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Preface

In this book, we study random graphs as models for real-world networks. Since 1999,
many real-world networks have been investigated. These networks turned out to have
rather different properties than classical random graph models, for example in the
number of connections the elements in the network make. As a result, a wealth of new
models was invented to capture these properties. This book summarizes the insights
developed in this exciting period.

This book is intended to be used for a master level course where students have
a limited prior knowledge of special topics in probability. We have included many
of the preliminaries, such as convergence of random variables, probabilistic bounds,
coupling, martingales and branching processes. This book aims to be self-contained.
When we do not give proofs of the preliminary results, we provide pointers to the
literature.

The field of random graphs was initiated in 1959-1960 by Erdős and Rényi; see
[115, 116, 117, 118]. At first, the theory of random graphs was used to prove deter-
ministic properties of graphs. For example, if we can show that a random graph with
a positive probability has a certain property, then a graph must exist with this prop-
erty. The method of proving deterministic statements using probabilistic arguments
is called the probabilistic method, and goes back a long way. See among others the
preface of a standard work in random graphs by Bollobás [54], or the classic book
by Alon and Spencer devoted to The Probabilistic Method [14]. Erdős was one of the
pioneers of this method, see e.g. [113], where he proved that the Ramsey number
R(k) is at least 2k/2. The Ramsey number R(k) is the value n for which any graph
of size at least n or its complement contains a complete graph of size at least k. In
[113], Erdős shows that for n ≤ 2k/2 the fraction of graphs for which the graph or its
complement contains a complete graph of size k is bounded by 1/2, so that there must
be graphs of size n ≤ 2k/2 for which neither the graph nor its complement contains a
complete graph of size k.

The initial work by Erdős and Rényi on random graphs has incited a great amount
of work in the field, initially mainly in the combinatorics community. See the standard
references on the subject by Bollobás [54] and Janson,  Luczak and Ruciński [163] for
the state of the art. In [116], Erdős and Rényi give a rather complete picture of the
various phase transitions that occur in the Erdős-Rényi random graph. An interesting
quote appearing in [116, Page 2-3] is the following:

“It seems to us worthwhile to consider besides graphs also more complex
structures from the same point of view, i.e. to investigate the laws gov-
erning their evolution in a similar spirit. This may be interesting not
only from a purely mathematical point of view. In fact, the evolution of
graphs can be seen as a rather simplified model of the evolution of certain
communication nets...”

This was an excellent prediction indeed! Later, interest in different random graphs
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iv Preface

arose due to the analysis of real-world networks. Many of these real-world networks
turned out to share similar properties, such as the fact that they are small worlds, and
are scale-free, which means that they have degrees obeying power laws. The Erdős-
Rényi random graph does not obey these properties, and therefore new random graph
models needed to be invented. In fact, already in [116], Erdős and Rényi remark that

“Of course, if one aims at describing such a real situation, one should
replace the hypothesis of equiprobability of all connection by some more
realistic hypothesis.”

See Newman [214] and Albert and Barábasi [6] for two reviews of real-world net-
works and their properties to get an impression of what ‘more realistic’ could mean,
and see the recent book by Newman [217] for detailed accounts of properties of real-
world networks and models for them. These other models are also partly covered in
the classical works by Bollobás [54] and Janson,  Luczak and Rućınsky [163], but up
until today there is no comprehensive text treating random graph models for complex
networks. See Durrett [104] for a recent book on random graphs, and, particularly,
dynamical processes living on them. Durrett covers part of the material in the present
book, and more, but the intended audience is different. Our goal is to provide a source
for a ‘Random Graphs’ course at the master level.

We describe results for the Erdős-Rényi random graph, as well as for random
graph models for complex networks. Our aim is to give the simplest possible proofs
for classical results, such as the phase transition for the largest connected component
in the Erdős-Rényi random graph. Some proofs are more technical and difficult. The
sections containing these proofs are indicated with a star ∗ and can be omitted without
losing the logic behind the results. We also give many exercises that help the reader
to obtain a deeper understanding of the material by working on their solutions. These
exercises appear in the last section of each of the chapters, and when applicable, we
refer to them at the appropriate place in the text.

I have tried to give as many references to the literature as possible. However, the
number of papers on random graphs is currently exploding. In MathSciNet, see

http://www.ams.org/mathscinet/,

there were, on December 21, 2006, a total of 1,428 papers that contain the phrase
‘random graphs’ in the review text, on September 29, 2008, this number increased
to 1614, and, on April 9, 2013, to 2346. These are merely the papers on the topic
in the math community. What is special about random graph theory is that it
is extremely multidisciplinary, and many papers using random graphs are currently
written in economics, biology, theoretical physics and computer science. For example,
in Scopus (see http://www.scopus.com/scopus/home.url), again on December 21,
2006, there were 5,403 papers that contain the phrase ‘random graph’ in the title,
abstract or keywords, on September 29, 2008, this increased to 7,928 and on April 9,
2013 to 13,987. It can be expected that these numbers will increase even faster in the
coming period, rendering it impossible to review all the literature.
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In June 2014, I decided to split the preliminary version of this book up into two
books. This has several reasons and advantages, particularly since the later part of the
work is more tuned towards a research audience, while the first part is more tuned
towards an audience of master students with varying backgrounds. For the latest
version of Volume II, which focusses on connectivity properties of random graphs and
their small-world behavior, we refer to

http://www.win.tue.nl/∼rhofstad/NotesRGCN.html

This book would not have been possible without the help of many people. I thank
Gerard Hooghiemstra for the encouragement to write it, and for using it at Delft Uni-
versity of Technology almost simultaneously while I used it at Eindhoven University
of Technology in the Spring of 2006 and again in the Fall of 2008. I particularly thank
Gerard for many useful comments, solutions to exercises and suggestions for improve-
ments of the presentation throughout the book. Together with Piet Van Mieghem,
we entered the world of random graphs in 2001, and I have tremendously enjoyed
exploring this field together with you, as well as with Henri van den Esker, Dmitri
Znamenski, Mia Deijfen and Shankar Bhamidi.

I thank Christian Borgs, Jennifer Chayes, Gordon Slade and Joel Spencer for
joint work on random graphs that are like the Erdős-Rényi random graph, but do
have geometry. This work has deepened my understanding of the basic properties
of random graphs, and many of the proofs presented here have been inspired by our
work in [61, 62, 63]. Special thanks go to Gordon Slade, who has introduced me
to the world of percolation, which is closely linked to the world of random graphs
(see also Grimmett’s classic on percolation [135]). It is peculiar to see that two
communities work on two so closely related topics with different methods and even
different terminology, and that it has taken such a long time to build bridges between
the subjects.

Further I thank Marie Albenque, Gianmarco Bet, Shankar Bhamidi, Finbar Bogerd,
Marko Boon, Francesco Caravenna, Rui Castro, Kota Chisaki, Mia Deijfen, Michel
Dekking, Henri van den Esker, Lucas Gerin, Jesse Goodman, Markus Heydenreich,
Frank den Hollander, Yusuke Ide, Lancelot james, Martin van Jole, Willemien Kets,
Júlia Komjáthy, John Lapeyre, Nelly Litvak, Norio Konno, Abbas Mehrabian, Mis-
lav Mǐsković, Mirko Moscatelli, Jan Nagel, Sidharthan Nair, Alex Olssen, Mariana
Olvera-Cravioto, Helena Peña, Nathan Ross, Karoly Simon, Dominik Tomecki, Nicola
Turchi, Xiaotin Yu for remarks and ideas that have improved the content and pre-
sentation of these notes substantially. Wouter Kager has entirely read the February
2007 version of this book, giving many ideas for improvements of the arguments and
of the methodology. Artëm Sapozhnikov, Maren Eckhoff and Gerard Hooghiemstra
read and commented the October 2011 version. Sandór Kolumban read the October
2015 version, and spotted many typos and inconsistencies.

I especially thank Dennis Timmers, Eefje van den Dungen and Joop van de Pol,
who, as, my student assistants, have been a great help in the development of this
book, in making figures, providing solutions to the exercises, checking the proofs and
keeping the references up to date. Maren Eckhoff and Gerard Hooghiemstra also
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provided many solutions to the exercises, for which I am grateful! Sandór Kolumban
and Robert Fitzner helped me to turn all pictures of real-world networks as well as
simulations of network models into a unified style, a feat that is beyond my LATEX
skills. A big thanks for that!

This work would not have been possible without the generous support of the
Netherlands Organisation for Scientific Research (NWO) through VIDI grant 639.032.304,
VICI grant 639.033.806 and the Gravitation Networks grant 024.002.003.

Remco van der Hofstad Eindhoven
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The relation between the chapters in Volumes I and II of this book is as follows:
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viii Course outline

Here is some more explanation as well as a possible itinerary of a master course
on random graphs. We include Volume II [144] in the course outline.

Start with the introduction to real-world networks in Chapter 1, which forms
the inspiration for what follows. Continue with Chapter 2 that gives the necessary
probabilistic tools used in all later chapters, and pick those topics that your students
are not familiar with and that are used in the later chapters that you wish to treat.
Chapter 3 introduces branching processes, and is used in Chapters 4, 5, as well as in
most of Volume II.

After these preliminaries, you can start with the classical Erdős-Rényi random
graph as covered in Chapters 4–5. Here you can choose the level of detail, and decide
whether you wish to do the entire phase transition or would rather move on to the
random graphs models for complex networks. It is possible to omit Chapter 5 before
moving on.

There are three classes of models for complex networks that are treated in this
book. You can choose how much to treat in each of these models. You can either
treat few models and discuss many aspects, or rather discuss many models at a
less deep level. The introductory chapters about the three models, Chapter 6 for
inhomogeneous random graphs, Chapter 7 for the configuration model, and Chapter
8 for preferential attachment models, provide a basic introduction to them, focussing
on their degree structure. These introductory chapters need to be read in order to
understand the later chapters about these models (particularly the ones in Volume
II). The parts on the different models can be read independently.
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Chapter 1

Introduction

Abstract

In this first chapter, we give an introduction to random
graphs and complex networks. We discuss examples of real-
world networks and their empirical properties, and give a
brief introduction to the kinds of models that we investigate
in the book. Further, we introduce the key elements of the
notation used throughout the book.

1.1 Motivation

The advent of the computer age has incited an increasing interest in the funda-
mental properties of real-world networks. Due to the increased computational power,
large data sets can now easily be stored and investigated, and this has had a pro-
found impact on the empirical studies of large networks. As we explain in detail in
this chapter, many real-world networks are small-worlds and have large fluctuations
in their degrees. These realisations have had fundamental implications for scientific
research on networks. Network research is aimed to both understand why many net-
works share these fascinating features, and also to investigate what the properties
of these networks are in terms of the spread of diseases, routing information, and
ranking of the vertices present.

The study of complex networks plays an increasingly important role in science.
Examples of such networks are electrical power grids and telecommunication net-
works, social relations, the World-Wide Web and Internet, collaboration and citation
networks of scientists, etc. The structure of such networks affects their performance.
For instance, the topology of social networks affects the spread of information or
disease (see e.g., Strogatz in [249]). The rapid evolution and success of the Inter-
net have spurred fundamental research on the topology of networks. See Barabási
[26] and Watts [259] for expository accounts of the discovery of network properties
by Barabási, Watts and co-authors. In [219], you can find some of the original pa-
pers detailing the empirical findings of real-world networks and the network models
invented for them. Newman’s introductory book [217] lists many of the empirical
properties of, and scientific methods for, networks.

One common feature of complex networks is that they are large. As a result,
a global description is utterly impossible, and researchers, both in the applications
and in mathematics, have turned to their local description: how many vertices they
have, by which local rules vertices connect to one another, etc. These local rules
are probabilistic, reflecting the fact that there is a large amount of variability in how
connections can be formed. Probability theory offers a highly effective way to deal
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2 Introduction

with the complexity of networks, and leads us to consider random graphs. The simplest
imaginable random graph is the Erdős-Rényi random graph, which arises by taking
n vertices, and placing an edge between any pair of distinct vertices with a fixed
probability p, independently for all pairs. We give an informal introduction to the
classical Erdős-Rényi random graph in Section 1.8. We continue with a bit of graph
theory.

1.2 Graphs, and their degree and connectivity structure

This book describes random graphs, so we should start by discussing graphs. A
graph G = (V,E) consists of a collection of vertices, called vertex set, V and a
collection of edges, called edge set, E. The vertices correspond to the objects that we
model, the edges indicate some relation between these objects. In our settings, graphs
are usually undirected. Thus, an edge is an unordered pair {u, v} ∈ E indicating that
u and v are directly connected. When G is undirected, if u is directly connected to
v, then also v is directly connected to u. Thus, an edge can be seen as a pair of
vertices. When dealing with social networks, the vertices represent the individuals in
the population, while the edges represent the friendships among them.

Sometimes, we also deal with directed graphs, where edges are indicated by the
ordered pair (u, v). In this case, when the edge (u, v) is present, the reverse edge (v, u)
need not be present. One may argue about whether friendships in social networks are
directed or not. In most applications, however, it is clear whether edges are directed
or not. For example, in the World-Wide Web (WWW), where vertices represent web
pages, an edge (u, v) indicates that the web page u has a hyperlink to the web page v,
so the WWW is a directed network. In the Internet, instead, the vertices correspond
to routers, and an edge {u, v} is present when there is a physical cable linking u and
v. This cable can be used in both directions, so that the Internet is undirected.

In this book, we only consider finite graphs. This means that V is a finite set of
size, say, n ∈ N. In this case, by numbering the vertices as 1, 2, . . . , n, we may as well
assume that V = [n] ≡ {1, . . . , n}, which we will do from now on. A special role is
played by the complete graph denoted by Kn, for which the edge set is every possible
pair of vertices, i.e., E = {{i, j} : 1 ≤ i < j ≤ n}. The complete graph Kn is the
most highly connected graph on n vertices, and every other graph may be considered
to be a subgraph of Kn obtained by keeping some edges and removing the rest. Of
course, also infinite graphs are of interest, but since networks are finite, we stick to
finite graphs.

The degree du of a vertex u is equal to the number of edges containing u, i.e.,

du = #{v ∈ V : {u, v} ∈ E}. (1.2.1)

Sometimes, the degree is called the valency. In the social networks context, the degree
of an individual is the number of her/his friends. We will often be interested in the
structural properties of the degrees in a network, as indicated by the collection of
degrees of all vertices or the degree sequence d = (dv)v∈[n]. Such properties can be
described nicely in terms of the typical degree denoted by Dn = dU , where U ∈ [n] is
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a vertex chosen uniformly at random from the collection of vertices. In turn, if we
draw a histogram of the proportion of vertices having degree k for all k, then this
histogram is precisely equal to the probability mass function k 7→ P(Dn = k) of the
random variable Dn, and it represents the empirical distribution of the degrees in the
graph.

We continue by discussing certain related degrees. For example, when we draw
an edge uniformly at random from E, and choose one of its two vertices uniformly at
random, this corresponds to an individual engaged in a random friendship. Denote
the degree of the corresponding random vertex by D?

n. Note that this vertex is not
chosen uniformly at random from the collection of vertices! In the following theorem,
we describe the law of D?

n explicitly:

Theorem 1.1 (Friends in a random friendship). Let G = ([n], E) be a finite graph
with degree sequence d = (dv)v∈[n]. Let D?

n be the degree of a random element in an
edge that is drawn uniformly at random from E. Then

P(D?
n = k) =

k

E[Dn]
P(Dn = k). (1.2.2)

In Theorem 1.1,

E[Dn] =
1

n

∑
i∈[n]

di (1.2.3)

is the average degree in the graph. The representation in (1.2.2) has a nice interpre-
tation in terms of size-biased random variables. For a non-negative random variable
X with E[X] > 0, we define its size-biased version X? by

P(X? ≤ x) =
E[X1{X≤x}]

E[X]
. (1.2.4)

Then, indeed, D?
n is the size-biased version of Dn. In particular, note that, since the

variance of a random variable Var(X) = E[X2]− E[X]2 is non-negative,

E[D?
n] =

E[D2
n]

E[Dn]
= E[Dn] +

Var(Dn)

E[Dn]
≥ E[Dn], (1.2.5)

the average number of friends of an individual in a random friendship is at least
as large as that of a random individual. Further, the inequality in (1.2.5) is strict
whenever the degrees are not all equal, since then Var(Dn) > 0. In Section 2.3, we
further investigate the relation between Dn and D?

n. There, we show that, in some
sense, D?

n ≥ Dn with probability 1. We will make the notion D?
n ≥ Dn perfectly clear

in Section 2.3.
We next extend the above result to a random friend of a random individual. For

this, we define the random vector (Xn, Yn) by drawing an individual U uniformly at
random from [n], and then drawing a friend Z of U uniformly at random from the dU
friends of U , and letting Xn = dU and Yn = dZ .
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Theorem 1.2 (Why your friends have more friends than you do). Let G = ([n], E)
be a finite graph with degree sequence d = (dv)v∈[n]. Assume that dv ≥ 1 for every
v ∈ [n]. Let Xn be the degree of a vertex drawn uniformly at random from [n], and
Yn be the degree of a uniformly drawn neighbor of this vertex. Then

E[Yn] ≥ E[Xn], (1.2.6)

the inequality being strict unless all degrees are equal.

When I view myself as the random individual, I see that Theorem 1.2 has the
interpretation that, on average, a random friend of mine has more friends than I do!
We now give a formal proof of this fact:

Proof. We note that the joint law of (Xn, Yn) is equal to

P(Xn = k, Yn = l) =
1

n

∑
(u,v)∈E′

1{du=k,dv=l}
1

du
, (1.2.7)

where the sum is over all directed edges E ′, i.e., we now consider (u, v) to be a different
edge than (v, u) and we notice that, given that u is chosen as the uniform vertex, the
probability that its neighbor v is chosen is 1/du. Clearly, |E ′| = 2|E| =

∑
i∈[n] di.

Thus,

E[Xn] =
1

n

∑
(u,v)∈E′

∑
k,l

k1{du=k,dv=l}
1

du
=

1

n

∑
(u,v)∈E′

1, (1.2.8)

while

E[Yn] =
1

n

∑
(u,v)∈E′

∑
k,l

l1{du=k,dv=l}
1

du
=

1

n

∑
(u,v)∈E′

dv
du
. (1.2.9)

We will bound E[Xn] from above by E[Yn]. For this, we note that

1 ≤ 1

2
(
x

y
+
y

x
) (1.2.10)

for every x, y > 0, to obtain that

E[Xn] ≤ 1

n

∑
(u,v)∈E′

1

2
(
du
dv

+
dv
du

) =
1

n

∑
(u,v)∈E′

du
dv

= E[Yn], (1.2.11)

the penultimate equality following from the symmetry in (u, v).

After the discussion of degrees in graphs, we continue with graph distances.
For u, v ∈ [n], we let the graph distance distG(u, v) between u and v be equal to the
minimal number of edges in a path linking u and v. When u and v are not in the same
connected component, we set distG(u, v) = ∞. We are interested in settings where
G has a high amount of connectivity, so that many pairs of vertices are connected to
one another by short paths. In order to describe how large distances between vertices
are, we draw U1 and U2 uniformly at random from [n], and we let

Hn = distG(U1, U2). (1.2.12)
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Figure 1.1: The Internet topology in 2001 taken from
http://www.fractalus.com/steve/stuff/ipmap/.

Often, we will consider Hn conditionally on Hn < ∞. This means that we consider
the typical number of edges between a uniformly chosen pair of connected vertices. As
a result, Hn is sometimes referred to as the typical distance. Exercise 1.1 investigates
the probability that Hn <∞.

Just like the degree of a random vertex Dn, also Hn is a random variable even
when the graph G is deterministic. The nice fact is that the distribution of Hn tells
us something about all distances in the graph. An alternative and frequently used
measure of distance in a graph is the diameter diam(G) defined as

diam(G) = max
u,v∈[n]

distG(u, v). (1.2.13)

However, the diameter has several disadvantages. First, in many instances, the diam-
eter is more difficult to compute than the typical distances (since one has to measure
the distances between all pairs of vertices and maximize over them). Second, it is a
number instead of the distribution of a random variable, and therefore contains far
less information that the distribution of Hn. Finally, the diameter is highly sensitive
to small changes of the graph. For example, adding a string of connected vertices to
a graph may change the diameter dramatically, while it hardly influences the typical
distances. As a result, in this book, we put more emphasis on the typical distances.
For many real-world networks, we will give plots of the distribution of Hn.

1.3 Complex networks: the infamous Internet example

Complex networks have received a tremendous amount of attention in the past
decades. In this section we use the Internet as an example of a real-world network,
and we use it to illustrate some of their properties. For an artistic impression of the
Internet, see Figure 1.1.

Measurements have shown that many real-world networks share two fundamental
properties.
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Figure 1.2: (a) Proportion of AS traversed in hopcount data. (b) Internet hopcount
data. Courtesy of Hongsuda Tangmunarunkit.

Small-world phenomenon. The first fundamental network property is the fact
that typical distances between vertices are small. This is called the ‘small-world’
phenomenon (see e.g. the book by Watts [258]). In particular, such networks are
highly connected: their largest connected component contains a significant proportion
of the vertices. Many networks, such as the Internet, even consist of one connected
component, since otherwise e-mail messages could not be delivered. For example,
in the Internet, IP-packets cannot use more than a threshold of physical links, and
if distances in the Internet would be larger than this threshold, then e-mail service
would simply break down. Thus, the graph of the Internet has evolved in such a way
that typical distances are relatively small, even though the Internet itself is rather
large. For example, as seen in Figure 1.2(a), the number of Autonomous Systems (AS)
traversed by an e-mail data set, sometimes referred to as the AS-count, is typically
at most 7. In Figure 1.2(b), the proportion of routers traversed by an e-mail message
between two uniformly chosen routers, referred to as the hopcount, is shown. It shows
that the number of routers traversed is at most 27, while the distribution resembles
a Poisson probability mass function.

Interestingly, various different data sets (focussing on different regional parts of
the Internet) show roughly the same AS-counts. This shows that the AS-count is
somewhat robust, and it hints at the fact that the AS graph is relatively homogeneous.
See Figure 1.3. For example, the AS-counts in North-America and in Europe are quite
close to the one in the entire AS graph. This implies that the dependence on geometry
of the AS-count is rather weak, even though one would expect geometry to play a
role. As a result, most of the models for the Internet, as well as for the AS graph,
ignore geometry altogether.

Scale-free phenomenon. The second, maybe more surprising, fundamental prop-
erty of many real-world networks is that the number of vertices with degree k decays
slowly for large k. Often, it seems to fall off as an inverse power of k. This is called a
‘power-law degree sequence’, and resulting graphs often go under the name ‘scale-free
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Figure 1.3: Proportion of AS traversed in various data sets. In the figure caption,
the mean and variance of the hopcount are reported for the three data sets, as well

as the size of the sample and an estimate for the so-called power-law exponent.
Courtesy of Piet Van Mieghem.

graphs’. It is visualized for the AS graph in Figure 1.4, where the degree distribution
of the AS graph is plotted on a log-log scale. Thus, we see a plot of log k 7→ logNk,
where Nk is the number of vertices with degree k. When Nk is proportional to an
inverse power of k, i.e., when, for some normalizing constant cn and some exponent
τ ,

Nk ≈ cnk
−τ , (1.3.1)

then

logNk ≈ log cn − τ log k, (1.3.2)

so that the plot of log k 7→ logNk is close to a straight line. This is the reason why
degree sequences in networks are often depicted in a log-log fashion, rather than in
the more customary form of k 7→ Nk. Here, and in the remainder of this section, we
write ≈ to denote an uncontrolled approximation. The power-law exponent τ can be
estimated by the slope of the line in the log-log plot, and for the AS-data, this gives
the estimate τ ≈ 2.15− 2.20. Naturally, we must have that∑

k

Nk = n <∞, (1.3.3)

so that it is reasonable to assume that τ > 1.

In recent years, many more Internet data sets have been collected. We particularly
refer to the Center for Applied Internet Data Analysis (CAIDA) website for extensive
measurements. See also Figure 1.5 for two examples of more recent measurements of
the degrees of the Internet at the router or Internet protocal (IP) level. Measuring
the Internet is quite challenging, particularly since the Internet is highly decentralized
and distributed, so that a central authority is lacking. In [152], various data sets are
compared in terms of their coverage of the Internet and their accuracy. See, in
particular,

http://www.caida.org/research/topology/topo_comparison/
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Figure 1.4: (a) Degree sequence of Autonomous Systems (AS) on December 98 on a
log-log scale from Faloutsos, Faloutsos and Faloutsos [122]. These data suggest

power-law degrees with exponent τ ≈ 2.15− 2.20, the estimate on the basis of the
data is 2.20288 with a multiplicative constant that is estimated as e8.11393. This

corresponds to cn in (1.3.1). (b) Degree sequence AS domains on April 2014 on a
log-log scale from [182] (Courtesy of Dmitri Krioukov at CAIDA). Here the

power-law exponent is estimated at τ ≈ 2.1.

The tool of the trade to obtain Internet data is called traceroute, an algorithm that
allows you to send a message between a source and a destination and to receive a list
of the visited routers along the way. By piecing together many of such paths, one gets
a picture of the Internet as a graph. This picture becomes more accurate when the
number of sources and destinations increases, even though, as we describe in more
detail below, it is not entirely understood how accurate these data sets are.

An interesting topic of research, receiving quite a bit of attention recently, is
how the Internet behaves under malicious attacks or random breakdown (see e.g.
[8] or [86, 87]). The conclusion, based on various models for the Internet, is that
the topology is critical for the vulnerability. When vertices with high degrees are
taken out, the random graph models for the Internet cease to have the necessary
connectivity properties. In particular, in [8] it is claimed that when 2.5% of the
Internet routers are randomly removed, the diameter of the Internet is unaffected,
suggesting a remarkable tolerance to random attacks. Instead, when about 3% of
the highest degree routers are deterministically removed, the Internet breaks down
completely. Such results would have great implications for the resilience of networks,
both to random as well as deliberate attacks.

A critical look at the proposed models for the Internet, and particularly, the
claim of power-law degree sequences and the suggestion that attachment of edges in
the Internet has a preference towards high-degree vertices, was given by Willinger,
Govindan, Paxson and Shenker in [264]. The authors conclude that the Barabási-
Albert model (as described in more detail in Chapter 8) does not model the growth
of the AS or IP graph appropriately, particularly since the degrees of the receiving
vertices in the AS graph are even larger than for the Barabási-Albert model.

This criticism was most vehemently argued by Willinger, Anderson and Doyle in
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Figure 1.5: Degree distribution (probability mass function and tail cumulative
distribution function in 2003, and probability mass function in April 2014) in

various data sets (data courtesy of Dmitri Krioukov at CAIDA). The 2014 data set
consists of 55663339 nodes and 59685901 edges. For a detailed explanation of how

the data set was obtained, we refer to
http://www.caida.org/data/internet-topology-data-kit/.

[263], with the suggestive title “Mathematics and the internet: A source of enormous
confusion and great potential”. In this view, the problem comes from the quality of
the data. Indeed, the data set on which [122] is based, and which is used again in [8]
to investigate the resilience properties of the Internet, was collected by Pansiot and
Grad in [226] in order to study the efficiency of multicast versus unicast, which are
different ways to send packages. The data was collected using traceroute, a tool that
was not designed to be used to reconstruct the Internet as a graph. Pansiot and Grad
realized that their way of reconstructing the Internet graph had some problems, and
they write “We mention some problems we found in tracing routes, and we discuss
the realism of the graph we obtained”. However, the Faloutsos brothers in [122] simply
used the Pansiot-Grad data set, and took it at face value. This was then repeated by
Albert, Jeong and Barabási in [8], which puts their results in a somewhat different
light.

We now give some details of the problems with the data sets. Readers who are
eager to continue can skip this part and move to the next section. Let us follow [263]
to discuss the difficulties in using traceroute data to reconstruct a graph, which are
threefold:

IP alias resolution problem. A fundamental problem is that traceroute re-
ports so-called input interfaces. Internet routers, the nodes of the Internet
graph, may consist of several input interfaces, and it is a non-trivial problem
to map these interfaces to routers. When errors are made in this procedure,
the data does not truthfully represent the connectivity structure of the Internet
routers.

Opaque layer-2 clouds. The Internet consists of different layers that facilitate
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the interoperability between heterogeneous network topologies. Since traceroute
acts on layer-3, it is sometimes unable to trace through layer-2 clouds. This
means that the internal connectivity structure of a larger unit of routers in
layer-2 could be invisible for traceroute, so that traceroute shows connec-
tions between many, or even all, of these routers, even though most of these
connections actually do not exist. This causes routers to be wrongfully assigned
a very high degree.

Measuring biases. Due to the way traceroute data is collected, an incomplete
picture of the Internet is obtained, since only connections between routers that
are actually being used by the data are reported. When this data set would be
unbiased, a truthful picture of the Internet could still be obtained. Unfortu-
nately, routers with a high degree are more likely to be used, which creates a
so-called sampling bias. We return to these biases in Section 1.7.3.

Because of these problems with the data, Willinger, Anderson and Doyle in [263]
doubt the conclusions in [122] and [8], and all the subsequent work that is based on
it. Given the fact that [8] has close to 5,000 citations,1 this clearly has significant
impact. Further, Willinger, Anderson and Doyle also give engineering reasons, based
on properties of Internet, why it is unreasonable to expect that the Internet has a
power-law degree sequence at IP level. This is a debate that will linger on for quite
a while longer!

1.4 Scale-free, highly connected and small-world graph

sequences

As menioned in Section 1.3, many real-world networks are large. Mathematically,
we can model this by taking the graph size to be equal to n, and study what happens
when n → ∞. Real-world networks share common features, e.g. that they have a
relatively low average degree compared to the maximal degree n−1 in a graph of size
n, i.e., they are ‘sparse’. Further, many real-world networks are ‘small worlds’ and
‘scale free’. These notions are empirical, and inherently not mathematically precise.
In this section, we explain what it means for a model of a real-world network to satisfy
these properties. We start by discussing scale-free graph sequences.

1.4.1 Scale-free graph sequences

Many real-world networks to be described later, such as the World-Wide Web and
collaboration networks, grow in size with time. Therefore, it is reasonable to consider
graphs of growing size, and to define the notions of scale-free, small-world and highly-
clustered random graphs as limiting statements when the size of the random graphs
tends to infinity. This naturally leads us to study graph sequences. In this section,
we look at graph sequences (Gn)n≥1, where n denotes the size of the graph Gn, i.e.,
the number of vertices in Gn.

1From Google Scolar, on September 26, 2014.
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Denote the proportion of vertices with degree k in Gn by P (n)

k , i.e.,

P (n)

k =
1

n

n∑
i=1

1{d(n)i =k}, (1.4.1)

where d(n)

i denotes the degree of vertex i ∈ [n] = {1, . . . , n} in the graph Gn. We start
by defining what it means for a random graph sequence (Gn)n≥1 to be sparse:

Definition 1.3 (Sparse graph sequences). A graph sequence (Gn)n≥1 is called sparse
when

lim
n→∞

P (n)

k = pk, k ≥ 0 (1.4.2)

for some deterministic limiting probability distribution (pk)k≥0.

We often apply Definition 1.3 to random graphs. Since the limit pk in (1.4.2)
is deterministic, the convergence in (1.4.2) must then be taken as convergence in
probability or in distribution. Also, since (pk)k≥0 sums up to one, for large n most of
the vertices have a bounded degree, which explains the phrase sparse graphs.

In some empirical work it is claimed that certain real-world networks show signs
of densification, meaning that they become denser over time. Leskovec, Kleinberg
and Faloutsos in [186, 187] empirically find that e(t) ∝ n(t)a as t → ∞, where e(t)
and n(t) denote the number of vertices and edges at time t, and a ∈ (1, 2). For sparse
graphs, a = 1. At the same time, they claim that the diameter shrinks over time.

We next define the notion of scale-free graph sequences:

Definition 1.4 (Scale-free graph sequences). We call a graph sequence (Gn)n≥1 scale
free with exponent τ when it is sparse and

lim
k→∞

log [1− F (k)]

log (1/k)
= τ − 1, (1.4.3)

where F (k) =
∑

l≤k pl denotes the cumulative distribution function corresponding to
the probability mass function (pk)k≥0 defined in (1.4.2).

Thus, for a scale-free random graph process, its degree sequence converges to a limit-
ing probability distribution as in (1.4.2), and the limiting distribution has asymptotic
power-law tails described in (1.4.3). This gives a precise mathematical meaning to a
graph sequence being scale free.

There are many other possible definitions. Indeed, in empirical work, often a log-
log plot is given that plots logP (n)

k versus log (1/k). Therefore, it may be reasonable
to replace (1.4.3) by

lim
k→∞

log pk
log (1/k)

= τ. (1.4.4)

In some cases, the definition in (1.4.4) is a bit too restrictive, particularly when the
probability mass function k 7→ pk is not smooth. In specific models below, we use the
version that is most appropriate in the setting under consideration. See Section 1.7
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below for a more extensive discussion of power laws, as well as how to estimate them
from real data.

The observation that many real-world networks have the above properties has
incited a burst of activity in network modeling. Most of the models use random
graphs as a way to model the uncertainty and the lack of regularity in real-world
networks. In this book, we survey some of the proposed network models. These can
be divided into two types: ‘static’ models, where we model a graph of a given size as
a snapshot at a given time of a real-world network, and ‘dynamic’ models, where we
model the growth of the network as time progresses. Static models aim to describe
real-world networks and their topology at a given time instant. Dynamic models aim
to explain how these networks came to be as they are. Such explanations often focus
on the growth of the network as a way to explain the power-law degree sequences by
means of simple and local growth rules.

When we try to model a power-law relationship between k and the number of
vertices having degree k, the question is how to appropriately do so. In Chapters 6,
7 and 8, we discuss a number of models that have been proposed for graphs with a
given degree sequence. For this, we let FX be the distribution function of an integer
random variable X, and we denote its probability mass function by (fk)k≥0, so that

FX(x) = P(X ≤ x) =
∑
k≤x

fk. (1.4.5)

We wish to obtain a random graph model in which Nk, the number of vertices with
degree k, is roughly equal to nfk, where we recall that n is the size of the network.
For a power-law relationship as in (1.3.1), we should have that

Nk ≈ nfk. (1.4.6)

Then, (1.4.4) turns into
fk ∝ k−τ , (1.4.7)

where, to be able to make f = (fk)k≥0 a probability measure, we need to require
that τ > 1, and ∝ in (1.4.7) denotes that the left-hand side is proportional to the
right-hand side. Often (1.4.7) is too restrictive, and we wish to formulate a power-law
relationship in a weaker sense. A different formulation could be to require that

1− FX(x) =
∑
k>x

fk ∝ x1−τ . (1.4.8)

Indeed, (1.4.8) is strictly weaker than (1.4.7), as investigated in Exercise 1.2.
An even weaker form of a power-law relation is to require that

1− FX(x) = LX(x)x1−τ , (1.4.9)

where the function x 7→ LX(x) is slowly varying. Here, a function x 7→ `(x) is called
slowly varying when, for all c > 0,

lim
x→∞

`(cx)

`(x)
= 1. (1.4.10)
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In this case, 1−FX(x) is called regularly varying with exponent 1−τ . This is formalized
in the following definition:

Definition 1.5 (Regular and slow variation).

(a) A function ` : [0,∞) 7→ R is called slowly varying at infinity when, for every
c > 0,

lim
x→∞

`(cx)

`(x)
= 1. (1.4.11)

(b) A function f : [0,∞) 7→ R is called regularly varying at infinity with exponent
α when

f(x) = xα`(x) (1.4.12)

wth ` slowly varying at infinity.

Exercise 1.3 investigates examples of slowly varying functions.
One should bear in mind that the notion of power-law degrees is an asymptotic

one, and one can never be sure whether degrees follow a power law when one only
observes a finite graph. One way to interpret power-law degree sequences is that
they are a convenient mathematical way to model situations where a large amount
of variability in the degrees in a real-world network is observed. We return to the
question of power-law degree distributions and their tails in Section 1.7, where we
speculate on why power laws might arise in real-world networks, as well as on the
difficulties in estimating them.

In some networks, the degree distribution for large values is not quite a power
law, while for small values it is. This is particularly appropriate when there are costs
associated with having large degrees. For example, building and maintaining a large
social network, or publishing papers with many people, requires time and energy, both
of which are limited. Therefore, one cannot really expect to see the huge fluctuations
that are predicted by power-law distributions. A related model is a power law with
an exponential cut off, where the probability mass function is given by

pk = ck−τe−k/A, k ≥ 1, (1.4.13)

for some large A. Thus, for k small compared to A the distribution looks like a power
law, while for values that are large compared to A the exponential decay takes over.

We continue to discuss the notion of highly connected graph sequences.

1.4.2 Highly-connected graph sequences

The networks that we consider are often highly connected, in the sense that a large
fraction of the vertices lies in a single connected component. For a graph G = ([n], E)
on n vertices and v ∈ [n], let C (v) denote the cluster or connected component of
v ∈ [n], i.e., C (v) = {u ∈ [n] : distG(u, v) < ∞}, where we recall that distG(u, v)
denotes the graph distance in G. Let Cmax denote the largest connected component,
i.e., let Cmax satisfy |Cmax| = maxv∈[n] |C (v)|, where |C (v)| denotes the number of
elements in C (v). Of course, the definition of Cmax might not be unambiguous, since
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there could be two or more maximal clusters, but this will often not occur in settings
we are interested in. When there do exist two or more maximal clusters of the same
size, then we let Cmax denote any of them with equal probability.

A graph sequence (Gn)n≥1 is highly connected when Cmax is very large, and the
maximal cluster is unique when all other clusters tend to be small. For the latter, we
let C(2) denote the second largest cluster. Then, the notion of highly-connected graph
sequences is formalized in the following definition:

Definition 1.6 (Highly-connected graph sequences). A graph sequence (Gn)n≥1 is
called highly-connected when

lim inf
n→∞

|Cmax|/n > 0, (1.4.14)

in which case Cmax is called its giant component. Furthermore, for a highly-connected
graph sequence, its giant component is called unique when

lim sup
n→∞

|C(2)|/n = 0. (1.4.15)

The mental picture to have in mind is that highly-connected graph sequences with
a unique giant component consist of a ‘huge blob’ surrounded by ‘dust’. In many
random graph models, the second largest component is of size at most log n.

Having defined highly-connected graph sequences, we move on to define small-
world graph sequences, for which we assume that the graphs in question are highly
connected.

1.4.3 Small-world graph sequences

We continue to define what it means for a graph sequence (Gn)n≥1 to be a small
world. Intuitively, a small-world graph should have distances that are much smaller
than those in a regular lattice or torus. When we consider the nearest-neighbor torus
with width r in dimension d, and we draw two vertices uniformly at random, their
distance is of order r. The size of the torus is n = (2r + 1)d, so that the typical
distance between two uniform vertices is of order n1/d, which grows as a positive
power of n.

Recall that Hn denote the distance between two uniformly chosen connected ver-
tices, i.e., the graph distance between a pair of vertices drawn uniformly at random
from all pairs of connected vertices in Gn. Here we recall that graph distance dG(v1, v2)
between the vertices v1, v2 denotes the minimal number of edges on paths connecting
v1 and v2. Below, we deal with graph sequences (Gn)n≥1 for which Gn is not necessar-
ily connected, which explains why we condition on the two vertices being connected.
We envision a situation where (Gn)n≥1 is a highly connected graph sequence (recall
Definition 1.6). We recall that Hn is the typical distance of Gn.

Definition 1.7 (Small-world graph sequences). We say that a graph sequence (Gn)n≥1

is small-world when there exists a constant K <∞ such that

lim
n→∞

P(Hn ≤ K log n) = 1. (1.4.16)
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Further, we say that a graph sequence (Gn)n≥1 is an ultra-small world when, for every
ε > 0,

lim
n→∞

P(Hn ≤ ε log n) = 1. (1.4.17)

Note that, for a graph with a bounded degree dmax, the typical distance is at least
(1− ε) log n/ log dmax with high probability (see Exercise 1.4). Thus, a random graph
process with bounded degree is a small world precisely when the order of the typical
distance is at most a constant times larger that the minimal value it can obtain.

For a graph G, recall from (1.2.13) that diam(G) denotes the diameter of G, i.e.,
the maximal graph distance between any pair of connected vertices. Then, we could
also have chosen to replace Hn in (1.4.16) by diam(Gn). However, as argued below
(1.2.13), the diameter of a graph is a rather sensitive object which can easily be
changed by making small changes to a graph in such a way that the scale-free nature
and the typical distances Hn hardly change. This explains why we have a preference
to work with the typical distance Hn rather than with the diameter diam(Gn).

We will see that in some models typical distances can be even much smaller than
log n, which explains the notion of an ultra-small world. Sometimes, there exists a
constant K such that

lim
n→∞

P(Hn ≤ K log log n) = 1. (1.4.18)

There are models for which (1.4.18) is satisfied, while diam(Gn)/ log n converges in
probability to a positive limit due to the fact that there are long but thin strings of
points that make the diameter large yet do not affect typical distances. This once
more explains our preference for the typical graph distance Hn. We will also see cases
for which Hn is of the order log n/ log log n.

In this section, we have given explicit definitions of sparse, scale-free, highly-
connected and small-world graph sequences. The remainder of this book, as well as
Volume II [144], will discuss models for real-world networks, and will establish under
which conditions the random graph sequences in these models satisfy these properties.
In the next section, we discuss related empirical properties of real-world networks.

1.5 Further network statistics

In this section, we discuss a few other empirical properties of graph sequences: the
clustering coefficient, degree-degree dependencies, centrality measures and community
structure. These empirical and algorithmic properties of real-world networks will not
be discussed in detail in this book. Needless to say, they are very interesting for the
network models at hand.

Clustering in networks. Clustering measures the degree to which neighbors
of vertices are also neighbors of one another. For instance, in social networks, your
friends tend to know each other, and therefore the amount of clustering is high. In
general, clustering is high when the network has many triangles. The quantity that
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measures the amount of network clustering is the clustering coefficient. For a graph
G = ([n], E), we let

WG =
∑

1≤i,j,k≤n

1{ij,jk∈E} (1.5.1)

denote two times the number of wedges in the graph G. The factor of two comes
from the fact that the wedge ij, jk is the same as the wedge kj, ji, but it is counted
twice in (1.5.1). We further let

∆G =
∑

1≤i,j,k≤n

1{ij,jk,ik∈E} (1.5.2)

denote six times the number of triangles in G. Alternatively, we can write

WG = 2
∑

1≤i,j,k≤n : i<k

1{ij,jk∈E}, ∆G = 6
∑

1≤i<j<k≤n

1{ij,jk,ik∈E}. (1.5.3)

The clustering coefficient CCG in G is defined as

CCG =
∆G

WG

. (1.5.4)

Informally, the clustering coefficient measures the proportion of wedges for which
the closing edge is also present. As such, it can be thought of as the probability that
from a randomly drawn individual and two of its friends, the two friends are friends
themselves.

Definition 1.8 (Highly-clustered graph sequences). We say that a graph sequence
(Gn)n≥1 is highly clustered when

lim inf
n→∞

CCGn > 0. (1.5.5)

As we will see in the remainder of this book, the models that we investigate
tend not to be highly clustered, i.e., they tend to be locally tree-like. Throughout
the book and Volume II [144], we do discuss extensions of network models that are
highly clustered. These can, for example, be obtained by making local adaptations
to the original models. Since the clustering coefficient only depends on the local
neighborhoods of vertices, these random graph models are often closely related to the
original models.

Sometimes the clustering coefficient is computed for fixed vertices. For this, the
clustering coefficient of vertex j is defined to be

CCG(j) =
1

dj(dj − 1)

∑
1≤i,k≤n

1{ij,jk,ik∈E}. (1.5.6)

This allows one to define a different clustering coefficient, named after Strogatz and
Watts [260], as

CCG,SW =
1

n

∑
j∈[n]

CCG(j). (1.5.7)
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Degree-degree dependencies. Degree-degree dependencies measure whether
vertices of high degree are more likely to connect to vertices of high degree, or rather
to vertices of low degree. To define this, let E ′ denote the set of (directed) edges,
so that |E ′| = 2|E| in the undirected setting. For the time being, assume that
G = ([n], E) is undirected. For each directed edge (u, v), we let the vector (du, dv)
denote the degrees at the ends of the edge. The vector ((du, dv))(u,v)∈E′ is a collection
of |E ′| = 2|E| two-dimensional integer variables. A network G is called assortative
when a high value of du typically corresponds to a high value of dv, and it is called
disassortative otherwise. The consensus is that social networks tend to be assortative,
while technological networks (like the Internet) tend to be disassortative.

Degree-degree dependencies deal with the dependency between the coordinates
of a collection of two-dimensional variables. One way to measure this is to use the
correlation coefficient. This results in the assortativity coefficient defined as

ρG =

∑
i,j∈[n]

(
1{ij∈E′} − didj/|E ′|)didj∑

i,j∈[n]

(
di1{i=j} − didj/|E ′|)

)
didj

. (1.5.8)

Pick a (directed) edge uniformly at random from E ′, and let X and Y be the degrees
of the vertices that the edge point to and from, respectively. Then, we can interpret ρG
as the correlation coefficient of the random variables X and Y (see Exercise 1.5). Since
ρG is a correlation coefficient, clearly ρG ∈ [−1, 1]. We call a network G assortative
when ρG > 0 and disassortative when ρG < 0.

We can rewrite the assortativity coefficient ρG (see Exercise 1.6) as

ρG =

∑
ij∈E′ didj − (

∑
i∈[n] d

2
i )

2/|E ′|∑
i∈[n] d

3
i − (

∑
i∈[n] d

2
i )

2/|E ′| . (1.5.9)

Equation (1.5.9) points us to a problem with the definition in (1.5.8). When
dealing with an independent and identically distributed sample ((Xi, Yi))

n
i=1, the cor-

relation coefficient is a valuable measure of dependence, but only when the variances
of Xi and Yi are bounded. In this case, the sample correlation coefficient ρn converges
to the correlation coefficient ρ given by

ρ =
Cov(X, Y )√

Var(X)Var(Y )
. (1.5.10)

When the variances of X or Y do not exist, the correlation coefficient might not
make much sense. In fact, in [148, 192], Litvak and the author proved that such
convergence (even for an i.i.d. sample) can be to a proper random variable, that has
support containing a subinterval of [−1, 0] and a subinterval in [0, 1], giving problems
in the interpretation.

For networks, ρG in (1.5.9) is always well defined, and gives a value in [−1, 1].
However, also for networks there is a problem with this definition. Indeed, in [148,
192], it is proved that if a limiting value of ρG exists for a sequence of networks, then
lim infn→∞ ρG ≥ 0, so no asymptotically disassortative graph sequences exist. Also,
there is an example where the limit exists in distribution and the limit is a proper
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random variable. Naturally, other ways of classifying the degree-degree dependence
can be proposed, such as the correlation of their ranks. Here, for a sequence of
numbers x1, . . . , xn with ranks r1, . . . , rn, xi is the rith largest of x1, . . . , xn. Ties tend
to be broken by giving random ranks for the equal values. For practical purposes,
maybe a scatter plot of the values might be the most useful way to gain insight into
degree-degree dependencies.

Closeness centrality. In networks, one is often interested in how central or
important vertices are. Of course, how important a vertex is depends on the notion
of importance. See Boldi and Vigna [48] for a survey of centrality measures. In
the following, we discuss a few of such notions, starting with closeness centrality
as first introduced by Bavelas [31]. In this notion, vertices that are close to many
other vertices are deemed to be important. This prompts the definition of closeness
centrality of a vertex i as2

Ci =
n∑

j∈[n] distG(i, j)
, (1.5.11)

where we recall that distG(i, j) denotes the graph distance between the vertices i and
j. Thus, vertices with high closeness centrality are central in the network in terms
of being close to most other vertices, while vertices with low closeness centrality are
remote. One can expect that the closeness centrality of i plays an important role
for the functionality of the network from the perspective of i, for example when a
rumor is started at i or when i is the source of an infection. The above definition
only makes sense for connected graphs, since Ci = Cj = 0 when i is not connected to
j. This may be adapted by averaging only over connected components in (1.5.11), or
by computing Ci only for the values of i in the largest connected component (which
is often unique and contains a large proportion of the vertices; recall the notion of
highly-connected graph sequences in Definition 1.6).

Closeness centrality has the problem that pairs of disconnected vertices render its
value hard to interpret. In a similar vein, pairs of vertices that are far apart also have
a disproportionate effect on the closeness centrality of a graph. Boldi and Vigna [48]
propose to use harmonic centrality instead, which is defined as∑

j∈[n]

n

distG(i, j)
. (1.5.12)

In the harmonic centrality of i, the values j ∈ [n] for which distG(i, j) is large con-
tribute very little to the sum in (1.5.12). This prompts Boldi and Vigna to state that
‘Harmonic centrality is strongly correlated to closeness centrality in simple networks,
but naturally also accounts for nodes j that cannot reach i.”

Betweenness centrality. Another notion of centrality is betweenness centrality
as independently invented by Anthonisse [17] and Freeman [127]. While the closeness
centrality of vertex i is supposed to measure how fast a message travels from vertex i,

2Some authors remove i = j from the sum and replace the factor n by n− 1.
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its betweenness centrality is supposed to measure how important vertex i is in sending
the message quickly around. For vertices j, k, let njk denote the number of shortest
paths between j and k. Further, let nijk be the number of shortest paths between j
and k that pass through i. Thus, nijk ≥ 1 when i lies on a shortest path from j to
k, and 0 otherwise (which includes the case where j and k are not connected). The
betweenness centrality of vertex i is defined as

Bi =
∑

1≤j<k≤n

nijk/njk. (1.5.13)

Note that this definition also makes sense for directed networks, where the sum should
be over j, k ∈ [n], j 6= k.

Vertices with high betweenness centrality serve as bottlenecks for the communica-
tion in the network. When under attack, they are the most likely to seriously diminish
the network functionality for services that rely on the network’s connectivity.

Community structure of networks. Often, networks consist of parts that
are more highly connected than the entire network itself. These parts often go under
the name of communities. In social networks, we can think of classes in schools,
families, or groups of people interested in certain topics such as fans of soccer clubs
or music bands. In scientific citation networks, where the vertices are papers and the
(directed) edges are formed by references of one paper to another, we can think of
the fields in science as giving rise to a community structure. However, many papers,
particularly the important ones, are linking different subfields to one another by
applying methodology that is common in one domain to a different domain. Exciting
new developments in science often occur at the boundaries between fields.

Even though we have some intuitive idea about what makes a community, it is
not clear exactly how it should be defined. For example, often people belong to
several communities, and the boundaries of communities tend to be blurry. We thus
have no precise definition of what makes a community, and many real-world networks
do not have a clearly defined community structure. Of course, being able to detect
communities is highly relevant, if only to be able to send the right advertisement
to the people who are actually interested in it. As a result, community detection
has become one of the important topics in network science of the past decades. Since
network community structures are not clearly defined, such methodologies are often ill
defined, but this only makes them more interesting and worthy to study. We refer to
the extensive overview paper by Fortunato [126] for a more detailed description of the
problem, network models that have a community structure, as well as the available
algorithms to detect them in real-world networks from a physics perspective. See
Lescovec et al. [188] for an empirical analysis of the performance of several community
detection algorithms on real-world networks.
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1.6 Other real-world network examples

In this section, we describe a number of other examples of real-world networks that
have been investigated in the literature, and where some of the empirical properties
discussed in the previous sections, such as the small-world and scale-free phenomenon,
are observed. Real-world networks are often divided into four main categories:

1. Technological networks, such as the Internet, transportation, phone networks
and power grids;

2. Social networks, such as friendship and virtual social networks, but also collab-
oration networks;

3. Information networks, such as the World-Wide Web and citation networks;

4. Biological networks, such as biochemical networks, protein interaction networks,
metabolic and neural networks.

In this section, we discuss some of these examples. We discuss the ‘Six Degrees of
Separation’ paradigm in social networks, the Facebook network, the Kevin Bacon
Game and the movie actor network, Erdős numbers and collaboration networks, and
the World-Wide Web. We focus on some of the empirical findings in the above exam-
ples, and discuss some of the key publications on these empirical findings. Needless to
say, each of these examples separately deserves its own book, but we do not dive too
deep into the details. We try our best to give appropriate references to the literature;
see also the notes and discussion in Section 1.10 for more details.

1.6.1 Six degrees of separation and social networks

In 1967, Stanley Milgram performed an interesting experiment. See

http://www.stanleymilgram.com/milgram.php

for more background on the psychologist Milgram.3 In his experiment, Milgram sent
60 letters to various recruits in Wichita, Kansas, U.S.A., who were asked to deliver
the letter to the wife of a divinity student living at a specified location in Cambridge,
Massachusetts. The participants could only pass the letters (by hand) to personal
acquaintances whom they thought might be able to reach the target, either directly,
or via a “friend of a friend”. While fifty people responded to the challenge, only three
letters (or roughly 5%) eventually reached their destination. In later experiments,
Milgram managed to increase the success rate to 35% and even 95%, by pretending
that the value of the package was high, respectively, by adding more clues about the
recipient, such as her/his occupation. See [202, 254] for more details.

3Maybe Stanley Milgram is best known for his experiments on obedience, giving us a rather
disturbing picture of how humans deal with authority. This experiment uses a highly controversial
‘shock machine’ to administer shocks to ‘pupils’ who do not obey.
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The main conclusion from the work of Milgram was that most people in the
world are connected by a chain of at most 6 “friends of friends”, and this phrase was
dubbed “Six Degrees of Separation”. The idea itself was already proposed in 1929
by the Hungarian writer Frigyes Karinthy in a short story called ‘Chains’ [168], see
also [219] where a translation of the story is reproduced.4 Playwright John Guare
popularized the phrase when he chose it as the title for his 1990 play. In it, Ousa,
one of the main characters, says:

“Everybody on this planet is separated only by six other people. Six degrees
of separation. Between us and everybody else on this planet. The president
of the United states. A gondolier in Venice... It’s not just the big names.
It’s anyone. A native in the rain forest. (...) An Eskimo. I am bound to
everyone on this planet by a trail of six people. It is a profound thought.”.

The fact that any number of people can be reached by a chain of at most 6
intermediaries is indeed rather striking. It would imply that two people in as remote
areas as Greenland and the Amazone could be linked by a sequence of at most 6
“friends of friends”. This makes the phrase “It’s a small world” very appropriate
indeed! Another key reference in the small-world work in social sciences is the paper
by Pool and Kochen [234], which was written in 1958, and was circulating around in
social sciences for twenty years before it was finally published in 1978.

The idea of Milgram was taken up afresh in 2001, with the added possibilities of
the computer era. In 2001, Duncan Watts, a professor at Columbia University, redid
Milgram’s experiment using an e-mail message as the“package” that needed to be
delivered. Including initial senders and senders that were contacted along the chains
of messages, data were recorded on 61,168 individuals from 166 countries, constituting
24,163 distinct message chains. Surprisingly, Watts found that the average number
of intermediaries was again six. See [99] for details, including a much more extensive
statistical analysis of the data compared to Milgram’s analysis. Watts’ research, and
the advent of the computer age, has opened up new areas of inquiry related to six
degrees of separation in diverse areas of network theory such as power grid analysis,
disease transmission, graph theory, corporate communication, and computer circuitry.
See the web site

http://en.wikipedia.org/wiki/Small-world_experiment

for more information on the Small-World Project conducted by Watts. See [258] for
a popular account of the small-world phenomenon.

To put the idea of a small-world into network language, we define the vertices of
the social graph to be the inhabitants of the world (so that n ≈ 6 billion), and we
draw an edge between two people when they know each other. Needless to say, we
should make more precise what it means to “know each other”. There are various
possibilities. We could mean that the two people involved have shaken hands at some
point, or that they know each other on a first name basis.

4Possibly, Karinthy was in turn inspired by Guglielmo Marconi’s 1909 Nobel Prize address.
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In a series of works, Jon Kleinberg [177, 176] investigates another aspect of Mil-
gram’s experiment, one that Milgram himself, and also [99], failed to recognize. Not
only do social networks constitute a small world, but the people involved in the
message passing also managed to find the short routes. Kleinberg called this the
navigability of social networks. See also [109] for a more algorithmic perspective to
networks.

Our social connections play an important role in our lives, as made clear by the
work of Mark Granovetter [133, 134], who argues that we find our jobs through our
‘weak links’ or ‘weak ties’. Indeed, the people you know really well will be less likely
to introduce you to a new employer, since they are few and they have already had
plenty of occasions to do so. However, the many people whom you know less well, i.e.
your weak ties, are an enormous source of information and contacts, and thus may
know of many more job opportunities. This is the reason why the word “network” is
often used as a verb rather than a noun (as we will mostly use it). Of course, in social
networks one is not only interested in networks consisting of vertices and edges, but
also in the properties of the links (for example, whether they are strong or weak ties).
These properties are called attributes. The relevance of social networks and the value
of their links is also made succinctly clear in the popular book by Malcolm Gladwell
on the “tipping point” [130].

An interesting report about social networks that is worth mentioning is by Liljeros,
Edling, Amaral and Stanley [189], who investigated sexual networks in Sweden, where
two people are connected when they have had a sexual relation in the previous year.
They find that the degree distributions of males and females obey power laws, with
estimated exponents of τfem ≈ 2.5 and τmal ≈ 2.3. When extending the data to the
entire lifetime of the Swedish population, the estimated exponents decrease to τfem ≈
2.1 and τmal ≈ 1.6. The latter only holds in the range between 20 and 400 contacts,
after which it is exponentially truncated. Clearly, this has important implications for
the transmittal of sexual diseases.

One of the main difficulties of social networks is that they are notoriously hard
to measure. For instance, questionnaires are hard to interpret, since people have
a different idea of what a certain social relation means. Also, questionnaires are
physical, and take time to collect. Finally, in a large population, one cannot ask all
the people in the population, so that a list of the friends of a person surveyed does
not bring out the social network as a whole, since her/his friends are unlikely to be
surveyed as well. As a result, researchers are interested in examples of social networks
that can be measured, for example due to the fact that they are electronic. Examples
are e-mail networks or social networks such as Facebook.

In the next section, we study the prime example Facebook in some more detail.

1.6.2 Facebook

With 721 million active users, and 69 billion friendship links in 2011, Facebook
was the largest virtual or online friendship network at the time. Since its creation in
February 2004, Facebook has earned itself a prominent role in society, and has proven
to be an enormous source of information about human (online) interaction. The
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Figure 1.6: The complementary cumulative distribution function (CCDF) of
Facebook degrees. The CCDF at degree k measures the fraction of users who have

degree at least k.

Year it se itse us fb

2007 1.31 3.90 1.50 119.61 99.50
2008 5.88 46.09 36.00 106.05 76.15
2009 50.82 69.60 55.91 111.78 88.68
2010 122.92 100.85 118.54 128.95 113.00
2011 198.20 140.55 187.48 188.309 169.03

current 226.03 154.54 213.30 213.76 190.44

Table 1.1: Evolution of the Facebook degrees over time, with current denoting May
2011.

Facebook graph has been investigated in detail by two teams of academic researchers
around Lars Backstrom from Facebook [255, 22]. Here, a user is defined to be active
if he/she has logged in at least once in a 28 day time period in May 2011 (the period
that was investigated in [255, 22]), and has at least one Facebook friend. Studying a
network this big gives rise to serious algorithmic challenges.

Ugander et al. [255] find that 99.91% of the active Facebook users is in the giant
component, so that Facebook is indeed very highly connected (recall Definition 1.6),
the second largest connected component consisting of a meagre 2000 some users.
The assortativity coefficient (recall (1.5.8)) is 0.226, quite large as one might expect
from a social network. The complementary cumulative distribution function of the
Facebook degrees is plotted in Figure 1.6. This distribution does not resemble a power
law. Of course, the degree distribution is affected by the Facebook policy of limiting
the number of friends by 5000 at the time of the measurements. While some social
networks are reported to show densification, Facebook on the contrary is claimed to
show sparsification in the sense that the proportion of existing edges to all possible
edges decreases. On the other hand, the average degree does seem to increase, albeit
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slowly (see e.g., Table 1.1).
The typical distances in the Facebook graph, as well as their evolution, are studied

in [22], see Figure 1.7. We see that as time proceeds, distances shrink and stabilize
at around 3-6. The average of the distance distribution, i.e., E[Hn] with Hn the
hopcount, is 4.74, so that there are, on average, 3.74 degrees of separation. This was
advertised broadly, for example, on November 22, 2011, the Telegraph posted a web
article titled “Facebook cuts six degrees of separation to four.”

Figure 1.7: (a) Distances in Facebook in different subgraphs. (b) Their evolution in
time.

Year it se itse us fb

2007 41 17 41 13 14
2008 28 17 24 17 16
2009 21 16 17 16 15
2010 18 19 19 19 15
2011 17 20 17 18 35

current 19 19 19 20 58
Exact diameter giant component
current 25 23 27 30 41

Table 1.2: Evolution of the Facebook diameter.

To make the networks more amenable to analysis, also certain subgraphs have
been investigated. In Table 1.1, it stands for Italy, se for Sweden, itse for Italy
and Sweden combined, us for the United States and fb for the entire Facebook
graph. While initially there are large differences in these subgraphs, after 2010 they
appear to be highly similar. Only the distances in the entire Facebook graph appear
to be somewhat larger than those in the respective subgraphs (see Figure 1.7(a)).
Interestingly, it turns out that the variance of the hopcount is rather small, and in
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Figure 1.8: The average number of friends of individuals of a fixed degree.
“Random” indicates the average degree, while “Diagonal” indicates the line where

the average degrees of neighbors of an individual equals that of the individual.

most cases (certainly after 2007 after which Facebook adoption in Sweden and Italy
stopped being much behind on the U.S.), this variance is at most 0.5.

Let us discuss one last feature of the Facebook data set. In Figure 1.8, we plot the
average number of friends of individuals with given degrees. We see that while the
average number of friends of friends is larger than the average number of friends of
the individual when the degree is at most 800, above this value it is lower. Theorem
1.2 of course states that, on average, your friends have more friends than you do.
Figure 1.8 shows that this is only true up to a point. When you have a lot of friends
yourself, you cannot expect your friends to have even more!

Facebook has sparked a tremendous research effort. Online social networks allow
for a quantitative analysis of social networks that is often impossible for offline social
networks. However, this also raises the question what an online friendship really
means. In an extensive survey of the literature based on Facebook [265] in various
scientific domains, Wilson, Goslin and Graham summarize how Facebook data has
been used in the literature to answer questions like “Who is using Facebook and
why?” and “How are people presenting themselves on Facebook”? The answer to such
questions may shed light on the relation between online and offline social networks,
which are likely quite different.

1.6.3 Kevin Bacon Game and the Internet Movie Data Base

Another example of a large network is the movie actor network. In this example,
the vertices are movie actors, and two actors share an edge when they have played
in the same movie. Started as a student prank, this network has attracted some
attention in connection to Kevin Bacon, who appears to be central in this network.
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The Computer Science Department at Virginia University has an interesting web site
on this example; see The Oracle of Bacon at Virginia website on

http://www.cs.virginia.edu/oracle/.

Kevin Bacon Nb. # of actors
0 1
1 2769
2 305215
3 1021901
4 253177
5 20060
6 2033
7 297
8 25
9 7

Sean Connery Nb. # of actors
0 1
1 2564
2 338016
3 1044666
4 201058
5 16874
6 1971
7 291
8 37
9 7

Table 1.3: Kevin Bacon and Sean Connery Numbers (as of April 28, 2013).

See Table 1.3(a) for the Kevin Bacon Numbers of all the actors in this network.
There is one actor at distance 0 from Kevin Bacon (namely, Kevin Bacon himself),
2769 actors have played in a movie starring Kevin Bacon, 338016 actors have played
in a movie in which another movie star played who her/himself had played in a movie
starring Kevin Bacon, etc. In total, the average Kevin Bacon number is 2.937, which
is one over his closeness centrality. In search for “Six Degrees of Separation”, one
could say that most pairs of actors are related by a chain of co-actors of length at
most 6.

It turns out that Kevin Bacon is not the most central vertex in the graph. A
more central actor is Sean Connery. See See Table 1.3(b) for a table of the Sean
Connery Numbers. By computing the average of these numbers we see that the
average Connery Number is about 2.731, so that Connery is more central than Bacon.
To quote the Oracle of Bacon: This is not to denigrate Mr. Bacon, and it should be
noted that being the 370th best center out of 2.6 million people makes Bacon a better
center than 99% of the people who have ever appeared in a feature film.” See Table
1.4 for the top 10 of most central actors, starring Harvey Keitel as the proud number
1! It is notable just how close the top 10 is, differing only in the third decimal. The
worst possible closeness centrality is the actor who has inverse closeness centrality
10.105, which is more than three times as large as that of Kevin Bacon. On the
web site http://www.cs.virginia.edu/oracle/, one can try out one’s own favorite
actors to see what Bacon number they have, or what the distance is between them.

In Figure 1.9, the degree sequence of the Internet Movie Data base is given in log-
log format. We can see that a large part of the log-log plot is close to a straight line,
but it appears as if the tails are slightly thinner. Indeed, while Albert and Barabási
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Number Name Average distance
1 Harvey Keitel 2.848635
2 Dennis Hopper 2.849329
3 Robert De Niro 2.855810
4 David Carradine 2.857729
5 Martin Sheen 2.858291
6 Udo Kier 2.859489
7 Michael Madsen 2.860010
8 Donald Sutherland 2.860447
9 Michael Caine 2.862189
10 Eric Roberts 2.867675

Table 1.4: Top 10 most central actors in the IMDb (as of April 28, 2013), and their
average distance to all other actors (which is one over their closeness centrality).

Remarkably, while some of these central actors are indeed well known, others seem
less so.

[27] estimate the power-law exponent to be 2.3, Amaral et al. [15] looked closer at the
degree distribution to conclude that the power-law in fact has an exponential cut-off.
One striking feature of the data is that it is quite stable in time. In Figure 1.10, the
evolution of the degree sequence is shown. This stability is not due to the fact that
the graph in, say, 1960 is contained in the one in 1972, since the number of movie
actors grows too quickly. Further, the degrees of individual actors can only increase
over time (and remain constant when actors retire), and new actors are added as time
progresses. That the data set appears so stable must mean that there are organizing
principles in how the data arises (or is acquired). How this occurs is unclear to us.

In Figure 1.11, the typical distances of actors in the Internet Movie Data base are
given. We see that typical distances are relatively small, the vast majority of pairs of
actors is within distance 7, so again “Six Degrees of Separation”. Also the distances
are stable, as can be seen by their evolution in Figure 1.12.

1.6.4 Erdős numbers and collaboration networks

A further example of a complex network that has drawn attention is the collab-
oration graph in mathematics. This is popularized under the name “Erdős number
project”. In this network, the vertices are mathematicians, and there is an edge be-
tween two mathematicians when they have co-authored a paper. Thus, this network
can be seen as the math equivalent of the more glamorous movie actor network. See

http://www.ams.org/msnmain/cgd/index.html

for more information. The Erdős number of a mathematician is how many papers
that mathematician is away from the legendary mathematician Paul Erdős, who was
extremely prolific with around 1500 papers and 504 collaborators. Thus, Paul Erdős
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Figure 1.9: Loglog plot of the degree sequence in the Internet Movie Data base in
2007.

Figure 1.10: Loglog plot of the evolution of the degree sequence in the Internet
Movie Data base in 1960, 1972 and 2007.

has Erdős number 0, those who have published a paper with Paul Erdős have Erdős
number 1, etc. Of those that are connected by a trail of collaborators to Erdős, the
maximal Erdős number is claimed to be 15. On the above web site, one can see how
far one’s own professors are from Erdős. Also, it is possible to see the collaboration
distance between any two mathematicians.

The Erdős numbers have also attracted attention in the literature. In [92, 93], De
Castro and Grossman investigate the Erdős numbers of Nobel prize laureates, as well
as Fields medal winners, to come to the conclusion that Nobel prize laureates have
Erdős numbers of at most 8 with average 4-5, while Fields medal winners have Erdős
numbers of at most 5 with average 3-4. See also

http://www.oakland.edu/enp
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Figure 1.11: Log-log plot of the degree sequence in the Internet Movie Data base in
2007.

Figure 1.12: Log-log plot of the evolution of the degree sequence in the Internet
Movie Data base in 1960, 1972 and 2003.

for more information. There the following summary of the collaboration graph is
given. In July, 2004, the collaboration graph consisted of about 1.9 million authored
papers in the Math Reviews database written by a total of about 401,000 different
authors. Approximately 62.4% of these items are by a single author, 27.4% by two
authors, 8.0% by three authors, 1.7% by four authors, 0.4% by five authors, and 0.1%
by six or more authors. The largest number of authors shown for a single item is in
the 20s. Sometimes the author list includes “et al.”, so that the number of co-authors
is not always known precisely.

The fraction of items authored by just one person has steadily decreased over
time, starting out above 90% in the 1940s and currently standing at under 50%. The
entire graph has about 676,000 edges, so that the average number of collaborators per
person is 3.36. In the collaboration graph, there is one giant component consisting of
about 268,000 vertices, so that the graph is highly connected (recall Definition 1.6).
Of the remaining 133,000 authors, 84,000 of them have written no joint papers, and
these authors correspond to isolated vertices. The average number of collaborators for
people who have collaborated is 4.25. The average number of collaborators for people
in the giant component is 4.73, while the average number of collaborators for people
who have collaborated but are not in the giant component is 1.65. There are only 5
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Erdős Number # of Mathematicians
0 1
1 504
2 6593
3 33605
4 83642
5 87760
6 40014
7 11591
8 3146
9 819
10 244
11 68
12 23
13 5

Table 1.5: Erdős Numbers

mathematicians with degree at least 200, the largest degree is for Erdős, who has 504
co-authors. The clustering coefficient of the collaboration graph is 1308045/9125801
= 0.14, so that it is highly clustered. The average path lengths are small, making this
graph a small-world graph (recall Definition 1.7). Indeed, while the diameter of the
largest connected component is 23, the average distance E[Hn] is estimated at 7.64,
so there are seven degrees of separation (eight if you wish to include, say, 75% of the
pairs).

For the Erdős numbers, we refer to Table 1.5. The median Erdős number is 5, the
mean is 4.65, and the standard deviation is 1.21. We note that the Erdős number
is finite if and only if the corresponding mathematician is in the largest connected
component of the collaboration graph. See Figure 1.13 for an artistic impression of
the collaboration graph in mathematics taken from

http://www.orgnet.com/Erdos.html

and Figure 1.14 for the degree sequence in the collaboration graph.

Newman has studied several collaboration graphs. In [212], he finds that several
data bases are such that the degrees have power-laws with exponential cut-offs.
These data bases are various arXiv data bases in mathematics and theoretical physics,
the MEDLINE data base in medicine, and the data bases in high-energy physics and
theoretical computer science. Also, the average distance between scientists is shown
to be rather small, which is a sign of the small-world nature of these networks. Finally,
the average distance is compared to log n/ log d, where n is the size of the collaboration
graph and d is the average degree (recall Definition 1.7). The fit shows that these are
close. Further results are given in [211].

In Barabási et al. [29], the evolution of scientific collaboration graphs is investi-
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Figure 1.13: An artistic impression of the collaboration graph in mathematics.

gated. The main conclusion is that scientists are more likely to write papers with
other scientists who have written many papers, i.e., there is a tendency to write pa-
pers with others who have already written many. This preferential attachment is
shown to be a possible explanation for the existence of power laws in collaboration
networks (see Chapter 8). Given the fact that also exponential cut-offs are observed
for collaboration networks, these claims should be taken with a grain of salt.

1.6.5 The World-Wide Web

A complex network that has attracted enormous attention is the World-Wide Web
(WWW). Invented in the 1980s by Tim Berners-Lee and other scientists at the high-
energy lab CERN in Geneva to exchange information between them, it has grown
into the virtual source of information. Together with the Internet, the WWW has
given rise to a network revolution since the 1980s.

There is some confusion about what the WWW really is, and what makes it
different from the Internet. The elements of the WWW are web pages, and there is
a (directed) connection between two web pages when the first links to the second.
In the Internet, on the other hand, the edges correspond to physical cables between
routers. Thus, while the WWW is virtual, the Internet is physical. With the world
becoming ever more virtual, and the WWW growing at tremendous speed, the interest
in properties of the WWW has grown as well. It is of great practical importance to
know what the structure of the WWW is, for example, in order for search engines to
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mathematicians

Add precise reference!

.

be able to explore it efficiently.
It is hard to obtain data about the structure of the WWW. For example, it

is already unclear how large the WWW really is. Hirate, Kato and Yamana [141]
estimated that in 2005, the WWW consisted of 53.7 billion (=109) web pages, of
which 34.7 billion web pages are indexed by Google. Early 2005, Gulli and Signori
estimated that it consists of 11.5 billion web pages. Thus, it is clear that the WWW
is large, but it is hard to say precisely how large. This is partly due to the fact that
large parts are unreachable, and other parts are not indexed by search engines. See
[217, Section 4.1] for more background, the book by Bonato [60] devoted to the Web
graph, and [109, Chapters 13-14] on the WWW and Web searching.

The most substantial analysis of the WWW was performed by Broder et al. [70],
following up on earlier work in [184, 183] in which the authors divide the WWW into
several distinct parts, see also Figure 1.15. This division is into four main parts:

(a) The central core or Strongly Connected Component (SCC), consisting of those
web pages that can reach each other along the directed links (≈ 28%);

(b) The IN part, consisting of pages that can reach the SCC, but cannot be reached
from it (≈ 21%);

(c) The OUT part, consisting of pages that can be reached from the SCC, but do
not link back into it (≈ 21%);

(d) The TENDRILS and other components, consisting of pages that can neither
reach the SCC, nor be reached from it (≈ 30%).

Broder et al. [70] also investigate the diameter of the WWW, finding that the
SCC has diameter at least 28, while the WWW as a whole has diameter at least 500.
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Figure 1.15: The WWW according to Broder et al. [70].

This is partly due to the fact that the graph is directed. When the WWW is viewed
as an undirected graph, the average distance between vertices decreases to around
7. Further, it was found that both the in- and out-degrees in the WWW follow a
power-law, with power-law exponents estimated as τin ≈ 2.1, τout ≈ 2.5. This was
first observed in [184]. See also Figure 1.16.

Albert, Jeong and Barabási [7] also studied the degree distribution to find that the
in-degrees obey a power law with exponent τin ≈ 2.1 and the out-degrees obey a power
law with exponent τout ≈ 2.45, on the basis of several Web domains, such as nd.edu,
mit.edu and whitehouse.gov, the Web domain of the home university of Barabási
at Notre Dame, the Web domain of MIT and of the White House, respectively.
Further, they investigated the distances between vertices in these domains, to find
that distances within domains grow linearly with the log of the size of the domains,
with an estimated dependence of hn = 0.35 + 2.06 log n, where hn is the average
distance between elements in the part of the WWW under consideration, and n is
the size of the subset of the WWW. Extrapolating this relation to the estimated size
of the WWW at the time, n = 8 · 108, Albert, Jeong and Barabási [7] concluded that
the diameter of the WWW was 19 at the time, which prompted the authors to the
following quote:

“Fortunately, the surprisingly small diameter of the web means that all
information is just a few clicks away.”

Adamic [2] discusses distances in the WWW even further. When considering the
WWW as a directed graph, it is seen that the distances between most pairs of vertices
within the SCC are small. See Figure 1.18 for a histogram of pairwise distances in
the sample. Distances between pairs of vertices in the SCC tend to be at most 7: Six
Degrees of Separation.

Barabási and Albert [27] (see also [28]) argue that new web pages are more likely
to attach to web pages that already have a high degree, giving a bias towards popular
web pages. This is proposed as an explanation for the occurrences of power laws.
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Figure 1.16: The in-degree sequence in the WWW taken from [184].

We expand on this explanation in Section 1.8, and make the discussion rigorous in
Chapter 8.

Kumar et al. [183] propose models for the WWW where vertices are added that
copy the links of older vertices in the graph. This is called an evolving copying model.
In some cases, depending on the precise copying rules, the model is shown to lead to
power-law degree sequences.

In Milgram’s work discussed in Section 1.6.1, on the one hand, it is striking that
short paths exist between most pairs of individuals, on the other hand, it may be
even more striking that people actually succeed in finding them. Kleinberg [175]
addresses the problem how “authoritative sources” for the search on the WWW can
be quantified. These authoritative sources can be found in an algorithmic way by
relating them to the hubs in the network. This problem is intimately connected to
the PageRank problem that we discuss now. The paper [178] is a nice survey of
measurements, models and methods for obtaining information on the WWW using
Web crawling.

PageRank. A notoriously hard and fascinating problem for the Web is how to rank
web pages on related topics such that the most important pages come first. Those
of us who were around before Google revolutionized web searching may remember
the days where the list of output of search engines seemed not to be ordered at all.
PageRank is a very simple way to create such order, which is why their inventors,
Sergey Brin and Larry Page gave their paper the catchy subtitle “Bringing order to
the Web.”

PageRank is claimed to be the main reason of success of Google, and Brin and
Page brought it to good use as founders of Google (see [68] for the original reference).
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Figure 1.17: The in-degree sequence in the WWW from the Google competition
graph http://snap.stanford.edu/data/web-Google.html (a) Proportion of

nodes with given in-degrees. (b) Tail probabilities of proportion of nodes with given
in-degrees. Courtesy of Yana Volkovich.
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The problem in the Web is that we can see from the HTML code of a Web page where
it refers to, but we cannot easily see who refers to it. Intuitively, pages that have
many references to itself are influential, and are therefore more likely to correspond
to the pages that you are really looking for.

Here is a description of PageRank. Web pages have key words associated to them,
indicating what the page is about. PageRank allows us to order the web pages in
their importance, as we explain below. When a person requests information about a
certain query or topic, the search engine returns the ordered list of web pages that
have the query or topic as a key word, the order being dictated by the PageRank of
the web page. Therefore, to ‘bring order to the Web’, all we have to do is to provide
an ordering of the importance of web pages regardless of their content, and have
a huge data base storing these ranks as well as the possible queries for web pages.
However, this is easier said than done. Here is how it works.

Let G = ([n], E) denote the web graph, so that [n] corresponds to the web pages
and a directed edge (i, j) ∈ E is present precisely when page i refers to j. Denote
the out-degree of vertex i by d(out)

i . Let π = (πi)I∈[n] be the stationary distribution
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Figure 1.18: Average distances in the Strongly Connected Component of the WWW
taken from [2].

of a random walk on G that, given its location i at time t, at time t + 1 jumps
with probability (1 − α)/d(out)

i to any neighbor j of i, and with probability α to a
uniform vertex in [n]. Thus, letting (Xt)t≥0 denote the random walk, its transition
probabilities are given by

Pij = (1− α)1{(i,j)∈E}/d
(out)

i + α/n, (1.6.1)

where α ∈ (0, 1) is called the damping factor. Since (Xt)t≥0 is an aperiodic and
irreducible Markov chain, the stationary distribution π exists. When thinking about
an edge ij ∈ E as indicating that i finds j interesting, πi measures how interesting i
is, in the sense that πi is the proportion of time the random walker spends in i. The
random walker could be interpreted as a lazy surfer who does not check the content of
pages, but simply clicks a random hyperlink coming out of a web page, until he/she
is bored and restarts uniformly. The restarts are crucial, since otherwise the random
walker would get stuck in the dangling ends of the Web (recall Figure 1.15). Since
the stationary distribution depends sensitively on the size of the network (as well as
on its topology), we define the PageRank Ri of a vertex i to be Ri = nπi, so that the
average of Ri is equal to

1

n

∑
i∈[n]

Ri =
1

n

∑
i∈[n]

nπi =
∑
i∈[n]

πi = 1, (1.6.2)

since (πi)i∈[n] is a probability distribution. Thus, the average PageRank of a page is
1 irrespective of the network size.

The damping factor α is quite crucial. When α = 1, the stationary distribution
is just πi = 1/n for every i, so that all pages have PageRank 1. This is not very
informative. On the other hand, when α is small, PageRank concentrates on dangling
ends, and this is also not what we want. Experimentally, α = 0.35 seems to work
well and strikes a nice balance between these two extremes.
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Interestingly, empirical work on the Web graph has shown that not only the in-
degree has an approximate power-law distribution, also the PageRanks (Ri)i∈[n] do,
and with the same exponent. This may explain why Google works so well. Indeed,
since the ranks are varying rather substantially, one would expect the most highly
ranked vertices to be the most relevant, while the many vertices with small ranks are
probably not so relevant.

A matrix analytic viewpoint helps to compute the ranks (Ri)i∈[n]. Indeed,∑
j∈[n]

Pijπj = (1− α)
∑
j∈[n]

Mijπj + α/n
∑
j∈[n]

πj = (1− α)(Mπ)i + α/n, (1.6.3)

where M = (Mij)i,j∈[n] is the stochastic matrix Mij = 1{(i,j)∈E}/d
(out)

i . Since the
second term in (1.6.3) is independent of (πi)i∈[n], we can iterate and obtain that the
vector π representing the stationary distribution equals

π =
α

n

∞∑
k=0

(1− α)kMk~1, (1.6.4)

where ~1 is the all-one vector. When we use the matrix-geometric series
∑∞

k=0A
k =

(I −A)−1, valid for any matrix with norm at most 1 and with I the identity matrix,
we thus arrive at

π =
α

n
[I − (1− α)M ]−1~1, (1.6.5)

so that the vector R = (Ri)i∈[n] equals

R = α[I − (1− α)M ]−1~1. (1.6.6)

One could say that Google’s birth was due to giant matrix inversions!

1.6.6 The brain

The brain is arguably the largest complex network. Consisting of 1011 neurons
connected to one another by axons interacting in an intricate way, it is a marvel
how well it functions. See Figure 1.19 for an example of neurons and their axons.
To a large extent it is unknown precisely what makes the brain work so well. When
considering the brain as a network, different perspectives are relevant. First of all, the
brain at the level of neurons constitutes an enormous network. However, compared
to many other networks, there is a high amount of hierarchy or community structure
present in the brain, where functional units consisting of thousands or even millions
of neurons are responsible for specific tasks. This structure is sometimes called the
functional brain network. For many regions it is known which functionality they
have, for other regions, this is less well understood. Mapping the functional network
of the brain is a highly active research area going under the name connectomics.
For example, the Human Connectome Project is sponsored by sixteen components of
the National Institutes of Health in the U.S., and aims to map the anatomical and
functional connectivity within the healthy human brain.
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Figure 1.19: Functional brain network (Image courtesy of commons.wikimedia.org)
and neurons (Image courtesy of dream designs at FreeDigitalPhotos.net).

Another type of network that is sometimes considered in neuroscience relates to
the functional network, and is obtained from Electroencephalography (EEG) data. In
an EEG, electrical activity along the scalp is recorded in several spots. The activity
at these spots can be summarized in a weighted network, where the weights describe
the correlations between the data signals observed at the various pairs of spots. Some-
times these weighted networks are turned into a normal network by truncating the
weights, i.e., edges with a high amount of correlation are kept and those with low
correlation are ignored. The small-world, scale-free and highly-clustered features of
such networks have received substantial attention. We refer the reader to the book
by Olaf Sporns [247], called Networks of the brain, as well as the references therein,
for an accessible introduction to brain networks and their functionality.

1.7 Tales of tails

In this section, we take a closer look at the occurrence of power laws. In Section
1.7.1, we discuss the literature on this topic, which dates back to the 1920s. In
Section 1.7.2, we describe the new view points on power laws in real-world networks.
In Section 1.7.3, we consider the statistical issues of power laws, focussing on the
estimation of the power-law exponent. Finally, in Section 1.7.4, we discuss where
network data can be found on the web.

1.7.1 Old tales of tails

Mathematicians are drawn to simple relations, believing that they explain the rules
that gave rise to them. Thus, finding such relations uncovers the hidden structure
behind the often chaotic appearance of data. A power-law relationship is such a
simple relation. We say that there is a power-law relationship between two variables
when one is proportional to a power of the other. Or, in more mathematical language,
the variable k and the characteristic f(k) are in a power-law relation when f(k) is
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proportional to a power of k, i.e., for some number τ ∈ R,

f(k) = Ck−τ . (1.7.1)

Power laws are intimately connected to so-called ‘80/20 rules’. For example, when
studying the wealth in populations, Pareto observed a huge variability [227]. Most
individuals do not earn so much, but there are those rare individuals that earn a
substantial part of the total income. Pareto’s principle became best known under
the name ‘80/20 rule’, indicating, for example, that 20 percent of the people earn 80
percent of the total income. This law appears to be true much more generally. For
example, 20 percent of the people are claimed to own 80 percent of the land, 20 percent
of the employees are claimed to earn 80 percent of the profit of large companies, and
maybe it is even true that 20 percent of the scientists write 80 percent of the papers.
In each of these cases, no typical size exists due to the high amount of variability
present, which explains why these properties are called ‘scale free’.

Intuitively, when an 80/20 rule holds, a power law must be hidden in the back-
ground! Power laws play a crucial role in mathematics, as well as in many applications
and have a long history. Zipf [270] was one of the first to find a power law in the
frequencies of occurrence of words in large pieces of text. He found that the relative
frequency of a word is roughly inversely proportional to its rank in the frequency table
of all words. Thus, the most frequent word is about twice as frequent as the second
most frequent word, and about three times as frequent as the third most frequent
word, etc. In short, with k the rank of the word and f(k) the relative frequency of
the kth most frequent word, f(k) ∝ k−τ with τ close to 1. This is called Zipf’s law.

Already in the 1920s, several other examples of power laws were found. Lotka
[193] investigated papers that were referred to in the Chemical Abstracts in the period
from 1901-1916, and found that the number of scientists appearing with two entries
is close to 1/22 = 1/4 of the number of scientists with just one entry. The number
of scientists appearing with three entries is close to 1/32 = 1/9 times the number of
scientists appearing with one entry, etc. Again, with f(k) denoting the number of
scientists appearing in k entries, we have that f(k) ∝ k−τ , where τ now is close to
2. This is dubbed Lotka’s Law. Recently, effort has been put into explaining power
laws using the notion of ‘self-organization’. Per Bak, one of the central figures in this
area, called his book on the topic “How nature works” [23].

Power-law relations are one-step extensions of linear relations. Conveniently, even
when one does not understand the mathematical definition of a power law too well,
one can still observe one in a simple way: in a log-log plot, power laws are turned
into straight lines: we take the log of the power-law relationship (1.7.1) to obtain

log f(k) = logC − τ log k, (1.7.2)

so that log f(k) is in a linear relationship with log k, with coefficient equal to −τ . Not
only does this allow us to visually inspect whether f(k) is in a power-law relationship
to k, it also allows us to estimate the exponent τ . This is precisely what has been
done in order to obtain the power-law exponents in the examples in Section 1.3. An
account of the history of power-laws can be found in the survey of Mitzenmacher [204],
where also possible explanations why power laws arise so frequently are discussed.
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1.7.2 New tales of tails

In this section, we discuss the occurrence of power-law degree sequences in real-
world networks. We start by giving a heuristic explanation for the occurrence of
power-law degree sequences, in the setting of exponentially growing graphs. This
heuristic is based on some assumptions that we formulate now:

We assume that:

(1) the number of vertices V (t) grows exponentially in t at some rate ρ > 0, i.e.,
V (t) ≈ eρt;

(2) the number N(t) of links into a vertex at a time t after its creation is N(t) ≈ eβt.
(Note that we must haveβ ≤ ρ, since the number of links into a vertex is
bounded above by the number of vertices.) Thus, also the number of links into
a vertex grows exponentially with time.

We note that assumption (1) is equivalent to the assumption that

(1’) the lifetime T of a random vertex, i.e., the time since its birth, has law

P(T > x) = e−ρx, (1.7.3)

so the density of the lifetime of a random vertex is equal to

fT (x) = ρe−ρx. (1.7.4)

Using the above assumptions, we see that the number of links into a random vertex
X equals

P(X > i) = i−ρ/β, (1.7.5)

since

P(X > i) =

∫ ∞
0

fT (x)P(X > i | T = x)dx

=

∫ ∞
0

ρe−ρxP(X > i | T = x)dx

=

∫ ∞
(log i)/β

ρe−ρxdx = e−(log i)ρ/β = i−ρ/β.

where we use (2) to conclude that P(X > i | T = x) = 1 precisely when x > (log i)/β
since the number of links of the vertex grows exponentially with time in the last line.
Stretching the above heuristic a bit further, we get

P(X = i) = P(X > i− 1)− P(X > i) ∼ i−(ρ/β+1). (1.7.6)

This heuristic suggests a power law for the in-degrees of the graph, with power-law
exponent τ = ρ/β+ 1 ≥ 2. This heuristic explains the occurrence of power laws with
exponents that are at least 2.

