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Feedback Control Systems

10.1 Introduction

This chapter focuses on one and two degrees of freedom feedback control sys-
tems that have been studied, using Polynomial Matrix (PMD) and Matrix
Fractional (MFD) Descriptions. The chapter starts by considering in Sec-
tion 10.2 interconnected systems and their properties, with emphasis on sys-
tems connected via feedback interconnections. Internal stability is central in
the development, and all stabilizing feedback controllers are parameterized
in Section 10.3. The role of the Diophantine equation is also explained. In
Section 10.4 two degrees of freedom controllers are studied at length.

10.2 Interconnected Systems

Interconnected systems, connected in parallel, series, and feedback configura-
tions are studied in the present section. It is shown that particular intercon-
nections may introduce uncontrollable, unobservable, or unstable modes into
a system; for a more detailed development, see [1, p. 568, Subsection 7.3C].
Feedback configurations, as well as series interconnections, are of particular
importance in the control of systems.

10.2.1 Systems Connected in Parallel and in Series

In Parallel

Consider first systems S1 and S2 connected in parallel as shown in Figure 10.1,
and let

P1(q)z1(t) = Q1(q)u1(t), y1(t) = R1(q)z1(t) (10.1)

and
P2(q)z2(t) = Q2(q)u2(t), y2(t) = R2(q)z2(t) (10.2)
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Figure 10.1. Systems connected in parallel

be representations (PMDs) for S1 and S2, respectively; see Section 7.5. Since
u(t) = u1(t) = u2(t) and y(t) = y1(t) + y2(t), the overall system description
is given by

[
P1(q) 0

0 P2(q)

] [
z1(q)
z2(q)

]
=
[
Q1(q)
Q2(q)

]
u(t), y(t) = [R1(q), R2(q)]

[
z1(t)
z2(t)

]
.

(10.3)
If the systems S1 and S2 are described by the state-space representations
ẋi = Aixi + Biui, yi = Cixi + Diui, i = 1, 2, then the overall system state-
space description is given by

[
ẋ1

ẋ2

]
=
[
A1 0
0 A2

] [
x1

x2

]
+
[
B1

B2

]
u,

y = [C1, C2]
[
x1

x2

]
+ [D1 +D2]u. (10.4)

If H1(s), H2(s) are the transfer function matrices of S1 and S2, respectively,
then the overall transfer function can be found from ŷ(s) = ŷ1(s) + ŷ2(s) =
H1(s)û1(s) +H2(s)û2(s) = [H1(s) +H2(s)]û(s) to be

H(s) = H1(s) +H2(s). (10.5)

Note that if both H1(s) and H2(s) are proper, then H(s) is also proper.

In Series

Consider now systems S1 and S2 connected in series, as shown in Figure 10.2,
and let (10.1) and (10.2) describe the systems. Here u2(t) = y1(t). To derive

u1 u2y1 y2

S

S1 S2

Figure 10.2. Systems connected in series
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the overall system description, consider P2z2 = Q2u2 = Q2y1 = Q2R1z1.
Then

[
P1 0

−Q2R1 P2

] [
z1
z2

]
=
[
Q1

0

]
u1,

y2 = [0, R2]
[
z1
z2

]
.

(10.6)

If the systems S1, S2 are described by the state-space representations ẋi =
Aixi +Ciui, yi = Cixi +Diui, i = 1, 2, then it can be shown that the overall
system state-space description is given by

[
ẋ1

ẋ2

]
=
[
A1 0
B2C1 A2

] [
x1

x2

]
+
[

B1 0
B2D1 B2

] [
u1

r2

]
,

[
y1
y2

]
=
[

C1 0
D2C1 C2

] [
x1

x2

]
+
[

D1 0
D2D1 D2

] [
u1

r2

]
.

(10.7)

IfH1(s), H2(s) are the transfer function matrices of S1 and S2, then the overall
transfer function ŷ2(s) = H(s)û1(s) is

H(s) = H2(s)H1(s). (10.8)

It can be shown that if both H1 and H2 are proper, then H is also proper.
Note that poles of H1 and H2 may cancel in the product H2H1 and any
cancellation implies that there are uncontrollable/unobservable eigenvalues in
the overall system internal description.

10.2.2 Systems Connected in Feedback Configuration

Consider systems S1 and S2 connected in a feedback configuration as shown
in Figure 10.3a, or equivalently as in Figure 10.3b. Let

P1(q)z1(t) = Q1(q)u1(t), y1(t) = R1(q)z1(t) (10.9)

and
P2(q)z2(t) = Q2(q)u2(t), y2(t) = R2(q)z2(t) (10.10)

be polynomial matrix representations of S1 and S2, respectively. Since

u1(t) = y2(t) + r1(t), (10.11)
u2(t) = y1(t) + r2(t), (10.12)

where r1 and r2 are external inputs, the dimensions of the vector inputs
and outputs, u1 and y2 and also u2 and y1 must be the same. To derive
the overall system description we consider P1z1 = Q1u1 = Q1(y2 + r1) and
P2z2 = Q2u2 = Q2(y1+r2) where y1 and y2 are as above. Then the closed-loop
is described by
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Figure 10.3. Feedback configuration

[
P1 −Q1R2

−Q2R1 P2

] [
z1
z2

]
=
[
Q1 0
0 Q2

] [
r1
r2

]
,

[
y1
y2

]
=
[
R1 0
0 R2

] [
z1
z2

]
.

(10.13)
Note that the condition for the closed-loop system to be well defined is that

det
([

P1 −Q1R2

−Q2R1 P2

])
�= 0. (10.14)

If this condition is not satisfied, then the closed-loop system cannot be de-
scribed by the polynomial matrix representations discussed here.

If the systems S1 and S2 are described by the state-space representations
ẋi = Aixi + Biui, yi = Cixi + Diui, i = 1, 2, then it can be shown that the
closed-loop system state-space description is

[
ẋ1
ẋ2

]
=
[
A1+B1M2D2C1 B1M2C2

B2M1C1 A2+B2M1D1C2

]
[ x1
x2 ] +

[
B1M2 B1M2D2
B2M1D1 B2M1

]
[ r1r2 ] ,

[ y1y2 ] =
[

M1C1 M1D1C2
M2D2C1 M2C2

]
[ x1
x2 ] +

[
M1D1 M1D1D2

M2D2D1 M2D2

]
[ r1r2 ] , (10.15)

where M1 = (I − D1D2)−1 and M2 = (I − D2D1)−1. It is assumed that
det(I −D1D2) = det(I −D2D1) �= 0.

It is not difficult to see that in the case of state-space representations the
conditions for the closed-loop system state-space representation to be well
defined is det(I − D1D2) �= 0. When D1 = 0 and D2 = 0, then (10.15)
simplifies to
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[
ẋ1

ẋ2

]
=
[
A1 B1C2

B2C1 A2

] [
x1

x2

]
+
[
B1 0
0 B2

] [
r1
r2

]
,

[
y1
y2

]
=
[
C1 0
0 C2

] [
x1

x2

]
. (10.16)

Example 10.1. Consider systems S1 and S2 in a feedback configuration with
H1(s) = s

s+1 and H2(s) = 1 and consider the realizations {P1, Q1, R1,W1} =
{q + 1, q, 1, 0} and {P2, Q2, R2,W2} = {1, 1, 1, 0}. Then (10.13) becomes

[
q + 1 −q
−1 1

] [
z1
z2

]
=
[
q 0
0 1

] [
r1
r2

]
,

[
y1
y2

]
=
[

1 0
0 1

] [
z1
z2

]
.

Since det
([

q + 1 −q
−1 1

])
= 1 �= 0, this is a well-defined polynomial matrix

description for the closed-loop system. Note that the transfer function matrix

of the closed-loop system is H(s) =
[

1 0
0 1

] [
s+ 1 −s
−1 1

]−1 [
s 0
0 1

]
=
[
s s
s s+ 1

]
,

which is not proper, whereas H1 and H2 were both proper.
Now if state-space realizations of H1(s) = −1

s+1 + 1 and H2(s) = 1 are
considered, namely {A1, B1, C1, D1} = {−1, 1,−1, 1} and {A2, B2, C2, D2} =
{0, 0, 0, 1}, then 1 − D1D2 = 1 − 1 · 1 = 0; i.e., a state-space description of
the closed-loop does not exist. This is to be expected since the closed-loop
transfer function is nonproper and as such cannot be represented by a state-
space realization {A,B,C,D}.

Next, let H1(s) and H2(s) be the transfer function matrices of S1 and S2;
i.e., ŷ1(s) = H1(s)û1(s) and ŷ2(s) = H2(s)û2(s). In view of û1 = ŷ2 + r̂1
and û2 = ŷ1 + r̂2, we have ŷ1 = H1û1 = H1(ŷ2 + r̂1) = H1H2û2 + H1r̂1 =
H1H2ŷ1 +H1H2r̂2 +H1r̂1 or

(I −H1H2)ŷ1 = H1H2r̂2 +H1r̂1. (10.17)

Also, ŷ2 = H2û2 = H2(ŷ1+ r̂2) = H2H1û1+H2r̂2 = H2H1ŷ2+H2H1r̂1+H2r̂2
or

(I −H2H1)ŷ2 = H2H1r̂1 +H2r̂2. (10.18)

Note that det(I −H1H2) = det(I −H2H1), and assume that the determinant
is nonzero. Then

[
ŷ1
ŷ2

]
=
[

(I −H1H2)−1H1 (I −H1H2)−1H1H2

(I −H2H1)−1H2H1 (I −H2H1)−1H2

] [
r̂1
r̂2

]

=
[
H11 H12

H21 H22

] [
r̂1
r̂2

]
.

(10.19)
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The significance of the assumption det(I −H1H2) �= 0 can be seen as fol-
lows. Let D̃1z̃1 = Ñ1u1, y1 = z̃1 and D2z2 = u2, y2 = N2z2 be representations
of the systems S1 and S2. As will be shown below, the closed-loop system
description in this case is given by (D̃1D2 − Ñ1N2)z2 = Ñ1r1 + D̃1r2 and
y1 = D2z2−r2 and y2 = N2z2. Now note that I−H1H2 = I−D̃−1

1 Ñ1N2D
−1
2 =

D̃−1
1 (D̃1D2− Ñ1N2)D−1

2 , which implies that det(I−H1H2) �= 0 if and only if
det(D̃1D2 − Ñ1N2) �= 0; i.e., if det(I −H1H2) = 0, then the closed-loop sys-
tem cannot be described by the polynomial matrix representations discussed
in this chapter. Thus, the assumption that det(I −H1H2) �= 0 is essential for
the closed-loop system to be well defined.

Example 10.2. Consider H1(s) = s
s+1 and H2(s) = 1 as in Example 10.1.

Here 1 − H1H2 = 1
s+1 �= 0, and therefore, the closed-loop system is well

defined. Relation (10.19) assumes in this case the form
[
ŷ1
ŷ2

]
=
[
s s
s s+ 1

] [
r̂1
r̂2

]
,

a nonproper transfer function that is the transfer function matrixH(s) derived
in Example 10.1.

For simplicity, assume that both S1 and S2 in Figure 10.3 are controllable
and observable and consider the following representations.

