related to a twottate multiple state model, which we called the 
'alive-dead' model. Loosely,' for a life aged x, Tx is the time to the transition 
from state 0 ('alive') to state 1 ('dead'). 

In our joint life case, we can, similarly, create a multiple state model that 
provides a different perspective on the future lifetime random variables, Tx and 
Ty, as well as the joint life and last survivor random variables, Txy and Txy· 

We use the multiple state model shown in Figure 9.1. For illustration, we 
assume (x) is male and (y) is female, .and that the male and female transition 
intensities are labelled m and f, respectively. The process starts in state 0 with 
both (x) and (y) alive. It moves to state 1 on the death of (y) if she dies before 
(x), or to state 2 if (x) dies first. The process moves to state 3 on the death of the 
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(x) Alive f 
fLy+ I 

(x) Alive 

(y) Alive (y) Dead 

0 1 

/)-~!!, {t.i!!t 

(x) Dead f 
fty+t 

(x) Dead 

(y) Alive (y) Dead 

2 3 

Figure 9.1 The independent joint life and last survivor model. 

surviving partner. The model is specified in terms of the transition intensities 
between the states. We assume these are known. 

In this and the following sections, we use the multiple state probability nota
tion from Chapter 8, but with a right subscript that references both (x) and (y), 

for probabilities involving state 0, where both are alive. For transitions from 
state 1 and state 2, we use the subscript appropriate to the surviving life. So, 
for example, 

1p~~ = Pr[(x) and (y) both alive at timet I both alive at time 0], 

1p~~ = Pr[(x) alive and (y) dead at timet I both alive at time 0], 

and for 0 < s < t, 

1p~~s = Pr[ (y) alive at time t + s I (y) alive and (x) dead at time s]. 

Our model, in this form, incorporates the following important assumption. 
We will show that this assumption is equivalent to assuming independence of 

Tx and Ty. 

Independence Assumption 2. The transition intensities from state 0 to state 
1, and from state 2 to state 3, are identical and depend on (y)'s age, but not on 
(x )' s age or survival. Similarly, the transition intensities from state 0 to state 2 
and from state 1 to state 3, representing the death of (x ), are identical functions 
of (x)'s age, with no dependence on (y)'s age or survival. 

Under this assumption, the force of mortality for (x) at age x + t is p.,}!+f' 
whether (y) is then alive or not. Hence, Tx has a distribution determined by 
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{/Lxn-f-1 lt::::O· Similarly, Ty has a distribution determined by {tLf+_t h:::O· Since 
there is no connection between the mortality of (x) and (y), it is not surprising 
that the future lifetimes of (x) and (y) are independent random variables, and, 
hence, that the multiple state model in this section is equivalent to the model 
studied in Section 9.4. We show this more formally in Example 9.4. 

Example 9.4 Show that, under the multiple state model in Figure 9.1, with the 
assumption labelled 'Independence Assumption 2', the future lifetimes of (x) 

and (y), both currently instate 0, are independent. 

Solution 9.4 Lets and t be any positive numbers. It is sufficient to show that 

Pr[Tx > s and Ty > t] = Pr[Tx > s]Pr[Ty > t], 

and we can assume, without \oss of generality, that s .:::: t. Let 

(9.14) 

and - {- t f } tPy - exp Jo fLy+u du . 

We know that these are the survival probabilities in the single life models. We 
need to show that they are also survival probabilities in the multiple state model 
in Figure 9 .1. We have 

Now 

and 

So 

P [ ] 00 02 
r Ty > t = tPxy + tPxy· 

02 OOm 22 

lo
t 

tPxy = 
0 

rPxy fLx+r t-rPy+r dr 

lo
t 

Ill 
= 

0 
rPx rPy fLx+r t-rPy+rdr 

lo
t 

Ill = tPy 
0 

r Px fLx+r dr 

= tPy (1 - tPx). 

Pr[Ty > t] = tPy (tPx + 1 - tPx) = tPy 

and, similarly, Pr[Tx > s] = sPx. 

(9.15) 

(9.16) 

Now consider Pr[Tx > sand Ty > t]; this requires either (i} both (x) and 
(y) survive to time t, or (ii) (x) and (y) both survive to time s < t, and, 
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subsequently, (x) dies and (y) survives in the interval from time s to time t. 
This gives the joint survival probability 

P [T d T ] 00 00 02 
r X >san y > t = tPxy + sPxy t-sPx+s:y+s• 

where we have used the Markov property to write the probability for case (ii). 
Using (9.l~and (9.16), we have 

tP~~ = tPx tPy and t-sP~~s:y+s = t-sPy+s (1- t-sPx+s) · 

Hence 

Pr[Tx > S and Ty > t] = tPx tPy + sPx sPy (t-s Py+s (1 - t-s Px+s)) 

= tPx tPy + tPy (sPx - tPx) 

= sPx tPy 

= Pr[Tx > s]Pr[Ty > t], 

which completes the proof. 0 

We emphasize here that throughout this proof we have used the assumption 
that forces of mortality for (x) and (y) are unaffected by the model state. More 
generally, this assumption will not be true, and the breakdown of the joint life 
probabilities into single life probabilities will no longer be valid. 

Example 9.5 Using the multiple state model, with the independence assump
tion, shown in Figure 9.1, write down integral equations for each of the follow
ing, and describe the benefit being valued. 

(b) 

A-01 r)(J -8t oo 1 d A- 1 
xy = Jo e tPxy f-Ly+t t = x:y 

. h 01 f notmg t at f-Lx+t:y+t = f-Ly+t· 

This is the EPV of a unit benefit paid on the death of (y) provided (x) 
is still alive at that time. 

A-ol A-oz {
00 

-8 t oo ( t m ) d A-
xy + xy = Jo e tPxy f-Ly+t + 1-Lx+t t = xy· 

This is the EPV of a unit benefit paid on the first death of (x) and (y). 
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(c) 

Joint life and last survivor benefits 

-01 -8 t 01 -8 t - - -

1
00 100 

axy = o e tPxy dt = 0 e tPxO- tPy) dt =ax- axy = aylx· 

This is the EPV of a unit reversionary annuity payable to (x) after the 
death of (y). D 

Note here that, as expected, the independent multiple state model generates 

results consistent with the model of Section 9.4. 

Example 9.6 Use the independent multiple state model to write down equa
tions for the EPV s of the following benefits, and simplify as far as possible. 

Assume that at time 0 the lives (x) and (y) are in state 0. 

(a) An insurance of 1 payable on the death of (y), conditional on (x) dying 

first. 

(b) A joint life annuity of 1 per year, payable continuously, guaranteed for n 
years. 

(c) A last survivor annuity of 1 per year, payable continuously, deferred for n 
years. 

Solution 9.6 (a) The EPV is 

- 2 -81 02 f -81 f 

1
00 100 

Ax:y = 0 e tPxy f-Ly+t dt = 0 e tPy(l - tPx) f-Ly+t dt 

- - 1 
= Ay- Ax:y· 

(b) For guaranteed annuities, we separate the value of the first n years pay
ments, which are certain, and the value of the annuity after n years, which 

depends on which state the process is in at that time. In this example, after 
n years, the annuity continues if the process is then in state 0, and ceases 

otherwise. Hence 

- - -8n 00 -00 
axy:iil = aiil + e nPxy ax+n:y+n· 

(c) This follows similarly to (b), but we must now also take into consideration 
the possibility that exactly one life survives the guarantee period. We have 

1
- -8n 00 - -8n 01 - -8n 02 -

n axy = e 11 Pxy ax+n:y+n + e nPxy ax+n + e nPxy ay+n 

= nliix + niZiy - niZixy · 
D 
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9.6 A model with dependent future lifetimes 

The disadvantage of the approach in Sections 9.4 and 9.5 is that the assumption 
of independence may not be appropriate for couples who purchase joint life 
insurance or annuity products. The following three factors are often cited as 
sources of dependence between married partners. 

• The death of the first to die could adversely affect the mortality of the sur
vivor. This is sometimes called the 'broken heart syndrome'. 

• The two lives could die together in an accident. This is called the 'common 
shock' risk. 

• The two lives are likely to share a common lifestyle. For example, mortality 
is related to wealth and levels of education. Married couples tend to have 
similar levels of wealth and similar levels of education. They may also share 
interests, for example, related to health and fitness. 

In this section, we relax the assumption of independence, introducing depen
dence in a relatively intuitive way, allowing us to apply the methods and results 
of Chapter 8 to cash flows contingent on two dependent lives. 

The modification is illustrated in Figure 9.2; we now allow for the force of 
mortality of (x) to depend on whether (y) is still alive, and what age (y) is, 

and vice versa. 
More formally, we incorporate the following assumption. 

State Dependent Mortality Assumption. The force of mortality for each life 
depends on whether the other partner is still alive. If the partner is alive, the 
intensity may depend on the exact age of the partner, as well as the age of the 

(x) Alive 1-L~~t:y+t (x) Alive 

(y) Alive (y) Dead 

0 1 

1-L~tt:y+t 1-L~~/ 

(x) Dead /-L;.~, (x) Dead 

(y) Alive (y) Dead 

2 3 

Figure 9.2 A joint life and last survivor model. 
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life being considered. If one partner has died, the transition intensity for the 
survivor depends only on the survivor's age and state. 

Our notation is adjusted appropriately for this assumption. For example, 
fL~~t:y+t is the intensity of mortality for (y) at age y + t given that (x) is 
still alive and aged x + t. However, if one partner, say (x), has died, the inten
sity of mortality for (y) depends on her then current age, and the fact that (x) 
has died, but not on how long he has been dead. Since the age at death of (x) 
is assumed not to affect the transition intensity from state 2 to state 3, this 
intensity is denoted fL~~f' where y +tis the current age of (y). 

This model allows for some dependence between the lives; the death of, say, 
(x) affects the transition intensity of (y). It does not allow for both lives dying 
simultaneously; we discuss a way of incorporating this in the next section. 

Since none of the states in the model can be re-entered once it has been left, 
we have 

ii - ii " . 0 1 2 3 tPxy = tPxy 101' l = ' ' ' 

so that using formula (8.8) 

tP~g = exp {-lot (tL~~s:y+s + fL~~s:y+s) ds} , 

tP~ 1 
= exp {-lot tt!~s ds} , 

tP~2 = exp {-lot fL~~s ds} , 

and, for example, 

01 00 01 11 

lo
t 

tPxy = 
0 

sPxy fLx+s:y+s t-sPx+s ds. 

(9.17) 

(9.18) 

Assuming as usual that we know the transition intensities, probabilities for the 
model can be evaluated either by starting with Kolmogorov's forward equa
tions, (8.14), and then using Euler's, or some more sophisticated, method, or, 
alternatively, by starting with formulae corresponding to (9.17) and (9.18) and 
integrating, probably numerically. 

The probabilities listed in Section 9.2 do not all correspond to tPij type prob
abilities. We examine two in more detail, in the context of the model discussed 
in this section, in the following example. 

Example 9.7 (a) Explain why tqly is not the same as tP~~, and write down an 
integral equation for tqly· 

(b) Write down an integral equation for tq};y. 
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Solution 9.7 (a) The probability 1ql_xy is the probability that (x) dies within t 
years, and that (y) is alive at the time of (x) 's death. 

The probability 1p~~ is the probability that (x) dies within t years, and 
that (y) is alive at timet years. So the first probability allows for the pos
sibility that (y) dies after (x), within t years, and the second does not. 

The probability that (x) dies within t years, and that (y) is alive at the 
time of the death of (x) can be constructed by summing (integrating) over 

all the infinitesimal intervals in which (x) could die, conditioning on the 
survival of both (x) and (y) up to that time, so that 

j_r 0002 d 
tq xy - Jo r Pxy fl,x+r:y+r r. 

(b) The probability 1qiy is the probability that (x) dies within t years and that 
(y) is already dead when (x) dies, conditional on (x) and (y) both being 

alive at time 0. In terms of the model in Figure 9.2, the process must move 
into state 1 and then into state 3 within t years, given that it starts in state 0 
at time 0. Summing all the probabilities of such a move over infinitesimal 

intervals, we have 

2 - 01 13 i
t 

tq xy - 0 r Pxy fl,x+r dr. 

D 

Example 9.8 Derive the following expression for the probability that (x) has 

died before reaching age x + t, given that (x) is married to (y) at time 0: 

t 00 02 d t t 00 01 11 d 13 d Jo sPxy fl,x+s:y+s S + Jo Jo uPxy fl,x+u:y+us-uPx+u U fl,x+s S. 

Solution 9.8 For (x) to die before time t we require the process either to 

(1) enter state 2 from state 0 at some times (0 < s ::; t), or 
(2) enter state 1 ( (y) dies while (x) is alive) at some time u (0 < u ::; t) and 

then enter state 3 at some times (u < s ::; t). 

The total probability of these events, integrating over the time of death 
of (x), is 

00 02 01 13 it it 
0 

sPxy fl,x+s:y+s ds + 
0 

sPxy fl,x+s ds 

where 

sP~~ = exp {-los (fl,~~u:y+u + fl,~~u:y+u)du} , 
01 00 01 11 i

s 

sPxy = 
0 

uPxy fl,x+u:y+us-uPx+udu, 
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and 

s-uP~~u = exp {- fos-u f-L~~u+r dr} . 

This gives the required formula. D 

We can write down formulae for the EPV s of annuities and insurances in 
terms of probabilities, the transition intensities and the interest rate. For annu
ities we have the following formulae, given (x) and (y) are alive at timet = 0: 

- -8t 00 02 i
oo 

ay = 
0 

e CtPxy + tPxy) dt, 

- -8t 00 01 i
oo 

ax = 
0 

e CtPxy + tPxy) dt, 

- -8t 00 i
oo 

axy = 
0 

e tPxy dt, 

- -8t 00 01 02 i
oo 

axy = 0 e CtPxy + tPxy + tPxy) dt, 

- roo -81 02 d 
axly = Jo e tPxy t. 

For the EPV s of the lump sum payments we have the following formulae: 

A roo -8t C oo o1 o2 23 ) d 
Y = Jo e tPxy f-Lx+t:y+t + tPxy f-Ly+t t, 

which values a unit benefit paid on transition from state 0 to state 1, or from 
state 2 to state 3; 

A roo -8t oo o1 o2 ) d 
xy = Jo e tPxy Ct-Lx+t:y+t + f-Lx+t:y+t t, 

which values a unit benefit paid on transition out of state 0, with EPV 
A01 A02. 

xy + xy• 

A roo -8t C o1 13 o2 23 ) d 
xy = Jo e tPxy f-Lx+t + tPxy f-Ly+t t,. 

which values a benefit paid on transition from state 1 to state 3, or from state 2 
to state 3; 

A-1 roo -8t 00 02 d 
xy = Jo e tPxy f-Lx+t:y+t t, 

which values a benefit paid on transition from state 0 to state 2, that is A~~; and 

-1 -8t 00 02 i
n 

Axy:iil = 
0 

e tPxy f-Lx+t:y+t dt, 
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which values a benefit paid on transition from state 0 to state 2, provided it 
occurs within n years. 

Example 9.9 For the model illustrated in Figure 9.2, you are given the 
following information. 

where 

Bj = 9.741 x 10-7 

Bm = 2.622 X 10-5 

Cm = 3.899 X w-4 

c1 = 2.638 x w-5 

CJ = 1.1331, 

Cm = 1.0989, 

dm = 1.0725, 

dj = 1.1020. 

For a husband and wife currently aged x = 65 and y =: 62, respectively, 
calculate the probability that 

(a) both are alive in 15 years, 
(b) (x) is alive in 15 years, 
(c) (y) is alive in 15 years, 
(d) at least one is alive in 15 years. 

Solution 9.9 Note first that each of the four forces of mortality has a Gom
pertz formula, so that each can be integrated analytically. Also, we see that the 
force of mortality for each partner depends on whether the spouse is still alive, 
though not on the age of the spouse. If (x) survives (y), his force of mortal
ity increases from p.,~~t to p.,~~t· Similarly, (y)'s mortality increases if she is 
widowed. Thus, the two lives are not independent with respect to mortality. 

(a) The probability that both are alive in 15 years is 

where 

15P~g:62 = exp {- fo
15 

(p.,~~+t:62+t + IL~~+t:62+t~t} 
c62(cl5_1) c65(c15_ 1) 

=gft t xg~" m 

= 0.905223 X 0.671701 = 0.608039 

gf = exp {- _!L} 
logq 

and gm = exp {-~} . 
log em 
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(b) The probability that (x) is alive in 15 years is 15P~g:62 + I5P~~:62 . We 
already know from part (a) that 15P~g:62 = 0.608039. By considering the 
time, t, at which (y) dies, we can write 

01 { 
15 

00 01 11 d 
15P65:62 = Jo tP65:62 IL65+t:62+t 15-t P65+t t, (9.19) 

where, following the steps in part (a), 

and 

15-t P~~+t = exp {- Ia 
15

-t p,~~+t+s ds} 

d65+t (d15-t_l) 
== hn~n m 

where hm = exp{-Cm/logdm}. 
The integral in formula (9 .19) can now be evaluated numerically, giving 

I5P~~:62 = 0.050402 

so that 

l5P~g:62 + l5P~~:62 = 0.658442. 

(c) The probability that (y) is alive in 15 years is 15P~g:62 + l5P~~:62 , where 

02 00 02 22 1
15 

15 P65:62 = 
0 

tP65:62 IL65+t:62+t 15-t P62+t dt (9.20) 

and 

15-t P~~+t = exp { Ia 
15

-t p,~~+t+s ds} 

d62+t (d15-t -1) 
= ht f f 

where h f = exp{ -C f flog dt}. 
We can evaluate numerically the integral in formula (9.20), giving 

l5P~~:62 = 0.258823 

so that 

l5P~g:62 + l5P~~:62 = 0.866862. 

(d) The probability that at least one is alive in 15 years is 

l5P~g:62 + 15P~~:62 + I5P~~:62 = 0.608039 + 0.050402 + 0.258823 

= 0.917265. 
D 
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9.7 The common shock model 

The model illustrated in Figure 9.2 incorporates dependence between (x) and 
(y) by allowing the transition intensity of each to depend on whether the other 
is still alive. We can extend this dependence by allowing for (x) and (y) to die 
at the same time, for example as the result of a car accident. This is illustrated 
in Figure 9.3, the so-called common shock model. 

Example 9.10 In the context of the common shock model, calculate 10P~g:65 , 
10P~6:65 and 10P~6:65 using the following transition intensities: 

where 

01 B y+t 
fLx+t:y+t = f cf • 

11 02 B cx+t 
~""x+t:y+t = m m • 

13 C dx+t 
fLx+t = 111 111 • 

23 dy+t 
fLy+t = Ct f ' 

03 
fLx+t:y+t = A 

Bt = 9.741 x w-7 

B111 = 2.622 X w-5 

Cm = 3.899 X w-4 

c1 = 2.638 x w-5 

Cf = 1.1331, 

C 111 = 1.0989, 

dm = 1.0725, 

dt = 1.1020, 

A= 1.407 X 10-3 . 

(x) Alive fL~~t:y+t (x) Alive 

(y) Alive (y) Dead 

0 1 

fL~!t:y+t 
fL~~t:y+t tL',~, 

(x) Dead fL~!t (x) Dead 

(y) Alive (y) Dead 

2 3 

Figure 9.3 The common shock model. 
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Note that the transition intensities in this example are the same as the previ
ous example, except that in this case we have added the common shock transi
tion, which is assumed to be constant. 

Solution 9.10 Let x = 70 and y = 65. We can evaluate lOP~~ directly from 
the formula 

10P~8:65 = exp {-110 

(11-~~u:y+u + 11-~~u:y+u + 11-~~u:y+u) du} 

cf65 (c!IO_l) c70 (c!0-1) -lOA 
= g f X g1~

11 
m X e 

= 0.670051 

where g 111 and gf are as defined in the solution to Example 9.9. 
For the probabilities of transition to state 1 or state 2, we have 

01 00 01 11 110 

10P70:65 = 
0 

tP?o:65 11-?0+t:65+tlO-tP7o+t dt (9.21) 

02 00 02 22 1
10 

10P7o:65 = 
0 

tP?o:65 11-70+t:65+t 10-t P65+t dt (9.22) 

and 

00 cj (cj-1) c;,, (c:,, -1) -sA 
sPx:y = gf gm e 

11 hd;;, (d!,,-1) 
sPx = m 

22 dj (dj-1) 
sPy = hf 

where h 111 and h f are as defined in the solution to Example 9.9. 
Numerical integration gives 

10P~6:65 = 0.03771 and 10P~5:65 = 0.23255. 
D 

Note the similarity between formulae (9.21) and (9.22) and formulae (9.19) 
and (9.20). The difference is that the 1p~~ .values are calculated differently, with 
the extra term e-A 1 allowing for the common shock risk. 

Example 9.11 A husband and wife, aged 63 and 61, respectively, have just 
purchased a joint life 15-year term insurance with sum insured $200 000 pay
able immediately on the death of the first to die, ·or on their simultaneous 
deaths, within 15 years. Level premiums are payable monthly for at most 
15 years while both are still alive. 
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Calculate 

(a) the monthly premium, and 

(b) the gross premium policy value after 10 years, assuming both husband and 
wife are still alive. 

Use the common shock model with the following basis. 

Interest: 4% per year 
Survival model: As in Example 9.10. 

Initial expenses of $500 Expenses: 
Renewal expenses of 10% of all premiums 
$200 on payment of the sum insured 

Solution 9.11 (a) The EPV of a unit sum insured is 
15 < r t oo c 01 02 03 ) d 

Jo v tP63:61 fl-63+t:6l+t + fl-63+t:61+t + fl-63+t:61+t t 

and the EPV of a unit premium per month is 
179 

12 .. (12) " t/12 00 a63 :61 :15l = L... v tf12P63:61· 
t=O 

3 

Let p,~~t:y+t = L p,~~t:y+t· Then the formula for the monthly premium, 
R=1 

P, is 

giving 

{15 

12P a~~~~ 1 :15l = 200 200 Jo v
1 tP~~:61 p,~~+t:6 1+t dt 

+ 500 + 0.1 X 12P a(l
2

) 
63:61:151 

p = (200200 X 0.25574 + 500)/(0.9 X 12 X 9.87144) 

= $484.94. 

(b) The gross premium policy value at duration 10 years, just before the pre
mium then due is paid, is 

10 V = 200200 los V 1 tP~~:71 (p,~§+t:7l+t + f.L~~+t:7l+t + f.L~~+t:7l+t) dt 

59 

-0.9 P L v
1112 t/12P~~:71 

t=O 

= 200200 X 0.17776-0.9 X 484.94 X 12 X 4.14277 

= $13 890. 
0 
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9.8 Notes and further reading 

The multiple state model approach is very flexible, allowing us to introduce 
dependence in various ways. In Section 9.6 we modelled 'broken heart syn
drome' by allowing the mortality of each partner to depend on whether the 
other was still alive and in Section 9.7 we extended this by allowing for the 
possibility that the two lives die simultaneously. A more realistic model for 
broken heart syndrome would allow for the mortality of the surviving part
ner to depend not only on their current age and the fact that their spouse had 
died, but also on the time since the spouse died. This would make the model 
semi-Markov, rather than Markov, and is beyond the scope of this book. 

The paper by Ji et al. (2011) discuss Markov, semi-Markov and other models 
for multiple life statuses. They use data from a large Canadian insurance com
pany from 1988-93 to parameterize the common shock model in Section 9.7. 
Their parameterization is used in Example 9.10. Note that their definition of 
'simultaneous death' is death within five days, though they do investigate the 
effects of altering this definition. 

9.9 Exercises 

Exercise 9.1 Two lives aged 60 and 70 are independent with respect to mor

tality. Given that 10P60 = 0.94 and 10P70 = 0.83, calculate the probability 
that 

(a) both lives are alive 10 years from now, 
(b) at least one life is alive 10 years from now, 
(c) exactly one of the lives is alive 10 years from now, 
(d) the joint life status fails within the next 10 years, and 
(e) the last survivor status fails within the next 10 years. 

Exercise 9.2 1\vo lives aged 30 and 40 are independent with respect to mor
tality, and each is subject to Makeham's law of mortality with A = 0.0001, 
B = 0.0003 and c = 1.075. Calculate 

(a) 

(b) 

(c) 

(d) 

10P30:4o, 
1 

1Qq30:40• 

1oq3%:40 , and 

10P3o:4o· 

Exercise 9.3 Smith and Jones are both aged exactly 30. Smith is subject to 
Gompertz' law of mortality with B = 0.0003 and c = 1.07, and Jones is sub
jectto a force of mortality at all ag~s x ofBcx + 0.039221. Calculate the prob
ability that Jones dies before reaching age 50 and before Smith dies. Assume 
that Smith and Jones are independent with respect to mortality. 
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Exercise 9.4 Two lives aged 25 and 30 are independent with respect to mor

tality, and each is subject to Makeham's law of mortality with A = 0.0001, 
B = 0.0003 and c = 1.075. Using an effective rate of interest of 5% per year, 
calculate 

(a) a25:3Q, 
(b) a2s:3o' 

a2s13o, (c) 

(d) ihs:3o, 
(e) A 1 

, and 
25:30:101 

(f) A2s:36 · 

Exercise 9.5 Two lives aged 60 and 70 are independent with respect to mor
tality, and the Standard Ultimate Survival Model is applicable for each. On the 
basis of an effective rate of interest of 5% per year, calculate the EPV of 

(a) an annuity of $20000 a year, payable in arrear as long as least one of the 
lives is alive, 

(b) an annuity of $30 000 a year, payable annually in advance for at most 
· 10 years, provided that both lives are alive, and 

(c) a reversionary annuity of $25 000 a year, payable annually to (60) follow
ing the death of (70). 

Exercise 9.6 Two independent lives, (x) and (y), experience mortality accord
ing to Gompertz' law, that is, f.l,x = Bcx. 

(a) Show that tPxy = tPw for w = log(cx + cY)jlogc. 
(b) Show that 

Exercise 9.7 By considering the cases Ty > Tx and Ty :::; Tx, show that the 
present value random variable for a reversionary annuity payable continuously 
at rate 1 per year to (y) following the death of ( x) is 

aTl- aTI 
Tyl :Z:ryl' 

Exercise 9.8 Assume that Tx and Ty are independent. 

(a) Show that the probability density function of Txy is 

frxy(t) = tPxy(f.i,x+t + f.i,y+t). 

(b) What is the joint probability density function of (Tx, Ty)? Use this joint 

probability density function to obtain formulae (9.13) for A1y· 
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(c) !H;.y is the EPV of a benefit of 1 payable on the death of (x) provided that 
the death of (x) occurs after the death of (y). Using the same approach as 
in part (b), show that 

Explain this result. 

Exercise 9.9 Bob and Mike are independent lives, both aged 25. They effect 
an insurance policy which provides $100 000, payable at the end of the year of 
Bob's death, provided Bob dies after Mike. Annual premiums are payable in 
advance throughout Bob's lifetime. Calculate 

(a) the net annual premium, and 
(b) the net premium policy value after 10 years (before the premium then due 

is payable) if 
(i) only Bob is then alive, and 

(ii) both lives are then alive. 

Basis: 

Survival model: Gompertz' law, with B = 0.0003 and c = 1.075 for both 
lives 

Interest: 5% per year effective 
Expenses: None 

Exercise 9.10 Ryan is entitled to an annuity of $100 000 per year at retirement, 
paid monthly in advance, and the normal retirement age is 65. Ryan's wife, 
Lindsay, is two years younger than Ryan. 

(a) Calculate the EPV of the annuity at Ryan's retirement date. 
(b) Calculate the revised annual amount of the annuity (payable in the first 

year) if Ryan chooses to take a benefit which provides Lindsay with a 
monthly annuity following Ryan's death equal to 60% of the amount pay
able whilst both Ryan and Lindsay are alive. 

(c) Calculate the revised annual amount of the annuity (payable in the first 
year) if Ryan chooses the benefit in part (b), with a 'pop-up' - that is, 
the annuity reverts to the full $100 000 on the death of Lindsay if Ryan is 
still alive. (Note that under a 'pop-up', the benefit reverts to the amount to 
which Ryan was originally entitled.) 

Basis: 

• Male mortality before and after widowerhood: Makeham's law, A= 0.0001, 
B = 0.0004 and c = 1.075 

• Female survival before widowhood: Makeham's law, A= 0.0001, B = 
0.00025 and c = 1.07 

J 
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e Female survival after widowhood: Makeham's law, A= 0.0001, B = 0.0003 
and c = 1.072 

e Interest: 5% per year effective 

Exercise 9.11 A man and his wife are aged 28 and 24, respectively. They are 
about to effect an insurance policy that pays $100 000 immediately on the first 
death. Calculate the premium for this policy, payable monthly in advance as 
long as both are alive and limited to 25 years, on the following basis: 

e Male survival: Makeham's law, with A= 0.0001, B = 0.0004 and 
c = 1.075 

e Female survival: Makeham's law, with A= 0.0001, B = 0.0003 and 
c = 1.07 

• Interest: 5% per year effective 
• Initial expenses: $250 
e Renewal expenses: 3% of each premium 

Assume that this couple are independent with respect to mortality. 

Exercise 9.12 Let Axy denote the EPV of a benefit of 1 payable at the end of 

the year in which the first death of (x) and (y) occurs, and let A~~) denote the 
EPV of a benefit of 1 payable at the end of the ~ th of a year in which the first 
death of (x) and (y) occurs. 

(a) As an EPV, what does the following expression represent? 

m 

"""vf,; (I-I Pxy - LPxy). ~ m m 
t=l 

(b) Write down an expression for A~~) in summation form by considering the 
insurance benefit as comprising a series of deferred one-year term insur
ances with the benefit payable at the end of the ~th of a year in which the 
first death of (x) and (y) occurs. 

(c) Assume that two lives (x) and (y) are independent with respect to mortal
ity. Show that under the UDD assumption, 

1 m- 2t + 1 
!.=l.Pxy- LPxy = -(1- Pxy) + 2 qx qy 
m m m m 

and that 

• 
111 2 1 1..( )- lV L tfmm- t+ vm H Pxy- LPxy - (1- Pxy)-;--( ) + qx qy v 2 . 

m m l m m 
t=l 

(d) Deduce that under the assumptions in part (c), 

A (m) ~ i A 
xy ~ i(m) xy· 
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Exercise 9.13 (a) Show that for independent lives (x) and (y) 

d t t t 
dt v tPx tPy = -8 v tPx tPy- v tPx tPyfLx+t:y+t• 

where (in the general case) fLx+t: y+t is the total transition intensity out of 
state 0 for the joint life process. 

(b) Use Woolhouse's formula to show that 

"(m) ~ .. m - 1 m
2 

- 1 ( ) 
axy ~ axy - ~ - 12m2 8 + f.Lx:y . 

Exercise 9.14 For independent lives (x) and (y), show that 

Cov (vTxy, vTxy) =(Ax- Axy) (Ay- Axy). 

Exercise 9.15 An insurance company issues a joint life insurance policy to a 
married couple. The husband is aged 28 and his wife is aged 27. The policy 
provides a benefit of $500 000 immediately on the death of (x) provided that 
he dies first. The policy terms stipulate that if the couple die at the same time, 
the elder life is deemed to have died first. Premiums are payable annually in 
advance while both lives are alive for at most 30 years. 

Use the common shock model illustrated in Figure 9. 3 to calculate the annual 
net premium using an effective rate of interest of 5% per year and transition 
intensities of 

01- A+ B y fLxy - C ' u02 =A+ Dcx 
rxy ' 

//o3 = 5 x 10-s 
rxy ' 

where A = 0.0001, B = 0.0003, c = 1.075 and D = 0.00035. 

Exercise 9.16 A husband and wife, aged 65 and 60, respectively, purchase an 
insurance policy, under which the benefits payable on first death are a lump sum 
of $10 000, payable immediately on death, plus an annuity of $5000 per year 
payable continuously throughout the lifetime of the surviving spouse. A ben
efit of $1000 is paid immediately on the second death. Premiums are payable 
continuously until the first death. 

You are given that A6o = 0.353789, A6s = 0.473229 and that A6o:65 = 
0.512589 at 4% per year effective rate of interest. The lives are assumed to 
be independent. 

(a) Calculate the EPV of the lump sum death benefits, at 4% per year interest. 

(b) Calculate the EPV of the reversionary annuity benefit, at 4% per year 
interest. 

(c) Calculate the annual rate of premium, at 4% per year interest. 

(d) Ten years after the contract is issued the insurer is calculating the policy 
value. 



9.9 Exercises 333 

(i) Write down an expression for the policy value at that time assuming 
that both lives are still surviving. 

(ii) Write down an expression for the policy value assuming that (x) has 
died but (y) is still alive. 

(iii) Write down Thiele's differential equation for the policy value assum
ing (1) both lives are still alive, and (2) only (y) is alive. 

9.1 (a) 0.7802 
(b) 0.9898 
(c) 0.2096 

(d) 0.2198 
(e) 0.0102 

9.2 (a) 0.886962 
(b) 0.037257 
(c) 0.001505 
(d) 0.997005 

9.3 0.567376 
9.4 (a) 15.8901 

(b) 18.9670 
(c) 1.2013 
(d) 0.2493 

(e) 0.0208 
(f) 0.0440 

9.5 (a) $293 808.37 
(b) $225 329.46 

(c) $92052.87 
9.9 (a) $243.16 

Answers to selected exercises 

(b) (i) $18 269.42 

(ii) $2817.95 
9.10 (a) $802639 

(b) $76 846 
(c) $73 942 

9.11 $161.78 
9.15 $4948.24 
9.16 (a) $5440.32 

(b) $25 262.16 
(c) $2470.55 
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10.1 Summary 

In this chapter we introduce some of the notation and concepts of pension plan 
valuation and funding. We discuss the difference between defined benefit (DB) 
and defined contribution (DC) pension plans. We introduce the salary scale 
function, and show how to calculate an appropriate contribution rate in a DC 
plan to meet a target level of pension income. 

We then define the service table, which is a summary of the multiple state 
model appropriate for a pension plan. Using the service table and the salary 
scale, we can value the benefits and contributions of a pension plan, using the 
same principles as we have used for valuing benefits under an insurance policy. 

10.2 Introduction 

The pension plans we discuss in this chapter are typically employer spon
sored plans, designed to provide employees with retirement income. Employ
ers sponsor plans for a number of reasons, including 

• competition for new employees; 

• to facilitate turnover of older employees by ensuring that they can afford to 
retire; 

• to provide incentive for employees to stay with the employer; 

• pressure from trade unions; 

• to provide a tax efficient method of remunerating employees; 

e responsibility to employees who have contributed to the success of the 
company. 

The plan design will depend on which of these motivations is most important to 
the sponsor. If competition for new employees is the most important factor, for 

334 
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example, then the employer's plan will closely resemble other employer spon
sored plans within the same industry. Ensuring turnover of older employees, or 
rewarding longer service might lead to a different benefit design. 

The two major categories of employer sponsored pension plans are defined 
contribution (DC) and defined benefit (DB). 

The defined contribution pension plan specifies how much the employer will 
contribute, as a percentage of salary, into a plan. The employee may also con
tribute, and the employer's contribution may be related to the employee's 
contribution (for example, the employer may agree to match the employee's 
contribution up to some maximum). The contributions are accumulated in a 
notional account, which is available to the employee when he or she leaves the 
company. The contributions may be set to meet a target benefit level, but the 
actual retirement income may be well below or above the target, depending on 
the investment experience. 

The defined benefit plan specifies a level of benefit, usually in relation to 
salary near retirement (final salary plans), or to salary throughout employment 
(career average salary plans). The contributions, from the employer and, possi
bly, employee are accumulated to meet the benefit. If the investment or demo
graphic experience is adverse, the contributions can be increased; if experience 
is favourable, the contributions may be reduced. The pension plan actuary mon
itors the plan funding on a regular basis to assess whether the contributions 
need to be changed. 

The benefit under a DB plan, and the target under a DC plan, are set by con
sideration of an appropriate replacement ratio. The pension plan replacement 
ratio is defined as 

pension income in the year after retirement 
R=~------------~------------

salary in the year before retirement 

where we assume the plan member survives the year following retirement. The 
target for the plan replacement ratio depends on other post-retirement income, 
such as government benefits. A total replacement ratio, including government 
benefits and personal savings, of around 70% is often assumed to allow retirees 
to maintain their pre-retirement lifestyle. Employer sponsored plans often tar
get 50-70% as the replacement ratio for an employee with a full career in the 
company. 

10.3 The salary scale function 

The contributions and the benefits for most employer sponsored pension plans 
are related to salaries, so we need to model the progression of salaries through 
an individual's employment. We use a deterministic model even though future 
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changes in salary cannot usually be predicted with the certainty a deterministic 
model implies. However, this model is almost universally used in practice and 
a more realistic model would complicate the presentation in this chapter. 

We start by defining the rate of salary function, {sy}y~xo• where xo is some 
suitable initial age. The value of Sx0 can be set arbitrarily as any positive num
ber. For y > x 2:. xo the value of sy/sx is defined to be the ratio of the annual 
rate of salary at age y to the annual rate of salary at age x, where we assume 
the individual is employed from age x to age y. 

Example 10.1 Consider an employee aged 30 whose current annual salary rate 
is $30 000 and assume she will still be employed at exact age 41. 

(a) Suppose the employee's rate of salary function {sy}y~2o is given by 

- - 1 04Y-20 
Sy - • • 

(i) Calculate her annual rate of salary at exact age 30.5. 

(ii) Calculate her salary for the year of age 30 to 31. 

(iii) Calculate her annual rate of salary at exact age 40.5. 

(iv) Calculate her salary for the year of age 40 to 41. 

(b) Now suppose that each year the rate of salary increases by 4%, three 
months after an employee's birthday and then remains constant for a year. 
Repeat parts (i)-(iv) of (a) above. 

Solution 10.1 (a) (i) From the definition of the rate of salary function, her 
annual rate of salary at age 30.5 will be 

30 000 X 1.04°·5 = $30 594. 

(ii) Consider a small interval of age 30 + t to 30 + t + dt, where 0 ::; 
t < t + dt ::; 1. The rate of salary in this age interval wilJ be 
30 000 S30+t /s3o and the amount received by the employee will be 
30 000 (s3o+t!s3o) dt. Hence, her total income for the year of age 30 
to 31 will be 

fo
1 

30000(s3o+1/s3o)dt = fo
1 

30000 x 1.041 dt 

= 30 000 (1.04 - 1) I log 1.04 

= $30596. 

(iii) Her salary rate at exact age 40.5 will be 30 000 x 1.0410·5 = $45 287. 
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(iv) Using the same argument as in part (ii), her income for the year of 
age 40 to 41 will be 

!
11 

30000 l.04t dt = 30000(1.0411 -l.0410)jlogl.04 
10 

= $45290. 

(b) (i) She will receive a salary increase of 4% at age 30.25 and her rate of 
salary will then remain constant until she reaches age 31.25, so her 
rate of salary at age 30.5 will be 

30000 X 1.04 = $31200. 

(ii) The income for the three months following her 30th birthday will be 
30 000 x 0.25 = $7500 and her income for the following nine months 
will be 30 000 x 1.04 x 0.75 = $23 400. Hence, her income for the 
year of age 30 to 31 will be 

7 500 + 23 400 = $30 900. 

(iii) Her rate of salary income at age 40.5 will be 

30000 X 1.0410 = $44407. 

(iv) Her income for the year of age 40 to 41 will be 

30 000 X (0.25 X 1.049 + 0.75 X 1.0410
) = $43 980. 

0 

In practice it is very common to model the progression of salaries using a 
salary scale, {sy}y::=:xo' rather than a rate of salary function. The salary scale 
can be derived from the rate of salary function as follows. The value of sx0 can 
be set arbitrarily as any positive number. For y > x :::: xo we define 

Sy f~ Sy+t dt 
- = 1 
Sx J0 Sx+t dt 

so that, using the same argument as in Example 10.1 parts (ii) and (iv), 

sy salary received in year of age y toy+ 1 

Sx salary received in year of age x to x + 1 

where we assume the individual remains in employment throughout the period 
from age x to y + 1. 

Salaries usually increase as a result of promotional increases and inflation 
adjustments. We assume in general that the salary scale allows for both forces, 
but it is straightforward to manage these separately. 
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Table 10.1 Salary scale for Example 10.2. 

X Sx X Sx X Sx X Sx 

30 1.000 40 2.005 50 2.970 60 3.484 
31 1.082 41 2.115 51 3.035 61 3.536 
32 1.169 42 2.225 52 3.091 62 3.589 
33 1.260 43 2.333 53 3.139 63 3.643 
34 1.359 44 2.438 54 3.186 64 3.698 
35 1.461 45 2.539 55 3.234 
36 1.566 46 2.637 56 3.282 
37 1.674 47 2.730 57 3.332 
38 1.783 48 2.816 58 3.382 
39 1.894 49 2.897 59 3.432 

Example 10.2 The final average salary for the pension benefit provided by a 
pension plan is defined as the average salary in the three years before retire
ment. Members' salaries are increased each year, six months before the valua
tion date. 

(a) A member aged exactly 35 at the valuation date received $75 000 in salary 
in the year to the valuation date. Calculate his predicted final average salary 
assuming retirement at age 65. 

(b) A member aged exactly 55 at the valuation date was paid salary at a rate of 
$100 000 per year at that time. Calculate her predicted final average salary 
assuming retirement at age 65. 

Assume 

(i) a salary scale where sy = l.04Y, and 
(ii) the integer age salary scale in Table 10.1. 

Solution 10.2 (a) The member is aged 35 at the valuation date, so that the 
salary in the previous year is the salary from age 34 to age 35. The pre
dicted final average salary in the three years to age 65 is then 

75 OOO S62 + S63 + S64 
3S34 

which gives $234 019 under assumption (i) and $201 067 under assump
tion (ii). 

(b) The current annual salary rate is $100 000, so the final average salary is 

100 OOO S62 + S63 + S64 ~ 100 OOO S62 + S63 + S64 . 
3 sss 3ss4.5 

Under assumption (i) this is $139 639. Under assumption (ii) we need to 
estimate s54.5, which we would normally do using linear interpolation, 
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so that 

ss4.5 = (s54 + sss)/2 = 3.210, 

giving a final average salary of $113 499. D 

Example 10.3 The current annual salary rate of an employee aged exactly 40 
is $50 000. Salaries are revised continuously. Using the salary scale {sy }, where 
sy = 1.03Y, estimate 

(a) the employee's salary between ages 50 and 51, and 

(b) the employee's annual rate of salary at age 51. 

In both cases, you should assume the employee remains in employment until 
at least age 51. 

Solution 10.3 (a) The estimated earnings between ages 50 and 51 are 
given by 

50000 ~SO ~ 50000 SSO = 50000 X 1.0310·5 = $68196. 
S4Q S39.5 

(b) The estimated salary rate at age 51 is given by 

50 000 
851 ~ 50 000 sso.s = 50 000 X 1.0311 = $69 212. 
s4o SJ9.5 

D 

10.4 Setting the DC contribution 

To set the contribution rate for a DC plan to aim to meet a target replacement 
ratio for a 'model' employee, we need 

• the target replacement ratio and retirement age, 

• assumptions on the rate of return on investments, interest rates at retirement, 
a salary scale and a model for post-retirement mortality, and 

• the form the benefits should take. 

With this information we can set a contribution rate that will be adequate if 
experience follows all the assumptions. We might also want to explore sensi
tivity to the assumptions, to assess a possible range of outcomes for the plan 
member's retirement income. The following example illustrates these points. 

Example 10.4 An employer establishes a DC pension plan. On withdrawal 
from the plan before retirement age, 65, for any reason, the proceeds of the 
invested contributions are paid to the employee or the employee's survivors. 
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The contribution rate is set using the following assumptions. 

• The employee will use the proceeds at retirement to purchase a pension for 
his lifetime, plus a reversionary annuity for his wife at 60% of the employee's 
pension. 

• At age 65, the employee is married, and the age of his wife is 61. 

• The target replacement ratio is 65%. 

• The salary rate function is given by sy = l.04Y and salaries are assumed to 
increase continuously. 

111 Contributions are payable monthly in arrear at a fixed percentage of the 
salary rate at that time. 

• Contributions are assumed to earn investment returns of 10% per year. 

• Annuities purchased at retirement are priced assuming an interest rate of 
5.5% per year. 

Ill Male survival: Makeham's law, with A= 0.0004, B = 4 X w-6, c = 1.13. 

• Female survival: Makeham's law, with A= 0.0002, B = w-6 , c = 1.135. 

• Members and their spouses are independent with respect to mortality. 

Consider a male new entrant aged 25. 

(a) Calculate the contribution rate required to meet the target replacement ratio 
for this member. 

(b) Assume now that the contribution rate will be 5.5% of salary, and that 
over the member's career, his salary will actually increase by 5% per year, 
investment returns will be only 8% per year and the interest rate for cal
culating annuity values at retirement will be 4.5% per year. Calculate the 
actual replacement ratio for the member. 

Solution 10.4 (a) First, we calculate the accumulated DC fund at retirement. 
Mortality is not relevant here, as in the event of the member's death, the 
fund is paid out anyway; the DC fund is more like a bank account than an 
insurance policy. 

We then equate the accumulated fund with the expected present value at 
retirement of the pension benefits. 

Suppose the initial salary rate is $S. As everything is described in pro
portion to salary, the. value assumed for S does not matter. The annual 
salary rate at age x > 25 is S(l.04)x-25 , which means th~t the contribu
tion at timet, where t = 1/12, 2/12, ... , 40, is 
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where c is the contribution rate per year. Hence, the accumulated amount 
of contributions at retirement is 

The salary received in the year prior to retirement, under the assump
tions, is 

864 
S = 1.0439

·
5 S = 4.7078S. 

s24.5 

Since the target replacement ratio is 65%, the target pension benefit per 
year is 0.65 x 4.7078S = 3.0601S. 

The EPV at retirement of a benefit of 3.0601S per year to the member, 
plus a reversionary benefit of 0.6 x 3.0601S per year to his wife, is 

3.06o1s (a~,~2J + o.6a\!,2~) 
65 65161 

where the m and f scripts indicate male and female mortality, respectively. 
Using the given survival models and an interest rate of 5.5% per year, 

we have 

giving 

a~}2J = 10.5222, 
65 

a(12J = acr2) _ a(l2J 
Ill f f Ill f , 

65161 61 65:61 

a~2J = 13.9194, 
61 

.. (12) ~ 1 1._ 
a 1 = ~ -v 12 k p m k p 1 

6s:61 k=O 12 TI 65+k TI 61+k 

= 10.0066, 

.. (12) = 3 9128 a 1111 • • 
65161 

(10.1) 

Note that we can write the joint life survival probability in formula (10.1) 
as the product of the single life survival probabilities using the indepen
dence assumption, as in Section 9.5. 

Hence, the value of the benefit at retirement is 

3.0601S (10.5222 + 0.6 X 3.9128) = 39.3826S. 
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Equating the accumulation of contributions to age 65 with the EPV of 
the benefits at age 65 gives 

c = 5.4726% per year. 

(b) We now repeat the calculation, using the actual experience rather than 

estimates. We use an annual contribution rate of 5.5%, and solve for the 
amount of benefit funded by the accumulated contributions, as a proportion 
of the final year's salary. 

The accumulated contributions at age 65 are now 28.6360S, and the 
annuity values at 4.5% per year interest are 

a~,~ 2) = 11.3576, a~2) = 15.4730, 
65 61 

ac12
)
1 

= 10.7579. 
m 
65:61 

Thus, the EPV of a benefit of X per year to the member and of 0.6 X 
reversionary benefit to his spouse is 14.1867X. Equating the accumulation 
of contributions to age 65 with the EPV of benefits at age 65 gives X = 
2.0185S. 

The final year salary, with 5% per year increases, is 6.8703S. Hence, the 

replacement ratio is 

D 

2.0185S 
R = 6.8703S = 29 '38%. 

We note that apparently quite small differences between the assumptions used 
to set the contribution and the experience can make a significant difference to 
the level of benefit, in terms of the pre-retirement income. This is true for both 
DC and DB benefits. In the DC case, the risk is taken by the member, who takes 
a lower benefit, relative to salary, than the target. In the DB case, the risk is usu

ally taken by the employer, whose contributions are usually adjusted when the 
difference becomes apparent. If the differences are in the opposite direction, 
then the member benefits in the DC case, and the employer contributions may 

be reduced in the DB case. 

10.5 The service table 

The demographic elements of the basis for pension plan calculations include 

assumptions about survival models for members and their spouses, and about 
the exit patterns from employment. There are several reasons why a member 
might exit the plan. At early ages, the employee might withdraw to take another 
job with a different employer. At later ages, employees may be offered a range 

of ages at which they may retire with the pension that they have accumulated. 
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A small proportion of employees will die while in employment, and another 
group may leave early through disability retirement. 

In a DC plan the benefit on exit is the same, regardless of the reason for the 
exit, so there is no need to model the member employment patterns. 

In a DB plan different benefits may be payable on the different forms of exit. 
In the UK it is common on the death in service of a member for the pension 
plan to offer both a lump sum and a pension benefit for the member's surviving 
spouse. In North America, any lump sum benefit is more commonly funded 
through separate group life insurance, and so the liability does not fall on the 
plan. There may be a contingent spouse's benefit. 

The extent to which the DB plan actuary needs to model the different exits 
depends on how different the values of benefits are from the values of benefits 
for people who do not leave until the normal retirement age. 

For example, if an employer offers a generous benefit on disability (or ill 
health) retirement, that is worth substantially more than the benefit that the 
employee would have been entitled to if they had remained in good health, then 
it is necessary to model that exit and to value that benefit explicitly. Otherwise, 
the liability will be understated. On the other hand, if there is no benefit on 
death in service (for example, because of a separate group life arrangement), 
then to ignore mortality before retirement would overstate the liabilities within 
the pension plan. 

If all the exit benefits have roughly the same value as the normal age retire
ment benefit, the actuary may assume that all employees survive to retirement. 
It is not a realistic assumption, but it simplifies the calculation and is appropri
ate if it does not significantly overestimate or underestimate the liabilities. 

It is relatively common to ignore withdrawals in the basis, even if a large pro
portion of employees do withdraw, especially at younger ages. It is reasonable 
to ignore withdrawals if the effect on the valuation of benefits is small, com
pared with allowing explicitly for withdrawals. By ignoring withdrawals, we 
are valuing age retirement benefits for lives who withdraw, instead of valuing 
the withdrawal benefits. This is a reasonable shortcut if the age retirement 
benefits have similar value to the withdrawal benefits, which is often the case. 
For example, in a final salary plan, if withdrawal benefits are increased in line 
with inflation, the value of withdrawal and age benefits will be similar. Even if 
the difference is relatively large, withdrawals may be ignored. This creates an 
implicit margin in the valuation if withdrawal benefits are less valuable than 
retirement benefits, which is often the case. An additional consideration is that 
withdrawals are notoriously unpredictable, as they are strongly affected by eco
nomic and social factors, so that historical trends may not provide a good indi
cator of future exit patterns. 
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Figure 10.1 A multiple decrement model for a pension plan. 

When the actuary does model the exits from a plan, an appropriate multi
ple decrement model could be similar to the one shown in Figure 10.1. All 
the model assumptions of Chapter 8 apply to this model, except that some age 
retirements will be exact age retirements, as discussed in Section 8.12. 

Example 10.5 A pension plan member is entitled to a lump sum benefit on 
death in service of four times the salary paid in the year up to death. 

Assume the appropriate multiple decrement model is as in Figure 10.1, with 

01- w 0.05 

1

0.1 

p,x = p,x = ~.02 

02 - i 0 001 p,x = p,x = · ' 

f-1,03 = f-1,1' = {0 
X - X 0.1 

for x < 35, 

for35 :::; x < 45, 

for 45 :::; x < 60, 

for x 2::. 60, 

for x < 60, 

for 60 < x < 65. 

In addition, 30% of the members surviving in employment to age 60 retire at 
that time, and 100% of the lives surviving in employment to age 65 retire at 
that time. For transitions to state 4, 

p,~4 = p,~ =A+ Bcx; with A= 0.00022, B = 2.7 x 10-6 , c = 1.124. 

(This is the Standard Ultimate Survival Model.) 

(a) For a member aged 35, calculate the probability of retiring at age 65. 
(b) For each mode of exit, calculate the probability that a member currently 

aged 35 exits employment by that mode. 

Solution 10.5 (a) Since all surviving members retire at age 65, the probability 
can be written 30P~~· To calculate this, we need to consider separately the 
periods before and after the jump in the withdrawal transition intensity, 
and before and after the exact age retirements at age 60. 
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ForO< t < 10, 

t P~~ = exp {-lot (IL35+s + IL~5+s + IL~5+s) ds} 

= exp {- (cA + 0.05 + O.OOl)t + lo~c c 35
(c

1
- 1))}, 

giving 

lOP~~ = 0.597342. 

For 10 ::::; t < 25, 

{ t-10 } tP~~ =lOP~~ exp - Jo (tL45+s + tl~5+s + ~LiS+s) ds 
= lOP~~ exp {- ((A+ 0.02 + O.OOl)(t- 10) 

+ ~c45(ct-lO _ l))} 
loge 

giving 

25- p~~ = 0.597342 X 0.712105 = 0.425370. 

At t = 25, 30% of the survivors retire, so at t = 25+ we have 

25+ p~~ = 0.7 25- p~~ = 0.297759. 

For 25 < t < 30, 

tP~~ = 25+ P~~ exp { -11

-

25 
(tL6o+s + tl~O+s + tl~O+s) ds} 

= 0.297759 exp {- ((A + 0.1 + O.OOl)(t - 25) 

+ ~c60(ct-25 _ l))} 
loge 

giving 

30-P~~ = 0.297759 X 0.590675 = 0.175879. 

The probability of retirement at exact age 65 is then 0.1759. 

(b) We know that all members leave employment by or at age 65. 

345 

All withdrawals occur by age 60. To compute the probability of with
drawal, we split the period into before and after the change in the with
drawal force at age 45. 
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The probability of withdrawal by age 45 is 

{10 {10 
lOP~J = lo 1 p~~ tL3s+1 dt = 0.05 lo 00 d 

I P35 t 

which we can calculate using numerical integration to give 

lOP~J = 0.05 x 7.8168 = 0.3908. 

The probability of withdrawal between ages 45 and 60 is 

lOP~~ 15P2J = 0.597342 la
15 

1P2~ fL4s+1 dt 

= 0.597342 X 0.021a lS 1 P2~ dt 

which, again using numerical integration, gives 

lOP~~ 15P2J = 0.597342 X 0.02 X 12.7560 = 0.1524. 

So, the total probability of withdrawal is 0.5432. 
We calculate the probability of disability retirement similarly. The prob

ability of disability retirement by age 45 is 

{10 {10 
lOP~~ = lo 1 p~~ tLks+1 dt = 0.001 lo 

= 0.001 X 7.8168 = 0.0078, 

ood 
I P35 t 

and the probability of disability retirement between ages 45 and 60 is 

{15 
lOP~~ 15P2~ = 0.597342 Jo t P2~ fL~s+1 dt 

t5 
= 0.597342 X 0.001 Jo tP2~ dt 

= 0.597342 X 0.001 X 12.7560 = 0.0076. 

The probability of disability retirement in the final five years is 

25+ p~~ 5P~6 = 0.297759 las t p~g fL~O+t dt 

= 0.297759 X 0.001 X 3.8911 

= 0.0012. 

So, the total probability of disability retirement is 0.0078 + 0.0076 + 
0.0012 = 0.0166. 

The probability of age retirement is the sum of the probabilities of exact 
age retirements and retirements between ages 60 and 65. 



10.5 The service table 

The probability of exact age 60 retirement is 

0.3 25- P35 = 0.1276, 

and the probability of exact age 65 retirement is 

3o-P35 = 0.1759. 

The probability of retirement between exact ages 60 and 65 is 

25+ p~g 5P~6 = 0.297759 15 
, p~g JL6o+t dt 

= 0.297759 X 0.1 X 3.8911 

= 0.1159. 

So, the total age retirement probability is 0.4194. 
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We could infer the death in service probability, by the law of total prob
ability, but we instead calculate it directly as a check on the other results. 
We use numerical integration for all these calculations. 

The probability of death in the first 10 years is 

lOP~t = 110 

tP~g IL~5+t dt = 0.0040, 

and the probability of death in the next 15 years is 

wp~g 15Pgt = 0.59734 fo 15 

t pgg IL~S+t dt = 0.0120. 

The probability of death in the final five years is 

25+ p~g 5P~6 = 0.297759 los , p~g JL6o+t dt 

= 0.297759 X 0.016323 

= 0.0049. 

So the total death in service probability is 0.0208. 

We can check our calculations by summing the probabilities of exiting 
by each mode. This gives a total of 1 (= 0.5432 + 0.0166 + 0.4194 + 
0.0208), as it should. D 

Often the multiple decrement model is summarized in tabular form at inte
ger ages, in the same way that a life table summarizes a survival model. Such 
a summary is called a pension plan service table. We start at some minimum 
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integer entry age, xo, by defining an arbitrary radix, for example, lx0 = 

1000000. Using the model of Figure 10.1, we then define for integer ages 

xo + k (k = 0, 1, ... ) 

Wxo+k = Zxo kP~~ P~~+k' 
ixo+k = Zxo kP~~ P~;+k' 
rxo+k = Zxo kP~~ P~~+k• 
dxo+k = Zxo kP~~ P~~+k• 
Zxo+k = Zxo kP~~· 

Since the probability that a member aged xo withdraws between ages xo + k 

andxo+k+ 1 is kP~g p~~+k' we can interpret Wxo+k as the number of members 
expected to withdraw between ages xo + k and xo + k + 1 out of lx0 members 

aged exactly xo; ixo+k. rxo+k and dxo+k can be interpreted similarly. We can 
interpret lxo+k as the expected number of lives who are still plan members at 
age xo + k out of lx0 members aged exactly xo. We can extend these inter
pretations to say that for any integer ages x andy (>x), Wy is the number of 

members expected to withdraw between ages y and y + 1 out of lx members 
aged exactly x and ly is the expected number of members at age y out of lx 

members aged exactly x. These interpretations are precisely in line with those 
for a life table- see Section 3.2. 

Note that, using the law of total probability, we have the following identity 

for any integer age x > xo 

lx = lx-1- Wx-1- ix-1- rx-1- dx-1· (10.2) 

A service table summarizing the model in Example 10.5 is shown in Table 10.2 

from age 20 with the radix ho = 1000 000. This service table has been con
structed by calculating, for each integer age x (>20), Wx, ix, rx and dx as 
described above. The value of lx shown in the table is then calculated recur
sively from age 20. The table is internally consistent in the sense that identity 
(10.2) holds for each row of the table. However, this does not appear to be the 
case in Table 10.2 because all values have been rounded to the nearer inte
ger. The exact age exits at ages 60 and 65 are shown in the rows labelled 60-
and 65-. In all subsequent calculations based on Table 10.2, we use the exact 

values rather than the rounded ones. 
We use the model underlying this service table for several examples and 

exercises. For convenience, the service table is also available in Appendix D, 

as Table D.4. 
Having constructed a service table, the calculation of the probability of any 

event between integer ages can be performed relatively simply. To see this, 
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Table 10.2 Pension plan service table. 

X lx Wx 

20 1000000 95104 951 0 
21 903 707 85 946 859 0 
22 816 684 77 670 777 0 
23 738 038 70 190 702 0 
24 666 962 63 430 634 0 
25 602 728 57 321 573 0 
26 544677 51800 518 0 
27 492213 46811 468 0 
28 444800 42301 423 0 
29 401 951 38 226 382 0 
30 363 226 34 543 345 0 
31 328 228 31215 312 0 
32 296 599 28 207 282 0 
33 268 014 25 488 255 0 
34 242181 23 031 230 0 
35 218 834 10665 213 0 

X 

237 44 
218 45 
200 46 
184 47 
170 48 
157 49 
145 50 
134 51 
125 52 
117 53 
109 54 
102 55 
96 56 
91 57 
86 58 
83 59 

Wx 

137 656 6 708 134 
130719 2586 129 
127 904 2 530 127 
125140 2476 124 
122428 2422 121 
119 763 2 369 118 
117145 2317 116 
114572 2266 113 
112042 2216 111 
109553 2166 108 
107 102 2118 106 
104 688 2 070 103 
102 308 2 023 101 
99 960 1 976 99 
97 642 1 930 96 
95 351 1884 94 

rx 

349 

0 95 
0 100 
0 106 
0 113 
0 121 
0 130 
0 140 
0 151 
0 163 
0 176 
0 190 
0 206 
0 224 
0 243 
0 264 
0 288 

36 207 872 10 131 203 0 84 60 93085 0 0 27926 0 
37 197 455 9 623 192 0 84 60+ 65160 0 62 6188 210 
38 187 555 9141 183 0 85 61 58 700 0 56 5 573 212 
39 178147 8682 174 0 86 62 

87 63 
89 64 

52860 
47579 
42805 

0 50 5018 213 
40 169206 8246 165 0 0 45 4515 214 
41 160 708 7 832 157 0 0 41 4061 215 
42 152631 7 438 149 0 90 65- 38488 0 0 38 488 0 
43 144 954 7 064 141 0 93 

consider the calculations required for Example 10.5. For part (a), the proba
bility that a member aged 35 survives in service to age 65, calculated using 
Table 10.2, is 

38488 
218 834 = 0'1759' 

For part (b), the probability that a member aged 35 withdraws is 

(W35 + W36 +''' + W59)j l35 

10665 + 10131 + ... + 1930 + 1884 
= 218 834 = 0'5432' 

The probability that the member retires in ill health is 

213 + 203 + ... + 45 + 41 
Ci35 + i36 + ... + i64)/ 135 = 218 834 = 0.0166. 

The probability that the member retires on age grounds is 

(r35 + r36 + · · · + r65) I l35 

27 926 + 6188 + 5 573 + 5 018 + 4 515 + 4061 + 38488 
= 218 834 = 0.4194' 
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The probability that the member dies in service is 

83 + 84 + ... + 214 + 215 
(d35 + d36 + · · · + d64)/ !35 = 

218 834 
= 0.0208. 

Example 10.6 Employees in a pension plan pay contributions of 6% of their 
previous month's salary at each month end. Calculate the EPV at entry of con
tributions for a new entrant aged 35, with a starting salary rate of $100000, 
using 

(a) exact calculation using the multiple decrement model specified in Exam
ple 10.5, and 

(b) the values in Table 10.2, adjusting the EPV of an annuity payable annually 
in the same way as under the UDD assumption in Chapter 5. 

Other assumptions: 

• Salary rate function: Salaries increase at 4% per year continuously; 
• Interest: 6% per year effective. 

Solution 10.6 (a) The EPV is 

0.06 X 100000 (
299 

k k " Poo (l.04) 12 v 12 + -poo (l.04)25 v25 
12 ~A 35 25 35 

k=l 

360 ) 00 k k + L AP35 (1.04)12 v12 

k=301 

0.06 X 100 000 (I:299 00 A 00 25 L360 00 A) 
= _!s_ P35 V1· + 25- P35 V1· + _!s_ P35 V1· 12 12 12 

k=l k=30l 

= 6000 X 13.3529 = $80117 

where j = 0.02/1.04 = 0.01923 and where we have separated out the 
term relating to age 60 to emphasize the point that contributions would be 
paid by all employees reaching ages 60 and 65, even those who retire at 
those ages. 

(b) Recall from Chapter 5 that the UDD approximation to the EPV of a term 
annuity payable monthly in arrear a~~~, in terms of the corresponding 
value for annual payments in advance, iix:/il' is 

a~~~ R:! a(l2)ax:lil- (,8(12) + 
1

1

2
) (1- V

11 nPx). 

This approximation will work for the monthly multiple decrement annuity, 
which we will denote a0~\~), provided that the decrements, in total, are 
approximately UDD. This is not the case for our service table, because 
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between ages 60- and 61, the vast majority of decrements occur at exact 
age 60. We can take account of this by splitting the annuity into two parts, 
up to age 60- and from age 60+, and applying a UDD-style adjustment to 
each part as follows: 

aOO(l2) = a00(12l + l6o+ v~5 a00(12) 
35:301 35:251 !35 J 60+:51 

~ a(12) a0
3°5:251 - ({3(12) + 1~) ( 1 - ~~~: v]5

) 

+ l6o+ v~s (a(12) aoo - (/3(12) + .!._) (1 - lGs- v~)). 
l3s J 6o+:51 12 l6o+ J 

As a00 ~ = 13.0693 and a00+ <=1 = 3.9631 we find that 
35:25, 60 :51 

6000a00(12) ~ $80131. 
35:301 D 

Using the service table and the UDD-based approximation has resulted in a 
relative error of the order of 0.03% in this example. This demonstrates again 
that the service table summarizes the underlying multiple decrement model 
sufficiently accurately for practical purposes. 

