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Internal and External Descriptions:
Relations and Properties

7.1 Introduction

In this chapter it is shown how external descriptions of a system, such as the
transfer function and the impulse response, depend only on the controllable
and observable parts of internal state-space descriptions (Section 7.2). Based
on these results, the exact relation between internal (Lyapunov) stability and
input–output stability is established in Section 7.3. In Section 7.4 the poles of
the transfer function matrix, the poles of the system (eigenvalues), the zeros
of the transfer function, the invariant zeros, the decoupling zeros, and their
relation to uncontrollable or unobservable eigenvalues are addressed. In the
final Section 7.5, polynomial matrix and matrix fractional descriptions are
introduced. Polynomial matrix descriptions are generalizations of state-space
internal descriptions. The matrix fractional descriptions of transfer function
matrices offer a convenient way to work with transfer functions in control
design and to establish the relations between internal and external descriptions
of systems.

7.2 Relations Between State-Space and Input–Output
Descriptions

In this section it is shown that the input–output description, namely the
transfer function or the impulse response of a system, depends only on the
part of the state-space representation that is both controllable and observable.
The uncontrollable and/or unobservable parts of the system “cancel out” and
play no role in the input–output system descriptions.

Consider the system

ẋ = Ax+Bu, y = Cx+Du, (7.1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m has p×m. The transfer
function matrix
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H(s) = C(sI −A)−1B +D = Ĉ(sI − Â)−1B̂ + D̂, (7.2)

where {Â, B̂, Ĉ, D̂} is an equivalent representation given in (6.9) with Â =
Q−1AQ, B̂ = Q−1B, Ĉ = CQ, and D̂ = D. Consider now the Kalman De-
composition Theorem in Section 6.2.3 and the representation (6.22). We wish
to investigate which of the submatrices Aij , Bi, Cj determine H(s) and which
do not. The inverse of sI − Â can be determined by repeated application of
the formulas
[
α β
0 δ

]−1

=
[
α−1 −α−1βδ−1

0 δ−1

]
and

[
α 0
γ δ

]−1

=
[

α−1 0
−δ−1γα−1 δ−1

]
,

(7.3)
where α, β, γ, δ are matrices with α and δ square and nonsingular. It turns
out that

H(s) = C1(sI −A11)−1B1 +D, (7.4)

that is, the only part of the system that determines the external description
is {A11, B1, C1, D}, the subsystem that is both controllable and observable
[see Theorem 6.6(iii)]. Analogous results exist in the time domain. Specifi-
cally, taking the inverse Laplace transform of both sides in (7.4), the impulse
response of the system for t ≥ 0 is derived as

H(t, 0) = C1e
A11tB1 +Dδ(t), (7.5)

which depends only on the controllable and observable parts of the system,
as expected.

Similar results exist for discrete-time systems described by (6.4). For such
systems, the transfer function matrix H(z) and the pulse response H(k, 0) are
given by

H(z) = C1(zI −A11)−1B1 +D (7.6)

and

H(k, 0) =

{
C1A

k−1
11 B1, k > 0,

D, k = 0.
(7.7)

Again, these depend only on the part of the system that is both controllable
and observable, as in the continuous-time case.

Example 7.1. For the system ẋ = Ax+Bu, y = Cx, where A,B,C are as in
Examples 6.7 and 6.10, we have H(s) = C(sI−A)−1B = C1(sI−A11)−1B1 =
(1)(1/s)[1, 1] = [1/s, 1/s]. Notice that only the controllable and observable
eigenvalue of A, λ1 = 0 (in A11), appears in the transfer function as a pole.
All other eigenvalues (λ2 = −1, λ3 = −2) cancel out.
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Figure 7.1. An RL/RC circuit

Example 7.2. The circuit depicted in Figure 7.1 is described by the state-
space equations

[
ẋ1(t)
ẋ2(t)

]
=
[
−1/(R1C) 0

0 −R2/L

] [
x1(t)
x2(t)

]
+
[

1/(R1C)
1/L

]
v(t)

i(t) = [−1/R1, 1]
[
x1(t)
x2(t)

]
+ (1/R1)v(t),

where the voltage v(t) and current i(t) are the input and output variables of
the system, x1(t) is the voltage across the capacitor, and x2(t) is the current
through the inductor. We have î(s) = H(s)v̂(s) with the transfer function
given by

H(s) = C(sI −A)−1B +D =
(R2

1C − L)s+ (R1 −R2)
(Ls+R2)(R2

1Cs+R1)
+

1
R1

.

The eigenvalues of A are λ1 = −1/(R1C) and λ2 = −R2/L. Note that in

general rank[λiI − A,B] = rank
[
λiI −A

C

]
= 2 = n; i.e., the system is con-

trollable and observable, unless the relation R1R2C = L is satisfied. In this
case, λ1 = λ2 = −R2/L and the system matrix P (s) assumes the form

P (s) =
[
sI −A, B
−C, D

]
=

⎡
⎣
s+R2/L 0 R2/L

0 s+R2/L 1/L
1/R1 −1 1/R1

⎤
⎦ .

In the following discussion, assume that R1R2C = L is satisfied.

(i) Let R1 �= R2 and take

[v1, v2] =
[
R2 R1

1 1

]
,

[
v̂1
v̂2

]
= [v1, v2]−1 =

1
R2 −R1

[
1 −R1

−1 R2

]

to be the linearly independent right and left eigenvectors corresponding
to the eigenvalues λ1 = λ2 = −R2/L. The eigenvectors could have been
any two linearly independent vectors since λiI−A = 0. They were chosen
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as above because they also have the property that v̂2B = 0 and Cv2 = 0,
which in view of Corollary 6.9, implies that λ2 = −R2/L is both uncon-
trollable and unobservable. The eigenvalue λ1 = −R2/L is both control-

lable and observable, as it can be seen using Q =
[
R2 R1

1 1

]
to reduce the

representation to the canonical structure form (Kalman Decomposition
Theorem). The transfer function is in this case given by

H(s) =
(s+R1/L)(s+R2/L)
R1(s+R2/L)(s+R2/L)

=
s+R1/L

R1(s+R2/L)
;

that is, only the controllable and observable eigenvalue appears as a pole
in H(s), as expected.

(ii) Let R1 = R2 = R and take

[v1, v2] =
[

1 R
0 1

]
,

[
v̂1
v̂2

]
= [v1, v2]−1 =

[
1 −R
0 1

]
.

In this case v̂1B = 0 and Cv2 = 0. Thus, one of the eigenvalues, λ1 =
−R/L, is uncontrollable (but can be shown to be observable) and the
other eigenvalue, λ2 = −R/L, is unobservable (but can be shown to be
controllable). In this case, none of the eigenvalues appear in the transfer
function. In fact,

H(s) = 1/R,

as can readily be verified. Thus, in this case, the network behaves as a
constant resistance network.

At this point it should be made clear that the modes that are uncontrol-
lable and/or unobservable from certain inputs and outputs do not actually
disappear; they are simply invisible from certain vantage points under certain
conditions. (The voltages and currents of this network in the case of constant
resistance [H(s) = 1/R] are studied in Exercise 7.2.)

Example 7.3. Consider the system ẋ = Ax + Bu, y = Cx, where A =⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, and C = [1, 1, 0]. Using the eigenvalue/eigenvector

test, it can be shown that the three eigenvalues of A (resp., the three modes of
A) are λ1 = 1 (resp., et), which is controllable and observable; λ2 = −2 (resp.,
e−2t), which is uncontrollable and observable; and λ3 = −1 (resp., e−t), which
is controllable and unobservable.
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The response due to the initial condition x(0) and the input u(t) is

x(t) = eAtx(0) +
∫ t

0

eA(t−τ)Bu(τ)dτ

=

⎡
⎣
et 0 0
0 e−2t 0
0 0 e−t

⎤
⎦x(0) +

∫ t

0

⎡
⎣
e(t−τ)

0
e−(t−τ)

⎤
⎦u(τ)dτ

and

y(t) = CeAtx(0) +
∫ t

0

CeA(t−τ)Bu(τ)dτ

= [et, e−2t, 0]x(0) +
∫ t

0

e(t−τ)u(τ)dτ.

Notice that only controllable modes appear in eAtB [resp., only control-
lable eigenvalues appear in (sI − A)−1B], only observable modes appear
in CeAt [resp., only observable eigenvalues appear in C(sI − A)−1], and
only modes that are both controllable and observable appear in CeAtB
[resp., only eigenvalues that are both controllable and observable appear in
C(sI −A)−1 B = H(s)]. For the discrete-time case, refer to Exercise 7.1d.

7.3 Relations Between Lyapunov and Input–Output
Stability

In view of the relation between eigenvalues of A and poles of H(s) developed
above [see also (7.20) and (7.22)] we are now in a position to provide complete
insight into the relation between exponential stability or Lyapunov stability
and BIBO (Bounded Input Bounded Output) stability of a system.

Consider the system ẋ = Ax+Bu, y = Cx+Du, and recall the following
results:

(i) The system is asymptotically stable (internally stable, stable in the sense
of Lyapunov) if and only if the real parts of all the eigenvalues of A,
Reλi(A) i = 1, . . . , n, are negative. Recall also that asymptotic stability
is equivalent to exponential stability in the case of linear time-invariant
systems.

(ii) Let the transfer function be H(s) = C(sI − A)−1B + D. The sys-
tem is BIBO stable if and only if the real parts of all the poles of
H(s),Repi(H(s)) i = 1, . . . , r, are negative [see Section 4.7].

The relation between the eigenvalues of A and the poles of H(s) is

{eigenvalues of A} ⊃ {poles of H(s)} (7.8)
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with equality holding when all eigenvalues are controllable and observable [see
(7.20), (7.22) and Chapter 8, Theorems 8.9 and 8.12]. Specifically, the eigen-
values of A may be controllable and observable, uncontrollable and/or unob-
servable, and the poles of H(s) are exactly the eigenvalues of A that are both
controllable and observable. The remaining eigenvalues of A, the uncontrol-
lable and/or unobservable ones, cancel out when H(s) = C(sI−A)−1B+D is
determined. Note also that the uncontrollable/unobservable eigenvalues that
cancel correspond to input and output decoupling zeros (see Section 7.4). So
the cancellations that take place in forming H(s) are really pole/zero can-
cellations, i.e., cancellations between poles of the system (uncontrollable and
unobservable eigenvalues of A) and zeros of the system (input and output
decoupling zeros).

