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To

my wife

Radhika





Jack and Harry were lost over a vast farmland while on their balloon ride.

When they spotted a bicyclist on trail going through the farmland below, they

lowered their balloon and yelled, “Good day, sir! Could you tell us where we

are?”

The bicyclist looked up and said, “Sure! You are in a balloon!”

Jack turned to Harry and said, “This guy must be a mathematician!”

“What makes you think so?” asked Harry.

“Well, his answer is correct, but totally useless!”

The author sincerely hopes that a student mastering this book will be able to

use stochastic models to obtain correct as well as useful answers.
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Preface

Probabilistic methodology has now become a routine part of graduate education in

operations research, statistics, computer science, economics, business, public policy,

bioinformatics, engineering, etc. The following three aspects of the methodology are

most vital for the students in these disciplines:

1. Modeling a “real-life” situation with stochastic or random elements

2. Analysis of the resulting stochastic model

3. Implementation of the results of the analysis

Of course, if the results of Step 2 show that the model does not “fit” the real-life situa-

tion, then one needs to modify the model and repeat Steps 1 and 2 until a satisfactory

solution emerges. Then one proceeds to Step 3. As the title of the book suggests, we

emphasize the first two steps. The selection, the organization, and the treatment of

topics in this book are dictated by the emphasis on modeling and analysis.

Based on my teaching experience of over 25 years, I have come to the conclusion

that it is better (from the students’ points of view) to introduce Markov chains be-

fore renewal theory. This enables the students to start building interesting stochastic

models right away in diverse areas such as manufacturing, supply chains, genet-

ics, communications, biology, queueing, and inventory systems, etc. This gives them

a feel for the modeling aspect of the subject early in the course. Furthermore, the

analysis of Markov chain models uses tools from matrix algebra. The students feel

comfortable with these tools since they can use the matrix-oriented packages, such

as Matlab, to do numerical experimentation. Nothing gives them better confidence

in the subject than seeing the analysis produce actual numbers that quantify their in-

tuition. We have also developed a collection of Matlab-based programs that can be

downloaded from:

1. www.unc.edu/∼vkulkarn/Maxim/maxim.zip

2. www.unc.edu/∼vkulkarn/Maxim/maximgui.zip

The instructions for using them are included in the readme files in these two zip files.

After students have developed familiarity with Markov chains, they are ready for

renewal theory. They can now appreciate it because they now have a lot of renewal,

renewal-reward, or regenerative processes models. Also, they are more ready to use

the tools of Laplace transforms.

xix
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I am aware that this sequence is contrary to the more prevalent approach that starts

with renewal theory. Although it is intellectually appealing to start with renewal the-

ory, I found that it confuses and frustrates students, and it does not give them a feel for

the modeling aspect of the subject early on. In this new edition, I have also changed

the sequence of topics within Markov chains; I now cover the first passage times be-

fore the limiting behavior. This seems more natural since the concepts of transience

and recurrence depend upon the first passage times.

The emphasis on the analysis of the stochastic models requires careful develop-

ment of the major useful classes of stochastic processes: discrete and continuous time

Markov chains, renewal processes, regenerative processes, and Markov regenerative

processes. In the new edition, I have included a chapter on diffusion processes. In or-

der to keep the length of the book under control, some topics from the earlier edition

have been deleted: discussion of numerical methods, stochastic ordering, and some

details from the Markov renewal theory. We follow a common plan of study for each

class: characterization, transient analysis, first passage times, limiting behavior, and

cost/reward models. The main aim of the theory is to enable the students to “solve”

or “analyze” the stochastic models, to give them general tools to do this, rather than

show special tricks that work in specific problems.

The third aspect, the implementation, involves actually using the results of Steps

1 and 2 to manage the “real-life” situation that we are interested in managing. This

requires the knowledge of statistics (for estimating the parameters of the model) and

organizational science (how to persuade the members of an organization to follow

the new solution, and how to set up an organizational structure to facilitate it), and

hence is beyond the scope of this book, although, admittedly, it is a very important

part of the process.

The book is designed for a two-course sequence in stochastic models. The first

six chapters can form the first course, and the last four chapters, the second course.

The book assumes that the students have had a course in probability theory (measure

theoretic probability is not needed), advanced calculus (familiarity with differential

and difference equations, transforms, etc.), and matrix algebra, and a general level

of mathematical maturity. The appendix contains a brief review of relevant topics. In

the second edition, I have removed the appendix devoted to stochastic ordering, since

the corresponding material is deleted from the chapters on discrete and continuous

time Markov chains. I have added two appendices: one collects relevant results from

analysis, and the other from differential and difference equations. I find that these

results are used often in the text, and hence it is useful to have them readily accessible.

The book uses a large number of examples to illustrate the concepts as well as

computational tools and typical applications. Each chapter also has a large number

of exercises collected at the end. The best way to learn the material of this course

is by doing the exercises. Where applicable, the exercises have been separated into

three classes: modeling, computational, and conceptual. Modeling exercises do not

involve analysis, but may involve computations to derive the parameters of the prob-

lem. A computational exercise may ask for a numerical or algebraic answer. Some
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computational exercises may involve model building as well as analysis. A concep-

tual exercise generally involves proving some theorem, or fine tuning the understand-

ing of some concepts introduced in the chapter, or it may introduce new concepts.

Computational exercises are not necessarily easy, and conceptual exercises are not

necessarily hard. I have deleted many exercises from the earlier edition, especially

those that I found I never assigned in my classes. Many new exercises have been

added. I found it useful to assign a model building exercise and then the correspond-

ing analysis exercise. The students should be encouraged to use computers to obtain

the solutions numerically.

It is my belief that a student, after mastering the material in this book, will be well

equipped to build and analyze useful stochastic models of situations that he or she

will face in his or her area of interest. It is my fond hope that the students will see

a stochastic model lurking in every corner of their world as a result of studying this

book.

Vidyadhar Kulkarni

Department of Statistics and Operations Research

University of North Carolina

Chapel Hill, NC





CHAPTER 1

Introduction

The discipline of operations research was borne out of the need to solve military

problems during World War II. In one story, the air force was using the bullet holes

on the airplanes used in combat duty to decide where to put extra armor plating. They

thought they were approaching the problem in a scientific way until someone pointed

out that they were collecting the bullet hole data from the planes that returned safely

from their sorties.

1.1 What in the World is a Stochastic Process?

Consider a system that evolves randomly in time, for example, the stock market

index, the inventory in a warehouse, the queue of customers at a service station,

water-level in a reservoir, the state of the machines in a factory, etc.

Suppose we observe this system at discrete time points n = 0, 1, 2, · · ·, say, every

hour, every day, every week, etc. Let Xn be the state of the system at time n. For

example, Xn can be the Dow-Jones index at the end of the n-th working day; the

number of unsold cars on a dealer’s lot at the beginning of day n; the intensity of the

n-th earthquake (measured on the Richter scale) to hit the Continental United states

in this century; or the number of robberies in a city on day n, to name a few. We say

that {Xn, n ≥ 0} is a discrete-time stochastic process describing the system.

If the system is observed continuously in time, with X(t) being its state at time

t, then it is described by a continuous-time stochastic process {X(t), t ≥ 0}. For

example, X(t) may represent the number of failed machines in a machine-shop at

time t, the position of a hurricane at time t, or the amount of money in a bank account

at time t, etc.

More formally, a stochastic process is a collection of random variables

{X(τ), τ ∈ T }, indexed by the parameter τ taking values in the parameter set T .

The random variable takes values in the set S, called the state-space of the stochastic

process. In many applications the parameter t represents time. Throughout this book

we shall encounter two cases:

1
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1. T = {0, 1, 2, · · ·}. In this case we write {Xn, n ≥ 0} instead of {X(τ), τ ∈ T }.

2. T = [0,∞). In this case we write {X(t), t ≥ 0} instead of {X(τ), τ ∈ T }.

Also, we shall almost always encounter S ⊆ {0, 1, 2, · · ·} or S ⊆ (−∞,∞). We

shall refer to the former case as the discrete state-space case, and the latter case as

the continuous state-space case.

Let {X(τ), τ ∈ T } be a stochastic process with state-space S, and let x : T → S
be a function. One can think of {x(τ), τ ∈ T } as a possible evolution (trajectory) of

{X(τ), τ ∈ T }. The functions x are called the sample paths of the stochastic process.

Figure 1.1 shows typical sample paths of stochastic processes. Since the stochastic

process follows one of the sample paths in a random fashion, it is sometimes called

a random function. In general, the set of all possible sample paths, called the sample

space of the stochastic process, is uncountable. This can be true even in the case of a

discrete time stochastic process with finite state-space. One of the aims of the study

of the stochastic processes is to understand the behavior of the random sample paths

that the system follows, with the ultimate aim of prediction and control of the future

of the system.

(c) Discrete-time, discrete state space

(b) Continuous-time, continuous state space

(a) Continuous-time, discrete state space

×

×

× ×

×

× ×

n

×

×

××

×

Xn

X(t)

X(t)

×

t

t

Figure 1.1 Typical sample paths of stochastic processes.

Stochastic processes are used in epidemiology, biology, demography, polymer

science, physics, telecommunication networks, economics, finance, marketing, and
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social networks, to name a few areas. A vast literature exists in each of these ar-

eas. Our applications will generally come from queueing theory, inventory systems,

supply chains, manufacturing, computer and communication networks, reliability,

warranty management, mathematical finance, and statistics. We illustrate a few such

applications in the example below. Although most of the applications seem to in-

volve continuous time stochastic process, they can easily be converted into discrete

time stochastic processes by simply assuming that the system in question is observed

at a discrete set of points, such as each hour, or each day, etc.

Example 1.1 Examples of Stochastic Processes in Real Life

Queues. Let X(t) be the number of customers waiting for service in a service

facility. {X(t), t ≥ 0} is a continuous-time stochastic process with state-space

S = {0, 1, 2, · · ·}.

Inventories. X(t) = the number of automobiles in the parking lot of a dealership

available for sale at time t. Y (t) = the number of automobiles on order (the cus-

tomers have paid a deposit for them and are now waiting for the delivery) at the

dealership at time t. Both {X(t), t ≥ 0} and {Y (t), t ≥ 0} are continuous-time

stochastic processes with state-space S = {0, 1, 2, · · ·}.

Supply Chains. Consider a supply chain of computer printers with three levels: the

manufacturer (level 1), the regional warehouse (level 2), and the retail store (level

3). The printers are stored at all three levels. Let Xi(t) = the number of printers at

level i(= 1, 2, 3). Then {X(t) = (X1(t), X2(t), X3(t)), t ≥ 0} is a vector-valued

continuous time stochastic process with state space S = {(x1, x2, x3) : x1, x2, x3 =
0, 1, 2, · · ·}.

Manufacturing. Consider a machine shop with N machines. Each machine can be

either working or under repair. Let Xi(t) = 1, if the i-th machine is working at time

t, and 0 otherwise. Then {X(t) = (X1(t), X2(t), · · · , XN(t)), t ≥ 0} is a continu-

ous time stochastic process with state-space S = {0, 1}N .

Communication Networks. A telecommunication network is essentially a network

of buffers (say N ) connected by communication links. Let Xi(t) be the number of

packets in the i-th buffer (i = 1, 2, · · · , N). Then the state of the system at time t is

given by X(t) = (X1(t), X2(t), · · · , XN (t)).
Reliability. A complex system consists of many (say N ) parts, each of which can

be up or down. Let Xi(t) = 1, if the i-th component is working at time t, and

0 otherwise. The state of the system at time t is given by the vector X(t) =
(X1(t), X2(t), · · · , XN (t)). {X(t), t ≥ 0} is a continuous time stochastic process

with state-space S = {0, 1}N . Finally, the functionality of the system is described by

a structure function Φ : S → {0, 1}, with the following interpretation: The system is

up at time t if Φ(X(t)) = 1, and down otherwise.

Warranty Management. Consider a company that makes and sells hard drives for

personal computers. Each hard drive is sold under a one year warranty, which stipu-

lates that the company will replace free of charge any hard drive that fails while under

warranty by a new one, which is under warranty for the remaining time period. Such a

warranty is called a free-replacement non-renewable warranty. In order to keep track

of warranty liabilities the company typically keeps track of X(t), the number hard
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drives currently under warranty. In addition, it keeps track of the remaining warranty

period for each of those hard drives. This produces a rather complicated stochastic

process.

Mathematical Finance. Let X(t) be the stock price of IBM stock at time t. Then

{X(t), t ≥ 0} is a continuous-time stochastic process with state space [0,∞). A Eu-

ropean call option with strike price K , and expiry date T , gives the owner the option

(but not the obligation) of buying the IBM stock at price K at time T , regardless of

the actual price of the stock at that time. Clearly, the holder of the option stands to

make max(0, X(t) − K) amount of money at time T . Since there is no downside

risk (no loss) in this option, how much money should the owner of this option be

willing to pay to buy this option at time 0? Clearly that will depend on how the stock

process {X(t), t ≥ 0} evolves, what the value of the stock is at time 0, and what

other investment opportunities are available.

Quality Control. A sequential quality control plan is used to continuously monitor

the quality of a product. One such plan is described by two non-negative integers k
and r, and operates in two phases as follows: in phase one we inspect each item and

mark it as defective or non-defective. If we encounter k non-defective items in a row,

we switch to phase two, in which we inspect every r-th item. We continue in phase

two until we hit a defective item, at which time we switch back to phase 1. Let Xn

be the phase the plan is in after inspecting the n-th item. Then {Xn, n ≥ 0} is a

discrete time stochastic process on state-space {1, 2}.

Insurance. Let X(t) be the number of active policies at time t that are covered by a

life insurance company. Each active policy pays premiums at a fixed rate r per unit

time. When a policy expires, the company pays out a random pay-off. Let R(t) be

the total funds at the company at time t. Then {X(t), t ≥ 0} is a continuous-time

stochastic process with state-space S = {0, 1, 2, · · ·}. It goes up by one every time

a new policy is sold, and goes down by a one every time an active policy expires.

{R(t), t ≥ 0} is a continuous-time stochastic process with state-space S = [0,∞).
It increases at rate rX(t) at time t and jumps down by a random amount whenever

a policy expires. If this process goes negative, we say that the company has gone

bankrupt!

DNA Analysis. DNA (deoxyribose nucleic acid) is a long molecule that consists of

a string of four basic molecules called bases, represented by A, T,G,C. Let Xn be

the n-th base in the DNA. Then {Xn, n ≥ 0} is a discrete time stochastic process

with state-space S = {A, T,G,C}.

1.2 How to Characterize a Stochastic Process

In this book we develop the tools for the analysis of the stochastic processes and study

several special classes of stochastic processes in great detail. To do this we need

a mathematically precise method to describe a stochastic process unambiguously.

Since a stochastic process is a collection of random variables, it makes sense to start

by reviewing how one “describes” a single random variable.

From elementary probability theory (see Appendices A and B) we see that a single

random variable X is completely described by its cumulative distribution function
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(cdf)

F (x) = P(X ≤ x), −∞ < x <∞. (1.1)

A multivariate random variable (X1, X2, · · · , Xn) is completely described by its

joint cdf

F (x1, x2, · · · , xn) = P(X1 ≤ x1, X2 ≤ x2, · · · , Xn ≤ xn), (1.2)

for all −∞ < xi < ∞ and i = 1, 2, · · · , n. Thus if the parameter set T is finite, the

stochastic process {X(τ), τ ∈ T } is a multi-variate random variable, and hence is

completely described by the joint cdf. But what about the case when T is not finite?

Consider the case T = {0, 1, 2, · · ·} first. One could naively look for a direct ex-

tension of the finite dimensional joint cdf to an infinite dimensional case as follows:

F (x0, x1, · · ·) = P(X0 ≤ x0, X1 ≤ x1, · · ·), −∞ < xi <∞, i = 0, 1, · · · .
(1.3)

However, the probability on the right hand side of the above equation is likely to be

zero or one in most of the cases. Thus such a function is not likely to give much

information regarding the stochastic process {Xn, n ≥ 0} . Hence we need to look

for an alternative. Suppose we are given a family of finite dimensional joint cdfs

{Fn, n ≥ 0} such that

Fn(x0, x1, · · · , xn) = P(X0 ≤ x0, X1 ≤ x1, · · · , Xn ≤ xn), (1.4)

for all −∞ < xi < ∞, and i = 0, 1, · · · , n. Such a family is called consistent if it

satisfies

Fn(x0, x1, · · · , xn) = Fn+1(x0, x1, · · · , xn,∞), (1.5)

for all −∞ < xi < ∞, and i = 0, 1, · · · , n, n ≥ 0. A discrete-time stochastic

process is completely described by a consistent family of finite dimensional joint

cdfs, that is, any probabilistic question about {Xn, n ≥ 0} can be answered in terms

of {Fn, n ≥ 0}. Technically speaking, what one means by “completely describe” a

stochastic process is to construct a probability space (Ω,F ,P) on which the process

is defined. The more curious reader is referred to more advanced texts on stochastic

processes to answer further questions.

Next we turn to the case of T = [0,∞). Unfortunately the matter of completely

describing a continuous time stochastic process {X(t), t ≥ 0} is not so simple, since

this case deals with an uncountable number of random variables. The situation can

be simplified if we can make certain assumptions about the continuity of the sample

paths of the process. We shall not deal with the details here, but shall give the main

result:

Suppose the sample paths of {X(t), t ≥ 0} are, with probability 1, right continu-

ous with left limits, i.e.,

lim
s↓t

X(s) = X(t), (1.6)

and lims↑tX(s) exists for each t. Furthermore, suppose the sample paths have a

finite number of discontinuities in a finite interval of time. Then {X(t), t ≥ 0} is
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completely described by a consistent family of finite dimensional joint cdfs

Ft1,t2,···,tn
(x1, x2, · · · , xn) = P (X(t1) ≤ x1, X(t2) ≤ x2, · · · , X(tn) ≤ xn),

(1.7)

for all −∞ < xi <∞, i = 1, · · · , n, n ≥ 1 and all 0 ≤ t1 < t2 < · · · < tn.

Example 1.2 Independent and Identically Distributed Random Variables.

Let {Xn, n ≥ 1} be a sequence of independent and identically distributed (iid) ran-

dom variables with common distribution F (·). This stochastic process is completely

described by F (·) as we can create the following consistent family of joint cdfs:

Fn(x1, x2, · · · , xn) =

n
∏

i=1

F (xi), (1.8)

for all −∞ < xi <∞, i = 1, 2, · · · , n, and n ≥ 1.

In a sense a sequence of iid random variables is the simplest kind of stochastic pro-

cess, but it does not have any interesting structure. However, one can construct more

complex and interesting stochastic processes from it as shown in the next example.

Example 1.3 Random Walk.

Let {Xn, n ≥ 1} be as in Example 1.2. Define

S0 = 0, Sn = X1 + · · · +Xn, n ≥ 1. (1.9)

The stochastic process {Sn, n ≥ 0} is called a random walk. It is also completely

characterized by F (·), since the joint distribution of (S0, S1, · · · , Sn) is completely

determined by that of (X1, X2, · · · , Xn), which, from Example 1.2, is determined

by F (·).

1.3 What Do We Do with a Stochastic Process?

Now that we know what a stochastic process is and how to describe them precisely,

the next question is: what do we with it?

In Section 1.1 we have seen several situations where stochastic processes appear.

For each situation we have a specific goal for studying it. The study of stochastic

processes will be useful if it somehow helps us achieve that goal. In this book we shall

develop a set of tools to help us achieve those goals. This will lead us to the study

of special classes of stochastic processes: Discrete-time Markov chains (Chapters

2, 3, 4), Poisson processes (Chapter 5), continuous-time Markov chains (Chapter

6), renewal and regenerative processes (Chapter 8), Markov-regenerative processes

(Chapter 9) and Brownian motion (Chapter 10).

For each of these classes, we follow a more or less standard format of study, as

described below.
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1.3.1 Characterization

The first step is to define the class of stochastic processes under consideration. Then

we look for ways of uniquely characterizing the stochastic process. In many cases

we find that the consistent family of finite dimensional joint probability distributions

can be described by a rather compact set of parameters. Identifying these parameters

is part of this step.

1.3.2 Transient Behavior

The second step in the study of the stochastic process is to study its transient behav-

ior. We concentrate on two aspects of transient behavior. First, we study the marginal

distribution, that is, the distribution of Xn or X(t) for a fixed n or t. We develop

methods of computing this distribution. In many cases, the distribution is too hard

to compute, in which case we satisfy ourselves with the moments or transforms of

the random variable. (See Appendices B through F.) Mostly we shall find that the

computation of transient behavior is quite difficult. It may involve computing matrix

powers, or solving sets of simultaneous differential equations, or inverting trans-

forms. Very few processes have closed form expressions for transient distributions,

for example, the Poisson process. Second, we study the occupancy times, that is, the

expected total time the process spends in different states up to time n or t.

1.3.3 Limiting Distribution

Since computing the transient distribution is intractable in most cases, we next turn

our attention to the limiting behavior, viz., studying the convergence of Xn or X(t)
as n or t tends to infinity. Now, there are many different modes of convergence of a

sequence of random variables: convergence in distribution, convergence in moments,

convergence in probability, and convergence with probability one (or almost sure

convergence). These are described in Appendix G. Different stochastic processes ex-

hibit different types of convergence. For example, we generally study convergence

in distribution in Markov chains. For renewal processes, we obtain almost sure con-

vergence results.

The first question is if the convergence occurs at all, is the limit unique when it

does occur. This is generally a theoretical exploration, and proceeds in a theorem-

proof fashion. The second part is how to compute the limit if the convergence does

occur and the limit is unique. Here we may need mathematical tools like matrix alge-

bra, systems of difference and differential equations, Laplace and Laplace-Stieltjes

transforms, generating functions, and, of course, numerical methods. The study of

the limiting distributions forms a major part of the study of the stochastic processes.
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1.3.4 First Passage Times

Let {Xn, n ≥ 0} be a stochastic process with state-space S. Let B ⊂ S be a given

subset of states. The first passage time to B is a random variable defined as

T = min{n ≥ 0 : Xn ∈ B}. (1.10)

Thus the stochastic “passes into”B for the first time at time T . We can define similar

first passage time in a continuous time stochastic process as follows:

T = min{t ≥ 0 : X(t) ∈ B}. (1.11)

We study the random variable T : the probability that it is finite, its distribution, mo-

ments, transforms, etc. The first passage times occur naturally when we use stochastic

processes to model a real life system. For example it may represent time until failure,

or time until bankruptcy, or time until a production process goes out of control and

requires external intervention, etc.

1.3.5 Costs and Rewards

Stochastic processes in this book are intended to be used to model systems evolv-

ing in time. These systems typically incur costs or earn rewards depending on their

evolution. In practice, the system designer has a specific set of operating policies in

mind. Under each policy the system evolution is modeled by a specific stochastic

process which generates specific costs or rewards. Thus the analysis of these costs

and rewards (we shall describe the details in later chapters) is critical in evaluating

comparative worth of the policies. Thus we develop methods of computing different

cost and reward criteria for the stochastic processes.

If the reader keeps in mind these five main aspects that we study for each class

of stochastic processes, the organization of the rest of the book will be relatively

transparent. The main aim of the book is always to describe general methods of

studying the above aspects, and not to go into special methods, or “tricks,” that work

(elegantly) for specialized problems, but fail in general. For this reason, some of

our analysis may seem a bit long winded for those who are already familiar with

the tricks. However, it is the general philosophy of this book that the knowledge of

general methods is superior to that of the tricks. Finally, the general methods can be

adopted for implementation on computers, while the tricks cannot. This is important,

since computers are a great tool for solving practical problems.



CHAPTER 2

Discrete-Time Markov Chains:
Transient Behavior

“Come, let us hasten to a higher plane

Where dyads tread the fairy fields of Venn,

Their indices bedecked from one to n

commingled in an endless Markov Chain!”

– Stanislaw Lem, ‘Cyberiad’

2.1 Definition and Characterization

Consider a system that is modeled by a discrete-time stochastic process {Xn, n ≥
0} with a countable state-space S, say {0, 1, 2, · · ·}. Consider a fixed value of n
that we shall call “the present time” or just the “present.” Then Xn is called the

present (state) of the system, {X0, X1, · · · , Xn−1} is called the past of the system,

and {Xn+1, Xn+2, · · ·} is called the future of the system. If Xn = i and Xn+1 = j,
we say that the system has jumped (or made a transition) from state i to state j from

time n to n+ 1.

In this chapter we shall restrict attention to the systems having the following prop-

erty: if the present state of the system is known, the future of the system is independent

of the past. This is called the Markov property and this seemingly innocuous prop-

erty has surprisingly far-reaching consequences. For a system having the Markov

property, the past affects the future only through the present; or, stated in yet another

way, the present state of the system contains all the relevant information needed

to predict the future of the system in a probabilistic sense. The stochastic process

{Xn, n ≥ 0} with state-space S used to describe a system with Markov property is

called a discrete-time Markov chain, or, DTMC for short. We give the formal defini-

tion below.

9
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Definition 2.1 Discrete Time Markov Chain. A stochastic process {Xn, n ≥
0} with countable state-space S is called a DTMC if

(i) for all n ≥ 0, Xn ∈ S,
(ii) for all n ≥ 0, and i, j ∈ S,

P(Xn+1 = j|Xn = i,Xn−1, Xn−2, · · · , X0) = P(Xn+1 = j|Xn = i). (2.1)

Equation 2.1 is a formal way of stating the Markov property for discrete-time

stochastic processes with countable state spaces. We next define an important sub-

class of DTMCs called the time-homogeneous DTMCs.

Definition 2.2 Time Homogeneous DTMC. A DTMC {Xn, n ≥ 0} with count-

able state-space S is said to be time-homogeneous if

P(Xn+1 = j|Xn = i) = pi,j for all n ≥ 0, i, j ∈ S. (2.2)

Thus if a time homogeneous DTMC is in state i at time n, it jumps to state j at time

n + 1 with probability pi,j , for all values of n. From now on we assume that the

DTMC is time-homogeneous, unless otherwise specified. Let

P = [pi,j ]

denote the matrix of conditional probabilities pi,j . The matrix P is called the one-

step transition probability matrix or just the transition probability matrix. When S is

finite, say S = {1, 2, · · · ,m}, one can represent P as a matrix as follows:

P =















p11 p12 · · · p1,m−1 p1m

p21 p22 · · · p2,m−1 p2m

...
...

. . .
...

...

pm−1,1 pm−1,2 · · · pm−1,,m−1 pm−1,m

pm1 pm2 · · · pm,m−1 pmm















. (2.3)

Next we define an important property of a matrix.

Definition 2.3 Stochastic Matrix. A matrix P = [pij ] is called stochastic if

(i) pij ≥ 0 for all i, j ∈ S,
(ii)

∑

j∈S pij = 1 for all i ∈ S.
(2.4)

In short, the elements on each row of a stochastic matrix are non-negative and add

up to one. The relevance of this definition is seen from the next theorem.

Theorem 2.1 Transition Probability Matrix. The one-step transition probability

matrix of a DTMC is stochastic.
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Proof. Statement (i) is obvious since pij is a conditional probability. Statement (ii)
can be seen as follows:

∑

j∈S

pij =
∑

j∈S

P(Xn+1 = j|Xn = i),

= P(Xn+1 ∈ S|Xn = i) = 1,

since, according to the definition of DTMC, Xn+1 ∈ S with probability 1.

Next, following the general road map laid out in Chapter 1, we turn our attention

to the question of characterization of a DTMC. Clearly, any stochastic matrix can

be thought of as a transition matrix of a DTMC. This generates a natural question:

is a DTMC completely characterized by its transition probability matrix? In other

words, are the finite dimensional distributions of a DTMC completely specified by

its transition probability matrix? The answer is no, since we cannot derive the distri-

bution ofX0 from the transition probability matrix, since its elements are conditional

probabilities. So suppose we specify the distribution of X0 externally. Let

ai = P(X0 = i) i ∈ S, (2.5)

and

a = [ai]i∈S (2.6)

be a row vector representing the probability mass function (pmf) of X0. We say that

a is the initial distribution of the DTMC.

Next we ask: is a DTMC completely described by its transition probability matrix

and its initial distribution? The following theorem answers this question in the affir-

mative. The reader is urged to read the proof, since it clarifies the role played by the

Markov property and the time-homogeneity of the DTMC.

Theorem 2.2 Characterization of a DTMC.

A DTMC {Xn, n ≥ 0} is completely described by its initial distribution a and the

transition probability matrix P .

Proof. We shall prove the theorem by showing how we can compute the finite di-

mensional joint probability mass function P(X0 = i0, X1 = i1, · · · , Xn = in) in

terms of a and P . Using Equation 2.5 we get

ai0 = P(X0 = i0), i0 ∈ S.

Next we have

P(X0 = i0, X1 = i1) = P(X1 = i1|X0 = i0)P(X0 = i0)

= ai0pi0,i1

by using the definition of P . Now, as an induction hypothesis, assume that

P(X0 = i0, X1 = i1, · · · , Xk = ik) = ai0pi0,i1pi1,i2 · · · pik−1,ik
(2.7)
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for k = 1, 2, · · · , n− 1. We shall show that it is true for k = n. We have

P(X0 = i0, X1 = i1, · · · , Xn = in)

= P(Xn = in|Xn−1 = in−1, · · · , X1 = i1, X0 = i0) ·
P(X0 = i0, X1 = i1, · · · , Xn−1 = in−1)

= P(Xn = in|Xn−1 = in−1)P(X0 = i0, X1 = i1, · · · , Xn−1 = in−1)

(by Markov Property)

= pin−1,in
P(X0 = i0, X1 = i1, · · · , Xn−1 = in−1)

(by time homogeneity)

= pin−1,in
ai0pi0,i1pi1,i2 · · · pin−2,in−1

(by induction hypothesis),

which can be rearranged to show that the induction hypothesis holds for k = n.

Hence the result follows.

The transition probability matrix of a DTMC can be represented graphically by its

transition diagram, which is a directed graph with as many nodes as there are states

in the state-space, and a directed arc from node i to node j if pij > 0. In particular, if

pii > 0, there is a self loop from node i to itself. The dynamic behavior of a DTMC

is best visualized via its transition diagram as follows: imagine a particle that moves

from node to node by choosing the outgoing arcs from the current node with the

corresponding probabilities. In many cases it is easier to describe the DTMC by its

transition diagram, rather than displaying the transition matrix.

Example 2.1 Transition Diagram. Consider a DTMC {Xn, n ≥ 0} on state-space

{1, 2, 3} with the following transition probability matrix:

P =





.1 .2 .7

.6 0 .4

.4 0 .6



 .

The transition diagram corresponding to this DTMC is shown in Figure 2.1.

Example 2.2 Joint Distributions. Let {Xn, n ≥ 0} be a DTMC on state-space

{1, 2, 3, 4} and transition probability matrix given below:

P =









0.1 0.2 0.3 0.4
0.2 0.2 0.3 0.3
0.5 0.0 0.5 0.0
0.6 0.2 0.1 0.1









.

The initial distribution is

a = [0.25 0.25 0.25 0.25].

1. Compute P(X3 = 4, X2 = 1, X1 = 3, X0 = 1). From Equation 2.7, we get

P(X3 = 4, X2 = 1, X1 = 3, X0 = 1)

= a1p13p31p14 = 0.25 × 0.3 × 0.5 × 0.4 = 0.015.
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Figure 2.1 Transition diagram of a DTMC.

2. Compute P(X3 = 4, X2 = 1, X1 = 3). We have

P(X3 = 4, X2 = 1, X1 = 3)

=

4
∑

i=1

P(X3 = 4, X2 = 1, X1 = 3|X0 = i)P(X0 = i)

=

4
∑

i=1

aipi3p31p14 = 0.06.

2.2 Examples

Now we describe several examples of time homogeneous DTMCs. In many cases

we omit the specification of the initial distribution, since it can be arbitrary. Also,

we specify the transition probability matrix, or the transition probabilities, or the

transition diagram, depending on what is more convenient. As we saw before, they

carry the same information, and are thus equivalent.

Example 2.3 Two-State DTMC. One of the simplest DTMCs is one with two

states, labeled 1 and 2. Thus S = {1, 2}. Such a DTMC has a transition matrix

as follows:
[

α 1 − α
1 − β β

]

,

where 0 ≤ α, β ≤ 1. The transition diagram is shown in Figure 2.2. Thus if the

DTMC is in state 1, it jumps to state 2 with probability 1 − α; if it is in state 2, it

jumps to state 1 with probability 1 − β, independent of everything else.

Next we give several examples of two-state DTMCs.

Example 2.4 Two-State Weather Model. Consider a simple weather model in

which we classify the day’s weather as either “sunny” or “rainy.” On the basis of
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1 – α

1 – β

βα 1 2

Figure 2.2 Transition diagram of a two-state DTMC.

previous data we have determined that if it is sunny today, there is an 80% chance

that it will be sunny tomorrow regardless of the past weather; whereas, if it is rainy

today, there is a 30% chance that it will be rainy tomorrow, regardless of the past.

Let Xn be the weather on day n. We shall label sunny as state 1, and rainy as state 2.

Then {Xn, n ≥ 0} is a DTMC on S = {1, 2} with transition probability matrix
[

.8 .2

.7 .3

]

.

Clearly, the DTMC has a higher tendency to move to state 1, thus implying that this

is a model of the weather at a sunny place!

Example 2.5 Clinical Trials. Suppose two drugs are available to treat a particular

disease, and we need to determine which of the two drugs is more effective. This is

generally accomplished by conducting clinical trials of the two drugs on actual pa-

tients. Here we describe a clinical trial setup that is useful if the response of a patient

to the administered drug is sufficiently quick, and can be classified as “effective” or

“ineffective.” Suppose drug i is effective with probability pi, (i = 1, 2). In practice

the values of p1 and p2 are unknown, and the aim is to determine if p1 ≥ p2 or

p2 ≥ p1. Ethical reasons compel us to use the better drug on more patients. This is

achieved by using the play the winner rule as follows.

The first patient is given either drug 1 or 2 at random. If the nth patient is given

drug i (i = 1, 2) and it is observed to be effective for that patient, then the same drug

is given to the (n+ 1)-st patient; if it is observed to be ineffective then the (n + 1)-
st patient is given the other drug. Thus we stick with a drug as long as its results

are good; when we get a bad result, we switch to the other drug – hence the name

“play the winner.” Let Xn be the drug (1 or 2) administered to the n-th patient. If the

successive patients are chosen from a completely randomized pool, then we see that

P(Xn+1 = 1|Xn = 1, Xn−1, · · · , X1)

= P(drug 1 is effective on the n-th patient) = p1.

We can similarly derive P(Xn+1 = j|Xn = i; history) for all other (i, j) combina-

tions, thus showing that {Xn, n ≥ 0} is a DTMC. Its transition probability matrix is

given by
[

p1 1 − p1

1 − p2 p2

]

.
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If p1 > p2, the DTMC has a higher tendency to move to state 1, thus drug 1 (the better

drug) is used more often. Thus the ethical purpose served by the play the winner

rule.

Example 2.6 Two-State Machine. Consider a machine that can be either up or

down. If it is up on day n, it is up on day n + 1 with probability pu, independent

of the past. If it is down on day n, it is down on day n + 1 with probability pd,

also independent of the past. Let Xn be the state of the machine (0 if is down, and

1 if it is up) on day n. We see that the Markov property is given as an assumption.

Thus {Xn, n ≥ 0} is a DTMC on state-space S = {0, 1} with transition probability

matrix given by
[

pd 1 − pd

1 − pu pu

]

.

Note that the above transition probability matrix implies that the up and down times

are geometrically distributed.

Example 2.7 Two-Machine Workshop. Suppose a work shop has two identical

machines as described in Example 2.6. The two machines behave independently of

each other. Let Xn be the number of working machines on day n. Is {Xn, n ≥ 0} a

DTMC?

The state-space is S = {0, 1, 2}. Next we verify the Markov property given by

Equation 2.1. For example, we have

P(Xn+1 = 0|Xn = 0, Xn−1, · · · , X0)

= P(Xn+1 = 0|Both machines are down on day n,Xn−1, · · · , X0)

= P(Both machines are down on day n+ 1| Both machines are down on day n)

= pdpd.

Similarly we can verify that P(Xn+1 = j|Xn = i,Xn−1, · · · , X0) depends only on

i and j for all i, j ∈ S. Thus {Xn, n ≥ 0} is a DTMC on state-space S = {0, 1, 2}
with transition probability matrix given by

P =





p2
d pd(1 − pu) (1 − pu)2

pd(1 − pu) pdpu + (1 − pd)(1 − pu) pu(1 − pd)
(1 − pu)2 2pu(1 − pu) p2

u



 .

This example can be extended to r ≥ 2 machines in a similar fashion.

Example 2.8 Independent and Identically Distributed Random Variables. Let

{Xn, n ≥ 0} be a sequence of iid random variables with common probability mass

function (pmf)

αj = P(Xn = j), j ≥ 0.

Then {Xn, n ≥ 0} is a DTMC on S = {0, 1, 2, · · ·} with transition probabilities

given by

pi,j = P(Xn+1 = j|Xn = i,Xn−1, · · · , X0) = P(Xn+1 = j) = αj ,
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for all i ∈ S. Thus the transition probability matrix P of this DTMC has identical

rows, each row being the row vector α = [α0, α1, · · ·].

Example 2.9 Random Walk. Let {Zn, n ≥ 1} be a sequence of iid random vari-

ables with common pmf

αk = P(Xn = k), k = 0,±1,±2, · · · .
Define

X0 = 0, Xn =

n
∑

k=1

Zn, n ≥ 1.

The {Xn, n ≥ 0} has state-space S = {0,±1,±2, · · ·}. To verify that it is a DTMC,

we see that, for all i, j ∈ S,

P(Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P(
n+1
∑

k=1

Zk = j|
n
∑

k=1

Zk = i,Xn−1, · · · , X0)

= P(Zn+1 = j − i) = αj−i.

Thus {Xn, n ≥ 0} is a DTMC with transition probabilities

pi,j = αj−i, i, j ∈ S.

This random walk is called space-homogeneous, or state-independent, since, Zn,

the size of the n-th step does not depend on the position of the random walk at

time n.

Example 2.10 State-Dependent Random Walk.

Consider a particle that moves randomly on a doubly infinite one dimensional lat-

tice where the lattice points are labeled · · · ,−2,−1, 0, 1, 2, · · · . The particle moves

by taking steps of size 0 or 1 or -1 as follows: if it is on site i at time n, then at time

n+ 1 it moves to site i+ 1 with probability pi, or to site i− 1 with probability qi, or

stays at site i with probability ri = 1− pi − qi, independent of its motion up to time

n. LetXn be the position of the particle (the label of the site occupied by the particle)

at time n. Thus {Xn, n ≥ 0} is a DTMC on state-space S = {0,±1,±2, · · ·} with

transition probabilities given by

pi,i+1 = pi, pi,i−1 = qi, pi,i = ri, i ∈ S.

This random walk is not space homogeneous, since the step size distribution depends

upon where the particle is. When ri = 0, pi = p, qi = q for all i ∈ S, we call it a

simple random walk. Further, if p = q = 1/2, we call it a simple symmetric random

walk.

If q0 = 0 and P(X0 ≥ 0) = 1, the random walk {Xn, n ≥ 0} has state-space

S = {0, 1, 2, · · ·}. If q0 = r0 = 0 (and hence p0 = 1), the random walk is said to

have a reflecting barrier at 0, since whenever the particle hits site zero, it “bounces

back” to site 1. If q0 = p0 = 0 (and hence r0 = 1), the random walk is said to have
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an absorbing barrier at 0, since in this case when the particle hits site zero, it stays

there forever. If, for some integer N ≥ 1, q0 = pN = 0, and P(0 ≤ X0 ≤ N) = 1,

the random walk has state-space S = {0, 1, 2, · · · , N − 1, N}. The barrier at N can

be reflecting or absorbing according to whether rn is zero or one. Simple random

walks with appropriate barriers have many applications. We describe a few in the

next three examples.

Example 2.11 Gambler’s Ruin. Consider two gamblers, A and B, who have a

combined fortune of N dollars. They bet one dollar each on the toss of a coin. If the

coin turns up heads, A wins a dollar from B, and if the coin turns up tails, B wins

a dollar from A. Suppose the successive coin tosses are independent, and the coin

turns up heads with probability p and tails with probability q = 1 − p. The game

ends when either A or B is broke (or ruined).

Let Xn denote the fortune of gambler A after the n-th toss. We shall assume the

coin tossing continues after the game ends, but no money changes hands. With this

convention we can analyze the stochastic process {Xn, n ≥ 0}. Obviously, if Xn =
0 (A is ruined) or Xn = N (B is ruined), Xn+1 = Xn. If 0 < Xn < N , we have

Xn+1 =

{

Xn + 1 with probability p
Xn − 1 with probability q.

This shows that {Xn, n ≥ 0} is a DTMC on state-space S = {0, 1, 2, · · · , N}. Its

10 2 N–1 11 N

q q q q

PP P P

Figure 2.3 Transition diagram of the gambler’s ruin DTMC.

transition diagram is shown in Figure 2.3. Thus {Xn, n ≥ 0} is a simple random

walk on {0, 1, 2, · · · , N} with absorbing barriers at 0 and N .

A somewhat more colorful situation giving rise to the same Markov chain involves

a suitably intoxicated person taking a step towards home (at site 0) with probability

q or towards a bar (placed at site N ) with probability p, in a random manner. As soon

as he reaches the home or the bar he stays there forever. The random walk executed

by such a person is called the “drunkard’s walk.”

Example 2.12 Discrete-Time Queue: Bernoulli Arrivals and Departures. Con-

sider a service system where arrivals and departures occur at times n = 0, 1, 2, · · ·.
At each time n, a customer is removed (a departure occurs) from the head of the line

(if the queue is not empty) with probability q, then a customer is added (an arrival

occurs) at the end of the line with probability p (0 ≤ p, q ≤ 1). All the arrivals

and departures are independent of everything else. Thus the number of arrivals and

(potential) departures at each time are Bernoulli random variables. Let Xn be the

number of customers in the system at time n, after the departures and arrivals at n
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are accounted for. Here we study the queue-length process {Xn, n ≥ 0}. Its state-

space is S = {0, 1, 2, · · ·}. Now, for i > 0, we have

P(Xn+1 = i+ 1|Xn = i,Xn−1, · · · , X0)

= P(one arrival and no departure at time n+ 1|Xn = i)

= p(1 − q).

Carrying out similar calculations, one can show that {Xn, n ≥ 0} is a simple random

walk on {0, 1, 2, · · ·} with the following parameters:

p0 = p q0 = 0, pi = p(1 − q), qi = q(1 − p), i ≥ 1.

We also have ri = 1 − pi − qi. Note that the barrier at 0 is neither absorbing, nor

reflecting.

Example 2.13 Urn Model. Consider two urns labeled A and B, containing a total

ofN white balls andN red balls among them. An experiment consists of picking one

ball at random from each urn and interchanging them. This experiment is repeated

in an independent fashion. Let Xn be the number of white balls in urn A after n
repetitions of the experiment. Assume that initially urnA contains all the white balls,

and urn B contains all the red balls. Thus X0 = N . Note that Xn tells us precisely

the contents of the two urns after n experiments. That {Xn, n ≥ 0} is a DTMC

on state-space S = {0, 1, · · · , N} can be seen from the following calculation. For

0 < i < N

P(Xn+1 = i+ 1|Xn = i,Xn−1, · · · , X0)

= P(A red ball from A and a white ball from B is picked on the n-th experiment)

=
N − i

N
· N − i

N
= pi,i+1.

The other transition probabilities can be computed similarly to see that {Xn, n ≥
0} is a random walk on S = {0, 1, · · · , N} with the following parameters:

r0 = 0, p0 = 1,

qi =

(

i

N

)2

, ri = 2

(

i

N

)

·
(

N − i

N

)

, pi =

(

N − i

N

)2

, 0 < i < N,

rN = 0, qN = 1.

Thus the random walk has reflecting barriers at 0 and N . This urn model was used

initially by Ehrenfest to model diffusion of molecules across a permeable membrane.

One can think of the white balls and red balls as the molecules of two different gases

and the switching mechanism as the model for the diffusion across the membrane. It

also appears as Moran model in genetics.

Example 2.14 Brand Switching. A customer chooses among three brands of beer,

say A, B, and C, every week when he buys a six-pack. Let Xn be the brand he

purchases in week n. From his buying record so far, it has been determined that
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{Xn, n ≥ 0} is a DTMC with state-space S = {A,B,C} and transition probability

matrix given below:

P =







0.1 0.2 0.7

0.2 0.4 0.4

0.1 0.3 0.6






. (2.8)

Thus if he purchases brand A beer in week n, he will purchase brand C beer in

the next week with probability .7, regardless of the purchasing history and the value

of n. Such brand switching models are used quite often in practice to analyze and

influence consumer behavior. A major effort is involved in collecting and analyzing

data to estimate the transition probabilities. This involves observing the buying habits

of a large number of customers.

Example 2.15 Success Runs. Consider a game where a coin is tossed repeatedly

in an independent fashion. Whenever the coin turns up heads, which happens with

probability p, the player wins a dollar. Whenever the coin turns up tails, which hap-

pens with probability q = 1 − p, the player loses all his winnings so far. Let Xn

denote the players fortune after the n-th toss. We have

Xn+1 =

{

0 with probability q

Xn + 1 with probability p.

This shows that {Xn, n ≥ 0} is a DTMC on state-space S = {0, 1, 2, · · ·} with

transition probabilities

pi,0 = q, pi,i+1 = p, i ∈ S.

A slightly more general version of this DTMC can be considered with transition

3210
p0 p1 p2

q1
q2

q3

Figure 2.4 Transition diagram for the success-runs DTMC.

probabilities

pi,0 = qi, pi,i+1 = pi, i ∈ S.

Such a DTMC is called a success runs Markov chain. Its transition diagram is shown

in Figure 2.4.

Example 2.16 Production-Inventory System: Batch Production. Consider a pro-

duction inventory system in discrete time where production occurs in integer valued

random batches and demands occur one at a time at times n = 0, 1, 2, · · ·. The inven-

tory of unsold items is maintained in a warehouse. Let Xn be the number of items

in the warehouse at time n. If the warehouse is empty when a demand occurs, the
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demand is lost. Let Yn be the size of the batch produced at time n (after the demand

is satisfied at time n). This implies that

Xn+1 =

{

Yn if Xn = 0
Xn − 1 + Yn if Xn > 0.

(2.9)

This can also be written as

Xn+1 = max{Xn − 1 + Yn, Yn}.
Now suppose {Yn, n ≥ 0} is a sequence of iid random variables, with common pmf

given by

αk = P(Yn = k), k = 0, 1, 2, · · · .
We shall show that under this assumption {Xn, n ≥ 0} is a DTMC on state-space

S = {0, 1, 2, · · ·}. First, we have

P(Xn+1 = j|Xn = 0, Xn−1, · · · , X0)

= P(Yn = j|Xn = 0, Xn−1, · · · , X0) = αj

since Yn is independent of X0, X1, · · · , Xn. Similarly, for i > 0, we have

P(Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P(Xn − 1 + Yn = j|Xn = i,Xn−1, · · · , X0)

= P(Yn = j − i+ 1|Xn = i,Xn−1, · · · , X0) = αj−i+1

assuming j ≥ i − 1. Otherwise the above transition probability is zero. Thus

{Xn, n ≥ 0} is a DTMC with transition probability matrix given by

P =



















α0 α1 α2 α3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2 · · ·
0 0 α0 α1 · · ·
0 0 0 α0 · · ·
...

...
...

...
. . .



















. (2.10)

Note that {Xn, n ≥ 0} can jump up by any integral amount in one step, but can

decrease by at most one. Matrices of the form above are known as the upper Hessen-

berg matrices. Markov chains with this type of transition probability matrix arise in

many applications, especially in queueing theory.

Example 2.17 Production-Inventory System: Batch Demands. Now consider

a production-inventory system where the demands occur in integer valued random

batches and the production occurs one at a time at times n = 0, 1, 2, · · ·. The inven-

tory of unsold items is maintained in a warehouse. Let Xn be the number of items

in the warehouse at time n. We assume that the production occurs before demand, so

that Xn + 1 items are available to satisfy the demand at time n. Let Yn be the size of

the batch demand at time n. Any part of the demand that cannot be satisfied is lost.



EXAMPLES 21

This implies that

Xn+1 =

{

0 if Yn ≥ Xn + 1
Xn + 1 − Yn if Yn < Xn + 1.

This can also be written as

Xn+1 = max{Xn + 1 − Yn, 0}. (2.11)

Now suppose {Yn, n ≥ 0} is a sequence of iid random variables, with common pmf

given by

αk = P(Yn = k), k = 0, 1, 2, · · · .
We shall show that under this assumption {Xn, n ≥ 0} is a DTMC on state-space

S = {0, 1, 2, · · ·}. We have, for 0 < j ≤ i+ 1

P(Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P(max{Xn + 1 − Yn, 0} = j|Xn = i,Xn−1, · · · , X0)

= P(Xn + 1 − Yn = j|Xn = i,Xn−1, · · · , X0)

= P(Yn = i− j + 1|Xn = i,Xn−1, · · · , X0) = αi−j+1

since Yn is independent of X0, X1, · · · , Xn. For j = 0, we have

P(Xn+1 = 0|Xn = i,Xn−1, · · · , X0)

= P(max{Xn + 1 − Yn, 0} = j|Xn = i,Xn−1, · · · , X0)

= P(Yn ≥ i+ 1|Xn = i,Xn−1, · · · , X0)

=
∞
∑

k=i+1

αk = βi(say).

All other transition probabilities are zero. Thus {Xn, n ≥ 0} is a DTMC with tran-

sition probability matrix given by

P =















β0 α0 0 0 0 · · ·
β1 α1 α0 0 0 · · ·
β2 α2 α1 α0 0 · · ·
β3 α3 α2 α1 α0 · · ·
...

...
...

...
...

. . .















. (2.12)

Note that {Xn, n ≥ 0} can increase by at most one. Matrices of the form above are

known as the lower Hessenberg matrices. Markov chains with this type of transition

probability matrix also arise in many applications, again in queueing theory.

The last two examples illustrate a general class of DTMCs {Xn, n ≥ 0} that are

generated by the following recursion

Xn+1 = f(Xn, Yn), n ≥ 0,

where {Yn, n ≥ 0} is a sequence of iid random variables. The reader is urged to

construct more DTMCs of this structure for further understanding of the DTMCs.
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2.3 DTMCs in Other Fields

In this section we present several examples where the DTMCs have been used to

model real life situations.

2.3.1 Genomics

In 1953 Francis Crick and James Watson, building on the experimental research of

Rosalind Franklin, first proposed the double helix model of DNA (deoxyribonu-

cleic acid), the key molecule that contains the genetic instructions for the making

of a living organism. It can be thought of as a long sequence of four basic nu-

cleotides (or bases): adenine, cytosine, guanine and thymine, abbreviated asA,C,G,

and T , respectively. The human DNA consists of roughly 3 billion of these bases.

The sequence of these bases is very important. A typical sequence may read as:

CTTCTCAAATAACTGTGCCTC · · ·.
Let Xn be the n-th base in the sequence. It is clear that {Xn, n ≥ 1} is a discrete-

time stochastic process with state-space S = {A,C,G, T }. Clearly, whether it is a

DTMC or not needs to be established by statistical analysis. We will not get into the

mechanics of doing so in this book. By studying a section of the DNA molecule one

might conclude that the {Xn, n ≥ 1} is a DTMC with transition probability matrix

given below (rows and column are ordered as A, C, G, T )

P (1) =









0.180 0.274 0.426 0.120
0.170 0.368 0.274 0.188
0.161 0.339 0.375 0.135
0.079 0.355 0.384 0.182









.

However, by studying another section of the molecule one may conclude that

{Xn, n ≥ 1} is a DTMC with transition probability matrix given below:

P (2) =









0.300 0.205 0.285 0.210
0.322 0.298 0.078 0.302
0.248 0.246 0.298 0.208
0.177 0.239 0.292 0.292









.

Clearly the sequence behaves differently in the two sections. In the first section, with

transition probability matrix P (1), the base G is much more likely to follow A, than

in the second section with transition probability matrix P (2).

The researchers have come up with two ways to model this situation. We describe

them briefly below.

Hidden Markov Models. We assume that DNA molecule is segmented into non-

overlapping sections of random lengths, some of which are described by the matrix

P (1) (called type 1 segments) and the others by the matrix P (2) (called type 2 seg-

ments). We define Yn to be the section (1 or 2) the n-th base falls in. This cannot

be observed. We assume that {Yn, n ≥ 1} is itself a DTMC on state-space {1, 2},
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with the following transition probability matrix (estimated by the statistical analysis

of the entire sequence):

Q =

[

.1 .9

.3 .7

]

.

The above transition probability matrix says that the sequence is more likely to switch

from section type 1 to 2, than from 2 to 1. Now we create a bivariate stochastic

process {(Xn, Yn), n ≥ 1}. It is clear that this is a DTMC. For example,

P(Xn+1 = b, Yn+1 = j|Xn = a, Yn = i) = Qi,jP (i)a,b,

for i, j ∈ {1, 2} and a, b ∈ {A,C,G, T }. Such a DTMC model is called a hidden

Markov model, because we can observe Xn, but not Yn. The second component is

only a modeling tool to describe the behavior of the DNA molecule.

Higher-Order Markov Models. We illustrate with an example of a second order

DTMCs. A stochastic process {Xn, n ≥ 0} is called a second order DTMC on

state-space S if, for n ≥ 1,

P(Xn+1 = k|Xn = j,Xn−1 = i,Xn−2, · · · , X0)

= P(Xn+1 = k|Xn = j,Xn−1 = i) = p(i,j);k,

for all i, j, k ∈ S. Note that we do not need new theory to study such processes.

We simply define Zn = (Xn, Xn−1). Then {Zn, n ≥ 1} is a DTMC on S × S.

Such higher order Markov models have been found useful in DNA analysis since

it has been empirically observed that, for example, the frequency with which A is

observed to follow CG, is different than the frequency with which it follows AG.

This should not be the case if the simple 4-state DTMC model is valid. For our

DNA sequence, the second order Markov model produces a DTMC with a state-

space having 16 elements {AA,AC, · · · , TG, TT }, and needs a 16 by 16 transition

probability matrix to describe it. The matrix has only 16*4 non-zero entries since the

Zn process can jump from a state to only four other states. The higher order Markov

models have more parameters to estimate (the k-th order Markov model has a state-

space of cardinality 4k), but generally produce a better fit, and a better description of

the sequence.

One can try to use non-homogeneous DTMCs to model a DNA molecule, but this

tends to have too many parameters (one transition probability matrix for each n),

and cannot be estimated from a single sequence. The reader is referred to Biological

Sequence Analysis by Durbin, Eddy, Krogh, and Mitchison (2001) for more details.

2.3.2 Genetics

The study of genetics originated with Gregor Mendel’s pioneering experiments on

the interbreeding of pea plants. Since then the subject of genetics, based on solid ex-

perimental work, has given rise to sophisticated stochastic models. We shall illustrate

here the simplest models from mathematical genetics. First we introduce some basic

background information about population genetics.
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It is well known that the physical characteristics like skin color, eye color, height,

etc., are passed from parents to the children though genes. Genes can be classified

as dominant (d) or recessive (r). Each cell in the parent contains two genes for each

characteristic. A human DNA contains 20,000 to 30,000 distinct gene pairs. During

conception, a cell from each parent contributes one of its genes from each pair to

create a complete new cell of the offspring.

For example, consider a particular characteristic such as presence or absence of

skin pigmentation. An individual who carries two dominant genes for this character-

istic is denoted by dd and is called dominant, an individual carrying two recessive

genes is called recessive and is denoted by rr, and an individual carrying one reces-

sive and one dominant gene is called hybrid, denoted by dr. The physical charac-

teristic of a dd individual is indistinguishable from that of a dr individual, i.e., they

have different genotypes, but the same phenotype.

The Genotype Evolution Model. Consider a population of two individuals. We rep-

resent the state of the population by specifying the genotype of each individual. Thus

a state (dd, dd) means both individuals are dominant. There are six possible states

of the population: S = {(dd, dd), (dd, dr), (dd, rr), (dr, dr), (dr, rr), (rr, rr)}. For

example, suppose the initial state of the population is (dd, dr). When these two in-

dividuals produce an offspring, there are four possibilities—depending upon which

gene from each parent the offspring inherits—namely, dd, dr, dd, dr. Thus the off-

spring will be dominant with probability .5, and hybrid with probability .5. Suppose

the initial two individuals produce two independent offsprings. Thus the next gen-

eration again consists of two individuals. This process is repeated indefinitely. Let

Xn be the state of the population in the n-th generation. Then it can be seen that

{Xn, n ≥ 0} is a DTMC on state—space S with transition probability matrix given

below (where the rows and columns are indexed in the same sequence as in S):

P =

















1 0 0 0 0 0
1/4 1/2 0 1/4 0 0
0 0 0 1 0 0

1/16 1/4 1/8 1/4 1/4 1/16
0 0 0 1/4 1/2 1/4
0 0 0 0 0 1

















. (2.13)

Thus once the population state reaches (dd, dd) or (rr, rr), it stays that way forever.

This model can be extended to populations of size more than two, however, the state-

space gets increasingly large. The next two models attempt to alleviate this difficulty.

The Wright-Fisher Model. Consider a population of a fixed number, N , of genes.

If i of these are dominant and N − i are recessive, we say that the state of the popu-

lation is i. The composition of the N genes in the next generation is determined by

randomly sampling N genes from this population with replacement in an indepen-

dent fashion. Let Xn be the state of the population in the n-th generation.

Since a dominant gene is picked with probability Xn/N and a recessive gene is

picked with probability 1 −Xn/N , it can be seen that {Xn, n ≥ 0} is a DTMC on
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state-space S = {0, 1, 2, · · · , N} with transition probabilities:

pi,j =

(

N

j

)(

i

N

)j (

1 − i

N

)N−j

, i, j ∈ S.

In other words,

Xn+1 ∼ Bin(N,Xn/N).

Once all the genes in the population are dominant (state N ), or recessive (state 0)

they stay that way forever.

The Moran Model. This model also considers a population with a fixed number,N ,

of genes. If i of these are dominant andN−i are recessive, we say that the state of the

population is i. Unlike in the Fisher-Wright model, the composition of genes in the

population changes by sampling one gene from the exiting population, and replacing

a randomly chosen gene with it. Let Xn be the state of the population after the n-th

step. Thus the randomly deleted gene is dominant with probability Xn/N and the

randomly added gene is independent of the deleted gene, and is dominant with prob-

ability Xn/N . Thus {Xn, n ≥ 0} is a simple random walk on S = {0, 1, 2, · · · , N}
with parameters:

p0 = 0, r0 = 1,

pi = qi =
i

N
·
(

1 − i

N

)

, ri = 1 − pi − qi, 1 ≤ i ≤ N − 1

qN = 0 rN = 1.

States 0 and N are absorbing.

The above two models assume that there are no mutations, migrations, or selec-

tions involved in the process. It is possible to modify the model to account for these

factors. For more details see Statistical Processes of Evolutionary Theory by P. A. P.

Moran.

2.3.3 Genealogy

Genealogy is the study of family trees. In 1874 Francis Galton and Henry Watson

wrote a paper on extinction probabilities of family names, a question that was origi-

nally posed by Galton about the likelihood of famous family names disappearing due

to lack of male heirs. It is observed that ethnic populations such as the Koreans and

Chinese have been using family names that are passed on via male children for sev-

eral thousand years, and hence are left with very few family names. While in other

societies where people assume new family names more easily, or where the tradition

of family names is more recent, have many family names.

In its simplest form, we consider a patriarchal society where the family name

is carried on by the male heirs only. Consider the Smith family tree as shown in

Figure 2.5.

The initiator is Steve Smith, who we shall say constitutes the zeroth generation.

Steve Smith has two sons: Peter and Eric Smith, who constitute the first generation.



26 DISCRETE-TIME MARKOV CHAINS: TRANSIENT BEHAVIOR

Steve

Peter Eric

Robert Edward

Bruce

Figure 2.5 The Smith family tree.

Peter does not have any male offspring, whereas Eric has two: Robert and Edward

Smith. Thus the second generation has two males. The third generation has only one

male: Bruce Smith, who dies without a male heir, and hence the family name Smith

initiated by Steve dies out. We say that the family name of Steve Smith became

extinct in the third generation.

To model this situation let Xn be the number of individuals in the n-th generation,

starting with X0 = 1. We index the individuals of the n-th generation by integers

1, 2, · · · , Xn. Let Yr,n be the number of male offspring to the r-th individual of the

n-th generation. Then we have

Xn+1 =

Xn
∑

r=1

Yr,n. (2.14)

Now suppose {Yr,n} are iid random variables. Then {Xn, n ≥ 0} is a DTMC on

state-space S = {0, 1, 2, · · ·} with transition probabilities

pi,j = P(Xn+1 = j|Xn = i,Xn−1, · · · , X0)

= P

(

Xn
∑

r=1

Yr,n = j|Xn = i,Xn−1, · · · , X0

)

= P

(

i
∑

r=1

Yr,n = j

)

,

where the last probability can be (in theory) computed as a function of i and j. The

{Xn, n ≥ 0} process is called a branching process.
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Typical questions of interest are: What is the probability that the family name

eventually becomes extinct? How many generations does it take before it becomes

extinct, given that it does become extinct? How many total males are produced in the

family? What is the size of the n-th generation?

Although we have introduced the branching process as a model of propagation of

family names, the same models arises in other areas, such as nuclear physics, spread

of diseases, or rumors or chain-letters or internet jokes in very large populations. We

give an example of a nuclear reaction: A neutron (zeroth generation) is introduced

from outside in a fissionable material. The neutron may pass through the material

without hitting any nucleus. If it does hit a nucleus, it will cause a fission resulting in

a random number of new neutrons (first generation). These new neutrons themselves

behave like the original neutron, and each will produce its own random number of

new neutrons through a possible collision. Thus Xn, the number of neutrons after

the n-th generation, can be modeled as a branching process. In nuclear reactors the

evolution of this branching process is controlled by inserting moderator rods in the

fissionable material to absorb some of the neutrons.

2.3.4 Finance

DTMCs have become an important tool in mathematical finance. This is a very rich

and broad subject, hence we concentrate on relatively narrow and basic model of

stock fluctuations. Let Xn be the value of a stock at time n (this could be a day,

or a minute). We assume that {Xn, n ≥ 0} is a stochastic process with state-space

(0,∞), not necessarily discrete, although stock values are reported in integer cents.

Define the return in period n as

Rn =
Xn −Xn−1

Xn−1
, n ≥ 1.

Thus R3 = .1 implies that the stock value increased by 10% from period two to

three, R2 = −.05 is equivalent to saying that the stock value decreased by 5% from

period one to two. From this definition it follows that

Xn = X0

n
∏

i=1

(1 +Ri), n ≥ 1. (2.15)

Thus specifying the stochastic process of returns {Rn, n ≥ 1} along with X0 is

equivalent to specifying the stochastic process {Xn, n ≥ 0} . The simplest model

for the return process is to assume that it is a sequence of iid random variables taking

values in (−1,∞). Note that this ensures that Xn > 0 for all n ≥ 1 if X0 > 0. Also,

since

Xn+1 = Xn(1 +Rn+1), n ≥ 0,

it follows that {Xn, n ≥ 0} is a DTMC with state-space (0,∞), which may not be

discrete.

A further simplification occurs if we assume that {Rn, n ≥ 1} is a sequence of iid
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random variables with common pmf

P(Rn = u) = p, P(Rn = −d) = q = 1 − p,

where 0 ≤ p ≤ 1, u ≥ 0, and 0 ≤ d < 1 are fixed real numbers. Thus if u = .1
and d = .05, the stock goes up by 10% with probability p and goes down by 5%

with probability q = 1 − p in each period. This is a very useful model of discrete

time stock movements and is used frequently in financial literature. To see why it

is called a binomial model, let {Yn, n ≥ 1} be a sequence of iid Ber(p) (Bernoulli

with parameter p) random variables. Then Zn = Y1 + · · ·+Yn is a binomial random

variable with parameters n and p. With this notation we can write Equation 2.15 as

Xn = X0(1 + u)Zn(1 − d)n−Zn .

Note that for each value of X0, Xn can take n discrete values. This model of stock

fluctuations is called the binomial model.

Since stock values can go up or down, investors take a risk when they invest in

stocks, rather than putting their money in a risk-less money market account that gives

a fixed positive rate of return. Hence the financial industry has created several finan-

cial instruments that mitigate or bound such risks. A simple instrument of this type is

the European call option. It gives the holder of the option a right, but not an obliga-

tion, to buy the stock on a specified day, say T , at a specified price, sayK . Clearly, if

XT , the value of the stock on day T , is less than K , the holder will not exercise the

option, and the option will expire with no profit and no loss to the holder. IfXT > K ,

the holder will exercise the option and buy the stock at K , and immediately sell it at

XT and make a tidy profit of XT −K . In general the holder gets max{0, XT −K}
at time T , which is never negative. Thus there is no risk of loss in this financial in-

strument. Clearly, the buyer of this option must be willing to pay a price to buy this

risk-less instrument. How much should she pay? What is the fair value of such an

option? There are many other such options. For example, a put option gives a right

to sell. American versions of these options can be exercised anytime until T , and not

just at time T , as is the case in the European options. Valuation of these options is a

highly technical area, and DTMCs play a major role in the discrete time versions of

these problems. See Options, Futures, and Other Derivatives by J. C. Hull for more

details at an elementary level.

2.3.5 Manpower Planning

Large organizations, such as government, military, or multinational corporations,

employ a large number of people who are generally categorized into several grades

and are promoted from one grade to another depending upon performance, seniority,

and need. The employees also leave the organization from any grade, and new em-

ployees are hired into different grades. Thus the state the organization, described by

the employee histories, changes dynamically over time, and it is of interest to model

this evolution by a stochastic process.
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Here we present a simple stochastic model of an organization consisting of M
employees distributed in N grades. We assume that the number of employees is kept

constant by the hiring of a new employee whenever an existing employee leaves the

organization. We assume that all employees behave independently and identically.

We assume that the grade changes and hiring and departures occur at times n =
1, 2, · · · . If an employee is in grade i at time n, he or she moves to grade j at time

n+ 1 with probability rij , or leaves the organization with probability ri. Clearly, we

must have

ri +
N
∑

j=1

rij = 1, for all i = 1, 2, · · · , N.

When an employee leaves the organization, he or she is replaced instantaneously by a

new employee who starts in grade j with probability aj . Note that this is an extremely

simplified version of reality: we have ignored the issues of seniority, constraints on

the number of employees in a given grade, changing number of employees, etc.

Let Xn(r) be the grade of the r-th employee (1 ≤ r ≤ M ) at time n. Think of r
as an employee identification number, and when the r-th employee leaves the system

and is replaced by a new employee, that new employee gets the identification number

r. From the above description we see that {Xn(r), n ≥ 0} is a DTMC on state-space

S = {1, 2, · · · , N} with transition probabilities given by

pij = P(Xn+1(r) = j|Xn(r) = i)

= P(r-th employee moves from grade i to j)

+P(r-th employee leaves and is replaced by a new one in grade j)

= rij + riaj .

Now let Xn = [Xn(1), Xn(2), · · · , Xn(M)]. Since Xn(r), 1 ≤ r ≤ M are inde-

pendent we see that {Xn, n ≥ 0} is a DTMC on state-space SM , with the following

transition probabilities:

P(Xn+1 = [j1, j2, · · · , jM ]|Xn = [i1, i2, · · · , iM ])

=

M
∏

r=1

P(Xn+1(r) = jr|Xn(r) = ir)

=

M
∏

r=1

pir,jr
.

An alternate method of modeling the system is to define Yn(r) to be the num-

ber of employees in grade r at time n. We leave to the reader to show that Yn =
[Yn(1), Yn(2), · · · , Yn(N)] is a DTMC and compute its transition probabilities.

Typically we are interested in the following: what is the composition of the work-

force at time n? What is the expected number of employees in grade r at time n?

What is the expected amount of time an employee spends in the organization before

leaving? How can we control the distribution of workers in the various grades? We
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shall see how these questions can be answered with the help of the tools we shall

develop in this and the following two chapters.

2.3.6 Telecommunications

Wireless communication via cell phones has become commonly available. In such

a system a wireless device such as a cell phone communicates with a cell tower in a

bi-directional fashion, that is, it receives data from the cell tower and sends data to it.

The rate at which data can be transmitted changes randomly with time due to many

factors, for example, changing position of the user, weather, topology of the terrain,

to name a few. The cell tower knows at all times how many users are registered with

it, and what data-rate is available to each user. We consider a technology in which

the time is slotted into short intervals, say a millisecond long, and the cell tower can

communicate with exactly one user during each time slot.

Let Rn(u) be the data rate (in kilo-bits per second) available to user u in the n-th

slot. It is commonly assumed {Rn(u), n ≥ 0} is a DTMC with a finite state-space,

for example, {38.4, 76.8, 102.6, 153.6, 204.8, 307.2, 614.4, 921.6, 1228.8, 1843.2,
2457.6}, and that the data-rates available to different users are independent. Now

let Xn(u) be the amount of data (in kilobits) waiting for transmission at user u at the

beginning of the n-th time slot, and An(u) be the new data that arrives for the user

in the n-th slot. Thus if user u is served during the n-th time slot, Xn(u) + An(u)
amount of data is available for transmission, out of which Rn(u) is actually trans-

mitted. Using v(n) to denote the user that is served in the n-th slot, we see that the

following recursion holds:

Xn+1(u) =

{

max{Xn(u) +An(u) −Rn(u), 0} if u = v(n)
Xn(u) +An(u) if u 6= v(n).

Now suppose there are a fixed number N of users in the reception area of the cell

tower. Let Rn = [Rn(1), Rn(2), · · · , Rn(N)], Xn = [Xn(1), Xn(2), · · · , Xn(N)],
and An = [An(1), An(2), · · · , An(N)]. Suppose the cell tower knows the state of

the system (Rn, Xn, An) at the beginning of the n-th time slot. It decides which

user to serve next based solely on this information. If we assume that {An(u), n ≥
0} are independent (for different u’s) sequences of iid random variables, it follows

that {(Rn, Xn), n ≥ 0} is a DTMC with a rather large state-space and complicated

transition probabilities.

The cell tower has to decide which user to serve in each time slot so that the data is

transferred at the highest possible rate (maximize throughput) and at the same time

no user is starved for too long (ensure fairness). This is the main scheduling problem

in wireless communications. For example, the cell tower may decide to serve that

user in the n-th time slot who has the highest data rate available to it. This may

maximize the throughput, but may be unfair for those users who are stuck with low

data rate environment. On the other hand, the cell tower may decide to serves the user

u with the highest backlog Xn(u) + An(u). This may also be unfair, since the user

with largest data requirement will be served most of the time. One rule that attempts
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to strike a balance between these two conflicting objectives serves the user u that has

the largest value of min(Rn(u), Xn(u) +An(u)) · (Xn(u) +An(u)).

DTMCs have been used in a variety of problems arising in telecommunications.

The above model is but one example. DTMCs have been used in the analysis of radio

communication networks using protocols like ALOHA, performance of the ethernet

protocol and the TCP protocol in the Internet, to name a few other applications. The

reader is referred to the classic book Data Networks by Bertsekas and Gallager for a

simple introduction to this area.

2.4 Marginal Distributions

The examples in Sections 2.2 and 2.3 show that many real-world systems can be

modeled by DTMCs and provide the motivation to study them. Section 2.1 tells us

how to characterize a DTMC. Now we follow the road map laid out in Chapter 1 and

study the transient behavior of the DTMCs. In this section we first study the marginal

distributions of DTMCs.

Let {Xn, n ≥ 0} be a DTMC on state-space S = {0, 1, 2, · · ·} with transition

probability matrix P and initial distribution a. In this section we shall study the

distribution of Xn. Let the pmf of Xn be denoted by

a
(n)
j = P(Xn = j), j ∈ S, n ≥ 0. (2.16)

Clearly a
(0)
j = aj is the initial distribution. By using the law of total probability we

get

P(Xn = j) =
∑

i∈S

P(Xn = j|X0 = i)P(X0 = i)

=
∑

i∈S

P(Xn = j|X0 = i)ai

=
∑

i∈S

aip
(n)
ij , (2.17)

where

p
(n)
ij = P(Xn = j|X0 = i), i, j ∈ S, n ≥ 0 (2.18)

is called the n-step transition probability, since it is the probability of going from

state i to state j in n transitions. We have

p
(0)
ij = P(X0 = j|X0 = i) = δij , i, j ∈ S, (2.19)

where δij is one if i = j and zero otherwise, and

p
(1)
ij = P(X1 = j|X0 = i) = pij , i, j ∈ S. (2.20)

If we can compute the n-step transition probabilities p
(n)
ij , we can compute the

marginal distribution of Xn. Intuitively, the event of going from state i to state j
involves going from state i to some intermediate state r at time k ≤ n, followed by a
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trajectory from state r to state j in the remaining n − k steps. This intuition is used

to derive a method of computing p
(n)
ij in the next theorem. The proof of the theorem

is enlightening in itself since it shows the critical role played by the assumptions of

Markov property and time homogeneity.

Theorem 2.3 Chapman-Kolmogorov Equations. The n-step transition probabil-

ities satisfy the following equations:

p
(n)
ij =

∑

r∈S

p
(k)
ir p

(n−k)
rj , i, j ∈ S, (2.21)

where k is a fixed integer such that 0 ≤ k ≤ n.

Proof: Fix an integer k such that 0 ≤ k ≤ n. Then

p
(n)
ij = P(Xn = j|X0 = i)

=
∑

r∈S

P(Xn = j,Xk = r|X0 = i)

=
∑

r∈S

P(Xn = j|Xk = r,X0 = i)P(Xk = r|X0 = i)

=
∑

r∈S

P(Xn = j|Xk = r)P(Xk = r|X0 = i) (Markov property)

=
∑

r∈S

P(Xn−k = j|X0 = r)P(Xk = r|X0 = i) (time homogeneity)

=
∑

r∈S

p
(n−k)
rj p

(k)
ir

which can be rearranged to get Equation 2.21. This proves the theorem.

Equations 2.21 are called the Chapman-Kolmogorov equations and can be written

more succinctly in matrix notation. Let

P (n) = [p
(n)
ij ].

It is called the n-step transition probability matrix. The Chapman-Kolmogorov equa-

tions can be written in matrix form as

P (n) = P (k)P (n−k), 0 ≤ k ≤ n. (2.22)

The next theorem gives an important implication of the Chapman-Kolmogorov equa-

tions.

Theorem 2.4 The n-Step Transition Probability Matrix.

P (n) = Pn, (2.23)

where Pn is the n-th power of P .
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Proof: We prove the result by induction on n. Let I be the identity matrix of the

same size as P . Equations 2.19 and 2.20 imply that

P (0) = I = P 0

and

P (1) = P = P 1.

Thus the result is valid for n = 0 and 1. Suppose it is valid for some k ≥ 1. From

Equation 2.22 we get

P (k+1) = P (k)P (1)

= P kP (From the induction hypothesis)

= P k+1.

The theorem then follows by induction.

Example 2.18 Two-State DTMC. Let P be the transition probability matrix of the

two-state DTMC of Example 2.3 on page 13. If α+β = 2, we must have α = β = 1
and hence P = I . In that case Pn = I for all n ≥ 0. If α + β < 2, it can be shown

by induction that, for n ≥ 0,

Pn =
1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

+
(α+ β − 1)n

2 − α− β

[

1 − α α− 1
β − 1 1 − β

]

.

In general such a closed form expression for Pn is not available for DTMCs with

larger state spaces.

Example 2.19 Simple Random Walk. Consider a simple random walk on all inte-

gers with the following transition probabilities

pi,i+1 = p, pi,i−1 = q = 1 − p, −∞ < i <∞,

where 0 < p < 1. Compute

p
(n)
00 = P(Xn = 0|X0 = 0), n ≥ 0.

Starting from state 0, the random walk can return to state 0 only in even number of

steps. Hence we must have

p
(n)
00 = 0, for all odd n.

Now let n = 2k be an even integer. To return to state 0 in 2k steps starting from state

0, the random walk must take a total of k steps to the right, and k steps to the left, in

any order. There are (2k)!/(k!k!) distinct sequences of length 2k made up of k right

and k left steps, and the probability of each sequence is pkqk. Hence we get

p
(2k)
00 =

(2k)!

k!k!
pkqk, k = 0, 1, 2, · · · . (2.24)

In a similar manner one can show that

p
(n)
ij =

(

n

b

)

paqb, if n+ j − i is even (2.25)
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where a = (n + j − i)/2 and b = (n + i − j)/2. If n + j − i is odd the above

probability is zero.

It is not always possible to get a closed form expression for the n-step transition

probabilities, and one must do so numerically. We will study this in more detail in

Section 2.6.

Now let a(n) = [a
(n)
j ] be the probability mass function (pmf) of Xn. The next

Theorem gives a simple expression for a(n).

Theorem 2.5 Probability Mass Function of Xn.

a(n) = aPn, n ≥ 0. (2.26)

Proof: Equation 2.17 can be written in matrix form as

a(n) = a(0)P (n).

The result follows from the observation that a(0) = a, and Equation 2.23.

It follows that the i-th row of Pn gives the pmf of Xn conditioned on X0 =
i. The above theorem gives a numerically straight forward method of computing

the marginal distribution of Xn. We illustrate these concepts with several examples

below.

Example 2.20 A Numerical Example. Let {Xn, n ≥ 0} be the DTMC of Exam-

ple 2.2 on page 12. Compute the pmf of X4.

From Theorem 2.5 we get the pmf of X4 as

a(4) = aP 4 = [0.25 0.25 0.25 0.25] ·









0.1 0.2 0.3 0.4
0.2 0.2 0.3 0.3
0.5 0.0 0.5 0.0
0.6 0.2 0.1 0.1









4

= [0.25 0.25 0.25 0.25] ·









0.3616 0.1344 0.3192 0.1848
0.3519 0.1348 0.3222 0.1911
0.3330 0.1320 0.3340 0.2010
0.3177 0.1404 0.3258 0.2161









= [0.34105 0.13540 0.32530 0.19825].

Example 2.21 Urn Model Continued. Let {Xn, n ≥ 0} be the stochastic process

of the urn model of Example 2.13 on page 18 with N = 10. Compute E(Xn) for

n = 0, 5, 10, 15, and 20, starting with X0 = 10. Using the transition matrix P from

Example 2.13 we get

en = E(Xn|X0 = 10) =

10
∑

i=1

iP(Xn = i|X0 = 10) = aPnb,
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where a = (0, 0, · · · , 0, 1) and b = (0, 1, · · · , 9, 10)′. Numerical computations yield:

e0 = 10, e5 = 6.6384, e10 = 5.5369, e15 = 5.1759, and e20 = 5.0576. We can

see numerically that as n→ ∞, en converges to 5.

Example 2.22 The Branching Process. Consider the branching process {Xn, n ≥
0} introduced in Section 2.3.3. Here we compute µn = E(Xn) and σ2

n = Var(Xn)
as a function of n. Since X0 = 1, clearly

µ0 = 1, σ2
0 = 0. (2.27)

Let µ and σ2 be the mean and variance of the number of offspring to a single individ-

ual. Since X1 is the number of offspring to the single individual in generation zero,

we have

µ1 = µ, σ2
1 = σ2. (2.28)

Furthermore, one can show that

E(Xn) = E

(

Xn−1
∑

r=1

Yr,n−1

)

= µE(Xn−1),

Var(Xn) = Var

(

Xn−1
∑

r=1

Yr,n−1

)

= σ2
E(Xn−1) + µ2Var(Xn−1).

Hence we have the following recursive equations:

µn = µµn−1,

σ2
n = σ2µn−1 + µ2σ2

n−1.

Using the initial condition from Equation 2.27, we can solve these equations to get

µn = µn

σ2
n =

{

nσ2 if µ = 1

σ2µn−1 µn−1
µ−1 if µ 6= 1.

.

Thus, if µ > 1, µn → ∞, as n → ∞, that is, the branching process grows without

bounds. If µ < 1, µn → 0, as n→ ∞, that is, the branching process becomes extinct.

If µ = 1, we see that µn = 1 for all n. We shall later show a rather counterintuitive

result that the branching process becomes extinct with probability 1 in this case.

In the context of nuclear reaction, if µ > 1, the reaction grows without bounds

and we get an explosion or a reactor meltdown. If µ < 1, the reaction is not self

sustaining, and dies out naturally. In a nuclear power station, in the initial firing

stage, one maintains µ > 1 to get the reactor to a “hot” stage. Once the reactor is

hot, moderator rods are inserted to absorb some neutrons, essentially reducing µ,

and the reaction is controlled. The moderator rods are moved in and out constantly

in response to the reactor temperature. If µ < 1, the reaction starts dying out, the

reactor starts cooling, and the moderator rods are pulled out. This raises µ to above

1, the reaction starts exploding, the reactor starts heating up, and the moderator rods

are pushed back in. This control keeps the reactor producing heat (which is converted

to electricity) at a constant rate.
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In the context of propagation of family names, royal (or wealthy) males in histor-

ical times have been known to marry repeatedly until they produce a male heir. This

is an obvious attempt to maintain µ ≥ 1.

Example 2.23 Manpower Planning. Consider the manpower planning model of

Section 2.3.5. Suppose the organization classifies the employees into four grades

{1, 2, 3, 4}. Every year an employee in grades 1, 2, and 3 gets promoted from the

current grade to the next grade with probability .2, or leaves with probability .2, or

stays in the same grade. An employee in the fourth grade leaves with probability .2 or

stays in the same grade. A departing employee is immediately replaced by a new one

starting in grade 1. Suppose the organization has 100 employees distributed evenly in

the four grades. What the expected number of employees in each grade in the eighth

year?

Suppose we pick an employee at random and track his evolution. Let Xn be

the grade of this employee in year n. Thus the initial grade of this employee is

i with probability .25 for i = 1, 2, 3, 4. Following the analysis in Section 2.3.5

it follows that {Xn, n ≥ 0} is a DTMC on {1, 2, 3, 4} with initial distribution

[0.25, 0.25, 0.25, 0.25] and the following transition probability matrix:








0.8 0.2 0 0
0.2 0.6 0.2 0
0.2 0 0.6 0.2
0.2 0 0 0.8









.

Then the pmf of the grade of this employee in year 8 is given by

[0.25 0.25 0.25 0.25] ∗ P 8 = [0.4958, 0.2388, 0.1140, 0.1514].

We can interpret this to mean that 49.58% of the employees are in grade 1

in year 8, etc. Thus the expected number of employees in the four grades are

[49.58, 23.88, 11.40, 15.14]. One can numerically see that after several years (24

in this example), the expected number of employees in the four grades stabilize at

[50, 25, 12.5, 12.5].

2.5 Occupancy Times

Let {Xn, n ≥ 0} be a DTMC on state-space S with transition probability matrix P .

In this section we compute the expected time spent by the DTMC in various states.

Let V
(n)
j be the number of visits to state j by the DTMC over {0, 1, 2, · · · , n}. Note

that we count the visit at time 0, that is, Vj(0) = 1 if X0 = j, and zero otherwise.

Define

M
(n)
ij = E(V

(n)
j |X0 = i), i, j ∈ S, n ≥ 0. (2.29)

M
(n)
ij is called the occupancy time of state j up to time n starting from state i. Define

the occupancy times matrix as

M (n) = [M
(n)
ij ].

The next theorem shows how to compute the occupancy times matrix M (n).
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Theorem 2.6 Occupancy Times Matrix. We have

M (n) =

n
∑

r=0

P r, n ≥ 0, (2.30)

where P 0 = I , the identity matrix.

Proof: Fix a j ∈ S. Let Zr = 1 if Xr = j, and zero otherwise. Then

V
(n)
j =

n
∑

r=0

Zr.

Hence we get

M
(n)
ij = E(V

(n)
j |X0 = i)

= E

(

n
∑

r=0

Zr|X0 = i

)

=

n
∑

r=0

E(Zr|X0 = i)

=

n
∑

r=0

P(Xr = j|X0 = i)

=

n
∑

r=0

p
(r)
ij =

n
∑

r=0

[P (r)]ij =

n
∑

r=0

[P r]ij ,

where the last equality follows from Theorem 2.4. Writing the above equation in ma-

trix form yields Equation 2.30. This proves the theorem.

We illustrate with two examples.

Example 2.24 Two-State DTMC. Consider the two-state DTMC of Example 2.3.

The n-step transition probability matrix of the DTMC was given in Example 2.18 on

page 33. Using that, and a bit of algebra, we see that the occupancy matrix for the

two-state DTMC is given by

M (n) =
n+ 1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

+
1 − (α + β − 1)(n+1)

(2 − α− β)2

[

1 − α α− 1
β − 1 1 − β

]

.

Thus, if the DTMC starts in state 1, the expected number of times it visits state 2 up

to time n is given by M
(n)
12 .

It is rarely possible to compute the occupancy times matrix analytically. In most

cases we have to do the calculations numerically, as shown in the next example.

Example 2.25 Brand Switching Model Continued. Consider the brand switching

model of Example 2.14 on page 18. Compute the expected number of each brand

sold in the first ten weeks.
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Let P be the transition matrix given by Equation 2.8. Since we are interested in

purchases over the weeks 0 through 9, we need to computeM (9). Using Theorem 2.6

we get

M (9) =

9
∑

n=1

Pn =





2.1423 2.7412 5.1165
1.2631 3.9500 4.7869
1.1532 2.8511 5.9957



 .

Thus if the customer chooses brand A in the initial week, his expected number of

purchases on brand A over the weeks 0 through 9 is 2.1423, of brand B is 2.7412,

and of brand C is 5.1165.

2.6 Computation of Matrix Powers

If P is a finite matrix with numerical entries, computing Pn is relatively straight

forward, especially with the help of matrix oriented languages like Matlab or Math-

ematica. Here we describe two other methods of computing Pn.

2.6.1 Method of Diagonalization

We start with some preliminaries from matrix algebra. The reader is referred to

texts by Fuller (1962) and Gantmacher (1960) for proofs and other details. Anm×m
square matrix A is called diagonalizable if there exist an invertible matrix X and a

diagonal matrix

D = diag[λ1, λ2, · · · , λm],

such that

D = XAX−1.

Elements of X and D maybe complex even if A is real. It is known that the λ’s are

the eigenvalues of A, the j-th column xj of X is the right eigenvector of λj , and the

j-th row yj of X−1 is the left eigenvector of λj . That is, the λ’s are the m roots of

det(λI − A) = 0,

where det is short for determinant, xj satisfies

Axj = λjxj , (2.31)

and yj satisfies

yjA = λjyj.

If all the eigenvalues are distinct, thenA is diagonalizable. This is a sufficient condi-

tion, but not necessary. With this notation we get the following theorem:

Theorem 2.7 Powers of a Square Matrix. We have

An = XDnX−1 =
m
∑

j=1

λn
j xjyj. (2.32)
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Proof: Since A is diagonalizable, we have

A = XDX−1. (2.33)

Hence

An = [XDX−1][XDX−1] · · · [XDX−1] = XDnX−1.

Using

Dn = diag[λn
1 , λ

n
2 , · · · , λn

m]

we get the second equality in Equation 2.32.

Computation of eigenvalues and eigenvectors is done easily using a matrix ori-

ented language like Matlab. The following theorem gives important information

about the eigenvalues of a stochastic matrix P .

Theorem 2.8 Eigenvalues of P . Let P be anm×m transition probability matrix,

with m eigenvalues λi, 1 ≤ i ≤ m. Then

1. At least one of the eigenvalues is one.

2. |λi| ≤ 1 for all 1 ≤ i ≤ m.

Proof: The first result follows from the fact thatP is stochastic and hence the column

vector e with all coordinates equal to one satisfies

Pe = e,

thus proving that 1 is an eigenvalue of P .

To derive the second results, define the norm of an m-vector x as

‖x‖ = max{xi : 1 ≤ i ≤ m},
and the norm of P as

‖P‖ = sup
x:‖x‖=1

‖Px‖.

Then one can show that

‖P‖ = max
i

{
m
∑

j=1

pij} = 1,

since P is stochastic. Furthermore,

‖Px‖ ≤ ‖P‖‖x‖ = ‖x‖.
Now, using Equation 2.31, we get

|λi|‖xi‖ = ‖λixi‖ = ‖Pxi‖ ≤ ‖xi‖.
Since 0 < ‖xi‖ <∞, the above inequality implies

|λi| ≤ 1

for all 1 ≤ i ≤ m. This proves the Theorem.
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We illustrate with two examples.

Example 2.26 Three-state DTMC. Consider a three state DTMC with the follow-

ing transition probability matrix:

P =





0 1 0
q 0 p
0 1 0



 ,

where 0 < p < 1 and q = 1 − p. Simple matrix multiplications show that

P 2n =





q 0 p
0 1 0
q 0 p



 , n ≥ 1, (2.34)

P 2n+1 =





0 1 0
q 0 p
0 1 0



 , n ≥ 0. (2.35)

Derive these formulas using the method of diagonalization.

Simple calculations show that P has three eigenvalues 1, 0, and -1, consistent with

Theorem 2.8. Thus P is diagonalizable with

D =







1 0 0

0 0 0

0 0 −1






,

X =







1 p 1

1 0 −1

1 −q 1






,

and

X−1 =
1

2







q 1 p

2 0 −2

q 1 −p






.

Thus

Pn = XDnX−1 =
1

2







q(1 + (−1)n) 1 − (−1)n p(1 + (−1)n)

q(1 − (−1)n) 1 + (−1)n p(1 − (−1)n)

q(1 + (−1)n) 1 − (−1)n p(1 + (−1)n)






, n ≥ 1.

The above equation reduces to Equation 2.34 when n is even, and Equation 2.35

when n is odd. Thus the powers of P show an oscillatory behavior as a function

of n.

Example 2.27 Genotype Evolution. Consider the six-state DTMC of the Geno-

type Evolution Model described on page 24, with the transition matrix P given by

Equation 2.13 on page 24. Compute Pn.
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A tedious calculation shows that the six eigenvalues in decreasing order are λ1 =
1, λ2 = 1, λ3 = (1 +

√
5)/4 = 0.8090, λ4 = 0.5, λ5 = 0.25, λ6 = (1 −

√
5)/4 =

−0.3090. The matrix of right eigenvectors is given by

X =

















4 0 0 0 0 0
3 1 0 0 0 0
2 2 λ2

3 −1 −1 λ2
6

2 2 1 0 4 1
1 3 λ3 0 1 λ6

0 4 λ2
3 1 −1 λ2

6

















.

Note that the eigenvalues are not distinct, since the eigenvalue 1 is repeated twice.

However, the matrix X is invertible. Hence P is diagonalizable, and the representa-

tion in Equation 2.33 holds with

D = diag[1, 1, 0.809, 0.5, 0.25, −0.3090].

Thus we get Pn = XDnX−1.

2.6.2 Method of Generating Functions

We assume that the reader is familiar with generating functions, see Appendix D for

relevant details. Let P be an m×m matrix of transition probabilities and define

P (z) =

∞
∑

n=0

znPn, (2.36)

where z is a complex number. The above series converges absolutely, element by

element, if |z| < 1. From Theorem 2.8 it follows that the eigenvalues of zP are all

strictly less than one in absolute value if |z| < 1, and hence I − zP is invertible.

Now,

P (z) = I +
∞
∑

n=1

znPn = I + zP (z)P.

Hence

P (z) = (I − zP )−1.

Thus the method of generating function works as follows:

1. Compute A(z) = [aij(z)] = (I − zP )−1.

2. The function aij(z) is a rational functions of z, that is, it is a ratio of two polyno-

mials in z. Expand it in power series of z to get

aij(z) =

∞
∑

n=0

a
(n)
ij zn.

3. Pn = [a
(n)
ij ] is the required power of P .

Generally, this method is numerically inferior to the method of diagonalization.
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Example 2.28 Manpower Planning. Compute [Pn]1,1 for the transition probabil-

ity matrix P on page 36 of Example 2.23 using the generating function method.

Direct calculation, or the use of a symbolic calculation tool on a computer, yields

[P (z)]1,1 =

∞
∑

n=0

[Pn]1,1z
n = [(I − zP )−1]1,1 =

5 − 4z

3z2 − 8z + 5
.

The denominator has two roots:

z1 =
4 +

√
31

3
, z2 =

4 −
√

31

3
.

Using partial fractions we get

[P (z)]1,1 =
1

z1 − z2
(
5 − 4z1
z − z1

− 5 − 4z2
z − z2

).

Expanding in power series in z, we get

∞
∑

n=0

[Pn]1,1z
n =

3

2
√

31
· (5 − 4z2

z2

∞
∑

n=0

(z/z2)
n − 5 − 4z1

z1

∞
∑

n=0

(z/z1)
n).

Equating the coefficients of zn we get

[Pn]1,1 =
3

2
√

31
· (5 − 4z2

zn+1
2

− 5 − 4z1

zn+1
1

).

One can compute the expressions for other elements of Pn in a similar fashion.

2.7 Modeling Exercises

2.1 We have an infinite supply of light bulbs, and Zi is the lifetime of the i-th light

bulb. {Zi, i ≥ 1} is a sequence of iid discrete random variables with common pmf

P(Zi = k) = pk, k = 1, 2, 3, · · · ,
with

∑∞
k=1 pk = 1. At time zero, the first light bulb is turned on. It fails at time Z1,

when it is replaced by the second light bulb, which fails at time Z1 + Z2, and so on.

Let Xn be the age of the light bulb that is on at time n. Note that Xn = 0, if a new

light bulb was installed at time n. Show that {Xn, n ≥ 0} is a DTMC and compute

its transition probability matrix.

2.2 In the above exercise, let Yn be the remaining life of the bulb that is in place at

time n. For example, Y0 = Z1. Show that {Yn, n ≥ 0} is a DTMC and compute its

transition probability matrix.

2.3 An urn contains w white balls and b black balls initially. At each stage a ball is

picked from the urn at random and is replaced by k balls of similar color (k ≥ 1). Let

Xn be the number of black balls in the urn after n stages. Is {Xn, n ≥ 0} a DTMC?

If yes, give its transition probability matrix.
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2.4 Consider a completely connected network of N nodes. At time 0 a cat resides

on node N and a mouse on node 1. During one time unit, the cat chooses a random

node uniformly from the remainingN − 1 nodes and moves to it. The mouse moves

in a similar way, independently of the cat. If the cat and the mouse occupy the same

node, the cat promptly eats the mouse. Model this as a Markov chain.

2.5 Consider the following modification of the two-state weather model of Exam-

ple 2.4: given the weather condition on day n − 1 and n, the weather condition on

day n+ 1 is independent of the weather on earlier days. Historical data suggests that

if it rained yesterday and today, it will rain tomorrow with probability 0.6; if it was

sunny yesterday and today, it will rain tomorrow with probability 0.2, if it was sunny

yesterday but rained today, it will rain tomorrow with probability .5, and if it rained

yesterday but is sunny today, it will rain tomorrow with probability .25. Model this

as a four state DTMC.

2.6 A machine consists of K components in series, i.e., all the components must be

in working condition for the machine to be functional. When the machine is func-

tional at the beginning of the nth day, each component has a probability p of failing

at the beginning of the next day, independent of other components. (More than one

component can fail at the same time.) When the machine fails, a single repair person

repairs the failed components one by one. It takes exactly one day to repair one failed

component. When all the failed components are repaired the machine is functional

again, and behaves as before. When the machine is down, the working components

do not fail. Let Xn be the number of failed components at the beginning of the nth

day, after all the failure and repair events at that time are accounted for. Show that

{Xn, n ≥ 0} is a DTMC. Display the transition matrix or the transition diagram.

2.7 Two coins are tossed simultaneously and repeatedly in an independent fashion.

Coin i (i = 1, 2) shows heads with probability pi. Let Yn(i) be the number of heads

observed during the first n tosses of the i-th coin. Let Xn = Yn(1) − Yn(2). Show

that {Xn, n ≥ 0} is a DTMC. Compute its transition probabilities.

2.8 Consider the following weather forecasting model: if today is sunny (rainy) and

it is the k-th day of the current sunny (rainy) spell, then it will be sunny (rainy)

tomorrow with probability pk (qk) regardless of what happened before the current

sunny (rainy) spell started (k ≥ 1). Model this as a DTMC. What is the state-space?

What are the transition probabilities?

2.9 Let Yn ∈ {1, 2, 3, 4, 5, 6} be the outcome of the n-th toss of a fair six-sided die.

Let Sn = Y1 + · · · + Yn, and Xn = Sn(mod 7), the remainder when Sn is divided

by 7. Assume that the successive tosses are independent. Show that {Xn, n ≥ 1} is

a DTMC, and display its transition probability matrix.

2.10 This is a generalization of the above problem. Let {Yn, n ≥ 1} be a sequence

of iid random variables with common pmf P(Yn = k) = αk, k = 1, 2, 3, · · ·. Let r
be a given positive integer and define Sn = Y1 + · · · + Yn, and Xn = Sn(mod r).
Show that {Xn, n ≥ 1} is a DTMC, and display its transition probability matrix.
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2.11 A boy and a girl move into a two-bar town on the same day. Each night, the

boy visits one or the other of the two bars, starting in bar 1, according to a DTMC

with transition probability matrix
[

a 1 − a
1 − b b

]

.

Likewise the girl visits one or the other of the same two bars according to a DTMC

with transition probability matrix
[

c 1 − c
1 − d d

]

,

but starting in bar 2. Here, 0 < a, b, c, d < 1. Assume that the Markov chains are

independent. Naturally, the story ends when the boy meets the girl, i.e., when they

both go to the same bar. Model the situation by a DTMC that will help answer when

and where the story ends.

2.12 Suppose that {Yn, n ≥ 0} is a DTMC on S = {0, 1, · · · , 10} with transition

probabilities as follows:

p0,0 = .98, p0,1 = .02,

pi,i−1 = .03, pi,i = .95, pi,i+1 = .02, 1 ≤ i ≤ 9,

p10,9 = .03, p10,10 = .97.

Let Xn be the price (in dollars) of a gallon of unleaded gas on day n. We model the

price fluctuation by assuming that there is an increasing function f : S → (0,∞)
such that Xn = f(Yn). For example, f(i) = 4 + .05i implies that the gas price

fluctuates between $4 and $4.50, with increments of $.05. A student uses exactly one

gallon of gas per day. In order to control gas expenditure, the student purchases gas

only when the gas tank is empty (don’t ask how he does it!). If he needs gas on day

n, he purchases 11 − Yn gallons of gas. Let Zm be the price per gallon of gas paid

by the student on his m-th purchase. Show that {Zm,m ≥ 0} is a DTMC. Compute

its transition probability matrix.

2.13 Consider the following extension of Example 2.5. Suppose we follow the play

the winner rule with k drugs (k ≥ 2) as follows. The initial player is given drug 1. If

the drug is effective with the current patient, we give it to the next patient. If the result

is negative, we switch to drug 2. We continue this way until we reach drug k. When

we observe a failure of drug k, we switch back to drug 1 and continue. Suppose the

successive patients are independent, and that drug i is effective with probability pi.

Let Xn be i if the n-th patient is given drug i. Show that {Xn, n ≥ 1} is a DTMC.

Derive its transition probability matrix.

2.14 A machine with two components is subject to a series of shocks that occur

deterministically one per day. When the machine is working a shock can cause failure

of component 1 alone with probability α1, or of component 2 alone with probability

α2 or of both components with probability α12 or no failures with probability α0.

(Obviously α0 + α1 + α2 + α12 = 1.) When a failure occurs, the machine is shut
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down and no more failures occur until the machine is repaired. The repair time (in

days) of component i (i = 1, 2) is a geometric random variable with parameter ri,
0 < ri < 1. Assume that there is a single repair person and all repair times are

independent. (Thus if both components fail they are repaired sequentially, and the

machine is turned on once both components are fixed.) Give the state-space and the

transition probability matrix of an appropriate DTMC that can be used to model the

state-evolution of the machine.

2.15 Suppose three players - 1,2,3 - play an infinite tournament as follows: Initially

player 1 plays against player 2. The winner of the n-th game plays against the player

who was not involved in the n-th game. Suppose bij is the probability that in a game

between players i and j, player i will win. Obviously, bij + bji = 1. Suppose the

outcomes of the successive games are independent. Let Xn be the pair that played

the n-th game. Show that {Xn, n ≥ 0} is a DTMC. Display its transition probability

matrix or the transition diagram.

2.16 Mr. Al Anon drinks one six-pack of beer every evening! Let Yn be the price

of the six-pack on day n. Assume that the price is either L or H > L, and

that {Yn, n ≥ 0} is a DTMC on state-space {H,L} with transition probability

matrix
[

α 1 − α
1 − β β

]

.

Mr. Al Anon visits the beer store each day in the afternoon. If the price is high

and he has no beer at home, he buys one six pack, which he consumes in the

evening. If the price is high and he has at least one six pack at home, he does

not buy any beer. If the price is low, he buys enough six packs so that he will

have a total of five six packs in the house when he reaches home. Model this sys-

tem by a DTMC. Describe its state-space and compute the transition probability

matrix.

2.17 Let {Yn, n ≥ 1} be a sequence of iid random variables with common pmf

P(Yn = k) = αk, k = 0, 1, 2, 3, ...,M.

Define X0 = 0 and

Xn = max{Y1, Y2, ..., Yn}, n = 1, 2, 3....

Show that {Xn, n ≥ 0} is a DTMC. Display the transition probability matrix.

2.18 Consider a machine that alternates between two states: up and down. The suc-

cessive up and down times are independent of each other. The successive up times

are iid positive integer valued random variables with common pmf

P(up time = i) = ui, i = 1, 2, 3, . . . ,

and the successive down times are iid positive integer valued random variables with

common pmf

P(down time = i) = di, i = 1, 2, 3, . . . .
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Assume that ∞
∑

i=1

ui = 1,

∞
∑

i=1

di = 1.

Model this system by a DTMC. Describe its state-space and the transition probability

matrix.

2.19 Ms. Friendly keeps in touch with her friends via email. Every day she checks

her email inbox at 8:00am. She processes each message in the inbox at 8:00am inde-

pendently in the following fashion: she answers it with probability p > 0 and deletes

it, or she leaves it in the inbox, to be visited again the next day. Let Yn be the number

of messages that arrive during 24 hours on day n. Assume that {Yn, n ≥ 0} is a

sequence of iid random variables with common pmf

αk = P(Yn = k), k = 0, 1, 2, · · · .
Let Xn be the number of messages in the inbox at 8:00am on day n. Assume that no

new messages arrive while she is deleting the messages. Show that {Xn, n ≥ 0} is a

DTMC.

2.20 A buffer of size B bytes is used to store and play a streaming audio file. Sup-

pose the time is slotted so that one byte is played (and hence removed from the buffer)

at the end of each time slot. Let An be the number of bytes streaming into the buffer

from the internet during the nth time slot. Suppose that {An, n ≥ 1} is a sequence

of iid random variables with common pmf

αk = P(An = i), k = 0, 1, 2.

Let Xn be the number of bytes in the buffer at the end of the nth time slot, after the

input during that slot followed by the output during that slot. If the buffer is empty no

sound is played, and if the buffer becomes full, some of the incoming bytes may be

lost if there is no space for them. Both create a loss of quality. Model {Xn, n ≥ 0}
as a DTMC. What is its state-space and transition probability matrix?

2.21 A shuttle bus with finite capacity B stops at bus stops numbered 0, 1, 2, · · · on

an infinite route. Let Yn be the number of riders waiting to ride the bus at stop n.

Assume that {Yn, n ≥ 0} is a sequence of iid random variables with common pmf

αk = P(Yn = k), k = 0, 1, 2, · · · .
Every passenger who is on the bus alights at a given bust stop with probability p. The

passengers behave independently of each other. After the passengers alight, as many

of the the waiting passengers board the bus as there is room on the bus. Show that

{Xn, n ≥ 0} is a DTMC. Compute the transition probabilities.

2.22 A production facility produces one item per hour. Each item is defective with

probability p, the quality of successive items being independent. Consider the fol-

lowing quality control policy parameterized by two positive integers k and r. In the

beginning the policy calls for 100% inspection, the expensive mode of operation.
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As soon as k consecutive non-defective items are encountered, it switches to econ-

omy mode and calls for inspecting each item with probability 1/r. It reverts back

to the expensive mode as soon as an inspected item is found to be defective. The

process alternates this way forever. Model the inspection policy as a DTMC. Define

the state-space, and show the transition probability matrix or the transition diagram.

2.23 Let Dn be the demand for an item at a store on day n. Suppose {Dn, n ≥ 0}
is a sequence of iid random variables with common pmf

αk = P(Dn = k), k = 0, 1, 2, · · · .
Suppose the store follows the following inventory management policy, called the

(s, S) policy: If the inventory at the end of the n-th day (after satisfying the demands

for that day) is s or more, (here s ≥ 0 is a fixed integer) the store manager does

nothing. If it is less than s, the manager orders enough to bring the inventory at the

beginning of the next day up to S. Here S ≥ s is another fixed integer. Assume the

delivery to the store is instantaneous. Let Xn be the number of items in the inventory

in the store at the beginning of the n-th day, before satisfying that day’s demand, but

after the inventory is replenished. Show that {Xn, n ≥ 0} is a DTMC, and compute

its transition probabilities.

2.24 A machine requires a particular component in functioning order in order to

operate. This component is provided by two vendors. The maintenance policy is

as follows: whenever the component fails, it is instantaneously replaced by a new

component from vendor i with probability vi. (v1 > 0, v2 > 0, v1 + v2 = 1.)

The lifetimes of successive components from vendor i are iid random variables with

common distribution

αi
k = P(Life Time = k), k = 1, 2, 3, ...

with ∞
∑

k=1

αi
k = 1, (i = 1, 2).

Let Xn be the age of the component in use on day n. (If there is a replacement at

time n, Xn = 0.) Let Yn = i if the component in place at time n (after replacement,

if any) is from vendor i. Show that {(Xn, Yn), n ≥ 0} is a DTMC. Display its

transition diagram.

2.25 Consider the following simple model of the software development process: the

software is tested at times n = 0, 1, 2 · · · . If the software has k bugs, the test at time

n will reveal a bug with probability βk independent of the history. (β0 = 0.) If a bug

is revealed, the software is updated so that the bug is fixed. However, in the process

of fixing the bug, additional i bugs are introduced with probability αi (i = 0, 1, 2)

independent of the history. Let Xn be the number of bugs in the software just before

it is tested at time n. Show that {Xn, n ≥ 0} is a DTMC and display its transition

diagram.
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2.26 Consider a closed society of N individuals. At time 0 one of these N indi-

viduals hears a rumor (from outside the society). At time 1 he tells it to one of the

remaining N − 1 individuals, chosen uniformly at random. At each time n, every

individual who has heard the rumor (and has not stopped spreading it) picks a person

from the remaining N − 1 individuals at random and spreads the rumor. If he picks

a person who has already heard the rumor, he stops spreading the rumor any more;

else, he continues. If k ≥ 2 persons tell the rumor to the same person who has not

heard the rumor before, all k+1 will continue to spread the rumor in the next period.

Model this rumor spreading phenomenon as a DTMC.

2.27 Consider the following genetic experiment. Initially we cross an rr individual

with a dr individual, thus producing the next generation individual. We generate the

(n + 1)-st generation individual by crossing the n-th generation individual with a

dr individual. Let Xn be the genotype of the n-th generation individual. What is the

transition probability matrix of the DTMC {Xn, n ≥ 0}?

2.28 Redo the above problem by assuming that we begin with an rr individual but

always cross with a dd individual.

2.29 An electronic chain letter scheme works as follows. The initiator emailsK per-

sons exhorting each to email it to K of their own friends. It mentions that complying

with the request will bring mighty good fortunes, while ignoring the request would

bring dire supernatural consequences. Suppose a recipient complies with the request

with probabilityα and ignores it with probability 1−α, independently of other recip-

ients. Assume the population is large enough so that this process continues forever.

Show that we can model this situation by a branching process with X0 = 20.

2.30 Slotted ALOHA is a protocol used to transmit packets by radio communica-

tions. Under this protocol time is slotted and each user can transmit its message at

the beginning of the n-th slot (n = 0, 1, 2, · · ·). Each message takes exactly one time

slot to transmit. When a new user arrives to the system, it transmits its message at

the beginning of the next time slot. If only one user transmits during a time slot, the

message is received by its intended recipient successfully. If no one transmits during

a slot, that slot is wasted. If two or more user transmit during a slot, a collision occurs

and the messages are garbled, and have to be retransmitted. If a user has experienced

a collision while transmitting its message, it is said to be backlogged. A backlogged

user attempts retransmission at the beginning of the next time slot with probability

p, independent of its history. All users behave independently of each other. Once a

user’s message is transmitted successfully, the user leaves the system. Let Yn be the

number of new user that arrive during the n-th time slot. Assume that {Yn, n ≥ 0} is

a sequence of iid random variables with common pmf

αk = P(Yn = k), k = 0, 1, 2, · · · .
Let Xn be the number of backlogged users at time n (before any transmissions have

occurred). Show that {Xn, n ≥ 0} is a DTMC and compute its transmission proba-

bilities.
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2.31 Under TDM (time division multiplexing) protocol, a user is allowed to trans-

mit packets one at a time at times n = 0, 1, 2, · · · . If the user has no packets to

transmit at time n, he must wait until time n+1 for the next opportunity to transmit,

even though new packets may arrive between time n and n+ 1. Let Xn be the num-

ber of packets before transmission is completed at time n and before any arrivals, say

Yn, between time n and n+1. Assume that {Yn, n ≥ 0} is a sequence of iid random

variables with common pmf

αk = P(Yn = k), k = 0, 1, 2, · · · .
Show that {Xn, n ≥ 0} is a DTMC and compute its transition probabilities.

2.32 A manufacturing setup consists of two distinct machines, each producing one

component per hour. Each component is tested instantly and is identified as defective

or non-defective. Let αi be the probability that a component produced by machine

i is non-defective, i = 1, 2. The defective components are discarded and the non-

defective components are stored in two separate bins, one for each machine. When

a component is present in each bin, the two are instantly assembled together and

shipped out. Bin i can hold at most Bi components, i = 1, 2. (Here B1 and B2 are

fixed positive integers.) When a bin is full the corresponding machine is turned off.

It is turned on again when the bin has space for at least one component. Assume that

successive components are independent. Model this system by a DTMC.

2.33 Consider the following variation of Modeling Exercise 2.1: We replace the

light bulb upon failure, or upon reaching age K , where K > 0 is a fixed integer.

Assume that replacement occurs before failure if there is a tie. Let Xn be as in Mod-

eling Exercise 2.1. Show that {Xn, n ≥ 0} is a DTMC and compute its transition

probability matrix.

2.8 Computational Exercises

2.1 Redo Example 2.21 for the following initial conditions

(a). X0 = 8, (b). X0 = 5, (c). X0 = 3.

2.2 Let {Xn, n ≥ 0} be a DTMC with state-space {1, 2, 3, 4, 5} and the following

transition probability matrix:












0.1 0.0 0.2 0.3 0.4
0.0 0.6 0.0 0.4 0.0
0.2 0.0 0.0 0.4 0.4
0.0 0.4 0.0 0.5 0.1
0.6 0.0 0.3 0.1 0.0













.

Suppose the initial distribution is a = [0.5, 0, 0, 0, 0.5]. Compute the following:

(a) The pmf of X2,

(b) P(X2 = 2, X4 = 5),
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(c) P(X7 = 3|X3 = 4),
(d) P(X1 ∈ {1, 2, 3}, X2 ∈ {4, 5}).

2.3 Prove the result in Example 2.18 on page 33 by using (a) induction, and (b) the

method of diagonalization of Theorem 2.7 on page 38.

2.4 Compute the expected fraction of the patients who get drug 1 among the first

n patients in the clinical trial of Example 2.5 on page 14. Hint: Use the results of

Example 2.24 on page 37.

2.5 Suppose a market consists of k independent customers who switch between the

three brandsA,B, andC according to the DTMC of Example 2.14. Suppose in week

0 brandA is chosen with probability 0.3 and brandB is chosen with probability 0.3.

Compute the probability distribution of the number of customers who choose brand

B in week 3.

2.6 Consider the two machine workshop of Example 2.7 on page 15. Suppose each

machine produces a revenue of $r per day when it is up, and no revenues when it

is down. Compute the total expected revenue over the first n days assuming both

machines are up initially. Hint: Use independence and the results of Example 2.24

on page 37.

2.7 Consider the binomial model of stock fluctuation as described in Section 2.3.4

on page 27. Suppose X0 = 1. Compute E(Xn) and Var(Xn) for n ≥ 0.

2.8 Let {Xn, n ≥ 0} be a DTMC on state-space {1, 2, 3, 4} and transition proba-

bility matrix given below:

P =









0.4 0.3 0.2 0.1
0.5 0.0 0.0 0.5
0.5 0.0 0.0 0.5
0.1 0.2 0.3 0.4









.

Suppose X0 = 1 with probability 1. Compute

(a) P(X2 = 4),
(b) P(X1 = 2, X2 = 4, X3 = 1),
(c) P(X7 = 4|X5 = 2),
(d) E(X3).

2.9 Consider the Modeling Exercise 2.23 with the following parameters: s =
10, S = 20, α0 = 0.1, α1 = 0.2, α2 = 0.3, and α3 = 0.4. Suppose

X0 = 20 with probability 1. Compute E(Xn) for n = 1, 2, · · · , 10.

2.10 Consider the discrete time queue of Example 2.12 on page 17. Compute

P(X2 = 0|X0 = 0).

2.11 Derive the n-step transition probabilities in Equation 2.25 on page 33.
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2.12 Consider the weather forecasting model of Modeling Exercise 2.5. What is the

probability distribution of the length of the rainy spell predicted by this model? Do

the same for the length of the sunny spell.

2.13 Consider the Modeling Exercise 2.21 with a bus of capacity 20, and Yn ∼
P (10), Poisson with mean 10, and p = .4. Compute E(Xn|X0 = 0) for n =
0, 1, · · · , 20.

2.14 Let P be a m×m transition probability given below

P =















α1 α2 α3 · · · αm

αm α1 α2 · · · αm−1

αm−1 αm α1 · · · αm−2

...
...

...
. . .

...

α2 α3 α4 · · · α1















.

Such a matrix is called the circulant matrix. Let ι =
√
−1, and

ek = exp(
ι2π

m
k), 1 ≤ k ≤ m

be the m-th roots of unity. Define

λk =

m
∑

i=1

αie
i−1
k , 1 ≤ k ≤ m,

xjk = exp(
ι2π

m
kj), 1 ≤ j, k ≤ m,

yjk =
1

m
exp(− ι2π

m
kj), 1 ≤ j, k ≤ m.

Show that λk is the k-th eigenvalue of P , with right eigenvector [x1k x2k · · ·xmk]′

and the left eigenvector [yk1 yk2 · · · ykm]. Hence, using D = diag(λ1 λ2 · · ·λm),
X = [xjk] and Y = [ykj ], show that

P = XDY.

Thus the powers of a circulant transition probability matrix can be written down

analytically.

2.15 Let {Xn, n ≥ 0} be a success runs DTMC on {0, 1, 2, · · ·} with

pi,0 = q = 1 − pi,i+1, i ≥ 0.

Show that pn
00 = q for all n ≥ 1.

2.16 Four points are arranged in a circle in a clockwise order. A particle moves on

these m points by taking a clockwise step with probability p and a counterclockwise

step with probability q = 1 − p, at time n = 0, 1, 2, · · · . Let Xn be the position

of the particle at time n. Thus {Xn, n ≥ 0} is a DTMC on {1, 2, 3, 4}. Display its

transition probability matrix P . Compute Pn by using the diagonalization method of

Section 2.6. Hint: Use the results of Computational Exercise 2.14 above.
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2.17 Consider the urn model of Example 2.13. Show that the transition probability

matrix has the following eigenvalues: λk = k(k + 1)/N2 − 1/N, 0 ≤ k ≤ N .

Show that the transition probability matrix is diagonalizable. In general, finding the

eigenvalues is the hard part. Finding the corresponding eigenvectors is the easy part.

2.18 Compute p
(n)
ij for the success runs Markov chain of Computational Exer-

cise 2.15.

2.19 The transition probability matrix of a three-state DTMC is as given below:

P =





0.3 0.4 0.3
0.4 0.5 0.1
0.6 0.2 0.2



 .

Find p
(n)
11 using the method of generating functions.

2.20 Consider a DTMC on S = {0, 1, 2, · · ·} with the following transition proba-

bilities:

pij =

{

1
i+1 for 0 ≤ j ≤ i

0 otherwise.

Show that

pij(z) =
∞
∑

n=0

p
(n)
ij zn =

{

z
i+1

∏i
k=j

k+1
k+1−z if 0 ≤ j < i

i+1
i+1−z if i = j.

2.21 Use the method of diagonalization to compute the probability distribution of

the genotype of the n-th individual in the model described in Modeling Exercise 2.28.

2.22 Use the method of diagonalization to compute the probability distribution of

the genotype of the n-th individual in the model described in Modeling Exercise 2.27.

2.23 Compute the mean of variance of the number of individuals in the n-th gen-

eration in the branching process of Section 2.3.3 on page 25, assuming the initial

generation consists of i individuals. Hence compute the mean and variance of the

number of letters in the n-th generation in Modeling Exercise 2.29. Hint: Imagine i
independent branching processes, each initiated by a single individual, and use the

results of Example 2.22.

2.24 Use the method of diagonalization to compute the probability distribution of

the gambler A’s fortune after n games in the gambler’s ruin model of Example 2.11,

with N = 3.

2.25 Consider the Wright-Fisher model described on page 24. Let i ∈
{0, 1, · · · , N} be a given integer and suppose X0 = i with probability 1. Compute

E(Xn) and Var(Xn) for n ≥ 0.

2.26 Consider the Moran model described on page 25. Let i ∈ {0, 1, · · · , N} be a

given integer and suppose X0 = i with probability 1. Compute E(Xn) and Var(Xn)

for n ≥ 0.
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2.9 Conceptual Exercises

2.1 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·}
with transition probability matrix P . Show that

P(Xn+2 ∈ B,Xn+1 ∈ A|Xn = i,Xn−1, · · · , X0) = P(X2 ∈ B,X1 ∈ A|X0 = i),

where A and B are subsets of S.

2.2 Suppose {Xn, n ≥ 0} and {Yn, n ≥ 0} are two independent DTMCs with

state-space S = {0, 1, 2, · · ·}. Prove or give a counterexample to the following state-

ments:

(a) {Xn + Yn, n ≥ 0} a DTMC.

(b) {(Xn, Yn), n ≥ 0} is a DTMC.

2.3 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·}.

Prove or give a counterexample to the following statements:

(a) P(Xn+1 = j|Xn ∈ A,Xn−1, · · · , X0) = P(Xn+1 = j|Xn ∈ A), where A ⊂ S
has more than one element.

(b) P(Xn = j0|Xn+1 = j1, Xn+2 = j2, · · · , Xn+k = jk) = P(Xn = j0|Xn+1 =
j1), where j0, j1, · · · , jk ∈ S and n ≥ 0.

(c) P(Xn = j0, Xn+1 = j1, Xn+2 = j2, · · · , Xn+k = jk) = P(X0 = j0, X1 =
j1, X2 = j2, · · · , Xk = jk).

2.4 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·}.

Prove or give a counterexample to the following statements:

(a) Let bj = P(Xk = j), for j ∈ S, and a given k > 0. Then {Xn, n ≥ 0} is

completely described by [bj, j ∈ S] and the transition probability matrix.

(b) Let f : S → S be any function. {f(Xn), n ≥ 0} is a DTMC.

2.5 Suppose {Xn, n ≥ 0} and {Yn, n ≥ 0} are two independent DTMCs with

state-space S = {0, 1, 2, · · ·}. Let {Zn, n ≥ 0} be a sequence iid Ber(p) random

variables. Define

Wn =

{

Xn if Zn = 0
Yn if Zn = 1.

Is {Wn, n ≥ 0} a DTMC (not necessarily time homogeneous)?

2.6 Let {Yn, n ≥ 0} be a sequence of iid random variables with common pmf

αk = P(Yn = k), k = 0, 1, 2, · · · .
We say that Yn is a record if Yn > Yr, 0 ≤ r ≤ n− 1. Let X0 = Y0, and Xn be the

value of the n-th record, n ≥ 1. Show that {Xn, n ≥ 0} is a DTMC and compute its

transition probability matrix.

2.7 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·} and

transition probability matrix P . Define

N = min{n > 0 : Xn 6= X0}.
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Thus N is the first time the DTMC leaves the initial state. Compute

P(N = k|X0 = i), k ≥ 1.

2.8 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·} and

transition probability matrix P . Let A be a strict non-empty subset of S. Assume

X0 ∈ A with probability 1. Define N0 = 0 and

Nr+1 = min{n > Nr : Xn ∈ A}, r ≥ 0.

Thus Nr is the time of the r-th visit by the DTMC to the set A. Define

Yr = XNr
, r ≥ 0.

Is {Yr, r ≥ 0} a DTMC? Prove or give a counterexample.

2.9 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC with the following prop-

erty: there is a j ∈ S such that pij = p for all i ∈ S. Show that P(Xn = j) = p for

all n ≥ 1, no matter what the initial distribution is.

2.10 Suppose {Xn, n ≥ 0} is a time non-homogeneous DTMC with the following

transition probabilities:

P(Xn+1 = j|Xn = i) =

{

aij if n is even

bij if n is odd,

where A = [aij ] and B = [bij ] are two given stochastic matrices. Construct a time

homogeneous DTMC {Yn, n ≥ 0} that is equivalent to {Xn, n ≥ 0}, i.e., a sample

path of {Xn, n ≥ 0} uniquely determines that of {Yn, n ≥ 0} and vice-versa.

2.11 Let {Xn, n ≥ 0} be a simple random walk of Example 2.19. Show that

{|Xn|, n ≥ 0} is a DTMC. Compute its transition probability matrix.

2.12 Suppose {Xn, n ≥ 0} is a time homogeneous DTMC on S = {0, 1, 2, · · ·}
and transition probability matrix P . Let f : S → {1, 2, · · · ,M} be a given on-to

function, that is, f−1(i) is non-empty for all 1 ≤ i ≤ M . Give the necessary and

sufficient condition under which {f(Xn), n ≥ 0} is a DTMC.



CHAPTER 3

Discrete-Time Markov Chains: First
Passage Times

A frequent flyer business traveler is concerned about the risk of encountering a ter-

rorist bomb on one of his flights. He consults his statistician friend to get an estimate

of the risk. After studying the data the statistician estimates that the probability of

finding a bomb on a random flight is one in a thousand. Alarmed by such a large risk,

the businessman asks his friend if there is any way to reduce the risk. The statistician

offers, “Carry a bomb with you on the plane, since the probability of two bombs on

the same flight is one in a million.”

3.1 Definitions

Let {Xn, n ≥ 0} be a DTMC on S = {0, 1, 2, · · ·}, with transition probability

matrix P , and initial distribution a. Let

T = min{n ≥ 0 : Xn = 0}. (3.1)

The random variable T is called the first passage time into state 0, since T is the first

time the DTMC “passes into” state 0. Although we shall specifically concentrate on

this first passage time, the same techniques can be used to study the first passage time

into any set A ⊂ S. (See Conceptual Exercises 3.1 and 3.2.) In this chapter we shall

study the following aspects of the first passage time T :

(1) Complementary cumulative distribution function of T : v(n) = P(T > n), n ≥
0,

(2) Probability of eventually visiting state 0: u = P(T <∞),

(3) Moments of T : m(k) = E(T k), k ≥ 1,

(4) Generating function of T : φ(z) = E(zT ).

There are two reasons for studying the first passage times. First, they appear natu-

rally in applications when we are interested in the time until a given event occurs in a

stochastic system modeled by a DTMC. Second, we shall see in the next chapter that

55
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the quantities u (probability of eventually visiting a state) and m(1) (the expected

time to visit a state) play an important part in the study of the limiting behavior of

the DTMC. Thus the study of the first passage time has practical as well as theoretical

motivation.

Next we introduce the conditional quantities for i ∈ S:

vi(n) = P(T > n|X0 = i),

ui = P(T <∞|X0 = i),

mi(k) = E(T k|X0 = i),

φi(z) = E(zT |X0 = i).

Using the initial distribution we see that

v(n) =
∑

i∈S

aivi(n),

u =
∑

i∈S

aiui,

m(k) =
∑

i∈S

aimi(k),

φ(z) =
∑

i∈S

aiφi(z).

Thus we can compute the unconditional quantities from the conditional ones. We

develop a method called the first-step analysis to compute the conditional quantities.

The method involves computing the conditional quantities by further conditioning

on the value ofX1 (i.e., the first step), and then using time-homogeneity and Markov

property to derive a set of linear equations for the conditional quantities. These equa-

tions can then be solved numerically or algebraically depending on the problem at

hand.

We shall see later that sometimes we need to study an alternate first passage time

as defined below:

T̃ = min{n > 0 : Xn = 0}. (3.2)

We leave it to the reader to establish the relationship between between T and T̂ .

(See Conceptual Exercises 3.3 and 3.4.)

3.2 Cumulative Distribution Function of T

The following theorem illustrates how the first-step analysis produces recursive

method of computing the cumulative distribution of T . We first introduce the fol-

lowing matrix notation:

v(n) = [v1(n), v2(n), · · ·]′, n ≥ 0
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B = [pij : i, j ≥ 1]. (3.3)

Thus B is a submatrix of P obtained by deleting the row and column corresponding

to the state 0.

Theorem 3.1

v(n) = Bne, n ≥ 0, (3.4)

where e is column vector of all ones.

Proof: We prove the result by using the first-step analysis. For n ≥ 1 and i ≥ 1 we

have

vi(n) = P(T > n|X0 = i)

=

∞
∑

j=0

P(T > n|X1 = j,X0 = i)P(X1 = j|X0 = i)

=

∞
∑

j=0

pijP(T > n|X1 = j,X0 = i)

= pi0P(T > n|X1 = 0, X0 = i) +

∞
∑

j=1

pijP(T > n|X1 = j,X0 = i)

=

∞
∑

j=1

pijP(T > n|X1 = j)

=
∞
∑

j=1

pijP(T > n− 1|X0 = j)

=
∞
∑

j=1

pijvj(n− 1).

Here we have used the fact that X1 = 0 implies that T = 1 and hence P(T >
n|X1 = 0, X0 = i) = 0, and the Markov property and time homogeneity implies

that the probability of T > n given X1 = j,X0 = i is the same as the probability

that T > n− 1 given X0 = j. Writing the final equation in matrix form yields

v(n) = Bv(n− 1), n ≥ 1. (3.5)

Solving this equation recursively yields

v(n) = Bnv(0).

Finally, X0 = i ≥ 1 implies that T ≥ 1. Hence vi(0) = 1. Thus

v(0) = e. (3.6)

This yields Equation 3.4. Note that it is valid for n = 0 as well, since B0 = I , the

identity matrix, by definition.
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Since we have studied the computation of matrix powers in Section 2.6, we have

an easy way of computing the complementary cdf of T . We illustrate with several

examples.

Example 3.1 Two State DTMC. Consider the two state DTMC of Example 2.3 on

page 13. The state space is {1, 2}. Let T be the first passage time to state 1. One can

use Theorem 3.1 with B = [β], or direct probabilistic reasoning, to see that

v2(n) = P(T > n|X0 = 2) = βn, n ≥ 0.

Hence we get

P(T = n|X0 = 2) = v2(n− 1) − v2(n) = βn−1(1 − β), n ≥ 1,

which shows that T is a geometric random variable with parameter 1 − β.

Example 3.2 Genotype Evolution. Consider the genotype evolution model on

page 24 involving a DTMC with state-space {1, 2, 3, 4, 5, 6} and transition proba-

bility matrix given below:

P =





















1 0 0 0 0 0

1/4 1/2 0 1/4 0 0

0 0 0 1 0 0

1/16 1/4 1/8 1/4 1/4 1/16

0 0 0 1/4 1/2 1/4

0 0 0 0 0 1





















. (3.7)

Let

T = min{n ≥ 0 : Xn = 1}
be the first passage time to state 1. Let B be the submatrix of P obtained by deleting

rows and columns corresponding to state 1. Then, using v(n) = [v2(n), · · · , v6(n)]′,
Theorem 3.1 yields

v(n) = Bne, n ≥ 0.

Direct numerical calculation yields, for example,

v(5) = B5e = [0.4133, 0.7373, 0.6921, 0.8977, 1]′,

and

lim
n→∞

v(n) = [0.25, 0.50, 0.50, 0.75, 1]′.

Thus T is a defective random variable, and the probability that the DTMC will never

visit state 1 starting from state 2 is .25, which is the same as saying that the proba-

bility of eventually visiting state 1 starting from state 2 is .75.

Example 3.3 Success Runs. Consider the success runs DTMC of Example 2.15 on

page 19 with transition probabilities

pi,0 = qi, pi,i+1 = pi, i = 0, 1, 2, · · · .
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Let T be the first passage time to state 0. Compute the complementary cdf of T
starting from state 1.

In this case it is easier to use the special structure of the DTMC. We have v1(0) = 1
and, for n ≥ 1,

v1(n) = P(T > n|X0 = 1)

= P(X1 = 2, X2 = 3, · · · , Xn = n+ 1|X0 = 1)

= p1p2 · · · pn,

since the only way T > n starting fromX0 = 1 is if the DTMC increases by one for

each of the next n steps. Since the pi’s can take any value in [0, 1], it follows that we

can construct a success runs DTMC such that T has any pre-specified distribution on

{1, 2, 3, · · ·}.

Example 3.4 Coin Tosses. Suppose a coin is tossed repeatedly and independently.

The probability of head is p and the probability of tail is q = 1−p on any given toss.

Compute the distribution of the number of tosses needed to get two heads in row.

