## Notes for laboratory session 6

#### Analysis using a 2×2 table or logistic regression

Factor with two levels ("more").

Consider the  $2\times 2$  table tabulating the use of contraceptives among women that desire more children, versus women that want no more children:

| . tabulate                        | cuse more [freq=                 | N], chi         |             |  |
|-----------------------------------|----------------------------------|-----------------|-------------|--|
| Contracept<br>ive use<br>(Yes/No) | Desires mo<br>  children<br>  No | re<br>1?<br>Yes | Total       |  |
| No<br>Yes                         | 347<br>  288                     | 753  <br>219    | 1100<br>507 |  |
| Total                             | 635                              | 972             | 1607        |  |
| 1                                 | Pearson chi2(1) =                | 92.6442         | Pr = 0.000  |  |

a) Calculate the p-value for the chi-square statistic using the appropriate STATA function.

Using STATA logit command this analysis looks as follows (note that we use "No use" as the reference cell). The likelihood of this model is saved with the lrtest command:

. est store M1

- b) Compare the chi-square statistic in the logit command output with the one given in  $2\times 2$  table analysis.
- c) Calculate the Odds for the use of contraceptives in the two "more" categories.
- d) Calculate the Odds Ratio. Now use the 2×2 table data to produce the Odds Ratio. Compare the two OR's.
- e) How can we test the significance of the "more" predictor? How is the relevant statistic produced? What are the distributional properties of this statistic?

Produce estimates of the odds ratios

- i. By including the option or after the logit statement, or
- ii. By using the logistic command.

```
. logit , or
                                    Number of obs =
                                                   91.67
Logit estimates
                                    LR chi2(1) = 91.67
Prob > chi2 = 0.0000
Log likelihood = -956.00957
                                    Pseudo R2
                                              =
                                                   0.0458
_____
cuse | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
  more | .3504178 .0387814 -9.475 0.000 .2820863 .4353017
. xi: logistic cuse i. more [freq=N]
               Imore 0-1 (naturally coded; Imore 0 omitted)
i.more
                                                   91.67
Logit estimates
                                    Number of obs =
                                    LR chi2(1) = 91.67
Prob > chi2 = 0.0000
Log likelihood = -956.00957
                                    Pseudo R2 =
                                                   0.0458
                 _____
  cuse | Odds Ratio Std. Err. z P>|z| [95% Conf. Interval]
_____
  more | .3504178 .0387814 -9.475 0.000 .2820863 .4353017
```

f) How is the 95% Confidence Interval for the OR produced in the logistic command output?

The "null" model

Consider the following model:

| git estim | nates        |           |   | Numbe | er of obs  | =     | 1607      |
|-----------|--------------|-----------|---|-------|------------|-------|-----------|
|           |              |           |   | LR cl | ni2(0)     | =     | 0.00      |
|           |              |           |   | Prob  | > chi2     | =     |           |
| y likelih | nood = -1001 | .8468     |   | Pseud | do R2      | =     | 0.0000    |
| -         | 1000 1001    |           |   | 1004  |            |       |           |
| <br>cuse  | Coef.        | Std. Err. | z | P> z  | <br>[95% C | conf. | Interval] |

g) What is the interpretation of the  $\beta_0$  coefficient? Check your result using the 2×2 table data.

h) Calculate the  $-2\log\lambda$  statistic using the maximized likelihoods in the null model and the model with the "more" predictor. Compare your result with the z-statistic for the variable "more".

The (Wald) chi-square statistic can be obtained by the test command in STATA as follows:

# Analysis using a 2×c table or logistic regression

Factor with more than two levels ("age").

