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CHAPTER 1

Overview

We will look at some random variables Xn where we have the phenomenon

that Var(Xn)
n → 0 as n → ∞ This is in contrast to the usual phenomenon that

Var (Xn) = O(n) that we are more routinely used to in our study of probability.
This idea is sometimes referred to as “super concentration” and as we will see it
has some connections to chaos and other interesting phenomenon that appear.

In this section we will introduce some of the models that give rise to the prob-
lems that are of interest to us and state some of the theorems we will work towards.
The proof of the theorems are not given here, but are instead reserved for later
sections where they will be filled in with more details.

1. First Passage Percolation

One place where this phenomenon appears is the First Passage Percolation
(FPP) model.

Definition 1.1. Consider the graph G =
(
Zd, E

(
Zd
))

with the usual nearest
neighbor edges for the lattice. Consider a set of iid random non-negative weights
called the passage time or edge rates:(we)e∈E(Zd) . Define the passage time for a

path π : x↔ y between two points x, y ∈ Zd by:

Pπ(x, y) =
∑
e∈π

we

And define the first passage time between x, y to be the minimum over all such
paths:

T (x, y) = inf
π:x↔y

Pπ(x, y)

In this model, one is mostly interested in the asymptotics of the passage time
in any direction. That is for fixed x ∈ Rd let:

Tn(x) = T
(
~0, [nx]

)
Where [nx] is the nearest lattice point to the vector nx ∈ Rd. One is interested

in the behavior of Tn(x) as n→∞. We will sometimes write Tn to mean Tn (~e1).

Fact 1.2. One can show that limn→∞
Tn(x)
n exists and is deterministic. More-

over, it is positive when P (we = 0) < pc(d) the critical probability for percolation
in Zd.

Problem 1.3. What is the behavior as n→∞of Var (Tn(x))?
Keston proved that Var (Tn) ≤ Cn in any dimension. There are also exponen-

tial tail inequalities which control the probability that Var (Tn) is very large.

5



6 1. OVERVIEW

Benjamin-Kelai-Shram (2003) proved that if the edge weights only take two
values, we ∈ {a, b}that Var (Tn) ≤ Cn

logn . Notice here that Var (Tn) = o(n) which

will somehow turn out to be qualitatively different than other bounds as we will
see.

Conjecture 1.4. Under some mild conditions on the weights we, some physi-
cists believe, based on non-rigorous ideas, that:

Var (Tn(x)) = O
(
n

2
3

)
This is an open problem to prove rigorously.

2. (1+1)dimensional Gaussian Random Polymer

Definition 2.1. In Z2, consider the set Tn = {−1, 1}n = {(0, 0), (1, a1), (2, a2), . . . , (n, an)}
with aj = aj−1±1 which we think of as the set of all possible NE-SE paths of length
n. Let (gv)v∈Z2be iid standard Gaussian gv ∼ N(0, 1) random variables. Define the
energy of a path p = {(0, a1), (1, a2), . . . (n, an)} ∈ Tn by:

H(p) = −
n∑
i=1

g(i,ai)

The object of interest in this model is the minimum energy path En = infp∈Tn H(p).

Theorem 2.2. If En is the minimum energy of the (1+1)-dim’l Gaussian Ran-
dom Polymer as described above, then:

Var (En) ≤ Cn

log n

Remark. Compare this result to a more unrestricted polymer, one where we
allow Tn = {(1, a1), (2, a2) . . . (n, an)} where we allow ai ∈ {1, 2, . . . n} with no
restriction on the size of each step. In this space, the maximum energy is plainly
seen by maximizing in each column seperatly:

Ln = max
p

n∑
i=1

g(i,ai)

=
n∑
i=1

max
j∈Z

gij

It is a not so hard fact to see that Var (Ln) ∼ Cn
lognhere by using the fact that

if Z1, . . . Zn ∼ N(0, 1) are iid then Var (maxi Zi) ∼ C
logn . This is a classical result

one can show without using the ideas of concentration.

3. Sherington-Kirkpatrick Model of Spin Glasses

Definition 3.1. Consider n particles which are all either spin +1 or −1, and
let σ = (σ1, σ2, . . . σn) ∈ {+1,−1}n denote the spin configuration. Suppose we
have an array of interaction weights (gij)1≤i≤j≤n which are iid random variables,

usually taken to be distributed like a standard Gaussian, gij ∼ N(0, 1), Define the
energy of the spin configuration σ by:

Hn (σ) = − 1√
n

∑
1≤i≤j≤n

gijσiσj
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This is an example of a disordered system and we sometimes refer to the weights
(gij)1≤i≤j≤n as the disorder of the system. This energy induces a measure on the

set of all such configurations, known as the Gibbs measure by:

µn(σ) ∝ exp (−βHn(σ))

Where β is a parameter, sometimes interpreted as the inverse temperature of
the system. The normilization constant Zn(β) =

∑
σ e
−βH(σ) is called the partition

function and a number of interesting properties can be derived from it. One such
parameter is the free energy of the system, given by:

Fn (β) = − 1

β
logZn (β)

The Parisi formula tells us that limn→∞
Fn(β)
n converges to a deterministic

limit.

Problem 3.2. What is the behavior of Var (Fn (β))?
One can show that this model has a phase transition at β = 1, with qualitatively

different behavior for β < 1 and for β > 1. For β < 1 (the high temperature phase)
one can show that as n→∞ that:

Var (Fn(β))→ C(β)

For β > 1, the best known classical upper bound was that Var (Fn (β)) ≤
C(β)n.

Theorem 3.3. (Chatterjee 2009)
For all β:

Var (Fn (β)) ≤ C(β)n

log n

= o(n)

Conjecture 3.4. It is conjectured that Var (Fn (β)) = O(1). Again, this is
an open problem.

4. Chaos

Problem 4.1. In the setting of the (1+1)-Dimensional Gaussian Polymer, let
p̂nbe the optimal (i.e. minimum energy) path of length n.

Is p̂nchaotic? That is, how sensitive is p̂n to small perturbations of the vertex
weights gij?

To make a precise model, we can take a new set of iid N(0, 1) variables g′ij
which are related to the old vertex weights gijby the relation that

(
gij , g

′
ij

)
is a

multidimensional Gaussian with marginals N(0, 1) and with correlation 1− ε. How
similar is p̂′n to p̂n under this slight change of vertex weights?

Theorem 4.2. (Chatterjee 2008)
In the above set up for the Gaussian Random Polymer, where

(
gij , g

′
ij

)
are

weights that have standard Gaussian marginals with correlation 1− ε, and p̂n is the
optimal minimum energy path, we have that:

E (|p̂n ∩ p̂′n|) ≤
Cn

ε log n
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This is saying that the two paths have very few vertices in common. Notice that
if ε� log n−1, then this is o(n). We will also show that:

Var (En) = o(n) ⇐⇒ ∃εn → 0 s.t. E
(∣∣∣p̂n ∩ p̂(εn)n

∣∣∣) = o(n)

Problem 4.3. In the setting of the spin glass model, we can ask what is the
distance between two randomly chosen configurations. More precisely, if we let
σ1 and σ2 be iid picks from the Gibbs measure µ(σ) = Zn(β)−1 exp(−βH(σ)),
(remember that the energy H here is governed by the random interaction weights
gij) then we define the distance:

R1,2 =
1

n

n∑
i=1

σ1
i σ

2
i

It is known that for β ≤ 1 that E
(
R2

1,2

)
→ 0 as n → ∞. It is thought to

be positive when β > 1. To investigate how the distance between two randomly
chosen configurations, we again perturb our weights by choosing

(
gij , g

′
ij

)
, which

again have standard Gaussian marginals with correlation 1 − ε and we choose σ1
from the Gibbs measure induced by the g′ijs and σ2 from the Gibbs measure built
from the g′ij ’s. In this case we define:

R1,2(ε) =
1

n

n∑
i=1

σ1
i σ

2
i

This will be some kind of measure for how far apart typical configurations from
the Gibbs measure gij and g′ij are. If R1,2is small, the configurations σ1 and σ2 are
almost orthogonal..i.e. very different.

Theorem 4.4. (Chatterjee 2009)
For every β we will have that:

E
(
R2

1,2(ε)
)
≤ C(β)

ε log n

In particular, we will show that this is related to the variance in the minimal
energy for the problem, namely:

Var (En) = o(n) ⇐⇒ ∃εn → 0 s.t. E
(
R2

1,2(εn)
)
→ 0



CHAPTER 2

Multiple Valleys and the Poincare Inequality

1. Stability in Optimization Problems

An optimization problem is called stable if there exists a unique optimum solu-
tion and if any “near” optimum solution is “close” to the actual optimum solution.
Of course, one must make precise what near and close mean here to make this a
mathematical statement.

Example 1.1. Let (cij)i,j∈[n] be an iid collection of Exp(1) random variables.

The interpretation here is that we have n people and n tasks and if assigned to task
j it takes person i cij units of energy to complete the task. Define:

Cn = min
σ∈Sn

n∑
i=1

ciσ(i)

This is the minimum energy the team of people need to complete the task.
Aldous (2001) proved that:

Cn →
π2

6
Moreover, he proved that that this problem has a property known as Asymptotic

Essential Uniqueness, meaning that if
∑
i ciσ(i)
Cn

≈ 1 then σ ≈ σ̂ where σ̂is the
minimizer for Cn. Similar results hold for the minimum cost spanning tree on a
uniformly weighted lattice.