Let {Xn, n ≥ 0} be a success runs DTMC with transition probabilities

pi,0 = q, pi,i+1 = p, i = 0, 1, 2, · · · .
One can think of Xn as the length of the current run of heads after the nth toss. Let

T = min{n ≥ 0 : Xn = 2}.
Then starting with X0 = 0, T is the number of tosses needed to obtain two heads in

a row. Let

v(n) = [v0(n), v1(n)], n ≥ 0,

and

B =

[

q p
q 0

]

.

Then we can see that

v(n) = Bne, n ≥ 0.

Using methods of eigenvalues of Section 2.6 we get

v0(n) =
1 − λ2

λ1 − λ2
λn

1 − 1 − λ1

λ1 − λ2
λn

2 , n ≥ 0,

where

λ1 =
1

2
(q +

√

q2 + 4pq), λ2 =
1

2
(q −

√

q2 + 4pq).

We can obtain the required distribution as follows:

P(n tosses are needed to get two heads in a row)

= P(T = n|X0 = 0)

= v0(n− 1) − v0(n)

=
(1 − λ1)(1 − λ2)

λ1 − λ2
[λn−1

1 − λn−1
2 ], n ≥ 1.
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3.3 Absorption Probabilities

Since vi(n) is a monotone bounded sequence we know that

vi = lim
n→∞

vi(n)

exists. The quantity

ui = 1 − vi = P(T <∞|X0 = i)

is the probability that the DTMC eventually visits state 0 starting from state i, also

called the absorption probability into state 0 starting from state i when p00 = 1. In

this section we develop methods of computing ui or vi. The main result is given by

the next theorem.

Theorem 3.2 The vector v = limn→∞ v(n) is given by the largest solution to

v = Bv (3.8)

such that v ≤ e, where B is as defined in Equation 3.3, and e is a vector of all ones.

Proof: Equation 3.8 follows by letting n → ∞ on both sides of Equation 3.5 since

we know the limit exists. To show that it is the largest solution bounded above by

e, suppose w ≤ e is another solution to Equation 3.8. Then, from Equation 3.6, we

have

v(0) = e ≥ w.

As an induction hypothesis assume

v(k) ≥ w

for k = 0, 1, 2, · · · , n. Using the fact that w = Bw, and that B is a non-negative

matrix, we can use Equation 3.5 to get

v(n+ 1) = Bv(n) ≥ Bw = w.

Thus

v(n) ≥ w

for all n ≥ 0. Thus letting n→ ∞
v = lim

n→∞
v(n) ≥ w.

This proves the theorem.

Notice that v = 0 is always a solution to Equation 3.8. Thus the largest solu-

tion is bound to be non-negative. What is more surprising is that a vector v that is

componentwise maximum exists at all! We can also derive Equation 3.8 by the first-

step analysis. However, that analysis will not show that the required solution is the

largest one bounded above by one. How does one find the largest solution in prac-

tice? The general method is to identify all the solutions, and then pick the one that
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is the maximum. In practice, this is not as impractical as it sounds. We explain by

several examples below.

Example 3.5 Genotype Evolution. Suppose that the population in the genotype

evolution model of Example 3.2 initially consists of one dominant and one hybrid

individual. What is the probability that eventually the population will contain only

dominant individuals?

Let T be the first passage time as defined in Example 3.2. We are asked to compute

u2 = P(T <∞|X0 = 2) = 1 − v2. From Theorem 3.2 we see that

v = Bv

where v = [v2, v3, · · · , v6]′ and

B =













1/2 0 1/4 0 0
0 0 1 0 0

1/4 1/8 1/4 1/4 1/16
0 0 1/4 1/2 1/4
0 0 0 0 1













. (3.9)

The above equation implies that v6 = v6, thus there are an infinite number of solu-

tions to v = Bv. Since we are looking for the largest solution bounded above by 1,

we must choose v6 = 1. Notice that we could have concluded this by observing that

X0 = 6 implies that the DTMC can never visit state 1 and hence T = ∞. Thus we

must have u6 = 0 or v6 = 1. Once v6 is chosen to be 1, we see that v = Bv has a

unique solution given by

v = [0.25, 0.50, 0.50, 0.75, 1]′.

Thus the required answer is given by u2 = 1 − v2 = 0.75.

Example 3.6 Gambler’s Ruin. Consider the Gambler’s ruin model of Exam-

ple 2.11 on page 17. The DTMC in that example is a simple random walk on

{0, 1, 2, · · · , N} with transition probabilities given by

pi,i+1 = p for 1 ≤ i ≤ N − 1,

pi,i−1 = q = 1 − p for 1 ≤ i ≤ N − 1,

p00 = pNN = 1.

Compute the probability that the DTMC eventually visits state 0 starting from state

i.
Let T = min{n ≥ 0 : Xn = 0}. We can write the Equation 3.8 as follows

vi = pvi+1 + qvi−1, 1 ≤ i ≤ N − 1. (3.10)

The above equation can also be derived from first step analysis, or argued as follows:

If the DTMC starts in state i (1 ≤ i ≤ N−1), it will be in state i+1 with probability

p, and the probability of never visiting state 0 from then on is vi+1; and it will visit

state i − 1 with probability q and the probability of never visiting state 0 from then

on will be vi−1. Hence we get Equation 3.10. To complete the argument we must
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decide appropriate values for v0 and vN . Clearly, we must have v0 = 0, since once

the DTMC visits state 0, the probability of never visiting state 0 will be 0. We can

also argue that vN = 1, since once the DTMC visits state N it can never visit state

0. We also see that Equation 3.8 implies that vN = vN , and hence we set vN = 1 in

order to get the largest solution bounded above by 1.

Equation 3.10 is a difference equation with constant coefficients, and hence using

the standard methods of solving such equations (See Appendix I) we get

vi =

{

1−(q/p)i

1−(q/p)N if q 6= p
i
N if q = p.

(3.11)

The required probability is ui = 1 − vi.

Example 3.7 Success Runs. Consider the success runs DTMC of Example 3.3.

Compute the probability that the DTMC never visits state 0 starting form state i.
Using the derivation in Example 3.3, we get

vi(n) = pipi+1 · · · pi+n−1, i ≥ 1, n ≥ 1.

Hence

vi = lim
n→∞

pipi+1 · · · pi+n−1, i ≥ 1.

The above limit is zero if pn = 0 for some n ≥ i. To avoid this triviality, assume that

pi > 0 for all i ≥ 1. Now it is known that

lim
n→∞

p1p2 · · · pn = 0 ⇔
∞
∑

n=1

qn = ∞,

and

lim
n→∞

p1p2 · · · pn > 0 ⇔
∞
∑

n=1

qn <∞.

Hence we see that

vi = 0, i.e., ui = 1 for all i⇔
∞
∑

n=1

qn = ∞,

and

vi > 0, i.e., ui < 1 for all i⇔
∞
∑

n=1

qn <∞.

The reader should try to obtain the same results by using Theorem 3.2.

Example 3.8 Simple Space Homogeneous Random Walk.

Consider a simple random walk on {0, 1, 2, · · ·} with an absorbing barrier at zero.

That is, we have

pi,i+1 = p for i ≥ 1,

pi,i−1 = q = 1 − p for i ≥ 1,

p00 = 1.
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Let T be the first passage time into state 0. Equation 3.8 for this system, written in

scalar form, is as follows:

vi = qvi−1 + pvi+1, i ≥ 1, (3.12)

with v0 = 0. This a difference equation with constant coefficients. The general solu-

tion is given by

vi = α+ β

(

q

p

)i

, i ≥ 0.

Using the condition v0 = 0 we get β = −α, and thus

vi = α

(

1 −
(

q

p

)i
)

, i ≥ 0. (3.13)

Now, if q ≥ p, the largest solution bounded above by one is obtained by setting

α = 0; if q < p, such a solution is obtained by setting α = 1. Thus we get

vi =

{

0 if q ≥ p

1 −
(

q
p

)i

if q < p.

If q ≥ p, the random walk has a drift towards zero (since it goes towards zero with

higher probability than away from it), and it makes intuitive sense that the random

walk will hit zero with probability 1, and hence vi = 0. On the other hand, if q < p,

there is a drift away from zero, and there is a positive probability that the random

walk will never visit zero. Note that without Theorem 3.2 we would not be able to

choose any particular value of α in Equation 3.13.

Example 3.9 General Simple Random Walk. Now consider the space-

nonhomogeneous simple random walk with the following transition probabilities:

pi,i+1 = pi for i ≥ 1,

pi,i−1 = qi = 1 − pi for i ≥ 1,

p00 = 1.

Let T be the first passage time into state 0. Equation 3.8 for this system, written in

scalar form, is as follows:

vi = qivi−1 + pivi+1, i ≥ 1, (3.14)

with a single boundary condition v0 = 0. Now let

xi = vi − vi−1, i ≥ 1.

Using pi + qi = 1, we can write Equation 3.14 as

(pi + qi)vi = qivi−1 + pivi+1

which yields

qixi = pixi+1,
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or, assuming pi > 0 for all i ≥ 1,

xi+1 =
qi
pi
xi, i ≥ 1.

Solving recursively, we get

xi+1 = αix1, i ≥ 0, (3.15)

where α0 = 1 and

αi =
q1q2 · · · qi
p1p2 · · · pi

, i ≥ 1. (3.16)

Summing Equation 3.15 for i = 0 to j, and rearranging, we get

vj+1 =

(

j
∑

i=0

αi

)

v1.

Now, Theorem 3.2 says that v1 must be the largest value such that 0 ≤ vj ≤ 1 for all

j ≥ 1. Hence we must choose

v1 =

{

1
∑∞

i=0
αi

if
∑∞

i=0 αi <∞,

0 if
∑∞

i=0 αi = ∞.

Thus the final solution is

vi =







∑i−1

j=0
αj

∑∞
j=0

αj

if
∑∞

j=0 αj <∞,

0 if
∑∞

j=0 αj = ∞.
(3.17)

We can compute ui = 1 − vi from the above. Notice that visiting state 0 is certain

from any state i (that is, ui = 1) if the sum
∑

αj diverges. The reader is urged to

verify that this consistent of the results of Example 3.8.

Example 3.10 Branching Processes. Consider the branching {Xn, n ≥ 0} de-

scribed in Section 2.3.3. Let αk be the probability that an individual produces k
offsprings, and let µ be the expected number of offsprings produced by an individ-

ual. In Example 2.22 on page 35 we saw that E(Xn) = µn. Here we shall compute

the probability that the process eventually becomes extinct, i.e., it hits state 0.

Let T be the first passage time into the state 0, and let ui = P(T < ∞|X0 = i)
and u = u1. We first argue that ui = ui, i ≥ 0. Note that a branching process start-

ing with i individuals can be thought of as i independent branching processes, each

starting with one individual. Thus a branching process starting with i individuals will

become extinct if and only if each of these i separate processes become extinct, the

probability of which is ui. Hence ui = ui. Note that this relationship is valid even

for i = 0. With this we apply the first step analysis:

u = P(T <∞|X0 = 1)

=

∞
∑

j=0

P(T <∞|X0 = 1, X1 = j)P(X1 = j|X0 = 1)
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=

∞
∑

j=0

αjP(T <∞|X1 = j)

=

∞
∑

j=0

αjP(T <∞|X0 = j)

=

∞
∑

j=0

αju
j .

Now let

ψ(u) =

∞
∑

j=0

αju
j (3.18)

be the generating function of the offspring size. The absorption probability u satisfies

u = ψ(u). (3.19)

Since ψ′′(u) ≥ 0 for all u ≥ 0, ψ is a convex function of u ∈ [0, 1]. Also, ψ(0) = α0

and ψ(1) = 1. Clearly, if α0 = 0, each individual produces at least one offspring,

and hence the branching process never goes extinct, i.e., u = 0. Hence assume that

α0 > 0. Figures 3.1 and 3.2 show two possible cases that can arise.

The situation in Figure 3.1 arises if

ψ′(1) =

∞
∑

i=0

iαi = µ > 1,

while that in Figure 3.2 arises if µ ≤ 1. In the first case there is a unique value of

1

1

ψ(u)

0

a0

u

Figure 3.1 Case1: µ > 1.

u ∈ (0, 1) satisfying ψ(u) = u, in the second case the only value of u ∈ [0, 1] that

satisfies u = ψ(u) is u = 1. Thus we conclude that extinction is certain if µ ≤ 1,
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1

1

ψ(u)

0

a0

u

Figure 3.2 Case1: µ ≤ 1.

while there is a positive probability of the branching process growing without bounds

if µ > 1. This is intuitive, except for the critical case of µ = 1. In this case our pre-

vious analysis shows that E(Xn) = 1 for all n ≥ 0, however the branching process

becomes extinct. This seemingly inconsistent result is a manifestation of the fact that

convergence in distribution or with probability one does not imply convergence of

the means.

We will encounter Equation 3.19 multiple times during the study of DTMCs. Hence it

is important to know how to solve it. Except in very special cases (See Computational

Exercise 3.34) we need to resort to numerical methods to solve this equation. We

describe one such method here.

Let ψ be as defined in Equation 3.18, and define

ρ0 = 0, ρn+1 = ψ(ρn), n ≥ 0.

We shall show that if µ > 1, ρn → u, the desired solution in (0,1) to Equation 3.19.

We have

ρ1 = a0 > 0 = ρ0.

Now, since ψ is an increasing function, it is clear that

ρn+1 ≥ ρn, n ≥ 0.

Also, ρn ≤ 1 for all n ≥ 0. Hence {ρn, n ≥ 0} is a bounded monotone increasing

sequence. Hence it has a limit u, and this u satisfies Equation 3.19. The sequence

{ρn} is geometrically illustrated in Figure 3.3.

Similarly, if µ > 1, one can use the bisection method to find a ρ∗0 < 1 such that

ψ(ρ∗0) < ρ∗0. Then recursively define

ρ∗n+1 = ψ(ρ∗n), n ≥ 0.
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u
ρ2ρ1ρ0

a0

ρ

ψ(u)

Figure 3.3 The iteration ρn+1 = ψ(ρn).

One can show that

ρ∗n+1 ≤ ρ∗n, n ≥ 0

so that the sequence {ρ∗n} monotonically decreases to u. Using these two monotonic

sequences we see that if, for a given ǫ > 0, we stop the iterations when |ρ∗n−ρn| < ǫ,
then we are guaranteed that 0 ≤ u−ρn < ǫ. Thus we have simple numerical method

of solving Equation 3.19 to any degree of accuracy.

Example 3.11 Production-Inventory System: Batch Production. Consider the

DTMC of Example 2.16 on page 19. Compute ui, the probability that the DTMC

eventually visits state 0 starting from state i.

The DTMC has state-space{0, 1, 2, · · ·} and transition probability matrix as given

in Equation 2.10. First step analysis yields

ui =

∞
∑

j=0

αjui+j−1, i ≥ 1, (3.20)

with the boundary condition u0 = 1. Since the above equation is a difference equa-

tion with constant coefficients, we try a geometric solution ui = ui, i ≥ 0. Substi-

tuting in the above equation and canceling ui−1 from both sides we get

u =

∞
∑

j=0

αju
j, i ≥ 1.

Using the notation ψ(u) of Equation 3.18 we see that this is the same as Equa-

tion 3.19. Using the notation µ =
∑

iαi and the results of Example 3.10, we see that

u = 1 if and only if µ ≤ 1, and u < 1 if and only if µ > 1.
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Example 3.12 Production-Inventory System: Batch Demands. Consider the

DTMC of Example 2.17 on page 20. Compute v1, the probability that the DTMC

never visits state 0 starting from state i.

The DTMC has state-space{0, 1, 2, · · ·} and transition probability matrix as given

in Equation 2.12. First step analysis yields

vi =

i
∑

j=0

αjvi−j+1, i ≥ 1. (3.21)

It is intuitively clear that vi is an increasing function of i. It can be formally proved

by induction, see Conceptual Exercise 3.12. There is no closed form expression for

vi in terms of the α’s. Hence we compute the generating function of the vi’s defined

as

φ(z) =
∞
∑

i=1

zivi

in terms of the generating function of the α’s as defined below

ψ(z) =

∞
∑

i=0

ziαi.

Multiplying Equation 3.21 by zi on both sides and summing up from i = 1 to ∞ and

rearranging, we get

φ(z) =
∞
∑

i=1

zivi

=
∞
∑

i=1

zi
i
∑

j=0

αjvi−j+1

= −a0v1 +
ψ(z)

z
φ(z).

This yields

φ(z) =
a0z

ψ(z) − z
v1.

Since {vi, i ≥ 1} is a monotone bounded sequence, it has a limit. Using the proper-

ties of the generating functions (see Appendix D) we get

lim
i→∞

vi = lim
z→1

(1 − z)φ(z)

= lim
z→1

(1 − z)a0z

ψ(z) − z
v1.

Using L’Hopital’s rule we get

lim
z→1

(1 − z)a0z

ψ(z) − z
v1 =

a0

1 − ψ′(1)
v1.
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Since we want to find the largest solution to Equation 3.21 that is bounded above by

1, the above limit must be 1. Hence, using

ψ′(1) =

∞
∑

k=0

kαk = µ,

we see that we must choose

v1 =

{ 1−µ
a0

if µ < 1, a0 > 0, a0 + a1 < 1,

0 if µ ≥ 1.

The conditions µ < 1, a0 > 0, a0 + a1 < 1 are necessary and sufficient to ensure

that 0 < 1−µ
a0

< 1.

3.4 Expectation of T

Let {Xn, n ≥ 0} and T be as defined in Section 3.1. In this section we assume that

ui = P(T <∞|X0 = i) = 1 for all i ≥ 1 and compute

mi = E(T |X0 = i), i ≥ 1.

Notice that ui < 1 would imply that mi = ∞. Let

m = [m1, m2, m3, · · ·]′,
and B be as defined in Equation 3.3. The main result is given by the following The-

orem.

Theorem 3.3 Suppose ui = 1 for all i ≥ 1. Then m is given by the smallest non-

negative solution to

m = e+Bm, (3.22)

where e is a column vector of all ones.

Proof: We shall follow the first-step analysis:

mi = E(T |X0 = i)

=

∞
∑

j=0

E(T |X0 = i,X1 = j)P(X1 = j|X0 = i)

=

∞
∑

j=0

pijE(T |X0 = i,X1 = j).

Now, using

E(T |X0 = i,X1 = 0) = 1,

and

E(T |X0 = i,X1 = j) = 1 + E(T |X0 = j) = 1 +mj , j ≥ 1
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and simplifying, we get

mi = 1 +

∞
∑

j=1

pijmj , i ≥ 1. (3.23)

This yields Equation 3.22 in matrix form. The proof that it is the smallest non-

negative solution follows along the same lines as the proof of Theorem 3.2.

Notice that Equation 3.23 can be intuitively understood as follows: If the DTMC

starts in state i ≥ 1, it has to take at least one step before hitting state 0. If after the

first step it is in state 0, it does not need anymore steps to reach state zero. On the

other hand, if it is in state j ≥ 1, it will need an additional mj steps on average to

reach state zero. Weighing all these possibilities we get Equation 3.23. We illustrate

with several examples below.

Example 3.13 Genotype Evolution. Consider the six-state DTMC in the Geno-

type Evolution model of Example 3.2 with transition probability matrix given in

Equation 3.7. Suppose initially the population consists of one dominant and one hy-

brid individual. Compute the expected time until the population becomes entirely

dominant or entirely recessive.

Let

T = min{n ≥ 0 : Xn = 1 or 6}.
We are asked to compute m2 = E(T |X0 = 2). Since we know that eventually the

entire population will be either dominant or recessive, ui = 1 for all i. Now let

m = [m2, m3, m3, m4]
′, and B be the 4 by 4 submatrix of P obtained by deleting

rows and columns corresponding to states 1 and 6. Then, from Theorem 3.3 we get

m = e+Bm.

Solving numerically, we get

m = [4
5

6
, 6

2

3
, 5

2

3
, 4

5

6
]′.

Thus, on the average, the population genotype gets fixed in 4 5
6 steps if it starts with

one dominant and one hybrid individual.

The next example shows that some questions can be answered by using the first

passage times even if the problem does not explicitly involve a DTMC!

Example 3.14 Coin Tossing. Suppose a coin tossed repeatedly in an independent

fashion until k consecutive heads are obtained. Compute the expected number of

tosses needed if probability of obtaining a head on any toss is p.

Consider the DTMC {Xn, n ≥ 0} defined in Example 3.4. Since Xn can be

thought of as the legth of the current run of heads, it is clear that the answer is given

by m0 = E(T |X0 = 0), where

T = min{n ≥ 0 : Xn = k}.
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Using the first-step analysis we get

mi = 1 + qm0 + pmi+1, 0 ≤ i ≤ k − 1

with mk = 0. Solving recursively we get

mi =

(

1

q
+m0

)

(1 − pk−i), 0 ≤ i ≤ k − 1.

Setting i = 0 we get an equation for m0, which can be solved to get

m0 =
1

q

(

1

pk
− 1

)

.

The reader should verify that this produces the correct result if we set k = 1.

Example 3.15 General Simple Random Walk. Compute the expected time to hit

state 0 starting from state i ≥ 1 in the general simple random walk of Example 3.9.

Let αi be as given Equation 3.16. We shall assume that

∞
∑

r=1

αr = ∞,

so that, from Example 3.9, ui = 1 for all i. The first-step analysis yields

mi = 1 + qimi−1 + pimi+1, i ≥ 1 (3.24)

with boundary conditionm0 = 0. Now let

xi = mi −mi−1, i ≥ 1.

Then Equation 3.24 can be written as

qixi = 1 + pixi+1, i ≥ 1.

Solving recursively, we get

xi+1 = −αibi + αim1, i ≥ 0 (3.25)

where

bi =

i
∑

j=1

1

pjαj
,

with b0 = 0. Summing Equation 3.25 we get

mi+1 = xi+1 + xi + · · · + x1 + x0

= −
i
∑

j=1

αjbj +m1

i
∑

j=0

αj , i ≥ 0.

Since m1 is the smallest non-negative solution we must have

m1 ≥
∑i

j=1 αjbj
∑i

j=0 αj

=

i
∑

j=1

1

pjαj

∑i
r=j αr

∑i
r=0 αr

, i ≥ 1. (3.26)
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It can be shown that the right hand side of the above equation is an increasing function

of i, and its limit as i→ ∞ is
∑∞

j=1 1/pjαj , since we have assumed
∑∞

r=1 αr = ∞.

Hence the smallest m1 to satisfy Equation 3.26 is given by

m1 =
∞
∑

j=1

1

pjαj
.

Note that m1 may be finite or infinite. Using the above expression for m1 we get

mi =

i−1
∑

k=0

αk





∞
∑

j=k+1

1

pjαj



 .

Example 3.16 Production-Inventory System: Batch Production. Consider the

DTMC of Example 2.16 on page 19. Compute mi, the expected time when the

DTMC reaches state 0 starting from state i.

Let µ be the mean production batch size as defined in Example 3.11. Assume that

µ ≤ 1, so that, from the results of Example 3.11, the DTMC reaches state 0 with

probability 1 starting from any state. The first step analysis yields

mi = 1 +

∞
∑

j=0

αjmi+j−1, i ≥ 1,

with the boundary condition m0 = 0. It can be shown that the solution to this set

of equations is given by mi = im for some positive m. Substituting in the above

equation we get

im = 1 +

∞
∑

j=0

αj(i+ j − 1)m, i ≥ 1.

Simplifying, we get

(1 − µ)m = 1.

Since mi is the smallest non-negative solution, we must have

m =

{ 1
1−µ if µ < 1

∞ if µ ≥ 1.

Hence

mi =

{ i
1−µ if µ < 1

∞ if µ ≥ 1.

Example 3.17 Production-Inventory System: Batch Demands. Consider the

DTMC of Example 2.17 on page 20. Compute mi, the expected time when the

DTMC reaches state 0 starting from state i.

Let µ be the mean demand batch size as defined in Example 3.12. Assume that

µ ≥ 1, so that, from the results of Example 3.12, the DTMC reaches state 0 with
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probability 1 starting from any state. First step analysis yields

mi = 1 +
i
∑

j=0

αjmi−j+1, i ≥ 1. (3.27)

It is intuitively clear that mi is an increasing function of i. There is no closed form

expression for mi in terms of the α’s. Hence we compute the generating function of

the mi’s defined as

φ(z) =

∞
∑

i=1

zimi

in terms of the generating function of the α’s as defined below

ψ(z) =

∞
∑

i=0

ziαi.

Multiplying Equation 3.27 by zi on both sides and summing up from i = 1 to ∞ and

rearranging, we get

φ(z) =

∞
∑

i=1

zimi

=

∞
∑

i=1

zi



1 +

i
∑

j=0

αjmi−j+1





=
z

1 − z
− a0m1 +

ψ(z)

z
φ(z).

This yields

φ(z) =
a0m1z(1 − z) − z2

(1 − z)(ψ(z) − z)
.

One can show that φ(z) < ∞ for |z| < 1. Hence if there is a z with |z| < 1 for

which the denominator on the above equation becomes zero, the numerator must

also become zero. From the results of Example 3.10, we see that ψ(z) − z has a

solution z = α with 0 < α < 1 if and only if µ =
∑

kαk > 1. Thus, in this case we

must have

a0m1α(1 − α) = α2

or

m1 =
α

a0(1 − α)
.

Substituting in φ(z) we see that

φ(z) =
α

1−αz(1 − z) − z2

(1 − z)(ψ(z) − z)
,

if a0 > 0 and µ > 1. Clearly, if a0 = 0 or if µ ≤ 1 we get m1 = ∞.
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3.5 Generating Function and Higher Moments of T

Let {Xn, n ≥ 0} and T be as defined in Section 3.1. We begin this section with the

study of the generating function of T defined as

φi(z) = E(zT |X0 = i) =

∞
∑

n=0

zn
P(T = n|X0 = i), i ≥ 1.

The above generating function is well defined for all complex z with |z| ≤ 1. Let B
be as defined in Equation 3.3 and let

b = [p10, p20, · · ·]′.
The next theorem gives the main result concerning

φ(z) = [φ1(z), φ2(z), φ3(z), · · ·]′.

Theorem 3.4 The vector φ(z) is the smallest solution (for z ∈ [0, 1]) to

φ(z) = zb+ zBφ(z). (3.28)

Proof: Using the first step analysis, we get, for i ≥ 1,

φi(z) = E(zT |X0 = i) =

∞
∑

j=0

pijE(zT |X0 = i,X1 = j).

Now, X0 = i,X1 = 0 ⇒ T = 1. Hence

E(zT |X0 = i,X1 = 0) = 1.

Also, for j ≥ 1, X0 = i,X1 = j implies that T has the same distribution as 1 + T
starting from X0 = j. Hence

E(zT |X0 = i,X1 = j) = E(z1+T |X0 = j) = zφj(z).

Using these two observations we get

φi(z) = zpi0 + z

∞
∑

j=1

pijφj(z).

The above equation in matrix form yields Equation 3.28. The proof that it is the

smallest solution (for z ∈ [0, 1]) follows along the same lines as that of the proof of

Theorem 3.2.

Note that

φi(1) =

∞
∑

n=0

P(T = n|X0 = i) = P(T <∞|X0 = i) = ui = 1 − vi. (3.29)

Using u = φ(1) in Equation 3.28 we get

u = b+Bu, (3.30)
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or using v = e− u in the above equation, we get

v = Bv

which is Theorem 3.2. We have

φ′(1) =

∞
∑

n=0

nP(T = n|X0 = i).

Thus, if ui = 1, φ′(1) = E(T |X0 = i) = mi. Now, taking the derivatives of both

sides of Equation 3.28 we get

φ′(z) = b+Bφ(z) + zBφ′(z).

Setting z = 1 and recognizing φ(1) = u the above equation reduces to

φ′(1) = b+Bu+Bφ′(1).

Using Equation 3.30 this yields

φ′(1) = u+Bφ′(1).

Now assume u = e, that is absorption in state 0 is certain from all states. Then, using

φ′(1) = m, we get

m = e+Bm,

which is Equation 3.22. We can similarly compute the higher moments by taking

higher derivatives. In particular, if we assume that u = e, and denoting the k-th

derivative of φ(z) by φ(k)(z), we see that

φ(k) = E(T (k)|X0 = i) = mi(k), (3.31)

where T (k) = T (T − 1) · · · (T − k+ 1) is the k-th factorial moment of T . Note that

T (1) = T and m(1) = m. The next theorem gives the equations satisfied by

m(k) = [m1(k), m2(k), · · ·]′.

Theorem 3.5 Suppose u = e. Then m(k) is the smallest positive solution to

m(k) = kBm(k − 1) +Bm(k), k ≥ 2.

Proof: Follows by successively differentiating Equation 3.28 and using Equa-

tion 3.31. The proof of the minimality follows along the same lines as in the proof

Theorem 3.2.

Example 3.18 Genotype Evolution. Consider the six-state DTMC in the Geno-

type Evolution model of Example 3.2 with transition probability matrix given in

Equation 3.7. Suppose initially the population consists of one dominant and one hy-

brid individual. Compute the variance of time until the population becomes entirely

dominant or entirely recessive.

Let

T = min{n ≥ 0 : Xn = 1 or 6}.
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We will first compute mi(2) = E(T (T − 1)|X0 = i), i = 2, 3, 4, 5. Since we know

that eventually the entire population will be either dominant or recessive, ui = 1
for all i. Now let m(2) = [m2(2), m3(2), m3(2), m4(2)]′, and B be the 4 by 4

submatrix of P obtained by deleting rows and columns corresponding to states 1 and

6. From Example 3.13, we have

m = m(1) = [4
5

6
, 6

2

3
, 5

2

3
, 4

5

6
]′.

Theorem 3.5 implies that

m(2) = 2Bm(1) +Bm(2).

Numerical calculations yield

m(2) = [39
8

9
, 60

4

9
, 49

1

9
, 39

8

9
]′.

Hence the required answer is

Var(T |X0 = 2) = m2(2) +m2(1) −m2(1)2 = 22
2

3
.

3.6 Computational Exercises

3.1 Let {Xn, n ≥ 0} be a DTMC on state space {0, 1, 2, 3} with the following

transition probability matrix:









0.2 0.1 0.0 0.7
0.1 0.3 0.6 0.0
0.0 0.4 0.2 0.4
0.7 0.0 0.1 0.2









.

Let T = min{n ≥ 0 : Xn = 0}. Compute

(a) P(T ≥ 3|X0 = 1),

(b) E(T |X0 = 1),

(c) Var(T |X0 = 1).

3.2 Do the above problem with the following transition probability matrix:








0.0 1.0 0.0 0.0
0.2 0.0 0.8 0.0
0.0 0.8 0.0 0.2
0.0 0.0 1.0 0.0









.

3.3 Consider a 4 by 4 chutes and ladders game as shown in Figure 3.4. A player

starts on square one. He tosses a six sided fair die and moves 1 square if the die

shows 1 or 2, 2 squares if it shows 3 or 4, and 3 squares if it shows 5 or 6. Toward

the end of the play, when the player is near square 16, he has to land on square 16
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16
15

14 13
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8 7 6
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4321

Figure 3.4 The 4 by 4 chutes and ladders.

exactly in order to finish the game. If he overshoots 16, he has to toss again. (In a

two person game he loses a turn.) Compute the expected number of tosses needed to

finish the game. (You may need to use a computer.)

3.4 If two players are playing the game compute the probability distribution of the

time until the game ends (that is, when one of the two players lands on 16.) As-

sume that there is no interaction among the two players, except that they take turns.

Compute the mean time until the game terminates.

3.5 Compute the expected number of times the ladder from 3 to 5 is used by a player

during one game.

3.6 Develop a computer program that analyzes a general chutes and ladders game.

The program accepts the following input: n, size of the board (n by n); k, the number

of players; the placements of the chutes and the ladders, and the distribution of the

number of squares moved in one turn. The program produces the following output:

1. Distribution of the number of tosses needed for one player to finish the game.

2. Distribution of the time to complete the game played by k players,

3. Expected length of the game played by k players.

3.7 Consider a maze of nine cells as shown in Figure 3.5. At time 0 a rat is placed

in cell one, and food in cell 9. The rat stays in the current cell for one unit of time

and then chooses one of the doors in the cell at random and moves to an adjacent

cell. Its successive moves are independent and completely uninfluenced by the food.

Compute the expected time required for the rat to reach the food.
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1 2 3

4 5 6

7 8 9

Figure 3.5 The nine cell maze.

3.8 Suppose the food in the above problem is replaced by a cat that moves like the

rat, but in an independent fashion. Of course, when the cat and the rat occupy the

same cell, the cat promptly eats the rat. Compute the expected time when the cat gets

its meal.

3.9 Let {Xn, n ≥ 0} be a DTMC on state-space {0, 1, 2, · · ·} with the following

transition probabilities

pij =

{

1
i+2 0 ≤ j ≤ i+ 1, i ≥ 0

0 otherwise.

Let T = min{n ≥ 0 : Xn = 0}. Compute E(T |X0 = 1).

3.10 Consider the Moran model on page 25 with N genes in the population, i of

which are initially dominant (1 ≤ i ≤ N ). Compute the expected time until all the

genes are dominant or all the genes are recessive.

3.11 Suppose a coin is tossed repeatedly and independently, the probability of ob-

serving a head on any toss being p. Compute the probability that a string of r con-

secutive heads is observed before a string of m consecutive tails.

3.12 In the Computational Exercise 3.10 compute the probability that eventually all

the genes become dominant.

3.13 Let {Zn, n ≥ 1} be a sequence of iid random variables with common pmf

pZ(1) = pZ(2) = pZ(3) = pZ(4) = .25. LetX0 = 0 andXn = Z1+Z2+· · ·+Zn,

n ≥ 1. Define T = min{n > 0 : Xn is divisible by 7}. Note the strict inequality in

n > 0. Compute E(T |X0 = 0).
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3.14 Consider the binomial model of the stock fluctuation as described on page 28.

SupposeX0 = 1, and an individual owns one stock at time 0. Suppose the individual

has decided to sell the stock as soon as it reaches a value of 2 or more. Compute

the expected time when such a sale would occur, assuming that p = .5, u = .2 and

d = .1. Hint: It might be easier to deal with log of the stock price.

3.15 In the coin tossing experiment of Computational Exercise 3.11 compute the

expected number of tosses needed to observe the sequenceHHTT for the first time.

3.16 Solve Computational Exercise 3.14 if the individual decides to sell the stock

when it goes above 2 or below .7.

3.17 Let {Xn, n ≥ 0} be a simple random walk on {0, 1, · · · , N} with absorbing

barriers at 0 and N . That is p00 = pNN = 1, and pi,i+1 = p, pi,i−1 = q for

1 ≤ i ≤ N − 1. Let T = min{n ≥ 0 : Xn = 0 or N}. Show that

E(T |X0 = i) =
i

q − p
− N

q − p
· 1 − (q/p)i

1 − (q/p)N

if q 6= p. What is the corresponding formula if p = q?

3.18 Suppose a DNA sequence is appropriately modeled by a 4-state DTMC with

transition probability matrix P (1) given on page 22. Suppose the first base is A.

Compute the expected length of the sequence until we see the triplet ACT .

3.19 Let {Xn, n ≥ 0} be a simple random walk on {0, 1, 2, · · ·} with p00 = 1 and

pi,i+1 = p, pi,i−1 = q for i ≥ 1. Let T = min{n ≥ 0 : Xn = 0}. Show that, for

|z| ≤ 1,

E(zT |X0 = i) = φ(z)i

where

φ(z) = (1 −
√

1 − 4pqz2)/2pz.

Give a probabilistic interpretation of φ(z)i in terms of the generating functions of the

convolutions of iid random variables.

3.20 Compute the expected number of bases between two consecutive appearances

of the triplet CAG in the DNA sequence in Computational Exercise 3.18.

3.21 Let {Xn, n ≥ 0} be the DTMC of Example 2.16. Let T = min{n ≥ 0 :
Xn = 0}. Show that

E(zT |X0 = i) = φ(z)i, i ≥ 0

where φ(z) is given by the smallest solution to

φ(z) = z
∞
∑

i=0

aiφ(z)i.

3.22 In the Computational Exercise 3.18 compute the probability that we see the

triplet ACT before the triple GCT .
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3.23 In the Gambler’s Ruin model of Example 2.11 on page 17 compute the ex-

pected number of bets won by the player A until the game terminates, assuming that

the player A starts the game with i dollars, 1 ≤ i ≤ N − 1.

3.24 Consider the discrete time queue with Bernoulli arrivals and departures as de-

scribed in Example 2.12 on page 17. Suppose the queue has i customers in it initially.

Compute the probability that the server will eventually become idle.

3.25 Consider the clinical trials of Example 2.5 on page 14 using play the winner

rule. Suppose the trial stops as soon as either drug produces r successes, with the

drug producing the r successes first being declared the superior drug. Compute the

probability that the better of the two drugs gets declared as the best.

3.26 Derive a recursive method to compute the expected number of patients needed

to successfully conclude the clinical trial of the Computational Exercise 3.25.

3.27 Compute numerically the extinction probability of a branching process

{Xn, n ≥ 0} with X0 = 1 if each individual produces 20 offspring with proba-

bility 0.8 and 0 offspring with probability 0.2.

3.28 Consider a branching process {Xn, n ≥ 0} with X0 = 1 and E(X1|X0 =
1) = µ ≤ 1. Let N be the total number of individuals that ever live in this colony

until the colony becomes extinct (which it does with probability 1, see Example 3.10

on page 64). N is called the total progeny and is given by N =
∑∞

n=0Xn. Let

ψ(z) = E(zX1 |X0 = 1) and φ(z) = E(zN |X0 = 1). Show that

φ(z) = zψ(φ(z)).

Hence show that

E(N |X0 = 1) =
1

1 − µ
.

Thus when µ = 1, the process becomes extinct with probability one, but the expected

total progeny is infinite!

3.29 Consider the DTMC of Modeling Exercise 2.17 with

αk =
1

M + 1
, 0 ≤ k ≤M.

Compute the expected time until the DTMC reaches the absorbing state M .

3.30 A clinical trial is designed to identify the better of two experimental treatments.

The trial consists of several stages. At each stage two new patients are selected ran-

domly from a common pool of patients and one is given treatment 1, and the other is

given treatment 2. The stage is complete when the result of each treatment is known

as a success or a failure. At the end of the nth stage we record Xn = the number of

successes under treatment 1 minus those on treatment 2 observed on all the stages

so far. The trial stops as soon as Xn reaches +k or −k, where k is a given positive
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integer. If the trial stops withXn = k, treatment 1 is declared to be better than 2, else

treatment 2 is declared to be better than 1. Now suppose the probability of success

of the ith treatment is pi, i = 1, 2. Suppose p1 > p2. Assume that the results of

the successive stages are independent. Compute the probability that the clinical trial

reaches correct decision, as a function of p1, p2, and k.

3.31 In the Computational Problem 3.30 compute the expected number of patients

subjected to treatments during the entire clinical trial.

3.32 Consider the manufacturing set up described in Modeling Exercise 2.32. Sup-

pose initially both bins are empty. Compute the expected time (in hours) until one of

the machines is turned off.

3.33 Consider the two bar town of Modeling Exercise 2.11. Assume that the two

transition probability matrices are identical. Compute the expected time when boy

and girl meet.

3.34 Solve Equation 3.19 for the special case when αi = 0 for i ≥ 4.

3.7 Conceptual Exercises

3.1 Let {Xn, n ≥ 0} be a DTMC on state-space S = {0, 1, 2, · · ·} and transition

probability matrix P . Let A ⊂ S and define

T (A) = min{n ≥ 0 : Xn ∈ A}.
Show that

vi(A) = P(T (A) = ∞|X0 = i)

are given by the largest solution bounded above by 1 to the following equations:

vi(A) =
∑

j/∈A

pijvj(A), i /∈ A.

Use first step analysis and follow the proof of Theorem 3.2.

3.2 For the Conceptual Exercise 3.1 derive an analog of Theorem 3.3 for

mi(A) = E(T (A)|X0 = i).

3.3 Let {Xn, n ≥ 0} be a DTMC on state-space S = {0, 1, 2, · · ·} and transition

probability matrix P . Let

T̃ = min{n > 0 : Xn = 0}.
Show how to compute

ṽi = P(T̃ = ∞|X0 = i), i ≥ 0,

in terms of vi, i ≥ 1, as defined in Section 3.3.
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3.4 For the Conceptual Exercise 3.3 show how to compute

m̃i = E(T̃ |X0 = i), i ≥ 0,

in terms of mi, i ≥ 1, as defined in Section 3.4.

3.5 Let T be as in Equation 3.1, and define

mi,n =

n
∑

k=0

kP(T = k|X0 = i)

and ui,n = P(T ≤ n|X0 = i). Using the first step analysis show that

ui,n+1 = pi,0 +

∞
∑

j=1

pijuj,n, i > 0, n ≥ 0,

and

mi,n+1 = ui,n+1 +

∞
∑

j=1

pijmj,n, i > 0, n ≥ 0.

3.6 Let {Xn, n ≥ 0} be a DTMC on state-space S = {0, 1, 2, ..., N}with transition

probability matrix P . Let A be a subset of the state-space, and T (A) be the time it

takes the DTMC to visit all the states in A at least once. Thus when A = {k}, T (A)
is the usual first passage time to the state k.

1. Develop simultaneous equations for

µj(k) = E(T ({k})|X0 = j), j, k ∈ S.

2. Using the quantities µ0(N) and µN (0) as known, develop simultaneous equations

for

µi(0, N) = E(T ({0, N})|X0 = i), i ∈ S.

3.7 LetA be a fixed subset of the state-spaceS. Derive a set of equations to compute

the probability that the DTMC visits every state in A before visiting state 0.

3.8 Let {Xn, n ≥ 0} be a DTMC with state-space {0, 1, · · ·}, and transition proba-

bility matrix P . Let wij be the expected number of visits to state j starting from state

i before hitting state 0, counting the visit at time 0 if i = j. Using first-step analysis

show that

wij = δij +

∞
∑

k=1

pikwkj , i ≥ 1

where δij = 1 if i = j, and zero otherwise.

3.9 Let {Xn, n ≥ 0} be a DTMC with state-space {0, 1, · · ·}, and transition proba-

bility matrix P . Let T = min{n ≥ 0 : Xn = 0}. A state j is called a gateway state

to state 0 if XT−1 = j. Derive equations to compute the probability wij that state j
is a gateway state to state 0 if the DTMC starts in state i.
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3.10 Let {Xn, n ≥ 0} be a DTMC with state-space {0, 1, · · ·}, and transition proba-

bility matrix P . Let (i0, i1, · · · , ik) be a sequence of states in the state-space. Define

T = min{n ≥ 0 : Xn = i0, Xn+1 = i1, · · · , Xn+k = ik}. Derive a method to

compute E(T |X0 = i).

3.11 Let {Xn, n ≥ 0} be a DTMC with state-space {0, 1, · · ·}, and transition prob-

ability matrix P . Let T = min{n ≥ 0 : Xn = 0}. Let M be the largest state visited

by the DTMC until hits state 0. Derive a method to compute the distribution of M .

3.12 Show by induction that the sequence {vi, i ≥ 0} satisfying Equation 3.21 is

an increasing sequence.





CHAPTER 4

Discrete-Time Markov Chains:
Limiting Behavior

“God does not play dice with the universe”

– Albert Einstein

“God not only plays dice, he also sometimes throws the dice where they cannot be

seen”

– Stephen Hawking

4.1 Exploring the Limiting Behavior by Examples

Let {Xn, n ≥ 0} be a DTMC on S = {0, 1, 2, · · ·} with transition probability

matrix P . In Chapter 2 we studied two main aspects of the transient behavior of

the DTMC: the n-step transition probability matrix P (n) and the occupancy matrix

M (n). Theorem 2.4 showed that

P (n) = Pn, n ≥ 0,

and Theorem 2.6 showed that

M (n) =

n
∑

r=0

P r, n ≥ 0. (4.1)

In this chapter we study the limiting behavior of P (n) as n → ∞. Since the row

sums ofM (n) are n+1, we study the limiting behavior ofM (n)/(n+1) as n→ ∞.

Note that [M (n)]ij/(n+1) can be interpreted as the fraction of the time spent by the

DTMC in state j starting from state i during {0, 1, · · · , n}. Hence studying this limit

makes practical sense. We begin by some examples illustrating the types of limiting

behavior that can arise.

Example 4.1 Two-State Example. Let

P =

[

α 1 − α
1 − β β

]

85
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be the transition probability matrix of the two-state DTMC of Example 2.3 on

page 13 with α+ β < 2. From Example 2.18 on page 33 we get

Pn =
1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

+
(α+ β − 1)n

2 − α− β

[

1 − α α− 1
β − 1 1 − β

]

, n ≥ 0.

Hence we get

lim
n→∞

Pn =
1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

.

Thus the limit of P (n) exists and its row sums are one. It has an interesting feature

that both the rows of the limiting matrix are the same. This implies that the limiting

distribution of Xn does not depend upon the initial distribution of the DTMC. We

shall see that a large class of DTMCs share this feature. From Example 2.24 on

page 37 we get, for n ≥ 0,

M (n) =
n+ 1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

+
1 − (α+ β − 1)(n+1)

(2 − α− β)2

[

1 − α α− 1
β − 1 1 − β

]

.

Hence, we get

lim
n→∞

M (n)

n+ 1
=

1

2 − α− β

[

1 − β 1 − α
1 − β 1 − α

]

.

Thus, curiously, the limit of M (n)/(n + 1) in this example is the same as that of

P (n). This feature is also shared by a large class of DTMCs. We will identify this

class in this chapter.

Example 4.2 Three-State DTMC. Let

P =





0 1 0
q 0 p
0 1 0



 ,

where 0 < p < 1 and q = 1 − p. We saw in Example 2.26 on page 40 that

P (2n) =





q 0 p
0 1 0
q 0 p



 , n ≥ 1, (4.2)

and

P (2n+1) =





0 1 0
q 0 p
0 1 0



 , n ≥ 0. (4.3)

Since the sequence {P (n), n ≥ 1} shows an oscillatory behavior, it is clear that the

limit of P (n) does not exist. Now, direct calculations show that

M (2n) =





1 + nq n np
nq 1 + n np
nq n np



 , n ≥ 0, (4.4)
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and

M (2n+1) =





1 + nq 1 + n np
(n+ 1)q 1 + n (n+ 1)p
nq 1 + n 1 + np



 , n ≥ 0. (4.5)

Hence

lim
n→∞

M (n)

n+ 1
=





q/2 1/2 p/2
q/2 1/2 p/2
q/2 1/2 p/2



 . (4.6)

Thus, even if M (n) shows periodic behavior, M (n)/(n + 1) has a limit, and all its

rows are identical and add up to one!

Example 4.3 Genotype Evolution Model. Consider the six-state DTMC of the

genotype evolution model with the transition probability matrix as given in Equa-

tion 2.13 on page 24. Direct numerical calculations show that

lim
n→∞

P (n) = lim
n→∞

M (n)

n+ 1
=

















1 0 0 0 0 0
3/4 0 0 0 0 1/4
1/2 0 0 0 0 1/2
1/2 0 0 0 0 1/2
1/4 0 0 0 0 3/4
0 0 0 0 0 1

















. (4.7)

Thus this example also shows that the limit of P (n) exists and is the same as the

limit of M (n)/(n + 1), and the row sums of the limiting matrix are one. However,

in this example all the rows of the limiting matrix are not identical. Thus the limiting

distribution of Xn exists, but depends upon the initial distribution of the DTMC. We

will identify the class of DTMCs with this feature later on in this chapter.

Example 4.4 Simple Random Walk. A simple random walk on all integers has the

following transition probabilities

pi,i+1 = p, pi,i−1 = q = 1 − p, −∞ < i <∞,

where 0 < p < 1. We have seen in Example 2.19 on page 33 that

p
(2n)
00 =

(2n)!

n!n!
pnqn, n = 0, 1, 2, · · · . (4.8)

We show that the above quantity converges to zero as n → ∞. We need to use the

following asymptotic expression called Stirling’s formula:

n! ∼
√

2πnn+1/2e−n

where ∼ indicates that the ratio of the two sides goes to one as n→ ∞. We have

p
(2n)
00 =

(2n)!

n!n!
pnqn

∼
√

2πe−2n(2n)2n+1/2

(
√

2πe−nnn+1/2)2
pnqn
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=
(4pq)n

√
πn

≤ 1√
πn

where the last inequality follows because 4pq = 4p(1 − p) ≤ 1 for 0 ≤ p ≤ 1. Thus

p
(2n)
00 approaches zero asymptotically. We also know that p2n+1

00 is always zero. Thus

we see that

lim
n→∞

p
(n)
00 = 0.

Similar calculation shows that

lim
n→∞

[P (n)]ij = 0

for all i and j. It is even more tedious, but possible, to show that

lim
n→∞

[M (n)]ij
n+ 1

= 0.

Thus in this example the two limits again coincide, but the row sums of the limiting

matrix are not one, but zero! Since P (n) is a stochastic matrix, we have

∞
∑

j=−∞
p
(n)
ij = 1, n ≥ 0.

Hence we must have

lim
n→∞

∞
∑

j=−∞
p
(n)
ij = 1.

However, the above calculations show that

∞
∑

j=−∞
lim

n→∞
p
(n)
ij = 0.

This implies that the interchange of limit and the sum in this infinite state-space

DTMC is not allowed. We shall identify the class of DTMCs with this feature later

in this chapter.

Thus we have identified four cases:

Case 1: Limit of P (n) exists, has identical rows, and each row sums to one.

Case 2: Limit of P (n) exists, does not have identical rows, each row sums to one.

Case 3: Limit of P (n) exists, but the rows may not sum to one.

Case 4: Limit of P (n) does not exist.
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We have also observed that limit of M (n)/(n+ 1) always exists, and it equals the

limit of P (n) when it exists. We develop the necessary theory to help us classify the

DTMCs so we can understand their limiting behavior better.

4.2 Irreducibility and Periodicity

In this section we introduce the concepts of irreducibility and periodicity. These

concepts will play an important role in the study of the limiting behavior of a DTMC.

Definition 4.1 Accessibility. A state j is said to be accessible from a state i if there

is an n ≥ 0 such that p
(n)
ij > 0.

Note that j is accessible from i if and only if there is a directed path in the diagraph

representation of the DTMC. This is so, since p
(n)
ij > 0 implies that there is a se-

quence of states i = i0, i1, · · · , in = j such that pik,ik+1
> 0 for k = 0, 1, · · · , n−1.

This in turn is equivalent to the existence of a directed path i = i0, i1, · · · , in = j in

the diagraph.

We write i → j if state j is accessible from i. Since p
(0)
ii = 1, it trivially follows

that i→ i.

Definition 4.2 Communication. States i and j are said to communicate if i → j
and j → i.

If i and j communicate, we write i ↔ j. The following theorem states some

important properties of the relation “communication.”

Theorem 4.1 Properties of Communication.

(i) i↔ i, (reflexivity).

(ii) i↔ j ⇔ j ↔ i, (symmetry).

(iii) i↔ j, j ↔ k ⇒ i↔ k, (transitivity).

Proof: (i) and (ii) are obvious from the definition. To prove (iii) note that i → j and

j → k imply that there are integers n ≥ 0 and m ≥ 0 such that

p
(n)
ij > 0, p

(m)
jk > 0.

Hence

p
(n+m)
ik =

∑

r∈S

p
(n)
ir p

(m)
rk (Theorem 2.3)

≥ p
(n)
ij p

(m)
jk > 0.

Hence i→ k. Similarly k → j and j → i imply that k → i. Thus

i↔ j, j ↔ k ⇒ i→ j, j → k and k → j, j → i⇒ i→ k, k → i⇒ i↔ k.
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It is possible to write a computer program that can check the accessibility of one

state from another in O(q) time where q is the number of non-zero entries in P .

The same algorithm can be used to check if two states communicate. See Conceptual

Exercise 4.3.

From the above theorem it is clear that “communication” is a reflexive, symmetric,

and transitive binary relation. (See Conceptual Exercise 4.1 for more examples of

binary relations.) Hence we can use it to partition the state-space S into subsets

known as communicating classes.

Definition 4.3 Communicating Class. A set C ⊂ S is said to be a communicating

class if

(i) i ∈ C, j ∈ C ⇒ i↔ j,

(ii) i ∈ C, i↔ j ⇒ j ∈ C.

Property (i) assures that any two states in a communicating class communicate

with each other (hence the name). Property (ii) forces C to be a maximal set, i.e.,

no strict superset of C can be a communicating class. Note that it is possible to

have a state j outside C that is accessible from a state i inside C, but in this case, i
cannot be accessible from j. Similarly, it is possible to have a state i inside C that is

accessible from a state j outside C, but in this case, j cannot be accessible from i.
This motivates the following definition.

Definition 4.4 Closed Communicating Class. A communicating class is said to be

closed i ∈ C and j /∈ C implies that j is not accessible from i.

Note that once a DTMC visits a state in a closed communicating class C, it cannot

leave it, i.e,

Xn ∈ C ⇒ Xm ∈ C for all m ≥ n.

Two distinct communicating classes must be disjoint, see Conceptual Exercise 4.2.

Thus we can uniquely partition the state-space S as follows:

S = C1 ∪ C2 ∪ · · · ∪ Ck ∪ T, (4.9)

whereC1, C2, · · ·Ck are k disjoint closed communicating classes, and T is the union

of all the other communicating classes. We do not distinguish between the communi-

cating classes if they are not closed, and simply lump them together in T . Although

it is possible to have an infinite number of closed communicating classes in a DTMC

with a discrete state-space, in practice we shall always encounter DTMCs with a

finite number of closed communicating classes.

It is possible to develop an algorithm to derive the above partition in time O(q),
see Conceptual Exercise 4.4. Observe that the classification depends only on which

elements of P are positive and which are zero. It does not depend upon the actual

values of the positive elements.
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Definition 4.5 Irreducibility. A DTMC with state-space S is said to be irreducible

if S is a closed communicating class, else it is called reducible.

It is clear that all states in an irreducible DTMC communicate with each other. We

shall illustrate the above concepts by means of several examples below. In each case

we show the diagraph representation of the DTMC. In our experience the diagraph

representation is the best visual tool to identify the partition of Equation 4.9.

Example 4.5 Two-State DTMC. Consider the two state DTMC of Example 2.3

with 0 < α, β < 1. The diagraph is shown in Figure 4.1. In this DTMC 1 ↔ 2, and

1 – α

1 – β

βα 1 2

Figure 4.1 The two-state DTMC: irreducible case.

hence {1, 2} is a closed communicating class, and the DTMC is irreducible. Next

suppose α = 1 and 0 < β < 1. The diagraph representation is shown in Figure 4.2.

Here we have 1 ↔ 1, 2 ↔ 2, 2 → 1, but 2 is not accessible from 1. Thus C1 = {1}

211 1 – β
β

Figure 4.2 The two-state DTMC: reducible case.

is a closed communicating class, and T = {2} is a communicating class that is not

closed. Thus this DTMC is reducible. Finally, suppose α = β = 1. In this case

C1 = {1} and C2 = {2} are two closed communicating classes and T = φ. The

DTMC is reducible.

Example 4.6 Genotype Evolution. Consider the six state DTMC arising in the

genotype evolution model of Example 4.3. Since p11 = p66 = 1, it is clear that C1 =
{1} and C2 = {6} are two closed communicating classes. Also, T = {2, 3, 4, 5} is

a communicating class that is not closed, since states 1 and 6 are accessible from all

the four states in T . The DTMC is reducible.

Example 4.7 Simple Random Walk. Consider the simple random walk on

{0, 1, · · · , N} with p00 = pNN = 1, pi,i+1 = p, pi,i−1 = q, 1 ≤ i ≤ N − 1.

Assume p > 0, q > 0, p + q = 1. The diagraph representation is shown in Fig-

ure 4.3. In this DTMC C1 = {1} and C2 = {N} are two closed communicating

classes. Also, T = {1, 2, · · · , N − 1} is a communicating class that is not closed,
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q q q q q q q

pppppp p

0

1 1

1 i – 1 i + 1 N – 1 Ni

Figure 4.3 Transition diagram of a random walk with absorbing barriers.

since states 1 and N are accessible from all the states in T . The DTMC is reducible.

What happens if p or q is 1?

Next we introduce the concept of periodicity.

Definition 4.6 Periodicity. A state i is said to be periodic with period d if d is the

greatest common divisor (gcd) of the integers in the set {n ≥ 1 : p
(n)
ii > 0}. A state

i is said to be aperiodic if it has period 1.

Note that a state i is aperiodic if pii > 0. The term periodic is self explanatory: the

DTMC, starting in a state i with period d, can return to state i only at times that

are integer multiples of d. An alternate definition of periodicity involves the strictly

positive first passage time defined in Conceptual Exercise 3.3, reiterated here with a

slight variation:

T̃i = min{n > 0 : Xn = i}, i ∈ S. (4.10)

Definition 4.7 Periodicity. A state i is said to be periodic with period d if d is the

gcd of the integers in the set {n ≥ 1 : P(T̃i = n|X0 = i) > 0}.

We leave it to the reader (see Conceptual Exercise 4.5) to show that the two defi-

nitions are equivalent. If the DTMC never returns to state i once it leaves state i, the

sets in the two definitions above are empty. In this case we define the period to be ∞.

It will be seen later that for such states the concept of periodicity is irrelevant. The

next theorem gives a very useful result about periodicity.

Theorem 4.2 Periodicity. If i↔ j, then i and j have the same period.

Proof: Let d be the period of state i. Now, i ↔ j implies that there are two integers

n and m such that

p
(n)
ij > 0, and p

(n)
ji > 0.

We have

p
(n+r+m)
ii =

∑

k,j

p
(n)
ik p

(r)
kj p

(m)
ji ≥ p

(n)
ij p

(r)
jj p

(m)
ji .

For r = 0, we get

p
(n+m)
ii ≥ p

(n)
ij p

(m)
ji > 0.

Hence n + m must be an integer multiple of d. Now suppose r is not divisible by

d. Then n+m + r is not divisible by d. Hence p
(n+r+m)
ii = 0 since i has period d.

Thus p
(n)
ij p

(r)
jj p

(m)
ji = 0. However, p

(n)
ij and p

(m)
ji are not zero. Hence we must have
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p
(r)
jj = 0 if r is not divisible by d. Thus the gcd of {r ≥ 1 : p

(r)
jj > 0} must be

an integer multiple of d. Suppose it is kd for some integer k ≥ 1. However, by the

same argument, if the period of j is kd, that of i must be an integer multiple of kd.

However, we have assumed that the period of i is d. Hence we must have k = 1. This

proves the theorem.

The above theorem implies that all states in a communicating class have the same

period. We say that periodicity is a class property. This enables us to talk about the

period of a communicating class. A communicating class or an irreducible DTMC

is said to be periodic with period d if any (and hence every) state in it has period

d. If the period is 1, it is called aperiodic. It should be noted that periodicity, like

communication, depends only upon which elements of P are positive, and which are

zero; and not on the actual magnitudes of the positive elements.

Example 4.8 Two-State DTMC. Consider the two state DTMC of Example 4.1.

In each case considered there pii > 0 for i = 1, 2, hence the both the states are

aperiodic. Now consider the case with α = β = 0. The transition probability matrix

in this case is

P

[

0 1
1 0

]

.

Thus we see that if X0 = 1 we have

X2n = 1, X2n−1 = 2, n ≥ 1.

Hence the DTMC returns to state 1 only at even times, and hence it has period 2.

Since this is an irreducible DTMC, all states must have period 2. Thus state 2 has

period 2.

Example 4.9 Simple Random Walk. Consider the simple random walk of Exam-

ple 4.4. Since p00 = pNN = 1, states 0 and N are aperiodic. Now suppose the

DTMC starts in state 1. Clearly, DTMC cannot return to state 1 at odd times, and can

return at every even time. Hence state 1 has period 2. Since states 1, 2, · · · , N − 1
communicate with each other, all of them must have period 2.

It is straight forward to develop an O(N3) algorithm to find the periodicity of the

states in a DTMC with N states. By using more sophisticated data structures one

develops an more efficient algorithm to do the same in O(q) steps, where q is the

number of non-zero entries in its transition probability matrix.

4.3 Recurrence and Transience

In this section we introduce the concepts of recurrence and transience of states. They

play an important role in the study of the limiting behavior of the DTMCs. Let T̃i be

as defined in Equation 4.10. Define

ũi = P(T̃i <∞|X0 = i) (4.11)
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and

m̃i = E(T̃i|X0 = i). (4.12)

When ũi < 1, m̃i = ∞. However, as the following example suggests, m̃i can be

infinite even if ũi = 1.

Example 4.10 Success Runs. Consider the success runs Markov chain on

{0, 1, 2, · · ·} with

pi,i+1 =
i+ 1

i+ 2
, pi,0 =

1

i+ 2
, i ≥ 0.

Now, direct calculations as in Example 3.3 on page 58 show that

P(T̃0 = n|X0 = 0) = P(Xi = i, i = 1, 2, · · · , n− 1, Xn = 0|X0 = 0)

=
1

(n+ 1)(n+ 2)
, n ≥ 1.

Hence,

ũ0 = P(T̃0 <∞|X0 = 0)

=

∞
∑

n=1

P(T̃0 = n|X0 = 0)

=

∞
∑

n=1

1

(n+ 1)(n+ 2)
= 1.

The last equality above is seen by writing

1

(n+ 1)(n+ 2)
=

1

n+ 1
− 1

n+ 2

and using telescoping sums. However, we get

1 + m̃0 =
∞
∑

n=1

(n+ 1)P(T̃0 = n|X0 = 0)

=

∞
∑

n=1

n+ 1

(n+ 1)(n+ 2)

=
∞
∑

n=1

1

n+ 2
= ∞.

Here, the last inequality follows because the last sum is a harmonic series, which is

known to diverge.

With this discussion we make the following definitions:

Definition 4.8 Recurrence and Transience. A state i is said to be

(i) recurrent if ũi = 1,

(ii) transient if ũi < 1.
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Definition 4.9 Positive and Null Recurrence. A recurrent state i is said to be

(i) positive recurrent if m̃i <∞,

(ii) null recurrent if m̃i = ∞.

Now, in Section 2.5 we studied Vi(n), the number of visits to state i by a DTMC

over the finite time period {0, 1, 2, · · · , n}. Here we study Vi, the number of visits

by the DTMC to state i over the infinite time period {0, 1, 2, · · ·}. The next theorem

gives the main result.

Theorem 4.3 Number of Visits. If state i is recurrent

P(Vi = ∞|X0 = i) = 1.

If state i is transient

P(Vi = k|X0 = i) = ũk−1
i (1 − ũi), k ≥ 1.

Proof: Follows from Markov property and time homogeneity. See Conceptual Exer-

cise 4.6.

The next theorem yields the necessary and sufficient condition for recurrence and

transience.

Theorem 4.4 Criterion for Recurrence and Transience.

(i) State i is recurrent if and only if

∞
∑

n=0

p
(n)
ii = ∞.

(ii) State i is transient if and only if

∞
∑

n=0

p
(n)
ii <∞.

Proof: Let Vi(n) be the number of visits to state i over 0 through n. Let Vi be the

number of visits to state i over 0 to ∞. We see that ũi = 1 implies that the DTMC,

starting from state i, returns to it with probability 1, and hence, due to the Markov

property and time homogeneity, returns infinitely often. Hence, in this case,

E(Vi|X0 = i) = ∞.

On the other hand, if ũi < 1, the DTMC, starting from state i, returns to state i
exactly k times with probability ũk−1

i (1 − ũi). Hence

E(Vi|X0 = i) =
1

1 − ũi
<∞.

Now, from the results in Section 2.5 we have

E(Vi(n)|X0 = i) = Mii(n) =

n
∑

m=0

p
(m)
ii .
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Hence

E(Vi|X0 = i) =

∞
∑

n=0

p
(n)
ii .

The theorem follows from this.

Next we give a necessary and sufficient condition for the positive and null recur-

rence. Notice that limn→∞M
(n)
ii /(n + 1) can be thought of as the long run number

of visits to state i per unit time. Since the expected time between two consecutive

visits to state i is m̃i, it is intuitively clear that the long run number of visits to state

i per unit time should be 1/m̃i. Thus if the limit is positive, that would imply a finite

m̃i, and if the limit is 0, that would imply an infinite m̃i. This provides the intuition

behind the next theorem.

Theorem 4.5 Criterion for Null and Positive Recurrence.

(i) A recurrent state i is positive recurrent if and only if

lim
n→∞

1

n+ 1

n
∑

m=0

p
(m)
ii > 0.

(ii) A recurrent state i is null recurrent if and only if

lim
n→∞

1

n+ 1

n
∑

m=0

p
(m)
ii = 0.

Proof: This theorem is a special case of a general theorem called elementary renewal

theorem, which will be proved in Chapter 8. Hence we do not include a formal proof

here.

Unlike periodicity, transience and recurrence are dependent upon the actual mag-

nitudes of the transition probabilities pij . Like periodicity, they are class properties.

This is shown in the next two theorems.

Theorem 4.6 Recurrence and Transience as Class Properties.

(i) i↔ j, i is recurrent ⇒ j is recurrent.

(ii) i↔ j, i is transient ⇒ j is transient.

Proof: (i) Suppose i ↔ j. Then there are integers n and m such that p
(n)
ij > 0 and

p
(m)
ji > 0. Now,

∞
∑

r=0

p
(r)
jj ≥

∞
∑

r=0

p
(r+n+m)
jj

≥
∞
∑

r=0

∑

k∈S

p
(m)
jk p

(r)
kk p

(n)
kj
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≥
∞
∑

r=0

p
(m)
ji p

(r)
ii p

(n)
ij

= p
(m)
ji p

(n)
ij

∞
∑

r=0

p
(r)
ii = ∞

since i is recurrent. Hence, from Theorem 4.4, j is recurrent.

(ii) Suppose i is transient and i ↔ j, but j is recurrent. By (i) above, j is recurrent,

i ↔ j, implies that i is recurrent, a contradiction. Hence j must be transient. This

proves the theorem.

Theorem 4.7 Null and Positive Recurrence as Class Properties.

(i) i↔ j, i is positive recurrent ⇒ j is positive recurrent.

(ii) i↔ j, i is null recurrent ⇒ j is null transient.

Proof: (i) Let n and m be as in the proof of Theorem 4.6. We have

p
(r+n+m)
jj ≥

∑

k∈S

p
(m)
jk p

(r)
kk p

(n)
kj ≥ p

(m)
ji p

(r)
ii p

(n)
ij .

Now,

lim
t→∞

1

t+ 1

t
∑

r=0

p
(r)
jj = lim

t→∞
1

t+ 1

t
∑

r=0

p
(r+n+m)
jj

≥ p
(m)
ji

(

lim
n→∞

1

n+ 1

n
∑

r=0

p
(r)
ii

)

p
(n)
ij > 0.

The last inequality follows because the positive recurrence of i implies that the last

limit is positive (from Theorem 4.5), and we also have p
(n)
ij > 0 and p

(m)
ji > 0. Hence

state j is positive recurrent.

(ii) Follows along the same lines as the proof of part (ii) in Theorem 4.6.

Theorems 4.6 and 4.7 greatly simplify the task of identifying the transient and

recurrent states. If state i is recurrent then all states that belong to the same commu-

nicating class as i must be recurrent. The same conclusion holds for the transient or

positive or null recurrent states. Hence we can make the following definitions.

Definition 4.10 Recurrent Class. A communicating class is called recurrent (tran-

sient, positive recurrent, null recurrent) if all the states in it are recurrent (transient,

positive recurrent, null recurrent).

Definition 4.11 Recurrent DTMC. An irreducible DTMC is called recurrent (tran-

sient, positive recurrent, null recurrent) if all its states are recurrent (transient, posi-

tive recurrent, null recurrent).

The task of determining the transience and recurrence of a finite communicating

class is particularly easy, as seen from the next theorem.
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Theorem 4.8 Finite Closed Classes. All states in a finite closed communicating

class are positive recurrent.

Proof: Let C be a finite closed communicating class. Then for all i ∈ C, we have

1 = P(Xk ∈ C|X0 = i) =
∑

j∈C

p
(k)
ij , k ≥ 0.

Hence
1

n+ 1

n
∑

k=0

∑

j∈C

p
(k)
ij = 1.

Taking limits, we get

lim
n→∞

1

n+ 1

n
∑

k=0

∑

j∈C

p
(k)
ij =

∑

j∈C

lim
n→∞

1

n+ 1

n
∑

k=0

p
(k)
ij = 1,

where the interchange of the limit and the sum is allowed since C is finite. Thus there

must be at least one j for which

lim
n→∞

1

n+ 1

n
∑

k=0

p
(k)
ij > 0. (4.13)

Now suppose the states in C are not positive recurrent. Then they must be all null

recurrent or all transient. In either case we must have

lim
n→∞

1

n+ 1

n
∑

k=0

p
(k)
jj = 0, j ∈ C. (4.14)

This follows from Theorem 4.7(ii) for the null recurrent case, and Theorem 4.6(ii)

for the transient case. Since C is finite, there is an r = r(i, j) such that p
(r)
ji > 0.

Now,

p
(k+r)
jj ≥ p

(r)
ji p

(k)
ij . (4.15)

Combining Equations 4.14 and 4.15, we get

0 = lim
n→∞

1

n+ 1

n
∑

k=0

p
(k)
jj = lim

n→∞
1

n+ 1

n
∑

k=0

p
(k+r)
jj

≥ p
(r)
ji lim

n→∞
1

n+ 1

n
∑

k=0

p
(k)
ij .

Hence we must have

lim
n→∞

1

n+ 1

n
∑

k=0

p
(k)
ij = 0,

for all i, j ∈ C. But this contradicts Equation 4.13. Thus the states in C cannot be all

null recurrent or transient. Hence they must be positive recurrent.

Theorem 4.9 Non-closed Classes. All states in a non-closed communicating class

are transient.
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Proof: Let C be a non-closed communicating class. The there exists an i ∈ C and

a j /∈ C such that i is not accessible from j and pij > 0. Thus, if the DTMC visits

visits state j starting from state i, it will never return to state i. Hence

1 − ũi = P(T̃i = ∞|X0 = i) ≥ pij > 0.

Thus ũi < 1, and hence state i is transient. Since C is a communicating class, all the

states in it must be transient.

Since all communicating classes in a finite state DTMC must be finite, and they

must be all closed or not, Theorems 4.8 and 4.9 are sufficient to determine the tran-

sience and recurrence of any state in such a DTMC. We leave it to the reader to

show that there are no null recurrent states in a finite state DTMC (See Conceptual

Exercise 4.9) and that not all states in a finite state DTMC can be transient (See Con-

ceptual Exercise 4.11).

We illustrate with two examples.

Example 4.11 Genotype Evolution. Consider the six-state DTMC of Example 4.3.

We saw in Example 4.6 that it has two closed communicating classes C1 = {1} and

C2 = {6}, and a non-closed class T = {2, 3, 4, 5}. Thus states 1 and 6 are positive

recurrent and states 2,3,4,5 are transient.

Example 4.12 Simple Random Walk. Consider the simple random walk of Ex-

ample 4.4. We saw in Example 4.9 that it has two closed communicating classes

C1 = {1} and C2 = {N}, and a non-closed class T = {2, 3, · · · , N − 1}. Thus

states 1 and N are positive recurrent and state 2, 3, · · · , N − 1 are transient.

Determining the transience or recurrence of states in a communicating class with

an infinite number of states is a much harder problem. We discuss several methods

of doing so in the next section.

4.4 Determining Recurrence and Transience: Infinite DTMCs

Without loss of generality we consider an irreducible DTMC on state-space S =
{0, 1, 2, · · ·} with transition probability matrix P . The states in such a DTMC may

be all positive recurrent, or all null recurrent, or all transient. There is no easy way of

determining this. We shall illustrate with several examples.

Example 4.13 General Success Runs. Consider the general success runs DTMC of

Example 3.3 on page 58. This DTMC has state-spaceS = {0, 1, 2, · · ·} and transition

probabilities

pi,0 = qi, pi,i+1 = pi, i ∈ S.

Assume that pi > 0, qi > 0 for all i ≥ 0. Then the DTMC is irreducible. Thus

if we determine the transience or recurrence of the state 0, that will automatically
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determine the transience and recurrence of all the states in S. From the first step

analysis we get

ũ0 = 1 − p0v1,

where v1 is the probability that the DTMC never visits state 0 starting from state 1.

From the analysis in Example 3.7 on page 62 we have

v1 = 0 ⇔
∞
∑

n=1

qn = ∞,

and

v1 > 0 ⇔
∞
∑

n=1

qn <∞.

It follows that the general success runs DTMC is

(i) recurrent if and only if
∑∞

i=1 qi = ∞, and

(ii) transient if and only if
∑∞

i=1 qi <∞.

Now suppose the DTMC is recurrent. Then we have

m̃0 = 1 + p0m1,

where m1 is the expected first passage time T to state 0 starting from state 1. Using

the results of Example 3.3 we get

m1 =

∞
∑

n=1

nP(T = n|X0 = 1)

=

∞
∑

n=1

P(T ≥ n|X0 = 1)

= 1 +

∞
∑

n=2

n−1
∏

i=1

pi.

Thus the recurrent DTMC is positive recurrent if the last sum converges, otherwise

it is null recurrent.

Example 4.14 General Simple Random Walk. Consider the random walk on

{0, 1, 2, · · ·} with the following transition probabilities:

pi,i+1 = pi for i ≥ 0,

pi,i−1 = qi = 1 − pi for i ≥ 1.

We assume that pi > 0, i ≥ 0 and qi > 0, i ≥ 1 so that the DTMC is irreducible.

We have

ũ0 = 1 − p0v1,
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where v1 is the probability that the DTMC never visits state 0 starting from state 1.

Using the results from Example 3.9 we get

v1 > 0 if
∑∞

i=0 αi <∞,
v1 = 0 if

∑∞
i=0 αi = ∞,

where α0 = 1

αi =
q1q2 · · · qi
p1p2 · · · pi

, i ≥ 1.

Thus state 0 (and hence the entire DTMC) is recurrent if and only if
∑∞

i=0 αi = ∞,

and transient if and only if
∑∞

i=0 αi < ∞. Next, assuming the DTMC is recurrent,

we can use the first step analysis to obtain

m̃0 = 1 + p0m1,

where m1 is the expected first passage time into state 0 starting from state 1. From

Example 3.15 we have

m1 =

∞
∑

j=1

1

pjαj
.

Now let ρ0 = 1 and

ρi =
p0p1 · · · pi−1

q1q2 · · · qi
, i ≥ 1.

Thus

m̃0 =

∞
∑

i=0

ρi.

Thus state 0 (and hence the whole DTMC) is positive recurrent if the series
∑

ρi

converges, and null recurrent if it diverges. Combining all these results, we get the

following complete classification: the state 0 (and hence the entire DTMC) is

(i) positive recurrent if and only if
∑∞

i=0 ρi <∞,

(ii) null recurrent if and only if
∑∞

i=0 ρi = ∞, and
∑∞

i=0 αi = ∞,

(iii) transient if and only if
∑∞

i=0 αi <∞.

Example 4.15 Production-Inventory System: Batch Production. Consider the

DTMC of Example 2.16 on page 19. It has state-space {0, 1, 2, · · ·} and transition

probability matrix as given in Equation 2.10. We assume thatα0 > 0 andα0+α1 < 1
so that the DTMC is irreducible. We study the recurrence properties of state 0. From

the first step analysis we get

ũ0 =

∞
∑

i=0

αjuj,

where uj is the probability that the DTMC eventually visits state 0 starting from state

j. Using the results from Example 3.11 we see that uj = 1 for all j ≥ 0 (and hence

ũ0 = 1) if the mean production batch size µ =
∑∞

k=0 kαk ≤ 1, otherwise uj < 1
for all j ≥ 1 (and hence ũ0 < 1). This implies that state 0 (and hence the DTMC) is
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recurrent if µ ≤ 1 and transient if µ > 1. Next, assuming the DTMC is recurrent, the

first step analysis yields

m̃0 = 1 +

∞
∑

j=0

αjmj ,

where mj is the expected time it takes the DTMC to reach state zero starting from

state j. Using the results of Example 3.16, we see that m̃0 <∞ if µ < 1. Hence the

DTMC is

(i) positive recurrent if and only if µ < 1,

(ii) null recurrent if and only if µ = 1,

(iii) transient if and only if µ > 1.

This completes the classification of the DTMC. This makes intuitive sense since this

DTMC models the situation where exactly one item is removed from the inventory

every time period, while µ items are added to the system per period on the average.

Example 4.16 Production-Inventory System: Batch Demands. Consider the

DTMC of Example 2.17 on page 20. It has state-space {0, 1, 2, · · ·} and transition

probability matrix as given in Equation 2.12. We assume thatα0 > 0 andα0+α1 < 1
so that the DTMC is irreducible. We study the recurrence properties of state 0. From

the first step analysis we get

ũ0 = β0 + α0u1,

where u1 is the probability that the DTMC eventually visits state 0 starting from state

1. Using the results from Example 3.12 we see that u1 = 1 (and hence ũ0 = 1) if

the mean production batch size µ =
∑∞

k=0 kαk ≥ 1, otherwise u1 < 1 (and hence

ũ0 < 1). This implies that state 0 (and hence the DTMC) is recurrent if µ ≥ 1
transient if µ < 1. Next, assuming the DTMC is recurrent, the first step analysis

yields

m̃0 = 1 + α0m1,

where m1 is the expected time it takes the DTMC to reach state zero starting from

state 1. Using the results of Example 3.17, we see that

m̃0 =
1

1 − α
,

where α is the unique solution in (0, 1) if µ > 1. We can also conclude that

m̃0 = ∞,

if µ = 1. Hence the DTMC is

(i) positive recurrent if and only if µ > 1,

(ii) null recurrent if and only if µ = 1,

(iii) transient if and only if µ < 1.

This completes the classification of the DTMC.
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4.4.1 Foster’s Criterion

In this section we shall derive a sufficient condition for the positive recurrence of an

irreducible DTMC {Xn, n ≥ 0} with state-space S and transition probability matrix

P . Let ν : S → [0,∞) and, for i ∈ S, define

d(i) = E(ν(Xn+1) − ν(Xn)|Xn = i)

=
∑

j∈S

pijν(j) − ν(i).

The function ν is called a potential function, and the quantity d(i) is called the gen-

eralized drift in state i. It is called drift when ν(i) = i for all i ∈ S. The main result,

called Foster’s criterion, is given below.

Theorem 4.10 Foster’s Criterion. Let {Xn, n ≥ 0} be an irreducible DTMC on

a countable state-space S. If there exists a potential function ν : S → [0,∞), an

ǫ > 0, and a finite set H ⊂ S such that

|ν(i)| < ∞ for i ∈ H (4.16)

ν(i) < −ǫ for i /∈ H (4.17)

the DTMC is positive recurrent.

Before we prove the above result, we give the intuition behind it. Suppose the hypoth-

esis of the above theorem holds. Since ν is a non-negative function, E(ν(Xn)) ≥ 0
for all n ≥ 0. However, wheneverXn /∈ H , we have E(ν(Xn+1)) < E(ν(Xn)) − ǫ.
Hence the DTMC cannot stay outside ofH for too long, else E(ν(Xn)) will become

negative. Hence the DTMC must enter the finite set H often enough. The theorem

says that the visits to H are sufficiently frequent to make the states in H (and hence,

due to irreducibility, the whole chain) positive recurrent. A formal proof follows.

Proof: Define

w(k) =
∑

j∈S

pkjν(j), k ∈ H.

Then, from Equation 4.16, |w(k) − ν(k)| <∞ for all k ∈ H . Hence w(k) <∞ for

all k ∈ H . Now let

y
(0)
i = ν(i),

and

y
(n)
i =

∑

j∈S

p
(n)
ij ν(j).

Then

yi(r + 1) =
∑

j∈S

p
(r+1)
ij ν(j)

=
∑

j∈S

∑

k∈S

p
(r)
ik pkjν(j)

=
∑

k∈H

p
(r)
ik

∑

j∈S

pkjν(j) +
∑

k/∈H

p
(r)
ik

∑

j∈S

pkjν(j)
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≤
∑

k∈H

p
(r)
ik w(k) +

∑

k/∈H

p
(r)
ik (ν(k) − ǫ)

≤
∑

k∈H

p
(r)
ik (w(k) + ǫ) +

∑

k∈S

p
(r)
ik ν(k) − ǫ (since ν(k) ≥ 0 for all k)

≤
∑

k∈H

p
(r)
ik (w(k) + ǫ) + y

(r)
i − ǫ.

Adding the above inequalities for r = 0, 1, 2, · · · , n yields

y
(r+1)
i ≤

∑

k∈H

n
∑

r=0

p
(r)
ik (w(k) + ǫ) + y

(0)
i − (n+ 1)ǫ.

However, y
(n+1)
i ≥ 0 and y

(0)
i is finite for each i. Hence, dividing by n + 1 and

letting n→ ∞ yields

∑

k∈H

(

lim
n→∞

1

n+ 1

n
∑

r=0

p
(r)
ik

)

(w(k) + ǫ) ≥ ǫ.

Since 0 ≤ w(k) < ∞ for all k ∈ H , the above inequality implies that there exists a

k ∈ H for which

lim
n→∞

1

n+ 1

n
∑

r=0

p
(r)
ik > 0. (4.18)

Using the fact that k → i, and arguments similar to those in Theorem 4.7, we can

show that

lim
n→∞

1

n+ 1

n
∑

r=0

p
(r)
kk > 0. (4.19)

(See conceptual Exercise 4.12.) Hence state k is recurrent, as a consequence of part

(i) of Theorem 4.5. Since the DTMC is assumed irreducible, all the states are positive

recurrent.

Foster’s criterion is especially easy to apply since checking Equations 4.16 and

4.17 is a simple task. In many applications S = {0, 1, 2, · · ·} and usually ν(i) = i
suffices to derive useful sufficient conditions for positive recurrence. In this case we

have the following result, called Pakes’ lemma, whose proof we leave to the reader,

see Conceptual Exercise 4.13.

Theorem 4.11 Pakes’ Lemma. Let {Xn, n ≥ 0} be an irreducible DTMC on

S = {0, 1, 2, · · ·} and let

d(i) = E(Xn+1 −Xn|Xn = i), i ∈ S.

The DTMC is positive recurrent if

(i) d(i) <∞ for all i ∈ S, and

(ii) lim supi∈S d(i) < 0.



LIMITING BEHAVIOR OF IRREDUCIBLE DTMCS 105

Pakes’ lemma is useful in many DTMCs arising out of storage or queueing context.

We show its usefulness in the following example.

Example 4.17 Production-Inventory System: Batch Production. Consider the

DTMC of Example 4.15. Assume that µ, the mean production batch size is finite.

Then,

d(0) = E(Xn+1 −Xn|Xn = 0) = µ,

and

d(i) = E(Xn+1 −Xn|Xn = i) = µ− 1, i ≥ 1.

Hence, by Pakes’ lemma, the DTMC is positive recurrent if µ < 1. Note that Fos-

ter’s criterion or Pakes’ lemma does not say whether the DTMC is null recurrent or

transient if µ ≥ 1.

Theorem 4.11 is so intuitive that it is tempting to assume that we will get a suf-

ficient condition for transience if we reverse the inequality in condition (ii) of that

Theorem. Unfortunately, this turns out not to be true. However, we do get the follow-

ing more restricted result, which we state without proof:

Theorem 4.12 Let {Xn, n ≥ 0} be an irreducible DTMC on S = {0, 1, 2, · · ·}.

The DTMC is transient if there exists a k > 0 such that

(i) −k < d(i) <∞ for all i ∈ S, and

(ii) lim supi∈S d(i) > 0.

We end this section with the remark that the recurrence and transience properties

of an infinite state DTMC are dependent on the actual magnitudes on the elements

of P , and not just whether they are zero or one. Using the concepts developed in this

section we shall study the limiting behavior of DTMCs in the next section.

4.5 Limiting Behavior of Irreducible DTMCs

In this section we derive the main results regarding the limiting distribution of an

irreducible DTMC {Xn, n ≥ 0} on state-space S = {0, 1, 2 · · ·} and transition

probability matrix P . We treat the four cases separately: the DTMC is transient, null

recurrent, aperiodic positive recurrent, and periodic positive recurrent.

4.5.1 The Transient Case

We begin with the main result in the following theorem.

Theorem 4.13 Transient DTMC. Let {Xn, n ≥ 0} be an irreducible transient

DTMC. Then

lim
n→∞

p
(n)
ij = 0, i, j ∈ S. (4.20)
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Proof: Since the DTMC is transient, we have from Theorem 4.4,

∞
∑

n=0

p
(n)
jj <∞, j ∈ S.

Since p
(n)
jj ≥ 0, this implies that

lim
n→∞

p
(n)
jj = 0, j ∈ S.

Now, consider a state i ∈ S, i 6= j. Since the DTMC is irreducible, j → i, and hence

there exists an m > 0 such that p
(m)
ij > 0. Hence, for n ≥ m,

p
(n)
jj =

∑

r∈S

p
(m)
jr p

(n−m)
rj (Theorem 2.3)

≥ p
(m)
ji p

(n−m)
ij .

Since p
(n)
jj converges to zero, and p

(m)
ji > 0, the above inequality implies Equa-

tion 4.20.

By using dominated convergence theorem, we see that the above theorem implies

that

lim
n→∞

P(Xn = j) = 0, j ∈ S,

or more generally, for any finite set A ⊂ S,

lim
n→∞

P(Xn ∈ A) = 0.

Even more importantly, we can show that

∞
∑

n=0

p
(n)
ij <∞, (4.21)

which implies that
∞
∑

n=0

P(Xn ∈ A) <∞,

which implies that

P(Xn ∈ A infinitely often) = 0. (4.22)

See Conceptual Exercise 4.14. Thus a transient DTMC will eventually permanently

exit any finite set with probability 1.

4.5.2 The Discrete Renewal Theorem

We begin the study of the convergence results for recurrent DTMC with the discrete

renewal theorem. This is the discrete analog of a general theorem called the Key

Renewal Theorem, which is presented in Chapter 8. We first give the main result.
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Theorem 4.14 Discrete Renewal Theorem. Let {un, n ≥ 1} be a sequence of real

numbers with

un ≥ 0,
∞
∑

n=1

un = 1,

and let µ =
∑∞

n=1 nun. Let d, called the period, be the largest integer such that

∞
∑

n=1

und = 1.

Let {νn, n ≥ 0} be another given sequence with

∞
∑

n=1

|νn| <∞. (4.23)

Suppose the sequence {gn, n ≥ 0} satisfies

gn = νn +

n
∑

m=1

umgn−m, n ≥ 0. (4.24)

(i) If d = 1, the sequence {gn, n ≥ 0} converges and

lim
n→∞

gn =
1

µ

∞
∑

n=0

νn. (4.25)

(ii) If d > 1, the sequence {gn, n ≥ 0} has d convergent subsequences {gnd+k, n ≥
0} (0 ≤ k ≤ d− 1) and

lim
n→∞

gnd+k =
d

µ

∞
∑

n=0

νnd+k. (4.26)

If µ = ∞, the limits are to be interpreted as 0.

Proof: (i). The hard part is to prove that the limit exists. We refer the reader to

Karlin and Taylor (1975) or Kohlas (1982) for the details. Here we assume that the

limit exists and show that it is given as stated in Equation 4.25.

First, it is possible to show by induction that

|gn| ≤
n
∑

k=0

|νk|, n ≥ 0.

From Equation 4.23, we conclude that {gn, n ≥ 0} is a bounded sequence. Summing

Equation 4.24 from n = 0 to k we get

k
∑

n=0

gn =

k
∑

n=0

νn +

k
∑

n=0

n
∑

m=1

umgn−m, n ≥ 0.
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Rearranging the terms and using fn =
∑∞

k=n+1 uk, we get

k
∑

r=0

gk−rfr =

k
∑

r=0

νr.

Assuming limk→∞ gk = g exists, we use the dominated convergence theorem to get

∞
∑

r=0

νr = lim
k→∞

k
∑

r=0

νr

= lim
k→∞

k
∑

r=0

gk−rfr

= g

∞
∑

r=0

fr

= g

∞
∑

r=1

rur

= gµ,

which gives the desired result.

(ii). From the definition of d it follows that ur = 0 if r is not an integer multiple

of d, and {u′r = urd, r ≥ 1} has period 1. We also have

µ′ =

∞
∑

r=0

ru′r =

∞
∑

r=0

rurd = µ/d.

Now, fix a 0 ≤ k < d and define

ν ′n = νnd+k, g
′
n = gnd+k, n ≥ 0.

Then, Equation 4.24 reduces to

g′n = ν ′n +

n
∑

r=0

u′rg
′
n−r.

Since {u′r, r ≥ 1} has period one, we can use Equation 4.25 to get

lim
n→∞

g′n =
1

µ′

∞
∑

n=0

ν ′n.

This yields Equation 4.26 as desired.

The case d = 1 is called the aperiodic case, and the case d > 1 is called the

periodic case. Equation 4.24 is called the discrete renewal equation.
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4.5.3 The Recurrent Case

The next Theorem shows that {p(n)
jj , n ≥ 0} satisfy a discrete renewal equation.

Theorem 4.15 Discrete Renewal Equation for p
(n)
jj . Fix a j ∈ S. Let

T̃j = min{n > 0 : Xn = j}, j ∈ S,

gn = p
(n)
jj , n ≥ 0,

ν0 = 1, νn = 0, n ≥ 1,

un = P(T̃j = n|X0 = j), n ≥ 1.

Then Equation 4.24 is satisfied.

Proof: We have

g0 = p
(0)
jj = 1 = ν0.

For n ≥ 1, conditioning on T̃j ,

gn = p
(n)
jj = P(Xn = j|X0 = j)

=

n
∑

m=1

P(Xn = j|X0 = j, T̃j = m)P(T̃j = m)

=

n
∑

m=1

P(Xn = j|X0 = j,Xr 6= j, 1 ≤ r ≤ m− 1, Xm = j)ũj(m)

=

n
∑

m=1

umP(Xn = j|Xm = j)

=

n
∑

m=1

umgn−m,

where we have used time homogeneity to get the last equality and Markov property

to get the one before that. This proves the theorem.

Using the above theorem we get the next important result.

Theorem 4.16 Limiting Behavior of Recurrent States. Let T̃j be as defined in

Equation 4.10 and

m̃j = E(T̃j|X0 = j).

(i) If state j is aperiodic

lim
n→∞

p
(n)
jj = 1/m̃j.

(ii) If state j is periodic with period d > 1

lim
n→∞

p
(nd)
jj = d/m̃j.

If m̃j = ∞ the limits are to be interpreted as 0.
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Proof: We see from Theorem 4.16 that {p(n)
jj , n ≥ 0} satisfies the discrete renewal

equation. Since j is recurrent, we have

∞
∑

n=1

P(T̃j = n|X0 = j) = 1,

and ∞
∑

n=0

|νn| = ν0 = 1.

We also have

µ =
∞
∑

n=1

νn = E(T̃j |X0 = j) = m̃j .

Now suppose state j is aperiodic. Hence d = 1, and we can apply Theorem 4.14 part

(i). We get

lim
n→∞

p
(n)
jj =

1

µ

∞
∑

n=0

νn = 1/m̃j.

This yields part (i). Part (ii) follows similarly from part (ii) of Theorem 4.14.

4.5.4 The Null Recurrent Case

In this subsection we consider the limiting behavior of an irreducible null recurrent

DTMC. Such a DTMC necessarily has infinite state-space. The main result is given

by

Theorem 4.17 The Null Recurrent DTMC. For an irreducible null recurrent

DTMC

lim
n→∞

p
(n)
ij = 0.

Proof: Since the DTMC is null recurrent, we know that

m̃j = ∞, j ∈ S.

Hence from part (ii) of Theorem 4.16 we see that

lim
n→∞

p
(nd)
jj = 0.

Following the proof of Theorem 4.13 and using the assumption of irreducibility we

can show that

lim
n→∞

p
(n)
ij = 0, i, j ∈ S.

This proves the theorem.

By using dominated convergence theorem we see that the above theorem implies

that

lim
n→∞

P(Xn = j) = 0, j ∈ S,
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or more generally, for any finite set A ⊂ S,

lim
n→∞

P(Xn ∈ A) = 0.

Unlike in the transient case, Theorem 4.4 implies that

∞
∑

n=0

p
(n)
ij = ∞.

Since the DTMC is recurrent each state is visited infinitely often. Hence, in contrast

to the transient case,

P(Xn ∈ A infinitely often) = 1.

Thus a null DTMC will visit every finite set infinitely often over the infinite horizon,

even though the limiting probability that the DTMC is in the set A is zero. This non-

intuitive behavior is the result of the fact that although each state is visited infinitely

often, the expected time between two consecutive visits to the state is infinite.

4.5.5 The Positive Recurrent Aperiodic Case

In this subsection we assume that {Xn, n ≥ 0} is an irreducible positive recurrent

aperiodic DTMC. Such DTMCs are also called ergodic. Now, for a positive recurrent

DTMC, m̃j <∞ for all j ∈ S. Hence, from part (i) of Theorem 4.16 we get

lim
n→∞

p
(n)
jj = 1/m̃j > 0, j ∈ S.

The next theorem yields the limiting behavior of p
(n)
ij as n→ ∞.

Theorem 4.18 The Positive Recurrent Aperiodic DTMC. For an irreducible pos-

itive recurrent DTMC

lim
n→∞

p
(n)
ij = πj > 0, i, j ∈ S, (4.27)

where {πj , j ∈ S} are given by the unique solution to

πj =
∑

i∈S

πipij , j ∈ S, (4.28)

∑

j∈S

πj = 1. (4.29)

Proof: We have already seen that Equation 4.27 holds when i = j with πj =
1/m̃j > 0. Hence assume i 6= j. Following the proof of Theorem 4.15 we get

p
(n)
ij =

n
∑

m=1

ump
(n−m)
jj , n ≥ 0,

where

um = P(T̃j = m|X0 = i).
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Since i↔ j, it follows that

∞
∑

m=1

um = P(Xn = j for some n ≥ 0 |X0 = i) = 1.

Now let 0 < ǫ < 1 be given. Thus it is possible to pick an N such that

∞
∑

m=N+1

um ≤ ǫ/2,

and

|p(n)
jj − πj | ≤ ǫ/2, for all n ≥ N.

Then, for n ≥ 2N , we get

|p(n)
ij − πj | = |

n
∑

m=1

ump
(n−m)
jj − πj |

= |
n−N
∑

m=1

um(p
(n−m)
jj − πj) +

n
∑

m=n−N+1

um(p
(n−m)
jj − πj) −

∞
∑

m=n+1

umπj |

≤
n−N
∑

m=1

um|p(n−m)
jj − πj | +

n
∑

m=n−N+1

ump
(n−m)
jj +

∞
∑

m=n−N+1

umπj

≤
n−N
∑

m=1

umǫ/2 +

n
∑

m=n−N+1

um +

∞
∑

m=n+1

um

≤ ǫ/2 + ǫ/2 ≤ ǫ.

This proves Equation 4.27. Next we derive Equations 4.28 and 4.29. Now let a
(n)
j =

P(Xn = j). Then Equation 4.27 implies

lim
n→∞

a
(n)
j = πj , j ∈ S.

Now, the Chapman-Kolmogorov equations 2.21 yield

a
(n+m)
j =

∑

i∈S

a
(m)
i p

(n)
ij , n,m ≥ 0.

Let m → ∞ on both sides. The interchange of the limit and the sum on the right

hand side is justified due to bounded convergence theorem. Hence we get

πj =
∑

i∈S

πip
(n)
ij .

Equation 4.28 results from the above by setting n = 1. Now let n → ∞. Again,

bounded convergence theorem can be used to interchange the sum and the limit on

the right hand side to get

πj =

(

∑

i∈S

πi

)

πj ,
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but πj > 0. Hence we must have
∑

πi = 1, yielding Equation 4.29.

Now suppose {π′
i, i ∈ S} is another solution to Equations 4.28 and 4.29. Using the

same steps as before we get

π′
j =

∑

i∈S

π′
ip

(n)
ij , n ≥ 0.

Letting n→ ∞ we get

π′
j =

(

∑

i∈S

π′
i

)

πj = πj .

Thus the Equations 4.28 and 4.29 have a unique solution.

Equation 4.28 is called the balance equation, since it balances the probability of

entering a state with the probability of exiting a state. Equation 4.29 is called the

normalizing equation, for obvious reasons. The solution {πj , j ∈ S} satisfying bal-

ance and the normalizing equations is called the limiting distribution, since it is the

limit of the distribution of Xn as n → ∞. It is also called the steady state distribu-

tion. It should be noted that it is the state-distribution that is steady, not the state itself.

Now suppose the DTMC starts with initial distribution

P(X0 = j) = πj , j ∈ S.

Then it can be shown that (see Conceptual Exercise 4.15)

P(Xn = j) = πj , j ∈ S, for all n ≥ 1.

Thus the distribution of Xn is independent of n if the DTMC starts with the initial

distribution {πj , j ∈ S}. Hence {πj , j ∈ S} is also called the stationary distribu-

tion of the DTMC.

As a consequence of Equation 4.27 (See Abel’s theorem in Marsden (1974)) we

have

lim
n→∞

1

n+ 1

n
∑

r=0

p
(r)
ij = πj .

Thus in a positive recurrent aperiodic DTMC, the limiting fraction of the time spent

in state j (called the limiting occupancy distribution) is also given by πj . Thus for

a DTMC the limiting distribution, the stationary distribution, and the limiting occu-

pancy distribution all coincide.

4.5.6 The Positive Recurrent Periodic Case

Let {Xn, n ≥ 0} be an irreducible positive recurrent DTMC with period d > 1.

From part (ii) of Theorem 4.16 we get
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lim
n→∞

p
(nd)
jj = d/m̃j = dπj > 0, j ∈ S. (4.30)

Now let

αij(r) = P(T̃j(mod d) = r|X0 = i), 0 ≤ r ≤ d− 1

=
∞
∑

n=0

P(T̃j = nd+ r|X0 = i).

The next theorem shows that p
(n)
ij does not have a limit, but does have d convergent

subsequences.

Theorem 4.19 Let {Xn, n ≥ 0} be an irreducible positive recurrent DTMC with

period d > 1. Then

lim
n→∞

p
(nd+r)
jj = dπjαij(r) (4.31)

for i, j ∈ S and 0 ≤ r ≤ d− 1.

Proof: Follows along the same lines as that of Theorem 4.18 by writing

p
(nd+r)
ij =

n
∑

k=0

P(T̃j = kd+ r|X0 = i)p
(n−k)d
jj

and using Equation 4.30 and the definition of αij(r).

The next theorem gives the result about the limiting occupancy distribution.

Theorem 4.20 Limiting Occupancy Distribution.

(i)

lim
n→∞

Mij(n+ 1)

n+ 1
= πj , i, j ∈ S. (4.32)

(ii) {πj , j ∈ S} are given by the unique solution to

πj =
∑

i∈S

πipij , j ∈ S, (4.33)

∑

j∈S

πj = 1. (4.34)

Proof: (i) As an easy consequence of Equation 4.31 we get

lim
n→∞

1

n+ 1

n
∑

k=0

p
(kd+r)
ij = dπjαij(r), i, j ∈ S.

(This just says that the Cesaro limit agrees with the usual limit when the latter exists.

See Marsden (1974).) Using this we get, for 0 ≤ m ≤ d− 1,

lim
n→∞

1

nd+m

nd+m
∑

k=0

p
(k)
ij =

1

d

d−1
∑

r=0

lim
n→∞

d

nd+m

n−1
∑

k=0

p
(kd+r)
ij
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+ lim
n→∞

1

nd+m

m
∑

r=0

p
(nd+r)
ij

=
1

d

d−1
∑

r=0

dπjαij(r) = πj .

The Equation 4.32 follows from this.

(ii) We have

∑

j∈S

M
(n)
ij

n+ 1
pjm =

∑

j∈S

1

n+ 1

n
∑

k=0

p
(k)
ij pjm

=
1

n+ 1

n
∑

k=0

p
(k+1)
im

=
n+ 2

n+ 1

1

n+ 2

n+1
∑

k=0

p
(k)
im − 1

n+ 1
p
(0)
im

=
n+ 2

n+ 1

M
(n+1)
ij

n+ 2
− 1

n+ 1
p
(0)
im .

Letting n→ ∞ on both sides of the above equation we get
∑

j∈S

πjpjm = πm,

which is Equation 4.33. By repeating the above step k times we get
∑

j∈S

πjp
(k)
jm = πm, k ≥ 0.

By summing the above equation over k = 0 to n and dividing by n+ 1 we get

∑

j∈S

πj

M
(n)
jm

n+ 1
= πm.

Now let n→ ∞. Using Equation 4.32 we get




∑

j∈S

πj



πm = πm.

Since πm > 0 this implies Equation 4.34. Uniqueness can be proved in a manner

similar to the proof of Theorem 4.18.

4.5.7 Necessary and Sufficient Condition for Positive Recurrence

The next theorem provides a necessary and sufficient condition for positive recur-

rence. It also provides a sort of converse to Theorems 4.18 and 4.20.
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Theorem 4.21 Positive Recurrence. Let {Xn, n ≥ 0} be an irreducible DTMC. It

is positive recurrent if and only if there is a non-negative solution to

πj =
∑

i∈S

πipij , j ∈ S, (4.35)

∑

j∈S

πj = 1. (4.36)

If there is a solution to the above equations, it is unique.

Proof: Theorems 4.18 and 4.20 give the “if” part. Here we prove the “only if” part.

Suppose {Xn, n ≥ 0} is an irreducible DTMC that is either null recurrent or tran-

sient. Suppose there is a non-negative solution to Equation 4.35. Then following the

same argument as before, we have

πj =
∑

i∈S

πip
(n)
ij , n ≥ 1.

Letting n→ ∞ and using Theorems 4.13 and 4.17 we get

πj = lim
n→∞

∑

i∈S

πip
(n)
ij =

∑

i∈S

πi lim
n→∞

p
(n)
ij = 0.

Here the interchange of the limits and the sum is justified by dominated convergence

theorem. Thus the solution cannot satisfy Equation 4.36. This proves the Theorem.

Uniqueness follows from the uniqueness of the limiting distribution of the positive

recurrent DTMCs.

The above theorem is very useful. For irreducible DTMCs it allows us to directly

solve Equations 4.35 and 4.36 without first checking for positive recurrence. If we

can solve these equations, the DTMC is positive recurrent. Note that we do not insist

on aperiodicity in this result. However, the interpretation of the solution {πj, j ∈ S}
depends upon whether the DTMC is aperiodic or periodic. In an aperiodic DTMC

there are three possible interpretations:

(i) It is the limiting distribution of the DTMC,

(ii) It is the stationary distribution of the DTMC,

(iii) It is the limiting occupancy distribution for the DTMC.

When the DTMC is periodic, the second and the third interpretations continue to

hold, where as the first one fails, since a periodic DTMC does not have a limiting

distribution.

4.5.8 Examples

We end this section with two examples.
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Example 4.18 Two-State DTMC. Consider the two-sate DTMC of Example 4.1

on state-space {1, 2}. Assume that 0 < α + β < 2, so that the DTMC is positive

recurrent and aperiodic. The Equation 4.35 yields

π1 = απ1 + (1 − β)π2, (4.37)

π2 = (1 − α)π1 + βπ2. (4.38)

Note that these two equations are identical. Using the normalizing equation

π1 + π2 = 1 (4.39)

we get the following unique solution:

π1 =
1 − β

2 − α− β
, π2 =

1 − α

2 − α− β
.

We can verify Theorem 4.18 directly from the results of Example 4.1.

Example 4.19 Three-State DTMC. Consider the three state DTMC of Exam-

ple 4.2. The DTMC is periodic with period 2. Equations 4.35 and 4.36 yield:

π1 = qπ2

π2 = π1 + π3

π3 = pπ2

π1 + π2 + π3 = 1.

These have a unique solution given by

π1 = q/2, π2 = 1/2, π3 = p/2.

The above represents the stationary distribution, and the limiting occupancy distri-

bution of the DTMC. Since the DTMC is periodic, it has no limiting distribution.

These results are consistent with the results of Example 4.2. Using the matrix nota-

tion α(r) = [αij(r)], we see that

α(0) =





1 0 1
0 1 0
1 0 1



 , α(1) =





0 1 0
1 0 1
0 1 0



 .

Using this we can verify that Theorem 4.20 produces the results that are consistent

with Equations 4.2 and 4.3.

Example 4.20 Genotype Evolution. Consider the six state DTMC of Example 4.3.

This a reducible DTMC, and one can see that Equations 4.35 and 4.36 have an infinite

number of solutions. We shall deal with the reducible DTMCs in Section 4.7.

It should be clear by now that the study of the limiting behavior of irreducible

positive recurrent DTMCs involves solving the balance equations and the normal-

izing equation. If the state-space is finite and the transition probabilities are given
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numerically, one can use standard numerical procedures to solve them. When the

DTMC has infinite state-space or the transition probabilities are given algebraically,

numerical methods cannot be used. In such cases one obtains the solution by analyt-

ical methods. The analytical methods work only if the transition probabilities have a

special structure. We shall describe various examples of analytical examples in the

next section.

4.6 Examples: Limiting Behavior of Infinite State-Space Irreducible DTMCs

In this section we consider several examples of infinite-state DTMCs with special

structures, and study their limiting behavior. The methods of solving the balance

and normalizing equations can generally be classified into two groups: the recursive

methods, and the generating function methods. In the recursive methods one uses

the balance equations to express each πi in terms of π0, and then computes π0 using

the normalizing equation. In the generating function methods one obtains the gen-

erating function of the πi’s, which in theory can be used to compute πi’s. We have

encountered these two methods in Chapter 3.

Example 4.21 Success Runs. Consider the success runs DTMC of Example 2.15

on page 19 with transition probabilities

pi,0 = qi, pi,i+1 = pi, i = 0, 1, 2, · · · .
We assume that pi > 0 and qi > 0 for all i ≥ 0, making the DTMC positive recurrent

and aperiodic. The balance equations yield

πi+1 = piπi, i ≥ 0.

Solving the above equation recursively yields

πi = ρiπ0, i ≥ 0,

where

ρ0 = 1, ρi = p0p1 · · · pi−1, i ≥ 1.

The normalizing equation yields

1 =

∞
∑

i=0

πi = π0

( ∞
∑

i=0

ρi

)

.

Thus, if
∑

ρi converges, we have

π0 =

( ∞
∑

i=0

ρi

)−1

.

Thus, from Theorem 4.20, we see that the success runs DTMC is positive recurrent

if and only if
∑

ρi converges. Combining with the results of Example 4.13 we get

the complete classification as follows: The success runs DTMC is
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(i) positive recurrent if
∑

ρi <∞,

(ii) null recurrent if
∑

ρi = ∞ and
∑

qi = ∞,

(iii) transient
∑

qi <∞.

When the DTMC is positive recurrent, the limiting distribution is given by

πi =
ρi

∑∞
j=0 ρj

, i ≥ 0.

This is also the stationary distribution and the limiting occupancy distribution of the

DTMC.

Special case. Suppose pi = p, for all i ≥ 0, and 0 < p < 1. Then

ρi = pi, i ≥ 0,

and hence
∑

ρi = 1/(1 − p) < ∞. Hence the DTMC is positive recurrent and its

limiting distribution is given by

πi = pi(1 − p), i ≥ 0.

Thus, in the limit, Xn is a modified geometric distribution with parameter 1 − p.

Example 4.22 General Simple Random Walk. Now consider the general simple

random walk with the following transition probabilities:

pi,i+1 = pi for i ≥ 0,

pi,i−1 = qi = 1 − pi for i ≥ 1,

p00 = 1 − p0.

Assume that 0 < pi < 1 for all i ≥ 0, so that the DTMC is recurrent and aperiodic.

The balance equations for this DTMC are:

π0 = (1 − p0)π0 + q1π1,

πj = pj−1πj−1 + qj+1πj+1, j ≥ 1.

It is relatively straightforward to prove by induction that the solution is given by (see

Conceptual Exercise 4.16).

πi = ρiπ0, i ≥ 0, (4.40)

where

ρ0 = 1, ρi =
p0p1 · · · pi−1

q1q2 · · · qi
, i ≥ 1. (4.41)

The normalizing equation yields

1 =

∞
∑

i=0

πi = π0

( ∞
∑

i=0

ρi

)

.

Thus, if
∑

ρi converges, we have

π0 =

( ∞
∑

i=0

ρi

)−1

.
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Thus, from Theorem 4.20, we see that the general simple random walk is positive

recurrent if and only if
∑

ρi converges. This is consistent with the results of Ex-

ample 4.14. When the DTMC is positive recurrent, the limiting distribution is given

by

πi =
ρi

∑∞
j=0 ρj

, i ≥ 0. (4.42)

This is also the stationary distribution and the limiting occupancy distribution of the

DTMC. Note that the DTMC is periodic with period 2 if p0 = 1. In this case the

expressions for πi remain valid, but now {πi, i ≥ 0} is not a limiting distribution.

Special Case 1: Suppose pN = 0, and pN,N = 1 − qN , for a given N ≥ 0. In this

case we can restrict our attention to the irreducible DTMC over {0, 1, 2, · · · , N}. In

this case ρi = 0 for i > N and the above results reduce to

πi =
ρi

∑N
j=0 ρj

, 0 ≤ i ≤ N.

Special case 2. Suppose pi = p for all i ≥ 0, and 0 < p < 1. In this case the

DTMC is positive recurrent and aperiodic, and we have

ρi = ρi, i ≥ 0,

where ρ = p/q. Hence
∑

ρi converges if p < q and diverges if p ≥ q. Combining

this with results from Example 4.14, we see that the space homogeneous simple

random walk is

(i) positive recurrent if p < q,

(ii) null recurrent if p = q,

(iii) transient p > q.

In case p < q, the limiting distribution is given by

πi = ρi(1 − ρ), i ≥ 0.

Thus, in the limit, Xn is a modified geometric random variable with parameter

1 − ρ.

Example 4.23 Production-Inventory System: Batch Production. Consider the

DTMC of Example 2.16 on page 19. It has state-space S = {0, 1, 2, · · ·} and transi-

tion probabilities:

p0,j = αj , j ≥ 0,

pij = αj−i+1, j ≥ i− 1 ≥ 0,

where αj ≥ 0 and
∑

αj = 1. We assume that α0 > 0, α0 + α1 < 1 so that the

DTMC is irreducible and aperiodic. The balance equations for this DTMC are given

by

πi =

i
∑

j=0

αjπi−j+1 + αiπ0, i ≥ 0. (4.43)
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These equations look quite similar to Equation 3.21 on page 68. Hence we follow a

similar generating function approach to solve them. Thus we shall obtain

φ(z) =

∞
∑

i=0

ziπi

in terms of the known generating function

ψ(z) =

∞
∑

i=0

ziαi.

Following the steps as in Example 3.12 we get

φ(z) = π0
ψ(z)(1 − z)

ψ(z) − z
.

The normalizing equation yields

1 =

∞
∑

i=0

πi = lim
z→1

φ(z)

which can be used to compute π0 as follows: We have

1 = π0 lim
z→1

ψ(z)(1 − z)

ψ(z) − z

= π0
−1

ψ′(1) − 1
, (by L’Hopital’s rule)

where

ψ′(1) =
d

dz
ψ(z)|z=1 =

∞
∑

k=0

kαk = µ.

Thus, if µ < 1, we have π0 = 1− µ > 0. Hence from Theorem 4.20, we see that the

DTMC is positive recurrent if and only if µ < 1. This is consistent with the results

of Example 4.15. When the DTMC is positive recurrent, the generating function of

its limiting distribution is given by

φ(z) = (1 − µ)
ψ(z)(1 − z)

ψ(z) − z
. (4.44)

We also get

π0 = 1 − µ

as the long run probability that the system is empty. A numerical way of computing

the limiting distribution is described in Computational Exercise 4.6.

Example 4.24 Production-Inventory System: Batch Demands. Consider the

DTMC of Example 4.16. It has state-space S = {0, 1, 2, · · ·} and transition prob-

abilities:

pi,j = αi−j+1, 0 < j ≤ i+ 1,



122 DISCRETE-TIME MARKOV CHAINS: LIMITING BEHAVIOR

pi0 = βi =

∞
∑

k=i+1

αk, i ≥ 0,

where αj ≥ 0 and
∑

αj = 1. We assume that α0 > 0, α0 + α1 < 1 so that the

DTMC is irreducible. The balance equations for this DTMC are given by

πi =

∞
∑

j=0

αjπi+j−1, i ≥ 1.

These equations look the same as Equation 3.20 on page 67. Using the results of

Example 3.11, we see that the solution to the balance equations is given by

πi = cρi, i ≥ 0,

where c > 0 is a constant, and ρ satisfies

ρ = ψ(ρ) =
∞
∑

k=0

αkρ
k. (4.45)

From Example 3.10, we know that there is a solution to the above equation in (0,1)

if an only if µ > 1. This is then the necessary and sufficient condition for positive

recurrence. This is consistent with the results of Example 4.16. When the DTMC is

positive recurrent (i.e., there is a unique ρ < 1 satisfying the above equation), the

normalizing equation yields

1 =

∞
∑

i=0

πi = c

∞
∑

i=0

ρi =
c

1 − ρ
.

This yields the limiting distribution as

πi = (1 − ρ)ρi, i ≥ 0. (4.46)

Thus, in the limit, Xn is a modified geometric random variable with parameter

1 − ρ.

4.7 Limiting Behavior of Reducible DTMCs

In this section we consider a reducible DTMC {Xn, n ≥ 0} with state-space S.

Assume that there are k closed communicating classes Ci, 1 ≤ i ≤ r, and T is

the set of states that do not belong to any closed communicating class. Then, as in

Equation 4.9, the state-space is partitioned as follows :

S = C1 ∪ C2 ∪ · · · ∪ Ck ∪ T.
Now, if i ∈ Cr and j ∈ Cs, with r 6= s, then i is not accessible from j and vice

versa. Hence pij = pji = 0. Now, relabel the states in S by integers such that i ∈ Cr

and j ∈ Cs with r < s implies that i < j, and i ∈ Cr and j ∈ T implies that i < j.
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With this relabeling, the matrix P has the following canonical block structure:

P =















P (1) 0 · · · 0 0
0 P (2) · · · 0 0
...

...
. . .

...
...

0 0 · · · P (k) 0
D Q















. (4.47)

Here P (i) is a |Ci| × |Ci| stochastic matrix (1 ≤ i ≤ k), Q is a |T | × |T | sub-

stochastic matrix (i.e., all row sums ofQ being less than or equal to one, with at least

one being strictly less than one), andD is a |T |× |S−T | matrix. Elementary matrix

algebra shows that the nth power of P has the following structure:

Pn =















P (1)n 0 · · · 0 0
0 P (2)n · · · 0 0
...

...
. . .

...
...

0 0 · · · P (k)n 0
Dn Qn















.

Since P (r) (1 ≤ r ≤ k) is a transition probability matrix of an irreducible DTMC

with state space Cr, we already know how P (r)n behaves as n → ∞. Similarly,

since all states in T are transient, we know that Qn → 0 as n → ∞. Thus the study

of the limiting behavior of Pn reduces to the study of the limiting behavior of Dn as

n→ ∞. This is what we proceed to do.

Let T (r) be the first passage time to visit the set Cr, i.e.,

T (r) = min{n ≥ 0 : Xn ∈ Cr}, 1 ≤ r ≤ k.

Let

ui(r) = P(T (r) <∞|X0 = i), 1 ≤ r ≤ k, i ∈ T. (4.48)

The next theorem gives a method of computing the above probabilities.

Theorem 4.22 Absorption Probabilities. The quantities {ui(r), i ∈ T, 1 ≤ r ≤
k} are given by the smallest solution to

ui(r) =
∑

j∈Cr

pij +
∑

j∈T

pijuj(r). (4.49)

Proof: This proof is similar to the proof of Theorem 3.2 on page 60. See also Con-

ceptual Exercise 3.1.

Using the quantities {ui(r), i ∈ T, 1 ≤ r ≤ k} we can describe the limiting

distribution of Dn as n→ ∞. This is done in the theorem below.

Theorem 4.23 Limit of Dn. Let {ui(r), i ∈ T, 1 ≤ r ≤ k} be as defined in

Equation 4.48. Let i ∈ T and j ∈ Cr.
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(i) If Cr is transient or null recurrent,

lim
n→∞

Dn(i, j) = 0. (4.50)

(ii) If Cr is positive recurrent aperiodic,

lim
n→∞

Dn(i, j) = ui(r)πj ,

where {πj , j ∈ Cr} is the unique solution to

πj =
∑

m∈Cr

πmpmj ,

∑

m∈Cr

πm = 1.

(iii) If Cr is positive recurrent and periodic, Dn(i, j) does not have a limit. However,

lim
n→∞

1

n+ 1

n
∑

m=0

Dm(i, j) = ui(r)πj ,

where {πj , j ∈ Cr} is as in part (ii) above.

Proof: (i) If ui(r) = 0, then Dn(i, j) = 0 for all n ≥ 1, and hence Equation 4.50

follows. If ui(r) > 0, then it is possible to go from i to any state j ∈ Cr, i.e., there is

an m ≥ 1 such that p
(m)
ij = Dm(i, j) > 0. Since state j is null recurrent or transient,

p
(n)
jj → 0 as n→ ∞. The proof follows along the same lines as that of Theorem 4.13.

(ii) Let i ∈ T and j ∈ Cr be fixed. Following Theorem 4.18 let

T̃j = min{n > 0 : Xn = j},
and

um = P(T̃j = m|X0 = i).

Then, since Cr is a closed recurrent class T̃j <∞ if and only if T (r) <∞. Hence

∞
∑

m=1

um = αi(r).

Thus, given an ǫ > 0, it is possible to find an N > 0 such that

∞
∑

m=N+1

um − αi(r) ≤ ǫ/2

and

|p(m)
jj − πj | ≤ ǫ/2

for all m ≥ N . The rest of the proof is similar to that of Theorem 4.18.

(iii) Similar to the proof of Theorem 4.20.

We illustrate with the help of several examples.
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Example 4.25 Genotype Evolution Model. Consider the six-state DTMC of the

genotype evolution model with the transition probability matrix as given in Equa-

tion 2.13 on page 24. From Example 4.6 we see that this is a reducible DTMC

with two closed communicating classes C1 = {1}, C2 = {6}, and the open class

T = {2, 3, 4, 5}. We also have

P (1) = [1], P (2) = [1],

Q =









1/2 0 1/4 0
0 0 1 0

1/4 1/8 1/4 1/4
0 0 1/4 1/2









,

and

D =









1/4 0
0 0

1/16 1/16
0 1/4









.

Remember that the rows of D are indexed {2, 3, 4, 5} and the columns are indexed

{1, 6}.

We have

P (1)n → [1], P (2)n → [1],

Qn →









0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









.

Equations for {ui(1), i ∈ T } are given by

u2(1) = .25 + .5u2(1) + .25u4(1)

u3(1) = u4(1)

u4(1) = .25u2(1) + .125u3(1) + .25u4(1) + .25u5(1)

u5(1) = .25u4(1) + .5u5(1).

The solution is given by

[u2(1), u3(1), u4(1), u5(1)]′ = [.75, .5, .5, .25]′.

Similar calculations yield

[u2(2), u3(2), u4(2), u5(2)]′ = [.25, .5, .5, .75]′.

Hence we get

Dn →









3/4 1/4
1/2 1/2
1/2 1/2
1/4 3/4









,
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and

lim
n→∞

P (n) =

















1 0 0 0 0 0
3/4 0 0 0 0 1/4
1/2 0 0 0 0 1/2
1/2 0 0 0 0 1/2
1/4 0 0 0 0 3/4
0 0 0 0 0 1

















.

This matches the result in Example 4.6.

4.8 DTMCs with Costs and Rewards

Let Xn be the state of a system at time n. Suppose {Xn, n ≥ 0} is a DTMC with

state-space S and transition probability matrix P . Furthermore, the system incurs an

expected cost of c(i) at time n if Xn = i. For other cost models, see Conceptual

Exercises 4.17 and 4.18. Rewards can be thought of as negative costs. We consider

costs incurred over infinite horizon {n ≥ 0}. For the analysis of costs over finite

horizon, see Conceptual Exercises 4.19 and 4.20.

4.8.1 Discounted Costs

Suppose the costs are discounted at rate α, where 0 ≤ α < 1 is a fixed discount

factor. Thus if the system incurs a cost of c at time n, its present value at time 0 is

αnc, i.e., it is equivalent to incurring a cost of αnc at time zero. Let C be the total

discounted cost over the infinite horizon, i.e.,

C =

∞
∑

n=0

αnc(Xn).

Let φ(i) be the expected total discounted cost (ETDC) incurred over the infinite

horizon starting with X0 = i. That is,

φ(i) = E(C|X0 = i).

The next theorem gives the main result regarding the ETDC. We introduce the fol-

lowing column vectors

c = [c(i)]i∈S , φ = [φ(i)]i∈S .

Theorem 4.24 ETDC. Suppose 0 ≤ α < 1. Then φ is given by

φ = (I − αP )−1c. (4.51)

Proof: Let C1 be the total discounted cost incurred over {1, 2, · · ·} discounted

back to time 0, i.e.,

C1 =

∞
∑

n=1

αnc(Xn).
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From time-homogeneity it is clear that

E(C1|X1 = j) = αφ(j), j ∈ S.

Using the first step analysis we get

E(C1|X0 = i) =
∑

j∈S

pijE(C1|X0 = i,X1 = j)

= α
∑

j∈S

pijφ(j).

Hence,

φ(i) = E(C|X0 = i)

= E(c(X0) + C1|X0 = i)

= c(i) + α
∑

j∈S

pijφ(j).

In matrix form the above equation becomes

φ = c+ αPφ. (4.52)

The matrix I − αP is invertible for 0 ≤ α < 1. Hence we get Equation 4.51.

Note that there is no assumption of transience or recurrence or periodicity or irre-

ducibility behind the above theorem. Equation 4.51 is valid for any transition proba-

bility matrix P .

Example 4.26 Two-State Machine. Consider the two-state machine of Exam-

ple 2.6 on page 15. It was modeled by a DTMC {Xn, n ≥ 0} with state-space

{0, 1} (0 being down, and 1 being up), and transition probability matrix

P =

[

pd 1 − pd

1 − pu pu

]

,

where 0 ≤ pu, pd ≤ 1. Now suppose the machine produces a revenue of $r per day

when it is up, and it costs $d in repair costs per day when the machine is down. Sup-

pose a new machine in working order costs $m. Is it profitable to purchase it if the

discount factor is 0 ≤ α < 1?

Let c(i) be the expected cost of visiting state i. We have

c = [c(0) c(1)]′ = [d − r]′.

Then, using Theorem 4.24 we get

φ = [φ(0) φ(1)]′ = (I − αP )−1c.

Direct calculations yield

φ =
1

(1 − αpu)(1 − αpd) − α2(1 − pu)(1 − pd)

[

d(1 − αpu) − rα(1 − pd)
d(1 − pu) − r(1 − αpd)

]

.
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Thus it is profitable to buy a new machine if the expected total discounted net revenue

from a new machine over the infinite horizon is greater than the initial purchase price

of m, i.e., if

m ≤ r(1 − αpd) − d(1 − pu)

(1 − αpu)(1 − αpd) − α2(1 − pu)(1 − pd)
.

Note that the above inequality reduces to m ≤ r if α = 0, as expected. How much

should you be willing to pay for a machine in down state?

4.8.2 Average Costs

The discounted costs have the disadvantage that they depend upon the discount

factor and the initial state, thus making decision making more complicated. These

issues are addressed by considering the long run cost per period, called the aver-

age cost. The expected total cost up to time N , starting from state i, is given by

E(
∑N

n=0 c(Xn)|X0 = i). Dividing it by N + 1 gives the cost per period. Hence the

long run expected cost per period is given by:

g(i) = lim
N→∞

1

N + 1
E

(

N
∑

n=0

c(Xn)|X0 = i

)

,

assuming that the above limit exists. To keep the analysis simple, we will assume that

the DTMC is irreducible and positive recurrent with limiting occupancy distribution

given by {πj , j ∈ S}. Intuitively, it makes sense that the long run cost per period

should be given by
∑

πjc(j), independent of the initial state i. This intuition is

formally proved in the next theorem:

Theorem 4.25 Average Cost. Suppose {Xn, n ≥ 0} is an irreducible positive

recurrent DTMC with limiting occupancy distribution {πj , j ∈ S}. Suppose
∑

j∈S

πj |c(j)| <∞.

Then

g(i) = g =
∑

j∈S

πjc(j).

Proof: Let M
(N)
ij be the expected number of visits to state j over {0, 1, 2, · · · , N}

starting from state i. See Section 2.5. Then, we see that

g(i) = lim
N→∞

1

N + 1

∑

j∈S

M
(N)
ij c(j)

= lim
N→∞

∑

j∈S

M
(N)
ij

N + 1
c(j)



REVERSIBILITY 129

=
∑

j∈S

lim
N→∞

M
(N)
ij

N + 1
c(j)

=
∑

j∈S

πjc(j).

Here the last interchange of sum and the limit is allowed because the DTMC is posi-

tive recurrent. The last equality follows from Theorem 4.20.

We illustrate with an example.

Example 4.27 Brand Switching. Consider the model of brand switching as de-

scribed in Example 2.14, where a customer chooses among three brands of beer, say

A,B, andC, every week when he buys a six-pack. LetXn be the brand he purchases

in week n. We assume that {Xn, n ≥ 0} is a DTMC with state-space S = {A,B,C}
and transition probability matrix given below:

P =





0.1 0.2 0.7
0.2 0.4 0.4
0.1 0.3 0.6



 . (4.53)

Now suppose a six pack costs $6.00 for brandA, $5.00 for brandB, and $4 for brand

C. What is the weekly expenditure on beer by the customer in the long run?

We have

c(A) = 6, c(B) = 5, c(C) = 4.

Also solving the balance and normalizing equations we get

πA = 0.132, π2 = 0.319, πC = 0.549.

Hence the long run cost per week is

g = 6πA + 5πB + 4πC = 4.583.

Thus the customer spends $4.58 per week on beer.

It is possible to use the results in Section 4.7 to extend this analysis to reducible

DTMCs. However, the long run cost rate may depend upon the initial state in that

case.

4.9 Reversibility

In this section we study a special class of DMTCs called the reversible DTMCs.

Intuitively, if we watch a movie of a reversible DTMC we will not be able to tell

whether the time is running forward or backward. Thus, the probability of traversing

a cycle of r + 1 states i0 → i1 → i2 → · · · → ir−1 → ir → i0 is the same as

traversing it in reverse order i0 → ir → ir−1 → · · · → i2 → i1 → i0. We make this

more precise in the definition below.
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We begin with the definition:

Definition 4.12 Reversibility. A DTMC with state-space S and transition proba-

bility matrix P , is called reversible if for every r ≥ 1, and i0, i1, · · · , ir,

pi0,i1pi1,i2 · · · pir−1,ir
pir ,i0 = pi0,ir

pir,ir−1
pir−1,ir−2

· · · pi1,i0 . (4.54)

The next theorem gives a simple necessary and sufficient condition for reversibil-

ity.

Theorem 4.26 An irreducible, positive recurrent DTMC with state-space S, transi-

tion probability matrix P and stationary distribution {πi, i ∈ S} is reversible if and

only if

πipij = πjpji, i, j ∈ S. (4.55)

Proof: Suppose the DTMC is irreducible and positive recurrent, and Equation 4.55

holds. Consider a cycle of states i0, i1, · · · , ir, i0. Then we get

πi0pi0,i1pi1,i2 · · · pir−1,ir
pir,i0 = pi1,i0πi1pi1,i2 · · · pir−1,ir

pir,i0

...

= pi1,i0pi2,i1 · · · pir ,ir−1
pi0,ir

πi0 .

Since the DTMC is positive recurrent, πi0 > 0. Hence the above equation implies

Equation 4.54.

To prove necessity, suppose Equation 4.54 holds. Summing over paths of length r
from i1 to i0 we get

pi0,i1p
(r)
i1,i0

= p
(r)
i0,i1

pi1,i0 .

Now sum over r = 0 to n, and divide by n+ 1 to get

pi0,i1

(

1

n+ 1

n
∑

r=0

p
(r)
i1,i0

)

=

(

1

n+ 1

n
∑

r=0

p
(r)
i0,i1

)

pi1,i0 ,

or

pi0,i1

M
(n)
i1,i0

n+ 1
=
M

(n)
i0,i1

n+ 1
pi1,i0 .

Now let n → ∞. Since the DTMC is irreducible and positive recurrent, we can use

Theorem 4.20 to get

pi0,i1πi0 = pi1,i0πi1 ,

which is Equation 4.55.

The Equations 4.55 are called the local balance or detailed balance equations, as

opposed to Equations 4.35, which are called global balance equations. Intuitively, the

local balance equations say that, in steady state, the expected number of transitions

from state i to j per period is the same as the expected number of transitions per

period from j to i. This is in contrast to stationary DTMCs that are not reversible:
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for such DTMCs the global balance equations imply that the expected number of

transitions out of a state over any time period is the same as the expected number

of transitions into that state over the same time period. It can be shown that the

local balance equations imply global balance equations, but not the other way. See

Conceptual Exercise 4.21.

Example 4.28 Symmetric DTMCs. Consider an irreducible DTMC on a finite

state-space {1, 2, · · · , N} with symmetric transition probability matrix P . Show that

it is reversible.

Since P is symmetric, it must be doubly stochastic. See Conceptual Exercise 4.22.

Since the DTMC is assumed to be irreducible, it has a unique stationary distribution

given by

πj = 1/N, j ∈ S.

Thus

πipij = (1/N)pij = (1/N)pji = πjpji, i, j ∈ S.

Here the second equality is a consequence of symmetry. Thus the DTMC satisfies

local balance equations, and hence is reversible.

Example 4.29 General Simple Random Walk. Consider a positive recurrent gen-

eral simple random walk as described in Example 4.22. Show that it is a reversible

DTMC.

