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Generalized Pearson Statistic

( )

( )

2

2

2

2

ˆ

ˆ

ˆwhere ( ) is the estimated variance function for the distribution concerned 

Normal distribution X (i.e. residual sum of squares)

Poisson or binomial original Pearson X statistic
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Deviance and generalized Pearson X2 statistic

⚫ Both the deviance and the generalized Pearson X2 have 
exact X2 distributions for normal-theory linear models 
(assuming of course that the model is true) and 
asymptomatic results are available for other-
distributions

⚫ The deviance has a general advantage as a measure of 
discrepancy in that it is additive for NESTED sets of 
models if MLEs are used, whereas X2 in general is not. 
However, X2 sometimes may be preferred because of 
its direct interpretation

⚫ Note that the quantity X2/n-p, where n the number of 
observations and p the number of parameters in a 
model, gives an estimate of the scale or dispersion 
parameter.



An algorithm for fitting GLM

Goal: To show that the MLEs of the parameter β
in the linear predictor η can be obtained by 
iterative weighted least squares  

⚫ The dependent variable is a linearized form of 
the link function applied to y

⚫ The weights are functions of the fitted values

The process is iterative because both the 
adjusted dependent variable z and the weight w
depend on the fitted values, for which only 
current estimates are available. The procedure 
underlying the iteration is as follows:
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ALGORITHM

1. Let    be the current estimate of the linear 
predictor with corresponding fitted value     
derived from the link function

2. Form the adjusted dependent variable:   

3. The quadratic weight is defined as:

Now, regress z0 onto covariates x1, …., xp with 
weights W0 to give new parameter estimate   . 
Form new    . Repeat until changes in estimates 
are sufficiently small.  
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ALGORITHM (2)

1

Note that is just a linearized formof the link function applied to thedata,

because,up to first order
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Starting values

Convenient feature: it suggests a simple starting 
point to get the iteration under way. This 
consists of using the data themselves as the 
first estimate of

Note that adjustments may be required to the 
data to prevent, for example, trying to evaluate 
log(0) if the log link is used.
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Single-factor analysis of variance
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Analyses of variance and covariance can be expressed in linear 

regression terms.  For example, consider the one-way analysis 

of variance model 

where is the treatment effect and

is the error associated with the ith treatment and jth observation

can be recast as a simple linear regression model by defining



Single-factor analysis of variance
.

Thus expressed the one-way ANOVA model becomes
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Regression models for one-way ANOVA

The regression model is equivalent to the 
ANOVA model. To see this consider that:

The usual null hypothesis in regression 

H0: β1= β2=…= βp-1=0, means that:
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Regression models for one-way ANOVA

The previous coding scheme is called reference-
coding scheme since one level of the fixed 
(categorical) factor is the reference level, while 
the rest are defined as deviations from it. In the 
model described previously, we chose level p as 
the reference level but we could have easily 
chosen level 1 (or 2 or 3). The critical point is 
that coding a factor with p levels requires p-1 
coding variables (when a regression model with an 
intercept is fitted).  



Example: Effect of gender on plasma retinol levels

For assessing the effect of gender on plasma retinol 
levels, the one-was ANOVA is given by the output: 

The F test is significant, implying that gender 
differences have a statistically significant effect on 
plasma retinol levels



The output of the regression for the same model is:












