Consider the 2×4 table tabulating the use of contraceptives among four different age groups:

| Contracept<br>ive use |           | Aq         | e          |             |             |
|-----------------------|-----------|------------|------------|-------------|-------------|
| (Yes/No)              | <25       | 25-29      | 30-39      | 40-49       | Total       |
| No<br>Yes             | 325<br>72 | 299<br>105 | 375<br>237 | 101  <br>93 | 1100<br>507 |
| Total                 | 397       | 404        | 612        | 194         | 1607        |

Using STATA logit command the same analysis looks like follows:

| ogit estir                               | nates                                     |                                               |                              | Numb                             | per of obs                             | =                      | 1607                                          |
|------------------------------------------|-------------------------------------------|-----------------------------------------------|------------------------------|----------------------------------|----------------------------------------|------------------------|-----------------------------------------------|
|                                          |                                           |                                               |                              | LR c                             | chi2(3)                                | =                      | 79.19                                         |
|                                          |                                           |                                               |                              | Prob                             | > chi2                                 | =                      | 0.0000                                        |
| og likelił                               | nood = -962.2                             | 25091                                         |                              | Pseu                             | ido R2                                 | =                      | 0.0395                                        |
|                                          |                                           |                                               |                              |                                  |                                        |                        |                                               |
| cuse                                     | Coef.                                     | Std. Err.                                     | Z                            | P> z                             | [95% Co                                | onf.                   | Interval]                                     |
| cuse  <br>+-<br>Iage 2                   | Coef.<br>.4606758                         | Std. Err.                                     | z<br>2.667                   | P> z <br>0.008                   | [95% Co                                | <br>onf.<br>           | Interval]<br>.1221403                         |
| cuse  <br>+<br>Iage_2  <br>Iage 3        | Coef.<br>.4606758<br>1.048293             | Std. Err.<br>.1727254<br>.1544404             | z<br>2.667<br>6.788          | P> z <br>0.008<br>0.000          | [95% Co<br>.79921<br>1.3509            | onf.<br>14             | Interval]<br>.1221403<br>.7455955             |
| cuse  <br>Iage_2  <br>Iage_3  <br>Iage 4 | Coef.<br>.4606758<br>1.048293<br>1.424638 | Std. Err.<br>.1727254<br>.1544404<br>.1939573 | z<br>2.667<br>6.788<br>7.345 | P> z <br>0.008<br>0.000<br>0.000 | [95% Co<br>.79921<br>1.3509<br>1.80478 | onf.<br>14<br>91<br>87 | Interval]<br>.1221403<br>.7455955<br>1.044489 |

- a) What is the value of the likelihood ratio statistic? Compare it to the appropriate distribution in order to obtain the relevant p-value.
- b) Calculate the odds ratios of each age group compared to the reference group. Derive now the same Odss Ratios using the 2×4 table and compare the two approaches.
- c) How can we check the significance of each group individually? Do you notice any kind of pattern in the age group coefficients.

We can test the significance of the age factor globally, using a Wald chi-square test:

```
. test Iage_2 Iage_3 Iage_4
( 1) Iage_2 = 0.0
( 2) Iage_3 = 0.0
( 3) Iage_4 = 0.0
chi2( 3) = 74.36
Prob > chi2 = 0.0000
```

## Two factors

Suppose that we introduce in the model both factors age and more. The tables are broken down by age as follows:

. sort age

. by age: tab cuse more [freq=N]

Or in a more compact way

. bysort age: tab cuse more [freq=N]

