GENERALIZED LINEAR MODELS

Γιώτα Τουλούμη

Καθηγήτρια Βιοστατιστικής και Επιδημιολογίας Εργ. Υγιεινής, Επιδημιολογίας και Ιατρικής Στατιστικής Ιατρική Σχολή Πανεπιστημίου Αθήνας

gtouloum@med.uoa.gr

Observed Fisher Information Matrix: $I(\hat{\theta}_{_{ML}})$

Hessian
$$H(\theta) = \frac{\partial^2}{\partial \theta_i \theta_j} l(\theta)$$
 $1 \le i, j \le p$
 $Var(\hat{\theta}_{ML}) = [I(\hat{\theta}_{ML})]^{-1}$ $H(\beta) = \begin{bmatrix} \frac{\partial^2 l}{\partial \beta_0^2} & \frac{\partial^2 l}{\partial \beta_0 \beta_1} & \frac{\partial^2 l}{\partial \beta_0 \beta_2} \\ \frac{\partial^2 l}{\partial \beta_1 \beta_0} & \frac{\partial^2 l}{\partial \beta_1^2} & \frac{\partial^2 l}{\partial \beta_1 \beta_2} \\ \frac{\partial^2 l}{\partial \beta_2 \beta_0} & \frac{\partial^2 l}{\partial \beta_2 \beta_1} & \frac{\partial^2 l}{\partial \beta_2^2} \end{bmatrix}$

Generalized Pearson Statistic

$$X^{2} = \sum \frac{\left(y - \hat{\mu}\right)^{2}}{V(\hat{\mu})}$$

where $V(\hat{\mu})$ is the estimated variance function for the distribution concerned

Normal distribution $\rightarrow X^2$ is RSS (i.e. residual sum of squares)

Poisson or binomial \rightarrow original Pearson X² statistic

Deviance and generalized Pearson X² statistic

- Both the deviance and the generalized Pearson X² have exact X² distributions for normal-theory linear models (assuming of course that the model is true) and asymptomatic results are available for otherdistributions
- The deviance has a general advantage as a measure of discrepancy in that it is additive for NESTED sets of models if MLEs are used, whereas X² in general is not. However, X² sometimes may be preferred because of its direct interpretation
- Note that the quantity X²/n-p, where n the number of observations and p the number of parameters in a model, gives an estimate of the scale or dispersion parameter.

An algorithm for fitting GLM

Goal: To show that the MLEs of the parameter β in the linear predictor η can be obtained by iterative weighted least squares

 The dependent variable is a linearized form of the link function applied to y

• The weights are functions of the fitted values $\hat{\mu}$ The process is iterative because both the adjusted dependent variable *z* and the weight *w* depend on the fitted values, for which only current estimates are available. The procedure underlying the iteration is as follows:

ALGORITHM

- 1 Let $\hat{\eta}_0$ be the current estimate of the linear predictor with corresponding fitted value $\hat{\mu}_0$ derived from the link function $\eta = g(\mu)$
- 2. Form the adjusted dependent variable:

$$z_0 = \hat{\eta}_0 + (y - \hat{\mu}_0)(\frac{d\eta}{d\mu} | \hat{\mu}_0)$$

3. The quadratic weight is defined as:

 $W_0^{-1} = \left(\frac{d\eta}{d\mu} \mid \hat{\mu}_0\right)^2 V_0$ where V_0 is the variance function evaluated at $\hat{\mu}_0$.

Now, regress z_0 onto covariates $x_1, ..., x_p$ with weights W_0 to give new parameter estimate $\hat{\beta}_1$. Form new $\hat{\eta}_1$. Repeat until changes in estimates are sufficiently small.

ALGORITHM (2)

Taylor expansion of f(x) about a point (x-a):

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^{\eta}$$

Note that z is just a linearized form of the link function applied to the data, because, up to first order

$$g(y) \cong g(\mu) + g'(\mu)(y - \mu)$$

hence the right hand side is

$$\eta + (y - \mu) \frac{d\eta}{d\mu}$$
 (beacuse $\eta = g(\mu)$)

Moreover, $Var(Z) = W^{-1}$ assuming that $\eta \& \mu$ are fixed and known.

