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1 Introduction

Random matrix theory is concerned with the study of the eigenvalues, eigen-
vectors, and singular values of large-dimensional matrices whose entries are
sampled according to known probability densities. Early interest in ran-
dom matrices arose in the context of multivariate statistics with the works
of Wishart [22] and Hsu [5] in the 1930s, but it was Wigner in the 1950s who
introduced random matrix ensembles and derived the first asymptotic result
through a series of papers motivated by nuclear physics [19, 20, 21].

As the theory developed, it was soon realized that the asymptotic behavior
of random matrices is often independent of the distribution of the entries, a
property called universality. Furthermore, the limiting distribution typically
takes nonzero values only on a bounded interval, displaying sharp edges. For
instance, Wigner’s semicircle law is universal in the sense that the eigenvalue
distribution of a symmetric or Hermitian matrix with i.i.d. entries, properly
normalized, converges to the same density regardless of the underlying distri-
bution of the matrix entries (figure 1). In addition, in this asymptotic limit
the eigenvalues are almost surely supported on the interval [−2, 2], illustrating
the sharp edges behavior mentioned before.

Universality is important for theoretical as well as practical reasons. His-
torically, results such as Wigner’s semicircle law were initially discovered for
specific matrix ensembles, only to be later extended to more general classes
of matrices. As another example, the circular law for the eigenvalues of a
(non-symmetric) matrix with i.i.d. entries was initially established for Gaus-
sian entries in 1965 [4], but only in 2008 was it fully expanded to arbitrary
densities [10]. From a practical standpoint, the benefits of universality are
clear, given that the same result can be applied to a vast class of problems.

Sharp edges are important for practical applications, where the hope is to use
the behavior of random matrices to separate out a signal from noise. In such
applications, the finite size of the matrices of interest poses a problem when
adapting asymptotic results valid for matrices of infinite size. Nonetheless,
an eigenvalue that appears significantly outside of the asymptotic range is a
good indicator of non-random behavior. In contrast, trying to apply the same
kind of heuristics when the asymptotic distribution is not compactly supported
requires a much better understanding of the rate of convergence.

Although recently there has been increased interest in studying the eigen-
vectors of random matrices, a majority of the results established so far are
concerned with the spectra, or eigenvalue distributions, of such matrices. Of
interest are both the global regime, which refers to statistics on the entire set of
eigenvalues, and the local regime, concerned with spacings between individual
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eigenvalues.

In this paper, we present three classical theorems spanning both of these
regimes: Wigner’s semicircle law for the eigenvalues of symmetric or Hermi-
tian matrices, the Marcenko-Pastur law for the eigenvalues of sample covari-
ance matrices, and the Tracy-Widom distribution for the largest eigenvalue
of Gaussian unitary matrices. In particular, we focus on exploring the differ-
ent methods of proof used to derive these results, emphasizing the advantages
and limitations of each. In doing so, we also trace the shift over the past few
decades from proofs based on combinatorial arguments, seen in what is known
as the moment method, to complex-analytical proofs based on the Stietljes
transform, and finally to the new paradigm provided by the theory of free
probability.
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2 Preliminaries

2.1 Wigner matrices

In this section, we define the general Wigner matrix ensemble, and then de-
scribe several cases of particular interest. This ensemble is important for
historical reasons, since it provided the first model of random matrices when
introduced by Wigner, but it is still prominent in random matrix theory today
because it is mathematically simple to work with, and yet has a high degree
of generality.

Definition 2.1.1. Let {Yi}1≤i and {Zij}1≤i<j be two real-valued families of
zero mean, i.i.d. random variables. Furthermore, suppose that EZ2

12 = 1 and
for each k ∈ N,

max(E|Z12|k,E|Y1|k) <∞.
Consider a n× n symmetric matrix Mn whose entries are given by:{

Mn(i, i) = Yi

Mn(i, j) = Zij = Mn(j, i), if i < j

The matrix Mn is known as a real symmetric Wigner matrix.

Remark 2.1.2. Occasionally, the assumptions above are relaxed so that the
entries of Mn don’t necessarily have finite moments of all orders. Typically,
the off-diagonal entries are still required to have identical second moments.

Definition 2.1.3. If the off-diagonal entries are complex-valued and we ask
that Mn be Hermitian rather than symmetric, the construction above gives a
complex Hermitian Wigner matrix.

The most important classes of Wigner matrices are presented in the examples
below.

Example 2.1.4. If the Yi and Zij are Gaussian, with Zij either real or com-
plex, the resulting matrix Mn is called a Gaussian Wigner matrix. When
Yi ∼ N (0, 2)R and Zij ∼ N (0, 1)R, one obtains the Gaussian Orthogonal En-
semble, which bears this name due to its invariance under orthogonal transfor-
mations. Similarly, the Gaussian Unitary Ensemble, invariant under unitary
transformations, has Yi ∼ N (0, 1)R and Zij ∼ N (0, 1)C. The orthogonal
and unitary ensembles are useful due to their highly symmetric nature, which
makes possible direct calculations that would be infeasible in the general case.

Example 2.1.5. When Yi and Zij are symmetric random sign random vari-
ables, the resulting matrices form the symmetric Bernoulli ensemble. Wigner’s
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semicircle law was initially proven for symmetric Bernoulli random matrices
[20], before the author realized three years later that the result holds more
generally [21].

Thinking of a random matrix Mn as a linear operator, we can form its operator
norm, defined as

||Mn||op = min{c ≥ 0 : ||Mnv|| ≤ c||v||, ∀v ∈ Rn}, (2.1)

where ||· || denotes the usual Euclidean norm. For reasons that will become
more clear later on, the operator norm of a Wigner matrix of size n is typically
O(
√
n). Therefore, when studying the asymptotics of various statistics about

Wigner matrices, we will often consider the normalised matrices Xn := Mn/
√
n

instead.

2.2 The empirical spectral distribution

Given a normalised Wigner matrix Xn = Mn/
√
n, consider its n eigenvalues

λ1(Xn) ≤ . . . ≤ λn(Xn). Because Xn is symmetric or Hermitian, these eigen-
values are all real. To study their distribution, we form the empirical spectral
distribution (ESD),

µXn :=
1

n

n∑
j=1

δλj(Xn), (2.2)

with δλj(Xn)(x) being the indicator function 1λj(Xn)≤x. When the matrix Xn

or Mn can be inferred from the context, we will often write µn and λnj in place
of µXn and λj(Xn). Note that µXn is a cumulative distribution function, as it
is non-decreasing with limx→−∞ µXn(x) = 0 and limx→∞ µXn(x) = 1.

When Mn is random, the ESD is a probability measure on probability mea-
sures, giving the density of a random eigenvalue of a random matrix drawn
from the Wigner ensemble. In particular, we can form the deterministic prob-
ability measure

µn := E
1

n

n∑
j=1

δλj(Xn), (2.3)

defined by ∫
R
φ dEµn = E

∫
R
φ dµn

for every continuous compactly supported φ ∈ Cc(R).

In general, it is much easier to prove asymptotic results for the expected ESD
Eµn. In most cases, this turns out to be sufficient, as the difference∣∣∣∣∫

R
φdµn −

∫
R
φdEµn

∣∣∣∣
5



typically converges to 0 as n→∞ for every fixed φ ∈ Cc(R).

2.3 Convergence of measures

Throughout the rest of this paper, when we say that a probability measure
dependent on n (such as the ESD or expected ESD) converges to some asymp-
totic distribution, we mean so in the following weak sense:

Definition 2.3.1. A sequence νn of deterministic probability measures on a
space Ω with associated σ-algebra F is said to converge weakly to a probability
measure ν if for any bounded, continuous function f∫

Ω

f dνn →
∫

Ω

f dν

as n→∞. If νn is itself random, we are instead concerned with weak conver-
gence to ν either in probability or almost surely.
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3 Eigenvalue distribution of Wigner matrices:

the semicircle law

3.1 Introduction

The goal of this section is to provide three different proofs of the following
result:

Theorem 3.1.1. Let {Mn}∞n=1 be a sequence of Wigner matrices, and for
each n denote Xn = Mn/

√
n. Then µXn converges weakly, in probability to the

semicircle distribution,

σ(x)dx =
1

2π

√
4− x21|x|≤2dx. (3.1)

As it turns out, convergence in probability to the semicircle distribution can
be updated to almost sure convergence, something which will be addressed
later.

The semicircle law is as important to random matrix theory as the central
limit theorem is to scalar probability theory. A first similarity between the
two relies in their universality, as they are both valid for large classes of random
matrices and random variables, respectively. Recently, with the development
of free probability, it was realized that the connection between the two results
run deeper, with the semicircle law essentially being the free analogue of the
central limit theorem.

Before discussing this connection, we provide two other proofs of theorem 3.1.1,
the first based on a direct calculation of the moments, and the second relying on
complex-analytical methods that have been successful in proving other results
as well.

3.2 The moment method

The most direct proof of the semicircle law, which is also the one advanced
by Wigner in his original paper [20], uses the moment method. This approach
relies on the intuition that eigenvalues of Wigner matrices are distributed ac-
cording to some limiting non-random law – which, in our case, is the semicircle
distribution σ(x). The moments of the empirical distribution spectrum µn cor-
respond to sample moments of the limiting distribution, where the number of
samples is given by the size of the matrix. In the limit as this size goes to
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Figure 1: Simulation of the semicircle law using 1000 samples of the eigenvalues
of 1000 by 1000 matrices. Bin size is 0.05.

infinity, it is therefore expected that the sample moments precisely recover the
moments of the limiting distribution.

In what follows, we use the notation 〈µ, φ〉 :=
∫
R φ(x) dµ(x) for a probability

measure µ on R. In particular, 〈µ, xk〉 denotes the kth moment of the law µ.
The moment method proof of the semicircle law consists of the following two
key steps [1]:

Lemma 3.2.1. For any positive integer k, 〈µn, xk〉 converges (deterministi-
cally) to 〈σ, xk〉.

Indeed, it is much easier to work with the average ESD µn rather than the
ESD µn corresponding to one particular matrix, and the following result shows
that asymptotically, working with the former is just as accurate:

Lemma 3.2.2. Fix ε > 0 and k a positive integer. Then

lim
n→∞

P (|〈µn, xk〉 − 〈µn, xk〉| > ε) = 0.

Because the law σ is symmetric about 0, all the odd moments are 0. To com-
pute the even moments, substitute x = 2 sin θ for θ ∈ [−π/2, π/2] to obtain a
recurrence relation between consecutive even moments and establish the fol-
lowing:

Lemma 3.2.3. The moments of the semicircle law are given by

〈σ, xk〉 =

{
Ck/2 if k is even
0 if k is odd

,
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where Cn is the nth Catalan number, Cn = 1
n+1

(
2n
n

)
.

Assuming these results, we can provide a proof to the semicircle law, based on
a combination of [1], [14], and [20].

Proof of Theorem 3.1.1. To conclude µn → σ in the weak sense, we need to
show that for any bounded, continuous function f : R→ R,

〈µn, f〉 → 〈σ, f〉, in probability.

The trick is to use the Weierstrass approximation theorem to replace f with a
polynomial, and thus rewrite the integrals above as linear combinations of the
moments. Because f needs to be compactly supported for this approximation
to work, note first that for B > 0 we have by Markov’s inequality:

P
(
〈µn, |x|k1|x|>B〉 > ε

)
≤ 1

ε
E〈µn, |x|k1|x|>B〉 ≤

〈µn, x2k〉
εBk

,

where the last inequality follows by introducing the factor |x|k/Bk > 1 inside
the integral.

Using lemma 3.2.1 and the fact that Ck ≤ 4k,

lim sup
n→∞

P
(
〈µn, |x|k1|x|>B〉 > ε

)
≤ 〈σ, x

2k〉
εBk

≤ 4k

εBk
.

Now, let B = 5. This inequality holds true for any k ∈ N. In particular, the
left hand side is either zero or increasing in k, whereas the right hand side is
strictly decreasing in k. Therefore, the only possibility is

lim sup
n→∞

P
(
〈µn, |x|k1|x|>5〉 > ε

)
= 0. (3.2)

Next, consider δ > 0 and f : R → R bounded. Because of what was done
above, we can assume f to be compactly supported on [−5, 5]. On this interval,
consider a polynomial pδ such that |pδ(x) − f(x)| ≤ δ/4, ∀x ∈ [−5, 5]. Then,
from the triangle inequality,

|〈µn, f〉 − 〈σ, f〉| ≤ |〈µn, f − pδ〉 − 〈σ, f − pδ〉|+ |〈µn, pδ〉 − 〈σ, pδ〉|
≤ |〈µn, (f − pδ)1|x|≤5〉|+ |〈σ, (f − pδ)1|x|≤5〉|

+ |〈µn, pδ1|x|>5〉|+ |〈µn, pδ〉 − 〈σ, pδ〉|,

where we used the fact that the function f and the measure σ are 0 when
|x| > 5. By choice of pδ, the first two terms in the sum above are each
bounded by δ/4. Hence by applying the triangle inequality we get

P (|〈µn, f〉 − 〈σ, f〉| > δ) ≤ P
(
|〈µn, pδ1|x|>5〉| > δ/2

)
+ P (|〈µn, pδ〉 − 〈σ, pδ〉| > δ/2)

+ P (|〈µn, pδ〉 − 〈µn, pδ〉| > δ/2)
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By (3.2), the first summand above goes to 0 as n → ∞. The second term is
equal to 0 when n is sufficiently large, by lemma 3.2.1. Lastly, by lemma 3.2.2,
the third summand converges to 0 as n→∞.

Thus, for any δ > 0 and any bounded function f , we have shown that

lim
n→∞

P (|〈µn, f〉 − 〈σ, f〉| > δ) = 0,

which proves that µn → σ weakly, in probability.

The philosophy behind the moment method is best seen in the proofs of the
two outstanding lemmas 3.2.1 and 3.2.2.

Proof of Lemma 3.2.1. The starting point in proving the convergence of em-
pirical spectral moments is the identity

〈µn, xk〉 =

∫
R
xkdµ(x) =

1

n
trXk

n, (3.3)

which holds true because both sides are equal to 1
n
(λk1 + . . . + λkn), where

λ1, . . . , λn are the eigenvalues of Xn. Taking expectations and writing ζij for
the (i, j) entry of Xn, we have

〈µn, xk〉 =
1

n

n∑
i1,...,ik=1

E ζi1i2 · · · ζik−1ikζiki1 . (3.4)

The combinatorial analysis that follows is very close in spirit to the approach
used originally by Wigner, though he initially studied the less general case of
symmetric Bernoulli matrices [20]. Consider the sequence i = i1i2 · · · iki1 of
length k + 1, with ij ∈ {1, . . . , n}. Each sequence of this form corresponds
uniquely to a term in the sum (3.4), and can be thought of as a closed, con-
nected path on the set of vertices {i1, . . . , ik}, with the edges described by pairs
of consecutive indices ijij+1.

Therefore, each term in the sum (3.4) corresponds bijectively to a path of
length k on the set of vertices specified by i. In particular, because the entries
of Xn have mean 0 and are independent (up to the Hermitian condition), the
summand corresponding to a sequence i will be 0 unless every edge in the
corresponding path is traversed at least twice, possibly in reverse. Thus, there
are at most k/2 unique edges, and hence at most k/2 + 1 distinct vertices
i1, . . . , ik.