It is now straightforward to see that

{Internal stability} ⇒
� {BIBO stability};

that is, internal stability implies, but is not necessarily implied by, BIBO
stability. BIBO stability implies internal stability only when the system is
completely controllable and observable ([1, p. 487, Theorem 9.4]).

Example 7.4. Consider the system ẋ = Ax+Bu, y = Cx, where A =
[

0 1
2 1

]
,

B =
[

0
1

]
, and C = [−2, 1]. The eigenvalues of A are the roots of |sI − A| =

s2−s−2 = (s+1)(s−2) at {−1, 2}, and so the system is not internally stable
(it is not stable in the sense of Lyapunov). The transfer function is

H(s) = C(sI −A)−1B =
s− 2

(s+ 1)(s− 2)
=

1
s+ 1

.

Since there is one pole of H(s) at {−1}, the system is BIBO stable, which
verifies that BIBO stability does not necessarily imply internal stability. As
it can be easily verified, the −1 eigenvalue of A is controllable and observable
and it is the eigenvalue that appears as a pole of H(s) at −1. The other
eigenvalue at +2 that is unobservable, which is also the output decoupling
zero of the system, cancels in a pole/zero cancellation in H(s) as expected.

7.4 Poles and Zeros

In this section the poles and zeros of a time-invariant system are defined and
discussed. The poles and zeros are related to the (controllable and observable,
resp., uncontrollable and unobservable) eigenvalues of A. These relationships
shed light on the eigenvalue cancellation mechanisms encountered when input–
output relations, such as transfer functions, are formed.
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In the following development, the finite poles of a transfer function matrix
H(s) [or H(z)] are defined first (for the definition of poles at infinity, refer
to the Exercise 7.9). It should be noted here that the eigenvalues of A are
sometimes called poles of the system {A,B,C,D}. To avoid confusion, we
shall use the complete term poles of H(s), when necessary. The zeros of a
system are defined using internal descriptions (state-space representations).

7.4.1 Smith and Smith–McMillan Forms

To define the poles of H(s), we shall first introduce the Smith form of a
polynomial matrix P (s) and the Smith–McMillan form of a rational matrix
H(s).

The Smith form SP (s) of a p ×m polynomial matrix P (s) (in which the
entries are polynomials in s) is defined as

SP (s) =
[
Λ(s) 0

0 0

]
(7.9)

with Λ(s) � diag[ε1(s), . . . , εr(s)], where r = rankP (s). The unique monic
polynomials εi(s) (polynomials with leading coefficient equal to one) are the
invariant factors of P (s). It can be shown that εi(s) divides εi+1(s), i =
1, . . . , r − 1. Note that εi(s) can be determined by

εi(s) = Di(s)/Di−1(s), i = 1, . . . , r,

where Di(s) is the monic greatest common divisor of all the nonzero ith-order
minors of P (s) with D0(s) = 1. The Di(s) are the determinantal divisors
of P (s). A matrix P (s) can be reduced to Smith form by elementary row
and column operations or by a pre- and post-multiplication by unimodular
matrices, namely

UL(s)P (s)UR(s) = Sp(s). (7.10)

Unimodular Matrices. Let R[s]p×m denote the set of p × m matrices with
entries that are polynomials in s with real coefficients. A polynomial matrix
U(s) ∈ R[s]p×p is called unimodular (or R[s]-unimodular) if there exists a
Û(s) ∈ R[s]p×p such that U(s)Û(s) = Ip. This is the same as saying that
U−1(s) = Û(s) exists and is a polynomial matrix. Equivalently, U(s) is uni-
modular if detU(s) = α ∈ R,α �= 0. It can be shown that every unimodular
matrix is a matrix representation of a finite number of successive elementary
row and column operations. See [1, p. 526].

Consider now a p ×m rational matrix H(s). Let d(s) be the monic least
common denominator of all nonzero entries, and write

H(s) =
1
d(s)

N(s), (7.11)

with N(s) a polynomial matrix. Let SN (s) = diag[n1(s), . . . , nr(s), 0p−r,m−r]
be the Smith form of N(s), where r = rankN(s) = rankH(s). Divide each
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ni(s) of SN (s) by d(s), canceling all common factors to obtain the Smith–
McMillan form of H(s),

SMH(s) =
[
Λ̃(s) 0

0 0

]
, (7.12)

with Λ̃(s) � diag
[
ε1(s)
ψ1(s)

, . . . , εr(s)
ψr(s)

]
, where r = rankH(s). Note that εi(s)

divides εi+1(s), i = 1, 2, . . . , r−1, and ψi+1(s) divides ψi(s), i = 1, 2, . . . , r−1.

7.4.2 Poles

Pole Polynomial of H(s). Given a p×m rational matrix H(s), its character-
istic polynomial or pole polynomial, pH(s), is defined as

pH(s) = ψ1(s) · · ·ψr(s), (7.13)

where the ψi, i = 1, · · · , r, are the denominators of the Smith–McMillan form,
SMH(s), of H(s). It can be shown that pH(s) is the monic least common
denominator of all nonzero minors of H(s).

Definition 7.5. The poles of H(s) are the roots of the pole polynomial pH(s).
�

Note that the monic least common denominator of all nonzero first-order
minors (entries) of H(s) is called the minimal polynomial of H(s) and is
denoted by mH(s). The mH(s) divides pH(s) and when the roots of pH(s)
[poles of H(s)] are distinct, mH(s) = pH(s), since the additional roots in
pH(s) are repeated roots of mH(s).

It is important to note that when the minors of H(s) [of order 1, 2, . . . ,
min(p,m)] are formed by taking the determinants of all square submatrices
of dimension 1 × 1, 2 × 2, etc., all cancellations of common factors between
numerator and denominator polynomials should be carried out.

In the scalar case, p = m = 1, Definition 7.5 reduces to the well-known
definition of poles of a transfer function H(s), since in this case there is only
one minor (of order 1), H(s), and the poles are the roots of the denomina-
tor polynomial of H(s). Notice that in this case, it is assumed that all the
possible cancellations have taken place in the transfer function of a system.
Here pH(s) = mH(s), that is, the pole or characteristic polynomial equals the
minimal polynomial of H(s). Thus, pH(s) = mH(s) are equal to the (monic)
denominator of H(s).

Example 7.6. Let H(s) =
[

1/[s(s+ 1)] 1/s 1
0 0 1/s2

]
. The nonzero minors of

order 1 are the nonzero entries. The least common denominator is s2(s+1) =
mH(s), the minimal polynomial of H(s). The nonzero minors of order 2 are
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1/[s3(s+1)] and 1/s3 (taking columns 1 and 3, and 2 and 3, respectively). The
least common denominator of all minors (of order 1 and 2) is s3(s+1) = pH(s),
the characteristic polynomial of H(s). The poles are {0, 0, 0,−1}. Note that
mH(s) is a factor of pH(s), and the additional root at s = 0 in pH(s) is a
repeated pole. To obtain the Smith–McMillan form of H(s), write H(s) =

1
s2(s+1)

[
s s(s+ 1) s2(s+ 1)
0 0 (s+ 1)

]
= 1

d(s)N(s), where d(s) = s2(s + 1) = mH(s)

[see (7.11)]. The Smith form of N(s) is

SN (s) =
[

1 0 0
0 s(s+ 1) 0

]

since D0 = 1, D1 = 1, D2 = s(s + 1) [the determinantal divisors of N(s)],
and n1 = D1/D0 = 1, n2 = D2/D1 = s(s + 1), the invariant factors of N(s).
Dividing by d(s), we obtain the Smith–McMillan form of H(s),

SMH(s) =
[
ε1/ψ1 0 0

0 ε2/ψ2 0

]
=
[

1/[s2(s+ 1)] 0 0
0 1/s 0

]
.

Note that ψ2 divides ψ1 and ε1 divides ε2. Now the characteristic or pole
polynomial of H(s) is pH(s) = ψ1ψ2 = s3(s+1) and the poles are {0, 0, 0,−1},
as expected.

Example 7.7. Let H(s) = 1
s+2

[
1 α
1 1

]
. If α �= 1, then the second-order minor

is |H(s)| = 1−α
(s+2)2 . The least common denominator of this nonzero second-

order minor |H(s)| and of all the entries of H(s) (the first-order minors) is
(s+ 2)2 = pH(s); i.e., the poles are at {−2,−2}. Also, mH(s) = s+ 2.

Now if α = 1, then there are only first-order nonzero minors (|H(s)| = 0).
In this case pH(s) = mH(s) = s + 2, which is quite different from the case
when α �= 1. Presently, there is only one pole at −2.

As will be shown in Chapter 8 via Theorems 8.9 and 8.12, the poles of
H(s) are exactly the controllable and observable eigenvalues of the system (in
A11) and no factors of |sI −A11| in H(s) cancel [see (7.52)].

In general, for the set of poles of H(s) and the eigenvalues of A, we have

{Poles of H(s)} ⊂ {eigenvalues of A}, (7.14)

with equality holding when all the eigenvalues of A are controllable and ob-
servable eigenvalues of the system. Similar results hold for discrete-time sys-
tems and H(z).
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Example 7.8. Consider A =

⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦, B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦, and C = [0, 1, 0].

Then the transfer function H(s) = [1/s, 1/s]. H(s) has only one pole, s1 = 0
(pH(s) = s), and λ1 = 0, is the only controllable and observable eigenvalue.
The other two eigenvalues of A, λ2 = −1, λ3 = −2, which are not both
controllable and observable, do not appear as poles of H(s).

Example 7.9. Recall the circuit in Example 7.2 in Section 7.2. IfR1R2C �= L,
then {poles of H(s)} = {eigenvalues of A at λ1 = −1/(R1C) and λ2 =
−R2/L}. In this case, both eigenvalues are controllable and observable. Now
if R1R2C = L with R1 �= R2, then H(s) has only one pole, s1 = −R2/L,
since in this case only one eigenvalue λ1 = −R2/L is controllable and observ-
able. The other eigenvalue λ2 at the same location −R2/L is uncontrollable
and unobservable. Now if R1R2C = L with R1 = R2 = R, then one of the
eigenvalues becomes uncontrollable and the other (also at −R/L) becomes
unobservable. In this case H(s) has no finite poles (H(s) = 1/R).