Starting values

Convenient feature: it suggests a simple starting point to get the iteration under way. This consists of using the data themselves as the first estimate of $\hat{\mu}_0$ and from this deriving

$$\hat{\eta}_0, (\frac{d\eta}{d\mu} | \hat{\mu}_0) \text{ and } V_0$$

Note that adjustments may be required to the data to prevent, for example, trying to evaluate log(0) if the log link is used.

Single-factor analysis of variance

Analyses of variance and covariance can be expressed in linear regression terms. For example, consider the one-way analysis of variance model

$$y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, i = 1, ..., p, j = 1, ..., n$$

where α_i is the treatment effect and ε_{ij}

is the error associated with the *I*th treatment and *J*th observation can be recast as a simple linear regression model by defining

$$X_i = \begin{cases} 1, \text{ if group } i \\ 0, \text{ otherwise} \end{cases} i = 1, \dots, p-1$$

Single-factor analysis of variance

Thus expressed the one-way ANOVA model becomes

$$y_{ij} = \mathbf{\beta}_{o} + \mathbf{\beta}_{1}X_{1} + \dots + \mathbf{\beta}_{p-1}X_{p-1} + \mathbf{\varepsilon}_{ij}$$

that is,

Group 1:
$$Y_{1j} = \beta_0 + \beta_1 + \varepsilon_{ij}$$

Group 2: $Y_{2j} = \beta_0 + \beta_2 + \varepsilon_{ij}$
:
Group $p-1: Y_{(p-1)j} = \beta_0 + \beta_{(p-1)} + \varepsilon_{ij}$
Group $p: Y_{pj} = \beta_0 + \varepsilon_{ij}$

Regression models for one-way ANOVA

The regression model is equivalent to the ANOVA model. To see this consider that:

$$\mu_i = \begin{cases} \beta_0 + \beta_i, \text{ if } i = 1, \dots, p-1 \\ \beta_0, \text{ if } i = p \end{cases}$$

The usual null hypothesis in regression $H_0: \beta_1 = \beta_2 = \dots = \beta_{p-1} = 0$, means that: $\beta_1 = \mu_1 - \mu = 0 \Rightarrow \mu_1 = \mu = \mu_p$

$$\beta_{p-1} = \mu_{p-1} - \mu = 0 \Longrightarrow \mu_{p-1} = \mu = \mu_p$$

is thus equivalent to the null hypothesis of the ANOVA $H_0: \mu_1 = \mu_2 = ... = \mu_p$

Regression models for one-way ANOVA

The previous coding scheme is called referencecoding scheme since one level of the fixed (categorical) factor is the reference level, while the rest are defined as deviations from it. In the model described previously, we chose level p as the reference level but we could have easily chosen level 1 (or 2 or 3). The critical point is that coding a factor with p levels requires p-1 coding variables (when a regression model with an intercept is fitted).

Example: Effect of gender on plasma retinol levels For assessing the effect of gender on plasma retinol levels, the one-was ANOVA is given by the output:

The F test is significant, implying that gender differences have a statistically significant effect on plasma retinol levels

The output of the regression for the same model is:

. reg

Source	SS	df	MS		Number of obs	= 314 = 12.73
Model Residual	533837.408 13086344.5	1 5338 312 4194	37.408		Prob > F = 0.00 R-squared = 0.03 Adj R-squared = 0.03	= 0.0004 = 0.0392 = 0.0361
Total	13620181.9	313 435	14.958		Root MSE	= 204.80
retplasm	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
_cons sex	587.7216	12.39511	47.416	0.000	563.333	612.1102
1 2	122.3759 (dropped)	34.30232	3.568	0.000	54.88283	189.8691

The factor sex=2 (female) has been defined by default as the reference category. Thus, the best

estimate for plasma retinol levels for women will be equal to $\hat{\beta}_0 = 587.7216$, while the same estimate

for males will be $\hat{\beta}_0 + \hat{\beta}_1 = 587.7216 + 122.3759 = 710.0976$ as described previously.