For system S1:

(1a) D1(q)z1(t) = u1(t), y1(t) = N1(q)z1(t) (10.20)

or
(1b) D̃1(q)z̃1(t) = Ñ1(q)u1(t), y1(t) = z̃1(t), (10.21)

where (D1(q), N1(q)) are rc and (D̃1(q), Ñ1(q)) are lc.
For system S2:

(2a) D2(q)z2(t) = u2(t), y2(t) = N2(q)z2(t) (10.22)

or
(2b) D̃2(q)z̃2(t) = Ñ2(q)u2(t), y2(t) = z̃2(t), (10.23)

where (D2(q), N2(q)) are rc and (D̃2(q), Ñ2(q)) are lc.
In view of the connections

u1(t) = y2(t) + r1(t), u2(t) = y1(t) + r2(t), (10.24)

the closed-loop feedback system of Figure 10.3 can now be characterized as
follows [see also (10.13)]:
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(i) Using descriptions (1a) and (2a), and Eqs. 10.20 and 10.21, we have
[

D1 −N2

−N1 D2

] [
z1
z2

]
=
[
I 0
0 I

] [
r1
r2

]
,

[
y1
y2

]
=
[
N1 0
0 N2

] [
z1
z2

]
. (10.25)

(ii) Using descriptions (1b) and (2b), we have
[

D̃1 −Ñ1

−Ñ2 D̃2

] [
z̃1
z̃2

]
=

[
Ñ1 0
0 Ñ2

][
r1
r2

]
,

[
y1
y2

]
=
[
I 0
0 I

] [
z̃1
z̃2

]
. (10.26)

(iii) Using descriptions (1b) and (2a), we have
[
D̃1 −Ñ1N2

−I D2

] [
z̃1
z2

]
=
[
Ñ1 0
0 I

] [
r1
r2

]
,

[
y1
y2

]
=
[
I 0
0 N2

] [
z̃1
z2

]
. (10.27)

Also, D2z2 = u2 = y1 + r2 = D̃−1
1 Ñ1u1 + r2 = D̃−1

1 Ñ1(y2 + r1) + r2 =
D̃−1

1 Ñ1(N2z2 + r1) + r2 and y1 = u2 − r2 = D2z2 − r2, from which we
obtain

(D̃1D2 − Ñ1N2)z2 = [Ñ1, D̃1]
[
r1
r2

]
,

[
y1
y2

]
=
[
D2

N2

]
z2 +

[
0 −I
0 0

] [
r1
r2

]
.

(10.28)
(iv) Using descriptions (1a) and (2b), we have

[
D1 −I

−Ñ2N1 D2

] [
z1
z̃2

]
=
[
I 0
0 Ñ2

] [
r1
r2

]
,

[
y1
y2

]
=
[
N1 0
0 I

] [
z1
z̃2

]
. (10.29)

Also, D1z1 = u1 = y2 + r1 = D̃−1
2 Ñ2u2 + r1 = D̃−1

2 Ñ2(y1 + r2) + r1 =
D̃−1

2 Ñ2(N1z1 + r2) + r1 and y2 = u1 − r1 = D1z1 − r1, from which we
obtain

(D̃2D1 − Ñ2N1)z1 = [D̃2, Ñ2]
[
r1
r2

]
,

[
y1
y2

]
=
[
N1

D1

]
z1 +

[
0 0

−I 0

] [
r1
r2

]
.

(10.30)

Controllability and Observability

The preceding descriptions of the closed-loop system given in (i), (ii), (iii),
and (iv) are equivalent and have the same uncontrollable and unobservable
modes. The systems S1 and S2 were taken to be controllable and observable,
and so the uncontrollability and unobservability discussed below is due to the
feedback interconnection only.
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Controllability. To study controllability, consider the representation (10.25).

It can be seen from the matrices
[

D1 −N2

−N1 D2

]
and

[
I 0
0 I

]
that the eigenvalues

that are uncontrollable from r1 will be the roots of the determinant of a
gcld of [−N1, D2] and the eigenvalues that are uncontrollable from r2 will
be the roots of a gcld of [D1,−N2]. The closed-loop system is controllable

from
[
r1
r2

]
. Clearly, all possible eigenvalues that are uncontrollable from r1

are eigenvalues of S2. These are the poles of H2 = N2D
−1
2 that cancel in the

product H2N1. Similarly, all possible eigenvalues that are uncontrollable from
r2 are eigenvalues of S1. These are the poles of H1 = N1D

−1
1 that cancel in

the product H1N2.

Observability. To study observability, consider the representation (10.26).

From the matrices

[
D̃1 −Ñ1

−Ñ2 D̃2

]
and

[
I 0
0 I

]
, it can be seen that the eigen-

values that are unobservable from y1 will be the roots of the determinant of

a gcrd of

[
−Ñ1

D̃2

]
and the eigenvalues that are unobservable from y2 will be

the roots of the determinant of a gcrd of

[
D̃1

−Ñ2

]
. The closed-loop system is

observable from
[
y1
y2

]
. Clearly, all possible eigenvalues that are unobservable

from y1 are eigenvalues of S2. These are the poles of H2 = D̃−1
2 Ñ2 that cancel

in the product Ñ1H2. Similarly, all possible eigenvalues that are unobservable
from y2 are eigenvalues of S1. These are the poles of H1 = D̃−1

1 Ñ1 that cancel
in the product Ñ2H1, H2[H1, I].

Example 10.3. Consider systems S1 and S2 connected in the feedback con-
figuration of Figure 10.3, and let S1 and S2 be described by the transfer func-
tionsH1(s) = s+1

s−1 , andH2(s) = a1s+a0
s+b . For the closed-loop to be well defined,

we must have 1−H1H2 = 1− s+1
s−1

a1s+a0
s+b = (1−a1)s

2+(b−a1−a0−1)s−(b+a0)
(s−1)(s+b) �= 0.

Note that for a1 = 1, a0 = −1, and b = 1, H2 = s−1
s+1 and 1−H1H2 = 1−1 = 0.

Therefore, these values are not allowed for the parameters if the closed-loop
system is to be represented by a PMD. If state-space descriptions are to be
used, let D1 = lims→∞H1(s) = 1 and D2 = lims→∞H2(s) = a1, from which
we have 1−D1D2 = 1−a1 �= 0 for the closed-loop system to be characterized
by a state-space description. Let us assume that a1 �= 1.

The uncontrollable and unobservable eigenvalues can be determined from
a PMD such as (10.28). Alternatively, in view of the discussion just preceding
this example, we conclude the following. (i) The eigenvalues that are uncon-
trollable from r1 are the poles of H2 that cancel in H2N1 = a1s+a0

s+b (s+1); i.e.,
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there is an eigenvalue that is uncontrollable from r1 (at −1) only when b = 1.
If this is the case, −1 is also an eigenvalue that is unobservable from y1. (ii)
The poles of H1 that cancel in H1N2 = s+1

s−1 (a1s+a0) are the eigenvalues that
are uncontrollable from r2; i.e., there is an eigenvalue that is uncontrollable
from r2 (at +1) only when a0/a1 = −1. If this is the case, +1 is also an
eigenvalue that is unobservable from y2.

Stability

The closed-loop feedback system is internally stable if and only if all of its
eigenvalues have negative real parts. The closed-loop eigenvalues can be deter-
mined from the closed-loop descriptions derived above. First recall the iden-
tities

det
[
A D
C B

]
= det(A) det(B − CA−1D) = det(B) det(A−DB−1C), (10.31)

where in the first expression it was assumed that det(A) �= 0 and in the second
expression it was assumed that det(B) �= 0. The proof of this result is im-

mediate from the matrix identities
[

I 0
−CA−1 I

] [
A D
C B

]
=
[
A D
0 B − CA−1D

]

and
[
I −DB−1

0 I

] [
A D
C B

]
=
[
A−DB−1C 0

C B

]
.

We now consider the polynomial matrices
[

D1 −N2

−N1 D2

]
,

[
D̃1 −Ñ1

−Ñ2 D̃2

]
,

(D̃1D2 − Ñ1N2), and (D̃2D1 − Ñ2N1) from the closed-loop descriptions in
(i), (ii), (iii), and (iv). Then

det
([

D1 −N2

−N1 D2

])
= det(D1) det(D2 −N1D

−1
1 N2)

= det(D1) det(D2 − D̃−1
1 Ñ1N2)

= det(D1) det(D̃−1
1 ) det(D̃1D2 − Ñ1N2)

= α1 det(D̃1D2 − Ñ1N2), (10.32)

where α1 is a nonzero real number. Also

det
([

D1 −N2

−N1 D2

])
= det(D2) det(D1 −N2D

−1
2 N1)

= det(D2) det(D1 − D̃−1
2 Ñ2N1)

= det(D2) det(D̃−1
2 ) det(D̃2D1 − Ñ2N1)

= α2 det(D̃2D1 − Ñ2N1), (10.33)
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where α2 is a nonzero real number.
Similarly,

det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
= α̂1 det(D̃2D1 − Ñ2N1), (10.34)

where α̂1 = det(D̃1) det(D−1
1 ) is a nonzero real number, and

det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
= α̂2 det(D̃1D2 − Ñ1N2), (10.35)

where α̂2 = det(D̃2) det(D−1
2 ) is a nonzero real number. These computations

verify that the equivalent representations given by (i), (ii), (iii), and (iv) have
identical eigenvalues.

The following theorem presents conditions for the internal stability of the
feedback system of Figure 10.3. These conditions are useful in a variety of
circumstances. Assume that the systems S1 and S2 are controllable and ob-
servable and that they are described by (10.20)–(10.23) with transfer function
matrices given by

H1 = N1D
−1
1 = D̃−1

1 Ñ1 (10.36)

and
H2 = N2D

−1
2 = D̃−1

2 Ñ2, (10.37)

where the (Ni, Di) are rc and the (Ñi, D̃i) are lc for i = 1, 2. Let α1(s) and
α2(s) be the pole (characteristic) polynomials of H1(s) and H2(s), respec-
tively. Note that αi(s) = ki det(Di(s)) = k̃i det(D̃i(s)), i = 1, 2, for some
nonzero real numbers ki, k̃i. Consider the feedback system in Figure 10.3.

Theorem 10.4. The following statements are equivalent:

(a) The closed-loop feedback system in Figure 10.3 is internally stable.
(b) The polynomial

(i) det
([

D1 −N2

−N1 D2

])
, or

(ii) det

([
D̃1 −Ñ1

−Ñ2 D̃2

])
, or

(iii) det(D̃1D2 − Ñ1N2), or
(iv) det(D̃2D1 − Ñ2N1)
is Hurwitz; that is, its roots have negative real parts.

(c) The polynomial

α1(s)α2(s) det(I −H1(s)H2(s)) = α1(s)α2(s) det(I −H2(s)H1(s))
(10.38)

is a Hurwitz polynomial.
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(d) The poles of

[
û1

û2

]
=
[

I −H2

−H1 I

]−1 [
r̂1
r̂2

]

=
[

(I −H2H1)−1 H2(I −H1H2)−1

H1(I −H2H1)−1 (I −H1H2)−1

] [
r̂1
r̂2

]
(10.39)

are stable; i.e., they have negative real parts.
(e) The poles of

[
ŷ1
ŷ2

]
=
[
−H2 I
I −H1

]−1 [ 0 H2

H1 0

] [
r̂1
r̂2

]

=
[

(I −H1H2)−1H1 (I −H1H2)−1H1H2

(I −H2H1)−1H2H1 (I −H2H1)−1H2

] [
r̂1
r̂2

]
(10.40)

are stable.

Proof. See [1, p. 583, Theorem 3.15]. �

Remarks

It is important to consider all four entries in the transfer function (10.40)

between
[
y1
y2

]
and

[
r1
r2

]
[or in (10.39) between

[
u1

u2

]
and

[
r1
r2

]
] when con-

sidering internal stability. Note that the eigenvalues that are uncontrollable
from r1 or r2 will not appear in the first or the second column of the transfer
matrix, respectively. Similarly, the eigenvalues that are unobservable from y1
or y2 will not appear in the first or the second row of the transfer matrix,
respectively. Therefore, consideration of the poles of some of the entries only
may lead to erroneous results, since possible uncontrollable or unobservable
modes may be omitted from consideration, and these may lead to instabilities.