Define the weight t of a sequence i to be the number of distinct indices i1, . . . , ik.
By the observation above, the nonzero terms in (3.4) have t ≤ k/2 + 1. Fur-
thermore, we say that two sequences i = i1i2 · · · iki1 and i′ = i′1i

′
2 · · · i′ki′1 are
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equivalent if there exists a bijection on the set {1, . . . , n} mapping each ij
to i′j. Note that equivalent sequences have the same weight and, more im-
portantly, their corresponding terms in (3.4) are equal. Also, the number of
distinct equivalent classes depends on k but not on n, since each class has a
representative where all i1, . . . , ik are in {1, . . . , k}.

We first show that terms with t < k/2 + 1 are negligible in the limit n→∞.
Given i = i1i2 · · · iki1 of weight t, there are n(n−1) · · · (n−t+1) ≤ nt sequences
equivalent to it. The contribution of each term in this equivalence class to the
sum (3.4) is

1

n
E ζi1i2 · · · ζik−1ikζiki1 = O

(
1

n
· 1
√
n
k

)
,

because Xn = Mn/
√
n and the entries of Mn have uniformly bounded moments

for all n. Thus, for each equivalence class with weight t < k/2 + 1, the total
contribution to (3.4) is at most O(nt/nk/2+1) → 0 as n → ∞. Since the
number of equivalence classes does not depend on n, we can ignore all terms
of weight t < k/2 + 1.

When k is odd, t = k/2 + 1 is impossible, so the odd moments of µn converge
to 0, as expected from lemma 3.2.3.

Next, we focus on the terms with t = k/2 + 1 with k even, corresponding
to connected graphs on k/2 + 1 vertices with k distinct edges. We see that
such graphs are in fact trees, and the sequence i = i1i2 · · · iki1 represents a
closed path on this tree which traverses each edge exactly twice, once in each
direction. In particular, there are no self-loops in the graph, meaning that the
corresponding term in (3.4) contains no diagonal entries of Xn. Because each
off-diagonal element of Mn is assumed to have variance 1, we see that

1

n
E ζi1i2 · · · ζik−1ikζiki1 =

1

n
· 1
√
n
k
. (3.5)

We have thus reduced the problem to counting the number of sequences i =
i1i2 · · · iki1 with t = k/2 + 1 and k distinct edges, each traversed twice. Such
paths are called non-crossing. During the traversal of i, an edge ijij+1 is called
free if it appears for the first time in i, and repetitive if it has been traversed
once before. Given a non-crossing path i of length k, define its type sequence,
whose jth entry is the number of free steps minus the number of repetitive
steps in the path i1 · · · ij+1 (with the convention ik+1 = 1). Note that a type
sequence starts at 1, ends in 0, and has successive terms differing by ±1. For
example, the type sequence of i = 132524231 is 12323210.

Now, observe that two non-crossing sequences are equivalent if and only if
they have the same type sequence. Thus, the number of i corresponding to a
given type sequence is n(n − 1) · · · (n − t + 1) = O(nk/2+1). Combining this
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with (3.5), and recalling that the terms with t < k/2 + 1 are negligible for n
large, we see that

〈µn, xk〉 = number of type sequences of length k.

Let ml denote the number of type sequences of length 2l. Denote by m′l the
number of type sequences of length 2l with no 0 occurring before the last term.
Any such sequence corresponds bijectively to a type sequence of length 2l− 2,
since we can remove the first and last terms and subtract 1 from the rest to
obtain a type sequence that is still valid. Hence, m′l = ml−1. By considering
the position of the first 0 in a type sequence of length 2l, one can similarly
deduce

ml =
l∑

j=1

mj−1ml−j,

with the convention m0 = 1. This is precisely the recursion satisfied by the
Catalan numbers, which implies that the number of type sequences of length
k is Ck/2.

Therefore, for n→∞, 〈µn, xk〉 → 0 when k is odd and 〈µn, xk〉 → Ck/2 when
k is even. Together with lemma 3.2.3, this shows that the moments of µn
converge deterministically to the moments of the semicircle law σ.

Similar combinatorial arguments are used to show that the moments of an
ESD µn are close to the average ESD moments given by µn.

Proof of Lemma 3.2.2. By Chebyshev’s inequality,

P
(
|〈µn, xk〉 − 〈µn, xk〉| > ε

)
≤ 1

ε2

∣∣∣E (〈µn, xk〉)2 −
(
E〈µn, xk〉

)2
∣∣∣ ,

so it suffices to show that the right hand side goes to 0 as n→∞.

Again, we can rewrite moments in terms of matrix traces:∣∣∣E (〈µn, xk〉)2 −
(
E〈µn, xk〉

)2
∣∣∣ =

1

n2

[
E(trXk

n)2 − (EtrXk
n)2
]

=
1

n2

∑
i,i′

[Eζiζi′ − EζiEζi′ ], (3.6)

where ζi is shorthand for the product ζi1i2 · · · ζiki1 , with i1, . . . , ik ∈ {1, . . . , n},
and similarly for ζi′ .

As before, each pair (i, i′) generates a graph with vertices Vi,i′ = {i1, . . . , ik} ∪
{i′1, . . . , i′k} and edges Ei,i′ = {i1i2, . . . , iki1} ∪ {i′1i′2, . . . , i′ki′1}. With pairs
rather than single sequences, however, the resulting graph is not necessarily
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connected. The weight of (i, i′) is defined as the cardinality of Vi,i′ . Two
pairs (i, i′) and (j, j′) are again said to be equivalent if there is a bijection on
{1, . . . , n} mapping corresponding indices to each other; equivalent pairs of
sequences contribute the same amount to the sum in (3.6).

In order for the term in (3.6) corresponding to (i, i) to be nonzero, the following
are necessary:

• Each edge in Ei,i′ appears at least twice, since the entries of Xn have 0
mean.

• The graphs generated by i and i′ have at least one edge in common,
otherwise it follows by independence that Eζiζi′ − EζiEζi′ = 0.

Pairs (i, i′) satisfying these two conditions will be called nonzero pairs.

Given (i, i′) of weight t ≤ k + 1, there are n(n − 1) · · · (n − t + 1) ≤ nk+1

equivalent pairs. Furthermore, the contribution of each such pair to (3.6) is
O(1/nk+2), since Xn = Mn/

√
n and the entries of Mn have bounded moments,

uniformly in n. Thus, each equivalence class with weight t ≤ k+ 1 contributes
an asymptotically negligible amount to (3.6). Because the number of equiva-
lence classes depends on k but not on n, the total contribution of terms with
t ≤ k + 1 converges to 0 as n→∞.

Next, focus on the terms with t ≥ k + 2. Each equivalence class with such t
has O(nt) elements, which contribute at least O(1) to (3.6). Thus, in order
for E(〈µn, xk〉)2− (E〈µn, xk〉)2 to converge to 0, it must be the case that there
are no nonzero pairs (i, i′) of weight t ≥ k + 2. In fact, this is the case for
t ≥ k + 1, and because it will be useful later on, we will prove this somewhat
stronger statement.

When (i, i′) is a nonzero pair, the corresponding graph is connected with at
most k unique edges. This is impossible if the weight t, which equals the
number of distinct vertices, is at least k + 2.

Finally, consider (i, i′) with t = k+1, in which case the resulting graph is a tree
and each edge gets traversed exactly twice, once in each direction. Because
the path generated by i in this tree starts and ends at i1, it must traverse each
edge an even number of times. The equivalent statement is true for i′. Thus,
each edge in Vi,i′ gets traversed by one of i or i′, bot not both. Hence i and i′

have disjoint edges, contradicting the assumption that (i, i′) is a nonzero pair.

With this, we have shown that E(〈µn, xk〉)2 − (E〈µn, xk〉)2 is O(1/n2), which
proves that 〈µn, xk〉 → 〈µn, xk〉 as n→∞, in probability.
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In the course of proving the above lemma, we also showed the following:

Lemma 3.2.4. Let Xn be a Wigner matrix with ESD µn. Then for every fixed
k, there exists a constant C not depending on n such that∣∣E(〈µn, xk〉)2 − (E〈µn, xk〉)2

∣∣ ≤ C

n2

for all sufficiently large n.

With this, one can show that the convergence in Wigner’s semicircle law holds
almost surely:

Corollary 3.2.5. Let {Mn}∞n=1 be a sequence of Wigner matrices, and for
each n denote Xn = Mn/

√
n. Then µXn converges weakly, almost surely to the

semicircle distribution.

Proof. The convergence established by lemma 3.2.1 is already deterministic.
It remains to check that the convergence in probability in lemma 3.2.2 can
be updated to almost sure convergence. Using Chebyshev’s inequality and
lemma 3.2.4, we have that for every k

∞∑
n=1

P (|〈µn, xk〉 − 〈µn, xk〉| > ε) ≤ 1

ε2

∞∑
n=1

∣∣E(〈µn, xk〉)2 − (E〈µn, xk〉)2
∣∣

≤ C1 +
1

ε

∞∑
n=1

C

n2
<∞,

where the constant C1 accounts for the fact that lemma 3.2.4 only becomes
valid for n sufficiently large.

The Borel-Cantelli lemma then gives

P

(
lim sup
n→∞

|〈µn, xk〉 − 〈µn, xk〉| > ε

)
= 0,

thus showing that |〈µn, xk〉 − 〈µn, xk〉| → 0 almost surely.

Now, with f compactly supported on [−5, 5] and pδ a polynomial approxima-
tion to f as in the original proof of theorem 3.1.1, we have

|〈µn, f〉 − 〈σ, f〉| ≤ |〈µn, (f − pδ)1|x|≤5〉|+ |〈σ, (f − pδ)1|x|≤5〉|
+ |〈µn, pδ1|x|>5〉|+ |〈µn, pδ〉 − 〈σ, pδ〉|
+ |〈µn, pδ〉 − 〈µn, pδ〉|.

By suitable choice of pδ, the first two terms can be made arbitrarily small. The
third and fourth terms approach 0 deterministically, and the last one converges
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to 0 almost surely. Overall, this shows |〈µn, f〉 − 〈σ, f〉| → 0 almost surely for
every bounded f . Thus, the ESD µn converges almost surely, weakly to the
semicircle distribution.

What is interesting about the moment method is that it reduces statements
about convergence of moments to simple counting arguments. However, one
shortfall of this approach is that it’s not constructive – while the calculation
gives an explicit formula for the moments of the asymptotic distribution, de-
ducing the law that corresponds to those moments cannot be done by such
elementary means. Wigner originally arrived at the semicircle density (3.1) by
setting up a differential equation having σ as a solution, before another math-
ematician, Feller, suggested to him a derivation which uses the characteristic
function [20].

Nonetheless, the moment method provides a valuable insight into the univer-
sality of this result. Our counting argument illustrates that the moments of
the matrix entries of order above two are negligible in the asymptotic limit,
as long as they are uniformly bounded in n. The only significant terms cor-
respond to second moments, which are easily dealt with if assumed to be the
same for all entries. Some of these assumptions can be further relaxed with
more work, but what remains striking is the fact that the same argument de-
vised by Wigner for the symmetric Bernoulli ensemble works for such a general
class of matrices with essentially no modifications.

3.3 Stieltjes transform method

With the moment method, we are proving convergence to the semicircle law
one moment at a time. For scalar random variables, it is often convenient to
group the moments together using constructs such as the moment generating
function or the characteristic function. It is a natural question, then, whether
this can be done for matrix-valued random variables.

For any Wigner matrix Mn, we can consider the Stieltjes transform [14] of its
(normalised) ESD µn = µMn/

√
n, defined for complex z outside of the support

of µn:

sn(z) =

∫
R

1

x− z
dµn. (3.7)

Keeping in mind the definition of dµn, which is concentrated around the eigen-
values λ1, . . . , λn of Mn, we have the identity

sn(z) =

∫
R

1

x− z
dµn =

1

n
tr
(
Mn/
√
n− zI

)−1
.
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This leads to the formal equality

sn(z) = − 1

n

∞∑
k=0

trMk
n

zk+1
,

which converges for large enough z. Thus, a good understanding of the Stieltjes
transform also provides information about the moments. In fact, the underly-
ing density can be directly recovered from the Stieltjes transform:

Proposition 3.3.1. For a ∈ R,

lim
b→0+

sµ(a+ bi)− sµ(a− bi)
2πi

= dµ(a).

In addition, we have the following useful criterion for convergence:

Proposition 3.3.2. Let µn be a sequence of random probability measures on
R, and µ a deterministic probability measure. Then µn converges weakly in
probability to µ if and only is sµn(z) converges in probability to sµ(z) for every
z in the upper-half plane.

For the Stieltjes transform proof of the semicircle law, we will have the se-
quence of n×n matrices Mn represent successive top-left minors of an infinite
Wigner matrix. Thus, Mn is formed by adding one independent row and one
independent column to Mn−1. While this choice does not affect the conclusion
of the semicircle law, it does make it easier to relate the Stieltjes transforms
sn and sn−1, thanks to the following result:

Proposition 3.3.3. Let An be an n × n matrix, and fix i between 1 and n.
Let Ain−1 be the (n− 1)× (n− 1) matrix with column i and row i eliminated.
Denote by ci the ith column of An with the entry An(i, i) removed, and by ri
the ith row of An with the entry An(i, i) removed. Suppose An and Ain−1 are
invertible. Then:

A−1
n (i, i) =

1

An(i, i)− ri(Ain−1)−1ci
.

Because the Stieltjes transform is related to traces of matrices, which in turn
are related to eigenvalues, the following standard result comes in useful later
on:

Proposition 3.3.4. Let A,B be n × n Hermitian matrices with eigenvalues
λA1 ≤ . . . ≤ λAn and λB1 ≤ . . . ≤ λBn . Then

n∑
i=1

|λAi − λBi | ≤ tr(A−B)2.
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This result is known as the Hoffman-Wielandt inequality. The proof can be
framed as a linear optimization problem over the convex set of doubly stochas-
tic matrices (i.e., matrices with nonnegative real entries with the entries in
each row and each column summing to 1). For the specific details, we refer
the reader to [1].

Before proceeding with a proof of theorem 3.1.1, we make the following reduc-
tions:

Lemma 3.3.5. For the matrices Mn in theorem 3.1.1, it can be assumed
without loss of generality that the diagonal entries are 0 and that the off-
diagonal entries are bounded, i.e. |Mn(i, j)| ≤ C for all i, j, where C is a
constant not depending on n.

Proof. For every n, define

Xn(i, j) =

{
0 if i = j
Xn(i, j)1√n|Xn(i,j)|≤C − E(Xn(i, j)1√n|Xn(i,j)|≤C) if i 6= j

.

Thus, Xn is obtained from Xn by setting the diagonal entries to 0 and keeping
just those off-diagonal entries that are bounded by C in the original matrix Mn

(recall that Xn = Mn/
√
n). Because the distribution of these entries changes,

it is necessary to recenter them so that they have mean 0.