We can execute these calculations in a single step using the reg command with reference coding

. xi: reg i.sex	retplasm i.se I	x sex_1-2	(naturally	y coded;	Isex_1 omitted)	
Source Model Residual +	SS 533837.408 13086344.5	df 1 5338 312 4194	MS 37.408 3.4117		Number of obs F(1, 312) Prob > F R-squared Adj R-squared	= 314 = 12.73 = 0.0004 = 0.0392 = 0.0361
Total	13620181.9	313 435	14.958		Root MSE	= 204.80
retplasm +	Coef.	Std. Err.	t 	P> t	[95% Conf.	Interval]
Isex_2 _cons	-122.3759 710.0976	34.30232 31.98453	-3.568 22.201	0.000 0.000	-189.8691 647.1649	-54.88283 773.0302

The default reference category is sex=1 (male). The means for males are $\hat{\beta}_{\alpha} = 710.0976$ and for

females $\hat{\beta}_0 + \hat{\beta}_1 = 710.0976 - 122.3759 = 587.7216$ consistent with the previous results.

If we wished to use the female category as reference, we modify the above code as follows:

. char sex[omit] 2								
. xi: reg retplasm i.sex i.sex								
Source	<u>s</u> s	df	MS		Number of obs F(1, 312)	= 314 = 12.73		
Model Residual	533837.408 13086344.5	1 53 312 41	3837.408 943.4117		Prob > F R-squared Adi R-squared	= 0.0004 = 0.0392 = 0.0361		
Total	13620181.9	313 4	3514.958		Root MSE	= 204.80		
retplasm	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]		
Isex_1 _cons	122.3759 587.7216	34.30232	3.568 47.416	0.000	54.88283 563.333	189.8691 612.1102		

where the command char sex[omit] 2 specifies explicitly the omitted category 2 (females).

Using the xi and glm commands and specifying females as reference we have:

```
. char sex[omit] 2
. xi: glm retplasm i.sex
                  Isex 1-2 (naturally coded; Isex 2 omitted)
i.sex
Iteration 1 : deviance = 13086344.4522
Residual df = 312
                                               No. of obs = 314
Pearson X2 = 1.31e+07
                                               Deviance = 1.31e+07
Dispersion = 41943.41
                                               Dispersion = 41943.41
Gaussian (normal) distribution, identity link
retplasm | Coef. Std. Err. t P>|t| [95% Conf. Interval]
Isex_1 | 122.3759 34.30232 3.568 0.000 54.88283 189.8691
 _cons | 587.7216 12.39511 47.416 0.000 563.333 612.1102
 (Model is ordinary regression, use regress instead)
```

Consistently with the regression-analysis results.

Comments:

- 1. The command xi defines the level with the *lowest* numerical value as the default reference level. We can manipulate which level is the reference level by defining the omit variable with the command char varname[omit] # where "#" is the numerical value corresponding to the desired reference level. An alternative case is to define as the reference level the most frequent (prevalent) level with char _dta[omit] "prevalent". In case of string variables the command becomes char _dta[omit] "string_literal" where string_literal is the string level that we want to define as reference.
- The xi command defines p-1 variables Ivarname_i, (i=1,...,p-1), such that Ivarname i=(varname==i).
- The regression can then be carried out by these variables. To invoke them we use the umbrella term i.varname.

Regression models for general two-way ANOVA

In the two-way ANOVA the reference coding scheme is implemented as follows:

$$Y = \mu + \sum_{i=1}^{p-1} \alpha_i X_i + \sum_{j=1}^{q-1} \beta_j Z_j + \sum_{i=1}^{p-1} \sum_{j=1}^{q-1} \gamma_{ij} X_i Z_j + \varepsilon_{ij}$$

where
$$X_i = \begin{cases} 1, \text{ if treatment } i = 1, ..., p-1 \text{ and } Z_j = \begin{cases} 1, \text{ if block } j \\ 0, \text{ otherwise} \end{cases}$$
 $j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } j = 1, ..., q-1, \text{ with } p \text{ and } q \text{ the } q$

number of treatments and blocks respectively.