An alternative reason why power laws occur so generally will be given in Chapter
8. Interestingly, so far, also in this explanation, only power laws that are at least 2
are obtained.
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1.7.3 Power laws, their estimation, and criticism

While power-law degree sequences are claimed to occur quite generally in real-
world networks, there are also some critical observations, particularly about the mea-
surements that produce power laws in the Internet, as already discussed in some
detail in Section 1.3. Here we return to so-called sampling biases. It is argued
that traceroute-measurements, by which the Internet-topology is uncovered, could
be partially responsible for the fact that power-law degree sequences are observed
in the Internet. Indeed, in [185], it was shown that when we perform traceroute-
measurements to certain subgraphs of the Erdős-Rényi random graph, the data seems
to exhibit power-law degree sequences. As we argue in more detail in the next section,
the Erdős-Rényi random graph does not have power-law degree sequences, so these
power-law observations must be an artefact of the way the traceroute measurements
are performed. We will informally introduce the Erdős-Rényi random graph in the
next section.

In Internet measurements, subgraphs are typically obtained by exploring paths
between sets of pairs of vertices. Indeed, fix a subset S of the vertex set V in a graph
G = (V,E). We obtain a subgraph of G by computing the shortest paths between
all pairs of vertices in S, and piecing these paths together. The subgraph that we
obtain is the part of the network that appears along a shortest path between the
starting points and destinations in S, and this is the way how traceroute is used in
the Internet. For shortest-path routing, vertices with a high degree turn out to be
more likely to appear than vertices with low degrees. Therefore, such data sets tend
to overestimate the tail distribution of the degrees in the complete network. This bias
in traceroute data was further studied by Clauset, Moore and collaborators [1, 84],
in which both for Erdős-Rényi random graphs and for random regular graphs it was
shown that subgraphs appear to obey a power law.

While the above criticism may be serious for the Internet, and possibly for the
World-Wide Web, where degree distributions are investigated using web-crawling po-
tentially leading to sampling biases, there are many networks whose edge and ver-
tex sets are completely available that also are reported to show power-law degree
sequences. In this case, the observed power-laws cannot be so easily dismissed. How-
ever, one needs to be careful in using and analyzing data confirming power-law degree
sequences. Particularly, we cannot rule out that some estimates of the power-law de-
gree exponent τ are biased, and that the true values of τ are substantially larger.
Possibly, this criticism may explain why so often power laws are observed with expo-
nents in the interval (2, 3).

When all degrees in a network are observed, one can visually check whether a
power law is present for the degree sequence by making the log-log plot of the fre-
quency of occurrence of vertices with degree k versus k, and verifying whether this
is close to a straight line. Of course, this is not very precise, and one would clearly
prefer an estimation procedure of the power-law exponent of the degree sequence.
This brings us into the statistical arena. Suppose that we have a data set of size m
given by X1, . . . , Xm, and we order this data as X(1) ≤ X(2) ≤ · · · ≤ X(m). One way
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to estimate τ is to use the Hill-estimator Hk,m for 1/(τ − 1) given by

Hk,m =
1

k

k∑
i=1

log(X(i)/X(k+1)), (1.7.7)

where k ≥ 1 is a parameter that needs to be chosen carefully. Statistical theory, as
for example presented in the book by Resnick [236], states that Hk,m converges in
probability to 1/(τ − 1) when m→∞ and k/m→ 0 when the data (Xi)

m
i=1 are i.i.d.

random variables. This is closely related to the fact that the maximum of m i.i.d.
random variables having a power-law distribution with exponent τ is of the order
n1/(τ−1). See Section 2.6 for more details about extremes of random variables.5

The difficulty is how to choose k. It turns out that, in many data sets, the Hill
estimator varies substantially with k, so that choosing the ‘right’ value of k is non-
trivial. A Hill plot can help. In a Hill plot, one plots (k, 1/Hk,m), and takes the
maximal value k∗ for which the curve is close to a straight line below k∗. Again, this
is not very precise! The procedure often works nicely though when dealing with a
pure power law, i.e. when 1−F (x) = P(X1 > x) = (c/x)τ−1 for x ≥ c and 0 otherwise.
However, when slowly varying functions as in (1.4.9) are included, the accuracy drops
substantially. The above discussion applies to the ‘nice’ case where the data comes
from an i.i.d. sample of random variables. In real-world networks, the degrees are not
even i.i.d., and thus one can only expect worse convergence properties. We conclude
that it is hard to estimate the power-law exponent τ , and thus that the reported
values appearing in various more applied papers need to be regarded with cautioun.
Of course, this does not mean that we should not try to estimate τ . For example,
Newman and collaborators [215, 85] give sensible suggestions on how to do this in
practice.

1.7.4 Network data

There are many network data sets available on the web, for you to investigate
or just to use as illustrating examples. The data for the Internet Movie Data base
(IMDb) can be downloaded from http://www.imdb.com/interfaces, where also the
conditions of use can be found. For the Internet, the CAIDA website

http://www.caida.org/data/

gives many data sets, both at IP as well as AS level, of the Internet topology.
There are also a few websites collecting various network data sets. The web-

site of the Stanford Network Analysis Project http://snap.stanford.edu/ by Jure
Leskovec has many network data sets from various origins that can be downloaded
from http://snap.stanford.edu/data/index.html. Also on the Pajek wiki by
Vladimir Batagelj and Andrej Mrvar at http://pajek.imfm.si/doku.php, which
focusses on the Pajek software to analyze data, one can find example data sets at

5In more detail, Hk,m has the alternative form Hm,k = 1
k

∑k
i=1 i log(X(i)/X(i+1)). The random

variables i log(X(i)/X(i+1)) converge to independent exponential random variables with mean 1/(τ −
1). Exchanging the limits gives that we can estimate 1/(τ − 1) by Hm,k.



1.8 Random graph models for complex networks 43

http://pajek.imfm.si/doku.php?id=data:index. Finally, some of the pioneers in
network theory have data sets available on their web pages. We specifically refer to the
web pages of Mark Newman at http://www-personal.umich.edu/~mejn/netdata/
and of Albert-Laszló Barabási at http://www3.nd.edu/~networks/resources.htm.

1.8 Random graph models for complex networks

In the previous sections, we have described properties of real-world networks.
These networks are quite large, and in most cases it is virtually impossible to de-
scribe them in detail or to give an accurate model for how they came to be. To
circumvent this problem, random graphs have been considered as network models.
These random graphs describe by which local and probabilistic rules vertices are con-
nected to one another. The use of probabilistic rules is to be able to describe the
complexity of the networks. In deterministic models, often too much structure is
present, making the resulting networks unsuitable to describe real-world networks.
In general, probability theory can be thought as a powerful way to model complexity.
This approach introduces randomness in network theory, and leads us to consider
random graphs as network models. However, it does not tell us a priori what these
random graph models should look like.

The field of random graphs was established in the late 1950s and early 1960s.
While there were a few papers appearing around (and even before) that time, the
paper [116] by Erdős and Rényi is generally considered to have founded the field.
The authors Erdős and Rényi studied the simplest imaginable random graph. Their
graph has n vertices, and each pair of vertices is independently connected with a
fixed probability p. When we think of this graph as describing a social network,
the elements denote the individuals, while two individuals are connected when they
know one another. The probability for elements to be connected is sometimes called
the edge probability. Let ERn(p) denote the resulting random graph. Note that the
precise model above is introduced by Gilbert in [129], and in [116] instead a model
was formulated with a fixed number of edges (rather than a binomial number). It
is not hard to see that the two models are intimately related (see e.g., Section 4.6,
where the history is explained in a bit more detail). The Erdős-Rényi random graph
was named after Erdős and Rényi due to the deep and striking results proved in [116],
which opened up an entirely new field. Earlier papers investigating random graphs
are [113], which uses the probabilistic method to prove graph properties, and [243],
where it is introduced as a model for neurons.

Despite the fact that ERn(p) is the simplest imaginable model of a random net-
work, it has a fascinating phase transition when p varies. Phase transitions are impor-
tant in physics. The paradigm example is the solid-fluid transition of water, which
occurs when we move the temperature from below 0◦ Celsius to above 0◦ Celsius.
Similar phase transitions occur in various real-world phenomena, such as magnetism
or conductance of porous materials. Many models have been invented that describe
and explain such phase transitions, and we will see some examples in this book. The
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Erdős-Rényi random graph exhibits a phase transition in the size of the maximal
connected component, as well as in its connectivity.

The degree of a vertex, say vertex 1, in ERn(λ/n) has a binomial distribution with
parameter p = λ/n and n − 1 trials. In Chapter 5, we will see that the proportion
of vertices with degree k is also close to P(Bin(n − 1, λ/n) = k), where we write
Bin(m, q) to denote a binomial random variable with m trials and success probability
q. It is well known that, for large n, the binomial distribution with parameters n and
p = λ/n is close to the Poisson distribution with parameter λ. More precisely,

lim
n→∞

P
(
Bin(n, λ/n) = k

)
= e−λ

λk

k!
, k = 0, 1, . . . . (1.8.1)

The probability mass function pk = e−λ λ
k

k!
is the probability mass function of the

Poisson distribution with parameter λ. This result can be strengthened to a law
of large numbers stating that the proportion of vertices with degree k converges in
probability to pk. This in particular implies that ER(n, λ/n) is a sparse random graph
sequence. For k large, the Poisson probability mass function pk is much smaller than
k−τ for any τ , so the Erdős-Rényi random graph is not scale free in contrast to many
real-world networks, as explained in more detail in Section 1.3. In Chapters 6, 7
and 8, we describe three scale-free random graph models. In Chapter 6, we describe
the generalized random graph. The philosophy of this model is simple: we adapt the
Erdős-Rényi random graph in such a way that it becomes scale free. In Chapter 7, we
describe the configuration model, a random graph model where the degrees of vertices
are fixed. In Chapter 8, we discuss the preferential attachment model, a dynamical
random graph model.

As mentioned above, the degrees of the Erdős-Rényi random graph with edge
probability p = λ/n are close to a Poisson random variable with mean λ and these
are not scale free. However, we can make these degrees scale free by letting the
parameter λ vary over the vertices, in such a way that the distribution of weights
over the vertices approaches a power law. Thus, to each vertex i, we associate a
weight wi such that the edges emanating from i are occupied with a probability
depending on wi. There are many ways in which this can be done. For example,
in the generalized random graph introduced by Britton, Deijfen and Martin-Löf [69],
the probability that an edge exists between vertices i and j is equal to

pij =
wiwj

wiwj + `n
, (1.8.2)

where `n =
∑

i∈[n] wi is the total weight of the graph, and different edges are inde-

pendent. In Chapter 6, we will prove that when the weights (wi)i∈[n] satisfy an ap-
proximate power law, this inhomogeneous version of the Erdős-Rényi random graph
does lead to scale-free random graphs. One way to quantify the fact that the weights
(wi)i∈[n] satisfy an approximate power law is to assume that there exists a random
variable W such that

lim
n→∞

1

n

∑
i∈[n]

1{wi>x} = P(W > x), (1.8.3)
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where P(W > x) is regularly varying at x =∞ with exponent τ − 1. Here, we write
1E to denote the indicator of the event E . Equation (1.8.3) states that the empirical
weight distribution converges to a limiting distribution function. This in turn implies
that the degree sequence also has an asymptotic power-law distribution, which can
be understood by noting that the degree of vertex i is close to a Poisson distribution
with parameter wi, which concentrates around wi when wi is large. This heuristic
will be made precise in Chapter 6.

There are various other possibilities to create an inhomogeneous version of the
Erdős-Rényi random graph, some of which will be discussed also. See the papers by
Chung and Lu [78] or by Norros and Reittu [220] for two specific examples, and the
impressive paper by Bollobás, Janson and Riordan [56] for the most general set-up of
generalized random graphs.

In the second scale-free random graph model, that we discuss in detail in Chapter
7, we take the degrees as a start for the model. Thus, to each vertex i, we associate
a degree di, and in some way connect up the different edges. Clearly, we need that
the sum of the degrees

∑
i∈[n] di is even, and we assume this from now on. We can

connect up the vertices by imagining there to be di half-edges incident to vertex i,
and pairing up the half-edges in some random way. One way to do this is to attach
all the half-edges uniformly, and this leads to the configuration model. Naturally, it is
possible that the above procedure does not lead to a simple graph, since self-loops and
multiple edges can occur. As it turns out, when the degrees are not too large, more
precisely, when they asymptotically have finite variance in the sense that 1

n

∑
i∈[n] d

2
i

remains bounded in n, the graph is with positive probability simple, meaning that
there are no self-loops nor multiple edges. By conditioning on the graph being simple,
we end up with a uniform graph with the specified degrees. Sometimes this is also
referred to as the repeated configuration model, since we can think of conditioning as
repeatedly forming the graph until it is simple, which happens with strictly positive
probability. A second approach to dealing with self-loops and multiple edges is simply
to remove them, leading to the so-called erased configuration model. In Chapter 7,
we investigate these two models, and show that the two degree distributions are close
to each other when the graph size n tends to infinity. Thus, even the erasing does
not alter the degrees too much. Further, the configuration model leads to a scale-free
random graph when the degrees obey an asymptotic power law, i.e., when there exists
a limiting random variable D such that the empirical degree distribution converges
to the distribution of D, i.e., for every x ∈ R,

lim
n→∞

1

n

∑
i∈[n]

1{di>x} = P(D > x). (1.8.4)

Scale-free behavior of the configuration model then corresponds to P(D > x) being
regularly varying at x =∞ with exponent τ − 1.

The generalized random graph and configuration models describe networks and,
in some sense, do so quite satisfactorily. Indeed, they give rise to models with degrees
that can be matched to degree distributions found in real-world networks. However,
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they do not explain how the networks were formed so as to have power-law degrees. A
possible explanation for the occurrence of scale-free behavior was given by Albert and
Barabási [27], by a feature called preferential attachment. Most real-world networks
grow. For example, the WWW has increased from a few web pages in 1990 to an
estimated size of a few billion in 2014. Growth is an aspect that is not taken into
account in Erdős-Rényi random graphs, although it would not be hard to reformulate
them as a growth process where elements are successively added, and connections
are randomly added or removed. Thus, growth by itself is not enough to explain the
occurrence of power laws. However, viewing real-world networks as evolving in time
does give us the possibility to investigate how they grow.

So, how do real networks grow? Think of a social network describing a certain
population in which a newcomer arrives, increasing the network by one vertex. She/he
will start to socialize with people in the population, and this process is responsible for
the newly created connections to the newly arrived person. In an Erdős-Rényi random
graph, the connections of the newcomer will be spread uniformly over the population.
Is this realistic? Is the newcomer not more likely to get to know people who are socially
active and, therefore, already have a larger degree? Probably so! We do not live in a
perfectly egalitarian world. Rather, we live in a self-reinforcing world, where people
who are known are more likely to become even more well known! Therefore, rather
than equal probabilities for our newcomer to get acquainted with other individuals in
the population, there is a bias towards individuals who already know many people.
Alternatively, when we think of the degree of elements as describing the wealth of the
individuals in the population, we live in a world where the rich get richer! This is the
idea behind preferential attachment models as introduced in Chapter 8.

Phrased in a more mathematical way, preferential attachment models are such
that new elements are more likely to attach to elements with high degree compared to
elements with small degree. For example, suppose that new elements are born with a
fixed number of edges to the older elements. Each edge is connected to a specific older
element with a probability that is proportional to the degree of that older element at
the time the connection is created. This phenomenon is now mostly called preferential
attachment, and was first described informally by Albert and Barabási [27]. See also
the book [26] for a highly accessible and enthusiastic personal account by Barabási.
Albert and Barabási have been two of the major players in the investigation of the
similarities between real-world networks. The notion of preferential attachment in
networks has led the theoretical physics and the mathematics communities to study
the structure of preferential attachment models in numerous papers. For some of the
references, see Chapter 8. In particular, we will see that, as in (1.8.4), the empirical
degree distribution of the preferential attachment model does converge, and that the
limiting degree distribution satisfies an asymptotic power law. Note that now this
power law is not simply imposed in the model, but is the result of a simple and
attractive local growth rule.

While the above explanation works for social networks, also in other examples
some form of preferential attachment is likely to be present. For example, in the
WWW, when a new web page is created it is more likely to link to an already popular
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site, such as Google, than, for instance, to my personal web page. For the Internet,
it may be profitable for new routers to be connected to highly connected routers,
since these give rise to short distances. Even in biological networks, a subtle form of
preferential attachment is claimed to exist. For example, in preferential attachment
models the oldest vertices tend to have the highest degrees. In protein interaction
networks, there is some evidence that the proteins that interact with the most other
proteins, and thus have a large degree in the network, are also the ones that have
been active in cells of organisms the longest.

In Chapter 8, we introduce and study preferential attachment models, and show
that preferential attachment leads to scale-free random graphs. The power-law expo-
nent of the degrees depends sensitively on the precise parameters of the model, such
as the number of added edges and how dominant the preferential attachment effect
is, in a similar way as the suggested power-law exponent in the heuristic derivation
in (1.7.6) depends on the parameters of that model.

In Chapters 6, 7 and 8, we investigate the degrees of the proposed random graph
models and explain the scale-free nature of these models. In Volume II [144], we
investigate further properties of these models, focussing on the connected components
and the distances within these graphs. We frequently refer to Volume II, and write,
e.g., [II, Chapters 2] to refer to Chapter 2 in Volume II. As observed in Section 1.3,
most real-world networks are small worlds. As a result, one would hope that random
graph models for real-world networks are such that distances between their elements
are small. In [II, Chapters 2, 3, 4, 5 and 6], we quantify this, and relate graph
distances to properties of degrees. A further property that we will investigate is the
phase transition of the largest connected component, as described in detail for the
Erdős-Rényi random graph in Chapter 4. We also discuss universality, a notion that
is strongly rooted in statistical physics and that describes why and when models with
distinct local rules have the same global properties. In terms of network modeling
this is crucial, since the various models are all invented with the goal to describe the
same real-world networks, even though the local rules that define the graphs can be
quite different. As such, it would be undesirable if they would have entirely distinct
properties.

The aim of this book is to study random graph models for real-world complex
networks in a rigorous mathematical way, and to put the study of random graphs
on a firm theoretical basis. The level is aimed at master-level students, even though
there are topics of interest to specialists as well. The text contains many exercises
presented in the last section of each chapter, and we encourage the reader to make
them so as to get optimally acquainted with the notions used in this book.

Of course, the literature on random graphs is extensive, and we are not able to
discuss all of it. Particularly, we do not discuss the functionality of networks. Func-
tionality is about processes that live on the network. For example, the purpose of a
road network is to facilitate traffic traveling on the roads in the network. Internet
facilitates e-mail, the WWW search, and social networks diffusion of ideas and infec-
tious diseases. The behavior of such processes has attracted tremendous attention in
the literature, but this is beyond the scope of this book. We close this chapter with



48 Introduction

a summary of some standard notation used in this book, as well as some notes and
discussion.

1.9 Notation

In this book, we denote events by calligraphic letters, such as A,B, C and E . We
use 1E to denote the indicator function of the event E . We use capital letters, such as
X, Y, Z, U, V,W , to denote random variables. There are some exceptions, for example,
FX and MX denote the distribution function and moment generating function of a
random variable X, respectively, and we emphasize this by writing the subscript
X explicitly. We say that a sequence of events (En)n≥1 occurs with high probability
when limn→∞ P(En) = 1. We often abbreviate this as “whp”. We call a sequence of
random variables (Xi)i≥1 independent and identically distributed (i.i.d.) when they
are independent, and Xi has the same distribution as X1 for every i ≥ 1.

We use special notation for certain random variables. We write X ∼ Be(p) when
X has a Bernoulli distribution with success probability p, i.e., P(X = 1) = 1 −
P(X = 0) = p. We write X ∼ Bin(n, p) when the random variable X has a binomial
distribution with parameters n and p, and we write X ∼ Poi(λ) when X has a
Poisson distribution with parameter λ. We sometimes abuse notation, and write
P(Bin(n, p) = k) to denote P(X = k) when X ∼ Bin(n, p).

We also rely on Landau notation to denote asymptotics. We write f(n) = o(g(n))
as n → ∞ when g(n) > 0 and limn→∞ |f(n)|/g(n) = 0. We write f(n) = O(g(n))
as n → ∞ when g(n) > 0 and lim supn→∞ |f(n)|/g(n) < ∞. Finally, we write
f(n) = Θ(g(n)) as n→∞ when f(n) = O(g(n)) and g(n) = O(f(n)).

We extend Landau notation to sequences of random variables. For a sequence of

random variables (Xn)n≥1 and a limiting variable X, we write that Xn
d−→ X when

Xn converges in distribution to X, Xn
P−→ X when Xn converges in probability to

X and Xn
a.s.−→ X when Xn converges almost surely to X. We say that a sequence of

random variables (Xn)n≥1 is tight when lim supK→∞ lim supn→∞ P(Xn ≤ K) = 0. For
two sequences of random variables (Xn)n≥1 and (Yn)n≥1, where Yn is non-negative,
we write Xn = OP(Yn) when (Xn/Yn)n≥1 is a tight sequence of random variables, and

Xn = oP(Yn) when Xn/Yn
P−→ 0. We give precise definitions for these notions in

Definition 2.1 below. We refer the reader to Janson [160] for an excellent discussion
of notation for asymptotics in probability.

We let N = {1, 2, 3, . . .} denote the positive integers, and N0 = N ∪ {0} the non-
negative integers. We say that a random variable X is integer valued when X takes
values in the integers. We will often be concerned with non-negative integer-valued
random variables, such as Bernoulli, binomial and Poisson random variables.
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1.10 Notes and discussion

Notes on Section 1.1. There are many nice accounts of networks and their role in
science. The book by Newman [217] is a great resource for definitions, empirical find-
ings in network data, and discussions of the various network models and processes on
them, from a physics perspective. The present book is far less ambitious, but instead
intends to be fully rigorous. The lectures on Complex Networks by Dorogovtsev [101]
form an introduction to the rich work of theoretical physics on the subject, aimed at
researchers rather than students as Newman [217] does. There are also many popular
accounts, such as the books by Watts [258, 259] focussing on the small-world prop-
erties of real-world networks, and the book by Barabási [26] about the ‘new science
of networks’. These sources are a great inspiration for why we actually do study
networks!

Notes on Section 1.2. Graph theory is an old topic, first invented by Euler to solve
the infamous Königsberg bridge problem (see e.g., [139, Section 1.1]). We recommend
the books by Harary [139] and Bollobás [53]. Theorem 1.2 is inspired by the paper
of Feld called “Why your friends have more friends than you do” [123], even though
our proof is, as far as we know, original.

Notes on Section 1.3. The physics perspective to the Internet is summarized in
the book by Pastor-Satorras and Vespignani [228], where also the criticism on the
scale-free properties of the Internet is addressed. We refer to [228, Section 4.4] for
these arguments. We do realize that this debate has not been concluded.

Siganos, Faloutsos, Faloutsos and Faloutsos [241] take up where [122] has left,
and further study power laws arising in the Internet. In [166], Jin and Bestavros
summarize various Internet measurements and study how the small-world properties
of the AS graph can be obtained from the degree properties and a suitable way of
connecting vertices.

In [268], Yook, Jeong and Barabási find that the Internet topology depends on
geometry, and find that the fractal dimension is equal to Df = 1.5. They continue
to propose a model for the Internet growth that predicts this behavior combining
preferential attachment with geometry. We discuss preferential attachment models in
more detail in Chapter 8.

Willinger, Anderson and Doyle claim that measurement biases only form a minor
problem in Internet data. However, because these problems may be analyzed in a
mathematical way, they have attracted some attention in the applied mathematics
and computer science domains. See, in particular, the works of Clauset and Moore
[1, 83], and [185]. Willinger, Anderson and Doyle in [263] also present another model
for the Internet, based on so-called highly-optimized trade-off (HOT), a feature they
claim makes more sense from an Internet engineering perspective.

Notes on Section 1.4. We have given precise mathematical definitions for the
notions of graph sequences being highly connected, small worlds and scale free, ex-
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tending earlier definitions in [143]. Our definitions are based upon a summary of the
relevant results proven for random graph models.

We restrict ourselves to sparse random graphs, i.e., random graphs where the
average degree remains bounded as the network size grows (recall Definition 1.3).
In recent years, there has been an intensive and highly successful effort to describe
asymptotic properties of graphs in the dense setting, where the average degree grows
proportionally to the network size. This theory is described in terms of graph limits
or graphons, which can be thought of as describing the limit of the rescaled adjacency
matrix of the graph. The key ingredient in this theory is Szemerédi’s regularity lemma
[250], which states roughly that one can partition a graph into several more or less
homogeneous parts with homogeneous edge probabilities for the edges in between.
See the book by Lovasz [194] for more details. We refrain from discussing the dense
setting in more detail.

Notes on Section 1.5. For a detailed account on various network statistics and
metrics, we refer the reader to Newman [217, Chapters 7-8]. In [217, Chapter 10],
Newman also discusses several algorithms for graph partitioning and community de-
tection.

Notes on Section 1.6. There are many references to the social science literature
on social networks in the book by Watts [259], who later obtained a position in the
social sciences. Here we provide some pointers to the literature where more details
can be found. In [218], Newman, Watts and Strogatz survey various models for social
networks that have appeared in their papers. Many of the original references can also
be found in the collection [219], along with an introduction explaining their relevance.
We refer to Newman [217, Section 3.1] for many examples of social networks that have
been investigated empirically. For an overview of the relevance of social networks in
economy, we refer to Vega-Redondo [256].

Amaral, Scala, Bartélémy and Stanley [15] calculated degree distributions of sev-
eral networks, among others a friendship network of 417 junior high school students
and a social network of friendships between Mormons in Provo, Utah. For these
examples, surprisingly the degree distributions turn out to be closer to a normal
distribution than to a power law.

Ebel, Mielsch and Bornholdt [110] investigate the topology of an e-mail network
of an e-mail server at the University of Kiel over a period of 112 days. They conclude
that the degree sequence obeys a power law, with an exponential cut-off for degrees
larger than 200. The estimated degree exponent is 1.81. The authors note that since
this data set is gathered at a server, the observed degree of the external vertices
underestimates their true degree. When only the internal vertices are taken into
account, the estimate for the power-law exponent decreases to 1.32. When taking
into account that the network is in fact directed, the power-law exponent of the in-
degree is estimated at 1.49, while the out-degrees have an exponent estimated at
2.03. Watts and Strogatz [260] investigate the small-world nature of the movie-actor
network, finding that it has more clustering and shorter distances than a random
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graph with equal edge density.

Notes on Section 1.7. I have learned of the heuristic explanation for power laws
in Section 1.7.2 from a talk by Aldous, see [9].

1.11 Exercises for Chapter 1

Exercise 1.1 (Connectivity in G). Let G have connected components C1, C2, . . . , Cm.
Thus, (Ci)

m
i=1 is a partition of [n], every pair of vertices in Ci is connected, and no

vertices in Ci are connected to vertices in Cj for i 6= j. Show that

P(Hn <∞) =
1

n2

m∑
i=1

|Ci|2, (1.11.1)

where |Ci| denotes the number of vertices in Ci.

Exercise 1.2 (Relations of notions of power-law distributions). Show that when
(1.4.7) holds, then (1.4.8) holds. Find an example where (1.4.8) holds in the form
that there exists a constant C such that, as x→∞,

1− FX(x) = Cx1−τ (1 + o(1)), (1.11.2)

but (1.4.7) fails.

Exercise 1.3 (Examples of slowly varying functions). Show that x 7→ log x and
x 7→ e(log x)γ , γ ∈ (0, 1), are slowly varying, but that x 7→ e(log x)γ is not slowly varying
when γ = 1.

Exercise 1.4 (Lower bound typical distance). Let the connected graph sequence
(Gn)n≥1 have a bounded degree, i.e., maxv∈[n] dv = dmax ≤ K and Gn is connected
for every n ≥ 1. Show that, for every ε > 0,

lim
n→∞

P(Hn ≤ (1− ε) log n/ log dmax) = 0. (1.11.3)

Exercise 1.5 (Assortativity coefficient as a correlation coefficient). Pick a (directed)
edge uniformly at random from E ′, and let X and Y be the degrees of the vertices
that the edge point to and from, respectively. Prove that

ρG =
Cov(X, Y )√

Var(X)
√

Var(Y )
(1.11.4)

can be interpreted as the correlation coefficient of the random variables X and Y

Exercise 1.6 (Rewrite assortativity coefficient). Prove (1.5.9).
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Chapter 2

Probabilistic methods

Abstract
In this chapter, we describe basic results in probability the-
ory that we rely on in this book. We discuss convergence
of random variables, the first and second moment methods,
large deviations, coupling, martingales and extreme value
theory. We give some proofs, but not all, and focus on the
ideas behind the results.

Organization of this chapter. We describe convergence of random variables in
Section 2.1, coupling in Section 2.2 and stochastic domination in Section 2.3. In
Section 2.4, we describe bounds on random variables, namely the Markov inequality,
the Chebychev inequality and the Chernoff bound. Particular attention will be given
to binomial random variables, as they play a crucial role throughout this book. In
Section 2.5, we describe a few results on martingales. Finally, in Section 2.6, we
describe extreme value theory of random variables. Not all proofs are given in this
chapter. We do provide references to the literature, as well as intuition where possible.

2.1 Convergence of random variables

In the Erdős-Rényi random graph with p = λ/n for some λ > 0, the degree of
a vertex is distributed as a Bin(n − 1, p) random variable. When n is large, and
np = λ is fixed, a Bin(n− 1, p) random variable is close to a Poisson random variable
with mean λ. In Chapter 4, we make heavy use of this convergence result, and a
quantitative version of it is stated in Theorem 2.10 below.

In order to formalize that

Bin(n, p) ≈ Poi(np), (2.1.1)

we need to introduce the notion of convergence of random variables. Random variables
are defined to be functions on a sample space. There are several possible notions for
convergence of functions on continuous spaces. In a similar fashion, there are several
notions of convergence of random variables, three of which we state in the following
definition. For more background on the convergence of random variables, we refer
the reader to classic book of Billingsley [46].

Definition 2.1 (Convergence of random variables).

(a) A sequence Xn of random variables converges in distribution to a limiting ran-
dom variable X when

lim
n→∞

P(Xn ≤ x) = P(X ≤ x), (2.1.2)
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for every x for which F (x) = P(X ≤ x) is continuous. We write this as

Xn
d−→ X.

(b) A sequence Xn of random variables converges in probability to a limiting random
variable X when, for every ε > 0,

lim
n→∞

P(|Xn −X| > ε) = 0. (2.1.3)

We write this as Xn
P−→ X.

(c) A sequence Xn of random variables converges almost surely to a limiting random
variable X when

P( lim
n→∞

Xn = X) = 1. (2.1.4)

We write this as Xn
a.s.−→ X.

It is not hard to see that convergence in probability implies convergence in distri-
bution. The notion of convergence almost surely may be the most difficult to grasp. It
turns out that convergence almost surely implies convergence in probability, making
it the strongest version of convergence to be discussed here. In this book, we mainly
work with convergence in distribution and in probability. There are examples where
convergence in distribution holds, but convergence in probability fails, see Exercise
2.1. There are other notions of convergence that we do not discuss, such as conver-
gence in L1 or L2. We again refer to Billingsley [46], or to introductory books in
probability, such as the ones by Billingsley [47], Feller [124, 125], and Grimmett and
Stirzaker [136].

We next state some theorems that give convenient criterions by which we can
conclude that random variables converge in distribution. In their statement, we make
use of a number of functions of random variables that we introduce now:

Definition 2.2 (Generating functions of random variables). Let X be a random
variable. Then

(a) The characteristic function of X is the function

φX(t) = E
[
eitX

]
, t ∈ R. (2.1.5)

(b) The probability generating function of an integer-valued random variable X is
the function

GX(t) = E
[
tX
]
, t ∈ R, (2.1.6)

so that GX(0) = P(X = 0).

(c) The moment generating function of X is the function

MX(t) = E
[
etX
]
, t ∈ R. (2.1.7)
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We note that the characteristic function exists for every random variable X, since
|eitX | = 1 for every t. The moment generating function, however, does not always
exist, as you are asked to show in Exercise 2.3.

Theorem 2.3 (Criteria for convergence in distribution). The sequence of random
variables (Xn)n≥1 converges in distribution to a random variable X

(a) if and only if the characteristic functions φn(t) of Xn converge to the character-
istic function φX(t) of X for all t ∈ R. This is guaranteed when φn(t) converges
to φ(t) and φ(t) is continuous at t = 0.

(b) when, for some ε > 0, the moment generating functions Mn(t) of Xn converge
to the moment generating function MX(t) of X for all |t| < ε.

(c) when, for some ε > 0, the probability generating functions Gn(t) of Xn converge
to the probability generating function GX(t) of X for all |t| < 1 + ε.

(d) when the moments E[Xr
n] converge to the moments E[Xr] of X for each r =

1, 2, . . ., provided the moments of X satisfy

lim sup
r→∞

|E[Xr]|1/r
r

<∞. (2.1.8)

(e) when the moments E[Xr
n] converge to the moments E[Xr] of X for each r =

1, 2, . . ., and MX(t), the moment generating function of X, is finite for t in
some neighborhood of the origin.

We finally discuss a special case of convergence in distribution, namely, when
we deal with a sum of indicators, and the limit is a Poisson random variable. This
is a particularly important example in this book. See Exercises 2.4, 2.5 and 2.6 for
properties of the Poisson distribution. Below, we write (X)r = X(X−1) · · · (X−r+1),
so that E[(X)r] is the rth factorial moment of X.

For a random variable X taking values in {0, 1, . . . , n}, the factorial moments of
X uniquely determine the probability mass function, since

P(X = k) =
n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.9)

see e.g. Bollobás [54, Corollary 1.11]. To see (2.1.9), we write

1{X=k} =

(
X

k

)(
1 − 1

)X−k
, (2.1.10)

using the convention that 00 = 1. Then, by Newton’s binomial,

1{X=k} =

(
X

k

)X−k∑
i=0

(−1)i
(
X − k
i

)
=
∞∑
i=0

(−1)i
(
X

k

)(
X − k
i

)
, (2.1.11)
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where, by convention,
(
n
k

)
= 0 when k < 0 or k > n. Rearranging the binomials gives

1{X=k} =
∞∑
r=k

(−1)k+r (X)r
(r − k)!k!

, (2.1.12)

where r = k + i. Taking expectations yields

P(X = k) =
∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
, (2.1.13)

which is (2.1.9). Similar results also hold for unbounded random variables, since the
sum

n∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
(2.1.14)

is alternatingly larger than P(X = k) (for n+k even) and smaller than P(X = k) (for
n+ k odd), see e.g. Bollobás [54, Corollary 1.13]. This implies the following result:

Theorem 2.4 (Convergence to a Poisson random variable). A sequence of integer-
valued random variables (Xn)n≥1 converges in distribution to a Poisson random vari-
able with parameter λ when, for all r = 1, 2, . . . ,

lim
n→∞

E[(Xn)r] = λr. (2.1.15)

Exercises 2.7 and 2.8 investigate properties of factorial moments, while Exercise
2.9 asks you to prove Theorem 2.4. Theorem 2.4 is particularly convenient when
dealing with sums of indicators, i.e., when

Xn =
∑
i∈In

Ii,n, (2.1.16)

where Ii,n takes the values 0 and 1 only, since the following result gives an explicit
description of the factorial moments of such random variables:

Theorem 2.5 (Factorial moments of sums of indicators). When X =
∑

i∈I Ii is a
sum of indicators, then

E[(X)r] =
∑∗

i1,...,ir∈I

E
[ r∏
l=1

Iil

]
=

∑∗

i1,...,ir∈I

P
(
Ii1 = · · · = Iir = 1

)
, (2.1.17)

where
∑∗

i1,...,ir∈I denotes a sum over distinct indices.

Exercise 2.10 investigates (2.1.17) for r = 2, while in Exercise 2.11, you are asked
to use Theorem 2.5 to show that binomial random variables with parameters n and
p = λ/n converge in distribution to a Poisson random variable with parameter λ.
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Proof. We prove (2.1.17) by induction on r ≥ 1 and for all probability measures P and
corresponding expectations E. For r = 1, (X)1 = X, and (2.1.17) follows from the
fact that the expectation of a sum of random variables is the sum of expectations of
the indicators, which, in turn is equal to

∑
i∈I P(Ii = 1). This initializes the induction

hypothesis.
In order to advance the induction hypothesis, we first note that it suffices to prove

the statement for indicators Ii for which P(Ii = 1) > 0. Then, for r ≥ 2, we write out

(X)r =
∑
i1∈I

Ii1(X − 1) · · · (X − r + 1). (2.1.18)

Denote by Pi1 the conditional distribution given that Ii1 = 1, i.e., for any event E,

Pi1(E) =
P(E ∩ {Ii1 = 1})

P(Ii1 = 1)
. (2.1.19)

Then we can rewrite

E
[
Ii1(X − 1) · · · (X − r + 1)

]
= P(Ii1 = 1)Ei1

[
(X − 1) · · · (X − r + 1)

]
. (2.1.20)

We define
Y = X − Ii1 =

∑
j∈I\{i1}

Ij, (2.1.21)

and note that X = Y + 1 conditionally on Ii1 = 1. As a result,

Ei1
[
(X − 1) · · · (X − r + 1)

]
= Ei1

[
Y · · · (Y − r + 2)

]
= Ei1

[
(Y )r−1

]
. (2.1.22)

We now apply the induction hypothesis to Ei1
[
(Y )r−1

]
, to obtain

Ei1
[
(Y )r−1

]
=

∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.23)

As a result, we arrive at

E[(X)r] =
∑
i1∈I

P(Ii1 = 1)
∑∗

i2,...,ir∈I\{i1}

Pi1
(
Ii2 = · · · = Iir = 1

)
. (2.1.24)

We complete the proof by noting that

P(Ii1 = 1)Pi1
(
Ii2 = · · · = Iir = 1

)
= P

(
Ii1 = Ii2 = · · · = Iir = 1

)
, (2.1.25)

and ∑
i1∈I

∑∗

i2,...,ir∈I\{i1}

=
∑∗

i1,...,ir∈I

. (2.1.26)

For later use, we define multidimensional versions of Theorems 2.4 and 2.5:
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Theorem 2.6 (Convergence to independent Poisson random variables). A vector of
integer-valued random variables

(
(X1,n, . . . , Xd,n)

)
n≥1

converges in distribution to a
vector of independent Poisson random variables with parameters λ1, . . . , λd when, for
all r1, . . . , rd ∈ N,

lim
n→∞

E[(X1,n)r1 · · · (Xd,n)rd ] = λr11 · · ·λrdd . (2.1.27)

Theorem 2.7 (Factorial moments of sums of indicators). When X`,n =
∑

i∈I` Ii,` for
all ` = 1, . . . , d are sums of indicators, then

E[(X1,n)r1 · · · (Xd,n)rd ] (2.1.28)

=
∑∗

i
(1)
1 ,...,i

(1)
r1
∈I1

· · ·
∑∗

i
(d)
1 ,...,i

(d)
rd
∈Id

P
(
I (`)

is
= 1 for all ` = 1, . . . , d, s = 1, . . . , r`

)
.

Exercise 2.12 asks you to prove Theorem 2.7 using Theorem 2.5. The fact that
the convergence of moments as in Theorems 2.3, 2.4 and 2.6 yields convergence in
distribution is sometimes called the method of moments, and is often a convenient
way of proving convergence in distribution.

2.2 Coupling

For any λ fixed, it is well known (see e.g., Exercise 2.11) that, when n→∞,

Bin(n, λ/n)
d−→ Poi(λ). (2.2.1)

To prove this convergence, as well as to quantify the difference between Bin(n, λ/n)
and Poi(λ), we will use a coupling proof. Couplings will be quite useful in what
follows, so we discuss them, as well as the related topic of stochastic orderings, in
detail. An excellent treatment of coupling theory is given in the book by Thorisson
[252], to which we refer for more details.

Two random variables X and Y are coupled when they are defined on the same
probability space in such a way that they have the correct marginal distributions.
X and Y are defined on the same probability space when there is one probability
law P such that P(X ∈ E, Y ∈ F ) is defined for all events E and F . Coupling is
formalized in the following definition, where it is also generalized to more than one
random variable:

Definition 2.8 (Coupling of random variables). The random variables (X̂1, . . . , X̂n)
are a coupling of the random variables X1, . . . , Xn when (X̂1, . . . , X̂n) are defined on
the same probability space, and are such that the marginal distribution of X̂i is the
same as that of Xi for all i = 1, . . . , n, i.e., for all measurable subsets E of R,

P(X̂i ∈ E) = P(Xi ∈ E). (2.2.2)
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The key point of Definition 2.8 is that while the random variables X1, . . . , Xn may
not be defined on one probability space, the coupled random variables (X̂1, . . . , X̂n)
are defined on the same probability space. The coupled random variables (X̂1, . . . , X̂n)
are related to the original random variables X1, . . . , Xn by the fact that the marginal
distributions of (X̂1, . . . , X̂n) are equal to those of the random variables X1, . . . , Xn.
Note that one coupling arises by taking (X̂1, . . . , X̂n) to be independent, with X̂i

having the same distribution as Xi. However, in our proofs, we often make use of
more elaborate couplings that give rise to stronger results.

Couplings are useful to prove that random variables are related. We now describe
a general coupling between two random variables that makes them equal with high
probability. We let X and Y be two discrete random variables with

P(X = x) = px, P(Y = y) = qy, x ∈ X , y ∈ Y , (2.2.3)

where (px)x∈X and (qy)y∈Y are two probability mass functions on two subsets X and
Y of the same space. A convenient distance between discrete probability distributions
(px)x∈X and (qy)y∈Y in (2.2.3) is the total variation distance between the discrete prob-
ability mass functions (px)x∈X and (qy)y∈Y . In general, for two probability measures
µ and ν, the total variation distance is given by

dTV(µ, ν) = sup
A
|µ(A)− ν(A)|, (2.2.4)

where µ(A) and ν(A) are the probabilities of the event A under the measures µ and
ν, and the supremum is over all (Borel) subsets A of R. For the discrete probability
distributions (px)x∈X and (qy)y∈Y , these measures are given by

µ(A) =
∑
a∈A

pa, ν(A) =
∑
a∈A

qa, (2.2.5)

where we abuse notation and take sums over X ∪ Y . We let dTV(p, q) = dTV(µ, ν)
where µ and ν are defined in (2.2.5).

For discrete probability mass functions, it is not hard to see that

dTV(p, q) =
1

2

∑
x

|px − qx|. (2.2.6)

When F and G are the distribution functions corresponding to two continuous den-
sities f = (f(x))x∈R and g = (g(x))x∈R, so that for every measurable A ⊆ R,

µ(A) =

∫
A

f(x)dx, ν(A) =

∫
A

g(x)dx, (2.2.7)

then we obtain

dTV(f, g) =
1

2

∫ ∞
−∞
|f(x)− g(x)|dx. (2.2.8)

You are asked to prove the identities (2.2.6) and (2.2.8) in Exercise 2.13. The main
result linking the total variation distance of two discrete random variables and a
coupling of them is the following theorem:
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Theorem 2.9 (Maximal coupling). For any two discrete random variables X and Y ,
there exists a coupling (X̂, Ŷ ) of X and Y such that

P(X̂ 6= Ŷ ) = dTV(p, q), (2.2.9)

while, for any coupling (X̂, Ŷ ) of X and Y ,

P(X̂ 6= Ŷ ) ≥ dTV(p, q). (2.2.10)

Proof. We start by defining the coupling that achieves (2.2.9). For this, we define the
random vector (X̂, Ŷ ) by

P(X̂ = Ŷ = x) = (px ∧ qx), (2.2.11)

P(X̂ = x, Ŷ = y) =
(px − (px ∧ qx))(qy − (py ∧ qy))

1
2

∑
z |pz − qz|

, x 6= y, (2.2.12)

where (a ∧ b) = min{a, b}. First of all, this is a probability distribution, since∑
x

(px − (px ∧ qx)) =
∑
x

(qx − (px ∧ qx)) =
1

2

∑
x

|px − qx|. (2.2.13)

By (2.2.11)–(2.2.13),

P(X̂ = x) = px, P(Ŷ = y) = qy, (2.2.14)

so that X̂ and Ŷ have the right marginal distributions as required in Definition 2.8.
Moreover, by (2.2.13),

P(X̂ 6= Ŷ ) =
∑
x,y

(px − (px ∧ qx))(qy − (py ∧ qy))
1
2

∑
z |pz − qz|

=
1

2

∑
x

|px − qx| = dTV(p, q). (2.2.15)

This proves (2.2.9).
The bound in (2.2.10) shows that this is an optimal or maximal coupling. Indeed,

for all x, and any coupling (X̂, Ŷ ) of X, Y ,

P(X̂ = Ŷ = x) ≤ P(X̂ = x) = P(X = x) = px, (2.2.16)

and also
P(X̂ = Ŷ = x) ≤ P(Ŷ = x) = P(Y = x) = qx. (2.2.17)

Therefore, any coupling satisfies

P(X̂ = Ŷ = x) ≤ (px ∧ qx), (2.2.18)

and thus
P(X̂ = Ŷ ) =

∑
x

P(X̂ = Ŷ = x) ≤
∑
x

(px ∧ qx). (2.2.19)
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As a result, for any coupling,

P(X̂ 6= Ŷ ) ≥ 1−
∑
x

(px ∧ qx) =
1

2

∑
x

|px − qx|. (2.2.20)

The coupling in (2.2.11)–(2.2.12) attains this equality, which makes it the best cou-
pling possible, in the sense that it maximizes P(X̂ = Ŷ ). This proves (2.2.10).

In this book, we often work with binomial random variables that we wish to
compare to Poisson random variables. We will make use of the following theorem,
which will be proved using a coupling argument:

Theorem 2.10 (Poisson limit for binomial random variables). Let (Ii)
n
i=1 be indepen-

dent with Ii ∼ Be(pi), and let λ =
∑n

i=1 pi. Let X =
∑n

i=1 Ii and let Y be a Poisson

random variable with parameter λ. Then, there exists a coupling (X̂, Ŷ ) of X and Y
such that

P(X̂ 6= Ŷ ) ≤
n∑
i=1

p2
i . (2.2.21)

Consequently, for every λ ≥ 0 and n ∈ N, there exists a coupling (X̂, Ŷ ) of X and
Y , where X ∼ Bin(n, λ/n) and Y ∼ Poi(λ), such that

P(X̂ 6= Ŷ ) ≤ λ2

n
. (2.2.22)

Exercise 2.15 invetigates consequences of Theorem 2.10.

Proof. Throughout the proof, we let Ii ∼ Be(pi), assume that (Ii)
n
i=1 are independent.

Further, we let Ji ∼ Poi(pi) and assume that (Ji)
n
i=1 are independent. We write

pi,x = P(Ii = x) = pi1{x=1} + (1− pi)1{x=0}, (2.2.23)

qi,x = P(Ji = x) = e−pi
pxi
x!

(2.2.24)

for the Bernoulli and Poisson probability mass functions.
We next let (Îi, Ĵi) be a coupling of Ii, Ji, where (Îi, Ĵi) are i.i.d. for different i.

For each pair Ii, Ji, the maximal coupling (Îi, Ĵi) described above satisfies

P(Îi = Ĵi = x) = min{p1,x, q1,x} =


1− pi for x = 0,

pie
−pi for x = 1,

0 for x ≥ 2,

(2.2.25)

where we have used the inequality 1− pi ≤ e−pi for x = 0. Thus, since 1− e−pi ≤ pi,

P(Îi 6= Ĵi) = 1− P(Îi = Ĵi) = 1− (1− pi)− pie−pi = pi(1− e−pi) ≤ p2
i . (2.2.26)

Next, let X̂ =
∑n

i=1 Îi and Ŷ =
∑n

i=1 Ĵi. Then, X̂ has the same distribution as

X =
∑n

i=1 Ii, and Ŷ has the same distribution as Y =
∑n

i=1 Ji ∼ Poi(p1 + · · · + pn).
Finally, by Boole’s inequality and (2.2.26),

P(X̂ 6= Ŷ ) ≤ P
( n⋃
i=1

{Îi 6= Ĵi}
)
≤

n∑
i=1

P(Îi 6= Ĵi) ≤
n∑
i=1

p2
i . (2.2.27)
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This completes the proof of Theorem 2.10.

For p = (px)x∈X and q = (qx)x∈X on the same (discrete) space, the total variation
distance dTV(p, q) is obviously larger than any term 1

2
|px − qx| for any x ∈ X , so

that convergence in total variation distance of p(n) = (p(n)
x )x∈X to a probability mass

function p = (px)x∈X implies pointwise convergence of the probability mass functions
limn→∞ p

(n)
x = px for every x ∈ X . Interestingly, for discrete random variables which

all take values in the same discrete space, these notions turn out to be equivalent, see
Exercise 2.16.

2.3 Stochastic ordering

To compare random variables, we will further rely on the notion of stochastic
ordering, which is defined as follows:

Definition 2.11 (Stochastic domination). Let X and Y be two random variables, not
necessarily living on the same probability space. The random variable X is stochasti-
cally smaller than the random variable Y when, for every x ∈ R, the inequality

P(X ≤ x) ≥ P(Y ≤ x) (2.3.1)

holds. We denote this by X � Y .

A nice coupling reformulation of stochastic ordering is presented in the following
lemma, which sometimes goes under the name of Strassen’s Theorem named after
Strassen [248], who extended it to partially ordered sets:

Lemma 2.12 (Coupling definition of stochastic domination). The random variable
X is stochastically smaller than the random variable Y if and only if there exists a
coupling (X̂, Ŷ ) of X, Y such that

P(X̂ ≤ Ŷ ) = 1. (2.3.2)

Proof. When P(X̂ ≤ Ŷ ) = 1,

P(Y ≤ x) = P(Ŷ ≤ x) = P(X̂ ≤ Ŷ ≤ x)

≤ P(X̂ ≤ x) = P(X ≤ x), (2.3.3)

so that X is stochastically smaller than Y .

For the other direction, suppose that X is stochastically smaller than Y . We
define the generalized inverse of a distribution function F by

F−1(u) = inf{x ∈ R : F (x) ≥ u}, (2.3.4)

where u ∈ [0, 1]. If U is a uniform random variable on [0, 1], then it is well known
that the random variable F−1(U) has distribution function F . This follows since the
function F−1 is such that

F−1(u) > x precisely when u > F (x). (2.3.5)
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Therefore, we obtain that

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x), (2.3.6)

since the distribution function FU of U equals FU(u) = u for u ∈ [0, 1], and in the
first equality we have used (2.3.5). We conclude that indeed F−1(U) has distribution
function F .

Denote the marginal distribution functions of X and Y by FX and FY . Then
(2.3.1) is equivalent to

FX(x) ≥ FY (x) (2.3.7)

for all x. It follows that, for all u ∈ [0, 1],

F−1
X (u) ≤ F−1

Y (u). (2.3.8)

Therefore, since X̂ = F−1
X (U) and Ŷ = F−1

Y (U) have the same marginal distributions
as X and Y , respectively, it follows that

P(X̂ ≤ Ŷ ) = P(F−1
X (U) ≤ F−1

Y (U)) = 1. (2.3.9)

2.3.1 Examples of stochastically ordered random variables

There are many examples of pairs of random variables that are stochastically
ordered, and we now describe a few of them:

Binomial random variables. A simple example of random variables that are
stochastically ordered is as follows. Let m,n ∈ N be integers such that m ≤ n. Let
X ∼ Bin(m, p) and Y ∼ Bin(n, p). Then, we claim that X � Y . To see this, let
X̂ =

∑m
i=1 Ii and Ŷ =

∑n
i=1 Ii, where (Ii)i≥1 is an i.i.d. sequence of Bernoulli random

variables, i.e.,

P(Ii = 1) = 1− P(Ii = 0) = p, i = 1, . . . , n, (2.3.10)

and I1, I2, . . . , In are mutually independent. Then, since Ii ≥ 0 for each i,

P(X̂ ≤ Ŷ ) = 1. (2.3.11)

Therefore, X � Y .

The stochastic domination above also holds when, conditionally on the integer
random variable Z, X ∼ Bin(n−Z, p) and Y ∼ Bin(n, p), as investigated in Exercise
2.17. This domination result will prove to be useful in the investigation of the Erdős-
Rényi random graph.
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Poisson random variables. Another example of random variables that are stochas-
tically ordered is as follows. Let λ, µ ≥ 0 be such that λ ≤ µ. Let X ∼ Poi(λ) and
Y ∼ Poi(µ). Then, X � Y . To see this, let X̂ ∼ Poi(λ), Ẑ ∼ Poi(µ−λ), where X̂ and
Ẑ are independent, and let Ŷ = X̂ + Ẑ. Then, Ŷ ∼ Poi(µ). Moreover, since Ẑ ≥ 0
for each i,

P(X̂ ≤ Ŷ ) = 1. (2.3.12)

Therefore, X � Y .

2.3.2 Stochastic ordering and size-biased random variables

Recall from (1.2.4) that, for a non-negative random variable X with E[X] > 0, we
define its size-biased version X? by

P(X? ≤ x) =
E[X1{X≤x}]

E[X]
. (2.3.13)

Theorem 1.1 states that the vertex incident to a uniformly chosen edge has the size-
biased degree distribution, which, by (1.2.5), has a larger mean than that of the
degree distribution itself. The following result shows that in fact X? � X:

Proposition 2.13 (Stochastic ordering and size-biasing). Let X be a non-negative
random variable with E[X] > 0, and let X? be its size-biased version. Then, X? � X.

In the proof of Proposition 2.13, we make use of the following correlation inequality
that is of independent interest:

Lemma 2.14 (Correlation inequality for monotone functions). Let X be a random
variable and f, g : R 7→ R two non-decreasing functions. Then

E[f(X)g(X)] ≥ E[f(X)]E[g(X)]. (2.3.14)

Lemma 2.14 states that f(X) and g(X) are non-negatively correlated.

Proof. Let X1, X2 be two independent copies of X. We use that

E[f(X)g(X)] = E[f(X1)g(X1)] = E[f(X2)g(X2)], (2.3.15)

and, by independence,

E[f(X)]E[g(X)] = E[f(X1)g(X2)] = E[f(X2)g(X1)]. (2.3.16)

Therefore,

E[f(X)g(X)]− E[f(X)]E[g(X)] (2.3.17)

= 1
2
E[f(X1)g(X1)] + 1

2
E[f(X2)g(X2)]− 1

2
E[f(X1)g(X2)]− 1

2
E[f(X2)g(X1)]

= E[(f(X1)− f(X2))(g(X1)− g(X2))] ≥ 0,

where we use that (f(X1)− f(X2))(g(X1)− g(X2)) ≥ 0 a.s., since f and g are both
non-decreasing.
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Proof of Proposition 2.13. By Lemma 2.14 applied to f(y) = y and g(y) = gx(y) =
1{y≥x}, which are both non-decreasing in y,

E[X1{X>x}] ≥ E[X]E[1{X>x}] = E[X]P(X > x), (2.3.18)

so that
P(X? > x) ≥ P(X > x). (2.3.19)

This is equivalent to the statement that P(X? ≤ x) ≤ P(X ≤ x), so that X? � X.

2.3.3 Consequences of stochastic domination

In this section, we discuss a number of consequences of stochastic domination,
such as the fact that the means of a stochastically ordered pair of random variables
is ordered as well:

Theorem 2.15 (Ordering of means for stochastically ordered random variables).
Suppose X � Y . Then

E[X] ≤ E[Y ]. (2.3.20)

Proof. We apply Lemma 2.12. Let (X̂, Ŷ ) be a coupling of X and Y such that X̂ ≤ Ŷ
with probability 1. Then

E[X] = E[X̂] ≤ E[Ŷ ] = E[Y ]. (2.3.21)

Theorem 2.16 (Preservation of ordering under monotone functions). Suppose X �
Y , and g : R→ R is non-decreasing. Then g(X) � g(Y ).

Proof. Let (X̂, Ŷ ) be a coupling of X and Y such that X̂ ≤ Ŷ with probability 1
(see Lemma 2.12). Then, g(X̂) and g(Ŷ ) have the same distributions as g(X) and
g(Y ), and g(X̂) ≤ g(Ŷ ) with probability one, by the fact that g is non-decreasing.
Therefore, again by Lemma 2.12 the claim follows.

2.4 Probabilistic bounds

We often make use of a number of probabilistic bounds, which we summarise and
prove in this section.

2.4.1 First and second moment methods

We start with the Markov inequality, sometimes also called the first moment
method:

Theorem 2.17 (Markov inequality). Let X be a non-negative random variable with
E[X] <∞. Then,

P(X ≥ a) ≤ E[X]

a
. (2.4.1)
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In particular, when X is non-negative and integer valued with E[X] ≤ m, then

P(X = 0) ≥ 1−m. (2.4.2)

By (2.4.2), when the integer random variable has a small mean it must be equal
to 0 with high probability. This is called the first moment method and is a powerful
tool.

Proof. Equation (2.4.1) follows by

aP(X ≥ a) ≤ E[X1{X≥a}] ≤ E[X]. (2.4.3)

We continue with the Chebychev inequality, which can often be used to show that
X > 0 with high probability, for an integer-valued random variable X:

Theorem 2.18 (Chebychev inequality). Assume that the random variable X has
variance Var(X) = σ2. Then,

P
(∣∣X − E[X]

∣∣ ≥ a
)
≤ σ2

a2
. (2.4.4)

In particular, when X is non-negative and integer valued with E[X] ≥ m and Var(X) =
σ2,

P(X = 0) ≤ σ2

m2
. (2.4.5)

By (2.4.5), if the integer random variable has a large mean, and a variance that
is small compared to the square of the mean, then it must be positive with high
probability. This is called the second moment method.

Proof. For (2.4.4), we note that

P
(∣∣X − E[X]

∣∣ ≥ a
)

= P
(

(X − E[X])2 ≥ a2
)
, (2.4.6)

and apply the Markov inequality. For (2.4.5), we note that

P(X = 0) ≤ P
(
|X − E[X]| ≥ E[X]

)
≤ Var(X)

E[X]2
≤ σ2

m2
. (2.4.7)

2.4.2 Large deviation bounds

We sometimes rely on bounds on the probability that a sum of independent ran-
dom variables is larger than its expectation. For such probabilities, large deviation
theory gives good bounds. We describe these bounds here. For more background
on large deviations, we refer the reader to the books on the subject by Dembo and
Zeitouni [95], den Hollander [150] and Olivieri and Vares [223].
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Theorem 2.19 (Cramér’s upper bound, Chernoff bound). Let (Xi)i≥1 be a sequence
of i.i.d. random variables. Then, for all a ≥ E[X1], there exists a rate function
a 7→ I(a) such that

P
( n∑
i=1

Xi ≥ na
)
≤ e−nI(a), (2.4.8)

while, for all a ≤ E[X1],

P
( n∑
i=1

Xi ≤ na
)
≤ e−nI(a). (2.4.9)

The rate function a 7→ I(a) can be computed, for a ≥ E[X1], as

I(a) = sup
t≥0

(
ta− logE

[
etX1

])
, (2.4.10)

while, for a ≤ E[X1],

I(a) = sup
t≤0

(
ta− logE

[
etX1

])
. (2.4.11)

Note that the function t 7→ ta − logE
[
etX1

]
is concave, and the derivative in

0 is a − E[X1] ≥ 0 for a ≥ E[X1]. Therefore, for a ≥ E[X1], the supremum of
t 7→ (ta− logE[etX1 ]) is attained for a t ≥ 0 when E[etX1 ] exists in a neighborhood of
t = 0. As a result, (2.4.10)–(2.4.11) can be combined as

I(a) = sup
t

(
ta− logE

[
etX1

])
. (2.4.12)

Further, by the same concavity and when E
[
etX1

]
< ∞ for all |t| < ε for some

ε > 0, I(a) = 0 only when a = E[X1]. Thus, the probabilities in (2.4.8)–(2.4.9) decay
exponentially unless a = E[X1]. We now prove Theorem 2.19:

Proof. We only prove (2.4.8), the proof of (2.4.9) is identical when we replace Xi by
−Xi. We rewrite, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)

= P
(

et
∑n
i=1Xi ≥ etna

)
≤ e−ntaE

[
et

∑n
i=1Xi

]
, (2.4.13)

where we have used Markov’s inequality (Theorem 2.17). Since (Xi)i≥1 is a sequence
of i.i.d. random variables,

E
[
et

∑n
i=1Xi

]
= E[etX1 ]n, (2.4.14)

so that, for every t ≥ 0,

P
( n∑
i=1

Xi ≥ na
)
≤
(

e−taE
[
etX1

])n
. (2.4.15)
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Minimizing the right-hand side over t ≥ 0 gives that

P
( n∑
i=1

Xi ≥ na
)
≤ e−n supt≥0

(
ta−logE

[
etX1

])
. (2.4.16)

This proves (2.4.8).

In Exercise 2.20, the rate function of Poisson random variables is investigated.

2.4.3 Bounds on binomial random variables

In this section, we investigate the tails of the binomial distribution. We start by
a corollary of Theorem 2.19:

Corollary 2.20 (Large deviations for binomial distributions). Let Xn be a binomial
random variable with parameters p and n. Then, for all a ∈ (p, 1],

P
(
Xn ≥ na

)
≤ e−nI(a), (2.4.17)

where

I(a) = a log
(a
p

)
+ (1− a) log

(1− a
1− p

)
. (2.4.18)

Moreover,
I(a) ≥ Ip(a) (2.4.19)

where
Ip(a) = p− a− a log (p/a). (2.4.20)

We can recognize (2.4.20) as the rate function of a Poisson random variable with
mean p (see Exercise 2.20). Thus, Corollary 2.20 suggests that the upper tail of a
binomial random variable is thinner than the one of a Poisson random variable. In
(2.4.18) and from here onwards, we define x log x = 0 for x = 0. This arises when
a = 1 in (2.4.18).

Proof. We start by proving (2.4.17) using (2.4.8). We note that, by (2.4.10), we
obtain a bound with I(a) instead of Ip(a), where, with X1 ∼ Be(p),

I(a) = sup
t≥0

(
ta− logE[etX1 ]

)
= sup

t

(
ta− log

(
pet + (1− p)

))
(2.4.21)

= a log
(a
p

)
+ (1− a) log

(1− a
1− p

)
.

We note that, since 1 + x ≤ ex for every x,

pet + (1− p) = 1 + p(et − 1) ≤ ep(e
t−1), (2.4.22)

so that

I(a) ≥ sup
t

(
ta− p(et − 1)

)
= p− a− a log

(
p/a
)

= Ip(a). (2.4.23)
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We continue to study tails of the binomial distribution, following the classic book
on random graphs by Janson,  Luczak and Rucinsky [163]. The main bounds are the
following:

Theorem 2.21. Let Xi ∼ Be(pi), i = 1, 2, . . . , n, be independent Bernoulli distributed
random variables, and write X =

∑n
i=1 Xi and λ = E[X] =

∑n
i=1 pi. Then

P(X ≥ E[X] + t) ≤ exp

(
− t2

2(λ+ t/3)

)
, t ≥ 0; (2.4.24)

P(X ≤ E[X]− t) ≤ exp

(
− t

2

2λ

)
, t ≥ 0. (2.4.25)

Exercise 2.21 extends Theorem 2.21 to Poisson random variables.

Proof. Let Y ∼ Bin(n, λ/n) where we recall that λ =
∑n

i=1 pi. Since x 7→ log x is
concave, for every x1, . . . , xn > 0,

n∑
i=1

1

n
log(xi) ≤ log

( 1

n

n∑
i=1

xi

)
. (2.4.26)

As a result, for every real u, upon taking the logarithm,

E
[
euX
]

=
n∏
i=1

(1 + (eu − 1)pi) = en
∑n
i=1

1
n

log(1+(eu−1)pi) (2.4.27)

≤ en log(1+(eu−1)λ/n) =
(

1 + (eu − 1)λ/n
)n

= E
[
euY
]
.

Then we compute that, for all u ≥ 0, by the Markov inequality (Theorem 2.17),

P(X ≥ E[X] + t) ≤ e−u(E[X]+t)E
[
euX
]
≤ e−u(E[X]+t)E

[
euY
]

(2.4.28)

= e−u(λ+t)(1− p+ peu)n,

where p = λ/n and using that E[X] = λ.
When t > n − λ, the left-hand side of (2.4.28) equals 0, and there is nothing

to prove. For λ + t < n, the right-hand side of (2.4.28) attains its minimum for u
satisfying eu = (λ+ t)(1− p)/(n− λ− t)p. This yields, for 0 ≤ t ≤ n− λ,

P(X ≥ λ+ t) ≤
(

λ

λ+ t

)λ+t(
n− λ

n− λ− t

)n−λ−t
. (2.4.29)

For 0 ≤ t ≤ n− λ, we can rewrite (2.4.29) as

P(X ≥ λ+ t) ≤ exp

(
−λϕ

(
t

λ

)
− (n− λ)ϕ

(
− t

n− λ

))
, (2.4.30)

where ϕ(x) = (1 + x) log(1 + x)− x for x ≥ −1 (and ϕ(x) =∞ for x < −1).
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Replacing X by n−X, we also obtain, for 0 ≤ t ≤ λ,

P(X ≤ λ− t) = P(n−X ≥ n− λ+ t) (2.4.31)

≤ exp

(
−λϕ

(
− t
λ

)
− (n− λ)ϕ

(
t

n− λ

))
.

Since ϕ(x) ≥ 0 for every x we can ignore the second term in the exponent. Further-
more, ϕ(0) = 0 and ϕ′(x) = log(1 + x) ≤ x, so that ϕ(x) ≥ x2/2 for x ∈ [−1, 0],
which proves (2.4.25). Similarly, ϕ(0) = ϕ′(0) = 0 and, for x ∈ [0, 1],

ϕ′′(x) =
1

1 + x
≥ 1

(1 + x/3)3
=

(
x2

2(1 + x/3)

)′′
, (2.4.32)

so that ϕ(x) ≥ x2/(2(1 + x/3)), which proves (2.4.24).

2.5 Martingales

In this section, we state and prove some useful results concerning martingales.
We assume some familiarity with conditional expectations. For the readers who are
unfamiliar with filtrations and conditional expectations given a σ-algebra, we start
by giving the simplest case of a martingale:

Definition 2.22 (Martingale). A stochastic process (Mn)n≥0 is a martingale when

E[|Mn|] <∞ for all n ≥ 0, (2.5.1)

and, a.s.,
E[Mn+1 |M0,M1, . . . ,Mn] = Mn for all n ≥ 0. (2.5.2)

As can be seen from (2.5.2), a martingale can be interpreted as a fair game.
Indeed, when Mn denotes the profit after the nth game has been played, (2.5.2) tells
us that the expected profit at time n+ 1 given the profits up to time n is equal to the
profit at time n. Exercise 2.22 states that the mean of a martingale is constant. We
now give a second definition, which we will need in Chapter 8 where a martingale is
defined with respect to a more general filtration:

Definition 2.23 (Martingale definition, general). A stochastic process (Mn)n≥0 is a
martingale with respect to (Xn)n≥1 if

E[|Mn|] <∞ for all n ≥ 0, (2.5.3)

Mn is measurable with respect to the σ-algebra generated by (X0, . . . , Xn), and, a.s.,

E[Mn+1 | X0, . . . , Xn] = Mn for all n ≥ 0. (2.5.4)

Similarly, (Mn)n≥0 is a submartingale, when (2.5.3) holds and Mn is measurable with
respect to the σ-algebra generated by (X0, . . . , Xn), but (2.5.4) is replaced with

E[Mn+1 | X0, . . . , Xn] ≥Mn for all n ≥ 0. (2.5.5)
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For Xn = Mn, the definitions in (2.5.2) and (2.5.4) coincide. Exercises 2.23, 2.24
and 2.25 give examples of martingales.

In the following two sections, we state and prove two key results for martingales,
the martingale convergence theorem and the Azuma-Hoeffding inequality. These re-
sults are an indication of the power of martingales. Martingale techniques play a
central role in modern probability theory due to these results.

2.5.1 Martingale convergence theorem

We start with the martingale convergence theorem:

Theorem 2.24 (Martingale convergence theorem). Let (Mn)n≥0 be a submartingale
with respect to (Xn)∞n=0 satisfying

E[|Mn|] ≤ B for all n ≥ 0. (2.5.6)

Then, Mn
a.s.−→M∞ for some limiting random variable M∞ satisfying E[|M∞|] <∞.

Martingale convergence theorems come in various forms. There is also an L2-
version, for which it is assumed that E[M2

n] ≤ B uniformly for all n ≥ 1. In this case,
one also obtains the convergence limn→∞ E[M2

n] = E[M2
∞]:

Theorem 2.25 (L2-Martingale convergence theorem). Let (Mn)n≥0 be a martingale
process with respect to (Xn)n≥0 satisfying

E[M2
n] ≤ B for all n ≥ 0. (2.5.7)

Then, Mn
a.s.−→M∞, for some limiting random variable M∞ which is finite with prob-

ability 1, and also E[(Mn −M∞)2]→ 0.

Exercises 2.26 and 2.27 investigate examples of convergent martingales. Exercise
2.28 investigates how to construct submartingales by taking maxima of martingales.

The key step in the classical probabilistic proof of Theorem 2.24 is ‘Snell’s up-
crossings inequality’. Suppose that {mn : n ≥ 0} is a real sequence, and [a, b] is a
real interval. An up-crossing of [a, b] is defined to be a crossing by m of [a, b] in the
upwards direction. More precisely, let T1 = min{n : mn ≤ a}, the first time m hits
the interval (−∞, a], and T2 = min{n > T1 : mn ≥ b}, the first subsequent time when
m hits [b,∞); we call the interval [T1, T2] an up-crossing of [a, b]. In addition, for
k > 1, define the stopping times Tn by

T2k−1 = min{n > T2k−2 : mn ≤ a}, T2k = min{n > T2k−1 : mn ≥ b}, (2.5.8)

so that the number of up-crossings of [a, b] is equal to the number of intervals
[T2k−1, T2k] for k ≥ 1. Let Un(a, b;m) be the number of up-crossings of [a, b] by
the sequence m up to time n, and let U(a, b;m) = limn→∞ Un(a, b;m) be the total
number of up-crossings of [a, b] by m.

Let (Mn)n≥0 be a submartingale, and let Un(a, b;M) be the number of up-crossings
of [a, b] by M up to time n. Then Snell’s up-crossing inequality gives a bound on the
expected number of up-crossings of an interval [a, b]:
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a

b

Figure 2.1: Up-crossings

Proposition 2.26 (Up-crossing inequality). If a < b then

E[Un(a, b;M)] ≤ E[(Mn − a)+]

b− a ,

where (Mn − a)+ = max{0,Mn − a}.
Proof. Setting Zn = (Mn − a)+, we have that Zn is a non-negative submartingale.
Indeed, E[|Zn|] ≤ E[|Mn|] + |a| <∞. Further, since for every random variable X and
a ∈ R,

E[(X − a)+] ≥ E[X − a]+, (2.5.9)

it holds that

E[Zn+1 | X0, . . . , Xn] = E[(Mn+1 − a)+ | X0, . . . , Xn] (2.5.10)

≥
(
E[Mn+1 | X0, . . . , Xn]− a

)
+
≥ Zn,

where the first inequality is (2.5.9), and the last inequality follows from the submartin-
gale property E[Mn+1 | X0, . . . , Xn] ≥Mn. Up-crossings of [a, b] by M correspond to
up-crossings of [0, b− a] by Z, so that Un(a, b;M) = Un(0, b− a;Z).

Let [T2k−1, T2k], for k ≥ 1, be the up-crossings of Z of [0, b − a], and define the
indicator functions

Ii =

{
1 if i ∈ (T2k−1, T2k] for some k,
0 otherwise

(2.5.11)

Note that the event {Ii = 1} depends onM0,M1, . . . ,Mi−1 only. SinceM0,M1, . . . ,Mi−1

are measurable with respect to the the σ-algebra generated by (X0, . . . , Xi−1), also Ii
is measurable with respect to the σ-algebra generated by (X0, . . . , Xi−1). Now

(b− a)Un(0, b− a;Z) ≤
n∑
i=1

(Zi − Zi−1)Ii (2.5.12)
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since each up-crossing of [0, b− a] by Z contributes an amount of at least b− a to the
summation. The expectation of the summands on the right-hand side of (2.5.12) is
equal to

E[(Zi − Zi−1)Ii] = E
[
E
[
(Zi − Zi−1)Ii | X0, . . . , Xi−1

]]
(2.5.13)

= E[Ii(E[Zi | X0, . . . , Xi−1]− Zi−1)]

≤ E[E[Zi | X0, . . . , Xi−1]− Zi−1] = E[Zi]− E[Zi−1],

where we use that Ii is measurable with respect to the σ-algebra generated by
(X0, . . . , Xi−1) for the second equality, and we use that Z is a submartingale and
0 ≤ Ii ≤ 1 to obtain the inequality. Summing over i and taking expectations on both
sides of (2.5.12), we obtain

(b− a)E[Un(0, b− a;Z)] ≤ E[Zn]− E[Z0] ≤ E[Zn], (2.5.14)

which completes the proof of Proposition 2.26.

Now we have the tools to complete the proof of Theorem 2.24:

Proof of Theorem 2.24. Suppose (Mn)n≥0 is a submartingale and E[|Mn|] ≤ B for all
n. Let Λ be defined as

Λ = {ω : Mn(ω) does not converge to a limit in [−∞,∞]}.

The claim of almost sure convergence of Mn follows when we show that P(Λ) = 0.
The set Λ has an equivalent definition

Λ = {ω : lim inf Mn(ω) < lim supMn(ω)}
=

⋃
a,b∈Q : a<b

{ω : lim inf Mn(ω) < a < b < lim supMn(ω)}

=
⋃

a,b∈Q : a<b

Λa,b.

However,
Λa,b ⊆ {ω : U(a, b;M) =∞},

so that, by Proposition 2.26, P(Λa,b) = 0 for every a < b. Since Λ is a countable union
of sets Λa,b, it follows that P(Λ) = 0. This concludes the first part of the proof that
Mn converges almost surely to a limit M∞.

To show that the limit is bounded, we use Fatou’s lemma (see Theorem A.7 in
the appendix) to conclude

E[|M∞|] = E[lim inf
n→∞

|Mn|] ≤ lim inf
n→∞

E[|Mn|] ≤ sup
n≥0

E[|Mn|] <∞.

In particular, by Markov’s inequality (recall Theorem 2.17),

P(|M∞| <∞) = 1.

This completes the proof of Theorem 2.24.
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2.5.2 Azuma-Hoeffding inequality

We continue with the Azuma-Hoeffding inequality, which provides exponential
bounds for the tails of a special class of martingales:

Theorem 2.27 (Azuma-Hoeffding inequality). Let (Mn)n≥0 be a martingale process
with the property that there exist constants Kn ≥ 0 such that almost surely

|Mn −Mn−1| ≤ Kn for all n ≥ 0, (2.5.15)

where, by convention, we define M−1 = µ = E[Mn] (recall also Exercise 2.22). Then,
for every a ≥ 0 and n ≥ 1,

P(|Mn − µ| ≥ a) ≤ 2 exp
{
− a2

2
∑n

i=0 K
2
i

}
. (2.5.16)

Theorem 2.27 is very powerful, as it provides bounds on the tails on the distribution
of Mn. In many cases, the bounds are close to optimal. The particular strength of
Theorem 2.27 is that the bound is valid for all n ≥ 1.

Proof. For ψ > 0, the function g(y) = eψy is convex, so that, for all y with |y| ≤ 1,

eψy ≤ 1

2
(1− y)e−ψ +

1

2
(1 + y)eψ. (2.5.17)

Applying this with y = Y to a random variable Y having mean 0 and satisfying
P(|Y | ≤ 1) = 1, we obtain

E[eψY ] ≤ E[
1

2
(1− Y )e−ψ +

1

2
(1 + Y )eψ] =

1

2
(e−ψ + eψ). (2.5.18)

We can use that (2n)! ≥ 2nn! for all n ≥ 0 to obtain

1

2
(e−ψ + eψ) =

∑
n≥0

ψ2n

(2n)!
≤
∑
n≥0

ψ2n

2nn!
= eψ

2/2. (2.5.19)

By Markov’s inequality (Theorem 2.17), for any ψ > 0,

P(Mn − µ ≥ x) = P(eψ(Mn−µ) ≥ eψx) ≤ e−ψxE[eψ(Mn−µ)]. (2.5.20)

Writing Yn = Mn −Mn−1, we obtain

E[eψ(Mn−µ)] = E[eψ(Mn−1−µ)eψYn ].

Conditioning on X0, . . . , Xn−1 yields

E[eψ(Mn−µ) | X0, . . . , Xn−1] = eψ(Mn−1−µ)E[eψYn | X0, . . . , Xn−1] (2.5.21)

≤ eψ(Mn−1−µ) exp
(1

2
ψ2K2

n

)
,
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where (2.5.18) and (2.5.19) are applied to the random variable Yn/Kn which satisfies

E[Yn | X0, . . . , Xn−1] = E[Mn | X0, . . . , Xn−1]− E[Mn−1 | X0, . . . , Xn−1] (2.5.22)

= Mn−1 −Mn−1 = 0.

Take expectations on both sides of (2.5.21) and iterate to find

E
[
eψ(Mn−µ)

]
≤ E

[
eψ(Mn−1−µ)

]
exp

(1

2
ψ2K2

n

)
≤ exp

(1

2
ψ2

n∑
i=0

K2
i

)
. (2.5.23)

Therefore, by (2.5.20), for all ψ > 0,

P(Mn − µ ≥ x) ≤ exp
(
− ψx+

1

2
ψ2

n∑
i=0

K2
i

)
. (2.5.24)

The exponential is minimized with respect to ψ by setting ψ = x/
∑n

i=0 K
2
i . Hence,

P(Mn − µ ≥ x) ≤ exp

(
− x2

2
∑n

i=0 K
2
i

)
. (2.5.25)

Using that −Mn is also a martingale and by symmetry, we obtain that

P(Mn − µ ≤ −x) ≤ exp

(
− x2

2
∑n

i=0K
2
i

)
. (2.5.26)

Adding the two bounds completes the proof.

Exercises 2.29 and 2.30 investigate consequences of the Azuma-Hoeffding inequal-
ity. We close this section with a version of the optional stopping theorem, which is a
key result in probability theory:

Theorem 2.28 (Optional stopping theorem). Let (Mn)n≥0 be a martingale for the
increasing σ-fields (Fn)n≥0 and suppose that τ1, τ2 are stopping times with 0 ≤ τ1 ≤ τ2.
If the process (Mn∧τ2)n≥0 is bounded, then E[Mτ1 ] = E[Mτ2 ]. If, instead, (Mn)n≥0 is
a submartingale, then under the same boundedness condition, the bound E[Mτ1 ] ≤
E[Mτ2 ] holds.

2.6 Order statistics and extreme value theory

In this section, we study the largest values of a sequence of i.i.d. random variables.
For more background on order statistics, we refer the reader to the standard reference
on the subject by Embrechts, Klüppelberg and Mikosch [112]. We are particularly
interested in the case where the random variables in question have heavy tails. We
let (Xi)

n
i=1 be an i.i.d. sequence, and introduce the order statistics of (Xi)

n
i=1 by

X(1) ≤ X(2) ≤ · · · ≤ X(n), (2.6.1)
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so that X(1) = min{X1, . . . , Xn}, X(2) is the second smallest of (Xi)
n
i=1, etc. In

the notation in (2.6.1), we ignore the fact that the distribution of X(i) depends on
n. Sometimes the notation X(1:n) ≤ X(2:n) ≤ · · · ≤ X(n:n) is used instead to make
the dependence on n explicit. In this section, we mainly investigate X(n), i.e., the
maximum of X1, . . . , Xn. We note that the results immediately translate to X(1), by
changing Xi to −Xi.

We denote the distribution function of the random variables (Xi)
n
i=1 by

FX(x) = P(X1 ≤ x). (2.6.2)

Before stating the results, we introduce a number of special distributions. We say
that the random variable Y has a Fréchet distribution with parameter α > 0 if

P(Y ≤ y) =

{
0, y ≤ 0,

e−y
−α

y > 0.
(2.6.3)

We say that the random variable Y has a Weibull distribution with parameter α > 0
if1

P(Y ≤ y) =

{
e−(−y)α , y ≤ 0,

1 y > 0.
(2.6.4)

We say that the random variable Y has a Gumbel distribution if

P(Y ≤ y) = e−e−y , y ∈ R. (2.6.5)

One of the fundamental results in extreme value theory is the following charac-
terization of possible limit distributions of X(n):

Theorem 2.29 (Fisher-Tippett Three Types Theorem for maxima). Let (Xn)n≥1 be
a sequence of i.i.d. random variables. If there exists norming constants cn > 0 and
dn ∈ R and some non-degenerate random variable Y such that

X(n) − cn
dn

d−→ Y, (2.6.6)

then Y has a Fréchet, Weibull or Gumbel distribution.

A fundamental role in extreme value statistics is played by approximate solutions
un of [1− FX(u)] = 1/n. More precisely, we define un by

un = sup{u : 1− FX(u) ≥ 1/n}. (2.6.7)

We often deal with random variables that have a power-law distribution. For such
random variables, the following theorem identifies the Fréchet distribution as the only
possible extreme value limit. In its statement, we recall the definition of slowly and
regularly varying functions in Definition 1.5 in Section 1.3:

1Sometimes, the Weibull distribution is also defined as a non-negative random variable. We
follow [112] in our definition.
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Theorem 2.30 (Maxima of heavy-tailed random variables). Let (Xn)n≥1 be a se-
quence of i.i.d. unbounded random variables satisfying

1− FX(x) = x1−τLX(x), (2.6.8)

where x 7→ LX(x) is a slowly varying function, and where τ > 1. Then

X(n)

un

d−→ Y, (2.6.9)

where Y has a Fréchet distribution with parameter α = τ − 1 and un is defined in
(2.6.7).

Exercise 2.31 shows that un is regularly varying for power-law distributions.
For completeness, we also state two theorems identifying when the Weibull dis-

tribution or Gumbel distribution occur as the limiting distribution in extreme value
theory. We start with the case of random variables that are bounded from above, for
which the Weibull distribution arises as the limit distribution for the maximum:

Theorem 2.31 (Maxima of bounded random variables). Let (Xn)n≥1 be a sequence
of i.i.d. random variables satisfying that FX(xX) = 1 for some xX ∈ R and

1− FX(xX − x−1) = x−αLX(x), (2.6.10)

where x 7→ LX(x) is a slowly varying function, and where α > 1. Then

X(n) − xX
dn

d−→ Y, (2.6.11)

where Y has a Weibull distribution with parameter α, and dn = xX − un where un is
defined in (2.6.7).

Theorem 2.31 is the reason why the Weibull distribution is chosen to have sup-
port in (−∞, 0) in (2.6.4). Alternatively, when we would have considered minima of
random variables that are bounded from below, it would have been more natural to
define the Weibull distribution on the interval (0,∞) instead.

We continue with the case of random variables that have an unbounded support,
but have a thin upper tail, for which the Gumbel distribution arises as the limit
distribution for the maximum:

Theorem 2.32 (Maxima of random variables with thin tails). Let (Xn)n≥1 be a
sequence of i.i.d. bounded random variables satisfying that F∞(xF ) = 1 for some
xF ∈ [0,∞], and

lim
x↑xF

1− F∞(x+ ta(x))

1− F∞(x)
= e−t, t ∈ R, (2.6.12)

where x 7→ a(x) is given by

a(x) =

∫ xF

x

1− F∞(t)

1− F∞(x)
dt. (2.6.13)
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Then
X(n) − un

dn

d−→ Y, (2.6.14)

where Y has a Gumbel distribution, and dn = a(un) where un is defined in (2.6.7).

In our analysis, the joint convergence of maximum and sum appears in the case
where the random variables (Xi)

n
i=1 have infinite mean. It is well known that the

order statistics of the random variables, as well as their sum, are governed by un in
the case τ ∈ (1, 2). The following theorem shows this in detail. In the theorem below,
E1, E2, . . . is an i.i.d. sequence of exponential random variables with unit mean and
Γj = E1 +E2 + . . .+Ej, so that Γj has a Gamma distribution with parameters j and
1.

It is well known that when the distribution function F∞ of (Xi)
n
i=1 satisfies (2.6.8),

then
∑n

i=1Xi has size approximately n1/(τ−1), just as holds for the maximum, and the
rescaled sum n−1/(τ−1)

∑n
i=1Xi converges to a stable distribution. See e.g., Durrett

[105, Section 3.7]. The next result generalizes this statement to convergence of the
sum together with the first order statistics:

Theorem 2.33 (Convergence in distribution of order statistics and sum). (Xn)∞n=0

be a sequence of i.i.d. random variables satisfying (2.6.8) for some τ ∈ (1, 2). Then,
for any k ∈ N, and with Ln = X1 + · · ·+Xn,

1

un

(
Ln,
(
X(n+1−i)

)n
i=1

) d−→ (η, (ξi)i≥1) , as n→∞, (2.6.15)

where (η, (ξi)i≥1) is a random vector which can be represented by

η =
∞∑
j=1

Γ
−1/(τ−1)
j , ξi = Γ

−1/(τ−1)
i , (2.6.16)

and where un is slowly varying with exponent 1/(τ − 1) (recall Exercise 2.31). More-
over,

ξkk
1/(τ−1) P−→ 1 as k →∞. (2.6.17)

Proof. We only sketch the proof for the pure power-law case. In this case, 1−FX(x) =
x−(τ−1) for x ≥ 1 and 1 − FX(x) = 1 for x < 1. In this case, Xi ∼ F−1

X (U) =
F−1
X (e−E), where U has a uniform distribution on (0, 1) and E ∼ Exp(1) has a standard

exponential distribution. We compute that

F−1
X (u) = (1− u)−1/(τ−1), (2.6.18)

so that
Xi ∼ (1− e−Ei)−1/(τ−1). (2.6.19)

Therefore, (X(i))
n
i=1 has the same distribution as

(
(1 − e−Ei)−1/(τ−1)

)n
i=1

. It is well
known that

n
(
E(n+1−i)

)n
i=1

d−→ (Γi)i≥1, (2.6.20)
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for example since the joint law of
(
E(n+1−i)

)n
i=1

is the same as that of (Γi,n)ni=1, where

Γi,n =
i∑

j=1

Ej
n+ 1− j . (2.6.21)

In Exercise 2.32, you are asked to prove (2.6.21). By (2.6.21), we have the joint
distributional equality

1

un

(
Ln,
(
X(n+1−i)

)n
i=1

) d
= n1/(τ−1)

( n∑
i=1

(1− e−Γi,n)−1/(τ−1),
(
Γ
−1/(τ−1)
i,n

)n
i=1

)
. (2.6.22)

It is not hard to see that this implies the claim.

Interestingly, much can be said about the random probability distribution Pi =
ξi/η, which is called the Poisson-Dirichlet distribution (see e.g., [231]). For example,
[231, Eqn. (10)] proves that for any f : [0, 1]→ R, and with α = τ − 1 ∈ (0, 1),

E
[ ∞∑
i=1

f(Pi)
]

=
1

Γ(α)Γ(1− α)

∫ 1

0

f(u)u−α−1(1− u)α−1du. (2.6.23)

We do not delve into this subject further.

2.7 Notes and discussion

Notes on Section 2.1. Theorem 2.3(a) can be found in the book by Breiman [67,
Theorem 8.28]. Theorem 2.3(c) is [67, Problem 25 page 183]. Theorem 2.3(d) is
[67, Theorem 8.48 and Proposition 8.49]. For a thorough discussion on convergence
issues of integer random variables including Theorems 2.4–2.6 and much more, see
the classic book on random graphs by Bollobás [54, Section 1.4].