In applying the UDD adjustment we are effectively saying that the argu
ments we applied to deaths in Chapter 5 can be applied to total decrements. 
However, just as in Section 8.9, if we were to assume a uniform distribution 
of decrements in each of the related single decrement models, we would find 
that there is not a uniform distribution of the overall decrements. Nevertheless, 
the assumption of a uniform distribution of total decrements provides a useful, 
and relatively accurate, means of calculating the EPV of an annuity payable m 
times a year from a service table. 

It is very common in pension plan valuation to use approximations, primarily 
because of the long-term nature of the liabilities and the huge uncertainty in the 
parameters of the models used. To calculate values with great accuracy when 
there is so much uncertainty involved would be spurious. While this argument 
is valid, one needs to ensure that the approximation methods do not introduce 
potentially significant biases in the final results, for example, by systematically 
underestimating the value of liabilities. 

10.6 Valuation of benefits 

10.6.1 Final salary plans 

In a DB final salary pension plan, the basic annual age retirement pension 
benefit is equal to 
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where 

n is the total number of years of service, 

SPin is the average salary in a specified period before retirement; for exam
ple, in the three years preceding exit, and 

a is the accrual rate, typically between 0.01 and 0.02. For an employee 
who has been a member of the plan all her working life, say n = 40 
years, this typically gives a replacement ratio in the range 40-80%. 

We interpret this benefit formula to mean that the employee earns a pension of 
100a% of final average salary for each year of employment. 

Consider a member who is currently aged y, who joined the pension plan at 
age x (::::; y) and for whom the normal retirement age is 60. Our estimate of her 
annual pension at retirement is 

where SPin is the current estimate of SPin· This estimate is calculated using her 
current salary and an appropriate salary scale. We can split this annual amount 
into two parts 

The first part is related to her past service, and is called the accrued benefit. 
The second part is related to future service. Note that both parts use an estimate 
of the final average salary at retirement, SPin· 

The employer who sponsors the pension plan retains the right to stop offer
ing pension benefits in the future. If this were to happen, the final benefit would 
be based on the member's past service at the wind-up of the pension plan; in 
this sense, the accrued benefits (also known as the past service benefits) are 
already secured. The future service benefits are more of a statement of intent, 
but do not have the contractual nature of the accrued benefits. 

In valuing the plan liabilities then, modern valuation approaches often con
sider only the accrued benefits, even when the plan is valued as a going 
concern. 

Example 10.7 The pension plan in Example 10.5 offers an age retirement pen
sion of 1.5% of final average salary for each year of service, where final average 
salary is defined as the earnings in the three years before retirement. 

Use Table 10.2 to estimate the EPV of the accrued age retirement pension 
for a member aged 55 with 20 years of service, whose salary in the year prior 
to the valuation date was $50 000. 
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The pension benefit is paid monthly in advance for life, with no spouse's 
benefit. 

Other assumptions: 

• Salary scale: From Table 10.1; 

e Post-retirement survival: Standard Ultimate Survival Model, Appendix D; 

e Interest: 5% per year effective. 

Solution 10.7 Age retirement can take place at exact age 60, at exact age 
65, or at any age in between. We assume that mid-year age retirements (the 
retirements that do not occur at exact age 60 or 65) that are assumed to occur 
between ages x and x + 1 (x = 60, 61, ... , 64) take place at age x + 0.5 
exact. This is a common assumption in pensions calculation and is a simi
lar approach to the claims acceleration approach for continuous benefits in 
Section 4.5. The assumption considerably simplifies calculations for complex 
benefits, as it converts a continuous model for exits into a discrete model, more 
suitable for efficient spreadsheet calculation, and the inaccuracy introduced is 
generally small. 

Suppose retirement takes place at age y. Then the projected final average 
salary is 

where 

A Zy 
Sfin = 50000-

S54 

Zy = (sy-3 + Sy-2 + Sy-I)/3 

and where we use the values in Table 10.1 and linear interpolation to calculate, 
for example, sss.s. The function z y is the averaging function for the salary scale 
to give the final average salary, so that if we multiply the salary in the year of 
age x to x + 1 by z y / s x we get the final average salary on exit at exact age y. 

If the member retires at exact age 60, the accrued benefit, based on 20 years' 
past service and an accrual rate of 1.5%, is a pension payable monthly in 
advance from age 60 of annual amount 

Z60 
50000- X 20 X O.o15 = $15 922.79. 

S54 

To value this we need to use life annuity values from the age at exit. The annu
ity values used below have been calculated accurately, but interpolating values 
from Table D.3 with a UDD adjustment gives similar results. 
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The EPV of the accrued age retirement pension is then 

50000 X 0,015 X 20 (r6o- 260 VS a~l2) + r6o+ 260.S VS.S a(l2) 

Iss ss4 ° Iss ss4 
60

·s 

+ T61 261.S V6.S a(l2) + ... + T64 264.S V9.S a(l2) + r6s- 26S VlO a(l2)) 

Iss ss4 61.s Iss ss4 64·s Iss ss4 6s 

= $137 508. 

This type of repetitive calculation is ideally suited to spreadsheet software. 
D 

Withdrawal pension 
When an employee leaves employment before being eligible to take an imme
diate pension, the usual benefit (subject to some minimum period of employ
ment) in a DB plan is a deferred pension. The benefit would be based on the 
same formula as the retirement pension, that is, Accrual Rate x Service x 
Final Average Salary, but would not be paid until the member attains the nor
mal retirement age. Note that Final Average Salary here is based on earnings 
in the years immediately preceding withdrawal. 

The deferred period could be very long, perhaps 35 years for an employee 
who changes jobs at age 30. If the deferred benefit is not increased during 
the defeiTed period, then inflation, even at relatively low levels, will have a 
significant effect on the purchasing power of the pension. In some plans the 
withdrawal benefit is adjusted through the defeiTed period to make some, pos
sibly partial, allowance for inflation. Such adjustments are called cost of living 
adjustments, or COLAs. In the UK, some inflation adjustment is mandatory. 
Some plans outside the UK do not guarantee any COLA but apply increases 
on a discretionary basis. 

Example 10.8 A final salary pension plan offers an accrual rate of 2%, and 
the normal retirement age is 65. Final average salary is the average salary in 
the three years before retirement or withdrawal. Pensions are paid monthly in 
advance for life from age 65, with no spouse's benefit, and are guaranteed for 
five years. 

(a) Estimate the EPV of the accrued withdrawal pension for a life now aged 
35 with 10 years of service whose salary in the past year was $100 000 

(i) with no COLA, and 
(ii) with a COLA in deferment of 3% per year. 

(b) On death during deferment, a lump sum benefit of five times the accrued 
annual pension, with a COLA of 3% per year, is paid immediately. Esti
mate the EPV of this benefit. 
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Basis: 

e Service table: From Table D.4 
e Salary scale: From Table 10.1 
e Post-withdrawal survival: Standard Ultimate Survival Model 
• Interest: 5% per year effective. 

355 

Solution 10.8 According to our service table assumptions, the member can 
withdraw at any age up to 60. There are no 'exact age' withdrawals, unlike 
age retirements, so if the member withdraws between ages x and x + 1 (x = 

35, 36, ... , 59) we assume that withdrawal takes place at age x + 0.5. 
Since the deferred pension is based on final average salary, which is defined 

as the average annual salary in the three years before withdrawal, we define 

Zy = (Sy-3 + Sy-2 + Sy-1)/3 

as we did in Example 10.7. 

(a) The guaranteed annuity EPV factor at age 65 is a~, which can be evalu-
65:51 

ated as follows 

.. (12) .. (12) + 5 .. (12) 
a- = a,:, 5 P65 v a70 

65:51 51 

= 4.4459 + 0.75455 X 11.5451 

= 13.1573 

where the annuity function and the survival probability are calculated using 
the Standard Ultimate Survival Model, from Appendix D. 

(i) If the member withdraws between integer ages 35 + t and 35 + t + 1, 
the accrued withdrawal pension, with no COLA, payable from age 65, 
is estimated to be 

100 000 X Z3S+t+O.S X 10 X 0.02. 
S34 

The EPV of this at age 65 is 

100 000 X Z35+t+O.S X 10 X 0.02 X a~ 
S34 65:51 

and the EPV at age 35 + t + 0.5 is 

100 000 Z35+t+0.5 lO O 02 .. (12) ( ) 29.5-t x x x . a- 29.5-t P35+t+0.5 v 
S34 65:51 

where the t Px factor is for survival only, not for the multiple decre
ment, as we are applying it to a life who has just withdrawn. 

The probability that the member withdraws between integer ages 
35 + t and 35 + t + 1 is w3s+tl l3s. Applying this probability and 
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the discount factor v1+0·5 we obtain the EPV at age 35 of the accrued 
withdrawal benefit as 

24 
100000 X 10 X 0.02"" .. (12) 30 

l 
~ W35+1 Z35+1+0.5 a~ (29.5-1 P35+I+0.5) v 

35 S34 I=O 65:51 

which is $48 246. 
(ii) To allow for a COLA at 3% per year during deferment, the above for

mula for the EPV of the accrued withdrawal benefit must be adjusted 
by including a term 1.0329·5- 1, so that it becomes 

24 
100000 X 10 X 0.02"" 29.5-t .. (12) 

~ W35+1 Z35+1+0.5 1.03 a-
/35 S34 t=O 65:51 

x (29.5-1 P35+I+0.5) v30 

which is $88 853. 

(b) Suppose the member withdraws between integer ages 35 + t and 35 + t + 1; 
the probability that this happens is W35+l / !35. The estimated initial annual 
accrued pension is 

0.02 X 10 X 100 000 z35+t+0.5 

S34 

and the sum insured on death before age 65 is five times this annual amount 
increased by the COLA. Hence the EPV of the benefit on death after with
drawal is 

24 L 5 x 0.02 x 10 x 100 000 v1+0·5 Z35+t+0.5 w35+1 

I=O S34 /35 

X A 1 
35+t+0.5: 65-(35+1+0.5) u 

=5 X 0.02 X 10 X 100000 X 0.01813 

=$1813 

where the subscript j indicates that the rate of interest used to calculate the 
term insurances is j = 0.02/1.03. 0 

Throughout this section, we have assumed that the accrued benefit allows fully 
for future salary increases. However, as for the future service benefit, future 
salary increases are not guaranteed and there is a case for omitting them from 
the accrued liabilities. When a salary increase is actually declared, then it 
would be brought into the liability valuation. 

The approach which uses salaries projected to the exit date is called the 
projected unit method. Valuing the accrued benefits with no allowance for 

j 
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future salary increases is the traditional unit or current unit approach. Each 
has its adherents. 

To adapt the methodology above to the current unit approach, the Zx+t!sx 
factors would be replaced by zx/sx in the valuation formulae, or by the actual 
average pensionable earnings at valuation. That is, if the pension calculation 
uses the average of three year earnings to retirement, the current unit valua
tion could use the average of the three year earnings to the valuation date. This 
would need to be adjusted for a member with less than three years' service. For 
simplicity, the valuation in a current unit approach may use the current salary 
at valuation. 

10.6.2 Career average earnings plans 

Under a career average earnings (CAE) defined benefit pension plan, the ben
efit formula is based on the average salary during the period of pension plan 
membership, rather than the final average salary. Suppose a plan member retires 
at age xr with n years of service and total pensionable earnings during their 

service of (TPE)xr· Then their career average earnings are (TPE)xrfn. So a 
CAE plan with an accrual rate of a would provide a pension benefit on retire
ment at age xr, for a member with n years of service, of 

(TPE)xr 
an =a (TPE)xr· 

n 

Under a career average earnings plan, the accrued, or past service, benefit that 
we value at age x is a (TPE)x, where (TPE)x denotes the total pensionable 
earnings up to age x. The methods available for valuing such benefits are the 
same as for a final salary benefit. 

A popular variation of the career average earnings plan is the career average 
revalued earnings plan, in which an inflation adjustment of the salary is made 
before averaging. The accrual principle is the same. The accrued benefit is 
based on the total past earnings after the revaluation calculation. 

Example 10.9 A pension plan offers a retirement benefit of 4% of career aver
age earnings for each year of service. The pension benefit is paid monthly 
in advance for life, guaranteed for five years, with no spousal benefit. On 
withdrawal, a deferred pension is payable from age 65. The multiple decre
ment model in Example 10.5 is appropriate for this pension plan, including the 
assumption that members can retire at exact age 60 and at exact age 65. 

Consider a member now aged 35 who has 10 years of service, with total past 
earnings of $525 000. 

(a) Write down an integral formula for an accurate calculation of the EPV of 
his accrued age and withdrawal benefits. 
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(b) Use Table 10.2 to estimate the EPV of his accrued age and withdrawal 
benefits. 

Other assumptions: 

Post-retirement/withdrawal survival: Standard Ultimate Survival Model; 
Interest: 5% per year effective. 

Solution 10.9 (a) The EPV of the accrued age retirement benefit is 

25-
0.04 (TPEh5 ( { t p~~ tt~~+t vt a!El-dt + 0.3 25P~~v25 a<12

) lo 35+t:51 60:51 
30-+ [ 00 03 t .. (12) dt + 00 30 .. (12)) 

}25+ t P35 tL35+t v a 35+t:51 30P35 v a 65:51 

where the second and fourth terms allow for the exact age retirements. 
The EPV of the accrued withdrawal benefit is 

0.04 (TPEh5 v 30 a<12
) {

30 

t p~~ tt~~+t 30-t P35+t dt 
65:51 lo 

where the survival probability 30-t P35+t is calculated using a mortality 
assumption appropriate for members who have withdrawn. 

(b) The EPV of the accrued age retirement benefit is estimated as 

0.04(TPEh5 ( 25 .. (12) + 25.5 .. (12) + 26.5 .. (12) + 
r6o- v a- r6o+ v a-- r61 v a-- · · · 

[35 60:51 60.5:51 61.5:51 

+ 29.5 .. (12) + 30 .. (12)) 
Y64 v a-- Y65 v a-

65.5:51 65:51 

= $31666. 

Note the exact age retirement terms for ages 60 and 65. 
The EPV of the accrued withdrawal benefit is 

0.04 (TPEh5 v30 a<12) 
65:51 ( 

[35 W35(29.5P35.5) + W36(28.5P36.5) + ... 

+ W59(5.5P59.5)) 

=$33173. 

10.7 Funding the benefits 

0 

In a typical DB pension plan the employee pays a fixed contribution, and 
the balance of the cost of the employee benefits is funded by the employer. 
The employer's contribution is set at the regular actuarial valuations, and is 
expressed as a percentage of salary. 
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With an insurance policy, the policyholder pays for a contract typically 
through a level, regular premium or a single premium. The nature of the pen
sion plan is that there is no need for the funding to be constant, as contributions 
can be adjusted from time to time. The level of contribution from the employer 
is not usually a part of the contract, the way that the premium is specified in 
the insurance contract. Nevertheless, because the employer will have an inter
est in smoothing its contributions, there is some incentive for the funding to be 
reasonably smooth and predictable. 

We assume that the benefit valuation approach from the previous section is 
used to establish a reserve level at the start of the year. The reserve refers to 
the assets set aside to meet the accrued liabilities as they fall due in the future. 
So, the reserve at time t, say, is the sum of the EPV s of all the accrued benefits 
at that time, taking into consideration all the appropriate benefits. We denote 
this reserve 1 V. It is also called the actuarial liability. 

We then set the funding level for the year to be the amount required to be 
paid such that, together with the fund va.lue at the start of the year, the assets 
are exactly sufficient to pay the expected cost of any benefits due during the 
year, and to pay the expected cost of establishing the new actuarial liability at 
the year end. 

We assume that (i) all employer contributions are paid at the start of the 
year, (ii) there are no employee contributions, and (iii) any benefits payable 
during the year are paid exactly half-way through the year. These are simpli
fying assumptions that make the development of the principles and formulae 
clearer, but they can be relaxed quite easily. With these assumptions, the nor
mal contribution due at the start of the year t to t + 1 for a member aged x at 
timet, denoted C1, is found from 

1 V + C1 = EPV of benefits for mid-year exits + v IP~o t+l V, (10.3) 

that is 

C1 = v 1P~o t+l V + EPV of benefits for mid-year exits- 1 V. 

By EPV of benefits for mid-year exits we mean the EPV at the start of the 
year of benefits that would be payable given that the life exits during the year, 
multiplied by the probability of exit during the year. 

The funding equation (10.3) is interpreted as follows: the start of year actuar
ialliability plus normal contributions must be sufficient, on average, to pay for 
the benefits if the member exits during the following year, or to fund the value 
of the actualialliability at the year end if the member remains in employment. 
The ideas, which are similar to those developed when we discussed policy val
ues in Section 7.3.3, are demonstrated in the following example. 
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Example 10.10 A member aged 50 has 20 years past service. His salary in 
the year to valuation was $50 000. Calculate the value of his accrued pension 
benefit and the normal contribution due at the start of the year assuming (a) pro
jected unit credit (PUC) funding, and (b) traditional unit credit (TUC) funding, 

assuming valuation uses 'final pensionable earnings' at the valuation date 
You are given the pension plan information and valuation assumptions below. 

• Accrual rate: 1.5% 

• Final salary plan 
• Pension based on earnings in the year before age retirement 

• Normal retirement age 65 
• The pension benefit is a life annuity payable monthly in advance 

• There is no benefit due on death in service. 

Assumptions: 

• No exits other than by death before normal retirement age; 

• Interest rate: 5% per year effective; 
• Salaries increase at 4% per year (projected unit credit); 
• Mortality before and after retirement follows the Standard Ultimate Survival 

Model. 

Solution 10.10 (a) Using the projected unit credit approach, the funding and 

valuation are based on projected final average earnings, so 

SPin= 50000s64/S49 = 50000(1.04) 15 
= 90047. 

The actuarial liability is the value at the start of the year of the accrued 
benefits, which is 

0 V = 0.015 X 20 X SPin X lSPSO X v15 
X a~~2) = 163 161. 

(Note that a~~2) = 13.0870.) 
The value at the start of the following year of the accrued benefits, assum
ing the member is still alive, is 

1 v = 0.015 X 21 X Spin X 14P51 X v14 
X a~~2) 

and we take the value at time 0 of this liability, 

15 .. (12) 21 
v P50 1 V = 0.015 x 21 x SPin x lSPSO x v X a65 = 

20 
o V. 

In this example there are no benefits payable on mid-year exit, so the fund
ing equation is 



which gives 

10. 7 Funding the benefits 

oV c =- = 8158 
20 

or 16.3% of salary in the previous year. 
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This contribution formula can be explained intuitively: the normal con
tribution in the year of age x to x + 1 must be sufficient to fund one extra 
year of accrual, on average. 

(b) Using the traditional unit credit approach, the valuation at timet is based 
on the final average earnings at time t. At the start of the year, the salary 
for valuation is $50 000; at the year end the projected salary is $50 000 x 
1.04 = $52 000. Let Sx denote the salary earned (or projected) in the year 

of age x to x + 1. Then 

and 

So 

0 V = 0.015 X 20 X S49 X 15P50 X v15 
X a~;2) 

1 v = 0.015 X 21 X Sso X 14P51 X v14 
X a~;2). 

1s .. (12) 21 Sso 
v pso 1 V = 0.015 x 21 x Sso x 15Pso x v x a65 = oV--. 

20S49 

Hence 

c = 0 v -- - 1 = 8 335 (
21 Sso ) 
20S49 

or 16.7% of the previous year's salary. 

We can decompose the normal contribution here as 

C=oV --1 +oV--. (
Sso ) Sso 1 
S49 S49 20 

The first term represents the contribution required to adjust the previous 
valuation for the increase in salary over the year, and the second term rep
resents the contribution required for the extra year's accrual. The first term 
is required here because the TUC valuation does not allow for future salary 
increases, so they must be funded year by year, through the contributions, 
as the salaries increase each year. D 

Note that in this example the normal contributions are similar, though the 
valuation liability under the TUC approach is rather less than that under the 
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PUC approach. In fact, under both funding approaches the contribution rate 
tends to increase as the member acquires more service, and gets closer to 
retirement. The TUC contribution starts rather smaller than the PUC contri
bution, and rises more steeply, ending at considerably more than the PUC 
contribution. Ultimately, if all the assumptions in the basis are realized, both 
methods generate exactly the same amount at the normal retirement age for 
surviving members, specifically 0.015 x 35 x SFin x a~;2), which is exactly 
enough to fund the retirement benefit at that time. 

In the example above, we showed how the PUC and TUC funding plans 
allow for the normal contribution to fund the extra year of accrual (and the 
salary increase, in the TUC case). The situation is slightly more complicated 
when there are benefits payable on exit during the year, as discussed in the next 
example. However, if the employee leaves before the year end, then the normal 
contribution only has to fund the additional accrual up to exit. We typically 
assume that mid-year exits occur, on average, half-way through the valuation 
year, in which case the members leaving accrue an extra half-year of benefits. 
We explore this in the following example. 

Example 10.11 A pension plan offers a pension benefit of $1000 for each year 
of service, with fractional years counting pro rata. A member aged 61 has 35 
years past service. Value the accrued age retirement benefit and determine the 
normal contribution rate payable in respect of age retirement benefits using the 
following plan information and valuation assumptions. 

• Age retirements are permitted at any age between 60 and 65. 

• The pension is paid monthly in advance for life. 

• Contributions are paid annually at the start of each year. 

• The unit credit funding method is used. We do not need to specify whether 
we use projected or traditional unit credit as this is not a final salary plan. 

Assumptions: 

• Exits follow the service table given in Table D.4 

• Interest rate: 6% per year effective 

• All lives taking age retirell(ent exit exactly half-way through the year of age 
(except at age 65) 

e Survival after retirement follows the Standard Ultimate Survival Model. 

Solution 10.11 Apart from the pension benefit, this example differs from the 
previous one because we need to allow for mid-year exits. We noted above that 
the contribution under a unit credit approach pays for the extra one year of 
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accrued benefit for the lives who stay, and pays for an extra half-year's accrued 
benefit (on average) for the lives who leave. We have 

V _ 1000 35 (r61 0.5 .. (12) + r62 1.5 ··(12) + r63 2.5 .. (12) 
o - x x /61 v a61.5 /61 v a62.5 /61 v a63.5 

+ r64 3.5 .. (12) + r65- 4 .. (12)) 
-l - v a64.5 -~- v a65 
61 61 

= 345307 

and 

oo V 1000 36 (r62 1.5 ··(12) + r63 2.5 .. (12) v P61 1 = x X - v a62 5 - v a63 5 
/61 . /61 . 

+ r64 3.5 .. (12) + r65- 4 .. (12)) 
- v a64.5 -~- v a65 
/61 61 

= 312 863. 

Note the exact age retirement terms for age 65. 

The EPV of the benefits for lives exiting by age retirement in the middle of 
the valuation year is 

1000 X 35.5 X r
61 v0

·
5 ag2~ = 41 723. 

/61 . 

Hence, the normal contribution required at the start of the year is C where 

o V + C = EPV benefits to mid-year exits + p~~ v 1 V 

giving 

c = 41 723 + 312 863- 345 307 = 9278. 
D 

10.8 Notes and further reading 

In this chapter we have introduced some of the language and concepts of pen
sion plan funding and valuation. The presentation has been relatively simplified 
to bring out some of the major concepts, in particular, accruals funding princi
ples. In North America, what we have called the normal contribution is called 
the normal cost. The difference between the normal contribution and the actual 
contribution paid represents a paying down of surplus or deficit. Such practical 
considerations are beyond the scope of this book- we are considering pensions 
here in the specific context of the application of life contingent mathematics. 
For more information on pension plan design and related issues, texts such as 
McGill et al. (2010) and Blake (2006) are useful. 
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10.9 Exercises 

Where an exercise uses the service table summarized in Table 10.2, the calcu
lations are based on the exact values underlying the table. Using the integer
rounded values presented in the table may result in very slight differences from 
the numerical answers printed at the end of this chapter. 

The service table is reproduced in Appendix D, as Table D.4. The Standard 
Ultimate Survival Model is also described and summarized in Appendix D, 
with annuity values given in Tables D.3. 

Exercise 10.1 In order to value the benefits in a final salary pension scheme as 
at 1 January 2008, a salary scale, sx, has been defined so that sx+tfsx is the 
ratio of a member's total earnings between ages x + t and x + t + 1 to the 
member's total earnings between ages x and x + 1. 

One member, whose date of birth is 1 April 1961, has an annual salary rate 
of $75 000 on the valuation date. Using the salary scale in Table 10.1, estimate 
the member's expected earnings during 2008. 

Exercise 10.2 Assume the salary scale given in Table 10.1 and a valuation date 
of 1 January. 

(a) A plan member aged 35 at valuation received $75 000 in salary in the 
year to the valuation date. Given that final average salary is defined as the 
average salary in the four years before retirement, calculate the member's 
expected final average salary assuming retirement at age 60. 

(b) A plan member aged 55 at valuation was paid salary at a rate of $100 000 
per year at the valuation date. Calculate the expected average salary earned 
in the two years before retirement at age 65. 

Exercise 10.3 A pension plan member is aged 55. One of the plan benefits is 
a death in service benefit payable on death before age 60. 

(a) Calculate the probability that the employee dies in service before age 60. 
(b) Assuming that the death in service benefit is $200000, and assuming that 

the death benefit is paid immediately on death, calculate the EPV at age 55 
of the death in service benefit. 

(c) Now assume that the death in service benefit is twice the annual salary rate 
at death. At age 55 the member's salary rate is $85 000 per year. Assuming 
that deaths occur evenly throughout the year, estimate the EPV of the death 
in service benefit. 
Basis: 

• Service table from Table D.4 
e Interest rate 6% per year effective; 
• Salary scale follows Table 10.1. 
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Exercise 10.4 A new member aged 35 exact, expecting to earn $40 000 in the 
next 12 months, has just joined a pension plan. The plan provides a pension on 
age retirement of 1/60th of final pensionable salary for each year of service, 
with fractions counting proportionately, payable monthly in advance for life. 
There are no spousal benefits. 

Final pensionable salary is defined as the average salary over the three years 
prior to retirement. Members contribute a percentage of salary, the rate depend
ing on age. Those under age 50 contribute 4% and those aged 50 and over 
contribute 5%. 

The employer contributes a constant multiple of members' contributions 
to meet exactly the expected cost of pension benefits. Calculate the multiple 
needed to meet this new member's age retirement benefits. Assume all con
tributions are paid exactly half-way through the year of age in which they 
are paid. 
Basis: 

e Service table: from Table D.4 
• Survival after retirement: Standard Ultimate Survival Model; 
• Interest: 4% per year effective. 

Exercise 10.5 (a) A new employee aged 25 joins a DC pension plan. Her 
starting salary is $40 000 per year. Her salary is assumed to increase con
tinuously at a rate of 7% per year for the first 20 years of her career and 
4% per year for the following 15 years. 

At retirement she is to receive a pension payable monthly in advance, 
guaranteed for 10 years. She plans to retire at age 60, and she wishes to 
achieve a replacement ratio of 70% through the pension plan. Using the 
assumptions below, calculate the level annual contribution rate c (% of 
salary) that would be required to achieve this replacement ratio. 
Assumptions: 

• Interest rate 7% per year effective before retirement, 5% per year effec
tive after retirement. 

• Survival after retirement follows the Standard Ultimate Survival Model. 

(b) Now assume that this contribution rate is paid, but her salary increases at 
a rate of 5% throughout her career, and interest is earned at 6% on her 
contributions, rather than 7%. In addition, at retirement, interest rates have 
fallen to 4.5% per year. Calculate the replacement ratio achieved using the 
same mortality assumptions. 

Exercise 10.6 A pension plan member aged 61 has 35 years of past service 
at the funding valuation date. His salary in the year to the valuation date was 
$50000. 
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The death in service benefit is 10% of salary at death for each year of ser
vice. Calculate the value of the accrued death in service benefit and the normal 
contribution rate for the death in service benefit. 
Basis: 

• Service table from Table D.4 
• Interest rate 6% per year effective; 
e Salary scale follows Table 10.1; all salary increases take place on the valua-

tion date; 
• Projected unit credit funding method. 

Exercise 10.7 A new company employee is 25 years old. Her company offers 
a choice of a defined benefit or a defined contribution pension plan. All contri
butions are paid by the employer, none by the employee. 

Her starting salary is $50 000 per year. Salaries are assumed to increase at a 
rate of 5% per year, increasing at each year end. 

Under the defined benefit plan her final pension is based on the salary 
received in the year to retirement, using an accrual rate of 1.6% for each year 
of service. The normal retirement age is 65. The pension is payable monthly in 
advance for life. 

Under the defined contribution plan, contributions are deposited into the 
member's account at a rate of 12% of salary per year. The total accumulated 
contribution is applied at the normal retirement age to purchase a monthly life 
annuity-due. 

(a) Assuming the employee chooses the defined benefit plan and that she stays 
in employment through to age 65, calculate her projected annual rate of 
pension. 

(b) Calculate the contribution, as a percentage of her starting salary, for the 
retirement pension benefit for this life, for the year of age 25-26, using the 
pr,ojected unit credit method. Assume no exits except mortality, and that 
the survival probability is 40P25 = 0.8. The valuation interest rate is 6% 
per year effective. The annuity factor a~~2) is expected to be 11.0. 

(c) Now assume that the employee joins the defined contribution plan. Con
tributions are expected to earn a rate of return of 8% per year. The annu
ity factor a~~2) is expected to be 11.0. Assuming the employee stays in 
employment through to age 65, calculate (i) the projected fund at retire
ment and (ii) her projected annual rate of pension, payable from age 65. 

(d) Explain briefly why the employee might choose the defined benefit plan 
even though the projected pension is smaller. 

(e) Explain briefly why the employer might prefer the defined contribution 
plan even though the contribution rate is higher. 
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Exercise 10.8 In a pension plan, a member who retires before age 65 has their 
pension reduced by an actuarial reduction factor. The factor is expressed as 
a rate per month, k, say, and is then applied to reduce the member's pension 
to (1 - t x k) B, where B is the accrued)benefit, based on service and final 
average salary at the date of early retirement, and tis the time in months from 
the actual retirement age to age 65. 

The plan sponsor wishes to calculate k such that the EPV at early retire
ment of the reduced pension benefit is the same as the EPV of the accrued 
benefit payable at age 65, assuming no exits from mortality or any other decre
ment before age 65, and ignoring pay increases up to age 65. The pension is 
assumed to be paid monthly in advance for the member's lifetime. 

Calculate k for a person who entered the plan at age 25 and who wishes to 
retire at age (i) 55 and (ii) 60, using the following further assumptions: 

• Survival after retirement: Standard Ultimate Survival Model 
• Interest rate: 6% per year effective 

Exercise 10.9 A pension plan has only one member, who is aged 35 at the 
valuation date, with five years past service. The plan benefit is $350 per year 
pension for each year of service, payable monthly in advance. There is no 
actuarial reduction for early retirement. 

Calculate the actuarial liability and the normal contribution for the age 
retirement benefit for the member. Use the service table from Table D.4. 
Post-retirement mortality follows the Standard Ultimate Survival Model. 
Assume 6% per year interest and use the unit credit funding method. 

Exercise 10.10 An employer offers a career average pension scheme, with 
accrual rate 2.5%. A plan member is aged 35 with five years past service, and 
total past salary $175 000. His salary in the year following valuation is pro
jected to be $40 000. 

Using the service table from Table D.4, calculate the actuarial liability and 
the normal contribution for the age retirement benefit for the member. There 
is no actuarial reduction for early retirement. Post-retirement mortality follows 
the Standard Ultimate Survival Model. Assume6% per year interest and use 
the unit credit funding method. 

Exercise 10.11 Allison is a member of a pension plan. At the valuation date, 
31 December 2008, she is exactly 45, and her salary in the year before valuation 
is $100000. Final average salary is defined as the average salary in the two 
years before exit, and salaries are revised annually on 1 July each year in line 
with the salary scale in Table 10.1. 

The pension plan provides a benefit of 1.5% of final average salary for each 
year of service. The benefits are valued using the Standard Ultimate Survival 
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Model, using an interest rate of 5% per year effective. Allison has 15 years ser
vice at the valuation date. She is contemplating three possible retirement dates. 

e She could retire at 60.5, with an actuarial reduction applied to her pension 
of 0.5% per month up to age 62. That is, if her accrued benefit at retirement, 
based on her salary in the two years prior to retirement is B, her reduced pen
sion would be (1-18 x 0.005) B, where B would be the usual final salary 
benefit, calculated as B = n SFin a, where n is the years of service from 
entry to exit at age 60.5. 

• She could retire at age 62 with no actuarial reduction. 

e She could retire at age 65 with no actuarial reduction. 

(a) Calculate the replacement ratio provided by the pension for each of the 
retirement dates. 

(b) Calculate the EPV of Allison's retirement pension for each of the possi
ble retirement dates, assuming mortality is the only decrement. The basic 
pension benefit is a single life annuity, paid monthly in advance. 

(c) Now assume Allison leaves the company and withdraws from active mem
bership of the pension plan immediately after the valuation. Her total salary 
in the two years before exit is $186 000. She is entitled to a deferred pen
sion of 1.5% of her final average earnings in the two years before with
drawal for each year of service, payable at age 62. There is no COLA for 
the benefit. Calculate the EPV of the withdrawal benefit using the valuation 
assumptions. 

Exercise 10.12 Using the unit credit method, calculate the actuarial liability 
and the normal contribution for the following pension plan. 

• Benefit: $300 per year pension for each year of service 

• Normal retirement age: 60 

• Survival model: Standard Ultimate Survival Model 

• Interest: 6% per year effective 

e Pension: payable weekly, guaranteed for five years 

e Pre-retirement exits: mortality only. 

Active membership data at valuation 

Age 
of employee Service Number of employees 

25 0 3 
35 10 3 
45 15 
55 25 



Age 

35 
75 

10.9 Exercises 

Service 

7 
25 

Number of employees 

1 (deferred pensioner) 
1 (pension in payment) 
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Exercise 10.13 A defined benefit pension plan offers an annual pension of 2% 
of the final year's salary for each year of service payable monthly in advance. 
You are given the following information. 

e Interest rate: 4% per year effective 
• Salary growth rate: salary scale follows Table 10.1; all increas~s occur on 31 

December each year 
e Retirement age: 65 
• Pre-retirement exits: None 
• Retirement survival: Standard Ultimate Survival Model. 

Name 

Giles 
Faith 

Age at entry 

30 
30 

Membership 

Age at 
1 January 2009 

35 
60 

Salary at 
1 January 2008 

38000 
47000 

Salary at 
1 January 2009 

40000 
50000 

(a) (i) Calculate the actuarial liability at 1 January 2009 using the projected 
unit credit method. 

(ii) Calculate the normal contribution rate in 2009 separately for Giles 
and Faith, as a proportion of their 2009 salary, using the projected unit 
credit funding method. 

(b) (i) Calculate the actuarial liability at 1 January 2009 using the traditional 
unit credit method. 

(ii) Calculate the normal contribution rate in 2009 separately for Giles 
and Faith, as a proportion of their 2009 salary, using the traditional 
unit credit funding method. 

(c) Comment on your answers. 

10.1 $76311 
10.2 (a) $185 265 

(b) $114346 
10.3 (a) 0.01171 

(b) $2011.21 
(c) $1776.02 

Answers to selected exercises 
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10.4 2.15 
10.5 (a) 20.3% 

(b) 56.1% 

Pension mathematics 

10.6 Accrued death benefit value: $2351.48 
Normal contribution: $58.31 

10.7; (a) $214 552 
(b) 9.18% 
(c) (i) $3 052123, (ii) $277 466 

10.8 0.43%, 0.53% 
10.9 Actuarial liability: $1842.26 

Normal contribution: $368.45 
10.10 Actuarial liability: $4605.65 

Normal contribution: $1052.72 
10.11 (a) 41.3%, 47.6%, 52.1% 

(b) $383 700, $406 686, $372 321 
(c) $123 143 

10.12 Total actuarial liability: $197 691 
Total normal contribution: $8619 

10.13 (a) (i) $422201 
(ii) Giles: 22.5%, Faith: 25.1% 

(b) (i) $350 945 
(ii) Giles: 11.1 %, Faith: 66.3% 
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Yield curves and non-diversifiable risk 

11.1 Summary 

In this chapter we consider the effect on annuity and insurance valuation of 
interest rates varying with the duration of investment, as summarized by a yield 
curve, and of uncertainty over future interest rates, which we will model using 
stochastic interest rates. We introduce the concepts of diversifiable and non
diversifiable risk and give conditions under which mortality risk can be con
sidered to be diversifiable. In the final section we demonstrate the use of Monte 
Carlo methods to explore distributions of uncertain cash flows and loss random 
variables through simulation of both future lifetimes and future interest rates. 

11.2 The yield curve 

In practice, at any given time interest rates vary with the duration of the invest
ment; that is, a sum invested for a period of, say, five years, would typically 
earn a different rate of interest than a sum invested for a period of 15 years or 
a sum invested for a period of six months. 

Let v(t) denote the current market price of at-year zero-coupon bond; that 
is, the current market price of an investment which pays a unit amount with 
certainty t years from now. Note that, at leas\: in principle, there is no uncer
tainty over the value of v(t) although this value can change at any time as a 
result of trading in the market. The t-year spot rate of interest, denoted Yt> is 
the yield per year on this zero-coupon bond, so that 

v(t)(1 + yt)' = 1 ~ v(t) = (1 + y1)-
1

• (11.1) 

The term structure of interest rates describes the relationship between the 
term of the investment and the interest rate on the investment, and it is 
expressed graphically by the yield curve, which is a plot of {y1 h>o against t. 
Figures 11.1-11.4 show different yield curves, derived using government 
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Figure 11.2 UK government bond yield curve (spot rates), November 2006. 

issued bonds from the UK, the US and Canada, at various dates from relatively 
recent history. The UK issues longer term bonds than most other countries, so 
the UK yield curve is longer. 

These figures illustrate some of the shapes a yield curve can have. 
Figure 11.1 shows a relatively fiat curve, so that interest rates vary little with 
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the term of the investment. Figure 11.2 shows a falling curve. Both of these 
shapes are relatively uncommon; the most common shape is that shown in 
Figures 11.3 and 11.4, a rising yield curve, flattening out after 10-15 years, 
with spot rates increasing at a decreasing rate. 

Previously in this book we have assumed a fiat term structure. This assump
tion has allowed us to use vt or e-8 t as discount functions for any term t, with v 
and 8 as constants. When we relax this assumption, and allow interest rates to 
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vary by term, the v1 discount function is no longer appropriate. Figure 11.3 
shows that the rate of interest on a one-year US government bond in Jan
uary 2002 was 1.6% per year and on a 20-year bond was 5.6%. The differ
ence of 4% may have a significant effect on the valuation of an annuity or 
insurance benefit. The present value of a 20-year annuity-due of $1 per year 
payable in advance, valued at 1.6%, is $17.27; valued at 5.6% it is $12.51. 
The value of the annuity should be the amount required to be invested now 
to produce payments of 1 at the start of each of the next 20 years - this is 
how we have been implicitly valuing annuities when we discount at the rate of 
interest on assets. When we have a term structure this means we should dis
count each future payment using the spot interest rate appropriate to the term 
until that payment is due. This is a replication argument: the present value of 
any cash flow is the cost of purchasing a portfolio which exactly replicates the 
cash flow. 

Since an investment now of amount v(t) in at-year zero-coupon bond will 
accumulate to 1 in t years, v(t) can be interpreted as a discount function which 
generalizes v1

• 

The price of the 20-year annuity -due with this discount function is L:i!o v ( t) 
which means that the price of the annuity-due is the cost of purchasing 20 
zero-coupon bonds, each with $1 face value, with maturity dates correspond
ing to the annuity payment dates. The spot rates underlying the yield curve in 
Figure 11.3 give a value of $13.63 for the 20-year annuity-due, closer to, but 
significantly higher than the cost using the long-term rate of 5.6%. 

At any given time the market will determine the price of zero-coupon bonds 
and this will determine the yield curve. These prices also determine forward 
rates of interest at that time. Let f(t, t + k) denote the forward rate, con
tracted at time zero, effective from time t to t + k, expressed as an effective 
annual rate. This represents the interest rate contracted at time 0 earned on an 
investment made at t, maturing at t + k. To determine forward rates in terms 
of spot rates of interest, consider two different ways of investing 1 for t + k 
years. Investing for the whole period, the t + k-year spot rate, Yt+k, gives the 
accumulation of this investment as (1 + Yt+k)t+k. On the other hand, if the 
unit sum is invested first for t years at the t year spot rate, then reinvested for 
k years at the k year forward rate starting at time t, the accumulation will be 
(1 + yt)' ( 1 + f (t, t + k ))k. Since there is no uncertainty involved in either 
of these schemes- note that Yt+k, y1 and f(t, t + k) are all known now- the 
accumulation at t + k under these two schemes must be the same. That is 

(1 + )t+k 
(1 + f(t t + k))k = Yt+k 

' (1+yt)f 

v(t) 

v(t + k) 
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This is (implicitly) a no-arbitrage argument, which, essentially, says in this 

situation that we should not be able to make money from nothing in risk-free 

bonds by disinvesting and then reinvesting. The no-arbitrage assumption is dis

cussed further in Chapter 15. 

11.3 Valuation of insurances and life annuities 

The present value random variable for a life annuity-due with annual payments, 

issued to a life aged x, given a yield curve {y1}, is 

Kx 

Y = Lv(k) (11.2) 

k=O 

where v(k) = (1 +Yk)-k. The EPV of the annuity, denoted a(x)y, can be found 

using the payment-by-payment (or indicator function) approach, so that 

00 

a(x)y = LkPxV(k). 
k=O 

(11.3) 

Similarly, the present value random variable for a whole life insurance for (x), 

payable immediately on death, is 

Z = v(Tx) (11.4) 

and the EPV is 

A(x)y = 100 

v(t)rPx fhx+t dt. (11.5) 

Note that we have to depart from International Actuarial Notation here as it is 

defined in terms of interest rates that do not vary by term, though we retain the 

spirit of the notation. 

By allowing for a non-flat yield curve we lose many of the relationships 

that we have developed for flat interest rates, such as the equation linking 

Example 11.1 You are given the following spot rates of interest per year. 

Yl Yz Y3 Y4 YS Y6 Y? Ys Y9 YlO 

0.032 0.035 0.038 0.041 0.043 0.045 0.046 0.047 0.048 0.048 

(a) Calculate the discount function v(t) fort = 1, 2, ... , 10. 

(b) A survival model follows Makeham's law with A= 0.0001, B = 0.00035 

and c = 1.075. Calculate the net level annual premium for a 10-year term 
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Table 11.1 Calculations for Example 11.1. 

v(t) P80+t tP80 
0 1.0000 0.88845 1.00000 
1 0.9690 0.88061 0.88845 
2 0.9335 0.87226 0.78237 
3 0.8941 0.86337 0.68243 
4 0.8515 0.85391 0.58919 
5 0.8102 0.84387 0.50312 
6 0.7679 0.83320 0.42456 
7 0.7299 0.82188 0.35374 
8 0.6925 0.80988 0.29073 
9 0.6558 0.79718 0.23546 

10 0.6257 0.78374 0.18770 

insurance policy, with sum insured $100 000 payable at the end of the year 
of death, issued to a life aged 80: 

(i) using the spot rates of interest in the table above, and, 
(ii) using a level interest rate of 4.8% per year effective. 

Solution 11.1 (a) Use equations (11.1) for the discount function values and 
(2.26) for the Makeham survival probabilities. Table 11.1 summarizes 
some of the calculations. 

(b) (i) The expected present value for the 10-year life annuity-due is 

9 

a(80: 101) = L v(k)kP80 = 5.0507. 
k=O 

The EPV of the term insurance benefit is 

9 

100000A(s
1
o: 101) = LkPso(l- PSO+k)v(k + 1) = 66739. 

k=O 

So the annual premium is $13 213.72. 
(ii) Assuming a 4.8% per year flat yield curve gives a premium of 

$13 181.48. D 

In general, life insurance contracts are relatively long term. The influence of the 
yield curve on long-term contracts may not be very great since the yield curve 
tends to flatten out after around 15 years. It is common actuarial practice to use 
the long-term rate in traditional actuarial calculations, and in many cases, as 
in the example above, the answer will be close. However, using the long-term 
rate may overstate the interest income when the yield curve is rising, which is 
the most common shape. Overstating the interest results in a premium that is 
lower than the true premium. An insurer that systematically charges premiums 
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less than the true price, even if each is only a little less, may face solvency 
problems in time. With a rising yield curve, if a level interest rate is assumed, 
it should be a little less than the long-term rate. 

11.3.1 Replicating the cash flows of a traditional 
non-participating product 

In this section we continue Example 11.1. Recall that the forward rate is con
tracted at the inception of the contract. This means that, assuming an equiv
alence principle premium, if we take the premium and any surplus cash flow 
brought forward each year and invest them at the forward rate, then there will 
be exactly enough to fund the sums insured, provided that the mortality and 
survival experience exactly follows the premium assumptions. That is, if the 
premiums and benefit cash flows are completely predictable, and are invested 
in the forward rates each year, the resulting cash flows exactly match the claims 
outgo, without risk. 

This may be illustrated using the policy value recursion from Chapter 7, 
adjusted now to allow for the yield curve. Suppose we have a regular premium 
policy with term n years, issued to (x), with annual premium and benefit cash 
flows. Let P denote the premium and S denote the sum insured. We ignore 
expenses to keep things simple. As usual, the policy value at integer duration 
t 2::. 0 is the EPV of the future loss random variable at time t, for a policy 
in force at that time. The recursive relationship between policy values can be 
written as 

(tV+ P) (1 + f(t, t + 1)) = S qx+t + t+l V Px+t· 

The recursion shows that if we have N identical, independent policies at time 
t, and exactly Px+t N lives survive to timet+ 1, and exactly qx+t N lives do 
not, then the forward tate of interest is exactly enough to balance income and 
outgo, with no residual interest rate risk. 

What this means is that if the cash flows are certain, and if the policy term is 
not so long that it extends beyond the scope of risk-free investments, then there 
is no need for the policy to involve interest rate uncertainty. At the inception 
of the contract, we can lock in forward rates that will exactly replicate the 
required cash flows. 

This raises two interesting questions. 
First, we know that mortality is uncertain, so that the mortality related cash 

flows are not certain. To what extent does this invalidate the replication argu
ment? The answer is that, if the portfolio of life insurance policies is suffi
ciently large, and, crucially, if mortality can be treated as diversifiable, then 
it is reasonable to treat the life contingent cash flows as if they were certain. 
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In Section 11.4.1 we discuss in detail what we mean by diversifiability, and 
under what conditions it might be a reasonable assumption for mortality. 

The second question is, what risks are incurred by an insurer if it chooses 
not to replicate, or is unable to replicate for lack of appropriate risk-free invest
ments? If the insurer does not replicate the cash flows, then interest rate risk is 
introduced, and must be modelled and managed. Interest rate risk is inherently 
non-diversifiable, as we shall discuss in Section 11.4.2. 

11.4 Diversifiable and non-diversifiable risk 

Consider a portfolio consisting of N life insurance policies. We can model as a 
random variable, Xi, i = 1, ... , N, many quantities of interest for the ith pol
icy in this portfolio. For example, Xi could take the value 1 if the policyholder 
is still alive, say, 10 years after the policy was issued and the value zero other
wise. In this case, L;~1 Xi represents the number of survivors after 10 years. 
Alternatively, Xi could represent the present value of the loss on the ith policy 
so that L;~1 Xi represents the present value of the loss on the whole portfolio. 
Suppose for convenience that the Xis are identically distributed with common 
mean ft and standard deviation cr. Let p denote the correlation coefficient for 
any pair Xi and X j (i =I= j). Then 

and 

Suppose now that the Xis are independent, so that pis zero. Then 

and the central limit theorem (which is described in Appendix A) tells us that, 
provided N is reasonably large, 

N (L~l Xi)- N~t 
{;Xi ~ N(N ft, Ncr 2

) =* - ,Jiicr ~ N(O, 1). 

In this case, the probability that L;~1 Xi/ N deviates from its expected value 
decreases to zero as N increases. More precisely, for any k > 0 
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If we now let N --+ oo, so that we can assume from the central limit theorem 
that (L~l Xi - N JJ.,)j(,.fNa) is normally distributed, then the probability can 
be written as 

lim Pr IZI 2: -- = lim 2<1> - -- = 0, [ k,.JN] ( k,.JN) 
N--+oo a N--+oo a 

where Z ~ N(O, 1). 
So, as N increases, the variation of the mean of the Xi from their expected 

value will tend to zero, if V[L~l Xi] is linear inN. In this case we can reduce 
the risk measured by Xi relative to its mean value, by increasing the size of 
the portfolio. This result relies on the fact that we have assumed that the Xis 
are independent; it is not generally true if p is not equal to zero, as in that 
case V[L~l Xi] is of order N 2 , which means that increasing the number of 
policies increases the risk relative to the mean value. 

So, we say that the risk within our portfolio, as measured by the random 
variable Xi, is said to be diversifiable if the following condition holds 

. Jv[L~1 xi] 
)~moo N = 0. 

A risk is non-diversifiable if this condition does not hold. In simple terms, a 
risk is diversifiable if we can eliminate it (relative to its expectation) by increas
ing the number of policies in the portfolio. An important aspect of financial 
risk management is to identify those risks which can be regarded as diversi
fiable and those which cannot. Diversifiable risks are generally easier to deal 
with than those which are not. 

11.4.1 Diversifiable mortality risk 

In Section 11.2 we employed the no-arbitrage principle to argue that the value 
of a deterministic payment stream should be the same as the price of the zero
coupon bonds that replicate that payment stream. In Section 11.3 .1 we explored 
the replication idea further. To do this we need to assume that the mortality risk 
associated with a portfolio is diversifiable and we discuss conditions for this to 
be a reasonable assumption. 

Consider a group of N lives all now aged x who have just purchased identical 
insurance or annuity policies. We will make the following two assumptions 
throughout the remainder of this chapter, except where otherwise stated. 

(i) The N lives are independent with respect to their future mortality. 

(ii) The survival model for each of the N lives is known. 
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We also assume, for convenience, that each of the N lives has the same survival 
model. 

The cash flow at any future time t for this group of policyholders will depend 
on how many are still alive at time t and on the times of death for those not still 
alive. These quantities are uncertain. However, with the two assumptions above 
the mortality risk is diversifiable. This means that, provided N is large, the 
variability of, say, the number of survivors at any time relative to the expected 
number is small so that we can regard mortality, and hence the cash flows for 
the portfolio, as deterministic. This is demonstrated in the following example. 

Example 11.2 For 0 ::=: t ::=: t + s, let Nt ,s denote the number of deaths between 
ages x + t and x + t + s from N lives aged x. Show that 

lim JV[Nr,sJ = 0. 
N-HXJ N 

Solution 11.2 The random variable Nt ,s has a binomial distribution with param

eters Nand tPx (I- sPx+t). Hence 

V[Nr,sJ = NtPx (1- sPx+t) (1- tPx (1- sPx+t)) 

=} JV[Nr,sJ = tPxO- sPx+t)(l- tPxO- sPx+t)) 

N N 

=} lim JV[Nt,s] = O. 
N--+oo N 

D 

In practice most insurers sell so many contracts over all their life insurance or 
annuity portfolios that mortality risk can be treated in many situations as fully 
diversified away. There are exceptions; for example, for very old age mortality, 
where the number of policyholders tends to be small, or where an insurance has 
a very high sum at risk, in which case the outcome of that particular contract 
may have a significant effect on the portfolio as a whole, or where the survival 
model for the policyholders cannot be predicted with confidence. 

If mortality risk can be treated as fully diversified then we can assume that 
the mortality experience is deterministic - that is, we may assume that the 
number of claims each year is equal to the expected number. In the follow
ing section we use this deterministic assumption for mortality to look at the 
replication of the term insurance cash flows in Example 11.1 above. 

11.4.2 Non-diversifiable risk 

In practice, many insurers do not replicate with forward rates or zero-coupon 
bonds either because they choose not to or because there are practical difficulties 
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in trying to do so. By locking into forward rates at the start of a contract, the 
insurer can remove (much of) the investment risk, as noted in Section 11.3.1. 
However, while this removes the risk of losses, it also removes the possibility of 
profits. Also there may be practical constraints. For example, in some countries 
it may not be possible to find risk -free investments for terms longer than around 
20 years, which is often not long enough. A whole life insurance contract issued 
to a life aged 40 may not expire for 50 years. The rate of interest that would 
be appropriate for an investment to be made over 20 years ahead could be very 
difficult to predict. 

If an insurer does not lock into the forward rates at inception, there is a 
risk that interest rates will move, resulting in premiums that are either too 
low or too high. The risk that interest rates are lower than those expected in 
the premium calculation is an example of non-diversifiable risk. Suppo~e an 
insurer has a large portfolio of whole life insurance policies issued to lives 
aged 40, with level premiums payable throughout the term of the contract, 
and that mortality risk can be considered diversified away. The insurer decides 
to invest all premiums in 10-year bonds, reinvesting when the bonds mature. 
The price of 10-year bonds at each of the future premium dates is unknown 
now. If the insurer determines the premium assuming a fixed interest rate 
of 6% per year, and the actual interest rate earned is 5% per year, then the 
portfolio will make a substantial loss, and in fact each individual contract is 
expected to make a loss. Writing more contracts will only increase the loss, 
because each policy experiences the same interest rates. The key point here is 
that the policies are not independent of each other with respect to the interest 
rate risk. 

Previous chapters in this book have focused on the mortality risk in insur
ance, which, under the conditions discussed in Section 11.4.1 can be consid
ered to be diversifiable. However, non-diversifiable risk is, arguably, even more 
important. Most life insurance company failures occur because of problems 
with non-diversifiable risk related to assets. Note also that not all mortality 
risk is diversifiable. In Example 11.4 below, we look at a situation where the 
mortality risk is not fully diversifiable. First, in Example 11.3 we look at an 
example of non-diversifiable interest rate risk. 

Example 11.3 An insurer issues a whole life insurance policy to ( 40), with 
level premiums payable continuously throughout the term of the policy, and 
with sum insured $50 000 payable immediately on death. The insurer assumes 
that an appropriate survival model is given by Makehain's law with parameters 
A = 0.0001, B = 0.00035 and c = 1.075. 

(a) Suppose the insurer prices the policy assuming an interest rate of 5% per 
year effective. Show that the annual premium rate is P = $1010.36. 
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(b) Now suppose that the effective annual interest rate is modelled stochasti
cally, denoted i, with the following distribution. 

1
4% with probability 0.25, 

i = 5% with probability 0.5, 

6% with probability 0.25. 

Calculate the expected value and the standard deviation of the present 
value of the future loss on the contract. Assume that the future lifetime 
is independent of the interest rate. 

Solution 11.3 (a) At 5% we have 

a4o = 14.49329 and fl4o = 0.29287 

giving a premium of 

A4o 
p = 50000-_- = $1010.36. 

G40 

(b) Let S = 50 000, P = 1 010.36 and T = T4o. The present value of the future 
loss on the policy, Lo, is given by 

Lo = S vf - PaTli" 

To calculate the moments of Lo we condition on the value of i and then use 
iterated expectation (see Appendix A for a review of conditional expecta
tion). As 

so 

Loli = s vf - PaTli' 

E[Loli] = (Sfl4o- Pa4o)li 

= { 1 587.43
0 

with probability 0.25 (i = 4%), 
with probability 0.50 (i = 5%), 

-1 071.49 with probability 0.25 (i = 6% ), 

(11.6) 

(11.7) 

E[Lo] = E [E[Loli]] = 0.25 (1587.43) + 0.5 (0) + 0.25 (-1 071.49) 

= $128.99. (11.8) 

For the standard deviation, we use 

V[Lo] = E[V[Loli]] + V[E[Loli]]. (11.9) 

We can interpret the first term as the risk due to uncertainty over the future 
lifetime and the second term as the risk due to the uncertain interest rate. 



Now 

so 

Hence 
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v[LoliJ= (s+ ~r (2A4o-A~o)i 

1
14 6752 with probability 0.25 

= 140142 withprobability0.5 
13 3162 with probability 0.25 

E[V[Loli]] = $196 364 762. 

(i = 4%) 
(i = 5%) 
(i = 6%). 

Also, from equation (11.7), 

So 

V[E[Loli]] = ((1587.432
) 0.25 + (02

) 0.5 

+ ( -1 071.492) 0.25) - 128.992 

= 900 371 

= $948.882
• 

383 

V[Lo] = 196364762 + 900371 = 197265133 = $140452 . (11.10) 

0 

Comments 
This example illustrates some important points. 

(1) The fixed interest assumption, 5% in this example, is what is often called 
the 'best estimate' assumption - it is the expected value, as well as the 
most likely value, of the future interest rate. It is tempting to calculate the 
premium using the best estimate assumption, but this example illustrates 
that doing so may lead to systematic losses. In this example, using a 5% 
per year interest assumption to price the policy leads to an expected loss 
of $128.99 on every policy issued. 

(2) Breaking the variance down into two terms separates the diversifiable risk 
from the non-diversifiable risk. Consider a portfolio of, say, N contracts. 
Let Lo,} denote the present value of the loss at inception on the jth policy 
and let 

N 

L = _LLo,J 
}=1 

so that L denotes the total future loss random variable. 
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Following formula (11.9), and noting that, given our assumptions at the 
start of this section, the random variables {Lo,j idJ=l are independent and 
identically distributed, we can write 

V[L] = E[V[L[i]] + V[E[L[i]] 

= E[NV[Lo[i]] + V[NE[Lo[i]] 

= 196 364 762 N + 900 371 N 2
. 

Now consider separately each component of the variance of L. The first 
term represents diversifiable risk since it is a multiple of N and the second 
term represents non-diversifiable risk since it is a multiple of N 2 . We can 
see that, for an individual policy (N = 1), the future lifetime uncertainty 
is very much more influential than the interest rate uncertainty, as the first 
term is much greater than the second term. But, for a large portfolio, the 
contribution of the interest uncertainty to the total standard deviation is far 
more important than the future lifetime uncertainty. 

The conclusion above, that for large portfolios, interest rate uncertainty is 
more important than mortality uncertainty, relies on the assumption that the 
future survival model is known and that the separate lives are independent with 
respect to mortality. The following example shows that if these conditions do 
not hold, mortality risk can be non-diversifiable. 

Example 11.4 A portfolio consists of N identical one-year term insurance 
policies issued simultaneously. Each policy was issued to a life aged 70, has a 
sum insured of $50 000 payable at the end of the year of death and was pur
chased with a single premium of $1300. The insurer uses an effective interest 
rate of 5% for all calculations but is unsure about the mortality of this group 
of policyholders over the term of the policies. The probability of dying within 
the year, regarded as a random variable q7o, is assumed to have the following 
distribution 

{

0.022 with probability 0.25, 

q7o = 0.025 with probability 0.5, 

0.028 with probability 0.25. 

The value of q7o is the same for all policies in the portfolio and, given this 
value, the policies are independent with respect to mortality. 
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(a) Let D(N) denote the number of deaths during the one-year term. Show 

that 

lim ,JV[D(N)] :j= 0. 
N-+oo N 

(b) Let L(N) denote the present value of the loss from the whole portfolio. 

Show that 

lim ,JV[L(N)] :j= 0. 
N-+oo N 

Solution 11.4 (a) We have 

Now 

and 

Hence 

and so 

V[D(N)] = V[E[D(N)jq7o]] + E[V[D(N)Iq7oll 

V[E[D(N)Iq7o]] = 0.25((0.022- 0.025)N)2 + 0 

+ 0.25((0.028- 0.025)N)2 

= 4.5 x w-6 N 2 

E[V[D(N)Iq7o]] = 0.25 x 0.022(1- 0.022)N 

+ 0.5 x 0.025(1 - 0.025)N 

+ 0.25 x 0.028(1 - 0.028)N 

= 0.0243705N. 

V[D(N)J = 4.5 x w-6 N 2 + o.0243705N 

lim ,JV[D(N)] = 0.002121. 
N-+oo N 

(b) The arguments are as in part (a). We have 

As 

we have 

V[L(N)] = E[V[L(N)Iq7o]] + V[E[L(N)Iq7o]]. 

L(N) = 50000vD(N)- 1300N, 

V[L(N)Iq7ol = (50000v)2V[D(N)Iq7ol 

= (50000v)2Nq7o(1- q7o) 
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and 

E[L(N)IQ7o] = 50000vNq7o- 1300N. 

Thus 

E[V[L(N)Iq7o11 = (50000v) 2N(E[q7o] -E[q7o2D 
= (50 OOOv )2 N (0.025 - 0.0006295) 

and 

V[E[L(N)Iq7o11 = (50000v)2N 2V[q7o] 

= (50 OOOv )2 N 2 X 4.5 X 10-6 . 

Hence 

lim 
.)V[L(N)] = 50000v.jV[q7o] = 101.02. 

N--+oo N 
0 

11.5 Monte Carlo simulation 

Suppose we wish to explore a more complex example of interest rate varia
tion than in Example 11.3. If the problem is too complicated, for example if 
we want to consider both lifetime variation and the interest rate uncertainty, 
then the numerical methods used in previous chapters may be too unwieldy. 
An alternative is Monte Carlo, or stochastic, simulation. Using Monte Carlo 
techniques allows us to explore the distributions of present values for highly 
complicated problems, by generating a random sample from the distribution. 
If the sample is large enough, we can get good estimates of the moments of the 
distribution, and, even more interesting, the full picture of a loss distribution. 
Appendix C gives a brief review of Monte Carlo simulation. 

In this section we demonstrate the use of Monte Carlo methods to simulate 
future lifetimes and future rates of interest, using a series of examples based 
on the following deferred annuity policy issued to a life aged 50. 

• Policy terms: 
- An annuity of $10 000 per year is payable continuously from age 65 con

tingent on the survival of the policyholder. 

- Level premiums of amount P = $4447 per year are payable continuously 
throughout the period of deferment. 

- If the policyholder dies during the deferred period, a death benefit equal 
to the total premiums paid (without interest) is due immediately on death. 
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e Basis for all calculations: 

- The survival model follows Gompertz' law with parameters B = 0.0004 
and c = 1.07. 

- The force of interest during deferment is 8 = 5% per year. 

- The force of interest applying at age 65 is denoted r. 

In the next three examples we will assume that r is fixed and known. In the 
final example we will assume that r has a fixed but unknown value. 

Example 11.5 Assume the force of interest from age 65 is 6% per year, so that 
r = 0.06. 

(a) Calculate the EPV of the loss on the contract. 

(b) Calculate the probability that the present value of the loss on the policy 
will be positive. 

Solution 11.5 (a) The expected present value of the loss on this contract is 

where * denotes calculation using a force of interest 6% per year and all 
other functions are calculated using a force of interest 5% per year. This 
gives the expected present value of the loss as 

10000 X 0.34773 X 8.51058 + 4447 X 1.32405-4447 X 9.49338 

= -$6735.38. 

(b) The present value of the loss, L, can be written in terms of the expected 
future lifetime, Tso, as follows 

{ 

p Tso vTso - p aT:":l 
Tso1 

L = 10000~v15 - Pa 
Tso-151 El 

if Tso ::::; 15, 

if Tso > 15. 

By looking at the relationship between L and Tso we can see that the policy 
generates a profit if the life dies in the deferred period, or in the early years 
of the annuity payment period, and that 

Pr[L > 0] =Pr[10000e-158ar
50

_ 15 16%- Pa151 5% > o] 
= Pr [ Tso > 15 - 0.~6 log ( 1 - 1~4 e15

(0.0S) a151 5% (0.06))] 

= Pr[Tso > 30.109] = 30.109P5o = 0.3131. 
D 
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Example 11.6 Use the three U(O, 1) random variates below to simulate values 
for Tso and hence values for the present value of future loss, Lo, for the deferred 
annuity contract. Assume that the force of interest from age 65 is 6% per year: 

Ul = 0.16025, U2 = 0.51720, U3 = 0.99855. 

Solution 11.6 Let Fr be the distribution function of Tso. Each simulated u j 
generates a simulated future lifetime t j through the inverse transform method, 

where 

Uj = Fr(tj). 