Implications of coding

The means can be expressed in terms of the coefficients of the regression (this is helpful so we can interpret the output from statistical packages):

$$\begin{split} \mu_{ij} &= \mu + \alpha_i + \beta_j + \gamma_{ij}, \ i = 1, ..., p - 1; \ j = 1, 2, ..., q - 1 \\ \mu_{iq} &= \mu + \alpha_i, \ i = 1, ..., p - 1 \\ \mu_{pj} &= \mu + \beta_j, \ j = 1, ..., q - 1 \\ \mu_{pq} &= \mu \end{split}$$

Example: Effect of sex and vitamin use on plasma retinol levels

In this case we have two blocks, gender with p=2 categories (male, female) and vitamin use with q=3 categories ("fairly often", "not often", "no use"). With females and the no-vitamin-use categories

used as reference categories, each observation is given by the following equation:

$$y_{ijk} = \mu + \alpha_1 X_{1k} + \sum_{j=1}^{2} \beta_j Z_{jk} + \sum_{j=1}^{2} \gamma_{ij} X_{1k} Z_{jk} + \varepsilon_{ijk}$$

where
$$X_1 = \begin{cases} 1, \text{ male} \\ 0, \text{ otherwise} \end{cases}$$
, $Z_1 = \begin{cases} 1, \text{"fairly often"} \\ 0, \text{ otherwise} \end{cases}$ and $Z_2 = \begin{cases} 1, \text{"not often"} \\ 0, \text{ otherwise} \end{cases}$

The STATA output (using the xi command) is as follows:

```
. char sex[omit] 2
. char vituse[omit] 3
. xi: glm retplasm i.sex*i.vituse
i.sex
                   Isex_1-2 (naturally coded; Isex_2 omitted)
i.vituse
                Ivitus_1-3 (naturally coded; Ivitus_3 omitted)
                 IsXv_#-# (coded as above)
i.sex*i.vituse
Iteration 1 : deviance = 12783793.5808
                                                  No. of obs = 314
Residual df = 308
Pearson X2 = 1.28e+07
                                                  Deviance = 1.28e+07
Dispersion = 41505.82
                                                  Dispersion = 41505.82
Gaussian (normal) distribution, identity link
```

(STATA output continued)							
retplasm		Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
Isex 1		166.3468	47.76693	3.482	0.001	72.35604	260.3376
Ivitus 1		33.46968	29.28935	1.143	0.254	-24.16284	91.10221
Ivitus 2		39.49589	31.87656	1.239	0.216	-23.22748	102.2193
IsXv 1 1		-11.72721	76.51943	-0.153	0.878	-162.2942	138.8398
IsXv 1 2		-255.6611	105.4603	-2.424	0.016	-463.175	-48.14725
_cons		563.2184	21.84213	25.786	0.000	520.2397	606.1971
(Model	is	ordinary r	egression, u	se regress	instead)		

where $_I \le x_1$ is X_1 (males vs females | no vitamin use), $_Ivituse_1$ is Z_1 ("fairly often" – frequent vitamin users vs non users | gender=female) and $_Ivituse_2$ is Z_2 ("not often" – infrequent vitamin users vs non users | gender=female). The interactions are $_I \le Xv_1_1, X_1Z_1$ [Gender effect* | frequent vitamin use vs Gender effect | no vitamin use] and $_I \le Xv_1_2, X_1Z_2$ [Gender effect | infrequent vitamin use vs Gender effect | no vitamin use]

^{*}Mean difference in retinol plasma levels (male-female)

The model

 $\label{eq:eq:b_1} E[Y] = b_0 + b_1 * Male + b_2 * Freq_Use + b_3 * Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_5 * Male X \ Infreq_Use + b_4 * Male X \ Freq_Use + b_5 * Male X \ Infreq_Use + b_5 * Male X \ Infrex + b_5 * Male X \ Infreq_Use + b_5 *$

	Vitamin Use					
Gender	Frequent	Infrequent	No Use			
Male	$b_0 + b_1 + b_2 + b_4$	b ₀ +b ₁ +b ₃ +b ₅	b ₀ +b ₁			
Female	b ₀ +b ₂	b ₀ +b ₃	b ₀			
Difference (Male-Female)	b_1+b_4	b 1+ b 5	bı			

The graphical representation of the data above is given as follows:

We see that there is a significant interaction caused by an unexpected low plasma level of retinol among men that used vitamins infrequently.