7.4.3 Zeros

In a scalar transfer function H(s), the roots of the denominator polynomial
are the poles, and the roots of its numerator polynomial are the zeros of H(s).
As was discussed, the poles of H(s) are some or all of the eigenvalues of A (the
eigenvalues ofA are sometimes also called poles of the system {A,B,C,D}). In
particular, the uncontrollable and/or unobservable eigenvalues of A can never
be poles of H(s). In Chapter 8 (Theorems 8.9 and 8.12), it is shown that only
those eigenvalues of A that are both controllable and observable appear as
poles of the transfer function H(s). Along similar lines, the zeros of H(s) (to
be defined later) are some or all of the characteristic values of another matrix,
the system matrix P (s). These characteristic values are called the zeros of the
system {A,B,C,D}.

The zeros of a system for both the continuous- and the discrete-time cases
are defined and discussed next. We consider now only finite zeros. For the case
of zeros at infinity, refer to the exercises.

Let the system matrix (also called Rosenbrock’s system matrix ) of
{A,B,C,D} be

P (s) �
[
sI −A B
−C D

]
. (7.15)

Note that in view of the system equations ẋ = Ax + Bu, y = Cx + Du, we
have

P (s)
[
−x̂(s)
û(s)

]
=
[

0
ŷ(s)

]
,

where x̂(s) denotes the Laplace transform of x(t).
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Zero Polynomial of (A,B,C,D). Let r = rankP (s) [note that n ≤ r ≤
min(p + n,m + n)], and consider all those rth order nonzero minors of P (s)
that are formed by taking the first n rows and n columns of P (s), i.e., all rows
and columns of sI −A, and then adding appropriate r− n rows (of [−C,D] )
and columns (of [BT , DT ]T ). The zero polynomial of the system {A,B,C,D},
zp(s), is defined as the monic greatest common divisor of all these minors.

Definition 7.10. The zeros of the system {A,B,C,D} or the system zeros
are the roots of the zero polynomial of the system, zP (s). �

In addition, we define the invariant zeros of the system as the roots of the
invariant polynomials of P (s).

In particular, consider the (p+ n) × (m+ n) system matrix P (s) and let

SP (s) =
[
Λ(s) 0

0 0

]
, Λ(s) = diag[ε1(s), . . . , εr(s), 0] (7.16)

be its Smith form. The invariant zero polynomial of the system {A,B,C,D}
is defined as

zIP (s) = ε1(s)ε2(s) · · · εr(s), (7.17)

and its roots are the invariant zeros of the system. It can be shown that the
monic greatest common divisor of all the highest order nonzero minors of P (s)
equals zIP (s).

In general,

{zeros of the system} ⊃ {invariant zeros of the system}.

When p = m with detP (s) �= 0, then the zeros of the system coincide with
the invariant zeros.

Now consider the n× (m+ n) matrix [sI −A,B] and determine its n in-
variant factors εi(s) and its Smith form. The product of its invariant factors is
a polynomial, the roots of which are the input-decoupling zeros of the system
{A,B,C,D}. Note that this polynomial equals the monic greatest common
divisor of all the highest order nonzero minors (of order n) of [sI − A,B].

Similarly, consider the (p + n) × n matrix
[
sI −A
−C

]
and its invariant poly-

nomials, the roots of which define the output-decoupling zeros of the system
{A,B,C,D}.

Using the above definitions, it is not difficult to show that the input-
decoupling zeros of the system are eigenvalues of A and also zeros of the
system {A,B,C,D}. In addition note that if λi is such an input-decoupling
zero, then rank[λiI − A,B] < n, and therefore, there exists a 1 × n vector
v̂i �= 0 such that v̂i[λiI − A,B] = 0. This, however, implies that λi is an
uncontrollable eigenvalue of A (and v̂i is the corresponding left eigenvector),
in view of Section 6.3. Conversely, it can be shown that an uncontrollable
eigenvalue is an input-decoupling zero. Therefore, the input-decoupling zeros
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of the system {A,B,C,D} are the uncontrollable eigenvalues of A. Similarly,
it can be shown that the output-decoupling zeros of the system {A,B,C,D}
are the unobservable eigenvalues of A. They are also zeros of the system, as
can easily be seen from the definitions.

There are eigenvalues of A that are both uncontrollable and unobservable.
These can be determined using the left and right corresponding eigenvector
test or by the Canonical Structure Theorem (Kalman Decomposition Theo-
rem) (see Sections 6.2 and 6.3). These uncontrollable and unobservable eigen-
values of A are zeros of the system that are both input- and output-decoupling
zeros and are called input–output decoupling zeros . These input–output decou-
pling zeros can also be defined directly from P (s) given in (7.15); however,
care should be taken in the case of repeated zeros.

If the zeros of a system are determined and the zeros that are input- and/or
output-decoupling zeros are removed, then the zeros that remain are the zeros
of H(s) and can be found directly from the transfer function H(s).

Zero Polynomial of H(s). In particular, if the Smith–McMillan form of H(s)
is given by (7.12), then

zH(s) = ε1(s)ε2(s) · · · εr(s) (7.18)

is the zero polynomial of H(s) and its roots are the zeros of H(s). These are
also called the transmission zeros of the system.

Definition 7.11. The zeros of H(s) or the transmission zeros of the system
are the roots of the zero polynomial of H(s), zH(s). �

When P (s) is square and nonsingular, the relationship between the zeros
of the system and the zeros of H(s) can easily be determined. Consider the
identity

P (s) =
[
sI −A B
−C D

]
=
[
sI −A 0
−C I

] [
I (sI −A)−1B
0 H(s)

]

and note that |P (s)| = |sI − A| |H(s)|. In this case, the invariant zeros of
the system [the roots of |P (s)|], which are equal here to the zeros of the
system, are the zeros of H(s) [the roots of |H(s)|] and those eigenvalues of A
that are not both controllable and observable [the ones that do not cancel in
|sI −A||H(s)|].

Note that the zero polynomial of H(s), zH(s), equals the monic greatest
common divisor of the numerators of all the highest order nonzero minors in
H(s) after all their denominators have been set equal to pH(s), the charac-
teristic polynomial of H(s). In the scalar case (p = m = 1), our definition of
the zeros of H(s) reduces to the well-known definition of zeros, namely, the
roots of the numerator polynomial of H(s).



7.4 Poles and Zeros 289

Example 7.12. Consider H(s) of Example 7.6. From the Smith–McMillan
form of H(s), we obtain the zero polynomial zH(s) = 1, and H(s) has no
(finite) zeros. Alternatively, the highest order nonzero minors are 1/[s3(s +
1)] and 1/s3 = (s + 1)/[s3(s + 1)] and the greatest common divisor of the
numerators is zH(s) = 1.

Example 7.13. We wish to determine the zeros of H(s) =
[ s
s+1 0
1
s+1

s+1
s2

]
. The

first-order minors are the entries of H(s), namely s
s+1 ,

1
s+1 ,

s+1
s2 , and there

is only one second-order minor s
s+1 · s+1

s2 = 1
s . Then pH(s) = s2(s + 1), the

least common denominator, is the characteristic polynomial. Next, write the
highest (second-) order minor as 1

s = s(s+1)
s2(s+1) = s(s+1)

pH(s) and note that s(s+ 1)
is the zero polynomial of H(s), zH(s), and the zeros of H(s) are {0,−1}. It is
worth noting that the poles and zeros of H(s) are at the same locations. This
may happen only when H(s) is a matrix.

If the Smith–McMillan form of H(s) is to be used, write H(s) = 1
s2(s+1)[

s3 0
s2 (s+ 1)2

]
= 1

d(s)N(s). The Smith form of N(s) is now
[

1 0
0 s3(s+ 1)2

]

since D0 = 1, D1 = 1, D2 = s3(s + 1)2 with invariant factors of N(s) given
by n1 = D1/D0 = 1 and n2 = D2/D1 = s3(s + 1)2. Therefore, the Smith–
McMillan form (7.12) of H(s) is

SMH(s) =

[
1

s2(s+1) 0

0 s(s+1)
1

]
=
[
ε1/ψ1 0

0 ε2/ψ2

]
.

The zero polynomial is then zH(s) = ε1ε2 = s(s+1), and the zeros of H(s) are
{0,−1}, as expected. Also, the pole polynomial is pH(s) = ψ1ψ2 = s2(s+ 1),
and the poles are {0, 0,−1}.

Example 7.14. We wish to determine the zeros of H(s) =

⎡
⎣

s
s+1 0
1
s+1

s+1
s2

0 1
s

⎤
⎦.

The second-order minors are 1
s ,

1
s+1 ,

1
s(s+1) , and the characteristic polyno-

mial is pH(s) = s2(s + 1). Rewriting the highest (second-) order minors as
s(s+1)/pH(s), s2/pH(s), and s/pH(s), the greatest common divisor of the nu-
merators is s; i.e., the zero polynomial ofH(s) is zH(s) = s. Thus, there is only
one zero of H(s) located at 0. Alternatively, note that the Smith–McMillan
form is

SMH(s) =

⎡
⎣

1/[s2(s+ 1)] 0
0 s/1
0 0

⎤
⎦ .
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7.4.4 Relations Between Poles, Zeros, and Eigenvalues of A

Consider the system ẋ = Ax + Bu, y = Cx + Du and its transfer function
matrix H(s) = C(sI − A)−1B + D. Summarizing the above discussion, the
following relations can be shown to be true.

1. We have the set relationship

{zeros of the system} = {zeros of H(s)}
∪ {input-decoupling zeros} ∪ {output-decoupling zeros}
− {input–output decoupling zeros}. (7.19)

Note that the invariant zeros of the system contain all the zeros of H(s)
(transmission zeros), but not all the decoupling zeros (see Example 7.15).
When P (s) is square and nonsingular, the zeros of the system are exactly
the invariant zeros of the system. Also, in the case when {A,B,C,D} is
controllable and observable, the zeros of the system, the invariant zeros,
and the transmission zeros [zeros of H(s)] all coincide.