Notes on Sections 2.2 and 2.3. The classic texts on coupling and stochastic
domination are by Thorisson [252] and Lindvall [190].

Notes on Section 2.4. Theorem 2.19 has a long history. See e.g., Dembo and
Zeitouni [95, Theorem 2.2.3] for a more precise version of Cramér’s Theorem, which
states that (2.4.8)–(2.4.9) are sharp, in the sense that − 1

n
logP( 1

n

∑n
i=1Xi ≤ a) con-

verges to I(a). See [223, Theorem 1.1] for a version of Cramér’s Theorem that also
includes the Chernoff bound. Similar bounds as in Theorem 2.21 under the same
conditions and, even more generally, for independent random variables Xi such that
0 ≤ Xi ≤ 1, are given, for example, in [35, 142] and [14, Appendix A]. The bound
(2.4.29) is implicit in the 1952 paper of Chernoff in [75] and is often called the Chernoff
bound, appearing for the first time explicitly in [221].
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Notes on Section 2.5. For more details on martingales, we refer the reader to the
books by Grimmett and Stirzaker [136] or Williams [262]. The proof of the martin-
gale convergence theorem (Theorem 2.24) follows [136, Section 12.3]. For interesting
examples of martingale arguments, as well as adaptations of the Azuma-Hoeffding in-
equality in Theorem 2.27, see Chung and Lu in [81]. The Azuma-Hoeffding inequality
was first proved by Azuma [21] and Hoeffding [142]. The Optional Stopping Time
Theorem (Theorem 2.28) can be found in Durrett [105, Theorem 5.7.4] or Williams
[262].

Notes on Section 2.6. For a thorough discussion of extreme value results, as
well as many examples, we refer to the standard work on the topic by Embrechts,
Klüppelberg and Mikosch [112], where also the main results of this section can be
found. In more detail, Theorem 2.29 is [112, Theorem 3.2.3], Theorem 2.30 is [112,
Theorem 3.3.7], Theorem 2.31 is [112, Theorem 3.3.12], and Theorem 2.32 is [112,
Theorem 3.3.27].

2.8 Exercises for Chapter 2

Exercise 2.1 (Convergence in distribution, but not in probability). Find an example of a
sequence of random variables where convergence in distribution occurs, but convergence in
probability does not.

Exercise 2.2 (Example of a converging sequence of random variables). Show that the
sequence of independent random variables (Xn)n≥1, where Xn takes the value n with prob-
ability 1/n and 0 with probability 1 − 1/n converges both in distribution and in probability
to 0. Does Xn converge to zero almost surely?

Exercise 2.3 (Random variable without moment generating function). Find a random
variable for which the moment generating function is equal to +∞ for every t 6= 0.

Exercise 2.4 (Moment bounds for Poisson distribution). Show that a Poisson random
variable satisfies the moment condition in (2.1.8).

Exercise 2.5 (Factorial moments of Poisson distribution). Prove that when X is a Poisson
random variable with mean λ,

E[(X)r] = λr. (2.8.1)

Exercise 2.6 (Recursion formula for Poisson moments). Show that the moments of a Pois-
son random variable X with mean λ satisfy the recursion

E[Xm] = λE[(X + 1)m−1]. (2.8.2)

Exercise 2.7 (Probability mass function in terms of factorial moments). Show that if∑
r≥0

E[(X)r]

(r − k)!
<∞, (2.8.3)

then also

P(X = k) =
∞∑
r=k

(−1)k+r E[(X)r]

(r − k)!k!
. (2.8.4)
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Exercise 2.8 (Convergence using factorial moments). Use Exercise 2.7 to conclude that
when limn→∞ E[(Xn)r] = E[(X)r] for all r ≥ 1, where Xn and X are all integer-valued

non-negative random variables, then also Xn
d−→ X.

Exercise 2.9 (Proof of Theorem 2.4). Use Exercise 2.8 to prove Theorem 2.4.

Exercise 2.10 (Proof of Theorem 2.5 for r = 2). Prove (2.1.17) for r = 2.

Exercise 2.11 (Convergence of Bin(n, λ/n) to Poisson). Compute the factorial moments of
a binomial random variable with parameters n and p = λ/n. Use this together with Exercise
2.5 to conclude that a binomial random variable with parameters n and p = λ/n converges
in distribution to a Poisson random variable with mean λ.

Exercise 2.12 (Proof of Theorem 2.7). Prove Theorem 2.7 using Theorem 2.5.

Exercise 2.13 (Total variation and L1-distances). Prove (2.2.6) and (2.2.8).

Exercise 2.14 (Coupling and total variation distance). Prove (2.2.13).

Exercise 2.15 (Consequences of maximal coupling). Let X ∼ Bin(n, λ/n) and Y ∼ Poi(λ).
Write fi = P(X = i) and gi = P(Y = i). Prove that Theorem 2.10 implies that dTV(f, g) ≤
λ2/n. Conclude also that, for every i ∈ N,∣∣P(X = i)− P(Y = i)

∣∣ ≤ λ2/n. (2.8.5)

Exercise 2.16 (Equivalence of pointwise and total variation convergence). Show that if the
probability mass function p(n) = (p(n)x )x∈X satisfies that limn→∞ p

(n)
x = px for every x ∈ X ,

and p = (px)x∈X is a probability mass function, then also limn→∞ dTV(p(n), p) = 0.

Exercise 2.17 (Stochastic domination of binomials). Let Z ≥ 0 be an integer-valued ran-
dom variable such that P(Z ∈ {0, . . . , n}) = 1. Let X ∼ Bin(n − Z, p) and Y ∼ Bin(n, p),
where X ∼ Bin(n− Z, p) means that X ∼ Bin(n− z, p) conditionally on Z = z. Prove that
X � Y .

Exercise 2.18 (Stochastic domination of normals with ordered means). Let X and Y be
normal distributions with equal variances σ2 and means µX ≤ µY . Is X � Y ?

Exercise 2.19 (Stochastic domination of normals with ordered variances). Let X and Y
be normal distributions with variances σ2

X < σ2
Y and equal means µ. Is X � Y ?

Exercise 2.20 (Large deviation for Poisson variables). Compute I(a) for (Xi)i≥1 being
independent Poisson random variables with mean λ. Show that, for a > λ,

P
( n∑
i=1

Xi ≥ na
)
≤ e−nIλ(a), (2.8.6)

where Iλ(a) = a(log (a/λ)− 1) + λ. Show also that, for a < λ,

P
( n∑
i=1

Xi ≤ na
)
≤ e−nIλ(a). (2.8.7)

Prove that Iλ(a) > 0 for all a 6= λ.

Exercise 2.21. Prove that Theorem 2.21 also holds for the Poisson distribution by a suitable
limiting argument.
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Exercise 2.22 (The mean of a martigale is constant). Show that when (Mn)n≥0 is a mar-
tingale, then µ = E[Mn] is independent of n.

Exercise 2.23 (Product martingale). Let (Xi)i≥1 be an independent sequence of random
variables with E[|Xi|] <∞ and E[Xi] = 1. Let M0 = 1. Show that, for n ≥ 1,

Mn =
n∏
i=1

Xi (2.8.8)

is a martingale.

Exercise 2.24 (Sum martingale). Let (Xi)i≥1 be an independent sequence of random vari-
ables with E[|Xi|] <∞ and E[Xi] = 0. Let M0 = 0. Show that, for n ≥ 1,

Mn =
n∑
i=1

Xi (2.8.9)

is a martingale.

Exercise 2.25 (Doob martingale). Let Mn = E[Y | X0, . . . , Xn] for some random variables
(Xn)n≥0 and Y with E[|Y |] < ∞. Show that (Mn)n≥0 is a martingale process with respect
to (Xn)n≥0. (Mn)n≥0 is called a Doob martingale.

Exercise 2.26 (Convergence of non-negative martingales). Use Theorem 2.24 to prove that
when the martingale (Mn)n≥0 is non-negative, i.e., when Mn ≥ 0 with probability 1 for all

n ≥ 1, then Mn
a.s.−→M∞ to some limiting random variable M∞ with E[M∞] <∞.

Exercise 2.27 (Convergence of product martingale). Let (Xi)i≥1 be an independent se-
quence of random variables with E[Xi] = 1 and for which Xi ≥ 0 with probability 1. Show
that the martingale M0 = 1 and, for n ≥ 1,

Mn =
n∏
i=1

Xi (2.8.10)

converges in probability to a random variable which is finite with probability 1.
Hint: Prove that E[|Mn|] = E[Mn] = 1, and apply Exercise 2.26 or Theorem 2.24.

Exercise 2.28 (Maximum of martingales is submartingale). For i = 1, . . . ,m, let (M (i)
n )n≥0

be a sequence of martingales with respect to (Xn)n≥1. Show that

Mn =
m

max
i=1

M (i)
n (2.8.11)

is a submartingale with respect to (Xn)n≥1.

Exercise 2.29 (Azuma-Hoeffding for binomials). Show that Theorem 2.27 implies that for
X ∼ Bin(n, p) with p ≤ 1/2

P(|X − np| ≥ a) ≤ 2 exp
{
− a2

2n(1− p)2

}
. (2.8.12)
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Exercise 2.30 (Azuma-Hoeffding and the CLT). Let (Xi)i≥0 be an independent identically
distributed sequence of random variables with E[Xi] = 0 and |Xi| ≤ 1, and define the
martingale (Mn)n≥0 by

Mn =
n∑
i=1

Xi, (M0 = 0). (2.8.13)

Use the Azuma-Hoeffding Inequality (Theorem 2.27) to show that

P(|Mn| ≥ a) ≤ 2 exp
(
− a2

2n

)
. (2.8.14)

Take a = x
√
n, and use the central limit theorem to prove that P(|Mn| ≥ a) converges.

Compare the limit to the bound in (2.8.14).

Exercise 2.31 (Regular variation of un). Show that when (2.6.8) holds, then un is regularly
varying at n =∞ with exponent 1/(τ − 1).

Exercise 2.32 (Order statistics of exponential sample). Prove (2.6.21) using the memory-
less property of the exponential distribution.





Chapter 3

Branching processes

Abstract

Branching processes appear throughout this book to de-
scribe the connected components of various random graphs.
To prepare for this, in this chapter we describe branching
processes in quite some detail. Special attention will be
given to branching processes with a Poisson offspring distri-
bution, as well as to their relation to branching processes
with a binomial offspring distribution.

Organization of this chapter. We start by describing the survival versus ex-
tinction transition in Section 3.1, and compute moments of the total family size in
Section 3.2. We provide a useful random walk perspective on branching processes in
Section 3.3. In Section 3.4, we restrict to supercritical branching processes, and in
Section 3.5, we use the random walk perspective to derive the probability distribution
of the branching process total progeny. In Section 3.6, we discuss Poisson branching
processes, and in Section 3.7, we compare binomial branching processes to Poisson
branching processes.

3.1 Survival versus extinction

A branching process is the simplest possible model for a population evolving in
time. Suppose that each individual independently gives birth to a number of children
with the same distribution, independently across the different individuals. We denote
the offspring distribution by (pi)i≥0, where

pi = P(individual has i children). (3.1.1)

We denote by Zn the number of individuals in the nth generation, where, by conven-
tion, we let Z0 = 1. Then Zn satisfies the recursion relation

Zn =

Zn−1∑
i=1

Xn,i, (3.1.2)

where (Xn,i)n,i≥1 is a doubly infinite array of i.i.d. random variables. We will often
write X for the offspring distribution, so that (Xn,i)n,i≥1 is a doubly infinite array of
i.i.d. random variables with Xn,i ∼ X for all n, i ≥ 0. In this case, the law (pi)i≥0 of
X is called the offspring distribution of the branching process.

87
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Figure 3.1: The solution of s = GX(s) when E[X] < 1,E[X] > 1 and E[X] = 1,
respectively. Note that E[X] = G′X(1), and η < 1 precisely when there is a solution

G′X(1) > 1 to η = GX(η).

One of the major results of branching processes is that when E[X] ≤ 1, the
population dies out with probability one (unless X1,1 = 1 with probability one),
while when E[X] > 1, there is a non-zero probability that the population will survive
forever. In order to state the result, we denote the extinction probability by

η = P(∃n : Zn = 0). (3.1.3)

Then the main result on the phase transition for branching processes is the fol-
lowing theorem:

Theorem 3.1 (Survival vs. extinction for branching processes). For a branching
process with i.i.d. offspring X, η = 1 when E[X] < 1, while η < 1 when E[X] > 1.
Further, η = 1 when E[X] = 1 and P(X = 1) < 1. The extinction probability η is the
smallest solution in [0, 1] of

η = GX(η), (3.1.4)

with s 7→ GX(s) the probability generating function of the offspring distribution X,
i.e.,

GX(s) = E[sX ]. (3.1.5)

Proof. We write
ηn = P(Zn = 0). (3.1.6)
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Figure 3.2: The iteration for n 7→ ηn in (3.1.11).

Because {Zn = 0} ⊆ {Zn+1 = 0}, we have that ηn ↑ η. Let

Gn(s) = E[sZn ] (3.1.7)

denote the probability generating function of the number of individuals in the nth
generation. Then, since for an integer-valued random variable X, P(X = 0) = GX(0),

ηn = Gn(0). (3.1.8)

By conditioning on the first generation and using that P(Z1 = i) = P(X = i) = pi,
we obtain that, for n ≥ 2,

Gn(s) = E[sZn ] =
∞∑
i=0

piE[sZn | Z1 = i] =
∞∑
i=0

piGn−1(s)i. (3.1.9)

In the last step, we have used the fact that each of the i individuals produces off-
spring in the nth generation independently and in an identical way, with probability
generating function equal to s 7→ Gn−1(s), where Zn is the sum of the contributions
of the i individuals in the first generation. Therefore, writing GX(s) = G1(s) for the
generating function of X1,1,

Gn(s) = GX(Gn−1(s)). (3.1.10)

When we substitute s = 0, we obtain that ηn satisfies the recurrence relation

ηn = GX(ηn−1). (3.1.11)

See Figure 3.2 for the evolution of n 7→ ηn.
When n→∞, we have that ηn ↑ η, so that by continuity of s 7→ GX(s),

η = GX(η). (3.1.12)
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When P(X = 1) = 1, then Zn = 1 a.s., and there is nothing to prove. When, further,
P(X ≤ 1) = 1, but p = P(X = 0) > 0, then P(Zn = 0) = 1− (1− p)n → 1, so again
there is nothing to prove. Therefore, for the remainder of this proof, we assume that
P(X ≤ 1) < 1.

Suppose that ψ ∈ [0, 1] satisfies ψ = GX(ψ). We claim that η ≤ ψ. We use
induction to prove that ηn ≤ ψ for all n. Indeed, η0 = 0 ≤ ψ, which initializes
the induction hypothesis. To advance the induction, we use (3.1.11), the induction
hypothesis, as well as the fact that s 7→ GX(s) is increasing on [0, 1], to see that

ηn = GX(ηn−1) ≤ GX(ψ) = ψ, (3.1.13)

where the final conclusion comes from the fact that ψ is a solution of ψ = GX(ψ).
Therefore, ηn ≤ ψ, which advances the induction. Since ηn ↑ η, we conclude that
η ≤ ψ for all solutions ψ of ψ = GX(ψ). Therefore, η is the smallest such solution.

We note that s 7→ GX(s) is increasing and convex for s ≥ 0, since

G′′X(s) = E[X(X − 1)sX−2] ≥ 0. (3.1.14)

When P(X ≤ 1) < 1, we have that E[X(X − 1)sX−2] > 0, so that s 7→ GX(s) is
strictly increasing and strictly convex for s > 0. Therefore, there can be at most two
solutions of s = GX(s) in [0, 1]. Note that s = 1 is always a solution of s = GX(s),
since GX is a probability generating function. Since GX(0) > 0, there is precisely
one solution when G′X(1) < 1, while there are two solutions when G′X(1) > 1. The
former implies that η = 1 when G′X(1) < 1, while the latter implies that η < 1 when
G′X(1) > 1. When G′X(1) = 1, again there is precisely one solution, except when
GX(s) = s, which is equivalent to P(X = 1) = 1. Since G′X(1) = E[X], this proves
the claim.

We call a branching process subcritical when E[X] < 1, critical when E[X] = 1
and P(X = 1) < 1 and supercritical when E[X] > 1. The case where P(X = 1) = 1
is uninteresting, and is omitted in this definition.

In many cases, we are interested in the survival probability, denoted by ζ = 1− η,
which is the probability that the branching process survives forever, i.e.,

ζ = P(Zn > 0 ∀n ≥ 0). (3.1.15)

See Figure 3.3 for the survival probability of a Poisson branching process with param-
eter λ as a function of λ. Exercises 3.1–3.5 investigate aspects of branching processes
and discuss an example.

We continue by studying the total progeny T of the branching process, which is
defined as

T =
∞∑
n=0

Zn. (3.1.16)

We denote by GT (s) the probability generating function of T , i.e.,

GT (s) = E[sT ]. (3.1.17)

The main result is the following:
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Figure 3.3: The survival probability ζ = ζλ for a Poisson branching process with
mean offspring equal to λ for λ ≥ 1. The survival probability equals ζ = 1− η,

where η is the extinction probability. Note that ζλ ≡ 0 for λ ∈ [0, 1].

Theorem 3.2 (Total progeny probability generating function). For a branching pro-
cess with i.i.d. offspring X having probability generating function GX(s) = E[sX ], the
probability generating function of the total progeny T satisfies the relation that, for
all s ∈ [0, 1),

GT (s) = sGX(GT (s)). (3.1.18)

Theorem 3.2 requires some care when the branching process has a positive survival
probability. We note that when the branching process survives with positive probabil-
ity, i.e., η < 1 with η the smallest solution to η = GX(η), then GT (s) = E[sT1{T<∞}]
only receives a contribution from T <∞ when |s| < 1. Further, GT (1) ≡ lims↗1GT (s)
satisfies GT (1) = GX(GT (1)), so that either GT (1) = 1 or GT (1) = η. Since, for each
s ∈ [0, 1),

GT (s) = E[sT1{T<∞}] ≤ P(T <∞), (3.1.19)

we thus obtain that lims↗1GT (s) = η.

Proof. We again condition on the size of the first generation, and use that when
Z1 = i, for j = 1, . . . , i, the total progeny Tj of the jth child of the initial individual
satisfies that (Tj)

i
j=1 is an i.i.d. sequence of random variables with law equal to that

of T . Therefore, using also that

T = 1 +
i∑

j=1

Tj, (3.1.20)
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where, by convention, the empty sum, arising when i = 0, is equal to zero, we obtain

GT (s) =
∞∑
i=0

piE[sT | Z1 = i] = s

∞∑
i=0

piE[sT1+···+Ti ] (3.1.21)

= s
∞∑
i=0

piGT (s)i = sGX(GT (s)).

This completes the proof.

3.2 Family moments

In this section, we compute the mean generation size of a branching process, and
use this to compute the mean family size or the mean total progeny. The main result
is the following theorem:

Theorem 3.3 (Moments of generation sizes). For all n ≥ 0, and with µ = E[Z1] =
E[X] the expected offspring of a given individual,

E[Zn] = µn. (3.2.1)

Proof. Recall that

Zn =

Zn−1∑
i=1

Xn,i, (3.2.2)

where (Xn,i)n,i≥1 is a doubly infinite array of i.i.d. random variables. In particular,
(Xn,i)i≥1 is independent of Zn−1. The completion of the proof of Theorem 3.3 is left
to the reader as Exercise 3.12.

Theorem 3.4 (Markov inequality for subcritical branching processes). Fix n ≥ 0.
Let µ = E[Z1] = E[X] be the expected offspring of a given individual, and assume that
µ < 1. Then,

P(Zn > 0) ≤ µn. (3.2.3)

Theorem 3.4 implies that in the subcritical regime, i.e., when the expected off-
spring µ < 1, the probability that the population survives up to time n is expo-
nentially small in n. In particular, the expected total progeny is finite, as the next
theorem shows:

Theorem 3.5 (Expected total progeny). For a branching process with i.i.d. offspring
X having mean offspring µ < 1,

E[T ] =
1

1− µ. (3.2.4)



3.3 Random-walk perspective to branching processes 93

3.3 Random-walk perspective to branching processes

In branching processes, it is common to study the number of descendants of each
individual in a given generation. For random graph purposes, it is often convenient to
use a different construction of a branching process by sequentially investigating the
number of children of each member of the population. This picture leads to a random
walk formulation of branching processes. For more background on random walks, we
refer the reader to the classic book by Spitzer [246] or the book by Grimmett and
Stirzaker [136, Section 5.3].

We now give the random walk representation of a branching process. LetX1, X2, . . .
be independent and identically distributed random variables with the same distribu-
tion as X1,1 in (3.1.2). Define S0, S1, . . . by the recursion

S0 = 1,

Si = Si−1 +Xi − 1 = X1 + · · ·+Xi − (i− 1).
(3.3.1)

Let T be the smallest t for which St = 0, i.e.,

T = inf{t : St = 0} = inf{t : X1 + · · ·+Xt = t− 1}. (3.3.2)

In particular, if such a t does not exist, then we define T = +∞.

The above description is equivalent to the normal definition of a branching process,
but records the branching process tree in a different manner. For example, in the
random walk picture, it is slightly more difficult to extract the distribution of the
generation sizes, and the answer depends on how we explore the branching process
tree. Usually, this exploration is performed in either a breadth-first or a depth-first
order. For the distribution of (St)t≥0 this makes no distinction. To see that the two
pictures agree, we will show that the distribution of the random variable T is equal
to the total progeny of the branching process as defined in (3.1.16), and it is equal to
the total number of individuals in the family tree of the initial individual.

The branching process belonging to the recursion in (3.3.1) is the following. The
population starts with one active individual. At time i, we select one of the active
individuals in the population, and give it Xi children. The children (if any) are set
to active, and the individual itself becomes inactive. See Figure 3.4 for a graphical
representation of this exploration in a breadth-first order.

This exploration process is continued as long as there are active individuals in
the population. Then, the process Si describes the number of active individuals after
the first i individuals have been explored. The process stops when St = 0, but the
recursion can be defined for all t since this leaves the value of T unaffected. Note that,
for a branching process, (3.3.1) only makes sense as long as i ≤ T , since only then
Si ≥ 0 for all i ≤ T . However, (3.3.1) itself can be defined for all i ≥ 0, also when
Si < 0. This fact will be useful in the sequel. The equivalence is proved formally in
the following lemma:

Lemma 3.6 (Interpretation of (Si)i≥0). The random process (Si)i∈[T ] in (3.3.1) has
the same distribution as the random process (S ′i)i∈[T ′], where S ′i denotes the number
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Figure 3.4: The exploration of a Galton-Watson or branching process tree as
formulated in (3.3.1). We explore the tree in the breadth-first order. The black

vertices have been explored, the grey vertices have not yet been explored. We have
explored 8 vertices, and X1 = 3, X2 = 2, X3 = 1, X4 = 2, X5 = 0, etc. The next

vertex to be explored is vertex 9, and there are 2 more vertices to be explored (i.e.,
S8 = 3). Below, we plot the random walk path arising from the exploration of the

branching process tree.

of unexplored individuals in the exploration of a branching process population after
exploring i individuals successively, and T ′ denotes its total progeny.

Proof. We prove Lemma 3.6 by induction on i. The induction hypothesis is that
(S0, . . . , Si) has the same law as (S ′0, . . . , S

′
i), where (Si)i≥0 and (S ′i)i≥0 have been

defined in Lemma 3.6.
Clearly, the statement is correct when i = 0 where S0 = S ′0 = 0, which initiates the

induction hypothesis. We next advance the induction hypothesis. For this, suppose
that the statement is true for i − 1. We are done when Si−1 = 0, since then all
individuals have been explored, and the total number of explored individuals is equal
to the size of the family tree, which is T by definition. Thus, assume that Si−1 > 0.
Then we pick an arbitrary unexplored individual and denote the number of its children
by Xi. By the independence property of the offspring of different individuals in a
branching process, conditionally on (S0, . . . , Si−1), the distribution of Xi is equal to
the distribution of Z1, say, independently of (S0, . . . , Si−1). Also, after exploring the
children of the ith individual, we have added Xi individuals that still need to be
explored, and have explored a single individual, so that now the total number of
unexplored individuals is equal to Si−1 + Xi − 1. By (3.3.1), S ′i satisfies the same
recursion. We conclude that also (S0, . . . , Si) has the same law as (S ′0, . . . , S

′
i). This

completes the proof using induction.

Lemma 3.6 gives a nice interpretation of the random process (Si)i≥0 in (3.3.1).
Since the branching process total progeny is explored precisely at the moment that
all of its individuals have been explored, it follows that T in (3.3.2) has the same
distribution as the total progeny of the branching process. In Exercises 3.13 and 3.14,
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you are asked to investigate the random walk description for branching processes in
more detail.

We next investigate the possible random walk trajectories compatible with a total
progeny T = t. Denote by H = (X1, . . . , XT ) the history of the process up to time
T . We include the case where T =∞, in which case the vector H has infinite length.
A sequence (x1, . . . , xt) with xi ≥ 0 for every i = 1, . . . , t is a possible history if and
only if the sequence xi satisfies (3.3.1), i.e., when si > 0 for all i < t, while st = 0,
where si = x1 + · · ·+ xi − (i− 1). Then, for any t <∞,

P(H = (x1, . . . , xt)) =
t∏
i=1

pxi . (3.3.3)

We next use the random walk perspective in order to describe the distribution
of a branching process conditioned on extinction. Call the distributions (pk)k≥0 and
(p′k)k≥0 a conjugate pair if

p′k = ηk−1pk, (3.3.4)

where η is the extinction probability belonging to the offspring distribution (pk)k≥0,
so that η = GX(η). In Exercise 3.15, you are asked to prove that the conjugate
distribution (p′k)k≥0 defined in (3.3.4) is a probability distribution.

The relation between a supercritical branching process conditioned on extinction
and its conjugate branching process is as follows:

Theorem 3.7 (Duality principle for branching processes). Let (pk)k≥0 and (p′k)k≥0

be a conjugate pair of offspring distributions. The branching process with distribution
(pk)k≥0 conditioned on extinction, has the same distribution as the branching process
with offspring distribution (p′k)k≥0.

The duality principle takes a particularly appealing form for Poisson branching
processes, see Theorem 3.15 below.

Proof. It suffices to show that for every finite history H = (x1, . . . , xt), the probabil-
ity (3.3.3) is the same for the branching process with offspring distribution (pk)k≥0,
when conditioned on extinction, and the branching process with offspring distribution
(p′k)k≥0. Fix a t <∞. First observe that

P(H = (x1, . . . , xt) | extinction) =
P({H = (x1, . . . , xt)} ∩ extinction)

P(extinction)

= η−1P(H = (x1, . . . , xt)), (3.3.5)

since a finite history implies that the population becomes extinct. Then, we use
(3.3.3), together with the fact that

t∏
i=1

pxi =
t∏
i=1

p′xiη
−(xi−1) = ηt−

∑t
i=1 xi

t∏
i=1

p′xi = η

t∏
i=1

p′xi , (3.3.6)
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since x1 + . . .+ xt = t− 1. Substitution into (3.3.5) yields that

P(H = (x1, . . . , xt) | extinction) = P′(H = (x1, . . . , xt)), (3.3.7)

where P′ is the distribution of the branching process with offspring distribution
(p′k)k≥0.

Exercises 3.16 and 3.17 investigate properties of the dual branching process, such
as the generating function and mean of the offspring distribution.

Another convenient feature of the random walk perspective for branching processes
is that it allows one to study what the probability of extinction is when the family
tree has at least a given size. The main result in this respect is given below:

Theorem 3.8 (Extinction probability with large total progeny). For a branching
process with i.i.d. offspring X having mean µ = E[X] > 1,

P(k ≤ T <∞) ≤ e−Ik

1− e−I
, (3.3.8)

where the exponential rate I is given by

I = sup
t≤0

(
t− logE[etX ]

)
> 0. (3.3.9)

Theorem 3.8 can be reformulated by saying that when the total progeny is large,
then the branching process will survive with high probability. Note that when µ =
E[X] > 1, then we can also write

I = sup
t

(
t− logE[etX ]

)
(3.3.10)

(see also (2.4.12)). In Theorem 3.8, it is not assumed that E[etX ] <∞ for all t ∈ R!
Since X ≥ 0, we clearly do have that E[etX ] <∞ for all t ≤ 0. Therefore, since also
the derivative of t 7→ t− logE[etX ] in t = 0 is equal to 1−E[X] < 0, the supremum is
attained at a negative t, and, therefore, we obtain that I > 0 under no assumptions
on the existence of the moment generating function of the offspring distribution. We
now give the full proof:

Proof. We use the fact that T = s implies that Ss = 0, which in turn implies that
X1 + · · ·+Xs = s− 1 ≤ s. Therefore,

P(k ≤ T <∞) ≤
∞∑
s=k

P(Ss = 0) ≤
∞∑
s=k

P(X1 + · · ·+Xs ≤ s). (3.3.11)

For the latter probability, we use (2.4.9) and (2.4.11) in Theorem 2.19 with a = 1 <
E[X]. Then, we arrive at

P(k ≤ T <∞) ≤
∞∑
s=k

e−sI =
e−Ik

1− e−I
, (3.3.12)

as required.
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3.4 Supercritical branching processes

In this section, we prove a convergence result for the size Zn of the nth generation
in a supercritical branching process. Clearly, in the (sub)critical case, Zn

P−→ 0, and
there is nothing to prove. In the supercritical case, when the expected offspring is
equal to µ > 1, it is also known that (see e.g., [19, Theorem 2, p. 8]) limn→∞ P(Zn =
k) = 0 unless k = 0, and P(limn→∞ Zn = 0) = 1 − P(limn→∞ Zn = ∞) = η, where
η is the extinction probability of the branching process. In particular, the branching
process population cannot stabilize. It remains to investigate what happens when
η < 1, in which case limn→∞ Zn = ∞ with probability 1 − η > 0. We prove the
following convergence result:

Theorem 3.9 (Convergence for supercritical branching processes). For a branching
process with i.i.d. offspring X having mean µ = E[X] > 1, µ−nZn

a.s.−→ W∞ for some
random variable W∞ which is finite with probability 1.

Proof. We use the martingale convergence theorem (Theorem 2.24), and, in par-
ticular, its consequence formulated in Exercise 2.26. Denote Mn = µ−nZn, and
recall that (Mn)n≥1 is a martingale by Exercise 3.9. Theorem 3.3 implies that
E[|Mn|] = E[Mn] = 1, so that Theorem 2.24 gives the result.

Unfortunately, not much is known about the limiting random variable W∞. Exer-
cise 3.18 shows that its probability generating function GW (s) = E[sW∞ ] satisfies the
implicit relation, for s ∈ [0, 1],

GW (s) = GX

(
GW (s1/µ)

)
. (3.4.1)

In particular, it could be the case that W∞ = 0 a.s., in which case Theorem 3.9 is
rather uninformative. We next investigate when P(W∞ > 0) = 1− η = ζ:

Theorem 3.10 (Kesten-Stigum Theorem). For a branching process with i.i.d. off-
spring X having mean E[X] > 1 and extinction probability η, P(W∞ = 0) = η
precisely when E[X log (X)] < ∞. When E[X log (X)] < ∞, also E[W∞] = 1, while,
when E[X log (X)] =∞, P(W∞ = 0) = 1.

Theorem 3.10 implies that P(W∞ > 0) = 1− η precisely when E[X log (X)] <∞.
Here η is the extinction probability of the branching process, so that conditionally on
survival, W∞ > 0 a.s. It is remarkable that the precise condition whenW∞ = 0 a.s. can
be so easily expressed in terms of a moment condition on the offspring distribution.
Exercises 3.19 and 3.20 investigate further properties of the limiting variable W∞.

We omit the proof of Theorem 3.10.
Theorem 3.10 leaves us with the question what happens when E[X log (X)] =∞.

In this case, Seneta [239] has shown that there always exists a proper renormalization,

i.e., there exists a sequence (cn)n≥1 with limn→∞ c
1/n
n = µ such that Zn/cn converges

to a non-degenerate limit. However, cn = o(µn), so that P(W∞ = 0) = 1.
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We continue to study the number of individuals with an infinite line of descent,
i.e., the individuals whose family tree survives forever. Interestingly, conditionally on
survival, these individuals form a branching process again, as we describe now. In
order to state the result, we let Z(∞)

n denote those individuals from the nth generation
of (Zk)k≥0 whose descendants survive forever. Then, the main result concerning
(Z(∞)

n )n≥0 is as follows:

Theorem 3.11 (Individuals with an infinite line of descent). Conditionally on sur-
vival, the process (Z(∞)

n )n≥0 is again a branching process with offspring distribution
(p(∞)

k )k≥0 given by p(∞)

0 = 0 and, for k ≥ 1,

p(∞)

k =
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)kpj. (3.4.2)

Moreover,

µ(∞) = E[Z(∞)

1 ] = µ = E[Z1]. (3.4.3)

In particular, the branching process (Z(∞)
n )n≥0 is supercritical with the same expected

offspring as (Zn)n≥0 itself.

Comparing Theorem 3.11 to Theorem 3.7, we see that in the supercritical regime,
the branching process conditioned on extinction is a branching process with the con-
jugate or dual (subcritical) offspring distribution, while, conditional on survival, the
individuals with an infinite line of descent form a (supercritical) branching process.
Exercise 3.21 shows that (p(∞)

k )k≥0 is a probability distribution.

Proof. We let A∞ = {Zn > 0 ∀n ≥ 0} be the event that (Zn)n≥0 survives forever. We
will prove by induction on n ≥ 0 that the distribution of (Z(∞)

k )nk=0 conditionally on

A∞ is equal to that of (Ẑk)
n
k=0, where (Ẑk)k≥0 is a branching process with offspring

distribution (p(∞)

k )k≥0 given in (3.4.2). We start by initializing the induction hypoth-

esis. For this, we note that Z(∞)

0 = 1 on A∞, whereas, by convention, Ẑ0 = 1. This
initializes the induction hypothesis.

To advance the induction hypothesis, we argue as follows. Suppose that, condi-
tionally on A∞, the distribution of (Z(∞)

k )nk=0 is equal to that of (Ẑk)
n
k=0. Then, we

show that, conditionally on A∞, also the distribution of (Z(∞)

k )n+1
k=0 is equal to that

of (Ẑk)
n+1
k=0 . By the induction hypothesis, this immediately follows if the conditional

distribution of Z(∞)

n+1 given (Z(∞)

k )nk=0 is equal to the conditional distribution of Ẑn+1

given (Ẑk)
n
k=0.

The law of Ẑn+1 given (Ẑk)
n
k=0 is that of a sum of Ẑn i.i.d. random variables with

law (p(∞)

k )k≥0. The law of Z(∞)

n+1 given (Z(∞)

k )nk=0 is equal to the law of Z(∞)

n+1 given
Z(∞)
n , by the Markov property of the branching process. Further, each individual

with infinite line of descent in the nth generation gives rise to a random and i.i.d.
number of individuals with infinite line of descent in the (n + 1)st generation with
the same law as Z(∞)

1 conditionally on A∞. Indeed, both are equal in distribution to
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the number of children with infinite line of descent of an individual whose offspring
survives. As a result, to complete the proof of (3.4.2), we must show that

P
(
Z(∞)

1 = k | A∞
)

= p(∞)

k . (3.4.4)

For k = 0, this is trivial, since Z(∞)

1 ≥ 1 conditionally on A∞, so that both sides are
equal to 0. For k ≥ 1, on the other hand, the proof follows by conditioning on Z1.
Indeed, Z(∞)

1 = k implies that Z1 ≥ k and that A∞ occurs, so that

P
(
Z(∞)

1 = k | A∞
)

= ζ−1P
(
Z(∞)

1 = k
)

= ζ−1
∑
j≥k

P
(
Z(∞)

1 = k | Z1 = j
)
P(Z1 = j)

= ζ−1
∑
j≥k

(
j

k

)
ηj−k(1− η)kpj = p(∞)

k , (3.4.5)

since each of the j individuals has infinite line of descent with probability ζ = 1− η,
so that P

(
Z(∞)

1 = k | Z1 = j
)

= P(Bin(j, 1− η) = k). Equation (3.4.5) proves (3.4.4).

We complete the proof of Theorem 3.11 by proving (3.4.3). We start by proving
(3.4.3) when µ = E[X] <∞. Note that (3.4.2) also holds for k = 0. Then, we write

µ(∞) =
∞∑
k=0

kp(∞)

k =
∞∑
k=0

k
1

ζ

∞∑
j=k

(
j

k

)
ηj−k(1− η)kpj

=
1

ζ

∞∑
j=0

pj

j∑
k=0

k

(
j

k

)
ηj−k(1− η)k =

1

ζ

∞∑
j=0

pj(ζj) =
∞∑
j=0

jpj = µ. (3.4.6)

This proves (3.4.3) when µ <∞. When µ =∞, on the other hand, we only need to
show that µ(∞) = ∞ as well. This can easily be seen by an appropriate truncation
argument, and is left to the reader in Exercise 3.22.

With Theorems 3.11 and 3.9 in hand an interesting picture of the structure of
supercritical branching processes emerges. Indeed, by Theorem 3.9, Znµ

−n a.s.−→ W∞,
where, if the X log (X)-condition in Theorem 3.10 is satisfied, P(W∞ > 0) = ζ, the
branching process survival probability. On the other hand, by Theorem 3.11 and
conditionally on A∞, (Z(∞)

n )n≥0 is also a branching process with expected offspring
µ = E[X], which survives with probability 1. Furthermore, the X logX condition for
(Z(∞)

n )n≥0 as formulated in the Kesten-Stigum Theorem (Theorem 3.10) clearly follows

from that of (Zn)n≥0. As a result, Z(∞)
n µ−n

a.s.−→ W (∞)
∞ , where P(W (∞)

∞ > 0 | A∞) = 1.
However, Z(∞)

n ≤ Zn for all n ≥ 0, by definition. This raises the question what the
relative size is of Z(∞)

n and Zn, conditionally on A∞. This question is answered in the
following theorem:

Theorem 3.12 (Proportion of particles with infinite line of descent). Conditionally
on survival,

Z(∞)
n

Zn

a.s.−→ ζ. (3.4.7)
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Theorem 3.12 is useful to transfer results on branching processes that survive
with probability 1, such as (Z(∞)

n )n≥0 conditionally on survival, to branching processes
which have a non-zero extinction probability, such as (Zn)n≥0.

Proof of Theorem 3.12. We only give the proof in the case where the mean offspring
µ = E[X] is finite and the X log (X) condition holds, so that E[X log (X)] < ∞.
Applying Theorem 3.11 together with Theorem 3.9 and the fact that, conditionally
on survival, E[Z(∞)

1 ] = µ (see (3.4.3)), we obtain that there exists W (∞) such that
Z(∞)
n µ−n → W (∞). Moreover, by Theorem 3.10 and the fact that the survival prob-

ability of the branching process in (Z(∞)
n )n≥0 equals 1 (recall Exercise 3.1), we have

that P(W (∞) > 0) = 1. Further, again by Theorem 3.9, now applied to (Zn)n≥0, con-
ditionally on survival, Zn/µ

n converges in distribution to the conditional distribution
of W∞ conditionally on W∞ > 0. Thus, we obtain that Z(∞)

n /Zn converges a.s. to a
finite and positive limiting random variable that we denote by R.

In order to see that this limit in fact equals ζ, we use that the distribution of
Z(∞)
n given that Zn = k is binomial with parameter k and probability of success ζ,

conditionally on being at least 1. (Indeed, Z(∞)
n ≥ 1 since we condition on the survival

event.) Since Zn → ∞ as n → ∞ conditionally on survival, Z(∞)
n /Zn converges in

probability to ζ. This implies that R = ζ a.s., as required.

3.5 Hitting-time theorem and the total progeny

In this section, we derive a general result for the law of the total progeny for
branching processes, by making use of the Hitting-time theorem for random walks.
The main result is the following:

Theorem 3.13 (Law of total progeny). For a branching process with i.i.d. offspring
distribution Z1 = X,

P(T = n) =
1

n
P(X1 + · · ·+Xn = n− 1), (3.5.1)

where (Xi)
n
i=1 are i.i.d. copies of X.

Exercises 3.23 and 3.24 investigate the special cases of binomial and geometric
offspring distributions.

We prove Theorem 3.13 below. In fact, we prove a more general version of Theorem
3.13, which states that

P(T1 + · · ·+ Tk = n) =
k

n
P(X1 + · · ·+Xn = n− k), (3.5.2)

where T1, . . . , Tk are k independent random variables with the same distribution as T .
Alternatively, we can think of T1 + · · ·+ Tk as being the total progeny of a branching
process starting with k individuals, i.e., a branching process for which Z0 = k.

The proof is based on the random walk representation of a branching process,
together with the random-walk hitting time theorem. In its statement, we write Pk
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for the law of a random walk starting in k, we let (Yi)i≥1 be the i.i.d. steps of the
random walk, and we let Sn = k + Y1 + · · ·+ Yn be the position of the walk, starting
in k, after n steps. We finally let

H0 = inf{n : Sn = 0} (3.5.3)

denote the first hitting time of the origin of the walk. Then, the hitting-time theorem
is the following result:

Theorem 3.14 (Hitting-time theorem). For a random walk with i.i.d. steps (Yi)i≥1

satisfying that Yi is integer valued and

P(Yi ≥ −1) = 1, (3.5.4)

the distribution of T0 is given by

Pk(H0 = n) =
k

n
Pk(Sn = 0). (3.5.5)

Theorem 3.14 is a remarkable result, since it states that, conditionally on the event
{Sn = 0}, and regardless of the precise distribution of the steps of the walk (Yi)i≥1

satisfying (3.5.4), the probability of the walk to be at 0 for the first time at time n is
equal to k/n.

Equation (3.5.2) follows from Theorem 3.14 since the law of T1 + · · ·+ Tk is that
of the hitting time of zero of a random walk starting in k with step distribution
Yi = Xi − 1, where (Xi)i≥1 are the offsprings of the vertices. Indeed, by the random
walk Markov property, the law of H0 when the random walk starts from k is the same
as H0,1 + · · ·+H0,k, where (H0,i)

k
i=1 are i.i.d. random variables having the same law as

H0 with k = 1. Thus, since (H0,i)
k
i=1 have the same law as (Ti)

k
i=1, also H0,1+· · ·+H0,k

has the same law as T1 + · · · + Tk. Since Xi ≥ 0, we have that Yi = Xi − 1 ≥ −1,
which completes the proof of (3.5.2) and hence of Theorem 3.13. The details are left
as Exercise 3.25. Exercise 3.26 investigates whether the condition P(Yi ≥ −1) = 1 is
necessary.

Proof of Theorem 3.14. We prove (3.5.5) for all k ≥ 0 by induction on n ≥ 1. When
n = 1, both sides are equal to 0 when k > 1 and k = 0, and are equal to P(Y1 = −1)
when k = 1. This initializes the induction.

To advance the induction, we take n ≥ 2, and note that both sides are equal to
0 when k = 0. Thus, we may assume that k ≥ 1. We condition on the first step to
obtain

Pk(H0 = n) =
∞∑

s=−1

Pk(H0 = n | Y1 = s)P(Y1 = s). (3.5.6)

By the random-walk Markov property,

Pk(H0 = n | Y1 = s) = Pk+s(H0 = n− 1) =
k + s

n− 1
Pk+s(Sn−1 = 0), (3.5.7)
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where in the last equality we used the induction hypothesis, which is allowed since
k ≥ 1 and s ≥ −1, so that k + s ≥ 0. It is here that we use the main assumption
that Y ≥ −1 a.s. This leads to

Pk(H0 = n) =
∞∑

s=−1

k + s

n− 1
Pk+s(Sn−1 = 0)P(Y1 = s). (3.5.8)

We undo the law of total probability, using that Pk+s(Sn−1 = 0) = Pk(Sn = 0 | Y1 =
s), to arrive at

Pk(H0 = n) =
∞∑

s=−1

k + s

n− 1
Pk(Sn = 0 | Y1 = s)P(Y1 = s) (3.5.9)

=
1

n− 1
Pk(Sn = 0)

(
k + Ek[Y1 | Sn = 0]

)
,

where Ek[Y1 | Sn = 0] is the conditional expectation of Y1 given that Sn = 0 occurs.
We next note that Ek[Yi | Sn = 0] is independent of i, so that

Ek[Y1 | Sn = 0] =
1

n

n∑
i=1

Ek[Yi | Sn = 0] =
1

n
Ek
[ n∑
i=1

Yi | Sn = 0
]

= −k
n
, (3.5.10)

since
∑n

i=1 Yi = Sn − k = −k when Sn = 0. Therefore, we arrive at

Pk(H0 = n) =
1

n− 1

[
k − k

n

]
Pk(Sn = 0) =

k

n
Pk(Sn = 0). (3.5.11)

This advances the induction, and completes the proof of Theorem 3.14.

3.6 Properties of Poisson branching processes

In this section, we specialize to branching processes with Poisson offspring distri-
butions. We denote the distribution of a Poisson branching process by P∗λ. We also
write T ∗ for the total progeny of the Poisson branching process, and X∗ for a Poisson
random variable.

For a Poisson random variable X∗ with mean λ, the probability generating func-
tion of the offspring distribution is equal to

G∗λ(s) = E∗λ[sX
∗
] =

∞∑
i=0

sie−λ
λi

i!
= eλ(s−1). (3.6.1)

Therefore, the relation for the extinction probability η in (3.1.4) becomes

ηλ = eλ(ηλ−1), (3.6.2)

where we add the subscript λ and write η = ηλ to make the dependence on λ explicit.
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For λ ≤ 1, the equation (3.6.2) has the unique solution ηλ = 1, which corresponds
to almost sure extinction. For λ > 1 there are two solutions, of which the smallest
satisfies ηλ ∈ (0, 1).

Conditionally on extinction, a Poisson branching process has law (p′k)k≥0 given by

p′k = ηk−1
λ pk = e−ληλ

(ληλ)
k

k!
, (3.6.3)

where we have used (3.6.2). Note that this offspring distribution is again Poisson,
but now with mean

µλ = ληλ. (3.6.4)

Again by (3.6.2),
µλe

−µλ = ληλe
−ληλ = λe−λ. (3.6.5)

This motives the following definition of conjugate pairs. We call µ < 1 < λ a conjugate
pair when

µe−µ = λe−λ. (3.6.6)

Then, λ and µλ = ληλ are conjugate pairs. Since x 7→ xe−x is first increasing and then
decreasing, with a maximum of e−1 at x = 1, the equation xe−x = λe−λ for λ > 1 has
precisely two solutions: the interesting solution x = µλ < 1 and the trivial solution
x = λ > 1. Therefore, for Poisson offspring distributions, the duality principle in
Theorem 3.7 can be reformulated as follows:

Theorem 3.15 (Poisson duality principle). Let µ < 1 < λ be conjugate pairs. The
Poisson branching process with mean λ, conditioned on extinction, has the same dis-
tribution as a Poisson branching process with mean µ.

We further describe the law of the total progeny of a Poisson branching process:

Theorem 3.16 (Total progeny for Poisson BP). For a branching process with i.i.d.
offspring X∗, where X∗ has a Poisson distribution with mean λ,

P∗λ(T ∗ = n) =
(λn)n−1

n!
e−λn, (n ≥ 1). (3.6.7)

Exercises 3.28-3.30 investigate properties of the total progeny distribution in The-
orem 3.16.

We use Theorem 3.16 to prove Cayley’s Theorem on the number of labeled trees
[72]. In its statement, we define a labeled tree on [n] to be a tree of size n where all
vertices have a label in [n] and each label occurs precisely once. We now make this
definition precise. An edge of a labeled tree is a pair {v1, v2}, where v1 and v2 are
the labels of two connected vertices in the tree. The edge set of a tree of size n is the
collection of its n − 1 edges. Two labeled trees are equal if and only if they consist
of the same edge sets. There is a bijection between labeled trees of n vertices and
spanning trees of the complete graph Kn on the vertices [n]. Cayley’s Theorem reads
as follows:



104 Branching processes

Theorem 3.17 (Cayley’s Theorem). The number of labeled trees of size n is equal
to nn−2. Equivalently, the number of spanning trees of the complete graph of size n
equals nn−2.

Proof. Let Tn denote the number of labeled trees of size n. Our goal is to prove that
Tn = nn−2. We give two proofs, one based on double counting and one on a relation
to Poisson branching processes.

Double counting proof. This beautiful proof is due to Jim Pitman, and gives
Cayley’s formula and a generalization by counting in two different ways. We follow
Aigner and Ziegler [5]. We start with some notation.

A forest is a collection of disjoint trees. A rooted forest on [n] is a forest together
with a choice of a root in each component tree that covers [n], i.e., each vertex is in
one of the trees of the forest. Let Fn,k be the set of all rooted forests that consist
of k rooted trees. Thus Fn,1 is the set of all rooted trees. Note that |Fn,1| = nTn,
since there are n choices for the root of a tree of size n. We now regard Fn,k ∈ Fn,k
as a directed graph with all edges directed away from the roots. Say that a forest F
contains another forest F ′ if F contains F ′ as a directed graph. Clearly, if F properly
contains F ′ , then F has fewer components than F ′ .

Here is the crucial idea. Call a sequence F1, . . . , Fk of forests a fragmentation
sequence if Fi ∈ Fn,i and Fi contains Fi+1 for all i. This means that Fi+1 can be
obtained from Fi by removing an edge and letting the new root of the newly created
tree having no root be the vertex in the removed edge. Now let Fk be a fixed forest
in Fn,k and let N(Fk) be the number of rooted trees containing Fk, and N?(Fk) the
number of fragmentation sequences ending in Fk.

We count N?(Fk) in two ways, first by starting at a tree and secondly by starting
at Fk. Suppose F1 ∈ Fn,1 contains Fk. Since we may delete the k− 1 edges of F1 \Fk
in any possible order to get a refining sequence from F1 to Fk, we find

N?(Fk) = N(Fk)(k − 1)!. (3.6.8)

Let us now start at the other end. To produce from Fk an Fk−1, we have to add a
directed edge, from any vertex a, to any of the k − 1 roots of the trees that do not
contain a. Thus we have n(k − 1) choices. Similarly, for Fk−1, we may produce a
directed edge from any vertex b to any of the k − 2 roots of the trees not containing
b. For this we have n(k − 2) choices. Continuing this way, we arrive at

N?(Fk) = nk−1(k − 1)!, (3.6.9)

and out comes, with (3.6.8), the unexpectedly simple relation

N(Fk) = nk−1 for any Fk ∈ Fn,k. (3.6.10)

For k = n, Fn consists just of n isolated vertices. Hence N(Fn) counts the number of
all rooted trees, and we obtain |Fn,1| = nn−1, which is Cayley’s formula.
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Poisson branching processes proof. This proof makes use of family trees. It is
convenient to represent the vertices of a family tree in terms of words. These words
arise inductively as follows. The root is the word ∅. The children of the root are the
words 1, 2, . . . , d∅, where, for a word w, we let dw denote the number of children of w.
The children of 1 are 11, 12, . . . , 1d1, etc. A family tree is then uniquely represented by
its set of words. For example, the word 1123 represents the third child of the second
child of the first child of the first child of root. This representation is sometimes called
the Ulam-Harris representation of trees.

Two family trees are the same if and only if they are represented by the same
set of words. We obtain a branching process when the variables (dw)w are equal to
a collection of i.i.d. random variables. For a word w, we let |w| be its length, where
|∅| = 0. The length of a word w is the number of steps the word is away from the
root, and equals its generation.

Let T denote the family tree of a branching process with Poisson offspring dis-
tribution with parameter 1. We compute the probability of obtaining a given tree t
as

P(T = t) =
∏
w∈t

P(ξ = dw), (3.6.11)

where ξ is a Poisson random variable with parameter 1, and dw is the number of
children of the word w in the tree t. For a Poisson branching process, P(ξ = dw) =
e−1/dw!, so that

P(T = t) =
∏
w∈t

e−1

dw!
=

e−n∏
w∈t dw!

, (3.6.12)

where n denotes the number of vertices in t. We note that the above probability is
the same for each tree with the same number of vertices of degree k for each k.

Conditionally on having total progeny T ∗ = n and a family tree T , we introduce
a labeling on T as follows. We give the root label 1, and give all other vertices a label
from the set {2, . . . , n} uniformly at random without replacement, giving a labeled
tree L on n vertices. We will prove that L is a uniform labeled tree on n vertices.

We start by introducing some notation. For a family tree t and a labeled tree `,
we write t ∼ ` when ` can be obtained from t by adding labels. Given a labeled tree
` and any family tree t such that t ∼ `, let L(`) be the number of ways to label t in
a different way (such that the root is labeled 1) such that the labeled tree obtained
is isomorphic to ` as a rooted unordered labeled tree. It is not hard to see that L(`)
does not depend on the choice of t as long as t ∼ `. Here L(`) reflects the amount of
symmetry present in any family tree t such that t ∼ `.

Given an labeled tree `, there are precisely

#{t : t ∼ `} =
1

L(`)

∏
w∈`

dw! (3.6.13)

family trees compatible with `, since permuting the children of any vertex does not
change the labeled tree. Here, we let d∅ be the degree of the vertex labelled 1 in `,
while dw is the degree minus one for w ∈ ` such that w 6= ∅.
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Further, the probability that, for all w ∈ T , w receives label iw with i∅ = 1 is
precisely equal to 1/(n − 1)!, where n = |T |. Noting that there are L(`) different
assignments of labels in t that give rise to the labeled tree `, we obtain, for any t ∼ `,

P(t receives labels `) =
L(`)

(|`| − 1)!
. (3.6.14)

As a result, when labeling a family tree of a Poisson branching process with mean 1
offspring, the probability of obtaining a given labeled tree ` of arbitrary size equals

P(L = `) =
∑
t`∼`

P(T = t`)P(t` receives labels `) (3.6.15)

=
∑
t`∼`

e−|`|∏
w∈t` dw!

L(`)

(|`| − 1)!

= #{t : t ∼ `} e−|`|∏
w∈` dw!

L(`)

(|`| − 1)!

=
1

L(`)

∏
w∈`

dw!
e−|`|∏
w∈t` dw!

L(`)

(|`| − 1)!
=

e−|`|

(|`| − 1)!
.

Therefore, conditionally on T ∗ = n, the probability of a given labeled tree L of size
n equals

P(L = ` | |L| = n) =
P(L = `)

P(|L| = n)
. (3.6.16)

By Theorem 3.16,

P(|L| = n) = P(T ∗ = n) =
e−nnn−2

(n− 1)!
. (3.6.17)

As a result, for each labeled tree L of size |L| = n,

P(L = ` | |L| = n) =
P(L = `)

P(|L| = n)
=

e−n

(n− 1)!

(n− 1)!

e−nnn−2
=

1

nn−2
. (3.6.18)

The obtained probability is uniform over all labeled trees. Therefore, the number of
labeled trees equals

P(L = ` | |L| = n)−1 = nn−2. (3.6.19)

The above not only proves Cayley’s Theorem, but also gives an explicit construction
of a uniform labeled tree from a Poisson branching process.

We next investigate the asymptotics of the probability mass function of the total
progeny of Poisson branching processes:

Theorem 3.18 (Asymptotics for total progeny for Poisson BP). For a branching
process with i.i.d. offspring X∗, where X∗ has a Poisson distribution with mean λ, as
n→∞,

P∗λ(T ∗ = n) =
1

λ
√

2πn3
e−Iλn(1 +O(1/n)), (3.6.20)
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where
Iλ = λ− 1− log λ. (3.6.21)

In particular, when λ = 1,

P∗1(T ∗ = n) = (2π)−1/2n−3/2[1 +O(n−1)]. (3.6.22)

Proof. By Theorem 3.16,

P∗λ(T ∗ = n) =
1

λ
λne−(λ−1)nP∗1(T ∗ = n) =

1

λ
e−IλnP∗1(T ∗ = n), (3.6.23)

so that (3.6.20) follows from (3.6.22). Again using Theorem 3.16,

P∗1(T ∗ = n) =
nn−1

n!
e−n. (3.6.24)

By Stirling’s formula,
n! =

√
2πne−nnn(1 +O(1/n)). (3.6.25)

Substitution of (3.6.25) into (3.6.24) yields (3.6.22).

Equation (3.6.22) is an example of a power-law relationship that often holds at
criticality. The above n−3/2 behavior is associated more generally with the distribution
of the total progeny whose offspring distribution has finite variance (see e.g., [11,
Proposition 24]).

In Chapter 4, we will investigate the behavior of the Erdős-Rényi random graph
by making use of couplings to branching processes. There, we also need the fact that,
for λ > 1, the survival probability is sufficiently smooth (see e.g. Section 4.4):

Corollary 3.19 (Differentiability of the survival probability). Let ηλ denote the ex-
tinction probability of a branching process with a mean λ Poisson offspring distribu-
tion, and ζλ = 1− ηλ its survival probability. Then, for all λ > 1,

d

dλ
ζλ =

ηλ(λ− µλ)
λ(1− µλ)

<∞, (3.6.26)

where µλ is the conjugate of λ defined in (3.6.6). When λ ↓ 1,

ζλ = 2(λ− 1)(1 + o(1)). (3.6.27)

Proof. The function λ 7→ ηλ is decreasing and satisfies

ηλ = P∗λ(T ∗ <∞) =
∞∑
n=1

e−λn
(λn)n−1

n!
, (3.6.28)

and thus, interchanging differentiation with summation, which is allowed since the

derivative of λ 7→ e−λn (λn)n−1

n!
converges uniformly,

0 ≤ − d

dλ
ηλ =

∞∑
n=1

e−nλ
[

(λn)n−1

(n− 1)!

]
−
∞∑
n=2

e−nλ
[

(λn)n−2

(n− 2)!

]
. (3.6.29)
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We compute

∞∑
n=2

e−λn
(λn)n−2

(n− 2)!
=
∞∑
n=1

e−λn(n− 1)
(λn)n−2

(n− 1)!
(3.6.30)

=
∞∑
n=1

e−λn
1

λ

(λn)n−1

(n− 1)!
−
∞∑
n=1

e−λn
(λn)n−2

(n− 1)!

=
ηλ
λ
E∗λ[T ∗ | T ∗ <∞]−

∞∑
n=1

e−λn
1

λ

(λn)n−1

n!

=
ηλ
λ
E∗λ[T ∗ | T ∗ <∞]− 1

λ
P∗λ(T ∗ <∞).

Further,

1

ηλ

∞∑
n=1

e−λn
(λn)n−1

(n− 1)!
=

1

P∗λ(T ∗ <∞)

∞∑
n=1

n · e−λn (λn)n−1

n!
(3.6.31)

= E∗λ[T ∗ | T ∗ <∞],

so that

− d

dλ
ηλ = ηλE∗λ[T ∗ | T ∗ <∞]− ηλ

λ
E∗λ[T ∗ | T ∗ <∞] +

ηλ
λ
. (3.6.32)

By the duality principle and Theorem 3.5,

E[T ∗ | T ∗ <∞] =
1

1− µλ
(3.6.33)

where µλ = ληλ, by (3.6.4). Hence,

0 ≤ − d

dλ
ηλ =

ηλ
1− µλ

(
1− 1

λ

)
+
ηλ
λ

=
ηλ(λ− µλ)
λ(1− µλ)

. (3.6.34)

This completes the proof of (3.6.26).
To prove (3.6.27), we note that by (3.6.2),

ζλ = 1− e−λζλ . (3.6.35)

We know that ζλ ↘ 0 as λ↘ 1. Therefore, we Taylor expand x 7→ e−λx around x = 0
to obtain

ζλ = λζλ − 1
2
(λζλ)

2 + o(ζ2
λ). (3.6.36)

Dividing through by ζλ > 0 and rearranging terms yields

1
2
ζλ = λ− 1 + o(λ− 1). (3.6.37)

This completes the proof of (3.6.27).
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3.7 Binomial and Poisson branching processes

In the following theorem, we relate the total progeny of a Poisson branching pro-
cess to that of a binomial branching process with parameters n and success probability
λ/n. In its statement, we write Pn,p for the law of a Binomial branching process with
parameters n and success probability p.

Theorem 3.20 (Poisson and binomial branching processes). For a branching pro-
cess with binomial offspring distribution with parameters n and p, and the branching
process with Poisson offspring distribution with parameter λ = np, for each k ≥ 1,

Pn,p(T ≥ k) = P∗λ(T ∗ ≥ k) + en(k), (3.7.1)

where T and T ∗ are the total progenies of the binomial and Poisson branching pro-
cesses, respectively, and where

|en(k)| ≤ λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.7.2)

In particular, |en(k)| ≤ kλ2/n.

Proof. We use a coupling proof. The branching processes are described by their
offspring distributions, which are binomial and Poisson random variables respectively.
We use the coupling in Theorem 2.10 for each of the random variables Xi and X∗i
determining the branching processes as in (3.3.1), where Xi ∼ Bin(n, λ/n), X∗i ∼
Poi(λ), and where

P(Xi 6= X∗i ) ≤ λ2

n
. (3.7.3)

Further, the vectors (Xi, X
∗
i )i≥1 are i.i.d. We use P to denote the joint probability

distributions of the binomial and Poisson branching processes, where all the offsprings
are coupled in the above way.

We start by noting that

Pn,p(T ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ≥ k, T ∗ < k), (3.7.4)

and
P∗λ(T ∗ ≥ k) = P(T ≥ k, T ∗ ≥ k) + P(T ∗ ≥ k, T < k). (3.7.5)

Subtracting the two probabilities yields

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ max
{
P(T ≥ k, T ∗ < k),P(T ∗ ≥ k, T < k)

}
. (3.7.6)

We then use Theorem 2.10, as well as the fact that the event {T ≥ k} is determined
by the values of X1, . . . , Xk−1 only. Thus, T is a stopping time with respect to the
filtration σ(X1, . . . , Xk). Indeed, by (3.3.1), when we know X1, . . . , Xk−1, then we can
also verify whether there exists a t < k such that X1 + · · ·+Xt = t−1, implying that
T < k. When there is no such t, then T ≥ k. Similarly, by investigating X∗1 , . . . , X

∗
k−1,
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we can verify whether there exists a t < k such that X∗1 + · · ·+X∗t = t− 1, implying
that T ∗ < k.

When T ≥ k and T ∗ < k, or when T ∗ ≥ k and T < k, there must be a value of
s < k for which Xs 6= X∗s . Therefore, we can bound, by splitting depending on the
first value s < k where Xs 6= X∗s ,

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(Xi = X∗i ∀i ≤ s− 1, Xs 6= X∗s , T ≥ k). (3.7.7)

Now we note that when Xi = X∗i for all i ≤ s−1 and T ≥ k, this implies in particular
that X∗1 + . . .+X∗i ≥ i for all i ≤ s− 1, which in turn implies that T ∗ ≥ s. Moreover,
the event {T ∗ ≥ s} depends only on X∗1 , . . . , X

∗
s−1, and, therefore, is independent of

the event that Xs 6= X∗s . Thus, we arrive at the fact that

P(T ≥ k, T ∗ < k) ≤
k−1∑
s=1

P(T ∗ ≥ s,Xs 6= X∗s )

=
k−1∑
s=1

P(T ∗ ≥ s)P(Xs 6= X∗s ). (3.7.8)

By Theorem 2.10,

P(Xs 6= X∗s ) ≤ λ2

n
, (3.7.9)

so that

P(T ≥ k, T ∗ < k) ≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.7.10)

A similar argument proves that also

P(T ∗ ≥ k, T < k) ≤ λ2

n

k−1∑
s=1

P(T ∗ ≥ s). (3.7.11)

We conclude from (3.7.6) that

|Pn,p(T ≥ k)− P∗λ(T ∗ ≥ k)| ≤ λ2

n

k−1∑
s=1

P∗λ(T ∗ ≥ s). (3.7.12)

This completes the proof of Theorem 3.20.

3.8 Notes and discussion

Notes on Sections 3.1–3.2. The results on the phase transition for branching
processes are classical. For more information about branching processes, we refer to
the classical books on the subject, by Athreya and Ney [19], by Harris [140], and by
Jagers [153].
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Notes on Section 3.3. We learned of the random walk representation of branching
processes from the book of Alon and Spencer [14, Section 10.4].

Notes on Section 3.4. Theorem 3.10 was first proved by Kesten and Stigum in
[172, 173, 174]. A proof of Theorem 3.10 is given in [19, Pages 24-26], while in [199]
a conceptual proof is given. See [104, Proof of Theorem 2.16] for a simple proof of
the statement under the stronger condition that E[X2] <∞, using the L2-martingale
convergence theorem (see also below Theorem 2.24).

Notes on Section 3.5. The current proof of Theorem 3.14 is taken from [146],
where also an extension is proved by conditioning on the numbers of steps of various
sizes. The first proof of the special case of Theorem 3.14 for k = 1 can be found in
[225]. The extension to k ≥ 2 is in [171], or in [108] using a result in [107].

Most of these proofs make unnecessary use of generating functions, in particular,
the Lagrange inversion formula, which the simple proof given here does not employ.
See also [136, Page 165-167] for a more recent version of the generating function
proof. In [261], various proofs of the hitting-time theorem are given, including a
combinatorial proof making use of a relation in [106]. A proof for random walks
making only steps of size ±1 using the reflection principle can for example be found
in [136, Page 79].

A very nice proof of Theorem 3.14 can be found in the classic book by Feller, see
[125, Lemma 1, page 412], which has come to be known as Spitzer’s combinatorial
lemma [245]. This lemma states that in a sequence (y1, . . . , yn) with y1+· · ·+yn = −k
and yi ≥ −1 for every i ∈ [n], out of all n possible cyclical reorderings, precisely k
are such that all partial sums si = y1 + · · · + yi satisfy si > −k for every i ≤ n − 1.
Extensions of this result to Lévy processes can be found in [13] and to two-dimensional
walks in [165].

The hitting-time theorem is closely related to the ballot theorem, which has a
long history dating back to Bertrand in 1887 (see [179] for an excellent overview of
the history and literature). The version of the ballot theorem in [179] states that,
for a random walk (Sn)n≥0 starting at 0, with exchangeable, non-negative steps, the
probability that Sm < m for all m = 1, . . . , n, conditionally on Sn = k, equals k/n.
This proof borrows upon queueing theory methodology, and is related to, yet slightly
different from, our proof.

The ballot theorem for random walks with independent steps is the following
result:

Theorem 3.21 (Ballot theorem). Consider a random walk with i.i.d. steps (Xi)i≥1

taking non-negative integer values. Then, with Sm = X1 + · · · + Xm the position of
the walk after m steps,

P0(Sm < m for all 1 ≤ m ≤ n | Sn = n− k) =
k

n
. (3.8.1)

You are asked to prove the Ballot Theorem in Theorem 3.21 in Exercise 3.31.
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Notes on Section 3.6. The proof of Theorem 3.17 is taken from [191]. Theorem
3.16, together with (3.6.2), can also be proved by making use of Lambert’sW function.
Indeed, we use that the generating function of the total progeny in (3.1.18), for Poisson
branching process, reduces to

GT (s) = seλ(GT (s)−1). (3.8.2)

Equation (3.8.2) actually defines a function analytic in C\[1,∞), and we are taking
the principal branch. Equation (3.8.2) can be written in terms of the Lambert W
function, which is defined by W (x)eW (x) = x, as GT (s) = −W (−sλe−λ)/λ. The
branches of W are described in [90], where also the fact that

W (x) = −
∞∑
n=1

nn−1

n!
(−x)n. (3.8.3)

is derived. Theorem 3.17 follows immediately from this equation upon substituting
x = λe−λ and using that the coefficient of sn in GT (s) equals P(T = n). Also,
ηλ = lims↑1GT (s) = −W (−λe−λ)/λ. This also allows for a more direct proof of
Corollary 3.19, since

d

dλ
ηλ = − d

dλ

[W (−λe−λ)

λ

]
, (3.8.4)

and where, since W (x)eW (x) = x,

W ′(x) =
1

x

W (x)

1 +W (x)
. (3.8.5)

We omit the details of this proof, taking a more combinatorial approach instead.

3.9 Exercises for Chapter 3

Exercise 3.1 (Almost sure survival). Show that the branching process extinction probability
η satisfies η = 0 precisely when p0 = 0.

Exercise 3.2 (Binary branching). When the offspring distribution is given by

px = (1− p)1{x=0} + p1{x=2}, (3.9.1)

we speak of binary branching. Prove that η = 1 when p ≤ 1/2 and, for p > 1/2,

η =
1− p
p

. (3.9.2)

Exercise 3.3 (Geometric branching [19], Pages 6-7.). Let the probability distribution (pk)k≥0

be given by {
pk = b(1− p)k−1 for k = 1, 2, . . . ;

p0 = 1− b/p for k = 0,
(3.9.3)
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so that, for b = p, the offspring distribution has a geometric distribution with success prob-
ability p. Show that the extinction probability η is given by η = 1 if µ = E[X] = b/p2 ≤ 1,
while, with the abbreviation q = 1− p and for b/p2 > 1,

η =
1− µp
q

. (3.9.4)

More generally, let 1 and s0 be the two solutions to GX(s) = s. Show that s0 = 1−µp
q .

Exercise 3.4 (Exercise 3.3 cont.). Let the probability distribution (pk)k≥0 be given by
(3.9.3). Show that Gn(s), the generating function of Zn is given by

Gn(s) =


1− µn 1− s0

µn − s0
+
µn
(

1−s0
µn−s0

)2
s

1−
(
µn−1
µn−s0

) when b 6= p2;

nq − (nq − p)s
p+ nq − nps when b = p2.

(3.9.5)

Exercise 3.5 (Exercise 3.4 cont.). Conclude from Exercise 3.4 that, for (pk)k≥0 in (3.9.3),

P(Zn > 0, ∃m > n such that Zm = 0) =


µn

1− s0

µn − s0
when b < p2;

p

p+ nq
when b = p2;

(1− η)η

µn − η when b > p2.

(3.9.6)

Exercise 3.6 (Exercise 3.2 cont.). In the case of binary branching, i.e., when (pk)k≥0 is
given by (3.9.1), show that the probability generating function of the total progeny satisfies

GT (s) =
1−

√
1− 4s2pq

2sp
. (3.9.7)

Exercise 3.7 (Exercise 3.5 cont.). Show, using Theorem 3.2, that, for (pk)k≥0 in (3.9.3),
the probability generating function of the total progeny satisfies

GT (s) =

√
(p+ s(b− pq))2 − 4pqs(p− b)− (p+ sbq)

2pq
(3.9.8)

Exercise 3.8 (Mean generation size completed). Complete the proof of Theorem 3.3 by
conditioning on Zn−1 and showing that

E

[
Zn−1∑
i=1

Xn,i

∣∣∣ Zn−1 = m

]
= mµ, (3.9.9)

so that
E[Zn] = µE[Zn−1]. (3.9.10)

Exercise 3.9 (Generation-size martingale). Prove that with Mn = µ−nZn, the stochastic
process (µ−nZn)n≥1 is a martingale.

Exercise 3.10 (Subcritical branching processes). Prove Theorem 3.4 by using Theorem
3.3, together with the Markov inequality in Theorem 2.17.
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Exercise 3.11 (Critical branching processes). Show that Zn
P−→ 0 when the branching

process is critical and P(X = 1) < 1. [Recall page 90 for the definition of a critical branching
process.] On the other hand, conclude that E[Zn] = 1 for all n ≥ 1 for critical branching
processes.

Exercise 3.12 (Proof expected total progeny). Prove the formula for the expected total
progeny size in subcritical branching processes in Theorem 3.5.

Exercise 3.13 (Verification of law of total progeny as random walk hitting time). Compute
P(T = k) for T in (3.3.2) and P(T = k) for T in (3.1.16) explicitly, for k = 1, 2 and 3.

Exercise 3.14 (Exercise 3.2 cont.). In the case of binary branching, i.e., when the offspring
distribution is given by (3.9.1), show that

P(T = k) =
1

p
P
(
S0 = Sk+1 = 0, Si > 0 ∀1 ≤ i ≤ k

)
, (3.9.11)

where (Si)i≥1 is a simple random walk, i.e.,

Si = Y1 + · · ·+ Yi, (3.9.12)

where (Yi)i≥1 are i.i.d. random variables with distribution

P(Y1 = 1) = 1− P(Y1 = −1) = p. (3.9.13)

This gives a one-to-one relation between random walk excursions and the total progeny of
a binary branching process.

Exercise 3.15 (Conjugate pair). Prove that (p′x)x≥0 defined in (3.3.4) is a probability
distribution.

Exercise 3.16 (Generating function of dual offspring distribution). Let Gd(s) = E′[sX1 ]
be the probability generating function of the offspring of the conjugate branching process
defined in (3.3.4). Show that

Gd(s) =
1

η
GX(ηs). (3.9.14)

Exercise 3.17 (Dual of supercritical branching process is subcritical). Let X ′ have proba-
bility mass function (p′k)k≥0 defined in (3.3.4). Show that η < 1 implies that

E[X ′] < 1. (3.9.15)

Thus, the branching process with offspring distribution (p′k)k≥0 is subcritical when (pk)k≥0

is supercritical.

Exercise 3.18 (Proof of implicit relation for martingale limit). Prove (3.4.1).

Exercise 3.19 (Positivity of martingale limit on survival event). Prove that P(W∞ > 0) =
1− η implies that P(W∞ > 0 | survival) = 1.

Exercise 3.20 (Mean of martingale limit). Prove, using Fatou’s lemma (Theorem A.7),
that E[W∞] ≤ 1 always holds.

Exercise 3.21. Prove that (p(∞)

k )k≥0 defined in (3.4.2) is a probability distribution.
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Exercise 3.22 (Proof of Theorem 3.11 in the infinite-mean case). Prove (3.4.3) when
µ =∞.

Exercise 3.23 (Total progeny for binomial branching processes). Compute the probability
mass function of the total progeny of a branching process with a binomial offspring distri-
bution using Theorem 3.13.

Exercise 3.24 (Total progeny for geometric branching processes). Compute the probability
mass function of the total progeny of a branching process with a geometric offspring distri-
bution using Theorem 3.13.
Hint: note that when (Xi)

n
i=1 are i.i.d. geometric, then X1+· · ·+Xn has a negative binomial

distribution.

Exercise 3.25 (The total progeny from the hitting-time theorem). Prove that Theorem
3.14 implies (3.5.2).

Exercise 3.26 (The condition in the hitting-time theorem). Is Theorem 3.14 still true
when the restriction that P(Yi ≥ −1) = 1 is dropped?

Exercise 3.27 (Extension of Theorem 3.14). Extend the hitting-time theorem Theorem 3.14
to the case where (Yi)

n
i=1 is an exchangeable sequence rather than an i.i.d. sequence. Here a

sequence (Yi)
n
i=1 is called exchangeable when its distribution is the same as the distribution

of any permutation of the sequence.
Hint: if (Yi)

n
i=1 is exchangeable, then so is (Yi)

n
i=1 conditioned on

∑n
i=1 Yi = −k.

Exercise 3.28 (Verification of (3.6.7)). Verify (3.6.7) for n = 1, 2 and n = 3.

Exercise 3.29 (The total progeny of a Poisson branching process). Prove Theorem 3.16
using Theorem 3.13.

Exercise 3.30 (Large, but finite, Poisson total progeny). Use Theorem 3.16 to show that,
for any λ, and for k sufficiently large,

P∗λ(k ≤ T ∗ <∞) ≤ e−Iλk, (3.9.16)

where Iλ = λ− 1− log λ.

Exercise 3.31 (Proof of the Ballot Theorem). Prove the Ballot Theorem (Theorem 3.21)
using the Random walk hitting-time theorem (Theorem 3.14).
Hint: Let S′m = k + (Sn − n)− (Sn−m − n+m), and note that Sm < m for all 1 ≤ m ≤ n
precisely when S′m > 0 for all 0 ≤ m < n, and (S′m)m≥0 is a random walk taking steps
Ym = S′m − S′m−1 = Xn−m − 1.
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Chapter 4

Phase transition for the Erdős-Rényi
random graph

Abstract

In this chapter, we study the connected components of the
Erdős-Rényi random graph. Such connected components
can be described in terms of branching processes. As we have
seen in Chapter 3, branching processes have a phase transi-
tion: when the expected offspring is below 1, the branching
process dies out almost surely, while when the expected off-
spring exceeds 1, then it survives with positive probability.
The Erdős-Rényi random graph has a related phase tran-
sition. Indeed, when the expected degree is smaller than
1, the components are small, the largest one being of order
log n. On the other hand, when the expected degree exceeds
1, there is a giant connected component that contains a pos-
itive proportion of all vertices. The aim of this chapter is to
quantify and prove these facts.

Organization of this chapter. The chapter is organised as follows. In the in-
troduction in Section 4.1, we argue that connected components in the Erdős-Rényi
random graph can be described by branching processes. The link between the Erdős-
Rényi random graph and branching processes is described in more detail in Section
4.2, where we prove upper and lower bounds for the tails of the cluster size (or
connected component size) distribution. The connected component containing v is
denoted by C (v), and consists of all vertices that can be reached from v using occu-
pied edges. We sometimes also call C (v) the cluster of v. The connection between
branching processes and clusters is used extensively in Sections 4.3–4.5. In Section
4.3, we study the subcritical regime of the Erdős-Rényi random graph. In Sections
4.4 and 4.5 we study the supercritical regime of the Erdős-Rényi random graph, by
proving a law of large numbers for the largest connected component in Section 4.4 and
a central limit theorem in Section 4.5. We close this section with notes and discussion
in Section 4.6 and exercises in Section 4.7.

4.1 Introduction

In this chapter, we investigate the phase transition in the Erdős-Rényi random
graph. The phase transition refers to the fact that there is a sharp transition in the
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Figure 4.1: Two realizations of Erdős-Rényi random graphs with 100 elements and
edge probabilities 1/200, respectively, 3/200. The three largest connected

components are ordered by the darkness of their edge colors, the remaining
connected components have edges with the lightest shade.

largest connected component. Indeed, all clusters are quite small when the average
number of neighbors per vertex is smaller than 1, while then there exists a unique
giant component containing a positive proportion of the vertices when the largest
connected component exceeds 1. This phase transition can already be observed in
relatively small graphs. For example, Figure 4.1 shows two realizations of Erdős-Rényi
random graphs with 100 elements and expected degree close to 1/2, respectively,
3/2. The left picture is in the subcritical regime, and the connected components are
tiny, while the right picture is in the supercritical regime, and the largest connected
component is already substantial.

We next introduce some notation for the Erdős-Rényi random graph, and prove
some elementary properties. We recall from Section 1.8 that the Erdős-Rényi random
graph has vertex set [n] = {1, . . . , n}, and, denoting the edge between vertices s, t ∈
[n] by st, st is occupied or present with probability p, and vacant or absent otherwise,
independently of all the other edges. The parameter p is called the edge probability.
The above random graph is denoted by ERn(p). Exercises 4.1 and 4.2 investigate the
number of edges in an Erdős-Rényi random graph.

We now introduce some notation. For two vertices s, t ∈ [n], we write s ←→ t
when there exists a path of occupied edges connecting s and t. By convention, we
always assume that v ←→ v. For v ∈ [n], we denote the connected component
containing v or cluster of v by

C (v) =
{
x ∈ [n] : v ←→ x

}
. (4.1.1)

We denote the size of C (v) by |C (v)|, i.e., |C (v)| denotes the number of vertices
connected to v. The largest connected component Cmax is equal to any cluster C (v)
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for which |C (v)| is maximal, so that

|Cmax| = max
v∈[n]
|C (v)|. (4.1.2)

Note that the above definition does identify |Cmax| uniquely, but it may not identify
Cmax uniquely. We can make this definition unique by requiring that Cmax is the
cluster of maximal size containing the vertex with the smallest label. As we will see,
the typical size of Cmax depends sensitively on the value λ, where λ = np is close to
the expected number of neighbors per vertex.

We first define a procedure to find the connected component C (v) containing a
given vertex v in a given graphG. This procedure is closely related to the random walk
perspective for branching processes described in Section 3.3, and works as follows.
In the course of the exploration, vertices can have three different statuses: active,
neutral or inactive. The status of vertices changes in the course of the exploration
of the connected component of v, as follows. At time t = 0, only v is active and all
other vertices are neutral, and we set S0 = 1. At each time t ≥ 1, we choose an active
vertex w in an arbitrary way (for example, by taking the active vertex with smallest
label) and explore all the edges ww′, where w′ runs over all the neutral vertices. If
ww′ ∈ E(G), then we set w′ active, otherwise it remains neutral. After searching the
entire set of neutral vertices, we set w inactive and we let St equal the new number
of active vertices at time t. When there are no more active vertices, i.e., when St = 0
for the first time, the process terminates and C (v) is the set of all inactive vertices,
which immediately implies that |C (v)| = t. Note that at any stage of the process, the
size of C (v) is bounded from below by the sum of the number of active and inactive
vertices at that time.

Let St be the total number of active vertices at time t. Then, similarly as for the
branching process in (3.3.1),

S0 = 1, St = St−1 +Xt − 1, (4.1.3)

where the variable Xt is the number of vertices that become active due to the ex-
ploration of the tth active vertex wt, and after its exploration, wt becomes inactive.
This explains (4.1.3).

The above description is true for any graph G. We now specialize to the Erdős-
Rényi random graph ERn(p), where each edge can be independently occupied or
vacant. As a result, the distribution of Xt depends on the number of active vertices
at time t − 1, i.e., on St−1, and not in any other way on which vertices are active,
inactive or neutral. More precisely, each neutral w′ at time t−1 in the random graph
has probability p to become active at time t. The edges ww′ are examined precisely
once, so that the conditional probability that ww′ is an edge in ERn(p) is always
equal to p. After t− 1 explorations of active vertices, we have t− 1 inactive vertices
and St−1 active vertices. This leaves n − (t − 1) − St−1 neutral vertices. Therefore,
conditionally on St−1,

Xt ∼ Bin
(
n− (t− 1)− St−1, p

)
. (4.1.4)

We note that the recursion in (4.1.3) is identical to the recursion relation (3.3.1).
The only difference is the distribution of the process (Xi)i∈[n], as described in (4.1.4).
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For branching processes, (Xi)i∈[n] is an i.i.d. sequence, while for the exploration of
connected components in ERn(p), we see that this is not quite true. However, by
(4.1.4), it is ‘almost’ true as long as the number of active vertices is not too large.
We see in (4.1.4) that the first parameter of the binomial distribution, describing the
number of trials, decreases as time progresses. This is due to the fact that after more
explorations, fewer neutral vertices remain, and is sometimes called the depletion-of-
points effect. The depletion-of-points effect makes ERn(p) different from a branching
process. See Figure 4.2 for a graphical representation of the exploration.

Let T be the first time t for which St = 0, i.e.,

T = inf{t : St = 0}, (4.1.5)

then |C (v)| = T , see also (3.3.2) for a similar result in the branching process setting.
This describes the exploration of a single connected component. While of course for
the cluster exploration, (4.1.3) and (4.1.4) only make sense when St−1 ≥ 1, that is,
when t ≤ T , there is no harm in continuing it formally for t > T . This will prove
to be extremely useful later on. Exercise 4.3 asks you to verify that (4.1.5) is correct
when |C (v)| = 1, 2 and 3.

We end this section by introducing some notation. For the Erdős-Rényi random
graph, the status of all edges {st : 1 ≤ s < t ≤ n} are i.i.d. random variables taking
the value 1 with probability p and the value 0 with probability 1− p, 1 denoting that
the edge is occupied and 0 that it is vacant. We sometimes call the edge probability
p, and sometimes λ/n. We always use the convention that

p = λ/n. (4.1.6)

We write Pλ for the distribution of ERn(p) = ERn(λ/n).

4.1.1 Monotonicity in the edge probabilities

In this section, we investigate Erdős-Rényi random graphs with different values
of p, and show that the Erdős-Rényi random graph is monotonically increasing in p,
using a coupling argument. The material in this section makes it clear that compo-
nents of the Erdős-Rényi random graph are growing with the edge probability p, as
one would intuitively expect.

We couple the random graphs ERn(p) for all p ∈ [0, 1] on the same probability
space. For this, we draw independent uniform random variables for each edge st, and,
for fixed p, we declare an edge to be p-occupied if and only if Ust ≤ p. Note that
edges are p-occupied independently of each other, and the probability that an edge
is p-occupied is P(Ust ≤ p) = p. Therefore, the resulting graph of p-occupied edges
has the same distribution as ERn(p). The above coupling shows that the number
of occupied edges increases when p increases. Because of the monotone nature of
ERn(p) one expects that certain events become more likely, and random variables
grow larger, when p increases. This is formalized in the following definition:

Definition 4.1 (Increasing events and random variables). We say that an event is
increasing when, if the event occurs for a given set of occupied edges, it remains to
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Figure 4.2: The exploration of the cluster of vertex 1 in an Erdős-Rényi random
graph, as formulated in (4.1.3) and (4.1.4). We explore the cluster in a breadth-first
order. The black vertices have been explored and are inactive, the grey vertices are
active, i.e., they have not yet been explored but have been found to be part of C (1).
We have explored 7 vertices, and X1 = 3, X2 = 2, X3 = 0, X4 = 2, X5 = 1, etc. The
labels correspond to the vertex labels in the graph. The next vertex to be explored
is vertex 97, and there is 1 more vertex to be explored (i.e., S7 = 2). The vertices on

the right are the neutral vertices. At each time in the exploration process, the
number of active, inactive and neutral is equal to n. Below, we plot the random

walk path arising as the number of active vertices in the exploration of the
branching process tree as in (4.1.3) and (4.1.4).
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hold when we make some more edges occupied. We say that a random variable X is
increasing when the events {X ≥ x} are increasing for each x ∈ R.

An example of an increasing event is {s ←→ t}. An example of an increasing
random variable is |C (v)| and the size of the maximal cluster |Cmax|, where

|Cmax| = max
v∈[n]
|C (v)|. (4.1.7)

Exercises 4.10 and 4.11 investigate monotonicity properties of |Cmax|.

4.1.2 Informal link to Poisson branching processes

We now describe the link between cluster sizes in ERn(λ/n) and Poisson branching
processes in an informal manner. The results in this section are not used in the
remainder of the chapter, even though the philosophy forms the core of the proofs
given. Fix λ > 0. Let S∗0 , S

∗
1 , . . . , X

∗
1 , X

∗
2 , . . . , H

∗ refer to the history of a branching
process with Poisson offspring distribution with mean λ and S0, S1, . . . , X1, X2, . . . , H
refer to the history of the random graph ERn(λ/n), where S0, S1, . . . are defined in
(4.1.3) above. The event {H∗ = (x1, . . . , xt)} is the event that the total progeny T ∗

of the Poisson branching process is equal to t, and the values of X∗1 , . . . , X
∗
t are given

by x1, . . . , xt. Recall that P∗λ denotes the law of a Poisson branching process with
mean offspring distribution λ. Naturally, by (3.3.2),

t = min{i : si = 0} = min{i : x1 + . . .+ xi = i− 1}, (4.1.8)

where

s0 = 1, si = si−1 + xi − 1. (4.1.9)

For any possible history (x1, . . . , xt) (recall (3.3.3)),

P∗λ(H∗ = (x1, . . . , xt)) =
t∏
i=1

P∗λ(X∗i = xi), (4.1.10)

where (X∗i )i≥1 are i.i.d. Poisson random variables with mean λ, while

Pλ(H = (x1, . . . , xt)) =
t∏
i=1

Pλ(Xi = xi|X1 = x1, . . . , Xi−1 = xi−1),

where, conditionally on X1 = x1, . . . , Xi−1 = xi−1, the random variable Xi is binomi-
ally distributed Bin(n− (i− 1)− si−1, λ/n) (recall (4.1.4) and (4.1.9)).

As shown in Theorem 2.10, the Poisson distribution with parameter λ is the
limiting distribution of Bin(n, λ/n). When mn = n(1 + o(1)) and λ, i are fixed, we
can extend this to the statement that when X has distribution Bin

(
mn, λ/n),

lim
n→∞

P(X = i) = e−λ
λi

i!
. (4.1.11)
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Therefore, for every t <∞,

lim
n→∞

Pλ
(
H = (x1, . . . , xt)

)
= P∗λ

(
H∗ = (x1, . . . , xt)

)
. (4.1.12)

Thus, the distribution of finite connected components in the random graph ERn(λ/n)
is closely related to a Poisson branching process with mean λ. This relation is explored
further in the remainder of this chapter.