Assume that the semicircle law holds for Xn. The goal is to deduce this for
Xn as well. To this end, define

Wn =
1

n
tr(Xn −Xn)2

≤ 1

n2

∑
i 6=j

[√
nXn(i, j)1√n|Xn(i,j)|≥C − E(

√
nXn(i, j)1√n|Xn(i,j)|≥C)

]2
+

1

n

∑
i

(Xn(i, i))2.

By the strong law of large numbers, the second term in the sum above is almost
surely 0 as n→∞. With

Yn(i, j) =
√
nXn(i, j)1√n|Xn(i,j)|≥C − E(

√
nXn(i, j)1√n|Xn(i,j)|≥C)

and ε > 0,

P (|Wn| > ε) ≤ 1

n2

∑
i 6=j

P
(
Yn(i, j)2 > ε

)
.
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By Markov’s inequality,

P (|Yn(i, j)|2 > ε) ≤ 1

ε
E|Yn(i, j)|2

≤ 1

ε
E[(
√
nXn(i, j))21√n|Xn(i,j)|≥C ]

+
1

ε

[
E(
√
nXn(i, j)1√n|Xn(i,j)|≥C)

]2
.

Because the entries
√
nXn(i, j) have finite variances uniformly for all n, the

right hand side of the equality above converges to 0 as C →∞. Consequently,
P (|Wn| > ε)→ 0 as C →∞ as well. Therefore, given any δ > 0, we can find
a large enough C so that P (|Wn| > ε) < δ for all sufficiently large n.

Now, we are ready to prove that the ESD µXn
approximates µXn and, heuristi-

cally, because the former converges to the semicircle law, so should the latter.
By the portmanteau theorem (see [1]), to show weak convergence it is sufficient
to check

|〈µXn , f〉 − 〈µXn
, f〉| → 0

in probability when f is a bounded, Lipschitz continuous function with Lips-
chitz constant 1. In this case, if λ1 ≤ . . . ≤ λn and λ1 ≤ . . . ≤ λn denote the
eigenvalues of Xn and Xn,

|〈µXn , f〉 − 〈µXn
, f〉| ≤ 1

n

n∑
i=1

|λi − λi| ≤

[
1

n

n∑
i=1

(λi − λi)2

]1/2

,

which together with proposition 3.3.4 gives

|〈µXn , f〉 − 〈µXn
, f〉| ≤

[
1

n
tr(Xn −Xn)2

]1/2

≤
√
ε,

as long as |Wn| < ε.

Putting everything together, we have that for each ε > 0 and δ > 0, there
exists C large enough with the corresponding µXn

converging in probability
to the semicircle law, in which case

P (|〈µn, f〉−〈σ, f〉| > ε) ≤ P (|〈µn, f〉−〈µXn
, f〉| >

√
ε)+P (|〈µXn

, f〉−〈σ, f〉| > ε).

Recall that C was chosen so that P (|Wn| > ε) < δ, meaning that as n → ∞
we get

lim
n→∞

P (|〈µn, f〉 − 〈σ, f〉| > ε) < δ.

For fixed ε, the above must hold true for all δ > 0, which implies

lim
n→∞

P (|〈µn, f〉 − 〈σ, f〉| > ε) = 0,

and thus the ESD of Xn converges weakly, in probability to the semicircle
law.
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Remark 3.3.6. The argument in this proof can also be used to show that the
semicircle law holds for Wigner matrices whose entries have mean 0 and finite
variance, without making other assumptions about the moments.

With this setup, we come to a second proof of the semicircle law, which uses
the Stieltjes transform.

Proof of Theorem 3.1.1. From sn(z) = 1
n
tr
(

1√
n
Mn − zI

)−1

, linearity of trace

implies

sn(z) =
1

n

n∑
i=1

(Mn/
√
n− zI)−1(i, i).

To make notation simpler, write Xn and X i
n−1 for Mn/

√
n and M i

n−1/
√
n.

In particular, note that the latter is normalized by
√
n, not

√
n− 1. If wi

denotes the ith column of Xn excluding the entry Xn(i, i), the Hermitian
condition on Xn implies that the ith row of Xn, excluding the (i, i) entry, is
w∗i . Proposition 3.3.3 then gives

sn(z) = −
n∑
i=1

1

z + w∗i
(
X i
n−1 − zI

)−1
wi
.

Define δn(z) by

sn(z) = − 1

z + sn(z)
− δn(z),

so that δn measures the error in the two expressions for sn(z) being equal.
Together with the previous equality, we get

δn(z) =
1

n

n∑
i=1

sn(z)− w∗i (X i
n−1 − zI)−1w

(z + sn(z))(z + w∗i (X
i
n−1 − zI)−1wi)

.

The goal is to show that for any fixed z in the upper-half plane, δn(z)→ 0 in
probability as n→∞. Restricting to the upper-half plane is sufficient because
for any measure µ, sµ(z) = sµ(z). Let εin = sn(z)−w∗i (X i

n−1 − zI)−1wi. Then

δn(z) =
1

n

n∑
i=1

εin
(−z − sn(z))(−z − sn(z) + εin)

.

A simple calculation shows that for z = a+ bi with b > 0, the imaginary part
of sn(z) is positive. This implies |z+sn(z)| > b, meaning that the convergence
of δn(z) depends only on the limiting behaviour of εin. Specifically, because
the sum above is normalized by 1/n, it suffices to show that supi |εin| → 0 in
probability.

Let X
i

n be the matrix obtained from Xn by replacing all elements in the ith

row and ith column with 0. Then (X
i

n − zI)−1 and (X i
n−1 − zI)−1 have n− 1
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identical eigenvalues, with (X
i

n − zI)−1 having an additional eigenvalue equal
to −1/z. Therefore,∣∣∣∣sXi

n
(z)− 1

n
tr(X i

n−1 − zI)−1

∣∣∣∣ =
1

n

∣∣∣tr(X i

n − zI)−1 − tr(X i
n−1 − zI)−1

∣∣∣
=

1

n|z|
≤ 1

nb
= o(1). (3.8)

Next, we want to bound |sXn(z) − s
X

i
n
(z)|. Let λ1 ≤ . . . ≤ λn denote the

eigenvalues of Xn, and λ1 ≤ . . . ≤ λn the eigenvalues of X
i

n. Then the eigen-

values of (Xn − zI)−1 and (X
i

n − zI)−1 are (λj − z)−1 and (λj − z)−1, for
j = 1, . . . , n. This observation, together with the Cauchy-Schwartz inequality
and proposition 3.3.4, yields the following bound:

|sXn(z)− s
X

i
n
(z)| =

1

n

n∑
j=1

∣∣∣∣ 1

λj − z
− 1

λj − z

∣∣∣∣
=

1

n

n∑
j=1

|λj − λj|
|(λj − a)− bi|· |(λj − a)− bi|

≤ 1

b2

(
1

n

n∑
j=1

|λj − λj|2
)1/2

≤ 1

b2

(
1

n
tr(X

i

n −Xn)2)

)1/2

≤ 1

b2

(
2

n

n∑
j=1

Xn(i, j)2

)1/2

≤ 1

b2

(
2C2

n

)1/2

= o(1), (3.9)

where the last inequality follows from the assumption that each entry of Mn

is bounded by C, and thus Xn(i, j) ≤ C/
√
n.

By the triangle inequality and the bounds established in (3.8) and (3.9), show-
ing supi |εin| → 0 in probability reduces to proving supi |εin| → 0 in probability,
where

εin := w∗i (X
i
n−1 − zI)−1wi −

1

n
tr(X i

n−1 − zI)−1 → 0. (3.10)

The significance of this reduction, while not at first obvious, relies in the fact
that the vector wi is now independent from the matrix X i

n−1, which greatly
simplifies the calculations that follow.

Let Y i
n−1 := (X i

n−1−zI)−1. Using wi(k) to denote the kth entry of the column
vector wi, we can write

εin = w∗i Y
i
n−1wi −

1

n
tr Y i

n−1 (3.11)

=
1

n

n−1∑
k=1

((
√
nwi(k))2 − 1)Y i

n−1(k, k) +
n−1∑
k,k′=1
k 6=k′

wi(k)wi(k
′)Y i

n−1(k, k′).
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First, note that Eεin = E(E(εin|Xn−1)), by the independence of wi from Xn−1

and the fact that each wi(k) has mean 0 and variance 1/n. Now, denote the
two terms on the right hand side of (3.11) by ε1 and ε2.

If λi1, . . . , λ
i
n−1 are the eigenvalues of Y i

n−1, then∣∣∣∣ 1ntr(Y i
n−1)2

∣∣∣∣ ≤ 1

n

n−1∑
k=1

1

|(λik − z)2|
≤ 1

b2
,

and together with the hypothesis that the entries
√
nwi(k) are uniformly

bounded by C, we deduce

E(ε21) ≤ 1

n2

n−1∑
k=1

E
∣∣∣((√nwi(k)2 − 1

)2
Y i
n−1(k, k)2

∣∣∣ ≤ C1

n2
,

for some constant C1 depending on C and b.

Similarly,

E(ε22) =
n−1∑
k,k′=1
k 6=k′

wi(k)2wi(k
′)2Y i

n−1(k, k′)2 ≤ C4

n2

n−1∑
k,k′=1
k 6=k′

Y i
n−1(k, k′)2 ≤ C2

n2
,

where C2 is again a constant depending on C and b.

Now, for δ > 0 fixed,

P

(
sup
i≤n
|εin| > δ

)
≤

n∑
i=1

P (|εin| > δ).

Since εin has expectation 0 for every i, using Chebyshev’s inequality followed
by the standard inequality (x+ y)2 ≤ 2(x2 + y2), we have

P

(
sup
i≤n
|εin| > δ

)
≤ 1

δ2

n∑
i=1

E|εin|2 ≤
2

δ2

n∑
i=1

(
E|ε1|2 + E|ε2|2

)
≤ 2n

δ2

(
C1

n2
+
C2

n2

)
,

which goes to 0 as n→∞. Hence supi≤n ε
i
n converges to 0 in probability, and

consequently so does δn. Equivalently, we have shown that

sn(z) +
1

z + sn(z)
→ 0 (3.12)

as n→∞, in probability.

At this point, sn(z) is still a random variable, so passing to the limit n→∞
becomes a subtle issue. To help with this, a simple application of McDiarmid’s
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inequality shows that sn(z) − Esn(z) → 0 in probability, as n → ∞. Then,
letting ρn = sn(z)− Esn(z), we have∣∣∣∣ 1

z + sn(z)
− 1

z + Esn(z)

∣∣∣∣ =
|ρn|

|z + Esn(z)|· |z + sn(z)|
≤ |ρn|

b2
,

since the imaginary part of sn(z) (and consequently Esn(z) also) is always the
same as the imaginary part of z. Thus, by taking expectation in (3.12) we see
that

Esn(z) +
1

z + Esn(z)
→ 0

deterministically as n→∞. Since |sn(z)| is bounded by 1/b, we conclude that
for fixed z, Esn(z) has a convergent subsequence, whose limit s(z) necessarily
satisfies

s(z) +
1

z + s(z)
= 0⇔ s(z) =

−z ±
√
z2 − 4

2
.

To choose the correct branch of the square root, recall that the imaginary part
of s(z) has the same sign as the imaginary part of z, which gives

s(z) =
−z +

√
z2 − 4

2
.

Therefore, sn(z) converges pointwise to s(z). From the inversion formula in
proposition 3.3.1, we deduce that the density corresponding to this Stieltjes
transform is indeed the semicircle law, as

lim
b→0+

s(x+ ib)− s(x− ib)
2πi

=
1

2π

√
4− x2 = σ(x).

Finally, from proposition 3.3.2 it follows that the ESD µn converges in proba-
bility to the semicircle law, as desired.

The first thing to note about the Stieltjes transform method is that, unlike
the moment method in the previous section, it provides a constructive proof
of the semicircle law. In fact, Stieltjes transforms are also useful when prov-
ing asymptotic results via the moment method. Once the moments mk of
the limiting density are known, one can form the formal generating function
g(z) =

∑∞
k=0mkz

k, which is related to the Stieltjes transform corresponding
to the same density by the equality s(z) = −g(1/z)/z. Using the inversion
formula 3.3.1, the density can thus be inferred from the moments.

Although proving the semicircle law with the Stieltjes method led to a sim-
ple, quadratic equation in s(z), for other results the situation can get more
complicated and may involve, for instance, differential equations [17]. On the
other hand, in cases when the asymptotic density cannot be derived in closed
form, analytical methods that use the Stieltjes transform may provide numer-
ical approximations, which are often sufficient to make the result useful in
applications.
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3.4 Free probability

The theory of free probability, originally developed by Voiculescu in the context
of functional analysis [18], provides a justification of the semicircle law that
is much deeper than the previous two proofs. Although this result holds to
such universality – essentially for all symmetric or Hermitian matrices with
sufficiently well-behaved moments – it is unclear from either the moments or
the Stieltjes transform why the semicircular density is special in this way. In
this section, we describe how Wigner’s semicircle law becomes an analogue
of the central limit theorem for a different kind of probability theory. Our
discussion is based on [13] and, to a smaller extent, on [16].

Classical probability is built on three fundamental objects: a sample space Ω
describing the set of possible outcomes of an experiment, a σ-algebra F of
events, and a probability measure P which assigns a number between 0 and
1 to each element of F in a consistent manner. In this framework, one then
defines random variables as functions from Ω to R or C, to project what could
be an unwieldy space Ω to the more accessible real and complex numbers. Fi-
nally, random variables are assigned expectations, which capture the “typical”
behaviour of those random variables.

The essence of free probability relies in abstracting away the sample space,
σ-algebra, and probability measure, and instead focusing on the algebra of
random variables, along with their expectations. The main advantage of this
approach is that it gives rise to the study of non-commutative probability
theory. In particular, this enables the study of random matrices as stand-alone
entities, without the need to look at the individual entries to get probabilistic-
type results.

Recall that a ∗-ring over C is an associative ring R equipped with a conjugation
operation ∗ : R×R having the following properties:

(a) (x∗)∗ = x, ∀x ∈ R.

(b) (x+ y)∗ = x∗ + y∗, ∀x, y ∈ R.

(c) (xy)∗ = y∗x∗, ∀x, y,∈ R.

(d) (cx)∗ = cx∗, ∀c ∈ C, x ∈ R.

Thus, ∗ is an involution which preserves addition, reverses multiplication, and
is anti-homogeneous. If X ∈ A and X∗ = X, we say that X is self-adjoint. If
X∗X = XX∗, we say that X is normal.

23



A ∗-algebra is a ∗-ring A which also has the structure of an associative algebra
over C, where the restriction of ∗ to C is usual complex conjugation.

Definition 3.4.1. A non-commutative probability space (A, τ) consists of a
∗-algebra A with identity 1 and a trace operator τ : A → C which is ∗-linear,
maps 1 to 1, and is non-negative, in the sense that τ(X∗X) ≥ 0, ∀X ∈ A.

A first example of a noncommutative probability space is provided by classical
probability theory.

Example 3.4.2. Let A consist of all complex-valued random variables defined
on some sample space Ω with all moments finite. The ring operations on
A correspond to the usual addition and multiplication of functions, and the
unit of the ring is the deterministic function mapping everything to 1. The
involution ∗ corresponds to complex conjugation, and the trace τ is just the
expectation operator.

