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Objectives

⚫ The overall objective of this course is to 
impact an understanding of Generalized 
Linear Models (GLM) and their use in 
practice that allows their application in a 
wide range of medical settings.



Areas to be covered

⚫ Definition of GLM and the use of maximum 
likelihood (ML) based inference in the context 
of GLM

⚫ The main class of GLM and their relevance in 
medical and epidemiological questions

⚫ The interpretation of parameter’s from GLM’s

⚫ The use of Stata to model data with GLM

⚫ Comparison and assessment of fit of GLM’s
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Introduction

Classical statistical inference is the process
by which sample data are used to infer the 
properties of populations

⚫ The modeling process involves the following
steps:

The model

Parameters

Parameter estimators

Hypotheses



The model

⚫A statistical model is a representation of the 
population under study. The model also usually 
reflects the way in which data have been 
sampled from the population.

⚫As an illustration, let the population be some 
set of individuals, a proportion  of whom 
correspond to success (i.e. treatment failure, 
alive etc). Given a random sample of n 
individuals the number of successes k has a 
bin(n, ) distribution.



Parameters

⚫ Parameters in the model correspond to 
features of the population. In practice the 
true values of the parameters are unknown and 
so the sample is to be used to draw inferences 
about them.

⚫ The proportion  is the parameter of interest 
in the previous example (and it is the only 
parameter in this case).



Parameter estimators

⚫ There are sample statististics that are used to 
provide estimates of the unknown parameters. 
Recall that estimator refers to the general 
form of the statistic (a random variable), while 
estimate refers to the actual numerical 
realization from a given sample.

⚫An obvious estimator of π is nk /ˆ =



Hypotheses

⚫ There are statements about the unknown 
parameters, e.g. a parameter takes a particular 
values  = 1/2 or two parameters are equal 

⚫ There is only one parameter, , so we are really 
restricted to hypotheses such as:  = 1/2.



Model

⚫ Suppose we have a number of measurements or 
counts, together with some associated 
structural or contextual information, such as 
the order in which data were collected, which 
measuring instruments were used, and other 
differences in conditions under which individual 
measurements were made. 

⚫ To interpret such data, we search for a 
pattern, i.e. that one measuring instrument has 
produced consistently higher readings than 
another. 



Model (cont)

⚫ Such systematic effects are likely to be 
blurred by other variation of a more haphazard 
nature. The latter variation is described in 
statistical terms, no attempt being made to 
model or predict the actual haphazard 
contribution to each observation. 

⚫ Statistical models contain both elements, 
which we will call systematic effects and 
random effects.



Model (cont)

⚫ The value of the model is that, it often suggests a 
simple summary of the data in terms of the major 
systematic effects together with a summary of 
the nature and magnitude of the unexplained or 
random variation. 

⚫ Thus, the problem of looking intelligently at data 
demands the formulation of patterns that are 
thought capable of describing successfully not only 
the systematic variation in the data under study, 
but also describing patterns in similar data that 
might be collected by another investigator at 
another time and in another place.



Example: regression models

⚫ What sort of variable Y is (continuous, discrete, qualitative, …)?

⚫ What is the distribution of Y, what is the range of possible values?

⚫ Does the sample of observed Y’s have to fit the distribution 
exactly? What else is important about the Y’s distribution?

⚫ What sort of variables are the x’s? (continuous, discrete, 
qualitative)

⚫ How do we assess how well this model fits a set of data?

⚫ How do we assess how well individual cases conform to the fitted 
model?

⚫ How do we assess the effect of individual cases on the fitted 
model?

iijji exY ++= 0



What if response variable is not 
continuous

⚫ Let’s say that Yi’s are binomial. The response 
variable will be Yi = 0 or 1 (ungrouped data). 
For example, case control study where Yi=0 for 
control and Yi=1 for case.

⚫We can also have grouped data. For example a 
group of ni cases all have the same values of 
xij’s. In that case Yi=# cases; Yi=0,1, …, ni. 
Proportion =Yi/ni. 



Can we use ordinary regression with 
binomial Yi?

⚫Ungrouped data: NO

⚫ Grouped data: In some cases, YES

⚫ Potential problems:

Model is actual 

Yi/ni bounded 0…1

Variance of Yi/ni not constant (but may be 
approximately proportional to 1/ni)

We can use binomial distribution

iijjii exnY ++= 0/



Generalized Linear Models

⚫ GLM include several known models as a special 
case: ordinary linear models, ANOVA, logit and 
probit models for binary data, log-linear 
models for counts, multinomial response models 
and some models for survival data. 

⚫ GLM share a number of properties, such as 
linearity, and there is a common method for 
computing parameter estimates.



Basic GLM’s assumptions

⚫ Independent observations. 

More generally, the observations are 
independent in blocks of fixed known sizes. 
Consequence: Data exhibiting the 
autocorrelations of time series are excluded.

⚫ Single Error Term 

There is a single error term in the model. This 
constraint excludes, for example models for 
the analysis of experiments having more than 
one error term (split-plot design i.e. between 
and within-plot variance).



Raw mortality in Madrid: 
Autocorrelation



Longitudinal data



Relaxing assumptions  

⚫ In practice both assumptions can be relaxed for 
certain kinds of GLM’s. 

For instance autoregression models can be easily
fitted using programs designed for ordinary linear
models. 

Through a grouping factor corresponding to a 
nuisance classification that may induce
correlations within groups; a within-groups
analysis after elimination of the effects of that
nuisance factor can proceed as if the observations
were independent.