See Appendix C. Hence 

So 

u = Fr(t) 

= 1 _ e-(Bjlog(c))c50 (c1-l) 

=} t = Fy:\u) 
= _1_ (log (l _ log(c)(log(l- u)))). 

log(c) B c50 

t1 = Fi1(0.16025) = 10.266, 

t2 = Fi\0.5172) = 24.314, 

t3 = Fi1 (0.9985) = 53.969. 

(11.11) 

These simulated lifetimes can be checked by noting m each case that 

tjqso = Uj. 
We can convert the sample lifetimes to the corresponding sample of the 

present value of future loss random variable, Lo, as follows. If (50) dies after 
exactly 10.266 years, then death occurs during the deferred period, the death 

benefit is 10.266P, the present value of the premiums paid is Pa10.266 1, and so 
the present value of the future loss is 

Lo = 10.266 P e-10
·
2668

- Pa10.266 ~ = -$8383.80. 

Similarly, the other two simulated future lifetimes give the following losses 

Lo = 10000e-158a93141r=
6
%- Pa15h = -$13 223.09, 

Lo = 10000e-158a38.9691r=
6
%- Pai51

8 
= $24202.36. 

The first two simulations generate a profit, and the third generates a loss. 0 
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Example 11.7 Repeat Example 11.6, generating 5000 values of the present 
value of future loss random variable. Use the simulation output to: 

(a) Estimate the expected value and the standard deviation of the present value 

of the future loss from a single policy. 
(b) Calculate a 95% confidence interval for the expected value of the present 

value of the loss. 
(c) Estimate the probability that the contract generates a loss. 
(d) Calculate a 95% confidence interval for the probability that the contract 

generates a loss. 

Solution 11.7 Use an appropriate random number generator to produce a 
sequence of 5000 U(O, 1) random numbers, {u J }. Use equation (11.11) to gen
erate corresponding values of the future lifetime, { t J}, and the present value of 

the future loss for a life with future lifetime t1, say {Lo,}}, as in Example 11.6. 
The result is a sample of 5000 independent values of the future loss random 

variable. Let [and sz represent the mean and standard deviation of the sample. 

(a) The precise answers will depend on the random number generator (and 

seed value) used. Our calculations gave 

[ = -$6592.74; sz = $15 733.98. 

(b) Let p., and a denote the (true) mean and standard deviation of the present 

value of the future loss on a single policy. Using the central limit theorem, 

we can write 

Hence 

1 5000 

5000 
L Lo,J ~ N(p.,, a 2 /5000). 
}=1 

[ 

1 5000 ] 
Pr p., - 1.96 ~ ::::: -- "Lo J ::::: p., + 1.96 ~ = 0.95. 

v 5000 5000 L.. , v 5000 
j=l 

Since [ and sz are estimates of p., and a, respectively, a 95% confidence 

interval for the mean loss is 

( l-1.96 ~. l+l.96 ~)· 
v5000 v5000 

Using the values of [and sz from part (a) gives ( -7028.86, -6156.61) as 
a 95% confidence interval for p.,. 
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(c) Let L- denote the number of simulations which produce a loss, that is, the 
number for which Lo,i is positive. Let p denote the (true) probability that 
the present value of the loss on a single policy is positive. Then 

L- ~ B(5000, p) 

and our estimate of p, denoted p, is given by 

z
P = 5ooo 

where z- is the simulated realization of L-, that is, the number of losses 
which are positive out of the full set of 5000 simulated losses. Using a 
normal approximation, we have 

L- ~N( p(1-p)) 
5000 p, 5000 

and so an approximate 95% confidence interval for p is 

(
A- 1.96) p(1- p) A+ 1.96J p(1- p)) 
p 5000 ' p . 5000 

where we have replaced p by its estimate p. Our calculations gave a total 
of 1563 simulations with a positive value for the expected present value of 
the future loss. Hence 

p = 0.3126 

and an approximate 95% confidence interval for this probability is 

(0.2998, 0.3254). 

Different sets of random numbers would result in different values for each 
of these quantities. 0 

In fact it was not necessary to use simulation to calculate p, or p in this exam
ple. As we have seen in Example 11.5, the values of fL and p can be calculated 
as -$6735.38 and 0.3131, respectively. The 95% confidence intervals calcu
lated in Example 11.7 parts (b) and (d) comfortably span these true values. 
We used simulation in this example to illustrate the method and to show how 
accurate we can be with 5000 simulations. 

An advantage of Monte Carlo simulation is that we can easily adapt 
simulation to model the effect of a random force of interest from age 65, 
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would be less tractable analytically. The next example demonstrates this in the 
case where the force of interest from age 65 is fixed but unknown. 

Example 11.8 Repeat Example 11.7, but now assuming that r is a random 
variable with a N(0.06, 0.0152) distribution. Assume the random variables T5o 
and r are independent. 

Solution 11.8 For each of the 5000 simulations generate both a value for T5o, 
as in the previous example, and also, independently, a value of r from the 
N(0.06, 0.0152) distribution. Let fj and Tj denoted the simulated values of T5o 
and r, respectively, for the jth simulation. The simulated value of the present 
value of the loss for this simulation, Lo,j, is 

I P ti v1
j - P afJl if tj ::; 15, 

Lo,j = 10000~v
1 

15 - Pa- 'ft 15 
lj-151 151 1 

j > ' 

where * now denotes calculation at the simulated force of interest r j. The 
remaining steps in the solution are as in Example 11.7. 

Our simulation gave the following results. 

T = ~$6220.5; S[ = $16903.1; L- = 1502. 

Hence, an approximate 95% confidence interval for the mean loss is 

( -6689, -5752). 

An estimated probability that a policy generates a loss is 

p = 0.3004, 

with an approximate 95% confidence interval for this probability of 

(0.2877, 0.3131). 

Note that allowing for the future interest variability has reduced the expected 
profit and increased the standard deviation. The probability of loss is not sig
nificantly different from the fixed interest case. D 

11.6 Notes and further reading 

The simple interest rate models we have used in this chapter are useful for 
illustrating the possible impact of interest rate uncertainty, but developing more 
realistic interest rate models is a major topic in its own right, beyond the scope 
of this text. Some models are presented in McDonald (2009) and a comprehen
sive presentation of the topic is available in Cairns (2004). 
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We have shown in this chapter that uncertainty in the mortality experience is 
a source of non-diversifiable risk. This is important because improving mortal
ity has been a feature in many countries and the rate of improvement has been 
difficult to predict. See, for example, Willets et a!. (2004). In these circum
stances, the assumptions about the survival model in Section 11.4.1 may not 

be reasonable and so a significant aspect of mortality risk is non-diversifiable. 
Note that in Examples 11.6-11.8 we simulated the future lifetime random 
variable Tso assuming the survival model and its parameters were known. 
Monte Carlo methods could be used to model uncertainty about the survival 
model; for example, by assuming that the two parameters in the Gompertz for

mula were unknown but could be modelled as random variables with specified 
distributions. 

Monte Carlo simulation is a key tool in modern risk management. A general 
introduction is presented in, e.g. Ross (2006), and Glasserman (2004) offers 
a text more focused on financial modelling. Algorithms for writing your own 

generators are given in the Numerical Recipes reference texts, such as Press 
eta!. (2007). 

11.7 Exercises 

Exercise 11.1 You are given the following zero-coupon bond prices: 

Term, t(years) 

1 
2 
3 
4 

5 

P (t) as % of face value 

94.35 

89.20 
84.45 

79.95 
75.79 

(a) Calculate the annual effective spot rates fort = 1, 2, 3, 4, 5. 
(b) Calculate the one-year forward rates, at t = 0, 1, 2, 3, 4. 
(c) Calculate the EPV of a five-year term life annuity-due of $1000 per year, 

assuming that the probability of survival each year is 0.99. 

Exercise 11.2 Consider an endowment insurance with sum insured $100000 
issued to a life aged 45 with tenn 15 years under which the death benefit is 
payable at the end of the year of death. Premiums, which are payable annu

ally in advance, are calculated using the Standard Ultimate Survival Model, 
assuming a yield curve of effective annual spot rates given by 

0 
Yt = 0.035 + 

200
. 
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(a) Show that the net premium for the contract is $4207.77. 
(b) Calculate the net premium determined using a flat yield curve with effec

tive rate of interest i = Yl5 and comment on the result. 
(c) Calculate the net policy value for a policy still in force three years after 

issue, using the rates implied by the original yield curve, using the pre
mium basis. 

Exercise 11.3 An insurer issues a portfolio of identical five-year term insur
ance policies to independent lives aged 75. One-half of all the policies have 
a sum insured of $10 000, and the other half have a sum insured of $100 000. 
The sum insured is payable immediately on death. 

The insurer wishes to measure the uncertainty in the total present value of 
claims in the portfolio. The insurer uses the Standard Ultimate Survival Model, 
and assumes an interest rate of 6% per year effective. 

(a) Calculate the standard deviation of the present value of the benefit for an 
individual policy, chosen at random. 

(b) Calculate the standard deviation of the total present value of claims for the 
portfolio assuming that 100 contracts are issued. 

(c) By comparing the portfolio of 100 policies with a portfolio of 100000 
policies, demonstrate that the mortality risk is diversifiable. 

Exercise 11.4 (a) The coefficient of variation for a random variable X is defined 
as the ratio of the standard deviation of X to the mean of X. Let X denote 
the aggregate loss on a portfolio, so that X = L,J=l X j. Assume that, for 
each j, X j > 0 and X j has finite mean and variance. 

Show that, if the portfolio risk is diversifiable, then the limiting value of 
the coefficient of variation of aggregate loss X, as N -c>- oo, is zero. 

(b) An insurer issues a portfolio of identical 15-year term insurance policies 
to independent lives aged 65. The sum insured for each policy is $100 000, 
payable at the end of the year of death. 

The mortality for the portfolio is assumed to follow Makeham's law 
with A= 0.00022 and B = 2.7 x 10-6 . The insurer is uncertain whether 
the parameter c for Makeham's mortality law is 1.124, as in the Stan
dard Ultimate Survival Model, or 1.114. The insurer models this uncer
tainty assuming that there is a 75% probability that c = 1.124 and a 
25% probability that c = 1.114. Assume the same mortality applies to 
each life in the portfolio. The effective rate of interest is assumed to be 
6% per year. 

(i) Calculate the coefficient of variation of the present value of the benefit 
for an individual policy. 
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(ii) Calculate the coefficient of variation of the total present value of ben
efits for the portfolio assuming that 10 000 policies are issued. 

(iii) Demonstrate that the mortality risk is not fully diversifiable, and find 
the limiting value of the coefficient of variation. 

Exercise 11.5 An insurer issues a 25-year endowment insurance policy to ( 40), 
with level premiums payable continuously throughout the term of the policy, 
and with sum insured $100000 payable immediately on death or at the end of 
the term. The insurer calculates the premium assuming an interest rate of 7% 

per year effective, and using the Standard Ultimate Survival Model. 

(a) Calculate the annual net premium payable. 

(b) Suppose that the effective annual interest rate is a random variable, i, with 
the following distribution: 

{ 

5% with probability 0.5, 

i = 7% with probability 0.25, 

11% with probability 0.25. 

Write down the EPV of the net future loss on the policy using the mean 
interest rate, and the premium calculated in part (a). 

(c) Calculate the EPV of the net future loss on the policy using the modal 

interest rate, and the premium calculated in part (a). 

(d) Calculate the EPV and the standard deviation of the present value of the 
net future loss on the policy. Use the premium from (a) and assume that 
the future lifetime is independent of the interest rate. 

(e) Comment on the results. 

Exercise 11.6 An insurer issues 15-year term insurance policies to lives aged 
50. The sum insured of $200 000 is payable immediately on death. Level pre
miums of $550 per year are payable continuously throughout the term of the 

policy. The insurer assumes the lives are subject to Gompertz' law of mor
tality with B = 3 x w-6 and c = 1.125, and that interest rates are constant at 
5% per year. 

(a) Generate 1000 simulations of the future loss. 

(b) Using your simulations from (a), estimate the mean and variance of the 

future loss random variable. 

(c) Calculate a 90% confidence interval for the mean future loss. 
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(d) Calculate the true value of the mean future loss. Does it lie in your confi
dence interval in (c)? 

(e) Repeat the 1000 simulations 20 times. How often does the confidence 
interval calculated from your simulations not contain the true mean future 

loss? 

(f) If you calculated a 90% confidence interval for the mean future loss a large 
number of times from 1000 simulations, how often (as a percentage) would 
you expect the confidence interval not to contain the true mean? 

(g) Now assume interest rates are unknown. The insurer models the interest 
rate on all policies, I, as a lognormal random variable, such that 

1 +I~ LN(0.0485, 0.02412). 

Re-estimate the 90% confidence interval for the mean of the future loss 
random variable, using Monte Carlo simulation. Comment on the effect of 

interest rate uncertainty. 

Exercise 11.7 An actuary is concerned about the possible effect of pandemic 
risk on the term insurance portfolio of her insurer. She assesses that in any year 
there is a 1% probability that mortality rates at all ages will increase by 25%, 

for that year only. 

(a) State, with explanation, whether pandemic risk is diversifiable or non

diversifiable. 

(b) Describe how the actuary might quantify the possible impact of pandemic 

risk on her portfolio. 

Answers to selected exercises 

11.1 (a) (0.05988, 0.05881, 0.05795, 0.05754, 0.05701) 

(b) (0.05988, 0.05774, 0.05625, 0.05629, 0.05489) 

(c) $4395.73 

11.2 (b) $4319.50 

(c) $13 548 

11.3 (a) $19 784 

(b) $193 054 

11.4 (b) (i) 2.2337 
(ii) 0.2204 

(iii) 0.2192 

11.5 (a) $1608.13 

(b) $0 
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(c) $7325.40 
(d) $2129.80,$8489.16 

11.6 (d) -$184.07 
(f) 10% of sets of simulated values should generate a 90% confidence 

interval that does not contain the true mean. 
(g) Term insurance is not very sensitive to interest rate uncertainty, as the 

standard deviation of outcomes with interest rate uncertainty is very 
similar to that without interest rate uncertainty. 



12 
Emerging costs for traditional life insurance 

12.1 Summary 

In this chapter we introduce emerging costs, or cash flow analysis for tradi
tional life insurance contracts. This is often called profit testing when applied 
to life insurance. 

We introduce profit testing in two stages. First we consider only those cash 
flows generated by the policy, then we introduce reserves to complete the cash 
flow analysis. 

We define several measures of the profitability of a contract: internal rate of 
return, expected present value of future profit (net present value), profit margin 
and discounted payback period. We show how cash flow analysis can be used 
to set premiums to meet a given measure of profit. 

We restrict our attention in this chapter to deterministic profit tests, ignoring 
uncertainty. We introduce stochastic profit tests in Chapter 14. 

12.2 Introduction 

Traditionally, actuarial analysis has focused on determining the EPV of a cash 
flow series, usually under a constant interest rate assumption. This emphasis 
on the EPV was important in an era of manual computation, but with powerful 
computers available we can do better. In this chapter, we look at techniques for 
projecting the cash flows emerging from an individual contract in each time 
period, using some specified assumptions about the interest and demographic 
experience. The use of cash flow projections offers much more flexibility in 
the input assumptions than the EPV approach- for example, it is easy to inco~
porate yield curves, or more sophisticated models of policyholder behaviour
and provides actuaries with a better understanding of the liabilities under their 
management and the relationship between the liabilities and the corresponding 
assets. For modern contracts, with variable premiums and complex financial 

397 
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guarantees, traditional valuation techniques are not very useful. Profit testing 
techniques offer the flexibility to explore risk and return for a wide range of 
modern and traditional contracts. 

The purpose of a profit test is to identify the profit which the insurer can 
expect from a contract at the end of each time period. There are many reasons 
why this might be valuable. Some of the ways in which profit tests are applied 
in practice are described here. 

1. To set premiums 
The traditional approach to premium calculation in Chapter 6 does not 
explicitly allow for profit, nor for yield curves. Even when a profit load
ing is explicitly introduced, the methods of Chapter 6 do not give a picture 
of how the profit might emerge over time, and do not allow the insurer to 
determine return on capital from the contract. Profit testing allows premi
ums to be set to meet specified profit measures, and allows the insurer to 
stress test the assumptions to consider how sensitive the emerging profit 
would be to different assumptions. 

2. To set reserves 
We use the term 'reserve' to indicate the capital that the insurer holds (or 
is projected to hold in the future), to meet the future net liabilities of a 
contract. As we discussed in Chapter 7, the term 'reserve' has often been 
used interchangeably with 'policy value', which was defined, for a policy 
in force at time t, say, as the expected value at t of the present value of the 
future loss random variable, Lt. 

The traditional approach to the reserve calculation has been to use a pol
icy value, following the methods in Chapter 7. However, it is not necessary 
to do so. Reserves can be determined arbitrarily, or by determining the capi
tal required to support the liabilities under specified assumptions. Profit test 
analysis allows reserves to be determined and tested under a range of more 
complex assumptions for interest rates and policyholder behaviour than is 
feasible using the traditional calculations of Chapter 7. 

3. To measure profitability 
The insurer will be interested in projecting emerging cash flows to assess 
liquidity needs. For example, new business strain for new contracts creates 
a need for available capital, which may be available from surplus emerging 
from more mature business. Developing cash flow models allows the insurer 
to manage portfolios taking different maturities and cash flow patterns into 
account. The insurer may use cash flow emergence and profitability mea
sures to determine strategies for marketing and product development. 

4. To stress test profitability 
The assumptions used to project future cash flows can be adjusted to explore 
the impact of adverse experience. Usually, the insurer would profit test 



12.3 Profit testing a term insurance policy 399 

contracts using a range of assumptions to get a feel for the sensitivity of 
the cash flows to different adverse scenarios. 

5. To determine distributable surplus 
When insurance portfolios generate surplus, it may be distributed in the 
form of dividends to shareholders, or retained in the equity of the com
pany. For some forms of insurance, profit is shared with the policyholders. 
Policyholders of participating or with-profit contracts will be entitled to a 
share of the profits generated within a specified fund. Universal Life policy
holders will share the investment profits generated by the funds supporting 
their contracts. The form in which such profit-share should be distributed, 
especially for participating (or 'par') business, is a matter of current inter
est. It is apparent that in order to anticipate surplus distribution, it would 
be helpful to have an idea of how the surplus will emerge, and we may 
also use profit testing to explore risks associated with different methods for 
distributing surplus. 

In this chapter, we look at how profit tests can be used for premium set
ting, reserve calculations and for measuring profitability, all in the context of 
non-participating insurance. In Chapters 13 and 14 we consider applications to 
participating and non-traditional insurance. 

12.3 Profit testing a term insurance policy 

We introduce profit testing by studying in some detail a 10-year term insur
ance issued to a life aged 60. The details of the policy are as follows. The 
sum insured, denoted S, is $100000, payable at the end of the year of death. 
Level annual premiums, denoted P, of amount $1500 are payable throughout 
the term. 

12.3.1 Time step 

We will project the cash flows from this policy at discrete intervals through
out its term. It would be very common to choose one month as the interval 
since premiums are often paid monthly, and the profit test would be regularly 
updated through the term of the contract. However, to illustrate more clearly the 
mechanics of profit testing, we use a time interval of one year for this example, 
taking time 0 to be the moment when the policy is issued. 

12.3.2 Profit test basis 

To estimate the future cash flows, the insurer needs to make assumptions about 
the expenses which will be incurred, the survival model for the policyholder, 



400 Emerging costs for traditional life insurance 

the rate of interest to be earned on cash flows within each time period before 
the profit is released and possibly other items such as an assessment of the 
probability that the policyholder surrenders the policy. For ease of presentation, 
we ignore the possibility of surrender in this example. 

The set of assumptions used in the profit test is called the profit test basis. 

Survival probabilities 
We project cash flows using expected values for mortality costs. For example, 
the expected cost of a death benefit of S paid at the end of the first year, for a 
life aged 60 at the start of the year, is q6o S. 

In this example, we assume a survival model for the profit test following 

q60+t = 0.01 + 0.001 t fort = 0, 1, ... , 9. 

The survival model used in a profit test may be different from the premium 
basis. For example, the insurer may incorporate margins in the premium 
basis - meaning, adopt more conservative assumptions - to allow for adverse 
experience. In the profit test, the insurer may be interested in a 'best estimate' 
picture of the emerging profits, in which case the survival model would not 
incorporate any margins. 

Expenses 
In Chapter 6 we discussed how expenses are incorporated into the calculation 
of the premium for a policy. Typically, the acquisition expenses, incurred at the 
start of the contract, are high, and the later expenses, associated with record 
maintenance and premium collection, tend to be smaller. 

In profit testing, it is necessary to be more specific about the acquisition 
expenses. As we project cash flows, we assume that some expenses arise even 
before the first premium is collected. These expenses are treated as being 
incurred at the start of the contract, at time t ~ 0. This differs from the treat
ment of expenses allocated to subsequent time periods, where expenses are 
combined with all the other sources of income and outgo for the period, and 
values accumulated to the year end. 

The reason for treating the acquisition expenses differently is that prudent 
capital management requires us to recognize losses as early as possible; surplus 
may be carried forward, but losses should be accounted for as soon as they are 
incurred. In this example we are projecting cash flows to the year end before 
analyzing the surplus emerging. It would not generally be prudent to combine 
the high acquisition costs with the other first year income and outgo, as that 
would delay recognition of those expenses, and lessen their impact. 

In our examples we will identify, specifically, the initial expenses which 
should be allocated to time 0, as distinct from the expenses which arise at 
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inception, but may be accounted for with the other first year cash flows. The 
time 0 expenses will be identified as pre-contract expenses; other expenses 
that arise during the first policy year are intended to be included in the first 
year cash flows. If no distinction is made, it should be assumed that all ini
tial expenses should be allocated to the time 0 cash flows. This is a common 
approach, because it gives the most conservative result. 

For this example, we use the following expense assumptions basis. 

Pre-contract expenses: $400 plus 20% of the first premium. 
Renewal expenses: 3.5% of premiums, including the first. 

Interest on insurer assets 
In each year that the policy is still in force, the expected cash flows contribut
ing to the surplus emerging at the end of that year are the premiums, less any 
premium-related expenses, plus interest earned on the invested assets, less the 
expected cost of a claim at the end of the year. We therefore require an assump
tion about the interest rate earned on insurer assets during the projection year. 
Often, this will be a best estimate, which will differ from assumptions for pre
miums and reserves which will typically incorporate margins for adverse expe
rience, or for implicit profit loading. 

The step-by-step process for profit testing makes it very simple to allow for 
different interest rates in different projection periods, so that a yield curve could 
easily be accommodated. In this example though, we will assume a constant 
interest rate of 5.5% per year. 

Emerging surplus for the term insurance example, without reserves 
The calculations of the emerging surplus, called the net cash flows for the 
policy, are summarized in Table 12.1. 

Table 12.1 Net cashfiowsfor the 10-year term insurance in Section 12.3. 

Time Premium Expenses Interest Claims Surplus 
t att- 1 Et It EDBt emerging at t 

0 700.00 -700.00 
1 1500 52.50 82.50 1000 527.11 
2 1500 52.50 79.61 1100 427.11 
3 1500 52.50 79.61 1200 327.11 
4 1500 52.50 79.61 1300 227.11 
5 1500 52.50 79.61 1400 127.11 
6 1500 52.50 79.61 1500 27.11 
7 1500 52.50 79.61 1600 -72.89 
8 1500 52.50 79.61 1700 -172.89 
9 1500 52.50 79.61 1800 -272.89 

10 1500 52.50 79.61 1900 -372.89 
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For time t = 0 the only entry is the acquisition expense for the policy, 
$(400 + 0.2 P). This expense is assumed to occur and to be paid at time 0, so 
no interest accrues. In all our profit test tables throughout this and subsequent 
chapters, the first row will account for costs (not income) at t = 0, and will 
not be accumulated. In the table, and in the examples following in this and 
subsequent chapters, we let Eo denote the pre-contract, acquisition expenses, 
assumed incurred at time 0, and we let Et denote the tth year expenses, incurred 
at the start of the year from t- 1 tot, fort = 1, 2, ... , 10. 

After the time 0 row for pre-contract costs, each subsequent row shows the 
income and outgo cash flows for the specified policy year. 

The second row refers to cash flows in the first policy year, which we label 
as t = 1, and which runs from time 0 (after the acquisition expenses already 
accounted for in the time 0 row) to time 1. 

There is a premium payable at time 0; there are premium expenses of 3.5%P 

that are incurred at the start of the year, and are not included in the time 0 
acquisition expenses. Interest is earned at 5.5% through the year. At the year 
end, the expected cost of death benefits is 

EDB1 = q6o S = 0.01 x 100 000 = 1000. 

Hence the emerging surplus, or net cash flow, at time 1 is 

1500 + 82.5 - 1000 = 582.5. 

For subsequent policy years, we will adopt the convention that the net cash 
flows are calculated assuming the policy is still in force at the start of the 
year. This means that we are starting each time step with a new assumption. 
For example, considering the second year· of the policy, we project all cash 
flows assuming the policy is in force at the start of the year, at t = 1, but 
by the end of the year, the policy may be in force (with probability Px+d, 
or the policyholder may have died (with probability qx+l). When we move 
to the third policy year, we assume the policy is in force at the start of the 
year. We discuss this convention in more detail after we work through the 
examples. 

Using this convention, consider, for example, the seventh year of the pro
jection. We assume the policy is in force at the start of the year, and the 
insurer receives the premium then due, of P = 1500; at the same time, 
the insurer incurs expenses of 3.5% of the premium, E7 = 52.5. The bal
ance is invested for the year at the assumed interest rate of 5.5%, generating 
h = 0.055(P - E7) = 79.61. At the year end, the expected cost of death 
benefits is EDB7 = q66 S = 1600. Hence, the expected value at time 7 of the 
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net cash flows received during the seventh year, for a policy in force at the start 
of the year, is 

P- E7 + h- EDB7 = -72.89. 

12.3.3 Incorporating reserves 

Table 12.1 reveals a typical feature of net cash flows, in that several of the 
net cash flows in later years are negative. This occurs because the level pre
mium is more than sufficient to pay the expected death claims and expenses 
in the early years, but, with an increasing probability of death, the premium 
is not sufficient in the later years. The expected cash flow values in the final 
column of Table 12.1 show the same general features as the values illustrated 
in Figures 6.1 and 6.2. 

In Chapter 7 we explained why the insurer needed to set aside assets to cover 
negative expected future cash flows. The policy values that we calculated in 
that chapter represented the amount that would, in expectation, be sufficient 
with the future premiums to meet future benefits. In modelling cash flows, 
we use reserves rather than policy values. The reserve is the actual amount of 
money held by the insurer to meet future liabilities. The reserve may be equal 
to a policy value, but does not need to be. For traditional insurance such as the 
term policy in this example, it is common to use a policy value calculation to 
set reserves, perhaps using conservative assumptions, or using a net premium 
approach with a different (hypothetical) premium to the actual gross premium 
for the contract. 

Note that the negative cash flow at time 0 in Table 12.1 does not require a 
reserve since it will have been paid as soon as the policy was issued. 

Suppose that at the start of each year the insurer sets reserves for this policy 
equal to the net premium policy values on the following (reserve) basis. 

Interest: 
Survival model: 

4% per year effective on all cash flows. 
q60+t = 0.011 + 0.001 t fort= 0, 1, ... , 9. 

Then the reserve required at the start of the (t + l)th year, i.e. at timet, is 

where the net premium, P 11
, is calculated as 

Al 
P 11 = 100000 .. 6o:l01 = $1447.63, 

a6o:101 
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0 
1 
2 
3 
4 

Table 12.2 Reserves for the 10-year 
term insurance in Section 12.3. 

,v tV 
0.00 5 1219.94 

410.05 6 1193.37 
740.88 7 1064.74 
988.90 8 827.76 

1150.10 9 475.45 

and all functions are calculated using the reserve basis. The values for the 
reserves are shown in Table 12.2. We now include in our profit test the cost 
of capital arising from the need to allocate the reserves to the policies in force. 
We do this by following (loosely) the accounting approach, where reserves 
brought forward are treated as income at the start of each year, and reserves 
carried forward are treated as a cost at the end of each year. 

To illustrate this, consider, for example, the reserve required at time 1, 
1 V = 410.05. This amount is required for every policy still in force at time 
1. The cost to the insurer of setting up this reserve is assigned to the previous 
time period and this cost is 

1 V P60 = 410.05 X (1 - 0.01) = 405.95. 

The cost includes the factor P60 since all costs relating to the previous time 
period are per policy in force at the start of that time period, that is, at time 0. 
The expected proportion of policyholders surviving to the start of the following 
time period, i.e. to age 61, is P60· Note that P60 is calculated on the profit test 
basis, not the reserve basis which is used solely for determining the 1V values. 
In general, the cost at the end of the year from t - 1 to t of setting up a reserve 
of amount 1 V at time t for each policy still in force at time t is 1 V P60+t-1· 

The profit test calculations, including reserves, are set out in Table 12.3, and 
the individual calculations are described in more detail here. 

Column (1) labels the rows. The first row, labelled t = 0, is for the the 
cash flows required immediately before the inception of the contract. For 
subsequent rows, the cash flows in the tth year are those from t - 1 to t. 
In each row, we assume the contract is in force at the start of the year. 

Column (2) shows the reserve brought forward at the start of each year, at 
time t - 1, assuming the contract is in force at that time. The reserve 
brought forward is treated as an item of income in the cash flows for the 
tth year. 

Column (3) shows the premium paid at the start of the year, assuming the 
policy is in force at that time, P = 1500. 
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Table 12.3 Emerging surplus, per policy in force at the start of each year, for 

t 
(0) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

the 10-year term insurance in Section 12.3. 

t-1 v p Et It EDBt EtV Prt 
(2) (3) (4) (5) (6) (7) (8) 

700.00 -700.00 
0.00 1500 52.50 82.50 1000 405.95 121.17 

410.05 1500 52.50 102.17 1100 732.73 126.99 
740.88 1500 52.50 120.36 1200 977.04 131.70 
988.90 1500 52.50 134.00 1300 1135.15 135.26 

1150.10 1500 52.50 142.87 1400 1202.86 137.61 
1219.94 1500 52.50 146.71 1500 1175.47 138.68 
1193.37 1500 52.50 145.25 1600 1047.70 138.41 
1064.74 1500 52.50 138.17 1700 813.69 136.72 
827.76 1500 52.50 125.14 1800 466.89 133.52 
475.45 1500 52.50 105.76 1900 0.00 128.71 

Column (4) shows the expenses. Eo denotes the initial expenses incurred 
at time 0 and fort = 1, 2, ... , 10, E1 denotes the renewal expenses 
incurred at the start of the year from t - 1 to t. 

Column (5) shows ft, which denotes the interest earned in the year from 
t - 1 to t on the assets invested at the start of the year. In this case, for 
t = 1, 2, ... , 10, with an assumed interest rate of 5 .5%, we have 

It= 0.055 Ct-1 v +p-Et). 

Column (6) shows the expected cost of death benefits in the tth year, EDBt, 

assuming the policy is in force at time t - 1. So, with a sum insured of 
S = 100000, the expected death benefit at timet for a contract in force 
at time t - 1 is 

EDBt = S q6o+t-1· 

Column (7) shows EtV, which denotes the expected cost of the reserve 
carried forward at time t, for a policy in force at time t - 1, that is 

ErV = P60+t-1 tV. 

Note that, if the reserve basis generated a value for o V > 0, then o V 
would be included in the first row, t = 0, in column (7), and would be 
treated as an acquisition cost. Then, in the second row, o V would be in 
column (2) as an item of income for the year from 0 to 1. 

Column (8) shows the expected profit emerging at time t given that the pol
icy is in force at time t - 1, except for the first row, where Pro represents 
the acquisition costs. That is 

Pro = -Eo - o V = -700 
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and for t = 1, 2, ... , 10, 

Prt = t-1 V + P - Et +It - EDBt -EN. (12.1) 

Equation (12.1) is sometimes expressed slightly differently, as 

Pr1 = (P- Et)(l + i) + ,6.N- EDBt, 

where ,6.tY is called the change in reserve in year t and is defined as 

,6.tV = (1 + i) t-1 V- tV P60+t-1· 

This alternative version reflects the difference between the reserves and the 

other cash flows. The incoming and outgoing reserves each year are not real 
income and outgo in the same way as premiums, claims and expenses; they are 
accounting transfers. It also allows for the use of a different return on assets 

underlying reserves than on other cash flows. 

12.3.4 Profit signature 

We have used an important convention in the construction of Tables 12.1 and 

12.3, that is worth emphasizing. The entries in each row are calculated assum
ing the policy is in force at the start of the year. We use this convention because 
it is very convenient; it makes the profit test more flexible, and (once you are 
used to it) easier to construct. However, it also means that we cannot simply 

gather together all the Pr1 entries from the table to analyse the future profits 
on a contract, since each entry is based on a different assumption about the 
probability that the policy is still in force. 

The vector Pr = (Pro, ... , Prw)' is called the profit vector for the contract. 
So, the elements of Pr denote the expected profit emerging at the end of each 

year, given that the policy is in force at the start of the year. For an overall, 
unconditional projection of the emerging surpluses from a newly issued con
tract, we need to adjust the Pr1 values to remove the conditioning. 

Let TI 1 represent the expected profit emerging at time t from the cash flows 

in the year t - 1 to t, given that the contract is in force at time t = 0 (i.e. 
unconditionally). The relationship between Il1 and Pr1 fort = 1, 2, ... , 10, is 

Il1 = Pr1 x Pr [in force at time t - llin force at time 0] . 

The vector Il is called the profit signature for the contract. We have, for the 

current example, 

Ilo =Pro; Ilt = t-1P6oPr1 fort= 1, 2, ... , 10. (12.2) 
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Table 12.4 Profit vector and profit signature 
for the 10-year term insurance. 

Prt Tit Prt Tit 

0 -700.00 -700.00 6 138.68 130.56 
1 121.17 121.17 7 138.41 128.35 
2 126.99 125.72 8 136.72 124.75 
3 131.70 128.95 9 133.52 119.76 
4 135.26 130.84 10 128.71 113.37 
5 137.61 131.39 

The profit signature is the key to assessing the profitability of a new contract. 
The profit signature for the 10-year term example is given alongside the profit 
vector PrinTable 12.4. We show them together to emphasize the difference 
between the two vectors, which is important in applying and interpreting the 
profit test. The profit vector, Prt, represents the profit emerging at timet from 
the cash flows in the year t - 1 to t, given that the contract is in force at time 
t- 1, fort = 1, 2, ... , 10. 

12.4 Profit testing principles 

12.4.1 Assumptions 

In this section we generalize the process described in the example of the pre
vious_ section. In this description we label the emerging profit assuming annual 
time steps,,but the method can be very easily adapted to other frequencies. 

We assume a contract with a term of n years, issued to (x), with cash flows 
dependent on whether the policyholder dies, surrenders or continues in force 
through to the end of the policy year. 

We assume that a policyholder whose policy is in force at timet - 1, dies 

in the year t - 1 to t with probability p~~t-1' withdraws or surrenders the 
contract with probability p~~t- 1 and remains in force at timet with probability 

p~~t-1 = 1- p~~t-1- p~~t-1" 

12.4.2 The profit vector 

The profit vector is 

Pr = (Pro, Pr1, ... , Pr11 )
1

• 

The profit vector elements Prt, fort 2:: 1, represent the expected surplus emerg
ing at each year end for a contract in force at timet- 1, i.e. at the start of the 
year. The first element of the vector, Pro, has a slightly different interpretation. 
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It represents the value at time t = 0 of the pre-contract cash flows, including 
the acquisition expenses, Eo, and the cost of setting up initial reserves, o V, 
where required. So 

Pro= -Eo- oV 

and fort = 1, 2, ... , n, 

Pr1 = t-1 V + P1 - E1 +It- EDB1 - ESBt- EEB,- EtY 

where 

1V is the reserve required at timet for a policy in force at that time; 

P1 is the tth premium, paid at time t - 1, for a policy in force at time t - 1; 
E1 is the premium expense incurred at time t - 1 for a policy in force at 

timet- 1. 
It is the investment income earned on the insurer's funds overt- 1 tot for 

a policy in force at timet- 1. That is, I1 = i1 Ct-1 V + P1 - Et) where 
i1 is the yield on investments from timet- 1 tot. 

EDB1 is the expected cost of death benefits at time t for a policy in force at 
timet- 1. That is, EDBt = p~t1_ 1 St, where S1 is the sum insured. 

ESB1 is the expected cost of surrender benefits at time t for a policy in force 
at timet - 1. That is, ESB1 = p~~t- 1 CV1 where CV1 is the cash or 
surrender value payable for surrenders at time t. 

EEB1 is the expected cost of endowment or survivor benefits at time t for 
a policy in force at time t - 1. This would be applicable for a maturity 
benefit under an endowment policy, or for end-year annuity benefits. 

E 1 V is the expected cost of setting the reserve at time t for a policy in force 

at timet- 1. That is, E1V = p~~1_ 1 tV. 

12.4.3 The profit signature 

The profit signature is 

The profit signature elements D1, for t ::=:: 1, represent the expected surplus 
emerging at the tth year-end for a contract in force at the issue date, i.e at 
time t = 0. The first term of the vector, Do, represents the value at time t = 0 
of the pre-contract cash flows. So 

Do= Pro 

and fort= 1, 2, ... , n, we multiply Pr1, which is the expected surplus condi
tional on the contract being in force at time t - 1, by the probability of being 
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in force at timet - 1, to get the unconditional expected surplus at timet for a 
new contract, so 

12.4.4 The net present value 

Having developed the projected expected year-end emerging surplus for a new 

contract, it is often convenient to express the values in a single metric. The 
net present value (NPV) of the contract is the present value of the projected 
emerging surplus values. To determine the present values, we discount at an 
appropriate rate of interest, which is normally higher than the assumed yield 

on assets which is specified in the profit testing basis. The interest rate for dis
counting surplus represents the return on capital required by the shareholders, 
since the emerging surplus can be considered as the return to shareholders on 
capital supplied to support the contract liability. The rate is sometimes called 
the risk discount rate or hurdle rate. 

Assuming a risk discount rate of r per year effective, the net present value 
of a policy is 

11 

NPV = Lntv;.. 
t=O 

12.4.5 Notes on the profit testing method 

1. For a large portfolio of similar policies, the profit signature describes the 
expected surplus emerging at each year end for each contract issued. This is 

clearly useful information, and begs the question: why take the intermediate 
step of calculating the profit vector, for which each term is conditional on 
the contract being in force at successive policy anniversaries? The answer 
is that the profit vector is also useful, particularly for a portfolio of in-force 
contracts at different durations. 

Suppose an insurer has a portfolio of 10-year term insurance policies, all 
issued to lives aged 60 at different times in the previous 10 years, and all 
represented by the policy terms and assumptions used for the example in 

Section 12.3. The profit vector can be used to analyse expected emerging 
surplus from each cohort. For example, for each contract still in force after 
k :::: 1 complete years (at age 60+k), the profit signature from future surplus 
can be calculated as 

00 p 
1P60+k rk+2, 00 p 00 p )' 

2P60+k rk+3, · · · , 9-kP6o+k rw 
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and the NPV of the future surplus is 

10-k 

"'"""OOp u 
~ u-1P60+k rk+u Vr · 

u=l 

2. We have been rather loose about random variables and expectation in this 
chapter. In practice, profit testing would be carried out on large portfolios, 
rather than on individual contracts. Aggregating makes the individual cash 
flows relatively more predictable, and it may be reasonable to assume that 
death benefits and reserve costs will be quite close to the expected values. 
The approach used here is described as deterministic, which is loosely 
used to mean that we project cash flows without allowing for random 
variation. 

3. The process described in this section can be used with traditional style con
tracts, allowing for multiple decrements or multiple states, but assumes that 
the contract is in force in only one state. When there are two or more states 
representing the in-force contracts, the process requires some extra steps 
which we describe in Section 12.8 below. 

12.5 Profit measures 

Once we have projected the cash flows, we need to assess whether the emerging 
profit is adequate. There are a number of ways to measure profit, all based on 
the profit signature. 

The net present value is a commonly used measure of profit for project 
appraisals in all fields. For the example in Section 12.3, if the insurer uses 
a risk discount rate of 10% per year, then the NPV of the contract is $74.13. 
We define also the partial net present value. For t :::; n, NPV(t) is the net 
present value of all cash flows up to and including time t, so that 

t 

NPV(t) = L nk v~. 
k=O 

Often the partial NPV is negative in the early years of a contract, reflecting the 
acquisition costs, and has a single sign change at some point of the contract, 
assuming the NPV of the contact is positive. The partial NPV values for t = 
0, 1, ... , 10 for the 10-year term insurance example are given in Table 12.5, 
showing this typical pattern for emerging profit. The NPV for the contract is 
the final value in the partial NPV vector. 

The NPV is closely related to the internal rate of return (IRR), which is 
the interest rate j such that the net present value is zero. That is, given a profit 
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Table 12.5 Partial NPVs for Section 12.3 

example, 10% risk discount rate. 

NPV(t) NPV(t) 

0 -700.00 6 -144.43 
1 -589.85 7 -78.56 
2 -485.95 8 -20.37 
3 -389,07 9 30.42 
4 -299.70 10 74.13 
5 -218.12 
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signature (Do, TI1, ... , Tin)' for ann-year contract, the internal rate of return 
is j where 

n 

L:ntv} =0. (12.3) 
t=O 

The IRR is commonly used as a metric for assessing profitability, with insurers 
setting minimum values for the IRR of the hurdle rate. One problem with the 
internal rate of return is that there may be no real solution to equation (12.3), 
or there may be many. However, a quick check on the IRR can be determined 
by using the hurdle rate to calculate the NPV. If the NPV is greater than zero, 
and if the partial NPV has a single sign change, then there is a single solution 
to the IRR equation, and the IRR is greater than the hurdle rate. If the NPV is 
negative, then the IRR, if it exists, is less than the hurdle rate. 

For the policy in Section 12.3, we know that the IRR is greater than 10%, 
as, at 10% risk discount rate, the NPV is greater than zero, and the partial 
NPV has a single sign change. In fact, the internal rate of return in this case is 
j = 12.4%. 

The partial NPV is useful for another profit measure, the discounted pay
back period (DPP), also known as the break-even period. This is defined as the 
first time at which the partial NPV is greater than zero, using the risk discount 
rate. In other words, the DPP is m where 

m = min{t : NPV(t) :=::: 0}. 

The DPP represents the time until the insurer starts to make a profit on the 
contract. For the example in Section 12.3, the DPP is nine years. 

The profit margin is the NPV expressed as a proportion of the EPV of 
the premiums, evaluated at the risk discount rate. For a contract with level 
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premiums of P per year payable annually throughout an n year contract issued 
to a life aged x, the profit margin is 

L 11 
TI v1 

Profit margin= t=O t r 
p "n-l 00 t 

L-t=O tPx Vr 

using the risk discount rate for all calculations. 

(12.4) 

For the example in Section 12.3, the profit margin using a risk discount rate 
of 10% is 

NPV 74.13 
--- = -- = 0.77%. 
Pa60:10l 9 684.5 

Another profit measure is the NPV as a proportion of the acquisition costs. 
For the example in Section 12.3, the acquisition costs are $700, so the NPV is 
10.6% of the total acquisition costs. 

None of these measures of profit explicitly takes into consideration the risk 
associated with the contract. Most of the inputs we have used in the emerging 
surplus calculation are, in practice, uncertain. If the experience is adverse, the 
profit will be smaller, or there could be significant losses. 

12.6 Using the profit test to calculate the premium 

Setting a premium using the profit test can be achieved by finding the minimum 
premium that satisfies the insurer's required profit measure. 

For example, suppose the insurer requires a profit margin of 5% for the 
10-year term insurance from Section 12.3, using the same 10% per year risk 
discount rate, and the same basis for the profit test and reserves as before. With 
the premium tested, P = 1500, the profit margin is only 0.77%. Increasing 
the premium to $1575.21 gives an NPV of $508.50 at the 10% per year risk 
discount rate, and an EPV of premiums of $10 170.03, which gives the profit 
margin required. 

The revised profit signature is 

(-715.0, 197.7, 201.5, 203.9, 204.9, 204.5, 202.6, 199.4, 194.6, 188.4, 180.8)' 

which gives a DPP of 5 years, at 10% risk discount rate, and an IRR of 25.0% 
per year. 

In this example, we can solve the equation for the unknown premium, given 
a profit margin, because the equation is a linear function of the premium. This 
will not always be the case, but numerical methods, or appropriate software 
such as Solver in Excel, usually work well. 
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12.7 Using the profit test to calculate reserves 

In the first part of the example in Section 12.3, we saw that if the insurer holds 
no reserves, negative surplus emerges in later years of the contract, which 
is unacceptable under risk management or accounting principles. In the sec
ond part of the example, it was assumed that the insurer held net premium 
reserves, which resulted in positive emerging surplus in each year after the ini
tial outgo from acquisition expenses. This result is acceptable, but using capital 
to support the liabilities is expensive. The NPV of the emerging profit for the 
10-year term insurance example is $270.39 without reserves, compared with 
$74.13 with the net premium reserves from Table 12.2. This means that, even 
though term insurance is not very demanding on capital (as reserves are rela
tively small), the NPV without reserves is more than three times the NPV when 
reserves are taken into account. 

Because holding capital reduces profitability, the insurer will not want to 
hold more than necessary. The objective of the capital is to avoid negative 
surpluses in later contract years. We can use the profit test to determine the 
minimum reserve that would be required at each year end to eliminate negative 
surpluses emerging in any year, after the initial outgo. 

We now demonstrate this process using the 10-year term insurance example. 
We work backwards from the final contract year; for each year, we calculate 
the reserve required at the start of the year to match exactly the expected outgo 
in that year with no excess surplus emerging. 

Consider the final year of the term insurance contract, t = 10. At the start 
of the year the insurer receives $1500 premium, of which 3.5% is immedi
ately spent on renewal expenses, leaving $1447.50. This sum, together with the 
reserve, and with interest earned on the premium plus reserve less expenses (at 
5.5% according to the profit test basis), must be exactly enough to meet the 
expected year end outgo of $1900. 

Suppose the reserve at the start of the year (i.e. at time t = 9) which exactly 
eliminates a negative emerging cash flow in the final year is denoted 9 V 2 . Then 
we have 

In other words, putting 9 V = 353.45 into the profit test, in place of the net 
premium policy value of $475.45, generates a value of Pr10 = 0. Now, this is 
smaller than the value in Table 12.2, so it might look as if this is not going to 
help, but what is actually happening is that surplus will emerge sooner, which 
should increase the profitability. 

We then move back to the ninth policy year. Now the reserve at the start 
of the year, together with the premium, net of expenses, and with the interest 
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Table 12.6 Zeroized 

6 
5 
4 
3 
2 

reserves. 

732.63 
658.32 
494.78 
247.62 

-78.17 

income, must be sufficient to meet the expected cost of death benefit for a 
contract in force at the start of the year (EDB9 = 1800) and also to support the 
cost of carrying forward the final year reserve (9 V 2 = $353.45). Hence, the 
reserve equation for the minimum reserve at time t = 8 is 

1.055 (8 yZ + 0.965P) = q68 S + P68 9 V2 

==} 8 V 2 = (1800 + .0.982 X 353.45) /1.055- 0.965P = 587.65. 

Continuing back, at time t = 7, we need a reserve of 7 V z where 

1.055 (7 V2 + 0.965P) = q67 S + P67 8 yZ 

==? 7VZ = (1700 + 0.983 X 587.65) /1.055- 0.965P = 711.42. 

Continuing in this way we obtain the values in Table 12.6. 
We see that 2 V z is negative, but reserves cannot be negative. Policy values 

can be negative, as expected values, but the capital held for future liabilities 
cannot be negative. See Section 7.8 for more discussion of this. Rather than 
allow a negative reserve, we set 2 V z = 0. Repeating the process for t = 1 and 
t = 0 generates negative values in both cases, so we set both o V z and 1 V z 
equal to 0. 

Now we re-do the profit test to see the impact of using these minimum 
reserves on the profit signature and the NPV. The results are shown in 
Table 12.7, using a 10% per year risk discount rate for the partial NPVs. 

We have set the reserve to be exactly sufficient, together with the premium 
and interest income, to meet the projected outgo, leaving emerging surplus of 
zero, for the years from t = 4 onwards. This process for determining reserves 
is called zeroization, and the resulting reserves are called zeroized reserves. 
By comparing the partial NPVs using the higher reserves (from Table 12.5) 
with the zeroized reserves, we have a higher ultimate NPV using the zeroized 
reserves- increased from $74.13 per policy to $189.31. We also see a faster 
emergence of surplus, with a DPP of two years, down from nine years with the 
higher reserves. 
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Table 12.7 Emerging profit after zeroization 

Prt ITt NPV(t) 

0 -700.00 -700.00 -700.00 
1 527.11 527.11 -220.81 
2 427.11 422.84 128.65 
3 82.47 80.74 189.31 
4 0.00 0.00 189.31 
5 0.00 0.00 189.31 
6 0.00 0.00 189.31 
7 0.00 0.00 189.31 
8 0.00 0.00 189.31 
9 0.00 0.00 189.31 

10 0.00 0.00 189.31 

Holding less capital increases the NPV here, because, as is typical, the inter
est assumed to be earned on the capital, at 5.5% per year, is less than the 
risk discount rate, at 1 0% per year. The risk discount rate indicates the return 
required on the equity invested. Within the profit test, assets are earning only 
5.5% per year, but the high risk discount rate means that (loosely) the cap
ital requited for the contract needs to earn 10% per year. If less capital is 
required, the cost of that capital is lower, allowing more profit in the form 
ofNPV. 

We may generalize the algorithm in the example, to develop an expression 
for the zeroized reserves in principle. Using the assumptions and notation of 
Section 12.4 above, and given the zeroized reserve at t, 1 V z, then the zeroized 
reserve at time t - 1 ::0: 0 is 

So, given that at the maturity of the contract, we can assume n V z = 0, it is 
possible to work backwards through the cash flows to determine the schedule 
of zeroized reserves for any policy. 

12.8 Profit testing for multiple state models 

The term insurance example used throughout the previous sections was useful 
for introducing profit testing concepts, as the policy is relatively uncompli
cated. We need to adapt the profit testing algorithm for more complex exam
ples, and a particular case worth considering in more detail arises where there 
are multiple in-force states. 
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Policies with two or more in-force states would include any policy with dis
ability benefits, such as a waiver of premium on sickness. For example, under 
the model in Figure 8.4, policyholders in both the 'Healthy' and 'Sick' states 
would be in the in-force portfolio, but the cash flows expected from each state 
would be quite different. Similarly, for a joint life contract, the projected cash 
flows while both partners are alive could be quite different from the cash flows 
projected after one partner has died. 

In this section we present an example of a partially accelerated critical ill
ness (CI) and term insurance policy. The term 'partially accelerated' refers to 
the fact that some of the sum insured under the contract will be paid on diag
nosis of a critical illness, with the remainder paid if and when the policyholder 
subsequently dies. If the policyholder dies without a CI diagnosis, the full sum 
insured is payable on death. The policy is in force in the healthy state and 
also after CI diagnosis, provided the policyholder has not lapsed or died. In 
Section 8.7, we showed that in a multiple state insurance model, policy values 
(and, consequently, reserves) are dependent on the state that the policy is in at 
valuation, and the multiple state version of Thiele's equation for the disability 
income insurance model required two simultaneous differential equations for 
the two in-force states. 

Profit testing similarly requires separate consideration of the in-force states. 
When the contract has different in-force states, we must calculate different, 
state dependent profit vectors. We can, subsequently, combine the profit vectors 
with state dependent probabilities to determine a profit signature for a contract. 
We demonstrate this in the following example. 

Example 12.1 A 10-year partially accelerated CI and term insurance policy is 
issued to (x). The multiple state model used to analyse the policy is shown in 
Figure 12.1. 

The benefits payable under the contract are 

• $50 000 at the end of the year if (x) is diagnosed with a CI during the year, 
and survives to the year end. 

Healthy 0 CI Diagnosed 1 

Died no CI3 Died after CI 2 

Figure 12.1 Multiple state model for Example 12.1. 
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Table 12.8 Reserves for Example 12.1. 

tV(O) rV(l) rV(O) rV(l) 

0 0 0 5 2000 40000 
1 700 43000 6 1600 38000 
2 1200 43000 7 1200 34000 
3 1600 42000 8 1000 27000 
4 2000 42000 9 500 17000 

• $100 000 at the end of the year if (x) dies during the year, having been 
healthy at the start of the year. 

• $50 000 at the end of the year if (x) dies during the year, having been diag
nosed with a CI before the start of the year. 

Premiums of $2500 are payable annually in advance, whilst in the healthy state. 
Reserves at each year end are conditional on whether the policyholder is in 

state 0 or state 1, and are given in Table 12.8. 
One-year transition probabilities for the model are, fort = 0, 1, 2, ... , 9, 

p~~~ = 0.01, p~~~ = 0.005 + 0.001t, 

p~~~ = 0.002 + 0.001t, p;~t = 0.35. 

Other profit test assumptions: 

Acquisition expenses: 
Premium expenses: 
Renewal expenses in state 1: 
Interest on investments: 
Risk discount rate: 

$250 
5% of each premium 
$25 
6% per year 
12% per year 

(a) Calculate the profit vector conditional on being in state 0 at the start of the 
policy year, Pr(O), and the profit vector conditional on being in state 1 at 
the start of the policy year, Pr(l). 

(b) Comment on the two profit vectors. Do you see any problem with the con
ditional emerging cash flows? 

(c) Calculate the profit signature and partial net present value vector for a new 
policy. Does the policy meet a requirement that the IRR exceeds 12%? 

(d) Calculate the profit margin for the policy. 

Solution 12.1 (a) The profit test table for Pr(O) is given in Table 12.9, where 
numbers (other than the elements of Pr(0)) are rounded for presentation. We 
give a general description of principles here, followed by a more detailed 
derivation of each column in the description below. 
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Table 12.9 Example 12.1 profit vector calculation conditional on the policy 

t 
(1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

being in state 0 at the start of each year. 

t-1 y(O) Pt-Et It EBOl t EB?2 EB?3 Et yOl Etvoo Pr(O) 

(2) (3) (4) (5) (6) (7) (8) (9) (10) 

0 -250 0 0 -250.00 
0 2375 143 500 500 200 430 688 199.40 

700 2375 185 500 600 300 430 1177 252.30 
1200 2375 215 500 700 400 420 1566 203.10 
1600 2375 239 500 800 500 420 1954 39.50 
2000 2375 263 500 900 600 400 1950 287.50 
2000 2375 263 500 1000 700 380 1557 500.70 
1600 2375 239 500 1100 800 340 1165 308.30 
1200 2375 215 500 1200 900 270 969 -49.50 
1000 2375 203 500 1300 1000 170 483 124.00 
500 2375 173 500 1400 1100 0 0 47.50 

In this table, each row is calculated assuming that the policy is in state 
0 at the start of the year. The policy could move to state 1 by the year end, 
in which case there will be a cash flow corresponding to the CI diagno-
sis benefit, and it will also be necessary to carry forward a reserve to the 
following year, which is appropriate for a policy in state 1 at that time. 
The policy could move to state 2 by the year end, resulting in a benefit 
payment of $100 000, and no further cash flows. The policy could move 
to state 3 by the year end, with the same outcome as for state 2, and the 
policy could be still in state 0 at the year end, in which case there must be 
a reserve carried forward for the following year, appropriate for a policy 
in state 0. 

Column (1) shows the time at the year end, except for t = 0 which 
represents the timing of pre-contract cash flows. 

Column (2) shows the reserve brought forward at the start of the tth 
year, for a policy in state 0 at that time. These numbers are taken 
from Table I2.8. 

Column (3) shows the premiums minus expenses at the start of each 
year, and shows the acquisition expenses at t = 0. 

Column (4) shows the interest earned on reserves and premiums net 
of expenses in each year, with interest at 6% per year. That is, for 
t = I, 2, ... , IO, 

It = 0.06(t-1 V(O) + Pt - Et ). 

Column (5) Shows the expected cost of paying the benefit for a life 
who moves from state 0 to state I in the time period from t - I to t, 

>;, 
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and remains in state 1 at the year end. The benefit is $50 000 and the 
transition probability is p~~t-l = 0.01, so 

EB?1 = 50000 p~~t-l = 500. 

Column (6) shows the expected cost of paying the benefit for a life 
who moves from state 0 to state 2 in the time period from t - 1 
to t. The benefit is $100 000 and the transition probability is 

P~tt-l = 0.005 + O.OOI(t- 1), so 

EB?2 = 100000p~t1_ 1 . 

Column (7) shows the expected cost of paying the benefit for a life 
who moves from state 0 to state 3 in the time period from t - 1 

to t. The benefit is $100 000 and the transition probability is 

P~tt-l = 0.002 + 0.001 (t- 1), so 

EB?
3 = 100000 p~tt-l· 

Column (8) shows the expected cost of the reserve carried forward 
at the end of the tth year, for a life who is in state 1 at time t, 
given that the life was in state 0 at timet - 1, fort = 1, 2, ... , 9. 
That is 

E VOl _ vClJ POl 
t - t x+t-1' 

Column (9) shows the expected cost of the reserve carried forward from 
t to t + 1 for a life who is in state 0 at time t, given that the life was 
in state 0 at timet- 1, fort = 1, 2, ... , 9. That is 

E voo _ V(O) poo 
t - t x+t-1· 

Column (10) shows Pr;01 , which is the emerging profit at time t for a 
policy which is in state 0 at time t - 1. So, for t = 1, 2, ... , 10, 

Pr;o) = t-1 V(O) + P1 - Et + !1 - EB~ 1 - EB~2 

- EB~3 - ENOl - EtVOO. 

The calculations for Pr(ll, which is the profit vector for policies in state 1 
at the start of each year, are given in Table 12.10, and a more detailed 
explanation is given below. 

Column (1) shows the policy year. Note that there are no policies in 
state 1 at the start of the first year, so the profit vector calculation 
starts in the second policy year. 
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Table 12.10 Example 12.1 profit vector calculation conditional on the policy 

t 
(1) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

being in state 1 at the start of each year. 

1-1 y(l) E1 It EBj2 EtV 11 Pr(ll 
(2) (3) (4) (5) (6) (7) 

43000 25 2578.5 17500 27950 103.5 
43000 25 2578.5 17500 27300 753.5 
42000 25 2518.5 17500 27300 -306.5 
42000 25 2518.5 17500 26000 993.5 
40000 25 2398.5 17500 24700 173.5 
38000 25 2278.5 17500 22100 653.5 
34000 25 2038.5 17500 17550 963.5 
27000 25 1618.5 17500 11050 43.5 
17000 25 1018.5 17500 0 493.5 

Column (2) shows the reserve (from Table 12.8) brought forward for 
a contract in state 1 at timet - 1, i.e. l-1 yOl. This is the same 
amount whether the policy holder was in state 0 or state 1 in the 
previous year. 

Column (3) shows the renewal expenses for the tth year for a policy in 
state 1. 

Column ( 4) shows the interest income, for a policy in state 1 at time 
t- 1, 

11 = 0.06 (r-1 yOl- E1). 

Column (5) shows the expected cost of benefits paid on death during 
the year t - 1 to t, for a policy in state 1 at time t ;- 1. The benefit 
payable is $50 000, and the probability of payment is. p;t1_ 1, so 

EBf2 = soooop;t1_ 1 = 17500. 

Column ( 6) shows the expected cost of the reserve carried forward at 
the year end, for those policies still in state 1 at time t, so 

E V11 - y(ll p11 
I - t x+t-1· 

Column (7) shows the profit emerging at time t for a policy in state 1 
at time t - 1, so 

(b) We note that there are some negative expected emerging cash flows, both 
for the state 1 conditional emerging profit and for the state 0 conditional 



t 
(1) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
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Table 12.11 Profit signature and NPV function for Example 12.1. 

tP£
0 

tP£
1 Pr(O) Pr(ll n NPV 

(2) (3) (4) (5) (6) (7) 

1.00000 0.00000 -250.00 0.00 -250.00 -250.00 
0.98300 0.01000 199.40 0.00 199.40 -71.96 
0.96432 0.01633 252.30 103.50 249.05 126.57 
0.94407 0.02026 203.10 753.50 208.16 274.74 
0.92236 0.02261 39.50 -306.50 31.08 294.49 
0.89930 0.02392 287.50 993.50 287.64 457.70 
0.87502 0.02454 500.70 173.50 454.43 687.93 
0.84964 0.02470 308.30 653.50 285.81 817.22 
0.82330 0.02455 -49.50 963.50 -18.26 809.84 
0.79614 0.02419 124.00 43.50 103.16 847.04 
0.76827 0.02369 47.50 493.50 49.76 863.06 

emerging profit. For each policy in state 1 at time t = 3, the expected sur
plus emerging at the year end is -$306.50. Similarly, for each policy in 
state 0 at the start of the eighth year, the expected surplus emerging at the 
year end is -$49.50. A negative emerging profit indicates that inadequate 
capital is allocated to meet the outgo in those years. Thus, the reserves 
should be adjusted to avoid the negative values arising. 

(c) In Table 12.11 we show the calculation of the profit signature and the par
tial NPV function. More detailed explanations of each column follow. 

Column (1) shows the time at the year end, except fort = 0 which repre
sents the timing of pre-contract cash flows. 

Column (2) shows the state 0 survival probability. Since there are no 
return transitions to state 0 in this model, we have op~0 = 1, and 
we can calculate subsequent probabilities recursively as 

00 00 00 
tPx = t-1Px Px+t-1· 

Column (3) shows the probability that a policy which is in state 0 at age 
x is in state 1 at age x + t. We have op~1 = 0, and we can use the 
Chapman-Kolmogorov equations to calculate 1p~ 1 recursively, as 

01 00 01 01 11 
tPx = t-IPx Px+t-1 + t-1Px Px+t-1· 

Columns (4) and (5) show the conditional profit vectors from part (a). 
Column (6) is the profit signature vector. TI1 represents the expected profit 

emerging at time t for a policy issued (and therefore in state 0) at 
time 0. 

Recall that Pr~O) is the emerging profit at time t conditional on 
being in state 0 at time t - 1, and Pr~l) is the emerging profit at time 
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t conditional on being in state 1 at time t - 1, so the profit signa
ture is 

TI 00 p (0) 01 (1) 
t = t-1Px rt + t-1Px Pr1 • 

Column (7) is the partial NPV function, at a risk discount rate of r = 
12%. So 

t 

NPV(t) = L nk v~. 
k=O 

We note that the final NPV, at 12%, is $863.06, which is greater than 0, 
and also that there is only one sign change in the partial NPV function, so 
the IRR is uniquely determined, and is greater than 12%. 

(d) The profit margin is the NPV divided by the EPV of premiums. As premi
ums are payable only if the life is in state 0, the EPV of premiums is 

9 

2500 LtP~0 v~ = 14655.31 
t=O 

which gives a profit margin of 5.89%. D 

12.9 Notes 

For each of the policies considered in this chapter, benefits are payable at the 
end of a time period. However, in practice, benefits are usually payable on, 
or shortly after, the occurrence of a specified event. For example, for the term 
insurance policy considered in Section 12.3, the death benefit is payable at the 
end of the year of death. If, instead, the death benefit had been payable imme
diately on death, then we could allow for this in our profit test by assuming all 
deaths occurred in the middle of the year. Taking this approach, the expected 
death claims in Table 12.1 would all be adjusted by multiplying by a factor 
of 1.055112 . 

In practice, as we have mentioned, it would be normal to use monthly steps 
in a profit test, and the assumption that benefits are paid at the end of the month 
of claim is less artificial than the assumption of payment at the end of the year 
of death. 

Throughout this chapter we have used deterministic assumptions for all the 
factors. By doing this we gain no insight into the effect of uncertainty on the 
results. In Chapter 14 we describe how we might use stochastic scenarios for 
emerging cost analysis for equity-linked contracts. Stochastic scenarios can 
also be used for traditional insurance. 
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12.10 Exercises 

Exercise 12.1 A profit test of a 20-year term insurance issued to (40) is to be 
carried out on the following basis: 

Survival model: 
Interest: 
Pre-contract expenses: 
Renewal expenses: 
Claim expenses: 

q40+t = 0.001 + 0.0001t 
6% effective per year 
25% of the first premium 
1.5% of each premium after the first 
$60. 

The annual premium is $270 and the sum insured, payable at the end of the year 
of death, is $150000. Calculate the emerging surplus at the end of the tenth 
policy year, per policy in force at the start of that year, given that the insurer 
holds reserves of $300 per policy in force at the start of each year. 