4.2 Comparisons to branching processes

In this section, we investigate the relation between connected components in
ERn(λ/n) and binomial branching processes, thus making the informal argument
in Section 4.1.2 precise. We start by proving two stochastic domination results for
connected components in the Erdős-Rényi random graph. In Theorem 4.2, we give a
stochastic upper bound on |C (v)|, and in Theorem 4.3 a lower bound on the cluster
tails. These bounds will be used in the following sections to prove results concerning
|Cmax|.

4.2.1 Stochastic domination of connected components

The following upper bound shows that each connected component is stochastically
dominated by the total progeny of a branching process with a binomial offspring
distribution:

Theorem 4.2 (Stochastic domination of the cluster size). For each k ≥ 1,

Pnp(|C (1)| ≥ k) ≤ Pn,p(T≥ ≥ k), i.e., |C (1)| � T≥, (4.2.1)

where T≥ is the total progeny of a binomial branching process with parameters n and
p, and we recall that Pλ denotes the law of ERn(λ/n).

Proof. Let Ni = n− i−Si denote the number of neutral vertices after i explorations,
so that, conditionally on Ni−1, Xi ∼ Bin(Ni−1, p). Let Yi ∼ Bin(n − Ni−1, p) be,
conditionally on Ni−1, independent from Xi, and write

X≥i = Xi + Yi. (4.2.2)

Then, conditionally on (Xj)
i−1
j=1, X≥i ∼ Bin(n, p). Since this distribution is independent

of (Xj)
i−1
j=1, the sequence (X≥j )j≥1 is in fact i.i.d. Also, X≥i ≥ Xi a.s. since Yi ≥ 0 a.s.

Denote

S≥i = X≥1 + · · ·+X≥i − (i− 1). (4.2.3)

Then,

Pnp(|C (1)| ≥ k) = P(St > 0∀t ≤ k − 1) ≤ P(S≥t > 0∀t ≤ k − 1) (4.2.4)

= P(T≥ ≥ k),



126 Phase transition for the Erdős-Rényi random graph

where we recall from Chapter 3 that T≥ = min{t : S≥t = 0} is the total progeny
of a branching process with binomial distribution with parameters n and success
probability p.

In Exercise 4.12, you are asked to use Theorem 4.2 to derive an upper bound on
the expected cluster size when λ < 1.

4.2.2 Lower bound on the cluster tail

The following lower bound shows that the probability that a connected component
has size at least k is bounded from below by the probability that the total progeny
of a branching process with binomial offspring distribution exceeds k, where now the
parameters of the binomial distribution are n− k and p:

Theorem 4.3 (Lower bound on cluster tail). For every k ∈ [n],

Pnp(|C (1)| ≥ k) ≥ Pn−k,p(T≤ ≥ k), (4.2.5)

where T≤ is the total progeny of a branching process with binomial distribution with
parameters n− k and success probability p = λ/n.

Note that, since the parameter n − k on the right-hand side of (4.2.5) depends
explicitly on k, Theorem 4.3 does not imply a stochastic lower bound on |C (1)|.

Proof. We again use a coupling approach. Recall that Ni denotes the number of
neutral vertices after i explorations. Denote by Tk the stopping time

Tk = min{t : Nt ≤ n− k}. (4.2.6)

Then, Tk ≤ k − 1 whenever |C (1)| ≥ k, since Nk−1 ≤ n − (k − 1) − 1 = n − k. In
terms of Tk, we can trivially rewrite

Pnp(|C (1)| ≥ k) = Pnp(St > 0∀t ≤ Tk). (4.2.7)

We let (X≤i )i≥1 denote an i.i.d. sequence of Bin(n−k, p) random variables. For i ≤ Tk,
and conditionally on Ni−1, let Yi ∼ Bin(Ni−1 − (n− k), p) distribution independently
of all other random variables involved. Define

Xi = X≤i + Yi. (4.2.8)

Then, clearly, Xi ≥ X≤i a.s. for all i ≤ Tk, while, conditionally on Ni−1, Xi ∼
Bin(Ni−1, p) as required for (4.1.4).

Denote

S≤i = X≤1 + · · ·+X≤i − (i− 1). (4.2.9)

Then, S≤t ≤ St for all t ≤ Tk. Using the above coupling and the fact that Tk ≤ k− 1,
we can therefore bound

{St > 0∀t ≤ Tk} ⊇ {S≤t > 0∀t ≤ Tk} ⊇ {S≤t > 0∀t ≤ k − 1} = {T≤ ≥ k}, (4.2.10)
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where T≤ = min{t : S≤t = 0} is the total progeny of a branching process with binomial
distribution with parameters n− k and success probability p. Taking probabilities in
(4.2.10) proves Theorem 4.3.

In the remaining sections we use the results of Theorems 4.2 and 4.3 to study
the behavior of |Cmax| in sub- and supercritical Erdős-Rényi random graphs. The
general strategy for the investigation of the largest connected component |Cmax| is
as follows. We make use of the stochastic bounds in Theorems 4.2–4.3 in order to
compare the cluster sizes to binomial branching processes with a binomial offspring
with parameters n and p = λ/n. By Theorem 3.1, the behavior of branching processes
is rather different when the expected offspring is larger than 1 or smaller than or equal
to 1. Using Theorem 3.20, we can compare cluster sizes in ERn(λ/n) to a Poisson
branching process with a parameter that is close to the parameter λ in ERn(λ/n).
The results on branching processes in Chapter 3 then allow us to complete the proofs.

In Theorems 4.2–4.3, when k = o(n), the expected offspring of the branching
processes is close to np ≈ λ. Therefore, for the Erdős-Rényi random graph, we
expect different behavior in the subcritical regime λ < 1, in the supercritical regime
λ > 1 and in the critical regime λ = 1. The analysis of the behavior of the largest
connected component |Cmax| is substantially different in the subcritical regime where
λ < 1, which is treated in Section 4.3, compared to the supercritical regime λ > 1,
which is treated in Section 4.4. In Section 4.5, we prove a central limit theorem for
the giant supercritical component. The critical regime λ = 1 requires some new ideas,
and is treated in Section 5.1 in the next chapter.

4.3 The subcritical regime

In this section, we derive bounds for the size of the largest connected component
for the Erdős-Rényi random graph in the subcritical regime, i.e., when λ = np < 1.
Let Iλ denote the large deviation rate function for Poisson random variables with
mean λ, given by

Iλ = λ− 1− log(λ). (4.3.1)

Recall Exercise 2.20 to see an upper bound on tails of Poisson random variables
involving Iλ, as well as the fact that Iλ > 0 for all λ 6= 1.

The main results for λ < 1 are Theorem 4.4, which proves that |Cmax| ≤ a log n
whp for any a > 1/Iλ, and Theorem 4.5, where a matching lower bound on |Cmax| is
provided by proving that |Cmax| ≥ a log n whp for any a < 1/Iλ:

Theorem 4.4 (Upper bound on largest subcritical component). Fix λ < 1. Then,
for every a > 1/Iλ, there exists δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≥ a log n) = O(n−δ). (4.3.2)

Theorem 4.5 (Lower bound on largest subcritical component). Fix λ < 1. Then,
for every a < 1/Iλ, there exists δ = δ(a, λ) > 0 such that

Pλ(|Cmax| ≤ a log n) = O(n−δ). (4.3.3)
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Figure 4.3: Realizations of Erdős-Rényi random graphs with 1000 elements and
edge probabilities λ/1000 with λ = 0.5 and λ = 0.9 respectively.

Theorems 4.4 and 4.5 are proved in Sections 4.3.2 and 4.3.3 below. Together, they
prove that |Cmax|/ log n

P−→ 1/Iλ as investigated in Exercise 4.13. See Figure 4.3 for
an impression of how small subcritical clusters are for n = 1000.

4.3.1 Largest subcritical cluster: Proof strategy

We start by describing the strategy of proof. We denote the number of vertices
that are contained in connected components of size at least k by

Z≥k =
∑
v∈[n]

1{|C (v)|≥k}. (4.3.4)

We can identify |Cmax| as

|Cmax| = max{k : Z≥k ≥ k}, (4.3.5)

which allows us to prove bounds on |Cmax| by investigating Z≥k for an appropriately
chosen k. In particular, (4.3.5) implies that

{|Cmax| ≥ k} = {Z≥k ≥ k}, (4.3.6)

see also Exercise 4.14.
To prove Theorem 4.4, we use the union bound to conclude that

Pλ(|Cmax| ≥ k) ≤ nPλ(|C (1)| ≥ k), (4.3.7)

and we use Theorem 4.2 to bound Pλ(|C (1)| ≥ kn) for kn = a log n for any a > 1/Iλ.
This is the strategy of proof of Theorem 4.4. For the details we refer to the formal
argument in Section 4.3.2 below.



4.3 The subcritical regime 129

Alternatively and equivalently, we could use that Eλ[Z≥k] = nPλ(|C (1)| ≥ k) and
use the first moment method or Markov’s inequality (Theorem 2.17) to conclude that
whp, Z≥kn = 0, so that, again whp, |Cmax| ≤ kn.

In the proof of Theorem 4.5, we use the second moment method or Chebychev’s
inequality (Theorem 2.18) on Z≥k instead. In order to be able to apply this result, we
first prove an upper bound on the variance of Z≥k (see Proposition 4.7 below). We
further use Theorem 4.3 to prove a lower bound on Eλ[Z≥kn ], now for kn = a log n
for any a < 1/Iλ. Then, (2.4.5) in Theorem 2.18 proves that Z≥kn > 0 whp, so that,
again whp, |Cmax| ≥ kn. We now present the details of the proofs.

4.3.2 Upper bound largest subcritical cluster

By Theorem 4.2,
Pλ(|C (v)| > t) ≤ Pn,p(T > t), (4.3.8)

where T is the total progeny of a branching process with a binomial offspring distri-
bution with parameters n and p = λ/n. To study Pn,p(T > t), we let (X̂i)i≥1 be an
i.i.d. sequence of Bin(n, p) random variables, and let

Ŝt = X̂1 + · · ·+ X̂t − (t− 1). (4.3.9)

Then, by (3.3.2) and (3.3.1),

Pn,p(T > t) ≤ Pn,p(Ŝt > 0) = Pn,p(X̂1 + · · ·+ X̂t ≥ t) ≤ e−tIλ, (4.3.10)

by Corollary 2.20 and the fact that X̂1 + · · ·+ X̂t ∼ Bin(nt, λ/n). We conclude that

Pλ(|C (v)| > t) ≤ e−tIλ . (4.3.11)

By the union bound, for kn = a log n,

Pλ(|Cmax| > a log n) ≤ nPλ(|C (1)| > a log n) ≤ n1−aIλ = n−δ, (4.3.12)

with δ = aIλ − 1 > 0 whenever a > 1/Iλ. This proves that the largest connected
component is whp bounded by a log n for every a > 1/Iλ.

We now give a second proof of (4.3.11), which is based on a distributional equality
of St which turns out to be useful in the analysis of the Erdős-Rényi random graph
with λ > 1 as well. The result states that St is also binomially distributed, but with
a different success probability. In the statement of Proposition 4.6 below, we make
essential use of the formal continuation of the recursions in (4.1.3) and (4.1.4) for the
breadth-first search, defined right below (4.1.4). Note that, in particular, St need not
be non-negative.

Proposition 4.6 (The law of St). For all t ∈ [n], and with (St)t≥0 satisfying the
recursion in (4.1.3)–(4.1.4),

St + (t− 1) ∼ Bin
(
n− 1, 1− (1− p)t

)
. (4.3.13)
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We only use Proposition 4.6 when |C (v)| ≥ t, in which case St ≥ 0 does hold.

Proof. Let Nt represent the number of unexplored vertices at time t ≥ 0, i.e.,

Nt = n− t− St. (4.3.14)

Note that X ∼ Bin(m, p) precisely when Y = m − X ∼ Bin(m, 1 − p). It is more
convenient to show the equivalent statement that, for all t ≥ 0,

Nt ∼ Bin
(
n− 1, (1− p)t

)
. (4.3.15)

Heuristically, (4.3.15) can be understood by noting that each of the vertices {2, . . . , n}
has, independently of all other vertices, probability (1−p)t to stay neutral in the first
t explorations. Formally, conditionally on St−1, Xt ∼ Bin(n − (t − 1) − St−1, p) =
Bin(Nt−1, p) by (4.1.4). Thus,

Nt = n− t− St = n− t− St−1 −Xt + 1 = Nt−1 −Xt ∼ Bin(Nt−1, 1− p). (4.3.16)

The conclusion follows by recursion on t and N0 = n − 1. Exercise 4.15 asks you to
complete the proof of (4.3.15).

To complete the second proof of (4.3.11), we use Proposition 4.6 to see that

Pλ(|C (v)| > t) ≤ P(St > 0) ≤ Pλ
(
Bin(n− 1, 1− (1− p)t) ≥ t

)
, (4.3.17)

where we abuse notation and write P(Bin(m, q) ≥ t) to denote the probability that a
binomial random variable with parameters m and success probability q is at least t.
Using Bernoulli’s inequality 1− (1− p)t ≤ tp, we therefore arrive at, for every s ≥ 0,

Pλ(|C (v)| > t) ≤ Pλ
(
Bin(n,

tλ

n
) ≥ t

)
≤ Pλ

(
esBin(n, tλ

n
) ≥ est

)
. (4.3.18)

By Markov’s inequality (Theorem 2.17), and minimizing over s ≥ 0, we arrive at1

Pλ(|C (v)| > t) ≤ min
s≥0

e−stEλ[esBin(n, tλ
n

)]

= min
s≥0

e−st
[
1 +

tλ

n
(es − 1)

]n ≤ min
s≥0

e−stetλ(es−1). (4.3.19)

where we have used 1 + x ≤ ex in the last inequality. We arrive at the bound

Pλ(|C (v)| > t) ≤ e−Iλt, (4.3.20)

which reproves (4.3.11).

1Together, these two bounds give the exponential Markov inequality.
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4.3.3 Lower bound largest subcritical cluster

The proof of Theorem 4.5 makes use of a variance estimate on Z≥k. We use the
notation

χ≥k(λ) = Eλ
[
|C (v)|1{|C (v)|≥k}

]
. (4.3.21)

Note that, by exchangeability of the vertices, χ≥k(λ) does not depend on v. The
following proposition gives a variance estimate for Z≥k in terms of χ≥k(λ):

Proposition 4.7 (A variance estimate for Z≥k). For every n and k ∈ [n] and λ > 0,

Varλ(Z≥k) ≤ nχ≥k(λ). (4.3.22)

Proof. We use that

Varλ(Z≥k) =
∑
i,j∈[n]

[
Pλ(|C (i)| ≥ k, |C (j)| ≥ k)− Pλ(|C (i)| ≥ k)2

]
. (4.3.23)

We split the probability Pλ(|C (i)| ≥ k, |C (j)| ≥ k), depending on whether i ←→ j
or not, as

Pλ(|C (i)| ≥ k, |C (j)| ≥ k) = Pλ(|C (i)| ≥ k, i←→ j) (4.3.24)

+ Pλ(|C (i)| ≥ k, |C (j)| ≥ k, i←→/ j).

Clearly,

Pλ(|C (i)| = l, |C (j)| ≥ k, i←→/ j)

= Pλ(|C (i)| = l, i←→/ j)Pλ
(
|C (j)| ≥ k

∣∣ |C (i)| = l, i←→/ j
)
. (4.3.25)

When |C (i)| = l and i ←→/ j, all vertices in the components different from the one
of i, which includes the component of j, form a random graph ERn−l(λ/n) where
the size n is replaced by n − l. Since the probability that |C (j)| ≥ k in ERn(p) is
increasing in n,

Pλ(|C (j)| ≥ k
∣∣|C (i)| = l, i←→/ j) ≤ Pλ(|C (j)| ≥ k). (4.3.26)

We conclude that, for every l ≥ 1,

Pλ(|C (i)| = l, |C (j)| ≥ k, i←→/ j)− Pλ(|C (i)| = l)Pλ(|C (j)| ≥ k) ≤ 0, (4.3.27)

which in turn implies that

Varλ(Z≥k) ≤
∑
i,j∈[n]

Pλ(|C (i)| ≥ k, i←→ j). (4.3.28)

Therefore,

Varλ(Z≥k) ≤
∑
i∈[n]

∑
j∈[n]

Eλ
[
1{|C (i)|≥k}1{j∈C (i)}

]
=
∑
i∈[n]

Eλ
[
1{|C (i)|≥k}

∑
j∈[n]

1{j∈C (i)}

]
. (4.3.29)
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Since
∑

j∈[n] 1{j∈C (i)} = |C (i)| and by exchangeability of the vertices,

Varλ(Z≥k) ≤
∑
i∈[n]

Eλ[|C (i)|1{|C (i)|≥k}] = nEλ[|C (1)|1{|C (1)|≥k}] = nχ≥k(λ). (4.3.30)

Proof of Theorem 4.5. By (4.3.6) (see also Exercise 4.14), Pλ(|Cmax| < k) = Pλ(Z≥k =
0). Thus, to prove Theorem 4.5, it suffices to prove that Pλ(Z≥kn = 0) = O(n−δ),
where kn = a log n with a < 1/Iλ. For this, we use Chebychev’s inequality (Theorem
2.18). In order to apply Theorem 2.18, we need to derive a lower bound on Eλ[Z≥k]
and an upper bound on Varλ(Z≥k).

We start by giving a lower bound on Eλ[Z≥k]. We use that

Eλ[Z≥k] = nP≥k(λ), where P≥k(λ) = Pλ(|C (v)| ≥ k). (4.3.31)

We take kn = a log n. We use Theorem 4.3 to see that, with T a binomial branching
process with parameters n− kn and p = λ/n,

P≥kn(λ) ≥ Pn−kn,p(T ≥ kn). (4.3.32)

By Theorem 3.20, with T ∗ the total progeny of a Poisson branching process with
mean λn = λ(n− kn)/n,

Pn−kn,p(T ≥ a log n) = P∗λn(T ∗ ≥ a log n) +O
(aλ2 log n

n

)
. (4.3.33)

Also, by Theorem 3.16,

P∗λn(T ∗ ≥ a log n) =
∞∑

k=a logn

P∗λn(T ∗ = k) =
∞∑

k=a logn

(λnk)k−1

k!
e−λnk. (4.3.34)

By Stirling’s formula,

k! =
(k

e

)k√
2πk

(
1 + o(1)

)
, (4.3.35)

so that, recalling (4.3.1), and using that Iλn = Iλ + o(1),

P∗λn(T ∗ ≥ a log n) = λ−1

∞∑
k=a logn

1√
2πk3

e−Iλnk(1 + o(1)) ≥ e−Iλa logn(1+o(1)). (4.3.36)

As a result, it follows that, with kn = a log n and any 0 < α < 1− Iλa,

Eλ[Z≥kn ] = nP≥kn(λ) ≥ n(1−Iλa)(1+o(1)) ≥ nα, (4.3.37)

when n is sufficiently large.
We next bound the variance of Z≥kn using Proposition 4.7. For an integer-valued

random variable X,

E[X1{X≥k}] =
∞∑
t=k

tP(X = t) =
∞∑
t=k

t∑
s=1

P(X = t) (4.3.38)

=
∞∑
s=1

∞∑
t=k∨s

P(X = t) = kP(X ≥ k) +
∞∑

s=k+1

P(X ≥ s).
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By (4.3.11),

χ≥kn(λ) = kP≥k(λ) +
n∑

t=kn+1

P≥t(λ) ≤ kne−(kn−1)Iλ

n∑
t=kn

e−Iλ(t−1) (4.3.39)

≤ kne−(kn−1)Iλ +
e−knIλ

1− e−Iλ
= O(knn

−aIλ).

We conclude that, by Proposition 4.7 and with kn = a log n,

Varλ(Z≥kn) ≤ nχ≥kn(λ) ≤ O(knn
1−aIλ), (4.3.40)

while, for large enough n,
Eλ[Z≥kn ] ≥ nα. (4.3.41)

Therefore, by the Chebychev inequality (Theorem 2.17),

Pλ(Z≥kn = 0) ≤ Varλ(Z≥kn)

Eλ[Z≥kn ]2
≤ O(knn

1−aIλ−2α) = O(n−δ), (4.3.42)

for n large enough and any δ < 2α − (1 − Iλa), where 2α − (1 − Iλa) > 0 when
0 < α < 1− Iλa. Finally, by Exercise 4.14,

Pλ(|Cmax| < kn) = Pλ(Z≥kn = 0), (4.3.43)

which completes the proof of Theorem 4.5.

4.4 The supercritical regime

In this section, we fix λ > 1. The main result is a law of large numbers for the size
of the maximal connected component. Below, we write ζλ = 1 − ηλ for the survival
probability of a Poisson branching process with mean offspring λ. Note that ζλ > 0
since λ > 1, so the following theorem shows that there exists a giant component:

Theorem 4.8 (Law of large numbers for giant component). Fix λ > 1. Then, for
every ν ∈ (1

2
, 1), there exists δ = δ(ν, λ) > 0 such that

Pλ
(∣∣|Cmax| − ζλn

∣∣ ≥ nν
)

= O(n−δ). (4.4.1)

Theorem 4.8 can be interpreted as follows. A vertex has a large connected com-
ponent with probability ζλ (we are deliberately vague about what ‘large’ means).
Therefore, at least in expectation, there are roughly ζλn vertices with large con-
nected components. Theorem 4.8 implies that almost all these vertices are in fact in
the same connected component, which is called the giant component. We first give
an overview of the proof of Theorem 4.8. See Figure 4.4 for an impression of how the
giant component emerges for n = 1000. When λ = 1.1, the maximal component is
still quite small, when λ = 2, it is already rather complex.
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Figure 4.4: Realizations of Erdős-Rényi random graphs with 1000 elements and
edge probabilities λ/1000 with λ = 1.1 and λ = 2 respectively.

4.4.1 Proof strategy law of large numbers for the giant component

In this section, we give an overview of the proof of Theorem 4.8. We again rely
on an analysis of the number of vertices in connected components of size at least k,

Z≥k =
∑
v∈[n]

1{|C (v)|≥k}. (4.4.2)

The proof contains 4 main steps. In the first step, for kn = K log n and K sufficiently
large, we compute

Eλ[Z≥kn ] = nPλ(|C (v)| ≥ kn). (4.4.3)

We evaluate Pλ(|C (v)| ≥ kn) using the bound in Theorem 4.3. Proposition 4.9 below
states that

Pλ(|C (v)| ≥ kn) = ζλ(1 + o(1)). (4.4.4)

In the second step, we use a variance estimate on Z≥k in Proposition 4.10, which
implies that, whp and for all ν ∈ (1

2
, 1),

|Z≥kn − Eλ[Z≥kn ]| ≤ nν . (4.4.5)

In the third step, we show that, for k = kn = K log n for some K > 0 sufficiently
large and whp, there is no connected component of size in between kn and αn for any
α < ζλ. This is done by a first moment argument: the expected number of vertices
in such connected components is equal to Eλ[Z≥kn − Z≥αn], and we use the bound in
Proposition 4.9 described above, as well as Proposition 4.12, which states that, for
any α < ζλ, there exists J = J(α) > 0 such that, for all n sufficiently large,

Pλ
(
kn ≤ |C (v)| < αn

)
≤ e−knJ . (4.4.6)
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In the fourth step, we prove that for 2α > ζλ, and on the event that there are no
clusters of size in between kn and αn and (4.4.5) holds,

Z≥kn = |Cmax|. (4.4.7)

The proof of Theorem 4.8 follows by combining (4.4.3), (4.4.5) and (4.4.7). We now
give the details of the proof of Theorem 4.8.

4.4.2 Step 1: Expected number of vertices in large components.

In the first step, we show that the probability that |C (v)| ≥ kn is, for kn ≥ a log n
with a > 1/Iλ, close to the survival probability of a Poisson branching process with
mean λ. Proposition 4.9 implies (4.4.4).

Proposition 4.9 (Cluster tail is branching process survival probability). Fix λ >
1. Then, for kn ≥ a log n where a > 1/Iλ and Iλ is defined in (4.3.1), and for n
sufficiently large,

Pλ(|C (v)| ≥ kn) = ζλ +O(kn/n). (4.4.8)

Proof. For the upper bound on Pλ(|C (v)| ≥ kn), we first use Theorem 4.2, followed
by Theorem 3.20, to deduce

Pλ(|C (v)| ≥ kn) ≤ Pn,λ/n(T ≥ kn) ≤ P∗λ(T ∗ ≥ kn) +O(kn/n), (4.4.9)

where T and T ∗, respectively, are the total progeny of a binomial branching process
with parameters n and λ/n and a Poisson mean λ branching process, respectively.
To complete the upper bound, we use Theorem 3.8 to see that

P∗λ(T ∗ ≥ kn) = P∗λ(T ∗ =∞) + P∗λ(kn ≤ T ∗ <∞)

= ζλ +O(e−knIλ) = ζλ +O(n−aIλ) = ζλ + o(1/n), (4.4.10)

because kn ≥ a log n with a > 1/Iλ. Substituting (4.4.10) into (4.4.9) proves the
upper bound in Proposition 4.9.

For the lower bound, we use Theorem 4.3 again followed by Theorem 3.20, so that,
with λn = λ(1− kn/n),

Pλ(|C (v)| ≥ kn) ≥ Pn−kn,λ/n(T ≥ kn) ≥ P∗λn(T ∗ ≥ kn) +O(kn/n), (4.4.11)

where now T and T ∗, respectively, are the total progenies of a binomial branching
process with parameters n − kn and λ/n and a Poisson mean λn branching process,
respectively.

By Exercise 3.30 for kn ≥ a log n with a > 1/Iλ,

P∗λn(T ∗ ≥ kn) = ζλn +O(e−knIλn ) = ζλn + o(1/n). (4.4.12)

Furthermore, by the mean-value theorem,

ηλn = ηλ + (λn − λ)
d

dλ
ηλ
∣∣
λ=λ∗n

= ηλ +O(kn/n), (4.4.13)

for some λ∗n ∈ (λn, λ), where we use Corollary 3.19 for λ > 1 and λn − λ = kn/n.
Therefore, since ζλ = 1 − ηλ, also ζλn = ζλ + O(kn/n). Putting these estimates
together proves the lower bound. Together, the upper and lower bound complete the
proof of Proposition 4.9.
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4.4.3 Step 2: Concentration of number of vertices in large clusters

The proof of Theorem 4.8 makes use of a variance estimate on Z≥k. In its state-
ment, we use the notation

χ<k(λ) = Eλ[|C (v)|1{|C (v)|<k}]. (4.4.14)

Proposition 4.10 (A second variance estimate on Z≥k). For every n and k ∈ [n],

Varλ(Z≥k) ≤ (λk + 1)nχ<k(λ). (4.4.15)

Note that the variance estimate in Proposition 4.10 is, in the supercritical regime,
much better than the variance estimate in Proposition 4.7. Indeed, the bound in
Proposition 4.7 reads

Varλ(Z≥k) ≤ nχ≥k(λ). (4.4.16)

However, when λ > 1, according to Theorem 4.8 (which is currently not yet proved),
|C (1)| = Θ(n) with positive probability. This suggests that

nχ≥k(λ) = Θ(n2), (4.4.17)

which leads to a trivial bound on the variance of Z≥k. The bound in Proposition 4.10
is at most Θ(k2n), which is much smaller when k is not too large.

Proof. Define

Z<k =
∑
v∈[n]

1{|C (v)|<k}. (4.4.18)

Then, since Z<k = n− Z≥k,
Varλ(Z≥k) = Varλ(Z<k). (4.4.19)

Therefore, it suffices to prove that Varλ(Z<k) ≤ (λk+1)nχ<k(λ). For this, we compute

Varλ(Z<k) =
∑
i,j∈[n]

[
Pλ(|C (i)| < k, |C (j)| < k)− Pλ(|C (i)| < k)2

]
. (4.4.20)

We again split, depending on whether i←→ j or not:

Varλ(Z<k) =
∑
i,j∈[n]

[
Pλ(|C (i)| < k, |C (j)| < k, i←→/ j)− Pλ(|C (i)| < k)2

]
(4.4.21)

+
∑
i,j∈[n]

Pλ(|C (i)| < k, |C (j)| < k, i←→ j).

We compute explicitly, using that |C (i)| = |C (j)| when i←→ j,∑
i,j∈[n]

Pλ(|C (i)| < k, |C (j)| < k, i←→ j) =
∑
i,j∈[n]

Eλ
[
1{|C (i)|<k}1{i←→j}

]
(4.4.22)

=
∑
i∈[n]

Eλ
[
1{|C (i)|<k}

∑
j∈[n]

1{i←→j}
]

=
∑
i∈[n]

Eλ[|C (i)|1{|C (i)|<k}] = nχ<k(λ).
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To compute the first sum on the right hand-side of (4.4.21), we write that, for l < k,

Pλ(|C (i)| = l, |C (j)| < k, i←→/ j) (4.4.23)

= Pλ(|C (i)| = l)Pλ
(
i←→/ j

∣∣ |C (i)| = l
)
Pλ
(
|C (j)| < k

∣∣ |C (i)| = l, i←→/ j
)
.

See Exercise 4.16 below for an explicit formula for Pλ
(
i ←→/ j

∣∣ |C (i)| = l
)
. We

bound Pλ
(
i←→/ j

∣∣ |C (i)| = l
)
≤ 1, to obtain

Pλ(|C (i)| = l, |C (j)| < k, i←→/ j) (4.4.24)

≤ Pλ(|C (i)| = l)Pλ
(
|C (j)| < k

∣∣|C (i)| = l, i←→/ j
)
.

When |C (i)| = l and when i←→/ j, the law of |C (j)| is identical to the law of |C (1)|
in a random graph with n− l vertices and edge probability p = λ/n, i.e.,

Pn,λ(|C (j)| < k
∣∣|C (i)| = l, i←→/ j) = Pn−l,λ(|C (1)| < k), (4.4.25)

where we slightly abuse notation to write Pm,λ for the distribution of ERm(λ/n).
Therefore,

Pλ(|C (j)| < k
∣∣|C (i)| = l, i←→/ j) (4.4.26)

= Pn−l,λ(|C (1)| < k) = Pn,λ(|C (1)| < k) + Pn−l,λ(|C (1)| < k)− Pn,λ(|C (1)| < k).

We can couple ERn−l(p) and ERn(p) by adding the vertices [n]\ [n− l], and by letting
st, for s ∈ [n] \ [n − l] and t ∈ [n] be independently occupied with probability p.
In this coupling, we note that Pn−l,λ(|C (1)| < k) − Pn,λ(|C (1)| < k) is equal to the
probability of the event that |C (1)| < k in ERn−l(p), but |C (1)| ≥ k in ERn(p).

If |C (1)| < k in ERn−l(p), but |C (1)| ≥ k in ERn(p), then it follows that at least
one of the vertices [n] \ [n− l] must be connected to one of the at most k vertices in
the connected component of vertex 1 in ERn−l(p). This has probability at most lkp,
so that

Pλ(|C (j)| < k, i←→/ j
∣∣|C (i)| = l)− Pλ(|C (j)| < k) ≤ lkλ/n. (4.4.27)

Therefore,∑
i,j∈[n]

[
Pλ(|C (i)| < k, |C (j)| < k, i←→/ j)− Pλ(|C (i)| < k)Pλ(|C (j)| < k)

]
(4.4.28)

≤
k−1∑
l=1

∑
i,j∈[n]

λkl

n
Pλ(|C (i)| = l) =

λk

n

∑
i,j∈[n]

Eλ[|C (i)|1{|C (i)|<k}]

= nkλχ<k(λ),

which, together with (4.4.21)–(4.4.22), completes the proof.

As a corollary of Propososition 4.10, we obtain that the number of vertices in large
components is concentrated:
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Corollary 4.11 (Concentration of the number of vertices in large components). Fix
kn = K log n and ν ∈ (1

2
, 1). Then, for K sufficiently large and every δ < 2ν − 1, as

n→∞,

Pλ(|Z≥kn − nζλ| > nν) = O(n−δ). (4.4.29)

Proof. By Proposition 4.9,

Eλ[Z≥kn ] = nPλ(|C (v)| ≥ kn) = nζλ +O(kn), (4.4.30)

and therefore, for n sufficiently large and since kn = o(nν),

{|Z≥kn − Eλ[Z≥kn ]| ≤ nν/2} ⊆ {|Z≥kn − nζλ| ≤ nν}. (4.4.31)

By Chebychev’s inequality (Theorem 2.18), Proposition 4.10 and since χ<kn(λ) ≤ kn,

Pλ(|Z≥kn − nζλ| > nν) ≤ Pλ(|Z≥kn − Eλ[Z≥kn ]| > nν/2) ≤ 4n−2νVar(Z≥kn)

≤ 4n1−2ν
(
λk2

n + kn) ≤ n−δ, (4.4.32)

for any δ < 2ν − 1 and n sufficiently large, since kn = K log n.

4.4.4 Step 3: No middle ground

We next show that the probability that kn ≤ |C (v)| ≤ αn is exponentially small
in kn when α < ζλ. In order to state the result, we introduce some notation. Recall
the definition of Iλ in (4.3.1). Let

J(α;λ) = Ig(α;λ), with g(α;λ) = (1− e−λα)/α. (4.4.33)

Then, J(α;λ) > 0 whenever g(α;λ) 6= 1. Since ζλ is defined to be the unique
solution to g(α;λ) = 1 and g(α;λ) > 1 for every α < ζλ, we arrive at J(α;λ) > 0
for all α < ζλ. This implies that the tail bounds in the next proposition really are
exponentially small:

Proposition 4.12 (Exponential bound for supercritical clusters smaller than ζλn).
Fix λ > 1 and let kn be such that kn →∞ as n→∞. Then, for any α < ζλ,

Pλ(kn ≤ |C (v)| ≤ αn) ≤ e−knJ(α;λ)/[1− e−J(α;λ)]. (4.4.34)

Proof. We start by bounding

Pλ(kn ≤ |C (v)| ≤ αn) =
αn∑
t=kn

Pλ(|C (v)| = t) ≤
αn∑
t=kn

Pλ(St = 0), (4.4.35)

where p = λ/n and we recall (4.1.3). By Proposition 4.6, St ∼ Bin(n − 1, 1 − (1 −
p)t) + 1− t. Therefore, with p = λ/n,

Pλ(St = 0) = P
(
Bin
(
n− 1, 1− (1− p)t

)
= t− 1

)
, (4.4.36)
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where we again abuse notation to write P(Bin(m, q) = s) for the probability that a
binomial random variable with parameters m and q takes the value s. To explain the
exponential decay in (4.4.34), we note that, for p = λ/n and t = bαnc,

1− (1− p)t = 1−
(

1− λ

n

)bαnc
= (1− e−λα)(1 + o(1)) for large n. (4.4.37)

The unique solution in (0, 1] to the equation 1 − e−λα = α is α = ζλ, as shown in
Exercise 4.17.

If α < ζλ, then α < 1− e−λα, so that g(α;λ) < 1. Therefore, J(α;λ) = Ig(α;λ) > 0,
and thus the probability in (4.4.36) is exponentially small. We now fill in the details.
First, by (4.4.36) and using that 1− p ≤ e−p, so that 1− (1− p)t ≥ 1− e−pt,

Pλ(St = 0) = Pλ
(
Bin(n− 1, 1− (1− p)t) = t− 1

)
(4.4.38)

≤ Pλ
(
Bin(n− 1, 1− (1− p)t) ≤ t− 1

)
≤ Pλ

(
Bin(n, 1− (1− p)t) ≤ t

)
≤ Pλ

(
Bin(n, 1− e−pt) ≤ t

)
= Pλ

(
e−sBin(n,1−e−pt) ≥ e−st

)
,

for each s > 0. We use Markov’s inequality (Theorem 2.17) to bound

Pλ(St = 0) ≤ estE
[
esBin

(
n,1−e−pt

)]
= est

(
(1− e−pt)e−s + e−pt

)n
(4.4.39)

= est
(

1 + (1− e−pt)(e−s − 1)
)n
≤ est+n(1−e−pt)(1−e−s)

= est+n(1−e−λt/n)(1−e−s),

where we use that 1−x ≤ e−x in the last inequality. The minimizer of s 7→ st+n(1−
e−pt)(1− e−s) over s is equal to

s∗ = log
(
n(1− e−λt/n)/t

)
, (4.4.40)

Write t = βn and g(β;λ) = (1− e−λβ)/β. Note that limβ↓0 g(β;λ) = λ > 1, and, by
Exercise 4.17, g(ζλ;λ) = 1. Further, β 7→ g(β;λ) is decreasing, since

∂

∂β
g(β;λ) = e−βλ

βλ− (eβλ − 1)

β2
< 0, (4.4.41)

by the fact that ex − 1 > x for every x ∈ R. As a result, s∗ ≥ 0 precisely when
t = bαnc with α ≤ ζλ.

Substitution of s∗ = log
(
n(1− e−λt/n)/t

)
into (4.4.39) yields

Pλ(St = 0) ≤ e−t
(

log g(t/n;λ)−1−g(t/n;λ)
)

= e−tIg(t/n;λ) . (4.4.42)

Since α 7→ g(α;λ) is decreasing with g(α;λ) > 1 for every α < ζλ, while λ 7→ Iλ is
increasing for λ > 1, we obtain that α 7→ Ig(α;λ) is decreasing. Thus, for t/n ≤ α < ζλ,
it follows that

Pλ(St = 0) ≤ e−tIg(α;λ) = e−tJ(α;λ). (4.4.43)
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We conclude that

Pλ(kn ≤ |C (v)| ≤ αn) ≤
αn∑
t=kn

Pλ(St = 0) ≤
αn∑
t=kn

e−tJ(α;λ) (4.4.44)

≤ e−knJ(α;λ)/[1− e−J(α;λ)].

This completes the proof of Proposition 4.12.

We finally state a consequence of Proposition 4.12 that shows that whp there is
no cluster with intermediate size, i.e., size in between kn = K log n and αn. Corollary
4.13 implies (4.4.6):

Corollary 4.13 (No intermediate clusters). Fix kn = K log n and α < ζλ and let
δ = KJ(α;λ)−1, with J(α;λ) as in Proposition 4.12, so that δ > 0 for K sufficiently
large. Then, with probability at least 1 − O(n−δ), there is no connected component
with size in between kn and αn.

Proof. By the union bound and the exchangeability of the vertices

Pλ(∃v : kn ≤ |C (v)| ≤ αn) ≤ nPλ(kn ≤ |C (1)| ≤ αn) ≤ Cne−knJ(α;λ), (4.4.45)

where we have used Proposition 4.12 and C = 1/[1 − e−J(α;λ)] < ∞ for the last
estimate. When kn = K log n, the right-hand side isO(n−δ) with δ = KJ(α;λ)−1 > 0
for K > 0 sufficiently large. This completes the proof of Corollary 4.13.

Exercises 4.18, 4.19 and 4.20 investigate the expected cluster size in the supercrit-
ical regime.

4.4.5 Step 4: Completion proof law of large numbers giant

In this section, we put the results in the previous 3 steps together to complete the
proof of Theorem 4.8. We fix ν ∈ (1

2
, 1), α ∈ (ζλ/2, ζλ) and take kn = K log n with

K sufficiently large. Let En be the event that

(1) |Z≥kn − nζλ| ≤ nν ;

(2) there does not exist a v ∈ [n] such that kn ≤ |C (v)| ≤ αn.

In the proof of Theorem 4.8 we use the following lemma:

Lemma 4.14 (|Cmax| equals Z≥kn whp). Fix α ∈ (ζλ/2, ζλ). The event En occurs
whp, i.e., with δ the minimum of δ(K;α) in Corollary 4.13 and δ(K, ν) in Corollary
4.11, Pλ(Ecn) = O(n−δ), and |Cmax| = Z≥kn on the event En.

Proof. To see that En occurs whp, note that Ecn equals the union of complements of
the events in (1) and (2) above, and we bound these complements one by one. By
Corollary 4.11, Pλ(|Z≥kn − nζλ| > nν) = O(n−δ). By Corollary 4.13,

Pλ(∃v ∈ [n] such that kn ≤ |C (v)| ≤ αn) ≤ O(n−δ). (4.4.46)



4.4 The supercritical regime 141

Together, these estimates imply that Pλ(Ecn) = O(n−δ) for K sufficiently large.

To prove that |Cmax| = Z≥kn on En, note that {|Z≥kn − ζλn| ≤ nν} ⊆ {Z≥kn ≥
1}. Thus, |Cmax| ≤ Z≥kn when the event En holds. In turn, |Cmax| < Z≥kn implies
that there are two connected components with size at least kn. Furthermore, since
En occurs, there are no connected components with sizes in between kn and αn.
Therefore, there must be two connected components with size at least αn, which in
turn implies that Z≥kn ≥ 2αn. When 2α > ζλ and n is sufficiently large, this is in
contradiction with Z≥kn ≤ ζλn+ nν . We conclude that |Cmax| = Z≥kn on En.

Proof of Theorem 4.8. By Lemma 4.14 and on the event En, |Cmax| = Z≥kn . Therefore,

Pλ
(∣∣|Cmax| − ζλn

∣∣ ≤ nν
)
≥ Pλ

(
{
∣∣|Cmax| − ζλn

∣∣ ≤ nν} ∩ En
)

(4.4.47)

= Pλ(En) ≥ 1−O(n−δ),

since |Z≥kn − nζλ| ≤ nν on the event En. This completes the proof of the law of large
number of the giant component in Theorem 4.8.

4.4.6 The discrete duality principle

Using the results we can construct a duality principle for Erdős-Rényi random
graphs similar to the duality principle for branching processes:

Theorem 4.15 (Discrete duality principle). Let λ > 1 > µλ be conjugates as in
(3.6.6). The vector of connected components in the graph ERn(λ/n) with the giant
component removed is close in law to the random graph ERm(µλ/m), where the vari-
able m = dnηλe is the asymptotic number of vertices outside the giant component.

Theorem 4.15 can be understood from Theorem 4.8, which implies that the giant
component has size n − m = ζλn(1 + o(1)). In the statement of Theorem 4.15 we
make use of the informal notion ‘close in law’. This notion can be made precise as
follows. Let ERn(λ/n)′ be ERn(λ/n) with the giant component removed. We write
P′n,λ for the law of ERn(λ/n)′, and we let Pm,µ denote the law of ERm(µ/m). Let
E be an event which is determined by connected components (such as ‘the largest
connected component exceeds k’). If limm→∞ Pm,µλ(E) exists, then

lim
n→∞

P′n,λ(E) = lim
m→∞

Pm,µλ(E). (4.4.48)

We sketch the proof of Theorem 4.15 only. First of all, all the edges in the
complement of the giant component in ERn(p) are (conditionally on not being in
the giant component) independent. Furthermore, the conditional probability that an
edge st is occupied in ERn(p) with the giant component removed is, conditionally on
|Cmax| = n−m, equal to

λ

n
=

λ

m

m

n
. (4.4.49)
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Now, m ≈ ηλn, so that the conditional probability that an edge st is occupied in
ERn(p) with the giant component removed, conditionally on |Cmax| ≈ ζλn, is equal
to

λ

n
≈ ληλ

m
=
µλ
m
, (4.4.50)

where we have used (3.6.2) and (3.6.4), which implies that ληλ = µλ. Therefore,
the conditional probability that an edge st is occupied in ERn(p) with the giant
component removed, conditionally on |Cmax| ≈ ζλn, is close to µλ/m, and different
edges are independent.

We omit further details and refer the reader to [163, Section 5.6] or [54, Section
6.3] for a complete proof of Theorem 4.15 and a more substantial discussion of the
duality principle. The argument in [14, Section 10.5] is similar to the above informal
version of the discrete duality principle.

Exercise 4.21 investigates the size of the second largest supercritical cluster using
duality.

4.5 CLT for the giant component

In this section, we prove a central limit theorem (CLT) for the giant component in
the supercritical regime, extending the law of large numbers for the giant component
in Theorem 4.8. The main result is as follows:

Theorem 4.16 (Central limit theorem for giant component). Fix λ > 1. Then,

|Cmax| − ζλn√
n

d−→ Z, (4.5.1)

where Z is a normal random variable with mean 0 and variance

σ2
λ =

ζλ(1− ζλ)
(1− λ+ λζλ)2

. (4.5.2)

As in the proof of Theorem 4.8, we make use of the exploration of connected
components to prove Theorem 4.16. In the proof, we make essential use of Theorem
4.8, as well as from bounds on the second largest component in the supercritical
regime derived in its proof.

We start by sketching the main ideas in the proof of Theorem 4.16. Fix k = kn,
which will be chosen later on. We explore the union of the connected components of
the vertices [k] = {1, . . . , k}. We use Theorem 4.8 to show that, for an appropriate
k → ∞ and whp as n → ∞, this union contains the largest connected component
Cmax, and it cannot be larger than |Cmax|+kbn, where bn = K log n is an upper bound
on the second largest component in the supercritical regime. Taking k = o(nν) with
ν < 1

2
, this union of components is equal to |Cmax| + o(

√
n). As a result, a CLT for

the union of components implies one for |Cmax|. We now describe the exploration of
the union of the connected components of [k].
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Let S0 = k and, for t ≥ 1,

St = St−1 +Xt − 1, (4.5.3)

where
Xt ∼ Bin

(
n− St−1 − (t− 1), p

)
. (4.5.4)

Equations (4.5.3) and (4.5.4) are similar to the ones in (4.1.3) and (4.1.4). We next
derive the distribution of St in a similar way as in Proposition 4.6:

Proposition 4.17 (The law of St revisited). For all t ∈ [n],

St + (t− k) ∼ Bin(n− k, 1− (1− p)t). (4.5.5)

Moreover, for all l, t ∈ [n] satisfying l ≥ t, and conditionally on St,

Sl + (l − t)− St ∼ Bin
(
n− t− St, 1− (1− p)l−t

)
. (4.5.6)

For k = 1, the equality in distribution in (4.5.5) in Proposition 4.17 reduces to
Proposition 4.6.

Proof. We adapt the proof of Proposition 4.6. For t ≥ 1, let Nt represent the number
of unexplored vertices at time t, i.e., as in (4.3.14),

Nt = n− t− St. (4.5.7)

To prove (4.5.5), it is more convenient to show the equivalent statement that, for all
t ≥ 1,

Nt ∼ Bin
(
n− k, (1− p)t

)
. (4.5.8)

To see this informally, we note that each of the vertices [n] \ [k] has, independently
of all other vertices, probability (1 − p)t to stay neutral in the first t explorations.
Formally, conditionally on St−1, Xt ∼ Bin(n − St−1 − (t − 1), p) = Bin(Nt−1, p) by
(4.5.4). Thus, noting that N0 = n− k and

Nt = n− t− St = n− t− St−1 −Xt + 1

= n− (t− 1)− St−1 −Xt

= Nt−1 −Xt ∼ Bin(Nt−1, 1− p), (4.5.9)

the conclusion follows by recursion on t ≥ 1 and Exercise 4.15. We note that (4.5.9)
also implies that for any l ≥ t,

Nl ∼ Bin(Nt, (1− p)l−t). (4.5.10)

Substituting Nt = n− t− St, this implies that

n− l − Sl ∼ Bin
(
n− t− St, (1− p)l−t

)
(4.5.11)

∼ n− t− St − Bin
(
n− t− St, 1− (1− p)l−t

)
,
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which, in turn, is equivalent to the statement that, for all l ≥ t and conditionally on
St,

Sl + (l − t)− St ∼ Bin
(
n− t− St, 1− (1− p)l−t

)
. (4.5.12)

We now state a corollary of Proposition 4.17 which states that Sbntc satisfies a
central limit theorem. In its statement, we make use of the asymptotic mean

µt = 1− t− e−λt (4.5.13)

and asymptotic variance
vt = e−λt(1− e−λt). (4.5.14)

The central limit theorem for Sbntc reads as follows:

Corollary 4.18 (CLT for Sbntc). Fix k = kn = o(
√
n), and let S0 = k. Then, for

every t ∈ (0, 1), the random variable
Sbntc−nµt√

nvt
converges in distribution to a standard

normal random variable.

Proof. The statement follows immediately from the central limit theorem for the
binomial distribution when we can show that

E[Sbntc] = nµt + o(
√
n), Var(Sbntc) = nvt + o(n). (4.5.15)

Indeed, by the central limit theorem for the binomial distribution,

Sbntc − E[Sbntc]√
Var(Sbntc)

d−→ Z, (4.5.16)

where Z is a standard normal random variable (see also Exercise 4.22). Write

Sbntc − nµt√
nvt

=

√
Var(Sbntc)

nvt

Sbntc − E[Sbntc]√
Var(Sbntc)

+
E[Sbntc]− nµt√

nvt
. (4.5.17)

The last term converges to zero by (4.5.15), and the factor
√

Var(Sbntc)

nvt
converges to

one. Therefore, (4.5.15) implies the central limit theorem.
To prove the asymptotics of the mean in (4.5.15), we use (4.5.5) to obtain that

E[Sbntc] = (n− k)
(

1− (1− λ

n
)bntc

)
−
(
bntc − k

)
= nµt + o(

√
n), (4.5.18)

as long as k = o(
√
n). To prove the asymptotics of the variance in (4.5.15), we note

that

Var(Sbntc) = (n− k)(1− λ

n
)bntc

(
1− (1− λ

n
)bntc

)
= nvt + o(n), (4.5.19)

as long as k = o(n). This completes the proof of Corollary 4.18.
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With Corollary 4.18 at hand, we are ready to complete the proof of Theorem 4.16:

Proof of Theorem 4.16. Let |C ([k])| be the size of the union of the components of the
vertices in [k]. Recall the recursion for (St)t≥0 in (4.5.3)–(4.5.4). Then,

|C ([k])| = min{m : Sm = 0}. (4.5.20)

Let k = kn → ∞. We prove below that |C ([k])| satisfies a CLT with asymptotic
mean nζλ and asymptotic variance nσ2

λ.
To do this, we start by noting that by Corollary 4.13 and Theorem 4.8, whp, the

second largest cluster has size at most K log n. Indeed, by Corollary 4.13 and whp,
there do not exist any clusters with size in between K log n and αn for any α < ζλ.
By Theorem 4.8, |Cmax| = ζλn(1+oP(1)). Finally, by Lemma 4.14, whp |Cmax| = Z≥kn
and by Corollary 4.11, Z≥kn = ζλn(1 + oP(1)). We conclude that there is a unique
connected components of size larger than K log n which is Cmax.

We conclude that, whp,

|Cmax| ≤ |C ([k])| ≤ |Cmax|+ (k − 1)K log n, (4.5.21)

so that a central limit theorem for |Cmax| follows from that for |C ([k])| for any k =
kn →∞ with kn = o(

√
n).

The central limit theorem for |C ([k])| is proved by upper and lower bounds on the
probabilities

Pλ
( |C ([k])| − ζλn√

n
> x

)
. (4.5.22)

Upper bound in CLT |C ([k])|. For the upper bound, we use that (4.5.20) implies
that, for every `,

Pλ(|C ([k])| > `) = Pλ(Sm > 0 ∀m ≤ `). (4.5.23)

Applying (4.5.23) to ` = mx = bnζλ + x
√
nc, we obtain

Pλ
( |C ([k])| − ζλn√

n
> x

)
= Pλ(Sm > 0 ∀m ≤ mx) ≤ Pλ(Smx > 0). (4.5.24)

To analyse Pλ(Smx > 0), we rely on Corollary 4.18, for which we start by carefully
analysing the mean and variance of Smx . We use (4.5.13), (4.5.15) and µζλ = 0, and
write µ′t for the derivative of t 7→ µt, to see that

E[Smx ] = nµζλ +
√
nxµ′ζλ + o(

√
n) =

√
nx(λe−λζλ − 1) + o(

√
n) (4.5.25)

=
√
nx(λe−λζλ − 1) + o(

√
n),

where we note that λe−λζλ − 1 < 0 for λ > 1, see Exercise 4.23.
The variance of Smx is, by (4.5.14) and (4.5.15),

Var(Smx) = nvζλ + o(n), (4.5.26)
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where vζλ > 0. Thus,

Pλ(Smx > 0) = Pλ
(Smx − E[Smx ]√

Var(Smx)
>
x(1− λe−λζλ)
√
vζλ

)
+ o(1). (4.5.27)

By Corollary 4.18, the right-hand side converges to

P
(
Z >

x(1− λe−λζλ)
√
vζλ

)
= P(Z ′ > x), (4.5.28)

where Z ′ has a normal distribution with mean 0 and variance vζλ(1− λe−λζλ)−2. We
finally note that 1− ζλ = e−λζλ by (3.6.2), so that

vζλ = e−λζλ(1− e−λζλ) = ζλ(1− ζλ). (4.5.29)

By (4.5.29), the variance of the normal distribution appearing in the lower bound can
be rewritten as

vζλ
(1− λe−λζλ)2

=
ζλ(1− ζλ)

(1− λ+ λζλ)2
= σ2

λ, (4.5.30)

where we recall (4.5.2). By (4.5.24), this completes the upper bound.

Lower bound in CLT |C ([k])|. The lower bound is slightly more involved. We
again use the fact that

Pλ
(
|C ([k])| − ζλn > x

√
n
)

= Pλ(Sm > 0 ∀m ≤ mx), (4.5.31)

where we recall that mx = bnζλ + x
√
nc. Then, for any ε > 0, we bound from below

Pλ(Sm > 0 ∀m ≤ mx) ≥ Pλ(Sm > 0 ∀m ≤ mx, Smx > ε
√
n) (4.5.32)

= Pλ(Smx > ε
√
n)− Pλ(Smx > ε

√
n,∃m < mx : Sm = 0).

The first term can be handled in a similar way as for the upper bound. Indeed,
repeating the steps in the upper bound, we obtain that, for every ε > 0,

Pλ(Smx > ε
√
n) = P

(
Z >

x(1− λe−λζλ) + ε
√
vζλ

)
+ o(1). (4.5.33)

The quantity in (4.5.33) converges to P(Z ′ > x + ε/(1 − λe−λζλ)), where Z ′ has a
normal distribution with mean 0 and variance σ2

λ. When ε ↓ 0, in turn, this converges
to P(Z ′ > x), as required.

We conclude that to prove the lower bound in the CLT for |C ([k])|, it suffices to
prove that, for every ε > 0 fixed and as n→∞,

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) = o(1). (4.5.34)

To bound the probability in (4.5.34), we first use Boole’s inequality to get

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) ≤

mx−1∑
m=k

Pλ(Sm = 0, Smx > ε
√
n), (4.5.35)
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where we use that m ≥ k, since S0 = k and St−St−1 ≥ −1. For m ≤ αn with α < ζλ,
by Exercise 4.24,

Pλ(Sm = 0) ≤ e−mJ(m/n,λ). (4.5.36)

We conclude that

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) (4.5.37)

≤
mx−1∑

m=bαnc+1

Pλ(Sm = 0, Smx > ε
√
n) +

bαnc∑
m=k

e−mJ(m/n,λ)

=
mx−1∑

m=bαnc+1

Pλ(Sm = 0, Smx > ε
√
n) + o(1),

since k = kn →∞.

We continue by proving a similar bound for m > αn, where α < ζλ can be
chosen arbitrarily close to ζλ. Here we make use of the fact that, for m close to ζλn,
Eλ[Xm] < 1, so that m 7→ Sm, for m ≥ αn is close to a random walk with negative
drift. As a result, the probability that Sm = 0, yet Smx > ε

√
n is small.

We now present the details of this argument. We bound, with X ∼ Bin
(
n−m, 1−

(1− p)mx−m
)
,

Pλ
(
Sm = 0, Smx > ε

√
n
)

= Pλ
(
Smx > ε

√
n | Sm = 0

)
Pλ(Sm = 0) (4.5.38)

= Pλ
(
X > (mx −m) + ε

√
n
)
Pλ(Sm = 0),

since, by (4.5.6) in Proposition 4.17 and conditionally on Sm = 0,

Smx + (mx −m) ∼ Bin
(
n−m, 1− (1− p)mx−m

)
. (4.5.39)

We fix α = ζλ− ε for some ε > 0 sufficiently small. We use that 1− (1− a)b ≤ ab for
every a, b with 0 < a < 1, b ≥ 1 to arrive at

1− (1− p)mx−m = 1−
(
1− λ

n

)mx−m ≤ λ(mx −m)

n
. (4.5.40)

As a result, using that n−m ≤ n(1− ζλ + ε) since m ≥ αn with α = ζλ− ε and with
p = λ/n,

Eλ[X] = (n−m)[1− (1− p)mx−m] ≤ (mx −m)λ(1− ζλ + ε). (4.5.41)

Since λ > 1, we can use that λ(1− ζλ) = λe−λζλ < 1 by Exercise 4.23, so that, taking
ε > 0 so small that λ(1− ζλ + ε) < 1− ε,

Eλ[X] ≤ (1− ε)(mx −m). (4.5.42)

Therefore,

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ Pλ

(
X > (mx −m) + ε

√
n
)

(4.5.43)

≤ Pλ
(
X − Eλ[X] > ε

(
(mx −m) +

√
n
))
.
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By Theorem 2.21, with t = ε
(
(mx −m) +

√
n
)

and using (4.5.42), we obtain

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
− t2

2
(
(1− ε)(mx −m) + t/3

)). (4.5.44)

We split, depending on whether mx−m ≥ ε
√
n or mx−m ≤ ε

√
n. For mx−m ≥ ε

√
n

and since t ≥ ε(mx −m) and (1− ε) + ε/3 ≤ 1,

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
− t

2
(
(1− ε)(mx −m)/t+ 1/3

)) (4.5.45)

≤ exp
(
− t

2
(
(1− ε)/ε+ 1/3

)) ≤ e−εt/2

≤ exp
(
−ε2(mx −m)/2

)
≤ exp

(
− ε2
√
n/2
)
.

For mx −m ≤ ε
√
n, since t ≥ ε

√
n,

Pλ
(
Sm = 0, Smx > ε

√
n
)
≤ exp

(
− t2

2
(
(1− ε)ε√n+ t/3

)) (4.5.46)

≤ exp
(
− t2

2
(
(1− ε)t+ t/3

)) ≤ exp
(
− 3t/8

)
≤ exp

(
−3ε
√
n/8
)
.

We conclude from (4.5.37) and (4.5.45)–(4.5.46) that

Pλ(Smx > ε
√
n,∃m < mx : Sm = 0) (4.5.47)

≤
mx−1∑

m=bαnc+1

Pλ(Sm = 0, Smx > ε
√
n) + o(1)

≤ n[exp
(
−ε2
√
n/2
)

+ exp
(
−3ε
√
n/4
)
] + o(1) = o(1).

The bounds (4.5.36), (4.5.45) and (4.5.46) complete the proof of (4.5.34), and thus
that of the lower bound in the CLT for |C ([k])|.

4.6 Notes and discussion

Notes on Section 4.1. The informal discussion of the exploration of connected
components in the Erdős-Rényi random graph is inspired by the Probabilistic Methods
book by Alon and Spencer, see in particular [14, Section 10.5].

There are several related definitions of the Erdős-Rényi random graph. Many of
the classical results are proved for ERn(M), which is the random graph on the vertices
[n] obtained by adding M edges uniformly at random and without replacement. Since
the number of edges in the Erdős-Rényi random graph has a binomial distribution
with parameters n(n − 1)/2 and p, we should think of M corresponding roughly to
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pn(n− 1)/2. Also, writing PM for the distribution of ERn(M), Pλ and PM are related
by

Pλ(E) =

n(n−1)/2∑
M=1

PM(E)P
(
Bin(n(n− 1)/2, p) = M

)
, (4.6.1)

where E is any event. This allows one to deduce results for ERn(M) from the ones
for ERn(p) and vice versa. The model ERn(M) was first studied in the seminal work
by Erdős and Rényi [115], the model ERn(p) was introduced by Gilbert in [129], and
a model with possibly multiple edges between vertices in [20]. An early reference with
a correct, yet not entirely rigorous, analysis of the phase transition is Solomonoff and
Rapoport [243].

The random graph ERn(M) has the advantage that we can think of the graph
as evolving as a process, by adding the edges one at a time, which also allows us to
investigate dynamical properties, such as when the first cycle appears. This is also
possible for ERn(p) using the coupling in Section 4.1.1, but is slightly less appealing.

We refer to the books [14, 54, 163] for more detailed references of the early liter-
ature on random graphs.

Notes on Section 4.2. The idea of exploration processes to investigate cluster
sizes is introduced by Martin-Löf in [200] and by Karp in [170]. See also the book
by Alon and Spencer, [14, Section 10.5], where these ideas were formulated slightly
more intuitively than we do.

Notes on Section 4.3. The strategy in the proof of Theorems 4.4 and 4.5 is close
in spirit to the proof by Alon and Spencer in [14], with ingredients taken from [61],
which, in turn, was inspired by [65, 66]. In particular, the use of the random variable
Z≥k first appeared in these references. The random variable Z≥k also plays a crucial
role in the analysis of |Cmax| both when λ > 1 and when λ = 1. Further, Proposition
4.6 is [14, Claim 3 in Section 10.5]. Exercise 4.25 investigates the subcritical behavior
of ERn(M).

Notes on Section 4.4. Again, the strategy in the proof of Theorem 4.8 is close
in spirit to the proof by Alon and Spencer in [14], where we provide more mathe-
matical details. Exercise 4.25 investigates the supercritical behavior of ERn(M). In
particular, Exercises 4.25 and 4.26 show that ERn(M) has a phase transition when
M = nλ/2 at λ = 1.

Notes on Section 4.5. The central limit theorem for the largest supercritical
cluster was proved by Martin-Löf in [201], by Pittel in [232] and by Barraez et al.
in [30]. In the proof by Pittel in [232], the result follows as a corollary of the main
result, involving central limit theorems for various random graph quantities, such as
the number of tree components of various sizes. Martin-Löf [201] studies the giant
component in the context of epidemics. His proof makes clever use of a connection
to asymptotic stochastic differential equations, and is reproduced by Durrett in [104].
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Since we do not assume familiarity with stochastic differential equations, we have
produced an independent proof that only relies on elementary techniques. A local
central limit theorem for the giant component is proved by Bender, Canfield and
McKay [34], see also [32] for related results.

4.7 Exercises for Chapter 4

Exercise 4.1 (Number of edges in ERn(p)). What is the distribution of the number of edges
in the Erdős-Rényi random graph ERn(p)?

Exercise 4.2 (CLT for number of edges in ERn(p)). Prove that the number of edges in
ERn(p) satisfies a central limit theorem and compute its asymptotic mean and variance.

Exercise 4.3 (Verification of cluster size description). Collect evidence that T in (4.1.5) has
the same distribution as |C (v)| by computing the probabilities of the events that {|C (v)| = 1},
{|C (v)| = 2} and {|C (v)| = 3} directly, and the probabilities of {T = 1}, {T = 2} and
{T = 3} by using (4.1.4), (4.1.3) and (4.1.5).

Exercise 4.4 (CLT for number of edges in ERn(λ/n)). Prove that the number of edges
in ERn(λ/n) satisfies a central limit theorem with asymptotic mean and variance equal to
λn/2.

Exercise 4.5 (Mean number of triangles in ERn(λ/n)). We say that the distinct vertices
(i, j, k) form an occupied triangle when the edges ij, jk and ki are all occupied. Note that
(i, j, k) is the same triangle as (i, k, j) and as any other permutation. Compute the expected
number of occupied triangles in ERn(λ/n).

Exercise 4.6 (Mean number of 4-cycles in ERn(λ/n)). We say that the distinct vertices
(i, j, k, l) form an occupied 4-cycle when the edges ij, jk, kl and li are all occupied. Note
that the 4-cycles (i, j, k, l) and (i, k, j, l) are different. Compute the expected number of
occupied 4-cycles in ERn(λ/n).

Exercise 4.7 (Poisson limits for number of triangles and 4-cycles in ERn(λ/n)). Show that
the number of occupied triangles in an Erdős-Rényi random graph on n vertices with edge
probability p = λ/n has an asymptotic Poisson distribution. Do the same for the number of
occupied 4-cycles. Hint: use the method of moments in Theorem 2.4.

Exercise 4.8 (Clustering of ERn(λ/n)). Recall from (1.5.4) in Section 1.5 that the clus-
tering coefficient of a random graph G = (V,E) with V the vertex set and E the edge set,
is defined to be

CCG =
E[∆G]

E[WG]
, (4.7.1)

where

∆G =
∑

i,j,k∈V
1{ij,ik,jk occupied}, WG =

∑
i,j,k∈V

1{ij,ik occupied}. (4.7.2)

Thus (since we are not restricting to i < j < k in ∆G and to i < k in WG), ∆G is six times
the number of triangles in G, WG is two times the number of wedges in G, and CCG is the
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ratio of the number of expected closed triangles to the expected number of wedges. Compute
CCG for ERn(λ/n).

Exercise 4.9 (Asymptotic clustering of ERn(λ/n)). Take G = ERn(λ/n). Show that

WG/n
P−→ λ2 by using the second moment method. Use Exercise 4.7 to conclude that

n∆G

WG

d−→ 6

λ2
Y, (4.7.3)

where Y ∼ Poi(λ3/6).

Exercise 4.10 (|Cmax| increasing). Show that |Cmax| is an increasing random variable.

Exercise 4.11. Is the event {v ∈ Cmax} an increasing event?

Exercise 4.12 (Upper bound for mean cluster size). Show that, for λ < 1, Eλ[|C (v)|] ≤
1/(1− λ).

Exercise 4.13 (Convergence in probability of largest subcritical cluster). Prove that The-

orems 4.4 and 4.5 imply that |Cmax|/ log n
P−→ 1/Iλ.

Exercise 4.14 (Relation |Cmax| and Z≥k). Prove (4.3.5) and conclude that {|Cmax| ≥ k} =
{Z≥k ≥ k}.
Exercise 4.15 (A binomial number of binomial trials). Show that if N ∼ Bin(n, p) and,
conditionally on N , M ∼ Bin(N, q), then M ∼ Bin(n, pq). Use this to complete the proof
that Nt ∼ Bin(n− 1, (1− p)t).
Exercise 4.16 (Connectivity with given expected cluster size). Show that

Pλ
(
1←→/ 2

∣∣|C (1)| = l
)

= 1− l − 1

n− 1
. (4.7.4)

Exercise 4.17 (Uniqueness solution of Poisson survival probability equation). Fix λ > 1.
Prove that the unique solution in (0, 1] to the equation 1− e−λα = α is α = ζλ, where ζλ is
the survival probability of a Poisson branching process with parameter λ.

Exercise 4.18 (Connectivity and expected cluster size). Prove that the expected cluster
size of a given vertex

χ(λ) = Eλ[|C (1)|], (4.7.5)

satisfies
χ(λ) = 1 + (n− 1)Pλ(1←→ 2). (4.7.6)

Exercise 4.19 (Connectivity function). Prove that (4.4.1) and Corollary 4.13 imply that,
for λ > 1,

Pλ(1←→ 2) = ζ2
λ[1 + o(1)]. (4.7.7)

Exercise 4.20 (Supercritical expected cluster size). Prove that (4.4.1) implies that the
expected cluster size satisfies, for λ > 1,

χ(λ) = ζ2
λn(1 + o(1)). (4.7.8)

Exercise 4.21 (Second largest supercritical cluster). Use the duality principle to show that
the second largest component of a supercritical Erdős-Rényi random graph C(2) satisfies

|C(2)|
log n

P−→ 1/Iµλ . (4.7.9)
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Exercise 4.22 (CLT for binomials with general parameters). Prove that if Xn ∼ Bin(mn, pn),
where Var(Xn) = mnpn(1− pn)→∞, then

Xn −mnpn√
mnpn(1− pn)

d−→ Z, (4.7.10)

where Z is a standard normal random variable. Use this to conclude that (4.5.15) implies
(4.5.16).

Exercise 4.23 (Asymptotic mean and variance at t = ζλ). Prove that µζλ = 0 and µ′ζλ =

λe−λζλ − 1 < 0 for λ > 1.

Exercise 4.24 (The probability that Sm = 0 in CLT proof). Prove that (4.5.36) holds
uniformly in m ≤ αn with α < ζλ, by using (4.5.5) in Proposition 4.17 and adapting the
proof for k = 1 in (4.4.43).

Exercise 4.25 (Subcritical clusters for ERn(M)). Fix λ < 1. Use (4.6.1) and Theorems

4.4–4.5 to show that |Cmax|/ log n
P−→ 1/Iλ for ERn(M) when M = nλ/2.

Exercise 4.26 (Supercritical clusters for ERn(M)). Fix λ > 1. Use (4.6.1) and Theorem

4.8 to show that |Cmax|/n P−→ ζλ for ERn(M) when M = nλ/2.



Chapter 5

Erdős-Rényi random graph revisited

Abstract

In the previous chapter, we have proved that the largest
connected component of the Erdős-Rényi random graph ex-
hibits a phase transition. In this chapter, we investigate
several more properties of the Erdős-Rényi random graph.
We focus on the critical behavior of Erdős-Rényi random
graphs, their connectivity threshold, and their degree struc-
ture.

Organization of this chapter. We start by investigating the critical behavior of
the size of largest connected component in the Erdős-Rényi random graph by studying
values of p close to 1/n in Section 5.1. We look deeper into the critical Erdős-Rényi
random graph in Section 5.2, where we use martingale properties to investigate the
critical window. After this, in Section 5.3, we investigate the phase transition for
connectivity of ERn(p), and for p inside the connectivity critical window, compute
the asymptotic probability that the Erdős-Rényi random graph is connected. In
Section 5.4, we study the degree sequence of an Erdős-Rényi random graph. We close
this chapter with notes and discussion in Section 5.5.

5.1 The critical behavior

In this section, we study the behavior of the largest connected component of
ERn(λ/n), for p close to the critical value 1/n. In this case, it turns out that there is
interesting behavior, where the size of the largest connected component is large, yet
much smaller than the volume n:

Theorem 5.1 (Largest critical cluster). Take λ = 1 + θn−1/3, where θ ∈ R. There
exists a constant b = b(θ) > 0 such that, for all ω > 1,

P1+θn−1/3

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
≥ 1− b

ω
. (5.1.1)

Theorem 5.1 shows that the largest critical cluster obeys non-trivial scaling when
p is of the form p = (1 + θn−1/3)/n. While |Cmax| is logarithmically small in the
subcritical regime λ < 1 by Theorem 4.4, and |Cmax| = ΘP(n) in the supercritical
regime λ > 1 by Theorem 4.8, at the critical value λ = 1, we see that the largest cluster
is ΘP(n

2/3). The result in Theorem 5.1 shows that the random variable |Cmax|n−2/3

is a tight sequence of random variables, in the sense that |Cmax|n−2/3 ≤ ω whp for
ω sufficiently large. Also, |Cmax|n−2/3 ≥ ω−1 whp, so that also n2/3/|Cmax| is a tight
sequence of random variables. See Exercise 5.1 for a proof of these facts. See Figures

153
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Figure 5.1: Realizations of Erdős-Rényi random graphs with n = 100 and n = 1000
elements, respectively, and edge probabilities λ/n with λ = 1.

5.1–5.2 for plots of critical Erdős-Rényi random graphs with λ = 1 and n = 10l with
l = 2, 3, 4, 5.

5.1.1 Strategy of the proof

In this section, we formulate two key results for the proof of Theorem 5.1. We start
by studying the tail of the distribution of |C (v)| for the critical case λ = 1 + θn−1/3.
We generalize Theorems 4.2–4.3 to λ = 1 + θn−1/3 that are close to the critical value
λ = 1, and prove that bounds as for the Poisson branching process in (3.6.22) in
Theorem 3.18 are also valid for ERn(λ/n) for λ = 1 + θn−1/3.

Proposition 5.2 (Critical cluster tails). Take λ = 1 + θn−1/3, where θ ∈ R, and let
r > 0. For k ≤ rn2/3, there exist constants 0 < c1 < c2 < ∞ with c1 = c1(r, θ) such
that minr≤1 c1(r, θ) > 0, and c2 independent of r and θ, such that, for n sufficiently
large,

c1√
k
≤ P1+θn−1/3(|C (1)| ≥ k) ≤ c2

(
(θ ∨ 0)n−1/3 +

1√
k

)
. (5.1.2)

Proposition 5.2 implies that the tail of the critical cluster size distribution obeys
similar asymptotics as the tail of the total progeny of a critical branching process (see
(3.6.22) in Theorem 3.18). The tail in (5.1.2) is only valid for values of k that are
not too large. Indeed, when k > n, then Pλ(|C (v)| ≥ k) = 0. Therefore, there must
be a cut-off above which the asymptotics fails to hold. As it turns out, this cut-off is
given by rn2/3. The upper bound in (5.1.2) holds for a wider range of k, in fact, the
proof yields that (5.1.2) is valid for all k.



5.1 The critical behavior 155

Figure 5.2: Realizations of Erdős-Rényi random graphs with n = 10000 and
n = 100000 elements, respectively, and edge probabilities λ/n with λ = 1.

We next study the critical expected cluster size:

Proposition 5.3 (Bound on critical expected cluster size). Take λ = 1+θn−1/3 with
θ < 0. Then, for all n ≥ 1,

E1+θn−1/3 [|C (1)|] ≤ n1/3/|θ|. (5.1.3)

Proposition 5.3 is intuitively consistent with Theorem 5.1. Indeed, in the critical
regime, one can expect the expected cluster size to receive a substantial amount from
the contribution where the vertex is in the maximal connected component. This
suggests that, for any v ∈ [n],

E1+θn−1/3 [|C (1)|] ∼ E1+θn−1/3 [|C (1)|1{1∈Cmax}] = E1+θn−1/3 [|Cmax|1{v∈Cmax}] (5.1.4)

=
1

n
E1+θn−1/3 [|Cmax|2],

where ∼ denotes an equality with an uncontrolled error. When |Cmax| is of the order
n2/3 as Theorem 5.1 suggests,

E1+θn−1/3 [|Cmax|2] ∼ n4/3. (5.1.5)

Therefore, one is intuitively lead to the conclusion

E1+θn−1/3 [|C (1)|] ∼ n1/3. (5.1.6)

The above heuristic is confirmed by Proposition 5.3, at least when θ < 0. With a
little more effort, we can show that Proposition 5.3 remains to hold for all θ ∈ R.
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We refrain from proving this here, and return to this question in the next section.
Exercise 5.2 investigates a lower bound of order n1/3 on the expected cluster size for
λ = 1 + θn−1/3.

Propositions 5.2 and 5.3 are proved in Section 5.1.2 below. We first prove Theorem
5.1 subject to them.

Proof of Theorem 5.1 subject to Propositions 5.2 and 5.3. The statement in Theorem
5.1 is trivial when ω ≤ b, so that, by taking b sufficiently large, we may assume that
ω ≥ 1 is large. In turn, the statement in Theorem 5.1 is trivial when ω−1n2/3 ≤ 1 and
ωn2/3 ≥ n, i.e., for n ≤ ω3/2, since then P1+θn−1/3

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
= 1.

Since ω is large, we may also assume that n ≥ N , where N is large.
We start with the upper bound on |Cmax|. We again make use of the fundamental

equality {|Cmax| ≥ k} = {Z≥k ≥ k}, where we recall that

Z≥k =
∑
v∈[n]

1{|C (v)|≥k}. (5.1.7)

By Markov’s inequality (Theorem 2.17),

P1+θn−1/3

(
|Cmax| ≥ ωn2/3

)
= P1+θn−1/3

(
Z≥ωn2/3 ≥ ωn2/3

)
(5.1.8)

≤ ω−1n−2/3E1+θn−1/3 [Z≥ωn2/3 ].

By Proposition 5.2,

E1+θn−1/3 [Z≥ωn2/3 ] = nP1+θn−1/3(|C (1)| ≥ ωn2/3) ≤ c2n
2/3((θ ∨ 0) + 1/

√
ω), (5.1.9)

so that

P1+θn−1/3

(
|Cmax| > ωn2/3

)
≤ c2n

2/3((θ ∨ 0) + 1/
√
ω)/(ωn2/3) (5.1.10)

≤ c2

ω
((θ ∨ 0) + 1/

√
ω).

This establishes the upper bound on |Cmax| with b ≤ c2[(θ ∨ 0) + 1].

For the lower bound on |Cmax|, we make use of monotonicity in λ. The random
variable |Cmax| is increasing in λ (recall Exercise 4.10). Therefore,

P1+θn−1/3

(
|Cmax| < ω−1n2/3

)
≤ P1−θ̄n−1/3

(
|Cmax| < ω−1n2/3

)
, (5.1.11)

where we define θ̄ = |θ| ∨ 1. Thus, −θ̄ ≤ −1. We can thus restrict to prove the result
for θ ≤ −1, so we assume that θ < −1 from now on. We use Chebychev’s inequality
(Theorem 2.18), as well as {|Cmax| < k} = {Z≥k = 0}, to obtain that

P1+θn−1/3

(
|Cmax| < ω−1n2/3

)
= P1+θn−1/3

(
Z≥ω−1n2/3 = 0

)
(5.1.12)

≤ Var1+θn−1/3(Z≥ω−1n2/3)

E1+θn−1/3 [Z≥ω−1n2/3 ]
2
.
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By (5.1.2) and with k = n2/3/ω with ω ≥ 1,

E1+θn−1/3 [Z≥ω−1n2/3 ] = nP1+θn−1/3(|C (1)| ≥ k) ≥ c1

√
ωn2/3, (5.1.13)

where we have used that c1 = c1(θ) = minr≤1 c1(r, θ) > 0. Also, by Proposition 4.7,

Var1+θn−1/3(Z≥ω−1n2/3) ≤ nE1+θn−1/3 [|C (1)|1{|C (1)|≥ω−1n2/3}]. (5.1.14)

By Proposition 5.3, we can further bound, using that θ ≤ −1,

Var1+θn−1/3(Z≥ω−1n2/3) ≤ nE1+θn−1/3 [|C (1)|] ≤ n4/3. (5.1.15)

Substituting (5.1.12)–(5.1.15), we obtain, for n sufficiently large,

P1+θn−1/3

(
|Cmax| < ω−1n2/3

)
≤ n4/3

c2
1ωn

4/3
=

1

c2
1ω
. (5.1.16)

This establishes the lower bound on |Cmax|.
We conclude that

P1+θn−1/3

(
ω−1n2/3 ≤ |Cmax| ≤ ωn2/3

)
= 1− P1+θn−1/3

(
|Cmax| < ω−1n2/3

)
(5.1.17)

− P1+θn−1/3

(
|Cmax| > ωn2/3

)
≥ 1− 1

c2
1ω
− c2

ω3/2
≥ 1− b

ω
,

when b = c−2
1 + c2. This completes the proof of Theorem 5.1 subject to Propositions

5.2 and 5.3.

5.1.2 Critical cluster tails and expected cluster size

In this section, we prove Propositions 5.2 and 5.3. We start with the proof of
Proposition 5.2.

Proof of Proposition 5.2. Theorem 4.2 gives

P1+θn−1/3(|C (1)| ≥ k) ≤ Pn,p(T ≥ k), (5.1.18)

where we recall that Pn,p is the law of a binomial branching process with parameters
n and p = λ/n = (1 + θn−1/3)/n, and T its total progeny. By Theorem 3.20,

P1+θn−1/3(|C (1)| ≥ k) ≤ P∗1+θn−1/3(T
∗ ≥ k) + en(k), (5.1.19)

where, by (3.7.2),

|en(k)| ≤ 1

n

k−1∑
s=1

P∗λ(T ∗ ≥ s), (5.1.20)

and where we recall that P∗λ is the law of a Poisson branching process with parameter
λ, and T ∗ is its total progeny.
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By Theorem 3.18 and Corollary 3.19, it follows that there exists a C > 0 inde-
pendent of θ such that for all s ≥ 1,

P∗1+θn−1/3(T
∗ ≥ s) ≤ ζλ +

∞∑
t=s

P∗1+θn−1/3(T
∗ = t) ≤ C

(
(θ ∨ 0)n−1/3 + 1/

√
s
)
. (5.1.21)

See in particular (3.6.27) in Corollary 3.19 for the first term and (3.6.20) in Theorem
3.18 for the second, for which we also use that Iλ ≥ 0 for every λ. Therefore, for all
k ≤ n,

|en(k)| ≤ 1

n

k∑
s=1

C
(
θ+n

−1/3 + 1/
√
s
)
≤ C

(
(θ ∨ 0)kn−4/3 +

√
k

n

)
(5.1.22)

≤ C
(
(θ ∨ 0)n−1/3 + 1/

√
k
)
.

We conclude that, for all k ≤ n,

P1+θn−1/3(|C (1)| ≥ k) ≤ 2C
(
(θ ∨ 0)n−1/3 + 1/

√
k
)
. (5.1.23)

We proceed with the lower bound in (5.1.2), for which we may assume that θ ≤ 0
by monotonicity. We make use of Theorem 4.3 with k ≤ rn2/3. This gives that

P1+θn−1/3(|C (1)| ≥ k) ≥ Pn−k,p(T ≥ k). (5.1.24)

where T is the total progeny of a binomial branching process with parameters n −
k ≤ n − rn2/3 and p = λ/n = (1 + θn−1/3)/n. We again use Theorem 3.20 for
λn = 1+(θ−r)n−1/3, as in (5.1.19) and (5.1.20). We apply the last bound in (5.1.22)
with θ ≤ 0, to obtain

P1+θn−1/3(|C (1)| ≥ k) ≥ Pn−k,p(T ≥ k) (5.1.25)

≥ P∗λn(T ∗ ≥ k)− C
√
k

n

≥ P∗λn(T ∗ ≥ k)− C
√
r

n2/3
.

Since λn ≤ 1,

P1+θn−1/3(|C (1)| ≥ k) ≥
∞∑
t=k

P∗λn(T ∗ = t)− C
√
r

n2/3
(5.1.26)

=
∞∑
t=k

(λnt)
t−1

t!
e−λnt − C

√
r

n2/3

=
1

λn

∞∑
t=k

P∗1(T ∗ = t)e−Iλn t − C
√
r

n2/3
,

where, for λn = 1 + (θ − r)n−1/3 and by (3.6.21),

Iλn = λn − 1− log λn =
1

2
(λn − 1)2 +O(|λn − 1|3). (5.1.27)
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It is not hard to see that (see also Exercise 5.4)

(λt)t−1

t!
e−λt =

1

λ
e−IλtP∗1(T ∗ = t). (5.1.28)

We then use (5.1.28), combined with (3.6.22) in Theorem 3.16, to obtain

P1+θn−1/3(|C (1)| ≥ k) ≥
2k∑
t=k

P∗1(T ∗ = t)e−
1
2

(λn−1)2t(1+o(1)) − C
√
r

n2/3

≥
2k∑
t=k

C√
t3

e−
1
2

(λn−1)2t(1+o(1)) − C
√
r

n2/3

≥ 2−3/2C√
k

e−k(λn−1)2(1+o(1)) − C
√
r

n2/3
. (5.1.29)

Here we have used that λn − 1 = (θ − r)n−1/3, k(λn − 1)2 ≤ (θ − r)2r, which is
uniformly bounded. Further, for n ≥ N ,

√
rn−2/3 =

√
rkn−2/3/

√
k ≤ rn−1/3/

√
k ≤ rN−1/3/

√
k, (5.1.30)

so that

P1+θn−1/3(|C (1)| ≥ k) ≥ c1(r)√
k
, (5.1.31)

with c1(r) = (c2−3/2e−r(θ−r)
2 −C√r/N−1/3) > 0 for r ≤ 1, whenever N is sufficiently

large. This completes the proof of Proposition 5.2.

Proof of Proposition 5.3. Theorem 4.2 gives that |C (1)| � T , where T is the
total progeny of a branching process with a Bin(n, λ/n) offspring distribution, and
where λ = 1 + θn−1/3. As a result, for θ < 0, and using Theorem 3.5,

E1+θn−1/3 [|C (1)|] ≤ E[T ] = 1/(1− λ) = n1/3/|θ|. (5.1.32)

This proves the claim.

5.2 Critical Erdős-Rényi random graphs with martingales

In this section, we use martingales and the exploration of clusters to look deeper
into the critical window for the Erdős-Rényi random graph. The main result in this
section is the following theorem:

Theorem 5.4 (Cluster tails revisited). Let Cmax denote the largest component of
ERn(1/n), and let C (v) be the component that contains the vertex v ∈ [n]. For any
n > 1000 and A > 8,

P1(|C (v)| > An2/3) ≤ 4n−1/3e−
A2(A−4)

32 , (5.2.1)

and

P1(|Cmax| > An2/3) ≤ 4

A
e−

A2(A−4)
32 . (5.2.2)
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The proof of Theorem 5.4 uses the exploration process (St)t≥0 defined in (4.1.3),
as well as the Optional Stopping Theorem (Theorem 2.28).

5.2.1 The exploration process

We recall the exploration process (St)t≥0 defined in (4.1.3). We adapt this process
slightly, so as to allow us to explore several clusters after each another. We explain
this exploration in more detail in the next section. At each time t ∈ [n], the number
of active vertices is St and the number of explored vertices is t. Fix an ordering of the
vertices, with v first. At time t = 0, the vertex v is active and all other vertices are
neutral, so S0 = 1. In step t ∈ [n], if St−1 > 0, then let wt be the first active vertex; if
St−1 = 0, then let wt be the first neutral vertex. Denote by Xt the number of neutral
neighbors of wt in ERn(1/n), and change the status of these vertices to active. Then,
set wt itself explored.

Write Nt = n− St − t− 1{St=0}. Given S1, . . . , St−1, the random variable Xt has
a Bin(Nt−1, 1/n) distribution, and we have the recursion

St =

{
St−1 +Xt − 1 when St−1 > 0,
Xt when St−1 = 0.

(5.2.3)

At time T = min{t ≥ 1: St = 0}, the set of explored vertices is precisely |C (v)|, so
|C (v)| = T .

To prove Theorem 5.4, we couple (St)t≥0 to a random walk with shifted binomial
increments. We need the following lemma concerning the overshoots of such walks:

Lemma 5.5 (Overshoots of walks). Let p ∈ (0, 1) and (Yi)i≥1 be i.i.d. random vari-
ables with Bin(n, p) distribution and let Rt = 1 +

∑t
i=1(Yi−1). Fix an integer H > 0,

and define

γ = min{t ≥ 1: Rt ≥ H or St = 0}. (5.2.4)

Let Ξ ⊂ N be a set of positive integers. Given the event {Rγ ≥ H, γ ∈ Ξ}, the
conditional distribution of the overshoot Sγ − H is stochastically dominated by the
binomial distribution Bin(n, p).

Proof. First observe that if Y has a Bin(n, p) distribution, then the conditional distri-
bution Y − r given Y ≥ r is stochastically dominated by Bin(n, p). To see this, write
Y as a sum of n indicator random variables (Ij)j∈[n] and let J be the minimal index

such that
∑J

j=1 Ij = r. Given J , the conditional distribution of Y − r is Bin(n− J, p)
which is certainly dominated by Bin(n, p), independently of J .

For any l ∈ Ξ, conditioned on {γ = l}∩{Rl−1 = H−r}∩{Sγ ≥ H}, the overshoot
Rγ−H equals Yl− r where Yl has a Bin(n, p) distribution conditioned on Yl ≥ r. The
assertion of the lemma follows by averaging.