Interestingly, this new framework is also appropriate for the study of spectral
theory, which deals with deterministic matrices. This is also a first example
that is specifically not commutative.

Example 3.4.3. Consider the ∗-algebraMn(C) of n×nmatrices with complex-
valued entries, with unity given by the identity matrix In, where the ∗ operator
is given by taking the conjugate transpose. The operator τ is given by taking
the normalised trace, τ(X) = EX/n. Note that the normalisation factor is
necessary due to the condition that τ maps 1 to 1.

Lastly, we come to our main area of interest, random matrices.

Example 3.4.4. We can represent the algebra of n × n random matrices as
the tensor product space L∞− ⊗ Mn(C). This notation specifies a random
matrix of size n by indicating a random variable for each of the n2 entries.
This is a ∗-algebra with identity In, where the conjugate X∗ of some matrix X
is the conjugate transpose of X. As suggested by the two previous example,
a natural choice for τ is the normalised expected trace, τ(X) = E trX/n.

Note that all three examples satisfy

τ(XY ) = τ(Y X), ∀X, Y ∈ A.

Equivalently, the trace operator is invariant under cyclic permutations. This
additional axiom is needed for certain generalizations to the results discussed
below, but it is not necessary for our discussion.

So far, the basic definition of a non-commutative probability space gives a
natural generalization of the moments of a random variable. Specifically, for
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an element X of a non-commutative probability space (A, τ), the kth moment
is given by τ(Xk). In particular, because Xk ∈ A and τ is defined on all of A,
these moments are all finite.

Now, we would like to expand this generalized framework to include the usual
definition of the moments, given in terms of the probability density µX :

τ(Xk) =

∫
C
zkdµX(z).

Equivalently, by linearity of τ , we would like to find a complex-valued measure
µX such that for any polynomial P : C→ C

τ(P (X)) =

∫
C
P (z)dµX(z). (3.13)

In what follows, assume that X is self-adjoint, so that the measure µX is
supported on the real line. The key idea is to use the Stieltjes transform,
defined previously as

sX(z) = tr((X − z)−1) =

∫
C

1

x− z
dµX(z),

to bridge the moments of X that we already know in this non-commutative
setting to a measure µX obeying (3.13).

In the classical probability setting, the Stieltjes transform is defined every-
where outside of the support of the density µ. In this case, we would like to go
backwards, first extending analytically the Stieltjes transform to the largest
possible region of the complex plane, and then inferring the density µ to be
supported on the complement of that region.

To start, define the Stieltjes transform of some elementX of a non-commutative
probability space (A, τ) as

sX(z) := τ((X − z)−1). (3.14)

Expanding the right hand side formally as a Laurent series, we see that

sX(z) = −
∞∑
k=0

τ(Xk)

zk+1
. (3.15)

In order to establish where this formal series converges, we need a better
understanding of the growth of the moments τ(Xk) with k. The conjugation
operation ∗ and the trace τ give an elegant inner-product space structure on
A, via the positive semi-definite inner product

〈X, Y 〉 := τ(X∗Y ).
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This could be made into a positive-definite inner product with the additional
faithfulness axiom τ(X∗X) = 0 if and only if X = 0, though in general this is
not needed. Now, each X ∈ A has an associated norm

||X|| = (〈X,X〉)1/2 = τ(X∗X)1/2,

satisfying the Cauchy-Schwartz inequality

|〈X, Y 〉| ≤ ||X||· ||Y ||. (3.16)

One can easily show inductively using the Cauchy-Schwartz inequality that
any self-adjoint element X satisfies

|τ(X2k−1)|1/(2k−1) ≤ |τ(X2k)|1/2k ≤ |τ(X2k+2)|1/(2k+2),

for all k ≥ 0. In particular, this gives full monotonicity on the even moments,
which means that the limit

ρ(X) := lim
k→∞
|τ(X2k)|1/2k (3.17)

exists. The real number ρ(X) is called the spectral radius of X. Furthermore,
we see that

|τ(Xk)| ≤ ρ(X)k (3.18)

for any k, which by (3.15) immediately implies that the Stieltjes transform
sX(z) exists for |z| > ρ(X).

With some more work, the Stieltjes transform can be analytically extended to
part of the region |z| ≤ ρ(X). To prove this, we need the following:

Lemma 3.4.5. (a) Let X be self-adjoint and bounded. For any R ∈ R,

ρ(R2 +X2) = R2 + ρ(X)2. (3.19)

(b) Let X be normal and bounded. Then:

|τ(Xk)| ≤ τ((X∗X)k)1/2 ≤ ρ(X∗X)k/2. (3.20)

Proof. (a) Without loss of generality, let R ≥ 0. For every k ∈ N, (3.18) gives:

ρ(R2 +X2) ≥
∣∣τ((R2 +X2)2k)

∣∣1/2k
=

∣∣∣∣∣R4k +
2k−1∑
l=1

(
2k

l

)
R2k−lτ(X2l) + τ(X4k)

∣∣∣∣∣
1/2k

.

Because X is self-adjoint and τ is a nonnegative trace operator, we see that
τ(X2l) = τ((X l)∗X l)) ≥ 0, and thus

ρ(R2 +X2) ≥ (R4k)1/2k +
(
τ(X4k)

)1/2k
= R2 +

[(
τ(X4k)

)1/4k
]2

.
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With k →∞, the above implies ρ(R2 +X2) ≥ R2 + ρ(X)2.

For the reverse inequality, use (3.18) again:

τ((R2 +X2)2k) =
2k∑
l=0

(
2k

l

)
R2(2k−l)τ(X2l)

≤
2k∑
l=0

(
2k

l

)
R2(2k−l)ρ(X)2l = (R2 + ρ(X)2)2k.

Raising everything to the 1/2k power and letting k → ∞, it follows that
ρ(R2 +X2) ≤ R2 + ρ(X)2.

Therefore, ρ(R2 +X2) = R2 + ρ(X)2, as desired.

(b) If X is normal, then X∗X is self-adjoint, so the second inequality follows
directly from (3.18). The first inequality is a direct application of the Cauchy-
Schwartz inequality (3.16) with X := Xk, Y = 1.

The above lemma allows us to establish where the Stieltjes transform converges
if the imaginary part of z changes. Specifically, writing

(X − z)−1 = ((X + iR)− (z + iR))−1,

sX(z) can be written as a formal Laurent series as follows:

sX(z) = −
∞∑
k=0

τ((X + iR)k)

(z + iR)k+1
. (3.21)

From lemma 3.4.5, because X is self-adjoint we have |τ((X + iR)k)| ≤ (R2 +
ρ(X)2)k/2. Thus, the Laurent series (3.21) converges for |z + iR| > (R2 +
ρ(X)2)1/2. Furthermore, because Laurent expansions are unique whenever
they exist, this expansion must agree with (3.15) for z large enough so that
|z| > ρ(X).

Now, if z = a + ib, the condition |z + iR| > (R2 + ρ(X)2)1/2 is equivalent to
a2 + (b + R)2 > R2 + ρ(X)2 ⇔ a2 + b2 + 2bR > ρ(X)2, which becomes valid
for R large enough as long as b > 0. Hence, we have analytically extended the
Stieltjes transform sX(z) to the entire upper-half plane. Similarly, sX(z) can
be defined for any z in the lower-half plane. Recall from earlier that sX(z)
also exists when z is real with |z| > ρ(X).

As it turns out, this is the maximal region on which sX(z) can be defined.
Indeed, suppose ∃ 0 < ε < ρ(X) such that sX(z) exists on the region {z : |z| >
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ρ(X) − ε}. Let R > ρ(X) − ε and consider the contour γ = {z : |z| = R}.
From the residue theorem applied at infinity,

τ(Xk) = − 1

2πi

∫
γ

sX(z)zkdz,

which by (3.18) implies

|τ(Xk)| ≤ 1

2π

∫
γ

(
ρ(X)k

R
+
ρ(X)k+1

R2
+ . . .

)
dz.

On raising both sides to the 1/k power, in order for this to hold in the limit
k →∞, it must be the case that ρ(X) ≤ R. Since R can be chosen arbitrarily
close to 0 by taking ε arbitrarily close to ρ(X), the previous inequality implies
ρ(X) = 0, which is an obvious contradiction assuming X 6= 0.

Therefore, the Stieltjes transform sX(z) is defined and analytic everywhere
outside the interval [−ρ(X), ρ(X)]. With this, we can deduce the existence
of a measure µX supported on [−ρ(X), ρ(X)], which gives the usual way for
computing the moments of X, as stated in (3.13).

Theorem 3.4.6. Let X be a bounded, self-adjoint element of a non-commutative
probability space (A, τ). Then there exists a unique Borel probability measure
on [−ρ(X), ρ(X)] such that for any polynomial P : C→ C,

τ(P (X)) =

∫
C
P (z)dµX(z).

To prove this theorem, we rely on the following result:

Proposition 3.4.7. Let X be bounded, self-adjoint. Then for any polynomial
P : C→ C,

|τ(P (X))| ≤ sup
x∈[−ρ(X),ρ(X)]

|P (x)|

Loosely speaking, the left hand side gives the average of P (X), which should
be smaller than the maximum value that P (x) takes on the domain on which
the non-commutative random variable X is distributed. The proposition is
proven by first noting that the Stieltjes transform of P (X) is defined outside
of [−ρ(P (X)), ρ(P (X))] and, furthermore, it cannot be extended inside the
interval; upon showing that the Stieltjes transform of P (X) exists on the
region Ω = {z ∈ C : z > supx∈[−ρ(X),ρ(X)] |P (x)|}, it becomes clear that Ω is
necessarily contained in C− [−ρ(P (X)), ρ(P (X))], and the desired conclusion
follows. For the specific details, we direct the reader to [13].
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Proof of Theorem 3.4.6. Consider the linear functional φ sending polynomials
P : C→ C to τ(P (X)). By the Weierstrass approximation theorem, for every
continuous f : C → C which is compactly supported on [−ρ(X), ρ(X)], and
for every ε > 0, there exists a polynomial Pε such that |f(x) − Pε(x)| < ε
∀x ∈ [−ρ(X), ρ(X)]. Thus, we can assign a value to τ(f(X)) by taking the
limit of τ(Pε(X)) as ε→ 0. This means that φ can be extended to a continuous
linear functional on the space C([−ρ(X), ρ(X)]. From the Riesz representation
theorem, there exists a unique countably additive, regular measure µX on
[−ρ(X), ρ(X)] such that

φ(f) =

∫
C
f(x)dµX(x).

Furthermore, the total variation of µX equals the operator norm of φ, which
is equal to 1 by proposition 3.4.7. With the additional observation that dµX
integrates to 1 (since φ(1) = 1), we conclude that µX is the desired probability
measure.

This theorem also recovers the familiar definition of the Stieltjes transform
from classical probability theory:

Corollary 3.4.8. Let X be a bounded, self-adjoint element of a non-commutative
probability space with spectral measure µX . With the Stieltjes transform of X
defined as in (3.14), we have:

sX(z) =

∫ ρ(X)

−ρ(X)

1

x− z
dµX(z),

for all z ∈ C\[−ρ(X), ρ(X)].

Proof. When |z| > ρ(X), we can write sX(z) as a convergent Laurent series,
and then express the moments as integrals over the spectral measure µX :

sX(z) = −
∞∑
k=0

τ(Xk)

zk+1
= −

∞∑
k=0

1

zk+1

∫
C
xkdµX(x) = −

∫ ρ(X)

−ρ(X)

1

z

∞∑
k=0

(x
z

)k
dµX(x)

=

∫ ρ(X)

−ρ(X)

1

z(x/z − 1)
dµX(x) =

∫ ρ(X)

−ρ(X)

1

x− z
dµX(z),

as desired. Note that we could switch the sum and integral signs because∑∞
k=0 |(x/z)k| is bounded by the convergent series

∑∞
k=0 (ρ(X)/z)k, which does

not depend on x.

To summarize, we started by defining a probability space whose basic ob-
jects are random variables and their expectations, rather than σ-algebras and
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measures. In this framework, we were able to recreate much of the classical
probability theory, including Stieltjes transforms and probability measures. In
doing so, no commutativity was assumed between random variables, which is
what ultimately keeps free probability theory separate from classical probabil-
ity.

The asymptotic distribution of spectra of various classes of matrices is deter-
mined, for the most part, by the patterns of independence among the matrix
entries. For instance, what determines the convergence of Wigner matrix spec-
tra to the semicircle law is the symmetry (or Hermitian) condition and the fact
that all upper-triangular entries are independent, more so than the individual
moments of these random variables. It is therefore not surprising that the
concept of independence in the context of free probability is what governs the
asymptotic behaviour of non-commutative random variables.

Definition 3.4.9. The random variablesX1, . . . , Xk of some non-commutative
probability space (A, τ) are said to be freely independent (or free) if for every
m ∈ N and i1, . . . , im ∈ {1, . . . , k} with no two consecutive indices equal, we
have

τ((P1(Xi1)− τ(P1(Xi1))) · · · (Pm(Xim)− τ(Pm(Xim)))) = 0,

where P1, . . . , Pm are polynomials.

An equally important notion is that of asymptotic freeness :

Definition 3.4.10. A sequence of random variables X1,n, . . . , Xk,n, n ≥ 1 in
some non-commutative probability space (An, τn) is said to be asymptotically
freely independent (or asymptotically free), if

τ((P1(Xn,i1)− τ(P1(Xn,i1))) · · · (Pm(Xn,im)− τ(Pm(Xn,im))))→ 0

as n→∞, where i1, . . . , im and P1, . . . , Pm are as in the previous definition.

Conceptually, free independence is very similar to classical independence, in
the sense that they both require the expectation of a product of mean zero ran-
dom variables to be equal to zero. However, because one framework requires
commutativity and the other does not, the two definitions tend to be rather
different in practice. In particular, random variables in a non-commutative
probability space that commute in the classical sense are rarely freely inde-
pendent.

Example 3.4.11. Suppose X and Y are two diagonal matrices with mean
zero, independent entries along their respective diagonals. Observe that X and
Y commute as matrices, so we have, for instance, τ(XYXY ) = τ(X2Y 2) =
τ(X2)τ(Y 2), which in most cases is nonzero.
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Nonetheless, classical and free independence are deeply connected, as best il-
lustrated in the case of Wigner matrices:

Theorem 3.4.12. Consider k independent n×n Wigner matrices M1, . . . ,Mk

whose entries have uniformly bounded moments of all orders. Then the rescaled
matrices Xj = Mj/

√
n, j = 1, . . . ,m, are asymptotically free with respect to

the trace operator τ = 1
n
Etr.

Proof. By linearity of τ and the definition of asymptotic freeness, it suffices to
show that

τ

(
m∏
j=1

(
X
aj
kj
− τ(X

aj
kj

)
))

= o(1)⇔ τ

(
m∏
j=1

X
aj
kj

)
−

m∏
j=1

τ
(
X
aj
kj

)
= o(1),

where a1, . . . , am are positive integers and 1 ≤ k1, . . . , km ≤ k such that con-
secutive kjs are distinct. The little-o notation indicates that the expression
above goes to 0 as n→∞.