Exercise 12.2 A profit test of a 20-year endowment insurance issued to (45) is 
to be carried out on the following basis: 

Survival model: 
Interest: 
Pre-contract expenses: 
Renewal expenses: 
Claim expenses: 

q45+t = 0.0015 + 0.0001t 
5% effective per year 
20% of the first premium 
2.5% of each premium after the first 
$40. 

The annual premium is $8400 and the sum insured, payable at the end of the 
year of death, or at maturity, is $250 000. Calculate the emerging surplus for 
the following two cases: 

(a) at the end of the tenth policy year, per policy in force at the start of that 
year, and 

(b) at the end of the 20th policy year, per policy in force at the start of that 
year, 

given that 9 V = 88129, 10 V = 100001 and 19 V = 232012. 

Exercise 12.3 A profit test of a deferred annuity issued to ( 45) is to be carried 
out on the following basis: 

Survival model: 
Interest: 
Pre-contract expenses: 
Renewal expenses: 
Annuity payment expenses: 

Standard Ultimate Survival Model 
5% effective per year 
20% of the first premium 
$25 on each policy anniversary 
$15 each time an annuity payment is made. 
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The annuity is payable annually from age 65; the first annuity payment is 
$50 000, and payments increase by 2% each year. The annual premium, payable 
throughout the deferred period, is $26 100. 

(a) Calculate the emerging surplus at the end of years 1 and 2, per policy in 
force at the start of each year, and hence calculate NPV(2) using a risk 
discount rate of 10% per year. 

(b) Calculate the emerging surplus in the 30th policy year, per policy in force 
at the start of that year. Assume the annuity is paid at the start of each 
policy year. 

You are given that 1 V = 26 845, 2 V =54 924, 29 V = 768 919 and 
30 v = 753 464. 

Exercise 12.4 A five-year policy with annual cash flows issued to a life (x) 
produces the profit vector 

Pr = ( -360.98, 149.66, 14.75, 273.19, 388.04, 403.00)1
, 

where Pro is the profit at time 0 and Prt (t = 1, 2, ... , 5) is the profit at time t 
per policy in force at time t - 1. 

The survival model used in the profit test is given by 

qx+t = 0.0085 + 0.0005t. 

(a) Calculate the profit signature for this policy. 
(b) Calculate the NPV for this policy using a risk discount rate of 10% per year. 
(c) Calculate the NPV for this policy using a risk discount rate of 15% per year. 
(d) Comment briefly on the difference between your answers to parts (b) 

and (c). 
(e) Calculate the IRR for this policy. 

Exercise 12.5 A 10-year term insurance issued to a life aged 55 has sum 
insured $200 000 payable immediately on death, and monthly premiums of 
$100 payable throughout the tenn. 

Initial, pre-contract expenses are $500 plus 50% of the first monthly pre
mium; renewal expenses are 5% of each monthly premium after the first. The 
insurer earns interest at 6% per year on all cash flows and assumes the policy
holder is subject to the Standard Ultimate Survival Model. 

Calculate the profit vector at monthly intervals for this policy, assuming 
deaths occur at the mid-point of each month. 

Exercise 12.6 An insurer issues a four-year term insurance contract to a life 
aged 60. The sum insured, $100 000, is payable at the end of the year of death. 
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The gross premium for the contract is $1100 per year. The reserve at each year 
end is 30% of the gross premium. 

The company uses the following assumptions to assess the profitability of 
the contract: 

Survival model: 
Interest: 
Pre-contract expense: 
Renewal expenses: 
Claim expenses: 
Lapses: 

q6o = 0.008, q61 = 0.009, q62 = 0.010, q63 = 0.012 
8% effective per year 
30% of the first gross premium 
2% of each gross premium after the first 
$60 
None. 

(a) Calculate the profit vector for the contract. 
(b) Calculate the profit signature for the contract. 
(c) Calculate the net present value of the contract using a risk discount rate of 

12% per year. 
(d) Calculate the profit margin for the contract using a risk discount rate of 

12% per year. 
(e) Calculate the discounted payback period using a risk discount rate of 12% 

per year. 
(f) Determine whether the internal rate of return for the contract exceeds 50% 

per year. 
(g) If the insurer has a hurdle rate of 15% per year, is this contract satisfactory? 

Exercise 12.7 A life insurer issues a 20-year endowment insurance policy to 
a life aged 55. The sum insured is $100 000, payable at the end of the year 
of death or on survival to age 75. Premiums are payable annually in advance 
for at most 10 years. The insurer assumes that initial expenses will be $300, 
and renewal expenses, which are incurred at the beginning of the second and 
subsequent years in which a premium is payable, will be 2.5% of the gross 
premium. The funds invested for the policy are expected to earn interest at 
7.5% per year. The insurer holds net premium reserves, using an interest rate 
of 6% per year. The Standard Ultimate Survival Model is used for the premium 
and the net premium reserve calculations. 

The insurer sets premiums so that the profit margin on the contract is 15%, 
using a risk discount rate of 12% per year. 

Calculate the gross annual premium. 

Exercise 12.8 Repeat Exercise 12.7 assuming that the sum insured is paid 
immediately on death, premiums are payable monthly for at most 10 years 
and expenses are $300 initially and then 2.5% of each monthly premium after 
the first. 
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Exercise 12.9 A life insurance company issues a special 10-year term insur
ance policy to two lives aged 50 at the issue date, in return for the payment of 
a single premium. The following benefits are payable under the contract. 

• In the event of either of the lives dying within 10 years, a sum insured of 
$100 000 is payable at the year end. 

• In the event of the second death within 10 years, a further sum insured of 
$200000 is payable at the year end. (If both lives die within 10 years and in 
the same year, a total of $300 000 is paid at the end of the year of death.) 

The basis for the calculation of the premium and the reserves is as follows. 

Survival model: 

Interest: 
Expenses: 

Assume the two lives are independent with respect 
to survival and the model for each follows the 
Standard Ultimate Survival Model. 
4% per year. 
3% of the single premium at the start of each year 
that the contract is in force. 

(a) Calculate the single premium using the equivalence principle. 

(b) Calculate the reserves on the premium basis assuming that 

(i) only one life is alive, and 

(ii) both lives are still alive. 

(c) Using the premium and reserves calculated, determine the profit signature 
for the contract assuming: 

Survival model: As for the premium basis 
Interest: 8% per year 
Expenses: 1.5% of the premium at issue, increasing at 4% per year. 

Exercise 12.10 A five-year term insurance policy with annual cash flows issued 
to a life (x) produces the profit vector 

Pr = (-310, 436, 229, 94, -55, -217)', 

where Pro is the profit at time 0 and Pr1 (t = 1, 2, ... , 5) is the profit at timet 
per policy in force at time t - 1. This profit vector has been calculated without 
allowance for reserves. 

The survival model used in the profit test is given by Px+t = 0.987-0.001 t, 
and the interest rate is 5% per year. 

The insurer determines reserves by zeroization. Calculate the revised profit 
vector after allowance for reserves. 
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Exercise 12.11 A life insurance company issues a reversionary annuity pol
icy to a husband and wife, both of whom are aged exactly 60. The annuity 
commences at the end of the year of death of the wife and is payable subse
quently while the husband is alive, for a maximum period of 20 years after the 
commencement date of the policy. The annuity is payable annually at $10 000 
per year. The premium for the policy is payable annually while the wife and 
husband are both alive and for a maximum of five years. 

The basis for calculating the premium and reserves is as follows. 

Survival model: 

Interest: 
Expenses: 

Assume the two lives are independent with respect to 
survival and the model for each follows the Standard 
Ultimate Survival Model. 
4% per year. 
Initial expense of $300 and an expense of 2% of each 
annuity payment whenever an annuity payment is made. 

(a) Calculate the annual premium. 

(b) Calculate the NPV for the policy assuming: 

a risk discount rate of 15% per year, 

expenses and the survival model are as in the premium basis, and 

interest is earned at 6% per year on cash flows. 

Exercise 12.12 A life aged 60 purchases a deferred life annuity, with a five
year deferred period. At age 65 the annuity vests, with payments of $20 000 
per year at each year end, so that the first payment is on the 66th birthday. 
All payments are contingent on survival. The policy is purchased with a single 
premium. 

If the policyholder dies before the first annuity payment, the insurer returns 
her gross premium, with interest of 5% per year, at the end of the year of her 
death. 

(a) Calculate the single premium using the following premium basis: 

Survival model: f.Lx = 0.9(0.00022 + 2.7 X w-6 X 1.124x) for all X 

Interest: 6% per year before vesting; 5% per year thereafter 
Expenses: $275 at issue plus $20 with each annuity payment. 

(b) Gross premium reserves are calculated using the premium basis. Calculate 
the year end reserves (after the annuity payment) for each year of the 
contract. 
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(c) The insurer conducts a profit test of the contract assuming the following 
basis: 

Survival model: Standard Ultimate Survival Model 
Interest: 8% per year before vesting; 6% per year thereafter 
Expenses: $275 at issue plus $20 with each annuity payment. 

(i) Calculate the profit signature for the contract. 

(ii) Calculate the profit margin for the contract using a risk discount rate 
of 10% per year. 

Exercise 12.13 A speciallO-year endowment insurance is issued to a healthy 
life aged 55. The benefits under the policy are 

• $50 000 if at the end of a month the life is disabled, having been healthy at 
the start of the month, 

• $100 000 if at the end of a month the life is dead, having been healthy at the 
start of the month, 

s $50 000 if at the end of a month the life is dead, having been disabled at the 
start of the month, 

• $50 000 if the life survives as healthy to the end of the term. 

On withdrawal at any time, a surrender value equal to 80% of the net premium 
policy value is paid, and level monthly premiums are payable throughout the 
term while the life is healthy. 

The survival model used for profit testing is shown in Figure 12.2. The tran
sition intensities f-t~ 1 , f-t~2 , f-t~3 and Mi2 are constant for all ages x with values 
per year as follows: 

f-l~l = 0.01, M~2 = 0.015, /-l~3 = 0.01, M~2 = 0.03. 

Healthy 0 Disabled 1 

~ 
Withdrawn3 Dead2 

Figure 12.2 Multiple state model for Exercise 12.13. 



12.10 Exercises 429 

Other elements of the profit testing basis are as follows. 

• Interest: 7% per year. 
• Expenses: 5% of each gross premium, including the first, together with an 

additional initial expense of $1000. 
• The benefit on withdrawal is payable at the end of the month of withdrawal 

and is equal to 80% of the sum of the reserve held at the start of the month 
and the premium paid at the start of the month. 

• Reserves are set equal to the net premium policy values. 
e The gross premium and net premium policy values are calculated using the 

same survival model as for profit testing except that withdrawals are ignored, 
so that fk~3 = 0 for all x. 

e The net premium policy values are calculated using an interest rate of 
5% per year. 

The monthly gross premium is calculated using the equivalence principle on 
the following basis: 

• Interest: 5.25% per year. 
• Expenses: 5% of each premium, including the first, together with an addi

tional initial expense of $1000. 

(a) Calculate the monthly premium on the net premium policy value basis. 
(b) Calculate the reserves at the start of each month for both healthy lives and 

for disabled lives. 
(c) Calculate the monthly gross premium. 
(d) Project the emerging surplus using the profit testing basis. 
(e) Calculate the internal rate of return. 
(f) Calculate 

(i) the NPV, 
(ii) the profit margin (using the EPV of gross premiums), 

(iii) the NPV as a percentage of the acquisition costs, and 
(iv) the discounted payback period for the contract, 

in all cases using a risk discount rate of 15% per year. 

12.1 $15.36 
12.2 (a) $773.86, 

(b) $2172.10 

Answers to selected exercises 

12.3 (a) $580.70, $688.11, -$4067.02 
(b) $3503.74 
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12.4 (a) ( -360.98, 149.66, 14.62, 268.43, 377.66, 388.29)' 
(b) $487.88 
(c) $365.69 
(e) 42.7% 

12.5 Selected values are Pr3o = 54.53 and Pr84 = 28.75, measuring time in 
months 

12.6 (a) (-330.00, 60.16, 293.07, 193.34, 319.92)' 
(b) (-330.00, 60.16, 290.73, 190.07, 311.36)' 
(c) $288.64 
(d) 7.8% 
(e) 3 years 
(f) No (The IRR is 42%.) 
(g) Yes 

12.7 $4553.75 
12.8 $394.27 (per month) 
12.9 (a) $4180.35 

(b) Selected values are (i) 4 V = $3126.04, and (ii) 4 V = $3146.06 
(c) Selected values are ITo = -$62.71, Ils = $177.03 and Il10 = 

$62.52 
12.10 ( -310, 436, 89.68, 0, 0, 0)' 
12.11 (a) $1832.79 

(b) $779.26 
12.12 (a) $192 805.84 

(b) Selected values are 4 V = $243 148.51 and 10 V = $226 245.94 
(c) (i) Selected values are I14 = $4538.90 and Il1o = $2429.55 

(ii) 14.8% 
12.13 (a) $452.00 

(b) Selected values are 4 yCOJ = 15 613.44 and 4 yCI) = 7157.17, and 
8 yCOJ = 36 761.39 and 8 y(l) = 2769.93 (time in years) 

(c) $484.27 
(d) Selected values are $35.48 and $11.43 at time 4 years, and $72.27 

and $4.54 at time 8 years, for states 0 and 1 respectively. 
(e) 32.7% 
(f) (i) $992.29 

(ii) 3.84% 
(iii) 97% 
(iv) 5 years and 5 months 
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Participating and Universal Life insurance 

13.1 Summary 

In this chapter we introduce two forms of variable insurance. Participating, or 
with-profit life insurance introduces variability in the cash flows of whole life 
or endowment insurance through a profit sharing arrangement. Universal Life 
insurance is a form of whole life (or endowment) insurance, with some profit 
sharing incorporated in the design, and which also has more flexible payment 
schedules than traditional insurance. 

We demonstrate how to use the profit testing techniques from Chapter 12 
to analyse a participating whole life insurance contract, and we consider the 
impact of different methods of paying the policyholder's share of profits. 

We then introduce the language, notation and policy terms for Universal 
Life insurance, and demonstrate how these policies may also be analysed using 
profit testing. 

Finally, we discuss how a Universal Life policy can mimic the payoffs of a 
traditional whole life or endowment policy. 

13.2 Introduction 

Life insurance and annuity products serve a range of purposes for customers. 
Term insurance, offering death benefit cover, for limited periods, to younger 
lives in good health, is usually intended to provide protection against financial 
hardship arising from the death of the policyholder. Most term insurance poli
cies expire without any payment to the policyholder. There are no cash values 
on surrender. Individuals do not buy term insurance for the investment bene
fits; they buy term insurance to indemnify their families against the financial 
consequences of the death of the insured life. 

The purpose of whole life insurance (also known as permanent insurance) 
or endowment insurance is different. For these policies, a benefit payment, on 
death or surrender or, for endowment insurance, on survival to maturity, is 

431 
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almost inevitable. The exception would be a surrender during the early years 
of a contract, when no payment would be made, allowing the insurer to recover 
any outstanding acquisition costs. There are some special whole life policies 
issued without surrender benefits, but the more traditional whole life insurance 
should offer significant surrender values at longer durations. The purpose of 
the whole life insurance policy is to provide an efficient, secure investment, 
either for enhancing the policyholder's bequest to their heirs, or for the pol
icyholder them~elves to enjoy, where the benefit is paid before their death. 
Because endowment insurance is relatively rare in most developed markets, we 
focus on whole life insurance in this chapter, but if we assume that the policy is 
surrendered by policyholders reaching a very advanced age, with appropriate 
cash value on surrender, the analysis of whole life and endowment policies is 
very similar. 

So, whole life policies combine insurance and investment objectives, and 
this creates risk for both the insurer and the policyholder, especially for the 
traditional contract design with fixed premiums and benefits. A life who is in 
middle age at the inception of a policy may have an expected contract term of 
over 40 years, much longer than the term of almost all available fixed inter
est investments. Suppose the insurer is pricing a whole life policy at a time 
when long-term interest rates of 7% per year are available, for a 25-year invest
ment. The insurer may calculate the premium assuming 6% per year interest, 
allowing the difference of 1% (the interest spread) to cover profit and allow 
a margin for adverse experience. The risk to the insurer is that, on reinvest
ment, interest rates may fall below 6% per year, in which case they would not 
be sufficient to support the benefits. On the other hand, if the insurer is more 
cautious, perhaps assuming only 4% per year interest, the investment part of 
the policy will look quite unattractive for the customer, compared with the 7% 
per year available from direct investment. 

One solution to this problem is to make benefits or premiums more flexible, 
in particular to be more responsive to the investment experience of the under
lying assets. Introducing flexibility removes the need for the insurer to be so 
cautious in its pricing assumptions. It also allows the insurer more investment 
freedom, with the potential for better returns than those achieved by locking 
in fixed rates, and the investment profits would then be shared with the poli
cyholders. This is the principle behind the development of participating insur
ance, where 'participating' means participating in the distribution of profits. 
Participating insurance is also called 'par' insurance for short, and is more 
commonly called 'with-profit' outside North America. 

A traditional participating policy would have level premiums and benefits, 
similar to a non-participating (non-par or without-profit) contract. The pre
mium would be set on a fairly conservative basis, meaning that it is designed 
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to be more than adequate to pay the fixed benefits. As surpluses emerge, a 
portion is returned to the policyholders, and the rest is retained by the com
pany. The policyholders' share of profits can be distributed in different ways, 
including cash payments, or through increasing the sum insured. We discuss 
the range of distribution methods more fully in Section 13.3.3. 

Participating insurance was very popular for many years, as profit sharing 
proved to be a very creative way to solve the problems arising from the need 
to set premiums and benefits for very long-term contracts. However, the tra
ditional form has drawbacks that led to a decline in popularity. Policyholders 
sign up for decades of premiums; when circumstances change, a policyholder 
may not be able to continue paying the premiums. A policyholder can sur
render the contract, for a cash value, but the cash value could be quite poor. 
Insurers prefer policyholders not to surrender their whole life policies, so they 
may offer low cash values to create disincentives for policyholders to sunen
der, and to generate surpluses from those who do. Even when profits can be 
used to offset premiums, there still may not be sufficient flexibility for policy
holders who find themselves unable to continue to pay the premiums for the 
policy. Insurers found participating insurance sales declining as middle-income 
households found more opportunities to invest more directly in capital markets, 
through pooled investment arrangements such as mutual funds. More recently, 
however, insurers in North America have found customers increasingly inter
ested in the traditional par products, perhaps in response to increased concerns 
over market volatility. Participating insurance therefore remains an important 
product in North America and in some emerging markets. 

To create insurance policies that could compete with the flexibility and up
side potential of mutual fund type investments, insurers devised a range of new 
style, variable contracts, with greater flexibility, greater transparency, and with 
profit sharing integrated in the policy design. These modern contracts can be 
placed in two broad categories. The first, which we might call flexible insur
ance, is developed from the traditional insurance model, with added flexibility 
in premiums and benefits, and increased emphasis on the investment returns, 
compared with traditional with-profits insurance. The second category, which 
we call equity-linked insurance, or separate account insurance, uses the mutual 
fund investment as a starting point, and adds in elements of insurance, such 
as additional life insurance benefits, and guaranteed minimum payments. We 
discuss equity-linked insurance in subsequent chapters. In this chapter we first 
discuss the traditional participating insurance design, using the profit test to 
analyse the impact of the participation. We then introduce the form of flexible 
insurance known as Universal Life insurance, which is a very popular prod
uct in North America. We then use the profit testing framework to compare 
Universal Life and participating insurance. 
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13.3 Participating insurance 

13.3.1 Introduction 

A standard participating policy is issued with a schedule of level premiums and 
a fixed sum insured. The premiums are priced conservatively, perhaps by using 
a significant margin in the interest rate assumption - that is, by assuming a low 
interest rate in the premium calculation, compared with the rates expected to 
be earned. As funds from premiums and reserves are invested, higher returns 
will generate surplus. There may also be profits from other loadings and mar
gins, and from favourable experience, for example with respect to mortality, 
expenses or lapses. 

The profits from non-participating policies belong to the insurer. The profits 
from a portfolio of participating policies are shared between the policyholders 
and the insurer, usually in pre-specified proportions. The payments of share of 
profits to policyholders are called dividends in North America, and bonuses 
elsewhere. In this chapter we use the term 'dividend' when the profit share 
is distributed in the form of cash (or cash equivalent, such as a reduction in 
premium), and 'bonus' when the profit share is distributed in the form of addi
tional insurance. In fact, the form of distribution is an important design feature 
for participating insurance, with different jurisdictions favouring different dis
tribution methods, with the following being the most common. 

Cash refunds may be distributed at regular (e.g. annual) intervals, based on 
the profit emerging in the preceding year. 

Premium reductions work very similarly to cash refunds. The profit allo
cated to the policyholder for the year may be used to reduce the premi
ums due in the period to the subsequent allocation date. 

Increased death benefits are determined by applying the emerging profit 
to purchase additional death benefit cover; this also affects cash values. 

Additional benefits may be purchased, such as extra term insurance. 

There are many variants of these methods. It is common in North America for 
policyholders to be given some choice about the distribution - for example, 
offering a premium reduction as a standard benefit, but with options to convert 
to additional whole life or term insurance. If there are no premiums due -
for example, for single or limited premium contracts - the policyholder may 
receive the cash dividend, may convert it to additional benefit, or may leave it 
with the insurer until the policy is surrendered or matures. 

In the UK, profits are invariably distributed in the form of benefit increases. 
Bonuses are awarded in two stages. Reversionary bonuses are applied to con
tracts in force, increasing the benefits by a specified percentage. There are three 
variations: 
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• simple reversionary bonus means the bonus rate is applied to the original 
sum insured only; 

• compound reversionary bonus means the bonus rate is applied to the total of 
the sum insured and previous reversionary bonuses; 

• super-compound reversionary bonus is a method with two bonus rates each 
year, the first applying to the original sum insured, and the second applying 
to the total of previous bonus declarations. 

Terminal bonuses are used to top up the sum insured when the benefit is fi
nally paid. Separating the profit share into reversionary and terminal bonuses 
allows insurers to take a more cautious attitude to distributing unrealized capital 
gains. 

It is important to note that for all traditional participating insurance, divi
dends and bonuses are never negative. Only profits are shared, not losses. 

13.3.2 Examples 

Example 13.1 A life aged 60 purchases a participating whole life contract. The 
sum insured is $100 000, payable at the end of the year of death. Premiums of 
$2300 are payable annually in advance. 

Reserves are calculated using net premium policy values, modified using the 
full preliminary term approach, assuming an interest rate of 5% per year. 

Cash values are $0 for the first four years, 10% of the year end reserve for 
surrenders in the fifth year, 20% in the sixth year, 30% in the seventh year, and 
continue increasing at the same rate to 90% of the year end reserve in the 13th 
year. All policies surrendering after the 13th year receive a surrender benefit of 
90% of the year end reserve. In addition, all surrendering policyholders receive 
the cash dividend due for their final contract year. 

Construct the profit test and determine the NPV and the profit margin of this 
contract to the insurer, using the following assumptions. 

• The survival model is the Standard Ultimate Survival Model. 
• For the first nine years, 5% of the surviving in-force policyholders are 

assumed to surrender their contracts at each year end; from the lOth to the 
29th years, 7.5% of survivors surrender at each year end. All surviving pol
icyholders are assumed to surrender at the end of the 30th year. 

• Premiums and reserves earn an investment return of 6% per year. 
• 90% of surplus emerging each year from the second policy anniversary 

onwards is distributed to the policyholders as a cash dividend. No dividend 
is payable in the first policy year. No dividend is declared if the surplus 
emerging is negative. 

• Initial, pre-contract expenses are $1800, assumed incurred at time t = 0. 
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Table 13.1 Profit vector calculation for the participating whole life policy, 

with cash dividends; Example 13.1. 

t t-1 v P-Et It EDBt ECVt EtV Prt- DiVt Prt 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

0 -1800 -1800 0 -1800 
1 0 2200 132 340 0 0 1992 0 1992 
2 0 2200 132 379 0 1699 254 228 25 
3 1795 2200 240 423 0 3448 364 327 36 
4 3645 2200 351 473 0 5246 477 429 48 
5 5548 2200 465 529 37 7091 556 500 56 
6 7504 2200 582 591 95 8983 618 556 62 

28 58149 2200 3 621 7224 3780 51800 1166 1049 120 
29 60361 2200 3754 8080 3 879 53157 1199 1079 120 
30 62518 2200 3883 9033 52901 0 6667 6001 667 

• Premium expenses of $100 are incurred with each premium payment, includ
ing the first. 

• The risk discount rate for determining the NPV is 10% per year. 

Solution 13.1 We show the first and last few rows of the profit test in 
Table 13.1. Details of the column calculations are given below. Some numbers 
in the table are rounded for presentation. 

( 1) t denotes the tth policy year, from time t - 1 to time t, except that t = 0 
denotes time 0 when pre-contract expenses are incurred. 

(2) gives the reserve brought forward each year. The full preliminary term 
policy value has o V = 1 V = 0, and fort = 2, 3, ... is calculated as the 
net premium policy value for a contract issued one year later (in this case 
to a life aged 61). Thus, the full preliminary term policy value can be 
calculated as follows, where S = 100 000 denotes the sum insured: 

= s (1 _ a~o+t) . 
a61 

S A61 
where P* = -.-. - = 2064.47 

a61 

All annuity and insurance factors are calculated at 5% per year, using the 
Standard Ultimate Survival Model. Hence, for example, 

4 v = s 1 - - = s 1 - = 5 548. ( ll64) ( 13.8363) 
ll61 14.6491 
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Alternatively 

4 V = SA64- P*ii64 = 0.34113 S- 13.8363 P* = 5 548. 

(3) shows P - E 1 , the prenrium received less expenses incurred at the start 
of the year. 

( 4) shows 11, the interest on funds invested in the tth year. The assumed return 
' is 6% per year, so, for example, 

!4 = 0.06 (3 V + P- £4) = 0.06 (3 644.88 + 2 300- 100) = 350.69. 

(5) shows the expected death benefit at timet, denoted EDB1 , for a policy in 
force at the start of the year, i.e. at time t - 1. We have 

EDB1 = S x p~g+t- 1 
where p~~1_ 1 is the probability of a death benefit claim in the tth year, 
given that the policy is in force at the start of the year. In this case, this is 
equal to the mortality rate qx+t-1 under the Standard Ultimate Survival 
Model, as all withdrawals are assumed to take place at the year end. Note 
that the expected death benefit does not include the dividend paid in the 
tth year. 

(6) shows the expected cash value payment at timet, denoted ECVt. for a 
policy in force at the start of the year. The probability of surrender is 

P~~t-1 = (1 - P~~t-1) q;w 
where p~~1_ 1 is as above, and q7w is the probability of surrender for a 
policy that is in force at the end of the tth year - that is, q;w = 0.05 for 
t = 1, 2, ... , 9, q7w = 0.075 fort = 10, 11, ... , 29 and q;0 = 1. 

The cash value is, say, h1 1 V for surrenders at time t, where 

h1 = 0 fort= 1, 2, 3, 4; hs = 0.1, h6 = 0.2, ... , h12 = 0.8 

and h1 = 0.9 fort 2:: 13. 

The expected cash value is the product of the probability of surrender 
and the cash value paid on surrender under the profit test assumptions, so, 
for example, 

ECVs = p~4 x 0.1 x s V = (0.99471 x 0.05) x 0.1 x 7504.02 = 37.32 

and 

ECV3o = p~if X 0.9 X 30 V = 0.90967 X 0.9 X 64 615 =52 901. 

Note that policyholders who surrender at the year end will be eligible for 
a share of the profit emerging during the year. The expected cash value 
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calculated in this column is the cash value arising without taking the year 
end share of profit into consideration. 

(7) shows the expected cost of the reserve carried forward, denoted Et V, for 
policies remaining in force at the year end, given the policy was in force 
at the start of the year. For example, the probability that a policy is in 
force at time 5 given that it is in force at time 4 is 

p~g = 1 - p~£ - P~4 = 0.94498 

so that 

Es V = p~g 5 V = 0.94498 X 7504.02 = 7091.12. 

(8) shows Prt-, the profit emerging at time t for a policy in force at time 
t - 1, before sharing the profits between the insurer and the policyholder. 
Hence, for example, 

Prs- = 4 V +P-Es+ Is - EDBs - ECVs - Es V = 555.68. 

(9) shows Divt, the share of profits (or dividend) distributed to policyholders, 
per policy in force at timet - 1, which is 90% of the pre-dividend profit, 
or 0 if greater. Hence, for example, 

Divs = 0.90 x 555.68 = 500.11. 

(10) shows Prt. the insurer's surplus emerging at time t per policy in force 
at time t - 1, which is the balance of surplus after tl).e policyholder's 
dividend. Hence, for example, 

Prs = Prs-- Divs = 55.57. 

We calculate the NPV and profit margin from the profit vector, Pr, following 
the usual procedure from Chapter 12, giving a NPV of $303.79, and a profit 
margin of 1.96%. D 

Example 13.2 Repeat Example 13.1 above, but assume now that for policies 
remaining in force at each year end, the dividend is converted to an addition 
to the sum insured as a reversionary bonus. If the policyholder exits by death 
or surrender, they are paid the full cash dividend at the year end, in addition to 
any benefits based on the bonuses declared in the previous years. For example, 
death claims in the tth year are based on the bonuses up to the end of the 
(t - l)th year, and then are supplemented with the tth year cash dividend as 
part of the distribution of profit. 
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Table 13.2 Profit vector calculation for the participating whole life policy, 
with reversionary bonuses; Example 13.2. 

t t-1 v P-Et It EDBt- ECVt- Et-V Prt- DiVt Prt 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 

0 -1800 -1800 -1800 
1 0 2200 132 340 0 0 1992 0 1992 
2 0 2200 132 379 0 1699 254 228 25 
3 2024 2200 253 426 0 3673 378 340 38 
4 4223 2200 385 481 0 5 814 513 461 51 
5 6610 2200 529 545 43 8135 616 554 62 
6 9163 2200 682 619 112 10611 703 632 70 

28 89167 2200 5482 10388 5765 78999 1697 1527 170 
29 93 581 2200 5747 11790 5 983 81990 1765 1588 176 
30 98018 2200 6013 13 374 82541 0 10 316 9-284 1032 

The additional sum insured is calculated using the Standard Ultimate Sur-
vival Model and an interest rate of 5% per year, following the reserve 
assumptions. 

(a) Determine the profit vector, NPV and profit margin. 

(b) Determine the cash value for policyholders surrendering after 30 years. 

(c) Determine the reversionary bonus rates applying each year, assuming (i) 
simple reversionary bonus rates, (ii) compound reversionary bonus rates, 
and (iii) super-compound reversionary bonus rates, with a maximum rate 
of 1.4% of the sum insured, and the remainder of the bonus (if any) 
expressed as a percentage of the total bonus previously declared. 

Solution 13.2 (a) Table 13.2 summarizes the profit test calculations for this 
example and has the same format as Table 13.1, but note that the headings 
for columns (5), (6) and (7) now have the subscript t- rather than t to 
indicate that they show the expected costs of the death benefit, cash value 
and reserve for the next year before the distribution of surplus at the end 
of the year. The only difference between this example and Example 13.1 is 
in the distribution of the surplus. Since no dividend is payable in the first 
policy year, the entries for t = 0 and 1 are the same as the corresponding 
entries in Table 13 .1. 

Now consider the entries for t = 2 in Table 13.2. For columns (2) to 
(7) these are the same as in Table 13.1 since they are calculated before the 
distribution of surplus at the end of the year. Hence, the profit to the insurer 
at the end of the year before the distribution of surplus, Prz- in column (8), 
is the same as the corresponding entry in Table 13.1. This profit, $254, is 

,~.,] _____________________ _ 
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the expected profit to the insurer for each policy in force at the start of the 
second policy year. Under the terms of the policy, 90% of this profit, $228, 
is given to the policyholder. Policies in force at the start of the year can, at 
the end of the year, be divided into three groups: 

(i) those where the policyholder has died in the year, 

(ii) those where the policyholder surrenders the policy at the end of the 
year, and, 

(iii) those still in force at the start of the third year. 

Group (i) receive their dividend as an addition to their death benefit and 
group (ii) receive theirs as an increase to their surrender value. These pay
ments do not affect the insurer's profit. Nor does the dividend paid to group 
(iii), but this needs to be considered more carefully. 

Let B1 denote the bonus declared at the end of year t and RB1 denote the 
total bonus declared up to and including year t, so that RB1 =RBt-l + B1• 

The dividend at the end of year 2 for group (iii), $228, is used to increase 
their sum insured by an amount Bz, where 

Bz = 228/ A62 = $725. 

Before the payment of the dividend, the sum insured was $100 000 and 
the cost of setting up a reserve for this at the end of year 2 was $1699 per 
policy in force at the start of the year; this is shown as Ez- V in Table 13.2. 
The reserve required at the start of year 3 for each policy then in force is 
2024 = 1795 +,228 (allowing for rounding), where $1795 is the reserve 
for the sum insured of $100000 (see Table 13.1) and $228 is the cost of 
the extra reserve required for the bonus. Note that this extra cost is equal 
to the dividend because the bonus is calculated using the reserve basis. It 
is important to note that there is no additional cost to the insurer at the 
end of year 2 of setting up this extra reserve; the insurer just retains the 
dividend of $228 allocated to each continuing policyholder. Consequently, 
the insurer's profit at the end of year 2, after allowing for the distribution 
of dividends, Prz, is 10% of Prz-, and is the same as Prz in Table 13.1. 
However, from year 3 onwards the entries in Tables 13.1 and 13.2 differ 
because the increased reserves in the latter affect the profit calculation. 

Consider the entries fort= 3 in Table 13.2. The insurer's profit, before 
the distribution of dividends, is 

Hence, the dividend for each policy in force at the start of the year, Div3, is 
0.9 x 378 = 340 and the insurer's remaining profit is Pr3 = $38. For poli
cies continuing into year 4, the dividend of $340 is converted to a bonus 



t 

1 
2 
3 
4 
5 
6 

28 
29 
30 

13.3 Participating insurance 

Table 13.3 Bonuses and bonus rates(%)- simple, compound and 
super-Compound -for Example 13.2. 

Bonuses Bonus rates 
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Super Compound 

Bt RBt Simple Compound Sum Insured Bonus 
$ $ % % % % 

0 0 0.00 0.00 0.00 0.00 
725 725 0.73 0.73 0.73 0.00 

1037 1762 1.04 1.03 1.04 0.00 
1352 3115 1.35 1.33 1.35 0.00 
1562 4677 1.56 1.51 1.40 5.20 
1715 6392 1.72 1.64 1.40 6.74 

2110 45918 2.11 1.47 1.40 1.62 
2151 48068 2.15 1.47 1.40 1.64 

12327 60395 - - - -

of amount B4 = $1037 so that the total bonus for each of these policies, 
RB3, is $17 62. The extra reserve required to cover this increase in the sum 
insured for continuing policyholders is equal to the amount of the divi
dend, $340. This dividend is retained by the insurer, so, as at the end of 
year 2, there is no additional cost to the insurer in setting up this extra 
reserve. 

The profit signature for the contract is determined by applying the time 
t - 1 survival probabilities to the profit vector entries, after distribution of 
surplus, so 

The NPV of the policy is $354.47 and the profit margin is 2.28%. The use 
of reversionary bonus results in a higher profit for the insurer, compared 
with the cash bonus in Example 13.1, because more funds are retained 
under the insurer's management, which increases the projected profit from 
the interest spread - that is, the difference between the valuation interest 
assumption (5% per year) and the projected earned rate (6% per year). 

(b) The cash value at time t = 30 is 90% of the reserve at the end of year 30 
(before bonus), plus the cash dividend (which is 90% ofPr3o-), so 

CV3o = 0.9 ((S + RB29)A9o- P*a90) +0.9 x 10316 

= 90 737 + 9284 

= $100021. 
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(c) The bonus rates are shown in Table 13.3. To calculate these rates, let St 
denote the sum insured in the tth year, with S1 = S. As the difference 
between the sums insured in years t and t + 1 is the bonus declared at the 
end of the tth year, St+ 1 - St = Bt. 

- Let bt denote the rate of simple reversionary bonus declared at the end of 
the tth year. Then, as bonus applies only to the initial sum insured of S, 

gives bt = Bt IS. 
- Next, let bt denote the rate of compound reversionary bonus declared at 

the end of the tth year. Then, as bonus applies to the initial sum insured 
and all previously declared bonuses, 

gives bt =Btl St. 
- Let I.Xt denote the rate of bonus that applies to the initial sum insured of 

S at the end of the tth year, and let f3t denote the rate that applies to the 
previously declared bonuses. Then 

St+1 = St +at S + f3t RBt-1· 

Recall that the maximum rate of bonus on S is 1.4%. Thus, if 

St+1 ::=:: St + 0.014S, we have I.Xt = 0.014. If St+1 < St + 0.014S, then 

St+1 = St +at S, 

giving I.Xt = Bt/S, and hence f3t =0. If I.Xt =0.014, then 

St+1 = St + 0.014S + f3t RBt-1, 

giving f3t = (Bt- 0.014S)/ RBt-1· In summary, 

at= min(Bt/S, 0.014), 

f3t = max((Bt- 0.014S)jRBt-1, 0). 

The discontinuities appearing around times t = 5, t = 10 and t = 30 
arise because of the shift in the assumed withdrawal rates and cash values 
for surrendering policyholders at those dates. The bonus on bonus rates 
under the super-compound system appear very volatile in the early years, l 
but that is not too significant financially, as the amounts of accumulated 
bonus (the denominator for the bonus-on-bonus rates) are small. 

In practice, the insurer would announce the same bonus rates for all 
policies, so a bonus system that creates reasonably constant rates for 
policies of different durations is preferred. 0 
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Some points to note about Example 13.2 are: 

(1) It may not always be the case that the full dividend emerging is awarded 
on death or surrender. The insurer may, for example, award no dividend to 
surrendering policyholders, in which case the calculation of bonus would 
change. 

(2) The method of distributing cash dividends to exiting policyholders in this 
example is not necessarily realistic. In Exercise 13.5 a different system for 
determining bonuses is proposed, where the bonus rate is determined first, 
and the payments for deaths and surrenders are based on the updated total 
reversionary bonus, rather than the previous total plus cash dividend, as in 
this example. 

(3) In the year from time t - 1 to time t, for t = 3, 4, ... , 30, the reserve 
brought forward is 

t-1 V = (S + RBr-l) A6o+t-l - P* a60+t-l 

where P* = $2064.47 is the net premium based on the original sum insured, 
which we found in Example 13 .1. Note that the net premium used, P*, is 
not affected by the bonus declarations. This means that the formula for 
policy values that uses (1 - a60+t /a61) per $1 of death benefit no longer 
works, as the bonus changes the death benefit without changing the net 
premium. 

13.3.3 Notes on profit distribution methods 

Distribution methods for participating insurance have an important impact on 
the management of risk, and on the techniques for pricing and marketing of 
policies. We note some of the more important considerations here, but a more 
in-depth analysis is beyond the scope of this text. 

• Cash dividends are attractive to policyholders; they are easy to understand, 
and offer flexibility. If a policyholder is in financial difficulty, the cash may 
enable the policyholder to maintain the policy longer, as it can be used to 
offset premiums. 

• If the policyholder prefers extra death cover to cash, the cash bonus can be 
used to buy more insurance - but at greater cost, probably, than the rever
sionary bonus, if the new insurance means there is a new set of acquisition 
expenses. 

• Cash dividends may be taxable, and if the policyholder has no need for the 
cash, it is not likely to be a tax-efficient asset. 
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• Reversionary bonuses are more complex for policyholders to understand, 
but do offer a tax efficient distribution that is consistent with the purpose of 
the policy- to provide mortality benefit over long terms. 

• Insurers may offer limited participation for policies that are surrendered, 
leading to potential issues of loss of trust and policyholder dissatisfaction. 

• Cash dividends require the insurer to liquidate assets, which may not be in 
the best interests of maximizing return. Reversionary bonus remains under 
the insurer's management, and so reduces the liquidity risk, and also pro
vides more potential for profit (and loss) for the insurer. 

• Generally, insurers prefer to offer smooth bonuses and dividends, that is, 
with little variation from year to year. This is generally easier with rever
sionary and terminal bonus, as the actual payment is delayed until the policy 
matures. 

• Cash dividends are expensive to operate, if every policyholder is issued a 
cheque each year. 

In the UK, with-profit insurance was often issued with a target reversionary 
bonus rate specifically assumed in the premium. The actual bonus rate declared 
could be higher or lower than the target. Insurers used the flexibility from the 
with-profit design to invest much more heavily in more variable investments, 
such as stocks and shares. Non-participating business is more lik'ely to be sup
ported predominantly by fixed interest investments. The with-profit contract 
is still an important part of the in-force insurance business in the UK, but lit
tle new business is sold. In North America the distributed profits tend to be 
smaller, as a proportion of the original benefits, compared with the UK poli
cies. The margins for profit are smaller, which offers stronger guarantees for 
policyholders, but less investment flexibility for insurers. 

13.4 Universal Life insurance 

13.4.1 Introduction 

Universal Life (UL) insurance is a very important product; particularly in North 
America. It is generally issued as a whole life contract, but with transparent 
cash values allowing policyholders the flexibility to use it more as an endow
ment insurance. The policyholder may vary the amount and timing of pre
miums, within some constraints. The premium is deposited into a notional 
account, which is used to determine the death and survival benefits. The account 
is notional because assets are not actually segregated from the insurer's general 
funds (unlike equity-linked insurance, which we discuss in Chapter 14). 

The insurer shares the profits through the credited interest rate which is 
declared and applied by the insurer at regular intervals (typically monthly). 
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The policy contract specifies a minimum value for the credited interest rate, 
regardless of the investment performance of the insurer's assets. The notional 
account, made up of the premiums and credited interest, is subject to monthly 
deductions (also notional); there is a charge for the cost of life insurance cover, 
and a separate charge to cover expenses. The account balance or account 
value is the balance offunds in the notional account. Note that the cost of insur
ance and expense charge deductions are set by the insurer, and need not be the 
best estimate of the anticipated expenses or insurance costs. In the profit test 
examples that follow in this section, the best estimate assumptions for incurre~ 
expenses and for the cost of death benefits are quite different from the charges 
set by the insurer for expenses and the cost of insurance. The account value 
represents the insurer's liability, analogous to the reserve under a traditional 
contract. The account value also represents the cash value for a surrender
ing policyholder, after an initial period (typically 7-10 years) when surrender 
charges are applied to ensure recovery of the acquisition costs. 

In this section we consider the basic UL policy, which may be viewed as a 
variation of the traditional participating contract. We have simplified the terms 
of a standard UL policy to demonstrate the key principles. The most obvious 
simplification is that we have assumed annual cash flows where monthly would 
be more common. We have also assumed a fixed term for the UL contracts 
in the examples, even though UL contracts are generally whole life policies. 
However, it would be common for policyholders to use the contracts for fixed 
horizon planning, and the policy design assumes that most policies will be 
surrendered as the policyholder moves into retirement. 

13.4.2 Key design features 

Death benefit On the policyholder's death the total benefit paid is the 
account value of the policy, plus an additional death benefit (ADB). 

The ADB is required to be a significant proportion of the total death 
benefit, except at very advanced ages, to justify the policy being consid
ered an insurance contract. The proportions are set through the corridor 
factor requirement which sets the minimum value for the ratio of the 
total death benefit (i.e. account value + ADB) to the account value at 
death. In the US the corridor factor is around 2.5 up to age 40, decreas
ing to 1.05 at age 90, and to 1.0 at age 95 and above. 

There are two types of death benefit, Type A and Type B. 

Type A offers a level total death benefit, which comprises the account 
value plus the additional death benefit. As the account value increases, 
the ADB decreases. However the ADB cannot decline to zero, except at 
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very old ages, because of the corridor factor requirement. For a Type A 
UL policy, the level death benefit is the face amount of the policy. 

Type B offers a level ADB. The amount paid on death would be the 
account value plus the level ADB selected by the policyholder, provided 
this satisfies the corridor factor requirement. 

Premiums may be subject to some minimum level and payment term, but 
otherwise are highly flexible. 

Expense charges are expressed as a percent of account value, or of premi
ums, and may also include a flat fee. It may be referred to as the MER, 
for Management Expense Rate, a term used more widely for mutual fund 
investment. The expense charge is deducted from the account value, at 
rates which are variable at the insurer's discretion, subject to a maximum 
which is specified in the original contract. 

Credited interest is usually determined at the insurer's discretion, but may 
be based on published rates, such as yields on government bonds. A min
imum guaranteed annual credited interest rate is specified in the policy 
document. 

Cost of insurance (Col) is the charge deducted from the policyholder's 
funds to cover the cost of the death benefit cover. Usually, the Col is 
calculated using an estimate (perhaps conservative) of the mortality rate 
for that period, which is known as the Col rate. As the policyholder 
ages, the mortality charge (per $1 of ADB) increases, so the Col can 
be interpreted as the single premium for a one-year term insurance with 
sum insured equal to the ADB, assuming mortality equal to the Col rate 
discounted to the start of the period of insurance. The rate of interest 
used to determine the COl may differ from the credited rate. 

Not all UL has increasing Col. 'Level Col' policies treat the death 
benefit cover as traditional term or whole life insurance, with a level risk 
premium through the term of the contract deducted from the account 
value. 

Surrender charge If the policyholder chooses to surrender the policy, the 
surrender value paid will be the policyholder's account balance reduced 
by a surrender charge. The main purpose of the surrender charge is to 
ensure that the insurer receives enough to pay its acquisition expenses. 
The total sum available to the policyholder on surrender is the account 
value minus the surrender charge (or zero if greater), and is referred to 
as the cash value of the contract at each duration. 

No-lapse guarantee An additional feature of some policies is the no-lapse 
guarantee, under which the death benefit cover continues even if the 
account value declines to zero, provided that the policyholder pays a 
pre-specified minimum premium at each premium date. This guarantee 
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could apply if expense and mortality charges increase sufficiently to 
exceed the minimum premium. The policyholder's account value would 
support the balance until it is exhausted, at which time the no-lapse guar
antee would come into effect. 

13.4.3 Projecting account values 

The insurer must determine appropriate schedules for expense charges and 
cost of insurance charges to create a contract that is marketable and profitable. 
An important objective of the UL policy is transparency; the policyholder can 
see her account value growing, can identify the expense and cost of insurance 
deductions. She will see the credited interest rate and will therefore have some 
measure of the success of the contract as an investment. 

We will illustrater how account values accumulate with the simplifying 
assumption of annual cash flows. First, we introduce some notation. 

AV1 denotes the policyholder's account value at timet. 
ECt denotes the expense charge deducted from the account value at the 

beginning of the tth year. 
Colt denotes the cost of insurance deducted from the account value at the 

beginning of the tth year. 
if denotes the credited interest rate applied to investments during the tth 

year. 
P1 denotes the premium paid at the start of the tth year. 
DB1 denotes the death benefit cover in the tth year. 
CV1 denotes the cash value paid on surrender at the end of the tth year. 

Then the fundamental equation of a UL policy is the following recursion: 

(AVt-1 + Pt- ECt- Colt) (1 +if)= AVt. (13.1) 

It is interesting to consider the insurer's perspective here. The account value 
represents. a reserve for the policy - it is a measure of the capital the insurer 
needs to hold in respect of the policy liabilities. The expense charge, Col and 
credited interes! rate are factors used in the development of the account value, 
but otherwise do not represent real cash flows. That is, it would make no differ
ence to any of the contract cash flows if the insurer charged $50 less in expense 
charges and $50 more in Col. In fact, ECt, Colt and if can be changed, jointly, 
in innumerable ways, but if they generate the same account values it would 
make no difference to any of the cash flows of the policy. The only important 
numbers in the contract cash flows are the premiums, the account values, the 
death benefits and the cash surrender values. The only purpose of specifying 
EC1 , Colt and if is to derive the account values. 
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An analogy with traditional insurance is that we may assume a premium 
basis to determine premiums and a policy value basis to determine the reserves. 
Once the premiums and reserves are calculated, the assumptions in these two 
bases do not impact the policy cash flows. In fact, when we profit test a tradi
tional product, we generally use different assumptions for mortality, expenses, 
surrender rates and interest than we use in either the premium basis or the 
reserve basis. Similarly, here, the expense charges, Col and credited interest 
impact the cash flows only through the account values. They do not represent 
actual cash flows into or out of the insurer's funds. 

13.4.4 Profit testing Universal Life polici'es 

Universal Life policies are best analysed using profit testing. The process is 
similar to profit testing traditional insurance, even though the contracts appear 
different. 

For the first step, before the profit test, we project the annual account values 
of the policy assuming the policy remains in force to the final projection 
date, just as, for traditional insurance, we have to calculate reserves before we 
can profit test the policy. 

To project the account values, we need an assumed schedule of premiums, 
P1 , a specification of the expense charges, EC1 , and we need to calculate the 
cost of insurance charges, Co/1• 

The additional death benefit in the tth year is the total death benefit minus 
the year end account value (similar to the sum at risk for a traditional policy), 

that is 

ADB1 = DBt - AVt. 

The Col charge is a single premium for a one-year term insurance for a death 
benefit of ADB1• The Col basis will be specified. Let q;+t denote the Col 
mortality rate and iq denote the Col interest rate. Expenses are ignored. Then 

(13.2) 

The Col pays for the additional death benefit; it is not based on the full death 
benefit. This is because the ace-bunt value is available to fund the balance, 
DB1 -ADB1 =AV1• 

For Type B policies the ADB is fixed. For Type A policies, the total death 
benefit is fixed (except for corridor factor adjustments), which means the ADB 
is a function of the account value, which makes the Col calculation a little more 
complicated. 

Once the A V1 values are determined through the account value projection, 
the profit test proceeds, very similarly to a traditional policy, except that A Vt 
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takes the role of the reserve, and the sum insured ( D B1) is variable, depending 
on the account values. 

In the following sections we demonstrate profit testing for some UL policies. 
The first is a Type B policy, which is the simpler case. The second is a Type A 
policy, which is the more common contract design in practice. 

13.4.5 Universal Life Type B 

Example 13.3 (Step 1: account value projection) 
A UL policy is sold to a 45 year old man. The initial premium is $2250 and 

the ADB is $100 000. The policy charges are: 

Cost of insurance: 120% of the mortality of the Standard Select Mortality 
Model, iq = 5% per year interest. 

Expense charges: $48+ 1% of premium at the start of each year. 

Surrender penalties at each year end are the lesser of the full account value 
and the following surrender penalty schedule: 

Year of surrender 1 2 3--4 5-7 8-10 > 10 

Penalty $4500 $4100 $3500 $2500 $1200 $0 

Assume 

(i) the policy remains in force for 20 years, 

(ii) interest is credited to the account at 5% per year, 

(iii) all cash flows occur at policy anniversaries, and 

(iv) there is no corridor factor requirement for the policy. 

Project the account value and the cash value at each year end for the 20-year 
projected term, given that the policyholder pays the full premium of $2250 for 
six years, and then pays no further premiums. 

Solution 133 The key formulae for UL account values are (13.1) and (13.2), 
that is 

and 

Applying these formulae gives the projected account values in Table 13.4. 
Specifically, the columns in Table 13.4 are calculated as follows: 
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Table 13.4 Projected account values for the Type B UL policy in 
Example 13.3, assuming level premiums for six years. 

tth year Credited 
t Pt ECt Colt interest AVt CVt 

(1) (2) (3) (4) (5) (6) (7) 

1 2250 70.50 75.34 105.21 2209.37 0.00 
2 2250 70.50 91.13 214.89 4512.63 412.63 
3 2250 70.50 104.71 329.37 6916.79 3416.79 
4 2250 70.50 114.57 449.09 9430.80 5 930.80 
5 2250 70.50 125.66 574.23 12058.87 9 558.87 
6 2250 70.50 138.12 705.01 14805.27 12305.27 
7 0 48.00 152.12 730.26 15 335.41 12 835.41 

19 0 48.00 540.59 1034.47 21723.82 21723.82 
20 0 48.00 604.34 1053.57 22125.05 22125.05 

(1) denotes the term at the end of the policy year. 

(2) is the tth premium, Pt, assumed paid at time t - 1. 

(3) is the tth year expense charge deduction, ECt =48 + 0.01 Pt. 

(4) is the Col for the year from timet- 1 to timet, assumed to be deducted 
at the start of the year. The mortality rate (or Col rate) assumed is 

q[45J+t-1 = 1.2q~5J+t-1 

where qfxJ+t is taken from the Standard Select Survival Model. Multiply 
by the ADB, and discount from the year end payment date, to get the 
Col as 

Col1 = l00000q~5J+t-l VS%· 

Note that the interest rate is specified in the Col pricing assumptions - in 
i 

o>£ 

this case it is the same as the crediting rate, but it may be different. ,,1 

( 5) is the credited interest at time t, assuming a 5% level crediting rate applied ~ 
to the account value from the previous year, plus the premium, minus the 
expense loading and CoL 

(6) is the year end account value, from recursion formula (13.1) for AVt. 

(7) is the year end cash value, which is the account value minus the applicable 
surrender penalty, with a minimum value of $0. 
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In more detail, the first two rows are calculated as follows: 

First year 
AVo: 
P1: 

EC1: 
Col rate: 

Colt: 
Credited interest: 

AV1: 
CV1: 

Second year 
AV1: 
P2: 
EC2: 
Col rate: 

Colt: 
Credited interest: 
AV2: 
CV2: 

0 
2250 
48 + 0.01 X 2250 = 70.50 
qf4S] = 1.2 X 0.000659 

100 000 X qN5] X VS% = 75.34 
0.05 (2250- 70.50- 75.34) = 105.21 
2250- 70.50- 75.34 + 105.21 = 2209.37 \ 
max(2209.37- 4500, 0) = 0 

2209.37 
2250 
48 + 0.01 X 2250 = 70.50 

qN5J+l = 1.2 X 0.000797 
100000 X qN5J+l X VS% = 91.13 
0.05 (2209.37 + 2250- 70.50- 91.13) = 214.89 
2209.37 + 2250- 70.50- 91.13 + 214.89 = 4512.63 
4512.63-4100 = 412.63 

0 

Example 13.4 (Step 2: the profit test) For the scenario described below, cal
culate the profit signature, the discounted payback period and the net present 
value, using a hurdle interest rate of 10% per year effective, for the UL policy 
described in Example 13.3. 

Assume 

• Policies remain in force for a maximum of 20 years. 

• Premiums of $2250 are paid for six years, and no premiums are paid there
after. 

e The insurer does not change the Col rates or expense charges from the values 
given in Example 13.3. 

e Interest is credited to the policyholder's account value in the tth year using 
a 2% interest spread, with a minimum credited interest rate of 2%. In other 
words, if the insurer earns more than 4%, the credited interest will be the 
earned interest rate less 2%. If the insurer earns less than 4%, the credited 
interest rate will be 2%. 

• The ADB remains at $100 000 throughout. 
• Interest earned on all insurer's funds at 7% per year. 
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• Mortality experience is 100% of the Standard Select Survival Model. 

• Incurred expenses are $2000 at inception, $45 plus 1% of premium at 
renewal, $50 on surrender (even if no cash value is paid), $100 on death. 

• Surrenders occur at year ends. The surrender rate given in the following table 
is the proportion of in-force policyholders surrendering at each year end. 

Duration Surrender rate 
at year end q:fs+t-1 

1 5% 
2-5 2% 
6-10 3% 
11 10% 
12-19 15% 
20 100% 

• The insurer holds the full account value as reserve for this contract. 

Solution 13.4 We use the account values from Example 13.3, as the credited 
interest rate of 5% used there corresponds to the profit test assumption for the 
credited rate (7% earned rate, minus the 2% spread, with a 2% minimum). 

Note that the expense charge, Col and credited interest rate used in the AV 
calculation are not needed in the profit test. The expenses, mortality and earned 
interest rate assumptions for the profit test are different from the expense 
charge, Col mortality, and credited interest rate used in the AV projection, 
mu~h as the profit test assumptions for a traditional contract usually differ from 
the premium basis. 

The cash flows for the profit test in the tth year, t 2: 1, assuming the policy 
is in force a~ start of the year, are 

AVt-1 the account value (reserve) brought forward. 

P1 the premium paid at the start of the tth year. 

E1 the incurred expenses at the start of the tth year. 

11 the interest earned through the year on the invested funds, 

EDB1 the expected cost of death benefits paid at the end of the tth year. If 
pffsl+1_ 1 is the profit test mortality rate assumed, and D B1 is the total 
death benefit payable, then 

DB1 =AV1 + ADB and EDB1 = pffsl+t-1 (DB1 + 100) 

whereADB = 100000 is the fixed additional death benefit, and the $100 
allows for claims expenses. 
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Table 13.5 UL Type B policy from Example 13.4: calculating the profit vector. 

Year t AVt-1 Pt Et It EDBt ESBt EAVt Prt 

0 
1 
2 
3 
4 
5 
6 
7 

18 
19 
20 

0 0 2000 -2000 
0 2250 0 158 67 2 2098 240 

2209 2250 68 307 83 9 4419 188 
4513 2250 68 469 98 69 6772 224 
6917 2250 68 637 110 119 9233 274 
9431 2250 68 813 123 192 11805 306 

12059 2250 68 997 139 370 14344 385 
14805 0 45 1033 154 386 14856 398 

20797 0 45 1453 514 3186 18010 495 
21278 0 45 1486 576 3251 18 378 514 
21724 0 45 1518 646 22058 492 

ESBt the expected cost of surrender benefits at timet: 

where p~4SJ+t- 1 = (1- p~fs]+t- 1 ) qfs+t-1 is the probability that the life 
survives the year, and then withdraws at the year end; CVt is the cash 
value in the tth year, which is A Vt minus the surrender penalty at time t, 
and 50 is the associated expense. 

EAV1 the expected cost of the account value carried forward at the year end 
for policies that continue in force. The probability that a policy which is 
in force at time t - 1 remains in force at time t is 

P~25]+t-1 = 1 - p~f5]+t-1 - P~4S]+t-1• 
So 

The net income at the end of each year, assuming the policy is in force at the 
start of the year, is the profit vector entry 

Prt = AVt-1 + Pt- Et +It- EDBt- ESBt- EAVt. 

The profit test table is presented (partially) in Table 13.5. As usual, the first 
row represents the pre-contract outgo, given in the example as $2000. The 
following rows are determined using the formulae described above. 

In Table 13.6 we show the profit signature and partial NPV calculations, 
exactly following the methodology of Chapter 12. To help understand the 
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Table 13.6 UL Type B policy from Example 13.4: profit signature, NPV and 
DPP at 10% per year risk discount rate. 

Pr[in force at 
start of year] Prt Tit NPV(t) 

0 1.00000 -2000.00 -2000.00 -2000.00 
1 1.00000 240.04 240.04 -1781.78 
2 0.94937 187.79 178.28 -1634.44 

16 0.34500 457.56 157.86 -6.29 
17 0.29225 475.98 139.11 21.23 
18 0.24747 494.96 122.49 43.26 
19 0.20946 514.47 107.76 60.88 
20 0.17720 492.22 87.22 73.84 

derivation of these tables, we show here the detailed calculations for the first 
two years' cash flows. 

At time t=O 
Initial expenses, Eo: 2000 
Profit vector, Pro: -2000 
Profit signature, Tio: -2000 
Partial NPV, NPV (0): -2000 

First year 
AVo 
P1: 

E1: 
h: 
EDB1 
ESB1: 
EAV1: 

Pr1: 

Til: 
NPV(1): 

0 
2250 
0 (all accounted for in Pro) 
0.07 X 2250 = 157.50 
0.000659 X (100000 + 2209.37 + 100) = 67.44 
0.999341 X 0.05 X (0 +50)= 2.50 
0.999341 X 0.95 X 2209.37 = 2097.52 
2250 + 157.50-67.44-2.50- 2097.52 = 240.04 
240.04 
-2000 + 240.04 VlQ% = - 1781.78 

Second year 
AV1: 2209.37 
P2: 
E2: 

h: 
EDB2: 
ESB2: 

2250 
45 + 0.01 X 2250 = 67.50 
0.07 X (2209.37 + 2250- 67.50) = 307.43 
0.000797 X (100000 + 4512.63 + 100) = 83.41 
0.999203 X 0.02 X (412.63 +50)= 9.25 
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0.999203 X 0.98 X 4512.63 = 4418.85 
2209.37 + 2250- 67.50 + 307.43- 83.41- 9.25-4418.85 = 
187.79 
0.999341 X 0.95 X 187.79 = 178.28 
-1781.78 + 178.28 Vfo% = -1634.44 

From the final column of Table 13.6, we see that the NPV of the emerging 
profit, using the 10% per yearriskdiscountrate, is $73.84. The table also shows 
that the discounted payback period is 17 years. 

13.4.6 Universal Life Type A 

The Type A contract is a little more complicated than Type B. The total death 
benefit is set at the face amount (FA), so the ADB is the excess of the face 
amount over the account value (AV); however, there is also, generally, a corri
dor factor requirement. The corridor factor is a guaranteed minimum ratio of 
the total death benefit to the account value. Given a corridor factor of y, say, 
the total death benefit is the greater of FA andy AV. The ADB is the difference 
between the total death benefit and the account value. 

We illustrate first with a simple example. Suppose a Type A UL contract, 
issued some time ago to a life now aged 50, has face amount FA = $100 000. 
The assumed AV growth rate for the Col calculation is 5%, the Col (mortality) 
rate for the year is q;0 = 0.004, and the Col interest rate is 0%. The account 
value at the start of the year is A V1_r =$50 000. The corridor factor for the 
year is y1 = 2.2. Th.ere is no premium paid and no expense deduction from the 
account value in the year. 

The ADB for the year depends on whether the corridor factor applies. Let 
ADBf denote the additional death benefit based on the excess of the face 
amount over the account value, that is 

ADB{ =FA -AV1 , 

and let ADB/ denote the additional death benefit based on the corridor factor, 
so that 

ADB~ = YtAVt -AVt = (Yt- 1)AVt. 

ThenADB1 = max(ADB{,ADB~). 
The cost of insurance at timet- 1 is 0.004ADB1• This calculation depends 

on AV1 which depends on the credited interest and on the cost of insurance. We 
use the assumed credited interest rate to project AV1 as a function of the Col, 
and then solve for the Col. 

We note that in this example, the Col is calculated assuming a 5% per year 
credited interest rate, and discounting at 0%. We have the following results, 
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where we use the superscript f to refer to the Col based on ADBf, and the 
superscript c for the Col based on AD Be. The final Col value is the maximum 
of these two values. We have 

AVt = 1.05 (AVt-1 -Colt). 

So, for the face amount Col, 

ADB{ =FA -AVt = 100000-1.05 (50000- Col/) 

Col{= 0.004ADB{ = 0.004 ( 100000- 1.05 x 50000 + 1.05 Coif) 

f 0.004 (100 000 - 1.05 X 50 000) 
=}Colt = 1-0.004 x 1.05 = 190.80, 

and for the corridor factor Col, 

ADBf = (2.2 - 1) x 1.05 x (50 000- Calf) 

Col~= o.oo4 (1.2 x 1.05 (5oooo- cain) 
c 0.004 X 1.2 X 1.05 X 50 000 

50 4 =} Colt = = 2 .7 . 
1 + 0.004 X 1.2 X 1.05 

This means that ADB{ is $47 700 and ADBf is $62 684. As AD Be is greater, 
the corridor factor has come into effect, and we use ADBc in the profit test 
calculations. 

We now develop the Col for a Type A UL policy more generally. First we 
define or review the notation. 

FA: face amount 
account value at time t, before premium and deductions 

Yt: corridor factor applying in the tth year 

q;+t-1: 
Vq: 

if: 
ADB{: 
ADBf: 

Col{: 

Calf: 
Col1: 

ADB1: 

premium in the tth year, paid at time t - 1 
expense charge in the tth year, deducted from the accoUftt value 
at timet- 1 
mortality rate~or calculating the Col in the tth year 
discount factor for calculating the Col 
assumed credited interest rate in the tth year 

FA-AV 1 

(Yt -1) x AVt 

q;+t-1 X Vq X ADB{ 
q;+t-1 X Vq X ADBf 

max(Cai/, Coin 

max(ADB{, ADBD 
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Then we have, for the tth year (from timet- 1 to timet), 

and 

ADB{ =FA- AVt =FA- (AVt-1 + Pt- ECt) (1 +if)+ Col{ (1 +if) 

Col{ = q;+t-1 Vq ADB{ 

= q;+t-l Vq (FA- (AVt-1 + Pt- ECt)(l +if)+ Col{ (1 +if)) 

f q;+t-1 Vq (FA- (AVt-1 + Pt - ECt )(1 +if)) 
=} Colt = * ·c · 

1 - qx+t-1 Vq (1 + lt) 

Similarly, 

ADB~ = (Yt - 1) AVt 

= (Yt - 1) ( (AVt-1 + Pt - ECt) (1 +if) -Col~ (1 +if)) 

Col~ = q;+t-1 Vq ADB~ 

= q;+t-1 Vq (1 +if) (Yt - 1) ( (AVt-1 + Pt - ECt) - Corn 

c q;+t-1 Vq (1 +if) (Yt- l)(AVt-1 + Pt- ECt) 
=}Colt = * ·c 

1 + qx+t-1 Vq (1 + lt) (Yt - 1) 

Finally 

Col1 =max (Col{, Col~) and ADBt =max (ADB{,ADB~). 