Estimation

⚫ Having selected a model, it is required to estimate the 
parameters and to assess the precision of the 
estimates. 

⚫ In the case of GLM estimation proceeds by defining a 
measure of goodness of fit between the observed data 
and the fitted values generated by the model. 

⚫ The parameter estimates are the values that minimize 
the goodness of fit criterion. 

⚫ In ordinary regression parameters are estimated using 
the Least Squares method. That is by minimizing the 
sum of the squares of the residuals:

⚫ The general method used in GLM is that of maximum 
likelihood.
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Revision of likelihood based 
inference
⚫ If Y1, …, Yn are independent random variables each with 

probability density function (pdf) fi(yi;θ), where θ is a 
(possibly vector-valued) parameter, then, by virtue of 
independence, the joint pdf of the vector Y is:

⚫ This function, is called the likelihood. 

⚫ Note that the pdf function fi(yi;θ) is considered as a 
function of y for fixed , whereas the likelihood is 
considered as a function of  for the particular data 
set observed.
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The log-likelihood function

⚫Usually we work with the logarithm of the 
likelihood function and under the assumption of 
independence of the observations we have
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Maximum likelihood estimation

⚫ A way to estimate θ , is by finding a value  such that

where Θ is the space of θ.  This value  is called the 
maximum-likelihood estimate (MLE) of θ.

⚫ We can more easily calculate θ by maximizing the log-
likelihood.  The MLE of θ also maximizes this function.  
That is,

⚫ Working with the log-likelihood is preferred because it 
is easier to maximize sums of functions versus 
products (think how much easier it is differentiating a 
sum versus a product of functions).

̂
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Notes

⚫ For regular problems,      can be obtained by 

equating the first derivative of the likelihood 

function (or equivalently of the log-likelihood) to 

zero. Provided the second derivative at this point is 

negative, the resulting value is the MLE.

⚫ The likelihood is a function of the parameters 
and we are interested in its behavior (or shape) 
with respect to them. We are therefore 
concerned with the likelihood up to a constant 
multiplier (log-likelihood up to an additive 
constant) so when working with these, 
multiplicative (additive) terms not involving the 
parameters can be dropped.

̂



Notes (cont)

⚫MLE’s have a number of important properties 
that make them desirable.

MLE’s are asymptotically unbiased i.e. the 
expectation of , E(  ), becomes equal to         

A MLE has a sampling distribution that is 
asymptotically normal with variance the 
inverse of minus the information, 

 MLE’s are invariant under transformation i.e. 
if is the MLE of θ then any function of   
will be the MLE of the same function of θ.         
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Example: The Binomial distribution

Consider for example the Binomial distribution, of counts
and eachni
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The log likelihood

Consider the log likelihood
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Maximizing the log likelihood

To maximize the above expression, we must take n
derivatives with respect to πi, set them all equal to zero 
and solve a system of n equations with n unknowns.  Let’s 
consider the much simpler case, where  ==== n

21
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Example

Consider the situation n1=n2=n3=n4=n5=10 
and y1=2, y2=1, y3=1, y4=3, y5=3. A plot of the log-
likelihood is as follows:
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Example: Linear regression

Suppose that two measurements (yi,xi)  are made on each 
of n individuals. A simple linear regression model of y on x
can be written: iii exy ++=

where ei are independent with 2~ (0, )ie N 

Alternatively, we can say that the random variable Yi has 
a conditional distribution ),N(~| 2+ iii xxY

T

p},...,,{ 21 =
),g()|( XXY =E

This shows more clearly what is actually happening in a
regression model. In general, in any regression model, the
conditional expectation of a random variable (say Y) given
the values of one or more other variables (x={x1, x2, …, xp})
is expressed as some function of these fixed variables
(covariates, independent variables) and some parameters



The log likelihood

The log-likelihood can be written as:
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The MLE’s of α and β can be obtained from the score
equations:
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Note that we do not need to know σ2 to solve these. These
estimates are equivalent to the least squares estimators
derived by minimizing the residual sum of squares. Hence, in
this case, maximum likelihood is equivalent to lest squares.



Concept of GLM’s: exponential 
family of distributions

In GLMs the observations are assumed to arise from the 
exponential family of distributions:

where                            are known functions (McCullagh and 
Nelder, 1989, p. 28).  The parameter θ is known as the 
canonical parameter.  In general, it can be shown that:                                  

and 

The variance is thus a product of two terms,          which 
depends on the mean (through θ) which is called the variance 
function V(μ) , and the other on α(φ), a function of the form
α(φ)=φ/ω=σ2/ω where φ is called the dispersion or scale 
parameter, is constant over observations and ω known prior 
weights that vary from observation to observation.
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Example 1 – The Normal 
distribution
The density of a N(μ,σ2) random variable Ycan be written:
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The mean of the normal distribution                           , 
i.e. it is equal to the canonical parameter θ. The 
variance and it is of the form 
α(φ)=φ/ω with prior weights equal to 1.
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Example 2 – The Poisson 
distribution
The density of a P(λ) random variable Y can be written:

and the logarithm of it is

so

The mean of the Poisson distribution                           

The variance is 
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Example 3 – The Binomial 
distribution

The density of a Bin(n,π) random variable Ycan be 
written:

and the logarithm of it is

so

The mean of the Βinοmial distribution                           

The variance is 
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