The following corollary, in the spirit of Theorems 2.15 and 2.16, will be useful in
the proof:
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Corollary 5.6 (Expectations of increasing functions of overshoots). Let Y have a
Bin(n, p) distribution and let f be an increasing real function. In the notation of the
previous lemma,

E[f(Rγ −H) | Rγ ≥ H, γ ∈ Ξ] ≤ E[f(Y )]. (5.2.5)

5.2.2 An easy upper bound

Fix a vertex v. To analyze the component of v in ERn(1/n), we use the notation
established in the previous section. As in the proof of Theorem 4.2, we can couple the
sequence (Xt)t≥1 constructed there, to a sequence (Yt)t≥1 of i.i.d. Bin(n, 1/n) random
variables, such that Yt ≥ Xt for all t ≤ n. The random walk (Rt)t≥0 defined in Lemma
5.5 satisfies Rt = Rt−1 + Yt − 1 for all t ≥ 1 and R0 = 1. Fix an integer H > 0 and
define γ as in Lemma 5.5. Couple Rt and St such that Rt ≥ St for all t ≤ γ. Since
(Rt)t≥0 is a martingale, optional stopping gives 1 = E1[Rγ] ≥ HP1(Rγ ≥ H), whence

P1(Rγ ≥ H) ≤ 1/H. (5.2.6)

Write R2
γ = H2 + 2H(Rγ − H) + (Rγ − H)2 and apply Corollary 5.6 with f(x) =

2Hx+ x2 and E[Y ] = 1,E[Y 2] ≤ 2 to get that, for H ≥ 2,

E1[R2
γ | Rγ ≥ H] ≤ E[f(Y )] = H2 + 2H + 2 ≤ H2 + 3H. (5.2.7)

Now R2
t −(1− 1

n
)t is also a martingale. By the Optional Stopping Theorem (Theorem

2.28), (5.2.6) and (5.2.7),

1 + (1− 1

n
)E1[γ] = E1[R2

γ] = P1(Rγ ≥ H)E1[R2
γ | Rγ ≥ H] ≤ H + 3. (5.2.8)

Thus, for 2 ≤ H ≤ n− 3,
E1[γ] ≤ H + 3 (5.2.9)

We conclude that, for 2 ≤ H ≤ n− 3,

P1(γ ≥ H2) ≤ H + 3

H2
≤ 2

H
. (5.2.10)

Define γ∗ = γ ∧H2, and so by the previous inequality and (5.2.6),

P1(Rγ∗ > 0) ≤ P1(Rγ ≥ H) + P1(γ ≥ H2) ≤ 3

H
. (5.2.11)

Let k = H2 and note that if |C (v)| > H2, we must have Rγ∗ > 0 so by (5.2.11)
we deduce

P1(|C (v)| > k) ≤ 3√
k

(5.2.12)

for all 9 ≤ k ≤ (n − 3)2. This gives an alternative proof of the upper bound in
Proposition 5.2. Recall from (4.3.4) that Z≥k denotes the number of vertices contained
in components larger than k. Then

P1(|Cmax| > k) ≤ P(Z≥k > k) ≤ E1[Z≥k]

k
≤ nP1(|C (v)| > k)

k
. (5.2.13)



162 Erdős-Rényi random graph revisited

Putting k =
(
b
√
An2/3c

)2

for any A > 1 yields

P1(|Cmax| > An2/3) ≤ P1(|Cmax| > k) ≤ 3n

b
√
An2/3c3

≤ 6

A3/2
, (5.2.14)

since(
b
√
An2/3c

)3

≥
(√

An2/3 − 1
)3

≥ nA3/2(1− 3A−1/2n−1/3) ≥ A3/2n/2. (5.2.15)

This provides a first easy upper bound. In the next section, we improve upon this
estimate, and prove Theorem 5.4.

5.2.3 Proof critical cluster tails revisited

In this section, we complete the proof of Theorem 5.4. We proceed from (5.2.11).
Define the process (Yt)t≥0 by

Yt =
t∑

j=1

(Xγ∗+j − 1). (5.2.16)

The law of Xγ∗+j is stochastically dominated by a Bin(n−j, 1
n
) distribution for j ≤ n.

Hence,

E1[ec(Xγ∗+j−1) | γ∗] ≤ e−c
[
1 +

1

n
(ec − 1)

]n−j
≤ e(c+c2)n−j

n
−c ≤ ec

2−cj/n, (5.2.17)

as ec − 1 ≤ c + c2 for any c ∈ (0, 1) and 1 + x ≤ ex for x ≥ 0. Since this bound is
uniform in Sγ∗ and γ∗, we have

E1[ecYt |Rγ∗ ] ≤ etc
2−ct2/(2n). (5.2.18)

Write P1,R for the conditional probability given Rγ∗ . Then, for any c ∈ (0, 1),

P1,R(Yt ≥ −Rγ∗) ≤ P1,R(ecYt ≥ e−cRγ∗ ) ≤ etc
2− ct

2

2n ecRγ∗ . (5.2.19)

By (5.2.3), if Sγ∗+j > 0 for all 0 ≤ j ≤ t− 1, then Yj = Sγ∗+j − Sγ∗ for all j ∈ [t]. It
follows that

P1(Rγ∗+j > 0 ∀j ∈ [t] | Rγ∗ > 0) ≤ E1[P1,R(Yt ≥ −Rγ∗)|Rγ∗ > 0]

≤ etc
2−ct2/(2n)E1[ecRγ∗ | Rγ∗ > 0] (5.2.20)

By Corollary 5.6 with Ξ = [H2], for c ∈ (0, 1),

E1

[
ecRγ∗ | γ ≤ H2, Rγ > 0

]
≤ ecH+c+c2 . (5.2.21)

Since {Rγ∗ > 0} = {γ > H2} ∪ {γ ≤ H2, Rγ > 0}, which is a disjoint union, the
conditional expectation E1[ecR

∗
γ | Rγ∗ > 0] is a weighted average of the conditional

expectation in (5.2.21) and of E1[ecRγ∗ | γ > H2] ≤ ecH by (5.2.4). Therefore,

E1[ecRγ∗ | Rγ∗ > 0] ≤ ecH+c+c2 , (5.2.22)
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so that, by (5.2.20),

P1 (Rγ∗+j > 0 ∀j ∈ [t] | Rγ∗ > 0) ≤ etc
2−ct2/(2n)+cH+c+c2 . (5.2.23)

By our coupling, for any integer k > H2, if |C (v)| > k, then we must have that
Rγ∗ > 0 and Sγ∗+j > 0 for all j ∈ [0, k −H2]. Thus, by (5.2.11) and (5.2.23),

P1(|C (v)| > k) ≤ P1(Rγ∗ > 0)P1

(
∀j ∈ [0, k −H2] Sγ∗+j > 0 | Rγ∗ > 0

)
≤ 3

H
e(k−H2)c2− c(k−H

2)2

2n
+cH+c+c2 . (5.2.24)

Take H = bn1/3c and k = bAn2/3c for some A > 4; substituting c which attains the
minimum of the parabola in the exponent of the right-hand side of (5.2.24) gives

P1(|C (v)| > An2/3) ≤ 4n−1/3e
−

((k−H2)2/(2n)−H−1)
2

4(k−H2+1)

≤ 4n−1/3e
−

((A−1−n−2/3)2/2−1−n−1/3)
2

4(A−1+2n−1/3+n−2/3)

≤ 4n−1/3e−
((A−2)2/2−2)

2

4(A−1/2) , (5.2.25)

since H2 ≥ n2/3(1− 2n−1/3) and n > 1000. As [(A− 2)2/2− 2]2 = A2(A/2− 2)2 and
(A/2− 2)/(A− 1/2) > 1/4 for A > 8, we arrive at

P1(|C (v)| > An2/3) ≤ 4n−1/3e−A
2(A−4)/(32). (5.2.26)

Recall that Z≥k denotes the number of vertices contained in components larger than
k. Then

P1 (|Cmax| > k) ≤ P1 (Z≥k > k) ≤ E1[Z≥k]

k
≤ nP1(|C (v)| > k)

k
, (5.2.27)

and we conclude that for all A > 8 and n > 1000,

P1(|Cmax| > An2/3) ≤ 4

A
e−A

2(A−4)/(32). (5.2.28)

This completes the proof of Theorem 5.4.

5.2.4 Connected components in the critical window revisited

In this section, we discuss the critical window of the Erdős-Rényi random graph
in more detail, from an intuitive perspective. By Theorem 5.1, we know that, for
p = (1 + θn−1/3)/n, the largest connected component has size roughly equal to n2/3.
Therefore, the values of p for which p = (1 + θn−1/3)/n are called the critical window.
In this section, we discuss the convergence in distribution of the rescaled clusters by
Aldous [12]. The point by Aldous [12] is to prove simultaneous weak convergence
of all connected components at once. We start by introducing some notation. Let
|C(j)(θ)| denote the jth largest cluster of ERn(p) for p = (1 + θn−1/3)/n. The main
result on the behavior within the critical window is the following theorem:
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Theorem 5.7 (Weak convergence of largest clusters in critical window). For p =
(1 + θn−1/3)/n, and any θ ∈ R, the vector Cn(θ) ≡

(
n−2/3|C(i)(θ)|

)
i≥1

converges in

distribution to a random vector (γi(θ))i≥1.

Theorem 5.7 is stronger than Theorem 5.1 in two ways: (1) Theorem 5.7 proves
weak convergence, rather than tightness only, of |Cmax|/n2/3; (2) Theorem 5.7 con-
siders all connected components, ordered by size, rather than only the maximal one.
Aldous gives two explicit descriptions of the distribution of the limiting random vari-
able (γi(θ))i≥1, the first being in terms of lengths of excursions of Brownian motion,
the second in terms of the so-called multiplicative coalescent process. We intuitively
explain these constructions now.

Exploration process convergence. We start by explaining the construction in
terms of excursions of Brownian motion. Let (W (s))s≥0 be standard Brownian mo-
tion, and let

W θ(s) = W (s) + θs− s2/2 (5.2.29)

be Brownian motion with an (inhomogeneous) drift θ − s at time s. Let

Bθ(s) = W θ(s)− min
0≤s′≤s

W θ(s′) (5.2.30)

correspond to the process (W θ(s))s≥0 reflected at 0. We now consider the excursions
of this process, ordered in their length. Here an excursion γ of (Bθ(s))s≥0 is a time
interval [l(γ), r(γ)] for which Bθ(l(γ)) = Bθ(r(γ)) = 0, but Bθ(s) > 0 for all s ∈
(l(γ), r(γ)). Let the length |γ| of the excursion γ be given by r(γ) − l(γ). As it
turns out (see Aldous [12, Section 1] for details), the excursions of (Bθ(s))s≥0 can be
ordered by decreasing length, so that (γi(θ))i≥1 are the excursions. Then, the random
vector Cn(θ) converges in distribution to the ordered excursions (γi(θ))i≥1. The idea
behind this is as follows.

We make use of the random walk representation of the various clusters, which
connects the cluster exploration to random walks. However, as for example (4.5.4)
shows, the step size distribution is decreasing as we explore more vertices, which
means that we arrive at an inhomogeneous and ever decreasing drift, as in (5.2.29).
Since, in general, random walks converge to Brownian motions, this way the con-
nection between these precise processes can be made using martingale central limit
theorems.

Let us describe this connection informally to explain the idea behind the proof of
Theorem 5.7. The proof relies on an exploration of the components of the Erdős-Rényi
random graph as we have seen several times before. To set this exploration up, we now
successively explore different clusters, starting from the cluster of a single vertex. The
fact that we explore several clusters after each other makes this exploration different
from that used so far. Again, this exploration is described in terms of a stochastic
process (Si)i≥0 that encodes the cluster sizes as well as their structure. To describe
the exploration process, we let S0 = 0 and let Si satisfy the recursion

Si+1 = Si +Xi − 1, (5.2.31)
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where Xi ∼ Bin(Ni−1, p). Here Ni−1 denotes the number of neutral vertices after
we have explored i − 1 vertices (but note that these vertices could now be part of
different connected components). In this exploration, − infj∈[i] Sj denotes the number
of disjoint clusters that have been fully explored at time i, while Si−infj∈[i] Sj denotes
the number of active vertices at time i in the cluster that we are currently exploring.
Here we again call a vertex active when it has been found to be part of the cluster
that is currently explored, but its neighbors in the random graph have not yet been
identified. Then, the number of neutral vertices, i.e., the vertices not yet found to be
in any of the clusters explored up to time i, equals

Ni = n− i− Si − inf
j∈[i−1]

Sj − 1{Ri=0}. (5.2.32)

The exploration can perhaps be more easily understood in terms of the reflection of
this process. Let

Ri = Si − inf
j∈[i−1]

Sj + 1. (5.2.33)

Then R0 = 1 and Ri precisely measures the number of active vertices during the
exploration of the connected components in the Erdős-Rényi random graph. Indeed,
we see that Ni = n − (i − 1) − Ri − 1{Ri=0}, and i − 1 + Ri + 1{Ri=0} is precisely
the number of vertices that are found to be in the clusters explored up to time i.
Note that 1{Ri=0} is present since when we start with a new component, the vertex
we explore from no longer is neutral.

When Ri = 0, we have fully explored a cluster. In particular, when we start
exploring C (v1), then

|C (v1)| = inf{i > 0: Ri = 0}. (5.2.34)

After having explored C (v1), we explore C (v2) for some v2 6∈ C (v1), and obtain that

|C (v2)| = inf{i > |C (v1)| : Ri = 0}. (5.2.35)

Iterating this procedure, we see that |C (vj)| = inf{i > |C (v1)|+ · · ·+ |C (vj−1)| : Ri =
0}. Inspecting (5.2.33), we thus see that a cluster is fully explored when Si −
infj∈[i−1] Sj + 1 = 0, which is the same as saying that Si = infj∈[i] Sj for the first
time. Thus, the total number of clusters that are fully explored up to time i indeed
equals infj∈[i] Sj.Since n−1/3Stn2/3 will be seen to converge in distribution, and we are
investigating the exploration process at times tn2/3, we will simplify our lives consid-
erably, and approximate (5.2.32) to Ni ≈ n−i. This means that the random variables
(Xi)i≥1 in (5.2.31) are close to being independent with

Xi ≈ Bin(n− i, p) = Bin
(
n− i, (1 + θn−1/3)/n

)
. (5.2.36)

Here, and in what follows, ≈ denotes an uncontrolled approximation.
It is well known that a Binomial random variable with parameters n and success

probability µ/n is close to a Poisson random variable with mean µ. In our case,

µ = (n− i)p = (n− i)(1 + θn−1/3)/n ≈ 1 + θn−1/3 − i/n. (5.2.37)
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Note that when i = tn2/3, both correction terms are of the same order in n. Thus,
we will approximate

Si ≈
i∑

j=1

(Yj − 1), (5.2.38)

where Yj ∼ Poi(1+θn−1/3−j/n) are independent. Since sums of independent Poisson
variables are Poisson again, we thus obtain that

Si ≈ S∗i , (5.2.39)

where

S∗i ∼ Poi
( i∑
j=1

(1 + θn−1/3 − j/n)
)
− i = Poi

(
i+ iθn−1/3 − i2

2n

)
− i, (5.2.40)

and (S∗i − S∗i−1)i≥1 are independent. Now we multiply by n−1/3 and take i = tn2/3 to
obtain

n−1/3S∗tn2/3 ∼ n−1/3
(

Poi
(
tn2/3 + tθn1/3 − 1

2
t2n1/3

)
− tn2/3

)
, (5.2.41)

Since a Poisson process is to leading order deterministic, we can approximate

Poi
(
tn2/3 + tθn1/3 − 1

2
t2n1/3

)
≈ Poi(tn2/3) + +tθn1/3 − 1

2
t2n1/3. (5.2.42)

Then, we can use the CLT for the process n−1/3(Poi(tn2/3)− tn2/3) in the form(
n−1/3(Poi(tn2/3)− tn2/3)

)
t≥0

d−→ (W (t))t≥0 (5.2.43)

to approximate

n−1/3S∗tn2/3 ∼ n−1/3
(
Poi(tn2/3

)
− tn2/3

)
+ tθ − 1

2
t2

d−→ W (t) + tθ − 1
2
t2. (5.2.44)

This informally explains the proof of Theorem 5.7. To make this proof rigorous, one
typically resorts to Martingale Functional Central Limit Theorems, see for example
how Aldous does this nicely in [12].

Multiplicative coalescents. Here we explain the connection between critical clus-
ters and the so-called mutiplicative coalescent. We will be very brief and thus skim
over important details. This is a difficult topic, and we refer to the original paper
by Aldous [12] for more details. To explain the connection to the multiplicative co-
alescent, we interpret the θ-variable in p = (1 + θn−1/3)/n as a time variable. The
aim is to study what happens when θ increases. We can couple all the edge variables
in terms of uniform random variables such that edge e is p-occupied precisely when
Ue ≤ p. Increasing p from p + dp then means that we add precisely those edges e
for which Ue ∈ [p, p + dp]. These extra edges might cause connected components to
merge, which occurs precisely when an edge appears that connects two vertices in
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the different connected components. Let us now investigate in more detail what this
process looks like.

When we have two connected components of sizes xn2/3 and yn2/3 say, and we
increase θ to θ+dθ, then the probability that these two clusters merge is roughly equal
to the number of possible connecting edges, which is xn2/3 × yn2/3 = xyn4/3 times
the probability that an edge turns from vacant to occupied when p increases from
p = (1 + θn−1/3)/n to (1 + (θ+ dθ)n−1/3)/n, which is dθn−4/3. Thus, this probability
is, for small dθ, close to

xydθ. (5.2.45)

We see that distinct clusters meet at a rate proportional to the rescaled product of
their sizes. The continuous process that does this precisely is called the multiplicative
coalescent. Using the above ideas, Aldous is able to show that the limit of Cn(θ)
equals such a multiplicative coalescent process. Of course, it is far from obvious that
one can make sense of the stochastic process in continuous time for which masses
merge at rate that is the product of their current masses, and Aldous heavily relies
on the connections between multiplicative coalescents and the exploration processes
that we have described earlier.

5.3 Connectivity threshold

In this section, we investigate the connectivity threshold for the Erdős-Rényi ran-
dom graph. As we can see in Theorem 4.8, for every 1 < λ < ∞, the maximal
connected component for the Erdős-Rényi random graph when p = λ/n has size
ζλn(1+oP(1)), where ζλ > 0 is the survival probability of a Poisson branching process
with parameter λ. Since extinction is certain when the root has no offspring,

ζλ ≤ 1− P∗(Z∗1 = 0) = 1− e−λ < 1. (5.3.1)

Therefore, the Erdős-Rényi random graph with edge probability p = λ/n is whp
disconnected for each fixed λ < ∞. In this section, we discuss how λ = λn → ∞
should be chosen to make ERn(λ/n) whp connected.

5.3.1 Sharp transition connectivity

We now investigate the threshold for connectivity for an appropriate choice λ =
λn → ∞. We see that there is a sharp transition in the connectivity of the Erdős-
Rényi random graph:

Theorem 5.8 (Connectivity threshold). For λ−log n→∞, the Erdős-Rényi random
graph is with high probability connected, while for λ− log n→ −∞, the Erdős-Rényi
random graph is with high probability disconnected.

In the proof, we investigate the number of isolated vertices. Define

Y =
∑
i∈[n]

Ii, where Ii = 1{|C (i)|=1} (5.3.2)
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to be the number of isolated vertices. Clearly, there exists at least one isolated vertex
when Y ≥ 1, so that the graph is disconnected when Y ≥ 1. Remarkably, it turns
out that when there is no isolated vertex, i.e., when Y = 0, then the random graph
is also with high probability connected. See Proposition 5.10 below for the precise
formulation of this result. Thus, the connectivity threshold is the threshold for the
disappearance of isolated vertices.

By Proposition 5.10, we need to investigate the probability that Y ≥ 1. In the
case where |λ− log n| → ∞, we make use of the Markov and Chebychev inequalities
(Theorems 2.17 and 2.18) combined with a first and second moment argument using
a variance estimate in Proposition 5.9:

Proposition 5.9 (Mean and variance of number of isolated vertices). For every
λ ≤ n/2 with λ ≥ 1/2,

Eλ[Y ] = ne−λ(1 +O(λ2/n)), (5.3.3)

and, for every λ ≤ n,

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.3.4)

Proof. Since |C (i)| = 1 precisely when all edges emanating from i are vacant, and
using 1− x ≤ e−x,

Eλ[Y ] = nPλ(|C (1)| = 1) = n(1− λ

n
)n−1 ≤ ne−λeλ/n. (5.3.5)

Also, using that 1− x ≥ e−x−x
2

for 0 ≤ x ≤ 1
2
, we obtain

Eλ[Y ] = nPλ(|C (1)| = 1) ≥ ne−(n−1)λ
n

(1+λ
n

) (5.3.6)

≥ ne−λ(1+λ
n

) = ne−λe−
λ2

n .

Since λ ≥ 1/2, we have that O(λ/n) = O(λ2/n), so this proves (5.3.3).
To prove (5.3.4), if λ = n, there is nothing to prove. Therefore, we assume that

λ < n. We use the exchangeability of the vertices to compute

Eλ[Y 2] = nPλ(|C (1)| = 1) + n(n− 1)Pλ(|C (1)| = 1, |C (2)| = 1). (5.3.7)

Therefore, we obtain

Varλ(Y ) = n
[
Pλ(|C (1)| = 1)− Pλ(|C (1)| = 1, |C (2)| = 1)] (5.3.8)

+ n2
[
Pλ(|C (1)| = 1, |C (2)| = 1)− Pλ(|C (1)| = 1)2

]
.

The first term is bounded above by Eλ[Y ]. The second term can be computed by
using (5.3.5), together with

Pλ(|C (1)| = 1, |C (2)| = 1) = (1− λ

n
)2n−3. (5.3.9)
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Therefore, by (5.3.5) and (5.3.9), we obtain

Pλ(|C (1)| = 1, |C (2)| = 1)− Pλ(|C (1)| = 1)2 = Pλ(|C (1)| = 1)2
[
(1− λ

n
)−1 − 1

]
=

λ

n(1− λ
n
)
Pλ(|C (1)| = 1)2. (5.3.10)

We conclude that

Varλ(Y ) ≤ Eλ[Y ] +
λ

n− λEλ[Y ]2. (5.3.11)

Proposition 5.10 (Connectivity and isolated vertices). For all 0 ≤ λ ≤ n and n ≥ 2,

Pλ
(
ERn(λ/n) connected

)
≤ Pλ(Y = 0). (5.3.12)

Moreover, if there exists an a > 1/2 such that λ ≥ a log n, then, for n→∞,

Pλ
(
ERn(λ/n) connected

)
= Pλ(Y = 0) + o(1). (5.3.13)

Proof. The bound in (5.3.12) is obvious. For (5.3.13), we use that

Pλ
(
ERn(λ/n) connected

)
(5.3.14)

= Pλ(Y = 0)− Pλ
(
ERn(λ/n) disconnected, Y = 0

)
,

To prove (5.3.13), we make use of a computation involving trees. For k = 2, . . . , n,
we denote by Xk the number of occupied trees of size equal to k on [n] that cannot
be extended to a tree of larger size. Thus, each tree that is counted in Xk has size
precisely equal to k, and when we denote its vertices by v1, . . . , vk, then all the edges
between vi and v /∈ {v1, . . . , vk} are vacant. Moreover, there are precisely k − 1
occupied edges between the vi that are such that these vertices together with the
occupied edges form a tree. Such a tree is sometimes called a spanning tree. Note
that a connected component of size k can contain more than one tree of size k, since
the connected component may contain cycles. Note furthermore that when ERn(λ/n)
is disconnected, but Y = 0, there must be a k ∈ {2, . . . , n/2} for which Xk ≥ 1.

We conclude from Boole’s inequality and Markov’s inequality (Theorem 2.17) that

Pλ
(
ERn(λ/n) disconnected, Y = 0

)
≤ Pλ

(
∪n/2k=2 {Xk ≥ 1}

)
(5.3.15)

≤
n/2∑
k=2

Pλ(Xk ≥ 1) ≤
n/2∑
k=2

Eλ[Xk].

Therefore, we need to bound Eλ[Xk]. For this, we note that there are
(
n
k

)
ways of

choosing k vertices, and, by Cayley’s Theorem (Theorem 3.17), there are kk−2 labeled
trees containing k vertices. Therefore,

Eλ[Xk] =

(
n

k

)
kk−2qk, (5.3.16)



170 Erdős-Rényi random graph revisited

where qk is the probability that any tree of size k is occupied and all the edges from
the tree to other vertices are vacant. We compute

qk =
(λ
n

)k−1(
1− λ

n

)k(n−k)

≤
(λ
n

)k−1

e−λk(n−k)/n. (5.3.17)

We conclude that

Eλ[Xk] ≤ nλk−1k
k−2

k!
e−

λ
n
k(n−k). (5.3.18)

If we further use that k! ≥ kke−k by the Stirling bound, and also use that λ ≥ 1, then
we arrive at

Eλ[Xk] ≤ n(eλ)k
1

k2
e−

λ
n
k(n−k). (5.3.19)

Let f(λ) = λe−λ(1−k/n) and note that, since k ≤ n/2,

f ′(λ) = e−λ(1−k/n)
[
1− λ(1− k/n)

]
≤ e−λ(1−k/n)(1− λ/2) ≤ 0, (5.3.20)

when λ ≤ 2. Thus, it suffices to investigate λ = a log n for some a > 1/2. For
k ∈ {2, 3, 4}, for λ = a log n for some a > 1/2,

Eλ[Xk] ≤ n(eλ)4e−λkeo(1) = o(1). (5.3.21)

For all k ≤ n/2 with k ≥ 5, we bound k(n− k) ≥ kn/2, so that

Eλ[Xk] ≤ n(eλe−λ/2)k. (5.3.22)

As a result, for λ = a log n with a > 1/2, and all k ≥ 5, and using that λ 7→ λe−λ/2

is decreasing for λ ≥ 2,

Eλ[Xk] ≤ n1−k/4. (5.3.23)

We conclude that, using (5.3.21) and (5.3.23),

Pλ
(
ERn(λ/n) disconnected, Y = 0

)
(5.3.24)

≤
n/2∑
k=2

Eλ[Xk] ≤ o(1) +

n/2∑
k=5

n1−k/4 = o(1).

Proof of Theorem 5.8. The proof makes essential use of Proposition 5.10. We start
by proving that for λ − log n → −∞, the Erdős-Rényi random graph is with high
probability disconnected. We use (5.3.3) to note that

Eλ[Y ] = ne−λ(1 + o(1)) = e−λ+logn(1 + o(1))→∞. (5.3.25)

By the Chebychev inequality (Theorem 2.18), and the fact that λ ≤ log n,

Pλ(Y = 0) ≤
Eλ[Y ] + λ

n−λEλ[Y ]2

Eλ[Y ]2
= Eλ[Y ]−1 +

λ

n− λ → 0. (5.3.26)
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Proposition 5.10 completes the proof that the Erdős-Rényi random graph is whp
disconnected for λ− log n→ −∞.

When λ− log n→∞ with λ ≤ 2 log n, then we start by noticing that by (5.3.24),
it suffices to show that Pλ(Y = 0) → 1. By the Markov inequality (Theorem 2.17)
and (5.3.5),

Pλ(Y = 0) = 1− Pλ(Y ≥ 1) ≥ 1− Eλ[Y ] ≥ 1− ne−λO(1)→ 1. (5.3.27)

This proves that the Erdős-Rényi random graph is whp connected when λ−log n→∞
with λ ≤ 2 log n. Since connectivity of ERn(λ/n) is an increasing property in λ, this
also proves the claim for λ− log n→∞ with λ ≥ 2 log n, which completes the proof
that ERn(λ/n) is whp connected when λ− log n→∞.

5.3.2 Critical window for connectivity∗

In this section, we investigate the critical window for connectivity, by considering
connectivity of ERn(λ/n) when λ = log n+ t for fixed t ∈ R. The main result in this
section is as follows:

Theorem 5.11 (Critical window for connectivity). For λ = log n + t → ∞, the
Erdős-Rényi random graph is connected with probability e−e−t(1 + o(1)).

Proof. In the proof, we again rely on Proposition 5.10. We fix λ = log n+ t for some

t ∈ R. We prove a Poisson approximation for Y that reads that Y
d−→ Z, where Z

is a Poisson random variable with parameter

lim
n→∞

Eλ[Y ] = e−t, (5.3.28)

where we recall (5.3.3). Therefore, the convergence in distribution of Y to a Poisson
random variable with mean e−t implies that

Pλ(Y = 0) = e−e−t + o(1), (5.3.29)

and the result follows by Proposition 5.10.

In order to show that Y
d−→ Z, we use Theorems 2.4 and 2.5, so that it suffices

to prove that for all r ≥ 1, and recalling that Ii = 1{|C (i)|=1} as defined in (5.3.2),

lim
n→∞

E[(Y )r] = lim
n→∞

∑∗

i1,...,ir

Pλ
(
Ii1 = · · · = Iir = 1

)
= e−tr, (5.3.30)

where the sum ranges over all i1, . . . , ir ∈ [n] which are distinct. By exchangeability
of the vertices, Pλ

(
Ii1 = · · · = Iir = 1

)
is independent of the precise choice of the

indices i1, . . . , ir, so that

Pλ
(
Ii1 = · · · = Iir = 1

)
= Pλ

(
I1 = · · · = Ir = 1

)
. (5.3.31)

Using that there are n(n − 1) · · · (n − r + 1) distinct choices of i1, . . . , ir ∈ [n], we
arrive at

E[(Y )r] =
n!

(n− r)!Pλ
(
I1 = · · · = Ir = 1

)
. (5.3.32)
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The event {I1 = · · · = Ir = 1} occurs precisely when all edges st with s ∈ [r] and
t ∈ [n] are vacant. There are r(r − 1)/2 + r(n− r) = r(2n− r − 1)/2 of such edges,
and since these edges are all independent, we arrive at

Pλ
(
I1 = · · · = Ir = 1

)
= (1− λ

n
)r(2n−r−1)/2 = (1− λ

n
)nr(1− λ

n
)−r(r+1)/2

= n−rEλ[Y ]r(1 + o(1)), (5.3.33)

using that Eλ[Y ] = n(1− λ/n)n−1. Thus,

lim
n→∞

E[(Y )r] = lim
n→∞

n!

(n− r)!n
−rEλ[Y ]r = e−tr, (5.3.34)

where we use (5.3.28). This completes the proof of Theorem 5.11.

Exercise 5.5 investigates the second moment of the number of isolated vertices,
while Exercise 5.6 investigates an upper bound on the probability that ERn(p) is
connected.

5.4 Degree sequence of the Erdős-Rényi random graph

As described in Chapter 1, the degree sequences of various real-world networks
obey power laws. In this section, we investigate the degree sequence of the Erdős-
Rényi random graph for fixed λ > 0. In order to be able to state the result, we first
introduce some notation. We write

pk = e−λ
λk

k!
, k ≥ 0, (5.4.1)

for the Poisson distribution with parameter λ. Let Di denote the degree of vertex i
and write

P (n)

k =
1

n

∑
i∈[n]

1{Di=k} (5.4.2)

for the empirical degree distribution. The main result in this section is as follows:

Theorem 5.12 (Degree sequence of the Erdős-Rényi random graph). Fix λ > 0.
Then, for every εn such that nε2

n →∞,

Pλ
(

max
k≥0
|P (n)

k − pk| ≥ εn
)
→ 0. (5.4.3)

Proof. We note that

Eλ[P (n)

k ] = Pλ(D1 = k) =

(
n− 1

k

)(λ
n

)k(
1− λ

n

)n−k−1

. (5.4.4)

Furthermore, ∑
k≥0

∣∣∣pk − Pλ(D1 = k)
∣∣∣ =

∑
k≥0

∣∣P(X∗ = k)− P(Xn = k)
∣∣, (5.4.5)
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where X∗ is a Poisson random variable with mean λ, and Xn is a binomial random
variable with parameters n − 1 and p = λ/n. We will use a coupling argument
to bound this difference. Indeed, we let Yn = Xn + In, where In has a Bernoulli
distribution with parameter p = λ/n independently of Xn. We can couple Yn and Xn

such that the probability that they are different is bounded by p = λ/n, i.e.,

∞∑
k=0

∣∣P(Xn = k)− P(Yn = k)
∣∣ (5.4.6)

=
∞∑
k=0

∣∣P(Xn = k)− P(Xn = k, In = 0)− P(Xn = k − 1, In = 1)
∣∣

=
λ

n

∞∑
k=0

|P(Xn = k)− P(Xn = k − 1)| ≤ 2λ

n
.

Therefore, for all k ≥ 0,

∞∑
k=0

∣∣P(X∗ = k)− P(Xn = k)
∣∣ (5.4.7)

≤
∞∑
k=0

∣∣P(Xn = k)− P(Yn = k)
∣∣+

∞∑
k=0

∣∣P(X∗ = k)− P(Yn = k)
∣∣

≤ 2λ

n
+
∞∑
k=0

∣∣P(X∗ = k)− P(Yn = k)
∣∣ ≤ 2λ+ λ2

n
,

where we have also used Theorem 2.10. Since 2λ+λ2

n
≤ εn

2
, we have just shown that∑

k≥0 |pk − Eλ[P (n)

k ]| ≤ εn/2 for n sufficiently large. Thus, it suffices to prove that

Pλ
(

max
k≥0
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
= o(1). (5.4.8)

For this, we use Boole’s inequality to bound

Pλ
(

max
k≥0
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤

∞∑
k=0

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
. (5.4.9)

By Chebychev’s inequality (Theorem 2.18),

Pλ
(
|P (n)

k − Eλ[P (n)

k ]| ≥ εn
2

)
≤ 4ε−2

n Varλ(P
(n)

k ). (5.4.10)

We then note that

Varλ(P
(n)

k ) =
1

n

[
Pλ(D1 = k)− Pλ(D1 = k)2

]
+
n− 1

n

[
Pλ(D1 = D2 = k)− Pλ(D1 = k)2

]
. (5.4.11)
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We again use a coupling argument. We let X1, X2 be two independent Bin(n−2, λ/n)
random variables, and I1, I2 two independent Bernoulli random variables with success
probability λ/n. Then, the law of (D1, D2) is the same as the one of (X1 +I1, X2 +I1)
while (X1 + I1, X2 + I2) are two independent copies of D1. Thus,

Pλ(D1 = D2 = k) = Pλ
(
(X1 + I1, X2 + I1) = (k, k)

)
, (5.4.12)

Pλ(D1 = k)2 = Pλ
(
(X1 + I1, X2 + I2) = (k, k)

)
, (5.4.13)

so that

Pλ(D1 = D2 = k)− Pλ(D1 = k)2 (5.4.14)

≤ Pλ
(

(X1 + I1, X2 + I1) = (k, k), (X1 + I1, X2 + I2) 6= (k, k)
)
.

When (X1 + I1, X2 + I1) = (k, k), but (X1 + I1, X2 + I2) 6= (k, k), we must have that
I1 6= I2. If I1 = 1, then I2 = 0 and X2 = k − 1, while, if I1 = 0, then I2 = 1 and
X1 = k. Therefore,

Pλ(D1 = D2 = k)− Pλ(D1 = k)2 ≤ λ

n

[
Pλ(X1 = k) + Pλ(X2 = k − 1)

]
. (5.4.15)

We conclude from (5.4.11) and (5.4.15) that

Varλ(P
(n)

k ) ≤ λ

n

[
Pλ(X1 = k) + Pλ(X2 = k − 1)

]
+

1

n
Pλ(D1 = k), (5.4.16)

so that, by (5.4.9)–(5.4.10),

Pλ
(

max
k≥0
|P (n)

k − Eλ[P (n)

k ]| ≥ εn/2
)

(5.4.17)

≤ 4

ε2
n

∑
k≥0

[λ
n
Pλ(X1 = k) +

λ

n
Pλ(X2 = k − 1) +

1

n
Pλ(D1 = k)

]
=

4(2λ+ 1)

ε2
nn

→ 0,

since ε2
nn→∞. This completes the proof of Theorem 5.12.

In Chapter 6 below, we give an alternative proof of Theorem 5.12, allowing for weaker
bounds on εn. In that proof, we use that the Erdős-Rényi random graph is a special
case of the generalized random graph with equal weights. See Theorem 6.12 below.

5.5 Notes and discussion

Notes on Section 5.1. We list some more recent results. In [164], Janson and
Spencer give a point process description of the sizes and number of components of size
εn2/3. In [233], Pittel derives an explicit, yet involved, description for the distribution
of the limit of |Cmax|n−2/3. The proof makes use of generating functions, and the
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relation between the largest connected component and the number of labeled graphs
with a given complexity l. Here, the complexity of a graph is its number of edges

minus its number of vertices. Relations between Erdős-Rényi random graphs and the
problem of counting the number of labeled graphs has received considerable attention,
see e.g. [52, 149, 197, 244, 266, 267] and the references therein. Consequences of the
result by Pittel [233] are for example that the probability that |Cmax|n−2/3 exceeds a
for large a decays as e−a

3/8 (in fact, the asymptotics are much finer than this!), and
for very small a > 0, the probability that |Cmax|n−2/3 is smaller than a decays as

e−ca
−3/2

for some explicit constant c > 0. The bound on the upper tails of |Cmax|n−2/3

is also proved in [209], and is valid for all n and a, with the help of relatively simple
martingale arguments. Nachmias and Peres [209] also explicitly prove the bound
(5.1.10).

Notes on Section 5.2. The proof of Theorem 5.4 is by Nachmias and Peres in
[209]. Many more precise results are proved there, including detailed bounds on the
behavior within the critical window. We state an extension of Theorem 5.4 to the
complete critical window:

Theorem 5.13 (Critical window revisited). Set λ = 1 + θn−1/3 for some t ∈ R and
consider ER(n, λ/n). For θ > 0 and A > 2θ + 3, for large enough n,

Pλ(|C (v)| ≥ An2/3) ≤
(

4θ

1− e−4θ
+ 16

)
n−1/3e−((A−1)2/2−(A−1)θ−2)2/(4A), (5.5.1)

and

Pλ(|Cmax| ≥ An2/3) ≤
(

4θ

A(1− e−4θ)
+

16

A

)
e−((A−1)2/2−(A−1)θ−2)2/(4A). (5.5.2)

Theorem 5.13 gives bounds that are remarkably close to the truth, as derived by
Pittel in [233].

Aldous [12] also investigates the number of edges in the largest connected compo-
nents in the critical window, showing that the number of extra edges also converges
in distribution. Thus, only a finite number of edges needs to be removed to turn
these clusters into trees. Recently, much interest has been devoted to the precise
properties of critical clusters. The most refined work is by Addario-Berry, Broutin
and Goldschmidt [3], who identify the limit of the largest clusters seen as graphs,
under an appropriate topology. This work makes crucial use of the results by Aldous
[12], and extends it significantly.

Theorem 5.7 is due to Aldous [12], following previous work on the critical window
in [51, 162, 196, 198]. While [12] is the first paper where a result as in Theorem 5.7
is stated explicitly, similar results had been around before [12], which explains why
Aldous calls Theorem 5.7 a ‘Folk Theorem’. The beauty of [12] is that Aldous gives
two explicit descriptions of the distribution of the limiting random variable (γi(t))i≥1,
the first being in terms of lengths of excursions of Brownian motion, the second in
terms of the so-called multiplicative coalescent process. Finally, in [145], a explicit
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local limit theorem is proved for all largest connected components inside the critical
window.

The relation between the Erdős-Rényi random graph and coalescing processes can
also be found in the standard book by Bertoin on coagulation and fragmentation
[40, Section 5.2] and the references therein. In fact, ERn(p) for the entire regime of
p ∈ [0, 1] can be understood using coalescent processes, for which the multiplicative
coalescent is most closely related to random graphs.

Notes on Section 5.3. Connectivity of the Erdős-Rényi random graph was inves-
tigated in the early papers on the subject. Theorem 5.8 and its extension, Theorem
5.11, were first proved by Rényi in [235], where versions of Theorems 5.8–5.11 were
proved for ER(n,M). Bollobás gives two separate proofs in [54, Pages 164-165].
Exercise 5.6 is based on a suggestion of Mislav Mǐsković.

Notes on Section 5.4. The degrees of Erdős-Rényi random graphs have attracted
considerable attention. In particular, when ordering the degrees by size as d1 ≥ d2 ≥
· · · ≥ dn, various properties have been shown, such as the fact that there is, with high
probability, a unique vertex with degree d1 [119]. See [50] or [54] for more details.
The result on the degree sequence proved here is a weak consequence of the result by
Janson in [157, Theorem 4.1], where even asymptotic normality was shown for the
number of vertices with degree k, for all k simultaneously.

5.6 Exercises for Chapter 5

Exercise 5.1 (Tightness of |Cmax|/n2/3 and n2/3/|Cmax| in Theorem 5.1). Fix λ = 1 +
θn−1/3 for some θ ∈ R and n sufficiently large. Prove that Theorem 5.1 implies that
|Cmax|/n2/3 and n2/3/|Cmax| are tight sequences of random variables.

Exercise 5.2 (Critical expected cluster size). Prove that Proposition 5.2 also implies that
E1+θn−1/3 [|C (1)|] ≥ cn1/3 for some c > 0. Therefore, for λ = 1 + θn−1/3 with θ < 0, the
bound in Proposition 5.3 is asymptotically sharp.

Exercise 5.3 (Derivative of expected cluster size). Let χn(λ) = Eλ[|C (v)|] be the expected
cluster size in ERn(λ/n). Prove that

∂

∂λ
χn(λ) ≤ χn(λ)2, (5.6.1)

and use this inequality to deduce that for all λ ≤ 1

χn(λ) ≥ 1

χn(1)−1 + (λ− 1)
. (5.6.2)

Exercise 5.4 (Equality total progeny probabilities). Prove that

(λt)t−1

t!
e−λt =

1

λ
e−IλtP∗1(T ∗ = t). (5.6.3)
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Exercise 5.5 (Second moment of the number of isolated vertices). Prove directly that the
second moment of Y converges to the second moment of Z, by using (5.3.10).

Exercise 5.6 (Upper bound on connectivity). Use Proposition 4.6 to prove that

P(ERn(p) connected) ≤ (1− (1− p)n−1)n−1. (5.6.4)

Hint: Use that

P(ERn(p) connected) = Pnp(|C (1)| = n) = Pnp(St > 0 ∀t ∈ [n− 1], Sn−1 = 0). (5.6.5)

Exercise 5.7 (Disconnected phase ERn(p)). Use the previous exercise to give an alternative
proof that P(ERn(p) connected) = o(1) when p = λ/n with λ− log n→ −∞.

Exercise 5.8 (Isolated edges ERn(p)). Fix λ = a log n. Let M denote the number of isolated
edges in ERn(p) with p = λ/n, i.e., edges that are occupied but for which the vertices at

either end have no other neighbors. Show that M
P−→ ∞ when a > 1

2 , while M
P−→ 0 for

a < 1
2 .

Exercise 5.9 (Isolated edges ERn(p) (Cont.)). Fix λ = 1
2 log n + t. Let M denote the

number of isolated edges in ERn(p) with p = λ/n. Show that there exists a random variable

X such that M
d−→ X, and identify the limiting distribution X.

Exercise 5.10 (Number of connected components ERn(p)). Fix λ = log n+ t with t ∈ R.
Let N denote the number of connected components in ERn(p) with p = λ/n. Use Theorem

5.11, as well as the ideas in its proof, to show that N
d−→ 1 + Z, where Z ∼ Poi(e−t).

Exercise 5.11 (Vertices of degree 2). Fix λ = 2 log n + t. Let N2 denote the number of
vertices of degree 2 in ERn(p) with p = λ/n. Show that there exists a random variable X

such that N2
d−→ X, and identify the limiting distribution X.

Exercise 5.12 (Minimal degree 2). Fix λ = 2 log n+t. Let Dmin denote the minimal degree
in in ERn(p) with p = λ/n. Use the previous exercise to show that Pλ(Dmin = 2) converges,
and identify its limit.

Exercise 5.13 (Minimal degree 3). Let Dmin denote the minimal degree in in ERn(p) with
p = λ/n. For which λ does Pλ(Dmin = 3) converge to a limit in (0, 1)? For such λ, identify
the limiting value.

Exercise 5.14 (Maximal degree in ERn(λ/n)). Fix λ > 0. Show that the maximal degree
Dmax = maxi∈[n]Di in ERn(λ/n) satisfies that

Dmax/ log n
P−→ 0. (5.6.6)

Exercise 5.15 (Maximal degree in ERn(λ/n) (Cont.)). Fix λ > 0. How should we choose
an such that the maximal degree Dmax = maxi∈[n]Di in ERn(λ/n) satisfies that there exists
a constant c > 0 such that

Dmax/an
P−→ c. (5.6.7)

Exercise 5.16 (Tails of Poisson). Fix λ > 0 and let X∗ be a Poisson random variable with
parameter λ. Show that there is C = C(A) > 0 such that for every A > 0

P(X∗ ≥ x) ≤ Ce−Ax. (5.6.8)
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Intermezzo: Back to real-world
networks...

Add picture degree distribution ERRG comparing to Poisson

Add loglog-plot degrees ERRG

Theorem 5.12 shows that the degree sequence of the Erdős-Rényi random graph is
close to a Poisson distribution with parameter λ. See A Poisson distribution has thin
tails, for example, its moment generating function is always finite (see e.g. Exercise
5.16). See Figure 5.3 for a comparison of the degree sequence of an Erdős-Rényi
random graph with n = 10000 and λ = 2 to the probability mass function of a
Poisson random variable with parameter λ = 2, which are quite close. See Figure 5.4
for a loglog plot of the probability mass function of a Poisson random variable with
λ = 1 and λ = 2.

Figure 5.3: The degree distribution of ERn(λ/n) with n = 10000, λ = 2 and the
probability mass function of a Poisson random variable with λ = 2.

Figure 5.4: The probability mass function of a Poisson random variable with λ = 1
and λ = 10 in log-log scale.

Figure 5.4 is quite different from the loglog-plot in real-world networks, such as
redrawn in Figure 5.5. As a result, the Erdős-Rényi random graph cannot be used to
model real-world networks where power-law degree sequences are observed. Therefore,
several alternative models have been proposed. In this intermezzo, we discuss degree
sequences of networks and informally introduce three of random graph models for
complex networks that will be discussed in detail in the following three chapters.

In Chapters 6–8 we will be interested in the properties of the degree sequence of
a graph. A natural question is which sequences of numbers can occur as the degree
sequence of a simple graph. A sequence (di)i∈[n] with d1 ≥ d2 ≥ · · · ≥ dn is called
graphic if it is the degree sequence of a simple graph. Thus, the question is which
degree sequences are graphic? Erdős and Gallai [114] proved that a degree sequence
(di)i∈[n] is graphic if and only if

∑
i∈[n] di is even and

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min(k, di), (I.1)

for each integer k ≤ n− 1. The fact that the total degree of a graph needs to be even
is fairly obvious:
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Figure 5.5: (a) Degree sequence AS domains as in Figure 1.4(b). (b) Degree
sequence in the IMDb as in Figure 1.10.

Exercise 5.17 (Handshake lemma). Show that for every graph on the vertices [n],
and with di the degree of vertex i ∈ [n] it holds that

∑
i∈[n] di is even.

The necessity of (I.1) is relatively easy to see. The left side of (I.1) is the degree
of the first k vertices. The first term on the right-hand side of (I.1) is the twice the
maximal number of edges between the vertices in [k]. The second term is a bound
on the total degree of the vertices [k] coming from edges that connect to vertices in
[n] \ [k]. The sufficiency is harder to see, see [76] for a simple proof of this fact, and
[240] for seven different proofs. Arratia and Liggett [18] investigate the asymptotic
probability that an i.i.d. sequence of n integer random variables is graphical, the
result being in many cases equal to 0 or 1/2, at least when P(D even) 6= 1. The limit
is equal to 0 when limn→∞ nP(Di ≥ n) =∞ and 1/2 when limn→∞ nP(Di ≥ n) = 0.
Interestingly, when limn→∞ nP(Di ≥ n) = c for some constant c > 0, then the set of
limit points of the probability that (Di)i∈[n] is graphical is a subset of (0, 1/2). The
proof is by verifying that (I.1) holds. We will see that in the sparse setting, most
sequences having an even sum are graphic.

As argued above, the Erdős-Rényi random graph is not a good model for many
real-world networks. This can be understood by noting that real-world networks are
quite inhomogeneous, in the sense that there is much variability in the roles that
vertices play. The Erdős-Rényi random graph, on the other hand, is completely egal-
itarian, in the sense that, at least in distribution, every vertex plays an identical role.
Since the degrees of all the vertices are close to Poissonian, and Poisson distributions
have thin tails, this means that the degree distribution of the Erdős-Rényi random
graph is completely different from those seen in real-world networks. We conclude
that random graph models for complex networks need to incorporate inhomogeneity.
In Chapters 6–8, we will discuss three models that incorporate this inhomogeneity in
three different ways.

The first model is the so-called generalized random graph (GRG), and was first
introduced in by Britton, Deijfen and Martin-Löf in [69]. This model stays the closest
to the Erdős-Rényi random graph, in the sense that edges in the model remain to
be present independently, but steps away from the homogeneous setting by varying
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the edge probabilities. In the GRG, each vertex i ∈ [n] receives a weight wi. This
weight can be thought of as the propensity of the vertex to have edges, and will turn
out to be quite close to the expected degree of the vertex. Given the weights, edges
are present independently, but the occupation probabilities for different edges are not
identical, but moderated by the weights of the vertices. Naturally, this can be done
in several different ways. The most general version is presented in the seminal paper
by Bollobás, janson and Riordan [56], which we explain in detail in [II, Chapter 2].
In the generalized random graph, the edge probability of the edge between vertex i
and j with weights (wi)i∈[n] is equal to

pij =
wiwj

`n + wiwj
, (I.2)

where `n is the total weight of all vertices given by

`n =
∑
i∈[n]

wi. (I.3)

Thus, in this model the inhomogeneity is modelled using vertex weights, and the
edges incident to vertices with higher weight are more likely to be present, enforcing
the degrees of vertices with higher weights to be larger than those of vertices with
smaller weights. When the weights are chosen appropriately, this can give rise to
random graphs with highly varying vertex degrees. We will focus on the degree
distribution of such random graphs when the weights are chosen to be sufficiently
regular. We also discuss several related models where the edge probabilities are close,
but not exactly equal, to the choice in (I.2). For details, we refer to Chapter 6.

The second model is the configuration model, in which the degrees of the vertices
are fixed. Indeed, we write di for the degree of vertex i, and let, similarly to (I.3),
`n =

∑
i∈[n] di denote the total degree. We assume that `n is even. We make a graph

where vertex i has precisely degree di. Thus, in this model, the inhomogeneity is due
to the fact that vertices have different degrees. To create a graph with the specified
degrees, we think of each vertex having di half-edges attached to it. Two half-edges
can be paired to each other to form an edge. The configuration model is the model
where all half-edges are connected in a uniform fashion, i.e., where the half-edges are
uniformly matched. The nice aspect of this model is that we have complete freedom
in how we choose the degrees. In the GRG, instead, vertices with degree zero will
always be present in the sparse setting, and this might not be realistic for many real-
world settings. In the configuration model, we can take the degrees to be alike the
ones seen in real-world networks, or even take them p[recisely the same. When we
choose the degrees to be precisely equal, then we create a random graph that has
precisely the same degrees as the real-world network, and this model is sometimes
called the null model. By comparing the null model to the real network, one is able to
judge whether the real-world network can be appropriately modeled by the random
graph with the same degree distribution, or whether it has more structure, such as
community structure, high clustering, or degree dependencies.

Unfortunately, when we match the half-edges uniformly, we may create self-loops
and multiple edges in the configuration model. Thus, the configuration model pro-
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duces a multigraph rather than a simple graph, which is in many real-world networks
unwanted. We focus in this chapter on the degree distribution when we erase self-
loops and multiple edges, as well as on the probability that the resulting graph is
simple. A main conclusion is that conditionally on simplicity, the resulting random
graph is uniform amongst the collection of all possible graphs with the specified de-
gree sequence. Another main conclusion is that most regular degree sequences, for
example when the average degree `n/n remains bounded and `n is even, there is a
graph with those degrees, so that most ‘nice’ degree sequences are graphic. The con-
struction of the configuration model also allows us to compute how many graphs there
are with a specific degree sequence, which is a beautiful example of the probabilistic
method. The configuration model is studied in detail in Chapter 7.

The third model is the so-called preferential attachment model, in which the growth
of the random graph is modeled by adding edges to the already existing graph in such
a way that vertices with large degree are more likely to be connected to the newly
added edges. This creates a preference for vertices that have a large degree. In this
model, the inhomogeneity is due to the age of the vertices, that is, older vertices have
larger degrees than younger vertices. See Chapter 8 for details.

All these models have in common that the degree sequence converges to some
limiting distribution that can have various shapes, particularly including power laws.
In Chapters 6–8, we focus on degree properties of the random graphs involved, as well
as other basic properties of the graphs involved. We further describe extensions and
generalizations of these models, and briefly discuss how these generalizations affect
the structure of the random graphs involved. We shall study connectivity properties,
such as the number and sizes of connected components as well as the graph distances
in these models, in the sequel to this book, in [II, Chapters 2–7], respectively.



Chapter 6

Generalized random graphs

Abstract

In this chapter, we discuss inhomogeneous random graphs, in
which the equal edge probabilities of the Erdős-Rényi ran-
dom graph are replaced by edge occupation statuses that
are independent but not equally distributed. Indeed, in the
models studied here, the edge probabilities are moderated
by certain vertex weights. These weights can be taken to
be deterministic or random, and both options will be con-
sidered in this chapter. An important example, on which
we focus in this chapter, is the so-called generalized random
graph. We show that this model has a power-law degree dis-
tribution when the weights do so. As such, this is one of the
simplest adaptions of the Erdős-Rényi random graph having
a power-law degree sequence.

Organisation of this chapter. This chapter is organized as follows. In Section
6.1, we motivate the model and in Section 6.2 we introduce it formally. In Section
6.3, we investigate the degree of a fixed vertex in the generalized random graph, and
in Section 6.4, we investigate the degree sequence of the generalized random graph.
In Section 6.5, we study the generalized random graph with i.i.d. vertex weights. In
Section 6.6, we show that the generalized random graph, conditioned on its degrees,
is a uniform random graph with these degrees. In Section 6.7, we study when two
inhomogeneous random graphs are asymptotically equivalent, meaning that they have
the same asymptotic probabilities. Finally, in Section 6.8, we introduce several more
models of inhomogeneous random graphs similar to the generalized random graph that
have been studied in the literature, such as the so-called Chung-Lu or random graph
with prescribed expected degrees and the Norros-Reittu or Poisson graph process
model. We close this chapter with notes and discussion in Section 6.9 and exercises
in Section 6.10.

6.1 Motivation of the model

In the Erdős-Rényi random graph, every vertex plays the same role, leading to
a completely homogeneous random graph. In many applications, We start with a
simple example:

Example 6.1 (Population of two types). Suppose that we have a complex network
in which two distinct types of vertices are present. The first type has on average m1

185
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neighbors, the second type m2, where m1 6= m2. How can we construct a random
graph in which such heterogeneity can be incorporated?

Example 6.2 (Power-law degrees). In Chapter 1, many examples of real-world net-
works were given where the degrees are quite variable, including hubs having quite
high degrees. How can we construct a random graph with a high amount of variability
in the vertex degrees, for example in the form of power-law degrees?

Example 6.1 deals with a population having only two types. In many situations,
there can be many different types. An important example is the case where the
degrees obey a power law as in Example 6.2, for which any finite number of types
is insufficient. We model this inhomogeneity by adding vertex weights. Vertices
with higher weights are more likely to have many neighbors than vertices with small
weights. Vertices with extremely high weight could act as the hubs observed in many
real-world networks.

6.2 Introduction of the model

In the generalized random graph model, the edge probability of the edge between
vertices i and j, for i 6= j, is equal to

pij = p(GRG)

ij =
wiwj

`n + wiwj
, (6.2.1)

where w = (wi)i∈[n] are the vertex weights, and `n is the total weight of all vertices
given by

`n =
∑
i∈[n]

wi. (6.2.2)

We denote the resulting graph by GRGn(w). In many cases, the weights actually
depend on n, and it would be more appropriate, but also more cumbersome, to write
the weights as w(n) = (w(n)

i )i∈[n]. To keep notation simple, we refrain from making
the dependence on n explicit.

A special case of the generalized random graph is when we take wi ≡ nλ
n−λ , in

which case pij = λ/n for all i, j ∈ [n], so that we retrieve the Erdős-Rényi random
graph ERn(λ/n) (see Exercise 6.1).

Without loss of generality, we assume that wi > 0. Note that when, for a particular
i ∈ [n], wi = 0, then vertex i will be isolated with probability 1, so that we can
remove i from the graph. The vertex weights moderate the inhomogeneity in the
random graph, vertices with high weights have higher edge occupation probabilities
than vertices with low weights. Therefore, by choosing the weights in an appropriate
way, this suggests that we can create graphs with flexible degree sequences. We
investigate the degree structure of the generalized random graph in more detail in
this chapter. Let us first explain in more detail how we can model the network with
two populations in Example 6.1:
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Example 6.3 (Population of two types (Cont.)). In Example 6.1, we let the vertices
of type 1 have weight m1, and the vertices of type 2 have weight m2. Let n1 and n2

denote the number of vertices of weight 1 and 2, respectively, so that

`n = n1m1 + n2m2. (6.2.3)

Further, the probability that a vertex of type 1 is connected to another vertex of type 1
is equal to m2

1/(`n +m2
1), while the probability that it is connected to a vertex of type

2 equals m1m2/(`n + m1m2). Therefore, the expected degree of a vertex of type 1 is
equal to

(n1 − 1)
m2

1

`n +m2
1

+ n2
m1m2

`n +m1m2

= m1

[(n1 − 1)m1

`n +m2
1

+
n2m2

`n +m1m2

]
(6.2.4)

= m1(1 + o(1)),

whenever m2
1 + m1m2 = o(`n). Similarly, a vertex of type 2 has expected degree

m2(1 + o(1)) whenever m1m2 +m2
2 = o(`n). Thus, our graph is such that vertices of

type 1 have on average approximately m1 neighbors, vertices of type 2 have average
degree approximately m2 whenever m2

1 +m2
2 = o(`n).

Naturally, the topology of the generalized random graph depends sensitively upon
the choice of the vertex weights w = (wi)i∈[n]. These vertex weights can be rather
general, and we both investigate settings where the weights are deterministic, as well
as where they are random. In order to describe the empirical proporties of the weights,
we define their empirical distribution function to be

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x}, x ≥ 0. (6.2.5)

We can interpret Fn as the distribution of the weight of a uniformly chosen vertex in
[n] (see Exercise 6.2). We denote the weight of a uniformly chosen vertex U in [n] by
Wn = wU , so that, by Exercise 6.2, Wn has distribution function Fn.

We aim to identify the asymptotic degree distribution in the generalized random
graph, i.e., we aim to prove that the proportion of vertices of degree k approaches a
limit when we let the size of the network n tend to infinity. The degree distribution
can only converge when the vertex weights are sufficiently regular. We often assume
that the vertex weights satisfy the following regularity conditions, which turn out to
imply convergence of the degree distribution in the generalized random graph:

Condition 6.4 (Regularity conditions for vertex weights). There exists a distribution
function F such that, as n→∞ the following conditions hold:
(a) Weak convergence of vertex weight. As n→∞,

Wn
d−→ W, (6.2.6)

where Wn and W have distribution functions Fn and F , respectively. Equivalently,
for any x for which x 7→ F (x) is continuous,

lim
n→∞

Fn(x) = F (x). (6.2.7)
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(b) Convergence of average vertex weight.

lim
n→∞

E[Wn] = E[W ], (6.2.8)

where Wn and W have distribution functions Fn and F , respectively. Further, we
assume that E[W ] > 0.
(c) Convergence of second moment vertex weight.

lim
n→∞

E[W 2
n ] = E[W 2]. (6.2.9)

Condition 6.4(a) guarantees that the weight of a ‘typical’ vertex is close to a
random variable W . Condition 6.4(b) implies that the average weight of the vertices
in GRGn(w) converges to the expectation of the limiting weight variable. In turn,
this implies that the average degree in GRGn(w) converges to the expectation of the
limit random variable of the vertex weights. Condition 6.4(c) ensures the convergence
of the second moment of the weights to the second moment of the limiting weight
variable.

In most of our results, we assume that Conditions 6.4(a)-(b) hold, in some we
also need Condition 6.4(c). We emphasize that Condition 6.4(b) together with (a) is
stronger than the convergence of the average weight. An example where E[Wn] = `n/n
converges, but not to E[W ] can be obtained by taking a weight sequence w = (wi)i∈[n]

that satisfies Conditions 6.4(a)-(b) and replacing wn by w′n = εn for some ε > 0.

Remark 6.5 (Regularity for random weights). In the sequel, we often deal with cases
where the weights of the vertices are random themselves. For example, this arises
when the weights w = (wi)i∈[n] are realizations of i.i.d. random variables. When the
weights are random variables themselves, also the function Fn is a random distribution
function. Indeed, in this case Fn is the empirical distribution function of the random
weights (wi)i∈[n]. We stress that then E[Wn] is to be interpreted as 1

n

∑
i∈[n] wi, which

is itself random. Therefore, in Condition 6.4, we require random variables to converge,
and there are several notions of convergence that may be used. As it turns out, the
most convenient notion of convergence is convergence in probability. Thus, we replace
Condition 6.4(a) by the condition that, for every x ≥ 0,

Pn(Wn ≤ x)
P−→ P(W ≤ x) = F (x), (6.2.10)

for each continuity point x of x 7→ F (x) and where Pn denotes the conditional prob-
ability given the (random) degrees (wi)i∈[n]. Equation (6.2.10) is equivalent to the
statement that, for every continuity pont x ≥ 0 of F and every ε > 0,

P
(∣∣Pn(Wn ≤ x)− P(W ≤ x)

∣∣ > ε
)
→ 0. (6.2.11)

Similarly, Condition 6.4(b) and (c) are replaced by

En[Wn]
P−→ E[W ], En[W 2

n ]
P−→ E[W 2], (6.2.12)

where En denotes expectation with respect to Pn, so that En[Wn] = 1
n

∑
i∈[n] wi.

Equation (6.2.12) is equivalent to the statement that, for every ε > 0,

P
(∣∣En[Wn]− E[W ]

∣∣ > ε
)
→ 0, P

(∣∣En[W 2
n ]− E[W 2]

∣∣ > ε
)
→ 0. (6.2.13)
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Exercise 6.3 investigates bounds on the maximal weight maxi∈[n] wi under Con-
dition 6.4, showing that maxi∈[n] wi = o(n) when Conditions 6.4(a)-(b) hold, while
maxi∈[n] wi = o(

√
n) when Conditions 6.4(a)-(c) hold.

We now discuss two key examples of choices of vertex weights:

Key example of generalized random graph with deterministic weights. Let
F be a distribution function for which F (0) = 0 and fix

wi = [1− F ]−1(i/n), (6.2.14)

where [1−F ]−1 is the generalized inverse function of 1−F defined, for u ∈ (0, 1), by

[1− F ]−1(u) = inf{x : [1− F ](x) ≤ u}. (6.2.15)

By convention, we set [1 − F ]−1(1) = 0. Here the definition of [1 − F ]−1 is chosen
such that

[1− F ]−1(1− u) = F−1(u) = inf{x : F (x) ≥ u}. (6.2.16)

We often make use of (6.2.16), in particular since it implies that [1 − F ]−1(U) has
distribution function F when U is uniform on (0, 1). For the choice in (6.2.14), we
can explicitly compute Fn as

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x} =
1

n

∑
i∈[n]

1{[1−F ]−1(i/n)≤x} =
1

n

n−1∑
j=0

1{[1−F ]−1(1− j
n

)≤x}

=
1

n

n−1∑
j=0

1{F−1( j
n

)≤x} =
1

n

n−1∑
j=0

1{ j
n
≤F (x)} =

1

n

(⌊
nF (x)

⌋
+ 1
)
∧ 1, (6.2.17)

where we write j = n− i in the third equality and use (6.2.16) in the fourth equality.
Exercise 6.4 shows that Condition 6.4(a) holds for (wi)i∈[n] as in (6.2.14).

Note that Fn(x) ≥ F (x) for every x ≥ 0 by (6.2.17), which shows that Wn

is stochastically dominated by W . In particular, this implies that for increasing
functions x 7→ h(x),

1

n

∑
i∈[n]

h(wi) ≤ E[h(W )], (6.2.18)

as formalized in Exercises 6.5 and 6.6.
An example of the generalized random graph arises when we take F to have a

power-law distribution, for which, for some a ≥ 0 and τ > 1,

F (x) =

{
0 for x ≤ a,

1− (a/x)τ−1 for x > a.
(6.2.19)

Here
[1− F ]−1(u) = au−1/(τ−1), (6.2.20)

so that
wi = a

(
i/n
)−1/(τ−1)

. (6.2.21)

This predicts that weights as in (6.2.21) correspond to power-law vertex weights.
Exercise 6.7 investigates the maximal weight in the case (6.2.21).
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The generalized random graph with i.i.d. weights. The generalized random
graph can be studied both with deterministic weights as well as with independent and
identically distributed (i.i.d.) weights. Since we often deal with ratios of the form
wiwj/(

∑
k∈[n]wk), we assume that P(w = 0) = 0 to avoid situations where all weights

are zero.
Both models, i.e., with weights (wi)i∈[n] as in (6.2.14), and with i.i.d. weights

(wi)i∈[n], have their own merits (see Section 6.9 for more details). The great advantage
of i.i.d. weights is that the vertices in the resulting graph are, in distribution, the
same. More precisely, the vertices are completely exchangeable, like in the Erdős-
Rényi random graph ERn(p). Unfortunately, when we take the weights to be i.i.d.,
then in the resulting graph the edges are no longer independent (despite the fact that
they are conditionally independent given the weights), see Exercise 6.8 for a proof of
this fact.

For i.i.d. weights, the empirical distribution function Fn of the weights is given by

Fn(x) =
1

n

∑
i∈[n]

1{wi≤x}. (6.2.22)

When the weights are independently and identically distributed with distribution
function F , then it is well-known that this empirical distribution function is close
to F (this is the Glivenko-Cantelli Theorem). Therefore, Condition 6.4(a) holds.
Conditions 6.4(b)-(c) hold by the weak law of large numbers under the appropriate
moment conditions on the limiting weight variable W .

The total number of edges in GRGn(w). We close this introductory section by
investigating the total number of edges E(GRGn(w)) in the GRG:

Theorem 6.6 (Total number of edges in GRGn(w)). Assume that Condition 6.4(a)-
(b) hold. Then,

1

n
E(GRGn(w))

P−→ 1
2
E[W ]. (6.2.23)

Proof. We apply a second moment method. We start by investigating the first mo-
ment of the number of edges, and prove that

E[E(GRGn(w))]/n→ 1
2
E[W ]. (6.2.24)

For this, we note that

E[E(GRGn(w))] = 1
2

∑
i,j∈[n] : i 6=j

pij = 1
2

∑
i,j∈[n] : i 6=j

wiwj
`n + wiwj

. (6.2.25)

We start by bounding this from above by

E[E(GRGn(w))] ≤ 1
2

∑
i,j∈[n]

wiwj
`n

= `n/2, (6.2.26)

which gives an upper bound on E[E(GRGn(w))].
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We next prove the corresponding lower bound in (6.2.24), for which it is incon-
venient that wiwj can be quite large, even when Condition 6.4(a)-(b) hold. For
this, we use an appropriate truncation argument. Fix a sequence an → ∞. Since
x 7→ x/(`n+x) is increasing, we can bound the expected number of edges from below
by

E[E(GRGn(w))] ≥ 1
2

∑
i,j∈[n] : i 6=j

(wi ∧ an)(wj ∧ an)

`n + (wi ∧ an)(wj ∧ an)
. (6.2.27)

Therefore, with `n(an) =
∑

i∈[n](wi ∧ an),

`n(an)2/`n − 2E[E(GRGn(w))] (6.2.28)

≤
∑
i∈[n]

(wi ∧ an)2

`n + (wi ∧ an)2
+
∑
i,j∈[n]

(wi ∧ an)(wj ∧ an)
[ 1

`n
− 1

`n + (wi ∧ an)(wj ∧ an)

]
=
∑
i∈[n]

(wi ∧ an)2

`n + (wi ∧ an)2
+
∑
i,j∈[n]

(wi ∧ an)2(wj ∧ an)2

`n(`n + (wi ∧ an)(wj ∧ an))

≤
∑
i∈[n]

(wi ∧ an)2

`n

(
1 +

∑
i∈[n]

(wi ∧ an)2

`n

)
.

Since ∑
i∈[n]

(wi ∧ an)2

`n
≤ an, (6.2.29)

the right-hand side of (6.2.28) is o(n) when we choose an = o(
√
n). By (6.2.26) and

(6.2.28), for (6.2.24), it suffices to prove that `n(an)2/(n`n) → E[W ] and `n/n →
E[W ].

By Condition 6.4(b), `n/n = E[Wn] → E[W ]. Further, we claim that `n(an)/n =
E[(Wn ∧ an)] → E[W ] by Conditions 6.4(a)-(b), which can be seen by establishing
upper and lower bounds. Indeed, the upper bound follows easily since E[(Wn∧an)] ≤
E[Wn]→ E[W ]. For the lower bound, and for every K ≥ 0, E[(Wn ∧ an)] ≥ E[(Wn ∧
K)] → E[(W ∧K)] since an → ∞, by Condition 6.4(a) and dominated convergence.
Since E[(W ∧K)]→ E[W ] as K →∞ by monotone convergence, we also obtain the
lower bound lim infn→∞ E[(Wn ∧ an)] ≥ E[W ]. We conclude that (6.2.24) holds.

We continue by bounding Var(E(GRGn(w))), for which we use that the edge
statuses (Xij)1≤i<j≤n are independent Bernoulli variables with P(Xij = 1) = pij, to
obtain

Var(E(GRGn(w))) = 1
2

∑
i,j∈[n] : i 6=j

Var(Xij) = 1
2

∑
i,j∈[n] : i 6=j

pij(1− pij) (6.2.30)

≤ 1
2

∑
i,j∈[n] : i 6=j

pij = E[E(GRGn(w))].

As a result, Var(E(GRGn(w))) ≤ E[E(GRGn(w))], which is o(E[E(GRGn(w))]2)
by (6.2.24) and the fact that E[W ] > 0 by Condition 6.4(a). We conclude from



192 Generalized random graphs

Chebychev’s inequality (Theorem 2.18) that

E(GRGn(w))/E[E(GRGn(w))]
P−→ 1. (6.2.31)

6.3 Degrees in the generalized random graph

In this section, we study the degrees of vertices in GRGn(w). In order to state
the main results, we start with some definitions. We write Di = D(n)

i for the degree
of vertex i in GRGn(w). Thus, Di is given by

Di =
∑
j∈[n]

Xij, (6.3.1)

where Xij is the indicator that the edge ij is occupied. By convention, we set Xij =
Xji. The random variables (Xij)1≤i<j≤n are independent Bernoulli variables with
P(Xij = 1) = pij. Our main result concerning the vertex degrees is as follows:

Theorem 6.7 (Degree of GRG with deterministic weights). (a) There exists a cou-
pling (D̂i, Ẑi) of the degree Di of vertex i and a Poisson random variable Zi with
parameter wi, such that

P(D̂i 6= Ẑi) ≤
w2
i

`n

(
1 + 2

E[W 2
n ]

E[Wn]

)
. (6.3.2)

(b) Assume that Conditions 6.4(a)-(b) hold. When pij given by (6.2.1) are all such
that limn→∞max1≤i<j≤n pij = 0, the degrees D1, . . . , Dm of vertices 1, . . . ,m are
asymptotically independent.

Before proving Theorem 6.7, we state a consequence of it for the degree sequence
when the weights satisfy Condition 6.4. To be able to state this consequence, we need
the following definition:

Definition 6.8 (Mixed Poisson distribution). A random variable X has a mixed
Poisson distribution with mixing distribution F when, for every k ∈ N0,

P(X = k) = E
[
e−W

W k

k!

]
, (6.3.3)

where W is a random variable with distribution function F .

Not every random variable can be obtained as a mixed Poisson distribution. In
Exercises 6.9–6.12, aspects of mixed Poisson distributions are further investigated.

By Theorem 6.7, the degree of vertex i is close to Poisson with parameter wi.
Thus, when we choose a vertex uniformly at random, and we denote the outcome
by U , then the degree of that vertex is close to a Poisson distribution with random

parameter wU = Wn. Since Wn
d−→ W by Condition 6.4, this suggests the following

result:
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Corollary 6.9 (Degree of uniformly chosen vertex in GRG). Assume that Condition
6.4(a)-(b) hold. Then,

(a) the degree of a uniformly chosen vertex converges in distribution to a mixed
Poisson random variable with mixing distribution F ;

(b) the degrees of m uniformly chosen vertices in [n] are asymptotically independent.

We now prove Theorem 6.7 and Corollary 6.9:

Proof of Theorem 6.7. We make essential use of Theorem 2.10, in particular, the
coupling of a sum of Bernoulli random variables with a Poisson random variable in
(2.2.21). Throughout this proof, we shall omit the dependence on n of the weights,
and abbreviate wi = w(n)

i . We recall that

Di =
∑
j∈[n]

Xij, (6.3.4)

where Xij are independent Bernoulli random variables with success probabilities pij =
wiwj

`n+wiwj
. By Theorem 2.10, there exists a Poisson random variable Ŷi with parameter

λi =
∑
j 6=i

wiwj
`n + wiwj

, (6.3.5)

and a random variable D̂i where D̂i has the same distribution as Di, such that

P(D̂i 6= Ŷi) ≤
∑
j 6=i

p2
ij =

∑
j 6=i

w2
iw

2
j

(`n + wiwj)2
≤ w2

i

∑
j∈[n]

w2
j

`2
n

=
w2
i

`n

E[W 2
n ]

E[Wn]
. (6.3.6)

Thus, in order to prove the claim, it suffices to prove that we can, in turn, couple
(D̂i, Ŷi) to (D̂i, Ẑi), where Ẑi is a Poisson random variable with parameter wi, such
that

P(Ŷi 6= Ẑi) ≤ w2
i

∑
j∈[n]

w2
j

`2
n

+
w2
i

`n
. (6.3.7)

For this, we note that

λi ≤
∑
j 6=i

wiwj
`n
≤ wi
`n

∑
j∈[n]

wj = wi. (6.3.8)

Let εi = wi − λi ≥ 0. Then, we let V̂i ∼ Poi(εi) be independent of (D̂i, Ŷi), and write
Ẑi = Ŷi + V̂i, so that by Markov’s inequality (Theorem 2.17)

P(Ŷi 6= Ẑi) = P(V̂i 6= 0) = P(V̂i ≥ 1) ≤ E[V̂i] = εi. (6.3.9)
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To bound εi, we note that

εi = wi −
∑
j 6=i

wiwj
`n + wiwj

=
∑
j∈[n]

wiwj

( 1

`n
− 1

`n + wiwj

)
+

w2
i

`n + w2
i

=
∑
j∈[n]

w2
jw

2
i

`n(`n + wiwj)
+

w2
i

`n + w2
i

≤ w2
i

`n
+
∑
j∈[n]

w2
jw

2
i

`2
n

= w2
i

( 1

`n
+
∑
j∈[n]

w2
j

`2
n

)
. (6.3.10)

We conclude that

P(D̂i 6= Ẑi) ≤ P(D̂i 6= Ŷi) + P(Ŷi 6= Ẑi) ≤
w2
i

`n
+ 2w2

i

∑
j∈[n]

w2
j

`2
n

, (6.3.11)

as required. This proves Theorem 6.7(a).
To prove Theorem 6.7(b), it suffices to prove that we can couple (Di)i∈[m] to an

independent vector (D̂i)i∈[m] such that

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
= o(1). (6.3.12)

To this end, we recall that Xij denotes the indicator that the edge ij is occupied,
so that Xij = Xji. The random variables (Xij)1≤i<j≤n are independent Bernoulli

random variables with parameters (pij)1≤i<j≤n given in (6.2.1). We let (X̂ij)1≤i<j≤n

with X̂ij = X̂ji denote an independent copy of (Xij)1≤i<j≤n, and let, for i ∈ [n],

D̂i =
∑
j<i

X̂ij +
n∑

j=i+1

Xij. (6.3.13)

Then, we observe the following: (1) Since (X̂ij)1≤i<j≤n is an independent copy of

(Xij)1≤i<j≤n, D̂i has the same distribution asDi, for every i ∈ [n]. (2) Set i < j. While

Di and Dj are dependent since they both contain Xij = Xji, D̂i contains Xij, while

D̂j contains X̂ji = X̂ij, which is an independent copy of Xij. It is straightforward

to extend this to the statement that (D̂i)i∈[m] are sums of independent Bernoulli
random variables, and, therefore, are independent random variables. (3) Finally,
(Di)i∈[m] 6= (D̂i)i∈[m] precisely when there exists at least one edge ij with i, j ∈ [m]

such that Xij 6= X̂ij. Since Xij and X̂ij are Bernoulli random variables, Xij 6= X̂ij

implies that either Xij = 0, X̂ij = 1 or Xij = 1, X̂ij = 0. Thus, by Boole’s inequality,

P
(

(Di)i∈[m] 6= (D̂i)i∈[m]

)
≤ 2

m∑
i,j=1

P(Xij = 1) = 2
m∑

i,j=1

pij. (6.3.14)

By assumption, limn→∞ pij = 0, so that (6.3.12) holds for every m ≥ 2 fixed. This
proves Theorem 6.7(b).

Exercise 6.13 investigates the asymptotic independence of the degrees of a growing
number of vertices.



6.3 Degrees in the generalized random graph 195

Proof of Corollary 6.9. We start by giving the proof of part (a) when we assume that
Conditions 6.4(a)-(c) hold. By (6.3.2) together with the fact that maxi∈[n] wi = o(

√
n)

by Exercise 6.3, the degree of vertex i is close to a Poisson random variable with
parameter wi. Thus, Theorem 6.7 implies that the degree of a uniformly chosen
vertex in [n] is close in distribution to a Poisson random variable with parameter wU ,
where U is a uniform vertex in [n]. This is a mixed Poisson distribution with mixing
distribution equal to wU , and wU has the same distribution as Wn.

Since a mixed Poisson random variable converges to a limiting mixed Poisson
random variable whenever the mixing distribution converges in distribution, it suffices
to show that the weight Wn = wU of a uniform vertex has a limiting distribution given
by F . This follows from Condition 6.4(a), whose validity follows by (6.2.17).

We next extend the proof to the setting where only Conditions 6.4(a)-(b) hold.
For this, fix some an → ∞ sufficiently slowly. Then, whp, the weight of a uniformly
chosen vertex Wn = wU satisfies wU ≤ an. Assume that this is the case. Then, we
can split

DU = D(1)

U +D(2)

U , (6.3.15)

where D(1)

U counts the number of edges of U to vertices of weight at most an, and D(2)

U

equals the number of edges of U to vertices of weight larger than an. Note that

E[D(2)

U ] =
1

n

∑
i,j∈[n]

wiwj
`n + wiwj

1{wi≤an<wj} ≤
1

n

∑
j∈[n]

wj1{wj>an} (6.3.16)

= E[Wn1{Wn>an}] = o(1),

so that P(D(2)

U ≥ 1) = o(1). As a result, it suffices to prove that D(1)

U

d−→ D, where
D ∼ Poi(W ) has a mixed Poisson distribution with mixing distribution W . This
proof is similar to that of Theorem 6.7(a) and is left as Exercise 6.14.

The proof of part (b) is a minor adaptation of the proof of Theorem 6.7(b). We
only need to prove the asymptotic independence. Let (Ui)i∈[m] be independent vertices
chosen uniformly at random from [n]. Then, whp, all vertices (Ui)i∈[m] are distinct,
since the probability that Ui = Uj for some i, j ∈ [m] is, by the union bound, bounded
by m2/n. Further, when all vertices (Ui)i∈[m] are distinct, the dependence between
the degrees of the vertices (Ui)i∈[m] arises only through the edges between the vertices
(Ui)i∈[m]. Now, the expected number of occupied edges between the vertices (Ui)i∈[m],
conditionally on (Ui)i∈[m], is bounded by

m∑
i,j=1

wUiwUj
`n + wUiwUj

≤
m∑

i,j=1

wUiwUj
`n

=
1

`n

( m∑
i=1

wUi

)2

. (6.3.17)

The random variables (wUi)i∈[m] are i.i.d., so that the expected number of occupied
edges between m uniformly chosen vertices is bounded above by

1

`n
E
[( m∑

i=1

wUi

)2]
=
m

`n
E[w2

U1
] +

m(m− 1)

`n
E[wU1 ]

2. (6.3.18)
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We can bound

E[w2
U1

] ≤ (max
i∈[n]

wi)E[wU1 ] = o(n)E[Wn] = o(n), (6.3.19)

by Conditions 6.4(a)-(b) and Exercise 6.3. Therefore, the expected number of edges
between the vertices (Ui)i∈[m] is o(1), so that with high probability there are none.
We conclude that we can couple the degrees (DUi)i∈[m] of m uniform vertices to m
independent mixed Poisson random variables (Yi)i∈[m] with mixing distribution wU
such that P

(
(DUi)i∈[m] 6= (Yi)i∈[m]

)
= o(1). Since the random variables (Yi)i∈[m]

converge in distribution to independent mixed Poisson random variables with mixing
distribution F by part (a), this completes the argument.

6.4 Degree sequence of generalized random graph

Theorem 6.7 investigates the degree of a single vertex in the generalized random
graph. In this section, we extend the result to the convergence of the empirical degree
sequence. For k ≥ 0, we let

P (n)

k =
1

n

∑
i∈[n]

1{Di=k} (6.4.1)

denote the degree sequence of GRGn(w). Due to Theorem 6.7, one would expect
that this degree sequence is close to a mixed Poisson distribution. We denote the
probability mass function of such a mixed Poisson distribution by pk, i.e., for k ≥ 0,

pk = E
[
e−W

W k

k!

]
, (6.4.2)

where W is a random variable having distribution function F from Condition 6.4.
Theorem 6.10 shows that indeed the degree sequence (P (n)

k )k≥0 is close to the mixed
Poisson distribution with probability mass function (pk)k≥0 in (6.4.2):

Theorem 6.10 (Degree sequence of GRGn(w)). Assume that Conditions 6.4(a)-(b)
hold. Then, for every ε > 0,

P
( ∞∑
k=0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.4.3)

where (pk)k≥0 is given by (6.4.2).

Proof of Theorem 6.10. By Exercise 2.16 and the fact that (pk)k≥0 is a probability

mass function,
∑

k≥0 |P (n)

k − pk| = 2dTV(P (n), p)
P−→ 0 if and only if maxk≥0 |P (n)

k −
pk| P−→ 0. Thus, we need to show that, for every ε > 0, P

(
maxk≥0 |P (n)

k − pk| ≥ ε
)

vanishes. We use that

P
(

max
k≥0
|P (n)

k − pk| ≥ ε
)
≤
∑
k≥0

P
(
|P (n)

k − pk| ≥ ε
)
. (6.4.4)
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Note that
E[P (n)

k ] = P(DU = k), (6.4.5)

and, by Corollary 6.9(a),
lim
n→∞

P(DU = k) = pk. (6.4.6)

Also, it is not hard to see that the convergence is uniform in k, that is, for every
ε > 0, and for n sufficiently large,

max
k
|E[P (n)

k ]− pk| ≤
ε

2
. (6.4.7)

Exercise 6.17 proves (6.4.7).
By (6.4.4) and (6.4.7), it follows that, for n sufficiently large,

P
(

max
k≥0
|P (n)

k − pk| ≥ ε
)
≤
∑
k≥0

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
. (6.4.8)

By Chebychev’s inequality (Theorem 2.18),

P
(
|P (n)

k − E[P (n)

k ]| ≥ ε/2
)
≤ 4

ε2
Var(P (n)

k ), (6.4.9)

so that

P
(

max
k≥0
|P (n)

k − pk| ≥ ε
)
≤ 4

ε2

∑
k≥0

Var(P (n)

k ). (6.4.10)

We use the definition in (6.4.1) to see that

E[(P (n)

k )2] =
1

n2

∑
i,j∈[n]

P(Di = Dj = k) (6.4.11)

=
1

n2

∑
i∈[n]

P(Di = k) +
1

n2

∑
i,j∈[n] : i 6=j

P(Di = Dj = k).

Therefore,

Var(P (n)

k ) ≤ 1

n2

∑
i∈[n]

[P(Di = k)− P(Di = k)2] (6.4.12)

+
1

n2

∑
i,j∈[n] : i 6=j

[P(Di = Dj = k)− P(Di = k)P(Dj = k)].

We let
Yi;j =

∑
l∈[n] : l 6=i,j

Xil, Yj;i =
∑

l∈[n] : l 6=i,j

Xjl, (6.4.13)

where we recall that (Xij)i,j∈[n] are independent Be(pij) random variables. Then, the
law of (Di, Dj) is the same as the one of (Yi;j + Xij, Yj;i + Xij). Further, (Yi;j +

Xij, Yj;i + X̂ij), where X̂ij is independent of (Xij)i,j∈[n] has the same distribution as
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Xij, are two independent random variables with the same marginals as Di and Dj.
Therefore,

P(Di = Dj = k) = P
(

(Yi;j +Xij, Yj;i +Xij) = (k, k)
)
, (6.4.14)

P(Di = k)P(Dj = k) = P
(

(Yi;j +Xij, Yj;i + X̂ij) = (k, k)
)
, (6.4.15)

so that

P(Di = Dj = k)− P(Di = k)P(Dj = k) (6.4.16)

≤ P
(

(Yi;j +Xij, Yj;i +Xij) = (k, k), (Yi;j +Xij, Yj;i + X̂ij) 6= (k, k)
)
.

When (Yi;j + Xij, Yj;i + Xij) = (k, k), but (Yi;j + Xij, Yj;i + X̂ij) 6= (k, k), we must

have that Xij 6= X̂ij. If Xij = 1, then X̂ij = 0 and Yj;i + X̂ij = k, while, if Xij = 0,

then X̂ij = 1 and Yi;j + Xij = k. Therefore, by the independence of the events

{X̂ij = 1} and {Yi;j +Xij = k}, as well as the independence of the events {X̂ij = 0}
and {Yj;i + X̂ij = k}, and the fact that Yi;j + Xij has the same distribution as Di,

while Yj;i + X̂ij has the same distribution as Dj,

P(Di = Dj = k)− P(Di = k)P(Dj = k) ≤ pij[P(Di = k) + P(Dj = k)]. (6.4.17)

We conclude from (6.4.12) that∑
k≥0

Var(P (n)

k ) ≤ 1

n
+

1

n2

∑
i,j∈[n]

pij → 0, (6.4.18)

since
∑

i,j∈[n] pij = O(n) (recall (6.2.24)). The result follows from (6.4.10), (6.4.18),
and the remark at the beginning of the proof.

6.5 Generalized random graph with i.i.d. weights

In this section, we discuss the special case where (wi)i∈[n] are independent and
identically distributed. To avoid confusion with Wn, which is the weight of a vertex
chosen uniformly at random from [n], we continue to write the weights as (wi)i∈[n],
bearing in mind that now these weights are random. Note that there now is double
randomness. Indeed, there is randomness due to the fact that the weights (wi)i∈[n]

are random themselves, and then there is the randomness in the occupation status of
the edges conditionally on the weights (wi)i∈[n]. By Exercise 6.8, the edge statuses in
GRGn(w) are not independent.

We now investigate the degrees and degree sequence of GRGn(w):

Corollary 6.11 (Degrees of GRGn(w)). When (wi)i∈[n] are i.i.d. random variables
with distribution function F with a finite mean,

(a) the degree Di of vertex i converges in distribution to a mixed Poisson random
variable with mixing distribution F ;
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(b) the degrees D1, . . . , Dm of vertices 1, . . . ,m are asymptotically independent.

Proof. To see that Corollary 6.11 follows from Theorem 6.7, we note that Condi-
tions 6.4(a)-(b) hold by the remark on page 190. We further need to show that
max1≤i<j≤n pij = oP(1). For thia, note that when (wi)i∈[n] are i.i.d. copies of a random
variable W with distribution function F , we have that 1

n

∑
i∈[n] w

2
i = oP(n) since W

has a finite mean (see Exercise 6.18). Exercise 6.18 completes the proof of Corollary
6.11.