Asymptotic essential uniqueness (AEU ) is the type of stability we will look at
here. We will formulate it precisely and prove some results, but first lets do a few
more examples to build some intuition.

Example 1.2. Let g1, . . . gn ∼ N(0, 1) be iid and let Tn = {−1, 1}n be the
space of configurations σ = {σ1, . . . σn} ∈ Tn. Define f : Tn → R by:

f(σ) =

n∑
i=1

giσi

Clearly, to maximize f , we just take σi =sgn (gi). This has the Asymptotic
Essential Uniqueness property.

Exercise 1.3. Formulate precisely the asymptotic essential uniqueness prop-
erty for the above example and then prove it.

Example 1.4. In our spin glass model, we were optimizing over the space of
configurations σ = (σ1, . . . , σn) with interaction weights gij ∼ N(0, 1) iid. The
energy we maximize is:

Hn(σ) =
1√
n

n∑
i=1

gijσiσj

9
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In this model there is not AEU, which we will prove later.

Definition 1.5. (Multiple Valley Property)
Suppose we have a sequence of (usually finite) setsXn and a sequence of random

functions fn : Ω×Xn → R on a probability space Ω. Suppose also we have a non-
negative similarity measure sn : Xn × Xn → R+ which measures how similar
to elements on Xn are. (This is like a distance function, but with two major
differences: i) no triangle inequality nessasary and ii) sn small means the elements
are very dissimilar)

We will say that the sequence (fn, Xn, sn) has the multiple valley property if
∃εn, δn, γn → 0 and Kn →∞ so that for every n:

P

{
∃A ⊂ Xn s.t. |A| > Kn, and sn(x, y) ≤ εn ∀x, y ∈ A and

∣∣∣∣ fn(x)

miny∈Xn fn(y)
− 1

∣∣∣∣ ≤ δn ∀x ∈ A}
≥ 1− γn

The set A here is the set of “multiple valleys” for the functions fn. The condi-
tion above is saying that with high probability (meaning > 1− γn), that there is a
set A with many elements (at least Kn), so that every element of A is close to the
optimum value of fn (within 1 − δn), and no two of them are very similar (in the
sense of sn and εn).

Example 1.6. The spin glass model fits this setup with:

Xn = {−1,+1}n

fn = Hn

=
1√
n

∑
i,j

gijσiσj

Here the probability space is the space the g′ijs live on, this is where the randomness
for this problem come from. We choose the similarity measure:

sn (σ, σ′) =

(
1

n

n∑
i=1

σiσ
′
i

)2

In this way, two configurations are dissimilar if they are close to being orthog-
onal. We will see later that our choice of similarity measure is motivated by the
model in question.

We will show later that this model, with this similarity measure does indeed
have the multiple valley property.

Example 1.7. The (1+1)-dim Guassian Polymers fit this setup with:

Xn = {(0, 0), (1, a1), (2, a2), . . . , (n, an)} ≡ {−1,+1}n

fn = Hn

=

n∑
i=1

g(i,ai)

Here the probability space is the space the g′vs live on. We choose the similarity
measure to be the number of edges in common between two paths.:

sn(p, p′) =
1

n
|p ∩ p′|

We will prove later that this model has the multiple valley property.
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2. Markov Semi-Groups

In this section, we will review the theory of Markov semi groups. This will be
important and useful to us because of results that concern the equilibrium distribu-
tion of the Markov semi group. By studying these Markov chains, we get a handle
on the properties of functions of the equilibrium distribution.

Our models so far all have randomness coming from a collection of iid standard
Gaussian variables, so we will want a Markov chain whose limit distribution is such
a Gaussian. It will turn out that the Ornstein-Uhlenbeck process will ideal for this;
the n−dim’l O-U process has a Gaussian equilibrium distribution and also flowing
through time in the O-U process changes the coordinates in a predictable smooth
way.

Definition 2.1. Suppose that (Xt)t≥0 is a continuous time Markov process on

some state space S. This defines for us a semi-group of operators (Pt)t≥0 indexed

by time which act on the space SR = {f : S → R}. Each Pt : SR → SR by:

Pt(f)(x) = E (f(Xt)|X0 = x)

Here Xt is the Markov chain which we start at the point x. The Markov
property of the process makes this a semi-group, as one can easily verify that:

Pt+s = Pt ◦ Ps
The generator of the semi-group is the operator L : SR → SR defined by:

Lf = lim
t→0

Ptf − f
t

Proposition 2.2. The semi-group satisfies the “heat equation”:

∂tPt = LPt = PtL

For this reason, we will sometimes write Pt = exp (tL).

Proof. By the semi-group property:

∂tPt = lim
h→0

Pt+h − Pt
h

= lim
h→0

Ph − Id
h

◦ Pt
= L ◦ Pt

The same idea holds to show this is equal to Pt ◦ L too.
�

Definition 2.3. A Markov process is said to have an equilibrium distribution

or stationary distribution µ when, if we start with the distribution X0
d∼ µ, we

have the same distribution for all time, namely Xt
d∼ µ. In terms of our semi-group

operators, another way of saying the same thing is that for all t and for all f :

E ((Ptf)(Z)) = E (f(Z))

Where Z
d
= µ is a random variable with distribution µ. Sometimes we will

write this in “integral form”: ∫
Ptf dµ =

∫
f dµ
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Or sometimes:

Eµ(Ptf) = Eµ(f)

It is a fact about Markov chains that as time increases, the distribution of
the Markov chain approaches the stationary distribution µ. In our semi-group
formulation, this is expressed by the fact that Ptf converges to a constant:

lim
t→∞

Ptf = Eµ (f)

From here onward, we will always assume that the Markov chain Xt has a
stationary distribution µ. We will sometimes let Z be a random variable which has
the distribution µ.

Definition 2.4. The equilibrium distribution of the Markov chain defines an
inner product space on the functions f : S → R,whhich we call L2(µ) with inner
product given by:

〈f, g〉L2(µ) =

∫
fg dµ

= E (f(Z)g(Z))

= Eµ (f · g)

‖f‖L2(µ) = 〈f, f〉
1
2

L2(µ)

This is an L2 space, so it satisfies familair things like the Cauchy Shwarz in-
equality, |〈f, g〉|2 ≤ 〈f, f〉 〈g, g〉 and so on. We also have something related called
the Dirchelet form:

E (f, g) = −〈f, Lg〉

When the Markov chain is reversible, the L operator is self-adjoint with respect
to this inner product, and so the Dirchelet form is symmetric. (Recall that a Markov
chain is reversible if it has a stationary distribution and if P (X0 = a,Xt = b) =
P (X0 = b,Xt = a) where we are understood to start at the stationary distribution,
i.e. P (X0 = a) = µ(a))

E(f, g) = E(g, f)

From now on, we will assume that this is indeed the case for any Markov chain
(Xt) we talk about.

Proposition 2.5. Show that Ptobeys the following nice inequality in the space
L2(µ):

‖Pt (h)‖ L2(µ) ≤ ‖h‖ L2(µ)

Proof. We first claim that φ (Ptf) ≤ P (φ(f)) for convex functions φ. This
follows Jensen’s inequality, since Pt is an expectation. We have for any x ∈ S:

φ (Ptf) (x) = φ (E (f(Xt)|X0 = x))

≤ E (φ (f(Xt))|X0 = x)

= P (φ(f))

Now, to prove the result of the exercise, use this with φ (·) = (·)2, along with
the fact that Eµ (Pt (g)) = Eµ (g):
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‖Pt (h)‖2 L2(µ) = Eµ

(
(Pth)

2
)

≤ Eµ
(
Pt
(
h2
))

= Eµ
(
h2
)

= ‖h‖ 2L2(µ)

�

Definition 2.6. The equilibrium distribution also gives us a natural covariance
functional defined by:

Covµ (f, g) =

(∫
fg dµ

)
−
(∫

f dµ

)(∫
g dµ

)
= Eµ (f · g)−Eµ (f)Eµ (g)

Lemma 2.7. (The Covariance Lemma)
The covariance is related to the Dirichlet form by:

Covµ (f, g) =

∫ ∞
0

E (f, Ptg) dt

Proof. We use the fact that Ptf → Eµ (f). Have:

Covµ(f, g) = Eµ (f · g)−Eµ (f)Eµ (g)

= Eµ (f · (P0g))−Eµ (f) lim
t→∞

Ptg

= Eµ

(
f ·
(
P0g − lim

t→∞
Ptg
))

= −Eµ
(
f ·
(∫ ∞

0

∂tPtg dt

))
= −Eµ

(
f ·
∫ ∞
0

LPtg dt

)
= −

∫ ∞
0

Eµ (f · LPtg) dt

=

∫ ∞
0

E (f, Ptg) dt

The interchange of the expectation with the integral can be justified with mild
conditions which we will not concern ourselves with here.

�

The Poincare inequality, whose definition follows, is one of the most important
classical inequalities one can get from Markov chains.