E[Y]=b₀+b₁*Male+b₂*Freq_Use+b₃*Infreq_Use+b₄*MaleX Freq_Use +b₅* MaleX Infreq_Use

Estimates of model parameters

Constant : $_cons = \hat{\beta}_0 = 563.2184$ Main effects : $_Isex_1 = \hat{\beta}_1 = 166.3468$, $_Ivituse_1 = \hat{\beta}_2 = 33.46968$, $_Ivituse_2 = \hat{\beta}_3 = 39.49589$ Interactions : $_IsXv_1_1 = \hat{\beta}_4 = -11.72721$, $_IsXv_1_2 = \hat{\beta}_5 = -255.6611$ The estimates of the various parameters are given as follows:

1. Females

- a. Frequent users ("fairly often"): 563.2184+33.46968=596.68808
- b. Infrequent users ("not often"): 563.2184+39.49589=602.71429
- c. Non-users: 563.2184
- 2. Males
 - a. Frequent users: 563.2184+166.3468+33.46968+(-11.72721)= 751.30767
 - b. Infrequent users: 563.2184+166.3468+39.49589+(-255.6611)= **513.39999**
 - c. Non-users: 563.2184+166.3468 =729.5652

The descriptive statistics of the plasma retinol levels by gender and vitamin use are given in the

STATA output below:

Means, Star				. tabulate sex vituse, summarize(retplasm)							
	Means, Standard Deviations and Frequencies of Plasma retinol (ng/ml)										
1	Vitamine use										
Sex I	Frequent	Infrequent	No Use	Total							
Males 7 3	751.30769 329.43269 13	513.4 298.59303 5	729.56522 290.0285 23	710.09756 305.52208 41							
Females 5 2 	596.68807 203.71816 109	602.71429 184.6959 77	563.21839 159.92785 87	587.72161 185.43069 273							
Total 6 2 	613.16393 223.83038 122	597.26829 192.02109 82	598 204.39088 110	603.70064 208.60239 314							

SEs and 95% CI for linear combination of the estimates in STATA

In Stata we can estimate the mean, the SE and the 95% CI of a linear combination of the parameters by using the command lincom after the model fit.

For example, to estimate mean plasma of retinol in men with frequent vitamin use we need to estimate the combination: $Comb1=b_{men}+b_{freq}+b_{men*freq}+cons$.

If the model has been defined as: reg retplasm men freq infeq menfreq meninfr

We can get the estimate, the SE and the 95% CI of the parameter Comb1 in Stata by the command

Lincom men+freq+menfreq+_cons

After fitting the model.

General method to estimate the mean and the variance of a linear combination of the

estimates

In general, we can estimate the mean and the variance of the linear combination such as Comb1 following the steps:

1)Define constraints: C=(1,1,0,1,0,1). This constraint asks for the sum of those parameters indicated by 1s in C. Stata command: matrix C=(1,1,0,1,0,1)

2)Estimate the linear combination as: C^*b' where b the 1xp vector of bs. Applying that in our example we will get the mean level of plasma retinol for men with frequent vitamin use. Stata command: mat estcomb1=C*A. A is the vector of the estimates obtaines as: mat A=e(b).

3)Estimate the variance of the linear combination as: $C^*V(b)^*C'$ where V(b) the variancecovariance matrix of the estimates. This will produce the variance of the combination. Stata command: varcomb1=C*B*C'. B is the variance-covariance matrix of the parameters: mat B=e(V).

