Notes for laboratory session 2

Preliminaries

Consider the ordinary least-squares (OLS) regression of alcohol (alcohol) and plasma retinol (retplasm). We do this with STATA as follows:

. reg retplas	m alcohol						
Source	SS	df	MS		Number of obs	=	314
Model Residual	671843.17 12948338.7	1 67 312 415	1843.17 01.0855		Prob > F R-squared	= 1 = 0. = 0.	0001 0493
Total	13620181.9	313 43	514.958		Root MSE	= 0.	3.72
retplasm	Coef.	Std. Err.	t	P> t	[95% Conf.	Inter	val]
alcohol _cons	9.365251 578.8857	2.327637 13.04634	4.02 44.37	0.000	4.785401 553.2158	13. 604.	9451 5556

Try to locate the following:

- a. What is the overall significance of the model and how is it being assessed?
- b. What is the effect of alcohol on plasma retinol?
- c. For each unit of alcohol consumption increase what is the unit-change in plasma retinol? What is the 95% confidence interval?

Now do the same using the glm command of STATA.

```
. glm retplasm alcohol
Iteration 0: log likelihood = -2113.9991
Generalized linear models
Optimization : ML: Newton-Raphson
                                         No. of obs = 314
Residual df = 312
Scale parameter = 41501.09
(1/df) Deviance = 41501.09
Deviance = 12948338.69
Pearson = 12948338.69
                                         (1/df) Pearson = 41501.09
Variance function: V(u) = 1
                                          [Gaussian]
Link function : g(u) = u
Standard errors : OIM
                                          [Identity]
                                         AIC
Log likelihood = -2113.999055
                                                     = 13.4777
            = 12946544.88
BTC
  _____
  retplasm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
alcohol | 9.365251 2.327637 4.02 0.000 4.803167 13.92734
_cons | 578.8857 13.04634 44.37 0.000 553.3153 604.4561
_____
```

Try to notice the similarities between the two approaches. Specifically, notice the following:

d. Note the type of link and variance function. Why do you think these are the links and variance function used?

Produce the predicted regression line for alcohol consumption, along with a scatter plot of the observed values.

Model building

Assess the effect of adding variable fat after alcohol has been added to the model. Recall from your previous experience that this can be done with the general linear model procedure as follows:

- e. What is the criterion of whether fat intake has a significant effect on plasma retinol levels *after* adjusting for alcohol intake?
- f. What is the decision about whether we should include fat intake in a model of plasma retinol levels?

Now using the glm command in STATA:

```
. glm retplasm alcohol fat
Iteration 0: log likelihood = -2111.9469
                                            No. of obs = 314
Residual df = 311
Scale parameter = 41093.88
(1/df) Deviance = 41093.88
Generalized linear models
Optimization : ML: Newton-Raphson
Deviance = 12780195.36
Pearson = 12780195.36
                                             (1/df) Pearson = 41093.88
Variance function: V(u) = 1
                                             [Gaussian]
Link function : g(u) = u
Standard errors : OIM
                                             [Identity]
Log likelihood = -2111.946946
                                             AIC
                                                    = 13.471
              = 12778407.3
BIC
   _____
  retplasm | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____
   alcohol | 9.990265 2.336708 4.28 0.000 5.410401 14.57013
     fat | -.6975524 .3448463 -2.02 0.043 -1.373439 -.0216661
_cons | 630.7705 28.7483 21.94 0.000 574.4249 687.1162
```

We carry out the calculations that lead to the decision about adding or not of fat in the model. Consider using the deviance of the joint model (with fat and alcohol included) versus the model with only alcohol included. We do this as follows: The deviance of the former model is $D(X_1) = 12948338.69$, while the one for the latter model is $D(X_1, X_2) = 12780195.36$, where X_1 is alcohol and X_2 is fat. The criterion is $\frac{D(X_1) - D(X_1, X_2)}{D(X_1, X_2)/n - 3} = 4.09$.

g. We can compare this to a chi-square distribution with one degree of freedom. Why?

This is done as follows:

```
. display chi2tail(1,4.09)
.04313765
```

The p-value is 0.043<0.05 which suggests that fat should be included into the model. Alternatively, you can use the test command as follows:

If you wanted to assess whether two variables added, after alcohol consumption has been entered in the model, are significant, you can use the same method. Consider the following:

. glm retplasm alcohol fat fiber											
Iteration 0: log likelihood = -2111.9263											
Generalized linear mod	No. o:	314									
Optimization : ML:	Residual df = 310 Scale parameter = 41221.03										
Deviance = 12	ince = 12778518.55			(1/df) Deviance = 41221.03							
Pearson = 12	778518.55		(1/df) Pearson = 41221.03								
Variance function: V(u Link function : g(u Standard errors : OIM) = 1) = u	[Gaussian] [Identity]									
Log likelihood = -21 BIC = 12	11.926345 776736.24	AIC	=	13.47724							
retplasm Co	ef. Std.Err.	Z	P> z	[95% Conf.	Interval]						
alcohol 9.964 fat 6767 fiber 4526 _cons 635.0	244 2.343874 318 .3604768 052 2.244069 317 35.71259	4.25 -1.88 -0.20 17.78	0.000 0.060 0.840 0.000	5.370336 -1.383253 -4.850899 565.0363	14.55815 .0297898 3.945688 705.0271						

Now you can test the addition of fat and fiber intake in the model as follows:

```
. test fat fiber
( 1) [retplasm]fat = 0
( 2) [retplasm]fiber = 0
chi2( 2) = 4.12
Prob > chi2 = 0.1275
```

The results imply that the *joint* effect of fat and fiber intake is not significant when considered in addition to alcohol intake.

h. Can you replicate these results by hand, by considering this model and compare it to the one with only alcohol consumption included?