2. We have the set relationship

{eigenvalues of A (or poles of the system)} = {poles of H(s)}
∪ {uncontrollable eigenvalues of A} ∪ {unobservable eigenvalues of A}
− {both uncontrollable and unobservable eigenvalues of A}. (7.20)

3. We have the set relationships

{input-decoupling zeros} = {uncontrollable eigenvalues of A },
{output-decoupling zeros} = {unobservable eigenvalue of A},

and

{input–output decoupling zeros} =
{eigenvalues of A that are both uncontrollable and unobservable}.

(7.21)

4. When the system {A,B,C,D} is controllable and observable, then

{zeros of the system} = {zeros ofH(s)}
and {eigenvalues of A (or poles of the system)} = {poles of H(s)}.

(7.22)

Note that the eigenvalues of A (the poles of the system) can be defined as
the roots of the invariant factors of sI −A in P (s) given in (7.15).
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Example 7.15. Consider the system {A,B,C} of Example 7.8. Let

P (s) =
[
sI −A B
−C D

]
=

⎡
⎢⎢⎣

s 1 −1 1 0
−1 s+ 2 −1 1 1

0 −1 s+ 1 1 2
0 −1 0 0 0

⎤
⎥⎥⎦ .

There are two fourth-order minors that include all columns of sI − A
obtained by taking columns 1, 2, 3, 4 and columns 1, 2, 3, 5 of P (s); they
are (s + 1)(s + 2) and (s + 1)(s + 2). The zero polynomial of the system is
zP = (s+1)(s+2), and the zeros of the system are {−1,−2}. To determine the
input-decoupling zeros, consider all the third-order minors of [sI−A,B]. The
greatest common divisor is s + 2, which implies that the input-decoupling

zeros are {−2}. Similarly, consider
[
sI −A
−C

]
and show that s + 1 is the

greatest common divisor of all the third-order minors and that the output-
decoupling zeros are {−1}. The transfer function for this example was found in
Example 7.8 to be H(s) = [1/s, 1/s]. The zero polynomial of H(s) is zH(s) =
1, and there are no zeros of H(s). Notice that there are no input–output
decoupling zeros. It is now clear that relation (7.19) holds.

The controllable (resp., uncontrollable) and the observable (resp., unob-
servable) eigenvalues of A (poles of the system) have been found in Exam-
ple 6.10. Compare these results to show that (7.21) holds. The poles of H(s)
are {0}. Verify that (7.20) holds.

One could work with the Smith form of the matrices of interest and
the Smith–McMillan form of H(s). In particular, it can be shown that the

Smith form of P (s) is

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 (s+ 2) 0

⎤
⎥⎥⎦ , of [sI − A,B] is

⎡
⎣

1 0 0 0 0
0 1 0 0 0
0 0 s+ 2 0 0

⎤
⎦ ,

of
[
sI −A
−C

]
is

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 s+ 1
0 0 0

⎤
⎥⎥⎦ , and of [sI −A] is

⎡
⎣

1 0 0
0 1 0
0 0 s(s+ 1)(s+ 2)

⎤
⎦ . Also,

it can be shown that the Smith–McMillan form of H(s) is

SMH(s) = [1/s, 0].

It is straightforward to verify the above results. Note that in the present case
the invariant zero polynomial is zIP (s) = s+ 2 and there is only one invariant
zero at −2.

Example 7.16. Consider the circuit of Example 7.9 and of Example 7.2 and
the system matrix P (s) for the case when R1R2C = L given by
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P (s) =
[
sI −A B
−C D

]
=

⎡
⎣
s+R2/L 0 R2/L

0 s+R2/L 1/L
1/R1 −1 1/R1

⎤
⎦ .

(i) First, let R1 �= R2. To determine the zeros of the system, consider |P (s)| =
(1/R1)(s+R1/L)(s+R2/L), which implies that the zeros of the system are
{−R1/L,−R2/L}. Consider now all second-order (nonzero) minors of [sI−
A,B], namely, (s+R2/L)2, (1/L)(s+R2/L) and −(R2/L)(s+R2/L), from
which we see that {−R2/L} is the input-decoupling zero. Similarly, we also
see that {−R2/L} is the output-decoupling zero. Therefore, {−R2/L}
is the input–output decoupling zero. Compare this with the results in
Example 7.9 to verify (7.22).

(ii) When R1 = R2 = R, then |P (s)| = (1/R)(s+ R/L)2, which implies that
the zeros of the system are at {−R/L,−R/L}. Proceeding as in (i), it can
readily be shown that {−R/L} is the input-decoupling zero and {−R/L}
is the output-decoupling zero. To determine which are the input–output
decoupling zeros, one needs additional information to the zero location.
This information can be provided by the left and right eigenvectors of the
two zeros at −R/L to determine that there is no input–output decoupling
zero in this case (see Example 7.2).

In both cases (i) and (ii), H(s) has been derived in Example 7.2. Verify
relation (7.19).

Finally, note that there are characteristic vectors or zero directions, as-
sociated with each invariant and decoupling zero of the system {A,B,C,D},
just as there are characteristic vectors or eigenvectors, associated with each
eigenvalue of A (pole of the system) (see [1, p. 306, Section 3.5]). For pole-zero
cancellations to take place in the case of multi-input or output systems when
the transfer function matrix is formed, not only the pole, zero locations must
be the same but also their characteristic directions must be aligned.

7.5 Polynomial Matrix and Matrix Fractional
Descriptions of Systems

In this section, representations of linear time-invariant systems based on poly-
nomial matrices, called Polynomial Matrix Description (PMD) [or Differential
(Difference) Operator Representation (DOR)] are introduced. Such represen-
tations arise naturally when differential (or difference) equations are used to
describe the behavior of systems, and the differential (or difference) operator
is introduced to represent the operation of differentiation (or of time-shift).
Polynomial matrices in place of polynomials are involved since this approach is
typically used to describe multi-input, multi-output systems. Note that state-
space system descriptions only involve first-order differential (or difference)
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equations, and as such, PMDs include the state-space descriptions as special
cases.

A rational function matrix can be written as a ratio or fraction of two poly-
nomial matrices or of two rational matrices. If the transfer function matrix of
a system is expressed as a fraction of two polynomial or rational matrices, this
leads to a Matrix Fraction(al) Description (MFD) of the system. The MFDs
that involve polynomial matrices, called polynomial MFDs, can be viewed as
representations of internal realizations of the transfer function matrix; that
is, they can be viewed as system PMDs of special form. These polynomial
fractional descriptions (PMFDs) help establish the relationship between inter-
nal and external system representations in a clear and transparent manner.
This can be used to advantage, for example, in the study of feedback con-
trol problems, leading to clearer understanding of the phenomena that occur
when systems are interconnected in feedback configurations. The MFDs that
involve ratios of rational matrices, in particular ratios of proper and stable
rational matrices, offer convenient characterizations of transfer functions in
feedback control problems.

MFDs that involve ratios of polynomial matrices and ratios of proper and
stable rational matrices are essential in parameterizing all stabilizing feedback
controllers. Appropriate selection of the parameters guarantees that a closed-
loop system is not only stable, but it will also satisfy additional control criteria.
This is precisely the approach taken in optimal control methods, such as H∞-
optimal control. Parameterizations of all stabilizing feedback controllers are
studied in Chapter 10. We note that extensions of MFDs are also useful in
linear, time-varying systems and in nonlinear systems. These extensions are
not addressed here.

In addition to the importance of MFDs in characterizing all stabilizing
controllers, and in H∞-optimal control, PMFDs and PMDs have been used
in other control design methodologies as well (e.g., self-tuning control). The
use of PMFDs in feedback control leads in a natural way to the polynomial
Diophantine matrix equation, which is central in control design when PMDs
are used and which directly leads to the characterization of all stabilizing
controllers. Finally, PMDs are generalizations of state-space descriptions, and
the use of PMDs to characterize the behavior of systems offers additional
insight and flexibility. Detailed treatment of all these issues may be found in [1,
Chapter 7]. The development of the material in this section is concerned only
with continuous-time systems; however, completely analogous results are valid
for discrete-time systems and can easily be obtained by obvious modifications.
In this section we emphasize PMFD and discuss controllability, observability,
and stability.
An Important Comment on Notation. We will be dealing with matrices with
entries polynomials in s or q, denoted by, e.g., D(s) or D(q), where s is the
Laplace variable and q � d/dt, the differential operator. For simplicity of
notation we frequently omit the argument s or q and we write D to denote
the polynomial matrix on hand. When ambiguity may arise, or when it is
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important to stress the fact that the matrix in question is a polynomial matrix,
the argument will be included.

7.5.1 A Brief Introduction to Polynomial and Fractional
Descriptions

Below, the Polynomial Matrix Description (PMD) and the Matrix Fractional
Description (MFD) of a linear, time-invariant system are introduced via a
simple illustrating example.

Example 7.17. In the ordinary differential equation representation of a sys-
tem given by

ÿ1(t) + y1(t) + y2(t) = u̇2(t) + u1(t),
ẏ1(t) + ẏ2(t) + 2y2(t) = u̇2(t), (7.23)

y1(t), y2(t) and u1(t), u2(t) denote, respectively, outputs and inputs of interest.
We assume that appropriate initial conditions for the ui(t), yi(t) and their
derivatives at t = 0 are given.

