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Time series models of heteroscedasticity

I Introduction

I Characteristics of financial/economic data
I Time series models of heteroscedasticity and basic properties

I ARCH - Autoregressive conditional heteroscedastic models
I GARCH - Generalised Autoregressive conditional

heteroscedastic models
I EGARCH - Exponential Generalised Autoregressive conditional

heteroscedastic models

I Estimation of time-varying volatility models

I Forecasting time-varying volatility models
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Introduction

I Introduce time series models of time-varying variance

I Uncertainty i.e. volatility is very crucial (theoretical and
practical aspects)

I model building (due to the presence of heteroscedasticity and
non-normality of the data)

I empirical financial/economic applications (portfolio allocation
decisions, risk management, option pricing, asset pricing)
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Characteristics of financial data

I volatility clustering (sub periods of high/low variability)

I non-normality, fat tails, excess kurtosis

I leverage effect

I co-movement in volatility changes across assets
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Descriptive statistics of hedge fund returns

Assets Mean St.D. Kurt LByt
12 LB

|yt |
12 LB

y2
t

12 JB
EM 0.58% 4.2% 7.67 20.6 18.5 13.5 150.74∗

EH 0.83% 2.6% 4.80 15.2 34.4∗ 36.2∗ 20.78∗

M 0.50% 2.1% 3.85 9.0 7.7 6.5 4.33
DS 0.65% 1.6% 11.31 31.1∗ 16.3 9.1 466.34∗

FIA 0.17% 1.1% 19.41 30.7∗ 43.9∗ 41.2∗ 1836.2∗

MA 0.45% 1.0% 14.71 13.3 9.9 2.8 958.1∗
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Time series plots - volatility clustering
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Autocorrelation plots of absolute returns

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

abs−HFR−EM

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

abs−HFR−EH

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

abs−HFR−M

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

abs−HFR−DS

0 5 10 15 20
−0.5

0

0.5

1

Lag

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

abs−HFR−FIA

0 5 10 15 20
−0.5

0

0.5

1

Lag
S

am
pl

e 
A

ut
oc

or
re

la
tio

n

abs−HFR−MA

Loukia Meligkotsidou, UoA Time Series



Time series models of heteroscedasticity

Part 3: Introduction
Part 3: Characteristics of financial/economic data
Part 3: Time series models of heteroscedasticity
Part 3: Estimation of time-varying volatility models
Part 3: Forecasting time-varying volatility models

Autocorrelation plots of squared returns
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Normal probability plots
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Normal quantile plots
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Time series models of heteroscedasticity

I Unconditional and conditional mean and variance

I ARCH models: Autoregressive conditional heteroscedastic models

I GARCH models: Generalized Autoregressive conditional
heteroscedastic models

I EGARCH models: Exponential Generalized Autoregressive
conditional heteroscedastic models

I Model Properties and characteristics
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Unconditional and Conditional mean

Consider the AR(1) model: yt = δ + φ1yt−1 + εt , where εt ∼ i .i .d .(0, σ2)

I Unconditional mean: constant across time

E (yt) = E (δ + φ1yt−1 + εt) = E (δ) + E (φ1yt−1) + E (εt)

⇒ µ = δ + φ1µ⇒ µ(1− φ1) = δ ⇒ µ = δ
1−φ1

= E (yt)

I Conditional mean: time-varying

E (yt |Φt) = E (δ + φ1yt−1 + εt |Φt) =

= E (δ|Φt) + E (φ1yt−1|Φt) + E (εt |Φt)

⇒ E (yt |Φt) = δ + φ1yt−1
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Unconditional and Conditional Variance

Consider the AR(1) model: yt = δ + φ1yt−1 + εt , where εt ∼ i .i .d .(0, σ2)

I Unconditional variance: constant across time

V (yt) = V (δ + φ1yt−1 + εt) = V (δ) + V (φ1yt−1) + V (εt)

⇒ v = φ21v + σ2 ⇒ v(1− φ21) = σ2 ⇒ v = σ2

1−φ2
1

= V (yt)

I Conditional variance: constant over time - to be modeled i.e. to be
time-varying

V (yt |Φt) = V (δ + φ1yt−1 + εt |Φt) =

= V (δ|Φt) + V (φ1yt−1|Φt) + V (εt |Φt)