Definition 2.8. (The Poincare Inequality)
A Markov Process is with Dirichlet form E is said to satisfy a Poincare inequality

with constant C if ∀f ∈ L2 (µ):

Varµ(f) = Covµ (f, f) ≤ CE (f, f)
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3. The Ornstein-Ulenbeck Semigroup

Consider the Markov process (Xt)t≥0known as the Ornstein-Ulenbeck process,
which is given by the stochastic differential equation:

dXt = −Xtdt+
√

2dBt

This is the continuous limit of the auto-regressive process AR(1). The station-
ary measure for this process is the standard Gaussian N(0, 1). The process can be
realized in terms of Brownian motion, Bs,by:

Xt = e−tX0 + e−tB(e2t−1)

This is the most useful form of the O-U process. From this representation, one
can see that the semi-group of operators are given by:

(Ptf) (x) = EZ

[
f
(
e−tx+

√
1− e−2tZ

)]
Where Z ∼ N(0, 1) is a standard Gaussian variable. In particular, this repre-

sentation shows that N(0, 1) is the equilibrium measure. We can also calculate the
generator:

(Lf) (x) = ∂tPtf |t=0

= EZ

[
f ′
(
e−tx+

√
1− e−2tZ

)(
−e−tx+

e−2t√
1− e−2t

Z

)]∣∣∣∣
t=0

From here, one can use the Gaussian integration by parts formula that EZ (Zg(Z)) =
EZ (g′(Z)) to get:

(Lf) (x) = f ′′(x)− xf ′(x)

Similarly, one can compute:

E(f, g) = EZ (f ′(Z)g′(Z))

The d−dimensional O-U process is created by running d independent O-U
processes X1

t , . . . X
d
t and using these as coordinates for a process in Rd, i.e. Xt =(

X1
t , . . . , X

d
t

)
. From our results in the 1−D case, it is easy to see the semi-group

of operators and the generator for this Markov process:

(Lf) (~x) = (∆f) (~x)− ~x · ((∇f) (~x))

The equilibrium distribution is γd, the standard d-dimensional Gaussian ran-

dom variable. The semi-group of operators and Dirichlet form are (here Z
d∼ γd):

(Ptg) (~x) = EZ

[
g
(
e−t~x+

√
1− e−2tZ

)]
E (f, g) = EZ

(
n∑
i=1

(∂if) (Z) (∂ig) (Z)

)
= Eγd (∇f · ∇g)

Theorem 3.1. (Poincare Inequality for the O-U process)
The multidimensional O-U process satisfies the Poincare inequality with con-

stant C = 1. That is to say:

Varγd (f) ≤ E (f, f)

= Eγd
(
|∇f |2

)
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Moreover, the constant C = 1 is optimal. That is to say, the inequality is not
true for C < 1.

Remark. The statement of this inequality has nothing to do with the O-U
process, rather it is a statement about the variance of functions f : Rd → R when
we consider the random variable f(Z) with Z ∼ N(0, 1)d the standard Gaussian
variable in Rd. This is why this theorem will be important to us.

Of course the proof of the theorem goes through the machinery of our reversible
Markov chains for the O-U process and only works because the O-U process is a
reversible Markov chain with the Gaussian measure γd as its stationary distribution.

Proof. We will use the covariance lemma and the Cauchy Shwarz and Jen-
son inequalities to get the result. To simply the terms that appear in the co-
variance lemma, we use the fact that for the O-U process that ∂xi (Ptg) (~x) =

e−tPt (∂xig) (~x). (This can be seen from the expression (Ptg) (~x) = EZ
[
g
(
e−t~x+

√
1− e−2tZ

)]
we saw earlier). Since Pt is linear (just as expectation is), this means that∇ (Ptg) =
e−t (Pt (∇g)). Now consider:

Covγd (f, g) =

∫ ∞
0

E (f, Ptg) dt

=

∫ ∞
0

(Eµ [∇f · ∇ (Ptg)]) dt

=

∫ ∞
0

(
Eµ
[
∇f · e−t (Pt (∇g))

])
dt

=

∫ ∞
0

e−t 〈∇f, Pt (∇g)〉 L2(γd) dt

≤
∫ ∞
0

e−t ‖∇f‖L2(γd) ‖Pt (∇g)‖ L2(γd) dt

The last line follows by the Cauchy Schwarz inequality. Finally, we use the
inequality that ‖Pt (∇g)‖ L2(µ) ≤ ‖∇g‖ L2(µ) (See ??) Have:

Covγd (f, g) ≤
∫ ∞
0

e−t ‖∇f‖L2(γd) ‖∇g‖ L2(γd) dt

= ‖∇f‖L2(γd) ‖∇g‖ L2(γd)

Taking f = g gives:

Varγd (f) ≤ ‖∇f‖2L2(γd)

= 〈∇f,∇f〉L2(γd)

= Eγd
(
|∇f |2

)
= E (f, f)

The function f(x1, . . . xn) =
∑
i xi shows that this bound is optimal since in

this case Varγd(f) = d while Eγd
(
|∇f |2

)
= Eγd (d) = d, so the constant C = 1 is

optimal for this Poincare inequality.
�
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4. Applications

Recall in our (1+1)-dimensional Gaussian polymer model that we had for paths
P = {(0, 0), (1, a1), (2, a2) . . . , (n, an)} ∈ {−1, 1}n the ground state energy En given
by:

En = − max
|P |=n

n∑
i=1

g(i,ai)

We think of En here as a function En : Rn2 → R where we evaluate En ({gv : v ∈ [n]× [n]})
at Gaussian random variables on the grid. A bit of thought reveals:

∂gvEn = −1{v∈optimal path producing En}

Hence |∇En|2 = n + 1 for any value of g′vs, since every path goes through
exactly n+ 1 vertices. Hence the Poincare inequality above gives:

Varγn2 (En) ≤ Eγn2

(
|∇En|2

)
= n+ 1

Exercise 4.1. Prove that if (g1, . . . , gn) are jointly Gaussian (not necessarily
uncorrelated) that:

Var

(
max
1≤i≤n

gi

)
≤ max

1≤i≤n
Var (gi)

Exercise 4.2. If Fn (β) is the free energy of the the Sherington-Kirkpatrick
Model of Spin Glasses, then:

Var (Fn (β)) ≤ C(β)n

Recall here thatHn (σ) = − 1√
n

∑
gijσiσj and Fn (β) = − 1

β log (
∑
σ exp (−βHn (σ))).

We will see in the next lecture that the Poincare inequality is not providing a
very good bound for these problems. That is to say, the true variance is less than
what is being bounded here, but the Poincare inequality fails to capture that. The
idea that the Poincare inequality is suboptimal is related to the idea of supercon-
centration, which we will look at next lecture.



CHAPTER 3

Superconcentration and Chaos

1. Superconcentraion

We say last time that the Poincare inequality can be used to show that, for a
Gaussian vector (g1, . . . gn) that:

Var

(
max
1≤i≤n

gi

)
≤ max

1≤i≤n
Var (gi)

In the case of iid N(0, 1) variables, this is saying:

Var

(
max
1≤i≤n

gi

)
≤ 1

However, it is a fact that for N(0, 1) variables that:

Var

(
max
1≤i≤n

gi

)
≤ C

log n

Which is a much better bound. The idea that the classical Poincare inequality
is suboptimal is the idea for superconcentration.

Definition 1.1. (ε−Superconcentration)
Suppose we have a Markov process Xt ∈ S with Dirchelet form E and equi-

librium measure µ. Suppose also that this Markov process satisfies a Poincare
inequality with constant C. That is Varµ (f) ≤ CE (f, f).

A function f : S → R is called ε-superconcentrated when we have the inequality:

Varµ (f) ≤ εCE (f, f)

Example 1.2. If we take our familiar example of the O-U process on Rd that
we have been considering, we know that we have a Poincare inequality with C = 1.
If we look at the max however, we have:

Varγd

(
max
1≤i≤n

gi

)
≤ C

log n

Which means that the function f(x1, . . . , xn) = max1≤i≤n xi is C
logn -superconcentrated.

Note that this really depends on the function. For example Varγd (
∑
i gi) = n shows

that the function f(x1, . . . xn) =
∑
i xi is not superconcentrated (Technically speak-

ing, it is “1-superconcentrated” but we really want ε small and preferably going to
zero as some parameter n→∞)

Problem 1.3. Suppose that (g1, . . . , gn) are jointly Gaussian, but not neces-
sarily independent. We know that if they are independent, we have superconcen-
tration. More generally, under what conditions is max1≤i≤n gi super concentrated?
In other words, do small correlations ruin the superconcentration?
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18 3. SUPERCONCENTRATION AND CHAOS

As a concrete example, let (g1, . . . , gn) be iid N(0, 1) variables and consider
for configurations σ ∈ {−1,+1}n the function H(σ) = 1√

n

∑
i giσi. The vector

(H(σ))σ∈{−1,+1}n ∈ R2n is jointly Gaussian (each entry is a linear combination of

independent Gaussian).
The correlations Corr (H(σ), H(σ′)) = 1

n

∑
i σiσ

′
i, which are small. ( 1

n

∑
i σiσ

′
i =

1
n (# of agree coords - # of disagree coords), so if we choose two configurations

uniformly at random from {−1,+1}n, then each coordinate has a probability 1
2

of agreement, and probability of 1
2 of disagreeing. Thus 1

n

∑
i σiσ

′
i = 1

n

∑
iXi

where each Xi = ±1 with probability 1
2 for each outcome. By the central limit

theorem, we know that 1
n

∑
i σiσ

′
i ≈ N(0, 1

n ) so this is really small on average)
However, even though the correlations are small, the variance of the maximum

is still O(1):

max
σ∈{−1,+1}n

H(σ) =
1√
n

n∑
i=1

|gi|

Var

(
max

σ∈{−1,+1}n
H(σ)

)
=

1

n

n∑
i=1

C

= C

Where C here is the variance of the absolute value of a N(0, 1) random variable.
This example shows that even a small amount of correlation can (potentially) ruin
superconcentration.

