Notes for laboratory session 7

Logistic Regression II: Model checking

Consider the contraceptive use data set:

. list					
	age	educat	more	cuse	N
1	<25	Low	No	0	10
2	<25	Low	No	1	4
3.	<25	Low	Yes	0	53
4	<25	Low	Yes	1	6
5.	<25	High	No	0	50
6.	<25	High	No	1	10
7	<25	High	Yes	0	212
8.	<25	High	Yes	1	52
9	25-29	Low	No	0	19
10.	25-29	Low	No	1	10
11	25-29	Low	Yes	0	60
12.	25-29	Low	Yes	1	14
13.	25-29	High	No	0	65
14.	25-29	High	No	1	27
15.	25-29	High	Yes	0	155
16.	25-29	High	Yes	1	54
17	30-39	Low	No	0	77
18.	30-39	Low	No	1	80
19.	30-39	Low	Yes	0	112
20.	30-39	Low	Yes	1	33
21.	30-39	High	No	0	68
22.	30-39	High	No	1	78
23.	30-39	High	Yes	0	118
24	30-39	High	Yes	1	46
25.	40-49	Low	No	0	46
26.	40-49	Low	No	1	48
27.	40-49	Low	Yes	0	35
28.	40-49	Low	Yes	1	6
29.	40-49	High	No	0	12
30.	40-49	High	No	1	31
31.	40-49	High	Yes	0	8
32.	40-49	High	Yes	1	8

Measures of goodness of fit

Goodness of fit tests are, by definition, those that compare the observed to the fitted values. In logistic regression there are two such statistics: The Pearson chi-square and the deviance.

In the contraceptive data example, if age is not used as a continuous variable, there are 8 covariate categories ($=2 \times 4$) in each category of contraceptive use. Some data manipulation (see also Appendix) is in order:

a. What distribution does variable N1 have and what is the variable's meaning (i.e., what does it measure)?

Consider the alternative analysis of contraceptive use by age and desire for more children:

N1 is the number of women using contraceptives in each of the eight age \times more categories and tot is the total number of women. blogit performs the logistic regression on this binomial sample (i.e., the sample of N1 out of tot women using contraception). Compare these estimates with the output in the previous lecture.

This is the same as when we carried out the logit command on the total sample. We can now derive the deviance manually by following the formula given above. To derive $\hat{\mu}_{i}$ the expected number of women using contraception in each of the sixteen agexmore categories we proceed as follows (note that blogit produces estimates of counts not probabilities):

```
- predict yhat
(option \(n\) assumed; predicted no. of cases)
```

Note that we are predicting counts with the predict command after the blogit. Then the deviance is generated as follows:

```
. gen di = 2*(N1*log(N1/yhat) + (tot-N1)*log((tot-N1)/(tot-yhat)) )
. gen D=sum(di)
. display "Deviance = " D[_N]
Deviance = 16.788813
. display " p = " chi2tail(3, D[_N])
p = .00078105
```

So the p value is $\mathrm{p}=0.0008$, which means that the additive two-factor model does not fit the data adequately. This result is consistent to the analyses shown in the previous lecture.
Note that the square root of di is the deviance residual.
b. Why does the deviance statistic above as well as the Pearson statistic have a chi-square distribution with 3 degrees of freedom?

Pearson chi-square

The Pearson chi-square statistic is derived similarly:

```
. gen r=(N1-yhat)/sqrt(yhat*(1-yhat/tot))
. gen X2=sum(r^2)
. display "Pearson X2=" X2[_N]
Pearson X2=16.283419
. display "p = " chi2tail(3, X2[_N])
p = .00099191
```

The Pearson chi-square statistic is close to the deviance statistic and is associated with a highly significant p value, which is further evidence for the inadequacy of the two-factor additive model. Notice that r is called the Pearson residual.

The Hosmer and Lemeshow statistic

When individual data are involved, there is a definite need for a goodness of fit statistic. The Hosmer-Lemeshow (HL) statistic fills this need. Note that the asymptotic distribution of the deviance and Pearson statistic is not chi-square if we have individual-subject data (or when the number of categories k increases as n increases)!