By changing variables, one can express (7.23) by an equivalent set of first-
order ordinary differential equations, in the sense that this set of equations
will generate all solutions of (7.23), using appropriate initial conditions and
the same inputs. To this end, let

x1 = ẏ1 − u2, x2 = y1, x3 = y1 + y2 − u2. (7.24)

Then (7.23) can be written as

ẋ = Ax+Bu, y = Cx+Du, (7.25)

where x(t) =

⎡
⎣
x1(t)
x2(t)
x3(t)

⎤
⎦, u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, and

A =

⎡
⎣

0 0 −1
1 0 0
0 2 −2

⎤
⎦ , B =

⎡
⎣

1 −1
0 1
0 −2

⎤
⎦ , C =

[
0 1 0
0 −1 1

]
, D =

[
0 0
0 1

]

with initial conditions x(0) calculated by using (7.24).
More directly, however, system (7.23) can be represented by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.26)

where z(t) =
[
z1(t)
z2(t)

]
, u(t) =

[
u1(t)
u2(t)

]
, y(t) =

[
y1(t)
y2(t)

]
, and
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P (q) =
[
q2 + 1 1
q q + 2

]
, Q(q) =

[
1 q
0 q

]
, R(q) =

[
1 0
0 1

]
, W (q) =

[
0 0
0 0

]

with q � d
dt , the differential operator. The variables z1(t), z2(t) are called

partial state variables, z(t) denotes the partial state of the system description
(7.26), and u(t) and y(t) denote the input and output vectors, respectively.

Polynomial Matrix Descriptions (PMDs)

Representation (7.26), also denoted as {P (q), Q(q), R(q),W (q)}, is an example
of a Polynomial Matrix Description (PMD) of a system. Note that the state-
space description (7.25) is a special case of (7.26). To see this, write (7.25)
as

(qI −A)x(t) = Bu(t), y(t) = Cx(t) +Du(t). (7.27)

Clearly, description {qI −A,B,C,D} is a special case of the general Polyno-
mial Matrix Description {P (q), Q(q), R(q),W (q)} with

P (q) = qI −A,Q(q) = B,R(q) = C,W (q) = D. (7.28)

The above example points to the fact that a PMD of a system can be de-
rived in a natural way from differential (or difference) equations that involve
variables that are directly connected to physical quantities. By this approach,
it is frequently possible to study the behavior of physical variables directly
without having to transform the system to a state-space description. The
latter may involve (state) variables that are quite removed from the physi-
cal phenomena they represent, thus losing physical insight when studying a
given problem. The price to pay for this additional insight is that one has to
deal with differential (or difference) equations of order greater than one. This
typically adds computational burdens. We note that certain special forms of
PMDs, namely the polynomial Matrix Fractional Descriptions, are easier to
deal with than general forms. However, a change of variables may again be
necessary to obtain such forms.

Consider a general PMD of a system given by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.29)

with P (q) ∈ R[q]l×l, Q(q) ∈ R[q]l×m, and R(q) ∈ R[q]p×l,W (q) ∈ R[q]p×m,
where R[q]l×l denotes the set of l× l matrices with entries that are real poly-
nomials in q. The transfer function matrix H(s) of (7.29) can be determined
by taking the Laplace transform of both sides of the equation assuming zero
initial conditions (z(0) = ż(0) = · · · = 0, u(0) = u̇(0) = · · · = 0). Then

H(s) = R(s)P−1(s)Q(s) +W (s). (7.30)

For the special case of state-space representations, H(s) in (7.30) assumes the
well-known expression H(s) = C(sI −A)−1B +D. For the study of the rela-
tionship between external and internal descriptions, (7.30) is not particularly



296 7 Internal and External Descriptions: Relations and Properties

convenient. There are, however, special cases of (7.30) that are very conve-
nient to use in this regard. In particular, it can be shown [1, Section 7.3] that
if the system is controllable, then there exists a representation equivalent to
(7.29), which is of the form

Dc(q)zc(t) = u(t), y(t) = Nc(q)zc(t), (7.31)

where Dc(q) ∈ R[q]m×m and Nc(q) ∈ R[q]p×m. Representation (7.31) is ob-
tained by letting Q(q) = Im and W (q) = 0 in (7.29) and using D and N
instead of P and R. Equation (7.30) now becomes

H(s) = Nc(s)Dc(s)−1, (7.32)

whereNc(s) andDc(s) represent the matrix numerator and matrix demonima-
tor of the transfer function, respectively. Similarly, if the system is observable,
there exists a representation equivalent to (7.29), which is of the form

Do(q)zo(t) = No(q)u(t), y(t) = zo(t), (7.33)

where Do(q) ∈ R[q]p×p and No(q) ∈ R[q]p×m. Representation (7.33) is ob-
tained by letting in (7.29) R(q) = Ip and W (q) = 0 with P (q) = Do(q) and
Q(q) = No(q). Here,

H(s) = D−1
o (s)No(s). (7.34)

Note that (7.32) and (7.34) are generalizations to the MIMO case of the SISO
system expression H(s) = n(s)/d(s). As H(s) = n(s)/d(s) can be derived di-
rectly from the differential equation d(q)y(t) = n(q)u(t), by taking the Laplace
transform and assuming that the initial conditions are zero, (7.34) can be de-
rived directly from (7.33).

Returning now to (7.25) in Example 7.17, notice that the system is observ-
able (state observable from the output y). Therefore, the system in this case
can be represented by a description of the form {Do, No, I2, 0}. In fact, (7.26)
is such a description, where Do and No are equal to P and Q, respectively, i.e.,

Do(q) =
[
q2 + 1 1
q q + 2

]
, and No(q) =

[
1 q
0 q

]
. The transfer function matrix is

given by

H(s) = C(sI −A)−1B +D =
[

0 1 0
0 −1 1

]⎡
⎣

s 0 1
−1 s 0

0 −2 s+ 2

⎤
⎦
−1 ⎡
⎣

1 −1
0 1
0 −2

⎤
⎦+

[
0 0
0 1

]

= D−1
o (s)No(s) =

[
s2 + 1, 1
s, s+ 2

]−1 [ 1 s
0 s

]

= 1
s3+2s2+2

[
s+ 2 −1
−s s2 + 1

] [
1 s
0 s

]
= 1

s3+2s2+2

[
s+ 2 s(s+ 1)
−s s(s2 − s+ 1)

]
.
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Matrix Fractional Descriptions (MFDs) of System Transfer Matrices

A given p×m proper, rational transfer function matrix H(s) of a system can
be represented as

H(s) = NR(s)D−1
R (s) = D−1

L (s)NL(s), (7.35)

where NR(s) ∈ R[s]p×m, DR(s) ∈ R[s]m×m and NL(s) ∈ R[s]p×m, DL(s) ∈
R[s]p×p. The pairs {NR(s), DR(s)} and {DL(s), NL(s)} are called Polynomial
Matrix Fractional Descriptions (PMFDs) of the system transfer matrix with
{NR(s), DR(s)} termed a right Fractional Description and {DL(s), NL(s)} a
left Fractional Description. Notice that in view of (7.32), the right Polynomial
Matrix Fractional Description (rPMFD) corresponds to the controllable Poly-
nomial Matrix Description (PMD) given in (7.31). That is, {DR, Im, NR, 0},
or

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t), (7.36)

is a controllable PMD of the system with transfer functionH(s). The subscript
c was used in (7.31) and (7.32) to emphasize the fact that Nc, Dc originated
from an internal description that was controllable. In (7.35) and (7.36), the
subscript R is used to emphasize that {NR, DR} is a right fraction represen-
tation of the external description H(s).

Similarly, in view of (7.34), the left Polynomial Matrix Fractional Descrip-
tion (lPMFD) corresponds to the observable Polynomial Matrix Description
(PMD) given in (7.33). That is, {DL, NL, Ip, 0}, or

DL(q)zL(t) = NL(q)u(t), y(t) = zL(t), (7.37)

is an observable PMD of the system with transfer function H(s). Comments
analogous to the ones made above concerning controllable and right fractional
descriptions (subscripts c and R) can also be made here concerning the sub-
scripts o and L.

An MFD of a transfer function may not consist necessarily of ratios of
polynomial matrices. In particular, given a p × m proper transfer function
matrix H(s), one can write

H(s) = N̂R(s)D̂−1
R (s) = D̂−1

L (s)N̂L(s), (7.38)

where N̂R, D̂R, D̂L, N̂L are proper and stable rational matrices. To illustrate,
in the example considered above, H(s) can be written as

H(s) =
1

s3 + 2s2 + 2

[
s+ 2 s(s+ 1)
−s s(s2 − s+ 1

]

=

[[
(s+ 1)2 0

0 s+ 2

]−1 [
s2 + 1 1
s s+ 2

]]−1 [[
(s+ 1)2 0

0 s+ 2

]−1 [1 s
0 s

]]

=

[
s2+1

(s+1)2
1

(s+1)2
s
s+2 1

]−1 [ 1
(s+1)2

s
(s+1)2

0 s
s+2

]
= D̂−1

L (s)N̂L(s).

Note that D̂L(s) and N̂L(s) are proper and stable rational matrices.
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Such representations of proper transfer functions offer certain advantages
when designing feedback control systems. They are discussed further in [1,
Section 7.4D].

7.5.2 Coprimeness and Common Divisors

Coprimeness of polynomial matrices is one of the most important concepts in
the polynomial matrix representation of systems since it is directly related to
controllability and observability.

A polynomial g(s) is a common divisor (cd) of polynomials p1(s), p2(s) if
and only if there exist polynomials p̃1(s), p̃2(s) such that

p1(s) = p̃1(s)g(s), p2(s) = p̃2(s)g(s). (7.39)

The highest degree cd of p1(s), p2(s), g∗(s), is a greatest common divisor
(gcd) of p1(s), p2(s). It is unique within multiplication by a nonzero real num-
ber. Alternatively, g∗(s) is a gcd of p1(s), p2(s) if and only if any cd g(s) of
p1(s), p2(s) is a divisor of g∗(s) as well; that is,

g∗(s) = m(s)g(s) (7.40)

with m(s) a polynomial. The polynomials p1(s), p2(s) are coprime (cp) if and
only if a gcd g∗(s) is a nonzero real.

The above can be extended to matrices. In this case, both right divisors
and left divisors must be defined, since in general, two polynomial matrices do
not commute. Note that one may talk about right or left divisors of polynomial
matrices only when the matrices have the same number of columns or rows,
respectively.