We continue to investigate the degree sequence in the case of i.i.d. weights:

Theorem 6.12 (Degree sequence of GRGn(w)). When (wi)i∈[n] are i.i.d. random
variables with distribution function F having finite mean, then, for every ε > 0,

P
(∑
k≥0

|P (n)

k − pk| ≥ ε
)
→ 0, (6.5.1)

where (pk)k≥0 is the probability mass function of a mixed Poisson distribution with
mixing distribution F .

We leave the proof of Theorem 6.12, which is quite similar to the proof of Theorem
6.10, to the reader as Exercise 6.19.

We next turn our attention to the case where the weights (wi)i∈[n] are i.i.d. with
infinite mean. We denote the distribution of wi by F . Our goal is to obtain a random
graph which has a power-law degree sequence with a power-law exponent τ ∈ (1, 2).
We see that this is a non-trivial issue:

Theorem 6.13 (Degrees of GRGn(w) with i.i.d. conditioned weights). Let (wi)i∈[n]

be i.i.d. random variables with distribution function F , and let (w(n)

i )i∈[n] be i.i.d.
copies of the random variable W conditioned on W ≤ an. Then, for every an → ∞
such that an = o(n),

(a) the degree D(n)

k of vertex k in the GRG with weights (w(n)

i )i∈[n], converges in
distribution to a mixed Poisson random variable with mixing distribution F ;

(b) the degrees (D(n)

i )i∈[m] of vertices 1, . . . ,m are asymptotically independent.

Proof. Theorem 6.13 follows by a simple adaptation of the proof of Theorem 6.7 and
will be left as Exercise 6.21.

We finally show that the conditioning on wi ≤ an in Theorem 6.13 is necessary
by proving that if we do not condition the weights to be at most an, then the degree
distribution changes:

Theorem 6.14 (Degrees of GRGn(w) with i.i.d. infinite mean weights). Let (wi)i∈[n]

be i.i.d. random variables with distribution function F satisfying that for some τ ∈
(1, 2) and c > 0,

lim
x→∞

xτ−1[1− F (x)] = c. (6.5.2)
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Let the edge probabilities (pij)1≤i<j≤n conditionally on the weights (wi)i∈[n] be given by

pij =
wiwj

n1/(τ−1) + wiwj
. (6.5.3)

Then,

(a) the degree Dk of vertex k converges in distribution to a mixed Poisson random
variable with parameter γW τ−1, where

γ = c

∫ ∞
0

(1 + x)−2x−(τ−1)dx. (6.5.4)

(b) the degrees (Di)i∈[m] of vertices 1, . . . ,m are asymptotically independent.

The proof of Theorem 6.14 is deferred to Section 6.6 below. By Exercise 6.22 a
mixed Poisson distribution with mixing distribution γW τ−1 does not obey a power
law with exponent τ , but with exponent 2 instead.

We note that the choice of the edge probabilities in (6.5.3) is different from the
choice in (6.2.1). Indeed, the term `n =

∑
i∈[n] wi in the denominator in (6.2.1) is

replaced by n1/(τ−1) in (6.5.3). Since (6.5.2) implies that

n−1/(τ−1)
∑
i∈[n]

wi
d−→ S, (6.5.5)

where S is a stable random variable with parameter τ − 1 ∈ (0, 1), we expect that
the behavior for the choice (6.2.1) is similar (recall Theorem 2.33).

6.6 Generalized random graph conditioned on its degrees

In this section, we investigate the distribution of GRGn(w) in more detail. The
main result in this section is that the generalized random graph conditioned on its
degree sequence is a uniform simple random graph with that degree sequence (see
Theorem 6.15 below).

We start by introducing some notation. We let X = (Xij)1≤i<j≤n, where Xij are
independent random variables with

P(Xij = 1) = 1− P(Xij = 0) = pij, (6.6.1)

where pij is given in (6.2.1). We assume that pij < 1 for every i, j ∈ [n]. Then, with
qij = 1− pij and for x = (xij)1≤i<j≤n,

P(X = x) =
∏

1≤i<j≤n

p
xij
ij q

1−xij
ij . (6.6.2)
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We define the odds-ratios (rij)1≤i<j≤n by

rij =
pij
qij
, (6.6.3)

which is well defined, since qij = 1− pij > 0 due to the fact that pij < 1. Then

pij =
rij

1 + rij
, qij =

1

1 + rij
, (6.6.4)

so that

P(X = x) =
∏

1≤i<j≤n

1

1 + rij

∏
1≤i<j≤n

r
xij
ij . (6.6.5)

We now specialize to the setting of the generalized random graph, and choose

rij = uiuj, (6.6.6)

for some weights (ui)i∈[n]. Later, we will choose

ui =
wi√
`n
, (6.6.7)

in which case we return to (6.2.1) since

pij =
rij

1 + rij
=

uiuj
1 + uiuj

=
wiwj

`n + wiwj
. (6.6.8)

Then, with

G(u) =
∏

1≤i<j≤n

(1 + uiuj), (6.6.9)

we obtain

P(X = x) = G(u)−1
∏

1≤i<j≤n

(uiuj)
xij = G(u)−1

∏
i∈[n]

u
di(x)
i , (6.6.10)

where (di(x))i∈[n] is given by

di(x) =
∑
j∈[n]

xij, (6.6.11)

i.e., di(x) is the degree of vertex i in the generalized random graph configuration
x = (xij)1≤i<j≤n, where, by convention, we assume that xii = 0 and xij = xji. The
proof of the last equality in (6.6.10) is left as Exercise 6.23.

From (6.6.10), and using that
∑

x P(X = x) = 1, it follows that∏
1≤i<j≤n

(1 + uiuj) = G(u) =
∑
x

∏
i∈[n]

u
di(x)
i . (6.6.12)

Furthermore, it also follows from (6.6.10) that the distribution of X conditionally on
{di(X) = di∀1 ≤ i ≤ n} is uniform. That is, all graphs with the same degree sequence
have the same probability. This wonderful and surprising result is formulated in the
following theorem:
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Theorem 6.15 (GRG conditioned on degrees has uniform law). The GRG with edge
probabilities (pij)1≤i<j≤n given by

pij =
uiuj

1 + uiuj
, (6.6.13)

conditioned on {di(X) = di∀i ∈ [n]}, is uniform over all graphs with degree sequence
(di)i∈[n].

Proof. For x satisfying di(x) = di for all i ∈ [n], we can write out

P(X = x | di(X) = di∀i ∈ [n]) =
P(X = x)

P(di(X) = di∀i ∈ [n])

=
P(X = x)∑

y:di(y)=di∀i∈[n] P(X = y)
. (6.6.14)

By (6.6.10), we have that (6.6.14) simplifies to

P(X = x | di(X) = di∀i ∈ [n]) =

∏
i∈[n] u

di(x)
i∑

y:di(y)=di∀i
∏

i∈[n] u
di(y)
i

=

∏
i∈[n] u

di
i∑

y:di(y)=di∀i
∏

i∈[n] u
di
i

=
1

#{y : di(y) = di∀i ∈ [n]} , (6.6.15)

that is, the distribution is uniform over all graphs with the prescribed degree sequence.

We next compute the generating function of all degrees, that is, for t1, . . . , tn ∈ R,
we compute, with Di = di(X),

E
[ ∏
i∈[n]

tDii

]
=
∑
x

P(X = x)
∏
i∈[n]

t
di(x)
i . (6.6.16)

By (6.6.10) and (6.6.12),

E
[ ∏
i∈[n]

tDii

]
= G(u)−1

∑
x

∏
i∈[n]

(uiti)
di(x) =

G(tu)

G(u)
, (6.6.17)

where (tu)i = tiui. By (6.6.9),

E
[ ∏
i∈[n]

tDii

]
=

∏
1≤i<j≤n

1 + uitiujtj
1 + uiuj

. (6.6.18)

Therefore, we have proved the following nice property:
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Proposition 6.16 (Generating function of degrees of GRGn(w)). For the edge prob-
abilities given by (6.2.1) and (6.6.7),

E
[ ∏
i∈[n]

tDii

]
=

∏
1≤i<j≤n

`n + witiwjtj
`n + wiwj

. (6.6.19)

Exercises 6.24, 6.25 and 6.26 investigate consequences of Proposition 6.16. We
finally make use of Proposition 6.16 to prove Theorem 6.14:

Proof of Theorem 6.14. We study the generating function of the degree Dk, where
the weights (wi)i∈[n] are i.i.d. random variables with distribution function F in (??).
We recall that, conditionally on the weights (wi)i∈[n], the probability that edge ij is
occupied is equal to wiwj/(n

1/(τ−1) + wiwj). We note that

E[tDk ] = E
[∏
i 6=k

1 + twiwkn
−1/(τ−1)

1 + wiwkn−1/(τ−1)

]
, (6.6.20)

where the expectation is over the i.i.d. random variables (wi)i∈[n]. Denote φw : R 7→ R
by

φw(x) =
1 + twx

1 + wx
. (6.6.21)

Then, by the independence of the weights (wi)i∈[n], we have that

E[tDk | wk = w] = E
[∏
i 6=k

φw
(
win

−1/(τ−1)
)]

= ψn(w)n−1, (6.6.22)

where
ψn(w) = E

[
φw
(
win

−1/(τ−1)
)]
. (6.6.23)

We claim that

ψn(w) = 1 +
1

n
(t− 1)γwτ−1 + o(n−1). (6.6.24)

This completes the proof since it implies that

E[tDk | wk = w] = ψn(w)n−1 = e(t−1)γwτ−1

(1 + o(1)), (6.6.25)

which in turn implies that

lim
n→∞

E[tDk ] = E[e(t−1)γwτ−1
k ]. (6.6.26)

Since E[e(t−1)γwτ−1
k ] is the probability generating function of a mixed Poisson random

variable with mixing distribution γwτ−1
k (see Exercise 6.27), (6.6.24) indeed completes

the proof.
We complete the proof of Theorem 6.14 by showing that (6.6.24) holds. For this,

we first note, with W having distribution function F ,

ψn(w) = E
[
φw
(
Wn−1/(τ−1)

)]
= 1 + E

[
φw
(
Wn−1/(τ−1)

)
− 1
]
. (6.6.27)
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In Exercise 6.28, it is proved that for every differentiable function h : [0,∞)→ R,
with h(0) = 0 and every random variable X ≥ 0 with distribution function F , the
following partial integration formula holds:

E[h(X)] =

∫ ∞
0

h′(x)[1− F (x)]dx. (6.6.28)

Applying (6.10.16) to h(x) = φw
(
xn−1/(τ−1)

)
− 1 and X = W yields

ψn(w) = 1 + n−1/(τ−1)

∫ ∞
0

φ′w
(
xn−1/(τ−1)

)
[1− F (x)]dx

= 1 +

∫ ∞
0

φ′w(x)[1− F (xn1/(τ−1))]dx. (6.6.29)

Thus,

n(ψn(w)− 1) =

∫ ∞
0

φ′w(x)

xτ−1
(n1/(τ−1)x)τ−1[1− F (xn1/(τ−1))]dx. (6.6.30)

By assumption, xτ−1[1−F (x)] is a bounded function that converges to c. As a result,
by the Dominated convergence theorem (Theorem A.1), see also Exercise 6.29,

lim
n→∞

∫ ∞
0

φ′w(x)

xτ−1
(n1/(τ−1)x)τ−1[1− F (xn1/(τ−1))]dx = c

∫ ∞
0

φ′w(x)

xτ−1
dx. (6.6.31)

We complete the proof of (6.6.24) by noting that

φ′w(x) =
tw

1 + wx
− w(1 + twx)

(1 + wx)2
=

w(t− 1)

(1 + wx)2
, (6.6.32)

so that

c

∫ ∞
0

φ′w(x)

xτ−1
dx = c

∫ ∞
0

w(t− 1)

(1 + wx)2xτ−1
dx = γ(t− 1)wτ−1. (6.6.33)

The asymptotic independence in Theorem 6.14(b) is similar, now using (6.6.19) in
Proposition 6.16 for fixed t1, . . . , tm, and tm+1 = 1, . . . , tn = 1, and proving that the
limit factorizes. We refrain from giving the details.

6.7 Asymptotic equivalence of inhomogeneous random graphs

There are numerous papers that introduce models along the lines of the generalized
random graph, in that they have (conditionally) independent edge statuses. The most
general model has been introduced by Bollobás, Janson and Riordan in [56]. In this
paper, the properties of such random graphs (such as diameter, phase transition
and average distances) have been studied using comparisons to multitype branching
processes. These generalizations are studied in more detail in [II, Chapter 2]. We start
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by investigating when two inhomogeneous random graph sequences are asymptotically
equivalent.

We first introduce the notion of asymptotic equivalence for general random vari-
ables. Before we can do so, we say that (X ,F) is a measurable space when X is
the state space, i.e., the space of all possible outcomes, and F the set of all possible
events. We are particularly interested in finite measurable spaces, in which case X is
a finite set and F can be taken to be the set of all subsets of X . However, all notions
that will be introduced in this section, can be more generally defined.

Definition 6.17 (Asymptotic equivalence of sequences of random variables). Let
(Xn,Fn) be a sequence of measurable spaces. Let Pn and Qn be two probability mea-
sures on (Xn,Fn). Then, we say that the sequences (Pn)n≥1 and (Qn)n≥1 are asymp-
totically equivalent if, for every sequence En ∈ Fn of events,

lim
n→∞

Pn(En)−Qn(En) = 0. (6.7.1)

Thus, (Pn)n≥1 and (Qn)n≥1 are asymptotically equivalent when they have asymp-
totically equal probabilities.

The main result that we prove in this section is the following theorem that gives a
sharp criterium on when two inhomogeneous random graph sequences are asymptoti-
cally equivalent. In its statement, we write p = (pij)1≤i<j≤n for the edge probabilities
in the graph, and IRGn(p) for the inhomogeneous random graph for which the edges
are independent and the probability that the edge ij is present equals pij.

Theorem 6.18 (Asymptotic equivalence of inhomogeneous random graphs). Let
IRGn(p) and IRGn(q) be two inhomogeneous random graphs with edge probabilities
p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n respectively. Assume that there exists ε > 0
such that max1≤i<j≤n pij ≤ 1 − ε. Then IRGn(p) and IRGn(q) are asymptotically
equivalent when

lim
n→∞

∑
1≤i<j≤n

(pij − qij)2

pij
= 0. (6.7.2)

When the edge probabilities p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n are themselves
random variables, with max1≤i<j≤n pij ≤ 1 − ε a.s., then IRGn(p) and IRGn(q) are
asymptotically equivalent when ∑

1≤i<j≤n

(pij − qij)2

pij

P−→ 0. (6.7.3)

We note that, in particular, IRGn(p) and IRGn(q) are asymptotically equivalent
when they can be coupled in such a way that P(IRGn(p) 6= IRGn(q)) = o(1). Thus,
Theorem 6.18 is a quite strong result. The remainder of this section is devoted to the
proof of Theorem 6.18. We start by introducing the necessary ingredients.

There is a strong relation between asymptotic equivalence of random variables
and coupling, in the sense that two sequences of random variables are asymptotically
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equivalent precisely when they can be coupled such that they agree with high prob-
ability. Recall the results in Section 2.2 that we use and extend in this section. Let
p = (px)x∈X and q = (qx)x∈X be two discrete probability measures on the space X ,
and recall that the total variation distance between p and q is given by

dTV(p, q) =
1

2

∑
x

|px − qx|. (6.7.4)

By (2.2.19)-(2.2.20), we see that two sequences of discrete probability measures p(n) =
(p(n)
x )x∈X and q(n) = (q(n)x )x∈X are asymptotically equivalent when

dTV(p(n), q(n))→ 0. (6.7.5)

In fact, this turns out to be an equivalent definition, as proved in Exercise 6.30.
When p and q correspond to Be(p) and Be(q) distributions, then it is rather simple

to show that
dTV(p, q) = |p− q|. (6.7.6)

Now, for IRGn(p) and IRGn(q), the edge occupation variables are all independent
Be(pij) and Be(qij) random variables. Thus, we can couple each of the edges in such
a way that the probability that a particular edge is distinct is equal to

dTV(pij, qij) = |pij − qij|, (6.7.7)

so that we are led to the naive bound

dTV(IRGn(p), IRGn(q)) ≤
∑

1≤i<j≤n

|pij − qij|, (6.7.8)

which is far worse than (6.7.2). As we will see later on, there are many examples for

which
∑

1≤i<j≤n
(pij−qij)2

pij
= o(1), but

∑
1≤i<j≤n |pij − qij| 6= o(1). Thus, the coupling

used in the proof of Theorem 6.18 is substantially stronger.
To explain this seeming contradiction, it is useful to investigate the setting of

the Erdős-Rényi random graph ERn(p). Fix p and q, assume that q ≤ p and that
p ≤ 1− ε. Then, by Theorem 6.18, ERn(p) and ERn(q) are asymptotically equivalent
when ∑

1≤i<j≤n

(pij − qij)2

pij
≤ n2(p− q)2/p = O(n3(p− q)2) = o(1), (6.7.9)

when we assume that p ≥ ε/n. Thus, it suffices that p− q = o(n−3/2). On the other
hand, the right-hand side of (6.7.8) is o(1) when p − q = o(n−2), which is rather
stronger. This can be understood by noting that if we condition on the number
of edges M , then the conditional distribution of ERn(p) conditionally on M = m
does not depend on the precise value of p involved. As a result, we obtain that
the asymptotic equivalence of ERn(p) and ERn(q) follows precisely when we have
asymptotic equivalence of the number of edges in ERn(p) and ERn(q). For this, we
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note that M ∼ Bin(n(n − 1)/2, p) for ERn(p), while the number of edges M ′ for
ERn(q) satisfies M ′ ∼ Bin(n(n − 1)/2, q). By Exercise 4.2 as well as Exercise 4.22,
binomial distributions with a variance that tends to infinity satisfy a central limit
theorem. When M and M ′ both satisfy central limit theorems with equal asymptotic
variances, it turns out that the asymptotic equivalence of M and M ′ follows when
the asymptotic means are equal, as investigated in Exercise 6.31.

We apply Exercise 6.31 with m = n(n− 1)/2 to obtain that ERn(p) and ERn(q)
are asymptotically equivalent precisely when n2(p− q)2/p = o(1), and, assuming that
p = λ/n, this is equivalent to p− q = o(n−3/2). This explains the result in Theorem
6.18 for the Erdős-Rényi random graph, and also shows that the result is optimal in
this case.

We now proceed by proving Theorem 6.18. In this section, rather than working
with the total variation distance between two measures, it is more convenient to use
the so-called Hellinger distance, which is defined, for discrete measures p = (px)x∈X
and q = (qx)x∈X by

dH(p, q) =

√
1

2

∑
x∈X

(
√
px −

√
qx)2. (6.7.10)

It is readily seen that dH and dTV are intimately related, since (see Exercise 6.32)

dH(p, q)2 ≤ dTV(p, q) ≤ 21/2dH(p, q). (6.7.11)

We define

ρ(p, q) = 2dH(Be(p),Be(q))2 =
(√

p−√q
)2

+
(√

1− p−
√

1− q
)2
, (6.7.12)

and note that (see Exercise 6.34)

ρ(p, q) ≤ (p− q)2
(
p−1 + (1− p)−1

)
. (6.7.13)

In particular, Exercise 6.34 implies that when p ≤ 1− ε, then

ρ(p, q) ≤ C(p− q)2/p (6.7.14)

for some C = C(ε) > 0. Now we are ready to complete the proof of Theorem 6.18:

Proof of Theorem 6.18. Let IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q =
(qij)1≤i<j≤n be two inhomogeneous random graphs. Asymptotic equivalence of IRGn(p)
and IRGn(q) is equivalent to asymptotic equivalence of the edge variables, which are
independent Bernoulli random variables with success probabilities p = (pij)1≤i<j≤n
and q = (qij)1≤i<j≤n. In turn, asymptotic equivalence of the edge variables is equiv-
alent to the fact that dH(p, q) = o(1), which is what we prove now.

For two discrete probability measures p = (px)x∈X and q = (qx)x∈X , we denote

H(p, q) = 1− dH(p, q)2 =
∑
x∈X

√
px
√
qx, (6.7.15)
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so that
dH(p, q) =

√
1−H(p, q). (6.7.16)

For IRGn(p) and IRGn(q) with p = (pij)1≤i<j≤n and q = (qij)1≤i<j≤n, the edges are
independent, so that, with ρ defined in (6.7.12),

H(p, q) =
∏

1≤i<j≤n

(1− 1

2
ρ(pij, qij)). (6.7.17)

As a result, dH(p, q) = o(1) precisely when H(p, q) = 1 + o(1). By (6.7.17) and
using that (1− x)(1− y) ≥ 1− x− y and 1− x ≤ e−x for x, y ≥ 0,

1− 1

2

∑
1≤i<j≤n

ρ(pij, qij) ≤ H(p, q) ≤ e−
1
2

∑
1≤i<j≤n ρ(pij ,qij), (6.7.18)

so that H(p, q) = 1− o(1) precisely when
∑

1≤i<j≤n ρ(pij, qij) = o(1). By (6.7.14), we
further obtain that when max1≤i<j≤n pij ≤ 1− ε for some ε > 0, then∑

1≤i<j≤n

ρ(pij, qij) ≤ C
∑

1≤i<j≤n

(pij − qij)2

pij
= o(1), (6.7.19)

by (6.7.2). This completes the proof of the first part of Theorem 6.18. For the second
part, we note that if (6.7.3) holds, then we can find a sequence εn such that

P
( ∑

1≤i<j≤n

(pij − qij)2

pij
≤ εn

)
= 1− o(1). (6.7.20)

Then, the asymptotic equivalence of IRGn(p) and IRGn(q) is, in turn, equivalent to
the asymptotic equivalence of IRGn(p) and IRGn(q) conditionally on∑

1≤i<j≤n

(pij − qij)2

pij
≤ εn.

For the latter, we can use the first part of Theorem 6.18.

In fact, tracing back the above proof, we see that under the assumptions of Theorem
6.18, we also obtain that ρ(p, q) ≥ c(p − q)2/p for some c = c(ε) ≥ 0. Thus, we can
strengthen Theorem 6.18 to the fact that IRGn(p) and IRGn(q) are asymptotically
equivalent if and only if (6.7.2) holds.

6.8 Related inhomogeneous random graph models

We now discuss two examples of inhomogeneous random graphs which have ap-
peared in the literature, and are related to the generalized random graph, and in-
vestigate when they are asymptotically equivalent. We start with the random graph
with prescribed expected degrees.
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6.8.1 Chung-Lu model or random graph with prescribed expected de-
grees

In this section, we prove a coupling result for the Chung-Lu random graph, where
the edge probabilities are given by

p(CL)

ij =
wiwj
`n
∧ 1, (6.8.1)

where again

`n =
∑
i∈[n]

wi. (6.8.2)

We denote the resulting graph by CLn(w). When

max
i∈[n]

w2
i ≤ `n, (6.8.3)

we may forget about the minimum with 1 in (6.8.1). We will assume maxi∈[n]w
2
i ≤ `n

throughout this section.
Naturally, when wi/

√
`n is quite small, there is hardly any difference between

edge weights pij = wiwj/(`n + wiwj) and pij = wiwj/`n. Therefore, one expects that
CLn(w) and GRGn(w) behave rather similarly. We make use of Theorem 6.18, and
investigate the asymptotic equivalence of CLn(w) and GRGn(w):

Theorem 6.19 (Asymptotic equivalence of CL and GRG with deterministic weights).
The random graphs CLn(w) and GRGn(w) are asymptotically equivalent when∑

i∈[n]

w3
i = o(n3/2). (6.8.4)

Proof. We make use of Theorem 6.18. For this, we compute, for fixed ij, and using
the fact that 1− 1/(1 + x) ≤ x,

p(CL)

ij − pij =
wiwj
`n
− wiwj
`n + wiwj

=
wiwj
`n

[
1− 1

1 +
wiwj
`n

]
≤ w2

iw
2
j

`2
n

. (6.8.5)

Moreover, maxi∈[n] w
2
i = o(n) by (6.8.4), so that, for n sufficiently large

pij =
wiwj

`n + wiwj
≥ wiwj/(2`n), (6.8.6)

we arrive at∑
1≤i<j≤n

(pij − p(CL)

ij )2

pij
≤ 2`−3

n

∑
1≤i<j≤n

w3
iw

3
j ≤ `−3

n

(∑
i∈[n]

w3
i

)2

= o(1), (6.8.7)

again by (6.8.4).

When Conditions 6.4(a)-(c) hold, Exercise 6.3 implies that maxi∈[n]wi = o(
√
n), so

that ∑
i∈[n]

w3
i = o(

√
n)
∑
i∈[n]

w2
i = o(n3/2)E[W 2

n ] = o(n3/2). (6.8.8)

Thus, we have proved the following corollary:
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Corollary 6.20 (Asymptotic equivalence of CL and GRG). Assume that Conditions
6.4(a)-(c) hold. Then, the random graphs CLn(w) and GRGn(w) are asymptotically
equivalent.

We can prove stronger results linking the degree sequences of CLn(w) and GRGn(w)
for deterministic weights given by (6.2.14) when E[W ] <∞, by splitting between ver-
tices with small and high weights, but we refrain from doing so.

6.8.2 Norros-Reittu model or the Poisson graph process

In [220], Norrow and Reittu introduce a random multigraph with a Poisson number
of edges in between any two vertices i and j, with parameter equal to wiwj/`n. The
graph is defined as a graph process, where at each time t, a new vertex is born with an
associated weight wt. The number of edges between i and t is Poi(wiwt/`t) distributed.
Furthermore, at each time each of the older edges is erased with probability equal
to wt/`t. We claim that the number of edges between vertices i and j at time t is a
Poisson random variable with mean

wiwj
`t

, and that the number of edges between the
various pairs of vertices are independent. To see this, we start by observing a useful
property of Poisson random variables that a Poisson number of Bernoulli variables is
Poisson with a different mean (see Exercise 6.35).

By Exercise 6.35, the number of edges between vertices i and j at time t is a
Poisson random variable with mean wiwj/`t, and that the number of edges between
different pairs are independent. Indeed, making repeated use of Exercise 6.35 shows
that the number of edges at time t between vertices i and j, for i < j, is Poisson with
parameter

wiwj
`j

t∏
s=j+1

(1− ws
`s

) =
wiwj
`j

t∏
s=j+1

(
`s−1

`s
) =

wiwj
`t

, (6.8.9)

as required. The independence of the number of edges between different pairs of
vertices follows by the independence in the construction of the graph.

The Norros-Reittu graph process produces a multigraph. However, when the
weights are sufficiently bounded, it can be seen that the resulting graph is with
positive probability simple (see Exercise 6.36). Exercise 6.37 investigates the degree
of a fixed vertex in the Norros-Reittu model.

We now discuss the Norros-Reittu model at time n, ignoring the dynamic for-
mulation given above. The Norros-Reittu model is a multigraph, where the number
of edges between vertices i and j is Poi(wiwj/`n). The Norros-Reittu random graph
is obtained by erasing all self-loops and merging all multiple edges. We denote this
graph by NRn(w). For NRn(w), the probability that there is at least one edge be-
tween vertices i and j exists is, conditionally on the weights (wi)i∈[n], given by

p(NR)

ij = P(Poi(wiwj/`n) ≥ 1) = 1− e−wiwj/`n , (6.8.10)

and the occupation statuses of different edges are independent random variables. We
next return to the relation between the various random graph models discussed in
this section.
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We say that a random graph Gn is stochastically dominated by the random graph
G′n when, with (Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n denoting the occupation statuses of the

edges in Gn and G′n respectively, there exists a coupling
(
(X̂ij)1≤i<j≤n, (X̂

′
ij)1≤i<j≤n

)
of (Xij)1≤i<j≤n and (X ′ij)1≤i<j≤n such that

P
(
X̂ij ≤ X̂ ′ij ∀i, j ∈ [n]

)
= 1. (6.8.11)

We write Gn � G′n when the random graph Gn is stochastically dominated by the
random graph G′n.

When the statuses of the edges are independent, then (6.8.11) is equivalent to the
bound that, for all i, j ∈ [n],

pij = P(Xij = 1) ≤ p′ij = P(X ′ij = 1). (6.8.12)

By (6.8.12) and the fact that x
1+x
≤ 1− e−x ≤ (x ∧ 1) for every x ≥ 0,

GRGn(w) � NRn(w) � CLn(w). (6.8.13)

This provides a good way of comparing the various inhomogeneous random graph
models discussed in this chapter. See for example Exercise 6.39, which investigates
when NRn(w) is asymptotically equivalent to GRGn(w).

6.9 Notes and discussion

Notes on Section 6.2. In the generalized random graph studied by Britton, Deijfen
and Martin-Löf in [69], the situation where the vertex weights are i.i.d. is investigated,
and `n in the denominator of the edge probabilities in (6.2.1) is replaced by n, which
leads to a minor change. Indeed, when the weights have finite mean, then `n =
E[W ]n(1 + oP(1)), by the law of large numbers. If we would replace `n by E[W ]n in
(6.2.1), then the edge occupation probabilities become

wiwj
E[W ]n+ wiwj

, (6.9.1)

so that this change amounts to replacing wi by wi/
√
E[W ]. Therefore, at least at a

heuristic level, there is hardly any difference between the definition of pij in (6.2.1),
and the choice pij = wiwj/(n+ wiwj) in [69].

In the literature, both the cases with i.i.d. weights as well as the one with determin-
istic weights have been studied. In the works by Chung and Lu [77, 78, 79, 82, 195],
the Chung-Lu model, as defined in Section 6.8, is studied with deterministic weights.
In [121], general settings are studied, including the one with deterministic weights as
in (6.2.14). In [69], on the other hand, the generalized random graph is studied where
the weights are i.i.d., and in [121] for several cases including the one for i.i.d. degrees,
in the case where the degrees have finite variance degrees, for the Chung-Lu model,
the Norros-Reittu model, as well as the generalized random graph.
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The advantage of deterministic weights is that there is no double randomness,
which makes the model easier to analyse. The results are also often more general,
since often the results for random weights are a simple consequence of the ones for
deterministic weights. On the other hand, the advantage of working with i.i.d. weights
is that the vertices are exchangeable, and, in contrast to the deterministic weights
case, not many assumptions need to be made. For deterministic weights, one often
has to make detailed assumptions concerning the precise structure of the weights.

Notes on Section 6.3. The results in this section are novel, and are inspired by
the ones by Britton, Deijfen and Martin-Löf in [69].

Notes on Section 6.4. The results in this section are novel, and are inspired by
the ones in [69].

Notes on Section 6.5. Theorem 6.14 is [69, Proof of Theorem 3.2], whose proof
we follow. Exercise 6.22 is novel.

Notes on Section 6.6. The proof in Section 6.6 follows the argument in [69, Section
3]. Theorem 6.7 is an extension of [69, Theorem 3.1], in which Corollary 6.11 was
proved under the extra assumption that wi have a finite (1 + ε)−moment.

Notes on Section 6.7. Section 6.7 follows the results of Janson in [159]. Theorem
6.18 is [159, Corollary 2.12]. In [159], there are many more examples and results,
also investigating the notion of asymptotic contiguity of random graphs, which is a
slightly weaker notion than asymptotic equivalence, and holds when events that have
vanishing probability under one measure also have vanishing probabilities under the
other. There are deep relations between convergence in probability and in distribution
and asymptotic equivalence and contiguity, see [159, Remark 1.4].

Notes on Section 6.8. The random graph with prescribed expected degrees, or
Chung-Lu model, has been studied extensively by Chung and Lu in [77, 78, 79, 82,
195]. See in particular the recent book [80], in which many of these results are
summarized.

The Norros-Reittu or Poissonian random graph process first appeared in [220].
We return to this model in [II, Chapter 3], where we prove a beautiful relation to
branching processes for the vertex neighborhoods in this model.

6.10 Exercises for Chapter 6

Exercise 6.1 (The Erdős-Rényi random graph). Prove that pij = λ/n when wi = nλ/(n−λ)
for all i ∈ [n].

Exercise 6.2 (Weight of uniformly chosen vertex). Let U be a vertex chosen uniformly at
random from [n]. Show that the weight wU of U has distribution function Fn.
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Exercise 6.3 (Bound on the maximal weight assuming Conditions 6.4(b)-(c)). Prove that
Conditions 6.4(a)-(b) imply that maxi∈[n]wi = o(n), while Conditions 6.4(a)-(c) imply that
maxi∈[n]wi = o(

√
n). When the degrees w = (wi)i∈[n] are random, these bounds hold in

probability. (Bear in mind that w(n) = (w(n)

i )i∈[n] may depend on n!)

Exercise 6.4 (Condition 6.4(a)). Prove that Condition 6.4(a) holds for (wi)i∈[n] as in
(6.2.14).

Exercise 6.5 (Moments of w and F [121]). Prove that u 7→ [1−F ]−1(u) is non-increasing,
and conclude that, for every non-decreasing function x 7→ h(x) and for (wi)i∈[n] as in
(6.2.14),

1

n

∑
i∈[n]

h(wi) ≤ E[h(W )], (6.10.1)

where W is a random variable with distribution function F .

Exercise 6.6 (Moments of w and F [121] (Cont.)). Set α > 0, assume that E[Wα] < ∞
where W is a random variable with distribution function F . Use Lebesgue’s dominated
convergence theorem (Theorem A.1) to prove that for (wi)i∈[n] as in (6.2.14),

1

n

∑
i∈[n]

wαi → E[Wα]. (6.10.2)

Conclude that Condition 6.4(b) holds when E[W ] <∞, and Condition 6.4(c) when E[W 2] <
∞.

Exercise 6.7 (Bounds on w). Fix (wi)i∈[n] as in (6.2.14). Prove there exists a c′ > 0 such

that wj ≤ w1 ≤ c′n1/(τ−1) for all j ∈ [n] and all large enough n, when the distribution
function F in (6.2.14) satisfies

1− F (x) ≤ cx−(τ−1). (6.10.3)

Exercise 6.8 (Dependence edges in GRGn(w) with i.i.d. weights). Let (wi)i∈[n] be an
i.i.d. sequence of weights, where (wi)i∈[n] are copies of a random variable W for which
E[W 2] <∞. Assume further that there exists ε > 0 such that P(W ≤ ε) = 0. Prove that

nP(12 present) = nP(23 present)→ E[W ], (6.10.4)

while
n2P(12 and 23 present)→ E[W 2]. (6.10.5)

Conclude that the status of different edges that share a vertex are dependent whenever
Var(W ) > 0.

Exercise 6.9 (Not every random variable is mixed Poisson). Give an example of an integer
random variable that cannot be represented as a mixed Poisson distribution.

Exercise 6.10 (Characteristic function of mixed Poisson distribution). Let X have a mixed
Poisson distribution with mixing distribution F and moment generating function MW , i.e.,
for t ∈ C,

MW (t) = E[etW ], (6.10.6)

where W has distribution function F . Show that the characteristic function of X is given
by

φX(t) = E[eitX ] = MW (eit − 1). (6.10.7)
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Exercise 6.11 (Mean and variance mixed Poisson distribution). Let X have a mixed Pois-
son distribution with mixing distribution F . Express the mean and variance of X into the
moments of W , where W has distribution function F .

Exercise 6.12 (Tail behavior mixed Poisson). Suppose that there exist constants 0 < c1 <
c2 <∞ such that, for x ≥ 1,

c1x
1−τ ≤ 1− F (x) ≤ c2x

1−τ . (6.10.8)

Show that there exist 0 < c′1 < c′2 < ∞ such that the distribution function G of a mixed
Poisson distribution with mixing distribution F satisfies that, for x ≥ 1,

c′1x
1−τ ≤ 1−G(x) ≤ c′2x1−τ . (6.10.9)

Exercise 6.13 (Independence of a growing number of degrees for bounded weights). As-
sume that the conditions in Corollary 6.9 hold, and further suppose that there exists a ε > 0
such that ε ≤ wi ≤ ε−1 for every i, so that the weights are uniformly bounded from above
and below. Then, prove that we can couple (Di)i∈[m] to an independent vector (D̂i)i∈[m]

such that (6.3.12) holds whenever m = o(
√
n). As a result, even the degrees of a growing

number of vertices can be coupled to independent degrees.

Exercise 6.14 (Convergence of degrees between vertices of truncated weight). Assume that
Conditions 6.4(a)-(b) hold and take an = o(n1/3). Recall from (6.3.15) that D(1)

U counts the
number of edges of U to vertices of weight at most an. Prove that, conditionally on wU ≤ an,

D(1)

U
d−→ D, where D ∼ Poi(W ) has a mixed Poisson distribution with mixing distribution

W .

Exercise 6.15 (Isolated vertices). Prove that Theorem 6.10 implies that P (n)

0
P−→ p0 > 0.

Conclude that GRGn(w) is not connected when Conditions 6.4(a)-(b) hold.

Exercise 6.16 (Vertices of all degrees exist in GRGn(w)). Prove that Theorem 6.10 implies

that P (n)

k
P−→ pk > 0 for every k ≥ 0. Conclude that GRGn(w) has a positive proportion of

vertices of degree k for every k ≥ 0.

Exercise 6.17 (Uniform convergence of mean degree sequence). Prove (6.4.7).

Exercise 6.18 (Bound on sum of squares of i.i.d. random variables). Show that when
(wi)i∈[n] are i.i.d. random variables with distribution function F with a finite mean, then

1

n
max
i∈[n]

wi
P−→ 0. (6.10.10)

Conclude that
1

n2

∑
i∈[n]

w2
i

P−→ 0. (6.10.11)

Hint: Use that

P(max
i∈[n]

wi ≥ εn) ≤
∑
i∈[n]

P(wi ≥ εn)

= nP(W ≥ εn). (6.10.12)

Then use a variant of the Markov inequality (Theorem 2.17) to show that P(W ≥ εn) =
o(1/n).
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Exercise 6.19 (Proof of Theorem 6.12). Complete the proof of Theorem 6.12, now using
Corollary 6.9, as well as the equality

E[(P (n)

k )2] =
1

n2

∑
1≤i,j≤n

P(Di = Dj = k)

=
1

n
P(D1 = k) +

2

n2

∑
1≤i<j≤n

P(Di = Dj = k). (6.10.13)

Exercise 6.20 (Condition for infinite mean). Show that the mean of W is infinite precisely
when the distribution function F of W satisfies∫ ∞

0
[1− F (x)]dx =∞. (6.10.14)

Exercise 6.21 (Proof of Theorem 6.13). Prove Theorem 6.13 by adapting the proof of

Theorem 6.7. In particular, show that
∑

j∈[n]

(w
(n)
j )2

`2n
= oP(1) in the setting of Theorem 6.13.

Exercise 6.22 (Tail of degree law for τ ∈ (1, 2)). Let the distribution function F satisfy
(6.5.2), and let Y be a mixed Poisson random variable with parameter W τ−1, where W has
distribution function F . Show that Y is such that there exists a constant c > 0 such that

P(Y ≥ y) = cy−1(1 + o(1)). (6.10.15)

Exercise 6.23 (Equality for probability mass function GRG). Prove the last equality in
(6.6.10).

Exercise 6.24 (Alternative proof Theorem 6.7). Use Proposition 6.16 to give an alternative
proof of Theorem 6.7.

Exercise 6.25 (Degree of vertex 1 in ERn(λ/n)). Show that for the Erdős-Rényi random
graph with p = λ/n, the degree of vertex 1 is close to a Poisson random variable with mean
λ by using (6.6.19). Hint: Use that the Erdős-Rényi random graph is obtained by taking
wi ≡ λ

1−λ
n

.

Exercise 6.26 (Asymptotic independence of vertex degrees in ERn(λ/n)). Show that for the
Erdős-Rényi random graph with p = λ/n, the degrees of vertices 1, . . . ,m are asymptotically
independent.

Exercise 6.27 (Identification of limiting vertex degree). Prove that E[e(t−1)γW τ−1
] is the

probability generating function of a mixed Poisson random variable with mixing distribution
γW τ−1.

Exercise 6.28 (A partial integration formula). Prove that for every differentiable function
h : [0,∞) → R, with h(0) = 0 and every random variable X ≥ 0 with distribution function
FX, the following partial integration formula holds:

E[h(X)] =

∫ ∞
0

h′(x)[1− FX(x)]dx, (6.10.16)

provided that
∫∞

0 |h′(x)|FX(dx) <∞.

Exercise 6.29 (Conditions for dominated convergence). Verify the conditions for domi-
nated convergence for the integral on the left-hand side of (6.6.31).
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Exercise 6.30 (Asymptotic equivalence and total variation distance). Use (2.2.4) and Def-
inition 6.17 to prove that p(n) = (p(n)x )x∈X and q(n) = (q(n)x )x∈X are asymptotically equivalent
if and only if dTV(p(n), q(n))→ 0.

Exercise 6.31 (Asymptotic equivalence of binomials with increasing variances [159]). Let
M and M ′ be two binomial random variables with M ∼ Bin(m, pm) and M ′ ∼ Bin(m, qm)
for some m. Assume that m → ∞. Show that M and M ′ are asymptotically equivalent
when m(pm− qm)/

√
mpm = o(1). When pm → 0, show that this is equivalent to mpm →∞

and qm/pm → 1.

Exercise 6.32 (Total variation and Hellinger distance). Prove that, for discrete probability
measures p = (px)x∈X and q = (qx)x∈X ,

dH(p, q)2 ≤ dTV(p, q) ≤ 21/2dH(p, q). (6.10.17)

Exercise 6.33 (Asymptotic equivalence and Hellinger distance). Use Exercises 6.30 and
6.32 to prove that p(n) = (p(n)x )x∈X and q(n) = (q(n)x )x∈X are asymptotically equivalent if and
only if dH(p(n), q(n))→ 0.

Exercise 6.34 (Bound on Hellinger distance Bernoulli variables). Prove (6.7.13).

Exercise 6.35 (Poisson number of Bernoulli variables is Poisson). Let X be a Poisson
random variable with mean λ, and let (Ii)

∞
i=1 be an independent and identically distributed

sequence of Be(p) random variables. Prove that

Y =
X∑
i=1

Ii (6.10.18)

has a Poisson distribution with mean λp.

Exercise 6.36 (Simplicity of the Norros-Reittu random graph). Compute the probability
that the Norros-Reittu random graph is simple at time n, meaning that it has no self-loops
nor multiple edges.

Exercise 6.37 (The degree of a fixed vertex). Assume that Conditions 6.4(a)-(b) hold.
Prove that the degree of a uniform vertex Un ∈ [n] in the Norros-Reittu graph at time n
has an asymptotic mixed Poisson distribution with mixing distribution F , the asymptotic
distribution function of Wn.

Exercise 6.38 (Stochastic domination of increasing random variables). Let Gn � G′n as
defined in (6.8.11). Let the random variable X(G) be an increasing random variable of the
edge occupation random variables of the graph G. Let Xn = X(Gn) and X ′n = X(G′n).
Show that Xn � X ′n.

Exercise 6.39 (Asymptotic equivalence of IRGs). Assume that Conditions 6.4(a)-(c) hold.
Show that NRn(w) is asymptotically equivalent to GRGn(w).



Chapter 7

Configuration model

Abstract

In this chapter, we investigate graphs with fixed degrees.
Ideally, we would like to investigate uniform graphs having
a prescribed degree sequence, i.e, a degree sequence which
is given to us beforehand. An example of such a situation
could arise from a real-world network of which we know the
degree sequence, and we would be interested in generating
a random, or even uniform, graph with precisely the same
degrees. Such a random graph can be created by uniformly
matching half-edges, at the expense of possibly creating self-
loops and multiple edges, and the result is called the con-
figuration model. The main results in this chapter describe
the degree structure in such random graphs, as well as the
probability for the random graph to be simple. We also
draw connections between the configuration model and the
generalized random graphs defined in Chapter 6.

7.1 Motivation for the configuration model

The configuration model is a model in which the degrees of vertices are fixed
beforehand. Such a model is more flexible than the generalized random graph. For
example, the generalized random graph always has a positive proportion of vertices of
degree 0, 1, 2, etc (see Exercises 6.15–6.16). In some real-world networks, however, it
is natural to investigate graphs where every vertex has at least one or two neighbors.
We start by discussing a few examples where random graphs with prescribed degrees
appear naturally:

Example 7.1 (Facebook wall posts). In Facebook wall posts, the vertices of the
network are Facebook users, and each directed edge represents one post, linking the
user writing the post to the user whose wall the post is written on. This gives
rise to a (directed) network of a small subset of posts to the walls of other users
on Facebook. Since users may write multiple posts on a wall, the network al-
lows multiple edges between pairs of vertices. Since users may write on their own
wall, the network contains loops. The degree distribution in loglog scale is dis-
played in Figure 8.1, and we see that the degree distribution resembles a power
law. This data set is from Viswanath et al., see [257]. The data is obtained from
http://konect.uni-koblenz.de/networks/facebook-wosn-wall. We see that the
degrees are, by definition, all at least 1. Thus, this data set can not be well modeled
by the generalized random graph, which always has many vertices of degree 0.

217
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Figure 7.1: Degree distributions for networks of FaceBook wall posts (a) Loglog plot
of cumulative tail probabilities (b) Loglog plot of probability mass function.

Example 7.2 (Population of two types revisited). Suppose that we have a complex
network in which two distinct types of vertices are present. The first type has precisely
m1 neighbors, the second type precisely m2. How can we obtain a uniform graph from
the collection of graphs satisfying these restrictions?

Example 7.3 (Regular graphs). How many simple graphs are there in which every
vertex has degree precisely r? How can we generate a random instance of such a
graph, such that each such simple graph has precisely equal probability?

Example 7.4 (Real-world network and its degrees). Suppose that we have a complex
network of size n in which vertex i ∈ [n] has degree di. How can we decide whether
this network resembles a uniform random graph with the same degree sequence, or
whether it inherently has more structure? For this, we would need to be able to draw
a uniform random graph from the collection of all graphs having the specified degree
sequence.

As it turns out, it is not an easy task to generate graphs having prescribed degrees,
in particular because there may not exist any (recall (I.3) on page 181). We shall
therefore introduce a model that produces a multigraph with the prescribed degrees,
and which, when conditioned on simplicity, is uniform over all simple graphs with the
prescribed degree sequence. This random multigraph is called the configuration model.
We discuss the connections between the configuration model and a uniform simple
random graph having the same degree sequence, and give an asymptotic formula for
the number of simple graphs with a given degree sequence.

This chapter is organized as follows. In Section 7.2, we introduce the configuration
model. In Section 7.3, we investigate its properties, given that the degrees satisfy
some regularity conditions. We investigate two ways of turning the configuration
model into a simple graph, namely, by erasing the self-loops and multiple edges as
studied in Section 7.3, or by conditioning on obtaining a simple graph as studied in
Section 7.4. For the latter, we compute the asymptotic probability of it to be simple.
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This also allows us to compute the asymptotic number of graphs with a given degree
sequence in the case where the maximal degree is not too large. In Section 7.5, we
discuss the tight relations that exist between the configuration model conditioned
on being simple, and the generalized random graph conditioned on its degrees. This
relation will prove to be quite useful when deducing results for the generalized random
graph from those for the configuration model. In Section 7.6, we treat the special case
of i.i.d. degrees. In Section 7.7, we discuss some further results on the configuration
model that we present without proofs. In Section 7.8, we discuss some related models.
We close this chapter in Section 7.9 with notes and discussion and in Section 7.10
with exercises.

7.2 Introduction to the model

Fix an integer n that will denote the number of vertices in the random graph.
Consider a sequence of degrees d = (di)i∈[n]. The aim is to construct an undirected
(multi)graph with n vertices, where vertex j has degree dj. Without loss of generality,
we assume throughout this chapter that dj ≥ 1 for all j ∈ [n], since when dj = 0,
vertex j is isolated and can be removed from the graph. One possible random graph
model is then to take the uniform measure over such undirected and simple graphs.
Here, we call a multigraph simple when it has no self-loops and no multiple edges
between any pair of vertices. However, the set of undirected simple graphs with n
vertices where vertex j has degree dj may be empty. For example, in order for such
a graph to exist, we must assume that the total degree

`n =
∑
j∈[n]

dj (7.2.1)

is even. We wish to construct a simple graph such that d = (di)i∈[n] are the degrees of
the n vertices. However, even when `n =

∑
j∈[n] dj is even, this is not always possible,

as explained in more detail in (I.3) on page 181. See also Exercise 7.1.
Since it is not always possible to construct a simple graph with a given degree

sequence, instead, we construct a multigraph, that is, a graph possibly having self-
loops and multiple edges between pairs of vertices. One way of obtaining such a
multigraph with the given degree sequence is to pair the half-edges attached to the
different vertices in a uniform way. Two half-edges together form an edge, thus
creating the edges in the graph. Let us explain this in more detail.

To construct the multigraph where vertex j has degree dj for all j ∈ [n], we have
n separate vertices and incident to vertex j, we have dj half-edges. Every half-edge
needs to be connected to another half-edge to form an edge, and by forming all edges
we build the graph. For this, the half-edges are numbered in an arbitrary order
from 1 to `n. We start by randomly connecting the first half-edge with one of the
`n − 1 remaining half-edges. Once paired, two half-edges form a single edge of the
multigraph, and the half-edges are removed from the list of half-edges that need to
be paired. Hence, a half-edge can be seen as the left or the right half of an edge.
We continue the procedure of randomly choosing and pairing the half-edges until all
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Figure 7.2: The pairing of half-edges in the configuration model. In this figure,
n = 6, and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = d6 = 2. The first half-edge incident to

vertex 1 is paired to the first half-edge incident to vertex 4.

half-edges are connected, and call the resulting graph the configuration model with
degree sequence d, abbreviated as CMn(d). See Figures 7.2-7.6 for an example of a
realization of the pairing of half-edges and the resulting random graph.

Unfortunately, vertices having self-loops, as well as multiple edges between pairs
of vertices, may occur. However, we will see that self-loops and multiple edges are
relatively scarce when n→∞ and the degrees are sufficiently nice. Clearly, when the
total degree `n =

∑
j∈[n] dj is even, then the above procedure does produce a multi-

graph with the right degree sequence. Here, in the degree sequence of the multigraph,
a self-loop contributes two to the degree of the vertex incident to it, while each of the
multiple edges contributes one to the degree of each of the two vertices incident to it.

One may wonder, or even worry, about the influence of the arbitrary ordering of
the half-edges in the pairing procedure. As it turns out, the process of pairing half-
edges is exchangeable, meaning that the order does not matter for the distribution of
the final outcome. In fact, this is true more generally as long as, conditionally on the
paired half-edges so far, the next half-edge is paired to any of the other half-edges
with equal probability. This also allows one to pair half-edges in a random order,
which is useful, for example when exploring the neighborhood of a vertex. See Figure
7.7 for realizations of the configuration model where all the degrees are 3.

To explain the term configuration model, we now present an equivalent way of
defining the configuration model. For this, we construct a second graph, with vertices
1, . . . , `n. The vertices in the new graph correspond to the half-edges of the random
multigraph in the configuration model. We pair the vertices in the new graph in a
uniform way to produce a uniform matching. For this, we pair vertex 1 with a uniform
other vertex. After this, we pair the first not yet paired vertex to a uniform vertex
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Figure 7.3: The pairing of half-edges in the configuration model. In this figure,
n = 6, and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = d6 = 2. The second half-edge incident
to vertex 1 is paired to the half-edge incident to vertex 3, while the third half-edge

incident to vertex 1 is paired to the first half-edge incident to vertex 6.
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Figure 7.4: The pairing of half-edges in the configuration model. In this figure,
n = 6, and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = d6 = 2. The first half-edge incident to

vertex 2 is paired to the second half-edge incident to vertex 4, while the second
half-edge incident to vertex 2 is paired to the second half-edge incident to vertex 5.
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Figure 7.5: The pairing of half-edges in the configuration model. In this figure,
n = 6, and d1 = 3, d2 = 2, d3 = 1, d4 = 4, d5 = d6 = 2. The third half-edge incident
to vertex 4 is paired to the half-edge incident to vertex 3, while the third half-edge

incident to vertex 1 is paired to the last half-edge incident to vertex 6, and the
fourth half-edge incident to vertex 4 is paired to the last half-edge incident to vertex

5.
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Figure 7.6: The realization of the configuration model. The pairing can create
self-loops, for example, when the first half-edge incident to vertex 1 would pair to

one of the other half-edges incident to vertex 1. The pairing can also create multiple
edges, for example when also the second half-edge incident to vertex 1 would pair to

a half-edge incident to vertex 4.
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Figure 7.7: Realizations of the configuration model with all degrees equal to 3 and
n = 50 and n = 100, respectively.

which is not yet paired. The procedure stops when all vertices are paired to another
(unique) vertex. We denote the resulting graph by Confn(d). Thus, Confn(d) can be
written as Confn(d) = {iσ(i) : i ∈ [`n]}, where σ(i) is the label of the vertex to which
vertex i ∈ [`n] is paired. The pairing of the vertices 1, . . . , `n is called a configuration,
and each configuration has the same probability. Exercise 7.2 investigates the number
of pairings on 2m vertices.

To construct the graph of the configuration model from the above configuration,
we identify vertices 1, . . . , d1 in Confn(d) to form vertex 1 in CMn(d), and vertices
d1 + 1, . . . , d1 + d2 in Confn(d) to form vertex 2 in CMn(d), etc. Therefore, precisely
dj vertices in Confn(d) are identified with vertex j in CMn(d).

In the above identification, the number of edges in CMn(d) between vertices i, j ∈
[n] is the number of vertices in Confn(d) that are identified with i ∈ CMn(d) and
are paired to the vertex in Confn(d) that is identified with vertex j ∈ CMn(d). As a
consequence, the degree of vertex j in CMn(d) is precisely equal to dj. The resulting
graph is a multigraph, since both self-loops and multiple edges between vertices are
possible. We can identify the graph as CMn(d) = (Xij)i,j∈[n], where Xij is the number
of edges between vertices i, j ∈ [n] and Xii is the number of self-loops of vertex i ∈ [n],
so that, for all i ∈ [n],

di = Xii +
∑
j∈[n]

Xij. (7.2.2)

Here, the number of self-loops of vertex i, Xii, appears twice, so that a self-loop
contributes 2 to the degree. Since the uniform matching of the `n vertices in Confn(d)
is sometimes referred to as the configuration, the resulting graph CMn(d) is called
the configuration model.

Exercise 7.2 also gives us an easy way to see that the order of pairings does not
matter for the final outcome. Indeed, as long as each configuration has probability
1/(2m− 1)!!, the precise order in which the pairings take place is irrelevant. This is
formalized in the following definition:
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Definition 7.5 (Adaptable pairing schemes). A pairing scheme is a sequence (xi)i∈[`n/2],
where xi denotes the ith half-edge to be paired. We call a pairing scheme adaptable
when the choice of xm only depends on (xj, yj)

m−1
j=1 , where yj denotes the half-edge to

which xj is paired. We call an adaptable pairing scheme uniform when

P
(
xm is paired to ym | xm, (xj, yj)m−1

j=1

)
=

1

`n − 2m+ 1
, (7.2.3)

for every ym 6∈ {x1, . . . , xm} ∪ {y1, . . . , ym−1}.

When we apply a uniform adaptable pairing scheme, the resulting graph has the
same law as the configuration model:

Lemma 7.6 (Adaptable pairing schemes). For every uniform adaptable pairing, every
configuration σ in Confn(d) = {iσ(i) : i ∈ [`n]} has probability 1/(`n − 1)!!. Conse-
quently, the resulting multigraph has the same distribution as the configuration model
CMn(d).

Proof. A configuration σ occurs precisely when, xj = i implies that yj = σ(i) for
every j ∈ [`n/2]. Thus, the configuration specifies precisely which yj should be paired
to each xj. Let P(σ) denote the probability that our uniform adaptable pairing gives
rise to the configuration σ. Then

P(σ) = P(xj is paired to yj ∀j ∈ [`n/2]) (7.2.4)

=

`n/2∏
m=1

P
(
xm is paired to ym | xm, (xj, yj)m−1

j=1

)
=

`n/2∏
m=1

1

`n − 2m+ 1
=

1

(`n − 1)!!
,

as required.

We note (see e.g. [162, Section 1]) that not all multigraphs have the same prob-
ability, i.e., not every multigraph is equally likely and the measure obtained is not
the uniform measure on all multigraphs with the prescribed degree sequence. Indeed,
there is a weight 1/j! for every edge of multiplicity j, and a factor 1/2 for every
self-loop:

Proposition 7.7 (The law of CMn(d)). Let G = (xij)i,j∈[n] be a multigraph on the
vertices [n] which is such that

di = xii +
∑
j∈[n]

xij. (7.2.5)

Then,

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij!
. (7.2.6)
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Proof. By Exercise 7.2, the number of configurations is equal to (`n − 1)!!. Each
configuration has the same probability, so that

P(CMn(d) = G) =
1

(`n − 1)!!
N(G), (7.2.7)

where N(G) is the number of configurations that, after identifying the vertices, give
rise to the multigraph G. We note that if we permute the half-edges incident to a
vertex, then the resulting multigraph remains unchanged while the configuration is
different, and there are precisely

∏
i∈[n] di! ways to permute the half-edges incident to

all vertices. Some of these permutations, however, give rise to the same configuration.
The factor xij! compensates for the multiple edges between vertices i, j ∈ [n], and the
factor 2xii compensates for the fact that the pairing kl and lk in Confn(d) give rise
to the same configuration.

Exercises 7.3 and 7.4 investigate the distribution of the configuration model for
simple choices of the degrees and n = 2.

The flexibility in choosing the degree sequence d gives us a similar flexibility as in
choosing the vertex weights w in Chapter 6. However, in this case, the choice of the
vertex degrees gives a much more direct control over the topology of the graph. For
example, for CMn(d), it is possible to build graphs with fixed degrees as in Figure
7.7, or for which all degrees are at least a certain value. In many applications, such
flexibility is rather convenient. For example, it allows us to generate a (multi)graph
with precisely the same degrees as a real-world network, so that we can investigate
whether the real-world network is similar to it or not.

We slightly abuse notation and consistently denote our degree sequence by d.
In fact, since we have a degree sequence for the configuration model for each fixed
n, we are actually dealing with sequences of finite sequences, and it would be more
appropriate to instead write the degree sequence as d(n) = (d(1)

1 , . . . , d
(n)
n ), but we

refrain from doing so to keep notation simple. In some cases, the sequence d(n) really
can be seen as the first n entries of an infinite sequence (for example in the case where
the degrees are i.i.d. random variables).

As in Chapter 6, we again impose regularity conditions on the degree sequence
d. In order to state these assumptions, we introduce some notation. We denote the
degree of a uniformly chosen vertex U in [n] by Dn = dU . The random variable Dn

has distribution function Fn given by

Fn(x) =
1

n

∑
j∈[n]

1{dj≤x}, (7.2.8)

which is the empirical distribution of the degrees. We assume that the vertex degrees
satisfy the following regularity conditions:

Condition 7.8 (Regularity conditions for vertex degrees).
(a) Weak convergence of vertex weight. There exists a distribution function F
such that

Dn
d−→ D, (7.2.9)
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where Dn and D have distribution functions Fn and F , respectively.
Equivalently (see also Exercise 7.5 below), for any x,

lim
n→∞

Fn(x) = F (x). (7.2.10)

Further, we assume that F (0) = 0, i.e., P(D ≥ 1) = 1.
(b) Convergence of average vertex degrees.

lim
n→∞

E[Dn] = E[D], (7.2.11)

where Dn and D have distribution functions Fn and F from part (a), respectively.
(c) Convergence of second moment vertex degrees.

lim
n→∞

E[D2
n] = E[D2], (7.2.12)

where again Dn and D have distribution functions Fn and F from part (a), respec-
tively.

Similarly to Condition 6.4 in Chapter 6, we almost always assume that Conditions
7.8(a)-(b) hold, and only sometimes assume Condition 7.8(c). We note that, since
the degrees di only take values in the integers, so does Dn, and therefore so must
the limiting random variable D. As a result, the limiting distribution function F is
constant between integers, and makes a jump P(D = x) at x ∈ N. This implies that
the distribution function F does have discontinuity points, and the weak convergence
in (7.2.9) usually implies (7.2.10) only at continuity points. However, since Fn is
constant in between integers, we do obtain this implication, as proved in Exercise 7.5.

Remark 7.9 (Regularity for random degrees). In the sequel, we will often deal with
cases where the degrees of the vertices are random themselves. For example, this
arises when the degrees d = (di)i∈[n] are realizations of i.i.d. random variables. This
also arises when the degrees are those obtained from the degree sequence of the
generalized random graph GRGn(w). These two examples will be quite prominent
in this chapter, and thus we expand on how to interpret Condition 7.8 in the case of
random degrees. We note that, when the degrees are random variables themselves,
also the function Fn is a random distribution function. Therefore, in Condition 7.8(a),
we require random variables to converge, and there are several notions of convergence
that may be used in Condition 7.8. As it turns out, the most convenient notion of
convergence is convergence in probability. Thus, bearing Exercise 7.5 in mind, we
replace Condition 7.8(a) by the condition that, for every k ∈ N,

Pn(Dn = k)
P−→ P(D = k), (7.2.13)

where Pn denote the conditional probability given the (random) degrees (di)i∈[n].
Equation (7.2.13) is equivalent to the statement that, for every k ∈ N and every
ε > 0,

P
(∣∣Pn(Dn = k)− P(D = k)

∣∣ > ε
)
→ 0. (7.2.14)
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Similarly, Condition 7.8(b) and (c) are replaced by

En[Dn]
P−→ E[D], En[D2

n]
P−→ E[D2], (7.2.15)

where En denotes expectation with respect to Pn. Equation (7.2.15) is equivalent to
the statement that, for every ε > 0,

P
(∣∣En[Dn]− E[D]

∣∣ > ε
)
→ 0, P

(∣∣En[D2
n]− E[D2]

∣∣ > ε
)
→ 0. (7.2.16)

Instead of defining CMn(d) in terms of the degrees, we could have defined it in
terms of the number of vertices with fixed degrees. Indeed, let

nk =
∑
i∈[n]

1{di=k} (7.2.17)

denote the number of vertices with degree k. Then, clearly, apart from the vertex
labels, the degree sequence d is uniquely determined by the sequence (nk)k≥0. Con-
dition 7.8(a) is equivalent to the statemen that limn→∞ nk/n = P(D = k), while
Condition 7.8(b) is equivalent to the statement that limn→∞

∑
k≥0 knk/n = E[D].

We next describe two canonical ways of obtaining a degree sequence d such that
Condition 7.8 holds:

The configuration model with fixed degrees moderated by F . Fix a distri-
bution function F of an integer random variable D. We could take di = [1−F ]−1(i/n),
as we did in for the weights in GRGn(w) in (6.2.14). In this case, indeed, the degrees
are integer due to the fact that F is a distribution function of an integer-valued ran-
dom variable. Many of the arguments in Chapter 6 can be repeated for this setting.

We now focus on a slightly different construction. We take the number of vertices
with degree k to be equal to

nk = dnF (k)e − dnF (k − 1)e, (7.2.18)

and take the corresponding degree sequence d = (di)i∈[n] the unique ordered degree se-
quence compatible with (nk)k≥0. For this sequence, Condition 7.8(a)-(b) are satisfied
(see Exercise 7.6 and 7.7).

The nice thing about our example is that

Fn(k) =
1

n
dnF (k)e, (7.2.19)

which is slightly nicer than for the setting di = [1−F ]−1(i/n) as described in (6.2.17).
In particular, Dn � D, since Fn(x) ≥ F (x) for every x. As a result, Condition 7.8(b)
holds whenever E[D] < ∞, and Condition 7.8(c) whenever E[D2] < ∞, see Exercise
7.7.
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Figure 7.8: The degree sequences of a configuration model with a power-law degree
distribution with n = 1, 000, 000 and τ = 2.5 and τ = 3.5, respectively, in log-log

scale.

The configuration model with i.i.d. degrees. The next canonical example
arises by assuming that the degrees d = (di)i∈[n] are an i.i.d. sequence of random
variables. When we extend the construction of the configuration model to i.i.d. de-
grees d, we should bear in mind that the total degree

`n =
∑
i∈[n]

di (7.2.20)

is in many cases odd with probability exponentially close to 1/2, see Exercise 7.8.
There are different possible solutions to overcome the problem of an odd total

degree `n, each producing a graph with similar characteristics. We make use of the
following solution: If `n is odd, then we add a half-edge to the nth vertex, so that dn
is increased by 1, i.e., dn = d′n + 1{`n−1+d′n odd,i=n}, where d′n is an independent copy
of d1 and independent of the i.i.d. sequence (di)i∈[n−1]. This single half-edge hardly
makes any difference in what follows, and we will ignore this effect. Also, we warn
the reader that now di is random, while the use of the small letter suggests that di is
deterministic. This notation is to avoid confusion between Dn, which is the degree of
a random vertex, and dn, which is the degree of vertex n.

It is not hard to see that Condition 7.8 follows from the Law of Large Numbers
(see Exercise 7.9).

In Figure 7.8, we plot the degree-sequences of CMn(d) for n = 1, 000, 000 and
τ = 2.5 and τ = 3.5. These plots indeed look very alike the loglog-plots of degree
sequences in real-world networks shown in Chapter 1.

7.3 Erased configuration model

We start by defining the erased configuration model. We fix the degrees d. We
start with the multigraph CMn(d) and erase all self-loops, if any exist. After this, we
merge all multiple edges into single edges. This, the erased configuration model is a
simple random graph, where two vertices are connected by an edge if and only if there
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is (at least one) edge connecting them in the original multigraph CMn(d) definition
of the configuration model.

We denote the degrees in the erased configuration model by D(er) = (D(er)

i )i∈[n], so
that

D(er)

i = di − 2si −mi, (7.3.1)

where (di)i∈[n] are the degrees in CMn(d), si = xii is the number of self-loops of vertex
i in CMn(d), and

mi =
∑
j 6=i

(xij − 1)1{xij≥2} (7.3.2)

is the number of multiple edges removed from i.
Denote the empirical degree sequence (p(n)

k )k≥1 in CMn(d) by

p(n)

k = P(Dn = k) =
1

n

∑
i∈[n]

1{di=k}, (7.3.3)

and denote the related degree sequence in the erased configuration model (P (er)

k )k≥1

by

P (er)

k =
1

n

∑
i∈[n]

1{D(er)
i =k}. (7.3.4)

From the notation it is clear that (p(n)

k )k≥1 is a deterministic sequence when d =
(di)i∈[n] is deterministic, while (P (er)

k )k≥1 is a random sequence, since the erased degrees
(D(er)

i )i∈[n] is a random vector even when d = (di)i∈[n] is deterministic.

Now we are ready to state the main result concerning the degree sequence of the
erased configuration model:

Theorem 7.10 (Degree sequence of erased configuration model with fixed degrees).
For fixed degrees d satisfying Conditions 7.8(a)-(b), the degree sequence of the erased
configuration model (P (er)

k )k≥1 converges in probability to (pk)k≥1. More precisely, for
every ε > 0,

P
( ∞∑
k=1

|P (er)

k − pk| ≥ ε
)
→ 0, (7.3.5)

where pk = P(D = k) as in Condition 7.8(a).

Proof. By Condition 7.8(a) and the fact that pointwise convergence of a probability
mass function is equivalent to convergence in total variation distance (recall Exercise
2.16),

lim
n→∞

∞∑
k=1

|p(n)

k − pk| = 0. (7.3.6)

Therefore, we can take n so large that

∞∑
k=1

|p(n)

k − pk| ≤ ε/2. (7.3.7)
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We now aim to show that, whp,
∑∞

k=1 |P (er)

k − p(n)

k | < ε/2.
We start by proving the result under the extra assumption that

max
i∈[n]

di = o(
√
n). (7.3.8)

For this, we bound P(
∑∞

k=1 |P (er)

k − p(n)

k | ≥ ε/2) by using (7.3.1), which implies that
D(er)

i 6= di if and only if 2si +mi ≥ 1. Thus,

∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i

|1{D(er)
i =k} − 1{di=k}|, (7.3.9)

and write out that

1{D(er)
i =k} − 1{di=k} = 1{D(er)

i =k,di>k}
− 1{D(er)

i <k,di=k}

= 1{si+mi>0}
(
1{D(er)

i =k} − 1{di=k}
)
. (7.3.10)

Therefore,

|1{D(er)
i =k} − 1{di=k}| ≤ 1{si+mi>0}

(
1{D(er)

i =k} + 1{di=k}
)
, (7.3.11)

so that
∞∑
k=1

|P (er)

k − p(n)

k | ≤
1

n

∞∑
k=1

∑
i∈[n]

|1{D(er)
i =k} − 1{di=k}|

≤ 1

n

∑
i∈[n]

1{si+mi>0}

∞∑
k=1

(
1{D(er)

i =k} + 1{di=k}
)

=
2

n

∑
i∈[n]

1{si+mi>0} ≤
2

n

∑
i∈[n]

(si +mi). (7.3.12)

We denote the number of self-loops by Sn and the number of multiple edges by Mn,
i.e.,

Sn =
∑
i∈[n]

si, Mn =
1

2

∑
i∈[n]

mi. (7.3.13)

Then, by (7.3.12),

P
( ∞∑
k=1

|P (er)

k − p(n)

k | ≥ ε/2
)
≤ P

(
2Sn + 4Mn ≥ εn/2

)
, (7.3.14)

so that Theorem 7.10 follows if

P(2Sn + 4Mn ≥ εn/2)→ 0. (7.3.15)

By the Markov inequality (Theorem 2.17), we obtain

P(2Sn + 4Mn ≥ εn/2) ≤ 4

εn

(
E[Sn] + 2E[Mn]

)
. (7.3.16)

Bounds on E[Sn] and E[Mn] are provided in the following proposition:
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Proposition 7.11 (Bounds on the expected number of self-loops and multiple edge).
The expected number of self-loops Sn in the configuration model CMn(d) satisfies

E[Sn] =
1

2

∑
i∈[n]

di(di − 1)

`n − 1
≤ 1

2

∑
i∈[n]

d2
i

`n
, (7.3.17)

while the expected number of multiple edges Mn satisfies

E[Mn] ≤ `2
n

(`n − 1)(`n − 3)

(∑
i∈[n]

di(di − 1)

2`n

)2

≤ 2
(∑
i∈[n]

di(di − 1)

`n

)2

. (7.3.18)

Proof. For a vertex i, and for 1 ≤ s < t ≤ di, we define Ist,i to be the indicator of the
event that half-edge s is paired to half-edge t, where s and t are half-edges incident
to vertex i. Here we label the half-edges as (i, s), where i ∈ [n] is the vertex to which
half-edge s is incident and s ∈ [di], and we number the half-edges incident to a vertex
in an arbitrary way. Then

Sn =
∑
i∈[n]

∑
1≤s<t≤di

Ist,i. (7.3.19)

Therefore,

E[Sn] =
∑
i∈[n]

∑
1≤s<t≤di

E[Ist,i] =
∑
i∈[n]

1

2
di(di − 1)E[I12,i], (7.3.20)

since the probability of producing a self-loop by pairing the half-edges (i, s) and (i, t)
does not depend on s and t. Now, E[I12,i] is equal to the probability that half-edges
(i, 1) and (i, 2) are paired to each other, which is equal to 1/(`n−1). Therefore, using
that (di − 1)/(`n − 1) ≤ di/`n since di ≤ `n,

E[Sn] =
1

2

∑
i∈[n]

di(di − 1)

`n − 1
≤ 1

2

∑
i∈[n]

d2
i

`n
. (7.3.21)

This completes the proof of (7.3.17).
We continue by proving (7.3.18). Note that when `n = 3, there cannot be any

multiple edges, so from now on, we assume that `n ≥ 4. Then, for vertices i and j,
and for 1 ≤ s1 < s2 ≤ di and 1 ≤ t1 6= t2 ≤ dj, we define Is1t1,s2t2,ij to be the indicator
of the event that half-edge (i, s1) is paired to half-edge (j, t1) and half-edge (i, s2) is
paired to half-edge (j, t2). If there are multiple edges between vertices i and j, then
Is1t1,s2t2,ij = 1 for some s1, t1 and s2, t2. We bound

mi =
∑

j∈[n] : j 6=i

(xij − 1)1{xij≥2} ≤
∑

j∈[n] : j 6=i

(
xij
2

)
(7.3.22)

=
∑

j∈[n] : j 6=i

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij.
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It follows that

Mn ≤
1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij, (7.3.23)

so that

E[Mn] ≤ 1

2

∑
1≤i 6=j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

E[Is1t1,s2t2,ij]

=
1

4

∑
1≤i 6=j≤n

di(di − 1)dj(dj − 1)E[I11,22,ij]. (7.3.24)

Now, since I11,22,ij is an indicator, E[I11,22,ij] is the probability that I11,22,ij = 1, which
is equal to the probability that half-edge 1 of vertex i is paired to half-edge 1 of vertex
j, and half-edge 2 of vertex i is paired to half-edge 2 of vertex j, which is equal to

E[I11,22,ij] =
1

(`n − 1)(`n − 3)
. (7.3.25)

Therefore,

E[Mn] ≤
∑
i,j∈[n]

di(di − 1)dj(dj − 1)

4(`n − 1)(`n − 3)
≤

2
(∑

i∈[n] di(di − 1)
)2

`2
n

, (7.3.26)

where we use that 8(`n − 1)(`n − 3) ≥ `2
n since `n ≥ 4. This completes the proof of

(7.3.18).

To complete the proof of Theorem 7.10 in the case that maxi∈[n] di = o(
√
n) (recall

(7.3.8)), we apply Proposition 7.11 to obtain

E[Sn] ≤
∑
i∈[n]

d2
i

`n
≤ max

i∈[n]
di = o(

√
n). (7.3.27)

The bound on E[Mn] is similar. By (7.3.16), this proves the claim.

To prove the result assuming only Conditions 7.8(a)-(b), we start by noting that
Conditions 7.8(a)-(b) imply that maxi∈[n] di = o(n) (recall Exercise 6.3). We note
that

∑∞
k=1 |P (er)

k − p(n)

k | ≥ ε/2 implies that the degrees of at least εn/2 vertices are
changed by the erasure procedure. Take an →∞ to be determined later on, and take
n large enough that there are at most εn/4 vertices i ∈ [n] of degree di ≥ an, which
is possible by Condition 7.8(a). Then,

∑∞
k=1 |P (er)

k − p(n)

k | ≥ ε implies that there are
at least εn/4 vertices of degree at most an whose degrees are changed by the erasure
procedure. Let

Sn(an) =
∑
i∈[n]

si1{di≤an}, Mn(an) =
1

2

∑
i∈[n]

mi1{di≤an} (7.3.28)
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denote the number of self-loops and multiple edge incident to vertices of degree at
most an. Then, it is straightforward to adapt Proposition 7.11 to show that

E[Sn(an)] ≤
∑
i∈[n]

d2
i1{di≤an}

`n
, E[Mn(an)] ≤ 2

∑
i∈[n]

d2
i1{di≤an}

`n

∑
j∈[n]

d2
j

`n
. (7.3.29)

Therefore, E[Sn(an)] ≤ an,E[Mn(an)] ≤ an maxj∈[n] dj. Take an → ∞ so slowly that
an maxj∈[n] dj = o(n) (which is possible since maxj∈[n] dj = o(n)), then

P(2Sn(an) + 4Mn(an) ≥ εn/4) ≤ 8

εn

(
E[Sn(an)] + 2E[Mn(an)]

)
= o(1), (7.3.30)

as required.

7.4 Repeated configuration model: simplicity probability

In this section, we investigate the probability that the configuration model yields
a simple graph, i.e., the probability that the graph produced in the configuration
model has no self-loops nor multiple edges. The asymptotics of this probability is
derived in the following theorem:

Theorem 7.12 (Probability of simplicity of CMn(d)). Assume that d = (di)i∈[n]

satisfies Conditions 7.8(a)-(c). Then, the probability that CMn(d) is a simple graph
is asymptotically equal to e−ν/2−ν

2/4, where

ν = E[D(D − 1)]/E[D]. (7.4.1)

Throughout the proof, it turns out to be simpler to work with

M̃n =
∑

1≤i<j≤n

∑
1≤s1<s2≤di

∑
1≤t1 6=t2≤dj

Is1t1,s2t2,ij, (7.4.2)

so that Mn ≤ M̃n by (7.3.22)–(7.3.23). As a result, Mn = 0 when M̃n = 0. In Exercise

7.11 below, we show that actually Mn = M̃n occurs whp. The distinction between
Mn and M̃n is much more prominent in the case where E[D2

n]→∞, see also Section
7.7.

Theorem 7.12 is a consequence of the following result:

Proposition 7.13 (Poisson limit of self-loops and multiple edges). Assume that d =
(di)i∈[n] satisfies Conditions 7.8(a)-(c). Then (Sn,Mn) converges in distribution to
(S,M), where S and M are two independent Poisson random variables with means
ν/2 and ν2/4.

Indeed, Theorem 7.12 is a simple consequence of Proposition 7.13, since CMn(d)
is simple precisely when Sn = Mn = 0. By the weak convergence result stated in
Proposition 7.13 and the independence of S and M , the probability that Sn = Mn = 0
converges to e−µS−µM , where µS and µM are the means of the limiting Poisson random
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variables S and M . Using the identification of the means of S and M in Proposition
7.13, this completes the proof of Theorem 7.12. We are left to prove Proposition 7.13.

Proof of Proposition 7.13. Throughout the proof, we assume that S and M are two
independent Poisson random variables with means ν/2 and ν2/4. We make use of
Theorem 2.6 which implies that it suffices to prove that the (joint) factorial moments

of (Sn, M̃n) converge to those of (S,M). Also, Sn and M̃n are sums of indicators, so
that we can use Theorem 2.7 to identify their joint factorial moments.

To prove that (Sn, M̃n) converges in distribution to (S,M), we use Theorem 2.6
to see that we are left to prove that, for every s, r ≥ 0,

lim
n→∞

E[(Sn)s(M̃n)r] =
(ν

2

)s(ν2

4

)r
. (7.4.3)

We define the sets of indices

I1 = {(st, i) : i ∈ [n], 1 ≤ s < t ≤ di}, (7.4.4)

I2 = {(s1t1, s2t2, i, j) : 1 ≤ i < j ≤ n, 1 ≤ s1 < s2 ≤ di, 1 ≤ t1 6= t2 ≤ dj}, (7.4.5)

for the potential self-loops and pairs of multiple edges, respectively, so that

Sn =
∑

(st,i)∈I1

Ist,i, M̃n =
∑

(s1t1,s2t2,i,j)∈I2

Is1t1,s2t2,ij. (7.4.6)

Without loss of generality, we will assume that their sizes |I1| and |I2| grow to infinity

with n, since n1 = n(1−o(1)) when this is not the case, and in this case (Sn, M̃n) = 0
whp and also ν = 0. Indeed, note that only vertices with degree at least 2 contribute
to I1 and I2 in (7.4.4)–(7.4.5).

Further, for m(1) = (st, i) ∈ I1 and m(2) = (s1t1, s2t2, i, j) ∈ I2, we write

I (1)

m(1) = Ist,i, I (2)

m(2) = Is1t1,s2t2,ij. (7.4.7)

Recall the notation
∑∗

for the sum over distinct indices introduced in Theorem 2.5.

By Theorem 2.7,

E[(Sn)s(M̃n)r] =
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

m
(2)
1 ,...,m

(2)
r ∈I2

P
(
I (1)

m
(1)
1

= · · · = I (1)

m
(1)
s

= I (2)

m
(2)
1

= · · · = I (2)

m
(2)
r

= 1
)
. (7.4.8)

Since all half-edges are uniformly paired,

P
(
I (1)

m
(1)
1

= · · · = I (1)

m
(1)
s

= I (2)

m
(2)
1

= · · · = I (2)

m
(2)
r

= 1
)

=
1∏s+2r−1

i=0 (`n − 1− 2i)
, (7.4.9)

unless there is a conflict in the required pairings, in which case

P
(
I (1)

m
(1)
1

= . . . = I (1)

m
(1)
s

= I (2)

m
(2)
1

= . . . = I (2)

m
(2)
r

= 1
)

= 0. (7.4.10)
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Such a conflict arises precisely when a half-edge is required to be paired to two different
other half-edges. Since the upper bound in (7.4.9) always holds, we arrive at

E[(Sn)s(M̃n)r] ≤
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1

(`n − 1)(`n − 3) · · · (`n − 2s− 4r + 1)

=
|I1|(|I1| − 1) · · · (|I1| − s+ 1) · |I2|(|I2| − 1) · · · (|I2| − r + 1)

(`n − 1)(`n − 3) · · · (`n − 2s− 4r + 1)
.

(7.4.11)

Since |I1|, |I2|, `n all tend to infinity, and s, r remain fixed,

lim sup
n→∞

E[(Sn)s(M̃n)r] ≤
(

lim
n→∞

|I1|
`n

)s(
lim
n→∞

|I2|
`2
n

)r
. (7.4.12)

By Conditions 7.8(b)-(c),

lim
n→∞

|I1|
`n

= lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2
= ν/2. (7.4.13)

Further, again by Conditions 7.8(b)-(c) and also using that di = o(
√
n) by Exercise

6.3 applied to w = d, as well as `n ≥ n,

lim
n→∞

|I2|
`2
n

= lim
n→∞

1

`2
n

∑
1≤i<j≤n

di(di − 1)

2
dj(dj − 1)

=
(

lim
n→∞

1

`n

∑
i∈[n]

di(di − 1)

2

)2

− lim
n→∞

∑
i∈[n]

d2
i (di − 1)2

2`2
n

= (ν/2)2. (7.4.14)

This provides the required upper bound, and completes the proof when ν = 0.
To prove the matching lower bound for ν > 0, we note that, by (7.4.10),∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

1∏s+2r−1
i=0 (`n − 1− 2i)

− E[(Sn)s(M̃n)r]

=
∑∗

m
(1)
1 ,...,m

(1)
s ∈I1

∑∗

m
(2)
1 ,...,m

(2)
r ∈I2

J
m

(1)
1 ,...,m

(1)
s ,m

(2)
1 ,...,m

(2)
r

(`n − 1)(`n − 3) · · · (`n − 2s− 4r + 1)
, (7.4.15)

where J
m

(1)
1 ,...,m

(1)
s ,m

(2)
1 ,...,m

(2)
r

= 1 precisely when there is a conflict in the indices

m(1)

1 , . . . ,m
(1)
s ,m

(2)

1 , . . . ,m
(2)
r and J

m
(1)
1 ,...,m

(1)
s ,m

(2)
1 ,...,m

(2)
r

= 0 otherwise. Our aim is to

show that the right-hand side of (7.4.15) vanishes.

There is a conflict precisely when there exists a half-edge that must be paired to
two different half-edges. For this, there has to be a pair of indices in m(1)

1 , . . . ,m
(1)
s ,

m(2)

1 , . . . ,m
(2)
r that create the conflict. There are three such possibilities: (a) the

conflict is created by m(1)

ia
,m(1)

ib
for some a, b; (b) the conflict is created by m(1)

ia
,m(2)

ib
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for some a, b; and (c) the conflict is created by m(2)

ia
,m(2)

ib
for some a, b. We bound

each of these possibilities separately.
In case (a), the number of m(1)

il
, where l ∈ [s] \ {a, b} and m(1)

ik
, k ∈ [r] is bounded

by |I1|s−2|I2|r. Thus, to show that this contribution to the right-hand side of (7.4.15)
vanishes and comparing (7.4.15) with (7.4.11), we see that it suffices to prove that
the number of conflicting m(1)

ia
,m(1)

ib
is o(|I1|2). We note that m(1)

ia
creates a conflict

with m(1)

ib
when ia = (st, i) and ib = (s′t′, i) where at least two indices in s, t, s′, t′

agree. The number of conflicting pairs of the form m(1)

ia
,m(1)

ib
is thus bounded by

6
∑
i∈[n]

d3
i = o

(∑
i∈[n]

di(di − 1)
)2

= o(|I1|2), (7.4.16)

as required, where we use that maxi∈[n] di = o(n) and ν/2 = limn→∞ |I1|/`n > 0, so
that |I1| ≥ εn for some ε > 0.

In case (b), the number of m(1)

il
, l ∈ [s] \ {a} and m(2)

ik
, k ∈ [r] \ {b} is bounded by

|I1|s−1|I2|r−1. Thus, to show that this contribution to the right-hand side of (7.4.15)
vanishes and comparing (7.4.15) with (7.4.11), we now see that it suffices to prove
that the number of conflicting m(1)

ia
,m(2)

ib
is o(|I1||I2|). For a conflict between m(1)

ia
and

m(2)

ib
to occur, we must have that ia = (st, i) and ib = (s1t1, s2t2, ij) where at least

two indices in s, t, s1, s2 agree. The number of conflicting pairs of the form m(1)

ia
,m(2)

ib

is thus bounded by

6
∑
i∈[n]

d3
i

∑
j∈[n]

d2
j = o

(∑
i∈[n]

di(di − 1)
)3

= o(|I1||I2|), (7.4.17)

as required, where we again use that maxi∈[n] di = o(n) and ν2/4 = limn→∞ |I2|/`2
n >

0, so that |I2| ≥ εn2 for some ε > 0.
In case (c), the number of m(2)

il
, l ∈ [s] and m(2)

ik
, k ∈ [r] \ {a, b} is bounded by

|I1|s|I2|r−2. Thus, to show that this contribution to the right-hand side of (7.4.15)
vanishes and comparing (7.4.15) with (7.4.11), we now see that it suffices to prove
that the number of conflicting m(2)

ia
,m(2)

ib
is o(|I2|2). For a conflict between m(2)

ia
and

m(2)

ib
to occur, we must have that ia = (s1t1, s2t2, ij) and ib = (s′1t

′
1, s
′
2t
′
2, ik) where at

least two indices in s1, s2, s
′
1, s
′
2 agree. The number of conflicting pairs of the form

m(2)

ia
,m(2)

ib
is thus bounded by

6
∑
i∈[n]

d3
i

∑
j∈[n]

d2
j

∑
k∈[n]

d2
k = o

(∑
i∈[n]

di(di − 1)
)4

= o(|I2|2), (7.4.18)

as before and as required. This completes the proof.

We close this section by showing that the probability of simplicity converges to
zero when E[D2] =∞:

Proposition 7.14 (Number of self-loops and multiple edges for infinite variance
degrees). Assume that d = (di)i∈[n] satisfies Conditions 7.8(a)-(b), and assume that

E[D2] =∞. Then Sn and M̃n both converge to infinity in probability. Consequently,
P(CMn(d) simple) = o(1) when E[D2] =∞.
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Proof. We adapt the proof of Proposition 7.13. We fix K ≥ 1 large and define the
truncated sets of indices

I1(K) = {(st, i) : i ∈ [n], 1 ≤ s < t ≤ di ∧K},
I2(K) = {(s1t1, s2t2, i, j) : 1 ≤ i < j ≤ n, 1 ≤ s1 < s2 ≤ di ∧K, 1 ≤ t1 6= t2 ≤ dj ∧K},

for the potential set of self-loops and pairs of multiple edges between the first K
half-edges of all vertices, respectively. Again we assume, without loss of generality,
that |I1| and |I2| grow to infinity with n. Clearly, Sn � Sn(K),Mn �Mn(K), where
now

Sn(K) =
∑

(st,i)∈I1(K)

Ist,i, M̃n(K) =
∑

(s1t1,s2t2,i,j)∈I2(K)

Is1t1,s2t2,ij. (7.4.19)

Following the proof of Proposition 7.13, we obtain that

(Sn(K), M̃n(K))
d−→ (S(K),M(K)), (7.4.20)

where (S(K),M(K)) are independent Poisson variables with means ν(K)/2 and
ν(K)2/4, respectively, where

ν(K) =
E[(D ∧K)((D ∧K)− 1)]

E[D]
. (7.4.21)

Since ν(K)↗∞ as K →∞, it follows that, for every A ≥ 1,

lim inf
n→∞

P(Sn ≥ A) ≥ lim inf
n→∞

P(Sn(K) ≥ A) = P(S(K) ≥ A)→ 1, (7.4.22)

as K →∞. This implies that Sn
P−→∞. A similar argument applies to M̃n.

Exercises 7.12–7.13 extend Proposition 7.14 to Mn
P−→∞.