Closed-Loop Characteristic Polynomial. The open-loop characteristic poly-
nomial of the feedback system is α1(s)α2(s). The closed-loop characteristic
polynomial is a monic polynomial, αcl(s), with roots equal to the closed-loop
eigenvalues; i.e., it is equal to any of the polynomials in (b) within a multi-
plication by a nonzero real number. Then, relation (10.38) implies, in view of
(iv), that the determinant of the return difference matrix (I −H1(s)H2(s)) is
the ratio of the closed-loop characteristic polynomial over the open-loop char-
acteristic polynomial within a multiplication by a nonzero real number.

Example 10.5. Consider the feedback configuration of Figure 10.3 with
H1 = s+1

s−1 and H2 = a1s+a0
s+b the transfer functions of systems S1 and S2,

respectively. Let a1 �= 1 so that the loop is well defined in terms of state-space
representations (and all transfer functions are proper). (See Example 10.3.)
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All polynomials in (b) of Theorem 10.4 are equal within a multiplication
by a nonzero real number, to the closed-loop characteristic polynomial given
by αcl(s) = s2 + b−a1−a0−1

1−a1
s − b+a0

1−a1
. This polynomial must be a Hurwitz

polynomial for internal stability. If α1(s) = s − 1 and α2(s) = s + b are
the pole polynomials of H1 and H2, then the polynomial in (c) is given by
α1(s)α2(s)(1 − H1(s)H2(s)) = (1 − a1)s2 + (b − a1 − a0 − 1)s − (b + a0) =
(1 − a1)αcl(s), which implies that the return difference 1 − H1(s)H2(s) =
(1−a1)

αcl(s)
α1(s)α2(a) . Note that (1−H1H2)−1 = (1−H2H1)−1 = (s−1)(s+b)

α(s) with
α(s) = (1−α1)αcl(s) and the transfer function matrix in (d) of Theorem 10.4
is given by [

û1

û2

]
=

[
(s−1)(s+b)

α(s)
(s−1)(a1s+a0)

α(s)
(s+1)(s+b)

α(s)
(s−1)(s+b)

α(s)

][
r̂1
r̂2

]
.

The polynomial α(s) has a factor s + 1 when b = 1. Notice that α(−1) =
2 − 2b = 0 when b = 1. If this is the case (b = 1), then

[
û1

û2

]
=

[
s−1
ᾱ(s)

(s−1)(a1s+a0)
α(s)

s+1
ᾱ(s)

s−1
ᾱ(s)

][
r̂1
r̂2

]
,

where α(s) = (s+ 1)ᾱ(s). Notice that three out of four transfer functions do
not contain the pole at −1 in ᾱ(s). Recall that when b = 1,−1 is an eigenvalue
that is uncontrollable from the r1 eigenvalue and it cancels in certain transfer
functions as expected (see Example 10.3). Similar results can be derived when
a0/a1 = −1. This illustrates the necessity for considering all the transfer
functions between u1, u2 and r1, r2 when studying the internal stability of the
feedback system. Similar results can be derived when considering the transfer
functions between y1, y2 and r1, r2 in (e).

10.3 Parameterization of All Stabilizing Feedback
Controllers

In this section, it is shown that all stabilizing feedback controllers can be
conveniently parameterized. These parameterizations are very important in
control since they are fundamental in methodologies such as the optimal H∞

approach to control design. Our development builds on the controllability,
observability, and particularly the internal stability results introduced in Sec-
tion 10.2, as well as on Diophantine Equation results [1, Subsection 7.2E].
First, in Subsection 10.3.1, all stabilizing feedback controllers are parameter-
ized, using PMDs. Parameterizations are introduced, using first the polyno-
mial matrix parameters (i) Dk, Nk and D̃k, Ñk and then the stable rational
parameter (ii) K = NkD

−1
k = D̃−1

k Ñk. These parameters are very convenient
in characterizing stability, but cumbersome when properness of the controller
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transfer function is to be guaranteed. A parameterization that uses proper
and stable MFDs and involves a proper and stable parameter K ′ is then in-
troduced in Subsection 10.3.2. This is very convenient when properness of H2

is to be guaranteed. The parameter K ′ is closely related to the parameter K
used in the second approach enumerated above. This type of parameterization
is useful in certain control design methods such as optimal H∞ control de-
sign. Two degrees of freedom feedback controllers offer additional capabilities
in control design and are discussed in Subsection 10.3.2. Control problems are
also described in this subsection.

In the following discussion, the term “stable system S” is taken to mean
that the eigenvalues of the internal description of system S have negative real
parts (in the continuous-time case); i.e., the system S is internally stable.
Note that when the transfer functions in (10.39) and (10.40) of the feedback
system S are proper, internal stability of S implies bounded-input, bounded-
output stability of the feedback system, since the poles of the various transfer
functions are a subset of the closed-loop eigenvalues.

10.3.1 Stabilizing Feedback Controllers Using Polynomial MFDs

Now consider systems S1 and S2 connected in the feedback configuration
shown in Figure 10.3. Given S1, it is shown how to parameterize all systems
S2 so that the closed-loop feedback system is internally stable. Thus, if S1 = S,
called the plant, is a given system to be controlled, then S2 = Sc is viewed
as the feedback controller that is to be designed. Presently we provide the
parameterizations of all stabilizing feedback controllers.

Theorem 10.6. Assume that the system S1 is controllable and observable
and is described by the PMD (or PMFD) as (a) D1z1 = u1, y1 = N1z1
given in (10.20), or by (b) D̃1z̃1 = Ñ1u1, y1 = z̃1 given in (10.21). Let the
pair (D1, N1) and the pair (D̃1, Ñ1) be doubly coprime factorizations of the
transfer function matrix H1(s) = N1D

−1
1 = D̃−1

1 Ñ1. That is,

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]
=
[
I 0
0 I

]
, (10.41)

where U is a unimodular matrix (i.e., detU is a nonzero real number) and
X1, Y1, X̃1, Ỹ1 are appropriate matrices. Then all the controllable and observ-
able systems S2 with the property that the closed-loop feedback system eigen-
values are stable (i.e., they have negative real parts) are described by

(a) D̃2z̃2 = Ñ2u2, y2 = z̃2, (10.42)

where D̃2 = D̃kX1 − ÑkÑ1 and Ñ2 = −(D̃kY1 + ÑkD̃1) with X1, Y1, Ñ1, D̃1

given in (10.41) and the parameters D̃k and Ñk are selected arbitrarily under
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the conditions that D̃−1
k exists and is stable, and the pair (D̃k, Ñk) is lc and

is such that det(D̃kX1 − ÑkÑ1) �= 0.
Equivalently, all stabilizing S2 can be described by

(b) D2z2 = u2, y2 = N2z2, (10.43)

where D2 = X̃1Dk − N1Nk and N2 = −(Ỹ1Dk + D1Nk) with X̃1, Ỹ1, Ñ1, D̃1

given in (10.41) and the parameters Dk and Nk are selected arbitrarily under
the conditions that D−1

k exists and is stable, and the pair (Dk, Nk) is rc and
is such that det(X̃1Dk −N1Nk) �= 0.

Furthermore, the closed-loop eigenvalues are precisely the roots of det D̃k

or of detDk. In addition, the transfer function matrix of S2 is given by

H2 = −(D̃kX1 − ÑkÑ1)−1(D̃kY1 + ÑkD̃1)

= −(Ỹ1Dk +D1Nk)(X̃1Dk −N1Nk)−1. (10.44)

Proof. The closed-loop description in case (a) is given by (10.30) and in case
(b) it is given by (10.28). It can be shown [1, Subsection 7.2E] that the ex-
pression in (a) and (b) above can also be written as

[D̃2,−Ñ2] = [D̃k, Ñk]U (10.45)

and that [
N2

D2

]
= U−1

[
−Nk
Dk

]
(10.46)

are parameterizations of all solutions of the Diophantine equation

D̃2D1 − Ñ2N1 = D̃k (10.47)

and
D̃1D2 − Ñ1N2 = Dk, (10.48)

respectively, where we let D̃k and Dk be desired closed-loop matrices. The
fact that D̃−1

k (or D−1
k ) exists and is stable guarantees that all the closed-

loop eigenvalues, which are the poles of D̃−1
k (or of D−1

k ), will be stable. The
condition det(D̃kX1−ÑkÑ1) �= 0 (or det(X̃1Dk−N1Nk) �= 0) guarantees that
det D̃2 �= 0 (or detD2 �= 0) and therefore the polynomial matrix description
for S2 in (10.28) is well defined. Finally, note that the pair (D̃k, Ñk) is lc if
and only if the pair (D̃2, Ñ2) is lc as can be seen from [D̃2,−Ñ2] = [D̃k, Ñk]U
given in (10.45) where U unimodular. This then implies that the description
{D̃2, Ñ2, I} for S2 is both controllable and observable. Similarly, the pair
(Dk, Nk) is rc, which guarantees that {D2, I,N2} with D2 and N2 given in
(10.46) is also a controllable and observable description for S2. �

In place of the polynomial matrix parameters D̃k, Ñk or Dk, Nk, it is pos-
sible to use a single parameter, a stable rational matrix K. This is shown
next.
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Theorem 10.7. Assume that the system S1 is controllable and observable and
is described by its transfer function matrix

H1 = N1D
−1
1 = D̃−1

1 Ñ1, (10.49)

where the pairs (N1, D1), (D̃1, Ñ1) are doubly coprime factorizations satisfying
(10.41). Then all the controllable and observable systems S2 with the property
that the closed-loop feedback system eigenvalues are stable (i.e., they have
strictly negative real parts) are described by the transfer function matrix

H2 = −(X1 −KÑ1)−1(Y1 +KD̃1)

= −(Ỹ1 +D1K)(X̃1 −N1K)−1, (10.50)

where the parameter K is an arbitrary rational matrix that is stable and is
such that det(X1 −KÑ1) �= 0 or det(X̃1 −N1K) �= 0. Furthermore, the poles
of K are precisely the closed-loop eigenvalues.

Proof. This is in fact a corollary to Theorem 10.6. It is called a theorem here
since it was historically one of the first results established in this area. The
parameter K is called the Youla parameter .

In Theorem 10.6, descriptions for H2 were given in (10.44) in terms of the
parameters D̃k, Ñk and Dk, Nk. Now in view of −D̃kNk+ ÑkDk = 0, we have

D̃−1
k Ñk = NkD

−1
k = K, (10.51)

which is a stable rational matrix. Since the pair (D̃k, Ñk) is lc and the pair
(Nk, Dk) is rc, they are coprime factorizations for K. Therefore, H2 in (10.50)
can be written as the H2 of (10.44) given in the previous theorem, from which
the controllable and observable internal descriptions for S2 in (10.42) and
(10.43) can immediately be derived. Conversely, (10.50) can immediately be
derived from (10.44), using (10.51). Note that the poles of K are the roots of
det D̃k or detDk, which are the closed-loop eigenvalues. �

Example 10.8. Consider H1 = s+1
s−1 . Here N1 = Ñ1 = s+ 1 and D1 = D̃1 =

s− 1. These are doubly coprime factorizations (a trivial case) since (10.41) is
satisfied. We have

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]

=
[

s+ 1
2 −s+ 3

2
−(s+ 1) s− 1

] [
s− 1, −(−s+ 3

2 )
s+ 1, s+ 1

2

]
=
[

1 0
0 1

]
.

In view of (10.44) and (10.50), all stabilizing controllers H2 are then given by

H2 = −
(−s+ 3

2 )dk + (s− 1)nk
(s+ 1

2 )dk − (s+ 1)nk
= −

(−s+ 3
2 ) + (s− 1)K

(s+ 1
2 ) − (s+ 1)K

,

where K = nk/dk is any stable rational function.
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Example 10.9. Consider H1(s) = [ 1
s2 ,

s+1
s2 ] = [1, 0]

[
s2 −(s+ 1)
0 1

]−1

=

N1D
−1
1 = 1

s2 [1, s+ 1] = D̃−1
1 Ñ1, which are coprime polynomial MFDs. Rela-

tion (10.41) is given by

UU−1 =
[
X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]

=

⎡
⎣

1 s+ 1 −s2 + 1
s s2 + s+ 1 −s3
−1 −(s+ 1) s2

⎤
⎦
⎡
⎣
s2 −(s+ 1) −(s+ 1)
0 1 s
1 0 1

⎤
⎦

=

⎡
⎣

1 0 0
0 1 0
0 0 1

⎤
⎦ .