On the other hand, if we consider H(σ) = 1
n

∑
gijσiσj , this is (supposed to

be) superconcentrated. This is an open problem.

2. Fourier Expansions

Recall our setup for studying Markov processes, we had:

(Xt)t≥0 − A time reversible Markov process

(Pt)t≥0 − Semigroup of operators for evolving the process in time

L − Generator of the semigroup of operators (self-adjoint)

µ − Stationary distribution for the process

E − Dirchelet form (symmetric)

In this section we will do some more analysis by taking an eigenbasis for L. This
is akin to doing Fourier analysis (where one takes the eigenbasis for the Laplacian).

Proposition 2.1. The generator L is negative semi-definite.

Proof. By the Cauchy-Schwarz inequality and the Jensen inequality ‖Ptf‖L2(µ) ≤
‖f‖L2(µ)we have:

Eµ (f (Ptf)) = 〈f, Ptf〉L2(µ)

≤ ‖f‖L2(µ) ‖Ptf‖L2(µ)

≤ ‖f‖2L2(µ)

= Eµ
(
f2
)
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Hence, rearranging and dividing by t gives:

Eµ

(
f

(
Ptf − f

t

))
≤ 0 ∀t ≥ 0

Taking the limit t→ 0 now gives the result:

lim
t→0

Eµ

(
f

(
Ptf − f

t

))
≤ 0

Eµ (f (Lf)) ≤ 0

〈f, Lf〉L2(µ) ≤ 0

�

Remark. Since L is a non-negative definite operator, we might expect L to
have some nice eigenvalues and eigenfunction. Often, under some mild conditions,
this is indeed the case and the eigenvalues of −L form an increasing sequence:

0 = λ0 ≤ λ1 ≤ . . .

Notice that 0 is always the smallest eigenvalue since constant functions are in
the null space of L. (Notice Pt1 = Eµ (1) = 1, so L(1) = limt→0 t

−1 (Pt1− 1) = 0)
One can show that the eigenspace of λ0 = 0 is simple because if Lf = 0 then
Ptf = etLf = f for every t. But since limt→∞ Ptf = Eµ (f) then f must be
constant. Hence f = Eµ(f) is a constant.

Theorem 2.2. If the eigenvalue λ1 > 0 we say that there is a “spectral gap” .
In this case we can prove that the Poincare inequality holds with constant C = 1

λ1
.

That is to say, we have:

Varµ (f) ≤ 1

λ1
E (f, f)

Proof. In the case that L has eigenvalues, just as in ordinary Fourier theory,
we can establish the Plancherel identity:

‖f‖2L2(µ) =

∞∑
k=0

〈uk, f〉2L2(µ)

We know u0 = 1 though so 〈uk, f〉L2(µ) = Eµ (f) this is saying then that:

‖f‖2L2(µ) −Eµ (f)
2

=

∞∑
k=1

〈uk, f〉2L2(µ)

We now recognize the left hand side as Varµ (f). Now on the other hand, we
write Ptf in its eigenbasis to see that:

E (f, f) = −〈f, Lf〉L2(µ)

=

∞∑
k=0

λk 〈uk, f〉2L2(µ)

=

∞∑
k=1

λk 〈uk, f〉2L2(µ) since λ0 = 0
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In particular, since the eigenvalues are increasing λ1 ≤ λ2 ≤ . . . , we have
finally:

Varµ (f) =

∞∑
k=1

〈uk, f〉2L2(µ)

≤ 1

λ1

∞∑
k=1

λk 〈uk, f〉2L2(µ)

=
1

λ1
E(f, f)

�

Remark. In this framework of eigenvalues and eigendecompositions, we can
see that the phenomenon of ε−superconcentration just means that Varµ (f) �
1
λ1
E(f, f) is λ1

∑∞
k=1 〈uk, f〉

2
L2(µ) �

∑
λk 〈uk, f〉2L2(µ). Heuristically, this is saying

that “most of the Fourier mass concentrates on large eigenvalues”.
This appears in the literature under the name of “noise-sensitive” functions.

However, only boolean functions are studied for the most part.

3. Chaos

Definition 3.1. We say that a function f is ε− δ−chaotic if ∀t ≥ δ:
E (f, Ptf) ≤ εe−λ1tE (f, f)

Remark. Notice the inequality is always true if the ε is removed. That is:

E (f, Ptf) ≤ e−λ1tE (f, f)

This can be seen from the Fourier analysis we did earlier, write f =
∑
i 〈uk, f〉L2(µ) uk.

Hence:

Ptf = etLf =

∞∑
k=0

λke
−λkt 〈uk, f〉L2(µ) uk

Now using E(f, f) =
∑∞
k=1 λk 〈uk, f〉

2
, and λ1 < λ2 < . . . we have:

E (f, Ptf) =

∞∑
k=0

λke
−λkt 〈uk, f〉L2(µ) uk

≤
∞∑
k=0

λke
−λ1t 〈uk, f〉L2(µ) uk

= e−λ1t
∞∑
k=0

λk 〈uk, f〉L2(µ) uk

= e−λ1tE(f, f)

Remark.

Proposition 3.2. We will give a condition on the polymer model that is suf-
ficient to show that En is ε− δ−chaotic.

In the Polymer model, consider the ground state energy En. This depends on
the environment of iid Gaussian variables (gv)v∈Z2 . Let (hv)v∈Z2 be another set of
iid Gaussian random variables. Fix a time parameter t and define a new realization
of the environment (gtv)v∈Z2 by gtv = e−tgv+

√
1− e−2thv. Let p̂ be the optimal path
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that achieved En in the environment (gv)v∈Z2 and let p̂tbe the optimal path in the
environment (g′v)v∈Z2 . Let |p̂ ∩ p̂t| be the number of vertices they have in common.

If for all t > δ, E (|p̂ ∩ p̂t|) ≤ ε (n+ 1), then En is ε− δ−chaotic.

Proof. The proof use the O-U process. Recall that when we use the O-U
process we have λ1 = 1 (it is the size of the constant in the Poincare inequality.)
We’ve seen already that the ground state energy En has:

∂En
∂gv

= 1{v∈p̂}

E (En, En) = Eγd
(
|∇En|2

)
= n+ 1

Now, consider that:

E (En, PtEn) = Eγd (∇En · ∇ (PtEn))

= e−tEγd (∇En · Pt (∇En))

= e−t
∑
v

Eγd

(
∂En
∂gv

· Pt
(
∂En
∂gv

))
But for a function f , we have

Eγd (f (Ptf)) = EZ (f(Z) (Ptf) (Z))

= EZ,Z′
(
f(Z)f

(
e−tZ +

√
1− e−2tZ ′

))
Where Z,Z ′are iid N(0, 1)d variables. This works because of the expression for

the O-U process Xt = e−tX0 + e−tBe2t−1
d
= e−tX0 +N

(
0,
√

1− e−2t
)
. Notice that

if we identify Z = gv and Z = hv, then gtv is precisly e−tZ +
√

1− e−2tZ ′. That is:

Eγd (f (Ptf)) = Egv,g′v
(
f(gv)f

(
gtv
))

In our case, ∂En
∂gv

= 1{v∈p̂} so ∂En
∂gv

(gv)
∂En
∂gv

(g′v) = 1{v∈p̂}1{v∈p̂t} = 1{v∈p̂,v∈p̂t}
So we have:

E (En, PtEn) = e−t
∑
v

Eγd

(
∂En
∂gv

· Pt
(
∂En
∂gv

))
= e−t

∑
v

Pgv,g′v

(
v ∈ p̂ and v ∈ p̂t

)
= e−tE

(∣∣p̂ ∩ p̂t∣∣)
From this, the definition of ε− δ−chaotic, and the fact that E (f, f) = n+ 1 it

is clear that E (|p̂ ∩ p̂t|) ≤ n+ 1 gives that En is ε− δ−chaotic.
�

Exercise 3.3. Show that in the S-K model for spin glasses, prove the following
sufficient condition for the free energy Fn (β) to be ε− δ−chaotic.