From Example 4.22 we see that the stationary distribution is given by

πi = ρiπ0, i ≥ 0,

where

ρ0 = 1, ρi =
p0p1 · · · pi−1

q1q2 · · · qi
, i ≥ 1.

Hence we have

πipi,i+1 = π0
p0p1 · · · pi−1

q1q2 · · · qi
pi = π0

p0p1 · · · pi−1pi

q1q2 · · · qi+1
qi+1 = πi+1pi+1,i.

Since the only transitions in a simple random walk are from i to i+ 1, and i to i− 1,

we see that Equations 4.55 are satisfied. Hence the DTMC is reversible.

Reversible DTMCs are nice because it is particularly easy to compute their station-

ary distribution. A large class of reversible DTMCs are the tree DTMCs, of which

the general simple random walk is a special case. See Conceptual Exercise 4.23 for

details.

We end this section with an interesting result about the eigenvalues of a reversible

DTMC with finite state space.

Theorem 4.27 Eigenvalues and Reversibility. Let {Xn, n ≥ 0} be an irreducible,

positive recurrent, reversible DTMC with finite state-space S = {1, 2, · · · , N} and

transition probability matrix P . Then all the eigenvalues of P are real.
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Proof: Since {Xn, n ≥ 0} is irreducible, positive recurrent , and reversible, we have

πipij = πjpji,

where {πi, i ∈ S} is the stationary distribution. Now let Π = diag[π1, π2, · · · , πN ].
Then the above equation can be written in matrix form as

ΠP = PT Π,

where PT is the transpose of P . This can be rewritten as

Π1/2Pπ−1/2 = Π−1/2PT Π1/2. (4.56)

Now let λ be an eigenvalue of Π1/2PΠ−1/2 and x be the corresponding eigenvector,

i.e.,

Π1/2PΠ−1/2x = λx.

The above equation can be written as

PΠ−1/2x = λΠ−1/2x.

Thus λ is an eigenvalue of P . Similarly, any eigenvalue of P is an eigenvalue of

Π1/2PΠ−1/2. However, Equation 4.56 implies that Π1/2PΠ−1/2 is symmetric, and

hence all its eigenvalues are real. Thus all eigenvalues of P must be real.

4.10 Computational Exercises

4.1 Numerically study the limiting behavior of the marginal distribution and the

occupancy distribution in the brand switching example of Example 2.14 on page 18,

by studying Pn and M (n)/(n+ 1) for n = 1 to 20.

4.2 Study the limiting behavior of the two-state DTMC of Example 2.3 if

(i) α+ β = 0,

(ii) α+ β = 2.

4.3 Numerically study the limiting behavior of the random walk on {0, 1, · · · , N}
with

p0,1 = p0,0 = pN,N = pN,N−1 = 1/2, pi,i+1 = pi,i−1 = 1/2, 1 ≤ i ≤ N − 1,

by studying Pn and M (n)/(n + 1) for n = 1 to 20, and N = 1 to 5. What is your

guess for the limiting values a general N?

4.4 Establish the conditions of transience, null recurrence, and positive recurrence

for the space-nonhomogeneous simple random walk on {0, 1, 2, · · ·} with the follow-

ing transition probabilities:

pi,i+1 = pi for i ≥ 0,

pi,i−1 = qi for i ≥ 1,

pi,i = ri, for i ≥ 0.

Assume that 0 < pi < 1 − ri for all i ≥ 0.
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4.5 Establish the conditions of transience, null recurrence, and positive recurrence

for the simple random walk on {0, 1, 2, · · ·} with reflecting boundary at zero, i.e.,

pi,i+1 = p for i ≥ 1,

pi,i−1 = q for i ≥ 1,

p0,1 = 1.

Assume that 0 < p < p+ q < 1.

4.6 Consider the DTMC of example 4.15. Suppose it is positive recurrent. Show

that the limiting distribution {πj , j ≥ 0} can be recursively calculated by

π0 = 1 − µ,

π1 =
1 − α0

α0
π0,

π2 =
1 − α0 − α1

α0
(π0 + π1),

πj+1 =
1 −

∑j
i=0 αi

α0

(

j
∑

i=0

πi

)

+

j
∑

i=2

πi

j
∑

k=j−i+2

αk

α0
, j ≥ 2.

This is a stable recursion since it involves adding positive terms.

4.7 Study the limiting behavior of the random walk in Computational Exercise 4.5,

assuming it is positive recurrent.

4.8 Study the limiting behavior of the random walk in Computational Exercise 4.4,

assuming it is positive recurrent.

4.9 Classify the states of the brand switching model of Example 4.27. That is, iden-

tify the communicating classes, and state whether they are transient, null recurrent,

or positive recurrent, and whether they are periodic or aperiodic.

4.10 Study the limiting behavior of Pn as n → ∞ for the following transition

probability matrices by using the method of diagonalization to compute Pn and then

letting n→ ∞.

(a)









.5 .5 0 0

.5 0 .5 0
0 .5 0 .5
0 0 .5 .5









, (b)









0 1 0 0
.5 0 .5 0
0 .5 0 .5
0 0 1 0









.

4.11 Compute the limits of M (n)/(n+ 1) as n→ ∞ for the P matrices in Compu-

tational Exercise 4.10, using the method of diagonalization to compute the Pn.
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4.12 Do a complete classification of the states of the DTMC in

(i) Example 2.13 on page 18,

(ii) The Wright-Fisher model on page 24,

(iii) The Moran model on page 25.

4.13 Do a complete classification of the states of the DTMCs with the following

transition probability matrices:

(a)









.5 .5 0 0
0 .5 .5 0
0 0 .5 .5
0 0 0 1









, (b)









.2 .8 0 0

.6 .4 0 0

.2 .3 .5 0
0 0 0 1









.

4.14 Consider a DTMC on all integers with following transition probabilities

pi,i+1 = αi, pi,0 = 1 − αi, i > 0,

pi,i−1 = βi, pi,0 = 1 − βi, i < 0,

po1 = p, p0,−1 = 1 − p.

Find the condition for transience, null recurrence, and positive recurrence.

4.15 Classify the following success runs DTMCs as transient, null recurrent, or pos-

itive recurrent

(i) pi = 1/(1 + i), i ≥ 0,

(ii) q0 = 0, qi = 1/(1 + i), i ≥ 1,

(iii) pi =

{

1/(1 + i) if i even,

i/(1 + i) if i odd.

4.16 State whether the following simple random walks are transient, null recurrent,

or positive recurrent.

(i) p01 = 1, pi,i+1 = p, pi,i−1 = q = 1 − p, i ≥ 1,

(ii) p01 = 1, pi,i+1 = 1/(1 + i), pi,i−1 = i/(1 + i), i ≥ 1,

(iii) p01 = 1, pi,i+1 = i/(1 + i), pi,i−1 = 1/(1 + i), i ≥ 1.

4.17 Consider a DTMC on non-negative integers with following transition proba-

bilities

p0,i = pi, i ≥ 0,

pi,i−1 = 1, i ≥ 1.

Assume that
∑

pi = 1. Establish the condition for transience, null recurrence, and

positive recurrence.

4.18 Use Pakes’ lemma to derive a sufficient condition for the positive recurrence

of the DTMC in Example 2.17 on page 20.
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4.19 Show that the discrete time queue of Example 2.12 is positive recurrent if

p < q, null recurrent if p = q, and transient if p > q.

4.20 Compute the limiting distribution of the DTMC of Computational Exer-

cise 2.9.

4.21 Compute the limiting distributions and the limiting occupancy distributions of

the DTMCs in Computational Exercise 4.10.

4.22 Is the DTMC in Computational Exercise 3.9 positive recurrent? If so, compute

its limiting distribution.

4.23 Numerically compute the limiting distribution of the number of passengers

on the bus in the Modeling Exercise 2.21. Assume that the bus capacity is 20, the

number passengers waiting for the bust at any stop is a Poisson random variable with

mean 10, and that a passenger on the bus alights at any stop with probability .4.

4.24 Consider the following modification of the transition probabilities of the

DTMC of Example 2.16:

p0j = βj, j ≥ 0

pij = αj−i+1, j ≥ i− 1 ≥ 0,

with αj , βj ≥ 0,
∑∞

j=0 αj =
∑∞

j=0 βj = 1, µ =
∑∞

j=0 jαj , ν =
∑∞

j=0 jβj .

Assume the chain is irreducible. Show that this DTMC is positive recurrent if and

only if µ < 1. Let {πj , j ∈ S} be the limiting distribution, assuming it is positive

recurrent. Show that

φ(z) =

∞
∑

j=0

zjπj = π0
A(z) − zB(z)

A(z) − z
,

where

A(z) =

∞
∑

j=0

zjαj , B(z) =

∞
∑

j=0

zjβj ,

and

π0 =
1 − µ

1 − µ+ ν
.

4.25 Compute the long run fraction of patients who receive drug i if we follow the

play the winner policy of Modeling Exercise 2.13.

4.26 Let S be a set of all permutations of the integers 1, 2, · · · , N . Let X0 =
(1, 2, · · · , N) be the initial permutation. Construct Xn+1 from Xn by interchang-

ing the I-th and J-th component of Xn, where I and J are independent and uni-

formly distributed over {1, 2, · · · , N}. (If I = J , then Xn+1 = Xn.) Show that

{Xn, n ≥ 0} is a DTMC and compute its limiting distribution. (Conceptual Exer-

cise 4.22 may be useful here.) This gives one method of generating a permutation

uniformly from the set of all permutations.
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4.27 Compute the limiting distribution of the DTMC in Example 2.17 in the fol-

lowing cases

(i) αi = αi(1 − α), i ≥ 0, for a fixed constant α > 1/2,

(ii) αi = 1
m+1 , 0 ≤ i ≤ m, for a constant m > 2.

You may need to solve Equation 4.45 numerically.

4.28 Let Xn be the sum of the first n outcomes of tossing a six-sided fair die re-

peatedly and independently. Compute

lim
n→∞

P(Xn is dividible by 7).

4.29 (This is a generalization of Computational Exercise 4.28.) Let {Yn, n ≥ 1}
be a sequence of iid random variables with common pmf P(Yn = k) = αk, k =
1, 2, 3, · · ·. Let Xn = Y1 + · · · + Yn. Compute

lim
n→∞

P(Xn is dividible by r),

where r is fixed positive integer.

4.30 Consider the discrete time queue of Example 2.12 on page 17. Assume that the

queue is positive recurrent and compute its limiting distribution.

4.31 Compute the limiting distribution of the number of white balls in urn A in the

urn model described in Example 2.13 on page 18.

4.32 Consider the Modeling Exercise 2.18 on page 45. Assume that u, the expected

up time and d, the expected down time are finite.

(i) Is this DTMC irreducible? Positive recurrent? Aperiodic?

(ii) Show that the long run probability that the machine is up is given by u/(u+ d).

4.33 Consider the Modeling Exercise 2.1 on page 42. Assume that τ , the expected

lifetime of each light bulb, is finite. Show that the DTMC is positive recurrent and

compute its limiting distribution.

4.34 Consider the Modeling Exercise 2.19 on page 46. Let µ = E(Yn), and

v =Var(Yn). Suppose X0 = 0 with probability 1. Compute µn = E(Xn) as a func-

tion of n.

4.35 Show that the DTMC in Modeling Exercise 2.19 on page 46 is positive recur-

rent if µ <∞. Let ψ(z) be the g.f. of Yn and φn(z) be the g.f. ofXn. Compute φ(z),
the generating function of the limiting distribution of Xn.

4.36 Consider the Modeling Exercise 2.22 on page 46.

(i) Is this DTMC irreducible? Aperiodic?
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(ii) Compute the long run average fraction of items inspected.

(iii) Suppose items found to be defective are instantaneously repaired before being

shipped. Compute the long run fraction of defective items in the shipped items.

4.37 Consider the Modeling Exercise 2.20 on page 46. Compute the long run frac-

tion of the time the audio quality is impaired.

4.38 Consider the Modeling Exercise 2.32 on page 49. Compute

(i) the long run fraction of the time both machine are working,

(ii) the average number of assemblies shipped per period,

(iii) the fraction of the time the i-th machine is off.

4.39 Consider the DTMC in the Modeling Exercise 2.24 on page 47. Let τi be the

mean lifetime of the machine from vendor i, i = 1, 2. Assume τi <∞. Show that the

DTMC is positive recurrent and compute the long run fraction of the time machine

from vendor 1 is in use.

4.40 Compute the limiting distribution of the DTMC in the Modeling Exercise 2.27

on page 48.

4.41 Compute the limiting distribution of the DTMC in the Modeling Exercise 2.28

on page 48.

4.42 Compute the limiting distribution of the DTMC in the Modeling Exercise 2.6

on page 43.

4.43 Compute limn→∞ Pn for the following probability transition matrices:

(a)









.3 .7 0 0

.4 .6 0 0

.2 .3 .5 0

.5 0 .4 .1









, (b)

















.3 .3 .4 0 0 0

.5 0 .5 0 0 0

.9 0 .1 0 0 0
0 0 0 1 0 0
0 0 .4 .2 .2 .2
0 .1 0 .4 .1 .4

















.

4.44 Let P be the transition probability matrix of the gambler’s ruin DTMC in the

Example 2.11 on page 17. Compute limn→∞ Pn.

4.45 Let {Xn, n ≥ 0} be the DTMC of Modeling Exercise 2.33. Suppose it costs

C1 dollars to replace a failed light bulb, and C2 dollars to replace a working light

bulb. Compute the long run replacement cost of this replacement policy.

4.46 A machine produces two items per day. Each item is non-defective with prob-

ability p, the quality of the successive items being independent. Defective items are

thrown away immediately, and the non-defective items are stored to satisfy the de-

mand of one item per day. Any demand that cannot be satisfied immediately is lost.
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Let Xn be the number of items in storage at the beginning of each day (before the

production and demand for that day is taken into account). Show that {Xn, n ≥ 0} is

a DTMC. When is it positive recurrent? Compute its limiting distribution when it

exists.

4.47 Suppose it costs $c to store an item for one day and $d for every demand that

is lost. Compute the long run cost per day of operating the facility in Computational

Exercise 4.46 assuming it is stable.

4.48 Consider the production facility of Computational Exercise 4.46. Suppose the

following operating procedure is followed. The machine is turned off as soon the

inventory (the items in storage) reaches K , a fixed positive integer. It then remains

off until the inventory reduces to k, another fixed positive integer less than K , at

which point it is turned on again. Model this by an appropriate DTMC and compute

(i) the steady-state probability that the machine is off,

(ii) the steady-state probability that there are i items in storage, 0 ≤ i ≤ K .

4.49 Consider the production facility of Computational Exercise 4.48. Suppose

shutting the machine down costs $A and turning it on costs $B. Compute the long

run cost per day of operating this system.

4.50 Consider the DTMC developed in Modeling Exercise 2.14.

(i) Is the DTMC irreducible and aperiodic?

(ii) What is the long run probability that the machine is up and running?

(iii) Suppose repairing the ith component costs ci dollars per day (i = 1, 2). The

daily output of a working machine generates a revenue ofR dollars. What is the

long run net revenue per day of this machine? Find the minimum value of R for

which it is profitable to operate this machine.

4.51 Consider the beer-guzzling Mr. Al Anon of Modeling Exercise 2.16 on

page 45. Assume the following data is given:

α = .6, β = .2, H = $4.00, L = $3.00.

Compute the long run daily beer expense of Mr. Al Anon.

4.52 Price of an item fluctuates between two levels: high ($H) and low ($L). Let

Yn be the price of the item at the beginning of day n. Suppose {Yn, n ≥ 0} is a

DTMC with state space {0, 1}, where state 0 is low, and state 1 is high. The transition

probability matrix is
[

1 − α α
β 1 − β

]

.

A production facility consumes one such item at the beginning of each day and has

a storage capacity of K . The production manager uses the following procurement
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policy: If the price of the item at the beginning of day n is low, then procure enough

items instantly to bring the number of items in stock to K . If the price level is high,

and there is at least one item in stock, do nothing; else procure one item instantly. Let

Xn be the number of items in stock at the beginning of day n. Suppose the inventory

costs are charged at the rate of $h per item in stock at the beginning of a day per

day. (Assume the following sequence of events: at the beginning of the nth day, we

first consume an item, then observe the new price level Yn, then procure the quantity

determined by the above rule, then observe the new stock level Xn.)

1. Compute the long run procurement plus holding cost per day of following this

policy.

2. Suppose the price is known to be $25 on 20% of the days, and $15 for 80% of

the days on the average. The price cycle lasts on the average 25 days. The holding

cost is $.50 per item per day. Plot or tabulate the long run average cost per day as

a function of K . What is value of K that minimizes the cost rate?

4.53 Consider the DTMC model of a buffer of size B as described in Modeling

Exercise 2.20.

(i) At the beginning, when the play program is initiated, the system waits until the

buffer has a fixed number b of bytes, and then starts playing. Let T be the first

time either the buffer becomes empty, or some bytes are lost. A song ofK bytes

plays flawlessly if T > K . Show how to compute the probability that the song

of K bytes plays flawlessly.

(ii) Consider the following parameters:

B = 100, α0 = .2, α1 = .5, K = 512.

What value of b should be used to maximize the probability that this song is

played flawlessly? What is this maximum probability?

4.54 Consider the DTMC developed in Modeling Exercise 2.12.

(i) Compute its steady state distribution.

(ii) Compute the long run gasoline cost per day to the student. Compare this with

the long run gasoline cost per day if the student filled up the tank whenever it

became empty, regardless of the price of gasoline.

4.11 Conceptual Exercises

4.1 Let S be a finite set. A relation on S is a functionR : S × S → {0, 1}. If x and

y in S satisfy the relation R, define R(x, y) = 1, and 0 otherwise. A relation R is

said to be

(i) reflexive if R(x, x) = 1 for all x ∈ S,

(ii) symmetric if R(x, y) = R(y, x) for all x, y ∈ S,
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(iii) transitive if R(x, y) = 1, R(y, z) = 1 ⇒ R(x, z) = 1, for all x, y, z ∈ S.

Investigate the properties of the following relations:

(i) S = set of all humans,R(x, y) = 1 if and only if x and y are blood relatives,

(ii) S = set of all humans,R(x, y) = 1 if and only if x is a brother of y,

(iii) S = set of all students at a university, R(x, y) = 1 if x and y are attending at

east one class together,

(iv) S = set of all polynomials, R(x, y) = 1 if the degree of the product of x and y
is 10.

4.2 Let C1 and C2 be two communicating classes of a DTMC. Show that either

C1 = C2 or C1 ∩ C2 = φ.

4.3 Let {Xn, n ≥ 0} be a DTMC with state-space {1, 2, · · ·N} and transition

probability matrix P with q non-zero entries. Develop an algorithm to check whether

or not state i is accessible from state j in O(q) steps.

4.4 For the DTMC in Conceptual Exercise 4.3 develop an algorithm to identify the

partition in Equation 4.9 in O(q) steps.

4.5 Show that the two definitions of periodicity given in Definitions 4.6 and 4.7 are

equivalent.

4.6 Complete the proof of Theorem 4.3.

4.7 Show that in an irreducible DTMC with N states, it is possible to go from any

state to any other state in N steps or less.

4.8 Show that the period of an irreducible DTMC with N states is N or less.

4.9 Show that there are no null recurrent states in a finite state DTMC.

4.10 Show by example that it is possible for an irreducible DTMC with N states to

have any period d ∈ {1, 2, · · · , N}.

4.11 Show that not all states in a finite state DTMC can be transient.

4.12 Deduce Equation 4.19 from Equation 4.18 by following an argument similar

to the one in the proof of Theorem 4.7.

4.13 Prove Theorem 4.11 (Pakes’ lemma) using Theorem 4.10 (Foster’s criterion).

4.14 Show that a transient DTMC eventually permanently exits any finite set with

probability 1. (Use Borel-Cantelli lemma of Appendix A.)
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4.15 Let {πj , j ∈ S} be a solution to the balance and normalizing equations. Now

suppose the DTMC starts with initial distribution

P(X0 = j) = πj , j ∈ S.

Show that

P(Xn = j) = πj , j ∈ S, for all n ≥ 1.

4.16 Establish Equation 4.40 by induction.

4.17 Let {Xn, n ≥ 0} be a DTMC with state-space S and transition probability

matrix P . Suppose the system incurs an expected cost of c(i, j) at time n if Xn = i
and Xn+1 = j. Let

c(i) =
∑

j∈S

c(i, j)pij , c = [c(i)]i∈S .

Let

φ(i) = E(

∞
∑

n=0

αnc(Xn, Xn+1|X0 = i), φ = [φ(i)]i∈S .

Show that φ satisfies Equation 4.52.

4.18 Consider the cost model of Conceptual Exercise 4.17, and assume that the

DTMC is irreducible and positive recurrent with limiting occupancy distribution

{πi, i ∈ S}. Show that g, the long run expected cost per unit time, is given by

g =
∑

i∈S

∑

j∈S

πic(i, j)pi,j .

4.19 Consider the cost set up of Section 4.8. Let φ(N, i) be the expected discounted

cost incurred over time {0, 1, 2, · · · , N} starting from state i, i.e.,

φ(N, i) = E

(

N
∑

n=0

αnc(Xn)|X0 = i

)

.

Show that φ(N, i) can be computed recursively as follows:

φ(0, i) = c(i),

φ(N, i) = c(i) + α
∑

j∈S

pijφ(N − 1, j), N ≥ 1.

4.20 Consider the cost set up of Section 4.8. Let g(N, i) be the expected cost per

period incurred over time {0, 1, 2, · · · , N} starting from state i, i.e.,

g(N, i) =
1

N + 1
E

(

N
∑

n=0

c(Xn)|X0 = i

)

.
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Show that g(N, i) can be computed recursively as follows:

g(0, i) = c(i),

g(N, i) =
1

N + 1







c(i) +N
∑

j∈S

pijg(N − 1, j)







, N ≥ 1.

4.21 Show that if {πj , j ∈ S} satisfy the local balance Equations 4.55, they satisfy

the global balance Equations 4.35. Show by counter example that the reverse is not

true.

4.22 A transition probability matrix is called doubly stochastic if
∑

i∈S

pij = 1, j ∈ S.

Let {Xn, n ≥ 0} be an irreducible DTMC on a finite state-space {1, 2, · · · , N}
with a doubly stochastic transition probability matrix P . Show that its stationary

distribution is given by

πj = 1/N, j ∈ S.

4.23 A DTMC is said to be tree if between any two distinct states i and j there is

exactly one sequence of distinct states i1, i2, · · · ir such that

pi,i1pi1,i2 · · · pir ,j > 0.

Show that a positive recurrent tree DTMC is reversible.

4.24 Let P be a diagonalizable N × N transition probability matrix. Using the

representation in Equation 2.32 study the limiting behavior of Pn andM (n)/(n+1)
in terms of the eigenvectors. Consider the following cases

(i) λ = 1 is an eigenvalue of multiplicity one, and it is the only eigenvalue with

|λ| = 1.

(ii) λ = 1 has multiplicity k, and these are the only eigenvalues with |λ| = 1.

(iii) There are eigenvalues with |λ| = 1 other than λ = 1.

4.25 Let {Xn, n ≥ 0} be an irreducible and positive DTMC on state space S. Let

P be its transition probability matrix and π be its stationary distribution. Suppose the

Markov chain earns a reward of ri everytime it visits state i. Let Ri(n), n ≥ 1, be

the total expected reward earned by the DTMC over time periods {0, 1, ..., n − 1}
starting from state i. Let R(n) = [Ri(n), i ∈ S] be the column vector of these

expected rewards.

(i) Derive a set of recursive equations satisfied by Ri(n), i ∈ S. Write them in

matrix form using P and r = [ri, i ∈ S].
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(ii) It is known that (you do not need to prove this) there exists a constant g and a

column vector h = [hi, i ∈ S] such that

R(n) = h+ nge+ o(n), (4.57)

where e is a column vector of ones, and o(n) is a vector with the following prop-

erty:

lim
n→∞

o(n) = 0.

Compute the value of g. Hint: Substitute equation (4.57) in the result obtained in

part (i) above. Pre-multiply by π.

(iii) Derive the equations that uniquely determine h.

4.26 Suppose j is recurrent, and i→ j. Show that

∞
∑

n=0

p
(n)
ij = ∞.

4.27 Suppose i→ j. Show that

(i) limn→∞
1

n+1

∑n
r=0 p

(r)
ij > 0 if j is positive recurrent,

(ii) limn→∞
1

n+1

∑n
r=0 p

(r)
ij = 0 if j is null recurrent.

4.28 Let {Xn, n ≥ 0} be an irreducible positive recurrent aperiodic DTMC with

state-space S and limiting distribution {πj, j ∈ S}. Show by counter example that

P(Xn = j) = πj , for all j ∈ S, for a given n > 0 does not imply that P(Xm =
j) = πj for all j ∈ S and m ≥ 0.

4.29 Let {Xn, n ≥ 0} be an irreducible positive recurrent DTMC with state-space

S and stationary distribution {πj , j ∈ S}. Show that the long run fraction of transi-

tions that take the DTMC from state i to j is given by πipij .

4.30 Let P be a transition probability matrix of an irreducible positive recurrent

DTMC. Show that a DTMC with transition probability matrix (P + PT )/2 is re-

versible.

4.31 Let {Xn, n ≥ 0} be an irreducible recurrent DTMC with state-space

{0, 1, · · ·}, and transition probability matrix P . Let T = min{n ≥ 0 : Xn = 0}.

Now suppose the DTMC earns a reward ri every time it visits state i. Let R be the

total reward earned from time {0, 1, ...T − 1}. Using first step analysis derive a set

of linear equations satisfied by

g(i) = E(R|X0 = i)

for i = 0, 1, 2, · · ·. (Note that g(0) = 0.)





CHAPTER 5

Poisson Processes

“Basic research is what I am doing when I don’t know what I am doing.”

— Wernher von Braun

5.1 Exponential Distributions

In this chapter we study an important special class of continuous-time stochastic

processes called Poisson Processes. These processes are defined in terms of random

variables with exponential distributions, called “exponential random variables” for

short. We shall see in this and the next few chapters that exponential random variables

are used to build a large number of stochastic models. It is critical for the student to

develop an ability to deal with the exponential distributions freely, without having to

think too much. With this in mind we have collected several relevant properties of

the exponential distributions in this section. We begin with the definition.

Definition 5.1 Exponential Distribution. A non-negative random variable X is

said to be an exponential random variable with parameter λ, denoted as X ∼
exp(λ), if

FX(x) = P(X ≤ x) =

{

0 if x < 0
1 − e−λx if x ≥ 0

, (5.1)

where λ > 0 is a fixed constant.

The cumulative distribution function (cdf) FX is plotted in Figure 5.1. The proba-

bility density function (pdf) fX of the exp(λ) random variable is given by

fX(x) =
d

dx
FX(x) =

{

0 if x < 0
λe−λx if x ≥ 0.

The density function is plotted in Figure 5.2. The Laplace Stieltjest transform (LST)

of X ∼ exp(λ) is given by

F̃X(s) = E(e−sX) =

∫ ∞

0

e−sxfX(x)dx =
λ

λ+ s
, Re(s) > −λ, (5.2)

where the Re(s) denotes the real part of the complex number s. Taking the deriva-

tives of F̃X(s) we can compute the rth moments of X for all positive integer values

145
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x

F(x)

1

Figure 5.1 The cdf of an exponential random variable.

x

f (x)

λ

Figure 5.2 The pdf of an exponential random variable.

of r as follows:

E(Xr) = (−1)r d
r

dsr
F̃X(s)|s=0 =

r!

λr
.

In particular we have

E(X) =
1

λ
, Var(X) =

1

λ2
.

Thus the coefficient of variation of X , Var(X)/(E(X)2), is 1. We now study many

special and interesting properties of the exponential random variable.

5.1.1 Memoryless Property

We begin with the definition of the memoryless property.

Definition 5.2 A non-negative random variable X said to have the memoryless

property if

P(X > s+ t|X > s) = P(X > t), s, t ≥ 0. (5.3)

Thus if X represents the lifetime of a component (say a computer hard drive), the

memoryless property says that the probability that an s year old hard drive will last
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another t years is the same as the probability that a new hard drive will last t years. It

is as if the hard drive has no memory that it has already been functioning for s years!

The next theorem gives an important characterization of an exponential random vari-

able.

Theorem 5.1 Memoryless Property. A continuous non-negative random variable

has memoryless property if and only if it is an exp(λ) random variable for some

λ > 0.

Proof: We first show the “if” part. So, suppose X ∼ exp(λ) for some λ > 0. Then,

for s, t ≥ 0,

P(X > s+ t|X > s) =
P(X > s+ t,X > s)

P(X > s)

=
P(X > s+ t)

P(X > s)
=
e−λ(s+t)

e−λs

= e−λt = P(X > t).

Hence, by definition, X has memoryless property. Next we show the “only if” part.

So, let X be a non-negative random variable with complementary cdf

F c(x) = P(X > x), x ≥ 0.

Then, from Equation 5.3, we must have

F c(s+ t) = F c(s)F c(t), s, t ≥ 0.

This implies

F c(2) = F c(1)F c(1) = (F c(1))2,

and

F c(1/2) = (F c(1))1/2.

In general, for all positive rational a we get

F c(a) = (F c(1))a.

The only continuous function that will satisfy the above equation for all rational

numbers is

F c(x) = (F c(1))x = elnF c(1)x = e−λx x ≥ 0,

where λ = −ln(F c(1)). Since F c(x) is a probability we must have λ > 0, and

hence FX(x) = 1 − F c(x) satisfies Equation 5.1. Thus X is an exp(λ) random

variable.

5.1.2 Hazard Rate

Let X be a non-negative continuous random variable with pdf f and complementary

cdf F c(x) = P(X > x). Hazard (or failure) rate of X is defined as

r(x) =
f(x)

F c(x)
, x ≥ 0.
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Note that, for small h,

r(x)h + o(h) =
f(x)h+ o(h)

F c(x)
= P(X ∈ (x, x+ h)|X > x).

Thus, in the limit as h → 0, r(x)h can be interpreted as the conditional probability

that a machine with lifetime X fails in the interval (x, x + h) given that it has not

failed until x. Hence the name “failure rate.” In insurance literature it is also known

as mortality rate. Note that r(x) is not a probability density function, since its integral

from 0 to ∞ need not be 1.

The next theorem characterizes the exponential distribution via its hazard rate.

Theorem 5.2 A continuous non-negative random variable has constant hazard rate

r(x) = λ > 0, x ≥ 0, if and only if it is an exp(λ) random variable.

Proof: We first show the “if” part. So, suppose X ∼ exp(λ) for some λ > 0. Then

its hazard rate is given by

r(x) =
f(x)

F c(x)

=
λe−λx

e−λx
= λ.

To show the “only if” part, note that the hazard rate completely determines the com-

plementary cdf by the following formula (see Conceptual Exercise 5.1)

F c(x) = exp

(

−
∫ x

0

r(u)du

)

, x ≥ 0. (5.4)

Hence, if the random variable X has hazard rate r(u) = λ for all u ≥ 0, we must

have

F c(x) = e−λx, x ≥ 0.

Thus X ∼ exp(λ).

5.1.3 Probability of First Failure

Let Xi ∼ exp(λi), i = 1, 2, be two independent random variables representing the

lifetimes of two machines. Then the probability of machine 1 failing before machine

2 is given by

P(X1 < X2) =

∫ ∞

0

P(X1 < X2|X1 = x)λ1e
−λ1xdx

=

∫ ∞

0

P(X2 > x)λ1e
−λ1xdx

=

∫ ∞

0

e−λ2xλ1e
−λ1xdx

=
λ1

λ1 + λ2
.
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Thus the probability of first failure is proportional to the failure rate of the expo-

nential random variables. Note that the assumption of independence is critical. The

above result can be easily extended to more than two exponential random variables,

see Conceptual Exercise 5.3.

Example 5.1 A running track is 1 km long. Two runners start on it at the same time.

The speed of runner i is Xi, i = 1, 2. Suppose Xi ∼ exp(λi), i = 1, 2, and X1 and

X2 are independent. The mean speed of runner 1 is 20 km per hour and that of runner

2 is 22 km per hour. What is the probability that runner 1 wins the race?

The required probability is given by

P

(

1

X1
<

1

X2

)

= P(X2 < X1) =
λ2

λ1 + λ2

=
1/22

1/22 + 1/20
=

20

20 + 22
= 0.476.

5.1.4 Minimum of Exponentials

Let {Xi, 1 ≤ i ≤ k} be k non-negative random variables. Define

Z = min{X1, X2, · · · , Xk} (5.5)

and

N = i if Xi = Z. (5.6)

Note that N is unambiguously defined if the random variables {Xi, 1 ≤ i ≤ k}
are continuous, since in that case exactly one among the k random variables will

equal Z . Thus, if Xi represents the time when an event of type i occurs (1 ≤ i ≤ k),

then Z represents the time when the first of these k events occurs, and N represents

the type of the event that occurs first. The next theorem gives the joint distribution of

N and Z .

Theorem 5.3 Let Xi ∼ exp(λi), 1 ≤ i ≤ k, be independent and let N and Z be as

defined by Equations 5.6 and 5.5. Then

P(N = i, Z > z) =
λi

λ
e−λz, z ≥ 0, 1 ≤ i ≤ k,

where

λ =

k
∑

i=1

λi.

Proof: For a fixed i ∈ {1, 2, · · · , k} and z ≥ 0, we have

P(N = i, Z > z) = P(Xj > Xi > z, j 6= i, 1 ≤ j ≤ k)

=

∫ ∞

0

P(Xj > Xi > z, j 6= i, 1 ≤ j ≤ k|Xi = x)λie
−λixdx
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=

∫ ∞

z

P(Xj > x, j 6= i, 1 ≤ j ≤ k)λie
−λixdx

=

∫ ∞

z

k
∏

j=1,j 6=i

e−λjxλie
−λixdx

= λi

∫ ∞

z

e−λxdx

=
λi

λ
e−λz

as desired.

An important implication of the above theorem is that N and Z are independent

random variables. Also, the marginal distribution of Z is exponential with parameter

λ. Thus the minimum of k independent exponential random variables is an exponen-

tial random variable whose parameter is the sum of the parameters of the original

random variables. These properties will play a critical role in later development of

continuous time Markov chains in Chapter 6.

5.1.5 Strong Memoryless Property

In this section we generalize the memoryless property of Equation 5.3 from a fixed

t to a random t. We call this the strong memoryless property. The precise result is

given in the next Theorem.

Theorem 5.4 Let X ∼ exp(λ) and T be another non-negative random variable

that is independent of X . Then

P(X > s+ T |X > T ) = e−λs, s ≥ 0.

Proof: We have

P(X > s+ T,X > T ) =

∫ ∞

0

P(X > s+ T,X > T |T = t)dFT (t)

=

∫ ∞

0

P(X > s+ t,X > t)dFT (t)

=

∫ ∞

0

e−λ(s+t)dFT (t)

= e−λs

∫ ∞

0

e−λtdFT (t)

= e−λs
P(X > T ).

Then

P(X > s+ T |X > T ) =
P(X > s+ T,X > T )

P(X > T )
= e−λs,

as desired.
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Another way of interpreting the strong memoryless property is that, givenX > T ,

X − T is an exp(λ) random variable. Indeed it is possible to prove a multivariate

extension of this property as follows. Let Xi ∼ exp(λi), 1 ≤ i ≤ n, be independent

and let T be a non-negative random variable that is independent of them. Then

P(Xi > si + T, 1 ≤ i ≤ n|Xi > T, 1 ≤ i ≤ n) =

n
∏

i=1

e−λisi , si ≥ 0. (5.7)

A simple application of this property is given in the following example.

Example 5.2 Parallel System. Consider a system of n components in parallel, i.e.,

the system functions as long as at least one of the n component functions. Let Xi be

the lifetime of component i and assume that Xi ∼ exp(λ) are iid random variables.

Then the lifetime of the system is given by

Z = max{X1, X2, · · · , Xn}.
Compute E(Z).

One can solve this problem by first computing the cdf of Z as follows:

P(Z ≤ z) = P(Xi ≤ z, 1 ≤ i ≤ n) =
(

1 − e−λz
)n
,

and then computing its expected value. Here we show an alternate method using the

properties of the exponential distributions. Let Zk be the time of the k-th failure,

1 ≤ k ≤ n. Thus

Z1 = min{X1, X2, · · · , Xn} ∼ exp(nλ),

Zn = max{X1, X2, · · · , Xn}.
Now, at time Z1, one component fails, and the remaining n− 1 components survive.

Due to Equation 5.7, the remaining lifetimes of the surviving components are iid

exp(λ) random variables. Hence the time until the next failure, namely Z2 − Z1,

equals the minimum of the n− 1 iid exp(λ) random variables. Hence

Z2 − Z1 ∼ exp((n− 1)λ).

Proceeding in this way we see that

Zk+1 − Zk ∼ exp((n− k)λ), 1 ≤ k ≤ n− 1.

Thus, writing Zn =
∑n−1

k=0(Zk+1 − Zk), we get

E(Z) = E(Zn) =

n−1
∑

k=0

E(Zk+1 − Zk) =

n−1
∑

k=0

1

(n− k)λ
=

n
∑

k=1

1

kλ
.

The above equation is an example of the law of diminishing returns. A system

of one component (with exp(λ) lifetime) has an expected lifetime of 1/λ. A sys-

tem of two independent exp(λ) components in parallel has an expected lifetime of

1/λ+1/(2λ) = 1.5/λ. Thus doubling the number of components increases the mean
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lifetime by only 50%. One reason behind this diminishing return is that all compo-

nents are subject to failure, even though only one is needed for the system to function.

We say that the system is operating with “warm standbys.” Another way is to operate

the system with only one component and (n − 1) spares. When the working item

fails, replace it with a spare item. Since the spares do not fail while they are not in

use, they are said to be “cold standbys.” In this case the expected lifetime of the sys-

tem is n/λ. Obviously cold standby strategy is more efficient system than the warm

standby strategy. However, there are cases (in life-critical systems) where we cannot

use the cold standby strategy since the process of replacing the failed component by

a new one will interrupt the system operation.

Example 5.3 System A has two components in parallel, with iid exp(λ) lifetimes.

System B has a single component with exp(µ) lifetime, independent of system A.

What is the probability that system A fails before system B?

Let Zi be time of ith failure in system A. System A fails at time Z2. From Exam-

ple 5.2, we have Z1 ∼ exp(2λ) and Z2 − Z1 ∼ exp(λ). Let X ∼ exp(µ) be the

lifetime of the component in system B. Then

P(System A fails before System B) =

= P(Z1 < X)P(Z2 − Z1 < X − Z1|X > Z1)

= P(exp(2λ) < exp(µ))P(exp(λ) < exp(µ))

=
2λ

2λ+ µ
· λ

λ+ µ
.

5.1.6 Sum of iid Exponentials

Let {Xi, 1 ≤ i ≤ n} be iid random variables, representing the lifetimes of n compo-

nents. Suppose we start by putting component 1 in use, and when it fails, replace it

with component 2, and so on until all components fail. The replacements are instan-

taneous. The lifetime of the system is thus given by

Z = X1 +X2 + · · · +Xn.

The next theorem gives the pdf of Z if the lifetimes are iid exp(λ) random variables.

Theorem 5.5 Suppose {Xi, 1 ≤ i ≤ n} are iid exp(λ) random variables. Then Z
is an Erlang (or Gamma) (n, λ) random variable (denoted as Erl(n, λ)), with density

fZ(z) =

{

0 if z < 0

λe−λz (λz)n−1

n! if z ≥ 0,

and cdf

FZ(z) =

{

0 if z < 0

1 − e−λz
∑n−1

r=0
(λz)r

r! if z ≥ 0.
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Proof: We compute the LST of Z as follows:

E(e−sZ) = E(e−s(X1+X+2+···+Xn))

= E(e−sX1)E(e−sX2) · · ·E(e−sXn)

=

(

λ

s+ λ

)n

.

The result follows by taking the inverse LST from the table in Appendix F.

Example 5.4 Suppose the times between consecutive births at a maternity ward

in a hospital are iid exponential random variables with mean 1 day. What is the

probability that the 10th birth in a calendar year takes place after Jan 15?

Note that it does not matter when the last birth in the previous year took place,

since, due to strong memoryless property, the time until the first birth into the new

year is exponentially distributed. Thus Z , the time of the tenth birth is a sum of 10

iid exp(1) random variables. Therefore the required probability is given by

P(Z > 15) =
9
∑

r=0

e−15 15r

r!
= 0.1185.

We shall see later that the stochastic process of births is a Poisson process.

5.1.7 Sum of Distinct Exponentials

In the previous subsection we computed the distribution of the sum of independent

and identically distributed exponential random variables. In the next theorem we

study the sum of independent but distinct exponential random variables.

Theorem 5.6 Let Xi ∼ exp(λi), 1 ≤ i ≤ n, be independent random variables.

Assume that all the λi’s are distinct. Then the pdf of

Z = X1 +X2 + · · · +Xn

is given by

fZ(z) =

n
∑

i=1

αiλie
−λiz,

where

αi =

n
∏

j=1,j 6=i

λj

λj − λi
, 1 ≤ i ≤ n.

Proof: The LST of Z is given by

E(e−sZ) = E(e−s(X1+X+2+···+Xn))

= E(e−sX1)E(e−sX2) · · ·E(e−sXn)

=

n
∏

i=1

λi

s+ λi
.
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The result follows by using partial fraction expansion (see Appendix D) to compute

the inverse LST.

5.1.8 Random Sums of iid Exponentials

In this section we study the distribution of a random sum of iid exp(λ) random

variables. The main result is given in the next theorem.

Theorem 5.7 Let {Xi, i ≥ 1} be a sequence of iid exp(λ) random variables and

N be a G(p) random variable (i.e., geometric with parameter p), independent of the

X’s. Then the random sum

Z =

N
∑

i=1

Xi

is an exp(λp) random variable.

Proof: We have

E(e−sZ |N = n) =

(

λ

s+ λ

)n

.

Hence we get

E(e−sZ) =
∞
∑

n=1

E(e−sZ |N = n)P(N = n)

=

∞
∑

n=1

(

λ

s+ λ

)n

(1 − p)n−1p

=
λp

s+ λ

∞
∑

n=0

(

λ(1 − p)

s+ λ

)n

=
λp

s+ λ
· 1

1 − λ(1 − p)/(s+ λ)

=
λp

s+ λp
.

Hence, from Equation 5.2, Z must be an exp(λp) random variable.

Example 5.5 A machine is subject to a series of randomly occurring shocks. The

times between two consecutive shocks are iid exponential random variables with

common mean of 10 hours. Each shock results in breaking the machine (if it is not

already broken) with probability .3. Compute the distribution of the lifetime of the

machine.

Suppose the N th shock breaks the machine. Then N is G(.3) random variable.

That is

P(N = k) = (.7)k−1(.3), k ≥ 1.
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Let Xi be the time between the (i− 1) and ith shock. We know that {Xi, i ≥ 1} is a

sequence of iid exp(.1) random variables. The lifetime of the machine is given by

Z =

N
∑

i=1

Xi.

Hence from Theorem 5.7, we see that Z ∼ exp(.03). Thus the lifetime is exponen-

tially distributed with mean 1/.03 = 33.33 hours.

5.2 Poisson Process: Definitions

A Poisson process is frequently used as a model for counting events occurring one at

a time, such as the number of births in a hospital, the number of arrivals at a service

system, the number of calls made, the number of accidents on a given section of a

road, etc. In this section we give three equivalent definitions of a Poisson process and

study its basic properties.

Let {Xn, n ≥ 1} be a sequence of non-negative random variables representing

inter-event times. Define

S0 = 0, Sn = X1 +X2 + · · · +Xn, n ≥ 1.

Then Sn is the time of occurrence of the nth event, n ≥ 1. Now, for t ≥ 0, define

N(t) = max{n ≥ 0 : Sn ≤ t}.
Thus N(t) is the number of events that take place over the time interval (0, t], and

{N(t), t ≥ 0} is called a counting process generated by {Xn, n ≥ 1}. Poisson

process is a special case of a counting process as defined below.

Definition 5.3 Poisson Process. The counting process {N(t), t ≥ 0} generated by

{Xn, n ≥ 1} is called a Poisson process with parameter (or rate) λ if {Xn, n ≥ 1}
is a sequence of iid exp(λ) random variables.

Thus the number of births in the maternity ward of Example 5.4 is a Poisson

process. We denote a Poisson process with parameter (or rate) λ by the shorthand

notation PP(λ). A typical sample path of a PP(λ) is shown in Figure 5.3. Note that

N(0) = 0 and the process jumps up by one at t = Sn, n ≥ 1. Thus it has piece-

wise constant, right-continuous sample paths. The next theorem gives the transient

distribution of a Poisson process.

Theorem 5.8 Transient Distribution. Let {N(t), t ≥ 0} be a PP(λ). Then

P(N(t) = k) = e−λt (λt)
k

k!
, k = 0, 1, 2, · · · .

Proof: We have

N(t) ≥ k ⇔ k or more events in (0, t]
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S4

t

S3S2S1S0

1

2

3

4
N(t)

Figure 5.3 A typical sample path of a Poisson process.

⇔ kth event takes place at or before t

⇔ Sk ≤ t.

Hence

P(N(t) ≥ k) = P(Sk ≤ t).

From Theorem 5.5, Sk ∼ Erl(k, λ) random variable. Hence,

P(N(t) = k) = P(N(t) ≥ k) − P(N(t) ≥ k + 1)

= P(Sk ≤ t) − P(Sk+1 ≤ t)

=

[

1 −
k−1
∑

r=0

e−λt (λt)r

r!

]

−
[

1 −
k
∑

r=0

e−λt (λt)
r

r!

]

= e−λt (λt)k

k!

as desired.

Theorem 5.8 says that, for a fixed t,N(t) is a Poisson random variable with param-

eter λt, denoted as P(λt). This provides one justification for calling {N(t), t ≥ 0} a

Poisson process.

Example 5.6 Arrivals at a Post Office. Suppose customers arrive at a post office

according to a PP with rate 10 per hour.

(i) Compute the distribution of the number of customers who use the post office

during an 8-hour day.

Let N(t) be the number of arrivals over (0, t]. We see that the arrival process is

PP(λ) with λ = 10 per hour. Hence

N(8) ∼ P(λ · 8) = P(80).

Thus

P(N(8) = k) = e−80 (80)k

k!
, k = 0, 1, 2, · · · .

(ii) Compute the expected number of customers who use the post office during an

8-hour day. Since N(8) ∼ P(80), the desired answer is given by E(N(8)) = 80.
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Next we compute the finite dimensional joint probability distributions of a Poisson

process. The above theorem does not help us there. We develop a crucial property of

a Poisson process that will help us do this. We start with a definition.

Definition 5.4 Shifted Poisson Process. Let {N(t), t ≥ 0} be a PP(λ), and define,

for a fixed s ≥ 0,

Ns(t) = N(t+ s) −N(s), t ≥ 0.

The process {Ns(t), t ≥ 0} is called a shifted Poisson process.

Theorem 5.9 Shifted Poisson Process. A shifted Poisson process {Ns(t), t ≥ 0}
is a PP(λ), and is independent of {N(u), 0 ≤ u ≤ s}.

Proof: It is clear from the definition of Ns(t) that it equals the number of events in

(s, s + t]. From Figure 5.4 we see that the first event after s occurs at time SN(s)+1

t

t
SN(s)+1SN(s)S1S0

Ns(t)
N(t)

exp(λ)

s

Figure 5.4 A shifted Poisson process.

and the last event at or before time s occurs at SN(s). We have

P(SN(s)+1 − s > y|N(s) = k, SN(s) = x,N(u) : 0 ≤ u ≤ s)

= P(Sk +Xk+1 − s > y|N(s) = k, Sk = x,N(u) : 0 ≤ u ≤ s)

= P(Xk+1 > s+ y − x|Xk+1 > s− x)

= e−λy

due to memoryless property of Xk+1. Thus the first event in the counting process

{Ns(t), t ≥ 0} takes place after an exp(λ) amount of time. The rest of the inter-

event times are iid exp(λ). Hence the result follows.

Next we introduce the concept of a stochastic process with stationary and inde-

pendent increments.

Definition 5.5 Stationary and Independent Increments. Let {X(t), t ≥ 0} be a

continuous-time real-valued stochastic process. For a given s, t ≥ 0,X(s+t)−X(s)
is called the increment over the interval (s, s + t]. {X(t), t ≥ 0} is said to have

stationary and independent increments if
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(i) the distribution of the increment over an interval (s, s+ t] is independent of s,

(ii) the increments over non-overlapping intervals are independent.

The next theorem states an important property of a Poisson process.

Theorem 5.10 Stationary and Independent Increments. A Poisson process has

stationary and independent increments.

Proof: Let {N(t), t ≥ 0} be a PP(λ). From Theorems 5.8 and 5.9 it follows that

P(N(t+ s) −N(s) = k) = e−λt (λt)
k

k!
, k = 0, 1, 2, · · · (5.8)

which is independent of s. Thus {N(t), t ≥ 0} has stationary increments.

Now suppose 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4 are fixed. Then N(t2) − N(t1) and

N(t4) − N(t3) are increments over non-overlapping intervals (t1, t2] and (t3, t4].
From Theorem 5.9 Nt3(t4 − t3) = N(t4) − N(t3) is independent of {N(u), 0 ≤
u ≤ t3}, and hence independent of N(t2)−N(t1). This proves the independence of

increments over non-overlapping intervals. This proves the theorem.

The above theorem helps us compute the finite dimensional joint probability dis-

tributions of a Poisson process, as shown in the next theorem.

Theorem 5.11 Finite Dimensional Distributions. Let {N(t), t ≥ 0} be a PP(λ)

and 0 ≤ t1 ≤ · · · ≤ tn be given real numbers and 0 ≤ k1 ≤ · · · ≤ kn be given

integers. Then

P(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn)

= e−λtn
(λt1)

k1

k1!
· (λ(t2 − t1))

k2−k1

(k2 − k1)!
· · · (λ(tn − tn−1))

kn−kn−1

(kn − kn−1)!
.

Proof:

P(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn)

= P(N(t1) = k1, N(t2) −N(t1)

= k2 − k1, · · · , N(tn) −N(tn−1) = kn − kn−1)

= P(N(t1) = k1)P(N(t2) −N(t1) = k2 − k1) · · ·P(N(tn) −N(tn−1)

= kn − kn−1)

(by independent increments property)

= e−λt1
(λt1)

k1

k1!
· e−λ(t2−t1) (λ(t2 − t1))

k2−k1

(k2 − k1)!

· · · e−λ(tn−tn−1)
(λ(tn − tn−1))

kn−kn−1

(kn − kn−1)!
,

where the last equation follows from Equation 5.8. Further simplification yields the

desired result.
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The independent increments property is very useful in computing probabilistic

quantities associated with a Poisson process as shown in the next two examples.

Example 5.7 Auto-Covariance Function. Let {N(t), t ≥ 0} be a PP(λ). Compute

its auto-covariance function, namely, Cov(N(s), N(s+ t)), for t ≥ 0, s ≥ 0.

We have

E(N(s)N(s+ t)) = E(N(s)(N(s+ t) −N(s) +N(s)))

= E(N(s)(N(s+ t) −N(s)) + E(N(s)2)

= E(N(s))E(N(s+ t) −N(s)) + E(N(s)2)

(by independent increments property)

= λs · λt+ (λs)2 + λs.

Hence,

Cov(N(s), N(s+ t)) = E(N(s)N(s+ t)) − E(N(s))E(N(s+ t))

= λs · λt+ (λs)2 + λs− λs(λ(s + t))

= λs.

The fact that the auto-covariance function is independent of t is a result of the sta-

tionarity of increments. In general we can write

Cov(N(s), N(t)) = λmin(s, t).

Example 5.8 Consider the post office of Example 5.6. What is the probability that

one customer arrives between 1:00pm and 1:06pm, and two customers arrive between

1:03pm and 1:12pm?

Using time homogeneity and hours as units of time, we write the required proba-

bility as P(N(0.1) = 1;N(0.2)−N(0.05) = 2). Using independence of increments

over non-overlapping intervals (0, 0.05], (0.05, 0.1], and (0.1, 0.2] we get

P(N(0.1) = 1;N(0.2)−N(0.05) = 2)

=

1
∑

k=0

P(N(0.05) = k,N(0.1) −N(0.05) = 1 − k,N(0.2) −N(0.1) = 1 + k)

=

1
∑

k=0

P(N(0.05) = k)P(N(0.1) −N(0.05) = 1 − k)P(N(0.2) −N(0.1) = 1 + k)

=

1
∑

k=0

e−.5 (0.5)k

k!
e−.5 (0.5)1−k

(1 − k)!
e−.1 (1)(1+k)

(1 + k)!
.

Numerical calculations yield the desired probability as 0.1015.

The next theorem states that the properties stated in Theorems 5.8 and 5.10 in fact

characterize a Poisson process.
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Theorem 5.12 Alternate Characterization 1. A stochastic process {N(t), t ≥ 0}
is a PP(λ) if and only if

(i) it has stationary and independent increments,

(ii) N(t) ∼ P(λt), for all t ≥ 0.

Proof: The “only if” part is contained in Theorems 5.8 and 5.10. Here we prove

the “if ” part. From (ii) it is clear that N(0) = 0 with probability 1. Also, since

N(s+ t) −N(s) is a P (λt) random variable, it is clear that almost all sample paths

of the process are piecewise constant with jumps of size 1. Let

S1 = inf{t ≥ 0 : N(t) = 1}.
Now, by an argument similar to that in Theorem 5.8,

P(S1 > t) = P(N(t) = 0) = e−λt.

Hence S1 ∼ exp(λ). Similarly, we can define

Sk = inf{t ≥ 0 : N(t) = k},
and, using stationary and independent increments, show that {Xk = Sk−Sk−1, k ≥
1} (with S0 = 0) is a sequence of iid exp(λ) random variables. Hence {N(t), t ≥ 0}
is a PP(λ). This completes the proof.

Since the conditions given in the above theorem are necessary and sufficient, they

can be taken as an alternate definition of a Poisson process. Finally, we give yet

another characterization of a Poisson process. We need the following definition.

Definition 5.6 o(h) Functions. A function f : R → R is said to be an o(h) function

(written f(h) = o(h) and read “f is little o of h”) if

lim
h→0

f(h)

h
= 0.

We illustrate the above definition with an example.

Example 5.9

(i) Let f(x) =
∑∞

i=0 aix
i be an absolutely convergent series with radius of con-

vergenceR > 0. f is an o(h) function if and only if a0 = a1 = 0. This follows

since

lim
h→0

1

h

∞
∑

i=2

aih
i = lim

h→0

∞
∑

i=2

aih
i = 0.

(ii) The function f(x) = eλx − 1 − λx is o(h).

(iii) If f and g are o(h), then so is f + g.

We use this definition to give the second alternate characterization of a Poisson pro-

cess in the next theorem.
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Theorem 5.13 Alternate Characterization 2. A counting process {N(t), t ≥ 0}
is a PP(λ) if and only if

(i) it has stationary and independent increments,

(ii)

P(N(0) = 0) = 1,

P(N(h) = 0) = 1 − λh+ o(h),

P(N(h) = 1) = λh+ o(h),

P(N(h) = j) = o(h), j ≥ 2.

Proof: Suppose {N(t), t ≥ 0} is a PP(λ). Thus it satisfies conditions (i) and (ii)
of Theorem 5.12. Condition (i) above is the same as condition (i) of Theorem 5.12.

We shall show that condition (ii) of Theorem 5.12 implies condition (ii) above. We

have N(0) ∼ P(0) = 0 with probability 1. Furthermore,

lim
h→0

1

h
(P(N(h) = 0) − 1 + λh) = lim

h→0

1

h

(

e−λh − 1 + λh
)

= 0.

Hence P(N(h) = 0) − 1 + λh is an o(h) function. Thus we can write

P(N(h) = 0) = 1 − λh+ o(h).

The other statements in (ii) can be proved similarly. This proves that conditions (i)
and (ii) of Theorem 5.12 imply the conditions (i) and (ii) of this theorem.

Next we assume conditions (i) and (ii) above, and derive condition (ii) of Theo-

rem 5.12.. Now, let

pk(t) = P(N(t) = k), k ≥ 0.

Then, for k ≥ 1, we get

pk(t+ h) = P(N(t+ h) = k)

=

k
∑

j=0

P(N(t+ h) = k|N(t) = j)P(N(t) = j)

=
k
∑

j=0

P(N(t+ h) −N(t) = k − j|N(t) = j)pj(t)

=

k
∑

j=0

P(N(t+ h) −N(t) = k − j)pj(t)

(by independence of increments)

=

k
∑

j=0

P(N(h) −N(0) = k − j)pj(t)

(by stationarity of increments)

=

k
∑

j=0

P(N(h) = k − j)pj(t) ( since N(0) = 0)
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= P(N(h) = 0)pk(t) + P(N(h) = 1)pk−1(t) +

k
∑

j=2

P(N(h) = j)pk−j(t)

= (1 − λh+ o(h))pk(t) + (λh+ o(h))pk−1(t) +
k
∑

j=2

o(h)pk−j(t)

= (1 − λh)pk(t) + λhpk−1(t) +

k
∑

j=0

o(h)pk−j(t).

Rearranging and dividing by h, we get

1

h
(pk(t+ h) − pk(t)) = −λpk(t) + λpk−1(t) +

o(h)

h

k
∑

j=0

pk−j(t).

Letting h→ 0, we get

p′k(t) =
dpk(t)

dt
= −λpk(t) + λpk−1(t). (5.9)

Proceeding in a similar fashion for the case k = 0 we get

p′0(t) = −λp0(t). (5.10)

Using the initial condition p0(0) = 1, the above equation admits the following solu-

tion:

p0(t) = e−λt, t ≥ 0.

Using the initial condition pk(0) = 0 for k ≥ 1, we can solve Equation 5.9 recur-

sively to get

pk(t) = e−λt (λt)k

k!
, t ≥ 0, (5.11)

which implies that N(t) ∼ P (λt). Thus conditions (i) and (ii) of Theorem 5.13

imply conditions (i) and (ii) of Theorem 5.12. This proves the result.

Since the conditions of the above theorem are necessary and sufficient, they can

be taken as yet another definition of a Poisson process.

5.3 Event Times in a Poisson Process

In this section we study the joint distribution of the event times S1, S2, · · · , Sn, given

that N(t) = n. We begin with some preliminaries about order statistics of uniformly

distributed random variables. (See Appendix C for more details.)

Let U1, U2, · · · , Un be n iid random variables that are uniformly distributed over

[0, t], where t > 0 is a fixed number. Let Ũ1, Ũ2, · · · , Ũn be the order statistics of

U1, U2, · · · , Un, i.e., a permutation of U1, U2, · · · , Un such that

Ũ1 ≤ Ũ2 ≤ · · · ≤ Ũn.
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Thus

Ũ1 = min{U1, U2, · · · , Un},
Ũn = max{U1, U2, · · · , Un}.

Let f(t1, t2, · · · , tn) be the joint density of Ũ1, Ũ2, · · · , Ũn. Then one can show that

(see Appendix C)

f(t1, t2, · · · , tn) =

{

n!
tn if 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t.
0 otherwise.

(5.12)

From the above equation it is possible to derive the marginal density fk(u) of Ũk

(1 ≤ k ≤ n) as

fk(u) =
k

t

(

n

k

)

(u

t

)k−1 (

1 − u

t

)n−k

, 0 ≤ u ≤ t, (5.13)

and the expected value of Ũk as

E(Ũk) =
kt

n+ 1
. (5.14)

The main result about the joint distribution of S1, S2, · · · , Sn is given in the next

theorem.

Theorem 5.14 Campbell’s Theorem. Let Sn be the nth event time in a PP(λ)

{N(t), t ≥ 0}. Given N(t) = n,

(S1, S2, · · · , Sn) ∼ (Ũ1, Ũ2, · · · , Ũn).

Proof: Let 0 = t0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t. We have

P(Si ∈ (ti + dti); 1 ≤ i ≤ n|N(t) = n)

=
P(Si ∈ (ti + dti); 1 ≤ i ≤ n, ;N(t) = n)

P(N(t) = n)

=
P(Si ∈ (ti + dti); 1 ≤ i ≤ n, ;Sn+1 > t)

P(N(t) = n)

=
P(Xi ∈ (ti − ti−1 + dti); 1 ≤ i ≤ n, ;Xn+1 > t− tn)

P(N(t) = n)

=

(
∏n

i=1 λe
−λ(ti−ti−1)dti

)

e−λ(t−tn)

e−λt (λt)n

n!

=
e−λtλn

e−λt (λt)n

n!

· dt1dt2 · · · dtn.

Hence the conditional joint density of (S1, S2, · · · , Sn), given N(t) = n, is given

by

f(t1, t2, · · · , tn) =

{

n!
tn if 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ t
0 otherwise,
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which is the joint density of (Ũ1, Ũ2, · · · , Ũn). This proves the theorem.

Note the curious fact that the joint distribution is independent of λ! This theorem

can be interpreted as follows: SupposeN(t) = n is given. Let (U1, U2, · · · , Un) be n
iid random variables uniformly distributed over [0, t]. The smallest among them can

be thought of as S1, the second smallest as S2, and so on, with the largest as Sn. We

give several applications of the above theorem.

Example 5.10

(i) Let {N(t), t ≥ 0} be a PP(λ), and let Sn be the time of the nth event. Compute

P(S1 > s|N(t) = n). Assume n ≥ 1 is a given integer.

Theorem 5.14 implies that, given N(t) = n, S1 ∼ min{U1, U2, · · · , Un}. From

Equation 5.13 we get

f1(u) =
n

t

(

1 − u

t

)n−1

, 0 ≤ u ≤ t.

Hence

P(S1 > s|N(t) = n) =

∫ t

s

f1(u)du =
(

1 − s

t

)n

, 0 ≤ s ≤ t.

(ii) Compute E(Sk|N(t) = n).
From Theorem 5.14 and Equation 5.14, for 1 ≤ k ≤ n, we get

E(Sk|N(t) = n) = E(Ũk) =
kt

n+ 1
.

For k > n, using memoryless property of the exponentials, we get

E(Sk|N(t) = n) = t+
k − n

λ
.

Example 5.11 Suppose passengers arrive at a bus depot according to a PP(λ). Buses

leave the depot every T time units. Assume that the bus capacity is sufficiently large

so that when a bus leaves there are no more passengers left at the depot. What is the

average waiting time of the passengers?

Let {N(t), t ≥ 0} be a PP(λ). Suppose a bus has just left the depot at time 0,

so the bus depot is empty at time 0. Consider the time interval (0, T ]. Number of

passengers waiting for the bus at time T is N(T ).

Now suppose N(T ) = n > 0. Let S1, S2, · · · , Sn be the arrival times of these n
passengers. The waiting time of the ith passenger isWi = T −Si. Hence the average

waiting time is

W =
1

n

n
∑

i=1

Wi =
1

n

n
∑

i=1

(T − Si) = T − 1

n

n
∑

i=1

Si.

Now, using Theorem 5.14, we get

n
∑

i=1

Si ∼
n
∑

i=1

Ũi =

n
∑

i=1

Ui,
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where Ui’s are iid uniformly distributed uniformly over [0, T ]. Hence

E(W |N(T ) = n) = T − E(
1

n

n
∑

i=1

Ui) = T − T/2 = T/2.

Hence

E(W̄ ) =
T

2
.

Thus the average waiting time is T/2, which makes intuitive sense. This is one more

manifestation of the fact that the events in a Poisson process occur in a uniform,

time-independent fashion.

Example 5.12 Customers arrive at a service station according to a PP(λ). Each

customer pays a service charge of $1 when he enters the system. Suppose the service

station manager discounts the revenues at a continuous discount factor α > 0 so that

a dollar earned at time t has a present value of e−αt at time 0. Compute the expected

present value of all the service charges earned until time t.

Let N(t) be the number of arrivals over (0, t]. We are given that {N(t), t ≥ 0} is

a PP(λ). Let C(t) be the total discounted service charges accumulated over (0, t]. It

is given by

C(t) =

N(t)
∑

i=1

e−αSi ,

where Si is the arrival time of the ith customer. We have

E(C(t)|N(t) = n) = E

(

n
∑

i=1

e−αSi | N(t) = n

)

= E

(

n
∑

i=1

e−αŨi

)

( from Theorem 5.14)

= E

(

n
∑

i=1

e−αUi

)

= nE(e−αU ),

where U is uniformly distributed over [0, t]. We have

E(e−αU ) =
1

t

∫ t

0

e−αudu =
1 − e−αt

αt
.

Hence

E(C(t)|N(t)) = N(t)
1 − e−αt

αt
.

This yields

E(C(t)) = E(N(t))
1 − e−αt

αt
=
λ

α
(1 − e−αt).
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The expected present value of all future revenue is

lim
t→∞

E(C(t)) =
λ

α
.

Note that this is a finite quantity although the total revenue is infinite.

5.4 Superposition and Splitting of Poisson Processes

The superposition of two counting processes is a counting process that counts events

in both the counting processes. Splitting of a counting process is the operation of

generating two counting processes by classifying the events in the original counting

process as belonging to one or the other counting process. We first study the super-

position and then the splitting of Poisson processes.

5.4.1 Superposition

Superposition occurs naturally when two Poisson processes merge to generate a com-

bined process. For example, a telephone exchange may get domestic calls and inter-

national calls, each forming a Poisson process. Thus the process that counts both

calls is the superposition of the two processes. Figure 5.5 illustrates such a superpo-

sition. In this section we study the superposition of two or more independent Poisson

processes.

Let {Ni(t), t ≥ 0}, (i = 1, 2, · · · r), be independent Poisson processes. Define

N(t) = N1(t) +N2(t) + · · · +Nr(t), t ≥ 0.

The process {N(t), t ≥ 0} is called the superposition of the r processes {Ni(t), t ≥
0}, (i = 1, 2, · · · r). The next theorem describes the superposed process.

Theorem 5.15 Superposition of Poisson Processes. Let {Ni(t), t ≥ 0}, (i =
1, 2, · · · r), be independent Poisson processes. Let λi be the parameter of the ith
process. Define

N(t) = N1(t) +N2(t) + · · · +Nr(t), t ≥ 0.

{N(t), t ≥ 0} is a Poisson process with parameter λ, where

λ = λ1 + λ2 + · · · + λr.

Proof: Since the r independent processes {Ni(t), t ≥ 0}, (i = 1, 2, · · · , r), have

stationary and independent increments, it follows that {N(t), t ≥ 0} inherits this

property. Thus in order to show that {N(t), t ≥ 0} is a PP(λ) it suffices to show that

N(t) is a P (λt) random variable. (See Theorem 5.12.) For a fixed t, we know that

{Ni(t) ∼ P (λit), 1 ≤ i ≤ r} are independent Poisson random variables. Hence

their sum,N(t), is a Poisson random variable with parameter λt = (λ1 +λ2 + · · ·+
λr)t. This proves the Theorem.
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N1(t)

t

N2(t)

t

N(t) = N1(t) + N2(t) 

t

Figure 5.5 Superposition of two Poisson processes.

We illustrate the above result by an example below.

Example 5.13 Jobs submitted for execution on a central computer are divided into

four priority classes, indexed 1,2,3, and 4. The inter-arrival times for the jobs of class

i are exponential random variables with meanmi minutes, with m1 = 10, m2 = 15,

m3 = 30, and m4 = 60. Assume all arrival streams behave independently of each

other. Let N(t) be the total number of jobs of all classes that arrive during (0, t].
Characterize the stochastic process {N(t), t ≥ 0}.

Let Ni(t) be the number of jobs of call i that arrive during (0, t]. Due to the

iid exponential inter-arrival times, we know that {Ni(t), t ≥ 0} is a PP(λi) where

λi = 1/mi, and the four arrival processes are independent. Now, we have

N(t) = N1(t) +N2(t) +N3(t) +N4(t).

Hence, from Theorem 5.15, it follows that {N(t), t ≥ 0} is a PP(λ) where, using the

time units of hours,

λ = λ1 + λ2 + λ3 + λ4

= 60/m1 + 60/m2 + 60/m3 + 60/m4

= 6 + 4 + 2 + 1 = 13 per hour.

We now study how events from the individual processes {Ni(t), t ≥ 0}, (i =
1, 2, · · · , r), are interleaved in the superposed process {N(t), t ≥ 0}. Let Zn = i
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if the nth event in the superposed process belongs to the ith process. Thus, for

the sample path shown in Figure 5.5, we have Z1 = 1, Z2 = 2, Z3 = 2, Z4 =
1, Z5 = 2, Z6 = 1, · · ·. The next theorem gives an interesting property of the se-

quence {Zn, n ≥ 1}.

Theorem 5.16 {Zn, n ≥ 1} is a sequence of iid random variables with

P(Zn = i) =
λi

λ
, 1 ≤ i ≤ r.

Proof: Let Si be the time of occurrence of the first event in {Ni(t), t ≥ 0}. Then

Si ∼ exp(λi). Also, since the r processes are independent, {Si, 1 ≤ i ≤ r} are

independent. Hence

P(Zn = i) = P(Si = min{Sj, 1 ≤ j ≤ r}) =
λi

λ
,

where we have used the marginal distribution of N in Theorem 5.3. Now suppose

the first event in the {N(t), t ≥ 0} process takes place at time s. Then, from Theo-

rem 5.9 it follows that the shifted processes {Ni(t+ s), t ≥ 0}, (i = 1, 2, · · · r), are

independent Poisson processes with parameters λi, respectively. Hence Z2, the type

of the next event in {N(t), t ≥ 0}, has the same distribution as Z1, and is indepen-

dent of it. Proceeding in the fashion we see that Zn has the same distribution as Z1

and is independent of {Zk, 1 ≤ k ≤ n− 1}. This proves the theorem.

This is yet another indication that the events in a PP take place uniformly in time.

That is why the probability of an event being from the ith process is proportional to

the rate of the ith process, and is independent of when the event occurs.

Example 5.14 Customers arriving at a bank can be classified into three categories.

Customers of category 1 deposit money, those of category 2 withdraw money, and

those of category 3 do both. The deposit transaction takes 3 minutes, the withdrawals

take 4 minutes, and the combined transaction takes 6 minutes. Customers of category

i arrive according to PP(λi) with λ1 = 20, λ2 = 15, and λ3 = 10 per hour. What

is the average transaction time of a typical customer in the bank? Are the successive

transaction times iid?

Let Z be the category of a typical customer. From Theorem 5.16 we get

P(Z = 1) =
20

45
, P(Z = 2) =

15

45
, P(Z = 3) =

10

45
.

Hence the average transaction time of a typical customer is

3 · 20

45
+ 4 · 15

45
+ 6 · 10

45
= 4 minutes.

The successive transaction times are iid since the categories of the successive cus-

tomers are iid random variables, from Theorem 5.16.
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5.4.2 Splitting

Splitting is the opposite of superposition: we start with a single Poisson process and

“split” it to create two or more counting processes. For example, the original process

may count the number of arrivals at a store, while the split processes might count

the male and female arrivals separately. The nature of these counting processes will

depend on the rule used to split the original process. We use a special rule called the

Bernoulli splitting, described below.

Let {N(t), t ≥ 0} be a Poisson process. Suppose each event is classified as a type

i event (1 ≤ i ≤ r) with probability pi, where {pi, 1 ≤ i ≤ r} are given numbers

such that

pi > 0, (1 ≤ i ≤ r),
r
∑

i=1

pi = 1.

The successive classifications are independent. This classification mechanism is

called the Bernoulli splitting mechanism. Now let Ni(t) be the number of events

during (0, t] that get classified as type i events. We say that the original process

{N(t), t ≥ 0} is “split” into r processes {Ni(t), t ≥ 0}, (1 ≤ i ≤ r). Clearly,

N(t) = N1(t) +N2(t) + · · · +Nr(t), t ≥ 0,

so {N(t), t ≥ 0} is a superposition of {Ni(t), t ≥ 0}, (1 ≤ i ≤ r).

The next theorem gives the probabilistic structure of the split processes.

Theorem 5.17 Bernoulli Splitting. Let {N(t), t ≥ 0} be a PP(λ) and let

{Ni(t), t ≥ 0}, (1 ≤ i ≤ r), be generated by the Bernoulli splitting mechanism

using splitting probabilities [p1, p2, · · · , pr]. Then {Ni(t), t ≥ 0} is a PP(λpi),
(1 ≤ i ≤ r), and the r processes are independent.

Proof: We shall first show that {Ni(t), t ≥ 0} is a PP(λpi) for a given i ∈
{1, 2, · · · ,r}. There are many ways of showing this. We shall show it by using Theo-

rem 5.7. Let {Xn, n ≥ 1} be the iid exp(λ) inter-event times in {N(t), t ≥ 0}, and

{Yn, n ≥ 1} be the inter-event times in the {Ni(t), t ≥ 0} process. Let {Rn, n ≥ 1}
be a sequence of iid be geometric random variables with parameter pi, i.e.,

P(Rn = i) = (1 − pi)
k−1pi, k ≥ 1.

Let T0 = 0 and Tn = R1+R2+· · ·+Rn, n ≥ 1. The Bernoulli splitting mechanism

implies that

Yn =

Tn
∑

i=Tn−1+1

Xi, n ≥ 1.

Thus {Yn, n ≥ 1} is a sequence of iid random variables. Now Y1 is a geometric sum

of iid exponential random variables. Hence, from Theorem 5.7, Y1 is an exp(λpi)
random variable. Thus the inter-event times in {Ni(t), t ≥ 0} are iid exp(λpi) ran-

dom variables. Hence {Ni(t), t ≥ 0} is a PP(λpi).
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Next we show independence of the r processes. We treat the case r = 2, the

general case follows similarly. To show that {N1(t), t ≥ 0} and {N2(t), t ≥ 0} are

independent, it suffices to show that any increment in {N1(t), t ≥ 0} is independent

of any increment in {N2(t), t ≥ 0}. This reduces to showing

P(N1(t) = i, N2(t) = j) = P(N1(t) = i)P(N2(t) = j),

for all i, j ≥ 0. We have

P(N1(t) = i, N2(t) = j)

= P(N1(t) = i, N2(t) = j|N(t) = i+ j)P(N(t) = i+ j)

=

(

i+ j

i

)

pi
1p

j
2e

−λt (λt)i+j

(i+ j)!

= e−λp1t (λp1t)
i

i!
e−λp2t (λp2t)

j

j!

= P(N1(t) = i)P(N2(t) = j).

This proves the theorem.

It should be noted that the independence of the r split processes is rather surpris-

ing, since they all arise out of the same original process. This theorem makes the

Bernoulli splitting mechanism very attractive in applications. We illustrate with two

examples.

Example 5.15 Geiger Counter. A geiger counter is a device to count the radioac-

tive particles emitted by a source. Suppose the particles arrive at the counter accord-

ing to a PP(λ) with λ = 1000 per second. The counter fails to count a particle with

probability .1, independent of everything else. Suppose the counter registers four par-

ticles in .01 seconds. What is the probability that at least six particles have actually

arrived at the counter during this time period?

Let N(t) be the number of particles that arrive at the counter during (0, t], N1(t)
the number of particles that are registered by the counter during (0, t], and N2(t) the

number of particles that go unregistered by the counter during (0, t]. Then {N(t), t ≥
0} is a PP(1000), and Theorem 5.17 implies that {N1(t), t ≥ 0} is a PP(900), and

it is independent of {N2(t), t ≥ 0}, which is a PP(100). We are asked to compute

P(N(.01) ≥ 6|N1(.01) = 4). We have

P(N(.01) ≥ 6|N1(.01) = 4) = P(N2(.01) ≥ 2|N1(.01) = 4)

= P(N2(.01) ≥ 2) = 0.264.

Here we have used independence to get the second equality, and used N2(.01) ∼
P(1) to compute the numerical answer.

Example 5.16 Turnpike Traffic. Consider the toll highway from Orlando to Mi-

ami, with n interchanges where the cars can enter and exit, interchange 1 is at

the start in Orlando, and n is at the end in Miami. Suppose the cars going to Mi-

ami enter at interchange i according to a PP(λi) and travel at the same speed,



SUPERPOSITION AND SPLITTING OF POISSON PROCESSES 171

(1 ≤ i ≤ n − 1). A car entering at interchange i will exit at interchange j with

probability pij , 1 ≤ i < j ≤ n, independent of each other. Let Ni(t) be the number

of cars that cross a traffic counter between interchange i and i+1 during (0, t]. Show

that {Ni(t), t ≥ 0} is a PP and compute its rate.

Let Nki(t) be the number of cars that enter at interchange k ≤ i and cross the

traffic counter between interchange i and i + 1 during (0, t]. Assuming Bernoulli

splitting, we see that

{Nki(t), t ≥ 0} ∼ PP(λk

∑

j>i

pkj).

Now,

Ni(t) =
i
∑

k=1

Nki(t).

Theorem 5.17 implies that {Nki(t), t ≥ 0}, 1 ≤ k ≤ i, are independent Poisson

processes. Hence, from Theorem 5.15, we have

{Ni(t), t ≥ 0} ∼ PP(

i
∑

k=1

λk

∑

j>i

pkj).

Are {Ni(t), t ≥ 0}, 1 ≤ i ≤ n− 1, independent?

Now we consider the non-homogeneous Bernoulli splitting. Let p : [0,∞) →
[0, 1] be a given function. Let {N(t), t ≥ 0} be a PP(λ). Under the non-homogeneous

Bernoulli splitting mechanism, an event occurring at time s is registered with prob-

ability p(s), independent of everything else. Let R(t) be the number of registered

events during (0,∞]. The next theorem shows that R(t) is a Poisson random vari-

able.

Theorem 5.18 Let p be an integrable function over [0, t]. Then R(t) is a Poisson

random variable with parameter

λ

∫ t

0

p(s)ds.

Proof: Let N(t) = m be given, and let Si (1 ≤ i ≤ m) be the occurrence time of

the ith event in {N(t), t ≥ 0}. Then we can write

R(t) =

m
∑

i=1

I(Si),

where, given (S1, S2, · · ·Sm), {I(Si), 1 ≤ i ≤ m} are independent random vari-

ables with distribution

I(Si) =

{

1 with probability p(Si)
0 with probability 1 − p(Si).
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Using Theorem 5.14 and the notation there, we get

R(t) =

m
∑

i=1

I(Si)

∼
m
∑

i=1

I(Ũi)

=

m
∑

i=1

I(Ui).

However, {I(Ui), 1 ≤ i ≤ m} are iid Ber(α) random variables with

α =
1

t

∫ t

0

p(s)ds.

Hence

P(R(t) = k|N(t) = m) =

(

m

k

)

αk(1 − α)m−k.

Hence

P(R(t) = k) =
∞
∑

m=0

P(R(t) = k|N(t) = m)P(N(t) = m)

=

∞
∑

m=k

(

m

k

)

αk(1 − α)m−ke−λt (λt)m

m!

= e−λtα
k

k!

∞
∑

m=k

(1 − α)m−k (λt)m

(m− k)!

= e−λt (λαt)
k

k!

∞
∑

m=k

(λ(1 − α)t)m−k

(m− k)!

= e−λt (λαt)
k

k!
eλ(1−α)t

= e−λαt (λαt)
k

k!
.

Thus R(t) is Poisson random variable with parameter

λαt = λ

∫ t

0

p(s)ds.

This proves the Theorem.

Note that although R(t) is a Poisson random variable for each t, and {R(t), t ≥
0} independent increments, but these increments are not stationary, and hence

{R(t), t ≥ 0} is not a Poisson process. We shall identify such a process as an non-

homogeneous Poisson process, and study it in the next section. An interesting appli-

cation of a non-homogeneous Bernoulli splitting is given in the next example.
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Example 5.17 Infinite Server Queue. Users arrive at a public library according to

a PP(λ). User i stays in the library for Ti amount of time and then departs. Assume

that {Ti, i ≥ 1} are iid non-negative random variables with common cdf G·) and

mean τ . Suppose the library opens at time zero, with zero patrons in it. Compute the

distribution of R(t), the number of users in the library at time t.

Let N(t) be the number of users who enter the library during (0, t]. If a user i
enters the library at time s ≤ t, then he or she will be in the library at time t with

probability

p(s) = P(Ti > t− s) = 1 −G(t− s).

We can imagine that the user entering at time s is registered with probability p(s).
Thus R(t), the number of users who are registered during (0, t], is the same as the

number of users in the library at time t. Since p(·) is a monotone bounded function,

it is integrable, and we can apply Theorem 5.18 to see that R(t) is a Poisson random

variable with parameter

λ

∫ t

0

p(s)ds = λ

∫ t

0

(1 −G(t− s))ds

= λ

∫ t

0

(1 −G(s))ds.

Thus the expected number of users in the library at time t is

E(R(t)) = λ

∫ t

0

(1 −G(s))ds.

Thus, as t → ∞, R(t) converges in distribution to a Poisson random variable with

parameter

λ

∫ ∞

0

(1 −G(s))ds = λτ.

We shall see later that what we analyzed here is called the infinite server queue.

5.5 Non-Homogeneous Poisson Process

In this section we study a generalization of the Poisson process by relaxing the re-

quirement that the increments be stationary.

We begin with some preliminaries. Let λ : [0,∞) → [0,∞) be a given function.

Assume that it is integrable over finite intervals and define

Λ(t) =

∫ t

0

λ(s)ds.

Definition 5.7 A counting process {N(t), t ≥ 0} is said to be non-homogeneous

Poisson process with rate function λ(·) if
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(i) {N(t), t ≥ 0} has independent increments,

(ii) N(t) ∼ P (Λ(t)), for t ≥ 0.

We denote a non-homogeneous Poisson process with rate function λ(·) as

NPP(λ(·)). Note that when λ(t) = λ for all t ≥ 0, the NPP (λ(·)) reduces to

the standard PP(λ). The following are an immediate consequence of the definition:

If {N(t), t ≥ 0} is an NPP (λ(·)),

(i) N(0) = 0,

(ii) N(s+ t) −N(s) ∼ P (Λ(s+ t) − Λ(s)).

(See Conceptual Exercise 5.7.) Using the independence of increments one can derive

the finite dimensional joint probability distributions of an NPP as in Theorem 5.11.

We state the result in the next theorem and omit the proof.

Theorem 5.19 Finite Dimensional Distributions. Let {N(t), t ≥ 0} be a

NPP (λ(·)) and 0 ≤ t1 ≤ · · · ≤ tn be given real numbers and 0 ≤ k1 ≤ · · · ≤ kn

be given integers. Then

P(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn)

= e−Λ(tn) (Λ(t1))
k1

k1!
· (Λ(t2) − Λ(t1))

k2−k1

(k2 − k1)!
· · · (Λ(tn) − Λ(tn−1)))

kn−kn−1

(kn − kn−1)!
.

We illustrate with an example.

Example 5.18 A fast food restaurant is open from 6am to midnight. During this

time period customers arrive according to an NPP (λ(·)), where the rate function

λ(·) (in customers/hr) is as shown in Figure 5.6. The corresponding Λ(·) is shown in

Figure 5.7.

1210864212

Noon Midnight

t
108

10

30

λ(t)

20

6 am

Figure 5.6 Arrival rate function for the fast food restaurant.

(i) Compute the mean and variance of the number arrivals in one day (6am to mid-

night).

Let N(t) be the number of arrivals in the first t hours after 6am. The number of

arrivals in one day is given by N(18) which is a P(Λ(18)) random variable by

definition. Hence the mean and the variance is given by Λ(18) = 275.
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Figure 5.7 Cumulative arrivals function for the fast food restaurant.

(ii) Compute the mean and variance of the number arrivals from 6pm to 10pm.

The number of arrivals from 6pm to 10pm is given by N(16) − N(12) which

is a P(Λ(16) − Λ(12)) random variable by definition. Hence the mean and the

variance is given by Λ(16) − Λ(12) = 255 − 180 = 75.

(iii) What is the probability that exactly one person arrives from 8am to 8:06am?

The number of arrivals from 8am to 8:06am is given byN(2.1)−N(2) which is

a P(Λ(2.1)−Λ(2)) = P(1.95) random variable by definition. Hence the required

probability is given by e−1.95(1.95)1/1! = 0.2774.

The next theorem gives necessary and sufficient condition for a counting process

to be an NPP.

Theorem 5.20 A counting process {N(t), t ≥ 0} is a NPP (λ(·)) if and only if

(i) {N(t), t ≥ 0} has independent increments,

(ii) N(0) = 0 and

P(N(t+ h) −N(t) = 0) = 1 − λ(t)h + o(h),

P(N(t+ h) −N(t) = 1) = λ(t)h + o(h),

P(N(t+ h) −N(t) = j) = o(h), j ≥ 2.

Proof: The “if” part is straightforward and we leave the details to the reader, see

Conceptual Exercise 5.8. To establish the “only if” part it suffices to show that the

conditions (i) and (ii) in this theorem imply that N(t) ∼ P (Λ(t)). To do this we

define

pk(t) = P(N(t) = k), k ≥ 0.

We follow the proof of Theorem 5.13. For k ≥ 1, we get

pk(t+ h) = P(N(t+ h) = k)
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=

k
∑

j=0

P(N(t+ h) = k|N(t) = j)P(N(t) = j)

=
k
∑

j=0

P(N(t+ h) −N(t) = k − j|N(t) = j)pj(t)

=

k
∑

j=0

P(N(t+ h) −N(t) = k − j)pj(t)

(by independence of increments)

= P(N(t+ h) −N(t) = 0)pk(t) + P(N(t+ h) −N(t) = 1)pk−1(t)

+

k
∑

j=2

P(N(t+ h) −N(t) = j)pk−j(t)

= (1 − λ(t)h+ o(h))pk(t) + (λ(t)h+ o(h))pk−1(t) +

k
∑

j=2

o(h)pk−j(t)

= (1 − λ(t)h)pk(t) + λ(t)hpk−1(t) +
k
∑

j=0

o(h)pk−j(t).

Rearranging and dividing by h, we get

1

h
(pk(t+ h) − pk(t)) = −λ(t)pk(t) + λ(t)pk−1(t) +

o(h)

h

k
∑

j=0

pk−j(t).

Letting h→ 0, we get

p′k(t) =
dpk(t)

dt
= −λ(t)pk(t) + λ(t)pk−1(t). (5.15)

Proceeding in a similar fashion for the case k = 0 we get

p′0(t) = −λ(t)p0(t).

Using the initial condition p0(0) = 1, the above equation admits the following solu-

tion:

p0(t) = e−Λ(t), t ≥ 0.

Using the initial condition pk(0) = 0 for k ≥ 1, we can solve Equation 5.15 recur-

sively to get

pk(t) = e−Λ(t) Λ(t)k

k!
, t ≥ 0,

which implies that N(t) ∼ P (Λt). This proves the theorem.

Since the conditions in the above theorem are necessary and sufficient, we can use

them as an alternate definition of an NPP.
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5.5.1 Event Times in an NPP

Suppose the nth event in an NPP occurs at time Sn (n ≥ 1). DefineXn = Sn−Sn−1

(S0 = 0) be the nth inter-event time. In general the inter-event times are neither

independent, nor identically distributed. We can compute the marginal distribution

of Xn as given in the next theorem.

Theorem 5.21

P(Xn+1 > t) =

{

e−Λ(t) if n = 0,
∫∞
0 e−Λ(t+s) Λ(t+s)n

n! ds if n ≥ 1.

Proof: Left as Conceptual Exercise 5.14.

Next we generalize Theorem 5.14 to non-homogeneous Poisson processes. Let t ≥
0 be fixed and {Ui, 1 ≤ i ≤ n} be iid random variables with common distribution

P(Ui ≤ s) =
Λ(s)

Λ(t)
, 0 ≤ s ≤ t.

Let Ũ1 ≤ Ũ2 ≤ · · · ≤ Ũn be the order statistics of {Ui, 1 ≤ i ≤ n}.

Theorem 5.22 Campbell’s Theorem for NPPs. Let Sn be the nth event time in an

NPP (λ(·)) {N(t), t ≥ 0}. Given N(t) = n,

(S1, S2, · · · , Sn) ∼ (Ũ1, Ũ2, · · · , Ũn).

Proof: Left as Conceptual Exercise 5.11.

5.6 Compound Poisson Process

In this section we shall study another generalization of a Poisson process, this time

relaxing the assumption that the events occur one at a time. Such a generalization is

useful in practice where multiple events can occur at the same time. For example,

customers arrive in batches to a restaurant, multiple cars are involved in an accident,

demands occur in batches, etc. To model such situations we introduce the compound

Poisson process CPP as defined below.

Definition 5.8 Let {N(t), t ≥ 0} be a PP(λ) and {Zn, n ≥ 1} be a sequence of iid

random variables that is independent of the PP. Let

Z(t) =

N(t)
∑

n=1

Zn, t ≥ 0. (5.16)

Then {Z(t), t ≥ 0} is call a compound Poisson process.
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Note Z(t) = 0 if N(t) = 0. Also, if Zn = 1 for all n ≥ 1, Equation 5.16 reduces

to Z(t) = N(t). Thus CPP is a generalization of a PP. We have not restricted Zn’s

to be positive, or integer valued. It is convenient to think of Zn as the cost incurred

(or reward earned) when the nth event occurs in the PP. Then Z(t) is the cumulative

cost incurred (or reward earned) over (0, t]. Since Zn’s are allowed to be positive as

well as negative, the sample paths of {Z(t), t ≥ 0} may jump up or down. A typical

sample path is shown in Figure 5.8.

S4

t
S3S2

Z3

Z4

Z2

S1S0

Z1

Z(t)

Figure 5.8 A typical sample path of a compound Poisson process.

Since {Zn, n ≥ 1} is a sequence of iid random variables, and the PP has inde-

pendent increments, it follows that {Z(t), t ≥ 0} also has independent increments.

Thus if we know the marginal distribution of Z(t), then all finite dimensional dis-

tributions of {Z(t), t ≥ 0} are known. Specifically, consider the case where Zn is a

non-negative integer valued random variable. Then the state-space of {Z(t), t ≥ 0}
is {0, 1, 2, · · ·}. Let

pk(t) = P(Z(t) = k), k = 0, 1, 2, · · · .
The next theorem gives the finite dimensional distribution.

Theorem 5.23 Let {Z(t), t ≥ 0} be a CPP with state-space {0, 1, 2, · · ·}. Let 0 ≤
t1 ≤ · · · ≤ tn be given real numbers and 0 ≤ k1 ≤ · · · ≤ kn be given integers. Then

P(Z(t1) = k1, Z(t2) = k2, · · · , Z(tn) = kn)

= pk1
(t1)pk2−k1

(t2 − t1) · · · pkn−kn−1
(tn − tn−1).

Proof: See Conceptual Exercise 5.18.

Thus the entire CPP is described by the marginal distribution of Z(t) for all t ≥
0. In general, computing the distribution of Z(t) is hard, but the Laplace Stieltjes

Transform (LST) of Z(t) can be computed easily, as shown in the next theorem.

Theorem 5.24 Let {Z(t), t ≥ 0} be a CPP as defined by Equation 5.16. Let

A(s) = E(e−sZn), n ≥ 1.
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Then

φ(s) = E(e−sZ(t)) = e−λt(1−A(s)).

Proof: We have

E(e−sZ(t)|N(t) = n) = E(e−(sZ1+Z2+···+Zn)) = A(s)n,

since {Zn, n ≥ 1} are iid with common LST A(s). Thus

φ(s) = E(e−sZ(t)) = E(E(e−sZ(t)|N(t))) = E((A(s))N(t)),

which is the generating function of N(t) evaluated at A(s). Since N(t) ∼ P(λt), we

know that

E(zN(t)) = e−λt(1−z).

Hence

φ(s) = e−λt(1−A(s)).

This proves the theorem.

In general it is difficult to invert φ(s) analytically to obtain the distribution ofZ(t).
However, the moments of Z(t) are easy to obtain. They are given in the following

theorem.

Theorem 5.25 Let {Z(t), t ≥ 0} be a CPP as defined by Equation 5.16. Let τ and

s2 be the mean and the second moment of Zn, n ≥ 1. Then

E(Z(t)) = λτt,

Var(Z(t)) = λs2t.

Proof: See Conceptual Exercise 5.19.

We end this section with an example.

Example 5.19 Suppose customers arrive at a restaurant in batches that are iid with

the following common distribution

pk = P(Batch Size = k), 1 ≤ k ≤ 6,

where

[p1, p2, p3, p4, p5, p6] = [.1, .25, .1, .25, .15, .15].

The batches themselves arrive according to a PP(λ). Compute the mean and variance

of Z(t), the number of arrivals during (0, t].

{Z(t), t ≥ 0} is a CPP with batch arrival rate λ and the mean and second moment

of batch sizes given by

τ =

6
∑

k=1

kpk = 3.55,

s2 =

6
∑

k=1

k2pk = 15.15.
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Hence, using Theorem 5.25, we get

E(Z(t)) = 3.55λt, Var(Z(t)) = 15.15λt.

5.7 Computational Exercises

5.1 Consider a network with three arcs as shown in Figure 5.9. Let Xi ∼ exp(λi)
be the legth of arc i, (1 ≤ i ≤ 3). Suppose arc lengths are independent. Compute the

distribution of the length of the shortest path from node a to node c.

cba
X1 X2

X3

Figure 5.9 The three arc network.

5.2 Compute the probability that a− b− c is the shortest path from node a to node

c in the network in Figure 5.9.

5.3 Compute the distribution of the length of the longest path from node a to node

c in the network in Figure 5.9.

5.4 Compute the probability that a− b− c is the longest path from node a to node

c in the network in Figure 5.9.

5.5 Consider a system consisting of n components in parallel, that is, the system

fails when all components fail. The lifetimes of the components are iid exp(λ) ran-

dom variables. Compute the cdf of the time when the system fails, assuming that all

components are functioning at time 0.

5.6 A spaceship is controlled by three independent computers on board. The ship

can function as long as at least two of these computers are functioning. Suppose the

lifetimes of the computers are iid exp(λ) random variables. Assume that at time zero

all computers are functional. What is the probability that the ship functions over the

duration (0, t]?

5.7 The lifetime of a machine is an exp(λ) random variable. A maintenance crew

inspects this machine every T time units, starting at time 0, where T > 0 is a fixed

number. Find the expected time when the machine is discovered to have failed. What

is the expected duration of time when the machine is down before it is discovered to

be down?
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5.8 There are n organisms in a colony at time 0. The lifetimes of these organisms

are iid exp(λ) random variables. What is the probability that exactly k organisms are

living at time t? What is the expected time by which the colony experiences its kth

death? (0 ≤ k ≤ n).

5.9 A machine has two parts:A andB. There are two spares available forA and one

forB. The machine needs both parts to function. As soon as a part fails, it is replaced

instantaneously by its spare. The lifetimes of all parts are independent. The part A
and its spares have iid exp(λ) lifetimes andB and its spare have iid exp(µ) lifetimes.

Spares fail only while in service. What is the expected lifetime of the machine?

5.10 A rope consists of n strands. When a strand is carrying a load of x tons, its

failure rate is λx. At time zero all strands are working and equally share a combined

load of L tons. When a strand fails, the remaining strands share the load equally. This

process continues until all strands break, at which point the rope breaks. Compute the

distribution of the lifetime of the rope.

5.11 Two jobs are waiting to be processed by a single machine. The time required to

complete the ith job is an exp(λi) random variable (i = 1, 2). The processing times

are independent of each other, and of the sequence in which the jobs are processed. To

keep the ith job in the machine shop costs Ci dollars per unit time. In what sequence

should the jobs be processed so that the expected total cost is minimized?

5.12 Suppose customers arrive at a single-server queue according to a PP(λ), require

iid exp(µ) service times, and are served in a first come first served fashion. At time

0 there is one customer in the system, and he is in service. What is the probability

that there will be no customer in the system after the second customer completes his

service?

5.13 Suppose there are n ≥ 3 sticks whose lengths are iid exp(λ) random variables.

Show that the probability that an n-sided polygon can be formed from these sticks is

n(1/2)n−1. Hint: A polygon can be formed if and only if the longest stick is shorter

than the sum of the rest.

5.14 Let A, B, and C be iid exp(λ) random variables. Show that the probability

that both the roots of Ax2 +Bx+ C = 0 are real is 1/3.

5.15 SupposeU is uniformly distributed over (0, 1). Show that −ln(U) is an exp(1)
random variable.

5.16 Mary arrives at a single server service facility to find a random number,N , of

customers already in the system. The customers are served in a first come first served

order. Service of all the customers are iid exp(λ) random variables. The pmf of N is

given by P(N = n) = (1 − ρ)ρn, n = 0, 1, 2, · · · , where ρ < 1 is a given constant.

Let W be the time when Mary completes her service. Compute the LST and the pdf

of W .
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5.17 A machine needs a single critical component to operate properly. When that

component fails it is instantaneously replaced by a spare. There is a supply of k
spares. The lifetime of the original component and the k spares are iid exp(λ) random

variables. What is the smallest number of spares that must be provided to guarantee

that the system will last for at least T hours with probability α, a given constant?

5.18 A system consists of two components in series. The lifetime of the first com-

ponent is exp(λ) and that of the second component is Erl(µ, n). The system fails as

soon any one of the two components fails. Assuming the components behave inde-

pendently of each other, compute the expected lifetime of the system.

5.19 Let Xi ∼ exp(λi) (i = 1, 2) be two independent random variables. Compute

the distribution of X1/X2 and show that it has infinite expectation.

5.20 Let {N(t), t ≥ 0} be a PP(λ). Compute P(N(t) = k|N(t+ s) = k +m) for

s, t ≥ 0, k,m ≥ 0.

5.21 Let Xi be a P(λi) random variable, and assume that {Xi, 1 ≤ i ≤ r} are

independent. Show that X = X1 +X2 + · · ·+Xn is a P(λ) random variable, where

λ = λ1 + λ2 + · · · + λn.

5.22 Customers arrive according to a PP(λ) to a service facility with s ≥ 1 identical

servers in parallel. The service times are iid exp(µ) random variables. At time 0, all

the servers are busy serving one customer each, and no customers are waiting.

(i) Compute the probability that the next arriving customer finds all servers busy.

(ii) Let N be the number of arrivals before the first service completion. Compute

the pmf of N .

(iii) Compute the probability that the next arriving customer finds at least two servers

idle.

5.23 Let Si be the ith event time in a PP(λ) {N(t), t ≥ 0}. Show that

E(SN(t)) = t− 1 − e−λt

λ
.

5.24 Let {N(t), t ≥ 0} be a PP(λ). Suppose a Bernoulli splitting mechanism tags

each event as type one with probability p, and type two with probability 1 − p. Let

Ni(t) be the number of type i events over (0, t]. Let Ti be the time until the first event

in the type i process. Compute the joint pdf of (T1, T2).

5.25 Let {N(t), t ≥ 0} be a PP(λ). Compute the probability that N(t) is odd.

5.26 A system is subject to k types of shocks. Shocks of type i arise according to

a PP(λi), 1 ≤ i ≤ r. A shock of type i induces a system failure with probability pi

independently of every thing else. Let T be the time when the system fails, and let

S be the type of the shock that causes the failure. Compute P(T > t, S = i), t ≥
0, 1 ≤ i ≤ r.
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5.27 Let {N(t), t ≥ 0} be a PP(λ). The events in this process are registered by

a counter that locks up for a fixed period of time τ > 0 every time it resisters an

event. While it is locked, it cannot register any event. What is the probability that the

counter is not locked at time t, assuming that it is not locked at time 0?

5.28 Suppose customers arrive at a bank according to a Poisson process at a rate of

8 per hour. Compute the following:

(i) The mean and variance of the number of customers who enter the bank during

an 8-hour day.

(ii) Probability that more than four customers enter the bank during an hour long

lunch break.

(iii) Probability than no customers arrive during the last 15 minutes of the day.

(iv) Correlation between the number of customers who enter the bank between 9 am

and 11 am, and those who enter between 10 am and noon.

5.29 Consider a one-way road where the cars form a PP(λ) with rate λ cars/sec.

The road is x feet wide. A pedestrian, who walks at a speed of u feet/sec, will cross

the road if and only if she is certain that no cars will cross the pedestrian crossing

while she is on it. Show that the expected time until she completes the crossing is

(ex/u − 1)/λ.

5.30 A machine is up at time zero. It then alternates between two states: up or down.

(When an up machine fails it goes to the down state, and when a down machine is

repaired it moves to the up state.) Let Un be the nth up-duration, followed by the

nth down-duration, Dn. Suppose {Un, n ≥ 0} is a sequence of iid exp(λ) random

variables. The nth down-duration is proportional to the nth up-duration, i.e., there is

a constant c > 0 such that Dn = cUn.

(i) Let F (t) be the number of failures up to time t. Is {F (t), t ≥ 0} a Poisson

process? If yes, what is its rate parameter? If not, why not?

(ii) Let R(t) be the number of repairs up to time t. Is {R(t), t ≥ 0} a Poisson

process? If yes, what is its rate parameter? If not, why not?

5.31 Suppose customers arrive at a system according to PP(λ). Every customer stays

in the system for an exp(µ) amount of time and then leaves. Customers behave in-

dependently of each other. Show that the number of customers in the system at time

t is λ
µ(1 − e−µt).

5.32 Two individuals, 1 and 2, need kidney transplants. Without a transplant the

remaining lifetime of person i is an exp(µi) random variable, the two lifetimes being

independent. Kidneys become available according to a Poisson process with rate λ.

The first available kidney is supposed to go to person 1 if she is still alive when the

kidney becomes available; else it will go to person 2. The next kidney will go person

2, if he is still alive and has not already received a kidney. Compute the probability

that person i receives a new kidney (i = 1, 2).



184 POISSON PROCESSES

5.33 It has been estimated that meteors entering the earth’s atmosphere over a cer-

tain region form a Poisson process with rate λ = 100 per hour. About 1 percent of

those are visible to the naked eye.

(i) What is the probability that a person is unlucky enough not to see any shooting

stars in a one hour period?

(ii) What is the probability that a person will see two shooting stars in one minute?

More than two in one minute?

5.34 A machine is subject to shocks that arrive according to a PP(λ). The strength of

each shock is non-negative random variable with cdf G(·). If the shock has strength

x it causes the machine to fail with probability p(x). Assuming the successive shock

strengths are independent, what is the distribution of the lifetime of the machine?

5.35 Customers arrive at a bank according to a PP with rate of 10/hour. Forty percent

of them are men, and the rest are women. Given that 10 men have arrived during the

first hour, what the expected number of women who arrived in the first hour?

5.36 Let c > 0 be a constant and define:

λ(t) =

{

c 2n < t < 2n+ 1, n ≥ 0
0 2n+ 1 ≤ t ≤ 2n+ 2, n ≥ 0.

Let {N(t), t ≥ 0} be a NPP with the above rate function. Compute the distribution

of S1, the time of occurrence of the first event.

5.37 For the NPP of Computational Exercise 5.36, compute the distribution ofN(t).

5.38 For the NPP of Computational Exercise 5.36, compute E(S1|N(t) = n), for

0 ≤ t ≤ 2.

5.39 Redo Example 5.17 under the assumption that the arrivals to the library follow

an NPP (λ(·)).

5.40 A factory produces items one at a time according a PP(λ). These items are

loaded onto trucks that leave the factory according to a PP(µ) and transport the items

to a warehouse. The truck capacity is large enough so that all the items produced after

the departure of a truck can be loaded onto the next truck. The travel time between the

factory and the warehouse is a constant and can be ignored. Let Z(t) be the number

of items received at the warehouse during (0, t]. Is {Z(t), t ≥ 0} a PP, NPP, or CPP

or none of the above? Show that E(Z(t)) = λt− λ(1 − e−µt)/µ.

5.41 A customer makes deposits in a bank according to a PP with rate λd per week.

The sizes of successive deposits are iid random variables with mean τd and vari-

ance σ2
d. Compute the mean and variance of the total amount deposited over [0, t].

Unknown to the customer, the customer’s spouse makes withdrawals from the same

account according to a PP with rate λw. The sizes of successive withdrawals are iid
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random variables with mean τw and variance σ2
w. Assume that the deposit and with-

drawal processes are independent of each other. Let Z(t) be the account balance at

time t. Show that {Z(t), t ≥ 0} is a CPP. Compute the mean and variance of Z(t).

5.42 Consider a CPP {Z(t), t ≥ 0} with batch size distribution

P(Zn = k) = (1 − α)k−1α, k ≥ 1.

Compute the LST of Z(t). Hence or otherwise, compute P(Z(t) = k).

5.43 The lifetime of an item is a nonnegative continuous random variable with cdf

F (·) and pdf f(·). Assume that F (0) = 0 and F (t) < 1 for all t <∞, with F (∞) =

1.

(i) When the item fails at age t, we perform a minimal repair, i.e., we instanta-

neously restore it to functional state, but its failure rate remains unchanged. Thus

after minimal repair of a failed item of age t, the item behaves like a functioning

item of age t. Suppose a new item is put in use at time 0. LetN(t) be the number

of failures up to time t. Is {N(t), t ≥ 0} a non-homogenous Poisson process?

Why or why not? If it is, what is its rate function?

(ii) Suppose the expected cost of performing minimal repair on a failed item of age

t is c(t) dollars. Compute the expected total cost of repairs for this item up to a

given time T > 0.

5.44 Let N(t) be the total number of cameras sold by a store over (0, t] (years).

Suppose {N(t), t ≥ 0} is an NPP with rate function

λ(t) = 200(1 + e−t), t ≥ 0.

Suppose the price of the camera is $350(1.08)n in year n = 0, 1, 2, .... The interval

from t = n to t = n+ 1 is called year n. Thus sales rate changes continuously with

time, but the price changes from year to year. Compute the mean and variance of the

sales revenue in the nth year.

5.8 Conceptual Exercises

5.1 Derive Equation 5.4.

5.2 Let X ∼ Erl(n, λ) and Y ∼ Erl(m,µ) be two independent Erlang random

variables. Let

F (n,m) = P(X < Y ).

Show that F (n,m) satisfy the following recursion

F (n,m) =
λ

λ+ µ
F (n− 1,m) +

µ

λ+ µ
F (n,m− 1), n,m ≥ 1,

with boundary conditions

F (n, 0) = 0, n ≥ 1; F (0,m) = 1, m ≥ 1.
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Hence or otherwise show that

F (n,m) =

n+m−1
∑

k=n

(

n+m− 1

k

)(

λ

λ+ µ

)k ( µ

λ+ µ

)n+m−k−1

.

5.3 Let Xi ∼ exp(λi), i = 1, 2, · · · , k be k independent random variables. Show

that, for 1 ≤ i ≤ k,

P(Xi < Xj , j 6= i) =
λi

λ
,

where

λ =

k
∑

j=1

λj .

5.4 Prove Equation 5.7.

5.5 Using Laplace transforms (LT) solve Equations 5.10 and 5.9 as follows: denote

the LT of pk(t) by p∗k(s). Using appropriate initial conditions show that

(λ+ s)p∗0(s) = 1

(λ+ s)p∗k(s) = λp∗k−1(s), k ≥ 1.

Solve these to obtain

p∗k(s) =
λk

(λ+ s)k+1
, k ≥ 0.

Invert this to obtain Equation 5.11.

5.6 Let {Ni(t), t ≥ 0} (i = 1, 2) be two independent Poisson processes with rates

λ1 and λ2, respectively. At time 0 a coin is flipped that turns up heads with probability

p. Define

N(t) =

{

N1(t) if the coin turns up heads,

N2(t) if the coin turns up tails.

(i) Is {N(t), t ≥ 0} a PP?

(ii) Does {N(t), t ≥ 0} have stationary increments?

(iii) Does {N(t), t ≥ 0} have independent increments?

5.7 Show that if {N(t), t ≥ 0} is an NPP(λ(·)),

(i) N(0) = 0,

(ii) N(s+ t) −N(s) ∼ P (Λ(s+ t) − Λ(s)).

Hint: Use generating functions to show part (ii).

5.8 Prove the “if” part of Theorem 5.20 by using the independence of increments of

{N(t), t ≥ 0} and that N(t+ h) −N(t) ∼ P (Λ(t+ h) − Λ(t)).
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5.9 Let {Ni(t), t ≥ 0} (i = 1, 2) be two independent Poisson processes with rates

λ1 and λ2, respectively. Let Ai be the number of events in the ith process before the

first event in the jth process (i 6= j).

(i) Compute P(Ai = k) for k ≥ 0.

(ii) Are A1 and A2 independent random variables?

5.10 Prove Theorem 5.19.

5.11 Prove Theorem 5.22 by following the proof of Theorem 5.14 on page 163.

5.12 Let {Ni(t), t ≥ 0} (i = 1, 2) be two independent Poisson processes with rates

λ1 and λ2, respectively. Let T be a non-negative random variable that is independent

of both these processes. Let F be its cdf and φ be its LST. Let Bi = Ni(T ).

(i) Compute the generating function ψi(z) = E(zBi) in terms of φ, i = 1, 2.

(ii) Compute the joint generating function ψ(z1, z2) = E(zB1
1 zB2

2 ) in terms of φ.

(iii) Are B1 and B2 independent? What if T is a constant?

5.13 This is an example of deterministic splitting. Let {N(t), t ≥ 0} be a PP(λ).

Suppose all odd events (i.e., events occurring at time S2n+1 for n ≥ 0) in this process

are classified as type 1 events, and all even events are classified as type 2 events. Let

Ni(t) be the number of type i (i = 1, 2) events that occur during (0, t].

(i) Is {N1(t), t ≥ 0} a PP?

(ii) Is {N2(t), t ≥ 0} a PP?

(iii) Are {Ni(t), t ≥ 0} (i = 1, 2) independent of each other?

5.14 Prove Theorem 5.21 by conditioning on Sn.

5.15 Let {Ni(t), t ≥ 0} be an NPP(λi(·)), (1 ≤ i ≤ r). Suppose they are indepen-

dent and define

N(t) = N1(t) +N2(t) + · +Nr(t), t ≥ 0.

Show that {N(t), t ≥ 0} is an NPP (λ(·)), where

λ(t) = λ1(t) + λ2(t) + · · · + λr(t), t ≥ 0.

5.16 Show that the process {R(t), t ≥ 0} of Theorem 5.18 is an NPP with rate

function λ(t) = λp(t), t ≥ 0.

5.17 Let {N(t), t ≥ 0} be an NPP (λ(·)), and p : [0,∞) → [0, 1] be a function.

Suppose an event occurring in the NPP at time s is registered with probability p(s),
independent of everything else. Let R(t) be the number of registered events during

(0, t]. Show that {R(t), t ≥ 0} is an NPP with rate function λ(t)p(t), t ≥ 0.
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5.18 Prove Theorem 5.23, by following the initial steps in the proof of Theo-

rem 5.11.

5.19 Prove Theorem 5.25 by using the following identities:

E(Z(t)) = −φ′(0), E(Z(t)2) = φ′′(0).

5.20 Non-homogeneous compound Poisson process. A process {Z(t), t ≥ 0} of

Equation 5.16 is called a non-homogeneous compound Poisson process if {N(t), t ≥
0} is an NPP (λ(·)). Compute the LST, the mean, and the variance of Z(t).

5.21 Prove or disprove that the process {R(t), t ≥ 0} defined in Example 5.17 a

non-homogeneous Poisson process.

5.22 Derive Equations 5.12, 5.13, and 5.14.

5.23 A two dimensional PP(λ) is a process of points occurring randomly in a Eu-

clidean plane R2 so that (i) the number of points occurring in a region of area A is

P (λA) random variable, and (ii) the number of points in non-overlapping regions

are independent. LetX1 be the Euclidean distance from the origin of the point closest

to the origin. Compute P (X1 > x).

5.24 Derive the variance-covariance matrix of (S1, S2, · · · , Sn) given N(t) = n,

where {N(t), t ≥ 0} is a PP(λ).



CHAPTER 6

Continuous-Time Markov Chains

The amount of pain involved in solving a mathematical problem is independent of

the route taken to solve it.

Proof: Follows from the general theorem, “there is no such thing as a free lunch.”

6.1 Definitions and Sample Path Properties

In Chapters 2, 3, and 4 we studied DTMCs. They arose as stochastic models of sys-

tems with countable state-space that change their state at times n = 1, 2, · · ·, and

have Markov property at those times. Thus, the probabilistic nature of the future be-

havior of these systems after time n depends on the past only through their state at

time n.

In this chapter we study a system with a countable state-space that can change

its state at any point in time. Let Sn, n ≥ 1, be time of the nth change of state or

transition, Yn = Sn − Sn−1, (with S0 = 0), be the nth sojourn time, and Xn be the

state of the system after the nth transition. Define

N(t) = sup{n ≥ 0 : Sn ≤ t}, t ≥ 0.

Thus N(t) is the number of transitions the system undergoes over (0, t], and

{N(t), t ≥ 0} is a counting process generated by {Yn, n ≥ 1}. It has piecewise con-

stant sample paths that start with N(0) = 0 and jump up by +1 at times Sn, n ≥ 1.

We make the following important assumption, called the “regularity assumption”:

P( lim
n→∞

Sn = ∞) = 1. (6.1)

This ensures that

P(N(t) <∞) = 1, (6.2)

for finite t. The regularity condition implies that the system undergoes finite number

of transitions during finite intervals of time. This is a critical assumption, and we

189
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always assume that it holds.

Now let X(0) = X0 be the initial state of the system, and X(t) be the state of

the system at time t. Under the regularity assumption of Equation 6.1, N(t) is well

defined for each t ≥ 0, and hence we can write

X(t) = XN(t), t ≥ 0. (6.3)

The continuous time stochastic system {X(t), t ≥ 0} has piece-wise constant right-

continuous sample paths. A typical sample path of such a system is shown in Fig-

ure 6.1. We see that the {X(t), t ≥ 0} process is in the initial state X0 at time t = 0.

t
S4S3S2S1

X4

Y4Y3Y2Y1

X0

X1

X(t)

X3

X2

0

Figure 6.1 A typical sample path of a CTMC.

It stays there for a sojourn time Y1 and then jumps to state X1. In general it stays

in state Xn for a duration given by Yn+1 and then jumps to state Xn+1, n ≥ 0.

Note that if Xn = Xn+1, there is no jump in the sample path of {X(t), t ≥ 0} at

time Sn+1. Thus, without loss of generality, we can assume that Xn+1 6= Xn for all

n ≥ 0.

In this chapter we study the case where {X(t), t ≥ 0} belongs to a particular class

of stochastic processes called the continuous-time Markov chains (CTMC), defined

below.

Definition 6.1 CTMC:Definition The stochastic process {X(t), t ≥ 0} as defined

by Equation 6.3 is called a CTMC if it has a countable state-space S, and the se-

quence {X0, (Xn, Yn), n ≥ 1} satisfies

P(Xn+1 = j, Yn+1 > y|Xn = i, Yn, Xn−1, Yn−1, · · · , X1, Y1, X0)

= P(X1 = j, Y1 > y|X0 = i) = pije
−qiy, i, j ∈ S, n ≥ 0, (6.4)

where P = [pi,j ]i,j∈S is a stochastic matrix with pii = 0 for all i ∈ S, and 0 ≤ qi <
∞, i ∈ S.

Thus a system modeled by a CTMC {X(t), t ≥ 0} evolves as follows: it starts in
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stateX0 = i0 (say). It stays in that state for a random duration of time Y1 ∼ exp(qi0 )
and then jumps to state X1 = X(Y1+) = i1 6= i0 with probability pi0,i1 , indepen-

dent of the amount of time spent in state i0. In general, after the nth transition at time

Sn, it moves to state Xn = X(Sn+) = in 6= in−1. It stays in that state for a random

duration of time Yn+1 ∼ exp(qin
) and then jumps at time Sn+1 to state in+1 with

probability pin,in+1
, independent of the history over [0, Sn+1).

From Equation 6.4 it is clear that {Xn, n ≥ 0} is a DTMC on state-space S with

transition probability matrix P . It is called the “embedded DTMC” corresponding to

the CTMC. We illustrate with several examples below.

Example 6.1 Two-State Machine. Consider a machine that can be up or down at

any time. If the machine is up, it fails after an exp(µ) amount of time. If it is down, it

is repaired in an exp(λ) amount of time. The successive up times are iid, and so are

the successive down times, and the two are independent of each other. Define

X(t) =

{

0 if the machine is down at time t,
1 if the machine is up at time t.

Is {X(t), t ≥ 0} a CTMC?

The state-space of {X(t), t ≥ 0} is {0, 1}. Suppose the machine fails at time t,
i.e., the process enters state 0 at time t. Then the process stays in state 0 for an exp(λ)
amount of time and then jumps to state 1. Thus, q0 = λ and p0,1 = 1. Now suppose

the machine repair completes at time t, i.e., the process enters state 1 at time t. Then

the process stays in state 1 for an exp(µ) amount of time and then jumps to state

0. Thus, q1 = µ and p1,0 = 1. It is easy to see that the independence assumptions

implicit in Equation 6.4 are satisfied. Thus {X(t), t ≥ 0} a CTMC.

Example 6.2 Poisson Process. Show that a PP (λ) is a CTMC.

Let {X(t), t ≥ 0} be a PP (λ). (See Section 5.2.) Its state-space is {0, 1, 2, · · ·}.

Suppose the process enters state i at time t, i.e., the ith event in the PP occurs at

time t. Then the process stays there for an exp(λ) amount of time, independent of

the history, and then jumps to state i + 1. This, along with the properties of the PP,

implies that Equation 6.4 is satisfied with qi = λ and pi,i+1 = 1 for i ∈ S. Hence

{X(t), t ≥ 0} is a CTMC.

Example 6.3 Compound Poisson Process. Let {X(t), t ≥ 0} be a CPP with batch

arrival rate λ and iid integer valued batch sizes with common pmf

αk = P(Batch Size = k), k = 1, 2, 3, · · · .
Is {X(t), t ≥ 0} a CTMC?

See Section 5.6 for the definition of the CPP. The state-space of {X(t), t ≥ 0} is

{0, 1, 2, · · ·}. Suppose the process enters state i at time t, i.e., a batch arrives at time

t and brings the total number of arrivals over (0, t] to i. Then the process stays there
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for an exp(λ) amount of time (time until the next batch arrives), independent of the

history, and then jumps to state j > i if the new batch is of size j − i. This, along

with the properties of the CPP, implies that Equation 6.4 is satisfied with qi = λ,

pi,j = αj−i, j > i. Hence {X(t), t ≥ 0} is a CTMC.

We shall describe many more examples of CTMCs in the next section. In the

remaining section we study general properties of a CTMC. The next theorem shows

that a CTMC has Markov property at all times.

Theorem 6.1 Markov Property. A CTMC {X(t), t ≥ 0} with state-space S has

Markov property at each time point, i.e., for s, t ≥ 0, and i, j ∈ S,

P(X(t+s) = j|X(s) = i,X(u) : 0 ≤ u < s) = P(X(t+s) = j|X(s) = i). (6.5)

Furthermore, it is time homogeneous, i.e.,

P(X(t+ s) = j|X(s) = i) = P(X(t) = j|X(0) = i). (6.6)

Proof: LetX(t) be as defined in Equation 6.3. Suppose SN(s) = ν, i.e., the last tran-

sition at or before s takes place at ν ≤ s. Then X(s) = i implies that X(ν) = i, and

Y , the sojourn time in state i that started at ν, ends after s. Thus Y > s − ν, which

implies that the remaining sojourn time in state i at time s, given by Y − (s − ν),
is exp(qi). Also, Y depends on {X(u) : 0 ≤ u ≤ s} only via X(ν) which equals

X(s). Also, the next stateXN(s)+1 depends on the history only via X(ν) = X(s).
Thus all future evolution of the process after time s depends on the history only via

X(s) = i. This gives Equation 6.5. The same argument yields Equation 6.6 since the

qi and pij do not depend on when the process enters state i.

Intuitively, if a system is modeled by a CTMC the probabilistic nature of the future

behavior of the system after time t depends on the past only through the state of the

system at time t, for all t ≥ 0. We shall concentrate on time-homogeneous CTMCs

in this chapter. Thus, unless otherwise mentioned, when we use the term CTMC we

mean a time-homogeneous CTMC.

Now consider a CTMC {X(t), t ≥ 0} with countable state-space S, and let

pij(t) = P(X(t) = j|X(0) = i), i, j ∈ S, t ≥ 0,

be its transition probabilities and

P (t) = [pij(t)]i,j∈S , t ≥ 0,

be the transition probability matrix of the CTMC. Next, let

ai = P(X(0) = i), i ∈ S,

and

a = [ai]i∈S ,
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be a row vector representing the initial distribution of the CTMC. The next theorem

shows how to compute the finite dimensional distributions of a CTMC.

Theorem 6.2 Characterizing a CTMC. A CTMC {X(t), t ≥ 0} is completely

described by its initial distribution a and the transition probability matrices P (t) for

each t ≥ 0.

Proof: We shall prove the theorem by showing that all finite dimensional dis-

tributions of the CTMC are determined by a and {P (t), t ≥ 0}. Let n ≥ 1,

0 ≤ t1 ≤ t2 ≤ · · · ≤ tn and i1, i2, · · · in ∈ S be given. We have

P(X(t1) = i1, X(t2) = i2, · · · , X(tn) = in)

=
∑

i0∈S

P(X(t1) = i1, X(t2) = i2, · · · , X(tn) = in|X(0) = i0)P(X(0) = i0)

=
∑

i0∈S

ai0P(X(t2) = i2, · · · , X(tn) = in|X(0) = i0, X(t1) = i1)

·P(X(t1) = i1|X(0) = i0)

=
∑

i0∈S

ai0pi0,i1(t1)P(X(t2) = i2, · · · , X(tn) = in|X(t1) = i1)

(from Markov property of the CTMC)

=
∑

i0∈S

ai0pi0,i1(t1)P(X(t2 − t1) = i2, · · · , X(tn − t1) = in|X(0) = i1)

(from the time homogeneity of the CTMC).

Continuing in this fashion we get

P(X(t1) = i1, X(t2) = i2, · · · , X(tn) = in)

=
∑

i0∈S

ai0pi0,i1(t1)pi1,i2(t2 − t1) · · · pin−1,in
(tn − tn−1).

This proves the theorem.

Next we address the issue of how to describe a CTMC in a tractable fashion.

Theorem 6.2 says that we can do this by specifying the initial distribution a = [ai],
and the transition probability matrix P (t) for each t ≥ 0. However, the matrixP (t) is

hard to specify even for very simple CTMCs. Hence we look for alternative ways of

describing a CTMC. We defined a CTMC (under regularity conditions) by using the

parameters qi, (i ∈ S) and pij , (i, j ∈ S). If these parameters can determine P (t) for

all t ≥ 0, then we can use them in place of P (·). The regularity condition implies that

the answer is yes. We refer the reader to Chung (1967) and Cinlar (1975) for further

details on this topic. We shall provide a constructive proof in Section 6.3. Right now

we shall assert that in all the applications in this book, the parameters qi, (i ∈ S) and

pij , (i, j ∈ S), along with the initial distribution do describe the CTMCs completely.

Hence we use this method in the rest of this book.
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6.2 Examples

In this section we shall describe an often useful method of constructing a CTMC

model to describe the stochastic evolution of a system. It is based on the following

conceptualization of how the system evolves.

Consider a system with countable state-space. An event Eij is associated with

each pair (i, j) of states (i 6= j) so that if that event occurs while the system is in

state i, the system jumps to state j. Which event actually occurs is determined as

follows. Suppose the system enters state i at time t. Then event Eij is scheduled to

occur at time t + Tij , where Tij ∼ exp(qij), where qij ≥ 0. If there is no event

whose occurrence can cause the system to jump from state i to state j, we simply set

qij = 0. Furthermore the random variables {Tij, j ∈ S} are mutually independent

and also independent of the history of the system up to time t. Let

Ti = min{Tik : k ∈ S, k 6= i}. (6.7)

Then the system stays in state i until time t+Ti and then jumps to state j if Ti = Tij ,

i.e., if Eij is the first event that occurs among all the scheduled events. All the other

scheduled events are now canceled, and new events Ejk (k 6= j) are scheduled, and

the process continues.

Now let X(t) be the state of the system at time t, and Sn be the time of the nth

transition. Let Xn = X(Sn+) and Yn = Sn − Sn−1 (with S0 = 0), as before. From

the distributional and independence assumptions about {Tik, k 6= i}, we see that Ti

of Equation 6.7 is an exp(qi) random variable, where

qi =
∑

k 6=i

qik, i ∈ S. (6.8)

If qi = 0 there are no events that will take the system out of state i, i.e., state i is an

absorbing state. In this case we define pii = 1, since this makes the state i absorbing

in the embedded DTMC as well. If qi > 0, we have

P(Xn+1 = j, Yn+1 > y|Xn = i, Yn, Xn−1, Yn−1, · · · , X1, Y1, X0)

= P(Tij = Ti, Ti > y)

=
qij
qi
e−qiy, i, j ∈ S, i 6= j, y ≥ 0.

Now define

pij =
qij
qi
, i, j ∈ S, j 6= i. (6.9)

From the above derivation it is clear that {X(t), t ≥ 0} is a CTMC with param-

eters {qi} and {pij} as defined in Equations 6.8 and 6.9. Thus we can describe a

CTMC by specifying qij , called the transition rate from state i to j, for all the pairs
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(i, j), with i 6= j. Note that the quantity qii is as yet undefined. For strictly technical

reasons, we define

qii = −
∑

k:k 6=i

qik = −qi, i ∈ S.

It is convenient to put all the qij ’s in a matrix form:

Q = [qij ]i,j∈S .

This is called the infinitesimal generator or simply the generator matrix of the CTMC.

It will become clear later that the seemingly arbitrary definition of qii makes it easy

to write many equations of interest in matrix form. An important property of the

generator matrix is that its row sums are zero, i.e.,
∑

j∈S

qij = 0, i ∈ S.

The generator matrix of a CTMC plays the same role as the one-step transition prob-

ability matrix of a DTMC.

Analogous to the DTMC case, a CTMC can also be represented graphically by

what are known as rate diagrams. A rate diagram is a directed graph in which each

node represents a state of the CTMC, and there is an arc from node i to node j if

qij > 0. We generally write qij on this arc. The rate diagram helps us visualize the

dynamic evolution of a CTMC.

In the remaining section we present several examples of the CTMCs. Modeling

a system by a CTMC is an art, and like any other art, is perfected by practice. The

first step in the modeling process is to identify the state-space. This step is guided by

intuition and by what kind of information we want the model to produce. The next

step involves identifying the triggering events Eij’s—events that trigger a transition

from state i to j. The final step is to verify the distributional and independence as-

sumptions about the Tij’s and obtain the transition rates qij ’s. If the Tij’s are not

exponential, or the independence assumptions are violated, then either the system

cannot be modeled by a CTMC or the state-space needs to modified.

In the examples that follow we do not explicitly verify the independence assump-

tions. However, we urge the students to do so for themselves.

Example 6.4 Two State Machine. Let X(t) be the state of the machine of Exam-

ple 6.1. The state-space of {X(t), t ≥ 0} is {0, 1}. In state 0 we haveE01 = machine

repair completes, and T01 ∼ exp(λ). Hence q01 = λ. Similarly, in state 1 we have

E10 = machine fails, and T10 ∼ exp(µ). Hence q10 = µ. Thus {X(t), t ≥ 0} is a

CTMC with generator matrix

Q =

[

−λ λ
µ −µ

]

, (6.10)
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0 1

λ

µ

Figure 6.2 The rate diagram of a two-state machine.

and the rate diagram as shown in Figure 6.2.

Example 6.5 Two-Machine Two-Repairperson Workshop. Now consider a ma-

chine shop that has two machines that are independent, identical, and behave as de-

scribed in Example 6.1. Each machine has its own repairperson. Let X(t) be the

number of working machines at time t. Is {X(t), t ≥ 0} a CTMC? If it is, what is its

generator matrix?

The state-space of {X(t), t ≥ 0} is {0, 1, 2}. We analyze the states one by one.

State 0. X(t) = 0 implies that both the machines are down at time t. When either

one of them gets repaired the state changes to 1. Hence we haveE01 = one of the two

failed machines completes repair. Since the remaining repair times are exponential

due to memoryless property, T01 is the minimum of two independent exp(λ) random

variables. Hence T01 ∼ exp(2λ). Hence

q0 = 2λ, q01 = 2λ.

State 1. X(t) = 1 implies that one machine is up and the other is down at time

t. Now there are two triggering events: E10 = the working machine fails, and E12

= the failed machine completes repair. If E10 occurs before E12, the process moves

to state 0, else it moves to state 2. Since the remaining repair time and life time

are exponential due to memoryless property, we see that T10 ∼ exp(µ) and T12 ∼
exp(λ). Hence

q1 = λ+ µ, q12 = λ, q10 = µ.

State 2.X(t) = 2 implies that both the machines are up at time t. When either one

of them fails the state changes to 1. Hence we have E21 = one of the two working

machines fails. Since the remaining life times are exponential due to memoryless

property, T21 is the minimum of two independent exp(µ) random variables. Hence

T21 ∼ exp(2µ). Hence

q2 = 2µ, q21 = 2µ.
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Thus {X(t), t ≥ 0} is a CTMC with generator matrix

Q =





−2λ 2λ 0
µ −(λ+ µ) λ
0 2µ −2µ



 ,

and the rate diagram as shown in Figure 6.3.

0 1

2λ

µ

2

λ

2µ

Figure 6.3 The rate diagram for the two-machine, two-repairpersons workshop.

Example 6.6 Two-Machine One-Repairperson Workshop. Consider the ma-

chine shop of Example 6.5. Now suppose there is only one repairperson and the

machines are repaired in the order in which they fail. The repair times are iid. Let

X(t) be the number of working machines at time t. Is {X(t), t ≥ 0} a CTMC? If it

is, what is its generator matrix?

The state-space of {X(t), t ≥ 0} is {0, 1, 2}. The analysis of states 1 and 2 is

the same as in Example 6.5. In state 0, both machines are down, but only one is

under repair, and its remaining repair time is exp(λ). Hence the triggering event is

E01 = machine under repair completes repair, and we have T01 ∼ exp(λ). Thus

{X(t), t ≥ 0} is a CTMC with generator matrix

Q =





−λ λ 0
µ −(λ+ µ) λ
0 2µ −2µ



 ,

and the rate diagram as shown in Figure 6.4.