All stabilizing controllers may then be determined by applying (10.44) or
(10.50).

Remark

In [1, pp. 592–605] a complete treatment of several different parameterizations
of all stabilizing controllers is given. The first two parameterizations involving
Dk and K were presented here. Another interesting parameterization involves
Q1 and Q2 [1, p. 597], which in the case when the plant is stable, it becomes
particularly attractive [1, p. 597, Corollary 4.4].

10.3.2 Stabilizing Feedback Controllers Using Proper and Stable
MFDs

In the above development all systems S2 that internally stabilize the closed-
loop feedback system were parametrically characterized. In that development
H1, the transfer function of S1 was not necessarily proper and the stabilizing
H2 as well as the closed-loop system transfer function were not necessarily
proper either. Recall that a system is said to be internally stable when all
of its eigenvalues, which are the roots of its characteristic polynomial, have
strictly negative real parts. Polynomial matrix descriptions that can easily
handle the case of nonproper transfer functions were used to derive the above
results and the case of proper H1 and H2 was handled by restricting the
parameters used to characterize all stabilizing controllers.

Here we concentrate exclusively on the case of proper transfer functionsH1

of S1 and parametrically characterize all proper H2, which internally stabilize
the closed-loop system. For this purpose, proper and stable matrix fractional
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descriptions (MFDs) of H1 and H2 are used. Such MFDs are now described
[1, Subsection 7.4C].

Consider H(s) ∈ R(s)p×m to be proper, i.e., lims→∞H(s) <∞, and write
the MFD as

H(s) = N ′(s)D′(s)−1, (10.52)
where the N ′(s) and D′(s) are proper and stable rational matrices that
we denote here as N ′(s) ∈ RHp×m

∞ and D′(s) ∈ RHm×m
∞ ; that is, they

are matrices with elements in RH∞, the set of all proper and stable ra-
tional functions with real coefficients. For instance, if H(s) = s−1

(s−2)(s+1) ,

then H(s) =
[

s−1
(s+2)(s+3)

] [
(s−2)(s+1)
(s+2)(s+3)

]−1

=
[

s−1
(s+1)2

] [
s−2
s+1

]−1

are examples
of proper and stable MFDs.

A pair (N ′, D′) ∈ RH∞ is called right coprime (rc) in RH∞ if there exists
a pair (X ′, Y ′) ∈ RH∞ such that

X ′D′ + Y ′N ′ = I. (10.53)

This is a Diophantine Equation over the ring of proper and stable rational
functions. It is also called a Bezout Identity.

Let H = N ′D′−1, and write (10.53) as X ′ + Y ′H = D′−1. Since the left-
hand side is proper, D′−1 is also proper; i.e., in the MFD given by H =
N ′D′−1, where the pair (N ′, D′) is rc, D′ is biproper (D′ and D′−1 are both
proper).

Note that X ′−1, where X ′ satisfies (10.53), does not necessarily exist.
If, however, H is strictly proper (lims→∞H(s) = 0), then lims→∞X ′(s) =
lims→∞D′(s)−1 is a nonzero real matrix, and in this case X ′−1 exists and is
proper; i.e., in this case X ′ is biproper.

When the Diophantine Equation (10.53) is used to characterize all stabi-
lizing controllers, it is often desirable to have solutions (X ′, Y ′) where X ′ is
biproper. This is always possible. Clearly, when H is strictly proper, this is
automatically true, as was shown. When H is not strictly proper, however,
care should be exercised in the selection of the solutions of (10.53).

As in the polynomial case, doubly coprime factorizations in RH∞ of a
transfer function matrix H1 = N ′

1D
′−1
1 = D̃′−1

1 Ñ ′
1, where D′

1, N
′
1 ∈ RH∞

and D̃′
1, Ñ ′

1 ∈ RH∞ are important in obtaining parametric characterizations
of all stabilizing controllers. Assume therefore that

U ′U ′−1 =
[

X ′
1 Y ′

1

−Ñ ′
1 D̃′

1

] [
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

]
=
[
I 0
0 I

]
, (10.54)

where U ′ is unimodular in RH∞, i.e., U ′ and U ′−1 ∈ RH∞. Also, assume that
X ′

1 and X̃ ′
1 have been selected so that detX ′

1 �= 0 and det X̃ ′
1 �= 0.

Internal Stability

Consider now the feedback system in Figure 10.3, and let H1 and H2 be
the transfer function matrices of S1 and S2, respectively, which are assumed
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to be controllable and observable. Internal stability of a system can be de-
fined in a variety of equivalent ways in terms of the internal description of
the system. For example, in this chapter, polynomial matrix internal descrip-
tions were used and the system was considered as being internally stable
when its eigenvalues were stable; i.e., they have negative real parts. In The-
orem 10.4, it was shown that the closed-loop feedback system is internally

stable if and only if the transfer function between
[
u1

u2

]
and

[
r1
r2

]
or
[
y1
y2

]

and
[
r1
r2

]
have stable poles, i.e., if and only if the poles of

[
I −H2

−H1 I

]−1

or
[
−H2 I
I −H1

]−1 [ 0 H1

H1 0

]
, respectively, are stable.

In this section we shall regard the feedback system to be internally stable
when [

I −H2

−H1 I

]−1

∈ RH∞, (10.55)

i.e., when all the transfer function matrices in (10.55) are proper and stable.
In this way, internal stability can be checked without necessarily involving
internal descriptions of S1 and S2. This approach to stability has advantages
since it can be extended to systems other than linear, time-invariant systems.

Theorem 10.10. Let H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1 be doubly coprime MFDs in

RH∞. Then the closed-loop feedback system is internally stable if and only if
H2 has an lc MFD in RH∞, H2 = D̃′−1

2 Ñ ′
2, such that

D̃′
2D

′
1 − Ñ ′

2N
′
1 = I, (10.56)

or if and only if H2 has an rc MFD in RH∞, H2 = N ′
2D

′−1
2 , such that

D̃′
1D

′
2 − Ñ ′

1N2 = I. (10.57)

Proof. See [1, p. 615, Corollary 4.12]. �

In the following discussion, all proper stabilizing controllers are now pa-
rameterized.

Theorem 10.11. Let H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1 be doubly coprime MFDs in

RH∞ that satisfy (10.54). Then all H2 that internally stabilize the closed-loop
feedback system are given by

H2 = −(X ′
1 −K ′Ñ ′

1)−1(Y ′
1 +K ′D̃′

1) = −(Ỹ ′
1 +D′

1K
′)(X̃ ′

1 −N ′
1K

′)−1,
(10.58)

where K ′ ∈ RH∞ is such that (X ′
1 − K ′Ñ ′

1)−1 (or (X̃1 − N ′
1K

′)−1) exists
and is proper.
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Proof. It can be shown that all solutions of D̃2D
′
1 − Ñ2N

′
1 = I are given by

[D̃′
2,−Ñ ′

2] = [I,K ′]
[

X ′
1 Y ′

1

−Ñ ′
1 D̃′

1

]
, (10.59)

where K ′ ∈ RH∞. The proof of this result is similar to the proof of the cor-
responding result for the polynomial matrix Diophantine Equation. Similarly,
all solutions of D̃′

1D
′
2 − Ñ ′

1N
′
2 = I are given by

[
N ′

2

D′
2

]
=

[
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

] [
−K ′

I

]
, (10.60)

where K ′ ∈ RH∞. The result follows then directly from Theorem 10.10. �
The above theorem is a generalization of the Youla parameterization of

Theorem 10.7 over the ring of proper and stable rational functions.
It is interesting to note that in view of (10.54),H2 in (10.58) can be written

as follows. Assume that X−1
1 and X̃−1

1 exist. Then

H2 = −(Ỹ ′
1 +X ′−1

1 (I − Y ′
1N

′
1)K

′)(X̃1 −N ′
1K

′)−1

= −[Ỹ ′
1X̃ ′−1

1 (X̃ ′
1 −N ′

1K
′) +X ′−1

1 K ′](X̃1 −N ′
1K

′)−1

= −Ỹ ′
1X̃ ′−1

1 −X ′−1
1 K ′(X̃1 −N ′

1K
′)−1 = H20 +H2a; (10.61)

i.e., any stabilizing controller H2 can be viewed as the sum of an initial sta-
bilizing controller H20 = −Ỹ ′

1X̃ ′−1

1 and an additional controller H2a, which
depends on K ′. When K ′ = 0, then H2a, is zero.

Example 10.12. Let H1 = 1
s−1 = ( 1

s+1 )( s−1
s+1 )−1 = N ′

1D
′−1
1 = ( s−1

s+a )−1( 1
s+a ) =

D̃′−1
1 Ñ ′1 with a > 0, which are doubly coprime factorizations. Note that
[
X ′

1 Y ′
1

−Ñ ′
1 D̃′

1

] [
D′

1 −Ỹ ′
1

N ′
1 X̃ ′

1

]
=
[ s+3

s+2
s+5
s+2

− 1
s+a

s−1
s+a

] [ s−1
s+1 − (s+5)(s+a)

(s+1)(s+2)
1
s+1

(s+3)(s+a)
(s+1)(s+2)

]
=
[

1 0
0 1

]
.

All stabilizing H2 are parametrically characterized by (10.58).

Example 10.13. In the above example H2 = −(b + 1), b > 0 characterizes
all static stabilizing H2. Then for a = 1, we have

K ′ = −
(
s+ 5
s+ 2

− s+ 3
s+ 2

(b + 1)
)(

s− 1
s+ 1

+
b+ 1
s+ 1

)−1

= −
(
−bs− 3b+ 2

s+ 2

)(
s+ b

s+ 1

)−1

=
(s+ 1)(bs+ 3b− 2)

(s+ 2)(s+ b)
,

which will yield the desired H2 = −(b + 1). The closed-loop eigenvalue is in
this case at −b as can easily be verified.
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Parameterizations Using State-Space Descriptions

Consider H = N ′D′−1 = D̃′−1
Ñ ′, a doubly coprime factorization in RH∞;

i.e., (10.54) is satisfied. It is possible to express all proper and stable matrices
in (10.54) in terms of the matrices of a state-space realization of the transfer
function matrix H(s). In particular, we have the following result.

Lemma 10.14. Let {A,B,C,D} be a stabilizable and detectable realization
of H(s), i.e., H(s) = C(sI − A)−1B + D, which is also denoted by H(s) s=[
A B
C D

]
, and with (A,B) stabilizable and (A,C) detectable. Let F be a state

feedback gain matrix such that all the eigenvalues of A + BF have negative
real parts, and let K be an observer gain matrix such that all the eigenvalues
of A−KC have negative real parts. Define

U ′ =
[

X ′ Y ′

−Ñ ′ D̃′

]
s=

⎡
⎣
A−KC B −KD K

−F I 0
−C −D I

⎤
⎦ (10.62)

and

Û ′ =

[
D′ −Ỹ ′

N ′ X̃ ′

]
s=

⎡
⎣
A+BF B −K

F I 0
C +DF D I

⎤
⎦ . (10.63)

Then (10.54) holds and H = N ′D′−1 = D̃′−1
Ñ ′ are coprime factorizations

of H.