An m × m matrix GR(s) is a common right divisor (crd) of the p1 × m
polynomial matrix P1(s) and the p2×mmatrix P2(s), if there exist polynomial
matrices P1R(s), P2R(s) so that

P1(s) = P1R(s)GR(s), P2(s) = P2R(s)GR(s). (7.41)

Similarly, a p× p polynomial matrix GL(s) is a common left divisor (cld) of
the p × m1 polynomial matrix P̂1(s) and the p × m2 matrix P̂2(s), if there
exist polynomial matrices P̂1L(s), P̂2L(s) so that

P̂1(s) = GL(s)P̂1L(s), P̂2(s) = GL(s)P̂2L(s). (7.42)

Also G∗
R(s) is a greatest common right divisor (gcrd) of P1(s) and P2(s) if

and only if any crd GR(s) is an rd of G∗
R(s). Similarly, G∗

L(s) is a greatest
common left divisor (gcld) of P̂1(s) and P̂2(s) if and only if any cld GL(s) is
a ld of G∗

L(s). That is,

G∗
R(s) = M(s)GR(s), G∗

L(s) = GL(s)N(s), (7.43)
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with M(s) and N(s) polynomial matrices and GR(s) and GL(s) any crd and
cld of P1(s), P2(s), respectively.

Alternatively, it can be shown that any crd G∗
R(s) of P1(s) and P2(s) [or a

cld G∗
L(s) of P̂1(s) and P̂2(s)] with determinant of the highest degree possible

is a gcrd (gcld) of the matrices. It is unique within a pre-multiplication (post-
multiplication) by a unimodular matrix. Here it is assumed that GR(s) is

nonsingular. Note that if rank
[
P1(s)
P2(s)

]
= m (a (p1+p2)×mmatrix), which is a

typical case in polynomial matrix system descriptions, then rankGR(s) = m;
that is, GR(s) is nonsingular.

The polynomial matrices P1(s) and P2(s) are right coprime (rc) if and
only if a gcrd G∗

R(s) is a unimodular matrix. Similarly, P̂1(s) and P̂2(s) are
left coprime (lc) if and only if a gcld G∗

2(s) is a unimodular matrix.

Example 7.18. Let P1 =
[
s(s+2) 0

0 (s+1)2

]
, P2 =

[
(s+1)(s+2) s+1

0 s(s+1)

]
. Two dis-

tinct common right divisors are GR1 =
[

1 0
0 s+ 1

]
and GR2 =

[
s+ 2 0

0 1

]

since
[
P1

P2

]
=

⎡
⎢⎢⎣

s(s+ 2) 0
0 s+ 1

(s+ 1)(s+ 2) 1
0 s

⎤
⎥⎥⎦GR1 =

⎡
⎢⎢⎣

s 0
0 (s+ 1)2

s+ 2 s+ 1
0 s(s+ 1)

⎤
⎥⎥⎦GR2 . A great-

est common right divisor (gcrd) is G∗
R =

[
s+ 2 0

0 s+ 1

]
=
[
s+ 2 0

0 1

]
GR1 =

[
1 0
0 s+ 1

]
GR2 . Now,

[
P1

P2

]
G∗−1
R =

[
P ∗

1R

P ∗
2R

]
=

⎡
⎢⎢⎣

s 0
0 s+ 1

s+ 1 1
0 s

⎤
⎥⎥⎦ where P ∗

1R and

P ∗
2R are right coprime (rc). Note that a greatest common left divisor (gcld) of

P1 and P2 is G∗
L =

[
1 0
0 s+ 1

]
. Both G∗

R and G∗
L can be determined using an

algorithm to derive the Hermite form of
[
P1

P2

]
; see [1, p. 532].

Remarks

It can be shown that two square p× p nonsingular polynomial matrices with
determinants that are prime polynomials are both right and left coprime. The
converse of this is not true; that is, two right coprime polynomial matrices
do not necessarily have prime determinant polynomials. A case in point is
Example 7.18, where P ∗

1R and P ∗
2R are right coprime; however, detP ∗

1R =
detP ∗

2R = s(s+ 1).
Left and right coprimeness of two polynomial matrices (provided that the

matrices are compatible) are quite distinct properties. For example, two ma-
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trices can be left coprime but not right coprime, and vice versa (refer to
Example 7.19).

Example 7.19. P1 =
[
s(s+ 2) 0

0 s+ 1

]
and P2 =

[
(s+ 1)(s+ 2) 1

0 s

]
are left

coprime but not right coprime since a gcrd is G∗
R =

[
s+ 2 0

0 1

]
with detG∗

R =

(s+ 2).

Finally, we note that all of the above definitions apply also to more than
two polynomial matrices. To see this, replace in all definitions P1, P2 by
P1, P2, . . . , Pk. This is not surprising in view of the fact that the p1×m matrix
P1(s) and the p2 × m matrix P2(s) consist of p1 and p2 rows, respectively,
each of which can be viewed as a 1 ×m polynomial matrix; that is, instead
of, e.g., the coprimeness of P1 and P2, one could speak of the coprimeness of
the (p1 + p2) rows of P1 and P2.

How to Determine a Greatest Common Right Divisor

Lemma 7.20. Let P1(s) ∈ R[s]p1×m and P2(s) ∈ R[s]p2×m with p1 +p2 ≥ m.
Let the unimodular matrix U(s) be such that

U(s)
[
P1(s)
P2(s)

]
=
[
G∗
R(s)
0

]
. (7.44)

Then G∗
R(s) is a greatest common right divisor (gcrd) of P1(s), P2(s).

Proof. Let

U =
[
X̄ Ȳ

−P̃2 P̃1

]
, (7.45)

with X̄ ∈ R[s]m×p1 , Ȳ ∈ R[s]m×p2 , P̃2 ∈ R[s]q×p1 , and P̃1 ∈ R[s]q×p2 , where
q � (p1 + p2) −m. Note that X̄, Ȳ and P̃2, P̃1 are left coprime (lc) pairs. If
they were not, then detU �= α, a nonzero real number. Similarly, X̄, P̃2 and
Ȳ , P̃1 are right coprime (rc) pairs. Let

U−1 =

[
P̄1 −Ỹ
P̄2 X̃

]
, (7.46)

where P̄1 ∈ R[s]p1×m, P̄2 ∈ R[s]p2×m are rc and X̃ ∈ R[s]p2×q, Ỹ ∈ R[s]p1×q

are rc. Equation (7.44) implies that
[
P1

P2

]
= U−1

[
G∗
R

0

]
=
[
P̄1

P̄2

]
G∗
R; (7.47)

i.e., G∗
R is a common right divisor of P1, P2. Equation (7.44) implies also that
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X̄P1 + Ȳ P2 = G∗
R. (7.48)

This relationship shows that any crd GR of P1, P2 will also be a right divisor
of G∗

R. This can be seen directly by expressing (7.48) as MGR = G∗
R, where

M is a polynomial matrix. Thus, G∗
R is a crd of P1, P2 with the property

that any crd GR of P1, P2 is a rd of G∗
R. This implies that G∗

R is a gcrd of
P1, P2. �

Example 7.21. Let P1 =
[
s(s+ 2) 0

0 (s+ 1)2

]
, P2 =

[
(s+ 1)(s+ 2) s+ 1

0 s(s+ 1)

]
.

Then

U

[
P1

P2

]
=
[
X̄ Ȳ

−P̃2 P̃1

] [
P1

P2

]
=

⎡
⎢⎢⎣

−(s+ 2) −1 s+ 1 0
s+ 1 1 −s 0

−(s+ 1)2 −s s(s+ 1) 0
−(s+ 1) 0 s −1

⎤
⎥⎥⎦
[
P1

P2

]

=

⎡
⎢⎢⎣
s+ 2 0

0 s+ 1
0 0
0 0

⎤
⎥⎥⎦ =

[
G∗
R

0

]
.

In view of Lemma 7.20, GR∗ =
[
s+ 2 0

0 s+ 1

]
is a gcrd (see also Exam-

ple 7.18).

Note that in order to derive (7.44) and thus determine a gcrd G∗
R of P1

and P2, one could use the algorithm to obtain the Hermite form [1, p. 532].

Finally, note also that if the Smith form of
[
P1

P2

]
is known, i.e., UL

[
P1

P2

]
UR =

SP =
[

diag[εi] 0
0 0

]
, then ( diag[εi], 0)U−1

R is a gcrd of P1 and P2 in view of

Lemma 7.20. When rank
[
P1

P2

]
= m, which is the case of interest in systems,

then a gcrd of P1 and P2 is diag[εi]U−1
R .

Criteria for Coprimeness

There are several ways of testing the coprimeness of two polynomial matrices
as shown in the following Theorem.

Theorem 7.22. Let P1 ∈ R[s]p1×m and P2 ∈ R[s]p2×m with p1 + p2 ≥ m.
The following statements are equivalent:

(a) P1 and P2 are right coprime.
(b) A gcrd of P1 and P2 is unimodular.
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(c) There exist polynomial matrices X ∈ R[s]m×p1 and Y ∈ R[s]m×p2 such
that

XP1 + Y P2 = Im. (7.49)

(d) The Smith form of
[
P1

P2

]
is
[
I
0

]
.

(e) rank
[
P1(si)
P2(si)

]
= m for any complex number si.

(f)
[
P1

P2

]
constitutes m columns of a unimodular matrix.

Proof. See [1, p. 538, Section 7.2D, Theorem 2.4]. �

Example 7.23. (a) The polynomial matrices P1 =
[
s 0
0 s+ 1

]
, P2 =

[
s+ 1 1

0 s

]

are right coprime in view of the following relations. To use condition (b)

of the above theorem, let U
[
P1

P2

]
=

⎡
⎢⎢⎣

−(s+ 2) −1 s+ 1 0
s+ 1 1 −s 0

−(s+ 1)2 −s s(s+ 1) 0
−(s+ 1) 0 s −1

⎤
⎥⎥⎦
[
P1

P2

]
=

⎡
⎢⎢⎣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ =

[
G∗
R

0

]
. Then G∗

R = I2, which is unimodular. Applying condition (c)

XP1 + Y P2 =
[
−(s+ 2) −1
s+ 1 1

]
P1 +

[
s+ 1 0
−s 0

]
P2 = I2.