We return to the original data set.
We need to do this, because STATA implements the HR statistic as part of the lfit command that follows the logistic command and the latter can only handle individual-level data.

```
. quietly xi: logit cuse i.more contage [freq=N]
. lfit, group(6) table
Logistic model for cuse, goodness-of-fit test
(Table collapsed on quantiles of estimated probabilities)
\begin{tabular}{rrrrrrr} 
Group & - Prob & \(-{ }^{\text {Obs }} 1\) & Exp_1 & Obs_0 & Exp_0 & Total \\
1 & 0.1632 & 58 & 52.7 & 265 & 270.3 & 323 \\
2 & 0.2135 & 68 & 60.4 & 215 & 222.6 & 283 \\
3 & 0.2743 & 79 & 84.8 & 230 & 224.2 & 309 \\
4 & 0.3828 & 65 & 90.2 & 187 & 161.8 & 252 \\
5 & 0.4633 & 158 & 140.4 & 145 & 162.6 & 303 \\
6 & 0.5730 & 79 & 78.5 & 58 & 58.5 & 137
\end{tabular}
    number of observations = 1607
            number of groups = 6
    Hosmer-Lemeshow chi2(4)= 17.48
                        Prob > chi2 = 0.0016
```

The p value of the Hosmer-Lemeshow chi-square is 17.48 , which compared to a chi-square with 4 degrees of freedom results in a p value of 0.0016 . This is evidence that the two-factor covariance model with no interaction does not fit the data adequately. Note that we chose $g=6$ as the total number of groups was 8 .

The HR statistic is computed as follows:
Step 1. Carry out the logistic regression and generate the predicted probabilities Step 2. Sort the predicted probabilities
Step 3. Group observations based on the predicted probabilities. Resolve (STATA) ties by assigning all observations with the same predicted value in the same group.
Step 4. Calculate a Pearson chi-square statistic based on the $2 \times g$ contingency table that results from step 3 and the response variable.

Let's compute the statistic manually (note that the size of the groups would be close to 1607/6=268 subjects):

Hand calculation of the HR statistic

The Hosmer-Lemeshow statistic is calculated as a Pearson chi-square statistic based on the 2×6 table. Its value is 17.48 . The associated p value based on a chi-square distribution with four degrees of freedom is 0.0016 .

```
. di "p = " chi2tail(4, 17.48)
p = .00155892
```


Lab session 7

Model checking

Recall the best model as identified in the previous lecture:

Model checking, is based on residuals and influence measures as was the case in linear regression.

Lab session 7

Residuals and influence measures

In the example, we produce the fitted values for the probability of contraceptive use as follows:

```
s sort more
. quietly xi: logit cuse i.more i.age i.more*i.age [freq=N]
. predict prob
(option p assumed; Pr(cuse))
. label var prob "Probability"
. quietly xi: logit cuse i.more contage contage2 i.more*contage[freq=N]
. predict phat
. gen phatl=phat if more==1
(16 missing values generated)
. gen phat0=phat if more==0
(16 missing values generated)
sc prob contage,c(.) || qfit phat1 contage|| qfit phat0 contage xlab() ylab()
```

c. The predicted probabilities prob from the model that includes more and age as well as morexage interaction are equal to the observed probabilities of the data. Why?

Model checking through residuals and influence measures

```
quietly xi: logit cuse contage2 i.more*contage [freq=N],nolog
predict p, resid
predict s, rstand
predict d, deviance
predict h,hat
. predict D, dbeta
predict DX2, dx2
predict Dd, dd
predict n, n
```

Notice that n is the number of the covariate pattern. These are

Covariate pattern (n)	Age (age)	Desire for more children (more)
1	<25	Yes
2	<25	No
3	$25-29$	Yes
4	$25-29$	No
5	$30-39$	Yes
6	$30-39$	No
7	$40-49$	Yes
8	$40-49$	No

Residuals

Variable \|	Obs	Mean	Std. Dev.	Min	Max	
p \|	32	-. 0119643	. 5481008	-. 9751577	. 8286497	
s \|	32	-. 0045499	. 9110746	-1.243111	1.458263	
d \\|	32	-. 0143877	. 5493285	-. 985256	. 8287445	

In situations where the number of subjects per category is fairly large (as is the case here), the central-limit theorem provides a criterion for deciding how large a residual has to be before is considered problematic.

