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Suppose I cut space with a plane.  How many regions do I get?  The 
answer is 2.  Suppose I now use 2 planes––how many regions?  Well, it 
depends––if the planes are parallel, there will be 3, otherwise 4.  To 
remove this ambiguity, let's agree that our planes should be randomly 
chosen, or "in general position", so that coincidences do not occur.  
Then the answer is 4 regions.  Now try 3 planes, again in general posi-
tion.  The answer is 8 regions––indeed, we can think of the three planes 
x=0, y=0 and z=0 in the Cartesian coordinate system.  The regions 
which these planes create are called "octants" because there are eight 
of them.   
 
It's a bit harder to visualize 4 planes, and the question touches off a 
murmur of debate in the classroom.  Can all 8 of the existing regions be 
cut into by the new plane?  The answer is no, but perhaps the argument 
is not so easy to pin down.  But 7 of them can certainly be sliced.  One 
nice construction is to take the three coordinate planes as above, and 
then to slice everything with the plane that cuts the three axes at a dis-
tance +1 from the origin.  This cuts a tetrahedron out of the positive oc-
tant, and cuts through all the other octants except the "negative" one––
x, y and z all negative.  So 7 of the 8 octants are "cut in half," giving 15 
regions.  The question is, what is the pattern?  That is, how does the 
table at the right continue? 
 
I give the class a few moments to play with 5 planes, but things are very 
hard to visualize.  Can the new plane pass through one of the four exist-
ing intersection points?  No, that would be a coincidence.  With 4 
planes, one of the 15 regions is bounded, so it’s different from the oth-
ers.  Does it make a difference whether the fifth plane goes through the 
bounded region?  Donno—that’s a good question.   
 
One way of coping with a hard problem is to solve an easier one first.  In 
this case, if we go down to two dimensions we get an easier problem 
because pictures can be more easily drawn.  So our base space is now 
a plane, and the objects we cut it with are—lines!  So let's ask how 
many regions are created in a plane by cutting it with lines.  Again we 
want the lines to be in general position, so we don't have any parallel 
lines or concurrencies.  It is not hard to produce the following table.  The 
case of 5 lines is illustrated at the right. 
 
Now what's the pattern here?  The class is quick to notice the interesting 
difference pattern––successive differences in the right column of the 2-
D table are the integers, 1,2,3,4,5, and 6.  By this reckoning the next 
number should be 29, and a careful picture will verify this.  But the im-
portant task of course is to find a way to “see” why this pattern is ex-
pected. 
 
Alas, the class is not really interested in that question—at least not right 
away.  What they clamour to do is to look at the difference pattern in the 
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3-D table.  This turns out to be the sequence 1,2,4, and 7.  Now that's 
really interesting: these are the first four numbers of the 2-D table!  Dare 
we conjecture that this pattern continues––that therefore the next num-
ber of the 3-D table should be 15+11=26?  Do 5 planes cut space up 
into 26 regions? 
 
To answer this question, we really do need some new understanding.  
Why should the 2-D table provide the set of differences for the 3-D ta-
ble?   
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A powerful idea is to go down one dimension.  Let's look again at the 
simple difference pattern for the 2-D table—where does that nice set of 
1,2,3,4… really come from?  What really are those differences?   
 
For example, let’s focus on the transition between 5 and 6 lines in the 2-
D table.  That causes the number of regions to change from 16 to 22, a 
difference of 6.  Now where do those 6 new regions really come from?   
 
Well, if we study the picture, those 6 regions are created by the sixth 
line slicing through 6 of the old regions and cutting them “in half.”  But 
why 6?  Is it because it’s the 6th line?  Not really.   
 
If we stare hard at the picture, we see it is because the 6P

th line is divided 
into 6 segments by its intersections with the 5 existing lines, and each of 
these segments represents a cutting of one of the existing regions in 
half!  So what that 6 really is, is the number of segments created on a 
line by 5 points.  The reason I want to say it this way, is because now 
we see that this is really the same problem as before but one more di-
mension down.  This is really the problem of how many regions are cre-
ated on a line if it is “cut” by n points. 
 