To use (d), note that the invariant polynomials of
[
P1

P2

]
are ε1 = ε2 = 1;

and the Smith form is then
[
I2
0

]
. To use condition (e), note that the only

complex values si that may reduce the rank of
[
P1(si)
P2(si)

]
are those for which

detP1(si) or detP2(si) = 0; i.e., s1 = 0 and s2 = −1. For these values we have

rank
[
P1(s1)
P2(s1)

]
= rank

⎡
⎢⎢⎣

0 0
0 1
1 1
0 0

⎤
⎥⎥⎦ = 2 and rank

[
P1(s2)
P2(s2)

]
= rank

⎡
⎢⎢⎣
−1 0
0 0
0 1
0 −1

⎤
⎥⎥⎦ = 2;

i.e., both are of full rank.

The following Theorem 7.24 is the corresponding to Theorem 7.22 result
for (left coprime) proper and stable matrices. Note that Û proper and stable
is a unimodular matrix if Û−1 is also a proper and stable matrix.

Theorem 7.24. Let P̂1 ∈ R[s]p×m1 and P̂2 ∈ R[s]p×m2 with m1 + m2 ≥ p.
The following statements are equivalent:
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(a) P̂1 and P̂2 are left coprime.
(b) A gcld of P̂1 and P̂2 is unimodular.
(c) There exist polynomial matrices X̂ ∈ R[s]m1×p and Ŷ ∈ R[s]m2×p such

that
P̂1X̂ + P̂2Ŷ = Ip. (7.50)

(d) The Smith form of [P̂1, P̂2] is [I, 0].
(e) rank[P̂1(si), P̂2(si)] = p for any complex number si.
(f) [P̂1, P̂2] are p rows of a unimodular matrix.

Proof. The proof is completely analogous to the proof of Theorem 7.22 and
is omitted. �

7.5.3 Controllability, Observability, and Stability

Consider now the Polynomial Matrix Description

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.51)

where P (q) ∈ R[q]l×l, Q(q) ∈ R[q]l×m, R(q) ∈ R[q]p×l, and W (q) ∈ R[q]p×m.
Assume that the PMD given in (7.51) is equivalent to some state-space

representation

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) +Du(t), (7.52)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m [1, p. 553, Sec-
tion 7.3A].

Controllability

Definition 7.25. The representation {P,Q,R,W} given in (7.51) is said to
be controllable if its equivalent state-space representation {A,B,C,D} given
in (7.52) is state controllable.

Theorem 7.26. The following statements are equivalent:

(a) {P,Q,R,W} is controllable.
(b) The Smith form of [P,Q] is [I, 0].
(c) rank[P (si), Q(si)] = l for any complex number si.
(d) P,Q are left coprime.

Proof. See [1, p. 561, Theorem 3.4]. �

The right Polynomial Matrix Fractional Description, {DR, Im, NR}, is con-
trollable since DR and I are left coprime.
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Observability

Observability can be introduced in a completely analogous manner to control-
lability. This leads to the following concept and result.

Definition 7.27. The representation {P,Q,R,W} given in (7.51) is said to
be observable if its equivalent state-space representation {A,B,C,D} given in
(7.52) is state observable. �

Theorem 7.28. The following statements are equivalent:

(a) {P,Q,R,W} is observable.

(b) The Smith form of
[
P
R

]
is
[
I
0

]
.

(c) rank
[
P (si)
R(si)

]
= l for any complex number si.

(d) P,R are right coprime.

Proof. It is analogous to the proof of Theorem 7.26. �

The left Polynomial Matrix Fractional Description (PMFD), {DL, NL, Ip},
is observable since DL and Ip are right coprime.

Stability

Definition 7.29. The representation {P,Q,R,W} given in (7.51) is said
to be asymptotically stable if for its equivalent state-space representation
{A,B,C,D} given in (7.52) the equilibrium x = 0 of the free system ẋ = Ax
is asymptotically stable.

Theorem 7.30. The representation {P,Q,R,W} is asymptotically stable if
and only if Reλi < 0, i = 1, . . . , n, where λi, i = 1, . . . , n are the roots of
detP (s); the λi are the eigenvalues or poles of the system.

Proof. See [1, p. 563, Theorem 3.6]. �

7.5.4 Poles and Zeros

Poles and zeros can be defined in a completely analogous way for system
(7.51) as was done in Section 7.4 for state-space representations.

It is straightforward to show that

{poles of H(s) } ⊂ {roots of detP (s) }. (7.53)

The roots of detP are the eigenvalues or the poles of the system {P,Q,R,W}
and are equal to the eigenvalues of A in any equivalent state-space represen-
tation {A,B,C,D}. Relation (7.53) becomes an equality when the system is
controllable and observable, since in this case the poles of the transfer function
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matrix H are exactly those eigenvalues of the system that are both control-
lable and observable.

Consider the system matrix or Rosenbrock Matrix of the representation
{P,Q,R,W},

S(s) =
[

P (s) Q(s)
−R(s) W (s)

]
. (7.54)

The invariant zeros of the system are the roots of the invariant zero
polynomial, which is the product of all the invariant factors of S(s). The
input-decoupling, output-decoupling, and the input–output decoupling zeros of
{P,Q,R,W} can be defined in a manner completely analogous to the state-
space case. For example, the roots of the product of all invariant factors
of [P (s), Q(s)] are the input-decoupling zeros of the system; they are also
the uncontrollable eigenvalues of the system. Note that the input-decoupling
zeros are the roots of detGL(s), where GL(s) is a gcld of all the columns
of [P (s), Q(s)] = GL(s)[P̄ (s), Q̄(s)]. Similar results hold for the output-
decoupling zeros.

The zeros of H(s), also called the transmission zeros of the system, are
defined as the roots of the zero polynomial of H(s),

zH(s) = ε1(s) . . . εr(s), (7.55)

where the εi are the numerator polynomials in the Smith–McMillan form
of H(s). When {P,Q,R,W} is controllable and observable, the zeros of the
system, the invariant zeros, and the transmission zeros coincide.

Consider the representation DRzR = u, y = NRzR with DR ∈ R[s]m×m

and NR ∈ R[s]p×m and notice that in this case the Rosenbrock matrix (7.54)
can be reduced via elementary column operations to the form

[
DR I

−NR 0

] [
I 0

−DR I

] [
0 I
I 0

]
=
[

0 I
−NR 0

] [
0 I
I 0

]
=
[
I 0
0 −NR

]
.

In view of the fact that the invariant factors of S do not change under elemen-
tary matrix operations, the nonunity invariant factors of S are the nonunity
invariant factors of NR. Therefore, the invariant zero polynomial of the system
equals the product of all invariant factors of NR and its roots are the invariant
zeros of the system. Note that when rankNR = p ≤ m, the invariant zeros of
the system are the roots of detGL, where GL is the gcld of all the columns
of NR; i.e., NR = GLN̄R. When NR, DR are right coprime, the system is
controllable and observable. In this case it can be shown that the zeros of
H (= NRD

−1
R ), also called the transmission zeros of the system, are equal

to the invariant zeros (and to the system zeros of {DR, I,NR}) and can be
determined from NR. In fact, the zero polynomial of the system, zs(s), equals
zH(s), the zero polynomial of H , which equals ε1(s) . . . εr(s), the product of
the invariant factor of NR; i.e.,

zs(s) = zH(s) = ε1(s) . . . εr(s). (7.56)
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The pole polynomial of H(s) is

pH(s) = k detDR(s), (7.57)

where k ∈ R.
When H(s) is square and nonsingular and H(s) = NR(s)D−1

R (s) =
D−1
L (s)NL(s) rc and lc, respectively, the poles of H(s) are the roots of

detDR(s) or of detDL(s) and the zeros of H(s) are the roots of NR(s)
or of NL(s). An important well-known special case is the case of a scalar
H(s) = n(s)/d(s), where the poles of H(s) are the roots of d(s) and the zeros
of H(s) are the roots of n(s).

7.6 Summary and Highlights

• The transfer function

H(s) = C1(sI −A11)−1B1 +D (7.4)

and the impulse response

H(t, 0) = C1e
A11tB1 +Dδ(t) (7.5)

depend only on the controllable and observable parts of the system,
(A11, B1, C1). Similar results hold for the discrete-time case in (7.6) and
(7.7).

• Since
{eigenvalues of A} ⊃ {poles of H(s)}, (7.9)

internal stability always implies BIBO stability but not necessarily vice
versa. Recall that the system is stable in the sense of Lyapunov (or inter-
nally stable) if and only if all eigenvalues of A have negative real parts; the
system is BIBO stable if and only if all poles of H(s) have negative real
parts. BIBO stability implies internal stability only when the eigenvalues
of A are exactly the poles of H(s), which is the case when the system is
both controllable and observable.

• When H(s) = C(sI −A)−1B+D and (A,B) is controllable and (A,C) is
observable, then

{eigenvalues of A (poles of the system)} = {poles of H(s)}, (7.58)
{zeros of the system} = {zeros of H(s)}. (7.22)

When the system is not controllable and observable

{eigenvalues of A (poles of the system)} =
{poles of H(s)} ∪ {uncontrollable and/or unobservable eigenvalues}.

(7.20)

• If the system {A,B,C,D} is not both controllable and observable, then
the uncontrollable and/or unobservable eigenvalues cancel out when the
transfer functions H(s) = C(sI −A)−1B +D is determined.
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Poles and Zeros

• The Smith–McMillan form of a transfer function matrix H(s) is

SMH(s) =
[
Λ̃(s) 0

0 0

]
, (7.12)

with Λ̃(s) � diag
[
ε1(s)
ψ1(s)

, . . . , εr(s)
ψr(s)

]
are the invariant factors of N(s) in

H(s) = 1
d(s)N(s) and r = rankH(s).

• The characteristic or pole polynomial of H(s) is

pH(s) = ψ1(s) · · ·ψr(s). (7.13)

pH is also the monic least common denominator of all nonzero minors of
H(s). The roots of pH(s) are the poles of H(s).

• The zero polynomial of H(s) is

zH(s) = ε1(s)ε2(s) · · · εr(s). (7.18)

The roots of zH(s) are the zeros of H(s) (or the transmission zeros of the
system). When H(s) = N(s)D(s)−1 a right coprime polynomial factor-
ization, the zeros of H(s) are the invariant zeros of N(s). When N(s) is
square, the zeros are the roots of |N(s)|.