Proof. Relation (10.54) can be shown to be true by direct computation, which
it is left to the reader to verify. Clearly, U ′, Û ′ ∈ RH∞. ThatN ′, D′ and D̃′, Ñ ′

are coprime is a direct consequence of (10.54). That N ′D′−1 = D̃′−1
Ñ ′ = H

can be shown by direct computation and is left to the reader. �

In view of Lemma 10.14, U ′ and U ′−1 ∈ RH∞ in (10.54) can be expressed
as

U ′ =
[

X ′ Y ′

−Ñ ′ D̃′

]
=
[
−F
−C

]
[sI−(A−KC)]−1[B−KD,K]+

[
I 0

−D I

]
(10.64)

and

U ′−1 =

[
D′ −Ỹ ′

N ′ X̃ ′

]
=
[

F
C +DF

]
[sI − (A+BF )]−1[B,−K] +

[
I 0
D I

]
.

(10.65)
These formulas can be used as follows. A stabilizable and detectable real-
ization {A,B,C,D} of H(s) is first determined, and appropriate F and K
are found so that A + BF and A − KC have eigenvalues with negative real
parts. Then U ′ and U ′−1 are calculated from (10.64) and (10.65). Note that
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appropriate state feedback gain matrices F and observer gain matrices K can
be determined, using the methods discussed in Chapter 9. The matrices F
and K may be determined, for example, by solving appropriate optimal lin-
ear quadratic control and filtering problems. All proper stabilizing controllers
H2 = N ′

2D
′−1
2 = D̃′−1

2 Ñ ′
2 of the plant H1 are then characterized as in Theo-

rem 10.11.
It can now be shown, in view of Lemma 10.14, that all stabilizing con-

trollers are described by

˙̂x = (A+BF −K(C +DF ))x̂+Ky + (B −KD)r1,
u = F x̂+ r1, r2 = y − (C +DF )x̂−Dr1, r1 = K ′(q)r2, (10.66)

which can be rewritten as

˙̂x = Ax̂+Bu+K(y − (Cx̂ +Du)),
u = F x̂+K ′(q)(y − (Cx̂+Du)). (10.67)

Thus, every stabilizing controller is a combination of an asymptotic (full-state,
full-order) estimator or observer and a stabilizing state feedback, plus K ′(q)r2
with r2 = y − (Cx̂+Du), the output “error” (see Figure 10.4).

x̂
+

r2

+

+

r1

+

+

+

+

+

– D

B

A

– C

K (q)

uy
∫

x̂
FK

Figure 10.4. A state-space representation of all stabilizing controllers

10.4 Two Degrees of Freedom Controllers

Consider the two degrees of freedom controller SC in the feedback configu-
ration of Figure 10.5. Here SH represents the system to be controlled and is
described by its transfer function matrix H(s) so that

ŷ(s) = H(s)û(s). (10.68)
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The two degrees of freedom controller SC is described by its transfer function
matrix C(s) in

û(s) = C(s)
[
ŷ(s)
r̂(s)

]
= [Cy(s), Cr(s)]

[
ŷ(s)
r̂(s)

]
. (10.69)

Since the controller SC generates the input u to SH by processing indepen-
dently y, the output of SH , and r, it is called a two degrees of freedom con-
troller.

r u y
SC SH

Figure 10.5. Two degrees of freedom controller SC

In the following discussion, we shall assume that H is a proper transfer
function and we shall determine proper controller transfer functions C, which
internally stabilize the feedback system in Figure 10.5. The restriction that
H and C are proper may easily be removed, if so desired.

10.4.1 Internal Stability

Theorem 10.15. Given is the proper transfer function H of SH , and the
proper transfer function C of SC in (10.69) where det(I − CyH) �= 0. The
closed-loop system in Figure 10.5 is internally stable if and only if

(i) û = Cy ŷ internally stabilizes the system ŷ = Hû, and
(ii) Cr is such that the rational matrix

M � (I − CyH)−1Cr (10.70)

(u = Mr) satisfies D−1M = X, a stable rational matrix, where Cy satis-
fies (i) and H = ND−1 is a right coprime polynomial matrix factorization.

Proof. Consider controllable and observable polynomial matrix descriptions
(PMDs) for SH , given by

Dz = u, y = Nz (10.71)

and for SC , given by

D̃cz̃c = [Ñy, Ñr]
[
y
r

]
, u = z̃c, (10.72)

where the N,D are rc and the D̃c, [Ñy, Ñr] are lc polynomial matrices. The
closed-loop system is then described by
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(D̃cD − ÑcN)z = Ñrr, y = Nz (10.73)

and is internally stable if the roots of det D̃o, where D̃o � D̃cD − ÑcN , have
negative real parts.

(Necessity) Assume that the closed-loop system is internally stable, i.e.,
D̃−1
o is stable. Since Cy = D̃−1

c Ñy is not necessarily a left coprime poly-
nomial factorization, write [D̃c, Ñy] = GL[D̃Cy , ÑCy ], where GL is a gcld
of the pair (D̃c, Ñy). Then D̃CyD − ÑCyN = G−1

L D̃o = D̃k, where D̃k

is a polynomial matrix, with D̃−1
k stable; note also that G−1

L is stable.
Hence, u = Cyy = D̃−1

Cy
ÑCyy internally stabilizes y = Hu = ND−1u;

i.e., part (i) of the theorem is true. To show that (ii) is true, we write
M = (I − CyH)−1Cr = DD̃−1

k D̃Cy(D̃−1
c Ñr) = DD̃−1

k G−1
L Ñr = DX , where

X � D̃−1
o Ñr is a stable rational matrix. This shows that (ii) is also necessary.

(Sufficiency) Let C satisfy (i) and (ii) of the theorem. If C = D̃−1
c [Ñy, Ñr]

is an lc polynomial MFD andGL is a gcld of the pair (D̃c, Ñy), then [D̃c, Ñy] =
GL[D̃Cy , ÑCy ] is true for some lc matrices D̃Cy and ÑCy(Cy = D̃−1

Cy
ÑCy). Be-

cause (i) is satisfied, D̃CyD− ÑCyN = D̃k, where D̃−1
k is stable. Premultiply-

ing by GL we obtain D̃cD − ÑyN = GLD̃k. Now if G−1
L is stable, then D̃−1

o ,
where D̃o � D̃cD− ÑyN = GLD̃k, will be stable since D̃−1

k is stable. To show
this, write D−1M = D−1(I − CyH)−1Cr = D̃−1

k D̃Cy(D̃−1
c Ñr) = D̃−1

k G−1
L Ñr

and note that this is stable, in view of (ii). Observe now that the GL, Ñr are
lc; if they were not, then C = D̃−1

c [Ñy, Ñr] would not be a coprime factoriza-
tion. In this case no unstable cancellations take place in D̃−1

k G−1
L Ñr (D̃−1

k is
stable) and therefore, if D−1M is stable, then (GLD̃k)−1 = D̃−1

o is stable or
the closed-loop system is internally stable. �

Remarks

(i) It is straightforward to show the same results, using proper and stable
factorizations of H given by

H = N ′D′−1, (10.74)

where the pair (N ′, D′) ∈ RH∞ and (N ′, D′) is rc, and of

C = D̃′−1

c [Ñ ′
y, Ñ ′

r], (10.75)

where the pair (D̃′
c, [Ñ ′

y, Ñ ′
r]) ∈ RH∞ and (D̃′

c, [Ñ ′
y, Ñ ′

r]) is lc. The
proof is completely analogous and is left to the reader. The only change
in the theorem will be in its part (ii), which will now read as follows: Cr
is such that the rational matrix M � (I − CyH)−1Cr satisfies D′−1M =
X ′ ∈ RH∞, where Cy satisfies (a) and H = N ′D′−1 is an rc MFD in
RH∞.
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(ii) Theorem 10.15 separates the role of Cy , the feedback part of the two
degrees of freedom controller C, from the role of Cr, in achieving internal
stability. Clearly, if only feedback action is considered, then only part (i) of
the theorem is of interest; and if open-loop control is desired, then Cy = 0
and (i) implies that for internal stability H must be stable and Cr = M
must satisfy part (ii). In (ii) the parameter M = DX appears naturally
and in (i) the way is open to use any desired feedback parameterizations.
In view of Theorem 10.15 it is straightforward to parametrically charac-
terize all internally stabilizing controllers C. In the theorem it is clearly
stated [Part (i)] that Cy must be a stabilizing controller. Therefore, any
parametric characterization of the ones developed in the previous subsec-
tions, as in [1, Subsection 7.4], can be used for Cy . Also, Cr is expressed
in terms of D−1M = X (or D′−1M = X ′).

Theorem 10.16. Given that ŷ = Hû is proper with H = ND−1 = D̃−1Ñ
doubly coprime polynomial MFDs, all internally stabilizing proper controllers

C in û = C

[
ŷ
r̂

]
are given by

(a) C = (I+QH)−1[Q,M ] = [(I+LN)D−1]−1[L,X ], (10.76)

where Q = DL and M = DX are proper with L,X and D−1(I + QH) =
(I + LN)D−1 stable, so that (I +QH)−1 exists and is proper; or

(b) C = (X1−KÑ)−1[−(X2+KD̃), X ], (10.77)

where K and X are stable so that (X1−KÑ1)−1 exists and C is proper. Also,

X1 and X2 are determined from UU−1 =
[
X1 X2

−Ñ D̃

][
D −X̃2

N X̃1

]
=
[
I 0
0 I

]
with

U unimodular.
If H = N ′D′−1 = D̃′−1

Ñ ′ are doubly coprime MFDs in RH∞, then all
stabilizing proper C are given by

(c) C = (X ′
1−K ′Ñ ′)−1[−(X ′

2+K ′D̃′), X ′], (10.78)

where K ′, X ′ ∈ RH∞ so that (X ′
1 − K ′Ñ ′)−1 exists and is proper. Also,

U ′U ′−1 =
[

X ′
1 X

′
2

−Ñ ′ D̃′

] [
D′ −X̃ ′

2

N ′ X̃ ′
1

]
=
[
I 0
0 I

]
with U ′, U ′−1 ∈ RH∞.

(d) C = (I+QH)−1[Q,M ] = [(I+L′N ′)D′−1]−1[L′, X ′], (10.79)

where Q = D′L′, M = D′X ′ ∈ RH∞ with L′, X ′ and D′−1(I + QH) =
(I + L′N ′)D′−1 ∈ RH∞ so that (I + QH)−1 or (I + L′N ′)−1 exists and is
proper.

Proof. The proof is based on the parameterizations of Section 10.3. For de-
tails, and for additional discussion of the parameters L and L′, see [1, p. 624,
Theorem 4.2.2]. �
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Remarks

(a) In [1, pp. 592–605] a complete treatment of different parameterizations
of all stabilizing controllers is given. Parameter K in the theorem above
was discussed earlier and parameters Q, X and L are discussed in [1,
pp. 597–605].

(b) Notice that in the above theorem Cy is parameterized by K or Q or L,
whereas Cr is parameterized by M or X .