Again, this will be shown using a combinatorial approach. We have

τ

(
m∏
j=1

X
aj
kj

)
=

1
√
n
a1+...+am

∑
i1,...,im

1

n
E

m∏
j=1

ζ(i1,j, i2,j) · · · ζ(iaj ,j, i1,j+1), (3.22)

with ij = (i1,j, . . . , iaj ,j) such that each coordinate takes values in the set
{1, . . . , n}, i1,m+1 := i1,1 so that the first and last indices in the product above
match, and with ζ(is,j, is+1,j) denoting the entry of the matrix Mkj situated in
row is and column is+1.

Now, each term in (3.22) can be thought of as a connected, closed path de-
scribed as

(i1,1i2,1 · · · ia1,1) (i1,2i2,2 · · · ia2,2) · · · (i1,mi2,m · · · iam,mi1,1) ,

where the first a1 edges are labelled k1, the next a2 are labelled k2, and so on.
The labels are important because when dealing with multiple matrices, it is
necessary to know not just the row and column indices of the entries to be
considered, but also which matrix those entries come from.

As before, due to independence and the fact that the entries of M1, . . . ,Mk

have mean 0, we conclude that within each subpath of aj edges, each edge
needs to be traversed at least twice, and thus the corresponding number of
vertices is at most aj/2 + 1. If tj denotes the weight of ij – i.e., the number of
distinct components of ij – we see that tj ≤ aj/2 + 1.

Now, let t1, . . . , tm be fixed. There are
m∏
j=1

n(n− 1) · · · (n− tj + 1) = O(nt1+...+tm)
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choices of i1, . . . , im corresponding to the chosen weights. If tj ≤ aj/2 for all j,
the contribution of all these terms to the sum (3.22) is O(1/n) = o(1). Again,
it is crucial that the number of choices for the weights t1, . . . , tm depends
on a1, . . . , am but not on n, so the combined contribution of all terms with
tj ≤ aj/2 for all j is asymptotically negligible.

Thus, suppose tj = aj/2 + 1 for some j. Note, in particular, that aj must be
even. Because each of the aj/2 distinct edges needs to be traversed exactly
twice, we see that the corresponding subpath of aj edges is closed – i.e., i1,j+1 =
i1,j – and the distinct edges form a tree. From the moment method proof of
theorem 3.1.1, the contribution of all such terms to τ(Xa1

k1
· · ·Xkm

km
) is a factor

of Caj/2.

In fact, by pulling out this factor, the remaining terms form another closed
path of (a1 + . . . + am) − aj labelled edges, and the same argument can be
applied to conclude that

τ

(
m∏
j=1

X
aj
kj

)
= Ca1/2 · · ·Cam/2 + o(1),

where the first term is included only if a1, a2, . . . , am are all even.

Similar, though simpler reasoning shows that when a1, . . . , am are all even,

m∏
j=1

τ
(
X
aj
kj

)
=
(
Ca1/2 + o(1)

)
· · ·
(
Cam/2 + o(1)

)
= Ca1/2 · · ·Cam/2 + o(1),

and thus

τ

(
m∏
j=1

X
aj
kj

)
−

m∏
j=1

τ
(
X
aj
kj

)
= o(1),

implying that the rescaled Wigner matrices X1, . . . , Xm are asymptotically
free.

Of interest at this point are sums of freely independent random variables. Just
as the characteristic function or the moment generating function are used to
calculate convolutions of commutative, scalar random variables, free proba-
bility possesses an analogous transform which is additive over free random
variables. Specifically, given a random variable X consider its Stieltjes trans-
form sX(z) with functional inverse written as zX(s). The R-transform of X is
defined as

RX(s) := zx(−s)− s−1,

and has the property
RX+Y = RX +RY

32



whenever X and Y are freely independent.

The R-transform clarifies the special role played by the semicircular density:

Lemma 3.4.13. If σ has the semicircular density (3.1), then Rσ(s) = s.
Furthermore, if u and v are two freely independent random variables with the
semicircle density, their convolution is given by

√
2u.

The proof is a straightforward calculation, and for this reason it will be omit-
ted.

Expressing the R-transform RX(s) as a power series in s reveals an analogy
with the cumulant generating function from classical probablity theory:

Proposition 3.4.14 ([13]). For a non-commutative random variable X, write
RX(s) =

∑∞
k=1Ck(X)sk−1, with the coefficients Ck(X) given recursively by

Ck(X) = τ(Xk)−
k−1∑
j=1

Cj(X)
∑

a1+...+aj=k−j

τ(Xa1) · · · τ(Xaj).

This is sufficient to establish the free central limit theorem:

Theorem 3.4.15. Let X1, X2, . . . be free copies of a self-adjoint random
variable X in a non-commutative probability space, such that τ(X) = 0 and
τ(X2) = 1. For each n, define Sn := (X1 + . . .+Xn)/

√
n. Then Sn converges

in the sense of moments to an element having the semicircular density σ.

Proof. Using the additivity of the R-transform, we have

RSn(s) = nRX1/
√
n(s).

Since X1 is an element of a non-commutative probability space, it has finite
moments of all orders. By proposition 3.4.14, we have

Ck

(
X1√
n

)
= τ

(
Xk

1

nk/2

)
−

k−1∑
j=1

Cj

(
X1√
n

) ∑
a1+...+ak=k−j

τ

(
Xa1

1

na1/2

)
· · · τ

(
Xak

1

nak/2

)
,

which shows by induction that nCk

(
X1√
n

)
→ 0 as n→∞ for k ≥ 3. Computing

C1, C2, C3, we deduce that RSn(s) → s as n → ∞ in the sense of moments,
which leads to the desired conclusion.

This result provides a quick heuristic proof of the semicircle law in the case
of GUE Wigner matrices. Let Mn and M ′

n be two classically independent
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matrices from the GUE ensemble. Because the entries are Gaussians, we have
Mn + M ′

n ∼
√

2Mn, and passing to the limit shows that the only possible
asymptotic distribution of the ESD of Mn. One can then extend this result to
arbitrary Wigner matrices by using a variation on the Lindeberg replacement
trick to substitute the Gaussian entries of Mn, one by one, with arbitrary
distributions [13].
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4 Eigenvalue distribution of

Wishart matrices: the Marcenko-Pastur law

4.1 Introduction

Let (mn)n≥1 be a sequence of positive integers such that limn→∞
mn

n
= α ≥ 1.

Consider the n×mn matrix Xn whose entries are i.i.d. of mean 0 and variance
1, and with the kth moment bounded by some rk < ∞ not depending on n.
As before, we will actually study the normalized matrix Yn := Xn/

√
n.

The Marcenko-Pastur law is concerned with the distribution of the singular
values of Yn, which by definition are the eigenvalues of the n×n Wishart ma-
trix Wn = YnY

T
n . As with the semicircle law, the limiting behaviour of these

eigenvalues can be understood by considering the empirical spectral distribu-
tion µn of a Wishart matrix Wn as n→∞.

Theorem 4.1.1. The empirical law µn converges weakly, in probability, to the
distribution with density fα supported on [λ−, λ+], where λ− = (1−

√
α)2 and

λ+ = (1 +
√
α)2, and given by

fα(x) =

√
(x− λ−)(λ+ − x)

2πx
1x∈[λ−,λ+]. (4.1)

4.2 The moment method

As in the case of the semicircle law, the most straightforward method to prove
Marcenko-Pastur uses the simple observation that the kth empirical moment
〈µn, xk〉 =

∫
R x

kdµn is equal to 1
n
tr W k

n [1]. Actually, it suffices to consider
the expected empirical moments 〈µn, xk〉 =

∫
R x

kdµn = 1
n
Etr W k

n , due to the
following result:

Lemma 4.2.1. For every fixed k ∈ N and ε > 0,

lim
n→∞

P (|〈µn, xk〉 − 〈µn, xk〉| > ε) = 0.

Therefore, it suffices to prove that the expected empirical moments of µn con-
verge to the moments of the Marcenko-Pastur law (4.1). This is important
because working with µn = Eµn enables us to take full advantage of the fact
that the entries of the original matrix Xn are i.i.d., and reduces the computa-
tion of 1

n
Etr W k

n in the limit n→∞ to a combinatorial argument.
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Figure 2: Simulation of the Marcenko-Pastur law with α = 2 using 100 samples
of the eigenvalues of 1000 by 1000 matrices. Bin size is 0.05.

Proof of Theorem 4.1.1. From the usual rules of matrix multiplication, we see
that

〈µn, xk〉 =
1

n
E tr W k

n =
1

n
E tr(YnY

T
n )k (4.2)

=
1

n

∑
i1,...,ik
j1,...,jk

E Yn(i1, j1)Yn(i2, j1)Yn(i2, j2) · · ·Yn(ik, jk)Yn(i1, ik),

where the row indices i1, . . . , ik take values in {1, . . . , n} and the column indices
j1, . . . , jk take values in {1, . . . ,mn}.

Because the entries of Yn are independent, each factor in the product

Yn(i1, j1)Yn(i2, j1)Yn(i2, j2)Yn(i3, j2) · · ·Yn(ik, jk)Yn(i1, ik)

must appear at least twice for the expectation to be nonzero. We can think
of each such product as a connected bipartite graph on the sets of vertices
{i1, . . . , ik} and {j1, . . . , jk}, where the total number of edges (with repetitions)
is 2k. Suppose ni and nj denote the number of distinct i indices and j indices,
respectively. Since each edge needs to be traversed at least twice, there are at
most k+ 1 distinct vertices, so ni+nj ≤ k+ 1. In particular, if ni+nj = k+ 1
there are k unique edges and the resulting graph is a tree. Such terms will
become the dominant ones in the sum (4.2) in the limit n→∞.
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Indeed, let us show that all the terms with ni + nj ≤ k contribute an amount
that is o(n) to the sum in (4.2). To this end, define the weight vector ti
corresponding to the vector i = (i1, . . . , ik), describing which entries of i are
equal. For example, if i = (2, 5, 2, 1, 1), then ti = (1, 2, 1, 3, 3), indicating that
the first and third entries of i are equal, and that the fourth and fifth entries
are also equal. Similarly, associate a weight vector to j. Because the entries
of Yn are identically distributed, it is easy to see that choices of i and j which
generate the same weight vectors contribute the same amounts to the sum
in (4.2).

For a fixed weight vector ti with ni distinct entries (same ni which gives the
number of distinct row indices il), there are n(n−1) · · · (n−ni+1) < nni choices
of i with weight vector ti. Similarly, there are mn(mn−1) ·(mn−nj+1) < m

nj
n

choices of j corresponding to some fixed weight vector tj. Therefore, there are
less than nni ·mnj

n < Cnni+nj ≤ Cnk for ni + nj ≤ k, where C is a constant
depending on k and α, but not n.

In addition, each term 1
n
E Yn(i1, j1)Yn(i2, j1) · · ·Yn(ik, jk)Yn(i1, ik) isO(1/nk+1)

because of the scaling Yn = Xn/
√
n and the assumption that the moments of

each entry Xn(i, j) are finite. Therefore, the sum over all i and j correspond-
ing to fixed weight vectors ti, tj is o(n). Furthermore, the number of possible
weight vectors ti and tj depends on k but not n, which means that the con-
tribution of all terms in the sum (4.2) is asymptotically 0.

Therefore, we now focus on the terms corresponding to i and j with ni + nj =
k + 1. This is the case where the product

Yn(i1, j1)Yn(i2, j1)Yn(i2, j2)Yn(i3, j2) · · ·Yn(ik, jk)Yn(i1, ik)

contains exactly two copies of each distinct entry. Correspondingly, each edge
in the path i1j1 · · · ikjki1 gets traversed twice, once in each direction. Because
each entry of Yn has variance 1/n, we conclude that

1

n
E Yn(i1, j1)Yn(i2, j1)Yn(i2, j2)Yn(i3, j2) · · ·Yn(ik, jk)Yn(i1, ik) =

1

nk+1

for each choice of i and j with ni + nj = k + 1.

Again, fix two weight vectors ti and tj with ni and nj distinct entries. There
are n(n−1) · · · (n−ni+1)·mn(mn−1) · · · (mn−nj +1) corresponding choices
for i and j. Because mn ≈ nα for large n and we are in the case ni+nj = k+1,
the number of choices is asymptotically equal to nk+1αnj .

From the last two observations, it follows that

〈µn, xk〉 =
∑

αnj ,
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where the sum is taken over all pairs (ti, tj) with ni + nj = k + 1 and distinct
weight vectors.

To continue, we proceed as in the moment method proof of the semicircle
law. To each closed path i1j1i2j2 · · · ikjki1 we can associate a type sequence of
length 2k, whose jth term gives the number of free steps minus the number
of repetitive steps within the first j edge traversals. As before, every type
sequence corresponding to a path where each edge gets traversed exactly twice
starts at 1, ends at 0, and has consecutive terms differing by ±1. Also note
that the odd terms in a type sequence correspond to edges ending at a j vertex,
whereas even terms correspond to edges terminating at an i vertex.

For a given type sequence, let l be the number of times there is a decrease by
1 going from an odd to an even term. Then l = nj, the number of distinct
j indices. Indeed, l counts the number of paths of the form jsis+1 such that
is+1 has been visited once before, which by the condition that each edge is
traversed exactly twice gives the number of distinct js. Furthermore, pairs of
weight vectors (ti, tj) correspond bijectively to type sequences. Thus, letting

βk =
∑

type sequences
of lenght 2k

αl,

we deduce
〈µn, xk〉 = βk.

The goal is to establish a recurrence relation between the βk in order to com-
pute the general term. To do this, associate to each type sequence of even
length a second parameter l which counts the number of times there is a de-
crease by 1 going from an even to an odd term. Denote by γk =

∑
αl, where

the sum is taken over type sequences of length 2k.

Next, consider the (necessarily even) position 2j of the first occurrence of a
zero in a type sequence of length 2k. Then the elements beyond this index
make up an arbitrary type sequence of length 2k − 2j, with the first 2j terms
forming a type sequence of length 2j with no zero occurring before the last
position. By eliminating the first and last terms and subtracting 1 from each
of the remaining elements, we see that such sequences are in bijection with
arbitrary type sequences of length 2j−2. Furthermore, if l counts the number
of decreases from odd to even indices in the sequence of length 2j, then l − 1
gives the number of decreases from even to odd indices in this new sequence
of length 2j − 2. Keeping in mind how βk and γk were defined in terms of
powers of α, we deduce

βk = α
k∑
j=1

γj−1βk−j.
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Similar reasoning gives

γk =
k∑
j=1

βk−jγj−1.

Thus, βk = αγk for k ≥ 1, with β0 = γ0 = 1 in order for these recurrences
to hold. Since we are primarily interested in the βk, note that these identities
imply

βk = (α− 1)βk−1 +
k∑
j=1

βk−jβj−1.

In particular, if β̂(x) :=
∑∞

k=0 βkx
k is the generating function for the βk, the

previous identity leads to the following equality for β̂:

β̂(x) = 1 + xβ̂(x)2 + (α− 1)xβ̂(x).

The expected ESD µn thus converges to a distribution whose moments are
encoded by β̂. This asymptotic density has a Stieltjes transform s(z) which
can be easily computed as s(z) = −β̂(1/z)/z, a claim which follows directly
from the definition of the Stieltjes transform. Upon solving the quadratic
equation in β̂ from earlier, we have:

s(z) =
−z + (α− 1) +

√
z2 − 2z(α + 1) + (α− 1)2

2z
.