0 1

λ

µ

2

λ

2µ

Figure 6.4 The rate diagram for the two-machine, one-repairperson workshop.

Example 6.7 Poisson Process. Suppose {X(t), t ≥ 0} is a PP(λ). We saw in Ex-

ample 6.2 that it is a CTMC with state space S = {0, 1, 2, · · ·}. What is its generator

matrix?



198 CONTINUOUS-TIME MARKOV CHAINS

Consider state i. When the next event in the PP occurs, the process moves to state

i = i + 1. Hence we have Ei,i+1 = the next event occurs, and Ti,i+1 ∼ exp(λ).
Hence we have qi = λ, and qi,i+1 = λ, for all i ≥ 0. The generator matrix (where

we shown only non-zero elements) is given below:

Q =











−λ λ
−λ λ

−λ λ
. . .

. . .











,

and the rate diagram as shown in Figure 6.5.

0 1 2 3
λ λ λ λ

Figure 6.5 The rate diagram of a PP(λ).

Example 6.8 Pure Birth Process. An immediate extension of the PP(λ) is the pure

birth process, which is a CTMC on S = {0, 1, 2, · · ·} with the following generator

matrix:

Q =











−λ0 λ0

−λ1 λ1

−λ2 λ2

. . .
. . .











.

The rate diagram is shown in Figure 6.6. Such a process spends an exp(λi) amount

0 1 2 3
λ0 λ1 λ2 λ3

Figure 6.6 The rate diagram for a pure birth process.

of time in state i and then jumps to state i+1. In biological systems, X(t) represents

the number of organisms in a colony at time t, and the transition from i to i + 1
represents birth. Hence the name “pure birth process.” The parameter λi is called

the birth rate in state i. The PP(λ) is a special case of a pure birth process with all

birth rates given by λi = λ. We illustrate with several situations where pure birth

processes can arise.

Yule Process. LetX(t) be the number of amoebae at time t in a colony of amoebae.

Suppose each amoeba lives for an exp(λ) amount of time and then splits into two.

All amoebae in the colony behave independently of each other. Suppose X(t) = i.
When one of the i amoebae splits, the process moves to state i+ 1. Hence Ei,i+1 =
one of the i living amoebae splits. This will happen after an exp(iλ) amount of time,

i.e., the minimum of i iid exp(λ) random variables. Thus Ti,i+1 ∼ exp(iλ). Thus
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we get qi,i+1 = iλ, and qii = −iλ. Hence {X(t), t ≥ 0} is a pure birth process with

birth rates λi = iλ, i ≥ 0. Such a process is called the Yule process.

Yule Process with Immigration. Consider the above colony of amoebae. Suppose

amoebae arrive at this colony from outside according to a PP(θ). All amoebae in

the colony, whether native or immigrants, behave independently and identically. Let

X(t) be the number of amoebae in the colony at time t. As before, the state-space of

{X(t), t ≥ 0} is S = {0, 1, 2, · · ·}. Suppose X(t) = i. The system moves to state

i + 1 if one of the existing amoebae splits, which happens after an exp(iλ) amount

of time, or an amoeba arrive from outside, which happens after an exp(θ) amount of

time. Thus Ti,i+1 ∼ exp(iλ+θ). Hence qi,i+1 = iλ+θ and qii = −(iλ+θ).Hence

{X(t), t ≥ 0} is a pure birth process with birth rates λi = iλ+ θ, i ≥ 0.

Maintenance. Suppose a machine is brand new at time zero. It fails after an

exp(θ0) amount of time, and is repaired instantaneously. The lifetime of a machine

that has undergone n ≥ 1 repairs is exp(θn) random variable, and is independent

of how old the machine is. Let X(t) be the number of repairs the machine has un-

dergone over time (0, t]. Then {X(t), t ≥ 0} is a pure birth process with birth rates

λi = θi, i ≥ 0.

Example 6.9 Pure Death Process. A CTMC {X(t), t ≥ 0} on S = {0, 1, 2, · · ·}
is called a pure death process if its generator matrix is given by

Q =















0
µ1 −µ1

µ2 −µ2

µ3 −µ3

. . .
. . .















.

The rate diagram is shown in Figure 6.7. Such a process spends an exp(µi) amount

0 1 2 3
µ1 µ2 µ3 µ4

Figure 6.7 The rate diagram for a pure death process.

of time in state i ≥ 1 and then jumps to state i−1. In biological systems,X(t) repre-

sents the number of organisms in a colony at time t, and the transition from i to i− 1
represents death. Hence the name “pure death process.” The parameter µi is called

the death rate in state i. Note that state 0 is absorbing, with q00 = 0. Thus once the

colony has no members left in it, it stays extinct forever. We discuss a special case

below.

Multi-Component Machine. Consider a machine consisting of n parts. The life-

times of these parts are iid exp(µ) random variables. The failed parts cannot be

repaired. Once all parts fail, the machine fails, and stays that way forever. Let X(t)
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be the number of functioning parts at time t. Suppose X(t) = i ≥ 1. The system

moves to state i− 1 if one of the i components fails, which happens after an exp(iµ)
time. Hence Ti,i+1 ∼ exp(iµ). Hence {X(t), t ≥ 0} is a pure death process with

death rates µi = iµ. The initial state is X(0) = n.

Example 6.10 Birth and Death Process. A CTMC {X(t), t ≥ 0} on S = {0, 1, 2,
· · ·} is called a birth and death process if its generator matrix is given by

Q =















−λ0 λ0

µ1 −(λ1 + µ1) λ1

µ2 −(λ2 + µ2) λ2

µ3 −(λ3 + µ3) λ3

. . .
. . .















.

The rate diagram is shown in Figure 6.8. In biological systems, X(t) represents the

0 1

λ0

µ1

2

λ1

µ2

3

λ2 λ3

µ3 µ4

Figure 6.8 The rate diagram for a birth and death process.

number of organisms in a colony at time t, and the transition from i to i−1 represents

death and that from i to i + 1 represents birth. Hence the name “birth and death

process.” The parameter µi is called the death rate in state i and λi is called the

birth rate in state i. We define µ0 = 0, since death cannot occur when there are no

organisms to die. A birth and death process spends exp(λi + µi) amount of time in

state i, and then jumps to state i− 1 with probability µi/(λi + µi), or to state i+ 1
with probability λi/(λi + µi). A very large number of queuing models give rise to

birth and death processes and we shall study them in detail in Chapter 7. Here we

give a few examples.

Example 6.11 Single-Server Queue. Consider a single-server service system

where customers arrive according to a PP(λ) and request iid exp(µ) service times.

The customers wait in an unlimited waiting area and are served in the order of ar-

rivals. Let X(t) be the number of customers in the system (waiting or in service) at

time t. We shall show that {X(t), t ≥ 0} is a birth and death process.

The state-space is S = {0, 1, 2, · · ·}. Suppose X(t) = 0, that is, there are no

customers in the system at time t. The triggering event is E01 = arrival of a new

customer. From the properties of the PP we have T ∼ exp(λ). Thus q01 = λ. Now

suppose X(t) = i > 0. Then one customer is in service and i − 1 are waiting at

time t. Now there are two triggering events: Ei,i+1 = arrival of a new customer,

and Ei,i−1 = departure of the customer in service. From the memoryless property of

exponentials, we see that Ti,i+1 ∼ exp(λ) and Ti,i−1 ∼ exp(µ). Hence qi,i+1 = λ
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and qi,i−1 = µ for i ≥ 1. Hence {X(t), t ≥ 0} is a birth and death process with birth

parameters λi = λ for i ≥ 0, and death parameters µi = µ for i ≥ 1.

Example 6.12 Infinite-Server Queue. Suppose customers arrive according to

PP(λ) to a service system with infinite servers. The customer service times are iid

exp(µ) random variables. Since there are an infinite number of servers, there is no

waiting and each arriving customer starts getting served at the time of arrival. Such

systems arise as models of self service systems such as parking lots, cafeterias, read-

ing rooms, etc. LetX(t) be the number of customers in the system at time t. We shall

show that {X(t), t ≥ 0} is a birth and death process.

The state-space is S = {0, 1, 2, · · ·}. Suppose X(t) = i ≥ 0. Then i customers

are in service at time t. Now there are two triggering events: Ei,i+1 = arrival of a

new customer, and Ei,i−1 = departure of one of the i customers in service. From

the memoryless property of exponentials, we see that Ti,i+1 ∼ exp(λ) and Ti,i−1 ∼
exp(iµ). Hence qi,i+1 = λ and qi,i−1 = iµ for i ≥ 1. Hence {X(t), t ≥ 0} is a

birth and death process with birth parameters λi = λ for i ≥ 0, and death parameters

µi = iµ for i ≥ 0.

Example 6.13 Linear Growth Model. Consider a colony of individuals whose

lifetimes are independent exp(µ) random variables. During its lifetime an organism

produces offspring according to a PP(λ), independent of everything else. Let X(t)
be the number of organisms in the colony at time t. We shall show that {X(t), t ≥ 0}
is a birth and death process.

The state-space is S = {0, 1, 2, · · ·}. Suppose X(t) = 0, that is, there are no

organisms in the colony at time t. Then X(u) = 0 for all u ≥ t. Thus state 0

is absorbing. Now suppose X(t) = i > 0. Now there are two triggering events:

Ei,i+1 = one of the i organisms gives birth to an individual, and Ei,i−1 = one of

the i organisms dies. From the results about the superposition of Poisson processes,

we see that Ti,i+1 ∼ exp(iλ) and from the memoryless properties of exponential

random variables we get Ti,i−1 ∼ exp(iµ). Hence qi,i+1 = iλ and qi,i−1 = iµ.

Hence {X(t), t ≥ 0} is a birth and death process with birth parameters λi = iλ and

death parameters µi = iµ for i ≥ 0.

Example 6.14 N -Machine Workshop. Consider an extension of Example 6.5 to

N independent and identical machines, each with its own dedicated repairperson. Let

X(t) be the number of working machines at time t. We shall show that {X(t), t ≥ 0}
is a birth and death process.

The state-space of {X(t), t ≥ 0} is {0, 1, · · · , N}. Suppose X(t) = i, i.e., i
machines are up and N − i machines are down at time t. There are two possible trig-

gering events: Ei,i−1 = one of the i functioning machines fails, and Ei,i+1 = one of
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the N − i machines under repair completes its repair. We see that Ti,i−1 is the mini-

mum of i iid exp(µ) random variables, hence Ti,i−1 ∼ exp(iµ). Similarly, Ti,i+1 is

the minimum ofN − i iid exp(λ) random variables, hence Ti,i+1 ∼ exp((N − i)λ).
Thus we get qi,i−1 = iµ and qi,i+1 = (N − i)λ, 0 ≤ i ≤ N . Hence {X(t), t ≥ 0} is

a birth and death process with birth parameters λi = (N − i)λ and death parameters

µi = iµ for 0 ≤ i ≤ N .

Example 6.15 Retrial Queue. We describe a simple retrial queue here. Consider

a single-server system where the customers arrive according to a PP(λ) and have iid

exp(µ) service times. Suppose the system capacity is 1. Thus if an arriving customer

finds the server idle, he immediately starts getting served. On the other hand, if an

arriving customer finds the server busy, he goes away (we say he joins an orbit) and

tries his luck again after an exp(θ) amount of time independent of everything else.

He persists this way until he is served. All customers behave in this fashion. We

model this as a CTMC.

Let X(t) be the number of customers in service at time t. Obviously X(t) ∈
{0, 1}. Let R(t) be the number of customers in the orbit. We consider the bivari-

ate process {(X(t), R(t)), t ≥ 0} with state-space S = {(i, k) : i = 0, 1; k =
0, 1, 2, · · ·}.

Suppose (X(t), R(t)) = (1, k), k ≥ 0, i.e., the server is busy and there are k cus-

tomers in the orbit at time t. There are two possible events that can lead to a state

change: E(1,k),(1,k+1) = an external arrival occurs, and E(1,k),(0,k) = the customer

in service departs. Notice that if a customer in orbit conducts a retrial, he simply re-

joins the orbit, and hence there is no change of state. We have T(1,k),(1,k+1) ∼ exp(λ)
and T(1,k),(0,k) ∼ exp(µ). Thus q(1,k),(1,k+1) = λ and q(1,k),(0,k) = µ.

Next suppose (X(t), R(t)) = (0, k), k ≥ 1, i.e., the server is idle and there are

k customers in the orbit at time t. There are two possible events that can lead to a

state change: E(0,k),(1,k) = an external arrival occurs, and E(0,k),(1,k−1) = one of

the k customers in the orbit conducts a retrial, and finding the server idle, joins ser-

vice. We have T(0,k),(1,k) ∼ exp(λ) and T(0,k),(1,k−1), being the minimum of k iid

exp(θ) random variables, is an exp(kθ) random variable. Thus q(0,k),(1,k) = λ and

q(0,k),(1,k−1) = kθ.

Finally, suppose (X(t), R(t)) = (0, 0). There is only one triggering event in this

state, namely, arrival of an external customer, leading to the new state (1, 0). Hence

T(0,0),(1,0) ∼ exp(λ). Thus {(X(t), R(t)), t ≥ 0} is a CTMC. The rate diagram is

shown in Figure 6.9.
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1,2

0,2

λµ

1,3

0,3

λµ

Figure 6.9 The rate diagram for the retrial queue.

6.3 Transient Behavior: Marginal Distribution

In this section we study the transient behavior of a CTMC {X(t), t ≥ 0} on state-

space S = {0, 1, 2, · · ·} with initial distribution a = [ai] and transition probability

matrices {P (t), t ≥ 0}. To be specific, we study the pmf of X(t) for a fixed t. Let

pj(t) = P(X(t) = j), j ∈ S, t ≥ 0,

and

p(t) = [pj(t)]j∈S

be the pmf of X(t). Conditioning on X(0) we get

pj(t) = P(X(t) = j)

=
∑

i∈S

P(X(t) = j|X(0) = i)P(X(0) = i)

=
∑

i∈S

aipij(t).

In matrix form, we get

p(t) = aP (t), t ≥ 0.

Thus it suffices to study P (t) to study p(t). We start with the following theorem.

Theorem 6.3 Chapman-Kolmogorov Equations. Let P (t) be the transition prob-

ability matrix of a CTMC {X(t), t ≥ 0}. Then

(i) pij(t) ≥ 0, i, j ∈ S, t ≥ 0.

(ii)
∑

j∈S

pij(t) = 1, i ∈ S, t ≥ 0. (6.11)

(iii) pij(s+ t) =
∑

k∈S

pik(s)pkj(t), i, j ∈ S, s, t ≥ 0. (6.12)

Proof: Part (i) is obvious since pij(t)’s are conditional probabilities. To show Equa-

tion 6.11, we assume the regularity condition in 6.1 and use the representation in

Equation 6.3 to get
∑

j∈S

pij(t) =
∑

j∈S

P(XN(t) = j|X0 = i)
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=
∑

j∈S

∞
∑

n=0

P(XN(t) = j|X0 = i, N(t) = n)P(N(t) = n|X0 = i)

=
∑

j∈S

∞
∑

n=0

P(Xn = j|X0 = i, N(t) = n)P(N(t) = n|X0 = i)

=

∞
∑

n=0

∑

j∈S

P(Xn = j|X0 = i, N(t) = n)P(N(t) = n|X0 = i)

=
∑

j∈S

P(N(t) = n|X0 = i)

= P(N(t) <∞|X0 = i) = 1.

Here the second to last equality is a result of the fact that Xn ∈ S for all n ≥ 0, and

the last equality is the result of Equation 6.2.

To show Equation 6.12, we condition on X(s) to get

pij(s+ t) = P(X(s+ t) = j|X(0) = i)

=
∑

k∈S

P(X(s+ t) = j|X(0) = i,X(s) = k)P(X(s) = k|X(0) = i)

=
∑

k∈S

P(X(s+ t) = j|X(s) = k)pik(s)

(from Markov property, Equation 6.5)

=
∑

k∈S

pik(s)P(X(t) = j|X(0) = k)

(from time-homogeneity, Equation 6.6)

=
∑

k∈S

pik(s)pkj(t).

This completes the proof.

Equation 6.12 is called the Chapman-Kolmogorov equation for the CTMCs. It is

analogous to the Chapman-Kolmogorov equation for the DTMCs, as given in Equa-

tion 2.21. Equation 6.12 can be written in matrix form as

P (s+ t) = P (s)P (t), s, t ≥ 0.

By interchanging s and t we get

P (s+ t) = P (t)P (s), s, t ≥ 0.

This shows a very important and unusual property of the matrices {P (t), t ≥ 0}:

they commute, i.e.,

P (s)P (t) = P (t)P (s), s, t ≥ 0.

We next develop a set of differential equations satisfied by the transition probabil-

ity matrix P (t) in the next theorem. We say that P (t) is differentiable with respect

to t if pij(t) is differentiable with respect to t for all t > 0 and i, j ∈ S. We define
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the derivative of the matrix P (t) with respect to t as the matrix of the derivatives of

pij(t).

Theorem 6.4 Forward and Backward Equations. LetP (t) be the transition prob-

ability matrix of a CTMC with state-space S = {0, 1, 2, · · ·} and generator matrix

Q. Then P (t) is differentiable with respect t and satisfies

d

dt
P (t) = P ′(t) = QP (t), (Backward Equations) (6.13)

and
d

dt
P (t) = P ′(t) = P (t)Q, (Forward Equations) (6.14)

with initial condition

P (0) = I,

where I is an identity matrix of appropriate size.

Proof: We shall first prove that

pij(h) = δij + qijh+ o(h), i, j ∈ S, (6.15)

where, δij = 1 if i = j and 0 otherwise, and o(h) is a function such that

lim
h→0

o(h)

h
= 0.

From the properties of the sequence {X0, (Xn, Yn), n ≥ 1}, we get

P(N(h) = 0|X0 = i) = P(Y1 > h|X0 = i)

= e−qih = 1 − qih+ o(h)

= 1 + qiih+ o(h).

Also,

P(N(h) = 1|X0 = i) = P(Y1 ≤ h, Y1 + Y2 > h|X0 = i)

=
∑

j∈S,j 6=i

∫ h

0

qie
−qise−qj(h−s)pijds

=
∑

j∈S,j 6=i

qipije
−qjh 1 − e−(qi−qj)h

qi − qj
(assuming qi 6= qj)

= qih+ o(h)

where the last equality follows after a bit of algebra. Similar analysis yields

P(N(h) ≥ 2|X0 = i) = o(h).

Using these we get

pii(h) = P(X(h) = i|X(0) = i)

= P(XN(h) = i|X0 = i)

= P(XN(h) = i|X0 = i, N(h) = 0)P(N(h) = 0|X0 = i)
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+P(XN(h) = i|X0 = i, N(h) = 1)P(N(h) = 1|X0 = i)

+P(XN(h) = i|X0 = i, N(h) ≥ 2)P(N(h) ≥ 2|X0 = i)

= 1 · (1 + qiih+ o(h)) + 0 · (qih+ o(h)) + o(h)

= 1 + qiih+ o(h).

Also, for j 6= i, we get

pij(h) = P(X(h) = j|X(0) = i)

= P(XN(h) = j|X0 = i)

= P(XN(h) = j|X0 = i, N(h) = 0)P(N(h) = 0|X0 = i)

+P(XN(h) = j|X0 = i, N(h) = 1)P(N(h) = 1|X0 = i)

+P(XN(h) = j|X0 = i, N(h) ≥ 2)P(N(h) ≥ 2|X0 = i)

= 0 · (1 + qiih+ o(h)) + P(X1 = j|X0 = i)(qih+ o(h)) + o(h)

= pij(qih+ o(h)) + o(h) = qijh+ o(h).

This proves Equation 6.15. Using this we get

pij(t+ h) =
∑

k∈S

pik(h)pkj(t)

(Chapman-Kolmogorov Equations 6.12)

=
∑

k∈S

(δik + qikh+ o(h))pkj(t) (Equation 6.15).

Hence

pij(t+ h) − pij(t) =
∑

k∈S

qikhpkj(t) + o(h).

Dividing by h yields

pij(t+ h) − pij(t)

h
=
∑

k∈S

qikpkj(t) +
o(h)

h
.

Letting h → 0 we see that the right hand side has a limit, and hence pij(t) is differ-

entiable with respect to t and satisfies

p′ij(t) =
∑

k∈S

qikpkj(t).

Writing this in matrix form we get the backward equations 6.13. The forward

equations follow similarly by interchanging t and h in applying the Chapman-

Kolmogorov equations.

Thus one may solve forward or backward equations to obtain P (t). Once we have

the matrix P (t), we have the distribution of X(t). We illustrate by means of an

example.

Example 6.16 Two-State Machine. Consider the CTMC of Example 6.4 with the

rate matrix given in Equation 6.10. The forward equations are

p′00(t) = −λp00(t) + µp01(t), p00(0) = 1,
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p′01(t) = λp00(t) − µp01(t), p01(0) = 0,

p′10(t) = −λp10(t) + µp11(t), p10(0) = 0,

p′11(t) = λp10(t) − µp11(t), p11(0) = 1,

and the backward equations are

p′00(t) = −λp00(t) + λp10(t), p00(0) = 1,

p′10(t) = µp00(t) − µp10(t), p10(0) = 0,

p′01(t) = −λp01(t) + λp11(t), p01(0) = 0,

p′11(t) = µp10(t) − µp11(t), p11(0) = 1.

Note that we do not need to solve four equations in four unknowns simultaneously,

but only in two equations in two unknowns at a time. We solve the first two forward

equations here. We have

p00(t) + p01(t) = P(X(t) = 0 or 1|X(0) = 0) = 1. (6.16)

Substituting for p01(t) in the first forward equation we get

p′00(t) = −λp00(t) + µ(1 − p00(t)) = −(λ+ µ)p00(t) + µ.

This is a non-homogeneous first order differential equation with constant coeffi-

cients, and can be solved by standard methods (see Appendix I) to get

p00(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
.

Using Equation 6.16 we get

p01(t) =
λ

λ+ µ
(1 − e−(λ+µ)t).

Similarly we can solve the last two forward equations to get p10(t) and p11(t). Com-

bining all these solutions we get

P (t) =

[

λ
λ+µe

−(λ+µ)t + µ
λ+µ

λ
λ+µ (1 − e−(λ+µ)t)

µ
λ+µ (1 − e−(λ+µ)t) µ

λ+µe
−(λ+µ)t + λ

λ+µ

]

. (6.17)

It is easy to check that P (t) satisfies the Chapman-Kolmogorov Equations 6.12 and

thatP (t) and P (s) commute. Figure 6.10 shows graphically various pij(t) functions.

6.4 Transient Behavior: Occupancy Times

Following the steps in the study of DTMCs, we now study the occupancy times in

the CTMCs. Let {X(t), t ≥ 0} be a CTMC on state-space S with generator matrix

Q. Let Vj(t) be the amount of time the CTMC spends in state j over (0, t]. Thus

Vj(0) = 0 for all j ∈ S. Define

Mij(t) = E(Vj(t)|X(0) = i), i, j ∈ S, t ≥ 0. (6.18)
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1

λ

P11(t)

P00(t)

P01(t)

t

P10(t)

λ+µ

µ

λ+µ

Figure 6.10 The transition probability functions for the two-state CTMC.

Mij(t) is called the occupancy time of state j up to time t starting from state i. Define

the occupancy times matrix as

M(t) = [Mij(t)].

The next theorem shows how to compute the occupancy times matrix M(t).

Theorem 6.5 Occupancy Times Matrix. We have

M(t) =

∫ t

0

P (u)du, t ≥ 0, (6.19)

where the integral of a matrix is defined to be the matrix of the integrals of its ele-

ments.

Proof: Fix a j ∈ S. Let Z(u) = 1 if X(u) = j, and zero otherwise. Then

Vj(t) =

∫ t

0

Z(u)du.

Hence we get

Mij(t) = E(Vj(t)|X(0) = i)

= E

(∫ t

0

Z(u)du|X(0) = i

)

=

∫ t

0

E(Z(u)|X(0) = i)du

=

∫ t

0

P(X(u) = j|X(0) = i)du

=

∫ t

0

pij(u)du.

Writing the above equation in matrix form yields Equation 6.19. This proves the the-

orem.

We illustrate with an example.
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Example 6.17 Two-State Machine. Consider the CTMC of Example 6.4 with the

rate matrix given in Equation 6.10. The transition probability matrix P (t) of this

CTMC is given in Equation 6.17. Using that, and carrying out the integration, we see

that the occupancy matrix is given by
[

µ
λ+µ t+ λ

(λ+µ)2 (1 − e−(λ+µ)t) λ
λ+µ t− λ

(λ+µ)2 (1 − e−(λ+µ)t)
µ

λ+µ t−
µ

(λ+µ)2 (1 − e−(λ+µ)t) λ
λ+µ t+ µ

(λ+µ)2 (1 − e−(λ+µ)t)

]

. (6.20)

Thus, if the CTMC starts in state 1, the expected time it spends in state 2 up to time

t is given by M12(t).

6.5 Computation of P (t): Finite State-Space

In this section we present several methods of computing the transition matrix P (t) of

a CTMC with finite state-space S = {1, 2, · · · , N} and generator matrixQ. We shall

illustrate the methods with two examples: the two-state machine of Example 6.4

which we analyze algebraically, and the two-machine workshop of Example 6.6

which we analyze numerically.

6.5.1 Exponential of a Matrix

Define the exponential of an N ×N square matrix A as follows:

eA = I +

∞
∑

n=1

An

n!
.

Note that eA is anN×N square matrix. One can show that the series on the right had

side converges absolutely, and hence eA is well defined. Note that if A is a diagonal

matrix

A = diag[a1, a2, · · · , aN ],

then

eA = diag[ea1 , ea2 , · · · , eaN ].

In particular e0 = I where 0 is a square matrix with all elements equal to zero. The

next theorem gives the main result. Following the discussion in Section 2.4, we say

that Q is diagonalizable if there exist a diagonal matrix D and an invertible matrix

X such that

Q = XDX−1. (6.21)

We saw in that section how to obtain the D and X if Q is diagonalizable.

Theorem 6.6 Exponential of Qt. The transition probability matrix of a finite-state

CTMC with generator matrix Q is given by

P (t) = eQt, t ≥ 0. (6.22)
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Furthermore, if Q is diagonalizable and satisfies Equation 6.21

P (t) = XeDtX−1 =

N
∑

i=1

eλitxiyi, (6.23)

where λi = Dii, xi is the ith column of X , and yi is the ith row of X−1.

Proof: We have

eQt = I +

∞
∑

n=1

(Qt)n

n!
, t ≥ 0. (6.24)

Since the infinite series converges uniformly, we can take derivatives term by term to

get
d

dt
eQt = QeQt = eQtQ.

Thus eQt satisfies the forward and backward equations. Since there is a unique so-

lution to those equations in the finite state-space case, we get Equation 6.22. Now,

from Theorem 2.7 we get

Qn = XDnX−1, n ≥ 0.

Substituting in Equation 6.24, and factoring out X on the left and X−1 on the right,

we get

eQt = X

(

I +

∞
∑

n=1

(Dt)n

n!

)

X−1, t ≥ 0,

which yields Equation 6.23. The last representation follows from a similar represen-

tation in Equation 2.32 on page 38.

The next theorem is analogous to Theorem 2.8 on page 39.

Theorem 6.7 Eigenvalues ofQ. Let Q be an N ×N generator matrix of a CTMC,

with N eigenvalues λi, 1 ≤ i ≤ N . Let

q = max{−qii : 1 ≤ i ≤M}.
Then

1. At least one of the eigenvalues is zero.

2. |λi + q| ≤ q for all 1 ≤ i ≤ N .

Proof: Define

P = I +
Q

q
.

(We shall see this matrix again in the sub-section on uniformization.) It is easy to

verify that P is a stochastic matrix. Now it can be seen that the N eigenvalues of P
are given by 1 + λi/q , (1 ≤ i ≤ m). From Theorem 2.8 we see that P has at least

one eigenvalue equal to one, thus at least one λi/q+ 1 equals 1. Thus at least one λi
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is zero. Also, all eigenvalues of P lie in complex plane within the unit circle centered

at zero. Thus we must have

|1 +
λi

q
| ≤ 1.

Thus each λi must lie in the complex plane within a circle of radius q with center at

−q, which is the second part of the theorem.

Many matrix oriented software programs provide built-in ways to compute the

matrix exponential function. For example, Matlab provides a function expm: we can

compute P (t) by the Matlab statement: P (t) = expm(Q∗ t). Although simple to use

for reasonable sized matrices with numerical entries, it does not provide any insight

about the behavior of P (t) as a function of t. We get this insight from the above

theorem, which gives P (t) as an explicit function of t. We illustrate with examples.

Example 6.18 Two-State Machine. Consider the two-state CTMC with generator

matrix given in Equation 6.10. We have

Q = XDX−1,

where

X =

[

1 λ
λ+µ

1 − µ
λ+µ

]

, D =

[

0 0
0 −(λ+ µ)

]

, X−1 =

[

λ
λ+µ

λ
λ+µ

1 −1

]

.

Substituting in Equation 6.23 we get

P (t) = X

[

1 0
0 e−(λ+µ)t

]

X−1.

Straightforward calculations show that this reduces to the transition probability ma-

trix given in Equation 6.17.

Example 6.19 Two-Machine One-Repairperson Workshop. Consider the ma-

chine shop of Example 6.6. Suppose that the mean life time of a machine is 10 days,

while the mean repair time is one day. Let X(t) be the number of working machines

at time t. Using days as the unit of time, we see that λ = 1 and µ = .1, and thus

{X(t), t ≥ 0} is a CTMC on state-space {0, 1, 2}and generator matrix

Q =





−1 1 0
.1 −1.1 1
0 .2 −.2



 .

Numerical calculations show that

Q = XDX−1,

where

X =





0.9029 0.9844 0.5774
−0.4245 0.1675 0.5774
0.0668 −0.0532 0.5774



 , X−1 =





0.3178 −1.4943 1.1765
0.7076 1.2041 −1.9117
0.0284 0.2839 1.4197



 ,
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and

D =





−1.4702 0 0
0 −0.8298 0
0 0 0



 .

Hence, from Theorem 6.6, we get

P (t) = e−1.4702t





0.2870 −1.3493 1.0623
−0.1349 0.6344 −0.4994
0.0212 −0.0999 0.0786





+e−0.8298t





0.6966 1.1853 −1.8820
0.1185 0.2017 −0.3202
−0.0376 −0.0640 0.1017





+





0.0164 0.1639 0.8197
0.0164 0.1639 0.8197
0.0164 0.1639 0.8197



 .

Thus if all machines are initially down, the probability that one machine is working

at the end of the first day is given by

p01(1) = −1.3493e−1.4702 + 1.1853e−0.8298 + 0.1639 = 0.3707.

From the explicit expression for P (t) we see that

lim
t→∞

P (t) =





0.0164 0.1639 0.8197
0.0164 0.1639 0.8197
0.0164 0.1639 0.8197



 .

Thus P (t) has a limit, and in the limit all its rows are identical. This is similar to the

behavior we had encountered in the study of DTMCs. We shall study this in more

detail in Section 6.10.

6.5.2 Laplace Transforms

Define the Laplace transform (LT) (see Appendix F) of pij(t) as follows:

p∗ij(s) =

∫ ∞

0

e−stpij(t)dt, Re(s) > 0,

whereRe(s) is the real part of the complex number s. Defining the LT of a matrix as

the matrix of the LTs of its elements, we write

P ∗(s) = [p∗ij(s)]i,j∈S .

The next theorem gives the main result.

Theorem 6.8 The LT of the transition probability matrix P (t) is given by

P ∗(s) = [sI −Q]−1, Re(s) > 0.
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Proof: Using the properties of the Laplace transforms, we get
∫ ∞

0

e−stp′ij(t)dt = sp∗ij(s) − pij(0).

In matrix form, this yields that the LT of the derivative matrix P ′(t) is given by

sP ∗(s)− I . Now taking the LT on both sides of Equation 6.13 or 6.14, and using the

initial condition P (0) = I , we get

sP ∗(s) − I = QP ∗(s) = P ∗(s)Q. (6.25)

This can be rearranged to get

(sI −Q)P ∗(s) = P ∗(s)(sI −Q) = I.

Since sI −Q is invertible for Re(s) > 0, the theorem follows.

Example 6.20 Two-State Machine. Consider the two-state CTMC with generator

matrix given in Equation 6.10. From Theorem 6.8 we have

P ∗(s) =
1

s(s+ λ+ µ)

[

s+ µ λ
µ s+ λ

]

.

Using partial fraction expansion, we get, for example

p∗00(s) =
s+ µ

s(s+ λ+ µ)
=

µ

λ+ µ
· 1

s
+

λ

λ+ µ
· 1

s+ λ+ µ
.

Using the table of LTs (See Appendix F), we can invert the above transform to get

p00(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
.

We can compute other transition probabilities in a similar fashion to obtain the tran-

sition probability matrix given in Equation 6.17.

Example 6.21 Two-Machine One-Repairperson Workshop. Consider the

CTMC of Example 6.19. Using Theorem 6.8 we get

P ∗(s) =





s+ 1 −1 0
−.1 s+ 1.1 −1
0 −.2 s+ .2





−1

=
1

D(s)





50s2 + 65s+ 1 10(5s+ 1) 50
5s+ 1 10(s+ 1)(5s+ 1) 50(s+ 1)

1 10(s+ 1) 5 ∗ (10s2 + 21s+ 10)



 ,

where

D(s) = s(50s2 + 115s+ 61) = s(s+ 0.8298)(s+ 1.4702).

Thus, using partial fractions, we get

p∗01(s) =
10(5s+ 1)

s(50s2 + 115s+ 61)
=

0.1639

s
+

1.1853

s+ 0.8298
− 1.3493

s+ 1.4702
.
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This can be inverted easily to get

p01(t) = 0.1639 + 1.1853e−0.8298t − 1.3493e−1.4702t,

which matches the result in Example 6.19.

6.5.3 Uniformization

We begin with the following theorem.

Theorem 6.9 Let {Xn, n ≥ 0} be a DTMC on state-space S = {1, 2, · · · , N} with

one-step transition probability matrix P = [pij ]. Let {N(t), t ≥ 0} be a PP(λ) that

is independent of {Xn, n ≥ 0}. Define X(t) = XN(t). Then {X(t), t ≥ 0} is a

CTMC on state-space S with generator matrix

Q = λ(P − I). (6.26)

Proof: Let Ni = min{n ≥ 0 : Xn 6= i}. Then

P(Ni = k|X0 = i) = pk−1
ii (1 − pii), k ≥ 1.

That is, given X(0) = X0 = i, Ni is a geometric random variable with parameter

1 − pii. Now let Ti = min{t ≥ 0 : X(t) 6= i}. Thus Ti is a sum of a geometric

number of iid exp(λ) random variables. Hence from Theorem 5.7 on page 154 it

follows that Ti ∼ exp(λ(1 − pii)). Also,

P(XNi
= j|X0 = i) =

{ pij

1−pii
j 6= i,

0 j = i.

, Now let

qi = −qii = λ(1 − pii), qij = λpij . (6.27)

Due to the Markov properties of {Xn, n ≥ 0}, and {N(t), t ≥ 0}, we see that

{X(t), t ≥ 0} stays in state i for an exp(qi) amount of time and then jumps to state

j 6= i with probability qij/qi, independent of the length of the sojourn in state i.
Hence {X(t), t ≥ 0} is a CTMC with generator matrix Q = [qij ]. Equation 6.27

implies that Q is given by Equation 6.26.

We use the above theorem in reverse to compute P (t) as shown in the following

theorem.

Theorem 6.10 Uniformization. Let {X(t), t ≥ 0} be a CTMC on finite state-space

S = {1, 2, · · · , N} with rate matrix Q. Let

λ = max
i∈S

{−qii},

and define

P = I +
Q

λ
. (6.28)
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Then, P (t), the transition probability matrix of {X(t), t ≥ 0} is given by

P (t) =

∞
∑

n=0

e−λt (λt)
n

n!
Pn, t ≥ 0. (6.29)

Proof: First, Equation 6.28 implies that P is a stochastic matrix. Now let {Xn, n ≥
0} be a DTMC with one-step transition matrix P and let {N(t), t ≥ 0} be a PP(λ)

that is independent of the DTMC. From Theorem 6.10 it follows that {XN(t), t ≥ 0}
is a CTMC with generator matrix Q. Hence, for i, j ∈ S and t ≥ 0, we get

pij(t) = P(X(t) = j|X(0) = i)

= P(XN(t) = j|X0 = i)

=

∞
∑

n=0

P(XN(t) = j|N(t) = n,X0 = i)P(N(t) = n|X0 = i)

=

∞
∑

n=0

P(Xn = j|N(t) = n,X0 = i)e−λt (λt)
n

n!

=

∞
∑

n=0

e−λt (λt)
n

n!
[Pn]ij .

Putting the above equation in matrix form yields Equation 6.29.

In practice one would computeP (t) by truncating the series in Equation 6.29 after

a finite number of terms. We discuss below how to decide when to truncate the series.

For a given τ > 0, and an ǫ > 0, it is possible to find an M <∞ such that

∞
∑

n=M+1

e−λτ (λτ)n

n!
< ǫ.

Choose the smallest such M , and define

PM (t) =

M
∑

n=0

e−λt (λt)
n

n!
Pn.

We see that, for all 0 ≤ t ≤ τ ,

‖P (t) − PM (t)‖ = max
i,j∈S

|[P (t)]ij − [PM (t)]ij |

= max
i,j∈S

∞
∑

n=M+1

e−λt (λt)n

n!
[Pn]ij

≤
∞
∑

n=M+1

e−λt (λt)
n

n!
< ǫ.

Thus PM (t) is an ǫ lower bound on P (t) for all 0 ≤ t ≤ τ. In our experience uni-

formization has proved to be an extremely stable and efficient numerical procedure
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for computing P (t). A subtle numerical difficulty arises when λt is so large that

e−λt is numerically computed to be zero. In this case we need more ingenious ways

of computing the series. We shall not go into the details here.

Example 6.22 Two-State Machine. Consider the two-state CTMC with generator

matrix given in Equation 6.10. To avoid confusing notation, we use q instead of λ in

Equation 6.28 to get

q = max(−q00,−q11) = max(λ, µ).

Note that any q larger than the right hand side would do. Thus instead of choosing

q = max(λ, µ), we use q = λ+ µ. Then we get

P = I +
Q

q
=

1

λ+ µ

[

µ λ
µ λ

]

.

Clearly, we have P 0 = I and Pn = P for n ≥ 1. Thus we have

P (t) = e−(λ+µ)t

(

I + P
∞
∑

n=1

((λ + µ)t)n

n!

)

,

which reduces to Equation 6.17.

Example 6.23 Two-Machine One-Repairperson Workshop. Consider the

CTMC of Example 6.19. From Equation 6.28 we get

λ = max(1, 1.1, .2) = 1.1.

Hence we get

P = I +
Q

1.1
=

1

1.1





.1 1 0

.1 0 1
0 .2 .9



 .

Using Theorem 2.7 on page 38 we get

Pn = (−.3365)n





0.2870 −1.3493 1.0623
−0.1349 0.6344 −0.4994
0.0212 −0.0999 0.0786





+(.2456)n





0.6966 1.1853 −1.8820
0.1185 0.2017 −0.3202
−0.0376 −0.0640 0.1017





+(1)n





0.0164 0.1639 0.8197
0.0164 0.1639 0.8197
0.0164 0.1639 0.8197



 .

Substituting this in Equation 6.29 and simplifying, we get Equation 6.25.

It should be noted that the method of uniformization works even if the CTMC

has infinite state-space as along as λ computed by the Equation 6.28 is finite. Such
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CTMCs are called uniformizable. It is easy to see that uniformizable CTMCs are

automatically regular, since they can have at most P (λt) transitions over (0, t].

Finally, one can always solve the backward or forward equations by standard nu-

merical methods of solving differential equations. We refer the readers to any book

on differential equations for more details.

6.6 Computation of P (t): Infinite State-Space

In this section we discuss the computation of the transition matrix P (t) for a CTMC

{X(t), t ≥ 0} on infinite state-space S = {0, 1, 2, · · ·}. This can be done only when

the CTMC has highly specialized structure. In our experience the transform methods

are most useful in such cases. We illustrate with several examples.

Example 6.24 Poisson Process. Let {X(t), t ≥ 0} be a PP(λ). We haveX(0) = 0.

To simplify notation we write

pi(t) = p0i(t) = P(X(t) = i|X(0) = 0), i ≥ 0, t ≥ 0.

The forward equations are

p′0(t) = −λp0(t),

p′i(t) = −λpi(t) + λpi−1(t), i ≥ 1,

with initial conditions

p0(0) = 1, pi(0) = 0, i ≥ 1.

Taking Laplace transforms on both sides of the above differential equations, we get

sp∗0(s) − 1 = −λp∗0(s),
sp∗i(s) = −λp∗i(s) + λp∗i−1(s), i ≥ 1.

These can be solved recursively to obtain

p∗i(s) =
λi

(s+ λ)i+1
, i ≥ 0.

Inverting this using the table in Appendix F, we get

pi(t) = e−λt (λt)
i

i!
, i ≥ 0,

which is as expected.

Example 6.25 Pure Birth Process. Let {X(t), t ≥ 0} be a pure birth process as

described in Example 6.8 with birth parameters λi in state i ≥ 0, and assume that

X(0) = 0. As before we write

pi(t) = p0i(t) = P(X(t) = i|X(0) = 0), i ≥ 0, t ≥ 0.
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The forward equations are

p′0(t) = −λ0p0(t),

p′i(t) = −λipi(t) + λi−1pi−1(t), i ≥ 1

with initial conditions

p0(0) = 1, pi(0) = 0, i ≥ 1.

Taking Laplace transforms of the above differential equations, we get

sp∗0(s) − 1 = −λ0p
∗
0(s),

sp∗i(s) = −λip
∗
i(s) + λi−1p

∗
i−1(s), i ≥ 1.

These can be solved recursively to obtain

p∗i(s) =
1

λi

i
∏

k=0

λk

s+ λk
, i ≥ 0.

Consider the case when all the λi’s are distinct. Then we can use partial fractions

expansion easily to get

pi(t) =
i
∑

k=0

Akiλke
−λkt, i ≥ 0,

where

Aki =
1

λi

i
∏

r=0,r 6=k

λr

λr − λk
.

As a special case, suppose λi = iλ, (i ≥ 0), but with X(0) = 1. It can be shown that

(see Computational Exercise 6.4) in this case we get

P(X(t) = i|X(0) = 1) = e−λt(1 − e−λt)i−1.

Thus given X(0) = 1, X(t) is geometrically distributed with parameter e−λt.

Example 6.26 Pure Death Process. Let {X(t), t ≥ 0} be a pure death process as

described in Example 6.9 with death parameters µi in state i ≥ 1, and assume that

X(0) = N . We want to compute

pi(t) = pNi(t) = P(X(t) = i|X(0) = N), 0 ≤ i ≤ N, t ≥ 0.

Using the fact that pN+1(t) = pN,N+1(t) = 0, we can write the forward equations

as

p′N(t) = −µNpN (t),

p′i(t) = −µipi(t) + µi+1pi+1(t), 0 ≤ i ≤ N − 1,

with initial conditions

pN (0) = 1, pi(0) = 0, 0 ≤ i ≤ N − 1.



COMPUTATION OF P (T ): INFINITE STATE-SPACE 219

Taking Laplace transforms on both sides of the above differential equations, we get

sp∗N (s) − 1 = −µNp
∗
N(s),

sp∗i(s) = −µip
∗
i(s) + µi+1p

∗
i+1(s), 0 ≤ i < N.

These can be solved recursively to obtain

p∗i(s) =
1

µi

N
∏

k=i

µk

s+ µk
, 0 ≤ i ≤ N.

When all the λi’s are distinct we can use partial fractions expansion easily to get

pi(t) =

N
∑

k=i

Bkiµke
−µkt, 0 ≤ i ≤ N

where

Bki =
1

µi

N
∏

r=i,r 6=k

µr

µr − µk
.

As a special case, suppose µi = iµ, (i ≥ 0), with X(0) = N . It can be shown that

(see Computational Exercise 6.5) given X(0) = N , X(t) is binomially distributed

with parameters N and e−µt.

Example 6.27 Linear Growth Model. Let X(t) be the birth and death process of

Example 6.13 with birth parameters λi = iλ and death parameters µi = iµ, i ≥ 0.

Suppose X(0) = 1. We shall compute

pi(t) = p1i(t) = P(X(t) = i|X(0) = 1), i ≥ 0, t ≥ 0.

The forward equations are

p′0(t) = µp1(t),

p′i(t) = (i− 1)λpi−1(t) − i(λ+ µ)pi(t) + (i+ 1)µpi+1(t), i ≥ 1,

with initial conditions

p1(0) = 1, pi(0) = 0, i 6= 1.

Now define the generating function

p(z, t) =

∞
∑

i=0

zipi(t).

Multiplying the differential equation for pi(t) by zi and summing over all i from 0

to ∞ we get

∞
∑

i=0

zip′i(t) =

∞
∑

i=1

(i− 1)λzipi−1(t) −
∞
∑

i=1

i(λ+ µ)zipi(t) +

∞
∑

i=0

(i+ 1)µzipi+1(t),

which reduces to

∂

∂t
p(z, t) = (λz2 − (λ+ µ)z + µ)

∂

∂z
p(z, t).
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This equation can be written in the canonical form as

∂

∂t
p(z, t) − a(z)

∂

∂z
p(z, t) = 0,

where

a(z) = λz2 − (λ+ µ)z + µ = (z − 1)(λz − µ).

Thus we have a linear first order partial differential equation, which can be solved

by the method of characteristic functions (see Chaudhry and Templeton (1983)). We

first form the total differential equations

dt

1
=

dz

−a(z) =
dp

0
.

The first equation can be integrated to yield
∫

dt =

∫

dz

−a(z)
or

t− 1

λ− µ
ln

(

λz − µ

z − 1

)

= c,

where c is an arbitrary constant. The last equation gives

p = constant.

Hence the general solution is

p(z, t) = f̂

(

t− 1

λ− µ
ln

(

λz − µ

z − 1

))

= f

(

(λ− µ)t− ln

(

λz − µ

z − 1

))

, (6.30)

where f is a function to be determined by the boundary condition

p(z, 0) =

∞
∑

i=0

zipi(0) = z.

Hence

f

(

ln

(

z − 1

λz − µ

))

= z. (6.31)

Now write

u = ln

(

z − 1

λz − µ

)

and invert it to get

z =
µeu − 1

λeu − 1
.

Substituting in Equation 6.31 we get

f(u) =
µeu − 1

λeu − 1
.
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Substituting in Equation 6.30 we get

p(z, t) =
µ exp

(

(λ− µ)t− ln
(

λz−µ
z−1

))

− 1

λ exp
(

(λ− µ)t− ln
(

λz−µ
z−1

))

− 1

which can be simplified to obtain

p(z, t) =
µ(1 − e(λ−µ)t) − (λ− µe(λ−µ)t)z

(µ− λe(λ−µ)t) − λ(1 − e(λ−µ)t)z
.

The above expression can be expanded in a power series in z, and then the coefficient

of zi will give us pi(t). Doing this, and using ρ = λ/µ, we get

p0(t) =
1 − e(λ−µ)t

1 − ρe(λ−µ)t
,

pi(t) = ρi−1(1 − ρ)e(λ−µ)t (1 − e(λ−µ)t)i−1

(1 − ρe(λ−µ)t)i+1
, i ≥ 1.

This completes the solution for the case X(0) = 1. The case X(0) = i ≥ 2 can

be analyzed by treating the linear growth process as the sum of i independent linear

growth processes, each starting in state 1. This example shows that even for highly

structured CTMCs computation of P (t) is a formidable task.

Although computing P (t) is hard, it is relatively easy to compute

mi(t) = E(X(t)|X(0) = i) =

∞
∑

k=0

kpik(t), i ≥ 0, t ≥ 0.

We have

m′
i(t) =

∞
∑

k=0

kp′ik(t).

By using the forward differential equations for pik(t) and carrying out the above sum

we get

m′
i(t) = (λ− µ)mi(t).

Using the initial condition,mi(0) = i, we can solve the above equation to get

mi(t) = ie(λ−µ)t.

Thus if λ, the birth rate per individual, is greater than µ, the death rate per individual,

then the mean population size explodes as t → ∞. If it is less, the mean population

size exponentially reduces to zero. If the two rates are equal, the mean population

size is constant. All these conclusions confirm our intuition.

6.7 First-Passage Times

We follow the developments of DTMCs and first study the first passage times in the

CTMCs before we study their limiting behavior. Specifically, let {X(t), t ≥ 0} be a
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CTMC on S = {0, 1, 2, · · ·} with generator matrix Q = [qij ], and define

T = min{t ≥ 0 : X(t) = 0}. (6.32)

We study the random variable T in this section. Since the first passage times in a

CTMC has a lot of similarity to the first passage times in the embedded DTMC,

many of the results follow from similar results in Chapter 3. Hence we do not spend

as much time on this topic here.

6.7.1 Cumulative Distribution of T

Define

rij(t) = P(T > t,X(t) = j|X(0) = i), i, j ≥ 1, t ≥ 0.

Then the complementary cdf of T , conditioned on X(0) = i, is given by

ri(t) = P(T > t|X(0) = i) =

∞
∑

j=1

rij(t).

Then next theorem gives the differential equations satisfied by

R(t) = [rij(t)]i,j≥1 .

We shall need the following notation

M = [qij ]i,j≥1.

Thus the matrix M is obtained by deleting the row and the column corresponding to

the state 0.

Theorem 6.11 The matrix function R(t) satisfies the following set of differential

equations:

R′(t) = MR(t) = R(t)M, (6.33)

with the initial condition

R(0) = I.

Proof: Follows along the same lines as the proof of the backward and forward equa-

tions in Theorem 6.4.

Thus we can use the methods described in the previous two sections to compute

R(t), and hence the complementary cdf of T .

The next theorem gives a more explicit expression for the cdf of T when the CTMC

has a finite state-space.

Theorem 6.12 Suppose the CTMC has state-space {0, 1, · · · ,K} and initial distri-

bution

α = [α1, α2, · · · , αK ],
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with
∑K

i=1 αi = 1.Then

P(T ≤ t) = 1 − αeMt
1, (6.34)

where 1 is a column vector of ones.

Proof: Since M is finite and R(0) = I , we can use Theorem 6.6 to obtain

R(t) = eMt.

Now,

P(T ≤ t) = 1 − P(T > t)

= 1 −
K
∑

i=1

αiP(T > t|X(0) = i)

= 1 −
K
∑

i=1

K
∑

j=1

αiP(T > t,X(t) = j|X(0) = i)

= 1 −
K
∑

i=1

K
∑

j=1

αirij(t)

= 1 − αR(t)1

= 1 − αeMt
1

as desired.

6.7.2 Absorption Probabilities

Define

vi = P(T = ∞|X(0) = i), i ≥ 1. (6.35)

Thus vi is the probability that the CTMC never visits state zero starting from state i.
The next theorem gives the main result.

Theorem 6.13 Let v = [v1, v2, · · ·]′. Then v is given by the largest solution bounded

above by 1 to

Mv = 0. (6.36)

Proof: Let {Xn, n ≥ 0} be the embedded DTMC in the CTMC {X(t), t ≥ 0}. The

transition probability matrix P of the embedded DTMC is related to the generator

matrix Q of the CTMC by Equation 6.9. We have

vi = P({X(t), t ≥ 0} never visits state 0|X(0) = i)

= P({Xn, n ≥ 0} never visits state 0|X0 = i).

Stating Equation 3.8 on page 60 in scalar form we get

vi =

∞
∑

j=1

pijvj , i ≥ 1,
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where pij’s are the transition probabilities in the embedded DTMC. Substituting

from Equation 6.9 we get

vi =

∞
∑

j=1,j 6=i

qij
qi
vj .

Multiplying on both sides by qi and using qi = −qii we get

∞
∑

j=1

qijvj = 0,

which, in matrix form, yields Equation 6.36. The maximality of the solution follows

from Theorem 3.2.

6.7.3 Moments and LST of T

In this section we develop the methods of computing the moments of T . The next

theorem gives a method of computing

mi = E(T |X(0) = i), i ≥ 1. (6.37)

Obviously, mi = ∞ if vi > 0. Hence we consider the case vi = 0 in the next

theorem.

Theorem 6.14 Suppose v = 0. Then m = [m1,m2, · · ·]′ is given by the smallest

non-negative solution to

Mm+ 1 = 0. (6.38)

Proof: We use the first step analysis for CTMCs, which is analogous to the first step

analysis in the DTMCs as explained in Section 3.1. Let X(0) = i > 0 and Y1 be the

first sojourn time in state i. Then Y1 ∼ exp(qi). Now condition onX1 = X(Y1) = j.
Clearly, if j = 0, T = Y1. If j > 0, then T = Y1 + T ′, where T ′ has the same

distribution as T conditioned on X0 = j. Hence we get

mi = E(T |X(0) = i)

=
∞
∑

j=0

E(T |X(0) = i,X(Y1) = j)P(X(Y1) = j|X(0) = i)

= E(Y1|X(0) = i,X(Y1) = 0)P(X(Y1) = 0|X(0) = i)

+
∞
∑

j=1

E(Y1|X(0) = i,X(Y1) = j)P(X(Y1) = j|X(0) = i)

+
∞
∑

j=1

E(T ′|X(0) = i,X(Y1) = j)P(X(Y1) = j|X(0) = i)

= E(Y1|X(0) = i) +

∞
∑

j=1

E(T ′|X(0) = j)P(X(Y1) = j|X(0) = i)
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=
1

qi
+

∞
∑

j=1,j 6=i

qij
qi
mj .

Multiplying on both sides by qi and using qi = −qii we get

∞
∑

j=1

qijmj + 1 = 0,

which, in matrix form, yields Equation 6.38. The minimality of the solution follows

from Theorem 3.3.

We next derive the Laplace Stieltjes transform (LST) of T . For s ≥ 0, define

φi(s) = E(e−sT |X(0) = i), i ≥ 1,

and

φ(s) = [φ1(s), φ2(s), · · ·]′.
The main result is given in the next theorem.

Theorem 6.15 {φ(s), s ≥ 0} is given by the smallest non-negative solution to

sφ(s) = w +Mφ(s), (6.39)

where w = [q10, q20, · · ·]′.

Proof: Use the terminology and the first step analysis as described in the proof of

Theorem 6.14. Conditioning on (X1, Y1) we get

φi(s) = E(e−sT |X(0) = i)

=

∞
∑

j=0

pijE(eY1 |X(0) = i)E(e−sT ′ |X(0) = j)

=
qi

s+ qi





∞
∑

j=1

pijφj(s) + pi0



 .

Multiplying by (s + qi) and using qi = −qii and qij = qipij (i 6= j), we get

Equation 6.39. The minimality follows along the same lines as in the proof of Theo-

rem 3.2.

We can use the above theorem to immediately derive the moments of T denoted

by

mi(k) = E(T k|X(0) = i), i ≥ 1, k ≥ 1.

Theorem 6.16 Suppose v = 0. Then m(k) = [m1(k),m2(k), · · ·]′ is given by the

smallest non-negative solution to

Mm(k) + km(k − 1) = 0, k ≥ 1, (6.40)

with m(0) = 1.
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Proof: Follows from taking successive derivatives of Equation 6.39 and using

mi(k) = (−1)k d
k

dsk
φi(s)|s=0.

We end this section with an example.

Example 6.28 Birth and Death Processes. Let {X(t), t ≥ 0} be the birth and

death process of Example 6.10 with birth parameters λi, i ≥ 0, and death parameters

µi, i ≥ 1. Let T be as defined in Equation 6.32.

Let us first compute the quantities {vi} as defined in Equation 6.35. The Equa-

tion 6.36 can be written in scalar form as

µivi−1 − (λi + µi)vi + λivi+1 = 0, i ≥ 1,

with boundary condition v0 = 0. The above equation can be written as

vi =
µi

λi + µi
vi−1 +

λi

λi + µi
vi+1, i ≥ 1.

But these equations are identical to Equations 3.14 on page 63 with

pi =
λi

λi + µi
, qi =

µi

λi + µi
. (6.41)

Using the results of Example 3.9 on page 63 we get

vi =















∑i−1

j=0
αj

∑∞
j=0

αj

if
∑∞

j=0 αj <∞,

0 if
∑∞

j=0 αj = ∞,

(6.42)

where α0 = 1 and

αi =
µ1µ2 · · ·µi

λ1λ2 · · ·λi
, i ≥ 1. (6.43)

Next we compute mi, as defined in Equation 6.37 under the assumption that
∑∞

j=0 αj = ∞, so that vi = 0 for all i ≥ 0. The Equation 6.38 can be written

in scalar form as

µimi−1 − (λi + µi)mi + λimi+1 + 1 = 0, i ≥ 1,

with boundary conditionm0 = 0. The above equation can be written as

mi =
1

λi + µi
+

µi

λi + µi
mi−1 +

λi

λi + µi
mi+1, i ≥ 1.

But these equations are similar to Equations 3.24 on page 71 with pi and qi as defined

in Equation 6.41. The only difference is that we have 1
λi+µi

on the right hand side

instead of 1. However, we can solve these equations using the same procedure as in
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Example 3.15 to get

mi =

(

i−1
∑

k=0

αk

)





∞
∑

j=k+1

1

λjαj



 .

6.8 Exploring the Limiting Behavior by Examples

Let {X(t), t ≥ 0} be a CTMC on S = {0, 1, 2, · · ·} with generator matrix Q. In

the Sections 6.3 and 6.4 we studied two main aspects of the transient behavior of

the CTMCs: the transition probability matrix P (t) and the occupancy matrix M(t).
Theorem 6.6 showed that

P (t) = eQt, t ≥ 0,

and Theorem 6.5 showed that

M(t) =

∫ t

0

P (u)du, t ≥ 0. (6.44)

In the next several sections we study the limiting behavior of P (t) as t → ∞. Since

the row sums of P (t) are 1, it follows that the row sums of M(t) are t. Hence we

study the limiting behavior of M(t)/t as t → ∞. Note that [M(t)]ij/t can be inter-

preted as the fraction of the time spent by the CTMC in state j during (0, t] starting

from state i. Hence studying this limit makes practical sense. We begin by some ex-

amples illustrating the types of limiting behavior that can arise.

Example 6.29 Two-State Example. Consider the CTMC of Example 6.16 with the

P (t) matrix as given in Equation 6.17. Hence we get

lim
t→∞

P (t) =

[

µ
λ+µ

λ
λ+µ

µ
λ+µ

λ
λ+µ

]

.

Thus the limit of P (t) exists and its row sums are one. As we had observed in the

DTMCs, the rows of the limiting matrix are the same, implying that the limiting dis-

tribution of X(t) does not depend upon the initial distribution of the CTMC.

Next, the occupancy matrixM(t) for this CTMC is given in Equation 6.20. Hence,

we get

lim
t→∞

M(t)

t
=

[

µ
λ+µ

λ
λ+µ

µ
λ+µ

λ
λ+µ

]

.

Thus the limit of M(t)/t in this example is the same as that of P (t).
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Example 6.30 Three-state CTMC. Let {X(t), t ≥ 0} be a CTMC on state-space

{0, 1, 2} with generator matrix

Q =





0 0 0
µ −(λ+ µ) λ
0 0 0



 .

Direct calculations show that

P (t) =





1 0 0
µ

λ+µ (1 − e−(λ+µ)t) e−(λ+µ)t λ
λ+µ(1 − e−(λ+µ)t)

0 0 1



 ,

and

M(t) =





t 0 0
µ

λ+µ
t− p10(t)

λ+µ
1

λ+µ
(1− e−(λ+µ)t) λ

λ+µ
t− p12(t)

λ+µ

0 0 t



 .

Hence we get

lim
t→∞

P (t) = lim
t→∞

M(t)

t
=





1 0 0
µ

λ+µ 0 λ
λ+µ

0 0 1



 .

Thus the limiting matrix has distinct rows, implying the that the limiting behavior

depends on the initial state. Furthermore, the row sums are one.

Example 6.31 Linear Growth Model. Consider the CTMC of Example 6.27. Con-

sider the case λ > µ. In this case we can use the transition probabilities derived there

to obtain

lim
t→∞

pij(t) =

{
(

µ
λ

)i
if j = 0,

0 if j > 0.

Thus in this case the limits of pij(t) exist but depends on the initial state i. It is more

tedious to show that Mij(t)/t has the same limit as pij(t). Furthermore, the row

sums of the limiting matrix are less than 1.

Thus we have identified three cases:

Case 1: Limit of P (t) exists, has identical rows, and each row sums to one.

Case 2: Limit of P (t) exists, does not have identical rows, each row sums to one.

Case 3: Limit of P (t) exists, but the rows may not sum to one.

We have also observed that limit of M(t)/t always exists, and it equals the limit

of P (t). We have not seen any examples where the limit of P (t) displays oscillatory

behavior as in the case of periodic DTMCs. In next two sections we develop the
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necessary theory to help us classify the CTMCs so we can understand their limiting

behavior better.

6.9 Classification of States

Clearly, there is a close connection between the limiting behavior of a CTMC with

state-space S and generator matrix Q and that of the corresponding embedded

DTMC on the same state-space S and one-step transition matrix P that is related

to Q as in Equation 6.9. Thus it seems reasonable that we will need to follow the

same path as we did when we studied the limiting behavior of the DTMCs in Chap-

ter 4.

6.9.1 Irreducibility

This motivates us to begin by introducing the concept of irreducibility for a CTMC.

Note that a CTMC can visit state j from state i in a finite amount of time if and only

if the corresponding embedded DTMC can visit state j from state i in a finite number

of steps. Hence we can make the following definitions.

Definition 6.2 Communicating Classes. A set of states C ⊆ S in a CTMC is said

to be a (closed) communicating class if C is a (closed) communicating class of the

corresponding embedded DTMC.

Definition 6.3 Irreducibility. A CTMC is called irreducible if the corresponding

embedded DTMC is irreducible. Otherwise it is called reducible.

Example 6.32 The CTMC of Example 6.1 is irreducible if λ > 0 and µ > 0. The

CTMC of Example 6.30 is reducible, with {0} and {2} as two closed communicat-

ing classes, and {1} as a communicating class that is not closed. The linear growth

process of Example 6.13, with λ > 0 and µ > 0, has one closed communicating

class, namely {0}. The set {1, 2, · · ·} is a communicating class that is not closed.

The CTMC is reducible.

We see that the issue of periodicity does not arise in the CTMCs, since if a CTMC

can go from state i to j at all, it can do so at any time. Thus, for the two state CTMC

of Example 6.1, the embedded DTMC is periodic. However, the P (t) matrix for the

two-state CTMC does not show a periodic behavior.

6.9.2 Transience and Recurrence

Following the developments in the DTMCs, we now introduce the concepts of re-

currence and transience for the CTMCs. Let Y1 be the first sojourn time in a CTMC
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{X(t), t ≥ 0} and define the first passage time (in a slightly modified form)

T̃i = inf{t ≥ Y1 : X(t) = i}, i ∈ S. (6.45)

This is a well defined random variable if Y1 < ∞ with probability 1, i.e., if qi > 0.

Note that if qi = 0, i is an absorbing state in the CTMC. Let

ũi = P(T̃i <∞|X(0) = i), (6.46)

and

m̃i = E(T̃i|X(0) = i). (6.47)

When ũi < 1, m̃i = ∞. However, as in the DTMCs, m̃i can be infinite even if

ũi = 1. With this in mind, we make the following definition, which is analogous to

the corresponding definitions in the case of the DTMCs.

Definition 6.4 Transience and Recurrence. A state i with qi > 0 is said to be

(i) recurrent if ũi = 1,

(ii) transient if ũi < 1.

If qi = 0 we define i to be recurrent. This is consistent with the fact that an

absorbing state in a DTMC is recurrent. The next theorem shows an easy way of

establishing the transience and recurrence of a state in a CTMC.

Theorem 6.17 A state i is recurrent (transient) in a CTMC if and only if it is recur-

rent (transient) in the corresponding embedded DTMC.

Proof: Let {X(t), t ≥ 0} be a CTMC and {Xn, n ≥ 0} be the corresponding em-

bedded DTMC. The implicit assumption of the regularity of the CTMC implies that

{X(t) = i for some t ≥ 0} ⇔ {Xn = i for some n ≥ 0}.
Now,

ũi = 1 ⇔ P(X(t) = i for some t ≥ 0|X(0) = i) = 1.

Hence

ũi = 1 ⇔ P(Xn = i for some n ≥ 0|X0 = i) = 1.

Hence it follows that a state i is recurrent in a CTMC if and only if it is recurrent in

the corresponding embedded DTMC. The statement about the transient case follows

by contraposition.

It follows from the above theorem that recurrence and transience of states in the

CTMCs are class properties, just as they are in the DTMCs. This enables us to call

an irreducible CTMC transient or recurrent if all its states are transient or recurrent,

respectively. Since an irreducible CTMC is recurrent (transient) if and only if the

corresponding embedded DTMC is recurrent (transient), we can use the criteria de-

veloped in Chapter 4 to establish the transience or recurrence of the CTMCs.
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Next we define positive and null recurrence.

Definition 6.5 Null and Positive Recurrence. A recurrent state i with qi > 0 is

said to be

(i) positive recurrent if m̃i <∞,

(ii) null recurrent if m̃i = ∞.

If qi = 0 we define i to be positive recurrent. This is consistent with the fact that

an absorbing state in a DTMC is positive recurrent. Establishing null and positive

recurrence is more complicated than establishing recurrence and transience since a

state i may be positive recurrent in the CTMC but null recurrent in the DTMC, and

vice versa. Clearly, a CTMC with a single state is positive recurrent by definition.

For CTMCs with two or more states we have the following theorem.

Theorem 6.18 Let {X(t), t ≥ 0} be an irreducible CTMC on state-space S with

at least two states, and let Q be its generator matrix. Let {Xn, n ≥ 0} be the corre-

sponding embedded DTMC with transition probability matrix P . Suppose the DTMC

is recurrent and π is a positive solution to

π = πP.

The CTMC is positive recurrent if and only
∑

i∈S

πi

qi
<∞. (6.48)

Proof: Since the CTMC is irreducible and has at least two states, we see that none

of the states can be absorbing. Thus qi > 0 for all i ∈ S. We use the first step analysis

as in the proof of Theorem 6.14 to derive a set of equations for

µij = E(T̃j|X(0) = i), i, j ∈ S.

Let X(0) = i and Y1 be the first sojourn time in state i. Then Y1 ∼ exp(qi). Now

condition on X1 = X(Y1) = k. Clearly, if k = j, T̃j = Y1. If k 6= j, then T̃j =

Y1 + T ′, where T ′ has the same distribution as T̃j conditioned on X(0) = k. Hence

we get

µij = E(T̃j|X(0) = i)

=
∑

k∈S

E(T̃j|X(0) = i,X(Y1) = k)P(X(Y1) = k|X(0) = i)

= E(Y1|X(0) = i,X(Y1) = j)P(X(Y1) = j|X(0) = i)

+
∑

k∈S−{j}
E(Y1|X(0) = i,X(Y1) = k)P(X(Y1) = k|X(0) = i)

+
∑

k∈S−{j}
E(T ′|X(0) = i,X(Y1) = k)P(X(Y1) = k|X(0) = i)
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= E(Y1|X(0) = i) +
∑

k∈S−{j}
pikE(T ′|X(0) = k)

=
1

qi
+

∑

k∈S−{j}
pikµkj . (6.49)

Now multiply both sides by πi and sum over all i ∈ S. We get
∑

i∈S

πiµij =
∑

i∈S

πi

qi
+
∑

i∈S

πi

∑

k∈S−{j}
pikµkj

=
∑

i∈S

πi

qi
+

∑

k∈S−{j}

∑

i∈S

πipikµkj

=
∑

i∈S

πi

qi
+

∑

k∈S−{j}
πkµkj

since

πk =
∑

i∈S

πipik.

Hence, subtracting
∑

k∈S−{j} πkµkj from both sides, we get

πjµjj =
∑

i∈S

πi

qi
,

which yields

µjj =
1

πj

(

∑

i∈S

πi

qi

)

. (6.50)

Since πj > 0, we see that m̃j = µjj < ∞ if and only if Equation 6.48 is satisfied.

The theorem then follows from the definition of positive recurrence.

Theorem 6.18 also implies that null and positive recurrence in the CTMCs are class

properties, just as in the DTMCs. We shall use this theorem to construct examples

of null recurrent CTMCs with positive recurrent embedded DTMCs, and vice versa.

However, note that if the CTMC is positive recurrent, but the embedded DTMC is

null recurrent, the CTMC cannot be regular. Since, this situation would imply that

the CTMC makes infinite number of transitions in a finite amount of time. Thus in

our applications a positive recurrent CTMC will have a positive recurrent embedded

DTMC.

Example 6.33 Success Runs. Consider a CTMC {X(t), t ≥ 0} on S =
{0, 1, 2, · · ·}, with the corresponding embedded DTMC {Xn, n ≥ 0} with transi-

tion probabilities

pi,i+1 = pi, pi,0 = 1 − pi, i ≥ 0.

Thus the embedded DTMC is a success runs Markov chain as described in Exam-

ple 4.13 on page 99. We consider two cases.
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Case 1. Let pi = 1/(i+2), and qi = −qii = (i+1), for i ≥ 0. From Example 4.10

we see that this DTMC is null recurrent, and the solution to

π = πP

is given by

πi =
1

i+ 1
, i ≥ 0.

Now,
∑

i∈S

πi

qi
=

∞
∑

i=0

1

(i+ 1)2
<∞.

Hence the CTMC is positive recurrent. Clearly such a CTMC cannot be regular.

Case 2. Let pi = p ∈ (0, 1) and qi = −qii = pi for all i ≥ 0. Then the DTMC is

positive recurrent (see Example 4.13) with a positive solution to π = πP given by

πi = pi.

Then
∑

i∈S

πi

qi
=

∞
∑

i=0

pi

pi
= ∞.

Hence the CTMC is null recurrent.

6.10 Limiting Behavior of Irreducible CTMCs

In this section we derive the main results regarding the limiting distribution of an

irreducible CTMC {X(t), t ≥ 0} on state-space S = {0, 1, 2 · · ·} and generator

matrix Q. We treat the three types of irreducible CTMCs: transient, null recurrent,

and positive recurrent. We treat the case of reducible CTMCs in the next section.

6.10.1 The Transient Case

We begin with the main result in the following theorem.

Theorem 6.19 Let {X(t), t ≥ 0} be an irreducible transient CTMC. Then

lim
t→∞

pij(t) = 0. (6.51)

Proof: Let {Xn, n ≥ 0} be the embedded DTMC corresponding to the irreducible

transient CTMC {X(t), t ≥ 0}. Theorem 6.17 implies that {Xn, n ≥ 0} is irre-

ducible and transient. From Equation 4.21 we see that the expected number of visits

by the DTMC to state j starting from state i over the infinite time horizon is finite.

Every time the DTMC visits state j, the CTMC spends an average of 1/qj time there.

(Note that qj > 0 since state j is transient.) Hence the total expected time spent by
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the CTMC over [0,∞) in state j, starting from state i is finite. Using the notation of

occupancy times,

lim
t→∞

Mij(t) = Mij(∞) <∞.

From Theorem 6.5 we get

Mij(∞) =

∫ ∞

0

pij(t)dt <∞.

Since pij(t) ≥ 0, we get Equation 6.51.

As in the case of the transient DTMCs, a transient CTMC will eventually perma-

nently exit any finite set with probability 1.

6.10.2 The Continuous Renewal Theorem

Following the development in Section 4.5, we start with the statement of the con-

tinuous renewal theorem, which is the continuous analogue of its discrete version in

Theorem 4.14.

Theorem 6.20 Continuous Renewal Theorem. Let f be a probability density

function on [0,∞) with mean µ. Let h : [0,∞) → (−∞,∞) be a monotone function

with
∫ ∞

0

|h(u)|du <∞. (6.52)

Suppose the function g : [0,∞) → (−∞,∞) satisfies

g(t) = h(t) +

∫ t

0

g(t− u)f(u)du, t ≥ 0. (6.53)

Then

lim
t→∞

g(t) =
1

µ

∫ ∞

0

h(u)du. (6.54)

If µ = ∞, the limit on the right in the above equation is to be interpreted as 0.

Proof: As in the proof of Theorem 4.14, the hard part is to prove that g(t) has a limit

as t → ∞. We refer the reader to Karlin and Taylor (1975) or Kohlas (1982) for the

details. Here we assume that the limit exists and show that it is given as stated in

Equation 6.54.

Define the Laplace transform (LT) as follows (see Appendix F). Here s is a com-

plex number with Re(s) ≥ 0.

f ∗(s) =

∫ ∞

0

e−stf(t)dt,

g∗(s) =

∫ ∞

0

e−stg(t)dt,

h∗(s) =

∫ ∞

0

e−sth(t)dt.
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Multiplying Equation 6.53 by e−st and integrating from 0 to ∞, and using the prop-

erties of LTs, we get

g∗(s) = h∗(s) + g∗(s)f ∗(s),

which yields

g∗(s) =
h∗(s)

1 − f ∗(s)
. (6.55)

If limt→∞ g(t) exists, we know that it is given by

lim
t→∞

g(t) = lim
s→0

sg∗(s).

Using Equation 6.55 we get

lim
s→0

sg∗(s) = lim
s→0

s
h∗(s)

1 − f ∗(s)

= lim
s→0

h∗(s)/ lim
s→0

1 − f ∗(s)

s

=
1

µ

∫ ∞

0

h(u)du.

Here the last equality follows because

lim
s→0

1 − f ∗(s)

s
= lim

s→0

f ∗(0) − f ∗(s)

s
= lim

s→0

d

ds
f ∗(s) = µ.

This proves the theorem.

Equation 6.53 is sometimes called the continuous renewal equation, and is anal-

ogous to its discrete counterpart in Equation 4.24 on page 107. The next theorem

shows that {pjj(t), t ≥ 0} satisfy a continuous renewal equation if qj > 0.

Theorem 6.21 Renewal Equation for pjj(t). Suppose qj > 0 and let fj be the

density of T̃j , as defined in Equation 6.45. Then pjj(t) satisfies the continuous re-

newal equation

pjj(t) = e−qjt +

∫ t

0

fj(u)pjj(t− u)du, t ≥ 0. (6.56)

Proof: SupposeX(0) = j and T̃j = u. If u ≤ t, then the CTMC starts all over again

in state j at time u, due to Markov property. If u > t, then X(t) = j if and only if

Y1 > t. Hence we have

P(X(t) = j|X(0) = j, T̃j = u) =

{

P(Y1 > t|T̃j = u,X(0) = j) if u > t,
P(X(t− u) = j|X(0) = j) if u ≤ t.

Thus we get

pjj(t) = P(X(t) = j|X(0) = j)

=

∫ ∞

0

P(X(t) = j|X(0) = j, T̃j = u)fj(u)du
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=

∫ t

0

P(X(t− u) = j|X(0) = j)fj(u)du

+

∫ ∞

t

P(Y1 > t|T̃j = u,X(0) = j)fj(u)du

=

∫ ∞

0

P(Y1 > t|T̃j = u,X(0) = j)fj(u)du+

∫ t

0

pjj(t− u)fj(u)du

(since P(Y1 > t|T̃j = u,X(0) = j) = 0 if u < t)

= P(Y1 > t|X(0) = j) +

∫ t

0

pjj(t− u)fj(u)du

= e−qjt +

∫ t

0

fj(u)pjj(t− u)du.

This proves the theorem.

Using the above theorem we get the next important result.

Theorem 6.22 If qj = 0
lim
t→∞

pjj(t) = 1.

If state j is recurrent with qj > 0

lim
t→∞

pjj(t) =
1

qjm̃j
, (6.57)

where m̃j is as defined in Equation 6.47.

Proof: If qj = 0, we have pjj(t) = 1 for all t ≥ 0. Hence the first equation in

the theorem follows. If qj > 0, we see from Theorem 6.22 that pjj(t) satisfies the

continuous renewal equation. Since j is recurrent, we have
∫ ∞

0

fj(t)dt = 1,

and
∫ ∞

0

|h(t)|dt =

∫ ∞

0

e−qjtdt =
1

qj
.

We also have

µ =

∫ ∞

0

tfj(t)dt = E(T̃j|X0 = j) = m̃j .

Hence we can apply Theorem 6.20 to get

lim
t→∞

pjj(t) =
1

m̃j

∫ ∞

0

e−qjtdt =
1

qjm̃j
.

This proves the theorem.
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6.10.3 The Null Recurrent Case

Now we study the limiting behavior of an irreducible null recurrent CTMC. The main

result is given by

Theorem 6.23 The Null Recurrent CTMC. For an irreducible null recurrent

CTMC

lim
t→∞

pij(t) = 0.

Proof: Since the CTMC is null recurrent, we know that

qj > 0, and m̃j = ∞, j ∈ S.

Hence from Theorem 6.21 we see that

lim
t→∞

pjj(t) = 0.

Now let i 6= j, and let fij(·) be the conditional probability density of T̃j given

X(0) = i. Using the argument in the proof of Theorem 6.21 we see that

pij(t) =

∫ t

0

fij(u)pjj(t− u)du.

Since the CTMC is irreducible and recurrent it follows that

P(T̃j <∞|X(0) = i) = 1.

Hence

lim
t→∞

pij(t) = 0, i, j ∈ S.

This proves the theorem.

6.10.4 The Positive Recurrent Case

Now we study the limiting behavior of an irreducible positive recurrent CTMC. Such

CTMCs are also called ergodic. If the state-space is a singleton, say S = {1}, then

q1 = 0, and p11(t) = 1 for all t ≥ 0. Hence the limting behavior is trivial in this

case. So suppose that S has at least two elements. Then qj must be strictly positive

and m̃j <∞ for all j ∈ S. Hence, from Theorem 6.21 we get

lim
t→∞

pjj(t) =
1

qjm̃j
> 0, j ∈ S.

The next theorem yields the limiting behavior of pij(t) as t→ ∞.

Theorem 6.24 The Positive Recurrent CTMC. For an irreducible positive recur-

rent CTMC

lim
n→∞

pij(t) = pj > 0, i, j ∈ S (6.58)
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where p = [pj , j ∈ S] is given by the unique solution to

pQ = 0, j ∈ S, (6.59)
∑

j∈S

pj = 1. (6.60)

Proof: The theorem is true if the CTMC has a single state. Hence assume that the

CTMC has at least two states. Then qj > 0 for all j ∈ S. Equation 6.57 implies

that Equation 6.58 holds when i = j with pj = 1/qjm̃j > 0. Hence assume i 6= j.
Following the proof of Theorem 6.21 we get

pij(t) =

∫ t

0

fij(u)pjj(t− u)du, t ≥ 0,

where fij(·) is the density of T̃j conditioned on X(0) = i. Since i ↔ j and the

CTMC is positive recurrent, it follows that
∫ ∞

0

fij(u)du = P(X(t) = j for some t ≥ 0 |X(0) = i) = 1.

Now let 0 < ǫ < 1 be given. Thus it is possible to pick an N such that
∫ ∞

N

fij(u)du ≤ ǫ/2,

and

|pjj(t) − pj | ≤ ǫ/2, for all t ≥ N.

Then, for t ≥ 2N , we get

|pij(t) − pj| =

∣

∣

∣

∣

∫ t

0

fij(u)pjj(t− u)du− pj

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t−N

0

fij(u)(pjj(t− u)du− pj)du

+

∫ t

t−N

fij(u)(pjj(t− u) − pj)du

−
∫ ∞

t

fij(u)pjdu

∣

∣

∣

∣

≤
∫ t−N

0

fij(u)|pjj(t− u) − pj |du

+

∫ t

t−N

fij(u)|pjj(t− u) − pj |du

+

∫ ∞

t

fij(u)dupj

≤
∫ t−N

0

fij(u)duǫ/2 +

∫ t

t−N

fij(u)du+

∫ ∞

t−N

fij(u)du

≤ ǫ/2 + ǫ/2 ≤ ǫ.
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This proves Equation 6.58. Next we derive Equations 6.59 and 6.60. For any finite

set A ⊂ S, we have
∑

j∈A

pij(t) ≤
∑

j∈S

pij(t) = 1.

Letting t→ ∞ on the left hand side, we get
∑

j∈A

pj ≤ 1.

Since the above equation holds for any finite A, we must have
∑

j∈S

pj ≤ 1. (6.61)

Now let aj(t) = P(X(t) = j). Then Equation 6.58 implies

lim
t→∞

aj(t) = pj , j ∈ S.

Now, the Chapman-Kolmogorov Equations 6.12 yield

aj(s+ t) =
∑

i∈S

ai(s)pij(t), s, t ≥ 0.

Let s→ ∞ on both sides. The interchange of the limit and the sum on the right hand

side is justified due to bounded convergence theorem. Hence we get

pj =
∑

i∈S

pipij(t). (6.62)

Replacing t by t+ h yields

pj =
∑

i∈S

pipij(t+ h). (6.63)

Subtracting Equation 6.62 from 6.63 we get
∑

i∈S

pi(pij(t+ h) − pij(t)) = 0.

Dividing the above equation by h and letting h → 0, the above equation in matrix

form yields

pP ′(t) = 0.

Using Equation 6.13, the above equation reduces to

pQP (t) = 0.

Substituting t = 0 in the above equation and using P (0) = I , we get Equation 6.59.

Again, letting t → ∞ in Equation 6.62 and using bounded convergence theorem to

interchange the sum and the limit on the right hand side we get

pj =

(

∑

i∈S

pi

)

pj .
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But pj > 0. Hence we must have
∑

pi = 1, yielding Equation 6.60.

Now suppose {p′i, i ∈ S} is another solution to Equations 6.59 and 6.60. Using

the same steps as before we get

p′j =
∑

i∈S

p′ipij(t), t ≥ 0.

Letting t→ ∞ we get

p′j =

(

∑

i∈S

p′i

)

pj = pj .

Thus the Equations 6.59 and 6.60 have a unique solution.

The next theorem removes the need to first check the positive recurrence of the

CTMC before solving the balance and the normalizing equation. It is analogous to

Theorem 4.21

Theorem 6.25 Let {X(t), t ≥ 0} be an irreducible CTMC. It is positive recurrent

if and only if there is a positive solution to

pQ = 0, (6.64)
∑

j∈S

pj = 1. (6.65)

If there is a solution to the above equations, it is unique.

Proof: Let p be a positive solution to the Equations 6.64 and 6.65. Then it is straight-

forward to verify that πj = pjqj solves the balance equations for the embedded

DTMC. Substituting in Equation 6.50 we get

µjj =
1

πj

(

∑

i∈S

πi

qi

)

=
1

pjqj

(

∑

i∈S

pi

)

=
1

pjqj
<∞.

Hence state j is positive recurrent, and hence the entire CTMC is positive recurrent.

The uniqueness was already proved in Theorem 6.24.

The vector p = [pj ] is called the limiting distribution or the steady state distribu-

tion of the CTMC. It is also the stationary distribution or the invariant distribution of

the CTMC, since if p is the pmf of X(0) then it is also the pmf of X(t) for all t ≥ 0.

See Conceptual Exercise 6.5.

The next theorem shows the relationship between the stationary distribution of the

CTMC and that of the corresponding embedded DTMC.
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Theorem 6.26 Let {X(t), t ≥ 0} be an irreducible positive recurrent CTMC

on state-space S with generator Q and stationary distribution {pj, j ∈ S}. Let

{Xn, n ≥ 0} be the corresponding embedded DTMC with transition probability

matrix P and stationary distribution {πj, j ∈ S}. Then

pj =
πj/qj

∑

i∈S πi/qi
, j ∈ S. (6.66)

Proof: Follows by substituting pij = qij/qi in π = πP and verifying that it reduces

to pQ = 0. We leave the details to the reader.

The last theorem of this section shows that the limiting occupancy distribution of

a CTMC is always the same as its limiting distribution.

Theorem 6.27 Limiting Occupancy Distribution. Let {X(t), t ≥ 0} be an irre-

ducible CTMC. Then

lim
t→∞

Mij(t)

t
= lim

t→∞
pij(t).

Proof: Follows from Equation 6.19 and the fact that pij(t) ≥ 0 and has a limit as

t→ ∞.

Thus, if Equations 6.64 and 6.65 have a solution p, it represents the limiting dis-

tribution, the stationary distribution as well as the limiting occupancy distribution

of the CTMC. Equations 6.64 are called the balance equations. Sometimes they are

called global balance equations to distinguish them from the local balance equations

to be developed in Section 6.14. It is more instructive to write them in a scalar form:
∑

j:j∈S,j 6=i

piqij =
∑

j:j∈S,i6=j

pjqji.

The left hand side equals piqi, the rate at which transitions take the system out of

state i, and the right hand side equals the rate at which transitions take the system

into state i. In steady state the two rates must be equal. In practice it is easier to write

these “rate out = rate in” equations by looking at the rate diagram, rather than by

using the matrix equation 6.64. We illustrate the theory developed in this section by

several examples below.

Example 6.34 Two-State Machine. Consider the two state CTMC of Exam-

ple 6.29. The balance equations are

λp0 = µp1,

µp1 = λp0.

Thus there is only one independent balance equation. The normalizing equation is

p0 + p1 = 1.
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Solving these we get

p0 =
µ

λ+ µ
, p1 =

λ

λ+ µ
.

This agrees with the result in Example 6.29.

Example 6.35 Birth and Death Processes. Let {X(t), t ≥ 0} be the birth and

death process of Example 6.10 with birth parameters λi > 0 for i ≥ 0, and µi > 0
for i ≥ 1. This CTMC is irreducible. The balance equations are

λ0p0 = µ1p1,

(λi + µi)pi = λi−1pi−1 + µi+1pi+1, i ≥ 1.

Summing the first i equations we get

λipi = µi+1pi+1, i ≥ 0. (6.67)

These can be solved recursively to get

pi = ρip0, i ≥ 0,

where ρ0 = 1, and

ρi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
, i ≥ 1. (6.68)

Now, substituting in the normalizing equation we get

∞
∑

i=0

pi =

( ∞
∑

i=0

ρi

)

p0 = 1.

The above equation has a solution

p0 =

( ∞
∑

i=0

ρi

)−1

if

∞
∑

i=0

ρi <∞.

If the infinite sum diverges, there is no solution. Thus the CTMC is positive recurrent

if and only if
∞
∑

i=0

ρi <∞

and, when it is positive recurrent, has the limiting distribution given by

pj =
ρj

∑∞
i=0 ρi

, j ≥ 0. (6.69)

If the CTMC is transient or null recurrent, pj = 0 for all j ≥ 0. We analyze two

special birth and death processes in the next two examples.

Example 6.36 Single-Server Queue. LetX(t) be the number of customers at time

t in the single-server service system of Example 6.11. There we saw that {X(t), t ≥
0} is a birth and death process with birth parameters λi = λ for i ≥ 0, and death
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parameters µi = µ for i ≥ 1. Thus we can use the results of Example 6.35 to study

the limiting behavior of this system. Substituting in Equation 6.68 we get

ρi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
= ρi, i ≥ 0

where

ρ =
λ

µ
.

Now,
∞
∑

i=0

ρi =

{ 1
1−ρ if ρ < 1,

∞ if ρ ≥ 1.

Thus the queue is stable (i.e., the CTMC is positive recurrent) if ρ < 1. In that case

the limiting distribution can be obtained from Equation 6.69 as

pj = ρj(1 − ρ), j ≥ 0. (6.70)

Thus, in steady state, the number of customers in a stable single server queue is a

modified Geometric random variable with parameter 1 − ρ.

Example 6.37 Infinite-Server Queue. Let X(t) be the number of customers at

time t in the infinite-server service system of Example 6.12. There we saw that

{X(t), t ≥ 0} is a birth and death process with birth parameters λi = λ for i ≥ 0,

and death parameters µi = iµ for i ≥ 1. Thus we can use the results of Example 6.35

to study the limiting behavior of this system. Substituting in Equation 6.68 we get

ρi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
=
ρi

i!
, i ≥ 0

where

ρ =
λ

µ
.

Now,
∞
∑

i=0

ρi

i!
= eρ.

Thus the queue is stable (i.e., the CTMC is positive recurrent) if ρ <∞. In that case

the limiting distribution can be obtained from Equation 6.69 as

pj = e−ρ ρ
j

j!
, j ≥ 0.

Thus, in steady state, the number of customers in a stable infinite-server queue is a

Poisson random variable with parameter ρ.

Example 6.38 Retrial Queue. Consider the bivariate CTMC {(X(t), R(t)), t ≥
0} of the retrial queue of Example 6.15. From of the rate diagram in Figure 6.9 we

get the following balance equations:

(λ+ nθ)p0n = µp1n, n ≥ 0,
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(λ+ µ)p10 = λp00 + θp01,

(λ+ µ)p1n = λp0n + (n+ 1)θp0,n+1 + λpi,n−1, n ≥ 1.

These can be rearranged to yield

(λ+ nθ)p0n = µp1n, n ≥ 0,

λp1n = (n+ 1)θp0,n+1, n ≥ 0.

Thus
(n+ 1)θ

λ
p0,n+1 =

λ+ nθ

µ
p0n, n ≥ 0,

or

p0,n+1 =
λ

µ

λ+ nθ

(n+ 1)θ
p0n, n ≥ 0.

This can be solved recursively to obtain

p0n =
1

n!

(

λ

µ

)n n−1
∏

k=0

(

λ

θ
+ k

)

p00, n ≥ 1. (6.71)

Then substituting in the equation for p1n we get

p1n =
1

n!

θ

λ

(

λ

µ

)n+1 n
∏

k=0

(

λ

θ
+ k

)

p00, n ≥ 0. (6.72)

Now using
∞
∑

n=0

p0n +

∞
∑

n=0

p1n = 1

we get
[

1 +

∞
∑

n=1

1

n!

(

λ

µ

)n n−1
∏

k=0

(

λ

θ
+ k

)

+

∞
∑

n=0

1

n!

θ

λ

(

λ

µ

)n+1 n
∏

k=0

(

λ

θ
+ k

)

]

p00 = 1.

It can be shown that the infinite sums converge if

λ

µ
< 1, (6.73)

and, in that case

p00 =

(

1 − λ

µ

)λ
θ
+1

.

Using this in Equations 6.71 and 6.72 we get the complete limiting distribution of the

CTMC. Thus the condition in Equation 6.73 is the condition of positive recurrence.

Example 6.39 Batch Arrival Queue. Consider a single server queue where cus-

tomers arrive in batches. The successive batch sizes are iid with common pmf

P(Btach Size = k) = αk, k ≥ 1.
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The batches themselves arrive according to a PP(λ). Thus the customer arrival pro-

cess is a CPP. Customers are served one at a time, service times being iid exp(µ)
random variables. Assume that there is an infinite waiting room. Let X(t) be the

number of customers in the system at time t.

Using the methodology developed in Section 6.2 we can show that {X(t), t ≥ 0}
is a CTMC with state space {0, 1, 2, · · ·} and the following transition rates:

qi,i−1 = µ i ≥ 1,

qi,i+k = λαk, k ≥ 1, i ≥ 0.

Thus we have q00 = −λ and qii = −(λ+ µ) for i ≥ 1. Hence the balance equations

for this system are

λp0 = µp1,

(λ+ µ)pi = λ

i−1
∑

r=0

αi−rpr + µpi+1, i ≥ 1.

Now define the generating function of {pi, i ≥ 0} as

φ(z) =
∞
∑

i=0

piz
i.

Multiplying the balance equation for state i by zi and summing over all i, we get

λp0 + (λ+ µ)

∞
∑

i=1

piz
i = µp1 + λ

∞
∑

i=1

zi
i−1
∑

r=0

αi−rpr + µ

∞
∑

i=1

zipi+1.

Adding µp0 on both sides, interchanging the i and r sums on the right hand side, and

regrouping terms, we get

(λ+ µ)

∞
∑

i=0

piz
i = µp0 +

µ

z

∞
∑

i=1

piz
i + λ

∞
∑

r=0

( ∞
∑

i=r+1

ziαi−r

)

pr

= µ

(

1 − 1

z

)

p0 +
µ

z

∞
∑

i=0

piz
i +

(

λ

∞
∑

r=0

zrpr

)( ∞
∑

i=1

ziαi

)

.

This can be rewritten as

(λ+ µ)φ(z) = µ

(

1 − 1

z

)

p0 +
µ

z
φ(z) + λφ(z)ψ(z),

where

ψ(z) =
∞
∑

r=1

zrαr.

This yields

φ(z) =
µ(1 − 1/z)

λ(1 − ψ(z)) + µ(1 − 1/z)
p0. (6.74)
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Note that ψ(z) is known. Thus the only unknown is p0, which can be computed by

using

lim
z→1

φ(z) = 1.

Using L’Hopital’s rule to compute the above limit, we get

lim
z→1

φ(z) =
µ

µ− c
p0

where

c = lim
z→1

d

dz
ψ(z) =

∞
∑

i=1

iαi

is the expected batch size. Writing

ρ =
λc

µ
,

we get

p0 = 1 − ρ.

Thus the queue is stable (i.e., the CTMC is positive recurrent) if

ρ < 1.

If it is stable, the generating function in Equation 6.74 reduces to

φ(z) =
(1 − ρ)(1 − z)

(1 − z) − ρz(1 − ψ(z))/c
.

The expected number of customers in the system in steady state is given by

L = lim
z→1

d

dz
φ(z) =

ρ

1 − ρ
· s

2 + c

2c
,

where s2 is the second moment of the batch size. One needs to apply L’Hopitals’s

rule twice to get the above expression.

6.11 Limiting Behavior of Reducible CTMCs

In this section we derive the main results regarding the limiting distribution of a re-

ducible CTMC {X(t), t ≥ 0} on state-space S = {0, 1, 2 · · ·} and generator matrix

Q. Assume that there are k closed communicating classes Ci, 1 ≤ i ≤ k, and T is

the set of states that do not belong to any closed communicating class. Now, relabel

the states in S by non-negative integers such that i ∈ Cr and j ∈ Cs with r < s
implies that i < j, and i ∈ Cr and j ∈ T implies that i < j. With this relabeling, the

generator matrix Q has the following canonical block structure:
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Q =















Q(1) 0 · · · 0 0
0 Q(2) · · · 0 0
...

...
. . .

...
...

0 0 · · · Q(k) 0
R Q(T )















. (6.75)

Here Q(i) is a generator matrix (1 ≤ i ≤ k) of an irreducible CTMC with state-

space Ci, Q(T ) is a |T | × |T | sub-stochastic generator matrix (i.e., all row sums of

Q(T ) being less than or equal to zero, with at least one being strictly less than zero),

and R is a |T | × |S − T | matrix. Then the transition probability matrix P has the

same block structure:

P (t) =















P (1)(t) 0 · · · 0 0
0 P (2)(t) · · · 0 0
...

...
. . .

...
...

0 0 · · · P (k)(t) 0
PR(t) P (T )(t)















.

Since P (r)(t) (1 ≤ r ≤ k) is a transition probability matrix of an irreducible CTMC

with state-space Cr, we already know how P (r)(t) behaves as t → ∞. Similarly,

since all states in T are transient, we know that P (T )(t) → 0 as t → ∞. Thus the

study of the limiting behavior of P (t) reduces to the study of the limiting behavior

of PR(t) as t→ ∞. This is what we proceed to do.

Let T (r) be the first passage time to visit the set Cr, i.e.,

T (r) = min{t ≥ 0 : X(t) ∈ Cr}, 1 ≤ r ≤ k.

Let

ui(r) = P(T (r) <∞|X(0) = i), 1 ≤ r ≤ k, i ∈ T. (6.76)

The next theorem gives a method of computing the above probabilities.

Theorem 6.28 Absorption Probabilities. The quantities {ui(r), i ∈ T, 1 ≤ r ≤
k} are given by the smallest non-negative solution to

ui(r) =
∑

j∈Cr

qij
qi

+
∑

j∈T

qij
qi
uj(r). (6.77)

Proof: Equation 6.77 can be derived as in the proof of Theorem 6.13. The rest of the

proof is similar to the proof of Theorem 3.2 on page 60.

Using the quantities {ui(r), i ∈ T, 1 ≤ r ≤ k} we can describe the limit of PR(t)
as t→ ∞. This is done in the theorem below.

Theorem 6.29 Limit of PR(t). Let {ui(r), i ∈ T, 1 ≤ r ≤ k} be as defined in

Equation 6.76. Let i ∈ T and j ∈ Cr.
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(i) If Cr is transient or null recurrent,

lim
t→∞

pij(t) = 0. (6.78)

(ii) If Cr is positive recurrent,

lim
t→∞

pij(t) = ui(r)pj ,

where {pj , j ∈ Cr} is the unique solution to
∑

m∈Cr

pmqmj = 0,

∑

m∈Cr

pm = 1.

Proof: Follows along the same lines as the proof of Theorem 4.23.

We discuss two examples of reducible CTMCs below.

Example 6.40 Let {X(t), t ≥ 0} be the CTMC of Example 6.30. This is a re-

ducible CTMC with two closed communicating classes C1 = {0} and C2 = {2}.

The set T = {1} is not closed. We do not do any relabeling. Equations 6.77 yield:

u1(1) =
µ

λ+ µ
, u1(2) =

λ

λ+ µ
.

We also have

p0 = 1, p2 = 1

since these are absorbing states. Then Theorem 6.29 yields

lim
t→∞

P (t) =





1 0 0
µ

λ+µ 0 λ
λ+µ

0 0 1



 .

This matches the result in Example 6.30.

Example 6.41 Linear Growth Model. Consider the CTMC of Example 6.27. This

is a reducible CTMC with one closed class C1 = {0}. Hence p0 = 1. The rest of the

states form the set T . Thus we need to compute ui(1) for i ≥ 1. From the results of

Example 6.28 we get

ui(1) =

{

1 if λ ≤ µ,
(

µ
λ

)i
if λ > µ.

Hence, for i ≥ 1,

lim
t→∞

pi0 =

{

1 if λ ≤ µ,
(

µ
λ

)i
if λ > µ.

(6.79)

which agrees with Example 6.31.

Recall that the linear growth model represents a colony of organisms where each

organism produces new ones at rate λ, and each organism dies at rate µ. State 0 is
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absorbing: once all organisms die, the colony is permanently extinct. Equation 6.79

says that extinction is certain if the birth rate is no greater than the death rate. On

the other hand, even if the birth rate is greater than the death rate, there is a positive

probability of extinction in the long run, no matter how large the colony is to begin

with. Of course, in this case, there is also a positive probability, 1 − (µ/λ)i, that the

size of the colony of initial size i will become infinitely large in the long run.

6.12 CTMCs with Costs and Rewards

As in the case of DTMCs, now we study CTMCs with costs and rewards. LetX(t) be

the state of a system at time t. Suppose {X(t), t ≥ 0} is a CTMC with state-space S
and generator matrix Q. Furthermore, the system incurs cost at a rate of c(i) per unit

time it spends in state i. For other cost models, see Conceptual Exercises 6.6 and 6.7.

Rewards can be thought of as negative costs. We consider costs incurred over infinite

horizon. For the analysis of costs over finite horizon, see Conceptual Exercise 6.8.

6.12.1 Discounted Costs

Suppose the costs are discounted continuously at rate α, where α > 0 is a fixed

(continuous) discount factor. Thus if the system incurs a cost of d at time t, its present

value at time 0 is e−αtd, i.e., it is equivalent to incurring a cost of e−αtd at time zero.

Let C be the total discounted cost over the infinite horizon, i.e.,

C =

∫ ∞

0

e−αtc(X(t))dt.

Let φ(i) be the expected total discounted cost (ETDC) incurred over the infinite

horizon starting with X(0) = i. That is,

φ(i) = E(C|X(0) = i).

The next theorem gives the main result regarding the ETDC. We introduce the fol-

lowing column vectors

c = [c(i)]i∈S , φ = [φ(i)]i∈S .

Theorem 6.30 ETDC. Suppose α > 0, and c is a bounded vector. Then φ is given

by

φ = (αI −Q)−1c. (6.80)

Proof: We have

φ(i) = E(C|X(0) = i)

= E

(∫ ∞

0

e−αtc(X(t))dt|X(0) = i

)
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=

∫ ∞

0

e−αt
E(c(X(t))|X(0) = i)dt

=

∫ ∞

0

e−αt
∑

j∈S

pij(t)c(j)dt.

The interchanges of integrals and expectations are justified since c is bounded. In

matrix form the above equation becomes

φ =

(∫ ∞

0

e−αtP (t)dt

)

c. (6.81)

The right hand side is the Laplace transform of P (t) evaluated at α. From Theo-

rem 6.8, we see that is is given by (αI −Q)−1. Hence we get Equation 6.80.

Note that there is no assumption of irreducibility or transience or recurrence be-

hind the above theorem. Equation 6.80 is valid for any generator matrix Q. Note that

the matrix αI − Q is invertible for α > 0. Also, the theorem remains valid if the c
vector is bounded from below or above. It does not need to be bounded from both

sides.

Example 6.42 Two-State Machine. Consider the two-state machine of Exam-

ple 6.4 on page 195. It was modeled by a CTMC {X(t), t ≥ 0} with state-space

{0, 1} (0 being down, and 1 being up), and generator matrix

Q =

[

−λ λ
µ −µ

]

,

where λ, µ > 0. Now suppose the machine produces a revenue of $r per day when

it is up, and it costs $d in repair costs per day when the machine is down. Suppose a

new machine in working order costs $m. Is it profitable to purchase it if the continu-

ous discount factor is α > 0?

Let c(i) be the expected cost incurred per unit time spent in state i. We have

c = [c(0) c(1)]′ = [d − r]′.

Then, using Theorem 6.30 we get

φ = [φ(0) φ(1)]′ = (αI −Q)−1c.

Direct calculations yield

φ =
1

α(α+ λ+ µ)

[

d(α+ µ) − rλ
dµ− r(α+ λ)

]

.

Thus it is profitable to buy a new machine if the expected total discounted net revenue

from a new machine over the infinite horizon is greater than the initial purchase price

of m, i.e., if

m ≤ r(α + λ) − dµ

α(α + λ+ µ)
.

How much should you be willing to pay for a machine in down state?
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6.12.2 Average Costs

The discounted costs have the disadvantage that they depend upon the discount fac-

tor and the initial state, thus making decision making more complicated. These is-

sues are addressed by considering the long run cost per unit time, called the av-

erage cost. The expected total cost up to time t, starting from state i, is given by

E(
∫ t

0 c(X(u))du|X(0) = i). Dividing it by t gives the cost per unit time. Hence the

long run expected cost per unit time is given by:

g(i) = lim
t→∞

1

t
E

(∫ t

0

c(X(u))du

∣

∣

∣

∣

X(0) = i

)

,

assuming that the above limit exists. To keep the analysis simple, we will assume that

the CTMC is irreducible and positive recurrent with limiting distribution given by

{pj, j ∈ S}, which is also the limiting occupancy distribution. Intuitively, it makes

sense that the long run cost per period should be given by
∑

pjc(j), independent of

the initial state i. This intuition is formally proved in the next theorem:

Theorem 6.31 Average Cost. Suppose {X(t), t ≥ 0} is an irreducible positive

recurrent CTMC with limiting occupancy distribution {pj, j ∈ S}. Suppose
∑

j∈S

pj |c(j)| <∞.

Then

g(i) = g =
∑

j∈S

pjc(j).

Proof: Let Mij(t) be the expected time spent in state j over (0, t] starting from state

i. See Section 6.4. Then, we see that

g(i) = lim
t→∞

1

t

∑

j∈S

Mij(t)c(j)

= lim
t→∞

∑

j∈S

Mij(t)

t
c(j)

=
∑

j∈S

lim
t→∞

Mij(t)

t
c(j)

=
∑

j∈S

pjc(j).

Here the last interchange of sum and the limit is allowed because the CTMC is posi-

tive recurrent. The last equality follows from Theorem 6.27.

We illustrate with an example.

Example 6.43 Two-State Machine. Consider the cost structure regarding the two-

state machine of Example 6.42. Compute the long run cost per unit time.
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The steady state distribution of the two-state machine is given by (see Exam-

ple 6.34)

p0 =
µ

λ+ µ
, p1 =

λ

λ+ µ
.

From Theorem 6.31 we see that the expected cost per unit time in the long run is

given by

g = c(0)p0 + c(1)p1 =
cµ− rλ

λ+ µ
.

Thus it is profitable to operate this machine if rλ > cµ.

Example 6.44 Single-Server Queue. Let X(t) be the number of customers in the

single server queue with arrival rate λ and service rate µ as described in Exam-

ple 6.11. Now suppose the cost of keeping customers in the system is $c per customer

per hour. The entry fee is $d per customer, paid upon entry. Compute the long run

net revenue per unit time.

We saw in Example 6.36 that {X(t), t ≥ 0} is positive recurrent if ρ = λ/µ < 1
and in that case the limiting distribution is given by

pj = ρj(1 − ρ), j ≥ 0.

The cost structure implies that c(j) = jc, j ≥ 0. Using Theorem 6.31 we see that

the long run expected cost per unit time is given by

∞
∑

j=0

pjc(j) =

∞
∑

j=0

jρj(1 − ρ)c =
cρ

1 − ρ
.

Let N(t) be the number of arrivals over (0, t]. Since the arrival process is PP(λ), we

get r, the long run fees collected per unit time as

r = d
E(N(t))

t
= d

λt

t
= λd.

Thus the net expected revenue per unit time is given by

λd− cρ

1 − ρ
.

A bit of algebra shows that the entry fee must be at least c
µ−λ in order to break even.

It is possible to use the results in Section 6.11 to extend this analysis to reducible

CTMCs. However, the long run cost rate may depend upon the initial state in that

case.

6.13 Phase Type Distributions

The distribution given in Equation 6.34 is called a phase type distribution with pa-

rameters (α,M). Any random variable whose distribution can be represented as in
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Equation 6.34 for a valid α and M is called a phase type random variable. (By

“valid” we mean that α is a pmf, and M is obtained from a generator matrix of

an irreducible CTMC by deleting rows and columns corresponding to a non-empty

subset of states.) It is denoted by PH(α,M), and the size of M is called the num-

ber of phases in the random variable. Many well-known distributions are phase type

distributions, as is demonstrated in the next example.

Example 6.45 Examples of Phase Type Random Variables.

1. Exponential. The exp(λ) is a PH(α,M) random variable with

α = [1], M = [−λ].
2. Sums of Exponentials. Let Xi ∼ exp(λi), 1 ≤ i ≤ K , be independent random

variables. Then

T = X1 +X2 + · · · +XK

is a PH(α,M) random variable with

α = [1, 0, 0, · · · , 0],

and

M =















−λ1 λ1

−λ2 λ2

...
...

. . .
...

...

−λK−1 λK−1

−λK















.

As a special case we see that Erl(λ,K) is a phase type random variable.

3. Mixtures of Exponentials. Let Xi ∼ exp(λi), 1 ≤ i ≤ K , be independent

random variables. Let

α = [α1, α2, · · · , αK ]

be such that

αi ≥ 0,
K
∑

i=1

αi = 1.

Let

T = Xi with probability αi, 1 ≤ i ≤ K.

Thus T is a mixture of exponentials. It is also a PH(α,M) random variable with

α as above, and

M =















−λ1 0 · · · 0 0
0 −λ2 · · · 0 0
...

...
. . .

...
...

0 0 · · · −λK−1 0
0 0 · · · 0 −λK















.

Examples 2 and 3 are special cases of the general theorem given below.
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Theorem 6.32 Sums and mixtures of a finite number of independent phase type

random variables are phase type random variables.

Proof: We treat the case of two independent random variables, Ti ∼ PH(αi,Mi)
(i = 1, 2). The general case follows similarly. Let T = T1 + T2. Define

G = M1e1α2.

Then it is possible to show that (see Conceptual Exercise 6.13) T is a PH(α,M)
random variable with

α = [α1, 0 · α2], (6.82)

and

M =

[

M1 G
0 M2

]

. (6.83)

Next, let [β1, β2] is such that βi ≥ 0, and β1 + β2 = 1. Let

T =

{

T1 with probability β1,
T2 with probability β2.

(6.84)

Thus T is a [β1, β2] mixture of {T1, T2}. Then it is possible to show that (see Con-

ceptual Exercise 6.14) T is a PH(α,M) random variable with

α = [β1α1, β2α2], (6.85)

and

M =

[

M1 0
0 M2

]

. (6.86)

This establishes the theorem.

The phase type distributions form a versatile family of distributions. We refer the

reader to the book by Neuts (1981) for further details. It can be shown that the set

of phase type distributions is dense in the set of all continuous distributions over

[0,∞). Thus, any continuous distribution over [0,∞) can be approximated arbitrarily

closely by a phase type distribution. However, this denseness is of little practical

value if the approximating distribution has a very large number of phases. Use of PH

type distributions does help in developing tractable algorithms for the performance

evaluation of many stochastic systems.

6.14 Reversibility

In Section 4.9 we studied reversible DTMCs. In this section we study the reversible

CTMCs. Intuitively, if we watch a movie of a reversible CTMC we will not be able to

tell whether the time is running forward or backward. We begin with the definition.

Definition 6.6 A CTMC is called reversible if the corresponding embedded DTMC

is reversible.
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Using the definition of reversible DTMCs, we immediately get the following theo-

rem.

Theorem 6.33 A CTMC with state-space S and generator matrix Q is reversible if

and only if for every r ≥ 1, and i0 6= i1 6= · · · 6= ir,

qi0,i1qi1,i2 · · · qir−1,ir
qir ,i0 = qi0,ir

qir ,ir−1
qir−1,ir−2

· · · qi1,i0 . (6.87)

Proof: Suppose the CTMC is reversible. Then, by definition, so is the corresponding

embedded DTMC. Now, if qik
= 0 for any 0 ≤ k ≤ r the Equation 6.87 holds

trivially since both sides are zero. So assume that qik
> 0 for all 0 ≤ k ≤ r. Since

the DTMC is reversible, we have, from Definition 4.12,

pi0,i1pi1,i2 · · · pir−1,ir
pir,i0 = pi0,ir

pir ,ir−1
pir−1,ir−2

· · · pi1,i0 . (6.88)

Using

pij = qij/qi, i 6= j,

the above equation reduces to Equation 6.87.

Next suppose Equation 6.87 holds. Then, using the transition probabilities of the

embedded DTMC we see that Equation 6.88 holds. Hence the embedded DTMC is

reversible. Hence the CTMC is reversible.

The next theorem is analogous to Theorem 4.26.

Theorem 6.34 An irreducible, positive recurrent CTMC with state-space S, gener-

ator matrix Q and stationary distribution {pi, i ∈ S} is reversible if and only if

piqij = pjqji, i, j ∈ S, i 6= j. (6.89)

Proof: Suppose the CTMC is irreducible, positive recurrent, and reversible. Since

we implicitly assume that the CTMC is regular, the embedded DTMC is irreducible,

positive recurrent, and reversible. Let {πi, i ∈ S} be the stationary distribution of the

DTMC. Since it is reversible, Theorem 4.26 yields

πipij = πjpji, i 6= j ∈ S,

which implies that

πi
qij
qi

= πj
qji

qj
, i 6= j ∈ S.

From Theorem 6.26, we know that pj = Cπj/qj , for some constant C. Hence the

above equation reduces to Equation 6.89.

Now suppose the CTMC is regular, irreducible, positive recurrent, and Equa-

tion 6.89 holds. This implies that

piqipij = pjqjpji.

Then, using Theorem 6.26, we see that the above equation reduces to

πipij = πjpji.
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Thus the embedded DTMC is reversible. Hence the CTMC is reversible, and the the-

orem follows.

The Equations 6.89 are called the local balance or detailed balance equations, as

opposed to Equations 6.64, which are called global balance equations. Intuitively,

the local balance equations say that, in steady state, the rate of transitions from state

i to j is the same as the rate of transitions from j to i. This is in contrast to stationary

CTMCs that are not reversible: for such CTMCs the global balance equations imply

that the rate of transitions out of a state is the same as the rate of transitions into that

state. It can be shown that the local balance equations imply global balance equations,

but not the other way. See Conceptual Exercise 6.16.

Example 6.46 Birth and Death Processes. Consider a positive recurrent birth and

death process as described in Example 6.35. Show that it is a reversible DTMC.

From Equation 6.67 we see that the stationary distribution satisfies the local bal-

ance equations

piqi,i+1 = pi+1qi+1,i.

Since the only transitions in a birth and death process are from i to i + 1, and i to

i− 1, we see that Equations 6.89 are satisfied. Hence the CTMC is reversible.

Reversible CTMCs arise in population models, networks of queues, and a variety

of other applications. An excellent account is given in the books by Kelly (1979)

and Whittle (1986). The steady state analysis of reversible CTMCs is usually very

simple due to the simplicity of the local balance equations. In fact, one method of

establishing reversibility is to guess the limiting distribution, and then verify that it

satisfies the local balance equations. In many cases, Equation 6.89 itself is useful in

coming up with a good guess. We illustrate with two examples.

Example 6.47 Database Locking. A database is a collection of information

records stored on a computer. The records are indexed 1 through N . A user can ac-

cess multiple records. We say that the user belongs to class A if he wishes to access

records with indices in the set A ⊆ {1, 2, · · · , N}. When a user of class A arrives, he

checks to see if all the records in A are available. If they are, the user gets access to

them and he immediately locks the records. If a record is locked, it is unavailable to

any other user. When the user is done, he simultaneously unlocks all the records he

was using. If an arriving user finds that some of the records that he needs to access

are locked (and hence unavailable to him), he leaves immediately.

(In practice there are two classes of users: readers (who read the records) or writers

(who alter the records), and correspondingly, the locks are of two types: exclusive and

shared. When a writer wants to access records in the set A, he gets the access if none

of the records in A have any kind of lock from other users, in which case he puts an

exclusive lock on each of them. When a reader wants to access records in the set A,

he gets it if none of the records in A have an exclusive lock on them, and then puts
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a shared lock on each of them. This ensures that many readers can simultaneously

read a record, but if a record is being modified by a writer no one else can access a

record. We do not consider this further complication here.)

Now suppose users of typeA arrive according to a PP (λ(A)), and the arrival pro-

cesses are independent of each other. A user of type A needs an exp(µ(A)) amount

of time to process these records. The processing times are independent of each other

and the arrival processes. We say that the database is in state (A1, A2, · · · , Ak) if

there is exactly one user of type Ai (1 ≤ i ≤ k) in the system at time t. This implies

that the sets A1, A2, · · · , Ak must be mutually disjoint. When there are no users in

the system, we denote that state by φ.

Let X(t) be the state of the database at time t. The process {X(t), t ≥ 0} is a

CTMC with state-space

S = {φ} ∪ {(A1, A2, · · · , Ak) : k ≥ 1, Ai 6= φ,Ai ⊆ {1, 2, · · · , N},
AiAj = φ if i 6= j, 1 ≤ i, j ≤ k},

and transition rates given below (we write q(i → j) instead of qij for the ease of

reading):

q(φ→ (A)) = λ(A),

q((A1, A2, · · · , Ak) → (A1, A2, · · · , Ak, Ak+1)) = λ(Ak+1),

q((A1, A2, · · · , Ak) → (A1, · · · , Ai−1, Ai+1, · · · , Ak)) = µ(Ai),

q((A) → φ) = µ(A).

The above rates are defined whenever (A1, A2, · · · , Ak) ∈ S and (A1, A2, · · · ,
Ak, Ak+1) ∈ S. Thus the state-space is finite and the CTMC is irreducible and

positive recurrent. Let

p(φ) = lim
t→∞

P(X(t) = φ),

p(A1, A2, · · · , Ak) = lim
t→∞

P(X(t) = (A1, A2, · · · , Ak)),

for (A1, A2, · · · , Ak) ∈ S. Now suppose, for (A1, A2, · · · , Ak) ∈ S,

p(A1, A2, · · · , Ak) =
λ(A1)λ(A2) · · ·λ(Ak)

µ(A1)µ(A2) · · ·µ(Ak)
p(φ). (6.90)

It is straightforward to verify that this satisfies the local balance equations:

λ(A)p(φ) = µ(A)p(A), (A) ∈ S,

λ(Ak+1)p(A1, A2, · · · , Ak) = µ(Ak+1)p(A1, A2, · · · , Ak, Ak+1),

for (A1, A2, · · · , Ak+1) ∈ S. The above equations imply that {X(t), t ≥ 0} is a

reversible CTMC with the limiting distribution given in Equation 6.90. Using the

normalizing equation we get

p(φ) =







1 +
∑

(A1,A2,···,Ak)∈S

λ(A1)λ(A2) · · ·λ(Ak)

µ(A1)µ(A2) · · ·µ(Ak)







−1

.
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Of course, the hard part here is to compute the sum in the above expression.

Example 6.48 Restaurant Process. Consider a restaurant with seating capacity

N . Diners arrive in batches (parties) and leave in the same party that they arrived in.

Suppose parties of size i arrive according to PP (λi), independently of each other.

When a party of size i arrives and the restaurant has i or more seats available, the

party is seated immediately. (We assume that the seating is flexible enough so that no

seats are wasted.) If not enough seats are available, the party leaves immediately. A

party of size i that gets seated stays in the restaurant for an exp(µi) amount of time,

independent of everything else. This implies that the restaurant has ample service

capacity so that the service is not affected by how busy the restaurant is.

We say that the restaurant is in state (i1, i2, · · · , ik) if there are k parties in the

restaurant and the size of the rth party is ir (1 ≤ r ≤ k). The empty restaurant is

said to be in state φ. Let X(t) be the state of the restaurant at time t. The process

{X(t), t ≥ 0} is a CTMC with state-space

S = {φ} ∪ {(i1, i2, · · · , ik) : k ≥ 1, ir > 0, 1 ≤ r ≤ k,

k
∑

r=1

ir ≤ N},

and transition rates given below (we write q(i → j) instead of qij for the ease of

reading):

q(φ→ (i)) = λi, 1 ≤ i ≤ N,

q((i1, i2, · · · , ik) → (i1, i2, · · · , ik, ik+1)) = λik+1
, (i1, i2, · · · , ik+1) ∈ S,

q((i1, i2, · · · , ik) → (i1, · · · , ir−1, ir+1, · · · , ik)) = µir
, (i1, i2, · · · , ik) ∈ S,

q((i) → φ) = µi 1 ≤ i ≤ N.

Thus the state-space is finite and the CTMC is irreducible and positive recurrent. Let

p(φ) = lim
t→∞

P(X(t) = φ),

p(i1, i2, · · · , ik) = lim
t→∞

P(X(t) = (i1, i2, · · · , ik)), (i1, i2, · · · , ik) ∈ S.

Now suppose, for (i1, i2, · · · , ik) ∈ S,

p(i1, i2, · · · , ik) =
λi1λi2 · · ·λik

µi1µi2 · · ·µik

p(φ). (6.91)

It is straightforward to verify that this satisfies the local balance equations:

λip(φ) = µip(i), 1 ≤ i ≤ N,

λik+1
p(i1, i2, · · · , ik) = µik+1

p(i1, i2, · · · , ik, ik+1),

for (i1, i2, · · · , ik, ik+1) ∈ S. The above equations imply that {X(t), t ≥ 0} is a

reversible CTMC with the limiting distribution given in Equation 6.91 . Using the

normalizing equation we get

p(φ) =







1 +
∑

(i1,i2,···,ik)∈S

λi1λi2 · · ·λik

µi1µi2 · · ·µik







−1

.
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As in Example 6.47, the hard part here is to compute the sum in the above expression

since the number of terms in the sum grows exponentially in N .

6.15 Modeling Exercises

6.1 Consider a workshop with k machines, each with its own repairperson. The

k machines are identical and behave independently of each other as described in

Examples 6.1 and 6.4. Let X(t) be the number of working machines at time t. Show

that {X(t), t ≥ 0} is a CTMC. Display its generator matrix and the rate diagram.

6.2 Do Modeling Exercise 6.1 assuming that there are r repairpersons (1 ≤ r < k).

The machines are repaired in the order of failure.

6.3 Consider the two-machine one repairperson workshop of Example 6.6. Suppose

the repair time of the ith machine is exp(λi) and the lifetime is exp(µi), i = 1, 2.

The repairs take place in the order of failure. Construct an appropriate CTMC to

model this system. Assume that all the life times and repair times are independent.

6.4 Do Modeling Exercise 6.3 with three distinct machines. Care is needed to handle

the “order of failure” service.

6.5 A metal wire, when subject to a load of L kilograms, breaks after an exp(µL)
amount of time. Suppose k such wires are used in parallel to hold a load of L kilo-

grams. The wires share the load equally, and their failure times are independent.

Let X(t) be the number of unbroken wires at time t, with X(0) = k. Formulate

{X(t), t ≥ 0} as a CTMC.

6.6 A bank has five teller windows, and customers wait in a single line and are

served by the first available teller. The bank uses the following operating policy: if

there are k customers in the bank, it keeps one teller window open for 0 ≤ k ≤ 5,

two windows for 6 ≤ k ≤ 8, three for 9 ≤ k ≤ 12, four for 13 ≤ k ≤ 15, and all five

are kept open for k ≥ 16. The service times are iid exp(µ) at any of the tellers, and

the arrival process is PP(λ). Let X(t) be the number of customers in the system at

time t. Show that {X(t), t ≥ 0} is a birth and death process and find its parameters.

6.7 Consider a two-server system where customers arrive according to a PP(λ).

Those going to server i require exp(µi) amount of service time, i = 1, 2. A customer

arriving at an empty system goes to server 1 with probability α and to server 2 with

probability 1 − α. Otherwise a customer goes to the first available server. Formulate

this as a CTMC. Is it a birth and death process?

6.8 Consider a two-server queue that operates as follows: two different queues are

formed in front of the two servers. The arriving customer joins the shorter of the two

queues (the customer in service is counted as part of that queue). If the two queues

are equal, he joins either one with probability .5. Queue jumping is not allowed. Let
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Xi(t) be the number of customers in the ith queue, including any in service with

server i, i = 1, 2. Assume that the arrival process is PP(λ) and the service times are

iid exp(µ) at either server. Model {(X1(t), X2(t)), t ≥ 0} as a CTMC and specify

its transition rates and draw the rate diagram.

6.9 Consider a system consisting of n components in series, i.e., it needs all com-

ponents in working order in order to function properly. The lifetime of the ith com-

ponent is exp(λi) random variable. At time 0 all the components are up. As soon as

any of the components fails, the system fails, and the repair starts immediately. The

repair time of the ith component is an exp(µi) random variable. When the system is

down, no more failures occur. Let X(t) = 0 if the system is functioning at time t,
and X(t) = i if component i is down (and hence under repair) at time t. Show that

{X(t), t ≥ 0} is a CTMC and display its rate diagram.

6.10 Consider an infinite server queue of Example 6.12. Suppose the customers

arrive according to a CPP with batch arrival rate λ and the successive batch sizes are

iid geometric with parameter 1 − p. Each customer is served by a different server

in an independent fashion, and the service times are iid exp(µ) random variables.

Model the number of customers in the system by a CTMC. Compute the transition

rates.

6.11 Consider a queueing system with s servers. The incoming customers belong

to two classes: 1 and 2. Class 2 customers are allowed to enter the system if and

only if there is a free server immediately available upon their arrival, otherwise they

are turned away. Class 1 customers always enter the system and wait in an infinite

capacity waiting room for service if necessary. Assume that class i customers arrive

according to independent PP (λi), i = 1, 2. The service times are iid exp(µ) for

both classes. Let X(t) be the number of customers in the system at time t. Show that

{X(t), t ≥ 0} is a birth and death process and find its parameters.

6.12 Consider a bus depot where customers arrive according to a PP(λ), and the

buses arrive according to a PP (µ). Each bus has capacity K > 0. The bus de-

parts with min(x,K) passengers, where x is the number of customers waiting when

the bus arrives. Loading time is insignificant. Let X(t) be the number of customers

waiting at the depot at time t. Show that {X(t), t ≥ 0} is a CTMC and compute its

generator matrix.

6.13 Customers arrive at a single-server facility according to a PP(λ). An arriving

customer, independent of everything else, belongs to class 1 with probability α and

class 2 with probability β = 1 − α. The service times of class i customers are iid

exp(µi), i = 1, 2, with µ1 6= µ2. The customers form a single queue. Let X(t) be

the number of customers in the system at time t and Y (t) be the class of the customer

in service. Define Y (t) = 0 if X(t) = 0. Model {(X(t), Y (t)), t ≥ 0} as a CTMC

and specify its transition rates and draw the rate diagram.
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6.14 Consider the single-server queue of Example 6.11. Suppose that every cus-

tomer has “patience time” such that if his wait for service to begin exceeds the pa-

tience time, he leaves the system without service. Suppose the patience times of

customers are iid exp(θ) random variables. Let X(t) be the number of customers in

the system at time t. Show that {X(t), t ≥ 0} is a is a birth and death process and

find its parameters.

6.15 Genetic engineers have come up with a super-amoeba with exp(µ) lifetimes

and following property: at the end of its lifetime it ceases to exist with probability

0.3, or splits into two clones of itself with probability .4, or three clones of itself

with probability .3. Let X(t) be the number of super-amoebae in a colony at time

t. Suppose all the existing amoebae behave independently of each other. Show that

{X(t), t ≥ 0} is a CTMC and compute its generator matrix.

6.16 Consider a single-server queue with the following operating policy: Once the

server becomes idle, it stays idle as long there are less than N (a given positive

integer) customers in the system. As soon as there are N customers in the system,

the server starts serving them one by one and continues until there is no one left in

the system, at which time the server becomes idle. The arrival process is PP(λ) and

the service times are iid exp(µ). Model this as a CTMC by describing its state-space

and the generator matrix. Draw its rate diagram.

6.17 Consider a computer system with five independent and identical central pro-

cessing units (CPUs). The lifetime of each CPU is exp(µ). When a CPU fails, an

automatic mechanism instantaneously isolates the failed CPU, and the system con-

tinues in a reduced capacity with the remaining working CPUs. If this automatic

mechanism fails to isolate the failed CPU, which can happen with probability 1 − c,
the system crashes. If no working CPUs are left, then also the system crashes. Since

the system is aboard a spaceship, once the system crashes it cannot be repaired.

Model the system by a CTMC by giving its state-space, generator matrix, and the

rate diagram.

6.18 Consider the system in Modeling Exercise 6.17. Now suppose there is a robot

aboard the space ship that can repair the failed CPUs one at a time, the repair time

for each CPU being exp(λ). However, the robot uses the computer system for the

repair operation, and hence requires a non-crashed system. That is, the robot works

as long as the system is working. Model this modified system by a CTMC by giving

its state-space, generator matrix, and the rate diagram.

6.19 Consider the s-server model of Modeling Exercise 6.11. Suppose the service

times of the customers of class i are iid exp(µi), i = 1, 2. Model this modified

system by a CTMC by giving its state-space and the generator matrix.

6.20 Unslotted Aloha. Consider a communications system where the messages ar-

rive according to a PP(λ). As soon as a message arrives it attempts transmission. The
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message transmission times are iid exp(µ). If no other message tries to transmit dur-

ing this time, the message transmission is successful. Otherwise a collision results,

and both the messages involved in the collision are terminated instantaneously. All

messages involved in a collision are called backlogged, and are forced to retransmit.

All backlogged messages wait for an exp(θ) amount of time (independently of each

other) before starting retransmission attempt. Let X(t) be the number of backlogged

messages at time t, Y (t) = 1 if a message is under transmission at time t and zero

otherwise. Model {(X(t), Y (t)), t ≥ 0} as a CTMC and specify its transition rates

and draw the rate diagram.

6.21 Leaky Bucket. Packets arrive for transmission at a node according to a PP(λ)

and join the packet queue. Tokens (permission slips to transmit) arrive at that node

according to a PP (µ) and join the token pool. The node uses a “leaky bucket” trans-

mission protocol to control the entry of the packets into the network, and it operates

as follows: if the token pool is empty, the arriving packets wait in the packet queue.

Otherwise, an incoming packet removes a token from the token pool and is instanta-

neously transmitted. Thus the packet queue and the token pool cannot simultaneously

be non-empty. The token pool size is M , and any tokens generated when the token

pool is full are discarded. Model this modified system by a CTMC by giving its

state-space, generator matrix, and the rate diagram.

6.22 An inventory system is under continuous control as follows. Demands arrive

according to PP(λ) and are satisfied instantly if there are items in the warehouse.

If the warehouse is empty when a demand occurs, the demand is lost. As soon as

the inventory level drops to R (a given positive integer), an order is placed for K
(another given positive integer > R) items from the supplier. It takes an exp(θ)
amount of time for the supplier to deliver the order to the warehouse. Let X(t) be

the number of items in the inventory at time t, and assume thatR < X(0) ≤ K+R.

Model {X(t), t ≥ 0} as a CTMC by giving its state-space and the generator matrix.

6.23 This model is of the growth of a macromolecule in a chemical solution. A

chemical solution has two types of molecules, labeled A and T , suspended in it. The

A molecules are active, while the T molecules are terminal. The A molecules can

latch onto each other and form linear macromolecules, e.g., AAA · · ·AA. Such a

macromolecule can grow by adding an A or a T molecule at either end. Once there

is a T molecule at an end, no more molecules can be added to that end. Thus a

macromolecule TAAA can grow only at one end, while the macromolecule TAAT
cannot grow any more. Suppose that an A molecule can get attached to another A
molecule at rate λ, while a T molecule can attach to an A with rate θ. The bond

between two A molecules can come unglued at rate µ, while the bond between an A
and a T molecule is permanent. Assume that the length of a macromolecule can only

increase or decrease by one unit at a time. LetX(t) be the length of a macromolecule

at time t. Assume that at time zero a macromolecule consists of a singleA molecule.

Model {X(t), t ≥ 0} as a CTMC by giving its state-space and the rate diagram.
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6.24 There are K parking spaces, indexed 1 through K , in front of a retail store.