| -> age=                                                                    | <25                                                                        |                         |                                            | -> age=                                                           | 25-29                                        |                                               |                              |                      |                           |
|----------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------|--------------------------------------------|-------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------|----------------------|---------------------------|
| Contracept                                                                 | Desires more                                                               |                         |                                            | Contracept                                                        |                                              | Desires m                                     | ore                          |                      |                           |
| ive use                                                                    | L children?                                                                |                         |                                            | ive use                                                           | i                                            | childre                                       | n?                           |                      |                           |
| (Vec/Ne)                                                                   | Vee                                                                        | No                      |                                            | (Voc/No)                                                          |                                              | Voc                                           |                              |                      | metal                     |
| (162/100)                                                                  | I IES                                                                      | NO                      | I IOCAL                                    | (165/100)                                                         |                                              | IES                                           | INO                          | 1                    | IOLAI                     |
|                                                                            | +                                                                          |                         | +                                          |                                                                   | -+                                           |                                               |                              | +                    |                           |
| No                                                                         | 265                                                                        | 60                      | 325                                        | No                                                                |                                              | 215                                           | 84                           |                      | 299                       |
| Yes                                                                        | 58                                                                         | 14                      | 72                                         | Yes                                                               | 1                                            | 68                                            | 37                           | 1                    | 105                       |
|                                                                            | +                                                                          |                         | +                                          |                                                                   | -+                                           |                                               |                              | +                    |                           |
| Total                                                                      | . 303                                                                      | 74                      | 1 307                                      | Total                                                             | 1                                            | 203                                           | 1 2 1                        | 1                    | 101                       |
| IULAI                                                                      | 323                                                                        | / 4                     | 551                                        | IULAI                                                             | 1                                            | 205                                           |                              | 1                    | 404                       |
| 1                                                                          |                                                                            |                         |                                            |                                                                   |                                              |                                               |                              |                      |                           |
|                                                                            |                                                                            |                         |                                            |                                                                   |                                              |                                               |                              |                      |                           |
| -> age= 3                                                                  | 30-39                                                                      |                         |                                            | -> age=                                                           | 40-49                                        |                                               |                              |                      |                           |
| -> age= 3<br>Contracept                                                    | 30-39<br>  Desires more                                                    |                         |                                            | -> age=<br>Contracept                                             | 40-49                                        | Desires m                                     | ore                          |                      |                           |
| -> age= 3<br>Contracept                                                    | 30-39<br>  Desires more<br>  children?                                     |                         |                                            | -> age=<br>Contracept                                             | 40-49<br>                                    | Desires m                                     | ore<br>n?                    |                      |                           |
| -> age= 3<br>Contracept<br>ive use                                         | 30-39<br>  Desires more<br>  children?                                     | Na                      | u metel                                    | -> age=<br>Contracept<br>ive use                                  | 40-49<br> <br>                               | Desires m<br>childre                          | ore<br>n?                    |                      | mata]                     |
| -> age= Contracept<br>ive use<br>(Yes/No)                                  | 30-39<br>  Desires more<br>  children?<br>  Yes                            | No                      | Total                                      | -> age=<br>Contracept<br>ive use<br>(Yes/No)                      | 40-49<br> <br> <br>                          | Desires m<br>childre<br>Yes                   | ore<br>n?<br>No              |                      | Total                     |
| -> age= Contracept<br>ive use<br>(Yes/No)                                  | 30-39<br>  Desires more<br>  children?<br>  Yes                            | No                      | Total                                      | -> age=<br>Contracept<br>ive use<br>(Yes/No)                      | 40-49<br> <br> <br> <br>+                    | Desires m<br>childre<br>Yes                   | ore<br>n?<br>No              | <br>+                | Total                     |
| -> age= :<br>Contracept<br>ive use<br>(Yes/No)<br>                         | 30-39<br>  Desires more<br>  children?<br>  Yes<br>+                       | No<br>145               | Total<br>+<br>  375                        | -> age=<br>Contracept<br>ive use<br>(Yes/No)<br>No                | 40-49<br> <br> <br> <br> <br> <br>           | Desires m<br>childre<br>Yes<br>43             | ore<br>n?<br>No<br>58        | <br>+                | Total<br><br>101          |
| -> age= Contracept<br>ive use<br>(Yes/No)<br>No<br>Yes                     | 30-39<br>  Desires more<br>  children?<br>  Yes<br>+<br>  230<br>  79      | No<br>145<br>158        | Total<br>+<br>  375<br>  237               | -> age=<br>Contracept<br>ive use<br>(Yes/No)<br>No<br>Yes         | 40-49<br> <br> <br> <br> <br> <br>           | Desires m<br>childre<br>Yes<br><br>43<br>14   | ore<br>n?<br>No<br>58<br>79  | <br>+                | Total<br><br>101<br>93    |
| -> age= 3<br>Contracept<br>ive use<br>(Yes/No)<br>No<br>Yes                | 30-39<br>  Desires more<br>  children?<br>  Yes<br>+<br>  230<br>  79      | No<br>145<br>158        | Total<br> <br>  375<br>  237               | -> age=<br>Contracept<br>ive use<br>(Yes/No)<br><br>No<br>Yes     | 40-49<br> <br> <br> <br>+                    | Desires m<br>childre<br>Yes<br>43<br>14       | ore<br>n?<br>No<br>58<br>79  | <br>+<br> <br>       | Total<br>101<br>93        |
| -> age= Contracept<br>ive use<br>(Yes/No)<br>No<br>Yes                     | 30-39<br>  Desires more<br>  children?<br>  Yes<br>                        | No<br>145<br>158        | Total<br>  375<br>  237                    | -> age=<br>Contracept<br>ive use<br>(Yes/No)<br>                  | 40-49<br> <br> <br> <br> <br> <br> <br> <br> | Desires m<br>childre<br>Yes<br>43<br>14       | ore<br>n?<br>                | <br>+<br> <br> <br>+ | Total<br>101<br>93        |
| -> age=<br>Contracept<br>ive use<br>(Yes/No)<br><br>No<br>Yes<br><br>Total | 30-39<br>  Desires more<br>  children?<br>  Yes<br>+<br>  230<br>  79<br>+ | No<br>145<br>158<br>303 | Total<br>+<br>  375<br>  237<br>+<br>  612 | -> age=<br>Contracept<br>ive use<br>(Yes/No)<br><br>No<br>Yes<br> | 40-49<br> <br> <br> <br> <br> <br> <br> <br> | Desires m<br>childre<br>Yes<br>43<br>14<br>57 | ore<br>n?<br>58<br>79<br>137 | <br>+<br> <br>+      | Total<br>101<br>93<br>194 |