The estimates and the 95% CI of the parameters in the retinol example

	Frequent vitamin user	Infrequent vitamin use	Not use
	Estimate (95% CI)	Estimate (95% CI)	Estimate (95% CI)
Male	751.31 (640 - 862)	513.40 (334 - 693)	729.57 (646 – 813)
Female	596.69 (558 - 635)	602.71 (557 - 648)	563.22 (520 - 606)

Note that for females all three estimates are consistent while for males those with infrequent use have significantly lower mean level of plasma retinol. Apart from men with infrequent vitamin use, women have on average lower levels of plasma retinol.

Regression models for the analysis of covariance

The analysis of covariance can also be expressed in terms of a linear regression by reparametrizing the fixed effect in the usual way. The complete ANACOVA model (including interaction is as follows:)

$$y = \beta_0 + \beta_1 X + \beta_2 Z + \beta_3 X Z + \varepsilon$$

where X and Z may be vector-valued.

For example, consider the effect of gender and age on plasma retinol levels. We code the gender

variable as before, i.e., $X_1 = \begin{cases} 1, \text{ male} \\ 0, \text{ otherwise} \end{cases}$, Z=age and XZ is the age/gender interaction.

With this parametrization, the model for the males and females are:

Males:
$$y_M = \underbrace{(\beta_0 + \beta_1)}_{\beta_{0M}} + \underbrace{(\beta_2 + \beta_3)}_{\beta_{1M}} Z + \varepsilon$$

Females: $y_F = \beta_0 + \beta_2 Z + \varepsilon$.

The test of parallelism

From the parametrization of the ANACOVA model we see that the effect of gender impacts the intercept of the line, while the interaction term affects the slope.

If there is no interaction (i.e., if $\beta_3 = 0$), the two lines are parallel (or they coincide if $\beta_2 = 0$). Thus,

testing the null hypothesis $H_0:\beta_3=0$ is equivalent to testing whether the lines formed by the

regression of plasma retinol levels by age in the two genders are parallel.

Consider the following output:

. xi: glm r i.sex i.sex*age	etplasm i.se I I	x*age sex_1-2 sXage_#	(naturally (coded as	y coded; above)	Isex_2 omitted)		
Iteration 1	: deviance	= 12658374.0	533				
Residual df = 310 No. of obs = 314 Pearson X2 = 1.27e+07 Deviance = 1.27e+07 Dispersion = 40833.46 Dispersion = 40833.46							
Gaussian (n	ormal) distr 	ibution, ide 	entity lind	د 			
retplasm 	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
age Isex_1 IsXage_1 _cons	2.810887 235.3007 -2.421536 451.2649	.8693928 151.7706 2.502083 43.94161	3.233 1.550 -0.968 10.270	0.001 0.122 0.334 0.000	1.10023 -63.33017 -7.344749 364.8033	4.521545 533.9316 2.501676 537.7264	
(Model is ordinary regression, use regress instead)							

Test of parallelism (continued)

From the STATA output above we have that there is no significant interaction between gender and age. This is obtained from the p-value of the z test for $H_0:\beta_3=0$, which is 0.334. Thus, the data do

not contradict the assumption of parallelism. This is shown graphically in the following figure:

A more parsimonious model is as follows:

```
. char sex[omit] 2
. xi: glm retplasm i.sex age
i.sex
                  Isex 1-2 (naturally coded; Isex 2 omitted)
Iteration 1 : deviance = 12696620.8404
                                             No. of obs = 314
Residual df = 311
                                             Deviance = 1.27e+07
Pearson X2 = 1.27e+07
Dispersion = 40825.15
                                              Dispersion = 40825.15
Gaussian (normal) distribution, identity link
retplasm | Coef. Std. Err. t P>|t| [95% Conf. Interval]
Isex 1 | 92.42252 35.20318 2.625 0.009 23.15599 161.689
  age | 2.518526 .8151396 3.090 0.002 .9146404 4.122412
_cons | 465.4578 41.41804 11.238 0.000 383.9628 546.9528
(Model is ordinary regression, use regress instead)
```

Which leads to a significant gender effect (p value=0.009) at the 5% level.