Define gtv as in the previous statement. Let R1,2(t) be the average overlap
between configurations chosen from the measure induced by gv and gtv. If ∀t > δ,
E
(
R2

1,2(t)
)
≤ C(β)ε, then Fn (β) is ε− δ−chaotic.
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4. Equivalence of Chaos and Superconcentration

The ideas of ε − δ−chaotic and ε−superconcentration are actually equivalent
if one adjusts the constants a bit as the following two theorems make precise.
The idea of the proof is to use the fact that eλ1tE (f, Ptf) is decreasing (which is
apparent from the Fourier analysis) and then use the covariance lemma Varµ (f) =∫∞
0
E (f, Ptf) dt.
With this relation in hand, we can see heuristically the relationship. If we

have superconcentration, then Varµ (f) is small, so E (f, Ptf) must be decreasing
quickly, which is ε− δ−chaos. If we have ε− δ−chaos then E (f, Ptf) is decreasing
quickly, so Varµ (f) must be small, which is superconcentration.

Theorem 4.1. If f is ε−superconcentrated then ∀δ > 0, f is ε′ − δ−chaotic
where ε′ = ε

λ1δ

Proof. Suppose that f is ε−superconcentrated. Then we know that:

Varµ (f) ≤ ε

λ1
E (f, f)

Now, for any δ > 0, observe that E (f, Ptf) =
∑∞
k=1 λke

−λkt 〈uk, f〉2L2(µ) is a

decreasing function of t because of the decaying exponential term. Moreover, since
λ1 < λ2 < . . . we can do even better and say that eλ1tE (f, Ptf) =

∑∞
k=1 λke

−(λk−λ1)t 〈uk, f〉2L2(µ)

is a decreasing function of t. Its also apparent from this formulation that E (f, Ptf) ≥
0 is non-negative. We use these facts along with the covariance lemma Varµ (f) =∫∞
0
E (f, Ptf) to see, that for any δ > 0:

ε

λ1
E (f, f) ≥ Varµ (f)

=

∫ ∞
0

E (f, Ptf) dt

≥
∫ δ

0

E (f, Ptf) dt since E (f, Ptf)≥0

=

∫ δ

0

e−λ1teλ1tE (f, Ptf) dt

≥
∫ δ

0

e−λ1t
(
eλ1δE (f, Pδf)

)
dt since eλ1tE (f, Ptf) decreasing

= eλ1δE (f, Pδf)

∫ δ

0

e−λ1t dt

= eλ1δE (f, Pδf)
1− e−λ1δ

λ1

= E (f, Pδf)
eλ1δ − 1

λ1

≥ eλ1δ

λ1
E (f, Pδf)



4. EQUIVALENCE OF CHAOS AND SUPERCONCENTRATION 23

Finally, since eλ1tE (f, Ptf) is decreasing, we have that for all t > δ that:

eλ1tE (f, Ptf) ≤ eδtE (f, Pδf)

≤ ε

λ1δ
E (f, f)

= ε′E(f, f)

Dividing through by eλ1t gives the desired result.
�

Theorem 4.2. If f is ε − δ−chaotic, then f is ε′−superconcentrated, where
ε′ = ε+ λ1δ.

Proof. We again use the fact that E (f, Ptf) and eλ1tE (f, Ptf) are decreasing.
Also recall that P0f = f . Have:

Varµ (f) ≤
∫ ∞
0

E (f, Ptf) dt

=

∫ δ

0

E (f, Ptf) dt+

∫ ∞
δ

e−λ1t
(
eλ1tE (f, Ptf)

)
dt

≤
∫ δ

0

E (f, P0f) dt+

∫ ∞
δ

e−λ1t
(
eλ1δE (f, Pδf)

)
dt

= δE (f, f) + eλ1δE (f, Pδf)

∫ ∞
δ

e−λ1tdt

= δE (f, f) +
(
eλ1δE (f, Pδf)

) e−λ1δ

λ1

= δE(f, f) + (εE (f, f))
e−λ1δ

λ1
On the last line we have used the definition of ε−δ−chaotic when t = δ, namely

eλ1δE (f, Pδf) ≤ εE(f, f). Finally, we bound e−λ1δ ≤ 1 to get:

Varµ (f) ≤ δE(f, f) + (εE (f, f))
1

λ1

=
1

λ1
(ε+ δλ1) E (f, f)

Which is exactly ε′−superconcentration, since C = 1
λ1

in the Poincare inequal-
ity.

�

Exercise 4.3. In the SK spin glass model, show the equivalence of supercon-
centration for Fn(β) and chaos in the disorder.





CHAPTER 4

Multiple Valleys in the Polymer Model and
Hypercontractivity

1. The Polymer Model

Exercise 1.1. In the polymer model, prove that

Var (En) = o(n)

⇐⇒
∃δn → 0 s.t. ∀t ≥ δn we have sup

t≥δn
E
(
|p̂ ∩ p̂tn|

)
= o(n)

This is a corollary of the equivalence of superconcentration and chaos, and
results we have proven earlier.

Theorem 1.2. Assume that there is a sequence εn → 0 and δn → 0 so that the
ground state energy En in the Polymer model has the εn− δn-chaos property. Then
En has the multiple valleys property.

Remark. Here is an outline of the proof. Remember that for the polymer
model we have an energy functional H(σ) and we are interested in the ground
state energy En which is the minimal value of H(σ). The idea of the proof can
be broken into a few steps, which are outlined below. We assume here that En
satisfies εn − δn−chaos here for some sequence εn → 0 and δn → 0 (This will be
proven later.)

(1) The function H(σ) depends only on the random environment (gv). If we
run an O-U process for some small time t we get a new environment (gtv)
and new function Ht(σ). Since we will run this for a small amount of time,
gv and gtv will be highly correlated.

(2) Let p̂ and p̂t be the optimal paths in the environment (gv) and (gtv) re-
spectively. We know from our previous work on the Polymer Model that

εn − δn−chaos here implies that the perturbed path p̂t and the original
path p̂ are almost disjoint, in the sense that E (|p̂ ∩ p̂t|) is small.

(3) Now, since H(p̂t) ≈ Ht(p̂t) (since the measure (gv) is highly correlated
with (gtv)), and since Ht(p̂t) ≈ E (En) ≈ H(p̂) (since En is superconcen-
trated, so it has very low variance), we combine these approximations to
get H(p̂t) ≈ H (p̂).

(4) But now p̂t is a path that is almost disjoint from p̂ and yet is very close
to the minimum energy En = H (p̂) ≈ H(p̂t).

(5) By controlling the size of the approximation, and doing this for many
independent perturbations (gt1v ) , . . . , (gtkv ) we can find many paths that
are near the ground state energy, and yet do not overlap very much.

Proof. To follow in a later version...

25
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�

2. Hypercontractivity

In general there are two ways to prove function are superconcentrated:

(1) Hypercontractivity
(2) Other methods

The idea of hypercontractivity is related to the inequality we proved earlier as a
consequence of Jensen’s inequality, namely:

‖Ptf‖L2(µ) ≤ ‖f‖L2(µ)

This is saying that Pt is contractive on L2(µ). The hypercontractivity is an
even stronger result, saying that Pt is extra contractive.

Definition 2.1. For a Markov chain Xt with semigroup Pt and equilibrium
distribution µ, we say that Pt is hypercontractive if ∀p > 1 and t > 0,∃q = q(t, p) > p
s.t. ∀f ∈ Lp(µ) we have the inequality:

‖Ptf‖Lq(µ) ≤ ‖f‖Lp(µ)
Remark. The hypercontractive inequality can be seen to be a stronger in-

equality than the Jensen inequality we had earlier, because on a probability space,
for p < q we have:

‖f‖Lp(µ) ≤ ‖f‖Lq(µ)
(This also comes from Jensen’s inequality.) So the upper bound of the hyper-

contractive inequality is smaller than the usual upper bound: a stronger inequality.

Theorem 2.2. (Hypercontractivity for the O-U semigroup)
Nelson (1973) proved that the O-U semigroup is hypercontractive in any dimen-

sion with:

q = 1 + (p− 1)e2t

This is a hard theorem and we will not prove it here. Instead we will assume
it and use the result to examine superconcentration phenomenon. Below is an
example of how the hypercontractive inequality can be useful.

Proposition 2.3. Let g = (gi)1≤i≤d be a standard N(0, 1)d Gaussian. Let

h = (hi)1≤i≤d be an independent N(0, 1)d Gaussian. For some fixed t > 0, define

gt = e−tg+
√

1− e−2th (this is flowing forward with the O-U process for a time t).
Let p = 1 + e−2t and let A be any event. Then:

P
(
gt ∈ A

∣∣ g ∈ A) ≤ P (g ∈ A)
1
2

1−e−2t

1+e−2t

Remark. Notice that for small t, we have 1
2
1−e−2t

1+e−2t ≈ 1
2 t+O(t3). The is saying

that if P (g ∈ A) is small, then P (gt ∈ A| g ∈ A)is small too. The interpretation is
that if we are in a rare event A, even flowing forward in time by a small amount of
time t is likely to make us exit the rare event.