Use the Mantel-Haenszel (M-H) analysis to adjust for age the relationship of contraceptive use and desire for more children.

- a) Is the relationship between contraceptive use and desire for more children significant?
- b) The test for homogeneity is significant. What is the interpretation of this result?

A more flexible way to proceed is via logistic regression models:

| .age                                                                |                                                                                     | Iage_1-4                                                           | (naturally                             | y coded;                         | : Iage_1 omit                                             | ted)                                   | <b>`</b>                                                         |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------------------|----------------------------------------|------------------------------------------------------------------|
| .more                                                               |                                                                                     | Imore_0-1                                                          | (naturally                             | y coaea;                         | : imore_0 om                                              | lttea                                  | )                                                                |
| .ogit estir                                                         | nates                                                                               |                                                                    |                                        | Nu                               | umber of obs                                              | =                                      | 1607                                                             |
| -                                                                   |                                                                                     |                                                                    |                                        | LF                               | R chi2(4)                                                 | =                                      | 128.88                                                           |
|                                                                     |                                                                                     |                                                                    |                                        | Pi                               | rob > chi2                                                | =                                      | 0.0000                                                           |
|                                                                     |                                                                                     |                                                                    |                                        |                                  |                                                           |                                        |                                                                  |
| og likelil                                                          | nood = -937.                                                                        | 40449                                                              |                                        | Ps                               | seudo R2                                                  | =                                      | 0.0643                                                           |
| og likelil<br>cuse                                                  | nood = -937.<br>Coef.                                                               | 40449<br>Std. Err.                                                 | Z                                      | Ps<br><br>P> z                   | seudo R2<br>[95% (                                        | =<br><br>Conf.                         | 0.0643<br>                                                       |
| og likeli<br>                                                       | nood = -937.<br>Coef.<br>.3678306                                                   | 40449<br>Std. Err.<br>.1753673                                     | z<br>2.097                             | Ps<br>P> z <br>0.036             | seudo R2<br>[95% (<br>.0242                               | =<br>Conf.<br>117                      | 0.0643<br><br>Interval]<br><br>.7115443                          |
| Log likeli<br>                                                      | <pre>nood = -937.<br/>Coef.<br/>.3678306<br/>.8077888</pre>                         | 40449<br>Std. Err.<br>.1753673<br>.1597533                         | z<br>2.097<br>5.056                    | P> z <br>0.036<br>0.000          | seudo R2<br>[95% (<br>.0242<br>.4946                      | =<br>Conf.<br>117<br>578               | 0.0643<br>Interval]<br>.7115443<br>1.1209                        |
| .og likeli<br>cuse  <br>Iage_2  <br>Iage_3  <br>Iage_4              | <pre>nood = -937.<br/>Coef.<br/>.3678306<br/>.8077888<br/>1.022618</pre>            | 40449<br>Std. Err.<br>.1753673<br>.1597533<br>.2039337             | z<br>2.097<br>5.056<br>5.014           | P> z <br>0.036<br>0.000<br>0.000 | seudo R2<br>[95% (<br>.0242<br>.4946<br>.6229             | =<br>Conf.<br>117<br>578<br>158        | 0.0643<br>Interval]<br>.7115443<br>1.1209<br>1.422321            |
| .og likeli<br>cuse  <br>Iage_2  <br>Iage_3  <br>Iage_4  <br>Imore_1 | <pre>nood = -937.<br/>Coef.<br/>.3678306<br/>.8077888<br/>1.022618<br/>824092</pre> | 40449<br>Std. Err.<br>.1753673<br>.1597533<br>.2039337<br>.1171128 | z<br>2.097<br>5.056<br>5.014<br>-7.037 | P> z <br>                        | Seudo R2<br>[95% (<br>.0242<br>.4946<br>.62292<br>-1.0536 | =<br>Conf.<br>117<br>578<br>158<br>529 | 0.0643<br>Interval]<br>.7115443<br>1.1209<br>1.422321<br>5945552 |