Note!!! Disregard the Mean and Std. Dev. column in the above output. We used the sum command in order to simply get the minimum and maximum values of the residuals.

d. A residual larger than 2.0 should be inspected more carefully. Why?

We see that no residuals are too large as no residual reaches that threshold. However, the $6^{\text {th }}$ and $8^{\text {th }}$ category (more $==0$ and contage $==35,45$) are associated with a large Cook's distances. Here a criterion similar to the linear-regression situation of a Cook's distance larger than 1.0 being considered large is adopted.

. preserve - sort n . qui by n : keep if $\mathrm{n}==1$							
. li n age more D DX2 Dd h							
	n	age	more	D	DX2	Dd	h
1.	1	<25	Yes	. 8055608	. 1648559	. 1639945	. 8301184
2.	2	<25	No	. 1768137	. 1126808	. 111197	. 610767
3.	3	25-29	Yes	. 0004628	. 0006483	. 0006486	. 4164959
4.	4	25-29	No	. 9659234	1.545324	1.577495	. 3846388
5.	5	30-39	Yes	. 563625	. 3171211	. 319338	. 6399403
6.	6	30-39	No	4.459163	2.126531	2.127018	. 6770984
7.	7	40-49	Yes	1.001881	. 6698966	. 6502974	. 5992909
8.	8	40-49	No	7.95146	1.496048	1.488333	. 8416463
. restore							

Distance and influence measures

The leverage can be considered in a similar manner as in the linear-regression case. The sum of the diagonal elements of the hat matrix is $(p+1)$ so any leverage twice the average value (i.e., a leverage larger than $2(p+1) / k$) should be considered further (Pregibon, 1981). The average value here is $5 / 8=0.625$, so there are no overly influential categories.

Hosmer and Lemeshow also recommend inspecting graphically the model fit by plotting ΔX^{2} and ΔD as well as D against the estimated probility $\hat{\pi}_{j}=P(Y=1 \mid X=j)$ for covariate pattern j. Poorly fit points will be located at the top left and top right corner of the graph, and in general do not
conform to the pattern defined by the majority of the points. In the following plots, we identify the points by the covariate pattern n .

Distance and influence measures

The crude threshold for ΔX^{2} and ΔD is 4.0 , the approximation of the $95^{\text {th }}$ percentile of the chisquare distribution with one degree of freedom (recall that $\chi_{1 ; 0.95}^{2}=3.84$). By extension of the criterion of the Cook's distance, the threshold of D is 1.0 .

We see that no point in the graphs above satisfies any criterion for an unusually poorly fit or influential point. The model fits the data well. At the most, we would like to explore category $\mathrm{n}==6$ and $\mathrm{n}==8$ (women ages 30-39 and 40-49 wanting no more children) a bit further.

Appendix

(Data manipulation - Instead of using the "reshape" command)

-> age $=<25$, more $=$ No

	age	educat	more	N	cuse	contage	n1	N1
1.	<25	Low	No	10	No	20	0	0
2.	<25	High	No	50	No	20	0	
3.	<25	High	No	10	Yes	20	10	10
4.	<25	Low	No	4	Yes	20	4	14

-> age $=<25$, more $=$ Yes

	age	educat	more	N	cuse	contage	n1	N1
5.	<25	Low	Yes	53	No	20	.	0
6.	<25	High	Yes	212	No	20	0	
7.	<25	High	Yes	52	Yes	20	52	52
8.	<25	Low	Yes	6	Yes	20	6	58