⇒ V (yt |Φt) = σ2
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Modeling conditional variance

At the conditional heteroscedasticity models presented below, we model
the conditional variance at time t, σ2

t

Study and model the conditional variance for different reasons:

I to understand the risk of a time series

I to achieve efficient estimates of a time series model

I to construct accurate confidence intervals for a forecast (i.e.
time-varying)

I to capture the stylized facts i.e. the characteristics of a time series
in empirical financial applications
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Autoregressive Conditional Heteroscedasticity models
[ARCH(p)]

The ARCH(p) model (Engle, 1982) can be written in the form:

Mean equation: yt = γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t + εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation: σ2
t = α0 + α1ε

2
t−1 + . . .+ αpε

2
t−p

where, α0 > 0, α1, . . . , αp ≥ 0 in order to be well defined the variance σ2
t

The conditional variance depends on lagged squared errors
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ARCH(1) model

The simple ARCH(1) model can be written:

Mean equation: yt = εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation: σ2
t = α0 + α1ε

2
t−1, α0 > 0, α1 ≥ 0

I the conditional variance depends only on the lagged one squared
error, ε2t−1

I the ARCH(1) model captures the volatility clustering phenomenon

I the ARCH(1) model does not capture the leverage effect
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ARCH(1) - AR(1) representation

The ARCH(1) model can be written as a non-Gaussian AR(1) model for
the squared errors:

ε2t = σ2
t + (ε2t − σ2

t ) = α0 + α1ε
2
t−1 + vt , where vt = ε2t − σ2

t

The conditional mean of vt is

E (vt |Φt−1) = E (ε2t−σ2
t |Φt−1) = E (ε2t |Φt−1)−E (σ2

t |Φt−1) = σ2
t −σ2

t = 0

I the ARCH(1) model has significant partial autocorrelation of
squared errors at lag 1

I the ARCH(p) model can be written as an AR(p) model for the
squared errors

I the ARCH(p) model has significant the first p partial
autocorrelations of the squared errors
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ARCH(1) - kurtosis

Engle (1982) proved that the unconditional moments of an ARCH(1)
process can be given by:

E (ε2t ) = α0

1−α1
and E (ε4t ) =

3α2
0

(1−α1)2
1−α2

1

1−3α2
1
, α1 < 1 and 3α2

1 < 1

Then, the kurtosis is given by:

k =
E(ε4t )

[E(ε2t )]
2 =

3α2
0

(1−α1)2
1−α2

1

1−3α2
1
/

α2
0

(1−α1)2
= 3

1−α2
1

1−3α2
1

I the kurtosis is always larger than 3, i.e. larger than the kurtosis of a
normal random variable

I the ARCH(1) model captures the fat tail characteristic of financial
data

I similar arguments hold for the ARCH(p) model, which also produces
kurtosis larger than 3
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Generalised Autoregressive Conditional Heteroscedasticity
models [GARCH(p,q)]

The GARCH(p,q) model (Bollerslev, 1986) can be written in the form:

Mean equation: yt = γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t + εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation:
σ2
t = α0 + α1ε

2
t−1 + . . .+ αpε

2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q

where, α0 > 0, α1, . . . , αp ≥ 0, β1, . . . , βq ≥ 0 in order to be well defined
the variance σ2

t

The conditional variance depends on lagged squared errors and on lagged
variances
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GARCH(1,1) model

The simple GARCH(1,1) model can be written:

Mean equation: yt = εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, α0 > 0, α1, β1 ≥ 0

I the conditional variance depends only on the lagged one squared
error, ε2t−1 and on the lagged one variance, σ2

t−1

I the GARCH(1,1) model captures the volatility clustering
phenomenon

I the GARCH(1,1) model does not capture the leverage effect
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GARCH(1,1) - ARMA(1,1) representation

The GARCH(1,1) model can be written as a non-Gaussian ARMA(1,1)
model for the squared errors:

ε2t = σ2
t + (ε2t − σ2

t ) = α0 + α1ε
2
t−1 + β1σ

2
t−1 + vt , where vt = ε2t − σ2

t

= α0 + α1ε
2
t−1 + β1(ε2t−1 − vt−1) + vt

= α0 + (α1 + β1)ε2t−1 − β1vt−1 + vt

The conditional mean of vt is

E (vt |Φt−1) = E (ε2t−σ2
t |Φt−1) = E (ε2t |Φt−1)−E (σ2

t |Φt−1) = σ2
t −σ2

t = 0

I the GARCH(1,1) model has significant autocorrelation and partial
autocorrelation of squared errors at lag 1

I the GARCH(p,q) model can be identified through the
autocorrelation and partial autocorrelation plot of squared residuals
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GARCH(1,1) - kurtosis

Bollerslev (1986) proved that the unconditional moments of a
GARCH(1,1) process are given by:

E (ε2t ) = α0

1−α1−β1
and E (ε4t ) =

3α2
0(1+α1+β1)

(1−α1−β1)(1−3α2
1−2α1β1−β2

1)

Then, the kurtosis is given by:

k =
E(ε4t )

[E(ε2t )]
2 = 3 +

6α2
1

1−3α2
1−2α1β1−β2

1

I the kurtosis is always larger than 3, i.e. larger than the kurtosis of a
normal random variable

I the GARCH(1,1) model captures the fat tail characteristic of
financial data

I similar arguments hold for the GARCH(p,q) model, which also
produces kurtosis larger than 3
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Exponential Generalised Autoregressive Conditional
Heteroscedasticity models [EGARCH(p,q)]

The EGARCH(p,q) model (Nelson, 1991) can be written in the form:

Mean equation: yt = γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t + εt , εt = ztσt

Conditional distribution: zt |Φt−1 ∼ N(0, 1) or zt |Φt−1 ∼ GED(0, 1)

Variance equation:
ln(σ2

t ) = α0 +
∑q

j=1 βj ln(σ2
t−j) +

∑p
i=1[θizt−i + αi (|zt−i | − E |zt−i |)]

The logarithm of the conditional variance depends on lagged standardized
errors, lagged absolute standardized errors and on lagged variances
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EGARCH(1,1) model

The simple EGARCH(1,1) model can be written:

Mean equation: yt = εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation:
ln(σ2

t ) = α0 + β1ln(σ2
t−1) + θ1zt−1 + α1(|zt−1| − E |zt−1|)

I the logarithm of conditional variance depends only on the lagged
one standardized error, zt−1 = εt−1

σt−1
, lagged one absolute

standardized error, and on the lagged one variance, σ2
t−1

I the EGARCH(1,1) model captures the volatility clustering
phenomenon

I the EGARCH(1,1) model captures the leverage effect
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Maximum Likelihood Estimation: Regression-GARCH(1,1)

Consider a GARCH(1,1) model of the form:

Mean equation: yt = γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t + εt

Conditional distribution: εt |Φt−1 ∼ N(0, σ2
t )

Variance equation: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1, α0 > 0, α1 ≥ 0, β1 ≥ 0

Aim: Estimate the parameter vector θ = (γ0, γ1, . . . , γk , α0, α1, β1)
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Maximum Likelihood Estimation: Computing densities

To compute the conditional likelihood for the regression-GARCH(1,1)
model, we condition on the initial values of errors and variances

y1 = γ0 + γ1x1,1 + γ2x2,1 + . . .+ γkxk,1 + ε1

⇒ ε1 = y1 − γ0 − γ1x1,1 − γ2x2,1 − . . .− γkxk,1

y1|θ ∼ N(γ0 + γ1x1,1 + γ2x2,1 + . . .+ γkxk,1, σ
2
1)

σ2
1 = α0 + α1ε

2
0 + β1σ

2
0

different alternatives for ε20 and σ2
0

The conditional density of the first observation is given by:

f (y1|θ) = 1√
2πσ2

1

exp [−(ε1)
2

2σ2
1

]
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Maximum Likelihood Estimation: Computing densities

At time t the density f (yt |Φt−1, θ) is computed as follows:

yt = γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t + εt

⇒ εt = yt − γ0 − γ1x1,t − γ2x2,t − . . .− γkxk,t

yt |Φt−1, θ ∼ N(γ0 + γ1x1,t + γ2x2,t + . . .+ γkxk,t , σ
2
t )