Space 1 is the closest (and the most preferred) and space K is the farthest (and

the least preferred). Customers arrive according to a PP(λ) and occupy the closest

available space. If all spaces are occupied, the customer goes away and is lost. Each

customer spends an exp(µ) amount of time in the store, independent of the others.

Let Xi(t) = 1 (1 ≤ i ≤ K) if the i-th space is occupied at time t and 0 otherwise.

Also define Zk(t) to be the number of spaces among {1, 2, ..., k} that are occupied

at time t, (1 ≤ k ≤ K). Is {Xi(t), t ≥ 0} a CTMC (1 ≤ i ≤ K)? If yes, show its

generator matrix, or the rate diagram. Is {Zk(t), t ≥ 0} a CTMC (1 ≤ k ≤ K)? If

yes, show its generator matrix, or the rate diagram.

6.25 Customers arrive according to PP(λ) to a queueing system with two servers.

The ith server (i = 1, 2) needs exp(µi) amount of time to serve one customer. Each

incoming customer is routed either to server 1 with probability p1 or to server 2 with

probability p2 = 1−p1, independently. Queue jumping is not allowed, thus there is a

separate queue in front of each server. LetXi(t) be the number of customers in the i-
th queue at time t (including any in service with the ith server). Show that {Xi(t), t ≥
0} is a birth and death process, i = 1, 2. Are the two processes independent?

6.26 Jobs arrive at a central computer according to a PP(λ). The job processing

times are iid exp(µ). The computer processes them one at a time in the order of

arrival. The computer is subject to failures and repairs as follows: It stays functional

for an exp(α) amount of time and then fails. It takes an exp(β) amount of time to

repair it back to a fully functional state. Successive up and down times are iid and

independent of the number of jobs in the system. When the computer fails, all the

jobs in the system are lost. All jobs arriving at the computer while it is down are also

lost. Model this system as a CTMC by giving its state-space and the rate diagram.

6.27 A single server queue servesK types of customers. Customers of type k arrive

according to a PP(λk), and have iid exp(µk) service times. An arriving customer

enters service if the server is idle, and leaves immediately if the server is busy at the

time of arrival. Let X(t) be 0 if the server is idle at time t, and X(t) = k if the

server is serving a customer of type k at time t. Model X(t) as a CTMC by giving

its state-space and the rate diagram.

6.28 Life time of a machine is exponentially distributed with parameter µ. A repair-

person visits this machine periodically, the inter-visit times being iid exp(λ). If the

machine is discovered to be in working condition, the repairperson leaves it alone;

otherwise he repairs it. Repair takes exp(θ) amount of time and makes the machine

as good as new. Repair visits continue after repair completion as before. Model this

system as a CTMC by giving its state-space and the rate diagram.

6.29 Consider the following modification of the machine shop of Example 6.5.

When both machines are down each machine is repaired by one repairperson. How-

ever, if only one machine is down, both repair persons work on it together so that

the repair occurs at twice the speed. Model this system as a CTMC by giving its

state-space and the rate diagram.
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6.30 A machine produces items according to a PP(λ). The produced items are stored

in a buffer. Demands for these items occur according to a PP(µ). If an item is avail-

able in the buffer when a demand occurs, the demand is satisfied immediately. If the

buffer is empty when a demand occurs, the demand is lost. The machine is turned

off when the number of items in the buffer reaches K , a fixed positive number, and

is turned on when the number of items in the buffer falls to a pre-specified number

k < K . Once it is turned on it stays on until the number of items in the buffer reaches

K . Model this system as a CTMC. State the state-space and show the rate diagram.

6.31 Customers of two classes arrive at a single server service station with infinite

waiting room. Class i customers arrive according to PP(λi), i = 1, 2. Customers

of class 1 are always allowed to enter the system, while those of class 2 can enter

the system if and only if the total number of customers in the system (before this

customer joins) is less than K , where K > 0 is a fixed integer. The service times

are iid exp(µ) for both the classes. Let X(t) be the total number of customers in the

system at time t. Show that {X(t), t ≥ 0} is a birth and death process and state its

parameters.

6.32 Customers arrive at a service station according to a PP(λ). Each customer

brings with him two tasks that can be done in parallel. Each task takes an exp(µ)
amount of time, and the two tasks are independent. There are two servers in the sys-

tem. When a customer enters service, the servers begin working on one task each.

When one of two tasks finishes, the freed up server helps the other server so that the

remaining task is processed at twice the rate. (i.e., the remaining service time of the

task is now exp(2µ) instead of exp(µ).) Model this system as a CTMC. State the

state-space and show the rate diagram.

6.33 Consider a gas station with two pumps and three car-spaces as shown in Fig-

ure 6.11. Potential customers arrive at the gas station according to a PP(λ). An in-
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Pump

2

Pump

1

Figure 6.11 The 2-pump gas station.

coming customer goes to pump 1 if both pumps are idle. If pump 1 is busy but pump

2 is idle, she goes to pump 2. If pump 2 is occupied she waits in the space 3 (re-

gardless of whether pump 1 occupied or not. If space 3 is occupied she goes away. It

takes an exp(µ) amount of time to fill gas. After finishing filling gas, the customer at

pump 1 leaves, the customer at pump 2 leaves if space 1 is vacant, else she has to wait

until the customer in space 1 is done (due to one way rules and space restrictions). In

that case both customers leave simultaneously when the customer in space 1 is done.

Model this system as a CTMC. State the state-space and show the rate diagram.
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6.34 A machine shop has three identical machines, at most two of which can be in

use at any time. Initially all three machines are in working condition. The policy of

the shop is to keep a machine in standby mode if and only if there are two working

machines in use. Each machine in use fails after an exp(λ) amount of time, whereas

the standby machine (if in working condition) fails after an exp(θ) amount of time.

The failure of a standby machine can be detected only after it is put in use. There is

a single repair person who repairs the machines in exp(µ) amount of time. Model

this system as a CTMC. Describe the state-space and show the rate diagram. Assume

independence as needed.

6.16 Computational Exercises

6.1 Consider a pure birth process {X(t), t ≥ 0} with birth parameters

λ2n = α > 0, λ2n+1 = β > 0, n ≥ 0.

Compute P(X(t) is odd|X(0) = 0) for t ≥ 0.

6.2 Let mi(t) = E(X(t)|X(0) = i), where X(t) is the number of customers at

time t in an infinite-server queue of Example 6.12. Derive the differential equations

for mi(t) (i ≥ 0) by using the forward equations for pij(t). Solve for m0(t).

6.3 Let {X(t), t ≥ 0} be the CTMC of Example 6.5. Compute its transition proba-

bility matrix P (t) by

(i) exploiting the independence of the machines,

(ii) using the matrix exponential technique,

(iii) using the Laplace transform technique.

6.4 Consider the Yule process {X(t), t ≥ 0} with λn = nλ for n ≥ 0. Compute

P(X(t) = j|X(0) = i).

6.5 For the pure death process {X(t), t ≥ 0} with µn = nµ for n ≥ 0, compute

P(X(t) = j|X(0) = i).

6.6 Consider the CTMC {X(t), t ≥ 0} of Modeling Exercise 6.15. Let mi(t) =
E(X(t)|X(0) = i). Show that

m′
i(t) = 0.7mi(t), mi(0) = i.

Solve it.

6.7 Let {X(t), t ≥ 0} be the pure birth process of Computational Exercise 6.1.

Compute E(X(t)|X(0) = 0).
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6.8 Customers arrive at a service center according to a PP(λ), and demand iid exp(µ)

service. There is a single service person and waiting room for only one customer.

Thus if an incoming customer finds the server idle he immediately enters service, or

else he leaves without service. A special customer, who knows how the system works,

wants to use it in a different way. He inspects the server at times 0, T, 2T, 3T, . . .
(here T > 0 is a fixed real number) and enters the system as soon as he finds the

server idle upon inspection. Compute the distribution of the number of visits the

special customer makes until he enters, assuming that he finds the server busy at

time 0. Also compute the expected time that the special customer has to wait until he

enters.

6.9 A machine is either up or down. The up machine stays up for an exp(µ) amount

of time and then fails. The repairperson takes an exp(λ) time to fix the machine to a

good-as-new state. A repair person is on duty from 8:00am to 4:00pm every day, and

works on the machine if it fails. A working machine can fail at any time, whether

the repair person is on duty or not. If the machine is under repair at 4:00pm on a

given day, or it fails while the repair person is off-duty, it stays down until 8:00am

the next day, when the repairperson resumes (or starts) the repair work. Compute the

steady-state probability that the machine is working when the repairperson reports to

work.

6.10 Compute the steady state distribution of the CTMC of Modeling Exercise 6.1.

6.11 Compute the steady state distribution of the CTMC of Modeling Exercise 6.6.

What is the condition of stability?

6.12 Compute the steady state distribution of the CTMC of Modeling Exercise 6.7.

What is the condition of stability?

6.13 Compute the steady state distribution of the CTMC of Modeling Exercise 6.9.

6.14 Compute the steady state distribution of the CTMC of Modeling Exercise 6.4.

6.15 Consider the Modeling Exercise 6.10. Let pk be the limiting probability that

there are k customers in the systems. Define

G(z) =

∞
∑

k=0

pkz
k.

Using the balance equations derive the following differential equation for G(z):

G′(z) =
λ

µ
· 1

1 − pz
·G(z).

Solve for G(z).

6.16 Compute the steady state distribution of the CTMC of Modeling Exercise 6.11.

What is the condition of stability?
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6.17 Consider the Modeling Exercise 6.13. Let

pik = lim
t→∞

P(X(t) = i, Y (t) = k), i ≥ 0, k = 1, 2,

and define

φk(z) =

∞
∑

i=0

pikz
i, k = 1, 2.

Show that

φ1(z) =
αλ(λ(1 − z) + µ2)p00

µ1µ2/z − λµ1(1 − α/z) − λµ2(1 − β/z) − λ2(1 − z)
.

(Expression for φ2 is obtained by interchanging α with β and µ1 with µ2.) Compute

p00 and show that the condition of stability is

λ

(

α

µ1
+

β

µ2

)

< 1.

6.18 Compute the steady state distribution of the CTMC of Modeling Exercise 6.14.

What is the condition of stability?

6.19 Consider the parking lot of Modeling Exercise 6.24. Compute the long run

probability that the i-th space is occupied. Also compute the long run fraction of the

customers that are lost.

6.20 Consider the queueing system of Modeling Exercise 6.25. When is {Xi(t), t ≥
0} stable, i = 1, 2? Assuming it is stable, what is the mean and the variance of the

number of customers in the entire system in steady state?

6.21 Consider the computer system of Modeling Example 6.26. When is this system

stable? What is its limiting distribution, assuming stability? What fraction of the

incoming jobs are completed successfully in steady state?

6.22 Compute the limiting distribution of the number of items in the inventory sys-

tem described in Modeling Exercise 6.22. In steady state, what fraction of the de-

mands are lost?

6.23 Consider the system described in Modeling Exercise 6.27. What is the limiting

probability that the server is idle? What is the limiting probability that it is serving a

customer of type k, 1 ≤ k ≤ K?

6.24 Compute the steady state distribution of the system described in Modeling

Exercise 6.28.

6.25 Consider the system of Modeling Exercise 6.31. What is the condition of sta-

bility for this process? Compute its limiting distribution assuming it is stable.
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6.26 Consider the single server queue of Example 6.11. Now suppose the system

capacity isK , i.e., an arriving customer who findsK customers already in the system

is turned away. Compute the limiting distribution of the number of customers in such

a system.

6.27 Consider the system described in Modeling Exercise 6.32. State the condition

of stability and compute the expected number of customers in steady state assuming

that the system is stable.

6.28 Consider the gas station of Modeling Exercise 6.33. Compute the limiting dis-

tribution of the state of the system. In steady state, what fraction of the potential

customers actually enter the gas station?

6.29 Consider the three machine workshop of Modeling Exercise 6.34. Compute

the limiting distribution of the state of the system. In steady state, what fraction of

the time is the repair person idle?

6.30 Consider the model of macromolecular growth as described in Modeling Ex-

ercise 6.23. Compute the limiting distribution of the length of the molecule.

6.31 A finite state CTMC with generator matrix Q is called doubly stochastic if

the row as well column sums of Q are zero. Find the limiting distribution of an

irreducible doubly stochastic CTMC with state-space {1, 2, · · · , N}.

6.32 Let {N(t), t ≥ 0} be a PP(λ). Compute

lim
t→∞

P(N(t) is divisible by 3 or 7).

You may use the result of Computational Exercise 6.31.

6.33 Consider a birth and death process on N nodes arranged in a circle. The pro-

cess takes a clockwise step with rate λ and a counter-clockwise step with rate µ.

Display the rate diagram of the CTMC. Compute its limiting distribution.

6.34 Consider the inventory system described in Modeling Exercise 6.22. Compute

the expected time between two consecutive orders placed with the supplier.

6.35 Consider the machine shop of Modeling Exercise 6.29. Suppose machine 1

fails at time zero, and machine two is working, so that both repair persons are avail-

able to repair machine 1 at that time. Let T be the time when machine 1 becomes

operational again. Compute E(T ).

6.36 Consider the computer system described in Modeling Exercise 6.17. Suppose

at time 0 all CPUs are functioning. Compute the expected time until the system

crashes.
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6.37 Consider the machine shop described in Modeling Exercise 6.1. Suppose one

machine is functioning at time 0. Show that the expected time until all machines is

down is given by

1

kλ

(

(

λ+ µ

µ

)k

− 1

)

.

6.38 Do the Computational Exercise 6.36 for the computer system in Modeling

Exercise 6.18.

6.39 Consider the finite capacity single server queue of Computational Exer-

cise 6.26. Suppose at time zero there is a single customer in the system. Let T be

the arrival time of the first customer who sees an empty system. Compute E(T ).

6.40 Consider the computer system of Modeling Exercise 6.26. Suppose initially

the computer is up and there are i jobs in the system. Compute the expected time

until there are no jobs in the system.

6.41 Consider the parking lot of Modeling Exercise 6.24. Suppose initially there is

one car in the lot. What is the expected time until the lot becomes empty?

6.42 Consider the queueing system of Modeling Exercise 6.25. Suppose keeping a

customer for one unit of time in the i-th queue costs hi dollars (i = 1, 2), including

the time spent in service. Find the optimum routing probabilities that will minimize

the expected total holding cost per unit time in the two queues in steady state.

6.43 Consider the system described in Modeling Exercise 6.28. Suppose the ma-

chine generates revenue at a rate of $30 per hour while it is operating. Each visit of

the repairperson costs $100, and the repair itself costs $20 per hour. Compute the

long run net income (revenue - cost) per hour if the mean machine lifetime is 80 hrs

and mean repair time is 3 hrs. Find the optimal rate at which the repairperson should

visit this machine so as to maximize the net income rate in steady state.

6.44 Consider the inventory system described in Modeling Exercise 6.22. Suppose

each item sold produces a profit of $r, while it costs $h to hold one item in the

inventory for one unit of time. Compute the long run net profit per unit time.

6.45 Consider the k machine workshop of Modeling Exercise 6.1. Suppose each

working machine produces revenues at rate $r per unit time. Compute the expected

total discounted revenue over infinite horizon starting with k operating machines.

Hint: Use independence of the machines.

6.46 A machine shop consists of K independent and identical machines. Each ma-

chine works for an exp(µ) amount of time before it fails. During its lifetime each

machine produces revenue at rate $R per unit time. When the machine fails it needs

to be replaced by a new and identical machine at a cost of $Cm per machine. Any

number of machines can be replaced simultaneously. The replacement operation is
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instantaneous. The repair-person charges $Cv per visit, regardless of how many ma-

chines are replaced on a given visit. Consider the following policy: Wait until the

number of working machines falls below k, (where 0 < k ≤ K is a fixed integer)

and then replace all the failed machines simultaneously. Compute g(k), the long run

cost rate of following this policy. Compute the optimal value of the parameter k that

minimizes this cost rate for the following data: Number of machines in the machine

shop is 10, mean lifetime of the machine is 10 days, the revenue rate is $100.00 per

day, the replacement cost is $750 per machine, and the visit charge is $250.00.

6.47 Consider the computer system described in Modeling Exercise 6.17. Suppose

at time 0 all CPUs are functioning. Suppose each functioning CPU executes r in-

structions per unit time. Compute the expected total number of instructions executed

before the system crashes.

6.48 Consider the machine in Modeling Exercise 6.30. Suppose it costs $h dollar

to keep an item in the buffer for one unit of time. Each item sells for $r dollars.

Compute the long run net income (revenue-holding cost) per unit time, as a function

of k and K .

6.49 Consider the system in Computational Exercise 6.8. Suppose it costs the spe-

cial customer $c per unit time to wait for service, and $d to inspect the server. Com-

pute the total expected cost to the special customer until he enters as a function of T .

Suppose λ = 1/hr, µ = 2/hr, c = $10/hr and d = $20. Compute the value of T
that minimizes the expected total cost.

6.50 A small local car rental company has a fleet of K cars. We are interested in

deciding how many of them should be large cars and how many should be mid-size.

The demands for large cars occur according to a PP with rate λl per day, while those

for the mid-size cars occur according to a PP with rate λm. Any demand that can

not be met immediately is lost. The rental durations (in days) for the large (mid-size)

cars are iid exponential random variables with parameter µl (µm). The rental net

revenue for the large (mid-size) cars is $rl ($rm) per day. Compute g(k), the long

run average net rental revenue per day, if the fleet has k large cars and K − k mid-

size cars. Compute the optimal fleet mix if the following data is known: the fleet size

is fixed at 10, demand is 2 cars per day for large cars, 3 per day for mid-size cars,

the mean rental duration for large cars is 2 days, while that for the mid-size cars is 3

days. The large cars generate a net revenue of $60 per day, while that for the mid-size

cars is $40 per day.

6.51 Customers arrive at a single server service facility according to PP(λ) and re-

quest iid exp(µ) service times. Let Vi be the value of the service (in dollars) to the

i-th customer. Suppose {Vi, i ≥ 1} are iid U(0, 1) random variables. The customer

has to pay a price p to enter service. An arriving customer enters the system if and

only if the server is idle when he arrives and the service is worth more to him than the

service charge p. Otherwise, the customer leaves without service and is permanently
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lost. Find the optimal service charge p that will maximize the long run expected rev-

enue per unit time to the system. What fraction of the arriving customers join the

system when the optimal charge is used?

6.52 Consider the single server system of Computational Exercise 6.51. An arriving

customer enters the system if and only if the service is worth more to him than the

service charge p, even if the server is busy. The service provider incurs a holding cost

of $h per customer per hour of staying in the system. Find the optimal service charge

p that will maximize the long run expected revenue per unit time to the system.

6.53 Consider the system of Modeling Exercise 6.31. Class i customers pay $ci to

enter the system, c1 > c2. Assuming the process is stable, compute the long run rate

at which the system collects revenue.

6.54 Let {Xi(t), t ≥ 0} (1 ≤ i ≤ K) be K independent reversible, irreducible,

positive recurrent CTMCs. The ith CTMC has state-space Si and generator matrix

Qi. Let X(t) = (X1(t), X2(t), · · · , XK(t)). Show that {X(t), t ≥ 0} is a reversible

CTMC.

6.55 Consider the following special case of the database locking model described

in Example 6.47: N = 3 items in the database, λ(1) = λ(2) = λ(3) = λ > 0,

λ(123) = θ > 0. All other λ(A)’s are zero. Assume µ(A) = µ for all A’s with

λ(A) > 0. Compute the steady state distribution of the state of the database.

6.56 Consider a warehouse that gets shipments from k different sources. Source i
sends items to the warehouse according to a PP(λi). The items from source i need

Mi (a fixed positive integer) amount of space. The capacity of the warehouse is

B > max(M1,M2,· · · ,Mk). If there is not enough space in the warehouse for an

incoming item, it is sent somewhere else. An item from source i stays in the ware-

house for an exp(µi) amount of time before it is shipped off. The sojourn times are

independent. Model this system by a CTMC and show that it is reversible. What is

the probability that a warehouse has to decline an item from source i, in steady state?

6.57 A particle moves on an undirected connected network of N nodes as follows:

it stays at the ith node for an exp(qi) amount of time and then moves to any one of

its immediate neighbors with equal probability. Let X(t) be the index of the node

occupied by the particle at time t. Show that {X(t), t ≥ 0} is a reversible CTMC,

and compute its limiting distribution.

6.58 Is the retrial queue of Example 6.15 reversible?

6.59 A system consists of N urns containing k balls. Each ball moves indepen-

dently among these urns according to a reversible CTMC with rate matrix Q.

Let Xi(t) be the number of balls in the ith urn at time t. Show that {X(t) =
(X1(t), X2(t), · · · , XN (t)), t ≥ 0} is a reversible CTMC.
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6.17 Conceptual Exercises

6.1 Let {X(t), t ≥ 0} be an irreducible CTMC on state-space S = {1, 2, ..., N}
with generator matrix Q. Let

T = min{t ≥ 0 : X(t) = N}.
Derive a set of simultaneous linear equations for

Mi,j = E{time spent in state j during [0, T )|X(0) = i}, i, j ∈ S.

6.2 Complete the proof of Theorem 6.16.

6.3 Let {X(t), t ≥ 0} be a CTMC on state-space S and generator matrix Q. Let T
be the first time the CTMC undergoes a transition from state i to j (here i and j are

fixed). Derive a method to compute E(T ).

6.4 Let {X(t), t ≥ 0} be a CTMC on state-space {0, 1, 2, ...}. Suppose the system

earns reward at rate ri per unit time when the system is in state i. Let Z be the total

reward earned by the system until it reaches state 0, and let g(i) = E(Z|X(0) = i).
Using first step analysis derive a set of equations satisfied by {g(i), i = 1, 2, 3, ...}.

6.5 Let {X(t), t ≥ 0} be an irreducible and positive recurrent CTMC with state-

space S and limiting distribution p = [pj, j ∈ S]. Suppose the initial distribution is

given by

P(X(0) = j) = pj , j ∈ S.

Show that

P(X(t) = j) = pj , j ∈ S, t ≥ 0.

6.6 Consider a CTMC with state-space S and generator matrix Q. Suppose the

CTMC earns reward at rate ri per unit time it spends in state i (i ∈ S). Further-

more it earns a lump sum reward rij whenever it undergoes a transition from state i
to state j. Let gα(i) be the total expected discounted (with continuous discount factor

α > 0) reward earned over an infinite horizon if the initial state is i. Show that the

vector gα = [gα(i), i ∈ S] satisfies

[αI −Q]gα = r,

where r = [r(i), i ∈ S] is given by

r(i) = ri +
∑

j 6=i

qijrij .

Note that no lump sum reward is obtained at time 0.

6.7 Consider Conceptual Exercise 6.6 and assume that the CTMC is irreducible and

positive recurrent. Let g be the long run average reward per unit time. Show that

g =
∑

i∈S

r(i)pi,
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where pi is the limiting probability that the CTMC is in state i, and r(i) is as given

in Conceptual Exercise 6.6.

6.8 Consider the cost structure of Section 6.12. Let gi(t) be the expected total cost

incurred over (0, t] by the CTMC starting from state i at time 0. Let g(t) = [gi(t), i ∈
S]. Show that

g(t) = M(t)c,

where M(t) is the occupancy times matrix, and c is the cost rate vector.

6.9 In Conceptual Exercise 6.4, suppose r(i) > 0 for all 1 ≤ i < N . Construct a

new CTMC {Y (t), t ≥ 0} on {0, 1, 2, · · · , N} with the same initial distribution as

that ofX(0), such that the reward Z equals the first passage time until the {Y (t), t ≥
0} process visits state N .

6.10 Let {X(t), t ≥ 0} be an irreducible positive recurrent CTMC on state-space

S, generator matrix Q, and limiting distribution p = [pj , j ∈ S]. Let Nij(t) be the

number of times the CTMC undergoes a transition from state i to j during (0, t].
Show that

lim
t→∞

E(Nij(t))

t
= piqij .

6.11 Consider a computer system modeled by a CTMC {X(t), t ≥ 0} on state-

space {1, 2, · · · , N} and generator matrix Q. Whenever the system is in state i it

executes ri > 0 instructions/time. A programming job requires x instructions to be

executed. Since the numbers involved are in the millions, we shall treat ri’s and x as

real numbers. Suppose the job starts executing at time 0, with the system in state i.
Let T be the time when the job completes. Let

φi(s, x) = E(e−sT |X(0) = i), φ∗i (s, w) =

∫ ∞

0

e−wxφi(s, x)dx.

Show that

φ∗i(s, w) =
ri

s+ qi + riw
+

N
∑

j=1,j 6=i

qij
s+ qi + riw

φ∗i(s, w).

6.12 Consider the computer system described in Conceptual Exercise 6.11, with the

following modification: whenever the system changes state, all the work done on the

job is lost, and the job starts from scratch in the new state. Now show that

φi(s, x) = e−(s+qi)x/ri +

N
∑

j=1,j 6=i

qij
s+ qi

(1 − e−(s+qi)x/riφj(s, x)).

6.13 Let Ti ∼ PH(αi,Mi), i = 1, 2, be two independent phase type random vari-

ables. Show that T = T1+T2 is a PH(α,M ) random variable with α andM as given

in Equations 6.82 and 6.83.
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6.14 Let Ti ∼ PH(αi,Mi), i = 1, 2, be two independent phase type random vari-

ables. Let T be as defined in Equation 6.84. Show that T is a PH(α,M ) random

variable with α and M as given in Equations 6.85 and 6.86.

6.15 Let Ti ∼ PH(αi,Mi), i = 1, 2, be two independent phase type random vari-

ables. Show that T = min(T1, T2) is a phase type random variable. Find its parame-

ters.

6.16 Suppose a vector of probabilities p satisfies the local balance Equation 6.89.

Show that is satisfies the global balance Equation 6.64.

6.17 Show that an irreducible CTMC on {1, 2, · · · , N} with a symmetric generator

matrix is reversible.



CHAPTER 7

Queueing Models

An operations research professor gets an offer from another university that gives him

better research opportunities, better students, and better pay, but it means uprooting

his family and moving to a new place. When he describes this quandary to his friend,

the friend says, “Well, why don’t you use the methodology of operations research?

Set up an optimization model with an objective function and constraints to maximize

your expected utility.” The professor objects, saying, “No, no! This is serious!”

7.1 Introduction

Queues are an unavoidable aspect of modern life. We do not like queues because

of the waiting involved. However, we like the fair service policies that a queueing

system imposes. Imagine what would happen if an amusement park did not enforce

a first-come first-served queueing discipline at its attractions!

Knowingly or unknowingly, we face queues every day. We stand in queues at gro-

cery store checkout counters, for movie tickets, at the baggage claim areas in airports.

Many times we may be in a queue without physically being there - as when we are

put on hold for the “next available service representative” when we call the customer

service number during peak times. Many times we do not even know that we are in

a queue: when we pick up the phone we are put in a queue to get a dial tone. Since

we generally get the dial tone within a fraction of a second, we do not realize that we

went through a queue. But we did, nonetheless.

Finally, waiting in queues is not a uniquely human fate. All kinds of systems en-

force queueing for all kinds of non-human commodities. For example, a modern

computer system manages queues of computer programs at its central processing

unit, its input/output devices, etc. A telephone system maintains a queue of calls

and serves them by assigning circuits to them. A digital communication network

transmits packets of data in a store-and-forward fashion, i.e., it maintains a queue of

packets at each node before transmitting them further towards their destinations. In

manufacturing setting queues are called inventories. Here the items are produced at

275
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a factory and stored in a warehouse, i.e., they form a queue in the warehouse. The

items are removed from the warehouse whenever a demand occurs.

Managing queue - whether human or non-human - properly is critical to a smooth

(and profitable) operation of any system. In a manufacturing system, excessive

queues (i.e., inventories) of manufactured products are expensive - one needs larger

warehouses to store them, enormous capital is idled in the inventory, there are costs

of deterioration, spoilage, etc. In a computer setting, building large queues of pro-

grams inevitably means slower response times. Slow response times from the central

computers can have a disastrous effect on modern banks, and stock exchanges, for

example. The modern communication networks can carry voice and video traffic ef-

ficiently only if the queue of data packets are managed so that delays do not exceed

a few milliseconds.

For human queues there is an additional cost to queueing - the psychological stress

generated by having to wait, the violent road rage being the most extreme manifesta-

tion of this. Industries that manage human queues (airlines, retail stores, amusement

parks, etc.) employ several methods to reduce the stress. For example, knowing be-

forehand that there is a half-hour wait in a queue for a ride in an amusement park

helps reduce the stress. Knowing the reason for delay also reduces stress - hence the

airline pilot’s announcement about being tenth in a queue for takeoff after the plane

leaves from the gate but sits on the tarmac for 20 minutes. Diverting the attention of

the waiting public can make the wait more bearable - this explains the presence of

tabloids and TVs near the grocery store checkout counters. Airports use an ingenious

method - there is generally a long walk from the gate to the baggage claim area. This

makes the total wait seem smaller. Finally, there is the famous story of the manager

of a skyscraper who put mirrors in the elevator lobbies and successfully reduced the

complaints about slow elevators!

Another aspect of queues mentioned earlier is the “fair service discipline.” In hu-

man queues this generally means first-come first-served (or first-in, first-out, or head

of the line). In non-human queues many other disciplines can be used. For example,

blood banks may manage their blood inventory by last-in first-out policy. This en-

sures better quality blood for most clients. The bank may discard blood after it stays

in the bank for longer than a certain period. Generally, queues (or inventories) of per-

ishable commodities use last-in first-out systems. Computers use many specialized

service disciplines. A common service discipline is called time sharing, under which

each job in the system gets ∆ milliseconds from the CPU in a round-robin fashion.

Thus all jobs get some service in reasonable intervals of time. In the limit, as ∆ → 0,

all jobs get served continuously in parallel, each job getting a fraction of the CPU

processing capacity. This limiting discipline is called processor sharing. As a last

example, the service discipline may be random: the server picks one of the waiting

customers at random for the next service. Such a discipline is common in statistical

experiments to avoid bias. It is also common to have priorities in service, although

we do not consider such systems in this chapter.
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A block diagram of a simple queueing system is shown in Figure 7.1. There are

several key aspects to describing a queueing system. We discuss them below.

Departures

Queue

Arrivals

Figure 7.1 A typical queueing system.

1. The Arrival Process. The simplest model is when the customers arrive one at a

time and the times between two consecutive arrivals are iid non-negative random

variables. We use special symbols to denote these inter-arrival times as follows:

M for exponential (stands for memoryless or Markovian), Ek for Erlang with k
phases, D for deterministic, PH for phase type, G for general (sometimes we

use GI to emphasize independence). This list is by no means exhaustive, and

new notation keeps getting introduced as newer applications demand newer arrival

characteristics. For example, the applications in telecommunication systems use

what are known as the Markovian arrival processes, or Markov modulated Poisson

processes, denoted by MAP or MMPP.

2. The Service Times. The simplest model assumes that the service times are iid non-

negative random variables. We use the notation of the inter-arrival times for the

service times as well.

3. The Number of Servers. It is typically denoted by s (for servers) or c (for chan-

nels in telecommunication systems). It is typically assumed that all servers are

identical.

4. The Holding Capacity. This is the maximum number of customers that can be in

the system at any time. We also call it the system capacity, or just capacity. If

the capacity is K , an arriving customer who sees K customers in the system is

permanently lost. If no capacity is mentioned, it is assumed to be infinity.

5. The Service Discipline. This describes the sequence in which the waiting cus-

tomers are serviced. As described before, the possible disciplines are FCFS (first-

come first-served), LCFS (last-come first-served), random, PS (processor shar-

ing), etc.

We shall follow the symbolic representation introduced by G. Kendall to represent

a queueing system as inter-arrival time distribution/service time distribution/number

of servers/capacity/service discipline. ThusM/G/3/15/LCFS represents a queue-

ing system with Poisson arrivals, generally distributed service times, three servers,

a capacity to hold 15 customers, and last-come first-served service discipline. If the

capacity and the service discipline are not mentioned, we assume infinite capacity

and FCFS discipline. Thus an M/M/s queue has Poisson arrivals, exponential ser-

vice times, s servers, infinite waiting room and FCFS discipline.
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Several quantities are of interest in the study of queueing systems. We introduce

the relevant notation below:

X(t) = the number of customers in the system at time t,

Xn = the number of customers in the system just after the n-th customer departs,

X∗
n = the number of customers in the system just before the n-th customer enters,

X̂n = the number of customers in the systems just before the n-th customer arrives,

Wn = time spent in the system by the n-th customer.

Note that we distinguish between an arriving customer and an entering customer,

since an arriving customer may not enter because the system is full, or the customer

decides not to join since the system is too congested. We are interested in

pj = lim
t→∞

P(X(t) = j),

πj = lim
n→∞

P(Xn = j),

π∗
j = lim

n→∞
P(X∗

n = j),

π̂j = lim
n→∞

P(X̂n = j),

F (x) = lim
n→∞

P(Wn ≤ x),

L = lim
t→∞

E(X(t)),

W = lim
n→∞

E(Wn).

We shall also find it useful to study the customers in the queue (i.e., those who are

in the system but not in service). We define

Xq(t) = the number of customers in the queue at time t,

Xq
n = the number of customers in the queue just after the n-th customer departs,

X∗q
n = the number of customers in the queue just before the n-th customer enters,

X̂q
n = the number of customers in the queue just before the n-th customer arrives,

W q
n = time spent in the queue by the n-th customer,

and

pq
j = lim

t→∞
P(Xq(t) = j),

πq
j = lim

n→∞
P(Xq

n = j),

π∗q
j = lim

n→∞
P(X∗q

n = j),

π̂q
j = lim

n→∞
P(X̂q

n = j),

F q(x) = lim
n→∞

P(W q
n ≤ x),
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Lq = lim
t→∞

E(Xq(t)),

W q = lim
n→∞

E(W q
n).

With this introduction we are ready to apply the theory of DTMCs and CTMCs to

queueing systems. In particular we shall study queueing systems in which {X(t), t ≥
0} or {Xn, n ≥ 0} or {X∗

n, n ≥ 0} is a Markov chain. We shall also study queueing

systems modeled by multi-dimensional Markov chains. There is an extremely large

and growing literature on queueing theory and this chapter is by no means an exhaus-

tive treatment of even the Markovian queueing systems. Readers are encouraged to

refer to one of the several excellent books that are devoted entirely to queueing the-

ory.

It is obvious that {X(t), t ≥ 0}, {Xn, n ≥ 0}, {X∗
n, n ≥ 0}, and {X̂n, n ≥ 0}

are related processes. The exact relationship between these processes is studied in

the next section.

7.2 Properties of General Queueing Systems

In this section we shall study several important properties of general queueing sys-

tems. They are discussed in Theorems 7.1, 7.2, 7.3, and 7.5.

In Theorem 7.1 we state the connection between the state of the system as seen

by a potential arrival and an entering customer. In Theorem 7.2 we show that under

mild conditions on the sample paths of {X(t), t ≥ 0}, the limiting distributions of

Xn and X∗
n, if they exist, are identical. Thus, in steady state, the state of the system

as seen by an entering customer is identical to the one seen by a departing customer.

In Theorems 7.3 and 7.4, we prove that, if the arrival process is Poisson, and certain

other mild conditions are satisfied, the limiting distributions of X(t) and X̂n (if they

exist) are identical. Thus in steady state the state of the system as seen by an arriving

customer is the same as the state of the system at an arbitrary point of time. This

property is popularly known as PASTA – Poisson Arrivals See Time Averages. The

last result (Theorem 7.5) is called Little’s Law, and it relates limiting averages L and

W defined in the last sections. All these results are very useful in practice, but their

proofs are rather technical. We suggest that the reader should first read the statements

of the theorems, and understand their implications, before reading the proofs.

7.2.1 Relationship between π∗
j and π̂j

As pointed out in the last section, we make a distinction between the arriving cus-

tomers and the entering customers. One can think of the arriving customers as the

potential customers and the entering customers as the actual customers. The potential

customers become an actual customers when they decide to enter. The relationship
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between the state of the system as seen by an arrival (potential customer) and as seen

by an entering customer depends on the decision rule used by the arriving customer

to actually enter the system. To make this more precise, let In = 1 if the n-th arriving

customer enters, and 0 otherwise. Suppose the following limits exist

lim
n→∞

P(In = 1) = α, (7.1)

and

lim
n→∞

P(In = 1|X̂n = j) = αj , j ≥ 0. (7.2)

Note that α is the long run fraction of the arriving customers that enter the system.

The next theorem gives a relationship between the state of the system as seen by an

arrival and by an entering customer.

Theorem 7.1 Arriving and Entering Customers. Suppose α > 0, and one of the

two limiting distributions {π∗
j , j ≥ 0} and {π̂j , j ≥ 0} exist. Then the other limiting

distribution exists, and the two are related to each other by

π∗
j =

αj

α
π̂j , j ≥ 0. (7.3)

Proof: Define

N(n) =
n
∑

i=1

Ii, n ≥ 1.

Thus N(n) be the number of customers who join the system from among the first n
arrivals. This implies that

P(X̂n = j|In = 1) = P(X∗
N(n) = j).

The assumption α > 0 implies that N(n) → ∞ as n→ ∞ with probability 1. Now

P(X̂n = j) = P(X̂n = j, In = 1) + P(X̂n = j, In = 0)

= P(X∗
N(n) = j)P(In = 1) + P(In = 0|X̂n = j)P(X̂n = j).

Rearranging this yields

P(In = 1|X̂n = j)P(X̂n = j) = P(X∗
N(n) = j)P(In = 1).

Letting n→ ∞ on both sides, and using Equations 7.31 and 7.2, we get

αj π̂j = απ∗
j

if either P(X̂n = j) or P(X∗
n = j) has a limit as n→ ∞. The theorem follows from

this.

Note that if we further know that
∞
∑

j=0

π∗
j = 1

we can evaluate α as

α =

∞
∑

i=0

αiπ̂i.
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Hence Equation 7.3 can be written as

π∗
j =

αj π̂j
∑∞

i=0 αiπ̂i
, j ≥ 0.

Finally, if every arriving customer enters, we have αj = 1 for all j ≥ 0 and α = 1.

Hence the above equation reduces to π∗
j = π̂j for all j ≥ 0, as expected.

Example 7.1 M/M/1/K System. Consider an M/M/1/K system. An arriving

customer enters the system if he finds less than K customers ahead of him, else he

leaves. Thus we have

P(In = 1|X̂n = j) =

{

1 if 0 ≤ j < K ,

0 if j ≥ K.

From Equation 7.2

αj =

{

1 if 0 ≤ j < K ,

0 if j ≥ K.

Now suppose the limiting distribution {π∗
j , 0 ≤ j ≤ K − 1} exists. Then clearly we

must have
K−1
∑

j=0

π∗
j = 1.

The limiting distribution {π̂j , 0 ≤ j ≤ K} exists, and we must have

K
∑

j=0

π̂j = 1.

Hence we get

π∗
j =

π̂j
∑K−1

i=0 π̂i

=
π̂j

1 − π̂K
, 0 ≤ j ≤ K − 1.

7.2.2 Relationship between π∗
j and πj

The next theorem gives the relationship between the state of the system as seen by

an entering customer and a departing customer.

Theorem 7.2 Entering and Departing Customers. Suppose the customers enter

and depart a queueing system one at a time, and one of the two limiting distributions

{π∗
j , j ≥ 0} and {πj , j ≥ 0} exists. Then the other limiting distribution exists, and

πj = π∗
j , j ≥ 0. (7.4)

Proof: We follow the proof as given in Cooper [1981]. Suppose that there are i
customers in the system at time 0. We shall show that

{Xn+i ≤ j} ⇔ {X∗
n+j+1 ≤ j}, j ≥ 0. (7.5)
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First supposeXn+i = k ≤ j. This implies that there are exactly k+n entries before

the (n + i)th departure. Thus there can be only departures between the (n + i)th
departure and (n+ k + 1)st entry. Hence

X∗
n+k+1 ≤ k.

Using k = j we see that

{Xn+i ≤ j} ⇒ {X∗
n+j+1 ≤ j}, j ≥ 0.

To go the other way, suppose X∗
n+j+1 = k ≤ j. This implies that there are exactly

n+ i+ j−k departures before the (n+ j+1)st entry. Thus there no entries between

the (n+ i+ j − k)th departure and (n+ j + 1)st entry. Hence

Xn+i+j−k ≤ X∗
n+j+1 = k ≤ j, j ≥ 0.

Setting k = j we get Xn+i ≤ j. Hence

{X∗
n+j+1 ≤ j} ⇒ {Xn+i ≤ j}, j ≥ 0.

This proves the equivalence in Equation 7.5. Hence we have

P(Xn+i ≤ j) = P(X∗
n+j+1 ≤ j), j ≥ 0.

Letting n→ ∞, and assuming one of the two limits exist, the theorem follows.

Two comments are in order at this point. First, the above theorem is a sample path

result and does not require any probabilistic assumptions. As long as the limits exist,

they are equal. Of course, we need probabilistic assumption to assert that the limits

exist. Second, the above theorem can be applied even in the presence of batch arrivals

and departures, as long as we sequence the entries (or departures) in the batch and

observe the system after every entry and every departure in the batch. Thus, suppose

n customers have entered so far, and a new batch of size 2 enters when there are i
customers in the system. Then we treat this as two single entries occurring one after

another, thus yieldingX∗
n+1 = i+ 1 and X∗

n+2 = i+ 2.

Example 7.2 Entering and Departing Customers. The {X(t), t ≥ 0} processes

in the queueing systems M/M/1, M/M/s, M/G/1, G/M/1, etc. satisfy the hy-

pothesis of Theorem 7.2. Since every arrival enters the system, we can combine the

result of Theorem 7.1 with that of Theorem 7.2, to get

πj = π∗
j = π̂j , j ≥ 0,

if any one of the three limiting distributions exist. At this point we do not know how

to prove that they exist.

7.2.3 Relationship between π̂j and pj

Now we discuss the relationship between the limiting distribution of the state of the

system as seen by an arrival and that of the state of the system at any time point. This

will lead us to an important property called PASTA – Poisson Arrivals See Time
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Averages. Roughly speaking, we shall show that, the limiting probability that an ar-

riving customer sees the system in state j is the same as the limiting probability that

the system is in state j, if the arrival process is Poisson. Once can think of pj as the

time average (that is, the occupancy distribution): the long run fraction of the time

that the system spends in state j. Similarly, we can interpret π̂j as the long run frac-

tion of the arriving customers that see the system in state j. PASTA says that, if the

arrival process is Poisson, these two averages are identical.

We shall give a proof of this under the restrictive setting when the stochastic pro-

cess {X(t), t ≥ 0} describing the system state is a CTMC on {0, 1, 2, · · ·}. However,

PASTA is a very general result that applies even though the process is not Markovian.

For example, it applies to the queue length process in an M/G/1 queue, even if that

process is not a CTMC. However, its general proof is rather technical and will not be

presented here. We refer the reader to Wolff [1989] or Heyman and Sobel [1982] for

the general proof.

Let X(t) be the state of queueing system at time t. Let N(t) be the number of

customers who arrive at this system up to time t, and assume that {N(t), t ≥ 0} is a

PP(λ), and Sn is the time of arrival of the nth customer. Assume that {X(t), Sn ≤
t < Sn+1} is a CTMC with state-space S and rate matrixG = [gij ], n ≥ 0. When the

nth arrival occurs at time Sn, it causes an instantaneous transition in the X process

from i to j with probability rij , regardless of the past history up to time t. That is,

P(X(Sn+) = j|X(Sn−) = i, (X(u), N(u)), 0 ≤ u < Sn) = ri,j , i, j ≥ 0.

Now the nth arrival sees the system in state X̂n = X(Sn−). Hence we have, assum-

ing the limits exist,

π̂j = lim
n→∞

P(X̂n = j) = lim
n→∞

P(X(Sn−) = j), j ≥ 0 (7.6)

and

pj = lim
t→∞

P(X(t) = j), j ≥ 0. (7.7)

The next theorem gives the main result.

Theorem 7.3 PASTA. If the limits in Equations 7.6 and 7.7 exist,

π̂j = pj , j ≥ 0.

The proof proceeds via several lemmas, and is completely algebraic. We provide the

following intuition to strengthen the feel for the result. Figure 7.2(a) shows a sample

path {X(t), t ≥ 0} of a three-state system interacting with a PP(λ) {N(t), t ≥ 0}.

In the figure, the Tis are the intervals of time (open on the left and closed on the

right) when the system is in state 3. The events in the PP {N(t), t ≥ 0} that see the

system in state 3 are numbered consecutively from 1 to 12. Figure 7.2(b) shows the

Tis spliced together, essentially deleting all the intervals of time when the system is

not in state 3. Thus we count the Poisson events that trigger the transitions out of
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Figure 7.2 (a) Sample path of a CTMC interacting with a PP. (b) Reduced sample path of a

CTMC interacting with a PP.

state 3 to states 1 and 2, but not those that trigger a transition into state 3 from state

1 and 2. We also count all the Poisson events that do not generate any transitions.

Now, the times between consecutive events in Figure 7.2(a) are iid exp(λ), due

to the model of the interaction that we have postulated. Hence the process of events

in Figure 7.2(b) is a PP(λ). Following the notation of Section 6.4, let Vj(t) be the

amount of time the system spends in state j over (0, t]. Hence the expected number

of Poisson events up to time t that see the system in state 3 is λE(V3(t)). By the same

argument, the expected number of Poisson events up to time t that see the system in

state j is λE(Vj(t)). The expected number of events up to time t in a PP(λ) is λt.
Hence the fraction of the Poisson events that see the system in state j is

λE(Vj(t))

λt
=

E(Vj(t))

t
.

If the {X(t), t ≥ 0} process is a CTMC, the above fraction, as t → ∞ goes to pj ,

the long run fraction of the time the CTMC spends in state j. Hence, the limiting

probability (if the limits exist) the system is in state j just before an event in the PP,
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is the same as the long run probability that the system is in state j. The hard part is

to prove that the limits exist.

We now continue with the proof of Theorem 7.3. First we study the structure of

the process {X(t), t ≥ 0}.

Lemma 7.1 {X(t), t ≥ 0} is a CTMC on S with rate matrix Q given by

Q = G+ λ(R − I),

where R = [rij ], and I is the identity matrix.

Proof: That {X(t), t ≥ 0} is a CTMC is a consequence of how the system interacts

with the Poisson process, and the system behavior between the Poisson events. The

rate at which it moves to state j from state i 6= j is given by

qij = λrij + gij .

Hence we have

qii = gii − λ(1 − rii).

The above two relations imply Equation 7.8.

The next lemma describes the probabilistic structure of the {X̂n, n ≥ 0} process.

Lemma 7.2 {X̂n, n ≥ 0} is a DTMC on S with transition probability matrix P =
[pij ] given by

P = RB (7.8)

where R = [rij ] and B = [bij ] where

bij = P(X(Sn+1−) = j|X(Sn+) = i), i, j ∈ S.

Proof: That {X̂n, n ≥ 0} is a DTMC is clear. We have

pij = P(X̂n+1 = j|X̂n = i)

= P(X(Sn+1−) = j|X(Sn−) = i)

=
∑

k∈S

P(X(Sn+1−) = j|X(Sn−) = i,X(Sn+) = k)

·P(X(Sn+) = k|X(Sn−) = i)

=
∑

k∈S

P(X(Sn+) = k|X(Sn−) = i)P(X(Sn+1−) = j|X(Sn+) = k)

=
∑

k∈S

rikpkj ,

which yields Equation 7.8 in matrix form.

The next lemma relates the B and G matrices in an algebraic fashion.
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Lemma 7.3 The matrix B satisfies

(λI −G)B = λI. (7.9)

Proof: Let {Y (t), t ≥ 0} be a CTMC with generator matrix G, and let

aij(t) = P(Y (t) = j|Y (0) = i).

Let a∗ij(s) be the Laplace transform of aij(·). From Equation 213 on page 6.25 we

see that A∗(s) = [a∗ij(s)] satisfies

sA∗(s) − I = GA∗(s).

Since the {X(t), Sn ≤ t < Sn+1} is a CTMC with generator G, and Sn+1 − Sn ∼
exp(λ), we get

bij = P(X(Sn+1−) = j|X(Sn+) = i)

=

∫ ∞

0

λe−λtaij(t)dt

= λa∗ij(λ).

Thus

B = λA∗(λ) = I +GA∗(λ) = I +GB/λ,

which yields Equation 7.9.

With these three lemmas we can now give the proof.

The Proof of Theorem 7.3: Suppose {X(t), t ≥ 0} is an irreducible positive re-

current CTMC with limiting distribution p = [pj , j ∈ S]. Then, we have, from

Theorems 4.21 and 6.25, we get

pQ = 0,
∑

pj = 1, π̂P = π̂,
∑

π̂j = 1.

This yields

0 = pQ

= pQB

= p(G+ λ(R − I))B (from Lemma 7.1)

= p((G− λI)B + λRB)

= p(−λI + λP ) (from Lemma 7.3)

= −λ(p− pP ).

Hence we have

p = pP,
∑

pj = 1.

Thus p is the stationary distribution of the DTMC {X̂n, n ≥ 0}. However, since

{X(t), t ≥ 0} is an irreducible CTMC, {X̂n, n ≥ 0} is irreducible and aperi-

odic. Hence it has a unique limiting distribution π̂. Hence, we must have p = π̂, as

desired.



PROPERTIES OF GENERAL QUEUEING SYSTEMS 287

We explain with three examples.

Example 7.3 M/M/1/1 Queue. Verify Theorem 7.3 directly for the M/M/1/1
queue.

Let X(t) be the number of customers at time t in an M/M/1/1 queue with

arrival rate λ and service rate µ. Let N(t) be the number of arrivals over (0, t].
Then {N(t), t ≥ 0} is a PP(λ). Let Sn be the nth arrival epoch. We see that

{X(t), Sn ≤ t < Sn+1} is a CTMC with generator matrix

G =

[

0 0
µ −µ

]

.

If the system is empty at an arrival instant, the arrival enters, else the arrival leaves.

Thus the R matrix is given by

R =

[

0 1
0 1

]

.

From Lemma 7.1 we see that {X(t), t ≥ 0} is a CTMC with generator matrix

Q = G+ λ(R − I) =

[

−λ λ
µ −µ

]

.

This is as expected. Next we compute the B matrix. We have

b10 = P(X(Sn+1−) = 0|X(Sn+) = 1)

= P(next departure occurs before next arrival)

=
µ

λ+ µ
.

Similar calculations yield

B =

[

1 0
µ

λ+µ
λ

λ+µ

]

.

Using Lemma 7.2 we see that {X̂n, n ≥ 0} is a DTMC on {0, 1} with transition

probability matrix

P = RB =

[

µ
λ+µ

λ
λ+µ

µ
λ+µ

λ
λ+µ

]

.

Hence its limiting distribution is given by

π̂0 =
µ

λ+ µ
, π̂1 =

λ

λ+ µ
.

Using the results of Example 6.34 on page 241 we see that the limiting distribution

of the CTMC {X(t), t ≥ 0} is given by

p0 =
µ

λ+ µ
, p1 =

λ

λ+ µ
.

Thus Theorem 7.3 is verified.
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Example 7.4 PASTA for M/M/1 and M/M/s Queues. Let X(t) be the number

of customers at time t in anM/M/1 queue with arrival rate λ and service rate µ > λ.

Let N(t) be the number of arrivals over (0, t]. Then {N(t), t ≥ 0} is a PP(λ). We

see that X and N processes satisfy the assumptions described in this section. Hence

we can apply PASTA (Theorem 7.3) to get

π̂j = pj , j ≥ 0.

Furthermore, the X process satisfies the conditions for Theorem 7.1. Thus

πj = π∗
j , j ≥ 0.

Finally, every arriving customer enters the system, hence

π̂j = π∗
j , j ≥ 0.

From Example 6.36 we see that this queue is stable, and using Equation 6.70 and the

above equations, we get

π̂j = π∗
j = πj = pj = (1 − ρ)ρj , j ≥ 0, (7.10)

where ρ = λ/µ < 1.

Similar analysis for the M/M/s queue shows that

π̂j = π∗
j = πj = pj , j ≥ 0.

Example 7.5 M/M/1/K System. Let X(t) be the number of customers at time

t in an M/M/1/K queue with arrival rate λ and service rate µ. Let N(t) be the

number of arrivals over (0, t]. An arriving customer enters if and only if the number

in the system is less than K when he arrives at the system. Then {N(t), t ≥ 0} is

a PP(λ). We see that X and N processes satisfy the assumptions described in this

section. Hence we can apply PASTA (Theorem 7.3) to get

π̂j = pj , 0 ≤ j ≤ K.

Furthermore, the X process satisfies the conditions for Theorem 7.1. Thus

πj = π∗
j , 0 ≤ j ≤ K − 1.

Finally, from Example 7.1 we get

π∗
j =

π̂j

1 − π̂K
, 0 ≤ j ≤ K − 1.

Thus the arriving customers see the system in steady state, but not the entering cus-

tomers. This is because the arriving customers form a PP, but not the entering cus-

tomers. We shall compute the limiting distribution {pj , 0 ≤ j ≤ K} for this system

in Section 7.3.2.

We have proved PASTA in Theorem 7.3 for a {X(t), t ≥ 0} process that interacts

with a PP in a specific way, and behaves like a CTMC between the events of the PP.
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However, PASTA is a very general property. We state the general result here, but omit

the proof. In almost all applications the version of PASTA given here is sufficient,

since almost all the processes we study in this book can be turned into CTMCs by

using phase-type distributions as we shall see in Section 7.6.

Let X(t) be the state of a system at time t, and let {N(t), t ≥ 0} be a PP that may

depend on the {X(t), t ≥ 0} process. However, we assume the following:

“Lack of Anticipation” Property: {N(t + s) − N(s), t ≥ 0} and {X(u), 0 ≤
u ≤ s} are independent.

Note that {N(t+ s)−N(s), t ≥ 0} is independent of {N(u), 0 ≤ u ≤ s} due to

the independence of increments property of a PP. Thus the lack of anticipation prop-

erty says that the future arrivals after time s are independent of the system history up

to time s.

Now let B be a given set of states and let VB(t) be the time spent by the system

in the set B over (0, t], and AB(t) be the number of arrivals over (0, t] that see the

system in the set B,

AB(t) =

N(t)
∑

n=1

1{X(Sn−)∈B}, t ≥ 0

where Sn is the time of the nth arrival.

Now suppose the sample paths of the {X(t), t ≥ 0} are almost surely piecewise

continuous and have finite number of jumps in finite intervals of time. Then the

following theorem gives the “almost sure” version of PASTA.

Theorem 7.4 PASTA.
VB(t)

t converges almost surely if and only if
AB(t)
N(t) converges

almost surely, and both have the same limit.

Proof: See Wolff (1989), or Heyman and Sobel (1982).

Note that PASTA, which equates the limit of
VB(t)

t to that of
AB(t)
N(t) , holds when-

ever the convergence holds. We use the tools developed in this book to show that

lim
t→∞

VB(t)

t
= lim

t→∞
P(X(t) ∈ B),

and

lim
t→∞

AB(t)

N(t)
= lim

n→∞
P(X(Sn−) ∈ B).
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Thus according to PASTA, whenever the limits exist,

lim
t→∞

P(X(t) ∈ B) = lim
n→∞

P(X(Sn−) ∈ B),

or, when B = {j},

pj = π̂j .

Example 7.6 PASTA and the M/G/1 and G/M/1 Queues. Theorems 7.2 and

7.4 imply that for the M/G/1 queue

π̂j = π∗
j = πj = pj, j ≥ 0.

On the other hand, for the G/M/1 queue, we have

π̂j = π∗
j = πj , j ≥ 0.

However, PASTA does not apply unless the inter-arrival times are exponential. Thus

in general, for an G/M/1 queue, we do not have π̂j = pj .

7.2.4 Little’s Law

Recall the definitions of X(t), Wn, L, and W on Page 278. In this subsection we

study another important theorem of queueing theory: The Little Law. It states that

L, the average number of customers in the system, λ, the average arrival rate of

customers to the system, and W , the average time a customer spends in the system

(all in steady state), are related to each other by the following simple relation:

L = λW. (7.11)

The above relation is in fact a sample path property, rather than a probabilistic one.

We need probabilistic assumption to assert that the above averages exist. An intu-

itive explanation of Little’s Law is as follows: Suppose each arriving customer pays

the system $1 per unit time the customer spends in the system. The long run rate at

which the system earns revenue can be computed in two equivalent ways. First, the

nth customer pays the system $Wn, the time spent by that customer in the system.

Hence the average amount paid by a customer in steady state is $W . Since the av-

erage arrival rate is λ, the system earns $λW per unit time in the long run. Second,

since each customer in the system pays at rate $1 per unit time, the system earns

revenue at the instantaneous rate of $X(t) per unit time at time t. Hence the long run

rate of revenue is seen to be L, the steady state expected value of X(t). Since these

two calculations must provide the same answer, Equation 7.11 follows.

In the rest of the section we shall make the statement of Little’s law more precise.

Consider a general queueing system where the customers arrive randomly, get served,

and then depart. Let X(t) the number of customers in the system at time t, A(t) be

the number of arrivals over (0, t], and Wn be the time spent in the system by the

nth customer. We also refer to it as the waiting time or sojourn time. Now define the
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following limits, whenever they exist. Note that these are defined for every sample

path of the queueing system.

L = lim
t→∞

1

t

∫ t

0

X(u)du, (7.12)

λ = lim
t→∞

A(t)

t
, (7.13)

W = lim
n→∞

∑n
k=1Wk

n
. (7.14)

The next theorem states the relationship that binds the three limits defined above.

Theorem 7.5 Little’s Law. Suppose that for a fixed sample path the limits in Equa-

tions 7.13 and 7.14 exist and are finite. Then the limit in Equation 7.12 exists, and is

given by

L = λW.

Proof: Let S0 = 0, D0 = 0, and Sn be the arrival time andDn ≥ Sn be the departure

time of the nth customer, n ≥ 1, and assume that 0 ≤ S1 ≤ S2 ≤ · · · . A(t) is

already defined to be the number of arrivals over (0, t]. DefineD(t) to be the number

of departures over (0, t]. Without loss of generality we assume that X(0) = 0, since

we can always assume that X(0) customers arrived at time 0+. Then we have

Wn = Dn − Sn, n ≥ 1,

X(t) =

∞
∑

n=1

1Sn≤t<Dn
, t ≥ 0,

A(t) = sup{n ≥ 0 : Sn ≤ t}, t ≥ 0,

D(t) = sup{n ≥ 0 : Dn ≤ t}, t ≥ 0,

X(t) = A(t) −D(t), t ≥ 0.

Now the existence of the limits implies that (we omit the details of the proof of this

assertion, and refer the readers to El-Taha and Stidham (1998))

lim
t→∞

X(t)

t
= 0. (7.15)

This implies that
D(t)

t
=
A(t) −X(t)

t
→ λ.

The above relations also imply that

D(t)
∑

n=1

Wn ≤
∫ t

0

X(u)du ≤
A(t)
∑

n=1

Wn.

Dividing by t on both sides we get

1

t

D(t)
∑

n=1

Wn ≤ 1

t

∫ t

0

X(u)du ≤ 1

t

A(t)
∑

n=1

Wn,
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which can be written as

D(t)

t

1

D(t)

D(t)
∑

n=1

Wn ≤ 1

t

∫ t

0

X(u)du ≤ A(t)

t

1

A(t)

A(t)
∑

n=1

Wn. (7.16)

Now, assume that A(t) → ∞ as t→ ∞. Then D(t) → ∞ as t→ ∞, and we have

lim
t→∞

1

D(t)

D(t)
∑

n=1

Wn = lim
t→∞

1

A(t)

A(t)
∑

n=1

Wn = W.

Now let t→ ∞ in Equation 7.16. We get

λW ≤ L ≤ λW.

If A(t) remains bounded as t → ∞, we necessarily have L = λ = W = 0. The

theorem follows.

There are many results that prove Little’s Law under less restrictive conditions.

We refer the readers to Wolff (1989) and Heyman and Sobel (1982) and El-Taha

and Stidham (1998). The condition in Equation 7.15 usually holds since we concen-

trate on stable queueing systems, where the queue length has non-defective limiting

distribution.

Note that as long as the service discipline is independent of the service times,

the {X(t), t ≥ 0} process does not depend on the service discipline. Hence L is

also independent of the service discipline. On the other hand, the {Wn, n ≥ 0}
process does depend upon the service discipline. However, Little’s Law implies that

the average wait is independent of the service discipline, since the quantities L and

λ are independent of the service discipline.

Example 7.7 The M/G/∞ Queue. Consider the infinite server queue of Exam-

ple 5.17 on page 173. In the queueing nomenclature introduce in Section 7.1 this is

an M/G/∞ queue. Verify Little’s law for this system.

From Example 5.17, we see that in steady state the number of customers in this

system is a P(λτ ) random variable, where λ is the arrival rate of customers, and τ is

the mean service time. Thus

L = λτ.

Since the system has infinite number of servers,Wn, the time spent by the n customer

in the system equals his service time. Hence

W = E(Wn) = τ.

Thus Equation 7.11 is satisfied.
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7.3 Birth and Death Queues

Many queueing systems where customers arrive one at a time, form a single queue,

and get served one at a time, can be modeled by birth and death processes. See

Example 6.10 on page 200 for the definition, and Example 6.35 on page 242 for the

limiting behavior. We shall use these results in the rest of this section.

7.3.1 M/M/1 Queue

Consider an M/M/1 queue. Such a queue has a single server, infinite capacity wait-

ing room, and the customers arrive according to a PP(λ) and request iid exp(µ)
service times. Let X(t) be the number of customers in the system at time t. We have

seen in Example 6.11 on page 200 that {X(t), t ≥ 0} is a birth and death process

with birth rates

λn = λ, n ≥ 0

and death rates

µn = µ, n ≥ 1.

We saw in Example 6.36 on page 242 that this queue is stable if

ρ = λ/µ < 1.

The parameter ρ is called the traffic intensity of the queue, and it can be interpreted

as the expected number of arrivals during one service time. The system serves one

customer during one service times, and gets ρ new customers during this time on the

average. Thus if ρ < 1, the system can serve more customers than it gets, so it should

be stable. The stability condition can also be written as λ < µ. In this form it says that

the rate at which customers arrive is less than the rate at which they can be served, and

hence the system should be stable. Note that the system is perfectly balanced when

λ = µ, but it is unstable, since it has no spare service capacity to handle random

variation in arrivals and services. Example 6.36 shows that the limiting distribution

of X(t) in a stable M/M/1 queue is given by

pj = (1 − ρ)ρj , j ≥ 0. (7.17)

From Example 7.4 we get

π̂j = π∗
j = πj = pj = (1 − ρ)ρj , j ≥ 0.

We have

L =

∞
∑

j=0

jpj =
ρ

1 − ρ
. (7.18)

Thus as ρ→ 1, L→ ∞. This is a manifestation of increasing congestion as ρ→ 1.

Next we shall compute F (·), the limiting distribution of Wn, assuming that the
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service discipline is FCFS. We have

F (x) = lim
n→∞

P(Wn ≤ x)

= lim
n→∞

∞
∑

j=0

P(Wn ≤ x|X∗
n = j)P(X∗

n = j)

= lim
n→∞

∞
∑

j=0

π∗
jP(Wn ≤ x|X∗

n = j).

From Equation 7.10 we see that

π∗
j = pj = (1 − ρ)ρj , j ≥ 0.

Now suppose an entering customer sees j customers ahead in the system. Due to

the FCFS discipline, these customers will be served before his service starts. The

remaining service time of the customer in service (if any) is an exp(µ) random vari-

able. Hence this customer’s time in the system is the sum of j+1 iid exp(µ) random

variables. Thus

P(Wn ≤ x|X∗
n = j) = 1 −

j
∑

r=0

e−µx (µx)r

r!
.

Substituting, we get

F (x) =

∞
∑

j=0

(1 − ρ)ρj

(

1 −
j
∑

r=0

e−µx (µx)r

r!

)

,

which, after some algebra, reduces to

F (x) = 1 − e−(µ−λ)x, x ≥ 0.

Thus the steady state waiting time is an exp(µ− λ) random variable. Thus we have

W = E(waiting time in steady state) =
1

µ− λ
.

Using equation 7.18 we see that L = λW . Thus Little’s Law is verified for the

M/M/1 queue.

7.3.2 M/M/1/K Queue

In an M/M/1/K system, customers arrive according to a PP(λ) and receive iid

exp(µ) service times from a single server. If an arriving customer finds K persons

in the system, he leaves immediately without service. Let X(t) be the number of

customers in the system at time t. One can show that {X(t), t ≥ 0} is a birth and

death process on {0, 1, 2, · · · ,K} with birth rates

λn = λ, 0 ≤ n < K



BIRTH AND DEATH QUEUES 295

and death rates

µn = µ, 1 ≤ n ≤ K.

Note that λK = 0 implies that the number in the system will not increase from K to

K + 1. We can use the results of Example 6.35 on page 242 to compute the limiting

distribution of the X(t). Substituting in Equation 6.68 we get

ρj = ρj , 0 ≤ j ≤ K,

where ρ = λ/µ is the traffic intensity. We have

K
∑

j=0

ρj =

{

1−ρK+1

1−ρ if ρ 6= 1,

K + 1 if ρ = 1.

This is always finite, hence the queue is always stable. Substituting in Equation 6.69

we get

pj =

{ 1−ρ
1−ρK+1 ρ

j if ρ 6= 1,
1

K+1 if ρ = 1.
(7.19)

Finally, from Example 7.5 we have

π̂j = pj , 0 ≤ j ≤ K

and

πj = π∗
j =

pj

1 − pK
, 0 ≤ j ≤ K − 1.

The mean number of customers in the system in steady state is given by

L =

∞
∑

j=0

jpj =
ρ

1 − ρ

[

1 − ρK

1 − ρK+1
−KpK

]

. (7.20)

7.3.3 M/M/s Queue

Consider an M/M/s queue. Such a queue has s identical servers, infinite capacity

waiting room, and the customers arrive according to a PP(λ) and request iid exp(µ)
service times. The customers form a single line and the customer at the head of the

line is served by the first available server. If more than one server is idle when a

customer arrives, he goes to any one of the available servers. LetX(t) be the number

of customers in the system at time t. One can show that {X(t), t ≥ 0} is a birth and

death process with birth rates

λn = λ, n ≥ 0

and death rates

µn = min(n, s)µ, n ≥ 0.

We can use the results of Example 6.35 on page 242 to compute the limiting distri-

bution of the X(t). Using the traffic intensity parameter

ρ =
λ

sµ
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in Equation 6.68 we get

ρn =
smin(n,s)

min(n, s)!
ρn, n ≥ 0.

We have ∞
∑

n=0

ρn =

{ ∑s−1
n=0 ρn + ss

s!
ρs

1−ρ if ρ < 1,

∞ if ρ ≥ 1.

Hence the stability condition for the M/M/s queue is

ρ < 1.

This condition says that the queue is stable if the arrival rate λ is less than the maxi-

mum service rate sµ, which makes intuitive sense. From now on we assume that the

queue is stable. Using Equation 6.69 we get

p0 =

( ∞
∑

n=0

ρn

)−1

=

[

s−1
∑

n=0

ρn +
ss

s!

ρs

1 − ρ

]−1

and

pn = ρnp0 =
smin(n,s)

min(n, s)!
ρnp0, n ≥ 1.

The limiting probability that all servers are busy is given by

∞
∑

n=s

pn =
ss

s!

ρs

1 − ρ
p0 =

ps

1 − ρ
.

The mean number of customers in the system can be shown to be

L =
λ

µ
+ ps

ρ

(1 − ρ)2
. (7.21)

7.3.4 M/M/∞ Queue

The M/M/∞ queue is the limit of the M/M/s queue as s → ∞. It arises as a

model of self-service queues and was modeled in Example 6.12 as a birth and death

process with birth parameters

λn = λ, n ≥ 0

and death parameters

µn = nµ n ≥ 0.

This queue is stable as long as

ρ =
λ

µ
<∞.

Its limiting distribution is given in Example 6.37 as

pj = e−ρ ρ
j

j!
, j ≥ 0.
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As in the case of the M/M/1 queue, we have

π̂j = π∗
j = πj = pj = e−ρ ρ

j

j!
, j ≥ 0.

The transient analysis of theM/M/∞ queue was done in Example 5.17, from which

we see that if X(0) = 0, then X(t) is a Poisson random variable with mean ρ(1 −
e−µt). From this we get

E(X(t)|X(0) = 0) = ρ(1 − e−µt).

In comparison, the transient analysis of the M/M/1 and M/M/s queues is quite

messy. We refer the readers to one of the books on queueing theory for details: Saaty

(1961) or Gross and Harris (1985).

7.3.5 Queues with Finite Populations

In Example 6.6 on page 197 we modeled a workshop with two machines and one

repairperson. Here we consider a more general workshop with N machines and s
repairpersons. The life times of the machines are iid exp(µ) random variables, and

the repair times are iid exp(λ) random variables, and are independent of the life

times. The machines are as good as new after repairs. The machines are repaired in

the order in which they fail. Let X(t) be the number of working machines at time

t. One can show that {X(t), t ≥ 0} is a birth and death process on {0, 1, 2, · · · , N}
with birth parameters

λn = (N − n)λ, 0 ≤ n ≤ N − 1

and death parameters

µn = min(n, s)µ, 0 ≤ n ≤ N.

Since this is a finite state queue, it is always stable. One can compute the limiting

distribution using the results of Example 6.35 on page 242.

7.3.6 M/M/1 Queue with Balking and Reneging

Consider anM/M/1 queue of Section 7.3.1. Now suppose an arriving customer who

sees n customers in the system ahead of him joins the system with probability αn.

This is called the balking behavior. Once he joins the system, he displays reneging

behavior as follows: He has a patience time that is an exp(θ) random variable. If his

service does not begin before his patience time expires, he leaves the system without

getting served (i.e., he reneges); else he completes his service and then departs. All

customer patience times are independent of each other.

Let X(t) be the number of customers in the system at time t. We can show that

{X(t), t ≥ 0} is a birth and death process with birth rates

λn = αnλ, n ≥ 0
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and death rates

µn = µ+ (n− 1)θ, n ≥ 1.

(Why do we get (n−1)θ and not nθ in the death parameters?) If θ > 0, such a queue

is always stable and its steady state distribution can be computed by using the results

of Example 6.35 on page 242.

The above examples illustrate the usefulness of the birth and death processes in

modeling queues. Further examples are given in Modeling Exercises 7.1 - 7.5.

7.4 Open Queueing Networks

The queueing models in Section 7.3 are for single-station queues, i.e., there is a sin-

gle place where the service is rendered. Customers arrive at this facility, which may

have more than one server, get served once, and then depart.

In this and the next section we consider more complicated queueing systems called

queueing networks. A typical queueing network consists of several service stations,

or nodes. Customers form queues at each of these queueing stations. After complet-

ing service at a station the customer may depart from the system or join a queue at

some other service station. In open queueing networks, customers arrive at the nodes

from outside the system, visit the nodes in some order, and then depart. Thus the

total number of customers in an open queueing network varies over time. In closed

queueing networks there are no external arrivals or departures, thus the total number

of customers in a closed queueing network remains constant. We shall study open

queueing networks in this section and closed queueing networks in the next.

Open queueing networks arise in all kinds of situations: hospitals, computers,

telecommunication networks, assembly lines, and supply chains, to name a few. Con-

sider a simple model of patient flow in a hospital. Patients arrive from outside at the

admitting office or the emergency ward. Patients from the admitting office go to vari-

ous clinics, which we have lumped into one node for modeling ease. In the clinics the

patients are diagnosed and routed to the intensive care unit, or are dismissed, or are

given reappointment for a follow-up visit. Patients with reappointments go home and

return to the admitting office at appropriate times. Patients from the emergency ward

are either dismissed after proper care, or are sent to the intensive care unit. From the

intensive care unit they are either discharged or given reappointments for follow-up

visits.

This simple patient flow model can be set up as a queueing network with five

nodes as shown in Figure 7.3. The arrows interconnecting the nodes show the patient

routing pattern. In this figure the customers can arrive at the system at two nodes: ad-

mitting and emergency. Customers can depart the system from three nodes: clinics,
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Discharged

Reappointments
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Discharged

Intensive
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arrivals

Emergency

arrivals patients

Discharged

Reappointments

patients

Figure 7.3 Schematic diagram of patient flow in a hospital.

emergency, and intensive care. Note that a customer can visit a node a random num-

ber of times before departing the system, i.e., a queueing network can have cycles.

It is extremely difficult to analyze a queueing network in all its generality. In this

section we shall concentrate on a special class of queueing networks called the Jack-

son networks. Jackson introduced this class in a seminal paper in 1957, and it has

become a standard queueing network model since then.

A queueing network is called a Jackson network if it satisfies the following as-

sumptions:

A1. It has N service stations (nodes).

A2. There are si servers at node i, 1 ≤ si ≤ ∞, 1 ≤ i ≤ N . Service times of

customers at node i are iid exp(µi) random variables. They are independent of

service times of customers in other nodes.

A3. There is an infinite waiting room at each node.

A4. External arrivals at node i form a PP(λi). All the arrival processes are independent

of each other and the service times.

A5. After completing service at node i, the customer departs the system with prob-

ability ri, or joins the queue at node j with probability rij , independent of the

number of customers at any node in the system. rii can be positive. We have

ri +

N
∑

j=1

rij = 1, 1 ≤ i ≤ N. (7.22)

A6. The routing matrix R = [rij ] is such that I −R is invertible.

All the above assumptions are crucial to the analysis of Jackson networks. Some as-

sumptions can be relaxed, but not the others. For example, in practice we would like

to consider finite capacity waiting rooms (assumption 3) or state-dependent routing

(assumption 5). However such networks are very difficult to analyze. On the other

hand certain types of state-dependent service and arrival rates can be handled fairly
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easily. See Subsections 7.4.1 and 7.4.2.

Now let us study a Jackson network described above. Let Xi(t) be the number of

customers at node i at time t, (1 ≤ i ≤ N, t ≥ 0), and let

X(t) = [X1(t), X2(t), · · · , XN(t)]

be the state of the queueing network at time t. The state-space of the {X(t), t ≥ 0}
process is S = {0, 1, 2, · · ·}N . To understand the transitions in this process we need

some notation.

Let ei be an N -vector with a 1 in the ith coordinate and 0 in all others. Suppose

the system is in state x = [x1, x2, · · · , xN ] ∈ S. If an external arrival takes place at

node i, the system state changes to x + ei. If a customer completes service at node

i (this can happen only if xi > 0) and departs the system, the system state changes

from x to x− ei, and if the customer moves to state j, the system state changes from

x to x − ei + ej . It can be seen that {X(t), t ≥ 0} is a multi-dimensional CTMC

with the following transition rates:

q(x, x + ei) = λi,

q(x, x − ei) = min(xi, si)µiri,

q(x, x − ei + ej) = min(xi, si)µirij , i 6= j.

Hence we get

q(x, x) = −q(x) = −
N
∑

i=1

λi −
N
∑

i=1

min(xi, si)µi(1 − rii).

Now let

p(x) = lim
t→∞

P(X(t) = x)

= lim
t→∞

P(X1(t) = x1, X2(t) = x2, · · · , XN (t) = xN )

be the limiting distribution, assuming it exists.

We now study node j in isolation. The input to node j consists of two parts: the

external input that occurs at rate λj , and the internal input originating from other

nodes (including node j) in the network. Let aj be the total arrival rate (external +

internal) to node j. In steady state (assuming it exists) the departure rate from node i
must equal the total input rate ai to node i. A fraction rij of the departing customers

goes to node j. Thus the internal input from node i to node j is airij . Thus in steady

state we must have

aj = λj +

N
∑

i=1

airij , 1 ≤ j ≤ N, (7.23)
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which can be written in matrix form as

a(I −R) = λ,

where a = [a1, a2, · · · , aN ] and λ = [λ1, λ2, · · · , λN ]. Now, from assumption 6,

I −R is invertible. Hence we have

a = λ(I −R)−1. (7.24)

Note that the invertibility of I − R implies that no customer stays in the network

indefinitely.

Now consider an M/M/si queue with arrival rate ai and service rate µi. From the

results of Section 7.3.3 we see that such a queue is stable if ρi = ai/siµi < 1, and

φi(n), the steady state probability that there are n customers in the system is by

φi(n) =
s
min(n,si)
i

min(n, si)!
ρn

i φi(0), n ≥ 0,

where

φi(0) =

[

si−1
∑

n=0

sn
i

n!
ρn

i +
ssi

i

si!

ρsi

i

1 − ρi

]−1

.

With these preliminaries we are ready to state the main result about the Jackson

networks below.

Theorem 7.6 Open Jackson Networks. The CTMC {X(t), t ≥ 0} is positive re-

current if and only if

ai < siµi, 1 ≤ i ≤ N,

where a = [a1, a2, · · · , aN ] is given by Equation 7.24. When it is positive recurrent,

its steady state distribution is given by

p(x) =

N
∏

i=1

φi(xi). (7.25)

Proof: The balance equations for {X(t), t ≥ 0} are

q(x)p(x) =

N
∑

i=1

λip(x− ei) +

N
∑

i=1

riµi min(xi + 1, si)p(x+ ei)

+

N
∑

j=1

∑

i:i6=j

rijµi min(xi + 1, si)p(x+ ei − ej), x ∈ S.
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Assume that p(x) = 0 if x has any negative coordinates. Substitute p(x) of Equa-

tion 7.25 in the above equation to get

q(x)
N
∏

k=1

φk(xk) =
N
∑

i=1

λi

N
∏

k=1

φk(xk)
φi(xi − 1)

φi(xi)

+

N
∑

i=1

riµi min(xi + 1, si)

N
∏

k=1

φk(xk)
φi(xi + 1)

φi(xi)

+

N
∑

j=1

∑

i:i6=j

rijµi min(xi + 1, si)

N
∏

k=1

φk(xk)
φi(xi + 1)

φi(xi)

φj(xj − 1)

φj(xj)
.

Canceling
∏N

k=1 φk(xk) from both sides and using the identity

φi(xi − 1)

φi(xi)
=
µi min(xi, si)

ai

the above equality reduces to

q(x) =
N
∑

i=1

λi
µi min(xi, si)

ai
+

N
∑

i=1

riai

+

N
∑

j=1

∑

i:i6=j

(airij)
µj min(xj , sj)

aj
.

Using Equation 7.23 and simplifying the above equation we get

N
∑

i=1

λi =

N
∑

i=1

riai.

However, the above equation holds in steady state since the left hand side is the

rate at which the customers enter the network, and the right hand side is the rate at

which they depart the network. We can also derive this equation from Equations 7.23

and 7.22. Thus the solution in Equation 7.25 satisfies the balance equation. Since

φi(0) > 0 if and only if ai < siµi, the condition of positive recurrence follows.

Also, the CTMC is irreducible. Hence there is a unique limiting distribution. Hence

the theorem follows.

The form of the distribution in Equation 7.25 is called the product form, for the

obvious reason. Theorem 7.6 says that, in steady state, the queue lengths at the N
nodes are independent random variables. Furthermore, node i behaves as if it is an

M/M/si queue with arrival rate ai and service rate µi. The phrase “behaves as if”

is important, since the process {Xi(t), t ≥ 0} is not a birth and death process of an

M/M/si queue. For example, in general, the total arrival process to node i is not a

PP(ai). It just so happens that the steady distribution of {Xi(t), t ≥ 0} is the same

as that of an M/M/si queue. We illustrate the result of Theorem 7.6 with a few

examples.
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Example 7.8 Single Queue with Feedback. The simplest queueing network is a

single station queue with feedback as shown in Figure 7.4. Customers arrive from

1 – α

α

s

Servers
λ

Figure 7.4 An s-server queue with Bernoulli feedback.

outside at this service station according to a PPλ) and request iid exp(µ) services.

The service station has s identical servers. When a customer completes service, he

leaves the system with probability α. With probability 1−α he rejoins the queue and

behaves as a new arrival.

This is a Jackson network with N = 1, s1 = s, µ1 = µ, λ1 = λ, r1 = α, r11 =
1 − α. From Equation 7.23, we get

a1 = λ+ (1 − α)a1,

which yields

a1 = λ/α.

Thus the queue is stable if

ρ =
λ

αsµ
< 1.

The steady state distribution of X(t) = X1(t) is given by

pn = lim
t→∞

P(X(t) = n) =
smin(n,s)

min(n, s)!
ρnp0, n ≥ 0,

where

p0 =

[

s−1
∑

n=0

sn

n!
ρn +

ss

s!

ρs

1 − ρ

]−1

.

Example 7.9 Tandem Queue. Consider N single server queues in tandem as

shown in Figure 7.5. External customers arrive at node 1 according to a PP(λ). The

µNµN–1µ2µ1
λ

Figure 7.5 A tandem queueing network.

service times at the ith node are iid exp(µi) random variables. Customers complet-

ing service at node i join the queue at node i+ 1, 1 ≤ i ≤ N − 1. Customers leave



304 QUEUEING MODELS

the system after completing service at node N .

This is a Jackson network with N nodes and λ1 = λ, λi = 0, for 2 ≤ i ≤ N ,

ri,i+1 = 1 for 1 ≤ i ≤ N − 1, ri = 0 for 1 ≤ i ≤ N − 1, and rN = 1. The traffic

Equations 7.23 yield

ai = λ, 1 ≤ i ≤ N.

Hence the tandem queueing system is stable if λ < µi for all 1 ≤ i ≤ N , i.e.,

λ < min{µ1, µ2, · · · , µN}.
Thus the slowest server determines the traffic handling capacity of the tandem net-

work. Assuming stability, the limiting distribution is given by

lim
t→∞

P(Xi(t) = xi, 1 ≤ i ≤ N) =

N
∏

i=1

(

λ

µi

)xi
(

1 − λ

µi

)

.

Example 7.10 Patient Flow. Consider the queueing network model of patient flow

as shown in Figure 7.3. Suppose external patients arrive at the admitting ward at a

rate of 4 per hour and at the emergency ward at a rate of 1/hr. The admissions desk

is managed by one secretary who processes an admission in five minutes on the av-

erage. The clinic is served by k doctors, (here k is to be decided on), and the average

consultation with a doctor takes 15 minutes. Generally, one out of every four patients

going through the clinic is asked to return for another check up in two weeks (336

hours). One out of every ten is sent to the intensive care unit from the clinic. The rest

are dismissed after consultations. Patients arriving at the emergency room requires

on the average one hour of consultation time with a doctor. The emergency room is

staffed by m doctors, where m is to be decided on. One out of two patients in the

emergency ward goes home after treatment, whereas the other is admitted to the in-

tensive care unit. The average stay in the intensive care unit is four days, and there

are n beds available, where n is to decided on. From the intensive care unit, 20% of

the customers go home, and the other 80% are given reappointments for follow up in

two weeks. Analyze this system assuming that the assumptions of Jackson networks

are satisfied.

The parameters of the N = 5 node Jackson network (using time units of hours)

are

λ1 = 4, λ2 = 1, λ3 = 0, λ4 = 0, λ5 = 0,

s1 = 1, s2 = m, s3 = k, s4 = n, s5 = ∞,

µ1 = 12, µ2 = 1, µ3 = 4, µ4 = 1/96, µ5 = 1/336,

r1 = 0, r2 = 0.5, r3 = 0.65, r4 = 0.2, r5 = 0.
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The routing matrix is given by

R =













0 0 1 0 0
0 0 0 0.5 0
0 0 0 0.1 0.25
0 0 0 0 0.80
1 0 0 0 0













.

Equation 7.23 are given by

a1 = 4 + a5

a2 = 1

a3 = a1

a4 = .5a2 + .1a3

a5 = .25a3 + .8a4.

Solving the above equations we get

a1 = 6.567, a2 = 1, a3 = 6.567, a4 = 1.157, a5 = 2.567.

We use Theorem 7.6 to establish the stability of the network. Note that a1 < s1µ1

and a5 < s5µ5. We must also have

1 = a2 < s2µ2 = m,

6.567 = a3 < s3µ3 = 4k,

1.157 = a4 < s4µ4 = n/96.

These are satisfied if we have

m > 1, k > 1.642, n > 111.043.

Thus the hospital must have at least two doctors in the emergency room, at least two

in the clinics, and have at least 112 beds in the intensive care unit. So let us assume

the hospital uses two doctors each in the emergency room and the clinics, and has

120 beds. With these parameters, the steady state analysis of the queueing network

can be done by treating (1) the admissions queue as an M/M/1 with arrival rate

6.567 per hour, and service rate of 12 per hour; (2) the emergency ward queue as an

M/M/2 with arrival rate 1 per hour, and service rate of 1 per hour; (3) the clinic

queue as an M/M/2 queue with arrival rate 6.567 per hour and service rate of 4 per

hour per server; (4) the intensive care queue as an M/M/120 with arrival rate 1.157

per hour, and service rate of 1/96 per hour; and (5) the home queue as an M/M/∞
with arrival rate 2.567 per hour, and service rate of 1/336 per hour. Furthermore these

five queues are independent of each other in steady state.

Next we discuss two important generalizations of the Jackson networks.
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7.4.1 State-Dependent Service

In the Jackson network model we had assumed that the service rate at node i when

there are n customers at that node is given by min(si, n)µi. We define Jackson net-

works with state-dependent service by replacing assumption A2 by A2’ as follows:

A2’. The service rate at node i when there are n customers at that node is given by

µi(n), with µi(0) = 0 and µi(n) > 0 for n ≥ 0, 1 ≤ i ≤ N .

Note that the service rate at node i is not allowed to depend on the state of node

j 6= i. Now define

φi(0) = 1, φi(n) =

n
∏

j=1

(

ai

µi(j)

)

, n ≥ 1, 1 ≤ i ≤ N (7.26)

where ai is the total arrival rate to node i as given by Equation 7.24. Jackson networks

with state-dependent service also admit a product form solution as shown in the next

theorem.

Theorem 7.7 Jackson Networks with State-Dependent Service. A Jackson net-

work with state-dependent service is stable if and only if

ci =

∞
∑

n=0

φi(n) <∞ for all 1 ≤ i ≤ N.

If the network is stable, the limiting state distribution is given by

p(x) =

N
∏

i=1

φi(xi)

ci
, x ∈ S.

Proof: Follows along the same lines as the proof of Theorem 7.6.

Thus, in steady-state, the queues at various nodes in a Jackson network with state-

dependent service are independent.

7.4.2 State-Dependent Arrivals and Service

It is also possible to further generalize the model of Subsection 7.4.1 by allowing the

instantaneous arrival rate to the network to depend on the total number of customers

in the network. Specifically, we replace assumption A4 by A4’ as follows:

A4’. External customers arrive at the network at rate λ(n) when the total number

of customers in the network is n. An arriving customer joins node i with probability

ui, where
N
∑

i=1

ui = 1.
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The above assumption implies that the instantaneous external arrival rate to node

i is uiλ(n) if the total number of customers in the network is n. To keep the

{X(t), t ≥ 0} process irreducible, we assume that there is a K ≤ ∞ such that

λ(n) > 0 for 0 ≤ n < K , and λ(n) = 0 for n ≥ K . We call the Jackson networks

with assumptions A2 and A5 replaced by A2’ and A5’ “Jackson networks with state-

dependent arrivals and service.”

We shall see that such Jackson networks with state-dependent arrival and service

rates continue to have a kind of product form limiting distribution. However, the

queue at various nodes are not independent any more. The results are given in the

next theorem. First, we need the following notation.

Let {ai, 1 ≤ i ≤ N} be the unique solution to

aj = uj +

N
∑

i=1

aipij , 1 ≤ j ≤ N.

Let φi(n) be as defined in Equation 7.26 using the above {ai, 1 ≤ i ≤ N}. Also, for

x = [x1, x2, · · · , xN ] ∈ S, let

|x| =

N
∑

i=1

xi.

Thus if the state of the network is X(t), the total number of customers in it at time t
is |X(t)|.

Theorem 7.8 Jackson Networks with State-Dependent Arrivals and Service.

The limiting state distribution in a Jackson network with state-dependent arrivals

and service is given by

p(x) = c ·
N
∏

i=1

φi(xi) ·
|x|
∏

j=1

λ(j), x ∈ S,

where c is the normalizing constant given by

c =





∑

x∈S

N
∏

i=1

φi(xi) ·
|x|
∏

j=1

λ(j)





−1

.

The network is stable if and only if c > 0.

Proof: Follows along the same lines as that of Theorem 7.6.

Computation of the constant c is the hard part. There is a large literature on “prod-

uct form” queueing networks, and it is more or less completely understood now as

what enables a network to have “product form” solution. See Kelly (1979) and Wal-

rand (1988).
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7.5 Closed Queueing Networks

In this section we consider the closed queueing networks. In these networks there

are no external arrivals to the network, and there are no departures from the network.

Thus the total number of customers in the network is constant. Closed queueing net-

works have been used to study population dynamics, multi-programmed computer

systems, telecommunication networks with window flow control, etc. We start with

the definition.

A queueing network is called a closed Jackson network if it satisfies the following

assumptions:

B1. It has N service stations (nodes) and a total of K customers.

B2. The service rate at node i when there are n customers at that node is given by

µi(n), with µi(0) = 0 and µi(n) > 0 for 1 ≤ n ≤ K , 1 ≤ i ≤ N .

B3. After completing service at node i, the customer joins the queue at node j with

probability rij , independent of the number of customers at any node in the

system. rii can be positive.

B4. The routing matrix R = [rij ] is a transition probability matrix of an irreducible

DTMC.

Now let us study a closed Jackson network described above. Let Xi(t) be the

number of customers at node i at time t, (1 ≤ i ≤ N, t ≥ 0), and let

X(t) = [X1(t), X2(t), · · · , XN(t)]

be the state of the queueing network at time t. As in the case of open Jackson net-

works, we see that {X(t), t ≥ 0} is a CTMC on state-space

S = {x = [x1, x2, · · · , xN ] : xi ≥ 0,

N
∑

i=1

xi = K}

with transition rates given by

q(x, x − ei + ej) = µi(xi)rij , i 6= j, x ∈ S.

Hence we get

q(x, x) = −q(x) = −
N
∑

i=1

µi(xi)(1 − rii), x ∈ S.

Since the CTMC has finite state-space and is irreducible, it is positive recurrent. Let

p(x) = lim
t→∞

P(X(t) = x)

= lim
t→∞

P(X1(t) = x1, X2(t) = x2, · · · , XN (t) = xN )

be the limiting distribution. We need the following notation before we give the result
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about p(x). Let π = [π1, π2, · · · , πN ] be the limiting distribution of the DTMC with

transition matrix R. Since R is assumed to be irreducible, π is the unique solution to

π = πR,

N
∑

i=1

πi = 1. (7.27)

Next, define

φi(0) = 1, φi(n) =

n
∏

j=1

(

πi

µi(j)

)

, 1 ≤ n ≤ K, 1 ≤ i ≤ N. (7.28)

Theorem 7.9 Closed Jackson Networks. The limiting distribution of the CTMC

{X(t), t ≥ 0} is given by

p(x) = GN (K)
N
∏

i=1

φi(xi), (7.29)

where the normalizing constant GN (K) is chosen so that
∑

x∈S

p(x) = 1.

Proof: Follows by verifying that the solution in Equation 7.29 satisfies the balance

equation

q(x)p(x) =
∑

y∈s:y 6=x

p(y)q(y, x).

The verification proceeds along the same lines as that in the proof of Theorem 7.6.

Thus the closed Jackson network has a “product form” limiting distribution. The

hard part is the evaluation of G(K), the normalizing constant. The computation is

difficult since the size of the state-space grows exponentially in N and K: it has
(

N+K−1
K

)

elements. A recursive method of computingG(K) for closed Jackson net-

works of single-server queues is described in the next example.

Example 7.11 Tandem Closed Network. Consider a closed Jackson network ofN
single server nodes as shown in Figure 7.6. The service rate at node i is µi(n) = µi

µNµN–1µ2µ1

Figure 7.6 A tandem closed network.

for n ≥ 1. The routing probabilities are ri,i+1 = 1 for 1 ≤ i ≤ N −1, and rN,1 = 1.

Thus the solution to Equation 7.27 is given by

πi =
1

N
, 1 ≤ i ≤ N.
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We have

φi(n) = ρn
i , n ≥ 0,

where

ρi =
πi

µi
=

1

Nµi
.

From Theorem 7.9 we get

p(x) = GN (K)

N
∏

i=1

ρxi

i , x ∈ S.

We leave it to the readers to verify that the generating function of GN (K) is given

by

G̃N (z) =
∞
∑

K=0

GN (K)zK =
N
∏

i=1

1

1 − ρiz
.

Now we see that G̃0(z) = 1 and

G̃N (z)(1 − ρNz) = G̃N−1(z), N ≥ 1,

which can be written as

G̃N (z) = ρNzG̃N (z) + G̃N−1(z).

From this we can derive the following recursion

GN (K) = GN−1(K) + ρNGN (K − 1),

with boundary conditions

G0(0) = 1, GN (0) = 1, N ≥ 1, G0(K) = 0, K ≥ 1.

We can use this recursion to computeGN (K) in O(NK) steps.

Example 7.12 Multi-Programming Systems. Consider the following model of a

multi-programming computer system. It consists of a central processing unit (CPU)

(node 1) a printer (node 2), and a disk drive (node 3). A program starts in the CPU.

When the computing part is done, it goes to the printer with probability α or the disc

drive with probability 1−α. From the printer the program terminates with probabil-

ity β or goes back to the CPU for further computing with probability 1 − β. After

completing the operation at the disc drive the program returns to the CPU with prob-

ability 1. Suppose the time required at the CPU phase is exp(µ1), the printer stage

is exp(µ2), and the disc drive stage is exp(µ3). Suppose these times are indepen-

dent. When a program departs the system from the printer queue, a new program is

instantaneously admitted to the CPU queue, so that the total number of programs in

the system remains constant, say K . The parameter K is called the degree of multi-

programming.

This system can be modeled by a closed Jackson network as shown in Figure 7.7.

The parameters of this network are
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Printer

Disc

Drive

1 – α

 α

CPU

Figure 7.7 Multi-programming system.

µi(n) = µi, i = 1, 2, 3; n ≥ 1,

R =





0 α 1 − α
1 0 0
1 0 0



 .

Thus the solution to Equation 7.27 is given by

π1 = 0.5, π2 = 0.5α, π3 = 0.5(1 − α).

Using

ρ1 =
1

2µ1
, ρ2 =

α

2µ2
, ρ3 =

1 − α

2µ3
,

we get

φi(n) = ρn
i .

Thus

p(x1, x2, x3) = G3(K)ρx1
1 ρx2

2 ρx3
3 , x1 + x2 + x3 = K.

The constant G3(K) can be computed by using the method of Example 7.11.

The throughput of the system is defined as the rate at which jobs get completed in

steady state. In our system, if the system is in state (x1, x2, x3) with x2 > 0, jobs get

completed at rate µ2β. Hence we have

throughput = µ2β
∑

x∈S:x2>0

p(x1, x2, x3).

The closed queueing systems have been found to be highly useful models for com-

puting systems and there is a large literature in this area. See Gelenbe and Pujolle

(1987) and Saur and Chandy (1981).
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7.6 Single Server Queues

So far we have studied queueing systems that are described by CTMCs. In this sec-

tion we study single server queues where either the service times or the interarrival

times are non-exponential, making the queue length process non-Markovian.

7.6.1 M/G/1 Queue

We study an M/G/1 queue where customers arrive according to a PP(λ) and form

a single queue in an infinite waiting room in front of a single server and demand iid

service times with common cdf G(·), with mean τ and variance σ2. Let X(t) be the

number of customers in the system at time t. The stochastic process {X(t), t ≥ 0}
is a CTMC if and only if the service times are exponential random variables. Thus in

general we cannot use the theory of CTMCs to study

pj = lim
t→∞

P(X(t) = j), j ≥ 0,

in an M/G/1 queue.

Recall the definitions of Xn, X∗
n, X̂n , πj , π∗

j , and π̂j from Section 7.1. Since

every arriving customer joins the system, the {X(t), t ≥ 0} process jumps up and

down by one at a time, and the arrival process is Poisson, we can use Theorems 7.3,

7.2 and 7.4 to get

π̂j = πj = π∗
j = pj, j ≥ 0.

Thus we can compute the limiting distribution of {X(t), t ≥ 0} by studying the

limiting distribution of {Xn, n ≥ 0}. This is possible to do, since the next theorem

shows that {Xn, n ≥ 0} is a DTMC.

Theorem 7.10 Embedded DTMC in an M/G/1 Queue. {Xn, n ≥ 0} is an irre-

ducible and aperiodic DTMC on S = {0, 1, 2, · · ·} and one-step transition probabil-

ity matrix

P =



















α0 α1 α2 α3 · · ·
α0 α1 α2 α3 · · ·
0 α0 α1 α2 · · ·
0 0 α0 α1 · · ·
0 0 0 α0 · · ·
...

...
...

...
. . .



















, (7.30)

where

αi =

∫ ∞

0

e−λt (λt)i

i!
dG(t), i ≥ 0. (7.31)

Proof: Let An be the number of arrivals to the queueing system during the nth ser-

vice time. Since the service times are iid random variables with common distribution
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G(·), and the arrival process is PP(λ), we see that {An, n ≥ 1} is a sequence of iid

random variables with common pmf

P(An = i) = P(i arrivals during a service time)

=

∫ ∞

0

P(i arrivals during a service time of duration t)dG(t)

=

∫ ∞

0

e−λt (λt)
i

i!
dG(t)

= αi.

Now, ifXn > 0, the (n+1)st service time starts immediately after the nth departure,

and during that service time An+1 customers join the system. Hence after the (n +
1)st departure there areXn +An+1−1 customers are left in the system. On the other

hand, if Xn = 0, the (n + 1)st service time starts immediately after the (n + 1)st

arrival, and during that service timeAn+1 customers join the system. Hence after the

(n+1)st departure there areAn+1 customers are left in the system. Combining these

two observations, we get

Xn+1 =

{

An+1 if Xn = 0,

Xn − 1 +An+1 if Xn > 0.
(7.32)

This is identical to Equation 2.9 derived in Example 2.16 on page 19 if we define

Yn = An+1. The result then follows from the results in Example 2.16. The DTMC

is irreducible and aperiodic since αi > 0 for all i ≥ 0.

The next theorem gives the result about the limiting distribution of {Xn, n ≥ 0}.

Theorem 7.11 Limiting Distribution of anM/G/1 Queue. The DTMC {Xn, n ≥
0} is positive recurrent if and only if

ρ = λτ < 1.

If it is positive recurrent, its limiting distribution has the generating function given

by

φ(z) =

∞
∑

j=0

πjz
j = (1 − ρ)

(1 − z)G̃(λ− λz)

G̃(λ − λz) − z
, (7.33)

where

G̃(s) =

∫ ∞

0

e−stdG(t).

Proof: Since {Xn, n ≥ 0} is the DTMC studied in Example 2.16 on page 19, we

can use the results about its limiting distribution from Example 4.23 on page 120.

From there we see that the DTMC is positive recurrent if and only if

∞
∑

k=0

kαk < 1.
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Substituting from Equation 7.31 we get

∞
∑

k=0

kαk =

∞
∑

k=0

k

∫ ∞

0

e−λt (λt)
k

k!
dG(t)

=

∫ ∞

0

e−λt

( ∞
∑

k=0

k
(λt)k

k!

)

dG(t)

=

∫ ∞

0

λtdG(t) = λτ = ρ.

Thus the DTMC is positive recurrent if and only if ρ < 1. From Equation 4.44 (using

ρ in place of µ) we get

φ(z) = (1 − ρ)
ψ(z)(1 − z)

ψ(z) − z
, (7.34)

where

ψ(z) =
∞
∑

k=0

αkz
k.

Substituting for αk from Equation 7.31 in the above equation

ψ(z) =

∞
∑

k=0

zk

∫ ∞

0

e−λt (λt)k

k!
dG(t)

=

∫ ∞

0

e−λt

( ∞
∑

k=0

zk (λt)k

k!

)

dG(t)

=

∫ ∞

0

e−λteλztdG(t)

=

∫ ∞

0

e−λ(1−z)tdG(t) = G̃(λ− λz).

Substituting in Equation 7.34 we get Equation 7.33. This proves the theorem.

One immediate consequence of Equation 7.33 is that the probability that the server

is idle in steady state can be computed as

p0 = π0 = φ(0) = 1 − ρ. (7.35)

Also, since pj = πj for all j ≥ 0, φ(z) in Equation 7.33 is also the generating func-

tion of the limiting distribution of the {X(t), t ≥ 0} process. Using Equation 7.33

we can compute the expected number of customers in the system in steady state as

given in the following theorem.

Theorem 7.12 Expected Number in an M/G/1 Queue. The expected number in

steady state in a stable M/G/1 queue is given by

L = ρ+
1

2
· ρ2

1 − ρ

(

1 +
σ2

τ2

)

, (7.36)
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where τ and σ2 are the mean and variance of the service time.

Proof: We have

L = lim
t→∞

E(X(t))

=

∞
∑

j=0

jpj

=

∞
∑

j=0

jπj

=
dφ(z)

dz
|z=1.

The theorem follows after evaluating the last expression in straight forward fashion.

This involves using L’Hopital’s rule twice.

The Equation 7.36 is called the Pollaczek-Khintchine formula. It is interesting to

note that the first moment of the queue length depends on the second moment (or

equivalently, the variance) of the service time. This has an important implication.

We can decrease the queue length by making the server more consistent, that is, by

reducing the variability of the service times. Since the variance is zero for constant

service times, it follows that among all service times with the same mean, the de-

terministic service time will minimize the expected number in the system in steady

state!

Example 7.13 The M/M/1 Queue. If the service time distribution is

G(x) = 1 − e−µx, x ≥ 0

the M/G/1 queue reduces to M/M/1 queue with τ = 1/µ and ρ = λτ = λ/µ. In

this case we get

G̃(s) =
µ

s+ µ
.

Substituting in Equation 7.33 we get

φ(z) = (1 − ρ)
(1 − z)G̃(λ− λz)

G̃(λ− λz) − z

= (1 − ρ)
(1 − z)µ/(λ+ µ− λz)

µ/(λ+ µ− λz) − z

= (1 − ρ)
(1 − z)µ

(1 − z)(µ− λz)

=
1 − ρ

1 − ρz
.
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By expanding the last expression in a power series in z we get

φ(z) =

∞
∑

j=0

πjz
j =

∞
∑

j=0

pjz
j = (1 − ρ)

∞
∑

j=0

ρjzj.

Hence we get

pj = (1 − ρ)ρj , j ≥ 0.

This matches with the result in Example 6.36 on page 242, as expected.

Example 7.14 The M/Ek/1 Queue. Suppose the service times are iid Erl(k, µ).

Then the M/G/1 queue reduces to M/Ek/1 queue. In this case we get

τ =
k

µ
, σ2 =

k

µ2
.

The queue is stable if

ρ = λτ =
kλ

µ
< 1.

Assuming the queue is stable, the expected number in steady state can be computed

by using Equation 7.36 as

L = ρ+
1

2
· ρ2

1 − ρ

k + 1

k
.

A large number of variations of the M/G/1 queue have been studied in literature.

See Modeling Exercises 7.11 and 7.13.

Next we study the waiting times (this includes time in service) in anM/G/1 queue

assuming FCFS service discipline. Let Fn(·) be the cdf of Wn, the waiting time of

the nth customer. Let

F̃n(s) = E(e−sWn).

The next theorem gives the Laplace Stieltjes transform (LST) of the waiting time in

steady state, defined as

F̃ (s) = lim
n→∞

F̃n(s).

Theorem 7.13 Waiting Times in an M/G/1 Queue. The LST of the waiting time

in steady state in a stable M/G/1 queue with FCFS service discipline is given by

F̃ (s) = (1 − ρ)
sG̃(s)

s− λ(1 − G̃(s))
. (7.37)

Proof: Let An be the number of arrivals during the n customer’s waiting time in the

system. Since Xn is the number of customers left in the system after the nth depar-

ture, the assumption of FCFS service discipline implies that Xn = An. The Poisson

assumption implies that (see the derivation of ψ(z) in the proof of Theorem 7.11)

E(zAn) = F̃n(λ− λz).
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Hence

φ(z) = lim
n→∞

E(zXn) = lim
n→∞

E(zAn) = lim
n→∞

F̃n(λ− λz) = F̃ (λ− λz).

Substituting λ− λz = s we get Equation 7.37.

Equation 7.37 is also known as the Pollaczec-Khintchine formula. Using the

derivatives of F̃ (s) at s = 0 we get

W = τ +
λS2

2(1 − ρ)
,

where S2 = σ2 + τ2 is the second moment of the service time. Using Equation 7.36

we can verify directly that Little’s Law L = λW holds for the M/G/1 queue.

7.6.2 G/M/1 Queue

Now we study a G/M/1 queue where customers arrive one at a time and the inter-

arrival times are iid random variables with common cdf G(·), with G(0) = 0 and

mean 1/λ. The arriving customers form a single queue in an infinite waiting room in

front of a single server and demand iid exp(µ) service times. Let X(t) be the num-

ber of customers in the system at time t. The stochastic process {X(t), t ≥ 0} is a

CTMC if and only if the interarrival times are exponential random variables. Thus

in general we cannot use the theory of CTMCs to study the limiting behavior ofX(t).

Recall the definitions of Xn, X∗
n, X̂n , πj , π∗

j , and π̂j from Section 7.1. Since

every arriving customer joins the system, and the {X(t), t ≥ 0} process jumps up

and down by one at a time, we can use Theorems 7.3 and 7.2 to get

π̂j = πj = π∗
j , j ≥ 0.

However, unless the interarrival times are exponential, the arrival process is not a PP,

and hence π̂j 6= pj . The next theorem shows that {X∗
n, n ≥ 0} is a DTMC.

Theorem 7.14 Embedded DTMC in a G/M/1 Queue. {X∗
n, n ≥ 0} is an irre-

ducible and aperiodic DTMC on S = {0, 1, 2, · · ·} with one-step transition proba-

bility matrix

P =















β0 α0 0 0 0 · · ·
β1 α1 α0 0 0 · · ·
β2 α2 α1 α0 0 · · ·
β3 α3 α2 α1 α0 · · ·
...

...
...

...
...

. . .















, (7.38)

where

αi =

∫ ∞

0

e−µt (µt)
i

i!
dG(t), i ≥ 0, (7.39)
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and

βi =
∞
∑

j=i+1

aj , i ≥ 0.

Proof: Let Dn be the number of departures that can occur (assuming there are

enough customers in the system) during the nth interarrival time. Since the interar-

rival times are iid random variables with common distribution G(·), and the service

times are iid exp(µ), we see that {Dn, n ≥ 1} is a sequence of iid random variables

with common pmf

P(Dn = i) = P(i possible departures during an interarrival time)

=

∫ ∞

0

e−µt (µt)
i

i!
dG(t)

= αi.

Now, the nth arrival sees X∗
n customers in the system. Hence there are X∗

n + 1
customers in the system after the nth customers enters. If Dn+1 < X∗

n + 1, the

(n + 1) arrival will see X∗
n + 1 −Dn+1 customers in the system, else there will be

no customers in the system when the next arrival occurs. Hence we get

X∗
n+1 = max{X∗

n + 1 −Dn+1, 0}.
This is identical to Equation 2.11 derived in Example 2.17 on page 20 if we define

Yn = Dn+1. The result then follows from the results in Example 2.17. The DTMC

is irreducible and aperiodic since αi > 0 for all i ≥ 0.

The next theorem gives the result about the limiting distribution of {X∗
n, n ≥ 0}.

Theorem 7.15 G/M/1 Queue at Arrival Times. The DTMC {X∗
n, n ≥ 0} is

positive recurrent if and only if

ρ = λ/µ < 1.

If it is positive recurrent, its limiting distribution is given by

π∗
j = lim

n→∞
P(X∗

n = j) = (1 − α)αj , j ≥ 0 (7.40)

where α is the unique solution in (0, 1) to

α =

∫ ∞

0

e−µ(1−α)tdG(t) = G̃(µ(1 − α)). (7.41)

Proof: Since {X∗
n, n ≥ 0} is the DTMC studied in Example 2.17 on page 20, we

can use the results about its limiting distribution from Example 4.24 on page 121.

From there we see that the DTMC is positive recurrent if and only if

∞
∑

k=0

kαk > 1.
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Substituting from Equation 7.39 we get

∞
∑

k=0

kαk =
µ

λ
.

Thus the DTMC is positive recurrent if and only if µ
λ > 1, i.e., ρ < 1. Let

ψ(z) =

∞
∑

i=0

ziαi.

Following the derivation in the proof of Theorem 7.11, we get

ψ(z) = G̃(µ− µz).

From Equation 4.46 (using α in place of ρ) we get

π∗
j = (1 − α)αj , j ≥ 0,

where α is the unique solution in (0, 1) to

α = ψ(α) = G̃(µ− µα).

This proves the theorem.

Example 7.15 The M/M/1 Queue. If the service time distribution is

G(x) = 1 − e−λx, x ≥ 0

the G/M/1 queue reduces to M/M/1 queue. In this case we get

G̃(s) =
λ

s+ λ
.

Substituting in Equation 7.41 we get

α =
λ

µ(1 − α) + λ
.

Solving for α we get

α =
λ

µ
= ρ, or α = 1.

If ρ < 1, the α = ρ is the only solution in (0, 1). In this case Equation 7.40 reduces

to

π∗
j = (1 − ρ)ρj , j ≥ 0.

Since the arrival process in this queue is Poisson, we have pj = π̂j = π∗
j . Thus we

have

pj = (1 − ρ)ρj , j ≥ 0.

This matches with the result in Example 6.36 on page 242, as expected.

The next theorem relates {pj, j ≥ 0} and {π∗
j , j ≥ 0}.

Theorem 7.16 Limiting Distribution of a G/M/1 Queue. For a G/M/1 queue
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with ρ = λ/µ < 1 the limiting distributions {pj, j ≥ 0} and {π∗
j , j ≥ 0} are related

as follows:

p0 = 1 − ρ, (7.42)

pj = ρπ∗
j−1, j ≥ 1. (7.43)

Proof: Postponed to Theorem 9.22 on page 437.

In the next theorem we study the limiting distribution of waiting times (this in-

cludes time in service) in a G/M/1 queue assuming FCFS service discipline.

Theorem 7.17 Waiting Times in aG/M/1 Queue. The limiting distribution of the

waiting time in a stable G/M/1 queue with FCFS service discipline is given by

F (x) = lim
n→∞

P(Wn ≤ x) = 1 − e−µ(1−α)x, x ≥ 0. (7.44)

Proof: The waiting time of a customer who sees j customers ahead of him is an

Erlang(j + 1, µ) random variable. Using this we get

F (x) = lim
n→∞

∞
∑

j=0

P(Wn ≤ x|X∗
n = j)P(X∗

n = j)

=

∞
∑

j=0

π∗
jP(Erl(j + 1, µ) ≤ x).

The rest of the proof follows along the same lines as in the case of the M/M/1
queue.

From Equation 7.44 we get

W =
1

µ(1 − α)
.

Using Little’s Law we get

L =
λ

µ(1 − α)
,

which can be verified by computing L directly from the limiting distribution ofX(t)
given Theorem 7.16.

7.7 Retrial Queue

We have already seen the M/M/1/1 retrial queue in Example 6.15 on page 202. In

this section we generalize it to M/G/1/1 queue. We describe the model below.

Customers arrive from outside to a single server according to a PP(λ) and require
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iid service times with common distribution G(·) and mean τ . There is room only for

the customer in service. Thus the capacity is 1, hence theM/G/1/1 nomenclature. If

an arriving customer finds the server idle, he immediately enters service. Otherwise

he joins the “orbit,” where he stays for an exp(θ) amount of time (called the retrial

time) independent of his past and the other customers. At the end of the retrial time

he returns to the server, and behaves like a new customer. He persists in conducting

retrials until he is served, after which he exits the system. A block diagram of this

queueing system is shown in Figure 7.8.

Departures

Server busy

Single Server

Orbit

No Waiting SpaceArrivals

Figure 7.8 Schematic diagram of a single server retrial queue.

Let X(t) be the number of customers in the system (those in service + those in

orbit) at time t. Note that {X(t), t ≥ 0} is not a CTMC. It has jumps of size +1

when a new customer arrives, and of size -1 when a customer completes service.

Since every arriving customer enters the system (either service or the orbit), and the

arrival process is Poisson, we have

π̂j = π∗
j = πj = pj, j ≥ 0.

Thus we can study the limiting behavior of the {X(t), t ≥ 0} by studying the

{Xn, t ≥ 0} process at departure points, since, as the next theorem shows, it is a

DTMC.

Theorem 7.18 Embedded DTMC in an M/G/1/1 Retrial Queue. {Xn, n ≥ 0}
is an irreducible and aperiodic DTMC on S = {0, 1, 2, · · ·}.

Proof: Let An be the number of arrivals to the queueing system during the nth ser-

vice time. Since the service times are iid random variables with common distribution

G(·), and the arrival process is PP(λ), we see that {An, n ≥ 1} is a sequence of iid

random variables. Now, immediately after a service completion, the server is idle.

Hence Xn represents the number of customers in the orbit when the nth service

completion occurs. Each of these customers will conduct a retrial after iid exp(θ)
times. Also, a new arrival will occur after an exp(λ) amount of time. Hence the next

service request will occur after an exp(λ + θXn) amount of time. With probability

θXn/(λ+ θXn) this request is from a customer from the orbit, and with probability

λ/(λ + θXn), it is from a new customer. The (n + 1)st service starts when this re-

quest arrives, during which An+1 new customers arrive and join the orbit. Hence the
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system dynamics is given by

Xn+1 =

{

Xn +An+1 with probability λ/(λ + θXn)
Xn +An+1 − 1 with probability θXn/(λ+ θXn).

(7.45)

Since An+1 is independent of history, the above recursion implies that {Xn, n ≥ 0}
is a DTMC. Irreducibility and aperiodicity is obvious.

The next theorem gives the generating function of the limiting distribution of

{Xn, n ≥ 0}.

Theorem 7.19 Limiting Distribution of anM/G/1/1 Retrial Queue. The DTMC

{Xn, n ≥ 0} with θ > 0 is positive recurrent if and only if

ρ = λτ < 1.

If it is positive recurrent, its limiting distribution has the generating function given

by

φ(z) =

∞
∑

j=0

πjz
j = (1−ρ) (1 − z)G̃(λ− λz)

G̃(λ− λz) − z
·exp

(

−λ
θ

∫ 1

z

1 − G̃(λ− λu)

G̃(λ− λu) − u
du

)

,

(7.46)

where

G̃(s) =

∫ ∞

0

e−stdG(t).

Proof: From Equation 7.45 we get

E(zXn+1) = E

(

zXn+An+1
λ

λ+ θXn

)

+ E

(

zXn+An+1−1 θXn

λ+ θXn

)

= E(zAn+1)

[

E

(

λzXn

λ+ θXn

)

+ E

(

θXnz
Xn−1

λ+ θXn

)]

. (7.47)

Now let

φn(z) = E(zXn) and ψn(z) = E

(

λzXn

λ+ θXn

)

.

Then

ψn(z) +
θz

λ
ψ′

n(z) = E

(

λzXn

λ+ θXn

)

+
θz

λ
E

(

λXnz
Xn−1

λ+ θXn

)

= E

(

(λ+ θXn)zXn

λ+ θXn

)

(7.48)

= E(zXn) = φn(z). (7.49)

Also, from the proof of Theorem 7.11, we get

E(zAn) = G̃(λ− λz), n ≥ 1.
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Using Equation 7.49 in the Equation 7.47 we get

ψn+1(z) +
θz

λ
ψ′

n+1(z) = G̃(λ− λz)(ψn(z) +
θ

λ
ψ′

n(z)). (7.50)

Now let

φ(z) = lim
n→∞

φn(z), and ψ(z) = lim
n→∞

ψn(z).

Letting n→ ∞ in Equation 7.50 and rearranging, we get

θ

λ
(z − G̃(λ− λz))ψ′(z) = (G̃(λ− λz) − 1)ψ(z)

which can be easily integrated to obtain

ψ(z) = C ′ exp

(

λ

θ

∫ z G̃(λ− λu) − 1

u− G̃(λ− λu)
du

)

,

where C ′ is a constant of integration. By choosing

C ′ = C exp

(

−λ
θ

∫ 1 G̃(λ − λu) − 1

u− G̃(λ − λu)
du

)

,

we get

ψ(z) = C exp

(

−λ
θ

∫ 1

z

G̃(λ− λu) − 1

u− G̃(λ− λu)
du

)

. (7.51)

Letting n→ ∞ in Equation 7.49 we get

φ(z) = ψ(z) +
θz

λ
ψ′(z).

Using Equation 7.50 and 7.51 we get

φ(z) = C
(1 − z)G̃(λ − λz)

G̃(λ− λz) − z
· exp

(

−λ
θ

∫ 1

z

1 − G̃(λ− λu)

G̃(λ− λu) − u
du

)

.

The unknown constant C can be evaluated by using φ(1) = 1. This yields (after

applying L’Hopital’s rule)

C = 1 − ρ. (7.52)

Hence the theorem follows.

One immediate consequence of Equation 7.46 is that the probability that the sys-

tem is empty in steady state can be computed as

p0 = π0 = φ(0) = (1 − ρ) exp

(

−λ
θ

∫ 1

0

1 − G̃(λ− λu)

G̃(λ− λu) − u
du

)

.

However, this is not the same as the server being idle, since the server can be idle

even if the system is not empty. We can use Little’s Law type argument to show that

the server is idle in steady state with probability 1 − ρ, independent of θ! But this
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simple fact cannot be deduced by using the embedded DTMC.

Now, since pj = πj for all j ≥ 0, φ(z) in Equation 7.46 is also the generating func-

tion of the limiting distribution of the {X(t), t ≥ 0} process. Using Equation 7.46

we can compute the expected number of customers in the system in steady state as

given in the following theorem.

Theorem 7.20 Expected Number in an M/G/1/1 Retrial Queue. The expected

number in steady state in a stable M/G/1/1 retrial queue with θ > 0 is given by

L = ρ+
1

2
· ρ2

1 − ρ

(

1 +
σ2

τ2

)

+
λ

θ

ρ

1 − ρ
, (7.53)

where τ and σ2 are the mean and variance of the service time.

Proof: We have

L = lim
t→∞

E(X(t))

=

∞
∑

j=0

jpj =

∞
∑

j=0

jπj =
dφ(z)

dz
|z=1.

The theorem follows after evaluating the last expression in straight forward fashion.

This involves using L’Hopital’s rule twice.

Note that L is a decreasing function of θ. In fact, as θ → ∞, L of the above

theorem converges to theL of a standardM/G/1 as given Theorem 7.12. This makes

intuitive sense, since in the limit as θ → ∞, every customer is always checking to

see if the server is idle. Thus as soon as the service is complete a customer from the

orbit (if it is not empty) enters service. However, the service discipline is in “random

order,” rather than in FCFS fashion, although this does not affect the queue length

process. As expected, the generating function of the retrial queue reduces to that of

the M/G/1 queue as θ → ∞.

7.8 Infinite Server Queue

We have seen the M/M/s queue in Subsection 7.3.3 and the M/M/∞ queue in

Subsection 7.3.4. Unfortunately, the M/G/s queue proves to be intractable. Surpris-

ingly, M/G/∞ queue can be analyzed very easily. We present that analysis here.

Consider an infinite server queue where customers arrive according to a PP(λ), and

request iid service times with common cdfG(·) and mean τ . LetX(t) be the number

of customers in such a queue at time t. Suppose X(0) = 0. We have analyzed this

process in Example 5.17 on page 173. Using the analysis there we see that X(t) is a
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Poisson random variable with mean λm(t), where

m(t) =

∫ t

0

(1 −G(u))du.

We have

lim
t→∞

m(t) = τ.

Hence the limiting distribution of X(t) is P(λτ ). Note that this limiting distribution

holds even if X(0) > 0, since all the initial customers will eventually leave, and do

not affect the newly arriving customers.

We conclude this chapter with the remark that it is possible to analyze a G/M/s
queue with an embedded DTMC chain. The G/M/∞ queue can be analyzed by the

methods of renewal processes, to be developed in the next chapter. Note that the

{X(t), t ≥ 0} processes studied in the last three sections are not CTMCs. What kind

of processes are these? The search for the answer to this question will lead us into

renewal theory, regenerative processes, and Markov regenerative processes. These

topics will be covered in the next two chapters.

7.9 Modeling Exercises

7.1 Customers arrive at a taxi stand according to a PP(λ). If a taxi is waiting at the

taxi stand, the customer immediately hires it and leaves the taxi stand in the taxi. If

there are no taxis available, the customer waits. There is essentially infinite waiting

room for the customers. Independently of the customers, taxis arrive at the taxi stand

according to a PP(µ). If a taxi arriving at the taxi stand finds that no customer is

waiting, it leaves immediately. Model this system as an M/M/1 queue, and specify

its parameters.

7.2 A machine produces items one at a time according to a PP(λ). These items are

stored in a warehouse of infinite capacity. Demands arise according to a PP(µ). If

there is an item in the warehouse when a demand arises, an item is immediately

removed to satisfy the demand. Any demand that occurs when the warehouse is

empty is lost. Let X(t) be the number of items in the warehouse at time t. Model the

{X(t), t ≥ 0} process as a birth and death process.

7.3 Customers arrive at a bank according to a PP(λ). The service times are iid

exp(µ). The bank follows the following policy: when there are fewer than four cus-

tomers in the bank, only one teller is active; for four to nine customers, the bank uses

two tellers; and beyond nine customers there are three tellers. Model the number of

customers in the bank as a birth and death process.

7.4 Customers arrive according to a PP(λ) at a single-server station and demand iid

exp(µ) service times. When a customer completes his service, he departs with proba-

bility α, or rejoins the queue instantaneously with probability 1−α, and behaves like

a new customer. The service times are iid exp(µ). Model the number of customers in

the system as a birth and death process.
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7.5 Consider a grocery store checkout queue. When the number of customers in the

line is three or less, the checkout person does the pricing as well as bagging, taking

exp(µ1) time. When there are three or more customers in the line, a bagger comes

to help, and the service rate increases to µ2 > µ1, i.e., the reduced service times are

now iid exp(µ2). Assume that customers join the checkout line according to a PP(λ).

Model the number of customers in the checkout line as a birth and death process.

7.6 Consider a single server queue subject to break downs and repairs as follows: the

worker stays functional for an exp(θ) amount of time and then fails. The repair time

is exp(α). The successive up and down times are iid. However, the server is subject

to failures only when it is serving a customer. The service times are iid exp(µ).
Assume that the failure does not cause any loss of work. Thus if a customer service

is interrupted by failure, the service simply resumes after the server is repaired. Let

X(t) be the number of customers in this system at time t. Model {X(t), t ≥ 0} as

an M/G/1 queue by identifying the correct service time distributionG.

7.7 Consider a single server queue that serves customers from k independent

sources. Customers from source i arrive according to a PP(λi) and need iid exp(µi)
service times. They form a single queue and are served in an FCFS fashion. LetX(t)
be the number of customers in the system at time t. Show that {X(t), t ≥ 0} is the

queue-length process in an M/G/1 queue. Identify the service distribution G.

7.8 Redo the problem in Modeling Exercise 7.6 assuming that the server can fail

even when it is not serving any customers. Is {X(t), t ≥ 0} the queue length process

of an M/G/1 queue? Explain. Let Xn be the number of customers in the system

after the nth departure. Show that {Xn, n ≥ 0} is a DTMC and display its transition

probability matrix.

7.9 Consider the {X(t), t ≥ 0} process described in Modeling Exercise 7.2 with

the following modification: the machine produces items in a deterministic fashion at

a rate of one item per unit time. Model {X(t), t ≥ 0} as the queue length process in

a G/M/1 queue.

7.10 Customers arrive according to a PP(λ) at a service station with s distinct

servers. Service times at server i are iid exp(µi), with µ1 > µ2 > · · · > µs. There

is no waiting room. Thus there can be at the most s customers in the system. An

incoming customer goes to the fastest available server. If all the servers are busy, he

leaves without service. Model this as a CTMC.

7.11 Consider an M/G/1 queue where the server goes on vacation if the system is

empty upon service completion. If the system is empty upon return from the vacation,

the server goes on another vacation; else he starts serving the customers in the system

one by one. Successive vacation times are iid. Let Xn be the number of customers in

the system after the nth customer departs. Show that {Xn, n ≥ 0} is a DTMC.
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7.12 A service station is staffed with two identical servers. Customers arrive ac-

cording to a PP(λ). The service times are iid with common distribution exp(µ) at

either server. Consider the following two routing policies

1. Each customer is randomly assigned to one of the two servers with equal proba-

bility.

2. Customers are alternately assigned to the two servers.

Once a customer as assigned to a server he stays in that line until served. LetXi(t) be

the number of customers in line for the ith server. Is {Xi(t), t ≥ 0} the queue-length

process of an M/M/1 queue or an G/M/1 queue under the two routing schemes?

Identify the parameters of the queues.

7.13 Consider the following variation of an M/G/1 queue: All customers have iid

service times with common cdf G, with mean τG and variance σ2
G. However the

customers who enter an empty system have a different service time cdfH with mean

τH and variance σ2
H . LetX(t) be the number of customers at time t. Is {X(t), t ≥ 0}

a CTMC? If yes, give its generator matrix. Let Xn be the number of customers in the

system after the nth departure. Is {Xn, n ≥ 0} a DTMC? If yes, give its transition

probability matrix.

7.14 Consider a communication node where packets arrive according to a PP(λ).

The node is allowed to transmit packets only at times n = 0, 1, 2 · · · , and transmis-

sion time of a packet is one unit of time. If a packet arrives at an empty system, it

has to wait for the next transmission time to start its transmission. Let X(t) be the

number of packets in the system at time t,Xn be the number of packets in the system

after the completion of the nth transmission, and X̄n be the number of packets avail-

able for transmission at time n. Is {Xn, n ≥ 0} a DTMC? If yes, give its transition

probabilities. Is {X̄n, n ≥ 0} a DTMC? If yes, give its transition probabilities.

7.15 Suppose the customers that cannot enter an M/M/1/1 queue (with arrival

rate λ and service rate µ) enter service at another single server queue with infinite

waiting room. This second queue is called an overflow queue. The service times

at the overflow queue are iid exp(θ) random variables. Let X(t) be the number of

customers at the overflow queue at time t. Model the overflow queue as a G/M/1
queue. What is the LST of the interarrival time distribution to the overflow queue?

7.10 Computational Exercises

7.1 Show that the variance of the number of customers in steady state in a stable

M/M/1 system with arrival rate λ and service rate µ is given by

σ2 =
ρ

(1 − ρ)2
,

where ρ = λ/µ.
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7.2 Let Xq(t) be the number of customers in the queue (not including any in

service) at time t in an M/M/1 queue with arrival rate λ and service rate µ. Is

{Xq(t), t ≥ 0} a CTMC? Compute the limiting distribution of Xq(t) assuming

λ < µ. Show that the expected number of customers in the queue (not including the

customer in service) is given by

Lq =
ρ2

1 − ρ
.

7.3 Let W q
n be the time spent in the queue (not including time in service) by the

nth arriving customer in an M/M/1 queue with arrival rate λ and service rate µ.

Compute the limiting distribution ofW q
n assuming λ < µ. ComputeW q , the limiting

expected value of W q
n as n → ∞. Using the results of Computational Exercise 7.2

show that Lq = λW q . Thus little’s law holds when applied to the customers in the

queue.

7.4 Let X(t) be the number of customers in the system at time t in an M/M/1
queue with arrival rate λ and service rate µ > λ. Let

T = inf{t ≥ 0 : X(t) = 0}.
T is called the busy period. Compute E(T |X(0) = i).

7.5 Let T be as in Computational Exercise 7.4. Let N be the total number of cus-

tomers served during (0, T ]. Compute E(N |X(0) = i).

7.6 Customers arrive according to PP (λ) to a queueing system with two servers.

The ith server (i = 1, 2) needs exp(µi) amount of time to serve one customer. Each

incoming customer is routed to server 1 with probability p1 or to server 2 with prob-

ability p2 = 1−p1, independently. Queue jumping is not allowed. Find the optimum

routing probabilities that will minimize the expected total number of customers in

the system in steady state.

7.7 Consider a stable M/M/1 queue with the following cost structure. A customer

who sees i customers ahead of him when he joins the system costs $ci to the system.

The system charges every customer a fee of $f upon entry. Show that the long run

net revenue is given by

λ(f −
∞
∑

i=0

ciρ
i(1 − ρ)).

7.8 This is a generalization of Computational Exercise 7.6. A queueing system con-

sists ofK servers, each with its own queue. Customers arrive at the system according

to a PP(λ). A system controller routes an incoming customer to server k with proba-

bility αk, where α1 + α2 + · · · + αK = 1. Customers assigned to server k receive

iid exp(µk) service times. Assume that µ1 + µ2 + · · · + µK > λ. It costs hk dollars

to hold a customer for one unit of time in queue k.

1. What are the feasible values of αk’s so that the resulting system is stable?
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2. Compute the the expected holding cost per unit time as a function of the routing

probabilities αk (1 ≤ k ≤ K) in the stable region.

3. Compute the optimal routing probabilities αk that minimize the holding cost per

unit time for the entire system.

7.9 Compute the long run fraction of customers who cannot enter the M/M/1/K
system described in Subsection 7.3.2.

7.10 Compute W , the expected time spent in the system by an arriving customers

in steady state in an M/M/1/K system, by using Little’s Law and Equation 7.20.

(If an arriving customer does not enter, his time in the system is zero.) What is the

correct value of λ in L = λW as applied to this example?

7.11 ComputeW , the expected waiting time of entering customers in steady state in

an M/M/1/K system, by using Little’s Law and Equation 7.20. What is the correct

value of λ in L = λW as applied to this example?