Upon inversion of the Stieltjes transform, we see that the limiting density is
given by

fα(x) ==

√
(x− λ−)(λ+ − x)

2πx
1x∈[λ−,λ+],

where λ− = (1 −
√
α)2 and λ+ = (1 +

√
α)2, as before. We have thus far

shown that Eµn → fα deterministically. An argument similar to that used
to prove lemma 3.2.2 shows that, in fact, the ESD of an arbitrary Wishart
matrix converges to the Marcenko-Pastur distribution, and thus theorem 4.1.1
is proven.

Already, we see that the combinatorial argument underlying the moment
method becomes more complicated going from Wigner to Wishart matrices.
The main issue, however, is the fact that this kind of argument is unable to
handle (true) correlations between matrix elements other than 0 or 1. This
automatically excludes a large class of problems that are relevant to many
applications. With the approach in the next section, it becomes much easier
to handle such cases.
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4.3 Free probability

With the free probability theory developed earlier, we can give a much simpler
proof of theorem 4.1.1, based on [3]. For n, t ≥ 1, consider a sequence of
matrices

Xn =
(
rsi /
√
t
)

1≤i≤n
1≤j≤t

,

with i.i.d. entries rsi of mean 0 and variance 1. The Wishart matrix Wn =
XnX

T
n , whose (i, j) entry is 1

t

∑t
s=1 r

s
i r
s
j , gives the empirical correlation matrix

observed over some finite amount of time t of what are otherwise uncorrelated
quantities rsi . As before, we are interested in the case t/n → α as n → ∞,
where α > 1, such that the number of data points exceeds the dimensionality
of the problem. For the purpose of this section, the inverse ratio β = 1/α < 1
will be more useful.

Proof of Theorem 4.1.1. Note that Wn can be written as the sum of the rank
one matrices

W s
n =

(
rsi r

s
j

)
1≤i,j≤n .

For each s, denote by rs the column vector
[
rs1 . . . rsn

]T
. By the weak law

of large numbers, it follows that for n large W s
n has one eigenvalue equal to

β in the direction of rs. The other n − 1 eigenvalues are 0, corresponding to
eigenvectors orthogonal to rs.

By the spectral theorem, each matrix W s
n can be written as U s

nD
s
n(U s

n)∗, where
U s
n is a unitary matrix whose columns are the eigenvectors of W s

n, and Ds
n is

a diagonal matrix containing the eigenvalues β, 0, . . . , 0. Now, for s 6= s′, the
vectors rs and rs

′
are almost surely orthogonal as n→∞, by the strong law of

large numbers. Equivalently, the eigenvectors of W s
n and W s′

n are almost surely
orthogonal. A standard result [18] then implies that the matrices W s

n with
1 ≤ s ≤ t are asymptotically free. Therefore, we can compute the spectrum
of Wn by using the R-transform trick developed in an earlier section.

To start, the Stieltjes transform of each matrix W s
n can be computed as follows:

sn(z) = sW s
n
(z) =

1

n
tr(W s

n − zI)−1 = − 1

n

∞∑
k=0

tr(W s
n)t

zk+1
= − 1

n

(
n

z
+
∞∑
k=1

βk

zk+1

)

= −1

z
+

1

nz
− 1

nz

∞∑
k=0

(
β

z

)k
= − 1

n

(
n− 1

z
+

1

z − β

)
.

As before, write z := zn(s) in order to find the functional inverse of the Stieltjes
transform:

s = − 1

n

(
n− 1

zn(s)
+

1

zn(s)− β

)
⇔ nszn(s)2 − n(sβ − 1)zn(s)− (n− 1)β = 0.
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Solving the quadratic equation yields

zn(s) =
n(sβ − 1)±

√
n2(sβ − 1)2 + 4n(n− 1)sβ

2ns

=
1

2ns

n(sβ − 1)±

√
n2(sβ + 1)2 − 4nsβ +

(
2sβ

sβ + 1

)2

−
(

2sβ

sβ + 1

)2


≈ 1

2ns

(
n(sβ − 1)±

∣∣∣∣n(sβ + 1)− 2sβ

sβ + 1

∣∣∣∣) ,
since for n large enough the term (2sβ/(sβ + 1))2 is negligible. Using the
intuition zn(s) ≈ −1/s for n large, which follows directly from the definition
of the Stieltjes transform, we can pick the correct root above and deduce

zn(s) = −1

s
+

β

n(1 + sβ)
.

The R transform of each W s
n is therefore given by

RW s
n
(s) = zn(−s)− 1

s
=

β

n(1− sβ)
.

As mentioned before, Wn is the free convolution of the random matrices W s
n

for 1 ≤ s ≤ t, and thus its R-transform is given by

RWn(s) = tRW s
n
(s) =

βt

n(1− sβ)
≈ 1

1− sβ
,

for n large, since n/t→ β. Thus, the inverse of the Stieltjes transform of the
limit of Wn is

z(s) = −1

s
+

1

1 + sβ
.

Now, invert this again to obtain s as a function of z, and thus compute the
Stieltjes transform s(z) of the limit of Wn:

z = − 1

s(z)
+

1

1 + βs(z)
⇔ βzsn(z) + (z + β − 1)sn(z) + 1 = 0 (4.3)

⇔ s(z) =
−(z + β − 1) +

√
(z + β − 1)2 − 4βz

2zβ
,

again using the fact that sn(z) ≈ −1/z to pick the correct root.

Finally, the Stieltjes transform given by (4.3) can be inverted using proposi-
tion 3.3.1 to find the limiting distribution of Wn:

fβ(y) =

√
4yβ − (y + β − 1)2

2πyβ
, y ∈ [(1−

√
β)2, (1 +

√
β)2].
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In terms of α = 1/β and x = αy, the limiting density is

fα(x) =

√
(x− λ−)(λ+ − x)

2πx
, x ∈ [(1−

√
α)2, (1 +

√
α)2],

which is precisely the Marcenko-Pastur distribution.

Compared to the moment method in the previous section, the free probability
approach relies on the interactions between matrices, rather than individual
entries, to derive the asymptotic result. The main advantage of this technique
is that it allows for generalizations to sample correlation matrices where the
true correlations between entries are strictly positive. This is important for
applications, which often deal with data that has intrinsic correlations that we
would like separated from the random noise. To achieve this, it is first impor-
tant to understand at the theoretical level how various levels of correlations
perturb the random spectrum, a kind of goal that would be infeasible with the
basic techniques provided by the moment method. Free probability has been
used to investigate this class of problems, as for example in [2, 3].

As a second observation, note that our proof in this section provides, at least in
theory, a recipe for using free probability to derive asymptotic results. Specif-
ically, if one can find a way to break up the matrix of interest into freely
independent components that are already well understood, the R-transform
trick provides a way to put this information together to find an asymptotic
limit on the original matrix. The problem with this is the fact that, as of now,
free independence is not very intuitive coming from the classical probability
theory mindset, and so finding those freely independent pieces would be diffi-
cult. Perhaps a better grasp of what free noncommutative random variables
look like would be desirable.
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5 Edge asymptotics for the GUE:

the Tracy-Widom law

5.1 Introduction

To complement the two global asymptotics derived so far, we take this section
to describe a local result. Not surprisingly, the moment method and the Stielt-
jes transform, which describe the behavior of all eigenvalues at once, are no
longer the main machinery for proving theorems concerning just a few of these
eigenvalues. Free probability also lacks the “resolution” to handle fluctuations
of individual eigenvalues, as it considers entire matrices at once. Instead,
special classes of orthogonal polynomials and the technique of integrating to
eliminate variables that are not of interest become more prominent.

The Tracy-Widom law gives the limiting distribution of the largest eigenvalue
for specific classes of matrices. In this section, we will derive the Tracy-Widom
law for the Gaussian Unitary Ensemble, consisting of Hermitian matrices in-
variant under conjugation by unitary matrices. However, this result holds for
matrices whose entries are i.i.d. (up to the hermitian constraint) with a dis-
tribution that is symmetric and has sub-Gaussian tail [9].

Theorem 5.1.1 (Preliminary). Let MN , N ≥ 1, be a matrix from the GUE
whose largest eigenvalue is denoted by λNN . Then there exists a cumulative
distribution function F2 such that for all −∞ ≤ t ≤ ∞,

lim
N→∞

P

[
N2/3

(
λNN√
N
− 2

)
≤ t

]
= F2(t).

Informally, this theorem is looking at the fluctuations of the largest eigenvalue
around the distribution predicted by Wigner’s semicircle law. Recall that as
N → ∞, the empirical spectral distribution of the rescaled matrix MN/

√
N

converge to σ(x) =
√

4− x2/2π. In particular, λNN/
√
N → 2 as N → ∞,

so λNN/
√
N − 2 has a trivial distribution. The theorem above suggests that

multiplying by N2/3 and considering the distribution of N2/3(λNN/
√
N − 2)

instead provides a much more interesting result.

There is a simple heuristic argument that explains the N2/3 factor. Sup-
pose that we’re looking just at fluctuations of the largest eigenvalue below
the limiting threshold λ+ = 2. In particular, consider the random variable
Nα(2− λNN/

√
N), where α is just large enough to make the fluctuations non-

trivial. Then:
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Figure 3: Simulation of the Tracy-Widom law using 2000 samples of the eigen-
values of 100 by 100 matrices. Bin size is 0.05. Matlab code based on [8].

P

[
Nα

(
2− λNN√

N

)
≤ t

]
= P

(
2− λNN√

N
≤ t

Nα

)
= P

(
− t

Nα
≤ λNN√

N
≤ 2

)

≈

√
2−

(
2− t

Nα

)2
t

Nα
≈
√

t

Nα

t

Nα
= O

(
1

N3α/2

)
.

Here we are using the intuition that close to λ+ = 2, the probability distribu-
tion of the largest eigenvalue is given by the semicircle law. Then, since σ(x)
is a pdf, it follows that P (2− t/Nα ≤ λNN/

√
N ≤ 2) = σ(2− t/Nα)t/Nα.

The question now is what size would be desirable for the fluctuations. Again by
the semicircle law, the eigenvalues λN1 , . . . , λ

N
N are distributed roughly between

−2 and 2, and the typical separation between two consecutive eigenvalues is
O(1/N). For fixed N , we can think of O(1/N) as the “resolution” of the
empirical distribution spectrum. In Figure 3.2, each bin corresponds to the
number of eigenvalues that are in the small interval defined by that bin. If the
bin size is decreased below the typical gap between eigenvalues, the resulting
histogram would contains bins that have very few eigenvalues, or none at all.

This is the kind of degenerate behaviour that we would want to avoid in dealing
with the fluctuations of the largest eigenvalue. Hence, we ask that:

P

[
Nα

(
2− λNN√

N

)
≤ t

]
≈ O

(
1

N3α/2

)
= O

(
1

N

)
,
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which gives the anticipated value α = 2/3.

Throughout the rest of the section, we primarily follow [1].

5.2 The Gaussian Unitary Ensemble

Definition 5.2.1. Let {Xi}1≤i≤N , {Yij}1≤i<j≤N , and {Zij}1≤i<j≤N be inde-
pendent families of i.i.d. standard normals. Consider a N × N matrix M
whose entries are given by:{

Mii = Xi

Mij =
Yij+iZij

2
= Mji, if i < j

Matrices constructed in this manner form the Gaussian Unitary Ensemble
(GUE).

The joint probability distribution of the matrix entries with respect to Lebesgue
measure is easily determined by multiplying together the pdfs of the indepen-
dent entries:

PN(H)dH =
N∏
i=1

1√
2π
e−h

2
ii/2dhii·

∏
1≤i<j≤N

1

π
e−|hij |

2

dhij,

where H = (hij)
N
i,j=1 and dH =

∏
1≤i≤j≤N dhij is the Lebesgue measure on

the space of Hermitian N ×N matrices. The two products correspond to the
diagonal and upper-triangular entries of H. Using the Hermitian condition,
we can write e−|hij |

2
= e−|hij |

2/2−|hji|2/2, which gives:

P (H)dH =
1

2N/2
1

πN2/2
· e−

∑
1≤i,j≤N |hij |2/2dH =

1

2N/2
1

πN2/2
· e−trH2/2dH. (5.1)

This distribution is invariant under unitary conjugation:

tr((UHU∗)2) = tr(UH2U∗) = tr(H2U∗U) = tr(H2IN) = trH2,

so H and its conjugate UHU∗ have the same pdf. This justifies the name of
the ensemble as the Gaussian Unitary Ensemble.

5.3 Joint eigenvalue distribution for the GUE

By diagonalizing H and performing a suitable change of variables, one can
directly obtain the eigenvalue density of a GUE matrix from (5.1) above:
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Theorem 5.3.1. Let H be a random matrix from the GUE. The joint distri-
bution of its eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λN is given by:

ρN(λ1, . . . , λN)dλ = (2π)−N/2
1

1!· 2!· . . . ·N !
e−trH2/2

∏
1≤j<k≤N

(λk − λj)2dλ,

(5.2)
where dλ =

∏N
j=1 dλj.

A complete proof can be found in [1] or [7].

The quantity
∏

1≤j<k≤N (λk − λj) is the Vandermonde determinant associated
to λ1, . . . , λN , and will be denoted ∆(λ).

5.4 Determinantal laws in the GUE

In this section we discuss how Hermite polynomials and wave functions arise
naturally in the study of the GUE eigenvalue density, as described in [11].

Recall the joint eigenvalue distribution for the GUE from equation (5.2),
rewritten in terms of the Vandermonde determinant ∆(λ) = det1≤i,j≤N (λj−1

i ):

PN(λ1, . . . , λN)dλ = CNe
−trH2/2|∆(λ)|2dλ. (5.3)

More generally, let ({Pj})0≤i≤N−1 be a family of polynomials such that Pj has
degree j. Consider the determinant det1≤i,j≤N (Pj−1(λi)). Using row opera-
tions to successively eliminate terms of degree less than j−1 from Pj, it follows
that det1≤i,j≤N (Pj−1(λi)) is a constant multiple of ∆(λ). Furthermore, if P is
the matrix (Pj−1(λi))1≤i,j≤N , then det(PP t) is a constant multiple of |∆(λ)|2.
Hence:

ρN(λ) = C ′N det
1≤i,j≤N

(
N−1∑
k=0

Pk(λi)e
−λ2i /4Pk(λj)e

−λ2j/4), (5.4)

where C ′N is some nonzero constant dependent on N .

We have thus expressed the density ρN in terms of the family of polynomials
(Pj), whose only constraint is that Pj has degree j, 0 ≤ j ≤ N − 1. Our goal
is to choose these polynomials conveniently so that integrating (5.4) to obtain
the density of p ≤ N of the eigenvalues becomes simpler.

Definition 5.4.1. (a) The kth Hermite polynomial is defined by:

Hk(x) := (−1)kex
2/2 d

dxk
e−x

2/2. (5.5)
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(b) The kth normalized oscillator wave function is defined by:

ψk(x) =
Hk(x)e−x

2/4√√
2πk!

. (5.6)

Hermite polynomials are useful due to the following orthogonality property :

1√
2πk!