Proof. Let f(x1, . . . , xd) = 1{x∈A}. Let p = 1 + e−2t so that q = 1 + (p −
1)e2t = 2. Then by first using the Caucy shwarz inequality, and then using hyper-
contractivity inequality,‖Ptf‖L2 = ‖Ptf‖Lq ≤ ‖f‖Lp , we have:
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P
(
gt ∈ A ∩ g ∈ A

)
= E

(
f(g)f(gt)

)
= EZ,Z′

(
f(Z)f(e−tZ +

√
1− e−2tZ ′

)
= Eγd (f (Ptf))

≤ ‖f‖L2 ‖Ptf‖L2

≤ ‖f‖L2 ‖f‖Lp

Now, ‖f‖pLp = Eγd
(
1p{g∈A}

)
= P (g ∈ A). Hence ‖f‖L2 = P (g ∈ A)

1
2 , ‖f‖Lp =

P (g ∈ A)
1
p so we have:

P
(
gt ∈ A ∩ g ∈ A

)
≤ ‖f‖L2 ‖f‖Lp

= P (g ∈ A)
1
2+

1
p

Dividing through by P (g ∈ A) and calculating 1
2 + 1

p − 1 = 1
2
1−e−2t

1+e−2t gives:

P
(
gt ∈ A

∣∣ g ∈ A) ≤ P (g ∈ A)
1
2

1−e−2t

1+e−2t

As desired.
�





CHAPTER 5

Hypercontractivity and the BKS trick

1. Talagrand’s L1-L2 inequality

The Poincare inequality for the n−dimensional O-U process is:

Varγn (f) ≤ Eγn
(
|∇f |2

)
=

n∑
i=1

‖∂if‖2L2(γn)

As we have seen this inequality is not always optimal. Part of the proof of the
Poincare theorem is using the inequality ‖Ptf‖L2 ≤ ‖f‖L2 , and we can improve
the inequality a little bit by replacing this with the hypercontractive inequality
‖Ptf‖Lq ≤ ‖f‖Lp . One way to do this will lead to Talagrand’s L1 − L2 inequality:

Varγn (f) ≤ C
n∑
i=1

‖∂if‖2L2

1 + log
(
‖∂if‖L2

‖∂if‖L1

)
Here C is a universal constant that does not depend on n or on f . This in-

equality is not always an improvement over Poincare, but when ‖∂if‖L2 � ‖∂if‖L1

the log term in the denominator is large, so we get substantial improvement.

Example 1.1. For f(x1, . . . , xn) =
∑
i xi,∂if = 1 so we have ‖∂if‖L1 =

‖∂if‖L2 = 1 so the log term vanishes and the inequality is Varγn(f) ≤ Cn. We
know in this case that Varγd(f) = n, so in this case Talagrands inequality is not
improving the Poincare inequality.

Example 1.2. We know that when f(x1, . . . , xn) = maxi xi that the Poincare
inequality gives the suboptimal bound Varγd (f) ≤ 1 (see ??). Here we have

that ∂if = 1{xi is the max} so ‖∂if‖2L2 = Pγn (gi is the max) = 1
n by symmetry

considerations. Hence ‖∂if‖L2 = 1√
n

. Similarly, ‖∂if‖L1 = Pγn (gi is the max) =

1
n so

‖∂if‖L2

‖∂if‖L1
=
√
n and Talagrands inequality gives:

Varγn (f) ≤ C

n∑
i=1

1
n

1 + log n

≤ C

log n

Which is the correct order. Notice that this is a substancial improvement over
the O(1) bound that we got from the Poincare inequality alone.

Exercise 1.3. Consider a rooted binary tree of depth n. Suppose that each
edge is given a weight ge ∼ N(0, 1) which are iid standard Gaussian variables.

29
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Define the weight of each leaf l to be wl =
∑
e∈π ge, where π is the unique path

from the root to the leaf l. Let M = maxl wl be the maximum weight of a leaf.
This is the same as the position of the rightmost particle of a branching random

walk with gaussian steps after n steps (at each step each particle splits into two new
particles and each particle takes a step whose size is a Gaussian random variable.)

Prove that E (M) ∼ Cn (easy)
Prove that C =

√
2 log 2 (hard)

Use Talagrands L1 − L2 bound to prove that Var(M) ≤ C log n. In this
problem, it is know that Var(M) ≤ K is bounded by a constant independent of
n. There is no known simple proof of this fact however, it is really a very hard
problem.

Problem 1.4. Is the method of the L1−L2 inequality necessary and sufficient
to prove superconcentration? A recent result by Chatterjee shows that this is true
for functions f which are monotone.

Theorem 1.5. (Talagrands L1 − L2 Inequality)
For the O-U process semi-group we have that:

Varγn (f) ≤ C
n∑
i=1

‖∂if‖2L2

1 + log
(
‖∂if‖L2

‖∂if‖L1

)
Proof. As in the proof of the Poincare inequality, we use the covariance lemma

to bound the variance (The beginning of this argument is identical to the proof of
the Poincare inequality for the O-U process)

Varγd (f) =

∫ ∞
0

E (f, Ptf) dt

=

∫ ∞
0

n∑
i=1

(Eµ [∂if · ∂i (Ptf)]) dt

=

∫ ∞
0

(
n∑
i=1

Eµ
[
∂if · e−t (Pt (∂if))

])
dt

=

∫ ∞
0

e−t
n∑
i=1

〈∂if, Pt (∂if)〉 L2(γd) dt

≤
∫ ∞
0

e−t
n∑
i=1

‖∂if‖L2(γd) ‖Pt (∂if)‖ L2(γd) dt

At this point, instead of using the Jensen inequality bound ‖Pt (∂if)‖ L2(γd) ≤
‖∂if‖ L2(γd) we will use the hypercontractivity inequality bound for the O-U process

that ‖Pt (∂if)‖ L2(γd) ≤ ‖∂if‖ Lp(γd) where p = 1 + e−2t. The form of p comes from
the explicit formula we have for the hypercontractive inequality for the O-U process.
Once we do this, since 1 < p < 2 we have the opportunity to use Holder’s inequality
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‖∂if‖Lp ≤ ‖∂if‖
2(p−1)/p
L2 ‖∂if‖(2−p)/pL1 . We have:

Varγd (f) ≤
∫ ∞
0

e−t
n∑
i=1

‖∂if‖L2(γd) ‖∂if‖ Lp(γd) dt

≤
∫ ∞
0

e−t
n∑
i=1

‖∂if‖L2 ‖∂if‖2(p−1)/pL2 ‖∂if‖(2−p)/pL1 dt

= ≤
n∑
i=1

‖∂if‖2L2

(∫ ∞
0

e−t ‖∂if‖(p−2)/pL2 ‖∂if‖(2−p)/pL1 dt

)

To simplify this further, we write ai =
‖∂if‖L2

‖∂if‖L1
< 1 and tanh(t) = et−e−t

et+e−t=
p−2
p

to get:

Varγd (f) ≤
n∑
i=1

‖∂if‖2L2

(∫ ∞
0

e−ta
tanh(t)
i dt

)
By the exercise below,

∫∞
0
e−ta

tanh(t)
i dt ≤ C

1−log(ai) , so we get:

Varγn (f) ≤ C
n∑
i=1

‖∂if‖2L2

1 + log
(
‖∂if‖L2

‖∂if‖L1

)
As desired. �

Exercise 1.6. Prove that for a constant a < 1 that:∫ ∞
0

e−tatanh(t)dt ≤ C

1− log (a)

2. The BKS Trick

Here we will use a trick due to Itai Benjamini, Gil Kalai, and Oded Schramm
that allows one to show that the first passage time, Tn in the first passage percola-
tion model is superconcentrated with Var(Tn) ≤ Cn/ log n. We will first introduce
the problem and explain how the BKS trick gets around the difficulty.

Proposition 2.1. Consider the first passage percolation model with iid edge
weights given by we = |ge| where ge ∼ N(0, 1) as usual. Let Tn be the first passage
time to get from (0, 0) to (n, 0) and let pe = P(e ∈ optimal path from (0, 0)to (n, 0)).
Then:

Var(Tn) ≤ C
∑

e∈E(Z2)

pe

1 + log
(

1
pe

)
The result also holds when we = F (ge) for F a non-negative and differentiable

Lipshitz function, |F ′| ≤ C.

Proof. The proof uses the L1−L2 inequality. We have, for any edge e ∈ E(Z2)
that:

∂eTn = 1{e∈optimal path}
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So that ||∂eTn||L1 = pe and ||∂eTn||L2 =
√
pe. Hence, by the L1−L2 inequality,

we have:

Var (Tn) ≤ C
∑

e∈E(Z2)

‖∂eTn‖2L2

1 + log
(
‖∂eTn‖L2

‖∂eTn‖L1

)
= C

∑
e∈E(Z2)

p2e

1 + log
(√

pe
pe

)
≤ C

∑
e∈E(Z2)

pe

1 + log
(

1
pe

)
Note that there is a little technical issue here to apply the L1 − L2 inequality

to the infinite dimensional collection (ge)e∈E(Z2), but this can be handled because

we can show that the optimal path that achieves Tn can be controlled to stay in a
finite (but large) box with high probability.

�

Remark. If we also knew that pe was “small” for most e, this result would
give us the result that Var(Tn) ∼ Cn/ log(n). Unfortunately, there is no known
elementary way to see this. The BKS trick lets us get around this difficulty by
taking an average over many edges.

Theorem 2.2. (BKS inequality)
In the first passage percolation model as above, with we = |ge| we have:

Var (Tn) ≤ C n

log n

Proof. (We will use T = Tn for shorthand in this proof.) We will create a

variable T̃ which approximates T . We will first show that the variance of T and
T̃ are not too different, and then use the L1 − L2 theorem to prove the T̃ has the
required variance.