The above model is shown graphically as follows:

```
. quietly xi: logit cuse i.age more [freq=N]
. predict phat
(option p assumed; Pr(cuse))
. generate phat0=phat if more==0
. generate phat1=phat if more==1
. label var phat0 "P(Y=1|X=0) (no more children)"
. label var phat1 "P(Y=1|X=1) (more children)"
. sort age
. sc phat0 phat1 age, xlab() ylab() l1(Probability) c(l l)
```



- c) Try to produce a similar graph for the log(Odds) instead of probabilities. (Check the STATA help file for the logistic command in order to locate the appropriate option for the predict command)
- d) Calculate the adjusted for age estimate of the odds ratio of using contraception, associated with the desire for more children versus desire for no more children.
- e) Calculate the adjusted for desire for more children estimate of the odds ratio of using contraception versus not using for women aged 40-49 vs. women aged <25.
- f) What is the underlying assumption of the previous model about the difference between the two "more" groups across the four age group categories.

#### The two-factor model with interaction

Consider the previous logistic regression model with the addition of the more-age interaction.

```
. xi: logit cuse i.age i.more i.age*i.more [freg=N], nolog
                      Iage_1-4 (naturally coded; Iage_1 omitted)
i.age
i.more Imore_0-1 (naturally coded; Imore_0 omitted)
i.age*i.more IaXm_#-# (coded as above)
Note: Iage_2 dropped due to collinearity.
Note: Iage_3 dropped due to collinearity.
Note: Iage_4 dropped due to collinearity.
Note: Imore 1 dropped due to collinearity.
                                                       Number of obs = 1607
LR chi2(7) = 145.67
Logit estimates
                                                                               1607
                                                                        = 0.0000
                                                       Prob > chi2
                                                                               0.0727
                                                        Pseudo R2
                                                                        =
Log likelihood = -929.01009
_____
   cuse | Coef. Std. Err. z P>|z| [95% Conf. Interval]
Iage_2 |.6353883.35640831.7830.075-.06315921.333936Iage_3 |1.541149.31830934.8420.000.91727392.165023Iage_4 |1.764292.34350365.1360.0001.0910372.437547Imore_1 |-.0639996.330318-0.1940.846-.711411.5834119Iaxm_2 1 |-.2672319.409144-0.6530.514-1.069139.5346757Iaxm_3 1 |-1.090493.373285-2.9210.003-1.822118-.3588679Iaxm_4 1 |-1.367148.4834191-2.8280.005-2.314632-.4196641_cons |-1.455287.2968082-4.9030.000-2.037021-.8735538
     .
_______
.est store M4
```

- a) Calculate the adjusted estimate of the odds ratio of using contraception versus not using for women aged 40-49 vs. women aged <25 i. For women desiring more children and ii. For women not desiring more children. What is the interpretation of the interaction term (IaXm 4 1) coefficient.</li>
- b) What is the main difference between the models with and without the interaction term?