10.4.2 Response Maps

It is straightforward to express the maps between signals of interest of
Figure 10.6 in terms of the parameters in Theorem 10.16. For instance,

u = C

[
y
r

]
= [Cy, Cr]

[
y
r

]
= CyHu + Crr, from which we have u =

(I − CyH)−1Crr = Mr. (In the following discussion, we will use the sym-
bols u, y, r, etc. instead of û, ŷ, r̂, etc. for convenience.) If expressions in
(d) of Theorem 10.16 are used, then

u = D′X ′r, and y = Hu = N ′D′−1D′X ′r = N ′X ′r (10.80)

in view of (I − CyH)−1 = D′(I + L′N ′)D′−1. Similar results can be derived
using the other parameterizations in Theorem 10.16. To determine expres-
sions for other maps of interest in control systems, consider Figure 10.6,
where du and dy are assumed to be disturbances at the input and out-
put of the plant H , respectively, and η denotes measurement noise. Then,

u = [Cy , Cr]
[
y + dy + η

r

]
+ du, from which we have u = (I −CyH)−1[Crr +

Cydy + Cyη + du] and y = Hu = H(I − CyH)−1[Crr + Cydy + Cyη + du].

r u yoC H

dydu

+
+

+
+

η

y

Figure 10.6. Two degrees of freedom control configuration

Then, in view of (10.79) in Theorem 10.16, we obtain

u = D′X ′r +D′L′dy +D′L′η +D′(I + L′N ′)D′−1du

= Mr +Qdy +Qη + Sidu (10.81)

and
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y = N ′X ′r +N ′L′dy +N ′L′η +N ′(I + L′N ′)D′−1du

= Tr + (So − I)dy +HQη +HSidu. (10.82)

Notice that Q = (I − CyH)−1Cy = D′L′ is the transfer function between u
and dy or η. Also,

Si � (I − CyH)−1 = D′(I + L′N ′)D′−1 = I +QH (10.83)

is the transfer function between u and du. The matrix Si is called the input
comparison sensitivity matrix . Notice also that yo = y + dy = Tr + Sody +
HQη +HSidu; i.e.,

So = (I −HCy)−1 = I +HQ (10.84)

is the transfer function between yo and dy. The matrix So is called the output
comparison sensitivity matrix . The sensitivity matrices Si and So are impor-
tant quantities in control design. Now

So −HQ = So −N ′L′ = I (10.85)

since HQ = H(I − CyH)−1Cy = HCy(I −HCy)−1 = −I + (I −HCy)−1 =
−I + So, where So and HQ are the transfer functions from yo to dy and η,
respectively. Equation (10.85) states that disturbance attenuation (or sensi-
tivity reduction) and noise attenuation cannot occur over the same frequency
range. This is a fundamental limitation of the feedback loop and occurs also
in two degrees of freedom control systems. Similarly we note that

Si −QH = I. (10.86)

We now summarize some of the relations discussed above:

T = H(I − CyH)−1Cr = HM = NX (y = Tr),

M = (I − CyH)−1Cr = DX (u = Mr),

Q = (I − CyH)−1Cy = DL (u = Qdy),

So = (I −HCy)−1 = I +HQ (yo = Sody),

Si = (I − CyH)−1 = I +QH (u = Sidu),

where y = Tr denotes the relation between y and r from (10.82) when all the
other signals are zero. Similar expressions hold for the rest of the relations.

Realizing Desired Responses

The input–output maps attainable from r, using an internally stable two de-
grees of freedom configuration, can be characterized directly. In particular,
consider the two maps described by
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[
y
u

]
=
[
T
M

]
r, (10.87)

i.e., the command/output map T and the command/input map M . Let H =
ND−1 be an rc polynomial MFD.

Theorem 10.17. The stable rational function matrices T and M are real-
izable with internal stability by means of a two degrees of freedom control
configuration [which satisfies (10.87)] if and only if there exists a stable X so
that [

T
M

]
=
[
N
D

]
X. (10.88)

Proof. (Necessity) Assume that T and M in (4.169) are realizable with in-
ternal stability. Then in view of Theorem 10.15, X � D−1M is stable. Also,
y = Hu = (ND−1)(Mr) = NXr.

(Sufficiency) Let (10.88) be satisfied. If X is stable, then T and M are
stable. Also, note that T = HM . We now show that in this case a controller
configuration exists to implement these maps (see Figure 10.7). Note that

u = M̂r + Cy(T̂ r + y) = [Cy, M̂ + CyT̂ ]
[
y
r

]
, from which we obtain

u = (I + CyH)−1(M̂ + Cy T̂ )r. (10.89)

Now if M̂ = M and T̂ = T , then in view of T = HM , this relation implies
that u = (I + CyH)−1(I + CyH)Mr = Mr and y = Hu = HMr = Tr. Fur-
thermore, Cy is a stabilizing feedback controller, and the system is internally
stable since T̂ and M̂ are stable. �

+

+

M

T Cy H
y

^

^ ur

Figure 10.7. Feedback realization of (T, M)

Note that other (than Figure 10.7), internally stable controller configura-
tions to attain these maps are possible. (The realization of both response maps
T and M , instead of only T as in the case of the Model Matching Problem,
makes the convenient formulation in Theorem 10.17 possible. The realization
of both T and M is sometimes referred to as the Total Synthesis Problem; see
[6], [7] and the references therein.)

The results of Theorem 10.17 can be expressed in terms of H = N ′D′−1,
rc MFDs in RH∞. In particular, we have the following result.
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Theorem 10.18. T,M ∈ RH∞ are realizable with internal stability by means
of a two degrees of freedom control configuration [which satisfies (10.87)] if
and only if there exists X ′ ∈ RH∞ so that

[
T
M

]
=
[
N ′

D′

]
X ′. (10.90)

Proof. The proof is completely analogous to the proof of Theorem 10.17, and
it is omitted. �

Remarks

(i) It is now clear that given any desirable response maps
[
y
u

]
=
[
T
M

]
r

such that
[
T
M

]
=
[
N ′

D′

]
X ′, where X ′ ∈ RH∞, the pair (T,M) can be

realized with internal stability by using for instance a controller (10.79),
C = [(I + L′N ′)D′−1]−1[L′, X ′], where [(I + L′N ′)D′−1, L′] ∈ RH∞ and
X ′ is given above, as can easily be verified. It is clear that there are
many C, which realize such T and M , and they are all parameterized via
the parameter L′ ∈ RH∞, which for internal stability must satisfy the
condition (I + L′N ′)D′−1 ∈ RH∞. Other parameterizations such as K ′

can also be used. In other words, the maps T,M can be realized by a
variety of configurations, each with different feedback properties.

(ii) In a two degrees of freedom feedback control configuration, all admissible
responses from r under condition of internal stability are characterized in
terms of the parameters X (or M), whereas all response maps from dis-
turbance and noise inputs that describe feedback properties of the system
can be characterized in terms of parameters such as K or Q or L. This
is the fundamental property of two degrees of freedom control systems: It
is possible to attain the response maps from r independently from feed-
back properties such as response to disturances and sensitivity to plant
parameter variations.

Example 10.19. We consider H(s) = (s−1)(s+2)
(s−2)2 and wish to character-

ize all proper and stable transfer functions T (s) that can be realized by
means of some control configuration with internal stability. Let H(s) =
s−1

(s+2)

(
(s−2)2

(s+2)2

)−1

= N ′D′−1 be an rc MFD in RH∞. Then in view of Theo-

rem 10.18, all such T must satisfy N ′−1
T = s+2

s−1T = X ′ ∈ RH∞. Therefore,
any proper T with a zero at +1 can be realized via a two degrees of freedom
feedback controller with internal stability. In general, all unstable zeros of H
must appear in T for internal stability to be possible. This shows a fundamen-
tal limitation of feedback control.
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Now if a single degree of freedom controller must be used, the class of real-
izable T (s) under internal stability is restricted. In particular, if the unity feed-
back configuration {I,Gff , I} in Figure 10.10 below is used, then all proper
and stable T that are realizable under internal stability are again given by
T = N ′X ′ = s−1

s+2X
′ where X ′ = L′ ∈ RH∞ [see 10.100] and in addition

(I + X ′N ′)D′−1 = (1 + X ′ s−1
s+2 ) (s+2)2

(s−2)2 ∈ RH∞; i.e., X ′ = nx/dx is proper
and stable and should also satisfy (s + 2)dx + (s − 1)nx = (s − 2)2p(s) for
some polynomial p(s). This illustrates the restrictions imposed by the unity
feedback controller, as opposed to a two degrees of freedom controller.

It is not difficult to prove the following result.

Theorem 10.20. T,M, S ∈ RH∞ are realizable with internal stability by a
two degrees of freedom control configuration that satisfy (10.87) and (10.85)
[S = So, see Figure 10.6 and (10.81), (10.82)] if and only if there exist
X ′, L′ ∈ RH∞ so that

⎡
⎣
T
M
S

⎤
⎦ =

⎡
⎣
N ′ 0
D′ 0
0 N ′

⎤
⎦
[
X ′

L′

]
+

⎡
⎣

0
0
I

⎤
⎦ , (10.91)

where (I + L′N ′)D′−1 ∈ RH∞. Similarly, T,M,Q ∈ RH∞ are realizable if
and only if there exist X ′, L′ ∈ RH∞ so that

⎡
⎣
T
M
Q

⎤
⎦ =

⎡
⎣
N ′ 0
D′ 0
0 D′

⎤
⎦
[
X ′

L′

]
, (10.92)

where (I + L′N ′)D′−1 ∈ RH∞.

Proof. The proof is straightfoward in view of Theorem 10.18. Note that S or
Q are selected in such a manner that the feedback loop has desirable feedback
characteristics that are expressed in terms of these maps. �

10.4.3 Controller Implementations

The controller C = [Cy, Cr] may be implemented, for example, as a system Sc
as shown in Figure 10.5 and described by (10.72); or as shown in Figure 10.7
with C = [Cy ,M + CyT ], where Cy stabilizes H and T,M are desired stable
maps that relate r to y and r to u; i.e., y = Tr and u = Mr. There are
also alternative ways of implementing a stabilizing controller C. In the follow-
ing discussion, the common control configuration of Figure 10.8, denoted by
{R;Gff , Gfb}, is briefly discussed together with several special cases.
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+

+
R

y
Gff

Gfb

H
r u

Figure 10.8. Two degrees of freedom controller {R; Gff , Gfb}

{R;Gff , Gfb} Configuration

Consider the system in Figure 10.8. Note that since

u = [Cy, Cr]
[
y
r

]
= [GffGfb, GffR]

[
y
r

]
, (10.93)

{R;Gff , Gfb} is a two degrees of freedom control configuration that is as
general as the ones discussed before. To see this, let C = [Cy , Cr] =

D̃′−1

c [Ñ ′
y, Ñ ′

r] be an lc MFD in RH∞ and let

R = Ñ ′
r, Gff = D̃′−1

c , Gfb = Ñ ′
y. (10.94)

Note that R and Gfb are always stable; also, G−1
ff exists and is stable. Assume

now that C was chosen so that

D̃′
cD

′ − Ñ ′
yN

′ = Ũ ′, (10.95)

where Ũ ′, Ũ ′−1
∈ RH∞. Then the system in Figure 10.8 with R,Gff and Gfb

given in (10.94) is internally stable. See [1, p. 630] for the proof of this claim.
We shall now discuss briefly some special cases of the {R;Gff , Gfb} con-

trol configuration, which are quite common in practice. Note that the con-
figurations below are simpler; however, they restrict the choices of attainable
response maps and so the flexibility offered to the control designer is reduced.

(i) {I;Gff , Gfb} Controller

+

+r Gff

Gfb

H
yu

Figure 10.9. The {I ; Gff , Gfb} controller

In this case u = [Cy , Cr]
[
y
r

]
= [GffGfb, Gff ]

[
y
r

]
; that is,
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Cy = CrGfb. (10.96)

See Figure 10.9. In view of (10.79) given in Theorem 10.16, this implies that

L′ = X ′Gfb (10.97)

or that the choice for the parameters L′ and X ′ is not completely independent
as in the {R;Gff , Gfb} case. The L′ and X ′ must of course satisfy L′, X ′ and
(I+L′N ′)D′−1 ∈ RH∞. In addition, in this case L′ and X ′ must be so that a
proper solution Gfb of (10.97) exists and no unstable poles cancel in X ′Gfb.
Note that these poles will cancel in the product GffGfb and will lead to an
unstable system. Since L′ and X ′ are both stable, we will require that (10.97)
has a solution Gfb ∈ RH∞. This implies that if, for example, X ′−1 exists,
then X ′ and L′ must be such that X ′−1L′ ∈ RH∞; i.e., the X ′ and L′ have
the same unstable zeros and L′ is “more proper” than X ′. This provides some
guidelines about the conditions X ′ and L′ must satisfy. Also,

Gff = [(I + L′N ′)D′−1]−1X ′. (10.98)

It should be noted that the state feedback law implemented by a dynamic
observer can be represented as a {I;Gff , Gfb} controller. See [1, Section 7.4B,
Figure 7.8].