Although we have derived these formulae, the resulting formulae are not 
the main point here. Minor changes to the standard UL premium and benefit 
conditions will result in different formulae. The important message here is how 
the formulae are derived- assuming either the face amount total death benefit, 
or the corridor factor total death benefit, solving the A Vt equation for the Col 
in both cases, and selecting whichever is greater. 

Example 13.5 (Type A UL profit test) 
Consider the following UL policy issued to a life aged 45: 

e Face amount $100 000. 

e Type A death benefit with corridor factors (Yt) applying to benefits paid in 
respect of deaths in the tth year, as follows: 

2 3 4 5 6 7 8 9 10 
Yt 2.15 2.09 2.03 1.97 1.91 1.85 1.78 1.71 1.64 1.57 

11 12 13 14 15 16 17 18 19 20 

Yt 1.50 1.46 1.42 1.38 1.34 1.30 1.28 1.26 1.24 1.24 
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• Col based on: 120% of mortality rates from the Standard Select Mortality 
Model, and 4% interest; the Col is calculated assuming the fund earns 4% 
interest during the year. 

• Expense charges: 20% of the first premium + $200, 3% of subsequent pre
miums. 

• Initial premium: $3500. 

• Surrender penalties: 

Year of surrender 2 3-4 5-7 ~ 8 

Penalty $2500 $2100 $1200 $600 $0 

(a) Project the account and cash values for this policy assuming level premi
ums of $3500 are paid annually in advance, that the policyholder surren
ders the contract after 20 years, and that the credited interest rate is 4% per 
year. 

(b) Profit test the contract using the basis below. Use annual steps, and deter
mine the NPV and DPP using a risk discount rate of 10% per year. 

Assume 

• Level premiums of $3500 paid annually in advance. 

• Insurer's funds earn 6% per year. 

• Policyholders' accounts are credited at 4% per year. 

• Surrender rates are as in Example 13.4 above. All surviving policyhold- -
ers surrender after 20 years. 

• Mortality follows the Standard Select Survival Model. 

• Incurred expenses are: 

- Pre-contract expenses of 60% of the premium due. immediately before 
the issue date, 

- Maintenance expenses of 2% of premium at each premium date includ
ing the first, 

- $50 on surrender, 

- $100 on death. 

• The insurer holds reserves equal to the policyholder's account value. 

Solution 13.5 (a) Following the same methodology as for the Type B policy, 
we first project the AV1 and CV1 values, assuming that the policy stays in 
force throughout the term. The results are shown in Table 13.7. 

We describe the calculations for the first two years in more detail to 
clarify the table. 
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Table 13.7 Type A UL account value and cash value projection for 
Example 13.5. 

AVt-1 Pt ECt Colt AVt CVt 

0 3500 900 74.07 2626.97 126.97 
2626.97 3500 105 86.32 6173.08 4073.08 
6173.08 3500 105 95.30 9851.68 8651.68 
9851.68 3500 105 99.86 13 672.70 12472.70 

86055.68 3500 105 121.69 92902.15 92902.15 
92902.15 3500 105 146.43 99996.75 99996.75 

First year 

P1: 3500 
EC1: 200 + 20% X 3 500 = 900 

Col assuming the death benefit is FA- AV: 

CoJf = V4% x 1.2 x q[45] ( 100000- (1.04) (3500- 900- Coif)) 

(100 000 V4% - 2600) X 1.2 X 0.0006592 
= = 74.07. 

1 - 1.2 X 0.0006592 

Col assuming the death benefit is based on the corridor factor: 

Cole = V4% X q[45] X (Yl - 1) X 1.04 (3500- 900- CoY) 

1.2 X 0.0006592 X 1.15 X 2600 
---------- = 2.36. 

1 + 1.2 X 0.0006592 X 1.15 

Col1: max(CoJf, CoJC) = 74.07 
AVl: (3500- 900- 74.07) X 1.04 = 2626.97 
CV1: max(2626.97- 2500, 0) = 126.97 

Second year 

Pz: 3 500 
EC2 : 3% x 3 500 = 105 

Col assuming the death benefit is FA- AV: 

CoJf = V4% x 1.2 

x q[45J+l x ( 100000- 1.04 (2626.97 + 3500- 105- Coif)) 

(100 000 V4% - 6021.97) X 1.2 X 0.0007974 
= = 86.32. 

1 - 1.2 X 0.0007974 
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Table 13.8 Emerging profit for Type A UL policy in Example 13.5. 

AVt-1 

0 
2627 
6173 
9852 

86056 
92902 

Pt Et It EDBt ESBt 

2100 
3500 70 206 66 9 
3500 70 363 80 82 
3500 70 576 92 174 
3500 70 797 100 250 

3500 70 5369 545 13 877 
3500 70 5780 656 99518 

Table 13.9 Profit signature and emerging 

NPV at 10% per year risk discount rate for 

Type A UL policy in Example 13.5. 

Tit NPVt 

0 -2100.00 -2100.00 
1 1066.99 -1130.01 
2 202.59 -962.58 
3 249.02 -775.49 
4 311.49 -562.73 

19 385.26 2159.49 
20 343.44 2210.54 

EAVt 

2494 
6045 
9646 

13386 

78593 

Col assuming the death benefit is based on the corridor factor: ~ 

Prt 

-2100 
1067 
213 
268 
342 

1839 
1938 

CoY = V4% X q[45]+1 X (yz - 1) X 1.04 (2626.97 + 3500 - 105 - Con 

1.2 X 0.0007974 X 1.09 X 6091.27 
----------- = 6.27. 

1 + 1.2 X 0.0007974 X 1.09 

Co[z: max(CoJf, Cole)= 86.32 
AV2 : (2626.97 + 3500- 105- 86.32) x 1.04 = 6173.08 
CVz: max(6173.08- 2100, 0) = 4073.08. 

(b) The profit test results are presented in Tables 13.8 and 13.9. In Table 13.8, 
we derive the profit vector, and in Table 13.9 we show the profit signature 
and the emerging NPV using the 10% per year risk discount rate. 
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Given the Standard Select Survival Model mortality rate q[45J+t-1, and 
qjll, the probability that a life aged 45 + t surrenders at the end of the tth 
year, given that the policy is still in force at that time, the probabilities for 
mortality, surrender and surviving in force in the tth year are 

Mortality: P
Od _ q 
[45]+t-1 - [45J+t-1 

P~4~J+t-1 = (1 - q[45J+t-1) qjll 
00 ~ M Ow 

P[45l+t-1 - 1 - P[45J+t-1 - P[45J+t-1' 

Surrender: 

Surviving: 

The profit vector is, as in the previous example, 

where 

Notes: 

Prt = AVt-1 + Pt - Et +It - EDBt - ESBt - EAVt 

EDBt = p~fsJ+t- 1 (AVt + ADBt + 100), 

ESBt = p~4~l+t- 1 (CVt +50), 

EAVt = P~isJ+t- 1 AVt. 

(1) The total death benefit, AVt + ADBt, will be equal to the face amount, 
unless the corridor factor applies, in which case it will be YtAVt. 

(2) In the final year, the year end account value is zero, as we assume all 
policyholders have-surrendered. 

For a more detailed explanation, we show here the calculations for the cash 
flows in the final two years, represented by the final two rows in Table 13.8. 
Values for AV1 and CVt are taken from Table 13.7. Values in Table 13.8 
have been rounded to the nearer dollar for presentation only. 

19th year 
AV1s: 86055.68 (from Table 13.7) 
P19: 3500 
£19: 

fig: 
EDB19: 

0.02 X 3500 = 70. 
0.06 X (86056 + 3500 -70) = 5 369.14 

P~1 x (max(lOOOOO, Y19 AV19) + 100) 
= 0.004730 x (max(lOOOOO, 115199) + 100) = 545.38 

P~3 X (CV19 +50) 
= 0.995270 X 0.15 X 92 952.15 = 13 876.87. 
0.995270 X 0.85 X 92 902.15 = 78 593.30 
86055.68 + 3 500-70 + 5 369.14 

-545.38- 13 876.87- 78 593.30 = 1839.27. 
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20th year 
AV19: 92902.15 (from Table 13.7) 
Pzo: 3500 
Ezo: 
Izo: 
EDBzo: 

0.02 X 3500 = 70. 
0.06 X (92 902 + 3500- 70) = 5 779.93 
P~1 x (max(lOO, 000, Yzo A Vzo) + 100) 
= 0.005288 x (max(lOO 000, 123 996) + 100) = 656.22 
P~4 x (CVzo +50) 
= 0.994712 X 1 X 100046.75 = 99517.70 
0 
92 902.15 + 3 500-70 + 5 779.93 

-656.22- 99 517.70 = 1938.16. 

From Table 13.9, we see that the NPV of the contract is $2210 and the 
DPP is seven years. D 

13.4.7 No-lapse guarantees 

UL policies are often offered with 'secondary guarantees', a term that refers 
to a range of benefits additional to the basic contract terms, sometimes offered 
as optional riders. The most common secondary guarantee for a UL policy is 
the no-lapse guarantee. With this benefit, once a specified number of premiums 
have been paid in full, the death benefit cover remains in place even if no fur
ther premiums are paid, and even if the account value is insufficient to support 
the Col in any future year. 

For a Type A policy, ignoring corridor factors, the value of the no-lapse 
guarantee can be considered by analogy with a traditional paid-up whole life 
insurance, which we discussed in Chapter 7. 

Suppose the UL policy has been issued to (x), and has been in force for 
t years. The policyholder has the right to cease premiums and maintain their 
death benefit insurance. Suppose that the face value is S and the account value 
is A Vt. Assuming annual cash flows, the EPV of the death benefit is S Ax+t· 
If this is less than the account value, then the assets of the policy are suffi
cient to support the-no.,.lapse guarantee. If S Ax+t is greater than the account 
value, then the insurer must set aside additional reserves to cover the additional 
costs. 

It follows that the reserve for the no-lapse guarantee at time t can be set as 

t ynlg = max(S Ax+t- A Vt. 0). 

Note that the expense charges and Col are not needed for this calculation. 
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The no-lapse guarantee may have an expiry date -that is, the death benefit 
continues up to a specified age, say x + n, without further premiums. In this 
case the reserve would be calculated using a term insurance factor 

t ynlg = max(S Ax1+t:n=tl- AVr, 0). 

In the UL profit tests above we have assumed that the insurer holds the 
full account value of the policy, but does not hold any additional reserve. The 
account value takes the role of the reserve in the profit test, with the account 
value brought forward entering the profit test as an item of income at the start 
of each time step, and the expected cost of the account value carried forward 
as an item of outgo at the end of each time step. When there are potential costs 
in excess of the account value, then there will be additional reserves brought 
forward and carried forward. 

13.4.8 Comments on UL profit testing 

As discussed in the previous section, we assume that UL reserves are the 
account values, together, if necessary, with additional reserves for no-lapse 
guarantees or other ancillary benefits. Additional reserves will be required if 
the cost of insurance is set at a level amount. 

If there are no secondary guarantees, it might be possible to hold a reserve 
less than the full account value, to allow for the reduced payouts on surrender, 
and perhaps to take advantage of future profits from the interest spread. 

From a risk management perspective, allowing for the surrender penalty in 
advance by holding less than the account value is not ideal; surrenders are noto
riously difficult to predict. History does not always provide a good model, as 
economic circumstances and variations in policy conditions have a significant 
impact on policyholder behaviour. In addition, surrenders are not as diversifi
able as deaths; that is, the impact of the general economy on surrenders is a 
systematic risk, impacting the whole portfolio at the same time. 

The worked examples in this chapter are simplified to provide a better illus
tration of the key features of a UL contract. In particular, we have not addressed 
the fact that the expense charge, Col and credited interest are changeable at the 
discretion of the insurer. However, there will be maximum, guaranteed rates 
set out at issue for expense and Col charges, and a minimum guaranteed cred
ited interest rate. The profit test would be conducted using several assumptions 
for these charges, including the guaranteed rates. However, it may be unwise 
to set the reserves assuming the future charges and credited interest are at the 
guaranteed level. Although the insurer has the right to move charges up and 
interest down, it may be difficult, commercially, to do so unless other insurers 
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are moving in the same direction. When there is so much discretion, both for 
the policyholder and the insurer, it would be usual to conduct a large number of 
profit tests with different scenarios to assess the full range of potential profits 
and losses. 

13.5 Comparison of UL and whole life insurance policies 

The UL contract appears quite different from the traditional life insurance con
tract, but it can be used to generate very similar benefits to a par or non-par 
whole life or endowment policy. In Example 13.5, the UL policy is projected 
to pay a benefit of close to $100000 on survival for 20 years, and also pays 
(subject to corridor factor adjustment) a death benefit of $100 000 on death 
within 20 years. See Table 13.7 where the projected final cash value is $99 997 
for a Type A policy with face value $100000. This appears very similar to a 
traditional, non-participating endowment insurance policy, with a sum insured 
of $100 000. The differences are significant though - in particular, the cash 
value at time t = 20 is not guaranteed under the UL policy, but is guaranteed 
for a 20-year endowment insurance. Also, the endowment insurance premiums 
would be required and fixed for the whole term. For the UL policy, the policy
holder may take premium holidays, or pay additional premiums, in both cases 
impacting the ultimate cash value of the contract. 

A more appropriate comparison might be to compare the UL policy with 
a traditional, participating whole life policy with reversionary bonus. In both 
cases, the benefits are increased at intervals, as insurer profits are shared with 
policyholders, through bonus distribution for participating insurance, or through 
the credited interest rate for UL. UL policies generally offer better surrender 
benefits, as well as offering greater flexibility in premiums and partial with
drawals. The par-WL policy with reversionary bonus may offer better death 
benefits, particularly if investment returns are strong. 

13.6 Notes and further reading 

We have assumed annual time steps for the examples in this chapter. As in 
Chapter 12, this is a simplification, applied to make the examples easier to fol
low. Typically, UL expense and Col charges would be deducted monthly. Par
ticipating policies would also, typically, involve monthly payments, although 
the distribution of profits might be determined annually. 

For both participating whole life (par-WL) and UL insurance, the insurer 
has significant discretion about the dividends or bonus declared (for par-WL) 
and the crediting rate (for UL). It is common for the insurer to apply some 
smoothing, so that changes in dividends or crediting rates are not sudden or 
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dramatic. The methods and impact of smoothing are beyond the scope of this 
text, but some information is available, for example, in Atkinson and Dallas 
(2000). 

For participating insurance with reversionary bonuses, the insurer may incor
porate a bonus assumption into the pricing. However, the actual bonuses 
declared may be greater or less than the pricing assumption, and will depend 
on the emerging surplus. 

13.7 Exercises 

Note: Several questions are adapted from exam questions used by the Society 
of Actuaries (SOA) for their MLC examination. These questions are copy
righted to the Society of Actuaries, and are reproduced with permission. 

The convention for the SOA questions is that the 'Col rate' refers to the 
mortality rate used in the Col calculation, and that the rate of interest for the 
Col calculation is the same as the credited rate unless otherwise indicated. 

Exercise 13.1 You are calculating asset shares for a portfolio of Universal Life 
insurance policies with a death benefit of $1000 on (x), payable at the end of 
the year of death. 

You are given, for an individual policy in force throughout the fifth year: 

• The account value at t~d of year 4 is $30. 

• The asset share at the end of year 4 is $20. 

• During the fifth year: 
- A premium of $20 is paid at the start of the year. 

- Annual cost of insurance charges of $2 and annual expense charges of $7 
are deducted from the account value at the start of the year. 

- The insurer incurs expenses of $2 at the start of the year. 

- The mortality rate for the Universal Life portfolio was 0.1 %. 

- The withdrawal rate for the portfolio was 5%. 

- The credited interest rate was 6%. 

- The investment return experienced by the insurer was 8%. 
e All withdrawals occur at the end of the policy year; the withdrawal benefit 

is the account value less a surrender charge of $20. 

Calculate the asset share at the end of year 5. 
(SOA, Fall2012) 

Exercise 13.2 For a Universal Life insurance policy with a death benefit of 
$50 000 plus the account value, you are given the following information. 
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(i) 

Policy Monthly %Premium Col rate Monthly Surrender 
year premium charge per month expense charge 

300 W% 0.2% 10 
2 300 15% 0.3% 10 

(ii) The credited interest rate is i(12) = 0.054. 

(iii) The cash surrender value at the end of month 11 is $1200.00. 

(iv) The cash surrender value at the end of month 13 is $1802.94. 

Calculate W%, the percent of premium charge in policy year 1. 
(SOA, Fall2012) 

charge 

500 
125 

Exercise 13.3 You are given the following about a Universal Life insurance 
policy on (60). 

(i) The death benefit equals the account value plus $200 000. 

(ii) 

Annual Annual Col rate 
Agex premium per 1000 

Annual expense 
charges 

60 
61 

5000 5.40 
5000 6.00 

(iii) Interest is credited at 6% per year. 

100 
100 

(iv) Surrender value equals 93% of account value during the first two years. 
Surrenders occur at the end of the policy year. 

(v) Surrenders are ~er year of those who survive. 

(vi) Mortality rates are q6o = 0.00340 and q61 = 0.00380. 

(vii) i = 7%. 

Calculate the present value at issue of the insurer's expected surrender ben
efits paid in the second year. 

(SOA, Fa112012) 

Exercise 13.4 A life aged 40 holds a participating, paid-up whole life insur
ance contract. The sum insured is $100 000, paid at the end of the year of death. 
The insurer distributes a cash dividend to holders of policies which are in force 
at the year end (after surrender and death exits). The cash dividend is deter
mined using 80% of the emerging surplus at each year end, if the surplus is 

positive. 
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(a) Calculate the cash dividend projected for this policy at the end of the cur
rent policy year, assuming the policy is in force at the year end, and using 
the following additional assumptions and information. 

(i) The mortality probability for the year is 0.0004, and 8% of surviving 
policyholders surrender their policies at the year end. 

(ii) Reserves are held equalto the policy value calculated assuming mor
tality rates from the Standard Ultimate Survival Model, and an inter
est rate of 4%, ignoring expenses. 

(iii) Surrender values are held equal to the policy value calculated assum
ing mortality rates from the Standard Ultimate Survival Model, and 
an interest rate of 5%, ignoring expenses. 

(iv) Interest at 6% per year is earned on the insurer's assets. 
(v) Expenses of $20 are incurred at the start of each year. 

(b) Your colleague suggests that policyholders should not participate in profits 
arising from surrenders. Calculate the revised dividend ignoring surrender 
profits, and critique this approach. 

Exercise 13.5 Suppose that the insurer in Example 13.2 calculates the bonus 
before allowing for deaths and surrenders, rather than after. That is, the insurer 
declares a bonus (additional sum insured) of B1 in the tth year. Policies with 
a death benefit due at time ~ave the benefit increased by $B1, the total rever
sionary benefit at timet is RB1, the year end reserve for policies in force is 

t+ v = cs + RBt)A6o+t- P*a6o+t· 

and cash values for surrendering policies are h1 t+ V. 

(a) Calculate the bonuses declared in the first four years. 
(b) Comment on the difference between this method of distribution and the 

method in Example 13.2. 

Exercise 13.6 An insurer issues a Type B UL policy with a death benefit of 
$50 000 plus the account value, to (50). Premiums of $300 per month are paid 
at the start of each month. 

Expense charges in the first year are 20% of premium plus $20 each month. 
In the second year, the charges are reduced to 15% of premium plus $10 each 
month. 

The Col is calculated assuming a mortality rate of 1.. qx = 0.002 for 
12 

50 :::; X :::; 50g, and .l.qx =0.003 for 51 :::; X :::; 51 g, and interest of 4% 
f" . 12 per year e 1echve. 

The cash value is determined by deducting a surrender charge from the 
account value, with a minimum cash value of $0. The surrender charge is $500 
for surrenders during the first year, and $125 for surrenders in the second year. 
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You are given that the credited interest rate is 0.45% per month throughout 
the first two years, and that the cash value is $860 at the end of the 11th month. 

Calculate the cash value for the policy at the end of the 13th month. 

Exercise 13.7 A life insurance company issues a with-profit whole life insur
ance policy to a life aged 55. The sum insured is $75 000 together with any 
attaching bonuses and is payable immediately on death. Level premiums are 
payable annually in advance, ceasing on the policyholder's death. Simple 
annual bonuses are added at the end of each policy year. The company cal
culates the premium on the following basis: 

• Survival model: Standard Select Survival Model. 

• Interest: 4% per year. 

• Initial expenses (before the first premium): $160. 

• Maintenance expenses: $65 at the start of each policy year, including the 
first. 

• Claim expenses: $200 on payment of death benefit. 

• Commission 
- Initial: 75% of the first year's premium (paid immediately before receipt 

of first premium); 

- Renewal: 2.5% of all premiums, including the first. 

(a) (i) Calculate the annual premium with no allowance for bonus. 

(ii) Calculate the annual premium assuming a simple bonus of 2% per 
year, each year including the first. 

(b) Project the bonuses emerging each year for the policy from the second to 
the tenth years, assuming 

• Reserves are held equal to the maximum of the gross premium policy 
values on the premium basis and zero, using the premium from (a)(ii), 
and without allowance for future bonuses. Allow full recognition of past 
bonus. 

• No bonus distribution in the first policy year. 

• 100% of emerging surplus (if positive) is converted into reversionary 
bonus in the second and subsequent years. 

• All other assumptions follow the premium basis. 

Express the bonus emerging as a simple reversionary bonus rate, and com
ment on the results. 

(c) Repeat (b), but now assuming net premium policy values are held as 
reserves, and that no bonus is declared in the first policy year. 

(d) Which reserving method generates more appropriate bonuses? Why? 
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Exercise 13.8 A Type A UL policy was issued t- 1 years ago to (x ). The face 
amount of the policy is $100 000. In the tth year, the corridorfactor is 1.95, the 
Col mortality rate is 0.005, the interest rate for the Col is 4%, and the crediting 
rate is 5%. Expense charges of $25 +0.4% of the account value are deducted 
from the account value at the start of each year. The account value at the start 
of the year is $49 500. No premium is paid. 

Calculate the cost of insurance charge, the additional death benefit and the 
year end account value in the tth year. 

Exercise 13.9 For a Universal Life insurance policy with death benefit of 
$100000 issued to (40), you are given: 

• The account value at the end of year 5 is $2029. 

• A premium of $200 is paid at the start of year 6. 

• Expense charges in renewal years are $40 per year plus 10% of premium. 

• The cost of insurance charge for year 6 is $400. 

• Expense and cost of insurance charges are payable at the start of the year. 

• Under a no-lapse guarantee, after the premium at the start of year 6 is paid, 
the insurance is guaranteed to continue until the insured reaches age 65. 

• If the expected present value of the guaranteed insurance coverage is greater 
than the account value, the company holds a reserve for the no-lapse guar
antee equal to the difference. The expected present value is based on the 
Standard Ultimate Survival Model at 5% interest and no expenses. 

Calculate the reserve for tht< no-lapse guarantee, immediately after the pre
mium and charges have been accounted for at the start of year 6. 

(SOA, Fall2012) 

Exercise 13.10 A life insurance company issues a four-year universal life pol
icy to (65). The main features of the contract are as follows. 

Premiums: $3000 per year, payable yearly in advance. 

Expense charges: 4% of premium is deducted at the start of the first year; 
$100 plus 0.4% of the account value (before premium) is deducted at the 
start of each subsequent policy year. 

Col: $25 is deducted from the account value at the start of each year. 

Death benefit: greater of $12 000 or 1.5 times the account value at the year 
end. 

Maturity benefit: 100% of the account value. 

The company uses the following assumptions in carrying out a profit test of 
this contract. 
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Interest rate: 4.5% per year in year 1, 5.5% per year in year 2, and 6.5% 
per year in years 3 and 4. 

Credited interest: Earned rate minus 1%, with a 4% minimum. 

Survival model: Standard Ultimate Survival Model. 

Withdrawals: None. 

Initial expenses: $200 pre-contract expenses. 

Renewal expenses: payable annually at each premium date, initial cost 
(with first premium) $50, increasing with inflation of 2% per year. 

Risk discount rate: 8% per year. 

There are no reserves held other than the account value. 

(a) Calculate the profit signature and NPV of a newly issued contract. 

(b) Calculate the profit signature and NPV for the policy given that the 
policyholder dies in the first year of the contract. 

(c) Calculate the profit signature and NPV for the policy given that the 
policyholder survives to the contract end. 

(d) Calculate the profit signature and NPV for the policy given that the policy
holder surrenders at the end of the second year, assuming (i) that the cash 
value is 100% of the year end account value, and then (ii) that the cash 
value is 90% of the year end account value. 

(e) Calculate the surrender penalty at time 2, as a proportion of AV2, which 
gives the same profit margin for surrendering policyholders as for policy
holders who remain in force throughout. 

(f) Comment on your results. 

Exercise 13.11 A with-profit whole life insurance policy was sold to a life 
aged 70. The sum insured is $100 000 payable at the end of year of death and 
premiums are payable annually in advance throughout life. The premium is 
determined assuming that compound reversionary bonuses will be applied to 
the policy at 2.5o/o-per-year. 

Assume that bonuses are declared at the end of each policy year, and do not 
apply to death benefits payable at the year end, but are included in the year-end 
reserve for continuing policies. 

(a) Calculate the annual premium. 

(b) Use a profit test to determine the profit margin for the policy, assuming the 
bonus rates are paid according to the premium basis. 

(c) Determine the profit margin for the policy, and the compound bonus rates 
declared, assuming 
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• No bonus in the first policy year 
• Bonuses are determined by distributing all available emerging surplus 

for the second and subsequent policy years. 
(d) Comment on your results. In particular, explain why the emerging profit 

before bonus is constant in (c) from the second policy year, derive an 
expression for its value, and interpret the expression in words. 

Basis for premiums 
Survival model: 
Interest rate: 
Initial expenses: 

Renewal expenses: 

Basis for reserves 
Survival model: 
Method: 

Interest: 

Basis for profit tests 

Standard Ultimate Survival Model 
5% per year 
$200 before the first premium 
$50 + 60% of the first premium, on payment of the first 
premium 
$50 plus 2% of all premiums after the first 

Standard Ultimate Survival Model 
Net premium policy values 
Declared bonus included, no allowance for future 
bonuses 
5% per year interest 

Survival model: Standard Ultimate Survival Model 
Withdrawals: None 
Interest: 5% per year 
Risk discount rate: 10% per year 

13.1 $40.96 
13.2 25% 
13.3 $380.01 
13.4 (a) $700.32 

(b) $299.56 

Answers to selected exercises 

13.5 (a) $0, $756.50, $1083.47, $1413.82 
13.6 $1464.60 
13.7 (a) (i) $1438.94 

(ii) $2197.87 
(b) Selected values are Bz = $6087, B4 = $5452, B6 = $0 
(c) Selected values are Bz = $2559, B4 = $2387, B6 = $2230 
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13.8 Col is $235.19, ADB is $48 919.20, AVis $51493.90 
13.9 $622.29 

13.10 (a) (-200.00, 60.14, 109.19, 156.20, 182.16)1
, $207.19 

(b) ( -200, -8 917.25, 0, 0, 0)1
, -$8456.71 

(c) (-200, 113.55, 148.92, 193.14, 239.57)1
, $362.23 

(d) (i) (-200, 113.55, 148.92, 0, 0)1
, $32.82 

(ii) (-200, 113.55, 758.40, 0, 0)1
, $555.35 

(e) 3.1% 
13.11 (a) $5693.79 

(b) 0.49% 
(c) -3.0%; selected bonus rates are 4.54% in year 2, 2.50% in year 40 
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Emerging costs for equity-linked insurance 

14.1 Summary 

In this chapter we introduce equity-linked insurance contracts. We explore 
deterministic emerging cost techniques with examples, and demonstrate that 
deterministic profit testing cannot adequately model these contracts. 

We introduce stochastic cash flow analysis, which gives a fuller picture of 
the characteristics of the equity-linked cash flows, particularly when guaran
tees are present, and we demonstrate how stochastic cash flow analysis can be 
used to determine better contract design. 

Finally we discuss the use of quantile and conditional tail expectation 
reserves for equity-linked insurance. 

14.2 Equity-linked insurance 

In Chapter 1 we described some modern insurance contracts where the main 
purpose of the contract is investment. These contracts generally include some 
death benefit, predominantly as a way of distinguishing them from pure invest
ment products, but they are designed to emphasize the investment opportunity, 
with a view to competing .with pure investment products sold by banks and 
other financial institutions. Equity-linked insurance can be viewed as a natu- 1 

ral development from the traditional participating insurance and Universal Life 
(UL) products, which offer both insurance and investment benefits. 

The equity-linked insurance which we explore in this chapter differs from 
UL and participating insurance, in that the assets of the policyholders are kept 
separate from the insurer's main funds. In contrast, UL premiums are combined 
with the general assets of the insurer, and there is no identifiable 'policyholder 
account'. Essentially, for equity-linked contracts, policyholders may select the 
funds in which they invest, making the policies look very similar to the col
lective investment products such as mutual funds in North America, and unit 
trusts in the UK, Australia and elsewhere. 

473 
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The contracts we consider are called unit-linked policies in the UK and 
parts of Europe, variable annuities in the USA (though there is often no 
actual annuity component) and segregated fund policies in Canada. All fall 
under the generic title of equity-linked insurance. The basic premise of these 
contracts is that a policyholder pays a single or regular premium which, after 
deducting expenses, is invested on the policyholder's behalf in specified col
lective investment funds. These form the policyholder's fund. The value of 
the policyholder's fund moves up or down each month, just like a mutual 
fund investment. Regular management charges are deducted from the fund by 
the insurer and paid into the insurer's fund to cover expenses and insurance 
charges. 

On survival to the end of the contract term the benefit may be just the policy
holder's fund and no more, or there may be a guaranteed minimum maturity 
benefit (GMMB). 

On death during the term of the policy, the policyholder's estate would 
receive the policyholder's fund, possibly with an extra amount- for example, 
a death benefit of 110% of the policyholder's fund means an additional death 
benefit of 10% of the policyholder's fund at the time of death. There may also 
be a guaranteed minimum death benefit (GMDB). 

Some conventions and jargon have developed around these contracts, par
ticularly in the UK where the policyholder is deemed to buy units in an under
lying asset fund (hence 'unit-linked'). One example is the bid-offer spread. 
If a contract is sold with a bid-offer spread of, say, 5%, only 95% of the pre
mium paid is actually invested in the policyholder's fund; the remainder goes 
to the insurer's fund. There may also be an allocation percentage; if 101% 
of the premium is allocated to units at the offer price, and there is a 5% bid
offer spread, then 101% of 95% of the premium (that is 95.95%) goes to the 
policyholder's fund and the rest goes to the insurer's fund. The bid-offer spread 
mirrors the practice in unitized investment funds that are major competitors for 
policyholders' investments. 

Because the policyholder's funds are not mixed with the general assets of 
the company, but are held separately, another general term for this type of con
tract is separate account insurance. The fact that the policyholder's assets 
are held separately from the insurer's assets makes a difference to our analy
sis of these policies; the pohcyholder's funds do not directly contribute to the 
insurer's profit or loss; investment gains and losses are all passed straight to 
the policyholder. However, the policyholder's fund contributes indirectly. The 
insurer receives income from the regular management charges that depend on 
the policyholder's fund value; the additional death benefit cover will be a func
tion of the fund value, and the cost of any guarantees offered will also depend 
on the fund value. 
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14.3 Deterministic profit testing for equity-linked insurance 

Equity-linked insurance policies are usually analysed using emerging surplus 
techniques. The process is similar to the UL profit test, except that we sep
arate the cash flows into those that are in the policyholder's fund and those 
that are income or outgo for the insurer. It is the insurer's cash flows that are 
important in pricing, reserving and profit projections, but since the insurer's 
income and outgo depend on how much is in the policyholder's fund, we 
must first project the cash flows for the policyholder's fund and use these to 
project the cash flows for the insurer's fund. The projected cash flows for 
the insurer's fund can then be used to calculate the profitability of the con
tract using the profit vector, profit signature, and perhaps the NPV, IRR, profit 
margin and discounted payback period, in the same way as in Chapters 12 and 
13. We show two examples in this section. The first assumes annual cash flows, 
to make the calculations easier to follow. The second uses monthly time steps, 
which is more realistic. 

Before we present the examples, we introduce some notation and key rela
tionships. For annual time steps, the t subscript refers to the cash flows in the 
tth policy year. In order to project the emerging profit from the insurer's cash 
flows, we first need to project the policyholder's fund through the term of the 
contract, as the insurer's cash flows depend on the fund values. The relevant 
cash flows, with notation, are described here. 

Policyholder's fund: F1 is the amount in the policyholder's separate account 
at timet. 

Premium: P1 is the total premium paid by the policyholder at time t - 1; 
the insurer will make some deductions for expenses and contingencies. 
The remainder is invested in the policyholder's fund. 

Allocated premium: AP1 is the part of the tth premium that is invested in 
the policyholder's fund. 

Interest on policyholder's assets: i( is the assumed rate of interest earned 
on the policyholder's fund in the tth year. It will depend on the type 
of assets available, and in practice is highly variable. In this section we 
adopt simple deterministic assumptions for i(, but in Section 14.4 we 
explore a stochastic approach. 

Management charge: MC1 is the management charge deducted from the 
policyholder's fund during the tth year. The management charge may be 
deducted at the start or the end of the year; we generally assume the year 
end in our examples. This passes to the insurer's assets. 

So, assuming that the management charge is deducted from the policyholder's 
fund at the year end, we have 
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Ft = (Ft-1 +APt) (1 + i{)- MCt. (14.1) 

The first step in a profit test of an equity-linked policy is the projection of the 
policyholder's fund, assuming that the policyholder stays in force throughout 

the contract. This is exactly the process we used for Universal Life profit test
ing in Chapter 13. We are not directly interested in the policyholder's fund. We 
project the fund values because the insurer cash flows in, say, the tth policy year 
depend on the fund values in respect of policies in force during the tth year. 

Following the conventions of profit testing, we first calculate the profit vector 
by projecting the insurer's cash flows each year, assuming that the policy is in 
force at the start of the year. We use the following notation for the insurer's 
cash flows and profit. Some of these terms have been introduced in previous 
chapters, and are repeated here for convenience. 

Reserve t-1 V: Often the policyholder's funds are sufficient for the policy
holder's benefits, as maturity or surrender values. The insurer's reserve, 
which is additional to the separate account holding the policyholder's 
funds, is only required if there are potential additional future liabilities that 
need advance reserves. If required, t -I V is the reserve brought forward 
to the tth year in respect of a policy in force at the start of the tth year. 

Unallocated premium, UAPt: This is Pt -APt. which is the difference 
between the full premium paid and the allocated premium paid into the 
policyholder's fund. The unallocated premium is paid into the insurer's 
funds. 

1 Expenses, £ 1: this refers to the projected incurred expenses. Pre-contract 
expenses will be allocated to time 0, as usual. Other expenses are assumed 
to be incurred at the start of each policy year (i.e. at timet - 1). 

Interest, It: this is the interest income on the insurer's assets invested 
through the tth year. 

Expected cost of death benefit, EDB1: this covers any additional death 
benefit not covered by the policyholder's fund. That is, if the benefit 
paid at the end of the year of death is DBt. the policyholder's fund will 
cover Ft, and the additional death benefit is DB1 - F1• If the mortality 

probability for the tth year is p~~t-I, then 

EDBt = p~~t-I (DB1 - Ft). 

Expected cost of surrender or maturity cash values, ECV1 : this covers 
any additional cash value not covered by the policyholder's fund. If there 
is a surrender penalty, so that the surrendering policyholder receives 
less than their fund value, then ECV1 will be negative, i.e. an item of 
income not outgo. In the final year of the contract, there may be a sum 
payable at maturity, additional to the policyholder's fund- for example, 
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if a guaranteed minimum maturity benefit applies. If the probability of 

surrender in the tth year is p ~~~ _1 , then 

where, in the final year, CVt refers to the payment at maturity. 

Expected cost of year end reserve, E1 V: as used throughout Chapters 12 
and 13, if p~~t- 1 is the probability that a policy in force at the start of 
the tth year is still in force at the start of the (t + 1)th year, then 

Et V = p~~t-1 tV. 

Assuming that the management charge is paid from the policyholder's fund to 
the insurer at each year end, for a policy in force at the start of the year, we 
have the profit vector calculation, that is, profit emerging at time t for a policy 
in force at time t - 1, 

Prt = t-1 V + UAPt - Et +It+ MCt - EDB1 - ECVt - Et V. (14.2) 

In practice, not all of these terms may be needed. Some policies will not carry 
reserves, and it would be common for the cash value to be equal to the poli
cyholder's fund, which would mean that the cost to the insurer (ECVt) would 
be zero. Also, formula (14.2) may need some adjustment, for example, if man
agement charges are deducted at the start of the year rather than the end. 

Once the profit vector has been calculated, the profit signature, NPV and 
profit margin can all be determined using the techniques from Chapter 12. 

The following two examples illustrate the calculations. 

Example 14.1 A 10-year equity-linked contract is issued to a life aged 55 with 
the following terms. 

The policyholder pays an annual premium of $5000. The insurer deducts 
a 5% expense allowance from the first premium and a 1% allowance from 
subsequent premiums. The remainder is invested into the policyholder's fund. 

At the end of each year a management charge of0.75% of the policyholder's 
fund is transferred from the policyholder's fund to the insurer's fund. 

If the policyholder dies during the contract term, a benefit of 110% of the 
value of the policyholder's year end fund (after management charge deduc
tions) is paid at the end of the year of death. 

If the policyholder surrenders the contract, he receives the value of the poli
cyholder's fund at the year end, after management charge deductions. 

If the policyholder holds the contract to the maturity date, he receives the 
greater of the value of the policyholder's fund and the total of the premiums 
paid. 
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(a) Assume the policyholder's fund earns interest at 9% per year. Project the 
year end fund values for a contract that remains in force for 10 years. 

(b) Calculate the profit vector for the contract using the following basis. 
Survival model: The probability of dying in any year is 0.005. 
Lapses: 10% of lives in force at year end surrender in the first year of 
the contract, 5% in the second year and none in subsequent years. All 
surrenders occur at the end of a year immediately after the management 
charge deduction. 
Initial expenses: 10% of the first premium plus $150, incurred before 
the first premium payment. 
Renewal expenses: 0.5% of the second and subsequent premiums. 
Interest: The insurer's funds earn interest at 6% per year. 
Reserves: The insurer holds no reserves for the contract. 

(c) Calculate the profit signature for the contract. 
(d) Calculate the NPV using a risk discount rate of 15% per year effective. 

Solution 14.1 (a) The first step in a profit test is the projection of Ft, assuming 
the policy is in force for the full 10-year contract. We extract from all the 
information above the parts that relate to the policyholder's fund. 

We are given that the annual premium is $5000; 5% is deducted from 
the first premium, giving an allocated premium of AP1 =4750. In sub
sequent years, the allocated premium is 99% of the premium, so that for 
t =2, 3, ... , 10, APt =4950. 

We are also given the assumption that i( = 0.09. 
The management charge in the tth year is 

MCt = 0.0075 x ((Ft-1 +APt) x 1.09), 

and, following equation (14.1), fort= 1, 2, 3, ... , 10, we have 

Ft = (Ft-1 +APt) x 1.09- MCt = (Ft-l +APt) x 1.09 x 0.9925. 

The projection of the policyholder's fund is shown in Table 14.1. The key 
to the columns of Table 14.1 is as follows. 

(1) The entries fort are the years of the contract, from timet -1 to timet. 
(2) This shows the allocated premium, APt, invested in the policyholder's 

fund at timet- 1. 
(3) This shows the fund brought forward from the previous year end. 
( 4) This shows the amount in the policyholder's fund at the year end, just 

before the annual management charge is deducted. 
(5) This shows the management charge, at 0.75% of the previous column. 
(6) This shows the remaining fund, which is carried forward to the next 

year. 
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Table 14.1 Projection of policyholder's fund for Example 14.1. 

t APt Ft-1 Ft- MCt Ft 
(1) (2) (3) (4) (5) (6) 

1 4750 0.00 5177.50 38.83 5138.67 
2 4950 5138.67 10996.65 82.47 10914.17 
3 4950 10914.17 17291.95 129.69 17162.26 
4 4950 17 162.26 24102.36 180.77 23921.60 
5 4950 23 921.60 31470.04 236.03 31234.01 
6 4750 31234.Ql 39440.58 295.80 39144.77 
7 4950 39144.77 48063.30 360.47 47702.83 
8 4950 47702.83 57 391.58 430.44 56961.14 
9 4950 56961.14 67 483.15 506.12 66977.02 

10 4950 66977.02 78400.45 588.00 77 812.45 

(b) The sources of income and outgo for the insurer's funds, for a contract in 
force at the start of the year, are: 

Unallocated premium: UAP1 = 5 000 - AP1• This is the amount the 
insurer takes when the premiums are paid. The rest goes into the 
policyholder's fund. 

Expenses, Et: 

Initial expenses (pre-contract) of Eo= 0.1 x 5000 + 150 = 650. 

First year expenses of E1 = 0 (all included in Eo). 
Fort= 2, 3, ... , 10, Et = 0.005 x 5000 = 25. 

Interest, It: earned at 6% per year, so for t = 1, 2, ... , 10, 

It =0.06 (U APt- Et). 

Note that there are no reserves required for this policy. 
Management charge: MC1 is assumed to be received at the year end. The 
values are taken from Table 14.1. 
Expected cost of deaths: the death benefit is greater than the policyholder's 
fund value, which means there is a cost to the insurer if the policyholder 
dies. The death benefit is 110% of Ft, so the insurer's liability if the pol
icyholder dies in the tth year is 10% of Ft (the rest is paid from the 
policyholder's fund). The mortality probability is given as 0.005, so the 
expected cost of the additional death benefit is 

EDBt = 0.005 x (l.lFt- Ft) = 0.005 x 0.1Ft. 

Expected cost of cash values: There is no cost to the insurer if the policy
holder surrenders the contract early, but there is a potential cost from the 
GMMB at maturity. The fund value at maturity is F10 which is projected to 
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Table 14.2 Emerging surplus for Example 14.1. 

Unallocated Management Expected 
premium Expenses Interest charge death benefit 

UAPt Et It MCt EDBt Prt 

0.00 650.00 0.00 0.00 0.00 -650.00 
250.00 0.00 15.00 38.83 2.57 301.26 

50.00 25.00 1.50 82.47 5.46 103.52 
50.00 25.00 1.50 129.69 8.58 147.61 
50.00 25.00 1.50 180.77 11.96 195.31 
50.00 25.00 1.50 236.03 15.62 246.91 
50.00 25.00 1.50 295.80 19.57 302.73 
50.00 25.00 1.50 360.47 23.85 363.12 
50.00 25.00 1.50 430.44 28.48 428.46 
50.00 25.00 1.50 506.12 33.49 499.14 
50.00 25.00 1.50 588.00 38.91 575.60 

Table 14.3 Calculation of the profit signature for Example 14.1. 

Probability Probability 
in force Tit in force Tit 

0 1.00000 ~650.00 6 0.83384 252.43 
1 1.00000 301.26 7 0.82967 301.27 
2 0.89550 92.70 8 0.82552 353.70 
3 0.84647 124.95 9 0.82139 409.99 
4 0.84224 164.50 10 0.81729 470.43 
5 0.83803 206.92 

be $77 812.45. The GMMB requires a final payment of at least 10 x 5000. 
Since this is smaller than Fw, there is no projected cost from the GMMB. 

Following equation (14.2), we have 

The emerging surplus is shown in Table 14.2. 

(c) For the profit signature we multiply the tth element of the profit vector, Prt, 
by the probability that the contract is still in force at the start of the year 

for t = 1, 2, ... , 10. (For t = 0; the required probability is 1.) The values 
are shown in Table 14.3. 
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(d) The NPV is calculated by discounting the profit signature at the risk dis
count rate of interest, r = 15%, so that 

10 

NPV = L Tir (1 + r)-t = $531.98. 
t=O 

D 

Example 14.2 The terms of a five-year equity-linked insurance policy issued 
to a life aged 60 are as follows. 

The policyholder pays a single premium of $10 000. The insurer deducts 
3% of the premium for expenses. The remainder is invested in the poli
cyholder's fund. 

At the start of the seco1;1d and subsequent months, a management charge of 
0.06% of the policyholder's fund is transferred to the insurer's 
fund. 

If the policyholder dies during the term, the policy pays out 101% of all 
the money in her fund. In addition, the insurer guarantees a minimum 
benefit. The guaranteed minimum death benefit in the tth year is 
10000 (I.oW-1, where t = 1, 2, ... , 5. 

If the policyholder surrenders the contract during the first year, she receives 
90% of the money in the policyholder's fund. In the second year a surren
dered contract pays 95% of the policyholder's fund. If the policyholder 
surrenders the contract after the second policy anniversary, she receives 
100% of the policyholder's fund. 

If the policyholder holds the contract to the maturity date, she receives the 
money in the policyholder's fund with a guarantee that the payout will 
not be less than $10 000. 

The insurer assesses the profitability of the contract by projecting cash flows 
on a monthly basis using the following assumptions. 

Survival model: The force of mortality is constant for all ages and equal to 
0.006 per year. 

Death benefit: This is paid at the end of the month in which death occurs. 
Lapses: Policies are surrendered only at the end of a month. The proba

bility of surrendering at the end of any particular month is 0.004 in 
the first year, 0.002 in the second year and 0.001 in each subsequent 
year. 

Interest: The policyholder's fund earns interest at 8% per year effective. The 
insurer's fund earns interest at 5% per year effective. 
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Initial expenses: 1% of the single premium plus $150. 
Renewal expenses: 0.008% of the single premium plus 0.01% of the 

policyholder's funds at the end of the previous month. Renewal expenses 
are payable at the start of each month after the first. 

(a) Calculate the probabilities that a policy in force at the start of a month is 
still in force at the start of the next month. 

(b) Construct a table showing the projected policyholder's fund assuming the 
policy remains in force throughout the term. 

(c) Construct a table showing the projected insurer's fund. 
(d) Calculate the NPV for the contract using a risk discount rate of 12% per 

year. 

Solution 14.2 (a) The probability of not dying in any month is 

exp{-0.006/12} = 0.9995. 

Hence, allowing for lapses, the probability that a policy in force at the start 
of a month, at time t, say, is still in force at the start of the following month 
is as follows, where h = 1~ is the time step for this example: 

hP~~t-h = (1- 0.004) exp{-0.006/12} = 0.9955 

hP~~t-h = (1- 0.002) exp{-0.006/12} = 0.9975 

h p~~t-h = (1 - 0.001) exp{ -0.006/12} = 0.9985 

in the first year, 

in the second year, 

in subsequent years. 

(b) Table 14.4 shows the projected policyholder's fund at selected durations 
assuming the policy remains in force throughout the five years. Note that in 
this example the management charge is deducted at the start of the month 
rather than the end. The guaranteed minimum death benefit is also given 
in this table - in the first year this is the full premium and it increases by 
5% at the start of each year. 

(c) The projected cash flows for the insurer's fund are shown in Table 14.5. 

UAP 1: the unallocated premium is $300 in the first month, and $0 there
after, as this is a single premium policy. 

MC1: the management charge is taken from Table 14.4. In this example, 
it is assumed to be paid at the start of each month. 

E1: the expenses are described in the example; the pre-contract expenses 
are allocated to time 0. 

! 1 is calculated as (1.051112 - l)(U AP1 + MC1 - E1 ). 

EDB1 is the expected cost of additional death benefits. The death benefit 
at timet is DB1 = max(l.Ol x F1 , GMDB1), where GMDB1 is the 
guaranteed minimum death benefit shown in Table 14.4. Hence, the 
additional death benefit is 
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Table 14.4 Deterministic projection of the policyholder's fund for 

Example 14.2. 

APt Ft-1 MCt Ft GMDBt 

1 9700 0.00 0.00 9762.41 10000.00 12 
2 0 9762.41 5.86 9 819.33 10000.00 TI 
3 0 9 819.33 5.89 9 876.57 10000.00 12 
4 0 9 876.57 5.93 9934.16 10000.00 TI 
5 0 9934.16 5.96 9992.07 10000.00 TI 
6 0 9992.07 6.00 10050.33 10000.00 12 

0 10346.74 6.21 10407.07 10000.00 
1 

1n 0 10407.07 6.24 10467.74 10500.00 

2 0 11094.29 6.66 11158.97 10500.00 

2 l2 0 11158.97 6.70 11224.03 11025.00 

3 0 11895.85 7.14 11965.20 11025.00 

3-b 0 11965.20 7.18 12034.96 11576.25 

4 0 12 755.32 7.65 12829.68 11576.25 

4-b 0 12829.68 7.70 12 904.48 12155.06 

5 0 13 676.89 8.21 13756.62 12155.06 

ADB1 = DB1 - F1 =max (0.01 x F1 , GMDB1 - F1), 

and the expected cost of the additional death benefit in the month 
from time t - h to time t is 

EDBt = hP~g+t-h max (0.01 x F1 , GMDBt- Ft) 

where hP~g+t-h = 1 - e-0·006112 is the probability of death in the 
month. 

ECV1 is the expected cost of surrender and maturity payments. In this 
case, expected profits on surrenders in the first two years are a source 
of income for the insurer's fund since, on surrendering her policy, the 
policyholder receives less than the full amount of the policyholder's 
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Table 14.5 Deterministic projection of the insurer's fund for Example 14.2. 

UAPt MCr Er Ir EDBt ECV1 Prr 

0 0 0.00 250.00 0.00 0.00 0.00 -250.00 
1 300 0.00 0.80 1.22 0.12 -3.90 304.20 12 
2 0 5.86 1.78 0.02 0.09 -3.93 7.93 12 
3 0 5.89 1.78 0.02 0.06 -3.95 8.01 12 
4 0 5.93 1.79 0.02 0.05 -3.97 8.08 12 
5 0 5.96 1.79 0.02 0.05 -3.99 8.13 12 
6 0 6.00 1.80 0.02 0.05 -4.02 8.18 12 

1 0 6.21 1.83 0.02 0.05 -4.16 8.50 
1 

112 0 6.24 1.84 0.02 0.05 -1.05 5.42 

2 0 6.66 1.91 0.02 0.06 -1.12 5.83 

2-0_ 0 6.70 1.92 0.02 0.06 0.00 4.74 

3 0 7.14 1.99 0.02 0.06 0.00 5.11 

3-0_ 0 7.18 2.00 0.02 0.06 0.00 5.14 

4 0 7.65 2.08 0.02 0.06 0.00 5.54 

4{2 0 7.70 2.08 0.02 0.06 0.00 5.57 

5 0 8.21 2.17 0.02 0.00 0.00 5.99 

fund. Let hP~O+t-h denote the lapse probability for the month, and 

let CVt denote the total cash value paid on surrender at timet. Then 

ECVr = hP~o+t-h (CVr- Fr). 

In the first year (i.e. fort= 1~, 1
2
2 , ... , 1), CV1 = 0.9 F1, and in the 

second year CVt =0.95 Ft. For t =2-0_, 2 1
2
2 , ... , CVt =Ft. For 

example fort = l p 0w = 0 004 x e-0·006112 so , 12' h 60+t-h . , 

ECV1 = 0.004 x e -0.006f 12 x ( -0.10 F1) • 

There is no projected maturity benefit other than the policyholder's 

fund. 
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Table 14.6 Calculation of the profit signature for Example 14.2. 

Probability 
Prt in force ITt 

0 -250.00 1.0000 -250.00 
1 304.20 1.0000 304.20 12 
2 7.93 0.9955 7.90 12 
3 8.01 0.9910 7.94 12 
4 8.08 0.9866 7.97 TI 
5 8.13 0.9821 7.98 12 
6 8.18 0.9777 8.00 12 

1 8.50 0.9516 8.09 

1A 5.42 0.9492 5.14 

2 5.83 0.9235 5.38 
2 l2 4.74 0.9221 4.37 

3 5.11 0.9070 4.63 

3rt 5.14 0.9056 4.66 

4 5.54 0.8908 4.93 

41~ 5.57 0.8895 4.96 

5 5.99 0.8749 5.24 

Prt: the expected profit at the end of the month per policy in force at the 
start of the month is calculated, following equation (14.2), as 

Prt = UAPt - E1 + MC1 + 11 - EDB1 - ECV1• 

(d) Table 14.6 shows, for selected durations, the expected profit at the end of 
the month per policy in force at the start of the tth month, Pr1, the proba
bility that the policy is in force at the start of the month (given only that it 
was in force at time 0) and the profit signature, Tit, which is the product of 
these two elements. 

The net present value for this policy is calculated by summing the ele
ments of the profit signature discounted to time 0 at the risk discount 
rate, r. Hence 
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60 

NPV = "I11._ (1 + r)--fl = $302.42. 
~ 12 
k=O 

D 

In both the examples in this section, the benefit involved a guarantee. In the first 
example the guarantee had no effect at all on the calculations, and in the second 
the effect was negligible. This does not mean that the guarantees are cost
free. In practice, even though the policyholder's fund may earn on average a 
return of 9% or more, the return could be very volatile. A few years of poor 
returns could generate a significant cost for the guarantee. We can explore the 
sensitivity of the emerging profit to adverse scenarios by using stress testing. 

In Example 14.1 there is a GMMB- the final payout is guaranteed to be at 
least the total amount invested, $50 000. Assume as an adverse scenario that the 
return on the policyholder's fund is only 5% rather than 9%. The result is that 
the GMMB still has no effect, and the NPV changes from $531.98 to $417.45. 
We must reduce the return assumption to 1% or lower for the guarantee to have 
any cost. However, under the deterministic model there is no way to turn this 
analysis into a price for the guarantee. 

Furthermore, the deterministic approach does not reflect the potentially huge 
uncertainty involved in the income and outgo for equity-linked insurance. The 
insurer's cash flows depend on the policyholder's fund, and the policyholder's 
fund depends on market conditions. 

The deterministic profit tests described in this section can be quite mislead
ing. The investment risks in equity-linked insurance cannot be treated deter
ministically. It is crucial that the uncertainty is properly taken into considera
tion for adequate pricing, reserving and risk management. In the next section 
we develop the methodology introduced in this section to allow appropriately 
for uncertainty. 

14.4 Stochastic profit testing 

For traditional insurance policies we often assume that the demographic 
uncertainty dominates the investment uncertainty - which may be a reason
able assumption if the underlying assets are invested in low-risk fixed interest 
securities of appropriate duration. The uncertainty involved in equity-linked 
insurance is very different. The mortality element is assumed diversifiable and 
is not usually the major factor. The uncertainty in the investment performance 
is a far more important element, and it is not diversifiable. Selling 1000 equity
linked contracts with GMMBs to identical lives is almost the same as issu
ing one big contract; when one policyholder's fund dips in value, then all 
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dip, increasing the chance that the GMMB will cost the insurer money for 
every contract. 

Using a deterministic profit test does not reflect the reality of the situation 
adequately in most cases. The EPV of future profit - expected in terms of 
demographic uncertainty only - does not contain any information about the 
uncertainty from investment returns. The profit measure for an equity-linked 
contract is modelled more appropriately as a random variable rather than a 
single number. This is achieved by stochastic profit testing. 

The good news is that we have done much of the work for stochastic profit 
testing in the deterministic profit testing of the previous section. The differ
ence is that in the earlier section we assumed deterministic interest and demo
graphic scenarios. In this section we replace the deterministic investment sce
narios with stochastic scenarios. The most common practical way to do this is 
with Monte Carlo simulation, which we introduced in Section 11.5, and used 
ah·eady for this purpose with interest rates in Chapter 11. 

Using Monte Carlo simulation, we generate a large number of outcomes 
for the investment return on the policyholder's fund. The simulated returns are 
used in place of the constant investment return assumption in the determin
istic case. The profit test proceeds exactly as described in the deterministic 
approach, except that we repeat the test for each simulated investment return 
outcome, so we generate a random sample of outcomes for the contract, which 
we can use to determine the probability distribution for each profit measure for 
a contract. 

Typically, the policyholder's fund may be invested in a mixed fund of equi
ties or equities and bonds. The policyholder may have a choice of funds avail
able, involving greater or lesser amounts of uncertainty. 

A very common assumption for returns on equity portfolios is the indepen
dent lognormal assumption. This assumption, which is very important in finan
cial modelling, can be expressed as follows. Let R1, Rz, ... be a sequence of 
random variables, where R1 represents the accumulation at time t of a unit 
amount invested in an equity fund at timet - 1, so that R1 - 1 is the rate of 
interest earned in the year. These random variables are assumed to be mutu
ally independent, and each R1 is assumed to have a lognormal distribution (see 
Appendix A). Note that if R1 has a lognormal distribution with parameters p,1 

and a}, then 

Hence, values for R1 can be simulated by simulating values for log R1 and 
exponentiating. 

We demonstrate stochastic profit testing for equity-linked insurance by con
sidering further the 10-year policy discussed in Example 14.1. In the discus-
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Table 14.7 A single simulation of the profit test. 

Simulated Simulated Management 
t Zt rt charge Fund c/f Prt ITt 
(1) (2) (3) (4) (5) (6) (7) 

0 -650.00 -650.00 
1 0.95518 1.24384 44.31 5 863.94 306.38 306.38 
2 -2.45007 0.74633 60.53 8010.27 83.03 74.35 
3 -1.23376 0.89571 87.07 11521.61 107.80 90.80 
4 0.55824 1.17194 144.78 19159.03 161.70 135.51 
5 -0.62022 0.98206 177.57 23498.89 192.32 160.37 
6 0.01353 1.08000 230.44 30494.26 241.69 200.52 
7 -1.22754 0.89655 238.33 31539.16 249.06 205.61 
8 0.07758 1.09042 298.41 39490.18 305.17 250.66 
9 -0.61893 0.98225 327.38 43 323.89 332.22 271.52 

10 -0.25283 1.03770 375.70 49717.95 96.71 78.64 

sion of Example 14.1 in Section 14.3 we assumed a rate of return of 9% per 
year on the policyholder's fund. This resulted in a zero cost for the GMMB. 
We now assume that the accumulation factor for the policyholder's fund over 
the tth policy year is R1, where the sequence {R1 };~ 1 satisfies the indepen
dent lognormal assumption. To simplify our presentation we further assume 
that these random variables are identically distributed, with R1 ~ LN({L, cr 2), 

where fL = 0.074928 and cr 2 = 0.152 . Note that the expected accumulation fac
tor each year is 

which is the same as under the deterministic assumption in Section 14.3. 
Table 14.7 shows the results of a single simulation of the investment returns 

on the policyholder's fund for the policy in Example 14.1. 
The values in column (2), labelled zt, ... , zw, are simulated values from 

a N(O, 1) distribution. These values are converted to simulated values from 
the specified lognormal distribution using r1 = exp{0.074928 +0.15z1 }, giving 
the annual accumulation factors shown in column (3). The values {r1 };~ 1 are 
a single simulation of the random variables {Rdi~ 1. These simulated annual 
accumulation factors should be compared with the value 1.09 used in the cal
culation of Table 14.1. The values in columns (4) and (5) are calculated in 
the same way as those in columns (5) and (6) in Table 14.1, using the annual 
interest rate r1 - 1 in place of 0.09. Note that in some years, for example the 
second policy year, the accumulation factor for the policyholder's fund is less 
than one. The values in column (6) are calculated in the same way as those in 
the final column of Table 14.2 except that there is an extra deduction in the 
calculation of Prw of amount 
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where Fw denotes the final fund value. This deduction was not needed in our 
calculations in Section 14.3 since, with the deterministic interest assumption, 
the final fund value, $77 812.45, was greater than the GMMB. For this simula
tion, Fw is less than the GMMB so there is a deduction of amount 

0.995 X (50000-49717.95)=$280.64. 

The values for Tit are calculated by multiplying the corresponding value of Prt 
by the probability of the policy being in force, as shown in Table 14.3. The 
values for Prt and Tit shown in Table 14.7 should be compared with the cor
responding values in Tables 14.2 and 14.3, respectively. Using a risk discount 
rate of 15% per year, the NPV using this single simulation of the investment 
returns on the policyholder's fund is $232.09. 

To measure the effect of the uncertainty in rates of return, we generate a 
large number, N, of sets of rates of return and for each set carry out a profit 
test as above. Let NPVi denote the net present value calculated from the ith 
simulation, for i = 1, 2, ... , N. Then the net present value for the policy, NPV, 
is being modelled as a random variable and {NPV; }f= 1 is a set of N indepen
dent values sampled from the distribution of NPV. From this sample we can 
estimate the mean, standard deviation and percentiles of this distribution. We 
can also count the number of simulations for which NPV; is negative, denoted 
N-, and the number of simulations, denoted N*, for which the final fund value 
is greater than $50000, so that there is no liability for the GMMB. 

Let m and s be the estimates of the mean and standard deviation of NPV. 
Since N is large, we can appeal to the central limit theorem to say that a 95% 
confidence interval (CI) for E[NPV] is given by 

( m - 1.96 ~, m + 1.96 ~) . 
It is important whenever reporting summary results from a stochastic simula
tion to give some measure of the variability of the results, such as a standard 
deviation or a confidence interval. 

Calculations by the authors using N = 1000 gave the results shown in 
Table 14.8. To calculate the median and the percentiles we arrange the sim
ulated values of NPV in ascending or descending order. Let {NPV (i)} f ~op 
denote the simulated values for NPV arranged in ascending order. Then the 
median is estimated as (NPV (500) + NPV (501)) /2, so that 50% of the observa
tions lie above the estimated median, and 50% lie above. This would be true 
for any value lying between NPV(500) and NPV(501), and taking the mid-point 
is a conventional approach. Similarly the fifth percentile value is estimated as 
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Table 14.8 Results from 1000 
simulations of the net present value. 

E[NPV] 
SD[NPV] 
95% CI for E[NPV] 
5th percentile 
Median of NPV 
95th percentile 
N-
N* 

380.91 
600.61 

(343.28, 417.74) 
-859.82 

498.07 
831.51 
87 

897 

(NPVcso) + NPVcsl))/2 and the 95th percentile is estimated as 

(NPV(950) + NPV(951))/2. 
The results in Table 14.8 put a very different light on the profitability of the 

contract. Under the deterministic analysis, the profit test showed no liability 
for the guaranteed minimum maturity benefit, and the contract appeared to be 
profitable overall- the net present value was $531.98. Under the stochastic 
analysis, the GMMB plays a very important role. The value of N* shows that 
in most cases the GMMB liability is zero and so it does not affect the median. 
However, it does have a significant effect on the mean, which is considerably 
lower than the median. From the fifth percentile figure, we see that very large 
losses are possible; from the 95th percentile we see that there is somewhat less 
upside potential with this policy. Note also that an estimate of the probability 
that the net present value is negative, calculated using a risk discount rate of 
15% per year, is 

N-/N = 0.087, 

indicating a probability of around 9% that this apparently profitable contract 
actually makes a loss. 

This profit test reveals what we are really doing with the deterministic test, 
which is, approximately at least, projecting the median result. Notice how close 
the median value of NPV is to the deterministic value. 

14.5 Stochastic pricing 

Recall from Chapter 6 that the equivalence principle premium is defined such 
that the expected value of the present value of the future loss at the issue of 
the policy is zero. In fact, the expectation is usually taken over the future life
time uncertainty (given fixed values for the mortality rates), not the uncertainty 
in investment returns or non-diversifiable mortality risk. This is an example 
of an expected value premium principle, where premiums are set considering 
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Table 14.9 Results from changing the structure of the policy in Example 14.1. 