Graphically, the model with interaction can be shown as follows:

```
. predict phatx
(option p assumed; Pr(cuse))
. gen phatx0=phatx if more==0
(16 missing values generated)
. gen phatx1=phatx if more==1
(16 missing values generated)
. label var phatx1 "P(Y=1|X=1) (more children)"
. label var phatx0 "P(Y=1|X=0) (no more children)"
. sort age
. sc phatx0 phatx1 age , xlab() ylab() c(l l) l1(Probability)
```



c) Produce a similar graph showing <u>Odds</u> instead of probabilities.

#### **Model selection**

The best model can be determined by considering the likelihood-ratio statistics produced in the STATA output above:

1. Model with more versus the null model

| . lrtest MO M1<br>likelihood-ratio test | LR chi2(1) =  | 91.67  |
|-----------------------------------------|---------------|--------|
| (Assumption: M0 nested in M1)           | Prob > chi2 = | 0.0000 |

### 2. Model with age versus the null model

| . lrtest MO M2                |               |        |
|-------------------------------|---------------|--------|
|                               |               |        |
| likelihood-ratio test         | LR chi2(3) =  | 79.19  |
| (Assumption: M0 nested in M2) | Prob > chi2 = | 0.0000 |

### 3. Model with more versus the two-factor model with no interaction

| . lrtest M1 M3                |                      |
|-------------------------------|----------------------|
| likelihood-ratio test         | LR chi2(3) = 37.21   |
| (Assumption: M1 nested in M3) | Prob > chi2 = 0.0000 |

### 4. Model with age versus the two-factor model with no interaction

| . lrtest M2 M3                |                      |
|-------------------------------|----------------------|
| likelihood-ratio test         | LR chi2(1) = 49.69   |
| (Assumption: M2 nested in M3) | Prob > chi2 = 0.0000 |
|                               |                      |

### 5. The effect of interaction is given from the following test:

| . lrtest M3 M4                |                      |
|-------------------------------|----------------------|
| likelihood-ratio test         | LR chi2(3) = 16.79   |
| (Assumption: M3 nested in M4) | Prob > chi2 = 0.0008 |

Fill the following table.  $P_{n+1}$  is the "smaller" model which is nested in the previous model  $P_n$  and l is the maximized log likelihood.

| Model                          | Log Likelihood (l) | $-2*[l(P_{n+1})-l(P_n)]$ | Df | p-value |
|--------------------------------|--------------------|--------------------------|----|---------|
| Two factors (with interaction) |                    |                          | -  |         |
| Two factors (no interaction)   |                    |                          |    |         |
| Age                            |                    |                          |    |         |
| Desires more children?         |                    |                          |    |         |
| Null model                     |                    |                          |    |         |

a) What do conclude about the significance of the interaction term?

# Analysis of covariance-type models

Given the strong linear relationship between the logit of contraceptive use and age, we may consider a model where age is not grouped in categories but is entered as a continuous covariate.

```
. gen contage = age
. recode contage 1=20 2=27.5 3=35 4=45
(32 changes made)
```

#### Single-factor model

The single-factor model is given as follows:

| ogit estimates |             |                          |       | Number of obs  |            | = | 1607<br>76 79 |
|----------------|-------------|--------------------------|-------|----------------|------------|---|---------------|
|                |             | Prob > chi2<br>Pseudo R2 |       | =<br>=         | 0.0000     |   |               |
| og likelik     | a = -963    |                          |       |                |            |   |               |
| og iikeiii     | 1000 - 505. | 10200                    |       | rseu           | uu kz      | _ | 0.0505        |
|                |             |                          |       |                |            |   |               |
| cuse           | Coef.       | Std. Err.                | <br>Z | P> z           | <br>[95% C |   | Interval]     |
| cuse  <br>     | Coef.       | Std. Err.                | z<br> | P> z <br>0.000 | [95% C<br> |   | Interval]     |

.est store M5

- a) What is the interpretation of the "contage" coefficient?
- b) What is the main advantage of this approach instead of the previous age parametrization? What is the difference in our assumptions when we use age as a continuous variable?