Of course!  If the 2-D problem somehow provides the differences for the 
3-D table, we might expect the 1-D problem to provide the differences 
for the 2-D table. 
 
So let’s formulate the 1-D problem. What do we cut 1-dimensional 
space with?––well with points!  If we place n points on a line the number 
of regions (which are really intervals now) we get is n+1.  The table is at 
the right. 
 
 
 
 
 
 
 
And what we have noticed above is the reason that this table provides 
the differences for the 2-D table.  For example, the difference between 
16 and 22 in the 2-D table is 6, but exactly what is that 6? (because 
there are lots of 6’s around here)—it’s the 6 in the “regions” column of 
the 1-D table which sits in the n=5 row.  That’s how to think of that 6. 
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Now this should show us the way to argue that the differences in the 3-
D table are provided by the 2-D table.  Let's see if we can run the whole 
argument through one dimension up.  Take, for example, the addition of 
the fifth plane.  We want to know how many new regions it creates.  
Well, this plane will intersect all the 4 previous planes (no parallelism) 
and these intersections will etch a pattern of 4 lines on the plane.  These 
4 lines must cut the plane into 11 regions (from the 2-D table) and each 
of these regions really represents a "cutting in half" (by the 5th plane) of 
each of the original regions in 3-space.  So the 5th plane should create 
11 new regions in space––that "11" being the n=4 entry of the 2-D table.  
So to get the n=5 entry of the 3-D table from the n=4 entry, we need to 
add the n=4 entry of the 2-D table.  There it is! 
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It all works out quite beautifully.  The 1-D table provides the differences 
for the 2-D table, and the 2-D table provides the differences for the 3-D 
table.  With this we deduce that 5 planes will indeed cut space into 26 
regions, and we can keep going and find the answer for 6 planes, and 7 
planes, etc. 

This is a superb example 
of the power of pattern 
recognition, analogical 
reasoning, and persis-
tence in getting at the 
heart of the matter.  This 
was a hard problem!  But 
we have arrived at a 
convincing analysis. 

 
I stand regarding the blackboard with awe.  The students are silent.  
They can see how the tables can now be generated.  Is it really that 
easy?  It's important to emphasize that along with this computational 
scheme, we also have an elegant proof that it works––a way to argue 
with absolute certainty that this scheme will calculate the correct entries.  
For example, let’s go back to our small uncertainties with four planes in 
3-space.  We know that three planes will determine 8 regions and we 
now have a nice argument that the 4th plane can't cut through all 8 of 
the existing regions.  Because if it did, we'd contradict the 2-D table––
we'd have a plane with three lines on it defining 8 regions.  And in the 
same way the 2-space table must be right because we know we can 
trust the 1-space table. 
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Okay, what's next?  Another silence from the class, but this one expec-
tant.  A voice from the back catches on: What about 4-space?  Right!  
Suppose I slice 4-space with 6 hyperplanes: how many regions?  
 
Well it would seem to be an almost impossible problem, but the argu-
ments behind our results are quite general and would apply to the transi-
tion from 3 dimensions to four.  Using the entries of the 3-D table as 
differences, we get the 4-D table at the right.  With 6 hyperplanes, we 
get 57 regions. 
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This lovely problem was used by the famous mathematician and teacher George Polya in 
his movie "Let's Teach Guessing". 
 
 
Problems 
 
1.  Find a formula for the nth entry of the 2-D and 3-D tables. 
 
2.  Suppose I draw 20 circles in the plane, all passing through the origin, but no two tan-
gent at the origin.  Also, except for the origin, no three circles pass through a common 
point.  How many regions are created in the plane? 
 
 
3. Take a sphere and draw on it a great circle (a great circle is a circle whose centre is the 
centre of the sphere).  There are two regions created.  Here, I am referring to regions on 
the surface of the sphere.  Now draw another great circle: there are four regions.  Now 
draw a third, not passing through the points of intersection of the first two.  How many re-
gions?   
 
Here's the general question: How many regions are created by n great circles, no three 
concurrent, drawn on the surface of the sphere?   
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