Change 

Increase P IncreaseMC Increase UAP Decrease GMMB 
(1) (2) (3) (4) 

E[NPV] 433.56 939.60 594.68 460.33 
SD[NPV] 660.67 725.97 619.75 384.96 
95% CI (392.61, 474.51) (894.60, 984.60) (556.27, 633.09) (436.47, 484.19) 
5%-ile -930.81 -617.22 -724.40 145.29 
Median of NPV 562.87 1065.66 721.74 500.00 
95%-ile 929.66 1625.44 1051.78 831.51 
N- 86 78 80 46 
N* 897 882 894 939 

only the expected value of future loss, not any other characteristics of the loss 
distribution. 

The example studied in Section 14.4 above demonstrates that incorporating a 
guarantee may add significant risk to a contract and that this only becomes clear 
when modelled stochastically. The risk cannot be quantified deterministically. 
Using the mean of the stochastic output is generally not adequate as it fails to 
protect the insurer against significant non-diversifiable risk of loss. 

For this reason it is not advisable to use the equivalence premium principle 
when there is significant non-diversifiable risk. Instead we can use stochastic 
simulation with different premium principles. 

The quantile premium principle is similar to the portfolio percentile pre
mium principle in Section 6.8. This principle is based on the requirement that 
the policy should generate a profit with a given probability. We can extend this 
principle to the pricing of equity-linked policies. For example, we might be 
willing to write a contract if, using a given risk discount rate, the lower fifth 
percentile point of the net present value is positive and the expected net present 
value is at least 65% of the acquisition costs. 

The example studied throughout Section 14.4 meets neither of these require
ments; the lower fifth percentile point is -$859.82 and the expected net present 
value, $380.91, is 58.6% of the acquisition costs, $650. 

We cannot determine a premium analytically for this contract which would 
meet these requirements. However, we can investigate the effects of changing 
the structure of the policy. For the example studied in Section 14.4, Table 14.9 
shows results in the same format as in Table 14.8 for four changes to the policy 
structure. These changes are as follows. 

(1) Increasing the premium from $5000 to $5500, and hence increasing the 
GMMB to $55 000 and the acquisition costs to $700. 
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(2) Increasing the annual management charge from 0.75% to 1.25%. 
(3) Increasing the expense deductions from the premiums from 5% to 6% in 

the first year and from 1% to 2% in subsequent years. 
( 4) Decreasing the GMMB from 100% to 90% of premiums paid. 

In each of the four cases, the remaining features of the policy are as described 
in Example 14.1. 

Increasing the premium, change (1), makes little difference in terms of our 
chosen profit criterion. The lower fifth percentile point is still negative - the 
increase in the GMMB means that even larger losses can occur - and the 
expected net profit is still less than 65% of the increased acquisition costs. 
The premium for an equity-linked contract is not like a premium for a tradi
tional contract, since most of it is unavailable to the insurer. The role of the 
premium in a traditional policy - to compensate the insurer for the risk cover
age offered- is taken in equity-linked insurance by the management charge on 
the policyholder's funds and any loading taken from the premium before it is 
invested. 

Increasing the management charge, change (2), or the expense loadings, 
change (3), does increase the expected net present value to the required level 
but the probability of a loss is still greater than 5%. 

The one change that meets both parts of our profit criterion is change (4), 
reducing the level of the maturity guarantee. This is a demonstration of the 
important principle that risk management begins with the design of the benefits. 

An alternative, and in many ways more attractive, method of setting a pre
mium for such a contract is to use modern financial mathematics to both price 
the contract and reduce the risk of making a loss. We return to this topic in 
Chapter 16. 

14.6 Stochastic reserving 

14.6.1 Reserving for policies with non-diversifiable risk 

In Chapter 7 we defined a policy value as the EPV of the future loss, from 
the policy (using a deterministic interest rate assumption). This, like the use 
of the equivalence principle to calculate a premium, is an example of the 
application of the expected value principle. When the risk is almost entirely 
diversifiable, the expected value principle works adequately. When the risk is 
non-diversifiable, which is usually the case for equity-linked insurance, the 
expected value principle is inadequate both for pricing, as discussed in Sec
tion 14.5, and for calculating appropriate reserves. 

Consider the further discussion of Example 14.1 in Section 14.4. On the 
basis of the assumptions in that section, there is a 5% chance that the insurer 
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will make a loss in excess of $859.82, in present value terms calculated using 
the risk discount rate of 15% per year, on each policy issued. If the insurer has 
issued a large number of these policies, such losses could have a disastrous 
effect on its solvency, unless the insurer has anticipated the risk by reserving 
for it, by hedging it in the financial markets (which we explain in Chapter 16) 
or by reinsuring it (which means passing the risk on by taking out insurance 

with another insurer). 
Calculating reserves for policies with significant non-diversifiable risk 

requires a methodology that takes account of more than just the expected value 
of the loss distribution. Such methodologies are called risk measures. A risk 

measure is a functional that is applied to a random loss to give a reserve value 
that reflects the riskiness of the loss. 

There are two common risk measures used to calculate reserves for non
diversifiable risks: the quantile reserve and the conditional tail expectation 

reserve. 

14.6.2 Quantile reserving 

A quantile reserve (also known as Value-at-Risk, or VaR) is defined in terms 

of a parameter a, where 0 ::S a ::S 1. Suppose we have a random loss L. The 
quantile reserve with parameter a represents the amount which, with probabil
ity a, will not be exceeded by the loss. 

If L has a continuous distribution function, F L, the a-quantile reserve is Qa, 

where 

Pr [L ::S QaJ = a, (14.3) 

so that 

If FL is not continuous, so that L has a discrete or a mixed distribution, Qa 

needs to be defined more carefully. In the example below (which continues in 

the next section) we assume that FL is continuous. 
To see how to apply this in practice, consider again Example 14.1 as dis

cussed in Section 14.4. Suppose that immediately after issuing the policy, and 
paying the acquisition costs of $650, the insurer wishes to set up a 95% quan
tile reserve, denoted o V. In other words, after paying the acquisition costs the 

insurer wishes to set aside an amount of money, o V, so that, with probability 
0.95, it will be able to pay its liabilities. 

We need some notation. Let j denote the rate of interest per year assumed 
to be earned on reserves. In practice, j will be a conservative rate of interest, 

probably much lower than the risk discount rate. Let 1 p~~ denote the probabil
ity that a policy is still in force at duration t. This is consistent with our notation 
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from Chapter 8 since our underlying model for the policy contains three states: 
in force (which we denote by 0), lapsed and dead. 

The reserve, o V, is calculated by simulating N sets of future accumulation 
factors for the policyholder's fund, exactly as in Section 14.4, and for each 
of these we calculate Pr1,;, the profit emerging at timet, t = 1, 2, ... , 10 for 
simulation i, per policy in force at duration t - 1. For simulation i we calculate 
the EPV of the future loss, say L;, as 

10 

L;=- L 
t=l 

00 p 
t-1P55 rr,i 

(1 + j)f . 
(14.4) 

Note that in the definition of L; we are considering future profits at times 
t = 1, 2, ... , 10, and we have not included Pro,; in the definition. 

Then o V is set equal to the upper 95th percentile point of the empirical 
distribution of L obtained from our simulations, provided that the upper 95th 
percentile is positive, so that the reserve is positive. If the upper 95th percentile 
point is negative, o V is set equal to zero. 

Calculations by the authors, with N = 1000 and j = 0.06, gave a value for 
o V of $1259.56. Hence, if, after paying the acquisition costs, the insurer sets 
aside a reserve of $1259.56 for each policy issued, it will be able to meet its 
future liabilities with probability 0.95 provided all the assumptions underlying 
this calculation are realized. These assumptions relate to 

• expenses, 

• lapse rates, 
• the survival model, and, in particular, the diversification of the mortality risk, 

• the interest rate earned on the insurer's fund, 

• the interest rate earned on the reserve, 

• the interest rate model for the policyholder's fund, 

• the accuracy of our estimate of the upper 95th percentile point of the loss 
distribution. 

The reasoning underlying this calculation assumes that no adjustment to this 
reserve will be made during the course of the policy. In practice, the insurer 
will review its reserves at regular intervals, possibly annually, during the term 
of the policy and adjust the reserve if necessary. For example, if after one year 
the rate of return on the policyholder's fund has been low and future expenses 
are now expected to be higher than originally estimated, the insurer may need 
to increase the reserve. On the other hand, if the experience in the first year has 
been favourable, the insurer may be able to reduce the reserve. The new reserve 
would be calculated by simulating the present value of the future loss from 
time t = 1, using the information available at that time, and setting the reserve 
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equal to the greater of zero and the upper 95th percentile of the simulated loss 
distribution. 

In our example, the initial reserve, o V = $1259.56, is around 25% of the 
annual premium, $5000. This amount is expected to earn interest at a rate, 
6%, considerably less than the insurer's risk discount rate, 15%. Setting aside 
substantial reserves, which may not be needed when the policy matures, will 
have a serious effect on the profitability of the policy. 

14.6.3 CTE reserving 

The quantile reserve assesses the 'worst case' loss, where worst case is defined 
as the event with a 1 - a probability. One problem with the quantile approach 
is that it does not take into consideration what the loss will be if that 1 - a 
worst case event actually occurs. In other words, the loss distribution above the 
quantile does not affect the reserve calculation. The conditional tail expectation 
(or CTE) was developed to address some of the problems associated with the 
quantile risk measure. It was proposed more or less simultaneously by several 
research groups, so it has a number of names, including tail value at risk (or 
Tail-VaR), tail conditional expectation (or TCE) and expected shortfall. 

As for the quantile reserve, the CTE is defined using some confidence level 
a, where 0::; a ::; 1, which is typically 90%, 95% or 99% for reserving. 

In words, CTEa is the expected loss given that the loss falls in the worst 1-a 
part of the loss distribution for L. The worst 1 -a part of the loss distribution 
is the part above the a-quantile, Qa. If Qa falls in a continuous part of the loss 
distribution, that is, not in a probability mass, then we can define the CTE at 
confidence level a as 

CTEa = E [LJL > Qa]. (14.5) 

If L has a discrete or a mixed distribution, then more care needs to be taken 
with the definition. If Qa falls in a probability mass, that is, if there is some 
E > 0 such that Qa+E = Qa, then, if we consider only losses strictly greater 
than Qa, we are using less than the worst 1 -a of the distribution; if we con
sider losses greater than or equal to Qa, we may be using more than the worst 
1- a of the distribution. We therefore adapt the formula of equation (14.5) as 
follows. Define {3 1 = max{f3 : Qa = Q.s}. Then 

CTEa = ({3
1

- a)Qa + (1- {3
1
) E[LJL > Qa]. 

1-a 
(14.6) 

It is worth noting that, given that the CTEa is the mean loss given that the 
loss lies above the VaR at level a (at least when the VaR does not lie in a 
probability mass) then CTEa is always greater than or equal to Qa, and usually 
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strictly greater. Hence, for a given value of a, the CTEa reserve is generally 
considerably more conservative than the Qa quantile reserve. 

Suppose the insurer wishes to set a CTEo.95 reserve, just after paying the 
acquisition costs, for the policy studied in Example 14.1 and throughout Sec
tions 14.4, 14.5 and 14.6.2. We proceed by simulating a large number of times 
the present value of the future loss using formula (14.4), with the rate of inter
est j per year we expect to earn on reserves, exactly as in Section 14.6.2. From 
our calculations in Section 14.6.2 with N = 1000 and j = 0.06, the 50 worst 
losses, that is, the 50 highest values of L 1, ranged in value from $1260.76 to 
$7 512.41, and the average of these 50 values is $3603.11. Hence we set the 
CTEo.95 reserve at the start of the first year equal to $3603.11. 

The same remarks that were made about quantile reserves apply equally to 
CTE reserves. 

(1) The CTE reserve in our example has been estimated using simulations 
based only on information available at the start of the policy. 

(2) In practice, the CTE reserve would be updated regularly, perhaps yearly, as 
more information becomes available, particularly about the rate of return 
earned on the policyholder's fund. If the returns are good in the early years 
of the contract, then it is possible that the probability that the guarantee 
will cost anything reduces, and part of the reserves can be released back to 
the insurer before the end of the term. 

(3) Holding a large CTE reserve, which earns interest at a rate lower than the 
insurer's risk discount rate, and which may not be needed when the policy 
matures, will have an adverse effect on the profitability of the policy. 

14.6.4 Comments on reserving 

The examples in this chapter illustrate an important general point. Financial 
guarantees are risky and can be expensive. Several major life insurance com
panies have found their solvency at risk through issuing guarantees that were 
not adequately understood at the policy design stage, and were not adequately 
reserved for thereafter. The method of covering that risk by holding a large 
quantile or CTE reserve reduces the risk, but at great cost in terms of tying up 
amounts of capital that are huge in terms of the contract overall. This is a pas
sive approach to managing the risk and is usually not the best way to manage 
solvency or profitability. 

Using modem financial theory we can talce an active approach to financial 
guarantees that for most equity-linked insurance policies offers less risk, and, 
since the active approach requires less capital, it generally improves profitabil
ity when the required risk discount rate is large enough to make carrying capital 
very expensive. 
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The active approach to risk mitigation and management comes from option 
pricing theory. We utilize the fact that the guarantees in equity-linked insur
ance are financial options embedded in insurance contracts. There is an exten
sive literature available on the active risk management of financial options. In 
Chapter 15 we review the science of option risk management, at an introduc
tory level, and in Chapter 16 we apply the science to equity-linked insurance. 

14.7 Notes and further reading 

A practical feature of equity-linked contracts in the UK which complicates the 
analysis a little is capital and accumulation units. The premiums paid at the 
start of the contract, which are notionally invested in capital units, are subject to 
a significantly higher annual management charge than later premiums, which 
are invested in accumulation units. This contract design has been developed to 
defray the insurer's acquisition costs at an early stage. 

Stochastic profit testing can also be used for traditional insurance. We would 
generally simulate values for the interest earned on assets, and we might also 
simulate expenses and withdrawal rates. Exercise 14.2 demonstrates this. 

For shorter term insurance, the sensitivity of the profit to the investment 
assumptions may not be very great. The major risk for such insurance is mis
estimation of the underlying mortality rates. This is also non-diversifiable risk, 
as underestimating the mortality rates affects the whole portfolio. It is therefore 
useful with term insurance to treat the force of mortality as a stochastic input. 

The CTE has become a very important risk measure in actuarial practice. 
It is intuitive, easy to understand and to apply with simulation output. As a 
mean, it is more robust with respect to sampling error than a quantile. The 
CTE is used for stochastic reserving and solvency testing for Canadian and US 
equity-linked life insurance. 

Hardy (2003) discusses risk measures, quantile reserves and CTE reserves 
in the context of equity-linked life insurance. In particular, she gives full defi
nitions of quantile and CTE reserves, and shows how to simulate the emerging 
costs and calculate profit measures when stochastic reserving is used. 

14.8 Exercises 

Exercise 14.1 An insurer sells a one-year variable annuity contract. The 
policyholder deposits $100, and the insurer deducts 3% for expenses and profit. 
The expenses incurred at the start of the year are 2.5% of the premium. 

The remainder of the premium is invested in an investment fund. At the end 
of one year the policyholder receives the fund proceeds; if the proceeds are less 
than the initial $100 investment the insurer pays the difference. 
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Assume that a unit investment in the fund accumulates to R after 1 year, 
where R ~ LN(0.09, 0.182). 

Let F1 denote the fund value at the year end. Let Lo denote the present value 
of future outgo minus the margin offset income random variable, assuming a 
force of interest of 5% per year, i.e. 

Lo = max(lOO- 97 R, 0) e-o.os - (3- 2.5). 

(a) Calculate Pr[FI < 100]. 
(b) Calculate E[ FI]. 

(c) Show that the fifth percentile of the distribution of R is 0.81377. 

(d) Hence, or otherwise, calculate Qo.9s(Lo). 
(e) Let f be the probability density function of a lognormal random variable 

with parameters p., and a 2 . Use the result (which is derived in Appendix A) 

{A 2 (log A- p.,- a
2

) 
Jo x f(x)dx = ef.L+a 12

<1> a , 

where <I> is the standard normal distribution function, to calculate 

(i) E[Lo], and 

(ii) CTEo.95 (Lo). 
(f) Now simulate the year end fund, using 100 projections. Compare the results 

of your simulations with the accurate values calculated in (a)- (e). 

Exercise 14.2 A life insurer issues a special five-year endowment insurance 
policy to a life aged 50. The death benefit is $10000 and is payable at the end 
of the year of death, if death occurs during the five-year term. The maturity 
benefit on survival to age 55 is $20 000. Level annual premiums are payable in 
advance. 

Reserves are required at integer durations for each policy in force, are inde
pendent of the premium, and are as follows: 

The company determines the premium by projecting the emerging cash flows 
according to the projection basis given below. The profit objective is that the 
EPV of future profit must be 1/3 of the gross annual premium, using a risk 
discount rate of 10% per year. 

Projection basis 

Initial expenses: 
Renewal expenses: 
Survival model: 
Interest on all funds: 

10% of the gross premium plus $100 
6% of the second and subsequent gross premiums 
Standard Ultimate Survival Model 
8% per year effective 
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(a) Calculate the annual premium. 
(b) Generate 500 different scenarios for the cash flow projection, assuming 

a premium of $3740, and assuming interest earned follows a lognormal 
distribution, such that if I1 denotes the return in the tth year, 

(1 +It)~ LN(0.07, 0.132
). 

(i) Estimate the probability that the policy will make a loss in the final 
year, and calculate a 95% confidence interval for this probability. 

(ii) Calculate the exact probability that the policy will make a loss in the 
final year, assuming mortality exactly follows the projection basis, 
so that the interest rate uncertainty is the only source of uncertainty. 
Compare this with the 95% confidence interval for the probability 
determined from your simulations. . 

(iii) Estimate the probability that the policy will achieve the profit objec
tive, and calculate a 95% confidence interval for this probability. 

Exercise 14.3 An insurer issues an annual premium unit-linked contract with 
a five-year term. The policyholder is aged 60 and pays an annual premium 
of $100. A management charge of 3% per year of the policyholder's fund is 
deducted annually in advance. 

The death benefit is the greater of $500 and the amount of the fund, pay
able at the end of the year of death. The maturity benefit is the greater of 
$500 and the amount of the fund, paid on survival to the end of the five-year 
term. 

Mortality rates assumed are: q6o = 0.0020, q61 = 0.0028, q62 = 0.0032, 
q63 = 0.0037 and q64 = 0.0044. There are no lapses. 

(a) Assuming that interest of 8% per year is earned on the policyholder's 
fund, project the policyholder's fund values for the term of the contract 
and hence calculate the insurer's management charge income. 

(b) Assume that the insurer's fund earns interest of 6% per year. Expenses of 
2% of the policyholder's funds are incurred by the insurer at the start of 
each year. Calculate the profit signature for the contract assuming that no 
reserves are held. 

(c) Explain why reserves may be established for the contract even though no 
negative cash flows appear after the first year in the profit test. 

(d) Explain how you would estimate the 99% quantile reserve and the 99% 
CTE reserve for this contract. 

(e) The contract is entering the final year. Immediately before the final pre
mium payment the policyholder's fund is $485. 

Assume that the accumulation factor for the policyholder's fund each 
year is lognormally distributed with parameters fh = 0.09 and cr 2 = 0.182 . 
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Table 14.10 Largest 100 values from 1000 simulations. 

6.255 6.321 6.399 6.460 6.473 6.556 6.578 6.597 6.761 6.840 
6.865 6.918 6.949 7.042 7.106 7.152 7.337 7.379 7.413 7.430 
7.585 7.614 7.717 7.723 7.847 7.983 8.051 8.279 8.370 8.382 
8.416 8.508 8.583 8.739 8.895 8.920 8.981 9.183 9.335 9.455 
9.477 9.555 9.651 9.675 9.872 9.972 10.010 10.199 10.216 10.268 

10.284 10.814 10.998 11.170 11.287 11.314 11.392 11.546 11.558 11.647 
11.840 11.867 11.966 12.586 12.662 12.792 13.397 13.822 13.844 14.303 
14.322 14.327 14.404 14.415 14.625 14.733 14.925 15.076 15.091 15.343 
15.490 15.544 15.617 15.856 16.369 16.458 17.125 17.164 17.222 17.248 
17.357 17.774 18.998 19.200 21.944 21.957 22.309 24.226 24.709 26.140 

Let L4 represent the present value of future loss random variable at time 4, 
using an effective rate of interest of 6% per year. 

(i) Calculate the probability of a payment under either of the guarantees. 

(ii) Calculate Q99%(L4) assuming that insurer's funds earn 6% per year 

as before. 
' 

Exercise 14.4 An insurer used 1000 simulations to estimate the present value 

of future loss distribution for a segregated fund contract. Table 14.10 shows the 

largest 100 simulated values of Lo. 

(a) Estimate Pr[Lo > 10]. 
(b) Calculate an approximate 99% confidence interval for Pr[Lo > 10]. 

(c) Estimate Qo.99(Lo). 

(d) Estimate CTEo.99(Lo). 

Exercise 14.5 A life insurance company issues a five-year unit-linked endow

ment policy to a life aged 50 under which level premiums of $750 are payable 

yearly in advance throughout the term of the policy or until earlier death. , 

In the first policy year, 25% of the premium is allocated to the policyholder's 

fund, followed by 102.5% in the second and subsequent years. The units are 

subject to a bid-offer spread of 5% and an annual management charge of 1% of 

the bid value of units is deducted at the end of each policy year. Management 

charges are deducted from the unit fund before death, surrender and maturity 

benefits are paid. 

If the policyholder dies during the term of the policy, the death benefit of 

$3000 or the bid value of the units, whichever is higher, is payable at the end 

of the policy year of death. The policyholder may surrender the policy only at 

the end of each policy year. On surrender, the bid value of the units is payable 

at the end of the policy year of exit. On maturity, 110% of the bid value of the 

units is payable. The company uses the following assumptions in carrying out 

profit tests of this contract: 
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Rate of growth on assets 
in the policyholder's fund: 6.5% per year 

Rate of interest on 
insurer's fund cash flows: 

Survival model: 
Initial expenses: 
Renewal expenses: 

Initial commission: 
Renewal commission: 

Risk discount rate: 
Surrenders: 

5.5% per year 
Standard Ultimate Survival Model 
$150 
$65 per year on the second and subsequent 
premium dates 
10% of first premium 
2.5% of the second and subsequent years' 
premiums 
8.5% per year 
10% of policies in force at the end of each 
of the first three years. 
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(a) Calculate the profit margin for the policy on the assumption that the com
pany does not hold reserves. 

(b) (i) Explain briefly why it would be appropriate to establish reserves for 
this policy. 

(ii) Calculate the effect on the profit margin of a reserve requirement of 
$400 at the start of the second, third and fourth years, and $375 at the 
start of the fifth year. There is no initial reserve requirement. 

(c) An actuary has suggested the profit test should be stochastic, and has gen
erated a set of random accumulation factors for the policyholder's funds. 
The first stochastic scenario of annual accumulation factors for each of the 
five years is generated under the assumption that the accumulation fac
tors are lognormally distributed with parameters p, = 0.07 and a 2 = 0.22. 

Using the random standard normal deviates given below, conduct the profit 
test using your simulated accumulation factors, and hence calculate the 
profit margin, allowing for the reserves as in (b): 

-0.71873, -1.09365, 0.08851, 0.67706, 1.10300. 

14.1 (a) 0.37040 
(b) $107.87 
(d) $19.54 
(e) (i) $3.46 

(ii) $24.83 
14.2 (a) $3739.59 

Answers to selected exercises 

(b) Based on one set of 500 projections 



502 Emerging costs for equity-linked insurance 

(i) 0.528, (0.484, 0.572) 
(ii) 0.519 

(iii) 0.488, (0.444, 0.532) 

14.3 (a) (3.00, 6.14, 9.44, 12.88, 16.50)1 

(b) (0.27, 1.37, 2.77, 4.33, 5.76)1 

(e) (i) 0.114 
(ii) $80.50 

14.4 (a) 0.054 
(b) (0.036, 0.072) 
(c) $17.30 
(d) $21.46 

14.5 (a) 1.56% 
(b) (ii) Reduces to 0.51% 
(c) -1.43% 



15 
Option pricing 

15.1 Summary 

In this chapter we review the basic financial mathematics behind option pric
ing. ,First, we discuss the no-arbitrage assumption, which is the foundation for 
all modern financial mathematics. We present the binomial model of option 
pricing, and illustrate the principles of the dsk neutral and real world mea
sures, and of pricing by replication. 

We discuss the Black-Scholes-Me1ton option pricing formula, and, in par
ticular, demonstrate how it may be used both for pdcing and risk management. 

15.2 Introduction 

In Section 14.4 we discussed the problem of non-diversifiable dsk in con
nection with equity-linked insurance policies. A methodology for managing 
this risk, stochastic pricing and reserving, was set out in Sections 14.5 and 
14.6. However, as we explained there, this methodology is not entirely satis
factory since it often requires the insurer to set aside large amounts of capital 
as reserves to provide some protection against adverse expedence. At the end 
of the contract, the capital may not be needed, but having to maintain large 
reserves is expensive for the insurer. If expedence is adverse, there is no assur
ance that reserves will be sufficient. 

Since the non-diversifiable risks in equity-linked contracts and some pension 
plans typically arise from financial guarantees on maturity or death, and since 
these guarantees are very similar to the guarantees in exchange traded financial 
options, we can use the Black-Scholes-Merton theory of option pricing to 
price and actively manage these risks. When a financial guarantee is a part 
of the benefits under an insurance policy, we call it an embedded option. 

There are several reasons why it is very helpful for an insurance company 
to understand option pricing and financial engineering techniques. The insurer 
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may buy options from a third party such as a bank or a reinsurer to offset the 
embedded options in their liabilities; a good knowledge of derivative pricing 
will be useful in the negotiations. Also, by understanding financial engineering 
methods an insurer can make better risk management decisions. In particular, 
when an option is embedded in an insurance policy, the insurer must make an 
informed decision whether to hedge the products in-house or subcontract the 
task to a third party. 

There are many different types of financial guarantees in insurance contracts. 
This chapter contains sufficient introductory material on financial engineering 
to enable us to study in Chapter 16 the valuation and hedging of options embed
ded within insurance policies that can be viewed as relatively straightforward 
European put or call options. 

15.3 The 'no-arbitrage' assumption 

The 'no-arbitrage' assumption is the foundation of modem valuation methods 
in financial mathematics. The assumption is more colloquially known as the 
'no free lunch' assumption, and states quite simply that you cannot get some
thing for nothing. 

An arbitrage opportunity exists if an investor can construct a portfolio that 
costs zero at inception and generates positive profits with a non-zero probabil
ity in the future, with no possibility of incurring a loss at any future time. 

If we assume that there are no arbitrage opportunities in a market, then 
it follows that any two securities or combinations of securities that give 
exactly the same payments must have the same price. For example, consider 
two assets priced at $A and $B which produce the same future cash flows. If 
A f. B, then an investor could buy the asset with the lower price and sell the 
more expensive one. The cash flows purchased at the lower price would exactly 
match the cash flows sold, so the investor would make a risk free profit of the 
difference between A and B. 

The no-arbitrage assumption is very simple and very powerful. It enables us 
to find the price of complex financial instruments by 'replicating' the payoffs. 
Replication is a crucial part of the framework. This means that if we can con
struct a portfolio of assets with exactly the same payments as the investment in 
which we are interested, then the price of the investment must be the same as 
the price of the 'replicating portfolio'. 

For example, suppose an insurer incurs a liability, under which it must deliver 
the price of one share in Superior Life Insurance Company in one year's time, 
and the insurer wishes to value this liability. The traditional way to value 
this might be by constructing a probability distribution for the future value -
suppose the current value is $400 and the insurer assumes the share price in 
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one year's time will follow a lognormal distribution, with parameters fL = 6.07 
and a 2 = 0.162 . Then the mean value of the share price in one year's time is 
eM+u

2 
12 = $438.25. 

The next step is to discount to current values, at, say 6% per year (perhaps 
using the long-term bond yield), to give a present value of $413.45. 

So we have a value for the liability, with an implicit risk management plan 
of putting the $413.45 in a bond, which in one year will pay $438.25, which 
may or may not be sufficient to buy the share to deliver to the creditor. It will 
almost surely be either too much or not enough. 

A better approach is to replicate the payoff, and value the cost of replication. 
In this simple case, that means holding a replicating portfolio of one share in 
Superior Life Insurance Company. The cost of this now is $400. In one year, 
the portfolio is exactly sufficient to pay the creditor, whatever the outcome. 
So, since it costs $400 to replicate the payoff, that is how much the liability 
is worth. It cannot be worth $413.45- that would allow the company to sell 
the liability for $413.45, and replicate it for $400, giving a risk free profit (or 
arbitrage) of $13.45. 

Replication does not require a model; we have eliminated the uncertainty in 
the payoff, and we implicitly have a risk management strategy- buy the share 
and hold it until the liability falls due. 

Although this is an extreme example, the same argument will be applied in 
this chapter and the next, even when finding the replicating portfolio is a more 
complicated process. 

In practice, in most securities markets, arbitrage opportunities arise from 
time to time and are very quickly eliminated as investors spot them and trade 
on them. Since they exist only for very short periods, assuming that they do 
not exist at all is sufficiently close to reality for most purposes. 

15.4 Options 

Options are very important financial contracts, with billions of dollars of trades 
in options daily around the world. In this section we introduce the language of 
options and explain how some option contracts operate. European options are 
perhaps the most straightforward type of options, and the most basic forms of 
these are a European call option and a European put option. 

The holder of a European call option on a stock has the right (but not the 
obligation) to buy an agreed quantity of that stock at a fixed price, known as 
the strike price, at a fixed date, known as the expiry or maturity date of the 
contract. 

Let St denote the price of the stock at time t. The holder of a European call 
option on this stock with strike price K and maturity date T would exercise 
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the option only if Sr > K, in which case the option is worth Sr - K to the 
option holder at the maturity date. The option would not be exercised at the 
maturity date in the case when Sr < K, since the stock could then be bought 
for a lower price in the market at that time. Thus, the payoff at time T under the 
option is 

(Sr- K)+ = max(Sr- K, 0). 

The holder of a European put option on a stock has the right (but not the obli
gation) to sell an agreed quantity of that stock at a fixed strike price, at the 
maturity date of the contract. The holder of a European put option would exer
cise the option only if Sr < K, since the holder of the option could sell the 
stock at timeT forK then buy the stock at the lower price of Sr in the market 
and hence make a profit of K - Sr. In this case the option is worth K - Sr to 
the option holder at the maturity date. The option would not be exercised at the 
maturity date in the case when Sr > K, since the option holder would then be 
selling stock at a lower price than could be obtained by selling it in the market. 
Thus, the payoff at time T under a European put option is 

(K- Sr)+ = max(K- Sr, 0). 

In making all of the above statements, we are assuming that people act ratio
nally when they exercise options. We can think of options as providing guar
antees on prices. For example, a call option guarantees that the holder of the 

I 

option pays no more than the strike price to buy the underlying stock at the 
maturity date. 

American options are defined similarly, except that the option holder has 
the right to exercise the option at any time before the maturity date. The names 
'European' and 'American' are historical conventions, and do not signify where 
these options are sold - both European and American options are sold world
wide. In this book we are concerned only with European options which are 
significantly more straightforward to price than American options. Many of 
the options embedded in life insurance contracts are European-style. 

If at any time t prior to the maturity date the stock price St is such that the 
option would mature with a non-zero value if the stock price did not change, 
we say that the option is 'in-the-money'; so, a call option is in-the-money when 
St > K, and a put option is in-the-money when K >St. When K = St, or even 
when K is close to S, we say the option is 'at-the-money'. Otherwise it is 'out
of-the-money'. 
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15.5.1 Assumptions 
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Throughout Section 15.5 we use the no-arbitrage principle together with a sim
ple discrete time model of a stock price process called the binomial model to 
price options. 

Although the binomial model is simple, and not very realistic, it is useful 
because the techniques we describe below carry through to more complicated 
models for a stock price process. 

We make the following assumptions. 

• There is a frictionless financial market in which there exists a risk free asset 
(such as a zero-coupon bond) and a risky asset, which we assume here to be 
a stock. The market is free of arbitrage. 

e The financial market is modelled in discrete time. Trades occur only at spec
ified time points. Changes in asset prices and the exercise date for an option 
can occur only at these same dates. 

• In each unit of time the stock price either moves up by a predetermined 
amount or moves down by a predetermined amount. This means there are 
just two possible states one period later if we start at a given time and price. 

• Investors can buy and sell assets without cost. These trades do not impact 
the prices. 

• Investors can short sell assets, so that they can hold a negative amount of an 
asset. This is achieved by selling an asset they do not own, so the investor 
'owes' the asset to the lender. We say that an investor is long in an asset if 
the investor has a positive holding of the asset, and is short in the asset if the 
investor has a negative holding. 

We start by considering the pricing of an option over a single time period. 
We then extend this to two time periods. 

15.5.2 Pricing over a single time period 

To illustrate ideas numerically, consider a stock whose current price is $100 
and whose price at timet= 1 will be either $105 or $90. We assume that the 
continuously compounded risk free rate of interest is r = 0.03 per unit of time. 
Note that we must have 

90 < 100er < 105 

since otherwise arbitrage is possible. To see this, suppose 100er > 105. In this 
case an investor could receive $100 by short selling one unit of stock at time 
t = 0 and invest this for one unit of time at the risk free rate of interest. At 
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timet= 1 the investor would then have $100er, part of which would be used 
to buy one unit of stock in the market to wipe out the negative holding, leaving 
a profit of either $(100e,. - 105) or $(100e,. - 90), both of which are positive. 
Similarly, if 1 Ooer < 90 (which means a negative risk free rate) selling the risk 
free asset short and buying the stock will generate an arbitrage. 

Now, consider a put option on this stock which matures at time t = 1 with 
a strike price of K = $100. The holder of this option will exercise the option 
at time t = 1 only if the stock price goes down, since by exercising the option 
the option holder will get $100 for a stock worth $90. As we are assuming that 
there are no trading costs in buying and selling stocks, the option holder could 
use the sale price of $100 to buy stock at $90 at timet= 1 and make a profit 
of $10. 

The seller of the put option will have no liability at time t = 1 if the stock 
price rises, since the option holder will not sell a stock for $100 when it is 
worth $105 in the market. However, if the stock price falls, the seller of the put 
option has a liability of $10. 

We use the concept of replication to price this put option. This means that 
we look for a portfolio of assets at time t = 0 that will exactly match the payoff 
under the put option at timet= 1. Since our market comprises only the risk free 
asset and the stock, any portfolio at time t = 0 must consist of some amount, 
say $a, in the risk free asset and some amount, $100b, in the stock (so that b 
units of stock are purchased). Then at timet= 1, the portfolio is worth 

aer + 105b 

if the stock price goes up, and is worth 

aer + 90b 

if the stock price goes down. If this portfolio replicates the payoff under the 
put option, then the portfolio must be worth 0 at time t = 1 if the stock price 
goes up, and $10 at time t = 1 if the stock price goes down. To achieve this we 
require that 

aer + 105b = 0, 

aer + 90b = 10. 

Solving these equations we obtain b = -2/3 and a= 67.9312. We have shown 
that a portfolio consisting of $67.9312 of the risk free asset and a short holding 
of -2/3 units of stock exactly matches the payoff under the put option at time 
t = 1, regardless of the stock price at time t = 1. This portfolio is called the 
replicating, or hedge, portfolio. 
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The no-arbitrage principle tells us that if the put option and the replicating 
portfolio have the same value at timet= 1, they must have the same value at 
time t = 0, and this then must be the price of the option, which is 

a + lOOb = $1.26. 

We can generalize the above arguments to the case when the stock price at 

timet= 0 is So, the stock price at timet= 1 is uSo if the stock price goes up 
and dSo if the stock price goes down, and the strike price for the put option 

is K. We note here that under the no-arbitrage assumption, we must have 
dSo < Soer < uSo. Similarly, we must also have dSo < K < uSo for a contract 

to be feasible. 
The hedge portfolio consists of $a in the risk free asset and $bSo in stock. 

Since the payoff at time t = 1 from this portfolio replicates the option payoff, 

we must have 

aer + buSo = 0, 

aer +bdSo = K -dSo 

giving 

and 
dSo- K 

b= . 
So(u- d) 

The option price at time 0 is a + bSo, the value of the hedge portfolio, which 

we can write as 

where 

u- er 
q= u-d· 

Note that, from our earlier assumptions, 

O<q<l. 

(15.1) 

(15.2) 

An interesting feature of expression (15.1) for the price of the put option is that, 
if we were to treat q as the probability of a downward movement in the stock 
price and 1 - q as the probability of an upward movement, then formula ( 15.1) 
could be tl\.ought of as the discounted value of the expected payoff under the 

option. If the stock price moves down, the payoff is K - d So, with discounted 
value e-r (K- dSo). If q were the probability of a downward movement in the 
stock price, then qe-r (K -dSo) would be the EPV of the option payoff. Recall 

that these parameters, q and 1 - q, are not the true 'up' and 'down' probabil
ities. In fact, nowhere in our determination of the price of the put option have 
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we needed to know the probabilities of the stock price moving up or down. 
The parameter q comes from the binomial framework, but it is not the 'real' 
probability of a downward movement; it is just convenient to treat it as such, as 
it allows us to use the conventions and notation of probability. It is important 
to remember though that we have not used a probabilistic argument here, we 
have used instead a replication argument. 

It turns out that the price of an option in the binomial framework can always 

be expressed as the discounted value of the option's 'expected' payoff using the 
artificial probabilities of upward and downward price movements, 1 - q and q, 
respectively. The following example demonstrates this for a general payoff. 

Example 15.1 Consider an option over one time period which has a payoff Cu 

if the stock price at the end of the period is uSo, and has a payoff Ca if the 
stock price at the end of the period is d So. Show that the option price is 

e-r (C11 (1- q) + Ca q) 

where q is given by formula (15.2). 

Solution 15.1 We construct the replicating portfolio which consists of $a in 
the risk-free asset and $bSo in stock so that 

giving 

and 

aer + buSo = Cu, 

aer + bdSo = Ca, 

b = Cu- Ca 
(u- d)So 

a = e Cu - u ---,--r ( Cu- Ca) 
u-d 

=e --Ca---Cu . -r ( U d ) 
u-d u-d 

D 
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In the above example, if we treat q as the probability that the stock price at 
time t = 1 is d So, then the expected payoff under the option at time t = 1 is 

and so the option price is the discounted expected payoff. Note that q has not 
been defined as the probability that the stock price is equal to dSo at time 
t = 1, and, in general, will not be equal to this probability. We emphasize that 
the probability q is an artificial construct, but a very useful one. 

Under the binomial framework that we use here, there is some real proba
bility that the stock price moves down or up. We have not needed to identify it 
here. The true distribution is referred to by different names, the physical mea
sure, the real world measure, the subjective measure or nature's measure. 
In the language of probability theory, it is called the P-measure. The artificial 
distribution that arises in our pricing of options is called the risk neutral mea
sure, and in the language of probability theory is called the Q-measure. The 
term 'measure' can be thought of as interchangeable'with 'probability distri
bution'. In what follows, we use EQ to denote expectation with respect to the 
Q-measure. The Q-measure is called the risk neutral measure since, under the 
Q-measure, the expected return on every asset in the market (risky or not) is 
equal to the risk-free rate of interest, as if investors in this hypothetical world 
were neutral as to the risk in the assets. We know that in the real world investors 
require extra expected return for extra risk. We demonstrate risk neutrality in 
the following example. 

Example 15.2 Show that if Sr denotes the stock price at timet= 1, then under 
our model EQ [e-r Sr] =So. 

Solution 15.2 Under the Q-measure, 

S = {uSo with probability 1 - q, 
1 dSo with probability q. 

Then 

= e-r ( ( ~ ~ :) uSo + (: ~ ~) dSo) 

=So. D 

The result in Example 15.2 shows that under the risk neutral measure, the stock 
price at time t = 0 is the EPV under the Q-measure of the stock price at time 
t = 1. We also see that the expected accumulation factor of the stock price over 
a unit time interval is er, the same as the risk free accumulation factor. Under 
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the P-measure we expect the accumulation factor to exceed er on average, as 
a reward for the extra risk. 

15.5.3 Pricing over two time periods 

In the previous section we considered a single period of time and priced the 
option by finding the replicating portfolio at time t = 0. We now extend this 
idea to pricing an option over two time periods. This involves the idea of 
dynamic hedging, which we introduce by extending the numerical example 
of the previous section. 

Let us now assume that in each of our two time periods, the stock price can 
either increase by 5% of its value at the start of the time period, or decrease by 
10% of its value. We assume that the stock price movement in the second time 
period is independent of the movement in the first time period. 

As before, we consider a put option with strike price $100, but this time 
the exercise date is at the end of the second time period. As illustrated in 
Figure 15.1, the stock price at time t = 2 is $110.25 if the stock price moves up 
in each time period, $94.50 if the stock price moves up once and down once, 
and $81.00 if the stock price moves down in each time period. This means 
that the put option will be exercised if at time t = 2 the stock price is $94.50 
or $81.00. 

In order to price the option, we use the same replication argument as in the 
previous section, but now we must work backwards from time t = 2. Suppose 
first that at time t = 1 the stock price is $105. We can establish a portfolio at 
time t = 1 that replicates the payoff under the option at time t = 2. Suppose 
this portfolio contains $au of the risk free asset and bu units of stock, so that 
the replicating portfolio is worth $(au + 105bu). Then at timet= 2, the value 
of the portfolio should be 0 if the stock price moves up in the second time 
period since the option will not be exercised, and the value should be $5.50 if 
the stock price moves down in the second time period since the option will be 
exercised in this case. The equations that determine au and bu are 

auer + 110.25bu = 0, 

auer + 94.5bu = 5.50, 

giving bu = - 0.3492 and au= 37.3622. This shows that the replicating port
folio at timet= 1, if the stock price at that time is 105, has value Pu = $0.70. 

Similarly, if at time t = 1 the stock price is $90, we can find the replicating 
portfolio whose value at timet= 1 is $(ad+ 90bd), where the equations that 
determine ad and bd are 
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since if the stock price rises to $94.50, the payoff under the put option is $5 .50, 
and if the stock price falls to $81, the payoff under the option is $19. Solving 
these two equations we find that bd = - 1 and ad= 97.0446. Thus, the repli
cating portfolio at time t = 1, if the stock price at that time is $90, has value 
pd =$7.04. 

We now move back to time t = 0. At this time point we want to find a port
folio that replicates the possible amounts required at timet= 1, namely $0.70 
if the stock price goes up to $105 in the first time period, and $7.04 if it goes 
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down to $90. This portfolio consists of $a in the risk free asset and b units of 
stock, so that the equations that determine a and b are 

aer + 105b = 0.70, 

aer + 90b = 7.04, 

giving b = - 0.4233 and a= 43.8049. The replicating portfolio has value Po 

at time t = 0, where 

Po= a+ lOOb = $1.48 

and, by the no-arbitrage principle, this is the price of the option. 
There are two important points to note about the above analysis. The first is 

a point we noted about option pricing over a single period - we do not need to 
know the true probabilities of the stock price moving up or down in any time 
period in order to find the option price. The second point is that the replicating 
portfolio is self-financing. The initial portfolio of $43.80 in the risk free asset 
and a short holding of -0.4233 units of stock is exactly sufficient to provide 
the replicating portfolio at time t = 1 regardless of the stock price movement 
in the first time period. The replicating portfolio at time t = 1 then matches 
exactly the option payoff at time t = 2. Thus, once the initial portfolio has been 
established, no further injection of funds is required to match the option payoff 
at timet =2. 

What we have done in this process is an example of dynamic hedging. At 
time t = 1 we established what portfolios were required to replicate the possi
ble payoffs at time t = 2, then at time t = 0 we worked out what portfolio was 
required to provide the portfolio values required at time t = 1. This process 
works for any number of steps, but if there is a large number of time periods it 
is a time-consuming process to work backwards through time to construct all 
the hedging strategies. However, if all we want to work out is the option price, 
the result we saw for a single time period, that the option price is the discounted 
value of the expected payoff at the expiry date under the Q-measure, also holds 
when we are dealing with multiple time periods. 

In our analysis we have u = 1.05, d = 0.9 and r = 0.03. From formula (15.2), 
the probability of a downward movement in the stock price under the 
Q-measure is 

1.05- e0·03 

q = = 0.1303, 
1.05-0.9 

and so the expected payoff at the expiry date is 

19q2 + 5.5 X 2(1- q)q = $1.5962. 
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This gives the option price as 

1.5962e-0·06 = $1.48. 

15.5.4 Summary of the binomial model option pricing technique 

o We use the principle of replication; we construct a portfolio that replicates 
the option's payoff at maturity. The value of the option is the cost of pur
chasing the replicating (or hedge) portfolio. 

e We use dynamic hedging - replication requires us to rebalance the portfo
lio at each time step according to the movement in the stock price in the 
previous time step. 

• We do not use any argument involving the true probabilities of upward or 
downward movements in the stock price. However, there are important links 
between the real world (P-measure) model and the risk neutral (Q-measure) 
model. We started by assuming a two-point distribution for the stock price 
after a single time period in the real world. From this we showed that in 
the risk neutral world the stock price after a single time period also has a 
two-point distribution with the same possible values, uSo and dSo, but the 
probabilities of moving up or down are not linked to those of the real world 
model. 

19 Our valuation can be written in the form of an EPV, using artificial proba
bilities that are determined by the possible changes in the stock price. This 
artificial distribution is called the risk neutral measure because the mean 
accumulation of a unit of stock under this distribution is exactly the accu
mulated value of a unit investment in the risk free asset. Thus, an investor 
would be indifferent between investment in the risk free asset and investment 
in the stock, under the risk neutral measure. 

The binomial model option pricing framework is clearly not very realistic, 
but we can make it more flexible by increasing the number of steps in a unit 
of time, as discussed below. If we do this, the binomial model converges to the 
Black-Scholes-Merton model, which is described in the following section. 

15.6 The Black-Scholes-Merton model 

15.6.1 The model 

Under the Black-Scholes-Merton model, we make the following assumptions. 

19 The market consists of zero-coupon bonds (the risk free asset) and stocks 
(the risky asset). 
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e The stock does not pay any dividends, or, equivalently, any dividends are 
immediately reinvested in the stock. This assumption simplifies the presen
tation but can easily be relaxed if necessary. 

• Portfolios can be rebalanced (that is, stocks and bonds can be bought and 
sold) in continuous time. In the two-period binomial example we showed 
how the replicating portfolio was rebalanced (costlessly) after the first time 
unit. In the continuous time model the stock price moves are continuous, so 
the rebalancing is (at least in principle) continuous. 

• There are no transaction costs associated with trading the stocks and bonds. 

• The continuously compounded risk free rate of interest, r per unit time, is 
constant and the yield curve is flat. 

--' 
e Stocks and bonds can be bought or sold in any quantities, positive or neg-

ative; we are not restricted to integer units of stock, for example. Selling 
or buying can be transacted at any time without restrictions on the amounts 
available, and the amount bought or sold does not affect the price. 

e In the real world, the stock price, denoted S1 at time t, follows a contin
uous time lognormal process with some parameters f-L and a 2 . This pro
cess, also called geometric Brownian motion, is the continuous time ver
sion of the lognormal model for one year accumulation factors introduced in 
Chapter 14. 

Clearly these are not realistic assumptions. Continuous rebalancing is not feasi
ble, and although major financial institutions like insurance companies can buy 
and sell assets cheaply, transactions costs will arise. We also know that yield 
curves are rarely flat. Despite all this, the Black-Scholes-Merton model works 
remarkably well, both for determining the price of options and for determining 
risk management strategies. The Black-Scholes-Merton theory is extremely 
powerful and has revolutionized risk management for non-diversifiable finan
cial risks. 

A lognormal stochastic process with parameters f-L and a has the following 
characteristics. 

e Over any fixed time interval, say (t, t + r) where r > 0, the stock price 
accumulation factor, S1+, / S1, has a lognormal distribution with parameters 
f-L r and a 2-r, so that 

St+o 2 
-- ~ p LN(wr, a r), 

St 
(15.3) 

which implies that 

St+' 2 log-- ~P N(fl,T, a r). 
St 
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We have added the subscript P as a reminder that these statements refer to 
the real world, or P-measure, model. Our choice of parameters f-J., and o-2 

here uses the standard statistical parameterizations. Some authors, particu
larly in financial mathematics, use the same a-, but use a different location 
parameter f-J.,

1
, say, such that f-J.,

1 = f-J., + o- 2 12. It is important to check what f-J., 

represents when it is used as a parameter of a lognormal distribution. 

We calllog(St+r I S1) the log-return on the stock the time period (t, t + r). 
The parameter f-J., is the mean log-return over a unit of time, and a- is the stan
dard deviation of the log-return over a unit of time. We call a- the volatility, 
and it is common for the unit of time to be one year so that these parameters 
are expressed as annual rates. Some information on the lognormal distribu
tion is given in Appendix A. 

e Stock price accumulation factors over non-overlapping time intervals are 
independent of each other. (This is the same as in the binomial model, 
where the stock price movement in any time interval is independent of the 
movement in any other time interval.) Thus, if Sui S1 and Swl Sv represent 
the accumulation factors over the time intervals (t, u) and ( v, w) where 
t < u :::; v < w, then these accumulation factors are independent of each 
other. 

The lognormal process assumed in the Black-Scholes-Merton model can be 
derived as the continuous time limit, as the number of steps increases, of 
the binomial model of the previous sections. The proof requires mathemat
ics beyond the scope of this book, but we give some references in Section 15.7 
for interested readers. 

15.6.2 The Black-Scholes-Merton option pricing formula 

Under the Black-Scholes-Merton model assumptions we have the following 
important results. 

e There is a unique risk neutral distribution, or Q-measure, for the stock price 
process, under which the stock price process, {S1 }1>o, is a lognormal process 
with parameters r - o-2 12 and a- 2 . -

• For any European option on the stock, with payoff function h (Sr) at matu
rity date T, the value of the option at timet:::; T denoted v(t), can be found 
as the expected present value of the payoff under the risk neutral distribution 
(Q-measure) 

v(t) = EP [ e-r(T-t) h(Sr) J, (15.4) 
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where EP denotes expectation using the risk neutral (or Q) measure, using 
all the information available up to time t. This means, in particular, that 
valuation at time t assumes knowledge of the stock price at time t. 

Important points to note about this result are: 

• Over any fixed time interval, say (t, t + r) where r > 0, the stock price 
accumulation factor, Sr+r I St, has a lognormal distribution in the risk neutral 
world with parameters (r - o-2 l2)r and o- 2r, so that 

St+r 2 2 
- ~Q LN((r- a- 12)r, a- r), 

St 
(15.5) 

which implies that 

St+r 2 2 log- ~Q N((r- a- 12)r, a- r). 
Sr 

We have added the subscript Q as a reminder that these statements refer to 
the risk neutral, or Q-measure model. 

• The expected Q-measure present value (at rater per year) of the future stock 
price, St+r, is the stock price now, S1 . This follows from the previous point 
smce 

EP [Sr+r I St] = exp { (r - o- 2 12)r + r o- 2 12} = err. 

This is the result within the Black-Scholes-Merton framework which cor
responds to the result in Example 15.2 for the binomial model. 

• The Q-measure is related to the corresponding P-measure in two ways. 
• Under the Q-measure, the stock price follows a lognormal process, as it does 

in the real world. 

• The volatility parameter, a-, is the same for both measures. 
• The first of these connections should not surprise us since the real world 

model, the lognormal process, can be regarded as the limit of a binomial pro
cess, for which, as we have seen in Section 15.5, the corresponding risk neu
tral model is also binomial; the limit as the number of steps increases in the 
(risk neutral) binomial model is then also a lognormal process. The second 
connection does not have any simple explanation. Note that the parameter p.,, 

the mean log-return per unit time for the P-measure, does not appear in the 
specification of the Q-measure. This should not surprise us: the real world 
probabilities of upward and downward movements in the binomial model 
did not appear in the corresponding Q-measure probability, q. 

• Formula (15.4) is the continuous-time extension of the same result for the 
single period binomial model (Example 15.1) and the two-period binomial 
model (Section 15.5.3). In both the binomial and Black-Scholes-Merton 
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models, we take the expectation under the Q-measure of the payoff dis
counted at the risk free force of interest. 

• A mathematical derivation of the Q-measure and of formula ( 15.4) is beyond 
the scope of this book. Interested readers should consult the references in 

Section 15.7. 

Now consider the particular case of a European call option with strike price K. 

The option price at timet is c(t), where 

(15.6) 

To evaluate this price, first we write it as 

Now note that, under the Q-measure, 

So, letting f and F denote the lognormal probability density function and dis
tribution function, respectively, of Sr / St, under the Q-measure, we have 

c(t) = e-r(T-t)St roo (x- KfSt)f(x)dx 
}KISt 

= e-r(T-t)St (roo x f(x)dx- K (1- F(K/St))). 
}KISt St 

In Appendix A we derive the formula 

r (loga-f.J,-o-
2

) 
Jo x f(x)dx = exp{f.J, + a-

2 
/2} <I> a-

(15.7) 

for a lognormal random variable with parameters 1-L and o- 2 , where <I> denotes 
the standard normal distribution function. Since the mean of this random vari

able is 

100 

x f(x)dx = exp{f.J, + a- 2 /2}, 

we have 

1
00 

( (loga 1-L a-2)) a x f(x)dx = exp{f.J, + a-2 /2} 1 - <I> -a- -

2 (-log a + f-L + a-
2

) = exp{f.-L + a- /2} <I> a- . 
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Applying this to formula (15.7) for c(t) gives 

( ) 
-r(T-t)s r(T-t) "' ( -log(K I St) + (r - (5

2 12)(T - t) + CY
2 (T - t)) 

ct=e 1 e '*' ~ 
CYyT-t 

_ e-r(T-t) K ( 1 _ <P (log(KI Sr) - (r- CY
2 
I2)(T- t) )) 

(5~ 

= St <P (log(St/ K) + (r + CY
2 
I2)(T - t)) 

(5~ 

_ e-r(T-t) K <P (log(Srl K) + (r- CY
2 
I2)(T- t)) . 

(5~ 

This is the Black-Scholes formula for the price of a call option, and is usually 
written as 

I c(t) = Sr<P (d1(t))- Ke-r(T-t)<P (d2(t)), I (15.8) 

where 

log(S1 I K) + (r + CY 2 I2)(T- t) 
d1(t) = ~ and d2(t) = d1(t) -CY~. 

C5 T -t 

(15.9) 

Since the stock price S1 appears (explicitly) only in the first term of formula 
(15.8) and r appears only in the second term, this formula suggests that the 
replicating portfolio at time t for the call option comprises 

e <P (d1 (t)) units of the stock, with total value at timet 

Sr <P (d1 (t)), 

plus 
• a short holding of <P (d2(t)) units ofzero-coupon bonds with face value K, 

maturing at time T, with a value at time t of 

-Ke-r(T-t)<P (d2(t)). 

Indeed, this is the self-financing replicating portfolio required at time t. We 
note though that the derivation is not quite as simple as it looks, as <P (d1 (t)) 

and <P (d2(t)) both depend on the current stock price and time. 
If the strike price is very small relative to the stock price we see that <P (d1 (t)) 

tends to one and <P (d2(t)) tends to zero. The replicating portfolio tends to a 
long position in the stock and zero in the bond. 

For a European put option, with strike price K, the option price at time t is 
p(t), where 
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which, after working through the integration, becomes the Black-Scholes put 

option formula 

I p(t) = Ke-r(T-t)<P (-dz(t))- St<f> (-dl(t)), I (15.10) 

where d1 (t) and dz(t) are defined as before. 
The replicating portfolio for the put option comprises 

• <P ( -dz(t)) units of zero-coupon bonds with face value K, maturing at time 
T, with value at time t 

Ke-r(T-t)<P (-dz(t))' 

plus 

o a short holding of <P ( -d1 (t)) units of the stock, with total value at timet 

For the European call and put options, we can show that 

d d 
S1 -c(t) = S1 <f>(d1(t)) and S1 -p(t) = -S1 <f>(-d1(t)). 
d~ d~ 

You are asked to prove the first of these formulae as Exercise 15 .1. These two 
formulae show that, for these options, the replicating portfolio has a portion 
S1 dv(t)jdS1 invested in the stock, and hence a portion v(t) - S1 dv(t)jdS1 

invested in the bond, where v(t) is the value of the option at timet. 
This result holds generally for any option valued under the Black-Scholes

Merton framework. The quantity d v (t) j d S1 is known as the delta of the option 
at time t. The portfolio is the delta hedge. 

Example 15.3 Let p(t) and c(t) be the prices at time t for a European put 
and call, respectively, both with strike price K and remaining term to maturity 
T- t. 

(a) Use formulae (15.8) and (15.10) to show that, using the Black-Scholes
Merton framework, 

c(t) + K e-r(T-t) = p(t) +St. (15.11) 

(b) Use a no-arbitrage argument to show that formula (15.11) holds whatever 

the model for stock price movements between times t and T. 
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Solution 15.3 (a) From formulae (15.8) and (15.10), and using the fact that 
<I> (z) = 1 - <I> ( -z) for any z, we have 

c(t) = St <l>(dJ(t))- Ke-r(T-t) <P(d2(t)) 

= St(1- <1>(-dJ(t)))- Ke-r(T-t)(l- <P(-d2(t))) 

= St- Ke-r(T-t) + p(t) 

which proves (15.11). 

(b) To prove this result without specifying a model for stock price movements, 
consider two portfolios held at time t. The first comprises the call option 
plus a zero-coupon bond with face value K maturing at time T; the second 
comprises the put option plus one unit of the stock. These two portfolios 
have current values 

c(t) + K e-r(T-t) and p(t) + St, 

respectively. At time T the first portfolio will be worth K if Sr :::; K, since 
the call option will then be worthless and the bond will pay K, and it will 
be worth Sr if Sr > K, since then the call option would be exercised 
and the proceeds from the bond would be used to purchase one unit of 
stock. Now consider the second portfolio at time T. This will be worth K 
if Sr :::; K, since the put option would be exercised and the stock would 
be sold at the exercise price, K, and it will be worth Sr if Sr > K, since 
the put option will then be worthless and the stock will be worth Sr. Since 
the two portfolios have the same payoff at time T under all circumstances, 
they must have the same value at all other times, in particular at time t. 
This gives equation ( 15.11). 

This important result is known as put-call parity. D 

Example 15.4 An insurer offers a two-year contract with a guarantee under 
which the policyholder invests a premium of $1000. The insurer keeps 3% of 
the premium to cover all expenses, then invests the remainder in a mutual fund. 
(A mutual fund is an investment that comprises a diverse portfolio of stocks and 
bonds. In the UK similar products are called unit trusts or investment trusts.) 
The mutual fund investment value is assumed to follow a lognormal process, 
with parameters fL = 0.085 and a 2 = 0.22 per year. The mutual fund does not 
pay out dividends; any dividends received from the underlying portfolio are 
reinvested. The risk free rate of interest is 5% per year compounded continu
ously. The insurer guarantees that the payout at the maturity date will not be 
less than the original $1000 investment. 
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(a) Show that the 3% expense loading is not sufficient to fund the guarantee. 
(b) Calculate the real world probability that the guarantee applies at the matu

rity date. 
(c) Calculate the expense loading that would be exactly sufficient to fund the 

guarantee. 

Solution 15.4 (a) The policyholder has, through the insurer, invested $970 in 
the mutual fund. This will accumulate over the two years of the contract to 
some random amount, S2, say. If S2 < $1000 then the insurer's guarantee 
bites, and the insurer must make up the difference. In other words, the 
policyholder has the right at the maturity date to receive a price of $1000 
from the insurer for the mutual fund stocks. This is a two-year put option, 
with payoff at time T = 2 of 

(1 000- S2)+. 

If the mutual fund stocks are worth more than $1000, then the policyholder 
just takes the proceeds and the insurer has no further liability. 

In terms of option pricing, we have a strike price K = $1000, a mutual 
fund stock price at time t = 0 of So = $970, and a risk free rate of interest 
of 5%. So the price of the put option at inception is 

p(O) = K e-rT ci> ( -d2(0)) - Socl> ( -d1 (0)) 

where 

d1 (0) = log( So/ K) +,J;. + a
2 

/
2
)T = 0.3873 => cl>( -d1 (0)) = 0.3493, 

a T 

d2(0) = d1(0)- a -JT = 0.1044 => ci>(-d2(0)) = 0.4584, 

giving 

p(O) = 414.786- 338.794 = $75.99. 

So the 3% expense charge, $30, is insufficient to fund the guarantee cost. 
The cost of the guarantee is actually 7.599% of the initial investment. How
ever, if we actually set 7.599% as the expense loading, the price of the 
guarantee would be even greater, as we would invest less money in the 
mutual fund at inception whilst keeping the same strike price. 

(b) The real world distribution of S2/ So is LN(2f.L, 2a2). This means that 

log(S2/ So) ~ N (2f.L, 2a2), 

which implies that 
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Figure 15.2 Expense loading plotted against guarantee cost for Example 
15.4. 

Then 

which implies that 

(
log 1000 -log So- 2p,) 

Pr[S2 < 1000] = <I> ,.Jio- = 0.311. 

That is, the probability of a payoff under the guarantee is 0.311. 
(c) Increasing the expense loading increases the cost of the guarantee, and 

there is no analytic method to find the expense loading, $E, which pays for 
the guarantee with an initial investment of $(1000- E). Figure 15.2 shows 
a plot of the expense loading against the cost of the guarantee (shown as 
a solid line). Where this line crosses the line x = y (shown as a dotted 
line) we have a solution. From this plot we see that the solution is around 
10.72% (i.e. the expense loading is around $107.2). Alternatively, Excel 
Solver gives the solution that an expense loading of 10.723% exactly funds 
the resulting guarantee. 0 

Finding the price is only the first step in the process. The beauty of the Black
Scholes-Merton approach is that it gives not only the price but also directs 
us in what we can do with the price to manage the guarantee risk. In part (a) 
of Example 15.4, the guarantee payoff can be replicated by investing $414.79 
in two-year zero-coupon bonds and short selling $338.79 of the mutual fund 
stock, with a net cost of $75.99. If we continuously rebalance such that at any 
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time t the bond position has value 1 oooe-r(2-l) <I> ( -d2 (t)) and the short stock 
position has value - S1<I>( -d1 (t)), then this will exactly pay off the guarantee 
liability at the maturity date. 

In practice, continuous rebalancing is impossible. Rebalancing at discrete 
intervals is possible but introduces some additional cash flows, and in the next 
example we explore this issue. 

Example 15.5 Let us continue Example 15.4 above, where an insurer has 
issued a guarantee which matures in two years. The initial investment (net of 
expenses) is $970 and the maturity guarantee is $1000. 

In Table 15.1 you are given the monthly values for the underlying mutual 
fund stock price for the two-year period, assuming a starting price of $970. 

Assume, as in Example 15.4, that the continuously compounded risk free 
rate, r, is 5% per year. Determine the cash flows arising assuming that the 
insurer 

(a) invests the entire option cost in the risk free asset, 

(b) invests the entire option cost in the mutual fund asset, 

(c) allocates the initial option cost to bonds and the mutual fund at the outset, 
according to the Black-Scholes-Merton model, that is $414.79 to zero
coupon bonds and -$338.79 to the mutual fund shares, and then 

(i) never subsequently rebalances the portfolio 

(ii) rebalances only once, at the end of the first year 

(iii) rebalances at the end of each month. 

Solution 15.5 We note that the guarantee ends in-the-money, with a liability 
under the put option of $(1000- 766.66) = $233.34 at the maturity date. 

(a) If the option cost is invested in the risk free asset, it accumulates to 
75.99e2r = $83.98. This leaves a shortfall at maturity of 

$(233.34- 83.98) = $149.36. 

(b) If the option cost is invested in the mutual fund asset, it will accumulate to 
75.99 x (766.66/970) = $60.06leaving a shortfall at maturity of $173.28. 

(c) (i) If the insurer invests in the initial hedge portfolio, but never rebal
ances, 

• the bond part of the hedge accumulates at the risk free rate for the 
whole two-year period to an end value of $458.41; 

• the stock part of the hedge accumulates in proportion to the mutual 
fund share price, with final value 

-338.79 x (766.66/970) = - $267.77; and 
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Table 15.1 Table ofmutual 
fund stock prices for 

Example 15.5. 