7.12 Suppose there are 0 < i < K customers in an M/M/1/K queue at time 0.

Compute the expected time when the queue either becomes empty or full.

7.13 Consider the M/M/1/K system of Subsection 7.3.2 with the following cost

structure. Each customer waiting in the system costs $c per unit time. Each customer

entering the system pays $a as an entry fee to the system. Compute the long run rate

of net revenue for this system.

7.14 Consider the system of Modeling Exercise 7.2 with production rate of 10 per

hour and demand rate of 8 per hour. Suppose the machine is turned off when the

number of items in the warehouse reaches K , and is turned on again when it falls

to K − 1. Any demand that occurs when the warehouse is empty is lost. It costs 5

dollars to produce an item, and 1 dollar to keep an item in the warehouse for one

hour. Each item sells for ten dollars.

1. Model this system as an M/M/1/K queue. State the parameters.

2. Compute the long run net income (revenue-production and holding cost) per unit

time, as a function of K .

3. Compute numerically the optimalK that maximizes the net income per unit time.

7.15 Consider the M/M/1 queue with balking (but no reneging) as described in

Subsection 7.3.6. Suppose the limiting distribution of the number of customers in this

queue is {pj, j ≥ 0}. Using PASTA show that in steady state an arriving customer

enters the system with probability
∑∞

j=0 αjpj .

7.16 Consider the M/M/1 queue with balking (but no reneging) as described in

Subsection 7.3.6. Suppose the limiting distribution of the number of customers in

this queue is P(ρ), where ρ = λ/µ. What balking probabilities will produce this

limiting distribution?
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7.17 Show that the expected number of busy servers in a stable M/M/s queue is

λ/µ.

7.18 Derive Equation 7.21. Hence or otherwise compute the expected waiting time

of a customer in the M/M/s system in steady state.

7.19 Show that for a stable M/M/s queue of Subsection 7.3.3

Lq =
psρ

(1 − ρ)2
.

Compute W q explicitly and show that Little’s Law Lq = λW q is satisfied.

7.20 Compute the limiting distribution of the time spent in the queue by a customer

in an M/M/s queue. Hence or otherwise compute the limiting distribution of the

time spent in the system by a customer in an M/M/s queue.

7.21 Consider two queueing systems. System 1 has s servers, each serving at rate

µ. System 2 has a single server, serving at rate sµ. Both systems are subject to PP(λ)

arrivals. Show that in steady state, the expected number of customers in the queue

(not including those in service) System 2 is less than in System 1. This shows that it

is better to have a single efficient server than many inefficient ones.

7.22 Consider the finite population queue of Subsection 7.3.5 with two machines

and one repairperson. Suppose every working machine produces revenue at a rate of

$r per unit time. It costs $C to repair a machine. Compute the long run rate at which

the system earns profits (revenue - cost).

7.23 When is the system in Modeling Exercise 7.2 stable? Assuming stability, com-

pute the limiting distribution of the number of items in the warehouse. What fraction

of the incoming demands are satisfied in steady state?

7.24 Compute the limiting distribution {pi, 0 ≤ i ≤ s} of the number of customers

in an M/M/s/s queue with arrival rate λ and service rate µ for each server.

7.25 The quantity ps in the Computational Exercise 7.24 is called the blocking prob-

ability, and is denoted by B(s, ρ) where ρ = λ/µ. Show that the long run rate at

which the customers enter the system is given by λ(1 − B(s, ρ)). Also, show that

B(s, ρ) satisfies the recursion

B(s, ρ) =
ρB(s− 1, ρ)

s+ ρB(s− 1, ρ)
,

with initial condition B(0, ρ) = 1.

7.26 When is the system in Modeling Exercise 7.3 stable? Assuming stability, com-

pute the limiting distribution of the number of customers in the bank. What is the

steady state probability that three tellers are active?
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7.27 When is the system in Modeling Exercise 7.4 stable? Assuming stability, com-

pute the limiting distribution of the number of customers in the system.

7.28 When is the system in Modeling Exercise 7.5 stable? Assuming stability, com-

pute the expected number of customers in the system in steady state.

7.29 Consider the single server queue with N -type control described in Modeling

Exercise 6.16. LetX(t) be the number of customers in the system at time t, and Y (t)
be 1 if the server busy and 0 if it is idle at time t. Show that {(X(t), Y (t)), t ≥ 0} is

a CTMC and that it is stable if ρ = λ/µ < 1. Assuming it is stable, show that

pi,j = lim
t→∞

P(X(t) = i, Y (t) = j), i ≥ 0, j = 0, 1,

is given by

pi,0 =
1 − ρ

N
, 0 ≤ i < N,

pi,1 =
ρ

N
(1 − ρi), 1 ≤ i < N

pN+n,1 =
ρ

N
(1 − ρN )ρn, n ≥ 0.

7.30 Consider the queueing system of Computational Exercise 7.29. Suppose it

costs $f to turn the server on from the off position, while turning the server off

is free of cost. It costs $c to keep one customer in the system for one unit of time.

Compute the long run operating cost per unit of the N -type policy. Show how one

can optimally choose N to minimize this cost rate.

7.31 Consider the system of Modeling Exercise 6.31. What is the limiting distribu-

tion of the number of customers in the system as seen by an arriving customer of

type i? By an entering customer of type i? (i = 1, 2)

7.32 Compute the limiting distribution of the CTMC in modeling Exercise 7.10 for

the case of s = 3. What fraction of the customers are turned away in steady state?

7.33 Consider the Jackson network of single server queues as shown in Figure 7.9.

Derive the stability condition. Assuming stability compute

µN

1 – p

p

µN–1µ2µ1
λ

Figure 7.9 Queueing network for Computational Exercise 7.33.

1. the expected number of customers in steady state in the network,

2. the fraction of the time the network is completely empty in steady state.
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7.34 Do Computational Exercise 7.33 for the network in Figure 7.10.

µN

1 – pN1 – p1 1 – p2 1 – pN–1

pNp1 p2 pN–1

µN–1µ2µ1
λ

Figure 7.10 Queueing network for Computational Exercise 7.34.

7.35 Do Computational Exercise 7.33 for the network in Figure 7.11.

P1 P2 PN–1 PN

1–PN1–PN–1
1–P21–P1

µ1 µ2 µN–1

µN+1

µN
λ

Figure 7.11 Queueing network for Computational Exercise 7.35.

7.36 North Carolina State Fair has 35 rides, and it expects to get about 60,000 vis-

itors per day (12 hours) on the average. Each visitor is expected to take 5 rides on

the average during his/her visit. Each ride lasts approximately 1 minute and serves

an average of 30 riders per batch. Construct an approximate Jackson network model

of the rides in the state fair that incorporates all the above data in a judicious fashion.

State your assumptions. Is this network stable? Show how to compute the average

queue length at a typical ride.

7.37 Consider a network of two nodes in series that operates as follows: customers

arrive at the first node from outside according to a PP(λ), and after completing service

at node 1 move to node 2, and exit the system after completing service at node 2. The

service times at each node are iid exp(µ). Node 1 has one server active as long

as there are five or fewer customers present at that node, and two servers active

otherwise. Node 2 has one server active for up to two customers, two servers for

three through ten customers, and three servers for any higher number. If an arriving

customer sees a total of i customers at the two nodes, he joins the first node with

probability 1/(i + 1) and leaves the system without any service with probability

i/(i+ 1). Compute

1. the condition of stability,

2. the expected number of customers in the network in steady state.

7.38 A 30 mile long stretch of an interstate highway in Montana has no inlets or

exits. This stretch is served by 3 cell towers, stationed at milepost numbers 5, 15, and

25. Each tower serves calls in the ten mile section around it. Cars enter the highway at

milepost zero according to a PP(λ), with λ = 60/hr. (Ignore the traffic in the reverse

direction.) They travel at a constant speed of 100 miles per hour. Each entering car
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initiates a phone call at rate θ = .2 per minute, i.e., the time until the initiation of a

call is an exp(θ) random variable. The call duration is exponentially distributed with

mean 10 minutes. Once the call is finished the car does not generate any new calls.

(Thus each car generates at most one call.) Suppose there is enough channel capacity

available that no calls are blocked. When the calling car crosses from the area of

one station to the next, the call is seamlessly handed over to the next station. Model

this as a Jackson network with five nodes, each having infinite servers. Node 1 is for

the first tower, nodes 2 and 3 are for the second tower, and nodes 4 and 5 are for

the third tower. Nodes 1, 2, and 4 handle newly initiated calls, while nodes 3 and 5

handle handed-over calls. Tower 1 does not handle any handed-over calls. Note that

for infinite server nodes the service time distribution can be general. Let Xi(t) be the

number of calls at time t in node i, 1 ≤ i ≤ 5. Compute

1. the service time distribution of the calls in node i,

2. the routing matrix,

3. the expected number of calls handled by the ith station in steady state,

4. the expected number of calls that are handed over from station i to station i + 1
per unit time (i = 1, 2).

7.39 Consider an open Jackson network with N single-server nodes. Customers

arrive from outside the network to the ith node with rate λi. A fraction pi of the

customers completing service at node i join the queue at node i + 1 and the rest

leave the network permanently, i = 1, 2, ..., N − 1. Customers completing service at

node N join the queue at node 1 with probability pN , and the rest leave the network

permanently. The service times at node i are exp(µi) random variables.

1. State the assumptions to model this as a Jackson network.

2. What are the traffic equations for the Jackson network? Solve them.

3. What is the condition of stability?

4. What is the expected number of customers in the network in steady state, assum-

ing the network is stable?

7.40 Show that the probability that a customer in an open Jackson network of Sec-

tion 7.4 stays in the network forever is zero if I −R is invertible.

7.41 For a closed Jackson network of single server queues, show that

1. limt→∞ P(Xi(t) ≥ j) = ρj
i

GN (K)
GN (K−j) , 0 ≤ j ≤ K.

2. Li = limt→∞ E(Xi(t)) =
∑K

j=1 ρ
j
i

GN (K)
GN (K−j) , 0 ≤ j ≤ K.

7.42 Generalize the method of computingGN (K) derived in Example 7.11 to gen-

eral closed Jackson networks of single-server queues withN nodes andK customers.
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7.43 A simple communications network consists of two nodes labeled A and B
connected by two one-way communication links: lineAB fromA toB, and line BA
from line from B to A. There are N users at each node. The ith user (1 ≤ i ≤ N ) at

nodeA (B) is denoted byAi (Bi). UserAi has an interactive session set up with user

Bi and it operates as follows: User Ai sends a message to user Bi. All the messages

generated at node A wait in a buffer at node A for transmission to the appropriate

user at node B on line AB in an FCFS fashion. When user Bi receives the message

from user Ai, she spends a random amount of time, called think time, to generate a

response to it. All the messages generated at node B wait in a buffer at node B for

transmission to the appropriate user at nodeA on lineBA in an FCFS fashion. When

user Ai receives the message from user Bi, she spends a random amount of time to

generate a response to it. This process of messages going back and forth between

the pairs of users Ai and Bi continues forever. Suppose all the think times are iid

exp(θ) random variables, and the message transmission times are iid exp(µ) random

variables. Model this as a closed Jackson network. What is the expected number of

messages in the buffers at nodes A and B in steady state?

7.44 For the closed Jackson network of Section 7.5, define the throughput TH(i)
of node i as the rate at which customers leave node i in steady state, i.e.,

TH(i) =

K
∑

n=0

µi(n) lim
t→∞

P(Xi(t) = n).

Show that

TH(i) = πi
GN (K)

GN (K − 1)
.

7.45 When is the system in Modeling Exercise 7.7 stable? Assuming stability, com-

pute the expected number of customers in the system in steady state.

7.46 When is the system in Modeling Exercise 7.6 stable? Assuming stability, com-

pute the generating function of the limiting distribution of the number of customers

in the system.

7.47 Compute the expected number of customers in steady state in an M/G/1 sys-

tem where the arrival rate is one customer per hour and the service time distribution

is PH(α,M ) where

α = [0.5 0.5 0]

and

M =





−3 1 1
0 −3 2
0 0 −3



 .

7.48 Compute the expected queue length in an M/G/1 queue with the following

service time distributions (all with mean 1/µ):

1. Exponential with parameter µ,
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2. Uniform over [0, 2/µ],

3. Deterministic with mean 1/µ,

4. Erlang with parameters (k, kµ).

Which distribution produces the largest congestion? Which produces the smallest?

7.49 Consider the {X(t), t ≥ 0} and the {Xn, n ≥ 0} processes defined in Mod-

eling Exercise 7.8. Show that the limiting distribution of the two (if they exist) are

identical. Let pn (qn) be the limiting probability that there are n customers in the

system and the server is up (down). Let p(z) and q(z) be the generating functions of

{pn, n ≥ 0} and {qn, n ≥ 0}. Show that this system is stable if

λ

µ
<

α

α+ θ
.

Assuming that the system is stable show that

q(z) =

(

µ
z

)

(

α
α+θ − λ

µ

)

(

µ
z − λ

) (

α
θ + λ

θ (1 − z)
)

− λ
,

and

p(z) =

(

α

θ
+
λ

θ
(1 − z)

)

q(z).

7.50 Show that the DTMC {Xn, n ≥ 0} in the Modeling Exercise 7.11 is positive

recurrent if ρ = λτ < 1, where λ is the arrival rate and τ is the mean service time.

Assuming the DTMC is stable, show that the generating function of the limiting

distribution of Xn is given by

φ(z) =
1 − ρ

m
· G̃(λ− λz)

z − G̃(λ− λz)
· (ψ(z) − 1),

where G̃ is the LST of the service time,m is the expected number of arrivals during a

single vacation, and ψ(z) is the generating function of the number of arrivals during

a single vacation.

7.51 LetX(t) be the number of customers at time t in the system described in Mod-

eling Exercise 7.11. Show that {Xn, n ≥ 0} and {X(t), t ≥ 0} have the same limit-

ing distribution, assuming it exists. Using the results of Computational Exercise 7.50

show that the expected number of customers in steady state is given by

L = ρ+
1

2
· ρ2

1 − ρ

(

1 +
σ2

τ2

)

+
m(2)

2m
,

where σ2 is the variance of the service time, m(2) is the second factorial moment of

the number of arrivals during a single vacation.

7.52 Let X(t) be the number of customers at time t in an M/G/1 queue under N -

type control as explained in Modeling Exercise 6.16 for anM/M/1 queue. Using the
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results of Computational Exercises 7.50 and 7.51 establish the condition of stability

for this system and compute the generating function of the limiting distribution of

X(t) as t→ ∞.

7.53 When is the queueing system described in Modeling Exercise 7.12 stable? As-

suming stability, compute the expected number of customers in the system in steady

state under the two policies. Which policy is better at minimizing the expected num-

ber in the system in steady state?

7.54 Analyze the stability of the {X(t), t ≥ 0} process in Modeling Exercise 7.9.

Assuming stability, compute the limiting distribution of the number of items in the

warehouse. What fraction of the demands are lost in steady state?

7.55 Show that the DTMC {Xn, n ≥ 0} in the Modeling Exercise 7.12 is positive

recurrent if ρ = λτG < 1. Assuming the DTMC is stable, show that the generating

function of the limiting distribution of Xn is given by

φ(z) =
1 − λτG

1 − λτG + λτH
· zH̃(λ− λz) − G̃(λ− λz)

z − G̃(λ− λz)
.

Hint: Use the results of Computational Exercise 4.24.

7.56 LetX(t) be the number of customers at time t in the system described in Mod-

eling Exercise 7.12. Show that {Xn, n ≥ 0} and {X(t), t ≥ 0} have the same limit-

ing distribution, assuming it exists. Using the results of Computational Exercise 7.55

show that the expected number of customers in steady state is given by

L =
λτH

1 − λτG + λτH
+
λ2

2
· σ

2
H + τ2

H − σ2
G − τ2

G

1 − λτG + λτH
+
λ2

2
· σ

2
G + τ2

G

1 − λτG
.

7.57 Show that the DTMC {Xn, n ≥ 0} in the Modeling Exercise 7.14 is positive

recurrent if λ < 1. Assuming the DTMC is stable, compute φ(z), the generating

function of the limiting distribution of Xn as n→ ∞.

7.58 Show that the DTMC {X̄n, n ≥ 0} in the Modeling Exercise 7.14 is positive

recurrent if λ < 1. Assuming the DTMC is stable, compute φ̄(z), the generating

function of the limiting distribution of X̄n as n→ ∞.

7.59 In the Modeling Exercise 7.14, is the limiting distribution of {X(t), t ≥ 0}
same as that of {Xn, n ≥ 0} or {X̄n, n ≥ 0}? Explain.

7.60 Consider an M/G/1 queue where the customers arrive according to a PP(λ)

and request iid service times with common mean τ , and variance σ2. After service

completion, a customer leaves with probability p, or returns to the end of the queue

with probability 1 − p, and behaves like a new customer.
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1. Compute the mean and variance of the amount of time a customer spends in ser-

vice during the sojourn time in the system.

2. Compute the condition of stability.

3. Assuming stability, compute the expected number of customers in the system as

seen by a departure (from the system) in steady state.

4. Assuming stability, compute the expected number of customers in the system at a

service completion (customer may or may not depart at each service completion)

in steady state.

7.61 Compute the limiting distribution of the number of customers in a G/M/1
queue with the interarrival times

G(x) = r(1 − e−λ1x) + (1 − r)(1 − e−λ2x),

where 0 < r < 1, λ1 > 0, λ2 > 0. The service times are iid exp(µ).

7.62 Let X(t) be the number of customers in a G/M/2 queue at time t. Let X∗
n

be the number of customers as seen by the nth arrival. Show that {X∗
n, n ≥ 0} is a

DTMC, and compute its one-step transition probability matrix. Derive the condition

of stability and the limiting distribution of X∗
n as n→ ∞.

7.63 Consider the overflow queue of Modeling Exercise 7.15.

1. Compute the condition of stability for the overflow queue.

2. Assuming the overflow queue is stable, compute the pmf of the number of cus-

tomers in the overflow queue in steady state.

7.64 Consider the following modification to the M/G/1/1 retrial queue of Sec-

tion 7.7. A new customer joins the service immediately if he finds the server free

upon his arrival. If the server is busy, the arriving customer leaves immediately with

probability c, or joins the orbit with probability 1 − c, and conducts retrials until he

is served. Let Xn andX(t) be as in Section 7.7. Derive the condition of stability and

compute the generating function of the limiting distribution of Xn and X(t). Are

they the same?

7.65 Consider the retrial queue of Section 7.7 with exp(µ) service times. Show that

the results of Section 7.7 are consistent with those of Example 6.38.

7.66 A warehouse stocks Q items. Orders for these items arrive according to a

PP(µ). The warehouse follows a (Q,Q − 1) replenishment policy with back orders

as follows: If the warehouse is not empty, the incoming demand is satisfied from the

existing stock and an order is placed with the supplier for replenishment. If the ware-

house is empty, the incoming demand is back-logged and an order is placed with the

supplier for replenishment. The lead time, i.e., the amount of time it takes for the

order to reach the warehouse from the supplier, is a random variable with distribu-

tion G(·). The lead times are iid, and orders may cross, i.e., the orders placed at the
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supplier may be received out of order. Let X(t) be the number of outstanding orders

at time t.

1. Model {X(t), t ≥ 0} as an M/G/∞ queue.

2. Compute the long run fraction of the time the warehouse is empty.



CHAPTER 8

Renewal Processes

“Research is seeing what everyone else has seen and thinking what no one else has

thought.”

—Anonymous

8.1 Introduction

This chapter is devoted to the study of a class of stochastic processes called renewal

processes (RPs), and their applications. The RPs play several important roles in the

grand scheme of stochastic processes. First, they help remove the stringent distribu-

tional assumptions that were needed to build Markov models, namely, the geometric

distributions for the DTMCs, and the exponential distributions for the CTMCs. RPs

provide us with important tools such as the key renewal theorem (Section 8.5) to deal

with general distributions.

Second, RPs provide a unifying theoretical framework for studying the limiting

behavior of specialized stochastic processes such as the DTMCs and CTMCs. Recall

that we have seen the discrete renewal theorem in Subsection 4.5.2 on page 106 and

continuous renewal theorem in Subsection 6.10.2 on page 234. The discrete renewal

theorem was used in the study of the limiting behavior of the DTMCs, and the contin-

uous renewal theorem was used in the study of the limiting behavior of the CTMCs.

We shall see that RPs appear as embedded processes in the DTMCs and the CTMCs,

and the key-renewal theorem provides the unifying tool to obtain convergence results.

Third, RPs lead to important generalizations such as Semi-Markov processes (Sec-

tion 8.9), renewal-reward processes (Section 8.10), and regenerative processes (Sec-

tion 8.11), to name a few. Renewal-reward processes are very useful in the com-

putation of important performance measures such as long run cost and reward rates.

Regenerative processes are the most general class of processes that encompass all the

classes of stochastic processes studied in this book. Of course this generality makes

them difficult to use in computations. This difficulty is somewhat removed by the

Markov-regenerative processes studied in the next chapter. With this overview we

339
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begin the study of RPs.

Consider a process of events occurring over time. Let S0 = 0, and Sn be the time

of occurrence of the nth event, n ≥ 1. Assume that

0 ≤ S1 ≤ S2 ≤ S3 ≤ · · · ,
and define

Xn = Sn − Sn−1, n ≥ 1.

Thus {Xn, n ≥ 1} is a sequence of inter-event times. Clearly, Xn ≥ 0. Since we

allow Xn = 0, multiple events can occur simultaneously. Next define

N(t) = sup{n ≥ 0 : Sn ≤ t}, t ≥ 0. (8.1)

ThusN(t) is simply the number of events up to time t. The process {N(t), t ≥ 0}
is called the counting process generated by {Xn, n ≥ 1}. A typical sample path of

{N(t), t ≥ 0} is shown in Figure 8.1. With this notation we are ready to define a

Renewal Process.

S0

0

1

2

3

4

5

6

N(t)

S1 S2 S3 S4 S5 S6

t

Figure 8.1 Sample path of a counting process.

Definition 8.1 Renewal Sequence and Renewal Process. The sequence {Sn, n ≥
1} is called the renewal sequence and the process {N(t), t ≥ 0} is called the renewal

process generated by {Xn, n ≥ 1} if {Xn, n ≥ 1} is a sequence on non-negative iid

random variables.

The study of the stochastic process {N(t), t ≥ 0} is renewal theory. Below we

give several examples where RPs are encountered.

Example 8.1 Poisson Process. From the definition of a Poisson process, we see

that the RP generated by a sequence of iid exp(λ) random variables is a Poisson

process with parameter λ. Thus an RP is a direct generalization of a Poisson process
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when the inter-event times are iid non-negative random variables that have a general

distribution.

Example 8.2 Arrival Process in a G/M/1 Queue. Let N(t) be the number of

arrivals in a G/M/1 queue up to time t. By definition (See Section 7.6.2) the inter-

arrival times {Xn, n ≥ 1} in a G/M/1 queue are iid random variables. Hence

{N(t), t ≥ 0}, the counting process generated by {Xn, n ≥ 1}, is an RP.

Example 8.3 RPs in CTMCs. Let {X(t), t ≥ 0} be a CTMC on {0, 1, 2, · · ·} with

P(X(0) = 0) = 1. Let Sn be the time of the nth entry into state 0, n ≥ 1, and let

N(t) be the number of entries into state 0 up to t. (Note that we do not count the

entry at time 0, since the process was already in state 0 at time 0.) Since Xn = Sn −
Sn−1 is the time between two successive entries into state 0, the Markov property of

the CTMC implies that {Xn, n ≥ 1} is a sequence of iid random variables. Hence

{N(t), t ≥ 0}, the counting process generated by {Xn, n ≥ 1}, is an RP.

Example 8.4 Machine Maintenance. Suppose a manufacturing process requires

continuous use of a machine. We begin with a new machine at time 0. Suppose we

follow the age-replacement policy: replace the machine in use when it fails or when

it reaches an age of T years. This policy is useful in reducing the number of on-

job failures, which tend to be more costly. Let Li be the lifetime of the ith machine

and assume that {Li, i ≥ 1} is a sequence of iid non-negative random variables.

This process produces several renewal sequences (the reader should convince him-

self/herself that these are indeed renewal sequences by showing that inter-event time

Xn = Sn − Sn−1 are iid):

1. Sn = time of the nth failure,

2. Sn = time of the nth planned replacement,

3. Sn = time of the nth replacement (planned or otherwise).

Example 8.5 RPs in an M/G/1 Queue. Let X(t) be the number of customers at

time t in an M/G/1 system. Suppose the system is initially empty, i.e., X(0) = 0.

Let Sn be the time of departure of the nth customer who leaves behind an empty

system, i.e., it is the completion time of the nth busy cycle. Since the Poisson process

has independent increments, and the service times are iid, we see that successive busy

cycles are iid, i.e., {Xn = Sn − Sn−1, n ≥ 1} is a sequence of iid random variables.

It generates a counting process {N(t), t ≥ 0} that counts the number of busy cycles

completed by time t. It is thus an RP.

If we change the initial state of the system so that an arrival has occurred to an empty

system at time 0-, we can come up with a different RP by defining Sn as the arrival

time of the nth customer who enters an empty system. In this case we get an RP

where N(t) is the number of busy cycles that start by time t. (Note that we do not

count the initial busy cycle.) In general, we can come up with many RPs embedded

in a given stochastic process. What about a G/G/1 queue?
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Example 8.6 RPs in a DTMC. Following Example 8.3 we can identify RPs in a

DTMC {Xn, n ≥ 0} on {0, 1, 2, · · ·} with P(X0 = 0) = 1. Let Sn be the time of

the nth visit to state 0, n ≥ 1, and let N(t) be the number of entries into state 0 up to

t. (Note that we do not count the visit at time 0, since the process was already in state

0 at time 0.) Then, by the same argument as in Example 8.3, {N(t), t ≥ 0} is an RP.

Note that in this case renewals can occur only at integer times n = 0, 1, 2, · · · .

The above examples show how pervasive RPs are. Next we characterize an RP.

Theorem 8.1 Characterization of an RP. An RP generated by a sequence of iid

random variables {Xn, n ≥ 1} with common cdf G(·) is completely characterized

by G(·).

Proof: The renewal sequence {Sn, n ≥ 1} is clearly completely described by G.

Now, for any integer n ≥ 1, and 0 < t1 < · · · < tn and integers 0 ≤ k1 ≤ kn ≤
· · · ≤ kn, we have

P(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn)

= P(Sk1
≤ t1, Sk1+1 > t1, Sk2

≤ t2, Sk2+1 > t2, · · · , Skn
≤ tn, Skn+1 > tn).

Thus all finite dimensional joint distributions of the RP are determined by those of

the renewal sequence, which are determined by G. This proves the theorem.

The next theorem shows that the RP “renews” at time X1 = S1, i.e., it essentially

starts anew at time S1.

Theorem 8.2 The RP {N(t), t ≥ 0} generated by {Xn, n ≥ 1} is stochastically

identical to {N(t+X1) − 1, t ≥ 0}.

Proof: To show that they are stochastically identical, we have to show that their finite

dimensional distributions are identical. Now, for any integer n ≥ 1, and 0 < t1 <
· · · < tn and integers 0 ≤ k1 ≤ kn ≤ · · · ≤ kn, we have

P(N(t1 +X1) − 1 = k1, N(t2 +X1) − 1 = k2, · · · , N(tn +X1) − 1 = kn)

= P(N(t1 +X1) = k1 + 1, N(t2 +X1) = k2 + 1, · · · , N(tn +X1) = kn + 1)

= P(Sk1+1 ≤ t1 +X1, Sk1+2 > t1 +X1, Sk2+1 ≤ t2 +X1, Sk2+2 > t2 +X1,

· · · , Skn+1 ≤ tn +X1, Skn+2 > tn +X1)

= P(Sk1+1 −X1 ≤ t1, Sk1+2 −X1 > t1, Sk2+1 −X1 ≤ t2, Sk2+2 −X1 > t2,

· · · , Skn+1 ≤ tn +X1, Skn+2 −X1 > tn)

= P(Sk1
≤ t1, Sk1+1 > t1, Sk2

≤ t2, Sk2+1 > t2, · · · , Skn
≤ tn, Skn+1 > tn)

= P(N(t1) = k1, N(t2) = k2, · · · , N(tn) = kn).

Here the second to the last equality follows because (S2−X1, S3−X1, · · · , Sn+1−
X1) has the same distribution as (S1, S2, · · · , Sn). The last equality follows from the
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proof of Theorem 8.1.

The above theorem provides a justification for calling S1 the first renewal epoch,

since the process essentially restarts at that point of time. By the same reason, we

call Sn as the nth renewal epoch.

8.2 Properties of N(t)

Now that we know how to characterize an RP, we will study it further: its transient

behavior, limiting behavior, etc. We shall use the following notation throughout this

chapter:

G(t) = P(Xn ≤ t), τ = E(Xn), s2 = E(X2
n), σ2 = Var(Xn).

We shall assume that

G(0−) = 1, G(0+) = G(0) < 1.

ThusXn’s are non-negative, but not identically zero with probability 1. This assump-

tion implies that

τ > 0,

and is necessary to avoid trivialities.

Theorem 8.3

P(N(t) <∞) = 1, t ≥ 0.

Proof: From strong law of large numbers we have

P(
Sn

n
→ τ) = 1.

Since τ > 0, this implies that

P(Sn → ∞) = 1.

Thus, for 0 ≤ t <∞,

P(N(t) = ∞) = P( lim
n→∞

Sn ≤ t)

= 1 − P(Sn → ∞) = 0.

Hence the theorem follows.

The next theorem gives the exact distribution of N(t) for a given t.

Theorem 8.4 Marginal Distribution of N(t). Let

Gk(t) = P(Sk ≤ t), t ≥ 0. (8.2)

Then

pk(t) = P(N(t) = k) = Gk(t) −Gk+1(t), t ≥ 0. (8.3)
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Proof: Follows along the same lines as the proof of Theorem 5.8 by using Equa-

tion 8.2.

Example 8.7 Poisson Process. Let G(t) = 1 − e−λt, t ≥ 0. Then Gk(t) is the cdf

of an Erl(k, λ) random variable. Hence

Gk(t) = 1 −
k−1
∑

r=0

e−λt (λt)r

r!
, t ≥ 0.

Hence, from Theorem 8.4, we get

pk(t) = Gk(t) −Gk+1(t) = e−λt (λt)
k

k!
, t ≥ 0.

Thus N(t) ∼ P(λt). This is to be expected, since G(t) = 1 − e−λt implies the RP

{N(t), t ≥ 0} is a PP(λ).

The function Gk(·) of Equation 8.2 is called the k-fold convolution of G with

itself. It can be computed recursively as

Gk(t) =

∫ t

0

Gk−1(t− u)dG(u) =

∫ t

0

G(t− u)dGk−1(u), t ≥ 0

with initial condition G0(t) = 1 for t ≥ 0. Let G̃(s) be the Laplace-Stieltjes trans-

form (LST) of G, defined as

G̃(s) =

∫ ∞

0

e−stdG(t).

Since the LST of a convolution is the product of the LSTs (see Appendix E), it

follows that

G̃k(s) = G̃(s)k.

Hence

p̃k(s) =

∫ ∞

0

e−stdpk(t) = G̃k(s) − G̃k+1(s) = G̃(s)k(1 − G̃(s)). (8.4)

One of the most important tools of renewal theory is the renewal argument. It is a

method of deriving an integral equation for a probabilistic quantity by conditioning

on S1, the time of the first renewal. We explain it by deriving an equation for pk(t) =
P(N(t) = k). Now fix a k > 0 and t ≥ 0. Suppose S1 = u. If u > t, we must

have N(t) = 0. If u ≤ t, we already have one renewal at time u, and the process

renews at time u. Hence we can get k renewals by time t if and only if we get k − 1
additional renewals in this new renewal process starting at time u up to time t, which

is P(N(t− u) = k − 1). Combining these observations we get

P(N(t) = k|S1 = u) =

{

0 if u > t,
P(N(t− u) = k − 1) if u ≤ t.
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Hence,

pk(t) =

∫ ∞

0

P(N(t) = k|S1 = u)dG(u)

=

∫ t

0

P(N(t− u) = k − 1)dG(u)

=

∫ t

0

pk−1(t− u)dG(u). (8.5)

We also have

p0(t) = P(N(t) = 0) = P(S1 > t) = 1 −G(t). (8.6)

Unfortunately, computing pk(t) by using Equation 8.5 is no easier than using Equa-

tion 8.3. However, when the inter-event times are integer valued random variables,

the renewal argument provides a simple recursive method of computing pk(t). To see

this, let

αi = P(Xn = i), i = 0, 1, 2, · · · .
Since all renewals take place at integer time points, we study pk(n) for n =
0, 1, 2, · · · . Equation 8.6 reduces to

p0(n) = 1 −
n
∑

i=0

αi, n = 0, 1, 2, · · · , (8.7)

and Equation 8.5 reduces to

pk(n) =

n
∑

i=0

αipk−1(n− i). (8.8)

The above equation can be used to compute pk(n) for increasing values of k starting

with p0(n) of Equation 8.7.

This completes our study of the transient behavior of the RP. Next we study its

limiting behavior. Unlike in the case of DTMCs and CTMCs, where most of limiting

results were about convergence in distribution, the results in renewal theory are about

convergence with probability one (w.p. 1), or almost sure (a.s.) convergence. See

Appendix G for relevant definitions. Let N(∞) be the almost sure limit of N(t) as

t→ ∞. That is,

N(∞) = lim
t→∞

N(t), with probability 1.

In other word,N(∞) is the sample-path wise limit ofN(t). It exists since the sample

paths of a RP are non-decreasing functions of time.

Theorem 8.5 Almost Sure Limit of N(t). Let {N(t), t ≥ 0} be an RP with com-

mon inter-event time cdf G(·), with almost sure limit N(∞).

1. G(∞) = 1 ⇒ P(N(∞) = ∞) = 1.
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2. G(∞) < 1 ⇒ P(N(∞) = k) = G(∞)k(1 −G(∞)), k = 0, 1, 2, · · · .

Proof: We have

N(∞) = k <∞ ⇔ {Xn <∞, 1 ≤ n ≤ k,Xk+1 = ∞}.
The probability of the event on the right is 0 if G(∞) = P(Xn < ∞) = 1, and

G(∞)k(1 −G(∞)) if G(∞) < 1. The theorem follows from this.

Thus if G(∞) = 1 the renewals recur infinitely often, while if G(∞) < 1, the

renewals stop occurring after a while. We use this behavior to make the following

definition:

Definition 8.2 Recurrent and Transient RP. A renewal process {N(t), t ≥ 0} is

called

1. recurrent if P(N(∞) = ∞) = 1,

2. transient if P(N(∞) = ∞) < 1.

Example 8.8 Transient and Recurrent RPs in a CTMC. Let {N(t), t ≥ 0} be

the renewal process described in Example 8.3. It counts the number of entries into

state 0 up to time t. If state 0 is recurrent, the RP {N(t), t ≥ 0} is recurrent, and if the

state 0 is transient, the RP {N(t), t ≥ 0} is transient. This is because the number of

visits to state 0 over [0,∞) is infinity if state 0 is recurrent and finite if it is transient.

From now on we shall concentrate on recurrent RPs, i.e., we shall assume that

G(∞) = 1. In this case N(t) → ∞ with probability 1 as t → ∞. The next theorem

gives us the rate at which it approaches infinity.

Theorem 8.6 Elementary Renewal Theorem: Almost-Sure Version. Let

{N(t), t ≥ 0} be a recurrent RP with mean inter-event time τ > 0. Then

N(t)

t
→ 1

τ
, w.p.1. (8.9)

The right hand side is to be 0 if τ = ∞.

Proof: From the definition of the RP and Figure 8.2, we see that SN(t) ≤ t <
SN(t)+1. Hence, when N(t) > 0,

SN(t)0 SN(t)+1t
Time

Figure 8.2 Relationship between t, SN(t) and SN(t)+1.

SN(t)

N(t)
≤ t

N(t)
<
SN(t)+1

N(t)
.
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Since the RP is recurrent,N(t) → ∞ as t→ ∞. Thus, using the strong law of large

numbers, we get

lim
t→∞

SN(t)

N(t)
= lim

n→∞
Sn

n
= τ, w.p.1,

and

lim
t→∞

SN(t)+1

N(t)
= lim

n→∞
Sn+1

n
= lim

n→∞
Sn+1

n+ 1

n+ 1

n
= τ, w.p.1.

Hence

lim sup
t→∞

t

N(t)
≤ lim

t→∞

SN(t)+1

N(t)
= τ,

and

lim inf
t→∞

t

N(t)
≥ lim

t→∞

SN(t)

N(t)
= τ.

Hence

τ ≥ lim sup
t→∞

t

N(t)
≥ lim inf

t→∞
t

N(t)
≥ τ.

Thus we have

lim sup
t→∞

t

N(t)
= lim inf

t→∞
t

N(t)
= τ.

Thus N(t)/t has a limit given by

lim
t→∞

t

N(t)
= τ.

Now, if τ < ∞, we can use the continuity of the function f(x) = 1/x for x > 0 to

get Equation 8.9. If τ = ∞, we first construct a new renewal process with inter-event

times given by min(Xn, T ), for a fixed T , and then let T → ∞. We leave the details

to the reader.

Theorem 8.6 makes intuitive sense because the limiting value ofN(t)/t is the long

run number of renewals per unit time. Thus if the mean inter-event time is 10 min-

utes, it makes sense that in the long run we should see one renewal every 10 minutes,

or 1/10 renewals every minute.

The following theorem gives more detailed distributional information about how

the RP approaches infty.

Theorem 8.7 Central Limit Theorem for N(t). Let {N(t), t ≥ 0} be a recurrent

RP with mean inter-event time 0 < τ <∞ and variance σ2 <∞. Then

lim
t→∞

P

(

N(t) − t/τ
√

σ2t/τ3
≤ x

)

= Φ(x) =

∫ x

−∞

e−u2/2

√
2π

du. (8.10)

Proof: We have

P(N(t) ≥ k) = P(Sk ≤ t)
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and hence

P

(

N(t) − t/τ
√

σ2t/τ3
≥ k − t/τ
√

σ2t/τ3

)

= P

(

Sk − kτ

σ
√
k

≤ t− kτ

σ
√
k

)

. (8.11)

Now let t and k both grow to ∞ so that

t− kτ

σ
√
k

→ x,

where x is a fixed real number. The above equation implies that

k − t/τ
√

σ2t/τ3
→ −x.

Letting k, t→ ∞ appropriately in Equation 8.11, and using the central limit theorem,

we get

lim
t→∞

P

(

N(t) − t/τ
√

σ2t/τ3
≥ −x

)

= lim
k→∞

P

(

Sk − kτ

σ
√
k

=≤ x

)

Φ(x). (8.12)

Hence

lim
t→∞

P

(

N(t) − t/τ
√

σ2t/τ3
≤ x

)

= 1 − Φ(−x) = Φ(x).

This completes the proof.

The above theorem says that for large t, N(t) approaches a normal random vari-

able with mean t/τ and variance σ2t/τ3.

Example 8.9 RPs in DTMCs. Let {Xn, t ≥ 0} be an irreducible, aperiodic, and

positive recurrent DTMC withX0 = 0, and consider the RP {N(t), t ≥ 0} of Exam-

ple 8.6. We see that the first renewal time S1 is the same as T̃0, the time of the first

return to state 0, as defined in Equation 4.10. It has mean m̃0. From Theorems 4.16

and 4.18 on pages 109 and 111, we see that

π0 = 1/m̃0,

where π0 is the limiting probability that the DTMC is in state 0. Now, from Theo-

rem 8.6, we see that the long run rate of visits to state 0 is given by

lim
t→∞

N(t)

t
= 1/m̃0 = π0,

with probability 1.

Example 8.10 Machine Maintenance. Suppose a part in a machine is available

from two different suppliers, A and B. When the part fails it is replaced by a new

one from supplier A with probability .3 and supplier B with probability .7. A part

from supplier A lasts for an exponential amount of time with a mean of 8 days, and

it takes 1 day to install it. A part from supplier B lasts for an exponential amount of
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time with a mean of 5 days, and it takes 1/2 a day to install it. Installation times are

deterministic. Assume that a failure has occurred at time 0-. Compute the approxi-

mate distribution of the number of failures in the first year (not counting the one at

time 0-).

Let Xn be the time between the nth and (n − 1)st failure. {Xn, n ≥ 1} are iid

random variables with common distribution given by

Xn ∼
{

1 + exp(1/8) with probability .3,

0.5 + exp(1/5) with probability .7.

Let N(t) be the number of failures up to time t. Then {N(t), t ≥ 0} is an RP

generated by {Xn, n ≥ 1}. Straightforward calculations yield

τ = E(Xn) = 6.55, σ2 = Var(Xn) = 39.2725.

Hence, from Theorem 8.7, N(t) is approximately normally distributed with mean

t/6.55 and variance (39.2725/6.553)t. Thus, in the first year (t = 365), the number

of failures is approximately normal with mean 55.725 and variance 51.01.

8.3 The Renewal Function

We begin with the definition.

Definition 8.3 Let {N(t), t ≥ 0} be an RP. The renewal function M(·) is defined

as

M(t) = E(N(t)), t ≥ 0. (8.13)

The next theorem gives a method of computing the renewal function.

Theorem 8.8 Renewal Function. Let {N(t), t ≥ 0} be an RP with common inter-

event cdf G. The renewal function is given by

M(t) =

∞
∑

k=1

Gk(t), t ≥ 0, (8.14)

where Gk(t) is as defined in Equation 8.2.

Proof: We have

M(t) =

∞
∑

k=0

kP(N(t) = k)

=

∞
∑

k=0

k(Gk(t) −Gk+1(t)) (Eq. 8.3)

=

∞
∑

k=1

Gk(t).
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This proves the theorem.

The next theorem introduces an important equation known as the renewal equation,

and gives a simple expression for the LST of the renewal function defined by

M̃(s) =

∫ ∞

0

e−stdM(t), Re(s) > 0.

Theorem 8.9 The Renewal Equation. The renewal function {M(t), t ≥ 0} of

a renewal process {N(t), t ≥ 0} with common inter-event cdf G(·) satisfies the

renewal equation

M(t) = G(t) +

∫ t

0

M(t− u)dG(u), t ≥ 0. (8.15)

The LST of the renewal function is given by

M̃(s) =
G̃(s)

1 − G̃(s)
. (8.16)

Proof: We use the renewal argument. Fix a t, and suppose S1 = u. If u > t the very

first renewal is after t, hence N(t) = 0, and hence M(t) = 0. On the other hand, if

u ≤ t, then we get one renewal at u, and a new renewal process starts at u, which

produces additional M(t− u) expected number of events up to t. Hence we have

E(N(t)|S1 = u) =

{

0 if u > t,
1 +M(t− u) if u ≤ t.

Hence we get

M(t) =

∫ ∞

0

E(N(t)|S1 = u)dG(u)

=

∫ t

0

(1 +M(t− u))dG(u)

= G(t) +

∫ t

0

M(t− u)dG(u).

This gives the renewal equation. Taking LSTs on both sides of Equation 8.15 we get,

M̃(s) = G̃(s) + M̃(s)G̃(s),

which yields Equation 8.16.

As in the case of pk(t), when the inter-event times are integer valued random

variables, the renewal argument provides a simple recursive method of computing

M(t). To derive this, let

αi = P(Xn = i), i = 0, 1, 2, · · · ,
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and

βi = P(Xn ≤ i) =

i
∑

k=0

αk.

Since all renewals take place at integer time points, it suffices to study M(n) for

n = 0, 1, 2, · · · . We leave it to the reader to show that Equation 8.15 reduces to

M(n) = βn +

n
∑

k=0

αkM(n− k), n = 0, 1, 2, · · · . (8.17)

The above equation can be used to compute M(n) recursively for increasing values

of n.

The renewal function plays a very important role in the study of renewal processes.

The next theorem shows why.

Theorem 8.10 The renewal function {M(t), t ≥ 0} completely characterizes the

renewal process {N(t), t ≥ 0}.

Proof: Equation 8.16 can be rewritten as

G̃(s) =
M̃(s)

1 + M̃(s)
. (8.18)

Now, the renewal function {M(t), t ≥ 0} determines its LST M̃(s), which deter-

mines the LST G̃(s) by the above relation, which determines the cdf G(·), which

characterizes the renewal process {N(t), t ≥ 0}, according to Theorem 8.1. Hence

the theorem follows.

Example 8.11 Renewal Function for a PP. Consider a renewal process with inter-

event time distribution G(x) = 1 − e−λx for x ≥ 0. We have G̃(s) = λ/(s + λ).
From Equation 8.16 we get

M̃(s) =
λ

s
.

Inverting this we get

M(t) = λt, t ≥ 0.

This is as expected, since the renewal process in this case is a PP(λ). Theorem 8.10

implies that if a renewal process has a linear renewal function, it must be a Poisson

process!

Example 8.12 Compute the renewal function for an RP {N(t), t ≥ 0} generated

by {Xn, n ≥ 0} with common pmf

P(Xn = 0) = 1 − α, P(Xn = 1) = α,

where 0 < α < 1.
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From Equation 8.17 we get

M(0) = 1 − α+ (1 − α)M(0),

M(n) = 1 + (1 − α)M(n) + αM(n− 1), n ≥ 1.

The above equations can be solved to get

M(n) = (n+ 1 − α)/α, n ≥ 0.

Thus

M(t) = ([t] + 1 − α)/α, t ≥ 0,

where [t] is the largest integer not exceeding t.

Next we study the asymptotic behavior of the renewal function.

Theorem 8.11 Let M(t) be the renewal function of an RP with mean inter-event

time τ > 0. Then

M(t) <∞ for all t ≥ 0.

Proof: Let G be the cdf of the inter-event times. Since τ > 0, G(0) < 1. Thus there

is a δ > 0 such that G(δ) < 1. Define

X∗
n =

{

0 if Xn < δ,
δ if Xn ≥ δ.

Let {S∗
n, n ≥ 1} and {N ∗(t), t ≥ 0} be the renewal sequence and the renewal

process generated by {X∗
n, n ≥ 1}. Since X∗

n ≤ Xn for all n ≥ 1, we see that

S∗
n ≤ Sn for all n ≥ 1, which implies that N(t) ≤ N ∗(t) for all t ≥ 0. Hence

M(t) = E(N(t)) ≤ E(N ∗(t)) = M ∗(t).

We can modify Example 8.12 slightly to get

M ∗(t) =
[t/δ] +G(δ)

1 −G(δ)
<∞.

Hence

M(t) ≤M ∗(t) <∞,

and the result follows.

Theorem 8.12 Elementary Renewal Theorem.

lim
t→∞

M(t)

t
=

1

τ
, (8.19)

where the right hand side is to be interpreted as zero if τ = ∞.

Before we prove the theorem, it is worth noting that this theorem does not follow

from Theorem 8.6, since almost sure convergence does not imply convergence of the
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expected values. Hence we need to establish this result independently. We need the

following result first.

Theorem 8.13

E(SN(t)+1) = τ(M(t) + 1). (8.20)

Proof: We prove this by using renewal argument. Let

H(t) = E(SN(t)+1).

We have

E(SN(t)+1|S1 = u) =

{

u if u > t,
u+H(t− u) if u ≤ t.

Hence,

H(t) =

∫ ∞

0

E(SN(t)+1|S1 = u)dG(u)

=

∫ t

0

(u +H(t− u))dG(u) +

∫ ∞

t

udG(u)

=

∫ ∞

0

udG(u) +

∫ t

0

H(t− u)dG(u)

= τ +

∫ t

0

H(t− u)dG(u). (8.21)

Taking LSTs on both sides of the above equation, we get

H̃(s) = τ + H̃(s)G̃(s).

Hence,

H̃(s) =
τ

1 − G̃(s)

= τ

[

1 +
G̃(s)

1 − G̃(s)

]

= τ(1 + M̃(s)).

Inverting the above equation yields Equation 8.20.

A quick exercise in renewal argument shows that E(SN(t)) 6= τM(t). Thus Equa-

tion 8.20 is unusual indeed! With this result we are now ready to prove the elementary

renewal theorem.

Proof of Theorem 8.12. Assume 0 < τ <∞. By definition, we have

SN(t)+1 > t.

Hence

E(SN(t)+1) > t.
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Using Equation 8.20, the above inequality yields

M(t)

t
>

1

τ
− 1

t
.

Hence

lim inf
t→∞

M(t)

t
≥ 1

τ
. (8.22)

Now, fix a 0 < T <∞ and define

X ′
n = min(Xn, T ), n ≥ 1.

Let {N ′(t), t ≥ 0} be an RP generated by {X ′
n, n ≥ 1}, and M ′(t) be the corre-

sponding renewal function. Now,

SN ′(t)+1 ≤ t+ T.

Hence, taking expected values on both sides, and using Equation 8.20, we get

τ ′(M ′(t) + 1) ≤ t+ T,

where τ ′ = E(X ′
n). Hence we get

M ′(t)

t
≤ 1

τ ′
+
T − τ ′

t
.

Since X ′
n ≤ Xn, we see that M(t) ≤M ′(t). Hence we get

M(t)

t
≤ 1

τ ′
+
T − τ ′

t
.

This implies

lim sup
t→∞

M(t)

t
≤ 1

τ ′
.

Now as T → ∞, τ ′ → τ.Hence letting T → ∞ on both sides af the above inequality,

we get

lim sup
t→∞

M(t)

t
≤ 1

τ
. (8.23)

Combining Equations 8.22 and 8.23 we get Equation 8.19. We leave the case of

τ = ∞ to the reader.

This theorem has the same intuitive explanation as Theorem 8.6. We end this sec-

tion with results about the higher moments of N(t).

Theorem 8.14 Higher Moments of N(t). Let

Mk(t) = E(N(t)(N(t) − 1) · · · (N(t) − k + 1)), k = 1, 2, · · · ; t ≥ 0.

Then

M̃k(s) = k!M̃(s)k. (8.24)



RENEWAL-TYPE EQUATION 355

Proof: From Equation 8.4 we get

M̃k(s) =

∞
∑

r=1

r(r − 1) · · · (r − k + 1)p̃k(s)

=
∞
∑

r=1

r(r − 1) · · · (r − k + 1)G̃k(s)(1 − G̃(s))

= k!

(

G̃(s)

1 − G̃(s)

)k

= k!M̃(s)k.

Thus Mk(t)/k! is a k-fold convolution of M(t) with itself.

8.4 Renewal-Type Equation

In this section we study the type of integral equations that arise from the use of

renewal argument. We have already seen two instances of such equations: Equa-

tion 8.15 for M(t), and Equation 8.21 for E(SN(t)+1). All these equations have the

following form:

H(t) = D(t) +

∫ t

0

H(t− u)dG(u), (8.25)

where G(·) is a cdf of a random variable with G(0−) = 0 and G(∞) = 1, D(·) is a

given function, andH is to be determined. WhenD(t) = G(t), the above equation is

the same as Equation 8.15, and is called the renewal equation. When D(·) is a func-

tion other than G(·), Equation 8.25 is called the renewal-type equation. Thus, when

D(t) = τ , we get the renewal-type equation for E(SN(t)+1), namely, Equation 8.21.

We will need to solve the renewal-type equations arising in applications. The fol-

lowing theorem gives the conditions for the existence and uniqueness of the solution

to a renewal-type equation.

Theorem 8.15 Solution of the Renewal-Type Equation. Suppose

|D(t)| <∞ for all t ≥ 0.

Then there exists a unique solution to the renewal-type equation

H(t) = D(t) +

∫ t

0

H(t− u)dG(u),

such that

|H(t)| <∞ for all t ≥ 0,

given by

H(t) = D(t) +

∫ t

0

D(t− u)dM(u), (8.26)
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where M(·) is the renewal function associated with G(·).

Proof: Since M(t) < ∞ and Gk(t) is a decreasing function of k, Equation 8.14

implies that

lim
n→∞

Gn(t) = 0.

We introduce the following convenient notation for convolution:

A ∗B(t) =

∫ t

0

A(t− u)dB(u).

By recursive use of the renewal type equation, and writing H for H(t) for compact-

ness, we get

H = D +H ∗G = D + (D +H ∗G) ∗G = D +D ∗G+H ∗G2 = · · ·

= D +D ∗
n−1
∑

k=1

Gk +H ∗Gn. (8.27)

Letting n→ ∞ and using Gn → 0 we get

H = D +D ∗
∞
∑

k=1

Gk = D +D ∗M,

which is Equation 8.26. Thus we have shown that H as given in Equation 8.26 is a

solution to Equation 8.25.

Since D is assumed to be bounded we get

c = sup
0≤x≤t

|D(x)| <∞.

Then Equation 8.26 yields

|H(t)| ≤ |D(t)| + |D ∗M(t)| ≤ c+ cM(t) <∞.

This shows the boundedness of H(t).

To show uniqueness, supposeH1 andH2 are two solutions to Equation 8.25. Since

both H1 and H2 satisfy Equation 8.27, we get

H = H1 −H2 = (H1 −H2) ∗Gn = H ∗Gn.

Letting n→ ∞, we can use the boundedness of H1 and H2 to get

H = lim
n→∞

H ∗Gn = 0.

Hence we must have H1 = H2. This shows uniqueness.

We illustrate with an example below.

Example 8.13 Two-State Machine. We revisit our two state machine with iid
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exp(µ) up-times. However, when the machine fails after an up-time U , the ensu-

ing down time is cU , for a fixed c > 0. Suppose the machine is up at time 0. Let

X(t) = 1 if the machine is up at time t, and 0 otherwise. Compute

H(t) = P(X(t) = 1).

We approach the problem by first deriving a renewal-type equation for H(t) by

using the renewal argument.

Let U1 ∼ exp(µ) be the first up-time, and D1 = cU1 be the following down

time. The machine becomes as good as new at time S1 = U1 +D1 = (1 + c)U1 ∼
exp(µ/(1 + c)). Now fix a t ≥ 0 and suppose S1 = u. If u > t, then X(t) = 1 if

U1 > t. If u ≤ t, the machine regenerates at time u, hence it will be up at time t with

probabilityH(t− u). Combining these observations, we get

P(X(t) = 1|S1 = u) =

{

P(U1 > t|S1 = u) if u > t,
H(t− u) if u ≤ t.

Hence,

H(t) =

∫ ∞

0

P(X(t) = 1|S1 = u)dG(u)

=

∫ t

0

H(t− u)dG(u) +

∫ ∞

t

P(U1 > t|S1 = u)dG(u), (8.28)

where G is the cdf of S1. Since P(U1 > t|S1 = u) = 0 if u ≤ t, we get
∫ ∞

t

P(U1 > t|S1 = u)dG(u) =

∫ ∞

0

P(U1 > t|S1 = u)dG(u) = P(U1 > t) = e−µt.

Substituting in Equation 8.28, we get

H(t) = e−µt +

∫ t

0

H(t− u)dG(u),

which is a renewal-type equation with D(t) = e−µt, and G being the cdf of an

exp(µ/(1+c)) random variable. The RP corresponding to this G is a PP(µ/(1+c)).
Hence the renewal function is given by (see Example 8.11)

M(t) =
µ

1 + c
t.

Hence the solution given by Equation 8.26 reduces to

H(t) = e−µt +

∫ t

0

e−µ(t−u) µ

1 + c
du =

1 + ce−µt

1 + c
.

Note that we could not have derived the above expression by the method of CTMCs

since {X(t), t ≥ 0} is not a CTMC due the dependence of the up and down times.

The solution in Equation 8.26 is not easy to use in practice since, unlike in the

previous example, M(t) is generally not explicitly known. The next theorem gives a

transform solution that can be more useful in practice.
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Theorem 8.16 If D(·) has an LST D̃(s), then H(·) has an LST H̃(s) given by

H̃(s) =
D̃(s)

1 − G̃(s)
. (8.29)

Proof: Follows by taking LST on both sides of Equation 8.25.

We illustrate with an example. It is an unusual application of renewal-type equa-

tions, since generally D(t) is known, and H(t) is unknown in Equation 8.25. How-

ever, in the following example, H(t) is known, and D(t) and G(t) are unknown!

Example 8.14 Busy Period in an M/G/∞ Queue. Consider an M/G/∞ queue

where customers arrive according to a PP(λ) and require iid service times with com-

mon cdf B(·). Let X(t) be the number of customers in the system at time t. Now

suppose a customer enters an empty system at time 0. Compute the cdf F (·) of the

busy period of the system, defined as

T = min{t ≥ 0 : X(t) = 0}.

Define Sn be the nth time when a customer enters an empty system. Since the

arrival process is Poisson, and the service times are iid, we see that {Sn, n ≥ 1} is a

renewal sequence. S1 is called the busy cycle. Let H(t) = P(X(t) = 0). Using the

renewal argument, we get

P(X(t) = 0|S1 = u) =

{

P(T ≤ t|S1 = u) if u > t,
H(t− u) if u ≤ t.

Hence, using G as the cdf of S1, we get

H(t) =

∫ t

0

P(X(t) = 0|S1 = u)dG(u)

=

∫ t

0

H(t− u)dG(u) +

∫ ∞

t

P(T ≤ t|S1 = u)dG(u). (8.30)

Since P(T ≤ t|S1 = u) = 1 if u ≤ t, we get
∫ ∞

t

P(T ≤ t|S1 = u)dG(u) =

∫ ∞

0

P(T ≤ t|S1 = u)dG(u) −
∫ t

0

dG(u)

= P(T ≤ t) −G(t).

Substituting in Equation 8.28, we get

H(t) = P(T ≤ t) −G(t) +

∫ t

0

H(t− u)dG(u). (8.31)

We see that S1 = T +M where M ∼ exp(λ) is the time until a customer arrives to

the system once it becomes empty at time T , and is independent of T . Since F is the

cdf of T and G is cdf of S1, we see that

G̃(s) = F̃ (s)
λ

s+ λ
.
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Also, from the results in Section 7.8, and using the fact that theM/G/∞ queue starts

with an arrival to an empty queue at time 0, we see that

H(t) = exp(−λ
∫ t

0

(1 −B(u))du)B(t).

Let H̃(s) be the LST of H(·). Taking the LST of Equation 8.31 we get

H̃(s) = F̃ (s) − F̃ (s)
λ

s+ λ
+ H̃(s)F̃ (s)

λ

s+ λ
.

Solving for F̃ (s) we get

F̃ (s) =
(s+ λ)H̃(s)

s+ λH̃(s)
,

which is the result we desired. Differentiating F̃ (s) with respect to s and using

lim
s→0

H̃(s) = H(∞) = e−λτ

we get

E(T ) =
eλτ − 1

λ
.

8.5 Key Renewal Theorem

In the previous section we saw several examples of the renewal type equation, and

methods of solving it. In general explicit solutions to renewal type equations are hard

to come by. Hence in this section we study the asymptotic properties of the solution

H(t) as t → ∞. We have done such asymptotic analysis for a discrete renewal type

equation in our study of DTMCs (Equation 4.24 on page 107), and a continuous re-

newal type equation in the study of CTMCs (Equation 6.53 on page 234). In this

section we shall deal with the general case. We begin with a definition.

Definition 8.4 Periodicity. A non-negative, non-defective random variable X is

called periodic (or arithmetic, or lattice) if there is a d > 0 such that

∞
∑

k=0

P(X = kd) = 1.

The largest such d is called the period (or span) of X . If there is no such d, X is

called aperiodic (or non-arithmetic, or non-lattice).

We say that a distribution of X is periodic, (or arithmetic, or lattice) if X is pe-

riodic. Similarly we say that an RP is aperiodic if it is generated by aperiodic inter-

event times. Note that all continuous random variables on [0,∞) are aperiodic, and

all non-negative integer valued random variables are periodic. However, a discrete

random variable is not necessarily periodic. Thus a random variable taking values
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{1,
√

2} is aperiodic, but one taking values {0,
√

2} is periodic. (What about one that

takes values {e, π}?) With the help of this concept, we shall prove the main result in

the next theorem.

Theorem 8.17 Key Renewal Theorem. Let H be a solution to the following re-

newal type equation

H(t) = D(t) +

∫ t

0

H(t− u)dG(u). (8.32)

Suppose D is a difference of two non-negative bounded monotone functions and
∫ ∞

0

|D(u)|du <∞. (8.33)

1. If G is aperiodic with mean τ > 0,

lim
t→∞

H(t) =
1

τ

∫ ∞

0

D(u)du. (8.34)

2. If G is periodic with period d and mean τ > 0,

lim
k→∞

H(kd+ x) =
d

τ

∞
∑

k=0

D(kd+ x). (8.35)

The proof of this theorem is beyond the scope of this book, and we omit it. The

hard part is proving that the limit exists. If we assume the limit exists, evaluating

the limits is relatively easy, as we have done in the proofs of the discrete renewal

theorem (Theorem 4.14 on page 107) and the continuous renewal theorem (Theo-

rem 6.20 on page 234). Feller proves the result under the assumption that D is a

“directly Riemann integrable” function. The condition on D assumed above is a suf-

ficient condition for direct Riemann integrability, and is adequate for our purposes.

We refer the readers to Feller(1971), Kohlas (1982), or Heyman and Sobel (1982) for

proofs. We shall refer to key renewal theorem as KRT from now on.

In the remainder of this section we shall illustrate the usefulness of KRT by means

of several examples. As a first application, we shall prove the following theorem.

Theorem 8.18 Blackwell’s Renewal Theorem. Let M(·) be the renewal function

of an RP with mean inter-renewal time τ > 0.

1. If the RP is aperiodic,

lim
t→∞

[M(t+ h) −M(t)] =
h

τ
, h ≥ 0. (8.36)

2. If the RP is periodic with period d,

lim
t→∞

[M(t+ kd) −M(t)] =
kd

τ
, k = 0, 1, 2, · · · . (8.37)
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Proof: We consider the aperiodic case. For a given h ≥ 0, consider the renewal type

equation 8.25 with the following D function:

D(t) =

{

1 if 0 ≤ t ≤ h,
0 if t > h.

The solution is given by Equation 8.26. For t > h this reduces to

H(t) =

∫ t

t−h

dM(u) = M(t) −M(t− h).

From the KRT we get

lim
t→∞

[M(t+ h) −M(t)] = lim
t→∞

H(t+ h)

= lim
t→∞

H(t) =
1

τ

∫ ∞

0

D(u)du =
h

τ
.

This proves Equation 8.36. Equation 8.37 follows similarly.

It is interesting to note that one can prove that the above theorem is in fact equiv-

alent to the KRT, although the proof is not simple!

Example 8.15 We verify Blackwell’s renewal theorem for the two renewal func-

tions we derived in Examples 8.11 and 8.12. In Example 8.11 we have a Poisson

process, which is an aperiodic RP with M(t) = λt. In this case the mean inter-

renewal time is τ = 1/λ. We get

lim
t→∞

[M(t+ h) −M(t)] = lim
t→∞

λh =
h

τ
,

thus verifying Equation 8.36. In Example 8.12 we have a periodic RP with period 1,

with M(t) = ([t] + 1 − α)/α. In this case the mean inter-renewal time is τ = α.

Thus, if h is a nonnegative integer,

lim
t→∞

[M(t+ h) −M(t)] = lim
t→∞

[t+ h] − [t]

α
=
h

τ
.

If h is not an integer, the above limit does not exist. This verifies Equation 8.37.

Example 8.16 Asymptotic Behavior of M(t). Let M(t) be the renewal function

of an aperiodic RP with inter-event time with finite variance (σ2 <∞). Show that

M(t) =
t

τ
+
σ2 − τ2

2τ2
+ o(1), (8.38)

where o(1) is a function that approaches 0 as t→ ∞.

From Theorem 8.12 we know that

lim
t→∞

M(t)

t
=

1

τ
.
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We now derive a renewal type equation for

H(t) = M(t) − t/τ.

Using renewal argument we get

E(N(t) − t/τ |S1 = u) =

{

−t/τ if u > t
1 +M(t− u) − t/τ if u ≤ t

=

{

−t/τ if u > t
H(t− u) + 1 − u/τ if u ≤ t.

Hence we get

H(t) =

∫ ∞

0

E(N(t) − t/τ |S1 = u)dG(u)

= D(t) +

∫ t

0

H(t− u)dG(u),

where

D(t) =

∫ t

0

(1 − u/τ)dG(u) −
∫ ∞

t

(t/τ)dG(u).

This can be rearranged in the following form

D(t) =
1

τ

∫ ∞

t

(1 −G(u))du − (1 −G(t)) = D1(t) −D2(t).

Thus D(t) is a difference of two monotone functions, and we have
∫ ∞

0

D1(t)dt =

∫ ∞

t=0

1

τ

∫ ∞

u=t

(1 −G(u))dudt

=
1

τ

∫ ∞

u=0

∫ u

t=0

(1 −G(u))dtdu

=
1

τ

∫ ∞

u=0

u(1 −G(u))du

=
σ2 + τ2

2τ
<∞.

Also,
∫ ∞

0

D2(t)dt =

∫ ∞

0

(1 −G(t))dt = τ <∞.

Hence
∫ ∞

0

D(t)dt =
σ2 + τ2

2τ
− τ =

σ2 − τ2

2τ
.

We can now apply the aperiodic KRT to get

lim
t→∞

[

M(t) − t

τ

]

=
σ2 − τ2

2τ2
.

This implies Equation 8.38. Note that if the coefficient of variation σ2/τ2 < 1, then

t/τ overestimatesM(t) for large t, and if σ2/τ2 > 1, then t/τ underestimatesM(t)
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for large t. For the exponential inter-event times the coefficient of variation is one. In

this case t/τ is the exact estimate of M(t), as the RP is a PP in this case.

8.6 Recurrence Times

For an aperiodic RP {N(t), t ≥ 0}, let

A(t) = t− SN(t), t ≥ 0,

B(t) = SN(t)+1 − t, t ≥ 0,

C(t) = SN(t)+1 − SN(t) = XN(t)+1 = A(t) +B(t), t ≥ 0.

Thus A(t) is the total time elapsed since the most recent renewal at or before t; it is

called backward recurrence time or current life, or age. B(t) is the time from t until

the first renewal after t; it is called the forward recurrence time, or remaining life,

or excess life. C(t) is the length of the inter-renewal interval that covers time t; it is

called the total life. Figure 8.3 shows the relationships betweenA(t), B(t), and C(t)
graphically.

The stochastic process {A(t), t ≥ 0} is called the age process, {B(t), t ≥ 0} is

C(t)

A(t) B(t)

SN(t) SN(t)+1t

Figure 8.3 The random variables A(t), B(t), and C(t).

called the remaining life (or excess life) process, and {C(t), t ≥ 0} is called the total

life process. Figures 8.4, 8.5, and 8.6 show the sample paths of the three stochastic

S4

t
S3S2S1S0

A(t)

Figure 8.4 A typical sample path of the age process.

processes. The age process increases linearly with rate 1, jumps down to zero at ev-

ery renewal epoch Sn. The remaining life process starts atX1, and decreases linearly

at rate 1. When it reaches zero at time Sn, it jumps up to Xn+1. The total life pro-

cess has piecewise constant sample paths with upward or downward jumps at Sn. We
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S4

t
S3S2S1S0

B(t)

Figure 8.5 A typical sample path of the excess life process.

S4

t
S3S2S1S0

C(t)

Figure 8.6 A typical sample path of the total life process.

shall use the renewal argument and the KRT to study these three stochastic processes.

Theorem 8.19 Remaining Life Process. Let B(t) be the excess life at time t in an

aperiodic RP with inter-event time distribution G. Then, for a given x > 0,

H(t) = P(B(t) > x), t ≥ 0,

satisfies the renewal type equation

H(t) = 1 −G(x + t) +

∫ t

0

H(t− u)dG(u), (8.39)

and

lim
t→∞

P(B(t) > x) =
1

τ

∫ ∞

x

(1 −G(u))du. (8.40)

Proof: Conditioning on S1 we get

P(B(t) > x|S1 = u) =







H(t− u) if u ≤ t
0 if t < u ≤ t+ x
1 if u > t+ x.

Hence we get

H(t) =

∫ ∞

0

P(B(t) > x|S1 = u)dG(u)
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= 1 −G(x + t) +

∫ t

0

H(t− u)dG(u),

which is Equation 8.39. Now D(t) = 1 − G(x + t) is monotone, and satisfies the

condition in Equation 8.33. Since G is assumed to be aperiodic, we can use KRT to

get

lim
t→∞

H(t) =
1

τ

∫ ∞

0

(1 −G(x + u))du =
1

τ

∫ ∞

x

(1 −G(u))du,

which gives Equation 8.40.

Next we give the limiting distribution of the age process.

Theorem 8.20 Age Process. Let A(t) be the age at time t in an aperiodic RP with

inter-event time distribution G. Its limiting distribution is given by

lim
t→∞

P(A(t) ≥ x) =
1

τ

∫ ∞

x

(1 −G(u))du. (8.41)

Proof: It is possible to prove this theorem by first deriving a renewal type equation

for H(t) = P(A(t) ≥ x) and then using the KRT. We leave that to the reader and

show an alternate method here. For t > x, we have

{A(t) ≥ x} ⇔ {No renewals in (t− x, t]} ⇔ {B(t− x) > x}.
Hence

lim
t→∞

P(A(t) ≥ x) = lim
t→∞

P(B(t− x) > x)

= lim
t→∞

P(B(t) > x)

=
1

τ

∫ ∞

x

(1 −G(u))du,

which is Equation 8.41.

Note that in the limit,A(t) andB(t) are continuous random variables with density

(1 − G(u))/τ , even if the inter-event times may be discrete (but aperiodic). Thus

the presence of strict or weak inequalities in Equations 8.40 and 8.41 have do not

make any difference. In the limit the age and excess life are identically distributed!

However, they are not independent, as shown in the next theorem.

Theorem 8.21 Joint Distribution of Age and Excess Life. Suppose the hypotheses

of Theorems 8.19 and 8.20 hold. Then

lim
t→∞

P(A(t) ≥ y,B(t) > x) =
1

τ

∫ ∞

x+y

(1 −G(u))du. (8.42)

Proof: For t > y we have

{A(t) ≥ y,B(t) > x} ⇔ {No renewals in (t− y, t+ x]} ⇔ {B(t− y) > x+ y}.
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Hence

lim
t→∞

P(A(t) ≥ y,B(t) > x) = lim
t→∞

P(B(t − y) > x+ y)

= lim
t→∞

P(B(t) > x+ y)

=
1

τ

∫ ∞

x+y

(1 −G(u))du,

which is Equation 8.42.

The complementary cdf given in Equation 8.40 occurs frequently in the study of

renewal processes. Hence we introduce the following notation:

Ge(x) =
1

τ

∫ x

0

(1 −G(u))du. (8.43)

Ge is a proper distribution of a continuous random variable on [0,∞), since
∫∞
0 (1−

G(u))du = τ. It is called the equilibrium distribution corresponding toG. LetXe be

a random variable with cdf Ge. One can show that

E(Xe) =

∫ ∞

0

(1 −Ge(u))du =
σ2 + τ2

2τ
. (8.44)

Unfortunately, since convergence in distribution does not imply convergence of the

means, and we cannot conclude

lim
t→∞

E(A(t)) = lim
t→∞

E(B(t)) =
σ2 + τ2

2τ

based on Theorems 8.19 and 8.20. We can, however, show the validity of the above

limit directly by using KRT, as shown in the next theorem.

Theorem 8.22 Limiting Mean Excess Life. Suppose the hypothesis of Theo-

rems 8.19 holds, and σ2 <∞. Then

lim
t→∞

E(B(t)) =
σ2 + τ2

2τ
. (8.45)

Proof: Let H(t) = E(B(t)). Conditioning on S1 we get

E(B(t)|S1 = u) =

{

H(t− u) if u ≤ t,
u− t if u > t.

Hence we get

H(t) =

∫ ∞

0

E(B(t)|S1 = u)dG(u)

= D(t) +

∫ t

0

H(t− u)dG(u),

where

D(t) =

∫ ∞

t

(u − t)dG(u).



DELAYED RENEWAL PROCESSES 367

Now D is monotone since

d

dt
D(t) = −(1 −G(t)) ≤ 0.

Also, we can show that
∫ ∞

0

D(u)du = (σ2 + τ2)/2 <∞.

Hence the KRT can be applied to get

lim
t→∞

E(B(t)) =
1

τ

∫ ∞

0

D(u)du =
σ2 + τ2

2τ
.

This proves the theorem.

We can derive the next two results in an analogous manner.

Theorem 8.23 Limiting Mean Age. Suppose the hypothesis of Theorem 8.19

holds, and σ2 <∞. Then

lim
t→∞

E(A(t)) =
σ2 + τ2

2τ
. (8.46)

Theorem 8.24 Limiting Mean Total Life. Suppose the hypothesis of Theorem 8.19

holds, and σ2 <∞. Then

lim
t→∞

E(C(t)) =
σ2 + τ2

τ
. (8.47)

Equation 8.47 requires some fine tuning of our intuition. Since C(t) = XN(t)+1,

the above theorem implies that

lim
t→∞

E(XN(t)+1) =
σ2 + τ2

τ
≥ τ = E(Xn).

Thus, for large t, the inter-renewal time covering t, namely, XN(t)+1, is longer in

mean than a generic inter-renewal time, say Xn. This counter-intuitive fact is called

the inspection paradox. One way to rationalize this “paradox” is to think of picking

a t uniformly over a very long interval [0, T ] over which we have observed an RP.

Then it seems plausible the probability that our randomly picked t will lie in a given

inter-renewal interval is directly proportional to the length of that interval. Hence

such a random t is more likely to fall in a longer interval. This fact is quantified by

Equation 8.47.

8.7 Delayed Renewal Processes

In this section we study a seemingly trivial but a useful generalization of an RP. We

begin with a definition.
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Definition 8.5 Delayed Renewal Process. A counting process {N(t), t ≥ 0} gen-

erated by {Xn, n ≥ 1} as defined by Equation 8.1 is called a delayed RP if X1 has

cdf F , {Xn, n ≥ 2} is a sequence of iid random variables with common cdf G, and

they are independent of X1.

To distinguish an RP from a delayed RP we use the notation {ND(t), t ≥ 0} to

denote a delayed RP. Clearly, if F = G, the delayed renewal process reduces to the

standard renewal process. Also, the shifted delayed RP {ND(t+X1) − 1, t ≥ 0} is

a standard RP. We illustrate with examples where we encounter delayed RPs.

Example 8.17 Let {N(t), t ≥ 0} be a standard RP. For a fixed s > 0 define

Ns(t) = N(s + t) − N(s). Then {Ns(t), t ≥ 0} is a delayed RP. Here F is the

distribution of B(s), the excess life at time s in the original RP.

Example 8.18 Delayed RPs in CTMCs. Let {X(t), t ≥ 0} be an irreducible and

recurrent CTMC on state-space {0, 1, 2, · · ·}. Let Nj(t) be the number of entries

into state j up to t. Following the argument in Example 8.3 we see that, if X(0) = j,
{Nj(t), t ≥ 0} is an RP. If X(0) 6= j, it is a delayed renewal process, since the time

of the first entry into state j has a different distribution than the subsequent inter-visit

times.

Example 8.19 Delayed RPs in an M/G/1 Queue. Let X(t) be the number of

customers at time t in an M/G/1 system. Let N(t) be the number of busy cycles

completed by time t. We saw in Example 8.5 that {N(t), t ≥ 0} is an RP if the

system starts empty, that is, ifX(0) = 0. For any other initial distribution, {N(t), t ≥
0} is a delayed RP.

In our study of the delayed renewal process we shall assume that

G(0) < 1, F (∞) = G(∞) = 1. (8.48)

The delayed renewal process inherits almost all the properties of the standard renewal

process. We leave many of them to the reader to prove.

Next we study the renewal function for a delayed RP defined as

MD(t) = E(ND(t)), t ≥ 0.

Let M(t) be the renewal function for the standard RP. The next theorem gives the

main result about MD(t).

Theorem 8.25 The Renewal Function for the Delayed RP. The renewal function

{MD(t), t ≥ 0} of a renewal process {ND(t), t ≥ 0} satisfies the integral equation

MD(t) = F (t) +

∫ t

0

M(t− u)dG(u), t ≥ 0. (8.49)
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Its LST is given by

M̃D(s) =
F̃ (s)

1 − G̃(s)
. (8.50)

Proof: Conditioning on X1 we get

E(ND(t)|S1 = u) =

{

0 if u > t,
1 +M(t− u) if u ≤ t.

Hence we get

MD(t) =

∫ ∞

0

E(ND(t)|S1 = u)dF (u)

=

∫ t

0

(1 +M(t− u))dF (u)

= F (t) +

∫ t

0

M(t− u)dF (u).

This gives Equation 8.49. Taking LSTs on both sides of it we get,

M̃D(s) = F̃ (s) + M̃(s)G̃(s).

Substituting for M̃(s) from Equation 8.16, we get Equation 8.50.

The renewal function {MD(t), t ≥ 0} also inherits almost all the properties of the

renewal function of a standard RP, except that its does not uniquely characterize the

delayed RP.

When we use renewal argument in a delayed RP, we generally get an equation of

the following type:

HD(t) = C(t) +

∫ t

0

H(t− x)dF (x), t ≥ 0. (8.51)

This is not a renewal type equation, since HD appears on the left, but not on the

right. The next theorem gives a result about the limiting behavior of the functionHD

satisfying the above equation.

Theorem 8.26 Let C(t) and H(t) be bounded functions with finite limits as t →
∞. Let HD be given as in Equation 8.51, where F is a cdf of a non-negative non-

defective random variable. Then

lim
t→∞

HD(t) = lim
t→∞

C(t) + lim
t→∞

H(t). (8.52)

Proof: Since H(·) is a bounded function with a finite limit h (say), we see that the

functions Ht(·) defined by

Ht(x) =

{

H(t− x) if 0 ≤ x ≤ t
0 if x > t
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form a sequence of bounded functions with

lim
t→∞

Ht(x) = h, x ≥ 0.

Hence by bounded convergence theorem

lim
t→∞

∫ t

0

H(t− x)dF (x) = lim
t→∞

∫ ∞

0

Ht(x)dF (x) =

∫ ∞

0

hdF (x) = h.

The theorem follows from this.

As an application of the above theorem we study the asymptotic behavior of

MD(t) the following example.

Example 8.20 Asymptotic Behavior of MD(t). Let MD(t) be the renewal func-

tion of a delayed RP. Let

τF = E(X1), σ2
F = Var(X1) <∞,

τ = E(Xn), σ2 = Var(Xn) <∞, n ≥ 2.

Show that

MD(t) =
t

τ
+
σ2 + τ2 − 2ττF

2τ2
+ o(1), (8.53)

where o(1) is a function that approaches 0 as t→ ∞.

We first derive an integral equation for

HD(t) = MD(t) − t/τ.

Using renewal argument we get

E(ND(t) − t/τ |S1 = u) =

{

−t/τ if u > t,
1 +M(t− u) − t/τ if u ≤ t.

Hence, after rearrangements, we get

HD(t) = C(t) +

∫ t

0

H(t− u)dG(u),

where

H(t) = M(t) − t/τ,

and

C(t) =

∫ t

0

(1 − u/τ)dF (u) −
∫ ∞

t

(t/τ)dF (u).

Now, from Example 8.16 we have

lim
t→∞

H(t) =
σ2 − τ2

2τ2
,

and

lim
t→∞

C(t) = 1 − τF /τ.
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We can now apply Theorem 8.26 to get

lim
t→∞

HD(t) =
σ2 − τ2

2τ2
+ 1 − τF

τ
.

This implies Equation 8.53.

Next we study a special case of a delayed RP called the equilibrium renewal pro-

cess as defined below.

Definition 8.6 Equilibrium Renewal Process. A delayed RP is called an equilib-

rium RP if the cdf F is related to G as follows:

F (x) = Ge(x) =
1

τ

∫ x

0

(1 −G(u))du, x ≥ 0.

An equilibrium RP is denoted by {Ne(t), t ≥ 0}. Recall that Ge is the limiting

distribution of the excess life in a standard renewal process, see Theorem 8.19. Thus

{Ne(t), t ≥ 0} can be thought of as the limit of the shifted RP {Ns(t), t ≥ 0} of

Example 8.17 as s → ∞. We prove two important properties of the equilibrium RP

below.

Theorem 8.27 Renewal Function of an Equilibrium RP. Let {Ne(t), t ≥ 0} be

an equilibrium RP as in Definition 8.6. Then

M e(t) = E(Ne(t)) =
t

τ
, t ≥ 0. (8.54)

Proof: From the definition of an equilibrium RP, we get

F̃ (s) = G̃e(s) =
1 − G̃(s)

τs
.

Substituting in Equation 8.50, we get

M̃ e(s) =
F̃ (s)

1 − G̃(s)
=

1

τs

1 − G̃(s)

1 − G̃(s)
=

1

τs
.

Inverting this we get Equation 8.54.

Note that M e(t) is a linear function of t, but {Ne(t), t ≥ 0} is not a PP. Does this

contradict our statement in Example 8.11 that linear renewal function implies that

the RP is a PP? Not at all, since {Ne(t), t ≥ 0} is a delayed RP, and not an RP. If it

was an RP, i.e., if Ge = G, then it would be a PP. This indeed is the case, since it is

possible to show that G = Ge if and only if G is exponential!

Theorem 8.28 Excess Life in an Equilibrium RP. Let Be(t) be the excess life at

time t in an equilibrium RP as in Definition 8.6. Then,

P(Be(t) ≤ x) = Ge(x), t ≥ 0, x ≥ 0.
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Proof: Let He(t) = P(Be(t) > x) and H(t) = P(B(t) > x) where B(t) is the

excess life in an RP with common inter-event cdf G. Using Ge as the cdf of S1 and

following the proof of Theorem 8.19 we get

He(t) = 1 −Ge(x+ t) +

∫ t

0

H(t− u)dGe(u).

Taking the LST on both sides, we get

H̃e(s) = 1 − c(s) + H̃(s)G̃e(s), (8.55)

where

c(s) =

∫ ∞

0

e−stdGe(x+ t).

On the other hand, from Equation 8.39, we have

H(t) = 1 −G(x + t) +

∫ t

0

H(t− u)dG(u).

Taking LST of the above equation we get

H̃(s) =
1 − b(s)

1 − G̃(s)
, (8.56)

where

b(s) =

∫ ∞

0

e−stdG(x + t).

Taking into account the jump of size Ge(x) at t = 0 in the function Ge(x + t), we

can show that

c(s) = Ge(x) +
1 − b(s)

sτ
. (8.57)

Substituting Equation 8.57 and 8.56 in 8.55, and simplifying, we get

H̃e(s) = 1 −Ge(x).

Hence we must have

He(t) = 1 −Ge(x),

for all t ≥ 0. This proves the theorem.

Thus the distribution of the excess life in an equilibrium RP does not change with

time. This is another manifestation of the “equilibrium”! We leave it to the reader to

derive the next result from this.

Theorem 8.29 {Ne(t), t ≥ 0} has stationary increments.

An interesting application of an equilibrium RP to G/M/∞ queue is described in

Computational Exercise 8.52.
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8.8 Alternating Renewal Processes

Consider a stochastic process {X(t), t ≥ 0} with state-space {0, 1}. Suppose the

process starts in state 1 (also called the “up” state). It stays in that state forU1 amount

of time and then jumps to state 0 (also called the “down” state). It stays in state 0 for

D1 amount of time and then goes back to state 1. This process repeats forever, with

Un being the nth up-time, and Dn the nth down-time. The nth up time followed by

the nth down time is called the nth cycle. A sample path of such a process is shown

in Figure 8.7.

D1 D2

t
U1

Z(t)

Down

Up

U2

Figure 8.7 A typical sample path of an alternating renewal process.

Definition 8.7 Alternating Renewal Process. The stochastic process {X(t), t ≥
0} as described above is called an alternating renewal process if {(Un, Dn), n ≥ 1}
is a sequence of iid bivariate random variables.

We abbreviate “alternating renewal process” as ARP. Note that an ARP does not

count any events even though it has the term “renewal process” in its name. The next

theorem gives the main result about the ARPs.

Theorem 8.30 Distribution of ARP. Suppose the ARP {X(t), t ≥ 0} starts in

state 1 at time zero. Then H(t) = P(X(t) = 1) satisfies the renewal equation

H(t) = P(U1 > t) +

∫ t

0

H(t− u)dG(u), (8.58)

where G(x) = P(U1 +D1 ≤ x). If G is aperiodic

lim
t→∞

P(X(t) = 1) =
E(U1)

E(U1) + E(D1)
. (8.59)

If G is periodic with period d, then the above limit holds if t = nd and n→ ∞.

Proof: Let Sn be the nth time the ARP enters state 1, i.e.,

Sn =

n
∑

i=1

(Ui +Di), n ≥ 1.
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Then {Sn, n ≥ 1} is a renewal sequence. Since the ARP renews at time S1 =
U1 +D1, we get

P(X(t) = 1|S1 = u) =

{

H(t− u) if u ≤ t,
P(U1 > t|S1 = u) if u > t.

Using G(u) = P(S1 ≤ u), we get

H(t) =

∫ ∞

0

P(X(t) = 1|S1 = u)dG(u)

=

∫ t

0

H(t− u)dG(u) +

∫ ∞

t

P(U1 > t|S1 = u)dG(u). (8.60)

We use the same trick as in Example 8.13: since P(U1 > t|S1 = u) = 0 if u ≤ t, we

get
∫ ∞

t

P(U1 > t|S1 = u)dG(u) =

∫ ∞

0

P(U1 > t|S1 = u)dG(u) = P(U1 > t).

Substituting in Equation 8.60 we get Equation 8.58. Now, P(U1 > t) is bounded and

monotone, and
∫ ∞

0

P(U1 > u)du = E(U1) <∞.

Hence we can use KRT to get, assuming S1 is aperiodic,

lim
t→∞

H(t) = lim
t→∞

P(X(t) = 1) =
E(U1)

E(S1)
=

E(U1)

E(U1) + E(D1)
.

This proves the theorem. The periodic case follows similarly.

The above theorem is intuitively obvious if one interprets the limiting probability

that X(t) = 1 as the fraction of the time the ARP is up. Thus, if the successive up-

times are 30 minutes long on the average, and the down-times are 10 minutes long

on the average, then it is reasonable to expect that the ARP will be up 75% of the

time in the long run. What is non-intuitive about the theorem is that it is valid even

if the Un and Dn are dependent random variables. All we need to assume is that

successive cycles of the ARP are independent. This fact makes the ARP a powerful

tool. We illustrate its power with several examples.

Example 8.21 Two-State Machine. The CTMC {X(t), t ≥ 0} developed in Ex-

ample 6.4 on page 195 to describe a two state machine is an ARP with Un ∼ exp(µ)
and Dn ∼ exp(λ). In this example Un and Dn are also independent. Since S1 =
U1 +D1 is aperiodic, we can use Equation 8.59 to get

lim
t→∞

P(X(t) = 1) =
E(U1)

E(U1) + E(D1)
=

λ

λ+ µ
,

and hence

lim
t→∞

P(X(t) = 0) =
E(D1)

E(U1) + E(D1)
=

µ

λ+ µ
.
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This matches with the limiting distribution of {X(t), t ≥ 0} computed in Exam-

ple 6.34 on page 241.

Example 8.22 Excess Life. In this example we use ARPs to derive the limting dis-

tribution of the excess life in a standard RP given in Equation 8.40.

For a fixed x > 0, define

X(t) =

{

1 if B(t) > x,
0 if B(t) ≤ x.

Then {X(t), t ≥ 0} is a stochastic process with state-space {0, 1} (see Figure 8.8)

with

S4

t
S3S2S1

Up

Z(t)

Down

t

B(t)

S1

x

S2 S3 S4

Figure 8.8 The excess life process and the induced ARP.

Un = max(Xn − x, 0),

Dn = min(Xn, x),

Un +Dn = Xn.

Note that Un and Dn are dependent, but {(Un, Dn), n ≥ 0} is a sequence of iid

bivariate random variables. Hence {X(t), t ≥ 0} is an ARP. Then, assuming Xn is

aperiodic, we can use Theorem 8.30 to get

lim
t→∞

P(B(t) > x) = lim
t→∞

P(X(t) = 1)

=
E(U1)

E(U1) + E(D1)

=
E(max(X1 − x, 0))

E(X1)
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=
1

τ

∫ ∞

x

(1 −G(u))du

which is Equation 8.40, as desired.

Example 8.23 M/G/1/1 Queue. Consider an M/G/1/1 queue with arrival rate

λ and iid service times with mean τ . Let X(t) be the number of customers in the

system at time t. Compute the limiting distribution of X(t) as t→ ∞.

The stochastic process {X(t), t ≥ 0} has state-space {0, 1}, where the down-

times {Dn, n ≥ 1} are iid exp(λ) and the up-times {Un, n ≥ 1} are iid service

times. Hence {X(t), t ≥ 0} is an aperiodic ARP (i.e., S1 = U1 +D1 is aperiodic).

Hence

p1 = lim
t→∞

P(X(t) = 1)

=
E(U1)

E(U1) + E(D1)

=
τ

τ + 1/λ

=
ρ

1 + ρ
,

where ρ = λτ . Hence

p0 = lim
t→∞

P(X(t) = 0) =
1

1 + ρ
.

Example 8.24 G/M/1/1 Queue. Consider aG/M/1/1 queue with iid inter-arrival

times with common cdf G and mean 1/λ, and iid exp(µ) service times. Let X(t) be

the number of customers in the system at time t. Compute the limiting distribution

of X(t) as t→ ∞.

The stochastic process {X(t), t ≥ 0} has state-space {0, 1}. The up-times

{Un, n ≥ 1} are iid exp(µ) and the cycle lengths {Un+Dn, n ≥ 1} form a sequence

of iid random variables, although Un and Dn are dependent. Hence {X(t), t ≥ 0} is

an ARP. Now, let N(t) be the number of arrivals (who may or may not enter) up to

time t and An be the time of the nth arrival. Then

U1 +D1 = AN(U1)+1.

Hence, from Theorem 8.13, we get

E(U1 +D1|U1 = t) =
1

λ
(1 +M(t)),

where 1/λ is the mean inter-arrival time, and M(t) = E(N(t)). Hence

E(U1 +D1) =

∫ ∞

0

1

λ
(1 +M(t))µe−µtdt



ALTERNATING RENEWAL PROCESSES 377

=
1

λ

(

1 +

∫ ∞

0

M(t)µe−µtdt

)

=
1

λ

(

1 +

∫ ∞

0

e−µtdM(t)

)

=
1

λ

(

1 + M̃(µ)
)

=
1

λ

(

1 +
G̃(µ)

1 − G̃(µ)

)

=
1

λ(1 − G̃(µ))
.

Assuming G is aperiodic, we get

p1 = lim
t→∞

P(X(t) = 1) =
E(U1)

E(U1 +D1)
= ρ(1 − G̃(µ)),

where ρ = λ/µ. Hence

p0 = lim
t→∞

P(X(t) = 0) = 1 − ρ(1 − G̃(µ)).

Next we define a delayed ARP, along the same lines as in the definition of the

delayed RP.

Definition 8.8 Delayed Alternating Renewal Process. The stochastic process

{X(t), t ≥ 0} with state-space {0, 1} with Un being the nth up-time, and Dn the

nth down-time, is called a delayed alternating renewal process if {(Un, Dn), n ≥ 2}
is a sequence of iid bivariate random variables, and is independent of (U1, D1).

Thus a delayed ARP behaves like a standard ARP from the second cycle onward.

The main result about the delayed ARP is given in the next theorem.

Theorem 8.31 Distribution of Delayed ARP. Suppose {X(t), t ≥ 0} is a delayed

ARP that enters in state 1 at time S1 = U1 +D1. If P(S1 < ∞) = 1 and U2 +D2

is aperiodic with E(U2 +D2) <∞,

lim
t→∞

P(X(t) = 1) =
E(U2)

E(U2) + E(D2)
. (8.61)

If U1 +D1 and U2 +D2 both have a common period d, then the above limit holds if

t = nd and n→ ∞.

Proof: Let F be the cdf of S1. Conditioning on S1 we get

P(X(t) = 1) =

∫ t

0

H(t− u)dF (u),
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where H(t) is as defined in Theorem 8.30 for a standard ARP with sojourn times

{(Un, Dn), n ≥ 2}. Then from the proof of Theorems 8.26, we get

lim
t→∞

P(X(t) = 1) = lim
t→∞

H(t) =
E(U2)

E(U2) + E(D2)
.

Here we used the facts that F (∞) = 1, H(t) ≤ 1, and U2 +D2 is aperiodic.

This theorem says that the limiting behavior of a delayed ARP is not affected by

its behavior over the first cycle, as long as it terminates with probability 1. Finally,

one can prove the validity of Theorems 8.30 and 8.31 even if the sojourn in states 1

and 0 during one cycle are not contiguous intervals.

8.9 Semi-Markov Processes

In this section we study a class of stochastic processes obtained by relaxing the expo-

nential sojourn time assumption in the CTMCs. Specifically, we consider a stochastic

process {X(t), t ≥ 0} of Section 6.1 with a countable state-space S. It starts in the

initial state X0 at time t = 0. It stays there for a sojourn time Y1 and then jumps to

state X1. In general it stays in state Xn for a duration given by Yn+1 and then jumps

to state Xn+1, n ≥ 0. Let N(t) be the number of jumps up to time t. We assume

that the condition in Equation 6.1 on page 189 holds. Then {N(t), t ≥ 0} is well

defined, and the sequence {X0, (Xn, Yn), n ≥ 1} can be used to define the process

{X(t), t ≥ 0} by

X(t) = XN(t), t ≥ 0. (8.62)

In this chapter we study the case where {X(t), t ≥ 0} belongs to a particular class

of stochastic processes called the semi-Markov processes (SMP), as defined below.

Definition 8.9 Semi-Markov Process. The stochastic process {X(t), t ≥ 0} as

defined by Equation 8.62 is called an SMP if it has a countable state-space S, and

the sequence {X0, (Xn, Yn), n ≥ 1} satisfies

P(Xn+1 = j, Yn+1 ≤ y|Xn = i, Yn, Xn−1, Yn−1, · · · , X1, Y1, X0)

= P(X1 = j, Y1 ≤ y|X0 = i) = Gij(y), i, j ∈ S, n ≥ 0. (8.63)

Thus the semi-Markov process has Markov property at every jump epoch, hence

the name “semi”-Markov. In comparison, a CTMC has Markov property at every

time t. Note that unlike in the CTMCs, we allow pii > 0. Also, unlike in the CTMCs,

the variables Xn+1 and Yn+1 in an SMP are allowed to depend on each other.

Define the kernel of an SMP as the matrix

G(y) = [Gij(y)]i,j∈S , y ≥ 0.

An SMP is completely described by giving its kernel and the initial distribution

ai = P(X(0) = i), i ∈ S,



SEMI-MARKOV PROCESSES 379

if we further assume that the SMP enters state i with probability ai at time 0.

Clearly {Xn, n ≥ 0} is a DTMC (called the embedded DTMC in the SMP) with

transition probabilities

pij = Gij(∞) = P(Xn+1 = j|Xn = i), i, j ∈ S.

If there is a state i ∈ S for which Gij(y) = 0 for all j ∈ S and all y ≥ 0, then state

i must be absorbing . Hence we set pii = 1 in such a case. With this convention, we

see that
∑

j∈S

pij = 1, i ∈ S.

Next, let

Gi(y) =
∑

j∈S

Gij(y) = P(S1 ≤ y|X0 = i), i ∈ S, y ≥ 0.

Thus Gi is the cdf of the sojourn time in state i. We illustrate with several examples.

Example 8.25 Alternating Renewal Process. An ARP {X(t), t ≥ 0} is an SMP

if the sojourn time Un is independent of Dn. In this case the kernel is given by

G(y) =

[

0 P(Dn ≤ y)
P(Un ≤ y) 0

]

.

Example 8.26 CTMC as SMP. A CTMC {X(t), t ≥ 0} with generator matrix Q
is an SMP with kernel G(y) = [Gij(y)] with Gii(y) = 0 and

Gij(y) = (1 − e−qiy)pij , i 6= j,

where qi = −qii and pij = qij/qi for i 6= j. If qi = 0 we define pii = 1. Thus

in a CTMC the sojourn time in the current state and the state after the jump are

independent.

Example 8.27 Series System. Consider a system consisting of N components in

series, i.e., it needs all components in working order in order to function properly.

The life time of the ith component is exp(λi) random variable. At time 0 all the

components are up. As soon as any of the components fails, the system fails, and the

repair starts immediately. The repair time of the ith component is a non-negative ran-

dom variable with cdf Hi(·). Once repaired, a component is as good as new. When

the system is down, no more failures occur. LetX(t) = 0 if the system is functioning

at time t, and X(t) = i if component i is down (and hence under repair) at time t.
We shall show that {X(t), t ≥ 0} is an SMP and compute its kernel.

The state-space is {0, 1, 2, · · · , N}. Suppose the system is in state 0 at time t. Then

all components are up and the system state changes to i ∈ {1, 2, · · · , N} if the first
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item to fail is item i. Thus the sojourn time in state 0 is exp(λ) where

λ =

N
∑

i=1

λi,

and the next state is i with probability λi/λ. Once the system enters state i ∈
{1, 2, · · · , N}, repair starts on component i. Thus the sojourn time in this state has

cdf Hi, at the end of which the system jumps to state 0. Combining all these obser-

vations we see that {X(t), t ≥ 0} is an SMP with kernel

G(y) =















0 λ1

λ (1 − e−λy) λ2

λ (1 − e−λy) · · · λN

λ (1 − e−λy)
H1(y) 0 0 · · · 0
H2(y) 0 0 · · · 0

...
...

...
. . .

...

HN (y) 0 0 · · · 0















.

We had seen this system in Modeling Exercise 6.9 on page 260 where the repair-

times were assumed to be exponential random variables. Thus the CTMC there is a

special case of the SMP developed here.

Armed with these examples of SMPs we now study the limiting behavior of the

SMPs. We need the following preliminaries. Define

Tj = min{t ≥ Y1 : X(t) = j}, j ∈ S,

where Y1 is the first sojourn time. Thus if the SMP starts in state j, Tj is the first time

it returns to state j (after leaving it at time S1.) If it starts in a state i 6= j, then Tj is

the first time it enters state j. Now let

τi = E(Y1|X(0) = i), i ∈ S,

and

τij = E(Tj|X(0) = i), i, j ∈ S.

The next theorem shows how to compute the τij ’s. It also extends the concept of first

step analysis to SMPs.

Theorem 8.32 First Passage Times in SMPs. The mean first passage times {τij}
satisfy the following equations:

τij = τi +
∑

k 6=j

pikτkj . (8.64)

Proof: Follows along the same line as the derivation of Equation 6.49 on page 232,

and using τi in place of 1/qi as E(Y1|X(0) = i).

Theorem 8.33 Suppose the embedded DTMC {Xn, n ≥ 0} in an SMP {X(t), t ≥
0} has transition probability matrix P = [pij ] that is irreducible and recurrent. Let
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π be a positive solution to

π = πP.

Then

τjj =

∑

i∈S πiτi
πj

, j ∈ S. (8.65)

Proof: Follows along the same line as the derivation of Equation 6.50 on page 232,

and using τi in place of 1/qi as E(Y1|X(0) = i).

Next we introduce the concept of irreducibility and periodicity for SMPs.

Definition 8.10 An SMP {X(t), t ≥ 0} is said to be irreducible (and recurrent) if

its embedded DTMC is irreducible (and recurrent).

It follows from Theorem 8.33 that if the mean return time to any state j in an irre-

ducible recurrent SMP is finite, it is finite for all states in the SMP. Hence we can

make the following definition.

Definition 8.11 An irreducible SMP {X(t), t ≥ 0} is said to be positive recurrent

if the mean return time to state j is finite for any j ∈ S.

It follows from Theorem 8.33 that a necessary and sufficient condition for positive

recurrence of an irreducible recurrent SMP is
∑

i∈S

πiτi <∞,

where πi and τi are as in Theorem 8.33. Note that if the first return time is aperiodic

(periodic with period d) for any one state, it is aperiodic (periodic with period d) for

all states in an irreducible and recurrent SMP. This motivates the next definition.

Definition 8.12 An irreducible and recurrent SMP is called aperiodic if the first

passage time Ti, starting with X0 = i, is an aperiodic random variable for any state

i. If it is periodic with period d, the SMP is said to be periodic with period d.

With these preliminaries we can now state the main result about the limiting be-

havior of SMPs in the next theorem. Intuitively, we consider a (possibly delayed)

ARP associated with the SMP such that the ARP is in state 1 whenever the SMP is

in state j, and zero otherwise. The length of a cycle in this ARP is the time between

two consecutive visits by the SMP to state j, hence the expected length of the cycle is

τjj . During this cycle the SMP spends an expected time τj in state j. Hence the long

run fraction of the time spent in state j is given by τj/τjj , which gives the limiting

distribution of the SMP. Since the behavior in the first cycle does not matter (as long

as it is finite with probability 1), the same result holds no matter what state the SMP

starts in, as long as the second and the subsequent cycles are defined to start with an

entry into state j.
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Theorem 8.34 Limiting Behavior of SMPs. Let {X(t), t ≥ 0} be an irreducible,

positive recurrent and aperiodic SMP with kernel G. Let π be a positive solution to

π = πG(∞).

Then {X(t), t ≥ 0} has a limiting distribution [pj , j ∈ S], and it is given by

pj = lim
t→∞

P(X(t) = j|X(0) = i) =
πjτj

∑

k∈S πkτk
, j ∈ S. (8.66)

If the SMP is periodic with period d, then the above limit holds if t = nd and n→ ∞.

Proof: Fix a j ∈ S and define

Z(t) =

{

1 if X(t) = j,
0 if X(t) 6= j.

Let Sn be the nth entry into state j. The probabilistic structure of the SMP {X(t), t ≥
0} implies that {Z(t), t ≥ 0} is an ARP if X(0) = j, else it is a delayed ARP. In any

case consider the cycle [S1, S2). We have X(S1) = j. The sojourn time U2 of the

delayed ARP in state 1 has mean τj . Let D2 be the time spent by the delayed ARP in

state 0 in the second cycle. The second cycle ends as soon as the SMP re-enters state

j. Hence we have

E(U2 +D2) = E(S2 − S1) = E(Tj|X(0) = j) = τjj .

Suppose i ∈ S is such that Ti is aperiodic. Since the embedded chain is irreducible,

the SMP has a positive probability of visiting every state k ∈ S during (0, Tj) starting

from state j. This implies that every Tj must be aperiodic. Also, since Gi(∞) = 1
for all i, and the DTMC is recurrent, Tj < ∞ with probability 1 starting from any

state X(0) = i. Thus the hypothesis of Theorem 8.31 is satisfied. Hence

lim
t→∞

P(X(t) = j|X(0) = i) = lim
t→∞

P(Z(t) = 1)

=
E(U2)

E(U2) + E(D2)
=

τj
τjj

=
πjτj

∑

k∈S πkτk
,

where the last equality follows from Equation 8.65. This proves the theorem.

Equation 8.66 implies that the limiting distribution of the SMP depends on the

sojourn time distributions only through their means! This insensitivity of the lim-

iting distribution is very interesting and useful. It has generated a lot of literature

investigating similar insensitivity results in other contexts.

We illustrate with examples.

Example 8.28 Alternating Renewal Process. Let {X(t), t ≥ 0} be the ARP of

Example 8.25 with independentUn andDn. The embedded DTMC has the P matrix

given by

P = G(∞) =

[

0 1
1 0

]

.
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This is an irreducible recurrent matrix, and π = [1 1] satisfies π = πP . Hence

equation 8.66 yields

p0 =
E(D1)

E(U1) + E(D1)
, p1 =

E(U1)

E(U1) + E(D1)
.

This matches with Equation 8.59, although that equation was derived without assum-

ing independence of Un and Dn.

Example 8.29 CTMC as SMP. Let {X(t), t ≥ 0} be an irreducible positive re-

current CTMC on state-space S with generator matrix Q. Then it has a limiting

distribution p = [pj, j ∈ S] that is given by the unique solution to

pQ = 0,
∑

i∈S

pi = 1.

We saw in Example 8.26 {X(t), t ≥ 0} is an SMP with an embedded DTMC with

transition probability matrix P = [pij ] where pij = qij/qi if i 6= j, pii = 0, and

qi = −qii. Let π be the solution to π = πP . From Theorem 6.26 on page 241 we

have

pj =
πj/qj

∑

i∈S πi/qi
, j ∈ S.

This is same as Equation 8.66 since the expected sojourn time in state i is given

by τi = 1/qi. Thus the theory of SMP produces consistent results when applied to

CTMCs.

Example 8.30 Series System. Compute the limiting distribution of the series sys-

tem of Example 8.27.

The embedded DTMC has transition probability matrix given by

P = G(∞) =















0 λ1

λ
λ2

λ · · · λN

λ
1 0 0 · · · 0
1 0 0 · · · 0
...

...
...

. . .
...

1 0 0 · · · 0















.

A solution to π = πP is given by

π0 = λ, πi = λi, 1 ≤ i ≤ N.

Let ri be the mean repair time of component i. Then we have

τ0 = 1/λ, τi = ri, 1 ≤ i ≤ N.

Using Equation 8.66 we get

p0 =
π0τ0

∑N
i=0 πiτi

=
1

1 +
∑N

i=0 λiri
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and

pj =
πjτj

∑N
i=0 πiτi

=
λjrj

1 +
∑N

i=0 λiri
, 1 ≤ j ≤ N.

Unlike in the study of CTMCs, the study of the limiting distribution of the SMPs

cannot stop at the limiting distribution of X(t) as t → ∞, since knowing the value

of X(t) at time t is, in general, not enough to determine the future of an SMP. We

also need to know the distribution of the remaining sojourn time at that time. We will

have to wait for the theory of Markov regenerative processes in the next chapter to

settle this question completely.

8.10 Renewal Processes with Costs/Rewards

We studied cost/reward models for the DTMCs in Section 4.8 and for the CTMCs in

Section 6.12. Following that tradition we now study cost/reward models associated

with RPs.

Let {N(t), t ≥ 0} be a standard RP generated by an iid sequence {Xn, n ≥ 0}.

We think of Xn as the length of the nth cycle between renewals. Suppose a reward

Rn is earned at the end of the nth cycle, i.e., at time Sn = X1 + · · · +Xn. Define

Z(t) to be the total reward earned up to time t, i.e.,

Z(t) =

N(t)
∑

n=1

Rn, t ≥ 0. (8.67)

Note that R(t) = 0 if N(t) = 0. With this notation we are ready to define a renewal

reward process.

Definition 8.13 Renewal Reward Process. The stochastic process {Z(t), t ≥ 0}
defined by Equation 8.67 is called a renewal reward process if {(Xn, Rn), n ≥ 1} is

a sequence of iid bivariate random variables.

We say that the process {Z(t), t ≥ 0} is generated by {(Xn, Rn), n ≥ 1}. Note

that Xn is a non-negative random variable, representing the length of the nth cycle,

butRn can be positive or negative. Thus the sample paths of a renewal reward process

may go up or down, as shown in Figure 8.9. We illustrate with several examples.

Example 8.31 RP as a Renewal Reward Process. Suppose Rn = 1 for n ≥ 1
Then Z(t) = N(t). Thus an RP is a special case of a renewal reward process.

Example 8.32 CPP as a Renewal Reward Process. Let {Z(t), t ≥ 0} be a CPP

with batch arrival rate λ and P(Batch Size = k) = ak, k ≥ 1. Then {Z(t), t ≥ 0} is

a renewal reward process where {Rn, n ≥ 1} is a sequence of iid random variables

with common pmf [ak, k ≥ 1]. It is independent of {Xn, n ≥ 1}, which is a sequence

of iid exp(λ) random variables.
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t
X1 X2

R1

R2

Z(t)

Figure 8.9 A typical sample path of a renewal reward process.

Example 8.33 Machine Maintenance. Consider the age replacement policy de-

scribed in Example 8.4, where we replace a machine upon failure or upon reaching

age T . Recall that Li is the lifetime of the ith machine and {Li, i ≥ 1} is a sequence

of iid non-negative random variables. Replacing a machine by a new one costs $Cr,

and failure costs $Cf . Let Z(t) be the total cost incurred up to time t. Show that

{Z(t), t ≥ 0} is a renewal reward process.

Let Sn be the time when nth replacement occurs (S0 = 0), and N(t) be the

number of replacements up to time t. Then

Sn − Sn−1 = Xn = min(Ln, T ).

Thus {Xn, n ≥ 1} is a sequence of iid random variables, and {N(t), t ≥ 0} is an

RP generated by it. The cost Rn, incurred at time Sn, is given by

Rn =

{

Cr if Ln > T,
Cf + Cr if Ln ≤ T.

Here we have implicitly assumed that if Ln = T , then we pay for the failure and

then replace the machine. With the above expression for the cost Rn, we see that

{(Xn, Rn), n ≥ 1} is a sequence of iid bivariate random variables. It is clear that

{Z(t), t ≥ 0} is generated by {(Xn, Rn), n ≥ 1}, and hence it is a renewal reward

process.

Computing the distribution of Z(t) is rather difficult. Hence we study its asymp-

totic properties as t→ ∞.

Theorem 8.35 Almost-Sure ERT for Renewal Reward Processes. Let {Z(t), t ≥
0} be a renewal reward process generated by {(Xn, Rn), n ≥ 1}, and suppose

r = E(Rn) <∞, τ = E(Xn) <∞.
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Then

lim
t→∞

Z(t)

t
=
r

τ
, w.p.1. (8.68)

Proof: Using Equation 8.67, we get

Z(t)

t
=

∑N(t)
n=1 Rn

N(t)
· N(t)

t
.

Since N(t) → ∞ with probability 1, we can use the strong law of large numbers to

get

lim
t→∞

∑N(t)
n=1 Rn

N(t)
= r, w.p.1.

Furthermore, Theorem 8.6 yields

N(t)

t
→ 1

τ
, w.p.1.

Combining these two assertions we get Equation 8.68.

Next we derive the expected value version of the above result, i.e., limE(Z(t))/t =
r/τ. As in the case of the elementary renewal theorem, this conclusion does not fol-

low from Theorem 8.35, and has to be established independently. We need two results

before we can prove this.

Theorem 8.36 Suppose the hypothesis of Theorem 8.35 holds. Then

E





N(t)+1
∑

n=1

Rn



 = r(M(t) + 1), (8.69)

where M(t) = E(N(t)).

Proof: Let

H(t) = E





N(t)+1
∑

n=1

Rn



 .

Using the renewal argument we get

E





N(t)+1
∑

n=1

Rn

∣

∣

∣

∣

∣

X1 = u



 =

{

E(R1|X1 = u) if u > t,
E(R1|X1 = u) +H(t− u) if u ≤ t.

Hence, using G(u) = P(Xn ≤ u), we get

H(t) =

∫ ∞

0

E(R1|X1 = u)dG(u) +

∫ t

0

H(t− u)dG(u)

= r +

∫ t

0

H(t− u)dG(u).
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Solving this renewal type equation by using Equation 8.26, we get

H(t) = r +

∫ t

0

rdM(u) = r(1 +M(t)).

This proves the theorem.

Theorem 8.37 Suppose the hypothesis of Theorem 8.35 holds. Then

lim
t→∞

E(RN(t)+1)

t
= 0. (8.70)

Proof: Note that RN(t)+1 depends upon XN(t)+1, which has a different distribu-

tion than X1 as we had seen in our study of total life process in Section 8.6. Thus

E(RN(t)+1) 6= E(R1), and hence this theorem does not follow trivially. We prove it

by deriving a renewal equation for

H(t) = E(RN(t)+1).

Using the renewal argument we get

E(RN(t)+1|X1 = u) =

{

E(R1|X1 = u) if u > t,
H(t− u) if u ≤ t.

Hence, using G(u) = P(Xn ≤ u), we get

H(t) = D(t) +

∫ t

0

H(t− u)dG(u),

where

D(t) =

∫ ∞

t

E(R1|X1 = u)dG(u).

Now

|D(t)| = |
∫ ∞

t

E(R1|X1 = u)dG(u)| ≤
∫ ∞

t

|E(R1|X1 = u)|dG(u)

≤
∫ ∞

0

|E(R1|X1 = u)|dG(u) ≤ E(|R1|) <∞. (8.71)

Hence Theorem 8.15 yields

H(t) = D(t) +

∫ ∞

0

D(t− u)dM(u).

Also, Equation 8.71 implies that |D(t)| → 0 as t → ∞. Hence, for a given ǫ > 0,

there exists a T <∞ such that |D(t)| < ǫ for t ≥ T . Then, for all t ≥ T , we have

H(t)

t
=

D(t)

t
+

∫ t−T

0

D(t− u)

t
dM(u) +

∫ t

t−T

D(t− u)

t
dM(u)

≤ ǫ

t
+ ǫ

M(t− T )

t
+ E(|R1|)

M(t) −M(t− T )

t
.
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Now, as t→ ∞, M(t) −M(t− T ) → T/τ . Hence we get

lim
t→∞

H(t)

t
≤ lim

t→∞
ǫ

t
+ ǫ lim

t→∞
M(t− T )

t
+ lim

t→∞
E(|R1|)

M(t) −M(t− T )

t
=
ǫ

τ
,

since the first and the third limit on the right hand are zero, and the second limit is

1/τ from the elementary renewal theorem. Since ǫ > 0 was arbitrary, we get Equa-

tion 8.70.

Now we are ready to prove the next theorem.

Theorem 8.38 ERT for Renewal Reward Processes. Suppose the hypothesis of

Theorem 8.35 holds. Then

lim
t→∞

E(Z(t))

t
=
r

τ
. (8.72)

Proof: Write

Z(t) =

N(t)+1
∑

n=1

Rn −RN(t)+1.

Hence

E(Z(t))

t
=

E

(

∑N(t)+1
n=1 Rn

)

t
− RN(t)+1

t

= r
1 +M(t)

t
− RN(t)+1

t
,

where we have used Theorem 8.36. Now let t → ∞. Theorem 8.37 and the elemen-

tary renewal theorem yield

lim
t→∞

E(Z(t))

t
=
r

τ

as desired.

The above theorem is very intuitive and useful: it says that the long run expected

rate of reward is simply the ratio of the expected reward in one cycle and the expected

length of that cycle. What is surprising is that the reward does not have to be inde-

pendent of the cycle length. This is what makes theorem so useful in applications.

We end this section with two examples.

Example 8.34 Machine Maintenance. Compute the long run expected cost per

unit time of the age replacement policy described in the machine maintenance model

of Example 8.33.

Suppose the lifetimes {Li, i ≥ 1} are iid random variables with common cdf F (·).
Then we have

τ = E(Xn) = E(min(Ln, T )) =

∫ T

0

(1 − F (u))du.
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r = E(Rn) = Cr + CfF (T ).

Hence the long run cost rate is given by

lim
t→∞

E(Z(t))

t
=
r

τ
=

Cr + CfF (T )
∫ T
0 (1 − F (u))du

.

Clearly, as T increases, the cost rate of the planned replacements decreases, but the

cost rate of the failures increases. Hence one would expect that there is an optimal

T which minimizes the total cost rate. The actual optimal value of T depends upon

Cr, Cf and F . For example, if Ln ∼ exp(λ), we get

lim
t→∞

E(Z(t))

t
= λCf +

λCr

1 − e−λT
.

This is a monotonically decreasing function of T , implying that the optimal T is

infinity, i.e., the machine should be replaced only upon failure. In retrospect, this is

to be expected, since a machine with exp(λ) life time is always as good as new!

In our study of renewal reward processes, we have assumed that the reward Rn is

earned at the end of the nth cycle. This is not necessary. The results of this section

remain valid no matter how the reward is earned over the cycle as long as the total

reward earned over the nth cycle is Rn and {(Xn, Rn), n ≥ 1} is a sequence of iid

bivariate random variables. We use this fact in the next example.

Example 8.35 Total Up-Time. Let {X(t), t ≥ 0} be the ARP as defined in Sec-

tion 8.8. Let W (t) be the total time spent in state 1 by the ARP up to time t. Show

that

lim
t→∞

W (t)

t
=

E(U1)

E(U1) + E(D1)
.

{W (t), t ≥ 0} can be seen to be a renewal reward process with Un+Dn as the nth

cycle duration and Un as the reward earned over the nth cycle. Note that the reward

is earned continuously at rate X(t) during the cycle. Thus,

τ = E(U1 +D1), r = E(U1).

Hence the result follows from Theorem 8.38.

The results of this section remain valid for “delayed” renewal reward processes,

i.e., when {(Xn, Rn), n ≥ 2} is a sequence of iid bivariate random variables, and is

independent of (X1, R1). We shall omit the proofs.

Theorems 8.35 and 8.38 deal with what we had earlier called the “average cost

case.” It is possible to study the “discounted cost” case as well. The results are left as

Computational Exercise 8.49.
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8.11 Regenerative Processes

We study a class of stochastic processes {X(t), t ≥ 0} called “regenerative pro-

cesses” in this section. Intuitively, a regenerative process has “regeneration points”

{Sn, n ≥ 1}, so that the probabilistic behavior of the stochastic process during the

nth cycle, i.e., {X(t), Sn−1 ≤ t < Sn}, is the same for each n ≥ 1, and independent

from cycle to cycle. This idea is made precise in the following definition.

Definition 8.14 Regenerative Process. A stochastic process {X(t), t ≥ 0} is

called a regenerative process (RGP) if there exists a non-negative random variable

S1 so that

1. P(S1 = 0) < 1, P(S1 <∞) = 1,

2. {X(t), t ≥ 0} and {X(t+ S1), t ≥ 0} are stochastically identical, and

3. {X(t+ S1), t ≥ 0} is independent of {X(t), 0 ≤ t < S1}.

The above definition has several important implications. Existence of S1 implies

the existence of an infinite sequence of increasing random variables {Sn, n ≥ 1}
so that {X(t), t ≥ 0} and {X(t + Sn), t ≥ 0} are stochastically identical, and

{X(t+Sn), t ≥ 0} is independent of {X(t), 0 ≤ t < Sn}. We say that Sn is the nth

regeneration epoch, since the stochastic process loses all its memory and starts afresh

at times Sn. The interval [Sn−1, Sn) is called the nth regenerative cycle (S0 = 0).

The probabilistic behavior of the RGP over consecutive regenerative cycles is inde-

pendent and identical. In particular, {X(Sn), n ≥ 0} are iid random variables .

Definition 8.15 Delayed Regenerative Process. A stochastic process {X(t), t ≥
0} is called a delayed RGP if there exists a non-negative random variable S1 so that

1. P(S1 <∞) = 1,

2. {X(t+ S1), t ≥ 0} is independent of {X(t), 0 ≤ t < S1}, and

3. {X(t+ S1), t ≥ 0} is a regenerative process.

Thus for a delayed RGP we get a sequence of regenerative epochs {Sn, n ≥ 0}
(S0 = 0). The behavior of the process over different regenerative cycles is indepen-

dent. However, the behavior of the first cycle may be different than the behavior of

the later cycles. We now give several examples of RGPs.

Example 8.36 Alternating Renewal Process. Consider an ARP {X(t), t ≥ 0}
generated by the bivariate sequence {(Un, Dn), n ≥ 1} with U1 + D1 < ∞ with

probability 1. It is an RGP with regenerative epochs

Sn =
n
∑

i=1

(Ui +Di), n ≥ 1,

since every time the process enters state 1, it regenerates. If {X(t), t ≥ 0} is a

delayed ARP, it is a delayed RGP.
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Example 8.37 Recurrence Times. The renewal process {N(t), t ≥ 0} with re-

newal sequence {Sn, n ≥ 1} is not an RGP. However the age process {A(t), t ≥ 0}
and the excess life process {B(t), t ≥ 0} are RGPs with regenerative epochs

{Sn, n ≥ 1}. If {N(t), t ≥ 0} is a delayed RP, then {A(t), t ≥ 0} and {B(t), t ≥ 0}
are delayed RGPs.

Example 8.38 CTMCs as RGPs. Let {X(t), t ≥ 0} be an irreducible recurrent

CTMC with X(0) = 0. Let Sn be the nth entry into state 0. The Markov property

of the CTMC implies that it regenerates at Sn, for n ≥ 1. Hence it is an RGP with

regeneration epochs {Sn, n ≥ 1}. If X(0) 6= 0, then it is a delayed RGP with this

sequence of regenerative epochs. Now suppose Sn is the time of nth entry into a set

of states {0, 1, · · · , k}. Are {Sn, n ≥ 1} the regenerative epochs of {X(t), t ≥ 0}?

Example 8.39 SMPs as RGPs. Let {X(t), t ≥ 0} be an SMP as defined in Sec-

tion 8.9. Suppose it has entered state 0 at time 0. Let Sn be the nth entry into state 0.

The Markov property of the SMP at all points of transition implies that it is an RGP

that regenerates at Sn, for n ≥ 1. If X(0) 6= 0, then it is a delayed RGP with this

sequence of regenerative epochs.

Example 8.40 GI/GI/1 Queue. LetX(t) be the number of customers in aGI/GI
/1 queue. Let Sn be the nth time when a customer enters an empty system. From

the independence of the inter-arrival times and the service times, it follows that the

system loses dependence on the history at times S1, S2, S3, · · ·. A sufficient condition

for P(S1 < ∞) = 1 is that the mean service time be less than the mean inter-

arrival time. If the process starts with a customer entering an empty system at time

0, {X(t), t ≥ 0} is an RGP, otherwise it is a delayed RGP.

Next we study the limiting behavior of the RGPs. The main result is given in the

next theorem.

Theorem 8.39 Limiting Distribution for RGP. Let {X(t), t ≥ 0} be an RGP with

state-space (−∞,∞) with right continuous sample paths with left limits. Let S1 be

the first regeneration epoch and U1(x) be the time that the process spends in the

interval (−∞, x] during [0, S1). If S1 is aperiodic with E(S1) <∞,

F (x) = lim
t→∞

P(X(t) ≤ x) =
E(U1(x))

E(S1)
. (8.73)

If S1 is periodic with period d, the above limit holds if t = nd and n→ ∞.

Proof: Fix an x ∈ (−∞,∞), and define H(t) = P(X(t) ≤ x). Since the process

regenerates at time S1, we have

P(X(t) ≤ x|S1 = u) =

{

H(t− u) if u ≤ t,
P(X(t) ≤ x|S1 = u) if u > t.
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Using G(u) = P(S1 ≤ u), we get

H(t) =

∫ ∞

0

P(X(t) ≤ x|S1 = u)dG(u)

= D(t) +

∫ t

0

H(t− u)dG(u), (8.74)

where

D(t) = P(X(t) ≤ x, S1 > t).

It can be shown that the assumptions about the sample paths ensure thatD(·) satisfies

the conditions in KRT (Theorem 8.17). Now define

Z(t) =

{

1 if X(t) ≤ x,
0 if X(t) > x.

Then we have

E(U1(x)) = E

(∫ S1

0

Z(t)dt

)

=

∫ ∞

0

E

(∫ u

0

Z(t)dt

∣

∣

∣

∣

S1 = u

)

dG(u)

=

∫ ∞

0

∫ u

0

E(Z(t)|S1 = u)dtdG(u)

=

∫ ∞

0

∫ u

0

P(X(t) ≤ x|S1 = u)dtdG(u)

=

∫ ∞

0

∫ ∞

t

P(X(t) ≤ x|S1 = u)dG(u)dt

=

∫ ∞

0

P(X(t) ≤ x, S1 > t)dt.

Using the KRT we get

lim
t→∞

P(X(t) ≤ x) = lim
t→∞

H(t) =
1

E(S1)

∫ ∞

0

D(t)dt

=
1

E(S1)

∫ ∞

0

P(X(t) ≤ x, S1 > t)dt =
E(U1(x))

E(S1)
.

This proves the theorem.

Several observations about the above theorem are in order. Let U1(∞) =
limx→∞U1(x). Since the state-space of the RGP is (−∞,∞) and S1 < ∞ with

probability 1, we have U1(∞) = S1 and E(U1(∞)) = E(S1). This implies

F (∞) = lim
t→∞

P(X(t) <∞) =
E(U1(∞))

E(S1)
= 1.

Thus the RGP satisfying the hypothesis of the above theorem has a proper limiting

distribution.
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If the state-space of the RGP is discrete, say {0, 1, 2 · · ·}, we can define U1,j as

the time the RGP spends in state j over the first regenerative cycle. In that case the

above theorem implies that the RGP has a proper limiting pmf given by

pj = lim
t→∞

P(X(t) = j) =
E(U1,j)

E(S1)
. (8.75)

Finally, Theorem 8.39 continues to hold if {X(t), t ≥ 0} is a delayed RGP, ex-

cept we now use the second cycle to do the computation. Thus, for a delayed RGP

satisfying the hypothesis of Theorem 8.39, we have

lim
t→∞

P(X(t) ≤ x) =
U2(x)

E(S2 − S1)
. (8.76)

We illustrate with an example.

Example 8.41 Suppose a coin is tossed repeatedly and independently with p =
P(H), and q = 1 − p = P(T ) on any one toss. What is the expected number of

tosses needed to observe the sequence HHTT?

Let Yn be the outcome of the nth toss. Let X0 = 1 and for n ≥ 1 define

Xn =

{

1 if Yn = H,Yn+1 = H,Yn+2 = T, Yn+3 = T,
0 otherwise.

Let S0 = 0 and define Sk+1 = min{n > Sk : Xn = 1}, for k ≥ 0. Note that since

the coin tosses are iid, {Sk+1 − Sk, k ≥ 1} are iid and have the same distribution

as S1 + 3. Let X(t) = X[t], where [t] is the largest integer less than or equal to t.
Thus {X(t), t ≥ 0} is a periodic delayed RGP with period 1, and {Sk, k ≥ 1} are

the regeneration epochs. During each regenerative cycle it spends 1 unit of time in

state 1. Hence

lim
n→∞

P(X(n) = 1) = lim
n→∞

P(Xn = 1) =
1

E(S2 − S1)
.

However we know that

P(Xn = 1) = P(Yn = H,Yn+1 = H,Yn+2 = T, Yn+3 = T ) = p2q2.

Hence

E(S2 − S1) = E(S1 + 3) =
1

p2q2
.

Since the number of tosses needed to observe HHTT is S1 + 3, we see that the

expected number of tosses needed to observe HHTT is 1/p2q2. Will this method

work for the sequence HTTH?

8.11.1 RGPs with Costs/Rewards

We next consider the cost/reward models in RGPs. Let X(t) be the state of a system

at time t, and assume that {X(t), t ≥ 0} is a regenerative process. Suppose the
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system earns rewards at rate r(x) whenever it is in state x. Then the total reward

obtained by the system up to time t is given by
∫ t

0

r(X(u))du,

and the reward rate up to time t is given by

1

t

∫ t

0

r(X(u))du.

The next theorem gives the limiting behavior of the reward rate as t→ ∞.

Theorem 8.40 Reward Rates in RGPs. Let {X(t), t ≥ 0} be a regenerative pro-

cess on S : (−∞,∞) with proper limiting distribution F (·). Let r : S → (−∞,∞)
be bounded from either above or below. Then

1. limt→∞
1
t

∫ t

0 r(X(u))du =
∫∞
−∞ r(u)dF (u), w.p. 1,

2. limt→∞
1
t E

(

∫ t
0 r(X(u))du

)

=
∫∞
−∞ r(u)dF (u).

Proof: Let {Sn, n ≥ 1} (with S0 = 0) be a sequence of regenerative epochs in

{X(t), t ≥ 0}. Now define

Z(t) =

∫ t

0

r(X(u))du

and

Rn =

∫ Sn

Sn−1

r(X(u))du, n ≥ 1.

Since {(Sn − Sn−1, Rn), n ≥ 1} is a sequence of iid bivariate random variables, we

see that {Z(t), t ≥ 0} is a renewal reward process. From Theorems 8.35 and 8.38

we get

lim
t→∞

1

t

∫ t

0

r(X(u))du =
E(R1)

E(S1)
, w.p. 1

and

lim
t→∞

1

t
E

(∫ t

0

r(X(u))du

)

=
E(R1)

E(S1)
.

Now, from Theorem 8.39, we see that the time spent in the infinitesimal interval

(x, x + dx] by the system over the first regenerative cycle is given by E(S1)dF (x).
Then

E(R1) = E

(
∫ S1

0

r(X(u))du

)

=

∫ ∞

−∞
r(x)E(S1)dF (x).

Hence
E(R1)

E(S1)
=

∫ ∞

−∞
r(x)dF (x).

Thus the theorem follows.
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If the state-space of the RGP is discrete, say {0, 1, 2 · · ·}, and the limiting pmf of

the RGP is given by {pj, j ≥ 0} as in Equation 8.75, the long run reward rate in

Theorem 8.40 reduces to ∞
∑

j=0

r(j)pj . (8.77)

We illustrate the above theorem with an example below.

Example 8.42 Optimal Clearing. Suppose a manufacturing facility produces fin-

ished good one at a time according to a renewal process with mean production time

τ < ∞ per item and stores them in a warehouse. As soon as there are k items in

the warehouse we clear it by shipping them to the retailers. The clearing is instan-

taneous. It costs $h to hold an item in the warhouse per unit time, and it costs $c to

clear the warehouse. What is optimal value of k that minimizes the long run holding

plus clearing cost per unit time?

Let X(t) be the number of items in the warehouse at time t. Suppose X(0) = 0
and Sn be the time of the nth clearing time of the warehouse. It is obvious that

{X(t), t ≥ 0} is a regenerative process on state-space {0, 1, · · · , k − 1} with regen-

eration epochs {Sn, n ≥ 1}. A typical sample path of the {X(t), t ≥ 0} process is

shown in Figure 8.10. We see that

P(S1 <∞) = 1, E(S1) = kτ.

S2

t
S1

1

2

3

4

Z(t)

Figure 8.10 A typical sample path of a regenerative process.

Hence, from Equation 8.75 we get

pj = lim
t→∞

P(X(t) = j) =
E(U1,j)

E(S1)
=

τ

kτ
=

1

k
, 0 ≤ j ≤ k − 1.