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

The conditional density of f (yt |Φt−1, θ) is given by:

f (yt |Φt−1, θ) = 1√
2πσ2

t

exp [−(εt)
2

2σ2
t

]
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Maximum Likelihood Estimation: likelihood

Therefore, the likelihood is computed by:

Conditional Likelihood = L(θ|y , x) = f (y1, y2, . . . , yT |θ) =

= f (yT |ΦT−1, θ) · f (yT−1|ΦT−2, θ) · . . . f (y2|Φ1, θ) · f (y1|θ) =

=
∏T

t=2 f (yt |Φt−1, θ) · f (y1|θ) =

=
∏T

t=1[ 1√
2πσ2

t

] exp
(
− 1

2

∑T
t=1[

ε2t
σ2
t
]
)

= (2π)−T/2 ·
∏T

t=1[(α0 + α1ε
2
t−1 + β1σ

2
t−1)−1/2]·

· exp
(
− 1

2

∑T
t=1[

(yt−γ0−γ1x1,t−...−γkxk,t)2
α0+α1ε2t−1+β1σ2

t−1
]
)
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Maximum Likelihood Estimation: log-likelihood

The log-likelihood for the regression GARCH(1,1) model is given by:

log [L(θ|y , x)] = log [f (y1|θ)] +
∑T

t=2 log [f (yt |Φt−1, θ)] =

= −T
2 log(2π)− 1

2

∑T
t=1 log(α0 + α1ε

2
t−1 + β1σ

2
t−1)

− 1
2

∑T
t=1[

(yt−γ0−γ1x1,t−...−γkxk,t)2
α0+α1ε2t−1+β1σ2

t−1
]
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Diagnostic checking

After estimating an identified model, the residuals must be (resemble) a
white noise process, i.e. must be:

I Uncorrelated

I Homoskedastic

I Normal distributed

Conduct diagnostic tests as in the case of regression-type and
ARMA-type models
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Forecasting ARCH(1) process

Suppose we are interested in forecasting the values of σ2
t+i , i = 1, . . . , s

Let σ̂2
t+i|t denote the forecasts of σ2

t+i

Consider an ARCH(1) model: σ2
t = α0 + α1ε

2
t−1

σ̂2
t+1|t = E (α0 + α1ε

2
t |Φt) = E (α0|Φt) + E (α1ε

2
t |Φt) = α0 + α1ε

2
t

σ̂2
t+2|t = E (α0 +α1ε

2
t+1|Φt) = E (α0|Φt) +E (α1ε

2
t+1|Φt) = α0 +α1σ̂

2
t+1|t

. . .

σ̂2
t+s|t = E (α0 + α1ε

2
t+s−1|Φt) = E (α0|Φt) + E (α1ε

2
t+s−1|Φt) =

= α0 + α1σ̂
2
t+s−1|t
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Forecasting GARCH(1,1) process

Consider a GARCH(1,1) model: σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

σ̂2
t+1|t = E (α0 + α1ε

2
t + β1σ

2
t |Φt) =

= E (α0|Φt) + E (α1ε
2
t |Φt) + E (β1σ

2
t |Φt) = α0 + α1ε

2
t + β1σ

2
t

σ̂2
t+2|t = E (α0 + α1ε

2
t+1 + β1σ

2
t+1|Φt) =

= E (α0|Φt) + E (α1ε
2
t+1|Φt) + E (β1σ

2
t+1|Φt) =

= α0 + α1σ̂
2
t+1|t + β1σ̂

2
t+1|t = α0 + (α1 + β1)σ̂2

t+1|t

σ̂2
t+s|t = E (α0 + α1ε

2
t+s−1 + β1σ

2
t+s−1|Φt) =

= E (α0|Φt) + E (α1ε
2
t+s−1|Φt) + E (β1σ

2
t+s−1|Φt) =

= α0 + α1σ̂
2
t+s−1|t + β1σ̂

2
t+s−1|t = α0 + (α1 + β1)σ̂2

t+s−1|t
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Application to financial and economic series

I Example 1: GARCH modeling of the Intel stock returns

I Example 2: GARCH modeling of the S&P500 index

I Example 3: Regression - ARMA - GARCH modeling of hedge fund
returns

I Discussion on financial empirical applications i.e. performance
evaluation, predictability, value at risk
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