Time, t St 
(months) $ 

0 970.00 
1 950.07 
2 959.99 
3 940.93 
4 921.06 
5 967.25 
6 1045.15 
7 1007.59 
8 945.97 
9 913.77 

10 932.99 
11 951.11 
12 906.11 
13 824.86 
14 831.08 
15 797.99 
16 785.86 
17 724.36 
18 707.43 
19 713.87 
20 715.14 
21 690.74 
22 675.80 
23 699.71 
24 766.66 

e the hedge portfolio value at maturity is then worth 458.41-267.77 
= $190.64, which means that the insurer is liable for an additional 
cash flow at maturity of $42.70, as the hedge portfolio value is less 

than the option guarantee cost. In this case the total cost of the 
guarantee is the initial hedge cost of $75.99 plus a final balancing 
payment of $42.70. 

(ii) If the insurer rebalances only once, at the end of the first year, the 

value of the initial hedge portfolio at that time is 
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Bonds: 414.79er = $436.05. 
Mutual fund: -338.79 (906.11/970) = - $316.48. 

So the value of the hedge portfolio immediately before rebalancing is 
$119.57. 

The rebalanced hedge is found from formula (15.10) with t = 1 
year as 

p(l) = K e-r(2-!) ci> ( -d2(l)) - Sr ci> ( -dr (1)) 

= 603.26-504.56 

= 98.70. 

This means there is a cash flow of $(119.57- 98.70) = $20.87 back 
to the insurer, as the value of the initial hedge more than pays for the 
rebalanced hedge. 

We now track the new hedge through to the maturity date. 

Bonds: 603.26er = $634.19. 
Mutual fund: -504.56 x (766.66/906.11) 

= -$426.91. 
Total hedge portfolio value: $207.28. 

We need $233.34 to pay the guarantee liability, so the insurer is liable 
for an additional cash flow of $26.06. 

So, in tabular form we have the following cash flows, where a pos
itive value is a cash flow out and negative value is a cash flow back to 
the insurer. 

Time Value of hedge 
(years) brought forward 

0 0 
119.57 

2 207.28 

Cost of 
new hedge 

75.99 
98.70 

Final Net cash flow 
guarantee cost $ 

233.34 

75.99 
-20.87 

26.06 

(iii) Here, we repeat the exercise in (b) but we now accumulate and rebal
ance each month. The results are given in Table 15.2. The second, 
third and fourth columns show the bond part, the mutual fund part 
and the total cost of the hedge required at the start of each month. In 
the final month, the total reflects the cost of the guarantee payoff. The 
fifth column shows the value of the hedge brought forward, and the 
difference between the new hedge cost and the hedge brought forward 
is the cash flow required at that time. 
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Time 

(months) 

0 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Option pricing 

Table 15.2 Cash flow calculations for Example 15.5. 

New hedge portfolio Old hedge Net cash flow 

Bonds Mutual Fund Total brought forward $ 

414.79 -338.79 75.99 0.00 75.99 
446.09 -363.17 82.92 84.68 -1.76 
437.17 -358.37 78.80 80.99 -2.19 
469.69 -383.83 85.86 87.74 -1.88 
505.72 -411.67 94.05 95.93 -1.88 
441.15 -366.59 74.56 75.52 -0.96 
332.D7 -283.53 48.54 46.88 1.66 
388.22 -329.43 58.79 60.11 ;-1.33 
492.86 -411.51 81.35 80.56 0.79 
557.18 -461.25 95.94 97.41 -1.48 
531.28 -445.30 85.97 88.56 -2.59 
505.60 -428.81 76.78 79.54 -2.76 
603.26 -504.56 98.70 99.18 -0.48 
769.54 -617.58 151.96 146.46 5.50 
776.58 -628.41 148.17 150.52 -2.35 
847.22 -671.33 175.88 176.43 -0.55 
882.11 -693.88 188.22 189.62 -1.40 
948.97 -700.74 248.24 246.21 2.03 
965.94 -697.59 268.35 268.58 -0.23 
973.54 -707.77 265.76 266.03 -0.27 
981.09 -712.67 268.42 268.57 -0.15 
987.44 -690.59 296.84 296.83 0.01 
991.70 -675.80 315.90 315.90 0.00 
995.84 -699.71 296.13 296.13 0.00 

233.34 233.34 0.00 

We see how the rebalancing frequency affects the cash flows; with 
a monthly rebalancing frequency, all the cash flows required are rela
tively small, after the initial hedge cost. The fact that these cash flows 
are non-zero indicates that the original hedge is not self-financing 
with monthly rebalancing. However, the amounts are small, demon
strating that if the insurer follows this rebalancing strategy, there is 
little additional cost involved after the initial hedge cost, even though 
the final guarantee payout is substantial. The total of the additional 
cash flows after the initial hedge cost is -$12.26 in this case. It can 
be shown that the expected value of the additional cash flows using 
the ?-measure is zero. D 

This example demonstrates that in this case, where the option matures in-the
money, the dynamic hedge is remarkably efficient at converging to the payoff 
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with only small adjustments required each month. If we were to rebalance more 
frequently still, the rebalancing cash flows would converge to zero. In practice, 
many hedge portfolios are rebalanced daily or even several times a day. 

Of course, this guarantee might well end up out-of-the-money, in which case 
the hedge portfolio would be worth nothing at the maturity date, and the insurer 
would lose the cost of establishing the hedge portfolio in the first place. The 
hedge is a form of insurance, and, as with all insurance, there is a cost even 
when there is no claim. 

15.7 Notes and further reading 

This chapter offers a very brief introduction to an important and exciting area. 
For a much more comprehensive introduction, see for example Hull (2011) 
or McDonald (2009). For a description of the history of options and option 
pricing, see Boyle and Boyle (2001). 

The proof that the binomial model converges to the lognormal model as the 
time unit, h, tends to zero is somewhat technical. The original proof is given in 
Cox et al. (1979); another method is in Hsia (1983). 

We assumed from Section 15.6.1 onwards that the stock did not pay any divi
dends. Adapting the model and results for dividends is explained in Hull (2011) 
and McDonald (2009). 

15.8 Exercises 

Exercise 15.1 Let c(t) denote the price of a call option on a non-dividend 
paying stock, using equation (15.6). Show that 

d;~) = <P(dt (t)). 

Hint: remember that dt (t) is a function of S1• 

Exercise 15.2 (a) Show that, under the binomial model of Section 15.5, 

EQ[Sn] =So ern. 

(b) Show that, under the Black-Scholes-Merton model, 

EQ[S11 ] =So ern. 

Exercise 15.3 A binomial model for a non-dividend paying security with price 
S1 at time t is as follows: 

So= 100, 

{ 
1.1S1 

St+l = 0.9S
1 

if the stock price rises, 
if the stock price falls. 



530 Option pricing 

Zero-coupon bonds are available for all integer durations, with a risk free rate 
of interest of 6% per time period compounded continuously. 

A derivative security pays $20 at a specified maturity date if the stock price 
has increased from the start value, and pays $0 if the stock price is at or below 
the start value at maturity. 

(a) Find the price and the replicating portfolio for tP.e option assuming it is 
issued at t = 0 and matures at t = 1. 

(b) Now assume the option is issued at t = 0 and matures at t = 2. Find the 
price and the replicating portfolio at t = 0 and at t = 1. 

Exercise 15.4 Consider a two-period binomial model for a non-dividend pay
ing security with price S1 at time t, where So= 1.0, 

S _ { 1.2S1 if the stock price rises, 
t+l- 0.95S1 if the stock price falls. 

At time t = 2 option A pays $3 if the stock price has risen twice, $2 if it has 
risen once and fallen once and $1 if it has fallen twice. 

At timet= 2 option B pays $1 if the stock priceJJ.as risen twice, $2 if it has 
risen once and fallen once and $3 if it has fallen twice. 

The risk free force of interest is 4.879% per period. You are given that the 
true probability that the price rises each period is 0.5. 

(a) Calculate the EPV (under the P-measure) of option A and show that it is 
the same as the EPV of option B. 

(b) Calculate the price of option A and show that it is different from the price 
of option B. 

(c) Comment on why the prices differ even though the expected payout is 
the same. 

Exercise 15.5 A stock is currently priced at $400. The price of a six-month 
European call option with a strike price of $420 is $41. The risk free rate of 
interest is 7% per year, compounded continuously. 

Assume the Black-Scholes-Merton pricing formula applies. 

(a) Calculate the current price of a six-month European put option with the 
same exercise price. State the assumptions you make in the calculation. 

(b) Estimate the implied volatility of the stock. 

(c) Calculate the delta of the option. 

(d) Find the hedging portfolio of stock and risk-free zero-coupon bonds that a 
writer of 10 000 units of the call option should hold. 
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Exercise 15.6 A binomial model for a non-dividend paying security with price 
Stat timet is as follows: the price at timet+ 1 is either 1.25 St or 0.8 St. The 
risk free rate of interest is 10% per time unit effective. 

(a) Calculate the risk neutral probability measure for this model. 
The value of So is 100. A derivative security with price Dt at timet pays 

the following returns at time 2: 

{ 

1 if S2 = 156.25, 

Dz = 2 if Sz = 100, 
0 if Sz = 64. 

(b) Determine D1 when S1 = 125 and when S1 = 80 and hence calculate the 
value of Do. 

(c) Derive the corresponding hedging strategy, i.e. the combination of the 
underlying security and the risk free asset required to hedge an investment 
in the derivative security. 

(d) Comment on your answer to (c) in the light of your answer to (b). 

Exercise 15.7 A non-dividend paying stock has a current price of $8.00. In any 
unit of time (t, t+ 1) the price of the stock either increases by 25% or decreases 
by 20%. $1 held in cash between times t and t + 1 receives interest to become 
$1.04 at timet+ 1. The stock price after t time units is denoted by St. 

(a) Calculate the risk neutral probability measure for the model. 
(b) Calculate the price (at time t = 0) of a derivative contract written on the 

stock with expiry date t = 2 which pays $10.00 if and only if Sz is not 
$8.00 (and otherwise pays 0). 

15.3 (a) $15.24 
(b) $11.61 

15.4 (a) $1.81 

Answers to selected exercises 

(b) Option A: $1.633, Option B: $1.995 
15.5 (a) $46.55 

(b) 38.6% 
(c) 53.42% 

(d) Long 5342.5 shares of stock and short 17 270 bonds, where each 
bond is worth $100 at time zero 

15.6 (a) ~ (increase), i (decrease) 
(b) Do= 1.1019 

15.7 (a) 0.5333 (increase), 0.4667 (decrease) 
(b) $4.6433 



16 
Embedded options 

16.1 Summary 

In this chapter we describe financial options embedded in insurance contracts, 
focusing in particular on the most straightforward options which appear as 
guaranteed minimum death and maturity options in equity-linked life insur
ance policies effected by a single premium. We investigate pricing, valuation 
and risk management for these guarantees, performing our analysis under the 
Black-Scholes-Merton framework described in Chapter 15. 

16.2 Introduction 

The guaranteed minimum payments under an equity-linked contract usually 
represent a relatively minor aspect of the total payout under the policy, because 
the guarantees are designed to apply only in the most extreme situation of very 
poor returns on the policyholders' funds. Nevertheless, these guarantees are not 
negligible - failure to manage the risk from apparently innocuous guarantees 
has led to significant financial problems fot some insurers. , 

In Chapter 14 we described profit testing of equity-linked contracts with 
guarantees, where the only risk management involved was a passive strat
egy of holding capital reserves in case the experience is adverse - or, even 
worse, holding no capital in the expectation that the guarantee will never apply. 
However, in the case when the equity-linked contract incorporates financial 
guarantees that are essentially the same as the financial options discussed 
in Chapter 15, we can use the more sophisticated techniques of Chapter 15 
to price and manage the risks associated with the guarantees. These tech
niques are preferable to those of Chapter 14 because they mitigate the risk 
that the insurer will have insufficient funds to pay for the guarantees when 
necessary. 

532 
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To show how the guarantees can be viewed as options, recall Example 14.2, 
where we described an equity-linked insurance contract, paid for with a sin
gle premium P, with a guaranteed minimum maturity benefit (GMMB) and a 
guaranteed minimum death benefit (GMDB). Consider, for now, the GMMB 
only. After some expense deductions a single premium is invested in an equity 
fund, or perhaps a mixed equity/bond fund. The fund value is variable, moving 
up and down with the underlying assets. At maturity, the insurer promises to 
pay the greater of the actual fund value and the original premium amount. 

Let F1 denote the value of the policyholder's fund at time t. Suppose that, as 
in Example 14.2, the benefit for policies still in force at the maturity date, say 
at time n (the term is n = 5 years in Example 14.2, but more typically it would 
be 10 years or longer) is max(P, Fn). As the policyholder's fund contributes 
the amount Fn, the insurer's additional liability is h(n), where 

h(n) = max(P- Fn, 0). 

The total benefit paid for such a contract in force at the maturity date is 

Fn + h(n). 

Recognizing that the fund value process { F1 h::::o may be considered analogous 
to a stock price process, and that P is a fixed, known amount, the guarantee 
payoff h(n) is identical to the payoff under an n-year European put option 
with strike price P, as described in Section 15.4. So, while in Chapter 14 we 
modelled this contract with cash flow projection, we have a more appropriate 
technique for pricing and valuation from Chapter 15, using the Black-Scholes
Merton framework. 

Similarly, the guaranteed minimum death benefit in an equity-linked insur
ance contract offers a payoff that can be viewed as an option - often a put 
option similar to that under a GMMB. 

There are a few differences between the options embedded in equity-linked 
contracts and standard options traded in markets. Two important differences 
are as follows. 

(1) The options embedded in equity-linked contracts have random terms to 
maturity. If the policyholder surrenders the contract, or dies, before the 
expiry date, the GMMB will never be paid. The GMDB expires on the 
death of the policyholder, if that occurs during the term of the contract. 

(2) The options embedded in equity-linked contracts depend on the value of 
the policyholder's fund at death or maturity. The underlying risky asset 
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process represents the value of a traded stock or stock index. The fund 
value at time t, F1, is related to the risky asset price, S1, since we assume 
the policyholder's fund is invested in a fund with returns following traded 
stocks, but with the important difference that regular management charges 
are being deducted from the policyholder's fund. 

These differences mean that we must adapt the Black-Scholes-Merton theory 
of Chapter 15 in order to apply it to equity-linked insurance. 

Throughout this chapter we consider equity-linked contracts paid for by a 
single premium, P, which, after the deduction of any initial charges, is invested 
in the policyholder's fund. This fund, before allowing for the deduction of 
any management charges, earns returns following the underlying stock price 
process, {S1 }r:::O· We make all the assumptions in Section 15.6.1 relating to 
the Black-Scholes-Merton framework. In particular, we assume the stock price 
process is a lognormal process with volatility a per year, and also that there is 
a risk free rate of interest, r per year, continuously compounded. 

16.3 Guaranteed minimum maturity benefit 

16.3.1 Pricing 

From Chapter 15 we know that the price of an option is the EPV of the pay
off under the risk neutral probability distribution, discounting at the risk free 
rate. Suppose a GMMB under a single premium contract guarantees that the 
payout at maturity, n years after the issue date of the contract, will be at least 
equal to the single premium, P. Then the option payoff, as mentioned above, is 
h(n) = max(P- F;J. 0), because the remainder of the benefit, F11 , will be paid 
from the policyholder's fund. This payoff is conditional on the policy remain
ing in force until the maturity date. In order to price the guarantee we assume 
that the survival of a policyholder for n years, taking account of mortality and 
lapses, is independent of the fund value process and is a diversifiable risk. For 
simplicity here we ignore surrenders and assume all policyholders are aged x 

at the commencement of their policies, and are all subject to the same survival 
model. Under these assumptions, the probability that a policy will still be in 
force at the end of the term is 11 Px. 

Consider the situation at the issue of the contract. If the policyholder does 
not survive n years, the GMMB does not apply at time n, and so the insurer 
does not need to fund the guarantee in this case. If the policyholder does sur
vive n years, the GMMB does apply at time n, and we know that the amount 
required at the issue of the contract to fund this guarantee is 

E~ [e-rn (P- F11 )+]. 
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Thus, the expected amount (with respect to survival) required by the insurer at 
the time of issue per contract issued is n(O), where 

Note that we are adopting a mixture of two different methodologies here. The 
non-diversifiable risk from the stock price process, which channels through to 
F11 , is priced using the methodology of Chapter 15, whereas the mortality risk, 
which we have assumed to be diversifiable, is priced using the expected value 
principle. 

Suppose that the total initial expenses are a proportion e of the single pre
mium, and the management charge is a proportion m of the policyholder's 
fund, deducted at the start of each year after the first. Then 

F;1 = P(1 - e)(1 - m)11
-

1 Sn. 
So 

Since we are interested in the relative increase in S1, we can assume So= 1 
without any loss of generality. (We interpret the stock price process { S1 lf::::O 

as an index for the fund assets; as an index, we can arbitrmily set So to any 
convenient value.) Then 

The value of the guarantee can be written 

n(O) = nPx Eg [e-rn(P- P(l- e)(1- ml-1S11 )+ J 

= P nPx Eg [e-rn (1- (1- e)(1- m) 11
-

1Snr J 
= P n Px ~ Eg [e-rn ( C 1 

- S11 ) + J 
where the expense factor~= (1 - e)(1 - m) 11

-
1 is a constant. We can now 

apply formula (15.10) for the price of a put option, setting the strike price for 
the option, K = ~- 1 . Then the price at the issue date of a GMMB, guaranteeing 
a return of at least the premium P, is 

where 

n(O) = P nPx ~ (~- 1 e-rn<I>(-d2(0))- <I>(-d1(0))) 

= P nPx (e-rn<I>(-d2(0))- ~<I>(-d1(0))) 

d
1 

(O) = log(~) + (r + a 2 
j2)n 

a..jii 

(16.1) 
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and 

The return of premium guarantee is a common design for a GMMB, but many 
other designs are sold. Any guarantee can be viewed as a financial option. 
Suppose h (n) denotes a general payoff function for a GMMB when it matures 
at time n years. In equation (16.1) the payoff function is h(n) = (P- F11 )+. In 
other cases when the only random quantity in the payoff function is the fund 
value at maturity, we can use exactly the same approach as in equation (16.1), 
so that the value of the GMMB is always 

rr(O) = nPxE~ [e-rnh(n)]. 

Example 16.1 Consider a 10-year equity-linked contract issued to a life aged 
60, with a single premium of P = $10 000. After a deduction of 3% for initial 
expenses, the premium is invested in an equity fund. An annual management 
charge of 0.5% is deducted from the fund at the start of every year except the 
first. 

The contract carries a guarantee that the maturity benefit will not be less 
than the single premium, P. 

The risk free rate of interest is 5% per year, continuously compounded, and 
stock price volatility is 25% per year. 

(a) Calculate the cost at issue of the GMMB as a percentage of the single 
premium, assuming there are no lapses and that the survival model is 
Makeham's law with A= 0.0001, B = 0.00035 and c = 1.075. 

(b) Now suppose that, allowing for mortality and lapses, the insurer expects 
only 55% of policyholders to maintain their policies to maturity. Calcu
late the revised cost at issue of the GMMB as a percentage of the single 
premium, commenting on any additional assumptions required. 

Solution 16.1 (a) With n = 10 we have 

and 

~ = (1 - 0.03)(1 - 0.005)9 = 0.927213, ,, 

d1 (0) = log~ + (r + a 2 
/
2)n = 0.932148, 

a,.fii 

d2(0) = d1(0)- a,.fii = 0.141579, 

E~ [e-lOr h(10) J = 0.106275 P 

lOP60 = 0.673958, 
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so that 

n(O) = 0.0716P. 

That is, the option cost, assuming no lapses, is 7.16% of the single premium. 
(b) If we assume that precisely 55% of policies issued reach maturity, the 

option value per policy issued is reduced to 

0.55E~ [e-lOr h(lO) J = 0.55 x 0.106275P 

which is 5. 85% of the single premium. 
The assumption that 55% of policies reach maturity is reasonable if 

we assume that survival, allowing for mortality and lapses, is a diversi
fiable risk which is independent of the stock price process. In practice, 
lapse rates may depend on the fund's performance so that this assumption 

may not be reasonable. 0 

16.3.2 Reserving 

We have already defined the reserve for an insurance contract as the capital set 
aside during the term of a policy to meet future obligations under the policy. 

In Chapter 14 we demonstrated a method of reserving for financial guarantees 
using a stochastic projection of the net present value of future outgo minus 
income, where we set the reserve to provide adequate resources in the event 
that investment experience for the portfolio was adverse. 

Using the Black-Scholes-Merton approach, the value of the guarantee is 
interpreted as the value of the portfolio of assets that hedges, or replicates, the 
payoff under the guarantee. The insurer may use the cost of the guarantee to 
purchase appropriate options from another financial institution. If the mortal
ity and lapse experiences follow the basis assumptions, the payoffs from the 

options will be precisely the amounts required for the guarantee payments. 
There is usually no need to hold further reserves since any reserve would cover 
only the future net expenses of maintaining the contract, which are, usually, 
fully defrayed by the future management charge income. 

Increasingly, insurers are hedging their own guarantees. This should be less 
expensive than buying options from a third party, but requires the insurer to 
have the necessary expertise in financial risk management. When the insurer 
retains the risk, the contribution to the policy reserve for the guarantee will 

be the cost of maintaining the replicating portfolio. We saw in Chapter 15 that 
the cost of the replicating portfolio at some time t, before an option matures, 
is the price of the option at time t. 

Suppose we consider the GMMB from Section 16.3.1, where the guarantee 
liability for the insurer at maturity, time n, is (P- F11 )+, and where the issue 
price was n(O) from equation (16.1). The contribution to the reserve at timet, 



! -'-' 

538 Embedded options 

where 0 ::::; t ::::; n, for the GMMB, assuming the contract is still in force at time 
t, is the value at t of the option, which is 

where 

) 
log(g S1) + (r + a 2 /2)(n- t) 

dl (t = r.;;--; 
a-vn-t 

Note here that the expense factor g = (1- e)(l- m)n-l does not depend on t, 
but the reserve at time t does depend on the stock price at time t, S1 . 

For a more general GMMB, with payoff h(n) on survival to time n, the 
contribution to the reserve is 

( ) EQ [ -r(n-t)h( )] n t = n-t Px+t t e n , 

where Ef denotes the expectation at time t with respect to the Q-measure. In 

particular, Ef assumes knowledge of the stock price process at t, S1• 

In principle, the hedge for the maturity guarantee will (under the basis 
assumptions) exactly pay off the guarantee liability, so there should be no need 
to apply stochastic reserving methods. In practice though, it is not possible 
to hedge the guarantee perfectly, as the assumptions of the Black-Scholes

Merton formula do not apply exactly. The insurer may hold an additional 
reserve over and above the hedge cost to allow for unhedgeable risk and for 
the risk that lapses, mortality and volatility do not exactly follow the basis 
assumptions. Determining an appropriate reserve for the unhedgeable risk is 

beyond the scope of this book, but could be based on the stochastic methodol
ogy described in Chapter 14. 

Example 16.2 Assume that the policy in Example 16.1 is still in force six years 
after it was issued to a life aged 60. Assuming there are no lapses, calculate the 
contribution to the reserve from the GMMB at this time given that, since the 
policy was purchased, the value of the stock has 

(a) increased by 45%, and 

(b) increased by 5%. 

Solution 16.2 (a) Recall that in the option valuation we have assumed that the 
return on the fund, before management charge deductions, is modelled by 

the index {S1 }1:c:o, where So= 1. We are given that S6 = 1.45. Then 
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where 

d1 (t) =log(~ St) + ~2)(10- t) and d2(t) = d1 (t)- cr~, 
(T 10-t 

and~ =0.927213 as in Example 16.1. So 

and hence 

dl (6) = 1.241983, 

d2(6) = 0.741983, 

4P66 = 0.824935 

rr(6) = 0.035892P = $358.92. 

(b) For S6 = 1.05 we have rr(6) = $905.39. 
A lower current fund value means that the guarantee is more likely to mature 

in-the-money and so a larger reserve is required. D 

16.4 Guaranteed minimum death benefit 

16.4.1 Pricing 

Not all equity-linked insurance policies carry GMMBs, but most carry GMDBs 
of some kind to distinguish them from regular investment products. The most 
common guarantees on death are a fixed or an increasing minimum death ben
efit. In Canada, for example, contracts typically offer a minimum death benefit 
of the total amount of premiums paid. In the USA, the guaranteed minimum 
payout on death might be the accumulation at some fixed rate of interest of all 
premiums paid. In the UK, the benefit might be the greater of the total amount 
of premiums paid and, say, 101% of the policyholder's fund. 

We approach GMDBs in the same way as we approached GMMBs. Con
sider an n-year policy issued to a life aged x under which the payoff under the 
GMDB is h(t) if the life dies at age x + t, where t < n. If the insurer knew 
at the issue of the policy that the life would die at age x + t, the insurer could 
cover the guarantee by setting aside 

v(O, t) = Ef [e-rt h(t)] 

at the issue date, where Q is again the risk neutral measure for the stock price 
process that underlies the policyholder's fund. 

We know from Chapter 2 that the probability density associated with death 
at age x + t for a life now aged x is tPxf-Lx+t• and so the amount that should 
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be set aside to cover the GMDB, denoted n(O), is found by averaging over the 
possible ages at death, x + t, so that 

n(O) = ion v(O, t)tPxfkx+t dt. (16.2) 

If the death benefit is payable at the end of the month of death rather than 
immediately, the value of the guarantee becomes 

12n 

n(O) = '"'v (0, j/12) j-li.Lqx. 
L._. 12 12 
}=I 

(16.3) 

Notice that (16.2) and (16.3) are similar to formulae we have met in earlier 
chapters. For example, the EPV of a term insurance benefit of S payable imme
diately on the death within n years of a life currently aged x is 

ion Sv1 tPxfkx+t dt. (16.4) 

There are similarities and differences between (16.2) and (16.4). In each expres
sion we are finding the expected amount required at time 0 to provide a death 
benefit (and in each case we require 0 at time n with probability nPx). In 
expression (16.4) the amount required if death occurs at time t is the present 
value of the payment at timet, namely Sv1, whereas in expression (16.2) v(O, t) 

is the amount required at time 0 in order to replicate the (possible) payment at 
timet. 

Example 16.3 An insurer issues a five-year equity-linked insurance policy to 
a life aged 60. A single premium of P = $10 000 is invested in an equity fund. 
Management charges of 0.25% are deducted at the start of each month. At the 
end of the month of death before age 65, the death benefit is the accumulated 
amount of the investment with a GMDB equal to the accumulated amount of 
the single premium, with interest at 5% per year compounded continuously. 

Calculate the value of the guarantee on the following basis. 

e Survival model: Makeham's law with A= 0.0001, B = 0.00035 and 
C= 1.075 

e Risk free rate of interest: 5% per year, continuously compounded 
e Volatility: 25% per year 

Solution 16.3 As in previous examples, let { S1 k::O be an index of prices for the 
equity fund, with So= 1, and let m = 0.0025 denote the monthly management 
charge. Then the payoff if death occurs in the month from time k - fi to k, for 
1 I 2 60 · 
K= TI> 12' ... , U' IS 

h(k) = max(Pe0·05k - Fko 0) 
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where 

so that 

h(k) = P(l- m) 12k max ( eo.os\
2
k - Sk> a). 

(1-m) 

For any value of k (k = l2 , 1
2
2, ... , 1~), the payoff is a multiple of the payoff 

under a put option with strike price e0·05k I (1 - m) 12k. Before applying formula 

( 15.1 0) to value this option, it is convenient to extend the notation ford 1 (t) and 
d2 (t) in formula (15.9) to include the maturity date, so we now write these as 

d1 (t, T) and d2 (t, T) where T is the maturity date. 
We can now apply formula ( 15.1 0) with strike price e0·05k 1 ( 1 - m) 12k, which 

we discount at the risk free rate of r = 0.05, to obtain the first term in formula 
(15.10) as¢( -d2 (0, k))l(l- m) 12k. Thus, if v(O, k) denotes the value at time 

0 of the guarantee at time k, then 

12k (¢(-d2(0, k)) ) 
v(O, k) = P(l - m) (1 _ m)l2k -So¢( -d1 (0, k)) 

= P ( ¢( -d2(0, k)) - (1 - m) 12k ¢( -d1 (0, k))) 

where, from (15.9), 

log((l - m)k je0·05k) + (r + 0'2 j2) k 
d1 (0, k) = ..jk and d2(0, k) = d1 (0, k)- 0' ..Jk, 

(]' k 

with cr = 0.25. 
Table 16.1 shows selected values from a spreadsheet containing deferred 

mortality probabilities and option prices for each possible month of death. 
Using these values in formula (16.3), the value of this GMDB is 2.7838% of 
the single premium, or $278.38. D 

16.4.2 Reserving 

We now apply the approach of the previous section to reserving for a GMDB on 
the assumption that the insurer is internally hedging. Consider a policy issued 
to a life aged x with a term of n years and with a GMDB which is payable 

immediately on death if death occurs at times where 0 < s < n. Suppose that 
the payoff function under the guarantee at times is h(s). Let v(t, s) denote 
the price at time t for an option with payoff h (s) at time s, where 0 :S t :S s, 
assuming the policyholder dies at age x + s. Then 

v(t, s) = Ef [e-r(s-t) h(s) J. 
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Table 16.1 Spreadsheet excerpt for the GMDB in Example 16.3. 

k (years) dj (0, k) d2(0, k) v(O, k) k-1 1.1. qx 
12 12 

1/12 0.001400 -0.070769 300.16 0.002248 
2/12 0.001980 -0.100082 431.43 0.002257 
3/12 0.002425 -0.122575 534.79 0.002265 
4/12 0.002800 -0.141538 623.65 0.002273 
5112 0.003130 -0.158244 703.20 0.002282 
6/12 0.003429 -0.173347 776.12 0.002290 
7112 0.003704 -0.187237 843.99 0.002299 

56/12 0.010477 -0.529585 2708.30 0.002702 
57/12 0.010570 -0.534293 2735.70 0.002709 
58/12 0.010662 -0.538959 2762.88 0.002717 
59/12 0.010754 -0.543585 2789.86 0.002725 
60/12 0.010844 -0.548173 2816.63 0.002732 

Hence, the value of the GMDB for a policy in force at timet ( < n) is n(t), 
where 

1
11 

n(t)= t v(t,s)s-tPx+tfLx+sds 

rn-t 
= Jo v(t, w + t) wPx+t f.Lx+t+w dw, 

when the benefit is paid immediately on death, and 

12(n-t) 

n(t) = " v(t, t + j/12) 1-=.!i.l.qx+t• L..J 12 12 
j=l 

when the benefit is paid at the end of the month of death. 

Example 16.4 Assume that the policy in Example 16.3 is still in force three 
years and six months after the issue date. Calculate the contribution of the 
GMDB to the reserve if the stock price index of the underlying fund assets 

(a) has grown by 50% since inception, so that s3.5 = 1.5, and 

(b) is the same as the initial value, so that S3.5 = 1.0. 

Solution 16.4 Following the solution to Example 16.3, the strike price for an 
option expiring at time s is e0·0,5s j (1 - m) 12s. Since we are valuing the option 
at timet < s, the time to expiry is now s-t. Thus, applying formula (15.10) 
we have 
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(

e0.05s e-0.05(s-t) ) 
v(t, s) = P(l- m) 128 

12 
CI>(-d2(t, s))- S1Cl>(-dJ(t, s)) 

(1 - m) s 

= P (e0
·
051 ct>( -d2(t, s))- St(l- m) 12s ct>( -d1 (t, s))) 

where 

log(St(l- m)12s je0.05s) + (r + a2 /2)(s- t) 
d1(t,s) = r.::--; 

a vs- t 

and 

d2(t, s) = d1(t, s)-a~. 

For the valuation at timet= 3.5, we calculate v(3.5, s) fors = 3b_, 3 1
8
2 , 3b_, 

3 -f:z, ... , 5 and multiply each value by the mortality probability, s-t-J,i 1_ q63.5. 
• • • ]~ 12 

The resultmg valuatiOn IS 

(a) $30.55 when s3.5 = 1.5, and 
(b) $172.05 when s3.5 = 1.0. 0 

Example 16.5 An insurer offers a 10-year equity-linked policy witb a single 
premium. An initial expense deduction of 4% of the premium is made, and tbe 
remainder of the premium is invested in an equity fund. Management charges 
are deducted daily from the policyholder's account at a rate of 0.6% per year. 
On death before the policy matures a death benefit of 110% of the fund value 
is paid. There is no guaranteed minimum maturity benefit. 

(a) Calculate the price at issue of tbe excess amount of the death benefit over 
the fund value at the date of death for a life aged 55 at the purchase date, 
as a percentage of the single premium. 

(b) Calculate the value of the excess amount of tbe death benefit over the fund 
value at the date of death six years after the issue date, as a percentage of 
the policyholder's fund at that date. You are given tbat the policy is still in 
force at the valuation date. 

Basis: 

• Survival model: Makeham's law, with A= 0.0001, B = 0.00035 and 
c = 1.075 

• Risk free rate of interest: 5% per year, continuously compounded 
• Volatility: 25% per year 

Solution 16.5 (a) First, we note that the daily management charge can be 
treated as a continuous deduction from the fund, so tbat, for a unit premium, 

Ft = 0.96e-o.006t St. 
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Second, we note that the excess amount of the death benefit over the fund 
value at the date of death can be viewed as a GMDB equal to 10% of the 
fund value at the date of death. For a unit premium, the payoff function 
h (s) if death occurs at time s, is 

h(s) = 0.1 Fs = 0.096e-0·006sss. 

The value at issue of the death benefit payable if the policyholder dies 
at times is 

In the previous chapter we saw that under the risk neutral measure the EPV 
of a stock price at a future point in time is the stock price now. Thus 

Since So= 1, we have 

v(O, s) = So x 0.096 e-0·006s = 0.096 e-0·006s. 

The GMDB value at issue is then 

riO 
n(O) = Jo v(O, s) sP55 /L55+s ds 

[10 
= 0.096 Jo e-0.006s sP55 /L55+s ds 

-I 
= 0.096 Ass:IOlo=0.6% (16.5) 

= 0.02236. 

So the value of the GMDB at the inception of the policy is 2.24% of the 
single premium. 

(b) The value at time t < s of the option that would be needed to fund the 
GMDB if the policyholder were to die at time s, given that the policy is in 
force at t, is, for a unit premium, 

v(t, s) = Ef [e-r(s-t) h(s) J = 0.1 x 0.96S1 e-0·006s. 
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The total contribution to the reserve for the GMDB for a policy still in 
force at time t, with original premium P, is then 

{10-1 

n(t) = P Jo v(t, w + t) wP55+1 Jl-55+1+w dw 

{10-t 
= 0.096P S1 Jo e-0.006(w+l) wP55+1 Jl-55+l+w dw 

1
10-1 

= 0.096 P S1 e-0·0061 e-0.006w wP55+1 Jl-55+1+w dw 
. 0 

0 096 p S -0.0061 A- 1 
= · 1 e 55+1:10-1[8=0.6%' 

So, at time t = 6, given that the policy is still in force, the contribution 
to the reserve from the GMDB, per unit premium, is 

Jr(6) = 0.096 P S e-0·006 x 6 A 1 
6 64:418=0.6% 

= 0.096 p S6 e-0·036 
X 0.12403. 

The fund value at time t = 6 is 

and so the reserve, as a proportion of the fund value, is 

o.096 P s6 e-0·036 A 1 

------~6~1 :41~8~=::.::0~·6:.::.% = O.lA 1 = 0.0124. 
0.96 p s6 r0.036 61:418=0.6% 

That is, the GMDB reserve would be 1.24% of the policyholder's fund 
value. D 

16.5 Pricing methods for embedded options 

In discussing pricing above, we have expressed the price of a GMMB and a 
GMDB as a percentage of the initial premium. This is appropriate if the option 
is funded by a deduction from the premium at the inception of the policy. That 
is, the price of the option would come from the initial deduction of eP in the 
notation of Section 16.3.1 above. This sum could then be invested in the hedge 
portfolio for the option. 

A relatively large expense deduction at inception, called a front-end load, is 
common for UK policies, but less common in North America. A more common 
expense loading inN orth America is a management charge, applied as a regular 
percentage deduction from the policyholder's fund. 
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If the guarantee is to be funded through a regular management charge, rather 

than a deduction from the single premium as in Sections 16.3.1 and 16.4.1, we 
need a way to express the cost in terms of this charge. 

Consider a single premium equity-linked policy with a term of n years issued 
to a life aged x. We assume, for simplicity, that there are no lapses and no 
initial expenses, so that e = 0 in the notation of Section 16.3.1. Also, we assume 

that mortality is a diversifiable risk which is independent of the stock price 

process. 
Let n (0) denote the cost at inception of the guarantees embedded in the pol

icy, as derived in Sections 16.3.1 and 16.4.1. Suppose these guarantees consist 
of a payment of amount h(t) if the life dies at time t ( < n) and a payment 

h (n) if the life survives to the end of the term. The value of each of these 

guarantees is 

given that the life does die at time t, and 

E~[h(n) e-rn] 

given that the life does survive to time n. Allowing for the probabilities of death 

and survivorship, we have 

n(O) = fon E~[h(t) e-rt] tPx fJ.-x+t dt + nPx E~[h(n) e-rn]. 

We interpret n(O) as the cost at time 0 of setting up the replicating portfolios 

to pay the guarantees. 
Let c denote the component of the management ,charge that is required to 

fund the guarantees from a total (fixed) management charge of m (> c) per 

year. We call c the risk premium for the guarantees. 
Assume that the management charge is deducted daily, which we treat as a 

continuous deduction. With these assumptions, the fund value at time t for a 
policy still in force at that time, F1, can be written 

Ft = P St e-mt. 

Hence, the risk premium received in the time interval t tot+ dt for a policy 
still in force is (loosely) c P S1 e-mt dt. Ignoring survivorship for the moment, 
the value at time 0 of this payment can be calculated as the cost of setting 

up a replicating portfolio which will pay this amount at time t. This cost is 
c P e-mt dt since an investment of this amount at time 0 in the stock will accu

mulate to c P S1 e-mt dt at timet (recall that So= 1). Allowing for survivor
ship, the value at time 0 of the risk premium received in the time interval t to 

_l
i 

. . 
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t + dt is c P e-mt dt tPx and so the value at time 0 of the total risk premiums 
to be received is 

fa
n 

P -mt d p-c e tPx t = c ax:filo=m· 

The risk premium c is chosen so that the value to the insurer of the risk pre
miums to be received is equal to the cost at time 0 of setting up the replicating 
portfolios to pay the guarantees, so that 

Calculating c from this formula is a slightly circular process. The risk premium 
cis a component of the total management charge m, but we need to know m to 
calculate the right-hand side of this equation for c. In practice, we may need to 
iterate through the calculations a few times to determine the value of c. In some 
cases there may be no solution. For example, increasing the total management 
charge m may increase the cost of the guarantees, therefore requiring a higher 
value for the risk premium c, which may in turn require a higher value for m. 

If the management charge is deducted less frequently, say annually in 
advance, we can use the same principles as above to derive the value of the 
risk premiums. The cost at time 0 of setting up the replicating portfolios which 
will provide exactly for the guarantees is still rr(O). Ignoring survivorship, the 
amount of the risk premium to be received at time t (t = 0, 1, ... , n - 1) is 
c F1 = c P (I- m)1 S1 and the value of this at time 0 is c P (1-m)'. Allowing 
for survivorship, this value is c P (1 - m)1 tPx and so the value at time 0 of all 
the risk premiums to be received is 

where 

n-1 

L tPx c p (l - m)' = c p ax:lili* 
t=O 

i* = m/(l- m) so that 1/(1 + i*) = 1-m. 

Example 16.6 In Example 16.3 the monthly management charge, m, was 
0.25% of the fund value and the GMDB option price was determined to be 
2.7838% of the single premium. 

You are given that 0.20% per month is allocated to commission and admin
istrative expenses. Determine whether the remaining 0.05% per month is suf
ficient to cover the risk premium for the option. 

Use the same basis as in Example 16.3. 



548 Embedded options 

Solution 16.6 The risk neutral value of the risk premium of c per month is 

E~ [ cFo + cFi;12 e-r/!
2 

!fi2P60 + · · · + c F59fl2 e-59r/!2 59fl2P60 J 
= c P So ( 1 +(1-m) !fi2P6o + (1- m)2 

2fi2P6o + · · · + (1- m)59 
59fl2P6o) 

- 12 p s .. (1 2) - c o a60:5l 

where the annuity interest rate is i such that 

vi
1

/1
2 

= (1 - m) =} i = (1 - m)-12 - 1 = 3.0493% per year. 

The annuity value is 4.32662, so the value of the risk premium of 0.05% per 
month is $259.60. 

The value of the guarantee at the inception date, from Example 16.3, is 
$278.38 so the risk premium of 0.05% per month is not sufficient to pay for the 
guarantee. The insurer needs to revise the pricing structure for this product. 

0 

16.6 Risk management 

The option prices derived in this chapter are the cost of either buying the appro
priate options in the market, or internally hedging the options. If the insurer 
does not plan to purchase or hedge the options, then the price or reserve amount 
calculated may be inadequate. It would be inappropriate to charge an option 
premium using the Black-Scholes-Merton framework, and then invest the pre
mium in bonds or stocks with no consideration of the dynamic hedging implicit 
in the calculation of the cost. Thus, the decision to use Black-Scholes-Merton 
pricing carries with it the consequential decision either to buy the options or to 
hedge using the Black-Scholes-Merton framework. 

Under the assumptions of the Black-Scholes-Merton model, and provided 
the mortality and lapse experience is as assumed, the hedge portfolio will 
mature to the precise cost of the guarantee. In reality the match will not be 
exact but will usually be very close. So hedging is a form of risk mitigation. 
Choosing not to hedge may be a very risky strategy- with associated probabil
ities of severe losses. Generally, if the risk is not hedged, the reserves required 
using the stochastic techniques of Chapter 14 will be considerably greater than 
the hedge costs. 

One of the reasons why the hedge portfolio will not exactly meet the cost of 
the guarantee is that under the Black-Scholes-Merton assumptions, the hedge 
portfolio should be continuously rebalanced. In reality, the rebalancing will 
be less frequent. A large portfolio might be rebalanced daily, a smaller one at 
weekly or even monthly intervals. 
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If the hedge portfolio is rebalanced at discrete points in time (e.g. monthly), 
there will be small costs (positive or negative) incurred as the previous hedge 
portfolio is adjusted to create the new hedge portfolio. See Example 15.5. 

The hedge portfolio value required at timet for ann-year GMMB is, from 
Section 16.3.2, 

:rr(t) = 11 -tPx+t EP[e-r(n-t) h(n)] = 11 -tPx+t v(t, n) 

where, as above, v(t, n) is the value at time t of the option maturing at time n, 
unconditional on the policyholder's survival. 

The hedge portfolio is invested partly in zero-coupon bonds, maturing at 
time n, and partly (in fact, a negative amount, i.e. a short sale) in stocks. The 
value of the stock part of the hedge portfolio is 

n-tPx+t (_!!__v(t, n)St) 
dSt 

and the value of the zero-coupon bond part of the hedge portfolio is 

:rr(t)- n-tPx+t (_!}__v(t, n)St). 
dSt 

For a GMDB, the approach is identical, but the option value is a weighted aver
age of options of all possible maturity dates, so the hedge portfolio is a mix
ture of zero-coupon bonds of all possible maturity dates, and (short positions 
in) stocks. For example, when the benefit is payable immediately on death, the 
value at timet of the option is :rr(t), where 

:rr(t) =fon-t v(t, W + t) wPx+t fhx+t+w dw. 

The stock part of the hedge portfolio has value 

r-t ( d ) Jo St dSt v(t, W + t) wPx+t fhx+t+w dw. 

The value of the bond part of the hedge portfolio is the difference between 
:rr(t) and the value of the stock part, so that the amount invested in a w-year 
zero-coupon bond at time t is (loosely) 

( v(t, t + w)- St _!}__v(t, t + w)) wPx+t fhx+t+w dw. 
dSt 

The hedge strategy described in this section, which is called a delta-hedge, 
uses only zero-coupon bonds and stocks to replicate the guarantee payoff. 
More complex strategies are also possible, bringing options and futures into 
the hedge, but these are beyond the scope of this book. 

,I 

I_ 
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The Black-Scholes-Merton valuation can be interpreted as a market
consistent valuation, by which we mean that the option sold in the finan
cial markets as a stand alone product (rather than embedded in life insurance) 
would have the same value. Many jurisdictions are moving towards market 
consistent valuation for accounting purposes, even where the insurers do not 
use hedging. 

16.7 Emerging costs 

Whether the insurer is hedging internally or buying the options to hedge, the 
profit testing of an equity-linked policy proceeds as described in Chapter 14. 
The insurer might profit test deterministically, using best estimate scenarios, 
and then stress test using different scenarios, or might test stochastically, using 
Monte Carlo simulation to generate the scenarios for the increase in the stock 
prices in the policyholder's fund. In this section, we first explore deterministic 
profit testing, and then discuss how to make the profit test stochastic. 

The cash flow projection depends on the projected fund values. Suppose 
we are projecting the emerging cash flows for a single premium equity-linked 
policy with a term of n years and with a GMDB and/or a GMMB, for a given 
stock price scenario. We assume all cash flows occur at intervals of 1 I m years. 

Assuming the insurer hedges the options internally, the income to and outgo 
from the insurer's fund for this contract arise as follows: 

Income: + Initial front-end-load expense deduction. 
+ Regular management charge income. 
+ Investment return on income over the 1 I m year period. 

Outgo: - Expenses. 
Initial hedge cost, at t = 0. 
After the first month, the hedge portfolio needs to be rebalanced; 
the cost is the difference between the hedge value brought forward 
and the hedge required to be carried forward. 
If the policyholder dies, there may be a GMDB liability. 
If the policyholder survives to maturity, there may be a GMMB 
liability. 

The part of this that differs from Chapter 14 is the cost of rebalancing the hedge 
portfolio. In Example 15.5, for a standard put option, we looked at calculating 
rebalancing errors for a hedge portfolio adjusted monthly. The hedge portfolio 
adjustment in this chapter follows the same principles, but with the complica
tion that the option is contingent on survival. As in Example 15.5, we assume 
that the hedge portfolio value is invested in a delta hedge. If rebalancing is 

J
l 

' 
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continuous (in practice, one or more times daily), then the hedge adjustment 
will be (in practice, close to) zero, and the emerging guarantee cost will be zero 
given that the experience in terms of stock price movements and survival is in 
accordance with the models used. Under the model assumptions, the hedge is 
self-financing and exactly meets the guarantee costs. Also, if the hedge cost is 
used to buy options in the market, there will be no hedge adjustment cost and 
no guarantee cost once the options are purchased. 

If the rebalancing takes place every 1 I m years, then we need to model the 
rebalancing costs. We break the hedge portfolio down into the stock part, 
assumed to be invested in the underlying index {Stl1:::o, and the bond part, 
invested in a portfolio of zero-coupon bonds. Suppose the values of these two 
parts are 'l!1 S1 and Y 1, respectively, so that 

Then 11m years later, the bond part of the hedge portfolio has appreciated by 
a factor erfm and the stock part by a factor St+lJml S1. This means that, before 
rebalancing, the value of the hedge portfolio is, say, n:bf (t + ~),where 

n:bf (t + ~) = Yt erfm +'lit St+lfm· 

The rebalanced hedge portfolio required at time t + 1 I m has value n: (t + ~), 
but is required only if the policyholder survives. If the policyholder dies, the 
guarantee payoff is h (t + ~). So the total cost at time t + 1 I m of rebalancing 
the hedge, given that the policy was in force at time t, is 

n:(t + ~) l_Px+t- n:bf (t + ~) 
Ill 

and the cost of the GMDB is 

Note that these formulae need to be adjusted for the costs at the final matu
rity date, n: n:(n) is zero since there is no longer any need to set up a hedge 
portfolio, and the cost of the GMMB is h (n) 1._ p + _1._. 

m x 11 111 

If lapses are explicitly allowed for, then the mortality probability would be 
replaced by an in-force survival probability. 

In the following example, all of the concepts introduced in this chapter are 
illustrated as we work through the process of pricing and profit testing an 
equity-linked contract with both a GMDB and a GMMB. 

Example 16.7 An insurer issues a five-year equity-linked policy to a life aged 
60. The single premium is P = $1000 000. The benefit on maturity or death is a 
return of the policyholder's fund, subject to a minimum of the initial premium. 
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The death benefit is paid at the end of the month of death and is based on the 
fund value at that time. 

Management charges of 0.3% per month are deducted from the fund at the 
start of each month. 

(a) Calculate the monthly risk premium (as part of the overall management 
charge) required to fund the guarantees, assuming 
(i) volatility is 25% per year, and 

(ii) volatility is 20% per year. 

Basis: 

Survival model: Makeham's law with A= 0.0001, 
B = 0.00035 and c = 1.075 

Lapses: None 
Risk free rate of interest: 5% per year, continuously compounded 

(b) The insurer is considering purchasing options to hedge the guarantees in 
the market; in this case the price for the options would be based on the 
25% volatility assumption. Assuming that the monthly risk premium based 
on the 25% volatility assumption is used to purchase the options for the 
GMDB and GMMB liabilities, profit test the contract for the two stock 
price scenarios below, using a risk discount rate of 10% per year effective, 
and using monthly time intervals. Use the basis from part (a), assuming, 
additionally, that expenses incurred at the start of each month are 0.01% of 
the fund, after deducting the management charge, plus $20. The two stock 
price scenarios are 
(i) stock prices in the policyholder's fund increase each month by 0.65%, 

and 
(ii) stock prices in the policyholder's fund decrease each month by 0.05%. 

(c) The alternative strategy for the insurer is to hedge internally. Calculate all 
the cash flows to and from the insurer's fund at times 0, f2 and 1

2
2 per 

policy issued for the following stock price scenarios 

(i) stock prices in the policyholder's fund increase each month by 0.65%, 
(ii) stock prices in the policyholder's fund decrease each month by 0.05%, 

and 

(iii) sj_ = 1.0065, s:1.. =0.9995. 
12 12 

Assume that 

the hedge cost is based on the 20% volatility assumption, 
the hedge portfolio is rebalanced monthly, 
expenses incurred at the start of each month are 0.025% of the fund, 

after deducting the management charge, and 
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the insurer holds no additional reserves apart from the hedge portfolio 
for the options. 

Solution 16.7 (a) The payoff function, h(t), fort=~, f2, ... , i~, ¥¥,is 

h(t) = (P- F,)+ 

J 

where 

F, = p s, (1 - m)l2t 

and m = 0.003. Let v(t, s) denote the value at t of the option given that it 
matures at s ( > t). Then 

v(t, s) = Ef [e-r(s-t)h(s) J 

= Ef [e-r(s-t) (P- p Ss(l- m)l2s) + J 
= P (e-r(s-t)<P(-d2(t, s))- S1(1- m) 12s<P(-dl (t, s))) 

where 

and 

The option price at issue is 

n(O) = v (o, A) l_qx + v (o, f2) l_/l_qx + v (o, i2) 2/l_qx + · · · 
12 12 12 12 12 

+v(o, ~~) ~/l_qx+v(o, ~~) QQPx· 
12 12 12 

This gives the option price as 

(i) 0.145977 P for a= 0.25 per year, and 

(ii) 0.112710 P for a = 0.20 per year. 

Next, we convert the premium to a regular charge on the fund, c, using 

n(O) = 12 c P a 02~ 
60:51 

where the interest rate for the annuity is i = (1 - m)-12 - 1 = 3.6712%, 
which gives a 02~ = 4.26658. The charge on the fund is then 

60:51 

(i) c = 0.00285 for a= 0.25, and 

(ii) c = 0.00220 for a = 0.20. 
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(b) Following the convention of Chapter 14, we use the stock price scenarios 
to project the policyholder's fund value assuming that the policy stays in 
force throughout the five-year term of the contract. From this projection we 
can project the management charge income to the insurer's fund at the start 
of each month. Outgo at the start of the month comprises the risk premium 
for the option (which is paid to the option provider), and the expenses. 

The steps in this calculation are as follows. At timet =k/12, where 
k = 0, 1, ... , 59, assuming the policy is still in force: 

• The policyholder's fund, just before the deduction of the management 
charge, is Ft, where 

Ft = P (1 + g)k (1 - 0.003)k 

and g is the rate of growth of the stock price. 
• The amount transferred to the insurer's fund in respect of the manage

ment charge is 

0.003 Ft. 

• The insurer's expenses, excluding the risk premium, are 

0.0001 (1 - 0.003) F1 + 20. 

• The risk premium is 

0.00285 (1 - 0.003) Ft. 

• The profit to the insurer is 

Prt = (0.003- (1 - 0.003)(0.0001 + 0.00285)) F1 - 20. 

e The profit to the insurer, allowing for survivorship to time t, is 

llt = tP6o ((0.003- (1 - 0.003)(0.0001 + 0.00285)) Ft - 20). 

• The net present value of the profit using a risk discount rate of 10% per 
year is 

59 

NPV = "' l1 -"- 1.1- -f'2 . ~ 12 
k=O 

Because the insurer is buying the options, there is no outgo for the 
insurer in respect of the guarantees on death or maturity - the purchased 
options are assumed to cover any liability. As there is no residual liability 
for the insurer for the contract, there is no need to hold reserves. There are 
no end-of-month cash flows, so we calculate the profit vector using cash 
flows at the start of the month. Hence, Prt is the profit to the insurer at 
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Table 16.2 Profit test for Ex-ample 16.7 part (b), first stock price scenario. 

Time, t Management Risk 
(months) charge Expenses premium Prt t/12P60 ITt . 

0 3000.00 119.70 2842.63 37.67 1 37.67 
1 3010.44 120.05 2852.52 37.87 0.99775 37.79 
2 3020.92 120.40 2862.45 38.08 0.99550 37.90 

58 3669.78 141.96 3477.27 50.55 0.85582 43.26 
59 3682.55 142.38 3489.37 50.79 0.85309 43.33 

time t, assuming the policy is in force at that time, and Tit is the profit at 
time t assuming only that the policy was in force at time 0. 

Some of the calculations for the scenario where the stock price grows at 
0.65% per month are presented in Table 16.2. 

The net present value for this contract, using the 10% risk discount rate 
and the first stock price scenario, is $1940.11. 

The second stock price scenario, with stock prices falling by 0.05% each 
month, gives an NPV of $1463.93. 

(c) The items of cash flow for the insurer's fund at times 0, {z and fi, per 
policy issued, are shown in Table 16.3. The individual items are as follows: 

Income: the management charge (1). 
Outgo: 

the insurer's expenses (2), 
the amount, if any, needed to increase death or maturity benefits to the 

guaranteed amount (3), 
the amount needed to set up, or rebalance, the hedge portfolio ( 4 ), and 
the net cash flow (5), calculated as 

(5) = (1) - (2) - (3) - (4). 

The individual cash flows at time t, per policy issued, are calculated as 
follows. 

( 1) Management charge 

tP60 P St X 0.99712
t X 0.003. 

(2) Expenses 

tP60 P St X 0.99712t+l X 0.00025. 

(3) Death benefit (fort > 0) 

(t--b_P60- tP60) P(1- St x 0.99712
t)+. 
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Table 16.3 Cashfiowsfor Example 16.7 part (c). 

Management GMDB and Cost of Net cash 
Time, charge Expenses GMMB hedge flow 

t 

0 

1 
12 

2 
12 

Scenario (1) (2) (3) (4) (5) 

(i) 3000 249.25 0 112 709.54 -109958.79 
(ii) 3000 249.25 0 112 709.54 -109958.79 
(iii) 3000 249.25 0 112 709.54 -109958.79 

(i) 3003.67 249.56 0 -1380.84 4134.96 
(ii) 2982.78 247.82 7.87 -1380.40 4107.50 
(iii) 3003.67 249.56 0 -1380.84 4134.96 

(i) 3007.31 249.86 0 -1388.47 4145.92 
(ii) 2965.63 246.39 15.76 -1394.21 4097.68 
(iii) 2967.11 246.52 14.64 -1352.25 4058.20 

( 4) The cost of setting up the hedge portfolio at time 0 is the same for each 
stock price scenario and is equal to 106 rr(O). At timet=~ the value 
of the hedge portfolio is 

(Yo eo.OS/12 + Wo S 1_). 
12 

The cost of setting up the new hedge portfolio for each policy still in 
force is JT ( ~). Hence, the net cost of rebalancing the hedge portfolio 
at this time per policy originally issued is 

( lP6o rr(l/12) - (Yo e0·
05112 + W0 S 1_)). 

u u 

Similarly, the net cost of rebalancing the hedge portfolio at time l2 per 
policy originally issued is 

( 1_P6orr(2/12)- lP6o(Y 1_ e0
·
05112 + W 1_ S1_)). 

12 12 12 12 12 

The values of n(t), Y 1 and W1 S1 are shown in Table 16.4. D 

We note several important points about this example. 

(1) Stock price scenarios (i) and (ii) used in parts (b) and (c) are not realistic, 
and lead to unrealistic figures for the NPV. This is particularly true for the 
internal hedging case, part (c). The NPV values for scenarios (i) and (ii), 
assuming internal hedging and a risk discount rate of 10% per year, can 

i 

I 

l
l 

. 
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Table 16.4 Hedge portfolios for Example 16.7 part( c). 

Time Investment scenario 

0 

1 
TI 

2 
TI 

(i) (ii) (iii) 

rr(t) 112 710 112 710 112710 
Yt 417174 417174 417174 

lllt St -304465 -304465 -304465 

rr(t) 111342 113478 111342 
Yt 415 700 421369 415700 

lllt St -304 358 -307 891 -304 358 

rr(t) 109956 114253 114097 
Yt 414172 425 626 425 216 

lllt St -304216 -311373 -311119 

be shown to be $99 944 and $73 584, respectively. If the lognormal model 
for stock prices is appropriate, then the expected present value (under the 
P-measure) of the hedge rebalancing costs will be close to zero. Under 
both scenarios (i) and (ii) in Example 16.7 the present value is significant 
and negative, meaning that the hedge portfolio value brought forward each 
month is more than sufficient to pay for the guarantee and new hedge port
folio at the month end. This is because more realistic scenarios involve far 
more substantial swings in stock price values, and it is these that generate 
positive hedge portfolio rebalancing costs. 

(2) The comment above is more clearly illustrated when the profit test is used 
with stochastic stock price scenarios. In the table below we show some 
summary statistics for 500 simulations of the NPV for part (c), again cal
culated using a risk discount rate of 10% per year. The stock price scenar
ios were generated using a lognormal model, with parameters fL = 8% per 
year, and volatility a = 0.20 per year. 

Mean 
NPV 

$31684 

Standard 
deviation 

$37 332 

5% 
quantile 

-$23447 

50% 
quantile 

$28205 

95% 
quantile 

$99 861 

We note that the NPV value for scenario (i) falls outside the 90% confi
dence interval for the net present value generated by stochastic simulation. 
This is because this scenario is highly unrepresentative of the true stock 
price process. Over-reliance on deterministic scenarios can lead to poor 
risk management. 

(3) If we run a,stochastic profit test under part (b), where the option is pur
chased in the market, the variability of simulated NPV s is very small. The 
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net management charge income is small, and the variability arising from 
the guarantee cost has been passed on to the option provider. The mean 
NPV over 500 simulations is approximately $2137, and the standard devi
ation of the NPV is approximately $766, assuming the same parameters 
for the stock price process as for (c) above. 

( 4) If we neither hedge nor reserve for this option, and instead use the methods 
from Chapter 14, the two deterministic scenarios give little indication of 
the variability of the net present value. Using the first scenario (increasing 
prices) generates a NPV of $137 053 and using the second gives $2381. 
Using stochastic simulation /generates a mean NPV of around $100 000 
with a 5% quantile of approximately -$123 000. 

16.8 Notes and further reading 

There is a wealth of literature on pricing and hedging embedded options. Hardy 
(2003) gives some examples and information on practical ways to manage 
the risks. The options illustrated here are relatively straightforward. Much 
more convoluted options are sold, particularly in association with variable 
annuity policies. For example, a guaranteed minimum withdrawal benefit 
allows the policyholder the right to withdraw some proportion of the premium 
for a fixed time, even if the fund is exhausted. Also, the guarantee may 
specify that after an introductory period, the policyholder could withdraw 
5% of the initial premium per year for 20 years. Other complicating features 
include resets where the policyholder has the right to set the guarantee at 
the current fund value at certain times during the contract. New variants are 
being created regularly, reflecting the strong interest in these products in the 
market. 

In Section 16.2 we noted three differences between options embedded in 
insurance policies and standard options commonly traded in financial markets. 
The first was the life contingent nature of the benefit and the second was the 
fact that the option is based on the fund value rather than the underlying stocks. 
Both of these issues have been addressed in this chapter. The third issue is 
the fact that embedded options are generally much longer term than traded 
options. One of the implications is that the standard models for short-term 
options may not be appropriate over longer terms. The most important area of 
concern here is the lognormal model for stock prices. There is considerable 
empirical evidence that the lognormal model is not a good fit for stock prices 
in the long run. This issue is not discussed fuither here, but is important for a 
more advanced treatment of equity-linked insurance risk management. Sources 
for further information include Hardy (2003) and Mpller (1998). 

J 
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The first applications of modem financial mathematics to equity-linked insur
ance can be found in Brennan and Schwartz (1976) and Boyle and Schwartz 
(1977). 

In some countries annual premium equity-linked contracts are common. We 
have not discussed these in this chapter, as the valuation and risk manage
ment is more complicated and requires more advanced financial mathematics. 
Bacinello (2003) discusses an Italian style annual premium policy. 

Ledlie et al. (2008) give an introduction to some of the issues around equity
linked insurance, including a discussion of a guaranteed minimum income 
benefit, another more complex embedded option. 

16.9 Exercises 

Exercise 16.1 An insurer is designing a 10-year single premium variable annu
ity policy with a guaranteed maturity benefit of 85% of the single premium. 

(a) Calculate the value of the GMMB at the issue date for a single premium 
of$100. 

(b) Calculate the value of the GMMB as a regular annual deduction from 
the fund. 

(c) Calculate the value of the GMMB two years after issue, assuming that the 
policy is still in force, and that the underlying stock prices have decreased 
by 5% since inception. 

Basis and policy information: 
Age at issue: 
Front-end expense loading: 
Annual management charge: 

Survival model: 
Lapses: 

Risk free rate: 

Volatility: 

60 
2% 
2% at each year end (including the 
first) 
Standard Ultimate Survival Model 
5% at each year end except the final 
year 
4% per year, continuously 
compounded 
20% per year 

Exercise 16.2 An insurer issues a 10-year equity-linked insurance policy to a 
life aged 60. A single premium of $10 000 is invested in an equity fund. Man
agement charges at a rate of 3% per year are deducted daily. At the end of the 
month of death before age 70, the death benefit is 105% of the policyholder's 
fund subject to lf minimum of the initial premium. 
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(a) Calculate the price of the death benefit at issue. 
(b) Express the cost of the death benefit as a continuous charge on the fund. 

Basis: 
Survival model: 
Risk free rate: 
Volatility: 
Lapses: 

Standard Ultimate Survival Model 
4% per year, continuously compounded 
25% per year 
None 

Exercise 16.3 An insurer issues a 10-year variable annuity policy. Assume an 
investor deposits a single prel)lium of $100 000. The policy carries a guaran
teed minimum maturity benefit of 100% of the premium. 

(a) Calculate the probability that the guaranteed minimum maturity benefit 
will mature in-the-money (i.e. the probability that the fund at the maturity 
date is worth less than 100% of the single premium) under the P-measure. 

(b) Calculate the probability that the guaranteed minimum maturity benefit 
will mature in-the-money under the Q-measure. 

(c) Calculate the EPV of the option payoff under the P -measure, discounting 
at the risk free rate. 

(d) Calculate the price of the option. 
(e) A colleague has suggested the value of the option should be the EPV of the 

guarantee under the P-measure, analogous to the value of term insurance 
liabilities. Explain why this value would not be suitable. 

(f) For options that are complicated to value analytically we can use Monte 
Carlo simulation to find the value. We simulate the payoff under the risk 
neutral measure, discount at the risk free rate and take the mean value 
to estimate the Q-measure expectation. Use Monte Carlo simulation to 
estimate the value of this option with 1000 scenarios, and comment on the 
accuracy of your estimate. 