Two-factor model with no interaction

The model including both age and desire for more children is given as follows:

| . xi: logi<br>i.more            | t cuse i.more<br>]             | e contage [fr<br>[more_0-1    | eq=N], nol<br>(naturally   | og<br>coded;            | Imore_0 omit                  | tted           | )                              |
|---------------------------------|--------------------------------|-------------------------------|----------------------------|-------------------------|-------------------------------|----------------|--------------------------------|
| Logit estimates                 |                                |                               |                            | Num<br>LR               | ber of obs<br>chi2(2)         | =              | 1607<br>126.69                 |
| Log likelihood = -938.50406     |                                |                               |                            |                         | Prob > chi2<br>Pseudo R2      |                | 0.0000<br>0.0632               |
| cuse                            | Coef.                          | Std. Err.                     | Z                          | P> z                    | [95% Cc                       | onf.           | Interval]                      |
| Imore_1  <br>contage  <br>_cons | 8258978<br>0441062<br>2.516654 | .11711<br>.007529<br>.2365292 | -7.052<br>-5.858<br>10.640 | 0.000<br>0.000<br>0.000 | -1.05542<br>058862<br>2.05306 | 29<br>27<br>65 | 5963665<br>0293497<br>2.980243 |
| . est store<br>. lrtest M       | е M6<br>5 M6                   |                               |                            |                         |                               |                |                                |
| likelihood<br>(Assumption       | -ratio test<br>n: M5 nested    | in M6)                        |                            |                         | LR chi2(1)<br>Prob > chi      | i =            | 49.90<br>0.0000                |

c) Is the effect of the "more" variable significant? Notice the relation between the chisquare statistic in the lrtest output and the z-statistic for the "more" variable in the logit command output.

Graphically, the model with interaction can be shown as follows:

```
. predict yhat
(option p assumed; Pr(cuse))
. generate yhat1=yhat if more==1
(16 missing values generated)
. generate yhat0=yhat if more==0
(16 missing values generated)
. label var yhat1 "P(Y=1|X=1) (more children)"
. label var yhat0 "P(Y=1|X=0) (no more children)"
. sort more age
. sc yhat0 yhat1 contage, c(l l) xlab() ylab() l1("Probability")
```



d) Why are the lines not exactly straight?

Two-factor model with interaction

```
. xi: logit cuse contage i.more i.more*contage [freq=N], nolog
       Imore_0-1 (naturally coded; Imore_0 omitted)
contage ImXcon_# (coded as above)
i.more
i.more*contage
Note: Imore 1 dropped due to collinearity.
Note: contage dropped due to collinearity.
                                               Number of obs =
Logit estimates
                                                                     1607
                                               LR chi2(3) = 136.54
                                               Prob > chi2
                                                             = 0.0000
Log likelihood = -933.57756
                                               Pseudo R2
                                                             =
                                                                  0.0681
_____
  cuse | Coef. Std. Err. z
                                          P>|z| [95% Conf. Interval]
_____+
contage |.0698143.011446.1030.000.0473923.0922362Imore_1 |.7110262.50825961.3990.162-.28514421.707197ImXcon_1 |-.0479913.015438-3.1090.002-.0782493-.0177334_cons |-2.573179.4020974-6.3990.000-3.361275-1.785082
. est store M7
. lrtest M7 M6
likelihood-ratio test
                                                    LR chi2(1) =
                                                                     9.85
(Assumption: M6 nested in M7)
                                                    Prob > chi2 =
                                                                    0.0017
```

e) Is the interaction term significant?

f) What is the interpretation of the coefficient of the interaction term?