7.5 Uniform simple graphs and generalized random graphs

In this section, we investigate the relations between the configuration model, uni-
form simple random graphs with given degrees, and the generalized random graph
with given weights. These results are ‘folklore’ in the random graph community, and
allow to use the configuration model to prove results for several other models. We cru-
cially rely on the fact that CMn(d) is simple with asymptotically positive probability
when the degree sequence (di)i∈[n] satisfies Conditions 7.8(a)-(c).

Proposition 7.15 (Uniform graphs with given degree sequence). For any degree se-
quence (di)i∈[n], and conditionally on the event {CMn(d) is a simple graph}, CMn(d)
is a uniform simple graph with degree sequence d = (di)i∈[n].
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Proof. By (7.2.6) in Proposition 7.7, P(CMn(d) = G) is the same for every simple
graph G. Therefore, also P(CMn(d) = G | CMn(d) simple) is the same for every
simple graph G.

Alternatively, by Exercise 7.18, conditionally on the matching producing a simple
graph, the conditional distribution of the configuration is uniform over all configura-
tions which are such that the corresponding graph is simple.

An important consequence of Theorem 7.12 is that it allows us to compute the
asymptotic number of simple graphs with a given degree sequence:

Corollary 7.16 (Number of graphs with given degree sequence). Assume that the
degree sequence d = (di)i∈[n] satisfies Conditions 7.8(a)-(c), and that `n =

∑
i∈[n] di

is even. Then, the number of simple graphs with degree sequence d = (di)i∈[n] is equal
to

e−ν/2−ν
2/4 (`n − 1)!!∏

i∈[n] di!
(1 + o(1)). (7.5.1)

Proof. By (7.2.6) in Proposition 7.7, for any simple G,

P(CMn(d) = G) =

∏
i∈[n] di!

(`n − 1)!!
. (7.5.2)

Therefore,

P(CMn(d) simple) =

∏
i∈[n] di!

(`n − 1)!!
#{simple graphs with degree sequence d}. (7.5.3)

We multiply by (`n− 1)!!, divide by
∏

i∈[n] di!, and use Theorem 7.12 to arrive at the
claim.

A special case of the configuration model is when all degrees are equal to some r. In
this case, when we condition on the fact that the resulting graph in the configuration
model to be simple, we obtain a uniform regular random graph. See Figure 7.7 for two
examples of configuration models where every vertex has degree 3. Uniform regular
random graphs can be seen as a finite approximation of a regular tree. In particular,
Corollary 7.16 implies that, when nr is even, the number of regular r-ary graphs is
equal to (see also Exercise 7.20)

e−(r−1)/2−(r−1)2/4 (rn− 1)!!

(r!)n
(1 + o(1)). (7.5.4)

A further consequence of Theorem 7.12 is that it allows to prove a property for
uniform graphs with a given degree sequence by proving it for the configuration model
with that degree sequence:

Corollary 7.17 (Uniform graphs with given degree sequence and CMn(d)). Assume
that d = (di)i∈[n] satisfies Conditions 7.8(a)-(c), and that `n =

∑
i∈[n] di is even.

Then, an event En occurs with high probability for a uniform simple random graph
with degrees (di)i∈[n] when it occurs with high probability for CMn(d).
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Corollary 7.17 yields a simple strategy to study proporties of uniform simple ran-
dom graphs with a prescribed degree sequence. Indeed, when we can prove that a
statement holds whp for CMn(d), then it follows whp for a uniform random graph
with the same degree sequence. Since CMn(d) can be constructed in a rather simple
manner, this makes it easier to prove properties for CMn(d) than it is for a uniform
random graph with degrees d. For completeness, we now prove Corollary 7.17:

Proof. Let UGn(d) denote a uniform simple random graph with degrees d. Let En
be a subset of simple graphs. We need to prove that if limn→∞ P(CMn(d) ∈ Ecn) = 0,
then also limn→∞ P(UGn(d) ∈ Ecn) = 0. By Proposition 7.15,

P(UGn(d) ∈ Ecn) = P(CMn(d) ∈ Ecn | CMn(d) simple) (7.5.5)

=
P(CMn(d) ∈ Ecn,CMn(d) simple)

P(CMn(d) simple)

≤ P(CMn(d) ∈ Ecn)

P(CMn(d) simple)
.

By Theorem 7.12, for which the assumptions are satisfied by the hypotheses in Corol-
lary 7.17, lim infn→∞ P(CMn(d) simple) > 0. Moreover, limn→∞ P(CMn(d) ∈ Ecn) =
0, so that P(UGn(d) ∈ Ecn)→ 0 as well, as required.

Unfortunately, the above strategy does not work when E[D2] = ∞. This is, for
example, the case when the degree distribution satisfies a power-law with exponent
τ ∈ (2, 3). Indeed, in this case, the probability that CMn(d) is simple vanishes by
Proposition 7.14. As a result, it is a bog open problem how to effectively generate
uniform random graphs with degree sequences having infinite variance. We will return
to this issue in Section 7.7.

As a consequence of Proposition 7.15 and Theorem 6.15, we see that GRGn(w)
conditionally on its degrees, and CMn(d) with the same degrees conditioned on pro-
ducing a simple graph, are equal in distribution. This also partially explains the
popularity of the configuration model: Some results for GRGn(w), and sometimes
even the Erdős-Rényi random graph, are more easily proved by proving the result for
the configuration model and conditioning on the degree sequence, and using that the
degree distribution of the Erdős-Rényi random graph is very close to a sequence of
independent Poisson random variables. See [II, Chapters 2–5] for more results in this
direction. We formalize this ‘folklore’ result in the following theorem:

Theorem 7.18 (Relation between GRGn(w) and CMn(d)). Let Di be the degree of
vertex i in GRGn(w) defined in (6.3.1), and let D = (Di)i∈[n]. Then,

P(GRGn(w) = G |D = d) = P(CMn(d) = G | CMn(d) simple). (7.5.6)

Let En be a subset of simple graphs for which P(CMn(d) ∈ En)
P−→ 1 when d satisfies

Conditions 7.8(a)-(c). Assume that the degree sequence D = (Di)i∈[n] of GRGn(w)
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satisfies Condition 7.8(a)-(c) in probability as explained in Remark 7.9. Then also
P(GRGn(w) ∈ En)→ 1.1

Conditions 7.8(a)-(c) are often easier to verify than proving that the event En
occurs whp. We remark that related versions of Theorem 7.18 can be stated with
different hypotheses on the degrees. Then, the statement becomes that if an event En
occurs whp for CMn(d) under the assumptions on the degrees, then En also occurs
whp for GRGn(w) provided we can show that the degrees of GRGn(w) satisfy these
assumptions whp.

Proof. Equation (7.5.6) follows from Theorem 6.15 and Corollary 7.17, for every sim-
ple graph G with degree sequence d. Indeed, these results imply that both GRGn(w)
conditionally on D = d and CMn(d) conditionally on being simple are uniform simple
random graphs with degree sequence d. By (7.5.6), for every event En,

P(GRGn(w) ∈ En |D = d) = P(CMn(d) ∈ En | CMn(d) simple). (7.5.7)

We rewrite

P(GRGn(w) ∈ Ecn) = E
[
P(GRGn(w) ∈ Ecn |D)

]
(7.5.8)

= E
[
Pn(CMn(D) ∈ Ecn | CMn(D) simple)

]
≤ E

[( Pn(CMn(D) ∈ Ecn)

Pn(CMn(D) simple)

)
∧ 1
]
, (7.5.9)

where we write Pn for the conditional law given the degrees D. We note that E
is the expectation with respect to D. By assumption, Pn(CMn(D) ∈ Ecn)

P−→ 0.
Further, since the degree sequence D satisfies Conditions 7.8(a)-(c) in probability
(recall Remark 7.9),

Pn(CMn(D) simple)
P−→ e−ν/2−ν

2/4 > 0. (7.5.10)

Therefore, by Dominated Convergence (Theorem A.2),

lim
n→∞

E
[( Pn(CMn(D) ∈ Ecn)

Pn(CMn(D) simple)

)
∧ 1
]

= 0,

so that we conclude that limn→∞ P(GRGn(w) ∈ Ecn) = 0, as required.

In the following theorem, we show that Condition 6.4 implies Condition 7.8. To
avoid confusion, we now write di for the degree of vertex i in GRGn(w), which before
we called Di and is a random variable. The reason is that Condition 7.8 is phrased
in terms of Dn, which is the degree of a uniformly chosen vertex, and which causes
confusion with the degree of vertex n, which we now call dn:

1Be aware of the potential confusion in the notation for the degrees. We use D = (Di)i∈[n] for
the degrees in GRGn(w), but in Condition 7.8(a)-(c), we use d = (di)i∈[n] instead to denote the
degrees in CMn(d). We strive to minimalise this confusion by being explicit about which degree
sequence we speak at all times.
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Theorem 7.19 (Regularity conditions weights and degrees). Let di be the degree
of vertex i in GRGn(w) defined in (6.3.1), and let d = (di)i∈[n]. Then, d satisfies
Conditions 7.8(a)-(c) in probability when w satisfies Conditions 6.4(a)-(c), where

P(D = k) = E
[W k

k!
e−W

]
(7.5.11)

denotes the mixed-Poisson distribution with mixing distribution W having distribution
function F in Condition 6.4(a).

Proof. Let P (n)

k = 1
n

∑
i∈[n] 1{di=k}. Then Theorem 6.10 implies that P (n)

k

P−→ P(D =

k), which implies that Condition 7.8(a) holds in probability when Conditions 6.4(a)-
(b) hold (recall Remark 7.9).

Theorem 6.6, together with the fact that 1
n

∑
i∈[n] di = 2E(GRGn(w))/n, implies

that Condition 7.8(b) holds when Condition 6.4(b) holds.

To prove that 1
n

∑
i∈[n] d

2
i

P−→ E[D2] for GRGn(w), we first use that Corollary

6.20 implies that it suffices to prove this for CLn(w). Further, since Condition 7.8(c)
holds, Exercise 6.3 implies that wi = o(

√
n), so that p(CL)

ij = (wiwj/`n∧ 1) = wiwj/`n.
We note that it suffices to prove that Condition 6.4(c) implies that

1

n

∑
i∈[n]

di(di − 1)
P−→ E[D(D − 1)] = E[W 2], (7.5.12)

where the last equality follows from the fact that E[X(X − 1)] = λ2 when X has a
Poisson distribution with parameter λ. For this, we rewrite

1

n

∑
i∈[n]

di(di − 1) =
∑

i,j,k∈[n] : j 6=k

IijIjk = 2
∑

i,j,k∈[n] : j<k

IijIjk, (7.5.13)

where (Iij)1≤i<j≤n are independent Bernoulli variables with success probability pij =
P(Iij = 1) = wiwj/`n. We use a second moment method, and start by computing the
first moment as

E
[ 1

n

∑
i∈[n]

di(di − 1)
]

=
2

n

∑
i,j,k∈[n] : j<k

wiwj
`n

wiwk
`n

(7.5.14)

=
1

n

∑
i∈[n]

w2
i

∑
j∈[n]\{i}

wj
`n

∑
k∈[n]\{i,j}

wk
`n

=
1

n

∑
i∈[n]

w2
i −

1

n

∑
i∈[n]

w3
i

`n

∑
k∈[n]\{i,j}

wk
`n
− 1

n

∑
i,j∈[n]

w2
iwj
`n

(wi + wj)

`n

→ E[W 2],

where the last convergence is Condition 6.4(c) and we have used that maxi∈[n] wi =
o(n). This identifies the first moment.
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We next bound the variance of 1
n

∑
i∈[n] di(di − 1), with the aim of showing that

it is o(1). For this, we use (7.5.13) to write

Var
( 1

n

∑
i∈[n]

di(di − 1)
)

=
4

n2

∑
(i,j,k),(i′,j′,k′)

Cov(IijIjk, Ii′j′Ij′k′), (7.5.15)

where Cov(X, Y ) denotes the covariance between two random variables X and Y ,
and where the sum is over (i, j, k) and (i′, j′, k′) such that i, j, k ∈ [n] with j < k and
i′, j′, k′ ∈ [n] with j′ < k′. When i, j, k, i′, j′, k′ are all distinct, Cov(IijIjk, Ii′j′Ij′k′) =
0. The same applies except when precisely two edges in {i, j}, {i, k}, {i′, j′}, {i′, k′}
are equal. Recall that j < k and j′ < k′. This implies that when two edges are equal
occurs, either these three edges are incident to the same vertex, or they form a path
of length 3. Furthermore, Cov(IijIjk, Ii′j′Ij′k′) ≤ E[IijIjk] when (i, j, k) = (i′, j′, k′).
This leads us to

Var
( 1

n

∑
i∈[n]

di(di − 1)
)
≤ 2

n2
E
[∑
i∈[n]

di(di − 1)
]

(7.5.16)

+
8

n2

∑
i,j,k,l∈[n]

pijpikpil +
8

n2

∑
i,j,k∈[n]

pijpikpjk.

Since pij ≤ wiwj/`n, we arrive at

Var
( 1

n

∑
i∈[n]

di(di − 1)
)
≤ 2

n2
E
[∑
i∈[n]

di(di − 1)
]

(7.5.17)

+
8

n2

∑
i,j,k,l∈[n]

w3
iwjwkwl
`3
n

+
8

n2

∑
i,j,k,l∈[n]

wiw
2
jw

2
kwl

`3
n

= O(n−1)E[W 2
n ] +O(n−2)

∑
i∈[n]

w3
i +O(n−1)E[W 2

n ]2.

By Condition 6.4(c), E[W 2
n ] converges, and also maxi∈[n] wi = o(n). Therefore,

Var
( 1

n

∑
i∈[n]

di(di − 1)
)

= o(1). (7.5.18)

Take n large enough so that
∣∣∣E[ 1

n

∑
i∈[n] di(di − 1)

]
− E[W 2]

∣∣∣ ≤ ε/2. Then

P
(∣∣∣ 1
n

∑
i∈[n]

di(di − 1)− E[W 2]
∣∣∣ > ε

)
(7.5.19)

≤ P
(∣∣∣ 1
n

∑
i∈[n]

di(di − 1)− E
[ 1

n

∑
i∈[n]

di(di − 1)
]∣∣∣ > ε/2

)
≤ 4

ε2
Var
( 1

n

∑
i∈[n]

di(di − 1)
)

= o(1).

Since this is true for every ε > 0, we obtain that 1
n

∑
i∈[n] di(di − 1)

P−→ E[W 2], as
required.
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7.6 Configuration model with i.i.d. degrees

In this section, we apply the results of the previous sections to the configuration
model with i.i.d. degrees. We recall that this setting is obtained when (di)i∈[n−1], d

′
n

are n i.i.d. random variables, and dn = d′n + 1{d′n+
∑
j∈[n−1] dj odd}. The latter solves

the problem that the total degree is odd with probability close to 1/2 (recall Exercise
7.8). We ignore the effect of the added indicator in the definition of dn, since it hardly
makes any difference.

We note that, similarly to the generalized random graph with i.i.d. weights, the
introduction of randomness in the degrees introduces a double randomness in the
model: firstly the randomness of the degrees, and secondly, the randomness of the
pairing of the edges given the degrees. We investigate the degree sequence (P (n)

k )k≥1

defined by

P (n)

k =
1

n

∑
i∈[n]

1{di=k}. (7.6.1)

Apart from the dependence on n of dn, we see that (P (n)

k )k≥1 is precisely equal to the
empirical distribution of the degrees (di)i∈[n−1], d

′
n, which is an i.i.d. sample. Since in

(di)i∈[n] only one value is different from the i.i.d. sample (di)i∈[n−1], d
′
n, P (n)

k differs at
most 1/n from the empirical distribution of n i.i.d. random variables. As a result, by
the Strong Law of Large Numbers, for every k ≥ 1,

P (n)

k

a.s.−→ pk ≡ P(D1 = k), (7.6.2)

so that the empirical distribution of i.i.d. degrees is almost surely close to the prob-
ability distribution of each of the degrees. By Exercise 2.16, the above convergence
also implies that dTV(P (n), p)

a.s.−→ 0, where p = (pk)k≥1 and P (n) = (P (n)

k )k≥1.
Our first main result described the degree sequence of the erased configuration

model:

Theorem 7.20 (Degree sequence of erased configuration model with i.i.d. degrees).
Let (di)i∈[n−1], d

′
n be an i.i.d. sequence of finite mean random variables with P(d ≥

1) = 1. The degree sequence of the erased configuration model (P (er)

k )k≥1 with degrees
(di)i∈[n] converges to (pk)k≥1. More precisely,

P(
∑
k≥1

|P (er)

k − pk| ≥ ε)→ 0. (7.6.3)

Proof. By Exercise 7.9, when E[d] <∞, Conditions 7.8(a)-(b) holds, where the con-
vergence is in probability as explained in Remark 7.9. As a result, Theorem 7.20
follows directly from Theorem 7.10.

We next investigate the probability of obtaining a simple graph in CMn(d) with
i.i.d. degrees:

Theorem 7.21 (Probability of simplicity in CMn(d) with i.i.d. degrees). Let (di)i≥1

be the degrees obtained from an i.i.d. sequence of random variables (di)i∈[n−1], d
′
n,

where the degrees satisfy Var(d) < ∞ and P(d ≥ 1) = 1. Then, the probability that
CMn(d) is simple is asymptotically equal to e−ν/2−ν

2/4, where ν = E[D(D−1)]/E[D].
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Proof. By Exercise 7.9, Conditions 7.8(a)-(c) hold when Var(d) < ∞, where the
convergence is in probability as explained in Remark 7.9. As a result, Theorem 7.21
follows directly from Theorem 7.12.

We finally investigate the case where the mean is infinite, with the aim to produce
a random graph with power-law degrees with an exponent τ ∈ (1, 2). In this case,
the graph topology is rather different, as the majority of edges is in fact multiple,
and self-loops from vertices with high degrees are abundant. As a result, the erased
configuration model has rather different degrees compared to those in the multigraph.
Therefore, in order to produce a more realistic graph, we need to perform some sort
of a truncation procedure. We start by investigating the case where we condition the
degrees to be bounded above by some an = o(n), which, in effect reduces the number
of self-loops significantly.

Theorem 7.22 (Degree sequence of erased configuration model with i.i.d. condi-
tioned infinite mean degrees). Let (di)i∈[n−1], d

′
n be i.i.d. copies of a random variable

D conditioned on D ≤ an, and define dn = d′n + 1{d′n+
∑
i∈[n−1] di odd}. Then, for every

an = o(n), the empirical degree distribution of the erased configuration model (P (er)

k )∞k=1

with degrees (di)i∈[n] converges in probability to (pk)k≥1, where pk = P(D = k). More
precisely, for every ε > 0,

P(
∑
k≥1

|P (er)

k − pk| ≥ ε)→ 0. (7.6.4)

Proof. Theorem 7.22 is similar in spirit to Theorem 6.13 for the generalized random
graph, and its proof is left as Exercise 7.22.

We continue by studying the erased configuration model with infinite-mean de-
grees in the unconditioned case. We assume that there exists a slowly varying function
x 7→ L(x) such that

1− F (x) = x1−τL(x), (7.6.5)

where F (x) = P(D ≤ x) and where τ ∈ (1, 2). We now investigate the degree sequence
in the configuration model with infinite-mean degrees, where we do not condition the
degrees to be at most an. We make substantial use of Theorem 2.33. In order to
describe the result, we need a few definitions.

We define the (random) probability distribution Q = (Qi)i≥1 as follows. Let, as
in Theorem 2.33, (Ei)i≥1 be i.i.d. exponential random variables with parameter 1,
and define Γi =

∑i
j=1Ej. Let (di)i≥1 be an i.i.d. sequence of random variables with

distribution function F in (7.6.5), and let d(n:n) ≥ d(n−1:n) ≥ · · · ≥ d(1:n) be the order
statistics of (Di)i∈[n]. We recall from Theorem 2.33 that there exists a sequence un,
with unn

−1/(τ−1) slowly varying, such that

u−1
n (`n, (d(i:n))

n
i=1)

d−→
(∑
j≥1

Γ
−1/(τ−1)
j , (Γ

−1/(τ−1)
i )i≥1

)
. (7.6.6)

We abbreviate η =
∑

j≥1 Γ
−1/(τ−1)
j and ξi = Γ

−1/(τ−1)
i , and let

Qi = ξi/η, (7.6.7)
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so that, by (7.6.6), ∑
i≥1

Qi = 1. (7.6.8)

However, the Qi are all random variables, so that Q = (Qi)i≥1 is a random probability
distribution. We further write MQ,k for a multinomial distribution with parameters k
and probabilities Q = (Qi)i≥1, and UQ,Dk is the number of non-zero components of the
random variable MQ,Dk

, where Dk is independent of Q = (Qi)i≥1 and the multinomial
trials. Recall that D(er)

i denotes the degree of vertex i in the erased configuration
model.

Theorem 7.23 (Degree sequence of erased configuration model with i.i.d. infinite-mean
degrees). Let (di)i∈[n−1], d

′
n be i.i.d. copies of a random variable D having distribution

function F satisfying (7.6.5). Then

D(er)

1
d−→ UQ,D, (7.6.9)

where Q = (Qi)i≥1 is given by (7.6.7), and the random variables D and Q = (Qi)i≥1

are independent.

Theorem 7.23 is similar in spirit to Theorem 6.14 for the generalized random
graph.

Proof. The degree of vertex 1 is given by d1, which is a realization of the random
variable D. We fix d1 = D and look at the order statistics of the degrees (di)i∈[n]\{1}.
These still satisfy the convergence in (7.6.6), and obviously d1 is independent of
(η, ξ1, ξ2, . . . ). Vertex 1 has D half-edges, which need to be paired to other half-edges.
The probability that any half-edge is connected to the vertex with the jth largest
degree is asymptotically equal to

Q(n)

j = d(n−j+1:n)/`n (7.6.10)

(here we ignore the possibility of self-loops), where, by Theorem 2.33 (see also (7.6.6)),

(Q(n)

j )j≥1
d−→ (ξj/η)j≥1. (7.6.11)

Moreover, the vertices to which the D half-edges are connected are close to being
independent. As a result, the D half-edges of vertex k are paired to D vertices, and
the number of edges of vertex 1 that are paired to the vertex with the ith largest
degree are asymptotically given by the ith coordinate of MQ(n),D. By (7.6.6), the
random variable MQ(n),D converges in distribution to MQ,D. We note that in the
erased configuration model, the degree of the vertex 1 is equal to the number of
distinct vertices to which k is connected, which is therefore equal to the number
of distinct outcomes of the random variable MQ,D. By definition, this is equal to
UQ,D.

We next investigate the properties of the degree distribution, to obtain an equiv-
alent result as in Exercise 6.22:
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Theorem 7.24 (Power law with exponent 2 for erased CM with infinite-mean de-
grees). Let the distribution function F of D satisfy (7.6.5) with L(x) = 1. Then,
there exists a constant c > 0 such that the asymptotic degree of vertex 1 in the erased
configuration model UQ,D satisfies that

P(UQ,D ≥ x) ≤ c/x. (7.6.12)

The result in Theorem 7.24 is similar in spirit to Exercise 6.22. It would be of
interest to prove a precise identity here as well.

Proof. In order that UQ,D ≥ x, in MQ,D at least x/2 times an i larger than x/2 needs
to be chosen, where the probability of chosing i is Qi = ξi/η in (7.6.7). By (2.6.17),
for i large

Qi = ξi/η = (1 + oP(1))i−1/(τ−1)/η. (7.6.13)

Therefore, whp,∑
j≥i

Qj = (1 + oP(1))
∑
j≥i

j−1/(τ−1)/η (7.6.14)

= c(1 + oP(1))i(τ−2)/(τ−1)/η ≤ 2ci(τ−2)/(τ−1)/η.

Moreover, conditionally on D = k, the number of values larger than x/2 that are
chosen is equal to a Binomial random variable with k trials and success probability

qx = cx(τ−2)/(τ−1)/η. (7.6.15)

Therefore, conditionally on D = ddxbe, and using Theorem 2.21, the probability
that at least x/2 values larger than x/2 are chosen is o(x−a) for some a > 1 chosen
appropriately, when, for some sufficiently large C > 0,

|dxbqx −
x

2
| ≥ C log x

√
xbqx. (7.6.16)

Take b = 1− (τ − 2)/(τ − 1) = 1/(τ − 1) and d such that dxbqx = x/4. Then, (7.6.15)
and (7.6.16) above imply that, for some a > 1,

P(UQ,D ≥ x,D ≤ ddxbe) = o(x−a). (7.6.17)

As a result,

P(UQ,D ≥ x) ≤ P(Dk ≥ ddxbe) + o(x−a) ≤ cx−b(τ−1) = c/x. (7.6.18)

7.7 Related results on the configuration model

In this section, we discuss some related results on the configuration model. We
start by discussing the number of friends of random friends.
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Related degree structure CMn(d) and GRGn(w). Let B?
n denote the degree

of a random friend of a uniform vertex. More precisely, let V1 ∈ [n] be a uniform
vertex, and let V2 be any of the neighbors of V1 chosen uniformly at random. Thus,
V2 is the vertex incident to the half-edge to which a uniform half-edge incident to
V1 is paired, and B?

n = dV2 . Further, we let e = (x, y) be a uniform edge, let i be
the vertex incident to the half-edge x and j the vertex incident to half-edge y. Then
define (D?

n,1, D
?
n,2) = (di, dj) to be the degrees of the vertices i, j at either end of the

edge. The law of e is the same as the law of a random half-edge x, together with the
half-edge y to which x is paired. The simple construction of the configuration model
allows us to identify the limiting distributions of B?

n and (D?
x, D

?
y):

Theorem 7.25 (Related degrees configuration model). Assume that d = (di)i∈[n]

satisfies Condition 7.8(a)-(b). Then, CMn(d) satisfies that

B?
n

d−→ D?, (7.7.1)

and

(D?
n,1, D

?
n,2)

d−→ (D?
1, D

?
2), (7.7.2)

where P(D? = k) = kP(D = k)/E[D] denotes the size-biased distribution of D, and
(D?

1, D
?
2) are two i.i.d. copies of D?.

Proof. By construction of CMn(d), B?
n has the same distribution as the degree of the

half-edge to which a half-edge is paired. Thus,

P(B?
n = k) =

k − 1

`n − 1
+

1

n

∑
i,j∈[n] : i 6=j

k

`n − 1
1{dj=k}. (7.7.3)

Here the first contribution is due to a self-loop, i.e., V1 = V2, and the second from
V1 6= V2. By Conditions 7.8(a)-(b), for every k ≥ 1,

lim
n→∞

P(B?
n = k) = lim

n→∞

∑
j∈[n] : i 6=j

k

`n − 1
1{dj=k} (7.7.4)

=
k

E[D]
P(D = k) = P(D? = k).

The proof (7.7.2) is similar. We note that (x, y) have the same law as two half-edges
drawn uniformly at random and without replacement, and D?

n,1, D
?
n,2 are the degrees

of the vertices incident to them. Thus,

P
(
(D?

n,1, D
?
n,2) = (k1, k2)

)
=
k1(k1 − 1)

`n(`n − 1)
1{k1=k2} (7.7.5)

+
∑

i,j∈[n] : i 6=j

k1k2

`n(`n − 1)
1{di=k1,dj=k2},
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where again the first contribution is due to a self-loop, for which D?
n,1 = D?

n,2. Again
by Conditions 7.8(a)-(b), for every k1, k2 ≥ 1,

lim
n→∞

P
(
(D?

n,1, D
?
n,2) = (k1, k2)

)
=

k1

E[D]
P(D = k1)

k2

E[D]
P(D = k2) (7.7.6)

= P(D? = k1)P(D? = k2),

as required.

Theorem 7.25 has important consequences for the degree structure of neighbor-
hoods of vertices. For example, in Section 1.2 we have shown that in general graphs
G, the average number of friends of a random friend of a random individual is larger
than that of the friend himself. Recall Theorem 1.2. Using the ideas in Theorem
7.25, we can quantify this effect in CMn(d). Indeed, it can be seen that, assuming
that Conditions 7.8(a)-(b) hold, the number of friends of friends Xn of a random
individual satisfies

Xn
d−→ X? ≡

D∑
i=1

(D?
i − 1), (7.7.7)

where D has distribution function F , while (D?
i )i≥1 are i.i.d. random variables with

the size-biased distribution in (7.7.1). In particular in the power-law setting, i.e.,
when D has a power-law distribution as in (7.6.5), then the distribution of D?, and
therefore also that of X?, satisfies

P(D? > x) = x2−τL?(x), (7.7.8)

for some slowly varying function x 7→ L?(x). In particular, the degree tail-exponent
τ − 1 is replaced by τ − 2. Therefore, infinite variance for D implies infinite mean for
D?. The ideas leading to (7.7.7) play an important role also in studying distances in
CMn(d) in [II, Chapter 4], and its proof is left as Exercise 7.26.

The general set-up assuming Conditions 7.8(a)-(c), together with the degree asym-
potics stated in Theorem 7.19, allow us to easily extend Theorem 7.25 to GRGn(w):

Corollary 7.26 (Related degrees GRGn(w)). Let di be the degree of vertex i in
GRGn(w) defined in (6.3.1), and let d = (di)i∈[n]. Then,

B?
n

d−→ D?, (7.7.9)

and
(D?

n,1, D
?
n,2)

d−→ (D?
1, D

?
2), (7.7.10)

where P(D? = k) = kP(D = k)/E[D] denotes the size-biased distribution of D, and
(D?

1, D
?
2) are two i.i.d. copies of D?, and

P(D? = k) = P
(
Poi(W ?) = k

)
, (7.7.11)

where W ? is the size-biased distribution of the random variable W , i.e., P(W ? ≤ x) =
E[W1{W≤x}]/E[W ].

Proof. By Theorem 7.19, the degrees d = (di)i∈[n] satisfy Conditions 7.8(a)-(c).
Therefore, the result immediately follows from Theorems 7.18 and 7.25.
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Simple random graphs with infinite-variance degrees and CMn(d). Theorem
7.12 and its consequences such as in Corollary 7.16, give us a way to count the
number of simple graphs with a prescribed degree sequence, and to derive properties
for them. However, these results only apply when Conditions 7.8(a)-(c) hold, so that
in particular E[D2

n] → E[D2] < ∞. When D has a power-law distribution as in
(7.6.5), this means that τ > 3. However, as described in more detail in Section 1.7 in
Chapter 1, in many real-world networks, power-law exponents having values τ ∈ (2, 3)
are reported. This setting is investigated in more detail in the following theorem:

Theorem 7.27 (Number of simple graphs with infinite-variance degrees). Assume
that d = (di)i∈[n] satisfies Conditions 7.8(a)-(b). Further, assume that dmin ≥ 1 and
E[D2

n] = o(n1/8). Then, the number of simple graphs with degree sequence d equals

(1+o(1))
(`n − 1)!!∏

i∈[n] di!
exp

{
−nνn/2−βn/(3n)+3/4+

∑
1≤i<j≤n

log (1 + didj/`n)
}
, (7.7.12)

where

βn = E[Dn(Dn − 1)(Dn − 2)]/E[Dn]. (7.7.13)

In particular, Theorem 7.27 implies that when a property holds for CMn(d) with
probability that is e−an , where an � ν2

n and an � βn/n, then it also holds whp for a
uniform simple graph with the same degree sequence. Unfortunately, Theorem 7.27
does not immediately give us a convenient way to simulate uniform random graphs
with infinite-variance degrees.

The number of erased edges in erased CM with infinite-variance degrees.
Proposition 7.13 implies that the number of erased edges En = Sn + Mn in CMn(d)
converges to a Poisson random variable with parameter ν/2 + ν2/4 when Conditions

7.8(a)-(c) hold. When E[D2] =∞, on the other hand, En
P−→∞ by Proposition 7.14

(note that the proof in particular yields that Sn
P−→ ∞). However, it is not so clear

just how fast En
P−→ ∞. Theorem 7.22 implies that En = oP(n) when Conditions

7.8(a)-(b) hold (see also Exercise 7.23). In [151], van der Hoorn and Litvak show
that En = oP(n

1/(τ−1)+δ) and En = oP(n
4/(τ−1)−2+δ) for every δ > 0 when the degrees

are i.i.d. with a power-law degree distribution with power-law exponent τ ∈ (2, 3).
This upper bound shows a phase transition for τ = 2.5. It would be of interest to
investigate in more detail how En

P−→ ∞ and whether such a phase transition is
really there, or whether it is an artefact of the proof.

7.8 Related random graph models

In this section, we describe a few related models that have been investigated in
the literature.



250 Configuration model

The hierarchical configuration model. The configuration model has low clus-
tering, which often makes it inappropriate in applied contexts. Indeed, in Chapter
1, we have seen that many real-world networks, in particular social networks, have a
high amount of clustering instead. A possible solution to overcome this low clustering
is by introducing a community or household structure. Consider the configuration
model CMn(d) with a degree sequence d = (di)i∈[n] satisfying Condition 7.8(a)-(b).
Now we replace each of the vertices by a small graph. Thus, vertex i is replaced by a
local graph Gi. We assign each of the di half-edges incident to vertex i to a uniform
vertex in Gi. As a result, we obtain a graph with two levels of hierarchy, whose local
structure is described by the local graphs Gi, whereas its global structure is described
by the configuration model CMn(d). This model is called the hierarchical configura-
tion. In Exercise 7.27, you are asked to compute the clustering coefficient in the case
where all the Gi are complete graphs.

Configuration model with clustering. The low clustering of CMn(d) can be
resolved by introducing households as described above. Alternatively, we can also
introduce clustering directly. In the configuration model with clustering, we assign
two numbers to a vertex i ∈ [n]. We let d(si)

i denote the number of simple half-edges
incident to vertex i, and we let d(tr)

i denote the number of triangles that vertex i is part
of. We say that there are d(si)

i half-edges incident to vertex i, and d(tr)

i third-triangles.
The graph is built by (a) recursively choosing two half-edges uniformly at random

without replacement, and pairing them into edges (as for CMn(d)); and (b) choosing
triples of third-triangles uniformly at random and without replacement, and drawing
edges between the three vertices incident to the third-triangles that are chosen.

Let (D(si)
n , D(tr)

n ) denote the number of simple edges and triangles incident to a

uniform vertex in [n], and assume that (D(si)
n , D(tr)

n )
d−→ (D(si), D(tr)) for some limiting

distribution (D(si), D(tr)). Further, assume that E[D(si)
n ] → E[D(si)] and E[(D(si)

n )2] →
E[(D(si))2]. Then, it can be shown in a similar way as in the proof of Theorem 7.12
that with a strictly positive probability, there are no self-loops, no multiple edges and
no other triangles except for the ones imposed by (d(tr)

i )i∈[n]. If we further assume
that E[D(tr)

n ]→ E[D(tr)] and E[(D(tr)
n )2]→ E[(D(tr))2], then we can also show that with

positive probability, all triangles formed in the model contain precisely 3 distinct
vertices. Thus, under these assumptions and with positive probability, this model
yields a random graphs with prescribed degrees and number of triangles per vertex.
In Exercise 7.28, you are asked to compute the clustering coefficient of this model.

The directed configuration model. Many real-world networks are directed, in
the sense that edges are oriented from their starting vertex to their end vertex. For
example, in the World-Wide Web, the vertices are web pages, and the edges are
the hyperlinks between them, which are clearly oriented. One could naturally forget
about these directions, but that would discard a wealth of information. For example,
in citation networks, it makes a substantial difference whether my paper cites your
paper, or your paper cites mine.

One way to obtain a directed version of CMn(d) is to give each edge a direction,
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chosen with probability 1/2, independently of all other edges. In this model, how-
ever, the correlation coefficient between the in- and out-degree of vertices is close to
one, particularly when the degrees are large. In real-world applications, correlations
between in- and out-degrees can be positive or negative, depending on the precise
application. Therefore, we formulate a general model of directed graphs, where we
can prescribe both the in- and out-degrees of vertices.

Fix d(in) = (d(in)

i )i∈[n] to be a sequence of in-degrees, where d(in)

i denotes the in-
degree of vertex i. Similarly, we let d(out) = (d(out)

i )i∈[n] be a sequence of out-degrees.
Naturally, we need that ∑

i∈[n]

d(in)

i =
∑
i∈[n]

d(out)

i (7.8.1)

in order for a graph with in- and out-degree sequence d = (d(in),d(out)) to exist.
We think of d(in)

i as the number of in-half-edges incident to vertex i and d(out)

i as
the number of out-half-edges incident to vertex i. The directed configuration model
DCMn(d) is obtained by pairing each in-half-edge to a uniformly chosen out-half-
edge. The resulting graph is a random multigraph, where each vertex i has in-degree
d(in)

i and out-degree d(out)

i . Similarly to CMn(d), DCMn(d) can have self-loops as well
as multiple edges. A self-loop arises at vertex i when one of its in-half-edges pairs
to one of its out-half-edges. Let (D(in)

n , D(out)
n ) denote the in- and out-degree of a

vertex chosen uniformly at random from [n]. Exercise 7.29 investigates the limiting
distribution of the number of self-loops in DCMn(d).

Assume, similarly to Conditions 7.8(a)-(b), that (D(in)
n , D(out)

n )
d−→ (D(in), D(out)),

and that E[D(in)
n ] → E[D(in)] and E[D(out)

n ] → E[D(in)]. Naturally, by (7.8.1), this
implies that E[D(out)] = E[D(in)]. The details of this argument are left as Exercise
7.30.

Let

pk,l = P(D(in) = k,D(out) = l) (7.8.2)

denote the asymptotic joint in- and out-degree distribution. We refer to (pk,l)k,l≥0

simply as the asymptotic degree distribution of DCMn(d). The distribution (pk,l)k,l≥0

plays a similar role for DCMn(d) as (pk)k≥0 does for CMn(d).

7.9 Notes and discussion

Notes on Section 7.2. The configuration model has a long history. It was in-
troduced by Bollobás in [49] to study uniform random regular graphs (see also [54,
Section 2.4]). The introduction was inspired by, and generalized the results in, the
work of Bender and Canfield [33]. The original work allowed for a careful compu-
tation of the number of regular graphs, using a probabilistic argument. This is the
probabilistic method at its best, and also explains the emphasis on the study of the
probability for the graph to be simple. The configuration model, as well as uniform
random graphs with a prescribed degree sequence, were further studied in greater
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generality by Molloy and Reed in [205, 206]. Molloy and Reed were the firsts to in-
vestigate the setting where the degrees are different, and they focused on conditions
for the resulting graph to have a giant component.

Regularity conditions on the degree sequence have appeared in many places. Con-
dition 7.8 is closest in spirit to the regularity condition by Janson in [158] or in [42].
Often, the conditions as stated here are strengthened and include bounds on the
maximal degree. We have tried to avoid these as much as possible.

Notes on Section 7.3. The term erased configuration model is first used by Brit-
ton, Deijfen and Martin-Löf in [69, Section 2.1].

Notes on Section 7.4. The term repeated configuration model is first used by
Britton, Deijfen and Martin-Löf in [69, Section 2.2]. The result in Theorem 7.10 was
proved by Janson in [158]. A version of it with stronger assumptions on the degrees
was already present in Bollobás classical random graphs book [54, Section 2.4]. Janson
revisits this problem in [161]. In joint work with Angel, Holmgren and Panagiotou
[16], we investigate the total variation distance between Sn + Mn and the Poisson
random variable with parameter νn/2 + ν2

n/4. The main result is that this vanishes
when Conditions 7.8(a)-(c) hold, and quantify the convergence. In particular, when
E[D3

n] → E[D3] < ∞, then this total variation distance is O(1/n). Further, they
prove that when E[D2] = ∞, Sn satisfies a central limit theorem with asymptotic
mean and variance νn/2. Similar results are proved for Mn, under the additional
condition that the maximal degree dmax satisfies dmax = o(

√
n). The proof relies on a

Chen-Stein approximation for the Poisson distribution.

Notes on Section 7.5. Corollary 7.17 implies that the uniform simple random
graph model is contiguous to the configuration model, in the sense that events with
vanishing probability for the configuration model also have vanishing probability for
the uniform simple random graph model with the same degree sequence. See Jan-
son [159] for an extended discussion of contiguity of random graphs. Theorem 7.18
implies that the generalized random graph conditioned on having degree sequence
d is contiguous to the configuration model with that degree sequence, whenever the
degree sequence satisfies Conditions 7.8(a)-(c).

The relations between different models as discussed in detail in Section 7.5 are
folklore in the random graphs literature, though their proofs are scattered around in
the literature. The proof that the generalized random graph conditioned on its degrees
yields a uniform simple graph with that degree sequence is by Britton, Deijfen and
Martin-Löf in [69, Section 2.1].

Notes on Section 7.6. A version of Theorem 7.20 can be found in [69]. Results
on the erased configuration model as in Theorems 7.23-7.24 have appeared in [43],
where first passage percolation on CMn(d) was studied with infinite-mean degrees,
both for the erased as well as for the original configuration model, and it is shown
that the behavior in the two models is completely different.
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Theorem 7.23 is closely related to what is sometimes called the Bernoulli sieve.
Fix a probability distribution (pj)j≥1 on the integers. Draw n i.i.d. samples, and
consider the number of different realizations. This can also be seen as drawing box
j with probability j, and counting the number of boxes with at least one element
after n independent trials. In Theorem 7.23, this is done with a random probability
distribution denoted by (Qi)i≥1 as given in (7.6.7), and with a random number of
draws given by the degree distribution D. The number of occupied boxes in n draws
has received quite some attention, with Karlin [169] proving a central limit theorem
in the power-law case. See the survey [131] for a more recent overview.

Notes on Section 7.7. Theorem 7.25 is folklore, even though it has, as far as we
know, never appeared explicitly. Parts of it can be found in [148]. Theorem 7.27 is
due to Gao and Wormald [128], where many related results have been obtained.

Notes on Section 7.8. The configuration model with household structure was
investigated by Trapman [253]. See also the works by Ball, Sirl and Trapman in
[24, 25] in the context of epidemics on social networks. Particularly when studying
epidemics on networks, clustering is highly relevant, as clustering might slow down
the spread of infectious diseases. See also the related models by Coupechoux and
Lelarge [91]. The hierarchical configuration model where the communities can take
other forms compared to complete graphs has been investigated in work with van
Leeuwaarden and Stegehuis [147].

The configuration model with clustering was introduced by Newman in [216] and
independently by Miller in [203]. Newman performs a generating function analysis of
when a giant component is expected to exist, while Miller also investigates the effect
of clustering on the epidemic threshold. The giant component in the directed config-
uration model was investigated by Cooper and Frieze in [89]. The degree structure
of the directed configuration model, as well as ways to simulate it, are discussed by
Chen and Olvera-Cravioto in [74].

7.10 Exercises for Chapter 7

Exercise 7.1 (Non-graphical degree sequence). Find a simple example of a (di)i∈[n] satis-
fying that `n =

∑
j∈[n] dj is even and for which no simple graph satisfying that vertex i has

degree di exists.

Exercise 7.2 (The number of configurations). Prove that there are (2m − 1)!! = (2m −
1)(2m− 3) · · · 3 · 1 different ways of pairing vertices 1, . . . , 2m.

Exercise 7.3 (Example of multigraph). Let n = 2, d1 = 2 and d2 = 4. Use the direct
connection probabilities to show that the probability that CMn(d) consists of 3 self-loops
equals 1/5. Hint: Note that when d1 = 2 and d2 = 4, the graph CMn(d) consists only of
self-loops precisely when the first half-edge of vertex 1 connects to the second half-edge of
vertex 1.
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Exercise 7.4 (Example of multigraph (Cont.)). Let n = 2, d1 = 2 and d2 = 4. Use
Proposition 7.7 to show that the probability that CMn(d) consists of 3 self-loops equals 1/5.

Exercise 7.5 (Weak convergence integer random variables). Let (Dn) be a sequence of

integer random variables such that Dn
d−→ D. Show that, for all x ∈ R,

lim
n→∞

Fn(x) = F (x), (7.10.1)

and that also limn→∞ P(Dn = x) = P(D = x) for every x ∈ N.

Exercise 7.6 (Regularity condition for configuration model moderated by F ). Fix CMn(d)
be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree k. Show
that Condition 7.8(a) holds.

Exercise 7.7 (Regularity condition for configuration model moderated by F (Cont.)). Fix
CMn(d) be such that there are precisely nk = dnF (k)e − dnF (k − 1)e vertices with degree
k. Show that Condition 7.8(b) holds whenever E[D] <∞.

Exercise 7.8 (Probability of i.i.d. sum to be odd). Assume that (di)i≥1 is an i.i.d. sequence
of random variables for which P(di even) 6= 1. Prove that `n =

∑
i∈[n] di is odd with

probability close to 1/2. For this, note that

P(`n is odd) =
1

2

[
1− E[(−1)`n ]

]
. (7.10.2)

Then compute

E[(−1)`n ] = φd1(π)n, (7.10.3)

where

φd1(t) = E[eitd1 ] (7.10.4)

is the characteristic function of the degree d1. Prove that, when P(d is even) ∈ (0, 1),
|φd1(π)| < 1, so that P(`n is odd) is exponentially close to 1

2 .

Exercise 7.9 (Regularity condition for configuration model with i.i.d. degrees). Fix CMn(d)
with degrees d given by (di)i∈[n], where (di)i∈[n−1] is an i.i.d. sequence of integer random
variables and dn = d′n + 1{`n−1+d′n odd}, where d′n has the same distribution as d1 and is
independent of (di)i∈[n−1]. Show that Condition 7.8(a) holds, whereas Condition 7.8(b) and
(c) hold when E[D] < ∞ and E[D2] < ∞, respectively. Here the convergence is replaced
with convergence in probability as explained in Remark 7.9.

Exercise 7.10 (Mean degree sequence equals average degree). Prove that p(n)k in (7.3.3)
satisfies

∞∑
k=1

kp(n)k =
1

n

∑
i∈[n]

di =
`n
n
. (7.10.5)

Exercise 7.11 (Mn versus M̃n). Show that P(Mn < M̃n) = o(1) when Conditions 7.8(a)-
(c) hold and conclude that Proposition 7.13 also holds for (Sn,Mn).
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Exercise 7.12 (Mn versus M̃n in infinite-variance setting). Assume that Conditions 7.8(a)-
(c) hold and let E[D2] =∞. Let

M (K)
n =

∑
1≤i<j≤n

(Xij − 1)1{Xij≥2}1{di,dj≤K}. (7.10.6)

Extend the proof of Proposition 7.14 and prove that M (K)
n

d−→M (K), where M (K) is Poisson
with parameter ν(K) = E[D(D − 1)1{D≤K}]/E[D].

Exercise 7.13 (Mn tends to infinity in infinite-variance setting). Assume that Conditions

7.8(a)-(c) hold and let E[D2] = ∞. Prove that P(M (K)
n 6= M̃ (K)

n ) = o(1), where M (K)
n is

defined in (7.10.6), while

M̃ (K)
n =

∑
1≤i<j≤n

(
Xij

2

)
1{di,dj≤K}. (7.10.7)

Conclude that Mn
P−→∞.

Exercise 7.14 (Characterization moments independent Poisson variables). Show that the
moments of (X,Y ), where (X,Y ) are independent Poisson random variables with parame-
ters µX and µY are identified by the relations, for r ≥ 1,

E[Xr] = µXE[(X + 1)r−1], (7.10.8)

and, for r, s ≥ 1,
E[XrY s] = µYE[Xr(Y + 1)s−1]. (7.10.9)

Exercise 7.15 (Alternative proof of Proposition 7.13). Assume that Conditions 7.8(a)-(c)

hold. Show that all joint moments of (Sn, M̃n) converge to those of (S,M), where S and
M are two independent Poisson random variables with means ν/2 and ν2/4. Use this to
give an alternative proof of Proposition 7.13 by using Theorem 2.3(e) together with Exercise
7.14.

Exercise 7.16 (Average number of triangles CM). Compute the average number of occupied
triangles Tn in CMn(d), where

Tn =
∑

1≤i<j<k≤n
XijXjkXki, (7.10.10)

where Xij is the number of edges between i and j.

Exercise 7.17 (Poisson limit triangles CM). Show that the number of occupied triangles
in CMn(d) converges to a Poisson random variable when Conditions 7.8(a)-(c) hold.

Exercise 7.18 (A conditioned uniform variable is again uniform). Let (Ω,F ,P) be a proba-
bility space. Let U be a random variable on this space being uniformly distributed on the finite
set X . Let ∅ 6= Y ⊆ X . Show that the conditional probability P(U = z | U ∈ Y) = 1/|Y| for
all z ∈ Y.

Exercise 7.19 (Poisson limits for self-loops, multiple edges and triangles). Assume that
the degree sequence (di)i∈[n] satisfies Conditions 7.8(a)-(c). Let Tn denote the number of
triangles in CMn(d), i.e., the number of (i, si, ti), (j, sj , tj), (k, sk, tk) such that i < j < k and

such that si is paired to tj, sj is paired to tk and sk is paired to ti. Show that (Sn, M̃n, Tn)
converges to three independent Poisson random variables and compute their asymptotic
parameters.
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Exercise 7.20 (The number of r-regular graphs). Prove (7.5.4).

Exercise 7.21 (The number of simple graphs without triangles). Assume that the fixed
degree sequence (di)i∈[n] satisfies Conditions 7.8(a)-(c). Compute the number of simple
graphs with degree sequence (di)i∈[n] not containing any triangle. Hint: use Exercise 7.19.

Exercise 7.22 (Proof of Theorem 7.22). Adapt the proof of Theorem 7.20 to prove Theorem
7.22.

Exercise 7.23 (Proof that the number of erased edges vanishes compared to total). Prove
that Theorem 7.10 implies that En = oP(n), where En denotes the number of erased edges.

Exercise 7.24 (Proof tightness of number of erased edges). Assume that the degree sequence
(di)i∈[n] satisfies Conditions 7.8(a)-(c). Let En denote the number of erased edges. Show

that En
d−→ Y , where Y ∼ Poi(ν/2 + ν2/4).

Exercise 7.25 (Clustering coefficient in CM with infinite variance degrees). Assume that
the degree sequence (di)i∈[n] satisfies Conditions 7.8(a)-(b), and assume that d1, d2, d3 ≥
εn1/(τ−1) for some τ ∈ (2, 3). Let Xij denote the number of edges in CMn(d) between
i, j ∈ [n]. Let X12X23X13 denote the number of triangles between vertices 1, 2, 3. Show that

1

n
X12X23X13

P−→∞. (7.10.11)

Conclude that the clustering coefficient as defined in (1.5.4) converges in probability to
infinity. This seems unphysical. Argue what goes wrong here.

Exercise 7.26 (Friends-of-friends in CMn(d)). Assume that Conditions 7.8(a)-(b) hold.
Prove that the number of friends-of-friends of a random vertex in [n] converges in distribu-
tion as stated in (7.7.7).

Exercise 7.27 (Clustering in hierarchical configuration model with complete graphs). As-
sume that Conditions 7.8(a)-(c) hold. Consider the hierarchical configuration model where
each subgraph Gi is a complete graph Kdi and each of its vertices has precisely one half-edge.
The half-edges are paired as in the CM CMn(d). Compute the clustering coefficient for this
graph.

Exercise 7.28 (Clustering in configuration model with clustering). Consider the configura-

tion model with clustering in the case where (D(si)
n , D(tr)

n )
d−→ (D(si), D(tr)) and E[(D(si)

n )2]→
E[(D(si))2],E[(D(tr)

n )2]→ E[(D(tr))2]. Compute the clustering coefficient for this graph.

Exercise 7.29 (Self-loops and multiple edges in DCMn(d)). Adapt the proof of Proposition
7.13 to the directed configuration model. More precisely, show that the number of self-loops
in DCMn(d) converges to a Poisson random variable with parameter E[D(in)D(out)]/E[D(in)]

when (D(in)
n , D(out)

n )
d−→ (D(in), D(out)) and

E[D(in)
n D(out)

n ]→ E[D(in)D(out)]. (7.10.12)

What can you say about the number of multiple edges in DCMn(d)?

Exercise 7.30 (Equivalence of convergence in- and out-degree in DCMn(d)). Show that

(7.8.1) implies that E[D(out)] = E[D(in)] when (D(in)
n , D(out)

n )
d−→ (D(in), D(out)), E[D(in)

n ] →
E[D(in)] and E[D(out)

n ]→ E[D(in)].



Chapter 8

Preferential attachment models

Abstract

Most networks grow in time. Preferential attachment mod-
els describe growing networks, where the numbers of edges
and vertices grow linearly with time.
In preferential attachment models, vertices having a fixed
number of edges are sequentially added to the network.
Given the graph at time t, the edges incident to the vertex
with label t+1 are attached to older vertices that are chosen
according to a probability distribution that is an affine func-
tion of the degrees of the older vertices. This way, vertices
that already have a high degree are more likely to attract
edges of later vertices, which explains why such models are
called ‘rich-get-richer’ models. In this chapter, we introduce
and investigate such models, focusing on the degree struc-
ture of preferential attachment models.
We show how the degrees of the old vertices grow with time,
and how the proportion of vertices with a fixed degree be-
haves as time grows. Since the vertices with the largest
degrees tend to be the earliest vertices in the network, pref-
erential attachment models could also be called ‘old-get-rich’
models.

8.1 Motivation for the preferential attachment model

The generalized random graph model and the configuration model described in
Chapters 6 and 7, respectively, are static models, i.e., the size of the graph is fixed,
and we have not modeled the growth of the graph. There is a large body of work
investigating dynamic models for complex networks, often in the context of the World-
Wide Web, but also for citation networks or biological networks. In various forms,
such models have been shown to lead to power-law degree sequences. Thus, they
offer a possible explanation for the occurrence of power-law degree sequences in real-
world networks. The existence of power-law degree sequences in various real-world
networks is quite striking, and models offering a convincing explanation can teach us
about the mechanisms giving rise to their scale-free nature. Let us illustrate this with
the example of citation networks.

Example 8.1 (Citation networks). In citation networks, the vertices of the network
are scientific papers, and the directed edges represents a reference of the first paper
to the second. Thus, the in-degree of a paper is its number of citations, while the out-
degree is the number of references. Figure 8.1 displays the in-degree distribution, in

257
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loglog scale, of the citation network of probability and statistics papers in the period
1980 to May 2015. There are 178474 papers in this data base, and 992833 citations,
so that the average number of citations equals 5.5. Average number of real references
per paper is 15, which is larger since many references are top papers that are not part
of this data base.

We see that the degree distribution resembles a power law. In citation networks,
papers have a time stamp, which is their time of publication. References that are
present, remain present forever, so that a citation network is a growing network. In
this chapter, we are interested in possible explanations for the occurrence of power
laws, and we aim to explain those by formulating simple rules for the growth of the
network.
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Figure 8.1: The in-degree distribution for the citation network of papers in
probability and statistics. (a) Loglog plot of cumulative tail probabilities (b) Loglog

plot of probability mass function.

A possible explanation for the occurrence of power-law degree sequences is offered
by the preferential attachment paradigm. In preferential attachment models, vertices
are added sequentially with a number of edges connected to them. These edges are
attached to a receiving vertex with a probability proportional to the degree of the
receiving vertex at that time, thus favoring vertices with large degrees. For this
model, it is shown that the number of vertices with degree k decays proportionally
to k−3 [59], and this result is a special case of the more general result that we prove
in this chapter.

The idea behind preferential attachment is simple. In a graph that evolves in
time, the newly added vertices are connected to the already existing ones. In an
Erdős-Rényi random graph, which can also be formulated as an evolving graph where
edges are added and removed, these edges would be connected to each individual
with equal probability, and we would have to remove edges so as to make the edge
probabilities equal (see Exercise 8.1).

Now think of the newly added vertex as a new individual in a social population,
which we model as a graph by letting the individuals be the vertices and the edges
be the acquaintance relations. Is it then realistic that the edges connect to each
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already present individual with equal probability, or is the newcomer more likely to
get to know socially active individuals, who already know many people? If the latter
is true, then we should forget about equal probabilities for the receiving ends of the
edges of the newcomer, and introduce a bias in his/her connections towards more
social individuals. Phrased in a mathematical way, it should be more likely that the
edges are connected to vertices that already have a high degree. A possible model for
such a growing graph was proposed by Barabási and Albert [27], and has incited an
enormous research effort since.

Strictly speaking, Barabási and Albert in [27] were not the first to propose such a
model, and we start by referring to the old literature on the subject. Yule [269] was
the first to propose a growing model where preferential attachment is present, in the
context of the evolution of species. He derives the power-law distribution that we also
find in this chapter. Simon [242] provides a more modern version of the preferential
attachment model, as he puts it

“Because Yule’s paper predates the modern theory of stochastic processes,
his derivation was necessarily more involved than the one we shall employ
here.”

The stochastic model of Simon is formulated in the context of the occurrence of
words in large pieces of text (as in Zipf’s law [270]). It is based on two assumptions,
namely (i) that the probability that the (k + 1)st word is a word that has already
appeared exactly i times is proportional to the number of occurrences of words that
have occurred exactly i times, and (ii) that there is a constant probability that the
(k+ 1)st word is a new word. Together, these two assumptions give rise to frequency
distributions of words that obey a power law, with a power-law exponent that is a
simple function of the probability of adding a new word. We shall see a similar effect
occurring in this chapter. A second place where the model studied by Simon and Yule
can be found is in work by Champernowne [73], in the context of income distributions
in populations.

In [27], Barabási and Albert describe the preferential attachment graph informally
as follows:

“To incorporate the growing character of the network, starting with a small
number (m0) of vertices, at every time step we add a new vertex with
m(≤ m0) edges that link the new vertex to m different vertices already
present in the system. To incorporate preferential attachment, we assume
that the probability Π that a new vertex will be connected to a vertex i
depends on the connectivity ki of that vertex, so that Π(ki) = ki/

∑
j kj.

After t time steps, the model leads to a random network with t+m0 vertices
and mt edges.”

This description of the model is informal, but it must have been given precise meaning
in [27] (since, in particular, Barabási and Albert present simulations of the model
predicting a power-law degree sequence with exponent close to τ = 3). The model
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description does not explain how the first edge is connected (note that at time t = 1,
there are no edges, so the first edge can not be attached according to the degrees of
the existing vertices), and does not give the dependencies between the m edges added
at time t. We are left wondering whether these edges are independent, whether we
allow for self-loops, whether we should update the degrees after each attachment of
a single edge, etc. In fact, each of these choices has, by now, been considered in the
literature. The results, in particular the occurrence of power laws and the power-law
exponent, do not depend sensitively on the respective choices. See Section 8.9 for an
extensive overview of the literature on preferential attachment models.

The first to investigate the model rigorously, were Bollobás, Riordan, Spencer and
Tusnády [59]. They complain heavily about the lack of a formal definition in [27],
arguing that

“The description of the random graph process quoted above (i.e, in [27],
edt.) is rather imprecise. First, as the degrees are initially zero, it is
not clear how the process is started. More seriously, the expected number
of edges linking a new vertex v to earlier vertices is

∑
i Π(ki) = 1, rather

than m. Also, when choosing in one go a set S of m earlier vertices as the
neighbors of v, the distribution of S is not specified by giving the marginal
probability that each vertex lies in S.”

One could say that these differences in formulations form the heart of much con-
fusion between mathematicians and theoretical physicists. To resolve these problems,
choices had to be made, and these choices were, according to [59], made first in [58].
In [58], Bollobás and Riordan specify the initial graph to consist of a vertex with
m self-loops, while the degrees are updated in the process of attaching the m edges.
This model will be described in full detail in Section 8.2 below.

This chapter is organized as follows. In Section 8.2, we introduce the model. In
Section 8.3, we investigate how the degrees of fixed vertices evolve as the graph grows.
In Section 8.4, we investigate the degree sequences in preferential attachment models.
The main result is Theorem 8.3, which states that the preferential attachment model
has a power-law degree sequence. The proof of Theorem 8.3 consists of two key steps,
which are formulated and proved in Sections 8.5 and 8.6, respectively. In Section 8.7,
we investigate the maximal degree in a preferential attachment model. In Section
8.8 we discuss some further results on preferential attachment models proved in the
literature, and in Section 8.9 we discuss many related preferential attachment models.
We close this chapter with notes and discussion in Section 8.10 and exercises in Section
8.11.

8.2 Introduction of the model

We start by introducing the model. The model we investigate produces a graph
sequence that we denote by (PA(m,δ)

t )t≥1 and which, for every time t, yields a graph of t
vertices and mt edges for some m = 1, 2, . . . We start by defining the model for m = 1
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when the graph consists of a collection of trees. In this case, PA(1,δ)

1 consists of a single
vertex with a single self-loop. We denote the vertices of PA(1,δ)

t by {v(1)

1 , . . . , v(1)

t }. We
denote the degree of vertex v(1)

i in PA(1,δ)

t by Di(t), where a self-loop increases the
degree by 2.

We next describe the evolution of the graph. Conditionally on PA(1,δ)

t , the growth
rule to obtain PA(1,δ)

t+1 is as follows. We add a single vertex v(1)

t+1 having a single
edge. This edge is connected to a second end point, which is equal to v(1)

t+1 with
probability (1 + δ)/(t(2 + δ) + (1 + δ)), and to vertex v(1)

i ∈ PA(1,δ)

t with probability
(Di(t) + δ)/(t(2 + δ) + (1 + δ)) for each i ∈ [t], where δ ≥ −1 is a parameter of the
model. Thus,

P
(
v(1)

t+1 → v(1)

i

∣∣PA(1,δ)

t

)
=


1 + δ

t(2 + δ) + (1 + δ)
for i = t+ 1,

Di(t) + δ

t(2 + δ) + (1 + δ)
for i ∈ [t].

(8.2.1)

The above preferential attachment mechanism is called affine, since the attachment
probabilities in (8.2.1) depend in an affine way on the degrees of the random graph
PA(1,δ)

t . Exercises 8.2 and 8.3 show that (8.2.1) is a probability distribution.

The model with m > 1 is defined in terms of the model for m = 1 as follows. Fix
δ ≥ −m. We start with PA(1,δ/m)

mt , and denote the vertices in PA(1,δ/m)

mt by v(1)

1 , . . . , v(1)

mt.
Then we identify or collapse the m vertices v(1)

1 , . . . , v(1)
m in PA(1,δ/m)

mt to become the
vertex v(m)

1 in PA(m,δ)

t . In doing so, we let all the edges that are incident to any of
the vertices in v(1)

1 , . . . , v(1)
m be incident to the new vertex v(m)

1 in PA(m,δ)

t . Then, we
collapse the m vertices v(1)

m+1, . . . , v
(1)

2m in PA(1,δ/m)

mt to become vertex v(m)

2 in PA(m,δ)

t , etc.
More generally, we collapse the m vertices v(1)

(j−1)m+1, . . . , v
(1)

jm in PA(1,δ/m)

mt to become

vertex v(m)

j in PA(m,δ)

t . This defines the model for general m ≥ 1. The resulting graph

PA(m,δ)

t is a multigraph with precisely t vertices and mt edges, so that the total degree
is equal to 2mt (see Exercise 8.4).

To explain the description of PA(m,δ)

t in terms of PA(1,δ/m)

mt by collapsing vertices, we
note that an edge in PA(1,δ/m)

mt is attached to vertex v(1)

k with probability proportional
to the weight of vertex v(1)

k . Here the weight of v(1)

k is equal to the degree of vertex v(1)

k

plus δ/m. Now, the vertices v(1)

(j−1)m+1, . . . , v
(1)

jm in PA(1,δ/m)

mt are collapsed to form vertex

v(m)

j in PA(m,δ)

t . Thus, an edge in PA(m,δ)

t is attached to vertex v(m)

j with probability

proportional to the total weight of the m vertices v(1)

(j−1)m+1, . . . , v
(1)

jm. Since the sum of

the degrees of the m vertices v(1)

(j−1)m+1, . . . , v
(1)

jm is equal to the degree of vertex v(m)

j ,

this probability is proportional to the degree of vertex v(m)

j in PA(m,δ)

t plus δ. We note
that in the above construction and for m ≥ 2, the degrees are updated after each
edge is attached. This is what we refer to as intermediate updating of the degrees.

The important feature of the model is that edges are more likely to be connected
to vertices with large degrees, thus making the degrees even larger. This effect is
called preferential attachment. Preferential attachment may explain the existence of
vertices with quite large degrees. Therefore, the preferential attachment model is
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Figure 8.2: Preferential attachment random graph with m = 2 and δ = 0 of sizes 10,
30 and 100.

sometimes called the Rich-get-Richer model. The preferential attachment mechanism
is quite reasonable in many real-world networks. For example, one is more likely to
get to know a person who already knows many people. However, the precise form of
preferential attachment in (8.2.1) is only one of the many possible examples. Similarly,
a paper is more likely to be cited by other papers when it has already received many
citations. Having this said, it is not obvious why the preferential attachment rule
should be affine. This turns out to be related to the degree-structure of the resulting
random graphs PA(m,δ)

t that we investigate in detail in this chapter.

The definition of (PA(m,δ)

t )t≥1 in terms of (PA(1,δ/m)

t )t≥1 is quite convenient. How-
ever, we can also equivalently define the model for m ≥ 2 directly. We start with
PA(1,δ)

t consisting of a single vertex with m self-loops. To construct PA(m,δ)

t from
PA(m,δ)

t , we add a single vertex with m edges attached to it. These edges are attached
sequentially with intermediate updating of the degrees as follows. The eth edge is
connected to vertex v(m)

i , for i ∈ [t] with probability proportional to Di(e− 1, t) + δ,
where, for e = 1, . . . ,m, Di(e, t) is the degree of vertex i after the eth edge is at-
tached, and to vertex v(m)

t+1 with probability proportional to Dt+1(e− 1, t) + 1 + eδ/m.
Here we make the convention that Dt+1(0, t) = 0. This alternative definition makes
it perfectly clear how the choices by Barábasi and Albert missing in [27] are made.
Indeed, the degrees are updated during the process of attaching the edges, and the
initial graph at time 1 consists of a single vertex with m self-loops. Naturally, the
edges could also be attached sequentially by a different rule, for example by attaching
the edges independently according to the distribution for the first edge. Also, one has
the choice to allow for self-loops or not. See Figure 8.2 for a realization of (PA(m,δ)

t )t≥1

for m = 2 and δ = 0, and Figure 8.3 for a realization of (PA(m,δ)

t )t≥1 for m = 2 and
δ = −1. Exercises 8.5 investigates related growth rules.

The above model is a slight variation of models that have appeared in the lit-
erature. The model with δ = 0 is the Barabási-Albert model, which has received
substantial attention in the literature and which was first formally defined in [58].
We have added the extra parameter δ to make the model more general. In the lit-
erature, also other slight variations on the above model have been considered. We
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Figure 8.3: Preferential attachment random graph with m = 2 and δ = −1 of sizes
10, 30 and 100.

will discuss two of those. In the first, and for m = 1 and δ ≥ −1, self-loops do not
occur. We denote this variation by

(
PA(m,δ)

t (b)
)
t≥2

and sometimes refer to this model

by model (b). To define PA(1,δ)

t (b), we let PA(1,δ)

2 (b) consist of two vertices v(1)

1 and v(1)

2

with two edges between them, and we replace the growth rule in (8.2.1) by the rule
that, for all i ∈ [t],

P
(
v(1)

t+1 → v(1)

i | PA(1,δ)

t (b)
)

=
Di(t) + δ

t(2 + δ)
. (8.2.2)

The advantage of this model is that it leads to a connected graph. We again define
the model with m ≥ 2 and δ ≥ −m in terms of

(
PA(1,δ/m)

mt (b)
)
t≥2

as below (8.2.1).

We also note that the differences between
(
PA(m,δ)

t

)
t≥1

and
(
PA(m,δ)

t (b)
)
t≥2

are minor,

since the probability of a self-loop in PA(m,δ)

t is quite small when t is large. Thus,
most of the results we shall prove in this chapter for

(
PA(m,δ)

t

)
t≥1

shall also apply to(
PA(m,δ)

t (b)
)
t≥2

, but we do not state these extensions explicitly.

Interestingly, the above model with δ ≥ 0 can be viewed as an interpolation
between the models with δ = 0 and δ = ∞. We show this for m = 1, the statement
for m ≥ 2 can again be seen by collapsing blocks of m vertices. We again let the graph
at time 2 consist of two vertices with two edges between them. We fix α ∈ [0, 1]. Then,
we first draw a Bernoulli random variable It+1 with success probability 1 − α. The
random variables (It)t≥1 are independent. When It+1 = 0, then we attach the (t+1)st
edge to a uniform vertex in [t]. When It+1 = 1, then we attach the (t + 1)st edge to
vertex i ∈ [t] with probability Di(t)/(2t). We denote this model by

(
PA(1,α)

t (c)
)
t≥1

.
When α ≥ 0 is chosen appropriately, then this is precisely the above preferential
attachment model (see Exercise 8.7 below).

8.3 Degrees of fixed vertices

We will be interested in the degree structure in the preferential attachment model.
We start by investigating the degrees of fixed vertices as t→∞, i.e., we study Di(t)
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for fixed i as t → ∞. To formulate our results, we define the Gamma-function
t 7→ Γ(t) for t > 0 by

Γ(t) =

∫ ∞
0

xt−1e−xdx. (8.3.1)

We also make use of the recursion formula (see e.g. Exercise 8.10)

Γ(t+ 1) = tΓ(t). (8.3.2)

The main result in this section is the following result about the growth of the
degrees of vertices:

Theorem 8.2 (Degrees of fixed vertices). Fix m = 1 and δ > −1. Then, Di(t)/t
1/(2+δ)

converges almost surely to a random variable ξi as t→∞, and

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1)Γ(i− 1/(2 + δ))

Γ(t+ 1+δ
2+δ

)Γ(i)
. (8.3.3)

In Section 8.7, we considerably extend the result in Theorem 8.2. For example,
we also prove the almost sure convergence of the maximal degree.

Proof. Fix m = 1 and let t ≥ i. We compute that

E[Di(t+ 1) + δ | Di(t)] = Di(t) + δ + E[Di(t+ 1)−Di(t) | Di(t)]

= Di(t) + δ +
Di(t) + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)t+ 2 + δ

(2 + δ)t+ 1 + δ

= (Di(t) + δ)
(2 + δ)(t+ 1)

(2 + δ)t+ 1 + δ
. (8.3.4)

(In fact, here we rely on Exercise 8.9.) Using also that

E[Di(i) + δ] = 1 + δ +
1 + δ

(2 + δ)(i− 1) + 1 + δ

= (1 + δ)
(2 + δ)(i− 1) + 2 + δ

(2 + δ)(i− 1) + 1 + δ

= (1 + δ)
(2 + δ)i

(2 + δ)(i− 1) + 1 + δ
, (8.3.5)

we obtain (8.3.3). In turn, again using (8.3.4), the sequence (Mi(t))t≥i given by

Mi(t) =
Di(t) + δ

1 + δ

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)(s+ 1)
(8.3.6)

is a non-negative martingale with mean 1. As a consequence of the martingale con-
vergence theorem (Theorem 2.24), as t → ∞, Mi(t) converges almost surely to a
limiting random variable Mi.
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We next extend this result to almost sure convergence of Di(t)/t
1/(2+δ). For this,

we compute that

t−1∏
s=i−1

(2 + δ)s+ 1 + δ

(2 + δ)s+ 2 + δ
=

t−1∏
s=i−1

s+ 1+δ
2+δ

s+ 1
=

Γ(t+ 1+δ
2+δ

)Γ(i)

Γ(t+ 1)Γ(i− 1/(2 + δ))
, (8.3.7)

so that

Mi(t) =
Di(t) + δ

1 + δ

Γ(t+ 1+δ
2+δ

)Γ(i)

Γ(t+ 1)Γ(i− 1/(2 + δ))
. (8.3.8)

Using Stirling’s formula, it is not hard to see that (see Exercise 8.11)

Γ(t+ a)

Γ(t)
= ta(1 +O(1/t)). (8.3.9)

Therefore,

Di(t) + δ

t1/(2+δ)
= Mi(t)

(2 + δ)Γ(i− 1/(2 + δ))

Γ(i)
(1 +O(1/t)) (8.3.10)

a.s.−→Mi
(2 + δ)Γ(i− 1/(2 + δ))

Γ(i)
≡ ξi.

Since 1/(2 + δ) > 0, the same conclusion follows for t−1/(2+δ)Di(t). In particular, the
degrees of the first i vertices at time t is at most of order t1/(2+δ). Note, however, that
we do not yet know whether P(ξi = 0) = 0 or not!

We can extend the above result to the case where m ≥ 1 by using the relation
between PA(m,δ)

t and PA(1,δ/m)

t . This relation in particular implies that

Eδm[Di(t)] =
m∑
s=1

Eδ/m1 [Dm(i−1)+s(mt)], (8.3.11)

where we have added a subscript m and a superscript δ to the expectation to denote
the values of m and δ involved. Exercises 8.12 and 8.13 investigate m ≥ 2 in more
detail, Exercise 8.14 studies extensions to model (b).

We close this section by giving a heuristic explanation for the occurrence of a
power-law degree sequence in preferential attachment models. Theorem 8.2 (in con-
junction with Exercise 8.13) implies that there exists an am,δ such that, for i, t large,
and any m ≥ 1,

Eδm[Di(t)] ∼ am,δ
(
t/i
)1/(2+δ/m)

. (8.3.12)

When the graph indeed has a power-law degree sequence, then the number of vertices
with degree at least k will be close to ctk−(τ−1) for some τ > 1 and some c >
0. The number of vertices with degree at least k at time t is equal to N≥k(t) =
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∑t
i=1 1{Di(t)≥k}. Now, assume that in the above formula, we are allowed to replace

1{Di(t)≥k} by 1{Eδm[Di(t)]≥k} (that is a big leap of faith). Then we would obtain that

N≥k(t) ∼
t∑
i=1

1{Eδm[Di(t)]≥k} ∼
t∑
i=1

1{am,δ(t/i)1/(2+δ/m)≥k}

=
t∑
i=1

1{i≤ta2+δ/mm,δ k−(2+δ/m)} = ta
2+δ/m
m,δ k−(2+δ/m), (8.3.13)

so that we obtain a power-law with exponent τ − 1 = 2 + δ/m. This suggests that
the preferential attachment model has a power-law degree sequence with exponent τ
satisfying τ = 3 + δ/m. The above heuristic is made precise in the following section,
but the proof is quite a bit more subtle than the above heuristic!

8.4 Degree sequences of preferential attachment models

The main result in this section establishes the scale-free nature of preferential
attachment graphs. In order to state it, we need some notation. We write

Pk(t) =
1

t

t∑
i=1

1{Di(t)=k} (8.4.1)

for the (random) proportion of vertices with degree k at time t. For m ≥ 1 and
δ > −m, we define (pk)k≥0 by pk = 0 for k = 0, . . . ,m− 1 and, for k ≥ m,

pk = (2 +
δ

m
)
Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
(8.4.2)

Below, we shall show that (pk)k≥0 is a probability mass function. We now study some
special cases, arising when m = 1 and δ = 0. For m = 1, (8.4.2) reduces to

pk = (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
. (8.4.3)

Also, when δ = 0 and k ≥ m, (8.4.2) simplifies to

pk =
2Γ(k)Γ(m+ 2)

Γ(k + 3)Γ(m)
=

2m(m+ 1)

k(k + 1)(k + 2)
. (8.4.4)

The probability mass function (pk)k≥0 arises as the limiting degree distribution for
PA(m,δ)

t , as shown in the following theorem:

Theorem 8.3 (Degree sequence in preferential attachment model). Fix m ≥ 1 and
δ > −m. There exists a constant C = C(m, δ) > 0 such that, as t→∞,

P
(

max
k
|Pk(t)− pk| ≥ C

√
log t

t

)
= o(1). (8.4.5)
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Theorem 8.3 proves that Pk(t)
P−→ pk for any k fixed. Therefore, we refer to

(pk)k≥0 as the asymptotic degree distribution of PA(m,δ)

t .

We next investigate properties of the sequence (pk)k≥0. We start by proving that
(pk)k≥0 is a probability mass function by noting that, by (8.3.2),

Γ(k + a)

Γ(k + b)
=

1

b− a− 1

( Γ(k + a)

Γ(k − 1 + b)
− Γ(k + 1 + a)

Γ(k + b)

)
. (8.4.6)

Applying (8.4.6) to a = δ, b = 3 + δ + δ
m

, we obtain that, for k ≥ m,

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

( Γ(k + δ)

Γ(k + 2 + δ + δ
m

)
− Γ(k + 1 + δ)

Γ(k + 3 + δ + δ
m

)

)
. (8.4.7)

Using that pk = 0 for k < m, and by a telescoping sum identity,

∑
k≥0

pk =
∑
k≥m

pk =
Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)

Γ(m+ δ)

Γ(m+ 2 + δ + δ
m

)
= 1. (8.4.8)

Thus, since also pk ≥ 0, we obtain that (pk)k≥0 indeed is a probability mass function.
Interestingly, we can identify a random variable that has probability mass function
(pk)k≥0. For this, we recall that X has a negative binomial distribution with parame-
ters r and p if

P(X = k) =
Γ(r + k)

k!Γ(r)
pr(1− p)k−r. (8.4.9)

When r is integer-valued, X describes the time of the rth success in a sequence of
independent experiments with success probability p. Then,

pk = E[P(X = k)], (8.4.10)

where X has a negative binomial distribution with parameters r = m + δ and ran-
dom success probability U1/(2+δ/m), where U has a uniform distribution on [0, 1] (see
Exercise 8.16).

We next investigate the scale-free properties of (pk)k≥0 by investigating the asymp-
totics of pk for k large. By (8.4.2) and (8.3.9), as k →∞,

pk = cm,δk
−τ (1 +O(1/k)), (8.4.11)

where

τ = 3 +
δ

m
> 2, and cm,δ =

(2 + δ
m

)Γ(m+ 2 + δ + δ
m

)

Γ(m+ δ)
. (8.4.12)

Therefore, by Theorem 8.3 and (8.4.11), the asymptotic degree sequence of PA(m,δ)

t is
close to a power law with exponent τ = 3 + δ/m. We note that any exponent τ > 2
is possible by choosing δ > −m and m ≥ 1 appropriately. The power-law degree
sequence can clearly be observed in a simulation, see Figure 8.4, where a realization
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Figure 8.4: The degree sequences of a preferential attachment random graph with
m = 2, δ = 0 of sizes 300,000 and 1,000,000 in log-log scale.

of the degree sequence of PA(m,δ)

t is shown for m = 2, δ = 0 and t = 300, 000 and
t = 1, 000, 000.

The important feature of the preferential attachment model is that, unlike the
configuration model and the generalized random graph, the power law in PA(m,δ)

t is
explained by giving a model for the growth of the graph that produces power-law
degrees. Therefore, preferential attachment offers a possible explanation as to why
power-law degree sequences occur. As Barabási puts it [26]

“...the scale-free topology is evidence of organizing principles acting at each
stage of the network formation. (...) No matter how large and complex
a network becomes, as long as preferential attachment and growth are
present it will maintain its hub-dominated scale-free topology.”.

This may be overstating the fact, as we will see later that power laws are intimately
related to affine preferential attachment functions as in (8.2.1). Many more possible
explanations have been given for why power laws occur in real networks, and many
adaptations of the above simple preferential attachment model have been studied in
the literature, all giving rise to power-law degrees. See Section 8.9 for an overview.

The next two sections are devoted to the proof of Theorem 8.3, which is divided
into two main parts. In Section 8.5, we prove that the degree sequence is concentrated
around its mean, and in Section 8.6, we identify the mean of the degree sequence. In
the course of the proof, we also prove extensions of Theorem 8.3.

8.5 Concentration of the degree sequence

In this section, we prove that the (random) degree sequence is strongly concen-
trated around its expectation. We use a martingale argument by Bollobás, Riordan,
Spencer and Tusnády that first appeared in this context in [59], and has been used
in basically all subsequent works proving power-law degree sequences for preferential
attachment models. The argument is very pretty and general, and we spend some
time explaining it in detail.
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We start by stating the main result in this section. In its statement, we use the
notation

Nk(t) =
t∑
i=1

1{Di(t)=k} = tPk(t) (8.5.1)

for the total number of vertices with degree k at time t.

Proposition 8.4 (Concentration of the degrees). Fix δ ≥ −m and m ≥ 1. Then,
for any C > m

√
8, as t→∞,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
= o(1). (8.5.2)

We note that Theorem 8.3 predicts that Nk(t) ≈ tpk. Thus, at least for k for which
pk is not too small, i.e., tpk �

√
t log t, Proposition 8.4 suggests that the number of

vertices with degree equal to k is very close to its expected value. Needless to say, in
order to prove Theorem 8.3, we still need to investigate E[Nk(t)], and prove that it is
quite close to tpk. This is the second main ingredient in the proof of Theorem 8.3 and
is formulated in Proposition 8.7 in the next section. In the remainder of this section,
we prove Proposition 8.4. We start with two preparatory lemmas investigating an
appropriate Doob martingale in the preferential attachment model.

We rely on a martingale argument and Azuma-Hoeffding’s inequality (Theorem 2.27).
For n = 0, . . . , t, we denote the conditional expected number of vertices with degree
k at time t, conditionally on the graph PA(m,δ)

n at time n ∈ {0, . . . , t}, by

Mn = E
[
Nk(t) | PA(m,δ)

n

]
. (8.5.3)

The graph PA(m,δ)

n can be viewed as a discrete random variable (Xij(n))i,j∈[n] where
Xij(n) denotes the number of edges between vertices i, j ∈ [t] by time t, and as such,
the conditional expectation given PA(m,δ)

n is well defined and satisfies all the usual
rules. 1 We start by showing that (Mn)tn=0 is a martingale:

Lemma 8.5 (Doob martingale in PAM). The process (Mn)tn=0 given by Mn =
E
[
Nk(t) | PA(m,δ)

n

]
is a martingale w.r.t.

(
PA(m,δ)

s )ns=1. Further, M0 = E[Nk(t)] and
Mt = Nk(t).

Proof. Throughout this proof, we fix m and δ and abbreviate PAn = PA(m,δ)

n . Firstly,
since Nk(t) is bounded by the total number of vertices at time t, we have Nk(t) ≤ t,
so that

E[|Mn|] = E[Mn] = E[Nk(t)] ≤ t <∞. (8.5.4)

Secondly, by the tower property of conditional expectations, and the fact that PA(m,δ)

n

can be deduced from PAn+1, for all n ≤ t− 1,

E[Mn+1|PAn] = E
[
E
[
Nk(t) | PAn+1

]∣∣∣PAn

]
= E

[
Nk(t) | PAn

]
= Mn, (8.5.5)

1Formally, Mn = E
[
Nk(t) | Fn

]
, where Fn denotes the σ-algebra generated by (PA(m,δ)

s )s∈[n].
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so that (Mn)tn=0 satisfies the conditional expectation requirement for a martingale.
In fact, (Mn)tn=0 is a so-called Doob martingale (see also Exercise 2.25). Clearly,
Mn ≤ t, so that (Mn)tn=0 also has a finite first moment. We conclude that (Mn)tn=0

is a martingale process with respect to (PAn)tn=0.
To identify M0, we note that

M0 = E
[
Nk(t) | PA0

]
= E[Nk(t)], (8.5.6)

since PA0 is the empty graph. Furthermore, Mt is trivially identified as

Mt = E
[
Nk(t) | PAt

]
= Nk(t), (8.5.7)

since one can determine Nk(t) from PA(m,δ)

t . This completes the proof of Lemma
8.5.

To prove concentration of Mt = Nk(t), we aim to use the Azuma-Hoeffding in-
equality (Theorem 2.27). For this, we need to prove bounds on the martingale differ-
ences |Mn −Mn−1|, as formulated in the next lemma:

Lemma 8.6 (Bounded martingale differences in PAM). The process (Mn)tn=0 given
by Mn = E

[
Nk(t) | PA(m,δ)

n

]
satisfies that |Mn −Mn−1| ≤ 2m almost surely and for

every n ∈ [t].

Proof. Throughout this proof, we fix m and δ, and again abbreviate PAn = PA(m,δ)

n .
We note that

Mn = E[Nk(t) | PAn] =
t∑
i=1

P(Di(t) = k | PAn), (8.5.8)

and, similarly,

Mn−1 =
t∑
i=1

P(Di(t) = k | PAn−1). (8.5.9)

For t ≥ 1, we define PA′s by PA′s = PAs for s ≤ n − 1, while s 7→ PA′s evolves
independently of (PAs)s≥n−1 for s ≥ n−1 and according to the preferential attachment
evolution rules in (8.2.1). Thus, both processes (PAs)s≥1 and (PA′s)s≥1 have the same
marginal distribution and agree up to time n − 1, while they evolve independently
after time n− 1. Then,

Mn−1 =
t∑
i=1

P(D′i(t) = k | PAn), (8.5.10)

where D′i(t) denotes the degree of vertex i in PA′t. Indeed, since the evolution of
s 7→ PA′s is independent of that of (PAs)s≥n−1 for s ≥ n − 1, it makes no difference
whether we condition on PAn−1 or on PAn in (8.5.10). Therefore, we arrive at

Mn −Mn−1 =
t∑
i=1

[
P(Di(t) = k | PAn)− P(D′i(t) = k | PAn)

]
. (8.5.11)
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Next, since the evolution of the degree t 7→ Di(t) for t ≥ n only depends on Di(n)
(recall Exercise 8.9),

P(Di(t) = k | PAn) = P(Di(t) = k | Di(n)). (8.5.12)

Similarly,
P(D′i(t) = k | PAn) = E

[
P(D′i(t) = k | D′i(n)) | PAn

]
, (8.5.13)

Therefore, also using that Di(n) is measurable w.r.t. PAn, we arrive at

Mn −Mn−1 =
t∑
i=1

E
[
P(Di(t) = k | Di(n))− P(D′i(t) = k | D′i(n)) | PAn

]
. (8.5.14)

The crucial observation is that P(Di(t) = k | Di(n)) = P(D′i(t) = k | D′i(n)) whenever
Di(n) = D′i(n), since the two graphs evolve according to the same rules. Therefore,∣∣P(Di(t) = k | Di(n))− P(D′i(t) = k | D′i(n))

∣∣ ≤ 1{Di(n)6=D′i(n)}. (8.5.15)

We conclude that

|Mn −Mn−1| (8.5.16)

≤
t∑
i=1

E
[∣∣P(Di(t) = k | Di(n))− P(D′i(t) = k | D′i(n))

∣∣ ∣∣∣ PAn

]
≤

t∑
i=1

E
[
1{Di(n)6=D′i(n)}

∣∣ PAn

]
= E

[ t∑
i=1

1{Di(n)6=D′i(n)}
∣∣ PAn

]
.

Since, Di(n− 1) = D′i(n− 1) by construction, and since we only add m edges at time
n both in PAn and in PA′n, a.s.,

t∑
i=1

1{Di(n) 6=D′i(n)} ≤ 2m. (8.5.17)

This completes the proof of Lemma 8.6.

We are now ready to prove Proposition 8.4:
Proof of Proposition 8.4. We start by reducing the proof. First of all, Nk(t) = 0 when
k > m(t+ 1). Therefore,

P
(

max
k
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
(8.5.18)

= P
(

max
k≤m(t+1)

|Nk(t)− E[Nk(t)]| ≥ C
√
t log t

)
≤

m(t+1)∑
k=1

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
.
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Lemmas 8.5 and 8.6, combined with the Azuma-Hoeffding Inequality (Theorem 2.27),
yield that, for any a > 0,

P
(
|Nk(t)− E[Nk(t)]| ≥ a

)
≤ 2e−a

2/(8m2t). (8.5.19)

Taking a = C
√
t log t for C with C2 > 8m2 then proves that

P
(
|Nk(t)− E[Nk(t)]| ≥ C

√
t log t

)
≤ 2e−(log t)C2/(8m2) = o(1/t). (8.5.20)

This completes the proof of Proposition 8.4.