Fix a constant k (to be chosen later) and let B be the (2k + 1)× (2k + 1) box
centered around the origin. For every vertex x ∈ B, let Tx be the first passage time
for the path between x and x+ (n, 0). Let T̃ be the average over all such paths:

T̃ =
1

|B|
∑
x∈B

Tx

This average can be related to the passage time T, the first passage time between
~0 and (n, 0) by the inequalities:

Tx ≤ T{x↔~0} + T{~0↔(n,0)} + T{(n,0)↔(n,0)+x}

= T{x↔~0} + T + T{(n,0)↔(n,0)+x}

T ≤ T{~0↔x} + T{x↔(n,0)+x} + T{(n,0)+x↔(n,0)}

= T{~0↔x} + Tx + T{(n,0)+x↔(n,0)}

Where for y, z ∈ Z2, T{y↔z} is the first passage time between y and z. These
inequalities hold by a sort of triangle inequality for first passage percolation: the
first passage time from a to c cannot be longer than the sum of the first passage
time from a to b and the first passage time from b to c, for the path connecting a
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to c is allowed to travel through b en route. These two inequalities together give us
that for any x ∈ Bk:

|Tx − T | ≤ T{x↔~0} + T{(n,0)↔(n,0)+x}

≤
∑

e∈πx↔~0

we +
∑

e∈π(n,0)↔(n,0)+x

we

Since x is inside the box Bk the direct paths from {x ↔ ~0} and {(n, 0) ↔
(n, 0) + x} are no longer than 2k steps long, and the edges here are independent,
we have:

E
(
|Tx − Tn|2

)
≤ E


 ∑
e∈πx↔~0

we +
∑

e∈π(n,0)↔(n,0)+x

we

2


≤ 4kE
(
w2
e

)
+

(
4k

2

)
E (we)E (we′)

≤ Ck2

Hence:

E
(
|T̃ − T |2

)
≤ 1

|B|
∑
x∈B

E
(
|Tx − T |2

)
≤ Ck2

Finally, since E
(
T̃
)

= E (Tx) = E (T ) and for every x (since first passage

percolation is transition invariant), we have with a little bit of algebra:

Var(T ) ≤ 2Var(T̃ ) + Ck2

So it remains only to bound the variance of T̃ . This is done with the L1 − L2

inequality as follows. Here we let p̂x be the optimal path from x to x+ (n, 0) that

achieves Tx and p̂ be the path from ~0 to (n, 0) that achieves T . Have:

∂eT̃ =
1

|B|
∑
x∈B

1{e∈p̂x}

So then:

||∂eT̃ ||L1 =
1

|B|
∑
x∈B

P{e ∈ p̂x}

=
1

|B|
∑
x∈B

P{e− x ∈ p̂}

=
1

|B|
∑

x∈B+e

P{x ∈ p̂}

=
1

|B|
E (# {p̂ ∩ (B + e)})

Now, we remark that the path p̂ is a geodesic. Hence, moving along p̂, if we
let xin be the first point that p̂ intersects B + e and xout be the last point that p̂
intersect B + e, then p̂ is a geodesic between xin and xout. But both xin and xout
are on the boundary of B, which is a box of size 2k+ 1. It is a fact in first passage
percolation that the expectation of the length geodesic of two points which are
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O(k) apart is also O(k) (This can be proven with large deviations, or by trying to
bootstrap the result from the case where the edge weights are bounded we ∈ (a, b)
a.s.). Hence we have:

||∂eT̃ ||L1 =
1

|B|
E (# {p̂ ∩ (B + e)})

≤ 1

|B|
E (|p̂xin↔xout |)

=
1

|B|
O(k)

= O

(
1

k

)
The last equality is because |B| = 1

k2 . Now using the result which is like the

L1 − L2 inequality, when |∂if | ≤ C a.s. for every i we have that:

Varγd (f) ≤ C ′
n∑
i=1

||∂if ||L1

1− log (||∂if ||L1)

In our case, we have that |∂ ˜
eT | ≤ 1 a.s. and ||∂eT̃ ||L1 = O( 1

k ) so the bound is:

Var
(
T̃
)
≤ C ′

∑
e∈E(Z2)

||∂eT̃ ||L1

1− log
(
O
(
1
k

))
≤ C

′

log k

∑
e

||∂eT̃ ||L1

≤ C ′

log k
E (|p̂|)

≤ C ′n

log k

Where we have again used the fact that the expected length of the first passage
path between two points of distance O(n) is O(n) too. Finally, this gives:

Var (T ) ≤ 2Var(T̃ ) + Ck2

≤ C ′n

log k
+ Ck2

Choosing k = nαfor α < 1
2 gives the desired result:

Var(T ) ≤ Cn

log n

�

Exercise 2.3. Prove the result we used which is similar to the L1 − L2 in-
equality. Namely, if |∂if | ≤ C for every i then:

Varγd (f) ≤ C ′
n∑
i=1

||∂if ||L1

1− log (||∂if ||L1)



CHAPTER 6

The Ising Model and the Improved Poincare
Inequality

Recall that in the Ising model, we had Fn (β) = − 1
β log

(∑
σ∈{−1,+1}n exp (−βHn(σ))

)
where Hn(σ) = − 1√

n

∑
1≤i,j≤n gijσiσj . We aim here to show superconcentration

in this model, namely that Fn (β) = o(n) as n → ∞. On the way to proving
superconcentration, notice that:

∂Fn
∂gij

= − 1√
n

∑
σ σiσj exp(−βHn(σ))∑
σ exp (−βHn(σ))

= − 1√
n
〈σi, σj〉

Where 〈σi, σj〉 = EHn (σiσj) where the expectation is taken over the probability
space given by the Gibbs measure µn(σ) ∝ exp (−βHn(σ)). To further analyze this,
we will need a bit more theory about the O-U semi-group.

1. Spectrum of the O-U semigroup

We first describe the spectrum and eigenfunction for the O-U semigroup in 1
dimension, and then we will generalize to n dimensions.

Definition 1.1. The k−th Hermite polynomial is given by the expression:

Hk(x) = (−1)ke
x2

2
dk

dxk

(
e−

x2

2

)
The first few are H0(x) = 1, H1(x) = x, H2(x) = x2 − 1.

Fact 1.2. (1-D Spectrum of the O-U Process)
The sequence (Hk)

∞
k=0 is an orthogonal basis for the Gaussian measure γ in the

sense that:

||Hk||2L2(γ) = k!

〈Hk, Hj〉L2(γ) = 0 for j 6= k

Moreover, these are an eigenbasis for the O-U generator −L with eigenvalue k:

〈Hk,−LHk〉 = kHk

Fact 1.3. (n-D spectrum of the O-U Process)
Let Lf(x) = ∆f(x) − x · ∇f(x) be the generator of the n dimensional O-U

process. For ~k = (k1, . . . kn) the operator−L has eigenfunctions H~k given by:

H~k =

n∏
i=1

Hki(xi)

35
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Where Hk is the k−th Hermite polynomial defined above. The eigenvalue of

H~k is |~k| =
∑
i ki, and the norm of the eigenfunction is:

||H~k||
2
L2(γn) = ~k! = k1! · k2! · . . . · kn!

Proposition 1.4. For the 1-D Hermite polynomials, one can verify that H ′k =
kHk−1, and using this one can verify that:

〈f,Hk〉L2(γ) = Eγ

(
dkf

dxk

)
In n-D one can similarly show that:〈

f,H~k
〉
L2(γn)

= Eγn

(
∂|
~k|f

∂xk11 ∂x
k2
2 . . . ∂xknn

)

Proof. We use the explicit form of the Gaussian density dγ = 1√
2π
e−

x2

2 dx

and the definition of the Hermite polynomial Hk(x) = (−1)ke
x2

2
dk

dxk

(
e−

x2

2

)
to see

the result:

〈f,Hk〉L2(γ) =

∫
fHkdγ

=

∫
f

(
(−1)ke

x2

2
dk

dxk

(
e−

x2

2

)) 1√
2π
e−

x2

2 dx

=

∫
f (−1)

k dk

dxk

(
e−

x2

2

) 1√
2π
dx

From here, one applies integration by parts to see that:

〈f,Hk〉L2(γ) = −
∫
f ′ (−1)

k dk−1

dxk−1

(
e−

x2

2

) 1√
2π
dx

=

∫
f ′ (−1)

k−1 dk−1

dxk−1

(
e−

x2

2

) 1√
2π
dx

= 〈f ′, Hk−1〉L2(γ)

Where we have recognized the integral from our above calculation. Repeating
this k−times (or using a proof by induction to be more formal) one sees that:

〈f,Hk〉L2(γ) =
〈
f (k), H0

〉
L2(γ)

= Eγ

(
dkf

dxk

)
The last equality holds since H0 ≡ 1. The proof in n−D is very similar.

�

2. The Improved Poincare Inequality

We have seen before that we can write the variance of a function using through
the Plancherel identity:

Varµ (f) =

∞∑
k=1

〈uk, f〉2L2(µ)
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We have seen that using the fact that λ1 < λ2 < . . . and this formula gives rise
to the Poincare inequality, Varµ (f) ≤ 1

λ1

∑∞
k=1 λk 〈uk, f〉

2
L2(µ). If we have better

control over the eigenvalues however, we can get an even finer estimate. This is
what we do in this section in the case of the O-U semigroup, where we know the
eigenvalues from the analysis in the previous section.