∫
R
Hk(x)Hl(x)dx = δkl. (5.7)

Equivalently, the functions (Hk)k≥0, properly normalized, form an orthonormal
basis for the space of L2 functions with the Gaussian measure e−x

2/2/2πdx.

Orthogonality can also be expressed in terms of the oscillator wave functions
ψk: ∫

R
ψk(x)ψl(x)dx = δkl. (5.8)

The propositions below summarize several general facts about Hermite poly-
nomials and oscillator wave functions that we will use later on. A proof of
these statements can be found in [1].

Proposition 5.4.2. The Hermite polynomials {hn(x)}∞n=0 have the following
properties:

1. hn(x) is monic polynomial in x of degree n.

2. (Orthogonality)

∫
hk(x)hl(x)e−x

2/2dx =
√

2πk!δkl, where δkl is the

indicator function.

3. h′n(x) = nhn−1(x).

4. (Christoffel-Darboux formula) For x 6= y,

n−1∑
k=0

hk(x)hk(y)

k!
=

hn(x)hn−1(y)− hn−1(x)hn(y)

(n− 1)!(x− y)
.

Proposition 5.4.3. The oscillator wave functions {ψn(x)}∞n=0 have the fol-
lowing properties:

1. (Orthogonality)

∫
ψk(x)ψl(x)dx = δkl.
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2. (Christoffel-Darboux formula) For x 6= y,

n−1∑
k=0

ψk(x)ψk(y) =
√
n
ψn(x)ψn−1(y)− ψn−1(x)ψn(y)

x− y
.

3. ψ′n(x) = −x
2
ψn(x) +

√
nψn−1(x).

4. ψ′′n(x) +
(
n+ 1

2
− x2

4

)
ψn(x) = 0.

The Hermite polynomials Hk, which are monic of degree k [1], play the role
of our polynomials Pk above. Also, because ψk(x) is a constant multiple of
Hk(x)e−x

2/4, the wave functions correspond to the terms Pk(x)e−x
2/4 in (5.4)

above. Therefore, it is natural that we introduce the notation

KN(x, y) :=
N−1∑
k=0

ψk(x)ψk(y), (5.9)

which gives the following density for the eigenvalues:

ρN(λ) = C ′′N det
1≤i,j≤N

(KN(λi, λj)). (5.10)

We note the following useful property of the function KN :

KN(x, y) =

∫
R
KN(x, z)KN(z, y)dz. (5.11)

This is proven easily by writing KN in terms of the ψk and using the orthog-
onality relations.

The following result tells us how to integrate the kernel with respect to one
variable:

Lemma 5.4.4. For any k ≥ 0,∫
R

det
1≤i,j≤k+1

(KN(λi, λj))dλk+1 = (N − k) det
1≤i,j≤k

(KN(λi, λj)).

Proof. We proceed by induction on k. For k = 0,∫
R
KN(λ, λ)dλ =

N−1∑
l=1

∫
R
ψl(λ)ψl(λ)dλ = N,

from the orthogonality of the ψl. This verifies the identity above.
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Now, suppose the statement holds for k−1 ≥ 0, and we wish to prove it for k.
Applying cofactor expansion along the last row of detk+1

i,j=1(KN(λi, λj)) yields:

k+1

det
i,j=1

(KN(λi, λj)) = KN(λk+1, λk+1)
k

det
i,j=1

KN(λi, λj)

+
k∑
l=1

(−1)k+1+lKN(λk+1, λl) det
1≤i≤j,1≤j≤k+1,j 6=l

KN(λi, λj). (5.12)

Integrating over λk+1, the first term on the right hand side becomes equal
to N detki,j=1KN(λi, λj). For term l in the sum above, use multilinearity
of the determinant to introduce the factor KN(λk+1, λl) into the last col-
umn. By expanding on this last column, using (5.11), and swapping columns
as necessary, the left hand side of (5.12) ends up being equal to (n + 1 −
k) det1≤i,j≤k(KN(λi, λj)), which proves the inductive step and hence the lemma.

5.5 Local properties of the GUE eigenvalue distribution

We now come to the first result that speaks directly to the local fluctuations
of the eigenvalues.

Lemma 5.5.1. Let A ⊂ R be a measurable set. Then:

P (λi ∈ A, i = 1, . . . , N) = 1 +
∞∑
k=1

(−1)k

k!

∫
Ac

. . .

∫
Ac

k

det
i,j=1

KN(xi, xj)
k∏
i=1

dxi.

(5.13)

Before proving the statement above, we introduce a useful result that will sim-
plify future calculations:

Proposition 5.5.2. Given two families f1, . . . , fn and g1, . . . , gn of real-valued,
square-integrable functions, the following identity holds:

1

n!

∫
. . .

∫
n

det
i,j=1

(
n∑
k=1

fk(xi)gk(xj)

)
n∏
i=1

dxi

=
1

n!

∫
. . .

∫
n

det
i,j=1

fi(xj)
n

det
i,j=1

gi(xj)
n∏
i=1

dxi =
n

det
i,j=1

∫
fi(x)gj(x)dx. (5.14)

The proof, which uses the identity det(AB) = det(A) det(B) and the permu-
tation expansion of the determinant, can be found in [1].
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Proof of lemma 5.5.1. The first key step is to use the joint eigenvalue distribu-
tion given by theorem 5.3.1 and integrate over the volume of space generated
by A. In addition, from 5.5.2 and orthogonality of wave functions, we have:

P (λi ∈ A, i = 1, . . . , N) =
1

N !

∫
A

. . .

∫
A

N

det
i,j=1

KN(xi, xj)
k∏
i=1

dxi

=
N−1

det
i,j=0

∫
A

ψi(x)ψj(x)dx

=
N−1

det
i,j=0

(
δij −

∫
Ac

ψi(x)ψj(x)dx

)
Note that the indexing starts at 0 to be consistent with the definition of the
wave functions. Now, expand the determinant above into a sum indexed over
k, the number of factors in the product that are not equal to 1:

P (λi ∈ A, i = 1, . . . , N)

= 1 +
N∑
k=1

(−1)k
∑

0≤v1≤...≤vk≤N−1

k

det
i,j=1

(∫
Ac

ψvi(x)ψvj(x)dx

)
Using proposition 5.5.2 again and the identity (detA)2 = det(A2) for any
matrix A, we get

P (λi ∈ A, i = 1, . . . , N)

= 1 +
N∑
k=1

(−1)k

k!

∫
Ac

. . .

∫
Ac

∑
0≤v1≤...≤vk≤N−1

(
k

det
i,j=1

ψvi(xj)

)2 k∏
i=1

dxi

=
N∑
k=1

(−1)k

k!

∫
Ac

. . .

∫
Ac

k

det
i,j=1

KN(xi, xj)
k∏
i=1

dxi.

Lastly, because the rank of {KN(xi, xj)}ki,j=1 is at most N , the sum above can
be indexed from 1 to ∞, thus implying (5.13).

5.6 Moments of the empirical distribution spectrum

Recall that λNN denotes the largest eigenvalue of a GUE matrix of size N ×N .
In particular, λNN is a random variable. The goal of this section is to prove the
following result:

Lemma 5.6.1. There exist constants c, C > 0 so that

P

(
λNN

2
√
N
≥ eN

−2/3ε

)
≤ Ce−cε, (5.15)

∀N ≥ 1, ε > 0.
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This inequality is known as Ledoux’s bound.

Let λN1 ≤ λN2 ≤ . . . ≤ λNN be the eigenvalues of the GUE matrix MN . Recall
that we can form the empirical disribution function,

µMN/
√
N(x) :=

1

N

(
δ(λ1

N ≤ x) + δ(λ2
N ≤ x) + . . .+ δ(λNN ≤ x)

)
. (5.16)

Recall that µMN/
√
N is a probability measure on probability measures, and in

particular the average empirical distribution spectrum is a probability mea-
sure:

µN := EµMN/
√
N . (5.17)

Because λNN is drawn from the distribution µN , understanding this distribution
will be helpful for proving lemma 5.6.1. In particular, we seek to bound the
moments of µN .

Lemma 5.6.2. Fix N ∈ N. Then for any t ∈ R, the moment generating
function of µN is given by:

MµN (t) :=

∫ ∞
−∞

etxdµN(x) = et
2/2N

N−1∑
k=0

1

k + 1

(
2k

k

)
(N − 1) · · · (N − k)

Nk

t2k

(2k)!

(5.18)

Proof. By (5.11), 1
N
KN(x, x)dx = ρ1,N , and ρ1,N gives the probability density

of one eigenvalue around x. Thus, EµMN
(x) = 1/NKN(x, x)dx, or equivalently

EµMN/
√
N(x/

√
N) = 1/NKN(x, x)dx. With the change of variables x :=√

Nx, it follows that

µN(x) =
1√
N
KN(
√
Nx,
√
Nx)dx.

In particular, the MGF of µN can be written as:

MµN (t) =
1

N

∫ ∞
−∞

etx/
√
NKN(x, x)dx. (5.19)

By the Christoffel-Darboux formula from proposition 5.4.3,

KN(x, y)√
N

=
ψN(x)ψN−1(y)− ψN−1(x)ψN(y)

x− y
.

By L’Hopital’s rule with y → x,

KN(x, x)√
N

= ψ′N(x)ψN−1(x)− ψ′N−1(x)ψN(x),
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which also implies

K ′N(x, x)
√
N = ψ′′N(x)ψN−1(x)− ψ′′N−1(x)ψN(x) = −ψN(x)ψN−1(x),

where the last equality follows from proposition 5.4.3.

Integrating (5.19) by parts gives

MµN (t) =
1

t
√
N
etx/

√
NKN(x, x)

∣∣∣∞
−∞

+
1

t

∫ ∞
−∞

etx/
√
NψN(x)ψN−1(x)dx.

Since KN(x, x) ∝ e−x
2/2 which goes to 0 faster than etx/

√
N goes to ∞ when

x → ∞, and all other dependence on x is subexponential, it follows that the
first term is 0. Hence

MµN (t) =
1

t

∫ ∞
−∞

etx/
√
NψN(x)ψN−1(x)dx. (5.20)

Thus, we want to understand the integral
∫∞
−∞ e

tx/
√
NψN(x)ψN−1(x)dx. It as

this point that we want to make use of the orthogonality of Hermite polyno-
mials functions with respect to the Gaussian measure, as described by propo-
sition 5.4.2. Specifically,

Snt =

√
n

n!
√

2π

∫ ∞
−∞

hn(x)hn−1(x)e−x
2/2+txdx.

With the change of variables x := x + t, the exponential inside the integral
becomes Gaussian:

Snt =

√
net

2/2

n!
√

2π

∫ ∞
−∞

hn(x+ t)hn−1(x+ t)e−x
2/2dx. (5.21)

For any n ≥ 0, we have by Taylor’s theorem

hn(x+ t) =
∞∑
k=0

h
(k)
n (x)

k!
tk =

n∑
k=0

(
n

k

)
hn−k(x)tk =

n∑
k=0

(
n

k

)
hk(x)tn−k.

Note, in particular, that all derivatives of order higher than n vanish, since hn
is a polynomials of degree n.

Substituting this sum into (5.21) and using the orthogonality relations, it
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follows that

Snt = et
2/2
√
n
n−1∑
k=0

k!

n!

(
n

k

)(
n− 1

k

)
t2n−1−2k

= et
2/2
√
n

n−1∑
k=0

(n− 1− k)!

n!

(
n

n− 1− k

)(
n− 1

n− 1− k

)
t2k+1

= et
2/2
√
n
n−1∑
k=0

(n− 1− k)!

n!

n!

(k + 1)!(n− 1− k)!

(n− 1)!

k!(n− 1− k)!
t2k+1

= et
2/2
√
n
n−1∑
k=0

1

k + 1

(
2k

k

)
(n− 1) · · · (n− k)

(2k)!
t2k+1.

Therefore,

MµN (t) =
1

t
SN
t/
√
N

= et
2/2N

N−1∑
k=0

1

k + 1

(
2k

k

)
(N − 1) · · · (N − k)

Nk

t2k

(2k)!
,

which proves the lemma.

Note that the identity above implies that all odd moments of µN are 0. Beyond
that, however, there is no information about individual moments, due to the
et

2/2N factor that has not been expanded as a power series.

The next lemma provides such information. To this end, for fixed N define
{bk}∞k=0 such that:

MµN (t) =
∞∑
k=0

bk
k + 1

(
2k

k

)
t2k

(2k)!
.

Lemma 5.6.3. For any integer k,

bk+1 = bk +
k(k + 1)

4N2
bk−1,

where b−1 := 0,

Proof. Establishing a second order recurrence relation between the coefficients
of a power series is equivalent to finding a linear dependence between the power
series and its first and second derivatives, which is precisely what this proof is
doing.

Define

F (t) =
∞∑
k=0

(−1)k

(k + 1)!

(
N − 1

k

)
tk
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and
Φ(t) = e−t/2F (t).

Then MµN (t) = Φ(−t2/N), using lemma 5.6.2.

It is easy to verify that(
t
d2

dt2
+ (2− t) d

dt
+ (N − 1)

)
F (t) = 0,

and consequently (
4t
d2

dt2
+ 8

d

dt
+ 4N − t

)
Φ(t) = 0. (5.22)

Writing Φ(t) =
∑∞

k=0 akt
k, (5.22) gives

4(k + 1)(k + 2)ak+1 + 4Nak − ak−1 = 0. (5.23)

Bceause of how the ak were defined, we have

(−1)kak(2k)!

Nk
=

bk
k + 1

(
2k

k

)
,

and thus (5.23) becomes

bk+1 = bk +
k(k + 1)

4N2
bk−1,

as claimed.

Proof of lemma 5.6.1. Note that b0 = b1 ≥ 0 by definition, so the recursion in
lemma 5.6.3 implies bk−1 ≤ bk, ∀k ≥ 1. Then by lemma 5.6.3 again,

bk+1 ≤
(

1 +
k(k + 1)

4N2

)
bk.

Then

bk ≤
k−1∏
l=0

(
1 +

l(l + 1)

4N2

)
,

or equivalently

log bk ≤
k−1∑
l=0

(
1 +

l2 + l

4N2

)
= k +

1

4N2

k(k − 1)(2k − 1)

6
+
k(k − 1)

8N2
≤ c′k3

N2
,

(5.24)
for sufficiently large c′ > 0 not depending on k or N .
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By Stirling’s approximation,

k3/2

22k(k + 1)

(2k)!

k!· k!
≈ k3/2

22k(k + 1)

√
4πk

(
2k

e

)2k
1

2πk

( e
k

)2k

→ 1/
√
π (5.25)

as k →∞, which means that

∞
sup
k=0

k3/2

22k(k + 1)

(2k)!

k!· k!
= C ′ <∞.

Lastly, we would like to relate the moments of the random variable λNN to those
of the distribution µN , and consequently to the bk. It is a general fact that
the sample kth moment (Xk

1 + . . .+Xk
n)/n is equal in expectation to the kth

moment of the distribution that X1, . . . , Xn come from. For our problem, the
normalized eigenvalues λ1

N/
√
N, . . . , λNN/

√
N are drawn from the distribution

µN . Since λ1
N ≤ . . . ≤ λNN , we get

E(λNN/
√
N)2k

N
≤ E

(
(λ1

N/
√
N)2k + . . .+ (λNN/

√
N)2k

N

)
=

∫
R
x2kdµN(x)dx.