Polynomial Matrix Descriptions

• PMDs are given by

P (q)z(t) = Q(q)u(t), y(t) = R(q)z(t) +W (q)u(t), (7.29)

where q � d/dt the differential operator (qz = ż). PMDs are, in general,
equivalent to state-space representations of the form

ẋ = Ax+Bu, y = Cx+D(q)u,

and so they are more general than the {A,B,C,D} descriptions.
• The transfer function matrix is

H(s) = R(s)P−1(s)Q(s) +W (s). (7.30)

• The system is controllable if and only if (P,Q) are left coprime (lc). It is
observable if and only if (P,R) are right coprime (rc). (See Theorems 7.26
and 7.28.) The system is asymptotically stable if all the eigenvalues of the
system, the roots of |P (q)|, have negative real parts. (See Theorem 7.30.)
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• Polynomial Matrix Fractional Descriptions (PMFDs) are given by

H(s) = NR(s)D−1
R (s) = D−1

L (s)NL(s), (7.35)

where (NR, DR) are rc and (DL, NL) are lc. They correspond to the PMD

DR(q)zR(t) = u(t), y(t) = NR(q)zR(t) (7.36)

and
DL(q)zL(t) = NL(q)u(t), y(t) = zL(t), (7.37)

which are both controllable and observable representations.
• Proper and stable Matrix Fractional Descriptions (MFDs) are given by

H(s) = N̂R(s)D̂R(s)−1 = D̂−1
L (s)N̂L(s), (7.38)

where N̂R, D̂R, D̂L, N̂L are proper and stable matrices with (N̂R, D̂R) rc
and (D̂L, N̂L) lc.

7.7 Notes

The role of controllability and observability in the relation between propertiers
of internal and external descriptions are found in Gilbert [2], Kalman [4], and
Popov [5]. For further information regarding these historical issues, consult
Kailath [3] and the original sources.

Multivariable zeros have an interesting history. For a review, see Schrader
and Sain [7] and the references therein. Refer also to Vardulakis [8]. Polynomial
matrix descriptions were used by Rosenbrock [6] and Wolovich [9]. See [1,
Sections 7.6 and 7.7] for extensive notes and references.
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Exercises

7.1. Consider the system ẋ = Ax+Bu, y = Cx+Du.

(a) Show that only controllable modes appear in eAtB and therefore in the
zero-state response of the state.

(b) Show that only observable modes appear in CeAt and therefore in the
zero-input response of the system.

(c) Show that only modes that are both controllable and observable appear
in CeAtB and therefore in the impulse response and the transfer function
matrix of the system. Consider next the system x(k+1) = Ax(k)+Bu(k),
y(k) = Cx(k) +Du(k).

(d) Show that only controllable modes appear in AkB, only observable modes
in CAk, and only modes that are both controllable and observable appear
in CAkB [that is, in H(z)].

(e) Let A =

⎡
⎣

1 0 0
0 −2 0
0 0 −1

⎤
⎦, B =

⎡
⎣

1
0
1

⎤
⎦, C = [1, 1, 0], and D = 0. Verify the

results obtained in (d).

7.2. In the circuit of Example 7.2, let R1R2C = L and R1 = R2 = R. De-
termine x(t) = [x1(t), x2(t)]T and i(t) for unit step input voltage, v(t), and
initial conditions x(0) = [a, b]T . Comment on your results.

7.3. (a) Consider the state equation ẋ = Ax + Bu, x(0) = x0, where A =⎡
⎣

0 −1 1
1 −2 1
0 1 −1

⎤
⎦ and B =

⎡
⎣

1 0
1 1
1 2

⎤
⎦. Determine x(t) as a function of u(t) and

x0, and verify that the uncontrollable modes do not appear in the zero-
state response but do appear in the zero-input response.

(b) Consider the state equation x(k + 1) = Ax(k) + Bu(k) and x(0) = x0,
where A and B are as in (a). Demonstrate for this case results correspond-
ing to (a).
In (a) and (b), determine x(t) and x(k) for unit step inputs and x(0) =
[1, 1, 1]T .

7.4. (a) Consider the system ẋ = Ax + Bu, y = Cx with x(0) = x0, where

A =
[

0 1
−2 −3

]
, B =

[
0
1

]
, and C = [1, 1]. Determine y(t) as a function of

u(t) and x0, and verify that the unobservable modes do not appear in the
output.

(b) Consider the system x(k+1) = Ax(k)+Bu(k), y(k) = Cx(k) with x(0) =
x0, where A,B, and C are as in (a). Demonstrate for this case results that
correspond to (a).
In (a) and (b), determine and plot y(t) and y(k) for unit step inputs and
x(0) = 0.



310 7 Internal and External Descriptions: Relations and Properties

7.5. Consider the system x(k + 1) = Ax(k) +Bu(k), y(k) = Cx(k), where

A =

⎡
⎣

1 0 0
0 −1/2 0
0 0 −1/2

⎤
⎦ , B =

⎡
⎣

1
0
1

⎤
⎦ , C = [1, 1, 0].

Determine the eigenvalues that are uncontrollable and/or unobservable. De-
termine x(k), y(k) for k ≥ 0, given x(0) and u(k), k ≥ 0, and show that only
controllable eigenvalues (resp., modes) appear in AkB, only observable ones
appear in CAk, and only eigenvalues (resp., modes) that are both controllable
and observable appear in CAkB [in H(z) ].

7.6. Given is the system ẋ =

⎡
⎣
−1 0 0

0 −1 0
0 0 2

⎤
⎦x+

⎡
⎣

1 0
0 1
0 0

⎤
⎦u, y =

[
1 1 0
1 0 0

]
x.

(a) Determine the uncontrollable and the unobservable eigenvalues (if any).
(b) What is the impulse response of this system? What is its transfer function

matrix?
(c) Is the system asymptotically stable?

7.7. Given is the transfer function matrix H(s) =
[
s−1
s 0 s−2

s+2

0 s+1
s 0

]
.

(a) Determine the Smith–McMillan form of H(s) and its characteristic (pole)
polynomial and minimal polynomial. What are the poles of H(s)?

(b) Determine the zero polynomial of H(s). What are the zeros of H(s)?

7.8. Let H(s) =
[
s2+1
s2
s+1
s3

]
.

(a) Determine the Smith–McMillan form of H(s) and its characteristic (pole)
polynomial and minimal polynomial. What are the poles of H(s)?

(b) Determine the zero polynomial of H(s). What are the zeros of H(s)?

7.9. A rational function matrix R(s) may have, in addition to finite poles and
zeros, poles and zeros at infinity (s = ∞). To study the poles and zeros at
infinity, the bilinear transformation

s =
b1w + b0
a1w + a0

with a1 �= 0, b1a0 − b0a1 �= 0 may be used, where b1/a1 is not a finite pole or
zero of R(s). This transformation maps the point s = b1/a1 to w = ∞ and
the point of interest, s = ∞, to w = −a0/a1. The rational matrix R̂(w) is
now obtained as

R̂(w) = R

(
b1w + b0
a1w + a0

)
,
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and the finite poles and zeros of R̂(w) are determined. The poles and zeros at
w = −a0/a1 are the poles and zeros of R(s) at s = ∞. Note that frequently a
good choice for the bilinear transformation is s = 1/w; that is, b1 = 0, b0 = 1
and a1 = 1, a0 = 0.

(a) Determine the poles and zeros at infinity of

R1(s) =
1

s+ 1
, R2(s) = s, R3(s) =

[
1 0

s+ 1 1

]
.

Note that a rational matrix may have both poles and zeros at infinity.
(b) Show that if R(s) has a pole at s = ∞, then it is not a proper rational

function ( lim
s→∞R(s) → ∞).

7.10. Consider the polynomial matrices P (s) =
[
s2 + s −s
−s2 − 1 s2

]
, R(s) =

[
s 0

−s− 1 1

]
.

(a) Are they right coprime (rc)? If they are not, find a greatest common right
divisor (gcrd).

(b) Are they left coprime (lc)? If they are not, find a greatest common left
divisor (gcld).

7.11. (a) Show that two square and nonsingular polynomial matrices, the
determinants of which are coprime polynomials, are both right and left
coprime. Hint: Assume they are not, say, right coprime and then use the
determinants of their gcrd to arrive at a contradiction.

(b) Show that the opposite is not true; i.e., two right (left) coprime poly-
nomial matrices do not necessarily have determinants which are coprime
polynomials.

7.12. Let P (s) be a polynomial matrix of full column rank, and let y(s) be a
given polynomial vector. Show that the equation P (s)x(s) = y(s) will have a
polynomial solution x(s) for any y(s) if and only if the columns of P (s) are
lc, or equivalently, if and only if P (λ) has full column rank for any complex
number λ.

7.13. Consider P (q)z(t) = Q(q)u(t) and y(t) = R(q)z(t) +W (q)u(t), where

P (q) =
[
q3 − q q2 − 1
−q − 2 0

]
, Q(q) =

[
q − 1 −2q + 2

1 3q

]
,

R(q) =
[

2q2 + q + 2 2q
−q − 2 0

]
, W (q) =

[
−1 3q + 4
−1 −3q

]
,

with q � d
dt .

(a) Is this system representation controllable? Is it observable?
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(b) Find the transfer function matrix H(s)(ŷ(s) = H(s)û(s)).
(c) Determine an equivalent state-space representation ẋ = Ax + Bu, y =

Cx+Du, and repeat (a) and (b) for this representation.

7.14. Use system theoretic arguments to show that two polynomials d(s) =
sn+dn−1s

n−1+· · ·+d1s+d0 and n(s) = nn−1s
n−1+nn−2s

n−2+· · ·+n1s+n0

are coprime if and only if

rank

⎡
⎢⎢⎢⎣

Cc
CcAc

...
CcA

n−1
c

⎤
⎥⎥⎥⎦ = n,

where Ac =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1

−d0 −d1 −d2 −dn−1

⎤
⎥⎥⎥⎥⎥⎦

and Cc = [n0, n1, . . . , nn−1].

7.15. Consider the system Dz = u, y = Nz, where D =
[
s2 0
0 s3

]
and N =

[s2 − 1, s+ 1].

(a) Is the system controllable? Is it observable? Determine all uncontrollable
and/or unobservable eigenvalues, if any.

(b) Determine the invariant and the transmission zeros of the system.