We computeCh, the long run expected holding costs per unit time first. The system

incurs waiting costs at a rate jh per unit time if there are j items in the warehouse.

We can use Equation 8.77 to get

Ch =

k−1
∑

j=0

jhpj =
h

k

k−1
∑

j=0

j =
1

2
h(k − 1).
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To compute Cc, the long run clearing cost per unit time, we use Theorem 8.38 for

the renewal reward processes to get

Cc =
c

kτ
.

Thus the C(k), the long run total cost per unit time is given by

C(k) =
1

2
h(k − 1) +

c

kτ
.

This is a convex function of k and is minimized at

k∗ =

√

2c

hτ
.

Since k∗ must be an integer we check the two integers near the above solution to see

which is optimal.

8.11.2 Little’s Law

We gave a sample path proof of Little’s Law as given in Theorem 7.5 on page 291.

Here we give an alternate proof under the assumption that the queueing system is

described by an RGP {X(t), t ≥ 0}, where X(t) is the number of customers in the

system at time t.

Theorem 8.41 Little’s Law for RGPs. Suppose {X(t), t ≥ 0} is an RGP on

{0, 1, 2, · · ·} with regeneration epochs {Sn, n ≥ 1} where Sn is the nth time it jumps

from state 0 to 1 (i.e., a customer enters an empty system). Suppose E(S1) <∞. Then

the limits L, λ, and W be as defined by Equations 7.12, 7.13, and 7.14 on page 291,

exist and are related by

L = λW.

Proof: Let N be the number of customers who enter the system over [0, S1). Thus

it includes the arrival at time 0, but not the one at time S1. By the definition of S1,

the number of departures up to time S1 is also N . Then using the renewal reward

theorem (Theorem 8.38) we see that the limits L, λ, and W exist, and are given by

L = E

(∫ S1

0

X(u)du

)

/E(S1), (8.78)

λ = E(N)/E(S1), (8.79)

W = E

(

N
∑

n=1

Wn

)

/E(N). (8.80)

Now define

In(t) =

{

1 if the nth customer is in the system at time t,
0 otherwise.
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Then for 1 ≤ n ≤ N we have

Wn =

∫ S1

0

In(t)dt,

since these customers depart by time S1. Also, for 0 ≤ t < S1, we have

X(t) =

N
∑

n=1

In(t),

since the right hand side simply counts the number of customers in the system at time

t. Combining these equations we get

N
∑

n=1

Wn =

N
∑

n=1

∫ S1

0

In(t)dt =

∫ S1

0

N
∑

n=1

In(t)dt =

∫ S1

0

X(t)dt.

Substituting in Equation 8.78 we get

L = E

(
∫ S1

0

X(u)du

)

/E(S1)

= E

(

N
∑

n=1

Wn

)

/E(S1)

=
E(N)

E(S1)
·

(

∑N
n=1Wn

)

E(S1)

= λW

as desired.

We end this chapter with the observation that the difficulty in using Theorem 8.39

as a computational tool is in the computation of E(U1(x)) and E(S1). This is gen-

erally the result of the fact that the sample paths of the RGP over [0, S1) can be

quite complicated with multiple visits to the interval (−∞, x]. In the next chapter we

shall study the Markov RGPs, which alleviate this problem by using “smaller” S1,

but in the process giving up the assumption that the system loses dependence on the

history completely at time S1. This leads to a richer structure and a more powerful

computational tool. So we march on to Markov RGPs!

8.12 Computational Exercises

8.1 Consider an M/M/1/K queue that is full at time 0. Let S0 = 0, and Sn be

the arrival time of the nth customer who sees the system full upon arrival. Show that

{Sn, n ≥ 1} is a renewal sequence. What does the corresponding RP count? Do the

same analysis for the M/G/1/K and the G/M/1/K queue.
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8.2 Consider a birth and death process on S = {· · · ,−2,−1, 0, 1, 2, · · ·} with λn =
λ and µn = µ for all n ∈ S. Let Sn be the time of the nth downward jump. Show

that {Sn, n ≥ 1} is a renewal sequence. What is the corresponding RP?

8.3 Consider the RP of Computational Exercise 8.2. Is this renewal process transient

or recurrent?

8.4 Let X(t) be the number of customers at time t in a G/G/1 queue with iid inter-

arrival times and iid service times. Suppose at time 0 a customer enters an empty

system and starts service. Find an embedded renewal sequence in {X(t), t ≥ 0}.

8.5 Let {N(t), t ≥ 0} be an RP with iid inter-renewal times with common pdf

g(t) = λ2te−λt, t ≥ 0.

Compute P(N(t) = k) for k = 0, 1, 2, · · ·.

8.6 Let {N(t), t ≥ 0} be an RP with integer valued inter-renewal times with com-

mon pmf

P(Xn = 0) = 1 − α, P(Xn = 1) = α, n ≥ 1,

where 0 < α < 1. Compute P(N(t) = k) for k = 0, 1, 2, · · ·.

8.7 Let {N(t), t ≥ 0} be an RP with common inter-renewal time pmf

P(Xn = i) = αi−1(1 − α), i ≥ 1,

where 0 < α < 1. Compute P(N(t) = k) for k = 0, 1, 2, · · ·.

8.8 Let {N(t), t ≥ 0} be an RP with common inter-renewal time pmf

P(Xn = 1) = .8, P(Xn = 2) = .2, n ≥ 1.

Compute P(N(t) = k) for k = 0, 1, 2, · · ·.

8.9 Let {N(t), t ≥ 0} be an RP with common inter-renewal time pmf

P(Xn = 0) = .2, P(Xn = 1) = .3, P(Xn = 2) = .5, n ≥ 1.

Compute P(N(t) = k) for k = 0, 1, 2, · · ·.

8.10 Let {N(t), t ≥ 0} be an RP with common inter-renewal time pdf

g(t) = rλ1e
−λ1t + (1 − r)λ2e

−λ2t, t ≥ 0.

Compute the LST p̃k(s) of pk(t) = P(N(t) = k) for k = 0, 1, 2, · · ·. Compute p0(t)
and p1(t).

8.11 Consider the machine maintenance problem of Example 8.4. Suppose the ma-

chine lifetimes (in years) are iid U(2, 5), and they are replaced upon failure or upon

reaching age 3. Compute

1. the long run rate of replacements,
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2. the long run rate of planned replacements,

3. the long run rate of failures.

8.12 In Computational Exercise 8.11 compute the asymptotic distribution of the

number of replacements.

8.13 Let {Yn, n ≥ 0} be a DTMC on {0, 1} with the following transition probabil-

ity matrix
[

α 1 − α
1 − β β

]

.

Analyze the asymptotic behavior of N(n) = number of visits to state 0 during {1, 2
, · · · , n}, assuming that Y0 = 0.

8.14 Let {Y (t), t ≥ 0} be a DTMC on {0, 1} with the following generator matrix
[

−λ λ
µ −µ

]

.

Analyze the asymptotic behavior of N(t) = number of visits to state 0 during (0, t],
assuming that Y (0) = 0.

8.15 Compute the renewal function for the RP in Computational Exercise 8.10.

8.16 Compute the renewal function for the RP in Computational Exercise 8.8.

8.17 Compute the renewal function for the RP in Computational Exercise 8.14.

8.18 Derive a renewal type equation for E(SN(t)+k), k ≥ 1, and solve it.

8.19 Compute M ∗(t) = E(N ∗(t)) in terms of M(t) = E(N(t)), where N ∗(t) and

N(t) are as defined in Conceptual Exercise 8.2.

8.20 Let Mi(t) = E(Ni(t)) (i = 1, 2) where Ni(t) is as defined in Conceptual

Exercise 8.3. Compute M̃i(s) in terms of G̃(s) for i = 1, 2.

8.21 Compute the renewal type equation for P(A(t) ≤ x), where A(t) is the age at

time t in an RP. Show that the KRT is applicable and compute the limiting distribution

of A(t) as t→ ∞, assuming that the RP is aperiodic.

8.22 Compute the renewal type equation for E(A(t)B(t)), whereA(t) (B(t)) is the

age (excess-life) at time t in an RP. Show that the KRT is applicable and compute the

limiting value of E(A(t)B(t)) as t → ∞, assuming that the RP is aperiodic. Using

this compute the limiting covariance of A(t) and B(t) as t→ ∞.

8.23 Derive an integral equation for P(N(t) is odd) for an RP {N(t), t ≥ 0} by

conditioning on the first renewal time. Is this a renewal type equation? Solve it ex-

plicitly when the RP is PP(λ).
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8.24 Consider the two-state CTMC of Computational Exercise 8.14. Let W (t) be

the time spent by this process in state 0 during (0, t]. Derive a renewal type equation

for E(W (t)), and solve it using the transform method.

8.25 Let {N(t), t ≥ 0} be an RP with inter-renewal time distribution G. Using the

renewal argument derive the following renewal type equation for Mk(t) = E(N(t)
(N(t) − 1) · · · (N(t) − k + 1)), (k ≥ 1), with M0(t) = 1, and M1(t) = M(t):

Mk(t) = k

∫ t

0

Mk−1(t− u)dG(u) +

∫ t

0

Mk(t− u)dG(u).

Hence derive an expression for M̃k(s) in terms of G̃(s).

8.26 Compute the renewal type equation for E(A(t)k), where A(t) is the age at

time t in an RP. Assume that the inter-renewal times are aperiodic with finite (k +
1)st moment. Show that the KRT is applicable and compute the limiting value of

E(A(t)k) as t→ ∞.

8.27 Compute the renewal type equation for E(C(t)k), where C(t) is the total life

at time t in an RP. Assume that the inter-renewal times are aperiodic with finite

(k + 1)st moment. Show that the KRT is applicable and compute the limiting value

of E(C(t)k) as t→ ∞.

8.28 Compute the renewal type equation for E(A(t)kC(t)m), whereA(t) is the age

and C(t) is the total life at time t in an RP. Assume that the inter-renewal times are

aperiodic with finite (k + m + 1)st moment. Show that the KRT is applicable and

compute the limiting value of E(A(t)kC(t)m) as t→ ∞.

8.29 Compute an integral equation for P(BD(t) > x), where BD(t) is the excess

life at time t in a delayed RP. Compute its limiting value.

8.30 Consider a G/G/1/1 queue with inter-arrival time cdf G and service time cdf

F . Using ARPs, compute the limiting probability that the server is busy.

8.31 Compute the expected busy period started by a single customer in a stable

M/G/1 queue of Section 7.6.1 of Chapter 7, by constructing an appropriate ARP.

(Use Equation 7.35 on page 314.)

8.32 Consider an M/M/1/K queue of Section 7.3.2 of Chapter 7 with limiting

distribution given by Equation 7.19. Construct an appropriate ARP to compute the

expected time when the system becomes full (i.e., it enters state K from K − 1) for

the first time after it becomes non-full (i.e., after it enters state K − 1 from K).

8.33 A particle moves on n sites arranged in a circle as follows: it stays at the ith site

for a random amount of time with cdf Fi and mean µi and then moves to the adjacent

site in the clockwise direction. Let H be the cdf of the time it takes to complete the

circle, and assume that it is aperiodic with mean µ. Furthermore, assume that the

successive sojourn times are independent. Construct an appropriate ARP to compute

the limiting probability that the particle is on site i.
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8.34 For the series system in Example 8.27 define Y (t) = 0 if the system is up at

time t and 1 if it is down at time t. Assume that the system is up at time 0, and show

that {Y (t), t ≥ 0} is an ARP, and compute the long run probability that the system

is up. Verify the result with result in Example 8.30.

8.35 Do Computational Exercise 8.34 by constructing an appropriate two-state

SMP.

8.36 Let {Y (t), t ≥ 0} be as in Computational Exercise 8.14. Suppose Y (0) = 0.

Show that {Y (t), t ≥ 0} is an ARP. Compute P(Y (t) = 0) by solving Equation 8.58

by using the transform methods.

8.37 In the machine maintenance model of Example 8.34, suppose the machine

lifetimes are iid U(0, a) random variables. Compute the optimal age replacement

parameter T that minimizes the long run expected total cost per unit time.

8.38 Demands occur according to a PP(λ) at a warehouse that has S items in it

initially. As soon as the number of items in the warehouse decreases to s(< S), the

inventory is instantaneously replenished to S. Let X(t) be the number of items in

the warehouse at time t. Is {X(t), t ≥ 0} a (1) a CTMC, (2) an SMP, (3) a RGP?

Compute its limiting distribution.

8.39 Let X(t) be the number of customers in a queueing system. In which of the

following systems is {X(t), t ≥ 0} an SMP? Why or why not?

1. An M/G/1/1 system,

2. An G/M/1/1 system,

3. An G/G/1/1 system.

8.40 Do Computational Exercise 8.38 if the demands arrive according to an RP with

common inter-demand time cdf G.

8.41 A machine is subject to shocks that arrive according to PP(λ). Each shock

causes a damage that can represented by an integer-valued random variable with

pmf {αj, j ≥ 1}. The damages are additive, and when the total damage exceeds a

thresholdK , the machine breaks down. The repair time has cdf A(·), and successive

repair times are iid. Shocks have no effect during repair, and the machine is as good

as new once the repair completes. Model this system by an appropriate SMP. Show

its kernel.

8.42 Let {W (t), t ≥ 0} be as defined in Example 8.35 and let U and D be the

generic up and down times. Define H(t) = E(W (t)) − E(U)
E(U+D) t. Show that H

satisfies the renewal type equation

H(t) = E(min(U, t)) − E(min(U +D, t)

E(U +D)
+

∫ t

0

H(t− u)dG(u),
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where G is the cdf of U +D. Assuming that G is aperiodic, show that

lim
t→∞

H(t) =
1

2
· E(U)E((U +D)2) − E(U +D)E(U2)

(E(U +D))2
.

8.43 Let Xn be the amount of inventory in a warehouse at the beginning of day n.

Suppose X0 = S > 0, a given number. Let Yn be the size of the demand on day n
and assume that {Yn, n ≥ 1} is a sequence of iid random variables with common cdf

G. As soon as the inventory goes below s < S, it is instantaneously replenished to

S. Is {Xn, n ≥ 0} a (1) DTMC, (2) SMP, (3) RGP? Explain why or why not. Show

that

lim
n→∞

P(Xn ≥ x) =
1 +M(S − x)

1 +M(S − s)
, s ≤ x ≤ S,

where M(·) is the renewal corresponding to the cdf G.

8.44 Use the renewal equation derived in the proof of Theorem 8.37 to compute the

limit of E(RN(t)+1) as t→ ∞.

8.45 What is the long run fraction of customers who are turned away in an

M/G/1/1 queue? In a G/M/1/1 queue?

8.46 The patients in a hospital are classified as belonging to the following units:

(1) coronary care unit, (2) intensive care unit, (3) ambulatory unit, (4) extended care

unit, and (5) home or dead. As soon as a patient goes home or dies, a new patient is

admitted to the coronary unit. The successive units the patient visits form a DTMC

with transition probability matrix given below:












0 1 0 0 0
0 0 1 0 0

0.1 0 0 0.9 0
0.1 0.1 0.1 0.5 0.2
0 0 0 0 1













.

The patient spends on the average 1.7 days in the coronary care unit, 2.2 days in

the intensive care unit, 8 days in the ambulatory unit and 16 days in the extended

care unit. Let X(t) be the state of the patient in the hospital (assume it has exactly

one patient at all times. Extension to more than one patient is easy if the patient

movements are iid.) at time t. Model it as an SMP with four states and compute the

long run probability that patient is in the ambulatory unit.

8.47 A company classifies its employees into four grades, labeled 1, 2, 3, and 4. An

employee’s stay in grade i is determined by two random variables: the promotion

time Ai, and the tolerance time Bi. The employee stays in grade i for min(Ai, Bi)
amount of time. If Ai ≤ Bi, he moves to grade i + 1. If Ai > Bi, he quits, and is

instantaneously replaced by a new employee in grade 1. Since there is no promotion

from grade 4, we set A4 = ∞. Let X(t) be the grade of the employee working at

time t.
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1. Model {X(t), t ≥ 0} as an SMP. Explicitly state any assumptions needed to do

this, and display the kernel.

2. AssumeAi ∼ exp(λi) andBi ∼ Erl(2, µi), and that they are independent. Com-

pute the limiting distribution of X(t).

8.48 Sixteen underground bunkers are connected by tunnels as shown in Fig-

ure 8.11. This complex serves as a residence of a military despot, who spends a
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Figure 8.11 The underground maze of 16 bunkers.

random amount of time in a bunker and then moves to any of the adjacent ones

with equal probability. Suppose the mean time spent in bunker i during one stay is

τi. Compute the long run probability that the despot is in bunker i. (You may use

symmetry to analyze the embedded DTMC.)

8.49 Consider the renewal reward process of Section 8.10. Suppose the rewards are

discounted with continuous discount factor α > 0. Let D(t) be the total discounted

reward earned up to time t, i.e.,

D(t) =

N(t)
∑

n=1

e−αSnRn.

Show that

lim
t→∞

E(D(t)) =
E(R1e

−αS1)

1 − E(e−αS1)
.

8.50 Suppose demands arise according to a PP(λ) at a warehouse that initially has

S items. A demand is satisfied instantly if there are items in the warehouse, else the

demand is lost. When the warehouse becomes empty, it places an order for S items

from the supplier. The order is fulfilled after a random amount of time (called the
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lead-time) with mean L days. Suppose it costs $h to store an item in the warehouse

for one day. The warehouse manager pays $c to buy an item and sells it for $p. The

order processing cost is $d, regardless of the size of the order. Using an appropriate

renewal reward process, compute the long run cost rate for this policy. Find the value

of S that will minimize this cost rate for the following parameters: λ = 2 per day,

h = 1, c = 70, p = 80, d = 50, L = 3.

8.51 Consider the parking lot of Modeling Exercise 6.24, and let N0(t) be the num-

ber of customers who arrived there up to time t. Suppose {N0(t), t ≥ 0} is an RP

with common inter-arrival time cdf A(·). Let Nk(t) be the number of customers

who arrived up to time t and found spaces 1 through k occupied (1 ≤ k ≤ K).

{Nk(t), t ≥ 0} is called the overflow process from space k.

1. Show that {Nk(t), t ≥ 0} is an RP and that the LST of its inter-renewal times is

given by

φk(s) =
φk−1(s+ µ)

1 − φk−1(s) + φk−1(s+ µ)
,

where φ0(s) is the LST of A(·).
2. Let Xk(t) be 1 if space k is occupied, and zero otherwise. Show that

{Xk(t), t ≥ 0} is the queue-length process in a G/M/1/1 queue with arrival

process{Nk−1(t), t ≥ 0} and iid service times with LST φk(s). Compute the lim-

iting distribution of Xk(t) as t → ∞, and show that long run fraction of the time

the kth space is occupied (called its utilization) is given by

1 − φk−1(µ)

µτk−1
,

where τk is the mean inter-renewal time in {Nk(t), t ≥ 0}. Show that

τk = τk−1/φk−1(µ),

where τ0 is the mean of A(·).
3. Compute the space utilizations for each space if there are six parking spaces and

customers arrive every 2 minutes in a deterministic fashion and stay in the lot for

an average of 15 minutes.

8.52 Consider a G/M/∞ queue with infinite number of servers, common inter-

arrival time cdf G with mean 1/λ and exp(µ) service times. Suppose that at time

0 the system is in steady state. In particular the arrival process is assumed to have

started at −∞ so that at time 0 it is in equilibrium. Let {Tn, n ≥ 0} be the arrival

times of customers who arrived before time 0, indexed in reverse, so that 0 > T1 >
T2 > · · ·. Now, letXi be 1 if the customer who arrived at time Ti is still in the system

at time 0, and 0 otherwise. Thus X =
∑∞

i=1Xi is the total number of customers in

the system at time 0 (i.e., in steady state.)

1. Show that cdf of −T1 is Ge, the equilibrium cdf associated with G, and {Ti −
Ti+1, i ≥ 1} is a sequence of iid random variables with common cdf G, and is

independent of −T1.
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2. Show that

E(Xi) =
λ

µ
G̃(µ)i−1(1 − G̃(µ)), i ≥ 1.

3. Using the above, show that the expected number of customers in steady state in a

G/M/∞ queue is given by

E(X) =
λ

µ
.

Show this directly by using Little’s Law.

4. Show that for i > j,

E(XiXj) =
λ

2µ
G̃(µ)i−jG̃(2µ)j−1(1 − G̃(2µ)).

5. Using the above, show that

E(X(X − 1)) =
λ

µ
· G̃(µ)

1 − G̃(µ)
.

8.53 Functionally identical machines are available from N different vendors. The

lifetimes of the machines from vendor i are iid exp(λi) random variables. The ma-

chines from different vendors are independent of each other. We use a “cyclic” re-

placement policy parameterized by a fixed positive number T as follows: suppose

we are currently using a machine from vendor i. If it is less than T time units old

upon failure, it is replaced by machine from vendor i + 1 if i < N and vendor 1 if

i = N . If the machine is at least T time units old upon failure, the replacement is

from vendor i. Replacements are instantaneous. Let X(t) = i if the machine in use

at time t is from vendor i.

1. Is {X(t), t ≥ 0} an SMP? If it is, give its kernel G.

2. What is the long run fraction of the time that a machine from vendor i is in use?

3. Suppose the machines from vendor i cost $ci. What is the long run cost per unit

time of operating this policy?

8.54 April One Computers provides the following warranty on all its hard drives for

its customers that sign a long term contract with it: it will replace a malfunctioning

drive with a new one for free any number of times for up to one year after the initial

purchase. If the hard drive fails after one year, the customer must purchase a new one

with a new one year free replacement warranty. Suppose the lifetimes of these drives

are iid exponential variables with common mean 1/λ. The customer pays c for each

new hard drive that is not replaced for free. It costs the company d to make the drive,

(d < c). All failed hard drives are discarded. Suppose a customer has signed a long

term contract with April One Computers for his hard drive. Let Z(t) be the total cost

(excluding the initial purchase cost) to the customer over the interval (0, t], and Y (t)
be the total profits to the April One Computers from this contract over the period

(0, t]. Assume that replacement is instantaneous.

1. Show that {Z(t), t ≥ 0} and {Y (t), t ≥ 0} are renewal reward processes.
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2. Compute the expected cost per year to the customer and the expected profit per

year to the producer.

8.13 Conceptual Exercises

8.1 Suppose {Xn, n ≥ 0} is a DTMC on {0, 1, 2, · · ·}. Suppose we define S0 = 0
and Sn = min{k > Sn−1 : Xk = XSk−1

}, n ≥ 1. Is {Sn, n ≥ 1} a renewal

sequence? (Hint: Consider if X0 is a constant or not.)

8.2 Let {N(t), t ≥ 0} be an RP. Suppose each event is registered with probability

p, independent of everything else. Let N ∗(t) be the number of registered events up

to t. Is {N ∗(t), t ≥ 0} an RP?

8.3 Let {N(t), t ≥ 0} be an RP. Define

N1(t) =

[

N(t)

2

]

,

N2(t) =

[

N(t) + 1

2

]

,

where [x] is the largest integer less than or equal to x. Is {N1(t), t ≥ 0} an RP? What

about {N2(t), t ≥ 0}?

8.4 Complete the proof of Theorem 8.6 when τ = ∞, by showing that the limsup

and liminf of N(t)/t are both zero.

8.5 Derive Equation 8.17 by directly using the renewal argument.

8.6 Complete the proof of Theorem 8.12 when τ = ∞, by showing that the limsup

and liminf of M(t)/t are both zero.

8.7 Show that a random variable with the following pmf is aperiodic:

P(X = e) = .5, P(X = π) = .5.

8.8 Let {ND(t), t ≥ 0} be a delayed RP satisfying Equation 8.48. Show that

P(ND(t) <∞) = 1, for all t ≥ 0.

8.9 Let {ND(t), t ≥ 0} be a delayed RP satisfying Equation 8.48. Show that

P(ND(t) = 0) = 1 − F (t),

P(ND(t) = k) = F ∗ (Gk−1 −Gk)(t), k ≥ 1.

8.10 Let {ND(t), t ≥ 0} be a delayed RP satisfying Equation 8.48. Show that

P( lim
t→∞

ND(t) = ∞) = 1.
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8.11 Let {ND(t), t ≥ 0} be a delayed RP satisfying Equation 8.48. Show that

lim
t→∞

ND(t)

t
=

1

τ
.

where τ = E(X2).

8.12 Let {MD(t), t ≥ 0} be the renewal function of a delayed RP satisfying Equa-

tion 8.48. Show that

lim
t→∞

MD(t)

t
=

1

τ
.

where τ = E(X2).

8.13 Let {X(t), t ≥ 0} be an ARP as given in Definition 8.7. Let Ni(t) be the

number of entries into state i (i = 1, 2) over (0, t]. Is {Ni(t), t ≥ 0} an RP?

8.14 LetNj(t) be as in Example 8.18. Show that the limiting values ofNj(t)/t and

E(Nj(t))/t are independent of the initial state of the CTMC.

8.15 Let {Ne(t), t ≥ 0} is an equilibrium renewal process. Show that the distribu-

tion of Ne(s + t) − Ne(s) is independent of s, i.e., {Ne(t), t ≥ 0} has stationary

increments. Are the increments independent?

8.16 Let {Xn, n ≥ 0} be an irreducible, aperiodic, positive recurrent DTMC with

limiting distribution {πj , j ∈ S}. Use regenerative processes to show that the mean

inter-visit time to state j is given by 1/πj .

8.17 Let {(Xn, Bn, Cn), n ≥ 1} be a sequence of iid tri-variate random variables.

Suppose Xn’s are non-negative, representing the length of the nth cycle, Bn the

benefit accrued at the end of the nth cycle, and Cn the cost incurred at the end of the

nth cycle. Let Zb(t) (Zc(t)) be the total benefit (cost) up to time t. Show that the

long run cost to benefit ratio is given by

lim
t→∞

Zc(t)

Zb(t)
= lim

t→∞
E(Zc(t))

E(Zb(t))
=

E(C1)

E(R1)
.

8.18 Derive the following analog of Theroem 8.41:

Lq = λWq,

whereWq is the expected time in the queue (time in the system - the time in service),

and Lq is the expected number in the queue (number in the system - number in

service).

8.19 Let {X(t), t ≥ 0} be a positive recurrent and aperiodic SMP with state-space

S, kernel G, and limiting distribution {pi, i ∈ S}. Suppose we incur cost at rate ci
whenever the SMP is in state i. Show that the long-run rate at which we incur cost is

given by
∑

i∈S pici.
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8.20 Consider the system in Conceptual Exercise 8.19. Suppose the costs are dis-

counted continuously with a discount factor α > 0. Let φ(i) be the total expected

discounted cost incurred over the infinite horizon given that the SMP enters state i at

time 0. Let

γi =
ci
α

(1 − G̃i(α)),

where G̃i(·) is the LST of the sojourn time in state i. Show that the φ(i)’s satisfy the

following equation:

φ(i) = γi +
∑

j∈S

G̃ij(α)φ(j).



CHAPTER 9

Markov Regenerative Processes

Statistics can be used to reach any conclusion you want: The odds of getting in an

accident are directly proportional to the time spent on the road. The time spent on

the road is inversely proportional to the speed at which you drive. One-third of traffic

accidents are caused by drunk drivers, while two-thirds are caused by drivers who

are not drunk. Clearly, the odds of getting into a traffic accident are minimized by

driving drunk at a high speed!

9.1 Definitions and Examples

Markov renewal theory is a natural generalization of renewal theory, and as the name

suggests, it combines the concepts from Markov chains and renewal processes. We

begin with a definition.

Definition 9.1 Markov Renewal Sequence. A sequence of bivariate random vari-

ables {(Xn, Sn), n ≥ 0} is called a Markov renewal sequence (MRS) if

1. S0 = 0, Sn+1 ≥ Sn, Xn ∈ I , where I is a discrete set,

2. For all n ≥ 0,

P(Xn+1 = j, Sn+1 − Sn ≤ x|Xn = i, Sn, Xn−1, Sn−1, · · · , X0, S0)

= P(Xn+1 = j, Sn+1 − Sn ≤ x|Xn = i)

= P(X1 = j, S1 ≤ x|X0 = i).

Now define Yn = Sn − Sn−1 for n ≥ 1. There is a one to one correspondence

between the sequence {(Xn, Sn), n ≥ 0} and the sequence {X0, (Xn, Yn), n ≥
1}. In fact we have used the sequence {X0, (Xn, Yn), n ≥ 1} earlier to define a

CTMC in Definition 6.1 on page 190 and an SMP in Definition 8.9 on page 378.

In a similar vein we use Markov renewal sequences to build a class of processes

called the Markov regenerative processes (MRGP) that encompasses CTMCs and

SMPs. We allow the state-spaces of such a process to be discrete, say {0, 1, 2, · · ·},

or continuous, say [0,∞).

Definition 9.2 Markov Regenerative Process. A stochastic process {Z(t), t ≥
0} with state-space S is called a Markov regenerative process if there is a Markov

409
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renewal sequence {(Xn, Sn), n ≥ 0} such that {Z(t + Sn), t ≥ 0} given {Z(u) :
0 ≤ u < Sn, Xn = i} is stochastically identical to {Z(t), t ≥ 0} given X0 = i and

is conditionally independent of {Z(u) : 0 ≤ u < Sn, Xn = i} given Xn = i.

Several comments on the implications of the above definition are in order. In most

applications we find that Xn = Z(Sn+) or Xn = Z(Sn−). One can see that if

{(Xn, Sn), n ≥ 0} is Markov renewal sequence then {Xn, n ≥ 0} is a DTMC. Thus

in most applications {Z(Sn+), n ≥ 0} or {Z(Sn−), n ≥ 0} is a DTMC. Hence

sometimes an MRGP is also called a process with an embedded Markov chain. We

also see that

P(Z(t+ Sn) ≤ x|Z(u) : 0 ≤ u ≤ Sn, Xn = i) = P(Z(t) ≤ x|X0 = i).

Also, the future of the MRGP from t = Sn depends on its past up to time Sn only

throughXn. This distinguishes an MRGP from a regenerative process, whose future

from t = Sn is completely independent of its past up to time Sn. A typical sample

path of an MRGP is shown in Figure 9.1, where we have assumed that the state-space

of the MRGP is discrete, and Xn = Z(Sn−).

S4S3S2

X2

X3

X4

t

X1

Z(t)

S1S0

Figure 9.1 A typical sample path of a Markov regenerative process.

In the examples below we verify that a given process is an MRGP by identifying

the embedded MRS. To do this we need to know how to describe an MRS. The next

theorem answers this question. We need the following notation. Let

ai = P(X0 = i), i ∈ I.

The vector a = [ai]i∈I is called the initial distribution. Also, let

Gij(y) = P(X1 = j, Y1 ≤ y|X0 = i), i, j ∈ I. (9.1)

The matrix G(y) = [Gij(y)]i,j∈I is called the kernel of the MRS.

Theorem 9.1 Characterization of an MRS. An MRS {(Xn, Sn), n ≥ 0} is com-

pletely described by the initial distribution a and the kernel G.
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Proof: Describing the sequence {(Xn, Sn), n ≥ 0} is equivalent to describing the

sequence {X0, (Xn, Yn), n ≥ 1}. Thus it suffices to show that

P(X0 = i0, X1 = i1, Y1 ≤ y1, · · · , Xn = in, Yn ≤ yn)

= ai0Gi0,i1(y1) · · ·Gin−1,in
(yn), (9.2)

for n ≥ 1, ik ∈ I and yk ≥ 0 for 1 ≤ k ≤ n. We leave it to the reader to show this

by induction.

We get the following as a corollary to the above theorem. We leave the proof to

the reader.

Theorem 9.2 Let {(Xn, Sn), n ≥ 0} be an MRS with initial distribution a and

kernel G(y). Then {Xn, n ≥ 0} is a DTMC with the same initial distribution a and

transition probability matrix

P = G(∞),

with the convention that pii = 1 if
∑

j∈I Gij(∞) = 0.

We illustrate all the concepts introduced so far by examples.

Example 9.1 CTMCs as MRGPs. Let {Z(t), t ≥ 0} be a CTMC with state-space

{0, 1, 2, · · ·} and generator matrix Q. Show that {Z(t), t ≥ 0} is an MRGP.

Let S0 = 0 and Sn be the nth jump epoch in the CTMC. Define Xn = Z(Sn+).
Then, from Definition 6.1 on page 190, it follows that {(Xn, Sn), n ≥ 0} is an MRS

with kernel

Gij(y) =
qij
qi

(1 − e−qiy), i, j ∈ I, y ≥ 0.

If qi = 0, we define Gij(y) = 0 for all j ∈ I . The Markov property of the CTMC

implies that {Z(t + Sn), t ≥ 0} depends on {Z(t), 0 ≤ t < Sn, Xn} only through

Xn. Thus {Z(t), t ≥ 0} is an MRGP.

Example 9.2 SMPs as MRGPs. Let {Z(t), t ≥ 0} be an SMP with state-space

{0, 1, 2, · · ·} and kernel G(y). Show that {Z(t), t ≥ 0} is an MRGP.

We assume that the SMP has entered the initial state at time 0. Let S0 = 0 and Sn

be the nth jump epoch in the SMP. DefineXn = Z(Sn+). Then, from Definition 8.9

on page 378, it follows that {(Xn, Sn), n ≥ 0} is an MRS with kernel G(y). The

Markov property of the SMP at jump epochs implies that {Z(t+Sn), t ≥ 0} depends

on {Z(t), 0 ≤ t < Sn, Xn} only throughXn. Thus {Z(t), t ≥ 0} is an MRGP.

Example 9.3 M/G/1 Queue. Let Z(t) be the number of customers in an M/G/1
queue with PP(λ) arrivals and common service time (s.t.) cdf B(·). Show that

{Z(t), t ≥ 0} is an MRGP.
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Assume that either the system is empty initially, or a service has just started at

time 0. Let Sn be the time of the nth departure, and define Yn = Sn − Sn−1, and

Xn = Z(Sn+). Note that if Xn > 0, Yn is the nth service time. If Xn = 0, then

Yn is the sum of an exp(λ) random variable and the nth service time. Then, due to

the memoryless property of the PP and the iid service times, we get, for i > 0 and

j ≥ i− 1,

Gij(y) = P(Xn+1 = j, Yn+1 ≤ y|X0 = i0, X1

= i1, Y1 ≤ y1, · · · , Xn = i, Yn ≤ yn)

= P(Xn+1 = j, Yn+1 ≤ y|Xn = i)

= P(j − i+ 1 arrivals during a s.t. and s.t. ≤ y)

=

∫ y

0

e−λt (λt)j−i+1

(j − i+ 1)!
dB(t).

For i = 0 and j ≥ 0 we get

G0j(y) = P(Xn+1 = j, Yn+1 ≤ y|X0 = i0, X1

= i1, Y1 ≤ y1, · · · , Xn = 0, Yn ≤ yn)

= P(Xn+1 = j, Yn+1 ≤ y|Xn = 0)

= P(j arrivals during a s.t. and s.t. + idle time ≤ y)

=

∫ y

0

(1 − e−λ(y−t))e−λt (λt)j

j!
dB(t).

Thus {(Xn, Sn), n ≥ 0} is an MRS with kernel G(y). The queue length process

from time Sn onwards depends on the history up to time Sn only via Xn. Hence

{(Z(t), t ≥ 0} is an MRGP. Note that we had seen in Section 7.6.1 that {Xn, n ≥ 0}
is an embedded DTMC with transition probability matrix P = G(∞). One can show

that this is consistent with Equation 7.30 on page 312.

Example 9.4 G/M/1 Queue. Let Z(t) be the number of customers in a G/M/1
queue with common inter-arrival time (i.a.t.) cdf A(·), and iid exp(µ) service times.

Show that {Z(t), t ≥ 0} is an MRGP.

Assume that an arrival has occurred at time 0. Let Sn be the time of the nth arrival,

and define Xn = Z(Sn−), and Yn = Sn − Sn−1, the nth inter-arrival time. Due to

the memoryless property of the PP and the iid service times, we get, for 0 < j ≤ i+1,

Gij(y) = P(i+ 1 − j departures during an i.a.t. and i.a.t. ≤ y)

=

∫ y

0

e−λt (λt)i+1−j

(i+ 1 − j)!
dA(t),
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and

Gi0(y) = A(y) −
i+1
∑

j=1

Gij(y).

Thus {(Xn, Sn), n ≥ 0} is an MRS. The queue length process from time Sn onwards

depends on the history up to time Sn only viaXn. Hence {(Z(t), t ≥ 0} is an MRGP.

Note that we had seen in Section 7.6.2 that {Xn, n ≥ 0} is an embedded DTMC with

transition probability matrix P = G(∞). One can show that this is consistent with

Equation 7.38 on page 317.

Example 9.5 M/G/1/1 Retrial Queue. Consider an M/G/1/1 retrial queue as

described in Section 7.7 of Chapter 7. LetR(t) be the number of customers in the or-

bit and I(t) be the number of customers in service at time t. Let X(t) = R(t)+ I(t)
be the number of customers the system at time t. The service times are iid with com-

mon cdf B(·). The arrival process is PP(λ), and retrial times are iid exp(θ). Show

that {(R(t), I(t)), t ≥ 0} and {X(t), t ≥ 0} are MRGPs.

Assume that the server is idle initially. Let Sn be the time of the nth service com-

pletion, and define Xn = X(Sn−), and Yn = Sn − Sn−1, the nth idle time plus the

following service time. Since the server is idle after a service completion,Xn is also

the number of customers in the orbit at the nth service completion. Thus, if Xn = i,
the (n+1)st idle time is exp(λi), where λi = λ+iθ. Due to the memoryless property

of the PP and the iid service times, we get, for 0 ≤ i ≤ j − 1,

Gij(y) =
λ

λi
P(j − i arrivals during a s.t. and s.t. + idle time ≤ y)

+
iθ

λi
P(j − i− 1 arrivals during a s.t. and s.t. + idle time ≤ y)

=
λ

λi

∫ y

0

(1 − e−λi(y−t))e−λt (λt)j−i

(j − i)!
dB(t)

+
iθ

λi

∫ y

0

(1 − e−λi(y−t))e−λit
(λt)j−i−1

(j − i− 1)!
dB(t).

Thus {(Xn, Sn), n ≥ 0} is an MRS with kernelG(y). The {(R(t), I(t)), t ≥ 0} and

{X(t), t ≥ 0} processes from time Sn onwards depend on the history up to time Sn

only via Xn. Hence both are MRGPs with the same embedded MRS. Note that we

had seen in Theorem 7.18 on page 321 that {Xn, n ≥ 0} is an embedded DTMC

in the {X(t), t ≥ 0} process. It is an embedded DTMC in the {(R(t), I(t)), t ≥ 0}
process as well.

9.2 Markov Renewal Process and Markov Renewal Function

Let {(Xn, Sn), n ≥ 0} be a given Markov renewal sequence with kernel G. Define

the counting process

N(t) = min{n ≥ 0 : Sn ≤ t}. (9.3)
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We say that the process {N(t), t ≥ 0} is regular if N(t) <∞ with probability 1 for

all 0 ≤ t <∞. We derive a sufficient condition for regularity next. First we need the

following notation:

Gi(y) = P(Y1 ≤ y|X0 = i) =
∑

j∈I

Gij(y). (9.4)

Theorem 9.3 Sufficient Condition for Regularity. The process {N(t), t ≥ 0}
defined by Equation 9.3 is regular if there exists an ǫ > 0 and a δ > 0 such that

Gi(δ) < 1 − ǫ, i ∈ I. (9.5)

Proof: Let {Y ∗
n , n ≥ 1} be a sequence of iid random variables with common pmf

P(Y ∗
n = 0) = 1 − ǫ, P(Y ∗

n = δ) = ǫ. (9.6)

Let {S∗
n, n ≥ 1} be renewal sequence and {N ∗(t), t ≥ 0} be the RP generated by

{Y ∗
n = S∗

n − S∗
n−1, n ≥ 1}. Equations 9.5 and 9.6 imply that

P(Yn ≤ t) ≤ P(Y ∗
n ≤ t), t ≥ 0, n ≥ 1.

Hence

P(Sn ≤ t) ≤ P(S∗
n ≤ t), t ≥ 0, n ≥ 1,

which implies

P(N(t) ≥ k) ≤ P(N ∗(t) ≥ k), k ≥ 1.

However N ∗(t) < ∞ with probability 1, from Theorem 8.3 on page 343. Hence

N(t) <∞ with probability 1.

The condition in Equation 9.5 is not necessary, and can be relaxed. We refer the

reader to Cinlar (1975) for weaker conditions. For a regular process {N(t), t ≥ 0},

define

X(t) = XN(t). (9.7)

It can be seen that {X(t), t ≥ 0} is an SMP with kernelG. We say that {X(t), t ≥ 0}
is the SMP generated by the MRS {(Xn, Sn), n ≥ 0}. Define Nj(t) be the number

of entries into state j by the SMP over (0, t], and

Mij(t) = E(Nj(t)|X0 = i), i, j ∈ I, t ≥ 0. (9.8)

Thus Mij(t) is the expected number of transitions into state j over (0, t] starting

from X(0) = i.

Definition 9.3 Markov Renewal Process. The vector valued process {N(t) =
[Nj(t)]j∈I , t ≥ 0} is called the Markov renewal process generated by the Markov

renewal sequence {(Xn, Sn), n ≥ 0}.

Next, following the development in the renewal theory, we define the Markov re-

newal function.
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Definition 9.4 Markov Renewal Function. The matrix M(t) = [Mij(t)]i,j∈I

is called the Markov renewal function generated by the Markov renewal sequence

{(Xn, Sn), n ≥ 0}.

Theorem 9.4 Suppose the condition in Equation 9.5 holds. Then

∑

j∈I

Mij(t) ≤
1

ǫ

(

t

δ
+ 1

)

<∞, t ≥ 0.

Proof: Consider the process {N ∗(t), t ≥ 0} introduced in the proof of Theorem 9.3.

Since N(t) =
∑

j∈I Nj(t), we have

∑

j∈I

Mij(t) =
∑

j∈I

E(Nj(t)|X0 = i)

= E(N(t)|X0 = i)

≤ E(N ∗(t)) ≤ 1

ǫ

(

t

δ
+ 1

)

<∞.

This yields the theorem.

We define the concept of matrix convolution next. We shall find it very useful in

the study of Markov renewal processes. Let A(t) = [Aij(t)] and B(t) = [Bij(t)]
be two matrices of functions for which the product A(t)B(t) is defined. A matrix

C(t) = [Cij(t)] is called the convolution of A and B, written C(t) = A ∗B(t), if

Cij(t) =
∑

k

∫ t

0

Aik(t− u)dBkj(u) =
∑

k

∫ t

0

dAik(u)Bkj(t− u).

The proof of the next theorem introduces the concept of Markov renewal argu-

ment, and we urge the reader to become adept at using with it.

Theorem 9.5 Markov Renewal Equation. Let M(t) be the Markov renewal func-

tion generated by the Markov renewal sequence {(Xn, Sn), n ≥ 0} with kernel G.

M(t) satisfies the following Markov renewal equation:

M(t) = G(t) +G ∗M(t). (9.9)

Proof: Condition on X1 and S1 to get

E(Nj(t)|X0 = i,X1 = k, S1 = u) =

{

δkj +Mkj(t− u) if u ≤ t,
0 if u > t.

Here the Kronecker delta function is defined as δij = 1 if i = j, and 0 otherwise.

Hence we get

Mij(t) =

∫ ∞

0

∑

k∈I

E(Nj(t)|X0 = i,X1 = k, S1 = u)dGik(u)
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=

∫ t

0

∑

k∈I

(δkj +Mkj(t− u))dGik(u)

=

∫ t

0

dGij(u) +

∫ t

0

∑

k∈I

Mkj(t− u)dGik(u)

= Gij(t) + [G ∗M(t)]ij .

The above equation, in matrix form, is Equation 9.9.

A k-fold convolution of matrixAwith itself is denoted byA∗k. Using this notation

we get the following analog of Theorem 8.8 on page 349.

Theorem 9.6 Suppose the condition in Equation 9.5 holds. Then

M(t) =

∞
∑

k=1

G∗k(t), t ≥ 0.

Proof: Iterating Equation 9.9, and writing M for M(t) etc, we get

M = G+G ∗M
= G+G ∗ (G+G ∗M) = G+G∗2 +G∗2 ∗M

=

n
∑

k=1

G∗k +G∗n ∗M.

The theorem follows by letting n→ ∞ since Theorem 9.4 implies that

lim
n→∞

G∗n ∗M = 0.

Note that one consequence of the regularity condition of Equation 9.5 is that

lim
n→∞

G∗ne = 0, (9.10)

where e is a vector of all ones. Define the LST of a matrix as follows

Ã(s) = [Ãij(s)] =

[∫ ∞

0

e−stdAij(t)

]

.

Let C(t) = A ∗B(t) for t ≥ 0. Then one can show that

C̃(s) = Ã(s)B̃(s). (9.11)

Using this notation we get the following analog of Theorem 8.9 on page 350.

Theorem 9.7 Suppose the condition in Equation 9.5 holds. The LST of the Markov

renewal function is given by

M̃(s) = [I − G̃(s)]−1G̃(s). (9.12)
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Proof: Taking the LST on both sides of Equation 9.9, we get

M̃(s) = G̃(s) + G̃(s)M̃(s).

Thus

(I − G̃(s))M̃ (s) = G̃(s).

The regularity condition is one sufficient condition under which the inverse of (I −
G̃(s)) exists. Hence the theorem follows.

Note that if the SMP is recurrent and X0 = j then {Nj(t), t ≥ 0} is a standard

renewal process, and Mjj(t) is its renewal function; while {Ni(t), t ≥ 0} (i 6= j)
is a delayed renewal process, and Mij(t) is the delayed renewal function. Thus the

limiting behavior of the Markov renewal processes and functions can be derived from

the corresponding theorems from Chapter 8.

9.3 Key Renewal Theorem for MRPs

Equation 9.9 is called the Markov renewal equation and plays the same role as the

renewal equation in renewal theory. The Markov renewal argument, namely the tech-

nique of conditioning on X1 and S1, generally yields an integral equation of the

following form

H(t) = D(t) +G ∗H(t), (9.13)

where G is the kernel of the Markov renewal sequence. Such an equation is called a

Markov renewal type equation. We study such an equation in this section. The next

theorem gives the solution to the Markov renewal type equation.

Theorem 9.8 Solution of Markov Renewal Type Equation. Suppose that

sup
i∈I

|Dij(t)| ≤ dj(t) <∞, j ∈ I, t ≥ 0, (9.14)

and G satisfies the condition in Theorem 9.3. Then there exists a unique solution to

the Markov renewal type Equation 9.13 such that

sup
i∈I

|Hij(t)| ≤ hj(t) <∞, j ∈ I, t ≥ 0, (9.15)

and is given by

H(t) = D(t) +M ∗D(t), (9.16)

where M(t) is the Markov renewal function associated with G.

Proof: First we verify that the solution in Equation 9.16 satisfies Equation 9.13.

Dropping (t) for ease of notation we get

H = D+M ∗D = D+(G+G ∗M) ∗D = D+G ∗ (D+M ∗D) = D+G ∗H.
Here the first equality follows from Equation 9.16, the second from Equation 9.9,

the third from associativity of matrix convolutions, and the last from Equation 9.13.

Thus any H satisfying Equation 9.16 satisfies Equation 9.13.
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Next we establish Equation 9.15. Suppose Equation 9.14 holds and let

cj(t) = sup
0≤u≤t

dj(u).

From Equation 9.16 we get

|Hij(t)| ≤ |Dij(t) +

∫ t

0

∑

k∈I

dMik(u)Dkj(t− u)|

≤ dj(t) + cj(t)
∑

k∈I

∫ t

0

dMik(u)

≤ cj(t)(1 +
∑

k∈I

Mik(t))

≤ cj(t)

(

1 +
1

ǫ

(

t

δ
+ 1

))

,

where the last inequality follows from Theorem 9.4. Thus Equation 9.15 follows if

we define the right hand side above as hj(t).

To show uniqueness, suppose H1 and H2 are two solutions to Equation 9.13 sat-

isfying Equation 9.15. Then H = H1 −H2 satisfies Equation 9.15 and H = G ∗H .

Iterating this n times we get

H = G∗n ∗H.
Using

ĥj(t) = sup
0≤u≤t

hj(u)

we get

|Hij(t)| ≤ |
∫ t

0

∑

k∈I

dG∗n
ik (u)Hkj(t− u)|

≤ ĥj(t)
∑

k∈I

G∗n
ik (t).

Letting n → ∞ and using Equation 9.10 we see that the right hand side goes to 0.

Hence H = 0, or, H1 = H2. This shows uniqueness.

In general solving the generalized Markov renewal equation is a formidable task,

and we rarely attempt it. Hence we turn our attention to its limiting behavior as

t→ ∞. The next theorem is the key renewal theorem for Markov renewal processes.

We shall use the following notation from Section 8.9:

Tj = min{t ≥ S1 : X(t) = j}, j ∈ I,

τi = E(S1|X(0) = i), i ∈ I,

τij = E(Tj|X(0) = i), i, j ∈ I.
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Theorem 9.9 Key Markov-Renewal Theorem. Let H be a solution to the follow-

ing Markov renewal type equation

H(t) = D(t) +G ∗H(t). (9.17)

1. Suppose the condition of Theorem 9.3 is satisfied.

2. The SMP generated by the Markov renewal sequence is irreducible, aperiodic,

positive recurrent, and has the limiting distribution {pj, j ∈ I}.

3. SupposeD(t) = [Dij(t)] satisfies

3a. |Dij(t)| ≤ dj(t) <∞, i ∈ I, t ≥ 0,

3b. Dij(t) (i, j ∈ I) is a difference of two non-negative bounded monotone func-

tions,

3c.
∫∞
0

∑

k∈I
pk

τk
|Dkj(u)|du <∞, j ∈ I.

Then

lim
t→∞

Hij(t) =

∫ ∞

0

∑

k∈I

pk

τk
Dkj(u)du. (9.18)

Proof: Since the condition of Theorem 9.3 is satisfied, and the condition [3a] holds,

we see that the unique solution to Equation 9.17 is given by Equation 9.16. In scalar

form we get

Hij(t) = Dij(t) +
∑

k∈I

∫ t

0

dMik(u)Dkj(t− u)

= Dij(t) +

∫ t

0

dMii(u)Dij(t− u)

+
∑

k 6=i

∫ t

0

dMik(u)Dkj(t− u). (9.19)

Conditions [3a], [3b], and [3c], and the fact thatMii(t) is a standard renewal function

of a renewal process with mean inter-renewal time τii, implies that we can use the

key renewal theorem (Theorem 8.17 on page 360) to show that

lim
t→∞

[Dij(t) +

∫ t

0

dMii(u)Dij(t− u)] =
1

τii

∫ ∞

0

Dij(u)du. (9.20)

Since Mik(t) is a delayed renewal function with common mean inter-renewal time

τkk , we can use an argument similar to that in the proof of Theorem 8.26 on page 369,

to get

lim
t→∞

∫ t

0

dMik(u)Dkj(t− u) =
1

τkk

∫ ∞

0

Dkj(u)du. (9.21)

Letting t→ ∞ in Equation 9.19, and using Equations 9.20 and 9.21, we get

lim
t→∞

Hij(t) = lim
t→∞

Dij(t) + lim
t→∞

∑

k∈I

∫ t

0

dMik(u)Dkj(t− u)
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=
∑

k∈I

1

τkk

∫ ∞

0

Dkj(u)du

=
∑

k∈I

pk

τk

∫ ∞

0

Dkj(u)du,

where the last equality follows from Equation 8.66 on page 382.

This theorem appears in Theorem 4.17 of Chapter 10 of Cinlar (1975), and later

in Kohlas (1982) and Heyman and Sobel (1982). We do not consider the periodic

case here, since it is more involved in terms of notation. We refer the reader to Cinlar

(1975) for further details.

9.4 Extended Key Renewal Theorem

The reader can safely skip over the rest of this section without any loss of continuity.

In this section we remove the implicit assumption

lim
t→∞

Dij(t) = 0, i, j ∈ I

made in Theorem 9.9. In some applications this may not be satisfied. We need to

develop a few preliminary results before we give the main result in Theorem 9.13

below.

Let {(Xn, Sn), n ≥ 0} be a given Markov renewal sequence with kernel G, and

let {X(t), t ≥ 0} be the SMP generated by it, and M(t) be the Markov renewal

function associated with it. Let Tj , τj and τij be as defined in the previous section.

Also define

µik = E(S1|X0 = i,X1 = k), i, k ∈ I,

s2i = E(S2
1 |X0 = i), i ∈ I,

s2ij = E(T 2
j |X0 = i), i, j ∈ I.

Theorem 8.32 showed how to compute the first moments τij of the first passage time

Tj . The next theorem shows how to compute the second moments.

Theorem 9.10 The second moments {s2ij , i ∈ I}, for a given j ∈ I , satisfy

s2ij = s2i + 2
∑

k 6=j

Gik(∞)µikτkj +
∑

k 6=j

Gik(∞)s2kj .

Proof: Left as Conceptual Exercise 9.6.

Next two theorems describe the asymptotic behavior of the Markov renewal func-

tion.
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Theorem 9.11 Let {X(t), t ≥ 0} be an irreducible and recurrent SMP. Then

lim
t→∞

Mij(t)

t
=

1

τjj
.

Proof: Left as Conceptual Exercise 9.7.

Theorem 9.12 Let {X(t), t ≥ 0} be an irreducible, aperiodic, and recurrent SMP.

Then

αjj = lim
t→∞

(

Mjj(t) −
t

τjj

)

=
s2jj − 2τ2

jj

2τ2
jj

αij = lim
t→∞

(

Mij(t) −
t

τjj

)

=
s2jj − 2τjjτij

2τ2
jj

, i 6= j.

Proof: Left as Conceptual Exercise 9.8.

With these preliminary results we are ready to state the extension of Theorem 9.9

below.

Theorem 9.13 Extended Key Markov-Renewal Theorem. Let H be a solution to

the following Markov renewal type equation

H(t) = D(t) +G ∗H(t). (9.22)

1. Suppose the condition of Theorem 9.3 is satisfied.

2. The SMP generated by the Markov renewal sequence is irreducible, aperiodic,

positive recurrent, and has limiting distribution {pj, j ∈ I}.

3. SupposeD(t) = [Dij(t)] satisfies

3a. |Dij(t)| ≤ dj(t) <∞, i ∈ I, t ≥ 0,

3b. Dij(t) (i, j ∈ I) is a difference of two non-negative bounded monotone func-

tions,

3c. dij = limt→∞Dij(t) exists for all i, j ∈ I ,

3d.
∫∞
0 (Dij(t) − dij)dt <∞, i, j ∈ I ,

3e.
∫∞
0

∑

k∈I
pk

τk
Dkj(u)du <∞, j ∈ I.

Then

lim
t→∞

Hij(t) = dij +
∑

k∈I

αikdkj +

∫ ∞

0

∑

k∈I

pk

τk
Dkj(u)du, (9.23)

where αik are as given in Theorem 9.12.

Before we prove this theorem we make several observations. The limit of Hij(t) has

three terms: the first two depend on i, while the third one does not. If dij = 0 for all
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i, j ∈ I , the first two terms disappear, and we are left with a limit that is independent

of i, and we get Theorem 9.9. Clearly we do not need to assume this. All we need to

assume is that
∑

k∈I

pk

τk
dkj = 0, j ∈ I,

which is implicit in the condition [3e] of the above theorem. As before, we do not

consider the periodic case here, since it is more involved in terms of notation. We

refer the reader to Cinlar (1975) for further details.

Proof: Since the condition of Theorem 9.3 is satisfied, and the condition [3a]

holds, we see that the unique solution to Equation 9.17 is given by Equation 9.16. In

scalar form we get

Hij(t) = Dij(t) +
∑

k∈I

∫ t

0

dMik(u)Dkj(t− u)

= Dij(t) − dij +

∫ t

0

dMii(u)(Dij(t− u) − dij)

+
∑

k 6=i

∫ t

0

dMik(u)(Dkj(t− u) − dkj) (9.24)

+dij +
∑

k∈S

Mik(t)dij . (9.25)

Following the proof of Theorem 9.9 we get

lim
t→∞

[Dij(t) − dij +

∫ t

0

dMii(u)(Dij(t− u) − dij)] =
1

τii

∫ ∞

0

(Dij(u) − dij)du,

(9.26)

and

lim
t→∞

∫ t

0

dMik(u)(Dkj(t− u) − dkj) =
1

τkk

∫ ∞

0

(Dkj(u) − dkj)du. (9.27)

Finally we consider the term
∑

k Mik(t)dkj appearing in Equation 9.25. By using

pk = τk/τkk in Theorem 9.12 we get

Mik(t) = t
pk

τk
+ αik + o(1)

where o(1) is a function of t that converges to zero as t→ ∞. Hence we have
∑

k

Mik(t)dkj = t
∑

k

pk

τk
dkj +

∑

k

αikdkj + o(1).

Conditions [3e] and [3e] imply that
∑

k

pk

τk
dkj = 0.

Hence

lim
t→∞

∑

k

Mik(t)dkj =
∑

k

αikdkj .
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This yields the theorem.

We illustrate with a simple example.

Example 9.6 Two-State SMP. Consider the two-state SMP of Example 8.25 on

page 379 with kernel given by

G(y) =

[

0 H0(y)
H1(y) 0

]

.

Here Hi is the cdf of the sojourn time in state i = 0, 1. Assume that Hi is a non-

defective cdf with mean τi , second moment s2i , and variance σ2
i . We see that

τ00 = τ11 = τ0 + τ1,

τ01 = τ0, τ10 = τ1,

s200 = s211 = s20 + 2τ0τ1 + s21,

s210 = s21, s201 = s20.

Using the above in Theorem 9.12, and simplifying, we get

α00 = α11 =
s20 + 2τ0τ1 + s21 − 2(τ0 + τ1)

2

2(τ0 + τ1)2

=
σ2

0 + σ2
1 − (τ0 + τ1)

2

2(τ0 + τ1)2
,

αij =
s2jj − 2τjjτij

2τ2
jj

=
σ2

0 + σ2
1 − τ2

i + τ2
j

2(τ0 + τ1)2
, i 6= j.

Let

Hij(t) = Mij(t) −
t

τjj
.

We saw in Theorem 9.12 that

lim
t→∞

Hij(t) = αij , i, j = 0, 1.

We shall derive the same limits using the extended key Markov-renewal theorem.

First we ask the reader to derive the following Markov renewal type equation:

H(t) = G(t) +G ∗H(t) (9.28)

with D(t) = [Dij(t)] given by

Dij(t) = (1 − δij)Hi(t) −
1

τ0 + τ1

∫ t

0

(1 −Hi(u))dt, (9.29)

where δij = 1 if i = j and 0 otherwise. Hence we have

dij = (1 − δij) −
τi

τ0 + τ1
.
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We also have (see Example 8.28 on page 382)

pi =
τi

τ0 + τ1
, i = 0, 1.

The reader should verify that

p0

τ0
d0j +

p1

τ1
d1j = 0, j = 0, 1.

Thus the conditions in Theorem 9.13 are satisfied. We leave it to the reader to alge-

braically verify that Equation 9.23 reduces to

lim
t→∞

Hij(t) = αij . (9.30)

This shows that Theorem 9.13 produces consistent results. Note that we cannot get

this result from Theorem 9.9.

9.5 Semi-Markov Processes: Further Results

Let {(Xn, Sn), n ≥ 0} be a Markov renewal sequence with kernelG that satisfies the

regularity condition of Theorem 9.3. Let {X(t), t ≥ 0} be the semi-Markov process

generated by this Markov renewal sequence. We have studied the limiting behavior

of this SMP in Section 8.9 by means of an alternating renewal process. In this sec-

tion we derive the results of Theorem 8.34 by using the key Marov-renewal theorem

(Theorem 9.9).

Define

pij(t) = P(X(t) = j|X(0) = i), i, j ∈ I, t ≥ 0.

Note that byX(0) = iwe implicity mean that the SMP has just entered state i at time

0. We use the Markov-renewal argument to derive a Markov-renewal type equation

for

P (t) = [pij(t)]

in the theorem below.

Theorem 9.14 Markov-Renewal Type Equation for P (t). The matrix P (t) satis-

fies the following Markov-renewal type equation:

P (t) = D(t) +G ∗ P (t), (9.31)

where D(t) is a diagonal matrix with

Dii(t) = 1 −Gi(t) = 1 −
∑

j∈I

Gij(t), i ∈ I. (9.32)

Proof: Condition on X1 and S1 to get

P(X(t) = j|X0 = i,X1 = k, S1 = u) =

{

pkj(t− u) if u ≤ t,
δij if u > t.
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Hence we get

pij(t) =

∫ ∞

0

∑

k∈I

P(X(t) = j|X0 = i,X1 = k, S1 = u)dGik(u)

=

∫ t

0

∑

k∈I

pkj(t− u)dGik(u) +

∫ ∞

t

∑

k∈I

δijdGik(u)

= [G ∗ P (t)]ij + δij(1 −Gi(t)),

which, in matrix form, yields the desired Markov-renewal type equation.

Next we use the key Markov-renewal theorem 9.9 to study the limiting behavior

of P (t). This may seem circular, since the the key Markov-renewal theorem uses

{pj, j ∈ I}, the limiting distribution of the SMP, in the limit! We assume that this

limiting distribution is obtained by using Theorem 8.34 on page 382. Then we show

that the limiting distribution produced by applying the key Markov-renewal theorem

produces the same limiting distribution.

Theorem 9.15 Limiting Distribution of an SMP. Let {X(t), t ≥ 0} be an irre-

ducible, positive recurrent, and aperiodic SMP with kernel G. Let π be a positive

solution to

π = πG(∞).

Then {X(t), t ≥ 0} has a limiting distribution [pj , j ∈ S], and it is given by

pj = lim
t→∞

P(X(t) = j|X(0) = i) =
πjτj

∑

k∈S πkτk
, j ∈ S. (9.33)

Proof: Theorem 9.14 shows that P (t) satisfies the Markov-renewal type equa-

tion 9.31 with the D(t) matrix as given in Equation 9.32. It is easy to verify that

all the conditions of Theorem 9.9 are satisfied. The {pj, j ∈ I} in the condition 2 is

given by Equation 8.66 on page 382. Note that
∫ ∞

0

Dii(t)dt =

∫ ∞

0

(1 −Gi(t))dt = τi.

Hence Equation 9.18 reduces to

lim
t→∞

Hij(t) =

∫ ∞

0

∑

k∈I

pk

τk
Dkj(t)dt

=
pj

τj

∫ ∞

0

Dii(u)du

=
pj

τj
τj = pj.

This proves the theorem.

We had remarked in Section 8.9 that the study of the limiting distribution of the



426 MARKOV REGENERATIVE PROCESSES

SMPs cannot stop at the limiting distribution of X(t) as t → ∞, since knowing the

value of X(t) at time t is, in general, not enough to determine the future of an SMP.

We also need to know the distribution of the remaining sojourn time at that time. We

proceed to do that here. Towards this end, define

B(t) = SN(t)+1 − t, Z(t) = XN(t)+1. (9.34)

Thus B(t) is the time until the next transition after t (or the remaining sojourn time

in the current state at time t), and Z(t) is the state after the next transition after t. To

complete the study of the limiting distribution, we study

Hij(t) = P(X(t) = j, B(t) > x,X(t) = k|X(0) = i), (9.35)

where x ≥ 0 and k ∈ I is fixed. The next theorem gives the limit of the above

quantity as t→ ∞.

Theorem 9.16 Limiting Behavior. Let {X(t), t ≥ 0} be an irreducible, positive

recurrent, and aperiodic SMP with kernel G with limiting distribution [pj , j ∈ I].
Then

lim
t→∞

Hij(t) =
pj

τj

∫ ∞

x

(Gjk(∞) −Gjk(u))du, (9.36)

where Hij(t) is as defined in Equation 9.35.

Proof: Condition on X1 and S1 to get

P(X(t) = j, B(t) > x,Z(t) = k|X0 = i,X1 = r, S1 = u)

=







Hrj(t− u) if u ≤ t,
0 if t < u ≤ t+ x
δijδrk if u > t+ x.

Hence we get

Hij(t) =

∫ ∞

0

∑

r∈I

P(X(t) = j, B(t) > x,Z(t) = k|X0 = i,X1 = r, S1 = u)dGir(u)

=

∫ t

0

∑

r∈I

Hrj(t− u)dGir(u) +

∫ ∞

t+x

∑

r∈I

δijδrkdGir(u)

= δij

∫ ∞

t+x

dGik(u) +

∫ t

0

∑

r∈I

Hrj(t− u)dGir(u)

= [G ∗H(t)]ij + δij(Gik(∞) −Gik(t+ x)),

which, in matrix form, yields

H(t) = D(t) +G ∗H(t),

where D(t) is a diagonal matrix with

Dii(t) = Gik(∞) −Gik(t+ x).
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It is easy to see that all the conditions of Theorem 9.9 are satisfied. Hence Equa-

tion 9.18 yields

lim
t→∞

Hij(t) =

∫ ∞

0

∑

r∈I

pr

τrr
Drj(u)du

=
pj

τj

∫ ∞

x

(Gjk(∞) −Gjk(u+ x))du,

as desired.

The next theorem follows immediately from the above theorem.

Theorem 9.17 Under the conditions of Theorem 9.16

lim
t→∞

P(X(t) = j, B(t) > x|X(0) = i) = pj
1

τj

∫ ∞

x

(1 −Gj(u))du, (9.37)

and

lim
t→∞

P(B(t) > x|X(t) = j) =
1

τj

∫ ∞

x

(1 −Gj(u))du, (9.38)

Proof: Follows from Equation 9.36

P(X(t) = j, B(t) > x|X(0) = i) =
∑

k∈I

P(X(t) = j, B(t) > x,Z(t) = k|X(0) = i)

and recognizing that
∑

k∈I

(Gjk(∞) −Gjk(t)) = 1 −Gj(t).

Now, we can write

P(X(t) = j, B(t) > x|X(0) = i) = P(X(t) = j)P(B(t) > x|X(0) = i,X(t) = j).

Taking limits as t→ ∞ on both sides we see that

pj
1

τj

∫ ∞

x

(1 −Gj(u))du = pj lim
t→∞

P(B(t) > x|X(0) = i,X(t) = j).

Hence we get

lim
t→∞

P(B(t) > x|X(0) = i,X(t) = j) =
1

τj

∫ ∞

x

(1 −Gj(u))du.

Since the right hand side is independent of i we get the desired result in the

theorem.

The above theorem has an interesting interpretation: in the limit the state of the

SMP is j with probability pj , and given that the current state j, the remaining sojourn

time in that state has the same distribution as the equilibrium distribution associated

with Gj . In hindsight, this is to be expected. We close this section with an example.
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Example 9.7 Remaining Service Time in an M/G/1 Queue. Let Z(t) be the

number of customers at time t in anM/G/1 queue with PP(λ) arrivals and iid service

times with common cdf F (·) and common mean τ . Define U(t) to be the remaining

service time of the customer in service at time t, if Z(t) > 0. If Z(t) = 0, define

U(t) = 0. Show that

lim
t→∞

P(U(t) > x|Z(t) > 0) =
1

τ

∫ ∞

x

(1 − F (u))du.

Let S0 = 0. If Z(Sn+) = 0 define Sn+1 be the time of arrival of the next

customer, and if Z(Sn+) > 0 define Sn+1 be the time of the next departure. Let

Xn = Z(Sn+). Then it can be seen that {(Xn, Sn), n ≥ 0} is a Markov renewal

sequence and

Gj(t) =

{

F (t) if i > 0,
1 − e−λt if i = 0.

Let {X(t), t ≥ 0} be the SMP generated by the Markov renewal sequence

{(Xn, Sn), n ≥ 0}. Let B(t) be as defined in Equation 9.34. Then it is clear that if

X(t) > 0, then B(t) = U(t). From Equation 9.38 we see that, for a stable queue,

lim
t→∞

P(B(t) > x|X(t) = j) =
1

τ

∫ ∞

x

(1 − F (u))du, j > 0. (9.39)

This yields the desired result, since Z(t) > 0 is equivalent to X(t) > 0. Thus, in

steady state when the server is busy, the remaining service time distribution is given

by the equilibrium distribution associated with the service time distribution. Thus

the expected remaining service time in steady state, given that the server is busy, is

given by E(S2)/2E(S).This fact is very important in many waiting time calculations.

Another curious fact to note is that Equation 9.39 fails if X(t) = j on the left hand

side is replaced by Z(t) = j!

9.6 Markov Regenerative Processes

We began this chapter with the definition of an MRGP in Definition 9.2. Markov

regenerative processes (MRGPs) are to the Markov renewal sequence what regener-

ative processes are to renewal sequences. Let {Z(t), t ≥ 0} be an MRGP with an

embedded MRS {(Xn, Sn), n ≥ 0}. We begin by assuming that the Z(t) and Xn

both take values in a discrete set I . We have seen several examples of MRGPs in

Section 9.1.

As with the SMPs we study the transient behavior of the MRGPs with countable

state-space I by concentrating on

Hij(t) = P(Z(t) = j|Z(0) = i), i, j ∈ I.

The next theorem gives the Markov renewal type equation satisfied by H(t) =
[Hij(t)].

Theorem 9.18 Transient Distribution of an MRGP. Let {Z(t), t ≥ 0} be an
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MRGP with embedded MRS {(Xn, Sn), n ≥ 0}with kernelG. Assume thatZ(t) ∈ I
for all t ≥ 0 and Xn ∈ I for all n ≥ 0, where I is a discrete set. Let

Dij(t) = P(Z(t) = j, S1 > t|Z(0) = i), i, j ∈ I,

and D(t) = [Dij(t)]. Then H(t) satisfies the following Markov renewal type equa-

tion:

H(t) = D(t) +G ∗H(t).

Proof: Condition on X1 and S1 to get

P(Z(t) = j|X0 = i,X1 = k, S1 = u)

=

{

Hkj(t− u) if u ≤ t,
P(Z(t) = j|X0 = i,X1 = k, S1 = u) if u > t.

Hence we get

Hij(t) =

∫ ∞

t

∑

k∈I

P(Z(t) = j|X0 = i,X1 = k, S1 = u)dGik(u) +

∑

k∈I

∫ t

0

Hkj(t− u))dGik(u)

= P(Z(t) = j, S1 > t|X0 = i) + [G ∗H(t)]ij ,

which yields the Markov renewal equation in the theorem.

Note that D(t) contains the information about the behavior of the MRGP over

the first cycle (0, S1). Thus the above theorem relates the behavior of the process at

time t to its behavior over the first cycle. In practice computingD(t) is not easy, and

solving the Markov renewal equation to obtainH(t) is even harder. Hence, following

the now well trodden path, we study its limiting behavior in the next theorem.

Theorem 9.19 Limiting Behavior of MRGPs. Let {Z(t), t ≥ 0} be an MRGP

with embedded MRS {(Xn, Sn), n ≥ 0} with kernel G satisfying conditions of The-

orem 9.3. Assume that Z(t) ∈ I for all t ≥ 0 and Xn ∈ I for all n ≥ 0, where I
is a discrete set. Let αkj be the expected time spent by the MRGP in state j during

(0, S1) starting with X0 = k. Furthermore, suppose that the sample paths of the

MRGP are right continuous with left limits, the SMP {X(t), t ≥ 0} generated by the

MRS {(Xn, Sn), n ≥ 0} is irreducible, aperiodic, positive recurrent, with limiting

distribution [pj , j ∈ I]. Then

lim
t→∞

P(Z(t) = j|X0 = i) =
∑

k∈I

pk
αkj

τk
, i, j ∈ I. (9.40)

Proof: Consider the Markov renewal type equation derived in Theorem 9.18. It is

straightforward to verify that the conditions of Theorem 9.9 are satisfied. Thus Equa-

tion 9.18 can be used to compute the limit of Hij(t) = P(Z(t) = j|X0 = i) as
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follows:

lim
t→∞

Hij(t) =

∫ ∞

0

∑

k∈I

pk

τk
Dkj(u)du. (9.41)

Now,

αkj = E(time spent by the MRGP in state j during (0, S1)|X0 = k)

= E

(∫ S1

0

1{Z(t)=j}dt

∣

∣

∣

∣

X0 = k

)

=

∫ ∞

0

E

(∫ S1

0

1{Z(t)=j}dt

∣

∣

∣

∣

X0 = k, S1 = u

)

dGk(u)

=

∫ ∞

0

∫ s

0

P(Z(t) = j|X0 = k, S1 = u)dtdGk(u)

=

∫ ∞

0

∫ ∞

t

P(Z(t) = j|X0 = k, S1 = u)dGk(u)dt

=

∫ ∞

0

P(Z(t) = j, S1 > t|X0 = k)dt

=

∫ ∞

0

Dkj(t)dt.

Substituting in Equation 9.41 we get Equation 9.40.

Note that the limiting distribution of the MRGP given in Equation 9.40 is indepen-

dent of the initial distribution of the MRS, or, initial value of X0. The distribution

itself can be intuitively explained as follows: Since every time the SMP {Z(t), t ≥ 0}
visits state k it spends τk amount of time there, we can interpret αk/τk as the time

time spent by the MRGP in state j per unit time spent in state k by the SMP. Since

pk is the fraction of the time spent in state k by the SMP in the long run, we can

compute

lim
t→∞

P(Z(t) = j|X0 = i)

= Long run fraction of the time spent by the MRGP in state j

=
∑

k∈I

[Long run fraction of the time spent by the SMP in state k] ×

[Long run time spent by the MRGP in state j per unit time spent by

the SMP in state k]

=
∑

k∈I

pk
αkj

τk
.

Now let us relax the assumption that the Z(t) and Xn take values in the same

discrete set I . Suppose Z(t) ∈ S for all t ≥ 0 and Xn ∈ I for all n ≥ 0. We can see

that 9.40 remains valid even in this case if S is also discrete. If S is continuous, say

(−∞,∞), we can proceed as follows: fix an x ∈ S, and define

Y (t) = 1{Z(t)≤x}, t ≥ 0.
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Then it is clear that {Y (t), t ≥ 0} is also an MRGP with the same embedded MRS

{(Xn, Sn), n ≥ 0}. We do need to assume that the sample paths of {Z(t), t ≥ 0}
are sufficiently nice so that the sample paths of {Y (t), t ≥ 0} are right continuous

with left limits. Next define αk(x) as the expected time spent by the {Z(t), t ≥ 0}
process in the set (−∞, x] during (0, S1) starting with X0 = k. Then we can show

that

lim
t→∞

P(Z(t) ≤ x|X0 = i) =
∑

k∈I

pk
αk(x)

τk
, i ∈ I, x ∈ S.

We illustrate with two examples.

Example 9.8 SMPs as MRGPs. Let {X(t), t ≥ 0} be an SMP with kernel G. We

saw in Example 9.2 that an SMP is a special case of an MRGP. Since

X(t) = X0, 0 ≤ t < S1,

we have

αkj =

{

τj if k = j,
0 if k 6= j.

Substituting in Equation 9.40 we get

lim
t→∞

P(X(t) = j|X0 = i) =
∑

k∈I

pk
αkj

τk
= pj,

as expected.

Example 9.9 Machine Maintenance. Consider a machine consisting of two iden-

tical components in series. The lifetimes of the components are iid exp(µ) random

variables. A single repairperson repairs these components, the repair times being iid

random variables with common cdf A(·) and mean τ . The components are as good

as new after repairs. Assume that the functioning component can fail even if the ma-

chine fails. Compute the long run fraction of the time that the machine is working.

Let Z(t) be the number of functioning components at time t. Let S0 = 0. If

Z(Sn+) = 2, define Sn+1 as the time of first failure after Sn. If Z(Sn+) = 0 or

1, define Sn+1 as the time of completion of repair of the item under repair at time

Sn+. Define Xn = Z(Sn+). Note that Xn ∈ {1, 2} even if Z(t) ∈ {0, 1, 2}. Then

{(Xn, Sn), n ≥ 0} is a Markov renewal sequence with kernel

G(x) =

[

G11(x) G12(x)
G21(x) G22(x)

]

,

where

G11(x) = P(Repair time ≤ x, one failure during repair|X0 = Z(0) = 1)

=

∫ x

0

(1 − e−µt)dA(t),

G12(x) = P(Repair time ≤ x, no failure during repair|X0 = Z(0) = 1)
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=

∫ x

0

e−µtdA(t),

G21(x) = P(Failure time ≤ x|X0 = Z(0) = 2)

=

∫ x

0

(1 − e−µt)dA(t),

G22(x) = 0.

Thus

G1(x) = G11(x) +G12(x) = A(x), τ1 = τ

and

G2(x) = G21(x) +G22(x) = 1 − e−2µx, τ2 = 1/2µ.

The transition probability matrix of {Xn, n ≥ 0} is

P = G(∞) =

[

1 − Ã(µ) Ã(µ)
1 0

]

,

where Ã(µ) =
∫∞
0 e−µtdA(t). To use Equation 9.40 we need to compute the limiting

distribution of the SMP {X(t), t ≥ 0} generated by the MRS {(Xn, Sn), n ≥ 0}
described above. We do that using Theorem 8.34 on page 8.34. We see that

π = [π1 π2] = [1 Ã(λ)]

satisfies π = πP . Substituting in Equation 8.66 we get

p1 = lim
t→∞

P(X(t) = 1) =
π1τ1

π1τ1 + π2τ2
=

2µτ

2µτ + Ã(µ)
,

p2 = lim
t→∞

P(X(t) = 2) =
π2τ2

π1τ1 + π2τ2
=

Ã(µ)

2µτ + Ã(µ)
.

From Equation 9.41, we see that the long run fraction of the time the machine is

up is given by

lim
t→∞

P(Z(t) = 2) = p1
α12

τ1
+ p2

α22

τ2
.

Thus we need to compute α12 and α22. We have

α12 = 0, α22 =
1

2µ
.

Substituting in the previous equation and simplifying, we see that the long run frac-

tion of the time the machine is up is given by

Ã(µ)

2µτ + Ã(µ)
.

Using the same procedure we can compute the entire limiting distribution of the

MRGP.
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9.7 Applications to Queues

In this section we apply the theory of MRGPs to the queueing systems. Specifically

we apply it to the birth and death queues, the M/G/1 queue, the G/M/1 queue, and

the M/G/1/1 retrial queue.

9.7.1 The Birth and Death Queues

Let Z(t) be the number of customers in a queueing system at time t. Assume that

{Z(t), t ≥ 0} is a birth and death process on {0, 1, 2, · · ·} with birth parameters

λi > 0 for i ≥ 0, and µi > 0 for i ≥ 1. We studied the limiting behavior of this

process in Example 6.35 on page 242. There we saw that such a queueing system is

stable if ∞
∑

i=0

ρi <∞,

where ρ0 = 1, and

ρi =
λ0λ1 · · ·λi−1

µ1µ2 · · ·µi
, i ≥ 1,

and its limiting distribution is given by

pj =
ρj

∑∞
i=0 ρi

, j ≥ 0.

Thus pj is the steady-state probability that there are j customers in the system. From

Section 7.1 recall that p∗j is the steady-state probability that an entering customer sees

j customers ahead of him at the time of entry. We saw in Theorem 7.3 that if λi = λ
for all i ≥ 0, we can apply PASTA (Theorem 7.3 on page 283, and noting that all

arriving customers enter) to see that p∗j = pj . We use the theory of MRGPs to derive

a relationship between π∗
j and pj in the general case in the next theorem.

Theorem 9.20 The Birth and Death Queue. For a stable birth and process queue,

π∗
j =

λjpj
∑∞

k=0 λkpk
, j = 0, 1, 2, · · · . (9.42)

Proof: Let S0 = 0, and Sn be the time of the nth upward jump in the {Z(t), t ≥ 0}.

Thus the nth entry to the queueing system takes place at time Sn. LetXn = Z(Sn−),
the number of customers as seen by the nth entering customer. Note that Xn = k
implies that Z(Sn+) = k + 1. Since {Z(t), t ≥ 0} is a CTMC, {(Xn, Sn), n ≥ 0}
is a Markov renewal sequence. Note that {Z(t), t ≥ 0} decreases over [0, S1), and

{Xn, n ≥ 0} is a DTMC with transition probabilities

pkj = mkj
λj

λj + µj
, 0 ≤ j ≤ k + 1, (9.43)

where

mk,k+1 = 1, mkj =

k+1
∏

r=j+1

µr

λr + µr
, 0 ≤ j ≤ k.
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Since

π∗
j = lim

n→∞
P(Xn = j), j ≥ 0, (9.44)

we see that {π∗
j , j ≥ 0} satisfy

π∗
j =

∞
∑

k=j−1

π∗
kpkj =

∞
∑

k=j−1

π∗
kmkj

λj

λj + µj
, j ≥ 0. (9.45)

We can interpret mkj as the probability that the {Z(t), t ≥ 0} process visits state j
over [0, S1) starting with X0 = k. We can treat {Z(t), t ≥ 0} as an MRGP with the

embedded MRS {(Xn, Sn), n ≥ 0}. Let {X(t), t ≥ 0} be the SMP generated by the

MRS {(Xn, Sn), n ≥ 0}. We change the notation slightly and use

pj = lim
t→∞

P(Z(t) = j), j ≥ 0, (9.46)

and

p̄j = lim
t→∞

P(X(t) = j), j ≥ 0. (9.47)

We use Theorem 8.34 on page 382 to get

p̄j =
π∗

jτj
∑∞

k=0 π
∗
kτk

, j ≥ 0.

Now, let αkj be as defined in Theorem 9.19. Note that the MRGP can visit state j
at most once during [0, S1), mkj is the probability that the MRGP visits state j over

(0, S1) starting with X0 = k, and 1/(λj + µj) is the average time it spends in state

j once its reaches state j. These observations can be combined to yield

αkj = mkj
1

λj + µj
, 0 ≤ j ≤ k + 1.

Using the above results in Theorem 9.19 we get

pj =
∞
∑

k=j−1

p̄k
αkj

τk
=

∑∞
k=j−1 π

∗
kαkj

∑∞
k=0 π

∗
kτk

, j ≥ 0.

Now we have
∞
∑

k=j−1

π∗
kαkj =

∞
∑

k=j−1

π∗
kmkj

1

λj + µj

=
1

λj

∞
∑

k=j−1

π∗
kmkj

λj

λj + µj

=
1

λj

∞
∑

k=j−1

π∗
kpkj (from Eq. 9.43)

=
π∗

j

λj
(from Eq. 9.45).
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Hence pj ∝ π∗
j/λj , or π∗

j ∝ λjpj . Since the π∗
j must add up to 1, we get Equa-

tion 9.42 as desired.

The relation in Equation 9.42 has a simple intuitive explanation: λjpj is the rate at

which state j+1 is entered from state j in steady state. Hence it must be proportional

to the probability that an entering customer sees j customers ahead of him.

Now let πj be the limiting probability that a departing customer leaves behind j
customers in the system. One can define an appropriate Markov renewal sequence

and follow the steps of the proof of Theorem 9.20 to show that

πj =
µj+1pj+1
∑∞

k=1 µkpk
, j = 0, 1, 2, · · · . (9.48)

However, for a positive recurrent birth and death process we have

λjpj = µj+1pj+1, j ≥ 0.

Hence we get

πj =
λjpj

∑∞
k=0 λkpk

= π∗
j , j = 0, 1, 2, · · · . (9.49)

Thus, in steady state, the distribution of the number of customers as seen by an ar-

rival is the same as seen by a departure. This is a probabilistic proof of the general

Theorem 7.2 on page 281.

9.7.2 The M/G/1 Queue

LetZ(t) the number of customers in a stableM/G/1 queue at time twith arrival rate

λ and service time cdfB(·) with mean τ . We showed in Example 9.3 that {Z(t), t ≥
0} is an MRGP with the embedded Markov renewal sequence {(Xn, Sn), n ≥ 0} as

defined there. Let {X(t), t ≥ 0} be the SMP generated by this MRS. Let pj and p̄j

be as defined in Equations 9.46 and 9.47. Also define

πj = lim
n→∞

P(Xn = j), j ≥ 0.

Thus πj is the probability that a departing customer leaves behind j customers in

steady-state. We had used PASTA and other properties of general queueing systems

to show that πj = pj in Example 7.6. Here we derive this result by using the theory

of MRGPs.

Theorem 9.21 M/G/1 Queue. For a stable M/G/1 queue

pj = πj , j ≥ 0.

Proof: We have shown in Theorem 7.10 that {Xn, n ≥ 0} is a DTMC with transi-

tion probability matrix P as given there. We need the following quantities to apply
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Theorem 8.34 on page 382:

τ0 =
1

λ
+ τ, τj = τ, j ≥ 1.

Using Equation 8.66 we get

p̄j =
πjτj

∑∞
k=0 πkτk

, j ≥ 0.

From Equation 7.35 on page 314 we get

π0 = 1 − λτ.

Hence we have ∞
∑

k=0

πkτk = τ + π0/λ = 1/λ.

Thus we get

p̄j = λπjτj . (9.50)

In order to use Theorem 9.19 we need to compute αkj , the expected time spent by

the MRGP in state j over [0, S1) starting with X0 = k. Note that the sojourn time of

the SMP in state k > 0 is given by Gk(x) = B(x). For j ≥ k > 0 we have

αkj = E

(∫ S1

0

1Z(t)=jdt

∣

∣

∣

∣

X0 = k

)

=

∫ ∞

0

E

(∫ S1

0

1Z(t)=jdt

∣

∣

∣

∣

X0 = k, S1 = u

)

dGk(u)

=

∫ ∞

0

∫ u

0

P(Z(t) = j
∣

∣

∣X0 = k, S1 = u)dtdB(u)

=

∫ ∞

0

∫ u

0

P(j − k arrivals in [0, t))dtdB(u)

=

∫ ∞

0

∫ u

0

e−λt (λt)j−k

(j − k)!
dtdB(u)

=
1

λ

[

1 −
j−k
∑

r=0

αr

]

where

αi =

∫ ∞

0

e−λt (λt)i

i!
dB(t), i ≥ 0.

In a similar way we can show that

α00 = 1/λ, α0j = α1j , j ≥ 1.

Substituting in Equation 9.41 we get

pj =

∞
∑

k=0

p̄k
αkj

τk
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= λ

j
∑

k=0

πkαkj (Use Eq. 9.50)

= λ

(

π0α0j +

j
∑

k=1

πkαkj

)

= πj ,

where the last equality follows by using the balance equation π = πP repeatedly to

simplify the right hand side.

We cannot use theory of MRGP to prove π∗
j = pj in a similar way. However, we

have seen in Example 7.6 that π∗
j = πj , and hence we have a direct proof of PASTA

for the M/G/1 queue.

9.7.3 The G/M/1 Queue

Let Z(t) the number of customers in a stable G/M/1 queue at time t with common

inter-arrival time cdf A(·) with mean 1/λ and iid exp(µ) service times. We showed

in Example 9.4 that {Z(t), t ≥ 0} is an MRGP with the embedded Markov renewal

sequence {(Xn, Sn), n ≥ 0} as defined there. Let {X(t), t ≥ 0} be the SMP gener-

ated by this MRS. Let pj , p̄j and π∗
j be as defined in Equations 9.46, 9.47, and 9.44.

Here we use the theory of MRGPs to give a computational proof of Theorem 7.16.

Theorem 9.22 Limiting Distribution of a G/M/1 Queue. For a G/M/1 queue

with ρ = λ/µ < 1 the limiting distributions {pj, j ≥ 0} and {π∗
j , j ≥ 0} are related

as follows:

p0 = 1 − ρ,

pj = ρπ∗
j−1, j ≥ 1.

Proof: We have shown in Theorem 7.14 on page 317 that {Xn, n ≥ 0} (it was

denoted by {X∗
n, n ≥ 0} there) is a DTMC with transition probability matrix P as

given in Equation 7.38. We need the following quantities to apply Theorem 8.34 on

page 382:

τj = 1/λ, j ≥ 0.

Substituting in Equation 8.66 we get

p̄j = π∗
j , j ≥ 0. (9.51)

In order to use Theorem 9.19 we need to compute αkj . Note that the sojourn time

of the SMP in state k ≥ 0 is given by Gk(x) = A(x). Going through the same

calculations as in the proof of Theorem 9.21 we get, for 1 ≤ j ≤ k + 1

αkj =
1

µ

[

1 −
k+1−j
∑

r=0

αr

]

,
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where

αi =

∫ ∞

0

e−µt (µt)
i

i!
dA(t), i ≥ 0.

Substituting in Equation 9.41 we get, for j ≥ 1,

pj =

∞
∑

k=j

p̄k
αkj

τk

= λ
∞
∑

k=j

π∗
kαkj (Use Eq. 9.51)

=
λ

µ

∞
∑

k=j−1

π∗
k

[

1 −
k+1−j
∑

r=0

αr

]

= ρπ∗
j−1,

where the last equality follows by using the balance equation π∗ = π∗P repeatedly

to simplify the right hand side. Finally, we have

p0 = 1 −
∞
∑

j=1

pj = 1 − ρ

∞
∑

j=1

π∗
j−1 = 1 − ρ.

This completes the proof.

9.7.4 The M/G/1/1 Retrial Queue

Consider the M/G/1/1 retrial queue as described in Example 9.5. Using the no-

tation there we see that {Z(t) = (R(t), I(t)), t ≥ 0} is an MRGP with the MRS

{(Xn, Sn), n ≥ 0} defined there. Let {X(t), t ≥ 0} be the SMP generated by this

MRS. Note that this is different than the X(t) defined in Example 9.5. Let p̄j be as

defined in Equations 9.46. We have derived the limiting distribution of the embedded

DTMC {Xn, n ≥ 0} in Theorem 7.19. We use those results to derive the limiting

distribution of (R(t), I(t)) as t→ ∞.

Let

p(j,i) = lim
t→∞

P((R(t), I(t)) = (j, i)), j ≥ 0, i = 0, 1, (9.52)

and define the generating functions

φi(z) =
∞
∑

j=0

zkp(j,i), i = 0, 1.
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Theorem 9.23 M/G/1/1 Retrial Queue. Suppose ρ = λτ < 1. The

φ0(z) = (1 − ρ) exp

(

−λ
θ

∫ 1

z

1 − G̃(λ− λu)

G̃(λ− λu) − u
du

)

, (9.53)

φ1(z) = (1 − ρ)
G̃(λ− λz) − 1

z − G̃(λ − λz)
· exp

(

−λ
θ

∫ 1

z

1 − G̃(λ− λu)

G̃(λ− λu) − u
du

)

. (9.54)

Proof: We have shown in Theorem 7.18 on page 321 that {Xn, n ≥ 0} is a DTMC.

Let

πk = lim
n→∞

P(Xn = k), k ≥ 0.

In Theorem 7.19 we computed the generating function

φ(z) =

∞
∑

k=0

zkπk.

We also derived a peculiar, but useful, generating function

ψ(z) = λ

∞
∑

k=0

zk πk

λ+ kθ

in Equation 7.51 on page 323. From there we see that

ψ(1) = 1 − ρ.

Next we compute the relevant quantities.

τk =
1

λ+ kθ
+ τ, k ≥ 0,

αk,(k,0) =
1

λ+ kθ
, k ≥ 0,

αk,(j,0) = 0, if k 6= j.

The quantities αk,(j,1) are more complicated, however, we do not need them, as we

shall see. We have
∞
∑

k=0

πkτk = τ +
∞
∑

k=0

πk

λ+ kθ

= τ +
ψ(1)

λ
=

1

λ
.

This is to be expected, since the left hand side is the expected time between two

successive departures in steady state, and hence must equal 1/λ, the expected time

between two consecutive arrivals. Substituting in Equation 8.66 we get

p̄j = λπjτj . (9.55)

Substituting in Equation 9.41 we get

p(j,0) =

∞
∑

k=0

p̄k

αk,(j,0)

τk
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= λ

∞
∑

k=0

πkαk,(j,0) (Use Eq. 9.55)

=
λ

λ+ jθ
πj .

Thus

φ0(z) =
∞
∑

j=0

zk λ

λ+ jθ
πj = ψ(z).

The Equation 9.53 now follows from Equations 7.51 and 7.52.

Now let φ(z) be the limiting generating function ofXn as derived in Equation 7.46

on page 322. We saw in Section 7.7 that it is also the limiting generating function of

R(t) + I(t) as t→ ∞. Hence we get

φ(z) = φ0(z) + zφ1(z).

Substituting for φ(z) and φ0(z) we get the expression for φ1(z) in Equation 9.54.

Note that the limiting probability that the server is idle is given by

φ0(1) = 1 − ρ,

as expected. It is a bit surprising that this is independent of the retrial rate θ as long

as it is positive! We could not derive this result in our earlier analysis of the retrial

queue in Section 7.7.

9.8 Modeling Exercises

9.1 LetZ(t), t ≥ 0} be a birth and death process. Let Sn be the nth downward jump

epoch and define Xn = X(Sn+). Assume that S0 = 0. Show that {Z(t), t ≥ 0} is

an MRGP with {(Xn, Sn), n ≥ 0} as the embedded MRS. Compute its kernel.

9.2 Let Z(t) be the number of customers in an M/G/1/K queue with PP(λ) ar-

rivals and common service time cdf B(·). Assume that either the system is empty

initially, or a service has just started at time 0. Let Sn be the time of the nth de-

parture, and define Xn = Z(Sn+). Show that {Z(t), t ≥ 0} is an MRGP with

{(Xn, Sn), n ≥ 0} as the embedded MRS. Compute its kernel.

9.3 Let Z(t) be the number of customers in an G/M/1/K queue with common

inter-arrival time cdf A(·), and iid exp(µ) service times. Assume that an arrival

has occurred at time 0. Let Sn be the time of the nth arrival (who may or or may

not enter), and define Xn = Z(Sn−). Show that {Z(t), t ≥ 0} is an MRGP with

{(Xn, Sn), n ≥ 0} as the embedded MRS. Compute its kernel.
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9.4 Consider a closed queueing network with two single-server nodes and N cus-

tomers. After completing service at node 1 (2) a customer joins node 2 (1). The

service times at node i are iid exp(µi), (1, 2). Let Z(t) be the number of customers

at node 1 at time t, and Sn be the time of nth service completion at node 2, which is

also an arrival instant at node 1. Assume S0 = 0, i.e., a service completion at node

2 has occurred at time 0. Let Xn = Z(Sn−). Show that {Z(t), t ≥ 0} is an MRGP

with {(Xn, Sn), n ≥ 0} as the embedded MRS. Compute its kernel.

9.5 Consider a workshop with N machines and a single repairperson. Lifetimes of

the machines are iid exp(µ), and the repair times are iid with common cdf R(·). Let

Z(t) be the number of down machines at time t, Sn the nth repair completion time,

and Xn = Z(Sn+). Assume that a repair has just completed at time 0. Show that

{Z(t), t ≥ 0} is an MRGP with {(Xn, Sn), n ≥ 0} as the embedded MRS. Compute

its kernel.

9.6 Consider the queueing network of Modeling Exercise 9.4. Suppose one of the

N customer is tagged, and let Sn be the time of his nth return to node 1. Assume

S0 = 0, i.e., the tagged customer joins node 1 at time 0. Let Xn = Z(Sn−). Show

that {Z(t), t ≥ 0} is an MRGP with {(Xn, Sn), n ≥ 0} as the embedded MRS.

Compute its kernel.

9.7 A machine can exist in one of N + 1 states labeled {0, 1, 2, · · · , N}, with state

0 representing a new machine, and state N representing a failed machine, and the in-

between states indicating increasing levels of deterioration. Left to itself the machine

changes states according to a DTMC with transition probability matrix H = [hij ].
The maintenance policy calls for repairing the machine whenever it reaches a state

k or more, where 0 < k ≤ N is a given integer. Suppose the repair takes one

unit of time and transforms the machine from state i(≥ k) to state j(< k) with

probability aij . Let Sn be the nth repair completion time and Xn the state of the

machine immediately after the nth repair completion. Assume that S0 = 0. Let Z(t)
be the state of the machine at time t. Show that {Z(t), t ≥ 0} is an MRGP with

{(Xn, Sn), n ≥ 0} as the embedded MRS. Compute its kernel.

9.8 A machine is maintained by a robot. The lifetime of a new machine is an Exp(µ)

random variable. When the machine fails, it is repaired by a robot in a fixed amount

of time r. After repair the machine is as good as new. After repair, the robot needs a

down time of a fixed amount d. If the machine fails when the robot is down, it has to

wait for the robot to become available again. Let Z(t) be 0 if the machine is down

and waiting for repair, 1 if the machine is under repair, and 2 if the machine is up.

Show that {Z(t), t ≥ 0} is an MRGP.

9.9 A high-speed network transmits cells (constant length packets of data) over

communication channels. At its input ports it exercises access control by dropping

incoming cells if the input rate gets too high. One such control mechanism is de-

scribed here. The controller generates r tokens at times n = 0, 1, 2, · · · into a token

pool of size M . Tokens that exceed the capacity are lost. The cells arrive according
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to a PP(λ). If there is a token available when a cell arrives, it grabs one token and

enters the network immediately, else the cell is prohibited from entering the network

and is permanently lost. Let X(t) be the number of tokens in the token pool at time

t. Model {X(t), t ≥ 0} as an MRGP.

9.10 Consider following modification to the access control mechanism of Model-

ing Exercise 9.9. The incoming cells are queued up in a buffer of size L. When an

incoming cell finds no tokens, it waits in the buffer and enters the network as soon

as the next token becomes available. Thus the token pool and the buffer cannot be

simultaneously non-empty. Let Y (t) be the number of cells in the buffer at time t,
and define Z(t) = X(t) − Y (t). Model {Z(t), t ≥ 0} as an MRGP.

9.11 Customers arrive at a service station according to a Poisson process with rate

λ. Servers arrive at this station according to an independent renewal process with

iid inter-arrival times with mean τ and second moment s2. Each incoming server

removes each of the waiting customer with probability α > 0 in an independent

fashion, and departs immediately. LetX(t) be the number of customers in the system

at time t. Model {X(t), t ≥ 0} as an MRGP by identifying an appropriate MRS

embedded in it.

9.9 Computational Exercises

9.1 Consider a system that cycles through N states labeled 1, 2, · · · , N starting in

state 1. It stays in state i for a random amount of time with cdf Hi and then jumps to

state i + 1 if i < N and state 1 if i = N . Let Sn be the time of the nth transition,

with S0 = 0, andXn be the state of the system after the nth jump. Compute the LST

M̃(s) of the Markov renewal function M(t) for the MRS {(Xn, Sn), n ≥ 0}.

9.2 Let {Z(t), t ≥ 0} be a CTMC with generator matrix Q. For the MRS described

in Example 9.1, compute the LST M̃(s) of the Markov renewal function M(t).

9.3 Compute the limiting probability that 0 or 1 components are functional in the

machine in Example 9.9.

9.4 Consider a two state CTMC {X(t), t ≥ 0} on {0, 1} with generator matrix

Q =

[

−λ λ
µ −µ

]

.

Let Hij(t) be the expected time spent in state j by the CTMC up to time t starting

in state i at time 0. Derive a Markov renewal type equation for H(t). Solve it by

inverting its LST H̃(s).

9.5 Consider an M/M/1 queue with balking as follows: an incoming customer

joins the system with probability 1/(j + 1) if he sees j customers ahead of him.

Compute the steady state probability that
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1. an entering customer sees j customers ahead of him when he joins,

2. a potential arrival joins the system.

9.6 Let pj be the limiting probability that there are j customers in an M/G/1/K
queue, and π∗

j be the limiting probability that an entering customer sees j customers

ahead of him when he enters. Using the theory of MRGPs, establish the relationship

between the pj’s and the π∗
j ’s.

9.7 Compute the long run behavior of the access control scheme described in Mod-

eling Exercise 9.9 for the special case when M = r.

9.8 Consider the following variation of the M/G/1/1 retrial queue. Suppose that

after a service completion a customer departs with probability 1 − p, or rejoins the

orbit with probability p and behaves like a new customer. Study the limiting distri-

bution of this system using appropriate MRGPs.

9.9 Consider yet another variation of the M/G/1/1 retrial queue. Suppose that an

arriving customer joins service immediately if he finds the server free upon arrival.

Else he departs with probability 1 − p, or joins the orbit with probability p and con-

ducts retrials until getting served. Study the limiting distribution of this system using

appropriate MRGPs.

9.10 Using the MRGP developed in Modeling Exercise 9.8, compute the long run

fraction of the time that the machine is up.

9.11 Consider the MRGP developed in Modeling Exercise 9.11. LetXn be the num-

ber of customers left behind after the nth server departs. Compute the limiting value

of E(Xn) as n→ ∞. Compute the limiting value of E(X(t)) as t→ ∞.

9.10 Conceptual Exercises

9.1 Complete the proof of Theorem 9.1.

9.2 Prove Theorem 9.2.

9.3 Consider the Markov renewal sequence embedded in a CTMC as described in

Example 9.1. Show that the regularity condition in Equation 9.5 is satisfied if an only

if the CTMC is uniformizable.

9.4 Derive Equation 9.11.

9.5 Let {(Xn, Sn), n ≥ 0} be a given Markov renewal sequence with kernel G.

Show that the process {X(t), t ≥ 0} defined by Equation 9.7 is an SMP with kernel

G.
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9.6 Prove Theorem 9.10 by using the first step analysis to compute the second mo-

ments.

9.7 Using the fact that Mjj is a standard renewal function and Mij (i 6= j) is a

delayed renewal function with common inter-renewal time τjj , prove Theorem 9.11.

9.8 Use the results of Examples 8.16 on page 361 and 8.20 on page 370 to prove

Theorem 9.12.

9.9 Derive the Markov-renewal type equation 9.28 with D(t) as in Equation 9.29.

(Use the derivational steps in Example 8.16 on page 361.)

9.10 Complete the algebraic calculations leading to Equation 9.30.



CHAPTER 10

Diffusion Processes

Suppose you’re on a game show, and you’re given the choice of three doors. Behind

one door is a car, behind the others, goats. You pick a door, say #1, and the host, who

knows what’s behind the doors, opens another door, say #3, which has a goat. He

says to you, “Do you want to pick door #2?” Is it to your advantage to switch your

choice of doors?

A question asked of Marilyn vos Savant by a reader. Marilyn said yes, while count-

less others said, “It does not matter.” This created a heated controversy, and pro-

duced several papers, with one reader telling Marilyn: “You are the goat!”

10.1 Brownian Motion

In this chapter we study a class of stochastic processes called the diffusion processes.

Intuitively speaking these processes are continuous-time, continuous state-space pro-

cesses and their sample paths are everywhere continuous but nowhere differentiable.

The history of diffusion processes begins with the botanist Brown, who in 1827 ob-

served that grains of pollen suspended in a liquid display a kind of erratic motion.

This motion came to be known as the Brownian motion. Einstein later used physical

principles to do a mathematical analysis of this motion. Wiener later provided rigor-

ous probabilistic foundation for the Brownian motion, and hence some times it is also

called the Wiener process. Diffusion processes are built upon the simpler process of

Brownian motion.

We begin with a formal definition. It uses the concept of stationary and indepen-

dent increments introduced in Definition 5.5 on page 157. We also use the notationR
to denote the real line (−∞,∞), and N(µ, σ2) to denote a Normal random variable

(or its distribution) with mean µ and variance σ2.

Definition 10.1 Brownian Motion (BM). A stochastic process {X(t), t ≥ 0} with

state-space R is called a Brownian motion (BM) with drift parameter µ ∈ R and

variance parameter σ > 0 if

445
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1. for each t ≥ 0, X(t) ∼ N(µt, σ2t),

2. it has stationary and independent increments.

We shall denote a BM with parameters µ and σ by BM(µ, σ).

Definition 10.2 Standard Brownian Motion (SBM). A BM(0,1) is called a stan-

dard Brownian motion (SBM).

We reserve the notation {B(t), t ≥ 0} for the standard BM. Some important prop-

erties of a Brownian motion are given in the following theorem.

Theorem 10.1 Basic Properties of a BM. Let {B(t), t ≥ 0} be an SBM, and define

X(t) = µt+ σB(t).

1. {X(t), t ≥ 0} is a BM(µ, σ).

2. X(0) = B(0) = 0 with probability 1.

3. {X(t), t ≥ 0} is a Markov process.

4. {−X(t), t ≥ 0} is a BM(−µ, σ).

Proof: Parts 1 and 2 follow from part 1 of the definition of a BM. To see part 3, we

have

P(X(t+ s) ≤ x|X(s) = y,X(u) : 0 ≤ u ≤ s)

= P(X(t+ s) −X(s) ≤ x− y|X(s) = y,X(u) : 0 ≤ u ≤ s)

= P(X(t+ s) −X(s) ≤ x− y) (Independent Increments)

= P(X(t) −X(0) ≤ x− y) (Stationary Increments)

= Φ

(

x− y − µt

σ
√
t

)

where Φ(·) is the cdf of a standard normal random variable, and the last equality

follows from part 1 of the definition of a BM. Part 4 follows from the definition of a

BM(µ, σ).

The last property mentioned in the above theorem implies that if {B(t), t ≥ 0} is

an SBM, then so is {−B(t), t ≥ 0}. We say that an SBM is symmetric.

We next compute the joint pdf of an SBM. By definition,B(t) is aN(0, t) random

variable, and has the density φ(t, x) given by

φ(t, x) =
1√
2πt

e−
x2

2t , t > 0, x ∈ R. (10.1)

Since Brownian motion has such a nice structure we can give much more detailed

results about its finite dimensional joint pdfs.
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Theorem 10.2 Joint Distributions of an SBM. Let {B(t), t ≥ 0} be an SBM,

and 0 < t1 < t2 < · · · < tn. Then [B(t1), B(t2), · · · , B(tn)] is a multi-variate

N(µ,Σ) random variable with the mean vector µ = [µi], 1 ≤ i ≤ n, and variance-

covariance matrix Σ = [σij ], 1 ≤ i, j ≤ n, given by

µi = 0, 1 ≤ i ≤ n,

and

σij = min{ti, tj}, 1 ≤ i, j ≤ n.

Proof: Let t0 = 0 and define Yi = B(ti) − B(ti−1), 1 ≤ i ≤ n. Then from the

definition of the SBM we see that Y = [Y1, Y2, · · · , Yn] is a multivariate normal

with mean vector µ(Y ) = 0 and variance-covariance matrix Σ(Y ) = diag(t1 −
t0, t2− t1, · · · , tn− tn−1). We see thatB = [B(t1), B(t2), · · · , B(tn)] = AY where

A = [aij ] is given by

ai,j =

{

1 if i ≥ j,
0 if i < j.

Hence B is a multivariate normal random variable. Its mean vector and variance-

covariance matrix can be computed by

µ = Aµ(Y )0, Σ = AΣ(Y )AT .

The result follows from this.

Since all the finite dimensional joint pdfs in an SBM are multi-variate normal,

explicit expressions can be computed for many probabilistic quantities. For example,

the joint density f(x, y) of B(s) and B(t) (0 < s < t) is

f(x, y) = φ(s, x)φ(t − s, y − x) =
1

2π
√

s(t− s)
e−

x2

2s
− (y−x)2

2(t−s) . (10.2)

One can show that, given B(t) = x, B(s) is a normal random variable with mean

xs/t and variance s(t−s)/t. A special case of this arises when we consider the SBM

conditioned on B(1) = 0. Such a process is called the Brownian bridge, since it is

anchored at 0 at times 0 and 1. We can see that B(t) (0 ≤ t ≤ 1) in a Brownian

bridge is a normal random variable with mean 0 and variance t(1 − t).

We next state two more basic properties of the BM without proof. First we need

two definitions.

Definition 10.3 Stopping Times. A random variable T defined on the same proba-

bility space as a stochastic process {X(t), t ≥ 0} is called a stopping time for the

{X(t), t ≥ 0} if the event {T ≤ t} is completely determined by {X(u) : 0 ≤ u ≤ t}.

For example,

T = min{t ≥ 0 : X(t) ≥ 2}
is a stopping time, but

T = min{t ≥ 0 : X(t) ≥ X(1)}
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is not. In the latter case we cannot determine if T ≤ 1/2 without observing X(1),
which is not part of {X(u) : 0 ≤ u ≤ 1/2}.

Definition 10.4 Strong Markov Property. A Markov process {X(t), t ≥ 0} is said

to be a strong Markov process (or to have a strong Markov property) if, for any

stopping time T , the finite dimensional distributions of {X(t), t ≥ T }, given {X(u) :
0 ≤ u ≤ T }, depend only on X(T ).

The above definition is mathematically imprecise as it stands, but its meaning is clear:

The future of the process from any stopping time onwards depends on the history up

to that stopping time only via the value of the process at that stopping time. We will

need an enormous mathematical apparatus from measure theory to make it precise,

and we shall not do so here. For the same reason, it is difficult to come up with an

example of a Markov process that is not strong Markov. The DTMCs and the CTMCs

that we have studied so far have strong Markov property. We state the following

theorem without proof.

Theorem 10.3 A BM(µ, σ) is a strong Markov process.

10.2 Sample Path Properties of BM

In this section we shall study several important properties of the sample paths of a

BM. We state the first property in the next theorem.

Theorem 10.4 The sample paths of {X(t), t ≥ 0} are everywhere continuous and

nowhere differentiable with probability 1.

This is one of the deep results about Brownian motion. It is much stronger than as-

serting that the sample paths as a function of t are continuous for almost all values

of t ≥ 0. This property is valid even for the sample paths of a Poisson process since

they have a countable number of jumps with probability one. But none of the sample

paths of a Poisson process is continuous everywhere. What the above theorem as-

serts is that, with probability one, a randomly occurring sample path of a Brownian

motion is a continuous function of t for all t ≥ 0. Even more surprisingly, it asserts

that, with probability one, a randomly occurring sample path of a Brownian motion

is nowhere differentiable. Thus the sample paths of a Brownian motion are indeed

very crazy functions of t.

We will not give formal proof of the above theorem. Instead we shall provide a way

to understand such a bizarre behavior by proposing an explicit method of construct-

ing the sample paths of an SBM as a limit of a sequence of simple symmetric random

walks. Recall from Example 2.10 on page 16 that {Xn, n ≥ 0} is called a simple

symmetric random walk if it is a DTMC on all integers with transition probabilities

pi,i+1 = 1/2, pi,i−1 = 1/2, −∞ < i <∞.
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Using the notation [x] to denote the integer part of x, define a sequence of continuous

time stochastic processes {Xk(t), t ≥ 0}, indexed by k ≥ 1, as follows:

Xk(t) =
X[kt]√
k
, t ≥ 0. (10.3)

Figure 10.1 shows the typical sample paths of the {Xk(t), 0 ≤ t < 1} processes

–1

–0.8

–0.6
X4(t)

X9(t)

t

–0.4

–0.2

0.2

0.4

0

Figure 10.1 Typical sample paths of the {Xk(t), 0 ≤ t < 1} processes for k = 4 and 9.

for k = 4 and k = 9, corresponding to the sample path [X0, X1 · · · , X9] =
[0, −1, −2, −1, 0, 1, 0, −1, −2, 0]. Now define

X∗(t) = lim
k→∞

Xk(t), t ≥ 0, (10.4)

where the limit is in the almost sure sense. (See Appendix H for the relevant defi-

nitions.) Thus a sample path of {Xn, n ≥ 0} produces a unique (in the almost sure

sense) sample path of {X∗(t), t ≥ 0}. We have the following result:

Theorem 10.5 Random Walk to Brownian Motion. Suppose |X0| < ∞ with

probability 1. Then limiting process {X∗(t), t ≥ 0} defined by Equation 10.3 exists,

and is an SBM.

Proof: We will not show the existence. Let {Yn, n ≥ 0} be a sequence of iid random

variables with common pmf

P(Yn) = 1 = .5, P(Yn = −1) = .5, n ≥ 1.

We have

E(Yn) = 0, Var(Yn) = 1, n ≥ 1.

Since {Xn, n ≥ 0} is a simple random walk, we see that

Xn = X0 +

n
∑

i=1

Yi. (10.5)
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Then

X∗(t) = lim
k→∞

X0 +
∑[kt]

i=1 Yi√
k

= lim
k→∞

√

[kt]√
k

X0 +
∑[kt]

i=1 Yi
√

[kt]

=
√
tN(0, 1) (in distribution)

= N(0, t) (in distribution).

This shows part 1 of the Definition 10.2.

Next we show that {X∗(t), t ≥ 0} has stationary and independent increments.

From Equation 10.5 we see that {Xk(t), t ≥ 0} has stationary and independent

increments as long as the end-points of the intervals over which the increments are

computed are integer multiples of 1/k. Hence in the limit, as k → ∞, {X∗(t), t ≥ 0}
has stationary increments as long as the intervals have rational start and end points,

and hence for all intervals. Thus {X∗(t), t ≥ 0} satisfies both parts of the Defini-

tion 10.2.

This explicit construction of an SBM is useful in getting an intuitive understanding

of the behavior of its sample paths. For example, the sample paths of {Xk(t), t ≥ 0}
are piecewise constant functions of time t with jumps of ±1/

√
k at all times t that

are integer multiples of 1/k. Hence as k → ∞ the sample paths become continuous

everywhere. Furthermore, for any t the finite derivative of the {Xk(t), t ≥ 0} process

is given by
Xk(t+ 1/k)−Xk(t)

1/k
= ±

√
k.

Thus in the limit the finite derivative has limsup of +∞ and liminf of −∞. Thus in

the limit the sample paths of an SBM are nowhere differentiable.

10.3 Kolmogorov Equations for Standard Brownian Motion

Let p(t, x) be the density ofB(t). Since the SBM is a Markov process, we can expect

to derive differential equations for p(t, x), much along the lines of the Chapman-

Kolmogorov Equations we derived in Theorem 6.4 on page 205. However, since

the state-space of the SBM is continuous, we need a different machinery to derive

these equations. The formal derivation of these equations is rather involved, and we

refer the reader to advanced books on the subject, such as Chung (1967). Here we

present an “engineering” derivation, which glosses over some of the technicalities.

The following theorem gives the main differential equation, which is equivalent to

the forward equations derived in Theorem 6.4. We shall use the following notation
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for the partial derivatives:

pt(t, x) =
∂p(t, x)

∂t
,

px(t, x) =
∂p(t, x)

∂x
,

pxx(t, x) =
∂2p(t, x)

∂x2
.

Theorem 10.6 Kolmogorov Equation for SBM. The density p(t, x) satisfies the

following partial differential equation:

pt(t, x) =
1

2
pxx(t, x), x ∈ R, t ≥ 0, (10.6)

with the boundary condition

p(0, x) = fB(0)(x).

Proof: We assume that p(t, x) is continuously differentiable in t and twice continu-

ously differentiable in x. Write

B(t) = (B(t) −B(t− h)) +B(t− h).

Note that B(t − h) is independent of B(t) − B(t − h) due to the independence of

the increments. Furthermore, stationarity of increments implies that B(t)−B(t−h)
is identical to B(h) − B(0) = B(h) ∼ N(0, h) in distribution. Conditioning on

B(t− h) we get

p(t, x) =

∫

R
p(t− h, y)fB(h)(x− y)dy, (10.7)

where fB(h)(·) is the density of aB(h). Using Taylor series expansion for p(t−h, y)
around (t, x), we get

p(t− h, y) = p(t, x) − hpt(t, x) + (y − x)px(t, x) +
(y − x)2

2
pxx(t, x) + · · · .

Substituting in Equation 10.7 we get

p(t, x) =

∫

R
[p(t, x) − hpt(t, x) + (y − x)px(t, x)

+
(y − x)2

2
pxx(t, x) + o((y − x)2)]fB(h)(x− y)dy

= p(t, x) − hpt(t, x) − E(B(h))px(t, x) +
E(B(h)2)

2
pxx(t, x) + o(h)

= p(t, x) − hpt(t, x) +
h

2
pxx(t, x) + o(h).

Here we have used the fact that all odd moments of B(h) are zero, and

E(B(h)2k) =
(2k)!

2kk!
hk,
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to obtain the o(h) term. Dividing by h we get

pt(t, x) =
1

2
pxx(t, x) +

o(h)

h
.

Letting h→ 0 we get equation 10.6.

Equation 10.6 is the forward differential equation. It is also possible to derive

the backward differential equations, but we do not present it here. Under the initial

condition B(0) = 0, the above equation has a unique solution given by

p(t, x) = φ(t, x), t > 0, x ∈ R, (10.8)

which is the density of a N(0, t) random variable. We shall find this method of de-

riving partial differential equations quite useful when dealing with Brownian motion

and related processes. The following theorem gives an extension of the above theo-

rem to a BM(µ, σ).

Theorem 10.7 Kolmogorov Equation for BM. Let {X(t), t ≥ 0} be a BM(µ, σ)

and let p(t, x) be the density of X(t). It satisfies the following partial differential

equation:

pt(t, x) = −µpx(t, x) +
σ2

2
pxx(t, x), x ∈ R, t ≥ 0, (10.9)

with the boundary condition

p(0, x) = fX(0)(x).

Proof: See Computational Exercise 10.8.

10.4 First Passage Times

Following our plan of studying any class of stochastic processes, we now study the

first passage times in an SBM. Define

Ta = min{t ≥ 0 : B(t) = a} (10.10)

as the first passage time to the state a. Note that this is a well defined random variable

since the sample paths of the SBM are everywhere continuous with probability 1. It

is clear that Ta is a stopping time, since one can tell if the SBM has visited state a by

time t by looking at the sample path of the SBM over [0, t]. The next theorem gives

the pdf of Ta. It uses a clever argument called ”reflection principle,” which uses the

symmetry of the SBM and its strong Markov property.

Theorem 10.8 Pdf of Ta. Let Ta be as defined in Equation 10.10. If a 6= 0, the pdf

of Ta is given by

fTa
(t) =

|a|√
2πt3

e−
a2

2t , t > 0. (10.11)
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If a = 0, Ta = 0 with probability 1.

Proof: Suppose a > 0. We have

P(Ta ≤ t) = P(Ta ≤ t, B(t) ≥ a) + P(Ta ≤ t, B(t) < a).

Since the paths of an SBM are continuous, if a sample path is above a at time t, it

must have crossed a at or before t. Thus {B(t) ≥ a} ⇒ {Ta ≤ t}. Hence

P(Ta ≤ t, B(t) ≥ a) = P(B(t) ≥ a) = P(B(t) > a).

Next, if Ta ≤ t, then due to strong Markov property, the {B(t+Ta)−B(Ta), t ≥ 0}
is an SBM and is independent of {B(u) : 0 ≤ u ≤ Ta}. Thus

P(Ta ≤ t, B(t) < a)

= P(Ta ≤ t, B(Ta + t− Ta) −B(Ta) < a)

= P(Ta ≤ t, B(Ta + t− Ta) −B(Ta) > a) (SBM is symmetric)

= P(Ta ≤ t, B(t) > a) = P(B(t > a).

Combining the above observations we get

P(Ta ≤ t) = 2P(B(t) > a) = 2

∫ ∞

a

φ(t, u)du. (10.12)

Taking derivatives on both sides with respect to t (this is a bit tedious), we get the

pdf given in Equation 10.11. The case of a < 0 follows in a symmetric fashion. If

a = 0, the above equation implies

P(T0 ≤ t) = 2P(B(t) > 0) = 1, t ≥ 0.

Hence T0 = 0 with probability 1.

Note that we can do direct computations to show that

E(Ta) =

∫ ∞

0

tfTa
(t)dt = ∞, (a 6= 0).

Thus the SBM reaches any state a eventually with probability 1, but the expected time

to do so is infinity, except when a = 0. This should remind the reader the definitions

of null recurrence of DTMCs and CTMCs. In some sense, an SBM is a null recurrent

Markov process, although we have not formally defined this concept for continuous

state-space Markov processes. In retrospect, this is not surprising, since an SBM is a

limit of a simple symmetric random walk which is a null recurrent DTMC. From the

above theorem we immediately get the distribution of the maximum and the mini-

mum of an SBM.

Theorem 10.9 The Max and Min of an SBM. The densities of

U(t) = max{B(u) : 0 ≤ u ≤ t}, L(t) = min{B(u) : 0 ≤ u ≤ t},
are given by

fU(t)(a) = fL(t)(−a) =

√

2

πt
e−

a2

2t , a ≥ 0.
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Proof: We see that, for a ≥ 0,

{U(t) ≥ a} ⇔ {Ta ≤ t}.
From Equation 10.12 we get

P(U(t) ≥ a) = P(Ta ≤ t) = 2

∫ ∞

a

φ(t, u)du.

The result follows from taking derivatives with respect to a. The result about the

minimum follows by using the fact that {−B(t), t ≥ 0} is also an SBM.

Extending this analysis to a BM(µ, σ) with µ 6= 0 is a not straightforward, since

we do not have symmetry property when µ 6= 0. We follow a different, and more

general approach to analyze this problem. To be precise, let {X(t), t ≥ 0} be a

BM(µ, σ), and, for a > 0, define

Ta = min{t ≥ 0 : X(t) = a},
and let

ψ(s) = E(e−sTa),

be its LST. The main result is given in the next theorem. It uses the infinitesimal

version of the first step analysis that we have used before in the CTMCs and the

DTMCs. In this analysis we will need to consider a BM starting from any state x ∈
R. If {X(t), t ≥ 0} is a BM (starting in state 0, by definition), then {x+X(t), t ≥ 0}
is a BM starting in state x.

Theorem 10.10 LST of Ta. Let a > 0. Then

ψ(s) = exp(a(µ−
√

µ2 + 2σ2s)/σ2). (10.13)

P(Ta <∞) =

{

1 if µ ≥ 0,

e2µa/σ2
if µ < 0,

(10.14)

E(Ta) =

{

a/µ if µ > 0,
∞ if µ ≤ 0.

(10.15)

Proof: We shall do an infinitesimal first step analysis and derive a differential equa-

tion for the LST

ψ(s, x) = E(e−sTa |X(0) = x).

Note that, since a > 0 andX(0) = 0, we can redefine the above first passage time as

Ta = min{t ≥ 0 : X(t) ≥ a}.
We know thatX(h)−X(0) ∼ N(µh, σ2h). SupposeX(0) = x andX(h)−X(0) =
y. If x + y > a, Ta ≈ h. Else, due to the Markov property of the BM, Ta has the

same distribution as h+ Ta starting from state x+ y. Using this argument and fh(·)
as the pdf of X(h) −X(0) we get

ψ(s, x) = E(e−sTa |X(0) = x)
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=

∫

y∈R
E(e−sTa |X(h) −X(0) = y,X(0) = x)fh(y)dy

=

∫

y∈R
E(e−s(Ta+h)|X(0) = x+ y)fh(y)dy

=

∫

y∈R
e−shψ(s, x+ y)fh(y)dy.

Now, for a fixed s, the Taylor expansion of ψ(s, x + y) around x yields

ψ(s, x+ y) = ψ(s, x) + yψ′(s, x) +
y2

2
ψ′′(s, x) + · · · ,

where the superscripts ′ and ′′ denote the first and second derivative with respect to

x. Substituting in the previous equation we get

ψ(s, x) =

∫

y∈R
e−sh[ψ(s, x) + yψ′(s, x) +

y2

2
ψ′′(s, x) + · · ·]fh(y)dy

= e−sh[ψ(s, x) + E(X(h) −X(0))ψ′(s, x) +

E((X(h) −X(0))2)

2
ψ′′(s, x) + · · ·]

= e−sh[ψ(s, x) + µhψ′(s, x) +
σ2h

2
ψ′′(s, x)] + o(h).

Using e−sh = 1 − sh+ o(h) and collecting the o(h) terms we get

ψ(s, x) = (1 − sh)ψ(s, x) + µhψ′(s, x) +
σ2h

2
ψ′′(s, x) + o(h).

Dividing by h and letting h→ 0, we get

sψ(s, x) − µψ′(s, x) − σ2

2
ψ′′(s, x) = 0. (10.16)

This is a second order differential equation with constant coefficients. Hence it has

a solution

ψ(s, x) = Aeθx, −∞ < x < a,

where A is an arbitrary constant. Substituting in Equation 10.16, we get

s− µθ − σ2θ2

2
= 0.

This has two solutions:

θ1 =
−µ+

√

µ2 + 2σ2s

σ2
, θ2 =

−µ−
√

µ2 + 2σ2s

σ2
.

Now, one expects that as x → −∞, Ta → ∞, and hence ψ(s, x) → 0. Thus we

should use the solution θ = θ1. Thus we get

ψ(s, x) = A exp(θ1x).
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Finally, we have the boundary condition

ψ(s, a) = 1,

since x = a⇒ Ta = 0. Using this we get

ψ(s, x) = exp(θ1(x− a)).

The required LST is given by

ψ(s) = ψ(s, 0).

This yields equation 10.13. Equations 10.14 and 10.15 can be derived by using the

properties of the LST.

The case of a < 0 can be handled by simply studying the −a case in a BM(−µ, σ).

Next let a < 0 and b > 0 and define

Tab = min{t ≥ 0 : X(t) ∈ {a, b}}. (10.17)

Thus Tab is the first time the BM(µ, σ) reaches either a or b. Following Theo-

rem 10.10 we give the main result in the following theorem.

Theorem 10.11 Mean of Tab . Let

θ = −2µ

σ2
. (10.18)

Then

P(X(Tab) = b) =
exp(θa) − 1

exp(θa) − exp(θb)
, (10.19)

E(Tab) =
b(exp(θa) − 1) − a(exp(θb) − 1)

µ(exp(θa) − exp(θb))
. (10.20)

In particular, when µ = 0,

P(X(Tab) = b) =
|a|

|a| + b
, (10.21)

E(Tab) = |a|b/σ2. (10.22)

Proof: Let

v(x) = P(X(Tab) = b|X(0) = x).

Using the notation from the proof of Theorem 10.10, we get, for a < x < b,

v(x) =

∫

y∈R
v(x+ y)fh(y)dy

=

∫

y∈R
[v(x) + yv′(x) +

y2

2
v′′(x) + · · ·]fh(y)dy

= v(x) + µhv′(x) +
σ2h

2
v′′(x) + o(h).
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Dividing by h and letting h→ 0, we get

σ2

2
v′′(x) + µv′(x) = 0.

The solution to the above equation is

v′(x) = Ceθx,

where

θ = −2µ

σ2
.

This yields

v(x) = Aeθx +B,

where A and B are arbitrary constants. Using the boundary conditions

v(a) = 0, v(b) = 1,

we get the complete solution as

v(x) =
exp(θa) − exp(θx)

exp(θa) − exp(θb)
. (10.23)

Substituting x = 0 gives Equation 10.19.

To derive Equation 10.20, let

m(x) = E(Tab|X(0) = x).

Then, for a < x < b, we have

m(x) =

∫

y∈R
[h+m(x+ y)]fh(y)dy

= h+

∫

y∈R
[m(x) + ym′(x) +

y2

2
m′′(x) + · · ·]fh(y)dy

= h+m(x) + µhm′(x) +
σ2h

2
m′′(x) + o(h).

Simplifying and dividing by h and letting h→ 0, we get

σ2

2
m′′(x) + µm′(x) = −1.

The solution to the above equation is

m′(x) = Ceθx − 1/µ,

which yields

m(x) = Aeθx +B − x/µ,

where A and B are arbitrary constants. Using the boundary conditions

m(a) = m(b) = 0,
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we get the complete solution as

m(x) =
(a− b) exp(θx) + b exp(θa) − a exp(θb)

µ(exp(θa) − exp(θb))
− x

µ
.

The required solution is given by m(0) and is given in Equation 10.20. This proves

the theorem. The results for the case µ = 0 are obtained by taking the limits of Equa-

tions 10.19 and 10.20 as µ→ 0.

We shall show an alternate method of deriving the results of the above theorem by

using the concept of Martingales in Section 10.7.

10.5 Reflected SBM

We begin with the definition of the reflected standard Brownian motion.

Definition 10.5 Reflected SBM. Let {B(t), t ≥ 0} be an SBM. The process

{Y (t), t ≥ 0} defined by

Y (t) = |B(t)|, t ≥ 0, (10.24)

is called an SBM reflected at the origin, or simply a reflected SBM.

The nomenclature makes intuitive sense because one can obtain a sample path of

{Y (t), t ≥ 0} by reflecting the parts of the sample path of an SBM that lie below

zero around the horizontal axis x = 0 in the (t, x) plane, as shown in Figure 10.2.

t

Y(t)

Figure 10.2 A typical sample path of an SBM reflected at 0.

We also say that x = 0 is a reflecting boundary. The following theorem lists the

important properties of a reflected SBM.

Theorem 10.12 Properties of Reflected SBM. Let {Y (t), t ≥ 0} be a reflected

Brownian motion. Then

1. The state-space of {Y (t), t ≥ 0} is [0,∞).

2. {Y (t), t ≥ 0} is a Markov process.

3. The increments of {Y (t), t ≥ 0} are stationary, but not independent.
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4. For a fixed t ≥ 0, Y (t) has density given by

fY (t)(y) = 2φ(t, y), t ≥ 0, y ≥ 0.

5. E(Y (t)) =
√

2t
π , Var(Y (t)) =

(

1 − 2
π

)

t.

Proof: Part 1 is obvious from the definition. To show part 2, we exploit the following

consequence of the symmetry of the SBM

P(−y ≤ B(t+ s) ≤ y|B(t) = x) = P(−y ≤ B(t+ s) ≤ y|B(t) = −x).
Now let 0 ≤ t1 < t2 < · · · < tn < tn + s. We have

P(Y (tn + s) ≤ y|Y (ti) = yi, 1 ≤ i ≤ n)

= P(−y ≤ B(tn + s) ≤ y|B(ti) = ±yi, 1 ≤ i ≤ n)

= P(−y ≤ B(tn + s) ≤ y|B(ti) = yi, 1 ≤ i ≤ n) (by symmetry)

= P(−y ≤ B(tn + s) ≤ y|B(tn) = yn) (SBM is Markov)

= P(−y − yn ≤ B(tn + s) −B(tn) ≤ y − yn|B(tn) = yn)

=

∫ y

−y

φ(s, x − yn)dx (SBM has ind. inc.).