Writing the kth moment of the law µN in terms of b2k, this implies:

E

(
λNN√
N

)
≤ Nbk
k + 1

(
2k

k

)
. (5.26)

Now, from (5.24), (5.25), and (5.26), along with Markov’s inequality, we get:

P

(
λ(NN

2
√
N
≥ eε

)
≤ E

(
λNN

2
√
Neε

)2k

≤ Ne−2kε

22k

bk
k + 1

(
2k

k

)
≤ C ′Nt−3/2e−2εt+c′t3/N2

,

where btc = k and c′, C ′ are absolute constants.

Replacing ε with N−2/3ε and letting t = N2/3, the result follows.

5.7 Fredholm determinants

Consider a locally compact space X such that X is homeomorphic to a com-
plete space with a countable dense subset (this if typically known as a Polish
space). In most applications, X is just R. Also consider a measure ν on the
Borel σ-algebra of X with ||ν||1 :=

∫
X
|ν(dx)| <∞.
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Definition 5.7.1. A kernel is a Borel-measureable function K : X ×X → C
with

||K|| := sup
(x,y)∈X×X

|K(x, y)| <∞.

The trace of K with respect to the measure ν is defined as

tr(K) =

∫
X

K(x, x)dν(x).

The composition of two kernels K and L defined on the same space X is given
by

(K ? L)(x, y) =

∫
X

K(x, z)L(z, y)dν(z).

The conditions ||ν||1 <∞ and ||K|| <∞ ensure that the trace and the com-
position above are well-defined.

Proposition 5.7.2. (Hadamard’s inequality) Suppose v1, . . . , vn are n×1
column vectors. Then

det[v1 · · · vn] ≤ nn/2
n∏
i=1

|vi|∞.

Lemma 5.7.3. Let n > 0. Consider two kernels F (x, y) and G(x, y). Then∣∣∣∣ n

det
i,j=1

F (xi, yj)−
n

det
i,j=1

G(xi, yj)

∣∣∣∣ ≤ n1+n/2||F −G||max(||F ||, ||G||)n−1 (5.27)

and ∣∣∣∣ n

det
i,j=1

F (xi, yj) ≤ nn/2||F ||n
∣∣∣∣ . (5.28)

Proof. Let

Hk
i (x, y) =


G(x, y) if i < k;

F (x, y)−G(x, y) if i = k;

F (x, y) if i > k.

By the linearity of the determinant, we have

n

det
i,j=1

F (xi, yj)−
n

det
i,j=1

G(xi, yj) =
n∑
k=1

n

det
i,j=1

Hk
i (xi, yj).

Now, consider detni,j=1H
k
i (xi, yj) for each k. One row of this determinant

contains entries of the form (F −G)(xk, yj), with the others rows given either
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by F (xi, yj) or G(xi, yj). Applying Hadamard’s inequality to the transpose of
Hk
i implies ∣∣∣∣ n

det
i,j
Hk
i (xi, yj)

∣∣∣∣ ≤ nn/2||F −G||max(||F ||, ||G||)n−1,

as desired.

Similarly, applying Hadamard’s inequality to detni,j=1 F (xi, yj) yields (5.28)
above.

Definition 5.7.4. For n > 0, define

∆n = ∆n(K, ν) =

∫
X

· · ·
∫
X

n

det
i,j=1

K(ξi, ξj)dν(ξ1) · · · dν(ξn).

Let ∆0 = ∆0(K, ν) = 1.

The Fredholm determinant associated to K(x, y) is defined as

∆(K) = ∆(K, ν) =
∞∑
n=0

(−1)n

n!
∆n(K, ν). (5.29)

Using (5.28) to obtain a uniform bound on detni,j=1 K(ξi, ξj), and then inte-
grating with respect to dν n times, we get:∣∣∣∣∫

X

· · ·
∫
X

n

det
i,j=1

K(ξi, ξj)dν(ξ1) · · · dν(ξn)

∣∣∣∣ ≤ nn/2||K||n||ν||n1 . (5.30)

In view of this bound on ∆n, and by Stirling’s approximation, we see that
∆(K) converges absolutely, and hence it is well-defined.

Although K itself was not required to be continuous, its Fredholm determinant
∆(K) satisfies certain continuity properties, as illustrated by the next lemma.

Lemma 5.7.5. Consider two kernels K,L with respect to the same measure
ν. Then:

|∆(K)−∆(L)| ≤

(
∞∑
n=1

n1+n/2||ν||n1 max(||K||, ||L||)n−1

n!

)
||K − L||. (5.31)
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Proof. Using the bound in (5.27), we have:

|∆(K)−∆(L)|

≤
∞∑
n=0

|∆n(K, ν)−∆n(L, ν)|

=
∞∑
n=1

1

n!

∣∣∣∣∫ · · · ∫ (
n

det
i,j=1

K(ξi, ξj)−
n

det
i,j=1

L(ξi, ξj))dν(ξ1) · · · dν(ξn)

∣∣∣∣
≤

∞∑
n=1

1

n!

∫
· · ·
∫
n1+n/2||K − L||max(||K||, ||L||)n−1dν(ξ1) · · · dν(ξn).

Integrating dν n times yields a ||ν||n1 factor, and the conclusion follows.

In what follows, we will make use of the alternate notation

K

(
x1 · · · xn
y1 · · · yn

)
to denote detni,j=1 K(xi, yj).

As before, assume the measure ν and the kernel K(x, y) are fixed.

Definition 5.7.6. For n ≥ 1, consider

Hn(x, y) =

∫
· · ·
∫
K

(
x ξ1 · · · ξn
y ξ1 · · · ξn

)
dν(ξ1) · · · dν(ξn),

and set H0(x, y) = K(x, y). Define the Fredholm adjugant of K(x, y) as the
function

H(x, y) =
∞∑
n=0

(−1)n

n!
Hn(x, y).

For ∆(K) 6= 0, define the resolvent of the kernel K(x, y) as

R(x, y) =
H(x, y)

∆(K)
.

Lemma 5.7.3 applied to Hn, together with Stirling’s approximation, ensure
that H(x, y) converges absolutely and uniformly on X×X, and thus the Fred-
holm adjugant is well-defined. In fact, both H(x, y) and R(x, y) (if defined)
are kernels.

A kernel and its Fredholm adjugant are related through the following funda-
mental identity:
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Lemma 5.7.7. Let K(x, y) be a kernel and H(x, y) its Fredholm adjugant.
Then:∫

K(x, z)H(z, y)dν(z) = H(x, y)−∆(K)·K(x, y) =

∫
H(x, z)K(z, y)dν(z).

(5.32)

Proof. We will prove the first equality only, as the other one follows similarly.

Using expansion by minors along the first row, we have

K

(
x ξ1 · · · ξn
y ξ1 · · · ξn

)
= K(x, y)K

(
ξ1 · · · ξn
ξ1 · · · ξn

)
+

n∑
i=1

(−1)iK(x, ξi)K

(
ξ1 · · · ξi−1 ξi · · · ξn
y ξ1 · · · ξi−1 · · · ξn

)
= K(x, y)K

(
ξ1 · · · ξn
ξ1 · · · ξn

)
−

n∑
i=1

(−1)iK(x, ξi)K

(
ξi ξ1 · · · ξi−1 ξi+1 · · · ξn
y ξ1 · · · ξi−1 ξi+1 · · · ξn

)
.

Integrating this equality with respect to ξ1, . . . , ξn gives

Hn(x, y) = ∆nK(x, y)− n
∫
K(x, z)Hn−1(z, y)dν(z). (5.33)

Summing the relevant quantities over n, this yields

∞∑
n=1

(−1)n−1

(n− 1)!

∫
K(x, z)Hn−1(z, y)dν(z) =

∞∑
n=1

(−1)n

n!
(Hn(x, y)−∆nK(x, y)).

Noting that H0(x, y)−∆nK(x, y) = 0 by definition, the second sum above can
be indexed from n = 0, and the desired identity follows.

Corollary 5.7.8. For any n ≥ 0,

(−1)n

n!
Hn(x, y) =

n∑
k=0

(−1)k

k!
∆k(K)· (K ? · · · ? K)︸ ︷︷ ︸

n+1−k

(x, y). (5.34)

Additionally,

(−1)n

n!
∆n+1 =

n∑
k=0

(−1)k

k!
∆k(K)· tr (K ? · · · ? K)︸ ︷︷ ︸

n+1−k

. (5.35)
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Proof. In this proof, we use ∆k to denote ∆k(K).

For the first claim, we will proceed inductively. If n = 0, H0(x, y) = ∆0·K(x, y)
holds by definition.

Now let n ≥ 1. From (5.33) and the induction hypothesis, we have:

(−1)n

n!
Hn(x, y)

=
(−1)n

n!
∆n·K(x, y) +

(−1)n−1

(n− 1)!

∫
K(x, z)Hn−1(z, y)dν(z)

=
(−1)n

n!
∆n·K(x, y) +

∫
K(x, z)

n−1∑
k=0

(−1)k

k!
∆k· (K ? · · · ? K)︸ ︷︷ ︸

n−k

(z, y)dν(z)

=
(−1)n

n!
∆n·K(x, y) +

n−1∑
k=0

(−1)k

k!
∆k

∫
K(x, z)· (K ? · · · ? K)︸ ︷︷ ︸

n−k

(z, y)dν(z),

and the conclusion follows.

Furthermore, taking x = y = ξ in (5.34) and integrating with respect to ξ
yields (5.35) above.

5.8 The Airy kernel and the Tracy-Widom law

Definition 5.8.1. Let C be the contour in the complex plane defined by the
ray joining the origin to ∞ through the point e−πi/3 and the ray joining the
origin to infinity through the point eπi/3. The Airy function is defined by

Ai(x) =
1

2πi

∫
C

eζ
3/3−xζdζ. (5.36)

The Airy kernel is given by

K(x, y) = A(x, y) :=
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
, (5.37)

with the value for x = y determined by continuity.

As before, let λN1 , λ
N
2 , . . . , λ

N
N be the eigenvalues of a GUE matrix.

Theorem 5.8.2. For −∞ < t <∞,

lim
N→∞

P

[
N2/3

(
λNN√
N
− 2

)
≤ t

]
(5.38)

= 1 +
∞∑
k=1

(−1)k

k!

∫ ∞
t

. . .

∫ ∞
t

detA(xi, xj)
k
i,j=1

k∏
j=1

dxj := F2(t).
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Of course, this doesn’t say anything about what the distribution F2(t) is. Al-
though it cannot be computed in closed form, F2(t) can be represented as a
solution to a specific differential equation as follows:

Theorem 5.8.3. The function F2(t) above is given by

F2(t) = exp−
∫ ∞
t

(x− t)q2(x)dx, (5.39)

where q is a solution of the Painlevé II differential equation:

q′′ = tq + 2q3, q(t)→ Ai(t) as t→∞. (5.40)

A proof of this fact can be found either in [1], or in the original paper by Tracy
and Widom [15].

Proof of Theorem 5.8.2. Let −∞ < t < t′ <∞. Our first goal is to show the
following:

lim
N→∞

P

[
N2/3

(
λNi√
N
− 2

)
/∈ [t, t′], i = 1, . . . , N

]
=

1 +
∞∑
k=1

(−1)k

k!

∫ t′

t

. . .

∫ t′

t

detA(xi, xj)
k
i,j=1

k∏
j=1

dxj (5.41)

The idea is to let t′ → ∞ and thus deduce (5.38) above. We now focus on
proving (5.41).

As anticipated, we will make use of lemma 5.5.1, which gives the probability
that all the eigenvalues are contained in a set A in terms of a Fredholm de-
terminant associated to the kernel KN . In order to use this result, note that
N2/3(λNi /

√
N−2) /∈ [t, t′] is equivalent to λNi /∈ [N−1/6t+2

√
N,N−1/6t′+2

√
N ].

Thus, letting A be the complement of the interval [N−1/6t + 2
√
N,N−1/6t′ +

2
√
N ], lemma 5.5.1 implies:

P

[
N2/3

(
λNi√
N
− 2

)
/∈ [t, t′], i = 1, . . . , N

]
= 1 +

∞∑
k=1

(−1)k

k!

∫ u′

u

. . .

∫ u′

u

k

det
i,j=1

KN(x′i, x
′
j)

k∏
i=1

dx′i,

where u = N−1/6t + 2
√
N and u′ = N−1/6t′ + 2

√
N . With the change of
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variables x′i := N−1/6xi + 2
√
N , we get:

P

[
N2/3

(
λNi√
N
− 2

)
/∈ [t, t′], i = 1, . . . , N

]
(5.42)

= 1 +
∞∑
k=1

(−1)k

k!

∫ t′

t

. . .

∫ t′

t

k

det
i,j=1

1

N1/6
KN

( xi
N1/6

+ 2
√
N,

xj
N1/6

+ 2
√
N
) k∏
i=1

dxi.

It is therefore useful to introduce the notation

AN(x, y) =
1

N1/6
KN

( xi
N1/6

+ 2
√
N,

xj
N1/6

+ 2
√
N
)
.

Then, the right hand side of (5.42) is precisely ∆(AN), the Fredholm determi-
nant associated to the kernel AN(x, y). This means that proving (5.41) reduces
to showing ∆(AN)→ ∆(A) as N →∞, where A is the Airy kernel.

In fact, because of the continuity property of ∆ described in lemma 5.7.5, it
suffices to show AN → A as N →∞.

By the Christoffel-Darboux identity in proposition 5.4.3,

KN(x, y) =
√
N
ψN(x)ψN−1(y)− ψN−1(x)ψN(y)

x− y
.

Furthermore, by property 4 in the same proposition, we can write

KN(x, y) =
ψN(x)ψ′N(y)− ψN(y)ψ′N(x)

x− y
− 1

2
ψN(x)ψN(y).

With the notation Ψn(x) := n1/12ψn(x/n1/6 + 2
√
n), it follows that

AN(x, y) =
ΨN(x)Ψ′N(y)−Ψ′N(x)ΨN(y)

x− y
− 1

2N1/3
ΨN(x)ΨN(y).

As N →∞, we have
1

2N1/3
ΨN(x)ΨN(y)→ 0.

Indeed, from the definition of the wave functions ψn and their correspondents
ΨN ,

1

2N1/3
ΨN(x)ΨN(y) = O

(
1

N1/6
·
√
N
N

N !

)
,

which goes to 0 by Stirling’s approximation.

Recall that the Airy kernel is defined as

A(x, y) =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
.

Therefore, it suffices to show that ΨN(x)→ Ai(x) and Ψ′N(x)→ Ai′(x), ∀x.
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Typically, this convergence is proven using the method of steepest descent.
This method is used for computing highly oscillatory integrals by altering the
contour in the complex plane to smooth out this highly fluctuating behavior.
For the actual proof, we refer the reader to [1]. For a simpler, though not
entirely rigorous argument based on Fourier analysis, see [12].

We see, therefore, that getting better control on the eigenvalue fluctuations
requires more technical proofs. What remains striking, though, is that even
local asymptotic results are highly universal.
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