(ii) {I;Gff , I} Controller

+

+r u
Gff H

y

Figure 10.10. The {I ; Gff , I} controller

A special case of (i) is the common unity feedback control configuration;

see Figure 10.10. Here u = [Cy, Cr]
[
y
r

]
= [Gff , Gff ]

[
y
r

]
; that is,

Cr = Cy, (10.99)

which in view of (10.79) implies that

X ′ = L′. (10.100)

In this case the responses between y or u and r (characterized byX ′) cannot be
designed independently of feedback properties such as sensitivity (character-
ized by L′). This is a single degree of freedom controller and is used primarily
to attain feedback control specifications. This case is discussed further below.
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+

+
R

r y
Gff H

u

Figure 10.11. The {R; Gff , I} controller

(iii) {R;Gff , I} Controller

Here u = [Cy, Cr]
[
y
r

]
= [Gff , GffR]

[
y
r

]
; that is,

Cr = CyR. (10.101)

See Figure 10.11. In view of (10.79) given in Theorem 10.16, this implies that

X ′ = L′R. (10.102)

The L′ and X ′ must satisfy L′, X ′, (I +L′N ′)D′−1 ∈ RH∞. In addition, they
must be such that (10.102) has a solution R ∈ RH∞. Note that R stable is
necessary for internal stability. The reader should refer to the discussion in
(i) above for the implications of such assumptions on X ′ and L′. Also,

Gff = [(I + L′N ′)D′−1]−1L′. (10.103)

(iv) {R; I,Gfb} Controller

+

+
R

r y
H

Gfb

u

Figure 10.12. The {R; I,Gfb} controller

In this case

u = [Cy, Cr]
[
y
r

]
= [Gfb, R]

[
y
r

]
. (10.104)

See Figure 10.12. For internal stability, R must be stable. In view of (10.79)
given in Theorem 10.16, this implies the requirement [(I+L′N ′)D′−1]−1X ′ ∈
RH∞, in addition to L′, X ′, (I+L′N ′)D−1 ∈ RH∞, which imposes significant
additional restrictions on L′. Here

[Gfb, R] = [(I + L′N ′)D′−1]−1[L′, X ′]. (10.105)
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+

+r y
H

Gfb

u

Figure 10.13. The {I ; I, Gfb} controller

(v) {I; I,Gfb} Controller

This is a special case of (iv), a single degree of freedom case where R = I; see
Figure 10.13. Here, R = I implies that

X ′ = (I + L′N ′)D′−1, (10.106)

or that, X ′ and L′ must satisfy additionally the relation

D′X ′ − L′N ′ = I, (10.107)

a (skew) Diophantine Equation. This is in addition to the condition that
L′, X ′, (I + L′N ′)D−1 ∈ RH∞.

Unity (Error) Feedback Configuration

Consider the unity feedback (error feedback) control system depicted in Fig-
ure 10.14, where H and C are the transfer function matrices of the plant
and controller, respectively [see also Figure 10.10 and (10.99), (10.100)]. This
configuration is studied further below.

r u y
C

e

d

+

_ H

Figure 10.14. Unity feedback control system

Assume that (I +HC)−1 exists. It is not difficult to verify the relations

y = (I +HC)−1HCr + (I +HC)−1d � Tr + Sd,

u = (I + CH)−1Cr − (I + CH)−1Cd � Mr −Md. (10.108)

If they are compared with relations (10.81)–(10.86) for the two degrees of
freedom controller, then u = Cyy + Crr, Cy = −C and Cr = C, since u =
−Cy+Cr. Hence, for the error feedback system of Figure 10.14, the relations
following (10.86) assume the forms
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M = (I + CH)−1C = DX = −Q = −DL,
T = H(I + CH)−1C = (I +HC)−1HC = HM = NX,

So = (I +HC)−1 = I +HQ = I −HM = I − T,

Si = (I + CH)−1 = I +QH = I −MH. (10.109)

If now Theorem 10.16 is applied to the present error feedback case, then it
can be seen that all stabilizing controllers are given by

C = [(I −XN)D−1]−1X, (10.110)

where [(I −XN)D−1, X ] is stable and (I − XN)−1 exists. H = ND−1 is a
right coprime (rc) polynomial matrix factorization.

Similarly, it can be shown by applying Theorem 10.16 that if H is proper
and H = N ′D′−1 is an rc MFD in RH∞, then all proper stabilizing controllers
are given by

C = [(I −X ′N ′)D′−1]−1X ′, (10.111)

where [(I −X ′N ′)D′−1
, X ′] ∈ RH∞ and (I −X ′N ′)−1 exists and is proper.

H Square and Nonsingular

Assume now that H is proper and H−1 exists; i.e., H is square and nonsingu-
lar. Let H = ND−1 be an rc polynomial MFD. If T is the closed-loop transfer
function between y and r, it can be shown that the system will be internally
stable if and only if

[N−1(I − T )H,N−1T ] (10.112)

is stable. Assume that T �= I in order for the loop to be well defined. Note
that if T is proper, then

C = H−1T (I − T )−1 (10.113)

is proper if and only if H−1T is proper and I − T is biproper.

SISO Case

If, in addition, it is assumed that H and T are single-input, single-output
transfer functions with H = n/d, the closed-loop system will be stable if and
only if

(1 − T )d−1 = Sd−1 and Tn−1 (10.114)

are stable, i.e., if and only if the sensitivity matrix has as zeros all the unstable
poles of the plant and the closed-loop transfer function has as zeros all the
unstable zeros of the plant.

This is a result that is well known in the classical control literature (refer
to the book by J. R. Ragazzini and G. F. Franklin, Sampled Data Control
Systems, McGraw-Hill, New York, 1958). It is derived here by specializing
the more general multi-input, multi-output case results to the single-input,
single-output case.
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Example 10.21. Given H(s) = s−1
(s−2)(s+1) , all scalar proper transfer func-

tions T that can be realized via the error feedback configuration, shown in
Figure 10.14, under internal stability, are to be characterized. When an er-
ror feedback configuration is used, T must satisfy the following conditions:
[(1 − T )d−1, Tn−1] =

[
dT −nT

(s−2)(s+1) ,
nT

dT (s−1)

]
stable; that is, T must be stable

and dT − nT = (s − 2)d̂T , nT = (s − 1)n̂T (T must have as zero the un-
stable zero of H). The controller C = nT (s−2)(s+1)

(dT −nT )(s−1) = n̂T (s+1)

d̂T
. For C to be

proper H−1T = (s−2)(s+1)nT

(s−1)dT
must be proper and 1 − T = dT −nT

dT
must be

biproper; these are satisfied when deg dT ≥ degnT +1. The closed-loop eigen-
values are the zeros of dcd + ncn = d̂T (s − 2)(s + 1) + n̂T (s + 1)(s − 1) =
(s+ 1)[(dT − nT ) + nT ] = (s+ 1)dT .

If T is to be realized via a two degrees of freedom controller instead, in
view of Theorem 10.17, the stability requirement is that T = NX = (s− 1)X
with X stable.

It may be of interest to use Theorem 10.18 and proper and stable factoriza-

tions. In this case, let H = s−1
(s−2)(s+1) =

(
s−1

(s+1)2

)(
s−2
s+1

)−1

. Then T is realiz-
able with internal stability using a two degrees of freedom configuration if and
only if N ′−1T = (s+1)2nT

(s−1)dT
= X ′ is proper and stable. That is nT = (s− 1)n̂T

and deg dT ≥ deg nT + 1. In the error feedback case, [(1 − T )d′−1, Tn′−1] =[
(dT −nT )(s+1)

dT (s−2) , nt(s+1)2

dT (s−1)

]
must be proper and stable, which imply, for stabil-

ity, that T should be stable, dT − nT = (s − 2)d̂T , nT = (s − 1)n̂T ; and for
properness, deg dT ≥ deg nT + 1 as before.

10.4.4 Some Control Problems

In control problems, design specifications typically include requirements for in-
ternal stability or pole placement, low sensitivity to parameter variations, dis-
turbance attenuation, and noise reduction. Also, requirements such as model
matching, diagonal decoupling, static decoupling, regulation, and tracking are
included in the specifications.

Internal stability has, of course, been a central theme throughout this
book, and in this section, all stabilizing controllers were parameterized. Pole
placement was also studied in Chapter 9, using state feedback. Sensitivity
and disturbance noise reduction are treated by appropriately selecting the
feedback controller Cy. Methodologies to accomplish these control goals, fre-
quently in an optimal way, are developed in many control books. It should be
noted that many important design approaches such as the H∞ optimal control
design method are based on the parameterizations of all feedback stabilizing
controllers discussed above. In particular, an appropriate or optimal controller
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is selected by restricting the parameters used, so that additional control goals
are accomplished optimally, while guaranteeing internal stability in the loop.

Our development of the theory of two degrees of freedom controllers can
be used directly to study model matching and decoupling, and a brief outline
of this approach is given in the following. Note that this does not, by far,
constitute a complete treatment of these important control problems, but
rather, an illustration of the methodologies introduced in this section.

Model Matching Problem

In the model matching problem, the transfer function of the plant H(s) (y =
Hu) and a desired transfer function T (s) (y = Tr) are given and a transfer
function M(s) (u = Mr) is sought so that

T (s) = H(s)M(s). (10.115)

Typically, H(s) is proper, and the proper and stable T (s) is to be obtained
from H(s) using a controller under the condition of internal stability. There-
fore, M(s) can in general not be implemented as an open-loop controller,
but rather, as a two degrees of freedom controller. In view of Theorem 10.18,
if H = N ′D′−1 is an rc MFD in RH∞, then the pair (T,M) can be real-
ized with internal stability if and only if there exists X ′ ∈ RH∞ so that[
T
M

]
=
[
N ′

D′

]
X ′. Note that an M that satisfies (10.115) must first be se-

lected (there may be an infinite number of solutions M). In the case when
detH(s) �= 0, T can be realized with internal stability by means of a two
degrees of freedom control configuration if and only if N ′−1

T = X ′ ∈ RH∞
(see Example 10.19). In this case M = D′X ′. Now if the model matching
is to be achieved by a more restricted control configuration, then additional
conditions are imposed on T for this to happen, which are expressed in terms
of X ′ (see, for instance, Example 10.19 for the case of the unity feedback
configuration).

Decoupling Problem

In the problem of diagonal decoupling, T (s) in (10.115) is not completely
specified but is required to be diagonal, proper, and stable. In this problem
the first input affects only the first output, the second input affects only the
second output, and so forth. If H(s)−1 exists, then diagonal decoupling under
internal stability via a two degrees of freedom control configuration is possible
if and only if

N ′−1
T = N ′−1

⎡
⎢⎣
n1
d1

. . .
nm

dm

⎤
⎥⎦ = X ′ ∈ RH∞, (10.116)
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where H = N ′D′−1 is an rc MFD in RH∞ and T (s) = diag[ni(s)/di(s)],
i = 1, . . . ,m. It is clear that if H(s) has only stable zeros, then no additional
restrictions are imposed on T (s). Relation (10.116) implies restrictions on the
zeros of ni(s) when H(s) has unstable zeros.

It is straightforward to show that if diagonal decoupling is to be accom-
plished by means of more restricted control configurations, then additional
restrictions will be imposed on T (s) via X ′. (See Exercise 10.5 below for the
case of diagonal decoupling via linear state feedback.) A problem closely re-
lated to the diagonal decoupling problem is the problem of the inverse of
H(s). In this case, T (s) = I.