The last equality follows because B(tn + s)−B(tn) is independent of B(tn) and is

Normally distributed with mean 0 and variance s. This proves the Markov property.

It also implies that given Y (t) = x, the density of the increment Y (t + s) − Y (t)
is φ(s, y) + φ(s,−y − 2x) = φ(s, y) + φ(s, y + 2x). This shows the stationarity of

increments. Since the density depends on x, the increments are clearly not indepen-

dent. That proves part 3. Part 4 follows by taking the derivatives with respect y on

both sides of

P(Y (t) ≤ y) = P(−y ≤ B(t) < y) =

∫ y

−y

φ(u, t)du,

and using the symmetry of the φ density. Part 5 follows by direct integrations.

The symmetry of the SBM can be used to study its reflection across any horizontal

line x = a, not just across the t−axis x = 0. In case a > 0, we consider the process

that is reflected downward, so that the reflected process {Ya(t), t ≥ 0} has state-

space (−∞, a] and is defined by

Ya(t) = a− |a−B(t)|, t ≥ 0.

Similarly, in case a < 0, we consider the process that reflected upward, so that the

reflected process {Ya(t), t ≥ 0} has state-space [a,∞) and is defined by

Ya(t) = |B(t) − a| + a, t ≥ 0.

For a = 0, we could use either of the above two definitions. The Definition 10.6

corresponds to using the upward reflection. A typical sample path of such a process

is shown in Figure 10.3.
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Ya(t)

0

a

Figure 10.3 A typical sample path of a BM reflected downward at a > 0.

Theorem 10.13 Let Sa = [a,∞) if a ≤ 0, and (−∞, a] if a > 0. The density

p(t, y) of Ya(t) is given by

p(t, y) = φ(t, y) + φ(t, 2a− y), y ∈ Sa. (10.25)

Proof: Consider the case a > 0. Using symmetry, we get for x ≥ 0,

P(a− Ya(t) ≤ x) = P(a− x ≤ B(t) ≤ a+ x) =

∫ a+x

a−x

φ(t, u)du.

Making the change of variables y = a− x, the above equation yields

P(Ya(t) ≥ y) =

∫ 2a−y

y

φ(t, u)du, y ∈ Sa.

Taking the derivatives with respect to y we can derive the density given in Equa-

tion 10.25. The case a ≤ 0 is similar.

How does the partial differential equation of Theorem 10.6 account for the reflect-

ing boundaries? We state the result in the following theorem.

Theorem 10.14 Kolmogorov Equation for the Reflected SBM. Let p(t, y) be the

density Ya(t). It satisfies the partial differential equation and the boundary condi-

tions of Theorem 10.6, and it satisfies an additional boundary condition:

py(t, a) = 0, t ≥ 0.

Proof: The proof of the partial differential equation is as in Theorem 10.6. The proof

of the boundary condition is technical, and beyond the scope of this book.

Note that the partial derivative in the boundary condition of the above theorem is

to be interpreted as the right derivative if a ≤ 0 and the left derivative if a > 0. The

reader should verify that the density in Equation 10.25 satisfies the partial differential

equation and the boundary condition.
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10.6 Reflected BM and Limiting Distributions

Analysis of a reflected BM(µ, σ) is much harder when µ 6= 0 due to the lack of

symmetry. In fact a reflected BM cannot be defined as in Equation 10.24, and we

need a new definition given below.

Definition 10.6 Reflected BM. Let {X(t), t ≥ 0} be a BM(µ, σ). The process

{Y (t), t ≥ 0} defined by

Y (t) = X(t) − inf
0≤u≤t

X(u), t ≥ 0, (10.26)

is called a BM reflected at the origin, or simply a reflected BM.

Note that |X(t)| is a very different process than the reflected BM defined above.

The two are identical (in distribution) if µ = 0. Since we do not have symmetry,

we derive the marginal distribution of a reflected BM by deriving the Kolmogorov

equation satisfied by its density in the next theorem.

Theorem 10.15 Kolmogorov Equation for a Reflected BM. Let {Y (t), t ≥ 0} be

a BM(µ, σ) reflected at the origin, and let p(t, y) be the density of Y (t). It satisfies

the following partial differential equation:

pt(t, y) = −µpy(t, y) +
σ2

2
pyy(t, y), y > 0, t ≥ 0, (10.27)

with boundary conditions

p(0, y) = fY (0)(y),

µp(t, 0) =
σ2

2
py(t, 0), t > 0.

Proof: The proof of the partial differential equation is as in Theorem 10.7. The first

boundary condition is as in Theorem 10.7. The proof of the second boundary condi-

tion is technical, and beyond the scope of this book.

One can similarly study a Brownian motion constrained to lie in the interval [a, b]
with X(0) ∈ [a, b]. A typical sample path such a BM is shown in Figure 10.4. Thus

it is reflected up at a and down at b. Giving the functional form of such a BM along

the same lines as Equation 10.26 is not possible. However, we give the Kolmogorov

equation satisfied by its density in the next theorem. The proof is omitted.

Theorem 10.16 Kolmogorov Equation for a BM on [a, b]. Let {Y (t), t ≥ 0} be

a BM(µ, σ) reflected up at a and down at b, with X(0) ∈ [a, b]. Let p(t, y) be the

density of Y (t). It satisfies the following partial differential equation:

pt(t, y) = −µpy(t, y) +
σ2

2
pyy(t, y), t ≥ 0, y ∈ [a, b], (10.28)
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t

a

b

X(t)

0

Figure 10.4 A typical sample path of a BM constrained to lie in [a, b].

with boundary conditions

µp(t, a) =
σ2

2
py(t, a), t > 0

µp(t, b) =
σ2

2
py(t, b), t > 0.

Note that py(t, a) is to be interpreted as the right derivative, and py(t, b) as the

left derivative. Although, one can solve the above equation analytically, the result is

complicated, and hence we do not give it here. Below we study the solution when

t→ ∞.

Theorem 10.17 Limiting Distribution. Let p(t, y) be as in Theorem 10.16. The

limiting distribution

p(y) = lim
t→∞

p(t, y), y ∈ [a, b],

is given by

p(y) =
θ exp(θy)

exp(θb) − exp(θa)
, y ∈ [a, b], (10.29)

where

θ =
2µ

σ2
.

Proof: We shall assume that the limiting distribution [p(y), a ≤ y ≤ b] exists. Hence

we expect

lim
t→∞

pt(t, y) = 0, y ∈ [a, b].

Substituting in Equation 10.28 we get

d2

dy2
p(y) − θ

d

dy
p(y) = 0,

with θ = 2µ/σ2. The solution to the above equation is given by

p(y) = A exp(θy) +B, y ∈ [a, b].
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The boundary conditions in Theorem 10.16 reduce to

θp(a) = p′(a),

θp(b) = p′(b).

Both these conditions yield only one equation: B = 0. The remaining constant A
can be evaluated by using

∫ b

a

p(y)dy = 1.

This yields the solution given in Equation 10.29.

10.7 BM and Martingales

We begin with the definition of Martingale.

Definition 10.7 Martingales. A discrete time real valued stochastic process

{Xn, n ≥ 0} is called a Martingale if

E(Xn+m|Xn, Xn−1, · · · , X0) = Xn, n,m ≥ 0. (10.30)

A continuous time real valued stochastic process {X(t), t ≥ 0} is called a Martin-

gale if

E(X(t+ s)|X(u) : 0 ≤ u ≤ s) = X(s), s, t ≥ 0. (10.31)

Example 10.1 Random Walk Martingale. Let {Yn, n ≥ 1} be a sequence of iid

random variables with E(Yn) = 0. Define

X0 = 0, Xn = Y1 + Y2 + · · · + Yn, n ≥ 1.

Then

E(Xn+m|Xn, Xn−1, · · · , X0) = Xn + E(

m
∑

k=1

Yn+k) = Xn, n ≥ 0.

Hence {Xn, n ≥ 0} is a Martingale.

Example 10.2 Linear Martingale. Let {X(t), t ≥ 0} be a BM(µ, σ), and define

Y (t) = X(t) − µt, t ≥ 0.

Show that {Y (t), t ≥ 0} is a Martingale.

Note that conditioning on {Y (u) : 0 ≤ u ≤ s} is equivalent to conditioning on

{X(u) : 0 ≤ u ≤ s}. From the properties of BM we see that X(t + s) − X(s) is

independent of {X(u) : 0 ≤ u ≤ s} and has N(µt, σ2t) distribution. Using this we

get

E(Y (t+ s)|Y (u) : 0 ≤ u ≤ s)
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= E(X(t+ s) − µ(t+ s)|X(u) : 0 ≤ u ≤ s)

= E(X(t+ s) −X(s) − µt+X(s) − µs|X(u) : 0 ≤ u ≤ s)

= E(X(t+ s) −X(s) − µt|X(u) : 0 ≤ u ≤ s)

+E(X(s)− µs|X(u) : 0 ≤ u ≤ s)

= X(s) − µs = Y (s).

Thus {Y (t), t ≥ 0} is a Martingale. As a special case we see that the SBM {B(t), t ≥
0} is a Martingale.

Example 10.3 Quadratic Martingale. Let {B(t), t ≥ 0} be the SBM, and define

Y (t) = B2(t) − t, t ≥ 0.

Show that {Y (t), t ≥ 0} is a Martingale.

Using the same arguments as in Example 10.2, we get

E(Y (t+ s)|Y (u) : 0 ≤ u ≤ s)

= E(B2(t+ s) − (t+ s)|B2(u) − u : 0 ≤ u ≤ s)

= E((B(t+ s) −B(s) +B(s))2 − (t+ s)|B(u) : 0 ≤ u ≤ s)

= E((B(t+ s) −B(s))2|B(u) : 0 ≤ u ≤ s)

+E(2(B(t+ s) −B(s))B(s)|B(u) : 0 ≤ u ≤ s)

+E(B(s)2|B(u) : 0 ≤ u ≤ s) − (t+ s)

= t+B2(s) − (t+ s)

= B2(s) − s = Y (s).

Thus {B2(t) − t, t ≥ 0} is a Martingale.

Example 10.4 Exponential Martingale. Let {X(t), t ≥ 0} be a BM(µ, σ). For a

θ ∈ R define

Y (t) = exp

(

θX(t) − (θµ+
1

2
θ2σ2)t

)

, t ≥ 0.

Show that {Y (t), t ≥ 0} is a Martingale.

Using the same reasoning as in Example 10.2, we get

E(Y (t+ s)|Y (u) : 0 ≤ u ≤ s)

= E(exp(θX(t+ s) − (θµ+
1

2
θ2σ2)(t+ s))|X(u) : 0 ≤ u ≤ s)

= E(exp(θ(X(t+ s) −X(s) +X(s)) −

(θµ+
1

2
θ2σ2)(t+ s))|X(u) : 0 ≤ u ≤ s)

= exp(−(θµ+
1

2
θ2σ2)(t+ s)) ·

E(exp(θ(X(t+ s) −X(s))) exp(θX(s))|X(u) : 0 ≤ u ≤ s)

= exp(θX(s) − (θµ+
1

2
θ2σ2)(t+ s)) ·
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E(exp(θ(X(t+ s) −X(s)))|B(u) : 0 ≤ u ≤ s)

= exp(θX(s) − (θµ+
1

2
θ2σ2)(t+ s))E(exp(θX(t)))

= exp(θX(s) − (θµ+
1

2
θ2σ2)s) = Y (s).

The penultimate equality follows from the expression for the LST of a N(µt, σ2t)
random variable. Thus {Y (t), t ≥ 0} is a Martingale. As a special case we see that

exp(θB(t) − θ2t/2) is a Martingale.

One of the main results about Martingales is the optional sampling theorem (also

called the stopping theorem), stated below for the continuous time case.

Theorem 10.18 Optional Sampling Theorem. Let {X(t), t ≥ 0} be a Martingale

and T be a stopping time. If P(T < ∞) = 1 and |X(min(T, t))| ≤ K < ∞ for all

t ≥ 0, then

E(X(T )) = E(X(0)).

We do not include the proof of this theorem here. Similar theorem holds for the

discrete time Martingales as well. We illustrate the theorem by using it to derive the

results of Theorem 10.11.

Example 10.5 Let {X(t), t ≥ 0} be a BM(µ, σ). Let a < 0 and b > 0 be given,

and Tab be the first time the BM visits a or b. From Example 10.4 we conclude that

exp(θX(t)) is a Martingale if we choose

θ = −2µ

σ2
.

Since X(t) ∼ N(µt, σ2t), we see that X(t) will eventually go below a or above b
with probability 1. Hence P(Tab < ∞) = 1. Also a ≤ X(min(Tab, t)) ≤ b for all

t ≥ 0. Hence we can apply Theorem 10.18. We have

E(exp(θX(Tab))) = E(exp(θX(0))) = 1.

Now let α = P(X(Tab) = b) be the probability that the BM visits b before it visits

a. Then

1 = E(exp(θX(Tab))) = exp(θb)α+ exp(θa)(1 − α).

Solving for α we get the result in Equation 10.19.

To derive E(Tab) we use the linear Martingale X(t) − µt of Example 10.2. Using

Theorem 10.18 we get

E(X(Tab) − µTab) = E(X(0) − µ0) = 0.

Hence

E(Tab) =
E(X(Tab))

µ
=
bα+ a(1 − α)

µ
.

Simplifying this we get Equation 10.20.
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10.8 Cost/Reward Models

LetX(t) be the state of a system at time t, and suppose {X(t), t ≥ 0} is a BM(µ, σ).

Suppose the system incurs costs at rate f(x) whenever it is in state x. Using α ≥ 0 as

a continuous discount factor, we see that the expected total discounted cost (ETDC)

over [0, t] starting in state x is given by

c(t, x) = E

(∫ t

0

e−αuf(X(u))du|X(0) = x

)

, x ∈ R.

The next theorem gives the partial differential equation satisfied by the function c.

Theorem 10.19 ETDC Over [0, t]. The function c(t, x) satisfies the following par-

tial differential equation:

ct(t, x) = f(x) − αc(t, x) + µcx(t, x) +
σ2

2
cxx(t, x). (10.32)

The boundary condition is c(0, x) = 0.

Proof: We shall do an infinitesimal first step analysis and derive a differential equa-

tion for c(t, x). We know that X(h) −X(0) ∼ N(µh, σ2h). Using fh(·) as the pdf

of X(h) −X(0) we get

c(t, x)

= E

(∫ t

0

e−αuf(X(u))du

∣

∣

∣

∣

X(0) = x

)

=

∫

y∈R
E

(∫ t

0

e−αuf(X(u))du

∣

∣

∣

∣

X(h) −X(0) = y,X(0) = x

)

fh(y)dy

=

∫

y∈R

[

f(x)h+ E

(∫ t

h

e−αuf(X(u))du

∣

∣

∣

∣

X(h) = x+ y

)

+ o(h)

]

fh(y)dy

=

∫

x∈R
[f(x)h+ e−αhc(t− h, x+ y) + o(h)]fh(y)dy.

Now the Taylor expansion of c(t− h, x+ y) around (t, x) yields

c(t− h, x+ y) = c(t, x) + ycx(t, x) +
y2

2
cxx(t, x) − hct(t, x) + · · · .

Substituting in the previous equation we get

c(t, x)

=

∫

x∈R
[f(x)h+ e−αh(c(t, x) + ycx(t, x) +

y2

2
cxx(t, x) − hct(t, x))

+o(h)]fh(y)dy

= f(x)h+ e−αh[c(t, x) + E(X(h) −X(0))cx(t, x)

+
E((X(h)−X(0))2)

2
cxx(t, x) − hct(t, x)] + o(h)
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= f(x)h+ e−αh[c(t, x) + µhcx(t, x) +
σ2h

2
cxx(t, x) − hct(t, x)] + o(h).

Using e−αh = 1 − αh+ o(h) and collecting the o(h) terms we get

c(t, x) = f(x)h+ (1−αh)c(t, x) + µhcx(t, x) +
σ2h

2
cxx(t, x)− hct(t, x) + o(h).

Dividing by h and letting h→ 0, we get

f(x) − αc(t, x) + µcx(t, x) +
σ2

2
cxx(t, x) − ct(t, x) = 0. (10.33)

Rearranging this yields Equation 10.32.

If f is a reasonably simple function, we do not need to solve the partial differential

equation to compute the ETDCs, as shown in the following example.

Example 10.6 Quadratic Cost Model. Suppose f(x) = βx2, where β > 0 is a

fixed constant. Compute c(t, 0).
We have

c(t, 0) = E

(∫ t

0

e−αuβX2(u)du

∣

∣

∣

∣

X(0) = 0

)

=

∫ t

0

e−αuβE(X2(u)

∣

∣

∣

∣

X(0) = 0)du

=

∫ t

0

e−αuβ(σ2u+ µ2u2)du

= βσ2(1 − e−αt(1 + αt))/α2 + 2βµ2(1 − e−αt(1 + αt+
1

2
α2t2))/α3.

If we let t→ ∞, we get the ETDC over the infinite horizon as

c(∞, 0) = 2β(µ2 +
α

2
σ2)/α3.

If we let α→ 0 in the expression for c(t, 0) we get the expected total cost over [0, t]
as

β

(

1

2
σ2t2 +

1

3
µ2t3

)

.

This implies that the average cost per unit time c(t, 0)/t goes to infinity as t→ ∞.

In many applications the cost rate at time t is given by f(t,X(t)). In this case we

define the ETDC over [0, t] as

c(t, x) = E

(
∫ t

0

e−αuf(u,X(u))du

∣

∣

∣

∣

X(0) = x

)

, x ∈ R.
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In this case we cannot derive a differential equation for c(t, x). In stead, we use the

brute force formula

c(t, x) =

∫ t

0

e−αu
E(f(u,X(u)) | X(0) = x)du, x ∈ R.

Since we know the distribution of X(u), E(f(u,X(u)) is available in closed form if

f is reasonably simple. Hence the integral can be evaluated as a standard Riemann

integral.

In c(t, x) we computed the ETDC over [0, t], where t is a fixed constant. In many

applications we are interested in the ETDC over [0, T ], where T is a random vari-

able, typically a stopping time for the underlying process. Here we consider the case

where T = Tab, where Tab is the first passage time to the set {a, b}, as defined in

Equation 10.17. Let

c(x) = E

(∫ Tab

0

e−αuf(X(u))du

∣

∣

∣

∣

X(0) = x

)

, a ≤ x ≤ b.

The next theorem describes the differential equation satisfied by c(x) and also the

solution.

Theorem 10.20 ETDC over [0, Tab]. The function c(x) satisfies the following par-

tial differential equation:

−αc(x) + µ
dc(x)

dx
+
σ2

2

d2c(x)

dx2
= −f(x). (10.34)

The boundary condition is c(a) = c(b) = 0.

Proof: As in the proof of Theorem 10.19 we do an infinitesimal first step analysis

and derive a differential equation for c(x). We have

c(x) = E

(∫ Tab

0

e−αuf(X(u))du

∣

∣

∣

∣

X(0) = x

)

=

∫

y∈R
E

(∫ Tab

0

e−αuf(X(u))du

∣

∣

∣

∣

X(h) −X(0) = y,X(0) = x

)

fh(y)dy

=

∫

y∈R

[

f(x)h+ E

(∫ Tab

h

e−αuf(X(u))du

∣

∣

∣

∣

X(h) = x+ y

)

+ o(h)

]

fh(y)dy

=

∫

x∈R
[f(x)h+ e−αhc(x+ y) + o(h)]fh(y)dy.

Now, for a fixed h, the Taylor expansion of c(x + y) around x yields

c(x+ y) = c(x) + yc′(x) +
y2

2
c′′(x) + · · · .

Substituting in the previous equation we get

c(x) =

∫

y∈R
[f(x)h+ e−αh(c(x) + yc′(x) +

y2

2
c′′(x) + · · ·)]fh(y)dy
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= f(x)h+ e−αh[c(x) + E(X(h) −X(0))c′(x)

+
E((X(h) −X(0))2)

2
c′′(x) + · · ·]

= f(x)h+ e−αh[c(t, x) + µhc′(x) +
σ2h

2
c′′(x)] + o(h).

Using e−αh = 1 − αh+ o(h) and collecting the o(h) terms we get

c(x) = f(x)h+ (1 − αh)c(x) + µhc′(x) +
σ2h

2
c′′(x) + o(h).

Dividing by h and letting h→ 0, we get

f(x) − αc(x) + µc′(x) +
σ2

2
c′′(x) = 0. (10.35)

Rearranging this yields Equation 10.34. The boundary conditions follow since Tab =
0 if X(0) = a or X(0) = b.

Recall the following notation from the proof of Theorem 10.11:

θ = −2µ/σ2,

s(x) = exp(θx),

v(x) =
s(a) − s(x)

s(a) − s(b)
.

One can verify by direct substitution that, whenα = 0, the solution to Equation 10.34

is given by

c(x) = − 1

µ

(

v(x)

∫ b

x

(s(b− u) − 1)f(u)du+ (1 − v(x))

∫ x

a

(1 − s(a− u))f(u)du

)

,

(10.36)

for a ≤ x ≤ b. When µ = 0, the above reduces to

c(x) =
2

σ2

(

x− a

b− a

∫ b

x

(b− u)f(u)du+
b− x

b− a

∫ x

a

(u− a)f(u)du

)

, a ≤ x ≤ b.

(10.37)

We apply the above results to a simple control policy in the example below.

Example 10.7 Control Policy for an SBM. Suppose the state of a system evolves

according to an SBM. When the system is in state x, the system incurs holding cost

at rate cx2. We have an option of instantaneously changing the state of the system to

zero at any time by paying a fee of K . Once the system state is reset, it evolves as

an SBM until the next intervention. Since the stochastic evolution is symmetric, we

use the following control policy parameterized by a single parameter b > 0: reset the

system state back to state 0 when it reaches state b or −b. Compute the value of b that

minimizes the long run cost per unit time of operating the system.
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Let Y (t) be the state of the system at time t, and let

T = min{t ≥ 0 : Y (t) = b or Y (t) = −b}.
Then Y (T+) = Y (0) = 0, and the system regenerates at time T . Let c(0) be the

expected holding cost over (0, T ] starting from state 0. From Equation 10.37 we get

c(0) = c

(∫ b

0

(b− u)u2du+

∫ 0

−b

(u+ b)u2du

)

= cb4/6. (10.38)

Thus the total cost over a cycle (0, T ] is K + cb4/6. The expected length of the

cycle is given by Equation 10.22 as E(T ) = b2. From the results on renewal reward

processes we get the long run cost per unit time as

K + cb4/6

b2
.

This is a convex function over b > 0 and is minimized at

b∗ =

(

6K

c

)1/4

.

Note that b∗ increases as c decreases or K increases, as expected.

10.9 Stochastic Integration

In the previous section we saw integrals of the form
∫ t

0

f(u,X(u))du

where {X(t), t ≥ 0} is a BM. If f is a continuous function, we see that f(u,X(u))
is a continuous function everywhere on [0, t] with probability 1. Hence, the above

integral can be defined as the standard Riemann integral for almost every sample

path. In this section we define integrals of the form
∫ t

0

f(u,X(u))dX(u). (10.39)

If the sample paths of {X(t), t ≥ 0} were differentiable functions, with derivative

X ′(t), we could define the above integral as
∫ t

0

f(u,X(u))X ′(u)du.

However, we have seen in Section 10.2 that, with probability one, the sample paths of

a BM are nowhere differentiable. Hence we cannot use this definition. If the sample

paths of the BM had bounded variation (i.e., finite total variation), we could use the

Stieltjes integral to define the integral. However, we shall show below that the total

variation of an SBM (and hence of any BM) is infinite. We begin with the definition

of the total variation and the quadratic variation of a standard Brownian motion.
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Definition 10.8 Total and Quadratic Variation. For an SBM {B(t), t ≥ 0}, and

p > 0, define the p-th variation process of B by

V p
B(t) = lim

k→∞

k
∑

n=1

|B(t
n

k
) −B(t

n− 1

k
)|p (10.40)

if the limit exists. The cases p = 1 and p = 2 are referred to as the total variation

and quadratic variation of the SBM, respectively.

Although we have defined the concept of p-variation for an SBM, the same definition

can be used to define the p-variation of any continuous time stochastic process with

piecewise continuous sample paths.

Theorem 10.21 With probability one, an SBM satisfies

V 1
B(t) = ∞, t > 0,

V 2
B(t) = t, t ≥ 0,

V p
B(t) = 0, t ≥ 0, p > 2.

Proof: Let Xk(t) be as defined in Equation 10.3. We begin by computing the to-

tal variation of the {Xk(t), t ≥ 0} process over [0, t]. Since the sample paths of

{Xk(t), t ≥ 0} are piecewise constant functions of time t, we see that the total vari-

ation of Xk over [0, t] is the just the sum of the absolute values of all the jumps over

[0, t]. Since the jumps in the sample paths of {Xk(t), t ≥ 0} are of size ±1/
√
k at

all integer multiples of 1/k, we get

V 1
Xk(t) =

[kt]
∑

n=1

|Xk(t
n

k
) −Xk(t

n− 1

k
)|

=

[kt]
∑

n=1

1√
k

=
[kt]√
k
.

Similarly, the quadratic variation of Xk is given by

V 2
Xk(t) =

[kt]
∑

n=1

|Xk(t
n

k
) −Xk(t

n− 1

k
)|2

=

[kt]
∑

n=1

(
1√
k

)2

=
[kt]

k
.

Now, we know that {Xk(t), t ≥ 0} converges to {B(t), t ≥ 0} as k → ∞. Hence

total and quadratic variations of {Xk(t), t ≥ 0} converges to that of {B(t), t ≥ 0}
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as k → ∞. (This needs to be proved, but we omit this step.) Hence we get

V 1
B(t) = lim

k→∞
V 1

Xk(t) = lim
k→∞

[kt]√
k

= ∞,

and

V 2
B(t) = lim

k→∞
V 2

Xk(t) = lim
k→∞

[kt]

k
= t.

The result about higher-order variation follows similarly. This “proves” the

theorem.

Thus we cannot use Stieltjes integrals to define the integral in Equation 10.39.

What we are facing is a new kind of integral, and it was properly defined first by Ito.

We shall use a severely simplified version of that definition here.

Definition 10.9 Ito Integral. Let f(t, x) be a continuous function in t and x. Sup-

pose
∫ t

0

E(f2(u,X(u)))du <∞.

Then the Ito integral of f(t, B(t)) with respect to B(t) is defined as

∫ t

0

f(u,B(u))dB(u) = lim
k→∞

k
∑

n=1

f

(

t
n− 1

k
,B(t

n− 1

k
)

)(

B(t
n

k
) −B(t

n− 1

k
)

)

.

(10.41)

Here the limit is defined in the mean-squared sense.

Note that the above definition is very similar to the definition of Stieltjes integral,

except that we insist on using the value of the function f at the left ends of the

intervals. Thus, for the n-th interval (tn−1
k , tn

k ], we use the value f(tn−1
k , B(tn−1

k ))
at the left end of the interval, and multiply it by the increment in the SBM over the

interval, and then sum these products over all the intervals. This choice is very critical

in the definition of Ito integral and has very important implications.

Theorem 10.22 Linearity of Ito Integral. Ito integral is a linear operator, i.e.,
∫ t

0

(af(u,B(u)) + bg(u,B(u)))dB(u)

= a

∫ t

0

f(u,B(u))dB(u) + b

∫ t

0

g(u,B(u))dB(u).

Proof: Follows directly from the definition.

Note that the Ito integral of Equation 10.41 is a random variable, and hence it

makes sense to compute its moments. The next theorem gives the first two moments.
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Theorem 10.23 Moments of the Ito Integral.

E

(∫ t

0

f(u,B(u))dB(u)

)

= 0, (10.42)

E

[

(
∫ t

0

f(u,B(u))dB(u)

)2
]

=

∫ t

0

E(f2(u,X(u)))du. (10.43)

Proof: An SBM has independent increments, hence fn = f(tn−1
k , B(tn−1

k )) is in-

dependent of ∆n = B(tn
k ) −B(tn−1

k ). (We suppress the dependence of fn and ∆n

on k to simplify notation.) This independence implies that

E(fn∆n) = E(fn)E(∆n) = 0.

Thus we have

E

(∫ t

0

f(u,B(u))dB(u)

)

= E

(

lim
k→∞

k
∑

n=1

fn∆n

)

= lim
k→∞

k
∑

n=1

E(fn)E(∆n)

= 0.

The interchange of the limit and the expected value is allowed since the convergence

is in mean square. This yields Equation 10.42.

To obtain Equation 10.43, we use

E





(

k
∑

n=1

fn∆n

)2


 = E

(

k
∑

n=1

fn∆n

k
∑

m=1

fm∆m

)

=

k
∑

n=1

k
∑

m=1

E(fnfm∆n∆m)

=

k
∑

n=1

E(f2
n∆2

n)

=

k
∑

n=1

E(f2
n)E(∆2

n)

=

k
∑

n=1

E(f2(t
n− 1

k
,B(t

n− 1

k
)))

1

k
.

Here we have used the fact that E(fnfm∆n∆m) = 0 if n 6= m. Finally,

E

[

(∫ t

0

f(u,B(u))dB(u)

)2
]

= lim
k→∞

k
∑

n=1

E

(

f2(t
n− 1

k
,B(t

n− 1

k
))

)

1

k
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=

∫ t

0

E(f2(u,X(u)))du.

This yields Equation 10.43.

We illustrate the computation of Ito integrals with an example.

Example 10.8 Show that
∫ t

0

dB(u) = B(t), t ≥ 0,

∫ t

0

B(u)dB(u) =
1

2
(B2(t) − t), t ≥ 0.

Let Bn = B(tn
k ). Using f(u,B(u)) = 1 in Equation 10.41 we get

∫ t

0

dB(u) = lim
k→∞

k
∑

n=1

(Bn −Bn−1)

= lim
k→∞

Bk

= lim
k→∞

B(t
k

k
) = B(t).

To compute the next integral, we use the identity

(Bn −Bn−1)
2 = B2

n −B2
n−1 − 2Bn−1(Bn −Bn−1), 1 ≤ n ≤ k.

Summing over all n from 1 to k we get

k
∑

n=1

(Bn−Bn−1)
2 = B2

k−2

k
∑

n=1

Bn−1(Bn−Bn−1) = B2(t)−2

k
∑

n=1

Bn−1(Bn−Bn−1).

Now let k → ∞. The sum on the left hand side reduces to the squared variation of

the SBM over [0, t], while the sum on the right hand side reduces to the Ito integral
∫

BdB. Hence, using Theorem 10.21 we get

V 2
B(t) = t = B2(t) − 2

∫ t

0

B(u)dB(u).

This gives
∫ t

0

B(u)dB(u) =
1

2
(B2(t) − t).

Note that there is an unexpected t/2 term in the integral! This is the contribution of

the non-zero quadratic variation that is absent in the standard calculus, but plays an

important part in the Ito calculus!

We have seen the terms B(t) and B2(t) − t as examples of Martingales, see Ex-

amples 10.2 and 10.3. Is this just a coincidence that the two Ito integrals turned out
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to be Martingales? The next theorem shows that this is a general property of the Ito

integrals. We omit the proof, since it is too technical for this book.

Theorem 10.24 Ito Integral as a Martingale. Let

X(t) =

∫ t

0

f(u,B(u))dB(u), t ≥ 0.

Then {X(t), t ≥ 0} is a Martingale.

One can extend the class of functions f for which the Ito integral can be defined

to the functions of the type f(t,X [0 : t]) where X [0 : t] is short for {X(u) : 0 ≤
u ≤ t}. However, we shall not use this generality in this book. We refer the reader to

many excellent texts on this subject for further information.

We develop three peculiar integrals below that will help us in the development of

stochastic differential calculus in the next section. Following Equation 10.41 we have

∫ t

0

dB(u)dB(u) = lim
k→∞

k
∑

n=1

(B(t
n

k
) −B(t

n− 1

k
))(B(t

n

k
) −B(t

n− 1

k
))

= V 2
B(t) = t.

∫ t

0

dudB(u) = lim
k→∞

k
∑

n=1

1

k
(B(t

n

k
) −B(t

n− 1

k
))

= lim
k→∞

B(t)

k
= 0.

∫ t

0

dudu = lim
k→∞

k
∑

n=1

(
1

k
)2

= lim
k→∞

k

k2
= 0.

In differential notation, we write the above “integrals” as

dB(t)dB(t) = dt, (10.44)

dtdB(t) = dB(t)dt = dtdt = 0. (10.45)

The above differentials form the basis of the Ito stochastic differential calculus de-

veloped in the next section.

10.10 Stochastic Differential Equations

Theorem 10.24 shows that we can think of the Ito integral as a continuous time

stochastic process. In fact it motivates us to define more general stochastic processes

as defined below.
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Definition 10.10 Diffusion Process. Let µ(t, x) and σ(t, x) be continuous func-

tions of t and x. Suppose
∫ t

0

E(σ2(u,B(u)))du <∞.

Define

X(t) = X(0) +

∫ t

0

µ(u,B(u))du +

∫ t

0

σ(u,B(u))dB(u), t ≥ 0. (10.46)

Then {X(t), t ≥ 0} is called a diffusion process, µ is called its drift function, and σ
the diffusion function.

Note that the first integral is a simple Riemann integral, while the second inte-

gral is an Ito integral. Diffusion processes are a special case of Ito processes, which

are defined as in Equation 10.46 with more general functions µ(t,X [0 : t]) and

σ(t,X [0 : t]). We shall restrict ourselves to diffusion processes for simplicity. It is

customary to write the integral equation in Equation 10.46 in a notationally equiva-

lent stochastic differential equation form as follows

dX(t) = µ(t,X(t))dt+ σ(t,X(t))dB(t). (10.47)

One can even interpret the above stochastic differential equation as follows: if

X(t) = x, the incrementX(t+dt)−X(t) in theX process over the interval (t, t+dt)
is a sum of two components: (1) a deterministic drift component given by µ(t, x)dt,
and (2) a random diffusion component σ(t, x)dB(t) that is a N(0, σ2(t, x)dt) ran-

dom variable.

Example 10.9 Suppose X(0) = 0, µ(t, x) = 0, and σ(t, x) = 1. Substituting in

Equation 10.46 we see that

X(t) = B(t).

Thus the SBM is a diffusion process.

Next suppose X(0) = x, µ(t, x) = µ, and σ(t, x) = σ. Substituting in Equa-

tion 10.46 we see that

X(t) = x+ µt+ σB(t).

From Theorem 10.1 we see that {X(t), t ≥ 0} is a BM(µ, σ) with initial state x.

Thus a BM is a diffusion process.

Next we consider a process {Z(t), t ≥ 0} defined by

Z(t) = g(t,X(t)),

where X(t) is as defined in Equation 10.46. The next theorem shows that {Z(t), t ≥
0} is a diffusion process itself, and relates its drift and diffusion functions to the drift

and diffusion functions of the X process.

Theorem 10.25 Functions of a Diffusion Process. Let {X(t), t ≥ 0} satisfy Equa-

tion 10.46. Let g(t, x) be a function that is continuously differentiable in t and twice
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continuously differentiable in x. The stochastic process {g(t,X(t)), t ≥ 0} satisfies

the following stochastic integral equation

g(t,X(t)) = g(0, X(0))

+

∫ t

0

(

gt(u,X(u)) + µ(u,X(u))gx(u,X(u)) +
1

2
σ2(u,X(u))gxx(u,X(u))

)

dt

+

∫ t

0

σ(u,X(u))gx(u,X(u))dB(u) (10.48)

or, equivalently, the stochastic differential equation

dg(t,X(t)) =
(

gt(t,X(t)) + µ(t,X(t))gx(t,X(t)) +
1

2
σ2(t,X(t))gxx(t,X(t))

)

dt

+σ(t, x)gx(t,X(t))dB(t). (10.49)

Proof: Let ∆hX(t) = X(t+h)−X(t). Taylor expansion of g(t+h,X(t)+∆hX(t))
around (t,X(t)) yields :

g(t+ h,X(t) + ∆hX(t)) = g(t,X(t)) + hgt(t,X(t)) + ∆hX(t)gx(t,X(t))

+
1

2
(∆hX(t))2gxx(t,X(t)) +Rh

where Rh is the remainder error term that goes to zero as h→ 0. Hence we have

∆hg(t,X(t)) = hgt(t,X(t))

+∆hX(t)gx(t,X(t)) +
1

2
(∆hX(t))2gxx(t,X(t)) +Rh,

or in differential form,

dg(t,X(t)) = gt(t,X(t))dt+ gx(t,X(t))dX(t) +
1

2
gxx(t,X(t))dX(t)dX(t).

Now {X(t), t ≥ 0} satisfies Equation 10.47. Substituting in the previous equation

we get

dg(t,X(t)) = gt(t,X(t))dt

+(µ(t,X(t))dt+ σ(t,X(t))dB(t))gx(t,X(t)) +
1

2
(µ(t,X(t))dt

+σ(t,X(t))dB(t))2gxx(t,X(t))

= (gt(t,X(t)) + µ(t,X(t))gx(t,X(t)))dt

+
1

2
σ2(t,X(t))gxx(t,X(t))(dB(t))2 + σ(t,X(t))gx(t,X(t))dB(t)

+
1

2
(µ2(t,X(t))dtdt+ 2µ(t,X(t))σ(t,X(t))dtdB(t))gxx(t,X(t)).

Now we use Equations 10.44 and 10.45 to get

dg(t,X(t)) =



478 DIFFUSION PROCESSES
(

gt(t,X(t)) + µ(t,X(t))gx(t,X(t)) +
1

2
σ2(t,X(t))gxx(t,X(t))

)

dt

+σ(t,X(t))gx(t,X(t))dB(t),

which is Equation 10.49. The integral representation of this equation is Equa-

tion 10.48.

Equations 10.48 and 10.49 are known as Ito’s formula. The formula remains valid

if we replace the µ(t,X(t)) and σ(t,X(t)) functions by the path dependent functions

µ(t,X [0 : t]) and σ(t,X [(0 : t]). However, we do not prove it in that generality here.

If X(t) = B(t), i.e., if µ(t, x) = 0 and σ(t, x) = 1, Ito’s formula reduces to

g(t, B(t)) = g(0, 0) +

∫ t

0

(

gt(u,B(u)) +
1

2
gxx(u,B(u))

)

du

+

∫ t

0

gx(u,B(u))dB(u). (10.50)

We can write the above in an equivalent differential form as follows:

dg(t, B(t)) =

(

gt(t, B(t)) +
1

2
gxx(t, B(t))

)

dt+ gx(t, B(t))dB(t). (10.51)

The above formula can be used to compute stochastic integrals defined by Equa-

tion 10.41. Let

G(t, x) =

∫ x

0

g(t, y)dy.

Then using g(t, x) in place of gx(t, x), Equation 10.50 can be written in a more

useful form as
∫ t

0

g(u,B(u))dB(u) = G(t, B(t)) −
∫ t

0

(

Gt(u,B(u)) +
1

2
gx(u,B(u))

)

du.

(10.52)

We illustrate the use of the above formula by several examples below.

Example 10.10 Compute
∫ t

0 B(u)dB(u) using Equation 10.52.

Let g(t, x) = x. Then G(t, x) = x2/2, and gx(t, x) = 1, and Gt(t, x) = 0.

Hence, Equation 10.52 yields
∫ t

0

B(u)dB(u) =
B2(t)

2
−
∫ t

0

1

2
du =

1

2
(B2(t) − t).

This matches with our brute force calculation of this integral in Example 10.8.

Example 10.11 Geometric Brownian Motion. Solve the stochastic differential

equation

dX(t) = µX(t)dt+ σX(t)dB(t).
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First of all, what does it mean to solve a stochastic differential equation? We take

it to mean that we need to find a function g(t, ·) such that X(t) = g(t, B[0 : t])
satisfies the above differential equation. In this case we first try to see if can find a

solution of a simpler type X(t) = g(t, B(t)). From Equation 10.51, we see that the

g function has to satisfy:

gt(t, x) +
1

2
gxx(t, x) = µg(t, x), (10.53)

and

gx(t, x) = σg(t, x). (10.54)

The last equation implies that

g(t, x) = f(t) exp(σx),

where f(t) is a function of t to be determined. Substituting in Equation 10.53 we get

f ′(t) exp(σx) +
1

2
f(t)σ2 exp(σx) = µf(t) exp(σx).

Canceling exp(σx) from both sides, we get

f ′(t) = (µ− 1

2
σ2)f(t),

which yields

f(t) = c exp((µ− 1

2
σ2)t),

where c is an arbitrary constant. Putting these equations together, we get

g(t, x) = c exp((µ− 1

2
σ2)t+ σx).

Thus the solution is

X(t) = c exp((µ− 1

2
σ2)t+ σB(t)).

Substituting t = 0, and using B(0) = 0, we get c = X(0). Thus the final solution is

X(t) = X(0) exp

(

(µ− 1

2
σ2)t+ σB(t)

)

. (10.55)

{X(t), t ≥ 0} is called the geometric Brownian motion and is a common model of

stock returns used in financial literature.

Example 10.12 Solve the stochastic differential equation

dZ(t) = −µZ(t)dt+ σdB(t). (10.56)

As in the previous example, we attempt to find a solution of the type Z(t) =
g(t, B(t)). Thus we try to find a g satisfying

gt(t, x) +
1

2
gxx(t, x) = −µg(t, x), (10.57)
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and

gx(t, x) = σ. (10.58)

The last equation yields

g(t, x) = f(t) + σx,

for an arbitrary function f(t). Substituting in Equation 10.57 we get

f ′(t) = −µ(f(t) + σx)

which has a solution

f(t) = A exp(−µt) − σx,

where A is a constant. However, this implies

g(t, x) = A exp(−µt),
which does not satisfy Equation 10.58. Thus there is no function g(t, x) that satisfies

both Equations 10.57 and 10.58. Thus there is no stochastic process of the form

Z(t) = g(t, B(t)) that solves Equation 10.56.

Instead we assume that {X(t), t ≥ 0} satisfies Equation 10.47, where we have

complete freedom to choose the functions µ(t, x) and σ(t, x), and look for a solution

of the form Z(t) = g(t,X(t)). Using Equation 10.49 we see that g(t, x) satisfies

gt(t, x) + µ(t, x)gx(t, x) +
1

2
σ2(t, x)gxx(t, x) = −µg(t, x), (10.59)

and

σ(t, x)gx(t, x) = σ. (10.60)

The simplest choice is to use σ(t, x) = σ exp(µt), and µ(t, x) = 0, i.e., choose

dX(t) = σ exp(µt)dB(t),

or

X(t) = X(0) +

∫ t

0

eµudB(u). (10.61)

Then Equations 10.59 and 10.60 reduce to

gt(t, x) +
1

2
σ2 exp(2µt)gxx(t, x) = −µg(t, x),

and

σ exp(µt)gx(t, x) = σ.

By following the earlier procedure, we see that these two equations admit the solution

g(t, x) = exp(−µt)(c+ x),

where c is an arbitrary constant. Thus the solution to Equation 10.56 is given by

Z(t) = exp(−µt)(c+X(t)).

Setting t = 0 we get c = Z(0). Using Equation 10.61, we get the final solution as

Z(t) = exp(−µt)(Z(0) +

∫ t

0

exp(µu)dB(u)).
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The process defined above is known as the Ornstein-Uhlenbeck process. This ex-

ample illustrates the complexity of the solutions exhibited by even simple stochastic

differential equations.

10.11 Applications to Finance

Let X(t) be the price of a stock at time t. One of the simplest financial derivative

is called the European call option. (American call options are discussed at the end

of this section.) A broker sells this option at a price C to a buyer. It gives the buyer

(called the owner) the right (but not the obligation) to buy one share of this stock at a

pre-specified time T in the future (called the maturity time, or expiry date), at a pre-

specified price K (called the strike price). Clearly, if the stock price X(T ) at time

T is greater than K , it makes sense for the owner to exercise the option, since the

owner can buy the stock at priceK and immediately sell it at priceX(T ) and realize

a net profit of X(T )−K . On the other hand, if X(T ) ≤ K , it makes sense to let the

option lapse. Thus, the payout to the owner of this contract is max(X(T ) − K, 0)
at time T . How much should the broker sell this option for, i.e., what should be the

value of C? This is the famous option pricing problem.

As mentioned in Example 10.11, the geometric Brownian motion as defined in

Equation 10.55 is commonly used as a model of stock market price evolution. We

can rewrite Equation 10.55 to see that the stock price X(t) under this model can be

represented as

X(t) = exp(lnX(0) + (µ− 1

2
σ2)t+ σ

√
tZ), (10.62)

where Z ∼ N(0, 1). Let 0 ≤ t1 < t2. The ratio X(t2)/X(t1) is called the return

over the period [t1, t2]. It can be seen that the geometric Brownian motion model of

the stock price implies that the returns over non-overlapping intervals are indepen-

dent. This is one of the most compelling reason for the wide use of this model. The

other reason is the analytical tractability of this process.

Before we can settle the question of evaluating the proper value of C, we need

to know what else we can do with the money. We assume that we can either invest

it in the stock itself, or put it in a risk-free savings account that yields a continuous

fixed rate of return r. Thus one dollar invested in the stock at time 0 will be worth

$X(t)/X(0) at time t, while one dollar invested in the savings account will be worth

ert at time t.

One would naively argue that the value of C should be given by the expected

discounted (discount factor r) value of the option payout at time T , i.e.,

C = e−rT
E(max(X(T )−K, 0)). (10.63)

One can show (see any book on mathematical finance) that if µ 6= r, the broker can
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make positive profit with probability one by judiciously investing the above proceeds

of $C in the stock and the savings account. Such a possibility is called an arbitrage

opportunity, and it cannot exist in a perfect market. Hence we need to evaluate C
assuming that µ = r. The next theorem gives the expression for C when µ = r. This

is the celebrated Black-Scholes’ formula.

Theorem 10.26 Black-Scholes’ Formula: European Call Option. The value of

the European call option with maturity date T and strike price K is given by:

C = X(0)Φ(d1) −Ke−rT Φ(d2), (10.64)

where

d1 =
ln(X(0)/K) + (r + σ2/2)T

σ
√
T

, (10.65)

d2 =
ln(X(0)/K) + (r − σ2/2)T

σ
√
T

, (10.66)

and Φ is the cdf of a N(0,1) random variable.

Proof: Define

X(T )+ =

{

X(T ) if X(T ) > K,
0 if X(T ) ≤ K.

and

K+ =

{

K if X(T ) > K,
0 if X(T ) ≤ K.

Then

max(X(T ) −K, 0) = X(T )+ −K+.

The value of the option as given in Equation 10.63 reduces to

C = e−rT [E(X(T )+) − E(K+)], (10.67)

where we use µ = r to compute the expectations. Next we compute the two expec-

tations above. Using Equation 10.62 we get

E(X(T )+) =

= E(exp((lnX(0) + (r − 1

2
σ2)T + σ

√
TZ)+)

= E

(

exp(lnX(0) + (r − 1

2
σ2)T + σ

√
TZ) · 1{lnX(0)+(r− 1

2σ2)T+σ
√

TZ>lnK}

)

= exp(lnX(0) + (r − 1

2
σ2)T )E(exp(σ

√
TZ)1{Z>c1}),

where

c1 =
ln(K/X(0)) − (r − 1

2σ
2)T

σ
√
T

.

Now we can show by direct integration that

E(exp(aZ)1{Z>b}) = ea2/2Φ(a− b), (10.68)
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for positive a. Substituting in the previous equation, we get

E(X(T )+) = X(0) exp((r − 1

2
σ2)T ) exp(

1

2
σ2T )Φ(d1) = X(0)erT Φ(d1),

where d1 = σ
√
T − c1 is as given in Equation 10.65. Next, we have

E(K+) = E(K1X(T )>K) = KP(X(T ) > K)

= KP(lnX(0) + (r − 1

2
σ2)T + σ

√
TZ > lnK)

= KP(Z > c1) = KP(Z ≤ d2),

where d2 = −c1 is as given in Equation 10.66. Substituting in Equation 10.67 we

get Equation 10.64.

One can also study the European put option in a similar way. It gives the buyer the

right (but not the obligation) to sell one share of the stock at time T at price K . The

payout of this option at time T is max(K − X(T ), 0). We leave it to the reader to

prove the following theorem.

Theorem 10.27 Black-Scholes’ Formula: European Put Option. The value of

the European put option with maturity date T and strike price K is given by:

C = Ke−rT Φ(−d2) −X(0)Φ(−d1), (10.69)

where d1, d2, and Φ are as in Theorem 10.27.

There are options called the American and call and put options with the maturity

time T and strike price K . These are the same as the European options, except that

they may be exercised at any time t ∈ [0, T ]. If an American call option is exercised at

time t, then its payout is max(X(t)−K, 0). Similarly the payout from an American

put option exercised at time t is max(K − X(t), 0). One can show that under the

assumption that the stock price satisfies Equation 10.62, it is optimal to exercise an

American call option at maturity. Thus its value is same as that of the European

option. Pricing the American put option is much harder for the finite maturity date.

However, if the maturity date is infinity (this case is called the perpetual American

put option) one can evaluate it analytically. We state the main result in the following

theorem.

Theorem 10.28 American Perpetual Put Option. Consider a perpetual American

put option with strike price K , and assume that the stock price process is as given

in Equation 10.62. It is optimal to exercise the option as soon as the stock price falls

below

a∗ =
2r

2r + σ2
K.

The optimal expected payout under this policy, starting with X(0) = x > a∗ is

(K − a∗)(a∗/x)
2r

σ2 .
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Proof: See Conceptual Exercises 10.11 and 10.13.

Note that the result of the above theorem does not depend upon µ. As we have seen

before, this is because we need to do the calculations under the assumption µ = r in

order to avoid arbitrage.

10.12 Computational Exercises

10.1 Let {B(t), t ≥ 0} be an SBM. Show that Cov(B(s), B(t)) = min(s, t).

10.2 Let {X(t), t ≥ 0} be a BM(µ, σ). Compute Cov(X(t), X(t+ s)).

10.3 Let {X(t), t ≥ 0} be a BM(µ, σ). Compute the joint density of [X(t1), X(t2)],
where 0 < t1 < t2.

10.4 Let {B(t), t ≥ 0} be an SBM. Let 0 < s < t. Show that, given B(t) = y,

B(s) is a normal random variable with mean ys/t and variance s(t− s)/t.

10.5 Let {X(t), t ≥ 0} be a BM(µ, σ). Let 0 < s < t. Compute the conditional

density of B(s) given B(t) = y.

10.6 Let t ∈ (0, 1). Show that B(t)− tB(1) has the same distribution as the condi-

tional density of B(t) given B(1) = 0.

10.7 Verify that the solution given in Equation 10.8 satisfies the partial differential

equation given in Equation 10.6.

10.8 Prove Theorem 10.7. Show that the pdf of a N(µt, σ2t) random variable sat-

isfies this equation.

10.9 Derive Equation 10.11 from Equation 10.12.

10.10 Let {X(t), t ≥ 0} be a BM(µ, σ). If we stop the process at time t, we earn a

discounted reward equal to e−αtX(t). Suppose we use the following policy: stop the

process as soon as it reaches a state a. Find the optimal value of a that maximizes the

expected discounted reward of this policy.

10.11 Let {X(t), t ≥ 0} be BM(µ, σ) reflected at 0. AssumeX(0) ≥ 0, and µ < 0.

Show that the limiting distribution of X(t), as t → ∞, is exp(−2µ/σ2). Hint: Set

a = 0 and let b→ ∞ in Theorem 10.17.

10.12 Let {X(t), t ≥ 0} be a BM(µ, σ). Find functions a(t) and b(t) such that

X2(t) + a(t)X(t) + b(t) is a Martingale. Hint: Use Example 10.3.
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10.13 Let {X(t), t ≥ 0} be a BM(µ, σ). Find the functions a(t), b(t), and c(t) such

that X3(t) + a(t)X2(t) + b(t)X(t) + c(t) is a Martingale. Hint: Use Conceptual

Exercise 10.3.

10.14 Letm2(x) = E(T 2
ab|X(0) = x) where Tab is the first passage time as defined

in Equation 10.17 in a BM(µ, σ). Show that m2(·) satisfies the following differential

equation

σ2

2
m

′′
2(x) + µm′

2(x) = −2m(x), a < x < b

where m(x) = E(Tab|X(0) = x). The boundary conditions are m2(a) = m2(b) =
0.

10.15 Let {X(t), t ≥ 0} be a BM(µ, σ) with X(0) = 0 and µ < 0, and define

M = maxt≥0X(t). Show that M is an exp(−2µ/σ2) random variable. Hint: Argue

that

P(M < y) = lim
a→−∞

P(X(Tay) = a),

and use Theorem 10.11.

10.16 Let {X(t), t ≥ 0} be a BM(µ, σ2) with X(0) = 0 and µ > 0, and define

L = mint≥0X(t). Use the hint in Computational Exercise 10.15 to compute the

distribution of L.

10.17 Use the exponential Martingale of Example 10.4 to derive Equation 10.13.

Hint: Set

θµ+ θ2σ2/2 = s

and use Theorem 10.18.

10.18 Let X(t) be the price of a stock at time t. Suppose {X(t), t ≥ 0} is the

geometric Brownian motion defined by Equation 10.55. Thus a dollar invested in this

stock at time u will be worth X(t)/X(u) at time t > u. Consider a static investment

strategy by which we invest in this stock fresh money at a rate $d at all times t ≥ 0.

Let Y (t) be total value of the investment at time t, assuming that Y (0) = 0. Compute

E(Y (t)).

10.19 Consider the optimal policy derived in Example 10.7. Using the regenerative

nature of {Y (t), t ≥ 0} defined there, compute the limiting mean and variance of

Y (t) as t→ ∞.

10.20 Let Y (t) be the level of inventory at time t. Assume that Y (0) = q > 0.

When the inventory reaches 0, an order of size q is placed from an outside source.

Assume that the order arrives instantaneously, so that the inventory level jumps to

q. Between two orders the Y process behaves like an BM(µ, σ) starting in state q,

with µ < 0. Suppose it costs h dollars to hold one unit of the inventory for one

unit of time, and the restoration operation costs K . Find the optimal value of q that

minimizes the long run expected cost per unit time.
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10.21 Using Definition 10.9 show that
∫ t

0

B2(u)dB(u) =
1

3
B3(t) −

∫ t

0

B(u)du.

10.22 Using Equation 10.52 show that
∫ t

0

Bn(u)dB(u) =
1

n+ 1
Bn+1(u) − n

2

∫ t

0

Bn−1(u)du.

10.23 Using Equation 10.52 show that
∫ t

0

e−αuBn(u)dB(u) =
1

n+ 1
e−αtBn+1(t)−

∫ t

0

(n

2
Bn−1(u) − αe−αuBn(u)

)

du.

10.24 Solve the stochastic differential equation

dY (t) = −αY (t)dt+ e−αtdB(t),

assuming a solution of the form Y (t) = g(t, B(t)).

10.25 Solve the stochastic differential equation

dY (t) = − Y (t)

1 + t
dt+

1

1 + t
dB(t),

assuming a solution of the form Y (t) = g(t, B(t)).

10.13 Conceptual Exercises

10.1 Let T be a stopping time for the stochastic process {X(t), t ≥ 0}. Prove or

disprove the following statements:

1. The event {T > t} is completely described by {X(u) : 0 ≤ u ≤ t}.

2. The event {T > t} is completely described by {X(u) : u > t}.

3. The event {T < t} is completely described by {X(u) : 0 ≤ u < t}.

10.2 Let {X(t), t ≥ 0} be a BM(µ, σ). Are the following random variables stopping

times for the BM?

T1 = min{t ≥ 0 :

∫ t

0

X(u)du ≥ 1},

T2 = min{t ≥ 0 : X(t) > 1}.

10.3 Show that B3(t) − 3tB(t) is a Martingale.

10.4 Show that B4(t) − 6tB2(t) + 3t2 is a Martingale.
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10.5 Let L =
∫ t

0 B(u)du. Show that

E(L) = 0, E(L2) = t3/3.

10.6 Let L be as in Conceptual Exercise 10.5. Show that

E(exp(θL)) = exp(θ2t3/6).

10.7 Let L =
∫ t

0 exp(θB(u))du. Show that

E(L) =
2

θ2
(exp(θ2t/2) − 1).

10.8 Let L be as in Conceptual Exercise 10.7. Show that

E(L2) =
2

3θ4
exp(2θ2t) − 8

3θ4
exp(θ2t/2)) − 2

θ4
.

10.9 Using Equation 10.52 show that, for a differentiable function f ,
∫ t

0

f(u)dB(u) = f(t)B(t) −
∫ t

0

B(u)f ′(u)du.

10.10 Solve the stochastic differential equation:

dY (t) = a(t)Y (t)dt+ b(t)Y (t)dB(t), Y (0) = 1,

where a(·) and b(·) are differentiable functions of t. Hint: Try a solution of the type

Y (t) = g(t,X(t)), where X(t) satisfies dX(t) = b(t)dB(t).

10.11 Proof of Theorem 10.28. Consider the perpetual American put option with

strike price K for the stock price process given in Theorem 10.28. Suppose X(0) >
K , for otherwise the buyer would exercise the option right away with a payout of

K −X(0). Let Π(a) be a policy that exercises the option as soon as the stock price

falls below a given constant 0 < a < K . Thus the payout under policy Π(a) is

C(a, x) = E(e−rTa(K − a)|X(0) = x), x > K

where

Ta = min{t ≥ 0 : X(t) = a}
and the expected value is computed under the assumption that µ = r. Show that

C(a, x) = (K − a)(a/x)
2r

σ2 , x > a.

Hint: First show that Ta is the same as the first time a BM(r−σ2/2, σ), starting from

ln(X(0)), reaches ln(a). Then use Theorem 10.10 to compute the LST of Ta, and

then use Computational Exercise 10.10 to compute the expectations.

10.12 Prove Theorem 10.27.

10.13 Proof of Theorem 10.28, continued. Starting with the result in the Conceptual

Exercise 10.11 show that the value of a that maximizesC(a, x) is given by the a∗ of

Theorem 10.28. Also, C(a∗, x) is as given in the theorem.





Epilogue

Here ends our journey. Congratulations! Now is the time to look back to see what we

have learned and to look ahead to see what uncharted territory lies ahead.

We started with a basic knowledge of probability and built classes of increasingly

powerful stochastic processes, each class providing a stepping stone to the next. We

started with Markov chains and ended with Markov regenerative processes. The the-

ories of Markov chains and renewal processes emerged as two main corner stones

of the entire development. At the end we dipped our toes in diffusion processes, and

saw what is involved once we step away from the constraints of discrete state-space

and discrete time. However, we stayed within the confines of Markov processes.

We saw a large number of examples of modeling a given system by an appropriate

class of processes and then performing the transient analysis, first passage time anal-

ysis, steady-state analysis, cost/reward analysis, etc. Indeed we now have a rich bag

of tools to tackle the uncertain world.

What lies ahead? There is far more to diffusion processes than what we have cov-

ered here. Also, we have not covered the class of stationary processes: these pro-

cesses look the same from any point of time. We saw them when studying the Markov

chains starting in their stationary distributions. Stationary processes play an impor-

tant role in statistics and forecasting.

We have also ignored the topic of controlling a stochastic system. The models

studied here are descriptive – they describe the behavior of a system. They do not

tell us how to control it. Of course, a given control scheme can be analyzed using

the descriptive models. However, these models will not show how to find the optimal

control scheme. This direction of inquiry will lead us to Markov decision processes.

Each of these topics merits a whole new book by itself. We stop here by wishing

our readers well in the future as they explore these new and exciting areas.
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APPENDIX A

Probability of Events

“All business proceeds on beliefs, on judgement of probabilities, and not on

certainties.”

– Charles W. Eliot

This appendix contains the brief review of probability and analysis topics that we

use in the book. Its main aim is to act as a resource for the main results. It is not

meant to be a source for the beginners to learn these topics.

Probability Model

A random phenomenon or a random experiment is mathematically described by a

probability model (Ω,F ,P). Ω is called the sample space: the set of all possible out-

comes of the random experiment. A subset of Ω is called an event. F is the set of all

possible events of interest about the random experiment. P is a consistent description

of the likelihood of the occurrence of the events in F .

Properties of F . F is called the σ−algebra of events and has the following proper-

ties:

1. Ω ∈ F ,

2. E ∈ F ⇒ Ec ∈ F ,

3. E1, E2, · · · ∈ F ⇒ ∪∞
i=1Ei ∈ F .

Properties of P(·). P is called the probability function or the probability measure. It

is a function P : F → [0,1] with the following properties:

1. P(Ω) = 1,

2. If E1, E2, · · · are mutually exclusive events in F

P(∪∞
i=1Ei) =

∞
∑

i=1

P(Ei).

One can deduce the following important properties of the probability function:

P(φ) = 1, P(E ∪ F ) = P(E) + P(F ) − P(EF ).
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Conditional Probability

Suppose E,F ∈ F , and P(F ) > 0. Then P(E|F ), the conditional probability of E
given F , is given by

P(E|F ) =
P(EF )

P(F )
.

If P(F ) = 0, the above conditional probability is undefined.

Independence of Events. E and F are called independent if

P(EF ) = P(E)P(F ).

The events E1, E2, · · · , En ∈ F are called mutually independent if for any A ⊆
{1, 2, · · · , n}

P(∩i∈AEi) =
∏

i∈A

P(Ei).

Law of Total Probability. LetE1, E2, · · · ∈ F be mutually exclusive and exhaustive

events. Then, for F ∈ F ,

P(F ) =
∞
∑

i=1

P(F |Ei)P(Ei).

Bayes’ Rule. One consequence of the law of total probability is the Bayes’ rule:

P(Ei|F ) =
P(F |Ei)P(Ei)

∑∞
i=1 P(F |Ei)P(Ei)

.

Limits of Sets

Let E1, E2, · · · ∈ F . We define

lim supEn = ∩m≥1 ∪n≥m En, lim inf En = ∪m≥1 ∩n≥m En.

In words, lim supEn is the event that the events En occur infinitely often, and

lim inf En is the event that one of the events En occurs eventually. We have the

following inequalities, Fatou’s lemma for sets:

P(lim supEn) ≥ lim sup P(En),

P(lim inf En) ≤ lim inf P(En).

The following result is called the Borel-Cantelli lemma:

∞
∑

n=1

P(En) <∞ ⇒ P(lim supEn) = 0.

The second Borel-Cantelli lemma states: If {En, n ≥ 1} are independent events,

then ∞
∑

n=1

P(En) = ∞ ⇒ P(lim supEn) = 1.
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Univariate Random Variables

A real valued random variable is a function X : Ω → R = (−∞,∞) such that

{ω ∈ Ω : X(ω) ≤ x} ∈ F for all −∞ < x < ∞. It is described by its cumulative

distribution function (cdf)

FX(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x}), −∞ < x <∞.

The cdf FX is a non-decreasing right-continuous function of x and is bounded above

by 1 and below by 0. X is said to be non-defective if

FX(∞) = lim
x→∞

FX(x) = 1,

and

FX(−∞) = lim
x→−∞

FX(x) = 0.

Otherwise it is called defective.

Discrete Random Variables

X is called discrete if FX is a piecewise constant function with jumps in a discrete

set A of real numbers. When A is a set of integers X is called an integer-valued

random variable. It can be described in an equivalent way by giving its probability

mass function (pmf) defined as

pX(x) = P(X = x) = FX(x) − FX(x−), x ∈ A.

A pmf satisfies

pX(x) ≥ 0,
∑

x∈A

pX(x) = 1.

Continuous Random Variables

X is said to be a continuous random variable if FX is absolutely continuous, that

is, if there exists a function fX(·), called the probability density function (pdf), such

that

FX(x) =

∫ x

−∞
fX(u)du, x ∈ R.
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A pdf satisfies

fX(x) ≥ 0,

∫ ∞

−∞
fX(u)du = 1.

It is possible for a random variable to have a discrete part and a continuous part.

There is a third possibility: FX(x) can be continuous, but not absolutely continuous.

Such random variables are called singular, and we will not encounter them in this

book.

Expectation of a Random Variables

The expectation of a random variable X is defined as

E(X) =

{ ∑

x∈A xpX(x) if X is discrete
∫∞
−∞ xfX(x)dx if X is continuous,

provided the sums and integrals are well defined. When a random variable has both

discrete and continuous components, we employ the Stieltjes integral notation and

write

E(X) =

∫ ∞

−∞
xdFX(x).

For a non-negative random variable we can also write

E(X) =

∫ ∞

0

(1 − FX(x))dx.

Functions of Random Variables. Let g be a function such that Y = g(X) is also a

random variable. This is the case if g : R → R is a piecewise continuous function.

Computing the expected value of g(X) can be done without first computing the cdf

of Y = g(X) by using the following formula:

E(g(X)) =

∫ ∞

−∞
g(x)dFX(x).

Suppose X is non-negative, and g(·) is a differentiable function such that

lim
x→∞

g(x)(1 − FX(x)) = 0.

Then

E(g(X)) =

∫ ∞

0

g′(x)(1 − FX(x))dx.

Expectations of special function of X have special names:

1. E(Xn) : nth moment of X ,

2. E((X − E(X))n) : nth central moment of X ,

3. E((X − E(X))2) or Var(X) : variance of X ,

4.
√

Var(X) : standard deviation of X ,

5.

√
Var(X)
E(X) : coefficient of variation of X ,
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6. E(e−sX) : Laplace-Stieltjes transform of X , used primarily for non-negative ran-

dom variables,

7. E(zX) : generating function of X , used primarily for non-negative integer valued

random variables,

8. E(eiθX): characteristic function of X , ( θ ∈ R).

Properties of the expectation:

E(aX + b) = aE(X) + b,

Var(aX + b) = a2Var(X).

Table of Common Discrete Random Variables

The facts about the commonly occurring integer valued random variables are given

in the tables below.

Random Variable, X Symbol Parameter Range pX(k)

Bernoulli Ber(p) 0 ≤ p ≤ 1 pk(1 − p)1−k, k = 0, 1

Binomial Bin(n, p) n ≥ 0, 0 ≤ p ≤ 1
(

n
k

)

pk(1 − p)n−k, 0 ≤ k ≤ n

Geometric G(p) 0 ≤ p ≤ 1 (1 − p)k−1p, k ≥ 1

Modified Geometric MG(p) 0 ≤ p ≤ 1 (1 − p)kp, k ≥ 0

Poisson P(λ) λ ≥ 0 e−λ λk

k! , k ≥ 0

X Mean Variance Generating Function

Ber(p) p p(1 − p) pz + 1 − p

Bin(n, p) np np(1 − p) (pz + 1 − p)n

G(p) 1/p (1 − p)/p2 pz
1−(1−p)z

MG(p) (1 − p)/p (1 − p)/p2 p
1−(1−p)z

P(λ) λ λ e−λ(1−z)
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Table of Common Continuous Random Variables

The facts about the commonly occurring real valued continuous random variables

are given in the tables below.

Random Variable, X Symbol Parameter Range fX(x)

Uniform U(a, b) −∞ < a < b <∞ 1
b−a , a ≤ x ≤ b

Exponential exp(λ) λ ≥ 0 λe−λx, x ≥ 0

Erlang Erl(k, λ) λ ≥ 0, k ≥ 1 λe−λx (λx)k−1

(k−1)! , x ≥ 0

Normal N(µ, σ2) −∞ < µ <∞, σ2 > 0 1√
2πσ2

exp
(

− 1
2

(

x−µ
σ

)2
)

X Mean Variance LST(X)

U(a, b) a+b
2

(b−a)2

12
e−sa−e−sb

s(b−a)

exp(λ) 1
λ

1
λ2

λ
λ+s

Erl(k, λ) k
λ

k
λ2

(

λ
λ+s

)k

N(µ, σ2) µ σ2 exp
(

−µs+ σ2s2

2

)



APPENDIX C

Multivariate Random Variables

Let Xi : Ω → R (i = 1, 2, · · · , n) be n real valued random variables. The X =
(X1, X2, · · · , Xn) is called a multivariate random variable. When n = 2 it is called

a bivariate random variable. It is described by its joint cdf

FX(x) = P(Xi ≤ xi, 1 ≤ i ≤ n), x = (x1, x2, · · · , xn) ∈ Rn.

The marginal cdf FXi
(xi) of Xi is given by

FXi
(xi) = FX(∞, · · · ,∞, xi,∞, · · · ,∞).

X is called discrete if each Xi (1 ≤ i ≤ n) is a discrete random variable taking

values in a discrete set Ai ⊂ R. A discrete X can be described in an equivalent way

by giving its joint pmf

pX(x) = P(Xi = xi, 1 ≤ i ≤ n), xi ∈ Ai.

The marginal pmf pXi
(xi) of Xi is given by

pXi
(xi) =

∑

xj∈Aj :j 6=i

pX(x1, · · · , xi−1, xi, xi+1, · · · , xn).

X is said to be a jointly continuous random variable if FX is absolutely continuous,

that is, if there exists a function fX(x1, x2, · · · , xn), called the joint pdf, such that

FX(x) =

∫

u≤x

fX(u1, u2, · · · , un)du1du2 · · · dun, x ∈ Rn.

It is possible that for each Xi is a continuous random variable but X is not a jointly

continuous random variable. The marginal pdf fXi
(xi) of Xi from a jointly contin-

uous X is given by

fXi
(xi) =

∫

xj∈R:j 6=i

fX(u1, · · · , ui−1, xi, ui+1, · · · , un)du1 · · · dui−1dui+1 · · ·dun.
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Independent Random Variables

The random variables (X1, X2, · · · , Xn) are said to be independent if

FX(x) =

n
∏

i=1

FXi
(xi), x = (x1, x2, · · · , xn) ∈ Rn.

The jointly discrete random variables (X1, X2, · · · , Xn) are said to be independent

if

pX(x) =

n
∏

i=1

pXi
(xi), xi ∈ Ai.

The jointly continuous random variables (X1, X2, · · · , Xn) are said to be indepen-

dent if

fX(x) =

n
∏

i=1

fXi
(xi), xi ∈ R.

Sums of Random Variables

Let (X1, X2) be a discrete bivariate random variable. Then the pmf of Z = X1 +X2

is given by

pZ(z) =
∑

(x1,x2):x1+x2=z

pX(x1, x2).

If X1 and X2 are independent, we have

pZ(z) =
∑

x1

pX1
(x1)pX2

(z − x2).

This is called a discrete convolution. As a special case, ifX1 andX2 are non-negative

integer valued random variables, we have

pZ(n) =
n
∑

i=0

pX1
(i)pX2

(n− i), n ≥ 0.

Let (X1, X2) be a jointly continuous bivariate random variable. Then the pdf of

Z = X1 +X2 is given by

fZ(z) =

∫

(x1,x2):x1+x2=z

fX(x1, x2)dx1dx2.

If X1 and X2 are independent, we have

fZ(z) =

∫

x1∈R
fX1

(x1)fX2
(z − x2)dx1.

This is called the convolution of fX1
and fX2

. As a special case, if X1 and X2 are

non-negative real valued random variables, we have

fZ(z) =

∫ z

x=0

fX1
(x)fX2

(z − x), z ≥ 0.



MULTIVARIATE RANDOM VARIABLES 499

If X1 and X2 are non-negative real valued random variables (discrete, continuous,

or mixed),

FZ(z) =

∫ z

x=0

dFX1
(x)FX2

(z − x), z ≥ 0.

The following facts about the sums of independent random variables are useful:

1. Suppose (X1, X2, · · · , Xn) are iid Ber(p). ThenX1 +X2 + · · ·+Xn is Bin(n, p).

2. Suppose (X1, X2, · · · , Xn) are iid exp(λ). ThenX1 +X2 + · · ·+Xn is Erl(n, λ).

3. Suppose Xi ∼ P(λi) (1 ≤ i ≤ n) are independent. Then X1 +X2 + · · · +Xn is

P(λ) where λ = λ1 + λ2 + · · · + λn.

Functions of Multi-Variate Random Variables

Let g : Rn → R be a function such that Z = g(X) is a real valued random variable.

This is true if g is a piecewise differential function, for example. The expectation of

Z can be computed without computing its distribution as follows:

E(Z) =

∫

u∈Rn

g(u)dFX(u).

In particular we have

E

(

n
∑

i=1

Xi

)

=

n
∑

i=1

E(Xi),

which holds even if the Xi’s are dependent. If they are independent, we also have

E

(

n
∏

i=1

Xi

)

=

n
∏

i=1

E(Xi).

We define the covariance of two random variables as

Cov(X1, X2) = E(X1X2) − E(X1)E(X2).

If X1 and X2 are independent, their covariance is zero. The converse is not true in

general. We have

Var

(

n
∑

i=1

Xi

)

=
n
∑

i=1

Var(Xi) + 2
n
∑

i=1

n
∑

j=i+1

Cov(Xi, Xj).

In particular, when the Xi’s are independent,

Var

(

n
∑

i=1

Xi

)

=

n
∑

i=1

Var(Xi).
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Conditional Distributions and Expectations

Let (X1, X2) be a discrete bivariate random variable. Then the conditional pmf of

X1 given X2 = x2 is given by

pX1|X2
(x1|x2) =

pX(x1, x2)

pX2
(x2)

,

and the conditional expected value of X1 given X2 = x2 is given by

E(X1|X2 = x2) =
∑

x1

x1pX1|X2
(x1|x2).

We have the following useful formula for computing expectations by conditioning:

E(X1) =
∑

x2

E(X1|X2 = x2)pX2
(x2),

Let (X1, X2) be a jointly continuous bivariate random variable. Then the conditional

pdf of X1 given X2 = x2 is given by

fX1|X2
(x1|x2) =

fX(x1, x2)

fX2
(x2)

,

and the conditional expected value of X1 given X2 = x2 is given by

E(X1|X2 = x2) =

∫

x1

x1fX1|X2
(x1|x2)dx1.

We have the following useful formula for computing expectations by conditioning:

E(X1) =

∫

x2

E(X1|X2 = x2)fX2
(x2)dx2.

In general we can define E(X1|X2) to be a random variable that takes value

E(X1|X2 = x2) with “probability dFX2
(x2).” With this interpretation we get

E(X1) = E(E(X1|X2)) =

∫

x2

E(X1|X2 = x2)dFX2
(x2).

Order Statistics

Let X1, X2, · · · , Xn be iid random variables with common cdf F (·). Let Y1 ≤
Y2 ≤ · · · ≤ Yn be the X1, X2, · · · , Xn ordered in an ascending order, i.e., Y1 =
min(X1, X2, · · · , Xn), · · · , Yn = max(X1, X2, · · · , Xn). Then (Y1, Y2, · · · , Yn) is

called the order statistics of (X1, X2, · · · , Xn). The marginal distribution of Yk is

given by

FYk
(t) = P(Yk ≤ t) =

n
∑

j=k

(

n

j

)

F (t)j(1 − F (t))n−j , 1 ≤ k ≤ n.

In particular

FYn
(t) = F (t)n, FY1

(t) = 1 − (1 − F (t))n.
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In addition, when (X1, X2, · · · , Xn) are jointly continuous with common pdf f(·),
the (Y1, Y2, · · · , Yn) are also jointly continuous with joint pdf given by

fY (y1, y2, · · · , yn) = n!f(y1)f(y2) · · · f(yn), y1 ≤ y2 ≤ · · · ≤ yn.

The density is zero outside the above region.

Multivariate Normal Random Variable

Let µ be an n-dimensional vector, and Σ = [σij ] be an n×n positive definite matrix.

A random vector X = [X1, X2, · · · , Xn] is called a multi-variate normal variable

N(µ,Σ) if it has the joint pdf given by

fX(x) =
1

√

(2π)ndet(Σ)
exp

(

−1

2
(x− µ)Σ−1(x− µ)⊤

)

, x = (x1, . . . , xn) ∈ Rn.

In this case we have

E(Xi) = µi, Cov(Xi, Xj) = σij .

If Σ is diagonal, the [X1, X2, · · · , Xn] are independent normal random variables and

Xi ∼ N(µi, σii). If Σ is the identity matrix and µ = 0, the n components of X
are iid standard normal random variables. Now let Z = AX + c where A is an

m× n matrix of real numbers and c is an m-dimensional vector of reals. The Z is a

N(µZ ,ΣZ) random variable where

µZ = Aµ+ c, ΣZ = AΣA⊤.

Now suppose the n-dimensional multivariate vector X ∼ N(µ,Σ) is partitioned as

[X1, X2] where Xi is ni dimensional (n1 + n2 = n). Partition the µ vector and the

Σ matrix in a commensurate fashion as

µ =

[

µ1
µ2

]

, Σ =

[

Σ11 Σ12
Σ21 Σ22

]

.

Then the marginal distribution of X1 is N(µ1,Σ11), and the distribution of X1
given X2 = a is multivariate normal N(µ̄,Σ) where

µ̄ = µ1 + (Σ12)(Σ22−1)(a− µ2),

and covariance matrix

Σ = Σ11 − (Σ12)(Σ22−1)(Σ21).





APPENDIX D

Generating Functions

Let X be a non-negative integer valued random variable with pmf {pk, k ≥ 0}. The

generating function (GF) of X (or its pmf) is defined as

gX(z) = E(zX) =

∞
∑

k=0

zkpk, |z| ≤ 1.

The GFs for common random variables in Appendix B. Important and useful prop-

erties of the GF are enumerated below:

1. gX(1) = P(X <∞).

2. A random variable or its pmf is uniquely determined by its GF.

3. The pmf can be obtained from its GF as follows:

pk =
1

k!

dk

dzk
gX(z)|z=0, k ≥ 0.

4. The factorial moments of X are given by

E(X(X − 1) · · · (X − k + 1)) =
dk

dzk
gX(z)|z=1, k ≥ 1.

5. Let X1 and X2 be independent random variables. Then

gX1+X2
(z) = gX1

(z)gX2
(z).

6. Let {Xn, n ≥ 1} be a given sequence of random variables and let X be such that

lim
n→∞

P(Xn = k) = P(X = k), k ≥ 0.

Then

lim
n→∞

gXn
(z) = gX(z), |z| ≤ 1.

The converse also holds.

Let {pk, k ≥ 0} be a sequence of real numbers, not necessarily a pmf. Define its GF

as

p(z) =

∞
∑

k=0

zkpk.
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Let R be its radius of convergence. We list some important and useful properties of

the GF:

1. Let q(z) be a GF of a sequence {qk, k ≥ 0}. If p(z) = q(z) for |z| < r ≤ R, then

pk = qk for all k ≥ 0.

2. Let rk = apk + bqk, k ≥ 0, where a and b are constants. Then

r(z) = ap(z) + bq(z).

3. Generating function of {kpk} is zp′(z).

4. Let q0 = p0, qk = pk − pk−1 for k ≥ 1. Then

q(z) = (1 − z)p(z).

5. qk =
∑k

r=0 pr for k ≥ 0. Then

q(z) = p(z)/(1 − z).

6. limk→∞
1

k+1

∑k
r=0 pr = limz→1(1 − z)p(z) if the limit on either side exists.

7. limk→∞ pk = limz→1(1 − z)p(z) if the limit on the left hand side exists.

Suppose the GF of {pk, k ≥ 0} is given by

p(z) =
P (z)

Q(z)
,

where P (z) is a polynomial of degree r, and Q(z) is a polynomial of degree s > r.
Suppose Q(z) has distinct roots so that we can write

Q(z) = c

s
∏

i=1

(1 − zαi),

where {αi, 1 ≤ i ≤ s} are distinct. Then

pk =

s
∑

i=1

ciα
k
i ,

where

ci = −αi
P (1/αi)

Q′(1/αi)
, 1 ≤ i ≤ s.



APPENDIX E

Laplace-Stieltjes Transforms

Let X be a non-negative real valued random variable with cdf FX(·). The Laplace-

Stieltjes transform (LST) of X (or its cdf) is defined as

φX(s) = E(e−sX) =

∫ ∞

x=0

e−sxdFX(x), Re(s) ≥ 0.

The LSTs for common random variables in Appendix B. Important and useful prop-

erties of the LST are enumerated below:

1. φX(0) = P(X <∞).

2. A random variable or its cdf is uniquely determined by its LST.

3. The moments of X are given by

E(Xk) = (−1)k d
k

dsk
φX(s)|s=0, k ≥ 1.

4. Let X1 and X2 be independent random variables

φX1+X2
(s) = φX1

(s)φX2
(s).

5. Let {Xn, n ≥ 1} be a given sequence of random variables and let X be such that

lim
n→∞

P(Xn ≤ x) = P(X ≤ x) = F (x), k ≥ 0,

at all points of continuity of F . Then

lim
n→∞

φXn
(s) = φX(s), Re(s) > 0.

The converse also holds.

Let F : [0,∞) → (−∞,∞), not necessarily a cdf. Define its LST as

LST (F ) = F̃ (s) =

∫ ∞

x=0

e−sxdF (x),

if the integral exists for some complex s with Re(s) > 0. It is assumed F (0−) = 0
so that there is a jump of size F (0+) at x = 0. We list some important and useful

properties of the LST:
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1. Let a and b be given constants. Then

LST (aF + bG) = aF̃ (s) + bG̃(s).

2. H(t) =
∫ t

0 F (t− u)dG(u), t ≥ 0 ⇔ H̃(s) = F̃ (s)G̃(s).

3. Assuming the limits exist

lim
t→∞

F (t) = lim
s→0

F̃ (s),

lim
t→0

F (t) = lim
s→∞

F̃ (s),

lim
t→∞

F (t)

t
= lim

s→0
sF̃ (s).
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Laplace Transforms

Let f : [0,∞) → (−∞,∞). Define its Laplace transform (LT) as

LT (f) = f ∗(s) =

∫ ∞

x=0

e−sxf(x)dx,

if the integral exists for some complex s with Re(s) > 0. We list some important and

useful properties of the GF:

1. LT (af + bg) = af ∗(s) + bg∗(s).

2. F̃ (s) = sF ∗(s).

3. h(t) =
∫ t
0 f(t− u)g(u)du, t ≥ 0 ⇔ h∗(s) = f ∗(s)g∗(s).

4. LT (f ′(t)) = sf ∗(s) − f(0).

5. LT (e−atf(t)) = f ∗(s+ a).

6. LT (tnf(t)) = (−1)n dn

dsn f
∗(s).

Table of Laplace Transforms.

f(t) f ∗(s)

1 1/s

t 1/s2

tn n!/sn+1

e−at 1/(s+ a)

e−attn−1/(n− 1)! 1/(s+ a)n

(e−at − e−bt)/(b − a) 1/(s+ a)(s+ b)
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APPENDIX G

Modes of Convergence

Let the random variablesX1, X2, X3, · · · be defined on a common probability space

(Ω,F ,P). Let X be another random variable defined on the same probability space.

1. Almost Sure Convergence.

Xn is said to converge almost surely to X , written Xn → X (a.s.), if

P( lim
n→∞

Xn = X) = P({ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)}) = 1.

This mode of convergence is also called convergence with probability 1, or al-

most everywhere convergence, or sample-path convergence. If Xn converges to

X almost surely and f is a continuous function, then f(Xn) converges to f(X)
almost surely.

2. Convergence in Probability.

Xn is said to converge to X in probability, written Xn → X (p), if

lim
n→∞

P(|Xn −X | > ǫ) = 0

for any ǫ > 0. IfXn converges toX in probability and f is a continuous function,

then f(Xn) converges to f(X) in probability.

3. Convergence in Distribution.

Xn is said to converge to X in distribution, written Xn → X (d), if

lim
n→∞

FXn
(x) = FX(x)

at all points of continuity of FX . If Xn converges to X in distribution and f is a

continuous function, then f(Xn) converges to f(X) in distribution.

4. Convergence in Mean.

Xn is said to converge to X in mean, written Xn → X (m), if

lim
n→∞

E(|Xn −X |) = 0.

5. Convergence in Mean Square.

Xn is said to converge to X in mean square, written Xn → X (m.s.), if

lim
n→∞

E((Xn −X)2) = 0.
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The various modes of convergence are related as follows: Almost sure convergence

implies convergence in probability which implies convergence in distribution. Mean

square convergence implies convergence in probability. Convergence in distribution

or with probability one does not imply convergence in mean. We need an additional

condition called uniform integrability defined as follows: A sequence of random vari-

ables {Xn, n ≥ 0} is called uniformly integrable if for a given ǫ > 0, there exists a

K <∞ such that

E(|X |; |X | > K) =

∫

{x:|x|>K}
xdFXn

(dx) < ǫ, n ≥ 1.

Then we have the following result: If Xn converges to X in distribution (or almost

surely), and {Xn, n ≥ 0} is uniformly integrable, the Xn converges to X in mean.

The three main convergence results associated with a sequence {Xn, n ≥ 1} of

iid random variables with common mean τ and variance σ2 are given below.

1. Weak Law of Large Numbers. Let X̄n = (X1 + X2 + · · · + Xn)/n. Suppose

τ <∞. Then

X̄n → τ (p).

2. Strong Law of Large Numbers. Assume τ <∞. Then

X̄n → τ (a.s.).

3. Central Limit Theorem. Assume σ2 <∞. Then

X̄n − τ

σ/
√
n

→ N(0, 1) (d).



APPENDIX H

Results from Analysis

We frequently need to interchange the operations of sums, integrals, limits, etc. Such

interchanges are in general not valid unless certain conditions are satisfied. In this

section we collect some useful sufficient conditions which enable us to do such in-

terchanges.

1. Monotone Convergence Theorem for Sums. Let π(i) ≥ 0 for all i ≥ 0 and

{gn(i), n ≥ 1} be a non-decreasing non-negative sequence for each i ≥ 0. Then

lim
n→∞

( ∞
∑

i=0

gn(i)π(i)

)

=

∞
∑

i=0

(

lim
n→∞

gn(i)
)

π(i).

2. Suppose {gn(i), n ≥ 1} is a non-negative sequence for each i ≥ 0 and π(i) ≥ 0
for all i ≥ 0. Then

∞
∑

n=0

∞
∑

i=0

gn(i)π(i) =

∞
∑

i=0

∞
∑

n=0

gn(i)π(i).

3. Fatou’s Lemma for Sums. Suppose {gn(i), n ≥ 1} is a non-negative sequence for

each i ≥ 0 and π(i) ≥ 0 for all i ≥ 0. Then

∞
∑

i=0

(

lim inf
n≥1

gn(i)

)

π(i) ≤ lim inf
n≥1

( ∞
∑

i=0

gn(i)π(i)

)

.

4. Bounded Convergence Theorem for Sums. Suppose π(i) ≥ 0 for all i ≥ 0, and

there exists a {g(i), i ≥ 0} such that
∑

g(i)π(i) < ∞ and |gn(i)| ≤ g(i) for all

n ≥ 1 and i ≥ 0. Then

lim
n→∞

∞
∑

i=0

gn(i)π(i) =

∞
∑

i=0

(

lim
n→∞

gn(i)
)

π(i).

5. Let {πn(i), n ≥ 1} be a non-negative sequence for each i ≥ 0 and let

π(i) = lim
n→∞

πn(i), i ≥ 0.

Suppose

lim
n→∞

∞
∑

i=0

πn(i) =
∑

π(i) <∞.
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Suppose {g(i), i ≥ 0} is a non-negative bounded function with 0 ≤ g(i) ≤ c for

all i ≥ 0 for some c <∞. Then

lim
n→∞

∞
∑

i=0

g(i)πn(i) =

∞
∑

i=0

g(i)
(

lim
n→∞

πn(i)
)

.

6. Monotone Convergence Theorem for Integrals. Let π(x) ≥ 0 for all x ∈ R and

{gn(x), n ≥ 1} be a non-decreasing non-negative sequence for each x ∈ R. Then

lim
n→∞

(∫

x∈R
gn(x)π(x)dx

)

=

∫

x∈R

(

lim
n→∞

gn(x)
)

π(x)dx.

7. Suppose {gn(x), n ≥ 1} is a non-negative sequence for each x ∈ R and π(x) ≥ 0
for all x ∈ R. Then

∞
∑

n=0

∫

x∈R
gn(x)π(x)dx =

∫

x∈R

∞
∑

n=0

gn(x)π(x)dx.

8. Fatou’s Lemma for Integrals. Suppose {gn(x), n ≥ 1} is a non-negative sequence

for each x ∈ R and π(x) ≥ 0 for all x ∈ R. Then
∫

x∈R

(

lim inf
n≥1

gn(x)

)

π(x)dx ≤ lim inf
n≥1

(∫

x∈R
gn(x)π(x)dx

)

.

9. Bounded Convergence Theorem for Integrals. Let π(x) ≥ 0 for all x ∈ R and

there exists a function g : R → R such that
∫

g(x)π(x)dx < ∞, and |gn(x)| ≤
g(x) for each x ∈ R and all n ≥ 1. Then

lim
n→∞

(∫

x∈R
gn(x)π(x)dx

)

=

∫

x∈R

(

lim
n→∞

gn(x)
)

π(x)dx.

10. Let {πn(x), n ≥ 1} be a non-negative sequence for each x ∈ R and let

π(x) = lim
n→∞

πn(x), x ∈ R.

Suppose

lim
n→∞

∫

x∈R
πn(x)dx =

∫

x∈R
π(x)dx <∞.

Suppose g : R → [0,∞) is a non-negative bounded function with 0 ≤ g(x) ≤ c
for all x ∈ R for some c <∞. Then

lim
n→∞

(
∫

x∈R
g(x)πn(x)dx

)

=

∫

x∈R
g(x)

(

lim
n→∞

πn(x)
)

dx.



APPENDIX I

Difference and Differential Equations

A sequence {xn, n ≥ 0} is said to satisfy an nth order difference equation with

constant coefficients {ai, 0 ≤ i ≤ n− 1} if

n−1
∑

i=0

aixk+i + xk+n = rk, k ≥ 0.

If the right hand side rk is zero for all k, the equation is called homogeneous, else it

is called non-homogeneous. The polynomial

n−1
∑

i=0

aiα
i + αn = 0,

is called the characteristic polynomial corresponding to the difference equation. Let

{α(i), 1 ≤ i ≤ d} be the d distinct roots of the characteristic polynomial, and let

m(i) be the multiplicity of α(i). (
∑d

i=1m(i) = n.) Then any solution to the homo-

geneous equation
n−1
∑

i=0

aixk+i + xk+n = 0, k ≥ 0,

is of the form

xn =
d
∑

i=1

m(i)−1
∑

j=0

cijn
jα(i)n, n ≥ 0.

The constants cij are to be determined by using the initial conditions. Now consider

the non-homogeneous equation

n−1
∑

i=0

aixk+i + xk+n = rk, k ≥ 0

Any solution of this equation is of the form

xn = xp
n +

d
∑

i=1

m(i)−1
∑

j=0

cijn
jα(i)n

where {xp
n, n ≥ 0} is any one solution (called the particular solution) of the non-

homogeneous equation. The constants cij are to be determined by using the initial
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conditions.

A function {x(t), t ≥ 0} is said to satisfy an nth order differential equation with

constant coefficients {ai, 0 ≤ i ≤ n− 1} if

n−1
∑

i=0

ai
di

dti
x(t) +

dn

dtn
x(t) = r(t), t ≥ 0.

If the right hand side r(t) is zero for all t ≥ 0, the equation is called homogeneous,

else it is called non-homogeneous. The polynomial

n−1
∑

i=0

aiα
i + αn = 0,

is called the characteristic polynomial corresponding to the differential equation. Let

{α(i), 1 ≤ i ≤ d} be the d distinct roots of the characteristic polynomial, and let

m(i) be the multiplicity of α(i). (
∑d

i=1m(i) = n.) Then any solution to the homo-

geneous equation
n−1
∑

i=0

ai
di

dti
x(t) +

dn

dtn
x(t) = 0, t ≥ 0

is of the form

x(t) =
d
∑

i=1

m(i)−1
∑

j=0

cijt
jeα(i)t.

The constants cij are to be determined by using the initial conditions. Now consider

the non-homogeneous equation

n−1
∑

i=0

ai
di

dti
x(t) +

dn

dtn
x(t) = r(t), t ≥ 0.

Any solution of this equation is of the form

x(t) = xp(t) +

d
∑

i=1

m(i)−1
∑

j=0

cijt
jeα(i)t

where {xp(t), t ≥ 0} is any one solution (called the particular solution) of the non-

homogeneous equation. The constants cij are to be determined by using the initial

conditions.



Answers to Selected Problems

Chapter 2

MODELING EXERCISES

2.1 State space = {0, 1, 2, · · ·}.

pi,0 = pi+1/

∞
∑

j=i+1

pj , pi,i+1 = 1 − pi,0, i ≥ 0.

2.3 State space = {b, b+ 1, b+ 2, · · ·}.

Xn+1 =

{

Xn + k − 1 w.p. Xn/(w + b+ n(k − 1))
Xn w.p. 1 −Xn/(w + b+ n(k − 1))

Thus {Xn, n ≥ 0} is a DTMC, but it is not time-homogeneous.

2.5Xn = 1 if the weather is sunny on day n, 0 otherwise. Yn = (Xn−1, Xn), n ≥ 1.

{Yn, n ≥ 1} is a DTMC on S = {(0, 0), (0, 1), (1, 0), (1, 1)} with the following

transition probability matrix:

P =









.6 0.4 0 0
0 0 .25 .75
.5 .5 0 0
0 0 .2 .8









.

2.7 {Xn, n ≥ 0} is a space homogeneous random walk on S = {...,−2,−1, 0, 1, 2, ...}
with

pi = p1(1 − p2), qi = p2(1 − p1), ri = 1 − pi − qi.

2.9 State space = S = {1, 2, 3, 4, 5, 6}. Transition probabilities:

pi,j = 1/6, i 6= j, pii = 0.

2.11 Bn (Gn) = the bar the boy (girl) is in on the nth night. {(Bn, Gn), n ≥ 0} is a

DTMC on S = {(1, 1), (1, 2), (2, 1), (2, 2)}with the following transition probability
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matrix:

P =









1 0 0 0
a(1 − d) ad (1 − a)(1 − d) (1 − a)d
(1 − b)c (1 − b)(1 − c) bc b(1 − c)

0 0 0 1









.

The story ends in bar k if the DTMC gets absorbed in state (k, k), for k = 1, 2.

2.13 pii = pi, pi,i+1 = 1 − pi, 1 ≤ i ≤ k − 1, pk,k = pk, pk,1 = 1 − pk.

2.15 The state space is S = {(1, 2), (2, 3), (3, 1)}. The transition probability matrix

is

P =





0 b21 b12
b23 0 b32
b13 b31 0



 .

2.17 {Xn, n ≥ 0} is a DTMC on S = {0, 1, · · · ,M} with

pi,j = αj , 0 ≤ i < j ≤M,

pi,i =

i
∑

k=0

αk, 0 ≤ i ≤M.

2.19 {Xn, n ≥ 0} is a DTMC since {Yn, n ≥ 0} are iid and Xn+1 = Yn +
Bin(Xn, 1 − p).

2.21. Xn+1 = min(Bin(Xn, 1 − p) + Yn+1, B). Hence {Xn, n ≥ 0} is a DTMC

with transition probabilities:

pi,j =

i
∑

k=0

(

i

k

)

pk(1 − p)i−kαk+j−i, 0 ≤ i ≤ B, 0 ≤ i < B,

and

pi,B = 1 −
B−1
∑

j=0

pij ,

where we use the convention that αk = 0 if k < 0.

2.23 Since {Dn, n ≥ 0} are iid, and

Xn+1 =

{

Xn −Dn if Xn −Dn ≥ s,
S if Xn −Dn < s,

{Xn, n ≥ 0} is a DTMC on state space {s, s + 1, ..., S − 1, S}. The transition

probabilities are

pi,j = αi−j , s ≤ j ≤ i ≤ S, j 6= S,

pi,S =

∞
∑

k=i−s+1

αk, s ≤ i < S, j = S
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pS,S = α0 +

∞
∑

k=S−s+1

αk.

2.25 {Xn, n ≥ 0} is a DTMC general simple random walk on {0, 1, 2, ...} with

transition probabilities

p0,0 = 1, pi,i+1 = βiα2, pi,i−1 = βkα0, pii = βiα1 + 1 − βi.

2.27 {Xn, n ≥ 0} is a DTMC with state space S = {rr, dr, dd} and transition

probability matrix

P =





0 1 0
0 .5 .5
0 0 1



 .

2.29. {Xn, n ≥ 0} is a branching process with common progeny distribution

P(Yi,n = 0) = 1 − α; P(Yi,n = 20) = α.

The number of recipients in the (n+ 1)st generation are given by

Xn+1 =

Xn
∑

i=1

Yi,n.

2.31Xn+1 = max(Xn−1+Yn, Yn). This is the same as the DTMC in Example 2.16.

COMPUTATIONAL EXERCISES

2.1 (a).E(X20|X0 = 8) = 5.0346, E(X20|X0 = 5) = 5.0000, E(X20|X0 = 3) =
4.9769.

2.5 Bin(k, .3187).

2.7 E(Xn) = (1 − d)n(pα + 1 − p)n, E(X2
n) = (1 − d)2n(pα2 + 1 − p)n, where

α = (1 + u)/(1 − d).

2.9 E(X5) = 14.9942, E(X10) = 14.5887.

2.13 E(X1) = 9.9972, E(X10) = 19.0538.

2.19 p
(n)
11 = .4 + 0.5236(−0.2236)n + 0.0764(0.2236)n, n ≥ 0.

2.21

P =





0 1 0
0 .5 .5
0 0 1



 , Pn = XDnX−1 =





0 21−n 1 − 21−n

0 2−n 1 − 2−n

0 0 1



 , n ≥ 1.
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2.23

E(Xn|X0 = i) = iµn

Var(Xn|X0 = i) =

{

inσ2 if µ = 1

iσ2µn−1 µn−1
µ−1 if µ 6= 1.

.

2.25 E(Xn) = i, Var(Xn) = (1 − an)i(N − i), where a = (N − 1)/N .

CONCEPTUAL EXERCISES

2.1 First show that

P(Xn+2 = k,Xn+1 = j|Xn = i,Xn−1, · · · , X0) = P(X2 = k,X1 = j|X0 = i).

Sum over all j ∈ A and k ∈ B to get the desired result.

2.3 (a) False (b) True (c) False.

2.5 No.

2.7 P(Ni = k|X0 = i) = (pi,i)
k−1(1 − pi,i), k ≥ 1.

2.9 Use induction.

2.11 {|Xn|, n ≥ 0} is a random walk on {0, 1, 2, ...} with p0,1 = 1, and, for i ≥ 1,

pi,i+1 =
pi+1 + qi+1

pi + qi
= 1 − pi,i−1.

Chapter 3

COMPUTATIONAL EXERCISES

3.1 (a) .87, (b) 5.7895, (c) 16.5559.

3.3 14.5771.

3.5 2.6241.

3.7 18.

3.9 2(e-1) = 3.4366.

3.11
pr−1(1−qm)

1−(1−pr−1)(1−qm−1)
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3.13 7.

3.15 1/p2q2.

3.17 If p = q the formula reduces to i(N − i).

3.25 .5
(2−pr

2)pr
1

1−(1−pr
1)(1−pr

2) .

3.27 .2.

3.29 M + 1.

3.33 1/(a+ b− 2ab).

CONCEPTUAL PROBLEMS

3.3 ṽi = vi, i > 0, ṽ0 =
∑∞

j=1 pijvj .

3.7 For B ⊂ A, and i ≥ 1, let u(i, B) be the conditional probability that the process

visits all states in A before visiting state 0, given that currently it is in state i and it

has visited the states in set B so far. Then

u(i, B) =
∑

j∈A−B

pi,ju(j, B ∪ {j}) +
∑

j 6=0,j/∈A−B

pi,ju(j, B).

3.9

wi = δi,jpi,0 +

∞
∑

k=1

pi,kwk.

Chapter 4

COMPUTATIONAL EXERCISES

4.1 All rows of Pn and M(n)

n+1 converge to [.132 .319 .549].

4.3 All rows of Pn and M(n)

n+1 converge to [1/(N + 1), 1/(N + 1), · · · , 1/(N + 1)].

4.5 p > q → Transient, p = q → Null recurrent, p < q → Positive recurrent.

4.7 Results of special case 2 of Example 4.22 continue to hold.

4.9 Communicating class: {A,B,C} All states are aperiodic, positive recurrent.
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4.13 (a)

1. Communicating Classes {1}, {2}, {3}, transient, aperiodic.

2. Communicating Class {4}, positive recurrent, aperiodic.

(b)

1. Class 1: {1, 2}, positive recurrent, aperiodic.

2. Class 2: {3}, transient, aperiodic.

3. Class 3: {4}, positive recurrent, aperiodic.

4.15 (i) Positive recurrent, (ii) Null recurrent, (iii) Positive recurrent.

4.17 Positive recurrent if
∑∞

n=0 npn <∞, null recurrent if
∑∞

n=0 npn = ∞.

4.19 Use Pakes’s lemma.

4.21 (a) Limiting distribution: [.25 .25 .25 .25]. (b) Limiting occupancy distribu-

tion: [16
1
3

1
3

1
6 ].

4.23 Limiting probability that the bus is full = 0.6822.

4.25 mi
∑k

j=1
mj

, where mi = 1/(1 − pi).

4.27 (i) πj = 2α−1
α (1−α

α )j , j ≥ 0.

4.29 1/r.

4.31 πn =
(N

n)
2

∑N

j=0
(N

j )
2 , 0 ≤ n ≤ N.

4.33 πn =
∑∞

i=n+1 αi/τ, n ≥ 0.

4.35 φ(z) =
∏∞

n=0 ψ((1 − p)nz + 1 − (1 − p)n).

4.37 π0α0 +πB−1α2, where πj is the long run probability that the buffer has j bytes

in it.

4.39 τ1/(τ1 + τ2).

4.41 [.25, .5, .25].

4.43

(a)









4/11 7/11 0 0
4/11 7/11 0 0
4/11 7/11 0 0
4/11 7/11 0 0









,
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(b)

















90/172 27/172 55/172 0 0 0
90/172 27/172 55/172 0 0 0
90/172 27/172 55/172 0 0 0

0 0 0 1 0 0
1170/3956 351/3956 715/3956 10/23 0 0
540/3956 162/3956 330/3956 17/23 0 0

















.

4.45 (C1r + C2(1 − r))/T , where r =
K−1
∑

i=1

pi, T =
K−1
∑

i=1

ipi +K(1 − r).

4.47 d(1 − 2p) + cr/(1 − r) where r = (p/(1 − p))2.

4.51 3.005 dollars per day.

4.53 Optimum B = 12, maximum probability = .9818.

CONCEPTUAL EXERCISES

4.1 (i) Reflexive, symmetric, transitive.

(iii) Reflexive, symmetric, not transitive.

4.17 The results follows from the fact that c(i) is the expected cost incurred at time

n if Xn = i.

4.21 Global balance equations are obtained by summing the local equation over all

j.

4.29 Suppose the DTMC earns one dollar every time it undergoes a transition from

state i to j, and 0 otherwise. Then use Conceptual Exercise 4.18.

4.31 g(i) = ri +
∑∞

j=1 pijg(j), i > 0.

Chapter 5

COMPUTATIONAL EXERCISES

5.1 P(Length of the shortest path > x) = exp(−λ3x)
[

λ2

λ2−λ1
e−λ1x + λ1

λ1−λ2
e−λ2x

]

.

5.3 P(Length of the longest path ≤ x) =
(

1 − λ2

λ2−λ1
e−λ1x − λ1

λ1−λ2
e−λ2x

)

(1 −
e−λ3x).

5.5 (1 − e−λx)n.

5.7 T
1−e−λT − 1

λ .
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5.9 1
λ+µ2p(1 + 3q2) where p = µ/(λ+ µ) and q = 1 − p.

5.11 Process job 1 first if C1λ1 > C2λ2, otherwise process job 2 first.

5.17 k = min{n ≥ 1 : e−λT
∑n−1

i=0
(λT )i

i! ≥ α}.

5.25 1
2 (1 − e−2λt).

5.27 e−λτ .

5.33 (i) e−1, (ii) e−1/2, 1 − 2.5e−1

5.35 6.

5.37N(t) ∼ P(Λ(t)) where Λ(t) =
∫ t
0 λ(u)du =

{

c(t− k) if 2k ≤ t < 2k + 1
c(k + 1) if 2k + 1 ≤ t < 2k + 2.

5.39R(t) ∼ P(
∫ t

0 λ(u)(1 −G(t− u))du).

5.41 E(Z(t)) = λτ and Var(Z(t)) = λs2t, where

τ =
λd

λd + λw
τd +

λw

λd + λw
τw,

s2 =
λd

λd + λw
(τ2

d + σ2
d) +

λw

λd + λw
(τ2

w + σ2
w).

5.43 (i) {N(t), t ≥ 0} ∼ NPP(r(t)) where r(t) = f(t)/(1 − F (t))). (ii)
∫ T

0 c(t)r(t)dt.

CONCEPTUAL EXERCISES

5.1 Let H(x) = P(X > x). Definition of hazard rate implies H ′(x) = −r(x)H(x).
The solution is Equation 5.4.

5.9Ai is a modified geometric ( λi

λ1+λ2
) random variable.

5.13 (i) No, (ii) No, (iii) No.

5.21 It is not an NPP since it does not have independent increments property.

5.23 e−λπx2
.

Chapter 6

MODELING EXERCISES
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6.1 State space = {0, 1, ..., k}.

qi,i+1 = (k − i)λ, 0 ≤ i ≤ k − 1,

qi,i−1 = iµ, 1 ≤ i ≤ k.

6.3 State space = {0, 1, 2, 12, 21}. The state represents the queue of failed machines.

Q =













−(µ1 + µ2) µ1 µ2 0 0
λ1 −(λ1 + µ2) 0 µ2 0
λ2 −(λ2 + µ1) 0 0 µ1

0 0 λ1 −λ1 0
0 λ2 0 0 −λ2













.

6.5 Pure death process on {0, 1, ..., k} with

µi = µM, 1 ≤ i ≤ k.

6.7 The state space = {0, 1A, 1B, 2, 3, 4, ...}. State 1A (1B) = one customer in the

system and he is being served by server A (B). State i = i customers in the system.

q0,1A = λα, q0,1B = λ(1 − α),

q1A,0 = µ1, q1A,2 = λ,

q1B,0 = µ2, q1B,2 = λ,

q2,1A = µ2, q2,1B = µ1, q2,3 = λ,

qi,i+1 = λ, qi,i−1 = µ1 + µ2, i ≥ 3.

6.9 q0,i = λi, qi,0 = µi, 1 ≤ i ≤ n.

6.11 λi =

{

λ1 + λ2 if 0 ≤ i < s
λ1 if i ≥ s,

, µi = min(i, s)µ, i ≥ 0.

6.13 q(0,0),(1,j) = λαj , q(1,j),(0,0) = µj , j = 1, 2,

q(i,j),(i+1,j) = λ, i ≥ 1, j = 1, 2,

q(i,j),(i−1,k) = µjαk, i ≥ 2, j, k = 1, 2.

6.15 qi,i+1 = .4iλ, qi,i+2 = .3iλ, qi,i−1 = .3iµ, i ≥ 0.

6.17 State space = {0, 1, 2, 3, 4, 5}, 0 = failed, i = i CPUs working.

qi0 = iµ(1 − c), qi,i−1 = iµc, 2 ≤ i ≤ 5, q10 = µ.

6.19 Let Xi(t) be the number of customers of type i in the system at time t.
{(X1(t), X2(t)), t ≥ 0} is a CTMC on S = {(i, j) : i ≥ 0, 0 ≤ j ≤ s} with

transition rates

q(i,j),(i+1,j) = λ1, (i, j) ∈ S, q(i,j),(i,j+1) = λ2, (i, j) ∈ S, j < s,

q(i,j),(i−1,j) = min(i, s− j)µ1, q(i,j),(i,j−1) = jµ2, (i, j) ∈ S.
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6.21 Y (t) = the number of packets in the buffer, Z(t) = the number of tokens in

the token pool at time t. X(t) = M − Z(t) + Y (t). {X(t), t ≥ 0} is a birth and

death process with birth rates λi = λ, i ≥ 0 and death rates µ0 = 0, µi = µ, i ≥ 1.

6.23 q2,1 = µ, qi,i−1 = 2µ, i ≥ 3,

qi,i+1 = 2λ, qi,iT = 2θ, i ≥ 2,

q1T,1 = µ, qiT,(i−1)T = µ, i ≥ 2,

qiT,T iT = θ, i ≥ 1.

6.25 {Xk(t), t ≥ 0} k = 1, 2 are two independent is a birth and death processes on

{0, 1, · · · , } with birth parameters λi = λpk for i ≥ 0, and death parameters µk for

i ≥ 1.

6.27 q0,k = λk, qk,0 = µk 1 ≤ k ≤ K.

6.29 State space = {0, 1, 2}. Transition rates:

q0,1 = 2λ, q1,0 = µ, q1,2 = 2λ, q2,0 = 2µ.

6.31 λi = λ1 + λ2 for 0 ≤ i ≤ K − 1, λi = λ1 for i ≥ K , µi = µ for i ≥ 1.

6.33 Denote a space as E if it is empty,B if it is occupied by a car in service, andW
if it is occupied by a car that is waiting to begin service or has finished service. The

state space is S = {1 = EEE, 2 = BEE, 3 = BBE, 4 = EBE, 5 = BBW, 6 =
BWE, 7 = EBW, 8 = BWW}. The rate matrix is:

Q =

























−λ λ 0 0 0 0 0 0
µ −(λ+ µ) λ 0 0 0 0 0
0 0 −(λ+ 2µ) µ λ µ 0 0
µ 0 0 −(λ+ µ) 0 0 λ 0
0 0 0 0 −2µ 0 µ µ
µ 0 0 0 0 −(λ+ µ) 0 λ
0 µ 0 0 0 0 −µ 0
0 µ 0 0 0 0 0 −µ

























.

COMPUTATIONAL EXERCISES

6.1 α
α+β (1 − e−(α+β)t).

6.3 Let αi(t) = λi

λi+µi
+ µi

λi+µi
e−(λi+µi)t. Then

P(X(t) = 0|X(0) = 2) = (1 − α1(t))(1 − α2(t)),

P(X(t) = 1|X(0) = 2) = α1(t)(1 − α2(t)) + α2(t)(1 − α1(t)),

P(X(t) = 2|X(0) = 2) = α1(t)α2(t).
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6.5 P (X(t) = j|X(0) = i) =
(

i
j

)

e−jµt(1 − e−µt)i−j .

6.7 2αβ
α+β t+ α(α−β)

(α+β)2 (1 − e−(α+β)t).

6.9
λ(e−16µ−e−(8λ+24µ))

(λ+µ)(1−e−(8λ+24µ))
.

6.11 Stable iff λ < 5µ.

ρi =



























(λ
µ )i for 0 ≤ i ≤ 5

( 1
2i−5

λ
µ )i for 6 ≤ i ≤ 8

( 1
8·3i−8

λ
µ )i for 9 ≤ i ≤ 12

( 1
648·4i−12

λ
µ)i for 13 ≤ i ≤ 15

( 1
41472·5i−15

λ
µ)i for i ≥ 16.

pi = ρip0, i ≥ 0.

6.13 p0 = 1

1+
∑n

i=1

λi
µi

, pi =
λi
µi

1+
∑n

i=1

λi
µi

, i = 1, 2, ..., n.

6.15 G(z) =
(

1−p
1−pz

) λ
µp

.

6.19 Long run probability that the kth space is occupied = ρ

∑k−1

i=0
ρi/i!

∑k

i=0
ρi/i!

−ρ
∑k−2

i=0
ρi/i!

∑k−1

i=0
ρi/i!

.

Long run fraction of the customers lost =
ρK/K!
∑K

i=0
ρi/i!

.

6.21 The system is stable if α > 0. State R = computer under repair. State j =

computer is functioning and there are j jobs in the system. The limiting distribution:

pR = θ
θ+α

pj = α
θ+α (1 − b)bj, j ≥ 0

where

b =
1 + λ

µ + θ
µ −

√

(1 + λ
µ + θ

µ )2 − 4λ
µ

2
.

Long run fraction of job that are completed successfully = µ
λ (1 − pR − p0).

6.23 p0 = (1 +
∑K

k=1
λk

µk
)−1, pk = λk

µk
p0, 1 ≤ k ≤ K.

6.25 Let αi = λi/µ, i = 1, 2

ρi = (α1 + α2)
i, 0 ≤ i ≤ K,

ρi = (α1 + α2)
Kαi−K

1 , i > K.

The system is stable if λ1 < µ. The limiting distribution is given by

pj = ρj/

∞
∑

i=0

ρi, j ≥ 0.
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6.27 Condition of stability: λ < µ. Expected number in the system = 3ρ
4(1−ρ) + ρ/4.

6.29 Idle time fraction =
2λµ2(µ+θ+2λ)

8λ4+4λ3θ+8λ3µ+6λ2µθ+4λµ2θ+2λµ3+µ3θ+4λ2µ2 .

6.31 pi = 1/N, 1 ≤ i ≤ N.

6.35 2λ+µ
λ(4λ+µ) .

6.39 1
λ

1−(λ/µ)K+1

1−λ/µ .

6.43 Optimal λ = .065.

6.45
kr(α+λ)

α(α+λ+µ) .

6.47 r
µ

1−c5

1−c .

6.49 T = .74 approximately.

6.51 Optimal p =
√

1+ρ√
1+ρ+

√
ρ

. Fraction joining = 1/
√

1 + ρ.

6.53 Use solution to Computational Exercise 6.25. The rate of revenue is λ1c1 +
λ2c2

∑K−1
j=0 pj.

6.55 p(φ) = [1 + 3λ
µ + 3(λ

µ)2 + (λ
µ )3 + θ

µ ]−1.

6.57 Yes. pi ∝ di/qi where di is the number of neighbors of node i.

CONCEPTUAL EXERCISES

6.1 Let B be the submatrix of Q obtained by deleting row and column for the state

N . Then the matrix M = [Mi,j ] satisfies BM = −I .

6.3 Let mk = E(T |X(0) = k). Then
∑

n∈S

qknmn = −1, k 6= i,
∑

n∈S−{j}
qinmn = −1.

6.9 Let {Y (t), t ≥ 0} have transition rates q′i,j = qi,j/r(i).

6.11

E(e−sT |X(0) = i, S1 = y,X(y) = j) =

{

e−sx/ri if y > x/ri
e−syφj(s, x− yri) if y ≤ x/ri.

The result follows by unconditioning.
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Chapter 7

MODELING EXERCISES

7.1 X(t) = number of waiting customers at time t. {X(t), t ≥ 0} is the queue length

process in an M/M/1 queue with arrival rate λ and service rate µ.

7.3 λi = λ, i ≥ 0, µi = µ, 1 ≤ i ≤ 3, 2µ, 4 ≤ i ≤ 9, 3µ, i ≥ 10.

7.5 λi = λ, i ≥ 0, µi = µ1, 1 ≤ i ≤ 3, µ2, i ≥ 4.

7.7 Arrival process is P(λ) where λ =
∑k

i=1 λi. Service times are iid with common

cdf
∑k

i=1(λi/λ)(1 − e−µix).

7.9 Interarrival times are deterministic (equal to 1), and the service times are iid

exp(µ).

7.13 {X(t), t ≥ 0} not a CTMC. {Xn, n ≥ 0} is a DTMC of the type given in

Computational Exercise 4.24.

7.15
λ(λ+s)

(λ+s)(λ+µ+s)−λµ .

COMPUTATIONAL EXERCISES

7.3 W q = 1
µ

ρ
1−ρ .

7.5 i
1−ρ .

7.9 PK from Equation 7.19.

7.11 L/(λ(1 − pK)).

7.13 λa(1 − pK) − cL.

7.23 1 − ρ.

7.27 M/M/1 queue with ρ = λ/αµ.

7.31 See answer to Computational Exercise 6.25. An arriving customer of either

type, and an entering customer of type 1, sees j people with probability pj , j ≥ 0.

An entering customer of type 2 see j people with probability pj/
∑K−1

k=0 pk, 0 ≤ j ≤
K − 1.

7.33 1.
∑N

i=1
λ

(1−p)µi−λ , 2.
∏N

i=1

(

1 − λ
(1−p)µi

)

.
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7.37 φ1(n) =

{

(1/µ)n if 1 ≤ n ≤ 5,
(1/µ)5(1/2µ)n−5 if n ≥ 6,

φ2(n) =







(1/µ)n if 1 ≤ n ≤ 2,

(1/µ)2(1/2µ)n−2 if 3 ≤ n ≤ 10,
(1/µ)2(1/2µ)8(1/3µ)n−10 if n ≥ 11.

The network is always stable.

L =

∞
∑

n=0

n
λn

n!

n
∑

n1+n2=0

φ1(n1)φ2(n2).

7.39 a1 = λ1 + aNpN , ai = λi + ai−1pi−1, 2 ≤ i ≤ N.
Solution:

aN =





N
∑

i=1

λi

N−1
∏

j=i

pj



 /(1 −
N
∏

j=1

pj).

Other ai’s are obtained by symmetry.

7.45 Condition of stability: ρ =
∑k

i=1
λi

µi
< 1. Expected number in steady state

L = ρ+ λ
1−ρ

∑k
i=1

λi

µ2
i

.

7.47 .9562.

7.53 Condition of stability: λ < 2µ. The second system has smaller L.

7.59 X(t) and Xn have the same limiting distribution, which differs from that of

X̄n.

7.63 Stability condition: ρ
1+ρ < θ. The solution to Equation 7.41:

α =
1

2
((2λ+ µ+ θ) −

√

(2λ+ µ+ θ)2 − 4(θ + λ)).

Use Theorem 7.16.

Chapter 8

COMPUTATIONAL EXERCISES

8.1 {Sn, n ≥ 0} is a renewal sequence in the M/M/1/K and G/M/1/K system,

but not in the M/G/1/K system.

8.3 Recurrent.

8.5 P{N(t) = k} = e−λt (λt)2k

(2k)! + e−λt (λt)2k+1

(2k+1)! .
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8.7 P (N(n) = k) =
(

n
k

)

(1 − α)kαn−k .

8.9 pk(n) = .2pk−1(n) + .3pk−1(n− 1) + .5pk−1(n− 2), k ≥ 1, n ≥ 2.

8.11 1. 6/17, 2. 4/17, 3. 2/17.

8.13 τ = m0 = 1+ 1−α
1−β , s2 = 2+α−β+2/(1−β), N(n) ∼ N(t/τ, (s2−τ2)t/τ3).

8.15 M(t) = λ1λ2

(1−r)λ1+rλ2
t+ r(1−r)(λ1−λ2)2

((1−r)λ1+rλ2)2
(1 − e−((1−r)λ1+rλ2)t).

8.17 M(t) = λµ
λ+µ t−

λµ
(λ+µ)2 (1 − e−(λ+µ)t).

8.19 M ∗(t) = pM(t).

8.21 H(t) = D(t) +
∫ t
0 H(t− u)dG(u) where D(t) =

{

1 −G(t) t ≤ x
0 otherwise

.

limt→∞H(t) = 1
τ

∫ x

0 (1 −G(t))dt.

8.23 p(t) = 1 −
∫ t

0 p(t − x)dG(x). Not a renewal equation. For a PP(λ) p(t) =
1
2 (1 − e−2λt).

8.25 M̃k(s) = k!
[

G̃(s)

1−G̃(s)

]k

.

8.27 H(t) = D(t) +
∫ t
0 H(t − u) dG(u) where D(t) =

∫∞
t uk dG(u).

limt→∞ E(C(t)k) = E(Xk+1)
τ .

8.31 τ
1−ρ .

8.33 µi/µ.

8.37 amin(1, C2

C1
[
√

1 + 2C1

C2
− 1]).

8.39 1. SMP, 2. Not an SMP, 3. Not an SMP.

8.41 Let X(t) = −1 if the machine is under repair at time t. If the machine is up

at time t, let X(t) be the cumulative damage at time t (since the last repair). Then

{X(t), t ≥ 0} is an SMP with state space {−1, 0, 1, 2, · · · ,K}. The non-zero entries

of the kernel G(x) = [Gij(x)] are given by

G−1,0(x) = A(x),

Gi,j(x) = (1 − exp(−λx))αj−i, 0 ≤ i < j ≤ K,

Gi,0(x) = (1 − exp(−λx))
∞
∑

j=K+1−i

αj , 0 ≤ i ≤ K.

8.45 M/G/1/1 : τ
1+λτ , G/M/1/1 : G̃(µ).
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8.47 Let αi = (λ2
i + 2λiµi)/(λi + µi)

2, ρj :=
∏j−1

i=1 αi,, πj = ρj/
∑4

i=1 ρi,
τj = (λi + 2µi)/(λi + µi)

2. Then

pj = ρjτj/

4
∑

i=1

ρiτi.

8.51 3. Space 6 is occupied for 76.24% of the time in steady state.

CONCEPTUAL EXERCISES

8.1 Yes if X0 = i with probability 1 for some fixed i, and no otherwise.

8.3 N1 is an RP, N2 is a delayed RP.

8.13 N1 is an ARP, N0 is a delayed ARP.

Chapter 9

MODELING EXERCISES

9.1 Let pij =
∏j+1

r=i+1
λr

λr+µr
, j ≥ i− 1, Ai(x) = 1 − e−(λi+µi)x. Then Gij(x) =

pij ·Ai ∗Ai+1 ∗ · · · ∗Aj ∗Aj+1(x).

9.3 Gi,j(x) is as given in Example 9.4 for 0 ≤ j ≤ i+ 1 < K. For i = K, 0 ≤ j ≤
K , GK,j = GK−1,j .

9.5 Gij(x) =
∫ x
0

(

N−i
j+1−i

)

(1 − e−µt)j+1−ie−(N−j−1)µtdG(t), N > j ≥ i− 1 ≥ 0.

G0j(x) =
∫ x
0 Nµe

−NµyG1j(x − y)dy, N > j ≥ 0.

9.7 A = [hij ], 0 ≤ i, j < k, B = [hij ], 0 ≤ i < k ≤ j ≤ N, C = [hij ], 0 ≤
j < k ≤ i ≤ N. Then Gn

ij = [An−2BC]ij , n ≥ 2.

9.9 Use Sn = n and Xn = X(Sn+).

9.11 Use Sn time of departure of the nth server, and Xn = X(Sn+).

COMPUTATIONAL EXERCISES

9.1

Fi,j(t) =

{

Hi ∗Hi+1 ∗ · · · ∗Hj−2 ∗Hj−1(t) 1 ≤ i < j ≤ N
Hi ∗Hi+1 ∗ · · · ∗HN ∗H1 ∗ · · · ∗Hj−2 ∗Hj−1(t) 1 ≤ j ≤ i ≤ N

Mi,j(s) =
F̃i,j(s)

1 − F̃i,i(s)
.
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9.3 p1 = 2(1−Ã(µ))

2µτ+Ã(µ)
.

9.5 (1). ρj+1

(j+1)!

(

e−ρ

1−e−ρ

)

, (2). (1 − e−ρ)/ρ.

9.7 Long run fraction of the time the MRGP spends in state j = 1
λ

[

1 − e−λ
∑r−j

k=0(λ
k/k!)

]

.

9.11 limn→∞ E(Xn) = λτ
α , limt→∞ E(X(t)) = λτ

α + λs2

2τ .

CONCEPTUAL EXERCISES

9.7 Follows from the elementary renewal theorem for the renewal processes (Theo-

rem 8.12) and for the delayed renewal processes (Conceptual Exercise 8.12).

Chapter 10

COMPUTATIONAL EXERCISES

10.1 For 0 < s < t,

E(B(s)B(t)) = E(B(s)(B(t)−B(s)+B(s))) = E(B(s)(B(t)−B(s)))+E(B(s)2).

10.3

f(x1, x2) =
1

2π
√

t1(t2 − t1)
×

exp

(

− 1

2t1(t2 − t1)
[(x1 − µ1t1)

2t2 − 2(x1 − µ1t1)(x2 − µ2t2) + (x2 − µ2t2)
2t1]

)

.

10.5 N(sy/t, σ2s(t− s)/t).

10.13 a(t) = −3µt, b(t) = 3(µt)2 − 3σ2t, c(t) = 3σ2µt− (µt)3.

10.19 Limiting mean = 0, and limiting variance = b2/6.

10.25 Y (t) = (B(t) + Y (0))/(1 + t).

CONCEPTUAL EXERCISES

10.1 1. True, 2. False, 3. True.

10.10 Y (t) = Y (0)eC(t)+X(t) = Y (0)e
C(t)+b(t)B(t)−

∫ t

0
B(u)b′(u)du

,

where C(t) =
∫ t

0 (a(u) − b2(u)/2)du.
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Diffusion Process, 476
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Discrete Time Markov Chain
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Chapman-Kolmogorov Equations, 32
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First Passage Times, 55

CDF, 56

Expectation, 69
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in Genetics, 23
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Initial Distribution, 11

Irreducibility, 89, 91

Limiting Behavior, 85

Limiting Distribution, 113

Marginal Distributions, 31

Occupancy Distribution, 116
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Periodicity, 92

Recurrence, 94

Stationary Distribution, 113
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Time Homogeneous, 10

Transience, 94

Transient Behavior, 9

Transition Diagram, 12

Discrete-Time Queue, 17

Average Costs, 128
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Batch Service, 20, 68, 72, 102, 121

Discounted Costs, 126

Drunkard’s Walk, 17

Ehrenfest Model, 18

Excess Life Process, 363

Exponential Random Variable, 145

Distribution, 145

Hazard Rate, 147

Memoryless Property, 146

Minimum, 149

Sums, 152, 153

Fatou’s Lemma, 511

First Passage Times, 8

Foster’s Criterion, 103

G/M/1 Queue, 437

Gambler’s Ruin, 17, 61

Generating Functions, 503

Hessenberg Matrix
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Upper, 20

Hidden Markov Models, 22

Infinite Server Queue, 173, 201, 243, 324

Inspection Paradox, 367

Ito Integral, 472

Ito Process, 476

Ito’s Formula, 478

Laplace Stieltjes Transform, 505

Laplace Transform, 507

Law of Large Numbers

Strong, 510

Weak, 510

Limiting Distribution, 7

Linear Growth Model, 201, 219, 228, 248

Little’s Law, 396
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Busy Period, 358

M/G/1 Queue, 435

M/M/∞ Queue, 296

Markov Property, 10

Markov Regenerative Process, 409

Transient Distribution, 428

Markov Regenerative process

Limiting Distribution, 429

Markov Renewal Equation, 415

Markov Renewal Function, 415

Markov Renewal Process

Definition, 414

Markov Renewal Sequence

Characterization, 410

Definition, 409

Regularity, 414

Markov Renewal Theorem

Extended, 421

Key, 419
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Markov Renewal Type Equation, 417

Solution, 417

Martingale, 463

Matrix Exponential, 209

Monotone Convergence Theorem, 511

Moran Model, 25

o(h) Functions, 160
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American Perpetual Put, 483

American Put, 483

European Call, 481

European Put, 483

Optional Sampling Theorem, 465

Order Statistics, 500

Ornstein-Uhlenbeck process, 481

Pakes’ Lemma, 104

Parallel System, 151

Phase Type Distributions, 252

Poisson Process, 145, 191, 197, 217

Characterization, 160, 161

Compound, 177, 191

Covariance, 159

Definition, 155

Distribution, 155

Event Times, 162

Non-Homogeneous, 173

Event Times, 177

Shifted, 157

Splitting, 169

Bernoulli, 169

Non-Homogeneous, 171

Superposition, 166

Probability

Axioms, 491

Conditional, 492

Model, 491

Queueing Networks

Closed, 308

Open, 298

State-Dependent Arrivals, 306

State-Dependent Service, 306

Queues

Arrivals, 280

Birth and Death, 293, 433

Departures, 281
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Little’s Law, 291

Nomenclature, 277

PASTA, 283, 289

Random Variable

CDF, 493

Conditional Distributions, 500

Conditional Expectations, 500

Continuous, 493

Discrete, 493

Expectation, 494

Independence, 498

Multi-Variate, 497

Multi-Variate

Normal, 501

Sums, 498

Univariate, 493

Random Walk, 6, 16

General, 63, 71, 100, 119, 131

Simple, 16, 33, 62, 87, 91, 93, 99

State-Dependent, 16

Recurrence Time

Backward, 363

Forward, 363

Regenerative Process, 390

Costs and Rewards, 394

Delayed, 390

Limiting Distribution, 391

Renewal Argument, 344

Renewal Equation, 350

Renewal Function, 349

Asymptotic Behavior, 361

Delayed, 368

Asymptotic Behavior, 370

Renewal Process, 339

Age, 365, 367

Alternating, 373

Delayed, 377

Asymptotic Behavior, 385, 388

Central Limit Theorem, 347

Characterization, 342

Definition, 340

Delayed, 368

Limiting Behavior, 369

Equilibrium, 371

Limiting Distribution, 345

Marginal Distribution, 343
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Moments, 354

Periodicity, 359

Recurrence and Transience, 346

Remaining Life, 364, 366

Total Life, 367

Renewal Reward Process, 384

Renewal Sequence, 340

Renewal Theorem

Almost-Sure, 346

Blackwell’s, 360

Continuous, 234

Discrete, 106

Elementary, 352

Key, 360

Renewal-Type Equation, 355

Solution, 355

Restaurant Process, 258

Retrial Queue, 202, 243, 320, 438

Reversibility

CTMC, 254

DTMC, 129

Rumor Model, 48

Sample Path, 2

Semi-Markov Process, 378, 424

First Passage Times, 380

Limiting Behavior, 426

Limiting Distribution, 382, 425

Single Server Queue, 200, 242, 252

Batch Arrivals, 244

Slotted ALOHA, 48

Stationary and Independent Increments, 157

Stochastic Differential Equation, 476

Stochastic Integral, 472

Martingale, 475

Moments, 473

Stochastic Matrix, 10

Stochastic Process, 1

Continuous Time, 1

Discrete Time, 1

Parameter Set, 1

State-Space, 1
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Strong Markov Property, 448
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Time Division Multiplexing, 49

Total Life Process, 363

Transient Distribution, 7

Transition Probability Matrix
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Eigenvalues, 39
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Wright-Fisher Model, 24
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