Proposition 2.1. In the sett the n−dimensional O-U semigroup, define θm(f)
by:

θm(f) =
∑

1≤i1,i2,...,im≤n

(
∂|
~k|f

∂xi1∂xi2 . . . ∂xim

)2

Where here ~k = (k1, k2, . . . kn)with ki ≥ 1 and |~k| =
∑
i ki. Then:

Varγn (f) =

∞∑
m=1

1

m!
θm(f)

Proof. The result is a simple manipulation starting with the eigenfunctions

H~k with eigenvalues |~k| and the formula for the variance from Parseval’s identity
using the normalized Hk’s as an eigenbasis:

Varγn (f) =

∞∑
~k∈(Zn)+

〈
Hk

~k!
, f

〉2

L2(γn)

=

∞∑
~k∈(Zn)+

1

~k!
〈Hk, f〉2L2(γn)

By our proposition 1.4, we know
〈
H~k, f

〉
L2(γn)

= Eγn

(
∂|
~k|f

∂x
k1
1 ∂x

k2
2 ...∂xknn

)
so this

sum is:

Varγn (f) =

∞∑
~k∈(Zn)+

1

~k!
Eγn

(
∂|
~k|f

∂xk11 ∂x
k2
2 . . . ∂xknn

)2

If we now collect terms which have ~k = m and we multiply and divide my m!
we get:

Varγn (f) =

∞∑
m=1

∞∑
|~k|=m

1

~k!
Eγn

(
∂|
~k|f

∂xk11 ∂x
k2
2 . . . ∂xknn

)2

=

∞∑
m=1

1

m!

∞∑
|~k|=m

m!

k1!k2! . . . kn!
Eγn

(
∂|
~k|f

∂xk11 ∂x
k2
2 . . . ∂xknn

)2

Finally, notice that m!
k1!k2!...kn!

is the combinatorial expression for the number
of ways to put m balls in n distiguished boxes so that the number of balls in box
#1 is k1, number of balls in box #2 is k2 and so on. Another way to achieve an
arrangement like this would be to assign each of the m balls an index, say the k−th
ball gets the index 1 ≤ ik ≤ n, and put the ball k into the box #ik. If we think of
each ball in box #j as the number of xj derivatives to take, and since derivatives
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commute, we see that the above expression is:

Varγn (f) =

∞∑
m=1

1

m!

∞∑
1≤i1,...,im≤n

Eγn

(
∂mf

∂xi1∂xi2 . . . ∂xin

)2

Which is exactly the expression written in terms of the θm which we desired.
�

Proposition 2.2. For the case of the free energy of the Ising model, we can
show that:

θm(Fn) ≤ Cm(β)

Where Cm(β) is a constant depending only on m and β (independent of n)

Proof. (Sketch)
We will sketch the idea of the proof here by examining the cases m = 1 and

m = 2. The same ideas can by applied to all values of m.
In the case m = 1 we have: (It is worth noting here, in order to avoid confusion,

that the random Gaussian here are labeled (gij)1≤i≤j≤n, so that the dimension of

the space we are integrating over is not n but rather d =
(
n
2

)
+ n.)

θ1(Fn) =
∑

1≤i≤j≤n

Eγd

(
∂Fn
∂gij

)2

=
∑

1≤i≤j≤n

Eγd

(
− 1√

n
〈σi, σj〉

)2

=
1

n

∑
1≤i≤j≤n

Eγd (EHn(σiσj))
2

Where we have used ∂Fn
∂gij

= − 1√
n
〈σi, σj〉 = − 1√

n
EHn(σiσj) is the expectation

of the product σiσj over the Gibbs measure induced by Hn. The trick now is to
use that Eγd (EHn(σiσj)) = EU (σiσj) where U is the uniform distribution on the
set {−1,+1}n. This is can be seen because of the symmetry of the gij ’s. With this
trick we have:

θ1(Fn) =
1

n

∑
1≤i≤j≤n

EU (σiσj)
2

= 0

The expectation is 0 in this case, since we are looking over the uniform distri-
bution so σiσj ∈ {+1,−1} with both equally likely. The same trick can be used for
θ2, but the terms become more complicated:

∂2Fn
∂gij∂gkl

= − 1√
n

∂

∂gkl
〈σiσj〉

=
β

n
(〈σiσjσkσl〉 − 〈σiσj〉 〈σkσl〉)
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And we will have

θ2(Fn) =
∑

1≤i≤j≤n
1≤k≤l≤n

Eγd

(
∂2Fn

∂gkl∂gij

)2

=
β2

n2

∑
1≤i≤j≤n
1≤k≤l≤n

Eγd (〈σiσjσkσl〉 − 〈σiσj〉 〈σkσl〉)2

Now we will use our uniform distribution over {−1,+1}n trick to kill some of the
terms again. The term EU (σiσjσkσl) will vanish just as it did in the computation
of θ1. We will remain with:

Eγd (〈σiσj〉 〈σkσl〉)2 = Eγd (EHn (σiσj)EHn (σkσl))
2

= Eγd
(
σ1
i σ

1
jσ

2
kσ

2
l

)2
= Eγd

(
σ1
i σ

1
jσ

2
kσ

2
l σ̃

1
i σ̃

1
j σ̃

2
kσ̃

2
l

)
Here we have used the trick E(X)2 = E(X1X2) with X1, X2 being iid variables

having the distribution of X. (We did this with superscript numbers and with
tildes). In our specific case, all these variables are chosen with respect to the Gibbs
distribution. We have:

θ2(Fn) =
β2

n2

∑
1≤i≤j≤n
1≤k≤l≤n

Eγd
(
σ1
i σ

1
jσ

2
kσ

2
l σ̃

1
i σ̃

1
j σ̃

2
kσ̃

2
l

)

≈ β2

n2
Eγd

 ∑
1≤i≤n

σ1
i σ̃

2
i

 ∑
1≤k≤n

σ1
kσ̃

2
k


Here we have done a manipulation to bring the terms into a more manageable

product (Some terms may vanish because of the uniform trick?). Finally, one uses

the fact that
(∑

1≤i≤n σ
1
i σ̃

2
i

)
= O(n) and the Cauchy-Shwarz inequality to get:

θ2(Fn) ≈ β2

n2
O(n2)

≤ Cβ

The same type of idea works for general θm by using the Cauchy-Shwarz distribution
on m terms.

�

Exercise 2.3. Show how the symmetry of the gij ’s lead to the fact that
Eγd (EHn (f(σ))) = EU (f(σ)) where U is the uniform distribution on {−1,+1}n.

So we have a bound on the θm and so we have a bound on the variance of Fn:

Var (Fn) =

∞∑
m=1

1

m!
θm(Fn)

≤
∞∑
m=1

1

m!
Cm(β)
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Now if it was the case that the sum
∑

1
m!Cm(β) converged, we would have that

the variance is bounded by a constant. Unfortunately, the best estimate we can get
for Cm(β) from using the crude estimate of the Cauchy-Shwarz inequality is:

Cm(β) ≤ exp (c(β)n log n)

For which
∑

1
m!Cm(β) diverges. However we can still get a bound of o(n) by

improving the Poincare inequality a little bit.

Theorem 2.4. (Improved Poincare Inequality)
Consider a Markov process whose generator −L has eigenfunctions u1, u2, . . .

with eigenvalues λ1 < λ2 < . . .. The variance of a random variable can be bounded
by:

Varµ (f) ≤
m−1∑
k=1

〈uk, f〉2L2(µ) +
E (f, f)

λm

Corollary 2.5. For Gaussian random variables and the O-U process this
translates to:

Varγn(f) ≤
m−1∑
k=1

1

k!
θk(f) +

Eγn
(
|∇f |2

)
m

Proof. As in the proof of the Poincare inequality, we start with the Plancheral
identity and we use the fact that the sequence of eigenvalues λi are increasing :

Varµ(f) =

∞∑
k=1

〈uk, f〉2L2(µ)

=

m−1∑
k=1

〈uk, f〉2L2(µ) +

∞∑
k=m

〈uk, f〉2L2(µ)

≤
m−1∑
k=1

〈uk, f〉2L2(µ) +
1

λm

∞∑
k=m

λk 〈uk, f〉2L2(µ)

≤
m−1∑
k=1

〈uk, f〉2L2(µ) +
1

λm
E(f, f)

�

Theorem 2.6. For any β > 0, the free energy in the Ising model has supercon-
centration:

Var (Fn(β)) ≤ c(β)n log (log n)

log n

Proof. If we use our improved Poincare inequality, along with the bound we
had that θm(Fn) ≤ ec(β)m logm we get:

Varγn(f) ≤
m−1∑
k=1

1

k!
θk(f) +

Eγn
(
|∇f |2

)
m

≤
m−1∑
k=1

1

k!
ec(β)m logm +

c′(β)n

m

≈ 1

m!
ec(β)m logm +

c′(β)n

m
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If we choose m = a(β) logn
log(logn) we get the desired inequality.

�
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