The above proof is rather general, and can also be used to prove concentration
around the mean of other graph properties that are related to the degrees (see Exercise
8.18). An example is the following. Denote by

N≥k(t) =
∞∑
l=k

Nl(t) (8.5.21)

the total number of vertices with degrees at least k. Then we can also prove that
N≥k(t) concentrates. Indeed, for C >

√
8m2,

P
(
|N≥k(t)− E[N≥k(t)]| ≥ C

√
t log t

)
= o(1/t). (8.5.22)

The proof uses the same ingredients as given above for N≥k(t), where now we use the
martingale

M ′
n = E[N≥k(t) | PA(m,δ)

n ]. (8.5.23)

8.6 Expected degree sequence

In this section, we investigate the expected number of vertices with degree equal
to k. We denote the expected number of vertices of degree k in PA(m,δ)

t by

N̄k(t) = E
[
Nk(t)

]
= E

[
tPk(t)

]
. (8.6.1)

The main aim is to prove that N̄k(t) is close to pkt, where pk is defined in (8.4.2).
This is the content of the following proposition:

Proposition 8.7 (Expected degree sequence). Fix m ≥ 1 and δ > −m. Then, there
exists a constant C = C(δ,m) such that, for all t ≥ 1 and all k ∈ N,

|N̄k(t)− pkt| ≤ C. (8.6.2)

Propositions 8.4 and 8.7 allow us to complete the proof of Theorem 8.3:

Proof of Theorem 8.3. By Proposition 8.7,

max
k
|E[Nk(t)]− pkt| ≤ C. (8.6.3)
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Therefore, by Proposition 8.4, with C being the maximum of the constants in Propo-
sitions 8.7 and 8.4,

P
(

max
k
|Nk(t)− pkt| ≥ C(1 +

√
t log t)

)
= o(1), (8.6.4)

which, since Pk(t) = Nk(t)/t, implies that

P
(

max
k
|Pk(t)− pk| ≥

C

t
(1 +

√
t log t)

)
= o(1). (8.6.5)

Equation (8.6.5) in turn implies Theorem 8.3.

The proof of Proposition 8.7 is split into two separate cases. We first prove the
claim for m = 1 in Section 8.6.1, and extend the proof to m > 1 in Section 8.6.2. The
latter proof is more involved.

8.6.1 Expected degree sequence for preferential attachment trees

In this section, we study the expected degree sequence when m = 1. We adapt
the argument by Bollobás, Borgs, Chayes and Riordan in [55], by deriving a recursion
relation for N̄k(t), and showing that the solution to this recursion relation is close to
pkt.

We start by writing

E
[
Nk(t+ 1) | PA(1,δ)

t ] = Nk(t) + E[Nk(t+ 1)−Nk(t) | PA(1,δ)

t ]. (8.6.6)

Conditionally on PA(1,δ)

t , there are four ways how Nk(t + 1) − Nk(t) can be unequal
to zero:

(a) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k−1, so
that its degree is increased to k, which occurs with probability k−1+δ

t(2+δ)+(1+δ)
, and

there are Nk−1(t) end vertices with degree k − 1 at time t that can be chosen.

(b) The end vertex of the (unique) edge incident to vertex v(1)

t+1 had degree k, so
that its degree is increased to k + 1, which occurs with probability k+δ

t(2+δ)+(1+δ)
,

and there are Nk(t) end vertices with degree k at time t that can be chosen.

(c) Another contribution to k = 1, arises from vertex v(1)

t+1. The degree of vertex v(1)

t+1

is one, so that N1(t) is increased by one, precisely when the end vertex of the
(unique) edge incident to vertex v(1)

t+1 is not v(1)

t+1, which occurs with probability
1− 1+δ

t(2+δ)+(1+δ)
.

(d) There is also a contribution from vertex v(1)

t+1 to k = 2. Indeed, the degree of
vertex v(1)

t+1 is equal to two, so that N2(t) is increased by one, precisely when the
end vertex of the (unique) edge incident to vertex v(1)

t+1 is equal to v(1)

t+1, which
occurs with probability 1+δ

t(2+δ)+(1+δ)
.
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The changes in the degree sequence in cases (a) and (b) arise due to the attachment
of the edge (thus, the degree of one of the vertices v(1)

1 , . . . , v(1)

t is changed), whereas
in cases (c) and (d) we determine the degree of the added vertex v(1)

t+1.

Taking all these cases into account, we arrive at the key identity

E
[
Nk(t+ 1)−Nk(t) | PA(1,δ)

t

]
=

k − 1 + δ

t(2 + δ) + (1 + δ)
Nk−1(t)

− k + δ

t(2 + δ) + (1 + δ)
Nk(t)

+ 1{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.6.7)

Here k ≥ 1, and for k = 0, by convention, we define

N0(t) = 0. (8.6.8)

By taking the expectation on both sides of (8.6.7), we obtain

E[Nk(t+ 1)] = E[Nk(t)] + E[Nk(t+ 1)−Nk(t)]

= E[Nk(t)] + E
[
E[Nk(t+ 1)−Nk(t) | PA(1,δ)

t ]
]
. (8.6.9)

Now using (8.6.7) gives us the explicit recurrence relation that, for k ≥ 1,

N̄k(t+ 1) = N̄k(t) +
k − 1 + δ

t(2 + δ) + (1 + δ)
N̄k−1(t)

− k + δ

t(2 + δ) + (1 + δ)
N̄k(t)

+ 1{k=1}
(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+ 1{k=2}

1 + δ

t(2 + δ) + (1 + δ)
. (8.6.10)

Equation (8.6.10) is the key to the proof of Proposition 8.7 for m = 1. We start by
explaining its relation to (8.4.3). Indeed, when N̄k(t) ≈ tpk, then one might expect
that N̄k(t + 1) − N̄k(t) ≈ pk. Substituting these approximations into (8.6.10), and
approximating t/[t(2 + δ) + (1 + δ)] ≈ 1/(2 + δ) and (1 + δ)/[t(2 + δ) + (1 + δ)] ≈ 0,
we arrive at the fact that pk must satisfy the recurrence relation, for k ≥ 1,

pk =
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1{k=1}, (8.6.11)

where we define p0 = 0. In the following lemma, we show that the recursion in (8.6.11)
has (8.4.3) as a unique solution:
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Lemma 8.8 (Solution recurrence relation degree sequence). The unique solution to
(8.6.11) is, for k ≥ 1,

pk = (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
. (8.6.12)

Proof. We rewrite

pk =
k − 1 + δ

k + 2 + 2δ
pk−1 +

2 + δ

k + 2 + 2δ
1{k=1}. (8.6.13)

When k = 1, and using that p0 = 0, we obtain

p1 =
2 + δ

3 + 2δ
. (8.6.14)

On the other hand, when k > 1, we arrive at

pk =
k − 1 + δ

k + 2 + 2δ
pk−1. (8.6.15)

Therefore, using (8.3.2) repeatedly,

pk =
Γ(k + δ)Γ(4 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
p1 =

(2 + δ)Γ(k + δ)Γ(4 + 2δ)

(3 + 2δ)Γ(k + 3 + 2δ)Γ(1 + δ)

= (2 + δ)
Γ(k + δ)Γ(3 + 2δ)

Γ(k + 3 + 2δ)Γ(1 + δ)
, (8.6.16)

which agrees with (8.4.3) and thus proves the claim.

Lemma 8.8 explains, at least intuitively, what the relation is between (8.6.12) and
the recursion relation in (8.6.10). The next step is to use (8.6.10) and (8.6.11) to
prove Proposition 8.7 for m = 1, by showing that N̄k(t) is close to tpk. To this end,
we define

εk(t) = N̄k(t)− tpk. (8.6.17)

Then, in order to prove Proposition 8.7 for m = 1, we are left to prove that there
exists a constant C = C(δ) such that

sup
k
|εk(t)| ≤ C. (8.6.18)

The value of C will be determined in the course of the proof.
We use induction in t. We note that we can rewrite (8.6.11) as

(t+ 1)pk = tpk + pk

= tpk +
k − 1 + δ

2 + δ
pk−1 −

k + δ

2 + δ
pk + 1{k=1}

= tpk +
k − 1 + δ

t(2 + δ) + (1 + δ)
tpk−1 −

k + δ

t(2 + δ) + (1 + δ)
tpk + 1{k=1}

+
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k − 1 + δ)pk−1

−
( 1

2 + δ
− t

t(2 + δ) + (1 + δ)

)
(k + δ)pk. (8.6.19)
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We abbreviate

κk(t) = −
(

1/(2 + δ)− t

t(2 + δ) + (1 + δ)

)(
(k + δ)pk − (k − 1 + δ)pk−1

)
, (8.6.20)

γk(t) =
1 + δ

t(2 + δ) + (1 + δ)

(
1{k=2} − 1{k=1}

)
. (8.6.21)

Then, subtracting (8.6.19) from (8.6.10) leads to

εk(t+ 1) =
(

1− k + δ

t(2 + δ) + (1 + δ)

)
εk(t) +

k − 1 + δ

t(2 + δ) + (1 + δ)
εk−1(t)

+ κk(t) + γk(t). (8.6.22)

We prove the bounds on εk(t) in (8.6.18) by induction on t ≥ 1. We start by
initializing the induction hypothesis. When t = 1, we have that PA1,δ(1) consists of
a vertex with a single self-loop. Thus,

N̄k(1) = 1{k=2}. (8.6.23)

Therefore, since also pk ≤ 1, we arrive at the estimate that, uniformly in k ≥ 1,

|εk(1)| = |N̄k(1)− pk| ≤ max{N̄k(1), pk} ≤ 1. (8.6.24)

We have initialized the induction hypothesis for t = 1 in (8.6.18) for any C ≥ 1.

We next advance the induction hypothesis. We start with k = 1:

Lemma 8.9 (Expected number of vertices with degree 1). Fix m = 1 and δ > −1.
Then, there exists a constant C1 > 0 such that

sup
t≥1
|N̄1(t)− tp1| ≤ C1. (8.6.25)

Proof. We note that ε0(t) = N0(t)−p0 = 0 by convention, so that (8.6.22) reduces to

ε1(t+ 1) =
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
ε1(t) + κ1(t) + γ1(t). (8.6.26)

We note that

1− 1 + δ

t(2 + δ) + (1 + δ)
≥ 0, (8.6.27)

so that

|ε1(t+ 1)| ≤
(

1− 1 + δ

t(2 + δ) + (1 + δ)

)
|ε1(t)|+ |κ1(t)|+ |γ1(t)|. (8.6.28)

Using the explicit forms in (8.6.20) and (8.6.21), it is not hard to see that there are
universal constants Cκ = Cκ(δ) and Cγ = Cγ(δ) such that, uniformly in k ≥ 1,

|κk(t)| ≤ Cκ(t+ 1)−1, |γk(t)| ≤ Cγ(t+ 1)−1. (8.6.29)
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Exercise 8.19 shows that Cγ = 1 and Cκ = (1+δ)(2+δ)
3+2δ

do the job.
Using the induction hypothesis (8.6.18), as well as (8.6.29), we arrive at

|ε1(t+ 1)| ≤ C1

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
+
Cκ + Cγ
t+ 1

. (8.6.30)

Next, we use that t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), so that

|ε1(t+ 1)| ≤ C1 − (t+ 1)−1
(
C1

1 + δ

2 + δ
− (Cκ + Cγ)

)
. (8.6.31)

Therefore, |ε1(t+ 1)| ≤ C1 whenever

C1 ≥
2 + δ

1 + δ
(Cκ + Cγ). (8.6.32)

This advances the induction hypothesis in t ≥ 1 for k = 1, and thus completes the
proof of Lemma 8.9.

We now extend the argument to k ≥ 2:

Lemma 8.10 (Expected number of vertices with degree k). Fix m = 1 and δ > −1.
Then, there exists a constant C > 0 such that

sup
k≥1

sup
t≥1
|N̄k(t)− tpk| ≤ C. (8.6.33)

Proof. We use induction on k, where the induction hypothesis is the statement that
supt≥1 |N̄k(t)− tpk| ≤ C. We determine the value of C in the course of the proof.

Lemma 8.9 initiates the induction for k = 1. We next advance the induction on
k ≥ 1. For this, we assume that (8.6.33) is true for k− 1, and prove it for k. For this,
in turn, we use induction on t, with the result for t = 1 following from (8.6.24). To
advance the induction on t, we again use (8.6.22). We note that

1− k + δ

t(2 + δ) + (1 + δ)
≥ 0 as long as k ≤ t(2 + δ) + 1. (8.6.34)

We assume (8.6.34) for the time being, and deal with k > t(2 + δ) + 1 later.
By (8.6.22) and (8.6.34), for k ≥ 2 and δ > −1 so that k − 1 + δ ≥ 0, it follows

that

|εk(t+ 1)| ≤
(

1− k + δ

t(2 + δ) + (1 + δ)

)
|εk(t)|+

k − 1 + δ

t(2 + δ) + (1 + δ)
|εk−1(t)| (8.6.35)

+ |κk(t)|+ |γk(t)|.

Again using the induction hypothesis (8.6.18), as well as (8.6.29), we arrive at

|εk(t+ 1)| ≤ C
(

1− k + δ

t(2 + δ) + (1 + δ)

)
+ Ck

k − 1 + δ

t(2 + δ) + (1 + δ)
+
Cκ + Cγ
t+ 1

= C
(

1− 1

t(2 + δ) + (1 + δ)

)
+
Cκ + Cγ
t+ 1

. (8.6.36)
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As before,
t(2 + δ) + (1 + δ) ≤ (t+ 1)(2 + δ), (8.6.37)

so that

|εk(t+ 1)| ≤ C − (t+ 1)−1
( C

2 + δ
− (Cκ + Cγ)

)
≤ C, (8.6.38)

whenever
C ≥ (2 + δ)(Cκ + Cγ). (8.6.39)

This advances the induction hypothesis in the case where k ≤ t(2 + δ) + 1.

Finally, we deal with the case that k > t(2+δ)+1. Note that then k ≥ t(2+δ)+2 >
t+2, since δ > −1. Since the maximal degree of PA(1,δ)

t is t+2 (which happens precisely
when all edges are connected to the initial vertex), we have that N̄k(t + 1) = 0 for
k ≥ t(2 + δ) + 2. Therefore, for k ≥ t(2 + δ) + 2,

|εk(t+ 1)| = (t+ 1)pk. (8.6.40)

By (8.4.11) and (8.4.12), uniformly for k ≥ t(2 + δ) + 2 ≥ t + 2 for δ ≥ −1, there
exists a Cp = Cp(δ) such that

pk ≤ Cp(t+ 1)−(3+δ). (8.6.41)

Therefore, we conclude that for δ > −1, and again uniformly for k ≥ t+ 2,

(t+ 1)pk ≤ Cp(t+ 1)−(2+δ) ≤ Cp. (8.6.42)

Therefore, if C ≥ Cp, then also the claim follows for k ≥ t(2 + δ) + 2. Comparing to
(8.6.32) and (8.6.39), we choose

C = max
{

(2 + δ)(Cκ + Cγ),
(2 + δ)(Cκ + Cγ)

1 + δ
, Cp

}
. (8.6.43)

This advances the induction hypothesis in t for k ≥ 2, and completes the proof of
Lemma 8.10.

Lemma 8.10 implies Proposition 8.7 when m = 1 and δ > −1.

8.6.2 Expected degree sequence beyond preferential attachment trees∗

In this section, we prove Proposition 8.7 for m > 1. We adapt the argument
in Section 8.6.1 above. There, we have been rather explicit in the derivation of the
recursion relation in (8.6.10), which in turn gives the explicit recursion relation on the
errors εk(t) in (8.6.22). In this section, we make the derivation more abstract, since
the explicit derivations become too involved when m > 1. The argument presented
in this section is rather flexible, and can, e.g., be extended to different preferential
attachment models.

We make use of the fact that we add precisely m edges in a preferential way to go
from PA(m,δ)

t to PA(m,δ)

t+1 . This process can be described in terms of certain operators.
For a sequence of numbers Q = (Qk)k≥1, we define the operator Tt+1 : RN 7→ RN by

(Tt+1Q)k =
(

1− k + δ′

t(2 + δ′) + (1 + δ′)

)
Qk +

k − 1 + δ′

t(2 + δ′) + (1 + δ′)
Qk−1, (8.6.44)
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where we recall that δ′ = δ/m. Writing N̄(t) = (N̄k(t))k≥1 with N̄k(t) = E[Nk(t)]
denoting the expected number of vertices with degree k, we can rewrite (8.6.10) when
m = 1 (for which δ′ = δ) as

N̄k(t+ 1) = (Tt+1N̄(t))k + 1{k=1}

(
1− 1 + δ

t(2 + δ) + (1 + δ)

)
(8.6.45)

+ 1{k=2}
1 + δ

t(2 + δ) + (1 + δ)
.

Thus, as remarked above (8.6.7), the operator Tt+1 describes the effect to the sequence
N̄(t) = (N̄k(t))k≥1 of a single addition of the (t+1)st edge, apart from the degree of the
newly added vertex. The latter degree is equal to 1 with probability 1− 1+δ

t(2+δ)+(1+δ)
,

and equal to 2 with probability 1+δ
t(2+δ)+(1+δ)

. This explains the origin of each of the

terms appearing in (8.6.10).

In the case when m > 1, every vertex has m edges that are sequentially connected
in a preferential way. Therefore, we need to investigate the effect of attaching m edges
in sequel. Due to the fact that we update the degrees after attaching an edge, the
effect of attaching the (j+1)st edge is described by applying the operator Tj to N̄(j).
When we add the edges incident to the tth vertex, this corresponds to attaching the
edges m(t− 1) + 1, . . . ,mt in sequel with intermediate updating.

The effect on the degrees of vertices v(m)

1 , . . . , v(m)

t is described precisely by applying
first Tmt+1 to describe the effect of the addition of the first edge, followed by Tmt+2

to describe the effect of the addition of the second edge, etc. After attaching the
m edges, we further inspect the degree of the newly added vertex. Therefore, the
recurrence relation of the expected number of vertices with degree k in (8.6.45) is
changed to

N̄k(t+ 1) = (T (m)

t+1N̄(t))k + αk(t), (8.6.46)

where
T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.6.47)

denotes the m-fold application of successive Tj’s, and where, for k = m, . . . , 2m, αk(t)
is the probability that the degree of the (t + 1)st added vertex is precisely equal to
k.

When t grows large, the probability distribution k 7→ αk(t) is such that αm(t)
is very close to 1, while αk(t) is close to zero when k > m. Indeed, for k > m, in
contributions to αm(t), at least one of the m edges should be connected to vertex
t+ 1, so that

2m∑
k=m+1

αk(t) ≤
m2(1 + δ′)

mt(2 + δ′) + (1 + δ′)
. (8.6.48)

We define
γk(t) = αk(t)− 1{k=m}, (8.6.49)

then we obtain from (8.6.48) that there exists a constant Cγ = Cγ(δ,m) such that,
for all k > m,

|γk(t)| ≤
Cγ
t+ 1

. (8.6.50)
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For k = m, the same bound follows since
∑

k≥m αm(t) = 1, so that |αm(t) − 1| =∑
k>m αk(t). The bound in (8.6.50) replaces the bound on |γk(t)| for m = 1 in (8.6.29).

Denote the operator S(m) on sequences of numbers Q = (Qk)k≥1 by

(S(m)Q)k = m
k − 1 + δ

2m+ δ
Qk−1 −m

k + δ

2m+ δ
Qk. (8.6.51)

Then, for m = 1, we have that (8.6.11) is equivalent to

pk = (S(1)p)k + 1{k=1}. (8.6.52)

For m > 1, we replace the above recursion on p by pk = 0 for k < m and, for k ≥ m,

pk = (S(m)p)k + 1{k=m}. (8.6.53)

Again, we can explicitly solve for p = (pk)k≥0. The solution is given in the following
lemma:

Lemma 8.11 (Solution recursion for m > 1). Fix δ > −1 and m ≥ 1. Then, the
solution to (8.6.53) is given by (8.4.2).

Proof. We start by noting that pk = 0 for k < m, and identify pm using the recursion
for k = m

pm = −m m+ δ

2m+ δ
pm + 1, (8.6.54)

so that

pm =
2m+ δ

m(m+ δ) + 2m+ δ
=

2 + δ
m

(m+ δ) + 2 + δ
m

. (8.6.55)

For k > m, the recursion relation in (8.6.53) becomes

pk =
m(k − 1 + δ)

m(k + δ) + 2m+ δ
pk−1 =

k − 1 + δ

k + δ + 2 + δ
m

pk−1. (8.6.56)

As a result, again repeatedly using (8.3.2),

pk =
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
pm

=
Γ(k + δ)Γ(m+ 3 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)

(2 + δ
m

)

(m+ δ + 2 + δ
m

)

= (2 +
δ

m
)
Γ(k + δ)Γ(m+ 2 + δ + δ

m
)

Γ(m+ δ)Γ(k + 3 + δ + δ
m

)
. (8.6.57)

This is the same as (8.4.2), as required.
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Similarly to (8.6.19), we can rewrite (8.6.53) as

(t+ 1)pk = tpk + pk = tpk + (S(m)p)k + 1{k=m}

= (T (m)

t+1tp)k + 1{k=m} − κk(t), (8.6.58)

where, writing I for the identity operator,

κk(t) = −
([
S(m) + t(I − T (m)

t+1)
]
p
)
k
. (8.6.59)

While (8.6.59) is not very explicit, it can be effectively used to bound κk(t) in a
similar way as in (8.6.29):

Lemma 8.12 (A bound on κk(t)). Fix δ ≥ −1 and m ≥ 1. Then there exists a
constant Cκ = Cκ(δ,m) such that

|κk(t)| ≤
Cκ
t+ 1

. (8.6.60)

Proof. We start with

T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1 =
(
I + (Tm(t+1) − I)

)
◦ · · · ◦

(
I + (Tmt+1 − I)

)
. (8.6.61)

By (8.6.44),

(
(Tt+1 − I)Q)k = − k + δ

t(2 + δ′) + (1 + δ′)
Qk +

k − 1 + δ

t(2 + δ′) + (1 + δ′)
Qk−1. (8.6.62)

When supk k|Qk| ≤ K, there exists a constant CT such that

sup
k

∣∣∣((Tt+1 − I)Q)k

∣∣∣ ≤ CT

t+ 1
. (8.6.63)

Moreover, when supk k
2|Qk| ≤ K, there exists a constant C = CK such that, when

u, v ≥ t,

sup
k

∣∣((Tu+1 − I) ◦ (Tv+1 − I)Q)k
∣∣ ≤ CK

(t+ 1)2
. (8.6.64)

We expand out the brackets in (8.6.61), and note that, by (8.6.64) and since the
operators Tu are contractions, the terms where we have at least two factors Tu − I
lead to error terms. More precisely, we rewrite

(T (m)

t+1Q)k = Qk +
m∑
a=1

(
(Tmt+a − I)Q

)
k

+ Ek(t, Q), (8.6.65)

where, uniformly in k and Q for which supk k
2|Qk| ≤ K,

|Ek(t, Q)| ≤ CK

(t+ 1)2
. (8.6.66)
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As a result, (
(I − T (m)

t+1)Q)k = −
m∑
a=1

(
(Tmt+a − I)Q

)
k
− Ek(t, Q). (8.6.67)

Furthermore, for every a = 1, . . . ,m,(
(Tmt+a − I)Q

)
k

=
1

mt
(S(m)Q)k + Fk,a(t, Q), (8.6.68)

where, uniformly in k, Q for which supk k|Qk| ≤ K and a = 1, . . . ,m,

|Fk,a(t, Q)| ≤ C ′K
(t+ 1)2

. (8.6.69)

Therefore also
m∑
a=1

(
(Tmt+a − I)Q

)
k

=
1

t
(S(m)Q)k + Fk(t, Q), (8.6.70)

where

Fk(t, Q) =
m∑
a=1

Fk,a(t, Q). (8.6.71)

We summarize from (8.6.67) and (8.6.70) that(
[S(m) + t(I − T (m)

t+1)]Q
)
k

= −tFk(t, Q)− tEk(t, Q), (8.6.72)

so that

κk(t) = −
(
[S(m) + t(I − T (m)

t+1)]p
)
k

= tFk(t, p) + tEk(t, p). (8.6.73)

By (8.4.11) and (8.4.12), p satisfies that there exists a K > 0 such that

sup
k
k2pk ≤ K, (8.6.74)

so that

‖κ(t)‖∞ = sup
k

∣∣∣([S(m) + t(I − T (m)

t+1)p]
)
k

∣∣∣ ≤ sup
k
t
(
|Ek(t, p)|+ |Fk(t, p)|

)
≤ t(CK + C ′K)

(t+ 1)2
≤ CK + C ′K

t+ 1
. (8.6.75)

We continue with the proof of Proposition 8.7 for m > 1 by investigating N̄k(t)−
tpk. We define, for k ≥ m,

εk(t) = N̄k(t)− tpk. (8.6.76)

Subtracting (8.6.58) from (8.6.46) and writing ε(t) = (εk(t))k≥1 leads to

εk(t+ 1) = (T (m)

t+1ε(t))k + κk(t) + γk(t). (8.6.77)
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To study the recurrence relation (8.6.77) in more detail, we investigate the properties
of the operator T (m)

t . We let Q = (Qk)k≥1 be a sequence of real numbers, and we let
Q = R∞ denote the set of all such sequences. For Q ∈ Q, we define the supremum-
norm to be

‖Q‖∞ =
∞

sup
k=1
|Qk|. (8.6.78)

Thus, in functional analytic terms, we consider the `∞ norm on Q = R∞.

Furthermore, we let Qm(t) ⊆ Q be the subset of sequences for which Qk = 0 for
k > m(t+ 1), i.e.,

Qm(t) = {Q ∈ Q : Qk = 0 ∀k > m(t+ 1)}. (8.6.79)

Clearly, N̄(t) ∈ Qm(t). We regard T (m)

t+1 in (8.6.47) as an operator on Q. We now
show that T (m)

t+1 acts as a contraction on elements of Qm(t).

Lemma 8.13 (A contraction property). Fix δ ≥ −1 and m ≥ 1. Then T (m)

t+1 maps
Qm(t) into Qm(t+ 1) and, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞. (8.6.80)

Proof. We recall that
T (m)

t+1 = Tm(t+1) ◦ · · · ◦ Tmt+1, (8.6.81)

Thus, the fact that T (m)

t+1 maps Qm(t) into Qm(t + 1) follows from the fact that Tt+1

maps Q1(t) into Q1(t+ 1). This proves the first claim in Lemma 8.13.

To prove that the contraction property of T (m)

t+1 in (8.6.80) holds, we first prove
that, for all Q ∈ Q1(mt+ a− 1), a = 1, . . . ,m, δ > −m and δ′ = δ/m > −1,

‖Tmt+aQ‖∞ ≤
(

1− 1

t(2 + δ′) + (1 + δ′)

)
‖Q‖∞. (8.6.82)

For this, we recall from (8.6.44) that

(Tmt+aQ)k =
(

1− k + δ′

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
Qk (8.6.83)

+
k − 1 + δ′

(mt+ a− 1)(2 + δ′) + (1 + δ′)
Qk−1.

When Q ∈ Q1(mt+ a− 1), then, for all k for which Qk 6= 0,

1− k + δ′

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1], (8.6.84)

and, for k ≥ 2, also

k − 1 + δ′

(mt+ a− 1)(2 + δ′) + (1 + δ′)
∈ [0, 1]. (8.6.85)
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As a consequence,

‖Tmt+aQ‖∞ ≤ sup
k

[(
1− k + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞

+
k − 1 + δ

(mt+ a− 1)(2 + δ′) + (1 + δ′)
‖Q‖∞

]
=
(

1− 1

(mt+ a− 1)(2 + δ′) + (1 + δ′)

)
‖Q‖∞. (8.6.86)

Now, by (8.6.86), the application of Tmt+a to an element Q of Q1(mt+a− 1) reduces
its norm. By (8.6.81), we therefore conclude that, for every Q ∈ Qm(t),

‖T (m)

t+1Q‖∞ ≤ ‖Tmt+1Q‖∞ ≤
(

1− 1

mt(2 + δ′) + (1 + δ′)

)
‖Q‖∞

=
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖Q‖∞, (8.6.87)

since δ′ = δ/m. This completes the proof of Lemma 8.13.

Lemmas 8.12 and 8.13, as well as (8.6.50), allow us to complete the proof of Propo-
sition 8.7:

Proof of Proposition 8.7. We start with the recurrence relation in (8.6.77). We define
the truncated sequence ε′(t) = (ε′k(t))k≥1 by

ε′k(t) = εk(t)1{k≤m(t+1)}. (8.6.88)

Then, by construction, ε′(t) ∈ Qm(t). Therefore, by Lemma 8.13,

‖ε(t+ 1)‖∞ ≤ ‖T (m)

t+1ε
′(t)‖∞ + ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞

≤
(

1− 1

(2m+ δ) + (m+ δ)

)
‖ε′(t)‖∞

+ ‖ε′(t+ 1)− ε(t+ 1)‖∞ + ‖κ(t)‖∞ + ‖γ(t)‖∞. (8.6.89)

Equation (8.6.50) and Lemma 8.12, respectively, imply that

‖γ(t)‖∞ ≤
Cγ
t+ 1

and ‖κ(t)‖∞ ≤
Cκ
t+ 1

. (8.6.90)

It is not hard to see that

‖ε′(t+ 1)− ε(t+ 1)‖∞ ≤ Cε′(t+ 1)−(τ−1), (8.6.91)

where τ > 2 is defined in (8.4.12). See (8.6.41)–(8.6.42) for the analogous proof for
m = 1.

Therefore,

‖ε(t+ 1)‖∞ ≤
(

1− 1

t(2m+ δ) + (m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 2
. (8.6.92)
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Using further that, for m ≥ 1 and δ > −m,

t(2m+ δ) + (m+ δ) ≤ (2m+ δ)(t+ 1) (8.6.93)

we arrive at

‖ε(t+ 1)‖∞ ≤
(

1− 1

(t+ 1)(2m+ δ)

)
‖ε(t)‖∞ +

(Cγ + Cκ + Cε′)

t+ 1
. (8.6.94)

Now we can advance the induction hypothesis

‖ε(t)‖∞ ≤ C. (8.6.95)

For some C > 0 sufficiently large, this statement trivially holds for t = 1. To advance
it, we use (8.6.94), to see that

‖ε(t+ 1)‖∞ ≤
(

1− 1

(2m+ δ)(t+ 1)

)
C +

(Cγ + Cκ + Cε′)

t+ 1
≤ C, (8.6.96)

whenever
C ≥ (2m+ δ)(Cγ + Cκ + Cε′). (8.6.97)

This advances the induction hypothesis, and completes the proof that the inequality
‖ε(t)‖∞ = supk≥0 |N̄k(t)− pkt| ≤ C holds for all m ≥ 2.

8.7 Maximal degree in preferential attachment models

In this section, we shall investigate the maximal degree and the clustering of the
graph PA(m,δ)

t . In order to state the results on the maximal degree, we denote

Mt = max
i∈[t]

Di(t). (8.7.1)

The main result on the maximal degree is the following theorem:

Theorem 8.14 (Maximal degree of PA(m,δ)

t ). Fix m ≥ 1 and δ > −m. Then, there
exists a random variable µ with with P(µ = 0) = 0 such that

Mtt
−1/(2+δ/m) a.s.−→ µ. (8.7.2)

By Theorem 8.3 and (8.4.11), PA(m,δ)

t has a power-law asymptotic degree sequence
with power-law exponent τ = 3 + δ/m. The maximum of t i.i.d. random variables
with such a power-law distribution is of the order t1/(τ−1) = t1/(2+δ/m). Thus, Theorem
8.14 shows that the maximal degree is of the same order of magnitude.

The proof of Theorem 8.14 further reveals that µ = supi≥1 ξi, where ξi is the a.s.

limit of Di(t)t
−1/(2+δ/m) as identified in Theorem 8.2. The proof reveals much more,

and, for example, allows us to compute moments of the a.s. limits of Di(t)t
−1/(2+δ/m).

In turn, this for example allows us to show that P(ξi = 0) = 0 for every i ≥ 1.
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We now start with the proof of Theorem 8.14. We fix m = 1 for the time being,
and extend the results to m ≥ 2 at the end of this section. Let Xj(t) = Dj(t) + δ
be the weight of vertex j at time t, let ∆j(t) = Xj(t + 1)−Xj(t). If j ≤ t, then the
conditional probability that ∆j(t) = 1, given PA(1,δ)

t , is equal to

P
(
∆j(t) = 1|PA(1,δ)

t

)
= Xj(t)/n(t), (8.7.3)

where n(t) = (2 + δ)t + 1 + δ is the total weight of all the vertices at time t. From
this, we get

E
(
Xj(t+ 1)|PA(1,δ)

t

)
= Xj(t)

(
1 +

1

n(t)

)
, (8.7.4)

so that (ctXj(t))t≥1 is a martingale with respect to (PA(1,δ)

t )t≥1 if and only if ct+1/ct =
n(t)/(n(t) + 1).

Anticipating the definition of a larger collection of martingales, we let

ck(t) =
Γ(t+ 1+δ

2+δ
)

Γ(t+ k+1+δ
2+δ

)
, t, k ≥ 1. (8.7.5)

For fixed k ≥ 0, by (8.3.9),

ck(t) = t−k/(2+δ)(1 + o(1)) as t→∞. (8.7.6)

By the recursion Γ(r) = (r − 1)Γ(r − 1),

ck(t+ 1)

ck(t)
=

t+ 1+δ
2+δ

t+ k+1+δ
2+δ

=
n(t)

n(t) + k
. (8.7.7)

In particular, it follows that c1(t)Xj(t) is a martingale for t ≥ j. Being a positive
martingale it will converge a.s. to a random variable ξj, as discussed in full detail in
Theorem 8.2 and its proof. We now extend this line of arguments considerably, by
studying various joint distributions of degrees.

To study the joint distribution of the Xj(t) we make use of a whole class of
martingales. We first introduce some notation. For a, b > −1 with a− b > −1, where
a, b are not necessarily integers, we write(

a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)
. (8.7.8)

The restriction on a, b is such that the arguments of the Gamma-function are all
strictly positive, which makes the Gamma-function well defined. Then the following
proposition identifies a whole class of useful martingales related to the degrees of the
vertices:

Proposition 8.15 (A rich class of degree martingales). Let r ≥ 0 be an integer,
k1, k2, . . . , kr > −max{1, 1 + δ}, and 1 ≤ j1 < . . . < jr be integers. Then, with
k =

∑r
i=1 ki,

Z~j,~k(t) = ck(t)
r∏
i=1

(
Xji(t) + ki − 1

ki

)
(8.7.9)

is a martingale for t ≥ max{jr, 1}.
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The restriction ki > −max{1, 1 + δ} is to satisfy the restrictions a, b, a− b > −1
in (8.7.8), since Xj(t) ≥ 1 + δ. Since δ > −1, this means that Proposition 8.15 also
holds for certain ki < 0, a fact that we will make convenient use of later on.

Proof. By considering the two cases ∆j(t) = 0 or ∆j(t) = 1, and using (8.7.8) and
Γ(r) = (r − 1)Γ(r − 1), it is easy to check that, for all k,(

Xj(t+ 1) + k − 1

k

)
=

(
Xj(t) + k − 1

k

)
Γ(Xj(t+ 1) + k)

Γ(Xj(t) + k)

Γ(Xj(t))

Γ(Xj(t+ 1))

=

(
Xj(t) + k − 1

k

)(
1 +

k∆j(t)

Xj(t)

)
. (8.7.10)

Since m = 1, at most one Xj(t) can change at time t+ 1, so that

r∏
i=1

(
1 +

ki∆ji(t)

Xji(t)

)
= 1 +

r∑
i=1

ki∆ji(t)

Xji(t)
. (8.7.11)

Together, (8.7.10) and (8.7.11) imply that

r∏
i=1

(
Xji(t+ 1) + ki − 1

ki

)
=

(
1 +

r∑
i=1

ki∆ji(t)

Xji(t)

)
r∏
i=1

(
Xji(t) + ki − 1

ki

)
. (8.7.12)

Since P
(
∆j(t) = 1 | PA(1,δ)

t

)
= Xj(t)/n(t), using the definition of Z~j,~k(t) and taking

expected value,

E
(
Z~j,~k(t+ 1) | PA(1,δ)

t

)
= Z~j,~k(t) ·

ck(t+ 1)

ck(t)

(
1 +

∑r
i=1 ki
n(t)

)
= Z~j,~k(t), (8.7.13)

where k =
∑r

i=1 ki and the last equality follows from (8.7.7).

Being a non-negative martingale, Z~j,~k(t) converges by the Martingale Convergence
Theorem (Theorem 2.24). From the form of the martingale, the convergence result
for the factors, and the asymptotics for the normalizing constants in (8.7.6), the
limit must be

∏r
i=1 ξ

ki
i /Γ(ki + 1), where we recall that ξi is the almost sure limit of

Di(t)t
−1/(2+δ) from Theorem 8.2. Here we make use of the fact that Di(t)

a.s.−→∞ (see
Exercise 8.8), together with (8.3.9), which implies that(

Xj(t) + k − 1

k

)
=

Xj(t)
k

Γ(k + 1)
(1 +O(1/Xj(t))). (8.7.14)

Our next step is to check that the martingale converges in L2. We use the L2-
Martingale Convergence Theorem (Theorem 2.25), for which we rely on the following
L2-boundedness result:

Lemma 8.16 (L2-boundedness). For m = 1 and δ > −1. For all r ∈ N, for all j ≥ 1
integer and k ∈ R with k ≥ −max{1, 1 + δ}/2, there exists a constant K = Kr,k,~j

such that
E
[
Z~j,~k(t)

2
]
≤ K. (8.7.15)
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Proof. We begin by observing that (8.7.6) implies cm(t)2/c2m(t)→ 1 and(
x+ k − 1

k

)2

=

(
Γ(x+ k)

Γ(x)Γ(k + 1)

)2

=
Γ(x+ k)

Γ(x)

Γ(x+ k)

Γ(x)Γ(k + 1)2
. (8.7.16)

Now we use that x 7→ Γ(x+k)/Γ(x) is increasing for k ≥ 0, to obtain Γ(x+k)/Γ(x) ≤
Γ(x+ 2k)/Γ(x+ k). Substitution yields that(

x+ k − 1

k

)2

≤ Γ(x+ 2k)

Γ(x+ k)

Γ(x+ k)

Γ(x)Γ(k + 1)2
=

(
x+ 2k − 1

2k

)
·
(

2k

k

)
. (8.7.17)

From this it follows that
Z~j,~k(t)

2 ≤ C~kZ~j,2~k(t), (8.7.18)

where

C~k =
r∏
i=1

(
2ki
ki

)
. (8.7.19)

Note that k ≥ −max{1, 1 + δ}/2, so that 2k ≥ −max{1, 1 + δ}. By Proposition
8.15, Z~j,2~k(t) is a martingale with a finite expectation that is independent of t. This
completes the proof.

By Lemma 8.16, Z~j,~k(t) is an L2−bounded martingale, and hence converges in L2,

and thus also in L1. Taking r = 1 we have, for all j ≥ 1 integer and k ∈ R with
k ≥ −max{1, 1 + δ}/2,

E[ξkj /Γ(k + 1)] = lim
t→∞

E[Zj,k(t)] = E[Zj,k(j)] = ck(j − 1)

(
k + δ

k

)
. (8.7.20)

Recalling that ck(j − 1) =
Γ(j− 1

2+δ
)

Γ(j+ k−1
2+δ

)
, we thus arrive at the fact that, for all j non-

negative integers, and all k non-negative,

E[ξkj ] =
Γ(j − 1

2+δ
)

Γ(j + k−1
2+δ

)

Γ(k + 1 + δ)

Γ(1 + δ)
. (8.7.21)

The above moments identify the distribution, see Exercises 8.23 and 8.24.

We next showing that P(ξj = 0) = 0 for all j ≥ 1:

Lemma 8.17 (No atom at zero for ξj). Fix m = 1 and δ > −1. Then, P(ξj = 0) = 0
for all j ≥ 1.

Proof. We use (8.3.9) and (8.7.14), which imply that for k > −max{1, 1 + δ} and
some constant Ak <∞,

lim sup
t→∞

E
[( Xj(t)

t1/(2+δ)

)k]
≤ Ak lim sup

t→∞
E[Zj,k(t)] <∞. (8.7.22)

Since δ > −1, we have −1 − δ < 0, so that a negative moment of Xj(t)/t
1/(2+δ)

remains uniformly bounded. We use that Xj(t)/t
1/(2+δ) a.s.−→ ξj, which implies that
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Xj(t)/t
1/(2+δ) d−→ ξj, so that, using the Markov inequality (Theorem 2.17), for every

ε > 0 and k ∈ (−max{1, 1 + δ}, 0),

P(ξj ≤ ε) = lim sup
t→∞

P
(
Xj(t)/t

1/(2+δ) ≤ ε
)

(8.7.23)

≤ lim sup
t→∞

ε|k|E
[( Xj(t)

t1/(2+δ)

)k]
= O(ε|k|).

Letting ε ↓ 0, we obtain that P(ξj = 0) = 0 for every j ≥ 1.

With the above results in hand, we are now ready to complete the proof of Theorem
8.14:

Proof of Theorem 8.14. We start by proving Theorem 8.14 for m = 1. Let Mt denote
the maximal degree in our random graph after t steps, and, for t ≥ j, let

Mj(t) = max
1≤i≤j

Zi,1(t). (8.7.24)

Note that Mt(t) = c1(t)(Mt + δ). We will prove that Mt(t)
a.s.−→ supj≥1 ξj. Being

a maximum of martingales, (Mt(t))t≥1 is a non-negative submartingale. Therefore,

Mt(t)
a.s.−→ µ for some limiting random variable µ, and we are left to prove that

µ = supj≥1 ξj.
Since Zj,1(t)k is a submartingale for every k ≥ 1, t 7→ E[Zj,1(t)k] is non-decreasing.

Further, by the L2-Martingale Convergence Theorem (Theorem 2.25) and the bound
in (8.7.22), Zj,1(t)k converges in L2 to ξkj , so that

E[Zj,1(t)k] ≤ E[ξkj ]. (8.7.25)

Then, using the trivial inequality

Mt(t)
k = max

1≤j≤t
Zj,1(t)k ≤

t∑
j=1

Zj,1(t)k, (8.7.26)

and (8.7.25), we obtain

E[Mt(t)
k] ≤

t∑
j=1

E[Zj,1(t)k] ≤
∞∑
j=1

E[ξkj ] = Γ(k + 1)

(
k + δ

k

) ∞∑
j=1

ck(j), (8.7.27)

which is finite by (8.7.6) if k > 2 + δ. Thus Mt(t) is bounded in Lk for every integer
k > 2 + δ, and hence bounded and convergent in Lp for any p ≥ 1.

We conclude that in order to prove that µ = supj≥0 ξj, we are left to show that
Mt(t) converges to supj≥0 ξj in Lk for some k.

Let k > 2 + δ be fixed. Then, by a similar inequality as in (8.7.26),

E
[
(Mt(t)−Mj(t))

k
]
≤

t∑
i=j+1

E[Zi,1(t)k] (8.7.28)
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Since Mj(t) is a finite maximum of martingales, it is a non-negative submartingale.

Since each Mj(t)
a.s.−→ ξj, and the convergence also holds in Lk for any k > 2 + δ,

also max1≤i≤jMj(t)
a.s.−→ max1≤i≤j ξi = µj, Therefore, the limit of the left-hand side

of (8.7.28) is

E
[ (

lim
t→∞

t−1/(2+δ)Mt − µj
)k ]

, (8.7.29)

while the right-hand side of (8.7.28) increases to (compare to (8.7.25))

∞∑
i=j+1

E[ξki ] = k!

(
k + δ

k

) ∞∑
i=j+1

ck(i), (8.7.30)

which is small if j is large by (8.7.6). Since t−1/(2+δ)Mt
a.s.−→ µ, we obtain

lim
j→∞

E
[

(µ− µj)k
]

= 0. (8.7.31)

Hence t−1/(2+δ)Mt
a.s.−→ supj≥1 ξj as claimed.

We next extend the argument tom ≥ 2. By Exercise 8.13, Di(t)(mt)
−1/(2+δ/m) a.s.−→

ξ′i, where

ξ′i =
mi∑

j=(i−1)m+1

ξj, (8.7.32)

and ξj is the almost sure limit of Dj(t) in (PA(1,δ/m)

t )t≥1. This implies that Mt
a.s.−→

µ = supj≥1 ξ
′
j. We omit the details.

We next show that P(µ = 0) = 0. For m = 1 and by Lemma 8.17, P(ξ1 = 0) = 0,
and we conclude that P(µ = 0) = P(sup∞j=1 ξj = 0) ≤ P(ξ1 = 0) = 0. Since ξ′1 ≥ ξ1,
this also holds for m ≥ 2.

8.8 Related results for preferential attachment models

In this section, we collect some related result on preferential attachment models.

The limit law of the maximal degree. There are more precise results concerning
the maximal degrees in preferential attachment models, particularly about the precise
limiting distribution in Theorem 8.14. Fix m ≥ 1 and δ = 0. Let (Xi)i≥1 be the
points of a Poisson process on [0,∞) with rate m, so, setting X0 = 0, the variables
Xi −Xi−1 are i.i.d. exponentials with mean 1/m. Let Yi =

√
Xmi and let µ = µm =

maxi≥1(Yi − Yi−1). (It can be seen that this maximum exists with probability one.)

Then, Bollobás and Riordan [57] prove that maxiDi(t)/(2m
√
t)

d−→ µ.
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Second degrees. Fix m = 1 and δ = 0. We define the second degree of vertex i at
time t by

D(2)

i (t) = #{kl : k, l 6= i, ik, kl ∈ PA(1,0)

t }, (8.8.1)

i.e., D(2)

i (t) is the number of vertices at graph distance 2 away from i. We let N (2)

d (t)
denote the number of vertices i with D(2)

i (t) = d. Then, Ostroumova and Grechnikov
[224] prove that

E[N (2)

d (t)] =
4t

d2

[
1 +O((log d)2/d) +O(d2/n)

]
, (8.8.2)

and there exists a sequence bt = o(t) such that

P
(∣∣N (2)

d (t)− E[N (2)

d (t)]
∣∣ ≥ bt/d

2
)

= o(1). (8.8.3)

It would be of interest to obtain an exact expression for limt→∞ E[N (2)

d (t)]/t in the
general case where m ≥ 1 and δ > −m.

Assortativity coefficient of the PAM. Computations as the ones leading to the
above also allow one to identify the assortativity coefficient of the PAM. We start
with some notation. Let G = (V,E) be an undirected random graph. For a directed
edge e = (u, v), we write e = u, e = v and we denote the set of directed edges in E
by E ′ (so that |E ′| = 2|E|), and Dv is the degree of vertex v ∈ V . The assortativity
coefficient of G is defined by Newman [213, (4)] as

ρ(G) =

1
|E′|
∑

(u,v)∈E′ DuDv −
(

1
|E′|
∑

(u,v)∈E′
1
2
(Du +Dv)

)2

1
|E′|
∑

(u,v)∈E′
1
2
(D2

u +D2
v)−

(
1
|E′|
∑

(u,v)∈E′
1
2
(Du +Dv)

)2 , (8.8.4)

so that the assortativity coefficient in (8.8.4) is equal to the sample correlation coeffi-
cient of the sequence of variables ((Du, Dv))(u,v)∈E′ . Then, one can explicitly compute
that

ρ(PA(m,δ)

t )
P−→
{

0 if δ ≤ m,

ρ if δ > m,
(8.8.5)

where, abbreviating a = δ/m,

ρ =
(m− 1)(a− 1)[2(1 +m) + a(1 + 3m)]

(1 +m)[2(1 +m) + a(5 + 7m) + a2(1 + 7m)].
(8.8.6)

Peculiarly, the degrees across edges are always uncorrelated when m = 1, i.e., for
preferential attachment trees. The fact that ρ(PA(m,δ)

t )
P−→ 0 for δ ∈ (−m,m) is an

example of a general feature, explored in more detail in [192, 148], that the assorta-
tivity coefficient often converges to zero when the graph sequence has third moment
degrees that converge to infinity.

The proof of (8.8.5)–(8.8.6) relies on a more general result about the convergence
of the local topology of PA(m,δ)

t . Indeed, let Nk,l(t) denote the number of oriented
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edges (u, v) for which Du(t) = k,Dv(t) = l. Then, there exists a limiting (joint)
probability mass function q = (qk,l) such that, for every k, l ≥ m,

Nk,l(t)/(2mt)
P−→ qk,l. (8.8.7)

Note that
∑

l qk,l = kpk/(2m), and
∑

lNk,l(t) = kNk(t). The limiting law can be
identified as

qk,l = 1
2
(pk,l + pl,k), (8.8.8)

where (pk,l)k,l≥1 is the limiting distribution of (DU1
(t), DU2

(t)), where U1 ∈ [t] is a
uniform vertex in [t], while U2 is one of the m vertices to which U1 attached one of
its m edges, chosen uniformly at random among them. For k ≥ m and l ≥ m+ 1, pk,l
can be identified as (with b = 2m+ δ)

pk,l = (2 + δ/m)(3 + δ/m)
Γ(j + b+ 2)

Γ(j + 1)Γ(b+ 1)

Γ(k + b)

Γ(k + 1)Γ(b)
(8.8.9)

×
∫ 1

0

(1− v)j−mvb+2+δ/m

∫ 1

v

(1− u)k−m−1ubdudv.

The above result follows from a detailed description of local neighborhoods in PA(m,δ)

t

that relies on de Finetti’s theorem and Pólya urn schemes that we describe in more
detail in [II, Chapter 6].

8.9 Related preferential attachment models

There are numerous related preferential attachment models in the literature. Here
we discuss a few of them:

A directed preferential attachment model. Boolobás, Borgs, Chayes and Ri-
ordan [55] investigate a directed preferential attachment model and prove that the
degrees obey a power law similar to the one in Theorem 8.3. We first describe the
model. Let G0 be any fixed initial directed graph with t0 edges, where t0 is some
arbitrary positive integer.

We next define G(t). Fix some non-negative parameters α, β, γ, δin and δout, where
α + β + γ = 1. We say that we choose a vertex according to fi(t) when we choose
vertex i with probability

fi(t)∑
j fj(t)

. (8.9.1)

Thus, the probability that we choose a vertex i is proportional to the value of the
function fi(t). Also, we denote the in-degree of vertex i in G(t) by D(in)

i (t), and the
out-degree of vertex i in G(t) by D(out)

i (t).
We let G(t0) = G0, where t0 is chosen appropriately, as we will indicate below.

For t ≥ t0, we form G(t+ 1) from G(t) according to the following growth rules:

(A) With probability α, we add a new vertex v together with an edge from v to an
existing vertex which is chosen according to D(in)

i (t) + δin.



8.9 Related preferential attachment models 293

(B) With probability β, we add an edge between the existing vertices v and w,
where v and w are chosen independently, v according to D(in)

i (t) + δin and w
according to D(out)

i (t) + δout.

(C) With probability γ, we add a vertex w and an edge from an existing vertex v
to w according to D(out)

i (t) + δout.

The above growth rule produces a graph process (G(t))t≥t0 where G(t) has pre-
cisely t edges. The number of vertices in G(t) is denoted by T (t), where T (t) ∼
Bin(t, α + γ).

It is not hard to see that if αδin + γ = 0, then all vertices outside of G0 have
in-degree zero, while if γ = 1 all vertices outside of G0 have in-degree one. Similar
trivial graph processes arise when γδout + α = 0 or α = 1.

We exclude the above cases. Then, in [55] it is shown that both the in-degree and
the out-degree of the graph converge, in the sense that we will explain now. Denote
by (Xk(t))k≥0 the in-degree sequence of G(t), so that

Xk(t) =
∑
v∈G(t)

1{D(in)
v =k}, (8.9.2)

and, similarly, let (Yk(t))k≥0 be the out-degree sequence of G(t), so that

Yk(t) =
∑
v∈G(t)

1{D(out)
v =k}. (8.9.3)

Denote

τin = 1 +
1 + δin(α + β)

α + β
, τout = 1 +

1 + δout(γ + β)

γ + β
. (8.9.4)

Then [55, Theorem 3.1] shows that there exist probability distributions p = (pk)k≥0

and q = (qk)k≥0 such that

Xk(t)− pkt = oP(t), Yk(t)− qkt = oP(t), (8.9.5)

where, for k →∞,

pk = Cink
−τin(1 + o(1)), qk = Coutk

−τout(1 + o(1)). (8.9.6)

In fact, the probability distributions p and q are determined explicitly, as in (8.4.2)
above, and p and q have a similar shape as p in (8.4.2). Also, since δin, δout ≥ 0, and
α + β, γ + β ≤ 1, we again have that τin, τout ∈ (2,∞).

A general preferential attachment model. A quite general version of prefer-
ential attachment models is presented by Cooper and Frieze in [88]. In this paper,
an undirected graph process is defined. At time 0, there is a single initial vertex v0.
Then, to go from G(t) to G(t+ 1), either a new vertex can be added or a number of
edges between existing vertices. The first case is called NEW, the second OLD. With
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probability α, we choose to apply the procedure OLD, and with probability 1− α we
apply the procedure NEW.

In the procedure NEW, we add a single vertex, and let f = (fi)i≥1 be such that fi
is the probability that the new vertex generates i edges. With probability β, the end
vertices of these edges are chosen uniformly among the vertices, and, with probability
1− β, the end vertices of the added edges are chosen proportionally to the degree.

In the procedure OLD, we choose a single old vertex. With probability δ, this
vertex is chosen uniformly, and with probability 1 − δ, it is chosen with probability
proportionally to the degree. We let g = (gi)i≥1 be such that gi is the probability
that the old vertex generates i edges. With probability γ, the end vertices of these
edges are chosen uniformly among the vertices, and, with probability 1− γ, the end
vertices of the added edges are chosen proportionally to the degree.

The main result in [88] states that the empirical degree distribution converges to
a probability distribution which obeys a power law with a certain exponent τ that
depends on the parameters of the model. More precisely, a result such as in Theorem
8.3 is proved, at least for k ≤ t1/21. Also, a version of Proposition 8.7 is proved, where
the error term E[Nk(t)]− tpk is proved to be at most Mt1/2 log t. For this result, some
technical conditions need to be made on the first moment of f , as well as on the
distribution g. The result is nice, because it is quite general. The precise bounds are
a bit weaker than the ones presented here.

Interestingly, also the maximal degree is investigated, and it is shown that the
maximal degree is of order ΘP(t

1/(τ−1)) as one would expect. This result is proved
as long as τ < 3. 2 Finally, results close to those that we present here are given in
[4]. In fact, the error bound in Proposition 8.7 is proved there for m = 1 for several
models. The result for m > 1 is, however, not contained there.

Non-linear preferential attachment. There is also work on preferential attach-
ment models where the probability of connecting to a vertex with degree k depends
in a non-linear way on k. In [181], the attachment probabilities have been chosen
proportional to kγ for some γ. The linear case was non-rigorously investigated in
[180], and the cases where γ 6= 1 in [181]. As one can expect, the results depend
dramatically in the choice of γ. When γ < 1, the degree sequence is predicted to
have a power law with a certain stretched exponential cut-off. Indeed, the number of
vertices with degree k at time t is predicted to be roughly equal to tαk, where

αk =
µ

kγ

k∏
j=1

1

1 + µ
jγ

, (8.9.7)

and where µ satisfies the implicit equation that
∑

k αk = 1. When γ > 1, Krapivsky
and Redner [180] predict that there is a single vertex that is connected to nearly all

2On [88, Page 318], it is mentioned that when the power law holds with power-law exponent τ ,
that this suggests that the maximal degree should grow like t1/τ . However, when the degrees are
independent and identically distributed with a power law exponent equal to τ , then the maximal
degree should grow like Θ(t1/(τ−1)), which is precisely what is proved in [88, Theorems 2 and 5].
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the other vertices. In more detail, when γ ∈ (1 + 1
m+1

, 1 + 1
m

), it is predicted that
there are only finitely many vertices that receive more than m+ 1 links, while there
are, asymptotically, infinitely many vertices that receive at least m links. This was
proved rigorously by Oliviera and Spencer [222].

Rudas, Tóth and Valko [238] study random trees with possibly non-linear prefer-
ential attachment by relating them to continuous-time branching processes and using
properties of such branching processes. Their analysis can be seen as a way to make
the heuristic in Section 1.7.2 precise. To explain their results, let f(k) be the weight
of a vertex of degree k. The function k 7→ f(k) will act as the preferential attachment
function. The random tree evolves, conditionally on the tree at time t, by attaching
the (t+ 1)st vertex to vertex i with probability proportional to f(Di(t)− 1). Let λ∗

be the solution, if it exists, of the equation

1 =
∞∑
n=1

n−1∏
i=0

f(i)

f(i) + λ
. (8.9.8)

Then, it is proved in [238] that the degree distribution converges to (pk)k≥0, where3

pk =
λ∗

f(k) + λ∗

k−1∏
i=0

f(i)

f(i) + λ∗
. (8.9.9)

For linear preferential attachment models where f(i) = i + 1 + δ, λ∗ = δ, so that
(8.9.9) reduces to (8.4.3) (see Exercise 8.27).

Interestingly, Rudas, Tóth and Valko [238] study not only the degree of a uniformly
chosen vertex, but also its neighborhood. We refrain from describing these results
here. These analyses are extended beyond the tree case by Bhamidi [41].

Preferential attachment with fitness. The models studied by Bianconi and
Barabási in [44, 45], and by Ergün and Rodgers in [120] include preferential attach-
ment models with random fitness. In general, in such models, the vertex vi which is
added at time i is given a random fitness (ζi, ηi). The later vertex vt at time t > i con-
nects to vertex vi with a conditional probability which is proportional to ζiDi(t) + ηi.
The variable ζi is called the multiplicative fitness, and ηi is the additive fitness. The
case of additive fitness only was introduced in [120], the case of multiplicative fitness
was introduced in [44, 45] and studied further by Borgs, Chayes, Daskalis and Roch
in [64]. Bhamidi [41] finds the exact degree distribution both for the additive and
multiplicative models.

Preferential attachment and power-law exponents in (1, 2). In all models,
and similarly to Theorem 8.3, the power-law exponents τ are limited to the range
(2,∞). It would be of interest to find simple examples where the power law exponent
can lie in the interval (1, 2). A possible solution to this is presented by Deijfen et

3The notion of degree used in [238] is slightly different since [238] makes use of the in-degree only.
For trees, the degree is the in-degree plus 1, which explains the apparent difference in our formula.
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al. in [94], where a preferential attachment model is presented in which a random
number of edges can be added which is, unlike in the work by Cooper and Frieze [88],
not bounded. In this case, when the number of edges obeys a power law, there is a
cross-over between a preferential attachment power law and the power law from the
edges, the one with the smallest exponent winning. Unfortunately, the case where
the weights have degrees with power-law exponent in (1, 2) is not entirely analyzed.
The conjecture in [94] in this case is partially proved by Bhamidi in [41, Theorem 40].

Universal techniques to study preferential attachment models. Bhamidi
[41] investigates various preferential attachment models using universal techniques
from continuous-time branching processes (see [10] and the works by Jagers and Ner-
man [154, 155, 210]) to prove powerful results for preferential attachment graphs.
Models that can be treated within this general methodology include fitness models
[44, 45, 120], competition-induced preferential attachment models [37, 38], linear pref-
erential attachment models as studied in this chapter, but also sublinear preferential
attachment models and preferential attachment models with a cut-off. Bhamidi is
able to prove results for (1) the degree distribution of the graph; (2) the maximal
degree; (3) the degree of the initial root; (4) the local neighborhoods of vertices; (5)
the height of various preferential attachment trees; and (6) properties of percolation
on the graph, where we erase the edges independently and with equal probability.

Preferential attachment models with conditionally independent edges. A
preferential attachment models with conditionally independent edges is investigated
by Mörters and Dereich in [96, 97, 98]. Fix a preferential attachment function f : N0 7→
(0,∞). Then, the graph evolves as follows. Start with G(1) being a graph containing
one vertex v1 and no edges. At each time t ≥ 2, we add a vertex vt. Conditionally
on G(t− 1), and independently for every i ∈ [t− 1], we connect this vertex to i by a
directed edge with probability

f(Di(t− 1))

t− 1
, (8.9.10)

where Di(t − 1) is the in-degree of vertex i at time t − 1. This creates the random
graph G(t). Note that the number of edges in the random graph process (G(t))t≥1 is
not fixed, and equal a random variable. In particular, it makes a difference whether
we use the in-degree in (8.9.10).

We consider functions f : N 7→ (0,∞) that satisfy that f(k + 1) − f(k) < 1 for
every k ≥ 0. Under this assumption and when f(0) ≤ 1, Mörters and Dereich show
that the empirical degree sequence converges as t→∞, i.e.,

Pk(t) ≡
1

t

∑
i∈[t]

1{Di(t)=k}
P−→ pk, where pk =

1

1 + f(k)

k−1∏
l=0

f(l)

1 + f(l)
. (8.9.11)

Note the similarity with (8.9.9). In particular, log(1/pk)/ log(k) → 1 + 1/γ when
f(k)/k → γ ∈ (0, 1), while log(1/pk) ∼ k1−α/(γ(1 − α)) when f(k) ∼ γkα for some
α ∈ (0, 1). Interestingly, Mörters and Dereich also show that when

∑
k≥1 1/f(k)2 <
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∞, then there exists a persistent hub, i.e., a vertex that has maximal degree for all
but finitely many times. When

∑
k≥1 1/f(k)2 =∞, this does not happen.

8.10 Notes and discussion

Notes on Section 8.2. There are various ways of modeling the Rich-get-Richer or
preferential attachment phenomenon.

Notes on Section 8.3. The degrees of fixed vertices plays a crucial role in the
analysis of preferential attachment models, see e.g. the first mathematical work on
the topic by Bollob’as, Riordan, Spencer and Tusnády [59]. Szymański [251] computes
several moments of the degrees for the Albert-Barabási model, including the result
in Theorem 8.2 and several extensions.

For m = 1 and δ = 0, Peköz, Röllin and Ross [229] investigate the explicit law
of the different vertices, and identify the density to be related to confluent hyper-
geometric functions of the second kind (also known as the Kummer U function),
Interestingly, the precise limit is different (though related) when we allow for self-
loops or not. They also provide bounds of order 1/

√
t for the total variation distance

between the law of Di(t)/
√

E[Di(t)2] and the limiting law, using Stein’s method.

Notes on Section 8.4. Most papers on specific preferential attachment models
prove that the degree sequences obey a power law. We shall refer in more detail to
the various papers on the topic when we discuss the various different ways of proving
Proposition 8.7. General results in this direction can be found for example in the work
by Bhamidi [41]. The fact that the limiting degree distribution is a mixed-negative
binomial distribution as stated in (8.4.10) is due to Ross [237].

Notes on Section 8.5. The proof of Theorem 8.3 relies on two key propositions,
namely, Propositions 8.4 and 8.7. Proposition 8.4 is a key ingredient in the investi-
gation of the degrees in preferential attachment models, and is used in many related
results for other models. The first version, as far as we know, of this proof is in [59].

Notes on Section 8.6. The proof of the expected empirical degree sequence in
Proposition 8.7 is new, and proves a stronger result than the one for δ = 0 appearing
in [59]. The proof of Proposition 8.7 is also quite flexible. For example, instead of the
growth rule in (8.2.1), we could attach the m edges of the newly added vertex v(m)

t+1

each independently and with equal probability to a vertex i ∈ [t] with probability
proportional to Di(t) + δ. More precisely, this means that, for t ≥ 3,

P
(
v(m)

t+1 → v(m)

i

∣∣PA(m,δ)

t

)
=
Di(t) + δ

t(2m+ δ)
for i ∈ [t], (8.10.1)

and, conditionally on PA(m,δ)

t , the attachment of the edges are independent. We can
define PA(m,δ)

2 to consist of 2 vertices connected by m edges.
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It is not hard to see that the proof of Proposition 8.4 applies verbatim (see Exercise
8.28).

It is not hard to see that also the proof of Proposition 8.7 applies by making the
obvious changes. In fact, the limiting degree sequence remains unaltered. A second
slightly different model, in which edges are added independently without intermediate
updating, is studied by Jordan in [167].

The original proof in [59] of the asymptotics of the expected empirical degree
sequence for δ = 0 makes use of an interesting relation between this model and so-
called n-pairings. An n-pairing is a partition of the set {1, . . . , 2n} into pairs. We can
think about the pairs as being points on the x-axis, and the pairs as chords joining
them. This allows us to speak of the left- and right-endpoints of the pairs.

The link between an n-pairing and the preferential attachment model with δ = 0
and m = 1 is obtained as follows. We start from the left, and merge all left-endpoints
up to and including the first right endpoint into the single vertex v1. Then, we merge
all further left-endpoints up to the next right endpoint into vertex v2, etc. For the
edges, we replace each pair by a directed edge from the vertex corresponding to its
right endpoint to the vertex corresponding to its left endpoint. Then, as noted in by
Bollobás and Riordan in [58], the resulting graph has the same distribution as PA(1,0)

t .
The proof in [59] then uses explicit computations to prove that for k ≤ t1/15,

E[Nk(t)] = tpk(1 + o(1)). (8.10.2)

The advantage of the current proof is that the restriction on k in k ≤ t1/15 is absent,
that the error term in (8.10.2) is bounded uniformly by a constant, and that the proof
applies to δ = 0 and δ 6= 0.

The approach of Hagberg and Wiuf in [137] is closest to ours. In it, the authors
assume that the model is a preferential attachment model, where the expected number
of vertices of degree k in the graph at time t+ 1, conditionally on the graph at time
t solves

E[Nk(t+ 1) | N(t)] = (1− ak
t

)Nk(t)−
ak−1

t
Nk−1(t) + ck, (8.10.3)

where Nk(t) is the number of vertices of degree k at time t, N(t) = (Nk(t))k≥0 and
it is assumed that a−1 = 0, and where ck ≥ 0 and ak ≥ ak−1. Also, it is assumed
that |Nk(t) − Nk(t − 1)| is uniformly bounded. This is almost true for the model
considered in this chapter. Finally, (N(t))t≥0 is assumed to be a Markov process,
starting at some time t0 in a configuration N(t0). Then, with

αk =
k∑
j=0

cj
1 + aj

∞∏
i=j+1

ai−1

1 + ai
, (8.10.4)

it is shown that Nk(t)/t converges to αk. Exercise 8.29 investigates the monotonicity
properties in t of supj≤k |E[Nj(t)− tαj|.
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Notes on Section 8.7. The beautiful martingale description in Proposition 8.15 is
due to Mori [207] (see also [208]). We largely follow the presentation in [104, Section
4.3], adapting it to the setting of the preferential attachment models introduced in
Section 8.2. The fact that Proposition 8.15 also holds for non-integer ki is, as far as
we know, new. This is relevant, since it identifies all moments of the limiting random
variables ξj.

We have reproduced Mori’s argument, applied to a slightly different model. See
also [104, Section 4.3]. Mori [207] studies a setting in which the graph at time 1
consists of two vertices, 0 and 1, connected by a single edge. In the attachment
scheme, no self-loops are created, so that the resulting graph is a tree. The proof
generalizes easily to other initial configurations and attachment rules, and we have
adapted the argument here to the usual preferential attachment model in which self-
loops do occur and PA(1,δ)

1 consists of one vertex with a single self-loop. Lancelot
James corrected an error in Exercise 8.24.

Notes on Section 8.8. The results on second degrees were obtained by Ostroumova
and Grechnikov in [224]. The explicit limiting distribution of maxiDi(t)/(2m

√
t) was

proved by Bollobás and Riordan in [57]. For m = 1, the precise form of the limiting
distribution was also obtained by Peköz, Röllin and Ross [230], who generalized it
to the setting where the graph at time 2 consists of two vertices with one edge in
between, and has no self-loops. The key observation in this proof is that the sequence
(Di(t)/2

√
t)ki=1, for each k ≥ 1, converges jointly in distribution to the random vector

(Y1, Y2−Y1, . . . , Yk−Yk−1), where Yi =
√
Xi. This is performed by bounding the total

variation distance between the distributions (Di(t)/2
√
t)ki=1 and (Y1, Y2−Y1, . . . , Yk−

Yk−1) by C(k)/
√
t using Stein’s method.

The convergence of the assortativity coefficient is performed rigorously in [148],
and it was already predicted by Dorogovtsev, Ferreira, Goltsev and Mendes in [102].
The formula for pk,l in (8.8.9) is proved by Berger, Borgs, Chayes and Saberi [36,
Lemma 5.3] in the case where δ ≥ 0. The latter paper is an extension of [39], where
the spread of an infection on preferential attachment graphs is investigated, and also
contain local weak convergence results.

Notes on Section 8.9. The results on directed preferential attachment models are
due to Bollobás, Borgs, Chayes and Riordan [55]. The proof in [55] is similar to the
one chosen here. Again the proof is split into a concentration result as in Proposition
8.4, and a determination of the expected empirical degree sequence in Proposition
8.7. In fact, the proof Proposition 8.7 is adapted after the proof in [55], which is
also based on the recurrence relation in (8.6.22), but analyses it in a different way,
by performing induction on k, rather than on t as we do in Sections 8.6.1 and 8.6.2.
As a result, the result proved in Proposition 8.7 is slightly stronger. A related result
on a directed preferential attachment model can be found in [71]. In this model, the
preferential attachment probabilities only depend on the in-degrees, rather than on
the total degree, and power-law in-degrees are proved. In [55], there is also a result
on the joint distribution of the in- and out-degrees of G(t), which we shall not state
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here.
Preferential attachment models with conditionally independent edges are studied

by Dereich and Mörters in [96, 97], where the degree evolution is discussed. The
giant component is investigated in [98], while vulnerability is studied by Eckhoff and
Mörters in [111]. There, also the vulnerability of various other models (such as the
configuration model and generalized random graphs) is investigated.

8.11 Exercises for Chapter 8

Exercise 8.1 (A dynamic formulation of ERn(λ/n)). Give a dynamical model for the Erdős-
Rényi random graph, where at each time n we add a single individual, and where at time
n the graph is equal to ERn(λ/n). See also the dynamic description of the Norros-Reittu
model on page 210.

Exercise 8.2 (Non-negativity of Di(t) + δ). Fix m = 1. Verify that Di(t) ≥ 1 for all i and
t with t ≥ i, so that Di(t) + δ ≥ 0 for all δ ≥ −1.

Exercise 8.3 (Attachment probabilities sum up to one). Verify that the probabilities in
(8.2.1) sum up to one.

Exercise 8.4 (Total degree). Prove that the total degree of PA(m,δ)

t equals 2mt.

Exercise 8.5 (Collapsing vs. growth of the PA model). Prove that the alternative definition
of (PA(m,δ)

t )t≥1 is indeed equal to the one obtained by collapsing m consecutive vertices in
(PA(1,δ/m)

t )t≥1.

Exercise 8.6 (Graph topology for δ = −1). Show that when δ = −1, the graph PA(1,δ)

t

consists of a self-loop at vertex v(1)

1 , and each other vertex is connected to v(1)

1 with precisely
one edge. What is the implication of this result for m > 1?

Exercise 8.7 (Alternative formulation of PA(1,δ)

t ). For α = δ
2+δ , show that the law of(

PA(1,α)

t (c)
)
t≥2

is equal to the one of
(
PA(1,δ)

t (b)
)
t≥2

. For the original PA model
(
PA(1,δ)

t

)
t≥2

a similar identity holds, with the only difference that the coin probability α = αt = δ(t +
1)/[(2t + 1) + δ(t + 1)] depends slightly on t. Note that, for large t, αt is asymptotic to
δ/(2 + δ), as for

(
PA(1,δ)

t (b)
)
t≥2

.

Exercise 8.8 (Degrees grow to infinity a.s.). Fix m = 1 and i ≥ 1. Prove that Di(t)
a.s.−→∞,

by using that
∑t

s=i Is � Di(t), where (It)t≥i is a sequence of independent Bernoulli random
variables with P(It = 1) = (1 + δ)/(t(2 + δ) + 1 + δ). What does this imply for m > 1?

Exercise 8.9 (Degree Markov chain). Prove that the degree (Di(t))t≥i forms a (time-
inhomogeneous) Markov chain. Compute its transition probabilities for m = 1.

Exercise 8.10 (Recursion formula for the Gamma function). Prove (8.3.2) using partial
integration, and also prove that Γ(n) = (n− 1)! for n = 1, 2, . . . .

Exercise 8.11 (Asymptotics for ratio Γ(t+a)/Γ(t)). Prove (8.3.9), using Stirling’s formula
(see e.g. [132, 8.327]) in the form

e−ttt+
1
2

√
2π ≤ Γ(t+ 1) ≤ e−ttt+

1
2

√
2πe

1
12t . (8.11.1)
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Exercise 8.12 (Mean degree for m ≥ 2). Prove (8.3.11) and use it to compute Eδm[Di(t)].

Exercise 8.13 (A.s. limit of degrees for m ≥ 2). Prove that, for m ≥ 2 and any i ≥ 1,
Di(t)(mt)

−1/(2+δ/m) a.s.−→ ξ′i, where

ξ′i =
mi∑

j=(i−1)m+1

ξj , (8.11.2)

and ξj is the almost sure limit of Dj(t) in
(
PA(1,δ/m)

t

)
t≥1

.

Exercise 8.14 (Mean degree for model (b)). Prove that for PA(1,δ)

t (b), (8.3.3) becomes

E[Di(t) + δ] = (1 + δ)
Γ(t+ 1/(2 + δ))Γ(i)

Γ(t)Γ(i+ 1/(2 + δ))
. (8.11.3)

Exercise 8.15 (The degree of a uniform vertex). Prove that Theorem 8.3 implies that the
degree at time t of a uniform vertex in [t] converges in distribution to a random variable
with probability mass function (pk)k≥0.

Exercise 8.16 (A negative binomial representation of the degree distribution). Let X have
a negative binomial distribution with parameters r = m+ δ and random success probability
U1/(2+δ/m), where U has a uniform distribution on [0, 1]. Prove (8.4.10) by showing that
pk = E[P(X = k)], where the expectation is over U . [Hint: Use the integral representation
of the beta-function.]

Exercise 8.17 (Degree sequence uniform recursive tree [156]). In a uniform recursive tree
we attach each vertex to a uniformly chosen old vertex. This can be seen as the case where
m = 1 and δ = ∞ of

(
PA(m,δ)

t (b)
)
t≥2

. Show that Theorem 8.3 remains true, but now with

pk = 2−(k+1).

Exercise 8.18 (Concentration of the number of vertex of degree at least k). Prove (8.5.22)
by adapting the proof of Proposition 8.4.

Exercise 8.19 (Formulas for Cγ and Cκ). Consider(8.6.29). Show that Cγ = 1 does the

job, and Cκ = supk≥1(k + δ)pk = (1 + δ)p1 = (1+δ)(2+δ)
3+2δ .

Exercise 8.20 (The total degree of high degree vertices). Use Propositions 8.7 and 8.4
to prove that for l = l(t) → ∞ as t → ∞ such that tl2−τ ≥ K

√
t log t for some K > 0

sufficiently large, there exists a constant B > 0 such that with probability exceeding 1−o(t−1),
for all such l, ∑

i : Di(t)≥l

Di(t) ≥ Btl2−τ . (8.11.4)

Exercise 8.21 ([100]). Fix m = 1 and δ > −1. Then, prove that for all t ≥ i

P(Di(t) = j) ≤ Cj
Γ(t)Γ(i+ 1+δ

2+δ )

Γ(t+ 1+δ
2+δ )Γ(i)

, (8.11.5)

where C1 = 1 and

Cj =
j − 1 + δ

j − 1
Cj−1. (8.11.6)



302 Preferential attachment models

Exercise 8.22 (Martingale mean). Use Proposition 8.15 to show that, for all t ≥ max{jr, 1},

E[Z~j,~k(t)] =
r∏
i=1

cKi(ji − 1)

cKi−1
(ji − 1)

(
ki + δ

ki

)
, (8.11.7)

where Ki =
∑i

a=1 ka.

Exercise 8.23 (Uniqueness of limit). Prove that the moments in (8.7.21) identify the dis-
tribution of ξj uniquely. Prove also that P(ξj > x) > 0 for every x > 0, so that ξj has
unbounded support.

Exercise 8.24 (A.s. limit of Dj(t) in terms of limit D1(t)). Use the method of moments to
show that ξj has the same distribution as

ξ1

j−1∏
k=1

Bk, (8.11.8)

where Bk has a Beta((2 + δ)k − 1, 1)-distribution.

Exercise 8.25 (Martingales for alternative construction PA model [207]). Prove that when
the graph at time 0 is given by two vertices with a single edge between them, and we do not
allow for self-loops, then (8.7.20) remains valid when we instead define

ck(t) =
Γ(t+ δ

2+δ )

Γ(t+ k+δ
2+δ )

t ≥ 1, k ≥ 0. (8.11.9)

Exercise 8.26 (Special cases directed PA model). Prove that if αδin +γ = 0 in the directed
preferential attachment model, then all vertices outside of G0 will have in-degree zero, while
if γ = 1 all vertices outside of G0 will have in-degree one.

Exercise 8.27 (The affine preferential attachment case). Prove that, when λ∗ = δ and
f(i) = i+ 1 + δ, (8.9.9) reduces to (8.4.3).

Exercise 8.28 (Adaptation concentration degree sequence). Adapt the proof of Proposition
8.4 showing the concentration of the degrees to the preferential attachment model defined in
(8.10.1).

Exercise 8.29 (Monotonicity error [137]). Show that, under the assumption (8.10.3) by
Hagberg and Wiuf,

k
max
j=1
|E[Nj(t)]− αjt| (8.11.10)

is non-increasing in t.



Appendix A

Some facts about measure and
integration

. In this section, we give some classical results from the theory of measure and
integration, which will be used in the course of the proofs. For details and proofs of
these results, we refer to the books [47, 125, 103, 138]. We treat three results, namely,
Lebesque’s dominated convergence theorem, the monotone convergence theorem and
Fatou’s lemma. We also treat some slight adaptations that will prove to be useful in
the text.

Lebesque’s dominated convergence theorem. The statement of this key result
in probabilistic terms is as follows:

Theorem A.1 (Lebesgue’s dominated convergence theorem). Let (Xn)n≥1 and Y

satisfy E[Y ] <∞, Xn
a.s.−→ X, and |Xn| ≤ Y almost surely. Then

E[Xn]→ E[X] (A.1.11)

and E[|X|] <∞.

A proof of Theorem A.1 can be found in the classic of Feller [125, Page 111].
We also make use of a slight extension, where almost sure convergence is replaced

with convergence in distribution:

Theorem A.2 (Lebesgue’s dominated convergence theorem (cont.)). Let (Xn)n≥1

and Y satisfy that |Xn| ≤ Y a.s. for all n ≥ 1, where E[Y ] <∞. Further, Xn
d−→ X.

Then
E[Xn]→ E[X], (A.1.12)

and E[|X|] <∞.

We give the simple proof of Theorem A.2, as it relies on the useful notion of
uniform integrability, which we next define:

Definition A.3 (Uniform integrability). The sequence of random variables (Xn)n≥1

is called uniformly integrable when

lim sup
K→∞

lim sup
n→

E[|Xn|1{|Xn|>K}] = 0. (A.1.13)

Proof of Theorem A.2. First of all, the sequence (Xn)n≥1 is uniformly integrable,
since |Xn| ≤ Y implies that |Xn|1{|Xn|>K} ≤ Y 1{Y >K}, so that

E[|Xn|1{|Xn|>K}] ≤ E[Y 1{Y >K}]→ 0, (A.1.14)
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as K →∞, since E[Y ] <∞. Thus, it suffices to prove Theorem A.2 when we replace
the a.s. bound |Xn| ≤ Y by the requirement that (Xn)n≥1 is uniformly integrable.
Then, we can split

E[Xn] = E[Xn1{|Xn|≤K}] + E[Xn1{|Xn|>K}]. (A.1.15)

The first expectation converges to E[X1{|X|≤K}] by Theorem A.1, which converges
to E[X] when K → ∞. The second term vanishes when first n → ∞ followed by
K →∞.

We close the discussion of Lebesgue’s dominated convergence theorem by discus-
sion a version involving stochastic domination:

Theorem A.4 (Lebesgue’s dominated convergence theorem (cont.)). Let (Xn)n≥1

and Y satisfy that |Xn| � Y for all n ≥ 1, where E[Y ] < ∞. Further, Xn
d−→ X.

Then
E[Xn]→ E[X] (A.1.16)

and E[|X|] <∞.

Proof. Let FXn , FX, FY denote the distribution functions of Xn, X, Y , respectively.
Let U be uniform on [0, 1], and let X̂n = F−1

Xn
(U), X̂ = F−1

X (U) and Ŷ = F−1
Y (U).

Note that E[Xn] = E[X̂n],E[X] = E[X̂] and E[Y ] = E[Ŷ ], so it suffices to prove
the statement for X̂n, X̂ and Ŷ . However, since Xn � Y , we have that X̂n ≤ Ŷ a.s.

Further, X̂n
a.s.−→ X̂ since Xn

d−→ X. Therefore, the claim follows from Theorem
A.1.

Monotone convergence theorem. We continue with the monotone convergence
theorem:

Theorem A.5 (Monotone convergence theorem). Let (Xn)n≥1 be a monotonically
increasing sequence, i.e., Xn ≤ Xn+1 a.s. Assume that E[|Xn|] <∞ for every n ≥ 1.
Then Xn(ω)↗ X(ω) for all ω and some limiting random variable X (that is possibly
degenerate), and

E[Xn]↗ E[X]. (A.1.17)

In particular, when E[X] =∞, then E[Xn]↗∞.

A proof of Theorem A.5 can again be found in Feller [125, Page 110].
We again formulate a stochastic domination version:

Theorem A.6 (Monotone convergence theorem (cont.)). Let Xn be a stochastically
monotonically increasing sequence, i.e., Xn � Xn+1 for all n ≥ 1. Assume that

E[|Xn|] <∞. Then Xn
d−→ X for some limiting random variable X (that is possibly

degenerate), and
E[Xn]↗ E[X]. (A.1.18)

The proof of Theorem A.6 again follows from Theorem A.5 by instead considering
X̂n = F−1

Xn
(U), where U is a uniform random variable.
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Fatou’s lemma. The following result, known under the name Fatou’s lemma, shows
that mass may run away to infinity, but it cannot appear out of nowhere:

Theorem A.7 (Fatou’s lemma). If Xn ≥ 0 and E[Xn] <∞, then

E[lim inf
n→∞

Xn] ≤ lim inf
n→∞

E[Xn]. (A.1.19)

In particular, if Xn
a.s.−→ X, then

E[X] ≤ lim inf
n→∞

E[Xn]. (A.1.20)

A proof of Theorem A.7 can also be found in Feller [125, Page 110].
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Bull. Austral. Math. Soc., 33(1):67–70, (1986).

[77] F. Chung and L. Lu. The average distances in random graphs with given
expected degrees. Proc. Natl. Acad. Sci. USA, 99(25):15879–15882 (electronic),
(2002).

[78] F. Chung and L. Lu. Connected components in random graphs with given
expected degree sequences. Ann. Comb., 6(2):125–145, (2002).

[79] F. Chung and L. Lu. The average distance in a random graph with given
expected degrees. Internet Math., 1(1):91–113, (2003).

[80] F. Chung and L. Lu. Complex graphs and networks, volume 107 of CBMS
Regional Conference Series in Mathematics. Published for the Conference Board
of the Mathematical Sciences, Washington, DC, (2006).

[81] F. Chung and L. Lu. Concentration inequalities and martingale inequalities: a
survey. Internet Math., 3(1):79–127, (2006).

[82] F. Chung and L. Lu. The volume of the giant component of a random graph
with given expected degrees. SIAM J. Discrete Math., 20:395–411, (2006).

[83] A. Clauset and C. Moore. Traceroute sampling makes random graphs appear
to have power law degree distributions, (2003).

[84] A. Clauset and C. Moore. Accuracy and scaling phenomena in internet mapping.
Phys. Rev. Lett., 94:018701: 1–4, (2005).

[85] A. Clauset, C. Shalizi, and M. E. J. Newman. Power-law distributions in em-
pirical data. SIAM review, 51(4):661–703, (2009).

[86] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience of the internet
to random breakdowns. Phys. Rev. Letters, 85:4626, (2000).

[87] R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Breakdown of the internet
under intentional attack. Phys. Rev. Letters, 86:3682, (2001).



REFERENCES 313

[88] C. Cooper and A. Frieze. A general model of web graphs. Random Structures
Algorithms, 22(3):311–335, (2003).

[89] C. Cooper and A. Frieze. The size of the largest strongly connected component
of a random digraph with a given degree sequence. Combin. Probab. Comput.,
13(3):319–337, (2004).

[90] R.M. Corless, G.H. Gonnet, D.E.G. Hare, D.J. Jeffrey, and D.E. Knuth. On
the Lambert W function. Adv. Comput. Math., 5:329–359, (1996).

[91] E. Coupechoux and M. Lelarge. How clustering affects epidemics in random net-
works. Available at http://arxiv.org/pdf/1202.4974.pdf, Preprint (2012).

[92] R. De Castro and J.W. Grossman. Famous trails to Paul Erdős. Rev. Acad.
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type branching populations. In Séminaire de Probabilités, XXX, volume 1626
of Lecture Notes in Math., pages 40–54. Springer, Berlin, (1996).

[156] S. Janson. Asymptotic degree distribution in random recursive trees. Random
Structures Algorithms, 26(1-2):69–83, (2005).

[157] S. Janson. Monotonicity, asymptotic normality and vertex degrees in random
graphs. Bernoulli, 13(4):952–965, (2007).

[158] S. Janson. The probability that a random multigraph is simple. Combinatorics,
Probability and Computing, 18(1-2):205–225, (2009).

[159] S. Janson. Asymptotic equivalence and contiguity of some random graphs.
Random Structures Algorithms, 36(1):26–45, (2010).

[160] S. Janson. Probability asymptotics: notes on notation. Available at
http://arxiv.org/pdf/1108.3924.pdf, (2011).

[161] S. Janson. The probability that a random multigraph is simple. II. J. Appl.
Probab., 51A(Celebrating 50 Years of The Applied Probability Trust):123–137,
(2014).

[162] S. Janson, D.E. Knuth, T.  Luczak, and B. Pittel. The birth of the giant com-
ponent. Random Structures Algorithms, 4(3):231–358, (1993). With an intro-
duction by the editors.

[163] S. Janson, T.  Luczak, and A. Rucinski. Random graphs. Wiley-Interscience Se-
ries in Discrete Mathematics and Optimization. Wiley-Interscience, New York,
(2000).



318 REFERENCES

[164] S. Janson and J. Spencer. A point process describing the component sizes in
the critical window of the random graph evolution. Combin. Probab. Comput.,
16(4):631–658, (2007).
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G = (V,E)

Graph with vertex set V and edge set E. 2

T

The total progeny of a branching process. 88

X?

The size-biased version of a (non-negative) random variable X. 63

Z≥k

The number of vertices in connected component of size at least k. 121

[n]

Vertex set [n] = {1, . . . , n}. 2

Be(p)

Bernoulli random variable with success probability p. 47

Bin(n, p)

Binomial random variable with parameters n and success probability p. 48

CLn(w)

Chung-Lu model with n vertices and weight sequence w = (wi)i∈[n]. 193

CMn(d)

Configuration model with n vertices and degree sequence d = (di)i∈[n]. 201

Cmax

The connected component of maximal size. 113

ERn(p)

Erdős-Rényi random graph with n vertices and edge probability p. 112

GRGn(w)

Generalized random graph with n vertices and weight sequence w = (wi)i∈[n].
168

NRn(w)

Norros-Reittu model with n vertices and weight sequence w = (wi)i∈[n]. 195
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PA(m,δ)

t

Preferential attachment model with t vertices. At each time step, one vertex
and m edges are added and the attachment function equals the degree plus δ.
239

Poi(λ)

Poisson random variable with parameter λ. 48

�
X is stochastically smaller than Y is written as X � Y . 61

C (v)

The connected component of v ∈ [n]. 113

a.s.−→
Convergence almost surely. 52

d−→
Convergence in distribution. 52

P−→
Convergence in probability. 52

`n

Total vertex weight `n =
∑

i∈[n] wi for GRG, total degree `n =
∑

i∈[n] di for CM.
168, 200

η

The extinction probability of a branching process. 84

ζ

The survival probability of a branching process. 86

dTV

Total variation distance. 58

UGn(d)

Uniform random graph with n vertices and degree sequence d = (di)i∈[n]. 221
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