The two-factor model with interaction is shown graphically here (the points in the graph correspond to the predicted probabilities from the original model where age was treated as a categorical factor):

```
. predict phatcx
(option p assumed; Pr(cuse))
. gen phatcx0=phatcx if more==0
(16 missing values generated)
. gen phatcx1=phatcx if more==1
(16 missing values generated)
. label var phatcx1 "P(Y=1|X=1) (contage)"
. label var phatcx0 "P(Y=1|X=0) (contage)"
. sort age
. sc phatx0 phatx1 phatcx0 phatcx1 age , xlab() ylab() c(. . 1 l)
l1(Probability)
```



Now add a quadratic term for age to the model and then produce a graph with results from both models (with and without interaction):

```
. gen contage2=contage*contage
. xi: logit cuse contage contage2 i.more i.more*contage [freq=N], nolog
                  Imore_0-1 (naturally coded; Imore_0 omitted)
ImXcon_# (coded as above)
i.more
i.more*contage
Note: Imore 1 dropped due to collinearity.
Note: contage dropped due to collinearity.
Logit estimates
                                            Number of obs =
                                                                1607
                                            LR chi2(4)
                                                              143.33
                                                          =
                                            Prob > chi2
                                                          =
                                                               0.0000
Log likelihood = -930.18024
                                            Pseudo R2
                                                          =
                                                               0.0715
  _____
   cuse | Coef. Std. Err. z P>|z| [95% Conf. Interval]
_____+

      contage |
      .2331551
      .0651087
      3.581
      0.000

      contage2 |
      -.0024113
      .0009398
      -2.566
      0.010

                                                  .1055445
                                                             .3607658
contage2 | -.0024113
                                                  -.0042532
                                                            -.0005693
Imore 1 | 1.292637
                                                   .1538601
                                                             2.431413
                   .5810191
                                2.225 0.026
ImXcon 1 | -.0659373
                   .0176673
                               -3.732 0.000
                                                  -.1005645
                                                            -.0313101
  _cons | -5.216035
                   1.123734
                                -4.642 0.000
                                                  -7.418513 -3.013557
  _____
. est store M8
. lrtest M7 M8
likelihood-ratio test
                                                LR chi2(1) =
                                                                 6.79
(Assumption: M7 nested in M8)
                                                Prob > chi2 = 0.0091
```

g) Is the quadratic term significant?

Consider now the model where the interaction will encompass the quadratic term:

```
. quietly xi: logit cuse contage contage2 i.more i.more*contage i.more*contage2
[freq=N]
  . est store M9
  . lrtest M8 M9
  likelihood-ratio test LR chi2(1) = 0.60
  (Assumption: M8 nested in M9) Prob > chi2 = 0.4399
```

h) Do you think that the inclusion of the quadratic interaction term in the model is required?

Stata code and graphs showing predicted log Odds by the last two models (contage\*more + contage^2 and contage\*more + contage^2\*more) along with predictions by the model with categorical age and its interaction with more:

```
qui xi: logit cuse i.more*i.age [freq=N],nolog
predict lodd_cat,xb
gen lodd_cat0=lodd_cat if more==0
gen lodd_cat1=lodd_cat if more==1
qui xi: logit cuse i.more*contage contage2 [freq=N],nolog
predict lodd_2cont,xb
gen lodd_2cont0=lodd_2cont if more==0
gen lodd_2cont1=lodd_2cont if more==1
qui xi: logit cuse i.more*contage i.more*contage2 [freq=N],nolog
predict lodd_3cont1=lodd_3cont if more==0
gen lodd_3cont0=lodd_3cont if more==1
```

sc lodd\_cat0 lodd\_cat1 age , xlab() ylab() c(. . ) || qfit lodd\_2cont0 age
|| qfit lodd\_2cont1 age



sc lodd\_cat0 lodd\_cat1 age , xlab() ylab() c(. . ) || qfit lodd\_3cont0 age
|| qfit lodd 3cont1 age