In the problem of static decoupling, T (s) ∈ RH∞m is square and also
satisfies T (0) = Λ, a real nonsingular diagonal matrix. An example of such

T (s) is T (s) = 1
d(s)

[
s2 + 1 s(s2 + 2)
s(s+ 2) s2 + 3s+ 1

]
, where d(s) is a Hurwitz polyno-

mial. Note that if T (0) = Λ, then a step change in the first input r will affect
only the first output in y at steady-state and so forth. Here y = Tr = T 1

s
and lims→0 sT

1
s = T (0) = Λ, which is diagonal and nonsingular. For this to

happen, with internal stability when H(s) is nonsingular (see Theorem 10.18),
we must have N ′−1

T = X ′ ∈ RH∞, from which can be seen that static de-
coupling is possible if and only if H(s) does not have zeros at s = 0. If this is
the case and if in addition H(s) is stable, static decoupling can be achieved
with just a precompensation by a real gain matrix G where G = H−1(0)Λ. In
this case T (s) = H(s)G = H(s)H−1(0)Λ from which T (0) = Λ.

10.5 Summary and Highlights

Interconnected Systems—Feedback

• Let y = H1u and u = H2y + r, where the plant H1 = N1D
−1
1 , and the

controller H2 = D̃−1
2 Ñ2 are both coprime MFD. Then the closed-loop

system is stable if and only if det(D̃2D1 − Ñ2N1) is a Hurwitz polynomial

or the poles of
[

I −H2

−H1 I

]−1

are stable (see Theorem 10.4).

• The Diophantine Equation

D̃2D1 − Ñ2N1 = D̃k

is important for feedback systems. The roots of det D̃k are the closed-loop
eigenvalues. See (10.30).

• For interconnected systems in parallel and series, see (10.3)–(10.5) and
(10.6)–(10.8).
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Parameterization of All Stabilizing Feedback Controllers

• Given H1 = N1D
−1
1 = D̃−1

1 Ñ1, a doubly coprime factorization, all feed-
back stabilizing controllers H2 are given by

H2 = −(D̃kX1 − ÑkÑ1)−1(D̃kY1 + ÑkD̃1)

= −(Ỹ1Dk +D1Nk)(X̃1Dk −N1Nk)−1, (10.44)

where

UU−1 =
[

X1 Y1

−Ñ1 D̃1

] [
D1 −Ỹ1

N1 X̃1

]
=
[
I 0
0 I

]
(10.41)

with U a unimodular matrix. The polynomial matrices Ñk and Nk in

D̃−1
k Ñk = NkD

−1
k = K (10.51)

are arbitrary and D̃−1
k , D−1

k stable; the closed-loop eigenvalues are the
roots of det D̃k or of detDk (see Theorem 10.6).

• Equivalently, all stabilizing controllers are given by

H2 = −(X1 −KÑ1)−1(Y1 +KD̃1)

= −(Ỹ1 +D1K)(X̃1 −N1K)−1, (10.50)

where the poles of K are the closed-loop eigenvalues (see Theorem 10.7).

• Given H1 = N ′
1D

′−1
1 = D̃′−1

1 Ñ ′
1, a doubly coprime MFDs in RH∞, then

all proper stabilizing controllers H2 are given by

H2 = −(X ′
1 −K ′Ñ ′

1)−1(Y ′
1 +K ′D̃′

1) = −(Ỹ ′
1 +D′

1K
′)(X̃ ′

1 −N ′
1K

′)−1,
(10.58)

where K ′ ∈ RH∞, any rational proper and stable matrix (see Theo-
rem 10.11).

• See (10.67) for all stabilizing controllers in terms of state-space descrip-
tions.

Two Degrees of Freedom Controllers

• Given H = ND−1 right coprime,

û(s) = [Cy(s), Cr(s)]
[
ŷ(s)
r̂(s)

]
(10.69)

stabilizes H if and only if
(i) û = Cy ŷ stabilizes ŷ = Hû, and
(ii) Cr is such that

M � (I − CyH)−1Cr (10.70)

(u = Mr) satisfies D−1M = X , a stable rational matrix (see Theo-
rem 10.15).
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• See Theorem 10.16 for parameterizations of all stabilizing two degrees of
freedom controllers.

• See (10.81) and (10.82) for relations between u, y and external inputs and
disturbances.

• Given y = ND−1u, y = Tr and u = Mr are realizable via any control
configuration with internal stability if and only if

[
T
M

]
=
[
N
D

]
X,

where X is stable. See Theorems 10.17 and 10.18.
• The cases when a more restricted controller is used are addressed. See

(10.96)–(10.107). The error or unity feedback controller is further discussed
in (10.108)–(10.114).

• The model matching problem, the diagonal decoupling problem, and the
static decoupling problem are discussed. See Subsection 10.4.4.

10.6 Notes

Two books that are original sources on the use of polynomial matrix descrip-
tions in Systems and Control are Rosenbrock [18] and Wolovich [22]. In the
former, what is now called Rosenbrock’s matrix is employed and relations to
state-space descriptions are emphasized. In the latter, what are now called
Polynomial Matrix Fractional Descriptions are emphasized and the relation
to state space is accomplished primarily by using controller forms and the
Structure Theorem, which was presented in Chap 6. Good general sources for
the polynomial matrix description approach include also the books by Vardu-
lakis [19], Kailath [16], and Chen [9]. A good source for the study of feedback
systems using PMDs and MFDs is the book by Callier and Desoer [8].

The development of the properties of interconnected systems, addressed
in Section 10.2, which include controllability, observability, and stability of
systems in parallel, in series, and in feedback configurations is primarily based
on the approach taken in Antsaklis and Sain [7], Antsaklis [3] and [4], and
Gonzalez and Antsaklis [14].

Parameterizations of all stabilizing controllers are of course very impor-
tant in control theory today. Historically, their development appears to have
evolved in the following manner (see also the historical remarks on the Dio-
phantine Equation in [1, Subsection 7.2E]): Youla et al. [23] introduced the
K parameterization (as in Theorem 10.7 above) in 1976 and used it in the
Wiener–Hopf design of optimal controllers. This work is considered to be the
seminal contribution in this area. The proofs of the results on the parameter-
izations in Youla et al. [23] involve transfer functions and their characteristic
polynomials. Neither the Diophantine Equation nor PMDs of the system are
used (explicitly). It should be recalled that in the middle 1970s most of the
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control results in the literature concerning MIMO systems involved state-
space descriptions and a few employed transfer function matrices. The PMD
descriptions of systems were only beginning to make some impact. A version
of the linear Diophantine Equation, namely, AX + Y B = C polynomial in
z−1 was used in control design by Kucera in work reported in 1974 and 1975.
In that work, parameterizations of all stabilizing controllers were implicit,
not explicit, in the sense that the stabilizing controllers were expressed in
terms of the general solution of the Diophantine Equation, which in turn can
be described parametrically. Explicit parameterizations were reported later
in Kucera [17] in 1979. Antsaklis [2] in 1979 introduced the doubly coprime
MFDs (used in this book and in the literature) for the first time with the
polynomial Diophantine Equation, working over the ring of polynomials, to
derive parameterizations of all stabilizing controllers and to prove the results
by Youla et al. in an alternative way. In this work, internal system descrip-
tions were connected directly to stabilizing controller parameterizations via
the polynomial Diophantine Equation. In Desoer et al. [10] in 1980 parame-
terizations K ′ of all stabilizing controllers using coprime MFDs in rings other
than polynomial rings (including the ring of proper and stable rational func-
tions) were derived. It should also be noted that proper and stable MFDs
had apparently been used earlier by Vidyasagar. In Zames [24] in 1981, a pa-
rameterization Q of all stabilizing controllers, but only for stable plants was
introduced and used in H∞ optimal control design. (Similar parameterizations
were also used elsewhere, but apparently not to characterize all stabilizing con-
trollers; for example, they were used in the design of the closed-loop transfer
function in control systems and in sensitivity studies in the 1950s and 1960s,
and also in the “internal model control” studies in chemical process control
in the 1980s.) A parameterization X of all stabilizing controllers (where X is
closely related to the attainable response in an error feedback control system),
valid for unstable plants as well, was introduced in Antsakis and Sain [6]. Pa-
rameterizations involving proper and stable MFDs were further developed in
the 1980s in connection with optimal control design methodologies, such as
H∞ optimal control, and connections to state-space approaches were derived.
Two degrees of freedom controllers were also studied, and the limitations of
the different control configurations became better understood. By now, MDFs
and PMDs have become important system representations and their study is
essential, if optimal control design methodologies are to be well understood.
See [1, Subsections 7.2E and Section 7.6] for further discussion of controller
parameterizations.

The material on two degrees of freedom controllers in Section 10.4 is based
on Antsaklis [4] and Gonzalez and Antsaklis [12], [13], [14], [15]; a good source
for this topic is also Vidyasagar [20]. Note that the main stability theorem
(Theorem 10.15) first appeared in Antsaklis [4] and Antsaklis and Gonzalez [5].
For additional material on model matching and decoupling, consult Chen [9],
Kailath [16], Falb and Wolovich [11], Williams and Antsaklis [21], and the
extensive list of references therein.
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Exercises

10.1. Consider the double integrator H1 = 1
s2 .

(a) Characterize all stabilizing controllers H2 for H1.
(b) Characterize all proper stabilizing controllers H2 for H1 of order 1.

10.2. Consider the double integrator H1 = 1
s2 .

(a) Derive a minimal state-space realization for H1, and use Lemma 10.14 to
derive doubly coprime factorizations in RH∞.

(b) Use the polynomial Diophantine Equations to derive factorizations in
RH∞.

10.3. Consider H1 = [ s
2+1
s2 , s+1

s3 ].

(a) Derive a minimal state-space realization {A,B,C,D}, and use Lemma 10.14
and Theorem 10.11 to parameterize all stabilizing controllers H2.

(b) Derive a stabilizing controller H2 of order three by appropriately selecting
K ′. What are the closed-loop eigenvalues in this case? Comment on your
results.

10.4. Consider H =
[ 1
s+1

2
s+3

1
s+1

1
s+1

]
.

(a) Derive an rc MFD in RH∞, H = N ′D′−1.

(b) Let T =
[ n1
d1

0
0 n2

d2

]
, and characterize all diagonal T that can be realized

under internal stability via a two degrees of freedom control configuration.

10.5. In the model matching problem, the transfer function matrices H ∈
Rp×m(s) of the plant and T ∈ Rp×m(s) of the model must be found so that
T = HM . M is to be realized via a feedback control configuration under
internal stability. Here we are interested in the model matching problem via
linear state feedback . For this purpose, let H = ND−1 an rc polynomial
factorization with D column reduced. Then Dz = u, y = Nz is a minimal
realization of H . Let the state feedback control law be defined by u = Fz+Gr,
where F ∈ R[s]m×m, G ∈ Rm×m with detG �= 0 and degcj

F < degcj
D. To
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allow additional flexibility, let r = Kv and K ∈ Rm×q. Note that HF,GK =
ND−1

F GK = (ND−1)(DD−1
F GK) = (ND−1)[D(G−1DF )−1K] = HM where

DF = D − F .
In view of the above, solve the model matching problem via linear state

feedback, determine F,G, and K, and comment your results when

(a) H = (s+1)(s+2)
2s2−3s+2 , T = s+1

s+2 ,

(b) H =
[
s+1
s 0
1
s

s+2
s

]
, T = I2,

(c) H =
[ s+2
s+1

s+3
s+2

1
s+1 0

]
, T =

[ s+1
s+4−2

(s+2)(s+4)

]
.

Hint: The model matching problem via linear state feedback is quite easy to
solve when p = m and rankH = m in view of (G−1DF )−1K = D−1M =
D−1H−1T = N−1T .