Basis: 
Survival model: No mortality 
Stock price appreciation: Lognormally distributed, with fL = 0.08 

per year, cr = 0.25 per year 
Risk free rate of interest: 4% per year, continuously compounded 
Management charges: 3% of the fund per year, in advance 

Exercise 16.4 An insurer issues a single premium variable annuity contract 
with a 10-year term. There is a guaranteed minimum maturity benefit equal to 
the initial premium of $100. ' 

After five years the policyholder's fund value has increased to 110% of the 
initial premium. The insurer offers the policyholder a reset option, under which 



t 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

16.9 Exercises 561 

Table 16.5 Single scenario of stock prices for stochastic profit test for 
Exercise 16.5. 

s, t s, t s, t s, t s, 
1.00000 
0.95449 13 0.92420 25 1.09292 37 1.09203 49 1.34578 
0.96745 14 0.95545 26 1.17395 38 1.10988 50 1.42368 
0.97371 15 1.02563 27 1.27355 39 1.05115 51 1.50309 
1.01158 16 1.13167 28 1.32486 40 1.05659 52 1.63410 
1.01181 17 1.25234 29 1.31999 41 1.18018 53 1.45134 
0.93137 18 1.10877 30 1.24565 42 1.20185 54 1.46399 
0.98733 19 1.10038 31 1.20481 43 1.34264 55 1.40476 
0.89062 20 0.99481 32 1.18405 44 1.37309 56 1.44512 
0.91293 21 1.04213 33 1.23876 45 1.39327 57 1.39672 
0.90374 22 1.07980 34 1.15140 46 1.40633 58 1.30130 
0.88248 23 1.14174 35 1.09478 47 1.41652 59 1.25762 
0.92712 24 1.12324 36 1.03564 48 1.43076 60 1.19427 

the policyholder may reset the guarantee to the current fund level, in which case 
the remaining term of the policy will be increased to 10 years. 

(a) Determine which of the original guarantee and the reset guarantee has 
greater value at the reset date. 

(b) Determine the threshold value for Fs (i.e. the fund at time 5) at which the 
option to reset becomes more valuable than the original option. 

Basis: 
Survival model: 
Volatility: 
Risk free rate of interest: 
Management charges: 
Front-end-load charge: 

No mortality 
a =0.18 per year 
5% per year, continuously compounded 
1% of the fund per year, in advance 
3% 

Exercise 16.5 An insurer issues a five-year single premium equity-linked insur
ance policy to (60) with guaranteed minimum maturity benefit of 100% of the 
initial premium. The premium is $100 000. Management fees of 0.25% of the 
fund are deducted at the start of each month. 

(a) Verify that the guarantee cost expressed as a monthly deduction is 0.19% 
of the fund. 

(b) The actuary is profit testing this contract using a stochastic profit test. The 
actuary first works out the hedge rebalancing cost each month then inserts 
that into the profit test. 

The stock price figures in Table 16.5 represent one randomly generated 
scenario. The table shows the stock price index values for each month in 
the 60-month scenario. 
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Table 16.6 Hedge rebalance table for Exercise 16.5, in $100000s. 

Time Option cost Stock part Bond part Hedging 
(months) St att of hedge at t of hedge at t Hedge b/f Rebalance cost 

0 1.00000 10.540 -27.585 38.125 
1 0.95449 11.931 -29.737 41.668 11.955 -0.024 
2 0.96745 11.592 -29.528 41.120 11.701 -0.109 

59 1.25762 0.200 -7.658 7.858 0.526 -0.326 
60 1.19427 0.000 0.619 -0.619 

Table 16.7 Profit test table for Exercise 16.5, i1~ $s. 

Time, t Management 
(months) Ft costs Expenses Hedge costs Prt 

0 
1 
2 

100000.00 250.00 1000.00 10540.21 -11290.21 
95210.38 238.03 61.89 -23.99 200.13 
96 261.88 240.65 62.57 -109.16 287.24 

(i) Table 16.6 shows the first two rows of the hedge rebalancing cost 
table. Use the stock price scenario in Table 16.5 to complete this table. 
Calculate the present value of the hedge rebalance costs at an effective 
rate of interest of 5% per year. 

(ii) Table 16.7 shows the first two rows of the profit test for this scenario. 
The insurer uses the full cost of the option at the start of the contract 
to pay for the hedge portfolio. 
Complete the profit test and determine the profit margin (NPV as a 
percentage of the single premium) for this scenario. 

(iii) State with reasons whether you would expect this contract to be prof
itable, on average, over a large number of simulations. 

Basis for hedging and profit test calculations: 
Survival: Standard Ultimate Survival Model 
Lapses: None 
Risk free rate: 

Volatility: 
Incurred expenses - initial: 

5% per year, continuously 
compounded 
20% per year 
1% of the premium 
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Incurred expenses -renewal: 0.065% of the fund before 
management charge deduction, 
monthly in advance from the 
second month 

Risk discount rate: 10% per year 

16.1 (a) $4.61 
(b) 0.68~ 
(c) $6.08 

16.2 (a) $107.75 
(b) 0.13% 

16.3 (a) 0.26545 
(b) 0.60819 
(c) $6033 
(d) $18429 

Answers to selected exercises 

563 

16.4 (a) The original option value is $4.85 and the reset option value is $6.46. 
(b) At Fs = 103.4 both options have value $6.07. 

16.5 (b). (i) The PV of rebalancing costs is -$1092.35 
(ii) -1.23% 

(iii) We note that the initial hedge cost converts to a monthly outgo 
of 0.19% of the fund; adding the monthly incurred expenses, 
this comes to 0.255%, compared with income of 0.25% of the 
fund. Overall we would not expect this contract to be profitable 
on these terms. 
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Appendix A 

Probability theory 

A.l Probability distributions 

In this appendix we give a very brief description of the probability distributions 
used in this book. Derivations of the results quoted in this appendix can be 
found in standard introductory textbooks on probability theory. 

A.l.l Binomial distribution 

If a random variable X has a binomial distribution with parameters n and p, 

where n is a positive integer and 0 < p < 1, then its probabilit~ function is 

Pr[X = x] = (:)px(l- p)n-x 
for x = 0, 1, 2, ... , n. This distribution has mean np and variance np(1- p), 
and we write X~ B(n, p). 

The moment generating function is 

Mx(t) = (pe1 + 1- p)n. (A.1) 

A.1.2 Uniform distribution 

If a random variable X has a uniform distribution on the interval (a, b), then it 
has distribution function 

x-a 
Pr[X:::; x] = -

b-a 
for a :::; x :::; b, and has probability density function 

1 
f(x) = -b-

-a 

564 
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for a < x < b. This distribution has mean (a + b) /2 and variance ( b - a) 2/ 12, 
and we write X~ U(a, b). 

A.1.3 Normal distribution 

If a random variable X has a normal distribution with parameters fL and (} 2 

then its probability density function is 

1 { -(x - tL)
2 

} f(x) = --exp ----(}5 2(}2 

for -oo < x < oo, where -oo < fL < oo and(} > 0. This distribution has 
mean fL and variance (} 2 , and we write X~ N(tL, (} 2 ). 

The random variable Z defined by the transformation Z = (X - tL)/(} has 
mean 0 and variance 1 and is said to have the standard normal distribution. A 
common notation is Pr[Z :S z] = <I> (z), and as the probability density function 
is symmetric about 0, <I> (z) = 1 - <I> (-z). 

The traditional approach to computing probabilities for a normal random 
variable is to use the relationship 

Pr[X :S x] = Pr[Z :S (x- tL)/(}] 

and to find the right-hand side from tables of the standard normal distribution, 
or from an approximation such as 

( 

for x 2:: 0 where 

a1 = 0.0498673470, 

G2 =.0.0211410061, 

a3 = 0.0032776263, 

a4 = 0.0000380036, 

as = 0.0000488906, 

a6 = 0.0000053830. 

The absolute value of the error in this approximation is less than 1.5 X 1 o-7 . 

There are plenty of software packages that compute values of the normal 
distribution function. For example, in Excel we can find Pr[X :S x] from the 
NORM.DIST command as 

= NORM.DIST(x, fL, (},TRUE) 

where the value TRUE for the final parameter indicates that we want to obtain 
the distribution function. (Changing this parameter to FALSE gives the value 
of the probability density function at x .) 
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Similarly we can find percentiles of a normal distribution using either 
approximations or software. Suppose we want to find the value x P such that 
Pr[Z > xp] = p where Z ~ N(O, 1) and 0 < p :S 0.5. We can find this approxi
mately as 

where t = )1og(1jp2 ) and 

ao = 2.515517, 

a1 = 0.802853, 

a2 = 0.010328, 

dl = 1.432788, 

d2 = 0.189269, 

d3 = 0.001308. 

The absolute value of the error in this approximation is less than 4.5 x w-4 . 

Using the symmetry of the nonnal distribution we can deal with the case 
p > 0.5, but in practical actuaria\ applications this case rarely arises. 

In Excel, we use the NORM.INV command to find percentiles. Specifically, 
we can find x such that Pr[ X :S x] = p 'using 

= NORM.INV(p, J-L, cr). 

A.1.4 Lognormal distribution 

If a random variable X has a lognormal distribution with parameters J-L and cr 2 

then its probability density function is 

1 { -(Iogx- J-L)
2

} 
f(x) = r,c exp 

2 xcrv2n 2cr 

for x > 0, where -oo < J-L < oo and cr > 0. This distribution has mean 
exp{J-L + cr 2 /2} and variance exp{2J-L + cr 2}(exp{cr2} - 1), and we write 
X~ LN(J-L, cr 2). 

We can calculate probabilities as follows. We know that 

1x 1 {-(logy- J-L) 2
} 

Pr[X :S x] = r,c exp 
2 

dy. 
o ycrv2n 2cr 

Now substitute z = logy, so that the range of the integral changes to 
(-oo, logx), with dz = dyjy. Then 



:Jb/ 

where Z has a standard normal distribution. Thus, we can compute probabil
ities for a lognormally distributed random variable from the standard normal 
distribution. 

The above argument also shows that if X LN(t-L, a 2), then 
log X"' N(t-L, a 2). 

In Chapters 14 and 15 we used the result that if X"' LN(t-L, a 2) then 

ra (log a -t-L- a 2) lo x f(x)dx = exp{/h + a2 /2}<I> a . (A.2) 

To show this, we first note that 

loa loa 1 { -(logx -t-L)2} x f(x )dx = r;:c: exp 
2 

dx, 
o o ay~ ~ 

and the substitution z = log x gives 

lo
a flog a 1 { -(z _ /h)2} 

x f(x)dx = r;:c: exp 
2 

exp{z}dz. 
0 -oo ay~ ~ 

Combining the exponential terms, the exponent becomes 

z - (z - t-L)
2 

= -
1 

(z2 - 2~-Lz + t-L2 - 2a2z) 
2a2 2a2 

= 2~; (z2- 2(~-L + a2)z + 1-L2) 

= -1 (z2 - 2(~-L + a2)z + (t-L + a2)2 + 1-L 2 - (t-L + a2)2) 2a2 

= 2~; ( (z- (t-L + a2) )2- 2t-La2- a4) 

- (z - (t-L + a2)) 2 a2 
== 2a2 +J-L+2. 

.I 
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This technique is known as 'completing the square' and is very useful in prob
lems involving normal or lognormal random variables. We can now 
write 

lo
a fioga 1 ~- (z _ (tL + a2))

2
} { a2} 

x f(x)dx = r;c exp 2 exp fL +- dz 
o -oo a v 2n: 2a ' 2 

_ { a2}floga_l ~-(z-(tL+a2))2} 
- exp fL + r;c exp 2 dz. 

2 -oo av2n: 2a 

Now the integrand is the probability density function of a normal random vari
able with mean fL + a 2 and variance a 2 , and so 

f
ioga 1 ~-(z-(tL+a2))2} (loga-tL-a2) 

r;c exp 2 dz = <P , 
-oo av2n: 2a a 

giving formula (A.2). We note that 

lim <P (log a- fL- a2) = 1, 
a-+oo , a 

and from this result and formula (A.2) we see that the mean of the lognormal 
distribution with parameters fL and a 2 is 

A.2 The central limit theorem 

The central limit theorem is a very important result in probability theory. Sup
pose that x,, x2, x3, ... is a sequence of independent and identically dis
tributed random variables, each having mean fL and variance a 2 . Now define 
the sum Sn = L:7=1 Xi so that E[Sn] = nfL and V[Sn] = na2• The central 
limit theorem states that 

. [Sn- nfL J hm Pr r.;; ~ x = <P(x) 
n-+oo a yn 

where <P is the standard normal distribution function. 
The central limit theorem can be used to justify approximating the distri

bution of a (finite) sum of independent and identically distributed random 
variables by a normal distribution. For example, suppose that each Xi has a 
Bernoulli distribution (i.e. a B(l, p) distribution). Then using moment gener
ating functions we see that the distribution of Sn is B(n, p) since 



n 

= nE[exp{tXd] 
i=l 

n 

= n (pe' + 1 - p) 
i=l 

= (pet + 1 - p )n. 

(Here we have used in order: independence, identical distribution and formula 
(A.1) with n = 1.) The uniqueness of moment generating functions tells us that 
Sn ~ B(n, p). Thus we can think of a binomial random variable as the sum 
of Bernoulli random variables, and, provided the number of variables being 
summed is large, we can approximate the distribution of this sum by a normal 
distribution. 

A.3 Functions of a random variable 

In many places in this book we have considered functions of a random variable. 
For example, in Chapter 4 we considered vTx where Tx is a random variable 
representing future lifetime. We have also evaluated the expected value and 
higher moments of functions of a random variable. Here, we briefly review the 
theory that we have applied, considering separately random variables that fol
low discrete, continuous and mixed distributions. We quote results only, giving 
references for these results in Section A.5. 

A.3.1 Discrete random variables 

We first consider a discrete random variable, X, with probability function 
Pr[X = x] for x = 0, 1, 2, .... Let g be a function and let Y = g(X), so that 
the possible values for Y are g(O), g(1), g(2), .... Then for x = 0, 1, 2, ... , 
Y takes the value g(x) if X takes the value x. Thus, 

Pr[Y = g(x)] = Pr[X = x], 

and so 

00 00 

E[Y] = L g(x) Pr[Y = g(x)] = L g(x) Pr[X = x]. (A.3) 
x=O 
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Thus, we can compute E[Y] in terms of the probability function of X. Higher 
moments are similarly computed. For r = 1, 2, 3, ... we have 

00 

E[Yr] = L g(xr Pr[X = x]. 

x=O 

For example, suppose that X has probability function 

Pr[X = x] = pqx-l 

for x = 1, 2, 3, ... , and define Y = vx where 0 < v < 1. Then g(x) = vx 
and 

A.3.2 Continuous random variables 

We next consider the situation of a continuous random variable, X, distributed 
on (0, oo) with probability density function f(x) for x > 0. Consider a func
tion g, let g-1 denote the inverse of this function, and define Y = g(X). Then 
we can compute the expected value of Y as 

E[Y] = E[g(X)] = fooo g(x)f(x)dx. (A.4) 

As in the case of discrete random variables, the expected value of Y can be 
found without explicitly stating the distribution of Y, and higher moments 
can be found similarly. Note the analogy with equation (A.3) -probability 
function has been replaced by probability density function, and summation by 
integration. 

It can be shown that Y has a probability density function, which we denote 
h, given by · 

(A.S) 

provided that g is a monotone function. However, formula (A.4) allows us 
to compute the expected value of Y without finding its probability density 
function. 

For example, suppose that X has an exponential distribution with param
eter A. Now define Y = e-8X, where 8 > 0. Then by formula (A.4) with 
g(y) = e-8y' 



me alternative (and more complicated) approach to finding E[Y] is to first 
identify the distribution of Y, then find its mean. To follow this approach, we 
first note that if g(y) = e-8Y, then g-1 (y) = ( -1/8) logy and so 

d 1 -1 
-g- (y) = -. 
dy 8y 

By formula (A.5), Y has probability density function h(y), which is defined 
' for 0 < y < 1 (since X > 0 implies that 0 < e-ox < I as 8 > 0), with 

Thus 

1 
h(y) = A.exp{(A.j8)logy}-

8y 

= ~y()./8)-l 
8 

lo
l A.lol A. y().jO)+l II A. 

E[Y] = yh(y)dy =- i18dy =- -
0 8 0 8 (A./8) + 1 - A.+ 8 

0 

We could also have evaluated this integral by noting that Y has a beta distribu
tion with parameters A. I 8 and 1. In any event, the key point is that a function 
of a random variable is itself a random variable with its own distribution, but 
because of formula (A.4) it is not necessary to find this distribution to evaluate 
its moments. 

A.3.3 Mixed random variables 

Most of the mixed random variables we have encountered in this book have a 
probability density function over an interval and a mass of probability at one 
point only. For example, under an endowment insurance with term n years, 
there is probability density associated with payment of the sum insured at time 
t for 0 < t < n, and a mass of probability associated with payment at time n. 
In that situation we defined the random variable (see Section 4.4.7) 

if Tx < n, 

if Tx 2':: n. 

More generally, suppose that X is a random variable with probability density 
function f over some interval (or possibly intervals) which we denote by I, 
and has masses of probability, Pr[ X = xi], at points X!, x2, X3, .... Then if we 
define Y = g(X), we have 

E[Y] = { g(x) f(x)dx + L g(xi) Pr[X =xi]. 
li i 

I 
'I,' 
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For example, suppose that Pr[X ::::: x] = 1 - e-J..x for 0 < x < n, and 
Pr[X = n] = e-A.n. Then X has probability density function f(x) = 'Ae-A.x 

for 0 < x < n, and has a mass of probability of amount e-A.n at n. If we define 
Y = e-8x, then 

A.4 Conditional expectation and conditional variance 

Consider two random variables X and Y whose first two moments exist. We 
can find the mean and variance of Y in terms of the conditional mean and 
variance of Y given X. In particular, 

E[Y] = E [E[YIX]] (A.6) 

and 

V[Y] = E [V[YIX]] + V[E[YIX]]. (A.7) 

These formulae hold generally, but to prove them we restrict ourselves here to 
the situation when both X and Y are discrete random variables. Consider first 
expression (A.6). We note that for a function g of X andY, we have 

E[g(X, Y)] = L Lg(x, y)Pr[X = x, Y = y] (A.8) 
X y 

(this is just the bivariate version of formula (A.3)). By the rules of conditional 
probability, 

Pr[X = x, Y = y] = Pr[Y = yiX = x]Pr[X = x]. (A.9) 

Then setting g(X, Y) = Y and using (A.8) and (A.9) we obtain 

E[Y] = LLYPr[Y = yiX ~ x]Pr[X = x] 
X y 

X y 

= LPr[X = x]E[YIX = x] 
X 

= E [E[YIX]]. 



A.5 Notes and further reading 

To obtain formula (A.7) we have 

V[Y] = E[Y2
] - E[Yp 

= E[E[Y21X]]- E[Y]2 

= E [ V[YIX] + E[YIX]2
] - E[Y]2 

= E [V[YIX]] + E [ E[YIX]2
]- E [E[YIX]f 

= E [V[YIX]] + V [E[YIX]]. 

A.S Notes and further reading 
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Further details on the probability theory contained in this appendix can be 
found in texts such as Grimmett and Welsh (1986) and Hogg and Tanis (2009). 
The approximations for the standard normal distribution can be found in 
Abramovitz and Stegun (1965). 



AppendixB 

Numerical techniques 

B.l Numerical integration 

In this section we illustrate two methods of numerical integration. The first, 
the trapezium rule, has the advantage of simplicity, but its main disadvantage 
is the amount of computation involved for the method to be very accurate. The 
second, repeated Simpson's rule, is not quite as straightforward, but is usually 
more accurate. We now outline each method, and give numerical illustrations 
of both. Further details can be found in the references in Section B .3. 

Our aim in the next two sections is to evaluate numerically 

b . 

I= 1 f(x)dx 

for some function f. 

B.l.l The trapezium rule 

Under the trapezium rule, the interval (a, b) is split into n intervals, each of 
length h = (b- a)jn. Thus, we can write I as 

1

a+h 1a+2h 1a+nh 
I= f(x)dx + f(x)dx + ... + f(x)dx 

a a+h a+(n-l)h 

n-11a+(}+l)h 
= ~ f(x)dx. 

J=O a+jh 

We obtain the value of I under the trapezium rule by assuming that f is a linear 
function in each interval so that under this assumption 
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Table B.1 Values of I* under 

the trapezium rule. 

n I* 

20 12.64504 
40 12.64307 
80 12.64258 

160 12.64245 
320 12.64242 

1
a+(}+l)h 

f(x)dx = ~ (f(a + jh) + f(a + (j + 1)h)), 
a+jh 

and hence 

575 

I= h (~f(a) + f(a +h)+ f(a + 2h) + · · · + f(a + (n- 1)h) + ~f(b)) 

( 

n-1 ) 
= h ~f(a) +?; f(a + jh) + ~f(b) . 

To illustrate the application of the trapezium rule, consider 

I*= fo20 e-0.05xdx. 

We have chosen this integral as we can evaluate it exactly as 

I*= -
1
- (1- e-O.OSx 20) = 12 64241 

0.05 . ' 

and hence we can compare evaluation by numerical integration with the true 
value. We have a = 0 and b = 20, and for our numerical illustration we have 
set n = 20, 40, 80, 160 and 320, so that the values of hare 1, 0.5, 0.25, 0.125 
and 0.0625. Table B.1 shows the results. We see that in this example we need a 
small value of h to obtain an answer that is correct to four decimal places, but 
we note that the percentage error is small in all cases. 

B.1.2 Repeated Simpson's rule 

This rule is based on Simpson's rule which gives the following approximation: 

ra+2h 
la f(x)dx ~ ~ (f(a) + 4f(a +h)+ f(a + 2h)). 

This approximation arises by approximating the function f by a quadratic 
function that goes through the three points (a, f(a)), (a+ h, f(a +h)) and 
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Table B.2 Values of I* under 

repeated Simpson's rule. 

n 

10 
20 
40 

I* 

12.6424116 
12.6424112 
12.6424112 

(a+ 2h, f(a + 2h)). Repeated application of this result leads to the repeated 
Simpson's rule, namely 

t f(x)dx ~ h/3 (f(a) + 4 t f(a + (2j- l)h) + 2 ~ f(a + 2Jh) + f(b)) 

where h = (b- a)j2n. 

Let us again consider 

{20 
I* = Jo e-0.05x dx. 

To seven decimal places, I* = 12.6424112 and Table B.2 shows numerical 
values for I* when n = 10, 20 and 40. 

We see from Table B.2 that the calculations are considerably more accurate 
than under the trapezium rule. The reason for this is that the error in applying 
the trapezium rule is 

(b- a)3 !"(c) 
12n2 

for some c, where a < c < b, whilst under repeated Simpson's rule the error is 

for some c, where a < c <b. 

B.1.3 Integrals over an infinite interval 

************Many situations arise under which we have to find the numeri
cal value of an integral over the interval (0, oo). For example, we saw in Chap
ter 2 that the complete expectation of life is given by 

~x = 100 

tPx dt. 



B.2 Woolhouse 's formula 

Table B.3 Values of 1111 • 

m 

60 
70 
80 
90 

100 

34.67970 
34.75059 
34.75155 
34.75155 
34.75155 
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To evaluate such integrals numerically, it usually suffices to take a pragmatic 
approach. For example, looking at the integrand in the above expression, we 
might say that the probability of a life aged x surviving a further 120 - x 
years is very small, and so we might replace the upper limit of integration by 
120-x, and perform numerical integration over the finite interval (0, 120 - x). 

We could then assess our answer by considering a wider interval, say 
(0, 130- x). 

To illustrate this idea, consider the following integral from Section 2.6.2 
0 • 

where we computed ex for a range of values for x m Table 2.2. Table B.3 
shows values of 

Im = lam tP40 dt 

for a range of values form. These values have been calculated using repeated 
Simpson's rule. We set n = 120 form = 60, then changed the value of n for 
each subsequent value of m in such a way that the value of h was unchanged. 
For example, with m = 70, setting n = 140 results in h = 0.25, which is 
the same value of h obtained when m = 60 and n = 120. This maintains 
consistency between successive calculations of 1111 values. For example, 

ho = ho + ro tP4odt, 
J6o 

and setting n = 140 to compute ho then gives the value we computed for I6o 
with n = 120. From this table our conclusion is that, to five decimal places, 
0 . 

e4o = 34.75155. 

B.2 Woolhouse's formula 

Woolhouse's formula was used in Chapter 5. Here we give an indication of how 
this formula arises. We use the Euler-Maclaurin formula which is concerned 
with numerical integration. This formula gives a series expansion for the inte
gral of a function, assuming that the function is differentiable a certain number 
of times. For a function f, the Euler-Maclaurin formula can be written as 

I, , 
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1b f(x) dx = h (~ f(a + ih)- ~ (f(a) + f(b))) 

+ 7~ (!'(a)- J'(b))- ;2~ (!"'(a)- !"'(b))+···, (B.l) 

where h = (b - a) IN, N is an integer, and the terms we have omitted involve 
higher derivatives of f. We shall apply this formula twice, in each case ignor
ing third and higher order derivatives of f. 

First, setting a = 0 and b = N = n (so that h = 1), the right-hand side 
of (B.1) is 

n 

L f(i) - ! (f(O) + f(n)) + l2 (!' (0) - !' (n)). (B.2) 
i=O 

Second, setting a = 0, b = n and N = mn for some integer m > 1 (so that 
h = 11m), the right-hand side of (B.1) is 

~ (~ f(ilm)-! (f(O) + f(n))) + 12~2 (f'(O)- J'(n)). (B.3) 

As each of (B.2) and (B.3) approximates the same quantity, we can obtain an 

approximation to ~ "£.;~10 f (i I m) by equating them, so that 

l mn 

- ,LJ(ilm) 
m i=O 

n m- 1 m2 -1 
~ L f(i)- -- (f(O) + f(n)) + --

2 
(f'(O)- f'(n)). (B.4) 

i=O 2m 12m 

The right-hand side of formula (B.4) gives the first three terms ofWoolhouse's 

formula, and in actuarial applications it usually suffices to apply only these 
terms. 

B.3 Notes and further reading 

A list of numerical integration methods is given in Abramovitz and Stegun 

(1965). Details of the derivation of the trapezium rule and repeated Simpson's 
rule can be found in standard texts on numerical methods such as Burden and 
Fairs (2010) and Ralston and Rabinowitz (2001). 

; 

'i 
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Appendix C 

Simulation 

C.l The inverse transform method 

The inverse transform method allows us to simulate observations of a random 
variable, X, when we have a uniform U(O, 1) random number generator avail
able. 

The method states that if F(x) = Pr[X :::: x] and u is a random drawing 
from the U(O, 1) distribution, then 

x = F-1(u) 

is our simulated value of X. 

The result follows for the following reason: if U "' U(O, 1), then p-1(U) 

has the same distribution as X. To show this, we assume for simplicity that 
the distribution function F is continuous - this is not essential for the method, 
it just gives a simpler proof. First, we note that as the distribution function F 
is continuous, it is a monotonic increasing function. Next, we know from the 
properties of the uniform distribution on (0, 1) that for 0 ::": y ::": 1, 

Pr[U ::": y] = y. 

Now1etX = p-1(U). Then 

Pr[X:::: x] = Pr[F-1(U) :::: x] 

= Pr[U ::": F(x)] 

since F is a monotonic increasing function. As Pr[U:::: F(x)] = F(x), we have 

Pr[X ::": x] = F(x) = Pr[X:::: x] 

which shows that X and X have the same distribution function. 
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Example C.l Simulate three values from an exponential distribution with mean 
100 using the three random drawings 

Ul = 0.1254, U2 = 0.4529, U3 = 0.7548, 

from the U(O, 1) distribution. 

Solution C.l Let F denote the distribution function of an exponentially dis
tributed random variable with mean 100, so that 

F(x) = 1- exp{-x/100}. 

Then setting u = p-l (x) gives 

x = -100log(l- u), 

and hence our three simulated values from this exponential distribution are 

-100log0.8746 = 13.399, 

-100log0.5471 = 60.312, 

-100log0.2452 = 140.57. 
D 

C.2 Simulation from a normal distribution 

In Chapters 11 and 14 we used Excel to generate random numbers from a 
normal distribution. In many situations, for example if we wish to create a 
large number of simulations of an insurance portfolio over a long time period, 
it is much more effective in terms of computing time to use a programming 
language rather than a spreadsheet. Most programming languages do not have 
an in-built function to generate random numbers from a normal distribution, 
but do have a random number generator, that is they have an in-built function 
to generate (pseudo-)random numbers from the U(O, 1) distribution. 

Without going into details, we now state the two most common approaches 
to simulating values from a standard normal distribution. The detail behind 
these 'recipes' can be found in the references in Section C.3. 

C.2.1 The Box-Muller method 

The Box-Muller method is to first simulate two values, u1 and u2, from a 
U (0, 1) distribution, then to compute the pair 

x = J-2logul cos(2;ru2) 

y = J -2log u1 sin(2;ru2) 
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which are random drawings from the standard normal distribution. 
For example, if u 1 = 0.643 and u2 = 0.279, we find that x = -0.1703 and 

y = 0.9242. 

C.2.2 The polar method 

From a computational point of view, the weakness of the Box-Muller method 
is that we have to compute trigonometric functions to apply it. This issue can 
be avoided by using the polar method which says that if u 1 and u2 are as above, 
then set 

If s < I, we compute 

VI= 2u1- 1, 

v2 = 2u2- 1, 
2 2 

S = v1 + v2 • 

y=v2~ 
which are random drawings from the standard normal distribution. However, 
should the computed value of s exceed I, we discard the random drawings from 
the U (0, I) distribution and repeat the procedure until the computed value of s 
is less than 1. 

For example, if u1 = 0.643 and u2 = 0.279, we find that VI = 0.2860, 
v2 = -0.4420 and hence s = 0.2772. As the value of s is less than 1, we 
proceed to compute x = 0.8703 andy= -1.3450 

C.3 Notes and further reading 

Details of all the above methods can be found in standard texts on simulation, 
e.g. Ross (2006), or on probability theory, e.g. Borovkov (2003). 
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Tables 

In this appendix we show tables of selected functions for the Standard Ultimate 
and Select Survival Models. These are used extensively throughout this book 
for examples and exercises. 

The Standard Ultimate Survival Model follows Makeham's Law, param
eterized as follows: 

Mx =A+ Bcx where A= 0.00022, B = 2.7 X w-6
, c = 1.124. 

(D.1) 
The Standard Select Survival Model is defined as follows: 

o The select period is two years. 
o The ultimate part of the model is the Standard Ultimate Survival Model. 
o For the select part of the model, for 0 :::; s :::; 2, 

0 92-s 
M[x ]+s = · Mx+s · (D.2) 

This model was introduced in Example 3.13. 
We also present, for convenience of access, the pension service table derived 

and used for examples and exercises in Chapter 10. 
Note that all the solutions to the examples and exercises in the text, and in the 

accompanying model solutions, were calculated directly from the models, not 
from these tables. Using these tables will introduce rounding errors, resulting 
in some small differences compared with the answers in the text. 

The tables are designed to provide a convenient reference for readers, and 
to assist with exam preparation for exam candidates. However, there are many 
examples and exercises in the text that cannot be answered using these tables. It 
is recommended that readers create their own spreadsheets, which can be used 
when the parameters or interest rates required are different from those used here. 
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Table D.l Standard Select and Ultimate Survival Model. 

X l[x] l[x]+l lx+2 x+2 x l[x] l[x]+l lx+2 X +2 

100000.00 20 
99975.04 21 

20 99995.08 99973.75 99949.71 22 
21 99970.04 99948.40 99923.98 23 
22 99944.63 9992.2.65 99897.79 24 
23 99918.81 99896.43 99871.08 25 
24 99892.52 99869.70 99843.80 26 
25 99865.69 99842.38 99815.86 27 
26 99838.28 99814.41 99787.20 28 
27 99810.20 99785.70 99757.71 29 
28 99781.36 99756.17 99727.29 30 
29 99751.69 99725.70 99695.83 31 
30 99721.06 99694.18 99663.20 32 
31 99689.36 99661.48 99629.26 33 
32 99656.47 99627.47 99593.83 34 
33 99622.23 99591.96 99556.75 35 
34 99586.47 99554.78 99517.80 36 
35 99549.01 99515.73 99476.75 37 
36 99509.64 99474.56 99433.34 38 
37 99468.12 99431.02 99387.29 39 
38 99424.18 99384.82 99338.26 40 
39 99377.52 99335.62 99285.88 41 
40 99327.82 99283.06 99229.76 42 
41 99274.69 99226.72 99169.41 43 
42 99217.72 99166.14 99104.33 44 
43 99156.42 99100.80 99033.94 45 
44 99090.27 99030.10 98957.57 46 
45 99018.67 98953.40 98874.50 47 
46 98940.96 98869.96 98783.91 48 
47 98856.38 98778.94 98684.88 49 
48 98764.09 98679.44 98576.37 50 
49 98663.15 98570.40 98457.24 51 
50 98552.51 98450.67 98326.19 52 
51 98430.98 98318.95 98181.77 53 
52 98297.24 98173.79 98022.38 54 
53 98149.81 98013.56 97846.20 55 
54 97987.03 97836.44 97651.21 56 
55 97807.07 97640.40 97435.17 57 
56 97607.84 97423.18 97195.56 58 
57 97387.05 97182.25 96929.59 59 
58 97142.13 96914.80 96634.14 60 
59 96870.22 96617.70 96305.75 61 

60 96568.13 96287.48 95940.60 62 
61 96232.34 95920.27 95534.43 63 
62 95858.91 95511.80 95082.53 64 
63 95443.51 95057.36 94579.73 65 
64 94981.34 94551.72 94020.33 66 
65 94467.11 93989.16 93398.05 67 
66 93895.00 93363.38 92706.06 68 
67 93258.63 92667.50 91936.88 69 
68 92551.02 91894.03 91082.43 70 
69 91764.58 91034.84 90133.96 71 
70 90891.07 90081.15 89082.09 72 
71 89921.62 89023.56 87916.84 73 
72 88846.72 87852.03 86627.64 74 
73 87656.25 86555.99 85203.46 75 
74 86339.55 85124.37 83632.89 76 
75 84885.49 83545.75 81904.34 77 
76 83282.61 81808.54 80006.23 78 
77 81519.30 79901.17 77927.35 79 
78 79584.04 77812.44 75657.16 80 
79 77465.70 75531.88 73186.31 81 
80 75153.97 73050.22 70507.19 82 

67614.60 83 
64506.50 84 
61184.88 85 
57656.68 86 
53934.73 87 
50038.65 88 
45995.64 89 
41841.05 90 
37618.56 91 
33379.88 92 
29183.78 93 
25094.33 94 
21178.30 95 
17501.76 96 
14125.89 97 
11102.53 98 
8469.73 99 
6248.17 100 
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Table D.2 Standard Select Survival Model, i = 5% per year. 

X ii[x] A[x] 2A[x] sE[xJ wE[x] 20E[x] X 

20 19.967 0.04918 0.00576 0.78255 0.61227 0.37441 20 
21 19.921 0.05140 0.00610 0.78254 0.61223 0.37431 21 
22 19.872 0.05373 0.00648 0.78252 0.61218 0.37419 22 
23 19.820 0.05618 0.00689 0.78249 0.61213 0.37406 23 
24 19.766 0.05874 0.00734 0.78247 0.61208 0.37392 24 

25 19.710 0.06143 0.00783 0.78244 0.61201 0.37375 25 
26 19.651 0.06424 0.00837 0.78241 0.61194 0.37356 26 
27 19.589 0.06720 0.00895 0.78237 0.61186 0.37336 27 
28 19.524 0.07029 0.00959 0.78233 0.61177 0.37312 28 
29 19.456 0.07353 0.01028 0.78229 0.61167 0.37286 29 

30 19.384 0.07693 0.01104 0.78224 0.61156 0.37256 30 
31 19.310 0.08049 0.01186 0.78218 0.61143 0.37223 31 
32 19.232 0.08421 0.01276 0.78211 0.61128 0.37186 32 
33 19.150 0.08811 0.01373 0.78204 0.61112 0.37144 33 
34 19.064 0.09220 0.01479 0.78196 0.61094 0.37097 34 

35 18.974 0.09647 0.01594 0.78187 0.61074 0.37044 35 
36 18.880 0.10094 0.01720 0.78176 0.61051 0.36985 36 
37 18.782 0.10562 0.01856 0.78165 0.61025 0.36919 37 
38 18.679 0.11051 0.02004 0.78152 0.60996 0.36844 38 
39 18.572 0.11563 0.02164 0.78137 0.60963 0.36761 39 

40 18.460 0.12097 0.02338 0.78121 0.60927 0.36667 40 
41 18.342 0.12656 0.02527 0.78102 0.60886 0.36562 41 
42 18.220 0.13240 0.02731 0.78082 0.60840 0.36444 42 

43 18.092 0.13849 0.02952 0.78058 0.60788 0.36312 43 

44 17.958 0.14485 0.03191 0.78032 0.60730 0.36165 44 

45 17.819 0.15149 0.03450 0.78003 0.60664 0.35999 45 

46 17.673 0.15841 0.03730 0.77970 0.60591 0.35815 46 

47 17.522 0.16563 0.04032 0.77932 0.60509 0.35608 47 

48 17.364 0.17314 0.04358 0.77891 0.60416 0.35377 48 

49 17.200 0.18098 0.04709 0.77844 0.60313 0.35120 49 



Appendix D. Tables 585 

Table D.2 (Cont.) 

X ii[x] A[x] 2A[x] sE[x] lOE[x] 20E[x] X 

50 17.028 0.18913 0.05087 0.77791 0.60196 0.34832 50 
51 16.850 0.19761 0.05495 0.77732 0.60066 0.34512 51 
52 16.665 0.20642 0.05933 0.77665 0.59919 0.34156 52 
53 16.473 0.21558 0.06404 0.77591 0.59755 0.33760 53 

54 16.273 0.22509 0.06909 0.77507 0.59572 0.33320 54 

55 16.066 0.23496 0.07451 0.77413 0.59366 0.32832 55 

56 15.851 0.24519 0.08031 0.77307 0.59135 0.32293 56 

57 15.628 0.25579 0.08653 0.77189 0.58877 0.31697 57 

58 15.398 0.26677 0.09317 0.77056 0.58588 0.31041 58 

59 15.160 0.27811 0.10025 0.76907 0.58265 0.30319 59 

60 14.913 0.28984 0.10781 0.76739 0.57904 0.29528 60 

61 14.659 0.30194 0.11586 0.76552 0.57501 0.28663 61 

62 14.397 0.31442 0.12441 0.76341 0.57051 0.27721 62 

63 14.127 0.32727 0.13350 0.76105 0.56550 0.26700 63 

64 13.850 0.34049 0.14313 0.75841 0.55992 0.25596 64 

65 13.564 0.35407 0.15333 0.75545 0.55371 0.24411 65 

66 13.272 0.36801 0.16411 0.75214 0.54682 0.23143 66 

67 12.972 0.38230 0.17548 0.74844 0.53917 0.21797 67 

68 12.665 0.39692 0.18746 0.74429 0.53070 0.20377 68 

69 12.351 0.41186 0.20005 0.73966 0.52134 0.18891 69 

70 12.031 0.42710 0.21326 0.73450 0.51102 0.17350 70 

71 11.705 0.44262 0.22709 0.72873 0.49966 0.15767 71 

72 11.374 0.45840 0.24154 0.72230 0.48719 0.14160 72 

73 11.037 0.47442 0.25662 0.71515 0.47355 0.12548 73 

74 10.696 0.49065 0.27229 0.70719 0.45867 0.10954 74 

75 10.352 0.50706 0.28856 0.69835 0.44250 0.09403 75 

76 10.004 0.52362 0.30541 0.68854 0.42501 0.07920 76 

77 9.654 0.54029 0.32280 0.67768 0.40618 0.06531 77 
78 9.302 0.55704 0.34072 0.66568 0.38600 0.05258 78 

79 8.950 0.57382 0.35912 0.65245 0.36451 0.04121 79 
80 8.597 0.59061 0.37797 0.63789 0.34179 0.03133 80 



586 Appendix D. Tables 

Table D.3 Standard Ultimate Survival Model, i = 5% per year. 

X ax Ax 2Ax sEx wEx 20Ex X 

20 19.966 0.04922 0.00580 0.78252 0.61224 0.37440 20 
21 19.920 0.05144 0.00614 0.78250 0.61220 0.37429 21 
22 19.871 0.05378 0.00652 0.78248 0.61215 0.37417 22 
23 19.819 0.05622 0.00694 0.78245 0.61210 0.37404 23 
24 19.765 0.05879 0.00739 0.78243 0.61205 0.37390 24 

25 19.709 0.06147 0.00788 0.78240 0.61198 0.37373 25 
26 19.650 0.06429 0.00841 0.78236 0.61191 0.37354 26 
27 19.588 0.06725 0.00900 0.78233 0.61183 0.37334 27 
28 19.523 0.07034 0.00964 0.78229 0.61174 0.37310 28 
29 19.455 0.07359 0.01033 0.78224 0.61163 0.37284 29 

30 19.383 0.07698 0.01109 0.78219 0.61152 0.37254 30 
31 19.309 0.08054 O.Q1192 0.78213 0.61139 0.37221 31 
32 19.230 0.08427 0.01281 0.78206 0.61124 0.37183 32 
33 19.148 0.08817 0.01379 0.78199 0.61108 0.37141 33 
34 19.063 0.09226 0.01486 0.78190 0.61090 0.37094 34 

35 18.973 0.09653 0.01601 0.78181 0.61069 0.37041 35 

36 18.879 0.10101 0.01727 0.78170 0.61046 0.36982 36 

37 18.780 0.10569 0.01863 0.78158 0.61020 0.36915 37 

38 18.678 0.11059 O.Q2012 0.78145 0.60990 0.36841 38 

39 18.570 0.11571 0.02173 0.78130 0.60957 0.36757 39 

40 18.458 0.12106 0.02347 0.78113 0.60920 0.36663 40 

41 18.340 0.12665 0.02536 0.78094 0.60879 0.36558 41 

42 18.218 0.13249 0.02741 0.78072 0.60832 0.36440 42 

43 18.090 0.13859 0.02963 0.78048 0.60780 0.36307 43 

44 17.956 0.14496 0.03203 0.78021 0.60721 0.36159 44 

45 17.816 0.15161 0.03463 0.77991 0.60655 0.35994 45 

46 17.671 0.15854 0.03744 0.77956 0.60581 0.35809 46 

47 17.519 0.16577 0.04047 0.77918 0.60498 0.35601 47 

48 17.361 0.17330 0.04374 0.77875 0.60404 0.35370 48 

49 17.196 0.18114 0.04727 0.77827 0.60299 0.35112 49 
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Table D.3 (Cont.) 

X iix Ax 2Ax sEx wEx 20Ex X 

50 17.025 0.18931 0.05108 0.77772 0.60182 0.34824 50 
51 16.846 0.19780 0.05517 0.77711 0.60050 0.34503 51 
52 16.661 0.20664 0.05957 0.77643 0.59902 0.34146 52 
53 16.468 0.21582 0.06430 0.77566 0.59736 0.33749 53 
54 16.268 0.22535 0.06938 0.77479 0.59550 0.33308 54 

55 16.060 0.23524 0.07483 0.77382 0.59342 0.32819 55 
56 15.844 0.24550 . 0.08067 0.77273 0.59109 0.32279 56 
57 15.621 0.25613 0.08692 0.77151 0.58848 0.31681 57 
58 15.390 0.26714 0.09360 0.77014 0.58556 0.31024 58 
59 15.151 0.27852 0.10073 0.76860 0.58229 0.30300 59 

60 14.904 0.29028 0.10834 0.76687 0.57864 0.29508 60 
61 14.649 0.30243 0.11644 0.76493 0.57457 0.28641 61 
62 14.386 0.31495 0.12506 0.76276 0.57003 0.27698 62 
63 14.115 0.32785 0.13421 0.76033 0.56496 0.26674 63 
64 13.836 0.34113 0.14392 0.75760 0.55932 0.25569 64 

65 13.550 0.35477 0.15420 0.75455 0.55305 0.24381 65 
66 13.256 0.36878 0.16507 0.75114 0.54609 0.23112 66 
67 12.954 0.38313 0.17654 0.74732 0.53836 0.21764 67 
68 12.646 0.39783 0.18862 0.74305 0.52981 0.20343 68 
69 12.330 0.41285 0.20133 0.73828 0.52036 0.18856 69 

70 12.008 0.42818 0.21467 0.73295 0.50994 0.17313 70 
71 11.680 0.44379 0.22864 0.72701 0.49848 0.15730 71 
72 11.347 0.45968 0.24324 0.72039 0.48590 0.14122 72 
73 11.008 0.47580 0.25847 0.71303 0.47215 0.12511 73 
74 10.665 0.49215 0.27433 0.70483 0.45715 0.10918 74 

75 10.318 0.50868 0.29079 0.69574 0.44085 0.09368 75 
76 9.967 0.52536 0.30783 0.68566 0.42323 0.07887 76 
77 9.614 0.54217 0.32544 0.67450 0.40427 0.06500 77 
78 9.260 0.55906 0.34359 0.66217 0.38396 0.05230 78 
79 8.904 0.57599 0.36224 0.64859 0.36235 0.04096 79 
80 8.548 0.59293 0.38134 0.63365 0.33952 0.03113 80 
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Table D.4 Pension plan service table. 

X lx Wx ix rx dx X lx Wx ix rx dx 

20 1000000 95104 951 0 237 44 137 656 6708 134 0 95 
21 903 707 85946 859 0 218 45 130 719 2586 129 0 100 
22 816684 77670 777 0 200 46 127 904 2530 127 0 106 
23 738038 70190 702 0 184 47 125 140 2476 124 0 113 
24 666962 63430 634 0 170 48 122428 2422 121 0 121 
25 602 728 57321 573 0 157 49 119763 2369 118 0 130 
26 544677 51800 518 0 145 50 117145 2317 116 0 140 
27 492213 46811 468 0 134 51 114572 2266 113 0 151 
28 444800 42301 423 0 125 52 112042 2216 111 0 163 
29 401951 38226 382 0 117 53 109553 2166 108 0 176 
30 363 226 34543 345 0 109 54 107102 2118 106 0 190 
31 328228 31215 312 0 102 55 104688 2070 103 0 206 
32 296599 28207 282 0 96 56 102308 2023 101 0 224 
33 268014 25488 255 0 91 57 99960 1976 99 0 243 
34 242181 23031 230 0 86 58 97642 1930 96 0 264 
35 218 834 10665 213 0 83 59 95 351 1884 94 0 288 
36 207 872 10131 203 0 84 60- 93085 0 0 27926 0 
37 197 455 9623 192 0 84 6o+ 65160 0 62 6188 210 
38 187 555 9141 183 0 85 61 58700 0 56 5573 212 
39 178147 8682 174 0 86 62 52860 0 50 5018 213 
40 169206 8246 165 0 87 63 47579 0 45 4515 214 
41 160708 7 832 157 0 89 64 42805 0 41 4061 215 
42 152631 7438 149 0 90 65- 38488 0 0 38488 0 
43 144954 7064 141 0 93 
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Accident hump, 51 
Accidental death model, 244 
Account balance, 445 
Account value, 445 
Accrual rate, 13, 352 
Accrued benefits, 352 
Acquisition expenses, 400 
Actuarial liability, 359 
Actuarial present value, 79 
Actuarial reduction factor, 367 
Actuarial value, 79 
Additional death benefit, 445 
Adverse selection, 9 
Age rating, 167 
Age-at-death random variable, 17 
Aggregate survival model, 56 
Alive-dead model, 242 
Allocated premium, 475 
Allocation percentage, 474 
American options, 506 
Analysis of surplus, 202 
Annual rate of annuity, 119 
Annuitant, 110 
Annuities, 11, 109 

annuity-certain, 110 
annuity-due, 111 
comparison by frequency, 122 
deferred annuity, 124 
evaluation using UDD, 132 
guaranteed annuity, 127 
immediate annuity, 115 
increasing arithmetically, 129 
increasing geometrically, 130 
payable 1/mthly, 119-122 
payable annually, 110 
payable continuously, 116 
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recursion formulae, 131 
select lives, 137-138 
term life annuity, 113 
whole life annuity, 11, 111 
Woolhouse's formula, 133 

Anti-selection, 216 
Arbitrage, 504 
Assessmentism, 2 
Asset shares, 202-205 
Assurance, 4 
At-the-money options, 506 
Australia Life Tables 2000-02, 50, 69 

Backward recursion, 84 
Basis, 77 
Benefit premium, 144 
Bid-offer spread, 474 
Binomial distribution, 42, 43, 158, 564 
Binomial option pricing model, 507-515 
Black-Scholes formula, 520, 521 
Black-Scholes-Merton model, 515-529 
Bonus, 434 
Box-Muller method, 580 
Broken heart syndrome, 319 

Call option, 505 
Capital and accumulation units, 497 
Career average salary pension benefit, 13, 357 
Cash refund payout option, 17 4 
Cash value, 215, 446 
Central limit theorem, 164, 379, 568 
Change in reserves, 406 
Chapman-Kolmogorov equations, 288 
Claim expenses, 151 
Claims acceleration, 96 
Commission, 7, 152 
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Conunonshock,319,325-327 
Complete expectation of life, 28, 34 
Compound reversionary bonus, 435 
Conditional expectation and variance, 572 
Conditional Tail Expectation (CTE), 495 
Constant force of mortality, 48 
Contingent insurance, 304, 306 
Continuous Mortality Investigation (CMI), 69 
Continuous random variables, 570 
Continuous time stochastic process, 243 
Convertible term insurance, 5 
Corridor factor, 445 
Cost of insurance (Col), 446 
Cost of living adjustment (COLA), 354 
Credited interest rate, 444 
Critical illness insurance, 12, 272 
CTE reserving, 495-496 
Current unit valuation, 357 
Curtate expectation of life, 33, 34 
Curtate future lifetime, 32 
Curtate future lifetime, 1/mthly, 82 

Death strain at risk, 197 
Decreasing term insurance, 4 
Deferred acquisition cost, 228 
Deferred annuity, 124-126 

gross premium policy value, 190 
net premium, 149 

Deferred insurance, 93 
Deferred mortality probability, 26 
Defined benefit (DB), 12, 335 
Defined contribution (DC), 13, 335 

setting the DC contribution, 339 
Delta hedge, 521 
Dependent probabilities for a mutliple 

decrement model, 271 
Direct marketing, 8 
Disability income insurance, 245, 257, 260, 

271,284 
Discounted payback period, 411 
Discrete random variables, 569 
Distribution methods, 7-8, 10 
Diversifiable risk, 378-379 
Diversification, 158 
Dividends (see also 'bonus'), 5, 434 
Dynamic hedging, 512 

Effective rate of discount, 78 
Embedded options, 503, 532-559 

emerging costs, 550-558 
hedging, 548-550 
risk management, 548-550 
risk premium, 546 

Emerging costs (see also 'profit test'), 397-399 
Endowment insurance, 5, 90 

gross premium policy value, 188 
net premium, 150 

English Life Table (ELT) 15, 50, 52, 69 
Equation of value, 128 
Equity indexed annuity, 7 
Equity-linked insurance (see also 'embedded 

options'), 7, 473-474 
deterministic profit testing, 475, 486 
stochastic pricing, 490-492 
stochastic profit testing, 486-490 
stochastic reserving, 492-497 

Equivalence premium principle, 145, 148, 153 
Euler-Maclaurin formula, 133, 138 
Euler's method, 213, 256 
Expected present value (EPV), 79 
Expenses, 151 

commission, 152 
per policy, 152 
renewal (maintenance), 152 
termination, 152 
underwriting, 152 

Expense loaded premium, 144 
Expense loading, 227 
Expense policy value, 227 
Expense premium, 227 
Extra risks, 167-170 

Failure rate, 35 
Family income benefit, 139 
Final salary pension, 13, 351 
Force of interest, 78 
Force of mortality, 21-26 
Force of transition, 249 
Forward rate, 374 
Fractional age assumptions, 44-49 

multiple decrements, 273 
Front end load, 7,545 
Full Preliminary Term (FPT) valuation, 229 
Funding pension benefits, 358 
Future lifetime random variable, 17 
Future loss random variable 

at duration t > 0, 179 
at issue, 146-147 

Geometric Brownian motion, 516 
Gompertz mortality, 23, 31, 51 
Gompertz-Makeham formula, 35 
Graunt, John, 2, 15 
Gross future loss, 14 7 
Gross premium, 144, 151-156 
Gross premium policy value, 185 
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Group life, 2 
Guaranteed annuity, 127 
Guaranteed Minimum Death Benefit (GMDB), 

474,533,539-541 
pdcing, 539-541 
reserving, 541-545 

Guaranteed Minimum Maturity Benefit 
(GMMB),474,533-537 

Pricing, 533-537 
Reserving, 537-539 

Halley, Edmund, 2-3, 15 
Hazard rate, 35 
Hedge portfolio, 508 
Hedging, 548-550 
Heterogeneity in mortality, 65 
Hurdle rate, 409 

Immediate life annuity, 115 
Immediate term annuity, 115 
Income protection insurance, 12 

see also 'disability income model' 
Increasing annuities, 128-131 
Increasing insurance, 99 
Independent lognormal assumption, 487 
Independent probabilities (multiple decrement 

model), 271 
Indicator random variable, 98, 112 
Initial expenses, 151 
Insurable interest, 2 
Insurance benefits (life), 3-10,76--103 

1/mthly, 82, 89 
annual, 81, 88 
claims acceleration, 96 
continuous, 78, 88 
deferred insurance, 93-94 
endowment insurance, 90-93 
present value random variable, 79 
pure endowment, 90 
recursion formulae, 84 
relating A, A and A(m), 94 
term insurance, 88-89 
uniform distribution of deaths, 95 
whole life insurance, 78-83 
see also 'joint life insurance', 'Universal 

Life insurance' 
Insurer's fund, 474 
Interest rate risk, 381 
Interest spread, 432 
Interest theory functions, 78 
Internal rate of return (IRR), 410 
International actuarial notation, 26, 375 
In-the-money option, 506 
Inverse transform method, 388, 579 

Jensen's inequality, 142 
Joint life and last survivor policies, 303-304 
Joint life annuity, 11, 304, 306 
Joint life models, 303-304 

common shock, 325-327 
joint future lifetimes, independent lives, 

308-314 
multiple state, dependent, 319-327 
multiple state, independent lives, 314--318 

Joint life insurance, 304, 306 
Joint life notation, 304--308 
Joint life status, 304 

Kolmogorov, Andrei Nikolaevich, 291 
Kolrnogorov's forward equations, 254 

Lapse, 215 
Lapse supported, 270 
Last survivor annuity, 11, 304, 306 
Last survivor insurance, 304, 306 
Last survivor status, 304 
Level term insurance, 4 
Life table, 41-44 
Lifetime distribution, 17 
Limiting age, 20 
Lognormal distribution, 505, 516, 566 
Lognormal stochastic process, 516 
Long-term care insurance, 12 

Makeham's law of mortality, 35, 38, 52, 
582 

Management charge, 474,475 
Market consistent valuation, 550 
Markov chain, 284 
Markov property, 247 
Markov, Andrei Andreyevich, 291 
Maturity date, 4 
Mixed random variables, 571 
Modified premium reserves, 229 
Monte Carlo simulation, 386,487, 579-581 

confidence interval, 489 
embedded options, 557 
interest rates, 391 

Mortality risk 
idiosyncratic, 67 
Monte carlo simulation, 388 
shock, 67 
trend,67 

Mortality rate, 26 
Mortality reduction factors, 67 
Multiple decrement models, 267-279 

associated single decrement models, 270 
constant forces in the MDT, 273 
constructing tables, 275 



Index 595 

deriving dependent rates from independent, 
277 

deriving independent rates from dependent, 
275 

multiple decrement tables (MDT), 279 
notation, 279 
UDD in the MDT, 273 

Multiple state models, 242-258 
accidental death model, 244 
alive-dead model, 242 
assumptions, 246 
Chapman-Kolmogorov equations, 284 
disability income insurance model, 246 
discrete time transitions, 284-291 
exact age transitions, 279 
force of transition (transition intensity), 249 
joint life models, 314-327 
Kolomogorov equations, 254 
notation, 248 
permanent disability model, 245 
policy values, 261-267 
premiu!J1S, 258-261 
probability evaluation, 254-258 
probability formulae, 250-254 
Thiele's differential equation, 266 
transition matrix, 288, 289 

Multiple state model for two lives, 314-328 
dependent lives, 319-327 
independence assumption, 315 
independent lives, 314 

Mutual insurance company, 13 

National life tables, 49 
Nature's measure, 511 
Negative policy values, 225 
Net amount at risk, 197 
Net future loss, 144, 146 
Net premium, 147-151 
Net premium policy value, 186 
Net present value (NPV), 409,410 
New business strain, 156 
No-arbitrage assumption, 504 
No-lapse guarantee, 446, 462-463 
Nominal rate of discount, 78 · 
Nominal rate of interest, 78 
Non-diversifiable risk, 378-379, 380, 492 
Non-forfeiture law, 215, 216 
Non-participating insurance (non-par) 

see 'participating insurance' 
Normal contribution, 359 
Normal cost, 363 
Normal distribution, 164, 379,565 

simulation, 580-581 
Numerical integration, 574-578 

Office premium, 144 
Options, 505-506 

American, 506 
binomial model, 507-515 
Black-Scholes-Merton model, 515-529 
call option formula, 520 
delta, 521 
European, 506 
put option formula, 521 
put-call parity, 522 
rebalancing the hedge, 525 

Out-of-the-money option, 506 

Paid-up policy, 215 
Paid-up sum insured, 215 
Partial net present value, 410 
Participating (par) insurance, 5, 432, 434-444 

cash refunds, 434 
distribution methods, 443-444 
dividends, 434 
increased death benefit, 434 
premium reduction, 434 
profit test, 435-438 
reversionary bonus, 434 

Pension plans, 12-13 
actuarial reduction factor, 367 
age retirement benefit, 13, 351 
cost of living adjustment (COLA), 354 
death-in-service benefit, 13 
defined benefit, 335 
defined contribution, 335 
employer motivation, 334 
funding, 358 
projected unit, 356, 360 
traditional (current) unit, 357, 360 
withdrawal benefit, 13, 354 

Perinatal mortality, 51 
Permanent disability model, 251, 254 
Permanent insurance see 'whole life 

insurance' 
Physical measure, 511 
P-measure, 511 
Polar method, 581 
Policy alterations, 215-220 

liquidity risk, 217 
non-forfeiture law, 216 
paid up policy, 215 
surrender, 205, 215 

Policy values, 179 
1/mthly cash flows, 205-206 
annual cash flows, 185-192 
between premium dates, 207 
conditions for equality of prospective and 

retrospective policy values, 223 

I, 
I 
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Policy values (cont.) 
future loss random variable, 179 
gross premium policy value, 185 
negative policy values, 225 
net premium policy value, 186 
policy value basis, 186 
policy values and reserves, 185 
Recursive formula, 192-198,206 
recursive formulae, 192-198 
retrospective net premium policy value, 223 
Thiele's differential equation, 211 

Policyholder's fund, 474, 475 
Pop-up annuity, 330 
Portfolio percentile premium principle, 

163-166 
Pre-contract expenses, 401 
Preferred lives, 8, 55 
Premiums, 1, 10, 144-171 

embedded options, 490-492, 545-548 
equivalence principle, 148 
gross (expense loaded) premium, 151-156 
multiple state models, 261 
net (benefit) premiums, 147-151 
portfolio percentile principle, 163 
premium principles, 147 
present value of future loss, 146-147 
quantile premium principle, 491 

Premium principle, 147 
Pre-need insurance, 8 
Profit, 157-163 
Profit by source, 198-202 

expenses profit, 201 
interest profit, 200 
mortality profit, 201 

Profit distribution methods, 443-444 
Profit margin, 411 
Profit signature, 406, 408 
Profit test, 398-422, 435 

applications, 398 
basis, 399 
equity-linked insurance, 473-497 
incorporating reserves, 403 
multiple state models, 415-422 
participating insurance, 4 35-443 
premium calculation, 412 
principles, 407 
reserve calculation, 413 
stochastic, 486-490 
term insurance policy, 399-407 
time step, 399 
traditional insurance, 397-422 
Universal Life insurance, 448-464 

Profit vector, 406, 407 

Projected unit valuation, 356 
Proportionate paid-up sum insured, 235 
Proprietary insurance company, 14 
Prospective policy value, 185 
Prospective reserve, 185 
Pure endowment, 90 
Put option, 506 
Put-call parity, 522 

Q-measure, 511 
Quantile premium principle; 491· 
Quantile reserving, 493-495 

Radix, 41, 348 
Rate of salary function, 336 
Rated lives, 9 
Rating factors, 8 
Real world measure, 511 
Rebalancing a hedge, 525 
Recursions-insurance, 84 
Regular premium deferred annuity (RPDA), 11 
Renewable term insurance, 4 
Renewal expenses, 151, 152 
Repeated Simpson's rule, 107, 575 
Replacement ratio, 335 
Replicating portfolio, 504, 508, 520 
Reserves, 185 

CTE reserves, 495 
embedded options, 537-539, 541-545 
Full Preliminary Term (FPT), 229 
modified premium reserves, 229 
profit testing, 403 
quantile reserves, 493 
relation to policy values, 185 
stochastic reserves, 492-497 

Retrospective policy values, 220-225 
Reversionary annuity, 11,304, 306, 340 
Reversionary bonus, 5, 434 
Risk discount rate, 409 
Risk measures, 493 

Conditional Tail Expectation (CTE), 495 
Value-at-Risk (VaR), 493 

Risk neutral measure, 511 
Risk premium, 144 
Risk premium for guarantees, 546 
Runge-Kutta method, 231 

Salary scale, 335, 337 
Secondary guarantees, 462 
Segregated fund insurance, 7, 4 7 4 
Select life table, 59-65 
Select lives-insurance functions, 102 
Select period, 56 
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Select survival model, 56 
notation, 58 

Selection, 54 
Self-financing hedge, 514 
Semi-Markov model, 292, 328 
Separate account insurance, 4 7 4 
Service table, 347, 587 

multiple decrement model, 344 
Simple reversionary bonus, 435 
Single premium, 145 
Single premium deferred annuity (SPDA), 

11 
Single premium immediate annuity (SPIA), 

11 
Spot rate, 371 
Standard select survival model, 65, 582, 583 
Standard ultimate survival model, 65, 77, 582, 

584 
Stochastic interest rate, 382, 391 
Stochastic pricing, 490--492 
Stochastic profit testing, 486-490 
Stochastic reserving, 492-496 
Strike price, 505 
Subjective measure, 511 
Sum at risk, 197 
Sum insured, 1 
Super-compound reversionary bonus, 435 
Surrender charge, 446 
Surrender value, 215 
Survival function, 18 

conditions for a valid distribution, 19 

Term expectation of life, 32 
Term insurance, 4, 88 

1/mthly, 89 
annual, 88 
continuous, 88 
premium, 154 

Term life annuity, 11 
Term structure, 371 
Terminal bonus, 5, 435 
Termination expenses, 152 
Thiele, Thorvald N., 231 
Thiele's equation, 209-212 

multiple state models, 266 
numerical solution, 212-214 

Time homogeneous Markov chain, 290 
Time to first death, 304 
Time to last death, 304 
Traditional unit valuation, 357 
Transition intensity, 249 

Transition matrix, 289 
Trapezium rule, 574 

Ultimate mortality, 56 
Unallocated premium, 476 
Underwriting, 8-10, 54 
Underwriting expenses, 152 
Uniform distribution, 564 
Uniform distribution of deaths (UDD), 44, 95, 

132 
Uninsurable lives, 9 
Unit linked insurance, 7, 474 
Unitized with profit, 6 
Universal Life insurance (UL), 6, 444-464 

account value, 445 
additional death benefit (ADB), 445 
comparison with whole life, 464 
corridor factor, 455 
cost of insurance (Col), 446 
credited interest rate, 444, 446 
no-lapse guarantee, 462 
profit testing, 448-463 
projecting account values, 447-448 
Type A, 445 
TypeB, 446 

US Life Tables 2002, 50, 69 
Utmost good faith (uberrima fides), 10 

Valuation, 185 
allowing for term structure of interest rates, 

375 
Value-at-risk, 493 
Variable annuity, 7, 474 
Variable insurance, 98 

Whole life annuity, 11 
Whole life insurance, 5, 78 

1/mthly, 82 
annual, 81 
continuous, 78 
comparison by payment frequency, 94 
comparison with Universal Life, 464 
gross premium policy value, 187 

With-profit (see also 'participating insurance'), 
5 

Woolhouse's formula, 133-136, 151,577 

Yearly renewable term (YRT), 5 
Yield curve, 371 

Zeroized reserves, 414 




